Data Gap Investigation Report

Moxee City Shop and Former STP Moxee, Washington

for Washington State Department of Ecology

April 3, 2014

Data Gap Investigation Report

Moxee City Shop and Former STP Moxee, Washington

for Washington State Department of Ecology

April 3, 2014

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Data Gap Investigation Report Moxee City Shop and Former STP Moxee, Washington

File No. 0504-078-01

April 3, 2014

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program - Central Region Office 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Attention: Laura Klasner, PE

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Prepared by:

Jonathan E. Rudders, LHG Senior Hydrogeologist

Reviewed by:

Bruce D. Williams Principal

JER:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2014 by GeoEngineers, Inc. All rights reserved.

Table of Contents

1.0	INTRODUCT	ION	1										
2.0	SITE DESCR	IPTION AND BACKGROUND	1										
2.1.	Current Site	e Conditions	1										
2.2.	Site Backgr	ound	1										
3.0	SCOPE OF S	ERVICES	3										
3.1.	Direct Push	Borings	3										
3.2.	Hollow-Ster	n Auger Borings and Monitoring Well Installation	3										
3.3.	Groundwater Monitoring												
3.4.	Investigatio	vestigation-Derived Waste4											
4.0	FIELD ACTIV	/ITIES	4										
4.1.	General		4										
4.2.	Subsurface	Conditions	5										
4.3.	Field Scree	ning and Sampling	5										
4.4.	Monitoring Well Installation												
4.5.	Groundwater Elevation Monitoring6												
4.6.	Monitoring	Monitoring Well Headspace Vapor Monitoring7											
4.7.	Groundwate	er Sampling	7										
	4.7.1.	Borings	(
	4.7.2.	Monitoring wells	(
5.0	CHEMICAL	ANALYTICAL RESULTS	7										
5.1.	Soil Sample	9S	7										
	5.1.1.	General	7										
	5.1.2.	Results	8										
5.2.	Groundwate	er Chemical Analytical Results	8										
	5.2.1.	General	8										
	5.2.2.	Petroleum-Based Compounds	8										
	5.2.3.	Nitrate and Sulfate	9										
	5.2.4.	Natural Attenuation Parameters	9										
5.3 (QA/QC Sumr	nary	.10										
6.0	CONCLUSIO	NS	. 10										
6.1.	Soil		.10										
	6.1.1.	Petroleum-Based Compounds	.10										
	6.1.2.	Nitrate and Sulfate	.11										
6.2.	Groundwate	er	.11										
	6.2.1.	Groundwater Flow Regime	.11										
	6.2.2.	Petroleum-Based Compounds	.11										
	6.2.3.	Nitrate and Sulfate	.12										
6.3.	Contaminar	nt Zones	.12										
7.0	LIMITATION	S	. 13										
8.0	REFERENCI	ES	. 13										

LIST OF TABLES

Table 1. Summary of Groundwater Level Measurements

Table 2. Summary of Chemical Analytical Results – Soil

Table 3. Summary of Chemical Analytical Results - Groundwater Samples from Soil Borings

- Table 4. Summary of Chemical Analytical Results Groundwater Samples from Monitoring Wells
- Table 5. Summary of Field-Measured Natural Attenuation Parameters

LIST OF FIGURES

Figure 1. Vicinity Map

- Figure 2. Site Plan
- Figure 3. Groundwater Elevations, December 30, 2013
- Figure 4. Sampling Locations Petroleum-Based Compounds in Soil
- Figure 5. Nitrate Concentrations in Soil
- Figure 6. Sulfate Concentrations in Soil
- Figure 7. Cleanup Level Exceedances Petroleum-Based Compounds in Groundwater
- Figure 8. Nitrate Concentrations and MCL Exceedances in Groundwater
- Figure 9. Sulfate Concentrations and Secondary MCL Exceedances in Groundwater

APPENDICES

Appendix A. Field Procedures and Boring Logs

Figure A-1 – Key to Exploration Logs

Figures A-2 through A-15 – Logs of Explorations

Appendix B. Chemical Analytical Laboratory Reports

Appendix C. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report describes data gap investigation activities conducted at the Moxee City Shop and Former Sewage Treatment Plant (STP) site located at 106 East Moxee Avenue located in Moxee, Washington (herein referred to as "site"). The site is located approximately as shown in the attached Vicinity Map, Figure 1.

Environmental activities at the site currently are managed by the Washington State Department of Ecology (Ecology). This report describes field activities and observations with chemical analytical results from soil and groundwater samples collected at the site during November and December 2013.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1. Current Site Conditions

The primary property containing the site (Parcel No. 12007) is located at 7520 Postma Road in Moxee, Washington and occupies about 2.8 acres. The property (herein designated the Moxee City Shop Property) is bounded by a railroad line and State Route 24 on the south, and commercial properties on the west and north. On the east, the property is bordered by a commercial property operated by Simplot Grower Solutions (herein designated the Simplot Property).

The Moxee City Shop Property, currently being used as a shop servicing City of Moxee equipment, formerly contained an operational sewage treatment plant (STP). Several buildings and structures associated with the STP remain in the western portion of the property. The active portion of the property, which contains two buildings and an asphalt parking area associated with shop operations, is situated within the eastern portion of the property. As defined by the Model Toxics Control Act (MTCA), the site is defined by those areas where hazardous substance(s) have been encountered. Prior to data gap assessment activities, these were confined to the southeast portion of the Moxee City Shop Property, as described in previous GeoEngineers' reports (GeoEngineers, 2012B and 2013A).

2.2. Site Background

Our understanding of site assessment and remedial activities prior to GeoEngineers' site involvement was primarily obtained through review of the following two reports:

- Report by Sage Earth Sciences, Inc. (Sage) summarizing results of 1996 underground storage tank (UST) removal activities performed at the site, (June 1996).
- Report by Maxim Technologies, Inc. (Maxim) summarizing results of a 1996 environmental investigation performed at the site, (December 1996).

A summary of our review of these two reports is provided below. Additional details regarding site background and history are included in our previous technical memorandum dated January 31, 2012 (GeoEngineers 2012A).

Two, 1,000-gallon capacity, gasoline USTs were removed from the site during May 1996. During UST removal activities, corrosion, pitting, and small holes were observed on the tanks. Approximately 50 cubic yards of petroleum-contaminated soil encountered during excavation activities were excavated, treated on-site via bio-remediation and subsequently used to backfill the excavation. Groundwater was encountered between 4 and 5 feet in depth in the UST excavation (depths in this report are presented relative to ground surface, unless otherwise noted). These USTs were believed to have been installed in 1977 and used to fuel City vehicles. The USTs were located about 10 feet south of the former STP Control Office. The approximate location of the 1996 excavation to remove the USTs is shown in the Site Plan, Figure 2.

Confirmation soil samples collected from the UST excavation did not contain concentrations of petroleum hydrocarbons in excess of MTCA Method A cleanup levels. However, a groundwater sample collected from the excavation contained concentrations of the following analytes that were several orders of magnitude greater than MTCA Method A groundwater cleanup levels: gasoline-range petroleum hydrocarbons (GRPH); benzene, toluene, ethylbenzene, and total xylenes (BTEX); and lead.

Additional soil assessment activities were conducted in August 1996 by Maxim. These activities included expanding the UST excavation (to the west) to confirm the original soil excavation activities had sufficiently removed petroleum-contaminated soil. Maxim concluded that all petroleum-contaminated soil associated with the USTs had been successfully removed and treated. However, no discussion of assessment associated with dispensers or underground piping is presented in either the Sage or Maxim reports.

Maxim also excavated four test pits to depths of about 8 feet to collect groundwater samples. Encountered soil reportedly consisted of a surficial silty clay layer that extended to a depth of about 6 feet and was underlain by sand and gravel. Groundwater was encountered at depths between about 6 and 8 feet. Maxim indicated that groundwater flow direction at the site likely was to the west/southwest, although site-specific groundwater elevation data were not collected. Groundwater samples were collected from each test pit and submitted to an analytical laboratory for GRPH and BTEX analyses. Results indicated GRPH, benzene, ethylbenzene, and xylenes were detected in the groundwater sample collected from test pit 3 (located about 10 feet southwest of the UST excavation) at concentrations greater than MTCA Method A cleanup criteria.

GeoEngineers conducted a soil assessment and groundwater assessment for Ecology at the site in March and October 2012 (GeoEngineers 2012B and 2013A). Six direct-push soil borings (DP-1 through DP-5 and MW-1) were advanced to depths ranging from about 8 to 12 feet and one monitoring well was installed in one of the soil borings (MW-1) in March 2012. Three hollow-stem auger soil borings were advanced to depths of about 12 feet in October 2012. Monitoring wells (MW-2, MW-3 and MW-4) were installed in the borings. Approximate exploration locations are presented in Figure 2. Shallow native soil conditions encountered at the site generally were fine-grained and consisted of brown fine sand with silt overlying and interbedded with brown silt with sand. Overlying fill material was composed primarily of silt and fine sand or gravel (depending on location) and ranged from about $\frac{1}{2}$ -foot to $\frac{61}{2}$ feet in observed thickness. Saturated soil conditions were encountered in the borings at depths of about $\frac{41}{2}$ to 8 feet.

During GeoEngineers' March and October 2012 investigations (GeoEngineers, 2012B and 2013A), contaminants of concern were not detected in soil samples at concentrations greater than MTCA Method A cleanup levels. During subsequent groundwater monitoring events, GRPH have been detected at concentrations greater than the MTCA Method A cleanup levels in groundwater samples obtained from monitoring well MW-1. Nitrate has been detected at concentrations greater than the MAXIMUM Contaminant Level (MCL) in groundwater samples obtained from monitoring well MW-2, located up-gradient (east) of the 1996 UST excavation.

3.0 SCOPE OF SERVICES

GeoEngineers prepared a Work Plan, dated November 6, 2013 (GeoEngineers, 2013C) to guide the data gap investigation described herein. The scope of services performed by GeoEngineers during implementation of the Work Plan included the following:

3.1. Direct Push Borings

- Notified the Call-Before-You-Dig utility notification service before beginning drilling activities.
- Subcontracted a private utility locator to clear explorations located on private property before drilling.
- Drilled nine direct-push soil borings at the site, designated DP-6 through DP-14, at the approximate locations specified in Figure 2.
- Collected soil samples continuously during direct-push drilling. Select sub-samples were field-screened using visual observations, water sheen, and headspace vapor measurements with a photoionization detector (PID) to assess possible presence of petroleum-related contaminants. Submitted nine of the soil samples to TestAmerica Laboratories, Inc. (TestAmerica) in Spokane, Washington for chemical analysis.
- Collected and submitted to TestAmerica groundwater samples from seven direct push borings (DP-6 and DP-8 through DP-13).
- Backfilled exploratory boreholes with bentonite and repaired the surface with cold patch asphalt as needed.
- Under subcontract to GeoEngineers, TestAmerica performed chemical analysis of submitted soil and groundwater samples. In areas of suspected petroleum contamination, the analytical suite included: GRPH using Northwest Method NWTPH-Gx; BTEX and n-hexane using Environmental Protection Agency (EPA) Method 8260B; and naphthalenes using EPA Method 8270D. Samples collected from areas of suspected anion contamination were analyzed for nitrate and sulfate using EPA Method 300.0.

3.2. Hollow-Stem Auger Borings and Monitoring Well Installation

- Drilled and constructed two additional groundwater monitoring wells, designated MW-5 and MW-6, using hollow-stem auger drilling equipment and at the approximate locations specified in Figure 2.
- Drilled three soil borings, designated B-1 through B-3, using hollow-stem auger drilling equipment within the Simplot Property, approximately as shown in Figure 2.

- Submitted five soil samples to TestAmerica for chemical analysis.
- Collected and submitted to TestAmerica groundwater samples from borings B-1 through B-3.
- Under subcontract to GeoEngineers, TestAmerica performed chemical analysis of submitted soil and groundwater samples. In areas of suspected petroleum contamination, the analytical suite included: GRPH using Northwest Method NWTPH-Gx; BTEX and n-hexane using EPA Method 8260B; and naphthalenes using EPA Method 8270D. Samples collected from areas of suspected anion contamination were analyzed for nitrate and sulfate using EPA Method 300.0.
- Developed the new monitoring wells using surging and bailing/pumping.
- Surveyed the relative elevations of the top of well casing at each new monitoring well installation.

3.3. Groundwater Monitoring

- Conducted a groundwater sampling event on December 30, 2013 during which the following tasks were performed:
 - Measured depth to groundwater in each of the six project monitoring wells (MW-1 through MW-6).
 - Collected groundwater samples from each well using low-flow/low-stress sampling techniques. One duplicate sample also was collected from monitoring well MW-2. During well purging, water quality parameters (pH, conductivity, temperature, dissolved oxygen and reduction-oxidation potential) were recorded.
 - Submitted groundwater samples to Test America for chemical analysis of: GRPH using Northwest Method NWTPH-Gx; BTEX and n-hexane using EPA Method 8260B; and naphthalenes using EPA Method 8270D. Additionally, samples were analyzed for nitrate and sulfate by EPA Method 300.0 and natural attenuation parameters including soluble manganese (Mn⁺²), sulfate (SO₄), methane (CH₄) and alkalinity.
 - Compared laboratory analytical results with applicable project criteria.
 - Calculated groundwater elevation within site monitoring wells.
 - Estimated groundwater flow direction and the range in hydraulic gradient across the site.

3.4. Investigation-Derived Waste

Investigation-derived waste (IDW), including soil cuttings, decontamination water, and purge water, generated during the above tasks was drummed, labeled, and stored on-site pending results of analytical testing. (IDW removal is scheduled for late March or early April 2014.)

4.0 FIELD ACTIVITIES

4.1. General

Under subcontract to GeoEngineers, the following activities were performed:

- Advanced Underground Utility Locate, Inc. (AUUL) conducted private utility locates of planned project direct-push boring and hollow-stem auger boring locations on November 8, 2013 and December 9, 2013, respectively.
- Environmental West Explorations (Environmental West) of Spokane, Washington, advanced nine direct-push borings (DP-6 through DP-14) to depths of about 15 feet using a truck-mounted Geoprobe® drilling rig on November 14, 2013.
- Environmental West drilled five borings (B-1 through B-3, MW-5, and MW-6) and constructed two groundwater monitoring wells (MW-5 and MW-6) to depths of about 15 feet using a hollow-stem auger drilling rig on December 12 through 13, 2013.

The approximate locations of these drilling locations are presented in Figure 2. Boring and well construction logs are provided in Appendix A.

4.2. Subsurface Conditions

Within the Moxee City Shop Property, borings DP-6 through DP-14 were drilled through asphalt underlain by less than a foot of fine to coarse gravel. Observed native soil conditions below imported surficial material generally are fine-grained and consistent within those described by GeoEngineers (2012B and 2013A). Two primary soil units were observed: (1) a brown silty sand unit; and (2) a brown silt unit with occasional minor sand and gravel. Encountered subsurface conditions are summarized by the following:

- In borings DP-6 through DP-14 (Moxee City Shop Property), the silty sand unit was encountered below surficial material to the completed depths of the borings.
- In borings MW-5 (Moxee City Shop Property) and B-1 through B-2 (Simplot Property), silty sand was interbedded with brown silt with variable sand content to the completed depths of the borings.
- In borings MW-6 (Moxee City Shop Property) and B-3 (Simplot Property), the silty sand either only extended to a depth of about 3 feet (MW-6) or was absent (B-3). The remainder of the observed stratigraphic section consisted of the silt unit.

4.3. Field Screening and Sampling

Soil samples from each direct-push and hollow-stem auger boring were field-screened for the potential presence of petroleum contamination by visual examination, headspace vapor monitoring with a PID, and water-sheen testing. Procedures for field-screening and sampling are provided in Appendix A.

Field screening results are summarized by the following:

- Slight sheens were observed in soil samples collected from depths of about 2 to 3½ feet in boring DP-6 (located near the 1996 UST excavation) and depths of about 1 foot in boring DP-10, 11 to 14 feet in boring B-2, 5½ to 14 feet in boring B-3, and 5½ to 9 feet in boring MW-6 (each located near the east boundary of the Moxee City Shop property).
- Moderate sheens were observed in soil samples collected from depths of about 14 feet in boring B-1 and 12 feet in boring B-3. Both borings are located on Simplot property.

- Headspace vapor measurements above 1.0 parts per million (ppm) were observed in soil samples collected from borings DP-6 (1.5 ppm at a depth of about 8 feet) and MW-6 (up to 10.2 ppm below a depth of about 8 feet).
- No sheens or headspace vapor measurements above 1.0 ppm were observed in samples collected from the remaining borings.
- No petroleum-stained soil was observed.

4.4. Monitoring Well Installation

Two monitoring wells, designated MW-5 and MW-6, were installed in the approximate locations presented in Figure 2. Well construction details for monitoring wells MW-5 and MW-6 are provided in Appendix A. The monitoring wells were installed using hollow-stem auger drilling techniques and constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC) casing and 0.010-inch slot Schedule 40 PVC well screen surrounded by a sand filter pack and bentonite seal. The installed well screen in each monitoring well extends from a depth of about 3 to $12\frac{1}{2}$ feet.

Monitoring wells MW-5 and MW-6 were completed with flush-mount surface monuments. Lockable compression caps were installed to seal the top of the PVC well casing. A concrete surface seal was constructed around each monument at the ground surface to divert surface water away from the well casing.

The relative elevations of the top of well casing at each new monitoring well location were surveyed on December 19, 2013 by GeoEngineers' personnel. The top of casing elevation at existing monitoring well MW-2 was used as a reference. Survey results are presented in Summary of Groundwater Level Measurements, Table 1.

4.5. Groundwater Elevation Monitoring

Following installation and development of monitoring wells MW-5 and MW-6, static depth to groundwater was measured in each project monitoring well on December 30, 2013 using an electronic water level indicator. Depths ranged from 5.75 feet (MW-2) to 6.06 feet (MW-4) below the top of well casing, or at approximate depths of about 6 to 6½ feet below existing grade. Corresponding groundwater elevations ranged from about 1,019.35 feet in MW-3 to 1,019.92 feet in MW-6 (elevations in this report are presented relative to the North American Vertical Datum of 1988 [NAVD 88]). Note that a depth to groundwater measurement of 4.70 feet (Elevation 1,020.25 feet) was recorded in MW-1; this measurement is anomalous with respect to historic project data and is a suspected measurement error.

Neglecting MW-1, groundwater elevations decreased in each existing well relative to the previous monitoring event conducted during August 2013. The average decrease in groundwater elevation was 0.09 feet.

Based on groundwater elevations measured on December 30, 2013, groundwater flow in the shallow unconfined aquifer beneath the area bounded by the monitoring well network generally was toward the southwest. Average hydraulic gradient was about 0.004 feet per foot (about 20 feet per mile). Groundwater elevations in the shallow unconfined aquifer underlying the project area are influenced by the rate of groundwater recharge (infiltration of precipitation and snowmelt)

within associated upland areas to the north, east and south of the site and, potentially, the stage of adjacent surface water within the Yakima River and irrigation canals.

Groundwater depths and relative elevations are included in Table 1. Groundwater Elevations, December 30, 2013, Figure 3 presents groundwater elevations, approximate groundwater elevation contours and interpreted groundwater flow direction on December 30, 2013.

4.6. Monitoring Well Headspace Vapor Monitoring

Monitoring well headspace vapor measurements ranged from 0.0 ppm in monitoring wells MW-2 through MW-4 to 3.9 ppm in monitoring well MW-1, as presented in Table 1.

4.7. Groundwater Sampling

4.7.1. Borings

Groundwater samples were collected from direct-push soil borings DP-6 and DP-8 through DP-13 on November 14, 2013. Upon reaching total depth, each direct-push boring was fitted with a steel screen and purged for approximately 10 minutes using a peristaltic pump before sample collection.

Groundwater samples were collected from hollow-stem auger borings B-1 through B-3 on December 12, 2013. Upon reaching total depth, each hollow-stem auger boring was allowed to fill with groundwater through the bottom of the hollow-stem auger casing. Each boring was purged for approximately 10 minutes using a peristaltic pump before sample collection.

4.7.2. Monitoring Wells

Monitoring wells MW-1 through MW-6 were purged and sampled using standard low-flow sampling methodology on December 30, 2013. A duplicate sample was collected from MW-2. A portable bladder pump equipped with a disposable bladder and disposable tubing was used to purge and sample monitoring wells MW-2 through MW-6. Because monitoring well MW-1 is constructed of small diameter (approximately ³/₄-inch) casing, a peristaltic pump with disposable tubing was used to purge and sample MW-1. Groundwater quality parameters generally were measured at approximate 3-minute intervals during well purging. Groundwater samples were collected when each water quality parameter had stabilized in conformance with the criteria presented in Appendix A.

5.0 CHEMICAL ANALYTICAL RESULTS

5.1. Soil Samples

5.1.1. General

One soil sample each from direct-push soil borings DP-6 through DP-14 and hollow-stem auger borings B-1 through B-3, MW-5 and MW-6 were submitted for chemical analysis. In areas of suspected petroleum contamination, the analytical suite included GRPH, BTEX, n-hexane and naphthalenes. Samples collected from areas of suspected anion contamination were analyzed for nitrate and sulfate.

Soil chemical analytical results are summarized and compared to regulatory levels in Summary of Chemical Analytical Results - Soil, Table 2. TestAmerica's laboratory reports are provided in Appendix B.

5.1.2. Results

In six of the seven soil samples (collected from borings DP-6, DP-7, DP-8, DP-12, DP-14 and MW-5) submitted for petroleum-based analyses, petroleum-based analytes were not detected. In the soil sample collected from boring MW-6 (located near the east boundary of Moxee City Shop property) GRPH was detected at a concentration less than the respective cleanup level.

Soil analytical results for anion analyses are summarized by the following:

- Of the five soil samples associated with the Moxee City Shop Property (collected from borings DP-9, DP-10, DP-11, DP-13 and MW-6), nitrate and sulfate concentrations were relatively low. Nitrate concentrations in these samples ranged from non-detectable in borings DP-11 and MW-6 to 47 milligrams per kilogram (mg/kg) in boring DP-10. Sulfate concentrations ranged from 12 mg/kg in boring DP-9 to 49 mg/kg in boring DP-10.
- Of the three soil samples associated with the Simplot Property (collected from borings B-1, B-2 and B-3), nitrate concentrations were variable and sulfate concentrations generally were elevated. Nitrate concentrations in these samples ranged from non-detectable in boring B-3 to 110 mg/kg in boring B-1. Sulfate concentrations ranged from 200 mg/kg in boring B-1 to 440 mg/kg in boring B-2.

5.2. Groundwater Chemical Analytical Results

5.2.1. General

Groundwater samples from borings DP-6, DP-8 through DP-13, B-1, B-2 and B-3 were submitted for chemical analysis. In areas of suspected petroleum contamination, the analytical suite included GRPH, BTEX, n-hexane and naphthalenes. However, the sample collected from DP-12 could not be analyzed for GRPH, BTEX, and n-hexane because the requisite sample bottles broke in shipment. Samples collected from areas of suspected anion contamination were analyzed for nitrate and sulfate. Analytical results are tabulated and compared to regulatory levels in Summary of Chemical Analytical Results – Groundwater Samples from Soil Borings, Table 3. Note that the samples collected from borings generally are turbid and, as a result, associated analytical results for specific parameters can be biased high.

Groundwater samples from monitoring wells MW-1 through MW-6 were submitted for analysis of GRPH, BTEX, n-hexane, and naphthalenes, nitrate, soluble manganese, sulfate, methane, and alkalinity. Analytical results for these samples are tabulated and compared to previous results and regulatory levels in Summary of Chemical Analytical Results – Groundwater Samples from Monitoring Wells, Table 4.

TestAmerica's laboratory reports are provided in Appendix B.

5.2.2. Petroleum-Based Compounds

Groundwater analytical results for petroleum-based compounds are summarized by the following:

- GRPH were detected at concentrations of 1,340 micrograms per liter (μg/L) and 1,690 μg/L in the groundwater samples collected from boring DP-6 and monitoring well MW-1, respectively. These concentrations exceed the MTCA Method A Cleanup Level of 800 μg/L (when benzene is not present).
- GRPH were not detected in samples collected from boring DP-8 or monitoring wells MW-2 through MW-6.
- The remaining petroleum-based compounds were either not detected or detected at concentrations less than respective cleanup levels in each of the respective groundwater samples.

5.2.3. Nitrate and Sulfate

- Nitrate was detected at concentrations that exceed the MCL of 10 milligrams per liter (mg/L) in samples collected from borings DP-9, DP-10, DP-11, DP-13, B-1 and B-2 and monitoring wells MW-2 and MW-6. Nitrate concentrations in these samples ranged from 38.5 mg/L in the sample collected from boring DP-11 to 263 mg/L in the sample collected from boring DP-10, with an average concentration in the above-specified samples of about 142 mg/L.
- Nitrate was either not detected or detected at concentrations less than the MCL in samples collected from boring DP-6, DP-8, and B-3 and monitoring wells MW-1, MW-3, MW-4 and MW-5.
- Sulfate was detected at concentrations that exceed the secondary MCL of 250 mg/L in samples collected from borings DP-9, DP-10, DP-13, B-1, B-2 and B-3. Sulfate concentrations in these samples ranged from 251 mg/L in the sample collected from boring DP-9 to 1,670 mg/L in the sample collected from boring B-2, with an average concentration in the above-specified samples of about 811 mg/L.
- Sulfate was either not detected or detected at concentrations less than the secondary MCL in samples collected from boring DP-6, DP-8, DP-11, DP-13 and monitoring wells MW-1 through MW-6.

5.2.4. Natural Attenuation Parameters

In addition to the contaminants of concern, groundwater samples collected from project monitoring wells were analyzed for natural attenuation parameters. DO, temperature, specific conductivity, pH and ORP were estimated in the field using a calibrated Troll 9500 multi-parameter meter equipped with a flow-through cell. Soluble ferrous iron (Fe⁺²), which has a 15-minute hold time, was estimated in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method. Field measurement results are provided in Summary of Field-Measured Natural Attenuation Parameters, Table 5. Reported field parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

In addition to nitrate and sulfate, concentrations of the following natural attenuation parameters were analyzed in the laboratory by TestAmerica: soluble manganese, methane and alkalinity. Laboratory results are provided in Table 4. Field and laboratory analytical results for natural attenuation parameters are summarized by the following (note that nitrate and sulfate are excluded from this discussion because elevated concentrations within the project area obscure their involvement in natural attenuation processes):

- DO ranged from 0.06 mg/L in MW-3 to 2.36 mg/L in MW-6.
- Temperature ranged from 12.68 degrees Celsius in MW-4 to 14.32 degrees Celsius in MW-3.
- Specific conductivity ranged from 0.251 milliSiemens per centimeter (mS/cm) in MW-5 to 1.389 mS/cm in MW-6.
- pH ranged from 7.73 in MW-1 to 9.05 in MW-3.
- ORP ranged from -148 millivolts (mV) in MW-1 to -25 mV in MW-6.
- Soluble manganese concentrations ranged from less than 0.0100 mg/L in MW-4 to 0.863 mg/L in MW-1.
- Methane concentrations ranged from less than 0.00500 mg/L in MW-2 through MW-6 to 0.00695 mg/L in MW-1.
- Total alkalinity ranged from 135 mg/L in MW-5 to 445 mg/L in MW-1.
- Soluble ferrous iron was not detected above the method detection limit of 0.2 mg/L.

5.3 QA/QC Summary

GeoEngineers reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of the project data quality goals. Results of our review, as well as our evaluation of data suitability, are provided in Appendix B.

In summary, it is our opinion that the quality of the analytical data generally is acceptable for the intended use. However, specific data quality exceptions are described in Appendix B that impact the precision of some of the dataset.

6.0 CONCLUSIONS

6.1. Soil

6.1.1. Petroleum-Based Compounds

Petroleum-based analyses for soil samples collected from project soil borings are summarized in Sampling Locations – Petroleum-Based Compounds in Soil, Figure 4. No concentrations exceeding respective cleanup levels have been reported. This includes a relatively dense distribution of borings surrounding observed groundwater contamination downgradient of the 1996 UST excavation (near monitoring well MW-1 and boring DP-6). These observations suggest that any remnant petroleum contaminant source associated with the former USTs is of limited extent or has been removed during previous site excavation activities and/or natural attenuation processes.

GRPH concentrations less than cleanup levels have been reported for soil samples collected from depths of about 5 to 5½ feet in boring MW-6 and about 6 feet in previous boring MW-22 (GeoEngineers, 2013A). These detections, along with field screening results specified in "Section 4.3" of this report, suggests relatively low level GRPH contamination is present near the east boundary of the Moxee City Shop property. The source of the observed GRPH has not been identified.

6.1.2. Nitrate and Sulfate

Nitrate analyses for soil samples collected from project soil borings are summarized in Nitrate Concentrations in Soil, Figure 5. Observed nitrate concentrations in submitted soil samples were low relative to applicable MTCA Method B cleanup criteria for the ingestion pathway, as presented in Table 2. (Additional evaluation would be required to determine a soil cleanup level protective of groundwater and other pathways.) However, nitrate concentrations were elevated within two soil samples collected within the Simplot Property (borings B-1 and B-2), and in boring DP-10, located near the east boundary of the Moxee City Shop property. The average nitrate concentration in these three borings (68 mg/kg) was over 10 times higher than the average nitrate concentration in the remaining soil samples submitted for nitrate analysis.

Sulfate analyses for soil samples collected from project soil borings are summarized in Sulfate Concentrations in Soil, Figure 6. Sulfate concentrations were elevated within all three soil samples collected within the Simplot Property (borings B-1 through B-3). The average sulfate concentration in samples from these three borings (333 mg/kg) was over 10 times higher than the average sulfate concentration in samples collected from the Moxee City Shop Property.

Observed nitrate and sulfate concentrations in soil generally increase to the north and east. These data suggest that a source area for these anions could occur within the Simplot Property and extend across the site boundary into the east-central portion of the Moxee City Shop Property. The boundaries of the potential source area within the Simplot Property have not been defined. Additional research regarding present and historic land use and operational activities of area businesses would be required to identify potential anion sources.

6.2. Groundwater

6.2.1. Groundwater Flow Regime

Groundwater flow in the shallow unconfined aquifer beneath the area bounded by the monitoring well network generally was toward the southwest on December 30, 2013. Average hydraulic gradient was about 0.004 feet per foot. This generally is consistent with previous events. However, a southeasterly interpreted groundwater flow direction was observed during May 2013 near monitoring well MW-2 (GeoEngineers, 2013B). It is unclear whether this reflects a seasonal shift in the groundwater flow regime characteristic of spring conditions.

6.2.2. Petroleum-Based Compounds

Groundwater sampling locations with associated petroleum-based contaminant concentrations exceeding respective cleanup levels are shown in Cleanup Level Exceedances – Petroleum-Based Compounds in Groundwater, Figure 7. These locations are limited to boring DP-6 and monitoring well MW-1, situated immediately southwest of the presumed source area near the 1996 UST excavation. These observations suggest contaminant mobilization and downgradient transport via groundwater flow are ongoing, but limited to an area bounded by DP-8 to the northeast and MW-5 to the southwest, approximately as shown in Figure 5. Groundwater analytical results from downgradient monitoring wells also suggest that petroleum-based contaminants are not migrating off-property in groundwater at detectable concentrations.

In general, trends in observed natural attenuation parameters suggest that natural attenuation processes (and associated loss of petroleum contaminant mass) are ongoing near monitoring well MW-1. This conclusion is based the following observed conditions in monitoring well MW-1 relative to monitoring wells MW-2 through MW-4.

- Higher methane and soluble manganese concentrations, which can be natural attenuation indicator compounds.
- Higher alkalinity, which is generally expected to increase with the biologic activity associated with natural attenuation (and the production of carbon dioxide).
- Lower ORP.

6.2.3. Nitrate and Sulfate

Groundwater sampling locations with associated nitrate contaminant concentrations exceeding the MCL are shown in Nitrate Concentrations and MCL Exceedances in Groundwater, Figure 8. Based on sample results for samples collected in the southern portion of the project area, the concentration of nitrate in shallow groundwater beneath the project area appears to attenuate to less than 1 mg/L downgradient of the Former STP Control Office. Observed nitrate concentrations increase to the north and east and generally are above the MCL north and east of the Former STP Control Office, reaching an observed maximum of 263 mg/L (more than 26 times the MCL) in boring DP-10.

Groundwater sampling locations with associated sulfate contaminant concentrations exceeding the MCL are shown in Sulfate Concentrations and Secondary MCL Exceedances in Groundwater, Figure 9. Based on sample results for samples collected in the southern portion of the project area, the concentration of sulfate in shallow groundwater beneath the project area appears to attenuate to 10 to 50 mg/L downgradient of the Former STP Control Office. Observed sulfate concentrations increase to the north and east and generally are above the secondary MCL east of the Former STP Control Office, reaching an observed maximum of 1,670 mg/L (more than 6 times the secondary MCL) in boring B-2.

These groundwater anion data support the suggestion that a source area exists near and east of the Moxee City Shop/Simplot property boundary and anion mobilization and downgradient transport via groundwater flow are ongoing. At the time of our investigation, groundwater nitrate concentrations in excess of the MCL extended south of the Former STP Control Office and sulfate concentrations in excess of the secondary MCL extended west of the property boundary. The boundaries of anion plume up-gradient (north and east) of borings B-1 through B-3 have not been defined.

6.3. Contaminant Zones

A total of 14 explorations were advanced as components of the data gap investigation summarized in this report. Information from these explorations, in combination with previous data presented by GeoEngineers (2012B and 2013A) are summarized herein. In our judgment, these explorations have identified two zones of soil and/or groundwater contamination whose origin likely are unrelated. These include:

- 1. <u>Petroleum-based groundwater contamination immediately downgradient of the 1996 UST excavation</u>. This contamination likely is associated with former UST operations. In our opinion, the project dataset sufficiently bounds the extent of the observed petroleum-based contamination to warrant proceeding with the next project task, which consists of the development of a technical memorandum discussing a Focused Cleanup Approach for site petroleum contamination.
- <u>Elevated anion (nitrate and sulfate) and relatively low-level GRPH (below the cleanup level)</u> <u>concentrations in soil and/or groundwater east of the Former STP Control Office.</u> These elevated concentrations have been observed in the vicinity of the Moxee City Shop Property/Simplot Property boundary east of the Former STP Control Office. The origins of the nitrate, sulfate and GRPH, and the up-gradient extent of the elevated concentrations, are unclear.

7.0 LIMITATIONS

We have prepared this report for the exclusive use of Ecology and their authorized agents.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to "Report Limitations and Guidelines for Use," Appendix C for additional information pertaining to use of this report.

8.0 REFERENCES

- GeoEngineers, Inc. 2012A. "Memorandum, Moxee City Shop and STP, File Review Summary." January 31, 2012
- GeoEngineers, Inc. 2012B. "Source Assessment, Moxee City Shop and STP, Moxee, Washington." May 21, 2012
- GeoEngineers, Inc. 2013A. "Soil and Groundwater Assessment, City Shop and Sewage Treatment Plan, Moxee, Washington." May 14, 2013
- GeoEngineers, Inc. 2013B. "Quarterly Groundwater Monitoring and Hydraulic Testing, Second Quarter 2013, City Shop and Sewage Treatment Plant, Moxee, Washington." August 23, 2013

GeoEngineers, Inc. 2013C. "Work Plan, Data Gap Investigation, Moxee City Shop and Former STP, Moxee, Washington." November 6, 2013.

