Materials Testing & Consulting, Inc.

Geotechnical Engineering & Consulting • Special Inspection • Materials Testing • Environmental Consulting

October 8, 2013

Ms. Maggie Buckley, LEED AP **David Evans and Associates, Inc.** 415 118th Avenue SE Bellevue, WA 98005 via email: Mmbr@deainc.com

Subject: Cursory Geotechnical Evaluation Report Skagit County Jail - Truck City/Suzanne Lane Site Skagit County Tax Parcel Numbers: P29546, P119262, P119263, P119265, P119267 Mt. Vernon, WA 98273

MTC Project Number: 13B093-01

Dear Ms. Buckley:

In accordance with your request Materials Testing & Consulting, Inc. (MTC) has conducted a cursory geotechnical evaluation of the above mentioned site to assess geotechnical feasibility for construction of a new jail and courtroom. Our field investigation activities were conducted on September 5, 6 and 12, 2013, in accordance with the scope of services presented in our Revised Proposal for Geotechnical Engineering Services, dated June 26, 2013.

We appreciate the opportunity to provide geotechnical engineering services to you for this project. If you have any questions regarding this report, or if we can provide assistance with other aspects of the project, please contact me at (360) 647-9295.

Respectfully Submitted, MATERIALS TESTING & CONSULTING, INC.

Lance Levine, P.E. Project Geotechnical Engineer

Attachment: Cursory Geotechnical Evaluation Report

Prepared for:

Ms. Maggie Buckley, LEED AP **David Evans and Associates, Inc.** 415 118th Avenue SE Bellevue, WA 98005

Cursory Geotechnical Evaluation Report Skagit County Jail - Truck City/Suzanne Lane Site Skagit County Tax Parcel Numbers: P29546, P119262, P119263, P119265, P119267 Mt. Vernon, WA 98273

Prepared by:

Andy Wiser, L.E.G. Project Engineering Geologist

Lance Levine, P.E. Project Geotechnical Engineer

MATERIALS TESTING & CONSULTING, INC. (MTC)

777 Chrysler DriveBurlington, WA 98233Phone: (360) 755-1990Fax: (360) 755-1980

October 8, 2013 MTC Project Number: 13B093-01

Copyright 2013 Materials Testing & Consulting, Inc. All Rights Reserved

Table of Contents

1.0	INTRODUCTION	4
1.1	GENERAL	4
1.2	PROJECT DESCRIPTION	
1.3	PURPOSE AND SCOPE OF SERVICES	
2.0	SITE EXPLORATION AND LABORATORY TESTING	5
2.1	SITE EXPLORATION	5
2.2	LABORATORY TESTING	
3.0	EXISTING SITE CONDITIONS	7
3.1	SURFACE DESCRIPTION	7
3.2	AREA GEOLOGY	
3.3	SOIL CONDITIONS	
3.4	GROUNDWATER CONDITIONS	
4.0	DISCUSSION AND CURSORY RECOMMENDATIONS	
4.1	STORM WATER INFILTRATION FEASIBILITY	
4.2	CURSORY FOUNDATION RECOMMENDATIONS	
4.3	STRIPPING, CLEARING, GRUBBING, AND RE-USE OF ONSITE SOILS	
4.4	GEOLOGIC HAZARDS	
4.5	PRELIMINARY SEISMIC ACCELERATION COEFFICIENTS	
5.0	LIMITATIONS	14
	PPENDIX A. SITE PLANS	
	PPENDIX B. EXPLORATION LOGS	
AF	PPENDIX C. LABORATORY RESULTS	

1.0 INTRODUCTION

1.1 GENERAL

This report presents the findings and recommendations of Materials Testing & Consulting, Inc.'s (MTC), cursory geotechnical evaluation study for the prospective project. The prospective project site consists of five Skagit County parcels located at the northeast corner of the intersection of Old Highway 99 South and Suzanne Lane in Mount Vernon, Washington. The parcel numbers include P29546, P119262, P119263, P119265, and P119267. The location of the project site is shown in Figure 5 of Appendix A.

1.2 PROJECT DESCRIPTION

It is our understanding that Skagit County is considering two sites for construction of a new jail facility and courtroom. This report details a cursory geotechnical evaluation for the prospective Truck City/Suzanne Lane site. A separate evaluation is also being conducted for the other prospective site, and Phase I Environmental Site Assessments are being conducted for both sites. The Truck City/Suzanne Lane site is comprised primarily of open farmland on the southern half while the northern half is presently being used as a truck fueling station and Elks Meeting Hall. Access to the new facility would be from Old Highway 99 to the west and Suzanne Lane to the south. The exact building materials and loads have not been specified at the time of report production, but according to the project documentation provided by David Evans and Associates, Inc., the complex will be primarily one-story with portions of multi-story, will house up to 400 beds, and encompass approximately 90,000 square feet of building footprint. In addition, future development plans include expansion of the complex to house up to 800 beds and encompass 165,000 square feet.

1.3 PURPOSE AND SCOPE OF SERVICES

The purpose of MTC's study was to characterize the subsurface soil and groundwater conditions based on data collected during the advancement of borings and excavation of test pits. Cursory-level geotechnical recommendations for site development are needed to aid in the determination of which prospective site is most suitable for the proposed development.

Our scope of services was consistent with that presented in our Proposal for Geotechnical Engineering Services, dated June 26, 2013, and supplemental scopes to provide private utility locates, advancement of additional boring footage, and to observe archeological trench excavations.

2.0 SITE EXPLORATION AND LABORATORY TESTING

2.1 SITE EXPLORATION

MTC's site exploration activities were performed on September 5, 6, and 12, 2013. Our site exploration involved logging the advancement of four borings and excavation of two archeological trenches. One boring was advanced to 31.5 feet below present grade (BPG), two borings were advanced to 51.5 feet BPG, and the last boring was advanced to 81.5 feet BPG. Both archeological trenches were excavated to approximately 7 to 8 feet BPG. Boring locations were selected by the project structural engineer to encompass the proposed development and target proposed building footprints.

