September 29, 2005

Mr. Greg Caron Site Manager - Hydrogeologist Washington Department of Ecology 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Linebach • Funkhouser, Inc. environmental compliance & consulting

Re: Cleanup Action Report - PLAFTac Bay Zinc Company Facility Moxee, Washington Linebach Funkhouser Project Number 100-02

Dear Mr. Caron:

Linebach Funkhouser, Inc. (LFI), consultant for the Bay Zinc Company, Inc. (Bay Zinc), has prepared the enclosed report of soil and groundwater remediation activities conducted at Bay Zinc's Moxee, Washington facility. Remediation work at the site was conducted in accordance with an Agreed Order dated August 30, 2002, established between Bay Zinc and the Washington Department of Ecology (Ecology).

As part of implementing the remediation activities, Bay Zinc:

- Excavated and disposed of over 12,320 tons of affected soil over a 3-year period from 10 different areas of the site.
- Installed a groundwater pump-and-treat system that included an ion-exchange groundwater treatment unit. Approximately 2.5 million gallons of groundwater have been pumped since 2003.
- Established a quarterly groundwater monitoring program that is ongoing.
- Conducted further assessment to delineate the boundaries of affected shallow backfill beneath asphalt paved areas on the south and east sides of the New Warehouse.

Since October of 2002, Bay Zinc has invested in excess of \$1.2 million to diligently implement soil and groundwater remediation work at the site.

Mr. Greg Caron September 29, 2005 Page 2

LFI and Bay Zinc appreciate the input and assistance Ecology has provided during the course of this project. Please contact the undersigned at 502-895-5009 if you have any questions about the enclosed report.

Sincerely,

BAADLEY L. Cayle Bradley I. Coyle By MMB

Bradley L. Coyle Project Geologist

Roy v. fund

Roy V. Funkhouser, P.G. Principal Washington Certified Hydrogeologist No. 2090

Richard Camp, Bay Zinc Company cc: Lyle Beaudoin, Teck Cominco American Inc.

May 9, 2006

Mr. Greg Caron Washington Department of Ecology Hazardous Waste and Toxics Reduction Program Central Regional Office 15 West Yakima, Suite 200 Yakima, Washington 98902-3452

> Re: Response to Ecology Comments Cleanup Action Report Bay Zinc Company Facility Moxee, Washington Linebach Funkhouser Project Number 100-02

Dear Mr. Caron:

Linebach Funkhouser, Inc. (LFI), consultant for Bay Zinc Company, Inc. (Bay Zinc), has prepared this response to comments received from the Washington Department of Ecology (Ecology) pertaining to the September 29, 2005 Cleanup Action Report for the Bay Zinc facility in Moxee, Washington. Since the revisions required to address Ecology's comments are minor, as requested by Ecology, LFI has enclosed copies of the pages on which the changes were made rather than reproducing new copies of the entire document. Changes made to address Ecology comments are summarized as follows:

- Page 11, Section 3.8, Fourth Line. The wording "Prior to excavation" has been changed to "Following excavation."
- Table 10. Cleanup level exceedances have been highlighted in bold type.
- Appendix C, MW-1A Plot. The date-of-measurement axis along the top of the plot has been corrected.
- Page 20, Section 5.0. Second Line of Table. Wording has been changed to reflect that 9 grid blocks (not 10) did not meet target cleanup levels.

LFI understands that, with the submittal of the enclosed revised pages, the Cleanup Action Report will be considered finalized. As discussed in Section 6.0 of the Cleanup Action Report, certain limited areas of affected soil to be left in place at this time will be addressed through preparation and subsequent implementation of a Site Management Plan. Groundwater monitoring and remediation efforts will be ongoing. LFI understands that Ecology is currently Mr. Greg Caron May 9, 2006 Page 2

{_

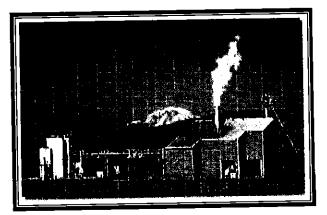
Ĺ

working with Bay Zinc to develop actions necessary for Bay Zinc to receive a Notice-of-Completion with respect to the 2002 Agreed Order, with ongoing groundwater remediation/monitoring work conducted under the auspices of Ecology's hazardous waste (RCRA) program, as it has since 1985.

LFI and Bay Zinc appreciate Ecology's review efforts and comments. Please contact the undersigned at 502-895-5009 if you have any questions or further comments.

Sincerely,

Bradley L. Coyle


Project Geologist

 \mathcal{A}

Roy V. Funkhouser, P.G. Principal Washington Certified Hydrogeologist No. 2090

cc: Richard Camp, Bay Zinc Co. Lyle Beaudoin, Teck Cominco American Inc.

CLEANUP ACTION REPORT

Bay Zinc Facility Moxee, Washington

Prepared by:

Linebach • Funkhouser, Inc. environmental compliance & consulting

3.0 DESCRIPTION OF SOIL REMEDIATION ACTIVITIES AND RESULTS 4 3.1 SWMU-1: Container Storage Area C - Rail Spur Area 5 3.2 AOC-1: Railroad Gate Area.....7 3.6 SWMU-6: Mud Wash Area 10 3.7 AOC-7/AOC-8: Area Along the West Fence Line and the West Side of the Warehouse......10 3.8 AOC-10: Areas East and South of the "New Building" 11 4.1 System Start-Up and Performance Evaluation15 4.2 Quarterly Monitoring 17 5.0 SUMMARY AND CONCLUSIONS 19

TABLE OF CONTENTS

LIST OF TABLES

Table 1 - Confirmation Soil Sampling Results - SWMU-1: Container Storage Area	C and
Railspur Line	

- Table 2 Confirmation Soil Sampling Results AOC-1: Railroad Gate Area
- Table 3 Confirmation Soil Sampling Results AOC-2: East Fence Line
- Table 4 Confirmation Soil Sampling Results AOC-3: Bone Yard
- Table 5 Confirmation Soil Sampling Results AOC-5: Back Lot Area
- Table 6 Confirmation Soil Sampling Results SWMU-6: Mud Wash Area
- Table 7 Confirmation Soil Sampling Results AOC-7/AOC-8 and West Side of Warehouse
- Table 8 Confirmation Soil Sampling Results AOC-10/NB-1: Areas East and South of the 'New Building"
- Table 9 Confirmation Soil Sampling Results Southern Property Line
- Table 10 Soil Sampling Results Warehouse Entryway AOC
- Table 11 Summary of Groundwater Analytical Results: 2003 June 2005

LIST OF FIGURES

Figure 1 – Site Location Map Figure 2 – Site Plan Showing Status of Soil Remediation

LIST OF APPENDICES

Appendix A – Documentation/Receipts of Soil Disposal

Appendix A – Documentation/Receipts of Bon Disposal Appendix B – Laboratory Reports Appendix C – Time-Trend Plots of Groundwater Levels in Monitoring Wells Appendix D – Time-Trend Plots of Key Constituents in Monitoring Wells

ć

(

(

(

1.0 BACKGROUND

Bay Zinc Company, Inc. (Bay Zinc) operates a micronutrient fertilizer manufacturing facility in Moxee, Washington, approximately 6 miles east of Yakima (Figure 1). Environmental assessment and remediation activities have been conducted at the site at various time periods since the 1980s, primarily in association with historic releases of zinc sulfate solution. Groundwater monitoring has been ongoing at the site since 1985 as part of Bay Zinc's Resource Recovery and Conservation Action (RCRA) Joint Permit for the Storage of Hazardous Waste. A *Preliminary Remedial Action Plan* (PRAP) was submitted to Ecology in 1988 to address levels of sulfate, manganese, and zinc in groundwater.

In 1989, a *Remedial Action Plan Performance Evaluation Report* was submitted to Ecology. Two groundwater extraction wells were installed. In 1992, a waste pile containing flue dust (K061) and other feed stock production raw material used for fertilizer manufacturing was removed. A *Waste Pile Closure Report*, dated February 27, 1993 was submitted to Ecology. In 1999, a *Stormwater Runoff Control Plan*, prepared to address areas of observed potential surface soil impact caused by stormwater runoff from paved areas of the site, was submitted to Ecology. In 2000, USEPA Region 10 conducted a site-wide RCRA Facility Assessment, identifying 8 solid waste management units (SWMUs) and 10 areas of concern (AOCs).

In February, March and April of 2002, extensive environmental assessment work was conducted at the Bay Zinc property in association with a transaction involving certain assets of the facility. The work was conducted to evaluate soil and groundwater potentially affected by historic releases at the site. Assessment results were included in a June 13, 2002 *Remedial Investigation Report/Voluntary Cleanup Plan* (RI/VCP), prepared by Linebach Funkhouser, Inc. (LFI) and submitted to the Washington Department of Ecology (Ecology). Certain metal and inorganic constituents were detected in soil and groundwater at the site at concentrations exceeding clean closure (non-restricted use) cleanup goals established by Ecology.

On August 30, 2002, an Agreed Order was established between Bay Zinc and the Washington Department of Ecology (Ecology) to address the aforementioned detections of constituents represent the transformation of trans

ĺ

(

{

identified in the RI/VCP. Bay Zinc initiated the request for establishing the Agreed Order, which was a component of the aforementioned asset purchase. The Agreed Order included a *Cleanup Action Plan* prepared by Ecology.

On October 18, 2002, a *Compliance Monitoring Plan* (CMP) was completed by LFI and submitted to Ecology. The CMP was subsequently approved by Ecology and incorporated by reference into the *Cleanup Action Plan*. The CMP called for the following activities:

- Excavation and off-site disposal of soil from the previously identified solid waste management units (SWMUs) and areas of concern (AOCs).
- Continued use of an existing groundwater pumping well (MW-8) to control groundwater migration and remove affected water from the uppermost groundwater producing zone.
- Installation of an ion-exchange groundwater treatment unit.
- Quarterly groundwater monitoring with the possibility to revert to semi-annual monitoring after the first full calendar year of quarterly monitoring, based on the results and receipt of approval from Ecology.

Excavation and off-site disposal of soil was conducted over a period between October of 2002 through August of 2004. Quarterly groundwater monitoring was instituted in 2003. The ion-exchange unit was installed in February of 2003, and after adjustments became operational at the end of the first quarter of 2003.

Based on the Remedial Investigation results, the following areas of the site were designated for soil cleanup (see Figure 2):

- SWMU-1 (Rail Spur Area Container Storage Area C)
- AOC-1 (Railroad Gate Area)
- AOC-2 (East Fence Line)
- AOC-3 (Boneyard)
- AOC-5 (Back Lot Fill and Adjoining Areas)
- SWMU-6 (Mud Wash Area)

(

l

- AOC-7/AOC-8 (Areas Along the Western Fence Line and the Warehouse)
- AOC-10 (Loading/Unloading Areas Around the "New Building" Housing the Zinc Sulfate Process)
- South Property Line along the Railroad Tracks

2.0 OBJECTIVE

The overall objective for remediation at the site was to eliminate or manage environmental risk to human health and the environment. The key constituents driving the remediation efforts and the risk-based goal for each were as follows:

SOIL

Constituents

Constituent

≻	Cadmium	36 milligrams per kilogram (mg/kg)
۶	Lead	220 mg/kg
۶	Zinc	24,000* mg/kg

Remediation Goal

Remediation Goal

* If the zinc standard of 24,000 mg/kg is exceeded, cleanup is to be conducted to meet a standard of 570 mg/kg.

GROUNDWATER

۶	Chloride	250 mg/l*
۶	Sulfate	250 mg/l*
	Cadmium	0.005 mg/l
۶	Manganese	0.05 mg/l*
≻	Zinc	5.0 mg/l*

* Represents USEPA Secondary Maximum Contaminant Levels (MCLs) for drinking water supplies. Secondary MCLs are based on aesthetic (not health-based) criteria. USEPA recommends secondary standards to water systems, but does not require systems to comply. {

According to Mr. Byron Adams with the City of Moxee (Public Utilities Section), elevated levels of sulfate in shallow groundwater are representative of background conditions in and around Moxee due to the highly agricultural nature of the area and the extensive application of fertilizers containing sulfate.

3.0 DESCRIPTION OF SOIL REMEDIATION ACTIVITIES AND RESULTS

As stated previously, excavation and off-site disposal of soil was conducted over a period between October of 2002 through August of 2004. Soil excavation work was completed approximately one year ahead of the schedule outlined in the Corrective Action Plan. LFI conducted sampling activities, provided oversight during soil removal, and completed confirmation sampling in accordance with the CMP. Extensive sampling to delineate the boundaries of targeted areas designated for soil removal was conducted in 2002. Results were provided in LFI's *Remedial Investigation Report/Voluntary Cleanup Plan*, dated June 13, 2002, previously submitted to Ecology.

Soil excavation, loading, and backfill work was conducted by Northwest Environmental Services, Inc., Riddle, Oregon. Laboratory analytical work was conducted by Alliance Analytical Laboratories (Yakima, WA) and Columbia Inspection, Inc. (Portland, OR). LFI personnel were on-site throughout the episodes of soil remediation to oversee work conducted in each of the excavated areas.

Field measurements were made and confirmation samples were collected to assure that targeted depths were met or exceeded in each area. Soils were excavated with a backhoe or similar equipment and stockpiled on plastic or asphalt pavement at the facility, or loaded directly into dump trucks for transportation off-site. The extent of soil removal was based on confirmation sampling results and the guidelines established within the Agreed Order. Stockpiled soil was characterized, profiled accordingly, and then disposed of at Waste Management, Inc.'s waste disposal facility in Arlington, Oregon. Soil remediation included the excavation and disposal of over 12,520 tons of soil, including 797 tons that were profiled and disposal are provided in Appendix A.

Ć

(

Once verification that cleanup objectives had been met within a particular area, the excavated area was backfilled with soil from a borrow area immediately east of the facility properly line. The borrow area was an undeveloped open field owned by Mr. Richard Camp. Prior to use, the borrow area was sampled for the key constituents of concern to confirm that clean fill was being backfilled into areas that had already been remediated. Soil samples from the borrow area were collected at depths of approximately 0 to 1 foot at six equidistant locations along the length of the area. Samples were analyzed for cadmium, lead and zinc. The laboratory report is in Appendix B. Results were as follows.

Borrow Soil Sampling Location	Cadmium	Lead	Zinc
Site 1	0.31	17.2	119
Site 2	0.20	12.2	88.6
Site 3	0.30	21.9	111
Site 4	0.17	8.4	58.6
Site 5	0.22	12.4	93.6
Site 6	0.44	31.6	200

Samples collected on October 30, 2002. All concentrations in milligrams per kilogram.

3.1 SMWU-1: Container Storage Area C - Rail Spur Area

Work in SWMU-1 was conducted over the dates of November 4, 2002 through December 18, 2002. Remediation work included the following activities:

Container Storage Area C

- Approximately 170 feet of railroad track was removed from the rail car unloading area known as Container Storage Area C. The area is a triangular tract immediately adjacent to the east side of the East Storage Building (Figure 2). The removed track extended from the southern boundary of the East Storage Building northward along the entire extent of the East Storage Building, terminating at the access road crossing approximately 5 feet north of the northern boundary of the East Storage Building.
- Soil from existing grade to a depth of 2 feet was initially excavated from the entire portion of container storage Area C, including the area beneath the removed railroad track. An initial round of confirmation soil samples were collected at

<

this 2-foot depth. Based on the need to provide for an adequate geotechnical base to support reconstruction of the overlying railspur, soil in the entire area was then excavated to a depth of approximately 4 feet. An additional 2-foot depth of soil was removed from grid blocks SWMU-1-2 and SWMU-1-3 (total depth of 6 feet), based on interim sampling results that indicated that the lead cleanup standard may not be met in these two grid blocks at a depth of 4 feet. A geotextile membrane was installed, and clean dense-grade aggregate was applied in compacted lifts to stabilize the excavated area and provide adequate support for future railcar storage in the area.

- The area originally designated as SWMU-1-1 in the CMP consisted of a limited extension of the rail spur that was north of the actual rail car unloading area, and included the rail crossing being used by trucks and equipment. This limited extension of the spur was covered at the surface by either pavement, wood rail ties, or railroad ballast. Sampling results from a boring drilled in this general area as part of previous assessment work conducted prior to preparation of the South. Following discussions with Ecology personnel in the field, it was agreed that sampling within this limited extension, as well as beneath an approximately 6-inch thick concrete paved segment of railspur northwest of the New Building, would not be necessary based on:
 - Results of previous sampling conducted as part of the remedial investigation
 - Small overall areal extent of the area
 - Proximity to nearby areas (AOC-3-1, AOC-5-21, AOC-5-22) that were already slated for cleanup action
- Confirmation sampling results for Container Storage Area C are provided in Table 1. Laboratory reports are in Appendix B.

Rail Spur Area

ŧ

• Soil between the ties of the railroad track spur extending from the aforementioned triangular container storage area southward to the southern gate of the plant was excavated to a depth approximately 12 to 18 inches below the base of the railroad ties (total depth of 1.5 to 2 feet below surface grade). The excavation depth was approximately 6 inches to 12 inches deeper than the target depth included in the Agreed Order. Confirmation soil samples were collected in general accordance with procedures outlined in the CMP. Sampling results are included in Table 1. Laboratory reports are in Appendix B.

Ć

Agreed Order remediation compliance soil removal depths were reached in SWMU-1. The Agreed Order called for soil to be removed to depths of 2 feet in Container Storage Area C, and 1 foot along the exposed railspur line. These removal depths were achieved (and actually exceeded) in both areas of SWMU-1. From a soil chemistry standpoint:

- Soil remediation goals within the Container Storage Area have been met.
- Soil remediation goals along four of the seven 40-foot sections of the railspur line were achieved; however, despite removal of soil approximately 2 feet deep around the ties (much of it by hand), lead in subsurface soil from 3 sections of the railspur was still at a concentration in excess of the target cleanup standard. The area between the ties has been backfilled with clean gravel and does not represent a significant threat to human health and the environment.

3.2 AOC-1: Railroad Gate Area

Excavation work in AOC-1 was initially conducted in December of 2002. In accordance with the Agreed Order, surficial soil in AOC-1 (Figure 2) was initially excavated to a depth of approximately 0.5 feet. Confirmation sampling results from the 0.5 foot depth showed levels of zinc and lead in excess of cleanup standards. Consequently, excavation in the area was extended to a depth of 1.5 feet. Despite the removal of soil to a depth one foot greater than that required by the Agreed Order, cleanup standards for zinc in soil from the northwest portion of the Railroad Gate Area (AOC-1-1 sampling area) and lead in both sections of AOC-1 (NW and SE) were still detected in excess of cleanup standards.

On July 16, 2004, excavation of soil in the area was extended one-foot deeper (total excavation depth of 2-5 feet). Cleanup goals were achieved. Confirmation sample results for AOC-1 are provided in Table 2. Laboratory reports are in Appendix B.

3.3 AOC-2: East Fence Line

(

Excavation work in AOC-2 was conducted in November of 2002. The scope of required soil remediation work in AOC-2 was completed and cleanup standards in the area were met. Soil in the area was excavated to a depth of approximately 0.5 feet, in accordance with the Agreed Order. Confirmation sampling results for AOC-2 are provided in Table 3. Laboratory reports are in Appendix A.

3.4 AOC-3: Bone Yard

Initial excavation work in AOC-3 (the Bone Yard) was conducted in August of 2003, with follow-up excavation conducted in June and July of 2004. The Bone Yard contains 19 grid blocks (Figure 2). The Agreed Order called for the Bone Yard to be excavated to a depth of 1 foot. Depths of excavation in the Bone Yard required by the Agreed Order were met or exceeded in all 19 of the grid blocks. Excavation depths generally ranged from 1 foot to 2 foot; however, the area immediately surrounding the concrete pad for monitoring wells MW-1A and MW-1B was excavated on June 30, 2004 to a depth of approximately 8 feet, which was the top of the zone of saturation (i.e. water table) on that date. The purpose of the deep soil removal around the wells was to remove potentially elevated levels of zinc in soil around monitoring wells MW-1A/1B. Elevated levels of zinc in groundwater have consistently been detected at this location; consequently, an attempt was made to possibly improve long-term groundwater conditions in the area by removing a potential source of the detected zinc (i.e., soil around the wells). Zinc concentrations in soil samples collected from the 8-foot depth ranged from 12.9 mg/kg to 1,270 mg/kg.

Cleanup standards with respect to cadmium and lead were met in all 19 of the grid blocks; however, Ecology's default non-restricted use, ecological risk-based cleanup level for zinc was still exceeded in 9 of the blocks. LFI believes it is important to note that no levels of zinc were detected in post-excavation soil sampling at concentrations exceeding USEPA or Ecology riskbased screening levels for human receptors. Exceedences were only those for Ecology's conservative default levels for ecological receptors. This limited area of the site does not

(

represent a significant habitat for ecological receptors. There are no endangered plant or animal species on the property. A State Environmental Policy Act (SEPA) Checklist was completed for the site, and was included in LFI's *Remedial Investigation Report/Voluntary Cleanup* Plan, dated June 13, 2002. The SEPA documentation showed that the site does not present a risk to significant wildlife populations.

With respect to the 9 grid blocks in which zinc is present in deeper soil above the default ecological receptor based non-restricted use cleanup goal, Bay Zinc proposes to manage this limited area in place through implementation of a deed restriction. Further discussion of Bay Zinc's proposed approach for this area is provided in Section 6.0 of this report. A map showing the Bone Yard area and the proposed area to be managed in place is provided in Figure 2. Confirmation sampling results including the depth of excavation within each grid block are provided in Table 4. Laboratory reports are in Appendix B.

3.5 AOC-5: Back Lot Area

Excavation work in AOC-5 was conducted in April, May, and July of 2003, and August of 2004. In accordance with the Agreed Order, soil in quadrants not containing historic stockpiled backfill and shown by previous assessment work to contain a key constituent in excess of its respective cleanup standard was initially excavated to a depth of 6 inches. A portion of the backlot area contained historic backfill and construction debris, mounded approximately 2 feet (on average) above surface grade. Backfilled material mounded above grade as well as 2 feet below grade (total thickness of approximately 4 feet of material) was excavated and removed. Concrete chunks and non-soil construction debris were removed and segregated from the fill material area.

Non-restricted use cleanup standards were achieved in all 24 of the grid blocks constituting AOC-5. Confirmation sampling results for the Back Lot Area are provided in Table 5. Laboratory reports are in Appendix B.

September 29, 2005

3.6 SWMU-6: Mud Wash Area

(

Ç

Excavation work in the Mud Wash Area (SWMU-6) was initially conducted in July of 2004. A concrete saw was used to remove pavement over the area, and then the SMWU-6 area shown in Figure 2 was excavated to a depth of approximately two feet below the base of the pavement in accordance with the Agreed Order. Confirmation soil samples were collected. Based on the results of the initial confirmation soil sampling, in August of 2004, additional soil from the western portion of the excavation was removed to a total depth of approximately 3 feet below surface grade. Subsequent confirmatory soil sampling results showed that the cleanup standards in the area had been met as a result of the additional soil removal. Confirmation sampling results for SWMU-6 are provided in Table 6. Laboratory reports are in Appendix B. The excavation was filled with non-contaminated dense-grade aggregate, and compacted to surface grade.

3.7 AOC-7/AOC-8: Areas Along the West Fence Line and the West Side of the Warehouse

In November of 2002, areas AOC-7 and AOC-8 (Figure 2) were excavated to a depth of approximately 0.5 foot, in accordance with the Agreed Order. Soil cleanup standards were met in both areas. Confirmatory sampling results are provided in Table 7. Laboratory reports are in Appendix B.

In December of 2002, the relatively narrow strip of property abutting the west side of the Warehouse was initially excavated to a depth of 0.5 feet in accordance with the Agreed Order. Cleanup standards for lead were exceeded in each of the grid blocks at this depth. In July of 2003, excavation of this area was extended significantly below the 0.5 foot initial target depth listed in the Agreed Order, to a depth of approximately 3 feet. Excavation and confirmation sampling down to the 3-foot depth was conducted at intervals of approximately 0.5 feet. At the 3-foot depth, confirmatory sampling showed that soil cleanup standards had been met for cadmium and lead in all 9 of the grid blocks. However, with respect to zinc, at the 3-foot depth, cleanup standards had only been met in 6 of the 9 sampling grids (Figure 2). Even though zinc was detected at concentrations an order of magnitude below its respective human health risk level, it was still detected at a concentration in excess of its default ecologic cleanup standard

(see Table 7). Excavation was terminated at the 3-foot depth due to concerns that the stability of the foundation beneath the west wall of the warehouse could potentially be compromised by further digging. A geosnythetic liner was laid down, and the area was backfilled to surface grade.

Zinc concentrations in soil in this area are below risk-based standards for residential property, and the remaining default ecological exceedences are at a depth of 3 feet, below a geosynthetic liner. Bay Zinc does not believe that the remaining zinc levels in this limited area constitute a threat to human health and the environment. However, if deemed necessary by Ecology, Bay Zinc will manage the remaining zinc-in-soil levels in place through the implementation of a deed restriction.

Confirmatory sampling results for the narrow strip of property adjacent to the west side of the Warehouse are included in Table 7. Laboratory reports are in Appendix B.

3.8 AOC-10: Areas East and South of the "New Building"

Two areas of limited extent east and south of the "New Building" were excavated on July 16-17, 2004. The two areas, shown as "NB-1" and "AOC-10" in Figure 2, were both excavated to depths of approximately 4 feet below the base of the overlying asphalt pavement. A pavement saw was used to help cut and remove the pavement prior to excavation. Following excavation, confirmatory soil sampling results showed that the non-restricted property use cleanup standards had been met. Confirmation soil sampling results are provided in Table 8. Laboratory reports are in Appendix B.

3.9 South Property Line

In November of 2002, the South Property Line area was excavated to a depth of 0.5 feet, in accordance with the Agreed Order. Confirmation sampling results from the 0.5 foot depth showed lead in excess of its respective cleanup standard in two grid blocks, SP-1-3 and SP-1-5. Consequently, grid blocks SP-1-3 and SP-1-5 were excavated to a total depth of approximately 1

(

(

foot, and the two grid blocks were resampled. No cleanup standard exceedances were detected at the 1 foot excavation depth. Soil remediation standards along the South Property Line have been met. Confirmatory sampling results are provided in Table 9. Laboratory reports are in Appendix B.

3.10 Warehouse Entryway Area

The Warehouse Entryway Area, southeast of the Warehouse (Figure 2), was designated as a general Area of Concern in the *Cleanup Action Plan*, for the site. The basis for designating the Warehouse Entryway as an AOC was the former presence of a conveyor system in this immediate area, which was observable in historic photographs. Based on previous sampling results and LFI's understanding of historic operations, the likely area of affected soil in the Warehouse Entryway AOC was believed to be limited to the approximate area that was subsequently excavated (Figure 2), with a projected possible depth of impact to be approximately 6 inches. In accordance with the *Cleanup Action* Plan, soil from this area was removed in July of 2004. As a conservative measure, the depth of the actual area of soil removed in July of 2004 was increased from 6 inches to 2 feet.

Confirmation sampling of the excavated area conducted subsequent to the soil removal work showed that levels of lead, zinc, and cadmium were still present in soil at concentrations in excess of the walk-away (i.e. clean closure) cleanup standards established in the *Cleanup Action Plan*. Warehouse Entryway AOC excavation sampling results were as follows:

Constituent mg/kg	West Half Composite 0 – 2 ft. deep	East Half Composite 0 – 2 ft. deep	Cleanup Goal
Cadmium	140	110	36
Lead	7,490	4,170	220
Zinc	22,000	23,000	24,000*

Notes: mg/kg = milligrams per kilogram

* If the zinc standard of 24,000 mg/kg is exceeded, cleanup is to be conducted to meet an ecological risk-based standard of 570 mg/kg.

(

(

3.10.1 Additional Assessment Procedures

Based on the results of the Warehouse Entryway AOC excavation confirmation sampling, additional assessment work was conducted around the Warehouse Entryway AOC. The purpose of the work was to:

- Evaluate the overall extent of affected soil around the AOC.
- Provide Bay Zinc with information to evaluate the viability and cost/benefit effectiveness of implementing a site management approach for the AOC versus further excavation/off-site disposal.

Soil sampling to further assess the area of impact around the Warehouse Entryway AOC was conducted on August 12, 2004, January 18, 2005, and April 20, 2005. Several direct-push (Geoprobe) borings were advanced at "step-out" distances to the north, south, east, and west of the AOC (Figure 2). Soil samples were collected at discrete depth intervals and then sent to Columbia Inspection, Inc.'s laboratory in Portland, Oregon. Samples were analyzed for the three key parameters driving soil remediation at the site (cadmium, lead, and zinc).

Sample collection procedures were consistent with those established and approved by Ecology during previous phases of work at the site, and those referenced in the *Compliance Monitoring Plan*. Depths of sample collection ranged from 1 to 6 feet below grade and are provided in Table 10. Samples from discrete depth intervals were analyzed in an iterative fashion. Judgments regarding the selection of key parameters and certain subsequent depth intervals to be analyzed at each boring location were based on previous sampling results.

3.10.2 Results and Discussion

Assessment sampling results show cleanup goal exceedences still remaining to the north, south, east, and west of the Warehouse Entryway AOC excavated area. Sampling results for cadmium, lead and zinc are provided in Table 10. Laboratory reports are in Appendix B. The overall depth to which each of the three key metals is present in soil at a concentration in excess of its respective walk-away cleanup standard is as follows:

 \langle

J

- Cadmium: Approximately 3 feet
- Lead: Approximately 3 feet
- Zinc: Approximately 5 feet

From a horizontal extent perspective, based on the sampling results to date (including data points from the initial site investigation work conducted in 2002), the interpreted area of soil containing concentrations of at least one of the key metals (lead, cadmium, or zinc) at a concentration in excess of Ecology's walk-away standards includes three contiguous areas:

- Most of the paved corridor between the Main Process Building and the Warehouse
- The narrow paved corridor between the West Storage Building and the Warehouse
- The paved area immediately north of the West Storage Building and the East Storage Building. A stormwater runoff collection system is in place beneath the asphalt pavement in a portion of this site.

These three contiguous areas are shown in Figure 2.

With the exception of the aforementioned area of the Warehouse Entryway AOC that was recently excavated, the entire contiguous area shown in the attached figure is covered by asphalt or concrete pavement; consequently, there is no current complete exposure pathway, and the area presents no significant threat to human health or the environment as long as the area remains paved.

A site management option that would include maintenance of the concrete/asphalt paved cover over the area in combination with an institutional control such as a deed restriction is a viable and cost-effective option for the Warehouse Entryway AOC based on:

- An area of impact around the Warehouse Entryway AOC that is substantially larger and deeper than that originally projected in the Cleanup Action Plan.
- The presence of buildings and structures in the area that will inhibit the ease of soil excavation.

(

• The total coverage of the area by pavement, which eliminates complete exposure pathways.

4.0 GROUNDWATER

In accordance with the Agreed Order, existing groundwater pumping well MW-8 has been used to control groundwater migration and remove affected water from the uppermost groundwater producing zone. Over the months of January and February of 2003, a groundwater pump-and-treat system including an ion-exchange groundwater treatment unit was installed at the site. A piping system was constructed to route groundwater recovered from well MW-8 through the ion-exchange treatment unit, and then on to the City of Moxee sewer system.

4.1 System Start-Up and Performance Evaluation

The system was initially started-up on February 13, 2003. A pumping rate of approximately 4 gallons per minute (gpm) was established. Adjustments to the ion-exchange unit were made by the vendor (Remco Engineering, Ventura, CA) between February 13th and March 15th, 2003, that resulted in temporary disruptions of pumping. Final adjustments were made and the system became essentially continuously operational at the end of the first quarter of 2003.

The 4 gpm pumping rate was maintained during a 90-day system performance evaluation period (April-June, 2003). During this time, depth-to-water measurements in monitoring wells within the uppermost groundwater producing zone on-site were measured on a monthly basis. Monitoring wells were sampled on January 31, 2003, prior to the start-up of the system, and have been sampled on a quarterly basis thereafter. Based on the depth-to-water level measurements and the groundwater chemistry data, the 4 gpm pumping rate appears to be effective at controlling off-site groundwater migration and reducing overall levels of key constituents in the groundwater. The 4 gpm rate was generally maintained throughout the majority of 2003.

The pump within the recovery well was replaced in 2003 due to age and ultimate failure. Based on past monitoring records and observation, the recovery well (MW-8) had been noted to shut-

(

down during periods of insufficient groundwater recharge. To attempt to prevent further well pump failure and/or malfunction, a system was installed within the pump house, in series with the well pump starters and controllers, to disable the recovery well pump when water is not present.

Through the first 6 months of 2004, the 4 gpm pumping rate became increasingly difficult to continuously maintain. Prior to the third quarter 2004 monitoring event, the recovery well (MW-8) was redeveloped by a certified Washington well driller (Picatti Drilling, Inc.) in an attempt to remove formation silt and sediment from around the well screen, and enhance the rate of groundwater recovery. While the redevelopment efforts were successful at temporarily enhancing the production rate of recovery well MW-8, subsequent production volumes exhibited a slowly declining trend. Recovery well MW-9, which like MW-8, had been installed as part of historic groundwater remediation activities at the site separate from the Agreed Order, was determined not to be salvageable by redevelopment.

In order to maintain, and even further enhance the rate of groundwater recovery at the site, Bay Zinc has scheduled the drilling of two new groundwater recovery wells during the third quarter of 2005. One of the wells will be drilled adjacent to existing recovery well MW-8, and will serve as a replacement for MW-8. A second well will be installed on the west side of the property, in the general vicinity of the cluster of monitoring wells west of the Warehouse.

Ion Exchange Unit

The ion exchange unit appears to be having little overall effect in initial pretreatment of recovered groundwater prior to final treatment by the City of Moxee's publicly owned treatment works (POTW). The ion exchange unit was emplaced essentially as a back-up system to pre-treat the pumping well influent in the case that constituents in the influent were at excessively high levels over an extended period of time (in excess of 6 months), potentially at concentrations that the City of Moxee POTW would not accept. City of Moxee personnel obtain meter readings on the system on a monthly basis, and sampling ports were installed into the system so that City of Moxee personnel can also obtain influent/effluent samples at any time, should levels at the

POTW plant be in excess of acceptable concentrations. According to Mr. Byron Adams, Moxee POTW Manager, recovered groundwater from the Bay Zinc site has not resulted in any treatment problems for the Moxee POTW, and the City has no ongoing significant concerns about receiving pumped water containing the levels of constituents in Bay Zinc's groundwater. The ion exchange unit continues to operate and is monitored on a daily basis by Bay Zinc personnel.

Treatment System Backwash

(

Due to the fact that levels of constituents in the influent have not turned out to be as elevated as those conservatively planned for, and the influent concentrations, prior to any pretreatment at all, are already below levels acceptable to the City of Moxee POTW, system operational parameters such as backwash frequency are not being actively tracked. Pumped groundwater continues to cycle through the treatment system prior to discharge, and influent/effluent parameters continue to be monitored. In the event of a sustained increase in levels of key discharge parameters, ion exchange media will be replaced and monitoring and recording of operational parameters such as system backwash will be re-instated.

