APPENDIX F

DATA VALIDATION REPORT FOR ANALYSES BY SGS-ANALYTICAL PERSPECTIVES

DATA VALIDATION REPORT

WESTERN PORT ANGELES HARBOR RI/FS

Prepared for:

Floyd|Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 1011 Western Ave. Suite 1011 Seattle, WA 98104

EcoChem Project: C15217-1

November 21, 2013

Approved for Release

Melissa Swanson Project Manager

Basis for Data Validation

This report summarizes the results of validation (Stage 2A, 2B, & 4) performed on tissue, SPME fibers, and quality control (QC) sample data for the Western Port Angeles Harbor RI/FS. Field sample ID, laboratory sample ID, and requested analyses are provided in the **Sample Index**. Laboratory batch ID numbers and associated level of validation are provided at the beginning of each technical section.

Samples were analyzed by Samples were analyzed by SGS-Analytical Perspectives, Wilmington, North Carolina. The analytical methods and EcoChem project chemists are listed below.

Analysis	Method of Analysis	Primary Review	Secondary Review
Dioxin Furan Compounds	EPA1613B	E. Clayton	M. Swanson
Polychlorinated Biphenyls	EPA1668A	M. Swanson	C. Mott-Frans

The data were reviewed using guidance and quality control criteria documented in the analytical methods and the following project and guidance documents:

- Sampling and Analysis Plan Western Port Angeles Harbor RI/FS (Integral/Anchor QEA/Exponent/Floyd|Snider, June 2013)
- USEPA National Functional Guidelines for Organic Data Review (USEPA 2008)
- USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (USEPA, September 2005)

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **Appendix A**. The qualified data summary table is included as **Appendix B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) was also submitted with this report.

i

Sample Index Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	PCB	Dioxin
A5874	Mn Pretest	A5874_11302_001	✓	✓
A5874	Nc Pretest	A5874_11302_002	✓	✓
A5874	Mn SD0004 Rep 1	A5874_11302_003	✓	✓
A5874	Mn SD0004 Rep 2	A5874_11302_004	✓	✓
A5874	Mn SD0004 Rep 3	A5874_11302_005	✓	✓
A5874	Nc SD0004 Rep 1	A5874_11302_006	✓	✓
A5874	Nc SD0004 Rep 2	A5874_11302_007	✓	✓
A5874	Nc SD0004 Rep 3	A5874_11302_008	✓	✓
A5874	Mn SD0009	A5874_11302_009	✓	✓
A5874	Nc SD0009	A5874_11302_010	✓	✓
A5874	Mn SD0010	A5874_11302_011	✓	✓
A5874	Nc SD0010	A5874_11302_012	✓	✓
A5874	Mn SD0011	A5874_11302_013	✓	✓
A5874	Nc SD0011	A5874_11302_014	✓	✓
A5874	Mn SD0013	A5874_11302_015	✓	✓
A5874	Nc SD0013	A5874_11302_016	✓	✓
A5874	Mn SD0015	A5874_11302_017	✓	✓
A5874	Nc SD0015	A5874_11302_018	✓	✓
A5874	Mn SD0018	A5874_11302_019	✓	✓
A5874	Nc SD0018	A5874_11302_020	✓	✓
A5875	Mn SD0025	A5875_11306_001	✓	✓
A5875	Nc SD0025	A5875_11306_002	✓	✓
A5875	Mn SD0026	A5875_11306_003	✓	✓
A5875	Nc SD0026	A5875_11306_004	✓	✓
A5875	Mn SD0028	A5875_11306_005	✓	✓
A5875	Nc SD0028	A5875_11306_006	✓	✓
A5875	Mn SD0051	A5875_11306_007	✓	✓
A5875	Nc SD0051	A5875_11306_008	✓	✓
A5875	Mn SD0052	A5875_11306_009	✓	✓
A5875	Nc SD0052	A5875_11306_010	✓	✓
A5875	Mn SD0053 Rep 1	A5875_11306_011	✓	✓
A5875	Mn SD0053 Rep 2	A5875_11306_012	✓	✓
A5875	Mn SD0053 Rep 3	A5875_11306_013	✓	✓
A5875	Nc SD0053 Rep 1	A5875_11306_014	✓	✓
A5875	Nc SD0053 Rep 2	A5875_11306_015	✓	✓
A5875	Nc SD0053 Rep 3	A5875_11306_016	✓	✓
A5875	Mn SD0054	A5875_11306_017	✓	✓
A5875	Nc SD0054	A5875_11306_018	✓	✓
A5875	Mn SD0055	A5875_11306_019	✓	✓
A5875	Nc SD0055	A5875_11306_020	✓	✓
A5876	Mn SD0053-AC	A5876_11309_001	✓	√
A5876	Nc SD0053-AC	A5876_11309_002	✓	√
A5876	Mn SD0054-AC	A5876_11309_003	✓	✓
A5876	Nc SD0054-AC	A5876_11309_004	✓	✓
A5877	SD0025 PCB	A5877_11299_001	✓	

Sample Index Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	РСВ	Dioxin
A5877	SD0054 PCB	A5877_11299_002	✓	
A5877	SD0018 PCB	A5877_11299_003	✓	
A5877	SD0053-AC PCB	A5877_11299_004	✓	
A5877	SD0051 PCB	A5877_11299_005	✓	
A5877	SD0010 PCB	A5877_11299_006	✓	
A5877	SD0028 PCB	A5877_11299_007	✓	
A5877	SD0053-1 PCB	A5877_11299_008	✓	
A5877	SD0054-AC PCB	A5877_11299_009	✓	
A5877	SD0026 PCB	A5877_11299_010	✓	
A5877	SD004-2 PCB	A5877_11299_011	✓	
A5877	SD0055 PCB	A5877_11299_012	✓	
A5877	SD0053-2 PCB	A5877_11299_013	✓	
A5877	SD0053-3 PCB	A5877_11299_014	✓	
A5877	SD004-1 PCB	A5877_11299_015	✓	
A5877	SD009 PCB	A5877_11299_016	✓	
A5877	SD0015 PCB	A5877_11299_017	✓	
A5877	SD0013 PCB	A5877_11299_018	✓	
A5877	SD004-3 PCB	A5877_11299_019	✓	
A5877	SD0011 PCB	A5877_11299_020	✓	
A5877	SD0052 PCB	A5877_11299_021	✓	
A5877	Fiber Blank 1	A5877_11299_022	✓	
A5877	Fiber Blank 2	A5877_11299_023	✓	
A5878	SD0025 D/F	A5878_11298_001		✓
A5878	SD0054 D/F	A5878_11298_002		✓
A5878	SD0018 D/F	A5878_11298_003		✓
A5878	SD0053 AC D/F	A5878_11298_004		✓
A5878	SD0051 D/F	A5878_11298_005		✓
A5878	SD0010 D/F	A5878_11298_006		✓
A5878	SD0028 D/F	A5878_11298_007		✓
A5878	SD0053-1 D/F	A5878_11298_008		✓
A5878	SD0054-AC D/F	A5878_11298_009		✓
A5878	SD0026 D/F	A5878_11298_010		✓
A5878	SD004-2 D/F	A5878_11298_011		✓
A5878	SD0055 D/F	A5878_11298_012		✓
A5878	SD0053-2 D/F	A5878_11298_013		✓
A5878	SD0053-3 D/F	A5878_11298_014		✓
A5878	SD004-1 D/F	A5878_11298_015		✓
A5878	SD009 D/F	A5878_11298_016		✓
A5878	SD0015 D/F	A5878_11298_017		✓
A5878	SD0013 D/F	A5878_11298_018		✓
A5878	SD004-3 D/F	A5878_11298_019		✓
A5878	SD0011 D/F	A5878_11298_020		✓
A5878	SD0052 D/F	A5878_11298_021		✓
A5878	Fiber Blank D/F	A5878_11298_022		✓
A5878	Fiber Blank D/F	A5878_11298_022RJ		✓

DATA VALIDATION REPORT **City of Port Angeles WPAHG** PCB Congeners by Method EPA 1668A

This report documents the review of analytical data from the analysis of tissue samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by SGS-Analytical Perspectives, Wilmington, North Carolina. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
A5874	20 Tissue	EPA Stage 2B
A5875	20 Tissue	EPA Stage 2B
A5876	4 Tissue	EPA Stage 4

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (10%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. No errors were noted.

III. **TECHNICAL DATA VALIDATION**

The QC requirements that were reviewed are listed below.

1	Sample Receipt, Preservation, and Holding Times	2	Matrix Spike/Matrix Spike Duplicate (MS/MSD)
✓	GC/MS Instrument Performance Check	2	Laboratory Duplicates
✓	Initial Calibration (ICAL)	2	Compound Identification
✓	Continuing Calibration (CCAL)	✓	Reported Results
2	Method Blanks	✓	Reporting Limits
2	Labeled Compounds	1	Calculation Verification
1	Ongoing Precision and Recovery (OPR)		

 $[\]sqrt$ Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

Sample Receipt, Preservation, and Holding Times

SDG A5874: Sample Nc Pretest was noted on the chain-of-custody (COC) as Nv Pretest, but the sample container was labeled Nc Pretest. This sample was reported as Nc Pretest in the data package and EDD. Beyond noting this discrepancy, no further action was taken.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Method Blanks

Method blanks were analyzed at the appropriate frequency. To assess the impact of each blank contaminant on the reported sample results, an action level was established at five times the concentration detected in the blank and the sample results were compared to these action levels. The laboratory assigned "K" flag to values when a peak was detected but did not meet identification criteria. These values cannot be considered as positive identifications, but are "estimated maximum possible concentrations". When these occurred in the method blank the results were considered as false positives. No action levels were established for these analytes.

SDG A5874: Seventeen (17) PCB congeners were detected in the method blank associated with the dilution analysis run. Ten (10) results were qualified as not detected (U-7) in sample Nc SD0011.

SDG A5875: Several PCB congeners were detected in the method blanks. All associated results were either not detected or detected at concentrations greater than the action levels; no data were qualified.

SDG A5876: Several PCB congeners were detected in the method blanks. In all four (4) samples PCB 11 was qualified as not detected (U-7).

Labeled Compound Recovery

Labeled compounds were added to all samples. The labeled compound percent recovery (%R) values were evaluated using the laboratory control limits.

SDG A5874: The %R values for labeled compounds 13C-PCB 170 and 13C-PCB 180 were greater than the upper control limits in all samples. These labeled compounds are not used to quantitate any native PCB congeners; no data were qualified for these outliers.

The %R values for 13C-PCB 169 were less than the lower control limit in Samples Nc SD0004 Rep2, Nc SD0004 Rep3, Mn SD0009, and Mn SD0010, indicating a potential low bias. The %R values for 13C-PCB 189 were greater than the upper control limit in Samples Nc SD0004 Rep1 and Nc SD0015, indicating a potential high bias. The associated positive results were estimated (J-13H) in these samples. The %R values for 13C-PCB189 and 13C-PCB 208 were greater than the upper control limit in Sample Nc SD0011 and the laboratory duplicate of Sample Nc SD0015, indicating a potential high bias. The associated positive results were estimated (J-13H) in sample Nc SD0011; data were not qualified in the QC sample.

SDG A5875: The %R values for labeled compounds 13C-PCB 170 and 13C-PCB 180 were greater than the upper control limits in all samples. These labeled compounds are not used to quantitate any native PCB congeners; no data were qualified for these outliers.

The %R values for 13C-PCB 189 and 13C-PCB 208 were greater than the upper control limit in Samples Nc SD0025, Nc SD0026, and, Nc SD0028 indicating a potential high bias; the associated positive results were estimated (J-13H) in these samples. Additionally the %R values for 13C-PCB 189, 13C-PCB 206, and 13C-PCB 208 were greater than the upper control limit in Sample Nc SD0028. The associated results for these labeled compounds were not detected and no

qualifiers were applied. The %R values for 13C-PCB 209 were greater than the upper control limit in Samples Nc SD0028, and Nc SD0051, and 13C-PCB 208 was greater than the upper control limit in Sample Mn SD0055, indicating a potential high bias. The associated positive results were estimated (J-13H) in these samples. The %R values for 13C-PCB 208 were greater than the upper control limit in the laboratory duplicate, the matrix spike sample and the matrix spike duplicate sample, indicating a potential high bias. No data were qualified in these QC samples.

SDG A5876: The %R values for 13C-PCB 126 and 13C-PCB 169 in Sample Mn SD0053-AC were greater than the upper control limit, indicating a potential high bias. The associated positive results were estimated (J-13H) in this sample. The %R value for 13C-PCB1 was less than the lower control limit and the %R for 13C-PCB 15 was greater than the upper control limit in the ongoing precision and recovery (OPR). No data were qualified in this QC sample.

Ongoing Precision and Recovery

All SDG: Accuracy was also assessed using ongoing precision and recovery samples (OPR) as well as BCS3 samples. The BCS3 is a QC sample that goes through the entire extraction process prior to analysis. Precision was monitored by the laboratory by comparing the BCS3 results between extraction batches.

Matrix Spike/Matrix Spike Duplicate

SDG A5874: Sample Nc SD0010 was analyzed as the matrix spike/matrix spike duplicate (MS/MSD). The %R values for PCB 105 and PCB 118 were less than the lower control limit, indicating a potential low bias, and their relative percent difference (RPD) values were greater than the control limit. The results for these congeners in the parent sample were estimated (J-8L,9).

SDG A5875: Sample Mn SD0055 was analyzed as the MS/MSD. The RPD value for PCB 118 was greater than the control limit. The result for PCB 118 in the parent sample was estimated (J-9).

Laboratory Duplicates

SDG A5874: Sample Nc SD0015 was analyzed in duplicate. The RPD values for 29 congeners and two (2) homolog groups were greater than the control limit. Results for these congeners were estimated (J/UJ-9) in the parent sample; no qualifiers were applied to homolog groups.

SDG A5875: Sample Mn SD0054 was analyzed in duplicate. The RPD values for 76 congeners and five (5) homolog groups were greater than the control limit. Results for these congeners were estimated (J/UJ-9) in the parent sample; no qualifiers were applied to homolog groups.

SDG A5876: Precision was assessed using BCS3 samples. This QC sample goes through the entire extraction process prior to analysis. Precision was monitored by the laboratory by comparing the BCS3 results between extraction batches. Precision was acceptable.

Compound Identification

The laboratory reported EMPC or "estimated maximum possible concentrations" values for one or more of the target analytes in all samples. An EMPC value was reported when a peak was detected but did not meet identification criteria as required by the method; therefore the result cannot be considered as positive identification for the analyte. The EMPC values were qualified as not detected (U-25) to indicate that the result is not-detected at an elevated reporting limit. The EMPC values for total homolog groups were qualified as estimated (J-25) at the reported values.

Calculation Verification

SDG A5876: Several results were verified by recalculation from the raw data. No transcription or calculation errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the labeled compound, OPR, BCS3, and MS/MSD recoveries. With the exceptions noted above, precision was also acceptable as reported by the BCS3 recoveries from multiple extraction batches, and MS/MSD and laboratory duplicate RPD values.

Data were estimated due to labeled compound and MS/MSD accuracy outliers, and MS/MSD and laboratory duplicate precision outliers. Detection limits were elevated due to ion ratio outliers and method blank contamination.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS PCB Congeners by Method EPA 1668A

This report documents the review of analytical data from the analysis of SPME fiber samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by SGS-Analytical Perspectives, Wilmington, North Carolina. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
A5877	21 SPME Fiber	EPA Stage 2B
	2 Fiber Blanks	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (10%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. No errors were noted.

III. TECHNICAL DATA VALIDATION

The OC requirements that were reviewed are listed below.

✓	Sample Receipt, Preservation, and Holding Times	1	Ongoing Precision and Recovery (OPR)
✓	GC/MS Instrument Performance Check	✓	Laboratory Duplicates
✓	Initial Calibration (ICAL)	1	Field Triplicates
✓	Continuing Calibration (CCAL)	2	Compound Identification
1	Method Blanks	✓	Reported Results
2	Field Blanks	✓	Reporting Limits
✓	Labeled Compounds		

[✓] Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

Method Blanks

The samples were received by the laboratory as hexane extracts. Clean fibers were used as field blanks to assess any potential contamination during further sample handling and analysis.

Field Blanks

The field blanks for this project were blank fiber samples. To evaluate the effect on the sample data, action levels of five times (5x) the blank concentrations were established. If a contaminant

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

is detected in an associated field sample and the concentration is less than the action level, the result is qualified (U-6) at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

Positive results for PCB 8 and PCB 11 were reported in Fiber Blank 1 and positive results for PCB 8, PCB 11, PCB, 20/28, PCB 21/33, PCB 31, and PCB 52 were reported in Fiber Blank 2. Five (5) results for PCB 8 and 18 results for PCB 11 were qualified as not detected (U-6).

Ongoing Precision and Recovery

Accuracy was also assessed using BCS3 samples. This QC sample goes through the entire extraction process prior to analysis. Precision was monitored by the laboratory by comparing the BCS3 results between extraction batches.

Field Triplicates

Fibers from two of the SPME test chambers (Samples SD004-1, SD004-2, & SD004-3 and SD0053-1, SD0053-2, & SD0053-3) were analyzed in triplicate to assess inter-chamber variability. In the set using Samples SD0053-1, SD0053-2, & SD0053-3 the relative standard deviation (RSD) values for PCB 176 and PCB 176 were greater than 22% and 23%, respectively. For results greater than five times the reporting limit all other RSD values were less than 20%. No data were qualified based on these precision outliers. Data users should consider the impact of field precision outliers on the reported results.

Compound Identification

The laboratory reported EMPC or "estimated maximum possible concentrations" values for one or more of the target analytes in all samples. An EMPC value was reported when a peak was detected but did not meet identification criteria as required by the method; therefore the result cannot be considered as positive identification for the analyte. The EMPC values were qualified as not detected (U-25) to indicate that the result is not-detected at an elevated reporting limit. The EMPC values for total homolog groups were qualified as estimated (J-25) at the reported values.

IV. **OVERALL ASSESSMENT**

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the labeled compound and BCS3 recoveries. Precision was also acceptable as reported by the BCS3 recoveries from multiple extraction batches

Detection limits were elevated due to ion ratio outliers and field blank contamination.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Dioxin & Furan Compounds by EPA 1613B & Percent Lipids

This report documents the review of analytical data from the analysis of tissue samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by SGS-Analytical Perspectives, Wilmington, North Carolina. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
A5874	20 Tissue	EPA Stage 2B
A5875	20 Tissue	EPA Stage 2B
A5876	4 Tissue	EPA Stage 4

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (10%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. No errors were noted.

III. TECHNICAL DATA VALIDATION

The QC requirements reviewed are summarized in the following table:

✓	Sample Receipt, Preservation, and Holding Time	1	Ongoing Precision and Recovery (OPR)
1	System Performance and Resolution Checks	2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)
✓	Initial Calibration (ICAL)	1	Laboratory Duplicates
✓	Calibration Verification (CVER)	✓	Target Analyte List
2	Method Blanks	2	Compound Identification
✓	Labeled Compound Recovery	1	Calculation Verification

[✓] Stated method quality objectives (MOO) and QC criteria have been met. No outliers are noted or discussed.

System Performance and Resolution Checks

The method requires the analysis of an isomer-specificity test solution. The analysis of this solution (performed near the beginning of an analytical sequence) demonstrates that the GC column can successfully separate 2,3,7,8-TCDD (on the DB5 column) and 2,3,7,8-TCDF (on the DB225 or equivalent column) from closely eluting non-target isomers.

The isomer-specificity analysis was acceptable for 2,3,7,8-TCDD. However, the laboratory does not perform second column analysis. Instead, the laboratory includes the known co-eluting isomers

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

in the ongoing precision and recovery (OPR) spike solution. This QC sample goes through the entire extraction process prior to analysis. Isomer specificity is verified using the results of the OPR analysis.

The method criteria for evaluating the isomer-specificity test is that the peak-to-valley ratio between the 2,3,7,8-isomer and the closest eluting non-target isomer must be less than or equal to 25%. The laboratory uses a 10% criterion for 2,3,7,8-TCDD, and a 40% criterion for 2,3,7,8-TCDF.

For 2,3,7,8-TCDF, the method criterion of 25% is for analyses performed using a DB225 (or equivalent) column. The laboratory uses a DB5MS column (see the **Compound Identification** section for further discussion). Although the laboratory criterion for 2,3,7,8-TCDF is greater than 25%, the laboratory also requires that despite the presence of a potentially interfering peak, the 2,3,7,8-TCDF recovery and retention time must still meet the OPR control limits, proving that 2,3,7,8-TCDF was adequately resolved.

The 2,3,7,8-TCDF peak was judged to be adequately resolved and no further action was necessary given that the 2,3,7,8-TCDF peak-to-valley ratio was less than 40% and all other OPR control limits were met.

Method Blanks

In order to assess the impact of blank contamination on the reported sample results, action levels are established at five times the blank concentrations. If the concentrations in the associated field samples are less than the action levels, the results are qualified as not detected (U-7).

The laboratory assigned an "EMPC" flag to an analyte result when a peak was detected but did not meet identification criteria. These values cannot be considered as positive identifications, but are "estimated maximum possible concentrations". When a result in the method blank had an "EMPC" flag, the result was treated as a non-detect at an elevated detection limit; therefore no action level was established for these analytes.

SDG A5874: The analyte OCDD was detected in both method blanks and 1,2,3,4,6,7,8-HpCDD was detected in one method blank. Only the OCDD result in Sample Nc Pretest was qualified as not detected (U-7), all other results were either not detected or detected at concentrations greater than the action level.

SDG A5875: The analyte OCDD was detected in both method blanks and 1,2,3,7,8,9-HxCDD and 1,2,3,4,6,7,8-HpCDD were each detected in one method blank. Results for 1,2,3,7,8,9-HxCDD were qualified as not detected (U-7) in 11 samples, all other results were either not detected or detected at concentrations greater than the action level.

SDG A5876: The analyte 1,2,3,7,8,9-HxCDD was detected in the method blank. Results for 1,2,3,7,8,9-HxCDD were qualified as not detected (U-7) in Samples Nc SD0053-AC and Nc SD0054-AC.

Ongoing Precision and Recovery

Accuracy was also assessed using BCS3 samples. This QC sample goes through the entire extraction process prior to analysis. Precision was monitored by the laboratory by comparing the BCS3 results between extraction batches.

Matrix Spike/Matrix Spike Duplicates

SDG A5874: Sample Nc SD0010 was analyzed as the matrix spike/matrix spike duplicate (MS/MSD). The percent recovery (%R) values for 1,2,3,4,6,7,8-HpCDD and OCDD were less than the lower control limit. The parent concentration of OCDD was greater than four times the spike concentration; no data were qualified for this outlier. The result for 1,2,3,4,6,7,8-HpCDD was estimated (J-8L) to indicate a potential low bias. The relative percent difference (RPD) value for 1,2,3,4,6,7,8-HpCDD was greater than the control limit; the result for this sample was estimated (J-9).

Laboratory Duplicates

SDG A5874: Sample Nc SD0015 was analyzed in duplicate. The RPD values for 1,2,3,7,8,9-HxCDD, total PeCDD, and total TCDF were greater than the control limit. The result for 1,2,3,7,8,9-HxCDD was estimated (J-9) in the parent sample; no qualifiers were applied to homolog groups.

SDG A5875: Sample Mn SD0054 was analyzed in duplicate. The RPD values for 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 2,3,4,6,7,8-HxCDF, total HxCDD, total HpCDD, and total HpCDF were greater than the control limit. The result for these congeners were estimated (J-9) in the parent sample; no qualifiers were applied to homolog groups.

Compound Identification

The method requires the confirmation of 2,3,7,8-TCDF detects using an alternate GC column. The DB5 column that is typically used cannot fully separate 2,3,7,8-TCDF from closely eluting non-target TCDF isomers. The laboratory did not perform a second column confirmation; however the laboratory uses a DB5MS column. This modified column has been proven to adequately resolve the TCDF isomers. The laboratory also includes the interfering TCDF isomer as a spiked compound in the OPR solution to demonstrate acceptable resolution, as discussed in the **Instrument Performance** section above. Since the 2,3,7,8-TCDF resolution was acceptable, no further action was necessary.

The laboratory assigned an "EMPC" flag to one or more analytes to indicate that the ion ratio criterion for positive identification was not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. These "EMPC" flagged results were qualified as not detected (U-25) at the reported concentration. The "EMPC" flagged results for total homolog groups were estimated (J-25).

Calculation Verification

SDG A5876: Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the labeled compound, ongoing precision and recovery standard, MS/MSD, and BCS3 standard recoveries. With the exceptions noted above, precision was acceptable as demonstrated by the BCS3 recoveries from multiple extraction batches, the MS/MSD and laboratory RPD, and field triplicate RSD values.

Detection limits were elevated based on ion ratio outliers and method blank contamination. Data were estimated based on MS/MSD recovery outliers and MS/MSD and laboratory duplicate precision outliers.

All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Dioxin & Furan Compounds by EPA 1613B

This report documents the review of analytical data from the analysis of SPME fiber samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by SGS-Analytical Perspectives, Wilmington, North Carolina. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
A F 0.7 0	21 SPME Fiber	EPA Stage 2B
A5878	1 Fiber Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. The laboratory did not report values for the total homolog groups in the data package.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (10%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. The laboratory did not report values for the total homolog groups in the EDD.

III. TECHNICAL DATA VALIDATION

The QC requirements reviewed are summarized in the following table:

✓	Sample Receipt, Preservation, and Holding Time	✓	Labeled Compound Recovery
1	System Performance and Resolution Checks	1	Ongoing Precision and Recovery (OPR)
✓	Initial Calibration (ICAL)	1	Laboratory Duplicates
✓	Calibration Verification (CVER)	1	Field Triplicates
1	Method Blanks	✓	Target Analyte List
1	Field Blanks	2	Compound Identification

[✓] Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

System Performance and Resolution Checks

The method requires the analysis of an isomer-specificity test solution. The analysis of this solution (performed near the beginning of an analytical sequence) demonstrates that the GC column can successfully separate 2,3,7,8-TCDD (on the DB5 column) and 2,3,7,8-TCDF (on the DB225 or equivalent column) from closely eluting non-target isomers.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

The isomer-specificity analysis was acceptable for 2,3,7,8-TCDD. However, the laboratory does not perform second column analysis. Instead, the laboratory includes the known co-eluting isomers in the ongoing precision and recovery (OPR) spike solution. This QC sample goes through the entire extraction process prior to analysis. Isomer specificity is verified using the results of the OPR analysis.

The method criteria for evaluating the isomer-specificity test is that the peak-to-valley ratio between the 2,3,7,8-isomer and the closest eluting non-target isomer must be less than or equal to 25%. The laboratory uses a 10% criterion for 2,3,7,8-TCDD, and a 40% criterion for 2,3,7,8-TCDF.

For 2,3,7,8-TCDF, the method criterion of 25% is for analyses performed using a DB225 (or equivalent) column. The laboratory uses a DB5MS column (see the **Compound Identification** section for further discussion). Although the laboratory criterion for 2,3,7,8-TCDF is greater than 25%, the laboratory also requires that despite the presence of a potentially interfering peak, the 2,3,7,8-TCDF recovery and retention time must still meet the OPR control limits, proving that 2,3,7,8-TCDF was adequately resolved.

The 2,3,7,8-TCDF peak was judged to be adequately resolved and no further action was necessary given that the 2,3,7,8-TCDF peak-to-valley ratio was less than 40% and all other OPR control limits were met.

Method Blanks

The samples were received by the laboratory as hexane extracts. A clean fiber was used as a field blank to assess any potential contamination during further sample handling and analysis.

Field Blanks

The field blank for this project was a blank fiber sample, Fiber Blank. No dioxin or furan compounds were detected in this sample.

Ongoing Precision and Recovery

Accuracy was also assessed using BCS3 samples. This QC sample goes through the entire extraction process prior to analysis. Precision was monitored by the laboratory by comparing the BCS3 results between extraction batches.

Laboratory Duplicates

No laboratory duplicates were analyzed with this data set. Precision was measured by comparing the BCS3 results between extraction batches. Precision was acceptable.

Field Triplicates

Fibers from two of the SPME test chambers (Samples SD004-1, SD004-2, & SD004-3 and SD0053-1, SD0053-2, & SD0053-3) were analyzed in triplicate to assess inter-chamber variability. In the set using Samples SD0053-1, SD0053-2, & SD0053-3 the relative standard deviation (RSD) values for 1,2,3,4,6,7,8-HpCDD and 2,3,4,6,7,8-HxCDF were greater than 50%.

For results greater than five times the reporting limit all other RSD values were less than 20%. No data were qualified based on these precision outliers. Data users should consider the impact of field precision outliers on the reported results.

Compound Identification

The method requires the confirmation of 2,3,7,8-TCDF detects using an alternate GC column. The DB5 column that is typically used cannot fully separate 2,3,7,8-TCDF from closely eluting non-target TCDF isomers. The laboratory did not perform a second column confirmation; however the laboratory uses a DB5MS column. This modified column has been proven to adequately resolve the TCDF isomers. The laboratory also includes the interfering TCDF isomer as a spiked compound in the OPR solution to demonstrate acceptable resolution, as discussed in the **Instrument Performance** section above. Since the 2,3,7,8-TCDF resolution was acceptable, no further action was necessary.

The laboratory assigned an "EMPC" flag to one or more analytes to indicate that the ion ratio criterion for positive identification was not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. These "EMPC" flagged results were qualified as not detected (U-25) at the reported concentration. The "EMPC" flagged results for total homolog groups were estimated (J-25).

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the labeled compound and BCS3 standard recoveries and precision was acceptable as demonstrated by the BCS3 recoveries from multiple extraction batches.

Detection limits were elevated based on ion ratio outliers.

All other data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The following is an EcoChem qualifier that may also be assigned during the data review process:

from another analysis or dilution.

Do not report; a more appropriate result is reported

DNR

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass)
Instrument Performance	5A	Initial Calibration (RF, %RSD, r²)
	5B	Calibration Verification (ICV, CCV, CCAL; RF, %D, %R) Use bias flags (H,L)¹ where appropriate
	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
Blank Contamination	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L)¹ for negative instrument blanks
	8	Matrix Spike (MS &/or MSD) Recoveries Use bias flags (H,L)¹ where appropriate
	9	Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate)
Precision and Accuracy	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L)¹ where appropriate
	12	Reference Material Use bias flags (H,L)¹ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)¹ where appropriate
	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)¹ where appropriate
Interferences	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
	2	Chromatographic pattern in sample does not match pattern of calibration standard
	3	2 nd column confirmation (RPD or %D)
Identification and Quantitation	4	Tentatively Identified Compound (TIC) (associated with NJ only)
Qualitation	20	Calibration Range or Linear Range Exceeded
	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)
Miscellaneous	14	Other (See DV report for details)
	26	Method QC information not provided

¹H = high bias indicated

L = low bias indicated

Table No.: HRMS-PCB Revision No.: 1 Last Rev. Date: 8/23/07 Page: 1 of 2

EcoChem Validation Guidelines for PCB Congener Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 1, 12/1995 & EPA SW-846, Method 1668)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE			
Cooler/Storage Temperature	Waters/Solids <4°C Tissues <-10°C	EcoChem PJ, see TM-05	1			
Holding Time	Samples: Up to one year if stored in the dark & temp as above. Extracts: Up to 1 year if stored at <-10°C and in the dark	J(+)/UJ(-) if HT > 1 year EcoChem PJ, see TM-05	1			
Mass Resolution	>=10,000 resolving power at m/z 330.9792 <5 ppm deviation from each m/z listed in Table 7 of method. Analyzed prior to ICAL and at the beginning and end of each 12 hr. shift	z listed in Table 7 of method. and at the beginning h 12 hr. shift n prior to each ICAL hour shift				
Column Resolution 209 Congener Solution	Mix of all 209 PCBs run prior to each ICAL and each 12 hour shift RT of PCB209 must be > 55 min PCB 156 & 157 must coelute w/in 2 sec PCB34 & 23 and PCB187 & 182 must be resolved where ((x/y)*100%) < 40% x = ht. of valley and y = ht of shortest peak	J(+) if valley >40%	5A (ICAL) 5B (CCAL)			
	Minimum of five standards %RSD < 20% for native compounds %RSD < 35% for labeled compounds	J(+) natives if %RSD > 20%				
Initial Calibration	Ion Abundance ratios within QC limits (Method 1668, Table 8) in CS1 std.	EcoChem PJ, see TM-05	5A			
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)				
	Every 12 hours: Concentrations must meet criteria specified in Method 1668, Table 6	J(+)/(UJ(-) natives if %D = 30% - 50% J(+)/R(-) natives if %D > 75%				
Continuing Calibration	Absolute RT of all Labelled Compounds and Window Defining Congeners must be +/- 15 sec of RT in ICAL RRT of all compounds must meet Table 2 of method.	EcoChem PJ, see ICAL section of TM-05	5B			
Calibration	S/N ratio > 10	If <10, elevate Det. Limit or R(-)				
	lon Abundance ratios must meet criteria specified in Method 1668, Table 8	EcoChem PJ, see TM-05				
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7			

Table No.: HRMS-PCB Revision No.: 1 Last Rev. Date: 8/23/07 Page: 2 of 2

EcoChem Validation Guidelines for PCB Congener Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 1, 12/1995 & EPA SW-846, Method 1668)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Rinse/Field Blank (if required)	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	One per matrix per batch %R Values w/in limits specified in Method 1668, Table 6	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (if required)	Accuracy: %R values within laboratory limits	Qualify parent sample only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
Duplicate (if required)	Precision: RPD < 20%	J(+) in parent sample if RPD > 20%	9
	RPD <25%	J(+)/UJ(-) if outside limts	9
Labeled Compounds / Internal Standards	%R must meet limits specified in Method 1668, Table 6.	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL J(+)/R(-) if %R < 10%	13
Quantitation/ Identification	lons for analyte, IS, and rec. std. must max w/in 2 sec. S/N >2.5 lon abundance (IA ratios) must meet limits stated in Table 8 of Method 1668 Relative retention times (RRT) must be w/in limits stated in Table 2 of Method 1668	If RT criteria not met, use PJ (see TM-05) J(+) if S/N criteria not met if unlabelled ion abundance not met, change to EMPC J(+) if labelled ion abundance not met.	21
Interferences	Lock masses must not deviate +/- 20%	Change result to EMPC	14
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 1 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days* Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790). Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) x = ht. of TCDD y = baseline to bottom of valley For all isomers eluting near 2378-TCDD/TCDF isomers (TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 2 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE	
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit		
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B	
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05		
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05		
	S/N ratio > 10	method 8290) method 1613B) atio > 10 If <10, elevate Det. Limit or R(-) atrix per batch If sample result <5X action level,		
Method Blank	One per matrix per batch No positive results		7	
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6	
LCS / OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10	
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8	
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) in parent sample if RPD > CL	9	

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 3 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	Method 8290: %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	13
Quantitation/ Identification	lons for analyte, IS, and rec. std. must max w/in 2 sec. S/N >2.5 IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in Table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35%	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	OR absolute diff. < 1X RL (for results < 5X RL) Report only one result per analyte	"DNR" results that should not be used	11

APPENDIX B QUALIFIED DATA SUMMARY TABLE

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5874	Mn Pretest	A5874_11302_DF_001	EPA1613B	Heptachlorodibenzofuran (Total)	0.139	pg/g	EMPC	J	25
A5874	Mn Pretest	A5874_11302_DF_001	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	0.324	pg/g	EMPC	J	25
A5874	Mn Pretest	A5874_11302_DF_001	EPA1613B	Tetrachlorodibenzodioxin (Total)	0.0932	pg/g	EMPC	J	25
A5874	Nc Pretest	A5874_11302_DF_002	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.257	pg/g	EMPC J	U	25
A5874	Nc Pretest	A5874_11302_DF_002	EPA1613B	Heptachlorodibenzo-p-dioxin (Total)	0.551	pg/g	EMPC	J	25
A5874	Nc Pretest	A5874_11302_DF_002	EPA1613B	Octachlorodibenzo-p-dioxin	0.655	pg/g	JB	U	7
A5874	Nc Pretest	A5874_11302_DF_002	EPA1613B	Tetrachlorodibenzofuran (Total)	0.203	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.158	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.118	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.199	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.174	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	Hexachlorodibenzofuran (Total)	9.5	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	8.95	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	Pentachlorodibenzofuran (Total)	3.99	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.97	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.52	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	A5874_11302_DF_003	EPA1613B	Tetrachlorodibenzofuran (Total)	2.56	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.0843	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.167	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.116	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	Hexachlorodibenzofuran (Total)	8.02	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	7.35	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.73	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	Tetrachlorodibenzodioxin (Total)	2.15	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 2	A5874_11302_DF_004	EPA1613B	Tetrachlorodibenzofuran (Total)	3.36	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 3	A5874_11302_DF_005	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.244	pg/g	EMPC J	U	25
A5874	Mn SD0004 Rep 3	A5874_11302_DF_005	EPA1613B	Heptachlorodibenzofuran (Total)	20.7	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 3	A5874_11302_DF_005	EPA1613B	Hexachlorodibenzofuran (Total)	9.55	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 3	A5874_11302_DF_005	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	8.53	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 3	A5874_11302_DF_005	EPA1613B	Pentachlorodibenzofuran (Total)	4.23	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 3	A5874_11302_DF_005	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.85	pg/g	EMPC	J	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5874	Mn SD0004 Rep 3	A5874_11302_DF_005	EPA1613B	Tetrachlorodibenzofuran (Total)	3.32	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.088	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.161	pg/g	EMPC J B	U	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.0909	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.0416	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0739	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	Hexachlorodibenzofuran (Total)	5.57	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	3.82	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	Octachlorodibenzofuran	0.837	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	Pentachlorodibenzofuran (Total)	3.97	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.31	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.68	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	A5874_11302_DF_006	EPA1613B	Tetrachlorodibenzofuran (Total)	2.66	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	A5874_11302_DF_007	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.462	pg/g	EMPC J B	U	25
A5874	Nc SD0004 Rep 2	A5874_11302_DF_007	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.144	pg/g	EMPC J B	U	25
A5874	Nc SD0004 Rep 2	A5874_11302_DF_007	EPA1613B	Hexachlorodibenzofuran (Total)	5.23	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	A5874_11302_DF_007	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	3.24	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	A5874_11302_DF_007	EPA1613B	Pentachlorodibenzofuran (Total)	3.76	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	A5874_11302_DF_007	EPA1613B	Tetrachlorodibenzofuran (Total)	2.6	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.076	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.11	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.134	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.145	pg/g	EMPC J	U	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	Hexachlorodibenzofuran (Total)	6.31	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	Pentachlorodibenzofuran (Total)	4.14	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.21	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.54	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 3	A5874_11302_DF_008	EPA1613B	Tetrachlorodibenzofuran (Total)	2.93	pg/g	EMPC	J	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.316	pg/g	EMPC J	U	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.227	pg/g	EMPC J	U	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.413	pg/g	EMPC J B	U	25

000	O-mal- ID	L - L ID	Madaad	Acclide	Decell	1114	I oh Flogo	Validation Qualifier	Validation Reason
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags		
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.169	pg/g	EMPC J	U	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	Heptachlorodibenzofuran (Total)	30.9	pg/g	EMPC	J	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	Hexachlorodibenzofuran (Total)	18.5	pg/g	EMPC	J	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	14	pg/g	EMPC	J	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.92	pg/g	EMPC	J	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	Tetrachlorodibenzodioxin (Total)	3.45	pg/g	EMPC	J	25
A5874	Mn SD0009	A5874_11302_DF_009	EPA1613B	Tetrachlorodibenzofuran (Total)	5.17	pg/g	EMPC	J	25
A5874	Nc SD0009	A5874_11302_DF_010	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.123	pg/g	EMPC J	U	25
A5874	Nc SD0009	A5874_11302_DF_010	EPA1613B	Pentachlorodibenzofuran (Total)	9.06	pg/g	EMPC	J	25
A5874	Nc SD0009	A5874_11302_DF_010	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	3.05	pg/g	EMPC	J	25
A5874	Nc SD0009	A5874_11302_DF_010	EPA1613B	Tetrachlorodibenzodioxin (Total)	3.94	pg/g	EMPC	J	25
A5874	Nc SD0009	A5874_11302_DF_010	EPA1613B	Tetrachlorodibenzofuran (Total)	5.7	pg/g	EMPC	J	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.32	pg/g	EMPC J	U	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.23	pg/g	EMPC J	U	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.306	pg/g	EMPC J	U	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	Heptachlorodibenzofuran (Total)	44.1	pg/g	EMPC	J	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	Hexachlorodibenzofuran (Total)	21.5	pg/g	EMPC	J	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	13.4	pg/g	EMPC	J	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	Pentachlorodibenzofuran (Total)	7.12	pg/g	EMPC	J	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.19	pg/g	EMPC	J	25
A5874	Mn SD0010	A5874_11302_DF_011	EPA1613B	Tetrachlorodibenzofuran (Total)	4.2	pg/g	EMPC	J	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	159	pg/g		J	8L,9
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.419	pg/g	EMPC J	U	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.163	pg/g	EMPC J	U	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.236	pg/g	EMPC J	U	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0658	pg/g	EMPC J	U	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	Heptachlorodibenzofuran (Total)	33.2	pg/g	EMPC	J	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	Hexachlorodibenzofuran (Total)	18.7	pg/g	EMPC	J	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	Pentachlorodibenzofuran (Total)	7.49	pg/g	EMPC	J	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	Tetrachlorodibenzodioxin (Total)	3.22	pg/g	EMPC	J	25
A5874	Nc SD0010	A5874_11302_DF_012	EPA1613B	Tetrachlorodibenzofuran (Total)	4.48	pg/g	EMPC	J	25

SDG	Comple ID	Lab ID	Method	Amelista	Desvill	Unita	Lab Flags	Validation Qualifier	Validation Reason
	Sample ID			Analyte	Result	Units	•		
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.146	pg/g	EMPC J	U	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.203	pg/g	EMPC J	U	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.349	pg/g	EMPC J B	U	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	Heptachlorodibenzofuran (Total)	14.8	pg/g	EMPC	J	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	Hexachlorodibenzofuran (Total)	8.62	pg/g	EMPC	J	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	7.09	pg/g	EMPC	J	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.68	pg/g	EMPC	J	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.91	pg/g	EMPC	J	25
A5874	Mn SD0011	A5874_11302_DF_013	EPA1613B	Tetrachlorodibenzofuran (Total)	3.23	pg/g	EMPC	J	25
A5874	Nc SD0011	A5874_11302_DF_014	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.0705	pg/g	EMPC J	U	25
A5874	Nc SD0011	A5874_11302_DF_014	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.112	pg/g	EMPC J	U	25
A5874	Nc SD0011	A5874_11302_DF_014	EPA1613B	2,3,7,8-Tetrachlorodibenzofuran	0.107	pg/g	EMPC J	U	25
A5874	Nc SD0011	A5874_11302_DF_014	EPA1613B	Hexachlorodibenzofuran (Total)	6.27	pg/g	EMPC	J	25
A5874	Nc SD0011	A5874_11302_DF_014	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.07	pg/g	EMPC	J	25
A5874	Nc SD0011	A5874_11302_DF_014	EPA1613B	Tetrachlorodibenzofuran (Total)	6.62	pg/g	EMPC	J	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.196	pg/g	EMPC J	U	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.183	pg/g	EMPC J	U	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.101	pg/g	EMPC J	U	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	2,3,7,8-Tetrachlorodibenzofuran	0.178	pg/g	EMPC J	U	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0729	pg/g	EMPC J	U	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	Heptachlorodibenzofuran (Total)	17.3	pg/g	EMPC	J	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	Hexachlorodibenzofuran (Total)	7.24	pg/g	EMPC	J	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	7.17	pg/g	EMPC	J	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	Pentachlorodibenzofuran (Total)	3.63	pg/g	EMPC	J	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.47	pg/g	EMPC	J	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.89	pg/g	EMPC	J	25
A5874	Mn SD0013	A5874_11302_DF_015	EPA1613B	Tetrachlorodibenzofuran (Total)	2.72	pg/g	EMPC	J	25
A5874	Nc SD0013	A5874_11302_DF_016	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.0591	pg/g	EMPC J	U	25
A5874	Nc SD0013	A5874_11302_DF_016	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.0859	pg/g	EMPC J	U	25
A5874	Nc SD0013	A5874_11302_DF_016	EPA1613B	Hexachlorodibenzofuran (Total)	6.3	pg/g	EMPC	J	25
A5874	Nc SD0013	A5874_11302_DF_016	EPA1613B	Pentachlorodibenzofuran (Total)	3.66	pg/g	EMPC	J	25

SDG	Sample ID	Lab ID	Method	Amelyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
\vdash	Sample ID			Analyte					
A5874	Nc SD0013	A5874_11302_DF_016	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.56	pg/g	EMPC	J	25
A5874	Nc SD0013	A5874_11302_DF_016	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.2	pg/g	EMPC	J	25
A5874	Nc SD0013	A5874_11302_DF_016	EPA1613B	Tetrachlorodibenzofuran (Total)	2.22	pg/g	EMPC	J	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.0836	pg/g	EMPC J	U	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.58	pg/g	EMPC J B	U	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	Hexachlorodibenzofuran (Total)	2.93	pg/g	EMPC	J	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	3.38	pg/g	EMPC	J	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	Pentachlorodibenzofuran (Total)	1.88	pg/g	EMPC	J	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.26	pg/g	EMPC	J	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.09	pg/g	EMPC	J	25
A5874	Mn SD0015	A5874_11302_DF_017	EPA1613B	Tetrachlorodibenzofuran (Total)	1.55	pg/g	EMPC	J	25
A5874	Nc SD0015	A5874_11302_DF_018	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.331	pg/g	EMPC J B	U	25
A5874	Nc SD0015	A5874_11302_DF_018	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.156	pg/g	JB	J	9
A5874	Nc SD0015	A5874_11302_DF_018	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	2.49	pg/g	EMPC	J	25
A5874	Nc SD0015	A5874_11302_DF_018	EPA1613B	Octachlorodibenzofuran	0.701	pg/g	EMPC J	U	25
A5874	Nc SD0015	A5874_11302_DF_018	EPA1613B	Pentachlorodibenzofuran (Total)	1.91	pg/g	EMPC	J	25
A5874	Nc SD0015	A5874_11302_DF_018	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.06	pg/g	EMPC	J	25
A5874	Nc SD0015	A5874_11302_DF_018	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.03	pg/g	EMPC	J	25
A5874	Mn SD0018	A5874_11302_DF_019	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.0915	pg/g	EMPC J	U	25
A5874	Mn SD0018	A5874_11302_DF_019	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.134	pg/g	EMPC J	U	25
A5874	Mn SD0018	A5874_11302_DF_019	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.123	pg/g	EMPC J	U	25
A5874	Mn SD0018	A5874_11302_DF_019	EPA1613B	Pentachlorodibenzofuran (Total)	2.35	pg/g	EMPC	J	25
A5874	Mn SD0018	A5874_11302_DF_019	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.87	pg/g	EMPC	J	25
A5874	Mn SD0018	A5874_11302_DF_019	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.28	pg/g	EMPC	J	25
A5874	Mn SD0018	A5874_11302_DF_019	EPA1613B	Tetrachlorodibenzofuran (Total)	1.5	pg/g	EMPC	J	25
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.915	pg/g	EMPC J	U	25
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.0951	pg/g	EMPC J	U	25
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.374	pg/g	EMPC J B	U	25
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	Heptachlorodibenzofuran (Total)	3.14	pg/g	EMPC	J	25
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	Hexachlorodibenzofuran (Total)	3.47	pg/g	EMPC	J	25
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	3.34	pg/g	EMPC	J	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	Pentachlorodibenzofuran (Total)	2.41		EMPC	J	25
A5874	Nc SD0018	A5874_11302_DF_020	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.01	pg/g	EMPC	J	25
A5874	Nc SD0018	A5874_11302_DF_020 A5874_11302_DF_020	EPA1613B	Tetrachlorodibenzodioxin (Total)	0.963	pg/g	EMPC	J	25
h +	Nc SD0018		EPA1613B	\ /	0.963	pg/g	 		25
A5874 A5875	Mn SD0025	A5874_11302_DF_020	EPA1613B	Tetrachlorodibenzofuran (Total)	0.963	pg/g	EMPC J	U J	25
		A5875_11306_DF_001		1,2,3,6,7,8-Hexachlorodibenzofuran	+	pg/g		U	25 25
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.27	pg/g	EMPC J B		
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.103	pg/g	EMPC J	U	25
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	Hexachlorodibenzofuran (Total)	3.1	pg/g	EMPC	J	25
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	4.49	pg/g	EMPC	J	25
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	Pentachlorodibenzofuran (Total)	2.5	pg/g	EMPC	J	25
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.44	pg/g	EMPC	J	25
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.77	pg/g	EMPC	J	25
A5875	Mn SD0025	A5875_11306_DF_001	EPA1613B	Tetrachlorodibenzofuran (Total)	3.74	pg/g	EMPC	J	25
A5875	Nc SD0025	A5875_11306_DF_002	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.14	pg/g	EMPC J B	U	25
A5875	Nc SD0025	A5875_11306_DF_002	EPA1613B	Hexachlorodibenzofuran (Total)	2.63	pg/g	EMPC	J	25
A5875	Nc SD0025	A5875_11306_DF_002	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	2.86	pg/g	EMPC	J	25
A5875	Nc SD0025	A5875_11306_DF_002	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	0.923	pg/g	EMPC	J	25
A5875	Nc SD0025	A5875_11306_DF_002	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.41	pg/g	EMPC	J	25
A5875	Nc SD0025	A5875_11306_DF_002	EPA1613B	Tetrachlorodibenzofuran (Total)	2.48	pg/g	EMPC	J	25
A5875	Mn SD0026	A5875_11306_DF_003	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.47	pg/g	EMPC J	U	25
A5875	Mn SD0026	A5875_11306_DF_003	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.107	pg/g	EMPC J	U	25
A5875	Mn SD0026	A5875_11306_DF_003	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	10.5	pg/g	EMPC	J	25
A5875	Mn SD0026	A5875_11306_DF_003	EPA1613B	Pentachlorodibenzofuran (Total)	4.51	pg/g	EMPC	J	25
A5875	Mn SD0026	A5875_11306_DF_003	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.82	pg/g	EMPC	J	25
A5875	Mn SD0026	A5875_11306_DF_003	EPA1613B	Tetrachlorodibenzodioxin (Total)	2.22	pg/g	EMPC	J	25
A5875	Mn SD0026	A5875_11306_DF_003	EPA1613B	Tetrachlorodibenzofuran (Total)	4.26	pg/g	EMPC	J	25
A5875	Nc SD0026	A5875_11306_DF_004	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.133	pg/g	EMPC J	U	25
A5875	Nc SD0026	A5875_11306_DF_004	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.362	pg/g	EMPC J B	U	25
A5875	Nc SD0026	A5875_11306_DF_004	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.148	pg/g	EMPC J	U	25
A5875	Nc SD0026	A5875_11306_DF_004	EPA1613B	Hexachlorodibenzofuran (Total)	5	pg/g	EMPC	J	25
A5875	Nc SD0026	A5875_11306_DF_004	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	6.29	pg/g	EMPC	J	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Sample ID Nc SD0026	A5875_11306_DF_004	EPA1613B	<u> </u>	2.19		EMPC		25
			_	Pentachlorodibenzo-p-dioxin (Total)		pg/g		J	
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.0752	pg/g	EMPC J	U	25
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.0704	pg/g	EMPC J	U	25
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.169	pg/g	J B	U .	7
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	Hexachlorodibenzofuran (Total)	1.99	pg/g	EMPC	J	25
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	2.49	pg/g	EMPC	J	25
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	Pentachlorodibenzofuran (Total)	1.79	pg/g	EMPC	J	25
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	Tetrachlorodibenzodioxin (Total)	0.973	pg/g	EMPC	J	25
A5875	Mn SD0028	A5875_11306_DF_005	EPA1613B	Tetrachlorodibenzofuran (Total)	1.62	pg/g	EMPC	J	25
A5875	Nc SD0028	A5875_11306_DF_006	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.108	pg/g	EMPC J B	U	25
A5875	Nc SD0028	A5875_11306_DF_006	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	1.67	pg/g	EMPC	J	25
A5875	Nc SD0028	A5875_11306_DF_006	EPA1613B	Pentachlorodibenzofuran (Total)	2.47	pg/g	EMPC	J	25
A5875	Nc SD0028	A5875_11306_DF_006	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	0.572	pg/g	EMPC	J	25
A5875	Nc SD0028	A5875_11306_DF_006	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.1	pg/g	EMPC	J	25
A5875	Nc SD0028	A5875_11306_DF_006	EPA1613B	Tetrachlorodibenzofuran (Total)	1.71	pg/g	EMPC	J	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.447	pg/g	JB	U	7
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.216	pg/g	EMPC J	U	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.278	pg/g	EMPC J	U	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.136	pg/g	EMPC J	U	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	Heptachlorodibenzofuran (Total)	8.52	pg/g	EMPC	J	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	Hexachlorodibenzofuran (Total)	6.75	pg/g	EMPC	J	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.15	pg/g	EMPC	J	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	Tetrachlorodibenzodioxin (Total)	2.27	pg/g	EMPC	J	25
A5875	Mn SD0051	A5875_11306_DF_007	EPA1613B	Tetrachlorodibenzofuran (Total)	3.61	pg/g	EMPC	J	25
A5875	Nc SD0051	A5875_11306_DF_008	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.135	pg/g	EMPC J	U	25
A5875	Nc SD0051	A5875_11306_DF_008	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.309	pg/g	JB	U	7
A5875	Nc SD0051	A5875_11306_DF_008	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.0992	pg/g	EMPC J	U	25
A5875	Nc SD0051	A5875_11306_DF_008	EPA1613B	Hexachlorodibenzofuran (Total)	5.34	pg/g	EMPC	J	25
A5875	Nc SD0051	A5875_11306_DF_008	EPA1613B	Pentachlorodibenzofuran (Total)	6.31	pg/g	EMPC	J	25
A5875	Nc SD0051	A5875 11306 DF 008	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.04	pg/g	EMPC	J	25
A5875	Nc SD0051	A5875_11306_DF_008	EPA1613B	Tetrachlorodibenzodioxin (Total)	3.05	pg/g	EMPC	J	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Nc SD0051	A5875_11306_DF_008	EPA1613B	Tetrachlorodibenzofuran (Total)	4.58		EMPC		25
					_	pg/g		J	
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.0934	pg/g	EMPC J	U	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.285	pg/g	J B	U	7
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.138	pg/g	EMPC J	U	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.142	pg/g	EMPC J	U	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	Hexachlorodibenzofuran (Total)	4.51	pg/g	EMPC	J	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	4.71	pg/g	EMPC	J	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	Pentachlorodibenzofuran (Total)	3.21	pg/g	EMPC	J	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.51	pg/g	EMPC	J	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	Tetrachlorodibenzodioxin (Total)	2.19	pg/g	EMPC	J	25
A5875	Mn SD0052	A5875_11306_DF_009	EPA1613B	Tetrachlorodibenzofuran (Total)	2.97	pg/g	EMPC	J	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.0721	pg/g	EMPC J	U	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.0679	pg/g	EMPC J	U	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.299	pg/g	EMPC J	U	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.166	pg/g	JB	U	7
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.0723	pg/g	EMPC J	U	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.129	pg/g	EMPC J	U	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	2,3,7,8-Tetrachlorodibenzofuran	0.116	pg/g	EMPC J	U	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	Hexachlorodibenzofuran (Total)	2.97	pg/g	EMPC	J	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	2.77	pg/g	EMPC	J	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	Pentachlorodibenzofuran (Total)	2.99	pg/g	EMPC	J	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	0.996	pg/g	EMPC	J	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	Tetrachlorodibenzodioxin (Total)	1.91	pg/g	EMPC	J	25
A5875	Nc SD0052	A5875_11306_DF_010	EPA1613B	Tetrachlorodibenzofuran (Total)	2.66	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.377	pg/g	EMPC J	U	25
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.52	pg/g	JB	U	7
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.233	pg/g	EMPC J	U	25
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	Heptachlorodibenzofuran (Total)	41.3	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	Hexachlorodibenzofuran (Total)	24.8	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	A5875 11306 DF 011	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	11.1	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	Pentachlorodibenzofuran (Total)	8.7	pg/g	EMPC	J	25

CDC	Commis ID	I ah ID	Mathad	Amelista	Desult	Unita	Lab Flags	Validation Qualifier	Validation Reason
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units			
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.23	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	Tetrachlorodibenzodioxin (Total)	4.01	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	A5875_11306_DF_011	EPA1613B	Tetrachlorodibenzofuran (Total)	5.64	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 2	A5875_11306_DF_012	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.437	pg/g	EMPC J	U	25
A5875	Mn SD0053 Rep 2	A5875_11306_DF_012	EPA1613B	Heptachlorodibenzofuran (Total)	48.3	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 2	A5875_11306_DF_012	EPA1613B	Hexachlorodibenzofuran (Total)	30.8	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 2	A5875_11306_DF_012	EPA1613B	Pentachlorodibenzofuran (Total)	11.1	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 2	A5875_11306_DF_012	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.89	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 2	A5875_11306_DF_012	EPA1613B	Tetrachlorodibenzodioxin (Total)	4.65	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 2	A5875_11306_DF_012	EPA1613B	Tetrachlorodibenzofuran (Total)	6.39	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	A5875_11306_DF_013	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.232	pg/g	EMPC J	U	25
A5875	Mn SD0053 Rep 3	A5875_11306_DF_013	EPA1613B	Heptachlorodibenzofuran (Total)	85.2	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	A5875_11306_DF_013	EPA1613B	Hexachlorodibenzofuran (Total)	37.7	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	A5875_11306_DF_013	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	16.8	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	A5875_11306_DF_013	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.89	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	A5875_11306_DF_013	EPA1613B	Tetrachlorodibenzodioxin (Total)	5.31	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	A5875_11306_DF_013	EPA1613B	Tetrachlorodibenzofuran (Total)	6.93	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	A5875_11306_DF_014	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.151	pg/g	EMPC J	U	25
A5875	Nc SD0053 Rep 1	A5875_11306_DF_014	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.255	pg/g	JВ	U	7
A5875	Nc SD0053 Rep 1	A5875_11306_DF_014	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.14	pg/g	EMPC J	U	25
A5875	Nc SD0053 Rep 1	A5875_11306_DF_014	EPA1613B	Hexachlorodibenzofuran (Total)	16.7	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	A5875_11306_DF_014	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	5.9	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	A5875_11306_DF_014	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.93	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	A5875_11306_DF_014	EPA1613B	Tetrachlorodibenzofuran (Total)	5.38	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.105	pg/g	EMPC J	U	25
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.26	pg/g	JB	U	7
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.125	pg/g	EMPC J	U	25
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	Heptachlorodibenzofuran (Total)	9.28	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	6.09	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	A5875 11306 DF 015	EPA1613B	Pentachlorodibenzofuran (Total)	8.43	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.46	pg/g	EMPC	J	25

SDG	Samula ID	Lab ID	Method	Analysia	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
\vdash	Sample ID			Analyte					
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	Tetrachlorodibenzodioxin (Total)	4.01	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	A5875_11306_DF_015	EPA1613B	Tetrachlorodibenzofuran (Total)	5.39	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.346	pg/g	EMPC J	U	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.33	pg/g	JB	U	7
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.223	pg/g	EMPC J	U	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	2,3,7,8-Tetrachlorodibenzofuran	0.215	pg/g	EMPC J	U	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	Hexachlorodibenzofuran (Total)	18.5	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	Pentachlorodibenzofuran (Total)	9.22	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.2	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	Tetrachlorodibenzodioxin (Total)	3.95	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	A5875_11306_DF_016	EPA1613B	Tetrachlorodibenzofuran (Total)	5.19	pg/g	EMPC	J	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzofuran	6.3	pg/g		J	9
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	15.4	pg/g		J	9
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.144	pg/g	EMPC J	U	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.345	pg/g	J	J	9
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzofuran	0.296	pg/g	J	J	9
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	2.41	pg/g		J	9
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.537	pg/g	EMPC J B	U	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.298	pg/g	EMPC J	U	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.476	pg/g	J	J	9
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	2,3,7,8-Tetrachlorodibenzofuran	0.378	pg/g	EMPC J	U	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.36	pg/g	EMPC J	U	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	Heptachlorodibenzofuran (Total)	14.6	pg/g	EMPC	J	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	13	pg/g	EMPC	J	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	Octachlorodibenzo-p-dioxin	75	pg/g		J	9
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	Pentachlorodibenzofuran (Total)	8.51	pg/g	EMPC	J	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	3.97	pg/g	EMPC	J	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	Tetrachlorodibenzodioxin (Total)	4.27	pg/g	EMPC	J	25
A5875	Mn SD0054	A5875_11306_DF_017	EPA1613B	Tetrachlorodibenzofuran (Total)	5.64	pg/g	EMPC	J	25
A5875	Nc SD0054	A5875 11306 DF 018	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.0896	pg/g	EMPC J	U	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.156	pg/g	EMPC J	U	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.296	pg/g	JB	U	7
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.105	pg/g	EMPC J	U	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	2,3,4,6,7,8-Hexachlorodibenzofuran	0.208	pg/g	EMPC J	U	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.174	pg/g	EMPC J	U	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	Heptachlorodibenzofuran (Total)	4.3	pg/g	EMPC	J	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	Hexachlorodibenzofuran (Total)	7.91	pg/g	EMPC	J	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	Pentachlorodibenzofuran (Total)	8.01	pg/g	EMPC	J	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.47	pg/g	EMPC	J	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	Tetrachlorodibenzodioxin (Total)	3.15	pg/g	EMPC	J	25
A5875	Nc SD0054	A5875_11306_DF_018	EPA1613B	Tetrachlorodibenzofuran (Total)	4.87	pg/g	EMPC	J	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.0544	pg/g	EMPC J	U	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.109	pg/g	EMPC J B	U	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	Hexachlorodibenzofuran (Total)	0.673	pg/g	EMPC	J	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	1.43	pg/g	EMPC	J	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	Pentachlorodibenzofuran (Total)	0.428	pg/g	EMPC	J	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	0.237	pg/g	EMPC	J	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	Tetrachlorodibenzodioxin (Total)	0.317	pg/g	EMPC	J	25
A5875	Mn SD0055	A5875_11306_DF_019	EPA1613B	Tetrachlorodibenzofuran (Total)	0.336	pg/g	EMPC	J	25
A5875	Nc SD0055	A5875_11306_DF_020	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.781	pg/g	EMPC J	U	25
A5875	Nc SD0055	A5875_11306_DF_020	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.104	pg/g	JB	U	7
A5875	Nc SD0055	A5875_11306_DF_020	EPA1613B	Heptachlorodibenzo-p-dioxin (Total)	2.51	pg/g	EMPC	J	25
A5875	Nc SD0055	A5875_11306_DF_020	EPA1613B	Hexachlorodibenzofuran (Total)	0.555	pg/g	EMPC	J	25
A5875	Nc SD0055	A5875_11306_DF_020	EPA1613B	Pentachlorodibenzofuran (Total)	0.467	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.172	pg/g	EMPC J	U	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.198	pg/g	EMPC J	U	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	Heptachlorodibenzofuran (Total)	54.7	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	Hexachlorodibenzofuran (Total)	28.1	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	12.5	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	Pentachlorodibenzofuran (Total)	9.75	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.1	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	Tetrachlorodibenzodioxin (Total)	3.1	pg/g	EMPC	J	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5876	Mn SD0053-AC	A5876_11309_DF_001	EPA1613B	Tetrachlorodibenzofuran (Total)	4.8		EMPC	J	25
	Nc SD0053-AC		EPA1613B	,	0.246	pg/g		U	7
A5876		A5876_11309_DF_002		1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin		pg/g	J B EMPC J		25
A5876	Nc SD0053-AC	A5876_11309_DF_002	EPA1613B	2,3,7,8-Tetrachlorodibenzofuran	0.103	pg/g		U	
A5876	Nc SD0053-AC	A5876_11309_DF_002	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	4.8	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	A5876_11309_DF_002	EPA1613B	Pentachlorodibenzofuran (Total)	6.13	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	A5876_11309_DF_002	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.14	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	A5876_11309_DF_002	EPA1613B	Tetrachlorodibenzofuran (Total)	2.96	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.133	pg/g	EMPC J	U	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.455	pg/g	EMPC J B	U	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.107	pg/g	EMPC J	U	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.268	pg/g	EMPC J	U	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	2,3,4,7,8-Pentachlorodibenzofuran	0.234	pg/g	EMPC J	U	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	Heptachlorodibenzofuran (Total)	12.3	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	Hexachlorodibenzo-p-dioxin (Total)	8.97	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	Pentachlorodibenzofuran (Total)	5.74	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	2.6	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	Tetrachlorodibenzodioxin (Total)	2.19	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	A5876_11309_DF_003	EPA1613B	Tetrachlorodibenzofuran (Total)	3.24	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	A5876_11309_DF_004	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.13	pg/g	EMPC J	U	25
A5876	Nc SD0054-AC	A5876_11309_DF_004	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.269	pg/g	JВ	U	7
A5876	Nc SD0054-AC	A5876_11309_DF_004	EPA1613B	1,2,3,7,8-Pentachlorodibenzofuran	0.0937	pg/g	EMPC J	U	25
A5876	Nc SD0054-AC	A5876_11309_DF_004	EPA1613B	Hexachlorodibenzofuran (Total)	6.73	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	A5876_11309_DF_004	EPA1613B	Pentachlorodibenzofuran (Total)	6.15	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	A5876_11309_DF_004	EPA1613B	Pentachlorodibenzo-p-dioxin (Total)	1.72	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	A5876_11309_DF_004	EPA1613B	Tetrachlorodibenzofuran (Total)	3.06	pg/g	EMPC	J	25
A5878	SD0054 D/F	A5878_11298_DF_002	EPA1613B	Octachlorodibenzofuran	0.0115	pg/uL	EMPC J	U	25
A5878	SD0018 D/F	A5878_11298_DF_003	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzofuran	0.00394	pg/uL	EMPC J	U	25
A5878	SD0053 AC D/F	A5878_11298_DF_004	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.00844	pg/uL	EMPC J	U	25
A5878	SD0051 D/F	A5878_11298_DF_005	EPA1613B	Octachlorodibenzofuran	0.00896	pg/uL	EMPC J	U	25
A5878	SD0028 D/F	A5878 11298 DF 007	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.00761	pg/uL	EMPC J	U	25
A5878	SD0028 D/F	A5878_11298_DF_007	EPA1613B	Octachlorodibenzo-p-dioxin	0.0307	pg/uL	EMPC J	U	25

22.0	0 1 10						Lab Flaga	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5878	SD0053-1 D/F	A5878_11298_DF_008	EPA1613B	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0301	pg/uL	EMPC	U	25
A5878	SD0054-AC D/F	A5878_11298_DF_009	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.0369	pg/uL	EMPC J	U	25
A5878	SD0026 D/F	A5878_11298_DF_010	EPA1613B	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.00929	pg/uL	EMPC J	U	25
A5878	SD004-2 D/F	A5878_11298_DF_011	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0599	pg/uL	EMPC J	U	25
A5878	SD004-2 D/F	A5878_11298_DF_011	EPA1613B	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.0158	pg/uL	EMPC J	U	25
A5878	SD0055 D/F	A5878_11298_DF_012	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.00857	pg/uL	EMPC J	U	25
A5878	SD0055 D/F	A5878_11298_DF_012	EPA1613B	Octachlorodibenzo-p-dioxin	0.0138	pg/uL	EMPC J	U	25
A5878	SD0053-2 D/F	A5878_11298_DF_013	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.0457	pg/uL	EMPC J	U	25
A5878	SD004-1 D/F	A5878_11298_DF_015	EPA1613B	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.00833	pg/uL	EMPC J	U	25
A5878	SD004-1 D/F	A5878_11298_DF_015	EPA1613B	Octachlorodibenzo-p-dioxin	0.157	pg/uL	EMPC J	U	25
A5878	SD009 D/F	A5878_11298_DF_016	EPA1613B	Octachlorodibenzofuran	0.0453	pg/uL	EMPC J	U	25
A5878	SD0015 D/F	A5878_11298_DF_017	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.0419	pg/uL	EMPC J	U	25
A5878	SD0013 D/F	A5878_11298_DF_018	EPA1613B	Octachlorodibenzofuran	0.00958	pg/uL	EMPC J	U	25
A5878	SD004-3 D/F	A5878_11298_DF_019	EPA1613B	Octachlorodibenzofuran	0.00661	pg/uL	EMPC J	U	25
A5878	SD0011 D/F	A5878_11298_DF_020	EPA1613B	1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.08	pg/uL	EMPC J	U	25
A5878	SD0011 D/F	A5878_11298_DF_020	EPA1613B	Octachlorodibenzofuran	0.0114	pg/uL	EMPC J	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	17	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	5.91	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	4.52	pg/g	B EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	44	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',4,6'-Hexachlorobiphenyl	261	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	10.9	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	38.5	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,3',6,6'-Hexachlorobiphenyl	81.6	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	30.8	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,4',5,5'-Hexachlorobiphenyl	82	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,4,5,5'-Hexachlorobiphenyl	124	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	33.3	pg/g		J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	6.17	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,2',4,5,6'-Pentachlorobiphenyl	15.6	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	77.6	pg/g		J	13H

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	47.1	pg/g		J	13H
A5876	Mn SD0053-AC	 11309_PCB_001-RJ-D10	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	17	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	7.11	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	3,3'-Dichlorobiphenyl	13.2	pg/g	В	U	7
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	3,4,4'-Trichlorobiphenyl	32.2	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	3,4',5-Trichlorobiphenyl	4.32	pg/g	EMPC	U	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Coelution of PCB 128 and 166	112	pg/g	С	J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Coelution of PCB 129, 138, and 163	741	pg/g	С	J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Coelution of PCB 135 and 151	173	pg/g	С	J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Coelution of PCB 139 and 140	13.7	pg/g	С	J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Coelution of PCB 147 and 149	521	pg/g	С	J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Coelution of PCB 153 and 168	540	pg/g	С	J	13H
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Octachlorobiphenyl homologs	153	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Pentachlorobiphenyl homologs	6120	pg/g	EMPC	J	25
A5876	Mn SD0053-AC	11309_PCB_001-RJ-D10	EPA1668A	Trichlorobiphenyl homologs	934	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	6.96	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	26.7	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	6.86	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	2.76	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,4',5,5'-Hexachlorobiphenyl	54	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	14.3	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,5-Tetrachlorobiphenyl	12	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',3,6'-Tetrachlorobiphenyl	9.59	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,2',4,6'-Tetrachlorobiphenyl	4.96	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	7.2	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	33.4	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	23.4	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	6.89	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	8.77	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,3,4',5-Tetrachlorobiphenyl	8.59	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	2,3,4'-Trichlorobiphenyl	28.7	pg/g	EMPC	U	25

cDC	Commis ID	Lab ID	Mathad	Amalista	Daguit	l luite	Lab Flags	Validation Qualifier	Validation Reason
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units			
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	6.22	pg/g	EMPC	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	3,3'-Dichlorobiphenyl	8.79	pg/g	В	U	7
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	Coelution of PCB 171 and 173	13	pg/g	EMPC C	U	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	Heptachlorobiphenyl homologs	373	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	Hexachlorobiphenyl homologs	1560	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	Octachlorobiphenyl homologs	83.6	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	Pentachlorobiphenyl homologs	3540	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	Tetrachlorobiphenyl homologs	2530	pg/g	EMPC	J	25
A5876	Nc SD0053-AC	11309_PCB_002-RJ-D10	EPA1668A	Trichlorobiphenyl homologs	374	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	20.8	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	9.68	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	8.26	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,3',4-Pentachlorobiphenyl	65.3	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,3',5-Pentachlorobiphenyl	15.5	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	21.1	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,4-Tetrachlorobiphenyl	19.8	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	2.77	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,2',4,6'-Tetrachlorobiphenyl	14.6	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	6.91	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	5.49	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	2,3',4-Trichlorobiphenyl	4.55	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	5.11	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	3,3'-Dichlorobiphenyl	25.2	pg/g		U	7
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	3,4,4'-Trichlorobiphenyl	13.7	pg/g	EMPC	U	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	Hexachlorobiphenyl homologs	2630	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	Octachlorobiphenyl homologs	181	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	 11309_PCB_003-RJ-D10	EPA1668A	Pentachlorobiphenyl homologs	3500	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	 11309_PCB_003-RJ-D10	EPA1668A	Tetrachlorobiphenyl homologs	1820	pg/g	EMPC	J	25
A5876	Mn SD0054-AC	11309_PCB_003-RJ-D10	EPA1668A	Trichlorobiphenyl homologs	376	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	11309 PCB 004-RJ-D10	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	10.3	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	6.13	pg/g	EMPC	U	25

					<u> </u>		Lab Elama	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	5.76	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	16.8	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	5.84	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,2',3,6-Tetrachlorobiphenyl	5.57	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	6.71	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,2',4-Trichlorobiphenyl	7.1	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	38.2	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	2,3',4,4',5,5'-Hexachlorobiphenyl	10.1	pg/g	EMPC	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	3,3'-Dichlorobiphenyl	11.7	pg/g	В	U	7
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Coelution of PCB 020 and 028	31.7	pg/g	EMPC C	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Coelution of PCB 059, 062, and 075	5.17	pg/g	EMPC C	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Coelution of PCB 139 and 140	8.22	pg/g	EMPC C	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Coelution of PCB 198 and 199	26.5	pg/g	EMPC C	U	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Heptachlorobiphenyl homologs	462	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Hexachlorobiphenyl homologs	1820	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Octachlorobiphenyl homologs	75.1	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Tetrachlorobiphenyl homologs	1010	pg/g	EMPC	J	25
A5876	Nc SD0054-AC	11309_PCB_004-RJ-D10	EPA1668A	Trichlorobiphenyl homologs	125	pg/g	EMPC	J	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	6.87	pg/g	EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	64.9	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	3.94	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	13.9	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	62.5	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	5.55	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	95.1	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	11	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	21.2	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	41.9	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	54.6	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.623	pg/g	J	J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,4,4',5,6-Heptachlorobiphenyl	0.481	pg/g	J EMPC	U	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5874	Nc SD0011	302 PCB 014-CU-RJ-D2	EPA1668A	2,2',3,4,4',6,6'-Heptachlorobiphenyl	0.151	pg/g	J	J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,4',5,5',6-Heptachlorobiphenyl	146	pg/g		J	13H
A5874	Nc SD0011	302 PCB 014-CU-RJ-D2	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	9.64	pg/g		J	13H
A5874	Nc SD0011	302 PCB 014-CU-RJ-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	0.681	pg/g	J EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.11	pg/g	J EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.247	pg/g	J EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,2'-Dichlorobiphenyl	1.15	pg/g	В	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	1.94	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	2.51	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	9.66	pg/g		J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,3,3',5,5'-Pentachlorobiphenyl	0.206	pg/g	J EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,3'-Dichlorobiphenyl	1.93	pg/g	В	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,3-Dichlorobiphenyl	0.337	pg/g	JΒ	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,4-Dichlorobiphenyl	0.6	pg/g	J B EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2,5-Dichlorobiphenyl	1.15	pg/g	В	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	2-Chlorobiphenyl	0.93	pg/g	JΒ	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	3,3',5-Trichlorobiphenyl	0.403	pg/g	J EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	3,3'-Dichlorobiphenyl	17.2	pg/g	В	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	3,4,5-Trichlorobiphenyl	0.271	pg/g	J EMPC	U	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	3-Chlorobiphenyl	0.769	pg/g	JB	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	4,4'-Dichlorobiphenyl	3.06	pg/g	В	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	4-Chlorobiphenyl	0.968	pg/g	JB	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	Coelution of PCB 012 and 013	0.863	pg/g	JBC	U	7
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	Coelution of PCB 171 and 173	28.6	pg/g	С	J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	Coelution of PCB 180 and 193	145	pg/g	С	J	13H
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	Dichlorobiphenyl homologs	38.5	pg/g	EMPC	J	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	Heptachlorobiphenyl homologs	716	pg/g	EMPC	J	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	Nonachlorobiphenyl homologs	10.8	pg/g	EMPC	J	25
A5874	Nc SD0011	302_PCB_014-CU-RJ-D2	EPA1668A	Trichlorobiphenyl homologs	307	pg/g	EMPC	J	25
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	82.5	pg/g		J	13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	16.3	pg/g		J	13H

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	64	pg/g		J	13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	4.81	pg/g		J	13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	106	pg/g		J	13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	13.5	pg/g			13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	25.9	pg/g		J	13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	49.4	pg/g		J	13H
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	62.9	pg/g		J	13H
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,2',3,4',5,5',6-Heptachlorobiphenyl	155	pg/g		J	13H
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	11.5	pg/g	EMPC	U	25
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	1.24	pg/g	EMPC	U	25
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	4.22	pg/g	EMPC	U	25
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	17.6	pg/g		J	13H
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	2.32	pg/g	EMPC	U	25
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,3',4,5'-Tetrachlorobiphenyl	2.56	pg/g	EMPC	U	25
A5875	Nc SD0025	75 11306 PCB 002-D10	EPA1668A	2,3'-Dichlorobiphenyl	17.2	pg/g	EMPC	U	25
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	2,4-Dichlorobiphenyl	8.54	pg/g	EMPC	U	25
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	3-Chlorobiphenyl	3.47	pg/g	EMPC	U	25
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	Coelution of PCB 171 and 173	34.4	pg/g	С	J	13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	Coelution of PCB 180 and 193	192	pg/g	С	J	13H
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	Dichlorobiphenyl homologs	211	pg/g	EMPC	J	25
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	Heptachlorobiphenyl homologs	840	pg/g	EMPC	J	25
A5875	Nc SD0025	75_11306_PCB_002-D10	EPA1668A	Monochlorobiphenyl homologs	85.2	pg/g	EMPC	J	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	14.9	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	14.5	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	85.5	pg/g		J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	18.1	pg/g		J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	5.31	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	71.7	pg/g		J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	5.12	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	116	pg/g		J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	14.3	pg/g		J	13H

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Nc SD0026	75 11306 PCB 004-D10	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	34	pg/g		J	13H
A5875	Nc SD0026	75 11306 PCB 004-D10	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	16	pg/g	EMPC	U	25
A5875	Nc SD0026	75 11306 PCB 004-D10	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	50.6	pg/g	2 0	J	13H
A5875	Nc SD0026	75 11306 PCB 004-D10	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	16.4	pg/g	EMPC	U	25
A5875	Nc SD0026	75 11306 PCB 004-D10	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	73.1	pg/g		J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,2',3,4',5,5',6-Heptachlorobiphenyl	165	pg/g		J	13H
A5875	Nc SD0026	75 11306 PCB 004-D10	EPA1668A	2,2',3,4,6'-Pentachlorobiphenyl	5.1	pg/g	EMPC	U	25
A5875	Nc SD0026	75 11306 PCB 004-D10	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	2.74	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	16.7	pg/g		J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	7.57	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,3',5,5'-Tetrachlorobiphenyl	6.34	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	2,3',6-Trichlorobiphenyl	2.48	pg/g	EMPC	U	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Coelution of PCB 171 and 173	34	pg/g	С	J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Coelution of PCB 180 and 193	207	pg/g	С	J	13H
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Heptachlorobiphenyl homologs	892	pg/g	EMPC	J	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Hexachlorobiphenyl homologs	3890	pg/g	EMPC	J	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Octachlorobiphenyl homologs	121	pg/g	EMPC	J	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Pentachlorobiphenyl homologs	6420	pg/g	EMPC	J	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Tetrachlorobiphenyl homologs	2720	pg/g	EMPC	J	25
A5875	Nc SD0026	75_11306_PCB_004-D10	EPA1668A	Trichlorobiphenyl homologs	319	pg/g	EMPC	J	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	4.89	pg/g		J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	35.8	pg/g		J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	7.75	pg/g		J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	2.02	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	27.9	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	38.8	pg/g		J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	4.7	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	16.1	pg/g		J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	23.2	pg/g		J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	6.91	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	30.1	pg/g		J	13H

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Nc SD0028	75 11306 PCB 006-D10	EPA1668A	2,2',3,4',5,5',6-Heptachlorobiphenyl	81.2		Lub i lugo	J	13H
A5875	Nc SD0028	75_11306_PCB_000-D10	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	12.4	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_000-D10	EPA1668A	2,2',3-Trichlorobiphenyl	10.9	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_000-D10	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	5.67	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_000-D10	EPA1668A	2,2',4,6'-Tetrachlorobiphenyl	2.05	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	<u> </u>	5.59	pg/g	EMPC	U	25
A5875	Nc SD0028	75_11306_PCB_000-D10	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	4.23	pg/g	EMPC	U	25
	Nc SD0028			2,3,4',5,6-Pentachlorobiphenyl		pg/g		U	25 25
A5875 A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A EPA1668A	2,4',6-Trichlorobiphenyl Coelution of PCB 107 and 124	6.65	pg/g	EMPC C	U	25 25
		75_11306_PCB_006-D10			4.83	pg/g			
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Coelution of PCB 139 and 140	3.21	pg/g	EMPC C	U	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Coelution of PCB 171 and 173	14.4	pg/g	С	J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Coelution of PCB 180 and 193	79.5	pg/g	С	J	13H
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Coelution of PCB 198 and 199	19.6	pg/g	EMPC C	U	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Heptachlorobiphenyl homologs	365	pg/g	EMPC	J	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Hexachlorobiphenyl homologs	1090	pg/g	EMPC	J	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Octachlorobiphenyl homologs	43.2	pg/g	EMPC	J	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Pentachlorobiphenyl homologs	1070	pg/g	EMPC	J	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Tetrachlorobiphenyl homologs	530	pg/g	EMPC	J	25
A5875	Nc SD0028	75_11306_PCB_006-D10	EPA1668A	Trichlorobiphenyl homologs	121	pg/g	EMPC	J	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	6.42	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10.9	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	47.6	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	11.5	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	36.8	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	3.25	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	55.7	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	7.29	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	5.06	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	20.5	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	29.1	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	38.6	pg/g		J	13H

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Nc SD0051	75 11306 PCB 008-D10	EPA1668A	•	97.2		Labilags		13H
				2,2',3,4',5,5',6-Heptachlorobiphenyl		pg/g	EMDC	J	
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	1.27	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',4,5,6'-Pentachlorobiphenyl	10.3	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,2',6-Trichlorobiphenyl	2.68	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	9.56	pg/g		J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	5.22	pg/g	EMPC	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Coelution of PCB 139 and 140	5.59	pg/g	EMPC C	U	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Coelution of PCB 171 and 173	16	pg/g	С	J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Coelution of PCB 180 and 193	106	pg/g	С	J	13H
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Heptachlorobiphenyl homologs	479	pg/g	EMPC	J	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Hexachlorobiphenyl homologs	1640	pg/g	EMPC	J	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Nonachlorobiphenyl homologs	10.9	pg/g	EMPC	J	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Pentachlorobiphenyl homologs	2770	pg/g	EMPC	J	25
A5875	Nc SD0051	75_11306_PCB_008-D10	EPA1668A	Trichlorobiphenyl homologs	365	pg/g	EMPC	J	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	1.37	pg/g	B EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.752	pg/g	J B EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	0.467	pg/g	J EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.853	pg/g	J EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	0.766	pg/g	J EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	1.01	pg/g	B EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	0.582	pg/g	J EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3,4',6-Pentachlorobiphenyl	2.09	pg/g	EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',3-Trichlorobiphenyl	1.23	pg/g	EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	0.649	pg/g	J EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,2',4,5-Tetrachlorobiphenyl	1.67	pg/g	EMPC	U	25
A5874	Mn Pretest	874 11302 PCB 001-D2	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	0.86	pg/g	J B EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,3,3',4,6-Pentachlorobiphenyl	2.3	pg/g	EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,3',4,4',5,5'-Hexachlorobiphenyl	0.724	pg/g	J EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	2,3,4',5-Tetrachlorobiphenyl	0.553	pg/g	J EMPC	U	25
A5874	Mn Pretest	874 11302 PCB 001-D2	EPA1668A	3,3',4,4'-Tetrachlorobiphenyl	1.32	pg/g	EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Coelution of PCB 107 and 124	0.643	pg/g	J EMPC C	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Coelution of PCB 171 and 173	1.35	pg/g	J B EMPC	U	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Heptachlorobiphenyl homologs	39.8	pg/g	EMPC	J	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Hexachlorobiphenyl homologs	125	pg/g	EMPC	J	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Octachlorobiphenyl homologs	8.85	pg/g	EMPC	J	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Pentachlorobiphenyl homologs	159	pg/g	EMPC	J	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Tetrachlorobiphenyl homologs	103	pg/g	EMPC	J	25
A5874	Mn Pretest	874_11302_PCB_001-D2	EPA1668A	Trichlorobiphenyl homologs	36.2	pg/g	EMPC	J	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	2,2',3,4',5,6,6'-Heptachlorobiphenyl	0.32	pg/g	J EMPC	U	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	0.44	pg/g	J EMPC	U	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	2,2',3,4-Tetrachlorobiphenyl	0.694	pg/g	J EMPC	U	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	2,2',4-Trichlorobiphenyl	1.29	pg/g	B EMPC	U	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	0.358	pg/g	J EMPC	U	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.389	pg/g	J EMPC	U	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	Coelution of PCB 198 and 199	8.68	pg/g	EMPC C	U	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	Hexachlorobiphenyl homologs	280	pg/g	EMPC	J	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	Octachlorobiphenyl homologs	34.6	pg/g	EMPC	J	25
A5874	Nc Pretest	874_11302_PCB_002-D2	EPA1668A	Trichlorobiphenyl homologs	26.5	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.508	pg/g	J EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.456	pg/g	J EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.329	pg/g	J EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	2,2',3,5,6'-Pentachlorobiphenyl	1.82	pg/g	EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.35	pg/g	EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	2,5-Dichlorobiphenyl	1.5	pg/g	B EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	3,4',5-Trichlorobiphenyl	1.65	pg/g	EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	3-Chlorobiphenyl	0.524	pg/g	J B EMPC	U	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	Dichlorobiphenyl homologs	69	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	Monochlorobiphenyl homologs	4.25	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 1	874_11302_PCB_003-D2	EPA1668A	Trichlorobiphenyl homologs	629	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 2	874_11302_PCB_004-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.463	pg/g	J EMPC	U	25
A5874	Mn SD0004 Rep 2	874_11302_PCB_004-D2	EPA1668A	2,4-Dichlorobiphenyl	1.39	pg/g	EMPC	U	25
A5874	Mn SD0004 Rep 2	874_11302_PCB_004-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	0.665	pg/g	J EMPC	U	25

					<u> </u>		Lab Elassa	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5874	Mn SD0004 Rep 2	874_11302_PCB_004-D2	EPA1668A	Dichlorobiphenyl homologs	75	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 2	874_11302_PCB_004-D2	EPA1668A	Pentachlorobiphenyl homologs	4340	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 3	874_11302_PCB_005-D2	EPA1668A	2,2',3,4,4',5,6-Heptachlorobiphenyl	0.697	pg/g	J EMPC	U	25
A5874	Mn SD0004 Rep 3	874_11302_PCB_005-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.573	pg/g	J EMPC	U	25
A5874	Mn SD0004 Rep 3	874_11302_PCB_005-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.39	pg/g	EMPC	U	25
A5874	Mn SD0004 Rep 3	874_11302_PCB_005-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	0.992	pg/g	J EMPC	U	25
A5874	Mn SD0004 Rep 3	874_11302_PCB_005-D2	EPA1668A	Coelution of PCB 012 and 013	1.45	pg/g	J EMPC C	U	25
A5874	Mn SD0004 Rep 3	874_11302_PCB_005-D2	EPA1668A	Dichlorobiphenyl homologs	81.3	pg/g	EMPC	J	25
A5874	Mn SD0004 Rep 3	874_11302_PCB_005-D2	EPA1668A	Heptachlorobiphenyl homologs	711	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	4.23	pg/g	EMPC	U	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	45.1	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	0.993	pg/g	EMPC	U	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	10.6	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	38.9	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	3.63	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	59.1	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	7.54	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	15.9	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	27.3	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	39.8	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.575	pg/g	J	J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,4',5,5',6-Heptachlorobiphenyl	99.9	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	3.77	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.287	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.241	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	1.28	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	2.26	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	7.34	pg/g		J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.12	pg/g	EMPC	U	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	0.422	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	Coelution of PCB 171 and 173	18.4	pg/g	С	J	13H

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	Coelution of PCB 180 and 193	104	pg/g	С	J	13H
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	Hexachlorobiphenyl homologs	1640	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 1	874_11302_PCB_006-D2	EPA1668A	Octachlorobiphenyl homologs	80.3	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	1.05	pg/g	EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	0.684	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	2.78	pg/g	EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	23.5	pg/g		U	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',4,6'-Hexachlorobiphenyl	93.1	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	5.29	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.117	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	22	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,3',6,6'-Hexachlorobiphenyl	34.5	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4,4',5,6-Heptachlorobiphenyl	0.331	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	11.8	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4',5,5'-Hexachlorobiphenyl	58.7	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4,5,5'-Hexachlorobiphenyl	52	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	0.592	pg/g	J EMPC	UJ	13L,25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	16.2	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4,5,6'-Hexachlorobiphenyl	1.2	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4,5,6-Hexachlorobiphenyl	0.123	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.368	pg/g	J EMPC	UJ	13L,25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.0774	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.235	pg/g	J EMPC	UJ	13L,25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	5.41	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',4,4',5,5',6-Octachlorobiphenyl	0.557	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	32.2	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.08	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	2.28	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	21.9	pg/g		J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',4,5',6-Hexachlorobiphenyl	0.0844	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',4,5,6-Hexachlorobiphenyl	0.0929	pg/g	U	UJ	13L

CDC	Commis ID	Lab ID	Mathad	Aughdo	Desult	Unite	Lab Flags	Validation Qualifier	Validation Reason
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	•		
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3,3',5,5',6-Hexachlorobiphenyl	0.0917	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,3',4,5,5'-Pentachlorobiphenyl	0.843	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,4-Dichlorobiphenyl	0.555	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	2,5-Dichlorobiphenyl	1.15	pg/g	B EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	3,3',4,4',5,5'-Hexachlorobiphenyl	1.37	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	3-Chlorobiphenyl	0.404	pg/g	J B EMPC	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Coelution of PCB 093 and 100	2.81	pg/g	EMPC C	U	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Coelution of PCB 128 and 166	48.2	pg/g	С	J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Coelution of PCB 129, 138, and 163	335	pg/g	С	J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Coelution of PCB 135 and 151	106	pg/g	С	J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Coelution of PCB 139 and 140	5.98	pg/g	С	J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Coelution of PCB 147 and 149	243	pg/g	С	J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Coelution of PCB 153 and 168	285	pg/g	С	J	13L
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Dichlorobiphenyl homologs	33.4	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Heptachlorobiphenyl homologs	419	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Monochlorobiphenyl homologs	2.06	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Nonachlorobiphenyl homologs	10.7	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 2	874_11302_PCB_007-D2	EPA1668A	Octachlorobiphenyl homologs	67.4	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	2.31	pg/g	EMPC	U	25
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	28.5	pg/g		U	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,3',4,6'-Hexachlorobiphenyl	105	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	5.79	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	6.87	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874 11302 PCB 008-D2	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	25.4	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,3',6,6'-Hexachlorobiphenyl	38.2	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874 11302 PCB 008-D2	EPA1668A	2,2',3,4,4',5,6-Heptachlorobiphenyl	0.427	pg/g	J EMPC	U	25
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	14.3	pg/g	·	J	13L
A5874	Nc SD0004 Rep 3	874 11302 PCB 008-D2	EPA1668A	2,2',3,4',5,5'-Hexachlorobiphenyl	70.3	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874 11302 PCB 008-D2	EPA1668A	2,2',3,4,5,5'-Hexachlorobiphenyl	62.3	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874 11302 PCB 008-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	0.637	pg/g	J	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	19.2	pg/g	-	J	13L

CDC	Commis ID	Lab ID	Mathaal	Aughte	Decut	11	Lab Flags	Validation Qualifier	Validation Reason
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flays		
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,4,5,6'-Hexachlorobiphenyl	1.32	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,4,5,6-Hexachlorobiphenyl	0.17	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.397	pg/g	J	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.102	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.337	pg/g	J	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	6.43	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,2'-Dichlorobiphenyl	0.98	pg/g	J B EMPC	U	25
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	38	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.3	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	2.93	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	26	pg/g		J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,3,3',4,5',6-Hexachlorobiphenyl	0.116	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,3,3',4,5,6-Hexachlorobiphenyl	0.128	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	2,3,3',5,5',6-Hexachlorobiphenyl	0.126	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	3,3',4,4',5,5'-Hexachlorobiphenyl	1.06	pg/g	U	UJ	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Coelution of PCB 128 and 166	56.3	pg/g	С	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Coelution of PCB 129, 138, and 163	391	pg/g	С	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Coelution of PCB 135 and 151	127	pg/g	С	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Coelution of PCB 139 and 140	6.6	pg/g	С	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Coelution of PCB 147 and 149	283	pg/g	С	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Coelution of PCB 153 and 168	337	pg/g	С	J	13L
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Dichlorobiphenyl homologs	33.7	pg/g	EMPC	J	25
A5874	Nc SD0004 Rep 3	874_11302_PCB_008-D2	EPA1668A	Octachlorobiphenyl homologs	84.8	pg/g	EMPC	J	25
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	34	pg/g		U	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,3',4,6'-Hexachlorobiphenyl	214	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	6.45	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	7.16	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	26.2	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,3',6,6'-Hexachlorobiphenyl	57.7	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	20.6	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4',5,5'-Hexachlorobiphenyl	74.6	pg/g		J	13L

000	O-mala ID	L-LID	Mathad	Australia	D14	11-24-	Lab Flags	Validation Qualifier	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags		Reason
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4,5,5'-Hexachlorobiphenyl	92.3	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	0.54	pg/g	J	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	27.2	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4,5,6'-Hexachlorobiphenyl	1.58	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4,5,6-Hexachlorobiphenyl	0.138	pg/g	U	UJ	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.628	pg/g	J	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.0847	pg/g	U	UJ	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.464	pg/g	J	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	8.08	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.452	pg/g	J EMPC	U	25
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	65.2	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.19	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	4.72	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	39.3	pg/g		J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,3,3',4,5',6-Hexachlorobiphenyl	0.0946	pg/g	U	UJ	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,3,3',4,5,6-Hexachlorobiphenyl	0.104	pg/g	U	UJ	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	2,3,3',5,5',6-Hexachlorobiphenyl	0.103	pg/g	U	UJ	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	3,3',4,4',5,5'-Hexachlorobiphenyl	1.22	pg/g	U	UJ	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	1.16	pg/g	EMPC	U	25
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	Coelution of PCB 128 and 166	89.8	pg/g	С	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	Coelution of PCB 129, 138, and 163	594	pg/g	С	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	Coelution of PCB 135 and 151	165	pg/g	С	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	Coelution of PCB 139 and 140	9.89	pg/g	С	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	Coelution of PCB 147 and 149	458	pg/g	С	J	13L
A5874	Mn SD0009	874_11302_PCB_009-D2	EPA1668A	Coelution of PCB 153 and 168	537	pg/g	С	J	13L
A5874	Nc SD0009	874 11302 PCB 010-D2	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	7.24	pg/g	EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.445	pg/g	J EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.422	pg/g	J EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	2,2',3,5,6'-Pentachlorobiphenyl	2.6	pg/g	EMPC	U	25
A5874	Nc SD0009	874 11302 PCB 010-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	1.19	pg/g	EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	2,3,3',5'-Tetrachlorobiphenyl	0.479	pg/g	J EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	2,3,6-Trichlorobiphenyl	1.02	pg/g	EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	0.769	pg/g	J EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	3,4,4',5-Tetrachlorobiphenyl	0.834	pg/g	J EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	4-Chlorobiphenyl	1.18	pg/g	B EMPC	U	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	Heptachlorobiphenyl homologs	584	pg/g	EMPC	J	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	Monochlorobiphenyl homologs	6.09	pg/g	EMPC	J	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	Octachlorobiphenyl homologs	85.6	pg/g	EMPC	J	25
A5874	Nc SD0009	874_11302_PCB_010-D2	EPA1668A	Trichlorobiphenyl homologs	617	pg/g	EMPC	J	25
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	51.3	pg/g		U	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,3',4,6'-Hexachlorobiphenyl	334	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	10.2	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	9.93	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	42.2	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,3',6,6'-Hexachlorobiphenyl	97.2	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	32.7	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4',5,5'-Hexachlorobiphenyl	103	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4,5,5'-Hexachlorobiphenyl	166	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	0.51	pg/g	J EMPC	UJ	13L,25
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	46.6	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4,5,6'-Hexachlorobiphenyl	0.166	pg/g	U	UJ	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4,5,6-Hexachlorobiphenyl	0.191	pg/g	U	UJ	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.645	pg/g	J EMPC	UJ	13L,25
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.312	pg/g	J EMPC	UJ	13L,25
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.745	pg/g	J	J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	7.01	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,3,3',4,4',5,5',6-Octachlorobiphenyl	2.03	pg/g	EMPC	U	25
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	93.4	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.67	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	7.37	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	53	pg/g		J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,3,3',4,5',6-Hexachlorobiphenyl	0.131	pg/g	U	UJ	13L

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	2,3,3',4,5,6-Hexachlorobiphenyl	0.144		U	UJ	13L
A5874	Mn SD0010	874 11302_PCB_011-D2	EPA1668A	2,3,3',5,5',6-Hexachlorobiphenyl	0.144	pg/g	U	UJ	13L
A5874	Mn SD0010	874 11302_PCB_011-D2	EPA1668A	3,3',4,4',5,5'-Hexachlorobiphenyl	2.24	pg/g	U	UJ	13L
A5874	Mn SD0010	874 11302_PCB_011-D2	EPA1668A		0.54	pg/g	J EMPC	U	25
A5874	Mn SD0010	874 11302_PCB_011-D2	EPA1668A	3,4,5-Trichlorobiphenyl Coelution of PCB 093 and 100	6.42	pg/g	EMPC C	U	25
A5874				Coelution of PCB 128 and 166	129	pg/g		J	13L
	Mn SD0010	874_11302_PCB_011-D2	EPA1668A			pg/g	C		
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Coelution of PCB 129, 138, and 163	893	pg/g	С	J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Coelution of PCB 135 and 151	259	pg/g	С	J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Coelution of PCB 139 and 140	14.5	pg/g	С	J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Coelution of PCB 147 and 149	698	pg/g	С	J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Coelution of PCB 153 and 168	735	pg/g	C	J	13L
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Hexachlorobiphenyl homologs	3900	pg/g	EMPC	J	25
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Octachlorobiphenyl homologs	198	pg/g	EMPC	J	25
A5874	Mn SD0010	874_11302_PCB_011-D2	EPA1668A	Pentachlorobiphenyl homologs	7700	pg/g	EMPC	J	25
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	2,3,3',4,4'-Pentachlorobiphenyl	228	pg/g		J	8L,9
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	2,3',4,4',5-Pentachlorobiphenyl	543	pg/g		J	8L,9
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	3,3',5-Trichlorobiphenyl	0.415	pg/g	J EMPC	U	25
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	3-Chlorobiphenyl	0.444	pg/g	J B EMPC	U	25
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	4-Chlorobiphenyl	0.398	pg/g	J B EMPC	U	25
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	Coelution of PCB 012 and 013	1.33	pg/g	J EMPC C	U	25
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	Dichlorobiphenyl homologs	53.8	pg/g	EMPC	J	25
A5874	Nc SD0010	874_11302_PCB_012-D2	EPA1668A	Monochlorobiphenyl homologs	1.25	pg/g	EMPC	J	25
A5874	Mn SD0011	874_11302_PCB_013-D2	EPA1668A	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	2.03	pg/g	EMPC	U	25
A5874	Mn SD0011	874_11302_PCB_013-D2	EPA1668A	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.795	pg/g	J EMPC	U	25
A5874	Mn SD0011	874_11302_PCB_013-D2	EPA1668A	2,2',3,4,4',5,6-Heptachlorobiphenyl	0.76	pg/g	J EMPC	U	25
A5874	Mn SD0011	874_11302_PCB_013-D2	EPA1668A	2,2',3,4,5,6'-Hexachlorobiphenyl	1.17	pg/g	EMPC	U	25
A5874	Mn SD0011	874_11302_PCB_013-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.275	pg/g	J EMPC	U	25
A5874	Mn SD0011	874_11302_PCB_013-D2	EPA1668A	2,3,3',5-Tetrachlorobiphenyl	0.95	pg/g	J EMPC	U	25
A5874	Mn SD0011	874_11302_PCB_013-D2	EPA1668A	Nonachlorobiphenyl homologs	20.9	pg/g	EMPC	J	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2,2',3,4,4',5,6-Heptachlorobiphenyl	1.45	pg/g	EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.325	pg/g	J EMPC	U	25

							Lab Flana	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.787	pg/g	J EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	1.31	pg/g	EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2,3,3',5-Tetrachlorobiphenyl	1.58	pg/g	EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2,4-Dichlorobiphenyl	1.02	pg/g	B EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2,5-Dichlorobiphenyl	0.918	pg/g	J B EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	2-Chlorobiphenyl	0.82	pg/g	J B EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	0.787	pg/g	J EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	3,3',5-Trichlorobiphenyl	0.585	pg/g	J EMPC	U	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	Dichlorobiphenyl homologs	55.3	pg/g	EMPC	J	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	Monochlorobiphenyl homologs	2.35	pg/g	EMPC	J	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	Tetrachlorobiphenyl homologs	5160	pg/g	EMPC	J	25
A5874	Mn SD0013	874_11302_PCB_015-D2	EPA1668A	Trichlorobiphenyl homologs	630	pg/g	EMPC	J	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	1.47	pg/g	EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.791	pg/g	J EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.564	pg/g	J EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	2,3,3',4,4',5,5',6-Octachlorobiphenyl	1.49	pg/g	EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.43	pg/g	EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	2,3,3',5'-Tetrachlorobiphenyl	0.696	pg/g	J EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	2,3,3',5-Tetrachlorobiphenyl	0.807	pg/g	J EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	3-Chlorobiphenyl	0.574	pg/g	J B EMPC	U	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	Monochlorobiphenyl homologs	1.59	pg/g	EMPC	J	25
A5874	Nc SD0013	874_11302_PCB_016-D2	EPA1668A	Octachlorobiphenyl homologs	158	pg/g	EMPC	J	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	2,2',3,4,4',5,6-Heptachlorobiphenyl	0.888	pg/g	J EMPC	U	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	0.684	pg/g	J EMPC	U	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.795	pg/g	J EMPC	U	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	2,2',3,4,6,6'-Hexachlorobiphenyl	0.287	pg/g	J EMPC	U	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.571	pg/g	J EMPC	U	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	2,5-Dichlorobiphenyl	0.733	pg/g	J B EMPC	U	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	3-Chlorobiphenyl	0.51	pg/g	J B EMPC	U	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	Dichlorobiphenyl homologs	41.3	pg/g	EMPC	J	25
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	Heptachlorobiphenyl homologs	1240	pg/g	EMPC	J	25

SDG	Samula ID	Lab ID	Method	Analyta	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
	Sample ID			Analyte					
A5874	Mn SD0015	874_11302_PCB_017-D2	EPA1668A	Monochlorobiphenyl homologs	2.52	pg/g	EMPC	J	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	16.4	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	1.5	pg/g	U	UJ	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	93.6	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	22.3	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	85	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	7.21	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	145	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	17.4	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	34.2	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	66.5	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',5-Pentachlorobiphenyl	39.9	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,3',6,6'-Hexachlorobiphenyl	69.2	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	18.7	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	85.6	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.906	pg/g	J EMPC	U	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4',5,5',6-Heptachlorobiphenyl	211	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	11.2	pg/g		J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4,5,6'-Hexachlorobiphenyl	2.14	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	0.751	pg/g	J	J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4',6'-Pentachlorobiphenyl	1.92	pg/g	EMPC	U	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4',6-Pentachlorobiphenyl	82.3	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,4,6-Pentachlorobiphenyl	0.775	pg/g	U	UJ	9
A5874	Nc SD0015	874 11302 PCB 018-D2	EPA1668A	2,2',3,5,5'-Pentachlorobiphenyl	154	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',3,5-Tetrachlorobiphenyl	24.5	pg/g		J	9
A5874	Nc SD0015	874 11302 PCB 018-D2	EPA1668A	2,2',4,5,6'-Pentachlorobiphenyl	24.1	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.724	pg/g	J	J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,3',4,4',5,5',6-Octachlorobiphenyl	1.58	pg/g	EMPC	U	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	2.76	pg/g	-	J	9,13H
A5874	Nc SD0015	874 11302 PCB 018-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	4.25	pg/g		J	9,13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	15.4	pg/g		J	13H

							Lab Flana	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,3',4,5,5',6-Heptachlorobiphenyl	0.307	pg/g	U	UJ	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.52	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	6.03	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,3',5'-Tetrachlorobiphenyl	0.866	pg/g	J EMPC	U	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	7.95	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3',4-Trichlorobiphenyl	4.33	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,3,4'-Trichlorobiphenyl	23.1	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2,4',5-Trichlorobiphenyl	69	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	2-Chlorobiphenyl	0.485	pg/g	J B EMPC	U	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	3,4,4'-Trichlorobiphenyl	8.17	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	3,4',5-Trichlorobiphenyl	2.44	pg/g		J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	3-Chlorobiphenyl	0.513	pg/g	J B EMPC	U	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Coelution of PCB 020 and 028	63.4	pg/g	С	J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Coelution of PCB 021 and 033	36.1	pg/g	С	J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Coelution of PCB 026 and 029	9.07	pg/g	С	J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Coelution of PCB 171 and 173	40.1	pg/g	С	J	13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Coelution of PCB 180 and 193	202	pg/g	С	J	9,13H
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Coelution of PCB 198 and 199	48.6	pg/g	С	J	9
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Monochlorobiphenyl homologs	1.54	pg/g	EMPC	J	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Octachlorobiphenyl homologs	147	pg/g	EMPC	J	25
A5874	Nc SD0015	874_11302_PCB_018-D2	EPA1668A	Tetrachlorobiphenyl homologs	3680	pg/g	EMPC	J	25
A5874	Mn SD0018	874_11302_PCB_019-D2	EPA1668A	2,3,6-Trichlorobiphenyl	0.695	pg/g	J EMPC	U	25
A5874	Mn SD0018	874_11302_PCB_019-D2	EPA1668A	2,3-Dichlorobiphenyl	0.712	pg/g	J B EMPC	U	25
A5874	Mn SD0018	874_11302_PCB_019-D2	EPA1668A	Coelution of PCB 012 and 013	1.38	pg/g	J B EMPC	U	25
A5874	Mn SD0018	874_11302_PCB_019-D2	EPA1668A	Dichlorobiphenyl homologs	85.9	pg/g	EMPC	J	25
A5874	Nc SD0018	874_11302_PCB_020-D2	EPA1668A	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	1.66	pg/g	EMPC	U	25
A5874	Nc SD0018	874_11302_PCB_020-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	0.651	pg/g	J EMPC	U	25
A5874	Nc SD0018	874_11302_PCB_020-D2	EPA1668A	2,3-Dichlorobiphenyl	0.581	pg/g	J B EMPC	U	25
A5874	Nc SD0018	874_11302_PCB_020-D2	EPA1668A	3,4,5-Trichlorobiphenyl	0.672	pg/g	J EMPC	U	25
A5874	Nc SD0018	874_11302_PCB_020-D2	EPA1668A	Dichlorobiphenyl homologs	33.7	pg/g	EMPC	J	25
A5874	Nc SD0018	874_11302_PCB_020-D2	EPA1668A	Nonachlorobiphenyl homologs	16.2	pg/g	EMPC	J	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Mn SD0025	875_11306_PCB_001-D2	EPA1668A	2,2',3,4',5,6,6'-Heptachlorobiphenyl	0.411	pg/g	J EMPC	U	25
A5875	Mn SD0025	875 11306 PCB 001-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	1.1		EMPC	U	25
A5875	Mn SD0025	875 11306 PCB 001-D2	EPA1668A	2,2',3,4',6,6'-Hexachlorobiphenyl	1.64	pg/g	EMPC	U	25
A5875	Mn SD0025	875_11306_PCB_001-D2	EPA1668A		1.04	pg/g	EMPC	U	25
A5875	Mn SD0025	875 11306 PCB_001-D2	EPA1668A	2,2',3,5,6,6'-Hexachlorobiphenyl	7160	pg/g	EMPC	J	25
				Hexachlorobiphenyl homologs		pg/g			25 25
A5875	Mn SD0026	875_11306_PCB_003-D2	EPA1668A	2,2',3,4',5,6'-Hexachlorobiphenyl	1.64	pg/g	EMPC	U	
A5875	Mn SD0026	875_11306_PCB_003-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.679	pg/g	J EMPC	U	25
A5875	Mn SD0026	875_11306_PCB_003-D2	EPA1668A	2,2',6-Trichlorobiphenyl	2.49	pg/g	EMPC	U	25
A5875	Mn SD0026	875_11306_PCB_003-D2	EPA1668A	2-Chlorobiphenyl	1.79	pg/g	EMPC	U	25
A5875	Mn SD0026	875_11306_PCB_003-D2	EPA1668A	3,4',5-Trichlorobiphenyl	2.29	pg/g	EMPC	U	25
A5875	Mn SD0026	875_11306_PCB_003-D2	EPA1668A	Monochlorobiphenyl homologs	1.79	pg/g	EMPC	J	25
A5875	Mn SD0026	875_11306_PCB_003-D2	EPA1668A	Trichlorobiphenyl homologs	581	pg/g	EMPC	J	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	7.48	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	11.5	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	4.07	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	8.03	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	8.91	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	0.8	pg/g	J EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,2',3,6'-Tetrachlorobiphenyl	1.93	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	2.18	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	2.93	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	1.45	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	2,3',5,5'-Tetrachlorobiphenyl	0.989	pg/g	J EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	3,3',4,4'-Tetrachlorobiphenyl	4.02	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	3,4,4'-Trichlorobiphenyl	5.03	pg/g	EMPC	U	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	Heptachlorobiphenyl homologs	589	pg/g	EMPC	J	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	Hexachlorobiphenyl homologs	1350	pg/g	EMPC	J	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	Nonachlorobiphenyl homologs	11.4	pg/g	EMPC	J	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	Octachlorobiphenyl homologs	88.4	pg/g	EMPC	J	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	Pentachlorobiphenyl homologs	1470	pg/g	EMPC	J	25
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	Tetrachlorobiphenyl homologs	656	pg/g	EMPC	J	25

							Lab Flana	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5875	Mn SD0028	875_11306_PCB_005-D2	EPA1668A	Trichlorobiphenyl homologs	166	pg/g	EMPC	J	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	2.72	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	4.93	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	5.56	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	15.5	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	2.87	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	2,3,3',4-Tetrachlorobiphenyl	2.7	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	2-Chlorobiphenyl	0.841	pg/g	J EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	3,3',4-Trichlorobiphenyl	3.14	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	3,4,4',5-Tetrachlorobiphenyl	1.47	pg/g	EMPC	U	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	Hexachlorobiphenyl homologs	1950	pg/g	EMPC	J	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	Monochlorobiphenyl homologs	0.841	pg/g	EMPC	J	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	Octachlorobiphenyl homologs	130	pg/g	EMPC	J	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	Pentachlorobiphenyl homologs	3250	pg/g	EMPC	J	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	Tetrachlorobiphenyl homologs	1740	pg/g	EMPC	J	25
A5875	Mn SD0051	875_11306_PCB_007-D2	EPA1668A	Trichlorobiphenyl homologs	537	pg/g	EMPC	J	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	0.956	pg/g	J EMPC	U	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	11.5	pg/g	EMPC	U	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	2.89	pg/g	EMPC	U	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	1.53	pg/g	EMPC	U	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.34	pg/g	EMPC	U	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	2,3',5,5'-Tetrachlorobiphenyl	2.15	pg/g	EMPC	U	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	Heptachlorobiphenyl homologs	577	pg/g	EMPC	J	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	Octachlorobiphenyl homologs	103	pg/g	EMPC	J	25
A5875	Mn SD0052	875_11306_PCB_009-D2	EPA1668A	Tetrachlorobiphenyl homologs	3260	pg/g	EMPC	J	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	4.88	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	3.32	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	1.54	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	2.9	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,2',3,6'-Tetrachlorobiphenyl	5.26	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	3.5	pg/g	EMPC	U	25

200	0 1 10				<u> </u>		l oh Flore	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.53	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	2.35	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,3,3',4-Tetrachlorobiphenyl	2.48	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	5.51	pg/g	EMPC	U	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	Heptachlorobiphenyl homologs	376	pg/g	EMPC	J	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	Hexachlorobiphenyl homologs	1390	pg/g	EMPC	J	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	Octachlorobiphenyl homologs	34.4	pg/g	EMPC	J	25
A5875	Nc SD0052	875_11306_PCB_010-D2	EPA1668A	Tetrachlorobiphenyl homologs	1540	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	1.09	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	6.13	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	6.71	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	4.39	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	1.16	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	3.17	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	2,3',4,5'-Tetrachlorobiphenyl	1.38	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	1.31	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	Heptachlorobiphenyl homologs	755	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	Hexachlorobiphenyl homologs	3210	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 1	875_11306_PCB_011-D2	EPA1668A	Octachlorobiphenyl homologs	161	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 2	875_11306_PCB_012-D2	EPA1668A	2,2',3,5,6'-Pentachlorobiphenyl	3.76	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 2	875_11306_PCB_012-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.689	pg/g	J EMPC	U	25
A5875	Mn SD0053 Rep 2	875_11306_PCB_012-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	1.35	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 2	875_11306_PCB_012-D2	EPA1668A	2,3,3',5-Tetrachlorobiphenyl	1.26	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 2	875_11306_PCB_012-D2	EPA1668A	Heptachlorobiphenyl homologs	910	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	18.6	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	1.53	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	4.72	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.983	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.92	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	10.8	pg/g	EMPC	U	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	3,4',5-Trichlorobiphenyl	5.56	pg/g	EMPC	U	25

							Lab Elassa	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	Hexachlorobiphenyl homologs	3710	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	Octachlorobiphenyl homologs	177	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	Tetrachlorobiphenyl homologs	6530	pg/g	EMPC	J	25
A5875	Mn SD0053 Rep 3	875_11306_PCB_013-D2	EPA1668A	Trichlorobiphenyl homologs	1750	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	6.49	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	10.6	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	3.41	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	2.27	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	3.46	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	7.51	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	3,4',5-Trichlorobiphenyl	3.02	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	Nonachlorobiphenyl homologs	6.49	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	Octachlorobiphenyl homologs	70.8	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	Pentachlorobiphenyl homologs	5500	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 1	875_11306_PCB_014-D2	EPA1668A	Trichlorobiphenyl homologs	1120	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	3.62	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	7.56	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	11.9	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	0.615	pg/g	J EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	2.29	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	15.1	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	7.38	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	1.53	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.02	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	Heptachlorobiphenyl homologs	547	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	Nonachlorobiphenyl homologs	11.6	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 2	875_11306_PCB_015-D2	EPA1668A	Octachlorobiphenyl homologs	70.3	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	875_11306_PCB_016-D2	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	8.78	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 3	875_11306_PCB_016-D2	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	8.33	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 3	875_11306_PCB_016-D2	EPA1668A	2,2',3,4,6'-Pentachlorobiphenyl	7.08	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 3	875_11306_PCB_016-D2	EPA1668A	2,2',4,5',6-Pentachlorobiphenyl	3.46	pg/g	EMPC	U	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5875	Nc SD0053 Rep 3	875 11306 PCB 016-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	1.46	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 3	875_11306_PCB_016-D2	EPA1668A	2,3'-Dichlorobiphenyl	3.83	pg/g	EMPC	U	25
A5875	Nc SD0053 Rep 3	875 11306 PCB 016-D2	EPA1668A	Coelution of PCB 171 and 173	15.8	pg/g	EMPC C	U	25
A5875	Nc SD0053 Rep 3	875 11306 PCB 016-D2	EPA1668A	Dichlorobiphenyl homologs	55.7	pg/g	EMPC		25
A5875	Nc SD0053 Rep 3	875_11306_PCB_016-D2	EPA1668A	Heptachlorobiphenyl homologs	479	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	875 11306 PCB 016-D2	EPA1668A	Octachlorobiphenyl homologs	78.4	pg/g	EMPC	J	25
A5875	Nc SD0053 Rep 3	875_11306_PCB_016-D2	EPA1668A	Pentachlorobiphenyl homologs	5420	pg/g	EMPC	J	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	6.52	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	50.9	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	2.52	pg/g	U	UJ	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	34.1	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	112	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	2.62	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	7.93	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	24.9	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	11.8	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	9.06	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	88.3	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	7.45	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5,6'-Heptachlorobiphenyl	156	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	65.8	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	19.9	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,6'-Hexachlorobiphenyl	361	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	13.3	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	21.2	pg/g	EMPC	UJ	9,25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	32.8	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	13.9	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	62.4	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4,4',5',6-Heptachlorobiphenyl	99.7	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	39.8	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4',5,5',6-Heptachlorobiphenyl	233	pg/g		J	9

CDC	Commis ID	Lak ID	Mathaad	Australia	Decult	Unite	Lab Flags	Validation Qualifier	Validation Reason
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flays	•	
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	14.4	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4',5,5'-Hexachlorobiphenyl	134	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4,5,5'-Hexachlorobiphenyl	154	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4,6'-Pentachlorobiphenyl	6.37	pg/g	EMPC	UJ	9,25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4'-Tetrachlorobiphenyl	89.8	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,4-Tetrachlorobiphenyl	31.1	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,5-Tetrachlorobiphenyl	10.3	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,6'-Tetrachlorobiphenyl	7.76	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',3,6-Tetrachlorobiphenyl	21	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	11.7	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',4,4',5-Pentachlorobiphenyl	598	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',4,5',6-Pentachlorobiphenyl	7.14	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',4,5-Tetrachlorobiphenyl	75.3	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',4,6'-Tetrachlorobiphenyl	9.74	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2',5,5'-Tetrachlorobiphenyl	560	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,2'-Dichlorobiphenyl	4.94	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	3.04	pg/g	EMPC	U	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	5.86	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	20.6	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	113	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	7.05	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	60	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,3',4,6-Pentachlorobiphenyl	57.9	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3',4,4',5,5'-Hexachlorobiphenyl	29.6	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	12.8	pg/g		J	9
A5875	Mn SD0054	875 11306 PCB 017-D2	EPA1668A	2,3',4,4',5-Pentachlorobiphenyl	896	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	17	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3',4,4'-Tetrachlorobiphenyl	282	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3',4,5'-Tetrachlorobiphenyl	2.05	pg/g		J	9
A5875	Mn SD0054	875 11306 PCB 017-D2	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	15.2	pg/g			9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,4',5-Tetrachlorobiphenyl	13.4	pg/g		J	9

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3,4',6-Tetrachlorobiphenyl	178	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3',4-Trichlorobiphenyl	7.56	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3',5,5'-Tetrachlorobiphenyl	3.44	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,3'-Dichlorobiphenyl	3.74	pg/g	EMPC	U	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,4',5-Trichlorobiphenyl	103	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	2,4'-Dichlorobiphenyl	21.2	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	3,3',4,4',5-Pentachlorobiphenyl	0.988	pg/g	EMPC	U	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	8.93	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	3,3',5-Trichlorobiphenyl	2.17	pg/g		J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	3,4',5-Trichlorobiphenyl	2.34	pg/g	EMPC	U	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	4,4'-Dichlorobiphenyl	7.98	pg/g	EMPC	UJ	9,25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 026 and 029	13.8	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 040 and 071	145	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 044, 047, and 065	193	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 046 and 069	250	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 059, 062, and 075	25.2	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 085 and 116	168	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 128 and 166	158	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 129, 138, and 163	1080	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 139 and 140	19.9	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 153 and 168	881	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 156 and 157	93.4	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 171 and 173	46	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 180 and 193	280	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Coelution of PCB 198 and 199	79.2	pg/g	С	J	9
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Dichlorobiphenyl homologs	97.4	pg/g	EMPC	J	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Heptachlorobiphenyl homologs	1210	pg/g	EMPC	J	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Octachlorobiphenyl homologs	266	pg/g	EMPC	J	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Pentachlorobiphenyl homologs	6240	pg/g	EMPC	J	25
A5875	Mn SD0054	875_11306_PCB_017-D2	EPA1668A	Trichlorobiphenyl homologs	590	pg/g	EMPC	J	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	4.24	pg/g	EMPC	U	25

							Lab Flana	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	8.25	pg/g	EMPC	U	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	2,2',6-Trichlorobiphenyl	2.68	pg/g	EMPC	U	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	2,3,3',4',5,5'-Hexachlorobiphenyl	1.26	pg/g	EMPC	U	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	2,3,6-Trichlorobiphenyl	0.547	pg/g	J EMPC	U	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	3,3',4-Trichlorobiphenyl	1.64	pg/g	EMPC	U	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	3,4',5-Trichlorobiphenyl	1.69	pg/g	EMPC	U	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	Octachlorobiphenyl homologs	94.8	pg/g	EMPC	J	25
A5875	Nc SD0054	875_11306_PCB_018-D2	EPA1668A	Trichlorobiphenyl homologs	381	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	10.2	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	1	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	3.94	pg/g		J	13H
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	4.38	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	4.23	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	0.879	pg/g	J EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,2'-Dichlorobiphenyl	4.54	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,3,3',4,4',5,5'-Heptachlorobiphenyl	1.92	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	1.49	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,3',4,4',5-Pentachlorobiphenyl	98.7	pg/g		J	9
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,3,4',5-Tetrachlorobiphenyl	1.86	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	2,3',6-Trichlorobiphenyl	1.92	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	3,4,4'-Trichlorobiphenyl	3.32	pg/g	EMPC	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Coelution of PCB 107 and 124	3.59	pg/g	EMPC C	U	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Dichlorobiphenyl homologs	39.1	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Heptachlorobiphenyl homologs	535	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Hexachlorobiphenyl homologs	1100	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Nonachlorobiphenyl homologs	14.1	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Octachlorobiphenyl homologs	122	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Pentachlorobiphenyl homologs	830	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Tetrachlorobiphenyl homologs	438	pg/g	EMPC	J	25
A5875	Mn SD0055	875_11306_PCB_019-D2	EPA1668A	Trichlorobiphenyl homologs	141	pg/g	EMPC	J	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	4.53	pg/g	EMPC	U	25

					<u> </u>		Lab Flana	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	15.7	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	9.54	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	1.06	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	1.28	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',3,6'-Tetrachlorobiphenyl	1.22	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',4,5,6'-Pentachlorobiphenyl	3.12	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',4,6'-Tetrachlorobiphenyl	1.06	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,2',4-Trichlorobiphenyl	5.82	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,3,3',4'-Tetrachlorobiphenyl	5.84	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,3',4-Trichlorobiphenyl	1.34	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	2,4'-Dichlorobiphenyl	3.67	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	3,4,4'-Trichlorobiphenyl	1.28	pg/g	EMPC	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	Coelution of PCB 020 and 028	14.5	pg/g	EMPC C	U	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	Dichlorobiphenyl homologs	14.5	pg/g	EMPC	J	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	Hexachlorobiphenyl homologs	771	pg/g	EMPC	J	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	Octachlorobiphenyl homologs	76.7	pg/g	EMPC	J	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	Pentachlorobiphenyl homologs	552	pg/g	EMPC	J	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	Tetrachlorobiphenyl homologs	274	pg/g	EMPC	J	25
A5875	Nc SD0055	875_11306_PCB_020-D2	EPA1668A	Trichlorobiphenyl homologs	74.3	pg/g	EMPC	J	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.0755	pg/uL	J EMPC	U	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.174	pg/uL	EMPC	U	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	2,2',4,5',6-Pentachlorobiphenyl	0.18	pg/uL	EMPC	U	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	0.119	pg/uL	EMPC	U	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.211	pg/uL	EMPC	U	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	3,3'-Dichlorobiphenyl	0.237	pg/uL		U	6
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	Hexachlorobiphenyl homologs	49.2	pg/uL	EMPC	J	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	Octachlorobiphenyl homologs	1.05	pg/uL	EMPC	J	25
A5877	SD0025 PCB	A5877_11299_PCB_001	EPA1668A	Pentachlorobiphenyl homologs	119	pg/uL	EMPC	J	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,2',3,3',4,4',5-Heptachlorobiphenyl	0.425	pg/uL	EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	0.0888	pg/uL	EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.0616	pg/uL	J EMPC	U	25

							Lab Flana	Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.108	pg/uL	EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.121	pg/uL	EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	0.278	pg/uL	EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,2',6-Trichlorobiphenyl	0.124	pg/uL	EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.101	pg/uL	EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.0734	pg/uL	J EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	2,3,4',5-Tetrachlorobiphenyl	0.0671	pg/uL	J EMPC	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	3,3'-Dichlorobiphenyl	0.32	pg/uL		U	6
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	Coelution of PCB 059, 062, and 075	0.24	pg/uL	J EMPC C	U	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	Heptachlorobiphenyl homologs	5.08	pg/uL	EMPC	J	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	Hexachlorobiphenyl homologs	24.2	pg/uL	EMPC	J	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	Octachlorobiphenyl homologs	0.764	pg/uL	EMPC	J	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	Pentachlorobiphenyl homologs	41.6	pg/uL	EMPC	J	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	Tetrachlorobiphenyl homologs	24.9	pg/uL	EMPC	J	25
A5877	SD0054 PCB	A5877_11299_PCB_002	EPA1668A	Trichlorobiphenyl homologs	8.11	pg/uL	EMPC	J	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	0.073	pg/uL	J EMPC	U	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	2,3,3',4,4',5',6-Heptachlorobiphenyl	0.0608	pg/uL	J EMPC	U	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	2,3',4,5'-Tetrachlorobiphenyl	0.0655	pg/uL	J EMPC	U	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	2,3',5,5'-Tetrachlorobiphenyl	0.0901	pg/uL	EMPC	U	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	0.0844	pg/uL	EMPC	U	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	3,3'-Dichlorobiphenyl	0.106	pg/uL	EMPC	U	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	3,4,4'-Trichlorobiphenyl	0.216	pg/uL	EMPC	U	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	Dichlorobiphenyl homologs	0.943	pg/uL	EMPC	J	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	Octachlorobiphenyl homologs	2.17	pg/uL	EMPC	J	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	Tetrachlorobiphenyl homologs	63.7	pg/uL	EMPC	J	25
A5877	SD0018 PCB	A5877_11299_PCB_003	EPA1668A	Trichlorobiphenyl homologs	14.5	pg/uL	EMPC	J	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	0.136	pg/uL	EMPC	U	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	0.0438	pg/uL	J EMPC	U	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	0.12	pg/uL	EMPC	U	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	0.253	pg/uL	EMPC	U	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.155	pg/uL	EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	2,3',4-Trichlorobiphenyl	0.092	pg/uL	EMPC	U	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	2,4'-Dichlorobiphenyl	0.125	pg/uL		U	6
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	3,3'-Dichlorobiphenyl	0.0635	pg/uL	J	U	6
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	Coelution of PCB 139 and 140	0.064	pg/uL	J EMPC C	U	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	Heptachlorobiphenyl homologs	4.14	pg/uL	EMPC	J	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	Hexachlorobiphenyl homologs	17.7	pg/uL	EMPC	J	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	Octachlorobiphenyl homologs	0.98	pg/uL	EMPC	J	25
A5877	SD0053-AC PCB	A5877_11299_PCB_004	EPA1668A	Trichlorobiphenyl homologs	9.92	pg/uL	EMPC	J	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.0987	pg/uL	EMPC	U	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.144	pg/uL	EMPC	U	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	0.0519	pg/uL	J EMPC	U	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	2,3,3',4,4',6-Hexachlorobiphenyl	0.35	pg/uL	EMPC	U	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	2,3,4',5-Tetrachlorobiphenyl	0.0427	pg/uL	J EMPC	U	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	3,3'-Dichlorobiphenyl	0.395	pg/uL		U	6
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	Coelution of PCB 128 and 166	0.561	pg/uL	EMPC C	U	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	Heptachlorobiphenyl homologs	4.07	pg/uL	EMPC	J	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	Hexachlorobiphenyl homologs	15.7	pg/uL	EMPC	J	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	Octachlorobiphenyl homologs	0.637	pg/uL	EMPC	J	25
A5877	SD0051 PCB	A5877_11299_PCB_005	EPA1668A	Tetrachlorobiphenyl homologs	17.2	pg/uL	EMPC	J	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	0.146	pg/uL	EMPC	U	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	0.0452	pg/uL	J EMPC	U	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	2,3,3',4,4'-Pentachlorobiphenyl	2.56	pg/uL	EMPC	U	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	0.0939	pg/uL	EMPC	U	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.167	pg/uL	EMPC	U	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.126	pg/uL	EMPC	U	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	3,3'-Dichlorobiphenyl	0.102	pg/uL		U	6
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	Heptachlorobiphenyl homologs	7.67	pg/uL	EMPC	J	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	Hexachlorobiphenyl homologs	29.9	pg/uL	EMPC	J	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	Pentachlorobiphenyl homologs	58.6	pg/uL	EMPC	J	25
A5877	SD0010 PCB	A5877_11299_PCB_006	EPA1668A	Tetrachlorobiphenyl homologs	57.9	pg/uL	EMPC	J	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	0.106	pg/uL	EMPC	U	25

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
A5877	SD0028 PCB	A5877 11299 PCB 007	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	0.0372	pg/uL	J EMPC	U	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	2,2'-Dichlorobiphenyl	0.181	pg/uL	EMPC	U	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	2,3,4,4'-Tetrachlorobiphenyl	0.0891	pg/uL	EMPC	U	25
A5877	SD0028 PCB	A5877 11299 PCB 007	EPA1668A	2,3,4',5,6-Pentachlorobiphenyl	0.0394	pg/uL	J EMPC	U	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	3,3'-Dichlorobiphenyl	0.111	pg/uL	o zimi o	U	6
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	Coelution of PCB 059, 062, and 075	0.0542	pg/uL	J EMPC C	U	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	Coelution of PCB 198 and 199	0.132	pg/uL	J EMPC C	U	25
A5877	SD0028 PCB	A5877 11299 PCB 007	EPA1668A	Dichlorobiphenyl homologs	0.711	pg/uL	EMPC	J	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	Hexachlorobiphenyl homologs	8.25	pg/uL	EMPC	J	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	Octachlorobiphenyl homologs	0.23	pg/uL	EMPC	J	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	Pentachlorobiphenyl homologs	10.2	pg/uL	EMPC	J	25
A5877	SD0028 PCB	A5877_11299_PCB_007	EPA1668A	Tetrachlorobiphenyl homologs	5.91	pg/uL	EMPC	J	25
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	0.0479	pg/uL	J EMPC	U	25
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	2,2',3,5-Tetrachlorobiphenyl	0.27	pg/uL	EMPC	U	25
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	0.124	pg/uL	EMPC	U	25
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	2,3,3',4,4'-Pentachlorobiphenyl	3.54	pg/uL	EMPC	U	25
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.196	pg/uL	EMPC	U	25
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	3,3'-Dichlorobiphenyl	0.0954	pg/uL		U	6
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	Pentachlorobiphenyl homologs	71	pg/uL	EMPC	J	25
A5877	SD0053-1 PCB	A5877_11299_PCB_008	EPA1668A	Tetrachlorobiphenyl homologs	64.5	pg/uL	EMPC	J	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	0.0388	pg/uL	J EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	0.319	pg/uL	EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.0685	pg/uL	J EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0469	pg/uL	J EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	0.0623	pg/uL	J EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.0844	pg/uL	EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.0966	pg/uL	EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,3',6-Trichlorobiphenyl	0.0268	pg/uL	J EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	2,4'-Dichlorobiphenyl	0.0565	pg/uL	J	U	6
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	0.0397	pg/uL	J EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	3,3'-Dichlorobiphenyl	0.146	pg/uL		U	6

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	3,4,4'-Trichlorobiphenyl	0.0811	pg/uL	J EMPC	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	Coelution of PCB 198 and 199	0.272	pg/uL	EMPC C	U	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	Heptachlorobiphenyl homologs	5.8	pg/uL	EMPC	J	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	Hexachlorobiphenyl homologs	23.4	pg/uL	EMPC	J	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	Octachlorobiphenyl homologs	0.827	pg/uL	EMPC	J	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	Pentachlorobiphenyl homologs	39	pg/uL	EMPC	J	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	Tetrachlorobiphenyl homologs	18.2	pg/uL	EMPC	J	25
A5877	SD0054-AC PCB	A5877_11299_PCB_009	EPA1668A	Trichlorobiphenyl homologs	3.52	pg/uL	EMPC	J	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	0.029	pg/uL	J EMPC	U	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	0.0415	pg/uL	J EMPC	U	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	0.486	pg/uL	EMPC	U	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.125	pg/uL	EMPC	U	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	0.0664	pg/uL	EMPC	U	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	3,3'-Dichlorobiphenyl	0.14	pg/uL	EMPC	U	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	Dichlorobiphenyl homologs	0.549	pg/uL	EMPC	J	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	Heptachlorobiphenyl homologs	7.13	pg/uL	EMPC	J	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	Hexachlorobiphenyl homologs	35.9	pg/uL	EMPC	J	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	Octachlorobiphenyl homologs	0.866	pg/uL	EMPC	J	25
A5877	SD0026 PCB	A5877_11299_PCB_010	EPA1668A	Pentachlorobiphenyl homologs	60.8	pg/uL	EMPC	J	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.0631	pg/uL	J EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	0.194	pg/uL	EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	0.0589	pg/uL	J EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.0257	pg/uL	J EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,3',5,6-Hexachlorobiphenyl	0.234	pg/uL	EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,3',5-Pentachlorobiphenyl	0.23	pg/uL	EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0331	pg/uL	J EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,4,6'-Pentachlorobiphenyl	0.0464	pg/uL	J EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',3,5-Tetrachlorobiphenyl	0.147	pg/uL	EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,2',4,5',6-Pentachlorobiphenyl	0.049	pg/uL	J EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.0366	pg/uL	J EMPC	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.0432	pg/uL	J EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	3,3'-Dichlorobiphenyl	0.172	pg/uL		U	6
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	Coelution of PCB 139 and 140	0.0701	pg/uL	J EMPC C	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	Coelution of PCB 171 and 173	0.138	pg/uL	J EMPC C	U	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	Heptachlorobiphenyl homologs	3.84	pg/uL	EMPC	J	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	Hexachlorobiphenyl homologs	15.9	pg/uL	EMPC	J	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	Octachlorobiphenyl homologs	0.468	pg/uL	EMPC	J	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	Pentachlorobiphenyl homologs	30.8	pg/uL	EMPC	J	25
A5877	SD004-2 PCB	A5877_11299_PCB_011	EPA1668A	Tetrachlorobiphenyl homologs	25.9	pg/uL	EMPC	J	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	0.0317	pg/uL	J EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	0.317	pg/uL	EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,3',4-Pentachlorobiphenyl	0.0859	pg/uL	EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,3',5-Pentachlorobiphenyl	0.0593	pg/uL	J EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.0985	pg/uL	EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	0.0287	pg/uL	J EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0356	pg/uL	J EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2',3,4',6-Pentachlorobiphenyl	0.163	pg/uL	EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,2'-Dichlorobiphenyl	0.118	pg/uL	EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,3,3',4',5',6-Hexachlorobiphenyl	0.0709	pg/uL	J EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,3,4',5,6-Pentachlorobiphenyl	0.0205	pg/uL	J EMPC	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	2,4'-Dichlorobiphenyl	0.1	pg/uL		U	6
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	3,3'-Dichlorobiphenyl	0.0759	pg/uL	J	U	6
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	Coelution of PCB 198 and 199	0.212	pg/uL	EMPC C	U	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	Dichlorobiphenyl homologs	0.324	pg/uL	EMPC	J	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	Heptachlorobiphenyl homologs	3.69	pg/uL	EMPC	J	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	Hexachlorobiphenyl homologs	7.24	pg/uL	EMPC	J	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	Octachlorobiphenyl homologs	0.68	pg/uL	EMPC	J	25
A5877	SD0055 PCB	A5877_11299_PCB_012	EPA1668A	Pentachlorobiphenyl homologs	6.33	pg/uL	EMPC	J	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	0.118	pg/uL	EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,4',5,6-Octachlorobiphenyl	0.0829	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	0.0144	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	0.0462	pg/uL	J EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	0.0475	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	0.0401	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	0.0324	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	0.0883	pg/uL	EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.0707	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0504	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',3,5,6'-Pentachlorobiphenyl	0.043	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	0.0302	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,2',6,6'-Tetrachlorobiphenyl	0.0149	pg/uL	J EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,3,3',4,4'-Pentachlorobiphenyl	3.13	pg/uL	EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.172	pg/uL	EMPC	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	3,3'-Dichlorobiphenyl	0.0968	pg/uL		U	6
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	Coelution of PCB 139 and 140	0.0875	pg/uL	J EMPC C	U	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	Heptachlorobiphenyl homologs	5.57	pg/uL	EMPC	J	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	Hexachlorobiphenyl homologs	23.4	pg/uL	EMPC	J	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	Nonachlorobiphenyl homologs	0.164	pg/uL	EMPC	J	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	Octachlorobiphenyl homologs	1.25	pg/uL	EMPC	J	25
A5877	SD0053-2 PCB	A5877_11299_PCB_013	EPA1668A	Pentachlorobiphenyl homologs	63.7	pg/uL	EMPC	J	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	0.138	pg/uL	EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.149	pg/uL	EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	0.032	pg/uL	J EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,3',4,5',6'-Heptachlorobiphenyl	0.303	pg/uL	EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	0.0719	pg/uL	J EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	0.108	pg/uL	EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.033	pg/uL	J EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0691	pg/uL	J EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,3,3',4,4'-Pentachlorobiphenyl	2.59	pg/uL	EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	0.0753	pg/uL	J EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,3',4,4',5,5'-Hexachlorobiphenyl	0.0915	pg/uL	EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.0772	pg/uL	J EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.123	pg/uL	EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.09	pg/uL	EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	3,3',4,5'-Tetrachlorobiphenyl	0.0464	pg/uL	J EMPC	U	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	3,3'-Dichlorobiphenyl	0.131	pg/uL		U	6
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	Heptachlorobiphenyl homologs	4.54	pg/uL	EMPC	J	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	Hexachlorobiphenyl homologs	19.1	pg/uL	EMPC	J	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	Nonachlorobiphenyl homologs	0.17	pg/uL	EMPC	J	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	Octachlorobiphenyl homologs	1.02	pg/uL	EMPC	J	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	Pentachlorobiphenyl homologs	54.4	pg/uL	EMPC	J	25
A5877	SD0053-3 PCB	A5877_11299_PCB_014	EPA1668A	Tetrachlorobiphenyl homologs	52.6	pg/uL	EMPC	J	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	0.0731	pg/uL	J EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	0.102	pg/uL	EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,2',3,3',4,5'-Hexachlorobiphenyl	0.222	pg/uL	EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	0.0616	pg/uL	J EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,2',3,4,4',5-Hexachlorobiphenyl	0.131	pg/uL	EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	0.188	pg/uL	EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.0518	pg/uL	J EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.0623	pg/uL	J EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.0548	pg/uL	J EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	2,3',6-Trichlorobiphenyl	0.104	pg/uL	EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	3,3'-Dichlorobiphenyl	0.149	pg/uL		U	6
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	3,4,4'-Trichlorobiphenyl	0.202	pg/uL	EMPC	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	Coelution of PCB 139 and 140	0.0649	pg/uL	J EMPC C	U	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	Hexachlorobiphenyl homologs	15.6	pg/uL	EMPC	J	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	Nonachlorobiphenyl homologs	0.0731	pg/uL	EMPC	J	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	Octachlorobiphenyl homologs	0.569	pg/uL	EMPC	J	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	Pentachlorobiphenyl homologs	29	pg/uL	EMPC	J	25
A5877	SD004-1 PCB	A5877_11299_PCB_015	EPA1668A	Trichlorobiphenyl homologs	8.53	pg/uL	EMPC	J	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	0.0264	pg/uL	J EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	0.0534	pg/uL	J EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,2',3,3',4,5,5'-Heptachlorobiphenyl	0.116	pg/uL	EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,2',3,3',4,6,6'-Heptachlorobiphenyl	0.138	pg/uL	EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	0.126	pg/uL	EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,3,3',4',5'-Pentachlorobiphenyl	0.0891	pg/uL	EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,3',4,4',5,5'-Hexachlorobiphenyl	0.159	pg/uL	EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.11	pg/uL	EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,3',4-Trichlorobiphenyl	0.294	pg/uL	EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	2,3,6-Trichlorobiphenyl	0.0417	pg/uL	J EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	3,3'-Dichlorobiphenyl	0.202	pg/uL		U	6
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	4-Chlorobiphenyl	0.0522	pg/uL	J EMPC	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Coelution of PCB 012 and 013	0.0586	pg/uL	J EMPC C	U	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Dichlorobiphenyl homologs	4.65	pg/uL	EMPC	J	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Heptachlorobiphenyl homologs	7.39	pg/uL	EMPC	J	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Hexachlorobiphenyl homologs	29.2	pg/uL	EMPC	J	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Monochlorobiphenyl homologs	0.401	pg/uL	EMPC	J	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Nonachlorobiphenyl homologs	0.0534	pg/uL	EMPC	J	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Pentachlorobiphenyl homologs	54.9	pg/uL	EMPC	J	25
A5877	SD009 PCB	A5877_11299_PCB_016	EPA1668A	Trichlorobiphenyl homologs	20.4	pg/uL	EMPC	J	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	0.0526	pg/uL	J EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	0.0537	pg/uL	J EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.0728	pg/uL	J EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.252	pg/uL	EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	0.313	pg/uL	EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,2',4,5',6-Pentachlorobiphenyl	0.0673	pg/uL	J EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	0.193	pg/uL	EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,3,3',4-Tetrachlorobiphenyl	0.027	pg/uL	J EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.0882	pg/uL	EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.101	pg/uL	EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.0658	pg/uL	J EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,3,4',5-Tetrachlorobiphenyl	0.109	pg/uL	EMPC	U	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	2,4'-Dichlorobiphenyl	0.136	pg/uL		U	6
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	3,3'-Dichlorobiphenyl	0.0801	pg/uL	J	U	6
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	Coelution of PCB 139 and 140	0.116	pg/uL	J EMPC C	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	Heptachlorobiphenyl homologs	10.9	pg/uL	EMPC	J	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	Hexachlorobiphenyl homologs	29	pg/uL	EMPC	J	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	Octachlorobiphenyl homologs	1.75	pg/uL	EMPC	J	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	Pentachlorobiphenyl homologs	39.1	pg/uL	EMPC	J	25
A5877	SD0015 PCB	A5877_11299_PCB_017	EPA1668A	Tetrachlorobiphenyl homologs	36	pg/uL	EMPC	J	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.168	pg/uL	EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,2',3,3',4,5',6-Heptachlorobiphenyl	0.0745	pg/uL	J EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.0916	pg/uL	EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0904	pg/uL	EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,2',3,4,6'-Pentachlorobiphenyl	0.0645	pg/uL	J EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,3,3',4,5,5'-Hexachlorobiphenyl	0.0626	pg/uL	J EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.0757	pg/uL	J EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.0757	pg/uL	J EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	2,4'-Dichlorobiphenyl	0.136	pg/uL		U	6
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	3,3'-Dichlorobiphenyl	0.0926	pg/uL		U	6
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	3,4,4'-Trichlorobiphenyl	0.125	pg/uL	EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	3,4',5-Trichlorobiphenyl	0.0354	pg/uL	J EMPC	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	Coelution of PCB 107 and 124	0.136	pg/uL	J EMPC C	U	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	Heptachlorobiphenyl homologs	10.6	pg/uL	EMPC	J	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	Hexachlorobiphenyl homologs	32.8	pg/uL	EMPC	J	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	Octachlorobiphenyl homologs	1.66	pg/uL	EMPC	J	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	Pentachlorobiphenyl homologs	46.2	pg/uL	EMPC	J	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	Tetrachlorobiphenyl homologs	41.6	pg/uL	EMPC	J	25
A5877	SD0013 PCB	A5877_11299_PCB_018	EPA1668A	Trichlorobiphenyl homologs	8.87	pg/uL	EMPC	J	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,2',3,3',4,6-Hexachlorobiphenyl	0.0702	pg/uL	J EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	0.146	pg/uL	EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,2',3,3',5-Pentachlorobiphenyl	0.269	pg/uL	EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0354	pg/uL	J EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	0.0512	pg/uL	J EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,2',4,4',5,6'-Hexachlorobiphenyl	0.0468	pg/uL	J EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.0608	pg/uL	J EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2,3,4,4',5-Pentachlorobiphenyl	0.0677	pg/uL	J EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	2-Chlorobiphenyl	0.0501	pg/uL	J EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	3,3'-Dichlorobiphenyl	0.152	pg/uL	EMPC	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	Coelution of PCB 171 and 173	0.149	pg/uL	J EMPC C	U	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	Dichlorobiphenyl homologs	0.763	pg/uL	EMPC	J	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	Heptachlorobiphenyl homologs	4.21	pg/uL	EMPC	J	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	Hexachlorobiphenyl homologs	17.5	pg/uL	EMPC	J	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	Monochlorobiphenyl homologs	0.0501	pg/uL	EMPC	J	25
A5877	SD004-3 PCB	A5877_11299_PCB_019	EPA1668A	Pentachlorobiphenyl homologs	32.6	pg/uL	EMPC	J	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	0.0629	pg/uL	J EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.0441	pg/uL	J EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	2,2',3,3',5,5',6-Heptachlorobiphenyl	0.163	pg/uL	EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	2,2',3,3',5,5'-Hexachlorobiphenyl	0.0426	pg/uL	J EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	2,2',3,4,5,5',6-Heptachlorobiphenyl	0.0829	pg/uL	J EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	2,2',3,4,6'-Pentachlorobiphenyl	0.0675	pg/uL	J EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.0585	pg/uL	J EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	3,3',4,4'-Tetrachlorobiphenyl	0.0681	pg/uL	J EMPC	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	3,3'-Dichlorobiphenyl	0.119	pg/uL		U	6
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	Coelution of PCB 107 and 124	0.132	pg/uL	J EMPC C	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	Coelution of PCB 198 and 199	0.287	pg/uL	EMPC C	U	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	Heptachlorobiphenyl homologs	6.08	pg/uL	EMPC	J	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	Nonachlorobiphenyl homologs	0.0629	pg/uL	EMPC	J	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	Octachlorobiphenyl homologs	0.863	pg/uL	EMPC	J	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	Pentachlorobiphenyl homologs	35.8	pg/uL	EMPC	J	25
A5877	SD0011 PCB	A5877_11299_PCB_020	EPA1668A	Tetrachlorobiphenyl homologs	25.1	pg/uL	EMPC	J	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.0483	pg/uL	J EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,2',3,3',5,6,6'-Heptachlorobiphenyl	0.158	pg/uL	EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,2',3,3',5-Pentachlorobiphenyl	0.234	pg/uL	EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,2',3,4,5',6-Hexachlorobiphenyl	0.151	pg/uL	EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,2',3,5-Tetrachlorobiphenyl	0.0855	pg/uL	EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,2',3,6,6'-Pentachlorobiphenyl	0.026	pg/uL	J EMPC	U	25

								Validation	Validation
SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Qualifier	Reason
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,2',6-Trichlorobiphenyl	0.151	pg/uL	EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,3,3',4,4',5,6-Heptachlorobiphenyl	0.0339	pg/uL	J EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,3',4,4',5,5'-Hexachlorobiphenyl	0.103	pg/uL	EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,3',4,4',5'-Pentachlorobiphenyl	0.0442	pg/uL	J EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	2,3',4,5-Tetrachlorobiphenyl	0.0786	pg/uL	J EMPC	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	3,3'-Dichlorobiphenyl	0.328	pg/uL		U	6
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	Coelution of PCB 139 and 140	0.0639	pg/uL	J EMPC C	U	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	Heptachlorobiphenyl homologs	2.94	pg/uL	EMPC	J	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	Hexachlorobiphenyl homologs	15.3	pg/uL	EMPC	J	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	Octachlorobiphenyl homologs	0.388	pg/uL	EMPC	J	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	Pentachlorobiphenyl homologs	26.8	pg/uL	EMPC	J	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	Tetrachlorobiphenyl homologs	22.8	pg/uL	EMPC	J	25
A5877	SD0052 PCB	A5877_11299_PCB_021	EPA1668A	Trichlorobiphenyl homologs	11.9	pg/uL	EMPC	J	25

Appendix G Sediment and Tissue Data

This appendix is available upon request.