Archeological trenching locations were selected by the project Archeologist based on site accessibility and requirements of the site archeological evaluation. During advancement of borings and excavation of archeological trenches, an MTC Engineering Geologist logged soil conditions as encountered in accordance with the Unified Soil Classification System (USCS) and made note of soil texture, color, consistency or density, and other geotechnical or geologically defining characteristics. Representative soil samples were collected, sealed in plastic bags, and transported to our laboratory for additional classification and analysis.

Exploration locations are shown on the attached site plan included in Appendix A, Figure 6. Additional information on the site exploration program is provided with our Exploration Logs included in Appendix B of this report.

Figure 1. Exploration Activities at Borehole 1

Figure 2. Test Pit 1

2.2 LABORATORY TESTING

Laboratory tests were performed on select soil samples in accordance with ASTM standards to determine index and engineering properties of on-site soils. Tests included supplementary soil classification, grain-size distribution, plasticity index, and determination of natural moisture content. Laboratory test results are presented on test reports included in Appendix C.

3.0 EXISTING SITE CONDITIONS

3.1 SURFACE DESCRIPTION

The prospective project site is located in a mixed agricultural and commercial area just west of Interstate 5, south of the Anderson Road exit. The property is generally level and is located in the Skagit River Valley. MTC anticipates somewhat significant fill activities (4 feet or more) will be required to bring the site to design grade. Retaining structures are not anticipated for the scope of potential development.

The rectangular shaped site includes five Skagit County parcels and is bordered by commercial property to the north and south, Interstate 5 to the east, and Old Highway 99 to the west. The site is primarily accessed from the west via Old Highway 99 and the south from Suzanne Lane.

The north half of the property is currently developed with existing improvements including retail and commercial buildings, a fueling center, asphalt paving, and other associated improvements. The south half of the site is undeveloped and vegetated with field grass, sparse brush, and a few young trees.

Figure 3. Typical Surface Conditions, North Half of Prospective Site

Figure 4. Typical Surface Conditions, South Half of Prospective Site

3.2 AREA GEOLOGY

The site soils are mapped by the Soil Survey of Skagit County primarily as Sumas silt loam, 0 to 2 percent slopes (136). The soil is described as being shallow and poorly drained. The water table is generally greater than 5 feet below the surface and a strongly contrasting textural stratification is generally encountered as shallow as 12 inches below the surface. This alluvial material is formed in flood plains and deltas.

According to the *Geologic Map of Washington – Northwest Quadrant*, the geology of the site consists of alluvium (Qa). This Holocene-age material consists of sorted combinations of silt, sand, and gravel deposited in streambeds and alluvial fans. The depositional surface is relatively undissected.

According to the *Geologic Map of Mount Vernon, Skagit County Washington,* United States Department of the Interior Geological Survey (Dethier and Whetten, 1981), site geology is composed of alluvium (Qal). The Holocene age alluvium was deposited by the Skagit River and is composed predominantly of heterogeneous deposits of silt, sand, and gravel.

The results of our field and laboratory investigations indicate that site conditions are consistent with the published geology.

3.3 SOIL CONDITIONS

A general characterization of the on-site soil units encountered during our exploration is presented in this section. The Exploration Logs in Appendix B present details of the soils encountered at each exploration location.

The on-site soils are generally characterized as follows:

Topsoil; Silt (ML/OL): Brown silt with trace sand and gravel was encountered at the ground surface at all exploration locations with the exception of BH-1 in the developed/paved area on the north portion of the prospective project site and at B-4 where evidence was observed suggesting topsoil had been stripped at the project site. Topsoil was generally 0.5 to 1.3 feet thick where observed directly at archeological trench locations where it was soft to stiff and moist. Some roots and minor organic material was observed in this layer.

Upper Alluvium; Sand with varying Silt content (SM, SP, SP-SM): Sand with varying amounts of silt was generally encountered immediately below surface topsoil. The material was generally loose to medium dense, moist to saturated, and consisted of thin interbedded silt lenses up to 6 inches thick toward the surface. The soil transitioned from brown to gray between approximately 5 and 8 feet BPG.

Middle Alluvium; Silt (ML): An approximately 10 feet thick silt layer was encountered at 28 feet BPG at most exploration locations. The soil was gray, very soft to soft, saturated, and contained occasional shell fragments.

Lower Alluvium; Sand with Silt (SP-SM): Coarse grained soils consisting of Sand with silt extending to the maximum depth of exploration (as deep as 81.5 feet BPG) was encountered below the silt layer. This material was generally gray, medium dense to dense, saturated, and contained interbedded narrow stiff silt lenses and occasional shell fragments.

3.4 GROUNDWATER CONDITIONS

Groundwater was encountered at depths ranging from 6 feet to 8 feet BPG during our field exploration. Evidence of top-down mottling was observed in near-surface soils, as was mottling indicative of a seasonal high groundwater surface approaching 24 to 36 inches below the existing ground surface.

It should be noted that MTC's investigation did not constitute a comprehensive hydrogeologic investigation. As a result, MTC's interpretation of groundwater conditions is solely based on soil conditions encountered at the time of investigation. Season climatic variations can occur, along with temporal variations of groundwater surface or character. As such, MTC's investigation is not designed to be relied upon for construction design. A more comprehensive investigation is recommended after final site selection and prior to construction.

4.0 DISCUSSION AND CURSORY RECOMMENDATIONS

MTC has prepared the following discussion and cursory-level recommendations for consideration by the project design team during evaluation of site feasibility for the proposed development. The recommendations presented are based on MTC's current understanding of general project scope. Additional work including site exploration, geotechnical engineering, and winter season groundwater monitoring may be required to properly address geotechnical site conditions as subsequent phases of project scoping are completed. MTC shall be allowed to review and comment as project plans develop and, as necessary, provide additional consultation and engineering services as deemed appropriate for an evolving project scope.

4.1 STORM WATER INFILTRATION FEASIBILITY

Near-surface soil conditions consist of sand with interbedded silt lenses displaying both lateral and vertical heterogeneity. Finer grained silty sand and silt soils will exhibit a very low capacity to transmit water, whereas coarser silty sand and sand deposits may exhibit long-term infiltration rates as great as 0.50 inches per hour. As an additional constraint to storm water infiltration design, relatively shallow groundwater (6 to 8 feet BPG) was encountered during our field explorations as was visual evidence of a seasonal high groundwater surface (mottling) within a few feet of present ground.