4.2 Quarterly Monitoring

Quarterly groundwater monitoring has been conducted since January of 2003, and is ongoing. Two and one-half years of the projected 3 years of groundwater monitoring/remediation efforts outlined in the Voluntary Cleanup Plan, on which components of the Agreed Order were based, are now complete. A report of groundwater corrective action progress through December 31, 2004 was previously submitted to Ecology, and contains laboratory analytical reports and numerous time-trend plots of water levels and key constituents of concern. Another similar report incorporating results of quarterly sampling conducted in 2005, will be submitted to Ecology in the first quarter of 2006. Overall, groundwater remediation, monitoring and reporting at the site has been ongoing since the 1980s as part of Bay Zinc's compliance with a separate regulatory program being administered by Ecology (i.e. Bay Zinc's permit under the Resource Conservation and Recovery Act). Generally, the concentration of key constituents in most of the monitoring wells has decreased from the pre-remediation baseline sampling conducted on

(

January 31, 2003 (see Table 11). With respect to pumping and groundwater remediation activities conducted since 2003, results are summarized as follows:

- Approximately 2.5 million gallons of groundwater has been pumped
- Estimates of the amount of constituents removed since 2003, based on the following average influent concentrations are as follows:

	Chloride:	Average influent concentration: 150 mg/l Estimated pounds removed: 3,008
>	Sulfate:	Average influent concentration: 614 mg/l Estimated pounds removed: 12,308
Þ	Manganese:	Average influent concentration: 3.8 mg/l Estimated pounds removed: 76
٨	Cadmium:	Average influent concentration: 0.0098 Estimated pounds removed: 0.2
۶	Zinc:	Average influent concentration: 6.75 mg/l Estimated pounds removed: 135

Groundwater levels in the area are known to historically fluctuate, with decreasing trends routinely noted during irrigation periods that extend from late spring through the summer. Time-trend plots of monthly static water level measurements recorded in Bay Zinc monitoring wells between January of 2002 and December of 2004 are provided in Appendix C. The time-trend plots show a more precipitous drop in water levels in 2003 following implementation of the 4 gpm pumping system. The plots also show a post-irrigation groundwater recovery level less than that of the previous (pre-pumping) year.

Monitoring results indicate that the groundwater recovery system is having a positive effect at controlling off-site groundwater migration and reducing overall levels of key constituents in groundwater. LFI notes that there seems to be a direct correlation between groundwater analytical data and water levels, in that concentrations of key constituents increase when water levels are shallower. Laboratory results of groundwater monitoring are summarized in Table 11. Groundwater chemistry time-trend plots encompassing data for the 2003 and 2004 years of

Ę.

٢,

operation are in Appendix D. Copies of laboratory analytical reports were included in the *Summary of Groundwater Corrective Action Progress – 2004*, dated April 19, 2005, previously submitted to Ecology.

5.0 SUMMARY AND CONCLUSIONS

Bay Zinc has invested in excess of \$1.2 million since 2002 to address soil and groundwater Agreed Order issues at the site. Remediation work has included:

- Removal of over 12,320 tons of soil
- Removal and replacement of an approximately 160-foot section of the rail-spur line
- Pumping of approximately 2.5 million gallons of groundwater from the uppermost groundwater producing zone
- Collection and analyses of over 250 soil samples

The status of the project with respect to work tasks included in the Agreed Order is as follows.

Agreed Order Task	Area of Concern	Status
Submit Ground Water Remediation System Work Plan, Compliance Monitoring Plan (CMP), and Health and Safety Plan ("HSP")	Recovery Well MW-8	<i>Completed.</i> Items were all included in Compliance Monitoring Plan dated October 18, 2002.
Complete Installation of Ground Water Remediation System and Commence Operation of System		Completed. System installed and started-up in February-March, 2003.
Report of Performance Evaluation		<i>Completed.</i> Time-trend plots and graphs were provided to Ecology in 2003 and were included with a discussion of performance evaluation results in Section 3.2 of the Summary of Remediation Progress, dated May 24, 2004.
Initiate Soil Removal Activities-1 st Phase	SWMU-1 South Property Line	<i>Completed.</i> Target depths of excavation provided in the Agreed Order have been reached. Non-restricted property use. Target cleanup levels for lead were not attained in 3 sampling grids along the railspur line. Bay Zinc intends to implement a site management/deed restriction approach for these 3 grids.

Confirmation Sampling and Task Completion Report-1 st Phase		<i>Completed.</i> Summary tables provided to Ecology in 2003. Confirmation sampling and initial task completion report were included in Summary of Remediation Progress.
Initiate Soil Removal Activities-2 nd Phase	AOC-2, AOC-3, AOC-7, AOC-8	<i>Completed.</i> Target depths of excavation reached in all four AOCs. Non-restricted property use target cleanup levels were achieved in AOC-2, AOC-7 and AOC-8. Non-restricted property use standards for zinc were not attained in 9 of the 19 grid blocks excavated in AOC-3.
Confirmation Sampling and Task Completion Report-2 nd Phase		<i>Completed.</i> Summary tables provided to Ecology in 2003. Confirmation sampling and task completion report were incorporated in Section 3.0 of the Summary of Remediation Progress dated May 24, 2004.
Initiate Soil Removal Activities-3 rd Phase	Back Lot	Completed. Target cleanup levels were attained in all sampling grids/.
Submit Final Cleanup Action Report, including results of conformational sampling for soils and ground water remediation		Completed. Results incorporated herein in Sections 3.0 through 4.0. A Site Management Plan with attached Deed Restriction will be needed to address remaining limited areas of affected soil. Removal of affected groundwater and long-term monitoring will continue to be implemented.

Soil

ĥ

Ĺ

Targeted projected depths of excavation in each of the SWMUs and AOCs were achieved, with excavation efforts actually exceeding the targeted depths in several of the areas. With respect to soil, Ecology's walk-away (non-restricted use) cleanup levels were achieved in all but the following areas:

- Select Grid Blocks in the Bone Yard Area (AOC-3). Exceedences were for zinc only, based solely on Ecology's conservative default risk-based levels for ecological receptors (i.e. no human receptor risk).
- Grid Blocks along the Rail Spur Line. Exceedences were for lead only, and are now buried beneath clean gravel backfill and the steel rails for the rail spur.
- Beneath paved areas south and north of the Warehouse and Storage Buildings, and select small grid blocks west of the Warehouse.

The areas are shown in Figure 2.

September 29, 2005

Groundwater

L

۲

Groundwater remediation efforts at the site have been taking place since the late 1980s. More aggressive remediation efforts expended since 2003 have had a positive effect in lowering overall levels of monitored constituents; however, certain of the walk-way (non-restricted) use cleanup standards listed in the Agreed Order have not been reached. Based on review of the data, LFI has developed the following summary and conclusions regarding groundwater at the site:

- Monitoring data continues to confirm that affects to groundwater at the site are limited to the shallow, uppermost groundwater producing zone. No monitored constituents were detected in deep wells at concentrations in excess of primary or secondary drinking water standards.
- Manganese is essentially the only universal constituent now being detected sitewide at a concentration exceeding its respective conservative cleanup goal. Individual constituents at concentrations exceeding cleanup goals are predominantly limited to certain wells in limited areas of the site.
- The highest overall levels of constituents in groundwater at the site are in:
 - ▶ Well MW-1B (southeast corner of the Boneyard).
 - ▶ Wells MW-2, MW-3, and MW-9 (around the Warehouse)
- Exceedences of groundwater cleanup goals appear to be largely confined within the facility boundaries. The only exceedences detected in downgradient off-site well MW-10 in 2004 were for manganese (3rd and 4th quarters only) and sulfate. Manganese and sulfate are secondary drinking water constituents (listed for predominantly aesthetic purposes) that are known to naturally occur in excess of secondary drinking water standards in some areas of the shallow groundwater system around Moxee and Yakima. Manganese has occasionally been detected even at the upgradient well (MW-5) at a concentration exceeding its respective Secondary Drinking Water Standard.

6.0 PLANNED FUTURE ACTIONS

Bay Zinc has completed the significant work activities established in the Agreed Order, and would like to receive a Notice-of-Completion letter from Ecology with respect to that Agreed

(

(

Order. Despite Bay Zinc's substantial efforts, including a financial investment of over \$1.2 million since 2002 in an attempt to reach conservative residential use (clean closure) standards as described in this report, clean closure standards for soil in certain remaining areas of the site, and for groundwater in certain wells could not be attained. Bay Zinc believes that further intensive efforts to achieve the residential clean-closure standards at this point would provide diminishing returns, and would significantly jeopardize the financial standing of the company. Bay Zinc understands that the clean closure residential-use cleanup standards would have to be achieved to receive No-Further-Action status from Ecology, but believes the following actions will be sufficient to receive a Notice-of-Completion status with respect to the Agreed Order:

Soil – Areas of remaining affected soil beneath paved areas of the site will remain in place, with the pavement serving as a cover that effectively prohibits the occurrence of a complete exposure pathway. Bay Zinc will prepare and implement a Site Management Plan requiring that the pavement routinely be inspected and repaired whenever the paved cover has been compromised, significantly deteriorated, or removed. A Health and Safety Plan for excavation workers potentially cutting through the pavement in the future will also be included. A final component will be a deed restriction, limiting property use in the affected area to commercial/industrial purposes.

Zinc is the only constituent remaining at concentrations in excess of clean closure (No-Further-Action) standards in the Bone Yard (AOC-3). The remaining zinc levels are actually an order of magnitude less than risk-based screening levels USEPA and Ecology have established as acceptable for residential property, but are higher than the default ecological-based cleanup standard Ecology is imposing. This limited area is not a suitable habitat for ecological receptors. Nonetheless, a deed restriction will be emplaced to cover the affected grid blocks.

The lead in soil in the limited areas of the railspur line is at a depth greater than 1 foot, and is covered by railroad ballast, ties, and steel track. There is no complete exposure pathway, and the affected areas will be included in a deed restriction.

The above-mentioned Site Management Plan will be submitted to Ecology for review and approval, and will include the results of a land survey for those areas to be included within the aforementioned planned deed restricted areas. Boundaries of the attached grid blocks and property areas to be covered by the deed restriction will be established by a Washington registered/certified land surveyor.

Groundwater – The predominant parameters that Ecology has determined to be "constituents of concern" with respect to groundwater at the site are those that are classified as secondary drinking water constituents, which have been listed by USEPA predominantly for aesthetic purposes (staining of plumbing fixtures, noticeable taste or smell). The key constituents have been detected in groundwater at the site at concentrations in excess of these secondary standards since the mid-1980's when groundwater monitoring was initiated as part of Bay Zinc's RCRA permit compliance requirements. Existing groundwater recovery wells MW-8 and most of the on-site groundwater monitoring wells were installed as part of Bay Zinc's historic compliance with Ecology's RCRA program, which is still applicable to Bay Zinc. Consequently, there is redundancy with respect to regulatory programs that are driving the ongoing groundwater remediation efforts (i.e. the MTCA Agreed Order *and* Ecology's RCRA Program). Bay Zinc established the Agreed Order in 2002 with a 3-year time-frame in mind to try to reach cleanup goals and satisfy requirements of a transaction between Bay Zinc and another party involving certain assets of the facility (those transactional requirements have been met).

Bay Zinc plans to install two new recovery wells in the third quarter of 2005 in an attempt to further enhance the rate of groundwater cleanup and further reduce the potential for impacted groundwater to migrate beyond the property boundaries. However, based on review of data accumulated over the past 2 years, the conservative residential No-Further-Action cleanup goals will not likely be achieved within the next 6 to 12 months.

As stated on page 10 of Ecology August 2002 *Cleanup Action Plan* for the Bay Zinc site, which was incorporated by reference as the driver of the Agreed Order, the overall remedial action objectives for the site were:

ĺ

- Prevent exposure to contaminated soils and groundwater
- Minimize leaching of contaminants from soils into groundwater
- Prevent impacted groundwater from migrating beyond the property boundaries

Bay Zinc believes these three Agreed Order objectives have been met as a result of the extensive soil removal work and upgrades to the groundwater recovery system at the site since 2002.

Bay Zinc would like to receive a Notice of Completion with respect to the 2002 Agreed Order, with the understanding that a Site Management Plan will be necessary for soil, and groundwater remediation/monitoring efforts will be required to continue, as they have since 1985, under the auspices of Ecology's hazardous waste program (RCRA). Annual reporting of groundwater monitoring/remediation activities will continue. The next groundwater report to be issued will be the *Summary of Groundwater Corrective Action Progress-2005*, to be submitted in the first quarter of 2006.

Tables

ť

Linebach Funkhouser Project Number 100-02 Cleanup Action Report

SWMU-1: Container Storage Area C and Railspur Line **Confirmation Soil Sampling Results** Bay Zinc Facility - Moxee, WA Table 1

Container Storage Area C

							7
Dioxin	Sample Depth (ft)	6	1.65	0.03	4.82 (a)	0.05 (a)	5
, Di	Sample I	2	1	ł	**	I	
Zinc	Sample Depth (ft)	9	293	1,824	(a)	(a)	24,000
Zi	Sample I	2	5,039	3,991	2,184	149	24,
Lead	Sample Depth (ft)	9	11.5	17.8	– (a)	— (a)	220
Le	Sample I	2	-389-	370	81	14.5	2
Cadmium	Jepth (ft)	9	Ð	Q	- (a)	- (a)	36
Cadr	Sample Depth (ft)	2	0.64	Ð	1.61	Ð	fr.
Grid Block	Excavation	Depth (ft)	9	9	4	4	Cleanup Standard
Sampling	Location		SWMU-1-2	SWMU-1-3	SWMU-1-4	SWMU-1-5	Cleanup

ý

Railspur Line

	1	•	Dec]				
Zinc	8,857	15,031	8,135	7,513	6,288	10,352	1,555	14,262	24,000	
Lead	Ð	145	1286	2845	59.6	184	118	122002	220	
Cadmium	3.85	9.81	11.6	16.4	22.8	12.8	QN	13.3	36	
Grid Block Excavation Depth (ft)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	tandard	
Sampling Location	SWMU-1-6	SWMU-1-7	SWMU-1-8	6-1-DWMS	SWMU-1-10	SWMU-1-11*	SWMU-1-12	SWMU-1-14	Cleanup Standard	71-4

Note:

i

Samples collected on November 5-7, 2002.

All concentrations in milligrams per kilogram, except dioxin. Dioxin levels for SMWU-1-2 through SWMU-1-5 are parts per trillion total dioxin Toxic Equivalency Factor concentrations.

* SWMU-1-11 was blind duplicate sample of SWMU-1-10.

There was no sample labeled SWMU-1-13.

Samples along the Railspur Line were collected at depths approximately 1 to 1.5 feet below the base of the railroad ties. -- Not sampled.

Depths listed are in feet below surface grade. ND: Not detected at laboratory method detection limit.

(a) Sampling depth was 4 feet below surface grade.

September 29, 2005

(

1 40 al restie yes

Linebach Funkhouser Project Number 100-02 Cleanup Action Report

(

September 29, 2005

(

Confirmation Sampling Results Bay Zinc Facility – Moxee, WA AOC-1: Railroad Gate Area **Table 2**

Excavation Sample Depth (ft) Sample Depth (ft) Sample Sample Depth (ft) Sample	Sampling	Grid Block	<u> </u>	Cadmium			Lead			Zinc		
Depth (ft) 1 1.5 2.5 1 2.5 U 26.8 27.9 0.433 2.034 2.5 U ND ND 8.4 52.9 canup Standard 36 36 36	Location	Excavation	Samp	ole Depth	Œ	Samp	ole Depth	(£)	Sam	iple Depth	(f t)	
2.5 / 26.8 27.9 0.433 2.034 2.5 / ND ND 8.4 52.9 canup Standard 36 36 36		Depth (ft)	1	1.5	2.5	1	1.5	2.5	Ţ	1.5	2.5	
2.5 / ND ND 8.4 52.9 / 36	AOC-1-1	2.5 V	26.8	27.9	0.433	2:034	A.408	15	33,106	262,62	71.1	V O
36	A0C-1-2	2.5 /	Q	1	8.4	52.9	13622	11.4	4,846	6,976	9,300	
	Cle	unup Standard		36			220		5	4,000/570	*	

INOIC:

Samples collected on December 12, 2002, July 16, 2004, and August 25, 2004.

Й О

All concentrations in milligrams per kilogram (mg/kg).

* If the zinc standard of 24,000 mg/kg is exceeded, Ecology has stipulated that a cleanup standard of 570 mg/kg zinc be met for no-further-action status.

Sampling depths shown are feet below original surface grade. ND: Not detected at laboratory method detection limit.

(

September 29, żuuj

(

(

Confirmation Soil Sampling Results Bay Zinc Facility - Moxee, WA AOC-2: East Fence Line Table 3

Sampling	Grid Block	Cadmium	Lead	Zinc
Location	Excavation Depth (ft)			
A0C-2-1	0.5	GN	115	3,789
A0C-2-2	0.5	Ð	14.0	6,572
AOC-2-3	0.5	QN	31.3	5,083
A0C-2-4	0.5	QN	14.2	4,440
AOC-2-5	0.5	6.47	33.5	4,430
AOC-2-6	0.5	Q	31.8	1,177
AOC-2-7	0.5	QN	24.4	181
AOC-2-8	0.5	QN	QN	210
AOC-2-9	0.5	CIN	QN	132
Cleanup	Cleanup Standard	36	220	24,000
Note:				

Samples collected on November 14, 2002.

Samples collected at excavation depth of 0.5 feet below surface grade. All concentrations in milligrams per kilogram. ND: Not detected at laboratory method detection limit.

Å

September 29, 2005

(

(

Linebach Funkhouser Project Number 100-02 Cleanup Action Report

(

- yeed Restrictions ? = VV yes

red and the 200

Confirmation Soil Sampling Results Bay Zinc Facility – Moxee, WA AOC-3: Bone Yard Table 4

. - 1

									7				ş	ş	7		7	7		_	0X	7		_
Zinc			4.5	ł	1	-	1	1	ł	ł	ų C	1	I.	-	ł	ł	ł	1	ł	ł	8000	ł		
			4	ł	1	1		-	1	1	ł	1	1	830		ł	ł	-	1	1	773	243	*0	
			3.5	1	ł	1	1	1			1	ł	1	884	188		108	88.5	1	119	1580	1140		
	Sample Depth (ft)		Ş	1	}	4	ł	1	ł	1	ł	}	1500	1	ł	-	1	ł	1	1	1	1		
		-	2.5		ł	1	1		1		1	1	7670	1240			3270	ł		2400 1	1	1	24,000/570*	
			2		1	ł	1	ł	123	ł	1	1	22100	20900	1	ł	7350	1	1	6760	L	ł	2	
			1.5			1	1	ł	21800	ł		1	-144000-	130000 V	7650	1	-1842002	17900		246.0027	6710	4080		
			1	2320	15400	607	606	334	<u>84600</u>	14000	740	1050	2000094	-424400-	24600-	5440	1.67.000	~10002LT	7450	-7000049K/	<u>854002</u>	20005		
Lead	Sample Depth (ft)	25	2.5	1	1	1		1	1	ł	1	1	20.6 -	12.5	ł	1	1	1	ł	ł	3	ł		
			2	1	ŀ	1	1	1	1	1	1	1	10204	2,00812 2. Ett	1	1	79.8 ~	1	1	203 🗸	1	1	220	
			1.5	1	1.81	ł	1	}	59.5	81.5	1		J652.0-7	2 Text	169	I,	24460	185	170	×~448~	32.4	9.17	10	
			1	31.1	2#55E/2	16.9	37.7	14.7	27260	12X6/	34.0	125	<u>-0£09%</u>	1701020	2010241	197	\$5620-	∕0 <u>7</u> 0∕2	282	LOL 16?	~20105	₹09607		
Cadmium	Sample	Depth (ft)	1	8.53	17.7	1.08	1.59	0.963	22.4	13.3	1.41	2.45	18.6	12.8	12.5	6.41	30.2	13.2	4.87	27.3	15.4	12.6	36	
Grid Block	Excavation	Depth (ft)		1	1	1	1	1	1.5	1.5	1	1	2.5 `	2.5 -	1.5	1	2	1.5	1.5	2	1.5	1.5	Cleanup Standard	
Sampling	Sampling Location			A0C-3-1	AOC-3-2	AOC-3-3	A0C-3-4	AOC-3-5	AOC-3-6	AOC-3-7	AOC-3-8	AOC-3-9	AOC-3-10	AOC-3-11	AOC-3-12	AOC-3-13	AOC-3-14	AOC-3-15	AOC-3-16	AOC-3-17	AOC-3-18	AOC-3-19	Cleanup	Note:

Samples collected August 11-20, 2003, except for samples 3-1, 3-5, 3-9, and 3-13, which were collected on June 29, 2004.

All concentrations are in milligrams per kilogram (mg/kg). * If the zinc standard of 24,000 mg/kg is exceeded, Ecology has stipulated that a cleanup standard of 570 mg/kg zinc be met for no-further-action status.

Sampling depths shown are feet below original surface grade.

-- Not sampled.

September 29, 2uv5

(

Ć

Cleanup Action Report Linebach Funkhouser Project Number 100-02

(

Table 5Confirmation Soil Sampling ResultsBay Zinc Facility – Moxee, WAAOC-5: Back Lot Area

								\ 	7							_			1	4	7		
	()	4	ł	ţ	ł	1	29.4	32.4	30.1	174	ł	1	936	36.9	56.8	63.6	1	1	ł	142(c)	30.4(c)	563(c)	
Zinc	Sample Depth (ft)	1-3	1	-	ł	-		1	6,640(b)	14900(b)	+	573(a)	10000(b)	(9)006/1	6500(b)	1	;	1	1	246000(6)7	(Z9300(B)~1	3000(b)	
	San	0.5	8697	5624	265	5139	17107	 ,	2545.07	6461	219	16629	12027	1	ł	1	94.3	1990	303	ł	I	J	
	(tt)	4	1	-	1	1	0.53	g	g	0.55	ł	1	47.5	0.86	2.69	5.43.	1	}	1	3.32(c)	3.85(c)	15.0(c)	10×
Lead	Sample Depth (ft)	1-3	1	1		16.8(a)	1	1	~\$12(6)~	~5340(b)		ND(a)	2080(b)	-1880(b)	2(9)676~			1	1	-06TL/	(9)0,6,8	4990(b)?	
	San	0.5	87.7	69.1	21.5	12534	2.9728	1	12584	15.0	29.1	18555	21592	I	1	ł	QN	132	30.3	ł	1	1	
	()	4	1	ł	1	I	0.56	0.64	0.52	0.81	;	ł	1.99	0.73	2.19	2.07	1	ł	1	1.62(c)	0.99(c)	4.49(c)	/or
Cadmium	Sample Depth (ft)	1-3	1	1	1	ł	1		10.3(b)	32(b)	1	· ND(a),	/40/205/	(4)E:6E/	8.49(b)	17.9(b)	l	1		2492522	12526(6)	197:16V	~
	Saml	0.5	0.59	Ð	Ð	12.5	32.0	ł	16.2	£	Ð	218.18	21.1	1	I	1	Q	Ð	QN	1	1	-	
Grid Block	Excavation Depth (ft)		0.5	0.5	0.5	1	4	4	4	4	0.5		4	4	4	4	0.5	0.5	0.5	60	m	m	
Sampling	Location		A0C-5-1	A0C-5-2	A0C-5-3	A0C-5-4	AOC-5-5**	AOC-5-6**	AOC-5-7**	AOC-5-8**	AOC-5-9	AOC-5-10	AOC-5-11**	AOC-5-12**	AOC-5-13**	AOC-5-14**	AOC-5-15***	AOC-5-16	AOC-5-17	AOC-5-18	AOC-5-19	AOC-5-20	

September 29, 2005

(

(

Linebach Funkhouser Project Number 100-02 Cleanup Action Report

Confirmation Soil Sampling Results Bay Zinc Facility - Moxee, WA AOC-5: Back Lot Area Table 5 -- Continued

Sampunes	Grid Block	-	Cadmium			Lead			Zinc	
Location	Excavation Depth (ft)	Sam	Sample Depth (ft)	(ft)	San	Sample Depth (ft)	(J J)	San	Sample Depth (ft)	(H)
	, ,	0.5	1-3	4	0.5	1-3	4	0.5	1-3	4
AOC-5-21	3	ł	4.91(b)	1,94(c)	ł	-224(b)-	4.16(c)	1	1520(b)	84.1(c)
AOC-5-22	1	10.7	1	1	1920	86.7	ł	19200	9286	1
AOC-5-23	1	Q.	1	ł		44.6	1	7400	479	1
AOC-5-24	1	Q	ł	1		65.2	l	4990	1240	1
Cleanur	Cleanup Standard		36			220			24,000/570*	
Note:						100				

Samples collected April 29 – May 28, 2003, November 4, 2003, and August 25, 2004.

All concentrations are in milligrams per kilogram (mg/kg). ND: Not detected at laboratory method detection limit.

* If the zinc standard of 24,000 mg/kg is exceeded, Ecology has stipulated that a cleanup level of 570 mg/kg be met for no-further-action status.

** Total excavation depth from top surface of grid block area covered by historic backfill was approximately 4 feet.
*** Represents portion of the grid block not covered by historic backfill. AOC-5-14 results are also considered to be representative of limited area of backfill stockpile on grid block AOC-5-15.

Depths listed are in feet below original surface grade.

-- Not Applicable/Not Sampled

(a) 1 foot sampling depth

(b) 2 foot sampling depth

(c) 3 foot sampling depth

any Action Report	ebach Funkhouser Project Number 100-02.
Clean	Lineba

Ĺ

September 29, 2005

(

(

Table 6 Confirmation Soil Sampling Results Bay Zinc Facility – Moxee, WA SWMU-6: Mud Wash Area

Sampling Location	Excavation Depth (ft)	Cadmium Sample Depth (1	Cadmium ple Depth (ft)	Lead Sample Depth (ft)	Lead e Depth (ft)	Zinc Sample Depth (ft)	Zinc e Depth (ft)
		1	2	I	17	1	2
SWMU 6-2 (E)	2	4.1	1.1		2.54	1900	36.2
SWMU 6-1 (W)	1	1.3	1	25	1	450	ł
Cleanup Standard	standard		6	23	220	24,	24,000

Notes:

Samples collected on July 15, 2004 and August 12, 2004 All concentrations in milligrams per kilogram (mg/kg) Sampling depths shown are feet below original surface grade -- Not applicable/not sampled .

September 29, 2005

(

(

Linebach Funkhouser Project Number 100-02 Clean Action Report

(

AOC-7/AOC-8 and West Side of Warehouse **Confirmation Soil Sampling Results** Bay Zinc Facility - Moxee, WA Table 7 (page 1 of 3)

AOC-7: West-Central Fence Line

Sampling	Grid Block	Cadmium	Lead	Zinc
Location	Excavation Depth (ff)			
AOC-7-1	0.5	Q	12.3	97.8
AOC-7-2	0.5	Ð	12.9	149
AOC-7-3	0.5	QN	65.9	95.4
AOC-7-4	0.5	Ð	124	1607
AOC-7-5	0.5	QU	12.5	236
AOC-7-6	0.5	Ð	10.8	124
7-6 Duplicate	0.5	Q	11.1	75.9
A0C-7-7	0.5	Ð	11.6	134
Cleanu	Cleanup Standard	36	220	24,000
Note.				

Note:

Samples collected on November 19, 2002.

Samples collected at excavation depth of 0.5 feet below surface grade. All concentrations in milligrams per kilogram. ND – Not detected at laboratory method detection limit.

Duplicate – Blind duplicate sample.

Ř

Linebach Funkhouser Project Number 100-02 Clean Action Report

Ŷ

September 29, 2005

ĺ

(

AOC-7/AOC-8 and West Side of Warehouse **Confirmation Soil Sampling Results** Bay Zinc Facility – Moxee, WA Table 7 (page 2 of 3)

AOC-8: Southwest Fence Line

•

Sampling Location	Grid Block Excavation Depth (ft)	Cadmium	Lead	Zinc
AOC-8-1	0.5	QN	11.4	656
AOC-8-2	0.5	8.89	22.8	1379
AOC-8-3	0.5	5.39	13.2	2038
AOC-8-4	0.5	Ð	120	988
AOC-8-5	0.5	6.22	38.4	1099
AOC-8-6	0.5	0.34	20.6	758
AOC-8-7	0.5	QN	56.9	819
8-7 Duplicate	0.5	QN	57.6	838
AOC-8-8	0.5	2.44	216	2405
AOC-8-9	0.5	20.6	190	5882
AOC-8-10	0.5	6.41	150	4033
Cleanur	Cleanup Standard	36	220	24,000
Note:				

Samples collected on November 19, 2002.

Samples collected at excavation depth of 0.5 feet below surface grade.

All concentrations in milligrams per kilogram.

ND – Not detected at laboratory method detection limit. Duplicate – Blind duplicate sample.

Ś

September 29, żuwi

(

Linebach Funkhouser Project Number 100-02 Cleanup Action Report

Ţ

AOC-7/AOC-8 and West Side of Warehouse **Confirmation Soil Sampling Results** Bay Zinc Facility - Moxee, WA Table 7 (page 3 of 3)

West Side of Warehouse

							1	510 #501 *									
				620	510	570	1	510									
			m	263	487	94.0	453	1080	2010	1	2140	1800	1	ſ	l		
			2.5	47200	3660	10600	11600	6270	3880	1	4760	1	2090	1	1170		
	nc	epth (ft)	7	230843. 1-47200	27440-	-24180-	22059	12970 325754	16734	1	17136	1	3766	1	9067	//570*	
	Zinc	Sample Depth (ft)	1.5	408 (6044	1003	1034	12970	22718	1	34203	1	1 4968	ł	5182	24,000/570*	
			1	2913	5548	6639	3230	2893	12366	ł	27072	1	28056	31646	15456		
			0.5	4854	8640	3578	2340	3804	2480	2245	3290	:	5223 (I	6800		
			m	35.5	38.7	13.0	26.1	571,	107	1	18.6	15.7	1	ł	I		Я
		()	2.5	-9885, -12900-	51.0	4303, J.070-	5575 1990	(479 ~2368, 5816 ~301	. 109	1	39.7 / 6592	ł	19.2	ł	43.7		
	ađ) epth (f	7	⁻¹ 9885.	5065	4303	5575	.5816	-834-	ſ	39.7	1	30.3	ł	78.4	220	
	Lead	Sample Depth (ft)	1.5	57.5	-15 84	-348-	39.1	-2368-	5082	1	-8603-	1	4215 6755-5	ł	2430 5	5	
		Š	1	520	783	557 1414	534		30'82	$\langle \cdot \rangle$	61388603-)))	4215	5550	589 3026 2430 78.4	à	
			0.5	/8/45	1590	~ 557 ~	/ 289 ,	£45	/399	,336	~634	1.75	6.81.0	イン	685		
			e	1.57	4.94	1.23	4.67	5.45	13.1	1	22.0	17.2	ł	1	ł		Ŕ
		().	-52		41.25	-73-7-	28.2 -853	<u> ≥6:€2: -8</u> €15-	37.2	ł	34.5	ł	19.2	-	9.55		
	Cadmîum	Sample Depth (ft)	2	-82-7	-52.8	-48-7	28.2	-8⊞S-	- 88-	1	-8/41	1	27.8	1	<u>-1416</u>	36	
	Cad	sample.	1.5	QN	6.10	Ð	an	25.1	34.2	ł	30.7	ł	12.2	I :	26.5		
		01	1	0.81	5.07	14.1	1.52	0.26	7.96	ł	23.5	;	26.8	29.8	STEP 26.9		:
			0.5	3.14	17.7	3.87	an	1.23	Q	QN	1.15	1	3.30	1	72851		
Grid	Block	Excavation	Depth (ft)	9	ю	3	ŝ	m	'n	m	'n	'n	3	ε	Э	tandard	
	Sampling	Location		MH-1	WH-2	WH-3	WH-4	WH-5	9-HM	WH-6 Dupe	WH-7	WH-7 Dupe	8-H/N	WH-8 Dupe	6-HM	Cleanup Standard	Note:

Samples collected December 5-12, 2002; July 22-24, 2003.

All concentrations in milligrams per kilogram (mg/kg).

Sampling depths shown are feet below surface grade. ND - not detected at laboratory method detection limit.

Dupe – Blind duplicate sample.

-- - not analyzed.

* If the zinc standard of 24,000 mg/kg is exceeded, Ecology has stipulated that a cleanup standard of 570 mg/kg zinc be met for no-further-action status.

(

September 29, 2005

(

Cleanur Action Report Linebach Funkhouser Project Number 100-02

Ļ

Table 8Confirmation Soil Sampling ResultsBay Zinc Facility – Moxee, WAAOC-10/NB-1: Areas East and South of the "New Building"

Sampling	Excavation	Cadmium	Lead	Zinc
Location	Depth (ft)	Sample Depth (ft) 4	Sample Depth (ft) 4	Samp
NB-1-1 (West) Wall	4	4.4	5.04	2,700
NB-1-1 (West) Floor	4	7.4	3.42	4,400
NB-1-2 (East) Wall	4	9.5	4.85	5,000
NE-1-2 (East) Floor	4	17		5,600
AOC-10-1 (West) Wall	4	0.57		29
AOC-10-1 (West) Floor	4	1.1	5.42	32
AOC-10-2 (East) Wall	4	0.87	4.45	27
AOC-10-2 (East) Floor	4	0.96	5.23	31
Cleanup Standard	andard	36	220	24.000

Notes: Samples collected July 17, 2004 All concentrations in milligrams per kilogram Depths listed are feet below base of asphalt surface pavement

g

(

September 29, 2005

(

Linebach Funkhouser Project Number 100-02 Clean Action Report

(

Confirmation Soil Sampling Results Bay Zinc Facility - Moxee, WA Southern Property Line Table 9

<u> </u>	Sampling	Grid Block	Cadı	Cadmium	Lead	ad	Z	Zinc
	Location	Excavation	Sample I	aple Depth (ft)	Sample Depth (ft))epth (ft)	Sample	Sample Depth (ft)
		Depth (ft)	0.5	1	0.5	1	0.5	H
	SP-1-1	0.5	ND	-	154	1	1780	!
	SP-1-2	0.5	ND	ł	62.4	ł	653	1
×	SP-1-3	1.0	13.8	QN		82,6	8422	1294
 /	1-3 Dupe	0.5	5.45	1	8564	ſ	5804	1
	SP-1-4	0.5	Ð	1	208	1	1537	1
*	SP-1-5	1.0	0.67	Q	287	26.4	2307	287
	SP-1-6	0.5	Ð	1	39.7	ł	255	1
	SP-1-7	0.5	QN	1	39.5	1	243	ł
	SP-1-8	0.5	CIN	1	14.8	I	633	I
	SP-1-9	0.5	Q	1	95.9	1	1079	
	SP-1-10	0.5	QN	1	126-	ł	1319	1
	SP-1-11	0.5	QN	1	53.0		345	1
	SP-1-12	0.5	Q	1	32.9	ł	186	1
	SP-1-13	0.5	QN	1	50.5	1	274	1
	SP-1-14	0.5	QN	!	155		859	
	Cleanup	Cleanup Standard	3	36	220	0	24	24,000

Note:

Samples collected November 12-19, 2002.