Contact Site Manager Connie Groven at (360) 407-6254

connie.groven@ecy.wa.gov

APPENDIX H

BIOLOGICAL TESTING
LABORATORY REPORTS AND
DATA QA SUMMARIES

DATA QUALITY ASSURANCE REVIEW: WESTERN PORT ANGELES HARBOR BIOACCUMULATION TESTS

This data validation report reviews bioaccumulation tests in Western Port Angeles Harbor using the clam *Macoma nasuta* and the polychaete *Nephtys caecoides*. Sediment bioaccumulation tests were conducted on 15 sediment samples. At two of the stations, additional sediment was collected for a second set of bioaccumulation tests following the addition granular activated carbon. Solid phase microextraction (SPME) fibers were placed in each test aquarium to obtain a measure of porewater concentrations of select chemicals. The bioaccumulation tests were conducted by NewFields, Port Gamble, Washington.

The following review is based on test protocols provided USEPA and Corps (1993) and ASTM (2006) and on Sediment Management Annual Review Meeting updates (Kendall and McMillan 2009).

BIOACCUMULATION TEST

The bioaccumulation tests were initiated on July 16, 2013 and conducted in a single batch. Mean percent survival was recorded at test termination, and tissue and SPME samples were submitted to an analytical laboratory for analysis.

SAMPLE COLLECTION, TRANSPORT, AND STORAGE

Samples were collected, transported, and stored in accordance with the procedures provided in the Western Port Angeles Harbor RI/FS sampling and analysis plan (SAP) (Integral et al. 2013). Samples were store in a cold room at 4°C at NewFields Laboratory until test initiation.

DATA COMPLETENESS AND FORMAT

Data documenting the environmental test conditions, negative control results, organism observations, and conditions influencing data quality were included in the NewFields data report.

DATA VALIDATION AND ASSESSMENT

All tests were conducted using randomly assigned identical test chambers and used the required amount of test sediment and overlying water. The procedures followed the accepted protocols and guidelines. Some minor deviations from the prescribed water quality parameters were observed:

- Dissolved oxygen measurements were <5 mg/L (outside the recommended limit) twice in Sample SD0054 (Days 1 and 3 of the exposure period).
- Temperature was >16°C 65 times during the exposure period. In addition, temperature measurements were >17°C four times during the exposure period. Desired temperature range is 14±2°C.
- pH was outside the recommended range of 8.0 ± 1.0 once (Day 9) during the exposure period in Sample SD0052; pH = 4.5. The pH values in this test chamber were within the normal range prior to and after Day 9. The laboratory considered this to be a misreported instrument reading.

A detailed review of the QA results for the bioaccumulation test can be found in the attached checklist. There was no apparent effect from the above deviations on the outcome of the bioaccumulation test.

Replicate analysis, sample homogenization, and test organism counts were adequately performed to ensure test precision. The test results for mean percent survival are located in Table 2 of the NewFields data report.

CONCLUSION

The bioaccumulation exposure data from the Western Port Angeles Harbor RI/FS were complete with respect to the data requirements outlined in the SAP (Integral et al. 2013). Despite several minor water quality deviations, the data provided for the bioaccumulation tests are usable as reported.

REFERENCES

ASTM. 2006. Standard guide for determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates. E1688-00. Annual Book of Standards, Water and Environmental Technology, Vol. 11.06. American Society for Testing and Materials, West Conshohocken, PA.

Integral, Anchor QEA, Exponent, and Floyd | Snider. 2013. Sampling and analysis plan Western Port Angeles Harbor RI/FS. Prepared for Western Port Angeles Harbor Group, consisting of City of Port Angeles, Georgia-Pacific LLC, Merrill & Ring, Nippon Paper Industries USA Co., Ltd., and Port of Port Angeles. Integral Consulting Inc., Seattle, WA, Anchor QEA, LLC, Seattle, WA, Exponent, Bellevue, WA, and Floyd | Snider, Seattle, WA.

Kendall, D., and R. McMillan. 2009. DMMP clarification paper/SMS technical information memorandum. Clarifications to the DMMP bioaccumulation protocol. Prepared by U.S. Army Corps of Engineers, and Washington State Department of Ecology. U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

USEPA and Corps. 1993. Bedded sediment bioaccumulation tests. EPA 600/R-63/183. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, and U.S Army Corps of Engineers.

CHECKLIST FOR SEDIMENT BIOACCUMULATION TESTS

Project Name	WPAH RI/	FS	Project #	C1102-0300	
Laboratory	New Field	ds	Lab #	NA	
Lab Project Manager	Bill Gardir	ner	Batch	Performed in 1 ba	tch
Date Sampled	June 27 - July 9	9, 2013	Date Received by Lab	June 28 - July	10, 2013
Date Analysis Begun	July 16, 20	13	Reviewed by	Jane Sexton	
Test Organism Ma	acoma nasuta and Ne	phtys caecoides			
Problems noted (e.g., devia	ations form prescrib	ed methods, analy	/tical problems)		
1. Under what conditions were	re the Macoma and No	ephtys transported t	o the lab? 2. FW setting on v	water quality probe	often not switched
to marine water. 3. What doe	es the "G" stand for or	n the test observatio	n sheets? 4. DO measuremen	nts were <5 mg/L (recommended
limit) twice in Sample SD005	4 (Days 1 and 3 of the	e exposure period).	5. Temperature measuremen	its were >16°C 65	times during the
exposure period. In addition,	temperature measurer	ments were >17°C f	our times during the exposure	e period. Desired t	emperature range =
14±2°C. 6. pH measurement	•		• •	•	
4.5.		8			, , , _I
COMPLETENESS AND HO	OLDING CONDITIO	NS			
# Samples Submitted	15 Site + 2 treata		# Samples Analyzed	15 Site + 2 treatal	bility samples
Holding conditions accepta		PSEP: 4°C <		No; 19 d	
	(, , , ,		headspace < 8 weeks	Yes	
If no, identify samples	Previously agreed t		ing time requirements and kee		
,	possible.				J
with <i>Macoma</i>			ndard deviations for each to ndard deviations for each to	<u>-</u>	Yes Yes
, ,				-	
Analytical Replicates		20. 1			3.7
		30 clams per			No;
		replicate; 1-3			replication
		replicates per			was as
Niversia en esta Carranta	(111	sample (per	A		specified in
Number per Sample	(<i>Macoma</i>)	SOW)	Any with < 5 replicates?	-	the SOW No;
		70 worms per			replication
		replicate; 1-3			*
		•			was as
Number per Sample	(Nonhtus)	replicates per	Any 1		specified in
Number per Sample	(Nepritys)	sample	Any 1	-	the SOW
Test Conditions (Y/N):					
Sediment supplemen	t (weekly)	Yes	Fed during exposure pe	riod	No
Surviving Test Organ		Yes	Pretest organisms depu	_	Yes
Water Quality Variables R	•	_	3	, - -	
DO (daily)	. , ,	Yes	Salinity (daily)		Yes
pH (daily)	_	Yes	Temperature (daily)	-	Yes

CHECKLIST FOR SEDIMENT BIOACCUMULATION TESTS (continued)

QA/QC SAMPLES Negative Control

Control Sediment Collection Site	Discovery Bay, WA
Water Source	North Hood Canal sea water, 0.45 µm filtered
Current priority pollutant scan available?	No
Mean Control Mortality (%)	3%
Exceeds PSDDA QA Limit?	No
WATER QUALITY	
Samples with temperature < 13 or > 16 °C	None
Samples with salinity < 28 or > 32 ppt	None
Samples with pH < 7.0 or > 9.0	None
Samples with DO < 5 mg/L	None

BIOACCUMULATION TESTING FOR WESTERN PORT ANGELES HARBOR

PORT ANGELES, WASHINGTON

FINAL

SEPTEMBER 27, 2013

PREPARED FOR:

Western Port Angeles Harbor Group, consisting of:

City of Port Angeles
Georgia-Pacific LLC
Merrill & Ring
Nippon Paper Industries USA Co., Ltd.
Port of Port Angeles

PREPARED BY:

PO Box 216 4729 NE View Drive PORT GAMBLE, WA 98364

Introduction

NewFields conducted bioaccumulation tests with sediment samples collected from Port Angeles Harbor in support of the Western Port Angeles Harbor Remedial Investigation and Feasibility Study (RI/FS). A 45-day bioaccumulation study was conducted with *Macoma nasuta* and *Nepthys caecoides* to evaluate the potential for contaminants of interest to bioaccumulate into the tissues of aquatic organisms. Two modifications to the 45-day bioaccumulation test included the inclusion of solid phase membrane extraction (SPME) fibers into the testing aquaria to determine porewater concentrations of select contaminants and an altered number of replicates for the test treatments. A reduced number of replicates for test sediments was based on the needs of the FS. This report presents the results of the bioaccumulation exposures for the Western Port Angeles Harbor RI/FS. The analytical chemistry of the tissue residues was not part of NewFields scope of work.

Methods

Methods for sediment collection, storage and handling, and bioaccumulation exposures followed those outlined in the "Western Port Angeles Harbor RI/FS Sampling and Analysis Plan" (Integral 2013). Bioaccumulation testing methods followed those presented in the USEPA (1993) guidance, "Guidance Manual: Bedded Sediment Bioaccumulation Tests" and ASTM method E1688-00 (ASTM 2006), with modifications presented in the USACE-Seattle District document, "Dredged Material Evaluation and Disposal Procedures - Users Manual" (USACE-Seattle 2013).

Sample and Animal Receipt

Fifteen test sediments were collected for the bioaccumulation testing between June 27 and July 9, 2013; samples were delivered by courier to the NewFields laboratory in Port Gamble, WA. Sediment samples were stored in the dark with zero headspace in a walk-in cold room at 4 ± 2 °C. The test sediment was not sieved prior to testing and all tests were conducted within the eight week holding time.

Clams (*Macoma nasuta*) were supplied by J & G Gunstone from Discovery Bay, WA, as well as native sediment which was used as the negative control for *M. nasuta* in bioaccumulation testing. The worms (*Nephtys caecoides*), along with native sediment for use as a negative control, were obtained from Brezina and Associates in Dillon Beach, CA.

Bioaccumulation Tests

Bioaccumulation tests were performed using the bivalve clam *M. nasuta* and the polychaete worm *N. caecoides* during a 45-day test period under flow-through conditions. Tests were conducted in 10-gal glass aquaria, with five to six liters of sediment placed in each aquarium. With the exception of test treatments SD0004 and SD0053, one replicate test chamber was prepared for each test treatment. Three replicate test chambers were prepared for treatments SD0004 and SD0053 to evaluate variability in uptake among replicates. A negative control was also tested concurrent with the test treatments, using a 50:50 blend of native sediment supplied with the *Macoma* clams and *Nephtys* worms. Three replicate aquaria were prepared for the native control treatment.

In addition to the test and control treatments, two "treatability study" treatments were prepared with activated charcoal (AC). To prepare the treatability study samples, activated charcoal was added to a second set of test sediments SD0053 and SD0054 at a loading rate of 4% dry weight. The activated charcoal was stirred into the test sediment until the mixture appeared homogeneous and then allowed to equilibrate for approximately 60 hours prior to placement in test aquaria and 72 hours prior to test initiation. One replicate test chamber was prepared for each of the AC-amended treatments (test treatments SD0053-AC and SD0054-AC).

SPME fibers were placed in each test aquarium during sediment loading. Approximately half of the test sediment (approximately 2.5 liters) was placed in each test aquaria. Five separate bundles of SPME fibers, comprised of three approximately 5" long fibers tied together with a wire tie, were placed in each aquarium. Fibers were placed longitudinally within the aquarium and were equidistant from the aquarium sides and each other, such that they were equally spaced across the width of the aquarium. A shorter (approximately 3 cm-long) performance reference compound (PRC) fiber was placed perpendicular to the longer fibers at the head of each tank. Each tank received 1 PRC fiber and 5 bundles of the longer fiber (3 fibers per bundle) with the exception of the AC treatments which received six bundles. Once all fibers were in place, the remaining sediment was placed carefully over the top of the fibers. One QC sample was prepared by cutting one fiber (labeled for QC purposes) into 1 cm segments using a clean sterile scalpel. The 1-cm segments were placed into a vial containing 1 mL of hexane, the vial was labeled and placed into the freezer.

Once all test chambers were layered, seawater flow was initiated and the test system was allowed to equilibrate overnight. The chambers were maintained under flow-through conditions with clean seawater from North Hood Canal, Washington. Overhead light fixtures were set for a photoperiod of 16 hours of light and 8 hours of dark each day. Immediately prior to start of the test, an initial set of water quality parameters and flow rates were measured in each chamber. The water quality parameters included temperature, dissolved oxygen (DO), pH, and salinity. Acceptable test conditions and ranges for water quality parameters during the experiment were as follows:

Temperature: 14 ± 2 ºC Dissolved Oxygen: > 5.0 mg/L

pH: 8.0 ± 1.0 Salinity: 30 ± 2 ppt

Flow rate: $47 \pm 9 \text{ ml/} 30 \text{ sec.}$

The bioaccumulation exposures were initiated by randomly placing 30 *M. nasuta* and 70 *N. caecoides* into each replicate test chamber. During the testing period water quality measurements and flow rates were recorded daily for one replicate per treatment. Observations of test animal mortality, emergence and activity, or abnormal conditions were recorded daily for each test chamber. Animals were not fed during the 45-day test period. As required by the USACE-Seattle (2013) guidance, sediment in each chamber was supplemented with 175 mL of test sediment once per week.

On day 45, water quality observations were recorded for each test chamber and SPME fibers were collected. SPME fibers were collected by hand, rinsed free of any sediment, placed into xylene, and then frozen. The test exposure was then terminated by sieving the sediment from each test chamber, and removing and enumerating all surviving and dead test organisms. Surviving organisms of both *M. nasuta* and *N. caecoides* were then placed in clean aquaria and allowed to depurate for 24 hours under flow-through conditions. *M. nasuta* was depurated without sediment; *N. caecoides* was depurated in the presence of a thin layer of clean control sand (native control) in order to facilitate gut content transport. Following depuration, organism tissue from each replicate was placed in pre-cleaned glass jars and frozen for subsequent tissue analyses. The clams were scrubbed free of sediment and shucked prior to freezing; the resulting tissue was frozen for chemical analysis. In order to establish background tissue concentrations (pre-test), a sub-sample of test organisms was isolated prior to test initiation, allowed to depurate for 24 hours, and then frozen for chemical analysis. All frozen test and background samples were shipped via overnight courier to SGS in a cooler packed with blue ice.

Data Analysis and QA/QC

All water quality and survival data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Mean percentage survival was calculated for each treatment; for treatments with test replicates mean values and standard deviations were determined. All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors.

Results

The following section provides a summary of the bioaccumulation exposures, including a summary of test organism survival and water quality observations. Laboratory bench sheets are provided Appendix Δ

Bioaccumulation Potential

Summaries of survival during the 45-day bioaccumulation exposures are presented in Table 1 (*M. nasuta*) and Table 2 (*N. caecoides*). A summary of water quality observations is presented in Table 3 (*M. nasuta & N. caecoides*). The test condition summary for the bioaccumulation test is presented in Table 4. Data for each test replicate are included in Appendix A; chain-of-custody forms are included in Appendix B.

The bioaccumulation test was validated by 97% mean percentage survival for both *M. nasuta* and *N. caecoides* in the control treatment. Survival in the test treatments ranged from 73% to 100% for *M. nasuta*. With the exception of treatment SD0026, survival for *N. caecoides* ranged from 83% to 100%; *N. caecoides* survival in test treatment SD0026 was 50%.

Water quality parameters were within the target range for the duration of the 45-day test (Table 3) with exceptions of dissolved oxygen and temperature. Dissolved oxygen in treatment SD0054 dropped to 4.4 and 4.7 mg/L on days 1 and 3, slightly below the recommended limit of >5.0 mg/L. Trickle-flow aeration and water flow were increased to the chamber and dissolved oxygen levels were within the recommended range for the remainder of the test. Temperatures were occasionally slightly above the recommended range of $14 \pm 2^{\circ}$ C during the test, but by no more than 1.5°C. Flow to the water bath and the water bath depth was increased to allow for more consistent temperature regulation. Both dissolved oxygen and temperature were within the tolerance range for the test species and were unlikely to have affected test organism health during the exposure. Seawater pH was within the target range, with the exception of one chamber (SD0052) on Day 9, with a value of 4.5. The pH values in this test chamber immediately prior to and after Day 9 were within the normal range, and none of the other test treatments had pH values outside of the test range. This value was considered to be a misreported instrument reading.

Discussion

There are no SMS criteria established for the bioaccumulation test; the purpose of the test is to provide tissue for analytical chemistry of tissue residues. With one exception, survival of *M. nasuta* and *N. caecoides* was >70%; *N. caecoides* survival in treatment SD0052 was 50%. Sufficient tissue was retrieved for chemical analysis from all treatments. As indicated previously, chemical analysis of tissues and comparison concentrations in tissues and SPME fiber is the subject of a separate report.

Table 1 45-day Bioaccumulation Test – *Macoma nasuta* survival.

Treatment	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
	1	30	28	2	93		
Control	2	30	29	1	97	97	3
	3	30	30	0	100		
	1	30	24	6	80		
SD0004	2	30	23	7	77	84	11
	3	30	29	1	97		
SD0009	1	30	24	6	80		
SD0010	1	30	25	5	83		
SD0011	1	30	29	1	97		
SD0013	1	30	27	3	90		
SD0015	1	30	28	2	93		
SD0018	1	30	29	1	97		
SD0025	1	30	27	3	90		
SD0026	1	30	30	0	100		
SD0028	1	30	27	3	90		
SD0051	1	30	23	7	77		
SD0052	1	30	28	2	93		
	9	30	24	6	80		
SD0053	15	30	25	5	83	83	3
	16	30	26	4	87		
SD0053-AC (T)	1	30	24	6	80		
SD0054	1	30	26	4	87		
SD0054-AC (T)	1	30	22	8	73		
SD0055	1	30	29	1	97		

T: Treatability test; test sediment amended with activated charcoal.

Table 2. 45-day Bioaccumulation Test – Nephtys caecoides survival.

Table 2. 45-day Bload	- Carrialation	1030 700	only 5 daced		vai.		
Treatment	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
	1	70	69	1	99		
Control	2	70	66	4	94	97	2
	3	70	68	2	97		
	1	70	64	6	91		
SD0004	2	70	60	10	86	89	3
	3	70	63	7	90		
SD0009	1	70	69	1	99		
SD0010	1	70	61	9	87		
SD0011	1	70	61	9	87		
SD0013	1	70	67	3	96		
SD0015	1	70	66	4	94		
SD0018	1	70	69	1	99		
SD0025	1	70	60	10	86		
SD0026	1	70	35	35	50		
SD0028	1	70	68	2	97		
SD0051	1	70	61	9	87		
SD0052	1	70	61	9	87		
	1	70	64	6	91		
SD0053	2	70	62	8	89	93	6
	3	70	70	0	100		
SD0053-AC (T)	1	70	58	12	83		
SD0054	1	70	68	2	97		
SD0054-AC (T)	1	70	66	4	94		
SD0055	1	70	65	5	93		

T: Treatability test; test sediment amended with activated charcoal.

Table 3. Water Quality Summary for the 45-day Bioaccumulation Test with *Macoma nasuta* and *Nephtys caecoides,*

ivepritys cuecolues,															
		ved O	kygen	Ter	nperat	ure	!	Salinity	1	,	pН		Flow (mL/30 sec)		
Treatment	((mg/L)			(°C)			(ppt)		1)	H unit	ts)	(m	L/30 so	ec)
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.3	6.0	8.5	15.2	14.2	16.9	31	29	31	7.8	7.5	8.3	46	38	56
SD0004	7.0	5.0	7.9	15.3	13.9	16.9	31	30	31	7.7	7.3	8.4	46	38	58
SD0009	6.7	5.5	8.1	15.2	14.1	16.6	31	29	31	7.7	7.4	8.2	46	38	56
SD0010	7.1	6.3	8.1	15.1	14.1	17.1	31	29	31	7.7	7.5	8.2	45	38	56
SD0011	7.5	7.1	8.4	15.0	13.9	16.7	31	30	31	7.8	7.5	8.4	46	38	56
SD0013	7.3	6.5	8.4	15.1	13.8	16.5	31	30	31	7.8	7.5	8.5	45	38	56
SD0015	7.0	6.1	8.3	15.1	14.1	16.6	31	29	31	7.8	7.4	8.5	45	38	58
SD0018	7.0	6.0	8.0	15.2	14.2	17.1	31	29	31	7.7	7.5	8.4	47	38	55
SD0025	7.1	5.3	7.8	15.7	14.5	17.5	30	29	31	7.7	7.3	8.2	48	38	70
SD0026	7.0	5.4	7.9	15.2	14.2	16.4	31	30	31	7.7	7.4	8.2	47	38	58
SD0028	7.1	6.3	8.1	15.1	14.1	17.3	31	30	31	7.8	7.4	8.4	46	38	56
SD0051	6.9	5.5	8.2	15.1	14.1	16.5	31	29	31	7.7	7.4	8.0	45	38	56
SD0052	7.2	5.1	8.4	15.0	14.0	16.4	31	29	32	7.7	4.5	8.3	46	38	56
SD0053	7.2	6.2	7.9	15.2	14.2	16.6	31	29	31	7.8	7.1	8.2	44	38	56
SD0053-AC	7.1	6.1	8.6	15.0	13.8	16.1	30	29	31	7.7	7.0	8.4	47	38	56
SD0054	6.7	4.4	7.8	15.3	14.3	16.3	30	29	31	7.7	7.3	8.4	45	38	56
SD0054-AC	6.7	5.5	7.9	15.1	14.2	16.5	31	30	31	7.7	7.4	8.2	45	38	56
SD0055	6.8	6.0	7.8	15.4	14.2	16.7	30	29	31	7.8	7.3	8.2	47	38	56

Table 4. Test Condition Summary for the 45-day Bioaccumulation Test with *Macoma nasuta* and *Nephtys caecoides*

Nepritys caecoldes	Nephtys caecoides							
Test Conditions 45-day Bioaccumulation Study								
Sample Identification	SD0018, SD0025, SD0026, SD00	Control, SD0004, SD0009, SD0010, SD0011, SD0013, SD0015, SD0018, SD0025, SD0026, SD0028, SD0051, SD0052, SD0053, SD0054, SD0055, SD0053-AC, SD0054-AC						
Date sampled	June 27 – July 9, 2013							
Date received at NewFields	June 28 – Jul	y 10, 2013						
Approximate volume received	5 gallons per	treatment						
Sample storage conditions	4°C, dark, minim	nal head space						
Weeks of holding	< 3 we	eeks						
Source of control sediment	Discovery Bay, WA ar	nd Dillon Beach, CA						
Test Species	Macoma nasuta Nephtys caecoides							
Supplier	J&G Gunstone, WA	Brezina and Associates, CA						
Date acquired	July 12, 2013	July 12 & 15, 2013						
Acclimation/holding time	4 days	1 - 4 days						
Age class	Adults	Adults						
Test Procedures	USEPA (1993); USA	CE-Seattle (2013)						
Test location	NewFields Northwest Labo	ratory, Port Gamble, WA						
Test type/duration	45-day static wit	h flow through						
Test dates	16 July – 30 A	ugust 2013						
Control water	North Hood Canal, sar	nd filtered to ~20μm						
Test temperature	Recommended: 14 \pm 2 °C	Achieved: 13.8 – 17.5 °C						
Test Salinity	Recommended: $30 \pm 2 \text{ ppt}$	Achieved: 29 – 32 ppt						
Test dissolved oxygen	Recommended: > 5.0 mg/L	Achieved: 4.4 – 8.6 mg/L						
Test pH	Recommended: 8 ± 1	Achieved: 7.0* – 8.5						
Test photoperiod	16 hours light:	8 hours dark						
Test chamber	Glass Aquaria (30.5	<u>'</u>						
Replicates/treatment	1 replicate; 3 replicates for Co							
Organisms/replicate	M. nasuta = 30, N	l. caecoides = 70						
Exposure Volume	4L sediment per treatment;	175 mL addition per week						
Feeding	Nor	ne						
Water renewal	Flow-through 38	-56 ml/30 sec.						
Deviations from Test Protocol	Temperature, dissolv							
	Misreported value of pH= 4.5 for o	ne chamber on one day						

References

- American Society for Testing and Materials (ASTM). 2006. E1688-00 Standard Guide for Determination of the Bioaccumulation of Sediment-Associated Contaminants by Benthic Invertebrates. Annual Book of Standards, Water and Environmental Technology, Vol. 11.06, West Conshohocken, PA. Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- United States Environmental Protection Agency and United States Army Corps of Engineers (USEPA/USACE). 1991. Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual. EPA 503/8-91/001. EPA Office of Water, Washington, DC.
- USEPA/USACE. 1993. Bedded Sediment Bioaccumulation Tests. EPA 600/R-93/183. EPA Office of Research and Development, Washington, DC.
- USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: Testing Manual. EPA 823-B-98-004. EPA Office of Water, Washington, DC.
- USACE-Seattle. 2013. Dredged Material Evaluation and Disposal Procedures. Users Manual. Dredged Material Management Office. United States Corps of Engineers, Seattle District. Seattle, Washington.

DATA QUALITY ASSURANCE REVIEW: WESTERN PORT ANGELES HARBOR SEDIMENT BIOASSAYS

This data validation report reviews the toxicity tests performed in Western Port Angeles Harbor using the amphipod *Eohaustorius estuarius*, the juvenile polychaete *Neanthes arena ceodentata*, and the larval bioassay using the mussel *Mytilus galloprovincialis* (with the resuspension protocol; Kendall et al. 2012). Sediment toxicity tests were conducted at two kinds of stations: full suite bioassay stations (where all three bioassays were performed), and larval bioassay only stations. Full-suite bioassays were conducted on 20 sediment samples collected from Western Port Angeles Harbor. The larval bioassay was conducted on 27 sediment samples collected from additional locations from Western Port Angeles Harbor. The full-suite bioassays were also performed on three reference sediment samples that were collected at Carr Inlet. All bioassays were performed by NewFields, Port Gamble, Washington.

The following review is based on test protocols provided in the Puget Sound Estuary Program Protocols (USEPA 1997) and on Sediment Management Annual Review Meeting updates (Kendall et al. 2012; Kendall and McMillan 1999; Kendall, no date).

BIOASSAYS

The amphipod and juvenile polychaete tests were conducted in single batches. The amphipod test was initiated on July 19, 2013, and the juvenile polychaete test was initiated on July 12, 2013. The larval bioassay was run in two batches that were initiated on July 1, 2013, and July 17, 2013, respectively. The measurement endpoints included mean percent survival and mortality of the amphipods, mean mortality and mean individual growth rate per day for the juvenile polychaete, and mean normal survival for the larval test.

SAMPLE COLLECTION, TRANSPORT, AND STORAGE

Samples were collected, transported, and stored in accordance with the procedures provided in the Western Port Angeles Harbor RI/FS sampling and analysis plan (SAP) (Integral et al. 2013). Samples were stored in a cold room at 4°C at NewFields Laboratory until test initiation.

DATA COMPLETENESS AND FORMAT

Data documenting the environmental test conditions, positive and negative control results, organism observations, and conditions influencing data quality were included in the NewFields data report.

DATA VALIDATION AND ASSESSMENT

All tests were conducted using randomly assigned identical test chambers and used the required amount of test sediment and overlying water. The procedures in all three tests followed the accepted protocols and guidelines. Some minor deviations from the test protocols and water quality parameters are noted in the following sections. These deviations do not influence data quality.

Amphipod Test

A detailed review of the QA results for the amphipod test can be found in the attached checklist. There were minor deviations from the established protocols:

- Amphipods that did not bury within 1 hour were replaced by NewFields. USEPA (1997) states that the laboratory should wait only 15 minutes to assess if *E. estuarius* is burying itself in the sediment. Additional time is often taken to ensure all the test organisms have reburied.
- Reference Area CR-02, Replicate 3 had eight surviving organisms at the end of the test. The laboratory substituted the survivorship information from the remaining water quality beaker (20 amphipods) for Replicate 3. This substitution was not mentioned in the data report, and no observational data are available for the water quality surrogate beaker that was used.
- Interstitial salinity and porewater ammonia and sulfides data were not collected at test termination for Reference Sample CR-02 because not enough porewater was collected by the laboratory.
- Porewater sulfide data was also not collected at test termination for control, CARR-20 and CR-12; no explanation provided in the data report.
- The test was performed at 28±1 ppt. However, USEPA (1997) states that the ambient interstitial salinity of the test sediment should be matched to the overlying water used for the bioassay. Information was not provided in the data report on whether or not this assessment was performed to determine the correct test salinity.

There were no deviations from the water quality guidelines for the test. There was no apparent effect from the above deviations on the outcome of the bioassay.

The mean percent survival among amphipods in the control and reference samples met the PSEP and SMS criteria for test acceptability (90 and 75 percent, respectively). The mean survival in the control was 96 percent. The mean survival across the reference area samples was 92 percent (86–96 percent).

Test Precision

Replicate analysis, sample homogenization, and amphipod counts were adequately performed to ensure test precision. The test results for mean percent survival and mortality are located in Table 2 of the NewFields data report. Standard deviation for the test samples ranged from 2.2 to 11.7 percent. The standard deviation in the reference area samples ranged from 2.2 to 4.5 percent. The standard deviation in the control was 6.5 percent.

Positive Controls

A reference toxicant using ammonium chloride was conducted concurrently with the amphipod test. The LC_{50} of 142 mg/L total ammonia was within the acceptable range for the laboratory (17.5–266 mg/L total ammonia).

Juvenile Polychaete Test

A detailed review of the QA results for the juvenile polychaete test can be found in the attached checklist. There were minor deviations from the established protocols:

- There were six worms in Sample SD0006, Replicate 4.
- A worm was lost from Sample SD0018, Replicate 2 during transit to the balance; five worms were removed from the test chamber, but only four worms were in the weigh boat prior to weighing.
- Porewater ammonia and sulfides were not measured at test initiation in the control and two reference sediments (CR-12 and CARR-20); not enough pore water was collected by the laboratory.

There were no deviations from the water quality guidelines for the test. There was no apparent effect from the above deviations on the outcome of the bioassay.

The mean percent survival among juvenile polychaetes in the control met the PSEP and SMS criteria for test acceptability (90 percent survival and mean individual growth rate of >0.72 mg/individual/day with a minimum growth rate of >0.38 mg/individual/day). The mean survival in the control was 100 percent and the mean individual growth rate was 0.51 mg/individual/day. The mean survival across the reference area samples was also

100 percent, which is greater than the 80 percent survival required to meet PSEP and SMS criteria. Per PSEP and SMS criteria, the performance standard for growth in the reference samples is related to the control sample (mg/individual/day in the reference divided by the mg/individual/day in the control is >80 percent). The growth ratio in the reference area samples varied from 81 to 123 percent.

Test Precision

Replicate analysis, sample homogenization, and amphipod counts were adequately performed to ensure test precision. The test results for mean percent mortality and mean individual growth (mg/individual/day) are located in Table 6 of the NewFields data report. Standard deviation for mean individual growth for the test samples ranged from 0.029 to 0.136 percent. The standard deviation for mean individual growth in the reference area samples ranged from 0.039 to 0.101 percent. The standard deviation for mean individual growth in the control was 0.092 percent.

Positive Controls

A reference toxicant using ammonium chloride was conducted concurrently with the juvenile polychaete test. The LC $_{50}$ of 142 mg/L total ammonia was within the acceptable range for the laboratory (46.5–264 mg/L total ammonia).

Larval Test

A detailed review of the QA results for the larval test can be found in the attached checklist. There were minor deviations from the established protocols:

- The data report states that the water bath temperature (for spawning) was "increased [from 16°C to 20°C] over a period of 15 minutes..." USEPA (1997) states that the conditioning temperature should not be increased by more than 2°C per day.
- The data report does not provide additional information on the brood stock that was used to produce the gametes that were tested and the spawning conditions (i.e., name of water body where organisms were collected, collection date, manner in which the mussels were collected [pulled or cut away from the substrate], and elapsed time between mussel collection and receipt at the laboratory).

There were a few deviations from the water quality guidelines for the test:

• No final ammonia or sulfide measurements were provided for Batch 2.

- pH was 6.7 (0.3 pH units lower than the recommended range) in Sample SD0001 at test initiation.
- Temperature was 18°C (1°C higher than range stated in test protocol) in Sample SD0009 at test initiation.
- Dissolved oxygen was <5 mg/L on Day 2 for CARR-20 and 23 of the site samples in Batch 1 and for CR-02 and 12 site samples in Batch 2. The majority of the dissolved oxygen deviations occurred on Day 3 (i.e., at test termination). The decrease in dissolved oxygen levels was probably due to resuspension of the test sediments. Because development of the mussel larvae was complete prior to resuspension, it is unlikely that the suppressed dissolved oxygen on Day 3 affected normal development. Also, because there was high larval recovery in the samples where lower dissolved oxygen concentrations were recorded, normal survivorship does not appear to be related to the low dissolved oxygen concentrations observed at test termination.

There was no apparent effect from the above deviations on the outcome of the bioassay. The mean percent normal survival among the mussel larvae in the control and reference samples met the PSEP and SMS criteria for test acceptability (70 and 65 percent, respectively). The mean normal survival in the control was 99 percent. The mean survival across the reference area samples was 80 percent (77–82 percent).

Test Precision

Replicate analysis, sample homogenization and larval counts were adequately performed to ensure test precision. The test results for mean percent normal survival are located in Table 10 of the NewFields data report. Standard deviation for the test samples ranged from 2.2 to 13.4 percent. The standard deviation in the reference area samples ranged from 6.1 to 10.1 percent. The standard deviation in the control was 2.2 percent.

Positive Controls

A reference toxicant using ammonium chloride was conducted concurrently with both batches of the larval test. The LC $_{50}$ of 2.9 mg/L total ammonia was within the acceptable range for the laboratory (0.96–9.57 mg/L total ammonia).

CONCLUSION

The data from the Western Port Angeles Harbor RI/FS were complete with respect to the data requirements outlined in the SAP (Integral et al. 2013). Despite several minor deviations from the established protocols in all of the tests and minor water quality deviations in the larval test, the data provided for the bioassays are usable as reported.

REFERENCES

Integral, Anchor QEA, Exponent, and Floyd | Snider. 2013. Sampling and analysis plan Western Port Angeles Harbor RI/FS. Prepared for Western Port Angeles Harbor Group, consisting of City of Port Angeles, Georgia-Pacific LLC, Merrill & Ring, Nippon Paper Industries USA Co., Ltd., and Port of Port Angeles. Integral Consulting Inc., Seattle, WA, Anchor QEA, LLC, Seattle, WA, Exponent, Bellevue, WA, and Floyd | Snider, Seattle, WA.

Kendall, D., R. McMillan, B. Gardiner, B. Hester, and J.D. Word. 2012. DMMP/SMS clarification paper. Bioassay endpoint refinements: bivalve larval and *Neanthes* growth bioassays. Prepared by U.S. Army Corps of Engineers, Washington State Department of Ecology, and NewFields, LLC. U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

Kendall, D., and R. McMillan. DMMP clarification paper. SMS Draft technical memorandum. Clarification on the use of the amphipod, Eohaustorius estuarius, relative to grain size and salinity. Prepared by U.S. Army Corps of Engineers and Washington State Department of Ecology. U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

Kendall, D. No date. PSDDA/SMS clarification paper. Neanthes 20-day growth bioassay – further clarification on negative control growth standard, initial size and feeding protocol. U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

USEPA. 1997. Recommended guidelines for the conducting laboratory toxicity tests on Puget Sound sediments. U.S. Environmental Protection Agency, Region 10, Puget Sound Estuary Program, Seattle, WA.

CHECKLIST FOR AMPHIPOD MORTALITY BIOASSAY

Project Name	WPAH R	I/FS	Project #	C1102-030	00
Laboratory	New Fie	elds	Lab #	NA	
Lab Technician	Bill Gard	liner	Batch	Performed in 1	batch
Date Sampled	June 25 - July	9, 2013	Date Received by Lal	b June 25 - J	Tuly 10, 2013
Date Analysis Begi	un July 19	9, 2013	Reviewed by	Jane Sexto	on
Test Organism _	Eohaustorius	estuarius			
Problems noted (e.	.g., deviations forn	n prescribed met	hods, analytical problem	າຣ)	
1. Test performed at	28±1 ppt. Howeve	er, USEPA (1997)	states that the ambient inte	erstital salinity of	the test sediment
beakers per USEPA lab should wait only lab data sheets as "fle (e.g., pipette, glass re surviving organisms quality beaker (20 ar recorded for the water DO and salinity and parameters. 8. Inter	(1997)? 3. Amphip 15 minutes to assess pating on the surface od, etc)? 5. What d at the end of the tes apphipods) for Replicer quality surrogate DO requirement in stitial salinity and p	oods that did not be sif <i>E. estuarius</i> is e." Did the lab geroes "A" mean on to t. The lab substituted at 3. No mention beaker. 7. Headin Γable 5 does not morewater ammonia	ssay. 2. Were amphipods a ury within 1 hour were repurying itself in the sedimently push the amphipods bathe lab data sheets? 6. Rested the survivorship information in data report of this substant the main text. No was and sulfides data not collected the sulfide data was also the survivorship information.	placed. USEPA (nent. 4. Amphipo ack down with a conference Area CR- mation from the re- stitution and no of ain incorrect targo atter quality deviate ected at test terminent.	1997) states that the ods are noted in the clean instrument -02, Replicate 3 had 8 emaining water observational data et test parameters for tions from target test mation for Reference
•			0. Table 5 mentions a slig		
	•	•	ed on the lab data sheets.	,iit deviation in te	st temperature or
0.5 C, nowever, tills	temperature deviati	on was not records	on the lab data sheets.		
# Samples Submitt Holding conditions If no, identify samp	ted 20 site + 3 acceptable? (Y/N)	PSEP: 4°C SMS: 4°C r eed to follow SMS	# Samples Analyzed < 2 weeks no head space < 8 week holding time requirements	No; 2	3 reference 24 days Yes ng time as close to 14
FORMAT					
for each treatr Failure of <i>E. e</i> deviation for e 10-day mortali treatment	nce for each cham nent stuarius to rebury ach treatment	for each chamber and the mean	ay mean and standard or er and the mean and sta and standard deviation f d test sediments	andard	No No Yes No (see above)
96-hour LC50	values with refere	nce toxicants			Yes
Analytical Replica	ites				
		20 amphipods per replicate; 8 replicates			Yes; all tests had extra replicates for
Number per S	ample	per sample	Any with < 5 replicate	s?	water quality
Water Ore-Pt-14	iables Dement 04	NIV.			
Water Quality Var	• •	•	Cultidae (initial Days	= final\	Vaa
•	al, Day 5, final)	Yes	Sulfides (initial, Day 5	o, iinai)	Yes
Salinity (daily)		Yes	DO (daily)		Yes
pH (daily)		Yes	Temperature (daily)		Yes

CHECKLIST FOR AMPHIPOD MORTALITY BIOASSAY (continued)

QA/QC SAMPLES

	-	-	-	-	_		_
١	le	ga	ıt	iν	е	Contro	I

Control Sediment Collection Site	Yaquina Bay, Oregon				
Water Source	North Hood Canal sea water, 0.45 µm filtered				
Current priority pollutant scan available?	No				
Any individual replicate mortality > PSEP QA					
limit of 20%?	No				
Mean Control Mortality (%)	4%				
Exceeds QA Limit of 10%?	No				
Pacitive Central					
Positive Control	A1.1 1.				
Reference Toxicant	Ammonium chloride 30				
Exposure Concentrations 15 Percent mortality 3%	30 00 120 240				
Organism Response (LC50)	142 mg/L total ammonia				
Lab Performance Standards for Reference	17.5 266 mg/L total ammonia				
Toxicant (95% Confidence Interval)	17.5 - 266 mg/L total ammonia				
Did the test LC50 fall within the lab standards?	Yes				
Reference Sediment					
Collection Site	Carr Inlet (3 reference stations)				
Grain Size (% fines)	CR-12 = 4%, CARR20 = 26%, CR-02 = 59% CR-12 = 4%, CARR20 = 7%, CR-02 = 2%				
Mean Mortality (%)					
> PSDDA QA Limit of 20 over control?	No CR-12 = 4%, CARR20 = 7%, CR-02 = 2% No				
Mean Mortality (%)					
> SMS QA Limit of <25% mortality?					
WATER QUALITY					
Samples with pH < 7 or > 9	No				
Samples with DO < 6 mg/L	No				
Temperature:	110				
Eohaustorius estuarius (< 14 or > 16 °C)	No				
Salinity:	110				
Caminty.	Test performed at 28±1 ppt. No information on ambient				
Echaustorius astuarius (ambient interstitial)					
Eohaustorius estuarius (ambient interstitial)	interstitial salinity provided in data report.				

CHECKLIST FOR 20-DAY NEANTHES BIOASSAY

Project Name	WPAH F	RI/FS	Project #	C1102-0300	0
Laboratory	New Fi	elds	Lab #	NA	
Lab Project Manager	Bill Gard	diner	Batch	Performed in 1	batch
Date Sampled	June 25 - July	y 9, 2013	Date Received by Lab	June 25 - Ju	ıly 10, 2013
Date Analysis Begun	July 12,	2013	Reviewed by	Jane Sextor	1
Test Organism _	Neanthes arena	ceodentata			
Problems noted (e.g., de	-				
1. Surviving worms were					
Were observations made o					
6 worms in it. 5. Sample S					
acclimation period for test	-				
ppt); test initiated on day o				_	
reference areas, text should				t test initiation in	control and two
reference sediments (CR-1	2 and CARR-20); r	not enough pore wa	ter collected.		
COMPLETENESS AND	HOLDING CON	DITIONS			
# Samples Submitted	20 site + 2	3 reference	# Samples Analyzed	20 site + 3	3 reference
Holding conditions accep	ptable? (Y/N)	PSEP: 4°C	< 2 weeks	Yes; 1	4 days
		SMS: 4°C n	o headspace < 8 weeks	Y	es
If no, identify samples	Previously agr	eed to follow SMS	holding time requirements	and keep holding	g time as close to 14
	days as possib	le.			
FORMAT					
Standard Data Report	• •	1.4			
	cposure chamber	and the mean an	d standard deviations fo	r each	**
treatment	- / I	d			Yes
Initial total biomas					Yes
		acn exposure cna	mber and the mean and	ı standard	No
deviation for each		ight) in agah ayna	aura ahambar and the n	oon and	No
standard deviation	, ,	• ,	sure chamber and the n	lean and	Yes
			st sediments (PSEP: bot	h final and	1 05
initial, PSDDA: init		reference, and tes	st sediments (1 OL1 . DOI	II IIIIai and	Yes
	• /	toxicant (results	for metallic compounds	should be	103
		,	veight of the whole salt)	oriodia bo	
roportou in torrilo t	21 ti 10 111 otta 1011 10	and than do the t	roigin or and whole early		Yes
Average individual	growth rate in ea	ch exposure char	mber and the mean and	standard	
deviation for each	-				Yes
Analytical Replicates					
		5 worms per			Yes; all tests
		replicate; 8			had extra
		replicates per			replicates for
Number per Samp	le	sample	Any with < 5 replicates	s ?	water quality
Motor Ouglity Variable	a Danaut (V/N)-				
Water Quality Variable Ammonia (initial, [Yes	Sulfides (initial, Day 10	O final)	Yes
Feeding (every oth	•	Yes	Water change (every	•	Yes
DO (every third da	• '	Every day	Salinity (every third da	• •	Every day
pH (every third day	• *	Every day	Temperature (every th	• •	Every day Every day
pri (cvery time da)	"	Lvery day	i simporatare (every ti	a day,	Lvery day

CHECKLIST FOR 20-DAY NEANTHES BIOASSAY (continued)

QA/QC SAMPLES

Negative Control

Control Sediment Collection Site	Control Sediment Collection Site						Yaquina Bay, Oregon				
Water Source]	North Hood Canal sea water, 0.45 µm filtered								
Current priority pollutant scan ava	ailable?					No	_				
Mean Control Mortality (%)	-			0%							
Exceeds PSDDA QA Limit	-			No							
Mean individual growth in Contro	-		0.513 mg	/individual/day	_						
Note: The target mean control growth rat	/day and ca	nnot be			y.						
Positive Control											
Reference Toxicant					Ammor	nium chloride					
Exposure Concentrations	1:	5 1	30		60	120	240				
Percent mortality	09		0%	-	0%	0%	100%				
Organism Response (LC50)	0 /	/U I	070	141.9 mg/L							
Lab Performance Standards for I	Rafaranca		-		141	1.9 IIIg/L					
Toxicant (95% Confidence Interv	Withi	Within control chart limits (±2 standard deviations from									
Toxicant (95% Confidence interv	ai)		** 16111	historical mean) Yes; 46.5 - 264 mg total ammonia							
Did the test LC50 fall within the la	ab standard	ds?									
Reference Sediment											
Collection Site					Carr Inlet (3	reference statio	ns)				
Mean Mortality				0%, 0%, 0%							
Exceeds PSDDA QA Limit	of 20%?			No							
Mean individual growth in Refere						81-124%					
< 80% of control (PSDDA 0				No							
WATER QUALITY											
Samples with temperature < 19 c	or > 21 °C			None							
Samples with salinity < 26 or > 30	-	None									
Samples with pH < 7.0 or > 9.0						None					
Samples with DO < 6 mg/L						None					
		110114									

CHECKLIST FOR SEDIMENT LARVAL BIOASSAY (SOLID PHASE)

Destruction	MDAILDI/DC		Declarate		G1102 020	0
Project Name	WPAH RI/FS	<u> </u>	Project #		C1102-0300	<u>) </u>
Laboratory	New Fields		Lab #		NA C 1: 21	4.1
Lab Technician	Bill Gardiner		Batch		formed in 2 b	
Date Sampled	June 25 - July 9, 2		Date Received	by Lab	June 25 - Ju	ly 10, 2013
Data Analysis Dasyn	Batch 1: July 1		Daviewed by		I C	_
Date Analysis Begun	Batch 2: July 1		Reviewed by		Jane Sextor	1
Test Organism	Mytilus galloprovin		مام مام المام مام	(محمد ما طامع		
Problems noted (e.g.,	· ·				4 1 ' '	11. 14
1. What was the salinity						
than 28±1 ppt, then the s	•			1.1	• \	/
report states that the wat	• ,		_			
minutes" USEPA (199					•	
procedure should have to	-					_
initiation? 4. The data re	-	-			_	
Were the embryos rinsec	_	_				_
control sediment? 6. Th		•			-	-
information to answer th	~ .			•	_	
water body were the mus			•	-		•
mussel collection and sp						
cut or was the mussel pu						
of collection? [Note: th	* *	•				• •
excessive wait time.] [Pe	•		•	-		
fed something (phytopla	*	•		7. Need clar	ification on Γ	O measurements
for Batch 2 on lab data s	heets. 8. Is the DO r	requirement 5 mg	g/L or 6 mg/L?			
COMPLETENESS AN	ID HOLDING CON	DITIONS				
# Samples Submitted	47 site + 3 refe		# Samples An	alvzed	47 site + 3	reference
" Campies Cabilities	47 Site + 5 Tele	CICIICC	" Campics 7 til		Yes; Batch	
Holding conditions acc	centable? (V/N)	PSEP: 4°C < 2) wooks		No; Batch 2	•
riolaling contaitions acc	eptable: (1/14)		nead space < 8	weeks	•	both batches
If no, identify samples	Previously agreed to		•			
ii iio, identiiy sampies	days as possible.	J IOHOW SIVIS HO	numg time requi	.cincints and i	accp norung	time as close to 14
	days as possible.					
FORMAT						
Standard Data Repor	rt (Y/N):					
- · · · · · · · · · · · · · · · · · · ·						Yes; approx.
Number larvae ev	aluated with initial	count data				27,000
					_	No; SD not
Individual replicat	e and mean and sta	andard deviatio	n data for perc	ent mortality	/	included
'			•	,	_	No; SD not
						included and
						reported as
Individual replicat	e and mean and sta	andard deviatio	n data for perc	ent abnorma	ality _	normality
Individual replicat	e and mean and sta	andard deviatio	n data for perc	ent combine	ed	No; SD not
mortality and abn	ormality					included and
						reported as
						normality

-- LC50 and EC50 values for reference toxicants

LC50 only

CHECKLIST FOR SEDIMENT LARVAL BIOASSAY (SOLID PHASE) (continued)

Approx. 27,000 developing embryos per

replicate; 6

Any with < 5 replicates?

Yes; all tests had an extra replicate for

Number per Sample

replicates per

water quality

Yes for Batch

1, but no final

Water Quality Variables Report (Y/N):

Yes for Batch 1, but no final ammonia measurements

for Batch 2

Sulfides (initial and final)

sulfide measurements for Batch 2

Ammonia (initial and final)

Yes, except for SD0020 on

Salinity (daily) pH (daily)

Yes Yes DO (daily) Temperature (daily) Day 2 Yes

QA/QC SAMPLES

Negative Control

Control Sediment Collection Site Water Source Current priority pollutant scan available? Mean Combined Mortality/Abnormality (%) Exceeds QA Limit of 30%?

Unknown							
North Hood Canal sea water, 0.45 µm filtered							
No							
Batch 1: 98.9% Batch 2: 88.6%							
No							

Positive Control - Batch 1

Reference Toxicant **Exposure Concentrations** Percent mortality

 Ammonium chloride								
0.75	i	1.5	i I	3	6	12		
13%	I	14%		50%	100%	100%		
$2.90 \text{ mg NH}_3 + \text{NH}_4^+/\text{L}$								

Organism Response (LC50) Lab Performance Standards for Reference

Toxicant (95% Confidence Interval)

Did the test LC50 fall within the lab standards?

Mean 5.97; 0.96 - 9.57 mg NH3 + NH4+/L	
Yes	

Positive Control - Batch 2

Reference Toxicant **Exposure Concentrations** Percent mortality

	Ammonium chloride							
0.75	1.5	3	6	12				
11%	8%	9%	100%	100%				

Organism Response (LC50)

 $4.31 \text{ mg NH}_3 + \text{NH}_4^+/\text{L}$

Lab Performance Standards for Reference Toxicant (95% Confidence Interval)

Did the test LC50 fall within the lab standards?

Mean 5.24; 0.90 - 9.59 mg NH3 + NH4+/L Yes

CHECKLIST FOR SEDIMENT LARVAL BIOASSAY (SOLID PHASE) (continued)

Reference Sediment

Collection Site
Mean Combined Mortality/Abnormality (%)

an Combined Mortality/Abnormality (% Exceeds PSDDA QA Limit of 35%?

Carr Inlet
CR-12 = 17.6%, CARR20 = 20.1%, CR-02 = 22.9%
No

Test and Reference Sediment Variance

Is the standard deviation of combined mortality/abnormality with test and/or reference sediments > 20%?

If yes, then power of t-test must be at least 0.6 or greater to accept test results.

WATER QUALITY

Samples with pH < 7 or > 9

Samples with DO < 5 mg/L Samples with salinity < 27 or > 29 ppt Temperature:

Mytilus sp. ($< 15 \text{ or} > 17 ^{\circ}\text{C}$)

pH was 6.7 (0.3 pH units lower than the stipulated range) in Sample SD0001 at test initiation

DO was <5 mg/L on Day 2 for CARR-20 and 23 of the site samples in Batch 1 and CR-02 and 12 site samples in Batch 2

None

Temperature was 18°C (one degree higher than range stipulated in test protocol) in Sample SD0009 at test initiation

SEDIMENT TESTING FOR WESTERN PORT ANGELES HARBOR

PORT ANGELES, WASHINGTON

FINAL

SEPTEMBER 20, 2013

PREPARED FOR:

Western Port Angeles Harbor Group, consisting of:

City of Port Angeles
Georgia-Pacific LLC
Merrill & Ring
Nippon Paper Industries USA Co., Ltd.
Port of Port Angeles

PREPARED BY:

PO Box 216 4729 NE View Drive PORT GAMBLE, WA 98364

Introduction

NewFields conducted biological toxicity testing and bioaccumulation tests with sediment samples collected from Port Angeles Harbor in support of the Western Port Angeles Harbor Remedial Investigation and Feasibility Study (RI/FS). Reference sediment samples were tested concurrent to the test sediments and were collected in Carr Inlet by NewFields. Biological testing was conducted on selected stations within the harbor using the 10-day amphipod test with *Eohaustorius estuarius*, the 20-day polychaete test with *Neanthes arenaceodentata* and the 48-h benthic larval test with the bivalve *Mytilus galloprovincialis* following the resuspension protocol. In addition, a 45-day bioaccumulation study was conducted with *Macoma nasuta* and *Nepthys caecoides* to evaluate the potential for selected contaminants or potential concern to bioaccumulate into the tissues of aquatic organisms. This report presents the results of the toxicity testing portion of the Western Port Angeles Harbor RI/FS. The results of the bioaccumulation exposures will be presented in a separate report.

Methods

Methods for sediment collection, storage and handling, and toxicity testing followed those outlined in the "Western Port Angeles Harbor RI/FS Sampling and Analysis Plan" (Integral 2013). Biological test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995) with appropriate modifications as developed in support of the Sediment Management Standards Program (SMS), the WDOE Sediment Sampling and Analysis Plan Appendix (SSAPA; Ecology 2008), and the various updates presented during the Annual Sediment Management Review meetings (SMARM). The SMS Program is administered by the Department of Ecology, providing sediment management standards for marine and estuarine environments in the state of Washington with the goal of reducing or eliminating adverse effects on biological resources.

Sample and Animal Receipt

Forty seven test sediments were collected between June 25 and July 9, 2013; samples were delivered to by courier to NewFields. Three reference sediment samples were collected from Carr Inlet by NewFields personnel on June 25, 2013. Sediment samples were stored in the dark with zero headspace in a walk-in cold room at $4 \pm 2^{\circ}$ C. Twenty test sediments were selected for testing with the full suite of PSEP bioassays (amphipod, juvenile polychaete, and benthic larval tests) and 27 test samples were tested using benthic larval test only. A summary of samples, the selected analyses, grain size, and suitable reference are presented in Table 1. Sample numbers are provided in this report. Sample numbers may differ from station numbers and should not be relied upon for the location of the sample. The test sediment was not sieved prior to testing and all tests were conducted within the eight week holding time.

Amphipods (*Eohaustorius estuarius*) were supplied by Northwestern Aquatic Sciences in Newport, Oregon. *Eohaustorius* were held in native sediment at 15°C prior to test initiation. Juvenile polychaete worms (*Neanthes arenaceodentata*) were obtained from Aquatic Toxicology Support in Bremerton, Washington. Juvenile polychaetes were held in seawater at 20°C (*Neanthes* were cultured in water-only and were not held in sediment prior to testing). *Mytilus galloprovincialis* (mussel) broodstock were provided by Taylor Shellfish in Shelton, Washington. Broodstock were held in unfiltered seawater at 16°C prior to spawning. Native *E. estuarius* sediment from Yaquina Bay, Oregon was provided by Northwestern Aquatic Sciences for use as control sediment treatments for both the amphipod and polychaete tests.

Table 1. Sample and Reference Grain Size Comparison

Treatment	Grain Size ¹	Reference Comparison	PSEP Suite	Larval Only
		Reference Companison	ratr suite	Laivai Oiliy
CR-12	4		•	•
CARR-20	26		•	•
CR-02	59		•	•
SD0001	53	CR-02	•	
SD0002	48	CR-02	•	
SD0003	38	CARR-20	•	
SD0004	39	CARR-20	•	
SD0005	78	CR-02	•	
SD0006	56	CR-02	•	
SD0007	80	CR-02	•	
SD0008	66	CR-02	•	
SD0009	71	CR-02	•	
SD0010	67	CR-02	•	
SD0011	79	CR-02	•	
SD0012	82	CR-02	•	
SD0013	77	CR-02	•	
SD0014	77	CR-02	•	
SD0015	77	CR-02	•	
SD0017	70	CR-02	•	
SD0018	78	CR-02	•	
SD0019	50	CR-02	•	
SD0020	56	CR-02	•	
SD0021	64	CR-02	•	
SD0022	65	CR-02		•
SD0023	31	CARR-20		•
SD0024	44	CR-02		•
SD0025	24	CARR-20		•
SD0026	77	CR-02		•
SD0027	20	CARR-20		•
SD0028	45	CR-02		•
SD0029	73	CR-02		•
SD0030	73	CR-02		•
SD0031	84	CR-02		•
SD0032	81	CR-02		•
SD0033	59	CR-02		•
SD0034	71	CR-02		•
SD0035	28	CARR-20		•
SD0036	76	CR-02		•

Table 1. Sample and Reference Grain Size Comparison (Continued)

Treatment	Grain Size ¹	Reference Comparison	PSEP Suite	Larval Only
SD0037	60	CR-02		•
SD0038	63	CR-02		•
SD0039	71	CR-02		•
SD0040	85	CR-02		•
SD0042	75	CR-02		•
SD0043	77	CR-02		•
SD0044	91	CR-02		•
SD0045	62	CR-02		•
SD0046	12	CR-12		•
SD0047	14	CR-12		•
SD0048	64	CR-02		•
SD0049	52	CR-02		•

¹ Percent fines (∑ silt and clay)

Sample Grain Size and Reference Comparison

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare with the biological results of the test treatments. The percent fines value is defined as the mass of sediment that passes through a 62.5-µm sieve, expressed as a percentage of the mass of the total sample analyzed. Percent fines for each of the test treatments and the reference treatments based on analytical laboratory grain size analysis as well as the selected reference for comparison are presented Table 1.

10-day Amphipod Bioassay

The 10-day acute toxicity test with *E. estuarius* was initiated on July 19, 2013. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45-µm filtered seawater at 28 ppt. Eight replicate chambers were prepared for each test treatment, the reference sediment, and the native control sediment. The control and reference sediments were tested concurrently with the test treatments. Five replicates were used to evaluate sediment toxicity while the remaining three replicates were designated as sacrificial water quality surrogates. Two surrogate chambers were sacrificed to measure porewater and overlying ammonia and sulfides at test initiation and test Day 5. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 15°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination.

Target test parameters were:

Dissolved Oxygen: $\geq 5.1 \text{ mg/L}$ pH: 7 - 9 units Temperature: $15 \pm 1^{\circ}\text{C}$ Salinity: $28 \pm 1\%$

The tests were initiated by randomly allocating 20 *E. estuarius* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were of a similar sensitivity to prior tests. This test also provided information on the sensitivity of the test population to ammonia concentrations in the test sediments.

20-day Juvenile Polychaete Bioassay

The 20-day chronic toxicity test with *N. arenaceodentata* was initiated on July 12, 2013. Test exposures were prepared with approximately 175 mL of sediment placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45-µm filtered seawater at 28 ppt. Eight replicate chambers were prepared for each test treatment, the two reference sediments, and control sediment. The control and reference sediments were tested concurrently with the test treatments. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial water quality surrogate chambers. Two surrogate chambers were sacrificed to measure porewater and overlying ammonia and sulfides at test initiation and test Day 10. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as overlying and interstitial ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a water bath at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured. Dissolved oxygen, temperature, pH, and salinity were then monitored in the surrogates daily until test termination. Target test parameters were as follows:

Dissolved Oxygen: \geq 4.6 mg/L pH: 7 - 9 units Temperature: $20 \pm 1^{\circ}$ C Salinity: $28 \pm 2\%$

The juvenile polychaete test was initiated by randomly allocating five *N. arenaceodentata* into each test chamber and observing whether each of the worms successfully buried into the sediment. Worms that did not bury within approximately one hour were replaced with healthy worms. The 20-day test was conducted as a static-renewal test, with exchanges of 300 mL of water occurring every third day. *N. arenaceodentata* were fed every other day with 40 mg of TetraMarin® (approximately 8 mg dry weight per worm). At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered worms transferred into a Petri dish. The number of surviving and dead worms

was determined. All surviving worms were then transferred to pre-weighed, aluminum foil weigh-boats, and then dried in a drying oven at 60°C for approximately 24 hours. Each weigh-boat was removed, cooled in a dessicator, and then weighed on a microbalance to 0.01 mg. Each of the weigh boats was then heated to 550°C for 2 hours in order to determine the ashed weight. Ash-free dry weights (AFDW) were calculated to remove the influence of the mass of sediment in the guts of the test organisms. The ashed boats were weighed to 0.01 mg and the ashed weight was subtracted from the dry weight to calculate the AFDW. Both dry weight and AFDW were used to determine individual worm weight and growth rates.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were of similar sensitivity to prior tests. This test also provided information on the sensitivity of the test population to ammonia concentrations in the test sediments.

Larval Developmental Bioassay

Test sediment was evaluated using the larval benthic toxicity test with the mussel, M. galloprovincialis. The mussel larval tests were initiated on July 1 (Batch 1) and July 17 (Batch 2) 2013. The seawater control and each of the reference sediments were tested concurrently with the test treatments for both test batches. To prepare the test exposures, $18 \text{ g} (\pm 0.5 \text{ g})$ of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 900 mL with 0.45- μ m filtered seawater. Six replicate chambers were prepared for each test treatment, reference sediment, and control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 16° C.

To collect gametes for each test, mussels were placed in clean seawater and acclimated at 16°C for approximately 20 minutes. The water bath temperature was then increased over a period of 15 minutes to 20°C. Mussels were held at 20°C and monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs were transferred to fresh seawater and filtered through a 0.5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite was made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process and sub-samples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 27,000 embryos to each test chamber.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogates to prevent loss or transfer of larvae by adhesion to water-quality probes. Ammonia and sulfides in the overlying water were measured on Day 0 and Day 2. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S⁻² were monitored using a HACH DR/2800V Spectrophotometer.

Target test parameters were as follows:

Dissolved Oxygen: $\geq 5.0 \text{ mg/L}$ pH: 7 - 9 unitsTemperature: $16 \pm 1 ^{\circ}\text{C}$ Salinity: $28 \pm 1 \%$

The development test was conducted as a static test. Aeration was provided for treatments with DO concentrations approaching 5.0 mg/L during the test.

The larval test was conducted following the resuspension technique developed by USACE and Ecology to address the potential entrainment of larvae in very fine sediments or sediments with a high wood-debris component (Kendall et al. 2012). At approximately 40 hours, the controls were checked for development to verify that greater than 90% of the larvae present had developed into the normal D-cell stage. The test sediment was then resuspended in the test chamber by gentle mixing with a perforated plunger for approximately 10 seconds. The contents of the test jar were then allowed to settle. At 48 hours, the tests were terminated by decanting the overlying seawater into a clean 1-L jar. The supernatant was homogenized with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 5% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% alcohol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped prodissoconch I stage larvae. Abnormal larvae included abnormally shaped prodissoconch I larvae and all early stage larvae.

A water-only reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity of the test population to ammonia concentrations in the test sediments.

Data Analysis and QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment. All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors.

For the larval test, normal survivorship was used to evaluate the test sediments. Control performance was based on the number of normal larvae in the control divided by the stocking density, expressed as a percentage. Normal survivorship in the test and references treatments was defined as the number of normal larvae in the test or reference divided by the number of normal larvae in the control, expressed as a percentage, as defined in Ecology (2005).

For SMS suitability determinations, comparisons were made according to SSAPA and Fox et al. (1998). Data reported as percent mortality or survival was transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

Results

The results of sediment testing, including a summary of test results and water quality observations are presented in this section. Laboratory bench sheets are provided in Appendix A and statistical analyses are provided in Appendix B.

10-day Amphipod Bioassay

The bioassay test with *Eohaustorius estuarius* was validated with 4% mortality in the native sediment control, which met the SMS performance criterion of \leq 10% mortality. This indicates that the test conditions were suitable for adequate amphipod survival. Mean mortality in the reference treatments were 4% (CR-12), 7% (CARR-20), and 2% (CR-02), which met the SMS performance criteria of <25% mortality (SMS). These results indicated that the reference sediments were acceptable for use in suitability determination. Mean percentage survival in each of the test treatments was \geq 90% and is summarized in Table 2.

Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 3, 4, and 5. Water-quality parameters were within the acceptable limits throughout the duration of the test. A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value was within control chart limits (± 2 standard deviations from the laboratory historical mean). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested at NewFields.

Ammonia concentrations observed in the *E. estuarius* test were below the no observed effect concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 4; compare to NOEC of 68.3 mg/L total ammonia). Ammonia values in the test treatments were also below the published threshold concentration of 15 mg/L total ammonia (Barton 2002). Total sulfide concentrations in the interstitial porewater ranged from 0.049 to 2.84 mg/L for the test treatments; overlying water total sulfide concentrations ranged from 0.002 to 0.102 mg/L.

Table 2. Test Results for *Eohaustorius estuarius*

		Numb	er Surv	viving		Mean Pe	ercentage	Chandard
Treatment		R	eplicat	e		Survival	Mortality	Standard Deviation
	1	2	3	4	5	Julvival	Wiortanty	2000000
Control	17	19	20	20	20	96	4	6.5
CR-12 Reference	20	19	19	19	19	96	4	2.2
CARR-20 Reference	18	19	19	19	18	93	7	2.7
CR-02 Reference	20	20	20	18	20	98	2	4.5
SD0001	20	18	18	19	18	93	7	4.5
SD0002	16	19	20	20	20	95	5	8.7
SD0003	19	18	18	20	19	94	6	4.2
SD0004	19	19	20	18	20	96	4	4.2
SD0005	20	20	20	20	20	100	0	0.0
SD0006	20	20	19	17	20	96	4	6.5
SD0007	19	18	14	20	19	90	10	11.7
SD0008	20	20	20	18	20	98	2	4.5
SD0009	20	19	20	20	20	99	1	2.2
SD0010	20	20	20	19	20	99	1	2.2
SD0011	17	20	17	18	20	92	8	7.6
SD0012	20	19	19	20	18	96	4	4.2
SD0013	19	20	20	19	20	98	2	2.7
SD0014	19	20	20	19	19	97	3	2.7
SD0015	19	19	20	18	19	95	5	3.5
SD0017	19	20	19	20	20	98	2	2.7
SD0018	17	20	19	20	19	95	5	6.1
SD0019	19	19	19	19	18	94	6	2.2
SD0020	20	20	17	19	20	96	4	6.5
SD0021	20	20	18	17	19	94	6	6.5

Table 3. Water Quality Summary for *Eohaustorius estuarius*

Treatment	Disso	lved Ox (mg/L)			erature		Sali	nity (pp	t)	рН	l (units)
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	8.1	7.1	8.4	15.0	14.1	15.8	28	28	28	8.0	7.9	8.1
CR-12 Reference	8.1	7.1	8.4	15.0	14.2	15.7	28	28	28	8.1	7.9	8.4
CARR-20 Reference	8.0	7.3	8.4	15.0	14.4	16.0	28	28	28	8.1	7.9	8.3
CR-02 Reference	8.1	8.0	8.3	15.0	14.2	15.8	28	28	28	8.0	7.8	8.1
SD0001	7.9	7.6	8.2	15.3	14.5	15.8	28	28	28	7.9	7.6	8.1
SD0002	8.0	7.8	8.2	15.2	14.5	15.7	28	28	28	8.0	7.8	8.2
SD0003	8.0	7.8	8.3	15.0	14.2	15.8	28	28	29	7.9	7.8	8.2
SD0004	7.9	7.6	8.3	15.3	14.4	15.9	28	28	29	8.0	7.7	8.3
SD0005	8.1	7.9	8.2	15.2	14.3	15.8	28	28	29	8.0	7.9	8.2
SD0006	8.1	7.9	8.4	15.0	14.2	15.8	28	28	29	8.1	7.8	8.3
SD0007	8.0	7.8	8.1	15.2	14.4	15.9	28	28	29	8.2	7.9	8.5
SD0008	8.1	7.9	8.3	15.0	14.2	15.8	28	28	29	8.1	7.9	8.6
SD0009	8.0	7.7	8.4	15.1	14.3	16.4	28	28	29	8.0	7.8	8.3
SD0010	8.2	7.1	8.5	15.0	14.1	15.8	28	28	29	8.0	7.9	8.3
SD0011	8.2	8.0	8.4	15.0	14.2	15.7	28	28	29	8.0	7.9	8.1
SD0012	8.0	7.7	8.2	15.3	14.7	16.5	28	28	29	8.1	7.8	8.6
SD0013	8.1	7.8	8.3	15.0	14.1	15.7	28	28	29	7.9	7.8	8.1
SD0014	8.1	7.8	8.4	15.1	14.6	16.1	28	28	29	7.9	7.8	8.1
SD0015	8.1	7.8	8.3	14.8	14.0	15.6	28	28	29	7.9	7.8	8.1
SD0017	8.1	7.9	8.3	15.1	14.3	15.7	28	28	29	8.1	7.9	8.3
SD0018	8.1	7.8	8.3	15.1	14.3	15.7	28	28	29	7.9	7.8	8.1
SD0019	8.1	7.9	8.3	14.9	14.0	15.7	28	28	29	8.1	7.8	8.5
SD0020	8.1	7.8	8.4	14.9	14.2	15.9	28	28	29	7.9	7.8	8.1
SD0021	8.1	7.9	8.4	15.0	14.2	15.8	28	27	29	8.0	7.8	8.2

Table 4. Ammonia and Sulfide Summary for *Eohaustorius estuarius*

Treatment		/ing Amn ng/L Tota			titial Am ng/L Tota		Total 9	lying Sulfide	Total	stitial Sulfide
		Day		Day				ay		ay
	0	5	10	0	5	10	0	10	0	10
Control	<0.5	<0.5	<0.5	0.52	<0.5	<0.5	0.015	0.004	NA*	NA*
CR-12 Reference	<0.5	2.28	1.50	8.05	3.95	2.85	0.027	0.007	NA*	NA*
CARR-20 Reference	1.05	3.49	5.60	18.2	7.20	12.1	0.060	0.008	NA*	NA*
CR-02 Reference	0.72	0.63	<0.5	9.48	6.18	NA*	0.035	0.033	0.051	NA*
SD0001	0.75	2.18	5.06	4.23	2.93	5.60	0.102	0.002	2.840	0.220
SD0002	0.99	3.43	6.58	6.67	5.13	6.53	0.041	0.013	0.590	0.220
SD0003	0.58	2.81	<0.5	4.94	4.92	1.68	0.060	0.007	0.540	0.305
SD0004	<0.5	0.68	<0.5	2.14	1.25	0.80	0.077	0.014	0.155	0.280
SD0005	<0.5	0.92	<0.5	1.50	1.20	<0.5	0.046	0.031	0.220	0.235
SD0006	<0.5	0.96	<0.5	1.61	1.31	<0.5	0.037	0.030	0.250	0.165
SD0007	<0.5	2.23	1.20	4.14	2.87	0.88	0.063	0.030	0.190	0.230
SD0008	<0.5	1.50	<0.5	2.18	2.36	0.58	0.079	0.024	0.115	0.125
SD0009	<0.5	<0.5	<0.5	0.54	<0.5	<0.5	0.066	0.013	0.140	0.130
SD0010	<0.5	0.55	<0.5	1.24	0.50	<0.5	0.067	0.028	0.150	0.165
SD0011	<0.5	<0.5	<0.5	1.07	<0.5	<0.5	0.064	0.017	0.185	0.205
SD0012	<0.5	<0.5	<0.5	1.07	<0.5	<0.5	0.037	0.049	0.165	0.175
SD0013	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	0.032	0.006	0.180	0.160
SD0014	<0.5	<0.5	<0.5	0.81	<0.5	<0.5	0.044	0.015	0.049	0.200
SD0015	<0.5	<0.5	<0.5	1.32	<0.5	<0.5	0.051	0.010	0.084	0.330
SD0017	<0.5	<0.5	<0.5	1.62	<0.5	<0.5	0.048	0.023	0.065	0.200
SD0018	<0.5	<0.5	<0.5	1.85	0.51	<0.5	0.046	0.025	0.104	0.415
SD0019	<0.5	<0.5	<0.5	0.68	<0.5	<0.5	0.023	0.029	0.170	0.265
SD0020	<0.5	0.55	<0.5	1.16	0.85	<0.5	0.079	0.018	0.425	0.405
SD0021	<0.5	<0.5	<0.5	1.80	1.21	<0.5	0.058	0.015	0.138	0.735

Ammonia NOEC (concurrent reference-toxicant test derived) = 68.3 mg/L total

^{*}NA: Insufficient porewater for analysis

Table 5. Test Condition Summary for *Eohaustorius estuarius*

Test Conditions: E. estuarius (SMS)									
Sample Identification	Control; Reference	es CR-12, CARR-20, CR-02;							
Sample rachimeation	SD0001 – SD00	015, SD0017 – SD0021							
Data sampled	Reference Sec	liment: June 25, 2013							
Date sampled	Test Sediment:	June 27 – July 9, 2013							
Date received at NewFields	June 28	– July 10, 2013							
Test dates	July 19 - 29, 2013								
Sample storage conditions	4	l°C, dark							
Holding time		22 days							
Recommended: ≤8 weeks (56 days)		22 days							
Source of control sediment	Yaqı	iina Bay, OR							
Test Species	E.	estuarius							
Supplier	Northwestern	Aquatic Sciences, OR							
Date acquired	Jul	y 17, 2013							
Acclimation/holding time		2 days							
Age class	Suba	dult, 3-5 mm							
Test Procedures	PSEP 1995 wi	ith SMARM revisions							
Regulatory Program	SMS								
Test location	NewFields Laboratory								
Test type/duration	10-Day static								
Control water	North Hood Canal	sea water, 0.45μm filtered							
Test dissolved oxygen	Recommended: > 4.6 mg/L	Achieved: 7.1 – 8.5 mg/L							
Test temperature	Recommended: 15 \pm 1 $^{\circ}$ C	Achieved: 14.0- 16.5 °C							
Test Salinity	Recommended: 28 \pm 1 ppt	Achieved: 27 - 29 ppt							
Test pH	Recommended: 7 - 9	Achieved: 7.6 – 8.6							
SMS control performance standard	Recommended: Control ≤ 10% mortality	Achieved: 4%; Pass							
SMS reference performance standard	Recommended: Reference mortality < 25%	Achieved: Pass CR-12: 4%; CARR-20: 7%; CR-20: 2%							
Reference Toxicant LC ₅₀ (total ammonia)	LC ₅₀ = 167 m	ng/L total ammonia							
Mean; Acceptable Range (total ammonia)	142; 17.5 - 266	5 mg/L total ammonia							
NOEC (total ammonia)	68.3 mg/	L total ammonia							
NOEC (unionized ammonia)	0.839 mg NH ₃ /L								
Test Lighting	Continuous								
Test chamber		Glass Chamber							
Replicates/treatment	5 + 3 surrogates (us	ed for WQ measurements)							
Organisms/replicate		20							
Exposure volume	175 mL sediment/ 775 mL water								
Feeding	None								
Water renewal	None								
Deviations from Test Protocol	Slight deviation	in temperature (0.5°C)							

20-day Juvenile Polychaete Bioassay

No mortality was observed in the *N. arenaceodentata* control sediment and mean individual growth (MIG) in the control sediment was 0.513 mg/ind/day (dry weight) and 0.347 mg/ind/day (AFDW). These values are within the test acceptability criteria for mean mortality (\leq 10%) and mean individual growth (\geq 0.38 mg/ind/day dry weight; Kendall 1996), indicating that the test conditions were suitable for adequate polychaete survival and growth. A summary of the test results for all samples is shown in Table 6. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 7, 8, and 9.

Mean mortality in the reference treatments was 0%, meeting the reference performance standard of ≥80% of the control survival (Ecology 2008). Mean individual growth rates in the reference treatments (CR-12, CARR-20, and CR-12) were 0.417 to 0.634 mg/ind/day (dry weight) and 0.292 to 403 mg/ind/day (AFDW). Relative to the control, MIG in reference treatments CR-12, CARR-20, and CR-02 was 124%, 116%, and 81.3%, meeting the reference acceptability criteria of ≥80%.

A reference-toxicant test (positive control) was performed to determine the relative sensitivity of the batch of test organisms utilized in this study. The LC_{50} value of 142 mg/L total ammonia was within control chart limits (±2 standard deviations from the laboratory historical mean, 46.5 - 264 mg total ammonia/L). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested at NewFields.

All water quality parameters were within the target range of the species throughout the duration of the test. Ammonia concentrations observed in the *N. arenaceodentata* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 8; compare to NOEC of 95.6 mg/L total ammonia). This indicates that ammonia concentrations within the sediment samples were not above effects thresholds for mortality. Sulfide concentrations in interstitial water were below the NOEC (3.47 mg/L; Kendall and Barton 2004) for all samples.

Table 6. Test Results for Neanthes arenaceodentata

			Mean		Individ	ual Growt	h (mg/ind/	day)	
Treatment	Replicate	Survivors	Mortality (%)	Dry Weight	Mean	SD	AFDW	Mean	SD
	1	5		0.409			0.304		
	2	5		0.512			0.340		
Control	3	5	0	0.608	0.513	0.092	0.403	0.347	0.062
	4	5		0.434			0.271		
	5	5		0.602			0.414		
	1	5		0.636			0.392		
CR-12	2	5		0.662			0.435		
Reference	3	5	0	0.681	0.634	0.039	0.427	0.403	0.029
Reference	4	5		0.607			0.400		
	5	5		0.586			0.361		
	1	5		0.647			0.410		
CARR-20	2	5		0.624			0.392		
Reference	3	5	0	0.690	0.596	0.085	0.424	0.394	0.023
Reference	4	5		0.481			0.375		
	5	5		0.538			0.370		
	1	5		0.445			0.314		
CR-02	2	5		0.422			0.283		
Reference	3	5	0	0.306	0.417	0.101	0.195	0.292	0.083
Reference	4	5		0.346			0.251		
	5	5		0.566			0.419		
	1	5		0.568			0.479		
	2	5		0.478			0.392		
SD-0001	3	5	0	0.579	0.567	0.077	0.464	0.465	0.059
	4	5		0.685			0.553		
	5	5		0.526			0.436		
	1	5		0.650			0.550		
	2	5		0.512			0.406		
SD-0002	3	5	0	0.564	0.598	0.069	0.460	0.490	0.063
	4	5		0.580			0.477		
	5	5		0.685			0.555		
	1	5		0.634			0.555		
65.6555	2	5		0.651	0 = : 0	0.65-	0.566	0.654	0.000
SD-0003	3	5	0	0.668	0.719	0.095	0.572	0.624	0.083
	4	5		0.804			0.693		
	5	5		0.839			0.734		
	1	5		0.701			0.604		
	2	5		0.655			0.564		
SD-0004	3	5	0	0.686	0.689	0.029	0.604	0.594	0.020
	4	5		0.671			0.583		
	5	5		0.730			0.614		

Table 6. Test Results for Neanthes arenaceodentata (Continued)

			Mean			ual Growt	n (mg/ind/	day)	
Treatment	Replicate	Survivors	Mortality (%)	Dry Weight	Mean	SD	AFDW	Mean	SD
	1	5		0.652			0.535		
	2	5		0.748			0.612		
SD-0005	3	5	0	0.792	0.701	0.079	0.639	0.584	0.054
	4	5		0.594			0.518		
	5	5		0.719			0.615		
	1	5		0.762			0.648		
	2	5		0.760			0.649		
SD-0006	3	5	0	0.710	0.764	0.064	0.599	0.646	0.052
	4	6*		0.718			0.604		
	5	5		0.870			0.729		
	1	5		0.779			0.631		
	2	5		0.746			0.625		
SD-0007	3	5	0	0.587	0.685	0.087	0.494	0.572	0.066
	4	5		0.600			0.507		
	5	5		0.714			0.603		
	1	5		0.571			0.494		
	2	5		0.747			0.616		
SD-0008	3	5	0	0.694	0.627	0.089	0.578	0.529	0.065
	4	5		0.587			0.492		
	5	5		0.538			0.463		
	1	5		0.671			0.576		
	2	5		0.762			0.628		
SD-0009	3	5	0	0.689	0.716	0.039	0.572	0.606	0.038
	4	5		0.709			0.595		
	5	5		0.748			0.661		
	1	5		0.773			0.637		
	2	5		0.659			0.543		
SD-0010	3	5	0	0.712	0.752	0.074	0.604	0.632	0.069
	4	5		0.759			0.645		
	5	5		0.857			0.733		
	1	5		0.342			0.291		
	2	5		0.684			0.584		
SD-0011	3	5	0	0.617	0.581	0.136	0.504	0.483	0.112
	4	5		0.640			0.530		
	5	5		0.624			0.507		
	1	5		0.723			0.605		
	2	5		0.721			0.595		
SD-0012	3	5	0	0.734	0.716	0.042	0.595	0.596	0.043
	4	5		0.759			0.652		
	5	5		0.646			0.531		

Table 6. Test Results for Neanthes arenaceodentata (Continued)

Table 6. Test			Mean	,		ual Growt	h (mg/ind/	day)	
Treatment	Replicate	Survivors	Mortality (%)	Dry Weight	Mean	SD	AFDW	Mean	SD
	1	5		0.581			0.458		
	2	5		0.592			0.475		
SD-0013	3	5	0	0.680	0.667	0.079	0.552	0.541	0.073
	4	5		0.756			0.621		
	5	5		0.727			0.599		
	1	5		0.702			0.560		
	2	5		0.552			0.465		
SD-0014	3	5	0	0.764	0.660	0.079	0.620	0.539	0.057
	4	5		0.648			0.529		
	5	5		0.633			0.519		
	1	5		0.770			0.586		
	2	5		0.517			0.372		
SD-0015	3	5	0	0.765	0.638	0.120	0.593	0.482	0.103
	4	5		0.566			0.406		
	5	5		0.573			0.452		
	1	5		0.732			0.587		
	2	5		0.767			0.622		
SD-0017	3	5	0	0.737	0.787	0.061	0.625	0.642	0.046
	4	5		0.822			0.671		
	5	5		0.875			0.703		
	1	5		0.743			0.603		
	2	5		0.823			0.556		
SD-0018	3	5	0	0.690	0.744	0.103	0.552	0.577	0.087
	4	5		0.860			0.706		
	5	5		0.604			0.468		
	1	5		0.619			0.494		
	2	5		0.604			0.479		
SD-0019	3	5	0	0.718	0.733	0.129	0.551	0.567	0.086
	4	5		0.903			0.674		
	5	5		0.820			0.637		
	1	5		0.733			0.538		
	2	5		0.571			0.448		
SD-0020	3	5	0	0.793	0.712	0.087	0.615	0.552	0.068
	4	5		0.694			0.543		
	5	5		0.770			0.613		
	1	5		0.778			0.645		
	2	5		0.691			0.552		
SD-0021	3	5	0	0.783	0.762	0.041	0.637	0.616	0.038
	4	5		0.791			0.636		
	5	5		0.767			0.612		

^{*} Test replicate initiated with 6 test organisms; all means and growth calculations based on 6 test organisms.

Table 7. Water Quality Summary for Neanthes arenaceodentata

Treatment	Disso	ved Ox (mg/L)			erature			nity (pp	ot)	рŀ	l (units)
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.5	7.0	7.7	19.8	19.6	20.2	28	27	28	7.9	7.7	8.2
CR-12 Reference	7.5	7.1	7.7	19.7	19.1	20.0	28	27	29	8.1	7.7	8.3
CARR-20 Reference	7.5	7.2	7.6	19.7	19.6	20.0	28	27	29	8.1	7.9	8.3
CR-02 Reference	7.5	7.0	7.7	19.8	19.6	20.2	28	27	28	7.9	7.7	8.2
SD0001	7.5	7.1	7.7	19.7	19.1	20.0	28	27	29	8.1	7.7	8.3
SD0002	7.5	7.2	7.6	19.7	19.6	20.0	28	27	29	8.1	7.9	8.3
SD0003	7.5	7.2	7.6	19.8	19.5	20.3	28	28	29	8.1	7.8	8.4
SD0004	7.4	7.2	7.6	19.8	19.6	20.0	28	28	29	8.0	7.8	8.2
SD0005	7.4	7.0	7.6	19.8	19.6	20.2	28	27	29	8.1	7.8	8.4
SD0006	7.4	7.1	7.7	19.8	19.4	20.3	28	28	29	8.1	7.8	8.3
SD0007	7.4	7.0	7.7	19.8	19.6	20.1	28	28	29	8.2	7.8	8.5
SD0008	7.5	7.3	7.7	19.9	19.7	20.4	28	28	29	8.1	7.9	8.3
SD0009	7.5	7.3	7.7	19.9	19.7	20.4	28	28	29	8.2	8.0	8.4
SD0010	7.5	7.2	7.7	20.0	19.7	20.5	28	28	29	8.2	8.0	8.5
SD0011	7.2	6.7	7.6	19.8	19.7	20.5	28	28	29	8.3	7.8	8.8
SD0012	7.5	7.1	7.6	19.8	19.6	20.0	28	28	29	8.1	7.8	8.4
SD0013	7.5	7.2	7.7	19.8	19.6	20.2	28	28	29	8.0	7.4	8.2
SD0014	7.3	6.9	7.6	19.8	19.6	20.1	28	27	29	8.0	7.4	8.3
SD0015	7.5	7.2	7.6	19.8	19.4	20.0	28	28	29	8.2	7.9	8.4
SD0017	7.4	6.9	7.6	19.8	19.6	20.2	28	28	29	8.0	7.7	8.3
SD0018	7.2	6.7	7.6	19.8	19.6	20.0	28	28	29	8.1	7.6	8.6
SD0019	7.5	7.3	7.7	20.0	19.7	20.5	28	28	29	8.0	7.8	8.4
SD0020	7.4	6.8	7.6	19.8	19.6	20.2	28	27	29	8.0	7.8	8.2
SD0021	7.5	7.3	7.7	19.8	19.4	20.3	28	28	29	8.1	7.8	8.3

Table 8. Ammonia and Sulfide Summary for Neanthes arenaceodentata

	Overly	ing Amr	nonia	Interst	itial Am	monia	Overlying	g Sulfides	Interstitial Sulfides		
Treatment		Day			Day		D	ay	Da	ау	
	0	5	10	0	5	10	0	10	0	10	
Control	0.83	0.11	0.11	5.73	1.03	0.56	0.02	0.01	NA	0.03	
CR-12 Reference	1.18	2.65	0.09	9.32	4.97	0.66	0.04	0.02	NA	0.02	
CARR-20 Reference	1.37	2.90	<0.5	6.76	5.30	3.70	0.30	0.03	NA	0.04	
CR-02 Reference	0.56	0.27	<0.5	3.19	4.00	0.54	0.04	0.01	0.05	0.03	
SD0001	0.78	3.16	<0.5	4.81	2.55	<0.5	0.10	0.01	2.46	0.02	
SD0002	0.76	3.39	<0.5	5.25	3.33	<0.5	0.06	0.00	0.48	0.03	
SD0003	0.90	3.10	<0.5	5.85	5.48	0.58	0.16	0.02	2.50	0.02	
SD0004	<0.5	0.80	<0.5	2.74	2.17	<0.5	0.07	0.00	0.88	0.01	
SD0005	<0.5	0.84	<0.5	2.21	0.78	<0.5	0.05	0.02	0.13	0.01	
SD0006	<0.5	1.15	<0.5	2.24	1.13	<0.5	0.03	0.00	0.27	0.01	
SD0007	0.67	1.68	<0.5	4.54	1.61	<0.5	0.10	0.01	0.18	0.02	
SD0008	<0.5	1.60	<0.5	2.67	1.77	<0.5	0.08	0.01	0.71	0.02	
SD0009	<0.5	0.95	<0.5	1.36	1.61	<0.5	0.05	0.03	0.76	0.03	
SD0010	<0.5	0.99	<0.5	2.55	1.38	<0.5	0.09	0.02	1.49	0.01	
SD0011	<0.5	1.35	<0.5	1.61	1.55	<0.5	0.11	0.01	0.88	0.02	
SD0012	<0.5	1.51	<0.5	1.65	1.75	<0.5	0.04	0.01	0.30	0.03	
SD0013	<0.5	<0.5	<0.5	1.41	0.86	<0.5	0.08	0.02	0.09	0.02	
SD0014	<0.5	1.07	<0.5	1.02	0.81	<0.5	0.07	0.00	0.18	0.01	
SD0015	<0.5	<0.5	<0.5	1.35	1.16	<0.5	0.11	0.01	0.11	0.02	
SD0017	0.50	0.63	<0.5	3.18	0.94	<0.5	0.08	0.00	0.29	0.02	
SD0018	<0.5	<0.5	<0.5	2.63	1.05	<0.5	0.06	0.01	0.16	0.02	
SD0019	<0.5	<0.5	<0.5	2.06	1.90	<0.5	0.04	0.01	0.18	0.02	
SD0020	<0.5	2.03	<0.5	2.63	2.57	0.55	0.09	0.02	1.48	0.03	
SD0021	<0.5	0.92	<0.5	1.43	1.41	0.56	0.09	0.00	0.12	0.02	

NOEC for ammonia = 95.6 mg/L total ammonia

 Table 9. Test Condition Summary for Neanthes arenaceodentata

Test Cor	nditions: PSEP N. arenaceodent	ata (SMS)								
Control; References CR-12, CARR-20, CR-02; SD0001 – SD0015, SD0017 – SD0021										
Sample Identification	SD0001 – SD001	5, SD0017 – SD0021								
Data samulad	Reference Sedir	ment: June 25, 2013								
Date sampled	Test Sediment: J	une 27 – July 9, 2013								
Date received at NewFields	June 28 –	July 10, 2013								
Test dates	July 12 to	August 1, 2013								
Sample storage conditions	4°C, dark									
Holding (Recommended: ≤8 wks	14	1 days								
Source of control sediment		Bay, Oregon								
Test Species	N. areno	nceodentata								
Supplier	Aquatic Tox	icology Support								
Date acquired	-	12, 2013								
Acclimation/holding time	-	days								
Age class	Juvenile; 19 -21 days old									
Test Procedures	PSEP 1995 with SMARM revisions									
Regulatory Program	SMS									
Test location	NewFields Northwest Laboratory									
Test type/duration	20-Day static renewal									
Control water	North Hood Canal sea water, 0.45µm filtered									
Test dissolved oxygen	Recommended: > 4.6 mg/L	Achieved: 6.7 – 7.7 mg/L								
Test temperature	Recommended: 20 ± 1 °C	Achieved: 19.1 – 20.5 °C								
Test Salinity	Recommended: 28 ± 2 ppt	Achieved: 27- 29 ppt								
Test pH	Recommended: 7 - 9	Achieved: 7.4 – 8.6								
Initial biomass	Recommended: 0.5 - 1.0 mg DW Minimum: 0.25 mg DW	0.445 mg DW								
SMS control performance standard	Recommended: Mortality: < 10% MIG: ≥ 0.72 mg/ind/day Minimum: ≥ 0.38 mg/ind/day (as dry weight)	Achieved: Mortality: 0%; Pass MIG: 0.513 mg/ind/day; Pass								
SMS and DMMP	Recommended: Mortality ≤20%	Achieved:								
control performance standard	$MIG_{Reference}/MIG_{Control} \ge 80\%$	Mortality: 0%; Pass MIG: 81% to 124%; Pass								
Reference Toxicant LC ₅₀	LC ₅₀ = 142 n	ng NH ₃ + NH ₄ +/L								
Mean; Acceptable Range	155; 46.5 - 26	4 mg NH ₃ + NH ₄ ⁺ /L								
NOEC (total ammonia)		$NH_3 + NH_4^+/L$								
NOEC (unionized ammonia)		mg NH ₃ /L								
Test Lighting	Continuous									
Test chamber		ass Chamber								
Replicates/treatment		sed for WQ measurements)								
Organisms/replicate		5								
Exposure volume	175 mL sediment/ 775 mL water									
Feeding	40 mg/jar every other day (8 mg/ind every other day)									
Water renewal	Water renewed every third day (1/3 test volume)									
Deviations from Test Protocol		None								
	None									

Larval Development Bioassay

The larval development test with *M. galloprovincialis* was performed in two batches. The first test batch was initiated on July 1, 2013 and included test samples collected between June 25 and June 28' 2013 (samples SD0005 – SD0007 and SD0023 – SD0049). The second test batch was initiated on July 17, 2013 and included samples collected between July 3 and July 9, 2013 (samples SD0001 – SD0004 and SD0008 – SD0022). Each of the three reference treatments, as well as a negative and positive control, was tested concurrently with each test batch.

The results of Test Batch 1 are summarized in Table 10. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 11, 12, and 13. Test 1 was validated by 98.9% mean normal survivorship, defined as the mean number of normal larvae within the control divided by the stocking density. This value met the SMS acceptability criteria of ≥70%. Mean normal survival (control normalized) in the reference treatments CR-12, CARR-20, and CR-02 was 82.4%, 79.9, and 77.1%, respectively, meeting the reference acceptability criteria of ≥65% mean control-normalized normal survival. Mean control-normalized normal survivorship in the test treatments ranged between 51.9% and 87.1%. The mean stocking density for Test 1 was 22.6 embryos per mL.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value of 2.90 was within control chart limits (±2 standard deviations from the laboratory historical mean, 0.96 – 9.57 mg total ammonia/L). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested at NewFields.

All water quality parameters were within the acceptable limits throughout the duration of the test, with the exception of dissolved oxygen. Dissolved oxygen met the target range of ≥5.0 mg/L on days 1 and 2 of the test; however, DO concentrations were between 3 and 5 mg/L for many of the test treatments at test termination. This was likely due to the resuspension of test sediments; water quality measurements were taken after resuspension. It is unlikely that the suppressed DO affected normal development as development was complete prior to resuspension. In addition, normal survivorship did not appear to be related to DO concentration, with high larval recovery in treatments with lower DO concentrations. Total sulfide concentrations in the test and reference treatments ranged from 0.126 − 0.338 mg/L at test initiation and ranged from 0.046 − 0.121 mg/L at test termination. Ammonia concentrations observed in the *M. galloprovincialis* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 12; compare to NOEC of 1.46 mg/L for mean observed at NewFields). This indicates that ammonia concentrations within the sediment samples were below effects levels and should not have been a contributor to adverse biological effects observed in the test treatments.

Table 10. Test Results for Mytilus galloprovincialis Test Batch 1

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal	Normal Survivorship (%) ^{1, 2}	Mean Normal Survivorship (%)	SD
	1	215	8		95.0		
	2	237	8	005.4	100	00.0	
Control	3	225	8	236.4	99.5	98.9	2.2
	4	255	19		100		
	5 1	250 182	3		77.0		
		182 245					
CR-12	2 3	182	8	196.4	100	92.4	10.1
Reference	3 4	182		196.4	77.0 76.1	82.4	10.1
	5	193	15 3		81.6		
	1	206	5		87.1		
	2	174	18		73.6		
CARR-20	3	188	21	189.0	79.5	79.9	6.1
Reference	4	176	29	105.0	74.5	75.5	0.1
	5	201	10		85.0		
	1	201	9		85.0		
	2	143	29		60.5		
CR-02	3	169	6	175.6	71.5	77.1	8.2
Reference	4	163	18	173.0	69.0	,,,,	0.2
	5	202	8		85.4		
	1	155	7		65.6		
	2	139	3		58.8		
SD-0005	3	161	7	158.8	68.1	67.2	5.4
	4	168	5		71.1		
	5	171	4		72.3		
	1	142	6		60.1		
	2	129	9		54.6		
SD-0006	3	134	14	142.0	56.7	60.1	6.3
	4	167	10		70.6		
	5	138	10		58.4		
	1	180	7		76.1		
	2	170	5		71.9		
SD-0007	3	173	3	163.0	73.2	69.0	7.9
	4	132	7		55.8		
	5	160	11		67.7		
	1	137	10		58.0		
	2	139	21		58.8		
SD-0023	3	147	3	147.0	62.2	62.2	3.9
	4	154	17		65.1		
	5	158	8		66.8		

Table 10. Test Results for Mytilus galloprovincialis Test Batch 1 (Continued)

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal	Normal Survivorship (%) ^{1, 2}	Mean Normal Survivorship (%)	SD
SD-0024	1 2 3 4 5	149 162 158 176 145	8 10 4 8 2	158.0	63.0 68.5 66.8 74.5 61.3	66.8	5.1
SD-0025	1 2 3 4 5	138 133 145 101 97	18 19 23 35 25	122.8	58.4 56.3 61.3 42.7 41.0	51.9	9.4
SD-0026	1 2 3 4 5	182 177 161 166 219	3 2 4 5	181.0	77.0 74.9 68.1 70.2 92.6	76.6	9.7
SD-0027	1 2 3 4 5	138 126 166 122 111	1 6 10 10 11	132.6	58.4 53.3 70.2 51.6 47.0	56.1	8.9
SD-0028	1 2 3 4 5	171 178 172 183 172	10 10 12 8 15	175.2	72.3 75.3 72.8 77.4 72.8	74.1	2.2
SD-0029	1 2 3 4 5	157 137 164 114 137	4 22 4 15 25	141.8	66.4 58.0 69.4 48.2 58.0	60.0	8.3
SD-0030	1 2 3 4 5	156 166 172 156 152	2 3 5 3 3	160.4	66.0 70.2 72.8 66.0 64.3	67.9	3.5
SD-0031	1 2 3 4 5	154 190 164 156 167	0 10 14 3 4	166.2	65.1 80.4 69.4 66.0 70.6	70.3	6.1

Table 10. Test Results for Mytilus galloprovincialis Test Batch 1 (Continued)

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal	Normal Survivorship (%) ^{1, 2}	Mean Normal Survivorship (%)	SD
	1	169	4		71.5		
	2	184	11		77.8		
SD-0032	3	181	9	188.4	76.6	79.7	7.4
	4	216	4		91.4		
	5	192	16		81.2		
	1	186	8		78.7		
65,0022	2	179	6	160.6	75.7	67.0	42.4
SD-0033	3	175	5	160.6	74.0	67.9	13.4
	4	108	13		45.7 65.6		
	5	155 159	6 6		65.6 67.3		
	1 2	162	13		68.5		
SD-0034	3	156	15	157.8	66.0	66.8	7.6
35-0034	4	131	4	137.8	55.4	00.8	7.0
	5	181	9		76.6		
	1	164	9		69.4		
	2	185	3		78.3		
SD-0035	3	194	2	177.2	82.1	75.0	8.0
	4	192	4		81.2		
	5	151	2		63.9		
	1	179	11		75.7		
	2	201	11		85.0		
SD-0036	3	170	6	183.4	71.9	77.6	6.9
	4	200	7		84.6		
	5	167	6		70.6		
	1	184	4		77.8		
	2	190	4		80.4		
SD-0037	3	168	3	176.2	71.1	74.5	6.1
	4	155	8		65.6		
	5	184	4		77.8		
	1	190	15		80.4		
	2	165	12		69.8		
SD-0038	3	186	25	187.6	78.7	79.4	11.3
	4	231	15		97.7		
	5	166	8		70.2		
	1	161	56		68.1		
	2	154	52		65.1		
SD-0039	3	169	31	160.6	71.5	67.9	3.2
	4	167	31		70.6		
	5	152	45		64.3		
	1	189	4		79.9		
	2	180	4		76.1		
SD-0040	3	178	2	178.2	75.3	75.4	3.8
	4	180	6		76.1		
¹ Control norm	5	164	7		69.4		

¹ Control normality normalized to stocking density (226).
² Reference and treatment normal survivorship are normalized to the mean number of normal larvae in the Control (236).

Table 11. Water Quality Summary for Mytilus galloprovincialis Test Batch 1

Table 11. Water Qu	-			ytiius go	ınopro	vincialis	iest Ba	aten 1				
Treatment		ved Ox (mg/L)	ygen	Temp	Temperature (°C)			ity (pp	ot)	pŀ	l (units)
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.5	7.3	7.8	15.8	15.0	16.7	29	29	29	8.0	7.9	8.1
CR-12 Reference	7.6	7.3	7.7	16.0	15.5	16.6	29	29	29	8.0	7.9	8.1
CARR-20 Reference	6.1	4.4	7.3	15.9	15.6	16.4	29	29	29	7.9	7.7	8.0
CR-02 Reference	6.3	5.3	6.8	16.3	15.9	16.6	29	29	29	7.9	7.8	8.0
SD0005	5.8	4.1	7.3	16.4	16.1	16.5	29	29	29	7.9	7.7	8.0
SD0006	5.6	4.3	6.6	15.9	15.7	16.1	29	28	29	7.8	7.7	7.9
SD0007	5.6	4.4	6.3	16.1	15.4	16.6	29	29	29	7.9	7.7	8.1
SD0023	6.3	4.4	7.8	16.3	16.1	16.4	29	29	29	7.9	7.7	8.0
SD0024	5.8	3.6	7.5	16.2	15.9	16.8	29	29	29	7.9	7.7	8.0
SD0025	5.8	4.8	6.9	16.7	16.2	17.0	29	29	29	7.8	7.7	7.9
SD0026	6.1	5.0 ¹	8.0	15.8	15.3	16.4	29	28	29	7.9	7.9	8.0
SD0027	6.0	4.7	7.0	16.0	15.4	16.7	29	29	29	7.8	7.6	8.0
SD0028	6.0	4.3	7.2	16.1	15.8	16.7	29	29	29	7.9	7.7	8.1
SD0029	6.1	5.5	7.0	16.0	15.8	16.2	29	28	29	7.9	7.7	8.0
SD0030	6.5	5.6	7.1	16.6	16.3	17.0	29	29	29	7.9	7.8	8.0
SD0031	6.3	5.2	7.0	16.8	16.4	17.0	29	29	29	7.9	7.7	8.1
SD0032	6.1	4.2	7.4	16.1	16.0	16.2	29	29	29	7.9	7.7	8.1
SD0033	5.5	4.0	6.4	15.9	15.4	16.3	29	29	29	7.9	7.7	8.1
SD0034	5.6	3.6	7.2	16.5	16.0	17.0	29	29	29	7.8	7.6	7.9
SD0035	5.4	3.1	7.1	16.0	15.6	16.9	29	29	29	7.9	7.7	8.0
SD0036	6.2	4.8	7.1	16.8	16.6	17.0	29	29	29	7.9	7.7	8.1
SD0037	5.9	3.5	7.6	16.2	15.6	16.9	29	29	29	7.9	7.7	8.1
SD0038	6.1	4.2	7.3	16.3	15.8	16.8	29	29	29	7.9	7.7	8.1
SD0039	6.3	4.7	7.5	16.4	16.2	16.7	29	29	29	7.9	7.7	8.0
SD0040	5.7	3.7	7.4	16.5	15.9	17.0	29	29	29	7.9	7.8	8.0
SD0042	5.1	3.1	6.2	16.4	16.0	17.0	29	29	29	8.0	7.8	8.1
SD0043	5.8	4.4	6.8	15.9	15.4	16.2	29	29	29	7.9	7.7	8.1
SD0044	6.0	3.8	7.5	16.0	15.4	16.7	29	29	29	7.9	7.7	8.0
SD0045	5.6	4.2	6.3	16.1	15.4	16.8	29	29	29	7.9	7.7	8.0
SD0048	6.6	5.2	7.6	16.6	16.3	17.0	29	29	29	7.9	7.8	8.0
SD0049	7.3	6.6	7.8	16.2	16.2	16.3	29	29	29	8.0	7.8	8.1
1 Dissolved ovvgen belov												

¹ Dissolved oxygen below target range of ≥5.0 mg/L, dissolved oxygen within range following aeration

Table 12. Ammonia and Sulfide Summary for Mytilus galloprovincialis Test Batch 1

Transfer 12. Ammonia a	Overlying Ammo	<u>, , , , , , , , , , , , , , , , , , , </u>		ulfides (mg/L)
Treatment	Initial	Final	Initial	Final
Control	<0.5	0.968	0.026	0.033
CR-12 Reference	<0.5	<0.5	0.070	0.047
CARR-20 Reference	<0.5	<0.5	0.106	0.041
CR-02 Reference	<0.5	<0.5	0.173	0.082
SD0005	<0.5	<0.5	0.286	0.116
SD0006	<0.5	<0.5	0.239	0.082
SD0007	<0.5	<0.5	0.274	0.112
SD0023	<0.5	<0.5	0.300	0.084
SD0024	<0.5	<0.5	0.126	0.052
SD0025	<0.5	<0.5	0.219	0.093
SD0026	<0.5	<0.5	0.199	0.090
SD0027	<0.5	<0.5	0.284	0.084
SD0028	<0.5	<0.5	0.202	0.046
SD0029	<0.5	<0.5	0.153	0.055
SD0030	<0.5	<0.5	0.243	0.085
SD0031	<0.5	<0.5	0.220	0.099
SD0032	<0.5	<0.5	0.306	0.127
SD0033	<0.5	<0.5	0.211	0.077
SD0034	<0.5	<0.5	0.220	0.068
SD0035	<0.5	<0.5	0.214	0.061
SD0036	<0.5	<0.5	0.190	0.058
SD0037	<0.5	<0.5	0.235	0.073
SD0038	<0.5	<0.5	0.266	0.076
SD0039	<0.5	<0.5	0.214	0.059
SD0040	<0.5	<0.5	0.198	0.081
SD0042	<0.5	<0.5	0.138	0.099
SD0043	<0.5	<0.5	0.197	0.108
SD0044	<0.5	<0.5	0.338	0.106
SD0045	<0.5	<0.5	0.260	0.112
SD0046	<0.5	<0.5	0.146	0.098
SD0047	<0.5	<0.5	0.194	0.121
SD0048	<0.5	<0.5	0.146	0.098
SD0049	<0.5	<0.5	0.225	0.079

Table 13. Test Condition Summary for *Mytilus galloprovincialis* Test Batch 1

Test Condition	Test Conditions: PSEP M. galloprovincialis (SMS)						
Sample Identification	Control, CR-12, CARR-20, CR-20, SI	00005 – SD0007, SD0023 – SD0049					
Date sampled	June 25-	28, 2013					
Date received at NewFields Northwest	June 28						
Test dates	July 1-3	,					
Sample storage conditions	4°C,						
Holding time							
Recommended: < 8 weeks (56 days)	6 d	ays					
Test Species	M. gallopi	rovincialis					
Supplier	Taylor Shellfish, Shelton, WA						
Date acquired	July 1,						
Acclimation/holding time (broodstock)	0 0						
Age class	<2-h old	embryos					
Test Procedures	PSEP 1995 with S	SMARM revisions					
Regulatory Program	SN	NS					
Test location	NewFields North	west Laboratory					
Test type/duration	48-60 Hour static test						
Control water	North Hood Canal sea	water, 0.45µm filtered					
Test dissolved oxygen	Recommended: >5.0 mg/L	Achieved: 3.1 – 8.0 mg/L					
Test temperature	Recommended: 16 \pm 1 $^{\circ}$ C	Achieved: 15.0 – 17.0 °C					
Test Salinity	Recommended: 28 \pm 1 ppt	Achieved: 28 – 29 ppt					
Test pH	Recommended: 7 - 9	Achieved: 7.6 – 8.1					
Stacking Dansity	Recommended:	Ashiovad: 22.6 amhrvas/ml					
Stocking Density	20 – 40 embryos/mL	Achieved: 22.6 embryos/mL					
Control performance standard	Recommended:	Achieved:					
Control performance standard	Control normal survival >70%	98.9%; Pass					
Reference performance standard	Recommended:	Achieved:					
	Reference normal survival <u>></u> 65%	77.1 – 83.1%; Pass					
Reference Toxicant LC ₅₀	LC ₅₀ = 2.90 mg	$(NH_3 + NH_4^+/L)$					
(total ammonia)	250						
Mean; Acceptable Range	5.27; 0.96 – 9.57	mg NH ₃ + NH ₄ ⁺ /L					
(total ammonia)							
NOEC (total ammonia)	1.46 mg NF	-					
NOEC (unionized ammonia)	0.036 m	0 5,					
Test Lighting	14hr Light / 10hr Dark						
Test chamber	1-Liter Glass Chamber						
Replicates/treatment	5 + 1 surrogate (used for WQ measurements)						
Exposure volume	18 g sediment/ 900 mL water None						
Feeding Water renewal							
Water renewal Deviations from Test Protocol	No Dissolved evygen on Day						
Deviations from Test Protocol	Dissolved oxygen on Day	5 TOHOWING resuspension					

The results of Test Batch 2 are summarized in Table 14. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 15, 16, and 17. Test 2 was validated by 88.6% combined normal survivorship, meeting the SMS acceptability criteria of ≥70%. Mean control-normalized normal survival in the reference treatments CR-12, CARR-20, and CR-02 was 85.8%, 81.4%, and 80.7%, respectively, meeting the reference acceptability criteria of ≥65% mean normal survivorship. Mean control-normalized normal survivorship in the test treatments ranged between 59.6% and 87.8%. The mean stocking density for Test 2 was 38.0 embryos per mL.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value of 4.31 mg total ammonia/L was within control chart limits (±2 standard deviations from the laboratory historical mean, 0.90 – 9.59 mg total ammonia/L). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested at NewFields.

All water quality parameters were within the acceptable limits throughout the duration of the test, with the exception of dissolved oxygen. Dissolved oxygen met the target range of ≥5.0 mg/L on days 1 and 2 of the test; however, DO concentrations were between 4.2 and 4.9 mg/L for many of the test treatments following resuspension. Aeration was provided to all replicates of these treatments; DO concentrations returned to above 5.0 mg/L. Sulfide concentrations in the test and reference treatments ranged from 0.131 − 0.290 mg/L at test initiation and ranged from 0.022 − 0.140 mg/L at test termination. Ammonia concentrations observed in the *M. galloprovincialis* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 16; compare to NOEC of 3.05 mg/L for mean observed at NewFields). This indicates that ammonia concentrations within the sediment samples should not have been a contributor to adverse biological effects observed in the test treatments.

Table 14. Test Results for Mytilus galloprovincialis Test Batch 2

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal	Normal Survivorship (%) ^{1, 2}	Mean Normal Survivorship (%)	SD
Control	1 2 3 4 5	351 326 331 319 357	17 11 5 11 9	336.8	92.3 85.7 87.1 83.9 93.9	88.6	4.3
CR-12 Reference	1 2 3 4 5	265 281 306 297 296	2 5 9 6 8	289.0	78.7 83.4 90.9 88.2 87.9	85.8	4.8
CARR-20 Reference	1 2 3 4 5	274 289 281 277 250	15 31 15 14 24	274.2	81.4 85.8 83.4 82.2 74.2	81.4	4.4
CR-02 Reference	1 2 3 4 5	278 278 272 264 267	16 13 20 7 15	271.8	82.5 82.5 80.8 78.4 79.3	80.7	1.9
SD-0001	1 2 3 4 5	207 210 278 247 219	16 32 11 31 46	232.2	61.5 62.4 82.5 73.3 65.0	68.9	8.9
SD-0002	1 2 3 4 5	276 245 197 228 203	16 26 43 26 31	229.8	81.9 72.7 58.5 67.7 60.3	68.2	9.6
SD-0003	1 2 3 4 5	168 227 226 240 198	25 32 49 38 36	211.8	49.9 67.4 67.1 71.3 58.8	62.9	8.6
SD-0004	1 2 3 4 5	199 194 210 209 192	33 43 58 47 41	200.8	59.1 57.6 62.4 62.1 57.0	59.6	2.5

Table 14. Test Results for Mytilus galloprovincialis Test Batch 2 (Continued)

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal	Normal Survivorship (%) ^{1, 2}	Mean Normal Survivorship (%)	SD
	1	259	11		76.9		
	2	236	6		70.1		
SD-0008	3	247	10	254.4	73.3	75.5	3.8
	4	265	6		78.7		
	5	265	11		78.7		
	1	229	29		68.0		
	2	233	13		69.2		
SD-0009	3	190	7	223.6	56.4	66.4	5.6
	4	236	6		70.1		
	5	230	12		68.3		
	1	215	17		63.8		
	2	232	6		68.9		
SD-0010	3	220	13	209.8	65.3	62.3	5.9
	4	180	17		53.4		
	5	202	11		60.0		
	1	243	7		72.1		
	2	256	12		76.0		
SD-0011	3	265	15	248.6	78.7	73.8	3.5
	4	244	20		72.4		
	5	235	20		69.8		
	1	266	9		79.0		
	2	270	8		80.2		
SD-0012	3	261	7	261.4	77.5	77.6	2.9
	4	245	14		72.7		
	5	265	12		78.7		
	1	233	13		69.2		
	2	246	9		73.0		
SD-0013	3	274	7	258.2	81.4	76.7	5.6
	4	260	11		77.2		
	5	278	10		82.5		
	1	270	9		80.2		
	2	225	13		66.8		
SD-0014	3	217	7	232.6	64.4	69.1	6.3
	4	229	13		68.0		
	5	222	5		65.9		
	1	213	6		63.2		
	2	223	14		66.2		
SD-0015	3	269	14	243.6	79.9	72.3	7.7
	4	270	14		80.2		
	5	243	17		72.1		

Table 14. Test Results for Mytilus galloprovincialis Test Batch 2 (Continued)

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal	Normal Survivorship (%) ^{1, 2}	Mean Normal Survivorship (%)	SD
	1	239	11		71.0		
	2	222	14		65.9		
SD-0017	3	267	15	248.6	79.3	73.8	6.2
	4	243	14		72.1		
	5	272	11		80.8		
	1	274	9		81.4		
	2	304	4		90.3		
SD-0018	3	290	5	280.2	86.1	83.2	5.2
	4	275	6		81.7		
	5	258	15		76.6		
	1	234	4		69.5		
	2	276	6		81.9		
SD-0019	3	278	5	266.0	82.5	79.0	5.9
	4	283	9		84.0		
	5	259	18		76.9		
	1	203	21		60.3		
	2	248	14		73.6		
SD-0020	3	202	21	220.2	60.0	65.4	5.6
	4	227	16		67.4		
	5	221	44		65.6		
	1	255	14		75.7		
	2	294	6		87.3		
SD-0021	3	331	9	295.6	98.3	87.8	8.1
	4	304	27		90.3		
	5	294	7		87.3		
	1	244	7		72.4		
	2	266	12		79.0		
SD-0022	3	262	7	264.8	77.8	78.6	4.0
	4	279	2		82.8		
	5	273	9		81.1		

¹ Control normality normalized to stocking density (380).
² Reference and treatment normal survivorship are normalized to the mean number normal in Control (337).