Table 1

Summary of Groundwater Level Measurements

Moxee City Shop and Former STP Moxee, Washington

	Top of	Screen		Monitoring Well	Depth to	Groundwater	Change in Groundwater
Well	Casing Elevation ¹	Elevation ¹	Date	Headspace ²	Groundwater ³	Elevation ¹	Elevation ⁴
Number	(feet)	(feet)	Measured	(ppm)	(feet)	(feet)	(feet)
MW-1	1,024.95	1,011.3	11/01/12	0.0	7.35	1,017.60	NA
		to	02/13/13	0.0	7.55	1,017.40	-0.20
		1,023.3	05/27/13	0.0	2.83	1,022.12	4.72
			08/21/13	NM	5.31	1,019.64	-2.48
			12/30/13	3.9	4.70	1,020.25	0.61
MW-2	1,025.49	1,013.9	11/01/12	0.0	7.65	1,017.84	NA
		to	02/13/13	0.0	7.96	1,017.53	-0.31
		1,021.9	05/27/13	0.0	3.00	1,022.49	4.96
			08/21/13	NM	5.72	1,019.77	-2.72
			12/30/13	0.0	5.75	1,019.74	-0.03
MW-3	1,025.24	1,013.6	11/01/12	0.0	7.81	1,017.43	NA
		to	02/13/13	0.0	8.06	1,017.18	-0.25
		1,021.6	05/27/13	0.0	3.22	1,022.02	4.84
			08/21/13	NM	5.78	1,019.46	-2.56
			12/30/13	0.0	5.89	1,019.35	-0.11
MW-4	1,025.56	1,013.9	11/01/12	0.0	7.95	1,017.61	NA
		to	02/13/13	0.0	8.14	1,017.42	-0.19
		1,021.9	05/27/13	0.0	3.29	1,022.27	4.85
			08/21/13	NM	5.93	1,019.63	-2.64
			12/30/13	0.0	6.06	1,019.50	-0.13
MW-5	1,025.31	1,010.1 to 1,022.6	12/30/13	1.0	5.89	1,019.67	
MW-6	1,025.37	1,010.4 to 1,022.9	12/30/13	1.1	5.64	1,019.92	-

Notes:

¹Elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

²Well headspace measurements were obtained using a photoionization detector immediately upon removal of the well's compression cap.

³Depth to water measurements obtained from top of well casing. Wells are contained in flush-mounted protective steel monuments installed at or near existing grade.

⁴Change in groundwater elevation is relative to the previous measurement at the respective well location.

ppm = parts per million; NA = Not Applicable; NM = Not Measured

Table 2

Summary of Chemical Analytical Results - Soil ^{1,2} Moxee City Shop and Former STP

Moxee, Washington

Boring		DP-2 ⁴	DP-3 ⁴	DP-4 ⁴	DP-5 ⁴	DP-6 ⁴	DP-6	DP-7	DP-8	DP-9	DP-10	DP-11	DP-12	DP-13	DP-14
Sample Depth (feet)	Regulatory	4.5-5	4-4.5	4-4.5	4-5	4.5-5	1.5-2.5	1-1.8	1-1.8	1-2	1.3-2	2-2.5	1-2	1-2	1-2
Date Sampled	Levels ³	03/01/12	03/01/12	03/01/12	03/01/12	03/01/12	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13
Method EPA 8260C - NWTPH-Gx a	nd Volatile Orgar	nic Compounds (m	g/kg)												
Gasoline-range hydrocarbons	30/100 ⁵	<7.62	<7.94	37.9	<7.48	<7.74	<6.72	<6.25	<6.94	NT	NT	NT	<5.01	NT	<6.54
МТВЕ	0.10	<0.0457	<0.0476	<0.0425	<0.0449	<0.0464	NT								
Benzene	0.03	<0.0229	<0.0238	<0.0213	<0.0224	<0.0232	<0.00672	<0.00625	<0.00694	NT	NT	NT	<0.00501	NT	<0.00654
Ethylbenzene	6	<0.152	<0.159	<0.142	<0.150	<0.155	<0.134	<0.125	<0.139	NT	NT	NT	<0.100	NT	<0.131
Toluene	7	<0.152	<0.159	<0.142	<0.150	<0.155	<0.134	<0.125	<0.139	NT	NT	NT	<0.100	NT	<0.131
o-Xylene	9 ⁶	<0.305	<0.317	<0.284	<0.299	<0.309	<0.269	<0.250	<0.278	NT	NT	NT	<0.200	NT	<0.261
m,p-Xylene	9 ⁶	<0.609	<0.635	<0.567	<0.598	<0.619	<0.537	<0.500	<0.555	NT	NT	NT	<0.400	NT	<0.523
Xylenes (total)	9 ⁶	<2.29	<2.38	<2.13	<2.24	<2.32	<2.02	<1.87	<2.08	NT	NT	NT	<1.50	NT	<1.96
Hexane	4,800 7	<0.152	<0.159	<0.142	<0.150	<0.155	<0.134	<0.125	<0.139	NT	NT	NT	<0.100	NT	<0.131
1,2-Dichloroethane (EDC)	11 ⁸	<0.152	<0.159	<0.142	<0.150	<0.155	NT								
Method EPA 8011 (µg/kg)															
1,2-Dibromoethane (EDB)	5	<1.27	<1.31	<12.0	<1.19	<1.28	NT								
Method EPA 8270D - Polynuclear	Aromatic Compo	unds (PAH) by GC/	MS with Selected	lon Monitoring ⁹ (m	ng/kg)										
Naphthalene	5 ¹⁰	<0.305	<0.305	<0.284	<0.309	<0.309	<0.0121	<0.0119	<0.0125	NT	NT	NT	<0.0106	NT	<0.0124
2-Methylnaphthalene	5 ¹⁰	<0.0130	<0.0129	0.0289	<0.0127	<0.0126	<0.0121	<0.0119	<0.0125	NT	NT	NT	<0.0106	NT	<0.0124
1-Methylnaphthalene	5 ¹⁰	<0.0130	<0.0129	0.0185	<0.0127	<0.0126	<0.0121	<0.0119	<0.0125	NT	NT	NT	<0.0106	NT	<0.0124
Method EPA 6010C (mg/kg)															
Lead	250	5.30	6.18	5.53	4.95	7.24	NT								
Method EPA 300 - Anions (mg/kg	()														
Nitrate	130,000 7	NT	NT	NT	NT	NT	NT	NT	NT	12	47	<1.6	NT	14	NT
Sulfate	RND	NT	NT	NT	NT	NT	NT	NT	NT	12	49	15	NT	21	NT

Boring		MW-2 ⁴	MW-3 ⁴	MW-4 ⁴	MW-5	MW-6	B-1	B-2
Sample Depth (feet)	Regulatory	6	6	2.5	5-5.5	5-5.5	2-2.5	2.5-3
Date Sampled	Levels ³	10/31/12	10/31/12	10/31/12	12/12/13	12/13/13	12/12/13	12/12/13
Method EPA 8260C - NWTPH-Gx and \	/olatile Organic C	Compounds (mg/kg)						
Gasoline-range hydrocarbons	30/100 ⁵	73.5	<7.75	<8.18	<7.46	13.5	NT	NT
МТВЕ	0.10	NT	NT	NT	NT	NT	NT	NT
Benzene	0.03	<0.00732	<0.00775	<0.00818	<0.00746	<0.00663	NT	NT
Ethylbenzene	6	<0.146	<0.155	<0.164	<0.149	<0.133	NT	NT
Toluene	7	<0.146	<0.155	<0.164	<0.149	<0.133	NT	NT
o-Xylene	9 ⁶	<0.293	<0.310	<0.327	<0.298	<0.265	NT	NT
m,p-Xylene	9 ⁶	<0.586	<0.620	<0.654	<0.596	<0.530	NT	NT
Xylenes (total)	9 ⁶	<2.20	<2.33	<2.45	<2.24	<1.99	NT	NT
Hexane	4,800 7	<0.146	<0.155	<0.164	<0.149	<0.133	NT	NT
1,2-Dichloroethane (EDC)	11 ⁸	NT	NT	NT	NT	NT	NT	NT
Method EPA 8011 (µg/kg)								
1,2-Dibromoethane (EDB)	5	NT	NT	NT	NT	NT	NT	NT
Method EPA 8270D - Polynuclear Aro	matic Compound	s (PAH) by GC/MS w	ith Selected Ion Mo	onitoring ⁹ (mg/kg)				
Naphthalene	5 ¹⁰	<0.0126	<0.0129	<0.0132	<0.0161	<0.0128	NT	NT
2-Methylnaphthalene	5 ¹⁰	<0.0126	<0.0129	<0.0132	<0.0161	<0.0128	NT	NT
1-Methylnaphthalene	5 ¹⁰	<0.0126	<0.0129	<0.0132	<0.0161	<0.0128	NT	NT
Method EPA 6010C (mg/kg)							-	-
Lead	250	NT	NT	NT	NT	NT	NT	NT
Method EPA 300 - Anions (mg/kg)								
Nitrate	130,000 7	NT	NT	NT	NT	<2.4	110	47
Sulfate	RND	NT	NT	NT	NT	48	200	440

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

²All analyte concentrations presented in milligrams per kilogram (mg/kg), unless otherwise noted.

³ Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

⁴ Data are adapted from previous project report. Data from borings DP-2 through DP-6 were initially reported by GeoEngineers (2012B) and data from borings MW-2 to MW-4 were initially reported by GeoEngineers (2013A).

⁵ Gasoline-range petroleum hydrocarbon cleanup levels in soil are 30 mg/kg when benzene is detected and 100 mg/kg when benzene is not detected.

⁶ Cleanup level for total xylenes.

⁷ Standard formula value for MTCA Method B, Non-Carcinogen, in Soil, as calculated by Ecology's Cleanup Levels and Risk Calculations (CLARC) database. The nitrate regulatory level is specific to ingestion. Additional evaluation would be required to determine a soil cleanup level protective of groundwater and other pathways.

⁸ Standard formula value for MTCA Method B, Carcinogen, In Soil, as calculated by Ecology's CLARC database.

⁹ Napthalene data for DP-2 through DP-6 were analyzed by Method EPA 8260C.

¹⁰ Cleanup level refers to sum of naphthalenes.

mg/kg = milligrams per kilogram; µg/kg = micrograms per kilogram; EPA = Washington State Environmental Protection Agency; NT = not tested; MTBE = methyl teriary butly ether

RND = Researched-No Data under MTCA Method A and not researched under MTCA Methods B and C.

	B-3
;	5.5-6.5
13	12/12/13
	NT
	NT
	NT
	NT
	NT
	NT
	<2.3
	360

Table 3

Summary of Chemical Analytical Results - Groundwater Samples from Soil Borings¹

Moxee City Shop and Former STP Moxee, Washington

Boring	Regulatory	DP-6	DP-8	DP-9	DP-10	DP-11	DP-12	DP-13	B-1	B-2	B-3
Date Sampled	Levels ²	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13	11/14/13	12/12/13	12/12/13	12/12/13
Sample Depth (feet bgs)		4 to 8 ³	15	15	15						
Method EPA 8260C - NWTPH-G	x and Volatile Or	ganic Compounds	(µg/L)								
Gasoline-range hydrocarbons	1,000/800 4	1,340	<90.0	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
Benzene	5	0.530	<0.200	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
Toluene	1,000	<0.500	<0.500	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
Ethylbenzene	700	<0.500	<0.500	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
m,p-Xylene	1,000 5	33.4	<0.500	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
o-Xylene	1,000 5	29.8	<0.500	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
Xylenes (total)	1,000 5	63.2	<1.50	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
Hexane	480 ⁶	<1.00	<1.00	NT	NT	NT	NT ¹⁰	NT	NT	NT	NT
Method EPA 8270D - Polycyclic	Aromatic Comp	ounds (PAH) by GO	C/MS with Selecte	d Ion Monitoring ((µg∕L)						
Naphthalene	160 ⁷	1.25	<0.107	NT	NT	NT	<0.0980	NT	NT	NT	NT
2-Methylnaphthalene	160 ⁷	0.155	<0.107	NT	NT	NT	<0.0980	NT	NT	NT	NT
1-Methylnaphthalene	160 ⁷	1.28	<0.107	NT	NT	NT	<0.0980	NT	NT	NT	NT
Method EPA 300 - Polynuclear	Aromatic Compo	unds (PAH) by GC	/MS with Selected	l Ion Monitoring (n	ng/L)						
Nitrate	10 ⁸	<0.200	2.94	99.7	263	38.5	NT	158	199	94.0	0.710
Sulfate	250 ⁹	105	96.2	251	361	192	NT	329	735	1670	1520

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

² Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

³ To collect groundwater samples from direct-push borings, a 4-foot-long screen was placed from about 4 to 8 feet bgs. If insufficient volume was achieved at that depth, the screen was lowered to about 8 to 12 feet bgs.

⁴Gasoline-range petroleum hydrocarbon cleanup levels in groundwater are 1,000 μg/L when benzene is detected and 800 μg/L when benzene is not detected.

⁵ Cleanup level for total xylenes.

⁶ Standard formula value for MTCA Method B, Non-Carcinogen, in Groundwater, as calculated by Ecology's Cleanup Levels and Risk Calculations (CLARC) database.

⁷ Cleanup level refers to sum of naphthalenes.

⁸ Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

⁹ Secondary maximum contaminant level recommeded by the Environmental Protection Agency.

¹⁰ The sample containers for Method EPA 8260C and associated with the groundwater sample collected from boring DP-12 broke in shipment to the analytical laboratory.

Bold indicates analyte concentration exceeds referenced Regulatory Level.

mg/L=milligrams per liter; μ g/L = micrograms per liter; NT = not tested; bgs = below ground surface

Table 4

Summary of Chemical Analytical Results - Groundwater Samples from Monitoring Wells¹

Moxee City Shop and Former STP Moxee, Washington

			Monitoring Well. Screen Depths and Date Sampled															
				M	N-1						MW-2	c Sampica				MW-3		
	Bogulatory			Coroon: 1 9 to	11 9 foot he	(c				Soroop /	0 to 12 0 for	at hac			Saraan	4 0 to 12 0 f	oot has	
	Regulatory	02/01/10	3			5	10/20/12	11/01/10										10/20/12
	Level	03/01/12	11/01/12	02/13/13	05/27/13	08/21/13	12/30/13	11/01/12	02/13/13	05/27/13	08/21/13	12/30/13	Duplicate-1-123013	11/01/12	02/13/13	05/27/13	08/21/13	12/30/13
Method EPA 8260C (µg/ L)	2							1					1					
Gasoline-range petroleum hydrocarbons	1,000/800 ³	1,550	2,500	571	1,440	1,660	1,690	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0
Benzene	5	0.210	0.300	0.210	<0.200	<0.200	0.290	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Toluene	1,000	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Ethylbenzene	700	80.9	101	46.3	29.7	26.0	34.4	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
m,p-Xylene	1,000 ⁴	NT	15.5	61.0	1.67	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
o-Xylene	1,000 ⁴	NT	2.44	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Xylenes (total)	1,000 ⁴	11.1	18.0	61.3	2.00	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50
Hexane	480 ⁵	1.30	3.46	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Method EPA 8270 (µg/L)	•	•			•	-	-	•					•					•
Naphthalene	160 ⁶	9.32	4.47	2.06	1.83	0.294	1.28	<0.191	<0.0953	<0.0951	<0.0961	<0.0951	<0.103	<0.190	<0.0945	<0.0954	<0.0957	<0.0988
2-Methylnaphthalene	160 ⁶	0.495	0.944	<0.0946	0.110	<0.267	<0.0984	<0.191	<0.0953	<0.0951	<0.0961	<0.0951	<0.103	<0.190	<0.0945	<0.0954	<0.0957	<0.0988
1-Methylnapthalene	160 ⁶	4.74	7.77	2.95	4.57	0.855	5.37	<0.191	<0.0953	<0.0951	<0.0961	<0.0951	<0.103	<0.190	<0.0945	<0.0954	<0.0957	<0.0988
Method EPA 200.7 - Dissolved Metals b	y EPA 200 Serie	s Methods (m	ng/L)		-													
Manganese	2.2 ⁵	NT	0.943	0.582	0.683	0.608	0.863	0.678	0.256	0.293	0.442	0.306	0.311	0.178	0.0213	0.0331	0.0358	0.0224
Method RSK-175 - Dissolved Gases (GC) (mg/L)																	
Methane	NE	NT	0.0108	<0.00500	<0.00500	0.0577	0.00695	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	0.00508	<0.00500	0.0909	<0.00500
Method EPA 300.0 - Anions by EPA Met	thod 300.0 (mg/	Ľ)																
Nitrate-Nitrogen	10 ⁷	NT	<0.200	0.250	<0.200	0.200	<0.200	176	123	119	143	125	113	1.12	0.730	1.090	0.500	0.240
Sulfate	250 ⁸	NT	18.3	24.1	28.0	19.1	14.4	290	236	226	236	219	204	34.2	31.3	34.8	31.3	23.2
Method SM 2320B - Conventional Cher	nistry Paramete	rs by APHA/E	PA Methods (mg/L)														
Total Alkalinity	NE	NT	480	485	570	500	445	230	255	255	235	270	265	335	325	375	405	280

	Regulatory			MW-4			MW-5	MW-6	
			Screen						
	Level ²	11/01/12	02/13/13	05/27/13	08/21/13	12/30/13	12/30/13	12/30/1	
Method EPA 8260C (µg/L)									
Gasoline-range petroleum hydrocarbons	1,000/800 ³	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0	<90.0	
Benzene	5	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	
Toluene	1,000	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	
Ethylbenzene	700	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	
m,p-Xylene	1,000 ⁴	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	
o-Xylene	1,000 ⁴	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	
Xylenes (total)	1,000 ⁴	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	
Hexane	480 ⁵	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	
Method EPA 8270 (µg/L)			•	•	•				
Naphthalene	160 ⁶	<0.190	<0.0952	<0.0953	<0.0954	<0.0985	<0.102	<0.0982	
2-Methylnaphthalene	160 ⁶	<0.190	<0.0952	<0.0953	<0.0954	<0.0985	<0.102	<0.0982	
1-Methylnapthalene	160 ⁶	<0.190	<0.0952	<0.0953	<0.0954	<0.0985	<0.102	<0.0982	
Method EPA 200.7 - Dissolved Metals	by EPA 200 Serie	s Methods (m	g/L)	•	•				
Manganese	2.2 ⁵	0.208	< 0.0100	0.0201	< 0.0100	<0.0100	0.120	0.414	
Method RSK-175 - Dissolved Gases (G	C) (mg/L)		•	•	•				
Methane	NE	<0.00500	< 0.00500	<0.00500	0.00579	<0.00500	<0.00500	< 0.0050	
Method EPA 300.0 - Anions by EPA M	ethod 300.0 (mg/	L)	•	•	•				
Nitrate-Nitrogen	10 ⁷	0.420	2.81	3.14	1.41	0.950	<0.200	158	
Sulfate	250 ⁸	31.7	43.0	37.9	34.2	30.7	23.0	249	
Method SM 2320B - Conventional Ch	emistry Parameter	s by APHA/EI	PA Methods (mg/L)	•			•	
Total Alkalinity	NE	245	435	405	345	320	135	195	

Notes:

¹Chemical analyses conducted by TestAmerica Laboratories, Inc. of Spokane, Washington.

²Regulatory Level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup level unless otherwise footnoted.

³MTCA Method A cleanup level for gasoline-range petroleum hydrocarbons is 1,000 µg/l, if benzene is not detected; otherwise the cleanup level is 800 µg/l. ⁴Cleanup level for total xylenes.

⁵Standard formula value for MTCA Method B in groundwater as calculated by Ecology's Cleanup Levels and Risk Calculations (CLARC) database.

⁶Cleanup level refers to sum of naphthalenes.

⁷Maximum contaminant level established by Title 40, Volume 19 of the Code of Federal Regulations.

⁸Secondary Maximum Contaminant Level recommended by the Environmental Protection Agency.

Bold indicates analyte concentration exceeds referenced Regulatory Level.

NE = not established; $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter; NT = not tested; bgs = below ground surface

Table 5

Summary of Field-Measured Natural Attenuation Parameters

Moxee City Shop and Former STP

Moxee, Washington

				Specific	Dissolved	Oxidation	Soluble
Well	Date		Temperature	Conductivity	Oxygen	Reduction Potential	Ferrous Iron
Number	Collected	рН	(° C)	(mS/cm)	(mg/L)	(mV)	(mg/L)
MW-1	11/01/12	7.69	19.15	0.833	0.65	-36	NT
	02/13/13	7.62	9.50	0.683	1.78	-41	<0.2
	05/27/13	8.11	15.45	0.805	1.60	-55	<0.2
	08/21/13	7.81	23.47	0.955	1.43	206	<0.2
	12/30/13	7.73	13.60	0.639	0.30	-148	0.5
MW-2	11/01/12	7.66	18.77	2.079	1.99	313	NT
	02/13/13	8.07	12.74	1.314	0.11	-49	<0.2
	05/27/13	8.04	14.46	1.296	0.13	183	<0.2
	08/21/13	7.84	18.71	1.521	0.07	406	<0.2
	12/30/13	7.94	13.86	1.234	0.09	-58	<0.2
MW-3	11/01/12	8.73	17.82	0.617	3.29	289	NT
	02/13/13	7.27	11.53	0.511	0.27	-34	<0.2
	05/27/13	9.02	14.46	0.581	0.24	288	<0.2
	08/21/13	8.65	19.56	0.674	0.03	311	<0.2
	12/30/13	9.05	14.32	0.458	0.06	-124	<0.2
MW-4	11/01/12	8.77	17.47	0.463	4.70	297	NT
	02/13/13	7.56	11.27	0.704	0.45	-41	<0.2
	05/27/13	8.58	14.41	0.663	0.41	233	<0.2
	08/21/13	8.29	19.69	0.610	1.02	364	<0.2
	12/30/13	8.45	12.68	0.531	0.19	-82	<0.2
MW-5	12/30/13	8.45	13.74	0.251	1.47	-68	<0.2
MW-6	12/30/13	7.78	13.88	1.387	2.36	-25	<0.2

Notes:

¹Reported water quality parameters reflect stabilized conditions at the conclusion of well purging during low-flow sampling.

°C = degrees Celsius; mS/cm = millisiemens per centimeter; mg/L = milligrams per liter; mV = millivolts; NT = not tested

Map Revised: 27 March 2014 tkauhi

Office: SPO Path: W:\Spokane\Projects\0\0504078\GIS\01\050407801_F3_GW_Dec2013.mxd

tkauhi 27 March 2014 Map Revised:

cleanup levels, or were not detected.

petroleum-based analytes are omitted from this figure.

Data Sources: Aerial from ESRI Data Online.

Feet 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Sampling Locations -GeoEngineers, Inc. cannot guarantee the accuracy and content Petroleum-Based Compounds in Soil of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. Moxee City Shop and Former STP 3.All soil sample petroleum-based contaminant concentrations were less than applicable Model Toxics Control Act Method A or B Moxee, Washington 4. Locations where soil samples were not collected for GEOENGINEERS / Figure 4 Projection: NAD 1983, Washington State Plane South, feet.

Map Revised: 25 March 2014 tkauhi

Map Revised: 27 March 2014 tkauhi

Office: SPO Path: W:\Spokane\Projects\0\0504078\GIS\01\050407801_F6_Soil_Sulfate.mxd

Map Revised: 25 March 2014 tkauhi

Office: SPOK Path: W:\Spokane\Projects\0\0504078\G|S\01\050407801_F9_GW_SulfateMCL.mxd

APPENDIX A FIELD PROCEDURES AND BORING LOGS

General

Field methods generally were performed in compliance with the project Work Plan (GeoEngineers, 2013C).

Soil Sample Collection

Environmental Protection Agency (EPA) 5035 sampling methods generally were used to collect soil samples for gasoline-range petroleum hydrocarbon (GRPH) and volatile organic compound (VOC) analyses. The soil for analysis of other parameters were placed in laboratory-supplied sample bottles and filled to minimize headspace. All soil samples were stored in a chilled cooler until delivery to the analytical laboratory.

Subsurface conditions during the data gap investigation at the Moxee City Shop and Former STP site were explored by advancing nine direct-push and five hollow-stem borings at the approximate locations shown on Figure 2. The borings were advanced about 15 feet below existing site grade. Boring locations were established in the field by taping from existing site features. Consequently, exploration locations should be considered accurate to the degree implied by the method used.

The boring operations were monitored by staff from our firm who examined and classified the soil encountered; obtained soil samples and maintained a continuous log of explorations. Soil encountered in the borings was classified in general accordance with ASTM International (ASTM) D 2488 and the classification chart listed in Key to Exploration Logs, Figure A-1. Logs of the borings are presented in Figures A-2 through A-15. The logs are based on interpretation of the field data and indicate the depth at which subsurface materials or their characteristics change, although these changes might actually be gradual.

Field Screening of Soil Samples

GeoEngineers' field representative performed field-screening tests on soil samples obtained from the borings. Field screening results were used as a general guideline to assess areas of possible petroleum-related contamination. The field screening methods used include: (1) visual screening; (2) water-sheen screening; and (3) headspace-vapor screening using a Photo Ionization Detector (PID) calibrated to isobutylene on the day of testing.

Visual screening consisted of observing soil for stains indicative of petroleum-related contamination. Water-sheen screening involved placing soil in a pan of water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheens observed are classified as follows:

No Sheen (NS)	No visible sheen on the water surface.
Slight Sheen (SS)	Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
Moderate Sheen (MS)	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface.
Heavy Sheen (HS)	Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involved placing a soil sample in a plastic sample bag. Air was captured in the bag, and the bag was shaken to expose the soil to the air trapped in the bag. Headspace vapor screening targeted volatile petroleum hydrocarbon compounds. In this application, the PID measured concentration of organic vapors ionizable by a 10.6 electron volt (ev) lamp in the range between 1.0 and 2,000 parts per million (ppm), with a resolution of +/-2 ppm.

Field screening results can be site specific. The effectiveness of field screening can vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of contaminants.

Monitoring Well Construction, Development, and Surveying

The monitoring wells generally were constructed in accordance with Chapter 173-160, Section 400 of the Washington Administrative Code (WAC), titled *Washington State Resource Protection Well Construction Standards*. Monitoring well installation was observed and documented by a GeoEngineers field representative on a monitoring well construction record form.

The monitoring wells are constructed of 2-inch-diameter, Schedule 40, polyvinyl chloride (PVC) casing and well screens. The total depths of the monitoring wells were about $12\frac{1}{2}$ feet and 0.010-inch slotted screens were installed from about 3 to $12\frac{1}{2}$ feet in depth.

Each well was completed with a bentonite seal and a flush-mount surface monument. A lockable cap was installed in the top of the PVC well casing. A concrete surface-seal was placed around the monument at the ground surface to divert surface water away from the well location.

The monitoring wells were developed to remove water introduced into the well during drilling (if any), stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. The monitoring wells were developed by pumping, surging, bailing, or a combination of these methods. Development of the well continued until the water was as free of sediment as practicable with respect to the composition of the subsurface materials adjacent to the screened interval. The removal rate and amount of groundwater removed was recorded during the well development procedures.

The horizontal locations of the new wells were estimated relative to existing site features and top-of-casing elevations were surveyed using a level relative to the top of casing in monitoring well MW-4.

Groundwater Elevations

Depths to groundwater were measured relative to the monitoring well casing rim using an electric water level indicator. The probe of the water level indicator was decontaminated after use with a detergent wash, followed by two distilled water rinses.

Groundwater Sampling Procedures – Borings

Groundwater samples were collected from direct-push soil borings DP-6 and DP-8 through DP-13. Upon reaching total depth, each direct-push boring was fitted with a steel screen and purged for approximately 10 minutes using a peristaltic pump before sample collection.

Groundwater samples also were collected from hollow-stem auger borings B-1 through B-3. Upon reaching total depth, each hollow-stem auger boring was allowed to fill with groundwater through the bottom of the hollow-stem auger casing. Each boring was purged for approximately 10 minutes using a peristaltic pump before sample collection.

Groundwater Sampling Procedures – Monitoring Wells

Groundwater samples from monitoring wells were collected consistent with the EPA's low-flow groundwater sampling procedure, as described by EPA (1996) and Puls and Barcelona (1996). A duplicate sample was collected from MW-2. A portable bladder pump equipped with a disposable bladder and disposable tubing was used to purge and sample monitoring wells MW-2 through MW-6. Because monitoring well MW-1 is constructed of small diameter (approximately ³/₄-inch) casing, a peristaltic pump with disposable tubing was used to purge and sample MW-1.

During purging activities, water quality parameters, including pH, conductivity, temperature, turbidity, oxidation-reduction potential and dissolved oxygen, were measured using an In-Situ Troll 9500 multi-parameter meter equipped with a flow-through cell; measurements were recorded approximately every three minutes. The meter calibration was verified at the beginning of each work day consistent with manufacturer recommendations prior to purging and sampling activities.

Groundwater samples were collected after (1) water quality parameters had stabilized; or (2) a maximum purge time of thirty minutes was achieved. During purging and sampling, purge rate was not allowed to exceed 500 milliliters per minute. Water quality parameter stabilization criteria generally included the following:

- Turbidity: ±10 percent or ±10 nephelometric turbidity units (NTU);
- Dissolved oxygen: ±10 percent;
- Conductivity: ±3 percent;
- pH: ±0.1 unit;
- Temperature: ±3 percent; and
- Oxidation reduction potential: ±10 percent or ±10 millivolts (mV).

After groundwater quality stabilization criteria were reached, the pump's discharge tubing was disconnected from the flow-through cell and groundwater samples were collected for analysis.

Each sample was pumped directly into sample containers supplied by the laboratory. All groundwater samples collected for chemical analysis were kept cool during on-site storage and transport to the laboratory. Chain-of-custody procedures were observed during transport of the groundwater samples.

N		IL CLASSIF				
	IAJOR DIVIS	IONS	SYME GRAPH	BOLS	TYPICAL DESCRIPTIONS	SYME GRAPH
	GRAVEL	CLEAN GRAVELS	000	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	SAND	CLEAN SANDS	· · · · · · · · · · · · · · · · · · ·	SW	WELL-GRADED SANDS, GRAVELLY SANDS	
ETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	_
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
IORE THAN 50% ASSING NO. 200 SIEVE	eu Te			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
н	IGHLY ORGANIC	SOILS	<u></u>	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
	Image: State Image: State	-inch I.D. split Indard Penetra elby tube ton ect-Push lk or grab	barrel tion Test	(SPT)		AL CCP CS DS HAC DC PI PP SA TC
Blow of blo dista	count is reco ows required nce noted).	orded for drive I to advance sa See exploratio	ampler 12 on log for	inches hamme	e number (or r weight	VS
Blow of blo dista and o A "P drill n NOTE: Th	veount is recu ows required ince noted). drop. " indicates sa rig. ne reader mus	orded for drive I to advance sa See exploratio ampler pushed st refer to the di	ampler 12 on log for d using th scussion i	n the reg	e number (or r weight it of the port text and the logs of ex	VS NS SS MS HS NT

AL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

undwater Contact

- sured groundwater level in oration, well, or piezometer
- sured free product in well or ometer

phic Log Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

erial Description Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

- ent fines
- rberg limits
- mical analysis
- pratory compaction test
- solidation test
- ct shear
- rometer analysis
- sture content
- sture content and dry density
- anic content
- neability or hydraulic conductivity ticity index
- et penetrometer
- s per million
- e analysis
- cial compression onfined compression
- shear

en Classification

- isible Sheen
- nt Sheen
- erate Sheen /y Sheen
 - ested

er understanding of subsurface explorations were made; they are

ſ	Drilled	<u>9</u> 11/1	Star 4/2	013	<u>Er</u> 11/14	<u>nd</u> 4/2013	Total Depth	h (ft)		5		Logged By KAH Checked By JER	Driller	Environmenta Explorations, I	l Wes Inc.	st		Drilling Method Direct Push	
	Surfac Vertica	e Eleva al Datu	atior m	า (ft)		Unde	termin	ed			Ha Da	ammer ata			[Drilling Equipr	nent	Truck-Mounted	Geoprobe
	Easting Northir	g (X) ng (Y)									Sy Da	vstem atum			<u>(</u>	<u>Groun</u> Date M	dwater easured	Depth to Water (ft)	Elevation (ft)
l	Notes																		
ſ					FIEL	D DA	TA												
	on (feet)	feet)	_	ered (in)	oot	ed Sampl	e Name	evel	c Log	90 H	cation	l I DE	/ATER SCRIP	IAL TION		%	sity,	REMAR	KS
	Elevatio	Depth (Interva	Recove	Blows/f	Collecte	<u>Sample</u> Testing	Water I	Graphi	Group	Classifi					Moisture Content,	Dry Den (pcf)		
		0 —		42		1				AC GW-(C GM	Asphalt concrete Brown fine to coa	pavement rse gravel	with sand and silt					
		_					$\frac{1}{CA}$			SN	Λ	Brown silty fine to moist)	medium s	and (medium dens				DP-6 (1.5-	2.5)
		-								SN	1	Brown silty fine s	and (mediu	ım dense wet)					
		_				<u> </u>								in dense, wety	-				
		- 		48											_				
		5													_				
		_													_				
							2								_				
		_		42								_			_				
		10 —										_			_	-			
ARD		_					3					_			-	-			
CH_STAND		-										Grades to light b	own		_	-			
IB_GEOTEC		-		36								_			_	-			
S8.GDT/GE		-					4					_			_	-			
ENGINEER		15 —				•													
nplate:GEO																			
plate/LibTer																			
PJ DBTem																			
50407801.G																			
01/GINT/05																			
00504078	No	tes: Pl	eas	e ref	er to F	igure A	-1 for an	n exp	olanat	ion of	syr	nbols.							
27/14 Path:P												Log of	Borinç	g DP-6					
e: Date:3/2	0	2	2			INF		6		7		Project:	N ion: N	Ioxee City Sh	iop/ l	Form	ner S	TP	
pokan	C	JF(וו		٩G	INE	:EK	2	1				1011. IV		iyu	11			Figure A-2

GEOENGINEERS

Project: Moxee City Shop/ Former STP Project Location: Moxee, Washington Figure A-2 Sheet 1 of 1 Project Number: 0504-078-01

Drilled	<u>9</u> 11/1	<u>Start</u> 4/201	<u>E</u> 3 11/	<u>End</u> 14/2013	Total Depth	ı (ft)	1	5		Logged By Checked By	KAH JER	Driller	Environ Explorat	mental W	est		Drilling Method Direct Push
Surface Vertical	e Eleva I Datu	ation (m	ft)	Unde	etermine	ed			Han Data	nmer a					Drilli Equi	ng pment	Truck-Mounted Geoprobe
Easting Northin Notes:	g (X) ig (Y)								Sys Dat	tem um					<u>Grou</u> Date	<u>undwat</u> Measur	ter Depth to ured Water (ft) Elevation (ft)
			FIE	LD DA	λΤΑ												
Elevation (feet)	o Depth (feet)	Interval	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	Classification		M/ DES	ATER CRIP	ial Tion		Moisture	Content, % Dry Density, (ncfi	REMARKS
			 2 m 6 6 4 		2 3 4			AC GW-G SM	5 5 5 5 5 5 5 5 5 5 5 5 5 5	Asphalt or Brown fine (media Brown silt Grades to	oncrete pa e to coarse, um dense, y fine sand	vement e gravel v moist) d (mediu	with silt and	l sand hoist)			DP-7 (1-1.8)
Note	es: Pl	ease	refer to	Figure A	-1 for an	exp	lanat	ion of s	symb	bols.							
										Log	g of B	oring	J DP-7				

Project:Moxee City Shop/ Former STPProject Location:Moxee, WashingtonProject Number:0504-078-01Figure A-3
Sheet 1 of 1