All concentrations in milligrams per kilogram.

Depths listed are in feet below surface grade. ND – Not detected at laboratory method detection limit.

1

--- - Not sampled.

(

Table 10 (Page 1 of 6) Soil Sampling Results - Cadmium Bay Zinc Facility - Moxee, WA Warehouse Entryway AOC

	· · ·	Soil Sampl	e Interval De	pth - Feet Be	elow Grade	
Sample Location	0' - 1'	1' - 2'	2' - 3'	3' - 4'	4' - 5'	5' - 6'
N-1 (a)	460					
N-2 (a)	53.1		8.08			
N-3		828	20	0.59		
N-4			229	0.77		
N-17 (b)	11.3		231	0.42		
N-18 (b)			20.7	3.56		
S-1 (a)	40.4					
S-2 (a)	53.4		0.73			
<u> </u>		150	0.93			1.03
		53.8	0.92			
		26.0				
<u> </u>						
W-1 (a)	126		13.8			
W-3		47.5	153	3.04		0.54
		15.2	112	0.63		
W-5		57.2	37.9	1.93		
W-10 (b)	12.2		0.47			
	7.60		41.6	1.48		
W-12 (b)	0.77		4.31			
W-13 (b)	2.23		0.67			
	23.4		0.57			
W-15 (b)	18.9		0.75			
W-16 (b)	5.34		4.72			
						<u> </u>
E-1 (a)	123					<u> </u>
E-2 (a)	95.3		30.8			
E-3		186	1.82		<u> </u>	0.90
E-4		212	51.0	9.41		
E-5 (b)	42.9		45.0	0.46		
E-6 (b)	4.54		4.86			
E-7 (b)	24.9		0.52			
E-8 (b)	7.15		1.17			
E-9 (b)	4.02		35.3			<u> </u>

Note:

Samples collected on January 18, 2005. Samples denoted with (a) were collected on August 12, 2004. Samples denoted with (b) were collected on April 20, 2005.

All analytical data shown in milligrams/kilogram (mg/kg)

Concentrations listed in bold type exceed the 36 mg/kg cleanup goal for Cadmium

--- Not Analyzed / No sample collected from this interval

Depth of excavated area = 2 feet below base of asphalt

(

Table 10 (Page 2 of 6) Soil Sampling Results - Cadmium Bay Zinc Facility - Moxee, WA Warehouse Entryway AOC

CADMIUM

(

Ĺ

Sample	Soil	Sample Inte	rval
Location	0 - 1'	1 - 2'	2 - 4'
U8-A	2.02**		
U5-B			15.9
U5-C	164**		
U2-A	24**		
U2-B	0.8**		0.8
GP-451	0.45	0.76	0.46
GP-453	42	0.59	0.32
SS-7	3.7		
U1-F	4.8**		0.8
U1-G	19**		

Samples collected as part of Site Investigation work conducted in February - March, 2002 ** Results are for sampled interval of 0-2'

Soil sample intervals are feet below grade

Table 10 (Page 3 of 6) Soil Sampling Results - Lead Bay Zinc Facility - Moxee, WA Warehouse Entryway AOC

LEAD

(

í

	Soil Sampl	e Interval De	pth - Feet Be	elow Grade	
0' - 1'	1' - 2'	2' - 3'	3' - 4'	4' - 5'	5' - 6'
34,000					
6,970		325			
	35,500	37.1			<u> </u>
		25,400			
1040					
		3,600	3.96		
44.000	·				
					5.05
				·	
	9.01			·	
11,800		510			
	6,430	17,000	8.63		3.51
	671	8,160			
	6,510	54	1.93		
1450		7.19			
7.19		6.16			
15.7		106			<u> </u>
8.89		14.1			
2,780		6.62			
		6.76			
310					
40.400	<u> </u>	·		<u> </u>	
		1 870	<u> </u>		
<u> </u>			<u> </u>	+	6.23
				<u> </u>	
			┢─────		
	<u> </u>		·		<u>+</u>
				+	
158		5.62			
	34,000 6,970 1040 11,000 8,020 11,800 11,800 1450 7.19 15.7 8.89 2,780 2,560 310 13,400 16,000 6,440 333 3,920 535	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34,000 $$ $$ $$ $$ $$ $35,500$ 37.1 2.40 $$ $$ $35,500$ 37.1 2.40 $$ $$ $25,400$ 10 $$ $$ $29,500$ 8.50 $$ $$ $$ $3,600$ 3.96 $$

Samples collected on January 18, 2005. Samples denoted with (a) were collected on August 12, 2004. Samples denoted with (b) were collected on April 20, 2005.

All analytical data shown in milligrams/kilogram (mg/kg)

Concentrations listed in bold type exceed the 220 mg/kg cleanup goal for Lead

--- Not Analyzed / No sample collected from this interval

Depth of excavated area = 2 feet below base of asphalt

Table 10 (Page 4 of 6) Soil Sampling Results - Lead Bay Zinc Facility - Moxee, WA Warehouse Entryway AOC

LEAD

Å.

Ĺ

Ç

Sample	Soil	Sample Inte	rval
Location	0 - 1'	1 - 2'	2 - 4'
U8-A	4.04**		
U5-B			752
U5-C	128**		24
U2-A	11.6**		
U2-B	11.2**		8.7
GP-451	4.25		
GP-453	1,730	5.75	4.94
	95.8		
U1-F	8.0**		6.6
U1-G	23.6**		

Samples collected as part of Site Investigation work conducted in February - March, 2002 ** Results are for sampled interval of 0-2'

Soil sample intervals are feet below grade

ZINIC

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

(

Table 10 (Page 5 of 6) Soil Sampling Results - Zinc Bay Zinc Facility - Moxee, WA Warehouse Entryway AOC

Comple Leasticn			e Interval De	pth - Feet Be	elow Grade	······
Sample Location	0' - 1'	1' - 2'	2' - 3'	3' - 4'	4' - 5'	5' - 6'
N-1 (a)	145,000					
N-2 (a)	24,200		2,000			
N-3		224,000	10,500	891		
N-4			241,000	97.5		
N-17 (b)	10,800		105,000	42.7		
N-18 (b)			20,700	346		
S-1 (a)	49,500					
S-2 (a)	48,300		44.2			
<u> </u>		27,700	87.7			46.2
<u> </u>		24,100	77.6			
S-5		19,100				
S-6						
	81,300		3,690			
		53,200	165,000	111		32.5
			74,600	57		
W-5		48,900	22,500	875		
	15,700		63.6			
W-11 (b)	2,170		22,200			
W-12 (b)	308		1,570			
W-13 (b)	649		71.6			
W-14 (b)	18,600		51.0			
W-15 (b)	23,000		52.1			
W-16 (b)	1,920		1,710			
E-1 (a)	98,800					
E-2 (a)	81,300		9,350			
<u>E-3</u>		250,000	237			49.0
<u>E-4</u>		124,000	3410	1140		
E-5 (b)	58,100		36,400			
E-6 (b)	2,760		11,900			
E-7 (b)	36,200		273			
E-8 (b)	9,110		2,250			
E-9 (b)	4,320		20,000			

Samples collected on January 18, 2005. Samples denoted with (a) were collected on August 12, 2004. Samples denoted with (b) were collected on April 20, 2005.

All analytical data shown in milligrams/kilogram (mg/kg)

Concentrations listed in bold type exceed the 24,000/570 mg/kg cleanup goal for Zinc

--- Not Analyzed / No sample collected from this interval

Depth of excavated area = 2 feet below base of asphalt

Table 10 (Page 6 of 6) Soil Sampling Results - Zinc Bay Zinc Facility - Moxee, WA Warehouse Entryway AOC

ZINC

(

{

Sample	Soil	Sample Inte	erval
Location	0 - 1'	1 - 2'	2 - 4'
U8-A	1,689**		
U5-B			11,662
U5-C	12,400**		
U2-A	25,200**		
U2-B	128**		
GP-451	65	300	59
GP-453	320,000	87	52
	2,000		
U1-F	880**		
U1-G	19,600**		

Samples collected as part of Site Investigation work conducted in February - March, 2002 ** Results are for sampled interval of 0-2'

Soil sample intervals are feet below grade

Cleanup איישה Report Linebach Funkhouser Project Number 100-02

K

Tab،به 11 Summary of Groundwater Analytical Results: 2003 - June 2005 Bay Zinc Facility - Moxee, WA

(

PZ-1 323 830 g ı ī ı. ŧ ı r i. ı. ī ı ī ı. ł ı ı ŧ ı ī J. ı ı i. ł ı ı. ı. ī ı, MW-10 MW-10D 130 g 1 25 r. ı \mathbf{r}^{\dagger} t ī ı ı. r. ι ı ī ı. r. J t ı ī ı 1 ı 1 ı. 1 I ı i, ı ND ND ND 0.004 1576 1574 615 630 605 578 110 538 578 588 589 2222 543 212 130 120 110 120 125 6-WW 0.003 1610 1430 1020 1030 1420 796 350 448 QN 650 800 450 720 800 620 600 797 727 ı I <u>MW-8D</u> 0.001 . I 78.7 r', 12 ı ı ı r ł r ı 1 τ ı ī i ı ī ŧ ı I ł ı ı **MW-8** 0.005 0.005 0.006 0.006 1518 1170 418 0.01 46 488 370 QN g 440 130 130 129 580 677 630 460 150 150 140 120 7-WM. 1 ı 1 ī i r. ı, 1 ı. ı. I. ı ī ı. ι ı. i. I. ī ı ı. ı 1 1 ī ĩ 1 ı ı. ı. ı ī <u>9-WW</u> ī t i. i. ı. ī 1 ī ĩ ı. ī ċ ī. 1 ī ī 1 ī ι ı i J ı ī ī ī ı MW-5 0.006 50.6 35.9 46.3 42.4 ND 58.8 <u>19.5</u> 18.4 20 23 19.5 108 52 22 21 <u>10</u> 53 I MW-3 0.031 0.23 0.082 0.007 0.041 0.21 0.08 1540 642 0.84 0.14 2020 174 516 1080 610 1191 480 609 105 203 87 180 110 190 85 8 0.003 0.003 MW-2 416 71.8 ND 1020 113 487 416 <u>273</u> 118 1117 <u>98.1</u> 410 160 45 59 5 7 MW-1A MW-1B 0.028 ND 0.015 0.073 0.1 0.042 805 613 1610 0.2 0.13 89.8 64 50 29 29 2190 1450 20 25 22.5 114 188 356 102 0.01 566 0.002 52.8 - R 1 ī ī 1 ı. ı ı. I ı i, ı. i. ı ı 1 ı I. ı ł ı 1 r ı. I L 9/20/2004 12/13/2004 3/21/2005 6/21/2005 9/20/2004 12/13/2004 6/16/2004 7/16/2004 9/16/2003 12/9/2003 3/17/2004 6/16/2004 1/31/2003 6/16/2003 9/16/2003 12/9/2003 9/16/2003 12/9/2003 12/13/2004 1/31/2003 7/16/2004 3/21/2005 6/21/2005 1/31/2003 6/16/2003 7/16/2004 3/17/2004 3/21/2005 6/21/2005 6/16/2003 3/17/2004 6/16/2004 9/20/2004 DATE WELL ID NUMBER Cleanup Goal -0.005 mg/l PARAMETER Cleanup Goal -Cleanup Goal -CHLORIDE CADIMIUM SULFATE 250 mg/l 250 mg/l

September __, 2005

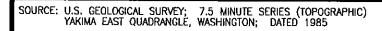
ĺ

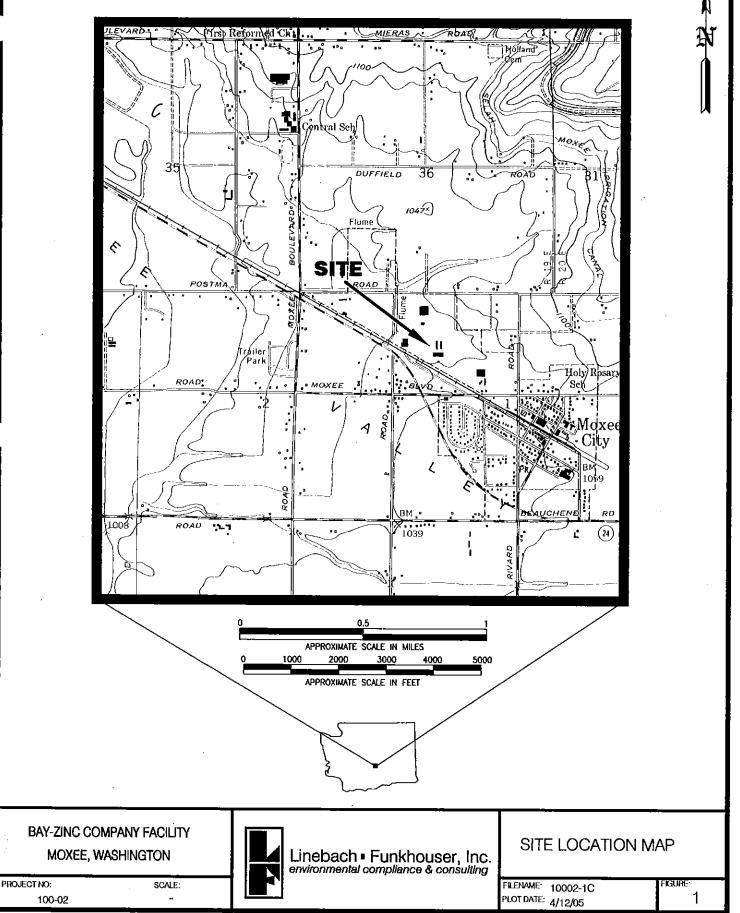
.

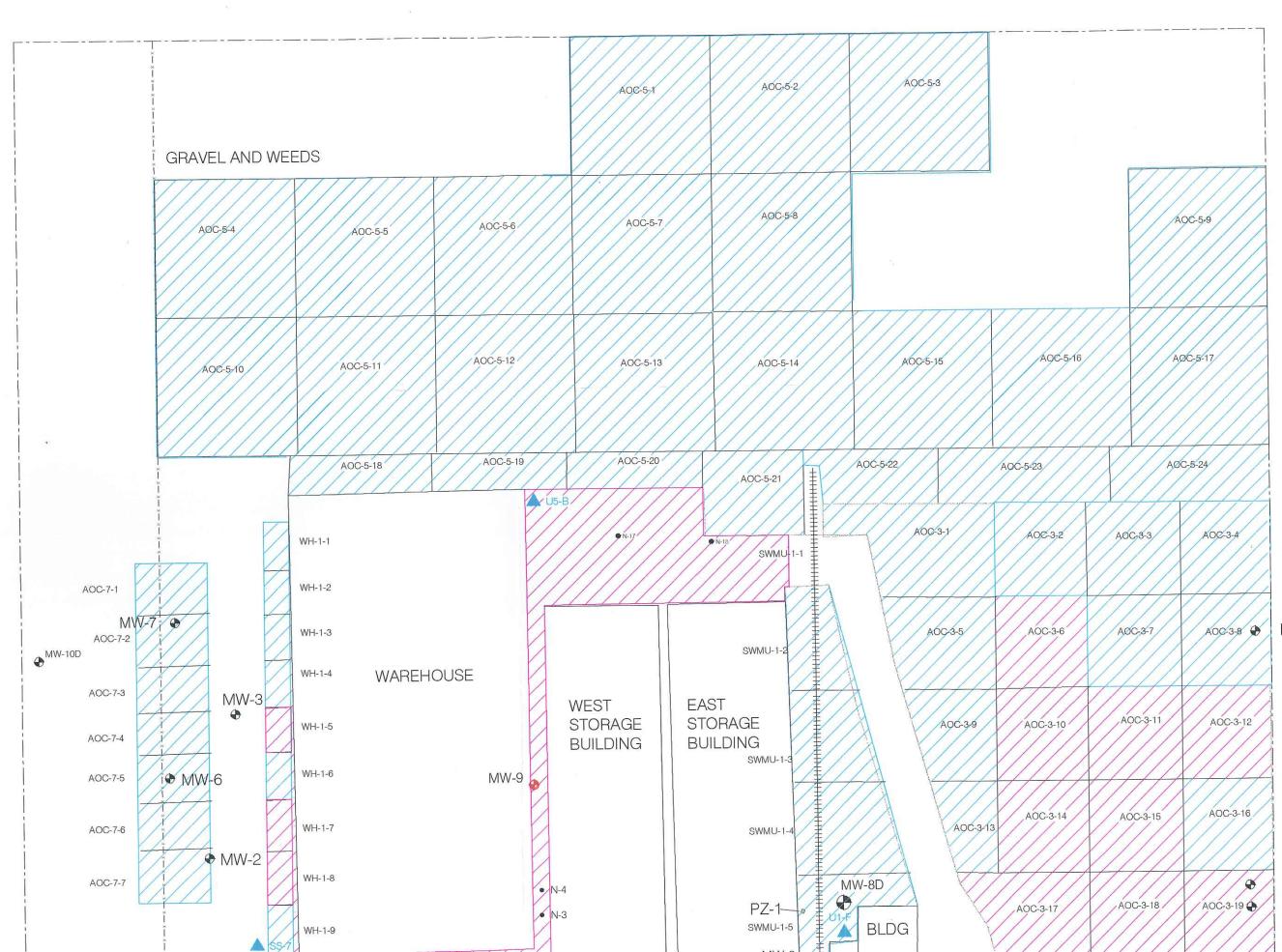
Cleanup אי שה Report Linebach Funkhouser Project Number 100-02

ξ

Table 11 -- Continued Summary of Groundwater Analytical Results: 2003 - June 2005 Bay Zinc Facility - Moxee, WA

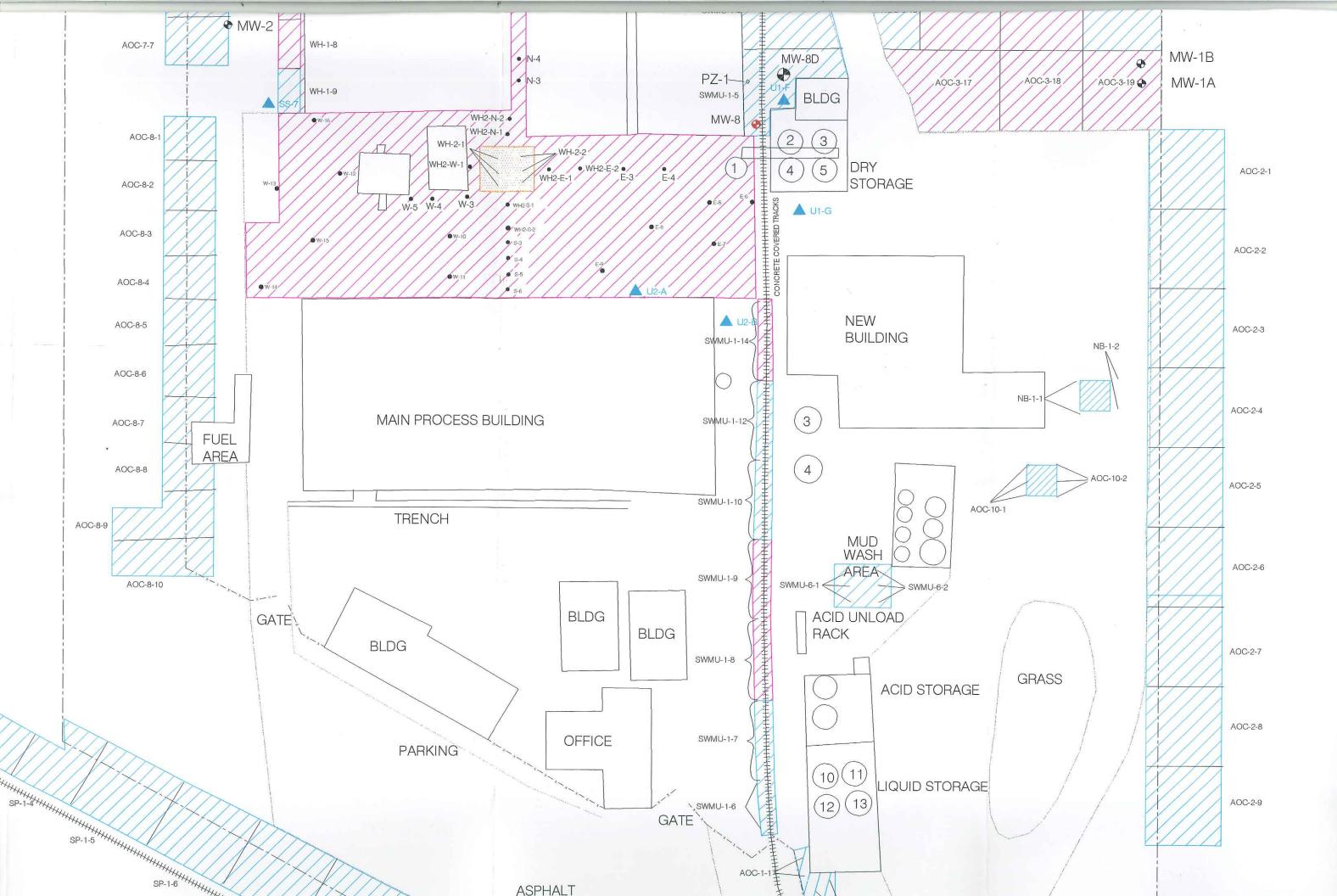

(

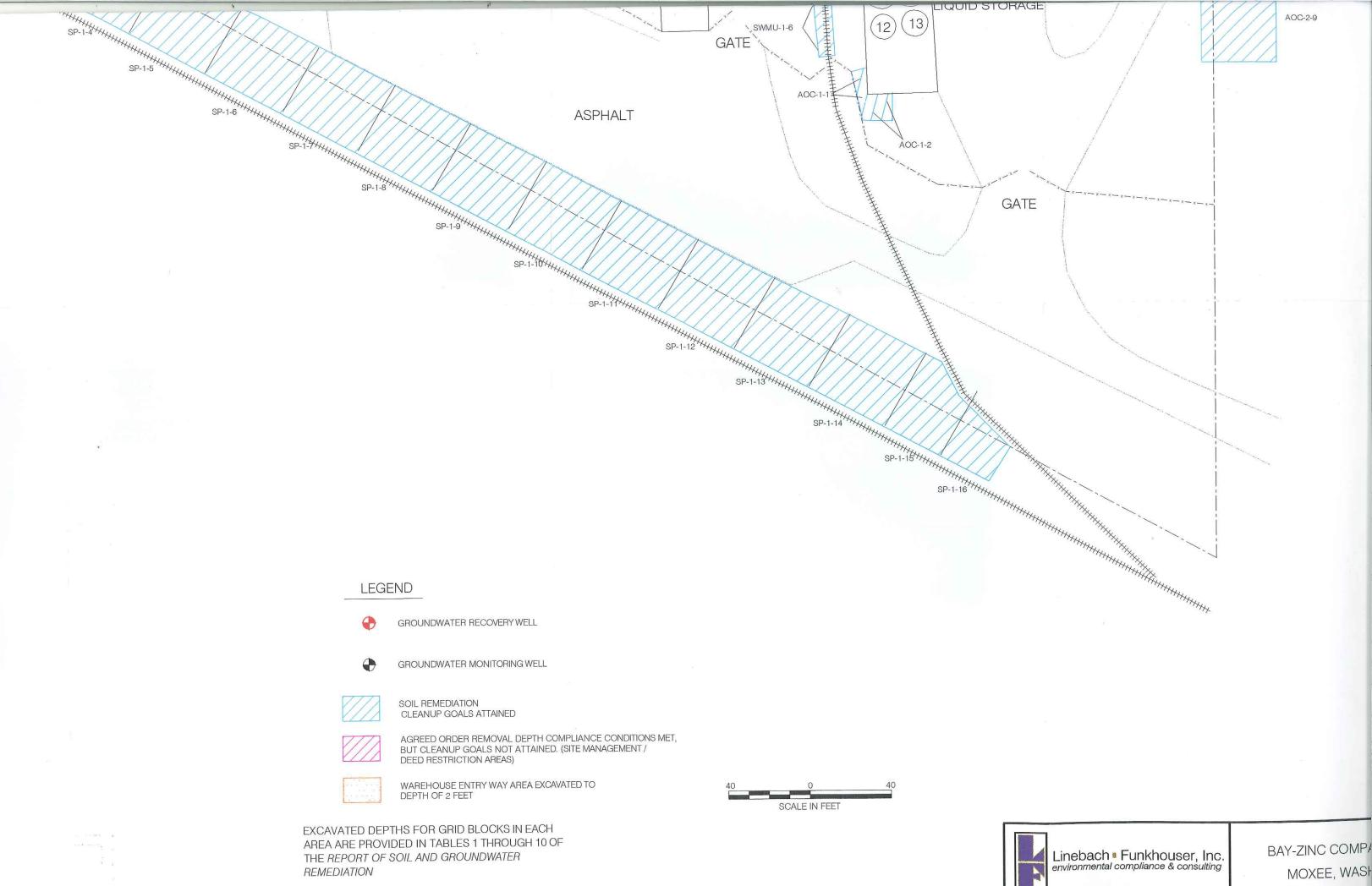

							<u> </u>	Г	<u> </u>	<u> </u>			Γ	<u> </u>	Γ	Γ	Ĺ_	<u> </u>					<u> </u>	Γ	Γ		
PZ-1				•	0.67		ı		'	'	'	ı	•	•		•	0.021	1	ı	'	'	•	•	1	ł	1	
MW-10D	-			1	ī		ı			QN	,	,	r	1		,	ł	1	1	ı	,	0.001			ſ	•	
MW-10				0.4	0.097	0.63	0.29	0.005	0.031	,	0.27	0.61	0.016	0.37		0.021	0.011	0.059	0.048	QN	0.081	,	0.033	0.053	0.036	0.005	
6-WW				0.99	ı	0.018	0.11	0.11	2.2	,	2,9	3.5	2.4	2.4		0.3		0.34	0.14	0.18	0.25	•	0.21	0.16	0.11	0.098	1.40 m
MW-8D				1	1		ı	ı	-	QN	ı	,	1	1		1	ſ	ı	1	1	•	0.058	1	1	1	1	
MW-8				25.2	-	3.3	2.5	3.4	18	1	3.4	3.8	3.5	3.9		0.014	1	3.1	2.8	3.4	41	1	2.8	4.4	3.7	3.7	
7-WM				1	1		ı				1	1	•	1		1	1	1	1		,	1	,	r	•	,	
9-WM				T	-	J	1			1	τ	1		1		1	1	I	1	1	1	1	1		•	1	
MW-5				0.11	0.033	0.039	QN	0.027	0.11	1	0.051	0.047	0.033	0.001		0.014	0.008	0.076	0.11	0.037	0.38	1	0.052	0.085	0.1	0.063	ND Not detected at laboration. [
MW-3				3.4	5.24	1.5	1.5	11	5.7	1	1.2	3.3	13	5.8		13.6	19	5	4.2	45	12	1	1.8	5.4	41	12	Jototol of
<u>MW-2</u>				0.28	0.73	0.63	0.44	0.24	0.032	1	0.47	0.74	0.026	0.029		0.097	0.035	0.25	0.061	0.035	0.22	T	0.003	0.18	0.46	0.025	NIC Not
<u>WW-1A WW-1B</u>				1.39	1.29	0.45	0.083	0.17	0.071	1	0.13	0.06	0.022	0.09		286	175	73	47	190	62	ı	25	27	20	15	
MW-1A				I	1	-		•		0.003	ı	1	1	1		•	τ	ſ	I		ı	0.072	•	•	•	•	+ compled
JMBER		UAIE		1/31/2003	6/16/2003	9/16/2003	12/9/2003	3/17/2004	6/16/2004	7/16/2004	9/20/2004	12/13/2004	3/21/2005	6/21/2005		1/31/2003	6/16/2003	9/16/2003	12/9/2003	3/17/2004	6/16/2004	7/16/2004	9/20/2004	12/13/2004	3/21/2005	6/21/2005	indicator not complea
WELL ID NUMBER		PARAMETER	MANGANESE											•	ZINC			•	Cleanin Goal -					<u> </u>			

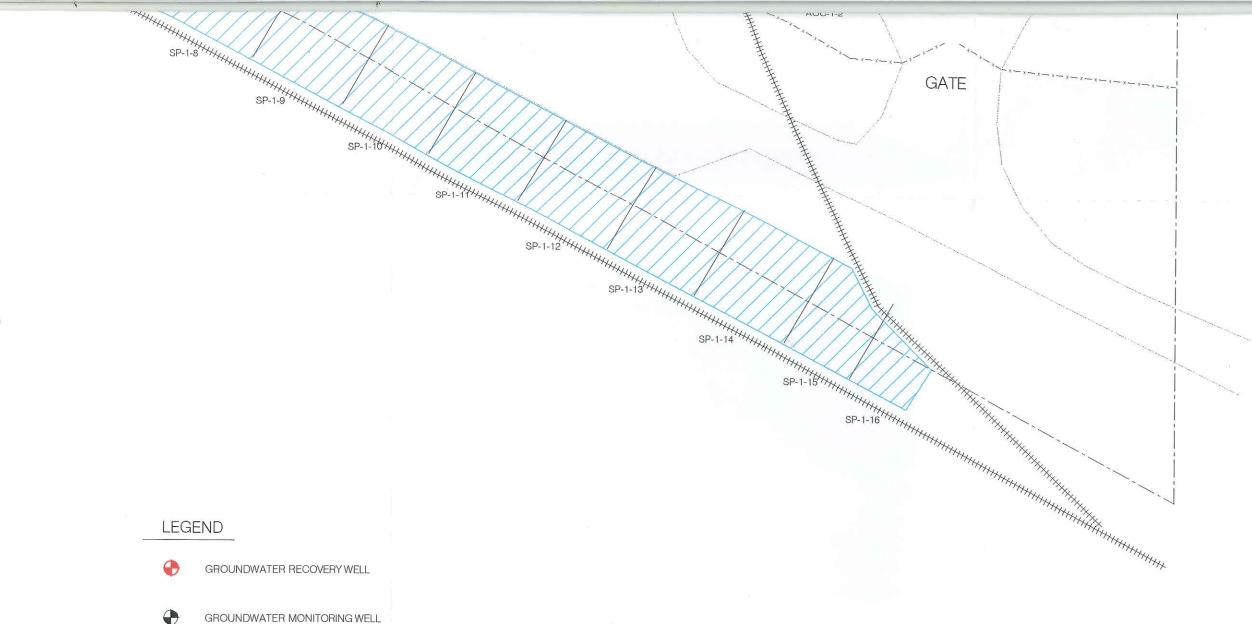

Septembe. _J, 2005

(

Figures






0

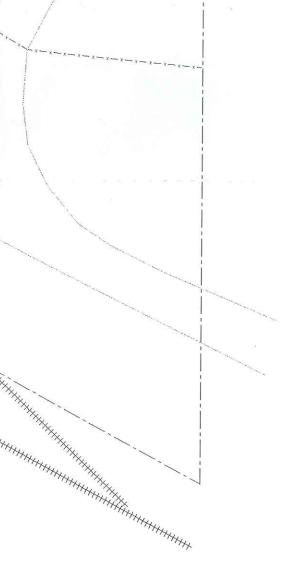
MW-5

MW-1B MW-1A

GROUNDWATER MONITORING WELL

SOIL REMEDIATION CLEANUP GOALS ATTAINED

AGREED ORDER REMOVAL DEPTH COMPLIANCE CONDITIONS MET, BUT CLEANUP GOALS NOT ATTAINED. (SITE MANAGEMENT / DEED RESTRICTION AREAS)


WAREHOUSE ENTRY WAY AREA EXCAVATED TO DEPTH OF 2 FEET

EXCAVATED DEPTHS FOR GRID BLOCKS IN EACH AREA ARE PROVIDED IN TABLES 1 THROUGH 10 OF THE REPORT OF SOIL AND GROUNDWATER REMEDIATION

SCALE IN FEET

nebach vironmenta	Funkhouser, Inc.	BAY-ZINC COMPANY FACIL MOXEE, WASHINGTON
00-02 PRINT DA	FILENAME: 10002-1A TE: 8/9/05	SITE PLAN SHOWING STATUS OF SOIL REMEDIATION

Appendix A

Documentation/Receipts of Soil Disposal

oh me 2/10/03

COLUMBIA RIDGE LANDFILL & RECYCLING CENTER

18177 Cedar Springs Lane Arlington, OR 97812 (541) 454-2030 (541) 454-3312 Pax

CUSTOMER INFORMATION:	ACCOUNT #	0000473
Li nebach Funkhouser, Inc. 4059 Shelbyville Rd.	INVOICE #:	3103
Louisville, KY. 40207	DATE:	1/31/03
Attn: Accts. Payable	PROFILE #:	0669CW
	LOCATION:	Moxee, Wa.
	WASTE TYPE:	Tire Ash Soil

SUMMARY OF CHARGES

TOTAL TONS	2654.39	TOTAL LOADS	87
BILLED TONS (30 Ton Min/Load)	2696.79		
DISPOSAL TRANSPORTATION ODEQ FEE		\$10.00/TON \$23.00/TON \$1.24/TON	\$26,543.94 \$62,026.17 <u>\$3,291.44</u>
WASHINGTON REFUSE T	AX	SUBTOTAL 3.6%	\$91,861.55 <u>\$3,307.02</u>
TOTAL AMOUNT DUE			\$95,168.57

SEND REMITTANCE TO:

COLUMBIA RIDGE LANDFILL 18177 CEDAR SPRINGS LANE ARLINGTON, OR 97812 ATTN: ACCTS RECEIVABLE

AMOUNT DUE:

\$95,168.57

'E THANK YOU FOR YOUR BUSINESS AND PROMPT PAYMENT!