Table 15. Water Quality Summary for Mytilus galloprovincialis Test Batch 2

Treatment		lved Ox (mg/L)	ygen	Temp	erature	(°C)	Salir	nity (pp	ot)	рН	l (units)
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.3	7.2	7.4	16.2	15.8	16.5	28	28	28	7.8	7.8	7.8
CR-12 Reference	7.1	6.9	7.3	16.6	16.4	16.8	28	28	28	7.8	7.8	7.9
CARR-20 Reference	6.1	5.1	7.3	16.8	16.8	16.9	28	28	28	7.7	7.6	7.8
CR-02 Reference	5.7	4.3 ¹	7.4	16.7	16.6	16.9	28	28	28	7.7	7.5	7.9
SD0001	6.2	4.8 ¹	7.8	16.5	16.2	16.6	28	28	28	7.6	7.6	7.7
SD0002	5.8	4.2 ¹	7.2	16.7	16.6	16.8	28	28	28	7.7	7.6	7.7
SD0003	5.7	4.7 ¹	7.2	16.9	16.8	16.9	28	28	28	7.6	7.5	7.7
SD0004	5.8	4.9 ¹	7.0	16.7	16.5	17.0	28	28	28	7.6	7.5	7.7
SD0008	6.0	4.8 ¹	7.2	16.9	16.9	17.0	28	28	28	7.6	7.6	7.7
SD0009	6.5	5.0	7.9	16.7	16.4	17.0	28	28	28	7.7	7.6	7.8
SD0010	6.2	5.3	7.1	16.9	16.8	17.1	28	28	28	7.6	7.5	7.7
SD0011	5.9	4.9 ¹	6.9	16.8	16.7	17.0	28	28	28	7.6	7.5	7.7
SD0012	5.8	4.5 ¹	7.2	16.8	16.7	16.9	28	28	28	7.7	7.6	7.8
SD0013	5.7	5.1	6.5	16.9	16.7	17.0	28	28	28	7.7	7.6	7.8
SD0014	5.9	4.9 ¹	7.1	16.7	16.6	16.7	28	28	28	7.7	7.6	7.8
SD0015	6.4	5.4	7.1	16.6	16.2	17.0	28	27	28	7.7	7.6	7.8
SD0017	6.1	4.6 ¹	6.8	16.7	16.6	16.9	28	28	28	7.6	7.4	7.8
SD0018	6.0	5.0	6.7	16.4	15.9	16.9	28	28	28	7.7	7.6	7.8
SD0019	5.3	4.5 ¹	6.0	16.5	16.0	17.0	28	28	28	7.7	7.6	7.8
SD0020	6.2	5.6	6.7	16.6	16.4	16.8	28	27	28	7.7	7.6	7.7
SD0021	5.8	4.71	7.0	16.5	16.0	16.9	28	28	28	7.6	7.5	7.7
SD0022	5.9	4.8 ¹	7.0	16.7	16.5	16.8	28	28	28	7.7	7.5	7.8

¹ Dissolved oxygen below target range of ≥5.0 mg/L, dissolved oxygen within range following aeration

Table 16. Ammonia and Sulfide Summary for *Mytilus galloprovincialis* Test Batch 2

Treatment	Overlying Ammo	, ,		lfides (mg/L)
Treatment	Initial	Final	Initial	Final
Control	<0.5	<0.5	0.009	0.013
CR-12 Reference	<0.5	<0.5	0.077	0.048
CARR-20 Reference	<0.5	<0.5	0.127	0.033
CR-02 Reference	<0.5	<0.5	0.126	0.031
SD0001	<0.5	<0.5	0.131	0.031
SD0002	0.562	<0.5	0.167	0.097
SD0003	<0.5	<0.5	0.147	0.077
SD0004	<0.5	<0.5	0.251	0.037
SD0008	<0.5	<0.5	0.231	0.079
SD0009	<0.5	<0.5	0.272	0.102
SD0010	<0.5	<0.5	0.290	0.107
SD0011	<0.5	<0.5	0.244	0.102
SD0012	<0.5	<0.5	0.163	0.089
SD0013	<0.5	<0.5	0.214	0.094
SD0014	<0.5	<0.5	0.177	0.111
SD0015	<0.5	<0.5	0.163	0.086
SD0017	<0.5	<0.5	0.215	0.140
SD0018	<0.5	<0.5	0.229	0.088
SD0019	<0.5	<0.5	0.136	0.022
SD0020	<0.5	<0.5	0.192	0.054
SD0021	<0.5	<0.5	0.213	0.069
SD0022	<0.5	<0.5	0.203	0.061

Table 17. Test Condition Summary for *Mytilus galloprovincialis* Test Batch 2

Test Co	nditions: M. galloprovincialis (SMS			
Sample Identification	Control, CR-12, CARR-20, CR-20, S	D0001 – SD0004, SD0008 – SD0022		
Date sampled		9, 2013		
Date received at NewFields Northwest	•), 2013		
Test dates	<u> </u>	19, 2013		
Sample storage conditions		dark		
	4 C,	uaik		
Holding time Recommended: < 8 weeks (56 days)	16 (days		
Test Species	M. galloprovincialis			
Supplier	-	n, Shelton, WA		
Date acquired	·	7, 2013		
Acclimation/holding time (broodstock)	· ·			
Age class		day embryos		
Test Procedures		SMARM revisions		
		MS		
Regulatory Program Test location		west Laboratory		
		· · · · · · · · · · · · · · · · · · ·		
Test type/duration Control water	48-60 Hour static test North Hood Canal sea water, 0.45μm filtered			
		-		
Test dissolved oxygen	Recommended: >5.0 mg/L	Achieved: 4.3 – 7.9 mg/L		
Test temperature	Recommended: 16 ± 1 °C	Achieved: 15.8 – 17.1 °C		
Test Salinity	Recommended: 28 ± 1 ppt	Achieved: 27 – 28 ppt		
Test pH	Recommended: 7 - 9	Achieved: 7.4 – 7.9		
Stocking Density	Recommended:	Achieved: 38.0 embryos/mL		
	20 – 40 embryos/mL	·		
Control performance standard	Recommended:	Achieved:		
	Control normal survival >70%	88.6%; Pass		
Reference performance standard	Recommended:	Achieved:		
Defense Trainmet IC	Reference normal survival <u>></u> 65%	80.7 – 85.8%; Pass		
Reference Toxicant LC ₅₀	LC ₅₀ = 4.31 mg	$g NH_3 + NH_4^+/L$		
(total ammonia) Mean; Acceptable Range				
(total ammonia)	5.24; 0.90 – 9.59	$mg NH_3 + NH_4^+/L$		
NOEC (total ammonia)	2.05 mg Ni	$H_3 + NH_4^+/L$		
NOEC (total ammonia) NOEC (unionized ammonia)	_			
		g NH ₃ /L		
Test Lighting Test chamber	14hr Light / 10hr Dark			
	1-Liter Glass Chamber			
Replicates/treatment	5 + 1 surrogate (used for WQ measurements) 18 g sediment/ 900 mL water			
Exposure volume				
Feeding		one		
Water renewal		one		
Deviations from Test Protocol	Dissolved oxygen following re	suspension, aeration provided		

Discussion

Sediments were evaluated based on criteria specified in the Sediment Management Standards (SMS). The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology Sediment Sampling and Analysis Plan Appendix (WDOE 2008). The criteria include a lower and a higher threshold, sediment quality standards (SQS) and Cleanup Standards Limit (CSL).

Endpoint comparisons were made for each treatment against the appropriate reference sample. Reference selection was based on a comparison of the percentage of fines for the test treatment and the each of the references. That reference with the most similar percentage of fines was selected for SMS endpoint evaluation. If the difference for two references were similar, the finer grained size reference was selected. With the exception of samples SD0040, SD0044, and SD0054, the percentage of fines for all selected references were within the SMS recommended range of ≤25% (Fox 1997), relative to the test treatments. The difference in percentage of fines for SD0040 and SD0054 and Reference CR-02 was 26%. The percentage of fines in sample SD0044 was 32% higher than in Reference CR-02.

Amphipod Test

Under the SMS program, a treatment will fail SQS if mean mortality in the test sediment is >25% more (on an absolute basis) than the mean mortality in the appropriate reference sediment and the difference is statistically significant ($p \le 0.05$). Treatments fail the CSL if mean mortality in the test treatment >30% over that of the reference sediment and the difference is statistically significant. A summary of the SMS evaluation for the Western Port Angeles Harbor test samples is presented in Table 18. All test treatments met both the SQS and CSL criteria for the benthic amphipod test.

Juvenile Polychaete Test

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG) using ash-free dry weight (AFDW). A test treatment fails SQS criteria if MIG is statistically lower in the test treatment, relative to the reference, and MIG in the test treatment is <70% that of the reference (on a relative basis). The treatments will fail CSL criteria if MIG is significantly lower than the reference treatment and is <50% that of the treatment. A summary of the SMS evaluation for the Western Port Angeles Harbor test samples is presented in Table 19. All test treatments met both the SQS and CSL criteria for the juvenile polychaete test.

Larval Bivalve Test

Larval test treatments fail SQS criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if normal survivorship in the test treatment is less than 85%, relative to normal survivorship in the reference (on a relative basis). Test treatments fail CSL criteria if normal survivorship in the test treatment is significantly lower than that of the reference and if the normal survivorship in the test treatment is less than 70%, relative to the reference.

A summary of the SMS comparisons for the Batch 1 benthic larval test is presented in Table 20. With the exception of five samples, all test samples in Test Batch 1 passed both SQS and CSL criteria. Mean normal survivorship in samples SD0006, SD0023, SD0027, and SD0029 ranged from 70% to 78%, relative to the reference, falling below the SQS criteria, but meeting the CSL criteria. Mean normal survivorship in sample SD0025 was 65% relative to the reference, failing the CSL criteria.

A summary of the SMS comparisons for the Batch 2 benthic larval test is presented in Table 21. With the exception of five samples, all test samples in Test Batch 2 passed both SQS and CSL criteria. Mean normal survivorship in samples SD0003, SD0004, SD0009, SD0010, and SD0020 ranged from 73% to 82%, relative to the appropriate reference, falling below the SQS criteria, but meeting the CSL criteria.

Overall Summary

A summary of the SMS comparisons for each of the Western Port Angeles Harbor test samples is presented in Table 22.

Table 18. SMS Comparison for the Benthic Amphipod Test with *Eohaustorius estuarius*

Treatment	Mean Mortality (%)	Reference	Statistically More than Reference?	Mortality Comparison to Reference M _T -M _R (%)	Fails SQS? ¹ >25 %	Fails CSL? ² >30 %
Control	4					
CR-12 Reference	4					
CARR-20 Reference	7					
CR-02 Reference	2					
SD0001	7	CR-02	Yes	5	No	No
SD0002	5	CR-02	No	3	No	No
SD0003	6	CARR-20	No	-1	No	No
SD0004	4	CARR-20	No	-3	No	No
SD0005	0	CR-02	No	-2	No	No
SD0006	4	CR-02	No	2	No	No
SD0007	10	CR-02	No	8	No	No
SD0008	2	CR-02	No	0	No	No
SD0009	1	CR-02	No	-1	No	No
SD0010	1	CR-02	No	-1	No	No
SD0011	8	CR-02	No	6	No	No
SD0012	4	CR-02	No	2	No	No
SD0013	2	CR-02	No	0	No	No
SD0014	3	CR-02	No	1	No	No
SD0015	5	CR-02	No	3	No	No
SD0017	2	CR-02	No	0	No	No
SD0018	5	CR-02	No	3	No	No
SD0019	6	CR-02	No	4	No	No
SD0020	4	CR-02	No	2	No	No
SD0021	6	CR-02	No	4	No	No

M = Mortality, T = Treatment, R = Reference

¹SQS: Statistical Significance and M_T-M_R >25%

²CSL: Statistical Significance and M_T-M_R >30%

No = Meets criteria; Yes = Does not meet criteria

Table 19. SMS Comparison for the Juvenile Polychaete Test with Neanthes arenaceodentata

Treatment	MIG (mg/ind/day) AFDW	Reference	AFDW Statistically More than Reference?	Comparison to Reference MIG _T / MIG _R	Fails SQS? ¹ >70 %	Fails CSL? ² >50 %
Control	0.347					
CR-12 Reference	0.403					
CARR-20 Reference	0.394					
CR-02 Reference	0.292					
SD0001	0.465	CR-02	No	159	No	No
SD0002	0.490	CR-02	No	167	No	No
SD0003	0.624	CARR-20	No	158	No	No
SD0004	0.594	CARR-20	No	151	No	No
SD0005	0.584	CR-02	No	200	No	No
SD0006	0.646	CR-02	No	221	No	No
SD0007	0.572	CR-02	No	196	No	No
SD0008	0.529	CR-02	No	181	No	No
SD0009	0.606	CR-02	No	207	No	No
SD0010	0.632	CR-02	No	216	No	No
SD0011	0.483	CR-02	No	165	No	No
SD0012	0.596	CR-02	No	204	No	No
SD0013	0.541	CR-02	No	185	No	No
SD0014	0.539	CR-02	No	184	No	No
SD0015	0.482	CR-02	No	165	No	No
SD0017	0.642	CR-02	No	219	No	No
SD0018	0.577	CR-02	No	197	No	No
SD0019	0.567	CR-02	No	194	No	No
SD0020	0.552	CR-02	No	189	No	No
SD0021	0.616	CR-02	No	211	No	No

M = Mortality, T = Treatment, R = Reference

 $^{^{1}}$ SQS: Statistical Significance and N_{CT} <0.70* N_{CR}

 $^{^2 \}text{CSL} :$ Statistical Significance and $N_{\text{CT}} \!\!<\! 0.50^* N_{\text{CR}}$

No = Meets criteria; Yes = Does not meet criteria

Table 20. SMS Comparison for the Benthic Larval Test with Mytilus galloprovincialis Test Batch 1

Treatment	Mean Normal Survival (%)	Reference	Statistically Less than Reference?	Normal Survival	Fails SQS? ¹ < 85%	
Control	236					
CR-12 Reference	196					
CARR-20 Reference	189					
CR-02 Reference	182					
SD0005	159	CR-02	Yes	87	No	No
SD0006	142	CR-02	Yes	78	Yes	No
SD0007	163	CR-02	No	89	No	No
SD0023	147	CARR-20	Yes	78	Yes	No
SD0024	158	CR-02	Yes	87	No	No
SD0025	123	CARR-20	Yes	65	Yes	Yes
SD0026	181	CR-02	No	99	No	No
SD0027	133	CARR-20	Yes	70	Yes	No
SD0028	175	CR-02	No	96	No	No
SD0029	142	CR-02	Yes	78	Yes	No
SD0030	160	CR-02	Yes	88	No	No
SD0031	166	CR-02	No	91	No	No
SD0032	188	CR-02	No	103	No	No
SD0033	161	CR-02	No	88	No	No
SD0034	158	CR-02	Yes	87	No	No
SD0035	177	CARR-20	No	94	No	No
SD0036	183	CR-02	No	101	No	No
SD0037	176	CR-02	No	97	No	No
SD0038	188	CR-02	No	103	No	No
SD0039	161	CR-02	Yes	88	No	No
SD0040	178	CR-02	No	98	No	No
SD0042	170	CR-02	No	93	No	No
SD0043	199	CR-02	No	109	No	No
SD0044	190	CR-02	No	104	No	No
SD0045	161	CR-02	No	88	No	No
SD0046	197	CR-12	No	100	No	No
SD0047	185	CR-12	No	94	No	No
SD0048	202	CR-02	No	111	No	No
SD0049	206	CR-02	No	113	No	No

 ^1SQS : Statistical Significance and N_{CT}<0.85*N_{CR} ^2CSL : Statistical Significance and N_{CT}<0.70*N_{CR}

No = Meets criteria; Yes = Does not meet criteria

Table 21. SMS Comparison for the Benthic Larval Test with Mytilus galloprovincialis Test Batch 2

Table 21. Sivis Compa		citalic Edi val I	Cot With Hilyth		1 CSt Da	
Treatment	Mean Normal Survival (%)	Reference	Statistically Less than Reference?	Normal Survival Comparison to Reference (N _T /N _C)/(N _R /N _C)	Fails SQS? ¹ < 85%	Fails CSL? ² < 70%
Control	337					
CR-12 Reference	289					
CARR-20 Reference	274					
CR-02 Reference	272					
SD0001	232	CR-02	Yes	85	No	No
SD0002	230	CR-02	Yes	85	No	No
SD0003	212	CARR-20	Yes	77	Yes	No
SD0004	201	CARR-20	Yes	73	Yes	No
SD0008	254	CR-02	Yes	94	No	No
SD0009	224	CR-02	Yes	82	Yes	No
SD0010	210	CR-02	Yes	77	Yes	No
SD0011	249	CR-02	Yes	91	No	No
SD0012	261	CR-02	Yes	96	No	No
SD0013	258	CR-02	No	95	No	No
SD0014	233	CR-02	Yes	86	No	No
SD0015	244	CR-02	Yes	90	No	No
SD0017	249	CR-02	Yes	91	No	No
SD0018	280	CR-02	No	103	No	No
SD0019	266	CR-02	No	98	No	No
SD0020	220	CR-02	Yes	81	Yes	No
SD0021	296	CR-02	No	109	No	No
SD0022	265	CR-02	No	97	No	No

¹SQS: Statistical Significance and N_{CT}<0.85*N_{CR}
²CSL: Statistical Significance and N_{CT}<0.70*N_{CR}
No = Meets criteria; Yes = Does not meet criteria

Table 22. Summary of SMS Comparisons for Western Port Angeles Harbor Samples

Treatment	Grain Size ¹	Reference Comparison	Amphipod	Juvenile Polychaete	Benthic Larval
SD0001	53	CR-02	Pass	Pass	Pass
SD0002	48	CR-02	Pass	Pass	Pass
SD0003	38	CARR-20	Pass	Pass	Fails SQS
SD0004	39	CARR-20	Pass	Pass	Fails SQS
SD0005	78	CR-02	Pass	Pass	Pass
SD0006	56	CR-02	Pass	Pass	Fails SQS
SD0007	80	CR-02	Pass	Pass	Pass
SD0008	66	CR-02	Pass	Pass	Pass
SD0009	71	CR-02	Pass	Pass	Fails SQS
SD0010	67	CR-02	Pass	Pass	Fails SQS
SD0011	79	CR-02	Pass	Pass	Pass
SD0012	82	CR-02	Pass	Pass	Pass
SD0013	77	CR-02	Pass	Pass	Pass
SD0014	77	CR-02	Pass	Pass	Pass
SD0015	77	CR-02	Pass	Pass	Pass
SD0017	70	CR-02	Pass	Pass	Pass
SD0018	78	CR-02	Pass	Pass	Pass
SD0019	50	CR-02	Pass	Pass	Pass
SD0020	56	CR-02	Pass	Pass	Fails SQS
SD0021	64	CR-02	Pass	Pass	Pass
SD0022	65	CR-02	NT ²	NT	Pass
SD0023	31	CARR-20	NT	NT	Fails SQS
SD0024	44	CR-02	NT	NT	Pass
SD0025	24	CARR-20	NT	NT	Fails CSL
SD0026	77	CR-02	NT	NT	Pass
SD0027	20	CARR-20	NT	NT	Fails SQS
SD0028	45	CR-02	NT	NT	Pass
SD0029	73	CR-02	NT	NT	Fails SQS
SD0030	73	CR-02	NT	NT	Pass
SD0031	84	CR-02	NT	NT	Pass
SD0032	81	CR-02	NT	NT	Pass
SD0033	59	CR-02	NT	NT	Pass
SD0034	71	CR-02	NT	NT	Pass
SD0035	28	CARR-20	NT	NT	Pass
SD0036	76	CR-02	NT	NT	Pass

Table 23. Summary of SMS Comparisons for Western Port Angeles Harbor Samples (Continued)

	, 0. 0 00	iparisons for vvcs	term r or t / mige		pies (continues)
Treatment	Grain Size ¹	Reference Comparison	Amphipod	Juvenile Polychaete	Benthic Larval
SD0037	60	CR-02	NT	NT	Pass
SD0038	63	CR-02	NT	NT	Pass
SD0039	71	CR-02	NT	NT	Pass
SD0040	85	CR-02	NT	NT	Pass
SD0042	75	CR-02	NT	NT	Pass
SD0043	77	CR-02	NT	NT	Pass
SD0044	91	CR-02	NT	NT	Pass
SD0045	62	CR-02	NT	NT	Pass
SD0046	12	CR-12	NT	NT	Pass
SD0047	14	CR-12	NT	NT	Pass
SD0048	64	CR-02	NT	NT	Pass
SD0049	52	CR-02	NT	NT	Pass

¹ Percent fines (∑ silt and clay)
² Treatment evaluated with the larval test only

References

- American Society for Testing and Materials (ASTM). 2006. E1688-00 Standard Guide for Determination of the Bioaccumulation of Sediment-Associated Contaminants by Benthic Invertebrates. Annual Book of Standards, Water and Environmental Technology, Vol. 11.06, West Conshohocken, PA.
- Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Ecology 2005. DMMP/SMS Clarification Paper: Interpreting Sediment Toxicity Tests: Consistency between Regulatory Programs. Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Ecology 2008. Sediment Sampling and Analysis Plan Appendix (SSAPA): Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards (Chapter 173-204 WAC), Sediment Management Unit, Department of Ecology, Bellevue, Washington. Revised February 2008.
- Fox, D. and T Michelsen. 1997. Selection of Negative Control Seidment and Use of Control Sediments as Reference Sediments. DMMP Clarification Paper. SMS Draft Technical Information Memorandum. Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Fox, D, DA Gustafson, and TC Shaw. 1998. Biostat Software for the Analysis of DMP/SMS. Presented at the 10th Annual Sediment Management Annual Review Meeting.
- Kendall D, R McMillan, and B Gardiner. 2012. Draft DMMP/SMS Clarification Paper: Bioassay Endpoint Refinements: Bivalve Larvae and Neanthes Growth Bioassay. Presented at the 24th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, 1996. DMMP/SMS Clarification Paper: Neanthes 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size and Feeding Protocol. Presented at the 9th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, and Barton, J, 2004. DMMP/SMS Clarification Paper: Ammonia and Sulfide Guidance Relative to Neanthes Growth Bioassay. Presented at the 16th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- PSEP 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.
- PSEP. 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- PSEP 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- United States Environmental Protection Agency and United States Army Corps of Engineers (USEPA/USACE). 1991. Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual (Ocean Testing Manual). EPA 503/8-91/001. EPA Office of Water, Washington, DC.
- USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: Testing Manual. EPA 823-B-98-004. February 1998.

Appendix A

Data Sheets

APPENDIX A.1 10-day Amphipod Test with *Eohaustorius estuarius*APPENDIX A.2 20-day Juvenile Polychaete Test with Neanthes arenaceodentata

APPENDIX A.3 Benthic Larval Test with Mytilus galloprovincialis - Test Batch 1

APPENDIX A.4 Benthic Larval Test with Mytilus galloprovincialis - Test Batch 1

APPENDIX A.5 Chain of Custody Forms

Appendix A.1

Amphipod Test with *Eohaustorius estuaries*

				v		a a				-	yvensk en	·		,		<u>. </u>	,					7	<u>)</u>	 		•
				роголовия роголовия роголовия		×				**************************************																Gar.
				evilA 1	əqwnN	17	. 6	20	20	07	20	6)	6	ā	6	130	6)	0	9	8)	22	20	4	81070	20	Serr 20
PROTOCOL PSEP 1995			Day 10	Date 7/29	Tech.	7				>	Z	,			>	Z				>	7	`			→	か
			Day 9	Pate 7/128	Tech.	2													3	ত	λ	_>	IF I	<u>`</u>	7	
NEWFIELDS LABORATORY Port Gamble Bath 3	АТЕ		Day 8	Date 712 7	Tech.	2									4	<u> </u>	2-			S	2					
NEWFIELDS Port Gamble	TEST END DATE 29-Jui-13	S	Day 7	Date 7.26	Tech. ZZ		Ē	2	≥`	2	2	C	≥,	2	2	2			~	9	N	-		**********	7	1
		SERVATION	Day 6	Date 7-125	Tech.	2	. <u>£</u>	2				\rightarrow	/الر	7.7	2	J	(W)	2	2	Ī	2		\rightarrow	W	7	10.8
s estuarius	DATE	TA AND OB	Day 5	Date イライ	Tech.	1/2				~	2	2	<u>₹</u>	<u>₹</u>	2	0	Z	ñ	N	2	N				7	100/4
SPECIES Eohaustoríu	TEST START DATE 19-Jul-13	NDPOINT DA	Day 4	The Carte of the C	Tech.	2	¥	2	-	2	2	2	\ <u>\</u>	2,	2	빌	四周	2	2	P. 9	·Z	z	<u></u>	2	ا	7
		Ш	Day 3	Date 7 (2.2	Tech.	3													•	q	9	<u>_</u>	<u>ال</u>	2-)	
	ANAGER		Day 2	Date 'All !	Tech.	, 2												*******		>	16,6	2-		1 The State Control of the Sta	→	,
PROJECT WPAH	PROJECT MANAGER B. Gardiner		Day 1	Date Apr	Tech.	2	1. N	2							->	亓	٦ ر	4	2.				ጽ	Q	7_	
		Initial # of	Organisms	20		p Jar⊭												<i>ii</i>								
a Inc.	NUMBER	Initis	Org	9.5		- Kep	7	m	4	5	-	7	<u>۳</u>	4	5		7	<u>ო</u>	4	3		2	3	4	5	6
CLIENT Integral Consulting	NEWFIELDS JOB NUMBER 860.0074.000	N = Normal	#K = Emergence #M = Mortality or Molts G = Growth	(fungal, bacterial, or algal) D w No Air Flow (DC?) F = Floating on Surface TC = Too Cloudy	300.000	Client/NewFields ID		Control		<u> </u>			CR-12					CARR-20					CR-02			

organisms in Surr because ref 3 thropis & Owle Ca 7/29

Owle Second organisms in Sure because ref 3

CLIENT Integral Consulting Inc			PROJECT			SPECIES	SPECIES Fobauctorius estuarius		NEWFIELD.	NEWFIELDS LABORATORY Port Gamble Rath 3	ORY	PROTOCOL PSFP 1995		
NEWFIELDS JOB NUMBER 860.0074.000	BER		PROJECT MANAGER B. Gardiner	MANAGER		TEST START DATE	T DATE		TEST END DATE 29-Jul-13	DATE	3			
N = Normal	Initial # of					ENDPOINT D	ATA AND OF	ENDPOINT DATA AND OBSERVATIONS	s					
#M = Mortality or Molts G = Growth	Organisms	ms	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10		
(fungal, bacterial, or algal) D = No Air Flow (DO?)			Date	Date	Date	Date	Date		Date	Date	Date		ə	
F = Floating on Surface TC = Too Cloudy	29	0	2	722	Mrs	7(33	1.24	7/25	7.26	424	scil L	52/2	۶۲ Aliv	а Весоч
			Tech.	Tech.	Tech. J	Tech.	ě	T		Tech.	Tech.	Tech.	əgw	
Client/NewFields ID	Rep	Jar#	ح	7	ر 2	NAMS	Z	WC	18H	ر پر	ع	y	nΝ	
	*		~ -	5	2	2	$^{\mathcal{N}}$	2	2	2	2	ス	20	
	2			G	æ	2	ن	\ <u>\</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				8)	
SD0001	'n			2	<u>6,</u> ₹	N 3		W.					8	
	4				ى	_ J	D)	ىل				->	6)	
	r,		-	<u></u>	2	2	۷,	⊋	~			>	\$/	,
	-		28.16	ঙ	17.6	১	同の	(F)	Z	7	->	Z	و.	
	2		77	27.6	17,0	Þ	38,6	(F)	2	S	ত		0	
SD0002	n		2	S	S	Þ	17, 18; S	r P	ī	2.	2		B	
	4		2	S	ত	2	Ē	٤	2			<u> </u>	30	
	5		5/10	40	\alpha	些	N.	\$0±)	<u>"</u>			22	20	
	-		20	7	2	2	2		Z			て	6	
	2		2	7		_		*	IF				, <u>8</u>	
SD0003	3			72, p 5 ^C	= \				2				82	
	4			. 2								,	2	
	5								-}			<u> </u>	6)	
	٧								Ν			7.	(6	
	5								儿			,	61	
SD0004	ო			→	···········				کا		→		20	
	4			<u>기</u>							72		18	
	ည		>	<u></u>	→	}	7	→	D		2	>	2	
									7 1	\ \ \				

Obvation vestoved to Chamba. Uthrills.

[D.o. 7.7 moll pt 7.9]

Temp. 14.5 or sec. 29 pt.]

Words Chord (F)

10-DAY SOLID PHASE TEST OBSERVATION DATA

™ NewFields

				pared s:	а Весоуа	est Des D \ (yns	dmuN s N)																				
				ə	viIA א	əqwı	n,	20	20	or	ટ	20	22	02	61	1.7	20	(ا	<i>∞</i>)	ב	a	19	20	20	2	٥	20
PROTOCOL PSEP 1995			Day 10	Date	1/2	Tech.	*	か	4.	Y	Σ	->	Z					×				>	N				>
ORY			Day 9	Date	130	Tech.)	2	<u>{</u>	万	2							i v			4 4	- Ø.) } 				-
NEWFIELDS LABORATORY Port Gamble Bath 3	DATE		Day 8	Date	tak	Tech.	بر بر	カー	2						· · · · · · · · · · · · · · · · · · ·									7			>
NEWFIELDS LABOR Port Gamble Bath 3	TEST END DATE 29-Jul-13	NS	Day 7	Date	7.36	Tech.	7.	Ν				***************************************			٠٠.	<u>₹</u>		N	T	<u></u>	Ν			4			3
		ENDPOINT DATA AND OBSERVATIONS	Day 6	Date	7/28	Tech.	(P.E.)	<u>J</u>										,	7	6 M 173	2	1			-	→	JF05
SPECIES Eohaustorius estuarius	RT DATE	ATA AND O	Day 5	Ω	7.34	<u>1</u>	757 77	N			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						ラ	7	Ν.	W9	N	М	N	-			ע
SPECIES Eohaustori	TEST START DATE	ENDPOINT	Day 4	Date	487	Tech.	MAN	2						- 23	<u> </u>		>	2	7	凹	2	2	2				
			Day 3	Date	22k	Tech.	2	2				************		→	45,16	`2					->	加	2				ə
	AANAGER		Day 2	Date	SIST	Tech.	ر د	2		>	<u>ك</u>	2		.a.			7	4)	25	고 고	2.						<i>-</i> >
PROJECT WPAH	PROJECT MANAGER B. Gardiner		Day 1	Date	3k	Tech.	کے	2				→	77	7	<i>\\\</i>	25	2	24	7	2			2.		^	ル	26
-	2	Initial # of	Organisms		, 50		Rep Jar#	-	2	г	4	2	4	2	e	4		que	2	3	4	5		2	3	4	2
CLIËNT Integral Consulting Inc.	NEWFIELDS JOB NUMBER 860.0074.000		### = Emergence #M = Mortality or Molts G = Grouth	(fungal, bacterial, or algal) D = No Air Flow (DO?)	F = Floating on Surface TC = Too Cloudy	A. AVARDONCE	Client/NewFields ID R			SD0005					SD0006					SD0007					SD0008		

O Inculantly busied a most while electrisit it was still along

				vered	ad Reco	eo ted	imuM	0	6	20	2.6	6	92	02	20	9	٠. ک	<u> </u>	. Q		8	0	0		7.		
PROTOCOL PSEP 1995			Day 10		42/t	_	7	N 20	1	14 2	2 N	2	2 N	2 1	2	1	(A) WA /	1 Nox	16 11 28	. q) ?;	• က •	V2001 20	20 19	9	20	
	5		6 Á		22	Tech. Tech.	200	2-	->	デ	7	ア	7_					2	2	2	7		N2				
NEWFIELDS LABORATORY Port Gamble Bath 3	TEST END DATE 29-Jul-13		Day 8	Date 7	7	Tech.)	2															€			>	
NEWFIEL Port Gam	TEST ENI 29-Jul-13	rions			、	Tech.		N,	~	Ī.	Ν	<u>7</u>	2			1 4			٠.	7	2	<u>u</u>	N	7	N		
uarius	щ	ND OBSERVA	Day 5 Day 6		7	<u>-</u> ~	\ <u>9</u>	1F,6 11785		7	5 6	xtax	2	<u>کے</u> ز	À (()	7	(F0S	1785	5	}					\rightarrow	
SPECIES Fohaustorius est	TEST START DATE	ENDPOINT DATA AND OBSERVATIONS	Day 4 Da		33	Tech. Tech.	MMAS 17	Z 用	√ 	<i>γ</i>) ~	N ⊒1	<u>ک</u> 2	2	ν 	11	N =1	W W	2 2	16 26	2	2	2				9
15 u	18 19	N II	Day 3		2		70	2	ঙ	7																	
	MANAGER		Day 2	Date 7	7/21	Tech.))	2	7	2:		36	Ī	: 2	7	7	. 5				***************************************						
PROJECT	PROJECT MANAGER B. Gardiner		Day 1	Date	7/2	Tech.	70	7.	7	<u></u>	7_			->	25	11	ا لم										
	~	Initial # of	Organisms	ç	3		ep Jar#		~.			-		<u> </u>								9	1	2	9	4	
CLIENT Integral Consulting Inc	NEWFIELDS JOB NUMBER 860.0074.000			(fungal, baderial, or algal) D ≤ No Air Flow (DO?) E = Floating on Surface	TC = Too Cloudy		Client/NewFields ID Rep	***	2	SD0009	4	\$	-	2	SD0010 3	4	9	·	2	SD0011 3	4				SD0012	7	

10 wc + 129/13 of

10-DAY SOLID PHASE TEST OBSERVATION DATA

■ NewFields

									· ·								Ι						4,47			
:						Mumber Des									~					<u>.</u>				A A A A A A A A A A A A A A A A A A A		
				ЭA	rilA 19	odmuM	61	20	22	6)	20	6	97	92	6)	07	6)	já	5	81	161	b)	St.	6)	B	20
PROTOCOL PSEP 1995	110		Day 10	Date	75	Tech.	7	-		<u> </u>	3	I				>	2				A	て				*
)RY			Day 9	Date	82/	Tech.	7	,		1	***************************************	***************************************									************		- Control Library			_}
NEWFIELDS LABORATORY	ATE		Day 8	Date	ter	Tech.	2	•					**				,,,,	, M. MOSTO	- >	山	رئم					->-
NEWFIELDS Port Gamble	TEST END DATE 29-Jul-13	S	Day 7	Date	436	Tech.	11	N	ΙĒ	N	- Control	ega verteber	· · · · · ·	Ą	ひと	2	Julippe Barrell	A COLUMN	ATT MARKET OF THE PARTY OF THE		worker 2			۵.	Ī	2
		ENDPOINT DATA AND OBSERVATIONS	Day 6	Date	इ	Tech.	2	,	****					-	•											7
ne actuariue	TEST START DATE	ATA AND OF	Day 5	Date	424	Tech.	N				¬ν	Ĩ	Ž	N	7	Ž	2	<u>, </u>	->	2F	N	N			<i>-</i> >̇ν	可
SPECIES	TEST STAR 19-Jul-13	NDPOINT D	Day 4	Date	18 18	Tech. N(IW.RS	2	_					4/9													٦
			Day 3	Date	20/1	Tech.	7 .												******							اد
	MANAGER		Day 2	Date	70/	Tech. ∫ ∟	2)							***************************************									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5
PROJECT	PROJECT MANAGER B. Gardiner		Day1	Pate 7	7 20	Tech.	2.												-							7
		# of	Organisms	. 6	η,	Jar#			********							*****										
	MBER	Initial # of	Orga			Rep	4	2	က	4	5	7	. ~	3	4	5	_	5	က	4	9	1	2	က	4	2
CLIENT Integral Consulting In	NEWFIELDS JOB NUMBER 860.0074.000	N = Normal 4F = Emergebose	#M = Mortality or Molts G = Growth	(fungal, bacterial, or algal) D = No Air Flow (DO?) E = Floating or Services	TC = Too Cloudy	Client/NewFields ID			SD0013					SD0014					SD0015					SD0017		

CLIENT Integral Consulting In	٠		PROJECT			SPECIES Fohausforiu	s estuarius		NEWFIELDS Port Gamble	NEWFIELDS LABORATORY Port Gamble Bath 3)RY	PROTOCOL PSEP 1995		
NEWFIELDS JOB NUMBER 860.0074.000	MBER		PROJECT MANAGER B. Gardiner	MANAGER		TEST START DATE 19-Jul-13	T DATE		TEST END DATE 29-Jul-13	ЭАТЕ			}	
N = Normal	Initial # of					ENDPOINT DATA AND OBSERVATIONS	ATA AND OF	SERVATION	S					
#M = Mortality or Molts G = Growth	Organisms	:ms	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10		
(fungal, bacterial, or algal) D = No Air Flow(DO?) F ≈ Floating on Surface TC = Too Cloudy	Ñ	20	Date A Do	Date \mathcal{F}	Date Nrl	Date 7(225	Date 7.24	Date ACS	Date 7.36	AP7	Date 77%	Date 7[24	9vil∆ 1	ранакозод р зунашшо;
Client/NewFields ID	Rep	Jar#	Tech.	Tech.	Tech. J	Tech.	Tech. JSH	Tech.	Tech.	Tech, J	Tech.	Tech.	əquinN	sad tadmuk O i (yns li)
	4		2	2:	7	2	À	/ 13	~	2	2.	2	4	
	2												20	
SD0018	ო						- Andrewson (A)					>	6)	
	4							- Sec. 12				16	22	
	5							2.55				16	13	<u>.</u>
	-			>				et	7	<u>-</u>	ن	ħ	6	
	7			7					万	35	75	2	61	
SD0019	က			2_			7	3,27	2	2	2		<u>a</u>	
	4						IF		T			0	6	
	5						2		٤_			∌	8	
	/		<u>ئ</u>		->		Z	\	N		9	スキバ	20	v
	2		25		1		Ŋ	(502)				<u> </u> (6)	2	-
SD0020	က		2		7.5		الها	7	omoraniche				[7]	
	4		丛	~ →	2		Z	_					T.	
	5		25	SF	165161F		2					خ	? 2	
	1		T.	71	고		<u>_</u>			,12		エ	20	
	2		100	ζ,	5		Z					>	ე	
SD0021	က		7:		2m,16	>	2	-₹	->	>	_>	3)	18+8-CM	
	4		->	>	2	1E3M	<u>₹</u>	<u>7</u>	<u>=</u>	\mathcal{D}	S	Z	1706	-
	ഹ		严	出	でを表	<u>∑</u>	Ĩ	<u> </u>	<u></u>	2	2	*	6	
											જોક			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

(2) we starts.

CLIENT	PROJECT	SPE
Integral Consulting Inc.	WPAH	Eoha
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST
860.0074.000	B. Gardiner	19-Jr

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME , I	TEST END DATE	TIME
19-Jul-13	1340	29-Jui-13	

									WATER QUALITY DATA	Y DATA			
		Tes	Test Conditions		DO (mg/L)	Ten	Temperature (°C)	Ø.	Salinity (ppt)		pH 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	теет	unit		
\$D0012	0	WQ	12	و	t,	و	5.91	2	ar	5	7.8	৩৭	7119/13
SD0014	0	wa	13	و	7.9	3	ا (ه)	ح	29	S	7.8	Ben	7 19 13
CARR-20	0	WQ	15		8.0		0.91		38		٥. ₀	Z	
\$D0021	0	WQ	18		8,0		15.8		27		7.8	Bh	
9000CS	0	WQ	22		7.9		(5,8		28		4.8	50	
8000QS	0	WQ	. 27		8,6		15.8		29		4.9	\\$X	
CR-02	0	WO	29		8.1		19.8		28		7.9	99	
SD0008	0	WQ	35		8,1		15.8		29		7.9	99	
Control	0	ΟM	47		8.(15.8		28		7.9) DG	
SD0010	0	WQ	\$		8,1		(5,8		28		7.9	6 6	<i>B</i> .
CR-12	0	Ø	55) · 8		t'S1		2 K		16.4	\b9	
SD0011	0	WO	58		8.1		七'5)		29		7.9	\9 <i>G</i>	
SD0004	0	WO	6/		8.0		15.9		28		7.9	,56	
SD0007	0	MO	82		1.8		15.9		28		7.9	50	
SD0005	0	WQ	88		1.8		15.8		25		7.9	99	
SD0002	0	WO	90		8.0		15.8		2 B		4.9	Ъø	
SD0001	0	ΜQ	66		8.0		15.8		28		8,4	-50 -20	
SD0018	0	WQ	104		٧٠/		15.7		28		×,	200	
SD0017	0	WQ	108		. J. &		(5.子		28		& O	ખેવ	
SD0009	0	ø ≸	109)	7.8)	16.4)	% %	-)	7.8	50)
									16	}			

CLENT	PROJECT
Integral Consulting Inc.	WPAH
NEWFIELDS JOB NUMBER	PROJECT MANAGER
860.0074,000	B, Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

	Date		17/19/13			7
	Tech		Y Q			Ð
	рн 7-9	unit	7.9	7.9	7.9	4.9
Y DATA		meter	S			7
WATER QUALITY DATA	Salinity (ppt) 28 ± 2	ppt	boe	29	28	38
	S	meter	7			7
	Temperature (°C) 15±1	deg C	6.61	15,7	15.子	15.6
	Tei	meter	9			\rightarrow
	DO (mg/L) >4.6 mg/L	mg/L	8.1	1.8	2.8	8.2
		meter	بر			7
	Test Conditions	Jar#	121	AS. 25.	131	136
	Tes	Rep	WQ	WQ	ρW	wa
		Day	0	0	0	0
		Client/NewFields ID	SD0020	SD0013	SD0019	SD0015

™ NewFields

CLIENT	PROJECT
Integral Consulting Inc.	WPAH
NEWFIELDS JOB NUMBER	PROJECT MANAGER
860.0074.000	B. Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	DATA			
		Tes	Test Conditions		DO (mg/L) >4.6 mg/L	Ter	Temperature (°C) 15±1	S	Salinity (ppt) 28 ± 2		Hd 7.9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Was property and a second seco	
SD0012	←	WQ	12	ا ب	9.0	9	15.4	7	29	8	しって	η	ork
SD0014	٠	WQ	13	-	1.8		18.3		29		7.9	•	o = -
CARR-20	ζ	WQ	15		0.8		(5,3		28		79		
SD0021	-	WQ	18		8,0		15.7		29	·	8.F		
SD0006	-	WQ	22)· <i>\</i> 9		15.2		29		bt		
\$D0003	ţ	wa	27		5 (←		E'S)	-	38		p. t		Own All Million Assembly Assem
CR-02	1	WQ	29		9,0		12.21	Managhar (Albania)	28		7.9	Managana Aire.	
8000 0 S	. ***	WQ	35		7.9		C'S)		67	-4-044 May 2004 (10)	して		
Control	-	WQ	47		1.8		1.31		28		8.0		<i></i>
SD0010	ı	WQ	54		8.2		0'51		29		0.8	**************************************	
OR-12	1	WQ	55		9.1		S'SI	a income and a	37		6.0	Patricia de Santo, que proprio	
SD0011	,	WQ	58	-	0.8		(5.3	, a.	29		7.9	· · · · · · · · · · · · · · · · · · ·	
SD0004	₩	WQ	79		9.4		9,51		29	agains an order	七 ['] 七		
2000GS	ν.	WQ	82		0'0		2'51		162		bt		
\$000QS		WQ	88		1.8		ه.کا		20		ල ට	and the second second	
SD000Z		wo	06	······	0.8		15.3		28		かた		
SD0001		WO	66), g	**************************************	(5.2		28		ه. به		
SD0018		WQ	104		9.8		(§.3		29	******************	49		
2100QS		WQ	108		7.4		15.4		29 200	-crain-my-man-	34+bit		
6000GS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WQ	109	>	7.9 tit		No. 25 上記	_>	62	>	#X 8.E	د	>
										_			

CLIENT	PROJECT	S
Integral Consulting Inc.	WPAH	Eo
NEWFIELDS JOB NUMBER	PROJECT MANAGER	쁘
850.0074.000	B. Gardiner	

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

				L					WATER QUALITY DATA	Y DATA			
		Ţ	Test Conditions		DO (mg/L) >4.6 mg/L	Ten	Temperature (°C) 15±1	S	Salinity (ppt) 28 ± 2		Hd 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0020	-	WQ	121	ھ	9.6	حـ	15.0	7	29	Ś	7.9	γ_{c}	2/20/13
SD0013	-	WQ	135		1.0		15.5		28		7.9		
SD0019	~	WQ	131		0.8		0'5)		29		7,9)	
SD0015	-	WQ	136)	8.0	->	15.0	- ≯	29	7	7.9)	->

CLIENT	PROJECT	SPE
Integral Consulting Inc.	WPAH	Eoha
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TES
860.0074.000	B. Gardiner	19-4

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	Y DATA			
		Tes	Test Conditions		DO (mg/L) >4.6 mg/L	Tel	Temperature (°C) 15±1		Salinity (ppt)		р Н 7 - 9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0012	2	WQ	12	9	9.1	19	14.9	2	29	V_{i}	bt	<u>ع</u> ل	Singe
SD0014	2	WQ	13		7'8		(4.7)		29		かけ		
CARR-20	2	WQ	15		9.0		14.7		38		8.0		
\$D0021	2	WQ	18		8.0		(4.9		29		7,8		and the same of th
SD0008	2	WQ	22		2.8		4.6		29		4.9		
SD0003	2	WQ	27		4.9		149		29	(tradition may 2 June 1	8,4	- Andrews in the Paris of the P	
CR-02	2	WQ	29), 8	, and common the second	14.6		28	-200-00-00-00-00-00-00-00-00-00-00-00-00	5,5		
SD0008	2	WQ	35		8.((4.7		29		64	· · · · · · · · · · · · · · · · · · ·	
Control	2	WQ	47		2.8	elan establishmen	(4,7	nda estado de juindo.	28		0.8	-MANAGENIA yang ba	the substitute of the substitu
SD0010	2	WQ	54		6.3		19.6	rdamenia promon.	29	M d'Aineile (Al D'Air) ge	8.0	**************************************	
CR-12	2	WQ	55		8.0		(4.8		28		0,0		
SD0011	2	WQ	58		8.1	T may sange, may	14.8	liberio Al-Colonia	29		e L		
SD0004	2	WQ	79	IARLAND/SWY/	4.0		(5.0		28		7.8		S. Sarradicargas and a
SD0007	2	WQ	82		p,'t		14.9	ARIACISM AS ANALOS	79	**************************************	b.E		
SD0005	2	WQ	88		9.1		149		29	***********	bt	***************************************	-
SD0002	2	WQ	90	************	6, 0		(5,4	***************************************	28		9.0		and the second
SD0001	2	WQ	- 66 - 66		めた	***************************************	k.3)	***************************************	28		D, t	ساهب مشتر درست	
SD0018	2	Ø.	104	0.00	$^{\circ}\mathcal{I}$		14.6	graf taron and known	28		b.4	ala alaman da distra	THE STATE OF THE S
SD0017	2	å Ö	108		9.(14.9	wayata daga	29	**************************************	J. T.	garagical microsoft had a	موندور ومعالما
SD0009	2	WQ	109)	0 0	١	(4.8	<u>ر</u>	29	_>	8.F	ـــکـــ	Ŷ
	はあたしと類					1000							

CLIENT	PROJECT	SPECIES
Integral Consulting Inc.	МРАН	Eohaustoriu
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST STAR
860.0074.000	B. Gardiner	19-Jul-13

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jui-13	

Test C Client/NewFields Day Rep SD0020 2 WQ SD0013 2 WQ SD0019 2 WQ	Test Conditions Jar# 121 121 126 136 146 -494		9, (8, 0, 0)	meter	Temperature (°C) 16.13 14.514.3 14.514.3 14.3	S Meter S	Salinity (ppt) 28±2 Ppt mete 29 29 29 29	meter S	7.9 mit 7.9 7.9 7.9 7.9 7.9 7.8	Tech J	Date 7/21/13
SD0015 2 WQ	136	`	9)	ハヤ	->	2	>	8,4	>	-)

OWC. IC 3722 [13.

CLIENT	PROJECT	SPECIES
Integral Consulting Inc.	WPAH	Eohausto
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST STA
860.0074.000	B. Gardiner	19-Jul-13

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gambie Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	YDATA			
		Test	Test Conditions		DO (mg/L) >4.6 mg/L	Ter	Temperature (°C) 15±1	S	Salinity (ppt) 28 ± 2		Hd 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0012	8	WQ	12	9	8.0	9	14.9	7	26	S	4.9	Sec.	Silvalt
SD0014	3	WQ	13	/	1.8	•	14.6		28		4,		
CARR-20	ε	wa	15		8.5		اط. ہر اح		28		ن ض		
SD0021	3	WQ	18		8.2		14.2		28		49		
SD0006	က	WQ	22		8.2		14.2		38		0,8		
SD0003	ღ	WQ	27		8.1		14.2		28		4.8		
CR-02	ო	WQ	29		8.2		14.2		28		00		
SD0008	ო	WQ	35		8.2		14.2		28		8.8		
Control	ო	WQ	47		8.5		14.J		38		Q.		
SD0010	ю	WQ	54		8.4 7.8		16.11		28		8.1		
CR-12	ღ	WQ	55		8.3		14.2		28	• • • • • • • • • • • • • • • • • • • •	8.1		
SD0011	ო	WQ	58		8.3		14.2		28		Q. &		
SD0004	ю	WQ	79		7.9		14.4		28		4.9		
SD0007	ო	WQ	82		1.8		14.4		28		 8		
SD0005	က	WQ	88		2.8		14.3		38		8.0		
SD0002	က	W	06		8.2		14.5		28		8.2		
SD0001	က	ΔW	66		8.2		14.8		28		1.2		
SD0018	ღ	WQ	104		ુ ,		14.3		2 K	•••••••••••••••••••••••••••••••••••••••), &		
SD0017	က	wa	108		8.3		14.3		28		1.8		
SD0009	က	WQ	109	\rightarrow	· &	\rightarrow	14.3	->	36	\ <u>\</u>	2.8	\geqslant)
										>			

™ NewFields

CLIENT	PROJECT	SPECIES
Integral Consulting Inc.	WРАН	Eohaustorius es
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DA
860.0074.000	B. Gardiner	19-Jul-13

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	DATA			
		Tes	Test Conditions		DO (mg/L) >4.6 mg/L	Tel.	Temperature (°C) 15±1	S	Salinity (ppt) 28 ± 2		рН 79	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0020	6	WQ	121	و	8.2	و	7 71	7	28	S	8.0	Beg	21/22/13
SD0013	ю	δW	125		8.3		14.1		28		- 8		
SD0019	ო	WQ	131		8.2		14.0		2B		8.1		
SD0015	ю	WQ	136	≯	8.2	>	14.0	\rightarrow	28	- ⊋	√ ⊗	7	→
											•		

CLIENT	PROJECT	SPECIES
Integral Consulting Inc.	WPAH	Eohaustorius est
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DAT
860.0074.000	B. Gardiner	19-Jul-13

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jui-13	

T Day Rep	Test Conditions	meter	DO (mg/L) >4.6 mg/L mg/L	Te	Temperature (°C) 15±1 r deg C	meter	WATER QUALITY DATA Salinity (ppt) ppt mete	/ DATA	pH 7 - 9 unit	Tech	Date
	12	ې	54	9	0'51	4	28	S	5-4	66	3/2/5
	13		9'8	-	14.9		28	-	7.9		•
	15		8.6		ナル		28		Q. &		
	18		\$0		ا <u>تا</u> ا		ar		78		
	22		8.1		14.60		38		8. C	SCALAR PROPERTY.	
	27		8,6		14.6		2K		7.8	PER CONTROL OF THE PER CONTROL O	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	29		8,1		14.6		28		7.9	antinantin philade	
	35		8,1		7.6		ar		7.01		
	47		8.2		الح. و		28		8.0		
	22		8,3		14.6		29		ر کړ		
	55		8.2		4.7		28	 -	8,0	and the second	Years Walter State of
	58		8.2		エチ		28		Ø,0		
	79		P. 4		14.9		28		7.8	* </td <td></td>	
	82		8.0		14.9		28		8.0	+ Xia hay, dalk' icp ccco.	-
	88		8.1		14.8		28		8.0		
	90		8.1		15,0		ar		8.0	A STATE OF THE STA	Sunday (Malaness Shade)
	98		8.0		15.0		38		7.8	Section Section 2	***************************************
	104		8.2		14.8		28	· · · · · · · · · · · · · · · · · · ·	7.9	Cooks	
	108		2.2		J4, તૈ		28		4.9		
	109	کر	8.1	9	2. F.	^0	28	4	4.9	7)
									-		•

CLIENT	PROJECT	SPECIES
Integral Consulting Inc.	WPAH	Eohausto
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST STA
860.0074.000	B. Gardiner	19-Jul-13

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	YDATA			
		Te,	Test Conditions		DO (mg/L) >4.6 mg/L	Tel	Temperature (°C) 15±1		Salinity (ppt) 28 ± 2		рн 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0020	4	WQ	121	و	8.2	و	વ.મા	d	28	9	49	৩৩	7/23/13
SD0013	4	WQ	125		8.7		14.6		28	J	7.9		
SD0019	4	WQ	131		8.2		14.5		22		79		
SD0015	4	WQ	136	4	2.8	}	14.5	P	38	7	129	-)	- >

CLIENT	PROJECT	SPECIE
Integral Consulting Inc.	WPAH	Eohaus
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST S
860,0074,000	B. Gardiner	19-Jul-1:

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	/ DATA			
		Tes	Test Conditions		DO (mg/L) >4.6 mg/L	Т.	Temperature (°C) 15±1		Salinity (ppt)		рн 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	J-	meter	deg C	meter	ppt	meter	unit		
SD0012	9	WQ	12	9	8.2	9	14.9	8	38	S	β. (На	7.24.13
SD0014	5	WQ	13		8.3		8 · H1		36		7.9		
CARR-20	5	WQ	15		5.5		2. 8		20		8.1		
SD0021	5	οM	્81		6.3		7,0		40		8,0	and the state of t	
9000CS	ည	δW	22		<i>00</i> ;		7.7. 80.7-		38		<u></u>		
SD0003	5	WQ	27		رة. 8.3		8.H. SL(1)		36	· · · · · · · · · · · · · · · · · · ·	CB-1-79		ning garage of participation of
CR-02	5	WQ	. 59		G.7		14.8		28		8.0		
SD0008	5	wa	35		6 .9		14.9		3 E		6.0		need actualizing pure
Control	5	WQ	47		8.3		871		8C		8.0		
SD0010	5	WQ	54		8.3		14.9		38		8.0	- Martines	*A Annual of Asia (A)
CR-12	5	WQ	55		8.3		14.9		80	***************************************	9.		and the special specia
SD0011	5	WQ	58		8.3		14.9		20	<u></u>	0.0		
SD0004	5	WQ	79		7.8		15.3		38		7.9		
SD0007	5	WQ	82		8.0		15.2		28		8.2		
SD0005	5	WQ	88		8		15.1		36		8.	NAC WORK	
SD0002	5	WQ	06		8.3		15.3		36		8.0		economic de la conomic de la conomica de la conomic de la
SD0001	5	WQ	66	····	7.9		15.2		38		8.£	(And State of State o	ng ay ng ganang di sa
SD0018	5	WQ	104		8.1		1.5/		38		7.9	-	
SD0017	5	WQ	108		6.3		15.0		38		0.8	*********	
SD00009	Ŋ	W	109	-	G.9		15.1	······································	ge.		6.0	ער-	-2
				·		,] :					

(1) IE TAMIS IGH

CLIENT	PROJECT
Integral Consulting Inc.	WPAH
NEWFIELDS JOB NUMBER	PROJECT MANAGER
860.0074.000	B. Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

WATER QUALITY DATA	Test Conditions DO (mg/L) Temperature (°C) Salinity (ppt) pH PH Tech Date	Rep Jar# meter mg/L meter deg C meter ppt meter unit	121 6 8	WO 125 8.2 14.7 28 7.9	WQ 131 8.2 14.9 38 8.1	WO 136 J 8.2 V 14.7 V 28 J 7.9 V
		meter	9		Carl Mary State of St	う
	t Conditions	Jar#	121	125	131	136
	Tes	Rep	δM	WQ	WQ	WQ
		Day	5	5	5	5
		Client/NewFields ID	SD0020	SD0013	SD0019	SD0015

CLIENT	PROJECT
Integral Consulting Inc.	WPAH
NEWFIELDS JOB NUMBER	PROJECT MANAGER
860.0074,000	B. Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	Y DATA			
		Tes	Test Conditions		DO (mg/L) >4.6 mg/L	Ter	Temperature (°C) 15±1	8	Salinity (ppt) 28 ± 2		hд 7 - 9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0012	9	WQ	12	9	0.8	6	15.3	4-	28	S	2.8	86	7/22/15
SD0014	ę	WQ	13		8.1		0. 21		28		7.8		
CARR-20	9	WQ	15		3.2		19.9		28		4		
SD0021	9	WQ	18		8.5		7.00		28		48		
SD0008	9	WQ	22		8.2		45.4.8		& ~		Q		
SD0003	မ	WQ	27		8.1		14.8		28		4.8		
CR-02	9	WQ	59		8.2		4.41		28	***************************************	₩.		
SD0008	9	WQ	35		2.8		7.7		م 8		4.9		
Control	9	WQ	47		ج. ج		ナ、こ		28	-to-waterer	4.9		
SD0010	9	WQ	54		8.4		F. P.		28.39		4		
CR-12	9	WQ	55		8.3		14.8		28		Ø. Ø.		
SD0011	9	νo	58		8.3		F.P1		88		4.9		
SD0004	9	WQ	79		8.1		14.9		38	-	7.9		
SD0007	ဖ	WQ	82		8.1		14.9		28		<u>-</u> .		
SD0005	ဖ	WQ	88		8.2		14.9		98		8,0		
SD0002	မ	WQ	06		8.0		14.8		38		7.8		
SD0001	မ	WQ	66		7.6		14.8		28		7.6		
SD0018	9	WQ	104		8.2		14.8		28		7.8		
SD0017	ပ	ΟM	108	_	ሬ. ን		14.8		38		8.0		
8000QS	9	WQ	109	$\overline{}$	8.3	7	H.8	7	20		8.O		\ \ \
長夢 要なる 言語かぶ							Y		•	}] }

CLIENT	PROJECT
Integral Consulting Inc.	WPAH
NEWFIELDS JOB NUMBER	PROJECT MANAGER
860 0074 000	B Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	DATA			
		Tes	Test Conditions	-	DO (mg/L) >4.6 mg/L	E9	Temperature (°C) 15±1	,	Salinity (ppt) 28 ± 2		рН 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0020	9	WQ	121	e	8.3	e	14.7	ಳ	38	5	8.5 gr	156	7-125/13
SD0013	9	WQ	125		8.1		15,0		38		7.8		
SD0019	9	WQ	131		8.1		14.8	·	2 S		8.1		
SD0015	9	WQ	136	7	8.2	2	14.8	-)	38	7	7.8	9	7

■ NewFields

CLIENT	PROJECT	(0)
Integral Consulting Inc.	wран	
NEWFIELDS JOB NUMBER	PROJECT MANAGER	<u>ı</u>
860.0074.000	B. Gardiner	<u>-</u> -

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jui-13		29-Jul-13	

				Ţ		T				Ţ	***************************************		<u> </u>			T	<u> </u>	T]
	Date		51.78.13							-													
	Tech		HA			177711						· · · · · · · · · · · · · · · · · · ·			The state of the s								
	pH 7-9	unit	8.3	7.9	9	8.0	co io	7.9	水,80	300	<i>a</i> .	8.0	69	0.0	<i>Q</i>	83	8.0	8.0	7.8	7.9	∞ö	<u></u>	
Y DATA		meter	5	,,,,, ,,,																			
WATER QUALITY DATA	Salinity (ppt) 28 ± 2	ppt	36	38	38	28	36	26	20	28	38	29	28	36	ය න	28	30	38	28	38	38	38	•
	0	meter	8																				
	Temperature (°C) 15 ± 1	deg C	14.8	<u>元</u> 9	8.1	-4.80	74.8	14.9	14.9	7.9	14.9	14.9	15.0	١ ٩.٩	15.6	15.3	15.A	131	15.[15. (15.0	15.0	
	Tel	meter	Þ																				
	DO (mg/L) >4.6 mg/L	mg/L	6.5	99	h 8	7.8	2.6	8.3	8.3	8.3	9. 7.	8.5	<i>io</i>	ダ ≫	8.0	8.1	<i>8.</i> A	g.2	8.1	8.3	8.3	9.d	
		meter	2																			*	
	Test Conditions	Jar#	12	13	15	18	22	27	29	35	47	54	55	58	79	82	88	80	66	104	108	109	:
	Tes	Rep	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WO	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WQ	
		Day	7	7		2	2	2	7	7	2	2	. 7	7		2	2	2	7	7		7	11、11、11、11、11、11、11、11、11、11、11、11、11、
		Client/NewFields ID	SD0012	SD0014	CARR-20	SD0021	SD0006	SD0003	CR-02	SD0008	Control	SD0010	CR-12	SD0011	SD0004	SD0007	SD0005	SD0002	SD0001	SD0018	\$D0017	SD0009	· 新年記述 · 新年記述 · 新年記述 · 日本記述

CLIENT	PROJECT
Integral Consulting Inc.	WPAH
NEWFIELDS JOB NUMBER	PROJECT MANAGER
860.0074.000	B. Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jui-13		29-Jui-13	

									WATER QUALITY DATA	/ DATA			
		Те	Test Conditions		DO (mg/L) >4.6 mg/L	Teı	Temperature (°C) 15 ± 1	Ś	Salinity (ppt)		pH 7 - 9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0020	7	WQ	121	9	9.4 9.4	9	14.9	ત	29	5	67	BH	7.36.13
SD0013	7	WQ	125		8.3		14.8		30		7.0		
SD0019	7	WQ	131		8.3		H. 7		28		00)		
SD0015	7	wa	136	~	8.3		14.7	*	38	→	8.7 ×	7	→
											5		

OMR 7.243BH

CLIENT	PROJECT
Integral Consulting Inc.	WPAH
NEWFIELDS JOB NUMBER	PROJECT MANAGER
860.0074.000	B. Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jul-13		29-Jul-13	

	Date		£2/L	#27	22/2	22/2	7723	42/4	£2/£	7777	£21L	747	72×	7/27	7/27	22/2	7127	7/27	7/27	7127	707	1/27
	Tech		H	Ħ	K.	R	#	F.	The state of the s	The state of the s	Ŧ	K	A.	F	M	Ä	Z X	À	#	, 1	Ŧ.	汝
	Hd 9-7	unit	85	3.1	8.3	2.8	83	8.(<u>00</u>	28	Độ.	×.	<i>5</i>	∞.	8.3	8.5	8.2	8.7	© ©	80	8.3	8.3
Y DATA		meter	lV)	p	b	8	p	\wp	\sim	8	8	W	70	R	5	y	5	5	8		, &	8
WATER QUALITY DATA	Salinity (ppt) 28 ± 2	ppt	87	82	82	<i>3</i> 2	82	82	28	28	82	62	82	20	26	26	20	82	202	82	82	26
		meter	7	7	7	7	2	7	12	2	2	2	7	7	N	17	7	7	1)	N	2	2
	Temperature (°C) 15±1	deg C	(6.0	15.2	1.51	2.5)	15.2	5.3	15.1	15.5	15.5	(5.3	2.5)	15.2	15.7	15.7	15.6	15.7	15.7	(5.3	156	15.4
	F	meter	0	e	6	Q	0	e	6	9	2	0	9	9	e	9	0	0	0	6	6	9
	DO (mg/L) >4.6 mg/L	mg/L	2,0	4.0	4.3	8.(00 	6.0	8.0	8.0	8	\ \ \ '\-'	2.8	6.7	4.8	8.0	رُم	7.9	6.	Ф. 	3.1	8.0
	. કા	meter	9	<u>e</u>	9	ی	2	Q	Q	2	<i>~</i>	0	0	2	وير	9	a	Q.	9	<u>ر</u>	0	_0
	Test Conditions	Jar#	12	53	15	23	22	27	59	35	47	55	55	88	79	82	88	96	66	50	108	109
	Tes	Rep	WQ	wa	WQ	WQ	WQ	δW	WQ	WQ	Wa	WQ	WQ	WQ	WQ	WQ	WO	WO	WO	WO	WQ	WO
		Day	۵	80	80	80	80	æ	8	æ	80	ω	80	8	80	8	8	8	ဆ	8	80	80
		Client/NewFields ID	SD0012	SD0014	CARR-20	SD0021	SD0006	SD0003	CR-02	SD0008	Control	SD0010	CR-12	SD0011	SD0004	SD0007	SD0005	SD0002	SD0001	SD0018	SD0017	SD0009

™ NewFields

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT	PROJECT	SPECIES
Integral Consulting Inc.	WРАН	Eohaustorius
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START
860.0074.000	B. Gardiner	19- lul-13

ENT			PROJECT				SPECIES	400		NEWFIELDS	NEWFIELDS LABORATORY		PROTOCOI
tegral Consulting Inc.			WPAH				Eohaustorius estuarius	SF		Port Gamble Bath 3	Bath 3		PSEP 1995
EWFIELDS JOB NUMBER			PROJECT MANAGER	AANAGER			TEST START DATE		TIME	TEST END DATE	ATE	***************************************	TIME
0.0074,000			B. Gardiner				19-Jul-13			29-Jul-13			
												-	
				L					WATER QUALITY DATA	DATA			
		ŢĚ	Test Conditions	s	DO (mg/L) >4.6 mg/L	Te	Temperature (°C) 15±1		Salinity (ppt) 28±2		pH 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0020	8	WQ	121	9	1.8	9	15.2	29	92	Ŋ	9.0	4	£01/2
SD0013	8	WQ	125	9	9.(9	15.3	7	20	5	S. C.	H	404
SD0019	8	WQ	131	9	8.0	e	5.3	7	82	N	8.5	T	1/23
SD0015	8	WQ	136	9	8. (0	15.2	1)	82	6	8.0	7	7177
						-	W. Communication of the Commun			,	*		

EAST.	***************************************	4110110
	PROJECT	SPECIES
Integral Consulting Inc.	WPAH	Eohaustorius e.
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST STARY DA
860.0074.000	B. Gardiner	19-Jul-13

SPECIES NEWFIELDS LABORATORY PROTOCOL Eohaustorius estuarius Port Gamble Bath 3 PSEP 1995 TEST START DATE TIME TEST END DATE TIME 19-Jul-13 29-Jul-13 TIME				
Port Gamble Bath 3 TIME TEST END DATE 29-Jul-13	SPECIES		NEWFIELDS LABORATORY	PROTOCOL
INT DATE TIME TEST END DATE 129-Jul-13	Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
	TEST START DATE	TIME	TEST END DATE	TIME
	19-Jul-13		29-Jui-13	

	Data		37x8				M MAGACIANA															
	Tech		٦('	_											-							>
	pH 7-9	unit	9.8	∞ 	8.3	2.8	8.3	2.8	io io	200	8	9.6	4%	<u>ට</u> න	8.3	8,4	8.2	\ 8:\	60.0	0.0	8.3	8.3
DATA		meter	\$							- Delta series		*********										<u>ب</u>
WATER QUALITY DATA	Salinity (ppt)	ppt	28	97	28	28	28	28	2%	28	28	52	87	28	87	28	28	28	37	67	28	28
	S	meter	7												.,,				-X			-
	Temperature (°C) 15±1	deg C	14.7	14,9	14.9	(4.8	14.9	(5.0	14.9	1221	14.8	15.0	1.51	1.51	[5.2	(6,3	12.(15.2	15,2	15.0	12.1	120
	Ter	meter	ھے						rast = 30°°	C/03994	AUG AND	**************************************	-	***************************************		Carpone			Sex			~ }
	DO (mg/L) >4.6 mg/L	mg/L	8.1	J. 8	8.0	0. &	2.8	8.4	Ø.(7.9	1.8	9.1	8.6	0'8	と、と	7.8	8.0	79	7.8	8.1	æ ó	0.0
	v	meter	_2					0.000											-			9
	Test Conditions	Jar#	12	13	15	18	22	27	59	35	47	25	55	58	79	82	88	90	66	104	108	109
	Tes	Rep	WQ	WQ	w	WQ	WQ	WQ	WQ	W	WQ	wa	® WQ	WQ	WO	® o∧	WQ	WQ	W	wa	WQ	WO
		Day	6	6	Ø	9	6	φ	6	Ø		Ø	. 6	0	G	Ø	6	Ø	တ	G	o	6
		Client/NewFields ID	SD0012	SD0014	CARR-20	SD0021	SD0006	SD0003	CR-02	SD0008	Control	SD0010	CR-12	SD0011	SD0004	SD0007	\$D0005	SD0002	SD0001	SD0018	\$D0017	6000 QS

■ NewFields

CLIENT	PROJECT	SPECIES
Integral Consulting Inc.	WРАН	Eohaustorius estuarius
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE
860.0074.000	B. Gardiner	19-Jul-13

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-Jui-13		29-Jul-13	

									WATER QUALITY DATA	Y DATA			
		Te	Test Conditions		DO (mg/L) >4.6 mg/L	Te.	Temperature (°C) 15±1		Salinity (ppt) 28±2		рН 79	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0020	6	WQ	121	Ŋ	0.8	ه	14.9	7	62	ک	0.1	76	M18
SD0013	6	WQ	125		0.6		ا ۵٬۰۶۱		28	~	9.6	-	,
SD0019	6	WQ	131		p,F		14.9		28		8.5		
SD0015	6	WQ	136	رد	1 b't)	0.2)	<u>۔</u>	20	4	8.0	>	Ĵ

CLIENT	PROJECT	Š
Integral Consulting Inc.	WPAH	ŭ
NEWFIELDS JOB NUMBER	PROJECT MANAGER	E
860.0074.000	B. Gardiner	19

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
19-վսի-13		29-Jul-13	

	Tech Date		51/62/12 199/13																			-
	hd 7-9	unit	8.4	8.0	8.2	8.7	8.2	8.2	- 8:1	8,5	∞.	8.3	0.0	∞ Ó	⊗ C.>	7,00	×	8.7	6.2	N N	2,5	
ITY DATA		meter	3																		_	
WATER QUALITY DATA	Satinity (ppt) 28 ± 2	Ш	28	28	28	28	38	28	28	28	28	28	(X)	28	25	12	X	28	28	86	8	5
		meter	2	•																		
	Temperature (°C) 15 ± 1	g gap	6.51	15.8	15.7	たら	t's)	9.31	9.3	9.51	9.51	15.6	9.51	せら	15.4	ナシ	4:51	15.6	12.6	7).61	9.61	
1	Ţ	meter	S)	. ``																		-
	DO (mg/L) >4.6 mg/L	mg/L	ナナ	7.5	7.9	40.4	8.6	7.9	8,6	8.0	 8	8.1	8.1	8.0	4.9	49	• •	8.6	80	Q-8	1.8	
	0	meter	9	<u>.</u>				-					-									•
	Test Conditions	Jar#	12	13	15	18	22	27	29	35	47	54	55	88	62	82	88	06	66	104	108	
	Test	Rep	WQ	WQ	WQ	wo	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WQ	WQ	W	WQ	WQ	WQ	WQ	OM	
		Day	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	
		Client/NewFields ID	SD0012	SD0014	CARR-20	SD0021	SD0006	SD0003	CR-02	SD0008	Control	SD0010	CR-12	SD0011	SD0004	\$D0007	SD0005	SD0002	SD0001	SD0018	SD0017	

™ NewFields

CLIENT	PROJECT	SPECI
Integral Consulting Inc.	WРАН	Еорап
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST
860.0074.000	B. Gardiner	19-Jul

the second secon			**************************************	
	SPECIES		NEWFIELDS LABORATORY	PROTOCOL
	Eohaustorius estuarius		Port Gamble Bath 3	PSEP 1995
	TEST START DATE	TIME	TEST END DATE	TIME
	19-Jul-13		29-Jul-13	

									WATER QUALITY DATA	Y DATA			
		Ţē	Test Conditions		DO (mg/L) >4.6 mg/L	Ten	Temperature (°C) 15±1		Salinity (ppt) 28 ± 2		pH 7-9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	g Gap	meter	ppt	meter	unit		
SD0020	10	WQ	121	ی	1.8	ی	ما. 15	ح	28	છ	8.1	VIG	30 PR 1521E
SD0013	10	WQ	125		8.1	***************************************	15.6	~	200		0.8	-	
SD0019	10	WQ	131	-00-00-00-00-00-00-00-00-00-00-00-00-00	8.0		15.6		a S) %		
SD0015	10	WQ	136	$\overline{}$	8.1)	13,5	-)	28	-}	8.0	₹	7

Ammonia and Sulfide Analysis Record

Page / of

Þ

DAY of TEST:

Test Duration (days): Organism: Eot Client/Projecti | Pat Angeles

Sample temperature should be within ± 1 $^{\circ}$ C of standards temperature at time and date of analysis. Temperature: Q 93. Calibration Standards Temperature Date: 7119113

POREWATER (PW) (circle one) / Comments:

/ OTHER (circle one)

FINAL

OVERLYING (OV)

Calc- ulated Sulf. (mg/L)																								
Multi- plier										- was the same of														
Measured Sulf. (mg/L)	0.015	0.037	0.026	0.035	0,102	0.041	0.060	P+0-0	0.04C	0.037	0.063	0.079	ماعكة، 0	DOOF.	400.0	0.037	760:0	J-044	150.0	0.048	0.046	D. 033	0.079	850.0
Sample Volume (mL)	Q		-			******							-			-		-						~
Sal (ppt)												market and the second												
pH										<u>ستست</u>														
Sample Preserved (Y/N)	-2			*																				-
Date of Reading and Initials	नीषीड क्षेट्र							- And State Annual Property Control of the Control		~~														D
Cemp %	33.3																						3	>
Ammonia Value (mg/L)	0.6231	0.00.421	1.05	4)+10	6.753	6.987	0.570	861.0	0.185	0.142	3445	051.0	0,0577	0.15	0h1. 0	6.111	7459.0	A.117	0.163	0.242	0.258	ე, <i>გ</i> გი ს	0.112	0.175
Date of Sampling and Initials	Swy. नामाड हज	,																				-		>
Conc. or Rep	Swy.									٠,٠٠٠														>
Sample ID or Description	Control	CR-12	CARR-20	CR-02	SD0001	SD0002	SD0003	SD0004	SD0005	SD0006	\$D0007	SD0008	SD0008	SD0010	SD0011	SD0012	SD0013	SD0014	SD0015	SD0017	SD0018	SD0019	SD0020	SD0021

Test Duration (days):	DAY of TEST:
Organism:	AL -/- OTHER (circle one) ATER (PW) (circle one) / Comments:
Client/Project: / Part Angeles	PRETEST / INITIAL / FINAL OVERLYING (OV) / (POREWAT

	Sample temperature should be within ±1°C of	standades veripetature at time and date of analysis.
rds Temp	Temperature:	5d
Calibration Standa	Date:	

رن الله وط الله الله وط	1	i	4	1															Ł	ı.				
Calc- ulated Sulf.																			Property Company					
Multi- plier					0	S	Ŋ	S	S	ง	V	١	Ŋ	ᢣ	V	Խ	ß		Christian			ત	ડ	d
Measured Sulf. (mg/L)	Acord Of	NA	N/4	0.051	0.384	811.0	á.10E	6.031	0.04	950.0	0.038	520.0	850,0	0.030	0,037	0 .033	0.030	0.049	0.084	0.06S	401.0	0.085	0.085	P00.0
Sample Volume (mL)	14	١	ļ	2		ત	4	٦	2	٦	7	70	7	ત	4	な	ત્	0	0	0)	0	ઇ	せ	Ն
Sal (ppt)	4	30	30	30	15	3.1	25	35	25	25	25	75	32	ઝેઝ	53	23	32	22	33	33	33	25	33	33
Нď	4	49	49	7.8	4.4	7.a	7.5	7.4	2.6	7.6	カナ	47	5 †	4.5	7.0	7.5	4	ナイ	ナせ	7.6	4.5	7.6	ナナ	7:4
Sample Preserved (Y/N)	2																							7
Date of Reading and Initials	7/19 BG										-													7
ر د ک	74																•							3
Ammonia Value (mg/L)	0,525	8,05	18.2	9.48	4.23	e.e4	4.94	2.14	<u>ن</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I. I	8، .لا	0.83	1.24	40.1	1.04	0.800	0.868	1.37	. 67	.85	Fro. 0	٠.اد	08:1
Date of Sampling and Initials	7/9 669																							2
Conc. or Rep																								
Sample ID or Description	Control	CR-12	CARR-20	CR-02	SD0001	SD0002	SD0003	SD0004	SD0005	SD0006	SD0007	SD0008	SD0009	SD0010	SD0011	SD0012	SD0013	SD0014	SD0015	SD0017	SD0018	SD0019	SD0020	SD0021

Ammonia and Sulfide Analysis Record

Page____of___

Client/Project:	Organism:	Test Duration (days):
Trtegral (Port Magles	204	
PRETEST / INITIAL / FINAL	/ OTHER-(circle one)	DAY of TEST: 5
REWAT	ER (PW) (circle one) / Comments:	

3 001 - 17 Pro 1	sample temperature shound be within ± 1 C of standards temperature at time and date of analysis.	
ards Temperature	Temperature: 23.5	
Calibration Standar	Date: 7124113	

2.25 8.25 8.26 9.49 0.628 2.18	Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	of g and Is	Ammonia Value (mg/L)	C. Cemp	Date of Reading and Initials	Sample Preserved (Y/N)	Hd	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calculated Sulf. (mg/L)
20 1 1 1 1 1 2 18 2 18 2 18 2 18 2 18 2 18 2 18 2 18 2 18 2 3 4 4 4 1 1 2 1 2 3 4 4 5 6 6 6 7 1 1 1 2 1 2 1 2 1 3 2 3 4 4 5 6 6 7 1 1 2 7 1 1 2 1 2 1 3 3 4 6 7 7 8 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	Control	SUFF	11241		1.0887	22.5	7124 Ar	`2`						
20 1 2.18 2.18 3.43 4 4 6 6 7 8 8 8 9 1.50 1.50 9 1.50	CR-12	حاد	:		2.28		1							
2.18 8.73 7.81.0 7.81.0 7.81.0 9.19.0 9.10.0 9.10.0 9.10.0 9.10.0 9.10.0 9.10.0 9.10.0 9.10.0 9.10.0 9.10.0 9.	CARR-20				3.49									
281.0 18.2	CR-02				0,618									
7.04.0 851.0 18.7 18.	SD0001				2.18									
7.81.0 1.8.0 1	SD0002				3.43									
7 00 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SD0003				2.81			-						
7.04.0 851.0 1.50 1.50 1.51.0 1.5	SD0004				0.680					•				
25.0 65.0 65.0 75.0 75.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	SD0005				0.916					,,,,,				
7.00 7.00	SD0006				6.983									
25.0 65.0 65.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	SD0007	-			2.23			-						
7 04.0 82.0 92.0 10 10 10 10 10 10 10 10 10 1	SD0008				1.50						·			
251.0 401.0 751.0 611.0 751.0 751.0 751.0	SD0009				0.436									
20.735 0.157 0.160 411.0 40.10 40.10 40.10	SD0010	W-14			9 45.0		-							
251.0 461.0 461.0 461.0 461.0	SD0011				0.335									
70.157 00.100 00.101 10.001 10.001 10.001 10.001	SD0012		**************************************		0,296									
091.0 611.0 451.0 481.0	SD0013				ح 51.0									
401.0 401.0 401.0 53.0	SD0014				0.160							^		
4 0 1.0 hel.0 hel.0 hel.0	SD0015				6.113	-								
0.734 0.158 0.407	SD0017				ከ ዲነ-ወ								-	
0.159	SD0018				D.234									
0.483	SD0019				0.159									
762.0	SD0020	/ P			0.583			\Rightarrow						
	SD0021	>	>		707.0	>	>	>						

Ammonia and Sulfide Analysis Record

Page / of /

Test Duration (days):		DAY of TEST: S	
Organism: 1	403	/ OTHER (circle one)	R (PW) (circle one) / Comments:
Client/Project:	Integral (Port Hingeles	/ INITIAL	OVERLYING (OV) / (PORÉWATE)

2 Vol. 1 1121 1 Vol. 1 1 1 1 1 Vol. 1 1 Vol. 1 1 Vol. 1	sample temperature should be within $\pm i$ \sim 0.1 standards temperature at time and date of analysis	
ards Temperature	Temperature:	5. 25
Calibration Stand	Date: 1/24	

Calc- Multi- ulated plier Sulf. (mg/L)																								
Measured Sulf. (mg/L)																								
Sample Volume (mL)																								
Sal (ppt)	28	26	82	82	52	29	&3 €2	62	62	82	82	28	23	29	4	ر ج	87	z	b2	20	47	3 5	67	4
Hđ	7.9	&.O	8.2	8.0	7.9	7.8	2.8	五元	7.7	土土	7.8	7.8	7.8	4.4	77	7.	t+ 1+	4.3	よみ	2.8	7, 00	ے 60	7,5	1.6
Sample Preserved (Y/N)	\gtrsim																							→
Date of Reading and Initials	114 m																				-	شسه	>	
Cemp °C	4.22																							7
Ammonia Value (mg/L)	0.340	3.95	7.20	6.19	26.2	5.13	4.92	5221	1.20	1.9.1	£8.2	7.36	9.417	10.50H	0.337	0.415	0.25U	0.309	0.312	0.174	0.507	0.406	0.846	1.21
Date of Sampling and Initials	मी भार	_																						7
Conc. or Rep	206	,																					くつ	>
Sample ID or Description	Control	CR-12	CARR-20	CR-02	SD0001	SD0002	SD0003	SD0004	SD0005	SD0006	SD0007	SD0008	6000GS	SD0010	SD0011	SD0012	SD0013	SD0014	SD0015	SD0017	SD0018	SD0019	SD0020	SD0021

	[h	°C of	of analysis.	Multi- ulated plier Sulf.									\ \				><	\/) /								
1): 10	DAY of TEST:	Sample temperature should be within +1°C of	standards temperature at time and date of analysis.	Measured Mu Sulf. pl	0.003	0.013	0.00.0	410.0	160.0	010.0	0.005	2.60.5	0.00	0.01	0.033	110.0	410.0	6.038	0.001	6.003	0.008	0.0,0	0.022	0.002	0. cos	/ F F 7)))
Test Duration (days):	Ω	temperature sh	ls temperature	Sample Volume (mL)	0	_					0)						2		
Test E		Sample	standard	Sal (ppt)																							
				Hď																						_	
	ments:			Sample Preserved (Y/N)	5	_																					
2 40円 2 40円	(PW) (circle one) / Comments:	rature	re: 2A	Date of Reading and Initials	7/24/2 MAY																						
Organism:	PW) (cir	ds Tempe	emperature	Temp																							
	WATER	Calibration Standards Temperature		Ammonia Value (mg/L)									\ \														
2rt Anaeled	ITIA /	Calibra		Date of Sampling and Initials	大のまった																						-
oject:	PRETEST IN OVERLYING (OV)		N.A.	Conc. or Rep	Suran																						
Client/Project:		Ì	Date:	Sample ID or Description	Control	CR-12	CARR-20	CR-02	SD0001	SD0002	SD0003	SD0004	SD0005	SD0006	SD0007	SD0008	SD0009	SD0010	SD0011	SD0012	SD0013	SD0014	SD0015	SD0017	SD0018	S-D0019	2000

Client/P	roject:	Part Ang	Sho	Organism:	m: Edns			Test I	Test Duration (days):	days): 10	0	
PR	RETEST ERLYING	3 (OV) / PC	REWATE)	(PW) (G	PRETEST / INITIAL FINAL / (OTHER (circle one) OVERLYING (OV) / POREWATER (PW) (circle one) / Comments:	ments:				DAY of TEST:	ST: <u>5</u>	
		Calibra	Calibration Standards	rds Tem	Temperature			Sample	temperature	Sample temperature should be within +1°C of	nin +1°C of	
Date:		47		Temperature:	iture: NA			standarc	ds temperatu	standards temperature at time and date of analysis.	date of ana	ysis.
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	Hd	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf.
Control	((5))	SSD. 44413 F			7130113 WMS	5			9.S	0.0.0	-ليـ	0,00
CR-12	}								S	210.0	d	o.02中
CARR-20				\					2.5	0.013	+	0.052
CR-02				_				_	0	2.0.0		
SD0001										0.00%	-	
SD0002				_						9.0.0		
SD0003				_						P 00. 0		
SD0004										410.0		
SD0005										960.0		
SD0006										0.00 S		
SD0007										D.00-		
SD0008		1	\/				<u> </u>			500.0		
SD0009									-	6.0.0		
SD0010										0.001		
SD0011										0.012		
SD0012										0.019		
SD0013							-			0.015		
SD0014			/							0.015		
SD0015										ð.∞(
11.4414								_	_	,	<u>_</u>	

o.158

N

0.018

400

SD0020 SD0021

SD0019

SD0017 SD0018 500

0.00th

Ammonia and Sulfid Analysis Record

Test Duration (days): (⊖	DAY of TEST: 10
Organism: FOMS.	A. OTHER (circle one) BR (PVV) (circle one) / Comments:
· Client/Project: Mkegval / WPAH	OVERLYING (OV) PORRWANT

	standards temperature should be within $\pm 1^{\circ}$ C of standards temperature at time and date of analysis	standards to repetition of this and date of allarysis.
ards Temperature	Temperature: 22.6	
Calibration Standa	Date: 3/29/13	

Calc- ulate Sulf. (mg/L)	Z KZ																					>
Multi- plier	₹ Z																					ક
Measured Sulf. (mg/L)	0.004	0.033	900.0	0.007	0.00	0.013	0.00.7	0.014	0.031	0.030	0.030	0.024	0.013	0.028	0.017	0.049	0.000	510.0	0.00	0.023	0.025	0.029
Sample Volume (mL)	0)																				*	
Sal (ppt)	₹ \$	-															•••					->
Hd	×2																					-)
Sample Preserved (Y/N)	2																					-}
Date of Reading and Initials	7/29/13 JC																					
ے۔ در	22 4											·										ہ
Ammonia Value (mg/L)	0.0910	0.0952	89:S 05:10	05.150.50	8.0b	6.58	0.408	0.439	0.183	0.0407	1.20	0.424	6.0229	0.0173	0.0113	0.00	0.00	0.00	0,00	0.00	0.00	0.00
Date of Sampling and Initials	H09 (13 136																					
Conc. or Rep	SWW.				,																	<u>-</u>
Sample ID or Description	S. Control	10.40	CAMP. 20	C.K. 12)	2	3	4	٧٠ -	9	~	S C	9	0)		2	(3	4	(5)	_	81	b) n

0 WC JL 7129/13

Ammonia and Sulfid Analysis Record

Calc- ulated Sulf. (mg/L)	NΑ	٦)		1			0.220	0.220	0.305	0.280	0.23S	0.165	0.230	0.125	0.130	0.165	0.205	0.175	D. Ibo	0.200	0.330	0.200	0.415	0.265	0.405	0.735		
Multi- plier	すユ	ب		:			S																			ን	***************************************	
Measured Sulf. (mg/L)	0.0(8	0.015					0,044	0.044	0.0%	0.05%	0.047	0,033	0.046	220.0	920.0	0.033	120.0	0.035	0.032	0.040	0.000	0,040	0,083	0.00	0.081	7, 147		
Sample Volume (mL)	2	>					7																-			- →		
Sal (ppt)	<u>لم</u>	J	77	i	28	7.7	28	28	29	82	24	58	28	28	28	58	88	29	28	28	28	56	28	27	28	82		
Hď	<u>م</u> ک		2 12	<u>^-</u>	7.6	1.	7.5	7.5	7.1	7.2	7.4	7.5	7.4	7.2	7.0	7.1	7.3	7.2	7.5	7.1	7.3	7.1	7.3	6.9	6.9	2.0		
Sample Preserved (Y/N)	2																									ر		
Date of Reading and Initials	7/29/13 DC)																										
J. dwa <u>T</u>	4.22	-	22 6	7	23.5														个	22,5					>	A		
Ammonia Value (mg/L)	0.185	0.0010	707.0	ر ا ا	2. (2.85	5.60	6.53	1.68	0,795	0.255	001.0	0.876	0.579	h51 <i>"</i> Q	0.132	0.0622	0.0341	0.0241	0.00	0.00	0.00	0.00	0.0883	0.120	0.00		
Date of Sampling and Initials	729/13 BG	>				***************************************																	•					
Conc. or Rep	Cww.		77.77	ZWG V.																						د		
Sample ID or Description	ov. 20	12		WW. COVINANT	CAPA.20	3.5		N	~	4	>	9	77	ග	9	<i>c</i> }	_	7)	(3	41	S	7	<u>∞</u>	ا	20	12 9		-

Olnsufficient ponemater for analysis

21 Aug-13 16:26 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

Protocol: EPA/600/R-94/025 (1994)

Organism: Eohaustorius estuarius (Amphipod)

Endpoint: Proportion Survived

Material:

Total Ammonia

Source: Reference Toxicant-REF

Mean: Sigma:

141.9 62.2

Count: CV:

11 43.80%

-1s Warning Limit: 79.7

+1s Warning Limit: 204.1

-2s Action Limit: 17.5 +2s Action Limit: 266.3

Quality Control Data

Point	Year 2010			Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
2	2010	Jul	9	15:20	265.9	124	1.994	(+)		02-9263-1875	13-7083-7088
_			27	14:50	165.5	23.62	0.3798	` ′		16-3262-6250	12-1070-3879
3		Aug	17	16:00	182.5	40.64	0.6534			00-5947-2918	
4	2011	Apr	22	16:45	159.7	17.76	0.2856			12-3251-7366	13-7468-5586
5		May	4	14:20	96.78	-45.12	-0.7254				15-6923-8618
6		Aug	5	14:35	144.9	2.959	0.04757			15-9053-5291	03-3498-4458
7	2012	Apr	10	15:10	34.72	-107.2	-1.723	()		05-3970-3796	17-5474-7748
8		May	8	14:30	61.87	-80.03	-1.287	(-)		02-5902-8958	20-3951-0452
9		Jun	8	15:30	166.5	24.59	-	(-)		20-1853-8108	14-9890-9529
10	2013	Feb	22	11:40	152.2	10.32	0.3953			03-4756-9479	07-8270-3224
11		May	10	14:20	130.8		0.1659			09-9358-3146	14-0757-4516
12		Jul	-	15:10		-11.14	-0.1792			01-9831-6628	02-4493-3987
		.	20	10.10	167.1	25.24	0.4058			15-9850-7427	05-2897-2730

21 Aug-13 16:27 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

Protocol: EPA/600/R-94/025 (1994)

Organism: Eohaustorius estuarius (Amphipod)

Endpoint: Proportion Survived

Material:

Total Ammonia

Source: Reference Toxicant-REF

21 Aug-13 16:27 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

Protocol: EPA/600/R-94/025 (1994)

Mean:

9

27

17

22

4

5

10

17

8

8

22

10

23

Point Year Month Day Time

Aug

Мау

Aug

May

Jun

May

Jul

2010 Jul

2011 Apr

2012 Apr

2013 Feb

1

2

3

4

5

6

7

8

9

10

11

12

13

1.258

15:20

14:50

16:00

16:45

14:20

14:35

15:10

15:45

14:30

15:30

11:40

14:20

15:10

Organism: Eohaustorius estuarius (Amphipod)

Endpoint: Proportion Survived

Material:

Unionized Ammonia

Source:

Reference Toxicant-REF

Wicaii.	1.256	Count:	12	-1s Warning Limit:	0.600	0-4 (*	
Sigma:	0.559	CV:	44.400/	_		-2s Action Limit:	0.14
		CV.	44.40%	+1s Warning Limit:	1.817	+2s Action Limit:	2 376
Quality Control Data							2.570

Sigma

1.681

0.6268

-0.4304

-0.3162

0.8984

-1.421

-1.18

-1.265

-0.4181

0.1899

0.5721

-0.2363

1.067

Count:

0.9395

0.3504

0.5963

-0.2406

-0.1768

0.5022

-0.7944

-0.6598

-0.7071

-0.2337

0.1062

0.3198

-0.1321

QC Data Delta

2.198

1.608

1.854

1.017

1.081

1.76

0.4636

0.5982

0.5509

1.024

1.364

1.578

1.126

12

Warning	Action	Test ID	Analysis ID	
(+)		01-7209-8485	05-8082-3474	
		00-7007-0295	03-9110-2709	
(+)		04-9660-1658	10-4250-3896	
		03-6965-3395	14-3447-2473	
		18-8723-9922	17-9305-2155	
		17-9542-0646	06-2792-7024	
(-)		18-7283-5013	07-7471-6807	
(-)		18-5229-3668	10-4921-5938	
(-)		15-4565-2403	06-1396-7211	
		03-7901-3036	07-6844-7156	
		10-3861-9695	21-2507-0831	
		05-8857-3753	18-2954-4563	

08-8059-3744

12-6137-6954

21 Aug-13 16:27 (1 of 1)

NewFields

Reference Toxicant 96-h Acute Survival Test

Test Type: Survival

Protocol: EPA/600/R-94/025 (1994)

Organism: Eohaustorius estuarius (Amphipod)

Endpoint: Proportion Survived

Material:

Unionized Ammonia

Source: Reference Toxicant-REF

Qualit	y Con	trol Dat	a						g	1.27	+2s Action Limit: 1.703
		Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Toot ID	
2 3 4 5 6 7 3 9	20122013	Aug Apr May Aug Apr May Jun		15:20 14:50 16:00 16:45 14:20 14:35 15:10 15:45 14:30 15:30 11:40 14:20 15:10	1.665 0.9 1.096 0.644 0.71 1.152 0.249 0.36 0.393 0.56 0.935 1.38 0.839	0.828 0.063 0.259 -0.193 -0.127 0.315 -0.588 -0.477 -0.444 -0.277 0.098 0.543 0.002	1.913 0.1456 0.5984 -0.4459 -0.2934 0.7278 -1.359 -1.102 -1.026 -0.64 0.2264 1.255 0.004621	(+) (-) (-) (-)		Test ID 01-7209-8485 00-7007-0295 04-9660-1658 03-6965-3395 18-8723-9922 17-9542-0646 18-7283-5013 18-5229-3668 15-4565-2403 03-7901-3036 10-3861-9695 05-8857-3753 08-8059-3744	Analysis ID 15-5728-8112 13-8034-1240 04-8886-1755 08-9559-0930 06-9505-1415 01-3764-6854 17-8032-8770 21-3980-0168 07-1675-0393 09-3097-7160 14-6175-2687 12-0577-0060 14-8468-9199

CETIS Summary Report

Report Date:

21 Aug-13 16:24 (p 1 of 1)

Test Code:

347CCB50 | 08-8059-3744

Defense T								TOST OUGE.		"CCB30 I	08-8059-3744
Reference 10	xicant 96-h Ac	ute Sur	vival Test					_			NewFields
Batch ID: Start Date:	20-4929-9630 23 Jul-13 15:1		Test Type:					Analyst:			
Ending Date:			Protocol:	EPA/600/R-94				Diluent:	Laboratory Sea	awater	
Duration:	23 Jul-13 13:1 NA	5	Species:	Eohaustorius e				Brine:	Not Applicable		
			Source:	Northwestern /	Aquatic Scie	ence, OR		Age:			
Sample ID:	15-9733-9892		Code:	5F3578F4				Client:	Internal Lab		
Sample Date:			Material:	Unionized Amr	monia				Reference Tox	icant	
Receive Date:	•		Source:	Reference Tox	cicant			-,	, 10,0,0,100 ,00	ount	
Sample Age:			Station:	P110927.139							
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Metho	v d		
14-8468-9199	Proportion Sur	vived	0.839		0.9224	15.0%			ett Multiple Con	narison To	act.
Point Estimate	e Summary								The intelligible Con-		751
Analysis ID	Endpoint		Level	mg/L	95% LCL	050/ 1101	~				
12-6137-6954	Proportion Sur	vived	EC50	1.126	1.082	95% UCL 1.171	TU	Metho	<u> </u>	Z v J.	
Proportion Su	rvived Summa	ry							ed Spearman-I	Carber	
	Control Type	Coun	t Mean	95% LCL	95% UCL	B4: -		_			
	Dilution Water	3	1	1	1	Min 1	Max			CV%	%Effect
0.36		3	0.9667	•	1	0.9	1	0	0	0.0%	0.0%
0.549		3	0.9667		1	0.9	1 1	0.0333		5.97%	3.33%
0.839		3	0.9667		1	0.9	1	0.0333		5.97%	3.33%
1.014		3	0.8	0.3697	1	0.6	0.9	0.0333		5.97%	3.33%
1.381		3	0	0	Ö	0.0	0.9	0.1 0	0.1732 0	21.65%	20.0%
Proportion Su	rvived Detail										100.0%
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	1	1	1							
0.36		0.9	1	1							
0.549		0.9	1	1							
0.839		1	1	0.9							
1.014		0.9	0.9	0.6							
.381		0	0	0.0							
Proportion Sur	vived Binomia	 Is				· · · · · · · · · · · · · · · · · · ·					
C-mg/L (Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	10/10	10/10	10/10							
.36		9/10	10/10	10/10						_	
.549		9/10	10/10	10/10							
.839		10/10	10/10								
.014		9/10	9/10	9/10							
.381				6/10							
		0/10	0/10	0/10							

CETIS Summary Report

Report Date:

21 Aug-13 16:24 (p 1 of 1)

Test Code:

5F4749A3 | 15-9850-7427

Reference To	vicent OC I. A							Test Code:	<u>:</u> .	5F4749A3	15-9850-74
	oxicant 96-h Ac		vival Test								NewField
Batch ID: Start Date: Ending Date: Duration:	20-4929-963(23 Jul-13 15: 23 Jul-13 13: NA	1.0	Test Type: Protocol: Species: Source:	Survival EPA/600/R-92 Eohaustorius Northwestern	estuarius			Analyst: Diluent: Brine: Age:	Laboratory Not Applica		
Sample ID: Sample Date: Receive Date Sample Age:	: 665d 15h		Code: Material: Source: Station:	725A4111 Total Ammoni Reference Too P110927.139				Client: Project:	Internal La	:=	
Comparison	Summary										
Analysis ID 18-8212-0119	Endpoint Proportion Su	Drived	NOEL		TOEL	PMSD	TU	Meth	od		
		- IVIVEU	68.3	131	94.59	15.0%		Dunn	ett Multiple	Comparison T	est
Point Estimate											
Analysis ID 05-2897-2730	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Meth	od		
			EC50	167.1	149.3	187.2			ned Spearm	an-Kärber	
	rvived Summa	ıry									
	Control Type Dilution Water	Coun		95% LCL	95% UCL	Min	Max	Std E	rr Std D	ev CV%	%Effec
18.6	Dilution water	3	1	1	1	1	1	0	0	0.0%	0.0%
35.6		3	0.9667	0.0202	1	0.9	1	0.033	33 0.057		3.33%
68.3		3	0.9667 0.9667	0.0202	1	0.9	1	0.033	33 0.057		3.33%
131		3	0.9667	0.0202	1	0.9	1	0.033	33 0.057		3.33%
282		3	0.0	0.3697 0	1 0	0.6	0.9	0.1	0.1732	2 21.65%	20.0%
Proportion Sui	rvived Detail					0	0	0	0		100.0%
_	Control Type	Rep 1	Da.: 0	_							
	Dilution Water	1	Rep 2	Rep 3							
18.6		0.9	1	1							
35.6		0.9	•	1							
88.3		1	1	1							
31		0.9	1	0.9							
282		0.9	0.9 0	0.6 0							
roportion Sur	vived Binomia	ls									_
	Control Type	Rep 1	Dan 1								
	Dilution Water	10/10	Rep 2 10/10	Rep 3		·					
8.6		9/10	10/10	10/10							
5.6	-	9/10		10/10							
8.3		10/10	10/10	10/10							
31		9/10	10/10	9/10							
82			9/10	6/10							
		0/10	0/10	0/10							

Analyst: _ QR _ QA: _ BM

NewFierds Toxicant Spiking Worksheet

Amp NH₃ RT

Assumptions in Model

Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Actual Reading 7350

Te	st Solutions		
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration
mg/L	mg/L	mL	mL stock to increase
			SALT WATER
	240	750	36.735
	120	750	18.367
	60	750	9.184
	30	750	4.592
	15	750	2.296
	0	750	2.290

Page 1

■ NewFields Ammonia Reference Toxicant Test Water Quality Data Sheet

	PROTOCOL	PSEP 1995	TIME	0.0		
	NEWFIELDS LABORATORY Dort Comple	olt Callible	TEST END DATE 7/23	Odemen		
	arius	111111111111111111111111111111111111111	3/14/13 15/0			
PROJECT	WPAH	PROJECT MANAGER TEST START DA	B. Gardiner	LOT#:	111079	
CLIENT	Integral Consulting Inc.	NEWFIELDS JOB NUMBER PRO	860.0074.000	TESTID	P110927,139	

•	⋖
ł	_
2	ć
ì	_
Ξ	į
< <	ò
C	3
ü	ŭ
⊦ <	ζ
3	>

CONCENTRATIONS	DILTIN.WAT.BATCH		Ī	TEMP REC#	#		ב ב	101101										
ST CONDITIONS SALIENT								ENEINCE	IOA. MAI	EKIAL		<u>~</u>	EFERENC	E TOXXICA	LN.			
CONCENTRATION CONCENTRATIO	0							ammor	nia - TAN				ammonit	ım chlorid	<u>е</u>			
CONCENTRATION AND PART AND PART SOLUTION TECHNICIAN THE NATION Walte with	TEST CO	TIONO	SNO			OG	(mg/L)	TEI	MP(C)	SAL	(ppt)		H				AMMONI	
CONCENTRATION DAY REP			2			۸	4	15	5 ± 1	28	+ 1	8.0	+ 10	TECH	MCIAN		TO MINIO	
walke write write writer writ	WEILDS ID	CONCEN	TRATION	2	i i		0.0.	F	EMP	SAL	INITY		2 E			AMA	MONIA	
- mg/L 0 Stock (G 7.6 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 15 mg/L 0 Stock (G 7.3 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 38 S 7.6 MWG 3 19 3 00084 L 16 (G 16.0 3 39 S 7.8 MWG 3 19 3 00084		value	units	Š	Ž	meter	mg/L	meter	ပ	meter	ppt	meter	unit	WQT	ЕСН	METER	ll our	Tech
15 mg/L 0 Stock (6 7.7) (16.0 2 3.8 5 7.6 MWG 7/13 (18.6 1 3.0 1 3.0 1 4 1 6 6.2 6 15.7) 2.8 5 7.6 MWG 7/13 (18.6 1 3.0 1 3.0 1 4 1 6 6.2 6 15.9 2 3.8 5 7.6 MWG 7/19 3 35.6 6 15.0 10 10 10 10 10 10 10 10 10 10 10 10 10	- xo	U	//um	0	Stock	9			0.91		0	6	0	NAMA	2 0	9	\$200 C	
15 mg/L		>	- 1.g/ L	4		2		٩	15.9		a	5	1 4	Mare	5	7	Cavia Cavia)
30 mg/L 0 Stock 6 7.8 6 16.0 3 38 5 7.6 MW6 7/193 3 35.6 6 18.0 3 38 5 7.6 MW6 7/193 3 35.6 6 18.0 3 38 5 7.6 MW6 7/193 3 35.6 6 18.0 3 38 5 7.6 MW6 7/193 3 35.6 7.0 mg/L 0 Stock 6 7.8 6 18.0 3 38 5 7.5 MW6 7/193 3 18.0 120 mg/L 0 Stock 6 7.8 6 18.0 3 38 5 7.5 MW6 7/193 3 18.0 120 mg/L 0 Stock 6 7.8 6 18.0 3 38 5 7.5 MW6 7/193 3 18.0 120 mg/L 0 Stock 6 7.8 6 18.0 3 38 5 7.5 MW6 7/193 3 18.0 120 120 120 120 120 120 120 120 120 12	- xo	7.5	l/bw	0	Stock	و	١,	و	9		82	نا (د	9 4		2 4	6	<u>a</u>	-
30 mg/L 0 Stock 6 7.8 6 16.0 3 38 5 7.8 MW6 7193 3 35.6 6 0 Stock 6 7.8 6 16.0 3 38 5 7.6 MW8 7193 3 35.6 120 mg/L 0 Stock 6 7.8 6 16.0 3 38 5 7.6 MW8 7193 3 181		2	<u>,</u>	4	_	و		9	15.7		00	V	- 1		2	1	9	
60 mg/L 0 Stock L 7.8 L 112.0 2 28 S 7.6 MMR 7123 120 mg/L 0 Stock L 7.8 L 112.0 2 28 S 7.6 MMR 7133 120 mg/L 0 Stock L 7.8 L 112.0 2 29 S 7.6 MMR 7133 240 mg/L 0 Stock L 7.8 L 112.0 2 29 S 7.6 MMR 7133 240 mg/L 0 Stock L 7.8 L 112.0 2 29 S 7.5 MMR 713 S 282 U		30	ma/I	0	Stock	9		و	٥.		00		X	2 2 2	3 2	4	356	
60 mg/L 0 Stock 6 7.8 6 16.0 2 28 5 7.7 WWR 7117 3 68.3 120 mg/L 0 Stock 6 7.8 6 16.0 2 28 5 7.6 WWR 7128 240 mg/L 0 Stock 6 7.8 6 15.4 2 28 5 7.6 WWR 7123 240 mg/L 0 Stock 6 7.8 6 16.0 2 29 5 7.3 MWR 7123 240 mg/L 0 Stock 6 7.8 6 16.0 2 29 5 7.3 MWR 7123 240 mg/L 0 Stock 6 7.8 6 16.0 2 29 5 7.3 MWR 7123 240 mg/L 0 Stock 6 7.8 6 16.0 2 29 5 7.3 MWR 7123			9	4	_	و	١ ،	9	158	6	00		7	0.4.4	1000))
120 mg/L 0 Stock 6 3.8 6 16.0 3 39 5 7.6 Mm/6 7133 (31 240 mg/L 0 Stock 6 7.8 6 16.0 3 39 5 7.6 Mm/6 7133 (31 240 mg/L 0 Stock 6 7.8 6 16.0 3 39 5 7.3 Mm/6 719 3 282 J	- ×o		l/bm	0	Stock	9	1	و	9	1	300) (7		\$ 0 - 0	7	とぬら	36
120 mg/L			9	4	-			,9	SS	10	, 0	V	- 1	0	- 66	1) S	
240 mg/L 6 b.7 b 15.4 2 28 5 7.6 Mm/R 2/12 3 240 mg/L 4 1 6 b.7 b 15.3 2 29 5 7.3 Mm/L 2/19 3	<u>.</u>				Stock		٠.	و	و	0	000	15	γ (r	X X X	6 5	10	121	9
240 mg/L 6 Stock 6 7.8 6 16.0 2 29 5 7.3 Mm6 7119 3			9	4		و		و		P	000	T	و (MANO	72	γ	5)
4 1 6 6.7 6 15.3 2 29 5 75 MAR 2122			ma/I		Stock	و		9	9	1	50		7.3	_	70 = +	5	797	
				4	-	9	,		15.3	╁─╴	50		6		35)	101	3

NewFields Ammonia Reference Toxicant 1 Survival Data Sheet

CUENT								SPECI	S	Foh	austor	ius est	uarius		
CLIENT Integral Consultin	a Inc.	1	OJECT WPAH		N	EWFIELDS		1	CT MANAG	ER	MEC LA	BORATOR	RY	PROTO	COL
				URV	VAI	860.00 & BE F			Gardin	er	Po	rt Gam	ble	PSI	EP 1995
						<u> </u>	T	11 07	114	Т			T		_
N = Normal Q = Quiescent F = Floating on Surfac D = Discolored	e	INITIA	L # OF	DATE	7/20	113	DATE		1/12	DATE		2/13	DATE	123	 /13
			.0		ال	_	TECHNIC	JI	<i>)</i>	TECHNIC	J (_	TECHNIC	cian NW	B
CLIENT/ NEWFIELDS ID	CONC. value units	REP	INITIAL NUMBER	#ALIVE	#DEAD	OBS	#ALIVE	: #DEAD	OBS	#ALIVE	#DEAD				
Ref.Tox ammonia		1		10	Ø	12	[O	Ø	لما	10	(K	OBS	10	#DEAD	OBS
TAN	0 mg/L	2		10	Ø	26	lo	Ø	2F	10	Ø	IF	10	0	+
		3		10	D	38	(0	Ø	18	10	Ð	7	10	45	1
Ref.Tox ammonia -		1		W	Ø	IF	10	Ø	25	(0	Ø	ZF	9		12
TAN	15 mg/L	2		(0	Ø	46	(0	Ø	25	10	Ø	34	10	0	1
		3		10	8	iF	10	Ø	IF	10	0	7	10	6	1
Ref.Tox ammonia -	00	1		10	Ø	3F	lo	0	16	lΟ	Ø	2	9	1	N
TAN	30 mg/L	2		10	Ø	IF	lo	Ø	N	10	0		10	15	
		3		ID	Ø	17	10	Ø		10	Ø	J	10	Ø	10
Ref.Tox ammonia -	60	1		10	0	2F	(0	Ø	15	10	Ø	15	10	0	N
TAN	60 mg/L	2		10	Ø	28	10	<u>D</u> _	18	10	Ø	18	0	Þ	1
		3		10	Ø	18	(0)	0	18	10	Ö	N	9		V
Ref.Tox ammonia	120 mg/L	2		10	0_	28	10	Ø	0	10	-8	0	9	(Q
TAN	120 mg/L	3		10	Ø	24	10	0	OFF	9	1		9	8	
		1		10	Ď	IF	10	Ø	0	10	Ø	l	6	4	V
Ref.Tox ammonia	240 mg/L	2		5	5	0	3	2	0	2	1	Q	Q	9	N
TAN	Z-TO HIG/L	3		8	2	0-	4	4	0	Ø	4	WA			
		٦		0		2F, 0	3	6	0	L	2	D.	\$	(2

CLIENT:	Internal			
PROJECT:		Date of Test:	25 Jun 13.	7/23/13
	RT	Test Type:	Neanthos	
COMMENTS:		1) 6	riodriano	Erhaustorius
To convert Total Ami	monia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the co	prresponding total ammonia	. salinity, temperatur	re, and pH.

1 9.26 2 9.27 3 9.28 4 9.29 5 9.30 6 9.32 7 9.33 8 9.34	Intege	r: I-factor
3 9.28 4 9.29 5 9.30 6 9.32 7 9.33 8 9.34	1	9.26
4 9.29 5 9.30 6 9.32 7 9.33 8 9.34	2	9.27
5 9.30 6 9.32 7 9.33 8 9.34	3	9.28
9.32 7 9.33 8 9.34 9.34 9.34 9.31 9.32 9.32 9.33 9.32 9.32 9.32 9.32 9.32	4	9.29
7 9.33 8 9.34 9.34 9.34 9.31 9.32 9.32 9.32 9.32 9.32 9.32 9.33 9.34	5	9.30
7 9.33 8 9.34 9.34 9.33 9.33 9.33 9.33 9.33 9.34 9.35 9.32 9.32 9.33 9.34	6	9.32
8 9.34 9.35 9.34 9.31 9.31 9.31 9.30 9.29 9.28 9.29 9.29 9.29	7	
9-35 9-34 9-37 9-37 9-37 9-30 9-29 9-28 9-27 9-27	8	
934 932 932 931 930 930 929 928 927 927	9.35	**************************************
9 52 9 31 9 30 9 29 9 28 9 27 9 26	934	R-105734
9 31 9 30 9 29 9 28 9 27 9 26	í	1
9 30 9 29 9 28 9 27 9 26		•
9 29 5 28 9 27 9 26		
9 28 9 27 9 26	1	<i>A</i>
9 27 9 26	F F	<i>F</i>
9 26		į
T !		
	T	

	Sample	Wod NH3T (mg/L)	salinity (apt)	ρH	tomp (C)	temp (K)	i foot-s	Maria Millourian and
	Tangar Sendah na		19 (04-9	19.0	(d)			Mod NH3U (mg/L)
	fit kidpaşılır.	1.1.1			5.1	297.26	9.3053	#VALUE!
1				<u> </u>		278.16	9.2750	0.008
2	15	18.600	28	7.9	10.0	000.10		
3	30	35.600	28	7.8	16.0 16.0	289.16	9.3187	0.360
4	60	68.300	28	7.7	16.0	289.16	9.3187	0.549
5	120	131.000	29	7.5	16.0	289.16	9.3187	0.839
6	240	282.000	29	7.3		289.16	9.3214	1.014
7			73	1.0	16.0	289.16	9.3214	1.381
8						 	 	
9				 	 			
10					 		 	
11				-		ļ ————	+	
12								
13					 		 	
14							 	
15							 	
16							<u> </u>	
17								
18						· · · · · · · · · · · · · · · · · · ·		
19								
20								
21								
22 23								
24								
25								
26								
27								
28								
29	·							
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43	-							
44								
45								
46								

NewFields

ORGANISM RECEIPT LOG

Date:	7	Ti	me:		NewField	ds Batch No.	
	1.17.13		1445	<u> </u>	NA	5 287	7-
Organism /		,				Invoice Attac	hed
	ustorius,	/ Port	Angeles			Yes	lo
Source / Su	ipplier:				Contact:		
Northue	sten Aqu	atic Sciet	rus		ba	ry Buhler	
No. Ordere	d:	No	o. Received:		Source E		
360	0		3600+10	7.		s date, hatch date	
Condition of	of Organisms				mate Size	or Age:	
(Good, fair, po	oor; describe.):	-00d		(Days fron		stage, size class	, etc.):
		>000 			3-5n	M	
Shipper:	ı				racking N	•	
	Fed	EX		80	10 306	7 2877	
	of Container: oor; describe.):	J		Received	d By:	-	
		2000			BH		
Container	D.O. (mg/L)	Temp. (°C)	Cond. or s	,	pH (Units)	Number Dead or Moribund	Technician (Initials)
(o-p)	_	11.3	33	>			BH
					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
					-1		
Notes:							

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

et (shipping)		
		Brian Hester/Collin Ray 360.297.6044
ANIMAL HISTORY		
Age/Size		Number Shipped
3-5mm		3600 + 10%
QUALITY AT TIME OF SHI	IPMENT	
Salinity (ppt):	380	D.O. (mg/L):
D.	ATE: '#-	70-13
TES .0 ppt; salinity adjust down ~ 5	ppt.	
·luded.		
ıc	icluded.	icluded.

PLEASE RETURN ALL SHIPPING MATERIALS

Atomic god "

If you have any questions, Please call Gary Buhler or Gerald Irissarri at (541) 265-7225. Thank You.

Appendix A.2

Juvenile Polychaete Test with Neanthes arenaceodentata

	(ет) Тнојэм Сэнга	84 53	186.06	39	12,	174,36	25 36.	46,80	.42	159.71		······································	
		163.89 164.58	186	152.39	173.61		162. 161.	194,86	179.42				
SPECIES Neanthes arenaceodentala	(gm) THOIBW JATOT	196.002	3228.59 *167.02	5196.05	40.512°	ბი <u>გ</u>	10 200 22 161. 80.	1. 209.21	i3 224.05	15 212.51			
S Neanthes _c	(mg) TARE WEIGHT (mg)	146.84			148.72	1	140.48 138.89	141.75 151.17	52.35	148.54 155.97	Ĵ		
	оминаяя язвиси	in is	1 .		21 12	101	v	ひって	r)	15, 10			
	18 SN14 02	- ش		7	p	-	\Rightarrow	<u>ئ –</u>					
PROTOCOL PSEP 1995	18/F 3MM et	<u>り</u> っ	h								j		-
<u>-</u>	15/4-22 77 62/4 138 81	9 5	- C						+		3 2 3 S		
NEWFIELDS LABORATORY Port Gamble Bath 6	82/E7 91	9 Z	1 - 1 - 3								+ Brithe star on Surface		
IELDS LABORATOR	takn si	\$-									ફ મુ		
NEWFIE	92671 11	<u>a</u> –								-> B	Stav	_	
ATTOMS	52/E US) 81	93	37)	7 5	9 -					a	1	
Gardiner	12 150 7183 11 12 12 12 12 12 12 12 12 12 12 12 12	93	50	, b	7 2	<u> </u>				_	₹ 3 Ø 3		
PROJECT MANAGER B. Gard FINDPOINT DATA &	12/200 61 12/200 11 12/200 61	b Z	ユ ら ら こ		<u>アファ</u>	<u>5</u>					peacrab & Brithe star on Surface.		***************************************
ROJECT	12/27 6	2			3 -								***************************************
	ert p :	2 -		2		- 4,				>	Comments: (C)	9	
860,0074,000	byt va 1	P 9	60 60	0	9 9		p 9	PJ	79				
	8/4 20 3	8 C		7	<u>りる</u>		p / p	<u>ა</u>	<i>₽</i>	7 7 D	Ashed Weight (mg)	1.84	7
JOB NO.	1/299 ,	9 P	6.6	7	9 (C)		アア	2-7	<i>े</i> क्र	2 5 P P		15 8	\$ 78.
	SIH 499 :	20	7 6	D D	\$ C		P 5			26	Dry Weight (mg)	53.48	53.8
WPAH	1147 2	2_			→ 77 -> 17	ュー				45	 		
	E1/E77 1	2 -			→ ⊖	2.					Tare Weight (mg)		51.39
PROJECT	Bletifini bas sted (21917th)										Number 5	က	r.
<u>ರ</u>	HATAL FOF	- 2	3	S	- 2		4 n	- 2	ъ	4 w	ž		
nsulting In					47. 26.				=		Rep	6	ю
CLIENT Integral Consulting Inc	N = Normal ## = Energence ## = Mortalin G = Grown Hortalin C = Growin Hortalin C = Growin Hortalin C = Growin E = Flowlin D =	Dys.	Control /		æ	CR-12/		i maddin	CARR-20		***	initial Biomass	

P.990 1

																								ĺ
		(gm) THDIBW OBHRA		158.66	159.66	(45.5°)	141.19	137.02	145.16	182.91	ts.981	147.02	i 40.32	[52.63	143.53	149.92	144.33	154.15	165.91	151.35	154.82	147.20	154.85	.
SPECIES Neanthes arenace odentata		(pm) THEIGHT (mg)	- 1	92.761 01	17 190,22	16 167.24	19 168.47	20 (31.78	W 195.31	22 194,38	W 195.24	24 204.51	15 180.14	28 b02 or	27 186.36	28 198.19	29 194,28 144.33	30 211,91	31 723.64	32 210,18	33 214.22	34 218,76	35 230.47	× × × × × × × × × × × × × × × × × × ×
SP Neanthes ar		(em) THEIGHT (mg)		144.98	145.33	133.92	131.09		135.78		124.63		130.79	142.06						٠.٨				8 11/0
		опимаев вемьинис	l	ر) ا	D	r	S	_	S	Ŋ	IJ	Ŋ	Ę	0	J.C.	8	Lo			FID.	rv	ka	Jo	
		10/8 8WW 0	oz ,	2				*	Z		- William No.		~	27	4		Oh,		w)	D	2	***	- >	
PROTOCOL PSEP 1995		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31 -	2	2	2	2	Þ		٠	2	2	2	ۇ ھ			<u>-</u> >	2	<u></u>				>	1
<u>-</u>		1201211	31 -	2 ·			<u>ラ</u>	G G	7	<u>こ</u>	4			<i>گ</i>	2	طن '	7	2	7				→	
RATORY Bath 6		-4)1 20	21 	2- 2	フ	2	2	6 6	ا ح	2	7.	2.	2	્ર	<u>2</u>	ر م	P	<u>/</u> 2	P			*****	ال حد دـ	1
IELDS LABORATOR		101 0	Si .		2	2	2	6 6		<u>ک</u> پ	2	S	2	<u>@</u>	2	ر ان	ڊ_	万	<u>ড</u>				ግ	
NEWFIELDS LABORATORY Port Gamble Bath 6		9211 00	PL -		る	2	2	S	•	_ <u>></u>	2	7	72	J			_	2	<u>ড</u>				- >	
-	SNOT		EI	2	2	P	亓	P	,,														カ	
ner.	OBSERVA		71	\geq	2	2	\geq																~~~	
PROJECT MANAGER B. Gardiner		(2/F DB)	\dashv		<u>∂</u> ′°	<u> </u>		P															7	
OJECT M	ENDPOIN	12/2 1	6 ,	Z 2.		P	2	P								<u>بر</u>	2						S	
P.R.		11/10	8	72									→	\overline{n}	2	ত্ত	2					7	B (
74.000		MEDA	<u>,</u>	0	9	0	2	8	P	٤	b	P	\mathcal{I}	Ŷ.	2,	ىكى	ક	P	2		>	P	P	
360.0074.000		SIJ+ 98	9	Θ	0	0	5	0	5	5	5	S	5	5	2	P	b	P	3	\supseteq	2	2	P	
JOB NO.	-		g	9	0	9	2	0	P	P	7	$\hat{\gamma}$	7	7	P	P	圆	P	7	\geq	$\overline{\rho}$	P	p	
		(1), 100		9	9	\bigcirc) <u>2</u> 5/	5	F	7 ?	7 P	P	<u>ل</u> ل	8	7	<i>P</i>	7	り	2	<u>ا</u>	<u>b</u>	2 D	5	
WPAH		10 o	2	<u> </u>	\bigcirc	2		∪ ¬	77	7	77	<u>لا</u>	77 P	77	<u>り</u>	77	77	- カア - <i>の</i>	3	<u>بر</u> ح	(b)	77	7	
l.		21/1 20			E	2	Θ	2	à	- >	17	. 14	77	7	2	مدا	<u>v</u> .	77	2			>	ル	
PROJECT		eloitini bac ateQ (219	AITINI SNIE N)	3.74 16.97			79 14 73 73																	
		1 59	418	-	2	m	4	s	-	2	3	4	5		2	3	4	s	-	2	m	4	S	
sulting Inc.																•								1
CLIENT Integral Consulting Inc.	3	N = Normal #E = Emergence #N = Montality G = Ground (Ungal, basterial or algal) D = No Air Flow (DO7) F = Flowing on Surface TC = Too Cloudy U=Excess food	CLEHT HYWELDS &			CR-02/			**********		SD0001 /					SD0002/				. •	SD0003 /			

BUSCHWIND @ Britle Star on Svance, IL 3/13.