<u>Start</u> <u>End</u> Drilled 11/14/2013 11/14/2013	Total 15 Depth (ft)	Logged By KAH Checked By JER	Driller Explorations, Inc.	st	Drilling Method Direct Push
Surface Elevation (ft) Undete	ermined	Hammer Data	L E	Drilling Equipment	Truck-Mounted Geoprobe
Easting (X) Northing (Y)		System Datum	2	Groundwater Date Measure	 d Water (ft) Elevation (ft)
Notes:					
FIELD DA	TA				
Elevation (feet) Depth (feet) Interval Recovered (in) Blows/foot	Sample Name Testing Water Level Graphic Log Group	M SED Classification	ATERIAL SCRIPTION	Moisture Content, % Dry Density, (pcf)	REMARKS
34		C Asphalt concrete pa -GM Brown fine to coars	avement e gravel with sand and silt		
	¹ _{CA} S	M Silty fine sand (moi	st)		DP-8 (1-1.8)
		_ Grades to wet	-		
24		-	-		
5 —	2	_			
		_			
_		-			
24		=	-		
_	3	_	_		
10 —		_	_		
		_	_		
		_	_		
24		_	_		
		_			
15					
Notes: Please refer to Figure A-1	1 for an explanation o	f symbols.			
		Log of B	oring DP-8		

spokane: Date: 327/14 Path: P:000504078001/GINT/050407801.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT//GEI8_GEOTECH_STANDARD

GEOENGINEERS

 Project:
 Moxee City Shop/ Former STP

 Project Location:
 Moxee, Washington

 Project Number:
 0504-078-01

ſ	Drilled	<u>9</u> 11/1	<u>Start</u> 4/2(013	<u>End</u> 11/14/2	2013	Total Depth	ı (ft)	15	5	Logged By Checked By	Environmenta Explorations,	al We Inc.	st		Drilling Method Direct Push			
	Surface Vertical	e Eleva I Datu	atior m	า (ft)	ι	Jndet	ermine	ed		F	Hammer Data					Drilling Equipr	l nent	Truck-Mounted Ge	oprobe
	Easting Northin Notes:	ı (X) g (Y)								5	System Datum					<u>Groun</u> Date M	dwater easured	Depth to Water (ft)	Elevation (ft)
050407801/GINT'050407801.GPJ DBTemplaeLibTemplae.GEOENGINEERS8.GDT/GEI8_GEOTECH_STANDARD	Elevation (feet)	Name Exploring Constraint Constraint iming (A) Salarin Salaarin Salarin Salarin																	
Eath:P:\0													orise						$ \longrightarrow$
te:3/27/14											Proiect	y or B	M	DXee City St	hon/	Form	ner S	TP	
pokane: Da	G	EC	b	EN	١GI	NE	ER	S/		1	Project	Locatio	n: Mo	oxee, Washi	ingto	n		 F	igure A-5

Project Number:

0504-078-01

Figure A-5 Sheet 1 of 1

ſ	Drilled	Name Start Teal Teal Depth (t) 15 Logged By KAH Checked By JER Drille Environmental West Explorations, Inc. Drilling Method Drilling Direct Push rface Elevation (t) Undetermined Hammer Data Hammer Data Environmental West Explorations, Inc. Drilling Equipment Drilling Equipment Drilling Equipment Drilling Equipment Drilling Equipment Drilling Equipment Drilling Equipment Drilling Equipment Depth (t) Depth (t) Environmental West otes:															
	Surfac Vertica	e Eleva al Datur	ition (f	t)	Unde	termine	ed		Ha	ammer ata				Drilling Equipr	g ment	Truck-Mounted	Geoprobe
	Easting Northir	g (X) ng (Y) :							S	ystem atum				<u>Groun</u> Date M	dwater leasure	Depth to Water (ft)	Elevation (ft)
	_					TA									1		
	Elevation (feet)	b Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log Group	Classification	C	MATE DESCRI	RIAL PTION		Moisture Content, %	Dry Density, (pcf)	REMAR	KS
:OENGINEERS8.GDT/GE8_GEOTECH_STANDARD			- 24 - 36 - 24			1 CA 2 3 4			SM SM	Asphalt concre Brown fine to o silt (mediur Brown silty fine Grades to wet	te pavemer coarse grave m dense, m e sand (mec	nt el with trace sand oist) flum dense, mois	d and st)			DP-10 (1.3	3-2)
Date:3/27/14 Path:P:/0/0504078/01/GINT/050407801.GPJ DBTemplate/LibTemplate:GE	Not	tes: Pl	ease re	efer to F	Figure A	-1 for an	ı expla	nation o	of syr	mbols. Log of Project:	Borin	g DP-10 Moxee City	[,] Shop/	' Forn	ner S	STP	
pokane:	C	EC	ЭE	NG	INE	ER	S/			Project Loc	cation:	Moxee, Wa	shingt	on			Figure A-6

Project Number:

0504-078-01

Figure A-6 Sheet 1 of 1

ſ	Drilled	Image: Status End as the status Total Total Logge by KAH Differ Environmental West Diffing Cappment total 11/14/2013 Undetermined Hammer Differ Explorations, Inc. Diffing Cappment Truck-Mounted Geoprobe total basis Differ Canadbasis Differ Canadbasis Differ Differ </th																			
	Surfac Vertica	æ Eleva al Datu	atior m	n (ft)		Unde	termine	ed			Har Dat	mmer ta					Drilling Equip	g ment	Tru	uck-Mounted (Geoprobe
	Easting Northin	g (X) ng (Y)		-							Sys Dat	stem tum					<u>Groun</u>	dwater	4	Depth to	Elevation (ft)
Į	Notes	:															Date IV		1	<u>water (it)</u>	
ſ					FIEL	D DA	۸TA														
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	00000		M. DES	ATER SCRIP	ial Tion		Moisture Content, %	Dry Density, (pcf)		REMAR	KS
plate/LibTemplate/GEOENGINEERS8.GDT/GEB_GEOTECH_STANDARD				40 32 24 28			1 CA 2 3			AC GW SM		Asphalt cc Brown fine silt (m Brown silt Grades to	oncrete pa a to coars edium der y fine san wet	avement e gravel v nse, mois d (mediun	vith trace sa t) n dense, mo	and and oist)				DP-11 (2-2	2.5)
ath:P:\0\0504078\01\GINT\050407801.GPJ DBTem	No	tes: Pl	leas	e ref	er to Fi	igure A	-1 for an	expla	anatic	on of s	sym	bols.									
::3/27/14 P.												Log	of Bo	oring	DP-11		· Г				
spokane: Date	C) E	ol	Er	١G	INE	ER	S /	0	J		Project: Project	Locatio	M on: M	oxee Cit oxee, W	ashingt	on	ner S	ΠP		Figure A-7

Project Number:

0504-078-01

Figure A-7 Sheet 1 of 1

ſ	Drilled	<u>5</u> 11/1	<u>start</u> 4/20	13	<u>End</u> 11/14/	<u> </u> '2013	Total Depth	ר (ft)	1	5		Logged By Checked By	KAH JER	Driller	Environm Exploration	nental Wo ons, Inc.	est		Drilling Method	Direct Push	
	Surfac Vertica	e Eleva Il Datu	ation m	(ft)	I	Undef	termine	ed		I	Ham Data	nmer a					Drilling Equip	g ment	Tru	uck-Mounted G	Geoprobe
	Easting Northir Notes] (X) Ig (Y)									Syste Datu	iem um					Groun	idwater leasure	: <u>d</u>	Depth to <u>Water (ft)</u>	<u>Elevation (ft)</u>
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot II	Collected Sample C	Testing	Water Level	Graphic Log	Group Classification			M, DES	ATER SCRIP	ial Tion		Moisture Content, %	Dry Density, (pcf)		REMAR	KS
EOENGINEERS8.GDT/GE8_GEOTECH_STANDARD				 45 48 36 			1 CA 2 3 4			AC GW SM SM		Asphalt cc Brown fin sand (Brown silt Grades tc Brown silt dense	oncrete pa e to coars (medium c y fine san o wet ty fine san o, wet)	vement e gravel v lense, mo d (mediuu d with tra	with trace silt jist) m dense, mc ce gravel (m	t and Dist)				DP-12 (1-2	2)
e:3/27/14 Path:P:/0/0504078/01/GINT/050407801.GPJ DBTemplate/LibTemplate:G	Not	ies: Pl	ease	e refe	er to Fig	jure A-	-1 for an	ı exp	lanati	ion of s	symb	ools.	of Bo	bring	DP-12			mar S			
pokane: Da	C	ΞEC	ЪЕ	ĒN	IGI	NE	ER	S		J		Project	Locatio	n: M	oxee, W	ashingt	on		, , ,		Figure A-8

0504-078-01

Figure A-8 Sheet 1 of 1

Project: GEOENGINEERS Project Location: Project Number:

Drilled	<u>؟</u> 11/1	<u>Start</u> 14/20)13	<u>En</u> 11/14	<u>id</u> 4/2013	Total Depth	n (ft)	1	5		Logged By Checked By	KAH JER	Driller	Environ Explorat	mental W tions, Inc.	est		[Drilling Method Direct Push	
Surface Vertical	e Eleva I Datu	atior m	ı (ft)		Unde	etermine	ed			Ha Da	ammer ata					Drilli Equ	ng ipmen	ıt	Truck-Mounted (Geoprobe
Easting Northin Notes:	ı (X) g (Y)									Sy Da	vstem atum					<u>Gro</u>	undwa Measi	ater ured	Depth to <u>Water (ft)</u>	Elevation (ft)
\geq				FIEL	D DA	ATA														
Elevation (feet)	⊃ Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	Classification		M. DES	ATER SCRIP	ial Tion		Moisture	Content, % Dry Density,	(pcf)	REMAR	KS
			27 27 24 24 12			2 2 4			O C AC GW SM		Asphalt co Brown fine silt (me Brown silty Grades to Brown silty dense,	ncrete pa e to coars edium der / fine san wet / fine san wet)	d with tra	with trace si t) m dense, m	and and noist)			ā	DP-13 (1-	2)
Note	es: P	lease	e refe	er to F	igure A	-1 for an	exp	lanati	on of s	sym	nbols.	of B								
											LOG		лпу	06-13	,					

GEOENGINEERS

Project:Moxee City Shop/ Former STPProject Location:Moxee, WashingtonProject Number:0504-078-01Figure A-9
Sheet 1 of 1

Drilled	<u>s</u> 11/1	<u>Start</u> 4/20	: 013	<u>En</u> 11/14	<u>id</u> 4/2013	Total Depth	n (ft)	1	5		Logged By Checked By	KAH JER	Driller	Environmenta Explorations,	l We Inc.	st		Drilling Method Direct Push
Surfac Vertica	e Eleva al Datu	atior m	า (ft)		Unde	etermine	ed			Ha Da	mmer ta					Drilling Equipr	l nent	Truck-Mounted Geoprobe
Easting Northin	g (X) ng (Y)									Sy Da	stem itum					Groun Date M	dwate easure	I Depth to d Water (ft) Elevation (ft)
																<u> </u>		
÷			_	FIEL	.D D/ e	ATA												
Elevation (fee	Depth (feet)	Interval	Recovered (in	Blows/foot	Collected Sam	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		M. DES	ATERI/ SCRIPT	AL TON		Moisture Content, %	Dry Density, (pcf)	REMARKS
	0 —		40					• A	AC GV	c v	Asphalt co Brown fine	ncrete pa	avement e gravel wi	th trace silt and				
	-					$\frac{1}{CA}$			SN	Л	Brown silty	y fine san	d (moist to	wet)				DP-14 (1-2)
	-										_							
	_				•						-							
	_		12		1	2					_				-	-		
	5 —				+						_				_			
														-	-			
					_	2					_							
			24			3												
	_										-				-			
	10 —				<u> </u>						_				_			
	-										_							
I	-	_	24								_							
I	_					4					_							
	-				+						_							
	15 —																	
Not	tes: Pl	leas	e ref	er to F	igure A	A-1 for an	exp	lanati	on of	sym	nbols.							
\geq	Log of Paring DD 14																	
L											LUY		Juny I	52-14				

Figure A-10 Sheet 1 of 1

GEOENGINEERS Project Number:

Project: Project Location:

Moxee City Shop/ Former STP Moxee, Washington

0504-078-01

pokane: Date:3/27/14 Path: P:/0/0504078/01/GINT/050407801.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_GEOTECH_STANDARD

Drilled	Start End Total Depth (ft) 16.5 Logged By ERH Driller Enviro Surface Elevation (ft) Undetermined Hammer Data 140 (lbs) / 30 (in) D											Environmental W Explorations, Inc.	est		Drilling Method	Hollow-Stem	Auger	
Surface Vertical	Eleva Datu	atior m	ı (ft)		Unde	termine	ed			Hammer Data	140	(lbs) / 30	(in) Drop	Drillin Equip	g ment		Schramm T	300
Easting Northing Notes:	(X) g (Y)									System Datum				<u>Grour</u> Date N	ndwate Neasure	<u>r</u> :d	Depth to Water (ft)	Elevation (ft)
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group	Classification	M/ DES	ATERIA SCRIPT	L ON	Moisture Content, %	Dry Density, (pcf)		REMARI	 <s< td=""></s<>
Note			18 18 15 18 18 18	4 4 5 5 10	igure A	1 CA 2 3 4 5 6	exp		ML SM SP-S SN SM-N ML SM	Brown silt Brown silt moist) Brown silt organi wet) Brown silt debris Brown silt debris Brown silt debris Brown silt Brown silt	with occas y fine to m c debris (v with trace soft, moist y fine sand (very loos a to coarse ional organ y fine to m with trace y fine to m with trace y fine to coarse ional organ y fine to m with trace	sional orga edium san very loose t e fine sand to wet) d with occs se, wet) e sand with nic debris (nedium san e sand (soft nedium san e sand (med oarse sand	hic debris (soft, d with occasional o loose, moist to and organic debris aional organic silt and very loose, wet) d (wet) 				B-1 (2.5-3)
\geq												Roring	B_1					
								_		Project:	9 01 5	Mo	xee City Shop	/ Forr	ner S	STP		

Project Number:

Moxee, Washington

0504-078-01

spokane: Date:3/27/14 Path:P:/00504078/01/GINT/050407801.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_GEOTECH_STANDARD

GEOENGINEERS

Figure A-11 Sheet 1 of 1

ſ	Start End Total Depth (ft) 16 Drilled 12/12/2013 12/12/2012 Depth (ft) 16 Surface Elevation (ft) Undetermined Vertical Datum									16.5 Logged By ERH Checked By JER Driller Environmental W Hammer					/est		Drilling Metho	Drilling Method Hollow-Stem Auger	
	Surfac Vertica	e Elev al Datu	ation	n (ft)		Unde	termine	ed			Hai Dat	mmer ta 140 ((lbs) / 30	(in) Drop	Drilli Equi	ng omen	t	Schramm T	300
	Eastin Northi	g (X) ng (Y)									Sy: Da	stem tum			<u>Grou</u> Date	indwa Measi	<u>ter</u> ured	Depth to Water (ft)	Elevation (ft)
	Notes	:																<u></u>	
ſ					FIEL	D DA	TA												
	Elevation (feet)	⊃ Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	Classification	M/ DES	ATERI/ CRIPT	AL ION	Moisture	Dry Density,	(bcf)	REMAR	KS
		-		18	0		1			ML		Brown silt with sand	(very soft	moist to wet)	_			B-2 (2.5-	3)
												-			-				,
		- - - - - - - - - - - - - - - - - - -								SM SP-SI	M	Brown silty fine to α (very loose, wet) - Brown fine to mediu	parse sand) Im sand wi	I with trace gravel					
		10 18 4 3 SP-S					ML		 occasional organ loose, moist to v Brown silt with sand 	nic debris vet) (medium	very loose to stiff, wet)	-							
I8_GEOTECH_STANDARD		-		18	7		5					~	_						
emplate:GEOENGINEERS8.GDT/GE		- 15 —		NR	14		6		<u></u>	SP-SI ML	M	Brown fine to mediu dense, wet) Brown silt with trace Near vertical fine to	m sand wi sand (stif medium s	th silt (medium	_				
s:3/27/14 Path:P:\0\0504078\01\GINT\050407801.GPJ DBTemplate/LibT	Notes: Please refer to Figure A-1 for an explanation of sy								anati	on of s	sym	bols. Log of E	Boring	B-2					
pokane: Date	GEOENGINEERS											Project: Moxee City Shop/ Former STP Project Location: Moxee, Washington Figure A-12							

Project Number:

0504-078-01

Figure A-12 Sheet 1 of 1

Drilled	Start d End 12/12/2013 Total 12/12/2013 Total Depth (ft) 16.5 Logged By Checked By Data ERH Depth Driller Driller Env Expl Expl Expl Expl Expl Expl Expl Expl													Environmer Exploration	ntal We is, Inc.	est		Drilling Method	Hollow-Ste	m Auger
Surface Vertica	e Elev I Datu	ation Im	n (ft)		Unde	termine	ed			Har Dat	immer ita	140 ((lbs) / 30	0 (in) Drop		Drilling Equip	g ment		Schramm	Т300
Easting Northin	g (X) ig (Y)									Sys Dat	rstem atum					<u>Grour</u> Date N	idwate leasure	<u>r</u> :d	Depth to Water (ft)	Elevation (ft)
Notes:																				
\bigcap				FIEL	D DA	ΔTA														
Elevation (feet)	⊃ Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		M/ DES	ATERI CRIP	AL TION		Moisture Content, %	Dry Density, (pcf)		REMA	RKS
	0-								ML		Brown silt (\	ery soft	moist)							
	-		18	1		1				-	-					_				
	5 18 0 2 CA ML Brown silt with trace sand and occasional organi debris above 7 feet (very soft to medium stift moist to wet)												rganic n stiff,	_			B-3 (5	-6)		
										-	_					-				
	10 —		18	4		4					_					_				
	-		18	3		5				-	_					-				
	15 -		18	4		6				-	_					_				
Not	Notes: Please refer to Figure A-1 for an explanation of symbols.																			
											Log	of E	oring	g B-3						

GEOENGINEERS 🕖

Project:Moxee City Shop/ Former STPProject Location:Moxee, WashingtonProject Number:0504-078-01

Figure A-13 Sheet 1 of 1

ſ	Drillec	12/1	<u>Start</u> 2/2013	<u>E</u> 12/1	<u>nd</u> 2/2013	Total Depth	n (ft)	14		Logged By ERH Checked By JER	Driller Explorations,	l We Inc.	st		Drilling Method Holl	ow-Stem Auger
	Hamm Data	er		140 (lbs) / 30) (in) D	rop		Dr Ec	illing So uipment So	chramm T300		A 2 (in)	well wa	s installed on 12	/12/2013 to a depth of
,	Surfac Vertica	e Elev al Datu	ation (fi m	t)	10 NA	25.64 VD88			Tc Ele	p of Casing evation (ft)	1025.31		Ground	water	Depth to	
	Eastin Northii	g (X) ng (Y)							Ho Da	orizontal atum			Date Me	asured	<u>Water (ft</u>) <u>Elevation (ft)</u>
l	Notes	:														
ſ				FIE	LD DA	TA									W	ELL LOG
	Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Samp	Sample Name	Water Level	Graphic Log	Classification	M/ DES	ATERIAL CRIPTION		Moisture Content, %	Dry Density, (pcf)		
-	10 ¹⁵	0 — - -	16	2		1			SM	Brown silty fine sand	I (very loose, moist to wet)	-	-		1.5-	Concrete 3/8-inch Bentonite Chips 2-inch, inside-diameter Schedule PVC Well Casing
-	1020	5 —	18	1		2 CA			ML SM	Brown silt with sand Brown silty fine to co organic debris (v		-			10/20 Colorado Silica Sand Filter Pack	
H_MELL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- - 10 —	18	4		4			ML SM ML SM ML	Brown-gray silt with (very soft, wet) Brown-gray silty fine organic debris (v Brown silt with trace (soft, wet) Brown silty fine to m Brown silt with sand	sand with occasional ery loose) sand and organic debris edium sand (loose, wet) (soft, wet)					2-inch, inside-diameter, Schedule 40 0.010-inch-slot PVC Well Screen
J DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_GEOTEC		-	18	6		5		T.	<u>SM</u> ML	Brown silty fine to m Brown silt with sand	edium sand (loose, wet) (medium stiff, wet)				12.5	
te:3/27/14 Path:P:/0/0504078/01/GINT/050407801.GP.	Notes: Please refer to Figure A-1 for an explanation of symbols. Log of Monitoring Well MW-5															
iokane: Da	C	BE	Ъ	NG	INE	ER	S	\int	I	Project Locatio	n: Moxee, Washi	ngto	n			Figure A-14

Log of Monitoring Well MW-5

Project: Moxee City Shop/ Former STP Project Location: Moxee, Washington Project Number: 0504-078-01

Figure A-14 Sheet 1 of 1

0504-078-01

Project Number:

Figure A-15

Sheet 1 of 1

APPENDIX B CHEMICAL ANALYTICAL LABORATORY REPORTS

Samples

Chain-of-custody procedures were followed during transport of the field samples to TestAmerica Laboratories, Inc. located in Spokane, Washington. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control records are included in this appendix.

Field Duplicate

During the December 2013 groundwater sampling event, a duplicate sample was collected from MW-2 and designated Duplicate-1-123013. Gasoline-range petroleum hydrocarbons (GRPH), benzene, toluene, ethylbenzene, and total xylenes (BTEX), hexane, naphthalenes, and methane were not detected greater than respective method reporting limits in both samples. The relative percent differences (RPDs) between the concentrations reported for the primary (X₁) and duplicate (X₂) samples were calculated using the following equation if both positive concentrations were more than 5 times the reporting limit:

$$RPD = \frac{\left|X_1 - X_2\right|}{(X_1 + X_2)/2} *100$$

The resulting RPDs calculated using this method are summarized below:

- Manganese 1.62 percent.
- Nitrate 10.1 percent.
- Sulfate 7.09 percent.
- Total Alkalinity 1.87 percent.

RPD goals for this assessment, as specified in the project Work Plan, are 30 percent in groundwater, unless the duplicate sample values are within 5 times the reporting limit. The RPD values specified above are within acceptable limits.

Analytical Data Review

The laboratory maintains an internal quality assurance/quality control (QA/QC) program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike (MS) recoveries, matrix spike duplicate (MSD) recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory noted the following exceptions in the laboratory report dated December 2, 2013 and associated with direct-push soil borings:

- Submitted groundwater samples from DP-6 and DP-8 contained suspended sediment and pH measurements were outside of method requirements for Method NWTPH-Gx and Environmental Protection Agency (EPA) Method 8260C.
- The calibration verification recoveries were above the method control limits for nitrate and sulfate in laboratory QC samples 13K0062-MS1, 130062-MSD1, and 130062-DUP1. However, the calibration verification recoveries associated with field samples were within method control limits.

The laboratory noted the following exceptions in the laboratory report dated December 9, 2013 and associated with direct-push soil borings:

- Sediment was present within samples DP-6-111413, DP-8-111413 and DP-12-111413 and whole bottle extraction was not performed.
- The nitrate analysis associated with sample DP-13-111413 was performed outside of the method-specified hold time.
- The MS recovery for sulfate associated with laboratory QC sample 580-41353—1 MS was lower than laboratory control limits.

The laboratory noted the following exception in the laboratory report dated December 17, 2013 and associated with hollow-stem auger soil borings:

The concentration of nitrate in laboratory QC samples 13L0079-MS1 and 13L0079-MSD1 exceeded the calibration range and the laboratory reported that the resulting sample results (for these specific QC samples) are semi-quantitative.

The laboratory noted the following exceptions in the laboratory report dated January 2, 2014 and associated with hollow-stem auger soil borings:

- Sample MW-6(5-5.5) was not collected using (EPA) 5035 sampling methods. It was submitted using standard laboratory-supplied sample bottles filled to minimize headspace.
- The surrogate recoveries were below acceptance limits for surrogate 2-FBP associated with EPA 8270D analyses for samples MW-5(5-5.5) and MW-6(5-5.5). Recoveries of the other method surrogates were within acceptance limits.

The laboratory noted the following exception in the laboratory report dated January 28, 2014 and associated with groundwater samples from project monitoring wells:

Manganese was detected in the method blank for analyses by EPA Method 200.7. However, reported manganese concentrations for potentially-impacted field samples (collected from MW-1, MW-2, MW-5, MW-6 and Duplicate-1-123013) were more than 10 times the concentration detected in the method blank.

Analytical Data Review Summary

We reviewed the laboratory internal quality assurance/quality control (QA/QC) in the context of data quality goals. Based on our review, in our opinion, the quality of the analytical data is

acceptable for the intended use. However, the precision of the data should be viewed in the context of the data quality exceptions listed above.

April 3, 2014 | Page B-3 File No. 0504-078-01

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SWK0091

Client Project/Site: 0504-078-01 Client Project Description: Moxee City Shop

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Jon Rudders

tandi

Authorized for release by: 12/2/2013 1:59:44 PM Randee Decker, Project Manager

(509)924-9200 Randee.Decker@testamericainc.com

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The

Visit us at: www.testamericainc.com

Expert

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

1
2
3
4
5
7
10
12
13
14

Client: Geo Engineers - Spokane Project/Site: 0504-078-01 TestAmerica Job ID: SWK0091

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
SWK0091-01	DP-6-111413	Water	11/14/13 09:38	11/15/13 10:00	
SWK0091-02	DP-8-111413	Water	11/14/13 12:00	11/15/13 10:00	
SWK0091-03	DP-9-111413	Water	11/14/13 13:16	11/15/13 10:00	5
SWK0091-04	DP-10-111413	Water	11/14/13 13:44	11/15/13 10:00	J
SWK0091-05	DP-11-111413	Water	11/14/13 15:33	11/15/13 10:00	
SWK0091-06	Trip Blank	Water	11/13/13 00:00	11/15/13 10:00	
					8
					9

Duplicate error ratio (normalized absolute difference)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Dilution Factor

Decision level concentration

Minimum detectable activity

Minimum detectable concentration

Estimated Detection Limit

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Calculated

Quality Control

Relative error ratio

Qualifiers

DER

DLC

MDA

EDL

MDC

MDL

ML

NC

ND PQL

QC

RER

RL

RPD

TEF

TEQ

Dil Fac

DL, RA, RE, IN

GCMS Volati	les	Л
Qualifier	Qualifier Description	4
A-01a	The sample contained a significant amount of sediment. As a result the pH was outside of method requirements. The proper container and preservative was used.	5
Wet Chem		
Qualifier	Qualifier Description	
A-01	Calibration Verification recovery was above the method control limit for this analyte.	7
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	9
%R	Percent Recovery	
CNF	Contains no Free Liquid	

TestAmerica Spokane

Client Sample ID: DP-6-111413

Lab Sample ID: SWK0091-01

Date Collected: 11/14/13 09:38 Date Received: 11/15/13 10:00 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1340	A-01a	90.0		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
Benzene	0.530	A-01a	0.200		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
Toluene	ND	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
Ethylbenzene	ND	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
m,p-Xylene	33.4	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
o-Xylene	29.8	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
Xylenes (total)	63.2	A-01a	1.50		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
Hexane	ND	A-01a	1.00		ug/l		11/19/13 13:41	11/19/13 16:45	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98.1	A-01a	71.2 - 143				11/19/13 13:41	11/19/13 16:45	1.00
1,2-dichloroethane-d4	96.9	A-01a	70 _ 140				11/19/13 13:41	11/19/13 16:45	1.00
Toluene-d8	103	A-01a	74.1 _ 135				11/19/13 13:41	11/19/13 16:45	1.00
4-bromofluorobenzene	97.1	A-01a	68.7 - 141				11/19/13 13:41	11/19/13 16:45	1.00
- Method: EPA 300.0 - Anions by	EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac

0.200

5.00

mg/l

mg/l

Client Sample ID: DP-8-111413

Lab Sample ID: SWK0091-02 Matrix: Water

11/15/13 06:32

11/19/13 11:31

Date Collected: 11/14/13 12:00 Date Received: 11/15/13 10:00

Nitrate-Nitrogen

Sulfate

11/15/13 10:12

11/19/13 13:04

1.00

10.0

Method: EPA 8260C - NWTPH-Gx and Volatile Or	rganic Compounds by EPA Method 8260C
--	--------------------------------------

ND

105

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	A-01a	90.0		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
Benzene	ND	A-01a	0.200		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
Toluene	ND	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
Ethylbenzene	ND	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
m,p-Xylene	ND	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
o-Xylene	ND	A-01a	0.500		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
Xylenes (total)	ND	A-01a	1.50		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
Hexane	ND	A-01a	1.00		ug/l		11/19/13 13:41	11/19/13 17:08	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.5	A-01a	71.2 - 143				11/19/13 13:41	11/19/13 17:08	1.00
1,2-dichloroethane-d4	96.1	A-01a	70 - 140				11/19/13 13:41	11/19/13 17:08	1.00
Toluene-d8	104	A-01a	74.1 - 135				11/19/13 13:41	11/19/13 17:08	1.00
4-bromofluorobenzene	101	A-01a	68.7 - 141				11/19/13 13:41	11/19/13 17:08	1.00
- Method: EPA 300.0 - Anions b	y EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	2.94		0.200		mg/l		11/15/13 06:32	11/15/13 12:28	1.00
Sulfate	96.2		5.00		mg/l		11/19/13 11:31	11/19/13 13:24	10.0

Client Sample Results

Toluene-d8

Dibromofluoromethane 1,2-dichloroethane-d4

4-bromofluorobenzene

TestAmerica Job ID: SWK0091

5

Project/Site: 0504-078-01									
Client Sample ID: DP-9-111413 Date Collected: 11/14/13 13:16 Date Received: 11/15/13 10:00							Lab Samp	ole ID: SWK0 Matrix	091-03 k: Water
Method: EPA 300.0 - Anions by EPA	Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	99.7		2.00		mg/l		11/15/13 06:32	11/15/13 15:28	10.0
Sulfate	251		5.00		mg/l		11/15/13 06:32	11/15/13 15:28	10.0
Client Sample ID: DP-10-11141	3						Lab Samp	ole ID: SWK0	091-04
Date Collected: 11/14/13 13:44								Matrix	k: Water
Date Received: 11/15/13 10:00									
Method: EPA 300.0 - Anions by EPA	Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	263		20.0		mg/l		11/15/13 06:32	11/15/13 15:46	100
Sulfate	361		50.0		mg/l		11/15/13 06:32	11/15/13 15:46	100
Client Sample ID: DP-11-11141	3						Lab Sam	ole ID: SWK0	091-05
Date Collected: 11/14/13 15:33							Lab Gamp	Matrix	v: Wator
Date Received: 11/15/13 10:00								Watriz	(. water
Method: EPA 300.0 - Anions by EPA	Method 30	0.0				_			
Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	38.5		2.00		mg/i		11/15/13 06:32	11/15/13 16:05	10.0
Sulfate	192		5.00		mg/i		11/15/13 06:32	11/15/13 16:05	10.0
Client Sample ID: Trip Blank							Lab Samp	ole ID: SWK0	091-06
Date Collected: 11/13/13 00:00								Matrix	k: Water
Date Received: 11/15/13 10:00									
Method: EPA 8260C - NWTPH-Gx ar	nd Volatile (Organic Co	mpounds by	EPA Metho	d 8260C				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		90.0		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
Benzene	ND		0.200		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
Toluene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
Ethylbenzene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
m,p-Xylene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
o-Xylene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
Xylenes (total)	ND		1.50		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
Hexane	ND		1.00		ug/l		11/19/13 13:41	11/19/13 17:32	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.4		71.2 - 143				11/19/13 13:41	11/19/13 17:32	1.00

11/19/13 13:41

11/19/13 13:41

11/19/13 13:41

11/19/13 17:32

11/19/13 17:32

11/19/13 17:32

1.00

1.00

1.00

70 - 140

74.1 - 135

68.7 - 141

98.1

99.5

99.8

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total

SOC Client Sample ID: Method Blank

5 6

Lab Sample ID: 13K0075-BLK1 Matrix: Water

Matrix: Water							_	Prep Typ	e: Total
Analysis Batch: 13K0075	Blank	Blank					F	rep Batch: 13K	.0075_P
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	·	90.0		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
Benzene	ND		0.200		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
Toluene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
Ethylbenzene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
m,p-Xylene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
o-Xylene	ND		0.500		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
Xylenes (total)	ND		1.50		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
Hexane	ND		1.00		ug/l		11/19/13 13:41	11/19/13 14:24	1.00
	Blank	Blank							

	Dialik	Dialik				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		71.2 - 143	11/19/13 13:41	11/19/13 14:24	1.00
Toluene-d8	99.8		74.1 _ 135	11/19/13 13:41	11/19/13 14:24	1.00
4-bromofluorobenzene	102		68.7 - 141	11/19/13 13:41	11/19/13 14:24	1.00

Lab Sample ID: 13K0075-BS1

Matrix: Water Analysis Batch: 13K0075

Analysis Batch: 13K0075							Prep Batch: 13K0075_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	10.0	11.4		ug/l		114	80 - 128
Benzene	10.0	11.1		ug/l		111	80 - 122
Toluene	10.0	11.1		ug/l		111	80 - 123
Ethylbenzene	10.0	11.6		ug/l		116	80 - 120
m,p-Xylene	10.0	11.6		ug/l		116	80 - 120
o-Xylene	10.0	11.8		ug/l		118	80 - 120
Naphthalene	10.0	10.3		ug/l		103	62.8 - 132
Xylenes (total)	20.0	23.4		ug/l		117	80 - 120
Hexane	10.0	10.8		ug/l		108	70 - 130

	LCS		
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane			71.2 - 143
Toluene-d8	102		74.1 - 135
4-bromofluorobenzene	102		68.7 - 141

Lab Sample ID: 13K0075-BS2 Matrix: Water

Analysis Batch: 13K0075

Analysis Batch: 13K0075									Prep Batc	h: 13K0075_P
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Hydrocarbons			1000	1010		ug/l		101	80 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	98.2		71.2 - 143							
Toluene-d8	102		74.1 - 135							
4-bromofluorobenzene	101		68.7 - 141							

Prep Type: Total

RL

0.200

0.500

MDL Unit

mg/l

mg/l

D

Prepared

11/15/13 06:32

11/15/13 06:32

Lab Sample ID: 13K0062-BLK1

Analysis Batch: 13K0062

Matrix: Water

Nitrate-Nitrogen

Matrix: Water

Analyte

Sulfate

Method: EPA 300.0 - Anions by EPA Method 300.0

Blank Blank Result Qualifier

ND

ND

Client Sample ID: Method Blank

Analyzed

11/15/13 13:10

11/15/13 13:10

6

Prep Type: Total Prep Batch: 13K0062_P Dil Fac 1.00 1.00 **Client Sample ID: Lab Control Sample**

Prep	Type: Total
Prep Batch:	13K0062_P
% Bee	

Client Sample ID: Matrix Spike

Prep Type: Total

	Бріке	LUS	LUS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Nitrate-Nitrogen	5.00	4.89	mg/l		97.8	90 - 110	
Sulfate	12.5	12.2	mg/l		97.6	90 - 110	
—							

Lab Sample ID: 13K0062-MS1

Lab Sample ID: 13K0062-BS1

Analysis Batch: 13K0062

Matrix: Water Analysis Batch: 13K0062

Analysis Batch: 13K0062									Prep Batc	h: 13K0062_P
	Sample	Sample	Spike	Matrix Spike	ike Matrix Spike				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate-Nitrogen	0.510		5.00	5.79	A-01	mg/l		106	80 - 120	
Sulfate	28.7		12.5	40.2	A-01	mg/l		91.4	80 - 120	

ab Sample ID: 13K0062-MSD1							Client S	ample II	D: Matrix Sp	oike Dup	olicate
Matrix: Water									Pre	p Type:	Total
Analysis Batch: 13K0062									Prep Batc	h: 13K0	062_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate-Nitrogen	0.510		5.00	5.67	A-01	mg/l		103	80 - 120	2.09	12.1
Sulfate	28.7		12.5	40.0	A-01	ma/l		90.1	80 - 120	0.424	10