CMW-NW

WAAA 17 Ar (5)	nemical Waste Management of 629 Cedar Springs Lane lington, OR 97812 03) 493-7825 06) 505-9163	the Northwest		THIS IS AN INVOIC PLEASE PAY AM TERMS DUE U OR P	VOICE EFOR CURRENT CHARGES. KOUNT INDICATED BELOW UPON RECEIPT ER CONTRACT
		. <u></u>		AL ONE AND ONE H OA THE MAXIMUM F BY LAW. WHICHEVE	JUNTS WILL BEAR HATEREST IALF PERCENT PER MONTH PATE ALLOWED R IS LESS
LINEBACH FUNKHO ATTN: ACCOUNTS 4059 SHELBYVILL LOUISVILLE KY 4	PAYABLE E RD			Invoice Date: Customer #: Invoice #: Page #:	
Manifest# Profile Des 0000366157 CW1153 CON STABILIZATIO TRANSPORTATI STATE WASTE	TAMINATED SOIL 000720 BA' N DISPOSAL ON TRANSPORTATION	ntity P.O.#/Unit Y ZINC CO INC BAY ZINC CO . 31.71 TONS 31.71 LOAD 31.71 TONS	Bilîer ATIM∕MERM	Rate Svc Date 170.00000 24.00000 2.00000	Total 01/20/2003 5.390.70 761.04 63.42
000366158 CW1153 CON STABILIZATIO TRANSPORTATIO STATE WASTE	N DISPOSAL DN TRANSPORTATION	Y ZINC CO INC BAY ZINC CO 31.47 TONS 31.47 LOAD 31.47 TONS	ATIKMERИ	Subtotal Svc Date 170.00000 24.00000 2.00000 Subtotal	6.215.16 01/20/2003 5.349.90 755.28 62.94 6.168.12
0000366159 CW1153 CON STABILIZATIO TRANSPORTATIO STATE WASTE I	N DISPOSAL DN TRANSPORTATION	Y ZINC CO INC BAY ZINC CO 31.79 TONS 31.79 LOAD 31.75 TONS	ATIMMERM	Svc Date 170.00000 24.00000 2.00000 Subtotal	01/20/2003 5,404.30 762.96 63.58 6,230.84
000366225 CW1153 CON STABILIZATION TRANSPORTATIO STATE WASTE M	DISPOSAL N TRANSPORTATION	7 ZINC CO INC BAY ZINC CO 32.27 TONS 32.27 LOAD 32.27 TONS	AT IMMERM	Svc Date 170.00000 24.00000 2.00000 Subtotal	01/23/2003 5,485.90 774.48 64,54 6,324.92
1000366226 CN1153 CON1 STABILIZATION TRANSPORTATIC	DISPOSAL	ZINC CO INC BAY ZINC CO 31.56 TONS 31.56 LOAD	ATIMMERM	Svc Date 170.00000 24.00000	01/23/2003 5,365.20 757.44

Remit to: GHEMICAL WASTE MANAGEMENT, INC. P.O. BOX 840606 DALLAS, TX 75284-0606

Continued

Ø007/010

	Chemical Waste Management of the Northwest 17629 Cedar Springs Lane Arlington, OR 97812 (503) 493-7825 (206) 505-9163	INVOICE FOR CURRENT CHARGES. PLEASE PAY AMOUNT INDICATED BELOW TERMS DUE UPON RECEIPT OR PER CONTRACT ALL PAST DUE AMOUNTS WILL BEAR INTEREST AT ONE AND ONE HALF PERCENT PER MONTH OR THE MAXIMUM PATE ALLOWED BY LAW, WHICHEVER IS LESS
, AT 40	NEBACH FUNKHOUSER INC IN: ACCOUNTS PAYABLE 59 SHELBYVILLE RD JISVILLE KY 40207	Invoice Date: 01/31/2003 Customer #: 450-1442545 Invoice #: 2236-0055335 Page #: 2
Manifest#	Profile Description Gener/Quantity P.O.#/Unit Biller STATE WASTE MGMT FEE 31.56 TONS MANIFEST DOCUMENT# 00004	Rate Total 2.00000 63.12 Subtotal 6.185.76
0000366227	CW1153 CONTAMINATED SOIL 000720 BAY ZINC CO INC BAY ZINC CO ATIMMERM STABILIZATION DISPOSAL 32.16 TONS TRANSPORTATION TRANSPORTATION 32.16 LOAD STATE WASTE MGMT FEE 32.16 TONS MANIFEST DOCUMENT# 00006	Svc Date 01/23/2003 170.00000 5.467.20 24.00000 771.84 2.00000 64.32 Subtotal 6,303.36
0000366251	CW1153 CONTAMINATED SOIL 000720 BAY ZINC CO INC BAY ZINC CO ATIMMERM STABILIZATION DISPOSAL 29.62 TONS TRANSPORTATION MINIMUM CHARGE 30.00 LOAD STATE WASTE M3MT FEE 29.62 TONS MANIFEST DOCUMENT# 00010	Svc Date 01/24/2003 170.00000 5.035.40 24.00000 720.00 2.00000 59.24 Subtotal 5.814.64
	CW1153 CONTAMINATED SOIL 000720 BAY ZINC CO INC BAY ZINC CO ATIMMERM STABILIZATION DISPOSAL 29.92 TONS TRANSPORTATION MINIMUM CHARGE 30.00 LOAD STATE WASTE MGMT FEE 29.92 TONS MANIFEST DOCUMENT# 00009	Svc Date 01/24/2003 170.00000 5.086.40 24.00000 720.00 2.00000 59.84 Subtotal 5.866.24
	CW1153 CONTAMINATED SOIL 000720 BAY ZINC CO INC BAY ZINC CO ATIMMERM STABILIZATION DISPOSAL 32.34 TONS TRANSPORTATION TRANSPORTATION 32.34 LOAD STATE WASTE MGMT FEE 32.34 TONS MANIFEST DOCUMENT# 00008	Svc Date 01/24/2003 170.00000 5.497.80 24.00000 775.16 2.00000 64.68 Subtotal 6,338.64

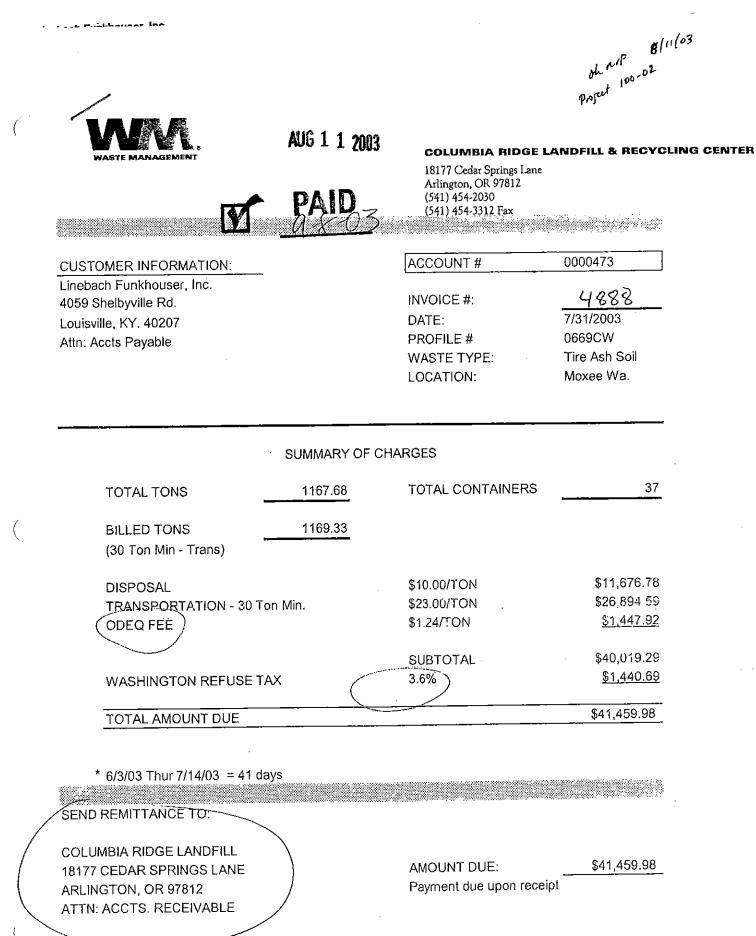
Remit to: CHEMICAL WASTE MANAGEMENT, INC. P.O. BOX 840606 DALLAS, TX 75284-0606 Continued

008/010

08/31/2005	14:17 FAX 541454	10219	CMM-N	<u></u>	· · · · · · · · · · · · · · · · · · ·	<u>لوالم المجاري ا</u>			
	17629 Cedar Sprin Arlington, OR 9781		lorthwest			TERMS	VOICE E FOR CURRENT CHARGES. JOUNT INDICATED BELOW		
	(503) 493-7825 (206) 505-9163						PER CONTRACT		
×	(200) 505-9163					ALL PAST DUE AMO AT ONE AND ONE H OR THE MAXIMUM BY LAW, WHICHEVE	DUNTS WILL BEAR INTEREST HALF PERCENT PER MONTH RATE ALLOWED ER IS LESS		
LINEBACH	FUNKHOUSER INC					Invoice Date:	01/31/2003		
	OUNTS PAYABLE BYVILLE RD					Customer #:			
	E KY 40207					Page #:	3		
anifest# Profi	le Description	Gener/Quantity		P.O.#/Unit	Biller	Rate	Total		
000356261 CW11	53 CONTAMINATED SOIL	000720 BAY ZIN	C CO INC	BAY ZINC CO	ATIMHERM	Svc Date	01/27/2003		
	IZATION DISPO		32.69			170.00000	5,557.30		
		SPORTATION	32.69			24.00000	784.56		
STATE	Waste MGMT FEE MANIFEST DOCUT	(FNT# 00011	32.69	TOUS		2.00000	65.38		
	FUNCTI COT DUCU	CHIT OODII				Subtotal	6,407.24		
0366262 CW11	53 CONTAMINATED SOIL	000720 BAY ZIW		BAY ZINC CO	AT JUMERM	Svc Date	01/27/2003		
	IZATION DISPO		30.69		11120000041	170.00000	5,217,30		
TRANSP	ORTATION TRANS	SPORTATION	30.69	LOAD		24.00000	736.56		
STATE	WASTE MGMT FEE		30.69	TONS		2.00000	61.38		
	MAN1FEST DOCUM	1ENT# 00012				Subtotal	6,015,24		
00366263 (91)	53 CONTAMINATED SOIL	000720 BAY 71N	U INC	BAY ZINC CO	ATIMMERM	Svc Date	01/27/2003		
	IZATION DISPO		32.73			170.00000	5,564.10		
TRANSP	ORTATION TRANS	PORTATION	· 32.73	LOAD		24.00000	785.52		
STATE	ASTE MGMT FEE		32.73	TONS		2.00000	65.46		
	MANIFEST DOCUM	ENT# 00007				Subtotal	6,415.08		
00366284 CW11	53 CONTAMINATED SOIL	000720 BAY 7ENC	CO INC	BAY ZINC CO	AT IM4ERM	Svc Date	01/28/2003		
	IZATION DISPO		31.06	TONS		170.00000	5,280.20		
	RTATION TRANS	PORTATION	31.06			24.00000	745.44		
STATE	ASTE MGMT FEE MANIFEST DOCUM	ENT# 00015	31.06	TONS		2,00000	62.12		
						Subtotal	6.087.76		
	53 CONTAMINATED SOIL ZATION DISPO			BAY ZINC CO TONS	ATIIMERM	Svc Date 170.00000	01/28/2003 5,465,50		
	MICAL WASTE MANAGEMEN		32.13	د ب رن ب		170.00000	5,403.50 Continued		

P.O. BOX 840606 DALLAS, TX 75284-0606

(


08/31/2005 14:18 FAX 5414543279			CMW-N	V#					
		7825	orthwest			THIS IS AN INVOIC PLEASE PAY AN TERMS DUE I OR P	VOICE FOR CURRENT CHARGES. OUNT INDICATED BELOW JPON RECEIPT ER CONTRACT UNTS WILL BEAR INTEREST		
						AT ONE AND OVE H OR THE MAXIMUM I BY LAW, WHICHEVE	UNTS WILL BEAR INTEREST ALF PERCENT PER MONTH ATE ALLOWED R IS LESS		
ATTN 4059	BACH FUNKHOUSER ING : ACCOUNTS PAYABLE SHELBYVILLE RD SVILLE KY 40207	5					01/31/2003 450-1442545 2236-0055335 4		
TI	Profile Description RANSPORTATION TATE WASTE MGMT FEE MANIFE	TRANSPORTATION	32.15 32.15		Biller	Rate 24.00000 2.00000 Subtotal	Total 771.60 64.30 6.301.40		
T	CW1153 CONTAMINATE TABILIZATION RANSPORTATION TATE WASTE MONT FEE MANIFE	DISPOSAL TRANSPORTATION	C CO INC 32.72 32.72 32.72 32.72	TONS LOAD	atinetern	Svc Date 170.00000 24.00000 2.00000	01/28/2003 5,562.40 785.28 65.44		
S" TI	CW1153 CONTAMINATE TABILIZATION RANSPORTATION TATE WASTE M3MT FEE MANIFE	DISPOSAL TRANSPORTATION		. TONS LOAD	AT 1494ERM	Subtotał Svc Date 170.00000 24.00000 2.00000 Subtotał	6,413.12 01/29/2003 5.543.70 782.64 65.22 6,391.56		
S` Ti	TABILIZATION RANSPORTATION TATE WASTE MGMT FEE	ED SGIL 000720 BAY ZIN DISPOSAL TRANSPORTATION E EST DOCUMENT# 00018	C CO INC 31.66 31.66 31.66 31.65	tons Load	AT I MAERM	Svc Date 170.00000 24.00000 2.00000 Subtotal	01/29/2003 5.382.20 759.84 63.32 6,205.36		
S ⁻ Tr	CW1153 CONTAMINATE TABILIZATION RANSPORTATION TATE WASTE MGMT FEE MANIFE	DISPOSAL TRANSPORTATION	C CO INC 31.14 31.14 31.14	TONS LOAD	AT IMMERM	Svc Date 170.00000 24.00000 2.00000 Subtotal	01/29/2003 5.293.80 747.36 62.28 . 6.103.44		
Remit to:	: CHEMICAL WASTE № P.O. BOX 840606 DALLAS. TX 75284						Continued		

CMW-NW

🖾 010/010

WW	Chemical Waste M 17629 Cedar Spri Arlington, OR 978 (503) 493-7825 (206) 505-9163	fanagement of the Northw ngs Lane 12	est		INVOICE FOR CURRENT CHARK THIS IS AN INVOICE FOR CURRENT CHARK PLEASE PAY AMOUNT INDICATED BELO TERMS DUE UPON RECEIPT OR PER CONTRACT ALL PAST DUE AMOUNTS WILL BEAR INTERE AT CHE AND ONE HALF PERCENT PER MONT OR THE MAXIMUM RATE ALLOWED BY LAW, WHICHEVER IS LESS		
					OR THE MAXIMUM P	ATE ALLOWED RIS LESS	
ATTN: ACC 4059 SHE	FUNKHOUSER INC COUNTS PAYABLE LBYVILLE RD LE KY 40207				Invoice Date: Customer #: Invoice #: Page #:	01/31/2003 450-1442545 2236-0065335 5	
'lanifest∦ Prof	ile Description	Gener/Quantity	P.O.#/Unit	Biller	Rate	Total	
	RECEI OR F	YENT DUE UPON PT OF INVOICE YER CONTRACT ** FOR YOUR BUSINESS!					

(

WE THANK YOU FOR YOUR BUSINESS AND PROMPT PAYMENT!

AUG 2 5 2003

PAID 3

COLUMBIA RIDGE LANDFILL & RECYCLING CENTER

18177 Cedar Springs Lane Arlington, OR 97812 (541) 454-2030 (541) 454-3312 Fax

ACCOUNT #	0000473
INVOICE #:	5009
DATE:	8/16/2003
PROFILE #	0669CW
WASTE TYPE:	Tire Ash Soil
LOCATION:	Moxee Wa.
	INVOICE #: DATE: PROFILE # WASTE TYPE:

SUMMARY OF CHARGES

TOTAL TONS	1565.5	TOTAL CONTAINERS	50
BILLED TONS (30 Ton Min - Trans)	1591.63		
DISPOSAL TRANSPORTATION - 30 To ODEQ FEE	n Min.	\$10.00/TON \$23.00/TON \$1.24/TON	\$15,654.93 \$36,607.49 <u>\$1,941.22</u>
WASHINGTON REFUSE TA	x	SUBTOTAL 3.6%	\$54,203.64 <u>\$1,951.33</u>
TOTAL AMOUNT DUE			\$56,154.97

SEND REMITTANCE TO:

 COLUMBIA RIDGE LANDFILL

 18177 CEDAR SPRINGS LANE

 ARLINGTON, OR 97812

 ARLINGTON, OR 97812

 Payment due upon receipt

 ATTN: ACCTS. RECEIVABLE

WE THANK YOU FOR YOUR BUSINESS AND PROMPT PAYMENT!

	Chemical Was 17629 Cedar Arlington, OR (503) 493-782 (206) 505-916	97812 25	rthwest			DUE U OR P	VOICE E FOR CURRENT CHARGES. JOUNT INDICATED BELOW UPON RECEIPT ER CONTRACT
	<i>,</i>					OR THE MAXIMUM BY LAW, WHICHEVE	
			ŬA	G 2 5 2003			<u>br wf g/2/03</u> 100-02
ATT 405	WEBACH FUNKHOUSER INC IN: ACCOUNTS PAYABLE 59 SHELBYVILLE RD JISVILLE KY 40207					Invoice Date: Customer #- Invoice #: Page #:	08/19/2003 450-1442545 2236-0066808
Manifest# 0000368692	Profile Description CW1153 CONTAMINATED STABILIZATION TRANSPORTATION STATE WASTE MGMT FEE MANIFEST	Gener/Quantity SOIL 000720 BAY ZINC DISPOSAL TRANSPORTATION DOCUMENT# 00001	CO INC 33.20 33.20 33.20		Biller ATIMMERM	Rate Svc Date 170.00000 24.00000 2.00000 Subtotal	Tota] 08/12/2003 5,644.00 796.80 66.40 6.507.20
(Duwu368693	CW1153 CONTAMINATED STABILIZATION TRANSPORTATION STATE WASTE MGMT FEE MANIFEST	SOIL 000720 BAY ZINC DISPOSAL MINIMUM CHARGE DOCUMENT# 00003	CO INC 29.46 30.00 29.46	TONS LOAD	ATIMMERM	Svc Date 170.00000 24.00000 2.00000 Subtotal	08/12/2003 5.008.20 720.00 58.92 5.787.12
0000368694	STABILIZATION TRANSPORTATION STATE WASTE MGMT FEE	SOIL 000720 BAY ZINC DISPOSAL TRANSPORTATION DOCUMENT# 00002	CO INC 32.86 32.86 32.86	TONS LOAD	ATIMMERM	Svc Date 170.00000 24.00000 2.00000 Subtotal	08/12/2003 5,586.20 788.64 65.72 6,440.56
0000368731	STABILIZATION TRANSPORTATION STATE WASTE MGMT FEE	SOIL 000720 BAY ZINC DISPOSAL TRANSPORTATION DOCUMENT# 00005	CO INC 32.35 32.35 32.35	5 TONS 5 LOAD	ATIMMERM	Svc Date 170.00000 24.00000 2.00000 Subtotal	08/14/2003 5,499.50 776.40 64.70 6,340.60
(]68732	CW1153 CONTAMINATED STABILIZATION TRANSPORTATION	SOIL 000720 BAY ZINC DISPOSAL TRANSPORTATION	CO INC 33.12 33.12	2 TONS	ATIMMERM	Svc Date 170.00000 24.00000	08/14/2003 5,630.40 794.88

Remit to: CHEMICAL WASTE MANAGEMENT, INC. P.O. BOX 840606 DALLAS, TX 75284-0606 Chemical Waste Management of the Northwest 17629 Cedar Springs Lane Arlington, OR 97812 (503) 493-7825 (206) 505-9163

~ V]

.

(

THIS IS AN INVOICE FOR CURRENT CHARGES.
PLEASE PAY AMOUNT INDICATED BELOW
RMS
DUE UPON RECEIPT
OR PER CONTRACT
ALL PAST DUE AMOUNTS WILL BEAR INTEREST AT ONE AND ONE HALF PERCENT PER MONTH OR THE MAXIMUM RATE ALLOWED BY LAW, WHICHEVER IS LESS

7

LINEBACH FUNKHOUSER INC ATTN: ACCOUNTS PAYABLE 4059 SHELBYVILLE RD LOUISVILLE KY 40207	Invoice Date: Customer #: Invoice #: Page #:	450-1442545
Manifest# Profile Description Gener/Quantity P.O.#/Unit Biller	Rate	Total
STATE WASTE MGMT FEE 33.12 TONS	2.00000	66.24
MANIFEST DOCUMENT# 00004	Subtotal	6.491.52
0000368733 CW1153 CONTAMINATED SOIL 000720 BAY ZINC CO INC BAY ZINC CO ATIMMERM	Svc Date	08/14/2003
STABILIZATION DISPOSAL 33.34 TONS	170.00000	5,667.80
TRANSPORTATION TRANSPORTATION 33.34 LOAD	24.00000	800.16
STATE WASTE MGMT FEE 33.34 TONS	2.00000	66.68
(MANIFEST DOCUMENT# 00006	Subtotal	6,534.64
0000368745 CW1153 CONTAMINATED SOIL 000720 BAY ZINC CO INC BAY ZINC CO ATIMMERM	Svc Date	08/15/2003
STABILIZATION DISPOSAL 32.66 TONS	170.00000	5,552.20
TRANSPORTATION TRANSPORTATION 32.66 LOAD	24.00000	783.84
STATE WASTE MGMT FEE 32.66 TONS	2.00000	65.32
MANIFEST DOCUMENT# 00007	Subtotal	6,401.36

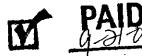
** PAYMENT DUE UPON RECEIPT OF INVOICE OR PER CONTRACT ** THANK YOU FOR YOUR BUSINESS!

Remit to: CHEMICAL WASTE MANAGEMENT, INC. P.O. BOX 840606 DALLAS, TX 75284-0606 \$44,503.00

	DEC 2 9 2003	COLUMBIA RIDGE L A WASTE MANAGEMENT CON 18177 Cedar Springs Lane Arlington, OR 97812 (541) 454-2030 (541) 454-3312 Pax	ANDFILL & RECYCLIN IPANY	ig cen 10 ⁰⁻
USTOMER INFORMATION: nebach Funkhouser, Inc.		ACCOUNT #	0000473	
bebach Funktiouser, inc. 59 Shelbyville Rd. buisville, KY. 40207 th: Accts Payable	DEC 2 9 2003	INVOICE #: DATE: PROFILE # WASTE TYPE: LOCATION:	<u>5789</u> 12/16/2003 0669CW Tire Ash Soil Moxee Wa.	
	SUMMARY OF CH	HARGES		
TOTAL TONS	SUMMARY OF CF	HARGES TOTAL CONTAINERS	36	
TOTAL TONS BILLED TONS (30 Ton Min - Trans)			36	
BILLED TONS	<u> 1130.43</u> <u> 1147.38</u>		36 \$11,304.31 \$26,389.74 <u>\$1,401.73</u>	

SEND REMITTANCE TO:

COLUMBIA RIDGE LANDFILL 18177 CEDAR SPRINGS LANE ARLINGTON, OR 97812 ATTN: ACCTS. RECEIVABLE


AMOUNT DUE: \$

\$40,503.23

WE THANK YOU FOR YOUR BUSINESS AND PROMPT PAYMENT!

BAY ZINC CO

COLUMBIA RIDGE LANDFILL & RECYCLING CENTER

18177 Cedor Springs Lane Arlington, OR 97812 (541) 454,2030 (541) 454,2030

-[541] 4 1941] 4

CUSTOMER INFORMATION:

Bay Zinc Company PO Box 167 Moxee, Wa. 98936 Attn: Accts Payable

DATE:
PROFILE #
LOCATION:
WASTE TYPE:

ACCOUNT #

INVOICE #:

7/16/2004 24031CV

Moxee, Wa. Tire Ash Soil

0000685

SUMMARY OF CHARGES

	160.73	TOTAL CONTAINERS	5
BILLED TONS (30 Ton Min	161.15		
DISPOSAL		\$10.00/TON	\$1,607.29
TRANSPORTATION		\$24.00/TON	\$3,867.60
ODEQ FEE		\$,30/TON	<u>\$48.22</u>

TOTAL AMOUNT	DŲE		\$5,523.11

SEND REMITTANCE TO:

Waste Management Columbia Ridge Landfill P.O. Box 78251 Phoenix, AZ. 85062-8251

AMOUNT DUE:	\$5,523.11
Payment due upon receipt	

Please reference your account number and invoice number on your payment. Thankyou,

<u>g-2101</u> pc. 299.83 WASTE MANAGEME

COLUMBIA RIDGE LANDFILL & RECYCLING CENTER

18177 Cedar Springs Lane Arlington, OR 97812 (541) 454-2030 (541) 454-3312 Fax

CUSTOMER INFORMATION:

Bay Zinc Company PO Box 167 Moxee, Wa. 98936 Attn: Accts Payable

ACCOUNT #	0000685
INVOICE #:	'n48
DATE:	7/31/2004
PROFILE #	24031CV
LOCATION:	Moxee, Wa.
WASTE TYPE:	Tire Ash Soil

TOTAL TONS	2777.74	TOTAL CONTAINERS	
BILLED TONS (30 Ton Min	2786.24		
DISPOSAL		\$10.00/TON	\$27,777.40
TRANSPORTATION		\$24.00/TON	\$66,869.76
ODEQ FEE		\$.30/TON	<u>\$833.32</u>

TOTAL AMOUNT DUE

\$95,480.48

SEND REMITTANCE TO:

Waste Management Columbia Ridge Landfill P.O. Box 78251 Phoenix, AZ. 85062-8251

AMOUNT DUE: \$95,480.48 Payment due upon receipt

Please reference your account number and invoice number on your payment. Thankyou.

11 12

⊕

Columbia Ridge Landfill & Recycling Center

18177 Cedar Springs Lane Arlington, OR 97812

(541) 454-2030 (541) 154-2112 Bar

0000685 ACCOUNT # CUSTOMER INFORMATION: Bay Zinc Company 147C INVOICE #: PO Box 167 8/16/2004 DATE: Moxee, Wa. 98936 24031CV **PROFILE#** Attn: Accts Payable Moxee, Wa. LOCATION: Tire Ash Soll WASTE TYPE:

SUMMARY OF CHARGES

TOTAL TONS 2638.76	:	TOTAL CONTAINERS	
BILLED TONS (30 Ton Min)2697.64			
BILLED TONS (30 Ton Min) 2697.64 DISPOSAL TRANSPORTATION - 30 Ton Min. ODEQ FEE		\$10.00/TON \$24.00/TON \$.30/TON	\$26,387.61 \$64,743.36 <u>\$791,63</u>
			\$91,922.60

SEND REMITTANCE TO:

Waste Management Columbia Ridge Landfill P.O. Box 78251 Phoenix, AZ: 85062-8251

AMOUNT DUE:	\$91,922.60
Payment due upon receip	ot

Please reference your account number and involce number on your payment. Thankyou.

۰.

٠j

BAY ZINC CO

囵	0	3
---	---	---

<u>ows tk#</u>	<u>cust name</u>	<u>CUST TK#</u>	<u>CONTNR#</u>	<u>70 917</u>	<u>PROFILE#</u>	<u>NET WT LBS</u>	<u>NET_WT_TONS</u>	<u>billed tons</u>
563764	PRBAYZINC		24	040802	24031CV	65,000	32,500	32,500
563767	PRBAYZINC		14	040802	24031CV	64,720	32,360	32,360
563773	PRBAYZINC		450	040802	24031CV	68,620	34.310	34.310
563774	PRBAYZINC		404	040802	24031CV	53,520	26.760	30, 00 0
563775	PRBAYZINC		304	040802	24031CV	63,400	31.700	31.700
563779	PREATZINC		24	040502	24031CV	49,720	24.860	30.000
563784	PRBAYZINC		409	040602	24031cv	57,560	28.780	30.000
563790	PRBAYZING		2A	040803	24031CV	59,280	29.640	30,000
563791	PRBAYZINC		14	040803	24031CV	58,100	29,050	30,000
563792	PRBAYZINC		2A	040803	24031CV	57,940	28.970	30,000
563798	PRBAYZINC		404	040803	24031CV	49,380	24.690	30.000
563800	PRBAYZINC		304	040803	24031CV	59,640	29.820	30.000
563801	PRBAYZINC		450	040803	24031CV	60,160	30,080	30.060
563802	PRBAYZINC		407	040803	24031CV	57,280	28.640	30,000
563822	PRBAYZINC		3	040803	24031CV	56,880	28,440	30.000
563838	PRBAYZINC		2	040803	24031CV	58,080	29.040	30,000
563839	PRBAYZINC		2	640803	24031CV	57,640	28.820	30.000
563840	PREAYZINC		450	040803	24031CV	60,040	30.020	30.020
563841	PRBAYZINC		304	040803	24031CV	60,000	30.000	30.000
563542	PRBAYZINC		404	040803	24031CV	48,920	24.460	30.000
563843	PRBAYZINC		409	040803	24031CV	56,460	28.230	30.000
563846	PRBAYZINC		1A	040803	24031CV	55,040	27,520	30.000
563848	PRBAYZINC		24	040804	24031CV	56,740	28.370	30,000
563850	PRBAYZINC		2	040804	24031CV	59,680	29.840	30,000
563851	PRBAYZINC		1	040804	24031CV	59,380	29,690	30.000
563855	PRBAYZING		3	040804	24031CV	57,800	28.900	30.000
563857	PRBAYZINC		- 4D4	040804	24031CV	50,600	25.300	30.000
563858	PRBAYZINC		450	04.0804	24031CV	63,700	31,850	31.850
563859	PRBAYZINC		304	040804	24031CV	\$9,300	29,650	30,000
563860	PREAYZINC		409	040804	24031CV	57,520	28,760	30.000
563882	PRBAYZINC		450	040804	24031CV	62,540	31,270	31.270
563883	PRBAYZINC		2A	040804	24031CV	62,140	31.070	31.070
563887	PRBAYZINC		2	040504	24031CV	62,500	31.250	31.250
563893	PRBAYZINC		304	040804	24031CV	60,760	30.380	30.389
563894	PREAYZINC		409	040804	24031CV	59,240	29,620	30.000
563895	PRBAYZINC		404	040804	24031CV	\$1,940	25,970	30.000
563896	PRBAYZINC		1	040804	24031CV	60,160	30.080	30,080
563897	PRBAYZINC		3	040804	24031CV	60,440	30.220	30.220
563901	PRBAYZINC		2	040805	24031CV	62,580	31.290	31,290
563902	PRBAYZINC		z	040805	24031CV	61,820	30.910	30.910
563905	PRBAYZINC		409	040805	24031CV	58,960	29.480	30.00 0
563907	PRBAYZINC		404	040805	24031CV	56,820	28,410	30,000
563911	PRBAYZINC		3	040805	24031CV	62,060	31,030	31.030
563912	PRBAYZ1NC		450	040805	24031CV	70,460	35.230	35,230
563914	PRBAYZINC		403	040805	24031CV	63,340	31,670	31.670
563927	PRBAYZINC		1	040805	24031CV	56,860	28.430	30,080
563939	PRBAYZINC		z	040805	24031CV	62,360	31,180	31.180
563940	PRBAYZINC		2	040805	24031CV	61,860	30.930	30.930
563946	PRBAYZINC		409	040805	24031CV	60,520	30.260	30,260
563947	PRBAYZINC		450	040805	24031CV	63,000	31,500	31.500
563948	PRBAYZINC		404	040805	24031CV	52,90D	26.450	30,000
563949	PRBAYZINC		403	040805	24031CV	62,560	31,280	31.280

Page 1

.

.

:

ł

囵	04
---	----

۷

.

<u>ous</u>	TK#	CUST NAME	CUST TK#	CONTNR#	<u>tip dt</u>	PROFILE#	<u>NET WT LBS</u>	NET WE TONS	<u>billed tone</u>
563	950	PRBAYZINC		3	040805	24031CV	65,080	32.540	32.540
563		PRBAYZINC		2	040806	24031CV	64,820	32,410	32,410
563		PRBAYZINC		2	040806	24031CV	63,680	31.840	31,840
563		PREAYZINC		3	040806	24031CV	60,280	30,140	30.140
563		PRBAYZINC		1	640806	24031CV	62,880	31.440	31.440
563		PRBAYZINC		404	040806	24031CV	55 ,60 0	27.600	30,00
563		PRHAYZINC		409	040806	24031CV	60,940	30.470	30.470
563		PRBAYZINC		450	040806	24031CV	67,160	33,580	33,56
563		PRBAYZINC		403	040806	24031CV	63,800	31 .9 00	31,90
563		PRBAYZINC		3	040806	24031CV	59,480	29 .740	30.00
563		PRBAYZINC		1	040806	24031CV	60,760	30.380	30.30
	004	PRBAYZINC		1	040809	24031CV	60,200	39,100	3 0.1 0
	006	PRBAYZINC		Z	040809	24031CV	60,220	30.110	30,11
	009	PRBAYZINC		3	040809	24031CV	60,200	30,100	30.10
	.019	PRBAYZINC		2	040809	24031CV	67,640	33.820	33,82
	023	PREATZINC		- 407	040809	24031CV	61,440	30.720	30.72
	024.	PRBAYZINC		404	040809	24031CV	54,540	27.270	30.00
	035	PRBAYZINC		2	040810	24031CV	64,380	32,190	32,19
	036	PRBAYZINC		1	040810	24031CV	59,760	29.860	30.00
	037	PRBAYZINC		z	040810	24031CV	64,400	32,200	32.20
	,040	PRBAYZINC		3	040810	24031CV	62,560	31,280	31.28
	043	PRBAYZINC		404	040810	24031CV	66,260	33,130	33,13
	1043	PRBATZINC		409	040810	24031CV	61,560	30.780	30.75
	.045	PREATZINC		450	040810	24031CV	63,780	31.890	31.89
-	•045 4046	PRBAYZINC		407	040810	24031CV	59,600	29.840	30.00
	4040 4069	PRBATZINC		2	040810	24031CV	66,260	33,130	33,13
		PRBAYZINC		450	040810	24031CV	62,740	31.370	31.37
	4072			2A	040810	24031CV	68,300	34.150	34.15
-	4076	PRBAYZINC		409	040810	24031CV	60,940	30,470	30.4 1
	4081	PRBAYZINC		3	040810	24031CV	63,060	31.530	31.5
	4084 4085	PRBAYZINC		 404	040810		64,920	32.460	32.40
	4085	PRBAYZINC		407	040810	24031CV	71,840	35.920	35.97
	4086	PRBAYZINC		2	040811	24031CV	65,900	32.950	32.9
	4089	PRBAYZINC		к 1	040811	24031CV	62,800	31,400	31.40
	4102	PRBAYZINC		2	040811	24031CV	61,740	30.870	30.87
56 	4122	PRBAYZINC		. <i>L</i>					
	87						5 277.520	2.638.760	2,697.6
unt: tal:	87							5,277,520	5,277,520 2,638.760

Appendix B

Laboratory Reports

5

Borrow Area

Riliance Analytical Laboratories LLC

Analytical and Consulting Services

Certificate of Analysis

Client: Bay Zinc 301 W Charron Road Moxee, WA 98936

Attn: Roy Funkhouser (Linebach-Funkhouser Inc.)

Date Received: 10/30/02 Date of Report: 11/4/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
100985-(001-006)	Misc. Soils; Cd, Pb, and Zn	10/30/2002 1:44 PM

Comments:

Sample results reported on wet-weight basis (percent moisture values approximately 1% of total mass based on previous samples submitted).