828

20-DAY SOLID PHASE BIOASSAY OBSERVATION DATASHEET

		, A- ,	~ ~ ~ -		
	(gm) THĐIՅW GHRA	138.61 126.87 133.94 149.74	148.98 176.79 196.93 137.61	162.08 165.72 147.64 144.45 154.49	150.95 159.79 157.79 152.46 154.26
SPECIES Neanthes arenaceodentata	(gm) THDIBW JATOT	36 147, 25 38 189.51 39 194.48 79 19339	41 204.72 42 240.18 47 213.04 44 191.59 45 211.11		51 223.70 158.41 52 215.56 150.85 53 209.43 157.79 54 186.37 133.46 55 216.74 154.26
SPE Neanthes an	(gm) THOIBW BRAT	152.94 128.99 118.21 124.61 137.63		50.15 54.22 36.08 30.20 40.39	143.02 138.19 148.00 143.64 142.58
***************************************	иливек кемыимс	13 N N 2 13	NO NON	ण हमाचा य	a a malal
	10/8 8NW 0Z	9	y	<u>J</u>	<u> </u>
1995	18/F&MM et	5			
PROTOCOL PSEP 1995	18 7-130 BN	99			
	6829t 11				
SORATO	82K 7 91	2 - 2 - 2			*
NEWFIELDS LABORATORY Port Gamble Bath 6	tyle of si	3			
VEWFIE	92/47/ "	- 2 E V			
SNO	S2/t 99 81	\mathcal{P}		<u> </u>	
SERVAT	1 1 - 1	0			
GER Gardine	52H 499 "	P	7-752		7225
PROJECT MANAGER B. Gardiner FNDPOINT DATA & ORSES	10 8 SZH 01	3	- 2 L P Z P	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	->22b
ROJEC	7/12/ 6	2			
<u></u>	700/E 8	2			3
4.000	1)8 191-F 1	9 9 9 B	2	bb22b	2>
860,0074.000	2314F °	7772	2		7
JOB NO.	SELITE 5	29772	2		7
	9901/L,	5 छ छ वर्ष			7
	50 51/2 :	0252			> \cdot \c
WPAH	TPICE 2	2			
	relt .	2			3
PROJECT	eleitini bas eteG * JAITiki				
D.	3	The same area and second of the same and seco	3374 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A
g Inc.	day S	+ 2 6 8	L	- 0 0 4 D	L 6 6 4 0
CLIENT Integral Consuling Inc.	N a Normal Bar E Emergence May Mortality G a Grown (Ungal beatrial or alga) C a No Could T C a Too Could Left cost ood Left cost ood Cultury C a Could C a	SD0004 /	/ \$D000\$	/ 9000GS	/ 2D0007 /

20-DAY SOLID PHASE BIOASSAY OBSERVATION DATASHEET

		Τ,	5	4	و			١		-6-1-		هـ	·~-	<u>_</u>		7	7	~		2	<u>~</u>
A	(gm) THOIAW OAHSA	126 96	1	143.67	134.36	150.24	155.25	PE 69)		152.04	155.53	166.96	158.99	159.9	16J. 80	177,62	137,94	174.69	155.20	135,82	143.23
SPECIES Weanthes arenaccodentata	(gm) THEIGHT (mg)	29 861 25		58 203.13	SF. 281 18	06.8×10	01.572	86.462 20	63 220.72	96-316-30	65 223 88	152.79 bv 232.87	146.89 bt 25.52	F 2225 15 9.97	69 230.SB	PD 253.17	71.169.27	15.282.31	£8:507 Et	74211:04	35 (96.69)
SPE Neanthes are	(gm) ТНЭІЭМ ЭЯАТ	12861	131.58		124.30		145.31		1811	 	146.32	152.79	146.89	148.67			_ :			į.	l l
	ичивек кемлиис	ي	1 .	rv	W	0		w	Γυ	α	N	72	lo	تر	N	S	,	S		IV	1-0
	10/8 8mm 00	z h)			~~>	D	-		,	>	D	- Property Control		idagene <u>en e</u> ngere	∍	P				→
ROTOCOL PSEP 1995	18/temm =	<u>ا</u> ك													,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						\rightarrow
PROTOCOL PSEP 199	ण्डाक्रम _श	, P		<u>}</u>	2	P		·			***	·									7
1 1	99 ध्यम 1	ا ک)	≯戸	2	P			And the second second	***************************************								-			\Rightarrow
BORAT	8CH7 9	ا رو		پ	2	S															-)
NEWFIELDS LABORATORY Port Gamble Bath 6	elki :	, 4	-			-W-30176-F7-	-	No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	er programation de l'action		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Markey eggs	March on the company of the	2177 100100			AND THE REAL PROPERTY.		a
NEWFIE	92127,	1 3								>	版	·S									-}
Silve	3 DS 7 425	, P																			\supset
NOJECT MANAGER B. Gardiner	40' 40 z	1 /																			ン
NAGER B. Gardiner	E2428 1	_ા ્કે	9	ᄱ	\mathcal{P}				 ,				\rightarrow	Z	${\cal P}$						-
PROJECT MANAGER B. Gard	9822/t .	4 1))	3	P				→	72	9
PROJE	7/12/t .	: 2									-,										
	rock .	° 2										~					<u></u>	ļ			>
960,0074.000	NORTH 1	' P	2	Ĵ	\mathcal{P}	\bigcirc	Þ	Þ	එ	එ	Ź	\mathcal{P}	2		\rightarrow	৬	P	P	2		2
	17/18 BC	, t	13	P	}	2	P	P	P	7	ඉ	2			\Rightarrow	P	2				\supset
JOB NO.	ugtit ,	دِ ا		→	${\cal P}$	72	P	7	P	${\cal P}$	P	2					<u> </u>	_			\Rightarrow
	0801t.	, 2	$-\mathcal{P}$	3	&	-2	P	$\hat{\varphi}$	P	P	\mathcal{P}	2									7
	1/5 BCD	: 2		\geqslant	ආ	2.	φ	P	~3	->	b			and an artist of							ラ
WPAH	1 1/1/F 3	z 2																			>
5	JUSI/F	, 2																			
PROJECT	alcitial bas sted (2191)	MILLA (IL GIBB											7497 474.4								
	Secondary of the Control of the Cont	¥	2	n	4	ď	p=-	2	6	4	.co	Ţ.	7	63	4	5	-	2	3	4	s
CLIENT Integral Consuling inc	IN = Normal ## = Emergence ## # Montain G = Grown G = Grown Flow (DOP) Flow (DOP) Flow (DOP) The Trow (DOP) The Trow (DOP) INE Access food	CLEANT HANDLA OS SO		SD0008 /					/ 6000 Q S					SD0010 /					SD0011/		

Page 4

_	
٩.	
တ	
ഗ	u
∢	ш
റ്	J
¥	ď
œ	d
	\mathbf{F}
**	ď
Ÿ	7
٩.	-
ᄑ	7
a.	7
$\overline{}$	\simeq
브	-
_	•
\overline{a}	>
ñ	'n
٠,	11
>-	77
ব	*
വ്.	7
7	C
20-DAY SOLID PHASE BIOASSAY	
·ч	
	£

	Т								<u> </u>			1	h -						en.		ا سير ا	~	~7
		SHED WEIGHT (mg)	Ą	160.53	158.22		156.38	158.59	154.00	146.13	_	162.13	!	156.70	143.90	1527.71	158.46	138.31	136.48	142,14	192.79	140.73	138.42
SPECIES Neanthes arenaceodentata		FOYAL WEIGHT (mg)	1	12.823 Jr	77 219.94	78 212.94	bt Est bt	80 213.89	\$1,202,04	18.201 28	04012 EB	45 922 48	\$ 224.77	7h 807 ng	87 192.60	80 219.97	26 2 1355	90 92.44	45.491 19	13:181 26	43 204.36	94 183.53	45 (85.84
SP Neanthes ar		(gm) YHƏIƏW ƏRAT	,	148.20	145.12	136.77	145.19	_		133.86		148.15	149.34	135.97	134.67						,	ı	125.76
		NUMBER REMAINING	N	5	'n	ហ	Ŋ	ហ	(J	S	ın	TU	TV	Lo	rc	rv	Lŋ	ľv	11	Į٦)	L	Jv	\overline{p}
		10/8 DMM	so	Jh.	<u> T</u>	jħ	1	žM.	_b	492; *				b	************	agent from a .		\rightarrow	b				>
50L 1995		181F8MM	61	مرد رود	<u></u>		482	`ج	P	P	2	Þ	رار	J		4.00 -0 .000	- >	薡	Y	Ŋ	Z	Ð	رل
PROTOCOL PSEP 1995		150BN	81	P						>)2	P			<u> </u>	2	Ŀ	,		٧-	2	رفي	2
		जिल्ला	Δī	9	٠	The Control of the Co			ALVANDA PROPERTY AND ADDRESS OF THE PARTY AND	\Rightarrow	2	P			ب	2	Š				7	7	2
ABORAT		821E71	91	b	·					<u>)</u>	2	J			>	72	S.			-)	2	Ø	2
NEWFIELDS LABORATORY Por Gamble Bath 6		takn	۶١	ષ્ટ		->	厕	ى	ى	د_	2	S.				~2	ড			- →	2	72	2
NEWFI		92167	ÞΙ	ত		→	<u>W</u>	للتي	2	>	2	ত			>	2	Œ			<u>،</u>	2	2	2
	ATIONS	12/t 09	13	\mathcal{L}																			\supset
iner	OBSERV	he't Ha	ıs	1																1		-	- >
ANAGER B. Gardiner	DATA &	101545	\$ I	ტ	2	$\hat{\mathcal{P}}$		*****					7	2	2	5所	2	4	2	2	$\widetilde{\mathcal{P}}$	مسي	7
PROJECT MANAGER B. Gardi	ENDPOINT DATA & OB	7 12k	.01	<u>ත</u>	而	$\overline{\mathscr{P}}$							Ž	2	•		· Literatura de la constanta d	∂	~ 2_	2	رو		
P80		2007/10	6	2			-			TOWNS WAS ARREST							~~~~ <u>~~</u>						->
8		100 MIL	8	B	<u></u>																		7
860,0074,000		100014	9		2			***************************************			**********					NO TO TO TO SELECT							
JOB N0.		SA EVIE	s S	<u> </u>			~			•													
9		panlit	,	2									***************************************										3
		19-51/2	ε	$\overline{}$								The state of the s											$\stackrel{\sim}{\Rightarrow}$
WPAH		7/4/1/6	z	2																-			->-
		7/8//L	ļ	2								~~~ <u>~~</u>		10						A			>
PROJECT		Stellful bos ofeG (2)	MiYiAL :alife:					14:07. 1:72															
		Sering a cor OnConstants	SAL SIR	-	2		4		1	2	ъ	4	v)	4	2	e	9	\$	-	8	m	v	\$
ting Inc.		L		<u>i</u>			i																
CLIENT integral Consulting Inc.		N = Normal WE = Energence WE = Energence G = Growth (or s) E = Moulting on Surface C = Growth (or s) E = Moulting on Surface UMExcess food	CLEND NEWFILLOS O	9		SD0012/					SD0013/				÷	SD0014 /		:			SD0015/		

8

		Gm) Triestat (mg)	HSA	144.06	156.38	131.55	149.37		24.44)		Ì	<u> </u>		136.24	144.83	į	160.23	58:331	166.02	155.72	154.04	150.68	11.25.11	Page	
SPECIES Neanthes arenaceodentata		(gm) THƏISIW JA?	101	ap 204.98	43 220.72	4° (96.28	99 218.70	100 222.64	101, 207, 20	40.2%1 SON	103 LUS.26	16, 214,81	105 174.SD	100 (87.88	103 194,94	108 214.35	104 229.40	110 22 (78	PUL 222.09	14292° 113 202.79	4.412 411	115 207,16	1621B.64	American Company of the Company of t	Adding the State of the Control of t
Si Neanthes		ңе м €іСН7 (п ₉)	iAT	129.08		_			130:12	124.05	123,49	126.07	111.40	_ ^	131.78	į		137.02	po. 525 211 0 po. 24/	142.92°	135.74		138.86		
***************************************		ASER REMAINING	MUM	12/1	N	S	le,	18)	LC	い	٠(()	1	n	ξ	S	ħζ	15	5		IV		iΛ	N		
		19/8 SWW	S0				A STATE OF THE STA			3															MEWG 41113
ROTOCOL PSEP 1995		EFAUM	61	カ	-													Ť	2	بل			>	Average many access	
PROTOCOL PSEP 199		123 EF	81	S								띠										7	2		47
1		D8195/F	71	স	-									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								-7	3		3
NEWFIELDS LABORATORY Port Gamble Bath 6		82/£7/	91	b	بو 177	ত																- >	2		ڲٙ
LDS LA		tik V	gl.	9		>	اللو	V															~~ >	I . 1	
NEWFIE		92172	Þŀ	ی		۔۔۔	رتلأ	Ø				,			***************************************			- >	2	2	ড	ত	2		70
	SNO	50/E 170	£r	\supset	7		<u>~</u>					项	2	百分	2	2_	7	回	7				\rightarrow	-	
	SERVAT	he't Ha	21	7	.7								N	9	2	≥	>						3		\mathcal{S}
AGER Gardiner	YTA & OF	he't Ha	L1	2	\mathcal{P}	777					`	>	2)	凹	2						>	0	Z.
PROJECT MANAGER B. Gardi	ENDPOINT DATA & OBSER	0924	01	2															\supset	3	Z		2		Wughbest
PROJEC	ENDF	Milk	6	2_		Q	2					师	<u>7</u>												1
-		702/t	8	7_	>	T	ጔ													Same alan in a second			>	13	٤.
74.000		DOWL	Z	2	\mathcal{P}	ු	\mathcal{P}	2	J	ა	رلۍ	ტ	J	J	ىل	ৣ	Y	\mathcal{P}	2	2	2	可	2	4.7	4
860.0074.000		2081/t	9	2	\rightarrow	Ъ	J			B	P	P	7	_ _ →	T	P	2	3	P	\supseteq			\Rightarrow	G.	5
JOB NO.		-78tilt	g	2				>	\mathcal{P}	7	P	b	S	2	b	P	9.	2					>	GX	TS .
· ·		198 MIL	þ	2				7	\mathcal{P}	b	P	<u>٠</u>	\mathcal{P}	2	B	2					``		2	211	tan.
		NS 21HF	3	7																	€	D	7	weighboat #	Eg
WPAH		1/ p1/E		2		-						and delivery from									يح	77	2	3091	3
		7081/E	1	2																			->	Jeid	をよる。
PROJECT		steirint bas otad	(if differs)	7/25/11 7/25/11	4504 4479		App. To		679 649	2000 7400	-916 III -1176 II				9950) 1220						900A1	7 1.2	1751 14 1151 151	**	
		o i	BA1															Salaren			*********			3	每
ng inc.		S STILL	80	-	CI.	п	ч	r)	-	3	rs	4	ν ₂	-	8	m	4	9	٧-	2	۳ 	4	۶.	6	<u>ට</u>
CLIENT Integral Consulting Inc.		N = Normal PE = Emregence AM = Mortally G = Growth (Ungal, bacterial, or algal) D = No Air Flow (DO?) F = Flooting on Surface TC = Too Clowdy Ungal, bacterial or algal)	OTENI) XEMBET 08:0			SD0017 /					SD0018 /				<u> </u>	SD0019 /					SD0020 /				

r					: :				
			HED WEIGHT (mg)	ea.	[9.83	1			
SPECIES	Neanthes arenaceodentala		(gm) THÖIƏW JATG	D1	117 724SS	118 21D.060	119 208.78	120 255.83	01.282 101
ds.	Neanthes a		уке Мекэнд (тд)	u.	J44.02	[38.22	127.75	(73.95	52.70
			МВЕВ ВЕМУІЛІМО	UM	S	8	∿	\mathcal{N}	5
				20	The state of the s				
ŭ	1995		(SH-SMW	61	Z	Ð	<i></i>		
PROTOCOL	PSEP 1995		p008/1	81	ھ				>
	9		\$0 m/t	21	P		项		
SORATO	de Bath (82/27	91	9	-			
NEWFIELDS LABORATORY	Port Gamble Bath 6		tak v	۶ı	S	-			>
NEWFIE	ď		921 71	Þŀ	S	/		_>	<u> </u>
		SNO	SZH-90	£ŀ	D				-3
	<u>.</u>	SERVAT	he' /0	15	9				⊒ •
AGER	B. Gardiner	TA & OE	72366	. l:}	Þ	温	Ġ	P	P
PROJECT MANAGER	œί	IDPOINT DATA & OBSERVATIONS	73/2 SAF	01	P				>
PROJE		END	7 12K	6	2				Ð
			1001F	8	7				-
	74.000		DS 61/±	L	9	P	P	ょ	\mathcal{P}
	860.0074.000		PB 811-5	9	P	P	\mathcal{P}	2	P
JOB NO.			99+11t	5	2				>
			DANIF	þ	2				\Rightarrow
			7/1280	£	2				⇒
	WPAH		1/41/K	. 2	2				>
5			1(81/6	L	2				\Rightarrow
PROJECT			#lefsini bne eleG	# JAITINI (arollib II)					
			S 5	REP JAR	-	7	e	4	vo .
CLIENT	integral Consulting Inc.		N = Normal Ms = Emorgence Ms = Moratility Ms = Moratility Ms = Moratility Ms =	CECUTALINE NEW DECOSES		<u> </u>	SD0021 /		

weighoat tare weight 122 141.89 123 138.00 Page 7

CLIENT		PROJECT	CT		S	START TIME/ END TIME	IME	ЫГЛІО	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.			5	WPAH		(2h0)			FSW0	FSW071113.01	PSEP 1995	5	12-Jul-2013
JOB NUMBER		PROJE	PROJECT MANAGER	GER	<u>₹</u>	NEWFIELDS LABORATORY	ATORY	TEMP. RECDR./HOBO#	ECDR./F	10BO#	TEST SPECIES	<u> </u>	TEST END DATE
860.0074.000			B.	B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
						WATER QUALITY DATA	LITY DA	ТА					
TEST CONDITIONS			ద ^	DO (mg/L) > 4.6		TEMP (C) 20 ± 1	SA	SALINITY (ppt) 28 ± 2		pH 8.0±1.0			
CLENTINEWFIELDS ID	DAY REP	JAR	meter	D.O. mg/L	meter	TEMP °C	meter	SALINITY	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
Control /	D Sur	84	l	7.5	9	SO. 3	78	38	v	8.6		CR	412.13 BH
Control /	1 Surr	84	و.	7,6	و	(9.9	7	28	S	8.0			7/10 JC
Control /	2 Surr	84	و_	7.7	٥	(4,8	7	32	5	2.8		ر ا	N14 J
Control /	3 Surr	84	ر ر	7.6	ک	4.61	٦	t.c	S	5-7	つつ		7/5 BG
Control /	4 Surr	84		7.4	ک	19,7	7	27	S	7.9		1983 1983	7)10 BG
Control /	5 Surr	84	۱۱ و	4.3	ی	19.8	7	27	8	4.4			717 PG
Control /	6 Surr	94 C	(T 	4.4	و	19.8	7	3 7	5	7.8	ر ک	Ber	7)18 126
Control /	7 Surr	84	9	7.0	9	19.8	کے	a St	S	7.7			भान हैं
Control /	8 Surr	84	و٠	かも	ه	20.0	7	20	7	7.9		3	7/20 JE
Control /	9 Surr	84	٥	7.1	و	19.9	7	28	5	かって	Jr		12/2 Y
Control /	10 Surr	84	9	7.3	9	19.8	ಗ	3 E	S	7.9		ブ	7722 BCV
Control /	11 Surr	84 (ঔ	2.5	9	4.61	7	28	3	O.8			7/23 BG
Control /	12 Surr	84	. 9	7.6	9	14.6	7	90	3	ŏ. Ö	7.	#	7/2476
Control /	13 Surr	84	ر د	٦	و	4.6	ഷ	28	S	4.9			7125 869
Control /	14 Surr	84	و	و ب	و٠	6		00	S	0		3	7 BG MINNE
Control /	15 Surr	84	هـ	ج ج. و	_0_	(4.9	7	28	V	99 	عال		7/23 JC
Control /	16 Surr	84	ھ	و †	ھ	(9.6	7	28	7	ر س		7	728 %
Control /	17 Surr	84	0)	7.6	ی	t.6	っく	28	Ŋ	8. (7 (28 RV)
Control /	18 Surr	84		ę H	೨	4.5	ત્ય	28	ഗ	8. C	96	7	7136 BCM
Control /	19 Surr	84	و	9	و	19.7	ለ	(Lp	S	0 &			18/F 3mm
Control /	20 Surr	84 (٠	7.6	و	19.8	2	28	Ŋ	8.0			CR 8/1

CLENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE	г
Integral Consulting Inc.	WPAH	1 Oho1	FSW071113.01	PSEP 1995	12-Jul-2013	
JOB NUMBER	PROJECT MANAGER	NEWFIELDS LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE	т-
860.0074.000	B. Gardiner			Neanthes arenaceodentata 1-Aug-2013	1-Aug-2013	
		WATER QUALITY DATA			<u> </u>	_

					WATER QUALI	≥	DATA					
TEST CONDITIONS			DO (mg/L) >4 6		TEMP (C) 20 ± 1	S)	SALINITY (ppt)		pH			
CLIENTMEWFIELDS ID	DAY REP	JAR	D.Ö.		TEMP		SALINITY		O'CT L'O	WATER		
		meter	er mg/L	meter	သွ	meter	pbt	meter	unit	RENEWAL	Feeding	TECH/DATE
CR-12/	0 Surr	2	7.6	0	20.0	ц	28	V	8.1		Cr	7.12.13 BH
CR-12/	1 Surr	<u>ور</u> ء۔	なけ	ڡ	(97	7	28	<u>ر</u>	8.2			7107
CR-12/	2 Sum	5	とと	ه.	(9.7	2	29	\ <u>\</u>	9.3		٦	2/2/2
CR-12/	3 Surr	⁵ 6		<i>∞</i>	14:51	(A	77	Ŋ	€	77		7 LP
CR-12/	4 Surr) 3	7.5	-0	8.61	7	43	S	×.7.	}	Rin	415 85
CR-12/	5 Surr	<u>و</u> ا	7.4	ی	6.0	٦	× ~	ۍ د	0 00			41486
CR-12/	6 Surr	د د	かん	٥	19.9	کھ	26	5	> C		53	SE SE
CR-12/	7 Surr	5	7;	2	30,00	7	スス	3) C ≪		: ·	419 80
CR-127	8 Surr	5	ング		6,9	7	2	V	8,2			1 _
CR-12/	9 Surr	5 6	7.3	2.	19.9	2	28		9	کے	2	70,00
GR-12/	10 Surr	5	7-4	و	4.6	8	28	S	~ 8		3	742 BR
CR-12/	11 Sur	<u>و</u>	7.5	ی	19.4	ત	28 Se	S	~		}	47.2
CR-12/	12 Sum 5	5	1.5	د.	19.6	7	26	4	8.0	府	五	12 F2/
CR-12/	13 Surr 5	ة م	7.3	و	7.6	d	25	S	4.4			
CR-12/	14 Surr 5	و_	€	و	19.6	ለ	800	S	30		7	A STORY
CR-12/	15 Surr 5	2	7.5	0	19.9	7	28	N	2000	٦	7.5	# £2/t
CR-12/	16 Surr 5	<u>ه</u>	4.4	ڡ	(q, l	7	22	5	2,0		<u>'</u> ۔ د۔	7/28 JL
CR-12/	17 Sur 5	<u>e</u>	7.3	و	19.5	C	22	S	×		,,	2/29 860
CR-12 /	18 Surr 5		7-4	3	6.6	16	28	S	Ó	5	=	7 20 Br
CR-12)	19 Surr 5	وَ	ج.	و	ر اد	ø	80	S	- cò	7)	MWA 7/2
CR-12/	20 Surr 5	9	7.5	9	19.8	7	28	N	8.1			CA 8/1
												, , , , , , , , , , , , , , , , , , ,

The first terms of the second second

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL.	TEST START DATE
Integral Consulting Inc.	WPAH	/ OhO)	FSW071113.01	PSEP 1995	12-Jul-2013
JOB NUMBER	PROJECT MANAGER	NEWFIELDS LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
860.0074.000	B. Gardiner			Neanthes arenaceodentata	1-Aug-2013

						WATER QUA	LITY	DATA					
TEST CONDITIONS				DO (mg/L) > 4.6		TEMP (C)	S	SALINITY (ppt)		pH 8.0+1.0			
CUENTINEWFIELDS (D	DAY REP	JAR		D.O.		TEMP		SALINITY		Hd	WATER	Feeding	TECH/DATE
CARR-20 /	0 Surr	92	meter /	Tight 7	meter 7	30.0	2	20 Page 2	U defei	unit 0 8	KENEWAL	, 9	HEN EI CI E
CARR-20 /	1 Sur		ه. د	14	2 د	00	. 7	282	1 V	0,0		2	13 /
CARR-20 /	2 Surr	76	و	و ۲	و_ ا	19.7	\ \c'	78	الح	2.8		3	7/4 2
CARR-201	3 Surr	76	e	7.4	<u> </u>	t'b)	1	48	S	4	ال		71586
CARR-20/	4 Surr	76	<u>_</u>	7.4	ح	19.7	7	27	\ <u>\</u>	- O,		B	411000
CARR-20 /	5 Surr	9/	e	4.4	٩	19.7	٦	40	ഗ	4.0			7/17-86
CARR-20 /	6 Surr	76	3	7.4	3	19.8	7	28	Ŋ	8.0	ا الم	B	7118 BG
CARR-20 /	7 Surr	92	_ ථ	7.7	ی	19.8	ત	28	2	8.0			माल कप
CARR-20 /	8 Surr	9/	و	7.4	و	19.9	7	28	15)· &		7	2/20 Je
CARR-20 /	9 Surr	92		43	_0	[9.9	7	28	V	ල ව	<u>ئ</u>		7/21/
CARR-20 /	10 Surr	92	و	7.4	و	19.8	7	28	2	8.5		Ϋ́	7/22 136
CARR-20 /	11 Surr	92	ی	7.5	ی	t.61	7	28	R	1.8			7/23 BG
CARR-20 /	12 Surr	9/	Ø	7.6	Ō	9.61.	2	28	γ	2.8	76	34	JEH 24,
CARR-20 /	13 Surr	76	و	7.6	٩	19.10	て	28	ટ	1.8			भाग्र घरा
CARR-20 /	14 Surr	92	و	7.5	و	(9.7	ø	38	Ŋ	&.D		ک ک	JUMME 7/26
CARR-20 /	15 Surr	76	ھ.	SY	_0	8'6)	7	2.8	<u>ک</u>	8.3	Jr		r Aira
CARR-207	16 Surr	92	ھے	った	ھ۔	4.6]	7	28	~	6.3		Ju	7/28)
CARR-20 /	17 Surr	92	و	4.5	و	19.7	7	ar	5	8.3			7-129 BGN
CARR-20 /	18 Surr	92	_	7-6	2	19.7	ح	28	S	8.2	196	٦ (7150 BG
CARR-20 /	19 Surr	76	و٠	<u>و</u> ۳	و٠	19.3	ለ	38 8¢	ડે	8. S			MWR 7/31
CARR-20 /	20 Surr	92	9	7.6	9	<i>[9.8</i>	7	28	3	2.8			GR 8/1

CLIENT		PROJECT	t.	S.	START TIME/ END TIME	IME	DILUTIO	N WATER	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.			WPAH		1			FSW07	FSW071113.01	PSEP 1995	95	12-Jul-2013
JOB NUMBER		PROJEC	PROJECT MANAGER	Z	NEWFIELDS LABORATORY	ATORY	TEMP. R	TEMP, RECDR./HOBO#	#OBO#	TEST SPECIES		TEST END DATE
860.0074.000			B. Gardiner							Neanthes arenaceodentata	sodentata	1-Aug-2013
					WATER QUALITY DATA	LITY DAT	Ä					
TEST CONDITIONS		10 05 10 05 10 05	DO (mg/L) >46		TEMP(C) 20±1	SAL	INITY (ppt) 28 ± 2		PH 8.0±1.0			
CUENTINEWFIELDS 10	DAY REP	A4.	D.O. meter mg/L	meteri	TEMP	S	SALINITY	meter	pH unit	WATER	Feeding	TECH/DATE
CR-02 /	0 Surr	16	L	9	20.3	ત	28	Ŋ	7.9		4	7.12.13 184
CR-02 /	1 Surr	16	75	وـ	(9.9	7	28	V:	ė			2118 J
CR-02/	2 Surr	16		د	(4.8	4	82	S	& D.		ᇰ	71(4 J
CR-02/	3 Surr	16	5	ی	七,月	~	Le L	S	7.8	الم		715 EG
CR-02/	4 Surr	16		ى	69.8	4	27	હ	4.0		জু	7-116 BG
CR-02/	5 Surr	16	4.3	3	19.8	d	46	S	7.8			71786
CR-02/	6 Surr	16	0 子子	ی	90.0	ત	28	2	2.5	76	150	718 30
CR-02/	7 Surr	16	4.3	ی	19.8	d	28 28	0	4.0			石田大
CR-02/	8 Surr	16		٥	20.07	~	28	Ŋ	00		つし	the It
CR-02 /	9 Surr	16	7.2	و	20.0	7	28	S	8,1	ユー		かなりし
CR-02 /	10 Surr	16	7.4	2	19.8	ン	28	5	2.8		$\eta_{\mathbb{C}}$	H22 641
CR-02/	11 Surr) 91		ق	19.6	ره	28	S	8.6			242s 86g
CR-02/	12 Surr	194	~~~~	و	19.6	7	82	Ŋ	8.0	五元	Ľ Ľ	1524
CR-02/	13 Surr	16	(1-	و	4.6	ু	28	34	8.20ga			76x 869
CR-021	14 Surr	16	S. ←	و	19.7	ø	200	S	400		<u>ئ</u>	7 (26 Marile
CR-02/	15 Surr	16	6 7.5	9	19.8	2	28	R	8.3	7		112716
CR-02 /	16 Surr	16	5,4	هـ	[4.5	7	25	\searrow	8.4		りし	7128 J
CR-02 /	17 Surr	16 (6 7.5	ی	19.0	7	Q 8	2	g.3			1/29 1/2/15
CR-021	18 Surr	16	6 7.S	<u>e</u>	8.61	ત્ય	28	S	8.2	138	ر)(2180BG)
CR-021	19 Surr	16	٩.٢	و	19.3	d	98 8	S	8.2			MWB 7(81
CR-02 /	20 Surr	16	6 7.6	و	19.8	2	28	2	8.2			CR 8/1
	:						光 つの(l)	15	h2128	4		

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE
Integral Consulting Inc.	WPAH	· (h0)	FSW071113.01	PSEP 1995	12-Jul-2013
JOB NUMBER	PROJECT MANAGER	NEWFIELDS LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
860,0074,000	B. Gardiner			Neanthes arenaceodentata	1-Aug-2013
		WATER QUALITY DATA			

							3	WATER QUALI	ITY DATA	A					
	TEST CONDITIONS				DO (mg/L) >46	g/L) 6	TEMP (C)	(C)	SALI	SALINITY (ppt) 28 + 2		pH 8.0±1.0			
	CLENTINEWFIELDS ID	DAY R	REP	JAR	Ď		TEMP		/S	SALINITY		Hd	WATER	Feeding	TECH/DATE
	SD0001/	ō O	Surr	2	7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.5 6		6	<u>ر</u>	00	Ŋ	7.0	NEW COLUMN	B	7.1213 BH
	SD0001 /	<u>-</u>	Surr	64	9	9 4·F		20.0	7	29	S	4,9			7/13 2
	SD0001 /	2 S	Surr	64	٥	75	وا	12,7	7	29	1	9.0		Jr	≯1/6 m
19	SD0001 /	<u>හ</u>	Surr	64 (6 7	2. طر ا		4.4	6	38	S	7.8	ک		867 FIS
• • • •	SD0001 /	4	Surr	64	4	<i>b</i> Ь:		4.4	7	te	S	8.0		ঠ	11/t 500
	SD0001 /	ශ	Sur	69	4	.3 6		9.8	て	27	S	7.9	210000000000000000000000000000000000000		日中の日
	SD0001/	ပ	Sur	64	7 -)) o	9.8	7	28	S	8.0	کر	ð	7/18 BCO
	SD0001/	7 8	Surr) 69	10 F-	2 6	0)	19.8	2	28	5	4.0			7/19 BO1
	SD0001 /	8 8	Surr		t. o	7 4	1	19.9	7	28	\ <u>\</u>	٥. م.		ر ا	7/20 76
1	SD0001 /	<u>ග</u>	Surr	64	7	9 51		20.02	7	28	φ	7.9	Je		からし
	SD0001 /	10 S	Surr	64 (6 7.4		رم او	19.8	6	28	S	8.1		کل	7122 BG
.,	SD0001 /	11 S	Surr	64 [5-7 6		م اه	19.7	2	28	S	8.2			H23 64
	SD0001 /	12 S	Surr	64 /	1.5	7	61 3	19.6	2	82	P	<i>&</i> , √	7	HE	712×14
	SD0001 /	13 S	Surr	64 [7.	((0.6	ત	38	0	٠ ک			7 125 RG
	SD0001/	14 S	Surr	64	チョ	S.	((\sim	ለ	8 C	S	-		ے	7/26 MWG
	SD0001/	1 5 S	Surr	64	ام ج	<u> </u>	ر	9,9	4	28	V	8,7	٦		754
	SD0001 /	16 S	Surr	64	J.	<u> </u>	_0	19.6	7	28	\searrow	8.7		7	72875
	SD0001 /	17 S	Surr	64	6 7	.S 0		4.6	7	38	N	8.5			7/29 80
	SD0001 /	18 S	Surr	64 (t e	ر ان ان	_	8.61	7	25 5	S	8.0	89	7	7/30 12(1)
	SD0001 /	1 9 S	Surr	64	4	<i>y</i> S.	6 (9	Α.	' ሌ	00	ß	<u>ር</u>			MMB 7(31
	SD0001 /	20 s	Surr	64 (6 7.	6 6		9.	2	28	N	8,0			G 8/1
			İ												

CLIENT		PROJECT	٦ ا		S	START TIME/ END TIME	rime	DILUTIO	N WATE	DILUTION WATER BATCH	PROTOCOL	<u></u>	TEST START DATE
Integral Consulting Inc.				WPAH		· 어O			FSW(FSW071113.01	PSEP 1995	35	12~Jul-2013
JOB NUMBER		PROJE	PROJECT MANAGER	IAGER	Z	NEWFIELDS LABORATORY	RATORY	TEMP. RECDR./HOBO#	ECDR./	ново#	TEST SPECIES		TEST END DATE
860.0074.000			œ	B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
						WATER QUALITY DATA	LITY DA	ITA					
TEST CONDITIONS				DO (mg/L) > 4.6		TEMP(C) 20±1	ΑŊ	SALINITY (ppt) 28 ± 2		pH 8.0±1.0			
CLIENTINÈWPIELOS ID	DAY REP	JAR	meter	D.O. mg/L	meter	TEMP	meter	SALINITY	meter		WATER	Feeding	TECH/DATE
SD0002/	0 Surr	61	9	7.5	9	19.9	જ	28	N	4		8	7.12.13 BH
SD00021	1 Surr	61	و	73	ھ	2.0.2	7	28	S	7,8			70 21/2
SD00027	2 Surr	61	و.	7.4	د	19.7	7	29	S	ය ට	5.00	7	7/4 JC
SD0002)	3 Surr	61	ه	43	১	T.81	٦	8	ď	2-8	しつ		My-Jik
SD0002/	4 Surr	61	_ ' এ	7.3	3	4.6	4	ر 4	<i>S</i>	4.9		BG	7/16 BG
SD0002/	S Surr	.61	و	7	9	19.8	て	77	S	4.9			717 80
SD0002/	6 Surr	61	<u>ئ</u>	7.7	و	19.9	<u>ر</u>	28	S	8.0	٦٢	60	AIR BCI
SD0002/	7 Surr	9	, 9	7.0	3	19,8	d	8	S	4.6			7119 BG
SD00021	8 Surr	61	و_	2.5	وـ	19.9	7	82	5	2.8		7	7/20 Ji
SD0002/	9 Surr	61	و	1.6	و	J.0.D	7	82	\searrow	0.8	ا حال		からし
SD00021	10 Surr	61	Ģ	4.4	9	19.8	Z	28	S	8.2		メ	7/22 BG
SD00027	11 Surr	61	3	カ・も	و	9.61	7	38	5	カ・8			7123 RG)
SD0002/	12 Surr	61	9	7.9	2	19.7	٦	26	8	9.4	HE	ЯК	11242
1.Z0000S	13 Surr	61	9	4.5	و،	19.6	J	28	2	8.			7125 BCS
SD00021	14 Surr	61	و	7. S	و	[9,7	ø	800	S	. G		J	NAME 7/36
SD00021	15 Surr	61	و	7.4	ڡ	[4.8	2	38	\searrow	છે,3	بال		7 127 J
SD0002/	16 Surr	61	ی	かん	و	19.6	7	87	₹>	2 B		٦	728 S
SD0002./	17 Surr	61	و	7.5	و	19.8	Ч	SZ SZ	S	- 00			7129 BGS
SD0002 <i>)</i>	18 Surr	9	و	7.5	೨	ا. بن	ര	38	S	4.9	136	J	7(30 Pm,
SD0002/	19 Surr	61	9	7. S	و	[9.7	' <i>r</i> b	& C	S	ب و			NAME 3/13!
SD00027	20 Surr	61	9	7.6	9	19.9	2	23	Ŋ	7.9			(R 8/1

The production of the contract
		-			-							ŀ	
CLIENT		PROJECT	ECT		is.	START TIME/ END TIME	ME.	DILUTIC	N WATE	DILUTION WATER BATCH	PROTOCOL	F	TEST START DATE
Integral Consulting Inc.				WPAH		/ OHO]			FSW0	FSW071113.01	PSEP 1995	5	12-Jul-2013
JOB NUMBER	***************************************	PROJ	PROJECT MANAGER	AGER	Z	NEWFIELDS LABORATORY	ATORY	TEMP. F	TEMP. RECDR./HOBO#	10BO#	TEST SPECIES	F	TEST END DATE
860,0074.000			ത്	B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
						WATER QUALITY DATA	LITY DA	ιTA					
TEST CONDITIONS			0	DO (mg/L) >46		TEMP (C)	SA	LINITY (ppt) 28 + 2		pH 8.0+1.0			
CLIENTINEWFIELDS ID	DAY REP	, JAR	meter	D.O.	meter	TEMP	meter	SALINITY	meter	pH unit	WATER	Feeding	TECH/DATE
SD0003 /	0 Surr	r 19		7,5	9	20.3	ત	20	ιν	0.8		8	7.12.18 BH
SD0003 /	1 Sur	т 19	s	5	ه_	(9,9	7	62	S	4.9			76 5 5
SD0003 /	2 Surr	19	ور	7.5	و	19.8	7	29	8	8.0		J	714 d
SD0003 /	3 Surr	19	3	٦.٢	3	19.2	7	28	C	1.8	ر ا ا		
SD0003 /	4 Surr	19	و	7.4	د	19.8	7	28	S	7.9		Bes	7116 BG
SD0003 /	5 Surr	19	8)		2	6.9	d	88	S	2,0			7117 600,
SD0003 /	6 Surr	T 19	ق	7.3	e	19.9	4	28	S	8.))	Per .	7118 BCN
SD0003 /	7 Surr	T 19	S	7.2	9	p. 9]	ત	28	જ	₩.		555656565	7(2 88)
SD0003 /	8 Surr	r 19	هـ٧	4.3	و	20.0	7	28	\sim	8,3		المرا	7/20/7
SD0003 /	9 Surr	7 39	2.	2:2	ھ_	20.00	7	82	>	8.2	٦		Mzi Jr
SD0003 /	10 Surr	r 19		7.3	و	14.8	ત	38	2	8,3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ろ	मंद्र क्य
SD0003 /	11 Surr	т 19	ē	4.4	9	t.pl	K	28	5	8,3			H23 BG
SD0003 /	12 Surr	п 19	9	7.5	و .	19.7	0	20	V	8.3	克	<u>~</u>	775474
SD0003 /	13 Surr	رد 19	و	7.3	د-	19,7	ഷ	28	S	 ∞			35 SG
SD0003 /	14 Surr	ור 19	٩	٦. لو	و	19.8	ለ	ф 8	S	60 60		7	7 (De Minis
SD0003 /	15 Surr	rr 19		7.5	0	19.8	2	28	S	80	5		1177/K
SD0003 /	16 Surr	rr 19	9	7.5	و_	19.6	7	28	5	8.3		7	7128 Jr
SD0003/	17 Surr	rr 19	و	7.5	و	19.7	4	28	B	8.2		,	7/29 86
SD0003 /	18 Surr	rr 19	و	7.6	و	8.8	る	8	S	3.	28	7	750 ESG.
SD0003 /	19 Surr	rr 19	و	7.S	و٠	[9.7	N	& 	S	7.00	0.0000000000000000000000000000000000000		NWG 7/31
J 8D0003	20 Surr	rr 19	9	7.7	و	19.8	7	28	Ŋ	8.1			CR 2811;
さって さいしゃからかかのは名を変われる													

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE
Integral Consulting Inc.	WPAH	/ CHO)	FSW071113.01	PSEP 1995	12-Jul-2013
JOB NUMBER	PROJECT MANAGER	NEWFIELDS LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
860.0074.000	B. Gardiner			Neanthes arenaceodentata	1-Aug-2013

7 2
200
- 20
9 5%
Surr 41 6
O Surr

		_			ľ			-					
CLIENT		PROJECT	답			START TIME/ END TIME	TIME	DILUTIO	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.				WPAH		· 유 <u></u>			FSW0	FSW071113.01	PSEP 1995	95	12-Jul-2013
JOB NUMBER		PROJ	ECT MA	PROJECT MANAGER		NEWFIELDS LABORATORY	RATORY	TEMP. R	TEMP. RECDR./HOBO#	loBo#	TEST SPECIES		TEST END DATE
860.0074,000			_	B. Gardiner							Neanthes arenaceodentata	eodentata	1-Aug-2013
***************************************						WATER QUALITY DATA	ALITY DA	4TA					
TEST CONDITIONS				DO (mg/L) > 4.6		TEMP (C) 20±1	Ø.	ALINITY (ppt) 28±2		pH 8.0±1.0			
CLIENTINEWFIELDS ID	DAY REP	JAR	meter	D.O. ma/L	meter	TEMP	meter	SALINITY	meter	pH unit	WATER	Feeding	TECH/DATE
/ SD000S	0 Surr	127	~	7.5	9	20.4	ત	38	v	8.0		8	7.12.13 BH
SD0005 /	1 Surr	127	و_	7	و	20.02	7	29	S	8.0			710 U
SD0005 /	2 Surr	127	ه_	みよ	و	20.0	7	29	V	8.[J)	1 2/14 St
SD0005 /	3 Sur	127	e	7.6	೨	19.8	$\overline{\mathcal{O}}$	28	Š	7.9	JL		7/15/20
/ \$000QS	4 Surr	127	ی	5.5	و	19.9	7	28	5	8.0		Ä	7/16 86
/ SD000S	5 Surr	127	ی	4.4	ঙ	19.9	d	28	5	8.0			7)74 650
/ \$000QS	6 Surr	127	و	7.5	9	20.0	7	to	S	8	\mathcal{L}	Ø	7/18 BG
SD0005/	7 Surr	127	3	7.3	2	26.0	る	aB	3	8.0		•	7/18 BD
/ \$000QS	8 Surr	127	ھ_	みら	٩	1.02	7	28	\nearrow	9.1		3	7/26 Ji
/ \$0000S	9 Surr	127	و_	7.4	٥	201	7	26	5	<i>9</i> .0	く		YPI J
SD0005 /	10 Sur	127	ی	7.4	2	19.9	7	28	2	8		ر کار	H22 BG
SD0005 /	11 Surr	127	ی	7.6	9	74.8	7	28	∇	8:5			72389
/ SD000S	12 Surr	127	9	7.6	Ø	19.7	7	2002	5	<u>%</u> ر	弄	五	1724 TK
/ SD000S	13 Sur	127	و	7.6	9		て	28	N	89			HECBU
SD0005 /	14 Surr	127	و	4.4	و	[A. +	φ	80	S	- cs		ک	A Be Mark
SD0005/	15 Surr	127	و_	3	د_	19.9	7	28	√	8.3	رد		20 tak
SD0005/	16 Surr	127	و.	7.6	ھ	(9.7	2	28	<u>ل</u>	8,3		7	728)
SD0005/	17 Surr	127	ھ	7.5	و	<u>م</u> ا	ಡ	28		8.2			7 his Ra
SD0005 /	18 Surr	127	9	4.0	9	198	Q	88	S	, 00	8	7	122 PC)
SD0005/	19 Surr	127	9	م. 4.	9	8.61	ላ	& &	৫	- 20			NMB 7 (3)
SD0005/	20 Surr	127	9	7.6	0	19.9	7	82	Ŋ	8.			1/8 2/

CLENT		PROJECT		S	START TIME/ END TIME	TIME	DILUTIO	N WATE	DILUTION WATER BATCH	РКОТОСОГ		TEST START DATE
Integral Consulting Inc.			WPAH		1000		•••	FSW0.	FSW071113.01	PSEP 1995		12-Jul-2013
			10000		2 2 3	VG OT 1			10000	on one hour		
JOB NUMBER		PROJECT MANAGER	NAGEK	<u> </u>	NEWPIELDS LABORATORY	AAI OKY	- - -	IEMP. RECUR./HOROH	#O#O#	PEST SPECIES		IESI END DATE
860.0074.000		<u>.</u>	B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
					WATER QUALITY DATA	LITY DA	١TA					
TEST CONDITIONS			DO (mg/L) > 4.6		TEMP (C) 20 + 1	Š	(LINITY (ppt) 28 + 2		pH 8.0+1.0			
CUENTMEWFIELDS ID	DAY REP	Jan meter	D.O.	meter	TEMP	meter	SALINITY	meter	pH	WATER	Feeding	TECH/DATE
/ 9000GS	0 Surr	128 6	7.5	9	20.4	R	28	۲۷	0.0		CK	7.12.13 BM
SD0006 /	1 Surr	128	7,0	و	20,02	7	62	7	8,0			7/13 J
SD0006 /	2 Surr	128 6	んん	د	20.0	7	29	2	8.2		3	7/4/K
SD0006 /	3 Surr	128 (0	7.5	(0	19.8	7	28	5	8.0	ر ا		7 15 BC
SD0006 /	4 Surr	128 C	7.5	ور	19.8	2	38	2	8.2		ST ST ST ST ST ST ST ST ST ST ST ST ST S	7110 BCH
SD0006 /	5 Surr	128	7.4	2	ō.	7	2	W	80			7/17-BO)
/ 9000GS	6 Surr	128	7.5	و	20.0¢	マ	28	S	8.2	76	By	2/18 PM
SD0006 /	7 Surr	128	カゼ	2	19.9	7	200	3	<u>~</u>			7-119 BG
SD0006 /	8 Surr	128	4,4	و	707	7	97	S	ر ح الم		76	ork
SD0006 /	9 Surr	128 6	かと	٩	7.0.1	2	28	\mathcal{S}	9.1	_ر مار		1 7 7 TK
SD0006 /	10 Surr	\)	h.t	ی	19.9	7	28	S	8.3		X	7/22 80
/ 9000CS	11 Surr	128 60	7.6	و	2.91	7	38	S	þ. %			7/23 BO
SD0006 /	12 Surr	128 6	7.6	Ø	19.7	7	82	8	8.4	オカ	五万	12 h2/t
SD0006 /	13 Surr	128	7.6	ی	4.6	ス	38	5	8.1			H25 BU
SD0006 /	14 Surr	128	<u>ه</u> ۳	و	[9. 8	ሌ	38	Ŋ	8.3		ع	7/26 mmg
SD0006/	15 Surr	128 b	がと		20.0	7	20	8	8.4	ا کار		16x7x
/ 90000S	16 Surr	128 6	St	9	19.7	7	87	مر	8.4		ب	7,87
SD0006 /	17 Surr	128 6	5.5	9	19.8	7	S S	5	8.3			128 EU
SD0006 /	18 Surr	128	7.6	ی	19.8	ત્ય	28	S	6.2	8	JS J	7120 BB
SD0006 /	19 Surr	128	<i>ð.</i> ←	و	8.61	σ	98	S	- Ø			NMM 7 31
SD0006/	20 Surr	128 6	7.6	9	19.9	2	82	N	8.2			CR 8/1

CLIENT		PROJECT			START TIME/ END TIME	TIME	DILUTIC	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.			WPAH		· 유 <u></u>			FSW0	FSW071113.01	PSEP 1995	ž	12-Jul-2013
JOB NUMBER		PROJECT MANAGER	IANAGER		NEWFIELDS LABORATORY	RATORY	TEMP. F	TEMP. RECDR./HOBO#	10BO#	TEST SPECIES		TEST END DATE
860.0074.000			B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
					WATER QUALITY DATA	ALITY DA	٩TA					
TEST CONDITIONS			DO (mg/L) >4.6	1 95 S	TEMP (C) 20±1	S)	ALINITY (ppt) 28±2		pH 8:0±1:0			
CLIENTMEWFIELDS IO	DAY REP	JAR	D.O.	meter	TEMP °C	meter	SALINITY	meter	Hd	WATER	Feeding	TECH/DATE
SD0007 /	0 Surr	129	1	9	20.5	~	28	Ŋ	 		S	7.12.13 BH
l 2000QS	1 Surr	129	2,5	2	20.(2	29	4	8·(7607
/ £0000S	2 Surr	129 0	9.t	و_	20.0	7	29	72	8.2		Z	J. 7/4
/ <u>/</u> 0000GS	3 Surr	129 10	7.4	Š	19.9	7	28	0	ر). ه	کام		BG 715
/ £000GS	4 Surr	129 / 2	7.4	్ర	20.0	7	38	(C)	8.2		Ba	86716
l 2000QS	5 Surr	129	7.2	و	20,1	8	28	S	8.2			1507 17
/ 2000GS	6 Surr	133	7.3	ی	26.1	ત્ય	28	S	4.8	ろ	Pen	12 SAS)
l 70000S	7 Surr	129	4.2	೨	20	4	28	S	8.2		•	भित हरा
/ Z0000S	8 Surr	129 1	かた	هـ.	20.2	7	28	7	8.3		٦p	7/20 1/2
/ Z000GS	9 Surr	9 621	7.3	2	20.2	7	28	>	2.8	عل)		721 Jr
/ / 0000S	10 Surr	129 621	7-4	9	P. P.	ح	20	5	8.3		25	1/22 RC1
l 2000GS	11 Surr	129 621	4.5	9	19.9	7	28	S	8.5			423 EU
\$D0007 /	12 Surr	129 6	7.5	ø	19.7	7	28	Ъ	s ap	Ţ	五	7124 21E
SD0007 /	13 Surr	129 G	75	৩	₽. 8.	ત	30	S	8-2			712x BC1
SD0007 /	14 Surr	129 6	و ۴	و	<u>o</u> .	ለ	86	S	80		ع	7 (26 MIN
/ £0000S	15 Surr	129	4>	و	0.00	7	28	V	t 60	ع		となる
/ ZD000S	16 Surr	د_ .د انت	75	د	(9.3	2	28	<i>ل</i>	8,3		<u>ئ</u>	7.82 JE
SD0007 /	17 Surr	13 62	7.5	و	19.9	ત	28	S	8.7			7/29 809
/ £0000S	18 Surr	129 6	7.6	و	19.9	ત	9 8	S	 89	13%	-	7120 BLA
\$D0007 /	19 Surr	129	٦. ٢	و	<u>6</u>	ሌ	38	ហ	. −. ∞			MMB 7/31
/ ZD000S	20 Surr	129 6	7.7	9	19.9	7	82	S	<u>8</u>			1/8 B/I

CLIENT		PROJECT	ECT		<u>'87</u>	START TIME/ END TIME	IME	DILUTIC	N WATE	DILUTION WATER BATCH	PROTOCOL.	<u> </u>	TEST START DATE
Integral Consulting Inc.			_	WPAH		- 25Q		<u></u>	FSW07	FSW071113.01	PSEP 1995	35	12-Jul-2013
JOB NUMBER		PROJ	PROJECT MANAGER	AGER	Z	NEWFIELDS LABORATORY	SATORY	TEMP. F	TEMP, RECDR./HOBO#	(OBO#	TEST SPECIES	<u>F</u>	TEST END DATE
860.0074.000			æ,	B. Gardiner							Neanthes arenaceodentata	sodentata	1-Aug-2013
						WATER QUALITY DATA	LITY DA	TA					
TEST CONDITIONS			Ω	DO (mg/L) >4.6		TEMP (C) 20 ± 1	S.A.	SALINITY (ppt) 28±2		pH 8.0±1.0			
CLIENT/NEWRIELDS 10	DAY REP	JAR	meter∮	D.O. mg/L	meter	TEMP °C	meter	SALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
SD0008 /	O Sur	103	9	77	9	a0.5	K	9C	5	7.9		9	7.12.13 BH
SD0008 /	1 Surr	103	و.	ナチ	و	19.9	7	29	V	7.9			7(13 Jr
SD0008 /	2 Surr	103		2,5	و	19.9	7	29	5	9,0		٠,	7/14/1
SD0008/	3 Surr	103	(o	27	ව	F. P)	7	28	2	7.8	ر ا		7/15/369
SD0008 /	4 Surr	103	3	4.	ی	19.8	4	2 B	S	8.3		. (SS)	71/4 86
SD0008 /	5 Surr	103	9	4.9	ی	19.9	7	28	S	8.3		1	7/17/89
SD0008 /	6 Surr	103	٩	7.0	2	19.9	~	28	Ş	8.5	کا	8	7/18 BU
/ 8D000S	7 Surr	103	<u> </u>	たる	د	<u>5</u>	ત	8	S	₹ 8			719 86
/ 80000S	8 Surr	103	و۔	ーナ	ی	20,02	7	87	V.	8.5		7	720 OCK
SD0008 /	ıınS 6	103	9	<i>اه`ه</i> ا	9	20.0	2	82	12	9.3	ا ا		1/21 Jr
SD0008 /	10 Surr	103	و	7.0	7	19.8	2	28	5	8.4		メ	7122 BCA
SD0008 /	11 Surr	103	و	7.2	و	19.8	٦	28	5	8.6			7-123 (25)
SD0008 /	12 Surr	103	Q	7.4	Ø	(4,7	2	20	8	8.8	工厂	. 3H	1724 B
SD0008 /	13 Surr	103	و	7.7	و	4.6	76	28	S	8.6			7/25 26
SD0008 /	14 Surr	103	و	7.8	و ر	19.7	Ø	36	S	8.6		ا	7 (26 min
SD0008 /	15 Surr	103	૭	74	و	(4.8	7	28	N	& ,6	75		x123 Jc
SD0008 /	16 Surr	103	و	4	د	(9,7	7	82	\nearrow	بي ک		7	子ともして
SD0008 /	17 Surr	103	٠	7.5	2	19.7	N	م م	S	£ .	-		7 129 BSN
/ 8D0008	18 Surr	103	e	٠Ψ ارت	و١	8. 9)	Z	28	5	8.3	13G	اعال	7120 BCM
SD0008 /	19 Surr	103	و	بر	و	8.6	ሌ	& Ø	১	∞			NWB-7/31
SD0008 /	20 Surr	103	9	7.6	0	8.6)	7	28	Ŋ	8.5			CR 8/1

CLIENT			PROJECT	ECT		S	START TIME/ END TIME	IME	PILUTIO	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Ē	Integral Consulting Inc.				WPAH		· 2元 <u>0</u>			FSWC	FSW071113.01	PSEP 1995	95	12-Jul-2013
JOB NUMBER			PRO.	PROJECT MANAGER	NAGER	Z	NEWFIELDS LABORATORY	SATORY	TEMP. RECDR./HOBO#	ECDR./I	HOBO#	TEST SPECIES		TEST END DATE
	860.0074.000				B. Gardiner							Neanthes arenaceodentata	eodentata	1-Aug-2013
							WATER QUALITY	I – ŧ	DATA					
	TEST CONDITIONS				DO (mg/L) > 4.6		TEMP (C) 20 ± 1	<i>ે</i>	SALINITY (ppt) 28 ± 2		pH 8.0±1.0			
้อ	CLIENTINEWFIELDS ID	DAY REP	JAR	meter	D.O. ma/L	meter	TEMP	meter	SALINITY	meter	pH unit	WATER	Feeding	TECH/DATE
- ,	/ 6000QS	0 Surr	46	٩	9.E	9	20.0	ス	30	7	8.0		Cla	7.12.13 BIH
	/6000QS	1 Surr	46	و.	かけ	٥	19.9	7	2	\sim	ος Ó			710 JC
	/ 6000QS	2 Surr	46	ھے	75	و۔	(9.8	2	29	S	9, (عل	1/14 UL
	/ 6000dS	3 Surr	46	9	カナ	ی	19·8	Ŋ	28	5	7.8	ンし		415 BM
	/ 6000QS	4 Surr	ر 46	3	7.4	و	19.8	7	28	S	⊗		Z	7/40 BE
	/ 6000DS	5 Surr	r 46	2	7.5	3	19.8	٦	28	5	8.0			上下 850
	/ 6000 G S	6 Surr	r 46	J	7.4	و	6.91	7	28	5	4.2	ال	, Z	7/18 Bay
	/ 6000dS	7 Sur	46	2		و	9.9	7	38	S	8.1			7/19 BC1
	/ 6000dS	8 Surr	r 46	٥	C´F	٥	20.0	7	82	5	2.8		ىل	The of
	/ 6000DS	9 Sur	r 46	ه_	24	9	20.0	7	82	\sim	8.1			721 7
	/ 6000GS	10 Surr	r 46	و	ナゼ	3	19.8	2	28	S	8.2		して	762 BG
	/ 6000GS	11 Surr	r 46	ھ	7.5	و	t. b)	7	2 K	Ŋ	ታ. 8			7123 BG
	/ 6000QS	12 Surr	r 46	9	7.6	6 1	9.6	7	20	જ	8.3	7	堂	72476
	/ 6000QS	13 Surr	ر 46	و	7.5	و	4.6)	る	20	3	8,0		•	HEX BLO
	SD0009 /	14 Surr	r 46	و	ع د	ح	4.6	ц	286	ហ	- 30		ک	7 (24 mms
	/ 6000GS	15 Surr	r 46	و	3.	Q	(d , 8	N	82	\sim	8.7	5		712 5
	/ 6000GS	16 Surr	r 46	2	4.	ھ	(d.b	7	87	\ \	278		7	7128 %
	/ 6000QS	17 Surr	r 46	৩	7.6	و	19.7	ત્	2 12	S	8.			7129 601
-	SD0009 /	18 Surr	r 46	و	7.6	ع	<u>₽</u> &	ત	98	ഗ	8.0	Z	그	7150 BG
	/ 6000 G S	19 Surr	r 46	و	7.6	و	19.7	4	8 t	v	0			MM8 7(31
	SD0009/	20 Surr	r 46	O	7.6	૭	19.8	7	28	Ŋ	8.0			48/1

CLIENT		PROJECT	ICT		s	START TIME/ END TIME	IME	DILUTIO	N WATE	DILUTION WATER BATCH	PROTOCOL.		TEST START DATE
Integral Consulting Inc.				WPAH		· 250]			FSW0	FSW071113.01	PSEP 1995	55	12-Jul-2013
JOB NUMBER		PROJE	ECT MA	PROJECT MANAGER	Z	NEWFIELDS LABORATORY	RATORY	TEMP. RECDR./HOBO#	ECDR./F	1080#	TEST SPECIES		TEST END DATE
860.0074.000			_	B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
						WATER QUALITY DATA	LITY DA	\TA		CONTRACTOR		A Liberton expedition to the liberton and the liberton an	
TEST CONDITIONS				DO (mg/L) > 4.6		TEMP (C) 20 ± 1	d N	SALINITY (ppt) 28 ± 2		рн 8.0±1.0			
CLIENTINEWRIELDS ID	DAY REP	JAR	meter	D.O. mg/L	meter	TEMP	meter	SALINITY	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
SD0010 /	0 Surr	06	s.	7.6	9	20.2	ん	<i>ф</i>	ΓV	0.0		CR	7.12.13 BH
SD0010 /	1 Surr	06	و_	4.5	ھـ	26.0	7	29	S	7.9			7/13 Or
SD0010 /	2 Surr	06	عــ	4	ڡ	[9,9	2	29	Ø	8,0		3	XIAJU
SD0010 /	3 Surr	06	S	7.5	و	4.61	4	28	S	7.8			711560
SD0010 /	4 Surr	06	ی	4.4	و	19.8	d	38	S	4.0		R	7/16 BG
SD0010 /	5 Sur	66	ی	4.2	و	19.9	d	28	5	7.8			7/786
SD0010 /	6 Surr	8	3	カナナ	૭	19.0	ಗ	28	S	8-0	しつつ	5	7/18 BG
SD0010 /	7 Surr	8	0	4.2	3	0.0	ત્ય	28	S	4.9			THG BO
SD0010 /	8 Surr	06	و	ナ、ナ	و	0,0,0	2	28	>	ે. (7	X22
SD0010 /	9 Sur	6	ڡ	どと	\$	20.1	7	82	7	G.0	عل		72124
SD0010 /	10 Surr	06	ی	7.4	ع	19.8	R	28	5	8.2		Y	712 BC1
SD0010 /	11 Surr	06	ی	7.5	ع	4.91	7	28	S	\ & . \			मध्ड (३०)
SD0010 /	12 Surr	6	Q	9.1	ø	19.6	2	.28 2.	8	8.1	荪	节	1124 12
SD0010 /	13 Surr	06	و	7.5	هـ	19.7	ح	28	S	4.0			7/25 869
SD0010 /	14 Surr	06	و	Ð. ←	و	8	ሌ	(X)	5	 		٦	4 Sto minis
SD0010 /	15 Surr	06	2	24	هـ	14.3	ر,	28	\sim	ھ آ	٦		となる
SD0010 /	16 Surr	- 90	هـ،	タヤ	ڡ	19.7	4	28	7	٥٥ ﴿		7	7128 Jr
SD0010 /	17 Surr	. 30	9	7.6	و	4.6	ત	38	S	_ &&			7129 Bay
SD0010 /	18 Surr	. 90	و	7.6	و		٦	28	S	8.0	961	7	上名兄父
SD0010 /	19 Surr	06	و	ع . د	و	8	ላ	78	ທ	0.00			MW6 7/3
SD0010 /	20 Surr	90	9	7.7	٥	19.8	7	28	N	8.0			(x 8/1

	l dd	PROJECT			START TIME/ END TIME	TIME	DITITIO	N WATE	DILITION WATER BATCH	PROTOCOL	1	TEST START DATE
)				ļ						
Integral Consulting Inc.			WPAH		(OHO)	5560 / aho)	۱۸	FSWC	FSW071113.01	PSEP 1995	15	12-Jul-2013
JOB NUMBER	PR	OJECTA	PROJECT MANAGER		NEWFIELDS LABORATORY	RATORY	TEMP. F	TEMP. RECDR./HOBO#	1080#	TEST SPECIES	1	TEST END DATE
860.0074.000			B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
					WATER QUALITY DATA	ALITY DA	TA					
TEST CONDITIONS			DO (mg/L) > 4.6		TEMP (C) 20 ± 1	SAI	SALINITY (ppt) 28 ± 2		PH 8.0±1.0			
CLIENTINEWFIELDS ID	REP JAR	meter	D.O. mg/L	meter	TEMP ဂိ	S	SALINITY	meter	pH unit	WATER	Feeding	TECH/DATE
SD0011/	Surr 56			9	19.9	٨	28	نح	49		B	7.12.13 BH
SD00111	Surr 56	٥		د	70'	2	29	V	7.8			7 S J
SD00111	Surr 56	و۔ ه	2,0	هـ	19.9	7	29	\sim	7.8		ا ا	7/4 V
SD0011/	Surr 56		7.3	ই	19.8	^	28	1	7.8	しし		7115 (89)
SD0011/	Surr 56	<u>ی</u>	7.3	೨	6.6	14	28	S	D.0		28	7/16 Bcs
SD0011/	Surr	<u>ئ</u>	4.0	ک	19.9	٦	28	S	4.9		3	7/17-06
SD0011/	Surr 56	<u>و</u>	7.7	প্ৰ	20.0	d	28	S	Q &	λ	B.	7 to Ba
SD00111	Surr 56	<u>ي</u>	.0 e	ی	9.9	7	28	S	4.9			719 BG
SD0011/	Surr 56			و	20.0	7	28	5	o. တ		Jr	
SD0011/	Surr 56		0,4	Q.	20.1	7	82	S	7.9	76		<i>i</i> pelle
SD0011 /	Surr 56	و	7.5	9	19.9	رم	38	5	8.		X	422 Ba
SD0011/	Surr 56	<i>9</i>	7.5	و	4.61	2	28	S	8.3		VI	4723 BC)
SD00111 /	Surr 56	<u>ي</u>	<u>1</u> .5	0	19.6	4	200	Ø	9.4	TE	旁	とってが
SD0011/	Surr 56	و	7.5	2	19.6	7	28	S	8,0			7/25/84
SD0011 /	Surr 56	<u>و</u> : «	٦.	9	(9,3	70	8 C	ß	<u>_</u>		3	3/more/F
SD0011/	Surr 56	9	7.5	Ü	19.9	2	28	N	2.8	بال	1 '	1/27 X
SD0011./	Surr 56	عہر	2.5	_\$	[9.	7	7 9	N	9, (Jı	X 28 X
SD0011/	Surr 56	و	4.5	9	4.6	7	38	S	გ ბ		•	7/29 89
SD0011/	Sum 56	٥	75	و	19.8	Ч	28	S	D. D) 04	2)	50 pe
SD0011 (Surr 56	9	7.6	9	(9.7	ሌ	38	S	4.9			MMB 7 31
SD0011 / 20	Surr	<i>७</i>	7.6	ø	(9.9	2	28	S	7.9			CR 8/1

CLIENT		PROJECT	ECT		S	START TIME/ END TIME	IIME	DILUTIC	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.				WPAH		(350)		· . ·	FSW0.	FSW071113.01	PSEP 1995	35	12-Jul-2013
JOB NUMBER		PRO.	JECT N	PROJECT MANAGER	Z	NEWFIELDS LABORATORY	RATORY	TEMP. F	TEMP. RECDR./HOBO#	10BO#	TEST SPECIES		TEST END DATE
860.0074.000				B. Gardiner							Neanthes arenaceodentata	sodentata	1-Aug-2013
			$\ $	***************************************		WATER QUALITY	1.77	DATA					
TEST CONDITIONS				DO (mg/L) >4.6		TEMP (C) 20 ± 1	रे -	SALINITY (ppt) 28 ± 2		pH 8.0±1.0			
CLIENTINEWFIELDS ID	DAY REP	JAR	meter	D.O.	meter	TEMP	meter	SALINITY	meter	pH unit	WATER	Feeding	TECH/DATE
SD0012 /	0 Surr	7 49	9	1	9	20.0	ス	28	ſV	8.0		B	7.12.13 BH
SD0012/	1 Surr	T 49	و_	7.4	و	19.9	2	29	S	0,0			76 27
SD0012 /	2 Surr	T 49	٥	5.5	د	(4.8	7	29	7	8.(7	7/14 Jr
SD0012 /	3 Surr	r 49	3	4.0	ی	19.8	7	28	<u>V</u>	7.9	76		Alis BG
SD0012 /	4 Surr	T 49	و	ή-	3	19.8	7	28	5	8.0		B	Alle BG
SD0012 /	5 Surr	r 49	<u>e</u>		<u>ə</u>	19.8	7	28	5	8.0			7/17 Bay
SD0012/	6 Surr	49	9	ナナ	૭	19.9	7	28	5	8.2	しし	By.	Als bu
SD0012 /	7 Sur	7 49	<u>ی</u>	4.3	و	19.9	7	28	5	8.2			भाव छवं
SD0012 /	8 Surr	7 49	_0	4.4	9	20.0	7	28	7	φ.3		کم	7120 Jr
SD0012 /	9 Surr	7 49	و_	でも	و	0.02	7	28	5	8.2	ر ا		TPI Jr
SD0012/	10 Surr	r 49	و	<i>1</i> .4	J	19.3	7	28	2	8.3)[माय क्य
SD0012/	11 Surr	r 49	3	7.5	و	t.6)	7	28	2	8.3			7123 869
SD0012/	12 Surr	r 49	9	7.6	ø	19.6	7	200	7	5.8	五	是	7/24 Me
SD0012/	13 Surr	т 49	ح	7,S	و	19.7	ょ	38.	S	8.(7/25 80
SD0012/	14 Surr	т 49	9	s T	و	19.8	ø	30	S	3		7	F/De marie
SD0012/	15 Surr	т 49	6	7.5	0	(q.q	4	28	7	2.0	3		7万少数
SD00121	16 Surr	т 49	و_ ر	4	و۔	[d.b]	7	28	\sim	ھ خ		7	7128 J
SD0012/	17 Surr	7 49	و	7.5	د	19.7	ಇ	2	S	8.3			7129 80
SD00121	18 Surr	r 49	<u>e</u>	4,6	و	8.61	ત્ય	88	S	8.2	136	7	7130 BB
SD00127	19 Surr	r 49	<u>ر</u> ,		و	19. F	ሌ	3°C	b	& .≻			MMB 7/31
SD00127	20 Surr	r 49	9	7.6	٥	19.8	2	28	5	2.8			CR 811

CLIENT		-	PROJECT	K		START TIME/ END TIME) TIME	סורחבוכ	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.				WPAH		0h0	1		FSW0	FSW071113.01	PSEP 1995	95	12-Jul-2013
JOB NUMBER		<u></u> -	ROJEC	PROJECT MANAGER		NEWFIELDS LABORATORY	ORATORY	TEMP.	TEMP. RECDR./HOBO#	HOBO#	TEST SPECIES		TEST END DATE
860.0074.000				B. Gardiner	ēř						Neanthes arenaceodentata	eodentata	1-Aug-2013
		1				WATER QUALITY DATA	JALITY D	4TA					
TEST CONDITIONS				DO (mg/L) > 4.6		TEMP (C) 20 ± 1	ਲੋ 	SALINITY (ppt) 28 ± 2		pH 8:0±1.0			
CLIENTNEWFIELDS ID	DAY	438	ă E	D.O. meter mg	/L meter	TEMP terl °C	meter	SALINITY	meter	pH unit	WATER	Feeding	TECH/DATE
SD0013 /	S 0	Surr	28			5 20.2	ベ	28	Ŋ	0.8	- Cupani	B	HB 51.9.6
SD00137	- S	Sur	28	5.4	2	20.0	2	29	S	29			10 K
SD0013 /	2 8	Surr	28	74	<u>ه</u>	19.9	7	29	72	8.0		76	Me N
SD0013/	ε ε	Surr	28	4	+	8.61 9	d	S S	5	4.4			41569
SD0013 /	4 S	Surr	28	(b) 7.	7 4	5-19 6	٦	28	Ś	4.8	ayya Gida bakin	59	1/16 8d
SD0013 /	ro S	Surr	28 (4 7.6) ()	19.9	7	28	S	7.7	***********		41789
SD0013/	9	Surr) 	2.4	f L	J. 0%	d	28	5	7.9	عرا	B र	A18 BG
SD0013/	7 8	Surr	28	5.4.5	<u>'</u>	19.9	て	28	S		i de la companya de		128 P/F
SD0013/	⊗ •	Surr	28	, , , ,	3	20.0	7	87	V	3.7	garagi di saponini di sa	4	Sho in
SD0013 /	တ တ	Surr	28	P 9	9 6	- 20.1	7	28	7) · 8	حر		7/21 Jr
SD0013/	10 S	Surr) 82	6 7.	3 6	19.9	3	28	2	8.3		」 し	412 Bg
SD0013 /	11 8	Surr	28 ((p 7.6	5 6	t.61 6	7	28	5	Q. }			H23 B6
SD0013/	12 S	Surr	28	67.6	7	6 19.7	2	26	b	8.1	큤	弄	3/2 h 2/2
SD0013 /	13 S	Surr	28 (57 V		F 19.7	ત્	2	S				76x BO
SD0013/	14 S	Surr	28	ر س ج	<u>و</u> و	19.4	æ	<i>∞</i>	S	ф 00		الد	A/DE MIN
SD0013/	15 S	Surr	28	6 7.4	0	5 19.9	7	18	4	8.3	2		2/27 B
SD0013 /	16 S	Surr	28	اب ر اه	<u>ه</u>	19.	7	28	L	83		7	7128 L
SD0013/	17 S	Surr	28 (6 7.5	و	t.91	7	28	P	2,5			7129 BO
SD0013 <i>1</i>	18 S	Surr	28 (0.7.0	<u>ر</u>	19.8	رع	9	S	ب ھ	136	7	2150 Ben
SD0013/	19 S	Surr	28	٠ <u>-</u> ۲.	و	19.3	(^	800	\v	-			MANG 3/31
SD0013/	20 S	Surr	28	0 7.0	<u>و</u> و	19.8	7	28	Ŋ	8.			CR 8/1.

CLIENT		PROJECT	ST		STA	START TIME/ END TIME	IME	DILUTIC	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.			WPAH	Ŧ		1 on 01			FSW0.	FSW071113.01	PSEP 1995	95	12-Jul-2013
JOB NUMBER		PROJE	PROJECT MANAGER	~	NE	NEWFIELDS LABORATORY	ATORY	TEMP. F	TEMP. RECDR./HOBO#	10BO#	TEST SPECIES		TEST END DATE
860.0074.000			B. Gardiner	diner							Neanthes arenaceodentata	sodentata	1-Aug-2013
						WATER QUALITY DATA	LITY DA	TA		or and a second	AND THE PROPERTY OF THE PROPER	TO COLUMN TO SERVICE AND ADDRESS OF THE PARTY OF THE PART	
TEST CONDITIONS		2002 2002 2002	DO (mg/L) > 4.6	ig/L) 6	1	TEMP (C) 20 ± 1	S ∀	SALINITY (ppt) 28 ± 2		pH 8.0±1.0			
CLIENTINEWFIELDS ID	DAY REP	JAR	D.O.		meter	TEMP C	meter	SALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
SD0014 /	0 Surr	52	<u> </u>			20.08	α	36	5	4.9		CPC	7.12.13 BH
SD0014 /	1 Sur	52		7,4	٥	(9.8	2	29	72	7.9			2/13 Dr
SD0014 /	2 Surr	52	٠, ع	7.5	د ا	6.63	2	62	\ <u>\</u>	0.8		3	714 P
SD0014 /	3 Surr	52	ف	<u>o:</u>	ی	₽ 10:	4	28	S	7.6			7/15/66
SD0014/	4 Surr	25	7	\ ک	<u> </u>	19.8	7	47	S	7.8	m41 minters	ষ্ট	7 1680
SD0014 /	5 Surr	52	9	6.4	0	19.8	ム	27	5	4.7			717 86
SD0014 /	6 Surr	52	4	4.0	,	19.9	٦	28	5	4.00	کال	S S	7/18 BG
SD0014 /	7 Sur	25	ė e	e.o	O ₁	19.9	لم	AK	S	たた		,,	419 BS/
SD0014 /	8 Surr	25	7		ح	20.02	7	23	\sim	p,		7	720 JC
SD0014 /	9 Surr	25	۱۱'	7.0	ھ۔	0.05	7	28	Ŋ	4, &	-3		Mrs.
SD0014 /	10 Surr	25	7	0	9	19.8	7	36	3	6.4		ر 5	Flez Bon
SD0014 /	11 Surr	25 (4	か そ	9)	4.91	7	28	S	8.3		(7123 BG
SD0014 /	12 Surr	25	67.		0	(9,6	n	00	10	8.4	#	#	Track
SD0014 /	13 Surr	25	6 7.	.2.	و	16.7	み	, 25 26	S	8.2			7125 BGS
SD0014 /	14 Surr	52	+ و	J	و	9	ø	8	S	S S		۲	Shin arele
SD0014 /	15 Surr	252	6 1.0		e'	19.9	7	20	8	2.8	2		3/12 %
SD0014 /	16 Surr	52	7	1.4	و	(9.6	7	60	V	9. N		ع ا	7128 32
SD00141	17 Surr	52	4.4	1	9	19.8	7	200	ഗ	3.€			7/29 869
SD0014 /	18 Surr	52	67	, v,	e.	19.8	حو	g Se	5	8.3	8	7	7150 136
SD0014 /	19 Surr	52	4	<u>ب</u>	و	19.7	70	& (0)	Ŋ	\$ \$			NWB 731
SD0014 /	20 Surr	52	7 9	9.	ڡ	19.8	7	28	S	8.1	Distance of the Control of the Contr		CR 80.

CLIENT		PROJECT	ECT		S	START TIME/ END TIME	TIME	ыситіс	N WATE	DILUTION WATER BATCH	PROTOCOL.		TEST START DATE
Integral Consulting Inc.				WPAH		1040)			FSWC	FSW071113.01	PSEP 1995	35	12-Jul-2013
JOB NUMBER		PROJ	PROJECT MANAGER	VAGER	Į Ž	NEWFIELDS LABORATORY	RATORY	TEMP. F	TEMP. RECDR./HOBO#	10BO#	TEST SPECIES		TEST END DATE
860.0074.000			Ω.	B. Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
						WATER QU	ALITY DA	١TA					
TEST CONDITIONS				DO (mg/L) > 4.6		TEMP (C) SALINITY (ppt) 20 ± 1 28 ± 2	₹S ——	AEINITY (ppt) 28 + 2		pH 8.0+1.0			
CLIENTINEWFIELDS ID	DAY REP	JAR	тетег	D.O. ma/L	meter	TEMP	meter	SALINITY	mater	Hq	WATER	Feeding	TECH/DATE
SD0015 /.	0 Surr	124	0	7.3	0	20.5	ス	20	\sim	7.9	THATAL	J.	7.12.13 BH
SD0015/	1 Surr	124	و.	9	هـ	7.0%	7	29	8	0,0		5	1181h
SD0015/	2 Surr	124	و	ر ب ا	هـ	20,(2	29	6	9.1		3	2/40
SD0015/	3 Surr	124	9	7.5	۹	19.9	7	28	S	4.8	β		71560
SD0015/	4 Surr	124	<u>J</u>	7.5	2	19.9	7	28	S	4.0		SA	
SD0015 /	5 Surr	124	ঙ	7.4	ع	20.00	7	28	S	7.8			HIT BO
SD0015 /	6 Surr	124	<u>ع</u>	7.5	<u>ي</u>	۵٥. ۱	ત	200	S	4.9	2	3	7/18 36
SD0015/	7 Surr	124		ナナ	3	30.1	4	28	ک	4.9			7 8cm
SD0015/	8 Surr	124	9	7.5	٥	2.02	7	67	S	ဝ		7	7/20 0/4
SD0015/	9 Surr	124	<u>_</u> Q	7.3	٥	202	7	29	5	かた	70		72175
SD0015/	10 Surr	124	3	7.4	و	26.0	2	28	5	8.1		کّ	H22 BCn
SD0015 /	11 Surr	124	Ø	7.6	9	19.8	2	28	5	8.0	1		7/23 60
SD0015/	12 Surr	124	9	7.6	0	19.7	2	ام م	5	\$ 80	五	足	7/2476
SD0015 /	13 Surr	124	ی	7.6	و	4.4	て	28	5	8.4			7/25 BG
SD0015/	14 Surr	124	و	7.3	و	[9.7	d	80	5	0		7	7/26 MM
SD0015/	15 Surr	124	ڡ	76	هـ	(ब.व	2	28	5	9.6	Jر		となれ
SD0015 /	16 Surr	124	و	و	ھ	19.7	9	28	S	7.8		り	728 J
SD0015/	17 Surr	124	و	7.6	و	<u>م</u> ا	ત્ત્ર	ر م	Ŋ	<i>`.</i> ⊗			अळे ६८
SD0015/	18 Surr	124	9	4.6	٩	19.8	7	2 8	S	, , &	8	7	7150 65
SD0015 /	19 Surr	124	و	7	و	Ø.	ለ	28	Ŋ	 .xo			18/6 3mm
SD0015/	20 Surr	124	0	7.7	و	19.9	2	28	S	8.			Q 8/1

h2/L 現 310

CLIENT		PROJECT	ECT		S	START TIME/ END TIME	TIME	рігитю	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE	
Integral Consulting Inc.				WPAH		/ OHO		\	FSW0	FSW071113.01	PSEP 1995	95	12-Jul-2013	
JOB NUMBER		PROJ	ECT MA	PROJECT MANAGER	Z	NEWFIELDS LABORATORY	RATORY	TEMP. R	TEMP, RECDR./HOBO#	10BO#	TEST SPECIES		TEST END DATE	Т
860.0074.000			_	B. Gardiner							Neanthes arenaceodentata	eodentata	1-Aug-2013	
						WATER QUALITY DATA	ALITY DA	\TA						٦ .
TEST CONDITIONS				DO (mg/L) >46		TEMP (C) 20 + 1	<i>3</i> 5	ALINITY (ppt)		pH 8.0±1.0				
CLIENTMEWFIELDS ID	DAY REP	JAR	motor	D.O.	100	TEMP	31 L	SALINITY		DH Hd	WATER	Feeding	TECH/DATE	
SD0047 /	O	17	\ 	<i>и</i> Л	\ \	ر مر)	o di	L	7 g	KENEWAL	010	10000	_
			e		٥	Š Ž Š	6	- 6	^	7, 1		3	7. [2.13 or	
SD0017 /	1 Surr	17	ور	7,4	و	(9.9	ر	7	B	න <u>ල</u> ට			12 V	
SD0017 /	2 Surr	17	و	45	ڡ	(4.6	7	29	V	% 0.0		3	744	T
SD0017 /	3 Surr	17	<u>ح</u>	7.4	ঙ	16.7	d	28	S	7.8	J		7/1/18/3	1
SD0017 /	4 Surr	17	د	7.7	ے	19.8		N N	S	و و ر		88	7 lle BG	T
SD0017 /	5 Surr	17	و	7.2	ی	19.8	اہ	28	S	4.00			7/17-86	T
SD0017 /	6 Surr	17	9	4.3	,	0	4	200	V	4,9	7(Ž	7 LIB RO	T
SD0017 /	7 Surr	17	e	- 5÷	9	(Q. X	م	1 N	5	2.0)		7/19 BM	T
SD0017 /	8 Surr	17	و_	7.7	و	0.02	7	28	\ \ \	ر ھ 'د)ر		Τ.
SD0017 /	9 Surr	17	®	14	و_	20.0	7	28	5	8.0	7		NICK	T
SD0017 /	10 Surr	17	5	7.3	و	19.8	~	28	2	∞		3	and zelt	
SD0017 /	11 Surr	17	٦	7.5	و	19.6	7	88	ഗ	8.2			7/23 BG	T
SD0017 /	12 Surr	17	9	7.5	9	19.6	2	02	S	2.8	万	菏	7/247t	Τ.
SD0017 /	13 Surr	17	9	8-9	ب	19.60	7	28	S	4.9			7125 RR	T
SD0017 /	14 Surr	17	و	٦.4	و ٠	(9.3	ለ	200	S	_ &		り		(0)
SD0017 /	15 Surr	11		7.4	6	9.8	2	28	5	2.8	7		# £21L	
SD0017 /	16 Surr	17	ع	4	ه_	19.6	2	28	5	8.2		7	7/20 1	1
SD0017 /	17 Surr	17	· J	カゲ	و	4.7	ત્ય	28	5	8.2			7/19 85	l
SD0017 /	18 Surr	17	و۔	r)+	و	8.1	d	28	S	1.8	136	ો	7130 BC) T	
SD0017 /	19 Surr	17	ور	Si	و	[A.7)	ര	80	S	7.8			MW6 7/31	
SD00171	20 Surr	17	و	7.6	৩	8.6	7	28	Ŋ	80			18 81	
														1

CLIENT		PROJECT	ECT		STAF	START TIME/ END TIME	TIME	ысити	N WATE	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.			WPAH	AH	·	· 약이		···	FSW0	FSW071113.01	PSEP 1995	95	12-Jul-2013
JOB NUMBER		PROJE	PROJECT MANAGER	ŭ.	NEW	NEWFIELDS LABORATORY	RATORY	TEMP.	TEMP, RECDR./HOBO#	10BO#	TEST SPECIES		TEST END DATE
860.0074.000			B. Gardiner	diner							Neanthes arenaceodentata	eodentata	1-Aug-2013
						WATER QUALITY DATA	ILITY DA	\TA			****		
TEST CONDITIONS			DO (mg/L) > 4.6	ng/L) .6	TE 2	TEMP (C) 20 + 1	Š	SALINITY (ppt)		pH 8Ω+1Ω			
CCLENTINEWFIELDS ID	DAY REP	JAR	D.C	D.O. mg/L	T	TEMP	meteri	SALINITY	meter	pH	WATER	Feeding	TECH/DATE
SD0018 /	0 Surr	80				20.3	K	50	5	6.0		CR	7,12,13 BM
SD0018/	1 Surr	80	۹	7,0	ور	[4,9	2	52	7	9,0)	70 2
SD0018 /	2 Surr	60	٩	も.七	و ا	(9.7	7	29	V	0ô		7	ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ
SD0018 /	3 Surr	∞	7	<u>.</u> و		19.8	4	8 8	N	7.8	×)	715 BCS
SD0018 /	4 Surr	∞	7	7.5	و	19.9	7	7	v	2.5		BG	The PKN
SD0018 /	5 Surr	8	6 7	カモ	0	19.9	٦	200	ഗ	4			
SD0018 /	6 Surr	80	6	7.4	و	20.0	ત	28	S	8.0	ろ	25	H18 Br
SD0018 /	7 Surr	8	6 7.	~	ی	20.00	٦	28	S	80			J &
SD0018 /	8 Surr	80	9	t.4	٩	20,0	7	78	5	2.8		7	202
SD0018 /	9 Surr	ω .	(0)	7.3	٩	20.0	2	26	6	တ -	ر ا)	7217
SD0018 /	10 Surr	80	7	Ņ	ی	19.8	7	28	2	8.3		5	7/22 BG
SD0018/	11 Surr	80	6 7			9.61	Z	38	S	1.8		,,	7123 869
SD0018 /	12 Surr	80	10	.6	9 10	19.8	7	87	7	8.1	弄	五	一四年
SD0018/	13 Surr	80	か		۔ ق	0.6	~	d &	2	Q' 8			7755BM
SD0018 /	14 Surr	80	4	→·+	ra-1112101111111111	19.7	Φ	20 Co	Ŋ	6.60		7	7 (or mark
SD0018 /	15 Surr	ю	b. L 9		و	[9.9	2	32	<i>b</i>	83	2		7/27 XE
SD0018/	16 Surr	8	4	ھ	و	19.4	2	28	\sim	& B		7	728 J
SD00181	17 Surr	ω	6 7,4		<u>ں</u> ح	٦. (٥	み	28	5	- ⊗	oction monitoring		7/29 85
SD00181	18 Surr	ω	かよ ゆ	7		19.8	4	28	'n	8.0	136	ر ر	7180 BBO
SD0018/	19 Surr	ω	ナタ	.S	۴	9.3	G	\(\frac{\partial}{2}\)	S	-	~~~		MMB 7/31
SD0018/	20 Surr	80	6 7.	و		86	7	28	v	∞ 			11871
												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Surr 118 6 7. Su		SALINITY COATA		FSW071113.01 GDR./HOBO# SOLTIO SOLT	PSEP 1995 TEST SPECIES Meanthes arenaceodentata WATER Feeding RENEWAL CR JC GR		12-Jul-2013 TEST END DATE 1-Aug-2013 TECHIDATE 7/13 64 7/13 JU 7/14 JU
SECONDITIONS SECO	2 C C C C C C C C C C C C C C C C C C C	A LOS ON	G.		PSEP 199 TEST SPECIES Neanthes arenace WATER RENEWAL J(
SEG.0074.000 Seg. Only RED Seg. Only Seg. On		ALINITY ALINITY OF SALINITY OF	WP. RECOR, HC		Wanthes arenace Water Renewal	 	
1 Surr 118 6 7 5 Surr 118 6 7 7 5 Surr 118 6 7 7 7 8 Surr 118 6 7 8 Surr 118 6	00000000000000000000000000000000000000	2 2 28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	WATER RENEWAL		
11 Surr 118 6 7 Surr 118 6 Surr 118 6 7 Surr 118 6 7 Surr 118 6 7 Surr 118 6 7 Surr 118 6 Surr 118	000000000000000000000000000000000000000	20 28 ± 2 28 ± 2 28 ± 2 2 2 2 2 2 2 2 2 2		8.5. 2 8 8.7 4 8 8.7 4 8 8.7 4 8 8 8 7 4 8 8 8 7 4 8 8 8 7 4 8 8 7 4 8 8 8 7 4 8 8 8 7 4 8 8 8 7 4 8 8 8 7 4 8 8 8 7 8 8 8 8 7 8 8 8 8 7 8	WATER RENEWAL		
Dov Rep JAR Mether Dove Surr 118 6 7 2 Surr 118 6 7 4 Surr 118 6 7 7 5 Surr 118 6 7 7 7 5 Surr 118 6 7 7 7 5 Surr 118 6 7 7 7 7 5 Surr 118 6 7 7 7 7 7 8 Surr 118 6 7 7		28+2 28+2 2 29 2 29 2 28 2 28 2 28 2 28 2 28 2 2		8.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	WATER RENEWAL		
Day Rep JAR Meter D Surr 118 C Surr Surr 118 C Surr Su	20000000000000000000000000000000000000	SAL C C C C SAL		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WATER RENEWAL	9 1	
3 Surr 118 6 3 Surr 118 6 4 Surr 118 6 5 Surr 118 6 7 Sur	ece e e e e e e e e	8777777		00000000000000000000000000000000000000	JC JC		
3 Surr 118 6 4 Surr 118 6 5 Surr 118 6 7 Surr 118 6 8 Surr 118 6 10 Surr 118 6 11 Surr 118 6 12 Surr 118 6 13 Surr 118 6 14 Surr 118 6 15 Surr 118 6 16 Surr 118 6 17 Surr 118 6 18 Surr 118 6 19 Surr 118 6 10 Surr 118 6 10 Surr 118 6 11 Surr 118 6 11 Surr 118 6 12 Surr 118 6 13 Surr 118 6 14 Surr 118 6 15 Surr 118 6 16 Surr 118 6 17 Surr 118 6 18 Surr 118 6 19 Surr 118 6 10 Surr 118 6 10 Surr 118 6 11 Surr 118 6 11 Surr 118 6 11 Surr 118 6 12 Surr 118 6 13 Surr 118 6 14 Surr 118 6 15 Surr 118 6 16 Surr 118 6 17 Surr 118 6 18 Surr 118 6 19 Surr 118 6 10 Surr 118 6 10 Surr 118 6 11 Surr 118 6 11 Surr 118 6 12 Surr 118 6 13 Surr 118 6 14 Surr 118 6 15 Surr 118 6 16 Surr 118 6 17 Surr 118 6 18 Surr 118	ece e e e e e	277777	0 00 00 00 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ا ا ا		
3 Surr 118 6 4 Surr 118 6 5 Surr 118 6 7 Surr 118 6 9 Surr 118 6 10 Surr 118 6 11 Surr 118 6 12 Surr 118 6 14 Surr 118 6 15 Surr 118 6 16 7	ece e e e e	244946	0 0 0 0 0 0	8 8 8 8 X X X X X X X X X X X X X X X X	كد كر		الاقا الحق الحق ا
3 Surr 118 6 7 5 Surr 118 6 7 7 Surr 118 6 7 7 Surr 118 6 7 9 Surr 118 6 7 10 Surr 118 6 7 11	ece e e e	44446		× × × × × × × × × × × × × × × × × × ×	ا ا	1 1 1 1	
5 Surr 118 6 7 5 Surr 118 6 7 7 Surr 118 6 7 7 Surr 118 6 7 7 118 6 7	eceee	72 76		× × × × × × × × × × × × × × × × × × ×	70		
6 Surr 118 6 7 5 Surr 118 6 7 7 Surr 118 6 7 7 118 6 7 7 118 6 7 11 Surr 118 6	cee e	9 da		t.t x x x x	الم		417 BU 118 BU 719 BU
6 Surr 118 6 7 Surr 118 6 7 9 Surr 118 6 7 10 Surr 118 6 7 11	eee	8 8	W.C.)	5.4 ×.4	<u>عل</u>		(
7 Surr 118 6 7 9 Surr 118 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	و و	رم	<u>ر</u> ې	メド		11	1 1
8 Surr 118 6 9 Surr 118 6 11 Surr 118 6 7 3 Surr 118 6 7 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_0		1	_ - 3		The second secon	1
10 Surr 118 6 7. 118		7	\smile	₩ 4.		7	70 00
10 Surr 118 C 11 Surr 118 C 13 Surr 118 C	4 10 20.1	2 29	5	8.4	30		Trl Ic
11 Surr 118 6 13 Surr 118 6 1 1	5 6 19.9	2 28	\	8.5		7	7 /22 BC1
13 Surr 118 6 7.6 13 Surr 118 6 7.	5 6 19.8	27 78	5	٦٠.۶		'	723 82
13 Surr 118 6 7.	T. 19.7	82 2	8	8.4	弄	7	82 h 2/1
14 Surr 118 6 7	9	2 28	S	 €		11	H25/60
((a) 0	36 6	v	6.9		 Jr	3 BE WINE
3D0019/	0 199	2 28	S	<i>3</i> , 4	<u>ي</u>		Z ZZZ
SD0019/ 16 Surr 118 6 76	0 19,6	2 28	5	8.4		7	7580
SD0019 / 17 Sur 118 6 7.5	9	2 28	5	8.3		N.	7 128 PC1
SD0019/ 18 Surr 118 6 7-6	8-61 9		Q	8.2	89	1	7130 BCM
9. ト タ 811 rus 61 /61000S	6 (9.8	x 28	ઇ	8.2	maggaine	2	MW6 7/31
SD0019 / 20 Surr 118 6 7.6	6 60	2 28	V	8.2			1 -

CLIENT		PROJECT		S	START TIME/ END TIME	rime	рісило	N WATER	DILUTION WATER BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.			WPAH		<u> 육</u>			FSW0;	FSW071113.01	PSEP 1995	35	12~Jul-2013
JOB NUMBER		PROJECT MANAGER	NAGER	Z	NEWFIELDS LABORATORY	SATORY	TEMP. R	TEMP, RECDR./HOBO#	080#	TEST SPECIES		TEST END DATE
860.0074.000		-	B. Gardiner							Neanthes arenaceodentata	sodentata	1-Aug-2013
					WATER QUALITY DATA	LITY DA	TA					
TEST CONDITIONS			DO (mg/L) > 4.6		TEMP (C) 20 ± 1	SAI	SALINITY (ppt) 28 ± 2		pH 8:0±1:0			
CLIENTAVEWFIELDS ID	DAY REP	JAR	D.O.	mater	TEMP	meter	SALINITY	motor	Hd	WATER	Feeding	TECH/DATE
SD0020 /	0 Surr	110	7.5	9	20.2	78	28	2	7.9		B	412.13 BH
SD0020 /	1 Surr	130	44	و۔	19,9	7	29	5	7.8			737
SD0020 /	2 Surr	110	38		(9.9	6	29	5	4.9		う	1/4 dr
SD0020 /	3 Surr	110	ħ′Ł	9	(9.7	9	28	90	4.4	J		7/15 80
SD0020 /	4 Surr	110 011	7.3	و	8.61	2	44	S	7.8		20	7110 Bcs
SD0020 /	5 Surr	110 Q	7.2	2	19.9	く	38	5	7.8			717 80
SD0020 /	6 Surr	110 و	7.3	ی	19.9	ત	જ જ	S	Q Š	7	Z	7-118 BG
SD0020 /	7 Surr	710	7. (و	19.8	~	20	S	8 0,			HO BY
SD0020 /	8 Surr	110 011	7.3	9	0.07	7	87	b	9.6		کار	world
SD0020 /	9 Surr	13	7	و	20.0	7	28	5	8,0	. عل		1 STRI JE
SD0020 /	10 Surr	110 6	7.3	9	19.8	2	28	5	8.7		\mathcal{K}	Hizz Ban
SD0020 /	11 Surr	110	7.4	و	19.8	2	28	5	8.2			7(23 BQ
SD0020 /	12 Surr	110	7.5	0	4,6	7	00	4	8.4	弄	<i>\(\frac{1}{2} \)</i>	1129 26
SD0020 /	13 Surr	<u>ر</u> ۽	ナナ	૭	4.61	٦	28	d	8.5			7-125 BG
SD0020 /	14 Surr	و 1	ب د ک	و	[9.8	d	98	Ŋ	8.4		٦	7 (26 ming
SD0020 /	15 Surr	110	25	ور	19.8	7	28	\checkmark	8.5	ارا		JET JE
SD0020 /	16 Surr	10	25	ڡ	19.3	7	87	\searrow	8.4		ال	728 J
SD0020 /	17 Surr	<u>و</u>	4.5	و	19.8	ત	38	S	& ~			4128 BC/1
SD0020 /	18 Surr	110	7.5	و	20.1	ત	S S	ß	8.2	136	بال	7.60 BG
SD0020 /	19 Surr	<u>ر</u> ۽	A, S	و	79.	ø	200	N	d			NW 7 3
SD0020 /	20 Surr	110	7.7	Q	20.0	7	28	Ŋ	8.2			(x 8/i

CLIENT		PROJECT		S	START TIME/ END TIME	E E	DILUTIC	DILUTION WATER BATCH	3 BATCH	PROTOCOL		TEST START DATE
Integral Consulting Inc.			WPAH		0h0]			FSW0.	FSW071113.01	PSEP 1995		12-Jul-2013
JOB NUMBER		PROJECT MANAGER	MANAGER	<u>z</u>	NEWFIELDS LABORATORY	ATORY	TEMP. I	TEMP. RECOR./HOBO#	OBO#	TEST SPECIES		TEST END DATE
860.0074.000			B, Gardiner							Neanthes arenaceodentata	odentata	1-Aug-2013
					WATER QUALITY DATA	LITY DA	TA					
TEST CONDITIONS			DO (mg/L) >4.6		TEMP (C) 20 ± 1	SA	SALINITY (ppt) 28 ± 2		pH 8.0±1.0			
CLIENTMEWFIELDS ID	DAY REP	JAR meter	D.O. r mg/L	meter	TEMP °C	meter	SALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
SD0021 /	0 Surr	9 82		9	90.0€	K	29	5	8.6		Crk	7.12.13 BH
SD0021 /	1 Surr	0 87	2,5	٥	19.9	7	29	6	4.9			Jr 7/13
SD0021 /	2 Surr	78 6	7.5	و	19.8	7	29	لم	8.0		7	N 7/14
SD0021 /	3 Surr	78 6	カーナ	3	4.61	Ŋ	28	S	27	7		8617
SD0021/	4 Surr	78 6	5.5	٩	19.7	٦	28	S	3.0		BG	Osg 7116
SD0021 /	5 Surr	ر م	7.0	J	4.4	ત	28	5	7.9			BCQ 7-117
SD0021 /	6 Surr	<i>و</i>) الا	4.2	٩	8.61	ત	28	S	8.6	しし	A	THIS BUT
SD0021 /	7 Surr	<u>e</u>	7.6	2	(9. B	ィ	28	S	4.9			अल डब
SD0021 /	8 Surr	282	2.5	ھے	[4,9	7	200	\searrow	8,0		٦٢	Ans Ju
SD0021 /	9 Surr	4 87	7.(<u>ا</u>	19.9	7	28	S	7.8	JL		42105
SD0021 /	10 Surr	78 2	7.7	و	19.8	ん	28	S	8.0		\preceq	422.BG
SD0021 /	11 Surr	ر 28	7,4	و	4.61	7	28	乃	8.3			7123 60
SD0021 /	12 Surr	9 82	کن	e	9.6	7	3	S	8.8	エグ	工	1/21/L
SD0021 /	13 Surr	<u>و</u> %	ナー・ナ	و	م ج-	Ŋ	38	S	8			7125 BJ
SD0021 /	14 Surr	<u>و</u> ∞	S C	و	۴.	ሌ	& C	v	4.00		7	MMB 7 (2)
SD0021 /	15 Surr	78	7.5	د	(4.9	7	28	<u>V</u>	8,5	Jr		Jr 723
SD0021 /	16 Surr	78	なさ	ھ	(9.7	4	28	S	\$ \$		٦	17-128
SD0021 /	17 Surr	9 %	ئ م	e	4.5	٦	28	٧	8.3			भरत ६८०
SD0021 /	18 Surr	<u>9</u>	7:0	و_	(9.7	જ	28	S	8.2	\$	7	718086
SD0021 /	19 Surr	<u>و</u> ه	9.	و٠	4	A	08 Cb	ડ	00			MW6 7(3)
SD0021 /	20 Surr	ء ا	7.6	0	19.8	7	28	N	8.2			CC 8/1

Ammonia and Sulfide Analysis Record

Page / of

Client/Project:	roject: D	AH		Organism:	m: Neanthes	•		Test	Test Duration (days):	days):	25	
R.E.	PRETEST / IN OVERLYING (OV	TIAL	/ FINAL / POREWATER		OTHER (circle one) (PW) (circle one) / Comments:	ıments:				DAY of TEST:	A) s
		Calibra	Calibration Standards Temperature	rds Temp	erature			Sample	temperature	Sample temperature should be within ±1°C of	nin ±1°C of	
Date:	7/12/13			Temperature:	ture: 21.3	;		standar	ds temperatu	standards temperature at time and date of analysis.	date of analy	/sis.
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp	Date of Reading and Initials	Sample Preserved (Y/N)	Hď	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf.
Control	SMS	7/12/13 N	0.831	21.10	7/2/13 20	2.	42	گ ر	0	£10.0	¥3	Z Z
CR-12			8-1-					-	2	0.036		
CARR-20			1.37							0.023		
SR-02			0.560							0.047		
SD0001			0.782	-			C 2 3 3 3 3 3 3 3 3 3 3			0.104		
SD0002			0.458							0.059		
SD0003			206.0							5.160	**************************************	
SD0004			0.396		_		-	***************************************		0.070		**************************************
SD0005	************		0.340			23-33-10 10- 0,	-7103Chr-			40.0		Lagrage (stronger
SD0006			0,380							0.034		
SD0007	*3		149.0				~~-			0.096		
SD0008	-4321/4*		0.340							D-0-29	~	
SD0009			271.0				P#MONADAC	Carcian Carcia		0.052		-
SD0010			0.326				· B w y v w projecty je			0.086.		
SD0011			0.335							0.112		***************************************
SD0012			0276				.,			0.042	W	·
SD0013			0.177				ymyddiodd ar		-	0.081		~~xxxx
SD0014			0.183				ridan yang pinanga	50000,0a-20	*North Section 1991	0.067		
SD0015			0.162							0.109		
SD0017			0.496		in the second					0.078		
SD0018			522.0							0.0pl		**
SD0019			0.152							0.041		
SD0020			0,363					*********		0.086		***************************************
SD0021			0.124	a	The second secon		7			D. 086	*	دا

										:		
Client/Project:	roject:			Organism:				Test D	Test Duration (days):			
		NPAK			Neanthes					9	_	
PR	PRETEST	A	FINAL		OTHER (circle one)			,		DAY of TEST:	ST: A	
OVE	OVERLYING (OV)	_	POREWATER	RW) (circl	W) (circle one) / Comments:	ments:					•	
		Calibra	tion Standa	Calibration Standards Temperature	ature			Sample t	emperature	Sample temperature should be within ±1°C of	in ±1°C of	
Date:		7/12/13		Temperature:	e: 21.3			standard	s temperatur	standards temperature at time and date of analysis.	date of analy	/sis.
	۲	Date of	Ammonia		Date of	Sample			Sample	Measured		Calc-
Description	or Rep	Sampling and Initials	Value (mg/L)		Reading and Initials	Preserved (Y/N)	Hď	Oppt)	Volume (mL)	Sulf. (mg/L)	Munul- plier	Sulf
									((_ 0)		(mg/L)
Control	SURV.	17/0/13 U	5.73	178.3 14/1	7/12/13 JC	7	7,4	29	Y WZ			_
CR-12			9.32	-			せた	b2	27			A
CARR-20			و بر				4.7	25	1			A
CR-02			3,19				45		0	0.053		0.053
SD0001			-w-				4,4	30	ત	0.492	১	2.46
SD0002			5.28				4	8	S	0.239	d	0.438
SD0003			5.85				7.0	3	d	०.499	S	05'2
SD0004			2.34				2,3	32		0.439		0.848
SD0005			2.21				なた	5	0	0.133		0.133
SD0006			7.24				3.6	3	ટ	0.(37	_ር	0.274
SD0007			4.54				4.6	3	5	0.090	2	0.180
\$D0008			7.67				4 	E	S	0.354	2	0.714
8D000GS			1.36				4.4	3	S	0.385	ሪ	0.764
SD0010	- ,		2.55				74	B	ക	0.298	IJ	1.49
SD0011			<u>۔</u> ز				4.6	3	ત	0.175	S	0.875
SD0012			59.1				9,6	3	ઇ	0,148	2	0.296
SD0013			チン				2.4	35	<u>o</u>	0.092	ĺ	0.092
SD0014			1.02				7,4	Ď	01	0.181	ļ	0.181
SD0015			(.35				2.5	35	0	0.103		0.10 0.10
SD0017			3.18				4	32	ហ	0.144	7	0.288
SD0018			19.2				7.4	32	0)	0.162		20.162
0.000	_		70				j	70	5		•	ζ.

PW collected. MIMB 7/12/13 NM: not measured not enough

0.184

0.162 0.194

35

チャイグ

2.02

2.63

SD0020

\$D0021

SD0019 SD0018

200

4

Ammonia and Sulfid Analysis Record

 $\overline{\sigma}$ DAY of TEST: 20 Test Duration (days): Neanthes avenaceodentata COVERLYING (OV) / POREWATER (PW) (circle one) / Comments: PRETEST / INITIAL / FINAL / OTHER (circle one) Organism: WPAH Client/Project:

9, 701 - 11, 11, 11, 11, 11, 11, 11, 11, 11,	sample temperature should be within ±1 C of standards femographic at time and date of analysis	Statistical de l'action de l'action de la company de la co
rds Temperature	Temperature: 22.3°C	
Calibration Standa	Date: 7/22/13	-

sured Multi- calculf. y(L) plier Sulf (mg/L)	~	92		80	ト	25	SG	ÍQ	33	£(8	6	- 1 カ <i>i</i>	2	So	عو	1	+	Łα	33	83	
Sample Measured Volume Sulf. (mL) (mg/L)	5 0.01	10 0.002	1 0.021	800.0	0.0H	0.00	5000	O. 001	0.033	60.00	00	0.019	力10.01	0.012	Sao .0	S00 . 0	110.0	410.0	F00.00	/ 0.033	0.03	7
Sal (ppt)	マス																					_
Hd	NΑ																					
Sample Preserved (Y/N)	2	~				*******								··································								
Date of Reading and Initials	7/22/13 Ju	•														Two diese de la constant de la const		-0.02				
Temp °C	21.9	-																				
Ammonia Value (mg/L)	o.toS	2.65	2.40	0.266	3.16	3.39	3.10	0.798	0.837	1.15	1.68	<u>-,6</u>	0,946	0.985	1.35	151	6.432	1.07	0.303	0.634	0.193	424
Date of Sampling and Initials	7/12/13 BG			-																		
Conc.	SUW.															*********			· 3			
Sample ID or Description	N. CONTrol	1 CA-12	CAPP.20	CR.02		2	6	4	>	-2	4	æ	8	0)	==	21	5	4	₹		0	7//

Ammonia and Sulfid Analysis Record

2,20	cate- ulated Sulf. (mg/L)					1																						3	
	Multi- plier																												
	Measured Sulf. (mg/L)	0.00千	0.093	400	610	0.054	410.0	o.@و	6.0.0	0.00)	0.033	0.016	0.00P	0.002	0.013	0.031	0.039	小そ0.0	0.017	0.016	0.015	0.016	6.015	0.019	0.017	6.00f	0.00S		
	Sample Volume (mL)	0	9	\ S	くて	50.00	0	0	0	S	0																> 5		
	Sal (ppt)		A CONTRACTOR OF THE PROPERTY O	2	75	32	42	200	92	£2	77	20	26	20	#	28	53	EL	28	28	28	27	£2	42	28	B	28		
	Hd			7	9 V	ا ا	4.4	4.4	7.4	17.5	6.9	2,43	6,9	<i>b</i> .9	Ġ Ţ	6.7	6.7	12/2	7.5	4	10.9	7.3	7.6	ا ا	<u>ن</u> ف۔	8.9	6.9		
	Sample Preserved (Y/N)	Z	Z	2	_												~	w									→		
	Date of Reading and Initials	H22112B	张2112211	1 2/2012	•		***************************************												હ	7122/13 HE							J		
	ے. dwaL	21.8	21. 8	700	3						.,																	>	
	Ammonia Value (mg/L)	203	0.923	103	\\ \(\nabla \) \(\nabla \)	7.30	4.00	2.55	333	5,48	2.13	0.482	1.13	1.61	7	19.1	1.38	1.55	1.75	D. 963	£08.0	7]	126.0	1.056.485(i	1.40+08-1	254.90	オイナー	+	
	Date of Sampling and Initials	7122113 86	7122/13 84	(1) Mark															*								7	•	
	Conc. or Rep	20,4€																											ə
	Sample ID or Description	0 / 40		Coupe	C.d. 12.	CAR620	CW-02		2	2	4	<u>٠</u>	و	~	8	9	0))1	17	(3	4)	1\$	<u>~</u>	<u>ර</u> ු	<u>a</u>	20	2		

Y			/sis.	Calc- ulated Sulf.	0	-																			ţ			
	ST: 20	in ±1°C of	ate of analy	Multi- plier																								
lays):	DAY of TEST: 20	Sample temperature should be within ±1°C of	standards temperature at time and date of analysis.	Measured Sulf. (mg/L)	500.0	0.023	0.02S	S05.0	0.013	子B:0	0.0%	0.00中	0.019	0.005	50.0	10.0	0.07 V	0.017	0.00 0.00	子10.0	0.015	<u>}</u> නි. ර	V.008	6.00¢	0.013	0.00 S	0.00	0.000
Test Duration (days):		temperature s	ds temperatur	Sample Volume (mL)	0																						>	ゝ
Test 1		Sample	standar	Sal (ppt)																			*****	and the second				
				Ha													*******											
	ments:			Sample Preserved (Y/N)	z	-					**Thirtimper, pr.																	
33	OTHER (circle one) (PW) (circle one) / Comments:	۵	22.0	Date of Reading and Initials	250							A02093A0	***********															
nism: Marthus	OTHER (circle one) 'W) (circle one) / Co	peratur	ture:	Da Readi Ini	8.2.13 mep																							
Organism:	OTHI (PW) (e	rds Temperature	Cemperature:	J. Cemp	22.5																		4					\rightarrow
	FINAL /	Calibration Standar		Ammonia Value (mg/L)	0.111	0.0866	O.0517	0.0406	0.0457	0.0469	0.0488	0,0357	0.0325	0.0287	0.0246	0.0237	0.0259	0.0254	0.0253	0.0265	0.0274	6.0202		0,0267	0.0258	1920.0	6.0247	0.0240
hs	TIAL	Calibra		Date of Sampling and Initials	2.13 map																							7
oject: Opt Angeles	PRETEST / IN		9.2.13	Conc. S.	8								***************************************															
Client/Project:	OVE		Date: 9	Sample ID or Description	Control	CR-12	CARR-20	CR-02	SD0001	SD0002	SD0003	SD0004	SD0005	SD0006	SD0007	SD0008	SD0008	SD0010	SD0011	SD0012	SD0013	SD0014	SD0015	SD0017	SD0018	SD0019	SD0020	SD0021

Ammonia and Sulfide Analysis Record

Page of (

Test Duration (days): 20 days	DAY of TEST:
Organism: Thanthus	FINAL OTHER (circle one) REWATER (PW) (circle one) / Comments:
Hent/Project:	PRETEST / INITIAL // OVERLYING (OV) / PO

·	Sample temperature should be within ± 1 C of standards temperature at time and date of analysis	
ards Temperature	Temperature: 22.6	
Stand	Date: 8.2, 13	

Calc- ulated Sulf. (mg/L)	0.028		850.0																		,				
Multi- plier	જ		ત																						
Measured Sulf. (mg/L)	100	6.00	<i>ن</i> ها ع	0.039	0.016	0.030	0.016	0.011	0.00 p	0.00	pe0.0	6.000	0.03 S	O.008	6.000	2,62,0	0.0	9.0.6	0.031	100	40.0	&.0∂ 0	5000	6.00	
Sample Volume (mL)	785	0	N	0								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~		-			W. C. E. D. C. E.	as varying		192007	TT K WALES OF THE	**********	~	
Sal (ppt)	27	38	27	8 8	28	28	28	27	28	27	27	28	27	26	27		38	89	38	28	28	27	38	27	
Hď	4.1	4.01	6.92	6.65	6.52	6.55	6.59	6.67	7.11	6.76	6.89	18.9	6.64	6.75	6.95	و. <i>و</i> ر	6.79	6.83	6.79	6.64	177.9	6.78	6.31	6,25	
Sample Preserved (Y/N)	2																							>	
Date of Reading and Initials	8.2.13 MAR																							7	-
C. Cemp	22.5	•		0.539	**********																			∌	
Ammonia Value (mg/L)	0.557	0.656		1	0.224	1,164	0.582	161.0	0.136	0.236	0.145	441.0	0. 151	0.111	0.0968	0.0774	0.0654	0.0601	0.0563	6.0552	0.0615	0.0638	0.550	0.563	A THE TAXABLE PROPERTY OF TAXA
Date of Sampling and Initials	8.2.13 MPP																							7	
Conc. or Rep																									(13
Sample ID or Description	Control	CR-12	CARR-20	CR-02	SD0001	SD0002	SD0003	SD0004	SD0005	SD0006	SD0007	SD0008	SD0009	SD0010	SD0011	SD0012	SD0013	SD0014	SD0015	SD0017	SD0018	SD0019	SD0020	SD0021	@ IE , MANS 81 6/13

Report Date:

21 Aug-13 16:40 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

Organism: Neanthes arenaceodentata (Polycha

Protocol: PSEP (1995) Endpoint: Proportion Survived

Material: Total Ammonia

Source: Reference Toxicant-REF

 Mean:
 155.3
 Count:
 20
 -1s Warning Limit:
 100.9
 -2s Action Limit:
 46.48

 Sigma:
 54.41
 CV:
 35.00%
 +1s Warning Limit:
 209.7
 +2s Action Limit:
 264.1

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Apr	19	14:55	206.2	50.94	0.9362			09-3617-4279	06-7713-4574
2		Jun	16	17:40	141.9	-13.39	-0.2461			19-0037-4539	19-9050-3573
3		Aug	9	15:30	247.5	92.24	1.695	(+)		03-1197-4176	17-1966-7852
4			23	11:00	106.6	-48.74	-0.8958			19-2308-3344	15-0713-7604
5		Oct	10	15:35	59.38	-95.92	-1.763	(-)		06-7843-9085	12-6856-6267
6			18	14:35	252.7	97.36	1.789	(+)		20-2964-2236	02-6630-2269
7		Nov	18	14:45	154.8	-0.4581	-0.00842			07-1336-6281	16-3327-5847
8		Dec	20	14:25	157.3	2.031	0.03733			13-2009-7329	09-6676-8731
9	2012	Mar	29	14:15	123	-32.33	-0.5943			09-7385-3936	17-7765-0407
10		Apr	13	14:00	156.2	0.9266	0.01703			19-8365-3565	12-2419-3140
11		May	23	13:50	186.8	31.5	0.5789			07-1703-6447	03-0067-3412
12		Aug	22	11:00	202.7	47.36	0.8704			02-2456-0921	14-8617-5684
13		Oct	9	14:00	198.3	42.96	0.7896			09-2476-6828	10-7898-4816
14		Nov	11	16:00	146.3	-8.987	-0.1652			05-7907-0031	15-4959-5175
15			27	16:05	187.1	31.8	0.5844			11-0295-5053	21-1714-9848
16	2013	Mar	1	14:40	183.7	28.41	0.5221			16-0938-7761	05-5518-0938
17		Apr	5	10:40	145.7	-9.636	-0.1771			12-4084-6308	11-0088-3368
18		May	7	13:00	79.7	-75.6	-1.389	(-)		03-6682-4675	04-2369-0564
19			24	11:30	94.89	-60.41	-1.11	(-)		19-1651-0673	18-8601-2491
20		Jun	25	14:13	75.13	-80.17	-1.473	(-)		08-9049-5052	01-8172-0753
21		Jul	12	13:20	141.9	-13.37	-0.2457			14-1288-0905	06-4191-8012

Protocol:

Report Date:

21 Aug-13 16:40 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

PSEP (1995)

Organism: Neanthes arenaceodentata (Polycha

Endpoint: Proportion Survived

Material: Tot

Source:

Total Ammonia

Reference Toxicant-REF

 Mean:
 106.2
 Count:
 20
 -1s Warning Limit:
 64.17
 -2s Action Limit:
 22.14

 Sigma:
 42.03
 CV:
 39.60%
 +1s Warning Limit:
 148.2
 +2s Action Limit:
 190.3

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Apr	19	14:55	153	46.8	1.113	(+)		09-3617-4279	00-3274-1559
2		Jun	16	17:40	123	16.8	0.3997			19-0037-4539	07-2127-0891
3		Aug	9	15:30	102	-4.2	-0.09993			03-1197-4176	21-2173-4671
4			23	11:00	58.9	-47.3	-1.125	(-)		19-2308-3344	00-4985-4824
5		Oct	10	15:35	22.5	-83.7	-1.991	(-)		06-7843-9085	04-4902-3567
6			18	14:35	173	66.8	1.589	(+)		20-2964-2236	18-1232-0295
7		Nov	18	14:45	108	1.8	0.04283			07-1336-6281	00-5718-5578
8		Dec	20	14:25	111	4.8	0.1142			13-2009-7329	14-4698-1316
9	2012	Mar	29	14:15	92.2	-14	-0.3331			09-7385-3936	12-4682-6521
10		Apr	13	14:00	63.9	-42.3	-1.006	(-)		19-8365-3565	05-2732-2674
11		May	23	13:50	146	39.8	0.9469			07-1703-6447	01-7113-3932
12		Aug	22	11:00	145	38.8	0.9232			02-2456-0921	08-5116-1008
13		Oct	9	14:00	124	17.8	0.4235			09-2476-6828	01-8486-9232
14		Nov	11	16:00	116	9.8	0.2332			05-7907-0031	20-7001-2062
15			27	16:05	165	58.8	1.399	(+)		11-0295-5053	20-4892-3773
16	2013	Mar	1	14:40	143	36.8	0.8756			16-0938-7761	07-7870-4978
17		Apr	5	10:40	103	-3.2	-0.07614			12-4084-6308	12-0348-0416
18		May	7	13:00	57.6	-48.6	-1.156	(-)		03-6682-4675	13-3264-9963
19			24	11:30	66.7	-39.5	-0.9398			19-1651-0673	19-7443-7088
20		Jun	25	14:13	50.4	-55.8	-1.328	(-)		08-9049-5052	06-0503-5931
21		Jul	12	13:20	95.6	-10.6	-0.2522			14-1288-0905	07-0996-7321

Analyst:____

QA:____

Report Date: 21 Aug-13 16:41 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type:SurvivalOrganism:Neanthes arenaceodentata (PolychaMaterial:Unionized AmmoniaProtocol:PSEP (1995)Endpoint:Proportion SurvivedSource:Reference Toxicant-REF

Quan	y Con	uoi Data	*								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Apr	19	14:55	1.945	0.6228	1.029	(+)		02-6580-6357	08-0700-2079
2		Jun	16	17:40	2.503	1.181	1.952	(+)		19-7724-1701	13-2075-9938
3		Aug	9	15:30	1.547	0.2247	0.3713			03-9854-4015	07-2063-2491
4			23	11:00	1.436	0.1141	0.1886			09-3666-1661	07-6184-3703
5		Oct	10	15:35	0.4667	-0.8553	-1.414	(-)		04-4548-8932	08-5329-1975
6			18	14:35	2.797	1.475	2.437	(+)	(+)	05-4042-6561	09-4508-3623
7		Nov	18	14:45	1.667	0.3451	0.5704			07-2418-7894	04-3530-8185
8		Dec	20	14:25	1.359	0.03697	0.0611			01-5692-9953	01-3178-0533
9	2012	Mar	29	14:15	0.7959	-0.5261	-0.8694			11-8184-4663	15-1974-6098
10		Apr	13	14:00	1.012	-0.3101	-0.5124			19-8413-7608	13-2594-7323
11		May	23	13:50	1.183	-0.1387	-0.2292			00-6722-3532	08-3889-1635
12		Aug	22	11:00	1.31	-0.01179	-0.01948			12-2636-9338	18-2386-8444
13		Oct	9	14:00	1.063	-0.2589	-0.4278			11-5377-0688	17-8993-7878
14		Nov	11	16:00	0.7276	-0.5944	-0.9823			14-7469-3886	03-0259-8994
15			27	16:05	1.746	0.4236	0.7001			08-6061-4466	00-3182-3735
16	2013	Mar	1	14:40	1.573	0.2514	0.4154			18-8051-2966	06-9085-4102
17		Apr	5	10:40	0.9122	-0.4098	-0.6773			03-5469-7681	20-0412-7755
18		May	7	13:00	0.794	-0.528	-0.8725			11-4883-5754	10-2519-8358
19			24	11:30	0.9143	-0.4077	-0.6738			03-1268-0321	17-3627-5339
20		Jun	25	14:30	0.6782	-0.6438	-1.064	(-)		07-6412-1006	01-8270-7142
21		Jul	12	13:20	1.207	-0.1148	-0.1897			06-2793-5359	03-5477-0692

Report Date: 21 Au

21 Aug-13 16:41 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival **Protocol:** PSEP (1995)

Organism: Neanthes arenaceodentata (Polycha

Material: Source:

Unionized Ammonia
Reference Toxicant-REF

Endpoint: Proportion Survived

Reference Toxicant 96-h Acute Survival Test

Mean:	1.133	Count:	20	-1s Warning Limit:	0.5896	-2s Action Limit:	0.0462
Sigma:	0.5434	CV:	48.00%	+1s Warning Limit:	1.676	+2s Action Limit:	2.22

Quali	Quality Control Data										
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Apr	19	14:55	1.617	0.484	0.8907			02-6580-6357	12-6447-3293
2		Jun	16	17:40	2.421	1.288	2.37	(+)	(+)	19-7724-1701	13-8173-2038
3		Aug	9	15:30	1.193	0.06	0.1104			03-9854-4015	01-1263-9916
4			23	11:00	1.176	0.043	0.07913			09-3666-1661	00-3462-6374
5		Oct	10	15:35	0.228	-0.905	-1.665	(-)		04-4548-8932	20-7967-8150
6			18	14:35	2.146	1.013	1.864	(+)		05-4042-6561	09-7290-5956
7		Nov	18	14:45	1.303	0.17	0.3128			07-2418-7894	02-8881-3753
8		Dec	20	14:25	1.35	0.217	0.3993			01-5692-9953	10-0045-4747
9	2012	Mar	29	14:15	0.747	-0.386	-0.7103			11-8184-4663	00-5057-1480
10		Apr	13	14:00	0.793	-0.34	-0.6257			19-8413-7608	05-2899-5573
11		May	23	13:50	1.162	0.029	0.05337			00-6722-3532	11-8382-8902
12		Aug	22	11:00	1.183	0.05	0.09201			12-2636-9338	02-6993-9000
13		Oct	9	14:00	0.836	-0.297	-0.5466			11-5377-0688	14-5701-8660
14		Nov	11	16:00	0.596	-0.537	-0.9882			14-7469-3886	17-5882-8497
15			27	16:05	1.693	0.56	1.031	(+)		08-6061-4466	05-8355-5463
16	2013	Mar	1	14:40	1.373	0.24	0.4417			18-8051-2966	09-6023-4535
17		Apr	5	10:40	0.811	-0.322	-0.5926			03-5469-7681	20-7653-9268
18		May	7	13:00	0.71	-0.423	-0.7784			11-4883-5754	20-7240-7121
19			24	11:30	0.81	-0.323	-0.5944			03-1268-0321	20-4684-2719
20		Jun	25	14:30	0.51	-0.623	-1.146	(-)		07-6412-1006	18-2969-6397
21		Jul	12	13:20	0.943	-0.19	-0.3497			06-2793-5359	18-9450-4090

CETIS Summary Report

Report Date: Test Code: 21 Aug-13 16:42 (p 1 of 1) 5436DA09 | 14-1288-0905

								rest Code:		54.	30DAU9 14	+- 1200-090
Reference To	xicant 96-h Acu	te Survi	ival Test									NewFields
Batch ID:	18-0761-6537		Test Type:	Survival				Analyst:				
Start Date:	12 Jul-13 13:20)	Protocol:	PSEP (1995)				Diluent:	Laborato	ry Sea	water	
Ending Date:	16 Jul-13 15:1	5	Species:	Neanthes are	naceodentata	ı		Brine:	Not Appli			
Duration:	4d 2h		Source:	Aquatic Toxic	ology Suppor	t		Age:				
Sample ID:	11-3302-8593		Code:	4388A4F1				Client:	Internal L	ab		
Sample Date:	27 Sep-11		Material:	Total Ammoni	ia			Project:	Referenc	е Тохі	cant	
Receive Date:	: 27 Sep-11		Source:	Reference To	xicant			•				
Sample Age:	654d 13h		Station:	P110927.138								
Comparison S	Summary	"										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Meth	od			
07-0996-7321	Proportion Sur	vived	95.6	184	132.6	8.38%		Dunr	nett Multipl	e Com	parison Tes	st
Point Estimat	e Summary	-										
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Meth	od			
06-4191-8012	Proportion Sur	vived	EC50	141.9	131.8	152.9		Spea	rman-Kärl	per		
Proportion Su	rvived Summa	ry										
C-mg/L	Control Type	Coun	t Mean	95% LCI	_ 95% UCL	Min	Max	Std I	Err Sto	l Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0	0		0.0%	0.0%
25.5		3	1	1	1	1	1	0	0		0.0%	0.0%
48.7		3	1	1	1	1	1	0	0		0.0%	0.0%
95.6		3	1	1	1	1	1	0	0		0.0%	0.0%
184		3	0.1	0	0.3484	0	0.2	0.05	774 0.1		100.0%	90.0%
371		3	0	0	0	0	0	0	0			100.0%
Proportion Su	urvived Detail											
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3								
0	Dilution Water	1	1	1								
25.5		1	1	1								
48.7		1	1	1								
95.6		1	1	1								
184		0	0.2	0.1								
371		0	0	0								
Proportion Su	rvived Binomia	als										
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3								
0	Dilution Water	11/11	10/10									
25.5		10/10										
48.7		10/10										
95.6		10/10										
184		0/10	2/10	1/10								
271		0/10	2/10	1/10								

Analyst: 18 QAM

000-173-185-3

371

0/10

0/10

0/10

CETIS™ v1.8.6.7

CETIS Test Data Worksheet

Report Date:

21 Aug-13 16:42 (p 1 of 1)

Test Code:

14-1288-0905/5436DA09

Reference Toxicant 96-h Acute Survival Test											
Start Date: End Date: Sample Date	16.	Jul-13	13:20 15:15 1	Species: Protocol Material:	: PSEP (1995)	Sample Code: Sample Source: Sample Station:	4388A4F1 Reference Toxicant P110927.138				
C-mg/L	Code	Rep	Pos	#Exposed	# Survived	Notes					
0	D	1	2	11	11						
0	D	2	3	10	10						
0	D	3	12	10	10						
25.5		1	8	10	10						
25.5		2	18	10	10						
25.5	:	3	15	10	10						
48.7		1	17	10	10						
48.7	:	2	5	10	10						
48.7		3	4	10	10						
95.6	:	1	16	10	10						
95.6		2	13	10	10						
95.6		3	1	10	10						
184		1	11	10	0						
184		2	10	10	2						
184		3	6	10	1						
371		1	9	10	0						
371		2	14	10	0						
371	1	3	7	10	n .						

CETIS Summary Report

4d 2h

Report Date: Test Code:

21 Aug-13 16:42 (p 1 of 1) 256D887F | 06-2793-5359

			rest code.	23000011 00-2133-3333
Reference 1	oxicant 96-h Acute \$	Survival Test		NewFields
Batch ID:	18-0761-6537	Test Type: Survival	Analyst:	

Start Date: 12 Jul-13 13:20 Protocol: PSEP (1995) Ending Date: 16 Jul-13 15:15

Species: Neanthes arenaceodentata Source: Aquatic Toxicology Support Diluent:

Laboratory Seawater

Not Applicable Brine: Age:

Sample ID: 20-6339-3533 Code: 7AFCE2FD Client: Internal Lab Sample Date: 27 Sep-11

Material: Unionized Ammonia Receive Date: 27 Sep-11 Source: Reference Toxicant Sample Age: 654d 13h Station: P110927.138

Project: Reference Toxicant

Comparison Summary

Duration:

Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method
18-9450-4090	Proportion Survived	0.943	1.445	1.167	8.38%		Dunnett Multiple Comparison Test

Point Estimate Summary

Analysis ID	Endpoint	Level	mg/L	95% LCL 95	5% UCL TU	Method
03-5477-0692	Proportion Survived	EC50	1.207	1.164 1.	.252	Spearman-Kärber

Proportion Survived Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0	0	0.0%	0.0%
0.497		3	1	1	1	1	1	0	0	0.0%	0.0%
0.757		3	1	1	1	1	1	0	0	0.0%	0.0%
0.943		3	1	1	1	1	1	0	0	0.0%	0.0%
1.445		3	0.1	0	0.3484	0	0.2	0.05774	0.1	100.0%	90.0%
1.846		3	0	0	0	0	0	0	0		100.0%

Proportion Survived Detail

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	1	1	1
0.497		1	1	1
0.757		1	1	1
0.943		1	1	1
1.445		0	0.2	0.1
1.846		0	0	0

Proportion Survived Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	11/11	10/10	10/10
0.497		10/10	10/10	10/10
0.757		10/10	10/10	10/10
0.943		10/10	10/10	10/10
1.445		0/10	2/10	1/10
1.846		0/10	0/10	0/10

CETIS Test Data Worksheet

Report Date:

21 Aug-13 16:42 (p 1 of 1)

Test Code:

06-2793-5359/256D887F

Reference To	xican	it 96-F	Acute	Survival T	est				NewField
Start Date: End Date: Sample Date	16 、	Jul-13	13:20 15:15 1	Specie Protoc Materia	ol: PSEP (es arenaceodentata 1995) ed Ammonia	Sample Code: Sample Source: Sample Station:	7AFCE2FD Reference Toxicant P110927.138	
C-mg/L	Code	Rep	Pos	# Exposed	# Survived		Notes	<u></u>	
0	D	1	8	11	11				
0	D	2	15	10	10				
0	D	3	7	10	10				
0.497		1	6	10	10				
0.497		2	16	10	10				
0.497		3	5	10	10				
0.757		1	11	10	10				
0.757		2	12	10	10				
0.757		3	14	10	10				
0.943		1	17	10	10				
0.943		2	9	10	10				
0.943		3	1	10	10				
1.445		1	13	10	0				
1.445		2	4	10	2				
1.445		3	10	10	1				
1.846		1	3	10	0				
1.846		2	2	10	0				
1.846		3	18	10	0				

NewField96-H JR REFERENCE TOXICANT . EST OBSERVATION DATASHEET

									SPECIES		Neanth	nes are	naceo	dentat		
CLIENT			PRO.				FIELDS J		PROJECT	MANAGE	R	NEWFIEL	DS LAB		PROTOC	
Integral Consul	ting Inc		\ \	<u>VPAH</u>				74.000		ardine	r	Port	Gamble	Bath 6	PSE	P 1995
OBSERVATIONS KEY					SURVI	VAL 8	BEI	IAVIO	R DA	TA		DAYA		r	DAVA	
N = normal		INITIAL	# OF		DATE	DAY 1		DATE _			DATE -	DAY 3	1	DATE	DAY 4	
Q = quiescent D = Discolored		ORGAN	O O		2		3		7141	13	1	77151	13	1 7	1001	13
F = Floating on surfa	ice	\\			TECHNIC	IAN		TECHNIC	AN IL		TECHNIC	AN)	,	TECHNIC ႐	IAN	
CLIENT/ NEWFIELDS ID	CO value	NC. units	REP	INITIAL # if differs	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	\sim	OBS
			1	11	11	Ø	C	11	Ø	12	1(Ø	2	lı	0	7
Ref.Tox ammonia - TAN	0	mg/L	2	10	10	Ø		10	Ø		[O	Ø		10	ω	N
4711110711d 17111			3	1	lo	D	7	()	Ø	4	10	Ð		10	Ø	2
			1		lo	Ø	2	10	Ø	2	lo	Ø	2	le	Ø	2
Ref.Tox ammonia - TAN	15	mg/L	2		lo	Ø		10	Ø		0	Ø		(O	Ø	2
			3		ld	Ø	6	10	8	-	0	Q	J	્	Ø	2
5 (7			1		10	Ø	7	10	Ø	بر	0	Ø	N	Ю	ø	2
Ref.Tox ammonia - TAN	30	mg/L	2		io	Ø		10	Ø		[0	- D		10	4	2
			3		lo	Ø	Į.	lo	Ø	J	0	Ð	J	10	ϕ	$ \nu $
DetTerr			1		jo	Ø	þ	10	Ø	Ŋ	lo	Ø	0	10	ϕ	Q
Ref.Tox ammonia - TAN	60	mg/L	2		10	Ø		10	Ø		10	Ø		(0)	\$	Q
			3		lo	0		10	Ø	l	ĺδ	4	L	G)	ø	Ÿ
Ref.Tox			1		10	Ø	0	10	_Ø_	0	10	6	0	ϕ	10	
ammonia - TAN	120	mg/L	2		10	Ø		10	b		10	0		٦	8	Q
		· · · · · · · · · · · · · · · · · · ·	3		10	め	1	10	D	l	(0	Ø	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	1	9	Q
Ref.Tox			1		10	R	0	0	10	NA						
ammonia - TAN	240	mg/L	2		lo	0		0	10					<u> </u>		
			3	4	lo	Ø	V	0	10	V			\			

Page 1

NewFields 96-HOUR REFERENCE TOXICANT TEST WATER QUALITY DATASHEET

CLIENT	PROJECT	SPECIES	NEWFIELDS LABORATORY PROTOCOL	JRY	PROTOCOL
Integral Consulting Inc.	WPAH	Neanthes arenaceodentata	Port (Port Gamble Bath 6	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE:	TIME	TEST END DATE	TIME
860.0074.000	B. Gardiner	12Jul13	(320	16Jul13	<u>s</u>
Test 1D \$ 11.0927.138	11107g		The state of the s	A contract of the contract of	makanananananananan munum munu

WATER QUALITY DATA

						4		<u></u>				_				٦	
FOXICANT	- TAN	A CONTRACTOR	I COUNTY I	LOUI CW	W.	3/12 MMB	-	sham tilt	***************************************	Shamell F		7/12 mmes	************************	shownell4		Smm elle	10000-00000000000000000000000000000000
REFERENCE TOXICANT	ammonia - TAN	Hd	7 - 9	Hd	unit	4.9		7.8		7.7		7. S		か、七		4.4	
					meter	S		S		S		S		S	······································	S	****
		SAL (ppt)	28 ± 2	SALINITY	ppt	800		84		8 e		28		8 C		50	
					meter	ራ		þ	4.0000000000000000000000000000000000000	6		æ		6		Þ	
REFERENCE TOX. MATERIAL	ammonium chloride	TEMP(C)	20 ± 1	TEMP.	၁ွ	19.5		(9.3		6.61		(9. b)		19.3		(9.3	
REFERE	amır				meter	ی		و	***************	و		و		و	***************************************	و	
		DO (mg/L)	> 4.6	D.O.	mg/L	ۍ ۲.		7.8		₹.8		8.€		8.€		7.8	
					meter	و		و	****************	و		و		و		و	
		7. 1			х П	Stock	Rep	Stock	Rep	Stock	Rep	Stock	Rep	Stock	Rep	Stock	Rep
TEMP REC#					Š.	0	4	0	4	0	4	0	4	0	4	0	4
TEMI		ONCIL	2	CONCENTRATION	n units	, ou	0.0548"		ア		. 1		9.Sp		4	(///	371
		i divo		CONC	value	0		15	25.5	30	48.7	09	as	120	i84	240	3
т.ватсн	113.01	TEST CONDITIONS		<u>.</u>	VFIELUS ID	Target:	Actual:	Target:	Actual:	Target:	Actual:	Target:	Actual:	Target:	Actual:	Target	Actual:
DILTIN.WAT.BATCH	FSW071113.01				CLIEN I' NEWFIELDS ID	Ref. Tox	TAN	Ref. Tox	TAN	Ref. Tox	TAN	Ref Tox	TAN	Ref. Tox	TAN	Ref.Tox	TAN

CLIENT:	Internal	Date of Test:	25-Jun-13
PROJECT:	RT	Test Type:	Neanthes
COMMENTS:			

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding

temp (K) i-factor Mod NH3U (mg/L)

Intege	r: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34
5.34	9 - 2 99/4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	rget / Sample (Vame Example 3.5 15 30 60 120 240	25.500 48.700 95.600 184.000 371.000	22.6	7.6	5.0	297.26 278.16 292.36 292.36 292.36 292.36 292.46	9.3053 9.2750 9.3187 9.3187 9.3187 9.3187 9.3214	Mod NH3U (mg/L) #VALUE! 0.008 0.497 0.757 0.943 1.445 1.846
2 3 4 5 6 7 8 9 110 111 12 13 14 115	15 30 60 120	25.500 48.700 95.600 184.000	100		5.0	278.16 292.36 292.36 292.36 292.36	9.2750 9.3187 9.3187 9.3187 9.3187	0.008 0.497 0.757 0.943 1.445
2 3 4 5 6 7 8 9 110 111 12 13 14 115	30 60 120	48.700 95.600 184.000				292.36 292.36 292.36 292.36	9.3187 9.3187 9.3187 9.3187	0.497 0.757 0.943 1.445
3 4 5 6 7 8 9 10 11 12 13 14 15	30 60 120	48.700 95.600 184.000				292.36 292.36 292.36	9.3187 9.3187 9.3187	0.757 0.943 1.445
4 5 6 7 8 9 11 12 13 14 15	60 120	95.600 184.000				292.36 292.36 292.36	9.3187 9.3187 9.3187	0.757 0.943 1.445
5 6 7 8 9 10 11 12 13 14 15	120	184.000				292.36 292.36	9.3187 9.318 7	0.943 1.445
6 7 8 9 10 11 12 13 14 15				4		292.36	9.3187	1.445
7 9 10 11 12 13 14 15	240	371.000						
8 9 10 11 12 13 14 15								
9 10 11 12 13 14 15								
10								
11								
12 13 14 15								
13 14 15								
14 15								
15								
16								
17								
18								
19								
20								
21					<u> </u>			
22					 			
23					<u> </u>			
25					 			
26								
27					-			
28		·- ·						
29		·						
30					 			
31					·	_	-	
32					<u> </u>			
33					-			
34								
35					-	_		
36					1			
37								
38					1			
39								
40								
41								<u> </u>
42								
43						-		
44								
45								
46								

NewFields

ORGANISM RECEIPT LOG

Date:			Time:		NewFiel	ds Batch No.			
7.12	.13		0845		ATS	•			
Organism	-]			Invoice Attac	hed		
	hes /	Port A-	reles			Yes (N	lo)		
Source / Si					Contact				
Azuatio	L Toxicolo	sy supp	put		May	Aon			
No. Ordere	d:		No. Received:		Source E				
	1050		1100		(Collection	n date, hatch date	e, etc.):		
	of Organisms oor; describe.):	S :		Approx (Days fro	imate Size	or Age: stage, size class	, etc.):		
	Good			}	2-3	ule;			
Shipper:				B of L (Tracking N	0.)			
	NF(a	rie/			\wedge	A			
	of Container: oor; describe.):	1		Receive	ed By:				
(0000, 1011, p	=	bood		BH					
Container	D.O. (mg/L)	Temp.	Cond. or						
(orp	16. 7	20.0	31		7.1		BH		
					7874				
Notes:		I			10.74				

Appendix A.3

Benthic Larval Test with *Mytilus galloprovincialis*Test Batch 1

LARVAL DEVELOPMENT TEST ENDPOINT DATA

			species Mytilus gallopro	ovincialis	
сыемт Integral Consulting Inc.	PROJECT Port Angeles	JOB NUMBER 860.0074.000	PROJECT MANAGER B. Hester	NEWFIELDS LAB / LOCATION Port Gamble /	PROTOCOL PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	

ORGANISM SATCH			·1.13	lime	TEST END DATE:	Tanto
			OBSERVATION DA	ATA	- 	<u></u>
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS
	1	196				
	2	238				
STOCKING DENSITY	3	262				
	4	250				
	5	238 262 250 185				
	1	215	8			
	2	237	8			
Control /	3	225	8			
	4	237 225 255	19			
	5	250 182 245 182 180	4			
CR-12 /	1	182	3			
	2	245	8			
	3	182	3			
	4	180	13			
	5	193				
	1	193 206	3 5 18			
	2	174	18			
CARR-20 /	3	188	2/			
	4	176	29			
	5	201	10			
	1	20 (9			
	2	143	29			
CR-02 /	3	169				
	4	163	6			
	5	202	8			

LARVAL DEVELOPMENT TEST **ENDPOINT DATA**

species					
CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	

LARVAL UDSERVATION DATA	LARVAL	OBSERVATION	DATA
-------------------------	--------	--------------------	------

LARVAL OBSERVATION DATA						
CLIENT/ NEWF(ELDS ID	REP	NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS
SD005/	1	155	7			
	2	139	3			
	3	161	7			
	4	168	5			
	5	171	4			
	1	142	6			
	2	129	9			
SD006 /	3	134	14			
_	4	167	10			
•	5	138	10			
SD007 /	1	180	7-			
	2	170	5			
	3	173	3			
	4	132	7			
	5	173 132 160	11			
SD0023 /	1	137- 137-1390	10			
	2	1371390	21			
	3	147 154 158 149	3			
	4	154	17 8			·
`	5	158	J			
SD0024 /	1	149	8			37,000
	2	162	10			
	3	158	4			
	4	176 145	8			
	5	145	2/			
	4	intro feet				

word entry but

			SPECIES		
			Mytilus gallopro	ovincialis	4
CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	
		1.1.13	Walinate e e e e e e e e e e e e e e e e e e		

LADVAL	OBSERVATION DA	·ΤΛ
		NIM.