For these reasons, it is MTC's opinion that infiltration may be considered for storm water disposal at the project site but that a site specific evaluation will need to be performed to determine the appropriate type and location of the proposed facility. Preliminary consideration suggests that permeable pavement, bio-infiltration swales, infiltration chambers, or a combination thereof, may be suitable. It may also be necessary to perform a groundwater mounding analysis based on the scale of the proposed impervious improvements and potential shallow depth to the seasonal groundwater surface. In addition, installation of groundwater monitoring wells and quarterly or instrumented groundwater elevation readings will reduce uncertainty associated with the selection of the appropriate storm water infiltration disposal system.

4.2 CURSORY FOUNDATION RECOMMENDATIONS

Preliminary review of encountered site conditions suggests that a shallow, spread-footing foundation system may be suitable for use at the proposed project site. Primary geotechnical concerns precluding design of a shallow foundation system include the risk to site improvements resulting from seismically-induced liquefaction settlement as well as consolidation settlement resulting from proposed loading conditions. MTC recommends that an additional investigation including Cone Penetrometer Tests, liquefaction analysis, and settlement monitoring be performed in order to quantify these concerns and develop foundation recommendations accordingly.

Present site development requirements should also be considered when evaluating potential foundation options. MTC understands that approximately 3 to 4 feet of fill will be required to bring the site above base flood elevation. The fill should be treated as structural fill, and may potentially be utilized as a structural fill mat with incorporation of a structural woven-geotextile, or inclusion of a reinforced structural mat slab, to increase bearing capacity and minimize the risk of differential settlement.

The proposed fill section could also be utilized as a portion of a pre-load to induce consolidation settlement. The required thickness of the pre-load would need to be determined based on additional site explorations as well as in consideration final foundation loading requirements. For the Truck City site, consolidation settlement can be expected to occur primarily during construction, especially in coarse grained sediments. However, given the areal extent of the proposed improvements, loading strain will be expressed at a significant depth and may have the potential to impact soft silt soils encountered between 28 to 40 feet BPG.

To limit post construction settlement and alleviate differential settlement concerns associated with heterogeneous soil conditions, MTC's preliminary evaluation suggests that a program of fill placement oversight and associated surface settlement monitoring be conducted. Additionally, MTC recommends that supplemental exploration and engineering include estimates of potential settlement magnitudes to be used to design the pre-load fill section and develop a settlement monitoring schedule. In practice, surface settlement shall be allowed to proceed until no further appreciable settlement is observed. Observed site conditions do not appear to be susceptible to extended time-dependent settlement concerns. For preliminary planning purposes, a fill settlement monitoring period of up to 2 months should be expected.

4.3 STRIPPING, CLEARING, GRUBBING, AND RE-USE OF ONSITE SOILS

Site preparation on the north half of the prospective project site will need to consist of removing the existing structures, fueling station, asphalt paving, and any other items specified in site assessments or other reports created for this prospective site. The sub base material under asphalt may remain in place and pulverizing/crushing the existing asphalt to be re-used as fill can be considered for potential cost savings. Site preparation on the south half of the prospective project site will need to consist of removal of topsoil to expose silt and soils observed between 0.5 feet to 1.3 feet BPG.

Due to proposed grade increases across the project site, MTC does not anticipate re-use of native soils as structural fill. Fine-grained site soils consisting of silt and silty sand with silt concentrations greater than 10 percent are not suitable for re-use as structural fill material. However, this material may be considered for general backfill purposes. If required, some separation of excavated coarse-grained soils may be feasible for re-use as structural fill for limited purposes. However, all structural fill placed beneath structural foundations should be imported to the project site.

4.4 GEOLOGIC HAZARDS

MTC's review of local geologic resources indicates that the nearest active fault trace is inferred to trend east-southeast by west-northwest approximately 3.5 miles north of the subject property. Based on MTC's research and site observations it does not appear that the proposed improvements are subject to a seismic hazard resulting from ground rupture during a seismic event. However, it should be noted that mapped fault traces transecting Mount Vernon are inferred, meaning that the plotted locations are based on a combination of geophysical techniques, regional fault trace observations and seismograph data. As a result the location of actual ground rupture produced by a seismic event may vary from mapped location of inferred fault traces. In spite of these uncertainties it is still MTC's opinion that the best available science suggests that ground rupture at the project site is unlikely.

An additional seismic hazard to be considered at the project site is seismic shaking, which could be significant during a major seismic event. As a result, the improvements should be designed according to building standards presented by the 2012 International Building Code, assuming a Seismic Site Class of D to E as reported for the project site by the *Site Class Map of Skagit County, Washington* (Palmer et al., 2004). Soft silt soils and saturated fine to medium grained sand soils encountered at the project site are considered susceptible to seismically-induced settlement, liquefaction and amplification of seismic ground motion. For this reason, MTC recommends that Site Class E be used for the project site unless supplemental shear-wave velocity data analysis obtained from CPT explorations indicates otherwise.

In addition to ground shaking hazards is the resulting site-susceptibility for seismically-induced soil liquefaction. According to the *Liquefaction Susceptibility Map of Skagit County, Washington* (Palmer et al., 2004), the site is identified as having high liquefaction susceptibility. The results of MTC's subsurface investigation indicate the site is primarily composed of loose to medium dense silty sand that would generally considered to be susceptible to liquefaction. In addition, some thick layers of loose to medium dense saturated sand containing relatively few fine-grained particles were also encountered. These soils are highly prone to liquefaction and confirm the mapped regional interpretation of potentially high liquefaction susceptibility at the project site. If the project site is selected, further investigations (such as CPT advancement and additional engineering) should be performed to better characterize the site liquefaction susceptibility.