Lab Sample ID: 13K0062-DUP1 Matrix: Water Analysis Batch: 13K0062	Lab Sample ID: 13K0062-DUP1 Matrix: Water Analysis Batch: 13K0062						Client Sample ID: Dup Prep Type Prep Batch: 13K0	olicate : Total 062 P
-	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Nitrate-Nitrogen	0.510		ND	A-01	mg/l			13.1
Sulfate	28.7		31.2	A-01	mg/l		8.30	15.7

Lab Sample ID: 13K0074-BLK1 Matrix: Water Analysis Batch: 13K0074							Client Sa F	mple ID: Metho Prep Typ Prep Batch: 13K	d Blank e: Tota 0074 P
	Blank	Blank							_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND		0.500		mg/l		11/19/13 11:31	11/19/13 16:01	1.00
Lab Sample ID: 13K0074-BS1						c	lient Sample I	D: Lab Control	Sample
Matrix: Water								Prep Typ	e: Tota
Analysis Batch: 13K0074			Spike	LCS LCS			F	Prep Batch: 13K %Rec.	0074_P

Analyte Added Result Qualifier Unit %Rec Limits D Sulfate 12.5 11.8 mg/l 94.6 90 - 110

Method: EPA 300.0 - Anions by EPA Method 300.0 (Continued)

Lab Sample ID: 13K0074-MS1 Matrix: Water Analysis Batch: 13K0074								Client	Sample ID Pre Prep Batc	: DP-8-1 ep Type: h: 13K0	11413 : Total 074_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sulfate	96.2		125	217		mg/l		96.7	80 - 120		
Lab Sample ID: 13K0074-MSD	1							Client	Sample ID	: DP-8-1	11413
Matrix: Water									Pre	ep Type:	: Total
Analysis Batch: 13K0074									Prep Batc	h: 13K0	074_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	96.2		125	215		mg/l		95.4	80 - 120	0.786	10
Lab Sample ID: 13K0074-DUP	1							Client	Sample ID	: DP-8-1	11413
Matrix: Water									Pre	ep Type:	: Total
Analysis Batch: 13K0074									Prep Batc	h: 13K0	074_P
-	Sample	Sample		Duplicate	Duplicate						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Culfata					-					0.101	

TestAmerica Spokane

Lab Sample ID: SWK0091-01

Matrix: Water

Matrix: Water

2 3 4 5 6 7 8

Date Collected: 11/14/13 09:38 Date Received: 11/15/13 10:00

Client Sample ID: DP-6-111413

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	13K0075_P	11/19/13 13:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	13K0075	11/19/13 16:45	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13K0062_P	11/15/13 06:32	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	13K0062	11/15/13 10:12	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13K0074_P	11/19/13 11:31	CBW	TAL SPK
Total	Analysis	EPA 300.0		10.0	13K0074	11/19/13 13:04	CBW	TAL SPK

Client Sample ID: DP-8-111413 Date Collected: 11/14/13 12:00

Date Received: 11/15/13 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	13K0075_P	11/19/13 13:41	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	13K0075	11/19/13 17:08	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13K0062_P	11/15/13 06:32	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	13K0062	11/15/13 12:28	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13K0074_P	11/19/13 11:31	CBW	TAL SPK
Total	Analysis	EPA 300.0		10.0	13K0074	11/19/13 13:24	CBW	TAL SPK

Client Sample ID: DP-9-111413

Date Collected: 11/14/13 13:16

Date Received: 11/15/13 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	13K0062_P	11/15/13 06:32	CBW	TAL SPK
Total	Analysis	EPA 300.0		10.0	13K0062	11/15/13 15:28	CBW	TAL SPK

Client Sample ID: DP-10-111413

Date Collected: 11/14/13 13:44

Date Received: 11/15/13 10:00	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	13K0062_P	11/15/13 06:32	CBW	TAL SPK
Total	Analysis	EPA 300.0		100	13K0062	11/15/13 15:46	CBW	TAL SPK

Client Sample ID: DP-11-111413

Date Collected: 11/14/13 15:33

Date	Received:	11/15/13	10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	13K0062_P	11/15/13 06:32	CBW	TAL SPK
Total	Analysis	EPA 300.0		10.0	13K0062	11/15/13 16:05	CBW	TAL SPK

TestAmerica Spokane

TAL SPK

Lab Sample ID: SWK0091-02

Lab Sample ID: SWK0091-03

Matrix: Water

Lab Sample ID: SWK0091-04

Lab Sample ID: SWK0091-05

Matrix: Water

Matrix: Water
Client Sample ID: Trip Blank

2 3 4 5 6 7 8 9 10

Lab Sample ID: SWK0091-06

Date Collected	Jate Collected: 11/13/13 00:00										
Date Received: 11/15/13 10:00											
	Batch	Batch		Dilution	Batch	Prepared					
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab			
Total	Prep	GC/MS Volatiles		1.00	13K0075_P	11/19/13 13:41	CBW	TAL SPK			
Total	Analysis	EPA 8260C		1.00	13K0075	11/19/13 17:32	CBW	TAL SPK			

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-14

Client: Geo Engineers - Spokane Project/Site: 0504-078-01

5
8
9

Method	Method Description	Protocol	Laboratory
EPA 8260C	NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C		TAL SPK
EPA 300.0	Anions by EPA Method 300.0		TAL SPK

Protocol References:

Laboratory References: TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Snite 400, Bothell, WA 98011-8244 5755 8Th Street East, Tacoma, Wa 98424 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 253-922-2310 FAX 922-5047 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

						C	HAI	N OF	CUSI	FOD	Y REI	PORT	I			W	ork O	rder #	SWKG	AI	
	CLIENT: GEORIGIA	reers					INVOI	INVOICE TO: JON TWOODAS							TURNAROUND REQUEST						
	REPORT TO: JON RUDPOS ADDRESS: 523 E ZNO PARE SPOLLANE WA 2920 Z										[in Business Days * Organic & Inorganic Analyses 7 5 4 3 2 1 <1									
	PROJECT NAME: MOVEE	CITY SHOR		1			[P.O. NU	MBER:	PR	ESERVA	TIVE						15				1
	DECT NUMBER:			·		1		1				1	<u> </u>				sti	الت ا	لنسالتال	<u></u>	1
	PROJECT NUMBER: 0) 64 -	0-18-01					,		REQUE	STED A	NALYSES	S		•	I		0	THER	Specify:		
	SAMPLED BY:			28	۲ å	200	<u> </u>	Sile Sile								* 7	urnaround	Requests le	ss than standard n	uay incur Ru	ush Charge
	CLIENT SAMPLE IDENTIFICATION	SAMPLIN DA TE /TIN	G 1E	NITA CPa 3	(J) 15	Elege Elege	STCX Dr.B	Star B								N (AATRIX W, S, O)	# OF CONT.	LOCATI	ON/ NTS	TA WO ID
Pag	1 DP-6- 111413	111413	0938	χ	X	X	X	X									ω		i		
e 14	2 DP-8-111413		1200	X	X	X	X	X											ļ ļ		<u></u>
of 15	3 DP-9 - 11141 3		1316	X	χ_	X	X	X					-		·						ļ
0.	1 DP-10-111413		1344	X	χ_	X	X	X		 											<u> </u>
	<u>s pp-11 -111413</u>	V	1533	X	X	χ	K	X													<u> </u>
	6				-		-			<u> </u>								-			<u> </u>
	7							 													
	8				 																<u> </u>
	9												<u> </u>								
	10 RELEASED BY: 1 1 44	6-976		<u> </u>	 		DATE	 :]] {.	14313	3	RECEIV	ED BY:	<u> </u>	 ,						DATE: []-	14-13
	PRINT NAME: 5 Loch	ven	FIRM:	52	ļ		TIME	<u>j</u> G	37)		PRINTN	IAME Cat		pliter	í.		FIRM	Testh	menia	TIME: 10.	00
	PRINT NAME:		FIRM:				TIME	:			PRINT	IAME:					FIRM	l:		TIME:	
12/:	ADDITIONAL REMARKS:																		TEMP:	PAGE	/ OF
2/2																				TAL-1	000 (0212

10

ł

TestAmerica Spokane Sample Receipt Form

Work Order #: SWK6091 c	lient GeoEngrw	urs			Project: Mox-ep
Date/Time Received: 11-15-13	<u> </u>	BES			
Samples Delivered By:	Courier Client	Other	·		······
List Air Bill Number(s) or Attach a photocopy of	of the Air Bill:	4		Transfer the second	
Receipt Phase		Yes	No	NA	Comments
Were samples received in a cooler:		Ś			
Custody Seals are present and intact:					
Are CoC documents present:		\geq			
Necessary signatures:		\succ			
Thermal Preservation Type: Blue Ice	Gel Ice 🛣 🕅 Gel Ice	Dry Ice	None	_Other:_	
Temperature: 21 °C Thermometer ((Circle one Serial #12	2208348 Ke	eyring IR	Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6
Temperature out of range: Not enough ice	e _ice melted _v	v/in 4hrs of	collection]Other:
Log-in Phase Date/Time: \\-15.12 (0.17) By	<u>, Ch</u>	Yes	Na	NA	Comments
Are sample labels affixed and completed for e	ach container	<u> </u>			
Samples containers were received intact:		<u>></u>			
Do sample IDs match the CoC	······································	\geq			
Appropriate sample containers were received	for tests requested	\langle			
Are sample volumes adequate for tests reques	sted				
Appropriate preservatives were used for the te	ests requested	\sim		·····	and the
pH of inorganic samples checked and is within	n method specification	γ			
Are VOC samples free of bubbles >6mm (1/4"	' diameter)	\mathcal{P}			
Are dissolved parameters field filtered				X	
Do any samples need to be filtered or preserve	ed by the lab			\succ	
Does this project require quick turnaround ana	alysis		Q		·
Are there any short hold time tests (see chart t	below)				Nitrate
Are any samples within 2 days of or past expire	ation		<u> </u>		
Was the CoC scanned		\searrow			· · · · · · ·
Were there Non-conformance issues at login			<u>)</u>		
If yes, was a CAR generated #				<u> </u>	3

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

ł

Form No. SP-FORM-SPL-002 12 December 2012

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SWK0101

Client Project/Site: 0504-078-01 Client Project Description: Moxee City Shop

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Jon Rudders

tandi

Authorized for release by: 12/9/2013 9:53:39 AM Randee Decker, Project Manager

(509)924-9200 Randee.Decker@testamericainc.com

Review your project results through TOTOLACCESS Have a Question?

The

Expert

..... Links

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	10
Chronicle	16
Certification Summary	19
Method Summary	20
Chain of Custody	21

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-078-01 TestAmerica Job ID: SWK0101

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SWK0101-01	DP-6(1.5-2.5)	Soil	11/14/13 08:50	11/18/13 14:20
SWK0101-05	DP-7(1-1.8)	Soil	11/14/13 10:45	11/18/13 14:20
SWK0101-09	DP-8(1-1.8)	Soil	11/14/13 11:30	11/18/13 14:20
SWK0101-11	DP-9(1-2)	Soil	11/14/13 12:25	11/18/13 14:20
SWK0101-15	DP-10(1.3-2)	Soil	11/14/13 13:00	11/18/13 14:20
SWK0101-19	DP-11(2-2.5)	Soil	11/14/13 14:45	11/18/13 14:20
SWK0101-23	DP-12(1-2)	Soil	11/14/13 15:15	11/18/13 14:20
SWK0101-27	DP-13(1-2)	Soil	11/14/13 16:50	11/18/13 14:20
SWK0101-31	DP-14(1-2)	Soil	11/14/13 17:20	11/18/13 14:20
SWK0101-35	DP-6-111413	Water	11/14/13 09:38	11/18/13 14:20
SWK0101-37	DP-8-111413	Water	11/14/13 12:00	11/18/13 14:20
SWK0101-41	DP-12-111413	Water	11/14/13 16:14	11/18/13 14:20
SWK0101-43	Trip Blank-Water	Water	11/07/13 00:00	11/18/13 14:20
SWK0101-46	DP-13-111413	Water	11/14/13 17:14	11/18/13 14:20

Qualifiers

Semivolatile	es	
Qualifier	Qualifier Description	2
A-01	whole-bottle extraction not performed	
S6	Sediment present.	÷
General Ch	nemistry	
Qualifier	Qualifier Description	
F	MS/MSD Recovery and/or RPD exceeds the control limits	7
Wet Chem		
Qualifier	Qualifier Description	3
H3	Sample was received and analyzed past holding time.	
		9
Glossary		4

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Date Collected: 11/14/13 08:50

Date Received: 11/18/13 14:20

Client Sample ID: DP-6(1.5-2.5)

Lab Sample ID: SWK0101-01 Matrix: Soil

Percent Solids: 79.9

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		6.72		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
Benzene	ND		0.00672		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
Ethylbenzene	ND		0.134		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
Toluene	ND		0.134		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
o-Xylene	ND		0.269		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
m,p-Xylene	ND		0.537		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
Hexane	ND		0.134		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
Xylenes (total)	ND		2.02		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:08	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		42.4 - 163				11/20/13 08:21	11/20/13 20:08	1.00
1,2-dichloroethane-d4	99.9		50 - 150				11/20/13 08:21	11/20/13 20:08	1.00
Toluene-d8	96.1		45.8 - 155				11/20/13 08:21	11/20/13 20:08	1.00
4-bromofluorobenzene	102		41.5 - 162				11/20/13 08:21	11/20/13 20:08	1.00

Method: EPA 8270D - Polynuclear	Aromatic Co	mpounds	by GC/MS with S	Selected	Ion Monito	ring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0121		mg/kg dry	¢	11/26/13 06:27	12/04/13 10:02	1.00
2-Methylnaphthalene	ND		0.0121		mg/kg dry	¢	11/26/13 06:27	12/04/13 10:02	1.00
1-Methylnaphthalene	ND		0.0121		mg/kg dry	¢	11/26/13 06:27	12/04/13 10:02	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	105		53.2 - 137				11/26/13 06:27	12/04/13 10:02	1.00

Client Sample ID: DP-7(1-1.8)

Date Collected: 11/14/13 10:45

Date Received: 11/18/13 14:20

Lab Sample ID: SWK0101-05

Matrix: Soil

Percent Solids: 82.2

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C												
Analyte	Result	Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac			
Gasoline Range Hydrocarbons	ND		6.25	r	mg/kg dry	_ ☆	11/20/13 08:21	11/20/13 20:32	1.00			
Benzene	ND		0.00625	r	mg/kg dry	₽	11/20/13 08:21	11/20/13 20:32	1.00			
Ethylbenzene	ND		0.125	r	mg/kg dry	¢	11/20/13 08:21	11/20/13 20:32	1.00			
Toluene	ND		0.125	r	mg/kg dry	¢	11/20/13 08:21	11/20/13 20:32	1.00			
o-Xylene	ND		0.250	r	mg/kg dry	☆	11/20/13 08:21	11/20/13 20:32	1.00			
m,p-Xylene	ND		0.500	r	mg/kg dry	☆	11/20/13 08:21	11/20/13 20:32	1.00			
Hexane	ND		0.125	r	mg/kg dry	¢	11/20/13 08:21	11/20/13 20:32	1.00			
Xylenes (total)	ND		1.87	r	mg/kg dry	☆	11/20/13 08:21	11/20/13 20:32	1.00			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
Dibromofluoromethane	101		42.4 - 163				11/20/13 08:21	11/20/13 20:32	1.00			
1,2-dichloroethane-d4	98.8		50 - 150				11/20/13 08:21	11/20/13 20:32	1.00			
Toluene-d8	97.9		45.8 - 155				11/20/13 08:21	11/20/13 20:32	1.00			
4-bromofluorobenzene	102		41.5 - 162				11/20/13 08:21	11/20/13 20:32	1.00			

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0119		mg/kg dry	<u> </u>	11/26/13 06:27	12/04/13 10:28	1.00
2-Methylnaphthalene	ND		0.0119		mg/kg dry	¢	11/26/13 06:27	12/04/13 10:28	1.00
1-Methylnaphthalene	ND		0.0119		mg/kg dry	¢	11/26/13 06:27	12/04/13 10:28	1.00

Limits

53.2 - 137

%Recovery Qualifier

112

Date Collected: 11/14/13 10:45

Date Received: 11/18/13 14:20

Surrogate

Nitrobenzene-d5

Client Sample ID: DP-7(1-1.8)

Analyzed

12/04/13 10:28

Lab Sample ID: SWK0101-05

Prepared

11/26/13 06:27

_	
	5

Matrix: Soil

Dil Fac

1.00

Percent Solids: 82.2

Client Sample ID: DP-8(1-1.8)		Lab Sample ID: SWK0101-09							
Pate Collected: 11/14/13 11:30 Pate Received: 11/18/13 14:20								Mat Percent Soli	rix: Soil ds: 79.6
Method: EPA 8260C - NWTPH-Gx	and Volatile (Organic Co	mpounds by EP	PA Metho	d 8260C				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		6.94		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:55	1.00
Benzene	ND		0.00694		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:55	1.00
Ethylbenzene	ND		0.139		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:55	1.00
Toluene	ND		0.139		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:55	1.00
o-Xylene	ND		0.278		mg/kg dry	₽	11/20/13 08:21	11/20/13 20:55	1.00
m,p-Xylene	ND		0.555		mg/kg dry	₽	11/20/13 08:21	11/20/13 20:55	1.00
Hexane	ND		0.139		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:55	1.00
Xylenes (total)	ND		2.08		mg/kg dry	¢	11/20/13 08:21	11/20/13 20:55	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	103		42.4 - 163				11/20/13 08:21	11/20/13 20:55	1.00
1,2-dichloroethane-d4	98.1		50 - 150				11/20/13 08:21	11/20/13 20:55	1.00
Toluene-d8	99.7		45.8 - 155				11/20/13 08:21	11/20/13 20:55	1.00
4-bromofluorobenzene	105		41.5 - 162				11/20/13 08:21	11/20/13 20:55	1.00
- Method: EPA 8270D - Polynuclea	r Aromatic Co	mpounds	by GC/MS with S	Selected	Ion Monito	rina			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0125		mg/kg dry	₩ Å	11/26/13 06:27	12/04/13 10:53	1.00
2-Methylnaphthalene	ND		0.0125		mg/kg dry	₽	11/26/13 06:27	12/04/13 10:53	1.00
1-Methylnaphthalene	ND		0.0125		mg/kg dry	₽	11/26/13 06:27	12/04/13 10:53	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	112		53.2 - 137				11/26/13 06:27	12/04/13 10:53	1.00
lient Sample ID: DP-9(1-2)							Lab Sam	ole ID: SWK0	101-11
ate Collected: 11/14/13 12:25								Mat	rix: Soil
Date Received: 11/18/13 14:20								Percent Soli	ds: 99.1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	12		1.4		mg/Kg	— —		12/02/13 13:43	1
Quilfata	12		27		ma/Ka			12/02/13 13:43	1

Client Sample ID: DP-10(1.3-2)
Date Collected: 11/14/13 13:00

Date Received: 11/18/13 14:20	
-------------------------------	--

General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	47		1.6		mg/Kg	\$		12/02/13 14:27	1
Sulfate	49		2.8		mg/Kg			12/02/13 14:27	1

Lab Sample ID: SWK0101-15

Matrix: Soil

Percent Solids: 89.5

Client Sample Results

RL

1.6

2.9

Result Qualifier

ND

15

MDL Unit

mg/Kg

mg/Kg

D

Prepared

Date Collected: 11/14/13 14:45

Date Received: 11/18/13 14:20

General Chemistry - Soluble

Analyte

Sulfate

Nitrate as N

Client Sample ID: DP-11(2-2.5)

TestAmerica Job ID: SWK0101

Analyzed

12/02/13 14:41

12/02/13 14:41

Lab Sample ID: SWK0101-19

Matrix: Soil

Dil Fac

1

Percent Solids: 93.8

8 9 1(

Client Sample ID: DP-12(1-2) Lab Sample ID: SWK0101-23 Date Collected: 11/14/13 15:15 Matrix: Soil Date Received: 11/18/13 14:20 Percent Solids: 90.6 Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C Result Qualifier MDL Unit Analyte RL D Prepared Analyzed Dil Fac ND 5.01 11/20/13 08:21 11/20/13 21:18 Gasoline Range Hydrocarbons mg/kg dry 1 00 ND 0.00501 11/20/13 08:21 11/20/13 21.18 Benzene 1.00 mg/kg dry ö Ethylbenzene ND 0.100 11/20/13 08:21 11/20/13 21:18 1.00 mg/kg dry ₽ 11/20/13 08:21 11/20/13 21:18 Toluene ND 0 100 1 00 mg/kg dry Å o-Xylene ND 0.200 mg/kg dry 11/20/13 08:21 11/20/13 21:18 1.00 æ 11/20/13 08:21 11/20/13 21:18 m,p-Xylene ND 0.400 mg/kg dry 1.00 ₽ Hexane ND 0.100 mg/kg dry 11/20/13 08:21 11/20/13 21:18 1.00 Xylenes (total) ND 1.50 mg/kg dry 11/20/13 08:21 11/20/13 21:18 1.00 %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 11/20/13 21:18 Dibromofluoromethane 103 42.4 - 163 11/20/13 08:21 1.00 1,2-dichloroethane-d4 98.6 50 - 150 11/20/13 08:21 11/20/13 21:18 1.00 Toluene-d8 99.7 45.8 - 155 11/20/13 08:21 11/20/13 21:18 1.00 4-bromofluorobenzene 101 41.5 - 162 11/20/13 08:21 11/20/13 21:18 1.00 Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring Result Qualifier MDL Unit Dil Fac Analyte RL D Prepared Analyzed ☆ Naphthalene ND 0.0106 mg/kg dry 11/26/13 06:27 12/04/13 11:19 1.00 ġ 2-Methylnaphthalene ND 0.0106 mg/kg dry 11/26/13 06:27 12/04/13 11:19 1.00 1-Methylnaphthalene ND 0 0106 11/26/13 06:27 12/04/13 11.19 mg/kg dry 1.00 Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed Nitrobenzene-d5 108 53.2 - 137 11/26/13 06:27 12/04/13 11:19 1 00 Lab Sample ID: SWK0101-27 Client Sample ID: DP-13(1-2) Date Collected: 11/14/13 16:50 Matrix: Soil Date Received: 11/18/13 14:20 Percent Solids: 89.6 **General Chemistry - Soluble** Analyte Qualifier RL MDL D Dil Fac Result Unit Prepared Analyzed 1.5 mg/Kg ₽ 12/02/13 14:56 Nitrate as N 14 1 Sulfate 21 2.7 mg/Kg 12/02/13 14:56 1 Client Sample ID: DP-14(1-2) Lab Sample ID: SWK0101-31 Date Collected: 11/14/13 17:20 Matrix: Soil Date Received: 11/18/13 14:20 Percent Solids: 79.7 Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND	6.54	mg/kg dry	×	11/20/13 08:21	11/20/13 21:41	1.00
Benzene	ND	0.00654	mg/kg dry	₽	11/20/13 08:21	11/20/13 21:41	1.00
Ethylbenzene	ND	0.131	mg/kg dry	¢	11/20/13 08:21	11/20/13 21:41	1.00

5

Client Sample ID: DP-14(1-2)
Date Collected: 11/14/13 17:20

Date Received: 11/18/13 14:20

Lab Sample ID: SWK0101-31 Matrix: Soil

Percent Solids: 79.7 Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.131		mg/kg dry	\\\\	11/20/13 08:21	11/20/13 21:41	1.00
o-Xylene	ND		0.261		mg/kg dry	¢	11/20/13 08:21	11/20/13 21:41	1.00
m,p-Xylene	ND		0.523		mg/kg dry	₽	11/20/13 08:21	11/20/13 21:41	1.00
Hexane	ND		0.131		mg/kg dry	¢.	11/20/13 08:21	11/20/13 21:41	1.00
Xylenes (total)	ND		1.96		mg/kg dry	¢	11/20/13 08:21	11/20/13 21:41	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		42.4 - 163				11/20/13 08:21	11/20/13 21:41	1.00
1,2-dichloroethane-d4	101		50 - 150				11/20/13 08:21	11/20/13 21:41	1.00
Toluene-d8	99.9		45.8 - 155				11/20/13 08:21	11/20/13 21:41	1.00
4-bromofluorobenzene	102		41.5 - 162				11/20/13 08:21	11/20/13 21:41	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0124		mg/kg dry	¤	11/26/13 06:27	12/04/13 11:44	1.00
2-Methylnaphthalene	ND		0.0124		mg/kg dry	☆	11/26/13 06:27	12/04/13 11:44	1.00
1-Methylnaphthalene	ND		0.0124		mg/kg dry	¢	11/26/13 06:27	12/04/13 11:44	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	96.4		53.2 - 137				11/26/13 06:27	12/04/13 11:44	1.00

Client Sample ID: DP-6-111413

Date Collected: 11/14/13 09:38 Date Received: 11/18/13 14:20

Lab Sample ID: SWK0101-35 Matrix: Water

Lab Sample ID: SWK0101-37

Lab Sample ID: SWK0101-41

Matrix: Water

Matrix: Water

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Naphthalene	1.25	A-01 S6	0.0971		ug/l		11/19/13 09:06	11/19/13 19:21	1.00	
2-Methylnaphthalene	0.155	A-01 S6	0.0971		ug/l		11/19/13 09:06	11/19/13 19:21	1.00	
1-Methylnaphthalene	1.28	A-01 S6	0.0971		ug/l		11/19/13 09:06	11/19/13 19:21	1.00	

Client Sample ID: DP-8-111413

Date Collected: 11/14/13 12:00

Date Received: 11/18/13 14:20

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac RL D Naphthalene ND A-01 S6 0.107 ug/l 11/19/13 09:06 11/19/13 19:47 1.00 2-Methylnaphthalene ND A-01 S6 0.107 ug/l 11/19/13 09:06 11/19/13 19:47 1.00 1-Methylnaphthalene ND A-01 S6 0.107 ug/l 11/19/13 09:06 11/19/13 19:47 1.00

Client Sample ID: DP-12-111413

Date Collected: 11/14/13 16:14

Date Received: 11/18/13 14:20

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Naphthalene	ND	A-01 S6	0.0980		ug/l		11/19/13 09:06	11/19/13 20:38	1.00	
2-Methylnaphthalene	ND	A-01 S6	0.0980		ug/l		11/19/13 09:06	11/19/13 20:38	1.00	
1-Methylnaphthalene	ND	A-01 S6	0.0980		ug/l		11/19/13 09:06	11/19/13 20:38	1.00	

Client Sample Results

TestAmerica Job ID: SWK0101

5

100

Client Sample ID: DP-13-111413 Lab Sample ID: SWK0101-46 Date Collected: 11/14/13 17:14 Matrix: Water Date Received: 11/18/13 14:20 Method: EPA 300.0 - Anions by EPA Method 300.0 RL Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac 20.0 Nitrate-Nitrogen 158 H3 mg/l 11/20/13 10:40 11/20/13 11:51 50.0 11/20/13 10:40 11/20/13 11:51 100 Sulfate 329 mg/l

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 13K0079_P

5 6

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 13K0079-BLK1 Matrix: Soil							Client Sa	mple ID: Metho Prep Typ	d Blank e: Total
Analysis Balch. 13K0079	Blank	Blank						пер васси. Тэм	.00/9_P
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.00		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
Benzene	ND		0.00500		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
Ethylbenzene	ND		0.100		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
Toluene	ND		0.100		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
o-Xylene	ND		0.200		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
m,p-Xylene	ND		0.400		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
Hexane	ND		0.100		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
Xylenes (total)	ND		1.50		mg/kg wet		11/20/13 08:21	11/20/13 13:54	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		42.4 - 163				11/20/13 08:21	11/20/13 13:54	1.00
1,2-dichloroethane-d4	96.7		50 - 150				11/20/13 08:21	11/20/13 13:54	1.00
Toluene-d8	101		45.8 - 155				11/20/13 08:21	11/20/13 13:54	1.00
4-bromofluorobenzene	106		41.5 - 162				11/20/13 08:21	11/20/13 13:54	1.00

Lab Sample ID: 13K0079-BS1 Matrix: Soil

Analysis Batch: 13K0079

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	0.500	0.535		mg/kg wet		107	79 - 127	
Benzene	0.500	0.536		mg/kg wet		107	75.9 _ 123	
Ethylbenzene	0.500	0.530		mg/kg wet		106	80 - 120	
Toluene	0.500	0.527		mg/kg wet		105	77.3 - 126	
o-Xylene	0.500	0.576		mg/kg wet		115	80 - 120	
m,p-Xylene	0.500	0.555		mg/kg wet		111	80 - 120	
Naphthalene	0.500	0.515		mg/kg wet		103	58.8 - 130	
1,2-Dichloroethane (EDC)	0.500	0.551		mg/kg wet		110	60 - 140	
1,2-Dibromoethane	0.500	0.556		mg/kg wet		111	60 - 140	
Hexane	0.500	0.501		mg/kg wet		100	50 ₋ 150	
Xylenes (total)	1.00	1.13		mg/kg wet		113	50 ₋ 150	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	98.4		42.4 - 163
1,2-dichloroethane-d4	101		50 - 150
Toluene-d8	102		45.8 - 155
4-bromofluorobenzene	101		41.5 - 162

-										
Lab Sample ID: 13K0079-BS2						C	lien	t Sampl	e ID: Lab Co	ontrol Sample
Matrix: Soil									Pre	p Type: Total
Analysis Batch: 13K0079									Prep Batc	h: 13K0079_P
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Hydrocarbons			50.0	50.9		mg/kg wet		102	74.4 - 124	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	98.5		42.4 - 163							

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Limits

45.8 - 155

41.5 - 162

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monito

Blank Blank

50 - 150

LCS LCS

%Recovery Qualifier

96.9

100

105

Lab Sample ID: 13K0079-BS2

Lab Sample ID: 13K0071-BLK1

Analysis Batch: 13K0079

(Continued)

Matrix: Soil

Surrogate

Toluene-d8

1,2-dichloroethane-d4

4-bromofluorobenzene

Matrix: Water

Client Sample ID: Lab Control Sample

Client

2 3 4 5 6 7 8

ring	
Sample ID: Method Blank Pren Type: Total	ĺ

Prep Type: Total

Prep Batch: 13K0079_P

Analysis Batch: 13K0071											Prep Batch: 13	K0071_P
	Blank	Blank										
Analyte	Result	Qualifier	RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Naphthalene	ND		0.100			ug/l			11/1	9/13 09:06	5 11/19/13 13:47	1.00
2-Methylnaphthalene	ND		0.100			ug/l			11/1	9/13 09:06	6 11/19/13 13:47	1.00
1-Methylnaphthalene	ND		0.100			ug/l			11/1	9/13 09:06	6 11/19/13 13:47	1.00
Lab Sample ID: 13K0071-BS1								С	lient	Sample	ID: Lab Control	Sample
Matrix: Water											Prep Typ	e: Total
Analysis Batch: 13K0071											Prep Batch: 13	K0071_P
		Spil	ke	LCS	LCS						%Rec.	
Analyte		Adde	ed	Result	Quali	fier	Unit		D	%Rec	Limits	
Naphthalene		4.0	00	3.32			ug/l			83.0	27.8 - 143	

Lab Sample ID: 13K0121-BLK1 Matrix: Soil Analysis Batch: 13K0121

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 13K0121_P

	Dialik	DIAIIK							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
2-Methylnaphthalene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
1-Methylnaphthalene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Acenaphthylene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Acenaphthene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Fluorene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Phenanthrene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Anthracene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Fluoranthene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Pyrene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Benzo (a) anthracene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Chrysene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Benzo (b) fluoranthene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Benzo (k) fluoranthene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Benzo (a) pyrene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Dibenzo (a,h) anthracene	ND		0.00600		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00
Benzo (ghi) perylene	ND		0.0100		mg/kg wet		11/26/13 06:27	11/26/13 10:24	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Blank Blank

%Recovery Qualifier

99.8

87.8

95.4

Lab Sample ID: 13K0121-BLK1

Analysis Batch: 13K0121

(Continued)

Matrix: Soil

Surrogate

2-FBP

Nitrobenzene-d5

p-Terphenyl-d14

Client Sample ID: Method Blank

Analyzed

Client Sample ID: Matrix Spike

Prep Type: Total

Prep Batch: 13K0121_P

Client Sample ID: Lab Control Sample

Prepared

6

11/26/13 06:27 11/26/13 10:24 1.00 11/26/13 06:27 11/26/13 10:24 1.00 11/26/13 06:27 11/26/13 10:24 1.00

> Prep Type: Total Prep Batch: 13K0121_P

> Prep Type: Total Prep Batch: 13K0121_P

> > Dil Fac

Lab Sample ID: 13K0121-BS1 Matrix: Soil

Analy	ysis	Batch:	13K0121
-------	------	--------	---------

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	0.133	0.126		mg/kg wet	_	94.5	62.7 - 120	
Fluorene	0.133	0.137		mg/kg wet		103	67.9 - 124	
Chrysene	0.133	0.134		mg/kg wet		100	68.2 - 132	
Indeno (1,2,3-cd) pyrene	0.133	0.165		mg/kg wet		124	52.6 - 149	

Limits

53.2 - 137

63.6 - 123

65.6 - 167

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	104		53.2 - 137
2-FBP	91.6		63.6 - 123
p-Terphenyl-d14	97.6		65.6 - 167

Lab Sample ID: 13K0121-MS1 Matrix: Soil

Analysis Batch: 13K0121

-	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke -			%Rec.	_
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		0.187	0.177		mg/kg dry	<u></u>	95.0	30 - 120	
Fluorene	ND		0.187	0.187		mg/kg dry	₽	100	30 - 140	
Chrysene	0.00692		0.187	0.212		mg/kg dry	₽	110	30 - 133	
Indeno (1,2,3-cd) pyrene	0.00461		0.187	0.194		mg/kg dry	₽	102	30 - 140	

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	103		53.2 - 137
2-FBP	78.4		63.6 - 123
p-Terphenyl-d14	109		65.6 - 167

Lab Sample ID: 13K0121-MSD1 Matrix: Soil

Analysis Batch: 13K0121

Analysis Batch: 13K0121									Prep Batc	h: 13K0	121_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		0.173	0.159		mg/kg dry	¢	92.0	30 - 120	10.6	35
Fluorene	ND		0.173	0.189		mg/kg dry	¢	109	30 - 140	1.22	35
Chrysene	0.00692		0.173	0.186		mg/kg dry	¢	104	30 - 133	12.8	35
Indeno (1,2,3-cd) pyrene	0.00461		0.173	0.181		mg/kg dry	¢.	102	30 - 140	6.91	35

Ма	atrix Spike Dup	Matrix Spike Dup				
Surrogate	%Recovery	Qualifier	Limits			
Nitrobenzene-d5	105		53.2 - 137			