LARVAL ÓBSERVATION DATA									
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS			
	1	138	18						
	2	133	19						
SD0025 /	3	145	23	***************************************					
	4	101	35 25 3						
	5	97	25						
	1	182	3						
	2	177	2						
SD0026 /	3	161	4						
	4	166	5						
	5	219	3						
	1	138	/						
	2	126	6						
SD0027 / _	3	166	10						
	4	122	10		<u> </u>				
	5	111	1/			<u> </u>			
	1	171	10						
	2	178	10						
SD0028 /	3	172	12						
	4	183	8						
	5	172	15						
	1	157	4			,			
	2	137	22	· · · · · · · · · · · · · · · · · · ·		·			
SD0029 /	3	164	4						
	4	114	15						
	5	137	25						

			SPECIES		•
			Mytilus gallopro	ovincialis	b
CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	
		1.1.13			

LARVA		

LARVAL OBSERVATION DATA									
CLIENT/ NEWFIELDS ID	REP	NUMBER Normal	NUMBER	DATE	TECHNICIAN	COMMENTS			
	1	156	2						
	2	166	3						
SD0030 /	3	172	5						
	4	156	3						
	5	152	3						
	1	154	0		***				
	2	190	10						
SD0031 / -	3	164	14						
	4	156	3			· · · · · · · · · · · · · · · · · · ·			
	5	167	4						
	1	169	4						
	2	184	11						
SD0032 /	3	181	9						
	4	216	4						
	5	192	16						
	1	186	8						
-	2	179	6						
SD0033 /	3	175	5						
:	4	108	13						
	5	155	6						
	1	159	6						
	2	162 156 131	13						
SD0034 /	3	156	15						
	4	131							
	5	181	9						

CLIENT/ NEWFIELDS ID

REP

			species Mytilus gallopro	ovincialis	*
CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	
		7.1.13			

LARVAL (BSERVATION DA	TA		
NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS
64	9			
85	3			
194	2			

		NORMAL			
	1	164	9	,	
	2	185	3		
SD0035 /	3	194	2		
	4	192	4		
-	5	151	2		
	1	179	11		
	2	201	11		
SD0036 /	3	170	6		
	4	200	7		
	5	167	6		
	1	184	4		
	2	190	<i>4</i> 3		
SD0037 /	3	168			
٠	4	155	8		
	5	184	4		
	1	190	15		
	2	165	12		
SD0038 /	3	186	25		
	4	231	15		
	5	166	8		
	1	161	56 52		
	2	154	52		
SD0039 / ~	3	169	3/		
	4	167	3(
	5	152	45		

			SPECIES		
			Mytilus gallopre	ovincialis	*
CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	ON PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	
		7.1.13			

L	ARVA	AL O	BSE	RVAT	FION I	DATA

LARVAL OBSERVATION DATA								
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS		
	1	189	4					
•	2	180	4					
SD0040 /	3	178	2		***************************************			
	4	180	6					
	5	164	7					
	1	170	16					
	2	174	2					
SD0042 /	3	145	9					
	4	183	13					
	5	179	3			·		
	1	221	2					
	2	203	8					
SD0043 /	3	175	9					
	4	193	10					
	5	205	8					
	1	167	8					
	2	196	5					
SD0044 /	3	181	4					
-	4					no vial investined for		
	5	217	4			0		
	1	217 186	6					
	2	154	3					
SD0045 /	3	163	6			<u></u>		
	4	155	12					
	5	147	3					

			SPECIES Mytilus gallopro	ovincialis		
CLIENT Integral Consulting Inc.	PROJECT Port Angeles	JOB NUMBER 860.0074.000	PROJECT MANAGER B. Hester	NEWFIELDS LAB / LOC		PROTOCOL PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME		TIME	

	TION DATA

	T	NUMBER	NUMBER	T	T T	<u></u>
CLIENT/ NEWFÆLDS (D	REP	NORMAL		DATE	TECHNICIAN	COMMENTS
	1	193	U			
	2	171	10			
SD0046 /	3	211	6			
	4	212	7			
	5	196	6			
	1	166	3			
•	2	186	4			
SD0047 /	3	194	フ			
	4	220	10			
	5	159	5			
	1	192	8			
	2	215	14			
SD0048 /	3	193	/ò			
	4	209	/(
	5	200	14			
•	1	220	3			
	2	212	5			
SD0049 /	3	214	7			· · · · · · · · · · · · · · · · · · ·
	4	198	7			
	5	185	6			

EST		MOLY A DOLL BALL SO (BIBWARN)
LARVAL DEVELOPMENT TEST	WATER QUALITY DATA	8910368
		Foai Coal
		THE

cuent Integral Consulting Inc.	ting Inc.	_	Ряолест Ро	Port Angeles	eles	3dS	SPECIES	Mytill	Mytilus galloprovincialis	vinci	alis		NEWFIELDS LAB / LOCATION Port Gamble	aricocon ort Gar	s Lag / Location Port Gamble /	PRO PS	PROTOCOL PSEP (1995)
JOB NUMBER 860.0074.000	000		PROJECT MANAGER B. F	AGER B. Hester	er	<u> </u>	TEST START DATE	re 01Jul13	113	,	190C		TEST END DATE		۴,	T.	1700 700
* Day 1&4 observations needed only if development endpoint not met by day 2	· if developmen	nt endpoint not m	iet by day 2			Μ×	WATER QUALITY DATA	ALIT	Y DATA								
NOO	TEST CONDITIONS			28	DO (mg/L) >5.0	Tel	Геяпр (°С) 16±1	S	Sal (ppt) 28 ± 1		pH 7.9	ď	Ammonia NA		Sulfide	н	3
CLIENT! NEWFIELDS ID	DAY	Капфот#	REP	₃ ⊏	5.0.		TEMP.	Ŝ	SALINITY		Hd	4	AMMONIA	, ,	SULFIDE	DET	TAQ
				meter	mg/L	meter	ပ္	meter	ppt	meter	unit	Techn,	Techn. mg/L (total)	Techn.	mg/L (Total)	1	
Control /	0	179	WQ Surr	و	7.3	اف	بر <u>ع</u>	2	29	8	0.8	~ 4	R 0.080	4	20.00	-3	7/2
Control /	τ-		WQ Surr	Q	7.8	Q	15.0	2	29	5	8.1				1	弄	72
Control /	2		WQ Surr	و	7.3665	وَ	15.8	d	29	v	7.9	X	0.968	Z	12 0.968 OR 0.033 WARS 7/3	- SW	3)+,
Control /	3		WQ Surr														
Control /	4	\rightarrow	WQ Surr													***************************************	
CR-12 /	0	185	WQ Surr	_0_	ナンナ	2	0ં91	7	29	V	9.1	Z	0.065	3	4 0.06 1 230.0 A	7	7/21
CR-12 /	-		WQ Surr	2	7.7	Q	15.5	<i>N</i>	29	2	5 8.0		en, i de la company de la comp			郑	2/1
CR-12 /	2		WQ Surr	و	7.3	و	ارة. ا	d	29	v	7.9	Z	1 0.210 a	Z	0.047 MWG 7 (3	WW.	7(3
CR-12 /	3		WQ Surr														
CR-12 /	4	>	WQ Surr														
CARR-20 /	0	95	WQ Surr	9	7.3	0	か91 の	2	29	S	8.0	Š	0.079	7	8.0 18 0.07 L 0.106	\rightarrow	7/01
CARR-20/	-		WQ Surr	9	6.51 / 2.9	j	15.8	7	29	5	8.0)	The second secon	i de la composicione de la compo	_	7	712
CARR-20/	2		WQ Surr	و	4.4 位 15.6	ھ	م.5۱	4	29	ß	7.7	Z	0.171	Z	7.7 CR 0.171 CR 0.041 MING 7/3	, 3	57(3
CARR-20/	3		WQ Surr					, ,									
CARR-20 /	4	⋺	WQ Surr														
•	1																

OWC 2 7/1

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

NewFields

		מועם ווועסארוו ועוד			
CLIENT	PROJECT	SPECIES		NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	Mytilus galloprovincialis	ialis	Port Gamble /	PSEP (1995)
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
860.0074.000	B. Hester	01Jul13	1400		

CLIENT			PROJECT			SP	SPECIES						NEWFIELDS LAB / LOCATION	18/1.0C	VION	id.	PROTOCOL
Integral Consulting Inc.	ing Inc.		– Pc	Port Angeles	eles			Mytilu	Mytilus galloprovincialis	ovinc	ialis		Pc	Port Gamble /	nble /	a.	PSEP (1995)
JOB NUMBER			PROJECT MANAGER	GER		1	TEST START DATE	in in			TIME		TEST END DATE	Ē		드	TIME
860.0074.000	00		ب	B. Hester	ter			01Jul13	13		1400						
* Day 384 observations needed only if development endpoint not met by day 2	if developmen	it endpoint not m	et by day 2			WA	WATER QUALITY DATA	ALITY	' DATA								
NOO	TEST CONDITIONS			20	DO (mg/L) >5.0	Į,	Temp (°C) 16±1	υ5	Sal (ppt) 28 ± 1		рН 7 - 9	`	Ammonia NA		Suffide	н	73)
CLIENT/ NEWFIELDS ID	DAY	Random #	REP	Deter	D.O.	Teter	TEMP.	Sp	SALINITY	meter	PH	Techn	AMMON3A Techn. mg/L (tota)		SULFIDE)3ĭ	.¥a
CR-02 /	٥	0 1	WO Surr	_	Ü	_	_	۲	£ 0	j		,	600			دــ	X
7 70 7 1	>	2	3	D	Ø. B	ه	ر ا ا	7	1.7	Λ	<i>i</i> , o	4	300 X 0013		60.173		1011
CR-02 /	۳-		WQ Surr	9	6.7	9	15.9	2	50	6	<i>o</i>	1			1	灰	7/2
CR-02/	7		WQ Surr	و	5.3		S.91 9	4	هم	S	7.8	3	CR 0.171 42 0.082 NAMB	Z	0.082	3	5713
CR-02 /	3		WQ Surr														
CR-02 /	4	>	WQ Surr														
/ £000GS	0	ŧŧ	WQ Surr	9	b,0	9	591	2	29	5	9.0	Z	8.0 CR 0.08 2 0.28	え	0.28	굇	7/61
/ 5000S	۳		WQ Surr	2	7.3	9	16.5	2	62	5	8,0	١			•	龙	21/2
/ \$000S	2		WQ Surr	و	4.1	و	اج	Λ	50	N	ψ. Ψ.		40.080U		0.116	S S	57/3
/ \$00.0S	3		WQ Surr						:								
/ \$00QS	4		WQ Surr														
7,900QS	0	L53	WQ Surr	9	5.9	9	1.91	2	28	5	7.9	४	(A 0.064	3	LO.239	ار)(7701
/9000S	1		WQ Surr	0)	(b.6	9	15.7	7	52	5	8, ۲	- 1				4	2/12
/ 900GS	2		WQ Surr	و	4.3	و ش	<u>ه</u> و	d	66	5	4.4	3	CR 0.065 CR 0.082 NWK 7/3	H)	0.082	3	R 7-13
) 900QS	ဗ		WQ Surr										,				
SD006/	4		WQ Surr														

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT	PROJECT	SPECIES		NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	Mytilus galloprovincialis	ialis	Port Gamble /	PSEP (1995)
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
860.0074.000	B. Hester	01Jul13	1900		

Jean Jean Consult	() ()		PROJECT	\ \text{t}	0010	ç	SPECIES	Adustil	acoffee of	, c	iolic		NEWFIELDS LAB / LOCATION Doct Comble	3871.0C	SLAB/LOCATION Doct Camble /	<u>a, u</u>	PROTOCOL PSED /1005)
integral Consulting Inc.	ang inc		7	Port Arigeres	Sala	_		ואינאנור	Mytilus galioprovircialis	CVIIIC	idilis			ב ב) 20 /		35L (33)
IB NUMBER REO OOZA OOO	٥		PROJECT MANAGER	AGER R Hacter	rā	Ĭ,	TEST START DATE O	7E 	6.		1900		TEST END DATE	ш			TIME
3:1-00:000	2			2		-	MATED OILM ITY DATA		/ DATA]	2	1				_	
Lay Ass coservacers resert only it coverepment encount not met by day a	7 S General prince	nt enopoint not in	net by day z	S	On tweel	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓֡֓֡֡֡֓֡֡֡֡		֓֞֡֞֜֞֜֞֜֞֜֞֜֓֓֡֡֡֡֡֡֡֡֡	Sal (par)		70	ď	Ammonia		Sulfide	L	
CON	CONDITIONS			ś	7tmg/c, >5.0	-	16±1	, 	28 ± 1		7-9	<u> </u>	NA		NA	сн	ati
CLIENT/ NEWFIELDS ID	DAY	Random #	REP	meter	D.O. mg/L	meter	TEMP.	Sumeter	SALINITY	meter	pH	Techn	AMMONIA Techn. mg/L (total)	S Techn.	SULFIDE Techn. mg/L (Total)	3T	₹Œ
SD007 /	٥	40	WQ Surr	ھ۔	1.9	هـ	16.6	2	N	\sim	0.6	8	12.02D	7	0.274	7	10/L
SD007 /	-		WQ Surr	9	6.3	8	15.4	2	29	γς.	8.1					坐	211
SD007 /	2		WQ Surr	و	ትጉ	و	16.2	۴	39	S	7.7	8	40.100 CK 0.112	Z	0.112	SWE SWE	£)+{s
/ <u>2</u> 000S	3		WQ Surr								277						
SD007 /	4	>	WQ Surr														
SD0023 /	0	190	WQ Surr	ه	8.9	هـ	104	7	67	S	9.0	7	(R. O. 277	7	0.300	7	7/1
SD0023 /	-	******	WQ Surr	9	98.1		√ 91	2	29	Š	8.0					和	712
SD0023 /	7		WQ Surr	ور	ナ・ナ		4.91 9	d	29	2	7,7	R	40.069 LR		800 H800	3	8713
SD0023 /	က	_	WQ Surr														
SD0023 /	4	→	WQ Surr														
SD0024 /	٥	57	WQ Surr	9	5,0	ھ۔	હુ.વા	7	b2	S	7.9	3	170.07	7	0.126	7	16/7
SD0024 /	-		WQ Surr	9	7.5	9	6.91	7	29	5	0,0				}	3	712
SD0024 /	2		WQ Surr	و	3.6	و	15.9	6	29	2	7.7	Š	(RO.065/12	K	0.052 MMB 7/3	<u>₹</u>	67(3
SD0024 /	3		WQ Surr														
SD0024 /	4	->	WQ Surr			·											

■ NewFields

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT			SPE	SPECIES						NEWFIELDS LAB / LOCATION	BILOCA	TION	Ы	PROTOCOL
Integral Consulting Inc.	ting Inc	,,,		Port Angeles	eles	•••••		Mytill	Mytilus galloprovincialis	ovinc	sije,		Po	Port Gamble /	γple /	ш	PSEP (1995)
JOB NUMBER	***************************************	-	PROJECT MANAGER	GER		<u>E</u>	TEST START DATE	μı			TIME		TEST END DATE	ļ		E.	TIME
860.0074.000	000		ш	B. Hester	ter			01Jul13	33		1980						
* Day 3&4 observations needed only if development endpoint not met by day 2	/ if developme	nt endpoint not n	net by day 2			WA	WATER QUALITY DATA	E	(DATA								
100	TEST			ă	DO {mg/L} >5.0	, E	Yеmр (°С) 16±1	S	Sat (ppt) 28 ± 1		р н 7 - 9	∢	Ammonia NA	on 	Sulfide NA	н:	31
CLIENT/ NEWFIELDS ID	DAY	Random #	REP		0.0.			'S	SALINITY		흐	¥	AMMONIA	SI	SULFIDE) 3 T	raa
			_	meter	mg/L	meter	ပ္	meter	ppt	meter	unit	Techn.	Techn. mg/L (total)	Techn.	Techn. mg/L (Total)		
SD0025/	0	161	WQ Surr	و_	S.8	و۔	(3.0 2	7	29	S	7.9 CRO.190 N. 0.219	3	0.190	7	0.219	3	3/0[
SD0025 /	-		WQ Surr	Q	6.9	0	6 16.2 2 29	4		4	7.9					万	7.2
SD0025 /	2		WQ Surr	و	4.8	ور	<u>ر</u> ه و	ø	6 4.8 6 16.8 2 29	v	5 7.7 CRO,118 CRO.093 NAME 7/3	3	0.118	Z	0.093	3	8 7 (3
SD0025/	ო		WQ Surr								:						
SD0025 /	4	->	WQ Surr														
SD0026 /	0	18/	WQ Surr	9	83	_0	164	7	5.3 6 164 2 28	\sim	S 8.0 (co.153 L 0.99)	7	0.153	ヹ	0.199	7	774
SD0026 /	_		WQ Surr	9	5.00 6	a	15.7 2 29	7	62	6	79	T				<u> </u>	717
SD0026 /	2		WQ Surr	ح	0	و	8.06 15.3 2	4	29	5	3	Z	7.960.114 0RO.090 NIMB 713	K	0,040	差	8713
SD0026 /	က		WQ Surr														
SD0026/	4	->	WQ Surr						_ -								
				ľ	-	1	۔ م	Ļ	1								

Offertion intisted 72.1384

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLENT			PROJECT			SPE	SPECIES					ſ	NEWFIELDS LAB / LOCATION	B/LOCA	TION	٩	PROTOCOL
Integral Consulting Inc	ing Inc			Port Angeles	Sejes			Mytil	Mytilus aalloorovincialis	ovinci	sije		P	Port Gamble	nble /		PSEP (1995)
incello islami	2		-	300	Jeices			13 / I	idoimg co				-	3	2	- 1	(1000)
JOB NUMBER			PROJECT MANAGER	AGER		ŭ	TEST START DATE	듸			TIME .		TEST END DATE	Щ			TIME
860.0074.000	00			B. Hester	ter			01Jul13	113		700						
* Day 384 abservations needed only if development endpoint not met by day	if developme	nt endpoint not.	met by day 2			ΜĀ	WATER QUALITY DATA	ALIT	Y DATA								
	TEST			ă	DO (mg/L)	Te	Temp (°C)	Ľ	Sal (ppt)	L	рH	٩	Ammonía	Ľ	Sulfide	L	
CON	CONDITIONS				>5.0		16±1		28±1		7.9		ΑA		NA A	н	31
	2				D.O.		TEMP.	S	SALINITY		Hå	۲	AMMONIA	מי	SULFIDE	31	.¥a
CLIENT NEWFIELDS ID	UA	Kandom #	rer REF	meter	mg/L	meter	್ಗಿ	meter	ppt	meter	unit	Techn.	Techn. mg/l. (total)	Techn.	mg/l. (Total)		
SD0027 /	0	5.3	WQ Surr	9	7.0	ھ	2 6-91 9	2	b2	\sim	9,0	4	8.0 W. 0.0524- 0.294	7	0.294	7	7/0(
SD0027 /	1		WQ Surr	9	6.2	9	15.4 2	2	29	ν.	7.9					-72°	7112
SD0027 /	2		WQ Surr	و	ナナ	و	4.7 6 15.8	Q		১	4	\mathcal{Z}	190.0	Z	0.084	. <u>ჰ</u>	29 5 7.4 CRO-067CR 0.084 MWG 7(3
SD0027 /	က		WQ Surr														
SD0027 /	4	->	WQ Surr														
SD0028 /	0	38	WQ Surr	هـ.	5.9	ا	F.91 9	7	29	S	<i>0,0</i>	2	3.0 CR 0.059 tr 0.202	4	207.0	\rightarrow	18/2
SD0028 /	-		WQ Surr	9	1.1	Ô	6 15.8	7	29	*	- 1					32	712
SD0028 /	2		WQ Surr	و		و	4.3 6 15.8 2	Q	56	V	4.4	3	5/7 8mm 240.0 20 PC P S	Ž	340.0	₹	87/8
SD0028/	8		WQ Surr														·····

WQ Surr

>

4

SD0028 /

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

NewFields

CCIENT			PROJECT			SP	SPECIES						NEWFIELDS LAB / LOCATION	AB / LOCA	NOIT.	HA.	PROTOCOL
Integral Consulting Inc.	ng Inc.			Port Angeles	eles			Mytill	Mytilus galloprovincialis	ovinc	ialis		 .P.	Port Gamble /	nble /	<u> </u>	PSEP (1995)
JOB NUMBER			PROJECT MANAGER	GER	-	<u> </u>	TEST START DATE	 <u> </u>		***************************************	TIME		TEST END DATE	m F		F	TIME
860.0074.000	00		Э.	B. Hester	ler.			01Jul13	113)n. 1						
. Day 3&4 observations needed only if development endpoint not met by day 2	f developmen	it endpoint not m	et by day 2			۸M	WATER QUALITY DATA	ALIT	Y DATA								
CONE	TEST			90	DO (mg/L.) >5.0	<u>۾</u>	Temp (°C) 16±1	S	Sal (ppt) 28 ± 1		hd 7 - 9	1	Ammonia NA		Sulfide NA	н	31
CLIENT/ NEWFIELDS ID	DAY	Random #	REP	meter	D,O,	meter	TEMP.	S.	SALINITY	meter	pH	A Techn.	AMMONIA Techn, maff, (total)	S. Techn.	SULFIDE Techn. moff. (Total))∃T	. A O
SD0029/	0	911	WQ Surr	هــ	5.9	ھ	15.8	7	78	1		3	0.056		1-0.153	3	19/4
SD0029 /	-		WQ Surr	9	7.0	0	15.9	7	67	N	% Ö					沙	2/6
SD0029 /	2		WQ Surr	٩	5.8	و	16.2	d	4	S		Z	7.7CR 0.052/CR 0.055 NAME 7	Z	0.055	N/V	R7(3
SD0029 /	3		WQ Surr														
SD0029 /	4	→	WQ Surr														
SD0030 /	0	8	WQ Surr	۵	7.1	٩	0.6	7	29	8	8.0		(20.043 L 6.243	ぴ	6.243	3	1/01
SD0030/	1		WQ Surr	9	6.7	9	6.9	7	62	5	8.0	ļ				4	7/12
SD0030 /	2		WQ Surr	و	و نا	و	اه. ا	B	29	ᠾ	7.8	3	G 0.051	3	420.085 WW	₹	57(3
/ 0E00GS	3		WQ Surr														
SD0030 /	4	→	WQ Surr														
SD0031/	0	7	WQ Surr	٩	7.0	٥	0.61	7	52	8	7.8	8	Gr 0.023	h	0.220	25	7/6 <u>(</u>
SD0031/	1	-	WQ Surr	9	6.8	9	16.4	7	b2	\mathcal{P}	<u>00</u>	l				玉	21/
SD0031/	2		WQ Surr	و	2.3	J	0.4)	Ч	5	ᢧ	4.7	3	0,045	B	(NO.099	Z S S S S S S S S S S S S S S S S S S S	57(3
SD0031/	3		WQ Surr														
SD0031/	4	→	WQ Surr														

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

	PROJECT	SPECIES		NEWFIELDS LAB / LOCATION	PROTOCOL
ntegral Consulting Inc.	Port Angeles	Mytilus galloprovincialis	ialis	Port Gamble /	PSEP (1995)
	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
860.0074.000	B. Hester	01Jul13	1267		

ENT			PROJECT			SP	SPECIES						NEWFIELDS LAB / LOCATION	AB / LOCA	TION	RA	PROTOCOL
Integral Consulting Inc.	ting Inc		g.	Port Angeles	eles			Mytil	Mytilus galloprovincialis	ovinc	ialis		Ğ.	Port Gamble	tble /	α.	PSEP (1995)
3 NUMBER			PROJECT MANAGER	1GER		ĬŽ.	TEST START DATE	E E			TIME		TEST END DATE	=		TIME	ЛĒ
860.0074.000	000		ш	B. Hester	ter			01Jul13	13		1260						
* Day 384 observations needed only if development endpoint not met by day 2	if developme	nt endpoint not me	t by day 2			ΜĀ	WATER QUALITY DATA	ALIT)	(DATA								
	TEST			20	DO (mg/L)	Te	Temp (°C)	s	al (ppt)	L	Hd		Ammonia	S	Sulfide		
CON	CONDITIONS				>5,0		16±1		28±1		6-1		NA		ν V	н	31
CLOCK TOWNER OF THE CLOCK TO CLOCK	200	7	Ċ U		D.O.	Ĺ	TEMP.	Ŋ	SALINITY		рН	٩	AMMONIA	જ	SULFIDE) BI	.¥O
CLIENT NEWFIELUS 10	4	Капрошт	Ver	meter	mg/L	meter	ာ့	meter	ppt	meter	unit	Techn.	Techn. mg/L (total)	Techn,	mg/L (Total)		
SD0032 /	0	1011	Wasur 6 6.7 6 16.7 2 9.9 8.0 02 0.00 1 20.00	و	b. 7	٩	7'91	7	29	\mathcal{S}	9.0	20	1200	4	905.0	7	7/81
650003	7	-	1000		5	_		,	70	\	c					4	r
3000327	-		WY SUIT (O		0 4.1	e	16.0 7 5	,7	١		- ò				ĺ	7,	112
SD0032 /	2		WQ Surr	و	イナ	و	16.0	d	29	Ŋ	4.2 6 16.0 2 29 5 7.7 GRO,041 GRO,127 MINUS 7(3	Z	140,0	Š	0.127	3	87(3
SD0032/	3		WQ Surr										-				
SD0032 /	4	- >	WQ Surr														
																I	

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

NewFields

C) IENT			PROJECT			dS	SPECIES						NEWFIELDS LAB / LOCATION	AB / LOC	ATION	1	PROTOCOL
Integral Consulting Inc.	ing Inc.			Port Angeles	eles			Mytile	Mytilus galloprovincialis	ovinc	sialis		<u>a</u>	ort Ga	Port Gamble /		PSEP (1995)
JOB NUMBER		-	PROJECT MANAGER	AGER		뿐	TEST START DATE	<u>ا</u> ا		*	TIME		TEST END DATE	vre		<u> </u>	TiME
860.0074.000			~	g. Hester	Æſ	-		010013	13		5						
' Day 344 observations needed only if development endpoint not met by day	if developme	nt endpoint not i	met by day 2			×	WATER QUALITY DATA	딁	/ DATA								
CONI	TEST			ŭ	DO (mg/L) >5.0	ř	Temp (°C) 18±1	v)	Sat (ppt) 28 ± 1		Hd 79		Ammonia NA		Suffide NA	н	31
Ct 30 columnia revision to	2				D.O.		TEMP.	ŝ	SALINITY		됩	_	AMMONIA		SULFICE	ээт	ΓΑG
CLIENT NEWFIELUS (U	O.A.	жапаош ж	KGF	meter	mg/l.	meter	ာ့	meter	ppt	meter	r unit	Techn	Techn. mg/L {total}	Techn.	Techn. mg/L (Total)		
SD0033 /	0	31	WQ Surr	_0	ا الا. و	ا هـ ا	[6.3]	7	29	\sim		25	CR 0.023 d	7	0.211	3	77/6(
SD0033 /	_	~~~~	WQ Surr	0	<u>.</u>	9	75.4	7	29	8	53	-				#	7112
SD0033 /	2		WQ Surr	و	のナ	و	0.919	þ	29	S	7.7		120.036 A 0.077 NAWB 71	<u>ક</u>	0.07	3	8713
SD0033 /	3		WQ Surr														<u></u>
SD0033 /	4	→	WQ Surr														
SD0034 /	0	173	WQ Surr	٩	0.9	-0	17.0	2	29	8	4.9	8	UR 0.025 2-0.220	3	0.220	7	72/
SD0034 /	1		WQ Surr	9	7.	Ĝ	16.4	2	29	<i>?</i> V	7.9	-				五	712
SD0034 /	2		WQ Surr	ور	<u>ه</u> ۶:		ا و	d	6	\mathcal{V}	ب ج	3	CR 0.034 CR 0.068 NAWE 713	ड	0.06	2	8713
SD0034 /	3	***************************************	WQ Surr										<u></u>				
SD0034 /	4	~	WQ Surr														
SD0035/	0	29	WQ Surr	٥	6.0	-2	16.9	7	7	8	0.8	3	(R 0.027	ープ	-0.214	4	1 PM
SD0035 /	1	•	WQ Surr	٥	4-4-	9	15.6	7	67	₹	80	1				-B,	7112
/ 9E00GS	2		WQ Surr	ر	3.1	و	15.6	b	4	S	4.4		(R 0.035 GR 0.061	Z	190.0	MARS	8713
SD0035/	3		WQ Surr														
SD0035 /	4	>	WQ Surr														

17 H 250

Fields	ГА	LARVAL DEVELOPMENT TEST WATER QUALITY DATA		
B.	ROJECT	SPECIES	NEWFIELDS LAB / LOCATION	PROTOCC

														•			
cuent Integral Consulting Inc.	ting Inc		, реолест Ро	Port Angeles	sles	148	SPECIES	Mytill	Mytilus galloprovincialis	vinci	alis		neweletos taa / tocation Port Gamble	AB/LOC ort Ga	s tab / Location Port Gamble /	R 0	PROTOCOL PSEP (1995)
JOB NUMBER 860.0074.000	000		PROJECT MANAGER B, H	AGER B. Hester	er er	ŢĒ\$	test start date	π 01Jul13	13	ĺ	1900		TEST END DATE	받		Ē	TIME
* Cay 334 observations needed only if development endpoint not met by day 2	r if developme	nt endpoint not n	ret by day 2			WA	WATER QUALITY DATA	ALIT)	/ DATA								
100	TEST CONDITIONS			o o	DO (mg/L) >5.0	. Te	Temp (°C) 16±1	co ·	Sal (ppt) 28 ± 1		нд 79	۹	Ammonia NA		Sulfide NA	н	a)
CLIENT/ NEWFIELDS (D	DAY	Random #	REP	meter	D.O.	T	TEMP.	S/ meter	SALINITY	meter	pH unit	A Techn.	AMMONIA Techn. mg/L (total)	Techn	SULFIDE Techn. mail. (Total)	OBT	.A0
/ 9E0003S	0		WQ Surr	و_		٥	۵	2	29	V	8.0	3	0.037		0.190	7	12 th
SD0036/	-		WQ Surr	۵	6,6	ی	7.5	7	29	5	8.1	1				其	7112
SD0036 /	7		WQ Surr	ور	子.8	و	و <u>و</u>	Ç	29	Ŋ	7.7	B	0.033	R	9008800	BMM	e)+;
/ 9E000S	က		WQ Surr														
SD0036 /	4	>	WQ Surr														
SD0037 /	0	74	WQ Surr	حــ	اة. 19	ھ	16.91	2	29	\sim	8,0	B	(50:0	4	8.0 CR (0.03) Le 6.235 Ju	70	7761
/ /SD003S	-		WQ Surr	2	7.6	9	16.0	.2	19	5	1.8	1				- }	712
SD0037 /	2		WQ Surr	و	3.S	و	4.51	4	29	ß	7.7	R	0.034	Z	0.073 MANS	2	8 7(3
/ £0003S	3		WQ Surr														
SD0037 /	4	>	WQ Surr														
SD0038 /	0	33	WQ Surr	Ą	6.9	9	8.91	2	29	S	0,0	B	P50.0	ry.	0.034 dr 0.266	76	10/L
SD0038 /	1		WQ Surr	7	1.3	9	15.8	2	57	3	% 	(#	211
SD0038 /	2		WQ Surr		4.2	و	16.2	4	29	Ŋ	4.	B	0.040	3	(20.040 CD 0.076 NAMB 7/3	. <u>X</u>	57/3
SD0038 /	3	2	WQ Surr														
SD0038 /	4	→	WQ Surr	ill sign													
	M (i)	JK Dak	Owner Date. Ju 770/13	m[13					ţ.								

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT	PROJECT	SPECIES		NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	Mytilus galloprovincialis	ialis	Port Gamble /	PSEP (1995)
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
860.0074.000	B. Hester	01Jul13	1900		

						_						-				_	1000
Integral Consulting Inc.	ting Inc	,	<u>~</u>	Port Angeles	seles			Mytil	Mytilus galloprovincialis	ovinc	alis		_S	Port Gamble /	ple /	<u>ă</u>	PSEP (1995)
OB NUMBER			PROJECT MANAGER	AGER		TE	TEST START DATE	TE			TIME		TEST END DATE	l li	***************************************	TIME	ii.
860.0074.000	000		_	B. Hester	ter			01Jul13	<u>-</u> 13		1900						
* Day 1864 observations needed only if development endoplat not met by day 2	iff developme	nt endpoint not	met by day 2			WA	WATER QUALITY DATA	ALIT	Y DATA								
	TEST)O	DO (mg/L)	Ĭ	amp (°C)		Sal (ppt)		Hd	Ā	Ammonia	ŝ	Sulfide	Ī	
COP	CONDITIONS				>5.0		16±1		28 ± 1		7-9		NA	_	AN	н	3.
CLISOUT/ NEWESELDS ID	ράΥ	Random#	050 #		D.O.		TEMP.	,	SALINITY		돖	Ą	AMMONIA	SU	SULFIDE	OBT	TAO
	;		_	тетег	mg/L	meter	್ಕ	meter	ppţ	meter	unit	Techn.	Techn. mg/L (total)	Techn.	mg/L (Total)		
/ 6EDOOS	0	189	Wasur 6 6.7 616.3 2 29 8.0 9.0 90.00 LOSIU	و_	6.3	و_	18.3	7	52	N	8.0	Š	2.106	2	2.214	3	1677 JU
SD0039 /	7	-	WO Surr		7	`	, ,,	ſ		,	6						71,7
	•		8	۵	۲,	છ	16.0	7	1.3 0 16.0 1 79	2	5 1. 1					Ry.	7//
SD0039 /	7		WQ Surr	_	4.	و	F . 7	ત	50	ß	4.7 6 16.7 2 29 5 7.7 10.0120 CR 0.059 MWB 713	3	021.0	73	p20.0	NS NS	713
SD0039 /	3		WQ Surr												-		
/ 6E00GS	4	->	WQ Surr														
					**************************************			-									

		MOITAGO 13 GA 1 SO CHOINING
LARVAL DEVELOPMENT TEST	WATER QUALITY DATA	
V		Fr. C. C. C.

г		1	1			-		· ()				· · · · · · · · · · · · · · · · · · ·	,	···· <u> </u>	-				,			l
PROTOCOL	PSEP (1995)	3		∃.	1AO		3/201	THE O	MANG 7/3			7/0(7/2	37(3			17/01	211	87(8	***************************************		
PR	ď.	TIME		н	DET	1	7	茶	3			7	强	₹			اءر	₩	MMB			
NOI	pple /			Sulfide NA	SULFIDE	Techn. mg/L {Total}	0.198	1		<u> </u>		W.0.138	}	0.099MMB7(761.0 m		801.0			
3/LOCA	Port Gamble /			os O	S	Techn.	Z		Z			K			,		h		UE.			
NEWFIELDS LAB / LOCATION	Por	TEST END DATE		Ammonía NA	•	Techn. mg/L (total)	6.019		0.089 (A 0.08)			250.0		(4,0.067) (M			GR 0.042		120.059 (R			
Z		-		Am	AM	Techn.	Z		<u>ड</u>			B		7			B		UR			
	lis	110C		Hd 7.9	H	unit	0.0	6.8	7.8		•	8.1	8.0	7.8			8,0	1.8	7.7			
	vincia	<u> </u>				meter	V	N	S			S	5	S			2	2	G			
	Mytilus galloprovincialis	13	/ DATA	Sal (ppt) 28 ± 1	П	ppt	29	62	29			29	62	29	·		29	b2	29			
	Mytilu	01Jul13	LIT	S	8	текег	7	2	4			7	7	4			2	2	6			
SPECIES		TEST START DATE	WATER QUALITY DATA	Temp (°C) 16 ± 1	темр.	్ఠి	0.K	16.6	15.9			0,4]	[6.0]	1.91			197	16.7	154			
SP		Ľ.	WA	Ĕ		meter	9	9	و			هـ	9	و			هـ	9	ړ]
	eles	fer		DO (mg/L.) >5.0	D.O.	mg/L	S.9	7.4	3.7			5,9	2.9	3.1			6.3	6.8	4.4			
	Port Angeles	AGER B. Hester		ă	}	meter	و.	v	و			هـ	0	و			ھ	ف	و			7
PROJECT	Po	PROJECT MANAGER B. H	by day 2		950	į	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	JL 712
			needed only if development endpoint not met by day 2		Pandom #		981				→	e				,	79				~	
	ng Inc.	 g	developmen	TEST CONDITIONS	λŸ	Š	0	7	2	3	4	0	1	2	3	4	0	-	2	3	4	1 ×
CLIENT	Integral Consulting Inc.	JOB NUMBER 860.0074.000	* Day 3&4 observations needed only if	CONE	CI SC INCOMENTAL CO		SD0040 /	SD0040 /	SD0040 /	SD0040 /	SD0040 /	SD0042 /	SD0042 /	SD0042 /	SD0042/	SD0042 /	SD0043 /	SD0043/	SD0043 /	SD0043/	SD0043 /	Owrong Sate

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT			SPE	SPECIES						NEWFIELDS LAB / LOCATION	18/1.0C/	VIION	id	PROTOCOL
Integral Consulting Inc.	ting Inc	r;		Port Angeles	eles			Mytilt	Mytilus galloprovincialis	ovinci	alis		Ä	Port Gamble /	nble /		PSEP (1995)
JOB NUMBER			PROJECT MANAGER	AGER		TES	TEST START OATE	TE			TIME		TEST END DATE		***************************************	E	TIME
860,0074,000	000			B. Hester	ter			01Jul13	113		1900						
* Day 3&4 observations needed only if development endpoint not met by day 2	r If developms	ent endpoint not	met by day 2			WA	WATER QUALITY DATA	ALIT	Y DATA								
NOD NO	TEST CONDITIONS			20	DO (mg/L)	Tei	Temp (°C)	Ť.	Sal (ppt)		Hd	⋖	Ammonia		Sulfide	·	ā
1			_		0.0.	- 15	TEMP.	S	SALINITY	_	Hd	₹	AMMONIA	S	SULFIDE	TECH	∃TAC
CLIENT/NEWFIELDS ID	DAY	Random #	r REP	meter	mg/L	meter	၁့	meter	ppt	meter	I	Techn.	Techn. mg/L (total)	Techn	mg/L (Total))
SD0044/	0	52	WQ Surr		8.9 9	9	2 4:91 9	7	29	S	29 850 CR Green La 6.338 UL	Z	23.0	ry	6.338	2	Jet
SD0044 /	_		WQ Surr	C	7.5	9	6 15.9	7	52	b	58.0					12	71/2
SD0044 /	2		WQ Surr	و	6 3.8 6 15.4 2	و	15.4	d		2	29 5 7. 7 (2 0.047 (2 0.106 MWG 7 (3	M	0.047	K	0.106	MEN	s १ (४
SD0044 /	ო		WQ Surr														
SD0044 /	4	→	WQ Surr														
SD0045 /	0	161	WQ Surr	هـ	7.9	-0	8.919	7	29	\sim	29 5 8.0 CH 0.013 W 0.260 JC	CA	510.0.	q	037.0	٦	1/8/
SD0045 /	_		WQ Surr	9	6.3	0	15.4 2	7	29 5 8.0	7	8.0	Ţ				The Care	211
SD0045 /	2		WQ Surr		6 4.2 6 16.1	٩	1.9	ø		6	29 5 7.7 CRO.041 CR 0.112MWB 713	3	0.041	\mathcal{Z}	0.112	3	87(3
SD0045/	က		WQ Surr														
SD0045 /	4	>	WQ Surr														
					-												

1018 71/13 A

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

culent Integral Consulting Inc.	ng Inc.		PROJECT PC	Port Angeles	eles	ŭ,	SPECIES	Mytilu	Mytilus galloprovincialis	ovinc	ialis		newrietus tab/ tocarion Port Gamble	Port Gamble /	ole /	<u>t a.</u>	PSEP (1995)
лов number 860.0074.000	30	***************************************	PROJECT MANAGER B. H	AGER B. Hester	er	TES	TEST START DATE	re 01Jul13	13		THME 1400		TEST END DATE			Ē	TIME
* Cay 3&a observations needed only if development endpoint not met by day 2	developmen	ot endpoint not n	net by day 2			WA	WATER QUALITY DATA	ALITY	/ DATA								
TICONE	TEST CONDITIONS			og	DO (mg/lt.) >5.0	٦ ,	Temp (°C) 16±1	os "	Sai (ppt) 28 ± 1		рН 7 - 9	ď	Ammonia NA	กร	Suifide	н	Э
1		1	ļ		D.O.		TEMP.	ŝ	SALINITY		F	ğ	AMMONIA	ากร	SULFIDE	TEC	TAŒ
CLIENT NEWFIELDS ID	UAY	Kandom #	KEP	meter	mg/t_	meter	၁့	meter	ppt	meter	unit	Techn.	mg/L (total)	Techn.	mg/L (Total)		
SD0046 /	0	13(WQ Surr	ور	5.9	2	16, [7	2		9.0	3	220.0	Ž	0.146	$\langle $	Z
SD0046 /	1		WQ Surr	9	7.4	9	16.6	2	67	b	7.9					无	1/2
SD0046 /	2		WQ Surr	و	3.8	ę	(5.8	d	50	v	۴.۴	8	D.058 (M	3	8600	Mark	37(3
SD0046 /	3		WQ Surr														
SD0046 /	4	~	WQ Surr														
SD0047 /	0	123	WQ Surr	٥_	4.0	اهـ	9 ⁻ EÌ	2	5	\sim	8.0	CP	CR 0.016	4	0.194	JL	19/2
SD0047 /	1		WQ Surr	9	7.5	Ć	16.6	7	58	5	Ø.0	1			[龙	712
SD0047 /	2		WQ Surr	و	Ц. ь	ور	15.9	ત	6	N	7.8	8	0.050 GR	Z	0.121	MMR	37(3
SD0047 /	3		WQ Surr														
SD0047 /	4	->	WQ Surr														
SD0048 /	0	hei	WQ Surr	ا	2.6	ھ	17.0	7	29	\sim	0.8	CR	CROOI	યુ	0.36	γ	7/2
SD0048 /			WQ Surr	9	7.6	9	16.6	2	b2	ls.	00 0				[災	212
SD0048 /	2		WQ Surr	و	رد د ک	و		d	لمح	8	<i>∞</i> <i>†</i>	R	UR-0.047	2	0.054	N. N.	MMS 7/3
SD0048 /	ဗ		WQ Surr														
SD0048 /	4	→	WQ Surr														

NewFields

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT			SPE	SPECIES					Γ	NEWFIELDS LAB / LOCATION	AB / LOCATION		PR	PROTOCOL
Integral Consulting Inc.	ing Inc.		g.	Port Angeles	eles			Mytill	Mytilus galloprovincialis	ovinc	ialis		Po	Port Gamble	_	2	PSEP (1995)
JOB NUMBER			PROJECT MANAGER	GER		13.	TEST START DATE	'n			TIME		TEST END DATE	3		TIME	
860.0074.000	8		ш	B, Hester	ter ter			01Jul13	13		001						
* Day 3&4 observations needed only if development endpoint not met by day 2	f developmen	it endpoint not me	it by day 2			ΜĀ	WATER QUALITY DATA	4LIT)	/ DATA								
	TEST			ŏ	DO (mg/L)	řei	Temp (°C)	Ø	Sal (ppt)	L	Hq	⋖	Ammonia	Sulfide			
CONI	CONDITIONS				>5.0	, ,	16±1		28±1		7 - 9		NA	ΝA		н	31
CI SO COLUMNOM PLACE	2	* 107	000		D.O.	_	темР.	Š	SALINITY		표	٨	AMMONIA	BOLFIDE	ñ	Dan Dan	'AQ
CLICIA INCAVILLECOS ID	CA.	# IIIOOIII W	Ver.	meter	mg/L	meter	ာ့	meter	tdd	meter	unit	Techn.	Techn. mg/L (total)	Techn. mg/L (Total)	L (Total)		
SD0049 /	0	Ы	WQ Surr		7.4	0	5.9	7	28	S	1 25250 L 6000 800 CR 8.0 CR 60008 L 6,225 Ju	E	0.00%	r O	522	3	7/81
SD0049 /	_		WQ Surr	_	7	7	7 0 11 7 01	7	20	V	9		•		_ <u>`</u>	4	7/7
	•]	_	;	0	0.1	Q	10.0	2	ر د		3.0	(الاد	7:
SD0049 /	2		WQ Surr		<u>و</u> ق	و	رخ ا	4	5	\mathcal{V}	6.6 6 16.2 2 29 5 7.8 (2000 mas 7 (3	3	0.00	rwo.	Z O	₹	7(3
SD0049 /	3		WQ Surr														
SD0049 /	4	7	WQ Surr													-	

OILlegible correct entry = 0.047mg/ UR713

LARVAL DEVELOPMENT TEST INITIATION DATA SHEET

CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	LABORATORY	PROTOCOL	
Integral Consulting Inc.	Port Angeles	860,0074.000	B. Hester	Port Gamble	PSEP (1995)	

TEST ORGANISM SPAWNING DATA

Mytilus	galloprovin	cialis	
SUPPLIER TO	inglor s	hellfish	ORGANISM BATCH TS 070113
7.1.1		TIME RECEIVED	7.1.13
SPAWNING ME	hetshock	INITIAL SPAWNING TIME	FINAL SPAWNING TIME
MALES D	\mathcal{B}	SPERM VIABILITY	GOOD EGG CONDITION
BEGIN FERTIL		end Fertilization	CONDITION OF EMBRYOS

SAMPLE STORAGE
4 Degrees Celsius - dark
SEDIMENT TREATMENT
none
TEST CHAMBERS
1 L Mason Jars
EXPOSURE VOLUME
900mL seawater / 18g Sediment
TIME OF SHAKE
1330-1440
TIME OF INITIATION

SPECIAL CONDITIONS

0. 20	
UV LIGHT EXPOSURE (YES/NO)	AERATION FROM TEST INITIATION (YES/NO)
No	No
SCREEN TUBE TEST (YES/NO)	OTHER (EXPLAIN)
/ √o	

EMBRYO DENSITY CALCULATIONS

PSEP Target 27,000 ers/L in 900nl (30 ess/Ll)

42-100-4200

55.100 = 550G

27000 > 4.9

28 Aug-13 10:32 (1 of 1)

Mussel Shell Development Test

NewFields

Test Type: Development-Survival

Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Combined Proportion Normal

Material: Total Ammonia

+2s Action Limit: 9.57

Source: Reference Toxicant-REF

+1s Warning Limit: 7.418

Quality	Contro	Data
---------	--------	------

Sigma:

2.152

CV:

40.90%

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Nov	18	17:30	3.323	-1.943	-0.9029			15-5702-8405	04-5641-1567
2		Dec	2	18:25	3.806	-1.46	-0.6785			06-3989-5500	09-5166-6282
3	2012	Jan	27	17:30	2.846	-2.42	-1.125	(-)		17-8035-0885	06-4475-5873
4		Mar	22	12:15	6.852	1.586	0.7368	10		08-5068-3541	09-7191-1867
5		Apr	23	18:45	4.66	-0.6056	-0.2814			02-7458-4371	07-2969-7564
6		Jun	7	18:15	4.304	-0.9625	-0.4472			20-4612-5080	14-0164-5214
7			20	17:50	5.296	0.02976	0.01383			21-1169-3016	00-2068-7937
8		Aug	22	16:05	8.376	3.11	1.445	(+)		03-0988-3309	14-8872-2540
9			30	17:50	4.311	-0.9552	-0.4439	1.4		00-6833-5106	09-9193-8473
10		Oct	9	18:00	1.678	-3.588	-1.668	(-)		06-6024-3093	07-1414-6248
11			18	18:00	3.41	-1.856	-0.8625			07-3550-9263	15-5292-9085
12		Nov	29	17:45	5.775	0.5085	0.2363			04-0681-3114	00-7625-5304
13		Dec	7	18:50	3.016	-2.25	-1.045	(-)		15-7850-6619	03-0562-1566
14	2013	Feb	14	17:40	8.112	2.846	1.322	(+)		02-6193-4857	04-9672-9086
15			28	21:20	7.574	2.308	1.072	(+)		06-9403-7957	07-8992-4017
16		Mar	6	16:45	4.538	-0.7283	-0.3384	V-7		20-1267-3706	09-5346-5604
17			16	17:45	10.13	4.861	2.259	(+)	(+)	14-2253-0526	18-0087-0374
18			26	18:15	5.579	0.3131	0.1455	1.1	1.1	03-8532-3895	00-6308-0782
19		Apr	3	0:00	6.805	1.539	0.7153			10-3604-5723	04-8356-0800
20		May	9	17:15	4.927	-0.3393	-0.1577			00-6360-9095	
21		Jul	1	19:00	2.895	-2.371	-1.102	(-)		19-5961-2730	16-4147-0802 13-0986-6895

28 Aug-13 10:39 (1 of 1)

Mussel Shell Development Test

NewFields

Test Type: Development-Survival

Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Combined Proportion Normal

Material:

Total Ammonia

Source: Reference Toxicant-REF

		trol Data										
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2011	Nov	18	17:30	2.45	-0.677	-0.3685			15-5702-8405	17-4774-1775	
2		Dec	2	18:25	1.61	-1.517	-0.8258			06-3989-5500	05-9587-4977	
3	2012	Jan	27	17:30	1.87	-1.257	-0.6843			17-8035-0885	19-6006-6064	
4		Mar	22	12:15	2.5	-0.627	-0.3413			08-5068-3541	14-6034-1614	
5		Apr	23	18:45	1.92	-1.207	-0.657			02-7458-4371	11-3829-0609	
6		Jun	7	18:15	1.52	-1.607	-0.8748			20-4612-5080	06-0541-2169	
7			20	17:50	2,68	-0.447	-0.2433			21-1169-3016	01-0499-1137	
8		Aug	22	16:05	6.5	3.373	1.836	(+)		03-0988-3309	04-0917-6749	
9			30	17:50	1.36	-1.767	-0.9619	,		00-6833-5106	03-2629-4542	
10		Oct	9	18:00	0.973	-2.154	-1.173	(-)		06-6024-3093	07-8913-5319	
11			18	18:00	2,87	-0.257	-0.1399			07-3550-9263	18-1681-7487	
12		Nov	29	17:45	3.58	0.453	0.2466			04-0681-3114	19-0538-4174	
13		Dec	7	18:50	0.817	-2.31	-1.257	(-)		15-7850-6619	13-6604-7958	
14	2013	Feb	14	17:40	6	2.873	1.564	(+)		02-6193-4857	07-3889-4891	
15			28	21:20	5.65	2.523	1.373	(+)		06-9403-7957	16-1498-7518	
16		Mar	6	16:45	2.93	-0.197	-0.1072	404		20-1267-3706	13-0769-0097	
17			16	17:45	6.99	3.863	2.103	(+)	(+)	14-2253-0526	09-1011-9616	
18			26	18:15	3.62	0.493	0.2684		0.0	03-8532-3895	01-1639-1779	
19		Apr	3	0:00	3.85	0.723	0.3936			10-3604-5723	13-5448-8759	
20		May	9	17:15	2.85	-0.277	-0.1508			00-6360-9095	00-7540-8630	
21		Jul	1	19:00	1.46	-1.667	-0.9075			19-5961-2730	20-9160-8614	
							017743			10 0001 2100	20 0 100-0014	

28 Aug-13 10:08 (1 of 1)

Mussel Shell Development Test

NewFields

Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995) Organism: Mytilus galloprovincialis (Bay Mussel Endpoint: Combined Proportion Normal

Material: Unionized Ammonia

Source: Reference Toxicant-REF

Mean: Sigma:

0.0647 0.02912 Count: 20 CV: 45.00% -1s Warning Limit: 0.03558

+1s Warning Limit: 0.09382

-2s Action Limit: 0.00646 +2s Action Limit: 0.1229

Qualit	v Control	Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Nov	18	17:30	0.03966	-0.02504	-0.86			15-1035-6307	13-1597-7557
2		Dec	2	18:25	0.05664	-0.00806	-0.2766			02-1703-2403	18-2609-9695
3	2012	Jan	27	17:30	0.06751	0.002814	0.09663			17-7315-3313	06-2387-0021
4		Mar	22	12:15	0.0669	0.002198	0.0755			16-8530-3093	20-6643-2329
5		Apr	23	18:45	0.04914	-0.01556	-0.5343			11-9474-8117	17-4324-5637
6		Jun	7	18:15	0.03798	-0.02672	-0.9176			14-3239-7455	05-6059-9571
7			20	17:50	0.05226	-0.01244	-0.4272			16-3362-6154	15-3244-5350
8		Aug	22	16:05	0.08186	0.01716	0.5893			19-7550-7456	08-0736-4891
9			30	17:50	0.05265	-0.01205	-0.4137			18-5169-0947	02-7047-2220
10		Oct	9	18:00	0.02443	-0.04027	-1.383	(-)		08-9570-9100	07-8331-5723
11			18	18:00	0.02739	-0.03731	-1.281	(-)		18-9514-2443	00-3905-9363
12		Nov	29	17:45	0.03751	-0.02719	-0.9337			15-6645-8664	13-4294-0618
13		Dec	7	18:50	0.0569	-0.0078	-0.2678			11-6006-3509	05-8108-8018
14	2013	Feb	14	17:40	0.07388	0.009184	0.3154			14-1890-1951	14-7902-0800
15			28	21:20	0.0707	0.006002	0.2061			19-4434-4552	11-0678-0085
16		Mar	6	16:45	0.04499	-0.01971	-0.6769			18-3418-4255	07-5324-7355
17			16	16:10	0.1144	0.04975	1.708	(+)		11-4894-2693	12-9463-9515
18			26	18:15	0.1079	0.04318	1.483	(+)		10-2444-9875	09-9596-0674
19		Apr	3	0:00	0.1168	0.05215	1.791	(+)		20-6076-9735	05-3848-1619
20		May	9	17:15	0.1144	0.0497	1.707	(+)		14-3450-0734	06-3515-6667
21		Jul	1	19:00	0.07187	0.007171	0.2463	10.0		10-8846-7294	05-7595-2849

28 Aug-13 10:39 (1 of 1)

Mussel Shell Development Test

NewFields

Protocol: EPA/600/R-95/136 (1995)

Test Type: Development-Survival

Organism: Mytilus galloprovincialis (Bay Mussel

Material:

Unionized Ammonia

Endpoint: Combined Proportion Normal

Source:

Reference Toxicant-REF

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Nov	18	17:30	0.029	-0.00955	-0.4057		73757675	15-1035-6307	02-6656-7352
2		Dec	2	18:25	0.025	-0.01355	-0.5756			02-1703-2403	00-9746-5548
3	2012	Jan	27	17:30	0.044	0.00545	0.2315			17-7315-3313	14-7310-3808
4		Mar	22	12:15	0.025	-0.01355	-0.5756			16-8530-3093	00-2118-8798
5		Apr	23	18:45	0.024	-0.01455	-0.6181			11-9474-8117	16-8822-0741
3 7		Jun	7	18:15	0.012	-0.02655	-1.128	(-)		14-3239-7455	06-8748-6189
			20	17:50	0.027	-0.01155	-0.4907	,,,		16-3362-6154	07-4796-6258
3		Aug	22	16:05	0.063	0.02445	1.039	(+)		19-7550-7456	17-2049-3239
9			30	17:50	0.017	-0.02155	-0.9155	2.16		18-5169-0947	11-3246-0073
0		Oct	9	18:00	0.015	-0.02355	-1	(-)		08-9570-9100	07-1156-4394
11			18	18:00	0.023	-0.01555	-0.6606			18-9514-2443	05-5566-0485
12		Nov	29	17:45	0.011	-0.02755	-1.17	(-)		15-6645-8664	07-1864-3452
13		Dec	7	18:50	0.016	-0.02255	-0.9579			11-6006-3509	00-2066-3271
14	2013	Feb	14	17:40	0.061	0.02245	0.9537			14-1890-1951	16-6372-1200
15			28	21:20	0.053	0.01445	0.6138			19-4434-4552	04-8125-6089
16		Mar	6	16:45	0.03	-0.00855	-0.3632			18-3418-4255	11-0229-7491
17			16	16:10	0.079	0.04045	1.718	(+)		11-4894-2693	17-8368-9370
18			26	18:15	0.07	0.03145	1.336	(+)		10-2444-9875	00-8976-6127
9		Apr	3	0:00	0.076	0.03745	1.591	(+)		20-6076-9735	14-2423-4592
20		May	9	17:15	0.071	0.03245	1,379	(+)		14-3450-0734	19-5425-3899
21		Jul	1	19:00	0.036	-0.00255	-0.1083	1.6		10-8846-7294	11-2659-9719

CETIS Summary Report

Report Date: Test Code: 28 Aug-13 10:36 (p 1 of 1) 74CD513A | 19-5961-2730

											, , ,		10 0001 21
Mussel Shell	Development T	est											NewField
Batch ID: Start Date: Ending Date: Duration:	05-2072-4940 01 Jul-13 19:00 03 Jul-13 17:00 46h	0 Pro	t Type: tocol: ecies: urce:	Development-S EPA/600/R-95/ Mytilus gallopro Taylor Shellfish	/136 (1995) ovincialis		ĺ	Anal Dilue Brine Age:	ent:	Laborat Not App		awater	
Sample ID:	11-7369-9445	Cod	de:	45F53B75				Clier	nt:	Internal	Lab		
Sample Date:		Mat	terial:	Total Ammonia	1			Proje	ect:	Referen	ce Tox	cant	
Receive Date:	27 Sep-11	Sou	irce:	Reference Tox	icant								
Sample Age:	643d 19h	Sta	tion:	P110927.151									
Comparison S	Summary												
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU		Metho	nd			
20-9160-8614	Combined Prop	portion Norr	n 1.46	3	2.093	11.6%			- 31 / V T / X	- 111	ultiple (Comparisor	n Test
Point Estimate	e Summary												1002
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU		Metho	od			
13-0986-6895	Combined Prop	portion Norn	n EC50		2.775	3.021				ned Spe	arman-l	Kärber	
Test Acceptab	oility												
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	te		Overla	an D	ecision		
20-9160-8614	Combined Prop	ortion Norn			0.1161	NL - 0.25			No	-	25 25 25 25 25 25	cceptabilit	v Criteria
Combined Pro	portion Norma	1 Summary			77 - 71			-			7.007	COL COST COS	7 (=0.14.14)
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max		Std E	04	d Dev	CV%	0/ 545
	Dilution Water	3	0.972		1	0.9425	1		0.0166		02884	2.97%	%Effec
0.694		3	0.865	710777	1	0.8142	0.96	02	0.0472		08187	9.46%	0.0% 10.97%
1.46		3	0.862	8 0.707	1	0.8142	0.93		0.0362		06273	7.27%	11.27%
3		3	0.5	0.3373	0.6627	0.4248	0.54		0.0378		06548	13.1%	48.58%
5.99		3	0	0	0	0	0		0	0			100.0%
12.2		3	0	0	0	0	0		0	0			100.0%
Combined Pro	portion Norma	l Detail											
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3									
	Dilution Water	1	0.9749										
0.694		0.8142	0.9602	0.823									
1.46		0.9336	0.8142	0.8407									
3		0.5442	0.4248	0.531									
5.99		0	0	0									
12.2		0	0	0									
Combined Pro	portion Normal	Binomials	, 1										
	Control Type	Rep 1	Rep 2	Rep 3									
	Dilution Water	226/226	233/23										
0.694		184/226	217/22	26 186/226									
		many a second	- Can										
		211/226	184/22	26 190/226									
3		211/226 123/226	96/226										
1.46 3 5.99													

000-173-185-1

CETIS™ v1.8.6.7

Analyst:_____QA:____

CETIS Test Data Worksheet

Report Date:

28 Aug-13 10:21 (p 1 of 1) 19-5961-2730/74CD513A

Test Code

								Test Code:	19-5961-2730/74CD513A
Mussel She	II Deve	lopm	ent Tes	it					NewFields
Start Date: End Date: Sample Date				Species: Protocol: Material:	Protocol: EPA/600/R-95/136 (1995)			Sample Code: 45F Sample Source: Rei Sample Station: P1	TO A STATE OF THE
C-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	D	1	1	226	241	241	226		
0	D	2	16	239	239	239	233		
0	D	3	4	226	234	234	213		
0.694		1	12	226	204	204	184		
0.694		2	10	226	244	244	217		
0.694		3	6	226	232	232	186		
1.46		1	3	226	244	244	211		
1.46		2	15	226	218	218	184		
1.46		3	11	226	243	243	190		
3		1	7	226	232	232	123		
3		2	17	226	184	184	96		
3		3	13	226	216	216	120		
5.99		1	9	226	272	272	0		
5.99		2	8	226	213	213	0		
5.99		3	18	226	229	229	.0		

12.2

12.2

12.2

CETIS Summary Report

Report Date: Test Code: 28 Aug-13 10:36 (p 1 of 1) 40E0B15E | 10-8846-7294

								Test Co	ue.	40	EUBIDE	10-8846-72
Mussel Shell	Development T	est										NewField
Batch ID:	05-2072-4940	Tes	Type:	Development-S	Survival			Analyst				
Start Date:	01 Jul-13 19:0	0 Pro	tocol:	EPA/600/R-95/	136 (1995)			Diluent:		aboratory Sea	awater	
Ending Date:	03 Jul-13 17:0	0 Spe	cies:	Mytilus gallopro	ovincialis			Brine:		ot Applicable		
Duration:	46h	Sou	rce:	Taylor Shellfish				Age:				
Sample ID:	14-7479-4411	Cod	e:	57E793AB				Client:	In	ternal Lab		
Sample Date:		Mat	erial:	Unionized Amn	nonia			Project:	Re	eference Tox	icant	
Receive Date:	27 Sep-11	Sou	rce:	Reference Tox	icant					TO PETER STATE		
Sample Age:	643d 19h	Stat	ion:	P110927.151								
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	M	ethod			
11-2659-9719	Combined Pro	portion Norm	0.036	0.075	0.05196	11.6%		D	unnett	T3 Multiple (Comparisor	Test
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	М	ethod			
05-7595-2849	Combined Pro	portion Norm	EC50	0.07187	0.06888	0.075			2.500	d Spearman-	Kärber	
Test Acceptab	oility								nace and	- Fr Bennison)		
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	0	verlap	Decision		
11-2659-9719	Combined Pro	portion Norm	PMSD)	0.1161	NL - 0.25	13	N		100000000000000000000000000000000000000	cceptability	Criteria
Combined Pro	portion Norma	I Summary				4,754,7115				, 20000	, oceptability	Cintona
C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	St	d Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.9725		1	0.9425	1		01665		2.97%	0.0%
0.017		3	0.8658	0.6624	1	0.8142	0.96	30	04727	11.0000	9.46%	10.97%
0.036		3	0.8628	0.707	1	0.8142	0.93		03622	72,000,000	7.27%	11.27%
0.075		3	0.5	0.3373	0.6627	0.4248	0.54		03781	0.06548	13.1%	48.58%
0.147		3	0	0	0	0	0	0		0	10.170	100.0%
0.241		3	0	Ō	0	0	0	0		0		100.0%
Combined Pro	portion Norma	l Detail										
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3								
0	Dilution Water	1	0.9749									
0.017		0.8142	0.9602									
0.036	7	0.9336	0.8142									
0.075		0.5442	0.4248	212.62.								
0.147		0	0	0								
0.241		0	0	0								
Combined Pro	portion Norma	Binomials					-					
	Control Type	Rep 1	Rep 2	Rep 3								
	Dilution Water	226/226	233/23									
0.017		184/226	217/22									
0.036		211/226	184/22									
0.075		123/226	96/226									
0.147		0/226	0/226	0/226								

000-173-185-1

CETIS™ v1.8.6.7

Analyst:_____ QA:____

CETIS Test Data Worksheet

Report Date: Test Code: 28 Aug-13 10:05 (p 1 of 1) 10-8846-7294/40E0B15E

								Test code.	10 00 10 1	204/4020010
Mussel Shel	l Deve	lopm	ent Tes	it						NewField
Start Date; End Date: Sample Date	03 .	Jul-13	19:00 17:00 1	Species: Protocol: Material:	Mytilus galloprovi EPA/600/R-95/13 Unionized Ammo	36 (1995)		Sample Code: Sample Source: Sample Station:	57E793AB Reference Toxicant P110927.151	
C-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes	
0	D	1	4	226	241	241	226			
0	D	2	15	239	239	239	233			
0	D	3	6	226	234	234	213			
0.017		1	13	226	204	204	184			
0.017		2	18	226	244	244	217			
0.017		3	8	226	232	232	186			
0.036		1	3	226	244	244	211			
0.036		2	14	226	218	218	184			
0.036		3	17	226	243	243	190			
0.075		1	5	226	232	232	123			
0.075		2	11	226	184	184	96			
0.075		3	9	226	216	216	120			
0.147		1	16	226	272	272	0			
0.147		2	1	226	213	213	0			
0.147		3	12	226	229	229	0.			
0.241		1	10	226	239	239	0			
0.241		2	2	226	235	235	0			
0.241		3	7	226	209	209	0			

Analyst: 191 QA: 1

NewFields LARVAL DEVELOPMENT TEST AMMONIA REF TOX OBSERVATION SHEET

Match 1					species Mytilus gallopr	rovincialis		
сцемт Integral Consulting Inc.		The second second	360.00°	7.7.7.7.7.7.	PROJECT MANAGER B. Hester	NEWFIEL	DS LAB / LOCATION Gamble / Incubator	PROTOCOL PSEP (1995)
P110927.151	TS 67		11911 01	ART DATE:	1900	VI NOTE OF	OD DATE: TIME	700
		LA	RVAL OF	SERVA	TION DATA			
CLIENT/ NEWFIELDS ID	value units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
			4	5				

CLIENT/ NEWFIELDS ID		NC. units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
				1	226	15			
Ref.Tox Ammonia - TAN	. 0	mg/ L		2	233	6			
		- 1		3	213	21			
				1	184	20		1	
Ref.Tox Ammonia - TAN	0.75	mg/		2	217	27			
				3	186	46			
		mal		1	211	33			
Ref.Tox Ammonia - TAN	1.5	mg/ L		2	184	34			
				3	190	53			
		ma/		1	123	109			
Ref.Tox Ammonia - TAN	3	mg/		2	96	88			
				3	120	96			
	Ť.	ma/		1	0	272			
Ref.Tox, - Ammonia - TAN	6	mg/		2	0	213			
				3	6	229			
		ma/		1	6	239			
Ref.Tox Ammonia - TAN	12	mg/		2	6	235			
				3	6	209			
				1		225			
STOCKING DENSI	TY	Ī		2		225			

	1	225	
STOCKING DENSITY	2	225	
	3	228	

V=226

LARVAL DEVELOPMENT TEST AMMONIA REF TOX WQ

Katch 1

Integral Consulting Inc. JOB NUMBER	PROJECT Port Angeles	SPECIES Mytilus galloprovincialis	NEWFIELDS LA	PROTOCOL PSEP (1995)	
860.0074.000	PROJECT MANAGER B. Hester	TEST START DATE: 01Jul13	1900	TEST END DATE 3 July 13	1760
7110927.151	LOT#: 111079			1 0	

WATER QUALITY DATA

DILTIN.WAT.B	ATCH		ORG	ANISM I	BATCH	REFER	RENCE TOX. MAT	ERIAL		REFER	ENCE TOXICAN	IT	
FSW070113	.01				9.00	1		ium chlori	de	(VECEN	Ammon		_
		-			DO (mg/L)	-	TEMP(C)	T T	SAL (ppt)		рН	ia - IAN	
					>5.0		16 ± 1		28 ± 1	+	7-9	-	Tit.
CLIENT/ NEWFIELDS ID	CONCENTRATION	DAY	REP		D,O.		TEMP.		SALINITY		рН	TECH.	DATE
THE STATE OF THE S	value units	DAT	KEP	meter	mg/L	meter	°C	meter	ppt	meter	unit		
	Target:	0	Stock	6	7.9	6	17.0	2	29	5	8.0	IR	7/1
Det Ten Assessed	0 mg/L	1	Stock								0.0	105	-/-
Ref.ToxAmmonia - TAN	Actual:	2	Stock	10	7.4	6	16.1	2	29	5	7.9	Niku	3713
	0.00	3	Stock				10.1	-	0.1	-	4.01	10(104)	3 112
		4	Stock	1		-							-
	Target:	0	Stock	6	7.1	6	16.9	2	29	5	8.0	CR	711
	0.75 mg/L	1	Stock		100.1	10	10.1	-		7	0,0	UK	41
Ref.ToxAmmonia - TAN	Actual:	2	Stock	6	7.8	6	15.6	5	29	5	2.5		2 5/2
(AM)	0.694	3	Stock	-	0	10	13.0	0	0 1	-	8.0	MIM	37/3
		4	Stock					-		-			
	Target:	0	Stock	6	8.0	6	16.7	2	29	5	0 5	(0	-11
Ref.ToxAmmonia -	1.5 mg/L	1	Stock		0.0	6	10.	-	27	7	8.0	GR	7/1
	Actual:	2	Stock	6	7.9	6	15.4	1	00	5	0 4		
TAN	1.46	3	Stock	Q	7.1	10	15.4	5	29	2	8.0	MM	B 713
		4	Stock				-						
	Target:	0	Stock	6	8.0	1	1/ 7	2	0.0	-	0 -		- 1
	3 mg/L	1	Stock	0	8.0	6	16.7		29	5	8.0	CR	7/1
Ref.ToxAmmonia -	Actual:	2	Stock	1	8.1	1	16.5	_	2.0	5	_		
TAN	2 60	3	Stock	6	1.8	6	15.2	2	29	0	8.0	MM	7/3
	3.60	4	Stock	-									
	Target:	0	Stock	1	00	1	17		-				
	6 mg/L	1	Stock	6	8.0	6	16.7	2	29	5	8.0	a	7/1
Ref.ToxAmmonia -	Actual:		Stock	1	-0	-		_				75.1	
TAN		3		6	8.1	6	15.3	5	29	5	8.0	My	713
	5.29	4	Stock										
	Target:		Stock					, a . 1 12					
		0	Stock	6	8.1	6	16-8	2	29	5	7.9	CR	7/1
Ref.ToxAmmonia -	12 mg/L Actual:	1	Stock										
TAN	Actual.		Steck	6	1.8	4	15.7	2	29	5	8.0	MME	7/3
	12.2	3	Stock			- 7		F31				= 1	
	12.6	4	Stock										

CLIENT:	Internal	Date of Test:	01-Jul-13	
PROJECT:	RT	Test Type:	M. gallo	
COMMENTS:			J. 11. 3 - 11. 2	

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

Intege	er: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34
9,35	7*2000/*****************
9.34	41466
9.33	1
9.32	4
9.31	/
9.30	1
9.29	1
9.28	6
9.27	
9 27 9 26 9 25	

Sample	Wod NH3T (mg/L)		pН	temp (C)	temp (K)	i-factor	Mod NH3U (mg/
Target / Sample Name		27.9	8.0	24.1	297.26	9.3053	#VALUE!
Example 3.6	, 500	100	7.5	5.0	278.16	9.2750	0.008
0.75	0.694	20	9.0	*0.5	200.00		0.047
1.5	1.460	29 29	8.0	16.5	289.66	9.3214	0.017
3	3.000		8.0	16.5	289,66	9.3214	0.036
6	5.990	29 29	8.0	16.5	289.66	9.3214	0.075
12	12.200	29	8.0	16.4	289.56	9.3214	0.148
	12.200	28	7.9	16.4	289.56	9.3214	0.241
-				-			
3	11						
		-					
			1				
						_ = _ 1	
				1 1 1			
				11			
1							
				- 4	1 = 1		
						II ee II	
			_	-			
					-		

ORGANISM RECEIPT LOG

Date:		Tim	e:		NewField	s Batch No.	
7.1.	13	- (0945		TS07	0113	
Organism /	Project:	incializ				nvoice Attach	
		c. circ				es N	9)
Source / Su	ipplier: iylor Sl	Ulfish			Contact:	e de mood	
No. Ordered		No.	Received bata			atch: date, hatch date	, etc.):
Condition of (Good, fair, po	of Organisms por; describe.):	Ā			oximate Size rom hatch, life :	stage, size class,	etc.):
Shipper:	NF (ourie		B of L	(Tracking N		
	of Container: por; describe.):	ood		Recei	ved By: B	(
Container	D.O. (mg/L)	Temp. (°C)	Cond. or (Include L		pH (Units)	Number Dead or Moribund	Technician (Initials)
		14.70					
Notes:	* from	spoted	dy				
			1				

Appendix A.4

Benthic Larval Test with *Mytilus galloprovincialis*Test Batch 2

LARVAL DEVELOPMENT TEST **ENDPOINT DATA**

			species Mytilus galloprov	incialis	
CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL.
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	
		7.17.18	2		

LARVAL OBSERVATION DATA							
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS	
	1	388					
	2	369 395					
STOCKING DENSITY	3	395					
	4	Blel					
	5	388					
	1	351	17				
	2	326					
Control /	3	331	5				
95 (19) (19) (19) (19) (19) (19) (19) (19)	4	319					
	5	357	9				
	1	265	2				
	2	281 306	5				
CR-12 /	3	306	9				
	4	277	176	Ø			
	5	296	J.				
	1	274	15				
	2	289	31	P			
CARR-20 /	3	281	15				
S	4	277	14				
	5	274	24				
	1	278	14	/			
	2	278	13			-	
CR-02 /	3	276	22	272/21	·)		
	4		14	2.64/7			
	5	277 274	24	247/15			

Onvaines transposed BWB

			species Mytilus gallopro	ovincialis	
CLIENT	PROJECT	JOS NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL,
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME >	TEST END DATE: TIME	

			7.17.13			
CLIENT/ NEWFIELDS ID	REP	NUMBER	OBSERVATION DA	DATE	TECHNICIAN	COMMENTS
	1	NORMAL				
		207	48			*****
	2	179	48			
SD0001 /	3	278	<u>l</u> ll			
	4	247	31			
	5	219	46			
	1	276	16			
	2	245				
\$D0002 /	3	179	26 43			
	4	228 203 153	26			
	5	203	31			
	1	153	21			
	2	227	32			
SD0003/	3	227 226 240	3 <u>2</u> 49			
	4	240	38	}		
	5	198	36			
	1	223	18			
	2	227	27			
SD0004/	3	246	25			
	4	246 224	25 27			
	5	229	18			
SD0008/	1	259	(1			
	2	236	6			
	3	236 247 265 265	10			
	4	265	6			
	5	265	11			

			species Mytilus gallopro	ovincialis	·
сцент Integral Consulting Inc.	PROJECT Port Angeles	JOB NUMBER 860.0074.000	PROJECT MANAGER B. Hester	Port Gamble /	PROTOCOL PSEP (1995)
ORGANISM BATCH		TEST START DATE: 7-17-18	TIME	TEST END DATE: TIME	

ORGANISM BAICH			7-17-18	TIME	TEST END DATE:	Time
	-		AL OBSERVATION (DATA		
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS
	1	229	29			
	2	233	13			
SD0009/	3	190	7			
	4	236	6			
	5	236 230	12			
	1	215	17			
	2	232	6			
SD0010 /	3	220	/3			
	4	180	17			
	5	202	11			
	1	202 243 256 265	7 12 15			***************************************
	2	256	12			
SD0011/	3	265	15			
	4	244	20			
	5	235	20			
	1	266	9			
	2	270	8			
SD0012 /	3	261	7			
.	4	245	14			
	5	265	12			
	1	233	/3			
	2	246	9			·
SD0013 /	3	274	7			
	4	260	(1			
	5	278	10			

LARVAL DEVELOPMENT TEST **ENDPOINT DATA**

			SPECIES		
			Mytilus gallopro	ovincialis	
CLIENT	PROJECT	JOS NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	•
		1 1115			

			DBSERVATION DA	TA		
CLIENT/ NEWFIELDS ID	REP	NUMBER Normal	NUMBER	DATE	TECHNICIAN	COMMENTS
	1	270	9			
	2	225	13			
SD0014 /	3	217	7			
	4	229	₎ 3			
	5	222	5			
	1	213	6			
	2	223	14			
SD0015 /	3	269	14			
	4	270	14			
	5	243	17			
	1	239	11			
	2	222	14			
SD0017 /	3	267	15			
	4	243	14			
	5	272	U			
	1	274	9			
	2	304	4			
SD0018 /	3	290	2			
`	4	275	6			
	5	258	15			
	1	275 258 234	4			
	2	276	6		***************************************	
SD0019 /	3	278	6		100	
	4	283	9			
	5	259	/8			

LARVAL DEVELOPMENT TEST ENDPOINT DATA

			species Mytilus gallopro	ovincialis	
CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	NEWFIELDS LAB / LOCATION	PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble /	PSEP (1995)
ORGANISM BATCH		TEST START DATE:	TIME	TEST END DATE: TIME	1
		7.17.18	2		

			DBSERVATION DA	ГА		
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL	NUMBER	DATE	TECNNICIAN	COMMENTS
	1	203	21			
	2	248	(4			
SD0020 /	3	202	21			
	4	203 248 202 227	16			
***************************************	5	280	14			
	1	280 223 294 331 304 294	27			
	2	294	9			
SD0021 /	3	33(9			
	4	304	27 7			
	5	294	7			
	1	244 266 262 279	7			
	2	266	12			
SD0022 /	3	262	オ			
	4	279	2			
	5	273	9			
	1					
	2					
1	3					
`	4					
	5					
	1					
	2					
/	3					
	4					
	5					

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

7.8 Month of the part of the p	species Mytilus galloprovincialis
S 7.8 W 0.189 WWS.05.4 Bb 7/17 S 7.8 W 0.189 WWS.05.4 Bb 7/17 S 7.8 W 0.187 WWS.17881	TEST START DATE 17 Jul 13
The Ammonia Sulfice The PH The	WATER QUALITY DATA
8 5 7.8 14 0.188 wwg.0001 BS 7/17 8 5 7.8 14 0.188 wwg.0001 BS 7/17 8 5 7.8 14 0.182 wwg.0001 BS 7/17 8 5 7.8 14 0.152 wwg.0.074 BS 7/17 8 5 7.8 14 0.152 wwg.0.074 BS 7/17 8 5 7.8 14 0.152 wwg.0.074 BS 7/17 8 5 7.8 14 0.153 wwg.0.127 BS 7/17 8 5 7.8 14 0.153 wwg.0.127 BS 7/17	Temp (°C) Sal (ppr 16±1 28±1
5 7.8 16 0.189 mus; 2009 Bbs 7/17 5 7.8 16 0.189 mus; 2009 Bbs 7/17 5 7.8 10 0.152 mus; 2009 Bbs 7/19 5 7.8 10 0.152 mus; 2009 Bbs 7/19 5 7.8 10 0.235 mus; 2.137 8bs 7/19 5 7.8 10 0.235 mus; 2.137 8bs 7/19	not. meter °C meter out
5 7.8 MW87/18 5 7.8 L 0.152 MW8 0.037 BX 7/19 5 7.8 L 0.152 MW8 0.123 BX8 7/19 5 7.8 L 0.235 MW8 0.123 BX8 7/19 5 7.6 L 0.235 MW8 0.123 BX8 7/19 5 7.6 L 0.235 MW8 0.123 BX8 7/19	6 15,8 2 3
57.8 LOUSZ MUGO.077 DX 7/19 57.8 LOUSZ MUGO.077 DX 7/19 57.8 LOUSZ MUGO.127 BX 7.19 57.6 LOUZZ MUGO.127 BX 7.19 57.6 JU 7/19	7.4 6 16.5 2 3
57.9 th 0.152 hub 0.037 bx 7/17 57.8 th 0.152 hub 0.037 bx 7/19 57.8 th 0.235 hub 0.127 bx 7/19 57.6 th 0.235 hub 0.127 bx 7/19 57.9 th 0.235 hub 0.127 bx 7/19	7.36 16.522
5 7.9 th o.152 hus o.037 bx 7/17 5 7.8 th o.152 hus o.037 bx 7/19 5 7.8 th o.235 hus o.123 bx 7/17 5 7.6 th o.235 hus o.123 bx 7/19 5 7.6 th o.235 hus o.123 bx 7/19	
5 7.9 R 0.152 Mug 0.077 RX 7/17 5 7.8 L 0.152 Mug 0.127 RX 7.19 5 7.8 W 0.123 Mug 0.127 RX 7.19 5 7.6 L D D D D D D D D D D D D D D D D D D	
5 7.8 L MMB 7.19 5 7.8 MMB 0.127 BGG 7/17 5 7.9 MMB 7.19 5 7.6 MMB 7.19	7.3 6 164 2 2
5 7.8 1 2 179 5 7.8 2 0.235 WW 0.123 BGN 7/17 5 7.4 1/18 5 7.6 10 10 7/19	6 8.91 0 1.6
7-8 2 0.235 WWG 0.127 BGG 7/17 7-7 7-6 NWG 7/18 7-6 JC 77.9	7 591 9
5 7-8 2 0.235 WW 0.127 BGn 5 7.7 5 7.6	bit
5 7-8 24 0.235 WWG 0.127 BGG 5 7.7 5 7.6 5 7.6	
5 7.7 MWB	7.3 6 168 2 3
S 7.6	5.9 6 16.9 2
	5.16/16.82

10,

Page 1 of 8

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

											1539												
PROTOCOL	PSEP (1995)	TIME			a.	TAO		北	MW87 18	7/19	719		मीन	81/t- SmM	7/19			刊	8 ILE SMAN	Je 7719			
1	<u> </u>	Ē			н	ээт		8	MM	7	BHI		3 20	March	Jι			A	NAM.	7			
ATION	Port Gamble /	***************************************			Sulfide NA	SULFIDE	Techn. mg/L (Total)	34 0.206 MULG 0.126					16, 6					0.562 hung c. 167 Ea 7					
B/Loc	rt Ga	ш					Techn.	30					1					MM					
NEWFIELDS LAB / LOCATION	Po	TEST END DATE			Ammonia NA	AMMONIA	Fechn. mg/L (total)	0.206					180.36 mm 00.031				·	0.567	:				
					⋖	¥ .	Fechn.	B					绝	•				-¥					
	alis	TIME			рН 7 - 9	Hd	unit	49	એ. ←	75			4.7	7.6	4.7			577	7.6	4			_
	ovinci	-				-	meter	5	S	5			5	S	2			S	S	V			
	Mytilus galloprovincialis		113	Y DATA	Sai (ppt) 28 ± 1	SALINITY	bpt	28	28	28			28	28	28			38	28	1.8			
	Mytill	삗	17Jui13	ALIT]"	meter	4	9	7			t	4	7			7	4	7			-
SPECIES		TEST START DATE		WATER QUALITY DATA	Temp (°C) 16±1	TEM	ပ္စ	6 16.9	اه اه. €	0/01/0			5.91 9	ીઇ.હ	9919			16.6 175	16.8	9.97.9			,
SP		TE		WA)1		meter		و	9				6	و			Q	و	ف			١,
	seles		ter		DO (mg/L) >5.0	0.0.	mg/L	4.4	5.4	6 4,3	8.0			9.91 0 8.4	13.8			6 6.5	6 4.20 6 16.8	7: E			
	Port Angeles	GER	B. Hester		ŏ		meter	او	و	و	9		بو	و	ال			e	و	٩			
PROJECT	P ₀	PROJECT MANAGER	m	by day 2		REP		WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	۱
				Appoint not met		Random #		45				-)	35			, <u>, , , , , , , , , , , , , , , , , , </u>	3	89)				7)	
	ng Inc.		92	development e	TEST CONDITIONS	DAY	+	0	1	2	ო	4	0	-	2	3	4	0		2	ო	4	
CLIENT	Integral Consulting Inc.	JOB NUMBER	860.0074.000	• Day 184 observations needed only if development endpoint not met by day 2	TE	CLIENT/ NEWFIELDS ID		CR-02 /	CR-02 /	CR-02 /	CR-02 /	CR-02 /	SD0001/	SD0001/	SD0001/	SD0001/	\$500017	SD0002/	SD0002/	SD0002 /	SD0002/	SD0002 /	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1) Initiated aeration for entire treatment, Mars 7/18/13.

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

PROTOCOL	PSEP (1995)	<u></u>	1	3	TAG		717	811/2 Smm	Ma	7.14 REG		メア	Mus 7118	7/19	SS1 61.7	·	86 升日	811 E SIMM	Ma	7-19 1530	
PRC	2	¥ F		н) BT		\$	MARK	Jι	B		B	Mark	1	1FSI		15/g	NAWE	٦٢ ا	75	
OCATION	Fort Gambie /			Sulfide	SULFIDE	Techn. mg/L (Total)	third grown					152.0 Suan					MW 0.231				
NEWFIELDS LAB / LOCATION	Por	TEST END DATE		Ammonia NA	+	Techn. mg/L (total) Tec	0.29g mg					M 88).0					O.Ko				
					٩	Techn.	-7 2"					流					⇔				
	Sialis	TIME		P4 7-9	=	ruit	4	م. ۲	7.5			£±	7.7	St			7.6	4.7	7.6		
	rovinc		ا .			meter	S	S	\sim			5	S	\sim			5	S	S		
-	Mytilus galloprovincialis	e 17Jul13	WATER QUALITY DATA	Sal (ppt) 28±1	A.	tdd.	28	28	28			38	28	28			28	8¢ -	82		
	N/N	зате 17J	UALI			meter	<u>8</u>	6	1 2			4	7	7			7	ф 1	2		
SPECIES		TEST START DATE	ATER Q	Temp (°C) 16 ± 1	TEMF		%	1691	9.91			6,01		<u>ع</u> ج			P.01 9	P.91 9	0'21 9		
		·	Š	_		meter	<u>e</u>	ع ا	و			<u>5</u>	<u>e</u> ,	_2_			_				
	Port Angeles	ster		DO (mg/L) >5.0	6	. mg/L	7.5	S. 2	£.\$Q	6.2		272	<u>و</u> کا کا	20	27		7.2	5.9	9,4%		
	ort An	мсек В. Hester		L		meter	و	و	هـ	9		Ć	و	او.	9		و	و	2	2	
PROJECT	J.	PROJECT MANAGER B. H	t by day 2		Æ		WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Sur	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr
			point not me		Random #		35				7	机	<u> </u>			>	37		<u></u>		-
	<u>2</u>		Hopment end	SZ	<u> </u>	1	0	_	2	E	4	0		7	က	4	0	_	2	က	4
]	ulting 	4.000	only if deve	TEST CONDITIONS	-	_		-						"							
CLIENT	integral Consulting Inc.	JOB NUMBER 860.0074.000	* Day 324 observations needed only if development endpoint not met by day 2		CLENT/ NEWFIELDS ID		SD0003 /	SD0003/	/ £0000S	/ £00003	/ £000QS	SD0004 /	SD0004 /	SD0004 /	SD0004 /	SD0004 /	SD0008 /	SD0008 /	/ 80000S	/ 80000GS	SDOOR /

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

retech town (bbr

						4	<u>1</u> /1-5													SS		Page 2	CONTRACTOR OF THE PARTY OF THE
PROTOCOL PSEP (1995)	TIME			9.	r≜a		五五	MW6 7/18	7/19			141	MMB 7118	Me			北上	MW87/18	7/19	4.19			
	1			Н)3T	┸	र्षु	₩	Jl			孕	2				B	₹	긕	PH.			
NEWFIELDS LAB / LOCATION Port Gamble /	<u> </u>	ı		Sulfide NA	SULFIDE	lechn, mg/L (Total)	7.27.05mm					p2.03mm					41 F 103 HAVE 0.244 ECG 7/17					:	
NEWFIELDS LA	TEST END DATE		-	Ammonia NA	AMMONIA	lecna, mg/L (total)	14 0.34					80.03					0.0189		The state of the s			18/13	
	***************************************			_	ļ	lecu						E										44	-
ialís	TIME			Hq 7.9	ď	ğ	4.6	7.6	84			27	7.7	7.			1 <u>.</u> 1 <u>i</u> .	4.7	7,5			\$ \$	And the second second second second
ovinc						meter	2	B	\sim			2	S	0			S	\mathcal{V}	\ <u>S</u>			5-	
Mytilus galloprovincialis		113	Y DATA	Sal (ppt) 28 ± 1	ALIN	ηdd	28	38	28			32	28	28			28	28	28			trant -	
Mytil	.	17Jul13	ALIT		67	meter	જ	4	2			2	7	7			7	4	7			1	
SPECIES	TEST START DATE		WATER QUALITY DATA	Тетр (°С) 16±1	TEM	p	18.0	(7.0	J. 67			6.01 0	1.←)	9 9 9			8.971	17.0	401 d			e tre	
S	Ĕ)	۸M	ř		merer	9	9	٥			9	9	هـ			Ö	و	و.			.4	
eles		fer		00 (mg/L) >5.0	ă	J.	e	3 0 'S	54			7.1	6.9	C'S			6.9	5.9 6 17.0	94.9	7.9		for entire treatment, MMB 7/18/13	
Port Angeles	, I	B. Hester		ŏ		meter	ى	و	هـ.			3	و	اف			હ	6	2	Q	•		
рвојест Ро	PROJECT MANAGER	ш	by day 2		REP		WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	antia	
			nt not met		Random #		و				,	∞				- >	8					8	
, i			ent endpo		Ran	_				The state of the s	<u></u>						~	······································				75	
ng Inc		8	developm	TEST	DA∀	İ	0	~	2	3	4	0	7	2	က	4	0	7	7	က	4	-{g	
מונושנום: Integral Consulting Inc.	JOS NUMBER	860.0074.000	* Day 3&4 observations needed only if development endpoint not met by day 2	CONC	CLIENT/ NEWFIELDS 1D		/ 6000QS	/ 600000\$	/ 6000GS	/ 6000GS	/ 6000GS	SD0010 /	SD0010/	SD0010/	SD0010 /	SD0010/	SD0011/	SD00117	SD0011/	SD0011/	SD0011/	O Think ated	>

Page 4 of 8

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

										***************************************		ŀ						-		324
Integral Consulting Inc.	ing Inc.		Por	Port Angeles	sjes	ŭ h	ĝ	Mytilu	Mytilus galloprovincialis	vinci	alis	<u> </u>	Pol	Port Gamble /	nble /	<u> </u>	PSEP (1995)			pografika ere
JOB NUMBER			PROJECT MANAGER	GER		TEST	TEST START DATE	7E		Ī	TIME	-	TEST END DATE	E		H.F.	TIME			
860.0074.000	00	_	<u></u>	B. Hester	Ġ			17Jul13	13											
* Day 3&A observabons needed only if	if developmen	needed only if development endpoint not met by day 2	it by day 2			WATI	ER QU.	ALITY	ER QUALITY DATA									* ;		
CONE	TEST CONDITIONS			8 ^	DO (mg/L) >5.0	Tema 16	ە(°C) ±1	ν · ·	Sal (ppt) 28 ± 1		hd 7.9	Ą	Ammonia NA	,	Suffide NA	Н	Э.			
CLIENT! NEWFIELDS ID	DAY	Random #	REP	meter	D.O. mg/L	TE	TEMP.	S.p.	SALINITY	meter	PH unit	AM rechn.	AMMONIA Techn. mg/L (total)	Sl Techn.	SULFIDE Techn. mg/L (Total))3T	r≜0		/ & c / 5	γ. γ.
SD0012/	0	58	WQ Surr			a 1	7.6	4	1 4g	\$	7	落		N N		Æ	北北	17-17-16-4/2011	1 o x / 5	
SD0012/	~		WQ Surr	و	<u>ي</u> در	ور	10.9	d	<i>⊗</i> d	Ŋ	7.7					MM	81/E Smm)		
SD0012 /	2		WQ Surr	2	S. 4.5	ھ	4	7	26	\sim	و ۲					35	7/19			
SD0012 /	3		WQ Surr	9	16.7											HB	03 SI BIT HB	15.50		
SD0012 /	4	- >>	WQ Surr																	
SD0013 /	0	ナ	WQ Surr	প্র	6.5	3	1202		38	Ś	7. 8 12 0.001 must 0.214 BG	=	1019	SAM.	0.21Y	Ş	世光			
SD0013/	.		WQ Surr	و	S.S	ع	16.9	4	28	S	4.4					MMB	NW6-7/18	· ,		•
SD0013 /	2		WQ Surr	و_	5.1	9	16.7	7	20	7	7,4					7	7/19			
SD0013 /	က		WQ Surr																	
SD0013 /	4	7	WQ Surr																	
SD0014/	0	c)	WQ Surr	3	7.(<u> </u>	16.6	~	28	S	7.8	4	6:00 SMINN 1780:0	Nimb		Z	7/14/13	(3		
SD0014/	_		WQ Surr	و	S.b	<u></u> و	167	4	8¢	S	7.7					MM	MW87/18			
SD0014/	2		WQ Surr	9	9.8	9	16.7	7	28	S	7,6					77	JL 7/19	-		
SD0014 /	3		WQ Surr	ه د	49											R.H.	BH 7.19	<i>O</i> 253		
SD0014/	4	→	WQ Surr															*		
			O Readin	A is	יין ייין:		7.19.12 BK	ۍ گ	ž									í		

Page 5 of 8

LARVAL DEVELOPMENT TEST **WATER QUALITY DATA**

CLIENT	PROJECT	SPECIES		NEWFIELDS LAB / LOCATION	PROTOCOL.
Integral Consulting Inc.	Port Angeles	Mytilus galloprovincialis	alis	Port Gamble /	PSEP (1995)
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
860.0074.000	B. Hester	17Jul13			

1530 カボ 8114 Sm/ 81168mm 80 7 17 7/19 MM87/18 3/16 5 7.8 1/2 0.098 MWG 0.229 186 7/7 7 2/2 12 7.19 **BTA**0 B 3 <u>بر</u> 12 0.0765 MING 0.163 \$12.0 Smmg0b00 A Techn. mg/l. (Total) NA Sulfide Techn. | mg/L (total) AMMONSA ş 430 8 4 ∞, 5 4 7 e 77 umit PH 7-9 Ηď EX Z 2 meter 5 v $\overline{\mathcal{C}}$ 5 5 7.10.15 2 2 WATER QUALITY DATA
Temp (°C) Sal (ppt) 4 დ ტ 87 20 8 200 S S کھ tďd SALINITY meter N 7 ٦ 6 4 6 15.9 6 16.9 4 \sim () A eratic initiated о П 59/9 7.9] 5919 2 | Se.Co F01/0/08/4/0 ج <u>و</u> ف Temp (°C) 16±1 TEMP. meter و A. S <u>ا</u> ق WQ Sur 6 67 ∞ و 4.4 ە: <u>6</u>8 5,0 7 mg/L DO (mg/L) >5.0 0.0 meter | __ و_ ڪ WQ Surr 6 Wa Surr 6 WQ Surr <u>_</u> ک WQ Surr WQ Surr WQ Surr WQ Surr WQ Surr WQ Surr WQ Surr WQ Surr WQ Surr WQ Surr WQ Surr R 4 Random # 8 <u>و</u> \Rightarrow G G TEST CONDITIONS DAY 0 0 2 4 0 N က 4 2 က 4 ₩ CLIENT/ NEWFIELDS 10 €5 SD0018 / SD0018 / SD0017 / SD0017 / SD0017 / SD0017 / SD0017 / SD0018 / SD0018 / SD0015/ SD0015 / SD0015/ SD0015 / SD0015/ SD0018 /

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

				3 1							1530		,	·							9251
PROTOCOL.	PSEP (1995)	TIME			3	ITAC]	HH	MIM67/18	Je Ma	BH 7.19		417	8116 Sm/m				出户	1118 7/18	TH	PM 7.19
id.	LL.	F			F	1031	-	જુવ	MEW	3أي	M		\$3	MAN				IJZ.	MM	Jr	Ð
TION	Port Gamble /	***************************************			Sulfide NA	SULFIDE	Techn. mg/L (Total)	0.136					,0.192					0.213			
B/Loc	rt Gar					s	Techn.	NWE	:				MWE					MWB			
NEWFIELDS LAB / LOCATION	g	TEST END DATE			Ammonia NA	AMMONIA	Techn. mg/L (total)	# 6.104 Nave 0.136 Bla 7/17					77 14 0.0930 MANGO.192 BB					0.113 MANG 0.213 BCG 7-117			
					`	Ĺ	Techn.	终					看					<u> </u>			
	ialis	TIME			Hd 7 - 9	P.A.	1	7.8	4,4	かけ				7.6				7 tt 5	7.6	75 4	
	ovinc						meter	8	5	S			S	S				5	S	5	
	Mytilus galloprovincialis		113	Y DATA	Sal (ppt) 28 ± 1	SALINITY	bbţ	aB	28	28			۲,	28				38	28	28	
	Mytil	E E	17Jul13	ALIT		ξ,	meter	70	Þ	7			W.	d					t	7	
SPECIES		TEST START DATE		WATER QUALITY DATA	Temp (°C) 16±1	TEMP.	ာ့	9)	5.5 6 17.0	5919			16.4	16.8			:	Q'n	16.9	5 d. d. d	
S		=		M۸	1		meter	٦	و				<u>e</u>	و				٥	و	2	
	seles		iter		DO (mg/L) >5.0	0,0		O.O	5.5	n4 5	6.7		6.7	5.6				40	5.7	4.7	0.8
	Port Angeles	GER	B. Hester		Ö		meter	Ć	و	هـ.	9		3	ور				و	و	هـ	g
PROJECT	P	PROJECT MANAGER	ш	by day 2			REP	WQ Surr	WQ Surr 6	WQ Surr	WQ Surr	WQ Surr	Wasur 6 6.7 6 16.4 13	Wa Surr to 5.6 6 16.8	WQ Surr	WQ Surr	WQ Surr	WQ Surr 6 7.0 6 14.0 2	Wa Surr 6 5.7 6 16.9 3	WQ Surr	WQ Surr
				dpoint not met			Random #	\$\$			Marine Marine San Cale	<i>></i> >	6				Ų	107			
	Inc.			elopment er	SNO	├	DAY	0	1	2	3	4	0	-	2	က	4	0	1	2	3
	sulting		4.000	only if dev	TEST CONDITIONS	-				-			_		-						· · · · · · · · · · · · · · · · · · ·
CLIENT	Integral Consulting Inc.	JOB NUMBER	860.0074.000	* Day 3&4 observations needed only if development endpoint not met by day 2)		CL(ENT/ NEWFIELDS ID	SD0019 /	SD0019 /	SD0019 /	SD0019 /	SD0019 /	SD0020 /	SD0020 /	SD0020 /	SD0020 /	SD0020 /	SD0021/	SD0021 /	SD0021/	SD0021/

7.19.13 19H

1 Heatin initiated

WQ Surr

4

SD0021/

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT			SP	SPECIES						NEWFIELDS L	NEWFIELDS LAB / LOCATION		PROTOCOL.	
Integral Consulting Inc.	fing Inc		P.	Port Angeles	eles			Mytilı	Mytilus galloprovincialis	ovinci	alis		Ğ.	Port Gamble /		PSEP (1995)	
JOB NUMBER	***************************************		PROJECT MANA	MANAGER		ĬŽ.	TEST START DATE	76			TIME		TEST END DATE	TE		TIME	,
860.0074.000	00			B. Hester	ter			17Jul13	13								
. Day 344 observations needed only if development endpoint not met by day 2	if developme	nt endpoint not me	st by day 2			WA	WATER QUALITY DATA	ALIT	Y DATA								
L	TEST			OO	DO (mg/L)	ř	Temp (°C)	_	Sal (ppt)	L	рН	Ĺ	Ammonia	Sulfide	L		
NOO	CONDITIONS				>5.0		16±1		28 ± 1		7 - 9		NA	ĄN	н		
] 	7	cic		D.O.		темР.	S	SALINITY		Æ	Ĺ	AMMONIA	SULFIDE)3T	.AG	
CLIENT NEWFIELDS 10	5	Malianii #	Ď	тетег	mg/L	meter	သွ	meter	ppt	meter	unit	Techn.	mg/l_ (total)	Techn. mg/L (total) Techn. mg/L (Total)	tal)		
SD0022 /	0	2	MQ Surr	e	20	٧	8n1	4	28	2	85	终	0.601	417 02 605.03 MM 10.109 1/2 0.109 1/2 0.109 1/2 0.109 1/2 0.109	₩ ₩	山上水	
SD0022 /	1		WQ Surr	و	و. ٥	٦	8.9	<u></u>	86 68.01 2 0.0 0	5	4.7				<u>R</u>	MW87/18	
SD0022 /	7		WQ Surr		d. 8	و_	16.7	2	Sts 82 2 to 9 8. 499	5	54				7	JU 7/19	
SD0022 /	3		WQ Surr	9	J.7										B	BH 7.19	93
SD0022 /	4	7	WQ Surr														
				9) Aent	بإ	O Aeration Initiated	atec		ايًا ﴿	HU CIIDIT						•

Ammonia and Sulfide Analysis Record

Client/Project: WYAH	Organism: MYHIW Sp.	Test Duration (days): 2
PRETEST / INITIAL OVERLYIN	/ FINAL / OTHER (circle of G (OV) / POREWATER (P)	one) DAY of TEST: 2
Comments:	- TOREWAILK (I	(on the one)
Comments:	dards Temperature Temperature: 23,9	Sample temperature should be within ±1°C of standards temperature at time

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pH Sal (ppt)	Sulf. mg/L
Control	Surv.	719/13 BG	0.0443	23.1	7/19/13 14,86	N		0.013
CR-02			0.206					0.048
CK-02 CK-12			0.0452					0.033
CAPR-20			0.0365					0.031
			0.163					0.097
2			0.326					0-077
3			0.129			RANGE MILITARY IN COLUMN TO THE COLUMN TO TH		0.037
4			0.0452					0.079
9			0.0265					0.102
9			0,0144					0.107
lo			0,0072					0.102
11		The state of the s	0.0037					0.089
12			0.0006					0.094
13			00.00					0.111
14			0-00			NATION TO SERVICE STATE OF THE		0.086
15			6.00					0-102
17			0.0096					0.140
18			0.0185					0.088
19			0.00					0.022
20			0.06					0.054
u		J	00.0	J	L	J		0.069
22	,		0.00					0.061

LARVAL DEVELOPMENT **TEST INITIATION DATA SHEET**

CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	LABORATORY	PROTOCOL
Integral Consulting Inc.	Port Angeles	860.0074.000	B. Hester	Port Gamble	PSEP (1995)

TEST ORGANISM SPAWNING DATA

SPECIES			
Mytilus (galloprovind	cialis	
SUPPLIER			ORGANISM BATCH
			TS071713
DATE RECEIVED)	TIME RECEIVED	DATE USED
7.17.13	3	1200	7.17.13
SPAWNING MET		INITIAL SPAWNING TIME	FINAL SPAWNING TIME
feed/heat	tshock	1450	1610
MALES	FEMALES	SPERM VIABILITY	EGG CONDITION
4	0	V	Good
BEGIN FERTILIZ	ATION	END FERTILIZATION	CONDITION OF EMBRYOS
16	570	1755	600d

SAMPLE STORAGE
4 Degrees Celsius - dark
SEDIMENT TREATMENT
none
TEST CHAMBERS
1 L Mason Jars
EXPOSURE VOLUME
900mL seawater / 18g Sediment
TIME OF SHAKE
1755

SPECIAL CONDITIONS

UV LIGHT EXPOSURE (YES/NO)	AERATION FROM TEST INITIATION (YES/NO)
No	Nd
SCREEN TUBE TEST (YES/NO)	OTHER (EXPLAIN)
NO	

EMBRYO DENSITY CALCULATIONS

69 +100 = 6900

27,000 = 3.9 ml

3700 = 0.39.100~L= 39~Less stock 71~L searche deller 0.100~L

resuspended 7.19 0845-0930

Mussel Shell Development Test

Test Type: Development-Survival Organism: Mytilus galloprovincialis (Bay Mussel Material: Total Ammonia

Protocol: EPA/600/R-95/136 (1995) Endpoint: Combined Proportion Normal Source: Reference Toxicant-REF

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Dec	2	18:25	3.806	-1.438	-0.6615		5-31-45-74	06-3989-5500	09-5166-6282
2	2012	Jan	27	17:30	2.846	-2.398	-1.103	(-)		17-8035-0885	06-4475-5873
3		Mar	22	12:15	6.852	1.608	0.7395			08-5068-3541	09-7191-1867
4		Apr	23	18:45	4.66	-0.5836	-0.2685			02-7458-4371	07-2969-7564
5		Jun	7	18:15	4.304	-0.9405	-0.4326			20-4612-5080	14-0164-5214
6			20	17:50	5.296	0.05176	0.02381			21-1169-3016	00-2068-7937
7		Aug	22	16:05	8.376	3.132	1.441	(+)		03-0988-3309	14-8872-2540
8			30	17:50	4.311	-0.9332	-0.4293	0.7		00-6833-5106	09-9193-8473
9		Oct	9	18:00	1.678	-3.566	-1.641	(-)		06-6024-3093	07-1414-6248
10			18	18:00	3.41	-1.834	-0.8436			07-3550-9263	15-5292-9085
11		Nov	29	17:45	5.775	0.5305	0.244			04-0681-3114	00-7625-5304
12		Dec	7	18:50	3.016	-2.228	-1.025	(-)		15-7850-6619	03-0562-1566
13	2013	Feb	14	17:40	8.112	2.868	1.319	(+)		02-6193-4857	04-9672-9086
14			28	21:20	7.574	2.33	1.072	(+)		06-9403-7957	07-8992-4017
15		Mar	6	16:45	4.538	-0.7063	-0.3249	7.7		20-1267-3706	09-5346-5604
16			16	17:45	10.13	4.883	2.246	(+)	(+)	14-2253-0526	18-0087-0374
17			26	18:15	5.579	0.3351	0.1542	2.5	X. /	03-8532-3895	00-6308-0782
18		Apr	3	0:00	6.805	1.561	0.7181			10-3604-5723	04-8356-0800
19		May	9	17:15	4.927	-0.3173	-0.1459			00-6360-9095	16-4147-0802
20		Jul	1	19:00	2.895	-2.349	-1.08	(-)		19-5961-2730	13-0986-6895
21			17	17:55	4.313	-0.9306	-0.4281	7.1		18-2536-1347	00-8750-2223

Report Date:

28 Aug-13 10:40 (1 of 1)

Mussel Shell Development Test

NewFields

Test Type: Development-Survival

Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Combined Proportion Normal

Material:

Total Ammonia

Reference Toxicant-REF Source:

Quali	ty Con	trol Data	а									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2011	Dec	2	18:25	1.61	-1.467	-0.7845			06-3989-5500	05-9587-4977	
2	2012	Jan	27	17:30	1.87	-1.207	-0.6455			17-8035-0885	19-6006-6064	
3		Mar	22	12:15	2.5	-0.577	-0.3086			08-5068-3541	14-6034-1614	
4		Apr	23	18:45	1.92	-1.157	-0.6187			02-7458-4371	11-3829-0609	
5		Jun	7	18:15	1.52	-1.557	-0.8326			20-4612-5080	06-0541-2169	
6			20	17:50	2.68	-0.397	-0.2123			21-1169-3016	01-0499-1137	
7		Aug	22	16:05	6.5	3.423	1.83	(+)		03-0988-3309	04-0917-6749	
8			30	17:50	1.36	-1.717	-0.9182	200		00-6833-5106	03-2629-4542	
9		Oct	9	18:00	0.973	-2.104	-1.125	(-)		06-6024-3093	07-8913-5319	
10			18	18:00	2.87	-0.207	-0.1107			07-3550-9263	18-1681-7487	
11		Nov	29	17:45	3.58	0.503	0.269			04-0681-3114	19-0538-4174	
12		Dec	7	18:50	0.817	-2.26	-1.209	(-)		15-7850-6619	13-6604-7958	
13	2013	Feb	14	17:40	6	2.923	1.563	(+)		02-6193-4857	07-3889-4891	
14			28	21:20	5.65	2.573	1.376	(+)		06-9403-7957	16-1498-7518	
15		Mar	6	16:45	2.93	-0.147	-0.07861			20-1267-3706	13-0769-0097	
16			16	17:45	6.99	3.913	2.093	(+)	(+)	14-2253-0526	09-1011-9616	
17			26	18:15	3.62	0.543	0.2904		11.5	03-8532-3895	01-1639-1779	
18		Apr	3	0:00	3.85	0.773	0.4134			10-3604-5723	13-5448-8759	
19		May	9	17:15	2.85	-0.227	-0.1214			00-6360-9095	00-7540-8630	
20		Jul	1	19:00	1.46	-1.617	-0.8647			19-5961-2730	20-9160-8614	
21			17	17:55	3.05	-0.027	-0.01444			18-2536-1347	04-3468-0815	

Report Date:

28 Aug-13 10:32 (1 of 1)

Mussel Shell Development Test

Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel Proportion Normal Source: Reference Toxicant-REF

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Dec	2	18:25	0.05664	-0.00967	-0.3387		G. C.C.C.	02-1703-2403	18-2609-9695
2	2012	Jan	27	17:30	0.06751	0.001204	0.04218			17-7315-3313	06-2387-0021
3		Mar	22	12:15	0.0669	0.000589	0.02062			16-8530-3093	20-6643-2329
4		Apr	23	18:45	0.04914	-0.01717	-0.6016			11-9474-8117	17-4324-5637
5		Jun	7	18:15	0.03798	-0.02833	-0.9927			14-3239-7455	05-6059-9571
6			20	17:50	0.05226	-0.01405	-0.4923			16-3362-6154	15-3244-5350
7		Aug	22	16:05	0.08186	0.01555	0.5448			19-7550-7456	08-0736-4891
3			30	17:50	0.05265	-0.01366	-0.4785			18-5169-0947	02-7047-2220
9		Oct	9	18:00	0.02443	-0.04188	-1.467	(-)		08-9570-9100	07-8331-5723
10			18	18:00	0.02739	-0.03892	-1.364	(-)		18-9514-2443	00-3905-9363
11		Nov	29	17:45	0.03751	-0.0288	-1.009	(-)		15-6645-8664	13-4294-0618
12		Dec	7	18:50	0.0569	-0.00941	-0.3296			11-6006-3509	05-8108-8018
13	2013	Feb	14	17:40	0.07388	0.007574	0.2654			14-1890-1951	14-7902-0800
14			28	21:20	0.0707	0.004392	0.1539			19-4434-4552	11-0678-0085
15		Mar	6	16:45	0.04499	-0.02132	-0.7471			18-3418-4255	07-5324-7355
16			16	16:10	0.1144	0.04814	1.687	(+)		11-4894-2693	12-9463-9515
17			26	18:15	0.1079	0.04157	1.457	(+)		10-2444-9875	09-9596-0674
18		Apr	3	0:00	0.1168	0.05054	1.771	(+)		20-6076-9735	05-3848-1619
19		May	9	17:15	0.1144	0.04809	1.685	(+)		14-3450-0734	06-3515-6667
20		Jul	1	19:00	0.07187	0.005561	0.1949			10-8846-7294	05-7595-2849
21			17	17:55	0.0548	-0.01151	-0.4033			10-3414-5102	08-1738-2772

Report Date:

28 Aug-13 10:40 (1 of 1)

Mussel Shell Development Test

NewFields

Test Type: Development-Survival Protocol: EPA/600/R-95/136 (1995) Organism: Mytilus galloprovincialis (Bay Mussel

Material: Unionized Ammonia Reference Toxicant-REF

Endpoint: Combined Proportion Normal

Source:

Quali	ty Cor	trol Dat	a								
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2011	Dec	2	18:25	0.025	-0.0139	-0.5928			02-1703-2403	00-9746-5548
2	2012	Jan	27	17:30	0.044	0.0051	0.2175			17-7315-3313	14-7310-3808
3		Mar	22	12:15	0.025	-0.0139	-0.5928			16-8530-3093	00-2118-8798
4		Apr	23	18:45	0.024	-0.0149	-0.6354			11-9474-8117	16-8822-0741
5		Jun	7	18:15	0.012	-0.0269	-1.147	(-)		14-3239-7455	06-8748-6189
6			20	17:50	0.027	-0.0119	-0.5075	. ,		16-3362-6154	07-4796-6258
7		Aug	22	16:05	0.063	0.0241	1.028	(+)		19-7550-7456	17-2049-3239
8		100	30	17:50	0.017	-0.0219	-0.9339	4.07		18-5169-0947	11-3246-0073
9		Oct	9	18:00	0.015	-0.0239	-1.019	(-)		08-9570-9100	07-1156-4394
10			18	18:00	0.023	-0.0159	-0.678	8.7		18-9514-2443	05-5566-0485
11		Nov	29	17:45	0.011	-0.0279	-1.19	(-)		15-6645-8664	07-1864-3452
12		Dec	7	18:50	0.016	-0.0229	-0.9765			11-6006-3509	00-2066-3271
13	2013	Feb	14	17:40	0.061	0.0221	0.9424			14-1890-1951	16-6372-1200
14			28	21:20	0.053	0.0141	0.6013			19-4434-4552	04-8125-6089
15		Mar	6	16:45	0.03	-0.0089	-0.3795			18-3418-4255	11-0229-7491
16			16	16:10	0.079	0.0401	1.71	(+)		11-4894-2693	17-8368-9370
17			26	18:15	0.07	0.0311	1.326	(+)		10-2444-9875	00-8976-6127
18		Apr	3	0:00	0.076	0.0371	1.582	(+)		20-6076-9735	14-2423-4592
19		May	9	17:15	0.071	0.0321	1.369	(+)		14-3450-0734	19-5425-3899
20		Jul	1	19:00	0.036	-0.0029	-0.1237	X. 1		10-8846-7294	11-2659-9719
21			17	17:55	0.039	0.0001	0.004264			10-3414-5102	05-6701-2859

CETIS Summary Report

Report Date:

Binomial/Graphical

28 Aug-13 10:20 (p 1 of 1) 6CCCCDC3 | 18-2536-1347

NewFields

			Test Code:	6CCCCDC3
Mussel She	II Development Test			
Batch ID:	12-5/09-2//3	Toot Type: Daviderment Curing	1 4 h A 7 h	

Batch ID:	12-5409-2443	Test Type:	Development-Survival	Analyst:		_
Start Date:	17 Jul-13 17:55	Protocol:	EPA/600/R-95/136 (1995)	Diluent:	Laboratory Seawater	
Ending Date:	19 Jul-13 17:40	Species:	Mytilus galloprovincialis	Brine:	Not Applicable	
Duration:	48h	Source:	Taylor Shellfish	Age:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sample ID:	20-4769-3215	Code:	7A0D519F	Client:	Internal Lab	-
Sample Date:	27 Sep-11	Material:	Total Ammonia	Project:	Reference Toxicant	

4.313

Receive Date: 27 Sep-11 Source: Reference Toxicant
Sample Age: 659d 18h Station: P110927.152

Comparison Summary

Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method
04-3468-0815	Combined Proportion Norm	3.05	6.1	4.313	18.2%		Dunnett Multiple Comparison Test
Point Estimate	e Summary						
Analysis ID	Endpoint	Level	mg/L	95% LCL	95% UCL	TU	Method

4.424

00-8750-2223 Combined Proportion Norm EC50 Test Acceptability

Analysis ID	Endpoint	Attribute	Test Stat	TAC Limits	Overlap	Decision
04-3468-0815	Combined Proportion Norm	PMSD	0.1822	NL - 0.25	No	Passes Acceptability Criteria

4.205

Combined Proportion Normal Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.8889	0.7092	1	0.8394	0.9719	0.04176	0.07233	8.14%	0.0%
0.674		3	0.8902	0.7375	1	0.8434	0.9598	0.03549	0.06148	6.91%	-0.15%
1.5		3	0.921	0.8076	1	0.8835	0.9719	0.02637	0.04567	4.96%	-3.61%
3.05		3	0.9197	0.7554	1	0.8434	0.9598	0.03817	0.06611	7.19%	-3.46%
6.1		3	0	0	0	0	0	0	0	7.1070	100.0%
11.8		3	0	0	0	0	0	0	0		100.0%

Combined Proportion Normal Detail

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3	
0	Dilution Water	0.8554	0.8394	0.9719	
0.674		0.9598	0.8434	0.8675	
1.5		0.9719	0.9076	0.8835	
3.05		0.9558	0.9598	0.8434	
6.1		0	0	0	
11.8		0	0	0	

Combined Proportion Normal Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3	
0	Dilution Water	213/249	209/249	242/249	
0.674		239/249	210/249	216/249	
1.5		242/249	226/249	220/249	
3.05		238/249	239/249	210/249	
6.1		0/249	0/249	0/249	
11.8		0/249	0/249	0/249	

Analyst:__/4/

QA: BM

CETIS Test Data Worksheet

Report Date:

28 Aug-13 10:19 (p 1 of 1)

Test Code: 18-2536-1347/6CCCCDC3

Mussel She	II Deve	lopm	ent Tes	t					NewFields
Start Date: 17 Jul-13 17:55 End Date: 19 Jul-13 17:40 Sample Date: 27 Sep-11		Species: Protocol: Material:	Mytilus galloprovi EPA/600/R-95/13 Total Ammonia		Sample Code: 7A0D519F Sample Source: Reference Toxicant Sample Station: P110927.152				
C-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal	Notes	
0	D	1	6	249	214	214	213		
0	D	2	7	249	221	221	209		
0	D	3	17	249	251	251	242		
0.674		1	13	249	244	244	239		
0.674		2	18	249	216	216	210		
0.674		3	14	249	224	224	216		
1.5		1	12	249	249	249	242		
1.5		2	15	249	236	236	226		
1.5		3	1	249	231	231	220		
3.05		1	8	249	255	255	238		
3.05		2	3	249	262	262	239		
3.05		3	2	249	247	247	210		
6.1		1	5	249	239	239	0		
6.1		2	10	249	267	267	0		
6.1		3	11	249	231	231	0		
11.8		1	9	249	226	226	0		
11.8		2	16	249	230	230	0		
11.8		3	4	249	262	262	0		

Analyst:__W

QA: BN

CETIS Test Data Worksheet

Report Date:

28 Aug-13 10:29 (p 1 of 1)

Test Code

								Test Code:	10-3414-5102/3DA3CD4E
Mussel Shel	l Deve	lopm	ent Tes	t					NewFields
Start Date: End Date: Sample Date	Species. Mythus galloprovincialis			Sample Code: Sample Source: Sample Station:	788C008B Reference Toxicant P110927.152				
C-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	D	1	11	249	214	214	213		
0	D	2	13	249	221	221	209		
0	D	3	10	249	251	251	242		
0.009		1	3	249	244	244	239		
0.009		2	6	249	216	216	210		
0.009		3	8	249	224	224	216		
0.019		1	17	249	249	249	242		
0.019		2	16	249	236	236	226		
0.019		3	1	249	231	231	220		
0.039		1	14	249	255	255	238		
0.039		2	5	249	262	262	239		
0.039		3	18	249	247	247	210		
0.077		1	7	249	239	239	0		
0.077		2	9 -	249	267	267	0		

0.077

0.149

0.149

0,149

CETIS Summary Report

Panort Data

28 Aug-13 10:29 (p 1 of 1) 3DA3CD4E | 10-3414-5102

7.304 TERM
Test Code:
Report Date.

Mussel Shell Development Test NewFields Batch ID: 12-5409-2443 Test Type: Development-Survival Analyst: Start Date: 17 Jul-13 17:55 EPA/600/R-95/136 (1995) Protocol: Diluent: Laboratory Seawater Ending Date: 19 Jul-13 17:40 Species: Mytilus galloprovincialis Brine: Not Applicable Duration: 48h Source: Taylor Shellfish Age: Sample ID: 20-2244-1099 Code: 788C008B Client: Internal Lab Sample Date: 27 Sep-11 Material: Unionized Ammonia Project: Reference Toxicant Receive Date: 27 Sep-11 Reference Toxicant Source:

Comparison Summary

Sample Age: 659d 18h

Station:

P110927.152

Analysis ID	Endpoint	NOEL	LOEL	TOEL	PMSD	TU	Method
05-6701-2859	Combined Proportion Norm	0.039	0.077	0.0548	18.2%		Dunnett Multiple Comparison Test

Point Estimate Summary

Analysis ID	Endpoint	Level	mg/L	95% LCL	95% UCL	TU	Method	
08-1738-2772	Combined Proportion Norm	EC50	0.0548	0.05345	0.05618		Binomial/Graphical	

Test Acceptability

Analysis ID	Endpoint	Attribute	Test Stat	TAC Limits	Overlap	Decision
05-6701-2859	Combined Proportion Norm	PMSD	0.1822	NL - 0.25	No	Passes Acceptability Criteria

Combined Proportion Normal Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.8889	0.7092	1	0.8394	0.9719	0.04176	0.07233		
0.009		2	1,000	0000000		41600	20.61	0.04176	0.07233	8.14%	0.0%
		3	0.8902	0.7375	1	0.8434	0.9598	0.03549	0.06148	6.91%	-0.15%
0.019		3	0.921	0.8076	1	0.8835	0.9719	0.02637	0.04567	4.96%	-3.61%
0.039		3	0.9197	0.7554	1	0.8434	0.9598	0.03817	0.06611		7.5
0.077		3	0	0	0	0.0404	2000	0.03017	0.00011	7.19%	-3.46%
0.149					O.	U	0	U	0		100.0%
0.149		3	0	0	0	0	0	0	0		100.0%

Combined Proportion Normal Detail

Control Type	Rep 1	Rep 2	Rep 3	
Dilution Water	0.8554	0.8394		
	0.9598	0.8434		
	0.9719	0.9076		
	0.9558	0.9598		
	0	0		
	0	0	0	
		Dilution Water 0.8554 0.9598 0.9719	Dilution Water 0.8554 0.8394 0.9598 0.8434 0.9719 0.9076	Dilution Water 0.8554 0.8394 0.9719 0.9598 0.8434 0.8675 0.9719 0.9076 0.8835

Combined Proportion Normal Binomials

Control Type	Rep 1	Rep 2	Rep 3	
Dilution Water	213/249	209/249	242/249	
	239/249	210/249	216/249	
	242/249	226/249		
	238/249	239/249		
	0/249	0/249		
	0/249	0/249	0/249	
		Dilution Water 213/249 239/249 242/249 238/249 0/249	Dilution Water 213/249 209/249 239/249 210/249 242/249 226/249 238/249 239/249 0/249 0/249	Dilution Water 213/249 209/249 242/249 239/249 210/249 216/249 242/249 226/249 220/249 238/249 239/249 210/249 0/249 0/249 0/249

NewFields LARVAL DEVELOPMENT TEST AMMONIA REF TOX OBSERVATION SHEET

CONC.		3 TES	0074.000 ST START DATE: 7.17.13	B. Hester		DS LAB / LOCATION Gamble / Incubator	PSEP (1995)
CONC.	ton 2				TEST EN	The state of the s	
		ARVAL		1755			740
	MAL MINE		OBSERVA	TION DATA			
	its VIAL NUMBE	R REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
		1	213				
) m		2	209	12			
		3					
		1					
		2		6			
		3		8			
40		1		7			
3	5	2		10			
		3	220	11		C	
m		1		17			
	4. I San Carrier Control	2	239	23			
		3	210	37			
me	,,	1	0	239			
L	34	2	6	267			
		3	0	231			
mo		1	0	226			
L		2	0	230			
	\	3	0	262			
	5 mg L	mg/ L mg/ L mg/	75 mg/L 2 3 1 mg/L 3 1 mg/L 3 1 mg/L 3 1 mg/L 2 3 1 2 mg/L 2 3 3	3 242 1 239 2 210 3 216 3 216 5 mg/ 2 226 3 220 3 220 3 220 3 220 1 238 2 239 1 238 2 239 1 0 3 0 1 0 2 mg/ L 3 0	3 242 9 1 239 5 75 mg/L 2 210 6 3 216 8 1 242 7 2 226 10 3 220 11 3 220 11 1 238 17 2 239 23 3 210 37 1 0 239 1 0 220 2 mg/L 3 0 262	3 242 9 1 239 5 2 210 6 3 216 8 1 242 7 2 206 10 3 220 11 3 220 11 1 238 17 2 239 23 3 210 37 1 0 239 1 0 220 2 mg/L 1 0 220 2 mg/L 2 6 230	3 242 9 1 239 5 75 mg/ 2 210 6 3 216 8 1 242 7 5 mg/ 2 226 10 3 220 11 1 238 17 2 239 23 3 210 37 1 0 239 1 0 226 2 mg/ 2 6 236 3 0 262

2

3

STOCKING DENSITY

V= 249

234

244

LARVAL DEVELOPMENT TEST AMMONIA REF TOX WQ

CLIENT Integral Consulting Inc.	PROJECT Port Angeles	SPECIES Mytilus galloprovincialis	NEWFIELDS LA Port G	B / LOCATION amble / Incubator	PROTOCOL PSEP (1995)		
JOB NUMBER 860.0074.000	PROJECT MANAGER B. Hester	TEST START DATE: 17Jul13	1755	7.19.13	TIME 1740		
P116927.152	III079						

WATER QUALITY DATA

DILTIN.WAT.B	ATCH		ORG	ANISM E	BATCH	REFER	ENCE TOX. MATE	RIAL		REFER	ENCE TOXICAL	NT	
FSW071713	.01						Ammonii	ım chlorid	le		11010.30.00	ia - TAN	
					DO (mg/L)		TEMP(C)		SAL (ppt)		pH		
			- 4	.1 7	>5.0		16 ± 1		28 ± 1		7 - 9	±	ш
CLIENT/ NEWFIELDS ID	CONCENTRATION	DAY	REP		D.O.		TEMP.		SALINITY		рН	TECH.	DATE
	value units	DA.	,,,_,	meter	mg/L	meter	°C	meter	ppt	meter	unit		
	Target:	0	Stock	6	7.9	6	16.8	2	36	5	7.7	BH	7/17
Ref.ToxAmmonia -	0 mg/L	1	Stock	6	7.9	6	16.7	2	2-8	8	77		137118
TAN	Actual:	2	Stock	6	7.7	6	16.7	2	28	5	7.7	()L	7719
	811.0	3	Stock										1
		4	Stock		4.1			5 1					
	Target:	0	Stock	9	7.9	6	16.8	9	28	5	7.7	BA	7/17
Ref.ToxAmmonia -	0.75 mg/L	1	Stock	6	8.0	6	16.4	9	38	5	7.8		8 7/18
TAN	Actual:	2	Stock	6	29	6	16.4	2	28	É	38	16	7710
	0.674	3	Stock							1	-1.0	ľ	1/1
	11.5	4	Stock			14.7							
Ref.ToxAmmonia - TAN	Target:	0	Stock	6	8.0	6	16.8	9	86	5	7.7	BH	7/17
	1.5 mg/L	1	Stock	6	8.0	6	16.3	2		5	₹.8		B 7/18
	Actual:	2	Stock	6	7.9	6	16.2	2	28	5	7.8	JL	7719
	1.5	3	Stock	Pil						-	1.0	UL	-1/1-1
	17 - Y	4	Stock		L	1							-
	Target:	0	Stock	6	7.9	6.	8.61 Sam	7	38	S	7.7	RH	7117
coude of the other	3 mg/L	1	Stock	6	0.8	6	16.1	9	38	5	3.€		
Ref.ToxAmmonia - TAN	Actual:	2	Stock	6	8.0	6	16.0	2	28	5	7.8	MU	7/19 7/19
10.00	3.05	3	Stock		0.0	-	10.0	-	10	0	710	00	7/11
		4	Stock										
	Target:	0	Stock	6	8.0	6	16.8	2	9-8	6	2 3	BIL	2012
A 7 4 T Y	6 mg/L	1	Stock	6	1.8	6	16.0	2	28	5	7.7	BH	+11+
Ref.ToxAmmonia - TAN	Actual:	2	Stock	6	8.0	1,50	16.0	2	28	5	7.8		37/18
1740	6.10	3	Stock	-	0.0	6	101	1	10	8	1.0	UL	7/19
		4	Stock										
	Target:	0	Stock	6	8.0	V	16.8	2	38	6	2 2	211	31.5
	12 mg/L	1	Stock	6	8.1	6	15.9	2	98	5	7.7	BH	7117
Ref.ToxAmmonia - TAN	Actual:	2	Stock	6	8.1	9	16.9	2	18		7.8	MM	B 7/18
100	11.8	3	Stock	V	0.1	6	1801	7	Vo	5	78	JL	7/19
	11. 0		Stock	=				-				-	

TB 719: 16.6°C

CLIENT:	Internal	Date of Test:	17-Jul-13	
PROJECT:	RT	Test Type:	M. gallo	
COMMENTS:			1	

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

Intege	er: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34
9.35	A.53000-430001144000
934	75.03074
9.33	1
9.32	4
9.31	/
9.30	1
9.29	1
9.28	4
0.27	
9.26	
9.25	

Sample	Mod NH3T (mg/L)	salinity (ppt)	pH	temp (C)	temp (K)	i-factor	Mod NH3U (mg/
Target / Sample Name	Actual	22.9	8.0	24 1	297.26	9.3053	#VALUE!
Example 3.5	2/000	1.0.0	7,5	50	278.16	9.2750	0.008
0.75	0.674	28	7.7	16.5	289.66	9.3187	0.009
1.5	1.500	28	7.7	16.5	289.66	9.3187	0.019
3	3.050	28	7.7	16.5	289.66	9.3187	0.039
6	6.100	28	7.7	16.4	289.56	9.3187	0.077
12	11.800	28	7.7	16.4	289.56	9.3187	0.149
/							
7. **							
			- 1	1 - I			
		_ =		7			
						55	
		-					
				7 - 1			
					- V		
				15 1			
					1		
							1
				- 1			
		-					
			_				
		-	-				

ORGANISM RECEIPT LOG

Date:		1	Time:		NewFields	Batch No.	
7.	17.13		1200		750	71713	
Organism /	Project:	,	-		lı	voice Attac	hed
		Port	t Angeles		Y	es N	lo
Source / Su		^			Contact:		
TA	ylor Sl	ne lltish	ì)Care-	r Under	ood
No. Ordere		, N	lo. Received:		Source Ba	atch:	
	atch 7		1 betch			date, hatch date	e, etc.):
	of Organisms	:			mate Size o		
(Good, fair, po	oor; describe.):	(200 d		(Days fron	A 1	age, size class	, etc.):
		0000			Adu	IT	
Shipper:	_			B of L (T	racking No	.)	
	NF (DUCIE	İ	,	NA	,	
	, , ,	, o o			NA		
	of Container:			Receive	d Bv:		
(Good, fair, po	oor; describe.):	(200d			BH		
					D^{+}		
Container	D.O. (mg/L)	Temp. (°C)	Cond. or		pH (Units)	Number Dead or Moribund	Technician (Initials)
	_	15				_	13H
					· · · · · · · · · · · · · · · · · · ·		
~							
Notes:							

Appendix A.5

Chain of Custody Forms

Date/Time:

NewFields Northwest, LLC. Shipping: 472 View Dr. Mailing: P.O. Box 216 Port Gamble, WA. 98364

CHAIN OF CUSTCY

OT = Other

Tel; (360) 297-6040, Fax: (360)297-7268 NewFields B Gardiner " Now Ficlas M Bacon Destination Lab: Report Results To: NA NA Destination Contact: Contact Name: Address Address Email: Project Name nvoicing To: Analysis Comments or Special Instructions: mbacan@newfields Sample Temp Preservation LAB ID No. & Type of **Upon Receipt** No. Sample ID Matrix Container 4 C 12 13 14 15 16 17 18 19 20 Relinquished by: Recieved by: Relinquished by: Recieved by: **Matrix Codes** Print Name Print Name: Print Name Print Name Many Bacon MBacon W = Fresh Water Signature: Signature: Signature: Signature SB = Salt & Brackish Water Affiliation: Affiliation Affiliation FS = plant & Animal Tissue

Date/Time:

Date/Time:

Project:	WPAH (CITO	て-6み00)											
Samplers:	SEXTON, WUD	ZICKI, ESTELL	P										
Integral Cont	Office Scattle W Phone 201 957-	P	3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A	1	REQUESTE	ED					integral consulting inc.
Ship to:	Address 4724 NE V Port Cample Contact Fall Cavalin Phone 360-501-2	ew prive WA 93382 ex 5376	io etangangan per	Larval development Inth resultapartsion	20 days Nearthes	Braucumulah di Tem					Extra Container	Archive)
Sample No.	Tax No Date 12118 1251			<u> </u>	(4-	(T. /-					Ш	_ ∢	Comments
500030 500031	21124 21130 21136	1026		/									Te-PS 61, 34, 2.6, 1.4
らひひじょろ	21142	1134		Į,									
500034 500035	21148	1302		1									
500036 500036 500037	21160	1433		7									
500033 500039	21172	169											
500013	21134	739		1									
500024 500042	21196	0856		1									
5000 43	21212	1022		1									
500046	21218	1052		- "									***
Analysis Tur		Rush	Rush Re	esults Ne	eded By:]			Matrix Co SL - Soil SD -Sedir			roundwater urface water
	Samples Upon Receipt:	ing Tracking No.	Custody	Seal Inta	et2]]		\sim	OD -06011	nem	Outlet.	
	I by: (signature)	\ Date/Tim				d by:	uléa J		<u> </u>	(signature)			Date/Time: 6 28 13 1330
Relinquished		Date/Tim	ie:		Receive	d by:				(signature)			Date/Time:
Special Instru	ctions:												

Project:	WPAH (C)102-030										_		
Samplers:	SOXTON, WODZICKI,	ESTELLA									_		1
Integral Cont	Office Scattle WA Phone 24-957-034	7_	<u>س</u>	7	A	1	REQUESTE	ED					integral
Ship to:	Address New Fleds 1724 NE View Fort Gample W. Contact Fall Cawling	Drive A 98332	eday ungweed	Larvick itereugment	20 day Nearthes	Bioaccumudichin					Extra Container	ve	consulting inc.
Sample No.	Phone 360 501 - 3376	ime Matrix	is d	777	22 J	Boar					Extra	Archive	Comments
500047 500049 500048 500040	21230 62613 12 21236 16 21252 10	237 50		1									7emps 6.1, 3.4, 2.6,1.4
500029 500025 500026 500028	21275 0 21282 11 21289	711 538 904 047 241		V V		/							
500005 50000L	21292 21297 2130+	412 246	V V	1	1								
500007	21305 21306 21312 21313 21314	52	V	V V	/								
<u> </u>	21314	V											
Analysis Tur Shipped by:			Rush Re	sults Ne	eded By:					Matrix Co SL - Soil SD -Sedi			iroundwater urface water
	Samples Upon Receipt:	Date/Tim	Custody e: V	Seal Inta	ct?	d by:	en f		Q	(signature)			Date/Time: 6 29 13 1330
Relinquished	d by:(signature)	Date/Tim			Receive					(signature)			Date/Time:
Special Instru	uctions:												

Denver 285 Century Place Suite 190 Louisville, CO 80027 Portland, Oregon 319 SW Washington St Suite 1150 Portland, OR 97204 Honolulu 3465 Waialae Ave Suite 380 Honolulu, HI 96816 Seattle 411 1st Ave S Suite 550 Seattle, WA 98104 Portland, Maine 45 Exchange St Suite 200 Portland, ME 04101

Project:	WPAH (CITO)	2-0300)											
Samplers:	SEXTON, I	UUD ZICKI, 1	STELLA										1
Ship to: Sample No.	Office Phone Lab Name Address Contact Phone Contact Phone	Sexten CONP GET-0342 Teles NE VIEW DNI MINER	nbref	Laner Ciert Lymen	re-day Nearthen	Ferrender 10	REQUESTE	ĒD			Extra Container	Archive	integral consulting inc.
500017 500017 500019 500019 500020	21322 21336 21331 21332 21338 21334 21340	0907 1016	v v		1								
Analysis Tui	rn Time: Normal	Rush	Rush	Results Ne	eded By:				7/4/1	Matrix Co			roundwater urface water
Shipped by:	Currin s	hipping Tracking	No.							SD -Sedir	ment	Other:	
	f Samples Upon Rece ed by: (signature) ed by: (signature)	(FY)	Custo Date/Time: Date/Time:	'	Received			<u> 21</u> 1		(signature)			Date/Time:
Special Instri													

Denver 285 Century Place Suite 190 Louisville, CO 80027 Portland, Oregon 319 SW Washington St Suite 1150 Portland, OR 97204 Honolulu 3465 Waialae Ave Suite 380 Honolulu, HI 96816 Seattle 411 1st Ave S Suite 550 Seattle, WA 98104 Portland, Maine 45 Exchange St Suite 200 Portland, ME 04101

Project:	WFAH (CHOZ-0300)				
Samplers:	SEXTEN, WUDZICKI, ESTELLY	7			
Integral Cont	### 15/1-0342	AN.	ALYSES REQUESTED		integral
Ship to:	Lab Name New Fields Address 4724 NE View Prive For Campie, WA 43387 Contact Phone 300 5000 300 - 247 - 6550	10 day anyth ped Lawel development inth venypansion 20 stary Nearther	Text Treatain Ling Text	Extra Container	
Sample No.	Tue No Date Time Matrix	5 8 8 E	至	Extr	
500000 B	21363 7113 0843 50		V		5 CM BUCKET
1	21371 1022				
V	21373 199	· /	,		
500052	21379 12%			<u> </u>	1042
500053	21356 1343		1. 1.		2012
. 4	21387		/ / /		232
SOULU	7139+ 1534				5 EAL BUCKET
500004	21401 7213 0922		<i>V</i>		1062 7 Kin Implicate
500012	21402 1027	V	20		Zet 2 Spilitie Semple
300010	2144		53/		
1	21410				
300011	21422 134		V		
500022	21424 71313 1046				
\$00001	21434 1215 21435 V V			<u> </u>	
Analysis Turi		Rush Results Needed By:		Matrix Code:	GW - Groundwater
,, 5.5 ·				SL - Soil	SW - Surface water
Shipped by:	County Shipping Tracking No.			SD -Sediment	Other:
	Samples Upon Receipt:	Custody Seal Intact?	10		71413 Date/Time: 093c
Relinquished	d by: Date/Tim	e: 14 13 USOV Received	by: WESTERN	(signature)	Date/Time: 093
Relinquished	(signature)	e: Received		(signature)	Date/Time:
Special Instru	ictions:				

Denver 285 Century Place Suite 190 Louisville, CO 80027 Portland, Oregon 319 SW Washington St Suite 1150 Portland, OR 97204 Honolulu 3465 Waialae Ave Suite 380 Honolulu, HI 96816 Seattle 411 1st Ave S Suite 550 Seattle, WA 98104 Portland, Maine 45 Exchange St Suite 200 Portland, ME 04101

Project:	WPAH (C											_		101/4/00
Samplers:	SEXTIN,	WOOZ	IUKI, E	STELL	A							_		1
Integral Conta	Office Office Phone WW Address Piv	e Sexh He Wy -957- UFICIAL UFICIAL Camp Candyne	27 2 2342 3 WEW DV W, WA	1V&	Sinper	Lanai development in the veraspennin	20-class Neanthro	Between his his per	ratataning leger	ED		Extra Container	e,	integral consulting inc.
Sample No.	Phone 3600	Date 13/13	Time	Matrix		» Lew	NZ.	\$ 1/3	Treat			Extra	Archive	Comments
500002	21443 21444 21460		1550			V	✓	./						142
500054	21451		1717					V						10/2 10/20 202 20/20/20/20/20/20/20/20/20/20/20/20/20/2
				A*************************************										
			1 1/2	(1)										
Analysis Turn Shipped by: (Rush Tracking	No.	Rush Re	esults Nee	eded By:				 Matrix C SL - Soil SD -Sedi	;		roundwater urface water
	by: (signature			Date/Tim		Seal Inta ろびな		d by:] ABAC	(G)	(signature)			7/4/13 Date/Time: <u>09</u> 30
Relinquished				Date/Tim	e:		Received	d by:			 (signature)			Date/Time:
Special Instruc	····	/									(o.g.nature)			

Denver 285 Century Place Suite 190 Louisville, CO 80027 Portland, Oregon 319 SW Washington St Suite 1150 Portland, OR 97204 Honolulu 3465 Waialae Ave Suite 380 Honolulu, III 96816 Seattle 411 1st Ave S Suite 550 Seattle, WA 98104 Portland, Maine 45 Exchange St Suite 200 Portland, ME 04101

Project:	WPAH (21102-	(2000)											
Samplers:	SCXTUN;	WOOZ	ICKI, C	STELL	-A									
Integral Cont	Office Stattle WA Phone 201-1157-03+2					rent in	A	NALYSES I	REQUESTI	ĒD				integral
Ship to:	Address 472 PWT Contact Fill Phone 300	Camplianiting	c WA 9 eV 376	XXV	10 clay anyluped	Leural development with resurpentary	20-vianz Neanther	Brown cumulation Text	Treatain LMX Text			Extra Container	Archive)
Sample No.	1744N1	Date	Time	Matrix	 /	₹ 2.	2 2	135 1-	1= ,			<u>ま</u> る	₹	Comments
J	21444	1	1	-20								0.7		
SDUVIS	21484	7 8 13	1004		V	i/	V	V				1.5		5 cm Briker
300021	21470		1225			<i>y</i>	· /	V				1.5		5 CAL BUCKET
70002	21354		100				,				 -	•	05	
\downarrow	21356		V				1					1.8		
500055	21490	- 	1348					V				1.8		1012 2112
4 40028	21491	164.2	0444		/			V				1.8		wi
7,000	21506	7/4/13	0 141		e'	<u> </u>						1.40	4	
	21507		V		,	<u> </u>		,				1.4	'	
400018	21498	V	0306		7	1	V	i/			 	3.0		5 CAL BUCKET
			9	Stx 121		 	-				 			
	1		177	1/13		 								
Analysis Turi)	Rush		Rush Re	sults Nee	eded By:				Matrix Co		SW - S	Groundwater urface water
Shipped by:	•		Tracking	No.							SD -Sedir	nent	Other:	
Condition of	Samples Upon Re	ceipt:				Seal Inta	ct?			/				
Relinquished	by: Signature)	extr	<u>-</u>	Date/Time	e: 1/10/1	3 1600	Received	d by:			(signature)			Date/Time: 7.10.13 1606
Relinquished	by:(signature))		Date/Time	e:		Received	l by:			(signature)			Date/Time:
Special Instru	ctions:										-			

Denver 285 Century Place Suite 190 Louisville, CO 80027 Portland, Oregon 319 SW Washington St Suite 1150 Portland, OR 97204 Honolulu 3465 Waialae Ave Suite 380 Honolulu, HI 96816 Seattle 411 1st Ave S Suite 550 Seattle, WA 98104 Portland, Maine 45 Exchange St Suite 200 Portland, ME 04101

Project: CIIYL - PUFA - KPLY		
Samplers: SEXTON, WODZICKI, ESTE	LLA	
Samplers: SEXTEN WITZICK ESTE	ANALYSES REQUESTED ANALYSES REQUESTED IN MAN LENGTH STANKER NORTH STANKER ANALYSES REQUESTED I. O. CLERY ANALYSES REQUESTED I	Extra Container Comments. Had D Fare FIS Authorization
(signature)	Rush Results Needed By: SL - Soil SD - Sedi Custody Seal Intact? e: 7 10 13 1611 Received by: (signature) (signature)	SW - Surface water iment Other: Date/Time: 7.10.13 16 Date/Time:

Denver 285 Century Place Suite 190 Louisville, CO 80027 Portland, Oregon 319 SW Washington St Suite 1150 Portland, OR 97204 Honolulu 3465 Waialae Ave Suite 380 Honolulu, HI 96816 Seattle 411 1st Ave S Suite 550 Seattle, WA 98104 Portland, Maine 45 Exchange St Suite 200 Portland, ME 04101

CI IN OF CUSTODY

Shipping: 4770 NE View Dr. Mailing: P.O. Boy Sport Gamble, WA. 5

Tel: (360) 297-6045, Fax: (360)297-6901

Destination Lab: ALS Environmental		le Originator:	NewFields			Report Results T	Inte	gral	Phone: 360.705.3534, ext. 417			
estination Contact: Greg Salata	Conta	Contact Name: Bill Gardiner				Contact Name:	Craig H	utchings	Fax:	360.705.3669		
te	Addre				Address:			Email:				
7/16/13 rn-Around-Time NA		S	me as above 1205 West Bay Drīve NW Olympia, WA 98502				NW.	chutchings@integral-corp.con				
oject Name	Phone					Analysis	THE REPORT	Invoicing To:	Julia	and .		
Port Angeles	Fax.	360-297		-				Comments or Speci	Integ	(Ta)		
		Same as	above	oð								
ontract/PO: NA	E-mai	bgardiner@newfields.com		Total Solids & Grain Size	Total Solids & Grain Size				Sample Temp			
lo. Sample ID	Matrix	No. & Type of Container	Date & Time	Total	Arc			Preservation	Upon Receipt	LAB ID		
1 SD0056	SS	2-8 oz. glass	6/25/13 1610	X	X			4 deg. C	1.8.1			
2 SD0057	SS	2-8 oz. glass	6/25/13 1420	X	Х			4 deg. C				
3 SD0058	SS	2-8 oz. glass	6/25/13 1235	X	Х			4 deg. C				
3 00000		_ 5 52. g.500	2.20110 1200	1								
4							1					
5					-				1			
6		1										
7												
8												
9				==1								
10												
11												
12				-	-			-	+ +			
13		+ +			-	-	-	-	1			
14												
15	1											
16												
17	1											
								- 1				
18												
19							1					
Relinquished by:	_	Recieved	hv:			Relinquished	bv:		Recieved by:	Matrix Codes		
int Name: Many Bacon	Print Name		-3.	Print Nar	ne:			Print Name:		FW = Fresh Water		
gnature: What on	Signature:			Signature	e:			Signature:		WW = Waste Water		
filiation: NewFilds	Affiliation:				i:			Affiliation:		S8 = Salt & Brackish Wat		
ate/Time: 7/16/13 1100	Date/Time:			Date/Tim				Date/Time:		SS = Soil & Sediment		
int Name:	Print Name			Print Nar				Print Name:				
gnature:	Signature:			Signature				Signature:		OT = Other		
filiation:	Affiliation:			Affiliation				Affiliation:				
ate/Time:	Date/Time:			Date/Tim	ie:			Date/Time:				

Appendix B

Statistical Comparisons of Test Treatments

Test	Endpoint	Treatment	Comparison	Prob Normal	Prob Homogeneous	Run Type	Prob T	Significant?	One-tailed T-test
Bivalve Development Batch 1	Percent Normal Development	CARR-20	Control	0.163	0.776	T-test Equal Var	4.60E-05	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	CR-02	Control	0.254	0.79	T-test Equal Var	5.50E-05	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	CR-12	Control	0.026	0.227	Mann-Whitney	0.05	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0046	CR-12	0.013	0.21	Mann-Whitney	0.694		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0047	CR-12	0.008	0.425	Mann-Whitney	0.419		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0045	CR-12			Rankit Unequal Var		Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0023	CARR-20	0.817	0.098	T-test Unequal Var	0.001	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0025	CARR-20	0.104	0.362	T-test Equal Var	2.60E-04	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0027	CARR-20	0.492	0.879	T-test Equal Var	5.90E-04	Yes	Treatment < Comparison
Bivalve Development Batch 1 Bivalve Development Batch 1	Percent Normal Development	SD0035 SD0024	CARR-20 CR-02	0.209	0.532 0.128	T-test Equal Var	0.148	Yes	Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development Percent Normal Development	SD0024 SD0026	CR-02	0.333	0.846	T-test Equal Var T-test Equal Var	0.023	res	Treatment < Comparison Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0028	CR-02	0.595	0.014	T-test Unequal Var	0.493		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0029	CR-02	0.156	0.6	T-test Equal Var	0.006	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0023	CR-02	0.782	0.038	T-test Unequal Var	0.034	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0031	CR-02	0.288	0.261	T-test Equal Var	0.087	1.03	Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0032	CR-02	0.492	0.779	T-test Equal Var	0.694		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0033	CR-02	0.209	0.548	T-test Equal Var	0.108		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0034	CR-02	0.24	0.388	T-test Equal Var	0.035	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0036	CR-02	0.067	0.706	T-test Equal Var	0.532		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0037	CR-02	0.435	0.323	T-test Equal Var	0.28		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0038	CR-02	0.111	0.49	T-test Equal Var	0.682		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0039	CR-02	0.896	0.029	T-test Unequal Var	0.035	Yes	Treatment < Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0040	CR-02	0.667	0.054	T-test Unequal Var	0.318		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0042	CR-02	0.389	0.259	T-test Equal Var	0.142		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0043	CR-02	0.763	0.817	T-test Equal Var	0.915		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0044	CR-02	0.425	0.151	T-test Equal Var	0.872		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0045	CR-02	0.202	0.589	T-test Equal Var	0.162		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0048	CR-02	0.395	0.211	T-test Equal Var	0.961		Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD0049	CR-02	0.228	0.728	T-test Equal Var	0.973	V	Treatment >= Comparison
Bivalve Development Batch 1	Percent Normal Development	SD005 SD006	CR-02 CR-02	0.67	0.143 0.215	T-test Equal Var	0.027	Yes Yes	Treatment < Comparison
Bivalve Development Batch 1 Bivalve Development Batch 1	Percent Normal Development Percent Normal Development	SD006 SD007	CR-02	0.429	0.215	T-test Equal Var		Yes	Treatment < Comparison
	'					T-test Equal Var	0.07	Voc	Treatment >= Comparison Treatment < Comparison
Bivalve Development Batch 2 Bivalve Development Batch 2	Percent Normal Development Percent Normal Development	CARR-20 CR-02	Control Control	0.854	0.266 0.008	T-test Equal Var T-test Unequal Var	0.016 0.01	Yes Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	CR-12	Control	0.581	0.742	T-test Equal Var	0.01	res	Treatment >= Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0003	CARR-20	0.444	0.193	T-test Equal Var	9.80E-04	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0004	CARR-20	0.435	0.382	T-test Equal Var	8.50E-06	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0001	CR-02	0.286	0.019	T-test Unequal Var	0.02	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0002	CR-02	0.468	0.042	T-test Unequal Var	0.02	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0008	CR-02	0.353	0.113	T-test Equal Var	0.011	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0010	CR-02	0.68	0.113	T-test Equal Var	5.20E-05	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0011	CR-02	0.626	0.183	T-test Equal Var	0.002	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0012	CR-02	0.295	0.672	T-test Equal Var	0.038	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0013	CR-02	0.978	0.055	T-test Unequal Var	0.096		Treatment >= Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0015	CR-02	0.758	0.02	T-test Unequal Var	0.033	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0017	CR-02	0.867	0.025	T-test Unequal Var	0.03	Yes	Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0018	CR-02	0.673	0.063	T-test Unequal Var	0.831		Treatment >= Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0019	CR-02	0.28	0.049	T-test Unequal Var	0.297		Treatment >= Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0020	CR-02	0.503	0.151	T-test Equal Var	1.60E-04	Yes	Treatment < Comparison
Bivalve Development Batch 2 Bivalve Development Batch 2	Percent Normal Development Percent Normal Development	SD0022	CR-02 CR-02	0.794	0.314 0.216	T-test Equal Var	0.163 0.017	Voc	Treatment >= Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0009 SD0014	CR-02	0.012	0.162	Mann-Whitney Mann-Whitney	0.017	Yes Yes	Treatment < Comparison Treatment < Comparison
Bivalve Development Batch 2	Percent Normal Development	SD0014 SD0021	CR-02	0.016	0.162	Mann-Whitney	0.033	163	Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	CARR-20	Control	0.032	0.011	T-test Unequal Var	0.082		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	CR-12	Control	0.117	0.098	T-test Unequal Var	0.082		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	CR-02	Control	0.004	0.375	Mann-Whitney	0.31		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0003	CARR-20	0.088	0.326	T-test Equal Var	0.752		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0004	CARR-20	0.323	0.008	T-test Unequal Var	0.912		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0001	CR-02	0.376	0.962	T-test Equal Var	0.044	Yes	Treatment < Comparison
Eohaustorius estuarius	Percent Survival	SD0011	CR-02	0.231	0.13	T-test Equal Var	0.098		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0012	CR-02	0.178	0.653	T-test Equal Var	0.177		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0014	CR-02	0.075	0.899	T-test Equal Var	0.214		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0015	CR-02	0.325	0.67	T-test Equal Var	0.072		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0018	CR-02	0.108	0.543	T-test Equal Var	0.161		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0021	CR-02	0.216	0.361	T-test Equal Var	0.133		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0002	CR-02	0.008	0.301	Mann-Whitney	0.31		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0006	CR-02	0.004	0.375	Mann-Whitney	0.31		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0007	CR-02	0.047	0.579	Mann-Whitney	0.089		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0008	CR-02	4.70E-06	1	Mann-Whitney	0.5		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0009	CR-02	5.10E-05	0.532	Mann-Whitney	0.5	 	Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0010	CR-02	5.10E-05	0.532	Mann-Whitney	0.5		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0013	CR-02	0.002	0.899	Mann-Whitney	0.401		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0017 SD0019	CR-02 CR-02	0.002 4.10E-04	0.899 0.111	Mann-Whitney Mann-Whitney	0.401 0.064	-	Treatment >= Comparison Treatment >= Comparison
Eohaustorius estuarius Eohaustorius estuarius	Percent Survival Percent Survival	SD0019 SD0020	CR-02	0.004	0.111	Mann-Whitney	0.064		Treatment >= Comparison Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0020 SD0005							
	IF CILCIIL DUI VIVAI	500005	CR-02	1.10E-04	0.029	Rankit Unequal Var	0.813	i	Treatment >= Comparison

Test	Endpoint	Treatment	Comparison	Prob Normal	Prob Homogeneous	Run Type	Prob T	Significant?	One-tailed T-test
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	CARR-20	Control	0.972	0.043	T-test Unequal Var	0.917		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	CR-02	Control	0.906	0.72	T-test Equal Var	0.139		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	CR-12	Control	0.883	0.086	T-test Unequal Var	0.942		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0003	CARR-20	0.58	0.001	T-test Unequal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0004	CARR-20	0.643	0.72	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0001	CR-02	0.796	0.531	T-test Equal Var	0.997		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0002	CR-02	0.878	0.736	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0005	CR-02	0.887	0.586	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0006	CR-02	0.566	0.409	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0007	CR-02	0.822	0.927	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0008	CR-02	0.719	0.857	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0009	CR-02	0.71	0.262	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0010	CR-02	0.569	0.7	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0011	CR-02	0.571	0.667	T-test Equal Var	0.992		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0012	CR-02	0.804	0.251	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0013	CR-02	0.834	0.987	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0014	CR-02	0.807	0.527	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0015	CR-02	0.255	0.354	T-test Equal Var	0.994		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0017	CR-02	0.909	0.377	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0018	CR-02	0.34	0.935	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0019	CR-02	0.456	0.681	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0020	CR-02	0.767	0.755	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0021	CR-02	0.496	0.233	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	CARR-20	Control	0.164	0.857	T-test Equal Var	0.912		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	CR-02	Control	0.462	0.981	T-test Equal Var	0.077		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	CR-12	Control	0.861	0.066	T-test Unequal Var	0.981		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0003	CARR-20	0.284	0.524	T-test Equal Var	0.969		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0004	CARR-20	0.991	0.024	T-test Unequal Var	0.965		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0001	CR-02	0.541	0.568	T-test Equal Var	0.985		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0002	CR-02	0.939	0.581	T-test Equal Var	0.995		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0005	CR-02	0.766	0.748	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0006	CR-02	0.596	0.381	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0007	CR-02	0.495	0.979	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0008	CR-02	0.524	0.952	T-test Equal Var	0.996		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0009	CR-02	0.849	0.171	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0010	CR-02	0.689	0.573	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0011	CR-02	0.406	0.631	T-test Equal Var	0.969		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0012	CR-02	0.375	0.168	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0013	CR-02	0.635	0.79	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0014	CR-02	0.777	0.683	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0015	CR-02	0.111	0.34	T-test Equal Var	0.993		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0017	CR-02	0.882	0.443	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0018	CR-02	0.888	0.89	T-test Equal Var	1		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0019	CR-02	0.361	0.437	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0020	CR-02	0.959	0.802	T-test Equal Var	0.999		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg	SD0021	CR-02	0.236	0.161	T-test Equal Var	1		Treatment >= Comparison

13:10 Monday, September 2, 2013

1

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=CARR-20 ----

The TTEST Procedure

Variable: result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.5113	0.0975	0.0436	1.3464	1.5708	
	Refe	rence	5	1.1102	0.0773	0.0346	1.0312	1.2040	
	Diff	(1-2)		0.4012	0.0880	0.0556			
group		Method		Mean	95% CI	L Mean	Std Dev	95% CL S	td Dev
Control				1.5113	1.3903	1.6323	0.0975	0.0584	0.2800
Referenc	е			1.1102	1.0141	1.2062	0.0773	0.0463	0.2223
Diff (1-	2)	Pooled		0.4012	0.2729	0.5295	0.0880	0.0594	0.1685
Diff (1-	2)	Satterthw	aite	0.4012	0.2717	0.5306			
		Method	I	Variance	es l	OF t Val	ue Pr > t		
		Pooled Satter	thwaite	Equal Unequal	7.60		21 <.0001 21 0.0001		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.59	0.6652

13:10 Monday, September 2, 2013

2

----- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=CR-02 -----

The TTEST Procedure

Variable: result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.5113	0.0975	0.0436	1.3464	1.5708	
	Refe	rence	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Diff	(1-2)		0.4348	0.0979	0.0619			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
Control				1.5113	1.3903	1.6323	0.0975	0.0584	0.2800
Referenc	е			1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Diff (1-	2)	Pooled		0.4348	0.2919	0.5776	0.0979	0.0661	0.1876
Diff (1-	2)	Satterthy	vaite	0.4348	0.2919	0.5776			
		Method	t	Varianc	es DI	t Value	Pr > t		
		Pooled	t	Equal	8	3 7.02	0.0001		
		Satter	rthwaite	Unequal	7.9992	2 7.02	0.0001		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.02	0.9854

13:10 Monday, September 2, 2013

3

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=CARR-20 ----

The TTEST Procedure

Variable: result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.2311	0.0707	0.0316	1.1580	1.3212	
	Refe	rence	5	1.1269	0.0545	0.0244	1.0383	1.1845	
	Diff	(1-2)		0.1042	0.0631	0.0399			
group		Method		Mean	95% CL	. Mean	Std Dev	95% CL S	Std Dev
Control				1.2311	1.1433	1.3189	0.0707	0.0424	0.2031
Referenc	е			1.1269	1.0593	1.1945	0.0545	0.0326	0.1565
Diff (1-	2)	Pooled		0.1042	0.0122	0.1962	0.0631	0.0426	0.1209
Diff (1-	2)	Satterthy	vaite	0.1042	0.0111	0.1973			
		Method	i	Varianc	es D	F t Value	Pr > t		
		Pooled	i	Equal		8 2.61	0.0311		
		Satter	rthwaite	Unequal	7.511	3 2.61	0.0328		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.68	0.6257

13:10 Monday, September 2, 2013

----- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=CR-02 -----

The TTEST Procedure

Variable: result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.2311	0.0707	0.0316	1.1580	1.3212	
	Refe	rence	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Diff	(1-2)		0.1148	0.0527	0.0334			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
Control				1.2311	1.1433	1.3189	0.0707	0.0424	0.2031
Referenc	е			1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Diff (1-	2)	Pooled		0.1148	0.0379	0.1917	0.0527	0.0356	0.1011
Diff (1-	2)	Satterth	waite	0.1148	0.0285	0.2011			
		Metho	d	Varianc	es [OF t Valu	ne Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	4.897	8 3.4 '8 3.4			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	8.80	0.0583

13:10 Monday, September 2, 2013

5

----- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=CR-12 -----

The TTEST Procedure

Variable: result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Conti	rol	5	1.2311	0.0707	0.0316	1.1580	1.3212	
	Refe	rence	5	1.1882	0.0675	0.0302	1.0909	1.2636	
	Diff	(1-2)		0.0429	0.0691	0.0437			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
Control				1.2311	1.1433	1.3189	0.0707	0.0424	0.2031
Referenc	е			1.1882	1.1044	1.2721	0.0675	0.0405	0.1940
Diff (1-	2)	Pooled		0.0429	-0.0579	0.1437	0.0691	0.0467	0.1324
Diff (1-	2)	Satterth	waite	0.0429	-0.0580	0.1437			
		Metho	d	Variance	s DF	t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	7.9832	0.98 0.98			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.10	0.9313

13:10 Monday, September 2, 2013

6

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=CARR-20 -------

The TTEST Procedure

Variable: result

	grou	р	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.4462	0.1812	0.0810	1.1731	1.5708	
	Refe	rence	5	1.3068	0.0527	0.0236	1.2490	1.3453	
	Diff	(1-2)		0.1394	0.1334	0.0844			
group		Method		Mean	95% Cl	_ Mean	Std Dev	95% CL S	Std Dev
Control				1.4462	1.2212	1.6712	0.1812	0.1086	0.5207
Referenc	е			1.3068	1.2413	1.3722	0.0527	0.0316	0.1515
Diff (1-	2)	Pooled		0.1394	-0.0553	0.3340	0.1334	0.0901	0.2556
Diff (1-	2)	Satterthw	aite	0.1394	-0.0822	0.3610			
		Method		Variance	s [OF t Valu	e Pr > t		
		Pooled Satter	thwaite	Equal Unequal	4.672	8 1.6 21 1.6			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	11.82	0.0346

13:10 Monday, September 2, 2013

7

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=CR-12

The TTEST Procedure

Variable: result

	group		N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Contr	ol	5	1.4462	0.1812	0.0810	1.1731	1.5708	
	Refer	ence	5	1.3904	0.1009	0.0451	1.3453	1.5708	
	Diff	(1-2)		0.0558	0.1466	0.0927			
group	I	Method		Mean	95% CL	. Mean	Std Dev	95% CL S	Std Dev
Control				1.4462	1.2212	1.6712	0.1812	0.1086	0.5207
Reference	е			1.3904	1.2652	1.5156	0.1009	0.0604	0.2898
Diff (1-2	2)	Pooled		0.0558	-0.1581	0.2696	0.1466	0.0990	0.2809
Diff (1-2	2)	Satterthw	aite	0.0558	-0.1689	0.2804			
		Method		Variance	es D	F t Value	e Pr > t		
		Pooled		Equal		8 0.60	0.5643		
		Satter	thwaite	Unequal	6.261	1 0.60	0.5687		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.23	0.2827

13:10 Monday, September 2, 2013

8

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=CARR-20 ------

The TTEST Procedure

Variable: result

	group		N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Contro	ol	5	0.3465	0.0619	0.0277	0.2713	0.4144	
	Refere	ence	5	0.3942	0.0231	0.0103	0.3700	0.4241	
	Diff	(1-2)		-0.0476	0.0467	0.0295			
group	ı	Method		Mean	95% Cl	_ Mean	Std Dev	95% CL S	Std Dev
Control				0.3465	0.2697	0.4234	0.0619	0.0371	0.1779
Reference	е			0.3942	0.3655	0.4228	0.0231	0.0138	0.0663
Diff (1-2	2) I	Pooled		-0.0476	-0.1157	0.0205	0.0467	0.0315	0.0895
Diff (1-2	2)	Satterthw	aite	-0.0476	-0.1232	0.0279			
		Method		Variance	es [OF t Va	lue Pr > t		
		Pooled		Equal		8 -1	.61 0.1456		
		Satter	thwaite	Unequal	5.090	02 -1	.61 0.1668		

Method	NUM DF	Den DF	r value	Pr > F
Folded F	4	4	7.20	0.0820

13:10 Monday, September 2, 2013

9

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=CR-02 ------

The TTEST Procedure

Variable: result

	group		N	Mean	Std Dev	Std	Err	Minimum	Maximum	
	Contro	1	5	0.3465	0.0619	0.0	0277	0.2713	0.4144	
	Refere	nce	5	0.2924	0.0835	0.0	0373	0.1951	0.4194	
	Diff (1-2)		0.0541	0.0735	0.0	0465			
group	Me	ethod		Mean	95% C	L Mean		Std Dev	95% CL S	Std Dev
Control				0.3465	0.2697	0.42	234	0.0619	0.0371	0.1779
Reference	е			0.2924	0.1888	0.39	961	0.0835	0.0500	0.2399
Diff (1-2	2) Po	ooled		0.0541	-0.0531	0.16	613	0.0735	0.0496	0.1408
Diff (1-	2) Sa	atterthwa	aite	0.0541	-0.0547	0.16	529			
		Method		Variance	S	DF 1	t Value	Pr > t		
		Pooled		Equal		8	1.16	0.2778		
		Satter	thwaite	Unequal	7.37	67	1.16	0.2805		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.82	0.5763

13:10 Monday, September 2, 2013

10

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=CR-12 ------

The TTEST Procedure

Variable: result

	group		N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Contro	ol	5	0.3465	0.0619	0.0277	0.2713	0.4144	
	Refere	ence	5	0.4031	0.0294	0.0132	0.3614	0.4353	
	Diff ((1-2)		-0.0566	0.0485	0.0306			
group	N	Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
Control				0.3465	0.2697	0.4234	0.0619	0.0371	0.1779
Reference	е			0.4031	0.3666	0.4396	0.0294	0.0176	0.0846
Diff (1-2	2) F	Pooled		-0.0566	-0.1272	0.0141	0.0485	0.0327	0.0928
Diff (1-	2) 8	Satterthw	aite	-0.0566	-0.1325	0.0193			
		Method		Variance	es Di	F t Value	Pr > t		
		Pooled Satter	thwaite	Equal Unequal	5.720°	3 -1.85 7 -1.85			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	4.42	0.1789

13:10 Monday, September 2, 2013

- 11

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=CARR-20 -----

The TTEST Procedure

Variable: result

	group		N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Contr	rol	5	0.5131	0.0920	0.0412	0.4092	0.6082	
	Refer	rence	5	0.5960	0.0847	0.0379	0.4813	0.6896	
	Diff	(1-2)		-0.0830	0.0884	0.0559			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
Control				0.5131	0.3988	0.6273	0.0920	0.0551	0.2645
Referenc	е			0.5960	0.4909	0.7011	0.0847	0.0507	0.2433
Diff (1-	2)	Pooled		-0.0830	-0.2119	0.0460	0.0884	0.0597	0.1694
Diff (1-	2)	Satterth	waite	-0.0830	-0.2121	0.0461			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -1.48	0.1762		
		Satte	rthwaite	Unequal	7.944	6 -1.48	0.1764		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.18	0.8751

13:10 Monday, September 2, 2013

12

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=CR-02 ------

The TTEST Procedure

Variable: result

	group		N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Contro	1	5	0.5131	0.0920	0.0412	0.4092	0.6082	
	Refere	nce	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Diff (1-2)		0.0960	0.0964	0.0610			
group	M	lethod		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
Control				0.5131	0.3988	0.6273	0.0920	0.0551	0.2645
Reference	е			0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Diff (1-2	2) P	ooled		0.0960	-0.0446	0.2365	0.0964	0.0651	0.1847
Diff (1-2	2) S	atterthw	aite	0.0960	-0.0448	0.2367			
		Method		Variance	es D	F t Value	e Pr > t		
		Pooled		Equal		8 1.57	7 0.1541		
		Satter	thwaite	Unequal	7.938	3 1.57	7 0.1544		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.19	0.8681

13:10 Monday, September 2, 2013

13

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=CR-12 ------

The TTEST Procedure

Variable: result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	0.5131	0.0920	0.0412	0.4092	0.6082	
	Refe	rence	5	0.6344	0.0387	0.0173	0.5859	0.6806	
	Diff	(1-2)		-0.1213	0.0706	0.0447			
group		Method		Mean	95% CI	_ Mean	Std Dev	95% CL S	td Dev
Control				0.5131	0.3988	0.6273	0.0920	0.0551	0.2645
Referenc	е			0.6344	0.5863	0.6824	0.0387	0.0232	0.1112
Diff (1-	2)	Pooled		-0.1213	-0.2243	-0.0184	0.0706	0.0477	0.1353
Diff (1-	2)	Satterth	waite	-0.1213	-0.2338	-0.00889			
		Metho	d	Variance	s [OF t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	5.37 ⁻	8 -2.72 15 -2.72			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	5.66	0.1219

----- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=CR-12 -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable result Classified by Variable group

group	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
Control	5	36.50	27.50	4.624812	7.30
Reference	5	18.50	27.50	4.624812	3.70

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	36.5000
Normal Approximation Z One-Sided Pr > Z Two-Sided Pr > Z	1.8379 0.0330 0.0661
t Approximation	
One-Sided Pr > Z	0.0496
Two-Sided $Pr > Z $	0.0992

Z includes a continuity correction of 0.5.

Chi-Square	3.7870
DF	1
Pr > Chi-Square	0.0517

P:_Port Angeles Western	Harbor Group	\Lab Files\stats	Statistical Comparison	15
	Mann-Whitney	Test Results	13:10 Monday, September 2	, 2013

----- Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=CR-02

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable result Classified by Variable group

group	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
Control	5	25.0	27.50	3.890873	5.0
Reference	5	30.0	27.50	3.890873	6.0

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	25.0000
Normal Approximation	
Z	-0.5140
One-Sided Pr < Z	0.3036
Two-Sided $Pr > Z $	0.6072
t Approximation	
One-Sided Pr < Z	0.3098
Two-Sided Pr > Z	0.6196

Z includes a continuity correction of 0.5.

Chi-Square	0.4128
DF	1
Pr > Chi-Square	0.5205

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0046 -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-12	5	24.50	27.50	4.758034	4.90
Test	5	30.50	27.50	4.758034	6.10

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	24.5000
Normal Approximation	
Z	-0.5254
One-Sided Pr < Z	0.2996
Two-Sided $Pr > Z $	0.5993
t Approximation	
One-Sided Pr < Z	0.3060
Two-Sided Pr > Z	0.6120

Z includes a continuity correction of 0.5.

Chi-Square	0.3975
DF	1
Pr > Chi-Square	0.5284

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0047 -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

group	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
CR-12	5	29.0	27.50	4.772607	5.80
Test	5	26.0	27.50	4.772607	5.20

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	29.0000
Normal Approximation 7	0.2095
One-Sided Pr > Z	0.4170
Two-Sided Pr $> Z $	0.8340
t Approximation	
One-Sided Pr > Z	0.4194
Two-Sided Pr > Z	0.8387

Z includes a continuity correction of 0.5.

Chi-Square	0.0988
DF	1
Pr > Chi-Square	0.7533

13:10 Monday, September 2, 2013

18

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0045 -----

The TTEST Procedure

Variable: rankit (Rank for Variable Result)

	grou	0	N	Mean	Std Dev	Sto	l Err	Minimum	Maximum	
	CR - 12	2	1	0.5895				0.5895	0.5895	
	Test		1	-0.5895				-0.5895	-0.5895	
	Diff	(1-2)								
group		Method		Mean	95%	CL Mean	1	Std Dev	95% CL Std	Dev
CR-12				0.5895					•	
Test				-0.5895		•		•		
Diff (1-2	2)	Pooled								
Diff (1-2	2)	Satterthw	vaite							
		Method	i	Variance	s	DF	t Value	Pr > t		
		Pooled	ł	Equal		0				
		Satter	rthwaite	Unequal		0				

Method	Num DF	Den DF	F Value	Pr > F
Folded F	0	0		

13:10 Monday, September 2, 2013

19

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0023 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	1.1102	0.0773	0.0346	1.0312	1.2040	
	Test		5	0.9088	0.0399	0.0179	0.8653	0.9571	
	Diff	(1-2)		0.2014	0.0615	0.0389			
group		Method		Mean	95% CL	. Mean	Std Dev	95% CL S	Std Dev
CARR-20				1.1102	1.0141	1.2062	0.0773	0.0463	0.2223
Test				0.9088	0.8592	0.9584	0.0399	0.0239	0.1148
Diff (1-	2)	Pooled		0.2014	0.1116	0.2911	0.0615	0.0416	0.1179
Diff (1-	2)	Satterthw	aite	0.2014	0.1061	0.2967			
		Method	I	Varianc	es D	F t Valu	e Pr > t		
		Pooled	I	Equal		8 5.1	7 0.0008		
		Satter	thwaite	Unequal	5.991	2 5.1	7 0.0021		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.75	0.2285

13:10 Monday, September 2, 2013

20

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0025 -----

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR-	-20	5	1.1102	0.0773	0.0346	1.0312	1.2040	
	Test		5	0.8050	0.0944	0.0422	0.6952	0.8998	
	Diff	(1-2)		0.3051	0.0863	0.0546			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CARR-20				1.1102	1.0141	1.2062	0.0773	0.0463	0.2223
Test				0.8050	0.6878	0.9222	0.0944	0.0566	0.2712
Diff (1-2	2)	Pooled		0.3051	0.1793	0.4310	0.0863	0.0583	0.1653
Diff (1-	2)	Satterthw	aite	0.3051	0.1784	0.4318			
		Method		Variance	es DF	t Value	Pr > t		
		Pooled		Equal	8	5.59	0.0005		
		Satter	thwaite	Unequal	7.7024	5.59	0.0006		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.49	0.7089

13:10 Monday, September 2, 2013

21

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0027 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	1.1102	0.0773	0.0346	1.0312	1.2040	
	Test		5	0.8476	0.0913	0.0408	0.7549	0.9936	
	Diff	(1-2)		0.2626	0.0846	0.0535			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CARR-20				1.1102	1.0141	1.2062	0.0773	0.0463	0.2223
Test				0.8476	0.7342	0.9610	0.0913	0.0547	0.2624
Diff (1-	2)	Pooled		0.2626	0.1392	0.3860	0.0846	0.0572	0.1621
Diff (1-	2)	Satterthw	aite	0.2626	0.1386	0.3866			
		Method	I	Varianc	es D	F t Value	Pr > t		
		Pooled	I	Equal		8 4.91	0.0012		
		Satter	thwaite	Unequal	7.789	1 4.91	0.0013		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.39	0.7554

13:10 Monday, September 2, 2013

22

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0035 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	1.1102	0.0773	0.0346	1.0312	1.2040	
	Test		5	1.0504	0.0911	0.0407	0.9260	1.1335	
	Diff	(1-2)		0.0597	0.0845	0.0534			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL \$	Std Dev
CARR-20				1.1102	1.0141	1.2062	0.0773	0.0463	0.2223
Test				1.0504	0.9373	1.1635	0.0911	0.0546	0.2618
Diff (1-	2)	Pooled		0.0597	-0.0635	0.1830	0.0845	0.0571	0.1619
Diff (1-	2)	Satterthw	aite	0.0597	-0.0641	0.1836			
		Method		Variance	es DF	t Value	Pr > t		
		Pooled		Equal	8	1.12	0.2960		
		Satter	thwaite	Unequal	7.7948	1.12	0.2968		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.39	0.7588

13:10 Monday, September 2, 2013

23

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0003 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	1.1269	0.0545	0.0244	1.0383	1.1845	
	Test		5	0.9172	0.0883	0.0395	0.7842	1.0050	
	Diff	(1-2)		0.2097	0.0734	0.0464			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CARR-20				1.1269	1.0593	1.1945	0.0545	0.0326	0.1565
Test				0.9172	0.8075	1.0269	0.0883	0.0529	0.2538
Diff (1-	2)	Pooled		0.2097	0.1027	0.3167	0.0734	0.0496	0.1406
Diff (1-	2)	Satterthw	aite	0.2097	0.0988	0.3206			
		Method		Varianc	es DI	t Value	Pr > t		
		Pooled		Equal	8	3 4.52	0.0020		
		Satter	thwaite	Unequal	6.656	7 4.52	0.0031		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.63	0.3715

13:10 Monday, September 2, 2013

24

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0004 -----

The TTEST Procedure

Variable: Result

	group)	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR-	-20	5	1.1269	0.0545	0.0244	1.0383	1.1845	
	Test		5	0.8823	0.0253	0.0113	0.8557	0.9102	
	Diff	(1-2)		0.2446	0.0425	0.0269			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CARR-20				1.1269	1.0593	1.1945	0.0545	0.0326	0.1565
Test				0.8823	0.8509	0.9137	0.0253	0.0152	0.0727
Diff (1-2	2)	Pooled		0.2446	0.1827	0.3065	0.0425	0.0287	0.0813
Diff (1-2	2)	Satterthw	aite	0.2446	0.1779	0.3113			
		Method		Variance	es DF	t Value	Pr > t		
		Pooled		Equal	8	9.11	<.0001		
		Satter	thwaite	Unequal	5.6486	9.11	0.0001		
				•					

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	4.64	0.1665

13:10 Monday, September 2, 2013

25

----------- Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0003 --------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	1.3068	0.0527	0.0236	1.2490	1.3453	
	Test		5	1.3519	0.1315	0.0588	1.2490	1.5708	
	Diff	(1-2)		-0.0451	0.1002	0.0634			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CARR-20				1.3068	1.2413	1.3722	0.0527	0.0316	0.1515
Test				1.3519	1.1886	1.5152	0.1315	0.0788	0.3779
Diff (1-	2)	Pooled		-0.0451	-0.1912	0.1010	0.1002	0.0677	0.1919
Diff (1-	2)	Satterth	waite	-0.0451	-0.2056	0.1154			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -0.71	0.4968		
		Satte	rthwaite	e Unequal	5.253	2 -0.71	0.5069		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	6.22	0.1044

13:10 Monday, September 2, 2013

26

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0004 -------

The TTEST Procedure

Variable: Result

	grou	o	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	1.3068	0.0527	0.0236	1.2490	1.3453	
	Test		5	1.4162	0.1465	0.0655	1.2490	1.5708	
	Diff	(1-2)		-0.1095	0.1101	0.0696			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL St	d Dev
CARR-20				1.3068	1.2413	1.3722	0.0527	0.0316	0.1515
Test				1.4162	1.2344	1.5981	0.1465	0.0877	0.4209
Diff (1-	2)	Pooled		-0.1095	-0.2700	0.0511	0.1101	0.0743	0.2109
Diff (1-	2)	Satterth	waite	-0.1095	-0.2882	0.0693			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -1.57	0.1545		
		Satte	rthwaite	Unequal	5.019	2 -1.57	0.1765		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	7.72	0.0729

13:10 Monday, September 2, 2013

27

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0003 ------

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	0.3942	0.0231	0.0103	0.3700	0.4241	
	Test		5	0.6240	0.0833	0.0372	0.5551	0.7340	
	Diff	(1-2)		-0.2299	0.0611	0.0386			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL St	td Dev
CARR-20				0.3942	0.3655	0.4228	0.0231	0.0138	0.0663
Test				0.6240	0.5206	0.7274	0.0833	0.0499	0.2393
Diff (1-	2)	Pooled		-0.2299	-0.3190	-0.1408	0.0611	0.0413	0.1171
Diff (1-	2)	Satterth	waite	-0.2299	-0.3318	-0.1280			
		Metho	d	Varianc	es D	F t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	4.610	8 -5.95 2 -5.95			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	13.03	0.0290

13:10 Monday, September 2, 2013

28

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0004 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum
	CARR	-20	5	0.3942	0.0231	0.0103	0.3700	0.4241
	Test		5	0.5940	0.0201	0.00901	0.5642	0.6143
	Diff	(1-2)		-0.1998	0.0217	0.0137		
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std Dev
CARR-20				0.3942	0.3655	0.4228	0.0231	0.0138 0.0663
Test				0.5940	0.5690	0.6190	0.0201	0.0121 0.0579
Diff (1-	2)	Pooled		-0.1998	-0.2314	-0.1682	0.0217	0.0146 0.0415
Diff (1-	2)	Satterth	nwaite	-0.1998	-0.2315	-0.1681		
		Metho	od	Variance	es D	F t Value	Pr > t	
		Poole Satte	ed erthwaite	Equal Unequal	7.857	8 -14.59 2 -14.59		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.31	0.7990

13:10 Monday, September 2, 2013

29

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0003 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	0.5960	0.0847	0.0379	0.4813	0.6896	
	Test		5	0.7192	0.0951	0.0425	0.6337	0.8393	
	Diff	(1-2)		-0.1231	0.0900	0.0569			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL St	d Dev
CARR-20				0.5960	0.4909	0.7011	0.0847	0.0507	0.2433
Test				0.7192	0.6011	0.8372	0.0951	0.0570	0.2732
Diff (1-	2)	Pooled		-0.1231	-0.2544	0.00816	0.0900	0.0608	0.1724
Diff (1-	2)	Satterth	waite	-0.1231	-0.2547	0.00846			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -2.16	0.0625		
		Satte	rthwaite	Unequal	7.894	6 -2.16	0.0630		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.26	0.8274

13:10 Monday, September 2, 2013

30

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0004 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	-20	5	0.5960	0.0847	0.0379	0.4813	0.6896	
	Test		5	0.6887	0.0287	0.0129	0.6552	0.7302	
	Diff	(1-2)		-0.0926	0.0632	0.0400			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std [Dev
CARR-20				0.5960	0.4909	0.7011	0.0847	0.0507 0.2	2433
Test				0.6887	0.6530	0.7244	0.0287	0.0172 0.0	0826
Diff (1-	2)	Pooled		-0.0926	-0.1848	-0.00044	0.0632	0.0427 0.1	1211
Diff (1-	2)	Satterthy	vaite	-0.0926	-0.1960	0.0107			
		Method	d	Varianc	es [F t Value	Pr > t		
		Pooled	t	Equal		8 -2.32	0.0491		
		Satter	rthwaite	e Unequal	4.910	5 -2.32	0.0692		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	8.67	0.0597

13:10 Monday, September 2, 2013

31

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0024 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9580	0.0553	0.0247	0.8998	1.0409	
	Diff	(1-2)		0.1185	0.0798	0.0505			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9580	0.8894	1.0267	0.0553	0.0331	0.1588
Diff (1-	2)	Pooled		0.1185	0.00213	0.2349	0.0798	0.0539	0.1529
Diff (1-	2)	Satterthw	/aite	0.1185	-0.00359	0.2406			
		Method	I	Varianc	es D	F t Value	Pr > t		
		Pooled	I	Equal		8 2.35	0.0468		
		Satter	thwaite	Unequal	6.295	3 2.35	0.0552		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.17	0.2899

13:10 Monday, September 2, 2013

32

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0026 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.0753	0.1297	0.0580	0.9707	1.2961	
	Diff	(1-2)		0.00126	0.1151	0.0728			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.0753	0.9143	1.2363	0.1297	0.0777	0.3726
Diff (1-	2)	Pooled		0.00126	-0.1666	0.1691	0.1151	0.0778	0.2205
Diff (1-	2)	Satterth	waite	0.00126	-0.1688	0.1713			
		Metho	d	Varianc	es D	F t Value	Pr > t		
		Poole	d	Equal		8 0.02	0.9866		
		Satte	rthwaite	e Unequal	7.459	8 0.02	0.9866		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.74	0.6061

13:10 Monday, September 2, 2013

33

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0028 -----

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.0373	0.0252	0.0113	1.0169	1.0755	
	Diff	(1-2)		0.0393	0.0718	0.0454			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.0373	1.0060	1.0686	0.0252	0.0151	0.0724
Diff (1-	2)	Pooled		0.0393	-0.0655	0.1440	0.0718	0.0485	0.1376
Diff (1-	2)	Satterthy	/aite	0.0393	-0.0813	0.1599			
		Method	I	Variance	s Di	t Value	Pr > t		
		Pooled	I	Equal	8	0.86	0.4125		
		Satter	thwaite	Unequal	4.522	0.86	0.4308		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	15.24	0.0218

13:10 Monday, September 2, 2013

Maximum

34

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0029 -----

The TTEST Procedure

Variable: Result

Std Dev Std Err Minimum

N

group

Mean

	g. our			moun	ota bot	0 tu 211	m2112mam	max zmam	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.8870	0.0851	0.0381	0.7676	0.9843	
	Diff	(1-2)		0.1895	0.0920	0.0582			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.8870	0.7813	0.9927	0.0851	0.0510	0.2446
Diff (1-	2)	Pooled		0.1895	0.0554	0.3237	0.0920	0.0621	0.1763
Diff (1-	2)	Satterthw	aite	0.1895	0.0549	0.3242			
		Method		Variance	es DF	t Value	Pr > t		
		Pooled		Equal	8	3.26	0.0116		
		Satter	thwaite	Unequal	7.8372	3.26	0.0119		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.34	0.7853

13:10 Monday, September 2, 2013

35

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0030 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9684	0.0379	0.0169	0.9304	1.0217	
	Diff	(1-2)		0.1082	0.0746	0.0472			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9684	0.9214	1.0154	0.0379	0.0227	0.1088
Diff (1-	2)	Pooled		0.1082	-0.00057	0.2169	0.0746	0.0504	0.1428
Diff (1-	2)	Satterthw	aite	0.1082	-0.0119	0.2283			
		Method		Variance	es D	F t Value	Pr > t		
		Pooled Satter	thwaite	Equal Unequal	5.15	3 2.29 9 2.29			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	6.75	0.0912

13:10 Monday, September 2, 2013

36

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0031 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9964	0.0690	0.0309	0.9393	1.1118	
	Diff	(1-2)		0.0802	0.0850	0.0538			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9964	0.9106	1.0821	0.0690	0.0414	0.1984
Diff (1-2	2)	Pooled		0.0802	-0.0438	0.2042	0.0850	0.0574	0.1628
Diff (1-2	2)	Satterthw	aite	0.0802	-0.0463	0.2067			
		Method	I	Variance	s DF	t Value	Pr > t		
		Pooled	I	Equal	8	1.49	0.1741		
		Satter	thwaite	Unequal	7.1694	1.49	0.1783		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.03	0.5092

13:10 Monday, September 2, 2013

37

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0032 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.1098	0.0999	0.0447	1.0075	1.2726	
	Diff	(1-2)		-0.0332	0.0992	0.0627			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.1098	0.9857	1.2339	0.0999	0.0599	0.2872
Diff (1-	2)	Pooled		-0.0332	-0.1778	0.1115	0.0992	0.0670	0.1900
Diff (1-	2)	Satterthy	vaite	-0.0332	-0.1779	0.1115			
		Method	d	Variance	es D	F t Value	e Pr > t		
		Pooled	t	Equal		8 -0.53	0.6110		
		Satter	rthwaite	e Unequal	7.998	1 -0.53	0.6110		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.03	0.9767

13:10 Monday, September 2, 2013

38

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0033 -----

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9737	0.1404	0.0628	0.7422	1.0908	
	Diff	(1-2)		0.1029	0.1212	0.0767			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9737	0.7994	1.1479	0.1404	0.0841	0.4033
Diff (1-	2)	Pooled		0.1029	-0.0739	0.2797	0.1212	0.0819	0.2322
Diff (1-	2)	Satterthw	aite	0.1029	-0.0775	0.2833			
		Method		Variance	es D	F t Value	Pr > t		
		Pooled Satter	thwaite	Equal Unequal	7.167	8 1.34 3 1.34			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.03	0.5085

13:10 Monday, September 2, 2013

39

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0034 -----

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9580	0.0806	0.0360	0.8397	1.0655	
	Diff	(1-2)		0.1185	0.0899	0.0569			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9580	0.8580	1.0581	0.0806	0.0483	0.2315
Diff (1-	2)	Pooled		0.1185	-0.0126	0.2497	0.0899	0.0607	0.1723
Diff (1-	2)	Satterthw	aite	0.1185	-0.0135	0.2506			
		Method		Variance	es D	F t Value	Pr > t		
		Pooled		Equal		8 2.08	0.0707		
		Satter	thwaite	Unequal	7.699	8 2.08	0.0720		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.49	0.7077

13:10 Monday, September 2, 2013

Maximum

40

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0036 -----

The TTEST Procedure

Variable: Result

Std Dev Std Err Minimum

N

group

Mean

	g. our		••	moun	ota bov	000 211	m±m±mam	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.0814	0.0841	0.0376	0.9982	1.1735	
	Diff	(1-2)		-0.00483	0.0915	0.0579			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std I	Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590 0.2	2828
Test				1.0814	0.9770	1.1858	0.0841	0.0504 0.2	2416
Diff (1-2	2)	Pooled		-0.00483	-0.1383	0.1286	0.0915	0.0618 0.	1753
Diff (1-	2)	Satterthy	vaite	-0.00483	-0.1389	0.1292			
		Method	i	Variance	s DI	t Value	Pr > t		
		Pooled	i	Equal	8	3 -0.08	0.9355		
		Satter	thwait	e Unequal	7.8097	7 -0.08	0.9355		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.37	0.7677

13:10 Monday, September 2, 2013

41

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0037 -----

The TTEST Procedure

Variable: Result

	grou	o	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.0439	0.0690	0.0308	0.9437	1.1118	
	Diff	(1-2)		0.0326	0.0850	0.0537			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.0439	0.9583	1.1296	0.0690	0.0413	0.1982
Diff (1-	2)	Pooled		0.0326	-0.0913	0.1566	0.0850	0.0574	0.1628
Diff (1-	2)	Satterthy	vaite	0.0326	-0.0938	0.1591			
		Method	i	Variance	s DF	t Value	Pr > t		
		Pooled	i	Equal	8	0.61	0.5604		
		Satter	rthwaite	Unequal	7.1662	0.61	0.5623		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.04	0.5082

13:10 Monday, September 2, 2013

42

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0038 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.1208	0.1757	0.0786	0.9889	1.4191	
	Diff	(1-2)		-0.0443	0.1424	0.0901			
group		Method		Mean	95% CL	_ Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.1208	0.9027	1.3390	0.1757	0.1053	0.5050
Diff (1-2	2)	Pooled		-0.0443	-0.2520	0.1634	0.1424	0.0962	0.2728
Diff (1-2	2)	Satterthw	aite	-0.0443	-0.2623	0.1737			
		Method		Variance	es [OF t Valu	ue Pr > t		
		Pooled Satter	thwaite	Equal Unequal	6.284	8 -0.4 12 -0.4			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.19	0.2875

13:10 Monday, September 2, 2013

43

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0039 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9692	0.0343	0.0154	0.9304	1.0075	
	Diff	(1-2)		0.1074	0.0737	0.0466			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9692	0.9266	1.0118	0.0343	0.0206	0.0986
Diff (1-2	2)	Pooled		0.1074	-0.00013	0.2148	0.0737	0.0498	0.1412
Diff (1-2	2)	Satterthy	vaite	0.1074	-0.0128	0.2275			
		Method	d	Variance	es [OF t Value	Pr > t		
		Pooled Satter	d rthwaite	Equal Unequal	4.959	8 2.30 93 2.30			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	8.22	0.0655

13:10 Monday, September 2, 2013

44

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0040 -----

The TTEST Procedure

Variable: Result

	grou	o	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.0525	0.0439	0.0196	0.9843	1.1065	
	Diff	(1-2)		0.0241	0.0762	0.0482			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.0525	0.9980	1.1069	0.0439	0.0263	0.1260
Diff (1-	2)	Pooled		0.0241	-0.0870	0.1352	0.0762	0.0515	0.1459
Diff (1-	2)	Satterthw	vaite	0.0241	-0.0963	0.1444			
		Method	i	Variance	s DF	t Value	Pr > t		
		Pooled	i	Equal	8	0.50	0.6309		
		Satter	rthwaite	Unequal	5.5286	0.50	0.6367		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	5.03	0.1465

13:10 Monday, September 2, 2013

45

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0042 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.0149	0.0687	0.0307	0.8998	1.0755	
	Diff	(1-2)		0.0617	0.0848	0.0537			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.0149	0.9296	1.1001	0.0687	0.0411	0.1973
Diff (1-	2)	Pooled		0.0617	-0.0620	0.1855	0.0848	0.0573	0.1625
Diff (1-	2)	Satterthy	vaite	0.0617	-0.0647	0.1881			
		Method	d	Variance	s DI	t Value	Pr > t		
		Pooled Satter	d rthwaite	Equal Unequal	7.1483	3 1.15 3 1.15			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.05	0.5028

13:10 Monday, September 2, 2013

46

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0043 -----

The TTEST Procedure

Variable: Result

	grou	р	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.1720	0.1013	0.0453	1.0360	1.3127	
	Diff	(1-2)		-0.0954	0.0999	0.0632			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.1720	1.0462	1.2978	0.1013	0.0607	0.2912
Diff (1-	2)	Pooled		-0.0954	-0.2411	0.0502	0.0999	0.0675	0.1913
Diff (1-	2)	Satterth	waite	-0.0954	-0.2411	0.0503			
		Metho	d	Variance	es [OF t Val	ue Pr > t		
		Poole	d	Equal		8 -1.	51 0.1693		
		Satte	rthwaite	unequal	7.993	32 -1.	51 0.1693		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.06	0.9562

13:10 Monday, September 2, 2013

47

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0044 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.2119	0.2265	0.1013	0.9982	1.5708	
	Diff	(1-2)		-0.1353	0.1746	0.1104			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.2119	0.9307	1.4930	0.2265	0.1357	0.6507
Diff (1-	2)	Pooled		-0.1353	-0.3899	0.1193	0.1746	0.1179	0.3345
Diff (1-	2)	Satterth	waite	-0.1353	-0.4121	0.1415			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		3 -1.23	0.2553		
		Satte	rthwaite	Unequal	5.458	3 -1.23	0.2707		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	5.30	0.1354

13:10 Monday, September 2, 2013

48

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0045 -----

The TTEST Procedure

Variable: Result

	grou	р	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	4	1.0508	0.0922	0.0461	0.9616	1.1735	
	Test		4	0.9884	0.0707	0.0353	0.9393	1.0908	
	Diff	(1-2)		0.0625	0.0822	0.0581			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0508	0.9041	1.1976	0.0922	0.0522	0.3438
Test				0.9884	0.8759	1.1008	0.0707	0.0400	0.2635
Diff (1-	2)	Pooled		0.0625	-0.0797	0.2046	0.0822	0.0529	0.1809
Diff (1-	2)	Satterthw	aite	0.0625	-0.0821	0.2070			
		Method		Variance	es D	F t Valu	e Pr > t		
		Pooled Satter	thwaite	Equal Unequal	5.620	6 1.0 1 1.0			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	3	3	1.70	0.6727

13:10 Monday, September 2, 2013

49

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0048 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.1813	0.0618	0.0277	1.1226	1.2652	
	Diff	(1-2)		-0.1048	0.0822	0.0520			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.1813	1.1046	1.2581	0.0618	0.0370	0.1777
Diff (1-	2)	Pooled		-0.1048	-0.2246	0.0151	0.0822	0.0555	0.1574
Diff (1-	2)	Satterth	waite	-0.1048	-0.2287	0.0191			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -2.02	0.0785		
		Satter	rthwaite	Unequal	6.732	1 -2.02	0.0852		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.53	0.3899

13:10 Monday, September 2, 2013

---- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD0049 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	1.2095	0.0876	0.0392	1.0857	1.3043	
	Diff	(1-2)		-0.1330	0.0932	0.0589			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				1.2095	1.1008	1.3183	0.0876	0.0525	0.2517
Diff (1-	2)	Pooled		-0.1330	-0.2688	0.00291	0.0932	0.0629	0.1785
Diff (1-	2)	Satterthy	vaite	-0.1330	-0.2691	0.00323			
		Method	d	Variance	es D	F t Value	Pr > t		
		Pooled	i	Equal		8 -2.26	0.0540		
		Satter	rthwaite	e Unequal	7.893	8 -2.26	0.0544		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.26	0.8268

13:10 Monday, September 2, 2013

51

----- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD005 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9616	0.0567	0.0254	0.8738	1.0169	
	Diff	(1-2)		0.1150	0.0803	0.0508			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9616	0.8912	1.0320	0.0567	0.0340	0.1630
Diff (1-	2)	Pooled		0.1150	-0.00217	0.2321	0.0803	0.0542	0.1539
Diff (1-	2)	Satterthw	aite	0.1150	-0.00750	0.2374			
		Method	I	Variance	es D	F t Value	Pr > t		
		Pooled Satter	l thwaite	Equal Unequal	6.393	8 2.26 2 2.26			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.01	0.3110

13:10 Monday, September 2, 2013

----- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD006 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std	Err	Minimum	Maximum	
	CR - 0	2	5	1.0766	0.0984	0.0	440	0.9616	1.1794	
	Test		5	0.8876	0.0652	0.0	291	0.8311	0.9982	
	Diff	(1-2)		0.1889	0.0835	0.0	528			
group		Method		Mean	95% C	L Mean		Std Dev	95% CL S	Std Dev
CR-02				1.0766	0.9544	1.19	87	0.0984	0.0590	0.2828
Test				0.8876	0.8067	0.96	85	0.0652	0.0390	0.1872
Diff (1-	2)	Pooled		0.1889	0.0672	0.31	07	0.0835	0.0564	0.1599
Diff (1-	2)	Satterthw	/aite	0.1889	0.0639	0.31	40			
		Method	I	Varianc	es	DF t	Value	Pr > t		
		Pooled	I	Equal		8	3.58	0.0072		
		Satter	thwaite	Unequal	6.94	17	3.58	0.0091		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.28	0.4441

13:10 Monday, September 2, 2013

53

----- Test=Bivalve Development Batch 1 Endpoint=Percent Normal Development Treatment=SD007 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.0766	0.0984	0.0440	0.9616	1.1794	
	Test		5	0.9818	0.0842	0.0377	0.8439	1.0605	
	Diff	(1-2)		0.0947	0.0916	0.0579			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.0766	0.9544	1.1987	0.0984	0.0590	0.2828
Test				0.9818	0.8773	1.0864	0.0842	0.0505	0.2420
Diff (1-2	2)	Pooled		0.0947	-0.0389	0.2283	0.0916	0.0619	0.1755
Diff (1-2	2)	Satterthw	aite	0.0947	-0.0394	0.2289			
		Method		Variance	s Di	F t Value	Pr > t		
		Pooled		Equal	;	3 1.64	0.1406		
		Satter	thwaite	Unequal	7.813	5 1.64	0.1415		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.37	0.7701

13:10 Monday, September 2, 2013

54

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0001 -----

The TTEST Procedure

Variable: Result

	grou	o	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	0.9834	0.1008	0.0451	0.9010	1.1397	
	Diff	(1-2)		0.1329	0.0732	0.0463			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				0.9834	0.8583	1.1086	0.1008	0.0604	0.2897
Diff (1-	2)	Pooled		0.1329	0.0261	0.2397	0.0732	0.0495	0.1403
Diff (1-	2)	Satterthw	aite	0.1329	0.00919	0.2566			
		Method	I	Variance	es D	F t Value	Pr > t		
		Pooled	I	Equal		8 2.87	0.0209		
		Satter	thwaite	Unequal	4.445	7 2.87	0.0402		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	17.89	0.0162

13:10 Monday, September 2, 2013

Maximum

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0002 -----

The TTEST Procedure

Variable: Result

Std Dev Std Err Minimum

Mean

N

group

	3								
	CR-02	}	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	0.9759	0.1063	0.0475	0.8707	1.1320	
	Diff	(1-2)		0.1404	0.0770	0.0487			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL 9	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				0.9759	0.8439	1.1078	0.1063	0.0637	0.3053
Diff (1-	2)	Pooled		0.1404	0.0281	0.2528	0.0770	0.0520	0.1475
Diff (1-	2)	Satterthw	aite	0.1404	0.00996	0.2709			
		Method		Variance	s DF	t Value	Pr > t		
		Pooled		Equal	8	2.88	0.0204		
		Satter	thwaite	Unequal	4.4014	2.88	0.0400		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	19.88	0.0133

13:10 Monday, September 2, 2013

Maximum

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0008 -----

The TTEST Procedure

Variable: Result

Std Dev Std Err Minimum

Mean

N

group

	g. cup			mour.	ota bor	000 211	m±m±mam	max 2 mam	
	CR-02		5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0543	0.0432	0.0193	0.9919	1.0909	
	Diff ((1-2)		0.0621	0.0349	0.0221			
group	N	Method		Mean	95% CL	Mean	Std Dev	95% CL 9	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0543	1.0006	1.1079	0.0432	0.0259	0.1242
Diff (1-	2) F	Pooled		0.0621	0.0112	0.1130	0.0349	0.0236	0.0669
Diff (1-	2) 8	Satterthwa	ite	0.0621	0.00852	0.1156			
		Method		Variance	s DI	t Value	Pr > t		
		Pooled		Equal		3 2.81			
		Sattert	hwaite	Unequal	6.2260	3 2.81	0.0295		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.29	0.2754

13:10 Monday, September 2, 2013

57

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0010 -----

The TTEST Procedure

Variable: Result

	grou	р	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	0.9103	0.0606	0.0271	0.8199	0.9790	
	Diff	(1-2)		0.2060	0.0460	0.0291			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				0.9103	0.8351	0.9855	0.0606	0.0363	0.1741
Diff (1-	2)	Pooled		0.2060	0.1389	0.2732	0.0460	0.0311	0.0882
Diff (1-	2)	Satterth	waite	0.2060	0.1321	0.2800			
		Method	d	Varianc	es D	F t Value	Pr > t		
		Poole	d	Equal		8 7.08	0.0001		
		Satte	rthwaite	Unequal	5.208	8 7.08	0.0007		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	6.46	0.0981

13:10 Monday, September 2, 2013

58

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0011 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0343	0.0404	0.0181	0.9887	1.0909	
	Diff	(1-2)		0.0820	0.0332	0.0210			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0343	0.9842	1.0845	0.0404	0.0242	0.1160
Diff (1-	2)	Pooled		0.0820	0.0337	0.1304	0.0332	0.0224	0.0635
Diff (1-	2)	Satterthw	aite	0.0820	0.0316	0.1324			
		Method		Varianc	es DF	t Value	Pr > t		
		Pooled		Equal	8	3.91	0.0045		
		Satter	thwaite	Unequal	6.4848	3.91	0.0068		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.87	0.3314

13:10 Monday, September 2, 2013

59

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0012 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0785	0.0339	0.0152	1.0215	1.1092	
	Diff	(1-2)		0.0378	0.0293	0.0185			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0785	1.0364	1.1207	0.0339	0.0203	0.0975
Diff (1-	2)	Pooled		0.0378	-0.00496	0.0806	0.0293	0.0198	0.0562
Diff (1-	2)	Satterthw	aite	0.0378	-0.00584	0.0814			
		Method	I	Varianc	es [OF t Value	Pr > t		
		Pooled		Equal		8 2.04	0.0759		
		Satter	thwaite	Unequal	7.174	2.04	0.0799		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.03	0.5107

13:10 Monday, September 2, 2013

60

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0013 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0688	0.0662	0.0296	0.9822	1.1397	
	Diff	(1-2)		0.0475	0.0498	0.0315			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0688	0.9866	1.1511	0.0662	0.0397	0.1903
Diff (1-	2)	Pooled		0.0475	-0.0251	0.1201	0.0498	0.0336	0.0954
Diff (1-	2)	Satterthw	aite	0.0475	-0.0333	0.1283			
		Method	I	Variance	es D	F t Value	Pr > t		
		Pooled		Equal		8 1.51			
		Satter	thwaite	Unequal	5.018	5 1.51	0.1915		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	7.73	0.0728

13:10 Monday, September 2, 2013

61

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0015 -----

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0199	0.0870	0.0389	0.9194	1.1092	
	Diff	(1-2)		0.0964	0.0638	0.0403			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0199	0.9119	1.1279	0.0870	0.0521	0.2499
Diff (1-	2)	Pooled		0.0964	0.00343	0.1894	0.0638	0.0431	0.1221
Diff (1-	2)	Satterthw	aite	0.0964	-0.0100	0.2029			
		Method	I	Variance	es D	F t Value	Pr > t		
		Pooled	I	Equal	;	8 2.39	0.0438		
		Satter	thwaite	Unequal	4.597	5 2.39	0.0668		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	13.31	0.0279

13:10 Monday, September 2, 2013

62

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0017 -----

The TTEST Procedure

Variable: Result

	grou	o	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0358	0.0705	0.0315	0.9474	1.1167	
	Diff	(1-2)		0.0806	0.0526	0.0333			
group		Method		Mean	95% CL	. Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0358	0.9483	1.1232	0.0705	0.0422	0.2025
Diff (1-	2)	Pooled		0.0806	0.00385	0.1573	0.0526	0.0355	0.1008
Diff (1-	2)	Satterthw	aite	0.0806	-0.00546	0.1666			
		Method		Varianc	es D	F t Value	e Pr > t		
		Pooled		Equal		8 2.42	0.0417		
		Satter	thwaite	Unequal	4.903	2.42	0.0610		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	8.74	0.0589

13:10 Monday, September 2, 2013

Maximum

63

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0018 -----

The TTEST Procedure

Variable: Result

Std Dev Std Err Minimum

Mean

N

group

8	g. cap		moun .	oca bov	0 tu 21 1	m±11±mam	maximum
(CR - 02	5	1.1163	0.0238	0.0107	1.0873	1.1397
Т	Test	5	1.1521	0.0714	0.0319	1.0659	1.2534
Г	Diff	(1-2)	-0.0358	0.0532	0.0337		
group	N	Method	Mean	95% CL	Mean	Std Dev	95% CL Std Dev
CR-02			1.1163	1.0867	1.1459	0.0238	0.0143 0.0685
Test			1.1521	1.0635	1.2408	0.0714	0.0428 0.2052
Diff (1-2)) F	Pooled	-0.0358	-0.1134	0.0418	0.0532	0.0360 0.1020
Diff (1-2)) :	Satterthwaite	-0.0358	-0.1230	0.0514		
		Method	Variance	s DF	t Value	Pr > t	
		Pooled	Equal	8	-1.06	0.3187	
		Satterthwai	te Unequal	4.8805	-1.06	0.3374	

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	8.97	0.0563

13:10 Monday, September 2, 2013

64

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0019 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0972	0.0710	0.0318	0.9855	1.1596	
	Diff	(1-2)		0.0191	0.0530	0.0335			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0972	1.0091	1.1854	0.0710	0.0425	0.2041
Diff (1-	2)	Pooled		0.0191	-0.0582	0.0963	0.0530	0.0358	0.1015
Diff (1-	2)	Satterthw	aite	0.0191	-0.0676	0.1058			
		Method		Variance	es D	F t Value	Pr > t		
		Pooled		Equal		8 0.57	0.5848		
		Satter	thwaite	Unequal	4.889	8 0.57	0.5943		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	8.88	0.0573

13:10 Monday, September 2, 2013

65

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0020 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	0.9427	0.0601	0.0269	0.8858	1.0316	
	Diff	(1-2)		0.1736	0.0457	0.0289			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				0.9427	0.8681	1.0173	0.0601	0.0360	0.1727
Diff (1-	2)	Pooled		0.1736	0.1069	0.2403	0.0457	0.0309	0.0876
Diff (1-	2)	Satterth	vaite	0.1736	0.1002	0.2470			
		Method	d	Varianc	es D	t Value	Pr > t		
		Pooled	d	Equal		6.00	0.0003		
		Satte	rthwaite	Unequal	5.227	7 6.00	0.0016		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	6.36	0.1008

13:10 Monday, September 2, 2013

66

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0022 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	1.1163	0.0238	0.0107	1.0873	1.1397	
	Test		5	1.0914	0.0476	0.0213	1.0182	1.1437	
	Diff	(1-2)		0.0249	0.0377	0.0238			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1163	1.0867	1.1459	0.0238	0.0143	0.0685
Test				1.0914	1.0322	1.1505	0.0476	0.0285	0.1369
Diff (1-	2)	Pooled		0.0249	-0.0300	0.0799	0.0377	0.0254	0.0722
Diff (1-	2)	Satterthw	/aite	0.0249	-0.0336	0.0835			
		Method	I	Variance	es D	F t Value	Pr > t		
		Pooled	I	Equal		8 1.05	0.3258		
		Satter	thwaite	Unequal	5.884	4 1.05	0.3362		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.99	0.2084

13:10 Monday, September 2, 2013

67

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0001 -------

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.5064	0.1439	0.0644	1.2490	1.5708	
	Test		5	1.3326	0.1395	0.0624	1.2490	1.5708	
	Diff	(1-2)		0.1738	0.1417	0.0896			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.5064	1.3278	1.6851	0.1439	0.0862	0.4135
Test				1.3326	1.1594	1.5059	0.1395	0.0836	0.4009
Diff (1-	2)	Pooled		0.1738	-0.0329	0.3805	0.1417	0.0957	0.2715
Diff (1-	2)	Satterthw	aite	0.1738	-0.0329	0.3805			
		Method		Variance	es D	F t Value	e Pr > t		
		Pooled		Equal		8 1.94	0.0885		
		Satter	thwaite	Unequal	7.992	3 1.94	0.0885		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.06	0.9536

13:10 Monday, September 2, 2013

68

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0011 -------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.5064	0.1439	0.0644	1.2490	1.5708	
	Test		5	1.3474	0.2063	0.0923	1.1731	1.5708	
	Diff	(1-2)		0.1591	0.1779	0.1125			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.5064	1.3278	1.6851	0.1439	0.0862	0.4135
Test				1.3474	1.0912	1.6035	0.2063	0.1236	0.5928
Diff (1-	2)	Pooled		0.1591	-0.1003	0.4185	0.1779	0.1201	0.3407
Diff (1-	2)	Satterthw	aite	0.1591	-0.1058	0.4240			
		Method		Variance	s DF	t Value	Pr > t		
		Pooled Satter	thwaite	Equal Unequal	7.147		0.1950 0.1994		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.06	0.5024

13:10 Monday, September 2, 2013

69

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0012

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.5064	0.1439	0.0644	1.2490	1.5708	
	Test		5	1.4162	0.1465	0.0655	1.2490	1.5708	
	Diff	(1-2)		0.0902	0.1452	0.0918			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.5064	1.3278	1.6851	0.1439	0.0862	0.4135
Test				1.4162	1.2344	1.5981	0.1465	0.0877	0.4209
Diff (1-	2)	Pooled		0.0902	-0.1215	0.3019	0.1452	0.0981	0.2781
Diff (1-	2)	Satterthw	aite	0.0902	-0.1215	0.3020			
		Method	I	Variance	s DF	t Value	Pr > t		
		Pooled	I	Equal	8	0.98	0.3547		
		Satter	thwaite	Unequal	7.9975	0.98	0.3547		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.04	0.9735

13:10 Monday, September 2, 2013

70

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0014 -------

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.5064	0.1439	0.0644	1.2490	1.5708	
	Test		5	1.4355	0.1235	0.0552	1.3453	1.5708	
	Diff	(1-2)		0.0710	0.1341	0.0848			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.5064	1.3278	1.6851	0.1439	0.0862	0.4135
Test				1.4355	1.2821	1.5889	0.1235	0.0740	0.3549
Diff (1-	2)	Pooled		0.0710	-0.1246	0.2665	0.1341	0.0906	0.2569
Diff (1-	2)	Satterthw	aite	0.0710	-0.1254	0.2673			
		Method		Variance	es Di	t Value	Pr > t		
		Pooled		Equal	:	3 0.84	0.4270		
		Satter	thwaite	Unequal	7.820	5 0.84	0.4276		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.36	0.7745

13:10 Monday, September 2, 2013

71

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0015

The TTEST Procedure

Variable: Result

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.5064	0.1439	0.0644	1.2490	1.5708	
	Test		5	1.3711	0.1191	0.0533	1.2490	1.5708	
	Diff	(1-2)		0.1353	0.1321	0.0835			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.5064	1.3278	1.6851	0.1439	0.0862	0.4135
Test				1.3711	1.2232	1.5191	0.1191	0.0714	0.3423
Diff (1-	2)	Pooled		0.1353	-0.0573	0.3280	0.1321	0.0892	0.2531
Diff (1-	2)	Satterthw	aite	0.1353	-0.0585	0.3291			
		Method	I	Variance	s DI	t Value	Pr > t		
		Pooled	I	Equal	1	3 1.62	0.1440		
		Satter	thwaite	Unequal	7.7309	9 1.62	0.1453		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.46	0.7234

13:10 Monday, September 2, 2013

72

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0018 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.5064	0.1439	0.0644	1.2490	1.5708	
	Test		5	1.4011	0.1702	0.0761	1.1731	1.5708	
	Diff	(1-2)		0.1054	0.1576	0.0997			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.5064	1.3278	1.6851	0.1439	0.0862	0.4135
Test				1.4011	1.1898	1.6123	0.1702	0.1019	0.4889
Diff (1-2	2)	Pooled		0.1054	-0.1244	0.3352	0.1576	0.1064	0.3019
Diff (1-2	2)	Satterthw	aite	0.1054	-0.1255	0.3363			
		Method	I	Variance	s DF	t Value	Pr > t		
		Pooled	l	Equal	8	1.06	0.3211		
		Satter	thwaite	Unequal	7.7852	1.06	0.3220		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.40	0.7531

13:10 Monday, September 2, 2013

73

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0021 -------

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.5064	0.1439	0.0644	1.2490	1.5708	
	Test		5	1.3818	0.1830	0.0818	1.1731	1.5708	
	Diff	(1-2)		0.1246	0.1646	0.1041			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.5064	1.3278	1.6851	0.1439	0.0862	0.4135
Test				1.3818	1.1546	1.6090	0.1830	0.1096	0.5259
Diff (1-	2)	Pooled		0.1246	-0.1154	0.3647	0.1646	0.1112	0.3154
Diff (1-	2)	Satterthw	aite	0.1246	-0.1178	0.3671			
		Method	I	Variance	es D	F t Value	e Pr > t		
		Pooled	I	Equal		8 1.20	0.2655		
		Satter	thwaite	Unequal	7.578	3 1.20	0.2673		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.62	0.6527

13:10 Monday, September 2, 2013

74

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0001 ------

The TTEST Procedure

Variable: Result

group	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
Test		5	0.4650	0.0591	0.0265	0.3925	0.5527	
Diff	(1-2)		-0.1725	0.0723	0.0458			
	Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
			0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
			0.4650	0.3915	0.5384	0.0591	0.0354	0.1700
2)	Pooled		-0.1725	-0.2781	-0.0670	0.0723	0.0489	0.1386
2)	Satterth	vaite	-0.1725	-0.2801	-0.0650			
	Method	d	Variance	es D	F t Value	Pr > t		
			Equal Unequal					
	CR-02 Test Diff	Diff (1-2) Method 2) Pooled 2) Satterthy Method Pooled	CR-02 5 Test 5 Diff (1-2) Method 2) Pooled	CR-02 5 0.2924 Test 5 0.4650 Diff (1-2) -0.1725 Method Mean 0.2924 0.4650 2) Pooled -0.1725 2) Satterthwaite -0.1725 Method Variance Pooled Equal	CR-02	CR-02	CR-02 5 0.2924 0.0835 0.0373 0.1951 Test 5 0.4650 0.0591 0.0265 0.3925 Diff (1-2) -0.1725 0.0723 0.0458 Method Mean 95% CL Mean Std Dev 0.2924 0.1888 0.3961 0.0835 0.4650 0.3915 0.5384 0.0591 2) Pooled -0.1725 -0.2781 -0.0670 0.0723 2) Satterthwaite -0.1725 -0.2801 -0.0650 Method Variances DF t Value Pr > t Pooled Equal 8 -3.77 0.0055	CR-02

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.99	0.5207

13:10 Monday, September 2, 2013

75

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0002 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.4898	0.0631	0.0282	0.4061	0.5554	
	Diff	(1-2)		-0.1973	0.0740	0.0468			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.4898	0.4115	0.5681	0.0631	0.0378	0.1812
Diff (1-	2)	Pooled		-0.1973	-0.3052	-0.0894	0.0740	0.0500	0.1417
Diff (1-	2)	Satterth	vaite	-0.1973	-0.3067	-0.0880			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -4.22	0.0029		
		Satte	rthwaite	Unequal	7.443	8 -4.22	0.0034		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.75	0.6002

13:10 Monday, September 2, 2013

76

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0005 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5836	0.0537	0.0240	0.5176	0.6389	
	Diff	(1-2)		-0.2912	0.0702	0.0444			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5836	0.5170	0.6502	0.0537	0.0322	0.1542
Diff (1-	2)	Pooled		-0.2912	-0.3935	-0.1888	0.0702	0.0474	0.1344
Diff (1-	2)	Satterthy	vaite	-0.2912	-0.3967	-0.1857			
		Method	d	Variance	es D	F t Value	Pr > t		
		Pooled		Equal		8 -6.56			
		Satter	rthwaite	Unequal	6.823	3 -6.56	0.0004		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.42	0.4129

13:10 Monday, September 2, 2013

77

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0006 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.6460	0.0522	0.0233	0.5992	0.7292	
	Diff	(1-2)		-0.3535	0.0696	0.0440			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.6460	0.5812	0.7108	0.0522	0.0313	0.1500
Diff (1-	2)	Pooled		-0.3535	-0.4551	-0.2520	0.0696	0.0470	0.1334
Diff (1-	2)	Satterthy	vaite	-0.3535	-0.4586	-0.2485			
		Method	i	Variance	es D	F t Value	Pr > t		
		Pooled	i	Equal		8 -8.03	<.0001		
		Satter	rthwaite	Unequal	6.71	2 -8.03	0.0001		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.56	0.3850

13:10 Monday, September 2, 2013

78

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0007 ------

The TTEST Procedure

Variable: Result

	grou	р	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5718	0.0661	0.0296	0.4942	0.6307	
	Diff	(1-2)		-0.2794	0.0753	0.0476			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5718	0.4898	0.6539	0.0661	0.0396	0.1899
Diff (1-	2)	Pooled		-0.2794	-0.3892	-0.1696	0.0753	0.0509	0.1442
Diff (1-	2)	Satterth	waite	-0.2794	-0.3902	-0.1686			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -5.87	0.0004		
		Satte	rthwaite	Unequal	7.599	5 -5.87	0.0005		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.60	0.6617

13:10 Monday, September 2, 2013

79

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0008 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5286	0.0650	0.0291	0.4630	0.6157	
	Diff	(1-2)		-0.2362	0.0748	0.0473			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5286	0.4479	0.6093	0.0650	0.0389	0.1868
Diff (1-	2)	Pooled		-0.2362	-0.3453	-0.1271	0.0748	0.0505	0.1433
Diff (1-	2)	Satterthy	vaite	-0.2362	-0.3465	-0.1259			
		Method	i	Variance	es D	F t Value	Pr > t		
		Pooled	i	Equal		8 -4.99	0.0011		
		Satter	rthwaite	Unequal	7.546	3 -4.99	0.0013		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.65	0.6396

13:10 Monday, September 2, 2013

80

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0009 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.6065	0.0378	0.0169	0.5717	0.6613	
	Diff	(1-2)		-0.3140	0.0648	0.0410			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.6065	0.5595	0.6535	0.0378	0.0227	0.1088
Diff (1-	2)	Pooled		-0.3140	-0.4086	-0.2195	0.0648	0.0438	0.1242
Diff (1-	2)	Satterth	waite	-0.3140	-0.4162	-0.2119			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -7.66	<.0001		
		Satte	rthwaite	unequal	5.577	2 -7.66	0.0004		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	4.87	0.1545

13:10 Monday, September 2, 2013

81

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0010 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.6325	0.0692	0.0310	0.5431	0.7333	
	Diff	(1-2)		-0.3400	0.0767	0.0485			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.6325	0.5465	0.7184	0.0692	0.0415	0.1989
Diff (1-	2)	Pooled		-0.3400	-0.4519	-0.2282	0.0767	0.0518	0.1469
Diff (1-	2)	Satterth	waite	-0.3400	-0.4526	-0.2275			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole		Equal		8 -7.01	0.0001		
		Satte	rthwaite	Unequal	7.734	3 -7.01	0.0001		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.46	0.7252

13:10 Monday, September 2, 2013

82

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0011 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.4834	0.1121	0.0501	0.2911	0.5840	
	Diff	(1-2)		-0.1909	0.0989	0.0625			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.4834	0.3441	0.6226	0.1121	0.0672	0.3222
Diff (1-2	2)	Pooled		-0.1909	-0.3351	-0.0468	0.0989	0.0668	0.1894
Diff (1-2	2)	Satterthw	aite	-0.1909	-0.3372	-0.0447			
		Method		Variance	es D	F t Value	Pr > t		
		Pooled		Equal		8 -3.05	0.0157		
		Satter	thwaite	Unequal	7.392	5 -3.05	0.0173		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.80	0.5818

13:10 Monday, September 2, 2013

83

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0012 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5956	0.0432	0.0193	0.5308	0.6519	
	Diff	(1-2)		-0.3031	0.0665	0.0420			
group		Method		Mean	95% Cl	_ Mean	Std Dev	95% CL S	Std Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5956	0.5420	0.6492	0.0432	0.0259	0.1241
Diff (1-	2)	Pooled		-0.3031	-0.4001	-0.2062	0.0665	0.0449	0.1273
Diff (1-	2)	Satterth	waite	-0.3031	-0.4060	-0.2003			
		Method	d	Variance	es [OF t Value	e Pr > t		
		Pooled		Equal		8 -7.2			
		Satter	rthwaite	Unequal	5.996	64 -7.2°	1 0.0004		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.74	0.2295

13:10 Monday, September 2, 2013

84

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0013 ------

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5409	0.0729	0.0326	0.4579	0.6212	
	Diff	(1-2)		-0.2485	0.0784	0.0496			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5409	0.4504	0.6314	0.0729	0.0437	0.2095
Diff (1-	2)	Pooled		-0.2485	-0.3628	-0.1342	0.0784	0.0529	0.1501
Diff (1-	2)	Satterth	vaite	-0.2485	-0.3632	-0.1338			
		Method	d	Varianc	es D	F t Value	Pr > t		
		Pooled	d	Equal		8 -5.01	0.0010		
		Satte	rthwaite	e Unequal	7.85	7 -5.01	0.0011		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.31	0.7988

13:10 Monday, September 2, 2013

85

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0014 ------

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5386	0.0572	0.0256	0.4648	0.6204	
	Diff	(1-2)		-0.2461	0.0716	0.0453			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5386	0.4676	0.6096	0.0572	0.0343	0.1643
Diff (1-	2)	Pooled		-0.2461	-0.3505	-0.1418	0.0716	0.0483	0.1371
Diff (1-	2)	Satterth	vaite	-0.2461	-0.3529	-0.1394			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	b	Equal		8 -5.44	0.0006		
		Satter	rthwaite	unequal	7.075	1 -5.44	0.0009		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.13	0.4813

13:10 Monday, September 2, 2013

86

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0015 ------

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.4820	0.1025	0.0458	0.3725	0.5935	
	Diff	(1-2)		-0.1896	0.0935	0.0591			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.4820	0.3547	0.6093	0.1025	0.0614	0.2946
Diff (1-	2)	Pooled		-0.1896	-0.3259	-0.0532	0.0935	0.0631	0.1791
Diff (1-	2)	Satterthy	vaite	-0.1896	-0.3269	-0.0523			
		Method	d	Variance	es D	F t Value	Pr > t		
		Pooled	ł	Equal		8 -3.21	0.0125		
		Satter	rthwaite	e Unequal	7.685	3 -3.21	0.0132		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.51	0.7006

13:10 Monday, September 2, 2013

87

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0017 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.6416	0.0456	0.0204	0.5870	0.7032	
	Diff	(1-2)		-0.3491	0.0673	0.0425			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.6416	0.5849	0.6982	0.0456	0.0273	0.1310
Diff (1-	2)	Pooled		-0.3491	-0.4472	-0.2510	0.0673	0.0454	0.1289
Diff (1-	2)	Satterth	waite	-0.3491	-0.4525	-0.2458			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	6.191	8 -8.21 6 -8.21	<.0001 0.0001		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.35	0.2683

13:10 Monday, September 2, 2013

88

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0018 ------

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5772	0.0870	0.0389	0.4683	0.7062	
	Diff	(1-2)		-0.2847	0.0852	0.0539			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5772	0.4692	0.6852	0.0870	0.0521	0.2499
Diff (1-	2)	Pooled		-0.2847	-0.4091	-0.1604	0.0852	0.0576	0.1633
Diff (1-	2)	Satterthy	vaite	-0.2847	-0.4091	-0.1604			
		Method	d	Variance	es D	F t Value	Pr > t		
		Pooled Satter	d rthwaite	Equal Unequal	7.986	8 -5.28 7 -5.28			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.09	0.9388

13:10 Monday, September 2, 2013

Maximum

89

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0019 ------

The TTEST Procedure

Variable: Result

Std Dev Std Err Minimum

Mean

N

group

	9. 04			moun.	oca bo.	000 211	m2112mam	maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5671	0.0863	0.0386	0.4789	0.6745	
	Diff	(1-2)		-0.2747	0.0849	0.0537			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std	Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500 0	.2399
Test				0.5671	0.4599	0.6743	0.0863	0.0517 0	.2481
Diff (1-	2)	Pooled		-0.2747	-0.3986	-0.1509	0.0849	0.0574 0	.1627
Diff (1-	2)	Satterth	waite	-0.2747	-0.3986	-0.1508			
		Metho	d	Variance	es D	F t Value	e Pr > t		
		Poole	d rthwaite	Equal Unequal	7.99	8 -5.11 1 -5.11			
		Jacco	i chwarte	onequal	7.55		0.0003		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.07	0.9498

13:10 Monday, September 2, 2013

90

------ Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0020 ------

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.5515	0.0684	0.0306	0.4485	0.6151	
	Diff	(1-2)		-0.2591	0.0763	0.0483			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.5515	0.4666	0.6364	0.0684	0.0410	0.1965
Diff (1-	2)	Pooled		-0.2591	-0.3704	-0.1478	0.0763	0.0515	0.1462
Diff (1-	2)	Satterth	vaite	-0.2591	-0.3711	-0.1471			
		Method	d	Variance	es D	F t Value	Pr > t		
		Pooled Satter	d rthwaite	Equal Unequal	7.700	8 -5.37 5 -5.37			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.49	0.7080

13:10 Monday, September 2, 2013

91

----- Test=Neanthes arenaceodentata Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0021 ------

The TTEST Procedure

Variable: Result

	grou	р	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.2924	0.0835	0.0373	0.1951	0.4194	
	Test		5	0.6165	0.0379	0.0169	0.5523	0.6450	
	Diff	(1-2)		-0.3240	0.0648	0.0410			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.2924	0.1888	0.3961	0.0835	0.0500	0.2399
Test				0.6165	0.5694	0.6635	0.0379	0.0227	0.1089
Diff (1-	2)	Pooled		-0.3240	-0.4186	-0.2295	0.0648	0.0438	0.1242
Diff (1-	2)	Satterth	vaite	-0.3240	-0.4262	-0.2219			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	t	Equal		8 -7.90	<.0001		
		Satte	rthwaite	unequal	5.580	8 -7.90	0.0003		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	4.85	0.1551

13:10 Monday, September 2, 2013

92

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0001 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.5672	0.0769	0.0344	0.4779	0.6850	
	Diff	(1-2)		-0.1501	0.0895	0.0566			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.5672	0.4716	0.6627	0.0769	0.0461	0.2211
Diff (1-	2)	Pooled		-0.1501	-0.2806	-0.0195	0.0895	0.0605	0.1715
Diff (1-	2)	Satterth	waite	-0.1501	-0.2822	-0.0179			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	7.48	8 -2.65 8 -2.65			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.71	0.6167

13:10 Monday, September 2, 2013

93

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0002 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.5979	0.0694	0.0310	0.5116	0.6847	
	Diff	(1-2)		-0.1808	0.0864	0.0546			
group		Method		Mean	95% CI	_ Mean	Std Dev	95% CL S	Std Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.5979	0.5118	0.6840	0.0694	0.0416	0.1993
Diff (1-	2)	Pooled		-0.1808	-0.3068	-0.0549	0.0864	0.0583	0.1655
Diff (1-	2)	Satterthy	/aite	-0.1808	-0.3096	-0.0521			
		Method	I	Variance	es [OF t Val	ue Pr > t		
		Pooled	l `thwaite	Equal Unequal	7.103	8 -3. 37 -3.			
		Jacter	CHWAILE	onequat	7.100	-0.	0.0127		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.10	0.4896

13:10 Monday, September 2, 2013

94

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0005 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7008	0.0786	0.0351	0.5936	0.7915	
	Diff	(1-2)		-0.2837	0.0902	0.0571			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.7008	0.6033	0.7984	0.0786	0.0471	0.2257
Diff (1-	2)	Pooled		-0.2837	-0.4153	-0.1521	0.0902	0.0609	0.1728
Diff (1-	2)	Satterth	waite	-0.2837	-0.4167	-0.1508			
		Metho	d	Varianc	es D	F t Value	e Pr > t		
		Poole	d	Equal		8 -4.97	0.0011		
		Satte	rthwaite	Unequal	7.557	9 -4.97	0.0013		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.64	0.6443

13:10 Monday, September 2, 2013

95

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0006 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7637	0.0640	0.0286	0.7096	0.8700	
	Diff	(1-2)		-0.3466	0.0843	0.0533			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std Dev	
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602 0.2889)
Test				0.7637	0.6842	0.8431	0.0640	0.0383 0.1839)
Diff (1-	2)	Pooled		-0.3466	-0.4695	-0.2237	0.0843	0.0569 0.1615	;
Diff (1-	2)	Satterth	waite	-0.3466	-0.4734	-0.2197			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -6.50	0.0002		
		Satte	rthwaite	e Unequal	6.783	9 -6.50	0.0004		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.47	0.4029

13:10 Monday, September 2, 2013

96

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0007 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.6854	0.0872	0.0390	0.5869	0.7794	
	Diff	(1-2)		-0.2683	0.0941	0.0595			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL St	td Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.6854	0.5772	0.7936	0.0872	0.0522	0.2505
Diff (1-	2)	Pooled		-0.2683	-0.4055	-0.1311	0.0941	0.0636	0.1803
Diff (1-	2)	Satterth	waite	-0.2683	-0.4060	-0.1306			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	7.842	8 -4.51 1 -4.51	0.0020 0.0021		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.33	0.7886

97

See Summary Page for 1-tail Result

13:10 Monday, September 2, 2013

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0008 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.6274	0.0889	0.0398	0.5379	0.7470	
	Diff	(1-2)		-0.2103	0.0949	0.0600			
group		Method		Mean	95% CL	. Mean	Std Dev	95% CL St	d Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.6274	0.5170	0.7378	0.0889	0.0533	0.2555
Diff (1-	2)	Pooled		-0.2103	-0.3488	-0.0719	0.0949	0.0641	0.1818
Diff (1-	2)	Satterth	waite	-0.2103	-0.3491	-0.0716			
		Metho	d	Variance	es D	F t Value	e Pr > t		
		Poole	d	Equal		8 -3.50	0.0080		
		Satte	rthwaite	e Unequal	7.882	22 -3.50	0.0082		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.28	0.8176

13:10 Monday, September 2, 2013

98

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0009 -----

The TTEST Procedure

Variable: Result

	grou	р	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7158	0.0389	0.0174	0.6705	0.7624	
	Diff	(1-2)		-0.2987	0.0762	0.0482			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.7158	0.6675	0.7641	0.0389	0.0233	0.1117
Diff (1-	2)	Pooled		-0.2987	-0.4099	-0.1875	0.0762	0.0515	0.1460
Diff (1-	2)	Satterth	waite	-0.2987	-0.4214	-0.1760			
		Metho	d	Variance	es D	OF t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	5.169	8 -6.20 92 -6.20			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	6.69	0.0926

13:10 Monday, September 2, 2013

99

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0010 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7521	0.0740	0.0331	0.6589	0.8574	
	Diff	(1-2)		-0.3350	0.0883	0.0558			
group		Method		Mean	95% CL	. Mean	Std Dev	95% CL S	td Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.7521	0.6602	0.8440	0.0740	0.0443	0.2127
Diff (1-	2)	Pooled		-0.3350	-0.4637	-0.2062	0.0883	0.0596	0.1691
Diff (1-	2)	Satterth	waite	-0.3350	-0.4657	-0.2042			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -6.00	0.0003		
		Satte	rthwaite	Unequal	7.351	3 -6.00	0.0004		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.85	0.5675

P:_Port Angeles Western Harbor Group\Lab Files\stats Statistical Comparison T-test Results, This is a 2-tailed result

See Summary Page for 1-tail Result

13:10 Monday, September 2, 2013

100

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0011 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.5815	0.1364	0.0610	0.3420	0.6841	
	Diff	(1-2)		-0.1644	0.1198	0.0758			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.5815	0.4121	0.7508	0.1364	0.0817	0.3919
Diff (1-	2)	Pooled		-0.1644	-0.3391	0.0104	0.1198	0.0809	0.2295
Diff (1-	2)	Satterth	waite	-0.1644	-0.3418	0.0131			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -2.17	0.0619		
		Satte	rthwaite	Unequal	7.356	9 -2.17	0.0648		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.84	0.5694

13:10 Monday, September 2, 2013

101

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0012 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7165	0.0424	0.0190	0.6455	0.7586	
	Diff	(1-2)		-0.2994	0.0772	0.0488			
group		Method		Mean	95% CL	. Mean	Std Dev	95% CL S	Std Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.7165	0.6638	0.7691	0.0424	0.0254	0.1218
Diff (1-	2)	Pooled		-0.2994	-0.4119	-0.1868	0.0772	0.0521	0.1478
Diff (1-	2)	Satterth	waite	-0.2994	-0.4222	-0.1765			
		Method	d	Varianc	es D	F t Value	e Pr > t		
		Poole	d	Equal		8 -6.13	0.0003		
		Satte	rthwaite	e Unequal	5.37	9 -6.13	0.0013		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	5.62	0.1230

13:10 Monday, September 2, 2013

102

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0013 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.6672	0.0786	0.0351	0.5808	0.7558	
	Diff	(1-2)		-0.2501	0.0902	0.0571			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.6672	0.5696	0.7647	0.0786	0.0471	0.2258
Diff (1-	2)	Pooled		-0.2501	-0.3817	-0.1185	0.0902	0.0609	0.1729
Diff (1-	2)	Satterth	waite	-0.2501	-0.3830	-0.1172			
		Method	d	Variance	es D	F t Value	Pr > t		
		Pooled Satter	d rthwaite	Equal Unequal	7.55	8 -4.38 8 -4.38			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.64	0.6443

13:10 Monday, September 2, 2013

103

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0014 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.6597	0.0794	0.0355	0.5519	0.7641	
	Diff	(1-2)		-0.2426	0.0906	0.0573			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.6597	0.5611	0.7582	0.0794	0.0476	0.2281
Diff (1-	2)	Pooled		-0.2426	-0.3747	-0.1105	0.0906	0.0612	0.1735
Diff (1-	2)	Satterth	waite	-0.2426	-0.3759	-0.1092			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -4.23	0.0029		
		Satte	rthwaite	e Unequal	7.591	2 -4.23	0.0032		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.60	0.6582

13:10 Monday, September 2, 2013

Maximum

104

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0015 -----

The TTEST Procedure

Variable: Result

Std Dev Std Err Minimum

N

group

Mean

	9. 04			mouri	ota bot	0 CG 21 .	mznzmom	maximam	
	CR-02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.6382	0.1197	0.0535	0.5174	0.7697	
	Diff	(1-2)		-0.2211	0.1106	0.0699			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL \$	Std Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.6382	0.4895	0.7869	0.1197	0.0717	0.3441
Diff (1-	2)	Pooled		-0.2211	-0.3824	-0.0599	0.1106	0.0747	0.2118
Diff (1-	2)	Satterthy	vaite	-0.2211	-0.3832	-0.0590			
		Method	i	Variance	es D	F t Valu	e Pr > t		
		Pooled	i	Equal		8 -3.1	6 0.0133		
		Satter	rthwaite	Unequal	7.767	'8 -3.1	6 0.0139		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.42	0.7432

13:10 Monday, September 2, 2013

105

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0017 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7865	0.0611	0.0273	0.7316	0.8750	
	Diff	(1-2)		-0.3694	0.0832	0.0526			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std	Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602 0	.2889
Test				0.7865	0.7107	0.8623	0.0611	0.0366 0	.1755
Diff (1-	2)	Pooled		-0.3694	-0.4907	-0.2481	0.0832	0.0562 0	.1594
Diff (1-	2)	Satterth	waite	-0.3694	-0.4954	-0.2435			
		Metho	d	Varianc	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -7.02	0.0001		
		Satte	rthwaite	e Unequal	6.597	6 -7.02	0.0003		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.71	0.3574

13:10 Monday, September 2, 2013

106

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0018 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7441	0.1028	0.0460	0.6036	0.8600	
	Diff	(1-2)		-0.3270	0.1017	0.0643			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std	Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602 0.	. 2889
Test				0.7441	0.6164	0.8717	0.1028	0.0616 0.	2954
Diff (1-	2)	Pooled		-0.3270	-0.4753	-0.1787	0.1017	0.0687 0.	. 1948
Diff (1-	2)	Satterth	waite	-0.3270	-0.4753	-0.1787			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	7.996	8 -5.08 1 -5.08			

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.05	0.9668

13:10 Monday, September 2, 2013

107

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0019 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7330	0.1287	0.0576	0.6042	0.9031	
	Diff	(1-2)		-0.3159	0.1155	0.0730			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std Dev	
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602 0.2889	9
Test				0.7330	0.5732	0.8928	0.1287	0.0771 0.3698	3
Diff (1-	2)	Pooled		-0.3159	-0.4843	-0.1475	0.1155	0.0780 0.2212	2
Diff (1-	2)	Satterth	waite	-0.3159	-0.4861	-0.1458			
		Method	d	Variance	es D	F t Value	Pr > t		
		Poole	d	Equal		8 -4.33	0.0025		
		Satte	rthwaite	Unequal	7.557	4 -4.33	0.0029		

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.64	0.6441

See Summary Page for 1-tail Result

13:10 Monday, September 2, 2013

108

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0020 -----

The TTEST Procedure

Variable: Result

	grou	0	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7124	0.0874	0.0391	0.5713	0.7929	
	Diff	(1-2)		-0.2953	0.0942	0.0596			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std Dev	
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602 0.2889	
Test				0.7124	0.6039	0.8208	0.0874	0.0523 0.2510	
Diff (1-	2)	Pooled		-0.2953	-0.4326	-0.1579	0.0942	0.0636 0.1804	
Diff (1-	2)	Satterth	waite	-0.2953	-0.4331	-0.1575			
		Metho	d	Variance	es D	F t Value	Pr > t		
		Poole Satte	d rthwaite	Equal Unequal	7.846	8 -4.96 7 -4.96			

Equality of Variances

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.32	0.7917

See Summary Page for 1-tail Result

13:10 Monday, September 2, 2013

109

----- Test=Neanthes arenaceodentata Endpoint=Individual Growth Rate (mg Treatment=SD0021 -----

The TTEST Procedure

Variable: Result

	grou	p	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	0.4171	0.1005	0.0450	0.3058	0.5662	
	Test		5	0.7620	0.0407	0.0182	0.6910	0.7914	
	Diff	(1-2)		-0.3449	0.0767	0.0485			
group		Method		Mean	95% CL	. Mean	Std Dev	95% CL S	Std Dev
CR-02				0.4171	0.2923	0.5419	0.1005	0.0602	0.2889
Test				0.7620	0.7115	0.8125	0.0407	0.0244	0.1169
Diff (1-	2)	Pooled		-0.3449	-0.4568	-0.2330	0.0767	0.0518	0.1469
Diff (1-	2)	Satterth	waite	-0.3449	-0.4677	-0.2221			
		Metho	d	Variance	es D	F t Value	e Pr > t		
		Poole	d	Equal		8 -7.11	0.0001		
		Satte	rthwaite	e Unequal	5.274	8 -7.11	0.0007		

Equality of Variances

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	6.11	0.1075

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0009 -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	40.0	27.50	4.772607	8.0
Test	5	15.0	27.50	4.772607	3.0

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	40.0000
Normal Approximation	
Z	2.5143
One-Sided Pr > Z	0.0060
Two-Sided $Pr > Z $	0.0119
t Approximation	
One-Sided Pr > Z	0.0165
Two-Sided Pr > Z	0.0331

Z includes a continuity correction of 0.5.

Chi-Square	6.8598
DF	1
Pr > Chi-Square	0.0088

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0014 -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	38.0	27.50	4.772607	7.60
Test	5	17.0	27.50	4.772607	3.40

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	38.0000
Normal Approximation	
Z	2.0953
One-Sided Pr > Z	0.0181
Two-Sided $Pr > Z $	0.0361
t Approximation	
One-Sided Pr > Z	0.0328
Two-Sided Pr > Z	0.0656

Z includes a continuity correction of 0.5.

Chi-Square	4.8402
DF	1
Pr > Chi-Square	0.0278

---- Test=Bivalve Development Batch 2 Endpoint=Percent Normal Development Treatment=SD0021 -----

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

group	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
CR-02	5	20.0	27.50	4.758034	4.0
Test	5	35.0	27.50	4.758034	7.0

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	20.0000
Normal Approximation	
Z	-1.4712
One-Sided Pr < Z	0.0706
Two-Sided $Pr > Z $	0.1412
t Approximation	
One-Sided Pr < Z	0.0877
Two-Sided Pr > Z	0.1753

Z includes a continuity correction of 0.5.

Chi-Square	2.4847
DF	1
Pr > Chi-Square	0.1150

P:_Port Angeles Western	Harbor Group	\Lab Files\stats	Statistical Comparison	113
	Mann-Whitney	Test Results	13:10 Monday, September 2	, 2013

----- Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0002 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	30.0	27.50	3.890873	6.0
Test	5	25.0	27.50	3.890873	5.0

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	30.0000
Normal Approximation	
Z	0.5140
One-Sided Pr > Z	0.3036
Two-Sided $Pr > Z $	0.6072
t Approximation	
One-Sided Pr > Z	0.3098
Two-Sided Pr > Z	0.6196

Z includes a continuity correction of 0.5.

Chi-Square	0.4128
DF	1
Pr > Chi-Square	0.5205

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0006 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	30.0	27.50	3.890873	6.0
Test	5	25.0	27.50	3.890873	5.0

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	30.0000
Normal Approximation	0.5140
One-Sided Pr > Z	0.3036
Two-Sided Pr $> Z $	0.6072
t Approximation	
One-Sided Pr > Z	0.3098
Two-Sided Pr > Z	0.6196

Z includes a continuity correction of 0.5.

Chi-Square	0.4128
DF	1
Pr > Chi-Square	0.5205

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0007 -------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	34.50	27.50	4.456581	6.90
Test	5	20.50	27.50	4.456581	4.10

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	34.5000
Normal Approximation Z One-Sided Pr > Z Two-Sided Pr > Z	1.4585 0.0723 0.1447
t Approximation One-Sided Pr > Z Two-Sided Pr > Z	0.0893 0.1787

Z includes a continuity correction of 0.5.

Chi-Square	2.4671
DF	1
Pr > Chi-Square	0.1162

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0008 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	27.50	27.50	3.333333	5.50
Test	5	27.50	27.50	3.333333	5.50

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	27.5000
Normal Approximation Z One-Sided Pr < Z	0.0000
Two-Sided Pr > Z	1.0000
t Approximation	
One-Sided Pr < Z	0.5000
Two-Sided Pr > Z	1.0000

Z includes a continuity correction of 0.5.

Chi-Square	0.0000
DF	1
Pr > Chi-Square	1.0000

P:_Port Angeles Western	Harbor Group	o\Lab Files\stats	Statistical Comparison	117
	Mann-Whitney	/ Test Results	13:10 Monday, September 2	, 2013

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0009 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	27.0	27.50	3.354102	5.40
Test	5	28.0	27.50	3.354102	5.60

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	27.0000
Normal Approximation Z One-Sided Pr < Z Two-Sided Pr > Z	0.0000 0.5000 1.0000
t Approximation One-Sided Pr < Z Two-Sided Pr > Z	0.5000 1.0000

Z includes a continuity correction of 0.5.

Chi-Square	0.0222
DF	1
Pr > Chi-Square	0.8815

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0010 -------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	27.0	27.50	3.354102	5.40
Test	5	28.0	27.50	3.354102	5.60

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	27.0000
Normal Approximation Z One-Sided Pr < Z	0.0000
	1.0000
Two-Sided Pr > Z	1.0000
t Approximation	
One-Sided Pr < Z	0.5000
Two-Sided Pr > Z	1.0000

Z includes a continuity correction of 0.5.

Chi-Square	0.0222
DF	1
Pr > Chi-Square	0.8815

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0013 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	29.0	27.50	3.872983	5.80
Test	5	26.0	27.50	3.872983	5.20

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	29.0000
Normal Approximation Z One-Sided Pr > Z Two-Sided Pr > Z	0.2582 0.3981 0.7963
t Approximation One-Sided Pr > Z Two-Sided Pr > Z	0.4010 0.8021

Z includes a continuity correction of 0.5.

Chi-Square	0.1500
DF	1
Pr > Chi-Square	0.6985

P:_Port Angeles Western	Harbor Group	\Lab Files\stats	Statistical Comparison	120
	Mann-Whitney	Test Results	13:10 Monday, September 2	, 2013

----- Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0017 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	29.0	27.50	3.872983	5.80
Test	5	26.0	27.50	3.872983	5.20

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	29.0000
Normal Approximation	0.0500
Z	0.2582
One-Sided Pr > Z	0.3981
Two-Sided Pr $> Z $	0.7963
t Approximation	
One-Sided Pr > Z	0.4010
Two-Sided Pr > Z	0.8021

Z includes a continuity correction of 0.5.

Chi-Square	0.1500
DF	1
Pr > Chi-Square	0.6985

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0019 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
CR-02	5	35.50	27.50	4.472136	7.10
Test	5	19.50	27.50	4.472136	3.90

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	35.5000
Normal Approximation Z One-Sided Pr > Z Two-Sided Pr > Z	1.6771 0.0468 0.0935
t Approximation	
One-Sided Pr > Z	0.0639
Two-Sided $Pr > Z $	0.1278

Z includes a continuity correction of 0.5.

Chi-Square	3.2000
DF	1
Pr > Chi-Square	0.0736

P:_Port Angeles Western Ha	arbor Group\Lab	Files\stats	Statistical Comparison	122
Ma	lann-Whitney Test	Results	13:10 Monday, September 2,	2013

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0020 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N 	Scores	Under HO	Under HO	Score
CR-02	5	30.0	27.50	3.890873	6.0
Test	5	25.0	27.50	3.890873	5.0

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	30.0000
Normal Approximation	0.5140
One-Sided Pr > Z	0.3036
Two-Sided Pr $> Z $	0.6072
t Approximation	
One-Sided Pr > Z	0.3098
Two-Sided Pr > Z	0.6196

Z includes a continuity correction of 0.5.

Chi-Square	0.4128
DF	1
Pr > Chi-Square	0.5205

See Summary Page for 1-tail Result

13:10 Monday, September 2, 2013

123

------ Test=Eohaustorius estuarius Endpoint=Percent Survival Treatment=SD0005 -------

The TTEST Procedure

Variable: rankit (Rank for Variable Result)

	grou	p	N	Mean	Std Dev		Std Err	Minimum	Maximum	
	CR - 0	2	5	-0.1718	0.7685		0.3437	-1.5466	0.1718	
	Test		5	0.1718	0		0	0.1718	0.1718	
	Diff	(1-2)		-0.3437	0.5434		0.3437			
group		Method		Mean	95% C	L N	lean	Std Dev	95% CL S	Std Dev
CR-02				-0.1718	-1.1261		0.7824	0.7685	0.4605	2.2084
Test				0.1718	0.1718	}	0.1718	0		
Diff (1-	2)	Pooled		-0.3437	-1.1363	1	0.4489	0.5434	0.3671	1.0411
Diff (1-	2)	Satterth	waite	-0.3437	-1.2980)	0.6106			
		Metho	d	Variance	es	DF	t Value	Pr > t		
		Poole	d	Equal		8	-1.00	0.3466		
		Satte	rthwaite	e Unequal		4	-1.00	0.3739		

Equality of Variances

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	Infty	<.0001

APPENDIX I

SEDIMENT PROFILE/PLAN VIEW IMAGING REPORT

January 2014

Sediment Profile Imaging Report

Port Angeles Harbor Sediment Profile & Plan View Imaging Survey

Sediment Profile Imaging Report

PORT ANGELES HARBOR SEDIMENT PROFILE & PLAN VIEW IMAGING SURVEY

Prepared for

Floyd|Snider, Inc

Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by

Germano & Associates, Inc.

12100 SE 46th Place Bellevue, WA 98006

January, 2014

January 2014 Final Report

TABLE OF CONTENTS

LIST	OF FIGURES	iii
1.0 IN	TRODUCTION	1
2.0 M	ATERIALS AND METHODS	2
2.1	MEASURING, INTERPRETING, AND MAPPING SPI PARAMETERS	5
2	.1.1 Sediment Type	5
2	.1.2 Prism Penetration Depth	
2	.1.3 Small-Scale Surface Boundary Roughness	6
2	.1.4 Thickness of Depositional Layers	7
	.1.5 Mud Clasts	
2	.1.6 Apparent Redox Potential Discontinuity Depth	
2	.1.7 Wood Debris Volume	
	.1.8 Organic Loading, Sedimentary Methane, and Thiophilic Bacterial Colonies	
	.1.9 Infaunal Successional Stage	
	.1.10 Biological Mixing Depth	
	PLAN VIEW IMAGE ANALYSIS	
2.3	USING SPI DATA TO ASSESS BENTHIC QUALITY & HABITAT CONDITIONS	13
3.0 RE	SULTS	16
3.1	GRAIN SIZE	16
3.2	PRISM PENETRATION DEPTH	
3.3	SURFACE BOUNDARY ROUGHNESS	17
3.4	APPARENT REDOX POTENTIAL DISCONTINUITY DEPTH	17
3.5	Presence of Wood Debris	18
3.6	ORGANIC LOADING, SEDIMENTARY METHANE, AND THIOPHILIC BACTERIAL COLONIES	
3.7	INFAUNAL SUCCESSIONAL STAGE	18
3.8	BIOLOGICAL MIXING DEPTH	19
4.0 DI	SCUSSION	20
5 0 RF	FERENCES CITED	21

FIGURES

APPENDIX A: Sediment Profile Image Analysis Results

APPENDIX B: Plan View Image Analysis Results

LIST OF FIGURES

Figure 1 Location of SPI/PV stations surveyed in Port Angeles Harbor in July. 2013. Deployment and operation of the Ocean Imaging Model 3731 Sediment Figure 2 Profile and Model DSC 16000 Plan View cameras. Soft-bottom benthic community response to physical disturbance (top Figure 3 panel) or organic enrichment (bottom panel). From Rhoads and Germano (1982).Spatial distribution of sediment grain size major mode (phi units) at Port Figure 4 Angeles in July, 2013. Figure 5 The sediment profile image on the left from Station WPAH011 is a typical example of the silt-clay sediments found at the majority of stations surveyed, while the profile image on the right from Station WPAH027 shows coarser, sandy sediments with a layer of wood debris on the surface. Figure 6 This profile image from Station WPAH046 with a major grain size mode of 4-3 phi (very fine sand) typified the sandier sediment found in the more shallow areas close to shore where fine sediments were not accumulating. Figure 7 This profile and plan view image from Station WPAH053 shows poorlysorted sediments with a mixed cobble and silty sand surface. Figure 8 Spatial distribution of camera prism penetration depth (cm) in Port Angeles in July 2013. Despite the profile camera having the stop collars set at the maximum Figure 9 height and all the lead (250 lbs) in the weight carriages, the compact, very fine sand at Station WPAH047 only allowed minimal (2.06 cm) prism penetration. Figure 10 Spatial distribution of small scale boundary roughness values (cm) in Port Angeles Harbor in July, 2013.

- Figure 11 The disturbed sediment water interface in this profile image from Station WPAH012 is due to the camera prism dragging down some surface wood debris, resulting in a high measured value for boundary roughness.
- Figure 12 Spatial distribution of aRPD depth (cm) in Port Angeles in July 2013.
- Figure 13 The profile images from Station WPAH025 (left) and WPAH 100 (right) had no detectable oxidized surface layer because of decomposing macroalgae (left) and/or wood debris (right).
- Even though there is a relatively high percentage of wood fibers in the surface layer of the profile image from this silt-clay bottom, the active bioturbation by large resident infauna (note the large burrow openings in the plan view image) have resulted in one of the highest aRPD values measured at Station WPAH036.
- This profile image from Station WPAH099 shows a high percentage of wood fibers mixed in with the sediment.
- These PV images from Station WPAH028 (top) and WPAH078 (bottom) show some of the different sizes of wood waste found on the bottom in Port Angeles, from 5-10 cm long chunks (top) and logs (bottom).
- Figure 17 Spatial distribution of wood debris volume found at Port Angeles in July, 2013.
- Figure 18 Even though the sediment surface cannot be seen in this profile image from Station WPAH010 where the camera over-penetrated, the "cottage cheese" texture of the pocket of wood pulp at depth is quite evident in this image.
- Figure 19 Presence/absence of thiophilic bacterial colonies, low dissolved oxygen in the benthic boundary layer, or subsurface methane in SPI and PV images analyzed from the July 2013 Port Angeles survey.
- These replicate profile images from Station WPAH096 (left) and WPAH057 (right) are examples of unanalyzed samples where subsurface methane was present.
- These profile images from Station WPAH064 (left) and WPAH088 (right) show the difference in subsurface sediment color from organic enrichment.

- The dark subsurface anaerobic sediments in these profile images from Stations WPAH096 (left) and WPAH105 (right) show the effects of increased organic enrichment from the nearby fish pens.
- While these replicate images from Station WPAH007 show evidence of organic enrichment (darker subsurface sediments, thiophilic bacterial colonies at the surface), there are both Stage 3 assemblages present and epifaunal predators (shrimp) foraging on the small polychaetes at the sediment surface.
- Figure 24 Spatial distribution of infaunal successional stages found in Port Angeles in July 2013.
- Even though there was a high percent cover of wood debris at Station WPAH068 as shown in this PV image, the presence of Stage 3 taxa and subsurface feeding voids (arrows) were evident in the corresponding profile image from this station.
- This profile image from Station WPAH045 shows a relatively dense assemblage of Stage 1 polychaetes (see magnified inset); two shrimp can be seen foraging on the sediment surface in the background of the image.
- Figure 27 Spatial distribution of feeding void depth (cm) at locations surveyed in Port Angeles in July, 2013.
- Figure 28 Spatial distribution of maximum bioturbation depth (cm) at locations surveyed in Port Angeles in July, 2013.
- This profile image from Station WPAH057 showed evidence of subsurface burrowing that exceeded the depth of the prism penetration.
- These PV images from Station WPAH036 (top) and WPAH037 (bottom) show large infaunal burrow openings which provide additional evidence as to why biological mixing depths are so high at this site.
- These PV images from Station WPAH06 (top; water depth = 7.6 m), WPAH068 (middle; water depth = 13 m), and WPAH092 (bottom; water depth=28.4 m) show large pieces of wood covered by a layer of fine sediments from natural depositional processes.
- Figure 32 This profile image from Station WPAH058 shows a subsurface layer of wood waste (arrow) that was originally deposited at the sediment surface and has since been buried by an accumulation of fine sediment from natural depositional processes.

1.0 INTRODUCTION

As part of the investigations being done in Port Angeles for the Western Port Angeles Harbor Group (WPAHG), Germano & Associates, Inc. (G&A) performed a Sediment Profile and Plan View Imaging (SPI/PV) survey at selected locations in Port Angeles Harbor. The purpose of the SPI/PV survey was to characterize physical, chemical, and biological processes within the area of interest to provide the WPAHG with a more comprehensive description of the seafloor for the ongoing remedial investigation.

2.0 MATERIALS AND METHODS

Between July 15-18, 2013, scientists from G&A collected SPI/PV images aboard the R/V Kittiwake in Port Angeles Harbor. An Ocean Imaging Systems Model 3731 sediment profile camera was used for this survey; a total of 485 sediment profile images were collected at 100 stations (Figure 1) during the field sampling operations. Three of the stations sampled (KSS-1, KSS-2, KSS-3), whose results are included in this report, were sampled at the request of and paid for separately by the K Ply Site Remedial Investigation / Feasibility Study.

SPI was developed more than three decades ago as a rapid reconnaissance tool for characterizing physical, chemical, and biological seafloor processes and has been used in numerous seafloor surveys throughout North America, Asia, Europe, and Africa (Rhoads and Germano 1982, 1986, 1990; Revelas et al. 1987; Diaz and Schaffner, 1988; Valente et al. 1992; Germano et al. 2011). The sediment profile camera works like an inverted periscope. A Nikon D7000 16.2-megapixel SLR camera with two 16-gigabyte secure digital (SD) memory cards is mounted horizontally inside a watertight housing on top of a wedge-shaped prism. The prism has a Plexiglas® faceplate at the front with a mirror placed at a 45° angle at the back. The camera lens looks down at the mirror, which is reflecting the image from the faceplate. The prism has an internal strobe mounted inside at the back of the wedge to provide illumination for the image; this chamber is filled with distilled water, so the camera always has an optically clear path. This wedge assembly is mounted on a moveable carriage within a stainless steel frame. The frame is lowered to the seafloor on a winch wire, and the tension on the wire keeps the prism in its "up" position. When the frame comes to rest on the seafloor, the winch wire goes slack and the camera prism descends into the sediment at a slow, controlled rate by the dampening action of a hydraulic piston so as not to disturb the sediment-water interface. On the way down, it trips a trigger that activates a time-delay circuit of variable length (operatorselected) to allow the camera to penetrate the seafloor before any image is taken (Figure 2). The knife-sharp edge of the prism transects the sediment, and the prism penetrates the bottom. The strobe is discharged after an appropriate time delay to obtain a crosssectional image of the upper 20 cm of the sediment column. The resulting images give the viewer the same perspective as looking through the side of an aquarium half-filled with sediment. After the first image is obtained at the first location, the camera is then raised up about 2 to 3 meters off the bottom to allow the strobe to recharge; a wiper blade mounted on the frame removes any mud adhering to the faceplate. The strobe recharges within 5 seconds, and the camera is ready to be lowered again for a replicate image. Surveys can be accomplished rapidly by "pogo-sticking" the camera across an area of seafloor while recording positional fixes on the surface vessel.

Two types of adjustments to the SPI system are typically made in the field: physical adjustments to the chassis stop collars or adding/subtracting lead weights to the chassis to control penetration in harder or softer sediments, and electronic software adjustments to the Nikon D7000 to control camera settings. Camera settings (f-stop, shutter speed, ISO equivalents, digital file format, color balance, etc.) are selectable through a water-tight USB port on the camera housing and Nikon Control Pro[®] software. At the beginning of the survey, the time on the sediment profile camera's internal data logger was synchronized with the internal clock on the computerized navigation system to local time. Details of the camera settings for each digital image are available in the associated parameters file embedded in the electronic image file; for this survey, the ISO-equivalent was set at 640. The additional camera settings used were as follows: shutter speed was 1/250, f9, white balance set to flash, color mode to Adobe RGB, sharpening to none, noise reduction off, and storage in compressed raw Nikon Electronic Format (NEF) files (approximately 20 MB each). Electronic files were converted to high-resolution jpeg (8bit) format files (3264 x 4928 pixels) using Nikon Capture NX2® software (Version 2.2.7).

A minimum of four replicate images were taken at each station; each SPI replicate is identified by the time recorded on the digital image file in the camera and on disk along with vessel position on the navigation computer. The unique time stamp on the digital image was then cross-checked with the time stamp in the navigational system's computer data file. The field crew kept redundant written sample logs. Images were downloaded periodically (sometimes after each station) to verify successful sample acquisition or to assess what type of sediment/depositional layer was present at a particular station. Digital image files were re-named with the appropriate station name immediately after downloading on deck as a further quality assurance step.

Test exposures of the Kodak® Color Separation Guide (Publication No. Q-13) were made on deck at the beginning and end of each survey to verify that all internal electronic systems were working to design specifications and to provide a color standard against which final images could be checked for proper color balance. A spare camera and charged battery were carried in the field at all times to insure uninterrupted sample acquisition. After deployment of the camera at each station, the frame counter was checked to make sure that the requisite number of replicates had been taken. In addition, a prism penetration depth indicator on the camera frame was checked to verify that the optical prism had actually penetrated the bottom to a sufficient depth. If images were missed (frame counter indicator or verification from digital download) or the penetration depth was insufficient (penetration indicator), chassis stops were adjusted and/or weights were added or removed, and additional replicate images were taken. Changes in prism weight amounts, the presence or absence of mud doors, and chassis stop positions were recorded for each replicate image. Images were inspected at high magnification to determine whether any stations needed resampling with different stop collar or weight settings.

An Ocean Imaging Model DSC16000 plan-view underwater camera (PV) system with two Ocean Imaging Model 400-37 Deep Sea Scaling lasers mounted to the DSC16000 were attached to the sediment profile camera frame and used to collect plan-view photographs of the seafloor surface; both SPI and plan view images were collected during each "drop" of the system. The PV system consisted of Nikon D-7000 encased in a stainless steel housing with a domed glass port, a 24 VDC autonomous power pack, a 500W strobe, and a bounce trigger. A weight was attached to the bounce trigger with a stainless steel cable so that the weight hung below the camera frame; the scaling lasers project 2 red dots that are separated by a constant distance (26 cm) regardless of the field of view of the final image, which can be varied by increasing or decreasing the length of the trigger wire. As the camera apparatus was lowered to the seafloor, the weight attached to the bounce trigger contacted the seafloor prior to the camera frame hitting the bottom and triggered the PV (Figure 2). Details of the camera settings for each digital image are available in the associated parameters file embedded in each electronic image file; for this survey, the ISO-equivalent was set at 640. The additional camera settings used were as follows: shutter speed was 1/20, f16, white balance set to flash, color mode to Adobe RGB, sharpening to none, noise reduction off, and storage in compressed raw Nikon Electronic Format (NEF) files (approximately 20 MB each).

Prior to field operations, the internal clock in the digital PV was synchronized with the GPS navigation system and the SPI camera. Each PV image acquired was assigned a time stamp in the digital file and redundant notations in the field and navigation logs. Throughout the survey, PV images were downloaded at the same time as the sediment profile images after collection and evaluated for successful image acquisition and image clarity.

The ability of the PV to collect usable images was dependent on the clarity of the water column. To minimize the effects of turbid bottom waters, the bounce trigger cable was shortened as much as possible in order to decrease the distance between the camera focal plane and the seafloor (24"). By limiting the distance between the camera lens port and the intended subject, picture clarity was improved. One major drawback to the short trigger cable length and close distance between the PV and the seafloor was that the field of view of the PV system was decreased so that a smaller area of the seafloor was photographed. Even with the short trigger cable, details in many of the PV images were obscured due to the highly turbid bottom waters.

At the end of each sampling day, all images collected that particular day in the field were converted to Joint Photographic Experts Group (jpeg) files using maximum image compression to make files a reasonable size (less than 300 KB) for transmission over the internet to Mr. Eugene Revelas at Integral Consulting. Mr. Revelas conducted a daily morning review with a representative from the Department of Ecology (Mr. Peter Striplin) to determine if any additional sampling locations were warranted to further delineate the spatial extent any specific features of interest seen in the SPI or PV images.

Following completion of the field operations, the raw NEF image files were converted to high-resolution jpeg (8-bit) format files (3264 x 4928 pixels) using Nikon Capture NX2 software. Once converted to jpeg format, the intensity histogram (RGB channel) for each image was adjusted in Adobe Photoshop® to maximize contrast without distortion. The jpeg images were then imported to Sigmascan Pro® (Aspire Software International) for image calibration and analysis. Calibration information was determined by measuring 1-cm gradations from the Kodak® Color Separation Guide. This calibration information was applied to all SPI images analyzed. Linear and area measurements were recorded as number of pixels and converted to scientific units using the calibration information.

Measured parameters were recorded on a Microsoft Excel[©] spreadsheet. G&A's senior scientist (Dr. J. Germano) subsequently checked all these data as an independent quality assurance/quality control review of the measurements before final interpretation was performed.

2.1 Measuring, Interpreting, and Mapping SPI Parameters

2.1.1 Sediment Type

The sediment grain-size major mode and range were visually estimated from the color images by overlaying a grain-size comparator that was at the same scale. This comparator was prepared by photographing a series of Udden-Wentworth size classes (equal to or less than coarse silt up to granule and larger sizes) with the SPI camera. Seven grain-size classes were on this comparator: $>4 \varphi$ (silt-clay), 4-3 φ (very fine sand), 3-2 φ (fine sand), 2-1 φ (medium sand), 1-0 φ (coarse sand), 0 - (-1) φ (very coarse sand), < -1 φ (granule and larger). The lower limit of optical resolution of the photographic system was about 62 microns, allowing recognition of grain sizes equal to or greater than coarse silt (\ge 4 φ). The accuracy of this method has been documented by comparing SPI estimates with grain-size statistics determined from laboratory sieve analyses (Germano et al. 2011).