4.5 PRELIMINARY SEISMIC ACCELERATION COEFFICIENTS

Seismic acceleration values were derived from the USGS Java Ground Motion Parameter Calculator -Version 5.1.0 for the project latitude and longitude based on MTC's cursory-level investigation and mapped seismic site class. MTC has elected to determine coefficients according to Site Class E based on encountered subsurface soil conditions. Supplemental site characterization may indicate that Site Class D is appropriate, resulting in less conservative recommended acceleration coefficients. All structures should be designed incorporating the following seismic acceleration coefficients unless subsequent investigations suggest otherwise.

Site Class	Е
Mapped Peak Spectral Acceleration @ 0.2 sec (SM _s)	0.988
Mapped Peak Spectral Acceleration @ 1.0 sec (SM ₁)	0.938
Design Peak Spectral Acceleration @ 0.2 sec (SD _s)	0.659
Design Peak Spectral Acceleration @ 1.0 sec (SD ₁)	0.626
F_a	0.90
F_v	2.496

5.0 LIMITATIONS

Recommendations contained in this report are based on our understanding of the prospective development and construction activities, our field observations and exploration, and our laboratory test results. It is possible that soil and groundwater conditions could vary and differ between or beyond the points explored. If soil or groundwater conditions are encountered during construction that vary or differ from those described herein, we should be notified immediately in order that a review may be made and supplemental recommendations provided. If the scope of the proposed construction, including the proposed loads or structural locations, change from that described in this report, our recommendations should also be reviewed.

We have prepared this report in substantial accordance with the generally accepted geotechnical engineering practice as it exists in the site area at the time of our study. No warranty, express or implied, is made. The recommendations provided in this report are based on the assumption that an adequate program of tests and observations will be conducted by MTC during the construction phase in order to evaluate compliance with our recommendations. Other standards or documents referenced in any given standard cited in this report, or otherwise relied upon by the author of this report, are only mentioned in the given standard; they are not incorporated into it or "included by referenced", as that latter term is used relative to contracts or other matters of law.

This report may be used only by David Evans and Associates, Inc. and their design consultants and only for the purposes stated within a reasonable time from its issuance, but in no event later than 18 months from the date of the report. This report is intended for preliminary consideration of a site for prospective development and does not constitute a project geotechnical engineering report. If the site is chosen for development, a project geotechnical engineering report will be required and should account for design grade, construction materials, structure loading, and other considerations not known at this time.

Land or facility use, on- and off-site conditions, regulations, or other factors may change over time, and additional work may be required with the passage of time. Based on the intended use of the report, MTC recommends that additional work be performed and that an updated report be issued of the site is selected for development. Non-compliance with any of these requirements by David Evans and Associates, Inc., or anyone else will release MTC from any liability resulting from the use of this report by any unauthorized party and David Evans and Associates, Inc. agrees to defend, indemnify, and hold harmless MTC from any claim or liability associated with such unauthorized use or non-compliance. We recommend that MTC be given the opportunity to review project plans and specifications to evaluate if our recommendations have been properly interpreted. We assume no responsibility for misinterpretation of our recommendations.

APPENDIX A. SITE PLANS

Materials Testing & Consulting, Inc. 777 Chrysler Drive Burlington, WA 98233 **Regional Site Vicinity** Skagit County Jail – Truck City Mt Vernon, Washington FIGURE

5

APPENDIX B. EXPLORATION LOGS

Representative soil samples were collected from each location by our field geologist during exploration activities. Soil samples collected during the field exploration were classified in accordance with ASTM D2487. All samples were placed in plastic bags to limit moisture loss, labeled, and returned to our laboratory for further examination and testing.

Exploration activities were monitored by our field geologist who examined and classified the materials encountered in accordance with the Unified Soil Classification System (USCS), obtained representative soil samples, and recorded pertinent information including soil sample depths, stratigraphy, soil engineering characteristics, and groundwater occurrence.

The stratification lines shown on the individual logs represent the approximate boundaries between soil types; actual transitions may be either more gradual or more severe. The conditions depicted are for the date and location indicated only, and it should not necessarily be expected that they are representative of conditions at other locations and times.

	Major Divisi	ons	Graph	USCS	Typical Description	Sampler Symbo	
Coarse Grained Soils	Gravel		0.00	GW	Well-graded Gravels, Gravel-Sand Mix- tures	Standard Per	netration Test (SPT
	More Than 50% of	Clean Gravels		GP	Poorly-Graded Gravels, Gravel-Sand Mixtures	Grab or Bulk	
More Than 50%	Coarse Frac- tion Retained On No. 4		0 0 0	GM	Silty Gravels, Gravel-Sand-Silt Mixtures	California (3	.0" O.D.)
Retained On No. 200 Sieve	Sieve	Gravels With Fines		GC	Clayey Gravels, Gravel-Sand-Clay Mix- tures	Modified Ca	lifornia (2.5" O.D.)
	Sand	C 1 C 1		SW	Well-graded Sands, Gravelly Sands	<u>Stratigraphic (</u>	<u>Contact</u>
	More Than 50% of	Clean Sands		SP	Poorly-Graded Sands, Gravelly Sands	Between Soi	tigraphic Contact l Strata nge Between Soil
	Coarse Frac- tion Passing No. 4 Sieve	Sands With Fines		SM	Silty Sands, Sand-Silt Mixtures	Strata Approximate	location of
		Sands with Fines	/ /	SC	Clayey Sands, Clay Mixtures	stratagraphic	change
Fine Grained Soils				ML	Inorganic Silts, rock Flour, Clayey Silts With Low Plasticity	exploration	r observed at time o
	Silts & Clays	Liquid Limit Less Than 50	$\overline{/}$	CL	Inorganic Clays of Low To Medium Plasticity	exploration,	oundwater level in well, or piezometer er observed at time
More Than 50% Passing The No. 200 Sieve				OL	Organic Silts and Organic Silty Clays of Low Plasticity	of exploratio	
				MH	Inorganic Silts of Moderate Plasticity	Modifiers	
	Silts & Clays		77	СН	Inorganic Clays of High Plasticity	Description	%
		Greater Than 50	\square			Trace	>5
			·/.	ОН	Organic Clays And Silts of Medium to High Plasticity	Some	5-12
I	Highly Organic	Soils		РТ	Peat, Humus, Soils with Predominantly Organic Content	With	>12

