Data Gap Assessment Report

Former Cashmere Mill Site Cashmere, Washington

for Washington State Department of Ecology

May 7, 2014

Data Gap Assessment Report

Former Cashmere Mill Site Cashmere, Washington

for Washington State Department of Ecology

May 7, 2014

523 East Second Avenue Spokane, Washington 99202 509.363.3125 **Data Gap Assessment Report**

Former Cashmere Mill Site Cashmere, Washington

File No. 18593-001-02

May 7, 2014

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

all a

Dave R. Lauder, PE Senior Engineer

Bruce D. Williams Principal

DRL:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright@ 2014 by GeoEngineers, Inc. All rights reserved.

Table of Contents

EXEC	XECUTIVE SUMMARY1					
1.0	INTRODUCTION	1				
	General					
1.2.	Report Format	1				
2.0	BACKGROUND	2				
2.1.	Property Description	2				
	Historical Operations and Existing Data					
2.3.	Site Contaminants of Potential Concern (COPCs)					
3.0	SCOPE OF SERVICES	6				
	Direct-Push Explorations					
	Monitoring Well Installation and Groundwater Sampling					
	Test Pit Explorations Surface Water Sampling					
4.0	GEOLOGIC AND HYDROGEOLOGIC SETTING					
	General					
	Hydrogeologic Setting					
5.0	FIELD ACTIVITIES					
	General Explorations					
	5.2.1. Phase 1 Area					
Ę	5.2.2. Phase 2 Area	11				
	Groundwater Sampling					
	Surface Water Sampling					
	Wetlands Survey					
6.0	SUBSURFACE CONDITIONS					
	Soil Conditions					
	Phase 1 Area Phase 2 Area					
	Groundwater Conditions					
	5.4.1. General					
	6.4.2. Groundwater Elevations					
(6.4.3. Hydraulic Gradient and Groundwater Flow Direction	16				
7.0	SOIL, GROUNDWATER AND SURFACE WATER CHEMICAL ANALYTICAL RESULTS	17				
7.1.	7.1. General					
	7.1.1. Soil Samples					
	7.1.2. Groundwater Samples					
	7.1.3. Surface Water Samples Soil Analytical Results					

7.2.1. Phase 1 Area18	8				
7.2.2. Phase 2 Area					
7.3. Groundwater Analytical Results					
7.3.1. October 2013 Monitoring Event19	9				
7.3.2. December 2013 Monitoring Event22					
7.4. Surface Water					
8.0 MTCA METHOD B CALCULATIONS	3				
8.1. General	3				
8.2. Environmental Protection Evaluation (Terrestrial Ecological Evaluation)	3				
8.2.1. Problem Formulation23	3				
8.2.2. Evaluation Method24	4				
8.2.3. Ecologically Protective Soil Concentrations24	4				
8.3. Human Health Protection Evaluation	4				
8.3.1. Groundwater Protection	4				
8.3.2. Soil Direct Contact25	5				
8.4. Recommended TPH Cleanup Level	6				
9.0 SUMMARY	6				
10.0 CONCLUSIONS	8				
10.1.Soil	8				
10.2.Groundwater	-				
10.3.Surface Water					
10.4.Wetlands Delineation					
11.0 LIMITATIONS	2				
12.0 REFERENCES	3				
LIST OF TABLES					
Table 1. Exploration and Sample Analyses Summary					
Table 1. Exploration and Sample Analyses Summary Table 2. Summary of Chemical Analytical Results – Petroleum Hydrocarbons in Soil					
Table 3. Summary of Chemical Analytical Results – VOCs, SVOCs in Soil					

- Table 4. Summary of Chemical Analytical Results Metals in Soil
- Table 5. Summary of Chemical Analytical Results GRPH, DRPH, ORPH, VOCs, SVOCs and Metals in Groundwater
- Table 6. Summary of Chemical Analytical Results Metals and Parameters in Surface Water
- Table 7. Summary of Groundwater Level Measurements

LIST OF FIGURES

Figure 1. Vicinity Map
Figure 2. Site Plan (Overview)
Figure 3. Site Plan (North)
Figure 3A. Previous Remediation Area Sample Locations (Expanded View)
Figure 4. Site Plan (Middle)
Figure 5. Site Plan (South)
Figure 6. Groundwater Elevations and Inferred Contours, October 28, 2013
Figure 7. Groundwater Elevations and Inferred Contours, December 3, 2013

APPENDICES

Appendix A. Monitoring Well, Boring and Test Pit Logs Figure A-1 – Key to Exploration Logs
Figures A-2 through A-10– Logs of Monitoring Wells
Figure A-11 – Log of Air-Rotary Boring AR-1
Figures A-12 through A-131 – Logs of Direct Push Borings
Figures A-132 through A-175 – Logs of Test Pits
Appendix B. Field Procedures
Table B-1 – Summary of Field Quality Parameters
Appendix C. Laboratory Analytical Reports
Appendix E. Wetlands Delineation Report
Appendix F. Phase 1 Interim Action Report
Appendix G. Report Limitations and Guidelines for Use

EXECUTIVE SUMMARY

This report presents results of environmental assessment activities conducted between September and December 2013 at the Former Cashmere Mill site (site) in Cashmere, Washington (Figure 1). The Port of Chelan County owns the site and plans to remediate the site for future sale. The Washington State Department of Ecology (Ecology) has been working with the Port to develop strategies to assess and remediate the site in order to facilitate future development. The assessment activities described in this report were conducted to better characterize soil, groundwater, and surface water conditions and address data gaps.

The approximately 32.5-acre site is located in the general vicinity of Mill Road and Sunset Highway, about 100 feet south of the Wenatchee River and along the north bank of Brender Creek. The site operated as a lumber mill from the 1940s through the 1970s. Activities during mill operations reportedly included manufacturing lumber for fruit boxes. Low lying areas of the site, including a former mill pond, were filled over several decades with wood waste material from milling processes and import material from various sources. An accidental fire in 1990 caused damage to some mill buildings and a subsequent fire in 2000 destroyed many of the remaining mill buildings.

Several previous investigations and interim action cleanup activities have been conducted at the site, which are described in this report and summarized in the reports titled "Site Investigation Report, Former Cashmere Mill Site, Cashmere, Washington" by Maul, Foster, & Alongi, Inc. (MFA), dated March 20, 2013, and "Phase 1 Interim Action Report, Former Cashmere Mill Site" by MFA, dated May 6, 2014. Additional interim action activities were conducted in the spring and summer of 2013, which included removal of wood waste and petroleum contaminated soil from the area north of Mill Road (which is referred to as Phase 1). However, portions of the site previously had not been characterized, particularly the area south of Mill Road (which is referred to as Phase 2). See Figure 2 for locations of previous explorations.

Environmental assessment activities completed as part of this data gap assessment included soil, groundwater, and surface water sampling; specifically, site exploration activities included: (1) drilling 120 direct-push borings (N-DP-1 through S-DP-101) in September 2013; (2) drilling, installing, and developing nine groundwater monitoring wells (MW-1 through MW-9) in October and December 2013; (3) excavating 44 test pits in November and December 2013; (4) conducting groundwater monitoring events in October and December 2013; (5) collecting surface water samples from Brender Creek in November 2013; (6) conducting a wetlands survey in December 2013; and (7) Submitting 187 soil samples, 24 groundwater samples, and three surface water sampling for laboratory analysis of site contaminants of potential concern (COPCs). Soil, groundwater, and surface water samples were analyzed for one or more of the following: petroleum hydrocarbons, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and natural attenuation parameters.

Subsurface soil conditions encountered at the locations of the explorations included variable thicknesses of fill, including recently imported sand and historic wood waste (variable amounts of sawdust, bark, wood chips and charred wood fragments) mixed with variable amounts of soil (silt, sand, gravel, cobbles and boulders), and apparent natural alluvial deposits of sand and gravel with variable amounts of silt and cobbles. Wood waste materials were encountered in most of the

explorations completed within Phase 2. Groundwater depths, as measured in groundwater monitoring wells, ranged from about 2.5 to 7.3 feet below the top of well casing and groundwater elevations ranged from Elevation 781.95 feet to Elevation 791.08 feet during the October and December groundwater monitoring events. In general, groundwater flowed toward the northeast with an estimated average hydraulic gradient of about 8 x 10^{-3} feet per foot (about 40 feet per mile).

Total petroleum hydrocarbons (TPH), primarily consisting of diesel- and oil-range petroleum hydrocarbons, were encountered at concentrations greater than a site-specific Model Toxics Control Act (MTCA) Method B cleanup level of 3,400 milligrams per kilogram (mg/kg) at several isolated areas at the site. Mercury also was detected at concentrations greater than the MTCA Method A cleanup level in soil samples from several areas at the site. Carcinogenic polycyclic aromatic hydrocarbons (cPAH) were detected at a concentration greater than the MTCA Method A cleanup level (based on the toxicity equivalency factors presented in WAC 173-340-900, Table 708-2) in one soil sample that also contained mercury at a concentration greater than the MTCA Method A cleanup level. The mercury detections generally were encountered where building debris (including charred debris) was located. The estimated volume of contaminated soil, based on the data gap assessment is approximately 1,600 cubic yards. The approximate locations, and estimated areal extent, depth and volume of identified contaminated soil is described in the report and presented in Figures 3 through 5 of the report.

During the October and December groundwater sampling events, arsenic concentrations exceeded MTCA Method A cleanup levels in samples collected from several wells. Additionally, results of field measurements and analytical data for natural attenuation parameters indicate a reducing environment exists within groundwater below the site, likely the result of decomposing wood waste material. Reducing conditions tend to increase the solubility and mobility of arsenic in groundwater. Considering soil samples contained background concentrations of arsenic, and based on the natural attenuation parameters and groundwater quality parameters, it is anticipated that arsenic detections in groundwater should be reduced if the wood waste is removed.

Groundwater samples collected from downgradient (east-northeast) monitoring wells (B-1 and/or MW-3) contained TPH concentrations greater than MTCA Method A cleanup criteria during both the October and December 2013 sampling events. Both wells are located in Phase 1 within Parcel 650. The TPH concentrations likely represent conditions downgradient of remnant petroleum-contaminated soil located in Parcel 550, and possibly Parcel 650.

None of the other soil or groundwater samples, nor the surface water samples, contained contaminants of potential concern at concentrations greater than cleanup levels. Figures 2 through 5 present locations of recent and previous explorations and samples. Figures 6 and 7 present data from the October than December 2013 groundwater monitoring events, respectively.

In summary, the results of this assessment have better defined the contaminants of potential concern, including concentrations, locations, and estimated volumes, in soil and groundwater beneath the site. Although numerous explorations were completed at the site, it is possible that unknown areas of contaminated soil and groundwater might be encountered during site excavation and development activities, particularly associated with the building demolition debris encountered in Parcel 070.

1.0 INTRODUCTION

1.1. General

This report presents results of environmental data gap assessment activities conducted between September 2013 and December 2013 at the Former Cashmere Mill site (site) in Cashmere, Washington. The purpose of the assessment activities was to further evaluate subsurface soil and groundwater conditions at the site in preparation of site development. The approximate location of the site is presented in the Vicinity Map, Figure 1. The approximately 32.5-acre site is located in the general vicinity of Mill Road and Sunset Highway, about 100 feet south of the Wenatchee River, and currently is owned by the Port of Chelan County. The site and areas of interest are shown in the Site Plan (Overview), Figure 2.

Several previous investigations and interim action activities have been conducted at the site, which are summarized in a report titled "Site Investigation Report, Former Cashmere Mill Site, Cashmere, Washington" by Maul, Foster, & Alongi, Inc. (MFA), dated March 20, 2013. Additional interim action activities were conducted in the spring and summer of 2013, which included removal of wood waste and petroleum contaminated soil from the area north of Mill Road (referred to as Phase 1), and summarized in MFA's April 2014 report. However, portions of the site previously have not been characterized, particularly the area south of Mill Road (referred to as Phase 2). In general, the activities described in this report were conducted to fill data gaps and reduce the risk of uncertainty regarding the types and amounts of contaminated materials before planned excavation and removal of soil and wood waste in the Phase 2 area.

Our services were completed in general accordance with our Work Plan dated September 4, 2013, and contract C1100145 between GeoEngineers and the Washington State Department of Ecology (Ecology). While we have performed the services described in this report for Ecology, our services also have been completed to assist the Port of Chelan County (Port) and their selected consultant (RH2 Engineering), to develop an understanding of the scope of activities that will be completed during remedial excavation work within the Phase 2 area, which are scheduled to occur during the spring and summer of 2014.

1.2. Report Format

This report describes the field investigation and chemical analytical results from soil and groundwater sampling conducted as part of the data gap assessment. Site background information is presented in "Section 2." A description of the scope of services completed for this assessment is presented in "Section 3." "Section 4" presents a brief description of geologic and hydrogeologic conditions at the site. "Section 5" presents a summary of field activities. A description of subsurface soil and groundwater conditions is presented in "Section 6." "Section 7" contains a summary of analytical testing results for soil, groundwater and surface water. "Section 8" presents results of Model Toxics Control Act (MTCA) Method B calculations for determining site-specific cleanup levels for total petroleum hydrocarbons (TPH), and a description of the terrestrial ecological evaluation completed for the site. "Section 9" presents a summary of findings, and "Section 10" presents our conclusions.

Logs of borings, monitoring wells and test pits are presented in Appendix A. Detailed descriptions of field procedures are presented in Appendix B. Analytical laboratory reports are presented in Appendix C. Output of MTCA Method B calculations for TPH are presented in Appendix D. A supplemental wetlands delineation report for the site is presented in Appendix E. The report produced by MFA summarizing Phase 1 interim action activities conducted in 2013 is presented in Appendix F. Exploration and Sample Analyses Summary, Table 1 presents a summary of the subsurface explorations completed as part of this data gap assessment. Summary of Chemical Analytical Results - Petroleum Hydrocarbons in Soil, Table 2; Summary of Chemical Analytical Results - VOCs, SVOCs in Soil, Table 3; Summary of Chemical Analytical Results - Metals in Soil, Table 4; Summary of Chemical Analytical Results – GRPH, DRPH, ORPH, VOCs, SVOCs and Metals in Groundwater, Table 5; and Summary of Chemical Analytical Results - Metals and Parameters in Surface Water, Table 6 present summary analytical data of soil, groundwater and surface water testing. Site Plan (North), Figure 3; Previous Remediation Area Sample Locations (Expanded View), Figure 3A; Site Plan (Middle), Figure 4; and Site Plan (South), Figure 5 present site plans showing locations of subsurface explorations and other site features. Groundwater Elevations and Inferred Contours, October 28, 2013, Figure 6 and Groundwater Elevations and Inferred Contours, December 3, 2013, Figure 7 present results of groundwater sampling, including groundwater elevations, interpreted groundwater elevation contours and flow direction.

2.0 BACKGROUND

2.1. Property Description

The site consists of nine individual parcels. Five of the parcels (Parcel 005,010, 500, 550, 600 and 650) are located north of Mill Road, and comprise Phase 1. Four of the parcels (Parcel 070, 150, 200 and 250) are located south of Mill Road, and comprise Phase 2. The site currently is vacant. Previous buildings and structures have been removed.

Phase 1 is generally bounded by Mill Road to the south and east, existing commercial/industrial property to the west, and railroad tracks and the Wenatchee River to the north. Sunset Highway separates the northern most parcels (Parcels 500 and 600) from the other Phase 1 parcels. Recent interim action excavation and backfilling activities have occurred within Parcels 005, 010 and 550, and the ground surface within these parcels is covered with recently imported sand fill, and is generally level. Recent excavation and backfilling has not occurred within Parcels 500, 600 and 650, although both parcels are also covered with gravel and are relatively level.

Phase 2 is generally bounded by Mill Road to the north, Brender Creek to the west and south, and residential property and Brender Creek to the east. Topographically, Phase 2 generally slopes gently down from the southwest towards the northeast, with an overall elevation difference of about 5 to 10 feet. An approximate 5-foot-tall earthen embankment separates the site from Brender Creek near the southern site boundary. Several stockpiles of petroleum-contaminated soil, excavated from Phase 1, currently occupy portions of Parcels 150 and 200. The ground surface within Phase 2 is generally bare, with the exception of the northwest portion of the site within Parcels 070 and 250, which are vegetated with trees and bushes.

2.2. Historical Operations and Existing Data

Detailed descriptions for previous site activities, including: historical operations, previous geotechnical and environmental investigations, and previous site remediation activities are presented in the MFA report dated March 20, 2013. The site is located within a former meander of the Wenatchee River. When the railroad was constructed through the town of Cashmere around 1900, the meander was cut off from the River by the newly constructed railroad embankment. Brender Creek now flows through the former meander channel.

The site operated as a lumber mill from the 1940s through the 1970s. Activities during mill operations reportedly included manufacturing lumber for fruit boxes. No wood treating activities are known to have occurred at the site. A former mill pond existed in the southeast portion of Phase 1, and was filled in sometime in the 1950s. Most of the Phase 2 Area was previously used to store logs. Low lying areas of the site were reportedly filled over several decades with imported fill from various sources, as well as extensive wood waste. (Note: the term "wood waste" as described in this report generally refers to wood material, mixed with varying amounts of silt, sand gravel, cobble and boulders, generated during mill operations that was not commercially valuable and was utilized as fill material at the site; it does not indicate the wood designates as "waste" under Washington State regulations.) An accidental fire in 1990 caused damage to some mill buildings. A fire in 2000 destroyed many of the remaining mill buildings.

Previous exploration and sampling activities that have occurred at the site include:

- RH2 Engineering (RH2) completed a feasibility assessment in 2007 for the Port of Chelan County before the Port purchased the property. Fourteen test pits (TP-1-2007 through TP-14-2007) were excavated at the site as part of this 2007 feasibility assessment. The test pits were excavated to assess the extent and nature of the wood waste. Evidence of petroleum contamination was not observed on the test pit logs. No soil or groundwater testing was performed.
- In May 2009, RH2 completed explorations along Sunset Highway as part of a geotechnical evaluation in support of reconstructing the road. One of the test pits (TP-2-052009) was located within Phase 1. Petroleum hydrocarbon impacted soil was observed in the test pit. Soil samples were not collected for analytical testing. The area surrounding TP-2-052009 is referred to as "Area 1" in figures and documents produced by MFA. The general location of "Area 1" is shown on Figure 2.
- RH2 completed additional environmental explorations in September 2009 within "Area 1," including excavating eight test pits (S-1-092009 through S-8-092009). Soil samples collected and analyzed from test pits S-4-092009 and S-5-092009 contained gasoline-range petroleum hydrocarbons (GRPH) at concentrations greater than the MTCA Method A cleanup level. Based on information provided by RH2, approximately 104 tons of PCS from "Area 1" were subsequently excavated and disposed off-site at the Greater Wenatchee Regional Landfill during reconstruction of Sunset Highway.
- RH2 excavated four additional test pits (TP-2-102009, TP-5-102009, S-3-102009 and S-5-102009) near possible petroleum-impacted soil north of Mill Road that was identified during demolition activities completed by the Port earlier in 2009. These test pits were located within an area referred to as "Area 2" in figures and reports prepared by MFA. Results of

laboratory analytical testing indicated that GRPH and benzene, toluene, ethylbenzene and xylene (BTEX) compounds were less than MTCA Method A cleanup levels in the samples tested. The general location of "Area 2" is shown on Figure 2.

- RH2 excavated nine test pits (TP-A through TP-I) in November 2009. Information regarding analytical testing was not available.
- GeoEngineers completed a preliminary geotechnical engineering evaluation for the site in 2010, which included drilling nine borings (B-1, B-1A, B-2, B-2A and B-3 through B-7). As part of these services, one soil sample from boring B-1 and one soil sample from boring B-6 were submitted to an analytical laboratory for analyses of diesel-range petroleum hydrocarbons (DRPH) and oil-range petroleum hydrocarbons (ORPH). Results indicated that the soil sample contained DRPH and ORPH at concentrations less than the MTCA Method A cleanup levels. Additionally, groundwater monitoring wells were installed in borings B-1 and B-2. The area surrounding borings B-1 and B-6 was identified as "Area 3" in figures and reports produced by MFA. The general location of "Area 3" is shown on Figure 2.
- RH2 completed a limited groundwater evaluation in 2011, which included measuring depth to groundwater within 12 test pits (TP-GW-1 through TP-GW-12). Petroleum impacted soil was observed in test pit TP-GW-1. The area surrounding this test pit is identified as "Area 4" in figures and reports produced by MFA. The general location of "Area 4" is shown on Figure 2.
- The Port completed a limited wood waste removal pilot project within Phase 2 in 2011. Petroleum-impacted soil was identified in the wood waste excavation area, which was identified as "Area 5" in figures and reports produced by MFA. Soil samples collected from this area were submitted for analyses of DRPH and ORPH. Results indicated that the samples contained DRPH and ORPH at concentrations less than applicable MTCA Method A cleanup levels. The general location of "Area 5" is shown on Figure 2.
- RH2 completed 27 additional test pit explorations (TP-1-2012 through TP-27-2012) in 2012 in support of an evaluation of the feasibility of construction dewatering. Select samples were analyzed for petroleum hydrocarbons and volatile organic compounds (VOCs), including BTEX compounds. GRPH, VOCs and BTEX compounds were detected in several samples at concentrations less than applicable MTCA Method A cleanup levels. RH2 also constructed a dewatering test well (DW-01) within "Area 5." The approximate location of DW-01 is shown on Figure 5.
- During the spring and summer of 2013, the Port conducted remedial excavation activities within Phase 1. The remedial excavation areas included: (1) the "PCS Area 2 Excavation," which consisted of excavating petroleum contaminated soil (PCS) from the previously identified "Area 2"; (2) the "Storm Line PCS Area Excavation", which consisted of excavating PCS from an area north of "Area 2" surrounding an existing storm drain line; (3) the "Debris Excavation," which consisted of excavating apparent non-contaminated debris and soil from an area northeast of "Area 2"; and (4) the "Wood Waste Excavation," which consisted of excavating apparent non-contaminated debris and soil from an area northeast of "Area 2"; and (4) the "Wood Waste Excavation," which consisted of excavating apparent non-contaminated wood waste from an area north of "Area 2," east of the "Debris Excavation," and west of the "Storm Line PCS Excavation." The approximate locations of these Phase 1 remedial excavation areas are shown in Figure 3. MFA collected numerous sidewall and excavation bottom confirmation samples during the excavation activities within the "Area 2" Excavation and the "Storm Line PCS Area Excavation." Several of the confirmation

samples from excavation sidewalls and the bottoms of excavation contained petroleum hydrocarbons at concentrations greater than applicable MTCA Method A cleanup levels. Of note, five confirmation samples collected from the bottom of the "Area 2" excavation contained oil-range petroleum hydrocarbons at concentrations between 4,100 mg/kg and 22,000 mg/kg. At least two sidewall confirmation samples collected from the south portions of the "Area 2" remedial excavation contained ORPH at concentrations of 4,200 mg/kg. One of the sidewall confirmation samples with ORPH concentrations greater than cleanup levels was collected adjacent to a culvert which conveys No Name Creek across the site. According to MFA, the contractor was unable to excavate further without potentially compromising the culvert. Another confirmation sidewall sample containing ORPH at concentrations greater than cleanup levels was unable to excavate further without potentially compromising the culvert. Another confirmation sidewall sample containing to MFA, the contractor was unable to Mill Road. According to MFA, the contractor was unable to excavate further within the "Storm Line PCS Area Excavation" contained petroleum hydrocarbons at concentrations greater than applicable MTCA Method A cleanup levels. Phase 1 remedial activities are described in Appendix F.

- GeoEngineers completed a dewatering assessment at the site in July 2013. As part of that assessment, GeoEngineers installed a dewatering test well (TW-1) and seven observation wells (OW-1 through OW-7) within Phase 2 in June 2013.
- In July 2013, MFA completed supplemental soil and groundwater sampling, including advancing 9 direct-push borings (GP-1 through GP-9) within the previously identified "Area 4" and three direct-push borings (GP-10 through GP-12) within the previously identified "Area 3." MFA also excavated an exploratory trench within "Area 4" and submitted three soil samples (WL-1 through WL-3) for analyses of select contaminants of potential concern (COPCs). Results indicated that a soil sample from GP-6 contained DRPH and ORPH at concentrations greater than applicable MTCA Method A cleanup levels, and the soil sample from WL-1 contained GRPH at concentrations greater than the MTCA Method A cleanup level.

The approximate locations of previous explorations described above are shown on Figures 2 through 5. The approximate locations of MFA's confirmation samples from the "PCS Area 2 Excavation" and the "Storm Line PCS Excavation" are shown on Figure 3A.

2.3. Site Contaminants of Potential Concern (COPCs)

Based on previous work, COPCs for site soil and groundwater include contaminants previously detected at levels exceeding MTCA Method A cleanup levels and contaminants associated with historic storage and distribution of petroleum products, as well as metals, particularly with respect to potential changes in geochemistry of soil and groundwater within wood waste areas. COPCs for the site include the following constituents:

- Gasoline-range petroleum hydrocarbons (GRPH), diesel-range petroleum hydrocarbons (DRPH) and oil-range petroleum hydrocarbons (ORPH);
- Volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds;
- Semi-volatile organic compounds (SVOCs); and
- Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver).

3.0 SCOPE OF SERVICES

The purpose of the data gap assessment was to delineate the nature and extent of soil and groundwater contamination beneath the site, particularly portions of the site where limited, or no, previous environmental characterization activities had been completed. The data gap assessment was conducted in several steps. Step 1 consisted of drilling direct-push borings at the site, collecting soil samples from the borings, and submitting select soil samples to an analytical laboratory for analyses of select COPCs. Step 2 consisted of installing eight groundwater monitoring wells, collecting groundwater samples, and submitting groundwater samples from two rounds of groundwater sampling to an analytical laboratory for analyses of COPCs.

Based on the results of these services, additional services were conducted to further assess the site including: (1) collecting surface water samples from Brender Creek, and submitting them to an analytical laboratory for analyses of select COPCs; (2) completing two supplemental rounds of test pit explorations and submitting soil samples to an analytical laboratory for analyses of select COPCs to refine estimates of the extent of contaminated soil; and (3) installing an additional monitoring well within the northwest portion of Phase 2 to evaluate potential groundwater effects of soil contamination encountered in that area of the site. In addition, Ecology determined that the existing wetlands delineation report for the site (completed by others) was out of date, and no longer valid. Ecology authorized GeoEngineers to complete a supplemental wetlands delineation in order to satisfy Ecology criteria.

3.1. Direct-Push Explorations

Soil and groundwater conditions at the site were evaluated using direct-push drilling techniques at locations shown on Figures 2 through 5. The information obtained during the direct-push soil assessment also was used to identify locations for permanent groundwater monitoring wells, and guide supplemental exploration activities. Specific tasks conducted by GeoEngineers during the direct-push boring assessment are listed below:

- Coordinated utility locating services in advance of drilling activities.
- Conducted subsurface explorations using direct-push drilling techniques.
- Collected soil samples continuously from the direct-push explorations.
- Field-screened soil samples using water sheen and headspace vapor measurements to assess possible presence of petroleum-related contaminants and documented petroleum odors emanating from direct-push samples.
- Submitted soil samples to TestAmerica Laboratories (TestAmerica) in Portland, Oregon. Soil samples were analyzed for GRPH, DRPH and ORPH by Northwest Methods NWTPH-Gx and NWTPH-Dx (using silica gel cleanup) methods. Select samples also were analyzed for VOCs or BTEX compounds using Environmental Protection Agency (EPA) 8260 Methods, SVOCs using EPA Method 8270, and metals using EPA 6000/7000 Series Methods.
- Recorded direct-push boring locations in the field using a hand-held global positioning system (GPS) device (I-Pad with commercial GIS Pro software). The horizontal accuracy of the software is listed as 15 feet, although, based on experience, the horizontal accuracy is generally closer than 15 feet.

3.2. Monitoring Well Installation and Groundwater Sampling

Groundwater monitoring wells were installed within exploratory borings during the second step of the data gap assessment. The monitoring wells were installed at locations identified during the direct-push investigation at locations agreed upon by Ecology. Specific tasks conducted during monitoring well installation are listed below:

- Drilled, installed and developed monitoring wells. Logs of monitoring wells are presented in Appendix A.
- Submitted select soil samples from the well borings to TestAmerica in Spokane, Washington for analysis of GRPH, DRPH and ORPH using NWTPH-Gx and NWTPH-Dx methods, and Resource Conservation and Recovery Act (RCRA) 8 metals using EPA 6000/7000 Series Methods.
- Collected groundwater samples from site monitoring wells during two monitoring events (October and December 2013). Groundwater samples also were collected from existing dewatering observation well OW-1 during the December 2013 sampling event. Attempts were made to locate and collect groundwater samples from existing site well B-2, but we were unable to locate the well. Groundwater samples were submitted to TestAmerica in Spokane, Washington for analysis of GRPH, DRPH and ORPH using NWTPH-Gx and NWTPH-Dx methods, VOCs using EPA 8260 Methods, SVOCs using EPA Method 8270, and total and dissolved RCRA 8 metals using EPA 6000/7000 Series Methods. Monitoring wells were purged and sampled using low-flow sampling procedures. Samples also were analyzed for water quality and natural attenuation parameters in the laboratory including: nitrates, soluble manganese (Mn+2), sulfates (SO₄), methane (CH₄) and alkalinity. Water quality parameters (temperature, pH, dissolved oxygen, conductivity and turbidity) were measured in the field during purging and Soluble ferrous iron (Fe⁺²) also was analyzed in the field. sampling. During the December 2013 sampling event, samples were also analyzed for total and dissolved copper and iron, total manganese, and phosphorus. Two groundwater samples collected during the December event also were submitted to SVL Analytical Laboratory in Kellogg, Idaho for analysis of arsenic speciation. Analytical data is summarized in Tables 2 through 6. Analytical laboratory reports are presented in Appendix C.
- Subcontracted a licensed surveyor to record elevations and locations of monitoring wells.

3.3. Test Pit Explorations

Following the direct-push explorations and installation and initial sampling of the groundwater monitoring wells, supplemental test pit explorations were excavated near selected direct-push explorations identified as containing one or more COPCs at concentrations greater than applicable cleanup levels. Specific tasks conducted during the test pit explorations are listed below:

- Excavated test pits using a small track-mounted excavator and rubber-tired backhoe.
- Submitted soil samples to TestAmerica for analyses of COPCs previously measured in nearby direct-push borings at concentrations greater than MTCA Method A cleanup levels.
- Recorded test pit locations in the field using a hand-held GPS device.

3.4. Surface Water Sampling

Surface water samples were collected from Brender Creek to assess disposal options for water extracted during dewatering activities. Specific tasks are listed below:

- Collected three surface water samples from Brender Creek.
- Submitted water samples to TestAmerica for analyses of total and dissolved RCRA 8 metals and total and dissolved copper and iron using EPA 6000/7000 Series Methods. Water quality parameters including pH, total alkalinity and specific conductivity also were analyzed by the laboratory.

4.0 GEOLOGIC AND HYDROGEOLOGIC SETTING

4.1. General

This summary of geologic and hydrogeologic setting was developed by review of readily-available information from the literature, our experience near the study area, and reconnaissance at and near the site.

4.2. Geologic Setting

The former Cashmere Mill site is located in the Wenatchee River valley in the town of Cashmere. Surficial geology consists of alluvial deposits of silt, sand, gravel and cobbles, deposited by the Wenatchee River. Based on results of site explorations, alluvial deposits extend to depths of at least 40 feet below the site. We understand a former meander of the river is located along the south and east portions of the site (currently occupied by Brender Creek), which was cut off from the river in the early 1900s for the purpose of site development.

4.3. Hydrogeologic Setting

A detailed description of the hydrogeologic setting for the site is presented in the Dewatering Assessment report by GeoEngineers, dated July 31, 2013. The groundwater table within the shallow unconfined aquifer at the site is at a similar elevation to the nearby Wenatchee River, and likely is hydraulically connected with the river. In such systems, groundwater contained within an aquifer, generally flows down-valley, roughly parallel to the river, but at a much slower velocity. Shallow groundwater at the site generally flows northeast, as described later in this report.

5.0 FIELD ACTIVITIES

5.1. General

The following field activities were completed by GeoEngineers' field personnel and subcontractors as part of the data gap assessment to explore subsurface soil and groundwater conditions at the site:

One-hundred and twenty direct-push borings (N-DP-1 through S-DP-101) were advanced between September 9 and September 14, 2013. Additional drilling attempts also were made at multiple locations.

- Eight groundwater monitoring wells (MW-1 through MW-8) were drilled, installed and developed between October 8 and October 25, 2013. A ninth groundwater monitoring well (MW-9) was drilled, installed and developed on December 16, 2013. Three well borings were drilled using a hollow-stem auger drill rig, and six well borings were drilled using an air-rotary drill rig. The wells were installed to depths of about 15 to 20 feet below site grade. One additional air rotary boring (AR-1) was advanced near the location of previously identified PCS within the Phase 2 Area.
- Groundwater monitoring events were completed on October 28, 2013 and December 3 and 4, 2013 for site wells MW-1 through MW-8, as well as previous site monitoring well B-1. Monitoring well MW-9 was sampled on December 20, 2013.
- Twenty-nine supplemental test pits were excavated between November 12 and 13, 2013, to provide additional information about the extent of soil contamination identified from laboratory analytical testing of soil samples collected from the direct-push borings.
- Three surface water samples were collected from Brender Creek on November 13, 2013.
- Fifteen additional test pits were excavated between December 19 and 20, 2013 to provide additional information about the extent of soil contamination.
- A wetlands survey was conducted on December 19, 2013.
- Locations and elevations for new monitoring wells MW-1 through MW-8, and existing site wells
 B-1 and OW-1 through OW-7 were surveyed by a licensed surveyor. Locations of other site explorations were surveyed using hand-held GPS devices.

5.2. Explorations

Cascade Drilling (Cascade) and GeoEngineers mobilized to the site from September 9 through September 14, 2013 to advance 120 direct-push borings. Continuous soil samples were collected using 5-foot acrylic slip-sleeve samplers. Cascade remobilized to the site on October 8 through October 10, 2013 to drill three hollow-stem auger borings and install and develop monitoring wells MW-2, MW-3 and MW-6. Because of difficult drilling conditions, Cascade was unable to complete drilling and well installations. Environmental West mobilized to the site on October 24 and 25, 2013 to drill five air-rotary borings and install and develop monitoring wells MW-1, MW-4, MW-5 and MW-7. Environmental West remobilized to the site on December 16, 2013 to drill one air rotary boring and install and develop monitoring well MW-9. Sandry Construction mobilized to the site on November 12 and 13, 2013 to excavate test pits using a mini excavator. Sandry Construction remobilized to the site on December 19 and 20, 2013 to excavate test pits using a rubber-tired backhoe.

Exploration locations are shown in Figures 2 through 5. Table 1 presents summary information about direct-push borings, monitoring well borings, and test pits. Note that the numbering system for direct-push borings is not sequential. Direct-push borings and their numbering system were established in the office before mobilizing to the site. Some of the planned borings were deleted from the exploration program during field work based on boring results. However, in order to provide consistency between boring and sample naming among multiple field crews, the original boring numbers were used. Table 1 indicates which direct-push borings were deleted from the exploration program.

5.2.1. Phase 1 Area

5.2.1.1. DIRECT-PUSH BORINGS

Fifty direct-push borings (N-DP-1 through N-DP-54) were advanced to depths ranging from about 4 feet to 20 feet below site grade within the Phase 1 area. Soil samples collected from the direct-push borings were field screened to assess the possible presence of petroleum hydrocarbons.

- Petroleum odors were observed in soil samples collected from three borings: N-DP-3A (at approximate 10-foot depth), N-DP-9 (at approximate 5-foot depth), and N-DP-27 (at approximate 7-foot depth). Headspace vapors, measured with a photoionization detector (PID), ranged from less than 1 to about 150 parts per million (ppm).
- Headspace vapor readings from most samples collected were generally low, less than about 5 ppm. Headspace vapor measurements exceeding 10 ppm were recorded on soil samples collected from five borings: N-DP-2 (approximate 3- and 11-foot depths), N-DP-7 (approximate 1-foot depth), N-DP-8A (approximate 1- to 9-foot depths), N-DP-16 (approximate 12½-foot depth), and N-DP-43 (approximate 1- to 5-foot depths).
- Slight sheens were observed in soil samples from 12 borings: N-DP-1, N-DP-2, N-DP-3, N-DP-3A, N-DP-3B, N-DP-8A, N-DP-9, N-DP-11, N-DP-13, N-DP-24, and N-DP-39. Moderate sheens also were observed in soil samples collected from four borings: N-DP-1 (approximate 5- to 8-foot depths), N-DP-8 (approximate 5¹/₂-foot depth), N-DP-9 (approximate 5- and 13-foot depths) and N-DP-39 (approximate 2-foot depth).

The purpose of most direct-push borings advanced throughout the Phase 1 area was to characterize areas of the site which had not previously been explored. However, several direct-push borings were placed in three general areas to further confirm conditions where prior excavations occurred:

- Direct-push borings N-DP-24, N-DP-27 and N-DP-38 were drilled to depths of about 10 feet to 15 feet below site grade near previously identified "Area 1" to assess the possible presence of remaining contamination in this area. As indicated above, a slight petroleum odor was observed in boring N-DP-27, and slight sheens were observed on soil samples collected from N-DP-24. Field screening evidence of petroleum contamination was not observed from soil samples collected from soil samples collected from boring N-DP-38.
- Direct-push borings N-DP-16, N-DP-23 and N-DP-25 were drilled to depths of about 14½ feet to 15 feet below site grade within the "Storm Line PCS Area" excavation near the locations of confirmation samples collected by MFA during remedial excavation activities in 2013 that contained petroleum hydrocarbons at concentrations greater than applicable MTCA Method A cleanup levels. Results of field screening did not indicate the presence of petroleum hydrocarbons at these direct-push boring locations.
- Direct-push borings N-DP-9, N-DP-19, N-DP-21 and N-DP-21A also were drilled to depths of about 10½ feet to 15 feet below site grade near the "Area 2" remedial excavation, at locations near where confirmation samples collected by MFA during the 2013 remedial excavation activities contained petroleum hydrocarbons at concentrations greater than applicable MTCA Method A cleanup levels. Field screening did not indicate the presence of petroleum hydrocarbons in soil samples collected from borings N-DP-19, N-DP-21 and N-DP-21A. As

noted above petroleum odors and moderate sheen were observed in soil samples collected from N-DP-9.

5.2.1.2. GROUNDWATER MONITORING WELLS

Four monitoring wells were drilled and installed within the Phase 1 area:

- Monitoring well MW-1 is located within Parcel 500, downgradient of "Area 1."
- Well MW-2 is located near the property line between Parcel 005 and Parcel 010, within the "Wood Waste Excavation" area from the 2013 remedial excavation. Monitoring well MW-2 also is located cross/downgradient of the 2013 "Storm Line PCS Area" remedial excavation.
- Monitoring well MW-3 is located within Parcel 650, generally cross/downgradient of the "Area 2 PCS" excavation. Well MW-3 also is located downgradient of previously identified PCS within Parcel 650.
- Monitoring well MW-4 is located within an area near the upgradient portions of the "Area 2 PCS" excavation, near the north side of Mill Road.

Field screening of soil samples collected from monitoring wells MW-1 through MW-4 did not indicate the presence of petroleum contamination.

5.2.1.3. TEST PITS

Five test pits (NDP8-TP1 through NDP8-TP5) were excavated near N-DP-8 following receipt of laboratory analytical testing results indicating the presence of ORPH at concentrations exceeding MTCA Method A cleanup levels within direct-push boring N-DP-8. The test pits were excavated to depths of about 6 feet to 7 feet below site grade (the approximate depth of the soil sample from boring N-DP-8 containing ORPH at a concentration greater than cleanup levels). These depths also coincided with the approximate groundwater elevation at the time of exploration. Soil samples were collected from near the bottoms of the test pits.

A strong petroleum odor was observed in test pit NDP8-TP3 at a depth of about 6 feet. Headspace vapor measurements of the soil samples ranged from less than 1 ppm (NDP8-TP2) to 150 ppm (NDP8-TP1). A moderate sheen also was observed from the soil sample collected from NDP8-TP1.

Table 1 includes approximate exploration depths and results of PDF readings and water sheen tests.

5.2.2. Phase 2 Area

5.2.2.1. DIRECT-PUSH BORINGS

Seventy direct-push borings (S-DP-1 through S-DP-101) were advanced to depths ranging from about 4 feet to 20 feet below site grade within the Phase 2 area. Soil samples collected from the direct-push borings were field screened to assess the possible presence of petroleum hydrocarbons.

Petroleum odors were observed in soil samples collected within five borings: S-DP-2 (at approximate 1-foot depth), S-DP-7 (at approximate 1-foot depth), S-DP-14 (at approximate 2-foot depth), S-DP-20 (at approximate 2-foot depth), and S-DP-20A (at approximate 2¹/₂-foot depth).

- Headspace vapors, measured with a PID, ranged from less than 1 to about 20.6 ppm. Headspace vapor readings from most of the samples collected were generally low, less than about 5 ppm. Headspace vapor measurements exceeding 10 ppm were recorded on soil samples collected from three borings: S-DP-2 (approximate 2-foot depth), S-DP-78 (approximate 1-foot depth) and S-DP-97 (approximate 2-foot and 11-foot depths).
- Slight sheens were observed in soil samples collected from 18 direct-push borings (S-DP-1B, S-DP-2, S-DP-10, S-DP-14, S-DP-22, S-DP-28, S-DP-39, S-DP-63, S-DP-75A, S-DP-76, S-DP-81, S-DP-86, S-DP-88, S-DP-94, S-DP-95, S-DP-98, S-DP-100 and S-DP-101). Moderate sheen was observed in the soil samples collected from two borings: S-DP-7 (approximate 1-foot depth) and S-DP-98 (approximate 4-foot depths).

The purpose of most direct-push borings advanced throughout the Phase 2 area was to characterize areas of the Phase 2 which had not previously been explored. However, several direct-push borings were placed in "Area 4" and "Area 5" to further assess conditions:

- Twenty-three direct-push borings (S-DP-1, S-DP-1A, S-DP-2, S-DP-4, S-DP-4A, S-DP-5, S-DP-5A, S-DP-7 through S-DP-11, S-DP-13 through S-DP-16, S-SP-18, S-DP-20, S-SP-20A, S-DP-27, S-DP-29, S-DP-30 and S-DP-32) were advanced to depths in the range of about 4 feet to 12½ feet below site grade within and near "Area 4" to further evaluate previously identified PCS. As indicated above, petroleum odors were observed in borings S-DP-2, S-DP-7, S-DP-14 and S-DP-20A. Also as indicated above, headspace vapors measuring about 19.1 ppm were recorded from a soil sample collected from boring S-DP-2. A slight sheen also was observed in soil samples collected from boring S-DP-2 (approximate 1- foot to 3-foot depth), and a moderate sheen was observed in the soil sample collected boring S-DP-7. Field screening evidence of petroleum contamination was not observed from soil samples collected from the other direct-push borings advanced within and near "Area 4." One air-rotary boring (AR-1) also was advanced to a depth of about 4 feet below site grade within "Area 4," near the location of previous MFA exploration GP-6. Field screening of soil samples collected from AR-1 did not indicate the presence of petroleum contamination.
- Direct-push borings S-DP-52 and S-DP-37 were advanced within the "Pilot Wood Waste" excavation area, also referred to as "Area 5." Field screening of soil samples collected from these borings did not indicate the presence of petroleum contamination.

5.2.2.2. GROUNDWATER MONITORING WELLS

Five monitoring wells were drilled and installed within the Phase 2 area:

- Monitoring well MW-5 is located within Parcel 200, situated downgradient of "Area 4."
- Monitoring well MW-6 also is located in Parcel 200, situated just upgradient of "Area 4."
- Monitoring well MW-7 is located within Parcel 150, situated cross/downgradient of PCS identified based on laboratory analytical test results from the direct-push boring activities.
- Monitoring well MW-8 is located within Parcel 070, and is intended to be an upgradient well.
- Monitoring well MW-9 also is located within Parcel 070, and is situated downgradient of mercury-contaminated soil identified during the data gap assessment activities.

Field screening of soil samples collected from monitoring wells MW-5 through MW-9 did not indicate the presence of petroleum contamination.

5.2.2.3. TEST PITS

Following receipt of laboratory analytical testing results indicating the presence of COPCs at concentrations exceeding MTCA Method A cleanup levels within direct-push borings S-DP-14, S-DP-75A, S-DP-81, S-DP-88 and S-DP-101, test pits were excavated surrounding these boring locations to further assess soil conditions:

- Two test pits (SDP14-TP1 and SDP14-TP2) were excavated to depths of about 2 feet to 2½ feet below site grade, near direct-push boring S-DP-14. Soil samples were collected from near the bottoms of the excavations (the approximate depth of the soil sample from direct-push boring S-DP-14 with measured concentration of ORPH greater than the MTCA Method A cleanup level). A slight sheen was observed in the soil sample from boring SDP14-TP1. Field screening of the soil sample from SDP14-TP2 did not indicate the presence of petroleum contamination.
- Nine test pits (SDP75A-TP1, SDP75A-TP1a, SDP75A-TP1b, SDP75A-TP2, SDP75A-TP2a, SDP75A-TP3, SDP75A-TP3a, SDP75A-TP4, and SDP75A-TP5) were excavated to depths in the range of about 2 feet to 3 feet below site grade near direct-push boring S-DP-75A. Soil samples were collected from near the bottoms of the excavations (the approximate depth of the soil sample from direct-push boring S-DP-75A with a measured concentration of ORPH at a concentration greater than the MTCA Method A cleanup level). Headspace readings of soil samples collected from the test pits ranged from 17.5 ppm to 170 ppm. A slight sheen was observed from the soil samples from test pits SDP75A-TP1a and SDP75A-TP5. Moderate sheens were observed from the soil samples collected from test pits SDP75A-TP1a.
- Four test pits (SDP81-TP1 through SDP81-TP4) were excavated to depths on the order of about 3 feet below site grade near direct-push boring S-DP-81. Soil samples were collected from each test pit at a depth of about 2 feet below site grade. A headspace vapor reading of 43 ppm was measured on the soil sample collected from test pit SDP81-TP3. Headspace vapor readings of soil samples collected from the other test pits were less than 10 ppm. A slight sheen was observed from the soil samples collected from test pits SDP81-TP1 and SDP81-TP2.
- Four test pits (SDP88-TP1 through SDP88-TP4) were excavated to depths in the range of about 4 to 5 feet below site grade near direct-push boring S-DP-88. Soil samples were collected from the test pits at depths in the range of about 3 feet to 4 feet below site grade. A headspace vapor reading of 13 ppm was measured from the soil sample collected from test pit SDP88-TP4. Headspace vapor readings from soil samples collected from the other test pits were less than 10 ppm. Field screening of the soil samples also indicated that no sheens were observed.
- Five test pits (SDP101-TP1 through SDP101-TP5) were excavated to depths in the range of about 3 feet to 4 feet below site grade near direct-push boring S-DP-101. Soil samples were collected at depths of about 2½ feet to 3 feet below site grade. Headspace vapors readings ranged from 3 ppm to 63 ppm. Slight sheens were observed from the soil samples collected

from test pits SDP101-TP2 and SDP101-TP4. Sheen was not observed from the soil samples from the other test pits.

Following receipt of laboratory analytical test results of soil samples from the test pits, and results of follow-up analytical testing of soil samples from the direct-push borings, additional test pits were excavated to further assess soil conditions within the northwest portion of the Phase 2 area, predominantly to assess the presence of mercury contamination of soil within this area of the site:

- Four test pits (SDP87-TP1 through SDP87-TP4) were excavated to depths in the range of about 3 feet to 4 feet below site grade near direct-push boring S-DP-87. A slight petroleum odor was observed from the soil samples collected from test pit SDP87-TP2. Headspace vapor readings ranged from 3.1 ppm to 26.6 ppm. A slight sheen also was observed from soil samples collected from all four test pits.
- Eleven additional test pits (TP-B1 through TP-B11) were excavated across the northwest portion of Phase 2. A slight petroleum odor was observed from soil samples collected from test pits TP-B1, TP-B9, TP-B10 and TP-B11. Headspace vapors greater than 10 ppm were observed in soil samples collected from test pits TP-B3, TP-B10 and TP-B11, ranging from 11.5 ppm to 184 ppm. Slight sheens also were observed from soil samples collected from all eleven test pits.

Table 1 includes approximate exploration depths and results of PID readings and water sheen tests.

5.3. Groundwater Sampling

Groundwater sampling was conducted on October 28, 2013, and December 3 and 4, 2013 from monitoring wells MW-1 through MW-8. Monitoring well MW-9 was sampled on December 20, 2013. Depth to groundwater was measured in each well and water quality parameters were recorded while purging the wells using low-flow sampling techniques. Measured water quality parameters included: pH, specific conductivity, turbidity, dissolved oxygen (DO), temperature, oxidation-reduction potential (ORP), and soluble ferrous iron. Headspace vapors measured within the well and water quality parameters were recorded during purging activities and are presented in Appendix B. Development and purge water was drummed and stored on-site pending chemical analytical results. Low flow sampling techniques were used to collect the groundwater samples.

5.4. Surface Water Sampling

Three surface water samples (downstream, midstream and upstream) were collected from Brender Creek on November 13, 2013, to assess metals concentrations and select surface water quality parameters, as a basis for evaluating the feasibility of discharging groundwater pumped during Phase 2 dewatering activities into Brender Creek. The approximate location of the downstream sample is shown on Figure 3. The approximate locations of the midstream and upstream samples are shown on Figure 5.

5.5. Wetlands Survey

On December 19th, GeoEngineers scientists visited the Port of Chelan County Cashmere Mill Site to perform a wetland delineation and supplement the data about the property conditions beyond

the information contained in the 2008 wetland delineation report on file. Prior to the field investigation, GeoEngineers contacted Ecology Wetlands Specialist Andrea Jedel to confirm the delineation plan and discuss the conditions surrounding the completion of a mid-winter delineation in Cashmere. Results of the site visit revealed that the 2008 delineation was reasonably accurate but lacked sufficient information about the site-specific soils surrounding the wetland boundary. GeoEngineers obtained a more complete soils record to better describe and support the delineation. Results and observations made in the field revealed that beaver activity in the Brender Creek corridor has been substantial since the 2008 delineation with several large trees gnawed and toppled into the stream corridor. A copy of GeoEngineers' Wetlands report is presented in Appendix E.

6.0 SUBSURFACE CONDITIONS

6.1. Soil Conditions

Variable subsurface conditions were encountered to the depths explored in site explorations. For the purposes of this report, soil underlying the site was characterized in two general units: (1) sand; and (2) silt and clay.

6.2. Phase 1 Area

The upper several feet of soil within most of "Area 1" (specifically Parcels 005, 010 and 550) were excavated during remedial excavation activities conducted in 2013, and replaced with imported sand. We encountered variable thickness of brown fine to coarse sand at the locations of our explorations throughout Phase 1 (except for several explorations located within Parcel 500 and Parcel 650). Where encountered, the recently placed sand fill ranged in thickness from less than 1 foot, to about $7\frac{1}{2}$ feet. Below the recent sand fill, where present, we encountered historic wood waste fill at the locations of explorations N-DP-1 through N-DP-19 (generally in the east portion of Phase 1). The wood waste fill contained variable amounts of silt, sand, gravel, cobbles and wood material. The wood waste fill extended to estimated depths in the range of about 5 feet to 14 feet below current site grade. Below the recently placed fill, and wood waste fill, where present, we encountered apparent natural alluvial deposits of sand and gravel, with variable amounts of silt and cobbles. The natural alluvial deposit extended to the depths explored, where encountered. While not specifically identified in our explorations, fill and natural alluvial deposits also could contain boulders. Note that due to drilling and sampling methods, the estimated depths and locations of recently placed fill, wood waste and natural alluvial deposits should be considered a rough approximation of subsurface unit extents.

6.3. Phase 2 Area

We encountered fill (including wood waste) at the locations of most of the explorations completed within the Phase 2 Area. The fill extended to estimated depths in the range of about 1 foot to about 15 feet below current site grade. The percentage of wood waste within the fill was variable. At some locations, wood waste was mixed with granular soil. At other locations, wood waste (sawdust, bark, wood chips) was present as discrete layers. We also encountered apparent debris including charred wood fragments at the locations of direct-push borings S-DP-88 and S-DP-101, and brick at the location of test pit TP-B4 (all in Parcel 070). The debris fill was located at depths

in the range of about 3 to 5 feet below current site grade at the locations of S-DP-88 and S-DP-101, and from the ground surface to a depth of about 2 feet at the location of test pit TP-B4. Below the fill, where identified, we encountered natural alluvial deposits of sand and gravel with variable amounts of silt and cobbles, which extended to the depths explored.

6.4. Groundwater Conditions

6.4.1. General

Depths to groundwater encountered during exploration activities are presented on the explorations logs and on Table 1; depths ranged from less than 1 foot to about 9 feet.

Groundwater depths also were measured from the top of the well casing on October 28, 2013, and December 3, 2013 at site monitoring wells MW-1 through MW-8, B-1, OW-1, OW-4 and OW-7. Groundwater depths ranged from about 2.5 feet to 7.4 feet below the top of the well casing. In general, groundwater was shallowest in the north portion of Phase 2 and deepest near Sunset Highway in the north portion of Phase 1. Groundwater elevations were calculated by comparing measured groundwater depths to wellhead elevations and are referenced to the North American Vertical Datum of 1988 (NAVD 88).

Fluid depths and elevations measured during the groundwater monitoring events are presented in Table 6. Groundwater elevation data, and interpreted groundwater elevation distribution and flow direction for each monitoring event, are graphically presented in Figure 6 and Figure 7. Field methods are described in Appendix B.

6.4.2. Groundwater Elevations

Depth to groundwater measurements during the October 2013 monitoring event, referenced to the top rim of the PVC well casing, ranged from 2.55 feet in MW-6 to 7.36 feet in MW-3. Groundwater elevations ranged from 781.95 feet in MW-1 to 791.08 feet in MW-8.

Depth to groundwater during the December 2013 monitoring event ranged from 2.47 feet in MW-6 to 7.23 feet in MW-3. Groundwater elevations ranged from 782.37 feet in MW-1 to 791.08 feet in MW-8.

Groundwater elevations generally increased during the December 2013 monitoring event relative to the October 2013 event, with a trend of decreasing change in elevation from downgradient to upgradient wells. The largest elevation increase (0.42 feet) was measured at downgradient well MW-1. No change in groundwater elevations was measured at upgradient wells MW-8 and OW-1. (Note: groundwater elevation slightly decreased in well B-1 between October and December 2013. Following the October 2013 sampling event, well B-1 was re-developed to improve hydraulic connection to the shallow aquifer.)

6.4.3. Hydraulic Gradient and Groundwater Flow Direction

Interpreted groundwater flow direction during both groundwater monitoring events generally was toward the northwest; away from upland recharge areas and Brender Creek, and towards the Wenatchee River. The estimated average hydraulic gradient for both groundwater monitoring events was about 8 x 10^{-3} feet per foot (about 40 feet per mile).

7.0 SOIL, GROUNDWATER AND SURFACE WATER CHEMICAL ANALYTICAL RESULTS

7.1. General

7.1.1. Soil Samples

Select soil samples collected from the borings and test pits were submitted to TestAmerica for laboratory analyses. The following analyses were completed on soil samples:

- Fifty-six soil samples from the Phase 1 area and 101 soil samples from the Phase 2 area were analyzed for GRPH, DRPH and ORPH.
- Six soil samples from the Phase 1 area and 13 soil samples from the Phase 2 area were analyzed for VOCs and/or SVOCs.
- Three additional soil samples from the Phase 1 area and nine additional soil samples from the Phase 2 area were analyzed for BTEX compounds.
- Six soil samples from the Phase 1 area and 11 soil samples from the Phase 2 area were analyzed for RCRA 8 metals.
- Forty-two additional soil samples from the Phase 2 area (Parcels 070 and 150) were analyzed for mercury.
- Two soil samples from the Phase 2 area (Parcel 070) were analyzed for Toxicity Characteristic Leaching Procedure (TCLP) for mercury.
- One soil sample from the Phase 1 area and four soil samples from the Phase 2 area were analyzed for EPH and VPH.

A summary of petroleum hydrocarbon results is presented in Table 2. A summary of VOC, SVOC, VPH and EPH results is presented in Table 3. A summary of metals analyses is presented in Table 4.

7.1.2. Groundwater Samples

During the October 2013 groundwater monitoring event, groundwater samples were collected from wells MW-1 through MW-8 and B-1. A duplicate groundwater sample also was collected from well MW-5. Groundwater samples were submitted to TestAmerica for analyses of COPCs including GRPH, DRPH, ORPH, VOCs, SVOCs, and RCRA 8 metals.

During the December 2013 groundwater monitoring event, groundwater samples were collected from wells MW-1 through MW-8, B-1 and OW-1. Additional groundwater samples also were collected from wells MW-2 and MW-7 at deeper intervals. The intent of collecting and analyzing deeper groundwater samples was to evaluate arsenic concentrations in groundwater relative to depth. Groundwater samples also were submitted for analyses of water quality parameters including nitrates, sulfates, methane, and total alkalinity. Two groundwater samples (collected from wells MW-2 and MW-7) also were submitted to SVL Analytical Laboratory in Kellogg, Idaho for arsenic speciation. A summary of groundwater analytical results is presented in Table 5.

On December 20, 2013 a groundwater sample was collected from well MW-9. The sample was submitted to TestAmerica for analyses of GRPH, DRPH, ORPH, total RCRA 8 metals and BTEX compounds. Results are summarized in Table 5.

7.1.3. Surface Water Samples

Three surface water samples were collected from Brender Creek on November 13, 2013, at the approximate locations shown on Figures 3 and 5. The samples were submitted to Test America for analyses of total and dissolved metals (RCRA 8 metals, copper, and iron) and water quality parameters pH, total alkalinity and specific conductivity. A summary of surface water analytical results is presented in Table 6. The surface water samples were collected following receipt of groundwater analytical results from the October 2013 groundwater monitoring event as a basis for evaluating the feasibility of discharging groundwater extracted during dewatering activities into Brender Creek.

7.2. Soil Analytical Results

7.2.1. Phase 1 Area

ORPH was detected at concentrations of 11,000 milligrams per kilogram (mg/kg) and 10,500 mg/kg in samples N-DP-8(5.5-6.5) and NDP-TP3(6), respectively; which exceed the MTCA Method A cleanup level for unrestricted land use (2,000 mg/kg). Both samples were collected from the southeast portion of Parcel 550. These concentrations also exceed the calculated MTCA Method B cleanup level for TPH for the site (3,400 mg/kg), as described in "Section 8" (see Appendix D). Petroleum hydrocarbons in other soil samples were either not detected, or were detected at concentrations less than applicable Method A or Method B cleanup levels. Note that the result for sample N-DP-8(5.5-6.5) was qualified as estimated because surrogate recovery was outside of specified limits for that sample. Refer to the applicable Data Validation Report in Appendix B for additional details.

Mercury was detected in sample N-DP-27(7-8) at a concentration of 2.1 mg/kg, greater than the MTCA Method A cleanup level of 2 mg/kg. This sample was collected from Parcel 010 along the south side of Sunset Highway. Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) also were detected in this sample at a concentration (0.102 mg/kg based on toxicity equivalency factors as presented in WAC 173-340-900, Table 708-2) greater than the MTCA Method A cleanup level of 0.1 mg/kg. The concentrations of cPAHS are qualified as estimated because the positive results were greater than the method detection limit, but less than the method reporting limit.

Methylene chloride was detected at concentrations greater than the MTCA Method A cleanup level for unrestricted land use in samples N-DP-43(0.5-1.5), N-DP-27(7-8), and D-DP-8A(2-3). However, methylene chloride also was detected in the laboratory method blank associated with samples N-DP-27(7-8) and N-DP-8A(2-3). These results are likely false positives, associated with laboratory contamination.

Other VOCs, SVOCs, and metals were either not detected, or were detected at concentrations less than applicable cleanup levels. Note that for several analytes with established MTCA Method A cleanup levels, the laboratory published reporting limits or detection limits, where applicable, exceed the cleanup level. These results have been highlighted in the tables, where applicable.

7.2.2. Phase 2 Area

TPH was detected in five samples collected in the Phase 2 area at concentrations greater than the calculated MTCA Method B TPH cleanup level. These samples were collected from three areas: the northeast portion of the Phase 2 area (Parcel 070), north-central near the boundary of Parcel 150 and 250, and the northeast portion of the Phase 2 area (Parcel 200).

- DRPH and ORPH were detected at concentrations of 520 mg/kg and 3,800 mg/kg, respectively in sample S-DP-101(3-3.5) collected from Parcel 070. The calculated TPH concentration for this sample is 4,320 mg/kg.
- GRPH, DRPH and ORPH were detected in sample S-DP-75A(2-3) at concentrations of 8.6 mg/kg, 1,900 mg/kg and 8,800 mg/kg, respectively. The calculated TPH concentration for this sample is 10,709 mg/kg. DRPH and ORPH were detected in sample SDP75A-TP2(3) at concentrations of 1,020 mg/kg and 5,640 mg/kg, respectively. The calculated TPH concentration for this sample is 6,660 mg/kg. GRPH, DRPH and ORPH were detected in soil sample SDP75A-TP5(3) at concentrations of 11.6 mg/kg, 794 mg/kg and 4,370 mg/kg, respectively. The calculated TPH concentration for this sample is 5,175.6 mg/kg.
- GPRH, DRPH and ORPH were detected at concentrations of 81 mg/kg, 770 mg/kg and 2,800 mg/kg, respectively in sample S-DP-7(1-2) collected from Parcel 250. The calculated TPH concentration for this sample is 3,651 mg/kg.
- Petroleum hydrocarbons in other samples were either not detected, or were detected at concentrations less than applicable cleanup levels in other samples.

Mercury was detected in several samples collected from the northwest portion of the Phase 2 area, specifically in the north half of Parcel 070 and the northwest portion of Parcel 250. Mercury was detected in four soil samples at concentrations greater than the MTCA Method A cleanup level: S-DP-87(5-6) (13 mg/kg), S-DP-88(4-5) (7.2 mg/kg), S-DP-101(3-3.5) (4.8 mg/kg) and TP-B4(1-2) (2.38 mg/kg). The mercury test result for S-DP-87(5-6) was qualified as estimated because the follow-up analyses were completed outside of hold time. TCLP analyses for mercury were completed on samples S-DP-87(5-6) and TP-B4(1-2). Results were non-detect from both samples. TCLP results were qualified as estimated for sample S-DP-87(5-6) because the analysis was completed post hold time. However, TCLP analysis for this sample was completed on the same day as the metals analysis. Other metals were either not detected, or were detected at concentrations less than applicable MTCA Method A cleanup levels.

Numerous VOCs and SVOCs were detected in Phase 2 Area soil samples. However, analytes with established MTCA Method A cleanup levels were either not detected, or were detected at concentrations less than applicable Method A cleanup levels.

7.3. Groundwater Analytical Results

7.3.1. October 2013 Monitoring Event

7.3.1.1. CONTAMINANT ANALYSES

DRPH and ORPH were detected in the groundwater sample from B-1 at concentrations of 2,170 micrograms per liter (μ g/L) and 5,390 μ g/L, respectively, which exceeded the MTCA Method A cleanup levels of 500 μ g/L for both DRPH and ORPH. This well is located in the

northeast portion of the site within Parcel 650. However, during the October 2013 event, well B-1 had not been sampled for a considerable time, and water pumped from the well was highly turbid. Attempts to purge the well during sampling did not improve turbidity. Therefore, analytical results from well B-1 might not be representative of aquifer conditions. Because of the highly turbid nature of the groundwater sample, other analyses were not performed on the groundwater sample. GRPH was not detected in the samples from well B-1. GRPH, DRPH and ORPH were not detected in the groundwater samples for the groundwater samples for the other wells. Silica gel cleanup was used for NWTPH-Dx analyses for the October 2013 groundwater monitoring event.

Total arsenic was detected at concentrations greater than the MTCA Method A cleanup level of 5 μ g/L in groundwater samples from six of the eight wells: MW-1 (17 μ g/L), MW-2 (6.0 μ g/L), MW-3 (6.7 μ g/L), MW-5 (16 μ g/L), MW-7 (83 μ g/L) and MW-8 (13 μ g/L). Dissolved arsenic concentrations exceeded the cleanup level in samples from three wells: MW-1 (14 μ g/L), MW-5 (13 μ g/L), and MW-7 (79 μ g/L). Total and dissolved arsenic were detected in the other groundwater samples but at concentrations less than the MTCA Method A cleanup level. Other metals were either not detected, or were detected at concentrations less than the applicable Method A cleanup level. Sample B-1 was not analyzed for metals.