The comparison of the SPI images with Udden-Wentworth sediment standards photographed through the SPI optical system was also used to map near-surface stratigraphy such as sand-over-mud and mud-over-sand. When mapped on a local scale, this stratigraphy can provide information on relative transport magnitude and frequency.

2.1.2 Prism Penetration Depth

The SPI prism penetration depth was measured from the bottom of the image to the sediment-water interface. The area of the entire cross-sectional sedimentary portion of the image was digitized, and this number was divided by the calibrated linear width of the image to determine the average penetration depth. Linear maximum and minimum depths of penetration were also measured. All three measurements (maximum, minimum, and average penetration depths) were recorded in the data file.

Prism penetration is a noteworthy parameter; if the number of weights used in the camera is held constant throughout a survey, the camera functions as a static-load penetrometer. Comparative penetration values from sites of similar grain size give an indication of the relative water content of the sediment. Highly bioturbated sediments and rapidly accumulating sediments tend to have the highest water contents and greatest prism penetration depths.

The depth of penetration also reflects the bearing capacity and shear strength of the sediments. Overconsolidated or relic sediments and shell-bearing sands resist camera penetration. Highly bioturbated, sulfitic, or methanogenic muds are the least consolidated, and deep penetration is typical. Seasonal changes in camera prism penetration have been observed at the same station in other studies and are related to the control of sediment geotechnical properties by bioturbation (Rhoads and Boyer 1982). The effect of water temperature on bioturbation rates appears to be important in controlling both biogenic surface relief and prism penetration depth (Rhoads and Germano 1982).

2.1.3 Small-Scale Surface Boundary Roughness

Surface boundary roughness was determined by measuring the vertical distance between the highest and lowest points of the sediment-water interface. The surface boundary roughness (sediment surface relief) measured over the width of sediment profile images typically ranges from 0.02 to 3.8 cm, and may be related to either physical structures (ripples, rip-up structures, mud clasts) or biogenic features (burrow openings, fecal mounds, foraging depressions). Biogenic roughness typically changes seasonally and is related to the interaction of bottom turbulence and bioturbational activities.

The camera must be level in order to take accurate boundary roughness measurements. In sandy sediments, boundary roughness can be a measure of sand wave height. On silt-clay bottoms, boundary roughness values often reflect biogenic features such as fecal mounds or surface burrows. The size and scale of boundary roughness values can have dramatic effects on both sediment erodibility and localized oxygen penetration into the bottom (Huettel et al., 1996).

2.1.4 Thickness of Depositional Layers

Because of the camera's unique design, SPI can be used to detect the thickness of depositional and dredged material layers. SPI is effective in measuring layers ranging in thickness from 1 mm to 20 cm (the height of the SPI optical window). During image analysis, the thickness of the newly deposited sedimentary layers can be determined by measuring the distance between the pre- and post-disposal sediment-water interface. Recently deposited material is usually evident because of its unique optical reflectance and/or color relative to the underlying material representing the pre-disposal surface. Also, in most cases, the point of contact between the two layers is clearly visible as a textural change in sediment composition, facilitating measurement of the thickness of the newly deposited layer.

2.1.5 Mud Clasts

When fine-grained, cohesive sediments are disturbed, either by physical bottom scour or faunal activity, e.g., decapod foraging, intact clumps of sediment are often scattered about the seafloor. These mud clasts can be seen at the sediment-water interface in SPI images. During analysis, the number of clasts was counted, the diameter of a typical clast was measured, and their oxidation state was assessed. The abundance, distribution, oxidation state, and angularity of mud clasts can be used to make inferences about the recent pattern of seafloor disturbance in an area.

Depending on their place of origin and the depth of disturbance of the sediment column, mud clasts can be reduced or oxidized. In SPI images, the oxidation state is apparent from the reflectance; see Section 2.1.6. Also, once at the sediment-water interface, these mud clasts are subject to bottom-water oxygen concentrations and currents. Evidence from laboratory microcosm observations of reduced sediments placed within an aerobic environment indicates that oxidation of reduced surface layers by diffusion alone is quite rapid, occurring within 6 to 12 hours (Germano 1983). Consequently, the detection of reduced mud clasts in an obviously aerobic setting suggests a recent origin. The size and shape of the mud clasts are also revealing; some clasts seen in the profile images are artifacts caused by the camera deployment (mud clots falling off the back of the prism or the wiper blade). Naturally-occurring mud clasts may be moved and broken by bottom currents and animals (macro- or meiofauna; Germano 1983). Over time, these naturally-occurring, large angular clasts become small and rounded.

2.1.6 Apparent Redox Potential Discontinuity Depth

Aerobic near-surface marine sediments typically have higher reflectance relative to underlying hypoxic or anoxic sediments. Surface sands washed free of mud also have higher optical reflectance than underlying muddy sands. These differences in optical reflectance are readily apparent in SPI images; the oxidized surface sediment contains

particles coated with ferric hydroxide (an olive or tan color when associated with particles), while reduced and muddy sediments below this oxygenated layer are darker, generally gray to black (Fenchel 1969; Lyle 1983). The boundary between the colored ferric hydroxide surface sediment and underlying gray to black sediment is called the apparent redox potential discontinuity (aRPD).

The depth of the apparent RPD in the sediment column is an important time-integrator of dissolved oxygen conditions within sediment porewaters. In the absence of bioturbating organisms, this high reflectance layer (in muds) will typically reach a thickness of 2 mm below the sediment-water interface (Rhoads 1974). This depth is related to the supply rate of molecular oxygen by diffusion into the bottom and the consumption of that oxygen by the sediment and associated microflora. In sediments that have very high sediment oxygen demand (SOD), the sediment may lack a high reflectance layer even when the overlying water column is aerobic.

In the presence of bioturbating macrofauna, the thickness of the high reflectance layer may be several centimeters. The relationship between the thickness of this high reflectance layer and the presence or absence of free molecular oxygen in the associated porewaters must be considered with caution. The actual RPD is the boundary or horizon that separates the positive Eh region of the sediment column from the underlying negative Eh region. The exact location of this Eh = 0 boundary can be determined accurately only with microelectrodes; hence, the relationship between the change in optical reflectance, as imaged with the SPI camera, and the actual RPD can be determined only by making the appropriate in situ Eh measurements. For this reason, the optical reflectance boundary, as imaged, was described in this study as the "apparent" RPD and it was mapped as a mean value. In general, the depth of the actual Eh = 0horizon will be either equal to or slightly shallower than the depth of the optical reflectance boundary (Rosenberg et al., 2001). This is because bioturbating organisms can mix ferric hydroxide-coated particles downward into the bottom below the Eh = 0horizon. As a result, the apparent mean RPD depth can be used as an estimate of the depth of porewater exchange, usually through porewater irrigation (bioturbation).

The rate of depression of the apparent RPD within the sediment is relatively slow in organic-rich muds, on the order of 200 to 300 micrometers per day; therefore this parameter has a long time constant (Germano and Rhoads 1984). The rebound in the apparent RPD is also slow (Germano 1983). Measurable changes in the apparent RPD depth using the SPI optical technique can be detected over periods of 1 or 2 months. This parameter is used effectively to document changes (or gradients) that develop over a seasonal or yearly cycle related to water temperature effects on bioturbation rates, seasonal hypoxia, SOD, and infaunal recruitment. Time-series RPD measurements following a disturbance can be a critical diagnostic element in monitoring the degree of recolonization in an area by the ambient benthos (Rhoads and Germano 1986).

The apparent mean RPD depth also can be affected by local erosion. The peaks of disposal mounds commonly are scoured by divergent flow over the mound. This scouring can wash away fines and shell or gravel lag deposits, and can result in very thin surface oxidized layer. During storm periods, erosion may completely remove any evidence of the apparent RPD (Fredette et al. 1988).

Another important characteristic of the apparent RPD is the contrast in reflectance at this boundary. This contrast is related to the interactions among the degree of organic loading, the bioturbation activity in the sediment, and the concentrations of bottom-water dissolved oxygen in an area. High inputs of labile organic material increase SOD and, subsequently, sulfate reduction rates and the associated abundance of sulfide end products. This results in more highly reduced, lower-reflectance sediments at depth and higher RPD contrasts. In a region of generally low RPD contrasts, images with high RPD contrasts indicate localized sites of relatively large inputs of organic-rich material such as phytoplankton, other naturally-occurring organic detritus, dredged material, or sewage sludge.

Because the determination of the apparent RPD requires discrimination of optical contrast between oxidized and reduced particles, it is difficult, if not impossible, to determine the depth of the apparent RPD in well-sorted sands of any size that have little to no silt or organic matter in them. When using SPI technology on sand bottoms, little information other than grain-size, prism penetration depth, and boundary roughness values can be measured; while oxygen no doubt penetrates the sand beneath the sediment-water interface just due to physical forcing factors acting on surface roughness elements (Ziebis et al., 1996; Huettel et al., 1998), estimates of the mean apparent RPD depths in these types of sediments are indeterminate with conventional white light photography.

2.1.7 Wood Debris Volume

In areas affected by log storage and transfer facilities, pulp mills, sawmills, and other timber product manufacture, the accurate identification and estimation of wood debris content within the sediment column can be an important variable in the evaluation of benthic health. In addition to determining the wood residue content within and upon the sediment column, the status (fresh or decomposed) and form (chips, fibers, sticks, etc.) can also provide useful information. The depth within the sediment column where wood particles are observed, along with whether the wood particles are present in a layer or admixed within the sediment column, can also have a substantial influence on benthic community dynamics.

SPI has been used to estimate the volume of wood residues in the sediment column in previous studies (Browning 2004, Germano and Associates 2004, 2007 a, b). To estimate the volume of wood residues in the sediment column, SPI images are compared to

standard petrographic estimators (Folk 1974). Using this technique, the amount of the sediment column represented by wood particles in the SPI images is considered equivalent to the volume of wood debris in the sediment column. In essence, the planar representation of wood particles in the sediment column captured in the SPI images is projected into three dimensions. Ground-truth samples validating this technique have shown a linear relationship between estimated SPI wood residue volumes and true wood residue volumes in the sediment column (r=0.918; Browning 2004).

To estimate the volume of wood residue in the sediment column, the petrographic estimators (Williams et al. 1982) were placed over or adjacent to the SPI image and the corresponding area represented by wood residues was recorded. The wood residue content measurement in the biologically-active, oxidized surface layer was reported based on the following categories:

- None = no discernible wood material present
- Trace = <5 percent
- Low = 5-20 percent
- Medium = 21 50 percent
- High = > 50 percent

Key to the success of this technique is the proper identification of wood particles in the sediment column. Two factors can obfuscate the correct identification of wood particles: 1) the size of the wood particle, because very small wood fibers and fragments can be at the limit of camera resolution, and, 2) the presence of black, highly reduced sediment surrounding the wood particles, because most light is absorbed by the sediment; therefore, wood fibers and fragments frequently stain black in the presence of highly reducing sediments.

2.1.8 Organic Loading, Sedimentary Methane, and Thiophilic Bacterial Colonies

If organic loading is extremely high, porewater sulfate is depleted and methanogenesis occurs. The process of methanogenesis is indicated by the appearance of methane bubbles in the sediment column, and the number and total area covered by all methane pockets is measured. These gas-filled voids are readily discernable in SPI images because of their irregular, generally circular aspect and glassy texture (due to the reflection of the strobe off the gas bubble).

A primary diagnostic feature indicating an area is suffering from hypoxic conditions due to organic enrichment is the presence of the *Beggiatoa* or *Beggiatoa*-like colonies (note: while we cannot state with certainty that any bacterial colonies seen in profile or plan view images are indeed the genus *Beggiatoa* without microscopic identification, we can

state with certainty that these are in the same family of sulfur-oxidizing bacteria that only appear in hypoxic or anoxic conditions). These colonies have diagnostic morphology that has been documented in numerous other sediment profile imaging surveys (Karakassis et al., 2002; Nilsson & Rosenberg, 1997; Rosenberg et al., 2001; Germano et al. 2011). The presence of sulfur-oxidizing bacterial colonies appear when boundary-layer dissolved oxygen concentrations drop into the "hypoxic" range between 0-1 ml/L (Rosenberg and Diaz, 1993).

2.1.9 Infaunal Successional Stage

The mapping of infaunal successional stages is readily accomplished with SPI technology. These stages are recognized in SPI images by the presence of dense assemblages of near-surface polychaetes and/or the presence of subsurface feeding voids; both may be present in the same image. Mapping of successional stages is based on the theory that organism-sediment interactions in fine-grained sediments follow a predictable sequence after a major seafloor perturbation. This theory states that primary succession results in "the predictable appearance of macrobenthic invertebrates belonging to specific functional types following a benthic disturbance. These invertebrates interact with sediment in specific ways. Because functional types are the biological units of interest..., our definition does not demand a sequential appearance of particular invertebrate species or genera" (Rhoads and Boyer 1982). This theory is presented in Pearson and Rosenberg (1978) and further developed in Rhoads and Germano (1982) and Rhoads and Boyer (1982).

This continuum of change in animal communities after a disturbance (primary succession) has been divided subjectively into four stages: Stage 0, indicative of a sediment column that is largely devoid of macrofauna, occurs immediately following a physical disturbance or in close proximity to an organic enrichment source; Stage 1 is the initial community of tiny, densely populated polychaete assemblages; Stage 2 is the start of the transition to head-down deposit feeders; and Stage 3 is the mature, equilibrium community of deep-dwelling, head-down deposit feeders (Figure 3).

After an area of bottom is disturbed by natural or anthropogenic events, the first invertebrate assemblage (Stage 1) appears within days of the disturbance. Stage 1 consists of assemblages of tiny tube-dwelling marine polychaetes that reach population densities of 10⁴ to 10⁶ individuals per m². These animals feed at or near the sedimentwater interface and physically stabilize or bind the sediment surface by producing a mucous "glue" that they use to build their tubes. Sometimes deposited dredged material layers contain Stage 1 tubes still attached to mud clasts from their location of origin; these transported individuals are considered as part of the *in situ* fauna in our assignment of successional stages.

If there are no repeated disturbances to the newly colonized area, then these initial tube-dwelling suspension or surface-deposit feeding taxa are followed by burrowing, head-down deposit-feeders that rework the sediment deeper and deeper over time and mix oxygen from the overlying water into the sediment. The animals in these later-appearing communities (Stage 2 or 3) are larger, have lower overall population densities (10 to 100 individuals per m²), and can rework the sediments to depths of 3 to 20 cm or more. These animals "loosen" the sedimentary fabric, increase the water content in the sediment, thereby lowering the sediment shear strength, and actively recycle nutrients because of the high exchange rate with the overlying waters resulting from their burrowing and feeding activities.

In dynamic estuarine and coastal environments, it is simplistic to assume that benthic communities always progress completely and sequentially through all four stages in accordance with the idealized conceptual model depicted in Figure 3. Various combinations of these basic successional stages are possible. For example, secondary succession can occur (Horn, 1974) in response to additional labile carbon input to surface sediments, with surface-dwelling Stage 1 or 2 organisms co-existing at the same time and place with Stage 3, resulting in the assignment of a "Stage 1 on 3" or "Stage 2 on 3" designation.

While the successional dynamics of invertebrate communities in fine-grained sediments have been well-documented, the successional dynamics of invertebrate communities in sand and coarser sediments are not well-known. Subsequently, the insights gained from sediment profile imaging technology regarding biological community structure and dynamics in sandy and coarse-grained bottoms are fairly limited.

2.1.10 Biological Mixing Depth

During the past two decades, there has been a considerable emphasis on studying the effects of bioturbation on sediment geotechnical properties as well as sediment diagenesis (Ekman et al., 1981; Nowell et al., 1981; Rhoads and Boyer, 1982; Grant et al., 1982; Boudreau, 1986; 1994; 1998). However, an increasing focus of research is centering on the rates of contaminant flux in sediments (Reible and Thibodeaux, 1999; François et al., 2002; Gilbert et al., 2003), and the two parameters that affect the time rate of contaminant flux the greatest are erosion and bioturbation (Reible and Thibodeaux, 1999). The depth to which sediments are bioturbated, or the biological mixing depth, can be an important parameter for studying either nutrient or contaminant flux in sediments. As noted in Section 2.1.6, the apparent mean RPD depth provides an estimate of the depth of porewater exchange, usually through porewater irrigation. While the apparent RPD is one potential measure of biological mixing depth, it is quite common in profile images to see evidence of biological activity (burrows, voids, or actual animals) well below the mean apparent RPD. Biogenic particle mixing depths can be estimated by measuring the maximum and minimum depths of imaged feeding voids in the sediment column. This

parameter represents the particle mixing depths of head-down feeders, mainly polychaetes. Both the minimum and maximum linear distance from the sediment surface to both the shallowest and deepest feature of biological activity are measured along with a notation of the type of biogenic structure measured. From these, either the minimum, maximum, or average biological mixing depth can be mapped across a surveyed area of interest.

2.2 PLAN VIEW IMAGE ANALYSIS

The plan view images provide a much larger field of view than the sediment profile images and provide valuable information about the landscape ecology and sediment topography in the area where the pinpoint "optical core" of the sediment profile was taken. Unusual surface sediment layers/textures or structures detected in any of the sediment profile images can be interpreted in light of the larger context of surface sediment features, i.e. is a surface layer or topographic feature a regularly occurring feature and typical of the bottom in this general vicinity or just an isolated anomaly? The scale information provided by the underwater lasers allows accurate density counts (number per square meter) of attached epifaunal colonies, sediment burrow openings, or larger macrofauna or fish which may be missed in the sediment profile cross-section. Presence of *Beggiatoa* colonies along with information on sediment transport dynamics and bedform wavelength were also available from plan view image analysis. In addition, percent cover of wood debris was visually estimated using the same analytical approach described above in Section 2.1.8.

2.3 Using SPI Data to Assess Benthic Quality & Habitat Conditions

While various measurements of water quality such as dissolved oxygen, contaminants, or nutrients are often used to assess regional ecological quality, interpretation is difficult because of the transient nature of water-column phenomena. Measurement of a particular value of any water-column variable represents an instantaneous "snapshot" that can change within minutes after the measurement is taken. By the time an adverse signal in the water column such as a low dissolved oxygen concentration is persistent, the system may have degraded to the point where resource managers can do little but map the spatial extent of the phenomenon while gaining a minimal understanding of factors contributing to the overall degradation.

The seafloor, on the other hand, is a long-term time integrator of sediment and overlying water quality; values for any variable measured are the result of physical, chemical, and biological interactions on time scales much longer than those present in a rapidly moving fluid. The seafloor is thus an excellent indicator of environmental quality, both in terms of historical impacts and of future trends for any particular variable.

Physical measurements made from the "optical cores" obtained with the SPI system provide background information about gradients in physical disturbance (caused by dredging, disposal, oil platform cuttings and drilling muds discharge, trawling, or storm resuspension and transport) in the form of maps of sediment grain size, boundary roughness, sediment textural fabrics, and structures. The concentration of organic matter and the SOD can be inferred from the optical reflectance of the sediment column and the apparent RPD depth. Organic matter is an important indicator of the relative value of the sediment as a carbon source for both bacteria and infaunal deposit feeders. SOD is an important measure of ecological quality; oxygen can be depleted quickly in sediment by the accumulation of organic matter and by bacterial respiration, both of which place an oxygen demand on the porewater and compete with animals for a potentially limited oxygen resource (Kennish 1986).

The apparent RPD depth is useful in assessing the quality of a habitat for epifauna and infauna from both physical and biological points of view. The apparent RPD depth in profile images has been shown to be directly correlated to the quality of the benthic habitat in polyhaline and mesohaline estuarine zones (Rhoads and Germano 1986; Revelas et al. 1987; Valente et al. 1992). Controlling for differences in sediment type and physical disturbance factors, relatively shallow aRPD depths can indicate chronic benthic environmental stress or recent catastrophic disturbance.

The distribution of successional stages in the context of the mapped disturbance gradients is one of the most sensitive indicators of the ecological quality of the seafloor (Rhoads and Germano 1986). The presence of Stage 3 equilibrium taxa (mapped from subsurface feeding voids as observed in profile images) can be a good indication of high benthic habitat stability and relative quality. A Stage 3 assemblage indicates that the sediment surrounding these organisms has not been disturbed severely in the recent past and that the inventory of bioavailable contaminants is relatively small. These inferences are based on past work, primarily in temperate latitudes, showing that Stage 3 species are relatively intolerant to sediment disturbance, organic enrichment, and sediment contamination (Pearson and Rosenberg 1978; Santos and Simon 1980a, b; Rhoads and Germano 1982, 1986; Germano et al. 2011). Stage 3 species expend metabolic energy on sediment bioturbation (both particle advection and porewater irrigation) to control sediment properties, including porewater profiles of sulfate, nitrate, and RPD depth in the sedimentary matrix near their burrows or tubes (Aller and Stupakoff 1996; Rice and Rhoads 1989). This bioturbation results in an enhanced rate of decomposition of polymerized organic matter by stimulating microbial decomposition ("microbial gardening"). Stage 3 benthic assemblages are very stable and are also called climax or equilibrium seres.

The metabolic energy expended in bioturbation is rewarded by creating a sedimentary environment where refractory organic matter is converted to usable food. Stage 3 bioturbation has been likened to processes such as stirring and aeration used in tertiary

sewage treatment plants to accelerate organic decomposition (Rice and Rhoads 1989). Physical disturbance, contaminant loading, and/or over-enrichment result in habitat destruction and in local extinction of the climax seres. Loss of Stage 3 species results in the loss of sediment stirring and aeration and may be followed by a buildup of organic matter (sediment eutrophication). Because Stage 3 species tend to have relatively conservative rates of recruitment, intrinsic population increase, and ontogenetic growth, they may not reappear for several years once they are excluded from an area.

The presence of Stage 1 seres (in the absence of Stage 3 seres) can indicate that the bottom is an advanced state of organic enrichment, has received high contaminant loading, or experienced a substantial physical disturbance. Unlike Stage 3 communities, Stage 1 seres have a relatively high tolerance for organic enrichment and contaminants. These opportunistic species have high rates of recruitment, high ontogenetic growth rates, and live and feed near the sediment-water interface, typically in high densities. Stage 1 seres often co-occur with Stage 3 seres in marginally enriched areas. In this case, Stage 1 seres feed on labile organic detritus settling onto the sediment surface, while the subsurface Stage 3 seres tend to specialize on the more refractory buried organic reservoir of detritus.

Stage 1 and 3 seres have dramatically different effects on the geotechnical properties of the sediment (Rhoads and Boyer 1982). With their high population densities and their feeding efforts concentrated at or near the sediment-water interface, Stage 1 communities tend to bind fine-grained sediments physically, making them less susceptible to resuspension and transport. Just as a thick cover of grass will prevent erosion on a terrestrial hillside, so too will these dense assemblages of tiny polychaetes serve to stabilize the sediment surface. Conversely, Stage 3 taxa increase the water content of the sediment and lower its shear strength through their deep burrowing and pumping activities, rendering the bottom more susceptible to erosion and resuspension. In shallow areas of fine-grained sediments that are susceptible to storm-induced or wave orbital energy, it is quite possible for Stage 3 taxa to be carried along in the water column in suspension with fluid muds. When redeposition occurs, these Stage 3 taxa can become quickly re-established in an otherwise physically disturbed surface sedimentary fabric.

SPI has been shown to be a powerful reconnaissance tool that can efficiently map gradients in sediment type, biological communities, or disturbances from physical forces or organic enrichment. The conclusions reached at the end of this report are about dynamic processes that have been deduced from imaged structures; as such, they should be considered hypotheses available for further testing/confirmation. By employing Occam's Razor, we feel reasonably assured that the most parsimonious explanation is usually the one borne out by subsequent data confirmation.

3.0 RESULTS

A list of specific station replicate images to be analyzed was provided to G&A scientists by Integral Consulting following completion of the field effort; one replicate image set (one SPI and one PV image) was analyzed from 95 of the stations surveyed, with a duplicate image set analyzed from an additional 19 locations (20% of the 95 WPAHG stations sampled). A complete set of all the summary data measured from each sediment profile image is presented in Appendix A; data from the plan view images are presented in Appendix B.

Parameters such as boundary roughness and mud clast data (number, size) provide supplemental information pertaining to the physical regime and bottom sediment transport activity at a site. Even though mud clasts are definitive characteristics whose presence can indicate physical disturbance of some form, the mud clasts noted in the images from this survey were either biogenic in origin or artifacts due to sampling (mud clumps clinging to the frame base) and not indicative of physical disturbance or sediment transport activities. Therefore, mud clast data were not used as individual parameters for interpretation.

The results for some SPI parameters are sometimes indicated in the data appendix or on the maps as being "Indeterminate" (Ind). This is a result of the sediments being either: 1) too compact for the profile camera to penetrate adequately, preventing observation of surface or subsurface sediment features, 2) too soft to bear the weight of the camera, resulting in over-penetration to the point where the sediment/water interface was above the window (imaging area) on the camera prism (the sediment/water interface must be visible to measure most of the key SPI parameters like aRPD depth, penetration depth, and infaunal successional stage), or 3) the sediment consisted of uniformly-colored sand lacking a visible aRPD contrast and for which infaunal successional dynamics, generally speaking, are not well-known. All mapped values represent the measurement obtained from a single image, except at those 19 locations where duplicate images were analyzed and the average value is mapped instead.

3.1 GRAIN SIZE

The sediments throughout the entire area surveyed were primarily muds (fine-grained, silt-clay sediments with a major mode of ≥ 4 ϕ ; Figure 4) except for nine locations close to shore in shallower waters where a higher percentage of very fine to medium sand was found (Figure 5). While most of the nine stations with a higher sand fraction had a sediment grain-size major mode of very fine sand (Figure 6), Station WPAH053 in the western shallow area of the harbor had a particularly distinct, poorly-sorted grain size distribution with a mixed silty-sand and cobble bottom (Figure 7).

3.2 Prism Penetration Depth

Even though sediment grain-size fairly uniform across the entire study area, the variation in prism penetration was often a function of the amount of wood debris found at the surface as well as the relative sediment shear strength as a function of biological mixing depth; both the camera stop collar settings and weights were changed frequently in the field to compensate for the changes in sediment bearing strength and consolidation (see Appendix A). The prism penetration depth in the study area ranged from 1.98 to 21.09 cm, with an overall site average prism penetration depth of 14.13 cm; the spatial distribution of mean penetration depth at all stations sampled is shown in Figure 8. Those stations with sandier sediments naturally had shallower penetration values (Figure 9).

3.3 Surface Boundary Roughness

Surface boundary roughness ranged from 0.27 to 4.82 cm, with the origins of these small-scale topographic elevations split just about evenly between biogenic and physical processes (Appendix A). Most of the larger roughness values were found closer to shore (Figure 10), with the largest value measured being a sampling artifact caused by the camera prism disrupting surface wood debris at Station WPAH012 (Figure 11). Most of the locations in deeper water with fine-grained sediments had boundary roughness values due to biogenic burrow openings and mounds less than 1.5 cm (Figure 10); the overall site average boundary roughness value was 1.52 cm.

3.4 APPARENT REDOX POTENTIAL DISCONTINUITY DEPTH

The distribution of mean apparent RPD depths is shown in Figure 12; aRPD depths ranged from 0 to 6.87 cm, with an overall site average value of 2.70 cm. There were six nearshore locations where aRPD depths were less than 0.5 cm (Figure 12) due to organic enrichment (see Section 3.6 below) from decomposing wood or macrophytes (Figure 13). While the locations further away from the shoreline in deeper water generally had the greater aRPD values found at the site (Figure 12), one of the highest measured values occurred close to shore at Station WPAH036 (Figure 14), just off the former K Ply facility.

3.5 Presence of Wood Debris

The presence of wood debris was quite evident in both the SPI and PV images, either as decomposed, individual fibers mixed in with the sediment (Figure 15) or larger pieces of intact wood chips/chunks/logs (Figures 11 and 16). Figure 17 shows the distribution and estimated amount of wood debris observed in the images. The wood debris levels mapped in Figure 17 represent the higher wood content measured in either the SPI or PV image from each location. The high volumes of wood were generally found closer to shore and where former log-rafting sites had been located. Many of the locations had trace or low volumes of wood in the surface layers but higher volumes of wood at depth, buried by natural depositional processes. Also, several stations in the western portion of the harbor had buried pockets of what looked like wood pulp or high concentrations of semi-consolidated wood fibers that gave the appearance of a "cottage cheese" texture to the sediments (Figure 18). The distribution of this pulpy material is noted in Figure 17.

3.6 ORGANIC LOADING, SEDIMENTARY METHANE, AND THIOPHILIC BACTERIAL COLONIES

There was no subsurface methane detected in any of the images specified by Integral Consulting for analysis (Figure 19); however, this does not mean that organic enrichment was uniformly above the threshold for anaerobic decomposition at all locations, because some of the (non-analyzed) replicates did show presence of subsurface methane (Figure 20). Stations showing the effects of excess organic enrichment and low dissolved oxygen were generally confined to the nearshore, shallow areas (Figure 19). For the most part, subsurface sediments were not showing the dark color normally associated with organically-enriched anaerobic muds (Figure 21) that were quite prevalent in the profile images collected in Port Angeles in 1998 (SAIC, 1999). Also, there was an obvious increase in organic enrichment at some locations in the vicinity of the fish pen operations in the northeast corner of the site (Figure 22).

Traces or mats of *Beggiatoa* (or other thiophilic bacterial) colonies were found at 14 of the locations sampled (Figure 19). At many of the locations where these bacterial colonies were found, evidence of both epifaunal foraging and infaunal deposit feeding was also found (Figure 23; see next section).

3.7 INFAUNAL SUCCESSIONAL STAGE

The mapped distribution of infaunal successional stages is shown in Figure 24; evidence of Stage 3 taxa was found in the majority of the images analyzed, with the exception of the five locations where the successional status was indeterminate (because of either inadequate prism penetration or disturbance of the profile image from the camera prism dragging down wood debris; see Figure 24) and two locations where no evidence of late

stage deposit feeders were found: Station WPAH025 (Figure 13) and Station WPAH061. Due apparently to the refractory nature of the organics in wood, even locations with relatively high volumes of wood debris, e.g., Station WPAH068 (see Figure 17), had Stage 3 assemblages present (Figure 25). Most of the locations also had evidence of secondary succession with Stage 1 polychaetes present (Figure 24), sometimes in rather dense assemblages (Figure 26).

3.8 BIOLOGICAL MIXING DEPTH

Zones of biological mixing can be considered in terms of active particle advection (depth of active feeding voids) and total range of animal burrowing (which usually spans a greater depth in the sediment). Average feeding void depth ranged from 0 – 16.68 cm, with an overall site average feeding void depth of 6.3 cm (Figure 27). The total range of infaunal burrowing and the depths to which animals bioturbated the sediments (Figure 28) spanned from a low of 2.75 cm (at Station WPAH047 where camera prism penetration was limited to this depth by compact, very fine sand) to locations where the bioturbation depth exceeded 21 cm, the maximum depth of the camera prism penetration (Figure 29); maximum bioturbation depths track the prism penetration depth quite consistently at this site, so locations with lower maximum bioturbation depths correspond to those with lower prism penetration values. The overall site average maximum bioturbation depth was 14.07 cm, which is a conservative estimate given that many of the bioturbation maxima were limited by the depth of the camera prism penetration. The depth to which sediments are being reworked in Port Angeles is consistent with the number and size of some of the burrow openings seen in the PV images (Figure 30).

4.0 DISCUSSION

The results from the SPI/PV survey in Port Angeles show that the higher concentrations of wood waste on the sediment surface from both historical and on-going activities from the surrounding shoreline industries are focused in the nearshore areas, and the contours of the highest concentrations of wood waste more or less follow the contours of the shoreline (Figure 17). While it is true that substantial amounts of bark or wood waste can have deleterious effects on the marine ecosystem (e.g., Pearson 1972; Conlan and Ellis 1979; Kurau 1975; Freese et al. 1988), it is clear from the results found in this study that a normal process of benthic habitat recovery and infaunal succession (Figure 3) has been and is occurring throughout most of the western harbor, including in areas with high wood content. The infaunal community has recovered in the majority of locations (Figure 24); noticeably stressed areas of bottom with apparent low dissolved oxygen in the overlying benthic boundary layer were only found at 3 locations (Figure 19). At two of these stations (WPAH025 and WPAH024), macroalgae detritus and/or beds appear to be the major contributor to the sediment oxygen depression.

The area surveyed is primarily a low-energy, depositional environment, as evidenced by the detrital mantling that was seen covering most of the surface of the bottom in the deeper areas (> 8 m) as one moves out from the shoreline; most of the wood waste seen in the PV images had a layer of fine sediment covering the pieces of wood (Figure 31), and many of the profile images (Figure 32) showed accumulation of fine sediments over buried wood waste at depth (evidence of steady deposition over time).

The sediments in Port Angeles appear to be supporting a rather diverse benthic infaunal community; while it was quite apparent from the profile images that diversity and abundance of the Stage 3 assemblages did vary among the locations sampled, one of the more striking features documented was the amount of apparent prey items at the sediment surface for epifaunal foragers. Many of the PV images had surprisingly high densities of shrimp present (Figure 33) which were most likely attracted by the high secondary benthic production.

5.0 REFERENCES CITED

- Aller, J.Y. and I. Stupakoff. 1996. The distribution and seasonal characteristics of benthic communities on the Amazon shelf as indicators of physical processes. Cont. Shelf Res. 16: 717-751.
- Boudreau, B.P. 1986. Mathematics of tracer mixing in sediment. I-Spatially-dependent, diffusive mixing. II: Non-local mixing and biological conveyor-belt phenomena. Am. Jour. Sci. 286: 161-238.
- Boudreau, B.P. 1994. Is burial velocity a master parameter for bioturbation? Geochimica et Cosmochemica Acta 58: 1243-1249.
- Boudreau, B. P. 1998. Mean mixed depth of sediments: The wherefore and the why. Limnol. Oceanogr. 43: 524-526.
- Browning, D.G. 2004. A SPI-based technique for determining wood waste volumes in marine sediments. Presentation made at Sediment Profile Imagery Colloquium of Experts, University of Galway, April 5-7, 2004.
- Conlan, K.E. and D.V. Ellis. 1979. Effects of wood waste on sandbed benthos. Mar. Pollut. Bul. 10:262-267.
- Diaz, R. J. and L. C. Schaffner. 1988. Comparison of sediment landscapes in the Chesapeake Bay as seen by surface and profile imaging, p. 222-240 In M. P. Lynch and E. C. Krome (eds.), Understanding the Estuary: Advances in Chesapeake Bay Research, Chesapeake Bay Research Consortium Publication 129, Chesapeake Bay Program 24/88.
- Ekman, J.E., Nowell, A.R.M., and P.A. Jumars. 1981. Sediment destabilization by animal tubes. Journal of Marine Research 39: 361-374.
- Fenchel, T. 1969. The ecology of marine macrobenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6: 1-182.
- Folk, R.L. 1974. Petrology of Sedimentary Rocks. Hemphill Publishg Company, Austin, Texas.
- François, F., Gerino, M., Stora, G., Durbec, J.P., and J.C. Poggiale. 2002. Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete *Nereis diversicolor*. Marine Ecology Progress Series 229: 127–136.

- Fredette, T.J., W.F. Bohlen, D.C. Rhoads, and R.W. Morton. 1988. Erosion and resuspension effects of Hurricane Gloria at Long Island Sound dredged material disposal sites. In: Proceedings of the Water Quality '88 seminar, February Meeting, Charleston, South Carolina. U.S. Army Corps of Engineers, Hydraulic Engineering Center, Davis, CA.
- Freese, J. L., R.P. Stone, and C.E. O'Clair. 1988. Factors affecting benthic deposition of bark debris at log transfer facilities in southeastern Alaska: A short-term retrospective evaluation. National Marine Fisheries Service, Alaska Region, NOAA Technical Memorandum NMFS F/NWC-136, Juneau, AK.
- Germano, J.D. 1983. Infaunal succession in Long Island Sound: Animal-sediment interactions and the effects of predation. Ph.D. dissertation. Yale University, New Haven, CT. 206 pp.
- Germano, J.D. and D.C. Rhoads. 1984. REMOTS sediment profiling at the Field Verification Program (FVP) Disposal Site. In: Dredging '84 Proceedings, ASCE, Nov. 14-16, Clearwater, FL. pp. 536-544.
- Germano, J.D., D.C. Rhoads, R.M. Valente, D.A. Carey, and M. Solan. 2011. The use of Sediment Profile Imaging (SPI) for environmental impact assessments and monitoring studies lessons learned from the past four decades. Oceanography and Marine Biology: An Annual Review 49: 247-310.
- Germano & Associates, 2004. Sediment Quality at the Former Pope and Talbot, Inc. Mill Site, Port Gamble, WA. Report submitted to Parametrix, Inc., Bellevue, WA. July 2004.
- Germano & Associates, 2007 (a). Schulze Cove Bark and Benthic Assessment. Final report to Alaska Department of Environmental Conservation. Contract Number 18-2019-11.
- Germano & Associates, 2007 (b). Thorne Bay Bark and Benthic Assessment. Final report to Alaska Department of Environmental Conservation. Contract Number 18-2019-11.
- Gilbert, F. S. Hulth, N. Strömberg, K. Ringdahl, and J.-C. Poggiale. 2003. 2-D optical quantification of particle reworking activities in marine surface sediments. Jour. Exp. Mar. Biol. Ecol. 285-286: 251-264.
- Grant, W.D., Jr., Boyer, L.F., and Sanford, L.P. 1982. The effects of bioturbation on the initiation of motion of intertidal sands: Jour. Mar. Res., Vol. 40, pp. 659-677.
- Horn, H.S. 1974. The ecology of secondary succession. Ann. Rev. Ecol. Syst. 5: 25-37.

- Huettel, M., W. Ziebis, and S. Forster. 1996. Flow-induced uptake of particulate matter in permeable sediments. Limnol. Oceanogr. 41: 309-322.
- Huettel, M., Ziebis, W., Forster., S., and G.W. Luther III. 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica et Cosmochemica Acta 62: 613-631.
- Karakassis, I, M. Tsapakis, C.J. Smith, and H. Rumohr. 2002. Fish farming impacts in the Mediterranean studied through sediment profiling imagery. Marine Ecology Progress Series 227: 125-133.
- Kennish, M.J. 1986. Ecology of estuaries. Vol. I: Physical and chemical aspects. CRC Press, Boca Raton, FL.
- Kurau, J. 1975. Water transport of wood: the current situation. Report No. EPS3-WP-75-3. Environmental Protection Service, Water Pollution Control Directorate, Ottawa, Ontario. 72 pp.
- Lyle, M. 1983. The brown-green colour transition in marine sediments: A marker of the Fe (III) Fe(II) redox boundary. Limnol. Oceanogr. 28: 1026-1033.
- Nilsson, H.C. and R. Rosenberg. 1997. Benthic habitat quality assessment of an oxygen stressed fjord by surface and sediment profile images. Journal of Marine Systems 11: 249-264.
- Nowell, A.R.M., P.A. Jumars, and J.E. Ekman. 1981. Effects of biological activity on the entrainment of marine sediments. Mar. Geol. 42: 133-153.
- Pearson, T. H. 1972. The effects of industrial effluent from pulp and paper mills on the marine benthic environment. Proceedings of the Royal Society of London 180: 469-485.
- Pearson, T.H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16:229-311.
- Reible, D and Thibodeaux, L. 1999. Using Natural Processes to Define Exposure From Sediments., in Sediment Management Work Group; Contaminated Sediment Management Technical Papers, Sediment Management Work Group, http://www.smwg.org/index.htm.
- Revelas, E.C., J.D. Germano, and D.C. Rhoads. 1987. REMOTS reconnaissance of benthic environments. pp. 2069-2083. In: Coastal Zone '87 Proceedings, ASCE, WW Division, May 26-29, Seattle, WA.

- Rhoads, D.C. 1974. Organism-sediment relations on the muddy seafloor. Oceanography and Marine Biology: An Annual Review 12: 263-300.
- Rhoads, D.C. and L.F. Boyer. 1982. The effects of marine benthos on physical properties of sediments. pp. 3-52. In: Animal-Sediment Relations. McCall, P.L. and M.J.S. Tevesz (eds). Plenum Press, New York, NY.
- Rhoads, D.C. and J.D. Germano. 1982. Characterization of benthic processes using sediment profile imaging: An efficient method of remote ecological monitoring of the seafloor (REMOTSTM System). Mar. Ecol. Prog. Ser. 8:115-128.
- Rhoads, D.C. and J.D. Germano. 1986. Interpreting long-term changes in benthic community structure: A new protocol. Hydrobiologia. 142:291-308.
- Rhoads, D.C. and J.D. Germano. 1990. The use of REMOTS[®] imaging technology for disposal site selection and monitoring. pp. 50-64. In: Geotechnical Engineering of Ocean Waste Disposal, K. Demars and R. Chaney (eds). ASTM Symposium Volume, January, 1989. Orlando, FL.
- Rice, D.L. and D.C. Rhoads. 1989. Early diagenesis of organic matter and the nutritional value of sediment. pp. 59-97. In: Ecology of Marine Deposit Feeders, Vol. 31, Lecture notes on coastal and estuarine deposit feeders. Lopez, G., G. Tagon, and J. Levinton, (eds.). Springer-Verlag, New York, NY.
- Rosenberg, R. and R.J. Diaz. 1993. Sulphur bacteria (*Beggiatoa* spp.) mats indicate hypoxic conditions in the Inner Stockhold Archipelago. Ambio 22: 22-36.
- Rosenberg, R., H.C. Nilsson, and R.J. Diaz. 2001. Response of benthic fauna and changing sediment redox profiles over a hypoxic gradient. Estuarine, Coastal and Shelf Science 53: 343-350.
- SAIC. 1999. Port Angeles Harbor Wood Waste Study, Port Angeles Harbor, Final. Prepared for Washington Department of Ecology, Olympia, WA. Prepared by SAIC, Bothell, WA.
- Santos, S. L. and J. L. Simon. 1980a. Marine soft-bottom community establishment following annual defaunation: Larval or adult recruitment? Mar. Ecol. Prog. Ser. 2: 235-241.
- Santos, S. L. and J. L. Simon. 1980b. Response of soft-bottom benthos to annual catastrophic disturbance in a south Florida estuary. Mar. Ecol. Prog. Ser. 3: 347-355

- Valente, R.M., D.C. Rhoads, J.D. Germano, and V.J. Cabelli. 1992. Mapping of benthic enrichment patterns in Narragansett Bay, RI. Estuaries 15:1-17.
- Williams H., Turner J., and Gilbert C.M. 1982. Petrography -An Introduction to the Study of Rocks in Thin Section. 626 pp. W.H Freeman and Company.
- Ziebis, W., Huettel, M., and S. Forster. 1996. Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar. Ecol. Prog. Ser. 1409: 227-237.

FIGURES

January 2014 Final Report

Figure 1: Location of SPI/PV stations surveyed in Port Angeles Harbor in July, 2013.

Figure 2: Deployment and operation of the Ocean Imaging Model 3731 Sediment Profile and Model DSC 16000 Plan View cameras.

Figure 3: Soft-bottom benthic community response to physical disturbance (top panel) or organic enrichment (bottom panel). From Rhoads and Germano (1982).

Figure 4: Spatial distribution of sediment grain size major mode (phi units) at Port Angeles in July, 2013.

Figure 5: The sediment profile image on the left from Station WPAH011 is a typical example of the silt-clay sediments found at the majority of stations surveyed, while the profile image on the right from Station WPAH027 shows coarser, sandy sediments with a layer of wood debris on the surface. Scale: width of each image = 14.4 cm.

Figure 6: This profile image from Station WAPH046 with a major grain size mode of 4-3 phi (very fine sand) typified the sandier sediment found in the more shallow areas close to shore where fine sediments were not accumulating. Scale: width of profile image = 14.4 cm.

Figure 7: This profile and plan view image from Station WPAH053 shows poorly-sorted sediments with a mixed cobble and silty sand surface. Scale: width of profile image = 14.4 cm; width of PV image = 55.2 cm.

Figure 9: Despite the profile camera having the stop collars set at the maximum height and all the lead (250 lbs) in the weight carriages, the compact, very fine sand at Station WPAH047 only allowed minimal (2.06 cm) prism penetration. Scale: width of profile image = 14.4 cm.

Figure 10: Spatial distribution of small scale boundary roughness values (cm) in Port Angeles Harbor in July, 2013.

Figure 11: The disturbed sediment water interface in this profile image from Station WPAH012 is due to the camera prism dragging down some surface wood debris, resulting in a high measured value for boundary roughness. Scale: width of profile image = 14.4. cm.

Figure 13: The profile images from Station WPAH025 (left) and WPAH100 (right) had no detectable oxidized surface layer because of decomposing macroalgae (left) and/or wood debris (right). Scale: width of each profile image = 14.4 cm.

Figure 14: Even though there is a relatively high percentage of wood fibers in the surface layer of the profile image from this silt-clay bottom, the active bioturbation by large resident infauna (note the large burrow openings in the plan view image) have resulted in one of the highest aRPD values measured at Station WPAH036. Scale: width of profile image = 14.4 cm; width of PV image = 66.3 cm.

Figure 15: This profile image from Station WPAH099 shows a high percentage of wood fibers mixed in with the sediment. Scale: width of profile image = 14.4 cm.

WPAH028 C

WPAH078 B

Figure 16: These PV images from Station WPAH028 (top) and WPAH078 (bottom) show some of the different sizes of wood waste found on the bottom in Port Angeles, from 5-10 cm long chunks (top) and logs (bottom). Scale: width of top PV image = 67.5 cm; width of bottom PV image = 48.4 cm.

Figure 18: Even though the sediment surface cannot be seen in this profile image from Station WPAH010 where the camera over-penetrated, the "cottage cheese" texture of the pocket of wood pulp at depth is quite evident in this image. Scale: width of profile image = 14.4 cm.

Figure 19: Presence/absence of thiophilic bacterial colonies, low dissolved oxygen in the benthic boundary layer, or subsurface methane in SPI and PV images analyzed from the July 2013 Port Angeles survey.

Figure 20: These replicate profile images from Station WPAH096 (left) and WPAH057 (right) are examples of unanalyzed samples where subsurface methane was present. Scale of each profile image = 14.4 cm.

Figure 21: These profile images from Station WPAH064 (left) and WPAH088 (right) show the difference in subsurface sediment color from organic enrichment. Scale: width of each profile image = ca. 14.5 cm.

Figure 22: The dark subsurface anaerobic sediments in these profile images from Stations WPAH096 (left) and WPAH105 (right) show the effects of increased organic enrichment from the nearby fish pens. Scale: width of each profile image = 14.4 cm.

Figure 23: While these replicate images from Station WPAH007 show evidence of organic enrichment (darker subsurface sediments, thiophilic bacterial colonies at the surface), there are both Stage 3 assemblages present (arrow) and epifaunal predators (shrimp) foraging on the small polychaetes at the sediment surface. Scale: width of each image = 14.4 cm.

Figure 24: Spatial distribution of infaunal successional stages found in Port Angeles in July 2013.

Figure 25: Even though there was a high percent cover of wood debris at Station WPAH068 as shown in this PV image, the presence of Stage 3 taxa and subsurface feeding voids (arrows) were evident in the corresponding profile image from this station. Scale: width of profile image = 14.4 cm; width of PV image = 61.5 cm

Figure 26: This profile image from Station WPAH045 shows a relatively dense assemblage of Stage 1 polychaetes (see magnified inset); two shrimp can be seen foraging on the sediment surface in the background of the image. Scale: width of image = 14.4 cm.

Figure 27: Spatial distribution of feeding void depth (cm) at locations surveyed in Port Angeles in July, 2013.

Figure 28: Spatial distribution of maximum bioturbation depth (cm) at locations surveyed in Port Angeles in July, 2013.

Figure 29: This profile image from Station WPAH057 showed evidence of subsurface burrowing that exceeded the depth of the prism penetration. Scale: width of profile image = 14.4 cm.

WPAH036 A

WPAH037 D

Figure 30: These PV images from Station WPAH036 (top) and WPAH037 (bottom) show large infaunal burrow openings which provide additional evidence as to why biological mixing depths are so high at this site. Scale: width of top PV image = 66.3 cm; width of bottom PV image = 45.2 cm

Figure 31: These PV images from Station WPAH006 (top; water depth = 7.6 m), WPAH068 (middle; water depth = 13 m), and WPAH092 (bottom; water depth=28.4 m) show large pieces of wood covered by a layer of fine sediments from natural depositional processes. Scale: width of top PV image ca. 64 cm; middle image ca. 62 cm; bottom image ca. 81 cm.

Figure 32: This profile image from Station WPAH058 shows a subsurface layer of wood waste (arrow) that was originally deposited at the sediment surface and has since been buried by an accumulation of fine sediment from natural depositional processes. Scale: width of profile image = 14.4 cm.

Figure 33: These PV images from Stations WPAH040 (top), WPAH044 (middle) and WPAH095 (bottom) show some of the high densities of shrimp found in Port Angeles. Scale: width of top PV image ca. 63 cm; width of middle PV image ca. 58 cm; width of bottom PV image ca. 57 cm.

APPENDIX A

Sediment Profile Image Analysis Results

January 2014 Final Report

STATION	Rep	Stop Collar Settings (in.)	# of weights per chassis	DATE	TIME	Water Depth (m)	Calibration Constant	Grain Size Major Mode (phi)	Grain Size Maximum (phi)	Grain Size Minimum (phi)	GrnSize RANGE	Penetration Area (sq.cm)	Average Penetration (cm)	Minimum Penetration (cm)	Maximum Penetration (cm)	Boundary Roughness (cm)	Origin of Boundary Roughness	RPD Area (sq.cm)	Mean RPD (cm)	Methane	Low DO?
	Trop	()	VII de Silve	27.12		(,	Constant	(6)	(р)	(6)	5_	7.100 (04.0)	(0)	(6)	(0,	(5,	- Nougimess	(54.5)	(6,		
WPAH003	D	16	5	7/17/2013	16:46:31	4.6	14.44	4-3	1	>4	>4 to 1	238.10	16.49	15.12	17.41	2.29	Physical	IND	IND N	0	No
WPAH004	A	15	2	7/16/2013	15:00:10	8.8	14.44	>4	2	>4	>4 to 2	257.12	17.80	16.85	19.19	2.34	Physical	42.04	2.91 N	0	No
WPAH004	D	15	2	7/16/2013	15:03:46	8.2	14.44	>4	2	>4	>4 to 2	215.67	14.93	10.80	16.95	6 15	Physical	IND	IND N	0	No
WPAH005	A	15		7/16/2013	15:24:03				2	>4	>4 to 2	268.98	18.63	17.62	19.38		Biogenic	82.22			No
WPAH005	В	15	0	7/16/2013	15:25:48	13.0	14.44	>4	2	>4	>4 to 2	257.09	17.80	17.24	18.64	1.40	Biogenic	48.45	3.35 N	0	No
WPAH006	С	15	2	7/16/2013	15:10:44	7.6	14.44	>4	1	>4	>4 to 1	233.88	16.20	15.60	16.76	1.16	Physical	IND	IND N	0	No
WPAH007	D	14	0	7/16/2013	17:20:23	12.0	14.44	>4	2	>4	>4 to 2	157.93	10.94	8.99	12.15	3.16	Physical	22.41	1.55 N	0	No
WPAH008	A	16	5	7/18/2013	13:22:38	6.8	14.44	>4	2	>4	>4 to 2	209.33	14.50	13.02	15.55	2.53	Biogenic	27.49	1.90 N	0	No
WPAH008	D	16	5	7/18/2013	13:25:34	8.2	14.44	>4	2	>4	>4 to 2	147.59	10.22	9.74	10.92	1.18	Physical	diffusional	0.20 N	0	No
WPAH009	A	14	0	7/17/2013	15:25:29	8.6	14.44	>4	2	>4	>4 to 2	112.33	7.78	6.73	10.05	3.33	Physical	17.01	1.18 N	0	No
WPAH009	D	14	0	7/17/2013	15:29:32	9.6	14.44	>4	2	>4	>4 to 2	289.29	20.03	19.58	21.05	1.47	Biogenic	29.61	2.05 N	0	No
WPAH010	С	14	0	7/17/2013	15:10:20	16.0	14.44	>4	2	>4	>4 to 2	255.33	17.68	16.78	18.30	1.52	Physical	6.39	0.44 N	0	No
WPAH011	В	15	0	7/16/2013	15:49:11	16.4	14.44	>4	2	>4	>4 to 2	291.22	20.17	19.94	20.47	0.53	Biogenic	47.87	3.31 N	0	No
WPAH012	В	15	2	7/16/2013	13:48:16	27.4	14.44	>4	2	>4	>4 to 2	216.28	14.98	12.66	18.39	5.74	Physical	Ind	3.43 N	0	No
WPAH012	С	15	2	7/16/2013	13:49:31	27.4	14.44	>4	2	>4	>4 to 2	216.92	15.02	14.08	17.65	3.57	Physical	IND	3.37 N	0	No
WPAH013	А	15		7/16/2013	14:06:16	17.8		>4	2	>4	>4 to 2	248.81	17.23			1.23	Biogenic	41.48		0	No
WPAH014	Α	14	0	7/15/2013	10:14:43	21.2	14.44	>4	2	>4	>4 to 2	278.13	19.26	18.71	20.11	1.40	Physical	38.32	2.65 N	0	No
WPAH015	Α	14	0	7/15/2013	10:30:48	19.6	14.44	>4	2	>4	>4 to 2	187.97	13.02	12.27	14.06	1.78	Biogenic	40.70	2.82 N	0	No
WPAH016	A	14	0	7/15/2013	10:52:03	16.0	14.44	>4	2	>4	>4 to 2	226.02	15.65	14.97	16.13	1.16	Biogenic	29.44	2.04 N	0	No
WPAH017	A	14	0	7/15/2013	11:12:46	15.4	14.44	>4	2	>4	>4 to 2	218.83	15.15	14.75	15.72	0.96	Biogenic	31.89	2.21 N	0	No
WPAH018	A	14	0	7/15/2013	11:34:31	12.2	14.44	>4	2	>4	>4 to 2	157.32	10.89	9.50	11.28	1.78	Biogenic	33.93	2.35 N	0	No
WPAH019	С	15.5	0	7/16/2013	11:27:20	14.0	14.44	4-3	0	>4	>4 to 0	186.00	12.88	10.61	14.85	4.24	Physical	diffusiona	0.10 N	0	Yes
WPAH020	В	15	1	7/15/2013	16:25:38	14.6	14.44	>4	2	>4	>4 to 2	264.41	18.31	17.67	19.43	1.76	Physical	15.54	1.08 N	0	No

		Stop Collar	# of weights			Water		Grain Size	Grain Size	Grain Size								RPD			
STATION	Rep	Settings (in.)	per chassis	DATE	TIME	Depth (m)	Calibration Constant	Major Mode (phi)	1	Minimum (phi)	1	Penetration Area (sq.cm)	Average Penetration (cm)	Minimum Penetration (cm)	Maximum Penetration (cm)	Boundary Roughness (cm)	Origin of Boundary Roughness		Mean RPD (cm)	Methane	Low DO?
WPAH022	R	15		7/16/2013	15:34:05			>4	2	>4	>4 to 2	138.00	9.56		10.73	2 51	Biogenic	36.06	2.50		No
WPAH022	С	15		7/16/2013	15:35:24				2	>4	>4 to 2	279.79	19.37		19.70		Biogenic	47.70	3.30		No
WPAH023	Α	16	5	7/18/2013	12:47:16	7.4	14.44	>4	0	>4	>4 to 0	196.19	13.59	12.37	14.61	2.24	Physical	IND	IND	No	No
WPAH024	F	16	0	7/18/2013	8:36:41	5.6	14.44	>4	2	>4	>4 to 2	176.82	12.24	11.79	12.71	0.92	Physical	diffusiona	0.10	No	Yes
WPAH025	Α	16	3	7/17/2013	17:18:47	6.8	14.44	>4	2	>4	>4 to 2	135.41	9.38	9.06	9.72	0.65	Physical	0.00	0.00	No	Yes
WPAH026	A	14	0	7/18/2013	8:47:50	13.6	14.44	>4	2	>4	>4 to 2	278.43	19.28	17.84	20.35	2.51	Physical	28.80	1.99	No	No
WPAH027	Α	16	3	7/16/2013	11:51:47	4.8	14.44	3-2	0	>4	>4 to 0	188.00	13.02	12.32	13.57	1.25	Physical	17.02	1.18	No	No
WPAH027	С	16	3	7/16/2013	11:54:18	4.6	14.44	2-1	-1	>4	>4 to -1	151.23	10.47	9.64	10.78	1.13	Physical	8.13	0.56	No	No
WPAH028	A	15.5		7/16/2013	11:33:59			>4	1	>4	>4 to 1	224.19	15.52		16.23		Physical	diffusional	0.10		No
WPAH030	A	15	2	7/16/2013	8:54:59	23.6	14.44	>4	2	>4	>4 to 2	161.70	11.20	10.15	12.15	2.00	Biogenic	34.71	2.40	INO	No
WPAH030	В	15	2	7/16/2013	8:56:33	23.6	14.44	>4	2	>4	>4 to 2	212.74	14.73	14.47	15.21	0.75	Biogenic	33.26	2.30	No	No
WPAH031	Α	14	0	7/15/2013	11:50:54	17.6	14.44	>4	2	>4	>4 to 2	176.59	12.23	11.67	12.30	0.63	Biogenic	41.32	2.86	No	No
WPAH032	В	14	0	7/15/2013	11:27:48	14.0	14.44	>4	2	>4	>4 to 2	195.25	13.52	12.71	14.44	1.74	Physical	63.31	4.38	No	No
WPAH033	Α	16	3	7/16/2013	8:20:45	10.6	14.44	>4	2	>4	>4 to 2	247.79	17.16	16.66	17.99	1.33	Biogenic	40.74	2.82	No	No
WPAH034	А	16	3	7/16/2013	8:30:25	14.8	14.44	>4	2	>4	>4 to 2	151.88	10.52	10.08	10.82	0.75	Biogenic	34.39	2.38	No	No
WPAH035	A	16	3	7/16/2013	8:41:29	15.8	14.44	4-3	0	>4	>4 to 0	57.55	3.99	3.64	4.27	0.63	Biogenic	23.47	1.62	No	No
WPAH035	D	16		7/16/2013	8:46:02			4-3	1	>4	>4 to 1	66.13	4.58		4.92		Biogenic	22.83	1.58		No
WPAH036	A	15	2	7/17/2013	9:25:39	11.8	14.44	>4	1	>4	>4 to 1	214.73	14.87	14.13	15.12	0.99	Biogenic	99.25	6.87	No	No
WPAH037	A	15	2	7/17/2013	9:34:00	10.2	14.44	>4	1	>4	>4 to 1	230.66	15.97	14.75	17.70	2.94	Biogenic	64.44	4.46	No	No
WPAH038	Α	16		7/17/2013	8:50:13			4-3	1	>4	>4 to 1	149.60	10.36		11.19		Biogenic	17.90	1.24		No
WPAH038	D	16	5	7/17/2013	8:53:58	5.8	14.44	4-3	1	>4	>4 to 1	123.93	8.58	8.32	8.87	0.55	Biogenic	19.64	1.36	No	No
WPAH039	A	15	1	7/15/2013	16:45:46	31.2	14.44	>4	1	>4	>4 to 1	227.71	15.77	15.36	15.98	0.63	Biogenic	49.12	3.40	No	No
WPAH042	А	15	1	7/15/2013	14:15:57	15.8	14.44	>4	1	>4	>4 to 1	147.23	10.20	9.76	10.56	0.80	Biogenic	34.04	2.36	No	No
WPAH043	А	15	2	7/15/2013	15:59:39	26.4	14.44	>4	2	>4	>4 to 2	236.13	16.35	15.28	17.67	2.39	Physical	43.01	2.98	No	No
WPAH045	A	15	1	7/15/2013	14:06:37	25.4	14.44	>4	2	>4	>4 to 2	93.47	6.47	6.12	6.75	0.63	Biogenic	34.02	2.36	No	No

STATION	Rep	Stop Collar Settings (in.)	# of weights per chassis	DATE	TIME	Water Depth (m)	Calibration Constant	Grain Size Major Mode (phi)	Grain Size Maximum (phi)	Grain Size Minimum (phi)	GrnSize RANGE	Penetration Area (sq.cm)	Average Penetration (cm)	Minimum Penetration (cm)	Maximum Penetration (cm)	Boundary Roughness (cm)	Origin of Boundary Roughness		Mean RPD	Methane	Low DO?
WPAH046	Α	16.5	5	7/15/2013	13:22:01	16.8	14.44	4-3	1	>4	>4 to 1	61.47	4.26	3.38	4.77	1.40	Physical	61.47	4.26	No	No
WPAH046	В	16.5	5	7/15/2013	13:23:03	16.2	14.44	4-3	1	>4	>4 to 1	42.51	2.94	2.43	3.50	1.06	Physical	42.51	2.94	No	No
WPAH047	A	16.5	5	7/15/2013	13:10:38			3-2	1	>4	>4 to 1	29.69	2.06		2.75		Physical		IND	No	No
WPAH053	D	15	2	7/17/2013	16:35:10	6.4	14.44	-3	-4	>4	>4 to -4	28.59	1.98	1.06	2.51	1.45	Physical	IND	IND	No	No
WPAH054	Α	15	0	7/16/2013	15:39:44	13.2	14.44	>4	2	>4	>4 to 2	244.69	16.94	16.59	17.29	0.70	Biogenic	42.58	2.95	No	No
WPAH055	А	14	0	7/16/2013	17:24:10	14.4	14.44	>4	2	>4	>4 to 2	244.64	16.94	16.25	18.23	1.98	Biogenic	25.96	1.80	No	No
WPAH056	A	14	0	7/16/2013	17:31:46	12.8	14.44	>4	2	>4	>4 to 2	277.62	19.22	18.59	19.48	0.89	Biogenic	61.66	4.27	No	No
WPAH057	В	14	0	7/17/2013	15:18:11	14.0	14.44	>4	2	>4	>4 to 2	304.62	21.09	20.66	21.22	0.55	Biogenic	28.91	2.00	No	No
WPAH058	С	15	0	7/16/2013	15:57:59	17.0	14.44	>4	2	>4	>4 to 2	293.65	20.33	20.20	20.61	0.41	Biogenic	54.26	3.76	No	No
WPAH059	Α	13.5	0	7/16/2013	17:02:30	17.2	14.44	>4	2	>4	>4 to 2	254.95	17.65	17.14	17.82	0.68	Physical	40.42	2.80	No	No
WPAH060	Α	14	0	7/15/2013	10:44:15		14.44	>4	2	>4	>4 to 2	222.75	15.42		15.82	0.77	Biogenic	47.27	3.27	No	No
WPAH061 WPAH061	B	13.5 15	0	7/16/2013 7/18/2013	16:46:56 9:02:50				2	>4 >4	>4 to 2 >4 to 2	135.10 103.18	9.36 7.15		10.46 7.55		Biogenic Biogenic	49.59 44.87	3.43 3.11		No No
WPAH062	В	13.5	0	7/16/2013	16:55:46			>4	2	>4	>4 to 2	226.27	15.67	15.21	16.23		Biogenic	37.63	2.61		No
WPAH063	Α	15	2	7/16/2013	13:55:34	19.6	14.44	>4	2	>4	>4 to 2	273.95	18.97	18.11	20.30	2.19	Biogenic	41.04	2.84	No	No
WPAH064	А	15	0	7/16/2013	14:14:16	18.0	14.44	>4	2	>4	>4 to 2	179.15	12.41	12.37	12.63	0.27	Biogenic	39.39	2.73	No	No
WPAH065	A	14	0	7/15/2013	10:37:49	18.2	14.44	>4	2	>4	>4 to 2	208.18	14.42	14.10	14.56	0.46	Biogenic	32.01	2.22	No	No
WPAH065	В	14	0	7/15/2013	10:38:46	18.2	14.44	>4	2	>4	>4 to 2	208.81	14.46	14.20	15.07	0.87	Biogenic	32.84	2.27	No	No
WPAH066	Α	14	0	7/15/2013	11:20:55	14.2	14.44	>4	2	>4	>4 to 2	204.51	14.16	13.28	15.16	1.88	Physical	32.45	2.25	No	No
WPAH067	A	14	0	7/15/2013	11:43:35	15.6	14.44	>4	2	>4	>4 to 2	185.10	12.82	12.34	13.24	0.89	Biogenic	48.87	3.38	No	No
WPAH068	A	15	2	7/16/2013	8:00:54	13.0	14.44	>4	2	>4	>4 to 2	261.87	18.13	17.12	19.72	2.60	Physical	48.39	3.35	No	No
WPAH069	A	15	2	7/16/2013	8:09:36	14.0	14.44	>4	2	>4	>4 to 2	147.82	10.24	7.76	11.31	3.54	Physical	47.76	3.31	No	No
WPAH070	Α	15	2	7/15/2013	15:03:17	20.4	14.44	>4	2	>4	>4 to 2	147.13	10.19	9.47	11.77	2.29	Biogenic	32.70	2.26	No	No
WPAH071	A	15	2	7/15/2013	14:55:09	15.8	14.44	4-3	1	>4	>4 to 1	103.35	7.16	6.85	7.18	0.34	Physical	26.54	1.84	No	No
WPAH073	Α	15		7/17/2013	9:04:19				2	>4	>4 to 2	202.80	14.04				Biogenic	50.46			No

		Stop	# of																		<u> </u>
		Collar Settings	weights per			Water Depth	Calibration	Grain Size Major Mode	Grain Size Maximum	Grain Size Minimum	GrnSize	Penetration	Average Penetration	Minimum Penetration	Maximum Penetration	Boundary Roughness	Origin of Boundary	RPD Area	Mean RPD		
STATION	Rep	(in.)	chassis	DATE	TIME	(m)	Constant	(phi)	(phi)	(phi)	RANGE	Area (sq.cm)	(cm)	(cm)	(cm)	(cm)	Roughness	(sq.cm)	(cm)	Methane	Low DO?
WPAH074	A	15	0	7/16/2013	13:26:06	29.0	14.44	>4	2	>4	>4 to 2	190.07	13.16	12.68	13.57	0.89	Physical	37.22	2.58	No	No
WPAH074	В	15	0	7/16/2013	13:27:30	29.2	14.44	>4	2	>4	>4 to 2	201.81	13.97	13.57	14.61	1.04	Biogenic	46.43	3.22	No	No
WPAH075	А	14	0	7/15/2013	8:51:47	21.0	14.44	>4	2	>4	>4 to 2	170.25	11.79	10.51	12.92	2.41	Biogenic	45.62	3.16	No	No
WPAH076	A	14	0	7/15/2013	10:23:21	20.4	14.44	>4	2	>4	>4 to 2	178.20	12.34	11.67	13.67	2.00	Biogenic	57.38	3.97	No	No
WPAH076	В	14	0	7/15/2013	10:24:21	20.4	14.44	>4	2	>4	>4 to 2	195.03	13.51	13.33	13.74	0.41	Biogenic	44.21	3.06	No	No
WPAH077	Α	15	2	7/16/2013	9:05:12	21.2	14.44	>4	2	>4	>4 to 2	93.39	6.47	6.08	7.11	1.04	Biogenic	35.24	2.44	No	No
WPAH078	В	15		7/16/2013	13:01:22			>4	1	>4	>4 to 1	161.89	11.21	10.03			Biogenic	26.75	1.85		No
WPAH079	D	15	0	7/16/2013	13:20:03	34.2	14.44	>4	2	>4	>4 to 2	166.80	11.55	10.82	12.25	1.42	Biogenic	36.29	2.51	No	No
WPAH079	E	15	2	7/17/2013	13:58:20	33.6	14.44	>4	2	>4	>4 to 2	233.05	16.14	15.82	16.42	0.60	Biogenic	42.20	2.92	No	No
WPAH080	Α	15	0	7/16/2013	10:18:35	26.0	14.44	>4	2	>4	>4 to 2	226.70	15.70	15.26	16.13	0.87	Physical	54.47	3.77	No	No
WPAH080	В	15	0	7/16/2013	10:20:06	28.0	14.44	>4	2	>4	>4 to 2	200.75	13.90	13.62	14.13	0.51	Biogenic	48.25	3.34	No	No
WPAH081	Α	15		7/16/2013	10:00:41				2	>4	>4 to 2	213.01	14.75				Biogenic	62.65	4.34		No
WPAH082	Α	15	2	7/16/2013	9:42:26	23.6	14.44	>4	2	>4	>4 to 2	232.56	16.10	15.62	16.54	0.92	Biogenic	45.11	3.12	No	No
WPAH083	Α	15.5	0	7/16/2013	11:43:27	26.6	14.44	>4	2	>4	>4 to 2	146.50	10.14	9.04	11.19	2.15	Biogenic	37.49	2.60	No	No
WPAH084	Α	15	0	7/16/2013	10:36:31	41.0	14.44	>4	2	>4	>4 to 2	102.95	7.13	5.71	8.68	2.97	Physical	40.09	2.78	No	No
WPAH084	В	15	0	7/16/2013	10:37:38	41.6	14.44	>4	2	>4	>4 to 2	190.65	13.20	12.99	13.31	0.31	Biogenic	47.13	3.26	No	No
WPAH085	В	15	0	7/16/2013	10:29:12	31.2	14.44	>4	2	>4	>4 to 2	230.43	15.96	15.69	16.08	0.39	Biogenic	43.19	2.99	No	No
WPAH086	В	15	0	7/16/2013	10:10:57	29.2	14.44	>4	2	>4	>4 to 2	233.54	16.17	14.75	16.97	2.22	Biogenic	64.47	4.46	No	No
WPAH087	С	15.5	0	7/16/2013	11:17:24	24.6	14.44	>4	2	>4	>4 to 2	255.03	17.66	17.07	18.56	1.49	Biogenic	42.82	2.97	No	No
WPAH088	Α	15.5	0	7/16/2013	11:05:51	45.6	14.44	>4	2	>4	>4 to 2	191.51	13.26	12.85	13.81	0.96	Biogenic	24.57	1.70	No	No
WPAH089	Α	15	1	7/15/2013	16:57:50	49.6	14.44	>4	2	>4	>4 to 2	158.19	10.95	8.97	11.72	2.75	Physical	39.07	2.71	No	No
WPAH090	Α	15	1	7/15/2013	17:07:21	41.8	14.44	>4	2	>4	>4 to 2	253.38	17.55	17.09	18.15	1.06	Biogenic	47.46	3.29	No	No
WPAH091	Α	15		7/15/2013	17:24:21				2	>4	>4 to 2	257.80	17.85				Biogenic	58.48	4.05		No
WPAH092	Α	15	1	7/15/2013	16:37:12	28.4	14.44	>4	2	>4	>4 to 2	203.45	14.09	13.02	14.71	1.69	Physical	39.46	2.73	No	No
WPAH093	Α	15		7/15/2013	16:08:51		14.44	>4	2	>4	>4 to 2	254.53	17.63	17.36	18.13	0.77	Biogenic	40.15	2.78	No	No
WPAH093	В	15	2	7/15/2013	16:10:10	38.4	14.44	>4	2	>4	>4 to 2	233.39	16.16	14.90	17.96	3.06	Physical	58.57	4.06	No	No
WPAH094	Α	15	1	7/18/2013	9:23:43	53.8	14.44	>4	2	>4	>4 to 2	198.62	13.75	13.19	14.03	0.84	Biogenic	77.42	5.36	No	No
WPAH095	В	15	1	7/15/2013	13:46:16	49.6	14.44	>4	2	>4	>4 to 2	212.25	14.70	14.37	15.09	0.72	Biogenic	47.91	3.32	No	No

		Cton	# 0.5				ı	1		1	1	1			I	I		1		ī	1
		Stop Collar	# of weights			Water		Grain Size	Grain Size	Grain Size								RPD			
		Settings	per			Depth	Calibration		Maximum	Minimum	GrnSize	Penetration	Average Penetration	Minimum	Maximum Penetration	Boundary	Origin of		Mean RPD		
STATION	Rep	(in.)	chassis	DATE	TIME	(m)	Constant	(phi)	(phi)	(phi)	1	Area (sq.cm)	(cm)	Penetration (cm)	(cm)	Roughness (cm)	Boundary Roughness	(sq.cm)	(cm)	Methane	Low DO?
								u /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			• • • • • • • • • • • • • • • • • • • •	, ,	, ,	, ,					
WPAH096	Α	15	1	7/15/2013	13:35:10	58.4	14.44	>4	2	>4	>4 to 2	261.32	18.10	17.94	18.20	0.27	Biogenic	41.34	2.86	No	No
WPAH097	Δ	13.5	0	7/16/2013	16:34:22	7.8	14.44	>4	2	>4	>4 to 2	208.15	14.41	12.58	15.82	3 23	Physical	43.55	3.02	No	No
WI AIIOSI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10.0		7710/2013	10.04.22	7.0	14.44				74102	200.13	17.71	12.00	10.02	0.20	i ilysicai	70.00	0.02	140	110
WPAH098	Α	16	3	7/16/2013	11:59:32	3.4	14.44	4-3	0	>4	>4 to 0	259.59	17.98	15.91	20.73	4.82	Physical	IND	IND	No	No
WPAH099	Α	15	2	7/15/2013	15:37:54	9.4	14.44	>4	1	>4	>4 to 1	241.21	16.70	15.94	17.41	1.47	Physical	IND	IND	No	No
																	,				
MDALLAGO		4.5		7/45/0040	45.04.40			4.0				400.00	0.00		40.40			0.00	0.00		
WPAH100	A	15	2	7/15/2013	15:24:40	8.2	14.44	4-3	1	>4	>4 to 1	128.36	8.89	7.74	10.49	2.75	Physical	0.00	0.00	No	No
WPAH101	Α	15	1	7/18/2013	10:48:49	45.6	14.44	>4	2	>4	>4 to 2	170.19	11.78	11.55	12.03	0.48	Biogenic	48.01	3.32	No	No
WPAH102	Α	15	1	7/18/2013	11:00:04	51.6	14.44	>4	2	>4	>4 to 2	294.50	20.39	19.94	20.76	0.82	Biogenic	52.95	3.67	No	No
				=/40/0040									40.40		40.50			40.00			
WPAH103	Α	15		7/18/2013	9:55:31			>4	2	>4	>4 to 2	261.71	18.12		18.52		Biogenic	46.98	3.25		No
WPAH104	A	15	1	7/18/2013	11:11:46	37.0	14.44	>4	2	>4	>4 to 2	194.56	13.47	13.26	13.62	0.36	Biogenic	37.70	2.61	No	No
WPAH105	Α	15	1	7/18/2013	11:21:23	59.2	14.44	>4	1	>4	>4 to 1	262.34	18.17	17.84	18.42	0.58	Biogenic	27.37	1.89	No	No
KSS-1	Α	15		7/17/2013	10:04:50				2	>4	>4 to 2	262.31	18.16				Biogenic	43.63	3.02		No
KSS-2	Α	15	2	7/17/2013	10:15:35	8.0	14.44	>4	2	>4	>4 to 2	161.06	11.15	10.44	11.74	1.30	Biogenic	35.79	2.48	No	No
KSS-3	E	16	4	7/17/2013	10:49:26	9.6	14.44	>4	1	>4	>4 to 1	297.85	20.62	20.23	21.02	0.80	Biogenic	26.54	1.84	No	No

			I		<u> </u>	I			I	
STATION	Rep	Wood Debris?	Beggiatoa?		# of Feeding Voids	Void Minimum Depth (cm)	Void Maximum Depth (cm)	Void Average Depth (cm)	Max Bioturb Depth (cm)	Successional Stage
				Thin aRPD but profile disturbed by wood chip dragdown so unable to meaure, wood debris over fines						
				at depth, and flocular material oxidized at SWI. Ulva fragments throughout profile, a few amphipods at						_
WPAH003	D	High	Trace	SWI, burrows and five active FVs present.	5	4.32	12.87	8.59	17.41	Stage 2 on 3
				Silt with small wood fibers throughout profile. Shell fragments, ulva and red macroalgae at SWI.						
WPAH004	Α	High	No	Burrows, one active FV and subsurface organisms, including a large polychaete present.	1	6.68	7.28	6.98	17.31	Stage 3
				Silt with small wood fibers throughout profile. SWI disrupted by large fragment of wood being pulled						
				down by prism on left. Ulva & barnacle encrusted wood debrisat SWI. Burrows, five active FVs, and a						
WPAH004	D	High	No	void toward right of profile present.	5	2.63	8.73			
WPAH005	Α	Trace	No	Silt with some wood fibers and small debris. Ulva and detrital mantling at SWI.	C	0.00	0.00	0.00	17.75	Stage 2 -> 3
				Silt with some shell fragments and wood fibers throughout profile. Some macroalgae at SWI. One						
WPAH005	В	Trace	No	sediment-filled FV and evidence of burrowing at depth.	1	12.49	12.90	12.69	17.80	Stage 2 -> 3
				Silt with some shell fragments and wood fibers. Debris, including wood fragments, and a large divot at						
WPAH006	С	High	No	SWI from wood piece being dragged down, preventing accurate aRPD measurement. Burrows, amphipods, one acitve FV, and a large polychaete visible.		2.58	4.00	3.29	16.76	Stogo 2 on 2
WEATIOOG	C	riigii	INO	Silt with wood fibers throughout profile. Ulva, wood debris, one coonstripe shrimp (Pandalus danae),		2.30	4.00	3.29	10.70	Stage 2 on 3
WPAH007	D	High	Yes	and some Beggiatoa at SWI. Burrows and two active FVs present.		7.06	9.50	8.28	12.15	Stogo 1 on 2
WPAH007	U	підп	162	Silt with wood fibers underlying detrital layer. Macroalgae and organism tubes at SWI. Burrows, wood		7.00	9.50	0.20	12.15	Stage 1 on 3
WDAHOO	_	Med	Trace			1 22	11 15	6.20	15.55	Ctogo 1 on 2
WPAH008	А	ivied	Trace	debris, and active burrowing throughout profile.		1.33	11.45	6.39	15.55	Stage 1 on 3
				City with high density of wood fibers & debris Denthis macroalges, wood debris, organism tubes, and						
WDALIOOO	_	l liada	Vac	Silt with high density of wood fibers & debris. Benthic macroalgae, wood debris, organism tubes, and	l m el	المط	امط	امما	lo d	امما
WPAH008	D	High	Yes	some Beggiatoa at SWI. Profile disrupted by wood debris being dragged down by prism.	Ind	Ind	Ind	Ind	Ind	Ind
				Silt with some shell fragments, wood fibers, and fecal pellets. Benthic macroalgae, ulva, wood debrisat						
		_		SWI. Burrowing to depth and one active FV present. Ulva was dragged down into the sediment column	1					
WPAH009	Α	Trace	No	toward right of profile.	1	1.47	3.86	2.66	10.05	Stage 1 on 3
	_			Silt with wood fibers and fecal pellets over wood pulp. Benthic macroalgae and debris at SWI. Burrows						
WPAH009	D	Med	No	and an active FV at depth.	1	17.70	19.67	18.68	21.05	Stage 1 on 3
				Silt with wood fibers and fecal pellets mixed with wood pulp. Burrowing to depth of profile, and a						
WPAH010	С	Med	No	subsurface annelid present.	2	10.34	13.16	11.75	18.30	Stage 1 on 3
WPAH011	В	Low	No	Silt with wood fibers mixed with wood pulp. Two sediment-filled FVs and a subsurface annelid visible.		8.75	20.11	14.43	20.11	Stage 1 on 3
,				Silt with wood fibers; aRPD is linear measurement from left side of image, right half of SWI is disrupted	1	00				- Clage : circ
				by a crab being pushed down & transected by camera prism blade. Burrows and one active FV						
WPAH012	В	Low	No	present.		0.00	0.00	0.00	17.50	Stage 1 on 3
7711012		2011	110			0.00	0.00	0.00	17.00	Clago I on o
				Silt with wood fibers; profile disrupted by wood fragments being dragged down by prism, aRPD is						
WPAH012	С	High	No	linear measurement from right edge of image; burrowing throughout profile, annelid visible at depth.		0.00	0.00	0.00	17.65	Stage 1 on 3
7711012		riigii	110	Silt with relatively low percentage of wood fibers throughout profile; burrows to depth, one active FV,		0.00	0.00	0.00	17.00	Clage 1 on o
WPAH013	Δ	None	No	and subsurface annelid visible.	1	16.01	17.36	16.68	17.91	Stage 1 on 3
WPAH014		Low	No	Silt with wood fibers, fecal pellets, and some shell fragments over wood pulp at depth.	4	6.00	18.64	12.32		
741014	/ /	LOW	110	Silt with wood fibers and some shell fragments. Burrows, one active FV, and numerous polychaetes	7	0.00	10.04	12.02	10.20	Clage 1 on o
WPAH015	Δ	Trace	No	present.	1	3.21	7.40	5.30	13.02	Stage 1 on 3
WI AIIOIS	^	Trace	140	Silt with wood fibers and some shell fragments. Wood debris and organism tubes at SWI. Burrows and	<u> </u>	5.21	7.40	3.30	13.02	Stage 1 011 5
WPAH016	Δ	Trace	No	polychaetes visible throughout profile.	·	0.00	0.00	0.00	15.65	Stage 1 on 3
VVI /311010		TIACE	140	Silt with wood fibers and Ulva at SWI. Burrows, annelids, and FV visible; burrowing throughout depth	1	0.00	0.00	0.00	13.03	Glage 1 011 3
WPAH017	^	None	No	of profile.	1	4.36	4.64	4.50	15.72	Stage 1 on 3
WI AHUH	^	140116	140	Silt with wood fibers, fecal pellets, and some shell fragments. Wood debris, red macroalgae, and	<u> </u>	4.30	4.04	4.50	13.72	Jiage 1 0113
				seaweed at SWI. Burrows, one active, sediment-filled FV, and a piece of seaweed that was dragged						
WPAH018	Δ	Low	No	down visible below SWI.	4	3.16	4.39	3.77	10.95	Stage 1 on 3
VVEALIUTO	^	LOW	140	Silty very fine sand with wood fibers, high density of fecal pellets, and some shell fragments. Thin		3.10	4.38	3.11	10.93	Stage 1 011 3
1				veneer of oxidized sediment at surface along with individual filaments of Beggiatoa. Burrows, red						
\/\D∧⊔∩4∩	С	High	Traco	macroalgae, and active FVs present below SWI.		2 00	4 1 1 1	0.76	1405	Store 1 on 2
WPAH019	C	High	Trace	Silt with numerous wood fibers, some fecal pellets, and shell fragments. Debris, wood fragments, and	- 3	3.09	14.44	8.76	14.85	Stage 1 on 3
WEVHOOD	В	Mod	No	· · · · · · · · · · · · · · · · · · ·		E 0.4	16 FC	40.00	10.40	Store 1 on 2
WPAH020	В	Med	No	organism tubes at SWI. Burrowing throughout depth of profile.	1	5.04	16.56	10.80	18.42	Stage 1 on 3

					I	I			1	
STATION	Rep	Wood Debris?	Beggiatoa?	COMMENT	# of Feeding Voids	Void Minimum Depth (cm)	Void Maximum Depth (cm)	Void Average Depth (cm)	Max Bioturb Depth (cm)	Successional Stage
				Silt with wood fibers and some shell fragments. Debris, including a piece of cable, at SWI. Burrows						
	В	Low	No	and a few polychaetes present.	C	0.00	0.00	0.00		
WPAH022	С	Med	No	Silt with wood fibers mixed with wood pulp at depth. Burrowing throughout depth of profile.	C	0.00	0.00	0.00	19.70	Stage 1 on 3
IMP ALIGO				Thick layer of wood debris with Ulva over fragmented silt at depth. Diffusional aRPD and flocular material at SWI is oxidized. Some Beggiatioa and organism tubes at SWI. Burrows and subsurface			2.22	0.00		
WPAH023	Α	High	Yes	organisms present below SWI. Profile is disturbed from wood fragments being dragged down.	0	0.00	0.00	0.00	Ind	Ind
WPAH024	F	None	Yes	Silt. Reduced sediment appears to be above oxidized sediment from Ulva being dragged down throughout sediment column. Beggiatoa at SWI. Burrows present.	Ind	Ind	Ind	Ind	Ind	Ind
MENTIONE				Anoxic silt with some shell fragments. Decomposing benthic macroalgae, some tubes, and Beggiatoa			0.00	2.22		0. 4
WPAH025	А	None	Yes	at SWI. Burrows present below SWI.	0	0.00	0.00	0.00	3.83	Stage 1
WPAH026	A	None	No	Silt with trace of wood fibers and fecal pellets mixed with wood pulp at depth. Station classified as no wood present even though it was historically (buried by natural deposition). Small tubes at SWI, evidence of burrowing at depth.	C	0.00	0.00	0.00	18.44	Stage 2 -> 3
	_			Wood debris over silty fine sand with high percentage of wood chips & fibers and shell fragments. Kelp	_					
WPAH027	Α	High	No	and Ulva at SWI. Burrows, active FVs, and a large polychaete present below SWI.	3	4.29	8.58	6.44	13.60	Stage 1 on 3
				Wood debris over poorly sorted silty fine to coarse sand with wood fibers and shell fragments. Kelp						
WPAH027	С	High	No	and Ulva at SWI. Burrows and active FV present.	1 1	9.28	10.54	9.91	10.54	Stage 1 on 3
WPAH028	A	High	No	Silt with wood fibers and shell fragments. Ulva, red benthic macroalgae, wood debris, and organism tubes at SWI. Burrows, three active FVs, and benthic macroalgae dragged below SWI by camera.	3	13.43	16.10	14.77	16.10	Stage 1 on 3
WPAH030	Α	None	No	Silt with trace of wood fibers below SWI. Small tubes at SWI. Annelids visible at depth.	C	0.00	0.00	0.00	10.06	Stage 1 on 3
				Silt with trace of wood fibers below SWI. Small tubes at SWI; burrows, FVs, and a large polychaete						
WPAH030	В	None	No	toward bottom of profile.	4	3.52	10.49	7.00	15.21	Stage 1 on 3
WPAH031	Α	None	No	Silt with trace of wood fibers below SWI. Mudclasts and small tubes at SWI. Evidence of burrowing throughout entire range of profile	4	3.66	10.85	7.26	12.30	Stage 1 on 3
WPAH032	В	Med	No	Silt with some wood fibers and wood debris at SWI. Burrows and a subsurface organism present.	C	0.00	0.00	0.00	10.27	Stage 2 -> 3
WPAH033	Α	Trace	Yes	Silt with some wood fibers throughout profile and benthic macro algae at SWI. Reduced mudclasts, organism tubes, beggiatoa, and wood debris at SWI. Burrows & subsurface organisms visible. Silt with some wood fibers. Some benthic macroalgae and debris at SWI. Evidence of burrowing	6	3.66	16.73	10.20	17.99	Stage 1 on 3
WPAH034	Α	Trace	No	throughout profile.	7	4.39	9.74	7.06	9.74	Stage 1 on 3
				Silty fine sand with trace of wood fibers below SWI. Spiochaetopterus polychaete tube at SWI.						
WPAH035	Α	None	No	Burrows and one active FV.	1	3.06	3.30	3.18	4.27	Stage 1 on 3
WPAH035	D	None	No	Silty fine sand with trace of wood fibers below SWI. Burrow present, worm tube in background; penetrations too shallow to accurately determine successional stage.	C	0.00	0.00	0.00	4.92	
				Silt with some wood fibers below SWI. Small tubes at surface and large burrow opening at right edge						
WPAH036	Α	None	No	that leads to major subsurface gallery seen in lower half of image.	2	7.33	11.52	9.43	15.12	Stage 1 on 3
				Sandy silt with wood fibers and fragments at SWI. Minor debris and organism tubes at SWI. Burrowing						_
WPAH037	Α	Trace	No	throughout depth of profile.	2	7.81	10.97	9.39	17.70	Stage 1 on 3
				Silty very fine sand with minor traces of wood fibers. Bioturbation depth exceeds prism penetration	_					
WPAH038		None	No	depth.	3	7.79		9.16		
WPAH038	D	None	No	Silty very fine sand with benthic macroalgae at SWI. Subsurface polychaetes visible.	C	0.00	0.00	0.00	7.25	Stage 2 -> 3
MADALICOS	_		N	Silt with some wood debris at depth (lower left quadrant). Bioturbation depth exceeds prism]	2 22	45.00	2.22	45.00	0
WPAH039	А	None	No	penetration depth.	4	3.30	15.89	9.60	15.98	Stage 1 on 3
M/DALICAC	_	N	N.	Sandy silt with trace of subsurface wood fibers; small worms visible against faceplate and bioturbation		0.50	2.04	0.07	40.50	04
WPAH042	А	None	No	depth exceeds prism penetration depth.	1	8.53	9.21	8.87	10.56	Stage 1 on 3
WPAH043	Α	High	No	Silt with shell fragments at depth. Debris, including a large piece of wood, small tubes, and benthic macroalgae at SWI. Burrows and active FVs present.	5	1.21	15.26	8.23	16.35	Stage 1 on 3
WDAHOAE	^	None	No	Sandy silt with numerous small tubesand two shrimp at SWI. Subsurface polychaetes visible;		0.00	0.00	0.00	6 47	Stage 2 × 2
WPAH045	А	None	No	bioturbation depth exceeds prism penetration depth.		0.00	0.00	0.00	6.47	Stage 2 -> 3

WPAH055 A None No Sit with trace of substrates wood tiber. Burrows, five and substrating polychnetic 2 3.8 16.10 9.97 10.94 Slage 1 on 3											
VPAHUS A Note No. Contropola simulated to survive desired explored subverselve (in the process of the	STATION	Rep		Beggiatoa?	COMMENT	_			•	1	
### APPARAMAN B Trace No											
WPAH005 S Trace No	WPAH046	Α	Med	No		C	0.00	0.00	0.00	4.77	Ind
WPAH056 A None None APEP-P. Silly fine sand with flocal casts from subsurface deposit feeders at SVII. O 0.00 0.											
WPAH056 A None No None No Sill with subsurface wood fibers involved by the property of the prope						C					
WPAH056 A None	WPAH047	Α	None	No		C	0.00	0.00	0.00	2.75	Stage 1 on 3
WPAH065											
WPAH056 A None No visible Single for 3	WPAH053	D	None	No	,	C	0.00	0.00	0.00	Ind	Ind
Sil with subsurface wood fibers, wood regiments, and shell fragments. Burrowing throughout depth of the profile.											
WPAH055 A None No profile Siliyah abbusface wood fibers mixed with some wood pulp at degth, but no wood at sediment Siliyah abbusface wood fibers mixed with some wood pulp at degth, but no wood at sediment Siliyah abbusface wood fibers mixed with some wood pulp at degth, but no wood at sediment Siliyah abbusface wood fibers mixed with some wood pulp at degth, Siliyah abbusface wood fibers and shall mixed with some wood pulp at degth, Siliyah abbusface wood fibers and shall be at SWI. Eurowa and subsurface organized Siliyah abbusface wood fibers and shall be at SWI. Standards burrows and subsurface wood fibers and shall be at SWI. Standards burrows and subsurface wood fibers and shall be at SWI. Standards burrows and subsurface wood fibers and shall be at SWI. Standards burrows and subsurface wood fibers and shall be at SWI. Standards burrows and subsurface wood fibers and shall be at SWI. Standards burrows and subsurface wood fibers and shall be at SWI. Standards wood pulp at degth. Siliyah this face of subsurface wood fibers and shall be at SWI. Standards wood fibers and shall fibers and shall fibers wood standards wood fibers and shall fibers wood fibers and shall fibers wood fibers	WPAH054	Α	None	No		2	3.83	16.10	9.97	16.94	Stage 1 on 3
MPAH056 A None No No No No No No No N					Silt with subsurface wood fibers, wood fragments, and shell fragments. Burrowing throughout depth of						
Surface Small mudiclasts and organism tubes at SWI. Burrows, FVs and subsurface organisms 3 13.40 19.14 16.27 19.22 Stage 1 on 3	WPAH055	Α	None	No		C	0.00	0.00	0.00	16.94	Stage 2 -> 3
WPAH066 A None No nesent. Sit with low percentage of wood fibers at SWI and mixed with high percentage of wood pulp at depth. 3 1.340 19.14 19.27 19.22 Slage 1 on 3 WPAH067 B Low No Small tubus and benthic macroalgae at SWI. Subsurface burrows and FVs visible 3 6.90 21.12 14.01 21.12 Slage 1 on 3 WPAH068 C None No Sit with subsurface wood fibers mixed with wood pulp at depth. Burrows and subsurface polychaetes 0 0.00 0.					Silt with subsurface wood fibers mixed with some wood pulp at depth, but no wood at sediment						
Sit with 10x purcentage of wood (fibers at SVV) and mixed with high percentage of wood pulp at depth. Sit with subsurface word (fibers at SVV) and mixed with high percentage of wood pulp at depth. Sit with subsurface wood (fibers mixed with wood pulp at depth. Burrows and subsurface polychaetes Sit with subsurface wood (fibers; small tubes at SVV). Large *Durow* and subsurface wood (fibers and swall tubes at SVV). Large *Durow* and subsurface wood (fibers and swall tubes at SVV). Large *Durow* and subsurface wood (fibers and swall tubes at SVV). Large *Durow* and subsurface wood (fibers and swall tubes at SVV). Large *Durow* and subsurface wood (fibers) *Duro					surface. Small mudclasts and organism tubes at SWI. Burrows, FVs and subsurface organisms						
WPAH057 B Low No Small tubes and benthic macroalgae at SWI. Subsurface burrows and subsurface polychaetes Silverth working and type Silverth working Silverth w	WPAH056	Α	None	No		3	13.40	19.14	16.27	19.22	Stage 1 on 3
WPAH056 C None No Present. Sit with subsurface wood fibers mixed with wood pulp at depth. Burrows and subsurface polychaetes 0 0.00 0.00 0.00 0.00 18.25 Stage 1 on 3					Silt with low percentage of wood fibers at SWI and mixed with high percentage of wood pulp at depth.						
WPAH056 C None No Present. Sit with subsurface wood fibers mixed with wood pulp at depth. Burrows and subsurface polychaetes 0 0.00 0.00 0.00 0.00 18.25 Stage 1 on 3	WPAH057	В	Low	No		3	6.90	21.12	14.01	21.12	Stage 1 on 3
WPAH056 C None No present Silt with trace of subsurface wood fibers; small tubes at SWI. Lurge 'burrow' at left is artifact caused 1 1 1 1 1 1 1 1 1											Ŭ
WPAH069 A None No No No No No No No N	WPAH058	С	None	No	, , , ,		0.00	0.00	0.00	18.25	Stage 1 on 3
WPAH069 A None No Spy prism blade dragging down object (shell?) from SWI 2 5.71 7.21 6.46 7.21 Stage 1 on 3											
MPAH061	WPAH059	Α	None	No		2	5.71	7.21	6.46	7.21	Stage 1 on 3
WPAH060	,								00		Juago : o.: o
WPAH061 B None No Sit with subsurface wood fibers. Benthic macroalgae and burrows present. 0 0.00	WPAH060	Α	Trace	No			0.00	0.00	0.00	15.62	Stage 1 on 3
WPAH061 E Trace		R									_
WPAH062 B None No polychaetes visible. Silt with trace of subsurface wood fibers and small tubes at SWI. Burrowsand subsurface polychaete present. WPAH063 A None No present. WPAH064 A Trace No exceeds prism penetration depth. Silt with vace of subsurface wood fibers and small tubes at SWI. Burrows provided fragments. Burrowing throughout profile; bioturbation by present. WPAH065 A None No Silt-clay with trace of subsurface wood fibers and small tubes at SWI. Burrows FVs and subsurface by present. WPAH065 B None No monofiliament wire, and small worm tubes at SWI. Burrows, FVs and subsurface by present by present of wood that was dragged down by prism and looks like large. WPAH066 A None No Silt-clay with trace of subsurface wood fibers near SWI but wood pulp at depth. Debris, including a monofiliament wire, and small worm tubes at SWI. Burrows, FVs and subsurface polychaete visible. WPAH066 A Med No oxidized vertical channel. Burrows and subsurface polychaete visible. WPAH067 A None No Burrows and Subsurface polychaete visible. WPAH068 A High No Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface by a subsurface polychaete visible. WPAH068 A High No Silt-clay with wood fibers, fecal pellets, and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation etending beyond depth of prism penetration depth. Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Evidence of subsurface burrowing throughout profile. WPAH071 A Trace No of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows, FVs, and											
WPAH062 B N None No polychaetes visible. 0 0.00 0.00 0.00 1.09 Stage 2 > 3 WPAH063 A N None No present. 0 0.00 0.00 0.00 0.00 1.1.41 Stage 2 > 3 WPAH064 A Trace No present. 0 0.00 0.00 0.00 0.00 1.7.41 Stage 1 on 3 WPAH064 A Trace No present. 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.41 Stage 1 on 3 12.20 6.75 12.63 Stage 1 on 3 12.20 6.75 12.63 Stage 1 on 3 1.30 12.20 6.75 12.63 Stage 1 on 3 1.30 12.20 6.75 12.63 Stage 1 on 3 3 4.19 11.67 7.93 13.81 Stage 1 on 3 4.19 11.67 7.93 13.81 Stage 1 on 3 4.19 11.67 7.93 13.81 Stage 1 on 3 5.19 11.67 7.93 13.81 <	WIAIIOOI	_	Trace	140		1	0.00	0.00	0.00	0.43	Stage 1 011 2
WPAH063 A None No present. WPAH064 A Trace No exceeds prism penetration depth. Silt with wood fibers, fecal pellets, and shell fragments. Burrowing throughout profile; bioturbation 5 1.30 12.20 6.75 12.63 Stage 1 on 3 12.00 6.75 12.00 6.75 12.00 6.75 12.00 6.75 12.00 6.75 1	WDVH063	R	None	No			0.00	0.00	0.00	11.00	Stage 2 -> 3
WPAH063 A None No present. 0 0.00 0.00 0.00 0.00 17.41 Stage 1 on 3 WPAH064 A Trace No Silt with wood fibers, fecal pellets, and shell fragments. Burrowing throughout profile; bioturbation 5 1.30 12.20 6.75 12.63 Stage 1 on 3 WPAH065 A None No Silt-clay with trace of subsurface wood fibers; small tubes at SWI. Burrows FVs and subsurface 3 4.19 11.67 7.93 13.81 Stage 1 on 3 WPAH065 B None No monofillament wire, and small worm tubes at SWI. Burrows FVs and subsurface polychaete visible. 5 8.97 14.27 11.62 15.07 Stage 1 on 3 WPAH066 A Med No monofillament wire, and small worm tubes at SWI. Burrows and subsurface polychaete visible. 5 8.97 14.27 11.62 15.07 Stage 1 on 3 WPAH066 A Med No No monofillament wire, and small worm tubes at SWI. Burrows and subsurface polychaete visible. 5 8.97 14.27 11.62	WF AI 1002	Ь	INOTIE	INO	, , , , , , , , , , , , , , , , , , ,	-	0.00	0.00	0.00	11.09	Stage 2 -> 3
WPAH064 A Trace No exceeds prism penetration depth. WPAH065 A None No No polychaete visible. WPAH066 A None No No polychaete visible. WPAH066 A Med No No No polychaete visible. WPAH068 A High No No No polychaete visible. WPAH068 A High No No No polychaete visible. WPAH068 A High No No No polychaete visible. WPAH068 A High No No No polychaete visible. WPAH068 A High No No No polychaete visible. WPAH068 A High No No No polychaete visible. WPAH068 A High No No Silt-clay with profile distorted by piece of wood that was dragged down by prism and looks like large of visible. WPAH068 A High No No burrows and polychaetes visible. WPAH068 A High No No Silt-clay with wood fibers and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image, bioturbation depth exceeds prism penetration depth. WPAH069 A Med No Silt-clay with wood fibers and shell fragments. Wood debris and shell fragments busular center background, with wood fibers and shell fragments. Wood debris and shell fragments busular center background, with wood fibers and shell fragments. Wood debris and shell fragments busular center background, with wood fibers and shell fragments. Wood debris and shell fragments busular center background, with wood fibers and shell fragments. Wood debris and shell fragments busular center background, with wood fibers and shell fragments. Wood debris and shell fragments busular center background, with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fibers and shell fragments. Silt-clay with wood fib	WDVHUGS	^	None	No	· ·		0.00	0.00	0.00	17.11	Stogo 1 on 2
WPAH064 A Trace No exceeds prism penetration depth. 5 1.30 12.20 6.75 12.63 Stage 1 on 3 WPAH065 A None No Silt-clay with trace of subsurface wood fibers; small tubes at SWI. Burrows FVs and subsurface 3 4.19 11.67 7.93 13.81 Stage 1 on 3 WPAH065 B None No Silt-clay with trace of subsurface wood fibers near SWI. Burrows, FVs and subsurface polychaete visible. 5 8.97 14.27 11.62 15.07 Stage 1 on 3 WPAH066 A Med No solit-clay with profile distorted by piece of wood that wat dagged down by prism and looks like large 0 0.00 0.00 0.00 0.00 10.27 Stage 1 on 3 WPAH067 A None No solit-clay with unce of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface 0 0.00 0.00 0.00 10.27 Stage 1 on 3 WPAH067 A None No burrows and polychaetes visible. 2 8.25 12.10 10.17 13.24 Stage 1 on 3	WPAHU03	A	None	INO	!	-	0.00	0.00	0.00	17.41	Stage 1 011 3
Silt-clay with trace of subsurface wood fibers; small tubes at SWI. Burrows FVs and subsurface WPAH065 A None No polychaete visible. Silt with trace of subsurface wood fibers near SWI but wood pulp at depth. Debris, including a monofillament wire, and small worm tubes at SWI. Burrows, FVs and subsurface polychaete visible. Silt-clay with profile distorted by piece of wood that was dragged down by prism and looks like large oxidized vertical channel. Burrows and subsurface polychaetes visible. Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface WPAH066 A Med No oxidized vertical channel. Burrows and subsurface polychaetes visible. Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface WPAH067 A None No burrows and polychaetes visible. Silt-clay with wood fibers and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking with bioturbation extending beyond depth of prism penetration WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silt-clay with wood fibers and shell fragments. Some wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right of prism penetration Silt trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WDVHUE	^	Troop	No		_	1 20	12.20	6.75	12.62	Stogo 1 on 2
WPAH065 A None No polychaete visible. Silt with trace of subsurface wood fibers near SWI but wood pulp at depth. Debris, including a monorifilament wire, and small worm tubes at SWI. Burrows and subsurface polychaete visible. Silt-clay with profile and shell fragments. Wood debris and shell fragments. Wood debris and shell fragments and with wood fibers and shell fragments and with wood fibers and shell fragments. Swince wood debris and small tubes, as well as two Spinchaetopterus tubes at SWI. Burrows and subsurface polychaetees present. Burrows at right wood fibers and shell fragments. Small tubes at SWI. Surrows and subsurface working with prism penetration of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows at right wood fibers and shell fragments. Small tubes at SWI. Surrows, FVs, and subsurface working with prism penetration of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows at right of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burrows, FVs, and shell fragments. Small tubes at SWI. Burr	WPAH064	A	Trace	INO		5	1.30	12.20	0.73	12.03	Stage 1 011 3
Silt with trace of subsurface wood fibers near SWI but wood pulp at depth. Debris, including a monofillament wire, and small worm tubes at SWI. Burrows, FVs and subsurface polychaete visible. Silt-clay with profile distorted by piece of wood that was dragged down by prism and looks like large of the subsurface polychaete visible. WPAH066 A Med No oxidized vertical channel. Burrows and subsurface polychaete visible. Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface burrows and subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface burrows and subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface burrows and polychaetes visible. Silt-clay with wood fibers, fecal pellets, and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, slit-clay with wood fibers and shell fragments. Wood debris at SWI. Active subsurface everoking with burrows and shell fragments. Some wood debris at SWI. Active subsurface reworking Silt-clay with wood fibers and shell fragments. Some wood debris and small tubes, as well as two Spicohaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows, FVs, and	MDALIOCE	_	Nissa	NIa			1.40	44.07	7.00	40.04	040 4 0
WPAH065 B None No monofillament wire, and small worm tubes at SWI. Burrows, FVs and subsurface polychaete visible. WPAH066 A Med No oxidized vertical channel. Burrows and subsurface polychaetes visible. WPAH067 A None No burrows and polychaetes visible. WPAH068 A High No had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. WPAH068 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAHU65	А	ivone	INO	polycnaete visible.	3	4.19	11.67	7.93	13.81	Stage 1 on 3
WPAH065 B None No monofillament wire, and small worm tubes at SWI. Burrows, FVs and subsurface polychaete visible. WPAH066 A Med No oxidized vertical channel. Burrows and subsurface polychaetes visible. WPAH067 A None No burrows and polychaetes visible. WPAH068 A High No had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. WPAH068 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows, FVs, and					City with trace of a character would file an area CM/I but would not death. Debaie including a						
WPAH066 A Med No Silt-clay with profile distorted by piece of wood that was dragged down by prism and looks like large oxidized vertical channel. Burrows and subsurface polychaetes visible. WPAH067 A None No burrows and polychaetes visible. Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface burrows and polychaetes visible. WPAH068 A High No had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking with bioturbation extending beyond depth of prism penetration Silt yery fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	MDALIOOF	_	Nicol	N.L.		_		44.07	44.00	45.07	01
WPAH066 A Med No oxidized vertical channel. Burrows and subsurface polychaetes visible. WPAH067 A None No burrows and polychaetes visible. WPAH068 A High No had been dragged down on right side of image, bioturbation depth exceeds prism penetration depth. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silt-clay with wood fibers and shell fragments. Wood debris and shell fragments. Wood debris and shell fragments. Wood fibers and shell fragments. Wood fibers and shell fragments. Wood fibers and shell fragments. Wood debris in left foreground and center background, shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silt-clay with wood fibers and shell fragments. Some wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAH065	В	None	No		5	8.97	14.27	11.62	15.07	Stage 1 on 3
Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface WPAH067 A None No burrows and polychaetes visible. Silt-clay with wood fibers, fecal pellets, and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. Silt-clay with wood fibers and shell fragments. Wood debris at SWI. Active subsurface reworking wPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking wPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	MADALIOOO							0.00	0.00	40.07	
WPAH067 A None No burrows and polychaetes visible. WPAH068 A High No had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration WPAH071 A Trace No of profile caused by prism dragging down shell fragments. Small tubes at SWI. Burrows, FVs, and Silt-clay with wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and Silt-clay with wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAH066	А	Med	No		C	0.00	0.00	0.00	10.27	Stage 1 on 3
WPAH068 A High No had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers, fecal pellets, and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking with bioturbation extending beyond depth of prism penetration Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and						_					
WPAH068 A High No had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAH067	Α	None	No	burrows and polychaetes visible.	2	8.25	12.10	10.17	13.24	Stage 1 on 3
WPAH068 A High No had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth. Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and											
Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and											
WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silty with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAH068	Α	High	No	had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth.	2	12.80	16.64	14.72	18.13	Stage 1 on 3
WPAH069 A Med No shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile. WPAH070 A Low No with bioturbation extending beyond depth of prism penetration Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silty with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and											
WPAH070 A Low No with bioturbation extending beyond depth of prism penetration 2 4.99 9.38 7.18 11.77 Stage 1 on 3 Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and											
WPAH070 A Low No with bioturbation extending beyond depth of prism penetration 2 4.99 9.38 7.18 11.77 Stage 1 on 3 Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. 0 0.00 0.00 0.00 7.18 Stage 1 on 3 Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAH069	Α	Med	No		C	0.00	0.00	0.00	9.92	Stage 1 on 3
Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. 0 0.00 0.00 0.00 7.18 Stage 1 on 3 Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and											
as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAH070	Α	Low	No	with bioturbation extending beyond depth of prism penetration	2	4.99	9.38	7.18	11.77	Stage 1 on 3
as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right WPAH071 A Trace No of profile caused by prism dragging down shell from SWI. Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and											7
Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and					as two Spiochaetopterus tubes at SWI. Burrowsand subsurface polychaetes present. Burrow at right						
Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and	WPAH071	Α	Trace	No		c	0.00	0.00	0.00	7.18	Stage 1 on 3
					Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and						
	WPAH073	Α	None	No		2	6.53	9.69	8.11	14.04	Stage 1 on 3

STATION R						1				1 ,
	Rep	Wood Debris?	Beggiatoa?	COMMENT	# of Feeding Voids	Void Minimum Depth (cm)	Void Maximum Depth (cm)	Void Average Depth (cm)	Max Bioturb Depth (cm)	Successional Stage
	-			Silt with wood fibers and shell fragments. 2 pieces of wood debris at surface dragged down and				, ,		
A/DALIO74		N.4 a. al	NIa	organism tubes at SWI. Burrows, wood fragments, FVs and numerous subsurface polychaetes	-	0.00	40.00	0.00	40.57	04
WPAH074 A	4	Med	No	visible. Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrowing		0.92	12.92	6.92	13.57	Stage 1 on 3
NPAH074 B	3	None	No	throughout depth of profile.	4	1.86	13.62	7.74	13.62	Stage 1 on 3
A/DALIO75 A	,	1	NI-	Citation with a boundary and the second condition at CNA/I. Demonitor the second at the first file	0	0.00	0.00	0.00	40.00	Ct 4 2
WPAH075 A	١	Low	No	Silt-clay with subsurface wood fibers and wood debris at SWI. Burrowing throughout depth of profile Silt-clay with trace of subsurface wood fibers and shell fragments mixed with some wood chips at	U	0.00	0.00	0.00	10.32	Stage 1 on 3
WPAH076 A	Δ	None	No	depth. Small tubes at SWI. Bioturbation exceeds prism penetration depth.	3	3.18	11.74	7.46	13.67	Stage 1 on 3
71 741070 71	`	110110	110	Silt-clay over buried wood pulp at depth. Mudclasts, small tubes, and minor debris at SWI. Burrowing		0.10	11.7-7	7.40	10.07	Olage 1 on o
WPAH076 B	3	None	No	throughout profle; wood pulp "cottage cheese" appears to promote biological activity.	6	3.28	10.61	6.94	13.74	Stage 1 on 3
				Silt with wood fibers at SWI and subsurface shell fragments. Minor debris and mounds visible at SWI.						
NPAH077 A	4	Trace	No	Burrowing throughout profile.	4	3.59	5.93	4.76	7.11	Stage 1 on 3
				Silt-clay with wood fibers and shell fragments. Small tubes and benthic macroalgae at SWI. Burrows,						
WPAH078 B	3	Trace	No	active FVs, seaweed pieces, and subsurface polychaetes visible.	2	1.52		6.03	12.61	
WPAH079 D)	None	No	Silt-clay with small tubes and a shrimp at SWI. Burrows and FVs at depth.	4	4.12	8.80	6.46	8.80	Stage 1 on 3
				Silt-clay with one piece of wood debris at SWI on right edge of image. Burrows, FVs and a subsurface						
WPAH079 E	=	Trace	No	polychaete visible.	4	6.82	15.82	11.32	15.82	Stage 1 on 3
		_		Silt-clay with what appears to be wood debris dragged down by camera on right edge of image;				40.00		
WPAH080 A	4	Trace	No	organic enrichment at depth and active burrowing throughout profile.	3	5.11	15.53	10.32	16.13	Stage 1 on 3
ALDALIONO D	,	None	No	Silt-clay with organic enrichment at depth and a shrimp at SWI. Burrows and small polychaetes visible	0	0.00	0.44	7.00	40.74	Ctore 1 on 2
WPAH080 B	5	None	No	at depth. Silt-clay with trace quantities of buried wood pulp at depth. Small tubes & shell fragment at SWI.		6.92	8.44	7.68	13.74	Stage 1 on 3
WPAH081 A	,	None	No	Active burrowing throughout profile.	6	2.48	11.74	7.11	14.75	Stage 1 on 3
WPAH082 A		None	No	Silt-clay with buried wood fragments at depth, active bioturbation throughout depth of profile.	6	3.35	10.29	6.82	16.10	•
VI AI 1002 A	`	INOTIC	140	Silt-clay with wood debris on surface partially tipped by prism insertion in sediment; organic	0	3.33	10.29	0.02	10.10	Stage 1 on 3
WPAH083 A	Δ	Med	No	enrichment at depth, reduced fecal pellets at right edge of image, burrowing throughout profile.	3	4.60	8.51	6.56	10.14	Stage 1 on 3
71 74 1000 71	`	Wied	110	Silt-clay with organic enrichment at depth; small tubes and a shrimp at SWI. Burrows and a subsurface		1.00	0.01	0.00	10.11	Stage 1 on 6
NPAH084 A	4	None	No	polychaete visible.	0	0.00	0.00	0.00	7.38	Stage 1 on 3
			-	Silt-clay with organic enrichment at depth; small tubes and a shrimp at SWI. Burrows and subsurface						
WPAH084 B	3	None	No	polychaetes visible.	2	1.62	9.04	5.33	11.63	Stage 1 on 3
				Silt-clay with organic enrichment at depth; small tubes at SWI. Burrows and subsurface polychaetes						
WPAH085 B	3	None	No	visible.	4	3.13	14.42	8.78	14.42	Stage 1 on 3
WPAH086 B	3	Trace	No	Silt-clay with some wood fibers and one wood fragment at SWI. Burrowing througout depth of profile.	2	8.17	14.20	11.19	14.83	Stage 1 on 3
				Silt-clay with some wood fibers and one wood fragment at SWI. Burrowing througout depth of profile						0.0.90
WPAH087 C	2	Trace	No	with polychaetes visible against faceplate.	3	4.56	7.84	6.20	16.18	Stage 1 on 3
				Silt with shell fragments and slight trace of subsurface wood fibers. Fish at SWI. Burrowing throughout						
NPAH088 A	4	None	No	profile and large polychaete visible at depth.	9	6.10	13.19	9.64	13.26	Stage 1 on 3
				Silt-clay with numerous fecal pellets near SWI and some shell fragments. Debris (wood) dragged						
WPAH089 A	4	Trace	No	down toward right of profile at SWI. Bioturbation exceeds prism penetration depth.	6	6.87	11.14	9.00	11.72	Stage 1 on 3
NPAH090 A	Δ	None	No	Silt-clay with minor sand fraction, subsurface organic enrichment and sediment fracture at depth.	1	8.80	9.84	9.32	9.84	Stage 2 -> 3
WPAH091 A		None	No	Silt-clay with subsurface organic enrichment, multiple feeding voids.	7	5.67	13.96	9.81	17.26	
71 741001 71	`	110110	110	Silt-clay with wood fibers, shell fragments and wood debris at SWI and buried. Active burrowing	·	0.01	10.50	0.01	17.20	Olage 1 on o
NPAH092 A	4	High	No	throughout profile.	5	2.63	14.47	8.55	14.71	Stage 1 on 3
WPAH093 A		None	No	Silt with trace of subsurface wood fibers with active burrowing throughout profile.	5	7.43		12.19	17.12	
				Silt-clay with surface detrital layer over wood debris (exposed by prism cut), organism tubes, and crab						Ĭ
WPAH093 B	3	Low	No	at SWI.	1	12.37	13.36	12.86	15.49	Stage 1 on 3
				Silt-clay with large mud clast artifact from camera sled at SWI; actively bioturbated upper layer with						
WPAH094 A	4	None	No	small tubes at SWI; burrowing throughout depth of profile.	1	10.25	10.78	10.51	13.75	Stage 1 on 3
NPAH095 B	3	None	No	Silt-clay with subsurface organic enrichment, active burrowing throughout profile, shrimp @ SWI.	1	6.34	11.26	8.80	14.26	Stage 1 on 3

STATION	Rep	Wood Debris?	Beggiatoa?	COMMENT	# of Feeding Voids	Void Minimum Depth (cm)	Void Maximum Depth (cm)	Void Average Depth (cm)	Max Bioturb Depth (cm)	Successional Stage
	•			Silt-clay with high organic enrichment at depth, evidence of subsurface burrowing throughout;			. ,	, ,	. , ,	
WPAH096	Α	None	No	polychaete visible against faceplate.	8	4.12	16.25	10.19	16.25	Stage 1 on 3
				Silt-clay with wood fibers, shell fragments, and Ulva dispersed throughout profile from prism dragdown;						
WPAH097	Α	Trace	No	subsurface burrows present.	0	0.00	0.00	0.00	12.52	Stage 1 on 3
				Silt with wood fragments and some fine sand at depth. Ulva and benthic macro algae at SWI. Surface						
				hidden by algae being dragged down by cutting balde, impossible to measure aRPD accurately in this						
WPAH098	Α	Med	No	particular image; flocular material is oxidized. Burrowing throughout profile.	0	0.00	0.00	0.00	19.82	Ind
				Silt with high proportion of wood fragments and some fine sand at depth. Ulva and benthic macro						
				algae at SWI. Thin aRPD that is disrupted by wood dragdown, impossible to measure accurately in						
WPAH099	Α	High	No	this particular image. Burrowing throughout profile.	0	0.00	0.00	0.00	16.30	Stage 1 on 3
				Silt with Ulva and kelp dragged down throughout profile. Beggiatoa and some oxidized flocular						
				material at SWI. Burrows present, but impossible to accurately determine successional status due to						
WPAH100	Α	IND	Yes	disruption of profile from surface kelp artifacts.	0	0.00	0.00	0.00	10.49	Ind
				Silt with traces of subsurface wood fibers; mudclasts and shell fragments at SWI. Burrows, one active						
WPAH101	Α	None	No	FV, and subsurface worms visible.	1	5.88	6.58	6.23	11.61	Stage 1 on 3
WPAH102	Α	None	No	Silt-clay with active burrowing and subsurface worms visible against faceplate.	9	8.34	13.84	11.09	13.84	Stage 1 on 3
				Silt-clay with small tubes at SWI. Slight organic enrichment at depth, evidence of subsurface						
WPAH103	Α	None	No	burrowing .	0	0.00	0.00	0.00	17.72	Stage 1 on 3
WPAH104	Α	None	No	Silt-clay with high density of small tubes at SWI. Active FVs, burrowing throughout profile.	5	2.82	9.74	6.28	12.81	Stage 1 on 3
				Silt-clay with subsurface organic enrichment and laminations from past depositional events. Distinctly						
WPAH105	Α	None	No	shallower bioturbation as compared with other locations.	3	2.77	3.62	3.20	10.75	Stage 2 -> 3
KSS-1	Α	Low	No	Sandy silt with wood fibers and wood fragments. Burrows and large active FV present.	1	7.69	18.88	13.28	19.02	Stage 1 on 3
				Sandy silt with wood fibers and fecal pellets.Benthic macroalgae and mudclasts at SWI. Burrows and						
KSS-2	Α	Trace	No	one active FV present.	1	9.28	10.87	10.08	10.87	Stage 1 on 3
				Sandy silt with trace of subsurface wood fibers. Ulva dragged down by prism throughout sediment						
KSS-3	E	None	No	profile. Burrows and FVs present.	1	9.35	11.56	10.46	16.10	Stage 1 on 3

APPENDIX B

Plan View Image Analysis Results

January 2014 Final Report

STATION	Rep	DATE	TIME	Laser Cal (cm)	IMAGE WIDTH (cm)	IMAGE HEIGHT (cm)	Field of View imaged calc. (m2)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
STATION	Кер	DATE	I IIVIL	(CIII)	WIDTH (CIII)	(CIII)	caic. (III2)	Sediment Type	Bedioillis	Bullows	Tubes	ITACKS	Lebensspuren	Ерпаціа	Widuciasis	Debits	Deggiatoa
WPAH003	D	7/17/2013	16:46:55	26.00	60.65	40.16	0.24	Wood and silt	No	No	No	No	None	No	No	High	Trace
WPAH004	A	7/16/2013	14:59:00	24.94	63.23	41.87	0.26	Wood and silt	No	No	Few	No	Low	Yes	No	High	No
WPAH004	D	7/16/2013	15:04:09	33.49	47.09	31.18	0.15	Wood and silt	No	No	Few	Yes	Low	Yes	No	High	No
WPAH005	Α	7/16/2013	15:24:25	30.65	51.44	34.07	0.18	Silt	No	Yes	Yes	Yes	Low	Yes	No	Low	No
WPAH005	В	7/16/2013	15:26:10	29.74	53.02	35.11	0.19	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	No
WPAH006	С	7/16/2013	15:11:07	24.48	64.41	42.65	0.27	Wood and silt	No	No	No	No	Low	No	No	High	No
WPAH007	D	7/16/2013	17:20:45	27.57	57.20	37.88	0.22	Wood and silt	No	No	Yes	No	Low	Yes	No	High	Trace
WPAH008	A	7/18/2013	13:21:43	28.02	56.27	37.26	0.21	Silt	No	No	Yes	Yes	Med	Yes	No	Med	No
WPAH008	D	7/18/2013	13:25:58	26.46	59.61	39.47	0.24	Wood and silt	No	No	Yes	Yes	Med	Yes	No	High	No
WPAH009	В	7/17/2013	15:28:37	34.30	45.98	30.45	0.14	Silt	No	No	Few	Yes	Low	Yes	No	Low	No
WPAH009	С	7/17/2013	15:29:55	38.60	40.86	27.06	0.11	Silt	No	No	Few	Yes	Med	Yes	No	Trace	No
WPAH010	С	7/17/2013	15:10:42	34.25	46.05	30.49	0.14	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH011	В	7/16/2013	15:49:33	33.08	47.67	31.57	0.15	Silt	No	Yes	Few	Yes	Med	No	No	None	No
WPAH012	E	7/17/2013	13:32:00	30.45	51.78	34.29	0.18	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low-Med	No
WPAH012	F	7/17/2013	13:33:19	25.19	62.60	41.45	0.26	Silt	No	Yes	Few	Yes	Med	Yes	No	Med	No

				Laser Cal	IMAGE	IMAGE HEIGHT	Field of View										
STATION	Rep	DATE	TIME	(cm)	WIDTH (cm)	(cm)	imaged calc. (m2)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
WPAH013	Α	7/16/2013	14:07:19	29.64	53.20	35.23	0.19	Silt	No	Yes	Few	Yes	Med	Yes	No	Trace	No
MIDALIOAA		7/45/0040	40.45.00	20.00	40.04	20.44	0.40	Cile	NI-	Vaa	5	V	Mad	V	NIa	Law	N
WPAH014	Α	7/15/2013	10:15:08	32.22	48.94	32.41	0.16	Silt	No	Yes	Few	Yes	Med	Yes	No	Low	No
WPAH015	В	7/15/2013	10:32:13	27.11	58.16	38.51	0.22	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace-Low	No
WPAH016	Α	7/15/2013	10:52:27	26.71	59.04	39.10	0.23	Silt	No	Yes	Few	Yes	Med	Yes	No	Trace	No
WPAH017	_	7/15/2013	11:13:10	28.48	55.37	36.67	0.20	Silt	No	Yes	Few	Yes	Med	Yes	No	Trace	No
WPAHUIT	Α	7/15/2013	11.13.10	20.40	55.57	30.07	0.20	SIII	INO	res	rew	res	ivied	res	INO	Trace	INO
WPAH018	Α	7/15/2013	11:34:55	25.65	61.49	40.72	0.25	Silt	No	Yes	Yes	Yes	Low	Yes	No	Med	No
	С	7/16/2013	11:28:18	33.69		31.00	0.15	Silty Sand	No	Yes	Yes	Yes	Low	No	No	Low	Trace
WPAH020	С	7/15/2013	16:27:27	38.75	40.70	26.95	0.11	Ind	Ind	Ind	Ind	Ind	None	No	No	Ind	No
WPAH022	В	7/16/2013	15:34:26	26.96	58.49	38.73	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH022	С	7/16/2013	15:35:45	25.54	61.73	40.88	0.25	Silt	No	Yes	Yes	Yes	Med	No	No	Trace	No
WPAH023	A	7/18/2013	12:47:38	38.34	41.13	27.23	0.11	Wood	No	No	No	No	None	Yes	No	High	Trace
MENTON	F	7/40/0040	0.07.00	05.75	04.05	40.50	0.05	INID	NI	N.	NI.	NI	News	V.	NI.	12.1	V
WPAH024	F	7/18/2013	8:37:03	25.75	61.25	40.56	0.25	IND	No	No	No	No	None	Yes	No	High	Yes
WPAH025	Α	7/17/2013	17:19:10	28.83	54.69	36.22	0.20	Silt	No	Yes	Yes	Yes	Low	Yes	No	None	Yes
WPAH026	А	7/18/2013	8:48:12	37.89	41.62	27.56	0.11	Silt	No	Yes	Yes	Yes	Low	Yes	No	None	No
WPAH027	C	7/16/2013	11:55:20	24.79	63.62	42.13	0.27 \	Vood and silty sand	Yes	Yes	Yes	No	None	Yes	No	High	No
VVF ALIUZI		1/10/2013	11.33.20	24.19	03.02	42.13	0.21	voou and sitty sand	162	162	169	INU	INUITE	165	INU	riigii	INU
WPAH027	D	7/16/2013	11:56:46	26.35	59.83	39.62	0.24 V	Vood and silty sand	No	No	Yes	No	Low	No	No	High	No
WPAH028	Α	7/16/2013	11:35:02	39.61	39.81	26.37	0.10	Wood and silt	No	No	Yes	No	None	Yes	No	High	Yes

STATION	Rep	DATE	TIME	Laser Cal (cm)	IMAGE WIDTH (cm)	IMAGE HEIGHT (cm)	Field of View imaged calc. (m2)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
WPAH030	Α	7/16/2013	8:55:25	26.91	58.60	38.80	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH030	В	7/16/2013	8:56:59	25.49	61.85	40.96	0.25	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
WPAH031	A	7/15/2013	11:51:18	24.23	65.08	43.10	0.28	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH032	В	7/15/2013	11:28:13	27.42	57.52	38.09	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH033	Α	7/16/2013	8:21:11	38.80	40.64	26.91	0.11	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	Yes
WPAH034	Α	7/16/2013	8:30:52	28.93	54.50	36.09	0.20	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	No
WPAH035	Α	7/16/2013	8:41:55	25.34	62.22	41.21	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace-Low	No
WPAH035	С	7/16/2013	8:44:59	27.72	56.89	37.67	0.21	Silt with rocks	No	No	Yes	Yes	Med	Yes	No	None	No
WPAH036	Α	7/17/2013	9:26:02	23.77	66.33	43.92	0.29	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH037 WPAH038	A	7/17/2013 7/17/2013	9:34:23 8:50:37	27.82 IND	56.68 IND	37.53 IND	0.21 IND	Silt IND	No IND	Yes IND	Yes IND	Yes IND	High IND	No IND	No IND	Med None	No No
WPAH038	D	7/17/2013	8:54:22	28.58	55.17	36.54	0.20	Sandy Silt	No	Yes	Yes	Yes	Med	No	No	Trace	No
WPAH039	Α	7/15/2013	16:46:12	42.64	36.98	24.49	0.09	Silt	No	Yes	Yes	Yes	Med	Yes	No	Med	No
WPAH042	A	7/15/2013	14:16:23	26.61	59.26	39.25	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH043	Δ	7/15/2013	16:00:05	27.72	56.89	37.67	0.21	Wood and silt	No	Yes	Yes	Yes	Med	Yes	No	High	No
WI AIIO43	Α	1/10/2013	10.00.03	21.12	30.09	31.01	0.21	vvood and siit	110	1 53	163	163	IVIGU	163	140	riigii	140
WPAH045	Α	7/15/2013	14:07:02	25.09	62.85	41.62	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No

						IMAGE	Field of View										
STATION	Rep	DATE	TIME	Laser Cal (cm)	IMAGE WIDTH (cm)	HEIGHT (cm)	imaged calc. (m2)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
STATION	Кер	DATE	I IIVIL	(CIII)	WIDTH (CIII)	(CIII)	caic. (III2)	Sediment Type	Dedioinis	Bullows	Tubes	Hacks	Lebensspuren	Ерпаціа	Wuuciasis	Debits	Deggiatoa
WPAH046	Α	7/15/2013	13:22:27	20.89	75.48	49.99	0.38	Silty Sand	No	Yes	Yes	No	Med	No	No	Med	No
WPAH046	R	7/15/2013	13:23:28	18.82	83.80	55.49	0.47	Silty Sand	No	Yes	Yes	Yes	Med	No	No	Low	No
771 711 10 10		1710/2010	10.20.20	10.02	00.00	00.10	0.17	City Caria	140	100	100	100	Wiod	140	110	2011	110
WPAH047	Α	7/15/2013	13:11:04	27.26	57.84	38.30	0.22	Sand	Yes	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH053	D	7/17/2013	16:35:34	28.58	55.17	36.54	0.20	Gravel	No	No	Yes	Yes	Low	Yes	No	Low	No
	_																
WPAH054	Α	7/16/2013	15:40:06	32.02	49.25	32.61	0.16	Silt	No	Yes	Yes	Yes	Med	No	No	Trace	No
WPAH055	A	7/16/2013	17:24:32	27.42	57.52	38.09	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
	A																
WPAH056	Α	7/16/2013	17:32:08	27.31	57.73	38.23	0.22	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
WDALIOEZ	_	7/47/2042	45.04.00	20.70	54.00	24.04	0.47	Cilt	No	Vaa	Vaa	Vac	Mod	Vaa	Nie	Law	T****
WPAH057	ט	7/17/2013	15:21:06	30.70	51.36	34.01	0.17	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	Trace
WPAH058	Α	7/16/2013	15:55:53	36.22	43.54	28.83	0.13	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
711711000		1710/2010	10.00.00	00.22	10.01	20.00	0.10	Oiit	140	100	100	100	Wiod	110	110	110110	110
WPAH059	Α	7/16/2013	17:02:52	30.25	52.13	34.52	0.18	Silt	No	Yes	Yes	Yes	Med	No	No	Trace	No
WPAH060	Α	7/15/2013	10:44:41	29.74	53.02	35.11	0.19	Sandy Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH061	В	7/16/2013	16:47:18	32.37	48.71	32.26	0.16	Silt	No	No	Yes	Yes	Med	Yes	No	Trace	No
WPAH061	E	7/18/2013	9:03:13	31.46	50.12	33.19	0.17	Silt	No	Yes	Yes	Yes	Low	Yes	Yes	Trace	Yes
									-								
WPAH062	В	7/16/2013	16:56:08	31.36	50.28	33.30	0.17	Silt	No	Yes	Yes	Yes	Med	Yes	Yes	Trace	No
WPAH063	E	7/17/2013	14:11:59	25.95	60.77	40.24	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH064	С	7/16/2013	14:18:12	27.47	57.41	38.02	0.22	Silt	No	Yes	Yes	Yes	Med-High	Yes	No	Low	No

						IMAGE	Field of View										
STATION	Rep	DATE	TIME	Laser Cal (cm)	IMAGE WIDTH (cm)	HEIGHT (cm)	imaged calc. (m2)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
STATION	кер	DATE		(CIII)	WIDTH (CIII)	(CIII)	caic. (III2)	Sediment Type	Bedioillis	Bullows	Tubes	ITACKS	Lebelisspuleii	Ерпаціа	Widuciasts	Debits	Beggiatoa
WPAH065	Α	7/15/2013	10:38:14	27.82	56.68	37.53	0.21	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH065	D	7/15/2013	10:41:08	32.12	49.09	32.51	0.16	Silt	No	Yes	Ind	Yes	Med	No	No	Trace	No
WPAH066	Α	7/15/2013	11:21:19	28.53	55.27	36.60	0.20	Silt	No	Yes	Yes	Yes	Med	No	No	Med	No
							5.25										
WPAH067	Α	7/15/2013	11:43:59	27.47	57.41	38.02	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
7117111007	, ,	7710/2010	11.10.00	27.17	07.11	00.02	0.22	<u> </u>	110	100	100	100	Wiod	100	110	11400	110
WPAH068	R	7/16/2013	8:02:51	25.65	61.49	40.72	0.25	Silt	No	No	Yes	Yes	Med	Yes	No	Med	No
WEATIOO	Ь	7/10/2013	0.02.51	25.05	01.49	40.72	0.23	Siit	INO	INO	162	165	ivied	165	INO	ivieu	INO
WPAH069	Α	7/16/2013	8:10:02	25.95	60.77	40.24	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	High	No
																<u>_</u>	
WPAH070	Α	7/15/2013	15:03:43	30.20	52.22	34.58	0.18	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
		771072010		00.20	02.122	0 1.00	0.10										
WPAH071	Α	7/15/2013	14:22:34	25.75	61.25	40.56	0.25	Silt	No	Yes	Yes	Yes	Med-High	Yes	No	Trace	No
WPAH073	С	7/17/2013	9:07:27	27.31	57.73	38.23	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH074	С	7/16/2013	13:29:48	27.62	57.09	37.81	0.22	Sandy Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH074	Е	7/16/2013	13:39:06	25.14	62.72	41.54	0.26	Sandy Silt	No	Yes	Yes	Yes	Med	Yes	Yes	None	No
WPAH075		7/15/2013	9:59:37	33.28		31.37	0.15	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH076		7/15/2013	10:23:46		IND	IND	IND	Silt	No	IND	IND	Yes	IND	Yes	IND	IND	IND
WPAH076	В	7/15/2013	10:24:45	IND	IND	IND	IND	Silt	No	IND	IND	Yes	IND	Yes	IND	IND	IND
WPAH077	В	7/16/2013	9:07:06	27.06	58.27	38.59	0.22	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
WPAH078	Α	7/16/2013	12:59:46	28.28	55.77	36.93	0.21	Silt	No	Yes	Yes	Yes	Med-High	No	Yes	Low	Yes
WPAH079	D	7/16/2013	13:21:03	26.40	59.72	39.55	0.24	Sandy Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No

STATION	Rep	DATE	TIME	Laser Cal (cm)	IMAGE WIDTH (cm)	IMAGE HEIGHT (cm)	Field of View imaged calc. (m2)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
WPAH079	E	7/17/2013	13:58:43	31.72	49.72	32.92	0.16	Sandy Silt	No	No	Yes	Yes	Med	Yes	No	None	No
WPAH080	Α	7/16/2013	10:18:59	27.92	56.47	37.40	0.21	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH080	В	7/16/2013	10:20:30	26.15	60.30	39.93	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH081	Α	7/16/2013	10:01:06	26.20	60.18	39.85	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH082	A	7/16/2013	9:42:51	28.38	55.57	36.80	0.20	Silt	No	Yes	Yes	Yes	Med	Yes	Yes	Trace	No
WPAH083	A	7/16/2013	11:43:19	28.33	55.67	36.86	0.21	Silt	No	Yes	Yes	Yes	Med	Yes	No	Med	Yes
WPAH084	Α	7/16/2013	10:36:54	22.66	69.58	46.08	0.32	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH084	В	7/16/2013	10:38:02	26.66	59.15	39.17	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH085	В	7/16/2013	10:31:08	29.64	53.20	35.23	0.19	Silt	No	Yes	Yes	Yes	Low-Med	Yes	No	Trace	No
WPAH086	Α	7/16/2013	10:10:14	26.46	59.60	39.47	0.24	Silt	No	Yes	Yes	Yes	Low-Med	Yes	No	None	No
WPAH087	С	7/16/2013	11:18:26	31.16	50.61	33.51	0.17	Silt	No	Yes	Yes	Yes	Med	No	No	Low	No
WPAH088	Α	7/16/2013	11:06:52	25.59	61.61	40.80	0.25	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH089	Α	7/15/2013	16:58:15	27.47	57.41	38.02	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH090	A	7/15/2013	17:07:46	33.18	47.52	31.47	0.15	Silt	No	Yes	Yes	Yes	Low-Med	Yes	No	None	No
WPAH091	Α	7/15/2013	17:24:46	32.42	48.63	32.21	0.16	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	No
WPAH092	A	7/15/2013	16:37:37	19.37	81.39	53.90	0.44	Silt	No	Yes	Yes	Yes	Low	Yes	No	High	No

				Laser Cal	IMAGE	IMAGE HEIGHT	Field of View imaged										
STATION	Rep	DATE	TIME	(cm)	WIDTH (cm)	(cm)	calc. (m2)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
WPAH093	Α	7/15/2013	16:09:16	23.62	66.75	44.21	0.30	Silt	No	Yes	Yes	Yes	Low	Yes	No	None	No
M/DALIOOO	_	7/45/0040	40.40.05	04.00	70.00	47.00	0.04	0.14	N.I.	V	V.	V	N4 - 1		NI.	Nicos	NI.
WPAH093	В	7/15/2013	16:10:35	21.90	72.00	47.68	0.34	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH094	Α	7/18/2013	9:24:05	25.24	62.47	41.37	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH095	В	7/15/2013	13:48:05	27.57	57.20	37.88	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
						01100									110		
		=/4=/2242	40.0=.04			40.04		0.114									
	A B	7/15/2013 7/16/2013	13:35:34 16:36:12	25.95 36.52	60.77 43.17	40.24 28.59	0.24 0.12	Silt IND	No No	No Ind	Yes Ind	Yes Ind	Med-High None	Yes Yes	No No	None Ind	No No
WPAH097	А	7/16/2013	12:00:35	38.24	41.23	27.31	0.12	Silt	No	Ind	Ind	No	None	No	No	Ind	No
												110					
WPAH099 WPAH100	A C	7/15/2013 7/15/2013	15:38:20 15:28:47	20.79 36.62	75.85 43.06	50.23 28.51	0.38 0.12	Silt Silt	No Ind	No IND	No Ind	No No	Low None	No No	Yes No	High Ind	No No
WPAHIOO	C	1/13/2013	13.20.47	30.02	43.00	20.01	0.12	SIII	IIIU	טאוו	IIIu	INO	None	INO	INO	IIIu	INO
WPAH101	Α	7/18/2013	10:49:10	26.40	59.72	39.55	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH102	Α	7/18/2013	11:00:25	24.48	64.41	42.65	0.27	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH103	Α	7/18/2013	9:55:54	31.31	50.36	33.35	0.17	Silt	No	Yes	Yes	Yes	Med-High	No	No	None	No
WPAH104	Α	7/18/2013	11:12:07	39.30	40.12	26.57	0.11	Silt	No	Yes	Yes	Yes	Med	No	Yes	None	No
WPAH105	Α	7/18/2013	11:21:44	28.53	55.27	36.60	0.20	Silt	No	No	Yes	Yes	Low	Yes	No	Trace	No
711 711 100		1,13,2010		20.00	30.21	30.00	5.25	- Cit	. 10		. 55		25	. 00	. 10	11400	1.10
		-14-15-5	10.5- :-		65.5	,		O				.,				_	
KSS-1	Α	7/17/2013	10:05:13	25.04	62.98	41.70	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
KSS-2	Α	7/17/2013	10:15:58	25.44	61.98	41.04	0.25	Silt	No	No	Yes	Yes	Low	Yes	No	Trace	No
KSS-3	В	7/17/2013	10:26:22	27.42	57.52	38.09	0.22	Silt	No	No	Yes	Yes	Low	Yes	No	None	No

STATION	Rep	Comment
STATION	Kep	Surface covered in woody debris, detritus, ulva, and a few fragments of kelp in upper portion of frame.
		Small patch of beggiatoa in wood debris in upper left of frame. Near 100 pervent cover of wood chips
WPAH003	D	and debris that appear to intact and are mantled with algae and detritus.
VVI AI 1003		Detrital-mantled wood debris across entire frame. Ulva, Small elongate fish in upper center of frame.
		The majority of wood fragments are covered but a few have old barnacle residue on them. A few
WPAH004	Α	small tubes in right side of frame.
VVF AT 1004	^	Silt. Detritus mantled wood debris across frame and shell fragments throughout profile. Ulva, at least
		four small crabs Small crab footprints visible. A few tubes in lower left of frame. Woody debris is
WPAH004	D	small, weathered/od and approaching fibrous.
VVFAI1004	U	Silt. Scattered ulva fragments. Small fish toward bottom of profile (long, slender lance-like). Crab
WPAH005	۸	tracks and a few gastropod tracks in detritus mantling.
WEATIOUS	А	Detritus mantled silt with fine features well preserved. Burrows at upper right and multiple small tubes.
WPAH005	В	Crab tracks and small crab in upper left of frame. Appears depositional.
WEATIOUS	Ь	Wood debris (some with barnacles) partially mantled with minor deritus, ulva, and seaweed covering
		most of SWI. Ulva, kelp fragments and dentritic red algae are in various states of decay. Appears to
WPAH006	С	be organic depositional with high organic input.
WEALIOOG	C	be organic depositional with high organic input.
		Silt/detritus mantledWood debris (some with barnacles) and ulva covering most of SWI. Three
		organisms (shrimps in motion) toward top-right of profile. Minor shell fragments interspersed amongst
WPAH007	D	wood debris. Small patch of beggiatoa on wood and detritus in lower left center edge of frame.
VVFAIIUU1	U	Silt with mantled wood debris (some with barnacles), benthic macroalgae, and seaweed on SWI. An
		anemone (does not appear to be metridium), at least four shrimp (coonstripe and crangon sp), two
		small crabs, and two elongate fish (gunnels?) present. Some trails in the form of furrows visible.
WPAH008	Α	Appears depositional.
WEATIOOS	^	Silt. Wood debris (some with barnacles), scattered algal fragments at SWI. At least five crabs (red
		rock crab in upper right - Cancer productus) and two fishes (goby and gunnel?) and a shrimp
		(Coonstripe?) present. Some crab tracks round depressions (possibly fish foraging pits?) visible. Thick
WPAH008	D	detrital mentling suggests that this is at least seasonally depositional.
WPAHUUO	D	Silt. Shell fragments and benthic macroalgae throughout profile. Distinct crab tracks across frame.
WPAH009	В	Benthic macroalgae is binding surface sediment. Image slightly blurry.
WPAH009	Ь	Silt. Extensive benthic macroalgae on SWI that is binding SWI. Fish (sole/flounder) at top of profile.
		Trails running through macroalgae, including crab tracks. Sediment is curling where algal mat has
WPAH009	C	been punctured. Interesting photo.
WPAH009	C	been punctured. Interesting prioto.
		Silt. Figh toward right of profile. Fow tubes, and trooks, and other trails in the form of this furrous
WPAH010	С	Silt. Fish toward right of profile. Few tubes, crab tracks, and other trails in the form of thin furrows
WPAHUIU	C	present. Several small burrows scattered across frame. Appears at least seasonally depositional.
		Silt and detritus. Thin furrowed tracks running diagonally through profile, and few burrows/pits visible
		along with some small tubes fringing the burrows. Very fine grained surface that looks to be at least
WPAH011	В	seasonally depositional. Small fragment of red aldae affixed to a tube in lower portion of the frame.
WEALIOTT	Ь	Silt. Wood debris and shell fragments throughout frame. Four shrimp (coonstripe and crangon) toward
WPAH012	E	left of profile and small localized clouds of silt present (caused by organisms). Epifaunal tracks in
VVFAHUIZ		lower left and upper right. Silt. Some wood debris and shell fragments throughout frame. Ten shrimp (coonstripe, spot and
		crangon)) and a snall fish present. Numerous tracks visible, including shrimp and crab tracks. The
WDV F045	F	outline of wood fragments can be seen through detrital mantling.
WPAH012	[outilite of wood fragments can be seen unough defilled Mantilling.