Client Sample ID: Matrix Spike Duplicate

TestAmerica Spokane

Prep Type: Total

2 3 4 5 6 7 8

(Continued)	iynuclear Ar	omatic Co	ompound	S DY GC/IV	is with a	electe		nomito	ring		
Lab Sample ID: 13K0121-MS Matrix: Soil	D1					(Client S	ample II	D: Matrix Sp Pre	ike Du p Type	plicate : Total
Analysis Batch: 13K0121									Prep Batcl	h: 13K()121_P
	Matrix Spike Dup	Matrix Spike	Dup								
Surrogate	%Recovery	Qualifier	Limits								
2-FBP	102		63.6 - 123								
p-Terphenyl-d14	109		65.6 - 167								
Method: 300.0 - Anions, I	on Chromat	ography									
Lab Sample ID: MB 580-1500)88/1-A							Client	Sample ID: I	Nethod	Blank
Matrix: Solid									Prep 1	Гуре: S	oluble
Analysis Batch: 150157											
		МВ МВ									
Analyte	R	esult Qualifie	r	RL	MDL Unit		D F	repared	Analyz	ed	Dil Fac
Sulfate		ND		3.0	mg/K	g			12/02/13	13:00	1
Lab Sample ID: LCS 580-150 Matrix: Solid	088/2-A						Clien	t Sample	e ID: Lab Co Prep 1	ontrol S Evpe: S	ample
Analysis Batch: 150157										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sulfate			120	123		mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 580-15	50088/3- A					Cli	ent San	nole ID:	Lab Contro	l Samn	le Dun
Matrix: Solid									Prep 7	Type: S	oluble
Analysis Batch: 150157										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate			120	122		mg/Kg		102	90 - 110	1	15
Lab Sample ID: 580-41353-1	MS							Client	Sample ID:	SWK0	101-11
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 150157											
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sulfate	12		112	104	F	mg/Kg		82	90 _ 110		
Lab Sample ID: 580-41353-1	DU							Client	Sample ID:	SWK0	101-11
Matrix: Solid									Prep ¹	Type: S	oluble
Analysis Batch: 150157										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· · · · · · · · · · · · · · · · · · ·	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Sulfate	12			11.3		mg/Kg				8	10
Lab Sample ID: MB 580-1500 Matrix: Solid)88/1-A							Client	Sample ID: I Prep 1	Method Type: S	Blank
Analysis Batch: 150159											
		MB MB									
Analyto	Р	osult Qualifio	r	RI	MDI Unit			ronarod	Δnalvz	ho	Dil Fac

Nitrate as N

TestAmerica Spokane

12/02/13 13:00

1.5

ND

mg/Kg

1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 580-15008 Matrix: Solid	88/2-A						Client	Sample	e ID: Lab C Prep	ontrol S Type: S	ample oluble
Analysis Batch: 150159											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N			18.0	18.7		mg/Kg		104	90 - 110		
Lab Sample ID: LCSD 580-1500	088/3-A					Clie	nt Sam	nle ID:	l ab Contro	l Samol	e Dun
Matrix: Solid						••			Pren	Type: S	oluble
Analysis Batch: 150159									Trop	. , po. 0	orabio
Analysis Baton. Too Too			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N			18.0	18.6		mg/Kg		103	90 - 110	1	15
Lab Sample ID: 580-41353-1 M	S							Client	Sample ID	: SWK0'	101-11
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 150159											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	12		17.0	26.6	F	mg/Kg	<u>Å</u>	84	90 _ 110		
Lah Sample ID: 580-41353-1 DI								Client	Sample ID	· SWK0	101-11
Matrix: Solid								onem	Bron		
Analysis Patch: 150159									Fieh	Type. 5	oluble
Analysis Datch. 150158	Sample	Sample		ווס	חח						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	р			RPD	Limit
Nitrate as N	12	quanter		12.4	quamer		— -			03	10
	12			12.4		inging				0.5	10

Method: EPA 300.0 - Anions by EPA Method 300.0

Lab Sample ID: 13K0084-BLK1 Matrix: Water										Client Sa	mple ID: Metho Prep Typ	od Blank be: Total
Analysis Batch: 13K0084	Blank	Blank									Prep Batch: 13	(0084_P
Analyte	Result	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Nitrate-Nitrogen	ND		0.200			mg/l			11/2	0/13 10:40	11/20/13 14:28	1.00
Sulfate	ND		0.500			mg/l			11/2	0/13 10:40	11/20/13 14:28	1.00
Lab Sample ID: 13K0084-BS1								С	lient	Sample	ID: Lab Control	Sample
Matrix: Water											Prep Typ	e: Total
Analysis Batch: 13K0084										1	Prep Batch: 13	K0084_P
		Spike	e	LCS	LCS						%Rec.	
Analyte		Addeo	t	Result	Qual	ifier	Unit		D	%Rec	Limits	
Nitrate-Nitrogen		5.00)	5.02			mg/l			100	90 - 110	
Sulfate		12.5	5	12.4			mg/l			98.9	90 - 110	
Lab Sample ID: 13K0084-MS1										Client S	Sample ID: Matr	ix Spike
Matrix: Water											Prep Typ	e: Total
Analysis Batch: 13K0084											Prep Batch: 13	K0084_P
-	Sample Sam	nle Snik	- Mati	rix Snike	Matr	ix Snik	e				%Rec	

	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate-Nitrogen	22.8		50.0	74.3		mg/l		103	80 - 120	
Sulfate	92.2		125	215		mg/l		97.9	80 - 120	

Method: EPA 300.0 - Anions by EPA Method 300.0 (Continued)

Lab Sample ID: 13K0084-DUP1 Matrix: Water Analysis Batch: 13K0084								C	Client Sample ID: Du Prep Type Prep Batch: 13K	iplicate e: Total 0084_P
	Sample	Sample	Duplic	ate	Duplicate					RPD
Analyte	Result	Qualifier	Res	ult	Qualifier	Unit	D		RPD	Limit
Nitrate-Nitrogen	22.8		2	2.7		mg/l			0.440	13.1
Sulfate	92.2		9	2.3		mg/l			0.108	15.7

Dilution

Factor

0.873

0.971

1.00

1.00

1.00

1.00

Run

Batch

Number

13K0079

13K0121

13L0007

13L0007_P

13K0079 P

13K0121_P

Prepared

or Analyzed

11/20/13 08:21

11/20/13 20:08

11/26/13 06:27

12/04/13 10:02

11/26/13 14:18

11/26/13 14:18

Date Collected: 11/14/13 08:50

Date Received: 11/18/13 14:20

Prep Type

Total

Total

Total

Total

Total

Total

Client Sample ID: DP-6(1.5-2.5)

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Batch

Method

GC/MS Volatiles

EPA 8260C

EPA 3550B

EPA 8270D

TA SOP

Wet Chem

Lab Sample ID: SWK0101-01

2 3 4 5 6 7 8

TAL SPK TAL SPK Lab Sample ID: SWK0101-05

Lab Sample ID: SWK0101-09

Lab Sample ID: SWK0101-11

Matrix: Soil

Percent Solids: 82.2

Matrix: Soil

Matrix: Soil

Percent Solids: 79.6

Matrix: Soil

Percent Solids: 79.9

Client Sample ID: DP-7(1-1.8) Date Collected: 11/14/13 10:45 Date Received: 11/18/13 14:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.849	13K0079_P	11/20/13 08:21	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	13K0079	11/20/13 20:32	CBW	TAL SPK
Total	Prep	EPA 3550B		0.977	13K0121_P	11/26/13 06:27	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	13K0121	12/04/13 10:28	MRS	TAL SPK
Total	Analysis	TA SOP		1.00	13L0007	11/26/13 14:18	MS	TAL SPK
Total	Prep	Wet Chem		1.00	13L0007_P	11/26/13 14:18	MS	TAL SPK

Client Sample ID: DP-8(1-1.8) Date Collected: 11/14/13 11:30

Date Received: 11/18/13 14:20

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.901	13K0079_P	11/20/13 08:21	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	13K0079	11/20/13 20:55	CBW	TAL SPK
Total	Prep	EPA 3550B		0.993	13K0121_P	11/26/13 06:27	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	13K0121	12/04/13 10:53	MRS	TAL SPK
Total	Analysis	TA SOP		1.00	13L0007	11/26/13 14:18	MS	TAL SPK
Total	Prep	Wet Chem		1.00	13L0007_P	11/26/13 14:18	MS	TAL SPK

Client Sample ID: DP-9(1-2)

Date Collected: 11/14/13 12:25 Date Received: 11/18/13 14:20

—	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	150109	12/02/13 12:48	SGH	TAL SEA
Soluble	Analysis	300.0		1	150157	12/02/13 13:43	RSB	TAL SEA
Soluble	Leach	DI Leach			150088	12/02/13 09:53	RSB	TAL SEA
Soluble	Analysis	300.0		1	150159	12/02/13 13:43	RSB	TAL SEA

TestAmerica Spokane

Analyst

CBW

CBW

MS

MRS

MS

MS

Lab

TAL SPK

TAL SPK

TAL SPK

TAL SPK

Batch

Number

150109

150157

150088

150159

Prepared

or Analyzed

12/02/13 12:48

12/02/13 14:27

12/02/13 09:53

12/02/13 14:27

Analyst

SGH

RSB

RSB

RSB

Lab

TAL SEA

TAL SEA

TAL SEA

TAL SEA

Dilution

Factor

1

1

1

Run

Date Received: 11/18/13 14:20

Prep Type

Total/NA

Soluble

Soluble

Soluble

Client Sample ID: DP-10(1.3-2) Date Collected: 11/14/13 13:00

Batch

Туре

Analysis

Analysis

Analysis

Leach

Batch

Method

Moisture

DI Leach

300.0

300.0

Lab Sample ID: SWK0101-15

2 3 4 5 6 7 8

Lab Sample ID: SWK0101-19 Matrix: Soil

Lab Sample ID: SWK0101-23

Lab Sample ID: SWK0101-27

Percent Solids: 93.8

Matrix: Soil

Matrix: Soil

Percent Solids: 89.6

Percent Solids: 90.6

Matrix: Soil

_	8
)	
	9
0	

Date Collected: 11/14/13 1	4:45
Date Received: 11/18/13 1/	4:20

Client Sample ID: DP-11(2-2.5)

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Analysis	300.0		1	150157	12/02/13 14:41	RSB	TAL SEA
Soluble	Leach	DI Leach			150088	12/02/13 09:53	RSB	TAL SEA
Soluble	Analysis	300.0		1	150159	12/02/13 14:41	RSB	TAL SEA
Total/NA	Analysis	Moisture		1	150389	12/06/13 08:09	RMB	TAL SEA

Client Sample ID: DP-12(1-2) Date Collected: 11/14/13 15:15 Date Received: 11/18/13 14:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.813	13K0079_P	11/20/13 08:21	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	13K0079	11/20/13 21:18	CBW	TAL SPK
Total	Prep	EPA 3550B		0.956	13K0121_P	11/26/13 06:27	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	13K0121	12/04/13 11:19	MRS	TAL SPK
Total	Analysis	TA SOP		1.00	13L0007	11/26/13 14:18	MS	TAL SPK
Total	Prep	Wet Chem		1.00	13L0007_P	11/26/13 14:18	MS	TAL SPK

Client Sample ID: DP-13(1-2) Date Collected: 11/14/13 16:50 Date Received: 11/18/13 14:20

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			150088	12/02/13 09:53	RSB	TAL SEA
Soluble	Analysis	300.0		1	150157	12/02/13 14:56	RSB	TAL SEA
Soluble	Analysis	300.0		1	150159	12/02/13 14:56	RSB	TAL SEA
Total/NA	Analysis	Moisture		1	150389	12/06/13 08:09	RMB	TAL SEA

Dilution

Factor

0.839

1.00

0.985

1.00

1.00

1.00

Run

Batch

Number

13K0079

13K0121

131 0007

13L0007_P

13K0079 P

13K0121 P

Prepared

or Analyzed

11/20/13 08:21

11/20/13 21:41

11/26/13 06:27

12/04/13 11:44

11/26/13 14.18

11/26/13 14:18

Analyst

CBW

CBW

MS

MRS

MS

MS

Lab

TAL SPK

TAL SPK

TAL SPK

TAL SPK

TAL SPK

TAL SPK

Client Sample ID: DP-14(1-2)

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Batch

Method

GC/MS Volatiles

EPA 8260C

EPA 3550B

EPA 8270D

TA SOP

Wet Chem

Date Collected: 11/14/13 17:20 Date Received: 11/18/13 14:20

Prep Type

Total

Total

Total

Total

Total

Total

Lab Sample ID: SWK0101-31

Lab Sample ID: SWK0101-35

Matrix: Water

Matrix: Soil

Percent Solids: 79.7

Date Collected: 11/14/13 09:38 Date Received: 11/18/13 14:20

Client Sample ID: DP-6-111413

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.971	13K0071_P	11/19/13 09:06	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	13K0071	11/19/13 19:21	MRS	TAL SPK

Client Sample ID: DP-8-111413

Date Collected: 11/14/13 12:00

Date Received: 11/18/13 14:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		1.07	13K0071_P	11/19/13 09:06	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	13K0071	11/19/13 19:47	MRS	TAL SPK

Client Sample ID: DP-12-111413 Date Collected: 11/14/13 16:14 Date Received: 11/18/13 14:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 3510/600 Series		0.980	13K0071_P	11/19/13 09:06	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	13K0071	11/19/13 20:38	MRS	TAL SPK

Client Sample ID: DP-13-111413 Date Collected: 11/14/13 17:14 Date Received: 11/18/13 14:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	13K0084_P	11/20/13 10:40	CBW	TAL SPK
Total	Analysis	EPA 300.0		100	13K0084	11/20/13 11:51	CBW	TAL SPK

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Lab Sample ID: SWK0101-37 Matrix: Water

Matrix: Water

Lab Sample ID: SWK0101-41

Lab Sample ID: SWK0101-46

Matrix: Water

5 6 7

8
9

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-14

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-14
California	NELAP	9	01115CA	01-31-14
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-14
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-14

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-078-01

5
8
-

Method	Method Description	Protocol	Laboratory
EPA 8260C	NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
300.0	Anions, Ion Chromatography	MCAWW	TAL SEA
Moisture	Percent Moisture	EPA	TAL SEA
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK
Protocol Re	ferences:		
EPA = U	S Environmental Protection Agency		
MCAWV	V = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Su	ibsequent Revisions.	
Laboratory	References:		
TAL SEA	A = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310		

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

1

				С	HAIN	I OF (CUST	ODY	' REF	ORT				Y	Work O	rder #:(5~10101 M/2	
CLIENT: US					INVOIO	E TO:										TURNAL	KOUND REQUI	EST
REPORT TO TRANS OF A 20	5]											in i	Business Days *	
ADDRESS:	-															Organic &	Inorganic Analyses	
															7] [5] [4 3 2	1 <1
PHONE: FAX	G 22				P.O. NU	MBER:									<u>SRD.</u>	Petroleum	Hydrocarbon Analys	es
PROJECT NAME: BOXPECT	Y (#)R						PR	ESERVA	TIVE						L K		3 2 1	<1
PROJECT NI IMBER				20	[ļ				SD.	<i>.</i>		
1 03-84-01				ý.			REQUE	STED A	NALYSES				· · · · ·		Ċ	THER	Specify:	
SAMPLED BY:		ht.	3 0	12 8	4.	2			1					*	Turnaround	Requests less	than standard may in	cur Rush Charge:
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	11.UT	8725 \$24	125	Nuta 300	5418 30 C									MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
De-1. (1.5-) 5) 11	India Obst	X	\mathbf{x}	X	AL)	M	•								8	3		
$\int \frac{1}{\sqrt{2}} \frac{1}{$	<u>11110</u> 0000														ł	2		
2 DP-6 (7-8)	0915																	
300-6 (10.5-11.5)	0950				 													
· DP-6 (14-15)	1000																	
SPA-7(1-1.8)	1045	\times	$ \mathbf{x} $	\times	Ht.	Ŵ	7									3		
(DO-7/3)	670																	
ne-7/9-10)	1055															1		
											+							
* DP-7(17-14)	100			<u> </u>				<u> </u>			ļ		$\left \right $			+/+		
· DR-8 (1-1.8)	1130	\times	\times	X												3		
10 DP-8 (5-6)	V //35											Ļ			•)		
RELEASED BY: KATE HOM					DATE	: k/13	113		RECEIVI	ED BY:	14	1.11	1			-1	DATE	11-10-15
PRINT NAME: KATE HAR	FIRM: (1)	2			TIME				PRINT N		t D	<u>taplil</u>	m		FIRM	<u> </u>	TIME	14:20
RELEASED BY:					DATE				RECEIV	ED BY:		'					DATE	2
PRINT NAME:	FIRM:				TIME				PRINT N	AME:				. <u> </u>	FIRM		TIME	
ADDITIONAL REMARKS: RTEXN = BTE	EX + n-hex	ane	<u> </u>														0.9	AGEĴ OF

Page 21 of 27

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

	2013
FAX 922-5047	2/9/
FAX 924-9290	~
FAX 906-9210	
FAX 563-9210	

of 27

Page 22 (

				C	HAF	N OF	CUST	TODY	REP	ORT	r				Work O	rder #s	3WKO101	
CLIENT: UT					INVOI	CE TO:										TURNAL	OUND REQUES	T
REPORT TO:																in l	Business Days *	
ADDRESS:																Organic &	Inorganic Analyses	
															70 7	5	4 3 2	1 <1
PHONE: F	FAX:				P.O. NU	MBER:									STD.	Petroleum !	Hydrocarbon Analyses	_
PROJECT NAME: MOLCEU	MSHOP			<u> </u>			PRI	ESERVAT	IVE		<u> </u>	-1	r · · · · · · · · · · · · · · · · · · ·			╡┖╸	3 2 1 -	<1
PROJECT NUMBER:	-07-9-0/							l							511	/. 		
	010 -		1				REQUE	STED AN	IALYSES		1		1 1			THER	specify:	D / Cl -
SAMPLED BY: Kort		₩.	§ ₽	20	rate o	N Q								Ē	+ Turnarouna	Requests tess	inan sianaara may incur	- Rush Churg
CLIENT SAMPLE	SAMPLING	24	320	22 No	1702	36									MATRIX (W.S.O)	# OF	LOCATION/ COMMENTS	TA WO I
IDENTIFICATION		1	<u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 "			 		<u> </u>						(, 0, 0)			
1 nag(1-2)	11/14/13 125				X	$ \times $									\leq	3		
	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>		1		<u> </u>										Ī	1		
2 DD-9 (5-6)	1230		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>								<u> '</u> +		
no aloga)	C [177													ľ				
s 13p 1(81)								<u> </u>					· · · · · · · · · · · · · · · · · · ·		1	1		· · · ·
1 De-9 (14-15)	/235	ļ	ļ			<u> </u>					<u> </u>		↓			1		
$(n_{2}) (1, 2, 1)$	1700				$\mathbf{\nabla}$	$ $ \checkmark	ſ									3		
<u>prop-10 (7.3-4)</u>			<u> </u>		+							-				1.1		
000-10 (4-5)	1303				-						<u> </u>							
and in (Insti)	0551															}		
																<u> </u>		
· ne-10/13-14)	/332					ļ,												
100 m (= 25)	hist				X	$\left \right\rangle$										3		
· DP-11(2-2.5)	1940				<u>г</u> ў										1			
10 DR-11/4-5)	V 1449														V	1		
RELEASED BY: Uu					DATE	: 4// 8	162		RECEIVE	DBY:		¥.	6				DATE: j	1-18-19
PRINT NAME: KATE HALL	FIRM: Ga	57			TIME	<u>i</u> 141	Ø		PRINT NA	лме: <i>()</i>	t j	Mayle	on		FIRM	<u> 1</u> <u>A</u>	TIME: }	<u>4:2D</u>
RELEASED BY:					DATE	2			RECEIVE	DBY:]			1910-4		DATE:	
PRINT NAME: ADDITIONAL REMARKS:	FIRM:				TIME				PRINT NA	AWE:					FIKM		TEMP:	
RTTZ/N-	RTEX + n-1		٨٨														0.9	-7 or

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 12/9/2013

					С	HAI	N OF (CUST	ODY	REPOR	T				Wo	k Oı	rder #:	SWICOLOL		
CLIENT: CC						INVOI	CE TO:								T	3	FURNA I	ROUND REQUE	LST	
REPORT TO:																	in	Business Days *		
ADDRESS:																, <u> </u>	Organic &	Inorganic Analyses		
															10	7		4 3 2		
PHONE:	FAX:					P.O. NU	MBER:	DDE	CEDVATT	VE				•				Hydrocarbon Analyse	» [_]	
PROJECT NAME: MOXEC C	IT SHOP			1	5	1		rkt	SERVALL	4B			1		-	STD				ł
PROJECT NUMBER: 0504	-078-01				2	<u> </u>	1	REOUES	TED AN/	LYSES	1		1		-	07	HER	Specify:		
SAMPLED BY: KATA			7	5	<u>م قرا</u>	4	9								* Turn	wound H	Requests les	's than standard may inc	ur Rush Charge:	es.
CLIENT SAMPLE IDENTIFICATION	SAMP DATE/	'LING /TIME	NWTP1	BTEX 8260	1410/14	Ni true 300	541/2 302								MAT (W,	TRIX S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID	,
1 Dp-11+8-9)	11/14/13	1452													5	Ş)			of 27
2 De-11 (12-13)	[1455															1			e 23
3 DP-12(1-2)		1575	\times	\times													3			Pag
+ DR-17 (6=1)		1578															1			
5 Dr-h(11-12)		1520												<u> </u>			1	·		
6 DP-12(14-15)		1555												_			İ	· · · · · · · · · · · · · · · · · · ·		
DP-13(1-2)		1650				X	X				-						C			
· Do-13 (5-4)		1652															١			
· pp-13(9-10)		1655												<u> </u>		<u> </u>	1			_
10 DP-13 (12-13	V	1653										<u>, </u>				v			210 17	_
PRINT NAME: KITE HIM	4	FIRM: Ú	Ð			DATE	: 11/1 : 25	3/13 イマン		RECEIVED BY: PRINT NAME:	(At)	Stashi	on			FIRM:	R	DATE: TİME:	14:20	
RELEASED BY:						DATE	i:			RECEIVED BY:	~	đ				ETDM.		DATE	:	
PRINT NAME: ADDITIONAL REMARKS:		FIRM:				TIME				FRINT NAME:						CIRM:		TEMP:		-
BTEXN = BTH	EX 4 N	I-hexam																0.9	AGE 3 OF	

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

1

		0/2013
253-922-2310	FAX 922-5047]%
509-924-9200	FAX 924-9290	
503-906-9200	FAX 906-9210	
907-563-9200	FAX 563-9210	

	·					HAI	OF	-0510	וצענ	KEPU	KI			Wor	k O	rder #:	SMKOU	
LIENT: UR						INVOI	CE TO:]	ı	TURNAL	ROUND REQUE	ST
EPORT TO:																in	Business Days *	•
DDRESS:																Organic &	Inorganic Analyses	
														10 	7		4 3 2	<u> </u>
HONE: FA	X:					[P.O. NU	MBER:	DDDC	EDVATIN						5		Aydrocarbon Analyse	,
NOIDELT NAME NOKLE (ITT	STOP									- i			T		STL	ļĽ		<u></u>
ROJECT NUMBER: 0304-D	78-01				574		L	REQUEST	ED ANA	LYSES			<u> </u>	··· .	0	THER	Specify	
AMPLED BY: ابتعن			¥		0 %	*	-2							* Turna	round.	Requests les.	s than standard may inc	ur Rush Charg
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	Э Е	11 m L	871EX 8712	140hul 827	\$114m	5u 1 R							MAT (W, S	RIX , O)	# OF CONT.	LOCATION/ COMMENTS	TA WO I
No-14.(1-2) /	iliulia	1720	X	$\overline{\mathbf{X}}$	$\overline{\mathbf{X}}$										Ş	3		
DP-14/4-5)	 	1724														1		
DP-14 (8-9)		1727														1		
DP-14(13-14)		1730													\downarrow	١		
De-6-111413 1	1/14/13	0938	X	X	X									V	<u>;</u>			
De-7-111413	<u> </u>	1030,	Æ	X	\times													
De-8-111413		1200	X	X	X_													
DP-9-111413		1316		8	<u>×</u>		-											
DA-10-111413		1344			X	ļ										ľ		_
DP-11-111413	V	1533			X													105
ELEASED BY: M		ETD14. 2	_			DATE	: 11/18 . 14.9	/'3	F	RECEIVED B	*. 01 -	\$1.12			TDM		DATE:	HOR
ELEASED BY:	FCL	TIKM. W	t)			DATE		0	F	RECEIVED B	<u>(//1 /</u> Y:	Saption				14	DATE:	14:10
RINT NAME:		FIRM:				TIME	:		F	RINT NAME	2				FIRM:		TIME:	
DDITIONAL REMARKS: BTEXN = RTIEX	and n	-hexà	ne	,													D-9	ge 40f

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 12/9/2013

2 LE 7-7-14	P.O. NUMBI	ER:	PRE	SERVATI	VE					10 7 <i>STD</i> . 5	TURNA ir Organic &] 5 Petroleum] 4	ROUND REQUES' a Business Days * t Inorganic Analyses 4 3 2 1 1 Hydrocarbon Analyses 3 2 1 <	т 1] <1 1]
8, 2,70 DE 27-1/1	PO. NUMBI	ER:	PRES	SERVATI	VE		· · · · · · · · · · · · · · · · · · ·			10 7 <i>STD.</i> 5	in Organic &] 5 Petroleum] 4	a Business Days * 2 Inorganic Analyses 4 3 1 Hydrocarbon Analyses 3 2 1	1 <1
P 7-7-14 01.28	PO. NUMBI	ER:	PRE	SERVATI	VE		· · · · · · ·			5 STD.	Petroleun	a Hydrocarbon Analyses 3 2 1	
8270 11-2-11	part 20	R	PRE	SERVATI	VE					5	4	3 2 1 <	1
8270	rate 20 LLL	R	REQUES	TED AN			i			· · · · · · · · · · · · · · · · · · ·		المستجنبة التبتينية فللمست	
8270	mart 20	R	REQUES	TED AN									
8270	rat 20			100.120	ALYSES						THER	Specify:	D 1 <i>G</i>
.28	5 A 3	~~~								* Turnarouna .	Requests le.	ss than standard may incur i	Rush Charge
1 -) M								MATRIX (Ŵ, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO II
\square						-				W			
										S	<u> </u>		_
										W	<u> </u>		
										5	1		
												<u> </u>	
											ļ		
									<u> </u>		<u> </u>		
						`					<u> </u>		
	-				· .						<u> </u>		
:													
	DATE: 4	// 8/ ن ن	[]] 10-0		RECEIVED		to	liton		FIRM	TICH	DATE://	185 (171)
	DATE:		740		RECEIVED	BY:	Davy	Nu V			<u>11)(11</u>	DATE:	
	TIME:				PRINT NAM	Œ:	-			FIRM	:	TIME:	
		DATE: 4 TIME: DATE: 1 TIME: VL, XY	DATE: 4/12/ TIME: / C	DATE: 4/18/13 TIME: 14/18/13 DATE: TIME: DATE: TIME:	DATE: 4/18/13 TIME: 10/20 DATE: TIME: TIME:	DATE: U/I &/I & RECEIVED TIME: IU/20 PRINT NAN DATE: RECEIVED TIME: PRINT NAN DATE: RECEIVED TIME: PRINT NAN	DATE: 4/18/13 TIME: 14/20 DATE: FRINT NAME: DATE: FRINT NAME: DATE: FRINT NAME: DATE: FRINT NAME: DATE: FRINT NAME:	DATE: 4/18/13 TIME: 14/20 DATE: 4/18/13 TIME: 14/20 PRINT NAME: ALL DIAN RECEIVED BY: 15/20 PRINT NAME: DATE: 4/18/13 RECEIVED BY: AL DANK DATE: 10/20 RECEIVED BY: AL DANK RECEIVED BY: AL DANK RECEIVED BY: AL DANK DATE: FRINT NAME: AL DANK M. WLEWES, H. D-DEMANC	DATE: 4/18/13 TIME: 14/20 DATE: 4/18/13 TIME: PRINT NAME: PRINT NAME: DATE: 4/18/13 TIME: PRINT NAME: PRINT NAME:	DATE: 1/18/13 TIME: PRINT NAME: PIRM N	DATE: 4/18/13 TIME: PRINT NAME: FIRM: MO. YULEWES. + D-NEXAWE	DATE 4/18/13 RECEIVED BY: ALL DIAMON DATE 4/18/13 TIME PRINT NAME PRINT NAME	

TAL-1000 (0612)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 5755 8Th Street East, Tacoma, Wa 98424
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 253-922-2310 FAX 922-5047 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

				C	HAI	N OF	CUST	FODY	Y REI	PORT	•				Work O	rder #:	SWIKOLOI	
CLIENT: GEBENGU	UERUS				INVOI	CE TO:									['	TURNA	ROUND REQUEST	£
REPORT TO: JON NOPEN	۲															in	Business Days *	
ADDRESS: 173 ELNO	ANE															Organic &	Inorganic Analyses	
000000																5	4 3 2 1	. <1
PHONE: 509-343-3125	FAX:				P.O. NU	MBER:									STD.	Petroleum	Hydrocarbon Analyses	_
PROJECT NAME: CITYSH	∂ <i>P</i>		- _{1"}	1		T ·	PR	ESERVA	TIVE		r	•				ן ⊿ ן	3 2 1 <	1
PROJECT NUMBER:	$\pi R - \Omega i$				ļ											,. 		
			1. 0	}	<u> </u>	-6-	REQUE	ESTED A	NALYSE	<u>s</u>	1 .	1				THER	Specify:	
SAMPLED BY: KATH	· · ···	I≩ ₿	E A	T	8	3					1				* Turnaround	Requests les	s than standard may incur I	dush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	NUM	Set S	arp	BYE	D¥F M									MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
DP-12-111413	11/14/13 1674	家	炭	X	X	X	1.							u	2-5	3	1	
2 DP-13-111413	V 1714	Xy	XX											V	2-8	3		
3	Ves-		17												a nhall	3		
									Ì									
·		1		<u> </u>	+	† "												-
5				<u> </u>														
			1			1				ļ								
6								1		1	+		•				·	
7]										
																1		
8					<u> </u>				<u></u>	+		<u> </u>	<u> </u>					
9								· ·				1						
	· · · - · · · · · · · · · · · · · · · ·			<u> </u>		1		+	+		1		<u> </u>					
10							1											
RELEASED BY: Un Way					DATE	4/15	113		RECEIV	ED BY:]/ _	A/ .	1			-1	date: //-	1813
PRINT NAME: KITE HAU	FIRM: U	757			TIME	jų	<u>io</u>		PRINT	VAME: //	h j	Denh	lor-		FIRM	TA	тіме: 14	<u>1:20</u>
RELEASED BY:					DATE	i:			RECEIV	ED BY: C		1					DATE:	
PRINT NAME:	FIRM:				TIME	: 			PRINT	NAME:					FIRM		TIME:	
																		OF

TestAmerica Spokane Sample Receipt Form

Work Order #SWKOlO	client: GLOD ENGLIN	lers			Project: MOXC
Date/Time Received: 11-18-13 14	20 5.	By: CS			·····
Samples Delivered By: Shipping Service	ce Courier Client	Other			······
List Air Bill Number(s) or Attach a photocop	oy of the Air Bill:				President and a second second second second second second second second second second second second second second
Receipt Phase		Yes	No	NA	Comments
Were samples received in a cooler:		\triangleleft			
Custody Seals are present and intact:				~	
Are CoC documents present:	· ····································	\geq			
Necessary signatures:		>		<u> </u>	
Thermal Preservation Type: Blue Ice	Gel Ice	Dry Ice	None	Other:_	
Temperature: <u>() 9</u> °C Thermomet	er (Circle orie Serial #12	2208348 K	eyring IR	Serial # 11	1874910 IR Gun 2)(acceptance criteria 0-6
Temperature out of range:Not enough	ice [ice,melted]	win 4hrs of	collection	<u>NA</u>	Other:
Log-in Phase Date/Time: 11-10-145-6157	_{ву:} СЪ	Yes	No	NA	Comments
Are sample labels affixed and completed for	r each container	×			
Samples containers were received intact:		X			
Do sample IDs match the CoC		\mathbf{X}			
Appropriate sample containers were receiv	ed for tests requested	>			
Are sample volumes adequate for tests rec	uested	$\mathbf{\dot{\succ}}$			
Appropriate preservatives were used for the	e tests requested	Ϋ́			ave
pH of inorganic samples checked and is wi	thin method specification	X			·
Are VOC samples free of bubbles >6mm (1	/4" diameter)	λ			
Are dissolved parameters field filtered				X	
Do any samples need to be filtered or prese	erved by the lab		X		
Does this project require quick turnaround a	analysis		X		
Are there any short hold time tests (see cha	art below)	X			Nitrode
Are any samples within 2 days of or past ex	piration	X			Water nitrate expired bugoos prio
Was the CoC scanned		X			
Were there Non-conformance issues at log	in		Х		
If yes, was a CAR generated #			<u> </u>	X	

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

+

ł

Form No. SP-FORM-SPL-002 12 December 2012

.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SWL0076

Client Project/Site: 0504-078-01 Client Project Description: Moxee City Shop

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Jon Rudders

tande

Authorized for release by: 12/17/2013 1:19:58 PM Randee Decker, Project Manager (509)924-9200 Randee.Decker@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	6
Chronicle	7
Certification Summary	8
Method Summary	9
Chain of Custody	10

Matrix

Water

Water

Water

Client: Geo Engineers - Spokane Project/Site: 0504-078-01

Client Sample ID

B-1-121213

B-2-121213

B-3-121213

Lab Sample ID

SWL0076-01

SWL0076-02

SWL0076-03

12/12/13 11:15 12/13/13 10:30

Received

12/13/13 10:30

12/13/13 10:30

Collected

12/12/13 13:17

12/12/13 14:55

3
5
8
Q

Qualifiers

Wet Chem

Wet Glieffi		Δ
Qualifier	Qualifier Description	-
E	Concentration exceeds the calibration range and therefore result is semi-quantitative.	5

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
Client Sample Results

Client Sample ID: B-1-121213

Date Collected: 12/12/13 11:15

TestAmerica Job ID: SWL0076

Matrix: Water

Lab Sample ID: SWL0076-01

5

Date Received: 12/13/13 10:30									
Method: EPA 300.0 - Anions by EP	A Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	199		20.0		mg/l		12/13/13 11:05	12/13/13 18:19	100
Sulfate	735		50.0		mg/l		12/13/13 11:05	12/13/13 18:19	100
Client Sample ID: B-2-121213							Lab Sam	ole ID: SWL0	076-02
Date Collected: 12/12/13 13:17							-	Matrix	: Water
Date Received: 12/13/13 10:30									
Method: EPA 300.0 - Anions by EP	A Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	94.0		20.0		mg/l		12/13/13 11:05	12/13/13 18:39	100
Sulfate	1670		50.0		mg/l		12/13/13 11:05	12/13/13 18:39	100
Client Sample ID: B-3-121213							Lab Samp	ole ID: SWL0	076-03
Date Collected: 12/12/13 14:55								Matrix	: Water
Date Received: 12/13/13 10:30									

Method: EPA 300.0 - Anions by EPA Method 300.0							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.710	0.200	mg/l		12/13/13 11:05	12/13/13 15:22	1.00
Sulfate	1520	50.0	mg/l		12/13/13 11:05	12/13/13 18:58	100

Lab Sample ID: 13L0079-BLK1

Analysis Batch: 13L0079

Matrix: Water

Nitrate-Nitrogen

Matrix: Water

Analyte

Sulfate

Method: EPA 300.0 - Anions by EPA Method 300.0

Blank Blank Result Qualifier

ND

ND

Client Sample ID: Method Blank

Dil Fac 6 1.00 7 ample 8 079 P 9

12/13/13 11:05 12/13/13 20:18 1.00
Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Analyzed