Benzene was detected in the groundwater sample from MW-3 at a concentration of 0.300 μ g/L, less than the MTCA Method A cleanup level of 5 μ g/L. Naphthalene was detected in the groundwater sample from B-1 at a concentration of 4.69 μ g/L, less than the MTCA Method A cleanup level (160 μ g//L). Other VOCs and SVOCs were not detected. With the exception of EDB and methylene chloride, reporting limits were less than applicable MTCA Method A cleanup levels.

7.3.1.2. WATER QUALITY PARAMETERS - MEASUREMENTS AND ANALYSES

Well headspace readings were obtained from monitoring wells using a PID immediately after removing the well caps during groundwater sampling. A headspace reading of 10.2 ppm was measured in monitoring well MW-1. Headspace readings of less than 1 ppm were measured in the other site monitoring wells.

Temperature, pH, turbidity, DO, specific conductivity, ORP, and soluble ferrous iron (Fe⁺²) concentrations were measured in the field during groundwater sampling. Temperatures increased about 5.6° C between upgradient well MW-8 and downgradient well MW-2. pH levels ranged from 6.10 in well B-1 to 7.12 at well MW-6. DO concentrations ranged from 0.0 mg/L at MW-8 to 0.98 mg/L at MW-7. ORP values ranged from -16 millivolts (mV) at MW-7, to -125 mV at MW-6. Soluble ferrous iron concentrations were zero at all of the wells.

Nitrates were detected in the sample from well MW-6 at a concentration of 200 μ g/L (the method reporting limit). Nitrates were not detected in groundwater samples from the other site monitoring wells. Sulfates were detected in groundwater samples at concentrations ranging from 580 μ g/L in the groundwater sample from MW-3 to 27,600 μ g/L in the groundwater sample from MW-2. Methane concentrations ranged from 53.1 μ g/L in the groundwater sample from MW-1, to 5,730 μ g/L in the groundwater sample from MW-3. Total alkalinity ranged from 230 mg/L in the groundwater sample from well MW-8, to 470 mg/L in the groundwater sample from well MW-3.

7.3.2. December 2013 Monitoring Event

7.3.2.1. CONTAMINANT ANALYSES (DECEMBER 3 AND 4, 2013)

Petroleum hydrocarbons were detected in two samples (MW-3 and B-1) at concentrations greater than cleanup criteria; both are located in the downgradient (northeast) portion of the site within Parcel 650. DRPH and ORPH were detected at concentrations (1.450 µg/L and 875 µg/L. respectively) in the groundwater sample from MW-3. DRPH and ORPH also were detected at concentrations (1,910 µg/L and 1,370 µg/L, respectively) in the groundwater sample from well GRPH was not detected in the samples from wells B-1 and MW-3. B-1. Following the October 2013 sampling event, GeoEngineers field staff made multiple attempts to redevelop well B-1 by surging and bailing. While the turbidity of the groundwater sample from B-1 was significantly reduced compared to the October 2013 sample, the turbidity of the groundwater sample from B-1 was higher than target low-flow sampling procedures, and therefore might not be representative of aquifer conditions. GRPH, DRPH and ORPH were not detected in the groundwater samples from the other site wells. Petroleum hydrocarbons were not analyzed in the sample collected from well OW-1 on the deeper samples collected from wells MW-4 and MW-7. Silica gel cleanup was not used on groundwater samples for NWTPH-Dx analyses for the December groundwater monitoring event.

Total arsenic was detected at concentrations greater than the MTCA Method A cleanup level in samples from wells MW-2 (6.1 μ g/L), MW-3 (7.2 μ g/L), MW-7 (17 μ g/L) and MW-8 (12 μ g/L). Dissolved arsenic was detected in the sample collected from well MW-7 (7.2 μ g/L) at a concentration greater than the cleanup level. Total and dissolved arsenic were detected in the other groundwater samples collected from wells MW-1 through MW-8 at concentrations less than the MTCA Method A cleanup level. (Note that MTCA Method A cleanup levels are based on total arsenic concentrations.) Arsenic was not detected in the sample collected from well OW-1. Other RCRA 8 metals were either not detected, or detected at concentrations less than applicable MTCA Method A cleanup levels. The groundwater sample from well B-1 was not analyzed for metals.

Three groundwater samples were collected from deeper portions of the shallow aquifer and analyzed for arsenic, as a basis for evaluating the variation of arsenic concentration in groundwater with depth. A groundwater sample was collected from well MW-2 at an approximate depth of about 16 feet below site grade. The total arsenic concentration of the deeper groundwater sample from well MW-2 was 6.1 μ g/L. A groundwater sample was collected from well MW-7 at a depth of about 11 feet below site grade. The total arsenic concentration of the deeper groundwater sample from well MW-7 was 8.7 μ g/L. As mentioned above, arsenic was not detected in the sample from observation well OW-1 which is screened from a depth of about 10½ feet to about 20 feet below site grade.

Additional groundwater samples also were collected from wells MW-2 and MW-7 and submitted to SVL Analytical Laboratory in Kellogg, Idaho for arsenic speciation analysis. Speciation analyses on the groundwater sample indicate that arsenic (III) is the dominant species. Arsenic (V) was not detected in the groundwater samples.

Benzene was detected in the groundwater sample from MW-3 at a concentration of 0.27 μ g/L, less than the MTCA Method A cleanup level of 5 μ g/L. However, the presence of benzene means that the MTCA Method A cleanup level for GRPH is 800 μ g/L. Naphthalene was detected in the

groundwater sample from well B-1 at a concentration of 6.23 μ g/L, less than the MTCA Method A cleanup level. Other VOCs and SVOCs were not detected. The groundwater sample from well B-1 was not analyzed for SVOCs.

7.3.2.2. WATER QUALITY PARAMETERS - MEASUREMENTS AND ANALYTES (DECEMBER 3 AND 4, 2013)

A headspace reading of 115 ppm was measured at well MW-6, and a headspace reading of 17.6 ppm was measured at well B-1. Headspace readings were zero at the other site monitoring wells. Temperatures increased about 3.2 °C between upgradient well MW-8 and downgradient well MW-3. pH levels ranged from 5.88 at well B-1, to 6.94 at well MW-2. DO concentrations ranged from 0.0 mg/L at well MW-7 to 0.07 mg/L at well B-1. ORP ranged from 5 mV at OW-1 to -110 mV at MW-8. Soluble ferrous iron was measured in the field at concentrations ranging from 0.0 mg/L at OW-1 to 1.7 mg/L at MW-8.

Nitrates were detected in the groundwater samples from wells MW-1, MW-2, MW-3 and MW-6 at concentrations in the range of 200 μ g/L to 310 μ g/L. Sulfates were detected in groundwater samples at concentrations ranging from 1,360 μ g/L in the groundwater sample from MW-3 to 19,500 μ g/L in the groundwater sample from MW-2. Methane concentrations ranged from 78.8 μ g/L in the groundwater sample from MW-1 to 5,740 μ g/L in the groundwater sample from MW-3. Total alkalinity ranged from 250 mg/L in the groundwater sample from MW-3. Total alkalinity ranged from MW-3. Total iron concentrations ranged from 800 μ g/L (MW-1) to 69,000 μ g/L (MW-3). Dissolved iron concentrations were detected in the samples from wells MW-3 (38,000 μ g/L) and MW-8 (3,700 μ g/L). Dissolved iron was not detected in groundwater samples from wells. Total manganese concentrations ranged from 340 μ g/L (MW-2) to 2,800 μ g/L (MW-3). Phosphorus concentrations ranged from non-detect (MW-1 and MW-6) to 2,590 μ g/L (MW-3). Copper was not detected in any of the groundwater samples.

7.3.2.3. CONTAMINANT ANALYSES AND WATER QUALITY PARAMETERS (DECEMBER 20, 2013)

The sample collected from MW-9 contained detected total arsenic and barium at concentrations less than cleanup levels. Petroleum hydrocarbons, BTEX compounds and the remaining RCRA 8 metals were not detected. Water quality measurements were within the range of readings in other wells.

7.4. Surface Water

Three surface water samples (Upstream, Midstream and Downstream) were collected from Brender Creek on November 13, 2013. Total and dissolved arsenic, cadmium, chromium, copper, lead, mercury, selenium and silver were not detected in the three samples; dissolved iron also was not detected. Total iron was detected in the Midstream and Upstream samples at concentrations of 75.9 μ g/L and 107 μ g/L, respectively. Total and dissolved barium was detected in the three samples. Total alkalinity ranged from 204 milligrams per liter (mg/L) in the Upstream sample, to 253 mg/L in the Midstream and Downstream samples; pH ranged from 7.39 to 7.54, and specific conductivity ranged from 429 microsiemens per centimeter (μ S/cm) to 551 μ S/cm.

8.0 MTCA METHOD B CALCULATIONS

8.1. General

A standard Method B soil cleanup level for TPH was calculated in accordance with Washington Administrative Code (WAC) 173-340-740. Method B cleanup levels must meet the following criteria:

- Applicable State and Federal Laws. Method B cleanup levels must comply with cleanup levels established under applicable state and federal laws. MTCA regulations govern cleanup levels for TPH in the state of Washington.
- Environmental Protection. Method B cleanup levels must not result in significant adverse effects on the protection of terrestrial ecological receptors, established using the procedures specified in WAC 173-340-7490 through 173-340-4794, unless it is demonstrated through those sections that the site does not pose a substantial threat of significant adverse effects to terrestrial ecological receptors.
- Human Health Protection. Cleanup levels must be protective of human health through:
 - Groundwater protection. Cleanup levels must not result in groundwater contamination at concentrations which exceed applicable groundwater cleanup levels, and;
 - Potential direct contact (ingestion and dermal absorption) with contaminated soil.

8.2. Environmental Protection Evaluation (Terrestrial Ecological Evaluation)

The site does not meet the criteria for exclusion of a terrestrial ecology evaluation as outlined in WAC 173-7491(1). Additionally, the site is located adjacent to a wetland. Therefore, a site-specific terrestrial ecological evaluation is required for this site.

8.2.1. Problem Formulation

8.2.1.1. CONTAMINANTS OF ECOLOGICAL CONCERN

Mercury has been detected at concentrations greater than 5.5 mg/kg and petroleum hydrocarbons have been detected at concentrations greater than 6,000 mg/kg in soil samples at depths less than 6 feet. Therefore, based on review of Table 794-3 in the MTCA regulations, contaminants are present at the site at concentrations which could pose a potential threat to wildlife.

8.2.1.2. TERRESTRIAL ECOLOGICAL RECEPTORS OF CONCERN

Because the site historically has been used for commercial/industrial purposes, and future plans include using the site for commercial purposes, only potential exposure pathways to wildlife were considered. Potential ecological receptors could include ground-feeding birds, ground-feeding small mammal predators and herbivorous small mammals. However, if future site use changes, then the terrestrial ecological evaluation should be reassessed

8.2.1.3. EXPOSURE PATHWAYS

There are currently no barriers in place within Phase 2 that would prevent wildlife from coming in contact with contaminated soil. Mercury and TPH have been detected in soil samples collected at depths shallower than 6 feet, at concentrations greater than those listed in Table 794-3 of the MTCA regulations for industrial or commercial sites. Therefore, a potential complete pathway exists for wildlife at this site.

8.2.2. Evaluation Method

Current plans for the site include excavating approximately 117,000 cubic yards of soil and wood waste from the site (including an estimated approximately 1,600 cubic yards of identified contaminated soil), thereby removing the areas of identified contamination, along with a significant volume of soil and wood waste that does not contain COPCs at concentrations greater than applicable cleanup levels. Therefore, table values presented in Table 749-3 in the MTCA regulations was selected as an appropriate evaluation method to establish cleanup levels for site COPCs instead of revising toxicity reference values for indicator species, conducting bioassays, field studies or other possible evaluation methods listed in the MTCA regulations.

8.2.3. Ecologically Protective Soil Concentrations

Soil concentrations of site COPCs which are protective of ecological receptors as presented in Table 749-3 of MTCA are summarized in the table below.

CLEANUP LEVELS PROTECTIVE OF TERRESTRIAL ECOLOGICAL RECEPTORS (EXCERPTED FROM MTCA TABLE 749-3)

Contaminant	Soil Concentration (mg/kg)			
	Plants	Soil Biota	Wildlife	
Mercury (inorganic)	0.3	0.1	5.5	
Gasoline-Range Organics		100	5,000 ¹	
Diesel-Range Organics		200	6,000 ¹	

Notes: ¹ Concentration cannot exceed residual concentration.

Provided the site will be used for commercial or industrial purposes, based on review of Table 794-3, a mercury concentration less than 5.5 mg/kg, and GRPH and DRPH concentrations less than 5,000 mg/kg and 6,000 mg/kg, respectively, should be protective of wildlife. However, if future land use will be other than industrial, then one of the following options should be used to assess cleanup levels for petroleum hydrocarbons for protection of other potential terrestrial ecological receptors: (1) the MTCA Method A cleanup level for GRPH(100 mg/kg for GRPH without benzene and 30 mg/kg for GRPH with benzene), and a cleanup level of 200 mg/kg for DRPH may be used for this site; (2) alternative evaluation methods, such as soil bioassays or site-specific field studies may be completed to further assess the potential impacts to ecological receptors; or (3) institutional controls (with applied restrictive covenants) may be used (such as capping) to ensure that soil which remains at the site that contains contaminants at concentrations greater than those listed in the table above do not pose a significant threat to potential terrestrial ecological receptors.

8.3. Human Health Protection Evaluation

8.3.1. Groundwater Protection

8.3.1.1. LEACHING PATHWAY

The MTCATPH11.1 worksheet, available from Ecology, was used to calculate site-specific MTCA Method B cleanup levels for protection of groundwater. MTCATPH11.1 uses three- and four-phase partitioning models in accordance with MTCA Section 173-340-747. Soil samples SDP75A-TP5(3) and SDP75A-TP2a(2) were used to calculate site-specific Method B cleanup levels for TPH. Results

of the analyses indicate that the soil-to-groundwater pathway is not a critical factor (see appendix D). Thus, a soil concentration protective for the direct-contact pathway also is protective for the leaching pathway.

8.3.1.2. RESIDUAL SATURATION

An empirical assessment was conducted to evaluate if the soil concentration calculated from MTCATPH11.1 also met criteria for residual saturation. Historical soil and groundwater data was reviewed, and is summarized below:

- Nonaqueous phase liquid (NAPL) has not been observed or measured in any of the site monitoring wells. Specifically:
 - Wells MW-4, MW-5 and MW-6 are located near the identified PCS within Parcel 200 of Phase 2. Well MW-6 is located at the upgradient end of the identified PCS area. Well MW-5 is located approximately 60 feet cross/downgradient of the PCS area, and well MW-4 is located approximately 150 feet downgradient of the PCS area. TPH, VOCs or SVOCs have not been detected in groundwater samples from these three wells. TPH concentrations in soil samples collected within this area have been measured at a concentration of about 3,600 mg/kg.
 - Well MW-7 is located about 50 feet downgradient from the PCS identified area within Parcels 150 and 250 in Phase 2. TPH, VOCs and SVOCs have not been identified in groundwater samples from this well. TPH concentrations in soil samples collected within this area have been measured between about 5,200 mg/kg and about 10,700 mg/kg.
 - Petroleum hydrocarbons have only been detected in groundwater samples from wells B-1 and MW-3. These wells are located within, and downgradient of, petroleumcontaminated soil (PCS) with measured TPH concentrations in soil in excess of 12,000 mg/kg.
- Releases of petroleum hydrocarbons likely have not occurred at the site for many years.

Therefore, it can be demonstrated through empirical evidence that at soil concentrations calculated using Method B procedures (presented below) for the direct contact pathway, NAPL has not accumulated on or in groundwater, and is unlikely to accumulate in the future. Thus, the Method B cleanup level should be below residual saturation for the site.

8.3.2. Soil Direct Contact

The MTCATPH11.1 worksheet was used to calculate site-specific MTCA Method B soil cleanup levels based on direct contact. Default input parameters for soil properties were used in the analyses. Soil samples SDP75A-TP5(3) and SDP75A-TPA(2) were used to calculate site-specific Method B cleanup levels for TPH. For non-detect results from EPA Method 8260, EPA Method 8270, NWTPH-EPH and NWTPH-VPH analyses, a value of one half of the method reporting limit was used as the input concentration; with the exception of n-hexane, MTBE, EDB and EDC. A value of zero was used for these four analytes because they have not been detected in soil or groundwater samples collected from the site.

EPH and VPH fractionation analyses also were completed for samples NDP8-TP5(6.5), S-DP-75A(2-3) and S-DP-101(3.5). However, these samples were not used to calculate site-specific Method B cleanup levels for the following reasons:

- VOC and SVOC analyses were not completed on samples S-DP-75A(2-3) and S-DP-101(3-3.5);
- EPH and VPH concentrations were so low for these samples that they were not representative of site petroleum hydrocarbons.

Results of Method B calculations for protection of human health from direct contact are presented in the following table. Output files from MTCATPH11.1 are presented in Appendix D.

Sample	MTCA Method B Cleanup Level for TPH (direct contact pathway)
SDP75A-TP5(3)	5,917 mg/kg
SDP75A-TP2A(2)	3,408 mg/kg

RESULTS OF METHOD B CALCUALATIONS FOR SOIL DIRECT CONTACT PATHWAY

8.4. Recommended TPH Cleanup Level

Based on the results of our analyses, we recommend a MTCA Method B TPH soil cleanup level of 3,400 mg/kg be used for this site. In our opinion, this value represents an appropriately conservative cleanup level which is protective of human health and the environment. However, as noted in "Section 7.2.4," alternative cleanup levels which are protective of potential terrestrial ecological receptors might be required if future site use will be something other than commercial or industrial.

9.0 SUMMARY

Soil, groundwater, and surface water assessment activities for this data gap assessment were conducted from September 2013 through December 2013. Field activities consisted of: (1) soil sampling from borings using direct-push, hollow-stem auger, and air rotary drill rigs and from test pits using an excavator/backhoe; (2) advancement of 10 borings and installation of nine new monitoring wells with soil and groundwater sampling; and (3) surface water sampling. The following is a summary of field and laboratory results completed for the data gap assessment:

- TPH was detected at concentrations greater than the Method B cleanup level of 3,400 mg/kg in soil samples from seven explorations at the site. Two explorations were located within Phase 1 (N-DP-8 and NDP8-TP3), located within Parcel 550, east of the "PCS Area 2 Excavation." Five explorations were located in three distinct areas within Phase 2 (S-DP-7, S-DP-75A, SDP75A-TP-2, SDP75A-TP5 and S-DP-101).
- Mercury was detected at concentrations greater than the MTCA Method A cleanup level in soil samples from five explorations at the site. One exploration was located within Phase 1 (N-DP-27), within the previously identified "Area 1." Four explorations were located within Parcel 070 of Phase 2 (S-DP-87, S-DP-88, S-DP-101 and TP-B4).

- CPAHs were detected at a concentration greater than the MTCA Method A cleanup level in a soil sample from one exploration (N-DP-27) location within the Phase 1. This exploration is located within the previously identified "Area 1."
- Petroleum hydrocarbons were not detected in soil samples analyzed from direct-push borings N-DP-16, N-DP-23 and N-DP-25, located near previous confirmation soil samples from the 2013 remedial excavation activities within the "Storm Line PCS Area Excavation" that contained ORPH at concentrations greater than MTCA Method A or Method B cleanup levels for TPH.
- Petroleum hydrocarbons were detected at concentrations less than MTCA Method A or B cleanup levels for petroleum hydrocarbons in soil samples analyzed from direct-push borings N-DP-9 and N-DP-19, and were not detected in the soil samples analyzed from direct-push boring N-DP-20 and monitoring well MW-4. These borings were located near the southern portions of the "Phase 2 PCS Excavation Area."
- Petroleum hydrocarbons were detected at concentrations below MTCA Method A or Method B cleanup levels in the soil sample analyzed from direct-push boring S-DP-37, and petroleum hydrocarbons were not detected in the soil sample analyzed from direct-push boring S-DP-52. These borings were located within the previously identified "Pilot Wood Waste Excavation"/ "Area 5."
- Some analytes, most with non-detect results, had laboratory-reported method detection limits (MDLs) at concentrations greater than their MTCA Method A cleanup levels. Specifically, EDB, benzene, methylene chloride, PCE, TCE and cPAH for some soil samples were listed with MDLs that exceeded their MTCA Method A cleanup levels.
- During the October 2013 groundwater monitoring event, total arsenic was detected in groundwater samples at concentrations greater than the MTCA Method A cleanup level at six monitoring wells (MW-1, MW-2, MW-3, MW-5, MW-7 and MW-8). DRPH and ORPH also were detected at concentrations greater than the MTCA Method A cleanup levels in well B-1.
- During the December 2013 groundwater monitoring event, groundwater with total arsenic concentrations greater than the MTCA Method A cleanup level was detected in four monitoring wells (MW-2, MW-3, MW-7 and MW-8). DRPH and ORPH also were detected at concentrations greater than MTCA Method A cleanup levels in wells MW-3 and B-1.
- COPCs were not detected at concentrations greater than applicable MTCA Method A cleanup levels in the groundwater sample collected on December 20, 2013 the from supplemental site monitoring well B-9.
- Groundwater flow in the unconfined aquifer underlying the site was estimated to be towards the northeast on October 28, 2013 and December 3, 2013 (generally flowing from upgradient portions of the site near Brender Creek, towards the Wenatchee River). Groundwater elevations during the October 28, 2013 groundwater monitoring event ranged from Elevation 781.95 in monitoring well MW-1 to Elevation 791.08 in monitoring well MW-8. Groundwater elevations during the December 3, 2013 groundwater monitoring event ranged from Elevation 782.37 in monitoring well MW-1 to Elevation 791.08 in monitoring well MW-8.
- Arsenic concentrations in groundwater generally decreased between the October and December 2013 groundwater monitoring events. The reduction in arsenic concentrations

could be due to stabilization of aquifer conditions surrounding the newly installed monitoring wells.

- Metals were not detected or were detected at concentrations less than cleanup criteria in the three surface water samples.
- Following the wetlands field delineation, GeoEngineers reviewed the critical areas ordinances and found that the wetland buffer for the Brender Creek corridor under existing conditions would be 120 feet wide opposed to the 85-foot buffer initially set in 2008. The increased wildlife activity in the corridor (beaver particularly) led to the increased buffer width.

10.0 CONCLUSIONS

10.1. Soil

A site-specific MTCA Method B cleanup level of 3,400 mg/kg for TPH was calculated for the site. Results of our explorations and analytical testing indicate that soil underlying portions of Phase 1 and Phase 2 are contaminated with COPCs, specifically TPH, mercury and cPAHs. Additionally, because MDLs for some analytes (benzene, EDB, methylene chloride, MTBE and TCE, benzene and CPAHs) exceeded MTCA Method A cleanup levels, these compounds should be included in the testing suite for confirmation samples during phase 2 removal actions. The exploration locations and sample depths where contaminants were detected at concentrations exceeding applicable MTCA cleanup levels are shown on Figures 2 through 5.

Within Phase 1, the locations of identified soil contamination based on the results of the data gap assessment include:

- An area within Parcel 010, located near direct-push boring N-DP-27, located along and south of Sunset Highway within the previously identified "Area 1." Based on analytical testing results, this area is contaminated with mercury and cPAHs at concentrations greater than applicable MTCA Method A cleanup levels for unrestricted land use.
- An area in the southeast portion Parcel 550, located east of the "PCS Area 2 Excavation." This area is contaminated with petroleum hydrocarbons, predominantly DRPH and ORPH, at concentrations greater than the site-specific MTCA Method B cleanup level for TPH.

Explorations generally were conducted, and soil samples were collected in areas where previous confirmation samples (collected during Phase 1 removal excavation activities in 2013) contained petroleum hydrocarbons at concentrations greater than MTCA Method A cleanup levels. Results of these samples and laboratory testing did not indicate the presence of PCS at concentrations greater than applicable cleanup levels. Based on review of analytical results provided by MFA, petroleum hydrocarbon concentrations in two previous confirmation soil samples (SL-F2 and A2-F21, collected from the bottom of the "Storm Line PCS Area" remedial excavation and "PCS Area 2" excavation, respectively) were greater than MTCA Method A cleanup levels, but less than the site-specific MTCA Method B cleanup level for TPH. However, the remaining previous confirmation soil samples that contained petroleum hydrocarbons at concentrations greater than the site-specific MTCA Method B cleanup level for TPH. Therefore, there is still the potential that soil remains at the previous confirmation sample locations that is contaminated with
petroleum hydrocarbons at concentrations greater than the site-specific MTCA Method B cleanup level. The Phase 1 confirmation soil samples with TPH concentrations greater than the site-specific MTCA Method B cleanup level are summarized below:

- Storm Line PCS Area Excavation
 - o Floor samples: SL-F3(13,000 mg/kg), SL-F4(4,700 mg/kg), SL-F6(4,300 mg/kg)
 - o Sidewall samples: SL-W4(20,300 mg/kg)
- PCS Area 2 Excavation
 - Floor samples: A2-F16(8,500 mg/kg), A2-F29(6,400 mg/kg), A2-F41(29,500 mg/kg), A2-F52(22,500 mg.kg), A2-F54(4,840 mg/kg),
 - o Sidewall samples: A2-W37(4,710 mg/kg), A2-W38(4,770 mg/kg), A2-W39(6,110 mg/kg).

Based on information provided by MFA, floor samples were collected for informational purposes and did not influence extents of the excavations. Because floor soil samples were collected at depths below the static groundwater level, TPH concentrations measured in these samples could be biased high because of the possible presence of dissolved-phase TPH in pore water.

Recent exploration N-DP-23 was advanced near sidewall sample SL-W4 near the Storm Line PCS Area excavation. Results of analytical testing of a soil sample and field screening results did not indicate the presence of TPH at concentrations greater than the MTCA Method B cleanup level. Therefore, remaining contamination near SL-W4 could be of limited extent.

The area surrounding sidewall sample A2-W37 is planned for excavation as part of Phase 2 activities.

Based on information provided by MFA, sidewall sample A2-W-38 was collected at the edge of Mill Road, and excavation could not extend further without impacting the road.

Based on information provided by MFA, excavation was extended beyond the location of sidewall sample A2-W39. Sidewall sample A2-W24 and A2-W46 were collected near the location of A2-W39, and results indicated that petroleum hydrocarbons were below cleanup levels. However, the sidewall location at A2-W39 was not resampled after further excavation. Direct-push boring N-DP-21A was advanced within an unexcavated area near A2-W39. Field screening of soil samples collected from the boring did not indicate the presence of PCS.

Within Phase 2, the locations of identified soil contamination based on the results of the data gap assessment include:

- Four areas surrounding explorations within Parcel 070 where analytical results indicated soil was contaminated with mercury at concentrations greater than MTCA Method A cleanup levels for unrestricted land use. The soil sample from S-DP-101 also contained petroleum hydrocarbons (predominantly DRPH and ORPH) at concentration greater than the site-specific MTCA Method B cleanup level for TPH.
- An area straddling Parcel 250 and Parcel 150, where analytical results indicated soil was contaminated with petroleum hydrocarbons (predominantly DRPH and ORPH) at concentrations greater than the site-specific MTCA Method B cleanup level for TPH.

The previously identified "Area 4," located within Parcel 200. This area is contaminated with petroleum hydrocarbons, predominantly ORPH, at concentrations greater than the site-specific MTCA Method B cleanup level for TPH.

Based on the results of the field explorations and analytical laboratory testing, we estimated the approximate extents and volume of contaminated soil within Phase 1 and Phase 2. The estimated areal extents, depths and volumes of contaminated soil also are presented in Figures 3 through 5. The approximate areal limits and depths of identified soil contamination were estimated based on the results of the explorations, field screening (where applicable) and laboratory analytical testing results. The contaminated soil depths used to estimate the volumes shown on Figures 3 through 5 generally extend approximately 1 to 2 feet below the sample depth containing tested COPCs at concentrations greater than applicable cleanup levels, or to the bottom of the observed soil unit containing contaminated soil at concentrations greater then applicable cleanup levels, with a maximum depth of about 2 feet below groundwater. The following table presents a summary of the identified contaminated soil areas.

Area	Parcel	Identified Contaminants	Estimated Area (ft²)	Estimated Depth (ft)	Estimated Volume (yd ³)	Reference Explorations
Phase 1 ¹						
	550	ТРН	1,670	8	500	N-DP-8, NDP8- TP3
	010	Mercury and cPAHs	<100	8	20	N-DP-27
Phase 1 Subtotal					520	
Phase 2						
	070	Mercury	315	6	70	S-DP-101
	070	Mercury	315	4	50	TP-B4
	070	Mercury	315	6	70	D-DP-88
	070	Mercury	315	6	70	S-DP-87
	250/150	TPH	1,000	5	180	S-DP-75A, SDP75A-TP5, SDP75A-TP2
	200	ТРН	3,500	5	650	S-DP-7, GP-6, WL-1
Phase 2 Subtotal					1,090	
Total Estimated Volume					1,610	

CONTAMINATED SOIL AREAS SUMMARY TABLE

Notes: ¹ Volume estimates for Phase 1 do not include PCS remaining within the Phase 1 remedial excavation areas.

The estimated extent and volume of contaminated soil is based on widely spaced explorations and relatively limited analytical laboratory testing. The actual locations, extent and volume of contaminated soil could vary from those presented herein. Contractors conducting site excavation activities should be prepared to encounter soil containing COPCs at concentrations greater than applicable cleanup levels within other areas of the site.

Additionally, PCS remains within the Phase 1 remedial excavation areas. Based on information provided by MFA, the location of the confirmation samples containing PCS at concentrations greater than the calculated site-specific Method B cleanup level are generally located near the southern edge of the "PCS Area 2 Excavation" and the southern portions of the "Storm Line PCS Area Excavation." MFA also indicated that confirmation samples collected from the bottom of the excavations were located about 1 foot below groundwater at the time of excavation.

10.2. Groundwater

Groundwater containing arsenic at concentrations greater than the MTCA Method A cleanup level was detected in samples from several site monitoring wells. Arsenic can exist at several valence states. Arsenic most commonly exists as either arsenic (III) (+3) or arsenic (V) (+5). Under oxidizing conditions, arsenic (V) is the dominant species, usually present as arsenate (HAsO₄-² or H₂AsO₄-). Under reducing conditions at a pH less than 9.2, arsenic (III) is the dominant species, usually present as arsenious acid (H₃AsO₃), and its conjugate base arsenite (HASO₃-). Arsenic (III) is more soluble and mobile than arsenic (V). Therefore, arsenic is somewhat unique among metals in that it can be relatively mobile under reducing conditions. Results of field and laboratory groundwater quality testing indicate that reducing conditions are present at the site. Reducing conditions are typically characterized by the following groundwater conditions (relative to typical background or oxidative conditions).

- Low D0 concentrations. Groundwater measurements indicate that D0 concentrations are less than 1 mg/L, generally near zero.
- Negative ORP. ORP measurements (field probe measurements) were negative from all site monitoring wells.
- Decreased nitrate concentrations. Nitrate concentrations generally were lower (non-detect) within Phase 2 monitoring wells.
- Decreased concentrations of sulfates. Sulfate concentrations generally were lowest in groundwater samples from MW-3 and MW-8.
- Increased concentrations of methane. Methane was detected in groundwater samples from wells MW-1 through MW-8. Methane concentrations were highest in groundwater samples from wells MW-3 and MW-8.

Following removal of organic matter (predominantly wood waste, and to a lesser extent TPH) from the site, groundwater conditions should revert to oxidative conditions, which in turn should result in precipitation of arsenic out of groundwater, and a resulting reduction in the concentrations of arsenic in groundwater. Partial removal of wood waste material should reduce the concentration of arsenic in groundwater. However, the reduction of arsenic in groundwater with regard to concentrations and areal extent cannot be evaluated at this time.

10.3. Surface Water

Arsenic was not detected in surface water samples collected from Brender Creek. Potential implications regarding metals concentrations in surface water include impacts to the creek if water generated from the site during dewatering activities is discharged to the creek. Based on discussions with Ecology, Ecology's preferred option for disposal of water generated during dewatering activities is to re-infiltrate the water on-site within the Phase 1 area. Considerations that will have to be addressed by the contractor during dewatering and operation of the contractor's dewatering system include: (1) sequencing dewatering and excavation activities ; and (2) sizing an infiltration area to accommodate the volume and flow rate of water that will be removed from the Phase 2 area during dewatering.

10.4. Wetlands Delineation

The proposed site clean-up should not have direct impacts to wetlands of the stream habitat. Removal of wood waste from within the buffer might result in some direct impact to the wetland buffer. There is a push-up berm surrounding the wetland perimeter that is more pronounced in the eastern and southern portions of the site and less prominent in the western portion of the site. Where the berm is less prominent, vegetation within the buffer is more complex compared to the lack of vegetation across much of the wetland buffer. Completing excavation and backfilling activities within the buffer should be feasible provided a simple buffer mitigation plan is developed and followed during such activities. After excavation area and disturbed areas should be sloped away from the wetland and stabilized to control erosion. A mitigation plan is being prepared as a section of the wetland report.

11.0 LIMITATIONS

We have prepared this report for the exclusive use of the Washington State Department of Ecology and their authorized agents for the Former Cashmere Mill Site located in Cashmere, Washington.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to the Appendix G titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

12.0 REFERENCES

- GeoEngineers, Inc. "Preliminary Geotechnical Engineering Services, Redevelopment of Cashmere Mill Site, Mill Road and Sunset Highway, Cashmere, Washington." GEI File No. 18593-001-00, 2010.
- GeoEngineers, Inc., "Dewatering Assessment, Cashmere Mill Site Remedial Excavation (Phase 2), Cashmere, Washington." GEI File No. 18593-001-01, 2013.
- Maul Foster Alongi, Inc., Report to Port of Chelan County, "Site Characterization Report, Former Cashmere Mill Site, Cashmere, Washington," March 20, 2013.
- Maul Foster Alongi, Inc., "Phase 1 Interim Action Report, Former Cashmere Mill Site," May 6, 2014.
- Whitlock, I.A, and Kelly, T.M, "Relationship Between Subsurface Landflll Gas and Arsenic Mobilization into Groundwater," Groundwater Monitoring and Remediation Vol 30, No. 2, Spring 2010, pg 86-96.

Table 1

Exploration and Sample Analyses Summary

Former Cashmere Mill Site Cashmere, Washington

Exploration Number	Parcel Number	Date Completed	Exploration Total Depth (feet bgs)	Field Screen (Sheen) ¹	Field Screen (PID in ppm) ²	Estimated depth to bottom of existing wood waste (ft)	Groundwater depth (in ft. encountered during drilling)
N-DP-1	650	9/9/2013	15	MS (5)	4.4	7.5	10
N-DP-2	650	9/9/2013	15	SS	14.5 (2.5)	12	9
N-DP-3	650	9/9/2013	20	SS	7	15	9.5
N-DP-3A	650	9/14/2013	11	SS	<1	>11	6
N-DP-3B	650	9/14/2013	15	SS	1.8	11	11.5
N-DP-4 (DELETED)							
N-DP-5	650	9/9/2013	9.5	NS	7.1	6	None
N-DP-5A	650	9/9/2013	5	NS	6.4	>5	None
N-DP-5B	650	9/10/2013	14.5	NS	9.8	10.5	8
N-DP-6	010	9/9/2013	15	NS	7.8	10	8
N-DP-7	005	9/10/2013	14	NS	22.2 (<1)	12	9
N-DP-8	550	9/10/2013	10	MS (5.5)	5.5	6.5	None
N-DP-8A	550	9/10/2013	15	SS	171 (9)	10	11
N-DP-9	550	9/10/2013	15	MS (5)	2.4	10	9.5
N-DP-10	005	9/9/2013	15	NS	8.4	14?	9
N-DP-11	500	9/14/2013	15	SS	<1	11	11 to 12
N-DP-12 (DELETED)							
N-DP-13	500	9/14/2013	15	SS	<1	5	12
N-DP-14 (DELETED)							
N-DP-15	010	9/9/2013	15	NS	8.9	5	9.5
N-DP-16	005	9/10/2013	14.5	NS	10.2 (12.5)	5.5	9
N-DP-17 (DELETED)							
N-DP-18 (DELETED)							
N-DP-19	550	9/10/2013	15	NS	9.6	6	5
N-DP-20 (DELETED)							
N-DP-21	550	9/10/2013	10.5	NS	9.2	NE	5
N-DP-21A	550	9/10/2013	10.5	NS	9.2	NE	5
N-DP-22 (DELETED)							
N-DP-23	005	9/10/2013	15	NS	2.5	NE	6.50
N-DP-24	500	9/14/2013	10	SS	<1	NE	None
N-DP-25	010	9/11/2013	15	NS	4	NE	7.5
N-DP-26 (DELETED)							
N-DP-27	010	9/10/2013	15	NS	4.2	NE	9.5
N-DP-28 (DELETED)							
N-DP-29 (DELETED)							
N-DP-30	010	9/10/2013	13	NS	3.6	NE	9
N-DP-31	005	9/10/2013	15	NS	4.2	NE	9.5
N-DP-32	550	9/10/2013	15	NS	2.2	NE	6
N-DP-33	550	9/11/2013	10	NS	2.4	NE	6
N-DP-33A		9/11/2013	10	NS	3.8	NE	7.5
N-DP-34 (DELETED)							
N-DP-35	005	9/11/2013	13	NS	4.9	NE	8.5
N-DP-35A		9/11/2013	10.5	NS	2.3	NE	7

			Exploration			Estimated depth to	Groundwater depth
Exploration	Parcel	Date	Total Depth	Field Screen	Field Screen	bottom of existing	(in ft. encountered
Number	Number	Completed	(feet bgs)	(Sheen) ¹	(PID in ppm) ²	wood waste (ft)	during drilling)
N-DP-36	010	9/11/2013	15	NS	2.8	NE	8
N-DP-37 (DELETED)							
N-DP-38	500	9/14/2013	10	NS	<1	2	7
N-DP-39	500	9/14/2013	10	MS (3)	1.3	NE	None
N-DP-40 (DELETED)							
N-DP-41 (DELETED)							
N-DP-42	010	9/11/2013	10	NS	3.6	NE	NE
N-DP-42A	010	9/11/2013	12	NS	3.1	NE	11
N-DP-43	010	9/11/2013	10	NS	87 (1)	NE	None
N-DP-43A		9/11/2013	10	NS	2.5	NE	None
N-DP-43B		9/11/2013	10	NS	1.3	NE	None
N-DP-44	010	9/11/2013	10	NS	5.4	NE	None
N-DP-45	005	9/11/2013	10	NS	<1	NE	None
N-DP-46 (DELETED)							
N-DP-47	550	9/11/2013	4	NS	4.2	NE	None
N-DP-48	010	9/11/2013	8	NS	5.8	NE	None
N-DP-49	010	9/11/2013	5	NS	4.5	NE	None
N-DP-50	010	9/11/2013	14	NS	4.2	NE	10.5
N-DP-51	500	9/14/2013	10	NS	<1	NE	6.5
N-DP-52	010	9/11/2013	14	NS	3.1	NE	7.5
N-DP-53	010	9/11/2013	4	NS	5.1	NE	None
N-DP-54	010	9/11/2013	5	NS	4.6	NE	
MW-1	500	9/24/2013	21.5	NS	<1	NE	7
MW-2	010/005	10/10/2013	20.5	NS	<1	NE	6
MW-3	650	10/9/2013	21	NS	<1	13.5	7
MW-4	550	10/24/2013	21.5	NS	<1	5.5	6
NDP8-TP-1	550	11/12/2013	6.5	MS	150	>6.5	7
NDP8-TP2	550	11/12/2013	6	SS	<1	>6?	None
NDP8-TP3	550	11/12/2013	7	SS	134	>7	6.5
NDP8-TP4	550	11/12/2013	5.5	NS	24.2	>5.5	None
NDP8-TP5	550	11/12/2013	6.5	SS	87.6	3.5	None
S-DP-1	200	9/9/2013	7.5	NS	7.3	2.5	None
S-DP-1A	200	9/12/2013	11	NS	1.5	3	1.5
S-DP-1B	200	9/14/2013	10	SS	1.1	6.5	6.5
S-DP-2	200	9/12/2013	10	SS	19.1 (3)	2	2
S-DP-3 (DELETED)		-,, _010		50	(0)	0	
S-DP-4	200	9/12/2013	11	NS	2.9	NE	1.5
S-DP-4A	200	9/12/2013	10	NS	2.4	1.5	2
S-DP-5	200	9/12/2013	8	NS	<1	1.5	4
S-DP-5A	200	9/12/2013	8	NS	2.6	2	4
S-DP-6 (DELETED)	200	<i>c,, _</i> 010			2.0	-	· ·
S-DP-7	200	9/12/2013	9	MS (1)	<1	2	4
S-DP-8	200	9/12/2013	9	NS (1)	<1	NE	1
S-DP-9	200	9/12/2013 9/12/2013	10	NS	<1	5.5	4.5
S-DP-10	200	9/12/2013 9/12/2013	10	SS	2	6	4.5
		J/ 12/ 2013	10	33	∠	0	5
	200	, ,					
S-DP-10A (DELETED) S-DP-11	200	9/12/2013	8	NS	1.8	4?	6 INCHES

File No. 18593-001-02 Table 1 | May 7, 2014

			Exploration			Estimated depth to	Groundwater depth
Exploration	Parcel	Date	Total Depth	Field Screen	Field Screen	bottom of existing	(in ft. encountered
Number	Number	Completed	(feet bgs)	(Sheen) ¹	(PID in ppm) ²	wood waste (ft)	during drilling)
S-DP-13	200	9/12/2013	12	NS	6.7	2?	1.5
S-DP-14	200	9/12/2013	10	SS	<1	5.5	3.5
S-DP-15	200	9/12/2013	10	NS	2.4	3	4
S-DP-16	200	9/12/2013	10	NS	<1	1	1
S-DP-17 (DELETED)							
S-DP-18		9/12/2013	10	NS	4.9	5	2
S-DP-19 (DELETED)							
S-DP-20	150	9/12/2013	4	NS	<1	>4	None
S-DP-20A		9/12/2013	10	NS	7.6	6.5	None
S-DP-21	200	9/12/2013	15	NS	3.2	5	4
S-DP-22	200	9/13/2013	9	SS	<1	NE	5
S-DP-23	200	9/13/2013	10	NS	<1	1	4.5
S-DP-24	200	9/13/2013	10	NS	<1	2	4.5
S-DP-25	200	9/13/2013	10	NS	<1	6	5
S-DP-26	150	9/12/2013	9	NS	1.7	NE	4
S-DP-27	150	9/12/2013	12.5	NS	4.5	6.5?	5.5
S-DP-28	150	9/12/2013	7	SS	1.8	4.5?	4.5
S-DP-29	150	9/12/2013	10	NS	1.6	2.5?	5
S-DP-30	150	9/12/2013	10	NS	1.5	5	6
S-DP-31 (DELETED)							
S-DP-32	150	9/12/2013	10	NS	1.4	5	4
S-DP-33 (DELETED)							
S-DP-34 (DELETED)							
S-DP-35	150	9/12/2013	9	NS	1	NE	4
S-DP-36 (DELETED)		, ,					
S-DP-37	150	9/13/2013	10	NS	1	2.5	4.5
S-DP-38 (DELETED)		, ,					
S-DP-39	150	9/12/2013	10	SS	1.6	5	4
S-DP-40	150	9/12/2013	10	NS	1.8	5?	4
S-DP-41 (DELETED)		, ,					
S-DP-42	150	9/13/2013	20	NS	2.5	5?	4.5
S-DP-43 (DELETED)							
S-DP-44 (DELETED)							
S-DP-45 (DELETED)							
S-DP-46 (DELETED)							
S-DP-47 (DELETED)							
S-DP-48 (DELETED)							
S-DP-49 (DELETED)							
S-DP-50	150	9/12/2013	10	NS	2.5	5.5?	5
S-DP-51 (DELETED)		. ,					
S-DP-52	150	9/14/2013	10	NS	<1	7.5?	4.5
S-DP-53	150	9/13/2013	10	NS	<1	7	8
S-DP-54	150	9/13/2013	15	NS	<1	>15?	9
S-DP-55	150	9/13/2013	9	NS	6	>9	4.5
S-DP-55A	150	9/14/2013	13	NS	<1	10.5	None
S-DP-56 (DELETED)	100	0, 1, 2010				10.0	Hono
S-DP-57 (DELETED)							
S-DP-58 (DELETED)							
S-DP-58 (DELETED) S-DP-59 (DELETED)							
DELETED)				Page 3 of 5			

File No. 18593-001-02 Table 1 | May 7, 2014

			Exploration			Estimated depth to	Groundwater depth
Exploration	Parcel	Date	Total Depth	Field Screen	Field Screen	bottom of existing	(in ft. encountered
Number	Number	Completed	(feet bgs)	(Sheen) ¹	(PID in ppm) ²	wood waste (ft)	during drilling)
S-DP-60 (DELETED)							
S-DP-61 (DELETED)							
S-DP-62 (DELETED)							
S-DP-63	150	9/13/2013	9	SS	6.8	6?	6.5
S-DP-64 (DELETED)							
S-DP-65	150	9/13/2013	10	NS	4	7.5?	8
S-DP-66 (DELETED)							
S-DP-67 (DELETED)							
S-DP-68	150	9/13/2013	10	NS	1.2	8?	5.5 to 6
S-DP-69 (DELETED)							
S-DP-70	150	9/13/2013	15	NS	2.1	12	12.5
S-DP-71 (DELETED)							
S-DP-72	250	9/13/2013	10	NS	2.2	7	8.5 to 9
S-DP-73	250	9/13/2013	10	NS	<1	>10	None
S-DP-74 (DELETED)							
S-DP-75	250	9/13/2013	6	NS	<1	1	None
S-DP-75A	250	9/14/2013	10	SS	1.1	6	6
S-DP-76	250	9/14/2013	10	SS	<1	6	6
S-DP-77 (DELETED)							
S-DP-78	250	9/13/2013	10	NS	11(1)	5	5.5
S-DP-79 (DELETED)							
S-DP-80	250	9/13/2013	15	NS	4.8	2	9
S-DP-81	250	9/14/2013	10	SS	1.4	9	7
S-DP-82	250	9/13/2013	10	NS	4.7	9	8.5
S-DP-83	250	9/13/2013	15	NS	1	12?	6
S-DP-84	250	9/14/2013	15	NS	2.8	7	9
S-DP-85	250	9/13/2013	10	NS	5.4	8.5	8
S-DP-86	070	9/13/2013	6.5	SS	2	NE	5
S-DP-87	070	9/14/2013	8	NS	<1	6.5?	1.5
S-DP-88	070	9/13/2013	10	SS	<1	7.5	8.5
S-DP-89 (DELETED)							
S-DP-90 (DELETED)							
S-DP-91 (DELETED)							
S-DP-92 (DELETED)							
S-DP-93	070	9/14/2013	10	NS	<1	6	5.5
S-DP-94	070	9/14/2013	10	SS	<1	7.5	6
S-DP-95	070	9/13/2013	10	SS	14 (3)	>10?	None
S-DP-96	070	9/13/2013	10	NS	1.9	>10?	5
S-DP-97	250	9/13/2013	15	NS	20.6 (2)	9	10
S-DP-98	070	9/13/2013	6	MS (4)	<1	5	None
S-DP-99	070	9/14/2013	10	NS	3.8	9	9
S-DP-100	070	9/14/2013	10	SS	<1	>10	8
S-DP-101	070	9/14/2013	10	SS	<1	7.5	
MW-5	200	10/24/2013	20	NS	<1	5	3
MW-6	200	10/8/2013	14	NS	<1	9.5?	3
MW-7	150	10/25/2013	21.5	NS	<1	NE	3
MW-8	070	10/25/2013	21.5	NS	<1	NE	4
AR-1	200	10/25/2013	4	NS	<1	3	3
SDP14-TP1	200	11/12/2013	2	SS	6	>2	None

File No. 18593-001-02 Table 1 | May 7, 2014

Exploration Number	Parcel Number	Date Completed	Exploration Total Depth (feet bgs)	Field Screen (Sheen) ¹	Field Screen (PID in ppm) ²	Estimated depth to bottom of existing wood waste (ft)	Groundwater depth (in ft. encountered during drilling)
SDP14-TP2	200	11/12/2013	2.5	NS	2.5	NE	None
SDP75A-TP1	250	11/12/2013	2.5	MS	17.5	>2.5?	None
SDP75A-TP1a	250	11/12/2013	3	SS	64.2	>3	None
SDP75A-TP1b	250	11/12/2013	2.5	NS	90.8	NE	None
SDP75A-TP2	250	11/12/2013	3	MS	66	>3	None
SDP75A-TP2a	250	11/12/2013	3	MS	170	2.5	None
SDP75A-TP3	250	11/12/2013	2.5	MS	106	1.5	None
SDP75A-TP3a	250	11/12/2013	3	NS	39	NE	None
SDP75A-TP4	250	11/12/2013	2	NS	137.8	NE	None
SDP75A-TP5	250	11/12/2013	3	SS	89.5	>3	None
SDP81-TP1	250	11/12/2013	3	SS	5	>3	None
SDP81-TP2	250	11/12/2013	3	SS	7.7	>3?	None
SDP81-TP3	250	11/12/2013	3	NS	43	>3	None
SDP81-TP4	250	11/12/2013	3	NS	8.9	>3	None
SDP87-TP1	070	12/19/2013	3	SS	4.7	1?	2.5
SDP87-TP2	070	12/19/2013	3.5	SS	22.6	NE	3
SDP87-TP3	070	12/19/2013	3.5	SS	6.6	2?	3
SDP87-TP4	070	12/19/2013	4	SS	10.8	2?	3
SDP88-TP1	070	11/12/2013	5	NS	6.8	>5	5
SDP88-TP2	070	11/12/2013	4	NS	4.2	>4	4
SDP88-TP3	070	11/12/2013	4	NS	4.3	3.5	4
SDP88-TP4	070	11/12/2013	4	NS	13	>4	None
SDP101-TP-1	070	11/12/2013	3.5	NS	7.1	1	None
SDP101-TP2	070	11/12/2013	3.5	SS	3.3	1	3.5
SDP101-TP3	070	11/12/2013	4	NS	3	1.5	3
SDP101-TP4	070	11/12/2013	4	SS	10	3?	3
SDP101-TP5	070	11/12/2013	3	NS	63	1.5?	3
TP-B1	250	12/20/2013	6.5	SS	<1	5?	5.5
TP-B2	070	12/20/2013	5	SS	7.9	3.5?	4
TP-B3	070	12/19/2013	5.5	SS	24.7	4?	4.5
TP-B4	070	12/20/2013	5	SS	<1	4?	4.5
TP-B5	070	12/20/2013	4	SS	<1	2?	4
TP-B6	070	12/20/2013	4.5	SS	<1	1.5?	4
TP-B7	070	12/20/2013	5	SS	<1	3?	5
TP-B8	070	12/20/2013	5	SS	<1	2?	5
TP-B9	070	12/19/2013	4.5	SS	11.5	1.5?	4
TP-B10	070	12/19/2013	4.5	SS	21	3?	3.5
TP-B11	070	12/19/2013	4.5	SS	184	3?	4

Notes:

¹Moderate or heavy sheen, depth (feet) shown in parentheses.

² PID greater than 10 ppm, depth (feet) shown in parentheses.

NS = No Sheen; SS = Slight Sheen; MS = Moderate Sheen

NE = not encountered

Table 2

Summary of Chemical Analytical Results - Petroleum Hydrocarbons in Soil¹ Former Cashmere Mill Site

Cashmere, Washington

							Parcel	Number, Sample N	umber (Depth in Fee	et) and Date Collecte	d
			NA	005	005	005	005	005	005	005	00
	Regulatory		S-DP-1B(6-6.5)	N-DP-7(0-1)	N-DP-10 (5-6)	N-DP-16(7-8)	N-DP-23 (1-2)	N-DP-31(8-9)	N-DP-32(3-4)	N-DP-35(2-3)	N-DP-35
	Levels ²	Units	9/14/2013	9/10/2013	9/9/2013	9/10/2013	9/10/2013	9/10/2013	9/10/2013	9/11/2013	9/11/2
Method NWTPH-Gx											
Gasoline-range petroleum hydrocarbons		mg/Kg	5.0 U	5.1 U	4.6 U	5.6 U	4.9 U	5.5 U	5.2 U	4.4 U	4.4
Method NWTPH-Dx				•		•			•		
Diesel-range petroleum hydrocarbons		mg/Kg	35	13 U	13 U	14 U	13 U	14 U	14 U	13 U	13
Heavy oil-range petroleum hydrocarbons		mg/Kg	220	26 U	26 U	28 U	27 U	28 U	35	26 U	27
Total Petroleum Hydrocarbons				•		•			•	•	
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	< 260	ND	ND	ND	ND	ND	< 54	ND	NE

							Parcel	Number, Sample N	lumber (Depth in Fee	t) and Date Collecte	d
			010	010	010	010	010	010	010	010	01
	Regulatory		N-DP-15 (6-7)	N-DP-25(6-7)	N-DP-27(7-8)	N-DP-27(12-13)	N-DP-30(8-9)	N-DP-36(7-8)	N-DP-42(1.5-2.5)	N-DP-42(7.5-8.5)	N-DP-43(
	Levels ²	Units	9/9/2013	9/11/2013	9/10/2013	9/10/2013	9/10/2013	9/11/2013	9/11/2013	9/11/2013	9/11/2
Method NWTPH-Gx											
Gasoline-range petroleum hydrocarbons		mg/Kg	4.6 U	4.8 U	5.2 U	23 J	5.5 U	4.9 U	5.3 U	6.2 U	5.9
Method NWTPH-Dx				• •	-				-	• •	
Diesel-range petroleum hydrocarbons		mg/Kg	13 U	14 U	19	14 UJ	13 U	14 U	14 U	15 U	13
Heavy oil-range petroleum hydrocarbons		mg/Kg	27 U	29 U	37	28 UJ	26 U	29 U	28 U	29 U	26
Total Petroleum Hydrocarbons	•	•		•	-	-			•	•	•
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	ND	ND	< 61	< 65	ND	ND	ND	ND	NE

							Parcel	Number, Sample N	lumber (Depth in Fee	t) and Date Collecte	ed
			010	010	010	010	010	070	070	070	07
	Regulatory		N-DP-49(2-3)	N-DP-50(6-7)	N-DP-52(6.5-7.5)	N-DP-53(1.5-2.5)	N-DP-54(1.5-2.5)	MW-8(2-3)	MW-9(5)	MW-9(10)	S-DP-86(
	Levels ²	Units	9/11/2013	9/11/2013	9/11/2013	9/11/2013	9/11/2013	10/25/2013	12/16/2013	12/16/2013	9/13/2
Method NWTPH-Gx											
Gasoline-range petroleum hydrocarbons		mg/Kg	4.6 U	5.4 U	5.5 U	5.5 U	5.6 U	6.36 U	11.7 U	7.70 U	5.1
Method NWTPH-Dx	•										
Diesel-range petroleum hydrocarbons		mg/Kg	13 U	15 U	15 U	13 U	15 U	19.4	15.2 U	12.9 U	14
Heavy oil-range petroleum hydrocarbons		mg/Kg	35	29 U	30 U	26 U	30 U	162	39.1	32.3 U	29
Total Petroleum Hydrocarbons	•										_
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	< 53	ND	ND	ND	ND	< 188	<66	ND	NE

/11/2013 4.4 U 13 U 27 U ND 010 P-43(0.5-1.5)	005 -DP-45(8.5-9.5) 9/11/2013 5.1 U 14 U 27 U ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U 26 U	010 MW-2(5) 10/10/2013 4.1 U 13 U 27 U ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	010 N-DP-6 (3-4) 9/9/2013 6.6 U 16 U 38 < 61 010 N-DP-48(5-6) 9/11/2013 5.4 U 13 U
/11/2013 4.4 U 13 U 27 U ND 010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	9/11/2013 5.1 U 14 U 27 U ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	10/10/2013 4.1 U 13 U 27 U ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	9/9/2013 6.6 U 16 U 38 < 61 010 N-DP-48(5-6) 9/11/2013 5.4 U
4.4 U 13 U 27 U ND 010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	5.1 U 14 U 27 U ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	4.1 U 13 U 27 U ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	6.6 U 16 U 38 < 61 010 N-DP-48(5-6) 9/11/2013 5.4 U
13 U 27 U ND 010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	14 U 27 U ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	13 U 27 U ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	16 U 38 < 61 010 N-DP-48(5-6) 9/11/2013 5.4 U
13 U 27 U ND 010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	14 U 27 U ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	13 U 27 U ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	16 U 38 < 61 010 N-DP-48(5-6) 9/11/2013 5.4 U
27 U ND 010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	27 U ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	27 U ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	38 < 61 010 N-DP-48(5-6) 9/11/2013 5.4 U
27 U ND 010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	27 U ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	27 U ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	38 < 61 010 N-DP-48(5-6) 9/11/2013 5.4 U
ND 010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	ND 010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	ND 010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	< 61 010 N-DP-48(5-6) 9/11/2013 5.4 U
010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	010 N-DP-48(5-6) 9/11/2013 5.4 U
010 P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	010 N-DP-43(8-9) 9/11/2013 5.5 U 13 U	010 N-DP-44(9-10) 9/11/2013 6.0 U 13 U	010 N-DP-48(5-6) 9/11/2013 5.4 U
P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	N-DP-43(8-9) 9/11/2013 5.5 U 13 U	N-DP-44(9-10) 9/11/2013 6.0 U 13 U	N-DP-48(5-6) 9/11/2013 5.4 U
P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	N-DP-43(8-9) 9/11/2013 5.5 U 13 U	N-DP-44(9-10) 9/11/2013 6.0 U 13 U	N-DP-48(5-6) 9/11/2013 5.4 U
P-43(0.5-1.5) /11/2013 5.9 U 13 U 26 U ND	N-DP-43(8-9) 9/11/2013 5.5 U 13 U	N-DP-44(9-10) 9/11/2013 6.0 U 13 U	N-DP-48(5-6) 9/11/2013 5.4 U
/11/2013 5.9 U 13 U 26 U ND	9/11/2013 5.5 U 13 U	9/11/2013 6.0 U 13 U	9/11/2013 5.4 U
/11/2013 5.9 U 13 U 26 U ND	9/11/2013 5.5 U 13 U	9/11/2013 6.0 U 13 U	9/11/2013 5.4 U
5.9 U 13 U 26 U ND	5.5 U 13 U	6.0 U 13 U	5.4 U
13 U 26 U ND	13 U	13 U	
26 U			13 U
26 U			13 U
ND	26 U		
		26 U	27 U
070	ND	ND	ND
070			
070			
010	070	070	070
P-86(3.5-4.5)	S-DP-87(5-6)	S-DP-88(4-5)	S-DP-88(7-8)
/13/2013	9/14/2013	9/13/2013	9/13/2013
•			•
5.1 U	4.6 U	37	9.7 UJ
14 U	14 U	33	35 J
29 U	00.11	160	150 J
•	28 U		1
ND	28 U		

							Parcel	Number, Sample N	umber (Depth in Fee	t) and Date Collecte	d			
			070	070	070	070	070	070	070	070	070	070	070	070
	Regulatory		S-DP-93(5-6)	S-DP-94(5-6)	S-DP-95(3-4)	S-DP-96(7-8)	S-DP-98(1-1.5)	S-DP-99(3-4)	S-DP-100(5-6)	S-DP-101(3-3.5)	S-DP-101(7-7.5)	S-DP87-TP2 (2-3)	S-DP87-TP4 (2-3)	SDP101-TP1(3)
	Levels ²	Units	9/14/2013	9/14/2013	9/13/2013	9/13/2013	9/13/2013	9/14/2013	9/13/2013	9/14/2013	9/14/2013	12/19/2013	12/19/2013	11/12/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	1.4 U	2.4	48	1.2 UJ	0.92 UJ	4.7 U	8.6 U	10 U	7.0 UJ	6.9 U	5.51 U	_
Method NWTPH-Dx	•			•		•			•					
Diesel-range petroleum hydrocarbons		mg/Kg	17 U	15 U	120	16 U	13 U	14 U	220	520	17 UJ	12.6 U	10.6 U	18.2 U
Heavy oil-range petroleum hydrocarbons		mg/Kg	44	35	170	31 U	26 U	27 U	290	3,800	34 UJ	31.4 U	26.6 U	45.4 U
Total Petroleum Hydrocarbons										•	•			
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	< 62	< 52	338	ND	ND	ND	< 519	4,320	ND	ND	ND	ND

				Parcel Number, Sample Number (Depth in Feet) and Date Collected											
			070	070	070	070	070	070	070	070	150	150	150	150	
	Regulatory		SDP101-TP2(3.5)	SDP101-TP3(3)	SDP101-TP4(3)	SDP101-TP5(2.5)	TP-B3 (3-4)	TP-B9 (3-4)	TP-B10 (3-4)	TP-B11 (3-4)	S-DP-20A(2.5-3.5)	S-DP-26(1-2)	S-DP-27(3-4)	S-DP-28(3-4)	
	Levels ²	Units	11/12/2013	11/12/2013	11/12/2013	11/13/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	
Method NWTPH-Gx															
Gasoline-range petroleum hydrocarbons		mg/Kg	-	_	-	-	7.19 U	7.36 U	8.54 U	5.12 U	7.4 U	6.6 U	7.8 U	5.0 U	
Method NWTPH-Dx															
Diesel-range petroleum hydrocarbons		mg/Kg	15.5 U	18.5 U	17.0 U	18.2 U	14.6	12.7 U	11.2 U	10.4 U	16 U	18	17 U	22	
Heavy oil-range petroleum hydrocarbons		mg/Kg	38.7 U	46.1 U	42.5 U	45.5 U	46.4	31.9 U	28.1 U	26.1 U	32 U	130	34 U	95	
Total Petroleum Hydrocarbons	-	-			-					-	-			-	
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	ND	ND	ND	ND	<68	ND	ND	ND	ND	< 155	ND	< 122	

							Parcel	Number, Sample N	umber (Depth in Fee	et) and Date Collecte	d			
			150	150	150	150	150	150	150	150	150	150	150	150
	Regulatory		S-DP-29(8-9)	S-DP-30(1-2)	S-DP-32(3-4)	S-DP-35(2-3)	S-DP-37(1-2)	S-DP-39(2-3)	S-DP-40(1-2)	S-DP-42(19-20)	S-DP-42(5-6)	S-DP-50(3-4)	S-DP-52(6.5-7.5)	S-DP-53(7-8)
	Levels ²	Units	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/13/2013	9/12/2013	9/12/2013	9/13/2013	9/13/2013	9/12/2013	9/14/2013	9/13/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	5.4 U	4.6 U	5.2 U	5.2 U	5.9 U	8.6 U	4.8 U	7.0 U	5.5 U	4.6 U	6.2 U	7.0 U
Method NWTPH-Dx	•				•		•		•	•	•	•		
Diesel-range petroleum hydrocarbons		mg/Kg	14 U	380	14 U	13 U	130	19 U	13 U	15 U	15 U	13 U	16 U	16 U
Heavy oil-range petroleum hydrocarbons		mg/Kg	28 U	440	29 U	27 U	450	37 U	26 U	30 U	30 U	27 U	32 U	32 U
Total Petroleum Hydrocarbons	•				•		•		•	•	•	•		
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	ND	< 825	ND	ND	< 586	ND	ND	ND	ND	ND	ND	ND

							Parcel	Number, Sample N	lumber (Depth in Fee	t) and Date Collecte	d			
			150	150	150	150	200	200	200	200	200	200	200	200
	Regulatory		S-DP-55(0.5-1.5)	S-DP-55A(10-11)	S-DP-65(4-5)	MW-7(2-3)	AR-1(2-3)	S-DP-4(1-2)	S-DP-5(2.5-3.5)	S-DP-7(1-2)	S-DP-7(6.5-7.5)	S-DP-8(6.5-7.5)	S-DP-9(6.5-7.5)	S-DP-10(1-2)
	Levels ²	Units	9/13/2013	9/14/2013	9/13/2013	10/25/2013	10/25/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	7.1 U	12 U	20	7.09 U	7.16 U	6.5 U	5.6 U	81	5.1 U	5.3 U	4.3 U	7.2 U
Method NWTPH-Dx			-			-					-			
Diesel-range petroleum hydrocarbons		mg/Kg	14 U	22 U	120	12.8	12.2 U	280	14 U	770	14 U ⁴	13 U	14 U	17 U
											14 U			·
Heavy oil-range petroleum hydrocarbons		mg/Kg	49	45 U	170	88.7	30.5 U	1,300	29 U	2,800	69 ⁴	27 U	27 U	34 U
Total Petroleum Hydrocarbons											27 U			
Total Petroleum Hydrocarbons		-							1					
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	< 70	ND	310	< 109	ND	< 1,587	ND	3,651	< 88	ND	ND	ND

							Parcel	Number, Sample N	umber (Depth in Fee	t) and Date Collecte	d			
			200	200	200	200	200	200	200	200	200	200	200	200
	Regulatory		S-DP-11(5-6.5)	S-DP-13(0-1)	S-DP-14(1.5-2.5)	S-DP-14(5-6)	S-DP-15(2-3)	S-DP-16(5-6)	S-DP-18(0-1)	S-DP-2(1.5-2.5)	S-DP-21(11-12)	S-DP-22(6-7)	S-DP-23(2-3)	S-DP-24(2-3)
	Levels ²	Units	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/13/2013	9/13/2013	9/13/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	5.5 U	5.5 U	4.9 U	5.0 U	15 U	4.9 U	10	40	5.4 U	4.7 U	5.5 U	6.5 U
Method NWTPH-Dx	-						<u>.</u>			-				
Diesel-range petroleum hydrocarbons		mg/Kg	14 U	17	510 U	110	110	14 U	270 U	80	14 U	14 U	13 U	15 U
Heavy oil-range petroleum hydrocarbons		mg/Kg	28 U	85	2,700	690	110	87	1,700	130	29 U	27 U	26 U	30 U
Total Petroleum Hydrocarbons	-	<u> </u>		-	-	-	-		-	-	· · · · · ·		•	•
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	ND	< 108	< 3,214.9	< 805	< 235	< 106	< 1,980	250	ND	ND	ND	ND

							Parcel	Number, Sample N	umber (Depth in Fee	et) and Date Collecte	d			
			200	200	200	200	200	250	250	250	250	250	250	250
	Regulatory		S-DP-25(5-6)	S-DP-14-TP1(2)	S-DP-14-TP2(2)	MW-5(2.5-2.9)	MW-6(5)	S-DP-75A(2-3)	S-DP-75A(5-6)	S-DP-76(5-6)	S-DP-78(0-1)	S-DP-80(2-3)	S-DP-81(2-2.5)	S-DP-81(6-7)
	Levels ²	Units	9/13/2013	11/12/2013	11/12/2013	10/24/2013	10/9/2013	9/14/2013	9/14/2013	9/14/2013	9/13/2013	9/13/2013	9/14/2013	9/14/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	6.5 U	-	-	8.00 U	4.5 U	8.6	5.5 J	8.7 U	8.8 U	5.7 U	130	30 J
Method NWTPH-Dx				-	-		-							• •
Diesel-range petroleum hydrocarbons		mg/Kg	16 U	33.5	32.2	12.3 U	14 U	1,900	13 UJ	18 U	120	13 U	1,100	190 J
Heavy oil-range petroleum hydrocarbons		mg/Kg	32 U	374	222	30.8 U	58	8,800	26 UJ	41	380	26 U	2,100	370 J
Total Petroleum Hydrocarbons				•	•	•	•						•	•
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	ND	408	254	ND	< 77	10,709	< 45	< 68	< 509	ND	3,330	590 J

							Parcel I	Number, Sample N	umber (Depth in Fee	et) and Date Collecte	d			
			250	250	250	250	250	250	250	250	250	250	250	250
	Regulatory		S-DP-82(7.5-8.5)	S-DP-83(9-10)	S-DP-84(6.5-7.5)	S-DP-84(10-11)	S-DP-85(7.5-8.5)	S-DP-97(2-3)	S-DP-97(8-9)	SDP75A-TP1(2.5)	SDP75A-TP1A(3)	SDP75A-TP1B(2)	SDP75A-TP2(3)	SDP75A-TP2A(2)
	Levels ²	Units	9/13/2013	9/13/2013	9/14/2013	9/14/2013	9/13/2013	9/13/2013	9/13/2013	11/12/2013	11/13/2013	11/13/2013	11/12/2013	11/13/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	44	8.8	8.0 U	5.7 U	6.5 U	41 J	5.2 U	-	-	-	-	7.34 U
Method NWTPH-Dx						-							• •	-
Diesel-range petroleum hydrocarbons		mg/Kg	240	15 U	15 U	15 U	15 U	810	14 U	187	357	208	1,020	125
Heavy oil-range petroleum hydrocarbons		mg/Kg	370	31 U	29 U	30 U	29 U	920	28 U	1,020	1,490	1,150	5,640	890
Total Petroleum Hydrocarbons	-				-	-	-		•	-	-		-	_
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	654	< 55	ND	ND	ND	1,771	ND	1,207	1,847	1,358	6,660	< 1,022

							Parcel	Number, Sample N	umber (Depth in Fee	t) and Date Collected	ł			
			250	250	250	250	250	250	250	250	250	500	500	500
	Regulatory		SDP75A-TP3(2.5)	SDP75A-TP3A(2.5)	SDP75A-TP4(2)	SDP75A-TP5(3)	SDP81-TP1(2)	SDP81-TP2(2)	SDP81-TP3(2)	SDP81-TP4(2)	TP-B1 (4-5)	N-DP-11(5-6)	N-DP-13(6-7)	N-DP-24(7-8)
	Levels ²	Units	11/12/2013	11/13/2013	11/12/2013	11/12/2013	11/12/2013	11/12/2013	11/12/2013	11/12/2013	12/20/2013	9/14/2013	9/14/2013	9/14/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	-	-	-	11.6	7.82 U	8.60 U	36.4 U	8.89 U	17.3 U	5.7 U	5.7 U	7.5 U
Method NWTPH-Dx		-	• •			-	-							
Diesel-range petroleum hydrocarbons		mg/Kg	22.0	11.7 U	15.3 U	794	17.6 U	31.3	139	39.7	104 U	14 UJ	14 U	14 U
Heavy oil-range petroleum hydrocarbons		mg/Kg	89.4	29.3 U	38.3 U	4,370	61.6	172	874	275	261 U	27 UJ	29 U	27 U
Total Petroleum Hydrocarbons	•	•	•	•		-	-			•		•	•	•
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	111	ND	ND	5,176	< 87	< 212	< 1049	< 324	ND	ND	ND	ND

							Parcel	Number, Sample N	umber (Depth in Fee	t) and Date Collecte	d			
			500	500	500	500	550	550	550	550	550	550	550	550
	Regulatory		N-DP-38(6.5-7)	N-DP-39(2-3)	N-DP-51(2-3)	MW-1(5-5.6)	N-DP-8 (5.5-6.5)	N-DP-8A (2-3)	N-DP-9 (5-6)	N-DP-19 (1-2)	N-DP-21 (1.5-2.5)	N-DP-33(5-6)	N-DP-47(1.5-2.5)	NDP8-TP1(6)
	Levels ²	Units	9/14/2013	9/14/2013	9/14/2013	10/24/2013	9/10/2013	9/10/2013	9/10/2013	9/10/2013	9/10/2013	9/11/2013	9/11/2013	11/12/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	2.6 U	6.0 U	6.0 U	3.43 U	6.1 U	20	4.2 U	5.4 U	4.3 U	4.6 U	5.0 U	_
Method NWTPH-Dx														
Diesel-range petroleum hydrocarbons		mg/Kg	14 U	14 U	14 U	10.2 U	1,400 J	110	140	16	13 U	13 U	210	12.5
Heavy oil-range petroleum hydrocarbons		mg/Kg	27 U	28 U	29 U	25.6 U	11,000 J	680	1,300	130	26 U	26 U	530	31.3 U
Total Petroleum Hydrocarbons	-	•		-	-	-				-			·	
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	ND	ND	ND	ND	12,400 J	810	< 1,444	< 151	ND	ND	< 745	< 44

							Parcel	Number, Sample N	lumber (Depth in Fee	t) and Date Collecte	d			
			550	550	550	550	550	650	650	650	650	650	650	650
	Regulatory		NDP8-TP2(6)	NDP8-TP3(6)	NDP8-TP4(5.5)	NDP8-TP5(6.5)	MW-4(5-5.7)	N-DP-1 (6-7)	N-DP-2 (2.5-3)	N-DP-3(5-6)	N-DP-3A(5-6)	N-DP-3B(10-11)	N-DP-5 (2-3)	N-DP-5B (5-6)
	Levels ²	Units	11/12/2013	11/12/2013	11/12/2013	11/12/2013	10/24/2013	9/9/2013	9/9/2013	9/9/2013	9/14/2013	9/14/2013	9/9/2013	9/10/2013
Method NWTPH-Gx														
Gasoline-range petroleum hydrocarbons		mg/Kg	_	-	-	6.13 U	7.13 U	24	69	19	15	14 U	4.7 U	5.7 U
Method NWTPH-Dx	•			•					•	•	•			
Diesel-range petroleum hydrocarbons		mg/Kg	12.8 U	1,230	17.6 U	13.4 U	12.1 U	38	290	220	48	420 J	19	380
Heavy oil-range petroleum hydrocarbons		mg/Kg	32.1 U	10,500	87.6	54.1	30.3 U	150	150	160	34	1,200 J	94	1,200
Total Petroleum Hydrocarbons	•			•	•	•	•		•	-	-	•		•
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	ND	11,730	< 105	< 74	ND	212	509	399	97	< 1,634	<118	< 1,586

			650
	Regulatory		MW-3(5)
	Levels ²	Units	10/9/2013
Method NWTPH-Gx			
Gasoline-range petroleum hydrocarbons		mg/Kg	4.7 UJ
Method NWTPH-Dx			
Diesel-range petroleum hydrocarbons		mg/Kg	220
Heavy oil-range petroleum hydrocarbons		mg/Kg	140
Total Petroleum Hydrocarbons	-		
Calculated total petroleum hydrocarbons ³	3,400	mg/Kg	< 365

Notes:

 $^{1}\mbox{Chemical}$ analyses conducted by TestAmerica of Portland, Oregon and Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method B cleanup level for TPH.