STATION	Rep	Comment
		Silt. Few shell fragments and wood debris throughout profile. At least four small crabs present.
		Gastropods and their tracks are present across frame. Rich detrital mantling and at least seasonally
WPAH013	Α	depositional. Very small tubes and several large burrows.
		Silt. Few shell and wood fragments. Five Coonstripe shrimp and a small crab present. Shrimp and
		crab tracks visible. Image slightly cloudy and not possible to differentiate tracks from burrows. Small
WPAH014	Α	tube between shrimp in center.
		Silt. Few wood fragments. Three Coonstripe shrimp present. Image slightly cloudy; tracks barely
	_	visible. A few burrows and slender tubes visible. Crab upper left and gastropods across frame.
WPAH015	В	Appears to be at least seasonally depositional.
		Silt. Four shrimp (Coonstripe?) and small crabs present. Shrimp tracks, crab tracks, mounds, and
		burrows visible. Spiochaetopterid tube recumbent at SWI. Image slightly cloudy. Thick detrital
WPAH016	Α	mantling and at least seasonally depositional.
		Silt as thick detrital mantling. Six shrimp (Coonstripe and crangon sp.) and some red benthic
		macroalgae present. Shrimp, crab, and gastropod tracks, and a few burrows visible as well as a few
WPAH017	Α	very small tubes.
		Silt. Extensive benthic macroalgae on SWI that is binding the SWI. Two fish, an organism tube, and a
		small crab present. Trails and tracks running through macroalgae and in places, macroalgae curls
WPAH018	Α	where surface has been pierced. Wood debris appears to be primarily sticks/twig fragments.
WPAH019	С	Silty sand with shell fragments. Ulva and mior washed wood debris present. Crab tracks.
WPAH020	С	Extensive ulva with detritus covering SWI. Ulva does not appear to be in advanced decay.
		Silt. Large mound running diagonally through profile. Minor wood debris, shell fragments and rope
		present (from crab trap). Red macroalgae, a bryozoan, one fish and one small crab visible. Crab
WPAH022	В	tracks, and an organism tube present. Burrow mid-left.
		Silt with thick detrital mantling. Few wood fragments. Spiochaetopterus polychaete tubes, seaweed,
WPAH022	С	benthic red filamentous macroalgae, crab tracks, and some shrimp tracks present.
		SWI completely covered by Ulva and wood debris. Some beggiatoa fringing wood fragment in mid-left
		and one small crab toward top-left of profile. All PV images for station 23 are covered in debris or
WPAH023	Α	cloudy.
		SWI completely covered by Ulva and wood debris. Ulva is thickly mantled with detritus and some of
		the ulva is decaying with some beggiatoa at decomposing areas of ulva. Beggiatioa and three small
WPAH024	F	crabs present. All PV images for station 24 are covered in debris and ulva.
		Silt. Extensive benthic macroalgae throughout profile that appears to have once been a continuous
		binding cover that is now decomposing and breaking apart. Beggiatoa fringing some of the decaying
		algae and two fish present (goby/gunnel). Organism tubes, possible crab tracks, and trails in the form
WPAH025	Α	of thin furrows present.
		Silt with detrital mantling. Small fish (possible goby) toward bottom-left of profile. Crab and shrimp
WPAH026	Α	tracks visible Several small tubes and a few burrows visible.
		Wood fragments, algae and silty sand. Wood debris, shell fragments, ulva, and seaweed covers most
		of SWI. One fish toward top-right of profile and one Hermit Crab toward top-left of profile. Wood
WPAH027	С	debris is small and rounded suggesting reworking at the SWI.
		Woody debris and silty sand visible at SWI Wood debris, shell fragments, ulva, and seaweed covers
		most of SWI thought there is a small patch of exposed sediment with a tube at upper left center.
WPAH027	D	Wood fragments are chips, fragments and splinted with varying degrees of roundness.
		Silt. Ulva, wood debris, shell fragments, and benthic macroalgae covers most of SWI. Beggiatoa
		associated with decaying ulva in upper right and at least 11 snails present. Wood debris and ulva are
WPAH028	Α	detritus mantles.

STATION	Rep	Comment
		Silt with detrital surface. Some shell fragments at right. One shrimp and one fish present. Burrows an
		several small tubes, shrimp, gastropod and crab tracks present. Appears at least seasonally
WPAH030	Α	depositional.
MDALIOSO	Б	Silt, appears soft with detrital mantling. Some shell fragments. Crab tracks and possible gastropod
WPAH030	В	tracks. Cloudy. Burrows visible and fine tubes associated with burrows (secondary).
		Silt. Some wood debris throughout profile. At least seventeen shrimp and the base of a sea pen
WPAH031	Α	(toward right of profile) present. Small tubes. Shrimp tracks and burrows visible. Image slightly cloudy.
		Silt. Some wood debris throughout profile. Ulva and three fish (gunnels and goby) present. Crab
		tracks, and burrows/pits visible. Small localized clouds of silt present. Incipient benthic macroalgae at
WPAH032	В	SWI that appear to in the process of binding sediment.
		Silt. Some wood fragments and seaweed toward top of profile. A fish, carb tracks, crab tracks, and
		beggiatoa present. Beggiatoa appears to associated with decaying benthic macroalgae that was
WPAH033	Α	binding surface sediments.
WPAH034	^	Silt. Scarce mantled wood fragments, a seapen, ulva, and benthic macroalgae present. Two fish (gunnels), seven shrimp, and crab tracks present. A few small burrows and tubes.
WPAH034	Α	Silt and minor wood debris. Two organism tubes (possible Spiochaetopterus sabellid polychaete
		tubes), a fish, four shrimp (two coonstripes), and two small crabs present. Shrimp and crab tracks
WPAH035	Α	visible. Several small tubes. Detrital mantling and slightly cloudy.
		3 3 , ,
		Silt with rounded stones. At least fifteen small crabs, some barnacles on rocks, organism tubes, and a
WPAH035	С	shrimp (coonstripe?) present. Bivalve siphon in left center. Unusual pic of grain size types.
		Silt with some mantled wood debris and shell fragments. Two fish, two shrimp and a small crab
MANDALIOOO		present. Shrimp tracks, crab tracks, organism tubes, and burrows present. A few broken tubes at SWI
WPAH036	Α	and multiple intact smaller tubes fringing burrows. Murky. Silt with some heavily mantled wood debris throughout profile. Shrimp tracks, crab tracks, organism
		tubes, and burrows present. Wood fragments appear older and large based on outlines beneath
WPAH037	Α	detritus/sediment.
WPAH038	Α	Kelp fronds with detritus.
		Silt. Some wood debris and shell fragments at SWI. Ulva, seaweed, shrimp tracks, crab tracks,
WPAH038	D	organism tubes, and burrows present. Both red filamantous algae and brown benthic macroalgae.
		Silt and detritus mantled wood debris (one with barnacles) and shell fragment. Two shrimp, shrimp
		tracks, and crab tracks present. Cloud of silt toward top-right of profile. Appears to be large tabular
MDALIOSO	_	bark/wood fragment at lower portion of frame. Mechanically fragmented wood chunk (small) at SWI
WPAH039	Α	and free of detritus. Silt. Some wood debris and shell fragments. A shrimp, shrimp and crab tracks, burrows, organism
		tubes, present. Benthic macroalgae visible. Abundant seston in water column. Wood fragments are
WPAH042	Α	well mantled with detritus/sediment. Possible sabellid.
	-	
		Silt. Sediment and detritus mantled wood debris over half the frame and few shell fragments. Two
WPAH043	Α	shrimp (spot prawns), shrimp tracks, numerous organism tubes, and crab tracks present. Ulva visible.
		Silt. Some shell fragments. One crab, twenty-two shrimp, numerous organism tubes, crab tracks,
NA/DALIGAT		burrows, and other depressions (possible fish foraging pits?) present. Shrimp are oriented in same
WPAH045	Α	direction, presumably due to currents.

STATION	Rep	Comment
		Silty fine sand. Minor twiggy wood debris and shell fragments throughout profile. Ulva and benthic
		macroalgae visible. Numerous organism tubes (including active polychaete tubes) and burrows. At
		least two bivalve siphons visible. Snails on algae. Surface appears washed with very little detrital
WPAH046	Α	mantling.
		0.16 (6
		Silty fien sand. Some wood debris at SWI and shell fragments. Ulva and benthic macroalgae visible.
NAIDALIO4C	Б	Numerous organism tubes (including active polychaete tubes), burrows, and some crab tracks
WPAH046	В	present. Cerianthid and sabellid visible as well as algal encrusted spiochaetopterus tubes.
		Fine sand with some silt. Bedding visible. Seaweed, nine shrimp, organism tubes, burrows, crab tracks and trails in the form of furrows present. Surface is washed. Very minor scattered small elongate
WPAH047	Α	wood fragments at SWI. Fecal strings.
VVI AI 1047		Rounded to subrounded gravel with a thin discontinuous detrital mantling. Ulva and red dendritic algae.
WPAH053	D	At least two small crabs. Very small tube.
		Silt. Some shell fragments throughout at SWI. Crab tracks, some burrows and fine scaled tubes
WPAH054	Α	present. Murky. Abundant detritus at SWI.
		Silt with detrital veneer at SWI. Minor wood and shell fragments. Three shrimp (coonstripe and
		crangon?), two small crabs, crab tracks, and a mound toward right of profile present. Wood fragments
WPAH055	Α	are at left and their outline is visible under detritus.
		Silt with robust detrital mantling and very minor shell fragments at SWI. Crab tracks, an organism tube,
WPAH056	Α	and small burrows present. Appears at least seasonally depositional.
		Silt and detritus along with very small wood fragments and minor shell at SWI Small elongate fish, a
		shrimp, and a small crab visible. Numerous organism tubes, shrimp tracks and crab tracks present.
WPAH057	D	Incipient beggiatoa at left.
		Silt with detritus at SWI. Crab tracks, and furrows (possibly snail trails?) present. Small localized
	_	cloud of silt visible (possibly caused by an organism). Small burrows at upper right and very small tubes across frame. Appears depositional.
WPAH058	Α	Silt, detrital veneer, and very minor small wood debris and shell fragments at SWI. Crab tracks present
		in upper right as well as a gastropod and its trail in center right. A piece of ulva present. Appears at
WPAH059	Α	least seasonally depositional.
VVI 7111000	, ,	Sandy silt with some detrital mantling. A few tabular wood fragments at SWI. A sand dab and some
		small organisms (toward top-right of profile) present. Shrimp tracks, crab tracks, burrows, and
WPAH060	Α	organism tubes present. Appears to seasonally depositional.
		Silt. Some shell fragments and seaweed visible. A whitish blurred epifaunal organism under algae, a
WPAH061	В	relatively deep furrow (possibly a snail trail) and crab tracks present. Thick detrital mantle at SWI.
		Silt. Very minor small wood debris and shell fragments. Two shrimp (coonstripe?), benthic
		macroalgae, fish and Ulva visible. A mudclast, shrimp tracks, crab tracks, and a small cloud of silt
<u> </u>		(possibly caused by an organism) present. Beggiatoal present and is localized where reduuced
WPAH061	Е	sediment is exposed from either burrows or faunal disturbance. Murky but nice pic.
		Silt. Some shell fragments and seaweed visible. A shrimp, shrimp tracks, crab tracks, few small
/V/D V FIGE	D	mudclasts, and some organism tubes, including a possible Spiochaetopterus polychaete tube, present.
WPAH062	В	Surface appears washed with some fluting around tubes. Silt. Some shell fragments and wood debris visible. Two shrimp and a small gastropod present.
		Shrimp tracks, organism tubes (including an active polychaete tube), depressions (possible fish
WPAH063	E	foraging pits) and burrows present. Depositional.
WI ALIOUS	_	Silt. Some shell fragments and wood debris visible with a distinct fragment at top of frame. A small
		gastropod present. Shrimp tracks, crab tracks, gastropod tracks, organism tubes (including a
WPAH064	С	Spiochaetopterus polychaete tube), burrows, and a depression present.
	1	

STATION	Rep	Comment
WPAH065	Α	Silt. Very murky with some shell fragments visible. A small crab, crab tracks, snail trails, and possible burrows present. Image slightly cloudy and obscures visibility of small tubes.
WF AI 1003	^	Silt. Some shell fragments visible. Crab tracks and burrows present. Image slightly cloudy which
WPAH065	D	precludes identification of small tubes. Minor small wood debris based on outlines at left.
		Silt. Some wood debris and benthic macroalgae visible. Crab tracks, organism tubes, and shrimp
		tracks present. Wood debris is covered by thick veneer of sediment/detritus and some appear to have
WPAH066	Α	been dislocated so that outline is visible by crabs scuttling over the fragments.
		Silt. Very minor small wood fibers, shell fragments, and benthic macroalgae visible. Small gastropods,
		crab tracks, gastropod tracks, organism tubes, shrimp tracks, and burrows present. Thick detrital
WPAH067	Α	veneer and appears depositional.
		Silt. Wood debris apparent across frame with a mix of fragments and twigs, shell fragments, and
		benthic macroalgae. Five fishes and two shrimp visible. Crab tracks, organism tubes, and shrimp
WPAH068	В	tracks present. Thick detrital veener and appears at least seasonally depositional.
		Silt. Wood debris (some with barnacles), shell fragments across the majority of frame and most all is
		mantled with sediment/detritus, and benthic macroalgae throughout profile. Four small crabs visible.
WPAH069	Α	Crab tracks, organism tubes, possible burrows, and shrimp tracks present. Appears depositional.
		Silt. Some wood debris that is visible by outline through detrital veneer, shell fragments, and ulva
\\/D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	visible. Two shrimp, two small crabs, crab tracks, organism tubes, shrimp tracks, and burrows
WPAH070	Α	present. Bivalve siphon.
		Silt with detrital veneer and some small wood fragments. Some shell fragments and benthic
		macroalgae visible. A shrimp, two small crabs, bivalve siphon, a small flounder, and a few small
		gastropods present. Crab tracks, organism tubes (includingSpiochaetopterus polychaete tubes),
WPAH071	Α	shrimp tracks, gastropod tracks, and burrows present. Spiochatopterus tubes have attached red algae.
777.74.107.1	,	Silt. A small gastropod, a fish, crab tracks, gastropod tracks, organism tubes, shrimp tracks, and
		burrows. Small localized silt clouds visible; possibly caused by organisms. Murky and appears
WPAH073	С	depositional.
		Sandy Silt. Some shell fragments throughout profile. Seven shrimp (one coonstripe), crab tracks,
		organism tubes, shrimp tracks, possible fish foraging pits, and abundant burrows present. Small
WPAH074	С	localized silt clouds visible; possibly caused by organisms.
		Sandy Silt. Some shell fragments and several small gastropods. Fifteen shrimp, crab tracks, organism
WPAH074	E	tubes, shrimp tracks, abundant burrows, and trails in the form of thin furrows present. Very nice pic.
		Silt with minor shell fragments. One shrimp, at least one crab, crab tracks, shrimp tracks, and trails in
l <u>-</u>	_	the form of thin furrows present. Small localized silt cloud visible; murky. Small tubes faintly visible.
WPAH075	E	Thick detritus/sediment veneer.
WPAH076	A	Silt. Some debris visible. Crab tracks and a shrimp present. Image is cloudy.
WPAH076	В	Silt. Some debris visible. A shrimp and some tracks present. Image is cloudy.
		Silt. Crab tracks, shrimp tracks, Gastropod tracks, abundant large burrows and some small tubes.
WPAH077	В	Murky and appears to be covered with fine sediment/detritus indicating that it is at least seasonally depositional.
VVFAITU//	Б	Silt. Some shell fragments, wood debris at right (large fragment), ulva at SWI. Crab tracks, shrimp
		tracks, possible snail tracks, organism tubes, and trails in the form of thin (v-shaped) furrows present.
WPAH078	Α	Distinct patches of wispy beggiatoa at right.
**1 / 11 10 / 0	/ \	Sandy silt. Ten shrimp, crab tracks, shrimp tracks, possible gastropod tracks, small mounds, and
WPAH079	D	burrows present. Surface is low-relief.
		The state of the s

STATION	Rep	Comment
STATION	Kep	Sandy Silt. Some shell fragments. Three shrimp, crab tracks, shrimp tracks, possible gastropod
WPAH079	Е	tracks, and abundant small organism tubes present.
		garage and the second of the s
		Silt. Some shell fragments throughout profile. At least nineteen shrimp, crab tracks, shrimp tracks, and
WPAH080	Α	burrows present. Detrital veneer at SWI and appears to be seasonally depositional. Murky.
		Silt. Some shell fragments throughout profile. At least twenty (one possibly deceased) shrimp, one
		fish, shrimp tracks, organism tubes, possible fish foraging pits, trails in the form of thin furrows, and
WPAH080	В	burrows present. Small localized silt clouds visible; caused by shrimp and generally murky.
		Cit Mines shall the second and second the second time second to the second shall be stored and shall be second shall be second shall be stored as the second
		Silt. Minor shell fragment and wood fragment in upper left. One fish, at least one gastropod, shrimp
WPAH081	Α	tracks, crab tracks, gastropod tracks, burrow and tube upper center, and trails in the form of thin furrows present. Murky and detrital veneer suggesting that station is at least seasonally depositional.
WEATIOGT	^	Silt. Some shell fragments and small tabular ronded wood fragments, ulva, at SWI. Two shrimp, one
		crab, shrimp tracks, crab tracks, burrows, and trails in the form of thin furrows present. Thin detrital
WPAH082	Α	veneer.
		Silt with robust detrital veneer. Some shell fragments, wood debris with large fragment at center left
		and twig/branch at far left, ulva and beggiatoa visible. Five shrimp (one coonstripe), crab tracks,
		shrimp tracks, organism tubes, burrows, and trails in the form of thin furrows present. Beggiatoa
WPAH083	Α	associated with edge of translated wood fragment in center left.
		Silt. Minor small wood debris, ulva and kelp visible. Eleven shrimp (three lurking spot prawns), crab
WPAH084	Α	tracks, shrimp tracks, and trails in the form of thin furrows present. Very nice pic.
		Silt. Twenty-four shrimp, crab track, shrimp tracks, gastropod with trail, and trails in the form of thin
M/DALIO04	D	furrows present. Several burrows and small tubes visible along with a very thing detrital veneer
WPAH084	В	Shrimp are oriented mostly in same direction presumably due to current. Silt. Small tabular wood fragment visible. Eight shrimp (2 coonstripe?), one fish, crab track, shrimp
		tracks, and gastropod with trail present. Intersting dynamics between shrimp species. Detritus and
WPAH085	В	murky.
WI AI 1005		Silt. shell fragments visible. Nine shrimp (1 spot prawn), crab track, shrimp tracks, and trails in the
WPAH086	Α	form of thin furrows present. A few burrows and small tubes. Thin detrital veneer.
		Silt with well developed silt/detrital veneer. Some wood debris easily visible on left side of frame, ulva,
		and shell fragments visible. Shrimp tracks, organism tubes, burrows, and trails in the form of thin
WPAH087	С	furrows present. Small gastropods.
		Silt. Small tabular wood fragment visible. Eighteen shrimp, one fish, shrimp tracks, possible crab
WPAH088	Α	tracks, possible snail trail, burrows, and trails in the form of thin furrows present.
		Silt. Very minor wood debris, seaweed, and red benthic macroalgae visible. Ten shrimp, shrimp tracks,
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		crab tracks, organism tube, burrows, and trails in the form of thin furrows present. At least three
WPAH089	А	shrimp species present. Tube at center with encrusted algae (sabellid?)
		Silt. Some shell fragments visible. Ten shrimp, shrimp tracks, crab tracks, possible gastropod and
WPAH090	Α	accompanying trail present. Other trails in the form of thin furrows present. Thin detrital veneer.
111 / 11 10 00	/ \	Silt. Some shell fragments visible and a few small tabular wood fragments. Twenty-four shrimp, shrimp
		tracks, and a trail in the form of a thin furrow present. Many small localized silt clouds visible caused by
WPAH091	Α	shrimp.
		Silt with large tabular wood debris and abundant smaller wood fragments/fibers, shell fragments, and
		barnacles. At least eight shrimp (4 spot prawns), a possible fish, organism tubes, shrimp tracks, and
		trails in the form of a thin furrows present. Wood is mantled with sediment/detritus. Carapace of a red
WPAH092	Α	rock crab.

STATION	Rep	Comment
		Silt. Some shell fragments visible. Twenty-two shrimp (1 larger pandalid partially in frame), shrimp
		tracks, possible crab track, and a trail in the form of a thin furrow present. Small localized silt clouds
WPAH093	Α	visible caused by shrimp. Burrows and small tubes visible.
		Silt. Some wood debris visible. Twenty-six shrimp, shrimp tracks, possible crab track, burrows, and trails in the form of thin furrows present. A veritable shrimp boil with coonstripe, spot and fairy?
WPAH093	В	Shrimp all present.
		Silt. Some shell fragments visible. Four shrimp, shrimp tracks, crab tracks, burrows, and organism
WPAH094	Α	tubes present. Long parallel lines running through left of profile appear to be drag marks.
		Silt. Some wood debris and benthic macroalgae visible. At least fourty-eight shrimp, shrimp tracks,
		possible crab tracks, burrows, and organism tubes present. One shrimp marching to the beat of a
WPAH095	В	different drummer.
		Silt. Some shell fragments, benthic macroalgae, and leafy seaweed visible. Seven shrimp, shrimp
		tracks and numerous furrows running from left to right (or right to left) through profile whuch apear to
WPAH096	Α	be due to undulatory sweeping of kelp fronds.
WPAH097	В	SWI covered in ulva and detritus. Two shrimp, a small crab.
WPAH098	Α	SWI covered in ulva, seaweed, and detritus.
		Silt. Benthic macroalgae, ulva, and seaweed covering SWI. Wood debris covering surface outside of
		algae. Wood debris appears to be small physically reworked particles. Some of the ulva is in a state
WPAH099	Α	of decay.
WPAH100	С	SWI covered in ulva, seaweed, and detritus.
WPAH101	Α	Silt. Sixteen shrimp, shrimp tracks, crab tracks, and burrows present. Smal tubes. Low relief at SWI.
		Silt. Some shell fragments visible. Thirteen shrimp, shrimp tracks, crab tracks, burrows, and trails in
WPAH102	Α	the form of thin furrows present.
		Silt. Shrimp tracks, crab tracks, organism tubes, burrows, possible snail trail, and other trails in the
WPAH103	Α	form of thin furrows present.
		Silt. Shrimp tracks, crab tracks, dense organism tubes, burrows, and trails in the form of thin furrows
WPAH104	Α	present.
		Grey and tan silt. Some shell and wood fragments visible. Five shrimp and long parrallel furrows
WPAH105	Α	present. Surface physically or mechanically disturbed.
		Silt. Some wood debris visible. Benthic macroalgae throughout profile. Two shrimp, possible
		amphipod, and Goby present. Crab tracks, organism tubes, large burrow openings or possible fish
KSS-1	Α	foraging pits and trails in the form of thin furrows present.
		Silt. Some shell fragments visible. Benthic macroalgae throughout profile. One small crab present.
KSS-2	Α	Crab tracks and trails in the form of thin furrows present.
		Silt. Some shell fragments visible. Ulva toward right of profile. One small crab present. Crab tracks and
KSS-3	В	trails in the form of thin furrows present.

APPENDIX J

SPI AND PLAN VIEW DATA

Table J1. SPI Data

Station	Rep	Stop Collar Settings (in.)	No. of Weights per Chassis	Date	Time	Water Depth (m)	Calibration Constant	Grain Size Major Mode (phi)	Grain Size Maximum (phi)	Grain Size Minimum (phi)	Grain Size Range	Penetration Area (sq.cm)	Average Penetration (cm)	Minimum Penetration (cm)	Maximum Penetration (cm)	,	Origin of Boundary Roughness	RPD Area (sq.cm)	Mean RPD (cm)	Methane	Low DO?
WPAH003	D	16	5	7/17/2013	16:46:31	4.6	14.44	4-3	1	>4	>4 to 1	238.10	16.49	15.12	17.41	2.29	Physical	IND	IND	No	No
WPAH004	Α	15	2	7/16/2013	15:00:10	8.8	14.44	>4	2	>4	>4 to 2	257.12	17.80	16.85	19.19	2.34	Physical	42.04	2.91	No	No
WPAH004	D	15	2	7/16/2013	15:03:46	8.2	14.44	>4	2	>4	>4 to 2	215.67	14.93	10.80	16.95	6.15	Physical	IND	IND	No	No
WPAH005	A	15		7/16/2013	15:24:03		14.44	>4	2	>4	>4 to 2	268.98	18.63	17.62	19.38	1.76	Biogenic	82.22	5.69	No	No
NPAH005	В	15		7/16/2013	15:25:48		14.44	>4	2	>4	>4 to 2	257.09	17.80	17.24	18.64	1.40	Biogenic	48.45	3.35	No	No
WPAH006	С	15	2	7/16/2013	15:10:44	7.6	14.44	>4	1	>4	>4 to 1	233.88	16.20	15.60	16.76	1.16	Physical	IND	IND	No	No
NPAH007	D	14	0	7/16/2013	17:20:23	12.0	14.44	>4	2	>4	>4 to 2	157.93	10.94	8.99	12.15	3.16	Physical	22.41	1.55	No	No
WPAH008	Α	16	5	7/18/2013	13:22:38	6.8	14.44	>4	2	>4	>4 to 2	209.33	14.50	13.02	15.55	2.53	Biogenic	27.49	1.90	No	No
WPAH008	D	16	5	7/18/2013	13:25:34	8.2	14.44	>4	2	>4	>4 to 2	147.59	10.22	9.74	10.92	1.18	Physical	diffusional	0.20	No	No
WPAH009	Α	14	0	7/17/2013	15:25:29	8.6	14.44	>4	2	>4	>4 to 2	112.33	7.78	6.73	10.05	3.33	Physical	17.01	1.18	No	No
WPAH009	D	14	0	7/17/2013	15:29:32	9.6	14.44	>4	2	>4	>4 to 2	289.29	20.03	19.58	21.05	1.47	Biogenic	29.61	2.05	No	No
WPAH010	С	14	0	7/17/2013	15:10:20	16.0	14.44	>4	2	>4	>4 to 2	255.33	17.68	16.78	18.30	1.52	Physical	6.39	0.44	No	No
WPAH011	В	15	0	7/16/2013	15:49:11	16.4	14.44	>4	2	>4	>4 to 2	291.22	20.17	19.94	20.47	0.53	Biogenic	47.87	3.31	No	No
WPAH012	В	15	2	7/16/2013	13:48:16	27.4	14.44	>4	2	>4	>4 to 2	216.28	14.98	12.66	18.39	5.74	Physical	Ind	3.43	No	No
WPAH012	С	15	2	7/16/2013	13:49:31	27.4	14.44	>4	2	>4	>4 to 2	216.92	15.02	14.08	17.65	3.57	Physical	IND	3.37	No	No
WPAH013	Α	15	0	7/16/2013	14:06:16	17.8	14.44	>4	2	>4	>4 to 2	248.81	17.23	16.68	17.91	1.23	Biogenic	41.48	2.87	No	No
WPAH014 WPAH015	A A	14 14		7/15/2013 7/15/2013	10:14:43 10:30:48		14.44 14.44	>4 >4	2 2	>4 >4	>4 to 2 >4 to 2	278.13 187.97	19.26 13.02	18.71 12.27	20.11 14.06	1.40 1.78	Physical Biogenic	38.32 40.70	2.65 2.82	No No	No No
NPAH016	Α	14			10:52:03		14.44	>4	2	>4	>4 to 2	226.02	15.65	14.97	16.13	1.16	Biogenic	29.44	2.04	No	No
NPAH017	Α	14			11:12:46		14.44	>4	2	>4	>4 to 2	218.83	15.15	14.75	15.72	0.96	Biogenic	31.89	2.21	No	No
WPAH018	Α	14		7/15/2013	11:34:31		14.44	>4	2	>4	>4 to 2	157.32	10.89	9.50	11.28	1.78	Biogenic	33.93	2.35	No	No
VPAH019	С	15.5	0	7/16/2013	11:27:20	14 0	14.44	4-3	0	>4	>4 to 0	186.00	12.88	10.61	14.85	4.24	Physical	diffusional	0.10	No	Yes

February 5, 2014

Table J1. SPI Data

Table 31. Gr		Stop Collar	No. of Weights			Water	0.111	Grain Size	Grain Size	Grain Size	Grain	5	Average	Minimum	Maximum	Boundary	Origin of	222.4			
Station	Rep	Settings (in.)	per Chassis	Date	Time	Depth (m)	Calibration Constant	Major Mode (phi)	Maximum (phi)	Minimum (phi)	Size Range	Penetration Area (sq.cm)	Penetration (cm)	Penetration (cm)	Penetration (cm)	Roughness (cm)	Boundary Roughness		Mean RPD (cm)	Methane	Low DO?
WPAH020	В	15		7/15/2013	16:25:38	. ,	14.44	>4	2	>4	>4 to 2	264.41	18.31	17.67	19.43	1.76	Physical	15.54	1.08	No	No
WPAH022	В	15	0	7/16/2013	15:34:05	12.6	14.44	>4	2	>4	>4 to 2	138.00	9.56	8.22	10.73	2.51	Biogenic	36.06	2.50	No	No
WPAH022	С	15	0	7/16/2013	15:35:24	12.8	14.44	>4	2	>4	>4 to 2	279.79	19.37	18.76	19.70	0.94	Biogenic	47.70	3.30	No	No
WPAH023	A	16		7/18/2013	12:47:16		14.44	>4	0	>4	>4 to 0	196.19	13.59	12.37	14.61	2.24	Physical	IND	IND	No	No
WPAH024	F	16	0	7/18/2013	8:36:41	5.6	14.44	>4	2	>4	>4 to 2	176.82	12.24	11.79	12.71	0.92	Physical	diffusional	0.10	No	Yes
WPAH025	Α	16	3	7/17/2013	17:18:47	6.8	14.44	>4	2	>4	>4 to 2	135.41	9.38	9.06	9.72	0.65	Physical	0.00	0.00	No	Yes
WPAH026	Α	14	0	7/18/2013	8:47:50	13.6	14.44	>4	2	>4	>4 to 2	278.43	19.28	17.84	20.35	2.51	Physical	28.80	1.99	No	No
WPAH027	Α	16	3	7/16/2013	11:51:47	4.8	14.44	3-2	0	>4	>4 to 0	188.00	13.02	12.32	13.57	1.25	Physical	17.02	1.18	No	No
WPAH027	С	16	3	7/16/2013	11:54:18	4.6	14.44	2-1	-1	>4	>4 to -1	151.23	10.47	9.64	10.78	1.13	Physical	8.13	0.56	No	No
WPAH028	Α	15.5	0	7/16/2013	11:33:59	11.4	14.44	>4	1	>4	>4 to 1	224.19	15.52	14.56	16.23	1.66	Physical	diffusional	0.10	No	No
WPAH030 WPAH030	A B	15 15		7/16/2013 7/16/2013	8:54:59 8:56:33		14.44 14.44	>4 >4	2 2	>4 >4	>4 to 2 >4 to 2	161.70 212.74	11.20 14.73	10.15 14.47	12.15 15.21	2.00 0.75	Biogenic Biogenic	34.71 33.26	2.40 2.30	No No	No No
WPAH031	Α	14	0	7/15/2013	11:50:54	17.6	14.44	>4	2	>4	>4 to 2	176.59	12.23	11.67	12.30	0.63	Biogenic	41.32	2.86	No	No
WPAH032	В	14	0	7/15/2013	11:27:48	14.0	14.44	>4	2	>4	>4 to 2	195.25	13.52	12.71	14.44	1.74	Physical	63.31	4.38	No	No
WPAH033	Α	16	3	7/16/2013	8:20:45	10.6	14.44	>4	2	>4	>4 to 2	247.79	17.16	16.66	17.99	1.33	Biogenic	40.74	2.82	No	No
WPAH034	Α	16	3	7/16/2013	8:30:25	14.8	14.44	>4	2	>4	>4 to 2	151.88	10.52	10.08	10.82	0.75	Biogenic	34.39	2.38	No	No
WPAH035	Α	16	3	7/16/2013	8:41:29	15.8	14.44	4-3	0	>4	>4 to 0	57.55	3.99	3.64	4.27	0.63	Biogenic	23.47	1.62	No	No
WPAH035	D	16	3	7/16/2013	8:46:02	16.0	14.44	4-3	1	>4	>4 to 1	66.13	4.58	4.07	4.92	0.84	Biogenic	22.83	1.58	No	No
WPAH036	Α	15	2	7/17/2013	9:25:39	11.8	14.44	>4	1	>4	>4 to 1	214.73	14.87	14.13	15.12	0.99	Biogenic	99.25	6.87	No	No
WPAH037	Α	15	2	7/17/2013	9:34:00	10.2	14.44	>4	1	>4	>4 to 1	230.66	15.97	14.75	17.70	2.94	Biogenic	64.44	4.46	No	No
WPAH038	Α	16	5	7/17/2013	8:50:13	7.0	14.44	4-3	1	>4	>4 to 1	149.60	10.36	9.21	11.19	1.98	Biogenic	17.90	1.24	No	No
WPAH038 WPAH039	D A	16 15		7/17/2013 7/15/2013	8:53:58 16:45:46		14.44 14.44	4-3 >4	1 1	>4 >4	>4 to 1 >4 to 1	123.93 227.71	8.58 15.77	8.32 15.36	8.87 15.98	0.55 0.63	Biogenic Biogenic	19.64 49.12	1.36 3.40	No No	No No
WPAH042	Α	15	1	7/15/2013	14:15:57	15.8	14.44	>4	1	>4	>4 to 1	147.23	10.20	9.76	10.56	0.80	Biogenic	34.04	2.36	No	No

Table J1. SPI Data

Station	Rep	Stop Collar Settings (in.)	No. of Weights per Chassis	Date	Time	Water Depth (m)	Calibration Constant	Grain Size Major Mode (phi)	Grain Size Maximum (phi)	Grain Size Minimum (phi)	Grain Size Range	Penetration Area (sq.cm)	Average Penetration (cm)	Minimum Penetration (cm)		Boundary Roughness (cm)	Origin of Boundary Roughness	RPD Area (sq.cm)	Mean RPD (cm)	Methane	Low DO?
WPAH043	A	15	2	7/15/2013	15:59:39	26.4	14.44	>4	2	>4	>4 to 2	236.13	16.35	15.28	17.67	2.39	Physical	43.01	2.98	No	No
WPAH045	Α	15	1	7/15/2013	14:06:37	25.4	14.44	>4	2	>4	>4 to 2	93.47	6.47	6.12	6.75	0.63	Biogenic	34.02	2.36	No	No
WPAH046	Α	16.5	5	7/15/2013	13:22:01	16.8	14.44	4-3	1	>4	>4 to 1	61.47	4.26	3.38	4.77	1.40	Physical	61.47	4.26	No	No
WPAH046	В	16.5	5	7/15/2013	13:23:03	16.2	14.44	4-3	1	>4	>4 to 1	42.51	2.94	2.43	3.50	1.06	Physical	42.51	2.94	No	No
WPAH047	Α	16.5	5	7/15/2013	13:10:38	46.0	14.44	3-2	1	>4	>4 to 1	29.69	2.06	1.11	2.75	1.64	Physical	IND	IND	No	No
WPAH053	D	15	2	7/17/2013	16:35:10	6.4	14.44	-3	-4	>4	>4 to -4	28.59	1.98	1.06	2.51	1.45	Physical	IND	IND	No	No
WPAH054	Α	15	0	7/16/2013	15:39:44	13.2	14.44	>4	2	>4	>4 to 2	244.69	16.94	16.59	17.29	0.70	Biogenic	42.58	2.95	No	No
WPAH055	Α	14	0	7/16/2013	17:24:10	14.4	14.44	>4	2	>4	>4 to 2	244.64	16.94	16.25	18.23	1.98	Biogenic	25.96	1.80	No	No
WPAH056	Α	14	0	7/16/2013	17:31:46	12.8	14.44	>4	2	>4	>4 to 2	277.62	19.22	18.59	19.48	0.89	Biogenic	61.66	4.27	No	No
WPAH057	В	14	0	7/17/2013	15:18:11	14.0	14.44	>4	2	>4	>4 to 2	304.62	21.09	20.66	21.22	0.55	Biogenic	28.91	2.00	No	No
WPAH058	С	15	0	7/16/2013	15:57:59	17.0	14.44	>4	2	>4	>4 to 2	293.65	20.33	20.20	20.61	0.41	Biogenic	54.26	3.76	No	No
WPAH059	Α	13.5	0	7/16/2013	17:02:30	17.2	14.44	>4	2	>4	>4 to 2	254.95	17.65	17.14	17.82	0.68	Physical	40.42	2.80	No	No
WPAH060	Α	14	0	7/15/2013	10:44:15	15.0	14.44	>4	2	>4	>4 to 2	222.75	15.42	15.04	15.82	0.77	Biogenic	47.27	3.27	No	No
WPAH061	В	13.5	0	7/16/2013	16:46:56	14.8	14.44	>4	2	>4	>4 to 2	135.10	9.36	8.70	10.46	1.76	Biogenic	49.59	3.43	No	No
WPAH061	E B	15	1	7/18/2013	9:02:50		14.44	>4	2 2	>4 >4	>4 to 2	103.18	7.15	6.39	7.55	1.16	Biogenic	44.87	3.11	No	No No
WPAH062	Б	13.5	0	7/16/2013	16:55:46	10.0	14.44	>4	2	>4	>4 to 2	226.27	15.67	15.21	16.23	1.01	Biogenic	37.63	2.61	No	No
WPAH063	Α	15	2	7/16/2013	13:55:34	19.6	14.44	>4	2	>4	>4 to 2	273.95	18.97	18.11	20.30	2.19	Biogenic	41.04	2.84	No	No
WPAH064	Α	15	0	7/16/2013	14:14:16	18.0	14.44	>4	2	>4	>4 to 2	179.15	12.41	12.37	12.63	0.27	Biogenic	39.39	2.73	No	No
WPAH065	Α	14	0	7/15/2013	10:37:49	18.2	14.44	>4	2	>4	>4 to 2	208.18	14.42	14.10	14.56	0.46	Biogenic	32.01	2.22	No	No
WPAH065	В	14	0	7/15/2013	10:38:46	18.2	14.44	>4	2	>4	>4 to 2	208.81	14.46	14.20	15.07	0.87	Biogenic	32.84	2.27	No	No
WPAH066	Α	14	0	7/15/2013	11:20:55	14.2	14.44	>4	2	>4	>4 to 2	204.51	14.16	13.28	15.16	1.88	Physical	32.45	2.25	No	No
WPAH067	Α	14	0	7/15/2013	11:43:35	15.6	14.44	>4	2	>4	>4 to 2	185.10	12.82	12.34	13.24	0.89	Biogenic	48.87	3.38	No	No
WPAH068	Α						14.44	>4	2	>4		261.87	18.13	17.12	19.72	2.60	Physical	48.39	3.35	No	
VVI ALIOUU	^	15	2	7/10/2013	8:00:54	13.0	17.44	/ 4	2	24	>4 to 2	201.07	10.13	11.12	13.12	2.00	i ilysicai	70.03	0.00	NO	No
WPAH069	Α	15	2	7/16/2013	8:09:36	14.0	14.44	>4	2	>4	>4 to 2	147.82	10.24	7.76	11.31	3.54	Physical	47.76	3.31	No	No
WPAH070	А	15	2	7/15/2013	15:03:17	20 4	14.44	>4	2	>4	>4 to 2	147.13	10.19	9.47	11.77	2.29	Biogenic	32.70	2.26	No	No

Table J1. SPI Data

Station	Rep	Stop Collar Settings (in.)	No. of Weights per Chassis		Time	Water Depth (m)		Grain Size Major Mode (phi)	Grain Size Maximum (phi)	Grain Size Minimum (phi)	Grain Size Range	Penetration Area (sq.cm)	Average Penetration (cm)	Minimum Penetration (cm)		Boundary Roughness (cm)	Origin of Boundary Roughness		Mean RPD (cm)	Methane	Low DO?
WPAH071	A	15		2 7/15/2013	14:55:09		14.44	4-3	1	>4	>4 to 1	103.35	7.16	6.85	7.18	0.34	Physical	26.54	1.84	No	No
WPAH073	Α	15	5 :	2 7/17/2013	9:04:19	14.6	14.44	>4	2	>4	>4 to 2	202.80	14.04	13.14	15.33	2.19	Biogenic	50.46	3.49	No	No
WPAH074	Α	15	5 (7/16/2013	13:26:06	3 29.0	14.44	>4	2	>4	>4 to 2	190.07	13.16	12.68	13.57	0.89	Physical	37.22	2.58	No	No
WPAH074	В	15	5 (7/16/2013	13:27:30	29.2	14.44	>4	2	>4	>4 to 2	201.81	13.97	13.57	14.61	1.04	Biogenic	46.43	3.22	No	No
WPAH075	Α	14	ļ (7/15/2013	8:51:47	21.0	14.44	>4	2	>4	>4 to 2	170.25	11.79	10.51	12.92	2.41	Biogenic	45.62	3.16	No	No
WPAH076	Α	14	ļ (7/15/2013	10:23:21	20.4	14.44	>4	2	>4	>4 to 2	178.20	12.34	11.67	13.67	2.00	Biogenic	57.38	3.97	No	No
WPAH076	В	14	ļ (7/15/2013	10:24:21	20.4	14.44	>4	2	>4	>4 to 2	195.03	13.51	13.33	13.74	0.41	Biogenic	44.21	3.06	No	No
WPAH077	Α	15	5 :	2 7/16/2013	9:05:12	2 21.2	14.44	>4	2	>4	>4 to 2	93.39	6.47	6.08	7.11	1.04	Biogenic	35.24	2.44	No	No
WPAH078	В	15	5 (7/16/2013	13:01:22	2 16.8	14.44	>4	1	>4	>4 to 1	161.89	11.21	10.03	12.61	2.58	Biogenic	26.75	1.85	No	No
WPAH079	D	15	5 (7/16/2013	13:20:03	34.2	14.44	>4	2	>4	>4 to 2	166.80	11.55	10.82	12.25	1.42	Biogenic	36.29	2.51	No	No
WPAH079	Е	15	5 :	2 7/17/2013	13:58:20	33.6	14.44	>4	2	>4	>4 to 2	233.05	16.14	15.82	16.42	0.60	Biogenic	42.20	2.92	No	No
WPAH080	Α	15	5 (7/16/2013	10:18:35	26.0	14.44	>4	2	>4	>4 to 2	226.70	15.70	15.26	16.13	0.87	Physical	54.47	3.77	No	No
WPAH080	В	15	5 (7/16/2013	10:20:06	3 28.0	14.44	>4	2	>4	>4 to 2	200.75	13.90	13.62	14.13	0.51	Biogenic	48.25	3.34	No	No
WPAH081	Α	15	5 (7/16/2013	10:00:41	25.0	14.44	>4	2	>4	>4 to 2	213.01	14.75	14.32	14.90	0.58	Biogenic	62.65	4.34	No	No
WPAH082	Α	15	j :	2 7/16/2013	9:42:26	3 23.6	14.44	>4	2	>4	>4 to 2	232.56	16.10	15.62	16.54	0.92	Biogenic	45.11	3.12	No	No
WPAH083	Α	15.5	5 (7/16/2013	11:43:27	26.6	14.44	>4	2	>4	>4 to 2	146.50	10.14	9.04	11.19	2.15	Biogenic	37.49	2.60	No	No
WPAH084	Α	15	; (7/16/2013	10:36:31	41.0	14.44	>4	2	>4	>4 to 2	102.95	7.13	5.71	8.68	2.97	Physical	40.09	2.78	No	No
WPAH084	В	15	5 (7/16/2013	10:37:38	3 41.6	14.44	>4	2	>4	>4 to 2	190.65	13.20	12.99	13.31	0.31	Biogenic	47.13	3.26	No	No
WPAH085	В	15	5 (7/16/2013	10:29:12	2 31.2	14.44	>4	2	>4	>4 to 2	230.43	15.96	15.69	16.08	0.39	Biogenic	43.19	2.99	No	No
WPAH086	В	15	5 (7/16/2013	10:10:57	29.2	14.44	>4	2	>4	>4 to 2	233.54	16.17	14.75	16.97	2.22	Biogenic	64.47	4.46	No	No
WPAH087	С	15.5	5 (7/16/2013	11:17:24	4 24.6	14.44	>4	2	>4	>4 to 2	255.03	17.66	17.07	18.56	1.49	Biogenic	42.82	2.97	No	No
WPAH088	Α	15.5	5 (7/16/2013	11:05:51	45.6	14.44	>4	2	>4	>4 to 2	191.51	13.26	12.85	13.81	0.96	Biogenic	24.57	1.70	No	No
WPAH089	Α	15	5	1 7/15/2013	16:57:50	49.6	14.44	>4	2	>4	>4 to 2	158.19	10.95	8.97	11.72	2.75	Physical	39.07	2.71	No	No
WPAH090	Α	15	5	1 7/15/2013	17:07:21	41.8	14.44	>4	2	>4	>4 to 2	253.38	17.55	17.09	18.15	1.06	Biogenic	47.46	3.29	No	No
WPAH091	Α	15	;	1 7/15/2013	17:24:21	30.0	14.44	>4	2	>4	>4 to 2	257.80	17.85	17.53	18.06	0.53	Biogenic	58.48	4.05	No	No
WPAH091 WPAH092	A	15		1 7/15/2013 1 7/15/2013	16:37:12		14.44	>4 >4	2	>4 >4	>4 to 2	203.45	14.09	13.02	14.71	1.69	Physical	39.46	2.73	No	No
WPAH093	Α	15	5 :	2 7/15/2013	16:08:51	39.6	14.44	>4	2	>4	>4 to 2	254.53	17.63	17.36	18.13	0.77	Biogenic	40.15	2.78	No	No

Table J1. SPI Data

Station	Rep	Stop Collar Settings (in.)	No. of Weights per Chassis	Date	Time	Water Depth (m)		Grain Size Major Mode (phi)	Grain Size Maximum (phi)	Grain Size Minimum (phi)	Grain Size Range	Penetration Area (sq.cm)	Average Penetration (cm)	Minimum Penetration (cm)		Boundary Roughness (cm)	Origin of Boundary Roughness		Mean RPD (cm)	Methane	Low DO?
WPAH093	В	15		7/15/2013	16:10:10		14.44	>4	2	>4	>4 to 2	233.39	16.16	14.90	17.96	3.06	Physical	58.57	4.06	No	No
WPAH094	Α	15	1	7/18/2013	9:23:43	53.8	14.44	>4	2	>4	>4 to 2	198.62	13.75	13.19	14.03	0.84	Biogenic	77.42	5.36	No	No
WPAH095	В	15	1	7/15/2013	13:46:16	49.6	14.44	>4	2	>4	>4 to 2	212.25	14.70	14.37	15.09	0.72	Biogenic	47.91	3.32	No	No
WPAH096	Α	15	1	7/15/2013	13:35:10	58.4	14.44	>4	2	>4	>4 to 2	261.32	18.10	17.94	18.20	0.27	Biogenic	41.34	2.86	No	No
WPAH097	Α	13.5	0	7/16/2013	16:34:22	7.8	14.44	>4	2	>4	>4 to 2	208.15	14.41	12.58	15.82	3.23	Physical	43.55	3.02	No	No
WPAH098	Α	16	3	7/16/2013	11:59:32	3.4	14.44	4-3	0	>4	>4 to 0	259.59	17.98	15.91	20.73	4.82	Physical	IND	IND	No	No
WPAH099	Α	15	2	7/15/2013	15:37:54	9.4	14.44	>4	1	>4	>4 to 1	241.21	16.70	15.94	17.41	1.47	Physical	IND	IND	No	No
WPAH100	Α	15	2	7/15/2013	15:24:40	8.2	14.44	4-3	1	>4	>4 to 1	128.36	8.89	7.74	10.49	2.75	Physical	0.00	0.00	No	No
WPAH101	Α	15	1	7/18/2013	10:48:49	45.6	14.44	>4	2	>4	>4 to 2	170.19	11.78	11.55	12.03	0.48	Biogenic	48.01	3.32	No	No
WPAH102 WPAH103	A A	15 15		7/18/2013 7/18/2013	11:00:04 9:55:31		14.44 14.44	>4 >4	2 2	>4 >4	>4 to 2 >4 to 2	294.50 261.71	20.39 18.12	19.94 17.41	20.76 18.52	0.82 1.11	Biogenic Biogenic	52.95 46.98	3.67 3.25	No No	No No
WPAH104 WPAH105	A A	15 15		7/18/2013 7/18/2013	11:11:46 11:21:23		14.44 14.44	>4 >4	2 1	>4 >4	>4 to 2 >4 to 1	194.56 262.34	13.47 18.17	13.26 17.84	13.62 18.42	0.36 0.58	Biogenic Biogenic	37.70 27.37	2.61 1.89	No No	No No
KSS-1 KSS-2	A A	15 15		7/17/2013 7/17/2013	10:04:50 10:15:35		14.44 14.44	>4 >4	2 2	>4 >4	>4 to 2 >4 to 2	262.31 161.06	18.16 11.15	17.53 10.44	19.02 11.74	1.49 1.30	Biogenic Biogenic	43.63 35.79	3.02 2.48	No No	No No
KSS-3	Е	16	4	7/17/2013	10:49:26	9.6	14.44	>4	1	>4	>4 to 1	297.85	20.62	20.23	21.02	0.80	Biogenic	26.54	1.84	No	No

Table J1. SPI Data

					No. of	Void	Void	Void	Max	
0, ,;		Wood	D : 0	Comment	Feeding	Minimum	Maximum	Average	Bioturb	Successional
Station	Rep	Debris?	Beggiatoa?	Comment	Voids	Depth (cm)	Depth (cm)		Depth (cm)	Stage
WPAH003	D	High	Trace	Thin aRPD but profile disturbed by wood chip dragdown so unable to measure, wood debris over fines at depth, and flocular material oxidized at SWI. Ulva fragments throughout profile, a few amphipods at SWI, burrows and five active FVs present.	5	4.32	12.87	8.59	17.41	Stage 2 on 3
WPAH004	Α	High	No	Silt with small wood fibers throughout profile. Shell fragments, ulva and red macroalgae at SWI. Burrows, one active FV and subsurface organisms, including a large polychaete present.	1	6.68	7.28	6.98	17.31	Stage 3
WPAH004	D	High	No	Silt with small wood fibers throughout profile. SWI disrupted by large fragment of wood being pulled down by prism on left. Ulva & barnacle encrusted wood debris at SWI. Burrows, five active FVs, and a void toward right of profile present.	5	2.63	8.73	5.68	16.90	Stage 1 on 3
WPAH005	Α	Trace	No	Silt with some wood fibers and small debris. Ulva and detrital mantling at SWI.	0	0.00	0.00	0.00	17.75	Stage 2 -> 3
WPAH005	В	Trace	No	Silt with some shell fragments and wood fibers throughout profile. Some macroalgae at SWI. One sediment-filled FV and evidence of burrowing at depth.	1	12.49	12.90	12.69	17.80	Stage 2 -> 3
WPAH006	С	High	No	Silt with some shell fragments and wood fibers. Debris, including wood fragments, and a large divot at SWI from wood piece being dragged down, preventing accurate aRPD measurement. Burrows, amphipods, one active FV, and a large polychaete visible.	1	2.58	4.00	3.29	16.76	Stage 2 on 3
WPAH007	D	High	Yes	Silt with wood fibers throughout profile. Ulva, wood debris, one coonstripe shrimp (Pandalus danae), and some Beggiatoa at SWI. Burrows and two active FVs present.	2	7.06	9.50	8.28	12.15	Stage 1 on 3
WPAH008	Α	Med	Trace	Silt with wood fibers underlying detrital layer. Macroalgae and organism tubes at SWI. Burrows, wood debris, and active burrowing throughout profile.	2	1.33	11.45	6.39	15.55	Stage 1 on 3
WPAH008	D	High	Yes	Silt with high density of wood fibers & debris. Benthic macroalgae, wood debris, organism tubes, and some Beggiatoa at SWI. Profile disrupted by wood debris being dragged down by prism.	Ind	Ind	Ind	Ind	Ind	Ind
WPAH009	Α	Trace	No	Silt with some shell fragments, wood fibers, and fecal pellets. Benthic macroalgae, ulva, wood debris at SWI. Burrowing to depth and one active FV present. Ulva was dragged down into the sediment column toward right of profile.	1	1.47	3.86	2.66	10.05	Stage 1 on 3
WPAH009	D	Med	No	Silt with wood fibers and fecal pellets over wood pulp. Benthic macroalgae and debris at SWI. Burrows and an active FV at depth.	1	17.70	19.67	18.68	21.05	Stage 1 on 3
WPAH010	С	Med	No	Silt with wood fibers and fecal pellets mixed with wood pulp. Burrowing to depth of profile, and a subsurface annelid present.	2	10.34	13.16	11.75	18.30	Stage 1 on 3
WPAH011	В	Low	No	Silt with wood fibers mixed with wood pulp. Two sediment-filled FVs and a subsurface annelid visible.	2	8.75	20.11	14.43	20.11	Stage 1 on 3
WPAH012	В	Low	No	Silt with wood fibers; aRPD is linear measurement from left side of image, right half of SWI is disrupted by a crab being pushed down & transected by camera prism blade. Burrows and one active FV present.	0	0.00	0.00	0.00	17.50	Stage 1 on 3
WPAH012	С	High	No	Silt with wood fibers; profile disrupted by wood fragments being dragged down by prism, aRPD is linear measurement from right edge of image; burrowing throughout profile, annelid visible at depth.	0	0.00	0.00	0.00	17.65	Stage 1 on 3
WPAH013	Α	None	No	Silt with relatively low percentage of wood fibers throughout profile; burrows to depth, one active FV, and subsurface annelid visible.	1	16.01	17.36	16.68	17.91	Stage 1 on 3
WPAH014	Α	Low	No	Silt with wood fibers, fecal pellets, and some shell fragments over wood pulp at depth.	4	6.00	18.64	12.32	19.26	Stage 1 on 3
WPAH015	Α	Trace	No	Silt with wood fibers and some shell fragments. Burrows, one active FV, and numerous polychaetes present.	1	3.21	7.40	5.30	13.02	Stage 1 on 3
WPAH016	Α	Trace	No	Silt with wood fibers and some shell fragments. Wood debris and organism tubes at SWI. Burrows and polychaetes visible throughout profile.	0	0.00	0.00	0.00	15.65	Stage 1 on 3
WPAH017	Α	None	No	Silt with wood fibers and Ulva at SWI. Burrows, annelids, and FV visible; burrowing throughout depth of profile.	1	4.36	4.64	4.50	15.72	Stage 1 on 3
WPAH018	Α	Low	No	Silt with wood fibers, fecal pellets, and some shell fragments. Wood debris, red macroalgae, and seaweed at SWI. Burrows, one active, sediment-filled FV, and a piece of seaweed that was dragged down visible below SWI.	1	3.16	4.39	3.77	10.95	Stage 1 on 3
WPAH019	С	High	Trace	Silty very fine sand with wood fibers, high density of fecal pellets, and some shell fragments. Thin veneer of oxidized sediment at surface along with individual filaments of Beggiatoa. Burrows, red macroalgae, and active FVs present below SWI.	3	3.09	14.44	8.76	14.85	Stage 1 on 3

Table J1. SPI Data

		Wood			No. of Feeding	Void Minimum	Void Maximum	Void Average	Max Bioturb	Successional
Station	Rep	Debris?	Beggiatoa?	Comment	Voids	Depth (cm)	Depth (cm)	Depth (cm)	Depth (cm)	Stage
WPAH020	В	Med	No	Silt with numerous wood fibers, some fecal pellets, and shell fragments. Debris, wood fragments, and organism tubes at SWI. Burrowing throughout depth of profile.	4	5.04	16.56	10.80	18.42	Stage 1 on 3
WPAH022	В	Low	No	Silt with wood fibers and some shell fragments. Debris, including a piece of cable, at SWI. Burrows and a few polychaetes present.	0	0.00	0.00	0.00	9.56	Stage 2 -> 3
WPAH022	С	Med	No	Silt with wood fibers mixed with wood pulp at depth. Burrowing throughout depth of profile.	0	0.00	0.00	0.00	19.70	Stage 1 on 3
WPAH023	Α	High	Yes	Thick layer of wood debris with Ulva over fragmented silt at depth. Diffusional aRPD and flocular material at SWI is oxidized. Some Beggiatioa and organism tubes at SWI. Burrows and subsurface organisms present below SWI. Profile is disturbed from wood fragments being dragged down.	0	0.00	0.00	0.00	Ind	Ind
WPAH024	F	None	Yes	Silt. Reduced sediment appears to be above oxidized sediment from Ulva being dragged down throughout sediment column. Beggiatoa at SWI. Burrows present.	Ind	Ind	Ind	Ind	Ind	Ind
WPAH025	Α	None	Yes	Anoxic silt with some shell fragments. Decomposing benthic macroalgae, some tubes, and Beggiatoa at SWI. Burrows present below SWI.	0	0.00	0.00	0.00	3.83	Stage 1
WPAH026	Α	None	No	Silt with trace of wood fibers and fecal pellets mixed with wood pulp at depth. Station classified as no wood present even though it was historically (buried by natural deposition). Small tubes at SWI, evidence of burrowing at depth.	0	0.00	0.00	0.00	18.44	Stage 2 -> 3
WPAH027	Α	High	No	Wood debris over silty fine sand with high percentage of wood chips & fibers and shell fragments. Kelp and Ulva at SWI. Burrows, active FVs, and a large polychaete present below SWI.	3	4.29	8.58	6.44	13.60	Stage 1 on 3
WPAH027	С	High	No	Wood debris over poorly sorted silty fine to coarse sand with wood fibers and shell fragments. Kelp and Ulva at SWI. Burrows and active FV present.	1	9.28	10.54	9.91	10.54	Stage 1 on 3
WPAH028	Α	High	No	Silt with wood fibers and shell fragments. Ulva, red benthic macroalgae, wood debris, and organism tubes at SWI. Burrows, three active FVs, and benthic macroalgae dragged below SWI by camera.	3	13.43	16.10	14.77	16.10	Stage 1 on 3
WPAH030	Α	None	No	Silt with trace of wood fibers below SWI. Small tubes at SWI. Annelids visible at depth.	0	0.00	0.00	0.00	10.06	Stage 1 on 3
WPAH030	В	None	No	Silt with trace of wood fibers below SWI. Small tubes at SWI; burrows, FVs, and a large polychaete toward bottom of profile.	4	3.52	10.49	7.00	15.21	Stage 1 on 3
WPAH031	Α	None	No	Silt with trace of wood fibers below SWI. Mudclasts and small tubes at SWI. Evidence of burrowing throughout entire range of profile	4	3.66	10.85	7.26	12.30	Stage 1 on 3
WPAH032	В	Med	No	Silt with some wood fibers and wood debris at SWI. Burrows and a subsurface organism present.	0	0.00	0.00	0.00	10.27	Stage 2 -> 3
WPAH033	Α	Trace	Yes	Silt with some wood fibers throughout profile and benthic macro algae at SWI. Reduced mudclasts, organism tubes, beggiatoa, and wood debris at SWI. Burrows & subsurface organisms visible.	6	3.66	16.73	10.20	17.99	Stage 1 on 3
WPAH034	Α	Trace	No	Silt with some wood fibers. Some benthic macroalgae and debris at SWI. Evidence of burrowing throughout profile.	7	4.39	9.74	7.06	9.74	Stage 1 on 3
WPAH035	Α	None	No	Silty fine sand with trace of wood fibers below SWI. Spiochaetopterus polychaete tube at SWI. Burrows and one active FV.	1	3.06	3.30	3.18	4.27	Stage 1 on 3
WPAH035	D	None	No	Silty fine sand with trace of wood fibers below SWI. Burrow present, worm tube in background; penetrations too shallow to accurately determine successional stage.	0	0.00	0.00	0.00	4.92	Ind
WPAH036	Α	None	No	Silt with some wood fibers below SWI. Small tubes at surface and large burrow opening at right edge that leads to major subsurface gallery seen in lower half of image.	2	7.33	11.52	9.43	15.12	Stage 1 on 3
WPAH037	Α	Trace	No	Sandy silt with wood fibers and fragments at SWI. Minor debris and organism tubes at SWI. Burrowing throughout depth of profile.	2	7.81	10.97	9.39	17.70	Stage 1 on 3
WPAH038	Α	None	No	Silty very fine sand with minor traces of wood fibers. Bioturbation depth exceeds prism penetration depth.	3	7.79	10.54	9.16	11.19	Stage 1 on 3
WPAH038	D	None	No	Silty very fine sand with benthic macroalgae at SWI. Subsurface polychaetes visible.	0	0.00	0.00	0.00	7.25	Stage 2 -> 3
WPAH039	A	None	No	Silt with some wood debris at depth (lower left quadrant). Bioturbation depth exceeds prism penetration depth.	4	3.30	15.89	9.60	15.98	Stage 1 on 3
WPAH042	Α	None	No	Sandy silt with trace of subsurface wood fibers; small worms visible against faceplate and bioturbation depth exceeds prism penetration depth.	1	8.53	9.21	8.87	10.56	Stage 1 on 3

Table J1. SPI Data

		Wood			No. of Feeding	Void Minimum	Void Maximum	Void Average	Max Bioturb	Successional
Station	Rep	Debris?	Beggiatoa?	Comment	Voids	Depth (cm)	Depth (cm)	Depth (cm)	Depth (cm)	Stage
WPAH043	Α	High	No	Silt with shell fragments at depth. Debris, including a large piece of wood, small tubes, and benthic macroalgae at SWI. Burrows and active FVs present.	5	1.21	15.26	8.23	16.35	Stage 1 on 3
WPAH045	Α	None	No	Sandy silt with numerous small tubes and two shrimp at SWI. Subsurface polychaetes visible; bioturbation depth exceeds prism penetration depth.	0	0.00	0.00	0.00	6.47	Stage 2 -> 3
WPAH046	Α	Med	No	aRPD>P. Silty very fine to fine sand. Ulva, seaweed, wood debris, organism tubes, and SAV at SWI. Gastropods attached to seaweed toward center of profile above SWI.	0	0.00	0.00	0.00	4.77	Ind
WPAH046	В	Trace	No	aRPD>P. Silty very fine to fine sand with few wood fibers. Seaweed, wood debris, mudclasts, algae, and large polychaete tube at SWI. Bioturbation depth exceeds prism penetration depth.	0	0.00	0.00	0.00	3.50	Stage 1 on 3
WPAH047	Α	None	No	aRPD>P. Silty fine sand with fecal casts from subsurface deposit feeders at SWI.	0	0.00	0.00	0.00	2.75	Stage 1 on 3
WPAH053	D	None	No	aRPD>P. Poorly sorted silty sand with pebbles; burrows present, but insufficient penetration to accurately determine successional stage.	0	0.00	0.00	0.00	Ind	Ind
WPAH054	Α	None	No	Silt with trace of subsurface wood fibers. Burrows, two active FVs, and a subsurface polychaete visible.	2	3.83	16.10	9.97	16.94	Stage 1 on 3
WPAH055	Α	None	No	Silt with subsurface wood fibers, wood fragments, and shell fragments. Burrowing throughout depth of profile.	0	0.00	0.00	0.00	16.94	Stage 2 -> 3
WPAH056	Α	None	No	Silt with subsurface wood fibers mixed with some wood pulp at depth, but no wood at sediment surface. Small mudclasts and organism tubes at SWI. Burrows, FVs and subsurface organisms present.	3	13.40	19.14	16.27	19.22	Stage 1 on 3
WPAH057	В	Low	No	Silt with low percentage of wood fibers at SWI and mixed with high percentage of wood pulp at depth. Small tubes and benthic macroalgae at SWI. Subsurface burrows and FVs visible	3	6.90	21.12	14.01	21.12	Stage 1 on 3
WPAH058	С	None	No	Silt with subsurface wood fibers mixed with wood pulp at depth. Burrows and subsurface polychaetes present.	0	0.00	0.00	0.00	18.25	Stage 1 on 3
WPAH059	Α	None	No	Silt with trace of subsurface wood fibers; small tubes at SWI. Large "burrow" at left is artifact caused by prism blade dragging down object (shell?) from SWI	2	5.71	7.21	6.46	7.21	Stage 1 on 3
WPAH060	Α	Trace	No	Silt with wood fibers and wood fragments at depth. Burrow at left caused by camera artifact as in previous image.	0	0.00	0.00	0.00	15.62	Stage 1 on 3
WPAH061	В	None	No	Silt with subsurface wood fibers. Benthic macroalgae and burrows present.	0	0.00	0.00	0.00	3.93	Stage 1 on 2
WPAH061	E	Trace	No	Silt with wood fibers and shell fragments. Evidence of subsurface burrowing.	0	0.00	0.00	0.00	6.49	Stage 1 on 2
WPAH062	В	None	No	Silt with trace of subsurface wood fibers. Debris and small tubes at SWI. Burrows and subsurface polychaetes visible.	0	0.00	0.00	0.00	11.09	Stage 2 -> 3
WPAH063	Α	None	No	Silt with subsurface wood fibers and small tubes at SWI. Burrows and a subsurface polychaete present.	0	0.00	0.00	0.00	17.41	Stage 1 on 3
WPAH064	Α	Trace	No	Silt with wood fibers, fecal pellets, and shell fragments. Burrowing throughout profile; bioturbation exceeds prism penetration depth.	5	1.30	12.20	6.75	12.63	Stage 1 on 3
WPAH065	Α	None	No	Silt-clay with trace of subsurface wood fibers; small tubes at SWI. Burrows FVs and subsurface polychaete visible.	3	4.19	11.67	7.93	13.81	Stage 1 on 3
WPAH065	В	None	No	Silt with trace of subsurface wood fibers near SWI but wood pulp at depth. Debris, including a monofilament wire, and small worm tubes at SWI. Burrows, FVs and subsurface polychaete visible.	5	8.97	14.27	11.62	15.07	Stage 1 on 3
WPAH066	Α	Med	No	Silt-clay with profile distorted by piece of wood that was dragged down by prism and looks like large oxidized vertical channel. Burrows and subsurface polychaetes visible.	0	0.00	0.00	0.00	10.27	Stage 1 on 3
WPAH067	Α	None	No	Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Subsurface burrows and polychaetes visible.	2	8.25	12.10	10.17	13.24	Stage 1 on 3
WPAH068	Α	High	No	Silt-clay with wood fibers, fecal pellets, and shell fragments. Wood fragments/debris on surface that had been dragged down on right side of image; bioturbation depth exceeds prism penetration depth.	2	12.80	16.64	14.72	18.13	Stage 1 on 3
WPAH069	Α	Med	No	Silt-clay with wood fibers and shell fragments. Wood debris in left foreground and center background, shells, and macroalgae at SWI. Evidence of subsurface burrowing throughout profile.	0	0.00	0.00	0.00	9.92	Stage 1 on 3
WPAH070	Α	Low	No	Silt-clay with wood fibers and shell fragments. Some wood debris at SWI. Active subsurface reworking with bioturbation extending beyond depth of prism penetration	2	4.99	9.38	7.18	11.77	Stage 1 on 3

Table J1. SPI Data

Otation	D	Wood Debris?	D. weister 0	Comment	No. of Feeding Voids	Void Minimum Depth (cm)	Void Maximum Depth (cm)	Void Average Depth (cm)	Max Bioturb Depth (cm)	Successional Stage
Station	Rep		Beggiatoa?							
WPAH071	А	Trace	No	Silty very fine sand with wood fibers and shell fragments. Minor wood debris and small tubes, as well as two Spiochaetopterus tubes at SWI. Burrows and subsurface polychaetes present. Burrow at right of profile caused by prism dragging down shell from SWI.	0	0.00	0.00	0.00	7.18	Stage 1 on 3
WPAH073	Α	None	No	Silt with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrows, FVs, and subsurface polychaetes visible.	2	6.53	9.69	8.11	14.04	Stage 1 on 3
WPAH074	Α	Med	No	Silt with wood fibers and shell fragments. 2 pieces of wood debris at surface dragged down and organism tubes at SWI. Burrows, wood fragments, FVs and numerous subsurface polychaetes visible.	7	0.92	12.92	6.92	13.57	Stage 1 on 3
WPAH074	В	None	No	Silt-clay with trace of subsurface wood fibers and shell fragments. Small tubes at SWI. Burrowing throughout depth of profile.	4	1.86	13.62	7.74	13.62	Stage 1 on 3
WPAH075	Α	Low	No	Silt-clay with subsurface wood fibers and wood debris at SWI. Burrowing throughout depth of profile	0	0.00	0.00	0.00	10.32	Stage 1 on 3
WPAH076	Α	None	No	Silt-clay with trace of subsurface wood fibers and shell fragments mixed with some wood chips at depth. Small tubes at SWI. Bioturbation exceeds prism penetration depth.	3	3.18	11.74	7.46	13.67	Stage 1 on 3
WPAH076	В	None	No	Silt-clay over buried wood pulp at depth. Mudclasts, small tubes, and minor debris at SWI. Burrowing throughout profile; wood pulp "cottage cheese" appears to promote biological activity.	6	3.28	10.61	6.94	13.74	Stage 1 on 3
WPAH077	Α	Trace	No	Silt with wood fibers at SWI and subsurface shell fragments. Minor debris and mounds visible at SWI. Burrowing throughout profile.	4	3.59	5.93	4.76	7.11	Stage 1 on 3
WPAH078	В	Trace	No	Silt-clay with wood fibers and shell fragments. Small tubes and benthic macroalgae at SWI. Burrows, active FVs, seaweed pieces, and subsurface polychaetes visible.	2	1.52	10.54	6.03	12.61	Stage 1 on 3
WPAH079	D	None	No	Silt-clay with small tubes and a shrimp at SWI. Burrows and FVs at depth.	4	4.12	8.80	6.46	8.80	Stage 1 on 3
WPAH079	Е	Trace	No	Silt-clay with one piece of wood debris at SWI on right edge of image. Burrows, FVs and a subsurface polychaete visible.	4	6.82	15.82	11.32	15.82	Stage 1 on 3
WPAH080	Α	Trace	No	Silt-clay with what appears to be wood debris dragged down by camera on right edge of image; organic enrichment at depth and active burrowing throughout profile.	3	5.11	15.53	10.32	16.13	Stage 1 on 3
WPAH080	В	None	No	Silt-clay with organic enrichment at depth and a shrimp at SWI. Burrows and small polychaetes visible at depth.	2	6.92	8.44	7.68	13.74	Stage 1 on 3
WPAH081	Α	None	No	Silt-clay with trace quantities of buried wood pulp at depth. Small tubes & shell fragment at SWI. Active burrowing throughout profile.	6	2.48	11.74	7.11	14.75	Stage 1 on 3
WPAH082	Α	None	No	Silt-clay with buried wood fragments at depth, active bioturbation throughout depth of profile.	6	3.35	10.29	6.82	16.10	Stage 1 on 3
WPAH083	Α	Med	No	Silt-clay with wood debris on surface partially tipped by prism insertion in sediment; organic enrichment at depth, reduced fecal pellets at right edge of image, burrowing throughout profile.	3	4.60	8.51	6.56	10.14	Stage 1 on 3
WPAH084	Α	None	No	Silt-clay with organic enrichment at depth; small tubes and a shrimp at SWI. Burrows and a subsurface polychaete visible.	0	0.00	0.00	0.00	7.38	Stage 1 on 3
WPAH084	В	None	No	Silt-clay with organic enrichment at depth; small tubes and a shrimp at SWI. Burrows and subsurface polychaetes visible.	2	1.62	9.04	5.33	11.63	Stage 1 on 3
WPAH085	В	None	No	Silt-clay with organic enrichment at depth; small tubes at SWI. Burrows and subsurface polychaetes visible.	4	3.13	14.42	8.78	14.42	Stage 1 on 3
WPAH086	В	Trace	No	Silt-clay with some wood fibers and one wood fragment at SWI. Burrowing throughout depth of profile.	2	8.17	14.20	11.19	14.83	Stage 1 on 3
WPAH087	С	Trace	No	Silt-clay with some wood fibers and one wood fragment at SWI. Burrowing throughout depth of profile with polychaetes visible against faceplate.	3	4.56	7.84	6.20	16.18	Stage 1 on 3
WPAH088	Α	None	No	Silt with shell fragments and slight trace of subsurface wood fibers. Fish at SWI. Burrowing throughout profile and large polychaete visible at depth.	9	6.10	13.19	9.64	13.26	Stage 1 on 3
WPAH089	Α	Trace	No	Silt-clay with numerous fecal pellets near SWI and some shell fragments. Debris (wood) dragged down toward right of profile at SWI. Bioturbation exceeds prism penetration depth.	6	6.87	11.14	9.00	11.72	Stage 1 on 3
WPAH090	Α	None	No	Silt-clay with minor sand fraction, subsurface organic enrichment and sediment fracture at depth.	1	8.80	9.84	9.32	9.84	Stage 2 -> 3
WPAH091	Α	None	No	Silt-clay with subsurface organic enrichment, multiple feeding voids.	7	5.67	13.96	9.81	17.26	Stage 1 on 3
WPAH092	Α	High	No	Silt-clay with wood fibers, shell fragments and wood debris at SWI and buried. Active burrowing throughout profile.	5	2.63	14.47	8.55	14.71	Stage 1 on 3
WPAH093	Α	None	No	Silt with trace of subsurface wood fibers with active burrowing throughout profile.	5	7.43	16.95	12.19	17.12	Stage 1 on 3

Table J1. SPI Data

	_	Wood			No. of Feeding	Void Minimum	Void Maximum	Void Average	Max Bioturb	Successional
Station	Rep	Debris?	Beggiatoa?		Voids	Depth (cm)	Depth (cm)	Depth (cm)		Stage
WPAH093	В	Low	No	Silt-clay with surface detrital layer over wood debris (exposed by prism cut), organism tubes, and crab at SWI.	1	12.37	13.36	12.86	15.49	Stage 1 on 3
WPAH094	Α	None	No	Silt-clay with large mud clast artifact from camera sled at SWI; actively bioturbated upper layer with small tubes at SWI; burrowing throughout depth of profile.	1	10.25	10.78	10.51	13.75	Stage 1 on 3
WPAH095	В	None	No	Silt-clay with subsurface organic enrichment, active burrowing throughout profile, shrimp @ SWI.	4	6.34	11.26	8.80	14.26	Stage 1 on 3
WPAH096	Α	None	No	Silt-clay with high organic enrichment at depth, evidence of subsurface burrowing throughout; polychaete visible against faceplate.	8	4.12	16.25	10.19	16.25	Stage 1 on 3
WPAH097	Α	Trace	No	Silt-clay with wood fibers, shell fragments, and Ulva dispersed throughout profile from prism dragdown; subsurface burrows present.	0	0.00	0.00	0.00	12.52	Stage 1 on 3
WPAH098	Α	Med	No	Silt with wood fragments and some fine sand at depth. Ulva and benthic macro algae at SWI. Surface hidden by algae being dragged down by cutting blade, impossible to measure aRPD accurately in this particular image; flocular material is oxidized. Burrowing throughout profile.	0	0.00	0.00	0.00	19.82	Ind
WPAH099	Α	High	No	Silt with high proportion of wood fragments and some fine sand at depth. Ulva and benthic macro algae at SWI. Thin aRPD that is disrupted by wood dragdown, impossible to measure accurately in this particular image. Burrowing throughout profile.	0	0.00	0.00	0.00	16.30	Stage 1 on 3
WPAH100	Α	IND	Yes	Silt with Ulva and kelp dragged down throughout profile. Beggiatoa and some oxidized flocular material at SWI. Burrows present, but impossible to accurately determine successional status due to disruption of profile from surface kelp artifacts.	0	0.00	0.00	0.00	10.49	Ind
WPAH101	Α	None	No	Silt with traces of subsurface wood fibers; mudclasts and shell fragments at SWI. Burrows, one active FV, and subsurface worms visible.	1	5.88	6.58	6.23	11.61	Stage 1 on 3
WPAH102	Α	None	No	Silt-clay with active burrowing and subsurface worms visible against faceplate.	9	8.34	13.84	11.09	13.84	Stage 1 on 3
WPAH103	Α	None	No	Silt-clay with small tubes at SWI. Slight organic enrichment at depth, evidence of subsurface burrowing.	0	0.00	0.00	0.00	17.72	Stage 1 on 3
WPAH104	Α	None	No	Silt-clay with high density of small tubes at SWI. Active FVs, burrowing throughout profile.	5	2.82	9.74	6.28	12.81	Stage 1 on 3
WPAH105	Α	None	No	Silt-clay with subsurface organic enrichment and laminations from past depositional events. Distinctly shallower bioturbation as compared with other locations.	3	2.77	3.62	3.20	10.75	Stage 2 -> 3
KSS-1	Α	Low	No	Sandy silt with wood fibers and wood fragments. Burrows and large active FV present.	1	7.69	18.88	13.28	19.02	Stage 1 on 3
KSS-2	Α	Trace	No	Sandy silt with wood fibers and fecal pellets. Benthic macroalgae and mudclasts at SWI. Burrows and one active FV present.	1	9.28	10.87	10.08	10.87	Stage 1 on 3
KSS-3	E	None	No	Sandy silt with trace of subsurface wood fibers. Ulva dragged down by prism throughout sediment profile. Burrows and FVs present.	1	9.35	11.56	10.46	16.10	Stage 1 on 3

Table J2. Plan View Data

Station	Rep	Date	Time	Laser Cal (cm)	Image Width (cm)	Image Height (cm)	Field of View Imaged Calc. (m ²)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Wood Debris	Beggiatoa
WPAH003	D	7/17/2013	16:46:55	26.00	60.65	40.16	· ,	Wood and silt	No	No	No	No	None	No	No	High	Trace
WPAH004	Α	7/16/2013	14:59:00	24.94	63.23	41.87	0.26	Wood and silt	No	No	Few	No	Low	Yes	No	High	No
WPAH004	D	7/16/2013	15:04:09	33.49	47.09	31.18	0.15	Wood and silt	No	No	Few	Yes	Low	Yes	No	High	No
WPAH005	А	7/16/2013	15:24:25	30.65	51.44	34.07	0.18	Silt	No	Yes	Yes	Yes	Low	Yes	No	Low	No
WPAH005	В	7/16/2013	15:26:10	29.74	53.02	35.11	0.19	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	No
WPAH006	С	7/16/2013	15:11:07	24.48	64.41	42.65	0.27	Wood and silt	No	No	No	No	Low	No	No	High	No
WPAH007	D	7/16/2013	17:20:45	27.57	57.20	37.88	0.22	Wood and silt	No	No	Yes	No	Low	Yes	No	High	Trace
WPAH008	Α	7/18/2013	13:21:43	28.02	56.27	37.26	0.21	Silt	No	No	Yes	Yes	Med	Yes	No	Med	No
WPAH008	D	7/18/2013	13:25:58	26.46	59.61	39.47	0.24	Wood and silt	No	No	Yes	Yes	Med	Yes	No	High	No
WPAH009	В	7/17/2013	15:28:37	34.30	45.98	30.45	0.14	Silt	No	No	Few	Yes	Low	Yes	No	Low	No
WPAH009	С	7/17/2013	15:29:55	38.60	40.86	27.06	0.11	Silt	No	No	Few	Yes	Med	Yes	No	Trace	No
WPAH010	С	7/17/2013	15:10:42	34.25	46.05	30.49	0.14	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH011	В	7/16/2013	15:49:33	33.08	47.67	31.57	0.15	Silt	No	Yes	Few	Yes	Med	No	No	None	No
WPAH012	E	7/17/2013	13:32:00	30.45	51.78	34.29	0.18	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low-Med	No
WPAH012	F	7/17/2013	13:33:19	25.19	62.60	41.45	0.26	Silt	No	Yes	Few	Yes	Med	Yes	No	Med	No
WPAH013	Α	7/16/2013	14:07:19	29.64	53.20	35.23	0.19	Silt	No	Yes	Few	Yes	Med	Yes	No	Trace	No

Table J2. Plan View Data

Station Rep WPAH014 A WPAH015 B WPAH016 A	Date 7/15/2013 7/15/2013 7/15/2013		(cm) 32.22 27.11	(cm) 48.94 58.16	(cm) 32.41 38.51	(m²) 0.16	Sediment Type Silt	Bedforms No	Yes	Tubes Few	Tracks Yes	Lebensspuren	•	Mudclasts	Debris	Beggiatoa No
	7/15/2013		27.11	58.16	38.51						162	Med	Yes	No	Low	INO
	7/15/2013		27.11	58.16	38.51											
WPAH016 A		10:52:27				0.22	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace-Low	No
	7/15/2013		26.71	59.04	39.10	0.23	Silt	No	Yes	Few	Yes	Med	Yes	No	Trace	No
WPAH017 A	7/10/2010	11:13:10	28.48	55.37	36.67	0.20	Silt	No	Yes	Few	Yes	Med	Yes	No	Trace	No
WPAH018 A	7/15/2013	11:34:55	25.65	61.49	40.72	0.25	Silt	No	Yes	Yes	Yes	Low	Yes	No	Med	No
WPAH019 C	7/16/2013	11:28:18	33.69	46.81	31.00	0.15	Silty sand	No	Yes	Yes	Yes	Low	No	No	Low	Trace
WPAH020 C	7/15/2013	16:27:27	38.75	40.70	26.95	0.11	Ind	Ind	Ind	Ind	Ind	None	No	No	Ind	No
WPAH022 B	7/16/2013	15:34:26	26.96	58.49	38.73	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH022 C	7/16/2013	15:35:45	25.54	61.73	40.88	0.25	Silt	No	Yes	Yes	Yes	Med	No	No	Trace	No
WPAH023 A	7/18/2013	12:47:38	38.34	41.13	27.23	0.11	Wood	No	No	No	No	None	Yes	No	High	Trace
WPAH024 F	7/18/2013	8:37:03	25.75	61.25	40.56	0.25	IND	No	No	No	No	None	Yes	No	High	Yes
WPAH025 A	7/17/2013	17:19:10	28.83	54.69	36.22	0.20	Silt	No	Yes	Yes	Yes	Low	Yes	No	None	Yes
WPAH026 A	7/18/2013	8:48:12	37.89	41.62	27.56	0.11	Silt	No	Yes	Yes	Yes	Low	Yes	No	None	No
WPAH027 C	7/16/2013	11:55:20	24.79	63.62	42.13	0.27	Wood and silty sand	Yes	Yes	Yes	No	None	Yes	No	High	No
WPAH027 D	7/16/2013	11:56:46	26.35	59.83	39.62	0.24	Wood and silty sand	No	No	Yes	No	Low	No	No	High	No
WPAH028 A	7/16/2013	11:35:02	39.61	39.81	26.37	0.10	Wood and silt	No	No	Yes	No	None	Yes	No	High	Yes
WPAH030 A	7/16/2013	8:55:25	26.91	58.60	38.80	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH030 B	7/16/2013	8:56:59	25.49	61.85	40.96	0.25	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
WPAH031 A	7/15/2013		24.23	65.08	43.10		Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No

Table J2. Plan View Data

Chatian	D	Det-	Time	Laser Cal (cm)	Image Width (cm)	Image Height (cm)	Field of View Imaged Calc. (m²)	Sediment Type	Bedforms	Rurrowe	Tubes	Tracks	Lebensspuren	Enifound	Mudclasts	Wood Debris	Beggiatoa
Station WPAH032	Rep B	Date 7/15/2013	11:28:13	, ,	57.52	38.09	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH033	А	7/16/2013	8:21:11	38.80	40.64	26.91	0.11	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	Yes
WPAH034	Α	7/16/2013	8:30:52	28.93	54.50	36.09	0.20	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	No
WPAH035	А	7/16/2013	8:41:55	25.34	62.22	41.21	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace-Low	No
WPAH035	С	7/16/2013	8:44:59	27.72	56.89	37.67	0.21	Silt with rocks	No	No	Yes	Yes	Med	Yes	No	None	No
WPAH036	Α	7/17/2013	9:26:02	23.77	66.33	43.92	0.29	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH037	Α	7/17/2013	9:34:23	27.82	56.68	37.53	0.21	Silt	No	Yes	Yes	Yes	High	No	No	Med	No
WPAH038 WPAH038	A D	7/17/2013 7/17/2013	8:50:37 8:54:22		IND 55.17	IND 36.54	IND 0.20	IND Sandy silt	IND No	IND Yes	IND Yes	IND Yes	IND Med	IND No	IND No	None Trace	No No
WPAH039	А	7/15/2013	16:46:12	42.64	36.98	24.49	0.09	Silt	No	Yes	Yes	Yes	Med	Yes	No	Med	No
WPAH042	Α	7/15/2013	14:16:23	26.61	59.26	39.25	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH043	Α	7/15/2013	16:00:05	27.72	56.89	37.67	0.21	Wood and silt	No	Yes	Yes	Yes	Med	Yes	No	High	No
WPAH045	Α	7/15/2013	14:07:02	25.09	62.85	41.62	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH046	Α	7/15/2013	13:22:27	20.89	75.48	49.99	0.38	Silty sand	No	Yes	Yes	No	Med	No	No	Med	No
WPAH046	В	7/15/2013	13:23:28	18.82	83.80	55.49	0.47	Silty sand	No	Yes	Yes	Yes	Med	No	No	Low	No
WPAH047	А	7/15/2013	13:11:04	27.26	57.84	38.30	0.22	Sand	Yes	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH053	D	7/17/2013	16:35:34	28.58	55.17	36.54	0.20	Gravel	No	No	Yes	Yes	Low	Yes	No	Low	No
WPAH054	Α	7/16/2013	15:40:06	32.02	49.25	32.61	0.16	Silt	No	Yes	Yes	Yes	Med	No	No	Trace	No

Table J2. Plan View Data

Station	Rep	Date	Time	Laser Cal (cm)	Image Width (cm)	Image Height (cm)	Field of View Imaged Calc. (m ²)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Wood Debris	Beggiatoa
WPAH055	A	7/16/2013	17:24:32	, ,	57.52	38.09	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH056	Α	7/16/2013	17:32:08	27.31	57.73	38.23	0.22	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
WPAH057	D	7/17/2013	15:21:06	30.70	51.36	34.01	0.17	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	Trace
WDALIOEO	۸	7/46/2042	15,55,50	26.22	40 E 4	20.02	0.12	Cilt	No	Vaa	Vaa	Voo	Mod	No	No	None	No
WPAH058	Α	7/16/2013	15:55:53	36.22	43.54	28.83	0.13	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
WPAH059	Α	7/16/2013	17:02:52	30.25	52.13	34.52	0.18	Silt	No	Yes	Yes	Yes	Med	No	No	Trace	No
WPAH060	Α	7/15/2013	10:44:41	29.74	53.02	35.11	0.19	Sandy silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH061	В	7/16/2013	16:47:18	32.37	48.71	32.26	0.16	Silt	No	No	Yes	Yes	Med	Yes	No	Trace	No
WPAH061	E	7/18/2013	9:03:13	31.46	50.12	33.19	0.17	Silt	No	Yes	Yes	Yes	Low	Yes	Yes	Trace	Yes
WPAH062	В	7/16/2013	16:56:08	31.36	50.28	33.30	0.17	Silt	No	Yes	Yes	Yes	Med	Yes	Yes	Trace	No
WPAH063	Е	7/17/2013	14:11:59	25.95	60.77	40.24	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH064	С	7/16/2013	1/1.18.12	27.47	57.41	38.02	0.22	Silt	No	Yes	Yes	Yes	Med-High	Yes	No	Low	No
WI Alloo4	Ü	1/10/2013	14.10.12	21.41	37.41	30.02	0.22	Oiit	140	163	163	163	Med-High	163	140	LOW	140
WPAH065	Α	7/15/2013	10:38:14	27.82	56.68	37.53	0.21	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH065	D	7/15/2013	10:41:08	32.12	49.09	32.51	0.16	Silt	No	Yes	Ind	Yes	Med	No	No	Trace	No
WPAH066	Α	7/15/2013	11:21:19	28.53	55.27	36.60	0.20	Silt	No	Yes	Yes	Yes	Med	No	No	Med	No
WPAH067	Α	7/15/2013	11:43:59	27.47	57.41	38.02	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH068	В	7/16/2013	8:02:51	25.65	61.49	40.72	0.25	Silt	No	No	Yes	Yes	Med	Yes	No	Med	No

Table J2. Plan View Data

Station	Rep	Date	Time	Laser Cal (cm)	Image Width (cm)	Image Height (cm)	Field of View Imaged Calc. (m ²)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Wood Debris	Beggiatoa
WPAH069	A	7/16/2013	8:10:02	25.95	60.77	40.24	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	High	No
																9	
WPAH070	Α	7/15/2013	15:03:43	30.20	52.22	34.58	0.18	Silt	No	Yes	Yes	Yes	Med	Yes	No	Low	No
WPAH071	А	7/15/2013	14:22:34	25.75	61.25	40.56	0.25	Silt	No	Yes	Yes	Yes	Med-High	Yes	No	Trace	No
WPAH073	С	7/17/2013	9:07:27	27.31	57.73	38.23	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH074	С	7/16/2013	13:29:48	27.62	57.09	37.81	0.22	Sandy silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH074	E	7/16/2013	13:39:06	25.14	62.72	41.54	0.26	Sandy silt	No	Yes	Yes	Yes	Med	Yes	Yes	None	No
WPAH075	Е	7/15/2013	9:59:37	33.28	47.38	31.37	0.15	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH076	А	7/15/2013	10:23:46	IND	IND	IND	IND	Silt	No	IND	IND	Yes	IND	Yes	IND	IND	IND
WPAH076	В	7/15/2013	10:24:45		IND	IND	IND	Silt	No	IND	IND	Yes	IND	Yes	IND	IND	IND
WPAH077	В	7/16/2013	9:07:06	27.06	58.27	38.59	0.22	Silt	No	Yes	Yes	Yes	Med	No	No	None	No
WPAH078	Α	7/16/2013	12:59:46	28.28	55.77	36.93	0.21	Silt	No	Yes	Yes	Yes	Med-High	No	Yes	Low	Yes
WPAH079	D	7/16/2013	13:21:03	26.40	59.72	39.55	0.24	Sandy silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH079	E	7/17/2013	13:58:43	31.72	49.72	32.92	0.16	Sandy silt	No	No	Yes	Yes	Med	Yes	No	None	No
WPAH080	Α	7/16/2013	10:18:59	27.92	56.47	37.40	0.21	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH080	В	7/16/2013	10:20:30	26.15	60.30	39.93	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH081	А	7/16/2013	10:01:06	26.20	60.18	39.85	0.24	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH082	Α	7/16/2013	9:42:51	28.38	55.57	36.80	0.20	Silt	No	Yes	Yes	Yes	Med	Yes	Yes	Trace	No
WPAH083	А	7/16/2013	11:43:19	28.33	55.67	36.86	0.21	Silt	No	Yes	Yes	Yes	Med	Yes	No	Med	Yes

Table J2. Plan View Data

			- -	Laser Cal	Image Width	Image Height	Field of View Imaged Calc.	0 "	- ·	_	- .	- .		- "		Wood	.
Station	Rep	Date	Time	(cm)	(cm)	(cm)	(m ²)	Sediment Type	Bedforms		Tubes	Tracks	Lebensspuren	•	Mudclasts	Debris	Beggiatoa
WPAH084	Α	7/16/2013	10:36:54	22.66	69.58	46.08	0.32	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH084	В	7/16/2013	10:38:02	26.66	59.15	39.17	0.23	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH085	В	7/16/2013	10:31:08	29.64	53.20	35.23	0.19	Silt	No	Yes	Yes	Yes	Low-Med	Yes	No	Trace	No
WPAH086	Α	7/16/2013	10:10:14	26.46	59.60	39.47	0.24	Silt	No	Yes	Yes	Yes	Low-Med	Yes	No	None	No
WPAH087	С	7/16/2013	11:18:26	31.16	50.61	33.51	0.17	Silt	No	Yes	Yes	Yes	Med	No	No	Low	No
WPAH088	Α	7/16/2013	11:06:52	25.59	61.61	40.80	0.25	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH089	Α	7/15/2013	16:58:15	27.47	57.41	38.02	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH090	А	7/15/2013	17:07:46	33.18	47.52	31.47	0.15	Silt	No	Yes	Yes	Yes	Low-Med	Yes	No	None	No
WPAH091	Α	7/15/2013	17:24:46	32.42	48.63	32.21	0.16	Silt	No	Yes	Yes	Yes	Low	Yes	No	Trace	No
WPAH092	А	7/15/2013	16:37:37	19.37	81.39	53.90	0.44	Silt	No	Yes	Yes	Yes	Low	Yes	No	High	No
WPAH093	А	7/15/2013	16:09:16	23.62	66.75	44.21	0.30	Silt	No	Yes	Yes	Yes	Low	Yes	No	None	No
WPAH093	В	7/15/2013	16:10:35	21.90	72.00	47.68	0.34	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH094	Α	7/18/2013	9:24:05	25.24	62.47	41.37	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH095	В	7/15/2013	13:48:05	27.57	57.20	37.88	0.22	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
WPAH096	Α	7/15/2013	13:35:34	25.95	60.77	40.24	0.24	Silt	No	No	Yes	Yes	Med-High	Yes	No	None	No
WPAH097	В	7/16/2013	16:36:12	36.52	43.17	28.59	0.12	IND Silt	No	Ind	Ind	Ind	None	Yes	No	Ind	No
WPAH098 WPAH099	A A	7/16/2013 7/15/2013	12:00:35 15:38:20	38.24 20.79	41.23 75.85	27.31 50.23	0.11 0.38	Silt Silt	No No	Ind No	Ind No	No No	None Low	No No	No Yes	Ind High	No No
WPAH100 WPAH101	C A	7/15/2013 7/18/2013	15:28:47 10:49:10	36.62 26.40	43.06 59.72	28.51 39.55	0.12 0.24	Silt Silt	IND No	IND Yes	IND Yes	No Yes	None Med	No Yes	No No	Ind None	No No

Table J2. Plan View Data

				Laser Cal	Image Width	Image Height	Field of View Imaged Calc.									Wood	
Station	Rep	Date	Time	(cm)	(cm)	(cm)	(m ²)	Sediment Type	Bedforms	Burrows	Tubes	Tracks	Lebensspuren	Epifauna	Mudclasts	Debris	Beggiatoa
WPAH102	А	7/18/2013	11:00:25	24.48	64.41	42.65	0.27	Silt	No	Yes	Yes	Yes	Med	Yes	No	None	No
WPAH103	Α	7/18/2013	9:55:54	31.31	50.36	33.35	0.17	Silt	No	Yes	Yes	Yes	Med-High	No	No	None	No
WPAH104	Α	7/18/2013	11:12:07	39.30	40.12	26.57	0.11	Silt	No	Yes	Yes	Yes	Med	No	Yes	None	No
WPAH105	Α	7/18/2013	11:21:44	28.53	55.27	36.60	0.20	Silt	No	No	Yes	Yes	Low	Yes	No	Trace	No
KSS-1	Α	7/17/2013	10:05:13	25.04	62.98	41.70	0.26	Silt	No	Yes	Yes	Yes	Med	Yes	No	Trace	No
KSS-2	Α	7/17/2013	10:15:58	25.44	61.98	41.04	0.25	Silt	No	No	Yes	Yes	Low	Yes	No	Trace	No
KSS-3	В	7/17/2013	10:26:22	27.42	57.52	38.09	0.22	Silt	No	No	Yes	Yes	Low	Yes	No	None	No

Table J2. Plan View Data

Station	Rep	Comment
WPAH003	D	Surface covered in woody debris, detritus, ulva, and a few fragments of kelp in upper portion of frame. Small
		patch of beggiatoa in wood debris in upper left of frame. Near 100 percent cover of wood chips and debris that
		appear to intact and are mantled with algae and detritus.
WPAH004	Α	Detrital-mantled wood debris across entire frame. Ulva, Small elongate fish in upper center of frame. The
		majority of wood fragments are covered but a few have old barnacle residue on them. A few small tubes in right
14/5411004	_	side of frame.
WPAH004	D	Silt. Detritus mantled wood debris across frame and shell fragments throughout profile. Ulva, at least four small
		crabs Small crab footprints visible. A few tubes in lower left of frame. Woody debris is small, weathered/od and
WDALLOOF	٨	approaching fibrous.
WPAH005	Α	Silt. Scattered ulva fragments. Small fish toward bottom of profile (long, slender lance-like). Crab tracks and a
WPAH005	В	few gastropod tracks in detritus mantling. Detritus mantled silt with fine features well preserved. Burrows at upper right and multiple small tubes. Crab
WEAHOOS	ь	tracks and small crab in upper left of frame. Appears depositional.
WPAH006	С	Wood debris (some with barnacles) partially mantled with minor detritus, ulva, and seaweed covering most of
WI AIIOOO	O	SWI. Ulva, kelp fragments and dendritic red algae are in various states of decay. Appears to be organic
		depositional with high organic input.
WPAH007	D	Silt/detritus mantled Wood debris (some with barnacles) and ulva covering most of SWI. Three organisms
,	_	(shrimps in motion) toward top-right of profile. Minor shell fragments interspersed amongst wood debris. Small
		patch of beggiatoa on wood and detritus in lower left center edge of frame.
WPAH008	Α	Silt with mantled wood debris (some with barnacles), benthic macroalgae, and seaweed on SWI. An anemone
		(does not appear to be metridium), at least four shrimp (coonstripe and crangon sp), two small crabs, and two
		elongate fish (gunnels?) present. Some trails in the form of furrows visible. Appears depositional.
WPAH008	D	Silt. Wood debris (some with barnacles), scattered algal fragments at SWI. At least five crabs (red rock crab in
		upper right - Cancer productus) and two fishes (goby and gunnel?) and a shrimp (Coonstripe?) present. Some
		crab tracks round depressions (possibly fish foraging pits?) visible. Thick detrital mantling suggests that this is at
		least seasonally depositional.
WPAH009	В	Silt. Shell fragments and benthic macroalgae throughout profile. Distinct crab tracks across frame. Benthic
14/5 411000	_	macroalgae is binding surface sediment. Image slightly blurry.
WPAH009	С	Silt. Extensive benthic macroalgae on SWI that is binding SWI. Fish (sole/flounder) at top of profile. Trails running
		through macroalgae, including crab tracks. Sediment is curling where algal mat has been punctured. Interesting
W/DALI040	0	photo. Sit Figh toward right of profile Few tubes, and tracks, and other trails in the form of this furrows present
WPAH010	С	Silt. Fish toward right of profile. Few tubes, crab tracks, and other trails in the form of thin furrows present. Several small burrows scattered across frame. Appears at least seasonally depositional.
WPAH011	В	Silt and detritus. Thin furrowed tracks running diagonally through profile, and few burrows/pits visible along with
WEALIOTI	D	some small tubes fringing the burrows. Very fine grained surface that looks to be at least seasonally depositional.
		Small fragment of red algae affixed to a tube in lower portion of the frame.
WPAH012	Е	Silt. Wood debris and shell fragments throughout frame. Four shrimp (coonstripe and crangon) toward left of
VVI 741012	_	profile and small localized clouds of silt present (caused by organisms). Epifaunal tracks in lower left and upper
		right.
WPAH012	F	Silt. Some wood debris and shell fragments throughout frame. Ten shrimp (coonstripe, spot and crangon) and a
		small fish present. Numerous tracks visible, including shrimp and crab tracks. The outline of wood fragments
		can be seen through detrital mantling.
WPAH013	Α	Silt. Few shell fragments and wood debris throughout profile. At least four small crabs present. Gastropods and
		their tracks are present across frame. Rich detrital mantling and at least seasonally depositional. Very small
		tubes and several large burrows.

Table J2. Plan View Data

Station	Rep	Comment
WPAH014	A	Silt. Few shell and wood fragments. Five Coonstripe shrimp and a small crab present. Shrimp and crab tracks visible. Image slightly cloudy and not possible to differentiate tracks from burrows. Small tube between shrimp in center.
WPAH015	В	Silt. Few wood fragments. Three Coonstripe shrimp present. Image slightly cloudy; tracks barely visible. A few burrows and slender tubes visible. Crab upper left and gastropods across frame. Appears to be at least seasonally depositional.
WPAH016	Α	Silt. Four shrimp (Coonstripe?) and small crabs present. Shrimp tracks, crab tracks, mounds, and burrows visible. Spiochaetopterid tube recumbent at SWI. Image slightly cloudy. Thick detrital mantling and at least seasonally depositional.
WPAH017	Α	Silt as thick detrital mantling. Six shrimp (Coonstripe and crangon sp.) and some red benthic macroalgae present. Shrimp, crab, and gastropod tracks, and a few burrows visible as well as a few very small tubes.
WPAH018	Α	Silt. Extensive benthic macroalgae on SWI that is binding the SWI. Two fish, an organism tube, and a small crab present. Trails and tracks running through macroalgae and in places, macroalgae curls where surface has been pierced. Wood debris appears to be primarily sticks/twig fragments.
WPAH019	С	Silty sand with shell fragments. Ulva and minor washed wood debris present. Crab tracks.
WPAH020	С	Extensive ulva with detritus covering SWI. Ulva does not appear to be in advanced decay.
WPAH022	В	Silt. Large mound running diagonally through profile. Minor wood debris, shell fragments and rope present (from crab trap). Red macroalgae, a bryozoan, one fish and one small crab visible. Crab tracks, and an organism tube present. Burrow mid-left.
WPAH022	С	Silt with thick detrital mantling. Few wood fragments. Spiochaetopterus polychaete tubes, seaweed, benthic red filamentous macroalgae, crab tracks, and some shrimp tracks present.
WPAH023	Α	SWI completely covered by Ulva and wood debris. Some beggiatoa fringing wood fragment in mid-left and one small crab toward top-left of profile. All PV images for station 23 are covered in debris or cloudy.
WPAH024	F	SWI completely covered by Ulva and wood debris. Ulva is thickly mantled with detritus and some of the ulva is decaying with some beggiatoa at decomposing areas of ulva. Beggiatioa and three small crabs present. All PV images for station 24 are covered in debris and ulva.
WPAH025	Α	Silt. Extensive benthic macroalgae throughout profile that appears to have once been a continuous binding cover that is now decomposing and breaking apart. Beggiatoa fringing some of the decaying algae and two fish present (goby/gunnel). Organism tubes, possible crab tracks, and trails in the form of thin furrows present.
WPAH026	Α	Silt with detrital mantling. Small fish (possible goby) toward bottom-left of profile. Crab and shrimp tracks visible Several small tubes and a few burrows visible.
WPAH027	С	Wood fragments, algae and silty sand. Wood debris, shell fragments, ulva, and seaweed covers most of SWI. One fish toward top-right of profile and one Hermit Crab toward top-left of profile. Wood debris is small and rounded suggesting reworking at the SWI.
WPAH027	D	Woody debris and silty sand visible at SWI Wood debris, shell fragments, ulva, and seaweed covers most of SWI thought there is a small patch of exposed sediment with a tube at upper left center. Wood fragments are chips, fragments and splinted with varying degrees of roundness.
WPAH028	Α	Silt. Ulva, wood debris, shell fragments, and benthic macroalgae covers most of SWI. Beggiatoa associated with decaying ulva in upper right and at least 11 snails present. Wood debris and ulva are detritus mantles.
WPAH030	Α	Silt with detrital surface. Some shell fragments at right. One shrimp and one fish present. Burrows an several small tubes, shrimp, gastropod and crab tracks present. Appears at least seasonally depositional.
WPAH030	В	Silt, appears soft with detrital mantling. Some shell fragments. Crab tracks and possible gastropod tracks. Cloudy. Burrows visible and fine tubes associated with burrows (secondary).
WPAH031	Α	Silt. Some wood debris throughout profile. At least seventeen shrimp and the base of a sea pen (toward right of profile) present. Small tubes. Shrimp tracks and burrows visible. Image slightly cloudy.

Table J2. Plan View Data

Station	Rep	Comment
WPAH032	В	Silt. Some wood debris throughout profile. Ulva and three fish (gunnels and goby) present. Crab tracks, and burrows/pits visible. Small localized clouds of silt present. Incipient benthic macroalgae at SWI that appear to in
WPAH033	Α	the process of binding sediment. Silt. Some wood fragments and seaweed toward top of profile. A fish, carb tracks, crab tracks, and beggiatoa present. Beggiatoa appears to associated with decaying benthic macroalgae that was binding surface sediments.
WPAH034	Α	Silt. Scarce mantled wood fragments, a seapen, ulva, and benthic macroalgae present. Two fish (gunnels), seven shrimp, and crab tracks present. A few small burrows and tubes.
WPAH035	А	Silt and minor wood debris. Two organism tubes (possible Spiochaetopterus sabellid polychaete tubes), a fish, four shrimp (two coonstripes), and two small crabs present. Shrimp and crab tracks visible. Several small tubes. Detrital mantling and slightly cloudy.
WPAH035	С	Silt with rounded stones. At least fifteen small crabs, some barnacles on rocks, organism tubes, and a shrimp (coonstripe?) present. Bivalve siphon in left center. Unusual pic of grain size types.
WPAH036	Α	Silt with some mantled wood debris and shell fragments. Two fish, two shrimp and a small crab present. Shrimp tracks, crab tracks, organism tubes, and burrows present. A few broken tubes at SWI and multiple intact smaller tubes fringing burrows. Murky.
WPAH037	Α	Silt with some heavily mantled wood debris throughout profile. Shrimp tracks, crab tracks, organism tubes, and burrows present. Wood fragments appear older and large based on outlines beneath detritus/sediment.
WPAH038	Α	Kelp fronds with detritus.
WPAH038	D	Silt. Some wood debris and shell fragments at SWI. Ulva, seaweed, shrimp tracks, crab tracks, organism tubes, and burrows present. Both red filamentous algae and brown benthic macroalgae.
WPAH039	А	Silt and detritus mantled wood debris (one with barnacles) and shell fragment. Two shrimp, shrimp tracks, and crab tracks present. Cloud of silt toward top-right of profile. Appears to be large tabular bark/wood fragment at lower portion of frame. Mechanically fragmented wood chunk (small) at SWI and free of detritus.
WPAH042	Α	Silt. Some wood debris and shell fragments. A shrimp, shrimp and crab tracks, burrows, organism tubes, present. Benthic macroalgae visible. Abundant seston in water column. Wood fragments are well mantled with detritus/sediment. Possible sabellid.
WPAH043	Α	Silt. Sediment and detritus mantled wood debris over half the frame and few shell fragments. Two shrimp (spot prawns), shrimp tracks, numerous organism tubes, and crab tracks present. Ulva visible.
WPAH045	А	Silt. Some shell fragments. One crab, twenty-two shrimp, numerous organism tubes, crab tracks, burrows, and other depressions (possible fish foraging pits?) present. Shrimp are oriented in same direction, presumably due to currents.
WPAH046	А	Silty fine sand. Minor twiggy wood debris and shell fragments throughout profile. Ulva and benthic macroalgae visible. Numerous organism tubes (including active polychaete tubes) and burrows. At least two bivalve siphons visible. Snails on algae. Surface appears washed with very little detrital mantling.
WPAH046	В	Silty fine sand. Some wood debris at SWI and shell fragments. Ulva and benthic macroalgae visible. Numerous organism tubes (including active polychaete tubes), burrows, and some crab tracks present. Cerianthid and sabellid visible as well as algal encrusted spiochaetopterus tubes.
WPAH047	Α	Fine sand with some silt. Bedding visible. Seaweed, nine shrimp, organism tubes, burrows, crab tracks and trails in the form of furrows present. Surface is washed. Very minor scattered small elongate wood fragments at SWI. Fecal strings.
WPAH053	D	Rounded to subrounded gravel with a thin discontinuous detrital mantling. Ulva and red dendritic algae. At least two small crabs. Very small tube.
WPAH054	Α	Silt. Some shell fragments throughout at SWI. Crab tracks, some burrows and fine scaled tubes present. Murky. Abundant detritus at SWI.

Table J2. Plan View Data

Station	Rep	Comment
WPAH055	А	Silt with detrital veneer at SWI. Minor wood and shell fragments. Three shrimp (coonstripe and crangon?), two small crabs, crab tracks, and a mound toward right of profile present. Wood fragments are at left and their outline is visible under detritus.
WPAH056	Α	Silt with robust detrital mantling and very minor shell fragments at SWI. Crab tracks, an organism tube, and small burrows present. Appears at least seasonally depositional.
WPAH057	D	Silt and detritus along with very small wood fragments and minor shell at SWI Small elongate fish, a shrimp, and a small crab visible. Numerous organism tubes, shrimp tracks and crab tracks present. Incipient beggiatoa at left.
WPAH058	Α	Silt with detritus at SWI. Crab tracks, and furrows (possibly snail trails?) present. Small localized cloud of silt visible (possibly caused by an organism). Small burrows at upper right and very small tubes across frame. Appears depositional.
WPAH059	Α	Silt, detrital veneer, and very minor small wood debris and shell fragments at SWI. Crab tracks present in upper right as well as a gastropod and its trail in center right. A piece of ulva present. Appears at least seasonally depositional.
WPAH060	Α	Sandy silt with some detrital mantling. A few tabular wood fragments at SWI. A sand dab and some small organisms (toward top-right of profile) present. Shrimp tracks, crab tracks, burrows, and organism tubes present. Appears to seasonally depositional.
WPAH061	В	Silt. Some shell fragments and seaweed visible. A whitish blurred epifaunal organism under algae, a relatively deep furrow (possibly a snail trail) and crab tracks present. Thick detrital mantle at SWI.
WPAH061	E	Silt. Very minor small wood debris and shell fragments. Two shrimp (coonstripe?), benthic macroalgae, fish and Ulva visible. A mudclast, shrimp tracks, crab tracks, and a small cloud of silt (possibly caused by an organism) present. Beggiatoal present and is localized where reduced sediment is exposed from either burrows or faunal disturbance. Murky but nice pic.
WPAH062	В	Silt. Some shell fragments and seaweed visible. A shrimp, shrimp tracks, crab tracks, few small mudclasts, and some organism tubes, including a possible Spiochaetopterus polychaete tube, present. Surface appears washed with some fluting around tubes.
WPAH063	Е	Silt. Some shell fragments and wood debris visible. Two shrimp and a small gastropod present. Shrimp tracks, organism tubes (including an active polychaete tube), depressions (possible fish foraging pits) and burrows present. Depositional.
WPAH064	С	Silt. Some shell fragments and wood debris visible with a distinct fragment at top of frame. A small gastropod present. Shrimp tracks, crab tracks, gastropod tracks, organism tubes (including a Spiochaetopterus polychaete tube), burrows, and a depression present.
WPAH065	Α	Silt. Very murky with some shell fragments visible. A small crab, crab tracks, snail trails, and possible burrows present. Image slightly cloudy and obscures visibility of small tubes.
WPAH065	D	Silt. Some shell fragments visible. Crab tracks and burrows present. Image slightly cloudy which precludes identification of small tubes. Minor small wood debris based on outlines at left.
WPAH066	Α	Silt. Some wood debris and benthic macroalgae visible. Crab tracks, organism tubes, and shrimp tracks present. Wood debris is covered by thick veneer of sediment/detritus and some appear to have been dislocated so that outline is visible by crabs scuttling over the fragments.
WPAH067	Α	Silt. Very minor small wood fibers, shell fragments, and benthic macroalgae visible. Small gastropods, crab tracks, gastropod tracks, organism tubes, shrimp tracks, and burrows present. Thick detrital veneer and appears depositional.
WPAH068	В	Silt. Wood debris apparent across frame with a mix of fragments and twigs, shell fragments, and benthic macroalgae. Five fishes and two shrimp visible. Crab tracks, organism tubes, and shrimp tracks present. Thick detrital veneer and appears at least seasonally depositional.

Table J2. Plan View Data

Station	Rep	Comment
WPAH069	A	Silt. Wood debris (some with barnacles), shell fragments across the majority of frame and most all is mantled with sediment/detritus, and benthic macroalgae throughout profile. Four small crabs visible. Crab tracks, organism tubes, possible burrows, and shrimp tracks present. Appears depositional.
WPAH070	A	Silt. Some wood debris that is visible by outline through detrital veneer, shell fragments, and ulva visible. Two shrimp, two small crabs, crab tracks, organism tubes, shrimp tracks, and burrows present. Bivalve siphon.
WPAH071	Α	Silt with detrital veneer and some small wood fragments. Some shell fragments and benthic macroalgae visible. A shrimp, two small crabs, bivalve siphon, a small flounder, and a few small gastropods present. Crab tracks, organism tubes (including Spiochaetopterus polychaete tubes), shrimp tracks, gastropod tracks, and burrows present. Spiochatopterus tubes have attached red algae.
WPAH073	С	Silt. A small gastropod, a fish, crab tracks, gastropod tracks, organism tubes, shrimp tracks, and burrows. Small localized silt clouds visible; possibly caused by organisms. Murky and appears depositional.
WPAH074	С	Sandy Silt. Some shell fragments throughout profile. Seven shrimp (one coonstripe), crab tracks, organism tubes, shrimp tracks, possible fish foraging pits, and abundant burrows present. Small localized silt clouds visible; possibly caused by organisms.
WPAH074	Е	Sandy Silt. Some shell fragments and several small gastropods. Fifteen shrimp, crab tracks, organism tubes, shrimp tracks, abundant burrows, and trails in the form of thin furrows present. Very nice pic.
WPAH075	E	Silt with minor shell fragments. One shrimp, at least one crab, crab tracks, shrimp tracks, and trails in the form of thin furrows present. Small localized silt cloud visible; murky. Small tubes faintly visible. Thick detritus/sediment veneer.
WPAH076	Α	Silt. Some debris visible. Crab tracks and a shrimp present. Image is cloudy.
WPAH076	В	Silt. Some debris visible. A shrimp and some tracks present. Image is cloudy.
WPAH077	В	Silt. Crab tracks, shrimp tracks, Gastropod tracks, abundant large burrows and some small tubes. Murky and appears to be covered with fine sediment/detritus indicating that it is at least seasonally depositional.
WPAH078	А	Silt. Some shell fragments, wood debris at right (large fragment), ulva at SWI. Crab tracks, shrimp tracks, possible snail tracks, organism tubes, and trails in the form of thin (v-shaped) furrows present. Distinct patches of wispy beggiatoa at right.
WPAH079	D	Sandy silt. Ten shrimp, crab tracks, shrimp tracks, possible gastropod tracks, small mounds, and burrows present. Surface is low-relief.
WPAH079	E	Sandy Silt. Some shell fragments. Three shrimp, crab tracks, shrimp tracks, possible gastropod tracks, and abundant small organism tubes present.
WPAH080	Α	Silt. Some shell fragments throughout profile. At least nineteen shrimp, crab tracks, shrimp tracks, and burrows present. Detrital veneer at SWI and appears to be seasonally depositional. Murky.
WPAH080	В	Silt. Some shell fragments throughout profile. At least twenty (one possibly deceased) shrimp, one fish, shrimp tracks, organism tubes, possible fish foraging pits, trails in the form of thin furrows, and burrows present. Small localized silt clouds visible; caused by shrimp and generally murky.
WPAH081	А	Silt. Minor shell fragment and wood fragment in upper left. One fish, at least one gastropod, shrimp tracks, crab tracks, gastropod tracks, burrow and tube upper center, and trails in the form of thin furrows present. Murky and detrital veneer suggesting that station is at least seasonally depositional.
WPAH082	Α	Silt. Some shell fragments and small tabular rounded wood fragments, ulva, at SWI. Two shrimp, one crab, shrimp tracks, crab tracks, burrows, and trails in the form of thin furrows present. Thin detrital veneer.
WPAH083	Α	Silt with robust detrital veneer. Some shell fragments, wood debris with large fragment at center left and twig/branch at far left, ulva and beggiatoa visible. Five shrimp (one coonstripe), crab tracks, shrimp tracks, organism tubes, burrows, and trails in the form of thin furrows present. Beggiatoa associated with edge of translated wood fragment in center left.

Table J2. Plan View Data

Station	Rep	Comment
WPAH084	Α	Silt. Minor small wood debris, ulva and kelp visible. Eleven shrimp (three lurking spot prawns), crab tracks,
		shrimp tracks, and trails in the form of thin furrows present. Very nice pic.
WPAH084	В	Silt. Twenty-four shrimp, crab track, shrimp tracks, gastropod with trail, and trails in the form of thin furrows
		present. Several burrows and small tubes visible along with a very thing detrital veneer Shrimp are oriented
		mostly in same direction presumably due to current.
WPAH085	В	Silt. Small tabular wood fragment visible. Eight shrimp (2 coonstripe?), one fish, crab track, shrimp tracks, and
		gastropod with trail present. Interesting dynamics between shrimp species. Detritus and murky.
WPAH086	Α	Silt. shell fragments visible. Nine shrimp (1 spot prawn), crab track, shrimp tracks, and trails in the form of thin
		furrows present. A few burrows and small tubes. Thin detrital veneer.
WPAH087	С	Silt with well developed silt/detrital veneer. Some wood debris easily visible on left side of frame, ulva, and shell
		fragments visible. Shrimp tracks, organism tubes, burrows, and trails in the form of thin furrows present. Small
		gastropods.
WPAH088	Α	Silt. Small tabular wood fragment visible. Eighteen shrimp, one fish, shrimp tracks, possible crab tracks, possible
		snail trail, burrows, and trails in the form of thin furrows present.
WPAH089	Α	Silt. Very minor wood debris, seaweed, and red benthic macroalgae visible. Ten shrimp, shrimp tracks, crab
		tracks, organism tube, burrows, and trails in the form of thin furrows present. At least three shrimp species
		present. Tube at center with encrusted algae (sabellid?)
WPAH090	Α	Silt. Some shell fragments visible. Ten shrimp, shrimp tracks, crab tracks, possible gastropod and accompanying
		trail present. Other trails in the form of thin furrows present. Thin detrital veneer.
WPAH091	Α	Silt. Some shell fragments visible and a few small tabular wood fragments. Twenty-four shrimp, shrimp tracks,
		and a trail in the form of a thin furrow present. Many small localized silt clouds visible caused by shrimp.
WPAH092	Α	Silt with large tabular wood debris and abundant smaller wood fragments/fibers, shell fragments, and barnacles.
		At least eight shrimp (4 spot prawns), a possible fish, organism tubes, shrimp tracks, and trails in the form of a
		thin furrows present. Wood is mantled with sediment/detritus. Carapace of a red rock crab.
WPAH093	Α	Silt. Some shell fragments visible. Twenty-two shrimp (1 larger pandalid partially in frame), shrimp tracks, possible
		crab track, and a trail in the form of a thin furrow present. Small localized silt clouds visible caused by shrimp.
		Burrows and small tubes visible.
WPAH093	В	Silt. Some wood debris visible. Twenty-six shrimp, shrimp tracks, possible crab track, burrows, and trails in the
		form of thin furrows present. A veritable shrimp boil with coonstripe, spot and fairy? Shrimp all present.
WPAH094	Α	Silt. Some shell fragments visible. Four shrimp, shrimp tracks, crab tracks, burrows, and organism tubes present.
		Long parallel lines running through left of profile appear to be drag marks.
WPAH095	В	Silt. Some wood debris and benthic macroalgae visible. At least forty-eight shrimp, shrimp tracks, possible crab
		tracks, burrows, and organism tubes present. One shrimp marching to the beat of a different drummer.
WPAH096	Α	Silt. Some shell fragments, benthic macroalgae, and leafy seaweed visible. Seven shrimp, shrimp tracks and
		numerous furrows running from left to right (or right to left) through profile which appear to be due to undulatory
		sweeping of kelp fronds.
WPAH097	В	SWI covered in ulva and detritus. Two shrimp, a small crab.
WPAH098	Α	SWI covered in ulva, seaweed, and detritus.
WPAH099	Α	Silt. Benthic macroalgae, ulva, and seaweed covering SWI. Wood debris covering surface outside of algae.
		Wood debris appears to be small physically reworked particles. Some of the ulva is in a state of decay.
WPAH100	С	SWI covered in ulva, seaweed, and detritus.
WPAH101	Α	Silt. Sixteen shrimp, shrimp tracks, crab tracks, and burrows present. Small tubes. Low relief at SWI.

Table J2. Plan View Data

Station	Rep	Comment
WPAH102	Α	Silt. Some shell fragments visible. Thirteen shrimp, shrimp tracks, crab tracks, burrows, and trails in the form of thin furrows present.
WPAH103	Α	Silt. Shrimp tracks, crab tracks, organism tubes, burrows, possible snail trail, and other trails in the form of thin furrows present.
WPAH104	Α	Silt. Shrimp tracks, crab tracks, dense organism tubes, burrows, and trails in the form of thin furrows present.
WPAH105	Α	Grey and tan silt. Some shell and wood fragments visible. Five shrimp and long parallel furrows present. Surface physically or mechanically disturbed.
KSS-1	Α	Silt. Some wood debris visible. Benthic macroalgae throughout profile. Two shrimp, possible amphipod, and Goby present. Crab tracks, organism tubes, large burrow openings or possible fish foraging pits and trails in the form of thin furrows present.
KSS-2	Α	Silt. Some shell fragments visible. Benthic macroalgae throughout profile. One small crab present. Crab tracks and trails in the form of thin furrows present.
KSS-3	В	Silt. Some shell fragments visible. Ulva toward right of profile. One small crab present. Crab tracks and trails in the form of thin furrows present.