Soil Consistency

Granula	r Soils	Fine-grai	ned Soils
Density	SPT Blowcount	Consistency	SPT Blowcount
Very Loose	0-4	Very Soft	0-2
Loose	4-10	Soft	2-4
Medium Dense	10-30	Firm	4-8
Dense	30-50	Stiff	8-15
Very Dense	> 50	Very Stiff	15-30
		Hard	> 30

Grain Size

DESCR	IPTION	SIEVE SIZE	GRAIN SIZE	APPROXIMATE SIZE
Bou	lders	> 12"	> 12"	Larger than a basketball
Cob	bles	3 - 12"	3 - 12"	Fist to basketball
Gravel	Coarse	3/4 - 3"	3/4 - 3"	Thumb to fist
Glaver	Fine	#4 - 3/4"	0.19 - 0.75"	Pea to thumb
	Coarse	#10 - #4	0.079 - 0.19"	Rock salt to pea
Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar to rock salt
	Fine	#200 - #40	0.0029 - 0.017"	Flour to Sugar
Fi	nes	Passing #200	< 0.0029"	Flour and smaller

Materials Testing & Consulting, Inc. 777 Chrysler Drive Burlington, WA 98233

Boring Log Key Skagit County Jail – Truck City Mt Vernon, Washington

FIGURE

7

	technical	Eng	ng & Consulting, Inc. ineering and Consulting on, Washington		Log of B	orin	g E	3H-1	(P	age	1 of 1)
		Site,	Geotechnical Exploration 3216 Old Hwy S Road /ernon, WA	Date Started Date Completed Sampling Method Location	: 9/5/13 : 9/5/13 : Split Spoon 5-ft. intervals : 45' S of Store SW cor., 25' \	N of P	ump	Station C	Cover FP	Y	
	MTC	Proje	ct No. 13B093-01	Logged By	: J. Gillaspy	Г				1	
Depth in Feet	nscs	GRAPHIC		DESCRIPTION		Samples	Water Level	% Finer than #200	% Moisture	Blow Count	Blow Count Graph 0 20 40 60
0-	AC SW-GW		Asphalt - 3" SAND WITH GRAVEL, me	dium dense drv BF	ROWN (gravel base fill)	/					
-	SM		SILTY SAND, loose, dry. I			1					
5	SM-ML		SILTY fine SAND to SAND moderately cohesive. Mot	tled, BROWN-GRAY	*		Ţ			6	\mathbb{R}
- 10-	SP-SM		SILTY coarse SAND, med. fines. Medium GRAY.	. dense, saturated, e	stimated 10% to 20%					19	
		h	SILTY fine SAND to SAND							15	
- 15—	SM-ML		cohesive, variable coarse of	content. Medium GR	AY.						
-	SIVI-IVIL									4	
20-		H	SAND, medium to coarse g		or fines, medium dense,	L					
			saturated. Medium GRAY					8.6		21	
- 25-	SP										
-										20	
30-						L					
-			SILT, very soft, saturated, GRAY. Contains small shell fra							2	
- 35-	ML										
			Sample contains some	sand, trace small gra	avel and shell fragments.					2	
-			SILTY SAND, fine to media fragments. Medium GRAY		aturated, trace shell	1					
40-				17						34	
-	SM-SP				-						
45-			Sample becomes SANE Contains pocket of stiff		. , meaium aense.					11	
-											
50-			Contains pockets of ver TD 51.5' Boring terminate	y stiff sandy silt 2-3" ed in dense soils.	tnick.					40	
- 55-			No refusal or ha	ard conditions encour puntered at approxim							
	rials T	'est	ting & Consultin	g Inc	Explo	rati	on	Log			FIG

	technical	Eng	ng & Consulting, Inc. ineering and Consulting on, Washington		Log of B	sorin	ig E	3H-2	(F	Page	1 of 1)	
	ruck City	Site, Mt.	Geotechnical Exploration 3216 Old Hwy S Road /ernon, WA	Date Started Date Completed Sampling Method Location	: 9/5/13 : 9/5/13 : Split Spoon 5-ft. intervals : 17' S, 5' E of Restaurant S	W door	20					
	MTC	Proje	ct No. 13B093-01	Logged By	: J. Gillaspy	T	П			T		
Depth in Feet	uscs	GRAPHIC		DESCRIPTION	I	Samples	Water Level	% Finer than #200	% Moisture	Blow Count	Blow Count Graph 0 20 40 60	
0-	ML		SILT to SANDY SILT, tops roots, moist to damp. Med			1						_
5	SM		SILTY fine SAND, loose, d (observed in c Cuttings become moist, Sample is slightly cohe	ry. Medium BROWN uttings) BROWN-GRAY mo	N.		•			10	9	
10 -	SP	مر	SAND to SAND WITH SIL	Γ, medium dense, sa	aturated. Medium GRAY.					15	•	
- 15- -	SM	2	SILTY SAND, fine to media saturated, slightly cohesive					37.7		11	Φ	
20 -	SP	HAU.	SAND to SAND WITH SIL medium dense, saturated.		ained, minor fines,					14		
25	5P									22		
30 -	SM-ML		SILTY SAND to SANDY SI moderately cohesive. Mec Contains small shell fra	ium GRAY.						5	•	
35 -										3		
40 -			SAND to SAND WITH SIL dense, saturated. Medium		and, medium dense to					30		
45 -	SP-SM		Becomes SILTY SAND, m Sample contains thin ve							20		
50 -										14		
- - 55 -			No refusal or ha	ed in medium dense rd conditions encour untered at approxim	ntered.							
ateı			ing & Consultin Chrysler Drive	g, Inc.	Explo Skagit Count						FIC	31