³Total petroleum hydrocarbons calculated as the sum of gasoline-range, diesel-range and heavy oil-range petroleum hydrocarbons.

⁴Sample analyzed for NWTPH-Dx with and without silica gel cleanup. Both results reported.

Bold indicates concentration was detected above reporting limit.

Red outline indicates concentration greater than calculated MTCA TPH regulatory level.

U indicates analyte not detected at a concentration greater than listed reporting limit.

J indicates result is qualified as estimated. Refer to applicable Data Validation Report in Appendix C for details.

ND = Not Detected. Gasoline-range, diesel-range and heavy oil-range petroleum hydrocarbons were not detected and the sum of reporting limits for gasoline-range, diesel-range petroleum hydrocarbons is less than MTCA Method B cleanup level for TPH.

< 260. One or more analytes was detected at a concentration greater than the reporting limit. Value equals sum of detection(s) plus reporting limits for non-detected analytes.

"--" = not analyzed

Please refer to footnotes on Page 5

Table 3

Summary of Chemical Analytical Results - VOCs, SVOCs in Soil¹ Former Cashmere Mill Site

Cashmere, Washington

	_						nere, washingu	Parcel Number, Sa		d Data Drillad					
			010	010	070	070	[-		070	070	070	070	070
	Destulations		010	010	070	070	070	070	070	070	070	070	070	070	070
	Regulatory Levels ²	Unito	N-DP-27(7-8)	N-DP-43(0.5-1.5)	S-DP-88(4-5)	S-DP-88(7-8)	S-DP-95(3-4)	S-DP-101(3-3.5)	SDP87-TP2(2-3)	SDP87-TP4(2-3)	TP-B3 (3-4)	TP-B9 (3-4)	TP-B10 (3-4)	TP-B11 (1-2)	MW-9(10)
Method EPA 8260B	Leveis	Units	9/10/2013	9/11/2013	9/13/2013	9/13/2013	9/13/2013	9/14/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/16/2013
1,1,1,2-Tetrachloroethane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	-	_	_		-	-	-	-
1,1,1-Trichloroethane	2,000	ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ			_					
1,1,2,2-Tetrachloroethane	2,000	ug/Kg	130 U	150 U	180 U	240 UJ	780 J			_	-				
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)		ug/Kg	-	-	-	_	-	_	_		_	_			-
1,1,2-Trichloroethane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_	_		-	_			-
1,1-Dichloroethane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_	_	_	_	_		_	-
1,1-Dichloroethene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_	_				
1,1-Dichloropropene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_	_				
1,2,3-Trichlorobenzene		ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ		_	_					
1,2,3-Trichloropropane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_					
1,2,4-Trichlorobenzene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_	_				
1,2,4-Trimethylbenzene		ug/Kg ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_					-	
1,2-Dibromo-3-Chloropropane		ug/Kg ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ		_					-	
1,2-dibromoethane (EDB)	5	ug/Kg	22 U ⁷	25 U ⁷	31 U ⁷	41 UJ ⁷	29 UJ ⁷	-		_					
1,2-Dichlorobenzene (o-Dichlorobenzene)	5	ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	-	_	_		_			
1,2-Dichloroethane (EDC)		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_		_			
1,2-Dichloropropane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ								
1,3,5-Trimethylbenzene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_		_			
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_		_			
1,3-Dichloropropane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ								
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_		_			
2,2-Dichloropropane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_		_			
2-Butanone (MEK)		ug/Kg	1300 U	1500 U	1800 U	2400 UJ	1700 UJ								
2-Butanone, 4-(Acetyloxy)-		ug/Kg	-	-	-		-		_	_	_				_
2-Chlorotoluene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_	_				_
2-Hexanone		ug/Kg	1300 U	1500 U	1800 U	2400 UJ	1700 UJ		_	_	_				_
4-Chlorotoluene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ		_	_			_		_
4-Methyl-2-Pentanone (Methyl isobutyl ketone)		ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ		_	_	_		_		_
Acetone		ug/Kg	3200 U	3700 U	4500 U	6100 UJ	4300 UJ				_	_		_	
Benzene	30	ug/Kg	26 U ⁷	30 U ⁷	36 U ⁷	49 UJ ⁷	34 UJ ⁷	-	6.9 U	5.51 U	7.19 U	7.36 U	8.54 U	5.12 U	7.7 U
Bromobenzene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	-	0.5 0	-	-	-	-		-
Bromochloromethane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ			_					
Bromodichloromethane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_		_	-	_			-
Bromoform (Tribromomethane)		ug/Kg ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ								
Bromomethane		ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ	-				_			-
Butane, 2-methoxy-2-methyl-		ug/Kg	-	-	-	-	-					_			-
Carbon Disulfide		ug/Kg	1300 U	1500 U	1800 U	2400 UJ	1700 UJ					_			-
Carbon Tetrachloride		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ			_	_				
Chlorobenzene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ								
Chloroethane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ								
Chloroform		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ								
Chloromethane		ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ		_	_		_			
cis-1,2-Dichloroethene	+	ug/Kg ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	-	_	_		_	-		
Cis-1,3-Dichloropropene	+	ug/Kg ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	-	_	_		_	-		
Cyclohexane, Methyl-	+	ug/Kg ug/Kg	-	-	-			-	_	_		_	-		
Dibromochloromethane	+	ug/Kg ug/Kg	 130 U	 150 U	 180 U	 240 UJ	 170 UJ	-	_	_		_	-		_
	+														
Dibromomethane		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	-	-	-	-	-	-	-	-

File No. 18593-001-02 Table 3 | May 7, 2014

								Parcel Number, Sa	ample Number and	I Date Drilled					
			010	010	070	070	070	070	070	070	070	070	070	070	070
	Regulatory		N-DP-27(7-8)	N-DP-43(0.5-1.5)	S-DP-88(4-5)	S-DP-88(7-8)	S-DP-95(3-4)	S-DP-101(3-3.5)	SDP87-TP2(2-3)	SDP87-TP4(2-3)	TP-B3 (3-4)	TP-B9 (3-4)	TP-B10 (3-4)	TP-B11 (1-2)	MW-9(10)
	Levels ²	Units	9/10/2013	9/11/2013	9/13/2013	9/13/2013	9/13/2013	9/14/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/16/2013
Dichlorodifluoromethane (CFC-12)	2010.0	ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ	_							
Ethylbenzene	6,000	ug/Kg	130 U	150 U	180 U	240 UJ	190 J	_	138 U	110 U	144 U	147 U	171 U	102 U	154 U
HCFC-21	,	ug/Kg	_	_	_	_	_	_	_	_	_	_	_		-
Hexachlorobutadiene		ug/Kg	31 JB	42 JB	39 JB	970 UJ	680 UJ	_	_	_	_	_	_		_
Hexane		ug/Kg	_	-	_	_	_	_	_	_	_	_	_	_	-
Isopropylbenzene (Cumene)		ug/Kg	260 U	300 U	360 U	490 UJ	340 UJ	_	_	_	_	_	_		_
Methyl t-butyl ether (MTBE)	100	ug/Kg	17 U ⁷	19 U ⁷	24 U ⁷	32 UJ ⁷	22 UJ ⁷	_	_	_	_	_	_	_	_
Methylene Chloride	20	ug/Kg	18 U ⁷	31 J	25 U ⁷	34 UJ ⁷	24 UJ ⁷	-	_	_	_	_	_	_	_
Naphthalene	5,000 ³	ug/Kg	260 U	300 U	46 JB	490 JB	340 UJ	-	_	_	_	_	_	_	_
n-Butylbenzene	3,000	ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ	-	_	_		-	_	_	
n-Propylbenzene		ug/Kg	130 U	150 U	180 U	240 UJ	92 J	-	_	_		_	_	_	_
Phenol, 2-bromo-		ug/Kg			-	_	-	_	-	_	-	_	_	_	
p-Isopropyltoluene		ug/Kg	260 U	300 U	690	73 J	40000 J	-	_	_	_		_	_	_
Sec-Butylbenzene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_	_	_	_		_	_	_
Styrene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_		_	_		_	_	
Tert-Butylbenzene		ug/Kg	130 U	150 U	180 U	240 UJ	85 J	-	_	_	_	_	_	_	_
Tetrachloroethene (PCE)	50	ug/Kg	35 U ⁷	40 U ⁷	49 U ⁷	66 UJ ⁷	46 UJ ⁷	_	_	_	_		_	_	_
Toluene	7,000	ug/Kg	130 U	150 U	77 J	240 UJ	4600 J	-	138 U	110 U	144 U	147 U	171 U	102 U	154 U
Total Xylenes	.,	ug/Kg	-	-	-	_	-	_	2070 U	1650 U	2160 U	2210 U	2560 U	1540 U	2310 U
Trans-1,2-Dichloroethene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_							
Trans-1,3-Dichloropropene		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_	_	_		_			
Trans-1,4-Dichloro-2-butene		ug/Kg		-			_								
Trichloroethene (TCE)	30	ug/Kg	27 U ⁷	31 U ⁷	38 U ⁷	51 UJ ⁷	36 UJ ⁷	_							
Trichlorofluoromethane (CFC-11)		ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_							
Vinyl Chloride		ug/Kg	650 U	740 U	910 U	1200 UJ	850 UJ	_							
Xylene, m-,p-	9,000 ⁴	ug/Kg	260 U	300 U	360 U	490 UJ	340 UJ	_	552 U	441 U	576 U	589 U	683 U	410 U	616 U
Xylene, o-	9,000 ⁴	ug/Kg	130 U	150 U	180 U	240 UJ	170 UJ	_	276 U	220 U	288 U	294 U	342 U	205 U	308 U
Method EPA 8270C	9,000	46/116	100.0	100.0	100.0	240.05	110.03		2100	2200	200.0	2040	042.0	200.0	0000
1,2,4-Trichlorobenzene		ug/Kg	360 U	340 U	410 U	510 UJ	_	_	-			-	-	_	-
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/Kg		540 0	-										<u> </u>
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/Kg		_											<u> </u>
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/Kg	360 U	340 U	410 U	510 UJ									
1-Methylnaphthalene		ug/Kg ug/Kg		540 0		510 05			_			_	_	_	<u> </u>
2,2'-Oxybis[1-chloropropane]		ug/Kg ug/Kg	360 U	340 U	410 U	510 UJ							_	_	<u> </u>
2,4,5-Trichlorophenol		ug/Kg ug/Kg	360 U	340 U	410 U	510 UJ	_							_	
2,4,6-Trichlorophenol		ug/Kg ug/Kg	360 U	340 U	410 U	510 UJ								_	
2,4-Dichlorophenol		ug/Kg ug/Kg	360 U	340 U	410 U	510 UJ	_							_	
2,4-Dichlorophenol		ug/Kg ug/Kg	360 U 360 U	340 U	410 U	510 UJ	-	-		_		_	_		_
2,4-Dinitrophenol		ug/Kg ug/Kg	1700 U	1700 U	2000 U	2500 UJ	-	-		_		_	-	_	_
2,4-Dinitrophenoi 2,4-Dinitrotoluene		ug/Kg ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	_		-	-	_	_
2,6-Dinitrotoluene		ug/Kg ug/Kg	360 U 360 U	340 U	410 U	510 UJ	-		-	_		_	-	_	_
2.Chloronaphthalene		ug/Kg ug/Kg	360 U 360 U	340 U	410 U	510 UJ	-	-		_		_	_	_	_
2-Chlorophenol		ug/Kg ug/Kg	360 U 360 U	340 U	410 U	510 UJ	-		-	_		_	_	_	_
2-Chiorophenoi 2-Methylnaphthalene		ug/Kg ug/Kg	360 U 360 U	340 U 340 U	410 U 410 U	510 UJ	-	-	-	-		-	-		-
2-Methymaphthalene 2-Nitroaniline			1700 U	1700 U	2000 U	2500 UJ	-	-	-	_		-	-	_	
2-Nitrophenol		ug/Kg	360 U	340 U	410 U	510 UJ			-	-		-			-
3 & 4 Methylphenol		ug/Kg					-	-					-	-	
		ug/Kg	- 710 U	- 680 U	- 820 U	– 120 J	-	-	-	-	-	-	-	_	-
3,3'-Dichlorobenzidine		ug/Kg		680 U 1700 U	2000 U		-	-	-	-	-	-	-	-	-
3-Nitroaniline		ug/Kg	1700 U			2500 UJ	-	-	-	-	-	-	-	-	-
4,6-Dinitro-2-Methylphenol		ug/Kg	1700 U	1700 U	2000 U	2500 UJ	-	-	-	-	-	-	-	-	-
4-Bromophenyl phenyl ether		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	-	-	-	-	-
4-Chloro-3-Methylphenol		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	-	-	-	-	-
4-Chloroaniline		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	_	-	-	-	-	-
4-Chlorophenyl-Phenylether		ug/Kg	360 U	340 U	410 U	510 UJ		-		-				-	-

File No. 18593-001-02 Table 3 | May 7, 2014

[Parcel Number, Sa	mple Number and	Date Drilled					
			010	010	070	070	070	070	070	070	070	070	070	070	070
	Regulatory		N-DP-27(7-8)	N-DP-43(0.5-1.5)	S-DP-88(4-5)	S-DP-88(7-8)	S-DP-95(3-4)	S-DP-101(3-3.5)	SDP87-TP2(2-3)	SDP87-TP4(2-3)	TP-B3 (3-4)	TP-B9 (3-4)	TP-B10 (3-4)	TP-B11 (1-2)	MW-9(10)
	Levels ²	Units	9/10/2013	9/11/2013	9/13/2013	9/13/2013	9/13/2013	9/14/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/16/2013
4-Nitroaniline		ug/Kg	1700 U	1700 U	2000 U	2500 UJ	_	_	_	_		_			_
4-Nitrophenol (p-Nitrophenol)		ug/Kg	1700 U	1700 U	2000 U	2500 UJ	-	-	-	_		-			-
Acenaphthene		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-		-			-
Acenaphthylene		ug/Kg	360 U	340 U	410 U	510 UJ	_	_	_	_	_	_	_	_	_
Anthracene		ug/Kg	360 U	340 U	410 U	510 UJ	_	_	_	_	_	_	_	_	_
Atrazine		ug/Kg	360 U	340 U	410 U	510 UJ	_	_	_	_	_	_	_	_	_
Benzidine		ug/Kg	3600 U	3400 U	4100 U	5100 UJ	_	_	_	_	_	_	_	_	_
Benzo(a)anthracene	100 ⁵	ug/Kg	81 J	21 U ⁷	25 U ⁷	510 UJ	_	_	_	_	_	_	_	_	_
Benzo(a)pyrene	1005	ug/Kg	46 J	21 U ⁷	25 U ⁷	510 UJ	_	_	_	_	_	_	_	_	_
Benzo(b)fluoranthene	100 ⁵	ug/Kg	200 J	27 U ⁷	32 U ⁷	510 UJ	_	_	-	_	_	-	_	_	_
Benzo(ghi)perylene	100	ug/Kg	97 J	340 U	410 U	510 UJ	_	_	-	_	_	-	_	_	_
Benzo(k)fluoranthene	100 ⁵	ug/Kg	43 U ⁷	41 U ⁷	49 U ⁷	510 UJ	_	_	_	_	-	_	_	_	-
Bis(2-Chloroethoxy)Methane	100	ug/Kg	360 U	340 U	410 U	510 UJ	_	_		_					
Bis(2-Chloroethyl)Ether		ug/Kg	360 U	340 U	410 U	510 UJ	_	_		_					
Bis(2-Ethylhexyl) Phthalate		ug/Kg	360 U	340 U	410 U	510 UJ									
Butyl benzyl phthalate		ug/Kg	360 U	340 U	410 U	510 UJ									
Caprolactam		ug/Kg	1700 U	1700 U	2000 U	2500 UJ	_	_					_	_	
Carbazole		ug/Kg	360 U	340 U	410 U	510 UJ				_			_	_	
Chrysene	100 ⁵	ug/Kg ug/Kg	130 J	28 U	33 U	510 UJ	_			_			_	_	
Cresol	100	ug/Kg			-	-	_						_		
Dibenzo(a,h)anthracene	100 ⁵	ug/Kg	82 J	20 U	23 U	510 UJ	_						_		
Dibenzofuran	100	ug/Kg ug/Kg	360 U	340 U	410 U	510 UJ				_			_	_	
Dibutyl phthalate		ug/Kg ug/Kg	360 U	340 U	410 U	510 UJ	_	_		_			_	_	_
Diethyl phthalate			710 U	680 U	820 U	1000 UJ	_	_					_	_	
Dimethyl phthalate		ug/Kg	86 J	35 JB	950 B	510 UJ			_	-		-			-
Di-N-Octyl Phthalate		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	_	-		-	-	_	-
Ethanone, 1-Phenyl-		ug/Kg ug/Kg	360 U 360 U	340 U	410 U	510 UJ	-	-	_			-	-	-	-
Fluoranthene			140 J	340 U	410 U	510 UJ	_		_	-		-	_	_	-
		ug/Kg	360 U	340 U	410 U	510 UJ			_	-		-			-
Fluorene		ug/Kg	360 U 360 U	340 U	410 U	510 UJ	-	-		-			-	-	-
Hexachlorobenzene		ug/Kg	360 U 360 U	340 U 340 U	410 U	510 UJ	-	-	-	-	-	-		-	-
Hexachlorobutadiene		ug/Kg	1700 UJ	1700 UJ	2000 U	2500 UJ	-	-	-	-	_	-	-	-	-
Hexachlorocyclopentadiene		ug/Kg	360 U				-	-	-	-	_	-	-	-	-
Hexachloroethane	1.0.05	ug/Kg		340 U	410 U	510 UJ	-	-	-	-	-				-
Indeno(1,2,3-cd)pyrene	100 ⁵	ug/Kg	140 J	23 U ⁷	27 U ⁷	510 UJ	-	-	-	-	_	-	-	-	-
Isophorone		ug/Kg	- 360 U	- 340 U	-	-	-	-	-	-	_	-	-	-	-
m,p-Cresol	5 000	ug/Kg			410 U	120 J	-	-	-	-		-	-	-	-
Naphthalene	5,000	ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	_	-	-	-	-
Nitrobenzene		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	_	-	-	-	-
N-Nitrosodi-n-propylamine		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	_	-	-	-	-
N-Nitrosodiphenylamine (as diphenylamine)		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	_	-	-	-	-
o-Cresol (2-methylphenol)		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	_	-	-	-	-
Pentachlorophenol		ug/Kg	1700 U	1700 U	2000 U	2500 UJ	-	-	-	-	-	-	-	-	-
Phenanthrene		ug/Kg	63 J	340 U	410 U	510 UJ	-	-	-	-	_	-	-	-	-
Phenol		ug/Kg	360 U	340 U	410 U	510 UJ	-	-	-	-	-	-	-	-	-
Pyrene		ug/Kg	170 J	340 U	410 U	510 UJ	-	-	-	-	-	-	-	-	-
calculated cPAHs	100 ⁶	ug/Kg	101.9 J	<34.48	<40.93	<51.22	-	-	-	-					-
Method NWEPH		<u> </u>		· · ·					1	,		1			
C10-C12 Aliphatics		mg/kg	-	-	-	-	-	47 UJ	-	-		ļ			-
C10-C12 Aromatics		mg/kg	_	_	-	-	-	47 UJ	-	-		ļ			-
C12-C16 Aliphatics		mg/kg	_	-	-	-	-	47 UJ	-	-		ļ			-
C12-C16 Aromatics		mg/kg	-	-	-	-	-	47 UJ	-	-		ļ			-
C16-C21 Aliphatics		mg/kg	-	-	-	_	-	47 UJ	-	-		ļ			-
C16-C21 Aromatics		mg/kg	_	-	_		-	47 UJ	-	-					_
C10-C21 Aliphatics C21-C34 Aliphatics								28 UJ							

								Parcel Number, Sa	mple Number and	d Date Drilled					
			010	010	070	070	070	070	070	070	070	070	070	070	070
	Regulatory		N-DP-27(7-8)	N-DP-43(0.5-1.5)	S-DP-88(4-5)	S-DP-88(7-8)	S-DP-95(3-4)	S-DP-101(3-3.5)	SDP87-TP2(2-3)	SDP87-TP4(2-3)	TP-B3 (3-4)	TP-B9 (3-4)	TP-B10 (3-4)	TP-B11 (1-2)	MW-9(10)
	Levels ²	Units	9/10/2013	9/11/2013	9/13/2013	9/13/2013	9/13/2013	9/14/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/16/2013
C21-C34 Aromatics		mg/kg	-	-	-	-	-	240 J	-	-					-
C8-C10 Aliphatics		mg/kg	-	-	-	-	-		-	-					-
C8-C10 Aromatics		mg/kg	-	-	-	-	-		-	-					-
Method NWVPH												-	-	-	
C10-C12 Aliphatics		mg/kg	-	-	-	-	-	15 UJ	-	-					-
C10-C12 Aromatics		mg/kg	-	-	-	-	-	15 UJ	-	-					-
C12-C13 Aromatics		mg/kg	-	-	-	-	-	15 UJ	-	-					-
C5-C6 Aliphatics		mg/kg	-	-	-	-	-	15 UJ	-	-					-
C6-C8 Aliphatics		mg/kg	-	-	-	-	-	15 UJ	-	-					-
C8-C10 Aliphatics		mg/kg	-	-	-	-	-	15 UJ	-	-					-
C8-C10 Aromatics		mg/kg	_	-	-	-	-	15 UJ	_	-					-

								Parcel Number,	Sample Number	and Date Drilled					
			070	150	200	200	200	200	250	250	250	250	250	250	250
	Regulatory		MW-9(5)	S-DP-20A(2.5-3.5)	S-DP-2(1.5-2.5)	S-DP-7(1-2)	S-DP-13(0-1)	S-DP-14(1.5-2.5)	S-DP-75A(2-3)	S-DP-81(2-2.5)	S-DP-82(7.5-8.5)	S-DP-97(2-3)	SDP75A-TP2A(2)	SDP75A-TP5(3)	TP-B1 (4-5)
	Levels ²	Units	12/16/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/14/2013	9/14/2013	9/13/2013	9/13/2013	11/13/2013	11/12/2013	12/20/2013
Method EPA 8260B								, ,	, ,						
1,1,1,2-Tetrachloroethane		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,1,1-Trichloroethane	2,000	ug/Kg	_	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,1,2,2-Tetrachloroethane		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)		ug/Kg	-	-	-	_	-	-	-	-	-	-	147 U	125 U	-
1,1,2-Trichloroethane		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,1-Dichloroethane		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,1-Dichloroethene		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,1-Dichloropropene		ug/Kg	-	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,2,3-Trichlorobenzene		ug/Kg	-	920 U	890 U	810 U	690 U	620 U	-	730 U	1400 UJ	1200 U	147 U	125 U	-
1,2,3-Trichloropropane		ug/Kg	-	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,2,4-Trichlorobenzene		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-
1,2,4-Trimethylbenzene		ug/Kg	-	180 U	180 U	110 J	140 U	120 U	-	180	270 UJ	170 J	147 U	125 U	-
1,2-Dibromo-3-Chloropropane		ug/Kg	-	920 U	890 U	810 U	690 U	620 U	-	730 U	1400 UJ	1200 U	734 U	626 U	-
1,2-dibromoethane (EDB)	5	ug/Kg	_	31 U ⁷	30 U ⁷	28 U ⁷	23 U ⁷	28 U ⁷	_	31 U ⁷	47 UJ ⁷	42 U ⁷	150 U	128 U	_
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/Kg	-	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	_
1,2-Dichloroethane (EDC)		ug/Kg	-	180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	-
1,2-Dichloropropane		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
1,3.5-Trimethylbenzene		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	76 J	270 UJ	260	147 U	125 U	_
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
1,3-Dichloropropane		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
2,2-Dichloropropane		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
2-Butanone (MEK)		ug/Kg		1800 U	1800 U	1600 U	1400 U	1200 U	_	1500 U	2700 UJ	2500 U	-	-	_
2-Butanone, 4-(Acetyloxy)-		ug/Kg		_		_	_		_		-		1470 U	1250 U	_
2-Chlorotoluene		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
2-Hexanone		ug/Kg		1800 U	1800 U	1600 U	1400 U	1200 U	_	1500 U	2700 UJ	2500 U	1470 U	1250 U	_
4-Chlorotoluene		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
4-Methyl-2-Pentanone (Methyl isobutyl ketone)		ug/Kg		920 U	890 U	810 U	690 U	620 U	_	730 U	1400 UJ	1200 U	-		_
Acetone		ug/Kg		4600 U	4400 U	4100 U	3400 U	3100 U	_	3600 U	6900 UJ	6200 U	4400 U	3750 U	_
Benzene	30	ug/Kg	11.7 U	37 U ⁷	35 U ⁷	32 U ⁷	27 U ⁷	32 U ⁷	-	29 U ⁷	55 UJ ⁷	50 U ⁷	22.0 U	18.8 U	17.3 U
Bromobenzene		ug/Kg	-	180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	147 U	125 U	-
Bromochloromethane		ug/Kg		180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	_
Bromodichloromethane		ug/Kg	_	180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	147 U	125 U	_
Bromoform (Tribromomethane)		ug/Kg		920 U	890 U	810 U	690 U	620 U		730 U	1400 UJ	1200 U	147 U	125 U	
Bromomethane		ug/Kg		920 U	890 U	810 U	690 U	620 U		730 U	1400 UJ	1200 U	734 U	626 U	
Butane, 2-methoxy-2-methyl-		ug/Kg ug/Kg		-	-	-	-	-		-	-	-	147 U	125 U	
Carbon Disulfide		ug/Kg ug/Kg		1800 U	1800 U	1600 U	1400 U	1200 U		1500 U	2700 UJ	2500 U	147 U	125 U	
Carbon Distinue		ug/Kg ug/Kg		1800 U	1800 U	1600 U	1400 U	1200 U	-	150 U	2700 UJ	2500 U	147 U	125 U	
Chlorobenzene		ug/Kg ug/Kg		180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	
Chloroethane		ug/Kg ug/Kg		180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	
Chloroform		ug/Kg ug/Kg		180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	_
Chloromethane		ug/Kg ug/Kg		920 U	890 U	810 U	690 U	620 U	-	730 U	1400 UJ	1200 U	734 U	626 U	
ciis-1,2-Dichloroethene		ug/Kg ug/Kg		920 U 180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	147 U	125 U	
Cis-1,3-Dichloropropene		ug/Kg ug/Kg	_	180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	147 U	125 U	-
Cyclohexane, Methyl-			_						_				147 U	125 U	_
3		ug/Kg	_	 180 U	– 180 U	- 160 U	- 140 U	 120 U	_	_ 150 U	– 270 UJ	_ 250 U	147 U	125 U	_
Dibromochloromethane		ug/Kg	_						_						_
Dibromomethane		ug/Kg	-	180 U	180 U	160 U	140 U	120 U	-	150 U	270 UJ	250 U	147 U	125 U	-

								Parcel Number.	Sample Number	and Date Drilled					
			070	150	200	200	200	200	250	250	250	250	250	250	250
	Regulatory		MW-9(5)	S-DP-20A(2.5-3.5)	S-DP-2(1.5-2.5)	S-DP-7(1-2)	S-DP-13(0-1)	S-DP-14(1.5-2.5)	S-DP-75A(2-3)	S-DP-81(2-2.5)	S-DP-82(7.5-8.5)	S-DP-97(2-3)	SDP75A-TP2A(2)	SDP75A-TP5(3)	TP-B1 (4-5)
	Levels ²	Units	12/16/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/14/2013	9/14/2013	9/13/2013	9/13/2013	11/13/2013	11/12/2013	12/20/2013
Dichlorodifluoromethane (CFC-12)		ug/Kg	<u> </u>	920 U	890 U	810 U	690 U	620 U	_	730 U	1400 UJ	1200 U	147 U	125 U	<u> </u>
Ethylbenzene	6,000	ug/Kg	234 U	180 U	180 U	160 U	140 U	120 U	_	230	270 UJ	130 J	147 U	125 U	346 U
HCFC-21		ug/Kg		-	_	_	_	_	_	-	-	_	147 U	125 U	
Hexachlorobutadiene		ug/Kg		740 U	710 U	650 U	550 U	490 U	_	45 JB	1100 UJ	990 U	147 U	125 U	
Hexane		ug/Kg		-	_	_	_	_	_	-	-	_	147 U	125 U	
Isopropylbenzene (Cumene)		ug/Kg		370 U	350 U	320 U	270 U	250 U	_	290 U	550 UJ	500 U	147 U	125 U	
Methyl t-butyl ether (MTBE)	100	ug/Kg		24 U ⁷	23 U ⁷	21 U ⁷	18 U ⁷	21 U ⁷	_	19 U ⁷	36 UJ ⁷	32 U ⁷	44.0 U	37.5 U	-
Methylene Chloride	20	ug/Kg	_	26 U ⁷	25 U ⁷	23 U ⁷	19 U ⁷	23 U ⁷	_	20 U ⁷	38 UJ ⁷	35 U ⁷	1470 U	1250 U	
Naphthalene	5,000 ³	ug/Kg	_	370 U	350 U	51 JB	270 U	250 U	_	190 JB	550 UJ	69 JB	294 U	250 U	
n-Butylbenzene	0,000	ug/Kg	_	920 U	890 U	810 U	690 U	620 U	_	730 U	1400 UJ	1200 U	147 U	125 U	
n-Propylbenzene		ug/Kg	_	180 U	180 U	160 U	140 U	120 U	_	150 U	78 J	250 U	147 U	125 U	_
Phenol, 2-bromo-		ug/Kg	-	-	-	_	-		_		_		1470 U	1250 U	_
p-Isopropyltoluene		ug/Kg	_	370 U	350 U	40 J	270 U	20 J	_	11,000	400 J	11.000	147 U	125 U	_
Sec-Butylbenzene		ug/Kg		180 U	180 U	160 U	140 U	120 U		45	270 UJ	250 U	147 U	125 U	
Styrene		ug/Kg		180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	147 U	125 U	
Tert-Butylbenzene		ug/Kg ug/Kg		180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	-	-	
Tetrachloroethene	50	ug/Kg		50 U ⁷	48 U ⁷	34 U ⁷	37 U ⁷	44 U ⁷		39 U ⁷	74 UJ ⁷	67 U ⁷	44.0 U	37.5 U	
Toluene	7,000	ug/Kg ug/Kg	 234 U	180 U	48 U ¹ 180 U	34 U ¹ 47 J	140 U	44 U ⁴ 120 U		39 U ¹ 25 J	100 J	340	147 U	125 U	
Total Xylenes	9,000	ug/Kg ug/Kg	3510 U	-	-	-		-		-		-		-	5190 U
Trans-1,2-Dichloroethene	3,000	ug/Kg		180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	147 U	125 U	-
Trans-1,3-Dichloropropene		ug/Kg		180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	147 U	125 U	
Trans-1,4-Dichloro-2-butene		ug/Kg ug/Kg		-	-	- 100 0	140.0	-		-	210 05		147 U	125 U	
Trichloroethene	30	ug/Kg ug/Kg	_	39 U ⁷	37 U ⁷	34 U ⁷	29 U ⁷	34 U ⁷	_	31 U ⁷	58 UJ ⁷		44.0 U ⁷	37.5 U	
Trichlorofluoromethane (CFC-11)		ug/Kg		180 U	180 U	160 U	140 U	120 U		150 U	270 UJ	250 U	44.0 U	37.5 U	
Vinyl Chloride		ug/Kg ug/Kg		920 U	890 U	810 U	690 U	620 U	_	730 U	1400 UJ	1200 U	147 U	125 U	
	0.0004		936 U	320 U	350 U	320 U	270 U	250 U		290 U	550 UJ	500 U	587 U	500 U	1380 U
Xylene, m-,p- Xylene, o-	9,000 ⁴	ug/Kg	468 U	180 U	180 U	160 U	140 U	120 U	_	150 U	270 UJ	250 U	294 U	250 U	692 U
Method EPA 8270C	9,000 ⁴	ug/Kg	408 0	1000	1000	1000	140 0	120 0	_	150.0	210 05	250 0	294 0	250.0	092.0
1.2.4-Trichlorobenzene		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	_	1500 U	_	8400 U	323 U	327 U	_
1,2,4-meniorobenzene 1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/Kg ug/Kg		410 0	430 0	- 1000 0	-	-		-	_	-	323 U	327 U	
1,3-Dichlorobenzene (m-Dichlorobenzene)				-	-		-	-		-	_		323 U	327 U	
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/Kg		- 410 U	- 430 U	_ 1600 U	- 380 U	- 6700 U		 1500 U	_	- 8400 U	323 U	327 U	
1-Methylnaphthalene		ug/Kg ug/Kg		410 0	430 0	10000		0700 0		1300 0	_	84000	65.0 U	65.8 U	
2,2'-Oxybis[1-chloropropane]		ug/Kg ug/Kg	_	410 U	430 U	 1600 U	 380 U	6700 U	_	1500 U	_	 8400 U	323 U	327 U	
2,4,5-Trichlorophenol				410 U	430 U	1600 U	380 U	6700 U	-	1500 U	_	8400 U 8400 U	808 U	817 U	
2,4,6-Trichlorophenol		ug/Kg		410 U	430 U	1600 U	380 U	6700 U		1500 U	_	8400 U 8400 U	323 U	327 U	
		ug/Kg		410 U	430 U								323 U	327 U	
2,4-Dichlorophenol		ug/Kg	-	410 U 410 U	430 U 430 U	1600 U 1600 U	380 U 380 U	6700 U 6700 U	_	1500 U 1500 U	-	8400 U 8400 U	323 U 323 U	327 U 327 U	_
2,4-Dimethylphenol 2,4-Dinitrophenol		ug/Kg	-	2000 U	2100 U	7900 U	1800 U	33000 U	_	7300 U	-	41000 U	323 U 323 U	327 U 327 U	_
2,4-Dinitrophenol 2,4-Dinitrotoluene		ug/Kg	-						_		_				-
		ug/Kg	-	410 U	430 U 430 U	1600 U	380 U	6700 U	_	1500 U	-	8400 U 8400 U	323 U	327 U 327 U	-
2,6-Dinitrotoluene		ug/Kg	-	410 U		1600 U	380 U	6700 U	_	1500 U	-		323 U		-
2-Chloronaphthalene		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
2-Chlorophenol		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	_	1500 U	-	8400 U	323 U	327 U	-
2-Methylnaphthalene	_	ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	_	220 J	-	8400 U	65.0 U	65.8 U	-
2-Nitroaniline		ug/Kg	-	2000 U	2100 U	7900 U	1800 U	33000 U	_	7300 U	-	41000 U	808 U	817 U	-
2-Nitrophenol		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
3 & 4 Methylphenol		ug/Kg	-	-	-	-	-	-	_	-	-	-	323 U	327 U	-
3,3'-Dichlorobenzidine		ug/Kg	-	830 U	860 U	3300 U	750 U	13000 U	-	3000 U	-	17000 U	647 U	655 U	-
3-Nitroaniline		ug/Kg	_	2000 U	2100 U	7900 U	1800 U	33000 U	_	7300 U	-	41000 U	808 U	817 U	_
4,6-Dinitro-2-Methylphenol		ug/Kg	_	2000 U	2100 U	7900 UJ	1800 U	33000 U	_	7300 U	-	41000 U	323 U	327 U	_
4-Bromophenyl phenyl ether		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	_	1500 U	-	8400 U	323 U	327 U	-
4-Chloro-3-Methylphenol		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
4-Chloroaniline		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
4-Chlorophenyl-Phenylether		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	1	1500 U	-	8400 U	323 U	327 U	-

Γ	T							Parcel Number,	Sample Number	and Date Drilled					
			070	150	200	200	200	200	250	250	250	250	250	250	250
	Regulatory		MW-9(5)	S-DP-20A(2.5-3.5)	S-DP-2(1.5-2.5)	S-DP-7(1-2)	S-DP-13(0-1)	S-DP-14(1.5-2.5)	S-DP-75A(2-3)	S-DP-81(2-2.5)	S-DP-82(7.5-8.5)	S-DP-97(2-3)	SDP75A-TP2A(2)	SDP75A-TP5(3)	TP-B1 (4-5)
	Levels ²	Units	12/16/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/14/2013	9/14/2013	9/13/2013	9/13/2013	11/13/2013	11/12/2013	12/20/2013
4-Nitroaniline		ug/Kg		2000 U	2100 U	7900 U	1800 U	33000 U	_	7300 U	-	41000 U	808 U	817 U	_
4-Nitrophenol (p-Nitrophenol)		ug/Kg		2000 U	2100 U	7900 U	1800 U	33000 U	_	7300 U	-	41000 U	323 U	327 U	_
Acenaphthene		ug/Kg		410 U	430 U	1600 U	380 U	6700 U	_	1500 U	_	8400 U	65.0 U	65.8 U	
Acenaphthylene		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	_	1500 U	_	8400 U	65.0 U	65.8 U	
Anthracene		ug/Kg		410 U	430 U	84 J	380 U	6700 U	_	1500 U	_	8400 U	65.0 U	65.8 U	_
Atrazine		ug/Kg		410 U	430 U	1600 U	380 U	6700 U	_	1500 U	_	8400 U	_		_
Benzidine		ug/Kg		4100 U	4300 U	16000 U	3800 U	67000 U	_	15000 U	-	84000 U	_	-	_
Benzo(a)anthracene	100 ⁵	ug/Kg		25 U ⁷	26 U ⁷	160 J	23 U ⁷	410 U ⁷	_	91 U ⁷	-	510 U ⁷	65.0 U	65.8 U	_
Benzo(a)pyrene	100	ug/Kg		25 U ⁷	26 U ⁷	99 U ⁷	23 U ⁷	410 U ⁷	_	91 U ⁷	-	510 U ⁷	65.0 U	65.8 U	_
Benzo(b)fluoranthene	100	ug/Kg		33 U ⁷	34 U ⁷	130 U ⁷	30 U ⁷	530 U ⁷	_	120 U ⁷	-	660 U	65.0 U	65.8 U	_
Benzo(ghi)perylene	100	ug/Kg		410 U	430 U	110 J	380 U	6700 U		1500 U	_	8400 U	65.0 U	65.8 U	
Benzo(k)fluoranthene	100 ⁵	ug/Kg		50 U ⁷	520 U ⁷	200 U ⁷	46 U ⁷	820 U ⁷		180 U ⁷	_	1000 U ⁷	65.0 U	65.8 U	
Bis(2-Chloroethoxy)Methane	100	ug/Kg		410 U	430 U	1600 U	380 U	6700 U	_	1500 U	_	8400 U	323 U	327 U	
Bis(2-Chloroethyl)Ether	+	ug/Kg ug/Kg		410 U	430 U	1600 U	380 U	6700 U		1500 U	<u> </u>	8400 U	323 U	327 U	
Bis(2-Ethylhexyl) Phthalate	+	ug/Kg ug/Kg		410 U	430 U	1600 U	380 U	6700 U		1500 U		8400 U	323 0 353	779	
Butyl benzyl phthalate	+	ug/Kg ug/Kg		410 U	430 U	1600 U	380 U	6700 U		1500 U	_	8400 U	323 U	327 U	
Caprolactam	+	ug/ Kg ug/Kg		2000 U	2100 U	7900 U	1800 U	33000 U		7300 U		41000 U	-	527 0	
Caprolactam	+	ug/Kg ug/Kg		410 U	430 U	1600 U	380 U	6700 U		1500 U		8400 U	 323 U		
	100 ⁵	ug/Kg ug/Kg		34 U ⁷		200 J		_			-	-	65.0 U	65.8 U	
Chrysene Cresol	1005				35 U ⁷		31 U ⁷	550 U ⁷		120 U ⁷	-	680 U'	646 U	654 U	
	1005	ug/Kg	_	-			-		-	-	-	_			
Dibenzo(a,h)anthracene	100 ⁵	ug/Kg	_	24 U ⁷	25 U ⁷	94 U ⁷	22 U ⁷	390 U ⁷	-	87 U ⁷	-	480 U ⁷	65.0 U	65.8 U	-
Dibenzofuran		ug/Kg		410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
Dibutyl phthalate		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
Diethyl phthalate	-	ug/Kg		830 U	860 U	3300 U	750 U	13000 U	-	3000 U	-	17000 U	323 U	327 U	-
Dimethyl phthalate	-	ug/Kg		300 JB	380 JB	470 JB	120 JB	6700 U	-	830 JB	-	1300 JB	1620 U	1640 U	-
Di-N-Octyl Phthalate		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
Ethanone, 1-Phenyl-		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	-	-	-
Fluoranthene		ug/Kg		410 U	430 U	250 J	380 U	6700 U	-	1500 U	-	8400 U	65.0 U	65.8 U	-
Fluorene		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	65.0 U	65.8 U	-
Hexachlorobenzene		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
Hexachlorobutadiene		ug/Kg	-	410 U	430 U	1600 U	380 U	6700 U	-	1500 U		8400 U	323 U	327 U	-
Hexachlorocyclopentadiene		ug/Kg	-	2000 U	2100 UJ	7900 UJ	1800 UJ	33000 U	-	7300 UJ		41000 U	323 U	327 U	-
Hexachloroethane	_	ug/Kg	-	410 U	430 U	1600 UJ	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
Indeno(1,2,3-cd)pyrene	100 ⁵	ug/Kg	-	28 U ⁷	29 U ⁷	110 U ⁷	25 U ⁷	450 U ⁷	_	100 U ⁷	-	560 U ⁷	65.0 U	65.8 U	-
Isophorone		ug/Kg	_	-	-	-	_	-	-	-	-	-	323 U	327 U	-
m,p-Cresol		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	-	-	-
Naphthalene	5,000	ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	790 U ⁷	65.0 U	65.8 U	-
Nitrobenzene	4	ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
N-Nitrosodi-n-propylamine		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	4500	323 U	327 U	-
N-Nitrosodiphenylamine (as diphenylamine)		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	9600	323 U	327 U	-
o-Cresol (2-methylphenol)		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
Pentachlorophenol	4	ug/Kg	_	2000 U	2100 U	7900 U	1800 U	33000 U	-	7300 U	-	41000 U	808 U	817 U	-
Phenanthrene		ug/Kg	_	410 U	430 U	240 J	380 U	6700 U	-	210	-	8400 U	65.0 U	65.8 U	-
Phenol		ug/Kg	_	410 U	430 U	1600 U	380 U	6700 U	-	1500 U	-	8400 U	323 U	327 U	-
Pyrene		ug/Kg	_	410 U	430 U	390 J	380 U	6700 U	-	200	-	8400 U	65.0 U	65.8 U	-
Calculated cPAH	100 ⁶	ug/Kg	-	<41.34	< 42.9	< 170.4 J	< 37.9	< 675.5	-	< 150	-	< 837.80	-	-	
Method NWEPH															
C10-C12 Aliphatics		mg/kg	_	-	-	-	_	-		-	-	-	4.92 UJ	4.95 UJ	-
C10-C12 Aromatics		mg/kg	_	-	-	-		-	40 UJ	-	-	-	4.92 U	4.95 U	_
C12-C16 Aliphatics		mg/kg	_	-	-	-	-	-	51 J	-	-	-	17.1 J	15.4 J	-
C12-C16 Aromatics		mg/kg	-	-	-	-	_	-	40 UJ	-	-	-	4.92 U	4.95 U	_
C16-C21 Aliphatics		mg/kg	_	-	-	_	_	-	410 J	-	-	-	136	195	-
C16-C21 Aromatics		mg/kg	-	-	-	-	-	-	91 J	-	-	-	16.3	22.7	-
C21-C34 Aliphatics	1	mg/kg							5,000 J				1280	2360	_

								Parcel Number,	Sample Number	and Date Drilled					-
			070	150	200	200	200	200	250	250	250	250	250	250	250
	Regulatory		MW-9(5)	S-DP-20A(2.5-3.5)	S-DP-2(1.5-2.5)	S-DP-7(1-2)	S-DP-13(0-1)	S-DP-14(1.5-2.5)	S-DP-75A(2-3)	S-DP-81(2-2.5)	S-DP-82(7.5-8.5)	S-DP-97(2-3)	SDP75A-TP2A(2)	SDP75A-TP5(3)	TP-B1 (4-5)
	Levels ²	Units	12/16/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/14/2013	9/14/2013	9/13/2013	9/13/2013	11/13/2013	11/12/2013	12/20/2013
C21-C34 Aromatics		mg/kg	-	-	-	-	-	-	650 J	-	-	-	142	225	-
C8-C10 Aliphatics		mg/kg	-	-	-	-	-	-		-	-	-	4.92 UJ	4.95 UJ	-
C8-C10 Aromatics		mg/kg	-	-	-	-	-	-		-	-	-	4.92 U	4.95 U	-
Method NWVPH															
C10-C12 Aliphatics		mg/kg		-	-	-	-	-	7.9 U	-	-	-	5.00 U	5.00 U	-
C10-C12 Aromatics		mg/kg	_	_	-	-	-	-	7.9 UJ	-	-	-	4.74 U	4.13 U	-
C12-C13 Aromatics		mg/kg	-	_	-	-	-	-	7.9 UJ	-	-	-	4.74 U	4.13 U	-
C5-C6 Aliphatics		mg/kg		_	-	-	-	-	7.9 UJ	-	-	-	5.00 U	5.00 U	-
C6-C8 Aliphatics		mg/kg	-	-	-	_	_	-	7.9 UJ	-	-	-	5.00 U	5.00 U	-
C8-C10 Aliphatics		mg/kg	-	-	-	_	_	-	7.9 UJ	-	-	-	5.00 U	5.00 U	-
C8-C10 Aromatics		mg/kg	-	-	-	_	_	-	7.9 U	-	-	_	4.74 U	4.13 U	-

				Pai	rcel Number. Sar	nple Number and	Date Drilled		
			500	550	550	550	650	650	650
	Regulatory		N-DP-39(2-3)	N-DP-8A (2-3)	N-DP-9 (5-6)	NDP8-TP5(6.5)	N-DP-1 (6-7)	N-DP-2 (2.5-3)	N-DP-3 (5-6)
	Levels ²	Units	9/14/2013	9/10/2013	9/10/2013	11/12/2013	9/9/2013	9/9/2013	9/9/2013
Method EPA 8260B	Leveis	011103	9/14/2013	9/10/2013	3/10/2013	11/12/2013	3/ 3/ 2013	3/ 3/ 2013	3/ 3/ 2013
1,1,1,2-Tetrachloroethane		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,1,1-Trichloroethane	2,000	ug/Kg	150 U	130 U	100 U	123 U	_	_	_
1.1.2.2-Tetrachloroethane	2,000	ug/Kg	150 U	130 U	100 U	123 U			
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)		ug/Kg	-	-	- 100 0	123 U			
1,1,2-Trichloroethane		ug/Kg	150 U	130 U	100 U	123 U			
1,1-Dichloroethane	-		150 U	130 U	100 U	123 U			
1,1-Dichloroethene	-	ug/Kg	150 U	130 U	100 U	123 U			
		ug/Kg	150 U	130 U	100 U	123 U			
1,1-Dichloropropene		ug/Kg		670 U	520 U	123 U			
1,2,3-Trichlorobenzene		ug/Kg	750 U						-
1,2,3-Trichloropropane		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,2,4-Trichlorobenzene	_	ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,2,4-Trimethylbenzene	-	ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,2-Dibromo-3-Chloropropane		ug/Kg	750 U	670 U	520 U	613 U	-	-	-
1,2-dibromoethane (EDB)	5	ug/Kg	26 U ⁷	23 U ⁷	18 U ⁷	123 U	-	-	-
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,2-Dichloroethane (EDC)		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,2-Dichloropropane		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,3,5-Trimethylbenzene		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,3-Dichloropropane		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
2,2-Dichloropropane		ug/Kg	150 U	130 U	100 U	123 U	_	-	-
2-Butanone (MEK)		ug/Kg	1500 U	1300 U	1000 U	-	-	-	-
2-Butanone, 4-(Acetyloxy)-		ug/Kg	-	-	-	1230 U	-	-	-
2-Chlorotoluene		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
2-Hexanone		ug/Kg	1500 U	1300 U	1000 U	1230 U	-	-	-
4-Chlorotoluene		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
4-Methyl-2-Pentanone (Methyl isobutyl ketone)		ug/Kg	750 U	670 U	520 U	-	_	-	-
Acetone		ug/Kg	3800 U	3300 U	2600 U	3680 U	_	-	-
Benzene	30	ug/Kg	30 U ⁷	27 U ⁷	21 U ⁷	18.4 U	36 U ⁷	45 U ⁷	39 U ⁷
Bromobenzene		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
Bromochloromethane		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
Bromodichloromethane		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
Bromoform (Tribromomethane)		ug/Kg	750 U	670 U	520 U	123 U	-	-	-
Bromomethane		ug/Kg	750 U	670 U	520 U	613 U	-	-	-
Butane, 2-methoxy-2-methyl-		ug/Kg	_	-	_	123 U	-	-	-
Carbon Disulfide		ug/Kg	1500 U	1300 U	1000 U	123 U	-	-	-
Carbon Tetrachloride	1	ug/Kg	150 U	130 U	100 U	123 U	_	-	_
Chlorobenzene	1	ug/Kg	150 U	130 U	100 U	123 U	_	-	_
Chloroethane	1	ug/Kg	150 U	130 U	100 U	123 U	_	-	_
Chloroform		ug/Kg	150 U	130 U	100 U	123 U	_	_	_
Chloromethane		ug/Kg	750 U	670 U	520 U	613 U	_	_	
cis-1,2-Dichloroethene		ug/Kg	150 U	130 U	100 U	123 U			
Cis-1,3-Dichloropropene		ug/Kg	150 U	130 U	100 U	123 U			
Cyclohexane, Methyl-	+	ug/Kg ug/Kg	-	-	-	123 U			
Dibromochloromethane	-	-	 150 U	 130 U	 100 U	123 U		-	
		ug/Kg							
Dibromomethane		ug/Kg	150 U	130 U	100 U	123 U	-	-	-

				Pa	rcel Number, Sar	nple Number and	Date Drilled		
			500	550	550	550	650	650	650
	Regulatory		N-DP-39(2-3)	N-DP-8A (2-3)	N-DP-9 (5-6)	NDP8-TP5(6.5)	N-DP-1 (6-7)	N-DP-2 (2.5-3)	N-DP-3 (5-6)
	Levels ²	Units	9/14/2013	9/10/2013	9/10/2013	11/12/2013	9/9/2013	9/9/2013	9/9/2013
Dichlorodifluoromethane (CFC-12)	201010	ug/Kg	750 U	670 U	520 U	123 U	_	-	_
Ethylbenzene	6,000	ug/Kg	150 U	130 U	100 U	123 U	32 U	40 U	36 U
HCFC-21	0,000	ug/Kg				123 U	_	-	-
Hexachlorobutadiene		ug/Kg	600 U	33 JB	420 U	123 U	_		
Hexane			-	-	4200	123 U	_	-	-
		ug/Kg		_ 270 U		123 U			
Isopropylbenzene (Cumene)	100	ug/Kg	300 U		210 U		-	-	-
Methyl t-butyl ether (MTBE)	100	ug/Kg	20 U ⁷	17 U ⁷	14 U ⁷	36.8 U	-	-	-
Methylene Chloride	20	ug/Kg	21 U ⁷	89 JB	50 JB	1230 U	-	-	-
Naphthalene	5,000 ³	ug/Kg	300 U	270 U	210 U	245 U	-	-	-
n-Butylbenzene		ug/Kg	750 U	670 U	520 U	123 U	-	-	-
n-Propylbenzene		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
Phenol, 2-bromo-		ug/Kg	-	-	-	1230 U	-	-	-
p-lsopropyltoluene		ug/Kg	160 J	270 U	210 U	123 U	-	-	-
Sec-Butylbenzene		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
Styrene		ug/Kg	150 U	130 U	100 U	123 U	-	-	-
Tert-Butylbenzene		ug/Kg	150 U	130 U	100 U	-	-	-	_
Tetrachloroethene	50	ug/Kg	41 U ⁷	36 U ⁷	28 U ⁷	36.8 U	-	-	-
Toluene	7,000	ug/Kg	150 U	130 U	100 U	123 U	240	92	66
Total Xylenes	9,000	ug/Kg	_	_	_	_	540 U	670 U	590 U
Trans-1,2-Dichloroethene	0,000	ug/Kg	150 U	130 U	100 U	123 U	_	-	-
Trans-1,3-Dichloropropene		ug/Kg	150 U	130 U	100 U	123 U	_	-	
Trans-1,4-Dichloro-2-butene			-	-	-	123 U	_	-	-
,	20	ug/Kg		-					
Trichloroethene	30	ug/Kg	32 U ⁷	28 U ⁷	22 U ⁷	36.8 U	-	-	-
Trichlorofluoromethane (CFC-11)		ug/Kg	150 U	130 U	100 U	36.8 U	-	-	-
Vinyl Chloride		ug/Kg	750 U	670 U	520 U	123 U	-	-	-
Xylene, m-,p-	9,000 ⁴	ug/Kg	300 U	270 U	210 U	491 U	-	-	-
Xylene, o-	9,000 ⁴	ug/Kg	150 U	130 U	100 U	245 U	-	-	-
Method EPA 8270C									
1,2,4-Trichlorobenzene		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/Kg	-	-	-	327 U	-	-	-
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/Kg	-	_	-	327 U	-	-	_
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/Kg	360 U	340 U	350 U	327 U	_	-	-
1-Methylnaphthalene		ug/Kg	-	-	_	65.8 U	_	-	_
2,2'-Oxybis[1-chloropropane]		ug/Kg	360 U	340 U	350 U	327 U	_	_	_
2,4,5-Trichlorophenol		ug/Kg	360 U	340 U	350 U	819 U	_	_	
2,4,6-Trichlorophenol		ug/Kg	360 U	340 U	350 U	327 U	_	-	-
2,4-Dichlorophenol		ug/Kg	360 U	340 U	350 U	327 U	_	_	
2,4-Dimethylphenol		ug/Kg ug/Kg	360 U 360 U	340 U	350 U	327 U		-	-
2,4-Dinitrophenol			1800 U	1700 U	1700 U	327 U		-	
		ug/Kg					-	-	_
2,4-Dinitrotoluene		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
2,6-Dinitrotoluene		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
2-Chloronaphthalene		ug/Kg	360 U	340 U	350 U	327 U	-	-	_
2-Chlorophenol		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
2-Methylnaphthalene		ug/Kg	360 U	340 U	350 U	65.8 U	-	-	_
2-Nitroaniline		ug/Kg	1800 U	1700 U	1700 U	819 U	-	-	-
2-Nitrophenol		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
3 & 4 Methylphenol		ug/Kg	-	-	-	327 U	-	-	-
3,3'-Dichlorobenzidine		ug/Kg	730 U	680 U	690 U	655 U	-	-	-
3-Nitroaniline		ug/Kg	1800 U	1700 U	1700 U	819 U	-	-	_
4,6-Dinitro-2-Methylphenol		ug/Kg	1800 U	1700 U	1700 U	327 U	_	_	_
4-Bromophenyl phenyl ether		ug/Kg	360 U	340 U	350 U	327 U	_	-	
4-Chloro-3-Methylphenol		ug/Kg	360 U	340 U	350 U	327 U		-	-
4-Chloroaniline			360 U 360 U	340 U	350 U	327 U		-	
		ug/Kg							-
4-Chlorophenyl-Phenylether		ug/Kg	360 U	340 U	350 U	327 U	-	-	-

[Pa	rcel Number, San	nple Number and	Date Drilled		
			500	550	550	550	650	650	650
	Regulatory		N-DP-39(2-3)	N-DP-8A (2-3)	N-DP-9 (5-6)	NDP8-TP5(6.5)	N-DP-1 (6-7)	N-DP-2 (2.5-3)	N-DP-3 (5-6)
	Levels ²	Units	9/14/2013	9/10/2013	9/10/2013	11/12/2013	9/9/2013	9/9/2013	9/9/2013
4-Nitroaniline		ug/Kg	1800 U	1700 U	1700 U	819 U	_	_	_
4-Nitrophenol (p-Nitrophenol)		ug/Kg	1800 U	1700 U	1700 U	327 U	_	_	_
Acenaphthene		ug/Kg	360 U	340 U	25 J	65.8 U	_	_	_
Acenaphthylene		ug/Kg	360 U	340 U	350 U	65.8 U	_	_	_
Anthracene		ug/Kg	360 U	340 U	350 U	65.8 U	_	_	_
Atrazine		ug/Kg	360 U	340 U	350 U	_	_	_	_
Benzidine		ug/Kg	3600 U	3400 U	3500 U	_	_	-	_
Benzo(a)anthracene	100 ⁵	ug/Kg	22 U ⁷	22 J	21 U ⁷	65.8 U	_	-	_
Benzo(a)pyrene	100 ⁵	ug/Kg	22 U ⁷	21 U ⁷	21 U ⁷	65.8 U	_	-	_
Benzo(b)fluoranthene	100 ⁷	ug/Kg	22 0 29 U ⁷	21 0 28 U ⁷	21 0 28 U ⁷	65.8 U	_	_	_
Benzo(ghi)perylene	100	ug/Kg	360 U	28 U 340 U	28 U 350 U	65.8 U			
Benzo(k)fluoranthene	1005	ug/Kg ug/Kg				65.8 U		-	_
Bis(2-Chloroethoxy)Methane	100*		44 U ⁷ 360 U	42 U ⁷ 340 U	42 U ⁷ 350 U	327 U		-	_
Bis(2-Chloroethyl)Ether		ug/Kg ug/Kg	360 U	340 U	350 U	327 U		-	
Bis(2-Ethylhexyl) Phthalate			360 U	340 U	350 U	327 U		-	
Bis(2-Ethylnexyl) Phthalate		ug/Kg	360 U 360 U	340 U 340 U	350 U 350 U	327 U			
		ug/Kg	360 U 1800 U	1700 U	1700 U	-	-	-	_
Caprolactam		ug/Kg					-	-	_
Carbazole	· 5	ug/Kg	360 U	340 U	350 U	327 U	-	-	_
Chrysene	100 ⁵	ug/Kg	30 U ⁷	31 J	28 U ⁷	65.8 U	_	-	_
Cresol	5	ug/Kg	-	-	<u>ـ</u>	654 U	_	-	_
Dibenzo(a,h)anthracene	100 ⁵	ug/Kg	21 U ⁷	20 U ⁷	20 U ⁹	65.8 U	_	-	_
Dibenzofuran		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
Dibutyl phthalate		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
Diethyl phthalate		ug/Kg	730 U	680 U	690 U	327 U	-	-	-
Dimethyl phthalate		ug/Kg	830 B	550 B	760	1640 U	-	-	-
Di-N-Octyl Phthalate		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
Ethanone, 1-Phenyl-		ug/Kg	360 U	340 U	350 U	-	-	-	-
Fluoranthene		ug/Kg	360 U	340 U	350 U	65.8 U	-	-	-
Fluorene		ug/Kg	360 U	340 U	350 U	65.8 U	-	-	-
Hexachlorobenzene		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
Hexachlorobutadiene		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
Hexachlorocyclopentadiene		ug/Kg	1800 U	1700 U	1700 U	327 U	-	-	-
Hexachloroethane		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
Indeno(1,2,3-cd)pyrene	100 ⁵	ug/Kg	24 U ⁷	23 U ⁷	23 U ⁷	65.8 U	-	-	-
Isophorone		ug/Kg	-	-	-	327 U	-	-	-
m,p-Cresol		ug/Kg	360 U	340 U	350 U	-	-	-	-
Naphthalene	5,000	ug/Kg	360 U	340 U	350 U	65.8 U	-	-	_
Nitrobenzene		ug/Kg	360 U	340 U	350 U	327 U	-	_	-
N-Nitrosodi-n-propylamine		ug/Kg	360 U	140 J	350 U	327 U	-	_	-
N-Nitrosodiphenylamine (as diphenylamine)		ug/Kg	360 U	340 U	350 U	327 U	-	_	-
o-Cresol (2-methylphenol)		ug/Kg	360 U	340 U	350 U	327 U	_	-	_
Pentachlorophenol		ug/Kg	1800 U	1700 U	1700 U	819 U	-	_	-
Phenanthrene		ug/Kg	360 U	19 J	350 U	65.8 U	-	-	-
Phenol		ug/Kg	360 U	340 U	350 U	327 U	-	-	-
Pyrene		ug/Kg	17 J	37 J	350 U	65.8 U	-	-	-
Calculated cPAHs	100 ⁶	ug/Kg	< 36.3	< 41.7 J	< 34.68	< 99.36	-	-	-
Method NWEPH	•								
C10-C12 Aliphatics		mg/kg	-	-	-	4.89 U	-	-	_
C10-C12 Aromatics		mg/kg	-	-	-	4.89 U	-	-	_
C12-C16 Aliphatics		mg/kg	_	_	-	4.89 U	_	_	_
C12-C16 Aromatics		mg/kg	-	-	-	4.89 U	-	-	_
C16-C21 Aliphatics		mg/kg	-	-	_	5.76	-	-	_
C16-C21 Aromatics		mg/kg	_	_	_	4.89 U	_	-	_
C21-C34 Aliphatics		mg/kg	-	-	-	38.0	_	-	_
	1	p, 1,p	1	1	1			1	

				Pai	rcel Number, Sar	nple Number and	Date Drilled		
			500	550	550	550	650	650	650
	Regulatory		N-DP-39(2-3)	N-DP-8A (2-3)	N-DP-9 (5-6)	NDP8-TP5(6.5)	N-DP-1 (6-7)	N-DP-2 (2.5-3)	N-DP-3 (5-6)
	Levels ²	Units	9/14/2013	9/10/2013	9/10/2013	11/12/2013	9/9/2013	9/9/2013	9/9/2013
C21-C34 Aromatics		mg/kg	-	-	-	4.89 U	-	-	-
C8-C10 Aliphatics		mg/kg	-	-	-	4.89 U	-	-	-
C8-C10 Aromatics		mg/kg	-	-	-	4.89 U	-	-	-
Method NWVPH									
C10-C12 Aliphatics		mg/kg	-	-	-	5.00 U	-	-	-
C10-C12 Aromatics		mg/kg	-	-	-	4.08 U	-	-	-
C12-C13 Aromatics		mg/kg	-	-	-	4.08 U	-	-	-
C5-C6 Aliphatics		mg/kg	-	-	-	5.00 U	-	-	-
C6-C8 Aliphatics		mg/kg	-	-	-	5.00 U	-	-	-
C8-C10 Aliphatics		mg/kg	-	-	-	5.00 U	-	-	-
C8-C10 Aromatics		mg/kg	-	-	_	4.08 U	_	_	_

Notes:

¹Chemical analyses conducted by TestAmerica of Portland, Oregon and Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup levels for unrestricted land use unless otherwise footnoted.