12/13/13 20:18

o Control Sample	
Prep Type: Total	
Ratch: 131.0070 D	

Prep Type: Total

Prep Type: Total

Prep Batch: 13L0079_P

Analysis Batch: 13L0079							Prep Bate	:h: 13L0079_F
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate-Nitrogen	 5.00	5.17		mg/l		103	90 - 110	
Sulfate	12.5	12.2		mg/l		97.3	90 - 110	
L								

RL

0.200

0.500

MDL Unit

mg/l

mg/l

D

Prepared

12/13/13 11:05

Lab Sample ID: 13L0079-MS1

Lab Sample ID: 13L0079-BS1

Matrix: Water Analysis Batch: 13L0079

Analysis Batch: 13L0079									Prep Bato	h: 13L0079_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate-Nitrogen	182		50.0	222	E	mg/l		80.2	80 - 120	
Sulfate	160		125	288		mg/l		103	80 - 120	

Lab Sample ID: 13L0079-MSD ⁷ Matrix: Water	1						Client S	ample II	D: Matrix Sj Pre	oike Dup ep Type:	licate Total
Analysis Batch: 13L0079									Prep Bato	h: 13L0	079_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	e Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate-Nitrogen	182		50.0	223	E	mg/l		82.2	80 - 120	0.450	12.1
Sulfate	160		125	290		mg/l		104	80 - 120	0.450	10

Lab Sample ID: 13L0079-DUP1							Client Sample	D: Dup	olicate
Matrix: Water							Pre	ep Type:	: Total
Analysis Batch: 13L0079							Prep Bato	h: 13L0	079_P
-	Sample	Sample	Duplicate	Duplicate					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Nitrate-Nitrogen	182		 190		mg/l			4.57	13.1
Sulfate	160		169		ma/l			5 59	15 7

Client Sample ID: B-1-121213

Batch

Туре

Prep

Analysis

Batch

Method

Wet Chem

EPA 300.0

Date Collected: 12/12/13 11:15

Date Received: 12/13/13 10:30

Prep Type

Total

Total

Lab Sample ID: SWL0076-01

2 3 4 5 6 7

Lab Sample ID: SWL0076-02

Matrix: Water

Matrix: Water

```
Date Collected: 12/12/13 13:17
Date Received: 12/13/13 10:30
```

Client Sample ID: B-2-121213

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	13L0079_P	12/13/13 11:05	CBW	TAL SPK
Total	Analysis	EPA 300.0		100	13L0079	12/13/13 18:39	CBW	TAL SPK

Dilution

Factor

1.00

100

Run

Batch

Number

13L0079

13L0079 P

Prepared

or Analyzed

12/13/13 11:05

12/13/13 18:19

Analyst

CBW

CBW

Lab

TAL SPK

TAL SPK

Client Sample ID: B-3-121213 Date Collected: 12/12/13 14:55 Date Received: 12/13/13 10:30

Lab Sa	mple	D: SV	VL007	6-03
--------	------	-------	-------	------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Wet Chem		1.00	13L0079_P	12/13/13 11:05	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	13L0079	12/13/13 15:22	CBW	TAL SPK
Total	Analysis	EPA 300.0		100	13L0079	12/13/13 18:58	CBW	TAL SPK

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

2 3 4 5 6 7 8 9 10

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-14

Client: Geo Engineers - Spokane Project/Site: 0504-078-01

	5
	8
_	
	0

Method	Method Description	Protocol	Laboratory
EPA 300.0	Anions by EPA Method 300.0		TAL SPK

Protocol References:

Laboratory References:

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

0

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

	СН	AIN OF	CUSTODY	REPOR	Г		Work O	rder #:	SWLOOTL	
CLIENT: GEOGNGINEGRES, INC	В	NVOICE TO:						TURNA	ROUND REQUEST	
REPORT TO: JON RUDDERS ADDRESS: jrudders Egeoengineers, cer		Same as					in Business Days * Organic & Inorganic Analyses 7 5 4 3 2 1 <1			_ <1
PROJECT NAME:	F.	O. NOMBER.	PRESERVAT	IVE			5			ล
PROJECT NUMBER	///						STL			1
D504-078-01	220		REQUESTED AN	ALYSES		,	σ	THER	Specify:	
SAMPLED BY: ERH	がれなる						* Turnaround	Requests les	ss than standard may incur h	ush Charges
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME			÷				MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
B-1-121213 12/12/13 1115 V							W	1		
2 3-2-121213 1317 .							Ŵ	1		
3B-3-121213 V 1455 .							w			
4										
5						· ·				
6										
7										
8										
										+
RELEASED BY: PRINT NAME: ELIVIA HOGMAN FIRM: GARA	FNAINFARS		2/20013	RECEIVED BY:	Wend	FedEre	FIRM:	fer	EX DATE:	সাল
RELEASED BY:		DATE: 160		RECEIVED BY:	A Stant.	CatStaple	ten .	Togu	DATE J-	13-13
ADDITIONAL REMARKS:					их зличний		- 1001	10 51	TEMP:	<u>.30</u>]]
L			·	·					TAL-10)00 (0612

TestAmerica Spokane Sample Receipt Form

Work Order #:SWL0076	client GPDEMine	45			Project: MOXCC	
Date/Time Received: 12-13-13 10	30	BY:CS				
Samples Delivered By: Shipping Servic	e Courier Clien	t Other	. <u></u>			
List Air Bill Number(s) or Attach a photocor	by of the Air Bill:					
Receipt Phase		Yes	Ňö	NA	Comments	
Were samples received in a cooler:		\times				
Custody Seals are present and intact:						
Are CoC documents present:		>-				
Necessary signatures:	· · · · · · · · · · · · · · · · · · ·	\geq				
Thermal Preservation Type: Blue Ice		Dry Ice	None	Other:		
	er (Circle one Serial #12	22208348 K	eyring IR	Serial # 11	1874910 IR Gun 2)(acceptance criteria	a 0-6
Temperature out of range: Not enough	ice	w/in 4hrs of	collection		Other:	
Log-In Phase Date/Time: <u>日内</u> ろ 10名	ву: []]	Yes	Nø	NĄ	Comments	
Are sample labels affixed and completed for	or each container	>				
Samples containers were received intact:		>				
Do sample IDs match the CoC		\geq			·····	
Appropriate sample containers were receiv	ed for tests requested	2				
Are sample volumes adequate for tests rec	juested	$ \geq$				
Appropriate preservatives were used for th	e tests requested	Z				
pH of inorganic samples checked and is wi	thin method specificatio	\sim				
Are VOC samples free of bubbles >6mm (1/4" diameter)	_		>		
Are dissolved parameters field filtered				≻	· · · · · · · · · · · · · · · · · · ·	
Do any samples need to be filtered or pres	erved by the lab			~~	· · · · · · · · · · · · · · · · · · ·	
Does this project require quick turnaround	analysis				N'halo	
Are there any short hold time tests (see ch	art below)				Annar	
Are any samples within 2 days of or past e	xpiration		تل ا	<u> </u>		
Was the CoC scanned	n - 61 ⁰⁰					
Were there Non-conformance issues at log	gin		$\vdash \subset$			
If yes, was a CAR generated #			<u> </u>			

24 hours or less	48 hours	7 days		
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS		
Chromium +6	Nitrate/Nitrite	Sulfide		
	Orthophosphate	Aqueous Organic Prep		

Form No. SP-FORM-SPL-002 12 December 2012

0 + 0 + 1 - 0 - 0

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SWL0086

Client Project/Site: 0504-078-00 Client Project Description: Moxee City Shop

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Jon Rudders

tandi

Authorized for release by: 1/2/2014 12:04:38 PM Randee Decker, Project Manager (509)924-9200 Randee.Decker@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

1
2
3
1
5
7
11
13
14
15

Client: Geo Engineers - Spokane Project/Site: 0504-078-00 TestAmerica Job ID: SWL0086

					3
Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
SWL0086-02	MW-5(5-5.5)	Soil	12/12/13 08:15	12/16/13 16:50	
SWL0086-07	MW-6(5-5.5)	Soil	12/13/13 08:15	12/16/13 16:50	
SWL0086-11	B-1(2-2.5)	Soil	12/12/13 10:30	12/16/13 16:50	5
SWL0086-17	B-2(2.5-3)	Soil	12/12/13 12:45	12/16/13 16:50	J
SWL0086-24	B-3(5.5-6.5)	Soil	12/12/13 14:25	12/16/13 16:50	
					8
					9

Qualifiers

GCMS Volat	tiles	Λ
Qualifier	Qualifier Description	
Р	The sample, as received, was not preserved in accordance to the referenced analytical method.	5
Semivolatile	es	
Qualifier	Qualifier Description	
Z6	Surrogate recovery was below acceptance limits.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Date Collected: 12/12/13 08:15

Date Received: 12/16/13 16:50

Client Sample ID: MW-5(5-5.5)

Lab Sample ID: SWL0086-02 Matrix: Soil

Percent Solids: 72

5

Method: EPA 8260C - NWTPH-C	Gx and Volatile (Organic Co	mpounds by EP	A Metho	d 8260C				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		7.46		mg/kg dry	¢	12/20/13 08:35	12/20/13 14:22	1.00
Benzene	ND		0.00746		mg/kg dry	¢	12/20/13 08:35	12/20/13 14:22	1.00
Ethylbenzene	ND		0.149		mg/kg dry	¢	12/20/13 08:35	12/20/13 14:22	1.00
Toluene	ND		0.149		mg/kg dry	¢	12/20/13 08:35	12/20/13 14:22	1.00
o-Xylene	ND		0.298		mg/kg dry	¢	12/20/13 08:35	12/20/13 14:22	1.00
m,p-Xylene	ND		0.596		mg/kg dry	¢	12/20/13 08:35	12/20/13 14:22	1.00
Hexane	ND		0.149		mg/kg dry	¢	12/20/13 08:35	12/20/13 14:22	1.00
Xylenes (total)	ND		2.24		mg/kg dry	☆	12/20/13 08:35	12/20/13 14:22	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.0		42.4 - 163				12/20/13 08:35	12/20/13 14:22	1.00
1,2-dichloroethane-d4	89.5		50 _ 150				12/20/13 08:35	12/20/13 14:22	1.00
Toluene-d8	99.1		45.8 - 155				12/20/13 08:35	12/20/13 14:22	1.00
4-bromofluorobenzene	109		41.5 - 162				12/20/13 08:35	12/20/13 14:22	1.00

Mathad, CDA 0070D Dal	unuales Arenetis Comm	a a consider have COMIC could be	Colocted Ion Meniterium
vietnoo: EPA 62700 - Poi	vnuclear Aromatic Comp	Jounds by GC/Ma with (Selected ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0161		mg/kg dry	\ ↓	12/19/13 13:06	12/27/13 21:46	1.00
2-Methylnaphthalene	ND		0.0161		mg/kg dry	₽	12/19/13 13:06	12/27/13 21:46	1.00
1-Methylnaphthalene	ND		0.0161		mg/kg dry	₽	12/19/13 13:06	12/27/13 21:46	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61.6		53.2 - 137				12/19/13 13:06	12/27/13 21:46	1.00
2-FBP	40.4	Z6	63.6 - 123				12/19/13 13:06	12/27/13 21:46	1.00
p-Terphenyl-d14	95.4		65.6 - 167				12/19/13 13:06	12/27/13 21:46	1.00

Client Sample ID: MW-6(5-5.5)

Date Collected: 12/13/13 08:15 Date Received: 12/16/13 16:50

Lab Sample ID: SWL0086-07

Matrix: Soil Percent Solids: 76.4

Method: EPA 8260C - NWTPH-C	Sx and Volatile	Organic Co	mpounds by EF	A Method 8260C	;			
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	13.5	Ρ	6.63	mg/kg dr	y [‡]	12/20/13 08:35	12/20/13 13:59	1.00
Benzene	ND	Р	0.00663	mg/kg dr	y [‡]	12/20/13 08:35	12/20/13 13:59	1.00
Ethylbenzene	ND	Р	0.133	mg/kg dr	y 🌣	12/20/13 08:35	12/20/13 13:59	1.00
Toluene	ND	Р	0.133	mg/kg dr	¢ 🌣	12/20/13 08:35	12/20/13 13:59	1.00
o-Xylene	ND	Р	0.265	mg/kg dr	y [‡]	12/20/13 08:35	12/20/13 13:59	1.00
m,p-Xylene	ND	Р	0.530	mg/kg dr	¢ ۷	12/20/13 08:35	12/20/13 13:59	1.00
Hexane	ND	Р	0.133	mg/kg dr	¢ 🌣	12/20/13 08:35	12/20/13 13:59	1.00
Xylenes (total)	ND	Р	1.99	mg/kg dr	y 🌣	12/20/13 08:35	12/20/13 13:59	1.00
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	94.5	Ρ	42.4 - 163			12/20/13 08:35	12/20/13 13:59	1.00
1,2-dichloroethane-d4	89.5	Р	50 - 150			12/20/13 08:35	12/20/13 13:59	1.00
Toluene-d8	102	Ρ	45.8 - 155			12/20/13 08:35	12/20/13 13:59	1.00
4-bromofluorobenzene	114	P	41.5 - 162			12/20/13 08:35	12/20/13 13:59	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0128		mg/kg dry	¢	12/19/13 13:06	12/27/13 22:12	1.00
2-Methylnaphthalene	ND		0.0128		mg/kg dry	¢	12/19/13 13:06	12/27/13 22:12	1.00

TestAmerica Job ID: SWL0086

Lab Sample ID: SWL0086-07

Matrix: Soil

Percent Solids: 76.4

5
8
0

Client Sample ID: MW-6(5-5.5	i)
Date Collected: 12/13/13 08:15	

Date Received: 12/16/13 16:50

Method: EPA 8270D - Polynuclear	Aromatic Co	mpounds	by GC/MS with S	elected	Ion Monito	ring (Continued)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.0128		mg/kg dry	¢	12/19/13 13:06	12/27/13 22:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56.8		53.2 - 137				12/19/13 13:06	12/27/13 22:12	1.00
2-FBP	37.4	Z6	63.6 - 123				12/19/13 13:06	12/27/13 22:12	1.00
p-Terphenyl-d14	79.4		65.6 - 167				12/19/13 13:06	12/27/13 22:12	1.00
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	48		24		mg/Kg	¢		12/27/13 04:42	1
Nitrate as N	ND		2.4		mg/Kg	¢		12/27/13 04:42	1
Client Sample ID: B-1(2-2.5)							Lab Samp	ole ID: SWL0	086-11
Date Collected: 12/12/13 10:30							-	Mat	rix: Soil
Date Received: 12/16/13 16:50								Percent Soli	ds: 73.8
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	200		26		mg/Kg	\ ↓		12/27/13 05:13	1
Nitrate as N	110		2.6		mg/Kg	₽		12/27/13 05:13	1
Client Sample ID: B-2(2.5-3)							Lab Sam	ole ID: SWL0	086-17
Date Collected: 12/12/13 12:45								Mat	rix: Soil
Date Received: 12/16/13 16:50								Percent Soli	ds: 74.2
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	440		25		mg/Kg	— <u></u>		12/27/13 05:44	1
Nitrate as N	47		2.5		mg/Kg	₽		12/27/13 05:44	1
Client Sample ID: B-3(5.5-6.5)							Lab Sam	ole ID: SWL0	086-24
Date Collected: 12/12/13 14:25								Mat	rix: Soil
Date Received: 12/16/13 16:50								Percent Soli	ds: 76.4
General Chemistry - Soluble									
Analyte						_	. .		
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DIFac
Sulfate	Result 360	Qualifier		MDL	mg/Kg	- D	Prepared	Analyzed 12/27/13 06:15	1

12/20/13 10:26

12/20/13 10:26

Client Sample ID: Lab Control Sample

12/20/13 08:35

12/20/13 08:35

6

1.00

1.00

Prep Type: Total

Prep Batch: 13L0110_P

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

97.3

103

Lab Sample ID: 13L0110-BLK1							Client Sa	mple ID: Metho Prep Typ	d Blank e: Total
Analysis Batch: 13L0110								Prep Batch: 13L	.0110 P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.00		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
Benzene	ND		0.00500		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
Ethylbenzene	ND		0.100		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
Toluene	ND		0.100		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
o-Xylene	ND		0.200		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
m,p-Xylene	ND		0.400		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
Hexane	ND		0.100		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
Xylenes (total)	ND		1.50		mg/kg wet		12/20/13 08:35	12/20/13 10:26	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	105		42.4 - 163				12/20/13 08:35	12/20/13 10:26	1.00
1,2-dichloroethane-d4	101		50 - 150				12/20/13 08:35	12/20/13 10:26	1.00

45.8 - 155

41.5 - 162

Lab Sample ID: 13L0110-BS1	
Matrix: Soil	

Analysis Batch: 13L0110

Toluene-d8

4-bromofluorobenzene

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	0.500	0.592		mg/kg wet		118	79 _ 127	
Benzene	0.500	0.586		mg/kg wet		117	75.9 - 123	
Ethylbenzene	0.500	0.534		mg/kg wet		107	80 - 120	
Toluene	0.500	0.530		mg/kg wet		106	77.3 - 126	
o-Xylene	0.500	0.560		mg/kg wet		112	80 - 120	
m,p-Xylene	0.500	0.545		mg/kg wet		109	80 - 120	
Naphthalene	0.500	0.411		mg/kg wet		82.2	58.8 - 130	
1,2-Dichloroethane (EDC)	0.500	0.591		mg/kg wet		118	60 _ 140	
1,2-Dibromoethane	0.500	0.488		mg/kg wet		97.6	60 - 140	
Hexane	0.500	0.532		mg/kg wet		106	50 ₋ 150	
Xylenes (total)	1.00	1.10		mg/kg wet		110	50 - 150	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	103		42.4 - 163
1,2-dichloroethane-d4	108		50 - 150
Toluene-d8	93.0		45.8 - 155
4-bromofluorobenzene	101		41.5 - 162

- Lab Sample ID: 13L0110-BS2						c	lient	t Sampl	e ID: Lab C	ontrol Sample
Matrix: Soil								•	Pr	ep Type: Total
Analysis Batch: 13L0110									Prep Bat	ch: 13L0110_P
-			Spike	LCS	LCS				%Rec.	_
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Hydrocarbons			50.0	44.6		mg/kg wet		89.2	74.4 - 124	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	100		424-163							

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Limits

50 - 150

LCS LCS

%Recovery Qualifier

100

Lab Sample ID: 13L0110-BS2

Analysis Batch: 13L0110

(Continued)

Matrix: Soil

Surrogate

1,2-dichloroethane-d4

Prep Type: Total

Prep Batch: 13L0110_P

Client Sample ID: Lab Control Sample

2 3 4 5 6 7 8

Toluene-d8	97.6		45.8 - 155									
4-bromofluorobenzene	104		41.5 - 162									
/lethod: EPA 8270D - Poly	nuclear Are	omatic Co	ompounds	by GC/N	IS w	ith S	elected	l loi	n M	onitor	ing	
_ Lab Sample ID: 13L0104-BLK1 Matrix: Soil										Client S	ample ID: Metho Prep Tyr	od Blank
Analysis Batch: 13I 0104											Prep Batch: 13	0104 P
	В	lank Blank									Trop Daton. To	
Analyte	Re	sult Qualifie	r	RL	MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Naphthalene		ND	0.0	0100		mg/kg	wet		12/19	9/13 13:06	12/27/13 18:47	1.00
2-Methylnaphthalene		ND	0.0	0100		mg/kg	wet		12/19	9/13 13:06	12/27/13 18:47	1.00
1-Methylnaphthalene		ND	0.0	0100		mg/kg	wet		12/19	9/13 13:06	12/27/13 18:47	1.00
	В	lank Blank										
Surrogate	%Reco	very Qualifie	er Limit	s					Pr	epared	Analyzed	Dil Fac
Nitrobenzene-d5		90.2	53.2 - 1	37				_	12/19	9/13 13:06	5 12/27/13 18:47	1.00
2-FBP		92.2	63.6 - 1	23					12/19	9/13 13:06	6 12/27/13 18:47	1.00
p-Terphenyl-d14		116	65.6 - 1	67					12/19	9/13 13:06	6 12/27/13 18:47	1.00
Lab Sample ID: 13L0104-BS1 Matrix: Soil								Cli	ent	Sample	ID: Lab Control	Sample
Analysis Batch: 13I 0104											Prep Batch: 13	0104 P
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Naphthalene			0.133	0.129			mg/kg we	et		96.5	62.7 - 120	
·							0 0					
	LCS	LCS										
Surrogate	%Recovery	Qualifier	Limits									
Nitrobenzene-d5	86.8		53.2 - 137									
2-FBP	87.2		63.6 - 123									
p-Terphenyl-d14	101		65.6 - 167									
Lab Sample ID: 13L0104-MS1										Client	Sample ID: Matr	ix Spike
Matrix: Soil											Prep Typ	e: Total
Analysis Batch: 13L0104											Prep Batch: 13	_0104_P
-	Sample	Sample	Spike	Matrix Spike	Matr	ix Spik	e				%Rec.	_
Analyte	Result	Qualifier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Naphthalene	ND		0.338	0.208			mg/kg dry	/	<u>¤</u>	61.5	30 - 120	
	Matrix Snike	Matrix Snike										
Surrogate	%Recovery	Qualifier	l imite									
Nitrohenzene-d5	71 /		53.2 137									
2_ERD	71.4 50.8	76	63.6 122									
n-Ternhenyl-d14	07.0	20	65.6 167									
p-reipnenyi-ur4	97.0		00.0 - 10/									

5 6

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring (Continued)

Lab Sample ID: 13L0104-M Matrix: Soil	1501							Client	Sample	ID: Matrix S	spike Du rep Type	plicate : Tota
Analysis Batch: 13L0104										Prep Bat	tch: 13L	0104 F
·····,	Sample	Sample	Spike	ıtrix Sp	ike Dup	Matrix Spil	ke Dur			%Rec.		RPI
Analyte	Result	Qualifier	Added		Result	Qualifier	Unit		D %Red	: Limits	RPD	Limi
Naphthalene	ND		0.273		0.175		mg/kg d	lry	☆ 64.0	30 - 120	17.5	3
	Matrix Spike Dup	Matrix Spike	Dup									
Surrogate	%Recovery	Qualifier	Limits									
Nitrobenzene-d5	80.4		53.2 - 137	_								
2-FBP	71.8		63.6 - 123									
p-Terphenyl-d14	94.8		65.6 - 167									
Method: 300.0 - Anions	, Ion Chromat	ography										
Lab Sample ID: MB 250-23	167/1-A								Clien	t Sample ID	: Method	l Blanl
Matrix: Solid										Prep	o Type: S	Soluble
Analysis Batch: 23205												
-		MB MB										
Analyte	R	esult Qualifi	er	RL		MDL Unit		D	Prepared	I Analy	yzed	Dil Fa
Sulfate		ND		19		mg/K	g			12/27/13	3 01:35	
Nitrate as N		ND		1.9		mg/K	g			12/27/13	3 01:35	
Lab Sample ID: LCS 250-23	3167/2-A							Clie	ent Sam	ole ID: Lab (Control S	Sample
Matrix: Solid										Prep	o Type: S	Solubl
Analysis Batch: 23205												
			Spike		LCS	LCS				%Rec.		
Analyte			Added		Result	Qualifier	Unit		D %Red	Limits		
Sulfate			146		143		mg/Kg		98	90 - 110		
Nitrate as N			48.6		45.8		mg/Kg		94	90 - 110		
Lab Sample ID: 250-16215-	-A-1-C MS								Clie	nt Sample II	D: Matrix	c Spike
Matrix: Solid										Prep	o Type: S	Soluble
Analysis Batch: 23205												
	Sample	Sample	Spike		MS	MS				%Rec.		
Analyte	Result	Qualifier	Added		Result	Qualifier	Unit		D %Red	Limits		
Sulfate	29		170		189		mg/Kg		¤ 94	75 - 125		
Nitrate as N	2.4		56.7		53.8		mg/Kg		₽ 91	75 ₋ 125		
Lab Sample ID: 250-16215-	-A-1-D MSD							Client	Sample	ID: Matrix S	Spike Du	plicate
Matrix: Solid										Prep	o Type: S	Soluble
Analysis Batch: 23205												
	Sample	Sample	Spike		MSD	MSD				%Rec.		RPI
Analyte	Result	Qualifier	Added		Result	Qualifier	Unit		D %Red	Limits	RPD	Limi
Sulfate	29		160		178		mg/Kg		⇔ 93 w	8 75 - 125	6	4
Nitrate as N	2.4		53.4		50.7		mg/Kg		ф 9 [⁄]	75 ₋ 125	6	4
Lab Sample ID: 250-16215-	A-1-B DU								C	lient Samp	le ID: Du	plicate
Matrix: Solid										Prep	o Type: S	Soluble
Analysis Batch: 23205	- -	. .										
Avelate	Sample	Sample			DU	DU			-			RPI
	Result	Qualifier			Result	Qualifier	Unit		<u>–</u>			Limi
Sunate	29				26.7		md/Ka		**		8	40

TestAmerica Spokane

mg/Kg

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 250-16215-A-1 Matrix: Solid Analysis Batch: 23205	-B DU						Client Sample ID: Dup Prep Type: S	olicate oluble
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Resul	t Qualifier	Unit	D	RPD	Limit
Nitrate as N	2.4		2.44		mg/Kg	<u></u>		40

Dilution

Factor

0.794

1.00

1.16

1.00

1.00

1.00

Run

Batch

Number

13L0110

13L0104

13L0153

13L0110 P

13L0104_P

13L0153 P

Prepared

or Analyzed

12/20/13 08:35

12/20/13 14:22

12/19/13 13:06

12/27/13 21:46

12/19/13 15:50

12/20/13 16:45

Analyst

CBW

CBW

MS

MRS

MS

MS

Lab

TAL SPK

TAL SPK

TAL SPK

Client Sample ID: MW-5(5-5.5)

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Batch

Method

GC/MS Volatiles

EPA 8260C

EPA 3550B

EPA 8270D

Wet Chem

TA SOP

Date Collected: 12/12/13 08:15

Date Received: 12/16/13 16:50

Prep Type

Total

Total

Total

Total

Total

Total

Matrix: Soil

Matrix: Soil

Matrix: Soil

Matrix: Soil

Percent Solids: 74.2

Percent Solids: 73.8

Percent Solids: 76.4

Percent Solids: 72

7

TAL SPK TAL SPK TAL SPK Lab Sample ID: SWL0086-07

Lab Sample ID: SWL0086-11

Lab Sample ID: SWL0086-17

Client Sample ID: MW-6(5-5.5) Date Collected: 12/13/13 08:15 Date Received: 12/16/13 16:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.776	13L0110_P	12/20/13 08:35	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	13L0110	12/20/13 13:59	CBW	TAL SPK
Total	Prep	EPA 3550B		0.980	13L0104_P	12/19/13 13:06	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	13L0104	12/27/13 22:12	MRS	TAL SPK
Soluble	Leach	DI Leach			23167	12/26/13 17:20	LQN	TAL PRT
Soluble	Analysis	300.0		1	23205	12/27/13 04:42	LQN	TAL PRT
Total/NA	Analysis	D2216-80		1	23212	12/29/13 10:34	TNL	TAL PRT
Total	Prep	Wet Chem		1.00	13L0153_P	12/19/13 15:50	MS	TAL SPK
Total	Analysis	TA SOP		1.00	13L0153	12/20/13 16:45	MS	TAL SPK

Client Sample ID: B-1(2-2.5)

Date Collected: 12/12/13 10:30 Date Received: 12/16/13 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			23167	12/26/13 17:20	LQN	TAL PRT
Soluble	Analysis	300.0		1	23205	12/27/13 05:13	LQN	TAL PRT
Total/NA	Analysis	D2216-80		1	23212	12/29/13 10:34	TNL	TAL PRT

Client Sample ID: B-2(2.5-3) Date Collected: 12/12/13 12:45

Date Received: 12/16/13 16:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			23167	12/26/13 17:20	LQN	TAL PRT
Soluble	Analysis	300.0		1	23205	12/27/13 05:44	LQN	TAL PRT
Total/NA	Analysis	D2216-80		1	23212	12/29/13 10:34	TNL	TAL PRT

Matrix: Soil

Percent Solids: 76.4

Lab Sample ID: SWL0086-24

Client Sample ID: B-3(5.5-6.5)

Date Collected: 12/12/13 14:25 Date Received: 12/16/13 16:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			23167	12/26/13 17:22	LQN	TAL PRT
Soluble	Analysis	300.0		1	23205	12/27/13 06:15	LQN	TAL PRT
Total/NA	Analysis	D2216-80		1	23212	12/29/13 10:34	TNL	TAL PRT

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

2 3 4 5

8 9 10

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-14

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority Alaska (UST)	Program State Program	EPA Region 10	Certification ID UST-012	Expiration Date
California	State Program	9	2597	09-30-15
Oregon	NELAP	10	OR100021	01-09-14
USDA	Federal		P330-11-00092	02-17-14
Washington	State Program	10	C586	06-23-14

* Expired certification is currently pending renewal and is considered valid.

Client: Geo Engineers - Spokane Project/Site: 0504-078-00

5
8
~

Method	Method Description	Protocol	Laboratory
EPA 8260C	NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
300.0	Anions, Ion Chromatography	MCAWW	TAL PRT
D2216-80	Percent Dry Weight (Solids) per ASTM D2216-80	ASTM	TAL PRT
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK
Protocol Re	ferences:		
ASTM =	ASTM International		

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200 TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

253-922-2310 FAX 922-5047 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

	С	HAIN	OF	CUST	'ODY	REPO	ORT				Wor	k Oi	rder #	SWLOOg	>	
CLIENT GENTENKINGERS NC		INVOIC	E TO:									3	FURNA	ROUND REQU	EST	
		Sama BA								in Business Days *						
ADDRESS: JON KUDDERS		Contraction of the second									Organic & Inorganic Analyses					
jundaers e geoengmeers com									·		STD.	$\begin{bmatrix} 100 \\ 7 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\$				
PHONE: 20 363315 FAX:		P.O. NUMBER:									\mathbf{k}		$\begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$	<1		
MINER (ITM STOPE FOURSESTP		4						1				STB				
PROJECT NUMBER:	ø	<u>z</u>		REQUE	STED AN	ALYSES	L	I				07	THER	Specify:		
SAMPLED BY: FRH	33	M.	FY	1 T							* Turna	round F	<i>lequests le</i>	ss than standard may i	ncur Rush Charges.	
CLIENT SAMPLE SAMPLING DENTIFICATION DATE/TIME 3	A N	2 P	28	5 mg							MAT (W, S	RIX (, O)	# OF CONT.	LOCATION COMMENT	TA WOID	
	<u> </u>		<u>~~ (v)</u>						-			<u> </u>	2			
MW-5 (25-3) 1712/13 0800		-	<u> </u>									<u>د</u>				
MW-5(5-5.5) 0815 X X	\times	\times												<u> </u>		
MW-5(10-10.5) 0820																
. MW-5(13-13.5) 0900		_														
MW-5(8-8.5) V 0830			ļ									<u> </u>				
MW-6(25-3) 14/13/13 0500			ļ									<u> </u> 	1	16 5035		
, MW-6 (5-5.5) 1 0815 × ×	×	×	X	\times								<u> </u>	\downarrow			
MW-6 (8-8.5) 0875					 .							\downarrow				
MW-6 (10.5-11) 0835					<u> </u>									·		
10 MW-6 (13.5-14) V 0845				<u> </u>					A			\mathbb{V}	V	DA	E 12 14/13	
RELEASED BY:	in a s		= 12	16 13		RECEIVED	ие: Ме:		DN DN	an B.	udders	FIRM	: (T TA	- 10900 ·	
PRINT NAME: TANKI ILLANDAN	<u> 10 ks</u>	DAIT	- 04 - 121	1013		RECEIVED) BY: A	<u></u>	<u>sain</u>	<u>ure 11</u>				DA	12-16-13	
PRINT NAME: O Tongthan Ruddes FIRME GET		TIME	<u> </u>	<u>50</u>		PRINT NA	ME: ()	t M	aplilo	<u>v</u>		FIRM	<u>- lest</u>	<u>Himenica</u> T	<i>■16:50</i>	
A ADDITIONAL REMARKS:									ı 					19	PAGE OF 3	
<u> Х — — — — — — — — — — — — — — — — — — </u>														Т	AL-1000 (0612)	

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

 5755 8th Street East, Tacoma, WA 98424-1317
 253-9

 11922 E. First Ave., Spokane WA 99206-5302
 509-9

 9405 SW Nimbus Ave., Beaverton, OR 97008-7145
 503-5

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-5

 253-922-2310
 FAX 922-5047

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

	A			CI	HAIN	OF	CUST	ODY	REP	ORT				Work	Or	der #:	SWLDOG	to	
	CLIENT: (JESTAKINEERS, IN	R			INVOIC	E TO:						•			Т	URNA	ROUND REQ	UEST	
	REPORT TO: TAL RUNCES						50x	ne	al	1					în Business Days *				
	ADDRESS:		_		/	•								Organic & Inorganic Analyses					
	Unidelia geoerginee		•		<u> </u>				· · ·						<u> </u>		4 3 2		<1
	PHONE: SO7 563 312 FAX:				P.O. NUI	MBER:		SERVATI	VE						Ň			1,323 <1	
	MOXEE CITY SHEP & FORMER	-SP										- ···]	1		ATA				
	PROJECT NUMBER:			<u></u>	z		REQUES	TED ANA	ALYSES	k.	I	1		- T	or	HER	Specify:		
	SAMPLED BY:	H _c ×		59	s to	33	22							* Turnaro	und R	equests les	s than standard ma	y incur Rush	Charges.
	CLIENT SAMPLE SAMPLING IDENTIFICATION		824 824	н-рех 22	11128	tuta 2013	Alla A							MATR (W, S,	IX 0)	# OF CONT.	LOCATIC COMMEN	N/ TS	TA WO ID
Pane	B-1 (253)21101 12/12/13	1030				×	×							5		1			
18	28-1(5.5-6)	V740																	
ר ז ר א	18-1(8-8-5)	1045										-							
	18-160.5-117	100 J																	
	15-1(13.5-12)	1115																	
	B-1(15.5-16)	1130																	
	13-2(25-3)	1245				\star	\star												
	· B-2 (5-6)	1250	ļ																
	·B-2 (8-8.5)	1258													_				
	10 B-2- (10-10.5 V	1305														V			2 4 1 -
	RELEASED BY FIMA HIRAN	FIRM AFIT	- NG-18 L	En la companya de la company	DATÉ:	12 1	6/13		RECEIVEI PRINT NA	DBY:		+6	RUJJ	• (s	IRM:	(<i>6</i> -	יד די	ME: 09	ieli iov
	RELEASED BY:	yun	+	an	DATE:	12	16/13		RECEIVED	DBY: AL	L.	abler	.19060	-	TRM	Techo	E	 ате/7-10 ime://, 5	
<u>د</u>	ADDITIONAL REMARKS	FIRM: GC.	<u>+</u>		TIME:	1	650	I.	T KINI NA		 	UNMIT C				IUT	TEMP:	1 1	/ አ
12/20			. –														1/- (PAGE	0 <u>612</u>

AL-1000 (0612)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

 5755
 8th Street East, Tacoma, WA 98424-1317
 2

 11922
 E. First Ave., Spokane WA 99206-5302
 5

 9405
 SW Nimbus Ave., Beaverton, OR 97008-7145
 5

 2000
 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 9

 253-922-2310
 FAX 922-5047

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 907-563-9200
 FAX 563-9210

	Δ					Cl	HAIN	OF (CUST	'OD'	(REP	ORT					Work O	rder #:	SNLOOSO		
	CLIENT: CHETKEINA	EBKS, IW	د				INVOIC	E TO:							•			FURNA	ROUND REQU	EST	
	REPORT TO:	-le						No	m	_	as	•					in Business Days *				
	ADDRESS: JON RANDI	an anna	veers - c	on			/	/2000									Organic & Inorganic Analyses				
	O Vacus					<															
	PHONE 57736337151	FAX:		1			P.O. NUI	MBER:									SPD. Petroleum Hydrocarbon Analyses				
	MINER CITY SHOP	FORMER S	STP		1 . 1					SERVA								الثام	3 2 1		
	PROJECT NUMBER:	178-01				[REQUESTED ANALYSES									Γ α	THIRD I	Si6			
	SAMPLED BY:			12 8	<u>,</u> <u>a</u>				KEQUE:								* Turnaround i	Requests les	specny: s than standard may in	our Rush Charges.	
	CLIENT SAMPLE	SAMPLIN	1G	東の	中で												MATRIX	#OF	LOCATION/	TA	
-	IDENTIFICATION	DATE/TIN	vie	510	<u>r</u> <i>B</i>												(w, s, 0)	CONT.	COMMENTS	WOID	
age	18-2(13.5-14)	12/12/13	1315														5	1			
17 0	2B-2-(15-15.5)	<u> </u>	1330																		
of 18	,6-3(3-4)		1415																		
-	· B-3 (5-6)50	Guela	1425	\star	$\left \star \right $																
	· B-3(7,5-8)		1435																		
	· B-3 (W-11.5)	1451	1500																		
	B-3 (13.5-14		1500																		
	· B-3 /16-16.5	Ś√	1520														Ś	\checkmark			
	9		50	L		Ą									+						
	10			n11	5[13																
	RELEASED BY:	KAN!	EIEM AT	-	j m n		DATE:	12	1611	3	RECEIVE	AME)	~ %~	A.B.	المامدة	FIRM	66	DATE	12 16 13	
	RELEASED BY:			190	NOA	<u>VD</u>	DATE:	121	1613	3	RECEIVE	DBY: A		41	1100	1947	1 1/1/11.	<u> </u>	DATE	12-16-13	
	PRINT NAME: UJonathan	Riddes	firm: G-	ϵ I	· · · · • • • • •		TIME:	16	50		PRINT N		t Dh	<u>allor</u>			FIRM:	TrstA	MINTO TIME	16:50	
1/2	ADDITIONAL REMARKS:								-			Ū.	1	ſ					TEMP:	30F3	
/20																			TA	L-1000 (0612)	

---':

Ť.