	Bu	rlingto	ineering and Consulting on, Washington Geotechnical Exploration	Date Started	: 9/5/13				(F	age 1	of 1)
	Fruck City	Site, Mt.	3216 Old Hwy S Road /ernon, WA	Date Completed Sampling Method Location	: 9/5/13 : Split Spoon 5-ft. intervals : 175' S, 25' E of Restaurant	SE cor	ç				
	MIC	Proje	ct No. 13B093-01	Logged By	: J. Gillaspy	T				ΠT	
Depth in Feet	USCS	GRAPHIC		DESCRIPTION	I	Samples	Water Level	% Finer than #200	% Moisture	Blow Count	Blow Count Graph
0-	ML		SILT, topsoil to subsoil, me			Τ					
5	SM	(ry. Medium BROW t, BROWN-GRAY m parse grained, mediu	N. (observed in cuttings)		•			20	
- 10 - - -	SP		SAND to SAND WITH SIL Medium GRAY. Sample contains 1-2" i							11	
15-			SILTY SAND, medium to c	oarse grained, med	um dense, saturated,					23	
20-	SM	4	slightly cohesive with estim Sample contains trace s	nated 20-30% fines.	Medium GRAY.		č č			11	
25-	SP		SAND to SAND WITH SIL saturated. Medium GRAY							6	
30-	SM-ML		SILTY SAND to SANDY SI slightly to moderately cohe Contains small shell fra	sive. Medium GRA gments estimated 1	Y. % by volume.					12	
- - 35-			No refusal or ha	ed at requested dep rd conditions encou ountered at approxin	ntered.						
40 -											
45											
50											
55-											
-	• • •		ing & Consultin	.	Explo			т			FIG

Mat Geo	erials Te	estir Eng	ng & Consulting, Inc. ineering and Consulting		Log of B	orin	g E	3H-4			
	Bur	lingto	on, Washington						(P	age	1 of 2)
Ska	ruck City	Site, Mt. V	Geotechnical Exploration 3216 Old Hwy S Road /ernon, WA	Date Started Date Completed Sampling Method Location	: 9/6/13 : 9/6/13 : Split Spoon 5-ft. intervals : 60' S, 150' W of NE propert	y stake	e at fe	ence line			
_	MTC	roje	ct No. 13B093-01	Logged By	: J. Gillaspy	Т				Ē	
Depth in Feet	nscs	GRAPHIC		DESCRIPTION	I	Samples	Water Level	% Finer than #200	% Moisture	Blow Count	Blow Count Graph 0 20 40 60
0-	ML		SILT to SANDY SILT, tops			Τ					
5	SM		stiff, roots, moist to dry. M SILTY fine SAND, medium Medium BROWN-GRAY m Cuttings become mois Sample contains clean	dense, dry, minor o lottled. t. sand pockets.	rganic/wood remnants.		•			12 11	•
10-			SAND to SAND WITH SIL wet to saturated, minor fine Sample contains variab	es typical. Medium (GRAY.					8	•
15 - - -	SP									12	•
20			Becomes loose.				8			9	
25-										7	•
30	SM-ML		SILTY SAND to SANDY SI moderately cohesive, trace Contains small shell fra	organics. Medium	GRAY.					2	6
35 -			Contains local shell frag	1.112						4	
40			dense, saturated. Medium Sample contains thin po	GRAY.			2			25	
45 -	SP-SM							5.7		15	φ
50			Sample contains 1/2" w	ood remnant, partial	ly decomposed.					15	
55 -			Becomes SAND to SILT	TY SAND, loose, thin	n layers of sandy silt.				I		
atei			ing & Consultin Chrysler Drive	g, Inc.	Explor Skagit County					tv	FIG

Geot			ineering and Consulting on, Washington		Log of Test		aqe	1 01	1)	
	git Count ruck City	ty Jail Site, Mt. V	Geotechnical Exploration 3216 Old Hwy S Road /ernon, WA ct No. 13B093-01	Date Started Date Completed Sampling Method Location Logged By	: 9/12/13 : 9/12/13 : Grab Sample : Near B-4 Location : JG	(, ,			.,	
	WITC	Filipe	CTN0. 138093-01	Logged by			Г	П		1
Depth in Feet	USCS	GRAPHIC		DES	CRIPTION		Samples	Water Level	Percent Moisture	% Fine #200 Sieve
0-	OL	Τ	TOPSOIL - SANDY SILT,	loose, grass roots, d	amp. Medium BROWN.		Γ	Π		Γ
-	ML		SILT, very stiff to hard, dry	. Medium BROWN	to mottled.					
-			SILTY SAND, fine to media GRAY mottled.	um grained, loose to	medium dense, damp. Medium	BROWN-	1			
2-			GRAT motiled.				\vdash	$\left \right $		
-	SM						\vdash			
3-										
			SANDY SILT, damp to mo	ist, medium stiff, coh	esive. BROWN-GRAY with mott	ling.				
1	ML							1		
4-										
+			SAND WITH SILT, mediun	n grained, medium d	ense, moist. Medium GRAY.					
5-										
6-	SP		Becomes saturated.					▼		
1										
7-			Termination Depth: 6.8'							
-			Pit walls caving at end dep	th.						
8-										
1										
9-										
-										
10-										
	iola 7	Fort	ing & Consult-	a Inc	F war 1 aw - 45	on Log				
ater			ing & Consultin Chrysler Drive	g, mc.	Explorat i Skagit County Ja					FIG

Mat Geo	terials Te	sting & Consu Engineering and	Ilting, Inc. Consulting		Log	of Test Pit TP-2				
	Burli	ngton, Washington	n				(Page	1 0	f 1)	
	Truck City S	Jail Geotechnical Site, 3216 Old Hwy Mt. Vernon, WA roject No. 13B093	S Road	Date Started Date Completed Sampling Method Location Logged By	: 9/12/13 : 9/12/13 : Grab Sample : Near B-2 Location : JG					
	WICF		-01	209900 29				\square		T
Depth in Feet	nscs	GRAPHIC		DES	CRIPTION		Samoles	Water Level	Percent Moisture	% Fin #200 Sieve
0-		TOPSOIL - S	SANDY SILT, s	oft/loose, grass roo	ts, dry to damp. Med	lium BROWN.				
- 1—	OL	SILTY SAND BROWN-GR		m grained, loose to	medium dense, dam	p. Medium BROWN to				
2-	SM	Encounte	red large wood	d remnant, partially	decomposed.					
-							Γ			
-										
3-		SAND, coars	e to medium g	rained, medium der	nse, moist. Medium I	BROWN-GRAY to GRAY				
-										
4— - 5—	SP									
6-	ML-SM	coarse conte	to SANDY SI nt. Medium G observed.	LT, moist to wet, me RAY.	edium stiff, moderatel	y cohesive, variable		¥		
7-	SP			edium grained, medi nall wood remnants.		. Contains interbeds of				
8- - 9- -		Termination	Depth: 7.7' ng at end dept	th.						
atei	777	e sting & C 7 Chrysler I ngton, WA	Drive	g, Inc.	Skagit Co	xploration Log ounty Jail – True ernon, Washing	ck City		I	FIG 1