³Cleanup level refers to sum of naphthalenes.

⁴Cleanup level for total xylenes.

⁵Cleanup level referenced to benzo (a) pyrene. If other carcinogenic PAHs are present, the cleanup level represents the total carcinogenic PAH concentration.

⁶Concentration of carcenogenic PAHs (cPAHs) was calculated using the Toxicity Equivalency Factors in Table 708-2 of WAC 173-340-900.

⁷Value listed for non-detect result is the Method Detection Limit (MDL).

Bold indicates concentration was detected above reporting limit.

Red outline indicates concentration greater than regulatory level.

Shading indicates reporting limit for non-detected analyte was greater than regulatory level.

"--" = not analyzed (tested in field); mg/kg = milligrams per kilogram; µg/kg = micrograms per kilogram;

U indicates analyte not detected at a concentration greater than listed reporting limit, unless otherwise noted (see note 8 where applicable).

J indicates result is qualified as estimated. Refer to the applicable Data Quality Report for details. Result is less than the Reporting Limit (RL) or equal to or greater than the Method Detection Limit (MDL) and the reported concentration is an approximate value.

B indicates compound was found in both the method blank and sample. Result is flagged as likely due to laboratory contamination.

Table 4

Summary of Chemical Analytical Results - Metals¹ in Soil Former Cashmere Mill Site

Cashmere, Washington

									Parcel Number,	Sample Number	and Date Drilled						
			010	010	010	070	070	070	070	070	070	070	070	70	070	070	070
	Regulatory		N-DP-27(7-8)	N-DP-27(12-13)	N-DP-43(0.5-1.5)	S-DP-86(5-5.5)	S-DP-87(1.5-2.5)	S-DP-87(5-6)	S-DP-88(4-5)	S-DP-88(7-8)	S-DP-93(1-2)	S-DP-93(5-6)	S-DP-94(2-2.5)	S-DP-95(3-4)	S-DP-101(3-3.5)	SDP87-TP1(1-2)	SDP87-TP1(2-3)
	Levels ²	Units	9/10/2013	9/10/2013	9/11/2013	9/13/2013	9/14/2013	9/14/2013	9/13/2013	9/13/2013	9/14/2013	9/14/2013	9/14/2013	9/13/2013	9/14/2013	12/19/2013	12/19/2013
Method EPA 6		00	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,
Arsenic	20	mg/Kg	2.4	1.5	0.75	-	-	-	5.4	4.1	-	-	-	-	-	-	
Barium	20	mg/Kg	130	41	79	-			220	120			_	-			_
	0															_	
Cadmium	2	mg/Kg	0.54 U	0.56 U	0.50 U	-	-		0.61 U	0.80 U			-	-	-	-	-
Chromium	2,000 ³	mg/Kg	29	69	10	-	-	-	40	33	-	-	-	-	-	-	-
Lead	250	mg/Kg	170	1.2	1.6	-	-	-	54	21		-	-	-	-	-	
Selenium		mg/Kg	0.54 U	0.56 U	0.50 U	-	-	-	0.61 U	0.80 U	-	-	-	-	-	-	-
Silver		mg/Kg	0.54 U	0.56 U	0.50 U	-	-	-	0.61 U	0.80 U	-	-	-	-	-	-	-
Method EPA 74	471A	-	-								-	-		-			-
Mercury	2	mg/Kg	2.1	0.10 U	0.083 U	0.027 J	0.12 UJ	13 J	7.2	0.64	0.074 J	0.11 U	0.029 J	-	4.8	0.05 U	0.0424 U
Method EPA 74	470 (TCLP)				•						•	•					
Mercury	0.2 4	mg/L						0.00020 UJ									
,	012	5			1												
										Parcel Number,	Sample Number	and Date Drilled					
			070	070	070	070	070	070	070	070	070	070	070	070	070	070	070
	Regulatory		SDP87-TP2(2-3)	SDP87-TP2(1-2)	SDP87-TP3(1-2)	SDP87-TP3(2-3)	SDP87-TP4(2-3)	SDP87-TP4(1-2)	SDP88-TP1(3.5)	SDP88-TP2(3)	SDP88-TP3(4)	SDP88-TP4(3)	TP-B2 (1-2)	TP-B2 (3-4)	TP-B3 (1-2)	TP-B3 (3-4)	TP-B4 (1-2)
	Levels ²	Units	12/19/2013	12/19/2013	12/20/2013	12/20/2013	12/19/2013	12/19/2013	11/12/2013	11/12/2013	11/12/2013	11/12/2013	12/20/2013	12/20/2013	12/19/2013	12/19/2013	12/20/2013
Method EPA 6		00		//	==/=0/=0=0						// _ 0 _ 0	// _00			==,=0,=0=0	==,=0,=0=0	
Arsenic	20	mg/Kg	_	-		-	-	-	_	_	_	_	-		_	_	-
Barium	20	mg/Kg	_	_	_		-		-		_	_					_
Cadmium	2	mg/Kg	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Chromium	2,000 ³	mg/Kg	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Lead	250	mg/Kg	_	-	-	_	_	_	_	_	_	_	_	_	_	-	_
Selenium		mg/Kg	-	-	-	_	_	-	-	_	-	-	_	_	-	-	-
Silver		mg/Kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Method EPA 74	471A																
Mercury	2	mg/Kg	0.0521 U	0.0417 U	0.0556 U	0.0463 U	0.0403 U	0.48	1.76	1.19	0.0191 U	1.46	0.143	0.0446 U	0.157	0.0455 U	2.38
Method EPA 74	470 (TCLP)															•	
Mercury	0.2 4	mg/L															0.0005 U
	•		•	•	•						•	•					
									Parcel Number,	Sample Number	and Date Drilled						
			070	070	070	070	070	070	070	070	070	070	070	070	070	070	070
	Regulatory		TP-B4 (3-4)	TP-B5 (1-2)	TP-B5 (3-4)	TP-B6 (1-2)	TP-B6 (3-4)	TP-B7 (1-2)	TP-B7 (4-5)	TP-B8 (1-2)	TP-B8 (4-5)	TP-B9 (1-2)	TP-B9 (3-4)	TP-B10 (1-2)	TP-B10 (3-4)	TP-B11 (1-2)	TP-B11 (3-4)
	Levels ²	Units	12/20/2013	12/20/2013	12/20/2013	12/20/2013	12/20/2013	12/20/2013	12/20/2013	12/20/2013	12/20/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013	12/19/2013
Method EPA 6			, , ,	/ -/	, , ,	/ -/	/ -/	/ -/	/ -/	/ -/	/ -/	/ -/	/ -/	1 -1	/ -/	/ -/	/ -/
Arsenic	20	mg/Kg	_	_	_	-	_	_	-	_	-		-	_	-	-	-
Barium		mg/Kg	_	_	_	-						_	_		_	_	_
Cadmium	2	mg/Kg	-	-	-	-	-	-	-	_	-		-	-	-	-	-
Chromium	2,000 ³	mg/Kg	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Lead	250	mg/Kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium		mg/Kg	-	-	-	-	-	-	-	-	-		-	-	-	_	-
Silver		mg/Kg	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Method EPA 74	471A	-		-	-										-	-	
Mercury	2	mg/Kg	1.08	0.0533	0.0472 U	0.0455 U	0.049 U	0.108	0.0472 U	0.161	0.0431 U	0.103	0.0481 U	0.0674	0.05 U	0.0793	0.0472 U
Method EPA 74	· · ·	-		-	-										-	-	
Mercury	0.2 4	mg/L															

										Parcel	Number, Sample	Number and Dat	e Drilled				
			070	070	150	200	200	200	200	250	250	250	250	250	500	550	550
	Regulatory		MW-9(10)	MW-9(5)	S-DP-20A(2.5-3.5)	S-DP-2(1.5-2.5)	S-DP-7(1-2)	S-DP-13(0-1)	S-DP-14(1.5-2.5)	S-DP-78(0-1)	S-DP-81(2-2.5)	S-DP-97(2-3)	TP-B1 (1-2)	TP-B1 (4-5)	N-DP-39(2-3)	N-DP-8A (2-3)	N-DP-9 (5-6)
	Levels ²	Units	12/16/2013	12/16/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	9/13/2013	9/14/2013	9/13/2013	12/20/2013	12/20/2013	9/14/2013	9/10/2013	9/10/2013
Method EPA (6010/6020			-				-							-		
Arsenic	20	mg/Kg	3.21	4.44	6.8	3.5	4.7	3.9	2.4	_	3.9	12	_	-	3.6	15	2.6
Barium		mg/Kg	62.7	106	110	120	72	110	82 J	-	61	89	-	-	75	90	95
Cadmium	2	mg/Kg	0.212 U	0.239 U	0.63 U	0.66 U	0.62 U	0.57 U	0.50 U	-	0.57 U	0.61 U	-	-	0.55 U	0.53 U	0.53 U
Chromium	2,000 ³	mg/Kg	34.7	28.7	50	63	48	78	25	-	110	51	-	-	61	32	47
Lead	250	mg/Kg	1.62	7.6	15	18	31	5.3	9.2	_	8.2	130	_	-	2.8	65	5.7
Selenium		mg/Kg	2.65 U	2.99 U	0.63 U	0.66 U	0.62 U	0.57 U	0.50 U	_	0.57 U	0.61 U	_	_	0.55 U	0.53 U	0.53 U
Silver		mg/Kg	0.531 U	0.597 U	0.63 U	0.66 U	0.62 U	0.57 U	0.50 U	-	0.57 U	0.61 U	-	-	0.55 U	0.53 U	0.53 U
Method EPA	7471A																
Mercury	2	mg/Kg	0.0439 U	0.0521 U	0.12	0.13 U	0.19	0.12 U	0.13	0.11 J	0.11 U	0.12 U	0.223	0.0396	0.080 U	0.091 U	0.073 U
Method EPA	7470 (TCLP)																
Mercury	0.2 4	mg/L															

Notes:

¹Chemical analyses conducted by TestAmerica of Portland, Oregon and Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup levels for unrestricted land use unless otherwise footnoted.

³Cleanup level is 2,000 mg/Kg for Chromium III.

⁴Regulatory level for designation as hazardous waste based on the Toxicity Characteristic Leaching Procedure (TCLP).

Bold indicates concentration was detected above reporting limit.

Red outline indicates concentration greater than regulatory level.

"--" = not analyzed (tested in field); mg/kg = milligrams per kilogram; mg/L = milligrams per liter

U indicates analyte not detected at a concentration greater than listed reporting limit, unless otherwise noted (see note 8 where applicable).

J indicates result is qualified as estimated. Refer to the applicable Data Quality Report for details. Result is less than the Reporting Limit (RL) or equal to or greater than the Method Detection Limit (MDL) and the reported concentration is an approximate value.

Table 5

Summary of Chemical Analytical Results - GRPH, DRPH, ORPH, VOCs, SVOCs and Metals¹ in Groundwater

Former Cashmere Mill Site Cashmere, Washington

							Parce	el Number, Samp	ble Number, and	Sampled Date				
			500	500	010	010	010	650	650	550	550	200	200	200
			MW-1-102813	MW-1-120313	MW-2-102813	MW-2-120313	MW-2-120413(16)	MW-3-102813	MW-3-120413	MW-4-102813	MW-4-120413	MW-5-102813	DUPLICATE-1-102813 (MW-5)	MW-5-120413
	Regulatory		10/28/2013	12/3/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	10/28/2013	12/4/2013
	Levels ²	Units	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,	, ,
Method NWTPH-Gx														•
Gasoline-range petroleum hydrocarbons	1000 ³	ug/L	100 U	100 U	100 U	100 U		100 U	100 U	100 U	100 U	100 U	100 U	100 U
Method NWTPH-Dx			•			•							•	
Diesel-range petroleum hydrocarbons	500	ug/L	239 U	238 U	239 U	247 U		240 U	1,450	238 U	244 U	237 U	238 U	246 U
Heavy oil-range petroleum hydrocarbons	500	ug/L	382 U	397 U	382 U	412 U		384 U	875	380 U	407 U	380 U	382 U	410 U
Method EPA 200.8		-												
Arsenic (Total)	5	ug/L	17	3.2	6.0	5.8	6.1	6.7	7.2	2.4	2.5	16	17	4.8
Arsenic (Dissolved)		ug/L	14	2.1	5.0	4.2	4.0	2.50	2.1	1.8	1.5	13	13	3.2
Arsenic III		ug/L		-		4.4			-		-			-
Arsenic V		ug/L		-		3 U			-		-			-
Barium (Total)	2,000	ug/L	130	120	130	120	-	280	260	110	110	120	130	130
Barium (Dissolved)		ug/L	130	100	110	110	-	48	67	98	83	120	120	99
Cadmium (Total)	5	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium (Dissolved)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chromium (Total)	50	ug/L	2.0 U	2.0 U	2.0 U	2.2	-	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chromium (Dissolved)		ug/L	2.0 U	2.0 U	2.0 U	2.0 U	-	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Copper (Total)		ug/L		2.0 U		2.0 U	-		2.0 U		2.0 U			2.0 U
Copper (Dissolved)		ug/L		2.0 U		2.0 U	-		2.0 U		2.0 U			2.0 U
Iron (Total)		ug/L		800		1300	-		69,000		2,800			2,300
Iron (Dissolved)		ug/L		25 U		25 U	-		38,000		25 U			25 U
Lead (Total)	15	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Lead (Dissolved)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Manganese (Total)		ug/L	-	390	-	350	-	-	2,800	-	1,100	-	-	1,300
Manganese (Dissolved)		ug/L	300	370	380	340	-	3,200	2,800	1,000	1,100	1,100	1,100	1,300
Selenium (Total)	50	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Selenium (Dissolved)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Silver (Total)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Silver (Dissolved)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Method EPA 245.1		-												-
Mercury (Total)	2	ug/L	0.20 U	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Mercury (Dissolved)			0.20 U	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Method EPA 300.0		-				-	-						-	-
Nitrate	10,000	ug/L	200	220 J	200 U	310	-	200 U	250	200 U	200 U	200 U	200 U	200 U
Sulfate		ug/L	10,100	9,130	27,600	19,500	-	580	1,360	8,450	9,090	5,400	6,300	9,200
Method RSK-175														
Methane		ug/L	53.1	78.8	276	213	-	5,730	5,740	114	123	159	172	359
Method EPA SM2320B														
Alkalinity, Total		ug/L	340,000	325,000	400,000	380,000	-	470,000	405,000	350,000	345,000	370,000	375,000	390,000
Method EPA 4500PE						-								
Phosphorus				60.0 U	-	99.4	-	_	2,590	_	143	-	-	136
Method EPA 8260B (VOCs)							-							
1,1,1,2-Tetrachloroethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,1-Trichloroethane	200	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2,2-Tetrachloroethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2-Trichloroethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1-Dichloroethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U

		Parcel Number, Sample Number, and Sampled Date													
			500	500	010	010	010	650	650	550	550	200	200	200	
			MW-1-102813	MW-1-120313	MW-2-102813	MW-2-120313	MW-2-120413(16)	MW-3-102813	MW-3-120413	MW-4-102813	MW-4-120413	MW-5-102813	DUPLICATE-1-102813 (MW-5)	MW-5-120413	
	Regulatory		10/28/2013	12/3/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	10/28/2013	12/4/2013	
	Levels ²	Units													
1,1-Dichloroethene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,1-Dichloropropene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2,3-Trichlorobenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2,3-Trichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2,4-Trichlorobenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2,4-Trimethylbenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2-Dibromo-3-Chloropropane		ug/L	5.00 U	5.00 U	5.00 U	5.00 U	-	5.00 U	5.00 U						
1,2-dibromoethane (EDB)	0.01	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2-Dichloroethane (EDC)	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,2-Dichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,3,5-Trimethylbenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,3-Dichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
2,2-Dichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
2-Butanone (MEK)		ug/L		10.0 U	-	10.0 U	-		10.0 U		10.0 U	-	-	10.0 U	
2-Butanone, 4-(Acetyloxy)-		ug/L	10.0 U	10.0 U	10.0 U	10.0 U	-	10.0 U	10.0 U						
2-Chlorotoluene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U						
2-Hexanone		ug/L	10.0 U	10.0 U	10.0 U	10.0 U	-	10.0 U	10.0 U						
4-Chlorotoluene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Acetone		ug/L	25.0 U	25.0 U	25.0 U	25.0 U	-	25.0 U	25.0 U						
Benzene	5	ug/L	0.200 U	0.200 U	0.200 U	0.200 U	-	0.300	0.270	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	
Bromobenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Bromochloromethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Bromodichloromethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Bromoform (Tribromomethane)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Bromomethane		ug/L	5.00 U	5.00 U	5.00 U	5.00 U	-	5.00 U	5.00 U						
Butane, 2-methoxy-2-methyl-		ug/L	1.00 U	-	1.00 U	-	-	1.00 U	-	1.00 U	-	1.00 U	1.00 U	-	
Carbon Disulfide		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Carbon Tetrachloride	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Chlorobenzene		ug/L	1.00 U 1.00 U	1.00 U	1.00 U 1.00 U	1.00 U 1.00 U	-	1.00 U 1.00 U	1.00 U 1.00 U						
Chloroethane		ug/L	1.00 U	1.00 U 1.00 U	1.00 U	1.00 U	-	1.00 U							
Chloroform		ug/L	3.00 U	3.00 U	3.00 U	3.00 U	-	3.00 U	3.00 U	3.00 U	3.00 U	1.00 U 3.00 U	3.00 U	1.00 U 3.00 U	
Chloromethane cis-1,2-Dichloroethene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Cis-1,2-Dichloropropene		ug/L ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
D14-Terphenyl		ug/L ug/L	5.00 U	-	5.00 U	-	-	5.00 U	<u> </u>	5.00 U	1.00 0	5.00 U	5.00 U	1.00 0	
Dibromochloromethane		ug/L	1.00 U	 1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Dibromomethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U						
Dichlorodifluoromethane (CFC-12)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U						
Ethylbenzene	700	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U						
HCFC-21	100	ug/L	0.100 U	0.100 U	0.100 U	0.100 U	-	0.100 U	0.100 U						
Hexachlorobutadiene		ug/L	2.00 U	2.00 U	2.00 U	2.00 U	-	2.00 U	2.00 U						
Hexane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U						
Isopropylbenzene (Cumene)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U						
Methyl t-butyl ether (MTBE)	20	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U						
Methylene Chloride	5	ug/L	10.0 U	10.0 U	10.0 U	10.0 U	_	10.0 U	10.0 U						
Naphthalene	160 ⁴	ug/L	2.00 U	2.00 U	2.00 U	2.00 U	_	2.00 U	2.00 U						
n-Butylbenzene	100	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U						
n-Propylbenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U						
Phenol, 2-bromo-		ug/L	10.0 U	_	10.0 U		_	10.0 U		10.0 U	_	10.0 U	10.0 U	_	

	Parcel Number, Sample Number, and Sampled Date													
			500	500	010	010	010	650	650	550	550	200	200	200
			MW-1-102813	MW-1-120313	MW-2-102813	MW-2-120313	MW-2-120413(16)	MW-3-102813	MW-3-120413	MW-4-102813	MW-4-120413	MW-5-102813	DUPLICATE-1-102813 (MW-5)	MW-5-120413
	Regulatory		10/28/2013	12/3/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	10/28/2013	12/4/2013
	Levels ²	Units												
p-lsopropyltoluene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Sec-Butylbenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Styrene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Tert-Butylbenzene				1.00 U		1.00 U	-		1.00 U		1.00 U			1.00 U
Tetrachloroethene (PCE)	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Toluene	1,000	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Total Xylenes				-		-	-		-		-			-
Trans-1,2-Dichloroethene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Trans-1,3-Dichloropropene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Trans-1,4-Dichloro-2-butene		ug/L	0.100 U	0.100 U	0.100 U	0.100 U		0.100 U	0.100 U					
Trichloroethene (TCE)	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U					
Trichlorofluoromethane (CFC-11)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U					
Vinyl Chloride	0.2	ug/L	0.200 U	0.200 U	0.200 U	0.200 U	-	0.200 U	0.200 U					
Xylene, m-,p-	1000 ⁵	ug/L	2.00 U	2.00 U	2.00 U	2.00 U	-	2.00 U	2.00 U					
Xylene, o-	1000 ⁵	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U					
Method EPA 8270C (SVOCs)														
1,2,4,5-Tetrachlorobenzene		ug/L	11 U	-	11 U	_	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
1,2,4-Trichlorobenzene		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U
1,3,5-Trinitrobenzene		ug/L	56 U	-	55 U	-		47 U	_	46 U	-	47 U	53 U	-
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
1,3-Dinitrobenzene		ug/L	11 U	-	11 U	-		9.5 U	-	9.2 U	-	9.3 U	11 U	-
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/L	4.5 U	10.0 U	4.4 U	9.52 U		3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U
1,4-Naphthoquinone		ug/L	56 U	-	55 U	-		47 U	-	46 U	-	47 U	53 U	-
1-Methylnaphthalene				2.00 U		1.90 U			1.92 U		1.89 U	-		1.89 U
1-Naphthylamine		ug/L	11 U	-	11 U	-		9.5 U	-	9.2 U	-	9.3 U	11 U	-
2,2'-Oxybis[1-chloropropane]				10.0 U		9.52 U	-		9.62 U		9.43 U	-		9.43 U
2,3,4,6-Tetrachlorophenol		ug/L	56 U	-	55 U	-		47 U	-	46 U	-	47 U	53 U	-
2,4,5-Trichlorophenol		ug/L	11 U	25.0 U	11 U	23.8 U		9.5 U	24.0 U	9.2 U	23.6 U	9.3 U	11 U	23.6 U
2,4,6-Trichlorophenol		ug/L	11 U	10.0 U	11 U	9.52 U		9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
2,4-Dichlorophenol		ug/L	11 U	10.0 U	11 U	9.52 U		9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
2,4-Dimethylphenol		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
2,4-Dinitrophenol		ug/L	34 U	25.0 U	33 U	23.8 U	-	28 U	24.0 U	27 U	23.6 U	28 U	32 U	23.6 U
2,4-Dinitrotoluene		ug/L	11 U	10.0 U	11 U	9.52 U		9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
2,6-Dichlorophenol		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
2,6-Dinitrotoluene		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
2-Acetylaminofluorene		ug/L	110 U	-	110 U	-	-	95 U	-	92 U	-	93 U	110 U	-
2-Chloronaphthalene		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U
2-Chlorophenol		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
2-Methylnaphthalene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U
2-Naphthylamine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
2-Nitroaniline		ug/L	11 U	25.0 U	11 U	23.8 U	-	9.5 U	24.0 U	9.2 U	23.6 U	9.3 U	11 U	23.6 U
2-Nitrophenol		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
2-Picoline		ug/L	22 U	-	22 U	_	-	19 U	-	18 U	-	19 U	21 U	-
2-Toluidine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
3 & 4 Methylphenol		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
3,3'-Dichlorobenzidine		ug/L	56 U	10.0 U	55 U	9.52 U	-	47 U	9.62 U	46 U	9.43 U	47 U	53 U	9.43 U
3,3'-Dimethylbenzidine		ug/L	22 U	_	22 U	_	-	19 U	_	18 U	-	19 U	21 U	-
3-Methylcholanthrene	1	ug/L	22 U	_	22 U	_	_	19 U	_	18 U	-	19 U	21 U	_
3-Nitroaniline		ug/L	11 U	25.0 U	11 U	23.8 U	_	9.5 U	24.0 U	9.2 U	23.6 U	9.3 U	11 U	23.6 U
4,6-Dinitro-2-Methylphenol		ug/L	56 U	25.0 U	55 U	23.8 U	_	47 U	24.0 U	46 U	23.6 U	47 U	53 U	23.6 U
4-Amino-2.6-Dinitrotoluene		ug/L	56 U		55 U		_	47 U	_	46 U	_	47 U	53 U	_

		Parcel Number, Sample Number, and Sampled Date													
			500	500	010	010	010	650	650	550	550	200	200	200	
			MW-1-102813	MW-1-120313	MW-2-102813	MW-2-120313	MW-2-120413(16)	MW-3-102813	MW-3-120413	MW-4-102813	MW-4-120413	MW-5-102813	DUPLICATE-1-102813 (MW-5)	MW-5-120413	
	Regulatory		10/28/2013	12/3/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	10/28/2013	12/4/2013	
	Levels ²	Units													
4-Bromophenyl phenyl ether		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
4-Chloro-3-Methylphenol		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
4-Chloroaniline		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
4-Chlorophenyl-Phenylether		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
4-Nitroaniline		ug/L	11 U	25.0 U	11 U	23.8 U	-	9.5 U	24.0 U	9.2 U	23.6 U	9.3 U	11 U	23.6 U	
4-Nitrophenol (p-Nitrophenol)		ug/L	11 U	25.0 U	11 U	23.8 U	-	9.5 U	24.0 U	9.2 U	23.6 U	9.3 U	11 U	23.6 U	
5-Nitro-o-toluidine		ug/L	22 U	-	22 U	-	-	19 U	-	18 U	-	19 U	21 U	-	
7,12-Dimethylbenz(a)anthracene		ug/L	22 U	-	22 U	-	-	19 U	_	18 U	-	19 U	21 U	-	
Acenaphthene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Acenaphthylene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Aniline		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-	
Anthracene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Aramite, Total		ug/L	21 U	_	20 U	-	-	17 U	-	17 U	-	17 U	20 U	-	
Benzo(a)anthracene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Benzo(a)pyrene	0.16	ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Benzo(b)fluoranthene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Benzo(ghi)perylene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Benzo(k)fluoranthene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Benzyl Alcohol		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-	
Bis(2-Chloroethoxy)Methane		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
Bis(2-Chloroethyl)Ether		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
Bis(2-Ethylhexyl) Phthalate		ug/L	11 U	10.0 UJ	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
Butyl benzyl phthalate		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U	
Carbazole				10.0 U		9.52 U	-		9.62 U		9.43 U			9.43 U	
Chrysene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Cresol				10.0 U		9.52 U	-		9.62 U	-	9.43 U			9.43 U	
Diallate		ug/L	6.3 U	-	6.2 U	-	-	5.3 U	-	5.1 U		5.2 U	6.0 U	-	
Dibenzo(a,h)anthracene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Dibenzofuran		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U	
Dibutyl phthalate		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U	
Diethyl phthalate		ug/L	4.5 U	10.0 U	4.4 U	9.52 U		3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U	
Dimethoate		ug/L	22 U	-	22 U	-	-	19 U	-	18 U	-	19 U	21 U	-	
Dimethyl phthalate		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U	
Di-N-Octyl Phthalate		ug/L	4.5 U	10.0 U	4.4 U	9.52 U	-	3.8 U	9.62 U	3.7 U	9.43 U	3.7 U	4.3 U	9.43 U	
Diphenylamine Disulfoton (Di-Syston)		ug/L	11 U 56 U	-	11 U 55 U	-	-	9.5 U 47 U	-	9.2 U 46 U	-	9.3 U 47 U	11 U 53 U	-	
Ethanone. 1-Phenyl-		ug/L	11 U	-	11 U	-	-	9.5 U		9.2 U	-	9.3 U	11 U	-	
Ethoprop		ug/L ug/L	11 U 11 U	-	11 U	-	-	9.5 U	-	9.2 U 9.2 U	-	9.3 U 9.3 U	11 U	-	
Ethyl methanesulfonate		ug/L ug/L	11 U		11 U	_	-	9.5 U	-	9.2 U 9.2 U	+ -	9.3 U	11 U	-	
Fluoranthene		ug/L ug/L	4.5 U	_ 2.00 U	4.4 U	 1.90 U	_	9.5 U 3.8 U	 1.92 U	9.2 0 3.7 U	 1.89 U	9.3 U 3.7 U	4.3 U	_ 1.89 U	
Fluorene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U		3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Hexachlorobenzene		ug/L	4.5 0 11 U	10.0 U	11 U	9.52 U	_	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
Hexachlorobutadiene		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
Hexachlorocyclopentadiene		ug/L	56 U	10.0 U	55 U	9.52 U	_	47 U	9.62 U	46 U	9.43 U	47 U	53 U	9.43 U	
Hexachloroethane		ug/L	11 U	10.0 U	11 U	9.52 U	_	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
Hexachloropropene		ug/L	110 U	_	110 U	-	_	95 U	-	92 U	-	93 U	110 U	-	
Indeno(1,2,3-cd)pyrene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	_	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U	
Isodrin		ug/L	11 U		11 U	_	_	9.5 U	_	9.2 U	-	9.3 U	11 U	_	
Isophorone		ug/L	11 U	10.0 U	11 U	9.52 U	_	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U	
Isosafrole		ug/L	3.9 U		3.9 U	-	_	3.3 U	-	3.2 U	-	3.3 U	3.7 U	-	
Methapyrilene		ug/L	170 U	_	170 U	-	_	140 U	_	140 U	- 1	140 U	160 U	-	
Methyl methanesulfonate		ug/L	11 U	_	11 U	_	_	9.5 U	_	9.2 U	-	9.3 U	11 U	_	

		Parcel Number, Sample Number, and Sampled Date												
			500	500	010	010	010	650	650	550	550	200	200	200
			MW-1-102813	MW-1-120313	MW-2-102813	MW-2-120313	MW-2-120413(16)	MW-3-102813	MW-3-120413	MW-4-102813	MW-4-120413	MW-5-102813	DUPLICATE-1-102813 (MW-5)	MW-5-120413
	Regulatory		10/28/2013	12/3/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	12/4/2013	10/28/2013	10/28/2013	12/4/2013
	Levels ²	Units												
Methyl Parathion		ug/L	56 U	-	55 U	-	-	47 U	-	46 U	-	47 U	53 U	-
Naphthalene	160 ⁴	ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U
Nitrobenzene		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
N-Nitrosodiethylamine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	I	9.3 U	11 U	-
N-Nitrosodimethylamine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	I	9.3 U	11 U	-
N-Nitrosodi-n-butylamine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	I	9.3 U	11 U	-
N-Nitrosodi-n-propylamine		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
N-Nitrosodiphenylamine (as diphenylamine)		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
N-Nitrosomethylethylamine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
N-Nitrosomorpholine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
N-Nitrosopiperidine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
N-Nitrosopyrrolidine		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
o-Cresol (2-methylphenol)		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
Parathion (ethyl)		ug/L	56 U	-	55 U	-	-	47 U	-	46 U	-	47 U	53 U	-
Pentachlorobenzene		ug/L	11 U	-	11 U	-	-	9.5 U	-	9.2 U	-	9.3 U	11 U	-
Pentachloroethane		ug/L	56 U	-	55 U	-	-	47 U	-	46 U	-	47 U	53 U	-
Pentachloronitrobenzene		ug/L	56 U	-	55 U	-	-	47 U	-	46 U	-	47 U	53 U	-
Pentachlorophenol		ug/L	56 U	25.0 U	55 U	23.8 U	-	47 U	24.0 U	46 U	23.6 U	47 U	53 U	23.6 U
Phenacetin		ug/L	22 U	-	22 U	-	-	19 U	-	18 U	-	19 U	21 U	-
Phenanthrene		ug/L	4.5 U	2.00 U	4.4 U	1.90 U	-	3.8 U	1.92 U	3.7 U	1.89 U	3.7 U	4.3 U	1.89 U
Phenol		ug/L	11 U	10.0 U	11 U	9.52 U	-	9.5 U	9.62 U	9.2 U	9.43 U	9.3 U	11 U	9.43 U
Phorate		ug/L	56 U	-	55 U	-	-	47 U	-	46 U	-	47 U	53 U	-
Pronamide (Kerb)		ug/L	22 U	-	22 U	-	-	19 U	-	18 U	-	19 U	21 U	-
Pyrene		ug/L	11 U	2.00 U	11 U	1.90 U	-	9.5 U	1.92 U	9.2 U	1.89 U	9.3 U	11 U	1.89 U
Pyridine		ug/L	22 U	-	22 U	-	-	19 U	-	18 U	-	19 U	21 U	-
Quinoline, 4-nitro-, 1-oxid		ug/L	110 U	-	110 U	-	-	95 U	-	92 U	-	93 U	110 U	-
Thiodiglycol		ug/L	56 U	-	55 U	-		47 U	-	46 U	-	47 U	53 U	-

		Parcel Number, Sample Number, and Sampled Date											
			200	200	150	150	150	070	070	070	650	650	
			MW-6-102813	MW-6-120413	MW-7-102813	MW-7-120313	MW-7-120413(11)	MW-8-102813	MW-8-120313				OW-1-120413
	Regulatory		10/28/2013	12/4/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/3/2013		10/28/2013		12/4/2013
	Levels ²	Units	10/20/2010	12/4/2010	10/20/2010	12/0/2010	12/ 4/ 2010	10/20/2010	12/0/2010	12/20/2010	10/20/2010	12/ 4/ 2010	12/ 4/ 2010
Method NWTPH-Gx	Levels	•											
Gasoline-range petroleum hydrocarbons	1,000 ³	ug/L	100 U	100 U	100 U	100 U		100 U	100 U	90 U	100 U	100 U	
Method NWTPH-Dx	1,000	~8/ -	1000	2000		2000		2000	2000		1000		
Diesel-range petroleum hydrocarbons	500	ug/L	239 U	245 U	238 U	242 U		238 U	241 U	238 U	2,170	1,910	
Heavy oil-range petroleum hydrocarbons	500	ug/L	382 U	408 U	381 U	403 U		380 U	401 U	397 U	5,390	1,370	
Method EPA 200.8	000	ug/ L	362.0	400 0	3010	400 0		0000	4010	331.0	0,000	1,010	
Arsenic (Total)	5	ug/L	2.5	2.8	83	17	8.7	13	12	3.4	_		1.0 U
Arsenic (Dissolved)	<u> </u>	ug/L	2.0	1.8	79	13	7.2	4.7	4.5	-			1.0 U
Arsenic III		ug/L	-	-		13.5	-		-				1.0 0
Arsenic V	+	ug/L				3 U			_	_			
Barium (Total)	2,000	ug/L	68	110	110	110		90	110	87			_
Barium (Dissolved)	2,000	ug/L ug/L	62	91	100	85	-	<u> </u>	65	61			
Cadmium (Total)	5	ug/L ug/L	1.0 U	91 1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	_ 1 U			
	5	_	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U	1.0 U	10			
Cadmium (Dissolved)	50	ug/L	1.0 0 2.2	1.0 U 2.0 U	1.0 U 2.0 U	2.0 U	-	2.0 U	1.0 U 20 U	- 2 U			-
Chromium (Total)	50	ug/L					-			20	-		_
Chromium (Dissolved)	+	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	-	2.0 U	2.0 U	-			
Copper		ug/L	-	2.0 U		2.0 U	-		2.0 U	-			-
Copper	-	ug/L	-	2.0 U		2.0 U	-		2.0 U	-			-
Iron		ug/L	-	1,100		1,000	-		15,000	-			-
Iron		ug/L	-	25 U		25 U	-		3,700	-			-
Lead (Total)	15	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1 U	-		-
Lead (Dissolved)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	-			-
Manganese (Total)		ug/L	-	1,100	-	1,100	-	-	760	-	-		-
Manganese (Dissolved)		ug/L	980	1,100	660	1,000	-	630	730				-
Selenium (Total)	50	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1 U	-		-
Selenium (Dissolved)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	-			-
Silver (Total)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	-	1.0 U	1.0 U	1 U	-		-
Silver (Dissolved)		ug/L	1.0 U	1.0 U	1.0 U	1.0 U	_	1.0 U	1.0 U	_			-
Method EPA 245.1													
Mercury (Total)	2	ug/L	0.20 U	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U	0.333 U	_		-
Mercury (Dissolved)			0.20 U	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U				-
Method EPA 300.0													
Nitrate	10	ug/L	200 U	200	200 U	200 UJ	_	200 U	200 UJ	_	-	-	_
Sulfate		ug/L	10,200	12,500	7,540	6,480	-	1,370	1,420	-	-	-	-
Method RSK-175													
Methane		ug/L	107	90.0	63.0	87.0	_	3,050	2,860	-	-	3,250	_
Method EPA SM2320B													
Alkalinity, Total		ug/L	360,000	340,000	340,000	330,000	-	230,000	250,000	-	-	-	-
Method EPA 4500PE													
Phosphorus			-	60.0 U	-	101	-	-	509	-	-	-	-
Method EPA 8260B (VOCs)													
1,1,1,2-Tetrachloroethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	-	1.00 U	1.00 U	-
1,1,1-Trichloroethane	200	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	-	1.00 U	1.00 U	-
1,1,2,2-Tetrachloroethane	1 1	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	-	1.00 U	1.00 U	-
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	-	1.00 U	1.00 U	_
1,1,2-Trichloroethane	1 1	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	-	1.00 U	1.00 U	_
1,1-Dichloroethane	1	ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	_	1.00 U	1.00 U	_
						Parc	el Number, Sample	Number, and Sam	pled Date				
---	---------------------	--------------	------------------	-------------	------------------	-------------	-------------------	------------------	-------------	-------------	------------------	-------------	-------------
			200	200	150	150	150	070	070	070	650	650	
			MW-6-102813	MW-6-120413	MW-7-102813	MW-7-120313	MW-7-120413(11)	MW-8-102813	MW-8-120313	MW-9-122013	B-1-102813	B-1-120413	0W-1-120413
	Regulatory		10/28/2013	12/4/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/3/2013	12/20/2013	10/28/2013	12/4/2013	12/4/2013
	Levels ²	Units	-, -,	, ,	-, -,	, -,	, ,	-, -,	, -,	, , -,	-, -,	, ,	, ,
1,1-Dichloroethene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	-	1.00 U	1.00 U	-
1,1-Dichloropropene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	-
1,2,3-Trichlorobenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	-	1.00 U	1.00 U	_
1,2,3-Trichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	-	1.00 U	1.00 U	_
1,2,4-Trichlorobenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	-	1.00 U	1.00 U	_
1,2,4-Trimethylbenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	-
1,2-Dibromo-3-Chloropropane		ug/L	5.00 U	5.00 U	5.00 U	5.00 U		5.00 U	5.00 U		5.00 U	5.00 U	-
1,2-dibromoethane (EDB)	0.01	ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	-	1.00 U	1.00 U	_
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	-	1.00 U	1.00 U	-
1,2-Dichloroethane (EDC)	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	-	1.00 U	1.00 U	-
1,2-Dichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	-
1,3,5-Trimethylbenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	-
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	-	1.00 U	1.00 U	-
1,3-Dichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	_	1.00 U	1.00 U	_
1,4-Dichlorobenzene (p-Dichlorobenzene)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	_	1.00 U	1.00 U	_
2,2-Dichloropropane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	_	1.00 U	1.00 U	_
2-Butanone (MEK)		+-a/ -	-	10.0 U		10.0 U		-	10.0 U	-		10.0 U	-
2-Butanone, 4-(Acetyloxy)-		ug/L	10.0 U	10.0 U	10.0 U	10.0 U		10.0 U	10.0 U	-	10.0 U	10.0 U	_
2-Chlorotoluene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	-
2-Hexanone		ug/L	10.0 U	10.0 U	10.0 U	10.0 U		10.0 U	10.0 U	_	10.0 U	10.0 U	_
4-Chlorotoluene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Acetone		ug/L	25.0 U	25.0 U	25.0 U	25.0 U		25.0 U	25.0 U	_	25.0 U	25.0 U	_
Benzene	5	ug/L	0.200 U	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	0.2 U	0.200 U	0.200 U	_
Bromobenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	-	1.00 U	1.00 U	_
Bromochloromethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	_
Bromodichloromethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	_
Bromoform (Tribromomethane)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	_
Bromomethane		ug/L	5.00 U	5.00 U	5.00 U	5.00 U		5.00 U	5.00 U		5.00 U	5.00 U	_
Butane, 2-methoxy-2-methyl-		ug/L	1.00 U	-	1.00 U	-		1.00 U	-		1.00 U	-	_
Carbon Disulfide		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	_
Carbon Tetrachloride	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	_
Chlorobenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	_
Chloroethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U		1.00 U	1.00 U	_
Chloroform		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	_	1.00 U	1.00 U	_
Chloromethane		ug/L	3.00 U	3.00 U	3.00 U	3.00 U		3.00 U	3.00 U		3.00 U	3.00 U	_
cis-1,2-Dichloroethene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Cis-1,3-Dichloropropene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
D14-Terphenyl		ug/L	5.00 U	-	5.00 U	-		5.00 U	-	_	5.00 U	-	_
Dibromochloromethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Dibromomethane		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Dichlorodifluoromethane (CFC-12)		ug/L ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	_	1.00 U	1.00 U	_
Ethylbenzene	700	ug/L ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	0.5 U	1.00 U	1.00 U	_
HCFC-21	,	ug/L	0.100 U	0.100 U	0.100 U	0.100 U		0.100 U	0.100 U	-	0.100 U	0.100 U	_
Hexachlorobutadiene		ug/L ug/L	2.00 U	2.00 U	2.00 U	2.00 U	-	2.00 U	2.00 U	_	2.00 U	2.00 U	_
Hexane		ug/L ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	_	1.00 U	1.00 U	_
Isopropylbenzene (Cumene)		ug/L ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	_	1.00 U	1.00 U	_
Methyl t-butyl ether (MTBE)	20	ug/L ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	_	1.00 U	1.00 U	
Methylene Chloride	5	ug/L ug/L	10.0 U	10.0 U	10.0 U	10.0 U	-	10.0 U	1.00 U	_	10.0 U	10.0 U	_
Naphthalene	-	ug/L ug/L	2.00 U	2.00 U	2.00 U	2.00 U	-	2.00 U	2.00 U	_	4.69	6.23	-
n-Butylbenzene	160 ⁴	ug/L ug/L	1.00 U	1.00 U	2.00 U	2.00 U	-	1.00 U	2.00 U	-	4.69 1.00 U	1.00 U	_
													-
													-
n-Propylbenzene Phenol, 2-bromo-		ug/L ug/L	1.00 U 10.0 U	1.00 U _	1.00 U 10.0 U	1.00 U -	- -	1.00 U 10.0 U	1.00 U _		1.00 U 10.0 U	1.00 U _	

						Parc	el Number, Sample	Number, and San	npled Date				
			200	200	150	150	150	070	070	070	650	650	
			MW-6-102813	MW-6-120413	MW-7-102813		MW-7-120413(11)	MW-8-102813	MW-8-120313		B-1-102813	B-1-120413	0W-1-120413
	Regulatory		10/28/2013	12/4/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/3/2013	12/20/2013	10/28/2013		12/4/2013
	Levels ²	Units	,,		,,	, _,		,,	, _,	, _ , ,	,,		
p-lsopropyltoluene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U	_	1.00 U	1.00 U	_	1.00 U	1.00 U	_
Sec-Butylbenzene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Styrene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Tert-Butylbenzene		.0		1.00 U		1.00 U			1.00 U	_		1.00 U	_
Tetrachloroethene (PCE)	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Toluene	1.000	ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	0.5 U	1.00 U	1.00 U	_
Total Xylenes	_,	÷8/ –		-						1.5 U			-
Trans-1,2-Dichloroethene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U		1.00 U	1.00 U	-
Trans-1,3-Dichloropropene		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Trans-1,4-Dichloro-2-butene		ug/L	0.100 U	0.100 U	0.100 U	0.100 U		0.100 U	0.100 U	_	0.100 U	0.100 U	_
Trichloroethene (TCE)	5	ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Trichlorofluoromethane (CFC-11)		ug/L	1.00 U	1.00 U	1.00 U	1.00 U		1.00 U	1.00 U	_	1.00 U	1.00 U	_
Vinyl Chloride	0.2	ug/L	0.200 U	0.200 U	0.200 U	0.200 U		0.200 U	0.200 U	_	0.200 U	0.200 U	_
Xylene, m-,p-	1000 ⁵	ug/L	2.00 U	2.00 U	2.00 U	2.00 U		2.00 U	2.00 U	0.5 U	2.00 U	2.00 U	_
Xylene, o-	1000 ⁵	ug/L ug/L	1.00 U	1.00 U	1.00 U	1.00 U	-	1.00 U	1.00 U	0.5 U	2.00 U	1.00 U	-
Method EPA 8270C (SV0Cs)	1000	ug/ L	1.000	1.00 0	1.000	1.00 0	_	1.00 0	1.000	0.0 0	1.00 0	1.00 0	_
1,2,4,5-Tetrachlorobenzene	- <u> </u>	ug/L	9.2 U	_	9.7 U	_	-	9.5 U	_	_	_	_	_
1.2.4-Trichlorobenzene		ug/L	3.7 U	9.43 U	3.9 U	10.0 U		3.8 U	25.0 U	_			_
1,2-Dichlorobenzene (o-Dichlorobenzene)		ug/L ug/L	3.7 U	9.43 U	3.9 U	10.0 U	_	3.8 U	25.0 U	_		_	_
1,3.5-Trinitrobenzene	_	ug/L ug/L	46 U	-	49 U	- 10.0 0	_	48 U	-	_		_	_
1,3-Dichlorobenzene (m-Dichlorobenzene)		ug/L ug/L	9.2 U	9.43 U	9.7 U	10.0 U	_	9.5 U	25.0 U	_		_	_
1,3-Dinitrobenzene		ug/L ug/L	9.2 U 9.2 U	9.43 0	9.7 U	10.0 0	-	9.5 U	23.00	_	-	_	-
1,4-Dichlorobenzene (p-Dichlorobenzene)			3.7 U	9.43 U	9.7 U 3.9 U	 10.0 U	-	3.8 U	 25.0 U	_	-	_	-
1,4-Naphthoquinone		ug/L ug/L	46 U	9.43 0	3.9 U	10.0 0	_	48 U	23.00	_	-	_	_
1-Methylnaphthalene		ug/ L	48.0	 1.89 U	49.0	 2.00 U	-	40 0	- 5.00 U	_	-	_	-
1-Naphthylamine		ug/L	9.2 U	1.89 0	9.7 U	2.00 0	_	9.5 U	5.00 0	_		_	_
2,2'-Oxybis[1-chloropropane]		ug/ L	9.2 0	9.43 U	9.70	 10.0 U		9.5 0	_ 25.0 U	_	-	-	
2,3,4,6-Tetrachlorophenol		ug/L	- 46 U	9.43 0	49 U	10.0 0	-	48 U	23.00	_		_	-
2,4,5-Trichlorophenol			9.2 U	 23.6 U	49 0 9.7 U	 25.0 U		48 U 9.5 U	- 62.5 U	_	-	_	
2,4,6-Trichlorophenol		ug/L	9.2 U 9.2 U	9.43 U	9.7 U 9.7 U	25.0 U	-	9.5 U	25.0 U	_	-	-	-
		ug/L	9.2 U 9.2 U	9.43 U	9.7 U 9.7 U	10.0 U	-	9.5 U	25.0 U	_	-	-	-
2,4-Dichlorophenol 2,4-Dimethylphenol		ug/L			9.7 U	10.0 U	-	0.5.1	25.0 U	-			-
2,4-Dinitrophenol		ug/L	9.2 U 28 U	9.43 U 23.6 U	9.7 U 29 U	25.0 U	-	9.5 U 29 U	23.0 U	_	-		-
2,4-Dinitrophenoi 2,4-Dinitrotoluene		ug/L					-					-	-
		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
2,6-Dichlorophenol 2,6-Dinitrotoluene		ug/L	9.2 U 9.2 U	- 9.43 U	9.7 U 9.7 U	- 10.0 U	-	9.5 U 9.5 U	– 25.0 U	-	-	-	-
2-Acetylaminofluorene		ug/L	9.2 U 92 U	9.43 0	9.7 U 97 U	10.0 0	-	9.5 U 95 U	25.00	-	-	-	-
2-Acetylaminolitorene 2-Chloronaphthalene		ug/L	3.7 U	9.43 U	3.9 U	 10.0 U		3.8 U	_ 25.0 U		-		
•		ug/L					-			-		-	-
2-Chlorophenol		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-		-	-
2-Methylnaphthalene		ug/L	5.9	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-		-	-
2-Naphthylamine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-		-	-
2-Nitroaniline		ug/L	9.2 U	23.6 U	9.7 U	25.0 U	-	9.5 U	62.5 U	-	-	-	-
2-Nitrophenol		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
2-Picoline		ug/L	18 U	-	19 U	-	-	19 U	-	-	-	-	-
2-Toluidine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
3 & 4 Methylphenol		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
3,3'-Dichlorobenzidine		ug/L	46 U	9.43 U	49 U	10.0 U	-	48 U	25.0 U	-	-	-	-
3,3'-Dimethylbenzidine		ug/L	18 U	-	19 U	-	-	19 U	-	-	-	-	-
3-Methylcholanthrene		ug/L	18 U	-	19 U	-	-	19 U	-	-	-	-	-
3-Nitroaniline		ug/L	9.2 U	23.6 U	9.7 U	25.0 U	-	9.5 U	62.5 U	-	-	-	-
4,6-Dinitro-2-Methylphenol		ug/L	46 U	23.6 U	49 U	25.0 U	-	48 U	62.5 U	-	-	-	-
4-Amino-2,6-Dinitrotoluene		ug/L	46 U	-	49 U	-	-	48 U	-	-	-	-	-

Please refer to footnotes on Page 10 GEOENGINEERS

				Parcel Number, Sample Number, and Sampled Date									
			200	200	150	150	150	070	070	070	650	650	
			MW-6-102813	MW-6-120413	MW-7-102813	MW-7-120313	MW-7-120413(11)	MW-8-102813	MW-8-120313	MW-9-122013	B-1-102813	B-1-120413	0W-1-120413
	Regulatory		10/28/2013	12/4/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/3/2013	12/20/2013	10/28/2013		12/4/2013
	Levels ²	Units	,,	,		, -,		,,	, _,	,,	,,	, ., _ = = = =	
4-Bromophenyl phenyl ether		ug/L	9.2 U	9.43 U	9.7 U	10.0 U		9.5 U	25.0 U	_			-
4-Chloro-3-Methylphenol		ug/L	9.2 U	9.43 U	9.7 U	10.0 U		9.5 U	25.0 U	_			
4-Chloroaniline		ug/L	9.2 U	9.43 U	9.7 U	10.0 U		9.5 U	25.0 U	_			
4-Chlorophenyl-Phenylether		ug/L	9.2 U	9.43 U	9.7 U	10.0 U		9.5 U	25.0 U	_			
4-Nitroaniline		ug/L	9.2 U	23.6 U	9.7 U	25.0 U		9.5 U	62.5 U	_		-	
4-Nitrophenol (p-Nitrophenol)		ug/L	9.2 U	23.6 U	9.7 U	25.0 U		9.5 U	62.5 U	_		-	
5-Nitro-o-toluidine		ug/L	18 U		19 U	-		19 U	-	_		-	
7,12-Dimethylbenz(a)anthracene		ug/L	18 U		19 U			19 U	_	_		-	
Acenaphthene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	_	3.8 U	5.00 U	_		-	
Acenaphthylene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	_	3.8 U	5.00 U	_	_	_	
Aniline		ug/L	9.2 U	-	9.7 U	2.00 0	_	9.5 U	-	_	_	_	
Anthracene			3.7 U	1.89 U	3.9 U	2.00 U	_	3.8 U	5.00 U	_	_	_	
Aramite, Total		ug/L ug/L	17 U	-	3.9 U 18 U	2.00 0	-	18 U	5.00 0	_	-	-	-
Benzo(a)anthracene			3.7 U	 1.89 U	3.9 U	2.00 U	-	3.8 U	- 5.00 U	_	-	-	-
	0.1 ⁶	ug/L	3.7 U	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	_	-	-	
Benzo(a)pyrene Benzo(b)fluoranthene	0.1	ug/L	3.7 U	1.89 U	3.9 U 3.9 U	2.00 U	-	3.8 U 3.8 U	5.00 U	-	-	-	
Benzo(ghi)perylene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	_	3.8 U	5.00 U	_	-	-	-
Benzo(k)fluoranthene		ug/L ug/L	3.7 U	1.89 U	3.9 U 3.9 U	2.00 U	-	3.8 U 3.8 U	5.00 U	-	-	-	
Benzyl Alcohol			9.2 U		9.7 U			9.5 U					
		ug/L		- 9.43 U	9.7 U 9.7 U	_ 10.0 U	-	9.5 U	– 25.0 U	-	-	-	-
Bis(2-Chloroethoxy)Methane		ug/L	9.2 U				-			-	-	-	-
Bis(2-Chloroethyl)Ether		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	
Bis(2-Ethylhexyl) Phthalate		ug/L	9.2 U	9.43 U	9.7 U	10.0 UJ	-	9.5 U	25.0 U	-	-	-	-
Butyl benzyl phthalate		ug/L	3.7 U	9.43 U	3.9 U	10.0 U	-	3.8 U	25.0 U	-	-	-	-
Carbazole		. //	-	9.43 U	0.0.11	10.0 U	-	0.0.11	25.0 U	-		-	-
Chrysene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-	-	-	-
Cresol		. //	-	9.43 U	5.4.1	10.0 U	-	5.0.1	25.0 U	-		-	-
Diallate		ug/L	5.2 U	-	5.4 U	-	-	5.3 U	-	-	-	-	-
Dibenzo(a,h)anthracene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-	-	-	-
Dibenzofuran		ug/L	3.7 U	9.43 U	3.9 U	10.0 U	-	3.8 U	25.0 U	-	-	-	-
Dibutyl phthalate		ug/L	3.7 U	9.43 U	3.9 U	10.0 U	-	3.8 U	25.0 U	-	-	-	-
Diethyl phthalate		ug/L	3.7 U	9.43 U	3.9 U	10.0 U	-	3.8 U	25.0 U	-	-	-	-
Dimethoate		ug/L	18 U	-	19 U		-	19 U	-	-	-	-	-
Dimethyl phthalate		ug/L	3.7 U	9.43 U	3.9 U	10.0 U	-	3.8 U	25.0 U	-	-	-	-
Di-N-Octyl Phthalate		ug/L	3.7 U	9.43 U	3.9 U	10.0 U	-	3.8 U	25.0 U	-	-	-	_
Diphenylamine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	_
Disulfoton (Di-Syston)		ug/L	46 U	-	49 U	-	-	48 U	-	-	-	-	-
Ethanone, 1-Phenyl-		ug/L	9.2 U	-	9.7 U	_	-	9.5 U	-	-	-	-	-
Ethoprop		ug/L	9.2 U	_	9.7 U	-	-	9.5 U	-	-	-	-	-
Ethyl methanesulfonate		ug/L	9.2 U	_	9.7 U	_	-	9.5 U	_	-	-	-	-
Fluoranthene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-	-	-	-
Fluorene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-	-	-	-
Hexachlorobenzene		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
Hexachlorobutadiene		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
Hexachlorocyclopentadiene		ug/L	46 U	9.43 U	49 U	10.0 U	-	48 U	25.0 U	-	-	-	-
Hexachloroethane		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
Hexachloropropene		ug/L	92 U	-	97 U	-	-	95 U	-	-	-	-	-
Indeno(1,2,3-cd)pyrene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-	-	-	-
Isodrin		ug/L	9.2 U	-	9.7 U	-	_	9.5 U	-	-	_	-	-
Isophorone		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	_	9.5 U	25.0 U	-	_	-	-
Isosafrole		ug/L	3.2 U	-	3.4 U	-	-	3.3 U	-	-	-	-	-
Methapyrilene		ug/L	140 U	-	150 U	-	-	140 U	-	-	-	-	-
Methyl methanesulfonate		ug/L	9.2 U	-	9.7 U		-	9.5 U	-	-	-	-	-

Please refer to footnotes on Page 10 GEOENGINEERS

						Parce	el Number, Sample	Number, and San	npled Date				
			200	200	150	150	150	070	070	070	650	650	
			MW-6-102813	MW-6-120413	MW-7-102813	MW-7-120313	MW-7-120413(11)	MW-8-102813	MW-8-120313	MW-9-122013	B-1-102813	B-1-120413	OW-1-120413
	Regulatory		10/28/2013	12/4/2013	10/28/2013	12/3/2013	12/4/2013	10/28/2013	12/3/2013	12/20/2013	10/28/2013	12/4/2013	12/4/2013
	Levels ²	Units											
Methyl Parathion		ug/L	46 U	-	49 U	-	-	48 U	-	-	-	-	-
Naphthalene	160 ⁴	ug/L	4.2	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-	-	-	-
Nitrobenzene		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
N-Nitrosodiethylamine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
N-Nitrosodimethylamine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
N-Nitrosodi-n-butylamine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
N-Nitrosodi-n-propylamine		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
N-Nitrosodiphenylamine (as diphenylamine)		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
N-Nitrosomethylethylamine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
N-Nitrosomorpholine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
N-Nitrosopiperidine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
N-Nitrosopyrrolidine		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
o-Cresol (2-methylphenol)		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
Parathion (ethyl)		ug/L	46 U	-	49 U	-	-	48 U	-	-	-	-	-
Pentachlorobenzene		ug/L	9.2 U	-	9.7 U	-	-	9.5 U	-	-	-	-	-
Pentachloroethane		ug/L	46 U	-	49 U	-	-	48 U	-	-	-	-	-
Pentachloronitrobenzene		ug/L	46 U	-	49 U	-	-	48 U	-	-	-	-	-
Pentachlorophenol		ug/L	46 U	23.6 U	49 U	25.0 U	-	48 U	62.5 U	-	-	-	-
Phenacetin		ug/L	18 U	-	19 U	-	-	19 U	-	-	-	-	-
Phenanthrene		ug/L	3.7 U	1.89 U	3.9 U	2.00 U	-	3.8 U	5.00 U	-	-	-	-
Phenol		ug/L	9.2 U	9.43 U	9.7 U	10.0 U	-	9.5 U	25.0 U	-	-	-	-
Phorate		ug/L	46 U	-	49 U	-	-	48 U	-	-	-	-	-
Pronamide (Kerb)		ug/L	18 U	-	19 U	-	-	19 U	-	-	-	-	-
Pyrene		ug/L	9.2 U	1.89 U	9.7 U	2.00 U	-	9.5 U	5.00 U	-	-	-	-
Pyridine		ug/L	18 U	-	19 U	-	-	19 U	-	-	-	-	-
Quinoline, 4-nitro-, 1-oxid		ug/L	92 U	-	97 U	-	-	95 U	-	-	-	-	-
Thiodiglycol		ug/L	46 U	-	49 U	-	-	48 U	-	-		-	-

Notes:

¹Chemical analyses conducted by TestAmerica in Spokane, Washington.