TestAmerica Spokane Sample Receipt Form

Work Order #BWLOOGO Client GeoEnging	ers			Project:	Noxee	City Shop
Date/Time Received: 12-16-13 16:50	By(CS					
Samples Delivered By: Shipping Service Courier	Other	·				
List Air Bill Number(s) or Attach a photocopy of the Air Bill:			-			
Receipt Phase	Yes	No	NÁ		Com	nents
Were samples received in a cooler:	Х					
Custody Seals are present and intact:	X			· · ·		
Are CoC documents present:	Х			····		
Necessary signatures:	Χ					
Thermal Preservation Type: Blue Ice Gel Ice	Dry Ice	None	Other:			
Temperature: 1.9 °C Thermometer (Circle one Serial #12)	2208348 Ko	eyring IR	Serial # 11	1874910 IR (Gun 2)(ac	ceptance criteria 0-6
Temperature out of range: Not enough ice ice melted melted for the second secon	/in 4hrs of	collection	<u> </u>]Other:		
Date/Time: Pail 11:00 /03/(100) By: Date Are sample labels affixed and completed for each container	Yes X	No	NA		Com	nents
Samples containers were received intact:	Х					
Do sample IDs match the CoC	X					
Appropriate sample containers were received for tests requested	_X					
Are sample volumes adequate for tests requested	Х					
Appropriate preservatives were used for the tests requested	X		·-··			
pH of inorganic samples checked and is within method specification	<u>}</u>				···	, <u>.,</u>
Are VOC samples free of bubbles >6mm (1/4" diameter)			<u> </u>			
Are dissolved parameters field filtered			<u> </u>			
Do any samples need to be filtered or preserved by the lab			X			
Does this project require quick turnaround analysis			X			
Are there any short hold time tests (see chart below)		X				
Are any samples within 2 days of or past expiration		_X				
Was the CoC scanned	<u> </u>					
Were there Non-conformance issues at login		Ъ.				
If yes, was a CAR generated #						

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

i.

Form No. SP-FORM-SPL-002 12 December 2012

. . .

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SWL0140

Client Project/Site: 0504-078-01 Client Project Description: Moxee City Shop Revision: 1

For:

Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Jon Rudders

tande eÒ YOU

Authorized for release by: 1/28/2014 3:29:06 PM

Randee Decker, Project Manager (509)924-9200 Randee.Decker@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	13
Chronicle	19
Certification Summary	22
Method Summary	23
Chain of Custody	24

3

Job ID: SWL0140

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-43809-1

Comments

No additional comments.

Receipt

The samples were received on 1/3/2014 8:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC Semi VOA

No analytical or quality issues were noted. Laboratory: TestAmerica Spokane

Narrative

Receipt

The sample(s) were received on 12/31/2013 12:10:00 PM ; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.3 °C.

Revision1: The dissolved Manganese results for sample SWL0140-04 (MW-4-123013) were inadvertantly checked to non-reportable. The data has now been included in the amended report. This final report replaces the final report generated on 01/15/14.

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-078-01 TestAmerica Job ID: SWL0140

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
SWL0140-01	MW-1-123013	Water	12/30/13 09:38	12/31/13 12:10	Λ
SWL0140-02	MW-2-123013	Water	12/30/13 15:56	12/31/13 12:10	- - -
SWL0140-03	MW-3-123013	Water	12/30/13 11:05	12/31/13 12:10	5
SWL0140-04	MW-4-123013	Water	12/30/13 13:34	12/31/13 12:10	Ð
SWL0140-05	MW-5-123013	Water	12/30/13 12:21	12/31/13 12:10	
SWL0140-06	MW-6-123013	Water	12/30/13 14:54	12/31/13 12:10	
SWL0140-07	Duplicate-1-123013	Water	12/30/13 12:34	12/31/13 12:10	
					8
					9

5

UUAIITI	ers.
aun	

Metals

motulo	
Qualifier	Qualifier Description
В	Analyte was detected in the associated Method Blank.
B1	Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in
	the method blank.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Client Sample ID: MW-1-123013

Lab Sample ID: SWL0140-01

Date Collected: 12/30/13 09:38 Date Received: 12/31/13 12:10

M	atr	ix:	w	ate
	au	·		aic

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	1690		90.0		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
Benzene	0.290		0.200		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
Toluene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
Ethylbenzene	34.4		0.500		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
m,p-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
o-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
Xylenes (total)	ND		1.50		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
Hexane	ND		1.00		ug/l		01/07/14 09:46	01/07/14 15:26	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane			71.2 - 143				01/07/14 09:46	01/07/14 15:26	1.00
Toluene-d8	95.2		74.1 - 135				01/07/14 09:46	01/07/14 15:26	1.00
4-bromofluorobenzene	106		68.7 - 141				01/07/14 09:46	01/07/14 15:26	1.00

Method: EPA 8270D - Polyn	uclear Aromatic Co	mpounds	by GC/MS with S	Selected	Ion Moni	toring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	1.28		0.0984		ug/l		01/06/14 10:11	01/06/14 15:38	1.00
2-Methylnaphthalene	ND		0.0984		ug/l		01/06/14 10:11	01/06/14 15:38	1.00
1-Methylnaphthalene	5.37		0.0984		ug/l		01/06/14 10:11	01/06/14 15:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67.9		32.7 - 135				01/06/14 10:11	01/06/14 15:38	1.00
_									

Method: RSK-175 - Disso	olved Gases (GC)							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methane	0.00695		0.00500	mg/L			01/07/14 12:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Acetylene (Surr)	86		62 - 124				01/07/14 12:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.863	B1	0.0100		mg/l		01/06/14 15:31	01/09/14 13:50	1.00
-									
Method: EPA 300.0 - Anior	ns by EPA Method 30	0.0							
Method: EPA 300.0 - Anior Analyte	ns by EPA Method 30 Result	0.0 Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anior Analyte Nitrate-Nitrogen	hs by EPA Method 30 Result	Qualifier		MDL	Unit mg/l	D	Prepared	Analyzed	Dil Fac

Method: SM 2320B - Conventional	Chemistry P	arameters	by APHA/EP	A Methods					
Analyte	Result	Qualifier	RL	MDL	Unit	0	Prepared	Analyzed	Dil Fac
Total Alkalinity	445		4.00		mg/l		01/13/14 08:55	01/13/14 13:00	1.00

Client Sample ID: MW-2-123013 Date Collected: 12/30/13 15:56

Date Received: 12/31/13 12:10

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		90.0		ug/l		01/07/14 09:46	01/07/14 15:50	1.00
Benzene	ND		0.200		ug/l		01/07/14 09:46	01/07/14 15:50	1.00

TestAmerica Spokane

Lab Sample ID: SWL0140-02

5

6

Matrix: Water

5 6

Client Sample ID: MW-2-123013 Date Collected: 12/30/13 15:56 Date Received: 12/31/13 12:10

Lab Sample ID: SWL0140-02 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 15:50	1.0
Ethylbenzene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 15:50	1.00
m,p-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 15:50	1.00
o-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 15:50	1.00
Xylenes (total)	ND		1.50		ug/l		01/07/14 09:46	01/07/14 15:50	1.00
Hexane	ND		1.00		ug/l		01/07/14 09:46	01/07/14 15:50	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	102		71.2 - 143				01/07/14 09:46	01/07/14 15:50	1.00
Toluene-d8	97.3		74.1 - 135				01/07/14 09:46	01/07/14 15:50	1.00
4-bromofluorobenzene	108		68.7 - 141				01/07/14 09:46	01/07/14 15:50	1.00
Method: EPA 8270D - Polynuclear A	romatic Co	mpounds b	y GC/MS with S	Selected	Ion Monit	oring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0951		ug/l		01/06/14 10:11	01/06/14 16:03	1.00
2-Methylnaphthalene	ND		0.0951		ug/l		01/06/14 10:11	01/06/14 16:03	1.00
1-Methylnaphthalene	ND		0.0951		ug/l		01/06/14 10:11	01/06/14 16:03	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	88.4		32.7 - 135				01/06/14 10:11	01/06/14 16:03	1.00
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases	88.4 s (GC)		32.7 - 135				01/06/14 10:11	01/06/14 16:03	1.00
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte	88.4 s (GC) Result	Qualifier	32.7 <u>-</u> 135 RL	MDL	Unit	D	01/06/14 10:11 Prepared	01/06/14 16:03 Analyzed	1.00 Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane	88.4 s (GC) <u>Result</u> ND	Qualifier	32.7 - 135 RL 0.00500	MDL	Unit mg/L	D	01/06/14 10:11 Prepared	01/06/14 16:03 Analyzed 01/07/14 13:00	1.00 Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate	88.4 s (GC) Result ND %Recovery	Qualifier Qualifier	32.7 - 135 RL 0.00500 Limits	MDL	Unit mg/L	D	Prepared Prepared	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed	Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr)	88.4 s (GC) Result ND %Recovery 89	Qualifier Qualifier	32.7 - 135 RL 0.00500 <i>Limits</i> 62 - 124	MDL	Unit mg/L	D	01/06/14 10:11 Prepared Prepared	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00	1.00 Dil Fac Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta	88.4 s (GC) <u>Result</u> ND %Recovery 89 als by EPA 2	Qualifier Qualifier 200 Series	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso	MDL	Unit mg/L	<u>D</u>	01/06/14 10:11 Prepared Prepared	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00	1.00 Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte	88.4 s (GC) <u>Result</u> ND %Recovery 89 als by EPA 2 Result	Qualifier Qualifier 200 Series Qualifier	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL	MDL Dived MDL	Unit mg/L Unit	D	O1/06/14 10:11 Prepared Prepared Prepared	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed Analyzed	1.00 Dil Fac Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese	88.4 s (GC) ND %Recovery 89 als by EPA 2 Result 0.306	Qualifier Qualifier 200 Series Qualifier B1	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100	MDL Dived MDL	Unit mg/L Unit mg/l	D	01/06/14 10:11 Prepared Prepared 01/06/14 15:31	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/09/14 13:53	Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese Method: EPA 300.0 - Anions by EPA	88.4 s (GC) ND %Recovery 89 als by EPA 2 Result 0.306	Qualifier Qualifier 200 Series Qualifier B1	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100	MDL Dived MDL	Unit mg/L Unit mg/l	D	01/06/14 10:11 Prepared Prepared O1/06/14 15:31	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/09/14 13:53	Dil Fau Dil Fau Dil Fau Dil Fau
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese Method: EPA 300.0 - Anions by EPA Analyte	88.4 s (GC) ND %Recovery 89 als by EPA 2 Result 0.306 Method 30 Result	Qualifier Qualifier 200 Series Qualifier B1 0.0 Qualifier	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100 RL	MDL Dived MDL MDL	Unit mg/L Unit Unit	D D D	01/06/14 10:11 Prepared Prepared 01/06/14 15:31 Prepared	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/09/14 13:53 Analyzed	Dil Fac Dil Fac Dil Fac 1.00
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese Method: EPA 300.0 - Anions by EPA Analyte Nitrate-Nitrogen	88.4 s (GC) ND %Recovery 89 als by EPA 2 Result 0.306 Method 30 Result 125	Qualifier Qualifier 200 Series Qualifier B1 0.0 Qualifier	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100 RL 2.00	MDL Dived MDL MDL	Unit mg/L Unit mg/l	D	01/06/14 10:11 Prepared Prepared 01/06/14 15:31 Prepared 12/31/13 12:37	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/09/14 13:53 Analyzed 12/31/13 12:56	Dil Fau Dil Fau Dil Fau 1.00 Dil Fau
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese Method: EPA 300.0 - Anions by EPA Analyte Nitrate-Nitrogen Sulfate	88.4 s (GC) ND %Recovery 89 als by EPA 2 Result 0.306 A Method 30 Result 125 219	Qualifier Qualifier 200 Series Qualifier B1 0.0 Qualifier	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100 RL 2.00 5.00	MDL Dived MDL MDL	Unit mg/L Unit mg/l Unit mg/l mg/l	D	O1/06/14 10:11 Prepared Prepared 01/06/14 15:31 Prepared 12/31/13 12:37 12/31/13 12:37	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/09/14 13:53 Analyzed 12/31/13 12:56 12/31/13 12:56	1.00 Dil Fau Dil Fau 1.00 Dil Fau 10.0
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese Method: EPA 300.0 - Anions by EPA Analyte Nitrate-Nitrogen Sulfate Method: SM 2320B - Conventional C	88.4 s (GC) Result ND %Recovery 89 als by EPA 2 Result 0.306 A Method 30 Result 125 219 Chemistry P	Qualifier Qualifier 200 Series Qualifier B1 0.0 Qualifier	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100 RL 2.00 5.00 Dy APHA/EPA N	MDL MDL MDL	Unit mg/L Unit mg/l Unit mg/l	D	O1/06/14 10:11 Prepared Prepared 01/06/14 15:31 Prepared 12/31/13 12:37 12/31/13 12:37	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:53 Analyzed 12/31/13 12:56 12/31/13 12:56	1.00 Dil Fac Dil Fac 1.00 Dil Fac 10.0 10.0
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese Method: EPA 300.0 - Anions by EPA Analyte Nitrate-Nitrogen Sulfate Method: SM 2320B - Conventional C Analyte	88.4 s (GC) Result ND %Recovery 89 als by EPA Result 0.306 Method 30 Result 125 219 Chemistry P Result	Qualifier Qualifier 200 Series Qualifier B1 0.0 Qualifier arameters	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100 RL 2.00 5.00 Oy APHA/EPA N RL	MDL Dived MDL MDL	Unit mg/L Unit mg/l Unit mg/l	D D D	01/06/14 10:11 Prepared Prepared 01/06/14 15:31 Prepared 12/31/13 12:37 12/31/13 12:37 Prepared	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/09/14 13:53 Analyzed 12/31/13 12:56 12/31/13 12:56 Analyzed	Dil Fac
Nitrobenzene-d5 Method: RSK-175 - Dissolved Gases Analyte Methane Surrogate Acetylene (Surr) Method: EPA 200.7 - Dissolved Meta Analyte Manganese Method: EPA 300.0 - Anions by EPA Analyte Nitrate-Nitrogen Sulfate Method: SM 2320B - Conventional C Analyte Total Alkalinity	88.4 s (GC) Result ND %Recovery 89 als by EPA 2 Result 0.306 Method 30 Result 125 219 Chemistry P Result 270	Qualifier Qualifier 200 Series Qualifier B1 0.0 Qualifier Carameters Qualifier	32.7 - 135 RL 0.00500 Limits 62 - 124 Methods - Disso RL 0.0100 RL 2.00 5.00 by APHA/EPA N RL 4.00	MDL MDL MDL	Unit mg/L Unit mg/l Unit mg/l Unit mg/l	D D D	O1/06/14 10:11 Prepared Prepared 01/06/14 15:31 Prepared 12/31/13 12:37 12/31/13 12:37 12/31/13 12:37 Prepared 01/13/14 08:55	01/06/14 16:03 Analyzed 01/07/14 13:00 Analyzed 01/07/14 13:00 Analyzed 01/09/14 13:53 Analyzed 12/31/13 12:56 12/31/13 12:56 12/31/13 12:56 Analyzed 01/13/14 13:00	1.0 Dil Fa Dil Fa Dil Fau 1.00 Dil Fau 10.0 Dil Fau

Date Received: 12/31/13 12:10

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C								
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Hydrocarbons	ND	90.0	ug/l		01/07/14 09:46	01/07/14 16:13	1.00	
Benzene	ND	0.200	ug/l		01/07/14 09:46	01/07/14 16:13	1.00	
Toluene	ND	0.500	ug/l		01/07/14 09:46	01/07/14 16:13	1.00	
Ethylbenzene	ND	0.500	ug/l		01/07/14 09:46	01/07/14 16:13	1.00	
m,p-Xylene	ND	0.500	ug/l		01/07/14 09:46	01/07/14 16:13	1.00	

Date Collected: 12/30/13 11:05

Date Received: 12/31/13 12:10

Analyte

o-Xylene

Hexane

Xylenes (total)

Client Sample ID: MW-3-123013

TestAmerica Job ID: SWL0140

Matrix: Water

Dil Fac

1.00

1.00

1.00

Dil Fac

Lab Sample ID: SWL0140-03

Analyzed

01/07/14 16:13

01/07/14 16:13

01/07/14 16:13

6

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		71.2 - 143				01/07/14 09:46	01/07/14 16:13	1.00
Toluene-d8	99.6		74.1 - 135				01/07/14 09:46	01/07/14 16:13	1.00
4-bromofluorobenzene	108		68.7 - 141				01/07/14 09:46	01/07/14 16:13	1.00
_									
Method: EPA 8270D - Polynuclear	Aromatic Co	mpounds b	oy GC/MS with S	Selected	Ion Monit	toring			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0988		ug/l		01/06/14 10:11	01/06/14 16:29	1.00
2-Methylnaphthalene	ND		0.0988		ug/l		01/06/14 10:11	01/06/14 16:29	1.00
1-Methylnaphthalene	ND		0.0988		ug/l		01/06/14 10:11	01/06/14 16:29	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	90.2		32.7 _ 135				01/06/14 10:11	01/06/14 16:29	1.00
- Method: RSK-175 - Dissolved Gas	es (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.00500		mg/L			01/07/14 13:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Acetylene (Surr)	89		62 - 124					01/07/14 13:09	1
– Method: EPA 200.7 - Dissolved Me	tals by EPA	200 Series	Methods - Disso	olved - R	E1				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.0224		0.0100		mg/l		01/06/14 15:31	01/13/14 14:39	1.00
- Method: EPA 300.0 - Anions by EF	A Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	0.240		0.200		mg/l		12/31/13 12:37	12/31/13 13:17	1.00
Sulfate	23.2		0.500		mg/l		12/31/13 12:37	12/31/13 13:17	1.00
Method: SM 2320B - Conventional	Chemistry P	arameters	by APHA/EPA N	lethods					
Analyte						_	- ·		B E
Filialyto	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: MW-4-123013

Date Collected: 12/30/13 13:34

Date Received: 12/31/13 12:10

Method: EPA 8260C - NWTPH-G	lethod: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Gasoline Range Hydrocarbons	ND	90.0	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			
Benzene	ND	0.200	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			
Toluene	ND	0.500	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			
Ethylbenzene	ND	0.500	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			
m,p-Xylene	ND	0.500	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			
o-Xylene	ND	0.500	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			
Xylenes (total)	ND	1.50	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			
Hexane	ND	1.00	ug/l		01/07/14 09:46	01/07/14 16:36	1.00			

TestAmerica Spokane

Lab Sample ID: SWL0140-04

Matrix: Water

RL

0.500

1.50

1.00

MDL Unit

ug/l

ug/l

ug/l

D

Prepared

01/07/14 09:46

01/07/14 09:46

01/07/14 09:46

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C (Continued)

Result Qualifier

ND

ND

ND

Limits

71.2 - 143

74.1 - 135

68.7 - 141

RL

0.0985

0.0985

0.0985

Limits

32.7 - 135

Date Received: 12/31/13 12:10

Surrogate

Toluene-d8

Analyte

Naphthalene

Surrogate

Analyte

Methane

Surrogate

Acetylene (Surr)

Nitrobenzene-d5

Dibromofluoromethane

4-bromofluorobenzene

2-Methylnaphthalene

1-Methylnaphthalene

Client Sample ID: MW-4-123013 Date Collected: 12/30/13 13:34

Matrix: Water

Dil Fac

1.00

1.00

1.00

Dil Fac

1.00

1.00

1.00

Dil Fac

1.00

1

1

Lab Sample ID: SWL0140-04

Analyzed

01/07/14 16:36

01/07/14 16:36

01/07/14 16:36

Analyzed

01/06/14 16:55

01/06/14 16:55

01/06/14 16:55

Analyzed

01/06/14 16:55

01/07/14 13:11

Prepared

01/07/14 09:46

01/07/14 09:46

01/07/14 09:46

Prepared

01/06/14 10:11

01/06/14 10:11

01/06/14 10:11

Prepared

01/06/14 10:11

D

6

8
9

Method: RSK-175 - Dissolved Gases (GC) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.00500 01/07/14 13:11 mg/L Qualifier Limits Analyzed %Recovery Prepared Dil Fac

MDL Unit

ug/l

ug/l

ug/l

Method: EPA 200.7 -	Dissolved Metals by EPA 200 Se	ries Methods - Dissolved
MCCHOU. EL A 200.1		

%Recovery Qualifier

102

98.2

105

ND

ND

ND

71.2

88

%Recovery

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Result Qualifier

Qualifier

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	ND B	<u> </u>	0.0100		mg/l		01/06/14 15:31	01/09/14 14:03	1.00
Method: EPA 300.0 - Anions by E	PA Method 300.	0							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

62 - 124

Analyto	Roount	quanner	1.2	IND E	0		Toparoa	raiaiyzoa	Birrao
Nitrate-Nitrogen	0.950		0.200		mg/l	 _	12/31/13 12:37	12/31/13 13:36	1.00
Sulfate	30.7		0.500		mg/l		12/31/13 12:37	12/31/13 13:36	1.00
_ Method: SM 2320B - Conventional	Chemistry Pa	arameters t	by APHA/EP	A Methods					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: MW-5-123013	3			Lab Sam	ple ID: SWL01	40-05
Total Alkalinity	320	4.00	mg/l	01/13/14 08:55	01/13/14 13:00	1.00
				•	•	

Date Collected: 12/30/13 12:21

Date Received: 12/31/13 12:10

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		90.0		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
Benzene	ND		0.200		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
Toluene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
Ethylbenzene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
m,p-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
o-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
Xylenes (total)	ND		1.50		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
Hexane	ND		1.00		ug/l		01/07/14 09:46	01/07/14 16:59	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		71.2 - 143				01/07/14 09:46	01/07/14 16:59	1.00
Toluene-d8	98.1		74.1 - 135				01/07/14 09:46	01/07/14 16:59	1.00
4-bromofluorobenzene	105		68.7 - 141				01/07/14 09:46	01/07/14 16:59	1.00

TestAmerica Spokane

Page 9 of 25

Matrix: Water

TestAmerica Job ID: SWL0140

Client Sample ID: MW-5-123013

Lab Sample	ID:	SWL0140-05
		Matrix: Water

5 6

Date Collected: 12/30/13 12:21 Date Received: 12/31/13 12:10

,	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.102		ug/l		01/06/14 10:11	01/06/14 17:20	1.00
2-Methylnaphthalene	ND		0.102		ug/l		01/06/14 10:11	01/06/14 17:20	1.00
1-Methylnaphthalene	ND		0.102		ug/l		01/06/14 10:11	01/06/14 17:20	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	89.5		32.7 - 135				01/06/14 10:11	01/06/14 17:20	1.00
Method: RSK-175 - Dissolv	ed Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.00500		mg/L			01/07/14 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Acetylene (Surr)	97		62 - 124					01/07/14 14:45	1
Acetylene (Surr) Method: EPA 200.7 - Disso	97 Ived Metals by EPA	200 Series	62 - 124	olved				01/07/14 14:45	1
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte	97 Ived Metals by EPA 2 Result	200 Series Qualifier	62 - 124 Methods - Disso RL	Dived MDL	Unit	D	Prepared	01/07/14 14:45 Analyzed	1 Dil Fac
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte Manganese	97 Ived Metals by EPA : Result 0.120	200 Series Qualifier B1	62 - 124 Methods - Disso RL 0.0100	Dived MDL	Unit mg/l	D	Prepared 01/06/14 15:31	01/07/14 14:45 Analyzed 01/09/14 14:06	1 Dil Fac 1.00
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte Manganese Method: EPA 300.0 - Anion	97 Ived Metals by EPA 3 Result 0.120 s by EPA Method 30	200 Series Qualifier B1 0.0	62 - 124 Methods - Disso RL 0.0100	Dived MDL	Unit mg/l	D	Prepared 01/06/14 15:31	01/07/14 14:45 Analyzed 01/09/14 14:06	1 Dil Fac 1.00
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte Manganese Method: EPA 300.0 - Anion Analyte	97 Ived Metals by EPA (Result 0.120 s by EPA Method 30 Result	200 Series Qualifier B1 0.0 Qualifier	62 - 124 Methods - Disso RL 0.0100	Dived MDL MDL	Unit mg/l Unit	<u>D</u> 	Prepared 01/06/14 15:31 Prepared	01/07/14 14:45 Analyzed 01/09/14 14:06 Analyzed	Dil Fac 1.00 Dil Fac
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte Manganese Method: EPA 300.0 - Anion Analyte Nitrate-Nitrogen	97 Ived Metals by EPA (Result 0.120 s by EPA Method 30 Result ND	200 Series Qualifier B1 0.0 Qualifier	62 - 124 Methods - Disso RL 0.0100 RL 0.200	MDL MDL	Unit mg/l Unit mg/l	D	Prepared 01/06/14 15:31 Prepared 12/31/13 12:37	01/07/14 14:45 Analyzed 01/09/14 14:06 Analyzed 12/31/13 13:56	1 Dil Fac 1.00 Dil Fac 1.00
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte Manganese Method: EPA 300.0 - Anion Analyte Nitrate-Nitrogen Sulfate	97 Ived Metals by EPA Result 0.120 s by EPA Method 30 Result ND 23.0	200 Series Qualifier B1 0.0 Qualifier	62 - 124 Methods - Disso RL 0.0100 RL 0.200 0.500	Dived MDL MDL	Unit mg/l Unit mg/l	D	Prepared 01/06/14 15:31 Prepared 12/31/13 12:37 12/31/13 12:37	01/07/14 14:45 Analyzed 01/09/14 14:06 Analyzed 12/31/13 13:56 12/31/13 13:56	1 Dil Fac 1.00 Dil Fac 1.00 1.00
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte Manganese Method: EPA 300.0 - Anion Analyte Nitrate-Nitrogen Sulfate Method: SM 2320B - Conve	97 Ived Metals by EPA 2 Result 0.120 s by EPA Method 30 Result ND 23.0	200 Series Qualifier B1 0.0 Qualifier	62 - 124 Methods - Disso RL 0.0100 RL 0.200 0.500 by APHA/EPA M	MDL MDL	Unit mg/l Unit mg/l mg/l	D	Prepared 01/06/14 15:31 Prepared 12/31/13 12:37 12/31/13 12:37	01/07/14 14:45 Analyzed 01/09/14 14:06 Analyzed 12/31/13 13:56 12/31/13 13:56	1 Dil Fac 1.00 Dil Fac 1.00 1.00
Acetylene (Surr) Method: EPA 200.7 - Disso Analyte Manganese Method: EPA 300.0 - Anion Analyte Nitrate-Nitrogen Sulfate Method: SM 2320B - Conve Analyte	97 Ived Metals by EPA (Result 0.120 s by EPA Method 30 Result ND 23.0 entional Chemistry P Result	200 Series Qualifier B1 0.0 Qualifier arameters Qualifier	62 - 124 Methods - Disso RL 0.0100 RL 0.200 0.500 by APHA/EPA M RL	MDL MDL	Unit mg/l Unit mg/l Unit	D_ D_ D	Prepared 01/06/14 15:31 Prepared 12/31/13 12:37 12/31/13 12:37 Prepared	01/07/14 14:45 Analyzed 01/09/14 14:06 Analyzed 12/31/13 13:56 12/31/13 13:56 Analyzed	Dil Fac 1.00 Dil Fac 1.00 1.00 Dil Fac

Client Sample ID: MW-6-123013

Lab Sample ID: SWL0140-06 Matrix: Water

Date Collected: 12/30/13 14:54 Date Received: 12/31/13 12:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		90.0		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
Benzene	ND		0.200		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
Toluene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
Ethylbenzene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
m,p-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
o-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
Xylenes (total)	ND		1.50		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
Hexane	ND		1.00		ug/l		01/07/14 09:46	01/07/14 17:23	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		71.2 - 143				01/07/14 09:46	01/07/14 17:23	1.00
Toluene-d8	95.8		74.1 _ 135				01/07/14 09:46	01/07/14 17:23	1.00
4-bromofluorobenzene	105		68.7 - 141				01/07/14 09:46	01/07/14 17:23	1.00

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0982		ug/l		01/06/14 10:11	01/06/14 17:46	1.00
2-Methylnaphthalene	ND		0.0982		ug/l		01/06/14 10:11	01/06/14 17:46	1.00
1-Methylnaphthalene	ND		0.0982		ug/l		01/06/14 10:11	01/06/14 17:46	1.00

TestAmerica Job ID: SWL0140

Client Sample ID: MW-6-12	3013						Lab Samp	ole ID: SWL0	140-00
Date Collected: 12/30/13 14:54								Matrix	c: Wate
ate Received: 12/31/13 12:10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	78.3		32.7 - 135				01/06/14 10:11	01/06/14 17:46	1.0
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methane	ND		0.00500		mg/L			01/07/14 14:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Acetylene (Surr)	96		62 - 124					01/07/14 14:47	
Method: EPA 200.7 - Dissolvec Analyte	d Metals by EPA Result	200 Series Qualifier	Methods - Disso RL		Unit	р	Prepared	Analyzed	Dil F
Manganese	0.414	B1	0.0100		mg/l		01/06/14 15:31	01/09/14 14:08	1.(
					5				
Method: EPA 300.0 - Anions by	y EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate-Nitrogen	158		2.00		mg/l		12/31/13 12:37	12/31/13 14:57	10
Sulfate	249		5.00		mg/l		12/31/13 12:37	12/31/13 14:57	10
Method: SM 2320B - Conventio	onal Chemistry P	arameters	by APHA/EPA M	lethods					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Alkalinity	195		4.00		mg/l		01/13/14 08:55	01/13/14 13:00	1.0
lient Sample ID: Duplicat	o 1 102012						Lah Sami		140.0
Client Sample ID: Duplicat	e-1-123013						Lab Samp	ole ID: SWL0 Matrix	140-0 c: Wate
Client Sample ID: Duplicat Date Collected: 12/30/13 12:34 Date Received: 12/31/13 12:10	e-1-123013						Lab Sam	ole ID: SWL0 Matrix	140-0 c: Wate
Client Sample ID: Duplicat pate Collected: 12/30/13 12:34 pate Received: 12/31/13 12:10	e-1-123013				4 82000		Lab Samp	ole ID: SWL0 Matrix	140-0 c: Wate
lient Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte	e-1-123013 Gx and Volatile (Result	Drganic Co Qualifier	mpounds by EP RL	PA Metho MDL	d 8260C Unit	D	Lab Samp	ole ID: SWL0 Matrix	140-0 c: Wate Dil Fa
lient Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons	e-1-123013 Gx and Volatile (Result ND	Drganic Co Qualifier	mpounds by EP	PA Metho MDL	d 8260C Unit ug/l	D	Lab Samp <u>Prepared</u> 01/07/14 09:46	Die ID: SWL0 Matrix Analyzed 01/07/14 17:46	140-0 c: Wate
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene	e-1-123013 Gx and Volatile (Result ND	Drganic Co Qualifier	mpounds by EP	PA Metho MDL	d 8260C Unit ug/l	<u>D</u>	Lab Samp Prepared 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46	140-0 c: Wate <u>Dil Fa</u> 1.0
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene	e-1-123013 Gx and Volatile (Result ND ND	Drganic Co Qualifier	mpounds by EP - <u>RL</u> - <u>90.0</u> 0.200 0.500	A Metho MDL	d 8260C Unit ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	140-0 c: Wate <u>Dil Fa</u> 1.0 1.0
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene	e-1-123013 Gx and Volatile (Result ND ND ND	Drganic Co Qualifier	mpounds by EP 	'A Metho MDL	d 8260C Unit ug/l ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	140-0 c: Wate <u>Dil Fa</u> 1.0 1.0 1.0
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m p-Xylene	e-1-123013 Gx and Volatile (Result ND ND ND	<mark>Drganic Co</mark> Qualifier	mpounds by EP 	'A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l	D	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene	e-1-123013 Gx and Volatile C Result ND ND ND ND ND ND ND ND ND ND ND ND	Drganic Co Qualifier	mpounds by EP 	'A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	Dil Fa 140-0 c: Wate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat Date Collected: 12/30/13 12:34 Date Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	e-1-123013 Gx and Volatile C Result ND ND ND ND ND ND ND N	Drganic Co Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 0.500 4.50	'A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l	D	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	Dil Fa Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Xylenes (total) Hexane	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND	Drganic Co Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 0.500 1.50 1.00	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	Dil Fa 140-0 c: Wate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Xylenes (total) Hexane	e-1-123013 Gx and Volatile C Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Drganic Co Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 0.500 1.50 1.00	PA Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	Dil F: Dil F: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene o-Xylene Xylenes (total) Hexane Surrogate Dirromofluoromethane	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND	Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 0.500 1.50 1.00 Limits 71.2, 143	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 Prepared 01/07/14 09:45	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46	Dil Fa Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene o-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 71.4 - 125	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<u>D</u>	Lab Samp Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 01/07/14 17:46 Analyzed 01/07/14 17:46	Dil Fa Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat ate Collected: 12/30/13 12:34 ate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m.p-Xylene o-Xylene O-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND	Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 74.1 - 135 68.7 - 144	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 Prepared 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46	Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicate Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND	Organic Co Qualifier Qualifier	mpounds by EP 90.0 0.200 0.500 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 74.1 - 135 68.7 - 141	'A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<u>D</u>	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46	Dil Fa Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene O-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8270D - Polynuc	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND	Drganic Co Qualifier Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 74.1 - 135 68.7 - 141 by GC/MS with S	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	D	Lab Samp Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46	140-0 c: Wate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene O-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8270D - Polynuc Analyte	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND	Drganic Co Qualifier Qualifier mpounds I Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 74.1 - 135 68.7 - 141 by GC/MS with S RL	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	D D D D D	Prepared 01/07/14 09:46	Analyzed 01/07/14 17:46 01/07/14 17:46	140-0 c: Wate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene o-Xylene o-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8270D - Polynuc Analyte Naphthalene	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 74.1 - 135 68.7 - 141 by GC/MS with S RL 0.103	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	D	Prepared 01/07/14 09:46 01/07/14 09:41	Analyzed 01/07/14 17:46 01/07/14 17:46	Dil Fa 1.00 Dil Fa 1.00
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene o-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8270D - Polynuc Analyte Naphthalene 2-Methylnaphthalene	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Drganic Co Qualifier Qualifier Mpounds I Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 74.1 - 135 68.7 - 141 by GC/MS with S RL 0.103 0.103	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	D	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41	Analyzed 01/07/14 17:46 01/07/14 17:46	Dil Fa 1.00
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene o-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8270D - Polynuc Analyte Naphthalene 2-Methylnaphthalene	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	Limits 71.2 - 143 74.1 - 135 68.7 - 141 by GC/MS with S 0.103 0.103 0.103	A Metho MDL	d 8260C Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	D D D D D D D	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41 01/07/14 09:41	Analyzed 01/07/14 17:46 01/07/14 17:46 01/06/14 18:12 01/06/14 18:12	Dil Fa 1.0
Client Sample ID: Duplicat Pate Collected: 12/30/13 12:34 Pate Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene o-Xylene Xylenes (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8270D - Polynuc Analyte Naphthalene 2-Methylnaphthalene	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND	Organic Co Qualifier Qualifier mpounds I Qualifier	Limits 71.2 - 143 74.1 - 135 68.7 - 141 Outlow	A Metho MDL	d 8260C Unit ug/l	D	Prepared 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:46 01/07/14 09:41 01/07/14 09:46 01/07/14 09:41 01/07/14 09:41 01/07/14 09:46 01/07/14 09:46 01/07/14 09:41 01/06/14 10:11 01/06/14 10:11 01/06/14 10:11 01/06/14 10:11	Analyzed 01/07/14 17:46 01/07/14 17:46 01/06/14 18:12 01/06/14 18:12 01/06/14 18:12	140-0 c: Wate Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Client Sample ID: Duplicat Date Collected: 12/30/13 12:34 Date Received: 12/31/13 12:10 Method: EPA 8260C - NWTPH- Analyte Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene o-Xylene O-Xylene (total) Hexane Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Method: EPA 8270D - Polynuc Analyte Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	e-1-123013 Gx and Volatile (Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Drganic Co Qualifier Qualifier mpounds I Qualifier Qualifier	mpounds by EP RL 90.0 0.200 0.500 0.500 0.500 1.50 1.00 Limits 71.2 - 143 74.1 - 135 68.7 - 141 by GC/MS with S RL 0.103 0.103 0.103 0.103 0.103	PA Metho MDL	d 8260C Unit ug/l	D	Prepared 01/07/14 09:46 01/06/14 10:11 01/06/14 10:11 01/06/14 10:11 01/06/14 10:11 Prepared	Analyzed 01/07/14 17:46 01/07/14 17:46 01/06/14 18:12 01/06/14 18:12 01/06/14 18:12 01/06/14 18:12	Dil Fa 1.0
TestAmerica Job ID: SWL0140