William RRice

William R. Rice Laboratory Director

Alliance Analytical Laboratories LLC

Analytical and Consulting Services

Bay Zinc 301 W Charron Road Moxee, WA 98936 Project:Soll, MetalsDate Reported:11/4/2002Date Received:10/30/2002Date Completed:11/1/2002

Lab Sample ID: 100985-(001-006)

	Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result*	Dup Result*	RPD	Units	MDL
	100985-001	Site #1	Cadmium	EPA 200.9	NC	0.31			mg/Kg	0.0005
			Lead	EPA 200.9	NC	17.2			mg/Kg	0.0003
			Zinc	EPA 200.7	NC	119			mg/Kg	0.007
	100985-002	Site #2	Cadmium	EPA 200.9	NC	0.2			mg/Kg	0.0005
			Lead	EPA 200.9	NC	12.2			mg/Kg	0.0003
			Zinc	EPA 200.7	NC	88.6			mg/Kg	0.007
	100985-003	Site #3	Cadmium	EPA 200.9	NC	0.3	0.33	0.21	mg/Kg	0.0005
			Lead	EPA 200.9	NC	21.9	21.6	1.29	mg/Kg	0.0003
		•••	Zinc -	EPA 200.7	NC	111	111	0.08	mg/Kg	0.007
	100985-004	Site #4	Cadmium -	EPA 200.9	NC	0.17			mg/Kg	0.0005
č.			Lead	EPA 200.9	NC	8.4			mg/Kg	0.0003
			Zinc	EPA 200.7	NĊ	58.6			mg/Kg	0.007
	100985-005	Site #5	Cadmium	EPA 200.9	NC	0.22			mg/Kg	0.0005
			Lead	EPA 200,9	NC	12.4			mg/Kg	0.0003
			Zinc	EPA 200.7	' NC	93.6			mg/Kg	0.007
	100985-006	Site #6	Cadmium	EPA 200.9	NC	0.44			mg/Kg	0.0005
			Lead	EPA 200.9	NC	31.6			mg/Kg	0.0003
			Zinc	EPA 200.7	NC	200			mg/Kg	0.007

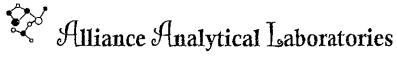
Notes:

* Results reported for samples as received NC; Not Calculated

Alliance Analytical Laboratories LLC

Analytical and Consulting Services

Bay Zinc	Project:	Soil, Metals
301 W Charron Road	Date Reported:	11/4/2002
Moxee, WA 98936	Date Received:	10/30/2002
110,000, 11,100,000	Date Completed:	11/1/2002


100976-(001-006) Lab Sample ID:

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
Matrix Spike	Cadmium	EPA 200.9	3.0	3.18	106	тg/Kg	0.0005
IPC Stnd	Cadmium	FPA 200.9	0.008	0.0084	105	mg/Kg	0.0005
160.000	Lead	EPA 200.9	0.05	0.052	103	mg/Kg	0.0003
	Zinc	EPA 200.7	2.0	1.96	97.9	mg/Kg	0.007
QCS Stnd	Cadmium	EPA 200.9	0.003	0.0029	98.2	mg/Kg	0.0005
000 000	Lead	EPA 200.9	0.03	0.032	106	mg/Kg	0.0003
	Zinc	EPA 200.7	1.5	1.45	9 6.6	mg/Kg	0.007

Approved by:

William R. Rice, Lab Director

SWMU-1

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 12/18/02 Date of Report: 1/4/03

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101161-(001-008)	Misc. Soils; Cd, Pb and Zn	12/18/2002 4:00 PM
101161-(009-010)	Misc. Rinsate; Cd, Pb and Zn	12/18/2002 4:00 PM

Comments:

Soil sample results reported on a dry-weight basis.

William L. Lice

William R. Rice Laboratory Director

This report is issued solely for the individual or company to whom it is addressed. Alliance Analytical Laboratories LLC accept responsibility only for the due performance of analysis according to industry accepted practice. Alliance Analytical Laboratories LLC and its employees are not responsible for consequential damages in any kind or in any amount.

ſ,

Riliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

(

Project:Metals, S/WDate Received:12/18/2002Date Completed:12/23/2002Date Reported:1/4/2003

Lab Sample ID: 101161-(001-010)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7		ND			mg/L	0,006
		Lead	EPA 200.7		ND			mg/L	0.2
-		Zinc	EPA 200.7		0.019			mg/L	0.007
101161-001	SWMU 2-6	Cadmium	EPA 200.7	17.2	3.85			mg/Kg	0.006
		Lead	EPA 200.7	17.2	ND			mg/Kg	0.2
		Zinc	EPA 200.7	17.2	8857			mg/Kg	0.007
101161-002	SWMU 2-7	Cadmium	EPA 200.7	18.1	9.81			mg/Kg	0.006
		Lead	EPA 200.7	18.1	145			mg/Kg	0.2
8.00 - 1.0 - 1. 		Zinc	EPA 200.7	18.1	15031	;		mg/Kg	0.007
101161-003	SWMU 2-8	Cadmium	EPA 200.7	11.7	11.6			mg/Kg	0.006
		Lead	EPA 200.7	11.7	228			mg/Kg	0.2
		Zinc	EPA 200.7	11.7	8135			mg/Kg	0.007
101161-004	SWMU 2-9	Cadmium	EPA 200.7	12.3	16.4			mg/Kg	0.006
		Lead	EPA 200.7	12.3	418			mg/Kg	0.2
		Zinc	EPA 200.7	12.3	7513			mg/Kg	0.007
101161-005	SWMU 2-10	Cadmium	EPA 200.7	17.4	22.8			mg/Kg	0.006
		Lead	EPA 200.7	17.4	59.6			mg/Kg	0.2
		Zinc	EPA 200.7	17,4	6288			mg/Kg	0.007
101161-008	SWMU 2-11	Cadmium	EPA 200.7	16.1	12.8			mg/Kg	0.006
		Lead	EPA 200.7	16.1	184			mg/Kg	0,2
		Zinc	EPA 200.7	16.1	10352			mg/Kg	0.007
101161-007	SWMU 2-12	Cadmium	EPA 200.7	12.3	ND	ND	NA	mg/Kg	0.006
		Lead	EPA 200.7	12.3	118	115	2.2	mg/Kg	0,2
		Zinc	EPA 200.7	12.3	1555	1680	7.7	mg/Kg	0.007
101161-008	SWMU 2-2	Cadmium	EPA 200.7	10.3	13.3			mg/Kg	0.006
		Lead	EPA 200.7	10.3	204			mg/Kg'	0.2
		Zinc	EPA 200.7	10.3	980 8			mg/Kg	0.007

RIliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, S/W Date Received: 12/18/2002 Date Completed: 12/23/2002 1/4/2003 Date Reported:

Lab Sample ID: 101161-(001-010)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
101161-009	Rinsate 1	Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.018			mg/L	0.007
101161-010	Rinsate 2	Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		ND			mg/L	0.007

Alliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207 Project:Metals, S/WDate Received:12/18/2002Date Completed:12/23/2002Date Reported:1/4/2003

Quality Control Summary

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101174-001 MS	Cadmium	EPA 200.7	2.0	1.83	91.6	mg/L	0.006
	Lead	EPA 200.7	2.0	1.93	96.1	mg/L	0.2
	Zinc	EPA 200.7	2.0	2.00	98.3	mg/L	0.007
IPC Stnd	Cadmium	EPA 200.7	2.0	1.90	95.0	mg/L	0.006
	Lead	EPA 200.7	2.0	2.01	100.5	mg/L	0.2
	Zinc	EPA 200.7	2.0	1.99	99.7	mg/L	0.007
QCS Stnd	Cadmium	EPA 200.7	1.5	1.39	92.5	mg/L	0.006
	Lead	EPA 200.7	1.5	1.48	9B.9	mg/L	0.2
. •	⊆ Zinc	EPA 200.7	i i.5	1.47	9B.0	mg/L	0.007

Page of 2	Preservative used									Remarks							a substantia de la constante d	pon receipt:		sal for. Cooler:	
6	đ														a de la companya de l La companya de la comp			Sample condition upon receipt:	Carrier & shipping #:	Chain of custody seal for Container:	
		Dauin								in the second											
2 1		Analysis requ																in Polin	0		
aboratories II.C							nefi	4	P.	2							7	N Bame	м .		M
abor	Ĵ.				2	572 32 Al	194 4	2 	42 90									Sampled by	Recoived by	Received by	Received by
	Client phone			Buond Bunia						# containels								Time	Time:	1 1/ 00 h	L. Nine
Alliance Analytical L Chain of Custody	I'C 523 825 5509									Matributype			· []				5			17 18 03	1-2-14-02-
Chain o			1201							Time					02 1435		-18-02 1HHE	Cett#1 - = (
Ę	Flend house	Shelf.	Louisville, Ky Moo	(Sam)			1	s to:	مستعمل مرجوعهم فركمه متشربه ومح	Date	12-17-02	eo-11- el	12-17-02	-11-11			Ċ,			Sa M	11/10
₿ €	Client neme. Zine Korch.	Client address 405-9	Louisvill		Biinng address:		P.O. # 109-19	Mail: Call Fax results to:		Samble Klentification	5111 M 3-0	2 + MW 112	2-2 MM 2-8	5.10 MW 2-9	341 NU 2-10	IC-E MUMC	SWMU 2-12	Sampled Date :	Received Date:	Relinquished by	Relinquished by R. A. 1940 1345

.

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 12/12/02 Date of Report: 12/13/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101096-(001-008)	Misc. Soils; Cd, Pb, and Zn	12/12/2002 8:30 PM
101096-009	Equip Blank; Cd, Pb, and Zn	12/12/2002 8:30 PM

Comments:

Soil sample results reported on a dry-weight basis.

William Phice

William R. Rice Laboratory Director

Hlliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser	Project:	Metals, S/W
4059 Shelbyville Road	Date Received:	12/12/2002
Louisville, KY 40207	Date Completed:	12/13/2002
	Date Reported:	12/13/2002

Lab Sample ID: 101096-(001-009)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup'Result	RPD	Units	MDL
Method Blank 1		Cadmium	EPA 200.7		ND			mg/L	0.006
Method Diank 1		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.084			mg/L	0.007
		2110	LFA 200.7		0.004				
Method Blank 2		Cadmium	EPA 200.7		ND			mg/L	0.006
Method Diank 2		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.030			mg/L	0.007
		Line						Ŭ	
101096-001	SWMU-1-6	Cadmium	EPA 200.7	4.3	5.26			mg/Kg	0.006
101000 001	011110 1 0	Lead	EPA 200.7	4.3	815			mg/Kg	0.2
		Zinc	EPA 200.7	4.3	8619			mg/Kg	0.007
101096-002	SWMU-1-7	Cadmium	EPA 200.7	4.7	4,55			mg/Kg	0.006
		Lead	EPA 200.7	4.7	1202			mg/Kg	0.2
		Zinc	EPA 200.7	4.7	14115			mg/Kg	0.007
101096-003	SWMU-1-8	Cadmium	EPA 200.7	9.5	7.26	7.15	1.5	mg/Kg	0.006
		Lead	EPA 200.7	9,5	1524	1460	4,3	mg/Kg	0.2
		Zinc	EPA 200.7	9.5	13883	13386	3,6	mg/Kg	0.007
101096-004	SWMU-1-9	Cadmium	EPA 200.7	8.3	8.07			mg/Kg	0.006
		Lead	EPA 200.7	8.3	1479			mg/Kg	0.2
		Zinc	EPA 200.7	8.3	14866			mg/Kg	0.007
101096-005	SWMU-1-10	Cadmium	EPA 200.7	9.4	4.48			mg/Kg	0.006
		Lead	EPA 200.7	9.4	2089			mg/Kg	0,2
		Zinc	EPA 200.7	9.4	75 60			mg/Kg	0.007
101096-006	SWMU-1-11	Cadmium	EPA 200.7	7.5	4.26			mg/Kg	0.006
		Lead	EPA 200.7	7.5	2006			mg/Kg	0.2
		Zinc	EPA 200.7	7.5	7023			mg/Kg	0.007
101096-007	SWMU-1-12	Cadmium	EPA 200.7	12.6	ND			mg/Kg	0.006
		Lead	EPA 200.7	12.6	1607			mg/Kg	0.2
		Zinc	EPA 200.7	12.6	4729			mg/Kg	0.007
101096-008	SWMU-1-13	Cadmium	EPA 200.7	12.9	3.44			mg/Kg	0.006
		Lead	EPA 200.7	12.9	2425			mg/Kg	0.2
		Zinc	EPA 200.7	12.9	13298			mg/Kg	0.007

Alliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road	Project: Date Received:	Metals, S/W 12/12/2002
Louisville, KY 40207	Date Completed:	12/13/2002
	Date Reported:	12/13/2002

Lab Sample ID: 101096-(001-009)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
101095-009	SWMU-1-EB	Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.090			mg/L	0.007

j

Alliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, S/W 12/12/2002 Date Received: Date Completed: 12/13/2002 Date Reported: 12/13/2002

Quality Control Summary

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101099-016 MS	Cadmium	EPA 200.7	2.0	2.08	84.3	mġ/L	0.006
	Lead	EPA 200.7	2.0	2.15	86.2	mg/L	0.2
	Zinc	EPA 200.7	18.0	66.0	72.8	mg/L	D .0 07
101099-019 MS	Cadmlum	EPA 200.7	2.0	1.85	83.5	mg/L	0.006
	Lead	EPA 200.7	2.0	1.93	86.1	mg/L	0.2
	Zinc	EPA 200.7	20.0	41.9	82.5	mg/L	0.007
PC Stnd	· Cadmium	EPA 200.7	2.0	1.93	96.3	mg/L	0.006
ч.	- Lead	EPA 200.7	2.0	1.98	99.0	mg/L	0.2
	Zinc	EPA 200.7	2.0	2.01	100.6	mg/L	0.007
QCS:Stnd	S.Cādmium	EPA 200.7	t. (* 1 . 5	1.42	94.7	mg/L	0.006
	Lead	EPA 200.7	1.5	1.46	97.6	mg/L	0.2
	Zinc	EPA 200.7	1.5	1.48	98.7	mg/L	0.007

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 11/5/02 Date of Report: 11/7/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101000-(001-005)	Misc. Soils; Cd, Pb, and Zn	11/5/2002 3:22 PM
101000-006	Equip. Blank; Cd, Pb, and Zn	11/5/2002 3:22 PM

Comments:

(

Soil sample results reported on a wet-weight basis (percent moisture values approximately 1% of total mass based on previous samples submitted).

(Delliamtfice

William R. Rice Laboratory Director

Hlliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207 Project:Metals, S/WDate Received:11/5/2002Date Completed:11/6/2002Date Reported:11/7/2002

Lab Sample ID: 101000-(001-006)

	Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
	Method Blank		Cadmium	EPA 200.7		ND			mg/L	0.006
			Lead	EPA 200.7		ND			mg/L	0.2
			Zinc	EPA 200.7		0.025			mg/L	0.007
	101000-001	SWMU-1-2	Cadmlum	EPA 200.7	NC	0.64			mg/Kg	0.006
			Lead	EPA 200.7	NC	389			mg/Kg	0.2
			Zinc	EPA 200.7	NC	5039			mg/Kg	0.007
	101000-002	SWMU-1-3	Cadmium	EPA 200.7	NC	ND			mg/Kg	0.006
			Lead 🔬	EPA 200.7.	NC	370.0			mg/Kg	0.2
:.	e e		Zinc all	.EPA 200.7	. NC	3991			mg/Kg	0.007
	101000-003	SWMU-1-4	Cadmium	EPA 200.7	NC	1.61			mg/Kg	0.006
• .			Lead .	EPA 200.7	NC	81			mg/Kg	0.2
	· •		Zinc	EPA 200.7	NC	2184			mg/Kg	0.007
	101000-004	SWMU-1-5	Cadmlum	EPA 200.7	NC	ND			mg/Kg	0.006
			Lead	EPA 200.7	NC	14.5			mg/Kg	0.2
			Zinc	EPA 200.7	NC	149			mg/Kg	0.007
	101000-005	SWMU-1-QA	Cadmium	EPA 200.7	NC	2.50			mg/Kg	0.006
			Lead	EPA 200.7	NC	457			mg/Kg	0.2
			Zinc	EPA 200.7	NC	5526			mg/Kg	0.007
	101000-006	Equip Blank	Cadmium	EPA 200.7	NC	ND			mg/Kg	0.006
			Lead	EPA 200.7	NC	ND			mg/Kg	0.2
			Zinc	EPA 200.7	NC	ND			mg/Kg	0.007

Notes: NC: Not Calculated

Riliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, S/W Date Received: 11/5/2002 Date Completed: 11/6/2002 Date Reported: 11/7/2002

Lab Sample ID: 101000-(001-006)

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
Matrix Spike	Cadmium	EPA 200.7	0.4	0.320	80	mg/L	0.006
	Lead	EPA 200.7	2.0	1.62	81	mg/L	0.2
PC Stnd	Cadmium	EPA 200.7	2.0	1.90	95	mg/L	0.006
	Lead	EPA 200.7	2.0	2.05	102	mg/L	0.2
	Zinc	EPA 200.7	2.0	2.03	102	mg/L	0.007
QCS Stnd	Cadmium	EPA 200.7	1.5	1.41	94.2	mg/L	0.006
	Lead	EPA 200.7	1.5	1.53	102	mg/L	0.2
- T.	Zinc	EPA 200.7		1.48	98.6	mg/L	0.007

A. See

•.

;.

n jaar se S 신 위기 일상 위 5 E . ÷

Analytical and Consulting Services

Certificate of Analysis

Client: Bay Zinc 301 W Charron Road Moxee, WA 98936

Attn: Roy Funkhouser (Linebach-Funkhouser Inc.)

Date Received: 10/24/02 Date of Report: 11/4/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
100976-(001-006)	Misc. Soils; Cd, Pb, and Zn	10/24/2002 5:00 PM

Comments:

Sample results reported on dry-weight basis.

William Phice

William R. Rice Laboratory Director

Alliance Analytical Laboratories LLC

Analytical and Consulting Services

Bay Zinc 301 W Charron Road	Project: Date Reported:	Soil, Meta ls 11/4/2002
Moxee, WA 98936	Date Received:	10/24/2002
	Date Completed:	11/1/2002

Lab Sample ID: 100976-(001-006)

).

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
100 976-001	RR Track No 2'	Cadmium	EPA 200.9	1.16%	1.7			mg/Kg	0.0005
		Lead	EPA 200.9	1.10%	13.2			mg/Kg	0.0003
		Zinc	EPA 200.7		2034			mg/Kg	0.0003
100976-002	RR Track No 4'	Cadmium	EPA 200.9	1.02%	1.0			mg/Kg	0.0005
-		Lead	EPA 200.9		37.0			mg/Kg	0.0003
		Zinc	EPA 200.7		1493			mg/Kg	0.007
100976-003	RR Track Mid 2'	Cadmium	EPA 200.9	0.83%	16.6	16.3	1.5	mg/Kg	0.0005
	er er	Lead 🗠	EPA 200.9		82.2	52.8	43.6	mg/Kg	0.0003
·æ	ສະນະ ເ	a Zinc anger	EPA 200.7	. –	9882	9706	1.8	mg/Kg	0.007
' 90976-004	RR Track Mid 4'	Cadmium	EPA 200.9	1.08%	0.4			mg/Kg	0.0005
1		Lead	EPA 200.9		32.7	•		mg/Kg	0.0003
		Zinc	EPA 200.7		217			mg/Kg	0.007
100976-005	RR Track So 2'	Cadmium	EPA 200.9	0.94%	8.8			mg/Kg	0.0005
		Lead	EPA 200.9		464	-		mg/Kg	0.0003
		Zinc	EPA 200.7		3003			mg/Kg	0.007
100976-006	RR Track So 3'	Cadmium	EPA 200.9	0.99%	0.6			mg/Kg	0.0005
		Lead	EPA 200.9		33.3			mg/Kg	0.0003
		Zinc	EPA 200.7		235			mg/Kg	0.007

Riliance Analytical Laboratories LLC

Analytical and Consulting Services

Bay ZincProject:Soil, Metals301 W Charron RoadDate Reported:11/4/2002Moxee, WA 98936Date Received:10/24/2002Date Completed:11/1/2002

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
Matrix Spike	Cadmium	EPA 200.9	3.0	3.09	103	mg/Kg	0.0 005
IPC Stnd	Cadmium	EPA 200.9	0.008	0.0084	105	mg/Kg	0.0005
	Lead	EPA 200.9	0.05	0.052	103	mg/Kg	0.0003
	Zinc	EPA 200.7	2.0	1 .9 6	98.1	mg/Kg	0.007
QCS Stnd	Cadmium	EPA 200.9	0.003	0.0029	98.2	mg/Kg	0.0005
	Lead	EPA 200.9	0.03	0.032	106	mg/Kg	0.0003
	Zinc	EPA 200.7	1.5	1.45	96.6	mg/Kg	0.007

2 v . .-

Lab Sample ID:

100976-(001-006)

Approved by: _____

William R. Rice, Lab Director

(

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 11/7/02 Date of Report: 11/8/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101010-(001-006)	Misc. Soils; Cd, Pb, and Zn	11/7/2002 3:49 PM
101010-007	Equip. Blank; Cd, Pb, and Zn	11/7/2002 3:49 PM

Comments:

Soil sample results reported on a dry-weight basis.

William Pfice

William R. Rice Laboratory Director

Alliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser			Project:	Metais, S/W
4059 Shelbyville Road			Date Received:	11/7/2002
Louisville, KY 40207			 Date Completed:	11/8/2002
		•	Date Reported:	11/8/2002
Lab Sample ID: 101010-(001-007)		• *		

	Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Unifs	MDL
	Method Blank		Cadmium	EPA 200.7		ND			mg/L	0.006
			Lead	EPA 200.7		ND			mg/L	0.2
	·		Zinc	EPA 200.7		0.008			mg/L	0.007
	101010-001	SWMU-1-2 8'	Cadmium	EPA 200.7	18.6	5.25			mg/Kg	0.006
			Lead	EPA 200.7	18.6	16.3			mg/Kg	0.2
			Zinc	EPA 200.7	18.6	3956			mg/Kg	0.007
	101010-002	SWMU-1-3 8'	Cadmium	EPA 200.7	16.5	ND			mg/Kg	0.006
			Lead 🚌	EPA 200.7	16.5	9.77			mg/Kg	0.2
, 1 :	- 1		Zinc the	EPA 200.7	16.5	1057			mg/Kg	0.007
(·01010-003	SWMU-1-QA2 M	Cadmium	EPA 200.7	- 16.0	ND	ND	NC	mg/Kg	0.006
		-	Lead	EPA 200.7	16.0	9.44	8.76	7.5	mg/Kg	0.2
			Zinc	EPA 200.7	16.0	1764	1798	1,9	mg/Kg	0.007
	101010-004	SWMU-1-2 6'	Cadmium	EPA 200.7	19.5	ND			mg/Kg	0.006
			Lead	EPA 200.7	19.5	11.5	-		mg/Kg	0.2
			Zinc	EPA 200.7	19.5	293			mg/Kg	0.007
	101010-005	SWMU-1-3 6'	Cadmium	EPA 200.7	17.4	ND			mg/Kg	0.006
			Lead	EPA 200.7	17.4	17.8			mg/Kg	0.2
			Zinc	EPA 200.7	17.4	1824			mg/Kg	0.007
	101010-006	SWMU-1-QA	Cadmium	EPA 200.7	17.0	ND	·		mg/Kg	0.006
			Lead	EPA 200.7	17.0	29.6			mg/Kg	0.2
			Zinc	EPA 200.7	17.0	2444			mg/Kg	0.007
	101010-007	Equip Blank	Cadmium	EPA 200.7		ND			mg/L	0.006
			Lead	EPA 200,7		ND			mg/L	0.2
			Zinc	EPA 200.7		ND			mg/L	0.007

Riliance Analytical Laboratories LLC

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

(

Project: Metals, S/W Date Received: 11/7/2002 Date Completed: 11/8/2002 Date Reported: 11/8/2002

Lab Sample ID: 101010-(001-007)

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
Matrix Spike	Cadmium	EPA 200.7	1.0	0.829	82.9	mg/L	0.006
	Lead	EPA 200.7	5.0	4.426	88.5	mg/L	0.2
IPC Stnd	Cadmium	EPA 200.7	2.0	1.90	95	mg/L	0.006
	Lead	EPA 200.7	2.0 ,	2.00	100	mg/L	0.2
	Zinc	EPA 200.7	2.0	1.93	97	mg/L	0.007
QCS Stnd	Cadmlum	EPA 200.7	1.5	1.46	97.0	mg/L	0.006
	Lead	EPA 200.7	1.5	1.53	102	mg/L	0.2
	Zinc	"EPA 200.7	. 1.5	1.48	98.6	mg/L	0.007

Chain of Custody
Client phone: 502-895-5009
Lousville
Billing phone: 5'02-895-5'00 9
R FINNY HAIRE
containers
<u> </u>
1.
Цще:
Date: 1/-7-02 4:00 Pu
resinquished by: Date: Time

boratories inc	ative						WM		$\frac{2}{7}$	XIX X	X X X				Sampled by Sample condition upon receipt	Received by	ustody seal for:	Received by: Cooker: Cooker:
	Client phone: 502 -895 - 720)		Billing phone:	1004 540-705			HOUSER		# containers]					Time: Sam	Time: Rec	Time: Rec	
S HIIANCE Analytical Chain of Custody	С ¥9			61	40207		R FINICHAUSED	502-931-8642	Matrix/type	· 501	Sei [(10 S)					Date: (/-7-05	
BINCE . Chain	KHOUSEK		1 ILANCEN	She he will had	- <i>f</i>		7205	502-93	Time	1540	1515		 					
	LINEBACH FUNKHOUSER	4 chyulla V V		She h	1X VX	2(502 895 -1205	Lesults	Dete	11/7/07	11/07/02	11/07/02			2002		, ,	
	Client name: LiveRACH FUN, Client address: L	11 CA CO /	Billing name: Lawer Art L Frink 11 12010	Billing address: 4059	7	P.O.# 100-02	Mail,)Call) Fax) results to:	CALL. & Coyle w/	Ē		SWMU-13 B'	SWMU-1-QA2			Nov 7	Received Date:	Relinquished by:	Relinquished by:

11120-02 SYMAL-13 1107/2002 1610 Soll 11120-04 SYMAL-14 1106/2002 1150 Soll 11120-04 SYMAL-15 1106/2002 1150 Soll AMPLET SAMPLE ID: SWMU-1-2 LMITS LMITS DETECTION 11120-104 SAMPLE ID: SWMU-1-2 TOTAL TODD ND ps/g 0.272 SUB 11/28/2002 14/26 11120-101 SAMPLE ID: SWMU-1-2 TOTAL TODD ND ps/g 0.272 SUB 11/28/2002 14/26 1128/2002 1,2,3,6,7,8-PxCDD ND ps/g 0.276 SUB 11/28/2002 14/26 112,3,6,7,8-PxCDD ND ps/g 0.176 12/28,7,8-PxCDD ND ps/g 0.176 112,3,6,7,8-PxCDD ND ps/g 0.176 12/28,7,8-PxCDD ND ps/g 0.276 12,3,6,7,8-PxCDD ND ps/g 0.276 12/28,7,8-PxCDD ND ps/g 0.276 12,3,4,7,8-PxCDF ND ps/g 0.276 12/28,7,8-PxCDF ND ps/g 0.276 12,3,4,7,8-		CLIENT:		inkhouser Inc.	PR	OJECT N	IAME:	Bay Zinc			
PHONE: (502) 695-5009 FAX: SUBMITTED: 11/12/02 10:30 EEPORT DATE: 12/12/02 08:14 REPORT NUMBER: 211/201 PAGE: 1 0F SEMPLE CLENTS DF ATE TME MATE MATE MATE PAGE: 1 0F H120-10 SWAM-1-2 1107020 1000 Sei			Louisville K	Y, 40220	PROJ	ECT NUN	IBER:	100-02			
FAX: (502) 895-4005 SUBMITTED: 11/12/02 10:30 REPORT DATE: 12/12/02 08:14 REPORT NUMBER: 2111201 PAGE: 1 OF 35000000000000000000000000000000000000		ATTN:	Roy Funkho	user			ABER:	100-02			
REPORT DATE: 12/12/02 08:14 REPORT NUMBER: 211/20:10 PAGE: 1 OF 35MPLE CLENTS D#			• •			SUBMI.	TTED:	11/12/02 10:3	10		
TT20-101 SYMAL-1-2 T107/2002 T600 Sall T1120-102 SYMAL-1-3 T107/2002 T610 Sall T1120-102 SYMAL-1-3 T107/2002 T610 Sall T1120-103 SYMAL-1-4 T107/2002 T610 Sall T1120-103 SYMAL-1-4 T107/2002 T610 Sall MALYSIS METHOD PARAMETER RESULTS UNITS DETECTION MALYSIS METHOD PARAMETER RESULTS UNITS DETECTION Ubochtracted Analysis COVAL COVAL SUB T128/2002 14.26 UOXINS EPA 1613/AIS20 2,37,8-TCDD ND Pg/g 0.272 SUB T128/2002 14.26 T07AL PACDD ND Pg/g 0.260 0.161 12.36,7,8-TCDD ND Pg/g 0.276 T07AL PACDD ND Pg/g 0.276 0.161 12.37,8-TCDF ND Pg/g 0.236 1.261 12.37,8-TCDF ND Pg/g 0.236 <th>REPORT D</th> <th>ATE: 12/1</th> <th>12/02 08:14</th> <th>REPOR</th> <th>T NUMBER: 2</th> <th>111201</th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th>PAGE: 1</th> <th>1 OF 3</th>	REPORT D	ATE: 12/1	12/02 08:14	REPOR	T NUMBER: 2	111201		· · · · · · · · · · · · · · · · · · ·		PAGE: 1	1 OF 3
11201-02 111201-04 SWNU-1-3 SWNU-1-3 SWNU-1-4 SWNU-1-5 11072002 1120 110552002 1120 50l 110552002 1120 50l 110552002 1120 50l 110552002 AMPLEF SWNU-1-5 PARAMETER SWNU-1-5 RESULTS INTER SWNU-1-5 UNITS INTER SWNU-1-5 DETECTION INTER SWNU-1-5 DETECTION INTER SWNU-1-5 111201-04 SAMPLE ID: SWNU-1-2 INTER SWNU-1-5 ND pg/g 0.272 0.272 SUB 1128/2002 14.26 0.272 111201-04 SAMPLE ID: SWNU-1-2 INTER TOTAL FCDD ND pg/g 0.272 SUB 1128/2002 14.26 0.272 11120-0001 ND pg/g 0.230 12.3,7,8-PcDD ND pg/g 0.230 12,3,8,7,8-PcDD ND pg/g 0.161 1.28 12.28 1.28 12.28 1.28 12.28 1.	H SAMPLE	CLIE	INTS ID#			DATE	TIME	MATRIX			
NAL YSIS METHOD PARAMETER RESULTS UNITS LIMIT TECH DATEFTIME 111201-01 SAMPLE ID: SWMU-1-2	2111201-01 2111201-02 2111201-03 2111201-03 2111201-04	SW SW	MU-1-3 MU-1-4			11/07/200 11/05/200	02 1610 02 1130	Soll Soil			
Abbontracted Analysis EPA 1613A/8290 2,3,7,8-TCDD ND p9/g 0.272 SUB 11/28/2002 14.25 MXNNS EPA 1613A/8290 2,3,7,8-TCDD ND p9/g 0.272 SUB 11/28/2002 14.26 12,3,7,8-PeCDD ND p9/g 0.200 12.3 <t< th=""><th>SAMPLE/ Analysis</th><th>METH</th><th></th><th>PARAMETER</th><th>RESU</th><th>LTS I</th><th>UNITS</th><th></th><th>TECH</th><th>DATE/TIME</th><th></th></t<>	SAMPLE/ Analysis	METH		PARAMETER	RESU	LTS I	UNITS		TECH	DATE/TIME	
HOXINS EPA 1613W6290 2,3,7,8-TODD ND pg/g 0.272 SUB 11/28/2002 14:26 TOTAL FCDD ND pg/g 0.270 1/2.8,7,8-PeCDD ND pg/g 0.270 12,3,7,8-PeCDD ND pg/g 0.200 1/2.8,7,8-PeCDD ND pg/g 0.200 12,3,7,8-PeCDD ND pg/g 0.200 1/2.8,7,8-PeCDD ND pg/g 0.189 12,3,7,8-PeCDD ND pg/g 0.161 1/2.8,7,8-PeCDD 3.62 pg/g 0.228 12,3,4,8,7,8-PeCDD 3.62 pg/g 0.228 1/2.8,7,8-PeCDF 1/2.8,7,8-PeCDF 0.909 0.224 12,3,4,7,8-PeCDF ND pg/g 0.170 1/2.3,4,7,8-PeCDF 1/2.8,7,8-PeCDF 0.500 pg/g 0.170 12,3,4,7,8-PeCDF ND pg/g 0.230 1/2.2,3,7,8-PeCDF 0.500 pg/g 0.271 12,3,4,7,8-PeCDF ND pg/g 0.230 1/2.3,4,7,8-PeCDF 0.500 pg/g 0.230 12,3,4,7,8-PeCD	111201-01			1-2							
1,2,3,7,8-PeOD ND ps/g 0.200 TOTAL PeOD ND ps/g 0.200 1,2,3,4,7,8-HeOD ND ps/g 0.169 1,2,3,7,8-HeOD ND ps/g 0.161 1,2,3,7,8-HeOD ND ps/g 0.161 1,2,3,7,8-HeOD 0.384 ps/g 0.161 1,2,3,4,7,8-HeOD 3.82 ps/g 0.228 1,2,3,4,7,8-HeOD 3.82 ps/g 0.238 1,2,3,4,7,8-HeOD 3.82 ps/g 0.338 1,2,3,4,7,8-HeOD 3.92 ps/g 0.228 1,2,3,4,7,8-HeODF ND ps/g 0.233 1,2,3,4,7,8-HeODF ND ps/g 0.243 1,2,3,7,8-HeODF 119 ps/g 0.243 1,2,3,7,8-HeODF ND ps/g 0.170 1,2,3,4,7,8-HeODF ND ps/g 0.170 1,2,3,4,7,8-HeODF ND ps/g 0.230 1,2,3,4,7,8-HeODF ND ps/g 0.230 1,2,3,4,7,8-HeOD	NOXINS			2,3,7,8-TCDD	ND	P9	√g	0.272	SUB	11/28/2002 14:26	
TOTAL PeOD ND pg/g 0.200 12,3,47,8+hCDD ND pg/g 0.189 12,3,67,8+hCDD ND pg/g 0.161 12,3,7,8+hCDD ND pg/g 0.176 12,3,4,67,8+hCDD 0.384 pg/g 0.161 12,3,4,67,8+hCDD 3.62 pg/g 0.228 12,3,4,67,8+hCDD 3.62 pg/g 0.238 12,3,4,67,8+hCDD 3.09 pg/g 0.238 12,3,4,67,8+hCDF ND pg/g 0.243 12,3,7,8+RCDF ND pg/g 0.175 12,3,4,7,8+hCDF 0.530 pg/g 0.170 12,3,4,7,8+hCDF 0.532 pg/g 0.217 12,3,4,7,8+hCDF 0.532 pg/g 0.217 12,3,4,5,7,8+hCDF ND pg/g 0.230 12,3,4,6,7,8+hCDF ND pg/g 0.230 12,3,4,6,7,8+hCDF ND pg/g 0.217 12,3,4,6,7,8+hCDF ND pg/g 0.216 12,3,4,6,7,8+h				TOTAL TODD							
12,3,4,7,8+hCDD ND ps/g 0.189 12,3,7,8,9+hCDD ND ps/g 0.161 12,3,7,8,9+hCDD 0.394 ps/g 0.176 12,3,7,8,9+hCDD 0.394 ps/g 0.161 12,3,7,8,9+hCDD 0.394 ps/g 0.161 12,3,7,8,9+hCDD 3.62 ps/g 0.228 12,3,7,8,9-hCDD 9.2 ps/g 0.228 12,3,7,8,9-hCDD 9.2 ps/g 0.228 12,3,7,8,9-hCDF ND ps/g 0.243 12,3,7,8,9-hCDF ND ps/g 0.243 12,3,7,8,9-hCDF 0.500 ps/g 0.170 TOTAL TCDF 1,19 ps/g 0.243 12,3,4,7,8-PcOF 0.652 ps/g 0.217 12,3,4,7,8-PcOF ND ps/g 0.2263 TOTAL HcOF 1,78 ps/g 0.207 12,3,4,7,8-PcOF ND ps/g 0.263 TOTAL HcOF 1,78 ps/g 0.207 12,3,4,7,8-PcOF											
12.3.6.7.8-HoCDD ND ps/g 0.161 12.3.7.8-HoCDD ND ps/g 0.176 12.3.7.8-HoCDD 0.394 ps/g 0.176 12.3.4.6.7.8-HoCDD 3.62 ps/g 0.228 12.3.4.6.7.8-HoCDD 3.62 ps/g 0.228 12.3.4.6.7.8-PoCDD 9.22 ps/g 0.228 12.3.4.6.7.8-PoCDF ND ps/g 0.243 12.3.7.8-PoCDF ND ps/g 0.243 12.3.4.7.8-PoCDF ND ps/g 0.217 12.3.4.7.8-PoCDF 0.550 ps/g 0.170 12.3.4.7.8-HoCDF 0.632 ps/g 0.217 12.3.4.7.8-HoCDF ND ps/g 0.226 12.3.4.7.8-HoCDF ND ps/g 0.230 12.3.4.7.8-HoCDF ND ps/g 0.236 12.3.4.7.8-HoCDF ND ps/g 0.236 12.3.4.7.8-HoCDF ND ps/g 0.236 12.3.4.7.8-HoCDF ND ps/g 0.245											
12,3,7,8,9-HxCDD ND pg/g 0.176 TOTAL HxCDD 0.394 pg/g 0.161 12,3,4,6,7,8-HxCDD 3.62 pg/g 0.228 TOTAL HxCDD 9.22 pg/g 0.228 12,3,4,6,7,8-9-OCD 30.9 pg/g 0.384 12,3,7,8-TCDF ND pg/g 0.281 TOTAL TCDF 1.18 pg/g 0.243 12,3,7,8-FCDF ND pg/g 0.170 TOTAL psCDF 0.632 pg/g 0.170 TOTAL psCDF 1.68 pg/g 0.217 12,3,4,7,8-PsCDF 0.632 pg/g 0.207 12,3,4,7,8-PsCDF ND pg/g 0.230 12,3,4,7,8-PsCDF ND pg/g 0.245 12,3,4,7,8-PsCDF							-				
TOTAL HxCDD 0.394 pg/g 0.161 12,3,4,67,8+HpCDD 3.62 pg/g 0.228 TOTAL HpCDD 9.22 pg/g 0.228 12,3,4,67,8,9-OCDD 30.9 pg/g 0.338 2,37,8-TODF ND pg/g 0.243 TOTAL HpCDF 1,19 pg/g 0.243 12,3,4,7,8-PeCDF ND pg/g 0.175 2,3,4,7,8-PeCDF ND pg/g 0.175 2,3,4,7,8-PeCDF 0.532 pg/g 0.217 12,3,4,7,8-PeCDF ND pg/g 0.230 12,3,4,7,8-PeCDF ND pg/g 0.236 TOTAL HpCCF 1,78 pg/g 0.196 12,3,4,7,8-PeCDF ND pg/g 0.245 SUB 11/2	1.e ·		· · · ·				_				
12,3,4,6,7,8+hpCDD 3,62 p9/g 0.228 107AL HpCDD 922 p9/g 0.238 12,3,4,6,7,8,9-0CDD 30,8 p9/g 0.338 2,3,7,8-TODF ND p9/g 0.243 12,3,4,7,8,9-6CDF ND p9/g 0.433 12,3,4,7,8,9-6CDF ND p9/g 0.475 2,3,4,7,8-PeCDF 0.500 p9/g 0.175 12,3,4,7,8,9-6CDF 0.600 p9/g 0.207 TOTAL P6CDF 1.68 p9/g 0.207 12,3,4,7,8,9-6CDF ND p9/g 0.207 12,3,4,7,8,9-4CDF ND p9/g 0.245 12,3,4,7,8,9-4CDF ND p9/g 0.386 COTAL H6COF 1.44 p9/g 0.196 12,3,4,7,8-4											-
TOTAL HpCDD 9.22 pg/g 0.228 12,3,4,5,7,8,9-0CDD 30,9 pg/g 0.333 2,3,7,5-TCOF ND pg/g 0.243 TOTAL TCDF 1,18 pg/g 0.243 12,3,7,8-PCDF ND pg/g 0.175 2,3,7,8-PCDF ND pg/g 0.170 TOTAL PeCDF 1,68 pg/g 0.211 12,3,4,7,8-PeCDF 0.632 pg/g 0.217 12,3,4,7,8-PeCDF ND pg/g 0.220 TOTAL PeCDF 1,58 pg/g 0.217 12,3,4,7,8-PeCDF ND pg/g 0.230 12,3,4,7,8-PeCDF ND pg/g 0.2263 TOTAL HpCDF 1,78 pg/g 0.207 12,3,4,7,8-PHCDF ND pg/g 0.196 12,3,4,7,8-PHCDF 1,88 pg/g 0.196 12,3,4,7,8-PHCDF 1,84 pg/g 0.196 12,3,4,7,8-PHCDF 1,99 0.236 1128/4,27,8-PHCDF Upontracted Analysis 2,3,7,6-TCDD ND pg/g 0.245 SU			•								
12,3,4,5,7,8,9-OCDD 30,9 pg/g 0.338 23,7,8-TCDF ND pg/g 0.291 TOTAL TCDF 1,19 pg/g 0.243 12,3,7,8-PeCDF ND pg/g 0.175 2,3,7,8-PeCDF 0.500 pg/g 0.170 TOTAL PeCDF 1.68 pg/g 0.217 12,3,4,7,8-PeCDF 0.652 pg/g 0.217 12,3,4,7,8-HcOF 0.632 pg/g 0.207 2,3,4,7,8-HcOF ND pg/g 0.207 12,3,4,7,8-HcOF ND pg/g 0.207 12,3,4,7,8-HcOF ND pg/g 0.207 12,3,4,7,8-HcOF ND pg/g 0.207 12,3,4,7,8-HcOF 0.888 pg/g 0.196 12,3,4,7,8-HcOF 0.888 pg/g 0.196 12,3,4,7,8-HcOF 0.888 pg/g 0.196 12,3,4,7,8-HcOF 1.44 pg/g 0.196 12,3,4,7,8-HcOF ND pg/g 0.245 Vibontracted Analysis TOTAL TCDD ND pg/g 0.245 I11201-			•				-				
111201-02 SAMPLE ID: SWMU-1-3 Ubcontracted Analysis 2,3,7,8-hCDF IOXINS EPA 1613A/6290 2,3,7,8-hCDD ND 11201-02 SAMPLE ID: SWMU-1-3 Ubcontracted Analysis IOXINS 2,3,7,8-hCDD IOXINS 2,3,7,8-hCDD IOXINS 2,3,7,8-hCDD IOXINS 2,3,7,8-hCDD IOXINS 2,3,7,8-hCDD IOXINS 2,3,7,8-hCDD IOXINS 1,2,3,7,8-hCDD IOXINS 1,2,3,7,8-hCDF IOXINS 1,2,3,7,8-hCDF IOXINS 1,2,3,7,8-hCDF IOXINS 1,2,3,4,6,7,8,+hCDF IOXINS 1,2,3,4,6,7,8,+hCDD IOXI		-	• •	•							
TOTAL TCDF 1.19 pg/g 0.243 1.2,3,7,8-PeCDF ND pg/g 0.175 2,3,4,7,8-PeCDF 0.500 pg/g 0.170 TOTAL PCCP 1.88 pg/g 0.217 1,2,3,4,7,8-PeCDF 0.632 pg/g 0.247 1,2,3,4,7,8-PeCDF ND pg/g 0.230 1,2,3,6,7,8-PeCDF ND pg/g 0.263 1,2,3,7,8-PeCDF ND pg/g 0.263 1,2,3,4,7,8-PeCDF ND pg/g 0.263 1,2,3,4,7,8-PeCDF ND pg/g 0.263 1,2,3,4,7,8-PeCDF ND pg/g 0.276 1,2,3,4,7,8-PeCDF ND pg/g 0.276 TOTAL HpCDF 1.44 pg/g 0.196 1,2,3,4,7,8-PeCDF ND pg/g 0.245 bicontracted Analysis TOTAL TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL PeCDD ND pg/g 0.183 I22,4,5,7,8-PECDD ND pg/g 0.182 1.2,3,4,7,8-PECDD TOTAL PECDD ND											
12,3,7,8-PeCDF ND pg/g 0.175 23,4,7,8-PeCDF 0.500 pg/g 0.170 TOTAL PeCDF 1.68 pg/g 0.170 12,3,4,7,8-PeCDF 0.632 pg/g 0.217 12,3,4,7,8-PeCDF ND pg/g 0.220 12,3,4,7,8-PeCDF ND pg/g 0.207 23,4,6,7,8-HxCDF ND pg/g 0.207 23,4,6,7,8-HxCDF ND pg/g 0.207 12,3,4,5,7,8-PhxCDF ND pg/g 0.207 12,3,4,5,7,8-HxCDF ND pg/g 0.207 12,3,4,5,7,8-HxCDF 0.988 pg/g 0.196 12,3,4,5,7,8-PhCDF 0.988 pg/g 0.196 12,3,4,5,7,8-PhCDF 1.44 pg/g 0.196 12,3,4,5,7,8-PhCDF 2.09 pg/g 0.386 11201-02 SAMPLE ID: SWMU-1-3 SUB 11/28/2002 14:26 DXINS EPA 16134/6290 2,3,7,8-TCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.193 11/28/2002 14:26 TOTAL HpCDD ND<					1.19		-	0.243			
TOTAL PECDF 1.68 pg/g 0.170 1,2,3,4,7,8-HbCDF 0.632 pg/g 0.217 1,2,3,6,7,8-HbCDF ND pg/g 0.230 2,3,6,7,8-HbCDF ND pg/g 0.230 1,2,3,7,8,9-HbCDF ND pg/g 0.263 TOTAL HbCDF 1.78 pg/g 0.207 1,2,3,4,6,7,8-HbCDF 0.888 pg/g 0.196 1,2,3,4,6,7,8-HbCDF 0.888 pg/g 0.196 1,2,3,4,6,7,8-HbCDF ND pg/g 0.276 TOTAL HpCDF 1.44 pg/g 0.186 12,3,4,6,7,8,9-OCDF 2.09 pg/g 0.386 TOTAL PCDF 1.44 pg/g 0.245 SUB 11/28/2002 14:26 TOTAL FCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL FCDD ND pg/g 0.182 TOTAL FCDD ND pg/g 0.182 1/2,3,7,8-FCDD				1,2,3,7,8-PeCDF	ND			0.175			
12,3,4,7,8-hcDF 0.632 pg/g 0.217 12,3,6,7,8-hcDF ND pg/g 0.267 2,3,4,6,7,8-hcDF ND pg/g 0.230 12,3,7,8,9-hcDF ND pg/g 0.263 TOTAL hcDF 1.78 pg/g 0.207 12,3,4,6,7,8-hbCDF 0.988 pg/g 0.196 12,3,4,6,7,8-hbCDF 0.988 pg/g 0.196 12,3,4,6,7,8-hbCDF 0.988 pg/g 0.196 12,3,4,6,7,8-hbCDF 0.988 pg/g 0.196 12,3,4,6,7,8-hbCDF 1.44 pg/g 0.196 12,3,4,6,7,8-bCDF 2.09 pg/g 0.386 11201-02 SAMPLE ID: SWMU-1-3-					0.500			0.170			
1,2,3,6,7,8+bCDF ND pg/g 0.207 2,3,4,6,7,8+bCDF ND pg/g 0.230 1,2,3,7,8,9+bCDF ND pg/g 0.263 1,2,3,4,6,7,8+bCDF 1,78 pg/g 0.207 1,2,3,4,6,7,8+bCDF 0.888 pg/g 0.196 1,2,3,4,6,7,8,9+bCDF ND pg/g 0.276 1,2,3,4,6,7,8,9-bCDF ND pg/g 0.196 1,2,3,4,5,7,8,9-CDF 2.09 pg/g 0.386 Introduct Analysis OXINS EPA 16134/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:25 TOTAL HpCDF ND pg/g 0.245 Ibcontracted Analysis OXINS EPA 16134/8290 2,3,7,8-TCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.193 11/28/2002 14:25 12,3,4,7,8+bCDD OXINS EPA 16134/8290 2,3,7,8-PCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.182 1,2,3,4,7,8+bCDD 12,3,7,8-PCD				TOTAL PeCDF	1,68	pg	y/g	0.170			
23,4,6,7,8+hcDF ND pg/g 0.230 12,3,7,8,9+hcDF ND pg/g 0.263 TOTAL hcDF 1.78 pg/g 0.207 12,3,4,7,8,9-hpCDF 0.988 pg/g 0.196 12,3,4,7,8,9-hpCDF ND pg/g 0.276 TOTAL hpCDF 1.44 pg/g 0.196 12,3,4,5,7,8,9-0CDF 2.09 pg/g 0.386 11201-02 SAMPLE ID: SWMU-1-3- Jbcontracted Analysis SUB 11/28/2002 14:26 OXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL hpCDF ND pg/g 0.245 SUB 11/28/2002 14:26 OXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.193 TOTAL hpCDD ND pg/g 0.193 11/28/2002 14:26 TOTAL hpCDD ND pg/g 0.182 11/28/2002 14:26 12,3,7,8-PeCDD ND pg/g 0.193 12,3,7,8-HcDD 12,3,4,6,7,8-HcDD ND pg/g 0.162 12,3,7,8,9-HcDD				1,2,3,4,7,8-HxCDF	0.632	Þg	Vg				
1,2,3,7,8,9-HxCDF ND pg/g 0.263 TOTAL HxCDF 1,78 pg/g 0.207 1,2,3,4,6,7,8-HpCDF 0,988 pg/g 0.196 1,2,3,4,7,8,9-HpCDF ND pg/g 0.276 TOTAL HpCDF 1.44 pg/g 0.196 1,2,3,4,5,7,8,9-OCDF 2.09 pg/g 0.386 Introducted Analysis OXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.193 11/28/2002 14:26 OXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.193 TOTAL TCDD ND pg/g 0.193 11/28/2002 14:26 12,3,7,8-PeCDD ND pg/g 0.182 12,3,6,7,8-HxCDD ND pg/g 0.182 12,3,6,7,8-HxCDD ND pg/g 0.185 12,3,7,8-HxCDD 12,3,7,8-HxCDD 19/9 0.185 12,3,4,7,8-HxCDD ND pg/g 0.155 12,3,4,5,7,8-HxCDD 19/9 0.155 1											
TOTAL HxCDF 1.78 pg/g 0.207 1,2,3,4,5,7,8-HpCDF 0.988 pg/g 0.196 1,2,3,4,7,8,9-HpCDF ND pg/g 0.276 TOTAL HxpCDF 1.44 pg/g 0.196 1,2,3,4,5,7,8,9-OCDF 2.09 pg/g 0.386 11201-02 SAMPLE ID: SWMU-1-3 Jbcontracted Analysis 5000 OXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL PeCDD ND pg/g 0.193 11/28/2002 14:26 12,3,7,8-PeCDD ND pg/g 0.193 12:3,6,7,8-HxCDD 12,3,4,7,8-HxCDD ND pg/g 0.185 12:3,6,7,8-HxCDD 12,3,6,7,8-HxCDD ND pg/g 0.185 12:3,6,7,8-HxCDD 12:3,6,7,8-HxCDD 12,3,6,7,8-HxCDD ND pg/g 0.185 12:3,6,7,8-HxCDD 12,3,6,7,8-HxCDD ND pg/g 0.155 12:3,6,7,8-HxCDD 12,3,4,5,7,8-HxCDD ND pg/g 0.155						-					
1,2,3,4,6,7,8-HpCDF 0.988 pg/g 0.196 1,2,3,4,7,8,9-HpCDF ND pg/g 0.276 TOTAL HpCDF 1.44 pg/g 0.196 1,2,3,4,6,7,8,9-OCDF 2.09 pg/g 0.386 Introduction of the system of the syste										•	
1,2,3,4,7,8,9-HpCDF ND pg/g 0.276 TOTAL HpCDF 1.44 pg/g 0.196 1,2,3,4,6,7,8,9-OCDF 2.09 pg/g 0.386 Introducted Analysis Jbcontracted Analysis SUB 11/28/2002 14:26 OXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 TOTAL TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.193 11/28/2002 14:26 TOTAL FeCDD ND pg/g 0.193 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.193 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.193 11/28/2002 14:26 TOTAL FeCDD ND pg/g 0.193 12,3,7,8-PeCDD TOTAL FeCDD ND pg/g 0.162 12,3,6,7,8-PeCDD 12,3,6,7,8-PeCDD 1,2,3,7,8,9+hcDD ND pg/g 0.155 12,3,7,8,9+hcDD 12,3,4,6,7,8-HpCDD 12,3,4,5,7,8-HpCDD TOTAL HcDD ND pg/g 0.155 12,3,4,5,7,8-HpCDD 12,3,4,5,7,8-HpCDD 12,3,4,5,7,8-											
TOTAL HpCDF 1.44 pg/g 0.196 1,2,3,4,6,7,8,9-OCDF 2.09 pg/g 0.386 111201-02 SAMPLE ID: SWMU-1-3 Ubcontracted Analysis Victor Contracted Analysis IOXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.193 11/28/2002 14:26 TOTAL PeCDD ND pg/g 0.193 12,3,4,7,8-HbCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.182 12,3,7,8-HbCDD 12,3,7,8,9-HbCDD ND pg/g 0.155 1,2,3,7,8,9-HbCDD ND pg/g 0.155 12,3,7,8,9-HbCDD 12,3,7,8,9-HbCDD ND pg/g 0.155 1,2,3,4,5,7,8-HbCDD ND pg/g 0.155 12,3,4,5,7,8-HbCDD 12,3,4,5,7,8-HbCDD ND pg/g 0.155											
1,2,3,4,6,7,8,9-OCDF 2.09 pg/g 0.386 111201-02 SAMPLE ID: SWMU-1-3 Jubcontracted Analysis 5000 ND pg/g 0.245 SUB 11/28/2002 14:26 10XINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 10XINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 10XINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 10XINS EPA 1613A/8290 2,3,7,8-TeCDD ND pg/g 0.193 11/28/2002 14:26 11,2,3,7,8-PeCDD ND pg/g 0.162 12,3,6,7,8-HxCDD ND pg/g 0.162 12,3,6,7,8-HxCDD ND pg/g 0.155 12,3,7,8,9-HxCDD 12,3,4,6,7,8-HxCDD ND pg/g 0.155 12,3,4,6,7,8-HpCDD ND pg/g 0.155 12,3,4,6,7,8-HpCDD 12,3,4,6,7,8-HpCDD 0.782 pg/				· ·							
ubcontracted Analysis ND pg/g 0.245 SUB 11/28/2002 14:26 NDXINS EPA 1613A/6290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.162 TOTAL 12,3,6,7,8-HxCDD ND pg/g 0.155 1,2,3,6,7,8-HxCDD ND pg/g 0.155 TOTAL HxCDD ND pg/g 0.155 1,2,3,4,5,7,8-HpCDD ND pg/g 0.155 TOTAL HxCDD ND pg/g 0.155				•							
IOXINS EPA 1613A/8290 2,3,7,8-TCDD ND pg/g 0.245 SUB 11/28/2002 14:26 TOTAL TCDD ND pg/g 0.245				1-3							
TOTAL TCDD ND pg/g 0.245 1,2,3,7,8-PeCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.193 1,2,3,4,7,8-HxCDD ND pg/g 0.162 1,2,3,6,7,8-HxCDD ND pg/g 0.155 1,2,3,7,8,9-HxCDD ND pg/g 0.155 1,2,3,7,8,9-HxCDD ND pg/g 0.155 1,2,3,7,8,9-HxCDD ND pg/g 0.155 1,2,3,4,6,7,8-HpCDD ND pg/g 0.155		-		2,3,7,8-TCDD	ND	þg	¥g	0.245	SUB	11/28/2002 14:26	
1,2,3,7,8-PeCDD ND pg/g 0.193 TOTAL PeCDD ND pg/g 0.193 1,2,3,4,7,8-HxCDD ND pg/g 0.162 1,2,3,6,7,8-HxCDD ND pg/g 0.155 1,2,3,7,8,9-HxCDD ND pg/g 0.196 TOTAL HxCDD ND pg/g 0.155 1,2,3,4,6,7,8-HpCDD ND pg/g 0.155 1,2,3,4,6,7,8-HpCDD ND pg/g 0.155											
1,2,3,4,7,8-HxCDD ND pg/g 0.182 1,2,3,6,7,8-HxCDD ND pg/g 0.155 1,2,3,7,8,9-HxCDD ND pg/g 0.196 TOTAL HxCDD ND pg/g 0.155 1,2,3,4,6,7,8-HpCDD ND pg/g 0.155 1,2,3,4,6,7,8-HpCDD ND pg/g 0.155					ND			0.193			
1,2,3,6,7,8-HxCDD ND pg/g 0.155 1,2,3,7,8,9-HxCDD ND pg/g 0.196 TOTAL HxCDD ND pg/g 0.155 1,2,3,4,6,7,8-HxCDD ND pg/g 0.155 1,2,3,4,6,7,8-HxCDD 0.782 pg/g 0.271						Pg	¥9				
1,2,3,7,8,9-HxCDD ND pg/g 0,196 TOTAL HxCDD ND pg/g 0.155 1,2,3,4,6,7,8-HpCDD 0.782 pg/g 0.271											
TOTAL HxCDD ND pg/g 0.155 1,2,3,4,6,7,8-HpCDD 0.782 pg/g 0.271											
1,2,3,4,6,7,8-HpCDD 0.782 pg/g 0.271											
TOTAL HpCDD 1.61 pg/g 0.271				•							

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

ORIGINAL CERTIFICATE OF ANALYSIS

SAMPLE/ Analysis	METHOD	PARAMETER	RESULTS	UNITS		TECH	DATE/TIME
<mark>2111201-02</mark> Subcontracte	SAMPLE ID; SWM	U-1-3					
Dioxins	EPA 1613A/8290	1,2,3,4,6,7,8,9-OCDD	3.26	pg/g	0.331	SUB	11/28/2002 14:26
		2,3,7,8-TCDF	ND	P9/9	0.201	000	1112012002 11:20
			ND		0.201		
			ND	pg/g	0.187		
		1,2,3,7,8-PeCDF	ND	pg/g pg/g	0.182		
		2,3,4,7,8-PeCDF TOTAL PeCDF	ND	pg/g pg/g	0.182		
			ND	pg/g	0.150		
		1,2,3,4,7,8-HxCDF		pg/g	0.143		
		1,2,3,6,7,8-HxCDF	ND	P9/g	0.143		
		2,3,4,6,7,8-HxCDF	ND	P9/g	0.320		
		1,2,3,7,8,9-HxCDF	ND	pg/g	0.320		
			ND	Pg /g			
		1,2,3,4,6,7,8-HpCDF	ND	P9/9 P9/a	0.180 0.254		
		1,2,3,4,7,8,9-HpCDF	ND	pg/g bg/g	0.160		
		TOTAL HpCDF	ND 10.2	pg/g pg/c	0.160		
		1,2,3,4,6,7,8,9-OCDF	10.2	P9/9	0.300	·	<u> </u>
2111201-03 Subcontracte	SAMPLE ID: SWM d Analysis	U-1-4					
DIOXINS	EPA 1613A/8290	2,3,7,8-TCDD	ND	pg/g	0.272	SUB	11/28/2002 14:26
		TOTAL TODD	ND	P9/g	0.272		
	· · · · · · · · · · · · · · · · · · ·		ND	P9/9	0.238		•
		TOTAL PeCDD	ND	P9/9	0.238		
., -		1,2,3,4,7,8-HxCDD	ND	P9/9	0.186		
		1,2,3,6,7,8-HxCDD	ND	pg/g	0.158		
:		1,2,3,7,8,9-HxCDD	ND ·	₽9/9 ₽9/9	0.172		
		TOTAL HxCDD	ND	pg/g	0.158		
		1,2,3,4,6,7,8-HpCDD	2.90	pg/g	0.236		
		TOTAL HoCDD	5.67	P9/9	0.236		
		1,2,3,4,6,7,8,9-OCDD	7.11	P9/9 P9/9	0.325		
		2,3,7,8-TCDF	0.697	P9-9 P9/0	0.199		
		TOTAL TODE	4.89	P9/9	0.272		
		1,2,3,7,8-PeCDF	ND	P9/9	0.199		
		2,3,4,7,8-PeCDF	1.06	P9/g	0,193		
		TOTAL PeCDF	5,58	pg/g	0.193		
		1,2,3,4,7,8-HxCDF	1.45	pg/g	0.198		
		1,2,3,6,7,8-HxCDF	0.542	P9/9 Pg/g	0.189		
		2,3,4,6,7,8-HxCDF	0.853	ру/р	0.209		
		1,2,3,7,8,9-HxCDF	ND	P9/9	D.240		
		TOTAL HxCDF	5.25	pg/g	0.189		
		1,2,3,4,6,7,8-HpCDF	2.09	pg/g	0.250		
		1,2,3,4,7,8,9-HpCDF	ND	P9/9	0.353		
		TOTAL HpCDF	2.09	P9/9 P9/9	0.250		
		1,2,3,4,6,7,8,9-OCDF	1,90	P9/9	0.478		
111201-04 Subcontracted	SAMPLE ID: SWMU	J-1-5				<u>.</u>	
NOXINS	EPA 1613A/8290	2,3,7,8-TCDD	ND	₽9/g	0.224	SUB	11/28/2002 14:26
	E. 11 10 107/0230	TOTAL TODD	ND	ру/у рg/g	0.224		INZUIZOVE MIZU
		1,2,3,7,8-PeCDD	ND ND		0.243		
		TOTAL PeCDD	ND	pg/g pg/g	D.243		
		1,2,3,4,7,8-HxCDD	ND	₽9/9 ₽9/9	0.231		
		1,2,3,6,7,8-HxCDD	ND		0.196		
			110	P9/ 9	000		

Authorized for Release By:David T. Back - Quality/Systems Manager

ORIGINAL CERTIFICATE OF ANALYSIS

REPORT DA	REPORT DATE: 12/12/02 08:14 REPORT NUMBER: 2111201								
SAMPLE/ Analysis	METHOD	PARAMETER	RESULTS UNITS			TECH	DATE/TIME		
2111201-04	SAMPLE ID: SWM	U-1-5							
Subcontracted	d Analysis								
DIOXINS	EPA 1613A/8290	1,2,3,7,8,9-HxCDD	ND	pg/g	0,214	SUB	11/28/2002 14:26		
		TOTAL HXCDD	ND	Pg/g	0.196				
		1,2,3,4,6,7,8-HpCDD	1.38	pg/g	0.324				
		TOTAL HpCDD	2.74	pg/ 9	0.324				
		1,2,3,4,6,7,8,9-OCDD	5,50	P9 /g	0.451				
		2,3,7,8-TCDF	ND	pg/g	0.238				
		TOTAL TCDF	ND	pg/g	0.238				
		1,2,3,7,8-PeCDF	ND	pg/g	0.163				
		2,3,4,7,8-PeCDF	ND	p g /g	0.158				
		TOTAL PeCDF	ND	pg/g	0.158				
		1,2,3,4,7,8-HxCDF	ND	P9/8	0.182				
		1,2,3,6,7,8-HxCDF	ND	pg/g	0.174				
		2,3,4,6,7,8-HxCDF	ND	P9/9	0.194				
		1,2,3,7,8,9-HxCDF	ND	pg/g	0.221				
		TOTAL HXCDF	ND	₽9/g	0.174				
		1,2,3,4,6,7,8-HpCDF	0,400	P9 /9	0.212				
		1,2,3,4,7,8,9-HpCDF	ND	pg/g	0.298				
		TOTAL HpCDF	0.400	₽ 9 /g	0.174				
		1,2,3,4,6,7,8,9-OCDF	2.10	₽9/g	0.212				

uns report may not be reproduced except in full.

Authorized for Release By: David T. Back - Quality/Systems Manager

194						<u> </u>					<u> </u>	_		 	1		 				1	
· (Ph: (503) 286-9464 Fax: (5u3) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed														FOR LABORATORY USE ONLY	PO#	Cash/check #	Amount Paid: \$	-		CI Form 100 (COC) Rev B7/.
بېرې پېرې پېرې	nd, OR 97203 WA 98424 A, Benicia, CA 94510 Pedro, CA 90731			- Ob	35	у и <u>т</u> Хи	Dia	×	×	×	×			 -		 FORLAB	Inspection Job Number:	Laboratory Project Number:	Due Date:	-		
The second s	7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 E. 2nd Street, Suite A. Benicia, CA 94510 797 Channel Street, San Pedro, CA 90731	BAY ZINC	100-02	Notification Method(s)	Telephone	区(Email 区)形式×	Sample Sample Date Time	7								 Date/Time		- Date/Time				-
And second and the fight second		Project Name:	Project Nutnber: P.O. Number:	Testing Priority		Due Date:	Sample Matrix	Soil	Ś	5011	Soil					 Received By:		Received By:			,	
	COLUMBIL INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	LINEBACH FUNKHUISER IN		502.895-5009	502-895-4005	BRADLEY CORE automitted	Sample Description/UN Number	SWMU-1-2	SWMU - 1-3	 1	SWMU-1-5					Date Time	(ex/ 1200	Date/Time				White Capy - Laboratory Yellow Copy - Client Copy
	COLUMB1 CHAIN	Customer Name:	Attention: Address:	I i	Fax:	Sampler:	Sample ID#									 Relinquished By:	they .	Relingwished By.	`	-		White Copy - Labe

AOC-1

ĺ

(

· · · ·

Rilliance Analytical Laboratories LLC

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 12/12/02 Date of Report: 12/13/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received					
101101-(001-005)	Misc. Soils; Cd, Pb, and Zn	12/12/2002 4:35 PM					
101101-006	Equip Blank; Cd, Pb, and Zn	12/12/2002 4:35 PM					

Comments:

.

Soil sample results reported on a dry-weight basis.