²Regulatory level refers to Washington State Model Toxics Control Act (MTCA) Method A cleanup levels unless otherwise footnoted.

³Washington State Model Toxics Control Act (MTCA) Method A cleanup level for gasoline-range petroleum hydrocarbons is 1,000 µg/l, if benzene is not detected; otherwise the cleanup level is 800 µg/l.

⁴Cleanup level refers to sum of naphthalenes.

⁵Cleanup level for total xylenes.

⁶Cleanup level referenced to benzo (a) pyrene. If other carcinogenic PAHs are present, the cleanup level represents the total carcinogenic PAH concentration.

Bold indicates concentration was detected above reporting limit.

Red outline indicates concentration greater than regulatory level.

Shading indicates the reporting limit of a non-detected analyte exceeded the MTCA Method A Cleanup Level.

U indicates analyte was not detected at a concentration greater than the listed reporting limit.

J indicates result is qualified as estimated. Refer to applicable Data Validation Reports for details. Result is less than the Reporting Limit (RL) or equal to or greater than the Method Detection Limit (MDL) and the reported concentration is an approximate value.

- = not applicable; mg/L = milligrams per liter; μ g/L = micrograms per liter

Table 6

Summary of Chemical Analytical Results - Metals and Parameters¹ in Surface Water

Former Cashmere Mill Site

Cashmere, Washington

		Sam	ple Number and Date Samp	led
	Units	DOWNSTREAM-111313 11/13/2013	MIDSTREAM-111313 11/13/2013	UPSTREAM-111313 11/13/2013
Method EPA 200.7			,,	,,
Arsenic (Total)	mg/L	0.0250 U	0.0250 U	0.0250 U
Arsenic (Dissolved)	mg/L	0.0250 U	0.0250 U	0.0250 U
Barium (Total)	mg/L	0.0731	0.0724	0.0342
Barium (Dissolved)	mg/L	0.0515	0.0495	0.0248
Cadmium (Total)	mg/L	0.00500 U	0.00500 U	0.00500 U
Cadmium (Dissolved)	mg/L	0.00500 U	0.00500 U	0.00500 U
Chromium (Total)	mg/L	0.0100 U	0.0100 U	0.0100 U
Chromium (Dissolved)	mg/L	0.0100 U	0.0100 U	0.0100 U
Copper (Total)	mg/L	0.0100 U	0.0100 U	0.0100 U
Copper (Dissolved)	mg/L	0.0100 U	0.0100 U	0.0100 U
Iron (Total)	mg/L	0.0375 U	0.0759	0.107
Iron (Dissolved)	mg/L	0.0375 U	0.0375 U	0.0375 U
Lead (Total)	mg/L	0.0175 U	0.0175 U	0.0175 U
Lead (Dissolved)	mg/L	0.0188 U	0.0188 U	0.0188 U
Selenium (Total)	mg/L	0.0625 U	0.0625 U	0.0625 U
Selenium (Dissolved)	mg/L	0.0625 U	0.0625 U	0.0625 U
Silver (Total)	mg/L	0.0250 U	0.0250 U	0.0250 U
Silver (Dissolved)	mg/L	0.0125 U	0.0125 U	0.0125 U
Method EPA 245.1				
Mercury (Total)	mg/L	0.000333 U	0.000333 U	0.000333 U
Mercury (Dissolved)	mg/L	0.000250 U	0.000250 U	0.000250 U
Method SM2320				
Alkalinity, Total	mg/L	253	253	204
Method SM4500H+B				
рН	SU	7.52 J	7.39 J	7.44 J
Method EPA 120.1		<u></u> _	· · · · · · · · · · · · · · · · · · ·	
Specific Conductance	uS/cm	551	523	429

Notes:

¹Chemical analyses conducted by TestAmerica of Spokane, Washington.

U indicates analyte was not detected at a concentration greater than the listed reporting limit (RL).

J indicates result is an approximate level. Refer to applicable Data Validation Report in Appendix C for details.

Bold indicates concentration was detected above reporting limit.

mg/L = milligrams per liter; uS/cm = microsiemens per centimeter; SU = standard units.

Table 7

Summary of Groundwater Level Measurements

Cashmere Former Mill Site Cashmere, Washington

		Top of Casing	Depth to	Groundwater
Well	Date	Elevation ¹	Water ²	Elevation ¹
Number	Measured	(feet)	(feet)	(feet)
MW-1	10/28/13	788.78	6.83	781.95
	12/03/13		6.41	782.37
MW-2	10/28/13	788.91	5.90	783.01
	12/03/13		5.70	783.21
MW-3	10/28/13	790.25	7.36	782.89
	12/03/13		7.23	783.02
MW-4	10/28/13	788.79	4.83	783.96
	12/03/13		4.72	784.07
MW-5	10/28/13	786.99	2.67	784.32
	12/03/13		2.57	784.42
MW-6	10/28/13	787.28	2.55	784.73
	12/03/13		2.47	784.81
MW-7	10/28/13	790.49	3.10	787.39
	12/03/13		3.03	787.46
MW-8	10/28/13	794.95	3.87	791.08
	12/03/13		3.87	791.08
OW-1	10/28/13	794.91	4.45	790.46
	12/03/13		4.45	790.46
OW-4	10/28/13	795.80	5.09	790.71
	12/04/13	1	5.08	790.72
OW-7	10/28/13	792.03	2.60	789.43
	12/04/13] Γ	2.54	789.49
B-1	10/28/13	789.79	6.26	783.53
	12/03/13	1	6.34	783.45

Notes:

¹Elevations are referenced to NAVD 88. Top of casing elevation survey performed by LandLine Survey.

 $^{2}\mbox{Depth}$ to water measurements referenced to the top of PVC casing.

Data References Existing site boundary, parcel, previous explorations, remedial site boundaries, and PCS Soil stockpiles based on data provided by Maul, Foster & Alongi, Inc. and RH2 Engineering Inc., 2013. Imagery from Google Earth Pro, 2013. Projection: NAD 1983 NSRS2007 StatePlane Oregon North FIPS 360
Notes: 1. Parcel labels in drawing refer to the last three digits in the parcel nur Parcels in map include:
231905924005, 231905925010, 231905110650, 231905110550, 23 231905110600, 231905141200, 231905110150, 231905141250, 23 2. The locations of all features shown are approximate.
3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

- Surface Water Location Regulatory Levels Not Applicable

- Approximate Location of Previous Remedial Excavation Areas

Area of Concern Previously Identified by Maul Foster Alongi GEOENGINEERS

Figure 2

- Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet Notes: 1. Parcel labels in drawing refer to the last three digits in the parcel numbers below. Parcels in map include: 231905924005, 23190525010, 231905110650, 231905110550, 231905110500, 231906110600, 231905141200, 231905110150, 231905141250, 231905924070. 2. The locations of all features shown are approximate. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. Method A Cleanup Levels

- Surface Water Location -Regulatory Levels Not Applicable

Previous Pilot Wood Waste Area

Feet

80

GEOENGINEERS

Figure 5

N			SYME	201.6	TYPICAL	SYM	IBOL
	AJOR DIVIS	IONS	GRAPH		DESCRIPTIONS	GRAPH	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		4
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50% RETAINED ON NO.	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS		ੇ Gr
200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	Ţ	Me
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		Me pie
	SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		Gr
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY INORGANIC CLAYS OF LOW TO		Dis geo
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	/	Ap ch
SOILS			h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Ma
NORE THAN 50% PASSING NO. 200 SIEVE SILTS AND CLAYS				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		Di: ge
		LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		Ap ch
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
		SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		La
	2.4	mpler Symb -inch I.D. split ndard Penetra	barrel		<u>15</u>	AL CA CP CS DS HA MC	Att Ch La Co Dii Hy
Blow	Pis Dir Bul	ect-Push lk or grab	n sample	are ac th	e number	MD OC PM PI PP PPM SA TX UC	Mc Mc Pe Pla Po Pa Sie Tri Un
of bl	Pis Dire Dire Bul recount is rece ows required ince noted).	ton ect-Push	ampler [·] 12	inches	(or	MD OC PM PI PP PA SA TX UC VS	Mo Or Pe Pla Po Pa Sie Tri Un Va
of blo dista and o	Pis Dire Dire Buil recount is rece ows required ince noted). drop.	ton ect-Push lk or grab orded for drive l to advance sa	ampler 12 on log for	inches hamme	(or r weight	MD OC PM PI PP PPM SA TX UC	Mo Or Pe Pla Po Pa Sie Tri Ur Va

AL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	TS	Topsoil/ Forest Duff/Sod

undwater Contact

sured free product in well or ometer

phic Log Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

erial Description Contact

nct contact between soil strata or ogic units

roximate location of soil strata ge within a geologic soil unit

oratory / Field Tests

t fines

- rberg limits
- mical analysis pratory compaction test
- solidation test
- ct shear
- rometer analysis
- sture content
- sture content and dry density
- anic content
- neability or hydraulic conductivity
- ticity index
- ket penetrometer s per million
- e analysis
- cial compression onfined compression
- shear

en Classification

- isible Sheen
- nt Sheen
- erate Sheen /y Sheen
 - ested

er understanding of subsurface explorations were made; they are

Project Location:

Project Number:

18593-001-02

GDT/GFI8

Ë

MM

4 Path

Figure A-2 Sheet 1 of 1

Project Location: Cashmere, Washington 18593-001-02 Project Number:

Figure A-3 Sheet 1 of 1

Drilled	<u>S</u> 10/9	8 <u>tart</u> /2013		<u>En</u> 10/9/		Total Depth	(ft)	21		Logged By SHL Checked By DRL	Driller Casc	ade Drilling			Drilling Method	Hollow-S	Stem Auger
Hammer Data	_		30	00 (lt	os) / 3	0 (in) D	rop		Dril Equ	ling Jipment	CME 75			well wa	s installed	on 10/9/20 ⁻	13 to a depth of 20
Surface E Vertical D		,	ft)			90.53 VD88				o of Casing vation (ft)	790.25		(ft). <u>Ground</u>	water	п	epth to	
Easting () Northing (3257.96 337.29	i			izontal um	NAD 83-98		<u>Date Me</u> 10/28/			Vepth to Vater (ft) 7.4	Elevation (f 783.2
Notes:													1				
			F	FIEL	D DA	ΔTA										WELL	LOG
Elevation (feet)	Deptil (reet)	Interval Decovered (in)		Blows/foot	Collected Sample	Sample Name	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)		1	Steel Surface Monument
<u>1</u> 98 (5 - - - 5 -			50/6"		<i>č</i> ŏ //W-3 (5)			D O	Dark gray fine to co cobbles (dense, - - - -		ilt, gravel and	- - - - - NS	<i>Ī</i> ≯ <1	1.5'- 2.0'- 3.0'-		Concrete surfac seal Bentonite chips 2-inch, Scheduk 40 PVC well cas
<u>10</u>	- 0	1	2	5	M	IW-3 (10)			Fill	Becomes wet Dark gray silty fine t and wood debris Wood chips	o coarse sand w (loose, wet) (fill	ith gravel — —)	- - - - NS	<1			2/12 silica sand 2-inch, Schedulu 40 PVC well screen, 0.010-in
-1 ¹⁵ 15	- 5	1	8	50/6"	M	IW-3 (15)	VITONO ONO OT		GM -	Gray silty fine to coc cobbles (dense, Gray fine to mediun and trace silt (de	wet)		- - - NS	<1			(10-slot)
17 ^{0 20}	- - 0	1	8	50/6"	N	IW-3 (20)				-			- - NS	<1	20.0'-		Well cap
_10						IW-3 (20)	f syml		SP	Gray fine to medium and trace silt (de	n sand with grave	el, cobbles	- - - NS	<1			Well cap
											nine ca 14/a 11						
										og of Monito	-		o Mill (Sito 1	Data Ci		comont
G	EC	bΕ	N	G	INE	ER	5 /	D	1	Project: Project Locatio Project Numbe	n: Cashm	r Cashmer ere, Wash 001-02			Jala G	ap Asse	Figure A-4 Sheet 1 of 1

Project Number:

18593-001-02

Project Number:

Pat Date:

Figure A-5 Sheet 1 of 1

Project: Former Cashmere Mill Site, Data Gap Assessment GEOENGINEERS Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-6 Sheet 1 of 1

ENVIRONMENTAL GEOENGINEERS8.GDT/GEI8 80 I\02\GINT\1859300102 MW LOGS.GPJ 4 Path Date:

Project Location: Cashmere, Washington Figure A-7 Project Number: 18593-001-02 Sheet 1 of 1

Sheet 1 of 1

18593-001-02

Project Number:

L B C MW 4 Path Date:

GEOENGINEERS

Cashmere, Washington Project Location: 18593-001-02 Project Number:

Figure A-10 Sheet 1 of 1

Drilled 10,		End Tot 25/2013 De	tal pth (ft))	4	Logged By KAH Checked By DRL	Driller Environmental	West		Drilling Method Air Rotary
Surface Elev /ertical Dat	evation (ft) tum	Undeterm	ined			ammer ata 140 (lbs) / 30 (in) Drop	Drilling Equipment Schram T-300		
_atitude _ongitude		47.5204 -120.479	18 144		S D	bystem Datum	Geographic WGS84	Groun Date M		Depth to
Notes:										
-		LD DATA								
Elevation (feet) Depth (feet)	Interval Recovered (in) Blows/foot	Collected Sample Sample Name Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
0 -	_				GP	Gray fine to coarse g and occasional c	gravel with trace silt, sand obbles (dense, moist) (fill)	_		
	12 41	AR-1 (2-	-3)		M	Gray silt with wood a (medium stiff, mo	nd occasional gravel bist to wet) (fill)	 - NS	<1	
	14 43/9)" AR-1 (3-3	3.3)	0	GP-GM	Gray fine to coarse good occasional cobble	gravel with silt, sand and es (dense, wet)	NS	<1	
Notes: S	See Figure A-1	for explanation	n of sy	rmbols						
Notes: S	See Figure A-1	for explanation	n of sy	rmbols		-og of Air Rota	ary Boring AR-1			Data Gap Assessment

Figure A-11 Sheet 1 of 1

	<u>Start</u> Drilled 9/9/2013 Surface Elevation (ft)				<u>En</u> 9/9/	<u>id</u> 2013	Total Depth	n (ft)	1	5		Logged By ERH Checked By DRL Driller Cascade Drilling							Drilling Method Direct-Push
SI	urface	e Elev	atio	n (ft)		Unde	etermine	ed			Ha	mmer					Drilling Equipr		Geoprobe
La	atitude	е					1003266					ystem Geographic atum WGS84					Groun	dwate	Depth to
	lotes:				-1	20.47	101140		5		Da						Date M	leasure	ed Water (ft) Elevation (ft)
\mathcal{F}					FIFI	.D D/	ΑΤΑ												
	(196			(in)							ç		Ν.4						
1, it	Elevation (reet)	Depth (feet)	म	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	ificatio				RIAL PTION			pace (ppm)	REMARKS
L	Eleva		Interval	Reco	Blows	Collec	<u>Samp</u> Testir	Wate	Graph	Group	Class						Sheen	Headspace Vapor (ppm)	
		0 —		48		Î	1			М					gravel (moist) (SS	3.3	
		-				+				GP-		(fill)			gravel with silt	/	ss	1.6	
		_										Dark brow organi	n silt with c matter (occas wood/b	ional gravel and bark) (moist) (fil	1 I)			
		-								- G	P -	White fine sand (e to coarse moist) (fill	e grave ?)	el with trace silt	and	ss	1.5	
		5 —		36		*	2			M	L	Brownish- (fill?)	black silt	with oc	casional gravel	(moist)	MS	4.4	
		-					2 CA					-					MS	2.8	
		-							0	GP-	GM	Dark brow	n fine to c	coarse	gravel with silt	(moist)	MS	1.7	
		- 10 —		30					0 0 0			Becomes	wet			-	_		Groundwater observed at approximately 10
		-		50						— G	р— – Р		own fine t		se gravel with tr	race	NS	<1	feet during drilling
TANDARD		-				Ţ	3					-	X	,			- - - NS	2.1	
Spokane: Date:1/2014 Path:P/18/1869300102/GNT/1859300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD		-										_					-		
ENVIRO		15 —											minated a	t appro	oximately 15 foo	ot depth	_		
3.GDT/GEI8																			
GINEERSE																			
S:GEOEN																			
bTemplate																			
emplate/Li																			
SPJ DBTe																			
3300102.0																			
GINT/185																			
93001/02/																			
:P:\18\185:	Not	es: S	ee F	igure	e A-1 fo	or expl	anation o	of syı	mbols	3.									
0/14 Path:										L	.00	of Dire	ect-Pu	ısh	Boring N	N-DP-1			
Date:1/2	(Project:			Former Ca	shmere	Mill		, Data Gap Assessment
Spokane:	GEOENGINEERS											Project Location: Cashmere, Washington Project Number: 18593-001-02				Figure A-12 Sheet 1 of 1			

Drille	Start En Drilled 9/9/2013 9/9/ Surface Elevation (ft) Vertical Datum					Total Depth	n (ft)	1	5	Logged By ERH Checked By DRL	Driller	Cascade Drilling			Drilling Di Method	Drilling Method Direct-Push	
Surfa Vertic	Surface Elevation (ft) Undetermined Artical Datum 47.52126345770									Hammer Data			Drilli Equi	ng pment		Geoprobe	
-	de tude					126345 7776451)		Datum W/GS84				indwat Measu	Dep	pth to <u>ster (ft)</u> <u>Elevation (ft</u>)	
\geq				FIFI	D D/	ΔΤΔ											
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	M SED Classification	ATER SCRIP		Sheen			REMARKS	
IKONMEN I AL_ST ANDARD	0		483636			1 CA 2			— FILI — ML — FILI — TILI — TILI	gravel (moist) (Becomes gray Becomes dark brow Becomes gray Becomes brown Dark brown silt with (fill) Wood shavings (fil Becomes wet Brown silt with san Grades to dark bro matter (wet) Brown fine to coars (wet)	fill) wn d silt (fill) n occasio n) d (wet) (fi wn silt wi se gravel	th sand and organic	- NS - NS - NS - NS - NS - NS - SS - SS	3.8 3.8 14. 5.1 5.2 5.3 5.4 5.5 5.5 5.6 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.1 5.2 5.3 5.4 5.5 5.7	Groundwater	observed at approximately 9 f during drilling	
	otes: S					anation c			L	due to refusal og of Direct-Pt Project:	ush E	ormer Cashmer	e Mi		, Data Ga	p Assessment	
	GEOENGINEERS									Project Location Project Number	Project Location: Cashmere, Washington				Figure A-13 Sheet 1 of 1		

bokane: Date:1/20/14 Path:P/18/16593001/02/GINT/18559300102.GPJ DBTemplateLibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-13 Sheet 1 of 1

Dri	lled		<u>Star</u> 9/20		<u>Er</u> 9/9/	<u>nd</u> /2013	Total Depth		2	0	Logged By Checked By		Driller Cascade Drilling			Drilling Method Direct-Push
Sur Ver	face tical	Elev Datu	atio m	n (ft)		Und	etermin	ed			Hammer Data			Drillir Equi	ng oment	Geoprobe
Lat	itude						100719 7783048		<u>ן</u>	3	System Datum	stem Geographic tum WGS84			ndwat	Depth to
	tes:				- 1	120.4	1100040	5100	,		Satum					red Water (ft) Elevation (ft)
\geq					FIEI	D D	ΑΤΑ									
eet)		~								E		N/1/	ATERIAL			
Elevation (feet)		Depth (feet)	val	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification			CRIPTION	_	Headspace	
Elev		o Dept	Interval		Blow	Colle	<u>Sam</u> Test	Wate	Grap					Sheen		
		-		38		+	1			SP-SN			e sand with silt, gravel and atter (wood) (moist) (fill)			
		-				Ļ	·				-			_	, 4.0	
		_							IJ	SM FILL	Gray silty matter	fine sand (wood) (n	with gravel and trace organic noist) (fill)	- NS / NS		
		-									Brown wo	od fragme	nts (fill)	-		
		5 —		36		1	<u>2</u> CA				Brown silt	with occa	sional gravel (moist) (fill)	- NS	5.4	1
		-				+			- (GP-GN		n fine to c	oarse gravel with silt and (moist) (fill)	ss	2.4	1
		-							000		_	iraginents		- ss	2.3	3
		-							0 0		-			-		
		-							0 0.	SP-SM	Brown fine	e to coarse	e sand with silt and sawdust	_		Groundwater observed at approximately 9½ feet during drilling
		10 —		42							(wet) (NS	6 4.7	
		_								GM	Gray silty (fill)	fine to coa	rse gravel with sand (moist)	ss	4.5	5
ANDARD		_					2				Wood chi		th sand and sawdust (wet)			
NMENTAL_STANDARD		_				Ļ	3				(fill)			_ NS	6 4.7	
		15 —		24			4		1.	SP-SM	Brown fine		e sand with silt (wet)	- NS	7.0	
GEI8_EN		-				Ŧ	5						occasional fine to coarse	_		
KS8.GD1		-				+					_ gravel			NS	3.7	7
ENGINEE		-									-			-		
plate:GEO		-									-			-		
Spokare: Date: 120'14 Pani: Y 181(85300102/GNT/185800102.GPJ DBT emplate/LDT emplate GEOENGINEERS8.0DT/GEIE_ENVIK		20 —			<u> </u>			1	<u>t -</u>			minated a	approximately 20 foot depth			
DB1empie																
[49:20L																
11859300																
1/02/01/																
8/189300	Note	es: S	ee F	igure	e A-1 f	for exp	lanation o	of syı	nbols							
											a of Dire		sh Boring N-DP-	3		
ate: 1/20/1	224								-		Project:				l Site	e, Data Gap Assessment
ookane: D.	GEOENGINEERS										Project Location: Cashmere, Washington Figure A-1					Figure A-14
й	Project N											ject Number: 18593-001-02 Figure A-14 Sheet 1 of 1				

Date: 1/20/14 Path: P:/18/1869300102/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEIR_ENVIRONMENTAL_STANDARD Spokane:

18593-001-02

ane: Date:1/2014 Path:P:181855300102/GINT1858300102 GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-15 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

DBTemplate/ 02\GINT\1859300102.GPJ 4 Path Date:

> Figure A-16 Sheet 1 of 1

Dr	illed	9/9	<u>Star</u> 9/20	<u>t</u> 13	<u>En</u> 9/9/	<u>id</u> '2013	Total Depth	n (ft)	ę	9.5		Logged By E Checked By		Drille	r Cascad	e Drilling			Drilling Method	Direct-Pus	sh
Su Ve	rface rtical	e Elev Datu	atio m	n (ft)		Unde	etermine	ed			Ha Da	mmer ta					Drillin Equip	g oment		Geoprobe	
	itude ngitu						0797689 7800585)		Sy Da	stem Geographic tum WGS84			Groundwater Date Measured			Depth to	Elevation (#)		
No	otes:															<u>Date r</u>	vieasure	<u>ea</u>	Water (ft)	<u>Elevation (ft)</u>	
					FIEL	D D/	ATA														
feet)		t)		(in)		ample	ame		0		uo		MA	TER	RIAL						
Elevation (feet)	Elevation (teet) Depth (feet) Interval Recovered (in) Blows/foot Collected Sample Sample Name Testing Water Level Graphic Log Group						ssificati				PTION		e	Headspace Vapor (ppm)		REMA	ARKS				
Eley		o Dep	Inte	Pec 4	Blov	Coll	Tes	Wat	Gra	Gro		Brown silt w	with accord	ional a	raval (maint) (f ill)	Sheen SNeen				
		-		40								_					_	0.2			
		-				+	$\frac{1}{CA}$					Gray to whit (moist) (Becomes lig	(fill)		gravel with	silt	NS	5.1			
		-				+	CA		r	N	1	Dark brown (moist) (silt with		onal wood ar	nd gravel	NS	7.1			
		-										_					-				
		5 —		18								_					-				
		-							6	GP-	-GM	Brown fine t	to coarse	gravel	with silt (mo		NS	4.5			
		-							0 0			_					-				
		-							0 0			_					-				
		-							c			Boring term	ninated at	approx	kimately 9½	foot depth	-				
												due to re	efusal								
MINONIN																					
/GEI8_EN																					
KS8.GD1																					
ENGINEE																					
late:GEO																					
e/LID lemp																					
o i emplate																					
2012																					
01000800																					
2/11/19/2																					
%1002600	Note	es: S	ee F	jaur	e A-1 fi	or exnl	anation c	of svr	npol	S.											
	0.0			Juit		2. OAPI		. Cyl													
1/20/14 Pa										L	-0(g of Direc	ct-Pu		_						
ne: uate:	C	E		E.			CED	c	1	,		Project: Project I	ocatio						, Data	Gap Asse	
spoka	GEOENGINEERS								Project Location: Cashmere, Wash Project Number: 18593-001-02			F				Figure A-17 Sheet 1 of 1					

.GDT/GEI8_ENVIRONMENTAL_STANDARD RS.8 DB1 d' á /20/14 Patl Spokane:

Start End Drilled 9/9/2013 9/9/2013 Surface Elevation (ft) Under Vertical Datum Under		Total Depth	n (ft)	5		Logged By ERH Checked By DRL	Driller Cascad	de Drilling			Drilling D Method	Drilling Method Direct-Push					
Surface Vertical I	Eleva Datun	tion (ft) 1)	Unde	termine	ed			ammer ata	1		Drilling Equipr) nent		Geoprobe		
Latitude Longitud					790003 808103)	S D	ystem atum	tem Geographic um WGS84					epth to ater (ft)	Elevation (ft)	
Notes:														<u></u>			
Notes:	eet)		FIEL	D DA		10088	Graphic Log		M DES Brown silt with occa (moist) (fill)	ATERIAL SCRIPTION isional gravel and r coarse gravel with	n silt	Date M	easure (udd) Joden 4.9 6.4	<u></u>	REMARK	Elevation (ft)	
Notes	s: Se	e Figur	re A-1 f	or expla	anation o	of syn		_00	of Direct-Pu	sh Borina	N-DP-5						
								-~y	Project:				Site	, Data Ga	ıp Assessm	ent	
G	GEOENGINEERS								Project Location: Cashmere, Wash Project Number: 18593-001-02				۱	Fig	gure A-18		

Figure A-18 Sheet 1 of 1

Drilled 9/	<u>Star</u> 10/20		<u>Er</u> 9/10	<u>nd</u>)/2013	Total Depth	n (ft)	14	1.5	Logged By KAH Checked By DRL Driller Cascade Drilling			Drilling Direct-Push		
Surface Ele Vertical Dat	vatior	n (ft)		Unde	etermine	ed			Hammer Data	Drilling Equipi		Geoprobe		
Latitude Longitude									System Geographic Datum	<u>Groun</u> Date N		Depth to		
Notes:											1			
	_		FIEL	_D DA										
Elevation (feet) Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS		
0 -		44						SP-SN		NS	4.5			
	-				1			<u> </u>	Brown fine to coarse gravel with silt and sand (moist) (fill) Red fine to coarse gravel with trace sand and silt (moist) (fill) Brown fine to coarse sand with silt and gravel	NS NS NS NS NS	7.3 8.8			
5 -	-	30		1	2 CA				(moist) (fill) 	NS	7.5			
	-			_			· / 0 0 0	GP-GN	M Brown fine to coarse gravel with silt and sand (moist) (fill)	NS NS	4.0 6.3			
10 -	-	26			3		0 0 0 <u>1 1 1 0 0 0</u> 0 0 0 <u>1 1 1 0 0 0</u>	SP-SM GP-GM SP-SM GP-GM	M Wood waste (wet) (fill) / Dark brown fine to coarse gravel with silt and / sand (wet) //	- NS - NS - NS - NS - NS 	8.0 9.8 6.2	Groundwater observed at approximately during drilling		
Notes: \$	See F	-igure	≥A-1f	or expla	anation c	of syr	nbols	i.	Boring terminated at approximately 14½ foot depth due to refusal					
						- ,.			a of Direct Duck Device N.D.C.					
								LO	g of Direct-Push Boring N-DP-5 Project: Former Cashmere		Site	, Data Gap Assessment		
Ge	ol	EN	IG	INE	ER	S		1	Project Location: Cashmere, Wash Project Number: 18593-001-02			Figure A-1 Sheet 1 of		

Figure A-19 Sheet 1 of 1
Drilled	<u>8</u> 9/9	<u>Start</u> 9/20 ⁻	13	<u>Er</u> 9/9/	<u>nd</u> /2013	Total Depth	(ft)	14	4.7		Logged By ERH Checked By DRL	Drill	_{er} Cascade	Drilling			Drilling Method Direct-Push
Surface Vertica	e Eleva I Datu	atior m	ו (ft)		Unde	etermine	ed				nmer	1			Drilling Equipr) nent	Geoprobe
Latitude Longitu						1324784 7791615				Syst Datu		Geo W	graphic GS84		<u>Groun</u> Date M		 Depth to
Notes:															Ducen		
				FIEL	D D/	ATA											
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification			rial Ption		Sheen	Headspace Vapor (ppm)	REMARKS
	0		48						SP-S ML		Brown fine to coars Dark brown silt (mo Brown silt with occa White fine to coarse silt (moist) (fill?)	ist) (fill asional e grave	?) fine gravel (me		- NS - NS - NS - NS	4.5 4.8	
			48		•	1 CA			ML		Dark brown silt (mo	ist) (fill	<u>?</u>)		NS NS	4.3 5.0	
	-		48		•	2				_	Grades to brown sil (moist)	lt with o	occasional grav	vel	_ NS _ NS	2.2 3.0	
	- 10 —		36		—				GP-G	_	Becomes wet				- NS - NS - NS	4.2	Groundwater observed at approximately 8 feet during drilling
	-		30			3				_	Brown fine to coars Becomes gray Becomes dark gray		ei with siit (wet)		3.3	
1	_							0 0 0		_	Boring terminated a depth due to ref		oximately 14.7	foot	_		
Not																	
	es: Se	ee F	igure	e A-1 f	or expl	anation o	t syr	nbols	3.								
									L	og	of Direct-Pu					<u></u>	
G	GeoEngineers										Project: Project Locatic Project Numbe	on:	Former Ca Cashmere 18593-00 ⁷	e, Wash			, Data Gap Assessment Figure A-20 Sheet 1 of 1

18593-001-02

Project Number:

pokane: Date:12014 Path:Pv18(18593001/02/GNT/1858300102.GPJ DBTemplate/LIDTemplate.GEOENGINEERS.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-20 Sheet 1 of 1

Drilled	9/1	<u>Star</u> 0/20	<u>t</u>)13	<u>Er</u> 9/10	<u>nd</u>)/2013	Total Depth		1	4		Logged By KAH Checked By DRL Driller Cascade Drilling			Drilling Method Direct-Push
Surface Vertica	e Elev I Datu	ratioi im	n (ft)		Und	letermin	ed			Har Dat	nmer a	Drilling Equipr	l nent	Geoprobe
Latitude Longitu Notes:	ide					113479 7817353				Sys Dat	tem Geographic um WGS84	Groun Date M		Depth to
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample D	Sample Name Testing	Water Level	Graphic Log	Group		MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 — - - -		36			1 CA			SP-	SM -	Brown fine to coarse sand with silt and occasional gravel (moist) (fill)	NS NS NS - NS	1.6	
	5 - - -	-	24		•	2		1 ol	— 	- +	Gray fine to coarse gravel with trace sand and silt (moist) (fill) Brown fine to coarse sand with silt and occasional gravel (moist) (fill)	NS NS NS	3.2	
									GP-I	.GM	Becomes wet Brown fine to coarse gravel with silt and sand (wet) (fill) Grades to dark brown fine to coarse gravel with sand, silt and wood waste Grades to gray fine to coarse gravel with silt and sand	- NS - NS - NS - NS 	1.8	Groundwater observed at approximately 9 fe during drilling
Not	-			2 2 4 1							Boring terminated at approximately 14 foot depth due to refusal		<u> </u>	
Not	es: S	iee F	igure	e A-1 1	for exp	blanation o	of syr	mbols						
									L	.og	of Direct-Push Boring N-DP-7	7		

 Project:
 Former Cashmere Mill Site, Data Gap Assessment

 Project Location:
 Cashmere, Washington

 Project Number:
 18593-001-02

	Drilled		<u>Star</u> 0/20		<u>En</u> 9/10	<u>nd</u> //2013	Total Depth	(ft)	1	0		Logged By Checked By		Dri	_{ller} Casc	ade Drilling			Drilling Method	Direct-Push	1
s V	Surface /ertica	e Elev I Datu	atio m	n (ft)		Unde	etermine	ed				ammer ata					Drillin Equip			Geopro	be
	.atitud .ongitu						091346 <i>°</i> 7833587					/stem atum		Geo W	ographic /GS84		<u>Grour</u>	ndwate Aeasure		Depth to Water (ft)	Elevation (ft)
	Notes:	:																leasure	20	<u>water (it)</u>	
ſ					FIEL	D D	ATA														
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification				rial Iption	l	Sheen	Headspace Vapor (ppm)		REMA	RKS
		0 —		30			1			SP-		Brown fine (moist		e san	d with silt a	nd gravel	NS	4.5			
		-							0	G SP-	_	silt (m	oist) (fill) e to coarse		rel with san	d and trace 	- NS - NS 	4.5 4.2			
		5 -		30			2 CA					Grades wi		vaste			SS MS	5.5 4.8			
		-				_			1	<u> </u>	P			n san	d with trace	silt (moist)	- NS	5.6			
		- 10 —											minated a refusal	t app	roximately	10 foot depth	-				
late/LID lemplate:GEOEI																					
13001/11/12/12/12/12/12/12/12/12/12/12/12/12																					
3681/81/24:	Not	es: S	ee F	igure	e A-1 f	or exp	anation o	f syr	nbols	i.											
ZU/14 Path										L	.0	g of Dire	ect-Pu	ısh	Borin	g N-DP-	8				
Spokane: Uate:1,	C	E	ol	EN	IG	IN	EER	S		J		Project: Project Project	Locatio		Cashm	r Cashmere lere, Wash 001-02			, Data G		sment Figure A-22 Sheet 1 of 1

Dr	illed	<u>9</u> /1	<u>Star</u> 0/20			<u>nd</u> 0/2013	Total Depth		1	5		Logged By ERH Checked By DRL	Drille	er Cascade Drilling				Drilling Method Direct-Push
Su Ve	face	Elev Datu	atio m	n (ft)		Unde	etermine	ed			Ha	mmer			Drill Equ	ng ipmen	t	Geoprobe
	itude ngitu						521594).48024					stem	Geo	graphic 3S84		undwa Measi		Depth to
No	tes:														Date	Measu	urea	Water (ft) Elevation (ft)
					FIEI	LD D/	٩TA											
(feet)		it)		d (in)		ample	ame	e	 D	-	ion		ATE					REMARKS
Elevation (feet)		Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	issificat	DES	SCRI	PTION	Choon	Headspace	or (ppm	REWARKS
Ш		o De	Inte	е 36	Blo	00 00	Tea	N	Ü	ຍັດ SF		Brown fine to coars	e sand	with trace silt (moist)	040	E E	Vap	
		-								—	L	(fill) Dark brown silt with	occasi	ional gravel (moist) (fill)	N	S 13	33	
		-				\uparrow	1 CA		19	GN SN		Brown silty fine to c Brown silty fine to c	oarse s	sand (moist) (fill)				
		-				+				M	L	Dark brown silt with (fill)	i organi	c matter (roots) (moist)	_ N	S 14	19	
		-										_			-			
		5 —		60								Becomes grayish-b		c matter (roots and	 N	S 3.	5	
		_								SP-S		Brown fine to coarse	e sand	with silt (moist) (fill)	/ _			
		_				Ţ	2					Brown silt with occa	asional	gravel (moist) (fill)	s	s 4	2	
		_										– Daaraa aa in k		:41	s	S 17	71	
		10 —		36						SP-9	SM -	Becomes grayish-bu (moist) Brown fine sand wit		Ū	N	S 3.	5	
		_					3				P	Brown fine to coarse (fill?)	e sand	with trace silt (moist)	- s / s			Groundwater observed at approximately 11 feet during drilling
CZ D		-				↓			- 6	GP-0		Brown silt (wet) (fill? Brown fine to coars		el with silt (wet)	N			
_STAND#		-							000			_			- N	S 3.	.6	
NMENTAL		-							0			_			_			
ENVIRO		15 —							0			Boring terminated a due to refusal	at appro	oximately 15 foot depth				
GDT/GEI8																		
INEERS8.																		
GEOENG																		
Template:																		
mplate/Lib																		
SPJ DBTe																		
9300102.0																		
\GINT/185																		
593001/02	N1-1			-1.		6		.										
m:P:/18/18	NOte	es: S	ee F	-igure	e A-1 1	for expl	anation c	or sy	rndols	5.								
										Lo	og	i		Boring N-DP-8				
ne: Date:	G	E		E.		INU	EER	C	1	1		Project: Project Locatio		Former Cashmer Cashmere, Wasł			e,	Data Gap Assessment
Spoka	U		וי		DI		CCK	2				Project Numbe		18593-001-02	gt			Figure A-23 Sheet 1 of 1

ſ	Drilled		<u>Star</u> 0/20		<u>Er</u> 9/10	<u>id</u> /2013	Total Depth	(ft)	1	5		Logged By KAH Checked By DRL	Driller	Cascade Drilling	I			Drilling Method Direct-Push
		e Elev al Datu		n (ft)		Unde	etermine	ed			Ha Da	mmer ta				rilling		Geoprobe
	.atitud .ongiti						0773611 7832458)		Sy Da	stem tum	Geogr WGS	aphic 584			dwater	Depth to
	Notes	:															easure	d Water (ft) Elevation (ft)
ſ					FIEL	D D	ATA											
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		ATER CRIP			Sheen	Headspace Vapor (ppm)	REMARKS
	ш	0-		24		1	1	-	00	GP-0		Brown fine to coarse (moist) (fill)	gravel	with silt and sand		SS	<1	
		-				+			000			- Becomes wet			_	NS NS	<1	
		-							0 0			-			-			
		- 5 - -		24		Ţ	2 CA					 Grades with sawdus - - - - 	t		_	MS SS SS	<1 1.3	Petroleum odor
MENTAL_STANDARD		 10 - - -		48			3				GM	Grayish-brown fine Gray fine to coarse Gray silty fine to coa	gravel wi	th silt and sand (wet)		NS MS	2.4	Groundwater observed at approximately 9½ feet during drilling
ENVIRON		15 —							٥Ŷ			Boring terminated a due to refusal	approxi	mately 15 foot depth				
Spokare: Date://2014.Path.P/18/1659300102/GIN171859300102/GPJ_DB1emplate/Lib1emplate/GEOENGINEERS8/GD1/GEI8_ENVIRONMENTAL_STANDARD	Not	tes: S	ee F	īgure	e A-1 f	or exp	lanation o	fsyr	nbols	3.								
14 Path:P										L	.00	g of Direct-Pu	sh B	orina N-DP	-9			
Date: 1/20/										_	- :	Project:				Mill	Site,	Data Gap Assessment
Spokane:	C	E	b	EN	IG	IN	EER	S		J		Project Locatio Project Numbe		ashmere, Was 3593-001-02	hin	gtor	I	Figure A-24 Sheet 1 of 1

Dr	illed		Start 9/20		<u>Er</u> 9/9/	<u>nd</u> /2013	Total Depth	(ft)	1	5		Logged By ERH Checked By DRL	Driller Ca	ascade Drilling			Drilling Method Direct-Push
Su Ve	face tical	Eleva Datu	atior m	ו (ft)		Und	etermine	ed			Ha Da	mmer ta			Drilling Equipr		Geoprobe
Lor	itude ngituo ites:						132311 <i>°</i> 7829452					stem Itum	Geograph WGS84	ic	<u>Groun</u> Date M		 Depth to
					FIEL	D D	ATA										
Elevation (feet)			Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		ATERIAL CRIPTIC		Sheen	Headspace Vapor (ppm)	REMARKS
		0		48		Ţ.	1			SM GF MI GP-0 MI	M L GM	Light brown silty fine White fine to coarse silt (moist) (fill?) Brown silt (moist) (fil Brown fine to coarse Brown silt with occas	gravel with t ?) gravel with	race sand and/	NS NS	8.4 4.0	
		_								GF		(fill?) Gray fine to coarse ((moist) (fill?)	gravel with tr	ace sand and silt	NS	<1	
		5 —		42		Ţ	2 CA					Becomes light browr Becomes brown	1	-	NS NS	6.7 3.5	
		-									SM	Becomes white Brown fine to coarse (dense, moist) (f		It and gravel	NS NS	6.0 5.7	
JARD		- 10 — -		48			3					Becomes wet	I (wet)		NS	8.3	Groundwater observed at approximately 9 feel during drilling
UNMENTAL_STANDARD		-				_ ↓ _				MI	L	Dark brown to black	siit (wet) (iii	?)	NS	2.5	
ENVIRO		15 —				I		1				Boring terminated at due to refusal	approximate	ely 15 foot depth	_	I	1
	Note	es: Se	ee F	ïgure	e A-1 f	or exp	lanation o	fsy	mbols	i.							
											00	of Direct-Pus	sh Bori	ng N-DP-1	0		
Spokane: Date: 1/20	G	E	bl	En	١G	IN	EER	S			-9	Project: Project Locatio Project Numbe	Form n: Cash		Mill		, Data Gap Assessment Figure A-25 Sheet 1 of 1

ENVIRONMENTAL_STANDARD GF18 Spokane: Da

Drilleo		<u>Start</u> 1/20		<u>Er</u> 9/14	<u>id</u> /2013	Total Depth	(ft)	15		Logged By ERH Checked By DRL	Driller	Cascade Drillin	g			Drilling Method Direct-Push
Surfac Vertica	e Eleva al Datu	atior n	n (ft)		Unde	etermine	ed			lammer Data	1			Drilling Equipr		Geoprobe
Latituo Longit						1690335)		System Datum	Geogr WG	aphic 584			dwate	Depth to
Notes														Jate M	easure	d Water (ft) Elevation (ft)
\equiv				FIEL	.D DA	ATA										
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Classification	M DES	ATER SCRIP			Sheen	Headspace Vapor (ppm)	REMARKS
			302440			1 2 CA			TILL TILL T-GM	Brown wood waste Gray fine to coarse	nic matte (fill) — gravel w illt with or II)	r (grass) (moist) (fil th silt (moist) (fil) th silt wood	- - - - - - - - - - - - - - - - - -	NS NS NS SS NS	<1 <1 <1 <1	Groundwater observed between approximately 11 and 12 feet during drilling
	- 15 —							0		Boring terminated a due to refusal	it approxi	mately 15 foot dept	- 			
No	tes: So	æ F	igure	≥ A-1 f	or expl	anation o	f syr	nbols.								
								L	.0	g of Direct-Pu	sh B	oring N-DP	-11			
C	GEO	b	En	IG	IN	EER	S	0		Project: Project Location Project Number	on: C	ormer Cashm ashmere, Wa 8593-001-02				, Data Gap Assessment Figure A-26 _{Sheet 1 of 1}

ENVIRONMENTAL_STANDARD GFI8 Spokane:

Dr	illed	<u>9</u> /14	Star 4/20		<u>Er</u> 9/14	<u>nd</u> ./2013	Total Depth	n (ft)		15		Logged By ERH Checked By DRL	Drille	r Cascade Drilling)			Drilling Method Direct-Push
		Eleva Datu		า (ft)		Unde	etermine	ed			Ha Da	immer ita				rilling quipr		Geoprobe
	itude ngitu						1840448 7819359				Sy Da	rstem atum	Geog WG	ıraphic €S84			dwate	Depth to
No	otes:															ate M	easure	d <u>Water (ft)</u> Elevation (ft)
					FIEL	D D	ATA											
Elevation (feet)		Depth (feet)	val	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	sification		ATEF CRIF	RIAL PTION		c	Headspace Vapor (ppm)	REMARKS
Flev		o Dept	Interval		Blow	Colle	<u>Sam</u> Test	Wate	Grap							Sheen		
		-		36			1		1000	M		Light brown silt with waste (moist) (fi Dark brown silty fine occasional wood	l) to coa			NS SS	<1 <1	
		-							20	— <u>—</u>		Dark brown silt (moi	st) (fill?)		NS	<1	
		5 —		36			<u>2</u> CA			SP-	SM -	Dark gray fine to me				NS SS	<1 <1	
		-					UA .				GM -	Gray to light brown sand and silt (m	ine to c bist)	coarse gravel with	-	SS	<1	
		_ 10 — _		20								– – – Becomes dark gray	(moist)		-	NS NS	<1 <1	
NMENIAL_SIANDARD		-					3		0 0 0 0			Becomes wet			_			Groundwater observed at approximately 12 feet during drilling
		- 15							0			Boring terminated a	t approx	ximately 15 foot depth	_			
DT/GEI8_																		
Sookare: Date://2014.Patr.:?/18/18593001/02/GIN1/1858300102.GPJ DB1emplate/Lb1emplate:GEOENGINEERS8.GD1/GEI8_ENVIR																		
	Note	es: Se	ee F	igure	e A-1 f	or expl	lanation o	of syr	mbol	5.								
U14 Path:										L	og	of Direct-Pu	sh B	Boring N-DP-	13			
Date:1/2L	~			_					/		5	Project:	F	Former Cashme	ere l	Mill		Data Gap Assessment
Spokane:	GEOENGINEERS											Project Locatio Project Numbe		Cashmere, Was 18593-001-02	hin	gtor	1	Figure A-27 Sheet 1 of 1

.GDT/GEI8_ENVIRONMENTAL_STANDARD SS8 DB1 5 á 20/14 Pat Spokane:

Drilleo		<u>start</u> /201	3	<u>Er</u> 9/9/	<u>id</u> '2013	Total Depth	ı (ft)	1	15		Logged By ERH Checked By DRL	Dril	_{ller} Cascade	Drilling			Drilling Method Direct-Push
Surfac Vertica	e Eleva al Datur	ation n	(ft)		Unde	etermine	ed			Ha Da	ammer ata				Drilling Equip		Geoprobe
Latituo Longit						1415998 7860820)			/stem atum	Geo W	ographic /GS84		<u>Groun</u> Date M		Depth to
Notes	:														Date IV	leasure	
				FIEL	D D	ATA											
Elevation (feet)	o Depth (feet)		Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group		DES	SCR	RIAL IPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0 5		36 42			1			 	L	Brown fine to coars Brown silt with occa and occasional (fill?) Brown fine to coars	organi	fine to coarse (ic matter (roots)	gravel (moist)	- NS - NS 	5.7 3.2 6.8	
	-		-72			2 CA			GP-0		Brown fine to coars (moist) Brown fine to coars (moist) Becomes gray (moi	e grav	Ū		NS	8.9 4.3	
ואוובא וצר"ס וארסארס	10 —		36		Ţ	3			 		Becomes wet Brown fine to coars Gray to brown fine to sand (wet)			 silt and	NS NS NS	7.0 4.7 7.4	Groundwater observed at approximately 91/2 feet during drilling
	15 —							0			Boring terminated a		rovimatoly 15 fo	ot donth			
	tes: Se	ee Fi	gure	≥ A-1 f	or expl	lanation o	f syr	mbols	з.		due to refusal						
\square											of Direct Pu	ch	Boring N		5		
0										ug	of Direct-Pu Project:	511				Site.	, Data Gap Assessment
	GeoEngineers										Project Location Project Number		Cashmere 18593-001	, Wash			Figure A-28 Sheet 1 of 1

ENVIRONMENTAL_STANDARD GFI8 Spokane:

	rilled		<u>Star</u> 0/20		<u>Er</u> 9/10	<u>nd</u>)/2013	Total Depth		14	4.5		Logged By ERH Checked By DRL	Driller	Cascade Drilling			Drilling Method Direct-Push
SL Ve	urface ertica	e Elev I Datu	ratio ım	n (ft)		Und	etermine	ed			Ha Da	mmer			Drillin Equip		Geoprobe
	titud ngitu						126345					stem tum	Geogra WGS	iphic 84		ndwate	Depth to
	otes:														Date N	leasure	d Water (ft) Elevation (ft)
					FIEL	LD D	ATA										
Elevation (feet)		Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	lassification		ATERI, CRIPT		Sheen	Headspace Vapor (ppm)	REMARKS
ū	J	0 0	<u> </u>	۲۲ 36		ŭ	ώË	3	0	SI	P	Light brown fine to c	oarse sa	nd with trace silt	7 -		
		-					1			М	L	Brown silt with occa (moist) (fill)	sional fine	e to coarse gravel	NS	6.2	
		-				+						-			NS	4.3	
		-										-			_		
		5-										_					
		-		36					- 6	GP-	GM -	White to brown fine (moist)	to coarse	gravel with silt	NS	7.7	
		-					2 CA		0 _ 9	 GP-0	GM -	Dark gray fine to co		with silt and sand	NS		
		-				L.	CA		0	0.	0	(moist)	aroc grav		_ NS	9.3	
		-							0 0			Becomes wet			_		Groundwater observed at approximately 9 feet during drilling
		10 —		36					000			_			- NS	6.6	
		-							6	GP-	GM -	Gray fine to coarse	gravel wit	h silt (wet)	- NS		
DARD		-					3		000			Becomes brown			- NS	10.2	
AL_STAN		-				+			0 0			_			_		
CONMENT		-							0			Boring terminated a	t approxir	nately 14½ foot	_		
												depth due to ref	usal				
58.GD1/G																	
10 INEEKS																	
te:GEUEN																	
LID Lempla																	
l emplate/l																	
.GPJ DB																	
20100269																	
2/GIN1/18																	
8593001/0	Not	es ^{. s}	ee F	igur	e A-1 f	for exe	lanation c	of sv	npok	5.							
:1/20/14 r										L	og	of Direct-Pu				0.1	Data Can Assessment
Spokane: Date:1/2014 Path:P.161685300102/GNT/1659300102.GPJ DBTemplate/LbTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD	C	F		E,	NG	IN	FFR	S	1	1		Project: Project Locatio		ormer Cashmer ashmere, Wash			, Data Gap Assessment
Spok	-	GeoEngineers										Project Numbe		593-001-02	-		Figure A-29 Sheet 1 of 1

ENVIRONMENTAL_STANDARD 5FI8 Spokane: Dat

Project Location: Cashmere, Washington Figure A-29 Sheet 1 of 1 Project Number: 18593-001-02

Dr	illed	9/1	<u>Star</u> 0/2			<u>nd</u>)/2013	Total Depth	n (ft)	1	5		Logged By Checked By		Drill	_{er} Casca	de Drilling			Drilling Method Direct-Push
Su Ve	rface	e Elev I Datu	vatio	n (ft)		Und	etermine	. ,				nmer					Drilling		Geoprobe
Lat	titude	e					0778148		<u>ן</u>		Sys Dat	tem		Geo	graphic GS84		Groun	ndwate	Depth to
	otes:				-	120.4	1043020	000	,		Dat	um			0004		Date N	leasure	ed Water (ft) Elevation (ft)
					FIEI	LD D	ATA												
eet)	Ì			(ii)		ample	me	_	5	ş	5		М		RIAL				
Elevation (feet)		Depth (feet)	val	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	sincatio				PTION		E	Headspace Vapor (ppm)	REMARKS
Elev		o Dept	Interval		Blow	Colle	<u>Sam</u> Test	Wate	Grap								Sheen		
		-		36		+	1			SP-S	SM	_		e sand	l with silt (m	oist) (fill)	NS NS	5.8 9.6	
		-				+	1 CA					Grades w	ith gravel				-	9.0	
		-										Becomes	brown an	d gray	mottled		NS	6.3	
		-									-	-					_		
		5 —		36			2			GP-G	GM	Gray fine	to coarse	gravel	with silt, sa		- NS	2.8	Groundwater observed at approximately 5 feet during drilling
		-				+			0	SP		Gray fine		n sand	with trace s		_		
		-								GP	, -	Gray fine (wet)	to coarse	gravel	with trace s	and and silt	NS	1.7	
		-									ŀ	-					-		
		-									ŀ	-					-		
		10 —	I	36					~	SP	;- +	Gray fine	to mediur	n sand	with trace s	ilt (wet)	- NS	4.2	
		-								GP-G	₩	Gray fine	to coarse	gravel	with silt and	sand (wet)	- NS		
NDARD		-					3		0 0 0					0		()	NS	3.3	
ITAL_ST⊅		-							0 0			-							
IRONMEN		15 —							000										
BEI8_ENVI													minated a refusal	at appro	oximately 15	foot depth			
S8.GDT/G																			
NGINEER																			
ate:GEOE																			
LibTempla																			
Template/																			
CGPJ DB																			
59300102																			
2/GINT/18																			
593001\02	Net			-		for or	longtion	f ~	mhel										
Spokane: Date: 12014 Path: 7,1814659300102/GNT/1859300102.GPJ DBTemplate/LbTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD	INOT	es: S	ee	rigur	e A-11	ior exp	lanation c	or Syl	IDOIS	ö.									
/20/14 Pat										Lo	bg	of Dire	ct-Pu	sh E	Boring	N-DP-1	9		
e: Date:1.	C	-	~	F •		1.1.1		c	1	1	T	Project:							e, Data Gap Assessment
Spokan	C	GeoEngineers										Project Project			Casnme 18593-0	re, Wash 01-02	ngo	11	Figure A-30 Sheet 1 of 1

Figure A-30 Sheet 1 of 1

18593-001-02

Figure A-31 Sheet 1 of 1

Dri	illed	9/1	<u>Star</u> 0/20		<u>Er</u> 9/10	<u>nd</u>)/2013	Total Depth	n (ft)	1	5		Logged By Checked By		Drill	_{er} Cascade Drill	ing			Drilling Method Direct-Push
Sur Ver	face	e Elev Datu	atio m	n (ft)		Unde	etermine	ed			Ha Da	mmer					Drilling Equipr	nent	Geoprobe
	itude						1275032					stem		Geo	graphic GS84		Groun		Depth to
	tes:					20.41	004000		,								Date M	easure	d <u>Water (ft)</u> <u>Elevation (ft)</u>
					FIEL	D D/	ΑΤΑ												
eet)		~				-		_			F		NA	ATE					
Elevation (feet)	•	Depth (feet)	val	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	sificatio				PTION			Headspace Vapor (ppm)	REMARKS
Elev		o Dept	Interval		Blow	Colle	<u>Sam</u> Test	Wate	Grap								Sheen		
		-		40		+	1			SP-	SM	Brown fine	e to coars	se sand	with silt (moist) (fill)		NS	2.5	
		-					1 CA				,— -	Brown silt	with occa	asional	sand (moist)		_		
		-								 SP-\$					with silt (moist)		NS	1.2	
		-										_							
		5 —		36								 Grades wi	th occasi	ional fin	ne gravel (moist)	_	NS	<1	
		-					2				р— – Р	Brown fine gravel		se sand	with trace silt and fi	ne -			Groundwater observed at approximately 61/2
		-				_	2			GP-0	GM -	-	. ,	gravel	with silt (wet)		NS	2.2	feet during drilling
		-							0 0			_							
		-							0			_							
		10 —		40					0	SF	P -		e to coars avel (wet)		with occasional silt		NS	2.3	
		-																	
ANDARD		_				1	3		0	GP-0	GM	Brown fine	e to coars	se grave	el with silt (wet)				
ENTAL_ST		-				+			0			_					NS	1.5	
VIRONME		15 —							0			Boring ter	minated a	at appro	oximately 15 foot de	oth			
/GEI8_EN													refusal			F • · ·			
RS8.GDT																			
ENGINEE																			
olate:GEO																			
e/LibTem																			
DBTemplat																			
02.GPJ [
18593001																			
V02/GINT																			
3\1859300	Note	es: S	ee F	igur	e A-1 f	or expl	anation c	of syı	nbols	5.									
													of D		Poring N.D.	<u>п 24</u>			
ate: 1/20/14											ug	Project:	ci-ru		Boring N-D Former Cashr			Site	, Data Gap Assessment
okane: Da	G	E	ol	En	NG	IN	EER	S		1		Project I	Locatio		Cashmere, W				Figure A-32
ğ		GeoEngineers										Project I	Numbe	er:	18593-001-02				Sheet 1 of 1

Figure A-32 Sheet 1 of 1

Drilleo	9/1	<u>Start</u> 4/20	13	<u>En</u> 9/14	<u>d</u> /2013	Total Depth	(ft)	1(0		Logged By Checked By	ERH DRL	Drill	_{er} Cascade	e Drilling			Drilling Method Direct-Pus	h
Surfac Vertica	e Elev al Datu	atior m	ו (ft)		Unde	termine	ed			Hai Dat	mmer		L			Drilling Equipr		Geopr	obe
Latitud Longit						780144 907121)			stem tum		Geo W	graphic GS84		Groune Date M		Depth to	Elevation (ft)
Notes	:															Date M	casure		
$\overline{}$				FIEL	D DA	ΔTA													
Elevation (feet)	o Depth (feet) I	Interval	% Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	dnou GP-(Light brown	DES	CRI	RIAL PTION	t (moist)	Sheen	Headspace Vapor (ppm)	REMA	RKS
	-		50		Ţ	1		0 0 0 0 0 0	GP-(<u>Р</u> М	White fine Dark browr	to coarse	grave oarse fine to	graver with sin gravel with sin gravel with sin coarse grave		NS	<1		
	- 5 — -		48								Becomes li	ight to dar	'k gra	y (moist)		- - - - -	<1		
	-				Ţ	2 CA					-					- SS -	<1		
	10 —										Boring tern due to		appro	oximately 10 fo	oot depth				
	ttes: S	ee F	ïgure	e A-1 fi	or expla	anation o	f syr	nbols.											
\square										00	of Direc	t-Pus	sh I	Borina M	N-DP-2	24			
		5								-9	Project:						Site,	Data Gap Asses	ssment
C	E	ol	EN	IG	INE	ER	S	D	1		Project L Project N			Cashmere 18593-00		ingtor	ו		Figure A-33 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

ane: Date:1/2014 Path:P:/18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARC

GEOENGINEERS

Figure A-34 Sheet 1 of 1

Dril	led	<u>9/10</u>	Star 5/20		<u>Er</u> 9/10	<u>nd</u>)/2013	Total Depth	n (ft)	1	5		Logged By Checked By	ERH DRL	Drille	r Cascade Drillin	g			Drilling Method Direct-Push
Sur Ver	face tical	Eleva Datur	atior n	n (ft)		Und	etermine					nmer				E	Drilling Equipn	nent	Geoprobe
	tude gituc						1580642 7918922				Sys Dat			Geog	jraphic SS84			dwate	Depth to
Not	-					120.41	1010022	.200	,		Dut					[Date Me	easure	d Water (ft) Elevation (ft)
\geq					FIEL	D D	ATA												
ieet)				(in)		ample	me	_	5	1	5		М	ATEF					
Elevation (feet)		Depth (feet)	val	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	sificati		DES	CRIF	PTION		c,	Headspace Vapor (ppm)	REMARKS
Elev		o Depi	Interval		Blow	Colle	<u>Sam</u> Test	Wat	Grag								Sheen		
		_		30						SP-S	5М		to coarse nal grave		with silt and t) (fill)	_	NS	1.7	
		_				Ť	1			ML	-+	Brown silt (moist) (fi	ill?) — —			NS	4.2	
		_				+					-	-				_			
		-									-	-				_			
		5 —	_	36					11	SN	<u>_</u> +	Brown silty	fine to co	oarse s	and (moist)				
		-								ML	-+	Brown silt v	vith occa	sional g	gravel (moist)		NS	2.0	
		-				1	2 CA		- 6	GP-0	ЭМ		to coarse	e grave	with silt (moist to		NC	2.0	Slight odor
		-				+			0 0		ŀ	wet)				-	NS	3.0	
		-							000		F	-				_			Groundwater observed at approximately 9½
		10 —		36						SF	-+	Brown fine (wet)	to coarse	e sand	with occasional grave		NS	3.4	feet during drilling
		-							0	GP-0	GM	Brown fine (wet)	to coarse	e grave	I with silt and sand				
NDARD		-				Ì	3		0		F	-				_			
TAL_STA									0			-				_			
RONMEN		15 —							0			-					NS	2.7	
		15										Boring term due to r		t appro	ximately 15 foot dept	h			
9/109:86																			
IGINEEK																			
e:GEOEN																			
ID I emplat																			
emplater																			
2001020																			
120/10026																			
1081/81/2	Note	s: Se	e F	igure	e A-1 f	for exp	lanation o	of syr	nbols	3.									
0/14 Path:										Lo	bg	of Direc	t-Pu	sh E	Boring N-DP	-27	,		
Spokane: Date:/2014 Path.P/181659300102/GNT/1859300102.GPJ DBTemplate/LbTemplate/SEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD	P													F	Former Cashm	ere	Mill		Data Gap Assessment
Spokane:	GEOENGINEERS											Project L Project N			Cashmere, Wa 18593-001-02	shin	gtor	۱	Figure A-35 Sheet 1 of 1

ENVIRONMENTAL_STANDARD GFI8 Spokane:

Drilleo		<u>Star</u> 0/20		<u>Er</u> 9/10	<u>nd</u>)/2013	Total Depth		1	3		Logged By KAH Checked By DRL	Driller (Cascade Drilling			Drilling Method Direct-Push
Surfac Vertica	ce Elev al Datu	vatio um	n (ft)		Und	etermin	ed			Ham Data				Drilling Equipr		Geoprobe
Latituc Longit Notes	ude					140967 7939354)		Syst Datu		Geograp WGS8	hic 4	<u>Groun</u> Date M		Depth to
\square				FIEI	_D D											
Elevation (feet)	o Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	Classification		ATERIA CRIPT		Sheen	Headspace Vapor (ppm)	REMARKS
	0-		42			1			SP-S	SM	Brown fine to coarse	e sand with	silt (moist) (fill)	NS NS	<1 1.1	
	-								SP	,-	Brown fine to mediu gravel (moist)	m sand wit	h trace silt and	- - NS	<1	
	5 -		48						SP-SI		Brown fine to coarse		. ,	NS	<1	
	-	-				<u>2</u> CA			ML		Brown silt with occa to wet)	sional sand	and gravel (moist	NS -	<1	
	10 —		36		_				SP		Becomes wet		trace silt and	- - NS	<1	Groundwater observed at approximately 9 fee during drilling
	-				Ţ	3			GP		Gray fine to coarse (wet)	-		NS NS	3.6	
No											Boring terminated a due to refusal	t approxim	ately 13 root depth			
No	ites: S	See F	Figure	e A-1 f	for exp	lanation c	of syr	mbols								
									Lo	og (of Direct-Pu				<u></u>	
-	-		-					1	7		Project:	For	mer Cashmer	e Mill	Site	, Data Gap Assessment

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

pokane: Date:1/2014 Path: P/18/1859300102/GINT/1858300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

GEOENGINEERS

Figure A-36 Sheet 1 of 1

ſ	Drilled		<u>Star</u> 0/20		<u>Er</u> 9/10	<u>nd</u>)/2013	Total Depth	(ft)	1	5		Logged By Checked By		Dri	_{ller} Casc	ade Drilling			Drilling Method Direct-Push
	Surface Vertica	e Elev I Datu	atio m	ר (ft)		Unde	etermine	ed			Ha Da	mmer					Drilling Equipr		Geoprobe
	Latitud Longitu Notes:	ıde					1204067 7939493)			stem tum		Geo W	ographic /GS84		<u>Groun</u> Date M		Depth to
Spokare: Date:12014 Path:N181689300102/GNT/1856300102/GPJ DBTemplate/Lib/Template/Lib/Template/Lib/Template/Lib	Elevation (feet)			48 48 48	Blows/foot	Collected Sample	ATA augustation o	f syr			SM	Brown silt Brown silt Brown silt Brown silt Dark brow Fine to co Brown fine (moist Becomes Becomes Becomes Becomes Becomes	DES e to coars ional grav with occa y fine to c yn fine gra arse sanc e to coars) wet	SCR e san e san asiona asiona avel w ist) (fi d with e grav	I gravel (moi sand (moi ith trace sil II?) silt (moist) vel with silt	nd oist) (fill?) st) (fill?) t (moist) (fill?)	NS NS NS NS NS	(mdd) (bdd) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	REMARKS
4 Path:P:/1											00	of Dire	ct-Pu	sh	Borin	g N-DP-3	1		
ate:1/20/1	-								-		J	Project:		311		-		Site	, Data Gap Assessment
Spokane: D	Ċ	E	ol	En	IG	IN	EER	S		1		Project Project	Locatio		Cashm	iere, Wash 001-02			Figure A-37 Sheet 1 of 1

ENVIRONMENTAL_STANDARD GFI8 Spokane:

Figure A-37 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

GDT/GEI8 DBTemplate/ \02\GINT\1859300102.GPJ 4 Path 1/20/1 Date:

> Figure A-38 Sheet 1 of 1

Drilleo	<u>5</u> 1 9/1	<u>Start</u> 1/201	13	<u>En</u> 9/11	<u>d</u> /2013	Total Depth	(ft)	1	0		Logged By Checked By		Drill	_{er} Casc	ade Drilling				Drilling Method Direct-Push
Surfac Vertica	e Eleva al Datur	ation n	(ft)		Unde	etermine	d			Hai Dat	mmer		1				ling Jipme	ent	Geoprobe
Latituc Longit Notes	ude)908419 7966056)			stem tum		Geo W	graphic GS84			oundw e Mea		 Depth to
\geq				FIEL	D D	ATA													
Elevation (feet)	o Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		M. DES	ATE SCRI	RIAL PTION				rreauspace Vapor (ppm)	REMARKS
	0-		30		Ì	1			SI GP-0		Brown fine				e silt (moist)	/-		2.4	
	-							000			(moist)	e grave		and sand			2.0	
	- 5 —		26			2 CA					-					_		2.0	
	_				_ * _			0 0			- Becomes	wet					IS	1.9	Groundwater observed at approximately 6 for during drilling
								0 0 0			_						IS :	2.1	
	_							0 0			-					_			
	10 —							0				minated a refusal	at appro	oximately	10 foot depth				
No	tes: Se	ee Fi	gure	A-1 fc	or expl	anation o	fsyr	nbols											
									L	og		ct-Pu			g N-DP-3				
C	GEO	bE	IN	IG	IN	EER	S	0	J		Project: Project Project		on:	Cashm	⁻ Cashmer ere, Wash 001-02			ite,	, Data Gap Assessment Figure A-39 _{Sheet 1 of 1}

pokane: Date:1/2014 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-39 Sheet 1 of 1

			Starl		En		Total			10		Logged By		D.://	Cascade Drill	ling			Drilling Mathad Direct-Push
	rilled	9/1 e Elev	1/20			/2013	Depth	. ,			На	Checked By	DRL	Driller			Drilling		Nethod
Ve	ertica	l Datu	im	1 (11)			termine	ed			Da	ita				E	Equipr	nent	Geoprobe
	atitud ongitu						52162 48116	6				rstem atum		Geogra WGS	iphic 84			<u>dwater</u> easure	Depth to
N	otes:																		
	otes:			(ui) 88 40	Blows/foot	D DA		Water Level		SP- GP- M	[¬]	Brown fine Brown fine Brown silt Grades wi Fine to co Encodes Becomes Becomes	DES(e to coarse e to coarse (moist) (fill ith occasion arse sand v silt (moist) arse gravel wet	sand wit gravel w ?)	AL FION h silt (moist) (fill? ith silt (moist) (fil	2) II?) - - - - - - - - - - - - -	NS NS NS	(udd) Jabo (budd) 3.3 3.6 3.2	d Water (ft) Elevation (ft) REMARKS Groundwater observed at approximately 7½ feet during drilling No samples recorded due to no positive results during field screen
056681/81	Not	es: S	iee F	igure	e A-1 fo	or expla	nation o	of syı	nbol	S.									
										Lo		of Direc	t-Pus	h Boi	ring N-DP	P-33/	4		
ate: 1/201	-									_	9	Project:			-			Site	Data Gap Assessment
Spokane. Lu	C	E	ol	EN	G	INE	ER	S		J		Project Project	Locatior	n: Ca	ashmere, W 593-001-02	ashin			Figure A-40 Sheet 1 of 1

ENVIRONMENTAL_STANDARD GF18 Pa te Spokane:

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

DBTemplate/LibTemplate:GEOENGI \02\GINT\1859300102.GPJ 4 Path Date:

> Figure A-41 Sheet 1 of 1

18593-001-02

Project Number:

3: Date:1/2014 Path: P:18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate/LibTemplate/GOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARC

Figure A-42 Sheet 1 of 1

Drilled 9/1	<u>Start</u> 1/2013	<u>En</u> 9/11/	<u>d</u> '2013	Total Depth	n (ft)	1	5	Logged By KAH Checked By DRL	Driller Cascad	e Drilling			Drilling Method Direct-Push
Surface Elev Vertical Datu	ation (ft) m		Unde	etermine	ed			lammer Data			Drilling Equipr		Geoprobe
Latitude Longitude Notes:				151607 <i>°</i> 971182)	S	System Datum	Geographic WGS84		<u>Groun</u>		 Depth to
												1	
Elevation (feet) o Depth (feet)	Interval 8 Recovered (in)	Blows/foot	Collected Sample C	Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION		Z Sheen	 Headspace Vapor (ppm) 	REMARKS
- - - 5- - - - - - - - - - - - - - - -	39 42 42			1 2 CA 3			SP-SM	White fine to coarse 	gravel with trace s edium sand with or sand with silt and I (moist)	and and	NS NS NS NS NS NS NS NS NS NS NS NS NS	1.1 1.0 1.6 1.4 1.6 2.3 1.8 2.8	Groundwater observed at approximately 8 fer during drilling
Notes: S	ee Figure	e A-1 fc	or expla	anation o	of syr	nbols		g of Direct-Pus	-			Site	, Data Gap Assessment
GE	DE	IGI	N	EER	S	D	1	Project Locatio Project Numbe	n: Cashmer	e, Wash			Figure A-43 Sheet 1 of 1

Figure A-43 Sheet 1 of 1

Dri	lled		<u>start</u> 1/2013	;	<u>End</u> 9/14/	<u>d</u> '2013	Total Depth	n (ft)	10)	Logged By Checked By	RB DRL	Driller	Cascade	Drilling			Drilling Method Direct-Push
Sur Ver	face tical [Eleva Datur	ation (f	ft)		Unde	etermine	ed			lammer Data	I				Drilling Equipr		Geoprobe
Lor	itude igitud tes:	e					1803088 916565)	1	System Datum		Geogi WG	raphic S84		<u>Groun</u> Date M		Depth to
				F	IEL	D D/	ATA								I			
Elevation (feet)		Deptn (teet)	Interval Recovered (in)		Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification			ATER CRIP	IAL TION		Sheen	Headspace Vapor (ppm)	REMARKS
		0 -	32	2		Ţ	1		0	GP SM	Brown silty gravel	and wood	edium s waste (and with occ moist) (fill)	asional	NS NS	<1	
		-								GP	Gray coar -	se gravel w	with san	d (moist)		_ NS	<1	
		5 —	32	2							-					- NS	<1	
		-				Ţ	2 CA				_ Becomes _	wet				- NS -	<1	Groundwater observed at approximately 7 fee during drilling
	1	-										minated at refusal	approx	imately 10 fc	ot depth	-		
pokare: Date:1/2014 Path:P181469300102/GNT/1856300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD	Notes	s: Se	ee Figu	ure A	4-1 fc	or expl	anation c	f syr	nbols.									
14 Path: P:/1										Lo	g of Dire	ct-Pus	sh B	orina N	I-DP-3	8		
Date: 1/20/	~	5	_								Project:						Site	, Data Gap Assessment
Spokane:	G	EC	bΕ	N	GI	N	EER	S			Project Project			ashmere 8593-00 ⁻		ingtor	٦	Figure A-44 Sheet 1 of 1

Figure A-44 Sheet 1 of 1

Vertice Behavior (f) Undetermined Harmer Different Different Geopode Linkow 47.522057000800 genom Geopodphic Control and the second of the	Drillec	I 9/1	<u>Star</u> 4/20)13	<u>En</u> 9/14	<u>d</u> /2013	Total Depth	(ft)	1	0		Logged By ERH Checked By DRL	Driller	Cascade Drilling	g			Drilling Method Direct-Pu	sh
Net: Market Willing Market Willing Market Willing Market Willing Remarks Image: Willing Ima	Surfac Vertica	e Elev al Datu	atior m	า (ft)		Unde	etermine	ed							D) rilling quipr	l nent	Geop	robe
Net: Market Willing Market Willing Market Willing Market Willing Remarks Image: Willing Ima)				Geogi WG	aphic S84				Depth to	
understand understand <td>-</td> <td></td> <td>ate M</td> <td>easure</td> <td><u>a water (ft)</u></td> <td>Elevation (III)</td>	-															ate M	easure	<u>a water (ft)</u>	Elevation (III)
1 1 0	\geq				FIEL	.D DA	ATA												
1 1 0	(teet)	0		(in)		ample	me	5	g		ы	MA	TER	IAI					
1 1 0	ation (t	th (feet	val	overed	vs/foot	acted S	ing	er Leve	ohic Lo	ę.	sificati					u	dspace or (ppm)	REM/	ARKS
Automatical and state and	Elev		Inter		Blow	Colle	<u>Sam</u> Test	Wat	Grap							Shee	Heac		
Image: set of the set of		-		36						GP-(GM	Dark gray fine to coa occasional sand	rse gra (moist)	vel with silt and	_	22			
Image: set of the set of		-				†	1									00			
Image: set of the set of		-				•	CA			SP-	SM_	and gravel (mois	t) iedium :	sand with silt (moist)		MS	<1		
Image: State of the second		-							0		GM	Light gray to white fi and sand (moist	ne to co	arse gravel with silt	_				
Image: Second		5 —		36					0			_				NS	<1		
Image: Second		-							0			-			-				
Image: set of the set of		-				1	2		0			-			-	NS	13		
Image: set of the set of		-				+			0			_ Becomes to brown			_	NO	1.5		
Index See Figure A-1 for explanation of symbols. Image: See Figure A-1 for explanation of symbols.		-							0			-			_				
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-39 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project: Cashmere, Washington Figure A-45		10 —											approx	imately 10 foot depth	1		I		
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-39 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project: Cashmere, Washington Figure A-45																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-39 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project: Cashmere, Washington Figure A-45																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-39 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45																			
Log of Direct-Push Boring N-DP-39 GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45	No																		
GEOENGINEERS O Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-45		tes: S	ee F	igure	e A-1 fo	or expl	anation o	f syr	nbols	3.									
GEOENGINEERS // Project Location: Cashmere, Washington Figure A-45	\bigcap									L	og	of Direct-Pu	sh B	oring N-DP	-39				
GEOENGINEERS Project Location: Cashmere, Washington Figure A-45	-			_	0000	2012			/	-		-						, Data Gap Asse	essment
	C											Project Locatio Project Numbe		ashmere, Was 8593-001-02	shin	gtor	ו		Figure A-45 Sheet 1 of 1

Date:1/2014 Path: P.(18)1869300102/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

Drilleo	<u>9</u> 1	<u>Start</u> 1/20		<u>Er</u> 9/11	<u>nd</u> /2013	Total Depth	(ft)	1	2		Logged By Checked By		Dri	_{iller} Cascade	Drilling			Drilling Method Direct-Push
Surfac Vertica	e Eleva al Datu	atior m	n (ft)		Unde	etermine	ed			Hai Dat	mmer ta					Drillir Equip	ng oment	Geoprobe
Latituc Longit Notes	ude					1696222 3005110)			stem tum		Ge W	ographic VGS84			ndwate Measure	Depth to
\geq				FIEL	D DA	ATA												
Elevation (feet)		Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification				ERIAL RIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		44					7	SF		(fill?)			id with trace silt				
	-					$\frac{1}{CA}$		/	SN	N	Brown silt	y fine to c	oarse	e sand (moist) (f	ill?)	NS	3.3	
	_				—				— — MI		Brown silt	with occa	 Isiona	al gravel (moist)	(fill?) — —	– NS	3.6	
	5 -		48								Brown fine	e to coars	 e san	d with trace silt	(moist)	- NS	3.0	
	-				•	2 CA		0 0	GP-0	GM -	- Fine to co	arse grav	el wit	h sand and silt (moist)	- - NS -	3.1	
	10 —		24			3					Becomes			proximately 12 fc		-		Groundwater observed at approximately 11 feet during drilling
	tes: S	ee F	igure	∋ A-1 f	or expl	anation o	fsyr	mbols	2		due to	refusal						
									L	oa	of Dire	ct-Pu	sh	Boring N	I-DP-4	2		
								/		J	Project:						l Site	, Data Gap Assessment
ohovaire.	GeoEngineers										Project Project			Cashmere		ingto	n	Figure A-46 Sheet 1 of 1

bokane: Date:12014 Path:Pv18(18593001/02/GNT/1858300102.GPJ DBTemplateLIDTemplate.GEOENGINEERS.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-46 Sheet 1 of 1

Drille		<u>Start</u> 1/2013	3	<u>En</u> 9/11/	<u>d</u> '2013	Total Depth	ı (ft)	1	2		Logged By ERH Checked By DRL	Driller	Cascade Drilling			Drilling Method Direct-Push
Surface Vertic	ce Elev al Datu	ation († m	ft)		Unde	etermine	ed				ammer ata			Drillin Equip	g ment	Geoprobe
Latitu Longi Notes	tude			4 -1:	7.521 20.47	1700454 7999303	140 8900)		S	ystem atum	Geogra WGS	aphic 84	Grour Date N		Depth to
	5.															1
[F	FIEL	D DA											
Elevation (feet)	b Depth (feet)	Interval Recovered (in)		Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		ATERI CRIP		Sheen	Headspace Vapor (ppm)	
	0 —	4	4						S	Ρ	Brown fine to coarse (fill?)	e sand wi	th trace silt (moist)			
	-								SI	М	Brown silty fine to c	oarse sar	id (moist) (fill)	NS	2.1	1
	-								M	L	Brown silt with occa	sional gra	avel (moist) (fill?)	NS	2.1	1
	5 -	4	в						S	P	Brown fine to coarse	e sand wi	th trace silt (moist)	NS	3.1	1
	-							0000	GP-	GM	Brown fine to coarse	e gravel v	vith sand and silt	- - NS	2.2	2
	10 — - -	2	4								Becomes wet			-		Groundwater observed at approximately feet during drilling

Notes: See Figure A-1 for explanation of symbols.

Log of Direct-Push Boring N-DP-42a

Former Cashmere Mill Site, Data Gap Assessment Project: Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-47 Sheet 1 of 1

Dri	lled	<u>9</u> /1	<u>Start</u> 1/20		<u>Er</u> 9/11	<u>id</u> /2013	Total Depth	(ft)	1	0		Logged By Checked By		Drille	er Cascade Drill	ing			Drilling Method Direct-Pus	h
Sur Ver	face tical l	Eleva Datui	atior m	n (ft)		Unde	etermine	ed				ammer ata					Drilling Equipr		Geopr	obe
	itude Igitud						593056				Sy Di	ystem atum		Geoo	graphic 3S84		Groun		Depth to	Elevation (ft)
No	tes:																Date M	easure	<u>o water (it)</u>	<u>Elevation (it)</u>
					FIEL	.D DA	ATA													
(feet)	. :	.		d (in)		ample	ame	el	D D		ion		MA	ATEF	RIAL					DKC
Elevation (feet)	:	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	dn	Classification		DES	CRI	PTION		en	Headspace Vapor (ppm)	REMA	KK2
Ele	I	o Dep	Inte	9 2 48	Blo	Coll	<u>Sar</u> Tes	Wai	Ga	ບ ປັ SP-		Brown fine	e to coarse	sand	with silt (moist) (fill?	')	Sheen	Hea Vap		
		_		-10		Ť	$\frac{1}{CA}$			01	OW	-		sanu		, .	NS	87		
		_				.						-					NS	7.0		
		_								M	IL	Brown to g	gray silt wi	th trac	e sand (moist) (fill?)					
		-										_					NS	35.1		
		5 —		48								-				_	NS	14.7		
		-								GP-					with trace silt (mois	t) ·		14.7		
		-							0	-		- (moist		giard						
						Ì	<u>2</u> CA		0 0			_					NS	3.9		
		10 —							000											
												Boring teri due to	minated a refusal	t appro	oximately 10 foot de	oth				
Ģ																				
19.001																				
Inplate.oc																				
Idle/LID I e																				
0102.010																				
000001111																				
10170100																				
	Notes	s: Se	ee F	igure	e A-1 f	or expl	anation o	f syr	nbols	6.										
										L	00	of Dire	ct-Pu	sh E	Boring N-D	P-4:	3			
Date: 1/20	_	ē.		_					/	_	- 3	Project:						Site,	Data Gap Asses	ssment
pokale.	G	GeoEngineers										Project I			Cashmere, W		ngtor	۱		Figure A-48
							20					Project	Numbe	r:	18593-001-02					Sheet 1 of 1

Dri	led		<u>art</u> 2013		<u>End</u> 11/20)13	Total Depth	(ft)	1	0		Logged By Checked By		Dri	_{iller} Cascade	Drilling	Drilling			Drilling Method Direct-Pusl	n
Sur Ver	ace E ical D	Elevat Datum	ion (ft	:)	U	ndet	ermine	ed			Ha	ammer ata					Drill Equ	ing ipmei	nt	Geopro	obe
	tude gitude	;					593055 035316)		Sy Da	/stem atum		Ge W	ographic VGS84			undw		Depth to	Eloyation (#)
Not	es:																Date	e Meas	sured		<u>Elevation (ft)</u>
				FIE		DA	TA														
(feet)	()	21)	d (in)		Sample		ame	'el	бо		tion				ERIAL				(REMA	DKS
Elevation (feet)	Danth (faat)		Recovered (in)	Blows/foot	Collected Sample		<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	assifica		DES	SCR	RIPTION		a control	adspace	Vapor (ppm)		
Ē		0-1	≝ ⊮ 48		ີ່ ວິ		Te	Ň	ū	ບັ SP-		Brown fine	e to coars	e san	d with silt (mois	st) (fill?)	ć	He d	Va		
		_										-						S 1	.7		
		_								— —		Brown to	nrav silt w	ith tra	ace sand (moist		_ N	s 2	2.5		
													gray Siit W	101 02) (1111 :)	- N	S 1	.1		
	,	- 5																			
	,	_	48							- <u>s</u>	P	Brown fine	e to coars	e san	d with trace silt	(moist)	_ N	s	<1		
		_							0	GP-	GM	Brown fine		e gra	vel with silt and	sand	-				
		_							0 0			-				_					
		-							0 0 0			-				_ N	S	<1			
	10	0 —		<u> </u>								Boring terminated at approximately 10 foot depth due to refusal									
	due to re																				
ANDARD																					
ENTAL																					
IVIRONME																					
T/GEI8_EN																					
ERS8.GD																					
OENGINE																					
mplate:GE																					
plate/LibTe																					
U DBTem																					
500102.GP																					
18981/ I NIS																					
93001/02/																					
	Notes:	: See	e Figu	re A-	1 for e	explar	nation o	f syr	nbols	5.											
/20/14 Pat										Lo	bg	of Direc	t-Pus	sh E	Boring N	-DP-4	3A				
le: Date:1.	C-		F				ED	C	1	,,		Project: Project		<u>n</u> .					te,	Data Gap Asses	sment
Spoka	GEOENGINEERS											Project Location: Cashmere, Was Project Number: 18593-001-02									Figure A-49 Sheet 1 of 1

Date: 1/2014 Path: P.(18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

	Start End Total Drilled 9/11/2013 9/11/2013 Depth (ft) Surface Elevation (ft) Undetermined Yertical Datum Vertical Datum Vertical Datum										Logged By ERH Driller Driller Cascade Drilling Drilling Method Drilling Hammer Data Data Drilling Geo						ısh			
Si Ve	irface ertical	Elev Datu	atior m	ו (ft)		Unde	termine	ed									Drilling Equip	g ment	Geop	orobe
	titude ngitua						594148 024565					stem		Geo W	ographic /GS84		<u>Grour</u>		Depth to	Elevation (ft)
N	otes:																Date N	leasure	<u>vvater (it)</u>	<u>Elevation (ft)</u>
					FIEL	D DA	TA													
(foot)	(1001)	et)		d (in)	Ŧ	sample	ame	e	Бõ		tion				RIAL				DEM	ARKS
Elevation (feet)		Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	dno	Classification		DES	CR	IPTION		Sheen	Headspace Vapor (ppm)		
Ц	1	o De	_ I I I	е 48	Blo	ပိ	Te	Ň	Ű	ی SP-		Brown fin	e to coarse	e sano	d with silt (mois	st) (fill?)	She	Че; К Не;		
		-										_			,	,,,,,	- NS	1.3		
		-										-	:	<u> </u>			-			
		-								М	IL	_ Brown to	gray silt w	ith tra	ce sand (moist) (†111?)	- NS	<1		
		-										_					-			
	5 — 48											Brown fine to coarse sand with trace silt (moist)						<1		
	_											Brown fine to coarse gravel with silt and sand								
													.)				_			
		_							0 0			-					_ NS	<1		
		10 —							0				minated a	t appr	roximately 10 fo	oot depth				
												uue it	reiusai							
NDAKD																				
IIAL_SIA																				
8/18993001/02/GIN 1/1898500102.GFJ UB1 8mplare/LD18mplare/GE/CENGINEEKS8.GD1/GER§ ENVIR/UNMEN A_S1AUDARU																				
sel8_envi																				
(298.6D1/0																				
are: GEUE																				
e/rio i emp																				
U 1/19/20																				
00000011																				
I NIEVZO/LO																				
10/1609300	Note	es: S	ee F	igure	e A-1 fo	or expla	nation o	f syr	nbols	3.										
											n -	of Direc	t-Pus	h F	Boring N	-DP-4?	BB			
		3		~							9	Project:			-			Site	, Data Gap Asse	essment
opokane: Date:	G	E	b	EN	IG	INE	ER	S	C	J	Project Location: Cashmere, Washingto					Figure A-50				
Ľ	GEOENGINEERIS												Figure						Sheet 1 of 1	

Date: 1/2014 Path: P.(18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

Dri	lled		<u>art</u> /2013		<u>En</u> 9/11/	<u>d</u> 2013	Total Depth	(ft)	1	0	Logged By ERH Checked By DRL Driller Cascade Drilling Hammer								Drilling Method Direct-Push	
Sur Ver	face E tical D	Eleva Datun	tion (f	t)		Unde	termine	ed			Ha Da			1			Drilling Equipr		Geoprobe	
	tude gitude	;					419086 029754)		Sy Da	rstem atum		Geogr WG	aphic S84			dwate easure	Depth to	
No	tes:																	casure		
				F	IEL	D DA	ΔTA													
Elevation (feet)			Interval Recovered (in)		Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification			ATER SCRIP			Sheen	Headspace Vapor (ppm)	REMARKS	
3300102/GINT/1855300102/GPJ_DB1emplate/Lb1emplate/GEOENGINEEKS8.GD1/GEI8_ENVIRONMENTAL_STANDARD	د و ۱۵			3			1 2 CA			SP-{	SM L M -	- Brown silt Brown silty - Gray fine t (moist) - Boring terr	(moist) (f	ill?) oarse sa gravel w	ith silt (moist) (fill?)		IS NS NS NS NS	 <u>±</u> ≫ 3.7 1.1 4.8 4.8 5.4 		
						1								-k P						
te:1/20/14										_	og	Project:	ct-Pu		oring N-DP			Site	Data Gan Assessment	
Spokane: Date:	GEOENGINEERS											Project Location: Cashmere, Washington Figure A-51								

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Dr	Start End Total 1 Drilled 9/11/2013 9/11/2013 Depth (ft) 1 urface Elevation (ft) Undetermined ertical Datum 1																	t-Push			
Su Ve	face l rtical [Eleva Datu	atior m	ו (ft)		Unde	termine	ed			Ha Da						Drilling Equip	g ment	G	eoprobe	
	itude ngitud						415033 027216					stem tum		Geo W	ographic /GS84		Groun Date N		Depth to) †)	Elevation (ft)
No	otes:																Date iv	leasure	<u>water (</u>	<u>n</u>	<u>Elevation (it)</u>
					FIEL	D DA	TA														
(feet)		et)		d (in)	Ŧ	Sample	ame	el (Бо		tion				RIAL					EMARK	9
Elevation (feet)	:	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	dno	Classification		DES	CR	IPTION		Sheen	Headspace Vapor (ppm)			5
Ele	1	o De	Ĕ	е 48	Blo	ပိ	Te	Ň	ő	ی SP-		Brown fin	e to coarse	e san	d with silt (m	oist) (fill?)	She	Че; Vap			
		-										_									
		_										-					_ NS	5.2			
		_								<u>—</u> м	L -	Brown silt	(moist) (fi	∥?)			- NS	5.3			
	5																_				
	5 — 60 - SM											Brown silt	y fine to c	oarse	sand (moist)	_				
												Gray fine to coarse gravel with silt and sand									
												(moist)									
		_							0			- NS 3.8									
	1	10 —							[-]			Boring terminated at approximately 10 foot depth due to refusal									
8/1893001/U2/GN1/1885000102.GFJ_UB1@fplate/LD1@fplate.GEUENGINEEKS8.GD1/GERE_ENVIKONMENTAT_S1ANDARD																					
NUKONM																					
1/6618_61																					
EKS8.GD																					
ECENGIN																					
emplate:G																					
plate/Lib I																					
300102.6F																					
ACOLVINIO																					
NZ0/1.0028								_													
	Notes	s: S	ee F	igure	e A-1 fo	or expla	nation o	f syr	nbols	3.											
2014 Pag										Lo	g	of Direc	t-Pus	h E	Boring	N-DP-4	4A				
opokane: Date:1/	G	E/		= .			ED	C	1	Project: Former Cashmere Mill Site, Data C Project Location: Cashmere, Washington					, Data Gap A	ssessm	ent				
Spokal	GEOENGINEERS										Project Location: Cashmere, Was Project Number: 18593-001-02						-				gure A-52 Sheet 1 of 1

Date: 1/2014 Path: P.(18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

	rilled	<u>9</u> /1	<u>Start</u> 1/20		<u>En</u> 9/11	<u>d</u> /2013	Total Depth	(ft)	1	0	Logged By ERH Checked By DRL Driller Cascade Drilling							Drilling Method Direct-Push	
Si Ve	urface ertica	e Eleva I Datu	atior m	n (ft)		Unde	etermine	ed			Har Dat					Drilling Equipr		Geop	robe
	atitude ongitu						206900 030552)		Sys Dat	stem tum	Ge	eographic WGS84		<u>Groun</u> Date M		Depth to	Elevation (ft)
Ν	lotes:															Datom		<u> </u>	
\int					FIEL	D DA	ATA	1											
(foot)	Elevation (reet)	Depth (feet)	rval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	ssirication			ERIAL RIPTION		ue	Headspace Vapor (ppm)	REM	ARKS
<u>č</u> L		o Dep	Interval	Se 36	Blov	Colle	<u>San</u> Test	Wat	Gra	D D SP		Brown find to cor	reo e2	nd with occasion	al cilt	Sheen	Head		
		_		30		Ì	1			<u></u>	- +	Brown fine to coarse sand with occasional silt(moist) (fill?) Brown silty fine to coarse sand (moist) (fill?)					<1		
												Brown silt with oc (fill?)	casior	al fine gravel (mo		NS	<1		
	- 5											Brown fine to coa	rse sa	nd with trace silt	(moist)	_			
		-							0	GP-G	<u>GM</u>	Gray fine to coar (moist)	se grav	vel with silt and si	and	NS	<1		
		-				Ţ	2 CA			GP		Becomes dark gr sand and trac Boring terminate	e silt (
118118833001V2/GIN 1118583001V2/GFU DB1 emplateLib 1emplate GEOENGINEENS8 GD1/GEIB_ENVIRONMEN I A_SI ANDARD	Not	es: Se	æ F	igure	≥ A-1 ft	or expla	anation o	f syr	nbols										
											ba	of Direct-P	ush	Borina N	N-DP-4	5			
			2	~					-		-9	Project:					Site	, Data Gap Asse	essment
Spokane: Date	GEOENGINEERS										Project Location: Cashmere, Washington Project Number: 18593-001-02					۱	Figure A-53 Sheet 1 of 1		

Date: 1/2014 Path: P.(18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

Drilleo	d 9/1	<u>Star</u> 1/20	13	<u>En</u> 9/11	<u>d</u> /2013	Total Depth	ı (ft)		4		Logged By Checked By		Driller	Cascade D	rilling			Drilling Method Direct-Push
Surfac Vertica	xe Elev al Datu	atior m	n (ft)		Unde	etermine	ed			Har Dat	mmer ta					Drilling Equipr) ment	Geoprobe
Latituc Longit				4 -1	7.520 20.48	0911247 3030369	770 200)		Sys Dat	stem tum		Geogi WG	aphic S84		<u>Groun</u> Date M		Depth to
Notes	:															Date M		
\equiv				FIEL	.D D	ATA												
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group			DES		TION		Sheen	Headspace Vapor (ppm)	REMARKS
	-		28			1 CA			GP-(GM	(mois 	t)		with silt and sar		NS - NS -	4.2	
	Boring terminated at approximately 4 foot depth due to refusal																	
No																		
No	tes: S	ee F	igure	e A-1 fo	or expl	anation o	f syr	nbols	8.									
									L	og	of Dire	ct-Pu	sh B	oring N-l	DP-4	7		
-			-	00000				1	7		Project		F	ormer Cas	hmere	e Mill	Site,	Data Gap Assessment

 Project:
 Former Cashmere Mill Site, Data Gap Assessment

 Project Location:
 Cashmere, Washington

 Project Number:
 18593-001-02

Drilled		<u>Start</u> 1/20			End 9/11/2013 Total 8 Depth (ft) H						Logged By KAH Checked By DRL	Dri	ller Cascade Drilling			Drilling Method Direct-Push			
Surface Vertical											immer ita	-		Drilling Equip) ment	Geopro	be		
Latitude Longitu						1419460 3072181)		Sy Da	rstem atum	Geo W	ographic /GS84	<u>Groun</u> Date N		Depth to	Elevation (ft)		
Notes:									I					Date IV	easure				
				FIEL	D DA	ATA													
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group		DES	SCR	RIAL IPTION	Sheen	Headspace Vapor (ppm)	REMAF	RKS		
	-		30		+	1			SP-9	SM	Brown fine to coars occasional grav			NS -	4.3 5.8				
	$5 - 12 \qquad 2 \qquad 0 \qquad \overline{GP}$									 P	- - - White fine to coars sand (moist) - Becomes brown	White fine to coarse gravel with trace silt and NS 3.6 Sand (moist) Becomes brown							
											Boring terminated a due to refusal	appr	roximately 8 foot depth						
	Notes: See Figure A-1 for explanation of symbols.																		
G	E	b	EN	IG	INI	EER	S		Project: Former Cashmere Mill Site, Data Gap Assessr Project Location: Cashmere, Washington Project Number: 18593-001-02					Sment Figure A-55 Sheet 1 of 1					

ppokane: Date:1/2014 Path:Pv18/18593001/02/GNT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-55 Sheet 1 of 1
Drille		<u>Start</u> 1/201	13	<u>En</u> 9/11	<u>d</u> /2013	Total Depth	n (ft)	į	5	Logged By K Checked By D		Driller Cascade Drill	ling			Drilling Method Direct-Push
Surfa Vertie	ace Elev cal Datu	ation m	(ft)		Unde	termine	ed			Hammer Data			[Drilling Equipn	nent	Geoprobe
Latitu Long Note	itude					607468 082325)		System Datum	(Geographic WGS84		Ground Date M		Depth to
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification			TERIAL RIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0-		36						SP-SN			and with silt and (moist) (fill)	_	NS	4.5	
	-				•	1 CA			 GP	White fine to sand (mo	o coarse g bist)	ravel with trace silt and		NS NS	4.3 4.5	
	5 —									Boring termi due to re	nated at a	approximately 5 foot dep	- oth			
	lotes: S	ee Fi	gure	: A-1 fc	or explain	anation c	of syn	nbols								
									Lo	- i	t-Pus	h Boring N-D				
	Ge	Ъ		IG	INE	ER	S		J	Project: Project Lo Project N		: Cashmere, W	ashir			, Data Gap Assessment Figure A-56 Sheet 1 of 1

Project Number:

Figure A-56 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

.GDT/GEI8_ENVIRONMENTAL_STANDARD DBTemplate/ 02\GINT\1859300102.GPJ 4 Path Date:

> Figure A-57 Sheet 1 of 1

Drilled		<u>Start</u> 4/20		<u>Er</u> 9/14	<u>nd</u> I/2013	Total Depth	ı (ft)	1	0		Logged By Checked By		Drill	_{er} Cascade	Drilling			Drilling Method Direct-Push
Surface Vertical	e Eleva Datu	atior m	n (ft)		Unde	termine	ed			Ha	mmer					Drilling Equipr		Geoprobe
Latitude Longitu	9					2126725				Sy: Da	stem		Geo	graphic GS84		Groun		Depth to
Notes:								-								Date M	leasure	d <u>Water (ft)</u> Elevation (ft)
\equiv				FIEL	D DA	ATA												
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		M/ DES	ATE CRI	RIAL PTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0		30		Ţ	1 CA		0 0 0 0 0 <u>1 1 1 0</u> 0 0 0 0 0 0 <u>1 1 1 0</u> 0	GP-(GM SM	Becomes da Brown fine t	ind (mois ark brown to mediuu in fine to c noist)	t) m m san oarse	gravel with silt d with silt (mois gravel with silt	 st)	- NS -	<1	
											Brown fine f	to mediu moist to v	m san wet)	d with occasion		- NS 	<1	Groundwater observed at approximately 61/2 feet during drilling
	10 —							0			Boring term due to re		appro	oximately 10 foo	ot depth			
Note																		
									Lo	og	of Direc	t-Pus	sh E	Boring N	-DP-5	51		
G											Project: Project L Project N		n:	Former Ca Cashmere, 18593-001	, Wash			, Data Gap Assessment Figure A-58 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-58 Sheet 1 of 1

Understand District Undetermined Undetermined Difficult Difficult Difficult Clearphole Latitude 4.7.52187305190 Buttom Geographic Statustantic Particin Partin Particin Partin <		rilled		<u>Star</u> 1/20		<u>Er</u> 9/11	<u>id</u> /2013	Total Depth	(ft)	1	4		Logged By Checked By		Drill	_{er} Cascade	Drilling			Drilling Method Direct-Push
Landon 4.72.2147309150 Speam Geoparative WSSH Geoparative WSSH Geoparative Databased During the max base of the control of th	Su	urface	e Elev I Datu	atio m	n (ft)		Unde					Har	mmer					Drilling Equip	g ment	
Note: Name (o) Name (o) Name (o) Name (o) Image: Name (o) Image: Name (o) Name (o) Name (o) Name (o) Name (o) Image: Name (o) Image: Name (o) Image: Name (o) Name (o) Name (o) Name (o) Name (o) Image: Name (o) Image:	La	atitud	е							<u> </u>		Sys	stem		Geo	graphic				Depth to
Image: Section of the section of system Image: Section of the section of system Image: Section of the section		-				- 1	20.40	5114758	000	,		Dai	um		vv	6304		Date N	leasure	ed Water (ft) Elevation (ft)
Image: Section of the section of system Image: Section of the section of system Image: Section of the section	\geq							٨٣٨												
0 10 1 10 1	(1	сг)										_								
0 10 1 10 1	ion (fo		(feet)	_	ered (i	foot	ted San	e Nam g	Level	ic Log		ficatior							ppm)	REMARKS
0 30 1		LIEVAI	Depth	Interva	Recov	Blows	Collect	<u>Sampl</u> Testin	Water	Graph	Group	Classi						Sheen	Headsp Vapor (
Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols. Image: Sec Figure A-1 for organation of symbols.			0 —		36								Brown fine	e to coars	e sand	with silt (mois	t) (fill?)			
Image: Second			-					1		~	ML		Brown silt	with occa	sional	gravel (moist)	(fill?) — —	- NS	<1	
Mathematical and the book of a grave with sit and sand the set of th			-				+						_					- NS	<1	
Mathematical and the book of a grave with sit and sand the set of th			-										-					_		
Note: See Figure A.1 for explanation of symbols. Note:: See Figure A.1 for explanation of symbols. Note:: See Figure A.1 for explanation of symbols. Note:: See Figure A.1 for explanation of symbols. Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Project: Project: Former Cashmere Mill Site, Data Gap Assessment Project Location:			-										-					-		
Model Image: Construction of Symbols Image: Construction of Symbols			5 —		30					0	GP-0	ЗМ			e grave	el with silt and	sand	NS	1.4	
Image: See Figure A-1 for explanation of symbols.			-					$\frac{2}{CA}$					-					NS	2.3	
Image: See Figure A-1 for explanation of symbols.			_				↓	0/1		0			Becomes	dark brov	vn and	wet				Groundwater observed at approximately 7 ¹ / ₂ feet during drilling
Image: see Figure A-1 for explanation of symbols. Image: see Figure A-1 for explanation of symbols. <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			_							0			_							
Model Model <td< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			10							0										
Notes: See Figure A-1 for explanation of symbols. Image: See Figure A-1 for explanation of symbols.					30					0 0			_					NS	1.2	
Notes: See Figure A-1 for explanation of symbols. Image: Control of Symbols Image: Cont			_							0			_					NS	2.3	
Notes: See Figure A-1 for explanation of symbols. Image: Contract Symbols Image: Contract Symbols Image: Contract Symbols Image: Contret Symbols </td <td>ANDARD</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>1</td> <td>3</td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	ANDARD		_				1	3		-			_					_		
During terminated a approximately 14 tool deputing terminate of the tool deputing terminate of	ENTAL_SI		_				+			0 0				minatod		ovimatoly 14 fc	ot donth	NS	3.1	
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project: Former Cashmere Mill Site, Data Gap Assessment Project: Cashmere, Washington Figure A-59	IRONME																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 Project: Former Cashmere Mill Site, Data Gap Assessment Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-59	3EI8_ENV																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 Project: Former Cashmere Mill Site, Data Gap Assessment Project: Former Cashmere, Washington Figure A-59	28.601/0																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 Project: Former Cashmere Mill Site, Data Gap Assessment Project: Former Cashmere, Washington Figure A-59	NGINEEK																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 Project: Former Cashmere Mill Site, Data Gap Assessment Project: Former Cashmere Mill Site, Data Gap Assessment Project: Cashmere, Washington Figure A-59	IS CENT																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-59	ID I Emplar																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 GeoEngineers Project: Former Cashmere Mill Site, Data Gap Assessment Project: Former Cashmere, Washington Figure A-59	emplate/L																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-59	190 DB																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 GEOENGINEERS OF Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-59	1200102.0																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-59	SINT/1859																			
Notes: See Figure A-1 for explanation of symbols. Log of Direct-Push Boring N-DP-52 Former Cashmere Mill Site, Data Gap Assessment Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-59	3001/02/0																			
Log of Direct-Push Boring N-DP-52 Project: Former Cashmere Mill Site, Data Gap Assessment GEOENGINEERS Project Location: Cashmere, Washington Figure A-59	2:/18/1855	Not	es: S	ee F	igure	e A-1 f	or expl	anation o	f syr	nbols	i.									
GeoEngineers Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-59	0/14 Path:	Log of Direc													sh E	Boring N	I-DP-5	2		
GEOENGINEERS /// Project Location: Cashmere, Washington Figure A-59	Date:1/20	Pro																	Site	, Data Gap Assessment
Project Number: 18593-001-02 Sheet 1 of 1	Spokane:	GEOENGINEERS											-			Cashmere 18593-00 ⁷		ingto	n	Figure A-59

bokane: Date:1/20/14 Path:P/18/16593001/02/GINT/18559300102.GPJ DBTemplateLibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Dril	ed	<u>St</u> 9/11/	a <u>rt</u> 2013	<u>Er</u> 9/11	<u>nd</u> /2013	Total Depth	(ft)	4	4	Logged By Checked By	KAH / DRL	Driller	Cascade Dri	illing			Drilling Method Direct-Push
Sur Ver	ace E ical D	levat atum	on (ft))	Unde	etermine	ed			Hammer Data					Drilling Equipr	nent	Geoprobe
Lati Lon	ude gitude			2 1-	47.52 120.48	1629200 3120949)30 300)		System Datum		Geogra WGS	aphic 584		Groun Date M		Depth to
Not	es:																
Elevation (feet)	, Depth (feet)			Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	Group Classification		DES	ATERI SCRIP	TION		Sheen	Headspace Vapor (ppm)	REMARKS
	l	- - -	30		Ţ	1 CA		0 0	SP-SI	(mois	st) (fill)		with silt and grav		NS NS NS	5.1	
	Boring terminated at approximately due to refusal															1	
	Notes:	See	Figur	те А-1 f	ior expl	lanation o	fsyn	nbols									
									Lo	og of Dire	ect-Pu	sh Bo	oring N-D)P-53	3		
071													<u> </u>			<u></u>	D /

pokane: Date:120'14 Path:Pv18(18693001/02/GINT/1858300102.GPJ DBTemplate/LbTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

 Project:
 Former Cashmere Mill Site, Data Gap Assessment

 Project Location:
 Cashmere, Washington

 Project Number:
 18593-001-02

Drilleo	d 9/1	<u>Start</u> 1/201	39	<u>Enc</u> 9/11/	<u>d</u> '2013	Total Depth		į	5	Logged By Checked By	y KAH y DRL	Driller Cascade Drilli	ng			Drilling Method Direct-Pusl	h
Surfac Vertica	e Elev al Datu	ation (m	ft)		Unde	termine	ed			Hammer Data				Drilling Equipr		Geopro	obe
Latituc Longit						428709 122267)		System Datum		Geographic WGS84	1 -		dwate easure	Depth to	Elevation (ft)
Notes	:														cuouro		
			FI		D DA	TA											
Elevation (feet)	feet)			oot	Collected Sample	<u>Sample Name</u> Testing	evel	c Log	cation			ATERIAL CRIPTION			ace pm)	REMA	RKS
Elevatio	Depth (feet)	Interval		Blows/foot	Collecte	<u>Sample</u> Testing	Water Level	Graphic Log	Group Classification					Sheen	Headspace Vapor (ppm)		
	0 —	3	0						SP-SI	M Brown fi	ne to coarse st) (fill)	e sand with silt and gravel	_	NS	4.1		
	-				Ť	$\frac{1}{CA}$				Grav fine	to coarse	gravel with trace sand and	silt	NS NS	4.6		
	-				+					(mois			-				
	-							000 000		_			-				
	5 —							<u> </u>		Boring te due t	erminated at	approximately 5 foot deptl	h				
No	tos: S	aa Ein		-1 fo	ovele	anation c	of our	nholo									
No	1.UUS. S	ee Fig	ure A-	- 1 10	л ехріа	an ration c	л syf	UDUIS									
									Lo	1		sh Boring N-DF			Sita	Data Can Assas	ement
0	GEOENGINEERS									Project Project	:: Locatio					Data Gap Asses	Figure A-61
										Project	Numbe	r: 18593-001-02					Sheet 1 of 1

Figure A-61 Sheet 1 of 1

Drilled 9/	<u>Start</u> 9/2013	<u>Er</u> 9/9/	<u>nd</u> /2013	Total Depth	ר (ft)	7	.5		d By KAH ed By DRL	Dr	iller Caso	cade Drilling			Drilling Method	Direct-Pu	sh
Surface Elev Vertical Datu	ation (ft) m)	Unde	etermine	ed			Hammer Data					Drilling Equipr			Geop	robe
Latitude Longitude				0606136 7888313)		System Datum		Ge V	ographic VGS84		<u>Groun</u>			Depth to <u>Water (ft)</u>	Elevation (ft)
Notes.	1																
Elevation (feet)	BI Interval BI E BI E		Collected Sample	1 2 2	Water Level		dnorg SP-S FILL SP-S GP	M Brow O Brow Brow M Gray Gray (1 Gray	DES vn fine to coarse vnish-gray silt vn wood waste v fine to coarse v fine to coarse moist)	SCR se san (moist e (fill) e sand e grave	oist) (fill)) (fill) with silt (m el with sand	and 	- NS - NS - NS - NS - NS - NS - NS	(udd) joben / 6 4.8 5.3 5.7 7.3 5.9			ARKS
Notes: S	ee Figur	re A-1 f	or expl	anation c	of syr	nbols											
							L			ush		ng S-DP-					
GE	οEι	NG	INI	EER	S	0	J		ect: ect Locati ect Numb		Cashm	r Cashmere here, Wash -001-02			, Data (Gap Asse	Figure A-62 Sheet 1 of 1

Figure A-62 Sheet 1 of 1

Drilled		<u>Start</u> 2/2013	3	<u>En</u> 9/12	<u>d</u> /2013	Total Depth	n (ft)	1	1	Logged By ERH Checked By DRL	Driller	Cascade Drilling			Drilling Method
Surface Vertical	Elev Datu	ation (m	(ft)		Unde	etermine	ed			Hammer Data			Drilling Equipr		Geoprobe
Latitude Longitud Notes:						058682´ 7889045)		System Datum	Geogr WGS		<u>Groun</u> Date M		Depth to
Elevation (feet)	○ Depth (feet)			Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	ML G Classification	Brown fine to coars: organic matter (Brown silt with occa Gray fine to coarse (fill?) Brown silt with occa	roots) (m sional ro gravel wi sional gra	TION vith silt and trace oist) (fill?) ots (moist) (fill?) th silt and sand (wet)	SM Sheen	L Headspace Vapor (ppm)	REMARKS Groundwater observed at approximately 15 feet during drilling
										Brown silt with occa Gray fine to coarse (wet) Fine to coarse grav	sand with	occasional gravel	- NS - NS - NS - NS	<1 1.1 1.5	
										due to refusal		mately 11 foot depth			
Note	s: S	ee Fig	lure	A-1 f	or expl	anation o	of syr	nbols	-						
									Lo	g of Direct-Pu	sh Bo	oring S-DP-1	A		
G	E	οE	N	IG	INI	EER	S	0	1	Project: Project Locatio Project Numbe	n: C	ormer Cashmere ashmere, Wash 3593-001-02			, Data Gap Assessment Figure A-63 Sheet 1 of 1

Figure A-63 Sheet 1 of 1

Drille		<u>Star</u> 4/20		<u>Er</u> 9/14	l <u>d</u> /2013	Total Depth	(ft)	1	0		Logged By Checked By	RB DRL	Driller	Cascade Drillin	ng			Drilling Method Direct-Push
Surfa Vertic	ce Elev al Datu	atio Im	ר (ft)		Unde	etermine	ed			Ha	immer					Drilling Equipr		Geoprobe
Latitu Longi)648703 '861280				Sy Da	rstem atum		Geogr WG	aphic S84			dwate easure	Depth to
Note																	easure	d Water (ft) Elevation (ft)
$\overline{}$				FIEL	.D D/	ATA												
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		M/ DES	ATER CRIP	IAL TION		Sheen	Headspace Vapor (ppm)	REMARKS
	0		30		Ţ	1 CA		$0^{\vee} \circ 0^{\vee} \circ 1^{\vee}$			Brown silty gravel	(moist)	arse sand	<u> </u>		SS SS SS NS NS	<1 <1 <1 1.0 1.1	Groundwater observed at approximately 61/2 feet during drilling
	10 —							171			Boring terr	ninated a refusal	t approxi	mately 10 foot dep	th			
	otes: S	iee F	igure	e A-1 f	or expla	anation o	f syr	nbols										
									La	oa	of Direc	ct-Pu	sh Bo	oring S-DP	-1F	3		
741.14	-		_						_	- IJ	Project:						Site,	, Data Gap Assessment
	GeoEngineers										Project I Project I			ashmere, Wa 8593-001-02	shir	ngtor	ו	Figure A-64 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Drill	ed 🤉	<u>Sta</u> 9/12/			<u>nd</u> 2/2013	Total Depth	n (ft)	1	0		Logged By Checked By		Drill	_{er} Casc	ade Drilling			Drilling Method Direct-Push
Surfa Verti	ace El ical Da	levat atum	ion (ft))	Und	etermine	. ,				nmer		1			Drilling Equipr		Geoprobe
Latite Long Note	gitude					0461194 7900541				Sys Dat	tem um		Geo W	graphic GS84		Groun Date M		Depth to
	o Depth (feet)		42		LD D		Mater Level				Brown silt Becomes Grayish-b occasi Grayish-b occasi Grayish-b sand (Boring ter	DES with occa grayish-bi rown fine ional grave	ATE SCRI rown to coa	RIAL PTION gravel (m rse sand v)	oist)	Date M	easure (udd) Joden 19.1 <1 1.0	ed Water (ft) Elevation (ft) REMARKS Slight petroleum odor Groundwater observed at approximately 2 feet during drilling
	NOTES:	See	e ⊢igui	e A-1	tor exp	lanation c	of syr	npols										
e:1/zu14 r.									L	og					ig S-DP-		Sito	Data Can Accordingt
Spokane: Dat	Ge	0	E	NG	IN	EER	S		J		Project: Project Project	Locatio	n:	Cashm	nere, Wash 001-02			e, Data Gap Assessment Figure A-65 Sheet 1 of 1

pokane: Date:1/2014 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-65 Sheet 1 of 1

Dri	illed	9/1	<u>Star</u> 2/20		<u>Er</u> 9/12	<u>nd</u> 2/2013	Total Depth	(ft)	1	1		Logged By Checked By		Driller	Cascade D	rilling			Drilling Method Direct-Push
Sur Ver	face tical	Elev Datu	atio	ר (ft)		Unde	etermine	ed			Ha Da	Immer					Drilling Equipr) nent	Geoprobe
	itude)615694 7921995				Sy Da	rstem atum		Geogr WGS	aphic 584		<u>Groun</u>		Depth to
	tes:																Date M	easure	d Water (ft) Elevation (ft)
					FIEL	D D	ATA									I			
Elevation (feet)		Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		M. DES	ATER CRIP	ial Tion		Sheen	Headspace Vapor (ppm)	REMARKS
		0-	-	Ľ 24	ш	0	ын	>	° .	GP-		Light brow sand (n fine to (coarse gr	avel with silt an	nd	S	1>	
		-				Ţ	1 CA		0 0 0 0			Becomes	,	n and we	et		NS	2.9	Groundwater observed at approximately 1½ feet during drilling
		- 5 —		36			2		0 0 0 0 0			- Becomes	gray			_	NS	2.2	
		-				-						_				· ·	NS	2.3	
		- 10 —		6			3					_				-	NS	2.2	
		-				L¥							minated a refusal	t approxi	mately 11 foot	depth	-		
118118953001021GIN1 118653001021GFU DB16mplateLD16mplateCECDENGINEEKS8.CD11GEB_ENVIRONMENTAT_S1ANDARD	Note	s: S	ee F	īgure	e A-1 f	ör expl	anation o	f syr	mbok	÷.									
											~	n of Dire		ish P	oring S-	. PD /			
ate: 1/201	1924		_							_	-0(Project:	501 - 71		-			Site.	, Data Gap Assessment
Spokane: U	G	E	ol	En	IG	IN	EER	S		1		Project Project		n: C	ashmere, \ 3593-001-0	Washi			Figure A-66 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Drillec	d 9/1	<u>Start</u> 2/2013		<u>End</u> 12/2013	3 Total Depth	ר (ft)		10	Logged By ERH Checked By DRL	Driller	Cascade Drilling			Drilling Direct-Push
Surfac Vertica	e Elev al Datu	ation (m	ft)	Unc	letermin	ed			ammer ata			Drilling Equipr	l nent	Geoprobe
Latitud Longit					2062840				ystem atum	Geogra WGS	84	Groune Date M		Depth to
Notes	:													<u> </u>
\equiv			FIE	ELD D	ATA									
Elevation (feet)	Depth (feet)	Interval	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERI/ CRIPT		Sheen	Headspace Vapor (ppm)	REMARKS
_	0-		6					 	Brown silty fine to co		1	NS	<1	
	-				1			GP-GM SP-SM	(gravel wi	th silt and sand	NS	<1 2.4	Groundwater observed at approximately 2 during drilling
	-			.					-			-		
	5 —	3	6					 	Brown fine to coarse			-		
	-						0	GP-GM	Brown fine to coarse (wet) Gray fine to coarse			NS NS	<1	
	-								- Gray line to coarses	sanu with		NS	<1	
	-								_			_		
	10 —						<u> </u>		Boring terminated at due to refusal	approxim	ately 10 foot depth			
No	tes: S	ee Fig	ure A-′	1 for exp	planation o	of sy	mbol	5.						
								Log	of Direct-Pus	sh Bo	ring S-DP-4	4		
C	GEO	ьE	NC	SIN	EER	S	1	J	Project: Project Locatio		rmer Cashmere shmere, Washi			, Data Gap Assessment Figure A-67
						-	-		Project Numbe	r: 18	593-001-02			Sheet 1 of 1

Drillec		<u>Star</u> 2/20		<u>Er</u> 9/12	<u>nd</u> 2/2013	Total	(ft)		8		Logged By		Driller Ca	scade Drilling			Drilling Method Direct-Pu	sh
Surfac	e Elev	atior		5/12		Depth					Checked By	DRL			Drilling]	Geop	
Vertica Latitud		m		2		0512639				Da Sv	stem		Geograph	ic	Equipr		r	
Longit	ude			-1	20.47	7929575	5100)			itum		WĞS84		Date M		Depth to	Elevation (ft)
Notes								_									1	
				FIEL	_D D/ ≗			-										
n (feet	set)		ed (in)	ot	l Samp	Name	evel	Log		ation						e E	REMA	ARKS
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	assific		DEC			Sheen	Headspace Vapor (ppm)		
Ξ	0 0	<u>-</u>	۲ 40	B	ŭ	NP≞	3	0 0	ර ග GP-0					and (moist) (fill)				
	-								ML		Grayish bi Becomes		moist) (fill) /n with sawdu	st	- NS	<1		
	-							0	GP-0	GM	Gray fine fine fine f	to coarse)	gravel with si	It and sand	-			
	-					$\frac{1}{CA}$		0			-				- NS	<1		
	-							0 0			Becomes	wet			-		Groundwater observed during	at approximately 4 feet
	5 —		36					0			_							Ū
	-							0 0			_				-			
	-										-				- NS	<1		
	-							0			Boring ter	minated a	t approximate	ely 8 foot depth	NS	<1		
	Image: Second state of the se																	
No																		
No	tes: S	ee F	igure	e A-1 f	or expl	anation o	of syı	mbols	S.									
\bigcap									L	.00	g of Dire	ect-Pi	ish Bor	ing S-DP-	5			
2			_		1.75255.55			-			Project:		Form	_		Site	, Data Gap Asse	ssment
C	GEOENGINEERS								J		Project			mere, Wash	ingtor	n		Figure A-68
L	GEOLINGINEERS										Project	Numbe	er: 1859	3-001-02				Sheet 1 of 1

Spokane: Date:1/20/14 Path:P:/18/1859300102/GINT/1858300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-68 Sheet 1 of 1

	<u>Start</u> 12/2013	5 9	<u>End</u>)/12/2013	Total Depth	(ft)	8		Logged By ERH Checked By DRL		Driller Cascade Drilling				Drilling Method Direct-Push
Surface Elev	vation (um	ft)	Unde	termine	d			lammer Data				lling uipm		Geoprobe
Latitude Longitude			47.520	481027 929781)		System Datum	G	eographic WGS84			lwater	Depth to
Notes:													easure	d Water (ft) Elevation (ft)
		FI	ELD DA	ATA										
Elevation (feet) Depth (feet)	Interval Decovered (in)		Blows/foot Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	DE	SCI	ERIAL RIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
0	- 3		Ť	1			P-GM ML P-GM	Grayish brown si Becomes dark bi	t (moi own w		 	NS	1.3 <1 1.8 2.6	Groundwater observed at approximately 4 fee during drilling
Notes: S	See Fig	ure A-	-1 for expla	anation of	f syn	nbols.		due to refusa		pproximately 8 foot depth				
						l	-0(g of Direct-P	ush	Boring S-DP-	5A			
GE	οE	N	GINE	ERS	5	Ø	1	Project: Project Loca Project Num						Data Gap Assessment Figure A-69 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P:/18/1859300102/GINT/1858300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-69 Sheet 1 of 1

Drilled		<u>Start</u> 2/2013	39	<u>End</u> /12/20	013	Total Depth	ı (ft)	ç	9	Logged By Checked By	y ERH y DRL	Driller	Cascade D	rilling			Drilling Method Direct-Push
Surface Vertica			ft)	U	Indete	ermine	ed			Hammer Data					Drilling Equipr		Geoprobe
Latitude Longitu						08856 45791)	i I	System Datum		Geogr WG	aphic S84		Groun Date M		Depth to
Notes:																	
			FI		DA1	ΓA											
Elevation (feet)	Depth (feet)	Interval		Blows/1001 Collected Sample		<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification			ATER SCRIP			Sheen	Headspace Vapor (ppm)	REMARKS
	0	3	6	1		1 CA			SP-SN ML	and	occasional	gravel (m	arse sand with s noist)_(fill?) nd (moist) (fill?)	1	MS	<1	Petroleum odor
	-			_	_			000	GP-GN		prown fine t (moist)	to coarse	gravel with silt	and	NS	<1	
	5-	4	0					0 0 0		- Become	s wet			_	NS	<1	Groundwater observed at approximately 4 for during drilling
										_							
										-					NS	<1	
	_						1 1				erminated a to refusal	at approx	imately 9 foot d	lepth			
Not	tes: S	ee Fig	ure A-	-1 for e	explan	nation o	f syn	nbols									
									Lo				Boring S-				
G	BE	bΕ	N	GII	NE	ER	S		J	-	:: : Locatic : Numbe	on: C	ormer Cas ashmere, \ 8593-001-(Washi			e, Data Gap Assessment Figure A-70 Sheet 1 of 1

ſ	Drilled	9/1	<u>Star</u> 2/20		<u>Er</u> 9/12	<u>nd</u> 2/2013	Total Depth			9		Logged By Checked By		Dril	ler Cascade I	Drilling			Drilling Method Direct-Push
s v	Surfac /ertica	e Elev Il Datu	atior Im	ר (ft)		Unde	etermin	. ,			Hai Dat	mmer					Drilling Equipr		Geoprobe
	atitud. .ongitu				ے 1-1	47.52 120.47	051326 794981(980 0300	C			stem tum		Geo W	ographic GS84		<u>Groun</u> Date M		Depth to
ſ	Notes	:															Date IM	easure	
ſ					FIEL	D D	ATA												
	ו (feet)	set)		ed (in)	ot	Sample	Name	svel	Log		ation				RIAL			e Ê	REMARKS
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	lassific		DES	SCRI	IPTION		Sheen	Headspace Vapor (ppm)	
	ш	0-		30	8	0	ωн	>	0	GP-		Brown fin (mois		se grav	el with silt and s	and	S	I>	
		-					1		000			Becomes	-				-		Groundwater observed at approximately 1 foo during drilling
		-				—			0 0			_					NS	<1	
		_							0 0			_					_		
		5 —		30					0 0								_	<1	
												_					-		
												-					- NS	<1	
		-							0			_					-		
		-		I				-	I			Boring ter due to	rminated a	at appr	oximately 9 foot	depth			1
Ð																			
STANDAF																			
MENTAL_																			
ENVIRON																			
GDT/GEI8																			
INEERS8.0																			
GEOENG																			
oTemplate:																			
emplate/Lil																			
GPJ DBT																			
59300102.																			
2\GINT\18																			
8593001\0.	Not	es S	ee F	ioure	ο Δ_1 f	or evo	lanation o	of sv	mhole										
Spokane: Date:12014 Path:P/181868300102/GNT/1858300102.GPJ DBTemplateLibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD	1401			Juic		5. CAP		21 Jyl											
:1/20/14 Pa										L	.og				Boring S			0	
ane: Date.	GEOENGINEERS											Project: Project			Former Cas Cashmere,				, Data Gap Assessment
Spok	-	GEOENGINEERS										Project			18593-001-		5.5.		Figure A-71 Sheet 1 of 1

ENVIRONMENTAL_STANDARD GFI8 Spokane:

Drille	d 9/	<u>Star</u> 12/20	<u>t</u> 013	<u>Er</u> 9/12	<u>nd</u> 2/2013	Total Depth	n (ft)	1	0	Logged By ERH Checked By DRL	Driller	Cascade Drillir	ng			Drilling Method
Surface Vertic	ce Ele al Dat	vatio um	n (ft)		Und	etermine	ed			ammer ata			E	Drilling Equipr	l nent	Geoprobe
Latitu Longi						0366000 7943997)		ystem atum	Geogr WG	aphic S84			dwate easure	 Depth to
Notes	S:															
\bigcap				FIEL	DD.	ATA										
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATER CRIP	ial Tion		Sheen	Headspace Vapor (ppm)	REMARKS
	0 -		48						GM	Light brown silty fine	to coar	se gravel (moist) (fi	II)	NS	<1	
										-			_	NS	<1	
									SP-SM ML	Light reddish-brown (moist) (fill)			/-	NS	<1	
					Ţ	1			FILL	Medium to dark brov (moist) (fill) _ Red to brown sawdu		-	, " , "			
	5 -	5								Brown fine to mediu	m sand	with silt (wet)		NS		Groundwater observed at approximately 4% feet during drilling
		_								Gray fine to coarse			et) _			
										-			_	NS	<1	
										-			_	NS	<1	
								0 0		-			_			
	10 -							0		Boring terminated at	approxi	mately 10 foot dept	th			
No																
	otes:	See I	Figure	e A-1 f	for exp	lanation o	of syr	nbols								
									Lo	g of Direct-Pu					<u></u>	
(ĴΕ	0	Er	١G	IN	EER	S	0	J	Project: Project Locatio Project Numbe	n: C	ormer Cashm ashmere, Wa 8593-001-02				, Data Gap Assessment Figure A-72 Sheet 1 of 1

Drilleo	<u>S</u> 1 9/12	<u>tart</u> 2/201	3	<u>En</u> 9/12	<u>d</u> /2013	Total Depth	ı (ft)	1	0		Logged By Checked By		Dri	_{ller} Cascad	e Drilling			Drilling Method Direct-Push	
Surfac Vertica	e Eleva al Datur	ition n	(ft)		Unde	etermine	. ,			Har Dat	mmer	_	1			Drillin Equip		Geopro	be
Latitud Longit Notes	le ude)265937 946001)			stem tum		Geo W	ographic /GS84		Grour	ndwate Neasure	Depth to	Elevation (ft)
Longit Notes	ude :: :: 0 Depth (feet)		96 Recovered (in)	FIEL Blows/toot	Collected Sample	946001	Mater Level			Back Classification	Brown fine (moist Becomes Gray silty Brown fine wood f Gray silt v Gray silt v Gray fine (mediu	DES e to coars) (fill) gray fine sand e to mediu fragments wet wet to coarse um dense	ATE CR with s im sause ((mois	ERIAL IPTION sawdust (mois nd with silt, gr. st) (fill)	t) (fill) avel and ind and silt			Depth to Water (ft)	RKS
\leq									L	oa	of Dire	ct-Pu	sh	Boring	S-DP-1	0			
								/		-9	Project:			_			Site	, Data Gap Assess	sment
C	GEOENGINEERS										Project Project			Cashmer 18593-00		ingto	n		Figure A-73 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P:/18/1859300102/GINT/1858300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-73 Sheet 1 of 1

Drilleo		<u>Star</u> 2/20		<u>Er</u> 9/12	<u>nd</u> 2/2013	Total Depth	(ft)	8	3		Logged By Checked By		Dri	_{iller} Cascad	e Drilling			Drilling Method Direc	t-Push	
Surfac Vertica	e Elev al Datu	atior m	ר (ft)		Unde	etermine				Ham Data	mer		_!			Drillin Equip			Geoprobe	
Latitud Longit						0137525 7918005)		Syste Datu			Ge	ographic /GS84			ndwate	Depth t	0	
Notes																Date N	<u>leasure</u>	ed <u>Water (</u>	<u>tt)</u>	Elevation (ft)
\geq				FIEL	D D/	ATA														
Elevation (feet)	⇔ Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification				erial Iption		Sheen	Headspace Vapor (ppm)	RI	EMARK	ŝ
	- - - 5 —		18			1 2 CA			GP-G SM		I(mois Brown sil	t) ty fine to r ne to coars	nediu	vel with silt and m sand with gr	avel (wet)	- NS - NS - NS	1.8	Groundwater ob foo	served at a	pproximately ½
	-				•					-		rminated a	at app	roximately 8 fc	ot depth	- NS	1.7			
No																				
\vdash											of Dire	ct-Pu	sh	Boring	S-DP-1	1				
													311				Site	, Data Gap A	ssessm	nent
C	GEOENGINEERS										Project Project Project	Locatio		Cashmer 18593-00	e, Wash			·	Fi	gure A-74 Sheet 1 of 1

bokane: Date:1/20/14 Path:P/18/16593001/02/GINT/18559300102.GPJ DBTemplateLibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-74 Sheet 1 of 1

18593-001-02

e: Date:1/2014 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARC

Figure A-75 Sheet 1 of 1

Drilled	<u>9</u> /1	<u>Start</u> 2/2013		<u>End</u> /12/2013	3 Total Depti	h (ft)	1	0	Logged By ERH Checked By DRL	Driller Casca	de Drilling			Drilling Method
Surface Vertical	Eleva Datu	ation (1 m	ft)	Und	determin	ed			lammer Data			Drilling Equipr	nent	Geoprobe
Latitude Longitud					2023975 797023)	5	System Datum	Geographic WGS84		<u>Groun</u> Date M		Depth to
Notes:												Dute M		
			FII	ELD D	ATA	-								
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blowe/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	30						SP-SM		th silt and occasic	onal gravel	-		
	_				1 CA			ML	Dark brown silt (moi	st) (fill?)		_ ss	<1	Petroleum odor
	_								Becomes wet			_		Groundwater observed at approximately 35 feet during drilling
									Gray fine to coarse (wet)	gravel with sand a	and trace silt	NS	<1	
									-			_	<1	
									-			-		
	10 —		_!						Boring terminated a due to refusal	t approximately 10) foot depth			1
Note	is: S	ee Figi	ure A-	1 tor ex	olanation o	ot syr	nbols							
								Lo	g of Direct-Pu				0:4	Data Can Assess
G	E	bΕ	N	GIN	EER	S	0	J	Project: Project Locatio Project Numbe	n: Cashme	ere, Wash			, Data Gap Assessment Figure A-76 _{Sheet 1 of 1}

Drilled	<u>9</u> /1	<u>Start</u> 2/20	13	<u>Er</u> 9/12	<u>nd</u> 2/2013	Total Depth	(ft)	1	0		Logged By ERH Checked By DRL	(Driller	Casca	ade Drillii	ng			Drilling Method Direct-Push
Surface Vertical	e Eleva I Datu	atior m	n (ft)		Unde	etermine	ed			Ha Da	mmer ta	_				E	Drilling Equipr	nent	Geoprobe
Latitude Longitu						439363 963777)			stem tum	G	Geogra WGS	aphic 384			Groun Date M		Depth to
Notes:									I									casure	
\equiv				FIEL	_D DA	ATA													
Elevation (feet)	Depth (feet)	val	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	sification			reri Rip	ial Tion			u	Headspace Vapor (ppm)	REMARKS
Elev	o Depi	Interval		Blow	Colle	<u>Sam</u> Test	Wat	Grag						10 10			Sheen	Heac	
	_		36					0 0	GP-0	GIVI	Brown fine to coa (moist) (fill)	rse g	ravei v	vith slit a	and sand	_	NS	1.5	
	_					1 CA		0/0/	ML		Gray silt with woo	d wa	ste (m	oist) (fill)	<u> </u>		NS NS	2.1 2.4	
	_							000	GP-0	GM	Gray fine to coars (moist) Becomes wet	e gra	avel wi	th silt and	d sand				Groundwater observed at approximately 4 feet during drilling
	5 —		40					0 0 0								-	NS	2.3	
	_										_					-	NS	1.8	
	_				<u> </u>			0			-					-	NS	<1	
	10 —							0			Boring terminated	at a	pproxi	mately 1	0 foot dep	th			
Note																			
	es: S	ee F	igure	e A-1 f	or expla	anation o	t syr	nbols											
									Lo	og	of Direct-P	usł		_				0.1	
G	GEOENGINEERS										Project: Project Locat Project Numb		C	ashme	Cashm ere, Wa 001-02				, Data Gap Assessment Figure A-77 _{Sheet 1 of 1}

Spokare: Date:1/2014 Path:P:18/18583001/02/GINT/1858300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-77 Sheet 1 of 1

Drille	d 9/1	<u>Start</u> 2/2013 ation (ft) m		2/2013	Total Depth		10	ŀ	Logged By Checked By Hammer	KAH DRL	Driller Cascade Drilling	Drilli	ng		Drilling Method Direct-Push Geoprobe
Vertic Latitu Longi Notes	de tude	m	4	47.520	060118 7963668	520			Data System Datum		Geographic WGS84	Grou	pment Indwa Measu	ter	Depth to
\equiv			FIEL	D D	ATA										
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		M/ DES	ATERIAL CRIPTION	Sheen	Headspace	Vapor (ppm)	REMARKS
	0	12		↓ ↓	2 CA			GP	Brown fine silt (mc Becomes f Becomes g Becomes f Becomes f Becomes f Becomes f	oist) prown and gray	e gravel with sand and trace	- NS - NS - NS - NS - NS - NS 	6 <1	1	Groundwater observed at approximately 1 foot during drilling

Notes: See Figure A-1 for explanation of symbols.