APPENDIX C. LABORATORY RESULTS

Laboratory tests were conducted on several representative soil samples to better identify the soil classification of the units encountered and to evaluate the material's general physical properties and engineering characteristics. A brief description of the tests performed for this study is provided below. The results of laboratory tests performed on specific samples are provided at the appropriate sample depths on the individual boring and test pit logs. However, it is important to note that these test results may not accurately represent in situ soil conditions. All of our recommendations are based on our interpretation of these test results and their use in guiding our engineering judgment. MTC cannot be responsible for the interpretation of these data by others.

Soil samples for this project will be retained for a period of 3 months following completion of this report, unless we are otherwise directed in writing.

SOIL CLASSIFICATION

Soil samples were visually examined in the field by our representative at the time they were obtained. They were subsequently packaged and returned to our laboratory where they were reexamined and the original description checked and verified or modified. With the help of information obtained from the other classification tests, described below, the samples were described in general accordance with ASTM Standard D2487. The resulting descriptions are provided at the appropriate locations on the individual exploration logs, located in Appendix B, and are qualitative only.

GRAIN-SIZE DISTRIBUTION

Grain-size distribution analyses were conducted in general accordance with ASTM Standard D422 on representative soil samples to determine the grain-size distribution of the on-site soil. The information gained from these analyses allows us to provide a description and classification of the in-place materials. In turn, this information helps us to understand how the in-place materials will react to conditions such as heavy seepage, traffic action, loading, potential liquefaction, and so forth. The results are presented in this Appendix.

ATTERBERG LIMITS (Plasticity Index)

The plasticity index (PI) was attempted to be determined in general accordance with ASTM Standard D4318. The plasticity index is a measure of the plasticity of a soil. The plasticity index is also the size of the range of water contents where the soil exhibits plastic properties or, in other words, defines the complete range of plastic state. Because the material was determined to be non-plastic, further testing could not be performed.

Project #: Client: Source:	Skagit Count 13B093-01 Skagit Count B-1 @ 20'		City I	Date Received: Sampled By: Date Tested: Tested By:	JRG 13-Sep-13	ASTM D-2487 Unified Soils Classification System SP-SM, Poorly graded Sand with Silt Sample Color: Gray
Sample#:	Specification No Specs	s Meets Specs ?		ASTM D-2210	6, ASTM D-2	
					ASTM C-	D ₍₉₀₎ = 0.794 mm Sand Equivalent = n/a Plasticity Index = n/a 136, ASTM D-6913
		Actual	Interpolated		AS IM C-	
Sieve	Size	Cumulative Percent	1	Spece	Space	Grain Size Distribution
US	Metric	Percent Passing	Percent Passing	S pecs Max	S pecs Min	160%
12.00"	300.00		100%	100.0%	0.0%	
10.00" 8.00"	250.00 200.00		100%	100.0% 100.0%	0.0% 0.0%	90%
6.00"	150.00		100%	100.0%	0.0%	
4.00"	100.00		100%	100.0%	0.0%	80%
3.00" 2.50"	75.00 63.00		100%	100.0% 100.0%	0.0% 0.0%	
2.00"	50.00		100%	100.0%	0.0%	70%
1.75"	45.00		100%	100.0%	0.0%	
1.50" 1.25"	37.50		100%	100.0%	0.0% 0.0%	60%
1.23	31.50 25.00		100%	100.0% 100.0%	0.0%	
3/4"	19.00		100%	100.0%	0.0%	
5/8"	16.00		100%	100.0%	0.0%	
1/2" 3/8"	12.50 9.50		100%	100.0% 100.0%	0.0% 0.0%	8 8
1/4"	6.30		100%	100.0%	0.0%	40%
#4	4.75	100%	100%	100.0%	0.0%	
#8 #10	2.36 2.00	98%	99% 98%	100.0% 100.0%	0.0% 0.0%	30%
#16	1.18	2070	94%	100.0%	0.0%	
#20	0.850	92%	92%	100.0%	0.0%	20%
#30 #40	0.600 0.425	77%	83% 77%	100.0% 100.0%	0.0% 0.0%	10%
#50	0.300	11/0	63%	100.0%	0.0%	
#60	0.250	58%	58%	100.0%	0.0%	
#80 #100	0.180	30%	38%	100.0%	0.0%	0% * Historie en d'16 bl. 1 ch el bl. 1 ch e
#100 #140	0.150 0.106	50%	17%	100.0% 100.0%	0.0% 0.0%	Particle Size (mm)
#170	0.090		13%	100.0%	0.0%	
#200 Convright	0.075 Spears Engineering	8.6%	8.6%	100.0%	0.0%	+ Sieve Sizes — Max Specs — Min Specs — Sieve Results
	our reports is reserve	d pending our writter				reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts
eviewed by:	(i)	M2_				-
Mata	rials To	sting &	Consul	ting, Ind		Laboratory Test Results FIGUR