Deltan Rfie

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

(

Project:	Metals, S/W
Date Received:	12/12/2002
Date Completed:	12/13/2002
Date Reported:	12/13/2002

Lab Sample ID: 101101-(001-006)

Ľ	ab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
A	Aethod Blank		Cadmium	EPA 200.7		ND			mg/L	0.006
			Lead	EPA 200.7		ND			mg/L	0.2
			Zinc	EPA 200.7		0.084			mg/L	0.007
1	01101-001	AOC-1-1 (0.5-1)	Cadmium	EPA 200.7	16.1	26.8			mg/Kg	0.006
			Lead	EPA 200.7	16.1	2034			mg/Kg	0.2
			Zinc	EPA 200.7	16.1	35106	·		mg/Kg	0.007
1	01101-002	AOC-1-1 (1-1.5)	Cadmium	EPA 200.7	19.5	27.9			mg/Kg	0.006
			Lead	EPA 200.7	19.5	1408			mg/Kg	0.2
·			Zinc	EPA 200.7	19.5	29292			mg/Kg	0.007
<u>}</u>	1101-003	AOC-1-2 (0.5-1)	Cadmium	⊜EPA 200.7 .00	13.3	ND			mg/Kg	0.006
			Lead	EPA 200.7	13.3	52.9			mg/Kg	0.2
			Zinc	EPA 200.7	13.3	4846			mg/Kg	0.007
1	01101-004	AOC-1-2 (1-1.5)	Cadmium	EPA 200.7	14.8	ND			mg/Kg	0.006
			Lead	EPA 200.7	14.8	229			mg/Kg	0.2
			Zinc	EPA 200.7	14,8	6976			mg/Kg	0.007
1	01101-005	SWMU-1-14	Cadmium	EPA 200.7	9.5	13.3	11.8	12.4	mg/Kg	0.006
			Lead	EPA 200.7	9.5	1770	1749	1.2	mg/Kg	0.2
			Zinc	EPA 200.7	9.5	14262	14602	2.4	mg/Kg	0.007
1	, 01101-006	SWMU-1-14	Cadmium	EPA 200.7		ND			mg/L	0.006
		Equip Blank	Lead	EPA 200.7		ND			mg/L	0.2
			Zinc	EPA 200.7		ND			mg/L	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, S/W 12/12/2002 Date Received: 12/13/2002 Date Completed: 12/13/2002 Date Reported:

Quality Control Summary

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101101-003 MS	Cadmium	EPA 200.7	2.0	1.58	79.1	mg/L	0.006
	Lead	EPA 200.7	2.0	2.44	84.1	mg/L	0.2
	Zinc	EPA 200.7	20.0	85.2	78.3	mg/L	0.007
IPC Sind	Cadmium	EPA 200.7	2.0	1.93	96.3	mg/L	0.006
	Lead	EPA 200.7	2.0	1.98	99.0	mg/L	0.2
	Zinc	EPA 200.7	2.0	2.01	100.6	mg/L	0.007
QCS Stnd	Cadmium	EPA 200.7	1.5	1.42	94.7	mg/L	0.006
	Lead	EPA 200.7	1.5	1.46	97.6	mg/L	0.2
	Źinc	EPA 200.7	1.5	1.48	98.7	mg/L	0.007

(

		-	CERT	FICA	TE	O		ΔΝΔΙ	Y	SIS	
		h			116.			/~\\$ \ /~\` L			
(CLIENT:	Linebach FL	inkhouser inc.		PRO.	JECT NA	ME:	Bay Zinc			
	ATTN:	Roy Funkho	user								
		4059 Shelby	ville Rd.		PROJEC	T NUME	BER:	100-02			
•		Louisville K	Y, 40220								
}	PHONE:	(502) 895-50	109								
	FAX:	(502) 895-40	105		S	UBMITT	ED:	07/17/04 12:00)		
REPORT DA	TE: 07/2	9/04 08:13		REPORT NUM	BER: 407	1901				PAG	E: 1 O
CI SAMPLE	CUE	NTS ID#				DATE	TIME	MATRIX			
4071901-01		3-10 Depth 1 Fool	Plus			07/16/2004	0915	Spil			
4071901-02		3-11 Depth 1 Fool			(07/16/2004	0930	Soil			
4071901-03	AOC	3-14 Depth 6" Plu	5		(07/16/2004	0915	Sol			
4071901-04	AOC	3-17 Depth 6' Plu	5		(07/16/2004	1000	Soil			
4071901-05	AOC	1-2 Depth 1 Foot	Plus		(07/16/2004	1545	Soi)			
SAMPLE/ ANALYSIS	METH	юр	PARAMETER		RESULT	<u>s ur</u>	ITS	DETECTION	TECH	DATE/TIME	
4071901-01			10 Depth 1 Foot Plu	15							
Total Metals	by Inducti	ively Coupled	Plasma								
CADMIUM - ICP	EPA	200.7/6010B	CADMIUM		5.5	mg/l		0,005	BKB	07/23/2004 13:	
LEAD - ICP			LEAD		208	mg/i		0.009	BKB	07/23/2004 13:	
ZINC - ICP			ZINC		6800	mg/l	<u> </u>	0.053	BK8	07/23/2004 13:	28
4071901-02			-11 Depth 1 Foot Plu Discourse	15							
CADMIUM - KCP	-	ively Coupled	CADMIUM		4.7	mg/i		0.003	вкв	07/23/2004 13;	28
LEAD - ICP		200,700108	LEAD		124	mg/l		0.005	BKB	07/23/2004 13:	
ZINC - ICP	·		ZINC		3700	mg/l		0.030	BKB	07/23/2004 13:	
4071901-03	SAM		-14 Depth 6" Plus								<u></u>
		ively Coupled									
CADMIUM - ICP	EPA 2	200.7/60106	CADMIUM		4.8	mg/l		0.002	BKB	07/23/2004 13.	28
LEAD - ICP			LEAD		184	mg/l		0.004	BKB	07/23/2004 13	
ZINC - ICP			ZINC		7500	mg/l		0.022	BKB	07/23/2004 13:	28
4071901-04 Total Metals		PLE ID: AOC 3 ively Coupled	-17 Depth 6" Plus Plasma								
CADMIUM - ICP	EPA :	200,7/60108	CADMIUM		3.6	mg/l		0.004	BKB	07/23/2004 13:	
LEAD - ICP			LEAD	····	182	mg/l		0.006	BKB	07/23/2004 13	
ZINC - ICP			ZINC		6300	mg/l		0,037	ВКВ	07/23/2004 13	28
	by Induct	PLE ID: AOC 1 ively Coupled	-2 Depth 1 Foot Plus Plasma	3							
CADMIUM - ICP	EPA :	200.7/6010B	CADMIUM		8.4	mg/		0.005	ВКВ	07/23/2004 13	
LEAD - ICP			LEAD		11.4	mg/		900,0	вкв	07/23/2004 13:	28
ZINC - ICP			ZINC		9300	mg/		0,052	BKB	07/23/2004 13:	20

This report may not be reproduced except in full.

{

Authorized for Release By:

Richard D. Reid - Laboratory Director

(41

CLIENT: Linebach Funkhouser Inc. ATTN: Roy Funkhouser 4059 Shelbyville Rd. Louisville KY, 40220

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

FAX: (502) 895-4005

SUBMITTED: 08/27/04 09:13

REPORT DATE:	09/09/04 08:43		REPORT NUMBER: 4	082707			_	PAGE: 1 OF
CI SAMPLE	CLIENTS ID#			DATE	TIME	MATRIX		
4082707-01	AOC 1-X			08/25/2004		Soil		
4082707-02	5-5 23			08/25/2004	1835	Soil		
4082707-03	5-6 23			08/25/2004		Soil		
4082707-04	5-7 23			08/25/2004		Soil		
4082707-05	5823			08/25/2004	2000	Soil		
4082707-06	5 11 23			08/25/2004	1715	Soil		
4082707-07	5-12 23"			08/25/2004		Soil		
4082707-08	5-13 23*			08/25/2004	1750	Soil		
4082707-09	5-14 23			08/25/2004	1810	Soil	-	
4082707-10	Dup-1/ Duplicate			08/25/2004		Sol		
4082707-11	Rinsate			08/25/2004		Water		
BAMPLE/ ANALYSIS	METHOD	PARAMETER	RES	JLTS U	NITS	DETECTION	TECH	DATE/TIME
4082707-01 Total Metais by Ir	SAMPLE ID: AOC			<u> </u>				
THIUM - ICP	EPA 200.7/6010B	CADMIUM	0.433	mg/	kg	0.092	вкв	09/08/2004 14:09
D-ICP		LEAD	15.0	mg/	kg	0.0921	ВКВ	09/08/2004 14:09
ZINC - ICP		ZINC	71,1			0.018	ВКВ	09/08/2004 14:09

Authorized for Release By:

Richard D. Reid - Laboratory Director

 $\sim r^{-1}$

KI

7

;

un

Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 lPh: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analyses To Be Performed	COR LABORATORY USE ONLY FOR LABORATORY USE ONLY FOR LABORATORY USE ONLY Amount Paid: 5	CI Form 100 (COC) Rev B1/7/99
4510 31	V:	K K K K K K K K K K K K K K K K K K K	
 7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 East 2nd Street, Suite A, Benicia, CA 94510 797 Channel Street, San Pedro, CA 90731 		Sample Sample Sample Matrix Date Time Time Time Time Time Time Time Tim	
COLUMBIA INSPECTION, INC. Chain of Custody Record and Non-Commercial Bill of Lading	Act FUNCTHAURER OPIE JUNCTE LEINER HASS I Submitted	Sample Description/UN Number Mi AO(2-1-X Mi AO(2-1-X Mi AO(2-1-X Mi Mi AO(2-1-X AO(2-1-X Mi AO(2-1-X)AO(2-1-X)A	tory Yellow Copy - Client Copy
COLUME Chai Non-Con	Customer Name: LEVER Attention: BAP EVEY Address: 4057 Shuff Phone: (502) SYS FAX: (502) SYS Sampler: J. C. S. SYS	Sample id#	White Copy - Laboratory

(

(

(

noitpaqani sidmuloD

AOC-2

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 11/14/02 Date of Report: 11/16/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101022-(001-010)	Misc. Soils; Cd, Pb, and Zn	11/14/2002 2:25 PM
101022-011	Equip Blank; Cd, Pb, and Zn	11/14/2002 2:25 PM

Comments:

Soil sample results reported on a wet-weight basis.

Villiam Rhice

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

(

Project: Metals, S/W Date Received: 11/14/2002 Date Completed: 11/15/2002 Date Reported: 11/16/2002

Lab Sample ID: 101022-(001-011)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.012			mg/L	0.007
101022-001	AOC-2-1	Cadmium	EPA 200.7	17.7	ND			mg/Kg	0.006
		Lead	EPA 200.7	17.7	115			mg/Kg	0.2
		Zinc	EPA 200.7	17.7	3789			mg/Kg	. 0.007
101022-002	AOC-2-2	Cadmium	EPA 200.7	16.8	ND			mg/Kg	0.006
-		Lead	EPA 200.7	16.8	14.0			mg/Kg	0.2
. <u>"</u>		Zinc : 1	EPA 200.7	16.8	6572			mg/Kg	0.007
01022-003	AOC-2-3	Cadmium	EPA 200.7	17.8	ND			mg/Kg	0.006
		Lead mean	EPA 200.7	17.8	31.3			mg/Kg	0.2
		Zinc	EPA 200.7	17.8	5083			mg/Kg	0.007
101022-004	AOC-2-4	Cadmium	EPA 200.7	15.6	ND			mg/Kg	0.006
		Lead	EPA 200.7	15.6	14.2			mg/Kg	0.2
,		Zinc	EPA 200.7	15.6	4 440			mg/Kg	0.0 07
101022-005	AOC-2-5	Cadmium	EPA 200.7	15.1	6.47	6.77	4.5	mg/Kg	0.006
	• •	Lead	EPA 200.7	15,1	33.5	28.3	16.8	mg/Kg	0.2
		Zinc	EPA 200.7	15.1	4430	4405	0.6	mg/Kg	0.007
101022-006	AOC-2-6	Cadmium	EPA 200.7	16.8	ND			mg/Kg	0.006
		Lead	EPA 200.7	16.8	31.8			mg/Kg	0,2
		Zinc	EPA 200.7	16.8	1177			mg/Kg	0.007
101022-007	AOC-2-7	Cadmium	EPA 200.7	15.0	ND			mg/L	0.006
		Lead	EPA 200.7	15.0	24.4			mg/L	0.2
		Zinc	EPA 200.7	15.0	181	·····		mg/l	0 <u>.007</u>
101022- 0 08	AOC-2-8	Cadmium	EPA 200.7	14.9	ND			mg/Kg	0.006
		Lead	EPA 200.7	14.9	ND			mg/Kg	0.2
		Zinc	EPA 200.7	14.9	210			mg/Kg	0.007
01022-009	AOC-2-9	Cadmium	EPA 200.7	13.8	ND			mg/Kg	0.006
		Lead	EPA 200.7	13.8	ND			mg/Kg	0.2
		Zinc	EPA 200.7	13.8	132			mg/Kg	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project:	Metals, S/W
Date Received:	11/14/2002
Date Completed:	11/15/2002
Date Reported:	11/16/2002

Lab Sample ID: 101022-(001-011)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
101022-010	AOC-2-10	Cadmium	EPA 200.7	14,5	ND			mg/Kg	0.006
		Lead	EPA 200.7	14.5	22.7			mg/Kg	0.2
		Zinc	EPA 200.7	14.5	153			mg/Kg	0.007
101022-011	AOC-2-EB	Cadmium	EPA 200.7		ND			. mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		ND			mg/L	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, S/W Date Received: 11/14/2002 Date Completed: 11/15/2002 Date Reported: 11/16/2002

Lab Sample ID: 101022-(001-011)

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101022-009 MS	Cadmium	EPA 200.7	0.4	0.292	73.0	mg/L	0.006
	Lead	EPA 200.7	2.0	2.22	104	mg/L	0.2
IPC Stnd	Cadmium	EPA 200.7	2.0	1.87	93.6	mg/L	0.005
	Lead	EPA 200.7	2.0	1.99	99.5	mg/L	0.2
	Zinc	EPA 200.7	2.0	1.90	94.8	mg/L	0.007
QCS Stnd	Cadmium	EPA 200.7	1,5	1.40	93.0	mg/L	0.006
	Lead	EPA 200.7	1.5	1.4B	98.5	mg/L	0.2
	Zinc	EPA 200.7	1.5	1.42	94.9	mg/L	0.007

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 12/16/02 Date of Report: 12/19/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
	Misc. Soils; Cd, Pb, and Zn	12/16/2002 4:40 PM

Comments:

Soil sample results reported on a dry-weight basis.

PPin (1); Uiam

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207 Project:Metals, SoilDate Received:12/16/2002Date Completed:12/19/2002Date Reported:12/19/2002

Lab Sample ID: 101107-(001-003)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.013			mg/L	0.007
101107-001	AOC 2-1	Cadmium	EPA 200.7	15.2	9.89			mg/K g	0.006
		Lead	EPA 200.7	15.2	57.4			mg/Kg	0.2
		Zinc	EPA 200.7	15.2	8243			mg/Kg	0.007
101107-002	AOC 2-2	Cadmium	EPA 200.7	12.5	ND		•	mg/Kg	0.006
		Lead	EPA 200.7	12.5	13.7			mg/Kg	0.2
-		Zinc 🔤	. ĘPA 200.7	12.5	125			mg/Kg	0.007
101107-003	AOC 2-3	Cadmium_	EPA 200.7	12.4	ND			mg/Kg	0.006
i i		Lead	EPA 200.7	12.4	13.0			mg/Kg	0.2
		Zinc	EPA 200.7	12.4	90.8			mg/Kg	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

(

Project: Metals, Soil 12/16/2002 Date Received: Date Completed: 12/19/2002 12/19/2002 Date Reported:

Quality Control Summary

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101107-002 MS	Cadmium	EPA 200.7	1.0	0.689	68.9	mg/L	0.006
	Lead	EPA 200.7	1.0	1.05	85.9	mg/L	0.2
	Zinc	EPA 200.7	1,0	2.64	86.4	mg/L	0.007
IPC Stnd	Cadmium	EPA 200.7	ž.0	1.93	9 6.3	mg/L	0.006
`	Lead	EPA 200.7	2.0	1.98	99.0	mg/L	0.2
	Zinc	EPA 200.7	2.0	2.01	100.6	mg/L	0.007
QCS Stnd	Cadmium	EPA 200.7	1.5	1.42	94.7	mg/L	0.006
	Lead	-EPA 200.7	1.5	1.46	97.6	mg/L	0.2
	Zinc	.EPA 200.7	1.5	1.48	98.7	mg/L	0.007

d	- Pa								Mission and Andrews										10		
Page	Preservative used		na Marita Internet N		· · ·	y save a second s		- 		Remarks							Saimple condition upon receipt:	* 0	V seal for. Coole		
- 1 5				14 . 2 V - 14 1			<u> </u>		· · · · · ·						ہ۔ ان	and the second secon	armple condition	Carrier & shipping #	Chain of custody seal for. Container:		duote.
																	0	0	90		price lisVquote.
		lired															\mathcal{N}				b latest p
9		Analysis requ															N	Ŋ			whit for indicated tests according to the latest price listyquote.
3				····					<u></u>								A AN				ed tests according to
Ś							54	07	v	7							2000	0			ated test
aboratories I.I.d						- - -	540 (M	+ r	p D)							Sampled by	Received by	Received by	Received by	Tor Indic
	Client phone: 7957 - 57 00-00			Blung phone:			~7*4		10	# combiners	∇							Thria: Re	1100 R	18°56	inemyed tor payment
vic.	Soa - 795-5000			Bunua									1					H.	an bo	12-(7-02	4 Anildisho
Ama	502									Matrix/type	1, 1		\mathbf{x}						Date:	12-1(X	es respo
nce Analyt Chain of Custody	The	Ry	10202							Time	15-45	1550	15-52								nt assum
Alliance Analytical L Chain of Custody		- I	il Ul	$\langle \cdot \rangle$)			Allare		Date	E.0/	12/14/02	12/11/103				507			UN	Signature by the clienfictient agent assumes responsibility for payin
	Fundado	Shelevuille.	i Ai	Same			70	suits to:				1					E0-91-61		J.	L.	by the client/c
ۍ:	Client neme. Line chorth Trunk houser	Month Contract of the second s	Quisentle	•	jesaj		60-001	Mail) Call, Pax results to:		Sample dentrication	1-22	2 - Z	400 2 - 3				Sampled Date :	d Date:	Refindulshed by	Reinquisheofby	inte by th
	Client name: ///////	ent add	S.	emen grine	Billing address:		P.O.#	C	مسید ساید دارد. ا	White R	XCC	400 2 - J	400	a anna anna anna anna anna anna anna a	100 100 100 100 100	and the first	Xempter	Received Date:	(enhau)	telinqui	Signat

AOC-3

CLIENT: Linebach Funkhouser Inc. 4059 Shelbyville Rd. Louisville KY, 40220 ATTN: Roy Funkhouser

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

FAX: (502) 895-4005

REPORT DATE: 08/14/03 12:01

SUBMITTED: 08/12/03 11:45

PAGE: 1 OF 4

CI SAMPLE CLIENTS ID# DATE TIME MATRIX 3081201-01 AOC 3-4 12 inches 08/11/2003 1610 Soli 3081201-02 AOC 3-8 12 inches 08/11/2003 1614 Soll 3081201-03 AOC 3-12 12 inches 08/11/2003 1622 Soil 3081201-04 AOC 3-16 12 inches 08/11/2003 1635 Soil 3081201-05 AOC 3-19 12 inches 08/11/2003 1645 Soll 3081201-06 AOC 3-3 12 inches 08/11/2003 1651 Soil 3081201-07 AOC 3-7 12 inches 08/11/2003 1658 Soll 3081201-08 AOC 3-11 12 inches 08/11/2003 1705 Soil CRIEINAL 3081201-09 AOC 3-15 12 inches 08/11/2003 1710 Soil 3081201-10 AOC 3-18 12 inches 08/11/2003 1715 Soil 3081201-11 AOC 3-2 12 inches 08/11/2003 1720 Soil 3081201-12 AOC 3-6 12 inches 08/11/2003 1725 Soil 3081201-13 AOC 3-10 12 inches Soil 08/11/2003 1730 3081201-14 AOC 3-14 12 inches 1735 08/11/2003 Soll 3081201-15 AOC 3-17 12 Inches 08/11/2003 1740 Soil 3081201-18 ...-AOC 3-12 18 inches 08/11/2003 1622 Soil 3081201-19 T:AOC 3-16 18 inches 55 08/11/2003 1635 Soil 3081201-20 CAOC 3-19 18 Inches 08/11/2003 1645 Soll 201-22 AOC 3-7 18 inches 08/11/2003 1658 Soil 01-23 CAOC 3-11. 18 Inches 08/11/2003 1705 Soll D1-24 - AOC 3-15 18 Inches 08/11/2003 1710 Soll 3081201-25 AOC 3-18 18 inches 08/11/2003 1715 Sol 3081201-26 AOC 3-2 18 inches 08/11/2003 1720 Soil 3081201-27 AOC 3-6 18 inches 08/11/2003 1725 Soil 3081201-28 AOC 3-10 18 Inches 08/11/2003 1730 Sol 3081201-29 AOC 3-14 18 Inches 08/11/2003 1735 Sol 3081201-30 AOC 3-17 18 inches 08/11/2003 1740 Soil 3081201-31 Dup 1 08/11/2003 1544 Soil 3081201-32 Equipment Rinse 08/11/2003 0000 Water SAMPLE/ DETECTION **ANALYSIS** METHOD PARAMETER RESULTS UNITS LIMIT DATE/TIME TECH 3081201-01 SAMPLE ID: AOC 3-4 12 inches Total Metals by Inductively Coupled Plasma CADMIUM - ICP EPA 200.7/6010B CADMIUM 1.59 mg/kg 0.062 GW 08/13/2003 06:22 LEAD - ICP LEAD 37.7 0.0617 GW 08/13/2003 06:22 mg/kg ZINC - ICP ZINC 909 mg/kg 1.23 GW 08/13/2003 06:22 3081201-02 SAMPLE ID: AOC 3-8 12 inches Total Metals by Inductively Coupled Plasma CADMIUM - ICP EPA 200.7/6010B CADMIUM 1.41 ma/ka 0.076 G₩ 08/13/2003 06:22 LEAD - ICP LEAD 34.0 0.0756 GW 08/13/2003 06:22 mg/kg ZINC - ICP ZINC 740 1.51 GW 08/13/2003 06:22 mg/kg 3081201-03 SAMPLE ID: AOC 3-12 12 inches Total Metals by Inductively Coupled Plasma CADMIUM - ICP EPA 200.7/6010B CADMIUM 12.5 0.060 rng/kg G₩ 08/13/2003 06:22 LEAD - ICP LEAD 1700 mg/kg 5.99 G₩ 08/13/2003 06:22

REPORT NUMBER: 3081201

report may not be reproduced except in full.

Authorized for Release By:

Richard D. Reid - Laboratory Director

SAMPLE/ ANALYSIS	METHOD	PARAMETE	R	RESULTS	UNITS	DETECTION	тесн	DATE/TIME
3081201-03	SAMPLE ID: AOC 3-1	 12 12 inches				_	<u> </u>	
	by Inductively Coupled I							
ZINC-1CP	EPA 200.7/6010B	ZINC		24500	mg/kg	1.20	GW	08/13/2003 06:22
 3081201-04	SAMPLE ID: AOC 3-1	6 12 inches						
Total Metals b	y Inductively Coupled F	Plasma						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		4.87	mg/kg	D,06 0	G₩	08/13/2003 06:22
LEAD - ICP		LEAD		282	mg/kg	0,0604	GW	08/13/2003 06:22
ZINC - ICP		ZINC		7450	rng/kg	1.21	GW	08/13/2003 06:22
3081201-05	SAMPLE ID: AOC 3-1	9 12 inches						
Total Metals b	y Inductively Coupled I	Plasma						
CADMUM - ICP	EPA 200.7/6010B	CADMIUM		12.6	mg/kg	0.062	GW	08/13/2003 06:22
LEAD - ICP		LEAD		1960	mg/kg	6.23	GW	08/13/2003 06:22
		ZINC		39000	mg/kg	1.25	GW	08/13/2003 06:22
3081201-06	SAMPLE ID: AOC 3-3							
	y Inductively Coupled F							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		1.08	mg/kg	0.063	GW	08/13/2003 06:22
		LEAD		16.9	mg/kg	0.0631	GW	08/13/2003 06:22
ZINC - ICP		ZINC	•	607	mg/kg	1.26	GW	08/13/2003 06:22
- ICP		LEAD :		915	mg/kg	5.69	GW	08/13/2003 06:22
2			C 1927	14000	mg/kg	1.18	GW	08/13/2003 06:22
3081201-08	SAMPLE ID: AOC 3-1							
	y Inductively Coupled F							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		12.8	mg/kg	0.058	GW	08/13/2003 06:22
LEAD - ICP -		LEAD		2070	mg/kg		GW	08/13/2003 06:22
ZINC - ICP				44400	mg/kg	1.16	GW	08/13/2003 06:22
3081201-09	SAMPLE ID: AOC 3-1							
	y Inductively Coupled F	lasma						
								08/13/2003 06:22
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	_	13.2	mg/kg		GW	
Cadmium - ICP Lead - ICP	EPA 200.7/60108	CADMIUM LEAD		4070	mg/kg	5,00	GW GW	08/13/2003 06:22
Cadmium - ICP Lead - ICP	EPA 200.7/60108	CADMIUM				5,00		
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10	SAMPLE ID: AOC 3-1	CADMIUM LEAD ZINC 8 12 inches		4070	mg/kg	5,00	GW	08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b	SAMPLE ID: AOC 3-1 y Inductively Coupled F	CADMIUM LEAD ZINC 8 12 inches Plasma		4070 172000	mg/kg mg/kg	5,00	GW	08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b CADMIUM - ICP	SAMPLE ID: AOC 3-1	CADMIUM LEAD ZINC 8 12 inches Plasma CADMIUM		4070 172000 15.4	mg/kg mg/kg mg/kg	5.00	GW	08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b CADMIUM - ICP LEAD - ICP	SAMPLE ID: AOC 3-1 y Inductively Coupled F	CADMIUM LEAD ZINC 8 12 inches Plasma CADMIUM LEAD		4070 172000 15.4 2010	mg/kg mg/kg mg/kg mg/kg	5.00 10.0 0.061 6.12	GW GW GW GW	08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b CADMIUM - ICP LEAD - ICP	SAMPLE ID: AOC 3-1 y Inductively Coupled F	CADMIUM LEAD ZINC 8 12 inches Plasma CADMIUM		4070 172000 15.4	mg/kg mg/kg mg/kg	5.00 10.0 0.061 6.12	GW GW GW	08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b CADMIUM - ICP LEAD - ICP ZINC - ICP 2081201-11	SAMPLE ID: AOC 3-1 y Inductively Coupled F EPA 200.7/60108 SAMPLE ID: AOC 3-2	CADMIUM LEAD ZINC 8 12 inches Plasma CADMIUM LEAD ZINC 12 inches		4070 172000 15.4 2010	mg/kg mg/kg mg/kg mg/kg	5.00 10.0 0.061 6.12	GW GW GW GW	08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b CADMIUM - ICP LEAD - ICP ZINC - ICP ZINC - ICP 3081201-11 Total Metals b	SAMPLE ID: AOC 3-1 y Inductively Coupled F EPA 200.7/6010B SAMPLE ID: AOC 3-2 y Inductively Coupled P	CADMIUM LEAD ZINC 8 12 inches Plasma CADMIUM LEAD ZINC 12 inches Plasma		4070 172000 15.4 2010 85400	mg/kg mg/kg mg/kg mg/kg mg/kg	5,00 10.0 0.061 6.12 1.22	GW GW GW GW	08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b CADMIUM - ICP ZINC - ICP 2081201-11 Total Metals b CADMIUM - ICP	SAMPLE ID: AOC 3-1 y Inductively Coupled F EPA 200.7/60108 SAMPLE ID: AOC 3-2	CADMIUM LEAD ZINC 8 12 inches Plasma CADMIUM LEAD ZINC 12 inches basma CADMIUM		4070 172000 15.4 2010 85400 17.7	mg/kg mg/kg mg/kg mg/kg mg/kg	5,00 10.0 0.061 6.12 1.22 0.050	GW GW GW GW GW	08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22
CADMIUM - ICP LEAD - ICP ZINC - ICP 3081201-10 Total Metals b CADMIUM - ICP LEAD - ICP ZINC - ICP ZINC - ICP	SAMPLE ID: AOC 3-1 y Inductively Coupled F EPA 200.7/6010B SAMPLE ID: AOC 3-2 y Inductively Coupled P	CADMIUM LEAD ZINC 8 12 inches Plasma CADMIUM LEAD ZINC 12 inches Plasma		4070 172000 15.4 2010 85400	mg/kg mg/kg mg/kg mg/kg mg/kg	5,00 10.0 0.061 6.12 1.22 0.050 0.0500	GW GW GW GW GW GW	08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22 08/13/2003 06:22

report may not be reproduced except in full.

(

Authorized for Release By: Richard D. Reid - Laboratory Director

SAMPLE/	E: 08/14/03 12:01	PARAMETER	REPORT NUM	RESULTS	UNITS	DETECTION	тесн	DATE/TIME
	SAMPLE ID: AOC 3							
081201-12 Iotal Metals by	Inductively Coupled							
CADMIUM - KCP	EPA 200.7/60108	CADMIUM		22.4	mg/kg	0.050	GW	08/13/2003 06:22
EAD - ICP		LEAD		2710	mg/kg	5.00	GW	08/13/2003 06:22
LINC - ICP		ZINC		84600	mg/kg	10.0	GW	08/13/2003 06:22
	SAMPLE ID: AOC 3	3-10 12 inches						
	Inductively Coupled							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		18.6	mg/kg	0.050	GW	08/13/2003 06:22
LEAD - ICP		LEAD		6030	mg/kg	5.00	GW	08/13/2003 06:22
ZINC - ICP		ZINC		160000	mg/kg	10.0	GW	08/13/2003 06:22
	SAMPLE ID: AOC	d Plasma		20.0		0,057	GW	08/13/2003 06:22
CADMIUM - ICP	EPA 200.7/6010B		<u>.</u>	30.2 5620	mg/kg mg/kg	6,68	GW	08/13/2003 06:22
		LEAD ZINC		167000	mg/kg	13.4	GW	08/13/2003 06:22
ZINC - JCP				107000	119/29			
	SAMPLE ID: AOC : Inductively Couple	d Plasma						
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	····	27.3	mg/kg	0.065	GW	08/13/2003 06:22
LEAD - ICP				9170	mg/kg	6.55	GW	08/13/2003 06:22
ZINC - ICP	2007 (1997) 	ZINC	<u>C </u>	164000	mg/kg	13.1	GW	08/13/2003 06:22
201-18 Metals by <u>C</u>	SAMPLE ID: AOC : Inductively Couple EPA 200.7/60108			169 7650	mg/kg mg/kg	0.0583	GW GW	08/14/2003 D6:18 08/14/2003 11:17
3081201-19	SAMPLE ID: AOC				mg/kg	0.0562	GW	08/14/2003 06:18
•	EPA 200.7/6010B	LEAD		170				
LEAD - ICP 3081201-20 Total Metals by		3-19 18 inches		9.17	mg/kg	0.0619	GW	08/14/2003 D6:18
LEAD - ICP 3081201-20 Total Metals by LEAD - ICP	EPA 200.7/6010B SAMPLE ID: AOC : Inductively Couple	3-19 18 inches d Plasma		<u>_</u>	mg/kg mg/kg			
LEAD - ICP 3081201-20 Total Metals by LEAD - ICP ZINC - ICP 3081201-22 Total Metals by	EPA 200.7/6010B SAMPLE ID: AOC : Inductively Couple	3-19 18 inches d Plasma LEAD ZINC 3-7 18 inches		9.17		0.0619	GW	08/14/2003 D6:18
LEAD - KCP 3081201-20 Total Metals by LEAD - KCP 3081201-22 Total Metals by LEAD - ICP 3081201-23 Total Metals by	EPA 200.7/6010B SAMPLE ID: AOC : Inductively Couple EPA 200.7/6010B SAMPLE ID: AOC : Inductively Couple	3-19 18 inches d Plasma LEAD ZINC 3-7 18 inches d Plasma LEAD 3-11 18 inches		9.17 4080	mg/kg mg/kg mg/kg	0.0619 1.24 0.0586 0.120	GW GW GW	08/14/2003 06:18 08/14/2003 07:16 08/14/2003 06:18 08/14/2003 06:18
LEAD - ICP 3081201-20 Fotal Metals by LEAD - ICP ZINC - ICP 20021-22 Fotal Metals by LEAD - ICP 3081201-23 Fotal Metals by LEAD - ICP	EPA 200.7/6010B SAMPLE ID: AOC 3 Inductively Couples EPA 200.7/6010B SAMPLE ID: AOC 3 Inductively Couples EPA 200.7/6010B SAMPLE ID: AOC 3 Inductively Couples	3-19 18 inches d Plasma LEAD ZINC 3-7 18 inches d Plasma LEAD 3-11 18 inches d Plasma		9.17 4080 81.5	mg/kg mg/kg	0.0619 1.24 0.0586	GW GW	08/14/2003 D6:18 08/14/2003 07:16 08/14/2003 D6:18
LEAD - ICP ZINC - ICP 3081201-22 Total Metals by LEAD - ICP 3081201-23 Total Metals by LEAD - ICP ZINC - ICP 3081201-24	EPA 200.7/6010B SAMPLE ID: AOC 3 Inductively Couples EPA 200.7/6010B SAMPLE ID: AOC 3 Inductively Couples EPA 200.7/6010B SAMPLE ID: AOC 3 Inductively Couples	3-19 18 inches d Plasma LEAD ZINC 3-7 18 inches d Plasma LEAD 3-11 18 inches d Plasma LEAD ZINC 3-15 18 inches		9.17 4080 81.5 722	mg/kg mg/kg mg/kg	0.0619 1.24 0.0586 0.120	GW GW GW	08/14/2003 06:18 08/14/2003 07:16 08/14/2003 06:18 08/14/2003 06:18

.s report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

a hatta a share a share a share a share a san tana a share a san tana a share a share a share a share a share a	Ph: (503) 286-9464 Fax: (503) 285-7831	Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764	Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed																								FOR LABORATORY USE ONLY	PO#	Cash/check #	Amount Paid: \$	
and the second	7133 Ng Lombard, Portland, OR 97203	Fifé, WA 9842. Ste 'A', Benicia,	San Pedro, CA 90731	P			thottel		7.	17- 17- 17-		116	1610 X X X		$ \chi \chi \chi \chi \chi \chi \chi \chi \chi \chi$	1 X X X X	45- X V V	1251 (X N	12 5 8 X X X X			7.5 KK	2. K K K	γ <u>γ</u> <u>γ</u> <u>γ</u>	\mathcal{X} \mathcal{X} \mathcal{X}	75 KXX		-	Inspection Job Number:	me / Laboratory Project Number:	4 Due Date:	
	🗐 7133 🕅 Lombar		L 797 Channel Street,	ne: By, 21, C		er: 7.10- 2.2	ž	Telephone	Email		Sample		5]	17/ Jan 2	3- 1- St. 1.	1. 1. S. S. S.	1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	の - - - - - - - - - -	7 20-11-52	121 28-1-2	8425 13	S-1-25 1	S'-11 5 1 - 0	8-11-03 17	8-11 03 17	1-1 SC-11-2	Dote/Tune	•	Date/Tu	Aller 11	
				Project Name:	Project Number;	P.O. Number:	Testing Priorily	□ Normal	छि Rush	Due Date.	Sample	Matrix	Seil	5010	Soil	5,1	S., C	Sa'l	50:1	5%	Soil	Sil	2°; C	$\leq_{i,i}$	521	Soil	5 11 5	Received By:		Racaived By.	Leef.	
	COLUMBIA INSPECTION, INC.	CHAIN OF CUSTODY RECORD AND	NON-COMMERCIAL BILL OF LADING	Lington Fundanser	Kow Fund how som	LANCT Sharky will Red	507- 315-50.9	Y 513 - 845 - 4415	Buck A R.	376-64636		Sample Description/UN Number	Noc 3-4 12 1	1 2-	NOC 3-12 1217	H.W. 3-16 121	106 5-19 1210	125 3-3 121 ·	40C 3-7 1211	100 3-11 1210	100 3-15 1210	AOC 3-18 12:	ADC 3-2 12:1	ADC 3-10 107.	1106 3-10 17:0	ADC 3-14 1210	A2C 3-17 1210	Date/Time	and a series of the series of	Dato/Timo		
(COLUM	CHA	NON-CC	Customer Name;	Attention:	Address:	Phone:	Fux:	· ·	50		Sample id#																Relinquished By	A Children	Relinentistical By:		

. 1

for the second statement and the second second second statement of the second statement of the second se

-.

Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (523) 922-8781 Fax: (553) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed														\ \ 							FOR LABORATORY USE ONLY	PO#	Cash/check #	Annount Paid: \$		
7133 M. Lombard, Portland, OR 97203 4901 M. 20th Street, Fife, WA 98424 4592 E 2nd Street, Ste 'A', Benicia, CA 94510 797 Channel Street, San Pedro, CA 90731	An				pi 7		191 12.;														1111-1-1-1	FOR	Inspection Job Number:	I Laboratory Project Number:	07 Due Date:	ک از ا	د. -
 7133 N. Lombard, Portland, OR 97203 4901 20th Street, Fife, WA 98424 4592 2nd Street, Ste 'A', Benicia, CA 797 Channel Street, San Pedro, CA 907 	-	Li Contra da la co		tiority <u>Notification Method(a)</u> 	Сулан -	batos:	Sample Sample Sample Matrix Dale Time							2 / 12 X	1.7/27	&/2/	10 m 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	1.5.1	0:21	SEC/ 1		1 By. Date/Time		Date/Time	101 1 8/12/	1 Uker 114	
COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	Project Name:	and the second sec	with all in the internet of the second		7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Due I	Sau Sanna Description (I IN Ni rather M	V ² .	Z-S 1810	R R	7 - 110		N 1 10	Auto 3-11 1810	4.2 3-5 1810	1 3-18 18.7	101 3-2 18.00	1. 3 - 5 181 S 14	2-10	1-1- S-14/81-	-12181	Date/Time Roceived By	2 8-10-03	Date/Time Received B		Ner 1	
COLUMBI, CHAIN C	Customer Name:	Attention:	18 18	і ы	sumpler:		Sounda 14"	-						``` 				\$-,, ,	~~~			Relinquished By:	and the second of the second sec	Ralifiquished By			

•.