Matrix: Water

Lab Sample ID: SWL0140-07

Client Sample ID: Duplicate-1-123013	
Date Collected: 12/30/13 12:34	
Date Received: 12/31/13 12:10	

Method: RSK-175 - Dissolved Ga	ises (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.00500		mg/L			01/07/14 14:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Acetylene (Surr)	94		62 - 124					01/07/14 14:49	1
Method: EPA 200.7 - Dissolved N Analyte	letals by EPA Result	200 Series Qualifier	Methods - Diss RL	olved MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.311	B1	0.0100		mg/l		01/06/14 15:31	01/09/14 14:13	1.00
Method: EPA 300.0 - Anions by E	EPA Method 30	0.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate-Nitrogen	113		2.00		mg/l		12/31/13 12:37	12/31/13 14:36	10.0
Sulfate	204		5.00		mg/l		12/31/13 12:37	12/31/13 14:36	10.0
Method: SM 2320B - Convention	al Chemistry P	arameters	by APHA/EPA I	/lethods					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity	265		4.00		mg/l		01/13/14 08:55	01/13/14 13:00	1.00

Method: EPA 8260C - NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C

Lab Sample II	D: 14A0021-BLK1
---------------	-----------------

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 14A0021_P

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total

5

Matrix: Water Analysis Batch: 14A0021

-	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		90.0		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
Benzene	ND		0.200		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
Toluene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
Ethylbenzene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
m,p-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
o-Xylene	ND		0.500		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
Xylenes (total)	ND		1.50		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
Hexane	ND		1.00		ug/l		01/07/14 09:46	01/07/14 11:26	1.00
	Blank	Blank							

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		71.2 - 143	01/07/14 09:46	01/07/14 11:26	1.00
Toluene-d8	96.6		74.1 - 135	01/07/14 09:46	01/07/14 11:26	1.00
4-bromofluorobenzene	107		68.7 - 141	01/07/14 09:46	01/07/14 11:26	1.00

Lab Sample ID: 14A0021-BS1

Matrix: Water Analysis Batch: 14A0021

				Prep Batc	h: 14A0021_P
Spike	LCS	LCS		%Rec.	_
Added	Result	Qualifier Unit	D %Re	c Limits	
10.0	10.7	ug/l	10	7 80 - 128	
10.0	10.8	ug/l	10	8 80 - 122	
10.0	9.66	ug/l	96.	6 80 - 123	
10.0	9.83	ug/l	98.	3 80 - 120	
10.0	9.97	ug/l	99.	7 80 - 120	
10.0	10.2	ug/l	10	2 80 - 120	
10.0	7.42	ug/l	74	2 62.8 - 132	
20.0	20.2	ug/l	10	1 80 - 120	
10.0	10.6	ug/l	10	6 70 - 130	
	Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0	Spike LCS Added Result 10.0 10.7 10.0 10.8 10.0 9.66 10.0 9.83 10.0 9.97 10.0 10.2 10.0 7.42 20.0 20.2 10.0 10.6	Spike LCS LCS Added Result Qualifier Unit 10.0 10.7 ug/l 10.0 10.8 ug/l 10.0 9.66 ug/l 10.0 9.83 ug/l 10.0 9.97 ug/l 10.0 10.2 ug/l 10.0 7.42 ug/l 20.0 20.2 ug/l 10.0 10.6 ug/l	Spike LCS LCS Added Result Qualifier Unit D %Re 10.0 10.7 ug/l 10 10.0 10.8 ug/l 10 10.0 9.66 ug/l 96. 10.0 9.83 ug/l 98. 10.0 9.97 ug/l 99. 10.0 10.2 ug/l 10 10.0 7.42 ug/l 74. 20.0 20.2 ug/l 10 10.0 10.6 ug/l 10	Spike LCS LCS With D %Rec. %Rec. Added Result Qualifier Unit D %Rec. Limits 10.0 10.7 ug/l D %Rec. Limits 10.0 10.7 ug/l 107 80 - 128 10.0 10.8 ug/l 108 80 - 122 10.0 9.66 ug/l 96.6 80 - 123 10.0 9.83 ug/l 98.3 80 - 120 10.0 9.97 ug/l 99.7 80 - 120 10.0 10.2 ug/l 102 80 - 120 10.0 7.42 ug/l 102 80 - 120 10.0 7.42 ug/l 74.2 62.8 - 132 20.0 20.2 ug/l 101 80 - 120 10.0 10.6 ug/l 106 70 - 130

	LCS		
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	103		71.2 - 143
Toluene-d8	94.2		74.1 - 135
4-bromofluorobenzene	105		68.7 - 141

Lab Sample ID: 14A0021-BS2 Matrix: Water

Analysis Batch: 14A0021									Prep Batch: 14	A0021_P
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Hydrocarbons			1000	1000		ug/l		100	80 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	99.1		71.2 - 143							
Toluene-d8	96.3		74.1 - 135							
4-bromofluorobenzene	106		68.7 - 141							

Prep Type: Total

Method: EPA 8270D - Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Lab Sample ID: 14A0015-BLK1											Client S	ample ID:	Metho	d Blank
Matrix: Water Analysis Batch: 1440015												Pren Bate	ер тур ~h• 144	0015 P
Analysis Baten. 14A0010	В	lank	Blank									Пер Вай		10010_1
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	Р	repared	Analy	zed	Dil Fac
Naphthalene		ND		0.100			ug/l			01/0	6/14 10:11	01/06/14	14:47	1.00
2-Methylnaphthalene		ND		0.100			ug/l			01/0	6/14 10:11	01/06/14	14:47	1.00
1-Methylnaphthalene		ND		0.100			ug/l			01/0	6/14 10:1 <i>1</i>	01/06/14	14:47	1.00
	В	lank	Blank											
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analy	zed	Dil Fac
Nitrobenzene-d5		85.4		32.7 - 135						01/0	6/14 10:1	01/06/14	14:47	1.00
Lab Sample ID: 14A0015-BS1									с	lient	Sample	ID: Lab C	ontrol	Sample
Matrix: Water												Pr	ер Тур	e: Total
Analysis Batch: 14A0015												Prep Bate	ch: 14A	0015 P
-				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
Naphthalene				4.00	3.65			ug/l			91.2	27.8 - 143		
	LCS	LCS												
Surrogate	%Recovery	Qual	lifier	Limits										
Nitrobenzene-d5	89.1			32.7 - 135										
—														
Method: RSK-175 - Dissolv	ed Gases	(GC	;)											

Lab Sample ID: MB 490-133571/4 Matrix: Water Analysis Batch: 133571	ļ										Client S	Sample ID: Prep	Methoo Type: To	l Blank otal/NA
·		ΜВ	МВ											
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	P	repared	Analy	zed	Dil Fac
Methane		ND		0.00500			mg/L		·			01/07/14	10:51	1
		ΜВ	МВ											
Surrogate	%Recov	very	Qualifier	Limits						P	repared	Analy	zed	Dil Fac
Acetylene (Surr)		99		62 - 124								01/07/14	10:51	1
 Lab Sample ID: LCS 490-133571/	5								Clie	ent	Sample) ID: Lab C	ontrol S	Sample
Matrix: Water												Prep ⁻	Type: To	otal/NA
Analysis Batch: 133571														
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Methane				0.273	0.2711			mg/L		_	99	80 - 120		
	LCS	LCS												
Surrogate	%Recovery	Qual	ifier	Limits										
Acetylene (Surr)	99			62 - 124										
 Lab Sample ID: LCSD 490-13357 [,]	1/6							CI	ient S	am	ple ID:	Lab Contr	ol Samp	le Dup
Matrix: Water												Prep ⁻	Type: To	otal/NA
Analysis Batch: 133571														
· · · · · · · · · · · · · · · · · · ·				Spike	LCSD	LCS	D					%Rec.		RPD
Analyte				Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Methane				0.273	0.2693			mg/L		_	99	80 - 120	1	33

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCSD 490-133571/6 Client Sample ID: Lab Co											
Matrix: water									Prep I	ype: 10	al/NA
Analysis Batch: 133571											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Acetylene (Surr)	95		62 - 124								
											.
Lab Sample ID: 490-43739-E-1	MS							Client	Sample ID	: Matrix	Spike
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 133571											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Methane	ND		0.273	0.2713		mg/L		99	46 - 142		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
Acetylene (Surr)	95		62 - 124								
Lab Sample ID: 490-43739-E-1	MSD						Client Sa	ample IE): Matrix Sp	oike Dup	olicate
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 133571											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methane	ND		0.273	0.2673		mg/L		98	46 - 142	2	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Acetylene (Surr)	89		62 - 124								

Method: EPA 200.7 - Dissolved Metals by EPA 200 Series Methods

Lab Sample ID: 14A0017-BLK1 Matrix: Water Analysis Batch: 14A0017	В	lank	Blank									Client Sa	ample ID: Meth Prep Type: D Prep Batch: 14	od Blank Pissolved A0017_P
Analyte	Re	esult	Qualifier		RL		MDL	Unit		D	Ρ	repared	Analyzed	Dil Fac
Manganese	0.0	0106	В	0	.0100			mg/l			01/0	6/14 15:31	01/07/14 15:11	1.00
Lab Sample ID: 14A0017-BS1 Matrix: Water Analysis Batch: 14A0017										CI	ient	Sample	ID: Lab Contro Prep Type: D Prep Batch: 14	I Sample issolved A0017_P
-				Spike		LCS	LCS						%Rec.	_
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Manganese				1.00		1.00			mg/l		_	100	85 - 115	
Lab Sample ID: 14A0017-MS1												Client	Sample ID: Mat	rix Spike
Analysis Batch: 14A0017													Prop Batch: 14	A0017 D
	Sample	Samp	le	Spike	Matri	ix Spike	Matr	ix Spik	e				%Rec.	A0017_F
Analyte	Result	Quali	fier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Manganese	ND			1.00		0.996			mg/l		_	99.6	75 - 125	

Method: EPA 200.7 - Dissolved Metals by EPA 200 Series Methods (Continued)

Lab Sample ID: 14A0017-MSD1 Matrix: Water							Client S	ample IC	D: Matrix S Prep Ty	pike Duj /pe: Dise	olicate solved
Analysis Batch: 14A0017	Sample	Sample	Sniko	utrix Snike Dun	Matrix Spil				Prep Bato	:h: 14A0	017_P
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Manganese	ND		1.00	0.996		mg/l		99.6	75 - 125	0.029	20
						0				2	
Lab Sample ID: 14A0017-DUP1								Ch	ent Sample	Dir Die	olicate
Matrix: Water									Prep Ty	/pe: Dist	
Analysis Batch. 14A0017	Sample	Sample		Duplicate	Duplicate				Ртер Бац	.II. 14AU	RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Manganese	ND			ND		mg/l					20
						0					
Lab Sample ID: 14A0037-BLK1								Client S	Sample ID:	Method	Blank
Matrix: Water									Prep Ty	pe: Dise	solved
Analysis Batch: 14A0037									Prep Bato	:h: 14A0	037_P
	E	Blank Blank									
Analyte	R	esult Qualifier		RL	MDL Unit		_ D F	Prepared	Analy	zed	Dil Fac
Manganese		ND		0.0100	mg/i		01/0	J9/14 16:43	3 01/13/14	13:59	1.00
Lab Sample ID: 14A0037-BS1							Clien	t Sample	Drop Tu	ontrol S	ample
Analysis Batch: 1400037									Pron Bate	b. 1400	037 D
Analysis Batch. 14A0037			Spike	LCS	LCS				%Rec.		037_F
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Manganese			1.00	0.991		mg/l		99.1	85 - 115		
Lab Sample ID: 14A0037-MS1								Client	Sample ID	: Matrix	Spike
Matrix: Water									Prep Ty	pe: Dise	solved
Analysis Batch: 14A0037									Prep Bato	:h: 14A0	037_P
Amelida	Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e		0/ D	%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier		D	%Rec			
Manganese	0.00919		1.00	0.955		my/i		94.4	75 - 125		
Lab Sample ID: 14A0037-MSD1							Client S	ample ID	D: Matrix S	pike Duj	plicate
Matrix: Water									Prep Ty	pe: Dis	solved
Analysis Batch: 14A0037									Prep Bato	h: 14A0	037_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Manganese	0.00919		1.00	0.957		mg/l		94.8	75 - 125	0.429	20
Lah Sample ID: 14A0037-DUP4								CI	ant Samely	ייים יחו מ	olicate
Matrix: Water									Pren Tv	ne: Dise	solved
Analysis Batch: 14A0037									Prep Bate	:h: 1440	037 P
	Sample	Sample		Duplicate	Duplicate				. Top Batt		RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Manganese	0.00919			0.00910		mg/l				1.01	20

Lab Sample ID: 13L0152-BLK1

Analysis Batch: 13L0152

Matrix: Water

Nitrate-Nitrogen

Analyte

Sulfate

Method: EPA 300.0 - Anions by EPA Method 300.0

Blank Blank Result Qualifier

ND

ND

Client Sample ID: Method Blank

Prepared Analyzed 12/31/13 12:37 12/31/13 16:36 1.00 12/31/13 12:37 12/31/13 16:36 1.00

Client Sample ID: MW-1-123013

Prep Type: Total

Prep Batch: 13L0152 P

Prep Type: Total Prep Batch: 13L0152_P

Dil Fac

-						
Lab Sample ID: 13L0152-BS1 Matrix: Water					Client Sample ID: Lab Control Sample Prep Type: Total	8
	Spike Added	LCS	LCS Qualifier	Unit	Prep Batch: 13L0152_P %Rec.	9
Nitrate-Nitrogen Sulfate	5.00 12.5	4.85 12.0		mg/l mg/l	97.0 90 - 110 95.9 90 - 110	

RL

0.200

0.500

MDL Unit

mg/l

mg/l

D

Lab Sample ID: 13L0152-MS1 Matrix: Water

Analysis Batch: 13L0152

	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate-Nitrogen	ND		5.00	4.87		mg/l		97.4	80 - 120	
Sulfate	14.4		12.5	26.0		mg/l		92.9	80 - 120	

Lab Sample ID: 13L0152-MSD1 Matrix: Water								Client	Sample ID: Pre	MW-1-1 ep Type:	23013 Total
Analysis Batch: 13L0152									Prep Batc	h: 13L0	152_P
-	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Dur			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate-Nitrogen	ND		5.00	5.09		mg/l		102	80 - 120	4.42	12.1
Sulfate	14.4		12.5	26.1		mg/l		93.5	80 - 120	0.307	10

Lab Sample ID: 13L0152-DUP1 Matrix: Water Analvsis Batch: 13L0152	I					CI	ient Sample ID: Pre Prep Batc	MW-1-1 ep Type ch: 13L0	23013 : Total 152 P
	Sample	Sample	Duplicate	Duplicate					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Nitrate-Nitrogen	ND		 0.0400		mg/l				13.1
Sulfate	14.4		14.5		mg/l			0.555	15.7

Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA Methods

Lab Sample ID: 14A0043-BLK1 Matrix: Water							Client Sa	mple ID: Metho Prep Typ	d Blank e: Total
Analysis Batch: 14A0043	Blank	Blank					F	Prep Batch: 14A	0043_P
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Alkalinity	ND		4.00		mg/l		01/13/14 08:55	01/13/14 13:00	1.00

Method: SM 2320B - Conventional Chemistry Parameters by APHA/EPA Methods (Continued)

Lab Sample ID: 14A0043-BS1 Matrix: Water Analysis Batch: 14A0043		Spike	LCS	LCS		Client	Sample	e ID: Lab Control Prep Typ Prep Batch: 14A %Rec.	Sample e: Total 0043_P	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Alkalinity			500	475		mg/l		95.0	90 - 110	
Lab Sample ID: 14A0043-DUP1								Client	Sample ID: MW-1	123013
Matrix: Water									Prep Typ	e: Total
Analysis Batch: 14A0043									Prep Batch: 14A	0043_P
	Sample	Sample		Duplicate	Duplicate					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Total Alkalinity	445			440		mg/l			1.13	10

Matrix: Water

5

8

Lab Sample ID: SWL0140-01

Client Sample ID: MW-1-123013

Date Collected: 12/30/13 09:38 Date Received: 12/31/13 12:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14A0021_P	01/07/14 09:46	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14A0021	01/07/14 15:26	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.984	14A0015_P	01/06/14 10:11	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14A0015	01/06/14 15:38	MRS	TAL SPK
Total/NA	Analysis	RSK-175		1	133571	01/07/14 12:58	MGH	TAL NSH
Dissolved	Prep	EPA 3005A		1.00	14A0017_P	01/06/14 15:31	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	14A0017	01/09/14 13:50	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14A0043_P	01/13/14 08:55	JSP	TAL SPK
Total	Analysis	SM 2320B		1.00	14A0043	01/13/14 13:00	JSP	TAL SPK
Total	Analysis	EPA 300.0		1.00	13L0152	12/31/13 12:36	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13L0152_P	12/31/13 12:36	CBW	TAL SPK

Client Sample ID: MW-2-123013 Date Collected: 12/30/13 15:56 Date Received: 12/31/13 12:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14A0021_P	01/07/14 09:46	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14A0021	01/07/14 15:50	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.951	14A0015_P	01/06/14 10:11	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14A0015	01/06/14 16:03	MRS	TAL SPK
Total/NA	Analysis	RSK-175		1	133571	01/07/14 13:00	MGH	TAL NSH
Dissolved	Prep	EPA 3005A		1.00	14A0017_P	01/06/14 15:31	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	14A0017	01/09/14 13:53	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14A0043_P	01/13/14 08:55	JSP	TAL SPK
Total	Analysis	SM 2320B		1.00	14A0043	01/13/14 13:00	JSP	TAL SPK
Total	Analysis	EPA 300.0		10.0	13L0152	12/31/13 12:56	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13L0152_P	12/31/13 12:37	CBW	TAL SPK

Client Sample ID: MW-3-123013

Date Collected: 12/30/13 11:05 Date Received: 12/31/13 12:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14A0021_P	01/07/14 09:46	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14A0021	01/07/14 16:13	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.988	14A0015_P	01/06/14 10:11	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14A0015	01/06/14 16:29	MRS	TAL SPK
Total/NA	Analysis	RSK-175		1	133571	01/07/14 13:09	MGH	TAL NSH
Dissolved	Prep	EPA 3005A	RE1	1.00	14A0037_P	01/06/14 15:31	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7	RE1	1.00	14A0037	01/13/14 14:39	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14A0043_P	01/13/14 08:55	JSP	TAL SPK

Lab Sample ID: SWL0140-02

Matrix: Water

Lab Sample ID: SWL0140-03

Matrix: Water

Client Sample ID: MW-3-123013

2 3 4 5 6

8

Lab Sample ID: SWL0140-03

Lab Sample ID: SWL0140-04

Matrix: Water

Matrix: Water

Date Collected: 12/30/13 11:05 Date Received: 12/31/13 12:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	SM 2320B		1.00	14A0043	01/13/14 13:00	JSP	TAL SPK
Total	Prep	Wet Chem		1.00	13L0152_P	12/31/13 12:37	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	13L0152	12/31/13 13:17	CBW	TAL SPK

Client Sample ID: MW-4-123013 Date Collected: 12/30/13 13:34 Date Received: 12/31/13 12:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles	·	1.00	14A0021_P	01/07/14 09:46	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14A0021	01/07/14 16:36	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.985	14A0015_P	01/06/14 10:11	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14A0015	01/06/14 16:55	MRS	TAL SPK
Total/NA	Analysis	RSK-175		1	133571	01/07/14 13:11	MGH	TAL NSH
Dissolved	Prep	EPA 3005A		1.00	14A0017_P	01/06/14 15:31	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	14A0017	01/09/14 14:03	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14A0043_P	01/13/14 08:55	JSP	TAL SPK
Total	Analysis	SM 2320B		1.00	14A0043	01/13/14 13:00	JSP	TAL SPK
Total	Prep	Wet Chem		1.00	13L0152_P	12/31/13 12:37	CBW	TAL SPK
Total	Analysis	EPA 300.0		1.00	13L0152	12/31/13 13:36	CBW	TAL SPK

Client Sample ID: MW-5-123013

Date Collected: 12/30/13 12:21 Date Received: 12/31/13 12:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14A0021_P	01/07/14 09:46	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14A0021	01/07/14 16:59	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		1.02	14A0015_P	01/06/14 10:11	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14A0015	01/06/14 17:20	MRS	TAL SPK
Total/NA	Analysis	RSK-175		1	133571	01/07/14 14:45	MGH	TAL NSH
Dissolved	Prep	EPA 3005A		1.00	14A0017_P	01/06/14 15:31	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	14A0017	01/09/14 14:06	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14A0043_P	01/13/14 08:55	JSP	TAL SPK
Total	Analysis	SM 2320B		1.00	14A0043	01/13/14 13:00	JSP	TAL SPK
Total	Analysis	EPA 300.0		1.00	13L0152	12/31/13 13:56	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13L0152_P	12/31/13 12:37	CBW	TAL SPK

Lab Sample ID: SWL0140-05

Matrix: Water

Client Sample ID: MW-6-123013

Date Collected: 12/30/13 14:54 Date Received: 12/31/13 12:10 Lab Sample ID: SWL0140-06

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14A0021_P	01/07/14 09:46	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14A0021	01/07/14 17:23	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		0.982	14A0015_P	01/06/14 10:11	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14A0015	01/06/14 17:46	MRS	TAL SPK
Total/NA	Analysis	RSK-175		1	133571	01/07/14 14:47	MGH	TAL NSH
Dissolved	Prep	EPA 3005A		1.00	14A0017_P	01/06/14 15:31	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	14A0017	01/09/14 14:08	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14A0043_P	01/13/14 08:55	JSP	TAL SPK
Total	Analysis	SM 2320B		1.00	14A0043	01/13/14 13:00	JSP	TAL SPK
Total	Analysis	EPA 300.0		10.0	13L0152	12/31/13 14:57	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13L0152_P	12/31/13 12:37	CBW	TAL SPK

Client Sample ID: Duplicate-1-123013 Date Collected: 12/30/13 12:34 Date Received: 12/31/13 12:10

Lab Sample ID: SWL0140-07 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14A0021_P	01/07/14 09:46	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14A0021	01/07/14 17:46	CBW	TAL SPK
Total	Prep	EPA 3510/600 Series		1.03	14A0015_P	01/06/14 10:11	MS	TAL SPK
Total	Analysis	EPA 8270D		1.00	14A0015	01/06/14 18:12	MRS	TAL SPK
Total/NA	Analysis	RSK-175		1	133571	01/07/14 14:49	MGH	TAL NSH
Dissolved	Prep	EPA 3005A		1.00	14A0017_P	01/06/14 15:31	JSP	TAL SPK
Dissolved	Analysis	EPA 200.7		1.00	14A0017	01/09/14 14:13	ICP	TAL SPK
Total	Prep	Wet Chem		1.00	14A0043_P	01/13/14 08:55	JSP	TAL SPK
Total	Analysis	SM 2320B		1.00	14A0043	01/13/14 13:00	JSP	TAL SPK
Total	Analysis	EPA 300.0		10.0	13L0152	12/31/13 14:36	CBW	TAL SPK
Total	Prep	Wet Chem		1.00	13L0152_P	12/31/13 12:37	CBW	TAL SPK

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	ISO/IEC 17025		0453.07	12-31-15
Alaska (UST)	State Program	10	UST-087	07-24-14
Arizona	State Program	9	AZ0473	05-05-14
Arizona	State Program	9	AZ0473	05-05-14 *
Arkansas DEQ	State Program	6	88-0737	04-25-14
California	NELAP	9	1168CA	10-31-14
Canadian Assoc Lab Accred (CALA)	Canada		3744	03-08-14
Connecticut	State Program	1	PH-0220	12-31-15
Florida	NELAP	4	E87358	06-30-14
Illinois	NELAP	5	200010	12-09-14
Iowa	State Program	7	131	05-01-14
Kansas	NELAP	7	E-10229	10-31-14
Kentucky (UST)	State Program	4	19	06-30-14
Louisiana	NELAP	6	30613	06-30-14
Maryland	State Program	3	316	03-31-14
Massachusetts	State Program	1	M-TN032	06-30-14
Minnesota	NELAP	5	047-999-345	12-31-14
Mississippi	State Program	4	N/A	06-30-14
Montana (UST)	State Program	8	NA	01-01-20
Nevada	State Program	9	TN00032	07-31-14
New Hampshire	NELAP	1	2963	10-10-14
New Jersey	NELAP	2	TN965	06-30-14
New York	NELAP	2	11342	04-01-14
North Carolina DENR	State Program	4	387	12-31-14
North Dakota	State Program	8	R-146	06-30-14
Ohio VAP	State Program	5	CL0033	10-16-15
Oklahoma	State Program	6	9412	08-31-14
Oregon	NELAP	10	TN200001	04-29-14
Pennsylvania	NELAP	3	68-00585	06-30-14
Rhode Island	State Program	1	LAO00268	12-30-14
South Carolina	State Program	4	84009 (001)	02-28-14
Tennessee	State Program	4	2008	02-23-14
Texas	NELAP	6	T104704077-09-TX	08-31-14
USDA	Federal		S-48469	10-30-16
Utah	NELAP	8	TN00032	07-31-14
Virginia	NELAP	3	460152	06-14-14
Washington	State Program	10	C789	07-19-14
West Virginia DEP	State Program	3	219	02-28-14
Wisconsin	State Program	5	998020430	08-31-14
Wyoming (UST)	A2LA	8	453.07	12-31-15

* Expired certification is currently pending renewal and is considered valid.

Client: Geo Engineers - Spokane Project/Site: 0504-078-01

1
5
8
9
10

Method	Method Description	Protocol	Laboratory
EPA 8260C	NWTPH-Gx and Volatile Organic Compounds by EPA Method 8260C		TAL SPK
EPA 8270D	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring		TAL SPK
RSK-175	Dissolved Gases (GC)	RSK	TAL NSH
EPA 200.7	Dissolved Metals by EPA 200 Series Methods		TAL SPK
EPA 300.0	Anions by EPA Method 300.0		TAL SPK
SM 2320B	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

5755 8th Street East, Tacoma, WA 98424-1317 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

253-922-2310	FAX 922-5047	
509-924-9200	FAX 924-9290	
503-906-9200	FAX 906-9210	
907-563-9200	FAX 563-9210	

	_				C	HAIN	OF	CUST	ODŸ	REP	ORT				Work O	rder #:	SWLDHO	
	CLIENT SGOFAKIAF92%	INC				INVOIO	E TO:									TURNAL	ROUND REQUES	r I
		2					<	Sar	ne	a) .					in	Business Days *	
	ADDRESS:	s ,	•			_									$. \Lambda$	Organic &	Inorganic Analyses	
	jrudders @ geo	engineers.	- Corry			\sim	-					_			7	5	4 3 2 1	1
	PHONE 09 363-312 FAX:					P.O. NU	MBER:			_					GFD-1	Petroleum	Hydrocarbon Analyses	_
	PROJECT NAME:							PRI	ESERVAT	TVE							3 2 1 <	빌
	MOXED TUM STOP 5 PAR	MER-SIP												_		<u> </u>		
	004-078-0	>i -		0 			NP	REQUE	STED AN	ALYSES				···		THER	Specify:	
	SAMPLED BY: ERT		± .	wŻn	N. N	IJN R	Sig	3 5	S.S.						* Turnaround	Requests les	s than standard may incur	Cush Charges.
	CLIENT SAMPLE	SAMPLING	5 2	23		24.	2 5	223	N'A						MATRIX	# OF	LOCATION/	TA
	IDENTIFICATION	DATE/TIME	2'	22	5Ž&	2.30	ØR	ತ್ರೆ	14 <u>2</u> 2						(w, s, 0)	CONT.	COMMENTS	
Pa	NAW-1-103012 12	20/2 0920		$\overline{\checkmark}$	\bigvee	V	\checkmark	$\overline{\mathbf{v}}$	V						W	8	-	
ge	10000	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1		. /		./	ļ					101	8		
24	2MW-2-12013	1006			~													
of 2	, MW-3-728013	1105	\checkmark	\checkmark	\checkmark	V	~		1	<u> </u>					W	8		
ы	, MW-4-123013	1334		\checkmark	~	1	V	\bigvee	~						W	8		
	MW-5-123013	1001			1	1			~						W	8		
	MW-6-173013	1454	\checkmark	\checkmark	1	~	~								W	8		
	NIDI VATE-1-128073	/ 1234	$\overline{\vee}$	\checkmark	\checkmark	1	~	\checkmark	V	-					W	8		
	TONO RIANY -	_ _		1											W	Ĩ		
			1					-										
	9									<u> </u>						+-+		
	10									1								7
	RELEASED BY:	$\overline{\Lambda}$. 1	DATE	12	30/2	03	RECEIVE	DBY. 🗶	Why A	tenre	2		A	DATE:	2/31/13
	PRINT NAME: TUNA HORAN	FIRM:	2526	INFS	PSI	NOT THE	08'3	30_		PRINT N	AME:	R	<u>یلو را</u>	the			TIME: O	830
	RELEASED BY:	([r .		1~	- 57.1	5	RECEIVI	ED BY:	\mathbf{n}	$f \rightarrow I$	ANLINA	FIDM	Toul	DATE: 6	131-13
	ADDITIONAL REMARKS: 7	lew FIRME O	209	<u>~~4 ((</u>	1.000		10	-gill	<u>、</u>	PRINTN	AME: JA	BU	u Lu	timínes 🗸 🗸 🗸		דרכא י	TEMP:	<u>x-1()</u>
1/2				~							<i>C</i>	•					PAG	3) OF
2/2																	TAL-	1000 (0612)

1/28/2014

H-: --

TestAmerica Spokane Sample Receipt Form

Work Order #:SWL014	Emmeers			Project: MOXPP
Date/Time Received: 12-31-13 12:10	By:CS			
Samples Delivered By: Shipping Service Courie	er ∑leljent ⊡Other	h 1 <u> </u>		
List Air Bill Number(s) or Attach a photocopy of the Air E	C Bill:			pHMMMMMM district and an and an and an and an and an and an and an and an and an and an and an and an and an an
Receipt Phase	Yes	No	NA	Comments
Were samples received in a cooler:	X			
Custody Seals are present and intact:			\succ	
Are CoC documents present:	~			40 s
Necessary signatures:				
Thermal Preservation Type: Blue Ice Gel Ice	Real Ice Dry Ice	None	Other:	at
Temperature: <u>4.3</u> °C Thermometer (Circle on	′ e Serial #122208348 K	eyring IR	Serial # 11 [.]	1874910 IR Gun 2)(acceptance criteria 0-6
Temperature out of range:Not enough icelce n	neltedw/in 4hrs of	collection]Other:
Log-in Phase Date/Time: 招告 13月20 By: ())) Yes	No	NA	Comments
Are sample labels affixed and completed for each conta	iner 🗙			
Samples containers were received intact:	×			
Do sample IDs match the CoC	×			· · · · · · · · · · · · · · · · · · ·
Appropriate sample containers were received for tests re	equested			
Are sample volumes adequate for tests requested	×			
Appropriate preservatives were used for the tests reque	sted			
pH of inorganic samples checked and is within method s	specification X			
Are VOC samples free of bubbles >6mm (1/4" diameter)				
Are dissolved parameters field filtered			X	
Do any samples need to be filtered or preserved by the l	lab		X	
Does this project require quick turnaround analysis		X		
Are there any short hold time tests (see chart below)	×			Nitrate
Are any samples within 2 days of or past expiration	X			V
Was the CoC scanned	Ϋ́,			
Were there Non-conformance issues at login		X		
If yes, was a CAR generated #		-7	γ	

24 hours or less	48 hours	7 days
Coliform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromium +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

Form No. SP-FORM-SPL-002 12 December 2012

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Washington State Department of Ecology (Ecology). This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Ecology should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Moxee City Shop and Former STP site located at 7520 Postma Road in Moxee, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Ecology. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm and Ecology with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

Ecology and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

No ESA can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproductions are acceptable, but recognize that separating logs from the report can elevate risk.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Geoenvironmental Reports Should Not be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Ecology desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