Log of Direct-Push Boring S-DP-16

Project:Former CashmProject Location:Cashmere, WaProject Number:18593-001-02

Former Cashmere Mill Site, Data Gap Assessment Cashmere, Washington 18593-001-02

Dri	lled §	<u>Sta</u> 9/12/2			<u>nd</u> 2/2013	Total Depth	(ft)	1	0		Logged By Checked By	KAH DRL	Dr	_{iller} Casca	de Drilling			Drilling Method Direct-Push
Sur Ver	face El tical Da	levati atum	on (ft)		Unde	etermine	ed			Har Dat	mmer ta		-			Drillii Equi	ng pment	Geoprobe
	itude Igitude			4 _^	47.520 120.47	987131	510 200)			stem tum		Ge V	ographic VGS84			Indwate	Depth to
No	tes:															Dale	Measur	red Water (ft) Elevation (ft)
				FIEL	D DA	ATA												
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	lassification				Erial Ription		Sheen	Headspace Vapor (ppm)	REMARKS
ш	0		30				5	0 0 0	GP-0	GM	Brown fine (moist Becomes Wood was) (fill) gray	e gra	vel with silt ar	nd sand		3.8	
		_							GP-(GΜ	 Brown fine 	e to coars	e gra nic m	vel with silt, sa atter (wood) (and and (wet) (fill)	- NS	3.9	Groundwater observed at approximately 2 fe during drilling
	5										 Grades to sand (to co	barse gravel w	ith silt and	- - NS	6 4.9	3
											Gray fine and gr	to mediun avel (wet)	 n san)	d with occasio	 onal silt			2
	10	_									-	minatod	t opp	proximately 10	fact donth	_		
	Notes:	See	Figur	e A-11	or expla	anation o	fsyr	nbols										
									L	oa	of Dire	ct-Pu	sh	Borina	S-DP-1	8		
Jaie: 1/20	-									- J	Project:						I Site	e, Data Gap Assessment
oponalia.	G	EO	Er	١G	INE	ER	S	D	1		Project Project			Cashme 18593-0	re, Wash 01-02	ingto	on	Figure A-79 Sheet 1 of 1

Date:1/2014 Path: P.(18)1869300102/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

ertical Dat	vation	(ft)	Un	determir	ed			ammer ata		Drilling Equip	g ment	Geoprobe
atitude ongitude Notes:			47.5 -120.4	2032053 799811	310 1400)	Sy Da	/stem atum	Geographic WGS84	Groun		Depth to
		FI	ELD D	ATA								
Elevation (feet) Depth (feet)	Interval	Recovered (in)	BIOWS/IOUL Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL SCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
0 -		40		1	_	o pro o ho o l	GM GP-GM GP-GM GP GP ML	(fill?) White fine to coarse (moist) (fill?) Dark gray silty fine to Gray fine to coarse (moist) (fill?) Gray silt (moist) (fill?)	e to coarse gravel (moist) gravel with silt and sand o coarse gravel (moist) (fill?) gravel with trace silt and sand ?) t approximately 4 foot depth	 NS	<1	Petroleum odor

Log of Direct-Push Boring S-DP-20

ookane: Date:1/20/14 Path:

Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-80 Sheet 1 of 1

Drilleo	<u>9</u> d 9/1	<u>Start</u> 2/20	13	<u>En</u> 9/12	<u>id</u> /2013	Total Depth	(ft)	1	0		Logged By Checked By		Dri	_{iller} Casc	ade Drilling			Drilling Method	Direct-Push	
Surfac Vertica	ce Eleva al Datu	atior m	n (ft)		Unde	etermine	ed			Har Dat	nmer a					Drilling Equip			Geoprot	be
Latituo Longit						520369 .47999				Sys Dat	stem rum		Geo W	ographic VGS84			ndwate Aeasure	_	Depth to Water (ft)	Elevation (ft)
Notes	8:																leasure	<u>50</u>	<u>water (it)</u>	
\neg				FIEL	.D D/	ATA														
(feet)	et)		d (in)	Ŧ	Sample	ame	e	b		tion				ERIAL					REMAR	0KG
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	assitica		DES	SCR	IPTION		Sheen	Headspace Vapor (ppm)			
Ë	o De	Ĕ	ад 40	BIG	ပိ	<u>Sa</u> Te			ซิ ซิ GN		Light brov	vn silty fin	e to c	oarse grave	l (moist) (fill)	ч К NS	A He - He			
	-								GP-0	GM -	White fine	e to coarse		vel with silt a		-				
	-					1		o do	GN			silty fine		arse gravel		NS	<1			
	_					1 CA			GF ML	_ 1	Gray fine (moist Gray silt (t) (fill)	•	el with trace	silt and sand	- NS	7.6		Petroleum	odor
	-							16	- GN	л –			-	oarse grave	l (moist) (fill)	-				
	5 —		48						- FIL	+					lt (moist) (fill)	- NS	<1			
					Ì	2		0	GP-C	-+	Dark gray Gray fine	· ·	<i>'</i> · · ·	,	nd sand (wet)	NS	<1			
	_							0 0			-					NS	1.6			
	-							0 0		-	-					_				
	10 —							0					it app	roximately ?	0 foot depth					
											due to	o refusal								
No	otes: Se	ee F	igure	e A-1 f	or expla	anation o	fsvr	nbols												
					- 17 "		- ,.													
									Lo	g o			sh E		S-DP-20		0	<u> </u>		
(-	h	-	IG	IN	EER	S	1	1		Project: Project		n:		Cashmere ere, Wash			, Data (Gap Assess	
	500		- 1	10			_				Project			18593-		0.2				Figure A-81 Sheet 1 of 1

Drilled	9/1	<u>Start</u> 2/2013		<u>nd</u> 2/2013	Total Depth		15	5	Logged By KAH Checked By DRL	Driller Caso	ade Drilling			Drilling Direct-Push
Surface Vertica	e Elev al Datu	ation (ft m)	Unde	etermine	ed			ammer ata			Drilling Equipr		Geoprobe
Latitud Longitu	ude				9941010 937486)	Sy Da	ystem atum	Geographic WGS84		Groun Date M		Depth to
Notes:	:													
~				LD DA										
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION	I	Sheen	Headspace Vapor (ppm)	REMARKS
	0 — - -	30		•	1			<u>GP-GM</u> SM	Brown silty fine sand (roots) (moist) (f Brown fine to coarse (moist) (fill) Light brown silty fine (moist) (fill) Grades to dark brow	II) gravel with silt sand with trace	and sand / / e sawdust	- NS NS NS - -	3.2	
	- 5 — -	36			2			SP-SM	Gray fine to medium	sand with silt (wet)	- NS - NS	2.6	Groundwater observed at approximately 4 f during drilling
	-							GP	Gray fine to coarse ((wet)	gravel with trace	e silt and sand	NS	2.5	
	10 —	30			0				_		-	NS	2.5	
	-			•	3 CA			GP	Gray medium to coa Gray fine to coarse (wet)			_ NS _ NS _	2.4	
	15 —						0		Boring terminated a due to refusal	approximately	15 foot depth			
Not	tes: S	ee Figu	re A-1	for expla	anation c	of syr	nbols.							
								Loo	of Direct-Pu	sh Borin	g S-DP-2	1		
		_							Project:				Site	, Data Gap Assessment
Ċ	E	οE	NG	IN	EER	S			Project Locatio Project Numbe		nere, Washi ∙001-02	ngtor	۱	Figure A-82 Sheet 1 of 1

Figure A-82 Sheet 1 of 1

Drilled	<u>9</u> /1	<u>Start</u> 3/20 ⁻	13	<u>Er</u> 9/13	<u>nd</u> 8/2013	Total Depth	ר (ft)	ļ	9	Logged By KAH Checked By DRL	Driller Cas	cade Drilling			Drilling Method Direct-Push
Surface Vertica	e Eleva al Datu	ation m	(ft)		Unde	etermin	ed			Hammer Data			Drilling Equipr) nent	Geoprobe
Latitud Longitu						0055273)		System Datum	Geographic WGS84	;	<u>Groun</u> Date M		Depth to
Notes:	:												Date M	Casure	
				FIEL	D D/	٩TA						· · · · ·			
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTIO	N	Sheen	Headspace Vapor (ppm)	REMARKS
Э	0 5 		24			2 CA			GP-GN GP-GN GP-GN	Brown fine to coarse (moist) (fill?) Brown silty fine sand	I (moist)	t and sand	- NS - NS - NS - NS - NS - NS - NS - NS	रा रा रा	Groundwater observed at approximately 5 fe during drilling
Not	tes: S	ee Fi	igure	A-1 f	or expl	anation o	of syr	nbols	5. =						
									Lo	g of Direct-Pu	sh Borir	ng S-DP-2	2		
Ģ	BE	DE	EN	IG	INI	EER	S	0	J	Project: Project Locatio Project Numbe	n: Cash	er Cashmere mere, Wash 3-001-02			, Data Gap Assessment Figure A-83 _{Sheet 1 of 1}

Drilled	9/1	<u>Star</u> 3/20	<u>t</u>)13	<u>En</u> 9/13	<u>id</u> /2013	Total Depth	(ft)	1	0		Logged By Checked By		Drille	_r Casc	ade Drilling			Drilling Method Direct-Push
Surface Vertica	e Eleva Il Datu	atio m	n (ft)		Unde	etermine	ed			Hai Dat	mmer					Drilli Equi	ng pment	Geoprobe
Latitud Longitu						9827699)			stem tum		Geog	raphic S84			indwate Measure	Depth to
Notes:																	INEASUR	red Water (ft) Elevation (ft)
\equiv				FIEL	D D/	ATA												
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification			ATEF CRIF	rial Ption		Sheen	Headspace Vapor (ppm)	
Ш] 0		36				-		SP-S	SM	Light brown and silt (Becomes w	nd organ fine to c (moist) hite	ic mati oarse (er (moist		 - NS	5 <1	
	_				•	CA					Becomes lig Becomes br	rown	1			- NS	6 <1	Groundwater observed at approximately 4 feet during drilling
	5 —		42		+	2					-					NS	5 <1	
											-					_ NS	6 <1	
	10 —							مٽم			Boring term due to re		appro	ximately ⁻	10 foot depth			
Not	es: S	ee F	−igure	e A-1 fi	or expl	anation o	f syr	mbols	i.									
							- , ,					4 D						
										og	of Direc Project:	t-Pus					Site	e, Data Gap Assessment
Ģ											Project L Project N		n: (Cashm	ere, Wasł 001-02			Figure A-84 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P:/18/1859300102/GINT/1858300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-84 Sheet 1 of 1

Drilled 9	<u>Sta</u> /13/2	<u>irt</u> 2013		<u>nd</u> 3/2013	Total Depth	n (ft)	1	0	Logged By KAH Checked By DRL	Driller Cas	cade Drilling			Drilling Method Direct-Push
Surface Ele Vertical Da	evatio tum	on (ft)		Unde	etermine	ed			ammer ata			Drilling Equipr		Geoprobe
Latitude Longitude					9826598 7940175)	S D	ystem atum	Geographic WGS84		<u>Groun</u> Date M		Depth to
Notes:														
			FIEI	_D DA	ATA									
Elevation (feet) Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION	1	Sheen	Headspace Vapor (ppm)	REMARKS
5	-	24			1 CA 2			GP-SM GP-GM FILL SP-SM	Brown fine to medii gravel and orga Brown fine to coars (moist) (fill) Becomes light brow Wood waste (fill) Gray fine to mediur Gray fine to coarse (wet)	nic_matter (roots e gravel with sil n n sand with silt (s) (moist) (fill) / and sand / / moist)	NS NS NS NS NS NS NS	<1 <1 <1 <1 <1	Groundwater observed at approximately 4 feet during drilling
Notes:	See	Figur	e A-11	for expl	anation c	of syr	nbols.		due to refusal					
<u> </u>									g of Direct-Pu	sh Borin	a S-DP-2	4		
124434		2427							Project:				Site	, Data Gap Assessment
Ge	0	Er	NG	IN	EER	S	D	/	Project Location Project Number	n: Cashn	nere, Wash -001-02			Figure A-85 Sheet 1 of 1

Figure A-85 Sheet 1 of 1

	Drilled	9/1	<u>Start</u> 3/20		<u>Er</u> 9/13	<u>id</u> /2013	Total Depth	n (ft)	1	10		Logged By Checked By		Dri	iller C	ascade Drilling	1			Drilling Method Direct-Push
S V	urface ertica	e Elev I Datu	atior m	า (ft)		Unde	etermine	ed				ammer ata		1				Drilling Equipr		Geoprobe
L L	atitud ongitu	e ide					9656687 7982279)			/stem atum		Geo W	ograph VGS84	nic			<u>dwate</u> easure	Depth to
	lotes:										1								easure	ed Water (ft) Elevation (ft)
Ĩ					FIEL	D D	ATA													
:	(feet)	et)		d (in)		sample	ame	e	Бõ		ion		M	АТE	ERIAL	_				REMARKS
	Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	dno	Classification		DES	CR	RIPTIO	NC		en	Headspace Vapor (ppm)	REIMARNS
i	Ele	o Der	Inte	9 24	Blo	Co Co		Wa	5	ව ර SP-		Brown fin	e to mediu	m sa	and with	silt and		Sheen SN	Vap Vap	
		_				_			0		-GM	occas Brown fin	ional organie to coarse	nic m	natter (ro	silt and sand	./ -	NS	<1	
		_								- <u>-</u> s	M	(moist Becomes Brown silt	white				_	NS	<1	
		_										-	,	- (,		_			
		_										_					_			
		5 —		36		+	<u>2</u> CA					– Becomes	wet					NS	<1	Groundwater observed at approximately 5 fe during drilling
		-									P	Brown fine silt (w		e grav	vel with	trace sand and		NS	<1	
		-										_					_			
		-										-					_			
		-															_			
		10 —						•		•			minated a refusal	t app	proximat	ely 10 foot depth				
IANDAKI																				
VIRONME																				
GEI8_EN																				
109.867																				
ENGINEE																				
are: GEOI																				
s/LID LEMP																				
s i emplate																				
zieru ut																				
20320010																				
Z/AIN I VIS/Z																				
011005868	Not	oc [.] S	oo F	ioure	Δ_1 f	or ovo	lanation c	fev	nhok											
	NUL			iguit		or evh		., Jyl												
1/20/14 Pa										L	og			sh		ing S-DP-				
	C		2	=.		INU	EER	C	1	,,		Project: Project		n.		ner Cashme hmere, Was				e, Data Gap Assessment
Spokal	C	15(1	_ r	D		CEK	2				Project				93-001-02		9.01		Figure A-86 Sheet 1 of 1

Date: 1/20/14 Path: P/18/18693001/02/GINT/1858300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

Drille	<u>s</u> d 9/12	<u>Start</u> 2/2013		<u>nd</u> 2/2013	Total Depth	n (ft)	1	9		Logged By Checked By		Drille	_{er} Casca	de Drilling			Drilling Method Direct-Push	
Surfac Vertic	ce Eleva al Datur	ation (ft m)	Unde	etermine	. ,			Ha	mmer	2.12				Drilling		Geopro	be
Latitue Longit	tude		-	47.520 120.48	0103939 8010794	950 1300)			stem tum		Geo W	graphic GS84			idwate leasure	Depth to	Elevation (ft)
Elevation (feet)	eet)	95 PF Recovered (in)		Collected Sample	TA Sample Name Testing	Water Level	· ○ ○ ○ ○ ○ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>		SM	occas	DES e to mediu ional gravu vn fine to o (moist) wet	Im san	RIAL PTION d with silt ar st) gravel with		S NS S S Sheen	eoedsback Headsback 1.1 1.6	REMAR Groundwater observed at during dr	approximately 4 feel
											minated a	t appro	oximately 9	foot depth	NS	1.7		

ERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD **FOFNGINFE** DB1 d' /20/14 Pat Spokane:

Figure A-87 Sheet 1 of 1

Drilleo		<u>Star</u> 2/20		<u>En</u> 9/12	<u>id</u> /2013	Total Depth	(ft)	12	2.5		Logged By KAH Checked By DRL	Dri	iller Cascade Drilling				Drilling Method Direct-Push
Surfac Vertica	e Eleva al Datu	atior m	ו (ft)		Unde	etermine	ed			Ha Da	mmer ta				illing Juipn		Geoprobe
Latituo Longit)254807 8008906)		Sy: Da	stem itum	Geo W	ographic /GS84			dwater easure	Depth to
Notes	5:																
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	ATA Sample Name Testing	Water Level	Graphic Log	Group	classification			ERIAL IPTION		Sheen	Headspace Vapor (ppm)	REMARKS
			22 48 36			1 CA 2 3				GM GM GM	(moist) (fill?) Brown fine to coars (moist) (fill?) Brown silty fine san Brown fine to coars (moist) (fill?) Becomes wet Brown silty fine san Brown fine to coars (wet)	 e grav d (mo grav d (wei e grav	vel with silt and sand		S NS NS NS NS NS NS	r > 4.4 4.5 3.5 3.0 0.5 0.4	Groundwater observed at approximately 5½ feet during drilling
No	tes: S	ee F	ïgure	∋ A-1 fi	or expl	anation o	fsyn	nbols		oa	depth due to ref	iusal		27			
		8						-		og	of Direct-Pu Project:	sh	Boring S-DP-2 Former Cashmer		/ill :	Site,	Data Gap Assessment
C	BEC	bl	EN	IG	IN	EER	S		1		Project Locatio Project Numbe		Cashmere, Wash 18593-001-02				Figure A-88 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Drilled	9/1	<u>Star</u> 2/20	13	<u>En</u> 9/12	<u>d</u> /2013	Total Depth	(ft)	7	7	Logged By KAH Checked By DRL	Driller Cas	cade Drilling			Drilling Method Direct-Push
Surface Vertica	e Elev al Datu	atio	ח (ft)		Und	etermine	ed			Hammer Data			Drilling Equipr		Geoprobe
Latitud Longitu Notes:	e ude					0396144 3012704)		System Datum	Geographic WGS84		Ground Date M	dwater	Depth to
\geq				FIEL	D D.	ΑΤΑ									
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTIO	N	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		48		Ļ	1			SP-SI	M Brown fine to mediu occasional grave	n sand with si I (moist) (fill)	t and	NS - NS	1.6	
	-					2 CA			FILL SM	_ +	sand with silt		- - - ss	1.8 1.4	
	5—		18			3			GP	Gray fine to coarse ((wet)	ravel with trac	e silt and sand	NS	1.1	Groundwater observed at approximately 4½ feet during drilling
	-				-					Boring terminated at due to refusal	approximatel	7 foot depth			
Not															
Not	tes: S	ee F	igure	e A-1 fo	or exp	lanation of	f syr	nbols							
1									Lo	g of Direct-Pus	sh Borir	iq S-DP-2	8		

GEOENGINEERS

Log of Direct-Push Boring S-DP-28

Project: Project Location: Cashmere, Washington Project Number: 18593-001-02

Former Cashmere Mill Site, Data Gap Assessment Figure A-89 Sheet 1 of 1

Drilled	I 9/1	<u>Start</u> 2/20 ⁻	13	<u>Er</u> 9/12	<u>id</u> /2013	Total Depth	ı (ft)	1	0	Logged By KAH Checked By DRL	Driller Ca	scade Drilling			Drilling Method
Surface Vertica	e Elev al Datu	ation m	(ft)		Unde	etermine	ed			łammer Data			Drilling Equipr		Geoprobe
Latitud Longitu	ude					0535966 3007854)	S	System Datum	Geograph WGS84	c	<u>Groun</u> Date M		Depth to
Notes:	:														
				FIEL	DD/	ATA	Т								
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTIC	N	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		48					0 0 0	GP-GN	Brown fine to coarse (moist) (fill?)	e gravel with s	ilt and sand	NS	1.2	
	-							0 0	SP-SM	Becomes dark brow		(moist)	NS	1.5	
	-					1			GP	White fine to coarse silt (moist)			- NS	1.1	
	5 —		48							Becomes wet			- NS	1.3	Groundwater observed at approximately 5 f during drilling
										-			NS		
	-				_	<u>2</u> CA				-			NS	1.6	
	10 —							p a		Boring terminated a due to refusal	t approximate	ly 10 foot depth	_		1
10 - Boring terminated at approximately 10 foot depth															
Not	tes: S	ee Fi	igure	A-1 f	or expl	anation o	f syr	nbols							
									Lo	g of Direct-Pu	sh Bori	ng S-DP-2	9		
G	BE	oE	EN	IG	IN	EER	S		J	Project: Project Locatio Project Numbe	n: Cash	er Cashmer mere, Wash 3-001-02			, Data Gap Assessment Figure A-90 _{Sheet 1 of 1}

Dri	lled	9/1	<u>Star</u> 2/20	13	<u>Er</u> 9/12	<u>nd</u> 2/2013	Total Depth	(ft)	1	0		Logged By Checked By		Driller	Cascade Drilling				Drilling Method Direct-Push
Sur Ver	face tical	Elev Datu	atior m	ר (ft)		Und	etermine	. ,				ammer				Dri Equ	lling uipm	nent	Geoprobe
	itude						0614556				Sy	/stem atum		Geogra WGS	aphic	Gro	ound	lwater	Depth to
	tes:				•	20.10										_ <u>Dat</u>	<u>e Me</u>	easure	ed Water (ft) Elevation (ft)
					FIEL	D D	ATA												
feet)		-		(in)		ample	me	-	5		ио		M	ATERI	AI				
Elevation (feet)		Depth (feet)	val	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	ę	Classification		DES	CRIP	TION		5	Headspace Vapor (ppm)	REMARKS
Elev		o Dep	Interval		Blov	Colle	<u>San</u> Test	Wat	Grat				<u> </u>			1	Sheen	Head	
		-		24		+	1		0	GP-	-GM	Dark brow sand (n fine to a moist) (fill	oarse gra ?)	avel with silt and	_	۱s	1.5	
		_				Ļ	1 CA		0 0			Becomes	white to g	ray		-		1.0	
		_							0			-				_			
		_							0 0			_				-			
		5 —		40					0	— —	1L	Dark brow	n silt with	occasion	nal gravel (moist)				
		-				Ţ	2		0	GP-	GM	Brown fine (moist) Becomes)		with silt and sand	-			Groundwater observed at approximately 6 fee during drilling
		-							0 0			-	gray and	wei		-			
		-										-				-			
		-							0 0 0			-				-			
		10 —				I		1				Boring ten due to	minated a refusal	t approxi	mately 10 foot depth				
ANDARD																			
NMEN I AL_SI ANDARD																			
1181189930011021GIN1 11885500102.0FJ DB1 emplaeLID1 emplae GEOENGINEEKSS GD1 7GEIE ENVIK																			
58.GD1/G																			
AGINEEK																			
IB:0E																			
emplate/																			
6FJ UB																			
08300102																			
20/100280	N1 - 1						lana () :	r .											
	Note	s: S	ee F	gure	e A-1 f	or exp	lanation o	í Syl	ndols	3.									
2014 Pat										L	og	of Dire	ct-Pu	sh Bo	oring S-DP-	30			
e: Date:1.	C	-	~	Ξ.	10		FFO	~	1			Project:	0.000						, Data Gap Assessment
Spokane:	U	E(J		١G	IN	EER	5				Project Project			ashmere, Wasł 3593-001-02	ung	ιση		Figure A-91 Sheet 1 of 1

pokane: Date:1/2014 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD
Drille		<u>Star</u> 2/20		<u>En</u> 9/12	<u>id</u> /2013	Total Depth	(ft)		10		Logged By Checked By		Drille	r Cascade	Drilling			Drilling Method Direct-Push
Surfac Vertic	e Elev al Datu	atio m	n (ft)		Unde	etermine	ed			Ha Da	ammer ata					Drilling Equip	g ment	Geoprobe
Latituo Longit						0308296 3031594)			/stem atum		Geog WC	jraphic SS84		<u>Groun</u> Date N		Depth to
Notes	:															Date iv	leasure	d <u>Water (ft)</u> Elevation (ft)
$\overline{}$				FIEL	.D D/	ATA									1			
Elevation (feet)	feet)		red (in)	oot	Collected Sample	Name	evel	: Log		cation			ATEF CRIE	RIAL PTION			pm)	REMARKS
Elevatio	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collecte	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		DEC		non		Sheen	Headspace Vapor (ppm)	
	-00		40					0 0	GP-	GM	Light brov (fill?)	vn fine to o	oarse	gravel with silt	(moist)	NS	1.2	
	-							0 			- Brownish	-gray silt (r	noist) (fill?) — — — — —		– NS – NS	1.4 1.3	
	-					CA 1					- Becomes					_		Groundwater observed at approximately 4 feet during drilling
	5 —		18		•	2		- 0	GP-	GM			gravel	with silt and sa	nd (wet)	NS	1.4	
	-				-			0 0			-					_		
											-					_		
	10 - Boring terminated at approximately 10 foot depth due to refusal																	
No	ites: S	ee F	igure	e A-1 f	or expl	anation o	f syr	nbol	S.									
-									L	00	of Dire	ct-Pu	sh F	Boring S	-DP-3	2		
			_							-9	Project:			_			Site	, Data Gap Assessment
	GeoEngineers										Project Project			Cashmere, 18593-001-		ingto	n	Figure A-92 Sheet 1 of 1

bokane: Date:1/20/14 Path:P/18/16593001/02/GINT/18559300102.GPJ DBTemplateLibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-92 Sheet 1 of 1

<u>Start</u> Drilled 9/12/2013	End Total 9 9/12/2013 Depth (ft)	Logged By ERH Checked By DRI Driller Cascade Drilling	Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum	9/12/2013 Depth (ft) Undetermined	Hammer	Drilling Geoprobe
Latitude Longitude Notes:	47.51981784290 -120.48035118600		Groundwater Depth to Date Measured Water (ft) Elevation (ft)
	FIELD DATA		
Elevation (feet) Depth (feet) Interval Recovered (in)	Blows/foot collected Sample Sample Name Testing Wrater Level Graphic Log Group	MATERIAL DESCRIPTION	Headsbace (pmm) (hum) (h
0 - 36 			NS <1 NS <1 Sroundwater observed at approximately 4 1
5 — 24 - - -		Grayish-brown fine to coarse gravel with silt and sand (wet)	during drilling
		due to refusal	
Notes: See Figure	A-1 for explanation of symbols.	og of Direct-Push Boring S-DP-3	-

GEOENGINEERS

Log of Direct-Push Boring S-DP-35

Former Cashmere Mill Site, Data Gap Assessment Project: Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-93 Sheet 1 of 1

Drilled	I 9/1	<u>Start</u> 3/201	13	<u>En</u> 9/13	<u>id</u> 5/2013	Total Depth	n (ft)	1	0	Logged By KAH Checked By DRL	Driller (Cascade Drilling			Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	ation m	(ft)		Unde	etermine	ed			ammer ata			Drilling Equipr) nent	Geoprobe
Latitud Longitu						9605353 8009997)		bystem Datum	Geograp WGS8	phic 4	Groun Date M		Depth to
Notes	:														
\square				FIEL	D D/	ATA									
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MA DES	ATERIA CRIPTI		Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		36						GP	Brown fine to coarse silt (medium den	gravel wit se, moist)	h trace sand and (fill)	NS	<1	
	-					1 CA			SP-SM	Grades to dark brow Brown fine to mediu			NS NS	<1 1.0	
	- 5 — -		36						 GP	Brown fine to coarse silt (wet)	gravel wit	h trace sand and	- - NS	<1	Groundwater observed at approximately 43 feet during drilling
	-					2				-			- NS -	<1	
	10 —							၀ိ၀		Boring terminated at due to refusal	approxima	ately 10 foot depth			
Not															
	tes: S	ee Fi	gure	A-1 f	or expl	anation c	ot syr	nbols							
									Log	g of Direct-Pu					
C	BE	Ъ		IG	INI	EER	S	0	J	Project: Project Locatio Project Numbe	n: Cas	mer Cashmer shmere, Wash 593-001-02			, Data Gap Assessment Figure A-94 Sheet 1 of 1

Drilled	l 9/1	<u>Start</u> 2/20 ⁻	13	<u>Er</u> 9/12	<u>nd</u> 2/2013	Total Depth	n (ft)	1	0	Logged By KAH Checked By DRL	Driller Case	cade Drilling			Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	ation m	(ft)		Unde	etermine	ed			ammer ata			Drilling Equipr		Geoprobe
Latitud Longitu	ude					9671022 8038950)	S D	ystem atum	Geographic WGS84		<u>Groun</u> Date M		Depth to
Notes	:														
_				FIEL	.D D/ I.◎		T								
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION	1	Sheen	Headspace Vapor (ppm)	REMARKS
Ξ	ă 0-		ഷ് 36	B	ŭ	<u> М</u> н	3	0	ତ ତ GP-GM		e gravel with silf	and sand	रू SS	± ≫ 1.4	
	-							0 0		(moist) (fill)			- ss		
	-					$\frac{1}{CA}$		0	SM	Brown silty fine sand (wood) (moist) (f	with trace org	anic matter	- NS	1.6	
	-				+						in <i>)</i>		_		
	-									Becomes wet			-		Groundwater observed at approximately 4 during drilling
	5 —		36					00	GP	Brown fine to coarse silt (wet)	gravel with tra	ce sand and	NS	1.6	
	-					2				_			NS		
										_			NS	1.3	
								b d		_			_		
	10 —							\circ \circ		Boring terminated at		10 foot depth			
										due to refusal	approximatory				
Not	tes: S	ee Fi	gure	A-1 f	or expl	anation o	of syr	nbols							
_									Log	g of Direct-Pu	sh Borin	g S-DP-3	39		
-								/	_	Project:	Forme	r Cashmer	e Mill		, Data Gap Assessment
C	DE	OF		G	INI	EER	S			Project Locatio Project Numbe		nere, Wash -001-02	ingtor	٦	Figure A-95 Sheet 1 of 1

Drilled 9/	<u>Start</u> 2/2013	8 9/	<u>End</u> 12/2013	Tota Dept	Total Depth (f	(ft)	10		Logged By ERH Checked By DRL	Driller	Cascade I	Drilling			Drilling Method Direct-Push	
Surface Elev Vertical Datu	ration (f Im	ft)	Und	etermir	mined	ł		Hai Dat	mmer ta				Drilling Equipr		Geoprobe	
Latitude Longitude Notes:			47.51 -120.4	985099 805403				Sy: Da	stem tum	Geogr WG	aphic 384		Ground Date M		Depth to	levation (ft
Notes: Elevation (feet)	Interval 8 Perovered (in)			ATA Sample Name CA					MA	a TER CRIP e gravel v moist) (fil grades v e silty fin gravel (m	AL TION vith silt and tr (?) vith sand to medium s oist) (fill?)	and	Date M	9.1 Headspace	d Water (ft) E	
Notes: S	se ng	are A-		anatiON		зупто			of Dimest D							
								.og	of Direct-Pus					Sito	Data Gap Assessmen	t
GE	οE	N	GIN	EER	RS	1	D		Project. Project Locatio Project Numbe	n: C	ashmere, 3593-001-	Washi			Figur	e A-96 et 1 of 1

Figure A-96 Sheet 1 of 1

Drille	ed 9	<u>St</u> /13/	<u>art</u> 201	3	<u>Er</u> 9/13	<u>id</u> /2013	Total Depth	(ft)	2	0	Logged By ERH Checked By DRL	Driller Cascade Drilling	ļ		Drilling Method Direct-Push
Surfa Verti	ace Ele cal Da	evat tum	ion	(ft)		Unde	etermine	ed			Hammer Data		Drillin Equip	g ment	Geoprobe
Latitu Long	ude itude)121687 3055474)	S	System Datum	Geographic WGS84		ndwate Measure	Depth to
Note	es:													iicasaic	
					FIEL	D D/	ATA	_							
Elevation (feet)	Depth (feet)	احدمدها		Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 ·	-		36			1			NL GM	Light brown fine to c silt (moist) (fill?) Dark brown silt with (moist) (fill?)	oarse sand with occasional roots and occasional gravel parse gravel (moist) (fill?)	NS		
	5 - 30 - CA - CA									SPGP	(wet)	e sand with occasional gravel	NS 	2.5	Groundwater observed at approximately 4½ feet during drilling
9											Brown fine to coarse (wet)	sand with occasional gravel	- NS - NS -		
	15	-	- 6	60		Ţ	3			GP-GN	Brown fine to coarse (wet)	gravel with silt and sand	NS - - -	<1	
									0 0 0		-		- NS	<1	
	lotes:	See	e Fiç	gure	e A-1 f	or expl	anation o	f syr	nbols						
										Lo	g of Direct-Pu	sh Boring S-DP-	42		
	Ge	0	E	N	IG	INI	EER	S	0	J	Project: Project Locatio Project Numbe	n: Cashmere, Was			, Data Gap Assessment Figure A-97 _{Sheet 1 of 1}

Figure A-97 Sheet 1 of 1

Drilled		<u>Start</u> 2/20	13	<u>En</u> 9/12	<u>d</u> /2013	Total Depth	n (ft)	1	0		Logged By ERH Checked By DRL	Driller	Cascade Drillir	ng			Drilling Method Direct-Push
Surface Vertica	e Eleva I Datu	atior m	n (ft)		Unde	etermine	ed			Har Dat	mmer ta			E	Drilling Equipn	nent	Geoprobe
Latitude Longitu Notes:	Ide					9693572 9081882)			stem tum	Geogra WGS	phic 84		Ground Date M		Depth to
Elevation (feet)	o Depth (feet) │	Interval	& Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	B Scoup	IL			ION	/-	Sheen	T Headspace Vapor (ppm)	REMARKS
	- - 5 - 10		30			1 CA 2				P P	 (fill?) Gray fine to coarse g (moist) (fill?) Dark brown silt with c Gray fine to coarse g Reddish-brown fine t occasional gravel Brownish-gray silt with (fill?) Gray fine to coarse g Boring terminated at due to refusal 	ccasiona ravel with cocarse (moist) (h occasiona ravel with	I sand (moist) (fill sand with fill?) onal gravel (wet) silt and sand (we	?) 	NS NS NS	2.5 1.6 1.2 1.3 1.2	Groundwater observed at approximately 5 fee during drilling
Not	es: S	ee F	ïgure	e A-1 fo	or expla	anation c	of syr	mbols		og	of Direct-Pus					Site.	Data Gap Assessment
G	E	b	EN	IG	INE	EER	S		1		Project Location Project Number	n: Ca	shmere, Wa 593-001-02				Figure A-98 Sheet 1 of 1

Spokane: Date:1/2014 Path:P/18/1859300102/GINT/1859300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT//GEI8_ENVIRONMENTAL_STANDARD

Figure A-98 Sheet 1 of 1

18593-001-02

kane: Date:1/2014 Path:P:181859300102/GINT18553300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-99 Sheet 1 of 1

Drilled		<u>Star</u> 3/20		<u>En</u> 9/13	<u>d</u> /2013	Total Depth	(f+)	1	0		Logged By KAH Checked By DRL	Driller	Cascade Drillir	ng			Drilling Method Direct-Push
Surfac	e Elev	atior				etermine				Hai Dat	mmer			Dr	illing Juipm		Geoprobe
Latitud	е					9267431				Sys	stem	Geogra	aphic			lwater	Depth to
Longitu				-1	20.48	8018106	6100)		Da	tum	WĞS	684	<u>Da</u>	ite Me	easured	
\geq					.D DA												
et)				FIEL						_							
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classificatior	M/ DES	ATERI CRIP	AL FION		Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		36						SP-	SM	Brown fine to mediu organic matter (r	m sand v noist) (fill	vith silt, gravel and		NS	<1	
	-				•	1			— Fil — — SP-		 Wood waste (fill) Brown fine to mediu organic matter (NS NS	<1	
	- 5 — -		48								-			_	NS	<1	
	-				1	<u>2</u> CA					Grades to gray fine (moist)	o mediu	m sand with silt	-	NS	<1	
	-				 			000	GP-	GM	Brown fine to coarse (wet)	gravel w	<i>i</i> ith silt and sand		NS	<1	Groundwater observed at approximately 8 feet during drilling
	10 —										Boring terminated a due to refusal	approxir	mately 10 foot dept	th			
Not	es: S	See F	īgure	∋ A-1 fi	or expl	anation o	f sy	mbols	5.								
										00	of Direct-Pus	sh Br	oring S-DP	<u>-53</u>			
		5							_	-9	Project:		-		Aill S	Site,	Data Gap Assessment
C	E	ol	EN	IG	IN	EER	S		J		Project Locatio Project Numbe		ashmere, Wa 3593-001-02	ishing	ton	l	Figure A-100 Sheet 1 of 1

Project Number:

ppokane: Date:1/2014 Path:Pv18/18593001/02/GNT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-100 Sheet 1 of 1

ENVIRONMENTAL STANDARD GDT/GEI8 DBTemplate/ 02\GINT\1859300102.GPJ L Pat Date:

Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-101 Sheet 1 of 1

Drilled	9/1	<u>Star</u> 3/20	t)13	<u>Er</u> 9/13	<u>nd</u> 8/2013	Total Depth	n (ft)	ę	9		Logged By ERH Checked By DRL	Dril	_{ller} Casc	ade Drilling			Drillin Metho	g Direct-l	Push	
Surfac Vertica	e Elev Il Datu	atio m	n (ft)		Unde	etermine	ed			Hai Dat	mmer ta				Drillir Equip			Ge	oprobe	
Latitud Longitu						9163119 3049024				Sy: Da	stem tum	Geo W	ographic /GS84			ndwat Measu		Depth to Water (ft)	Flova	tion (ft)
Notes															Dute	NCG0G		<u>mater (it)</u>		<u>aon (n</u>)
				FIEL	D D/	ATA														
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group		DES	CR	RIAL IPTION		Sheen	Headspace		REI	MARKS	
	-		30			1 CA			FIL GN FIL	м	Brown sawdust (moi Brown silty fine to co Large wood fragmer	arse	gravel (mo	ist) (fill)	- NS - NS - NS	4.1				
	- 5 — -		12			2					Becomes wet Wood fragments and with silt and sand	d brov d (wet	wn fine to c t)	oarse gravel	- NS	6.0		dwater obse feet d	rved at approxima uring drilling	ately 4½
Not	- 	ee F		e A-1 f	ior expl	anation o	f sy	mbols			Boring terminated at due to refusal	appr	roximately	9 foot depth						
									Lo	og	of Direct-Pus	sh								
C	BE	ol	En	IG	INI	EER	S	0	J		Project: Project Locatio	n:		Cashmer ere, Wash			e, Data	a Gap As	sessment Figure A	-102

18593-001-02

ENVIRONMENTAL_STANDARD GFI8 ő Ë Pat Spokane:

GEOENGINEERS Project Number:

Figure A-102 Sheet 1 of 1

18593-001-02

Project Number:

: Date:1/2014 Path:P118(1859300102)GINT(1859300102,GPJ DBTemplate/LibTemplate/CEOENGINEERS8,GDT/GEI8_ENV/RONMENTAL_STANDARC

Figure A-103 Sheet 1 of 1

Drillec	d 9/1	<u>Start</u> 3/20 ⁻	13	<u>En</u> 9/13	<u>d</u> /2013	Total Depth	(ft)		9	Logged By ERH Checked By DRL	Driller	Cascade Drilling			Drilling Direct-Push
Surfac Vertica						etermine				Hammer Data			Drilling Equipr		Geoprobe
Latituc Longitu	le ude					0650051 3113536				System Datum	Geogra WGS	aphic 84	Groun Date M	dwate	 Depth to
\geq				FIEL	D D	ATA									
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M/ DES	ATERI CRIPT	AL FION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		48						ML		occasion	al gravel (moist) (fill)			
	-				+	$\frac{1}{CA}$			GM	Gray silty fine to coa	irse grave	el (moist) (fill)	_ _ ss	6.8	
	-				*				ML ML	_ +		(moist) (fill)	NS	4.5	
	5 —		30		Ţ	2		[]	SM	Gray silty fine sand	(moist) (fi	III?)	= NS	2.5	
	-								GP-G			el (moist) h silt and sand (wet)	- NS	2.0	Groundwater observed at approximately 6½ feet during drilling
										due to refusal					
No	tes: S	ee Fi	igure	A-1 fo	or expl	lanation o	f syr	nbol	6.						
									Lo	og of Direct-Pu	sh Bo	oring S-DP-6	63		

GEOENGINEERS

Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-104 Sheet 1 of 1 Project Number: 18593-001-02

Drilled		<u>art</u> /2013	9	<u>End</u> /13/20	Tota 13 Dep	al th (ft)	1	0		Logged By Checked By	RB DRL	Dril	_{ler} Ca	scade Dri	lling			Drilling Method Direct-Push
Surface E Vertical D	Eleva Datum	tion (fl	:)	Ur	ndetermi	ned			Han Data	nmer a						Drilling Equipr		Geoprobe
Latitude Longitude Notes:	9				5203127 4811393				Sys Dati	tem um		Geo W	ographio GS84	c		<u>Groun</u> Date M		Depth to
Elevation (feet)		a Figu			Lesting Cample Name	Mater Level		dnoið SM - GM - FILL - GM		Gray silty Black woo (moist Gray silty (fill?) Gray silty Becomes Boring ter	DES	ATE CRI h sand	RIAL IPTIO	M moist) (fill) (fill) and sand th gravel (m		NS NS NS	(mdd) JodeA 2 <1 1.8 4	
Notes: See Figure A-1 for explanation of symbols.													ng S-D)P-6	5			
	S.	-	1980		or a Mader Load				Ī	Project:			Form	er Cash	mere	Mill		, Data Gap Assessment
GI	GeoEngineers									Project Project				mere, W 3-001-02		ngtor	ו	Figure A-105 Sheet 1 of 1

bokane: Date:1/20/14 Path:P/18/16593001/02/GINT/18559300102.GPJ DBTemplateLibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-105 Sheet 1 of 1

Drilleo		<u>start</u> 3/2013	3	<u>En</u> 9/13/	<u>d</u> /2013	Total Depth	(ft)	1	0		Logged By Checked By		Dri	_{ller} Ca	ascade Drillir	ng			Drilling Method Direct-Push
Surfac Vertica	e Eleva	ation (Unde	etermine	. ,			Ha Da	mmer		1				Drilling Equipr		Geoprobe
Latituc Longitu	le ude					9273018 102716)			stem Itum		Geo W	ographi /GS84	ic	!	Groun	dwate easure	Depth to
\square			_		D DA														
Elevation (feet)	o Depth (feet)	Interval		Blows/foot	Collected Sample	Testing Testing	Water Level	Graphic Log	Group			DES	SCR	RIAL	N		Sheen	Headspace Vapor (ppm)	REMARKS
No		1	8			2 CA			GP-4	GM M	Gray fine Gray fine Boring ter	fine sand	(fill) (wet) grave	(fill?)	ace silt and sat	-	NS NS NS	1.2 1.2	Groundwater observed at approximately 51% feet during drilling
No	tes: Se	e Fig	ure	A-1 fc	or expla	anation o	f syr	nbols			of Dire	ct-Pu		Bori	ng S-DP	<u> </u>	2		
		200							-	J	Project:		511		-			Site	, Data Gap Assessment
C	GeoEngineers										Project Project	Locatio		Cash	nmere, Wa 03-001-02				Figure A-106 Sheet 1 of 1

pokane: Date:1/2014 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-106 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

ERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD DBTemplate/LibTemplate:GEOENGI \02\GINT\1859300102.GPJ 4 Path Date:

Figure A-107 Sheet 1 of 1

Drilled		<u>Start</u> 3/20		<u>En</u> 9/13	<u>nd</u> 3/2013	Total Depth	(ft)	1	0		Logged By Checked By		Driller	Cascad	e Drilling			Drilling Method Direct-Push
Surface Vertica	e Eleva Il Datu	atior m	ו (ft)		Unde	etermine	d			_	mmer		1			Drilling Equipr		Geoprobe
Latitud Longitu)535574 3131185)			stem tum		Geogr WG	aphic S84		<u>Groun</u> Date M		Depth to
Notes:	:															Date M	easure	
$\overline{}$				FIEL	D DA	ATA	_											
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		M/ DES	ATER CRIP	ial Tion		Sheen	Headspace Vapor (ppm)	REMARKS
			48			1			GN 	 GM	Reddish-t	orown saw wn fine to o moist) (fill	dust with coarse g	avel (moist) n silt (moist) ravel with si II?)) (fill) — —	NS - NS - NS - NS	<1 1.0 1.2	
										GM .	 Brown fine (moist		e gravel			- NS - NS - NS	1.8	
	-				1	3					Becomes	wet				NS	2.2	Groundwater observed between approximately 8½ to 9 feet during drilling
	10 —				ļ			0			Boring ter due to	minated a	t approx	imately 10 f	oot depth			
Not	es: S	ee F	ïgure	e A-1 fi	or expla	anation o	f syr	nbols										
\vdash			-		•					<u> </u>	of Dire	ct_Pu	sh R	oring	S_DP_7	·		
133		2						-		J J	Project:						Site,	Data Gap Assessment
Ċ	E	b	EN	IG	INE	EER	S	D)		Project Project	Locatio	n: C		e, Wash			Figure A-108 Sheet 1 of 1

Project Number:

18593-001-02

Figure A-108 Sheet 1 of 1

Drill	ed 9/	<u>Sta</u> /13/2	<u>rt</u> 013	<u>Er</u> 9/13	<u>id</u> /2013	Total Depth	(ft)	10		Logged By ERH Checked By DRL	Dr	_{iller} Cascade	Drilling			Drilling Method Direct-Push
Surfa Verti	ace Ele ical Dat	evatio tum	on (ft)		Unde	termine	ed			ammer ata				Drilling Equipr		Geoprobe
Latit Long	ude gitude					833562 132389)	S	iystem Datum	Ge V	ographic VGS84		Ground Date M		Depth to
Note	es:													Datom		
\bigcap				FIEL	.D DA	ΤA	1									
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	N DE:	IATE SCR	Erial Ription		Sheen	Headspace Vapor (ppm)	REMARKS
	0 -		48						GM	Light brown silty fir occasional san	d (moi	ist) (fill)	า	NS	<1	
										Reddish-brown sa					<1	
		-			↓	1			GΜ	Light to dark brown (moist) (fill)	1 Silty 1	nne to coarse gra	avei	-		
	5 -	-	60						GM ML	Reddish-brown sa Light to dark brown (moist) (fill) Brownish-gray silt	n silty i	fine to coarse gra		-		
										(moist) (fill) Brownish-gray fine				NS	<1	
		-			_	UA			FILL SP-SM	Dark brown sawdu			/	NS	<1	
	10 -				I			xxxx(_	FILL	Brown sawdust wit (fill) Boring terminated	h occa	asional silty sand	(moist)			
	lates	See	Figure			anation o	fsyr	nhols								
		200	guit				. Jy1					Deriver				
ale: 1/201 14			200						L0(g of Direct-Pu Project:	isn				Site.	e, Data Gap Assessment
GEOENGINEERS								D	1	Project Locati Project Numb		Cashmere 18593-001	, Wash			Figure A-109 Sheet 1 of 1

Drilled	<u>S</u> 9/13	<u>start</u> 3/2013		<u>ind</u> 3/2013	Total Depti	h (ft)	6		Logged By ERH Checked By DRL	Dril	ler Cascade Drilling			Drilling Method Direct-Push
Surfac Vertica	e Eleva al Datur	ation (f n	t)	Unde	etermin	ed		Ha Da	ammer ata			Drillin Equip		Geoprobe
Latitud Longitu			-	47.520 120.48)38218 142558	110 8200		Sy Da	vstem atum	Geo W	ographic GS84		ndwate Aeasure	Depth to
Notes	:											Duten	neusure	
			FIE	LD DA	ATA									
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Classification	DES	SCRI	RIAL IPTION	Sheen	Headspace Vapor (ppm)	
	0 — - - 5 —	48			1		GF 0 0 0 0	ML P-GM	Light brown silt (mc Gray fine to coarse (moist)			- NS - NS 	<1	
							0		Boring terminated a due to refusal	at appr	oximately 6 foot depth	NS	<1	
Not	tes: Se	e Figu	ire A-1	for expla	anation o	of sym	bols.							
\square							L	og	of Direct-Pu	sh	Boring S-DP-7	'5		
0	GEC	ьE	NG	INE	ER	S/	D		Project: Project Locatio Project Numbe	on:	Former Cashmere Cashmere, Wash 18593-001-02			e, Data Gap Assessment Figure A-110 Sheet 1 of 1

Figure A-110 Sheet 1 of 1

Drilled	<u>9</u> /1	<u>Start</u> 4/20	13	<u>Er</u> 9/14	<u>d</u> /2013	Total Depth	ı (ft)	1	0		Logged By RB Checked By DRL	Drille	_r Cascad	de Drilling			Drilling Method Direct-Push
Surface Vertical	e Eleva Datu	atior m	n (ft)		Unde	etermine				Ha	mmer				Drilling Equipr	g ment	Geoprobe
Latitude Longitu)310854 132915					stem Itum	Geog WG	raphic SS84		<u>Groun</u> Date M		Depth to
Notes:															Date M		
$\overline{}$				FIEL	.D DA	ATA											
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification	M/ DES	ATEF CRIF	RIAL PTION		Sheen	Headspace Vapor (ppm)	REMARKS
J] 0		26			1 CA 2			GP-0	И	Brown silty fine to m (moist) (fill) Becomes dark brow with occasional s Gray coarse gravel of Gray coarse gravel of	n to dai awdus	rk gray and t (moist)		- SS - SS - SS - SS - NS - NS	1.1 4.1 <1	Groundwater observed at approximately 6 fee during drilling
,	10 —	ee F	igure	∋ A-1 f	, or expla	anation o	f syr	nbols	·		Boring terminated al due to refusal	appro:	ximately 10	foot depth			
									Lo	g	of Direct-Pus	h Bo	oring S	S-DP-7	5A		
G	E	b	EN	١G	INE	ER	S	0	J		Project: Project Locatio Project Numbe	n: (re, Wash			, Data Gap Assessment Figure A-111 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P:/18/1859300102/GINT/1858300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-111 Sheet 1 of 1

Drilleo		<u>Star</u> 4/20		<u>En</u> 9/14	<u>id</u> /2013	Total Depth	(ft)	1	0			RB DRL	Driller Cascade	Drilling			Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	atior m	n (ft)		Unde	etermine	ed			Hai Dat	mmer				Drilling Equipr		Geoprobe
Latitud Longit)680056 3141870)		Sys	stem		Geographic WGS84		Groun Date M		Depth to
Notes	:														Date M	easure	d Water (ft) Elevation (ft)
\equiv				FIEL	.D DA	ATA								1			
Elevation (feet)	⇔ Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		MA DES	TERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	- 0		36					0	SN 		gravel (m	noist) (fil		asional	NS NS	<1	
	-					1					Gray coarse		moist) (fill)		SS	<1	
	-				_						occasion	al grave	(moist) (fill)		_		
	-										-				-		
	5 —		32		1	2 CA		/	- s	м	Gray silty fin	e to med	lium sand with silt ler		NS	<1	
	-				_				G	P -			nts (moist) (fill) /ith sand (wet)		NS	<1	Groundwater observed at approximately 6 feet during drilling
	-										_						
	-										-				_		
	10 —							၀ိ၀			Boring termin	nated at	approximately 10 foo	ot depth			
											due to re			·			
-																	
_																	
Notes: See Figure A-1 for explanation of symbols.																	
No	hag. C		iaure	Δ.1 f	or evol	anation o	fevr	nhole									
	100. J	ee r	iyure	- A- I T	or expl	analiun 0	ı əyr	UUUIS									
									L	og	î	t-Pus	h Boring S			<u></u>	
C	GEOENGINEERS								J		Project: Project Lo	ocatio					, Data Gap Assessment
C			- 1	10		LEN.	5				Project N						Figure A-112 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-112 Sheet 1 of 1

Drilleo		<u>Start</u> 3/20		<u>Er</u> 9/13	<u>nd</u> 3/2013	Total Depth	ı (ft)	1	0		Logged By Checked By	RB DRL	Drille	r Cascad	e Drilling			Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	atior m	ו (ft)		Unde	etermine	ed			Ham Data						Drilling Equipr) ment	Geoprobe
Latituo Longit)661491 3186213)		Syst Datu			Geog	raphic SS84		Groun		Depth to
Notes																Date M	easure	d Water (ft) Elevation (ft)
\equiv				FIEI	D DA	ATA												
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	Classification		M. DES	ATEF SCRIF	rial Ption		Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		46			<u>1</u> CA			SM		Brown silty gravel	y fine to n and sawo	nedium dust (mo	sand with oc bist) (fill)	casional	NS	11.0	
	-								GP		Gray med	ium to co	arse gra	avel (moist) (fīll) — — —	NS	1.9	
	- 5 —								SM					th sawdust (r		NS	2	
			24			2			GM		Gray silty	fine to co	arse gra	avel with san	d (wet)	_ NS	3	Groundwater observed at approximately 5½ feet during drilling
	- - 10 —									-		minated a refusal	at appro	ximately 10 f	oot depth	-		
No																		
No	tes: S	ee F	ïgure	e A-1 1	or expl	anation o	f syr	nbols		og o	of Dire	ct-Pu	sh E	Boring S	S-DP-7	8		
	-		_	00000	0.6555						Project:		F	Former C	ashmer	e Mill		, Data Gap Assessment
C	JE(D		١G	INE	EER	S				Project I	Locatio	on: (Cashmer	e, Wash	ingtor	า	Figure A-113

18593-001-02

Figure A-113 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

GDT/GEI8 DBTemplate/ 02/GINT/1859300102.GPJ 4 Path Date:

> Figure A-114 Sheet 1 of 1

Drilleo	i 9/1	<u>Start</u> 4/20	13	<u>Er</u> 9/14	<u>nd</u> ‡/2013	Total Dept		1			er Cascade Drilling			Drilling Method Direct-Push
Surfac Vertica	e Elev al Datu	ation	n (ft)			etermin			Ha Da			Drilling Equipr		Geoprobe
Latituc Longit Notes	ude					973939 316271)	Sy Da	stem Geog ttum Wo	graphic 3S84	<u>Groun</u>		Depth to
_				FIEI	_D D	ATA	_							
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATEI DESCRI	PTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 — - - 5 —		30 60		I	1 CA			SM	Brown silty fine to medium Becomes gray and grades sawdust (moist)		- - - - -	11	
	- - - 10 —				Ţ				 	Grades to gray silty fine to Becomes wet Gray coarse gravel with sa Boring terminated at appro	ind (wet)	- SS - NS - NS	1.4 <1 <1	Groundwater observed at approximately a during drilling
No	tes: S	ee F	igure	e A-1 1	for exp	lanation	of syr	nbols						
									Log	of Direct-Push E			<u></u>	
C	BE	o	ĒN	١G	IN	EER	S	0	J	Project Location:	Former Cashmer Cashmere, Wash 18593-001-02			, Data Gap Assessment Figure A-11 Sheet 1 of 1

Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-115 Sheet 1 of 1

Drille	d 9/1	<u>Start</u> 3/20	13	<u>Er</u> 9/13	<u>nd</u> 3/2013	Total Depth	n (ft)	1	0		Logged By ERH Checked By DRL	Driller	Cascade D	rilling			Drilling Method Direct-Push
Surfac Vertic	ce Elev al Datu	atior m	ו (ft)		Unde	etermine	ed				ımer			[Drilling Equipr	nent	Geoprobe
Latitu Longi						9391167 3194132)		Syst Datu	tem um	Geogra WGS	phic 84	1		<u>dwater</u> easure	Depth to
Notes	S :																
				FIEL	_D D/	ATA											
Elevation (feet)	⇔ Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group		DES	ATERI/ CRIPT	ION		Sheen	Headspace Vapor (ppm)	REMARKS
	- - 5 - - 10	ee F	60 60	≥ A-1 f	for expl	1 CA 3	of syr	mbols	MI 		Light brown silt with Reddish-brown wood gravel (moist) (fil Gray silt with occasis (moist) (fill?) Gray fine sand with s Gray fine to coarse s (wet)	d waste w l) onal fine g silt (wet)	pravel and sar		NS	2.2 4.7 1.4	Groundwater observed at approximately 81/2 feet during drilling
									L	oa	of Direct-Pus	sh Bo	rina S-I	DP-82	2		
(GEO	ol	EN	١G	IN	EER	S				Project: Project Location Project Number	Fo n: Ca		hmere Washir	Mill		Data Gap Assessment Figure A-116 Sheet 1 of 1

/GEI8_ENVIRONMENTAL_STANDARD ŝ Spokane: Dat

Figure A-116 Sheet 1 of 1

Dril	lled		<u>Start</u> 3/2013	3	<u>En</u> 9/13/	<u>d</u> /2013	Total Depth	n (ft)	1	5	Logged By KA Checked By DI		_{riller} Cascade D	Drilling			Drilling Method
Surf Vert	face tical l	Eleva Datu	ation (m	ft)		Unde	etermine	ed			Hammer Data				Drilling Equipr	l nent	Geoprobe
	tude gitud						398862 174835)		System Datum	Ge	eographic VGS84		Ground		Depth to
Not	-					20.40	114000		, 			,	10001		Date M	easure	d <u>Water (ft)</u> <u>Elevation (ft)</u>
\geq					FIFI	.D DA	ΔΤΔ										
iet)			į							5							
Elevation (feet)		Depth (feet)	Interval Decovered (in)		/foot	Collected Sample	le Nan g	Water Level	Graphic Log	ficatio		DESCF	ERIAL RIPTION			oace (ppm)	REMARKS
Eleva		Depth	Interval		Blows/foot	Collec	<u>Sample Name</u> Testing	Water	Graph	Group Classification					Sheen	Headspace Vapor (ppm)	
		0 —	2	4		1	1			GP-GI FILL			avel with silt and sa	ind /	NS	1.0	
		_				*				TILL	Reddish-brow		(moist) (fill)		- NS	<1	
		_									-				-		
		_									-				-		
		-									-				_		
		5 —	6	0		Ť	2				-			-	NS	<1	
											Becomes wet				-	1.0	Groundwater observed at approximately 6 fee during drilling
											-				- NS	<1	
											-				-		
		_				Ť	<u>3</u> CA			SM	Gray silty fine	sand (wet	.) (fill?)		NS	<1	
		10 —	3	6		*					_			-	NS		
		-									-				- NS		
IDARD		_				Ť	4		1/ 0	GP-GI	Gray fine to c	oarse grav	el with silt and sand	d (wet)	NS	<1	
AL_STAN		_				*			0		-				_		
ONMENT		-							0 0		-				_		
B_ENVIRG		15 —									Boring termina due to refu	ated at ap usal	proximately 15 foot	depth		I	
3DT/GEI																	
JEERS8.0																	
EOENGIN																	
nplate:GI																	
ate/LibTer																	
)BTempla																	
02.GPJ [
8593001																	
2/GINT/1																	
3593001\(Notes: See Figure A-1 for explanation of symbols.																
h:P:/18/16	NUCE	৯. উ	ee rig	ure	A- I 10	J expla	analion C	n syr	SIOUN								
20/14 Pati										Lo	g of Direct-	Push	Boring S-	DP-8	3		
pokare: Date:1/2014 Path:P/1811859300102/GINT/1858300102.GPJ DBTemplate/LIbTemplate/GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD	~							-	1	7	Project:						, Data Gap Assessment
Spokane	U	E	DE	N	G	INE	EER	S			Project Loo Project Nu		Cashmere, 18593-001-		ngtor	ו	Figure A-117 Sheet 1 of 1

Figure A-117 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

ENVIRONMENTAL_STANDARD GDT/GEI8 DBTemplate/LibTemplate 02\GINT\1859300102.GPJ 4 Path Date:

> Figure A-118 Sheet 1 of 1

Drille		<u>Start</u> 3/20		<u>En</u> 9/13	<u>id</u> /2013	Total Depth	(ft)	1	0	Logged By ERH Checked By DRL	_{Driller} Ca	scade Drilling			Drilling Method Direct-Push	
Surfa Vertic	ce Elev al Datu	atior	n (ft)		Unde	etermine	ed			ammer ata			Drilling Equipr	nent	Geoprobe	
Latitu Longi Note	de tude			4 -1	17.519 20.48	9836067 3213328	730 700)	S		Geographi WGS84	c	Ground Date M	dwater	Depth to	evation (ft)
				FIEL	.D D/	٩TA										
Elevation (feet)	o Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTIC		Sheen	Headspace Vapor (ppm)	REMARKS	
	0 — - - 5 —	-	24 48		Ļ	1			ML FILL	Reddish-brown silt with (fill) Becomes dark brown sand Reddish-brown wood	n with occasio I fragments (Doccasional sa	onal gravel and / moist) (fill) // awdust (moist) //	NS - - NS	5.4 3.4		
	- - 10 —	2 CA GP-GM Gray fine to coarse gravel with silt and sand ML (moist) (fill?) (moist) (fill?) Brownish-gray silt (moist) (fill?) GP-GM GP-GM Gray fine to coarse gravel with silt and sand GP-GM GP-GM Gray fine to coarse gravel with silt and sand Becomes wet GP-GM Gray fine to coarse gravel with silt and sand Boring terminated at approximately 10 foot d due to refusal												2.8	Groundwater observed at approxir during drilling	nately 8 fee
	ntee. C		ique	2 0 1 4		anotion of	for	mbole								
\sub	otes: See Figure A-1 for explanation of symbols.															
									LOG	g of Direct-Pus		_		Sito	Data Gap Assessment	