					Siev	e Report
Project #: Client:	Skagit County 13B093-01 Skagit County B-2 @ 15'		City I	Date Received: Sampled By: Date Tested: Tested By:	JRG 13-Sep-13	ASTM D-2487 Unified Soils Classification System SM, Silty Sand Sample Color: Gray
Sample#:	B13-592			ACTMD 221	C ACTMD 2	410 ACTMIN 4210 ACTMIN 5021
				AS IM D-2210	6, AS I M D-2	419, ASTM D-4318, ASTM D-5821 D ₍₅₎ = 0.010 mm % Gravel = 0.6% Coeff. of Curvature, C _C = 1.14
	Specification	3				$D_{(10)} = 0.020 \text{ mm}$ % Sand = 61.7% Coeff. of Uniformity, $C_U = 7.88$
	No Specs					$D_{(30)} = 0.060 \text{ mm}$ % Silt & Clay = 37.7% Fineness M odulus = 0.62
	Sample	Meets Specs ?	2			$ \begin{array}{llllllllllllllllllllllllllllllllllll$
					ASTM C-	136, ASTM D-6913
		Actual	Interpolated Cumulative			Grain Size Distribution
Sieve	Size	Percent	Percent	Specs	Specs	
US 12.00"	Metric 300.00	Passing	Passing	Max 100.0%	Min 0.0%	100%
10.00" 8.00" 6.00" 4.00" 3.00" 2.50" 1.75" 1.50" 1.25" 1.00" 1.25" 1.00" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #8	$\begin{array}{c} 250.00\\ 200.00\\ 150.00\\ 100.00\\ 75.00\\ 63.00\\ 50.00\\ 45.00\\ 37.50\\ 31.50\\ 25.00\\ 19.00\\ 16.00\\ 12.50\\ 9.50\\ 6.30\\ 4.75\\ 2.36\end{array}$	99% 99%	100% 100% 100% 100% 100% 100% 100% 100%	100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	0.0% 0.0%	90% 90.0% 80% 90.0% 80% 70% 70.0% 60% 60% 60.0% 50% 50% 50% 70.0% 80.0% 80.0% 70% 60.0% 80.0% 70.0% 60.0% 60.0% 50.0% 80% 70.0% 50.0% 80% 70% 70.0% 80.0% 80.0% 80
	2.00 1.18 0.850 0.600 0.425 0.300 0.250 0.180 0.150 0.106 0.090 0.075 Spears Engineering			100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	20% 10% 10% 10% 10% 10.0%
m or regarding o	ur reports is reserved	pending our written	n approval.	ion to chemis, the publ	ie and ourselves, an	reports are submitted as the commential property of chemis, and authorization for publication of statements, conclusions of extracts
eviewed by:	G	42				_
Mate				ting, Ind	c.	Laboratory Test Results FIGUR
		•	er Drive VA 9823	33		Skagit County Jail – Truck City Mt Vernon, Washington 17

	Skagit County Jail - Truck City 13B093-01 Skagit County B-4 @ 45' B13-593			Date Received: 6-Sep-13 Sampled By: JRG Date Tested: 13-Sep-13 Tested By: CM		e Report <u>ASTM D-2487 Unified Soils Classification System</u> SP-SM, Poorly graded Sand with Silt <u>Sample Color:</u> Gray			
Sumper.	Specifications	:		ASTM D-221	6, ASTM D-2	19, ASTM D-4318, ASTM D-5821 $D_{(5)} = 0.066$ m Coeff. of Curvature, $C_C = 1$ $D_{(10)} = 0.105$ m % Sand = 94.3% Coeff. of Uniformity, $C_U = 3$			
	No Specs Sample	Meets Specs ?				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
					ASTM C	36, ASTM D-6913			
		Actual	Interpolated		765 1761 0				
	<u>.</u>	Cumulative		6		Grain Size Distribution			
Sieve US	Size Metric	Percent Passing	Percent Passing	S pecs Max	S pecs Min				
12.00"	300.00		100%	100.0%	0.0%				
10.00"	250.00		100%	100.0%	0.0%				
8.00"	200.00		100%	100.0%	0.0%	90%			
6.00"	150.00		100%	100.0%	0.0%				
4.00" 3.00"	100.00 75.00		100% 100%	100.0% 100.0%	0.0%	80% ++++++++++++++++++++++++++++++++++++			
2.50"	63.00		100%	100.0%	0.0%				
2.00"	50.00		100%	100.0%	0.0%	70%			
1.75"	45.00		100%	100.0%	0.0%				
1.50"	37.50		100%	100.0%	0.0%				
1.25"	31.50		100%	100.0%	0.0%	60%			
1.00"	25.00		100%	100.0%	0.0%				
3/4"	19.00		100%	100.0%	0.0%	Brisse 50%			
5/8" 1/2"	16.00		100% 100%	100.0%	0.0%				
3/8"	12.50 9.50		100%	100.0%	0.0%	8 40% 40.0%			
1/4"	6.30		100%	100.0%	0.0%	40.0%			
#4	4.75		100%	100.0%	0.0%				
#8	2.36		100%	100.0%	0.0%	30%			
#10	2.00	100%	100%	100.0%	0.0%				
#16	1.18		97%	100.0%	0.0%	20% ++++++++++++++++++++++++++++++++++++			
#20 #30	0.850	95%	96% 95%	100.0% 100.0%	0.0%				
#40	0.425	65%	65%	100.0%	0.0%	10% ++++++++++++++++++++++++++++++++++++			
#50	0.300		45%	100.0%	0.0%				
#60	0.250	37%	37%	100.0%	0.0%				
#80	0.180		23%	100.0%	0.0%	0% Cidebio best 10 bi-i eb-sidio be te dibiti i i i i i i i i i i i i i i i i i 			
#100	0.150	16%	16%	100.0%	0.0%				
#140	0.106		10%	100.0%	0.0%	Particle Size (mm)			
#170 #200	0.090	5.7%	8% 5.7%	100.0% 100.0%	0.0%	+ Sieve Szes — A — Max Snocs — Min Snocs — Sieve Results			
	0.075 Spears Engineering			100.0%	0.0%	+ Sieve Sizes A Max Specs Min Specs Sieve Results			
esults apply on 1 or regarding o	ly to actual locations a ur reports is reserved	nd materials tested. pending our written	As a mutual protecti approval.			ports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or ext			
viewed by:	0	42							
Mate		sting & Chrysle agton, W	r Drive		c.	Laboratory Test ResultsFIGUSkagit County Jail – Truck City Mt Vernon, Washington18			