 Project:
 Former Cashmere Mill Site, Data Gap Assessment

 Project Location:
 Cashmere, Washington

 Project Number:
 18593-001-02

Drille		<u>Start</u> 3/20		<u>En</u> 9/13	<u>d</u> /2013	Total Depth	ı (ft)	6	6.5	(Logged By Checked By	KAH DRL	Driller C	ascade Drilling				Drilling Method Direct-Push
Surfac Vertic	ce Eleva al Datu	ation m	n (ft)		Unde	etermine	ed			Ham Data					D E	rilling quipn	nent	Geoprobe
Latitu Longi)380207 232635				Syst Datu			Geograp WGS8	hic 4	1 -		dwater easure	Depth to
Notes	3:																	
\neg				FIEL	.D DA	ATA												
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	CIASSIILCAUOL			ATERIA SCRIPTI			Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		54			1			GP-GI	9M - -	Brown fin (moist Becomes Becomes Becomes	t) gray yellow	e gravel with	n silt and sand	-	NS NS NS	1.5 1.3 1.3	
	- 5 -		6		↓ ↓	1 CA 2					Becomes	wet				SS		Groundwater observed at approximately 5 foot depth
											Boring ter due to	rminated a prefusal	at approxima	tely 6½ foot depth				
Nc																		
No	otes: S	ee F	igure	e A-1 fo	or expla	anation o	fsyı	nbol	S.									
									Lo	bg (of Dire	ct-Pu	sh Bor	ing S-DP-	86			
	-		_	20044	and the second		544	/	_	Ť	Project:		For	mer Cashme	re I	Mill		, Data Gap Assessment
(JEO	b		IG	INE	EER	S		1		Project Project			hmere, Wasl 93-001-02	hin	gtor	1	Figure A-120 Sheet 1 of 1

Spokane: Date:1/20/14 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-120 Sheet 1 of 1

Drille		<u>Start</u> 4/2013		<u>End</u> 14/2013	Total Dept	h (ft)	i	8	Logged By Checked By	ERH DRL	Driller	Cascade Dril	lling			Drilling Method Direct-Push
Surfa Vertic	ce Elev al Datu	ation (m	ft)	Unc	letermin	ed			lammer Data					Drilling Equipr		Geoprobe
Latitu Longi Note:	tude				2067726 823440)		System Datum		Geograp WGS8	bhic 34		Ground Date M		Depth to
Elevation (feet)	s:	ee Fig				Water Level		MD-GD MD-GD MD-GD MD-GD MD-GD	Reddish- and g sand g sand Gray fine Brown fin Brown fin	MA DES brown silt w rass (moist gray fine to (moist) to medium	TERIA CRIPT (fill?) coarse gr sand with	۱L.	I /	Date M	easure (mdd) JodeA 1 <1 <1 <1	d Water (ft) Elevation (ft)
\geq									g of Dire	ct-Pu	sh Ro	ring S-D	P-87	7		
									Project:						Site.	Data Gap Assessment
	GE	οE	NC	GIN	EER	S		1	Project	Locatio Number	n: Ca	shmere, W 593-001-02	/ashir			Figure A-121 Sheet 1 of 1

Figure A-121 Sheet 1 of 1

Dril	ed 9	<u>Sta</u> /13/2		<u>Er</u> 9/13	<u>id</u> /2013	Total Depth	ı (ft)	1	0		Logged By Checked By	RB DRL	Dril	_{ler} Casca	ade Drilling			Drilling Method Direct-Push			
Surf Verf	ace Ele ical Da	evatio tum	on (ft)		Unde	etermine	ed			Ha Da	mmer					Drillir Equir	ig oment	Geoprobe			
Latit Long	gitude)924789 235360				Sy: Da	stem tum	stem Geographic tum WGS84						er Depth to red Water (ft) Elevation (ft)			
\square	-			FIEI	.D DA																
Elevation (feet)	o Depth (feet)	Interval	ed (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group	Classification	MATERIAL DESCRIPTION						Headspace Vapor (ppm)	REMARKS			
	36 5 5 36 1 1 1 1 1 1 1 1									Ν	Grades to o mediun - (moist) - - - - - - - - - - - - - - - - - - -	(moist) (fi dark gray n sand wi (fill)	and the characteristic state of the characteristic state o	plack silty fi arred wood	ne to		<1 <1 <1				
014 Fault									Lo	og	of Direc	ct-Pu	sh	Boring	S-DP-8	38					
Spokane: Uate:1/2	Ge	0	E۱	١G	INE	EER	S	0	J		Project: Former Cashmere Mill Site, Data Gap Assessmen Project Location: Cashmere, Washington Figure						e, Data Gap Assessment Figure A-122 _{Sheet 1 of 1}				

pokane: Date:1/2014 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Figure A-122 Sheet 1 of 1

Drille		<u>Star</u> 14/20		<u>Er</u> 9/14	<u>id</u> /2013	Total Depth	ı (ft)	1	0		Logged By Checked By		Drille	r Cascade		Drilling Method Direct-Push			
Surfa Vertic	ce Elev al Datu	/atio um	n (ft)		Unde	etermine	ed			Ha Da	ammer					Drilling Equipi	g ment	Geoprobe	
Latitu Longi)655604 3272921)			/stem atum							Depth to	
-	Notes:																leasure	d <u>Water (ft)</u> Elevation (ft)	
FIELD DATA															1				
(feet)	et)		d (in)	Ť	Collected Sample	ame	/el	bo		tion	MATERIAL							REMARKS	
Elevation (feet)	Depth (feet)	Interval	Recovered (in)	Blows/foot	ollected	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	assifica		DES	SCRIF	PTION		Sheen	Headspace Vapor (ppm)		
ū	0 0 –	Ē	24	BI	ő	SN H	×	Ū	ю М					asional sawd	ust and				
	-				Ť	1					gravel	(moist) (1	ill)			- NS	<1		
	-				-						-					-			
	-										-					-			
	-										-								
	5-		36		Ì	<u>2</u> CA			SP-			to mediur	n sand v	moist) vith silt and		NS	<1	Groundwater observed at approximately 5½ feet during drilling	
								0	GP-	GM	Gray fine	onal grav to coarse	gravel v	vith silt and sa	and (wet)	_			
								0			-					_			
	-							0 0			-					-			
10 - Boring terminated at approximately 10 foot depth																			
due to refusal																			
Να	otes: S	See I	-igure	e A-1 f	or expl	anation o	f syr	nbols	3.										
					Р.														
									L	og		ct-Pu		-			0:+-	Data Can Assessment	
(GE		E	NG	INI	EER	S	1	1		Project: Project	Locatio		ormer Ca Cashmere				, Data Gap Assessment	
				10			_	2			Project			8593-001		-		Figure A-123 Sheet 1 of 1	

pokane: Date:1/2014 Path:P/18/18593001/02/GINT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Drilleo		<u>Start</u> 4/20		<u>Er</u> 9/14	<u>id</u> /2013	Total Depth		1	0	Logged By RB Checked By DRL	Driller Cascade Drillin	ıg			Drilling Method Direct-Push		
Surfac	e Eleva	atior				etermine				ammer ata		Dri	lling uipm	ent	Geoprobe		
Latitud	de					0381457			S	ystem Datum	Geographic WGS84	Gro	ound	lwater	Depth to		
	Longitude -120.48273105600 Datu Notes:										110304	<u>Dat</u>	te Me	easure	d <u>Water (ft)</u> <u>Elevation (ft)</u>		
\geq				FIEL	D D	ΑΤΑ											
Elevation (feet)		Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification		ATERIAL CRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS		
	0 —		43						SM	Brown silty fine to m gravel and sawd	edium sand with occasional ust (moist) (fill)	1	٧S	<1			
	-				Ţ	1				Becomes dark gray wood fragments	and grades with occasional (moist)	-	NS	<1			
	5 —	_	40		1	2 CA				-		- 5	ss	<1			
	-				_					_ Grades to gray silty _	fine to medium sand (wet)	- 1 -	٧S	<1	Groundwater observed at approximately 6 feet during drilling		
	-								GP	Gray coarse gravel	with sand (wet)	 	٧S	<1			
	10 —									Boring terminated a due to refusal	approximately 10 foot dept	h					
	tes: S	ee F	ïgure	e A-1 f	or exp	lanation c	of sy	mbols									
\geq										a of Direct-Pu	sh Boring S-DP	-94					
132			~						~	Project:	of Direct-Push Boring S-DP-94 Project: Former Cashmere Mill Site, Data Gap						
0	GEOENGINEERS									Project Location: Cashmere, Washington Project Number: 18593-001-02							

ppokane: Date:1/2014 Path:Pv18/18593001/02/GNT/1858300102.GPJ DBTemplateLibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD

Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-124 Sheet 1 of 1

Drilleo		<u>Start</u> 3/2013	3	<u>Eno</u> 9/13/		Total Depth	(ft)	1	0		Logged By RB Checked By DRL	Driller Cascade Drilling)		Drill Met	Drilling Method Direct-Push		
	ce Eleva al Datu		ft)		Und	etermine	ed								nt	Geoprobe		
	Latitude 47.52010731100 Longitude -120.48273290000)		Sy Da	ystem atum	Geographic WGS84		undwa Meas		Depth to Water (ft)	Elevation (ft)	
Notes	Notes:																	
\bigcap	FIELD DATA																	
Elevation (feet)	Depth (feet)	Interval		Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group	Classification		ATERIAL CRIPTION	50 0 0	Headspace	Vapor (ppm)	REMARK	S	
	0 —	6	0						SN	Л	Brown silty fine to m gravel (moist) (fil	edium sand with occasional I)	N	S 1	.1			
	-								FIL	Ľ	Brown sawdust and equal to 10 mm)	wood fragments (less than o (moist) (fill)	 _ N	S 1	.9			
	-					1 CA		*	- SN	Л.	Dark gray to gray sill wood fragments Grades with occasio		N - S		4			
	5 —	3	6		1	2			FIL SN		equal to 20 mm)	wood fragments (less than of (moist) (fill) edium sand (moist) (fill?)	_/	s <	.1 :1			
	-				—				- <u>-</u>		Dark brown silt with	sand (moist) (fill?)	N		:1			
	10								SN	л Л		dium sand with occasional	 - N	s <	:1			
	10 -																	

Notes: See Figure A-1 for explanation of symbols.

Log of Direct-Push Boring S-DP-95

Project: Project Location: Cashmere, Washington Project Number: 18593-001-02

Former Cashmere Mill Site, Data Gap Assessment Figure A-125 Sheet 1 of 1

D	rilled	<u>9</u> /1:	<u>Start</u> 3/20		<u>En</u> 9/13	<u>id</u> /2013	Total Depth	(ft)	1	0			Logged By KAH Checked By DRL Driller Cascade Drilling						Drilling Method Direct-Push			
Su Ve	irface ertical	Eleva Datu	atior m	n (ft)		Unde	termine	ed			Hai Dat	mmer ta					Drilling Equipr) ment	Geoprobe			
	titude ngitua				ے 1-	17.519 20.48)837316 253798	680 400)		Sy: Da	stem itum		Geo W	ographic /GS84			dwater leasure	Depth to	(ft)		
N	Notes:																					
\int	FIELD DATA																			٦		
Elevation (feet)		(feet)	_	Recovered (in)	oot	Collected Sample	<u>Sample Name</u> Testing	-evel	c Log	:	cation				RIAL IPTION			ace pm)	REMARKS			
Elevati		Depth (feet)	Interval	Recove	Blows/foot	Collecte	<u>Sample</u> Testing	Water Level	Graphic Log	Group	Classif						Sheen	Headspace Vapor (ppm)				
		0 —		30						GP-0		(mois	t <u>) (fill)</u>		rel with silt and sand	_/_	NS	1.5				
		-				1	1		0 0	GP-(GM	Gray fine			with silt and sand		NS NS	1.9				
		_				.			0 0			_				-	-					
		-							0 0 0			_				-						
		5 -		36					0 0 0			Becomes					NS	1.7	Groundwater observed at approximately during drilling	5 feet		
		-				1	<u>2</u> CA			SN	VI	Gray slity	Tine to me	eaium	sand (wet) (fill?)	-	NS					
		-				Ļ	CA					_				-	NS	1.6				
		-										-				-						
												Boring ter due to	rminated a o refusal	at appr	oximately 10 foot dept	h		•	•			
Ð																						
ONMENTA																						
EI8_ENVIK																						
29/109.202X																						
mplate:GEC																						
plate/LID I e																						
5.201026																						
%I 000660011	Note	es: Se	ee F	igure	e A-1 f	or expla	anation o	f syr	nbols.													
											00	of Dire		ch	Boring S-DP	_04				\exists		
	-	3		~					/		J	Project:		311	_			Site,	, Data Gap Assessment	\neg		
spokane: Date:	GEOENGINEERS											Project Project			Cashmere, Wa 18593-001-02	shir	ngtor	٦	Figure A-12 Sheet 1 of			

Date: 1/2014 Path: P.(18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_ENVIRONMENTAL_STANDARD Spokane:

GDT/GEI8 DBTemplate/ 02\GINT\1859300102.GPJ 4 Path Date:

Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-127 Project Number: 18593-001-02 Sheet 1 of 1
Drille	d 9/	<u>Star</u> 13/20	<u>t</u> 013	<u>En</u> 9/13	<u>d</u> /2013	Total Depth	(ft)	(6		Logged By ERH Checked By DRL	Driller	Cascade Drilling			Drilling Method Direct-Push
Surfac Vertic	ce Ele al Dat	vatio um	n (ft)		Unde	etermine	ed			Har Dat	mmer ta			Drilling Equip		Geoprobe
Latitu Longi						9829286 3302003				Sys Dat	stem tum	Geogra WGS8	ohic 34	<u>Grour</u> Date N		Depth to
Notes	Notes:															
$\overline{}$				FIEL		ATA										
Elevation (feet)	o Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group		DES	ATERI <i>I</i> SCRIPT	ION	Sheen	Headspace Vapor (ppm)	REMARKS
	U		48		↓ ↓	1 CA			SP FILI		Light brown silt with Gray fine to mediur (moist) (fill) Brown wood fragme	n sand with	occasional silt		<1	
	5 -					2				- GM -	- - - Fine to coarse grav	el with silt a	ind sand (moist)	MS	<1	
	Ū		12			2		0		-	Boring terminated a			NS	<1	
Να	otes: S	Gee I	Figure	e A-1 fc	or expl	anation o	fsy	mbols								
	Log of Direct-Push Boring S-DP-98															
/	Project: Former Cashmere Mill Site, Data Gap Assessment											e Mill				

Cashmere, Washington

18593-001-02

GEOENGINEERS Project: Project Location: Project Number:

Figure A-128 Sheet 1 of 1

Strings Decimin (f) Undetermined Barmer Difference Difference <thdifference< th=""> <thdifference< th=""> Di</thdifference<></thdifference<>	Drilled	Start End Total Logged By ERH Drilled 9/14/2013 9/14/2013 10 Logged By ERH Checked By DRL Driller Cascade Drilling Drilling Surface Elevation (ft) Lindetermined Hammer Drilling															
Listudy 4.72 JU0393000 Determ Geographic WGS84 Geographic Betweenerg Geographic Betweenerg Betweenerg <th>Surfac Vertica</th> <th colspan="14">Purface Elevation (ft) Undetermined Hammer Data Drilling Equipment Geoprobe</th>	Surfac Vertica	Purface Elevation (ft) Undetermined Hammer Data Drilling Equipment Geoprobe															
Year	Latitud Longitu	e Jde)	Sy		Geographic WGS84		Groun	dwater	Depth to	Elevation (ft)
Netse: See Figure A-1 for explanation of symbols.	evation (feet)	pth (feet)	erval					ater Level	aphic Log	oup assification				een	adspace por (ppm)	REMARKS	
				48			1 CA 2			ML ML 	(moist) (fill) Light brown to white (moist) (fill) Dark brown silt with t (moist) (fill) Gray silt with occasio (moist) (fill) Brownish-red sawdus (moist) (fill) Reddish-brown wood Gray silt (moist) (fill?) Gray fine to coarse g Boring terminated at	gravel with silt a rown to red woo nal fine to coars at and wood frag fragments (moi gravel with sand	Ind sand od fragments ise sand iments ist) (wet)	NS - NS - NS - NS - NS - NS 	3.8 3.4 2.7 2.4		imately 9 feet
	\equiv	Log of Direct-Push Boring S-DP-99															
											Project:				Site	Data Gap Assessmen	it

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

GEOENGINEERS

Figure A-129 Sheet 1 of 1

Drille	ed 9/1	<u>Start</u> 4/2013		<u>End</u> /14/2	013	Total Depth	ı (ft)	1	0	Logged By Checked By	RB DRL	Driller	Cascade I	Drilling			Drilling Method Direct-Push
Surfa Vertic	ce Elev cal Datu	ration (i Im	ft)	ι	Inde	termine	ed			Hammer Data					Drilling Equipr) nent	Geoprobe
Latitu Longi						346544 314425				System Datum				<u>Groun</u> Date M		Depth to	
Note	s:																
\bigcap			FI		DA ®	TA	_										
Elevation (feet)	Depth (feet)	Interval Recovered (in)			Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification			TERI CRIP			Sheen	Headspace Vapor (ppm)	REMARKS
	0		В			2 CA			SM	Brown silty cobble	s (moist) (f th occasior silty fine to wet ncountered minated at	ill) nal wood o mediun	I fragments (r n sand (moisi mately 10 foo	noist) t)	6) NS SS NS NS	<1	Groundwater observed at approximately 8 fee during drilling
P:/18/18593001/02/GINT	Notes: See Figure A-1 for explanation of symbols.																
20/14 Path:F	Log of Direct-Push Boring S-DP-100																
Spokane: Date: 1/2											Project:Former Cashmere Mill Site, Data Gap AssesProject Location:Cashmere, WashingtonProject Number:18593-001-02					, Data Gap Assessment Figure A-130 _{Sheet 1 of 1}	

Figure A-130 Sheet 1 of 1

Drille	d 9/1	<u>Star</u> 4/20	<u>t</u>)13	<u>Er</u> 9/14	<u>nd</u> 1/2013	Total Depth	n (ft)	1	0	Logged By RB Checked By DRL	Driller Cascade D	Drilling			Drilling Method Direct-Push
Surface Vertic	ce Elev al Datu	atio	n (ft)		Unde	etermine	ed			Hammer Data			Drilling Equipr) nent	Geoprobe
Latitu Longi	de			4)930322 3304796)		System Datum				dwater	Depth to
Notes													Date M	easure	d <u>Water (ft)</u> <u>Elevation (ft)</u>
FIELD DATA															
eet)	~		(in)		mple	me	_	6	5	M	ATERIAL				
Elevation (feet)	Depth (feet)	/al	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	DES	CRIPTION			Headspace Vapor (ppm)	REMARKS
Eleva	o Dept	Interval		Blow	Colle	<u>Sam</u> Testi	Wate	Grap					Sheen	Head: Vapoi	
	0-		36						SM	Brown silty fine to m	nedium sand (moist) (fill	II)	NS	<1	
	_									-			_		
	_				+	1				Becomes dark brow	n and grades with wood	d	SS	<1	
	-				—	$\overset{1}{CA}$					() ()				
	5 —		20							_		-	_		
	-		36							_					
	-				_	2				_			NS	<1	
	-								SP	Gray fine to mediun	n sand (wet)				Groundwater observed at approximately 7 ¹ / ₂ feet during drilling
	-							~	 GP	Gray coarse gravel	(wet)		-		
	10 —							၀ို၀			t approximately 10 foot	t depth	NS	<1	
										due to refusal					
2															
1) 1															
	Notes: See Figure A-1 for explanation of symbols.														
Log of Direct-Push Boring S-DP-101															
		_	Ξ.				-	1	7	Project:					Data Gap Assessment
	JE(١G	IN	EER	S			Project Location Project Number	Project Location: Cashmere, Washing Project Number: 18593-001-02				Figure A-131 Sheet 1 of 1

Figure A-131 Sheet 1 of 1

Date Excavated:	11/12/2013
Equipment:	340D Mini Excavator

11/12/2013

Logged By: _ Total Depth (ft) ERH

6.5

\succeq		SA	MPLE									
Elevation (feet)	Depth (feet)	Testing Sample	<u>Sample Name</u> Testing	- Graphic Log	Group Classification	Encountered Water		DESCR	ERIAL	Sheen	Headspace Vapor	Notes
	-				SP-SM		Light brov	wn fine to coarse sand with s	ilt (moist) (fill)			
	1 —						_			-		
	-				GM		Dark brow	wn silty fine to coarse gravel	with trace roots (moist) (fill)			
	2—						-			-		
	3-				0.5	-	Top to or	ango fino to operat gravel w	ith sand and trace silt (moist) (fill)			
	_						Tanto on	ange nine to coarse graver w				
	4 —						_			-		
	-											
	5—				GM	-	Gray silty	r fine to coarse gravel and co	bbles (moist) (fill)			
	6—		<u>NDP8-TP1(6)</u> CA				_			- MS	150	
	_	X.			Fill			wn wood pieces				
							Moderate	ompleted at approximate 6½ groundwater seepage obse g observed	rved at approximate 6½ foot depth			
No	Notes: See Figure A-1 for explanation of symbols.											
\bigcap	Log of Test Pit NDP8-TP1											
	GEOENGINEERS Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Figure A-132											
(JE(OF	NGI	NI	EER	5 /		Project Location: Project Number:	Cashmere, Washington 18593-001-02			Figure A-132 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

GDT/GEI8 TESTPIT Pat

> Figure A-133 Sheet 1 of 1

18593-001-02

GDT/GEI8 TESTPIT Pat Date:

> Figure A-134 Sheet 1 of 1

GEOENGINEERS Project Location: Project Number:

18593-001-02

Cashmere, Washington

Figure A-135 Sheet 1 of 1

Date Excavated:	11/12/2013
Equipment:	340D Mini Excavator

Logged By: __ Total Depth (ft) ERH

6.5

\succ		54	MPLE			I						
						ater						
feet)	Elevation (feet) Depth (feet) Testing Sample Name Sample Name Sample Name Graphic Log Graphic Log Graphic Log Sheen Sheen											
ttion (lee (fee	ng Sa	le Na Jg	lic Lo	o ificati		pace					
Eleva	Depth (feet)	Testir	<u>Samp</u> Testir	Grapl	Groul	Enco				Sheen	Headspace Vapor	Notes
					SP-SM		Light brow	wn fine to coarse sand with s	ilt (moist) (fill)			
	-											
	1 —			TT.	GM		Dark brov	wn silty fine to coarse gravel	with cobbles (moist) (fill)			
	_			Pa								
	2 —						_			_		
	-			5¢								
				60								
	3 —				Fill		Dark brov	wn roots and wood shavings	(moist) (fill)			
	-				014	-	Gravish h	prown silty fine to coarse grav	(a) with cabbles (maist)			
				BC	GM		Grayish b	nown sity inte to coarse gra				
	4 —						_			-		
	-			þ								
	5 —			Pa						_		
	_											
	6 —	M	DP8-TP3(6.5) CA				_			- ss	87.6	
	-			00			Test pit o	ompleted at approximate 61/2	foot depth			
							No groun Minor cav	dwater seepage observed ving observed				
Ne	Notes: See Figure A-1 for explanation of symbols.											
								Log of Test Pit	NDP8-TP5			
- 82	GEOENGINEERS Project: Former Cashmere Mill Site, Data Gap Assessment Project Location: Cashmere, Washington Project Number: 49502-004-02 Figure A-136											
(E	ЪE	NGI	NI	EERS	S/		Project Location:	Cashmere, Washing	ton		Figure A-136
						-		Project Number:	18593-001-02			Sheet 1 of 1

18593-001-02

Sheet 1 of 1

>kane: Date:1/2014 Path:P/18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV

GEOENGINEERS

Project Location: Cashmere, Washington

18593-001-02

Project Number:

Figure A-138 Sheet 1 of 1

DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV 3593001\02\GINT\1859300102.GPJ L Pat kane: Date:

GEOENGINEERS

Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-139 Sheet 1 of 1

GEOENGINEERS

Date

Former Cashmere Mill Site, Data Gap Assessment Project:

Project Number:

18593-001-02

Project Location: Cashmere, Washington Figure A-140 Sheet 1 of 1

kane: Date:

Project: Former Cash

Project Location:

Project Number:

Former Cashmere Mill Site, Data Gap Assessment Cashmere, Washington 18593-001-02 Figure A-141 Sheet 1 of 1

GEOENGINEERS	1

18593-001-02

Project Location:

Project Number:

Cashmere, Washington Figure A-142 Sheet 1 of 1

.GDT/GEI8_TESTPIT_1P_ENV DBTemplate/ \02\GINT\1 Pat Date:

GEOENGINEERS

Project Location: Cashmere, Washington Project Number: 18593-001-02

Former Cashmere Mill Site, Data Gap Assessment Figure A-143 Sheet 1 of 1

DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV \02\GINT\1859300102.GPJ L Path kane: Date:

Project: GEOENGINEERS

Project Location: Cashmere, Washington Project Number: 18593-001-02

Former Cashmere Mill Site, Data Gap Assessment Figure A-144 Sheet 1 of 1

\02\GINT\1 Pat kane: Date:

Project: GEOENGINEERS Project Number:

Project Location: Cashmere, Washington 18593-001-02

Figure A-145 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

Figure A-146 Sheet 1 of 1

Project Location: Cashmere, Washington

18593-001-02

Project Number:

ane: Date:120/14 Path:P:/18/1859300/102/GINT/1859300/02.GPJ DBTemplate/LibTemplate/CEOENGINEERS8.GDT/GEI8_TESTPIT_1P_EN

GEOENGINEERS

Figure A-147 Sheet 1 of 1

GEOENGINEERS

Project Location: Cashmere, Washington

18593-001-02

Project Number:

Figure A-148 Sheet 1 of 1

Project Location: Cashmere, Washington

18593-001-02

Project Number:

DBTemplate/ \02\GINT\1859300102.GPJ 4 Path kane: Date:

Figure A-149

Sheet 1 of 1

GEOENGINEERS

Project Location: Cashmere, Washington

18593-001-02

Project Number:

Figure A-150 Sheet 1 of 1

okane: Date:1/2014 Path: P/18/18593001/02/GNT/1858300102.GPJ DBT emplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_EN

GEOENGINEERS

Project: Former Cashmere Mill S Project Location: Cashmere, Washington

Project Number:

18593-001-02

ngton Figure A-151 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

GDT/GEI8 TESTPIT Pat Date:

GEOENGINEERS

Figure A-152 Sheet 1 of 1

18593-001-02

.GDT/GEI8_TESTPIT_1P_ENV Pat Date:

Figure A-153 Sheet 1 of 1

18593-001-02

are: Date:1/2014 Path:P:1814559300102/GINT/1858300102.GPJ DBT emplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_EN

Figure A-154 Sheet 1 of 1

18593-001-02

Figure A-155

Sheet 1 of 1

.GDT/GEI8_TESTPIT_1P_ENV \02\GINT\1 Pat Date:

Project Location: Cashmere, Washington

18593-001-02

Project Number:

DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV 3593001\02\GINT\1859300102.GPJ 4 Path kane: Date:

Figure A-156 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV 3593001\02\GINT\1859300102.GPJ 4 Path kane: Date:

GEOENGINEERS

Figure A-157 Sheet 1 of 1

18593-001-02

DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV 3593001\02\GINT\1859300102.GPJ 4 Path kane: Date:

Sheet 1 of 1

Figure A-158

18593-001-02

Figure A-159 Sheet 1 of 1

DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV 3593001\02\GINT\1859300102.GPJ 4 Path kane: Date:

GEOENGINEERS

Project Location: Cashmere, Washington Project Number: 18593-001-02

Figure A-160 Sheet 1 of 1

18593-001-02

Sheet 1 of 1

18593-001-02

.GDT/GEI8_TESTPIT_1P_EN\ Pat Date:

> Figure A-163 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

.GDT/GEI8_TESTPIT_1P_ENV DBTem 359300102 GP.I \02\GINT\1 Pat Date:

Figure A-164 Sheet 1 of 1

18593-001-02

kane: Date:1/20/14 Path:P/18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate.GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV

Figure A-165 Sheet 1 of 1

18593-001-02

ane: Date:1/20/14 Path:P\1811859300102/GINT/1859300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV

Figure A-166 Sheet 1 of 1

18593-001-02

DBTemplate/ 859300102 GP.I \02\GINT\1 L Pat Date:

> Figure A-167 Sheet 1 of 1

18593-001-02

e: Date:1/20/14 Path:P/18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV

Figure A-168 Sheet 1 of 1

18593-001-02

kane: Date:1/20/14 Path:P\18/18593001/02/GINT/1859300102.GPJ DBTemplate/LibTemplate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV

Figure A-169 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

.GDT/GEI8_TESTPIT_1P_ENV DBTemplate/ 359300102.GPJ Pat Date:

Figure A-170 Sheet 1 of 1

18593-001-02

Sheet 1 of 1

Project Location: Cashmere, Washington

18593-001-02

Project Number:

VEERS8.GDT/GEI8_TESTPIT_1P_ENV DBTemplate/ \02\GINT\1859300102.GPJ L Path Date:

Figure A-172 Sheet 1 of 1

Project Location:

Project Number:

Cashmere, Washington

18593-001-02

\\02\GINT\1859300102.GPJ 4 Path kane: Date:

Figure A-173

Sheet 1 of 1

Project Location: Cashmere, Washington

18593-001-02

Project Number:

VEERS8.GDT/GEI8_TESTPIT_1P_ENV DBTemplate/LibTemplate:GEOENGI \02\GINT\1859300102.GPJ L Path Date:

Figure A-174 Sheet 1 of 1

	Date Excavated: <u>12/19/2013</u> Equipment:						Logged By: Total Depth (ft)		JF	<u>4.0</u>	
Elevation (feet)	Depth (feet)	Testing Sample	<u>Sample Name</u> Testing	Graphic Log	K Group ⊂ Classification	Encountered Water	MATERIAL DESCRIPTION Brown silt with sand, gravel, cobbles and wood		Sheen	Headspace Vapor	Notes
	- 1—		<u>DP87-TP4 (1-2)</u> CA		 SP	_	Gray fine sand (moist) (fill)		- ss	3.2	
	2—		<u>DP87-TP4 (2-3)</u> CA		 GP		Gray gravel with sand and cobbles (moist to we	īt) — — — — — — — — — — — — — — — — — — —	- ss	10.8	
	3—						_		_		
	4 —	<u>,</u>				1 1	Test pit completed at approximately 4 foot depth Slight groundwater seepage observed at approx Minor caving observed	h ximately 3 foot depth		1	
a Think b											
N	otes: S	ee Fiç	gure A-1 for	· expla	anation o	f symb	pols.				
5 - LI 107							Log of Test Pit SDP8		Dat		n Accomment
	GEO	Ъ	NGI	NE	ER	s /	Project Location: Cash	er Cashmere Mill Site, mere, Washington	Dat	а Ga	Figure A-175

18593-001-02

Figure A-175 Sheet 1 of 1

ſ

APPENDIX B FIELD PROCEDURES

Field Explorations

Prior to completion of the explorations, GeoEngineers contacted the One-Call Utility Notification Center in accordance with Washington State law. In addition, GeoEngineers subcontracted a private utility locator to locate underground utilities at the site. Following clearance of utilities, subsurface soil conditions at the site were explored between September 2013 and December 2013 by:

- Advancing 120 direct-push borings and collecting soil samples;
- Drilling 10 exploratory borings using hollow-stem auger and air-rotary drill rigs and installing nine new monitoring wells from which soil and groundwater samples were collected; and
- Excavating 44 test pits from which soil samples were collected.

The approximate exploration locations are shown in Figures 2 through 5.

Soil Sampling from Explorations

Soil borings were completed using direct-push, hollow-stem auger (HSA) or air-rotary drilling techniques by a licensed driller. For HSA and air-rotary drilling methods, subsurface soil samples were obtained using standard penetration test (SPT) samplers. The direct-push drilling samples were obtained continuously using 5-foot-long, 1-inch-diameter acrylic sleeves. Grab soil samples were collected from test pit sidewalls or from the excavator or backhoe bucket.

Each exploration was continuously monitored by a geologist or engineer from our firm who observed and classified the soil encountered, and prepared a detailed log of each boring. Soil encountered in the explorations was classified in the field in general accordance with ASTM International (ASTM) D-2488, the Standard Practice for Classification of Soils, Visual-Manual Procedure, which is summarized in Figure A-1. Logs of the monitoring wells are presented in Figures A-2 through A-10. The log of air-rotary boring AR-1 is presented in Figure A-11. Logs of the direct-push borings are provided in Figures A-12 through A-131. Logs of test pits are presented in Figures A-132 through A-175.

Preservation of VOC samples was completed in accordance with Ecology Memo 5, document number 04-09-087. Sample containers were labeled and placed into an ice chest containing ice/ice packs. Soil samples for VOCs analyses were obtained consistent with EPA Method 5035A. Chain-of-custody procedures were followed during transport of the soil samples.

Sampling equipment was decontaminated between each sampling attempt. Samples were obtained using either a decontaminated soil knife or new, clean nitrile glove and placed into 4-ounce glass sample jars with Teflon lids.

Samples were placed in a cooler with ice and delivered to the analytical laboratory; standard chainof-custody procedures were observed during transport of the samples to the laboratory.

Field Screening Methods

A GeoEngineers field geologist or engineer performed field screening tests on selected soil samples from the explorations. Field screening results were used to aid in the selection of soil samples for chemical analysis. Screening methods included (1) visual examination, (2) water sheen screening, and (3) headspace vapor screening using a photo-ionization detector (PID).

Monitoring Well Construction, Development, and Surveying

Monitoring wells MW-1 through MW-9 were constructed in accordance with WAC 173-160, Section 400, Washington State Resource Protection Well Construction Standards. Monitoring well installation was observed by a GeoEngineers field geologist or engineer, who maintained a detailed log of the materials and depths of the well. Well construction details, including the depths of the well screen and filter packs are shown on Logs of Monitoring Wells, Figures A-2 through A-10.

The nine monitoring wells were constructed using 2-inch-diameter polyvinyl chloride (PVC) well casing. The annular space in each well was sealed between the top of the filter pack and the ground surface with bentonite to prevent infiltration of groundwater into the well bore from shallower zones. A lockable compression-type cap was installed in the top of the PVC well casing. A flush-mount above-grade monument equipped with a watertight cover was installed to protect the PVC well casing. A concrete surface seal was placed around the monument at the ground surface to divert surface water away from the well location.

Monitoring wells MW-1 through MW-9 were developed shortly after installation to remove water introduced into the well during drilling, stabilize the filter pack and formation materials surrounding the well screen, and restore the hydraulic connection between the well screen and the surrounding soil. Each well screen was gently surged and water was removed with a surge block and disposable bailer, or an air-lift pump several times during the development process.

Scott Vollrath, PLS with Landline Surveyors mobilized to the site on October 28, 2013 to survey the locations and elevations of monitoring wells MW-1 through MW-8, and existing wells B-1, OW-1 through OW-7. Survey data is presented on the monitoring wells logs. Monitoring well elevations are referenced to the NAVD 88 vertical datum, and monitoring well coordinates are referenced to NAD 83-98 horizontal datum. Coordinates for the direct-push borings, test pits and boring AR-1 were obtained in the field using a hand-held global positioning system (GPS) device. Coordinates for direct-push borings, AR-1, MW-9 and the test pits are presented on the exploration logs referenced to the WGS 84 horizontal coordinate system. Elevations for the direct-push borings, AR-1, MW-9 and the test pits were not measured.

Groundwater Sampling

The wells were allowed to equilibrate after well development. The initial groundwater sampling event occurred on October 28, 2013. The second groundwater sampling event occurred on December 3 and 4, 2013. A groundwater sample was collected from well MW-9 on December 20, 2013. Before sampling, VOCs in the well headspace were measured with a PID by first inserting the PID into the well casing immediately after removal of the well cap.

Each groundwater sample was obtained using low-flow purging methods. The groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. Water quality parameters were recorded during sampling and are presented in Table B-1. Soluble ferrous iron concentrations in groundwater also were measured in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthrine testing method. The sample containers were filled completely to eliminate headspace in the container. Chain-of-custody procedures were observed from the time of sample collection to delivery to the testing laboratory.

Surface Water Sampling

Surface water samples were collected by slowly placing laboratory-sterilized sample containers into the creek. The field geologist stood downstream during sampling.

Decontamination Procedures

The objective of the decontamination procedure is to minimize the potential for crosscontamination between sample locations.

A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using high-pressure/low-volume cleaning equipment.

Sampling equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement.

- 1. Brush equipment with a nylon brush to remove large particulate matter.
- 2. Rinse with potable tap water.
- 3. Wash with non-phosphate detergent solution (Liquinox® and potable tap water).
- 4. Rinse with potable tap water.
- 5. Rinse with distilled water.

Handling of Investigation-Derived Waste

Investigation Derived Waste (IDW), which consists of mainly drill cuttings and decontamination/purge water, typically was placed in DOT-approved 55-gallon drums. Each drum was labeled with the project name, exploration number, general contents, and date. The drummed IDW was stored onsite pending analysis and disposal.

Disposable items, such as sample tubing, disposable bailers, bailer line, gloves and protective overalls, paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

Table B-1

Summary of Field Quality Parameters

Former Cashmere Mill Site Cashmere, Washington

Sample Number	Date Sampled	рН	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	ORP (mV)	Soluble Ferrous Iron ¹ (mg/L)	Well Headspace PID Readings ² (ppm)
MW-1	10/28/13	7.00	0.55	3.78	0.02	16.53	-47	0.0	10.2
	12/03/13	6.71	0.48	4.73	0.03	12.69	-43	0.8	0
MW-2	10/28/13	7.12	0.65	9.27	0.02	17.95	-81	0.0	0
	12/03/13	6.94	0.58	14.78	0.05	13.70	-88	1.0	0
MW-3	10/28/13	6.13	0.95	5.58	0.01	16.47	-86	0.0	0
	12/03/13	5.88	0.86	3.87	0.01	14.00	-65	1.5	0
MW-4	10/28/13	7.08	0.56	2.48	0.02	16.61	-107	0.0	0
	12/03/13	6.90	0.50	1.69	0.03	11.81	-85	1.0	0
MW-5	10/28/13	7.04	0.57	0.68	0.03	15.73	-83	0.0	0
	12/03/13	6.85	0.53	0.97	0.04	10.81	-70	0.7	0
MW-6	10/28/13	7.12	0.57	8.77	0.00	16.75	-125	0.0	0
	12/03/13	6.88	0.51	5.20	0.03	13.37	-54	1.0	115
MW-7	10/28/13	6.95	0.48	3.91	0.98	14.67	-16	0.0	0
	12/03/13	6.76	0.44	0.12	0.00	10.13	-44	1.2	0
MW-8	10/28/13	6.73	0.34	4.22	0.00	12.35	-123	0.0	0
	12/03/13	6.44	0.38	5.17	0.02	10.80	-110	1.7	0
MW-9	12/20/13	7.12	0.55	0.00	0.20	11.69	114	NA	NA
B-1	10/28/13 ³	6.10	0.70	1884	0.03	18.13	-75	0.0	0
	12/03/13	5.92	0.86	40.81	0.07	15.62	-52	0.8	17.6
OW-1	12/04/13	6.84	0.49	7.06	0.06	13.43	5	0.0	0.0

Notes:

¹ Soluble ferrous iron was measured in the field using a Hach IR-18C color disc test kit and the 1,10 phenanthroline testing method.

² Well headspace reading measured using a MiniRae2000 Photo-ionization detector (PID).

³ Water level within B-1 did not stabilize, well pumped dry during initial purging. Well allowed to recharge before collecting groundwater sample. mS/m = millisiemens per centimeter; NTU = nephelometric turbidity units; mg/L = milligrams per liter; mV = millivolts; ppm = parts per million; NA=Not Analyzed

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u>

Date: 12/05/13 Site Name: Cashmere Sample Name: SDP75A-TP5(3)

2. Enter Soil Concentra	tion Measured		Notes for Data Entry Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	
or Equivalent Carbon Group	dry basis	Ratio	Clear All Soil Concentration Data Entry Cells
	mg/kg	%	Restore All Soil Concentration Data cleared
Petroleum EC Fraction			
AL_EC >5-6	2.065	0.07%	
AL_EC >6-8	2.065	0.07%	REMARK:
AL_EC >8-10	2.475	0.09%	Enter site-specific information here
AL_EC >10-12	2.475	0.09%	
AL_EC >12-16	15.4	0.54%	
AL_EC >16-21	195	6.88%	
AL_EC >21-34	2360	83.23%	
AR_EC >8-10	2.475	0.09%	
AR_EC >10-12	2.475	0.09%	
AR_EC >12-16	2.475	0.09%	
AR_EC >16-21	22.7	0.80%	
AR_EC >21-34	225	7.94%	
Benzene	0.0094	0.00%	
Toluene	0.0625	0.00%	
Ethylbenzene	0.0625	0.00%	
Total Xylenes	0.375	0.01%	
Naphthalene	0.0329	0.00%	
1-Methyl Naphthalene	0.0329	0.00%	
2-Methyl Naphthalene	0.0329	0.00%	
n-Hexane	0	0.00%	
MTBE	0	0.00%	
Ethylene Dibromide (EDB)	0	0.00%	
1,2 Dichloroethane (EDC)	0	0.00%	
Benzo(a)anthracene	0.0329	0.00%	
Benzo(b)fluoranthene	0.0329	0.00%	
Benzo(k)fluoranthene	0.0329	0.00%	
Benzo(a)pyrene	0.0329	0.00%	
Chrysene	0.0329	0.00%	
Dibenz(a,h)anthracene	0.0329	0.00%	
ndeno(1,2,3-cd)pyrene	0.0329	0.00%	
Sum	2835.4434	100.00%	
3. Enter Site-Specific Hy	drogoological Dat	a	
Total soil porosity:		- I	
Volumetric water content:	0.43	Unitless	
Volumetric air content:	0.3	Unitless	
oil bulk density measured:	0.13	Unitless	
Fraction Organic Carbon:	1.5	kg/L	
Dilution Factor:	0.001	Unitless	
	20	Unitless	
. Target TPH Ground Wat you adjusted the target TPH groups	ver Concentation (if	<u>adjusted)</u>	
oncentration, enter adjusted		CF.	
alue here:		ug/L	

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>12</u>	2/5/2013
Site Name: <u>C</u>	ashmere
Sample Name: SI	DP75A-TP5(3)
Measured Soil TPH Conce	entration, mg/kg: 2.835.443

1. Summary of Calculation Results

Exposure Pathway	Method/Goal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
		TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
	Method B	5,917	4.80E-07	1.52E-01	Pass
	Method C	225,620	1.19E-07	1.26E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	100% NAPL	9.35E-07	5.98E-02	Pass
Water Quality (Leaching)	NA	NA	NA	NA	NA

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494). Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	5,917.09	225.619.94
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	HI =1

a na k	Pro	Protective Soil Concentration @Method B					Protective Soil Concentration @Method C			
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	НІ @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @		
HI =1	NO	1.86E+04	3.15E-06	1.00E+00	YES	2.26E+05	9.47E-06	9.99E-01		
Total Risk=1E-5	NO	5.91E+04	1.00E-05	3.18E+00	NO	2.38E+05	1.00E-05	1.06E+00		
Risk of Benzene= 1E-6	NO	5.48E+06	9.27E-04	2.95E+02		2.502105	1.0012-05	1.006+00		
Risk of cPAHs mixture= 1E-6	YES	5.92E+03	1.00E-06	3.18E-01	_					
EDB	NA	NA	NA	NA	-	NA				
EDC	NA	NA	NA	NA	-					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection

Most Stringent Criterion	NA
Protective Ground Water Concentration, ug/L	NA
Protective Soil Concentration, mg/kg	Soil-to-Ground Water is not a critical pathway!

Ground Water Criteria	Protective	Protective Soil				
	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg	
HI=1	YES	2.71E+01	1.63E-06	8.03E-02	100% NAPL	
Total Risk = 1E-5	YES	2.71E+01	1.63E-06	8.03E-02	100% NAPL	
Total Risk = 1E-6	YES	2.41E+01	1.00E-06	6.19E-02	3.33E+03	
Risk of cPAHs mixture= 1E-5	YES	2.71E+01	1.63E-06	8.03E-02	100% NAPL	
Benzene MCL = 5 ug/L	YES	2.71E+01	1.63E-06	8.03E-02	100% NAPL	
MTBE = 20 ug/L	NA	NA	NA	NA	NA	

Note: 100% NAPL is 70000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protective	Protective Soil		
	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
NA	NA	NA	NA	NA

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

<u>1. Enter Site Information</u>

Date: 12/05/13 Site Name: Cashmere Sample Name: SDP75A-TP2a(2)

2. Enter Soil Concentra	tion Measured		Notes for Data Entry Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	
or Equivalent Carbon Group	dry basis	Ratio	Clear All Soil Concentration Data Entry Cells
	mg/kg	%	Restore All Soil Concentration Data cleared
Petroleum EC Fraction	8,8		
AL_EC >5-6	2.37	0.15%	
AL_EC >6-8	2.37	0.15%	REMARK:
AL_EC >8-10	2.46	0.15%	Enter site-specific information here
AL_EC >10-12	2.46	0.15%	
AL_EC >12-16	17.1	1.06%	
AL_EC >16-21	136	8.43%	
AL_EC >21-34	1280	79.34%	
AR_EC >8-10	2.46	0.15%	
AR_EC >10-12	2.46	0.15%	
AR_EC >12-16	2.46	0.15%	
AR_EC >16-21	16.3	1.01%	
AR_EC >21-34	146	9.05%	
Benzene	0.011	0.00%	
Toluene	0.0735	0.00%	
Ethylbenzene	0.0735	0.00%	
Total Xylenes	0.4405	0.03%	
Naphthalene	0.0325	0.00%	
1-Methyl Naphthalene	0.0325	0.00%	
2-Methyl Naphthalene	0.0325	0.00%	
n-Hexane	0	0.00%	
MTBE	0	0.00%	
Ethylene Dibromide (EDB)	0	0.00%	
1,2 Dichloroethane (EDC)	0	0.00%	
Benzo(a)anthracene	0.0325	0.00%	
Benzo(b)fluoranthene	0.0325	0.00%	
Benzo(k)fluoranthene	0.0325	0.00%	
Benzo(a)pyrene	0.0325	0.00%	
Chrysene	0.0325	0.00%	
Dibenz(a,h)anthracene	0.0325	0.00%	
Indeno(1,2,3-cd)pyrene	0.0325	0.00%	
Sum	1613.3635	100.00%	
<u>3. Enter Site-Specific Hy</u>	drogeological Dat	a	
Fotal soil porosity:	0.43	Unitless	
Volumetric water content:	0.3	Unitless	
Volumetric air content:	0.13	Unitless	
Soil bulk density measured:	1.5	kg/L	
Fraction Organic Carbon:	0.001	Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground War If you adjusted the target TPH gro	<u>uer Concentation (i)</u>	adjusted)	
concentration, enter adjusted			
value here:	0	ug/L	

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>12/5/2013</u>	
Site Name: Cashmere	
Sample Name: <u>SDP75A-TP2a(2)</u>	
Measured Soil TPH Concentration, mg/kg:	1,613.364

1. Summary of Calculation Results

Exposure Pathway	Method/Goal	Protective Soil TPH Conc, mg/kg	and a state of the	red Soil Conc HI @	Does Measured Soil Conc Pass or Fail?
Protection of Soil Direct	Method B	3,408	4.74E-07	1.04E-01	Pass
	Method C	137,169	1.18E-07	8.51E-03	Pass
	Potable GW: Human Health Protection	100% NAPL	1.42E-06	9.52E-02	Pass
Water Quality (Leaching)	NA	NA	NA	NA	Fail

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494). Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	3,408.25	137,169.23
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	Total Risk=1E-5

Soil Criteria	Pro	Protective Soil Concentration @Method B				Protective Soil Concentration @Method C			
	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	
HI =1	NO	1.55E+04	4.56E-06	1.00E+00	NO	1.90E+05	1.38E-05	1.00E+00	
Total Risk=1E-5	NO	3.40E+04	1.00E-05	2.19E+00	YES	1.37E+05	1.00E-05	7.23E-01	
Risk of Benzene= 1E-6	NO	2.66E+06	7.83E-04	1.71E+02		1.5712105	1.001-05	7.2515-01	
Risk of cPAHs mixture= 1E-6	YES	3.41E+03	1.00E-06	2.19E-01	-				
EDB	NA	NA	NA	NA	NA				
EDC	NA	NA	NA	NA					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection

Most Stringent Criterion	NA
Protective Ground Water Concentration, ug/L	NA
Protective Soil Concentration, mg/kg	Soil-to-Ground Water is not a critical pathway!

Ground Water Criteria	Protective	Protective Soil			
	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	YES	4.99E+01	3.25E-06	1.50E-01	100% NAPL
Total Risk = 1E-5	YES	4.99E+01	3.25E-06	1.50E-01	100% NAPL
Total Risk = 1E-6	YES	3.52E+01	1.00E-06	7.94E-02	9.33E+02
Risk of cPAHs mixture= 1E-5	YES	4.99E+01	3.25E-06	1.50E-01	100% NAPL
Benzene MCL = 5 ug/L	YES	4.99E+01	3.25E-06	1.50E-01	100% NAPL
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 71000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protective 0	Protective Soil		
Ground Water Orneria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
NA	NA	NA	NA	NA

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

Date: 12/05/13 Site Name: Cashmere Sample Name: NDP8-TP5(6.5)

Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio	
	mg/kg	%	Restore All Soil Concentration Data cleared previously
Petroleum EC Fraction			
AL_EC >5-6	2.04	3.12%	
AL_EC >6-8	2.04	3.12%	REMARK:
AL_EC >8-10	2.04	3.12%	Enter site-specific information here
AL_EC >10-12	2.04	3.12%	
AL_EC >12-16	2.445	3.73%	
AL_EC >16-21	5.76	8.80%	
AL_EC >21-34	38	58.04%	
AR_EC >8-10	2.04	3.12%	
AR_EC >10-12	2.04	3.12%	
AR_EC >12-16	2.04	3.12%	
AR_EC >16-21	2.04	3.12%	
AR_EC >21-34	2.04	3.12%	
Benzene	0.092	0.14%	
Foluene	0.0615	0.09%	
Ethylbenzene	0.0615	0.09%	
Total Xylenes	0.368	0.56%	
Naphthalene	0.0329	0.05%	
I-Methyl Naphthalene	0.0329	0.05%	
2-Methyl Naphthalene	0.0329	0.05%	
n-Hexane	0	0.00%	
MTBE	0	0.00%	
Ethylene Dibromide (EDB)	0	0.00%	
1,2 Dichloroethane (EDC)	0	0.00%	
Benzo(a)anthracene	0.0329	0.05%	
Benzo(b)fluoranthene	0.0329	0.05%	
Benzo(k)fluoranthene	0.0329	0.05%	
Benzo(a)pyrene	0.0329	0.05%	
Chrysene	0.0329	0.05%	
Dibenz(a,h)anthracene	0.0329	0.05%	
Indeno(1,2,3-cd)pyrene	0.0329	0.05%	
Sum	65.477	100.00%	
3. Enter Site-Specific H	the second		
Total soil porosity:	0.43	Unitless	
Volumetric water content:	0.3	Unitless	
Volumetric air content:	0.13	Unitless	
Soil bulk density measured:	1.5	kg/L	
Fraction Organic Carbon:	0.001	Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground W		f adjusted)	
If you adjusted the target TPH gro	the second se	1 115/7	
concentration, enter adjusted value here:	0	ug/L	

Notes for Data Entry	Set Default Hydrogeology
Clear All Soil Concer	ntration Data Entry Cells
Restore All Soil Concentr	ation Data cleared previously

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750

65.477

Site Information

Date: <u>12/5/2013</u> Site Name: <u>Cashmere</u> Sample Name: <u>NDP8-TP5(6.5)</u> Measured Soil TPH Concentration, mg/kg:

1. Summary of Calculation Results

		Protective Soil	With Measur	red Soil Conc	Does Measured Soil	
Exposure Pathway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?	
Protection of Soil Direct	Method B	137	4.84E-07	8.74E-03	Pass	
Contact: Human Health	Method C	5,472	1.20E-07	5.95E-04	Pass	
Protection of Method B Ground	Potable GW: Human Health Protection	20	2.00E-05	8.08E-01	Fail	
Water Quality (Leaching)	NA	NA	NA	NA	Fail	

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	136.64	5,471.82
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	Total Risk=1E-5

	Pro	Protective Soil Concentration @Method B				Protective Soil Concentration @Method C				
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @		
HI =1	NO	7.49E+03	5.54E-05	1.00E+00	NO	1.10E+05	2.01E-04	1.00E+00		
Total Risk=1E-5	NO	1.35E+03	1.00E-05	1.80E-01	YES	5.47E+03	1.00E-05	4.97E-02		
Risk of Benzene= 1E-6	NO	1.29E+04	9.56E-05	1.72E+00						
Risk of cPAHs mixture= 1E-6	YES	1.37E+02	1.01E-06	1.82E-02	NA					
EDB	NA	NA	NA	NA						
EDC	NA	NA	NA	NA						

3. Results for Protection of Ground Water Quality (Leaching Pathway) 3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection				
Most Stringent Criterion	Benzene MCL = 5 ug/L			
Protective Ground Water Concentration, ug/L	67.08			
Protective Soil Concentration, mg/kg	20.20			

Ground Water Criteria	Protective	Protective Soil			
	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	NO	2.21E+02	2.53E-05	1.00E+00	8.40E+01
Total Risk = 1E-5	NO	1.02E+02	1.00E-05	4.29E-01	3.23E+01
Total Risk = 1E-6	YES	1.05E+01	1.00E-06	4.36E-02	3.21E+00
Risk of cPAHs mixture= 1E-5	NO	1.03E+03	4.62E-04	1.24E+01	100% NAPL
Benzene MCL = 5 ug/L	YES	6.71E+01	6.30E-06	2.76E-01	2.02E+01
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 70000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protectiv	Protective Soil		
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
NA	NA	NA	NA	NA

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

	Date:	12/05/13	
Site	Name:	Cashmere	
Sample	Name:	S-DP-75A(2-3)	

Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concern	tration Data Entry Cells	
or Equivalent Carbon Group	dry basis	Ratio			
	mg/kg	%	Restore All Soil Concentry	ation Data cleared previously	
Petroleum EC Fraction					
AL_EC >5-6	3.95	0.06%			
AL_EC >6-8	3.95	0.06%	REMARK:		
AL_EC >8-10	3.95	0.06%	Enter site-specific information	tion here	
AL_EC >10-12	3.95	0.06%			
AL_EC >12-16	51	0.82%			
AL_EC >16-21	410	6.56%			
AL_EC >21-34	5000	80.04%			
AR_EC >8-10	3.95	0.06%			
AR_EC >10-12	3.95	0.06%			
AR_EC >12-16	20	0.32%			
AR_EC >16-21	91	1.46%			
AR_EC >21-34	650	10.41%			
Benzene	0.092	0.00%			
Toluene	0.0615	0.00%			
Ethylbenzene	0.0615	0.00%			
Total Xylenes	0.368	0.01%			
Naphthalene	0.0329	0.00%			
1-Methyl Naphthalene	0.0329	0.00%			
2-Methyl Naphthalene	0.0329	0.00%			
n-Hexane	0.0329	0.00%			
MTBE	Alarman and a state of the stat	0.00%			
Ethylene Dibromide (EDB)	0	0.00%		,	
1,2 Dichloroethane (EDC)	0	0.00%			
Benzo(a)anthracene	0.0329	0.00%			
Benzo(b)fluoranthene	0.0329	0.00%			
Benzo(k)fluoranthene	0.0329	0.00%			
		0.00%			
Benzo(a)pyrene Chrysene	0.0329 0.0329	0.00%			
Dibenz(a,h)anthracene	0.0329	0.00%			
Indeno(1,2,3-cd)pyrene	0.0329	0.00%			
the second se	and the second se	and the second se			
Sum	6246.612	100.00%			
3. Enter Site-Specific H	vdrogeological De	nta			
Total soil porosity:	0.43	Unitless			
Volumetric water content:	0.3	Unitless			
Volumetric air content:	0.13	Unitless			
Soil bulk density measured:	1.5	kg/L			
Fraction Organic Carbon:	0.001	Unitless			
Dilution Factor:	20	Unitless			
4. Target TPH Ground W	ater Concentation (and the second se			
If you adjusted the target TPH gro					
concentration, enter adjusted	0	ug/L			
value here:					

Notes for Data Entry	Set Default Hydrogeology
Clear All Soil Concer	tration Data Entry Cells
Restore All Soil Concentr	ation Data cleared previously

cific information I		

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750

Site Information

Date: <u>12/5/2013</u> Site Name: <u>Cashmere</u> Sample Name: <u>S-DP-75A(2-3)</u>

Measured Soil TPH Concentration, mg/kg: 6,246.612

1. Summary of Calculation Results

		Protective Soil	With Measur	red Soil Conc	Does Measured Soil	
Exposure Pathway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?	
Protection of Soil Direct	Method B	13,036	4.84E-07	4.41E-01	Pass	
Contact: Human Health	Method C	171,138	1.20E-07	3.65E-02	Pass	
Protection of Method B Ground	Potable GW: Human Health Protection	13,719	5.39E-06	1.62E-01	Pass	
Water Quality (Leaching)	NA	NA	NA	NA	Fail	

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494). Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	13,035.61	171,138.23
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	HI =1

	Pro	Protective Soil Concentration @Method B Protective Soil Concentration @M					tion @Met	1ethod C	
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	
HI =1	NO	1.42E+04	1.10E-06	1.00E+00	YES	1.71E+05	3.28E-06	1.00E+00	
Total Risk=1E-5	NO	1.29E+05	1.00E-05	9.10E+00	NO	5.22E+05	1.00E-05	3.05E+00	
Risk of Benzene= 1E-6	NO	1.23E+06	9.56E-05	8.70E+01					
Risk of cPAHs mixture= 1E-6	YES	1.30E+04	1.01E-06	9.20E-01					
EDB	NA	NA	NA	NA	NA				
EDC	NA	NA	NA	NA					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection

Most Stringent Criterion	Benzene MCL = 5 ug/L
Protective Ground Water Concentration, ug/L	24.15
Protective Soil Concentration, mg/kg	13719.09

Ground Water Criteria	Protective	Protective Soil			
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	NO	2.51E+01	7.07E-06	2.05E-01	100% NAPL
Total Risk = 1E-5	NO	2.51E+01	7.07E-06	2.05E-01	100% NAPL
Total Risk = 1E-6	YES	1.16E+01	1.00E-06	4.33E-02	3.52E+02
Risk of cPAHs mixture= 1E-5	NO	2.51E+01	7.07E-06	2.05E-01	100% NAPL
Benzene MCL = 5 ug/L	YES	2.41E+01	6.29E-06	1.85E-01	1.37E+04
MTBE = 20 ug/L	NA	NA	NA	NA	NA

Note: 100% NAPL is 71000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protectiv	Protective Soil		
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
NA	NA	NA	NA	NA

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

Date:	12/05/13	
Site Name:	Cashmere	
Sample Name:	S-DP-101(3-3.5)	

Chemical of Concern	tion Measured Measured Soil Cone	Composition	Notes for Data Entry Set Default Hydrogeology
or Equivalent Carbon Group	dry basis	Ratio	Clear All Soil Concentration Data Entry Cells
or Equivalent Carbon Group	mg/kg	%	Restore All Soil Concentration Data cleared previously
Petroleum EC Fraction	mg/kg	78	
AL EC >5-6	7.5	1.14%	
AL_EC >6-8	7.5	1.14%	REMARK:
AL_EC >8-10	7.5	1.14%	Enter site-specific information here
AL_EC >10-12	7.5	1.14%	
AL_EC >12-16	23.5	3.56%	
AL_EC >16-21	23.5	3.56%	
AL_EC >21-34	280	42.43%	
AR_EC >8-10	7.5	1.14%	
AR_EC >10-12	7.5	1.14%	
AR_EC >12-16	23.5	3.56%	
AR_EC >16-21	23.5	3.56%	
AR_EC >21-34	240	36.37%	
Benzene	0.092	0.01%	
Toluene	0.0615	0.01%	
Ethylbenzene	0.0615	0.01%	
Total Xylenes	0.368	0.06%	
Naphthalene	0.0329	0.00%	
1-Methyl Naphthalene	0.0329	0.00%	
2-Methyl Naphthalene	0.0329	0.00%	
n-Hexane	0	0.00%	
MTBE	0	0.00%	
Ethylene Dibromide (EDB)	0	0.00%	
1,2 Dichloroethane (EDC)	0	0.00%	
Benzo(a)anthracene	0.0329	0.00%	1
Benzo(b)fluoranthene	0.0329	0.00%	
Benzo(k)fluoranthene	0.0329	0.00%	
Benzo(a)pyrene	0.0329	0.00%	
Chrysene	0.0329	0.00%	
Dibenz(a,h)anthracene	0.0329	0.00%	
Indeno(1,2,3-cd)pyrene	0.0329	0.00%	
Sum	659.912	100.00%	
3. Enter Site-Specific H	vdrogeological D	ata	
Total soil porosity:	0.43	Unitless	
Volumetric water content:	0.3	Unitless	
Volumetric air content:	0.13	Unitless	
Soil bulk density measured:	1.5	kg/L	
Fraction Organic Carbon:	0.001	Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground Wo	and the second se	the second se	
If you adjusted the target TPH gro	und water	/ unifitateu/	
concentration, enter adjusted	0] ug/L	
value here:	L 0	1 ug/L	

Notes for Data Entry	Set Default Hydrogeology
Clear All Soil Concer	tration Data Entry Cells
Restore All Soil Concentr	ation Data cleared previously

		8	

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750

Site Information

Date: <u>12/5/2013</u> Site Name: <u>Cashmere</u> Sample Name: <u>S-DP-101(3-3.5)</u> Measured Soil TPH Concentration, mg/kg: **659.912**

1. Summary of Calculation Results

	Method/Goal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway		TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	1,377	4.84E-07	1.61E-01	Pass
Contact: Human Health	Method C	50,909	1.20E-07	1.30E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	228	1.47E-05	6.37E-01	Fail
Water Quality (Leaching)	NA	NA	NA	NA	Fail

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	1,377.12	50,909.19
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	HI =1

	Pro	stective Soil Concentra	ve Soil Concentration @Method B Protective Soil Concentration @M					hod C
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @
HI =1	NO	4.10E+03	3.01E-06	1.00E+00	YES	5.09E+04	9.23E-06	1.00E+00
Total Risk=1E-5	NO	1.36E+04	1.00E-05	3.32E+00	NO	5.51E+04	1.00E-05	1.08E+00
Risk of Benzene= 1E-6	NO	1.30E+05	9.56E-05	3.17E+01				-
Risk of cPAHs mixture= 1E-6	YES	1.38E+03	1.01E-06	3.36E-01	NA			
EDB	NA	NA	NA	NA				
EDC	NA	NA	NA	NA				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

Most Stringent Criterion	Benzene MCL = 5 ug/L
Protective Ground Water Concentration, ug/L	117.97
Protective Soil Concentration, mg/kg	228.36

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B				
	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg	
HI=1	NO	2.18E+02	2.79E-05	1,00E+00	1.97E+03	
Total Risk = 1E-5	NO	1.48E+02	1.00E-05	4.90E-01	3.96E+02	
Total Risk = 1E-6	YES	3.36E+01	1.00E-06	8.86E-02	3.26E+01	
Risk of cPAHs mixture= 1E-5	NO	2.57E+02	4.92E-05	1.55E+00	100% NAPL	
Benzene MCL = 5 ug/L	YES	1.18E+02	6.29E-06	3.59E-01	2.28E+02	
MTBE = 20 ug/L	NA	NA	NA	NA	NA	

Note: 100% NAPL is 81000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protectiv	Protective Soil		
	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
NA	NA	NA	NA	NA

APPENDIX G REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this data gap assessment of the Former Cashmere Mill Site located in Cashmere, Washington in general accordance with the Work Plan, dated September 4, 2013. This report has been prepared for the exclusive use of the Washington State Department of Ecology, their authorized agents and regulatory agencies. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an ESA study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. No one except the Washington State Department of Ecology should rely on this environmental report without first conferring with GeoEngineers. Use of this report is not recommended for any purpose or project except the one originally contemplated.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Former Cashmere Mill Site located in Cashmere, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

If important changes are made to the project or property after the date of this report, we recommend that GeoEngineers be given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. We are unable to assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location or its reuse on-site in instances that we did not know or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or

samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ, sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. Without this understanding, there may be expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