.

and an internet

•

<u>،</u>

.

Ţ

n an an an Anna an Anna Anna Anna Anna	Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed															FOR LABORATORY USE ONLY	#Od	Cash/check #	Amount Paid: \$	
en en fan fan de fan	7133 N. Lohnbard, Portland, OR 97203 Ph: (4901 医 20th Street, Fife, WA 98424 Ph: (4592 狂 2nd Street, Ste 'A', Benicia, CA 94510 Ph: (797 Channel Street, San Pedro, CA 90731 Ph: (Analysis To			90	7 / 7 / 7 / 7 /	et-1 (#4)		1/X + X							 		Inspection Job Number.	Laboratory Project Number:	Z/O/Due Date:	
and a second	 7133 N. Lombard 4901 E. 20th Stree 4592 E 2nd Stree 797 Channel Stree 	Project Name:	ber:	, Not	 -						3						Received By: Date/Time		Received By:	ail Ole 1	
	COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	1 m Cart Tar I have a			1281 8895 W. 205	Aris Submitted	//	Samule Descrintion(IN Number	2401								Date/Time	11.45	Date		
(COLUM CHA	Customer Name:				Simpler:		Sample id#									Rolinquished By		Rolinquished By		

-

.

		CER.	TIFICA	TE	O		ANA	LY	SIS	
CLIE			с.	PRC	JECT NA	ME:	Bay Zinc			
	4059 Shelbyv				OT NUME		400.02			
_	Louisville KY	-		PROJE	CT NUME	SER:	100-02	÷		
ĨA	TN: Roy Funkhou	Iser								
PHO F	NE: (502) 895-500 AX: (502) 895-400				SUBMITT	ED:	08/14/03 1	0:50		·
REPORT DATE:	08/14/03 15:40		REPORT NUME	36R: 30	81402				P/	AGE: 1 OF 2
CI SAMPLE	CLIENTS ID#				DATE	TIME	MATRIX			
3081402-04	AOC 3-11 24 inches				08/13/2003		Soil			
3081402-09	AOC 3-10 24 inches				08/13/2003					
3081402-10 3081402-11	AOC 3-14 24 inches AOC 3-17 24 inches				08/13/2003 08/13/2003					
3081402-15	AOC 3-11 30 inches				08/13/2003			$\cap D$	1011	ŧΛ I
3081402-21	AOC 3-10 30 inches				08/13/2003	1717		UK	IGIN	A I
3081402-22	AOC 3-14 30 inches				08/13/2003					
3081402-23	AOC 3-17 30 inches				08/13/2003 08/13/2003					
3081402-25 3081402-26	Dup 1 Equipment Rinse				08/13/2003					
SAMPLE/	METHOD	PARAMETER		RESUL	TS UN	ITS		ION TECH	DATE/TIME	
ANALYSIS 3081402-04	SAMPLE ID: AOC 3-1	-								
	nductively Coupled F									
LEAD - ICP.	EPA 200.7/60108		11 4.7522. Mais	1800	mg/l	ʻg	0,612	GW	08/14/2003	13:54
ZINC - ICP			20142510-12.5	20900	mg/ł	g	1.22	GW	08/14/2003	13:54
,402-09 Metals by Ir	SAMPLE ID: AOC 3-1 nductively Coupled P									
LEICP	EPA 200.7/6010B	LEAD	· ·	1050	mg/l	ģ	0,890	GW	08/14/2003	13:54
ZINC - ICP	· · ·	ZINC		22100	mg/l	g	1.78	GW	08/14/2003	13:54
3081402-10	SAMPLE ID: AOC 3-14									
	nductively Coupled F							~~~		10.51
LEAD - ICP	EPA 200.7/60108	LEAD		79.8	mg/l	-	0.789	GW	08/14/2003	
	<u>.</u>			7350	mg/}	g	0.158	GW	08/14/2003	13:34
3081402-11	SAMPLE ID: AOC 3-1									
-	nductively Coupled F				-			~		10 51
LEAD - ICP	EPA 200.7/6010B	LEAD		203	mg/)		0.708	GW	08/14/2003	
				6760	tng/ł	<u> </u>	0.142	GW	08/14/2003	13:54
3081402-16	SAMPLE ID: AOC 3-1									
LEAD - ICP	nductively Coupled P EPA 200.7/6010B	LEAD		12.5	mg/k	(n	D.614	GW	08/14/2003	13:54
ZINC - ICP	LFA 200.7/00 100			1240			0,123	GW	08/14/2003	<u> </u>
<u> </u>			÷							
3081402-21 Total Motals by Ir	SAMPLE ID: AOC 3-10 nductively Coupled P									
LEAD - KCP	EPA 200.7/6010B	LEAD		20.6	mg/k	Q	0.740	GW	08/14/2003	13:54
ZINC-ICP		ZINC		7670	mg/k		0.148	GW	08/14/2003	
3081402-22	SAMPLE ID: AOC 3-14	4 30 inches								
	sductively Coupled P	lasma								
LEAD - ICP	EPA 200.7/60108	LEAD		2.30	mg/t		0.795	GW	08/14/2003	
ZINC - ICP				3270	mg/i	ري . س	0.159	GW	08/14/2003	13:54
.s report may not	be reproduced except in	full.						Λ	$\overline{\Lambda}$	

وريما وريم

Authorized for Release By:

Richard D. Reid - Laboratory Director

en

C all

... /

REPORT DAT	E: 08/14/03 15:40	REPO	RT NUMBER: 308140)2			PAGE: 2 OF 2
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	тесн	DATE/TIME
3081402-23	SAMPLE ID: AOC 3	3-17 30 inches				-	
Total Metals b	y inductively Coupled	d Plasma					
LEAD-ICP	EPA 200.7/6010B	LEAD	58.3	mg/kg	0.629	GW	08/14/2003 13:54
ZINC - ICP		ZINC	2400	mg/kg	0.126	GW	08/14/2003 13:54
3081402-25	SAMPLE ID: Dup 1				<u> </u>		
Total Metals b	y Inductively Coupled	d Plasma					
LEAD - ICP	EPA 200.7/6010B	LEAD	14.0	mg/kg	0.712	GW	08/14/2003 13:54
ZINC - ICP		ZINC	628	mg/kg	0.142	GW	08/14/2003 13:54
3081402-26	SAMPLE ID: Equip	ment Rinse					
Total Metals b	y Inductively Coupled	d Plasma					
LEAD - ICP	EPA 200.7/6010B	LEAD	ND	mg/L	0.001	GW	08/14/2003 14:53
ZINC - ICP		ZINC	0.003	mg/L	D.001	GW	08/14/2003 14:53

ORIGINAL

/ report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

	(3) 285-7831 (3) 922-8957 (1) 748-7764 (0) 833-1585																							
and a second a second	Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed		· · · · · ·									·							 	 FOR LABORATORY USE ONLY	#04	Cash/check #	Amount Paid: \$
ander an eine ander eine eine ander der Australie eine Australie eine Australie eine Australik auf der Australi	94510 31	Analy													· · ·				4	 	 FORLABOR	Inspection Job Number:	Laboratory Project Number:	ei ei
;	l, Portland, OF et, Fifë, WA 9 it, Ste 'A', Beni et, San Pedro,				98	4			10	17	38 X X	1147	5	3	23	Z X X	XXX	XXCOX	J∂ (/1 =	Inspection	Laborator	SD Due Date:
And the second s	7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 E 2nd Street, Ste 'A', Benicia, CA 94510 797 Channel Street, San Pedro, CA 90731	ENV ZIAC	100-02	Notification Method(s)	. Lateshone	C Email	Sample Sumple Date Time	8-13 11/12	51071 1	14/2	1/2	11/ 201	16.5	121	1730	12/ 12/	121	767	-r- 1103		 Date/Time	*	DateTuh	ler 1 10
		Project Name:	Project Number:	P.O. Number:	🗖 Normal	X Rush Due Dute:	Sample Matrix	50, 1						•			*			1. 	Received By:		Received By:	and a
	COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING		Koy Funded course	500 - 845 - 5000	895 - 1,0005	Car and Submitted	Sample Description/UN Number	3-110 2412	6			3-15 28:00		7-2 24'1	3-6. 21.1	3-10 Q41-	3-14 Duin	3-17 84:-	3-12 2112		.Date/Tima	1-1-5	Date/Time	
:	COLUMBIA I CHAIÑ OF C NON-COMMERC	Customer Name:	. 1	Address: 4.57	1 1	Sampler:	Sample id# St	N'X	1 11	A. 10	11 11		-	~	<u>.</u>	•	× 11	~	*		Relinquiahed By.	In the second of the	Relinquished By	

ł

•

. e .

-

÷

. •

4

Martin - Carlos - Car	.7831	-8957 -7764	-1585																										
	Ph: (503) 286-9464 Fax: (503) 285-7831	Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764	57 Fax: (310) 833-1585			<u> </u>																				X	PO#	Cash/check #	Amount Paid: \$
	Ph: (503) 286-946	Ph: (253) 922-871 Ph: (707) 748-751	Ph: (310) 833-1557 Fax:	Analysis To Be Performed											;											<u>FOR LABORATORY USE ONLY</u>		C3	Ano
na silan daga katalan nasila d	97203	424 ia, CA 94510	A 90731	Analy																	-					FORLA	Inspection Job Number:	Laboratory Project Number.	
	7133 N. Lombard, Portland, OR 97203	4901 E. 20th Street, Fife, WA 98424 4592 E 2nd Street, Ste 'A', Benicia, CA 94510	797 Channel Street, San Pedro, CA				72. IJ	1740 1740 1740						X X	<u>ک</u> سر ا			-	XX	XX	XX		Я Х Х	XXC			Inspection J	Laboratory	S Due Date:
and the second	. Lombard, F	. 20th Street, 2nd Street,	annel Strect,	121000	10-00 Z	Notification Method(x)	- Telephone	Email S- Mail		Time	3 12010	11:17		響: 10.35	- 11045	11.50	OKCI	1733	1715	0121	1700	1(000	134	1750		Date/Time		Date/Tildie	1055
		1901)E	197 Ch	ac: ister				, e	Samplo		8-13				· · · ·										\star		, 1		l le
				Project Nam	Project Number: P.O. Number	Testing Priority	I Normal	Due Date:	Sample	Matrix	1,05	~~~											\times	Hac		Received By.		Received By:	er!
にある 御御客を開発 してき	N, INC.	RD	ADING		1/2 - an entry - 1 at a set	×27 6	i	nitted		Vumber	5	ç	(20 in	320	22.0	2010	20.0		13.5	3014		2			8-14/ 10 per		
		ODY RECOI	BILL OF LA	-Unis have	3	N I	5-1605	Submitted		Sample Description/UN Number	5-16 3311	3-17 200	2 - 21	2	- 42-	5-18 3	3-7 3	-7-	5-10-2	14 20	-17	5	_	11159 40		Date/Time	2-1	Date/Time "	
en verske ander af treder te	BIA INSI	CHAIN OF CUSTODY RECORD AND	NON-COMMERCIAL BILL OF LADING	inclosed	Mar Flink	-	51.2 875	the galo		Sample	are of		2 16.2		A. C.	100	200	Hir.	12 11 2	AM 5-	AN 2	H.N. Z	Dua	- Gaugo	/ /	1	ln2		
	COLUMBIA INSPECTION, INC.	CHAI	NON-CO	Customer Name:	Attention:		Fux:	Sumpler:		Sample id#																Ralinquinhed By.	the set	Relinguished By:	×
			Ľ	<u> </u>	<u> </u>				J [1	1	4						B	1	<u>t</u>	<u></u>	F			<u></u>				

· ·

C	LIENT:	Linebach Fu	nkhouser In	IC.	PRO-	JECT NA	ME:	Bay Zinc			
		4059 Shelby Louisville K`			PROJEC	CT NUME	ER:	100-02			
		Roy Funkhor			TROOL		, <u>,</u> , , , , , , , , , , , , , , , , , ,				
P 3	HONE:	(502) 895-50	09								
		(502) 895-40				SUBMITT	ED:	08/18/03 07	7:30		
REPORT DAT	TE: 08/19	/03 13:44		REPORT	NUMBER: 308	1803		<u> </u>		PAG	:10
CI SAMPLE		TS 1D#		<u> </u>		DATE	TIME	MATRIX	<u></u>		
3081803-01		3-12 42 inches				08/15/2003	1515	Soil Soli			
3081803-02 3081803-03		3-19 42 inches 3-11 42 inches				08/15/2003 08/15/2003	1450 1520	Soil			
3081803-04		3-15 42 inches				08/15/2003		Soil			
3081803-05		3-18 42 inches				08/15/2003	1500	Soll	275 C	VI MIRI	A I
3081803-06		3-6 24 inches				08/15/2003		Soil		IGIN	AL
3081803-07		3-10 24 inches				08/15/2003	1545 1540	Soli Soli	N. 17 (11.00.11.0	
3081803-08 3081803-09		3-14 42 Inches 3-17 42 inches				08/15/2003	1540	Soil			
3081803-10	Dup 1					08/15/2003	1800	Soil			
3081803-11		ment Rinsate 1				08/15/2003	1630	Water	<u></u>		
								DETECTI		DATE/TIME	
SAMPLE/ ANALYSIS 3081803-01 Total Metals b ZINC - ICP	y Inductiv	LE ID: AOC 3-1	Plasma			rs UN mg/k	9	0.028	<u> </u>	08/19/2003 10:4	46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02	SAMP y Inductiv EPA 20 SAMP y Inductiv	LE ID: AOC 3-1 ely Coupled I	12 42 inches Plasma ZINC 200 19 42 inches				g				
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv	LE ID: AOC 3-1 ely Coupled I 0.7/6010B LE ID: AOC 3-1 ely Coupled I 0.7/6010B LE ID: AOC 3-1	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches		·· 188	mg/k	a	0.028	GW	08/19/2003 10:4	46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20	LE ID: AOC 3-1 ely Coupled 1 0.7/60108 LE ID: AOC 3-1 ely Coupled 1 0.7/60108 LE ID: AOC 3-1 ely Coupled 1	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC			mg/k	a	0.028	GW	08/19/2003 10:4 08/19/2003 10:4	46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches			mg/k mg/k mg/k	8 8 8	0.028	GW GW GW	08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4	46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b	SAMP vy Inductiv EPA 20 SAMP vy Inductiv EPA 20 SAMP vy Inductiv EPA 20 SAMP vy Inductiv	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches			mg/k	8 8 8	0.028	GW	08/19/2003 10:4 08/19/2003 10:4	46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled 1 0.7/60108 LE ID: AOC 3-1	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 14 42 inches Plasma ZINC 15 42 inches Plasma ZINC 16 42 inches Plasma ZINC 18 42 inches			mg/k mg/k mg/k	8 8 8	0.028	GW GW GW	08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4	46 16
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma			mg/k mg/k mg/k	a a a a	0.028 0.027 0.032 0.040	GW GW GW	08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4	46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.3 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 18 42 inches Plasma ZINC			mg/k mg/k mg/k	a a a a	0.028	GW GW GW	08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4	46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-05	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.21 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 18 42 inches Plasma ZINC 19 42 inches Plasma ZINC			mg/k mg/k mg/k	a a a a	0.028 0.027 0.032 0.040	GW GW GW	08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4	46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-6 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.3 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 18 42 inches Plasma ZINC 18 42 inches Plasma ZINC		188 1140 684 88.5 1580	mg/k mg/k mg/k	ð ð ð ð	0.028 0.027 0.032 0.040 0.027	GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	46 46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.3 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 18 42 inches Plasma ZINC 19 42 inches Plasma ZINC			mg/k mg/k mg/k	ð ð ð ð	0.028 0.027 0.032 0.040	GW GW GW	08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4 08/19/2003 10:4	46 46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-07	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-2 ely Coupled I 0.7/60108 LE ID: AOC 3-2 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 14 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 18 42 inches Plasma ZINC 19 42 inches Plasma ZINC 10 24 inches		188 1140 684 88.5 1580	mg/k mg/k mg/k	ð ð ð ð	0.028 0.027 0.032 0.040 0.027	GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	46 46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-07 Total Metals b	SAMP y Inductiv EPA 20 SAMP y Inductiv	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-6 ely Coupled I 0.7/60108 LE ID: AOC 3-6 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.21 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 16 42 inches Plasma ZINC 18 42 inches Plasma ZINC 5 24 inches Plasma ZINC 10 24 inches Plasma			mg/k mg/k mg/k mg/k	8 8 8 8 8 8	0.028 0.027 0.032 0.040 0.027 0.024	GW GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	46 46 46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-07 Total Metals b	SAMP y Inductiv EPA 20 SAMP y Inductiv	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-2 ely Coupled I 0.7/60108 LE ID: AOC 3-2 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 14 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 18 42 inches Plasma ZINC 19 42 inches Plasma ZINC 10 24 inches		188 1140 684 88.5 1580	mg/k mg/k mg/k	8 8 8 8 8 8	0.028 0.027 0.032 0.040 0.027	GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	46 46 46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-6 ely Coupled I 0.7/60108 LE ID: AOC 3-6 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 5 24 inches Plasma ZINC 10 24 inches Plasma ZINC			mg/k mg/k mg/k mg/k	8 8 8 8 8 8	0.028 0.027 0.032 0.040 0.027 0.024	GW GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	46 46 46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-07 Total Metals b ZINC - ICP 3081803-07 Total Metals b ZINC - ICP 3081803-07 Total Metals b ZINC - ICP 3081803-07	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-6 ely Coupled I 0.7/60108 LE ID: AOC 3-7	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 5 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC			mg/k mg/k mg/k mg/k	8 8 8 8 8 8	0.028 0.027 0.032 0.040 0.027 0.024	GW GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	46 46 46 46
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-07 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-6 ely Coupled I 0.7/60108 LE ID: AOC 3-7	12 42 inches Plasma ZINC 2.4 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 5 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC			mg/k mg/k mg/k mg/k	8 8 8 8 8 8 8 8 8 8	0.028 0.027 0.032 0.040 0.027 0.024	GW GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	16 16 16 16 16 16
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-07 Total Metals b ZINC - ICP 3081803-08 Total Metals b ZINC - ICP 3081803-08 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.21 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC			mg/k mg/k mg/k mg/k mg/k	8 8 8 8 8 8 8 8 8 8	0.028 0.027 0.032 0.032 0.040 0.027 0.024 0.026	GW GW GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	16 16 16 16 16 16
ANALYSIS 3081803-01 Total Metals b ZINC - ICP 803-02 Metals b 2 ICP 3081803-03 Total Metals b ZINC - ICP 3081803-04 Total Metals b ZINC - ICP 3081803-05 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-06 Total Metals b ZINC - ICP 3081803-07 Total Metals b ZINC - ICP 3081803-08 Total Metals b ZINC - ICP	SAMP y Inductiv EPA 20 SAMP y Inductiv EPA 20 SAMP	LE ID: AOC 3-1 ely Coupled I 0.7/60108 LE ID: AOC 3-1 ely Coupled I 0.7/60108	12 42 inches Plasma ZINC 2.21 19 42 inches Plasma ZINC 11 42 inches Plasma ZINC 15 42 inches Plasma ZINC 18 42 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 24 inches Plasma ZINC 10 42 inches Plasma ZINC			mg/k mg/k mg/k mg/k mg/k	8 8 8 8 8 8 8 8 8 8	0.028 0.027 0.032 0.032 0.040 0.027 0.024 0.026	GW GW GW GW GW	08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:- 08/19/2003 10:-	16 16 16 16 16 16

Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

:

-

CRIGINAL

REPORT DA	TE: 08/19/03 13:44	REPO	RT NUMBER: 30818	03			PAGE: 2 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	TECH	DATE/TIME
3081803-10 Totol Martolo J	SAMPLE ID: Dup 1						
	by Inductively Couple			_			
	EPA 200.7/6010B	ZINC	1450	mg/kg	0.209	GW	08/19/2003 10:46
3081803-11	SAMPLE ID: Equip	ment Rinsate 1		· .	•		
Fotal Metals b	by Inductively Couple	d Plasma					
ZINC - ICP	EPA 200.7/6010B	ZINC	0.010	mg/L	0.001	GW	08/19/2003 11:25

veport may not be reproduced except in full.

Authorized for Release By: Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC. 7133 N. Lenduret, Pordunet, OR 9703 The (60) 366-644 Fac. (60) 356-644 Fac. (60) 356-644 Fac. (60) 356-644 Fac. (60) 356-644 Fac. (50) 366-644 Fac. (50) 366-64	(
LUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND ONCOMMERCIAL BIL AND ONCOMMERCIAL BIL Propertion ONCOMMERCIAL BIL ProPERCIAL BIL PRO						1	
CLAIN OF CUSTODY RECORD AD ONCONVERSION RECORD AD ONCONVERSION RECORD AD ONCONVERSION RELATION FOR AN A 98424 AD None: <u>An East A Francis</u> , CA 98230 ONCONVERSION RECORD None: <u>An East A Francis</u> , CA 98230 Polyer Number <u>An East A Francis</u> <u>An East A Francis</u> Polyer Number <u>An East A Francis</u> <u>An East A Francis An East A Francis</u>	COLUN	ABIA INSPECTION, INC.		7133 N. Lombard, Po	rtland, OR 97203	Ph: (503) 286-9464 Fax: ((203) 285-7831
ON-COMMERCIAL BILL OF LADING Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Num: $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Number $L = (L + L) - L = L$ Num (L + L) - L = L = L = L $L = (L + L) - L = L$ Num (L + L) - L = L = L = L $L = (L + L) - L = L$ Num (L + L) - L = L = L = L = L = L = L $L = (L + L) - L = L$ Num (L + L) - L = L = L = L = L = L = L = L = L = L	CH	AIN OF CUSTODY RECORD AND		4901 E. 20th Street, F 4592 E 2nd Street, St	ife, WA 98424 e 'A', Benicia, CA 94510	Ph: (253) 922-8781 Fax: (Ph: (707) 748-7587 Fax: ((253) 922-8957 (707) 748-7764
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NON-C(OMMERCIAL BILL OF LADING		797 Channel Street, S	an Pedro, CA 90731	Ph: (310) 833-1557 Fax: ((310) 833-1585
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Customer Name:	رط وز	Project Name;	Cargo Dine	Ŷ	nalysis To Be Performed	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Attention:	4 16	Project Number.	1010 - 2 N			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12 Maril Met Low will	P.O. Number:	122-03			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Phone:	4	Teating Priority	<u>Notification Method(a)</u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 42		🗖 Telephone	12		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7.11.	风 ^{rush}	Emall	- /		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Duo Date:	□ M _{alt}	124		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Summle full	Gunnale Deroviction of DV Ni verber	Sample	 			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					+-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2-18					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/1			_		- 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.5	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5-1-5			-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5-18		~	- I.	~	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3-10 421		155	_ I		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3-10 4		1545			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	All 3-14 4200		1540			
March I 200 F I Date/Time I 1 200 F I Date/Time I I 1 200 I Bate/Time I I I I I Date/Time I I I I I Bate/Time I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I		17 421		1505			
Detection Detection ECR.LABORATORY USE ONLY Set 15 - 0.3 Received By- Duty True Event ECR.LABORATORY USE ONLY Detection Duty Project Number: Detection Laboratory Project Number:		1201		1 1800			
DeterTime EOR.LABORATORY USS ONLX Bread By: Dute/Time Event Eor.LabORATORY USS ONLX S: 15 & 3 Received By: Dute/Time Eor.LabORATORY USS ONLX Dute/Time Laboratory Project Number: Dute/Time Laboratory Project Number: Dute/Time Dute/Time							-
DeterTime FOR LABORATORY USE ONLY DeterTime EOR LABORATORY USE ONLY Set 15 - 0.5 Received By: Dute/Time Inspection Job Number: Dute/Time Laboratory Project Number: Dute/Time Dute/Time Dute/Time Laboratory Project Number:							
Date/Time EOR LABORATORY USS ONLY St. 15 w 3 Itercived By: Dute/Time EOR LABORATORY USS ONLY St. 15 w 3 Itercived By: Dute/Time Laboratory Project Number: Dute/Time Laboratory Project Number: Dute/Time Dute/Time Dute/Time Laboratory Project Number:				-			
DeterTime EOR.LABORATORY USE ONLX 8:15.03 Received By: Dute/Time 8:15.05 Received By: Laboratory Project Number: Dute/Time Laboratory Project Number: Cash/ch			i.				
Date/Time Date/Time EOR LABORATORY USE ONLY Sr. 15 - 0.5 Kaccived By: Dute/Time Brite/Time Laboratory Project Number: CastMeth Dute/Time Laboratory Project Number: CastMeth							
DeterTime 10.3.0 Received By: DeterTime Laboratory Project Number: Cash/ch. 10.4.0 Due Date: Cash/ch.	Religquighed By	Bete Time	Received By-	Dute/Time		L .	
DutoTime Received By: DutoTime Laboratory Project Number: Ar					Inspection Job Number:	#O4	
	Rélinquishorf By		Received By:	Date/Time	Laboratory Project Number:	Cash/check #	
					Due Date:	Amount Paid: \$	

and the second second							D 71			
:	CLIENT:	Linebach Fu		».	PROJ	ECT NAME:	Bay Zinc			
		4059 Shelby				T NUMBER:	100-02			
	A 77 - A I.	Louisville K			FROMEO	HOMBER.	100-02			
	ATTN:	Roy Funkhou	iser							
	PHONE:	• •			c	UBMITTED:	08/22/03 07	-41		
		(502) 895-400	c	REPORT NU					PAGE: 1	OF
		25/03 15:26		KEPOKI NO						
CI SAMPLE		ENTS 1D#				ATE TIME 8/20/2003 1725	MATRIX Soil			
3082201-01		C 3-10 30 inches			-	8/20/2003 1725	Soil			
3082201-02 3082201-03		C 3-10 36 inches C 3-11 48 inches				8/20/2003 1705	Soil	$\sim r$	TOTALA	1
3082201-04		C 3-11 54 inches			c.	8/20/2003 1705	Soil	in	AIGINA	
3082201-05	•	C 3-18 48 inches				8/20/2003 1645		<i>با ا</i> ي		,
3082201-06		C 3-18 54 inches				8/20/2003 1655 8/20/2003 1633	Soi! Soil			
3082201-07		C 3-19 48 inches				8/20/2003 1745				
3082201-09 3082201-10		C 3-36 48 inches C 3-36 54 inches				8/20/2003 1755				
			<u> </u>	<u> </u>			DETECTIO	DN		
SAMPLE/ ANALYSIS			PARAMETER		RESULT			<u>TECH</u>	DATE/TIME	
3082201-01		IPLE ID: AOC 3-1								
		ively Coupled F				0	0.239	GW	08/23/2003 09:03	
ZINC - JCP	EPA :	200.7/60108			3210					
3082201-02	SAM	IPLE ID: AOC 3-1	l0 36 inches						· .·	
🗖 'ni Metal		tively Coupled I	Plasma	. •		_		014	000000000000000000000000000000000000000	
tCP	EPA.	200.7/6010B		19.200 (19.50) (19.50) 	1500	mg/kg	0.201	GW	08/25/2003 12:24	
5 <u>1</u> 01-03	SAN	IPLE ID: AOC 3-1	1 48 inches							
		tively Coupled I								
ZINC - ICP		200.7/6010B	ZINC		884	mg/kg	0.022	GW	08/23/2003 09:03	
3082201-04		IPLE ID: AOC 3-1	1 54 inches					_		
		tively Coupled I								
ZINC - ICP		200.7/6010B	ZINC		830	mg/kg	0.026	GW	08/25/2003 12:24	
				<u> </u>						
3082201-05		PLE ID: AOC 3-1								
I OTAL METAL ZINC - ICP		tively Coupled I 200.7/60108	ZINC		773	mg/kg	0.021	GW	08/23/2003 09:03	
3082201-06		PLE ID: AOC 3-1								
		tively Coupled I			8000	mg/kg	0.199	GW	08/25/2003 12:24	
ZINC - ICP	EPA	200.7/6010B								
3082201-07		PLE ID: AOC 3-								
Total Metal	-	tively Coupled I					0.000	GW	08/23/2003 09:03	
ZINC - ICP	EPA	200.7/60108			243	mg/kg	0.022			
3082201-09		PLE ID: AOC 3-								
	ls by Induc	tively Coupled I	Plasma						000000000000000000000000000000000000000	
ZINC - ICP	EPA	200.7/6010B	ZINC		2210	mg/kg	0.222	GW	08/23/2003 09:03	
3082201-10		IPLE ID: AOC 3-3								
		IPLE ID: AOC 3-: tively Coupled I			3600	mg/kg	0,209	GW	08/25/2003 12:24	

...s report may not be reproduced except in full.

Ţ

and a second

Authorized for Release By:

Richard D. Reid - Laboratory Director

uh

VOIC

REPORT DATE: 08/25/03 15:26

REPORT NUMBER: 3082201

PAGE: 2 OF 2

GRIGINAL

is report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed																					5tap 1f <570 m5/kg	Cash/check #	Aurount Paid: S
 ✓ 7133 N. Lombard, Portland, OR 97203 □ 4901 E. 20th Street, Fife, WA 98424 □ 4592 E 2nd Street, Ste 'A', Benicia, CA 94510 □ 797 Channel Street, San Pedro, CA 90731 			1109	Notification Method(a)	Telephone			Sample	1725	1735 X	1705	1715 × 1	3 1645 X	1655	.	1640 X 1640	3 1745 × 1	1735 X				PLAN GROUP METHU	DuteTime Laboratory Project Number:	Due Date:
	Project Name:	H	P.O. Number:	Testing Priority Notifis		Ind Rush (; 8 / 16 TAT	Due Date;	Sample Sample Matrix Date	8/	Soil 8/20/03		501 820(07	Scil 8/20/63	Soil 8/20/03	Soil 8/20103	1 Soil 8/20103	Soil 8120/03	50:1 8/20/03	-		I Received By:	0	Received By:	
COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	Lineloguh Funkhause, Inc		ו עו	522) 895-5009	502) 845-4005	JMP aubmitted		Sannie Descrintion/UN Number														fait for	Date/Tim	
COLUM CHA NON-CO	Customer Name:	Attention:		Phone:	Faxe	Sampler:		Samule id#	Ax:3-10-30	A.23-10-36	Arx3-11-43	Fic 3-11-5-14	Anca-18-48	Nac3-12-54	AC3-19-48	Ar3-19-54	1943-34, -48	Aocz-31,0-54			Relivertished Bo	(mer 1	Relinquished By.	

;

.

a since on a substance second by the second

(

CERTIF	ICATE	OF	ANALYSI	S

CLIENT: Linebach Funkhouser Inc. ATTN: Roy Funkhouser 4059 Shelbyville Rd. Louisville KY, 40220

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

FAX: (502) 895-4005

SUBMITTED: 07/02/04 15:00

			JMBER: 4070				PAGE: 1 0
CI SAMPLE 4070205-01	CLIENTS ID# MW-1A/18 Well Pad 3	North 8' Door		TE TIME 729/2004 164			
4070205-02	MW-1A/1B Well Pad	•		/29/2004 163			
4070205-03	MW-1A/1B Well Pad	•		/29/2004 165/			
4070205-04	AOC 3-1 Depth 1 Foo			/29/2004 175/			
4070205-05	AOC 3-5 Depth 1 Foo			/29/2004 175			
4070205-06	AOC 3-9 Depth 1 Foo			/29/2004 174			
4070205-07	AOC 3-13 Depth 1 Fo	ot	06	/29/2004 173/	3 Soil		
4070205-08	AOC-5-18 Depth 2 Fe	æt	06	/29/2004 182	5 Soil		
4070205-09	AOC-5-19 Depth 2 Fe	et	06	/29/2004 182	3 Soil		
4070205-10	AOC-5-20 Depth 2 Fe	æt	06	/29/2004 1820) Soil		
4070205-11	AOC-5-21 Depth 2 Fe	et	06	/29/2004 181	5 Soil		
4070205-12	MW-1 Wellpad South	15 Feet	06	/30/2004 094	3 Soil		
SAMPLE/ NALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTIO! LIMIT	TECH	DATE/TIME
070205-01	SAMPLE ID: MW-1/	A/1B Well Pad North 8' Deep					
otal Metals by I	Inductively Coupled						
<u>) - ICP</u>	EPA 200.7/6010B	ZINC	1270	mg/kg	0.023	вкв	07/08/2004 08:38
u70205-02	SAMPLE ID: MW-1/	A/1B Well Pad West 8' Deep					
	nductively Coupled						
INC - ICP	EPA 200.7/6010B	ZINC	12.9	mg/kg	0,007	вкв	07/08/2004 08:38
070205-03	SAMPLE ID: MW-1	A/1B Well Pad South 8' Deep			·····		
	inductively Coupled						
INC - ICP	EPA 200.7/60108	ZINC	118	mg/kg	0.010	вкв	07/08/2004 08:38
070205-04	SAMPLE ID: AOC 3	1 Donth 1 Epst					
	nductively Coupled	Plasma					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	8,53	mg/kg	0,050	вкв	07/08/2004 08;38
EAD - ICP		LEAD	31.1	mg/kg	0.0500	BKB	07/08/2004 08:38
INC - ICP		ZINC	2320	mg/kg	0.100	BKB	07/08/2004 08:38
070205-05	SAMPLE ID: AOC 3						
	nductively Coupled						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.963	mg/kg	0.050	вкв	07/08/2004 08:38
EAD - ICP		LEAD	14.7	mg/kg	0.0500	ВКВ	07/08/2004 08:38
INC - ICP		ZINC	334	mg/kg	0.010	8KB	07/08/2004 08:38
070205-06							
	SAMPLE ID: AOC 3 nductively Coupled	-					
oral motars Dy 1	EPA 200,7/6010B	CADMIUM	2.45	mafka	0.099	BVP	07/09/2004 09:20
		LEAD	125	mg/kg mg/kg	0.099	BKB	07/08/2004 08:38
ADMIUM - ICP			120	ngang	0,0909	DND	01/00/2004 00.30
		ZINC	1050	mg/kg	0.020	BKB	07/08/2004 08:38

report may not be reproduced except in full.

Authorized for Release By:

4

Richard D. Reid - Laboratory Director

PORT DAT	E: 07/08/04 15:37	REP	ORT NUMBER: 407020	5			PAGE: 2 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	TECH	DATE/TIME
1070205-07 Fotal Metals by	SAMPLE ID: AOC : Inductively Coupled					-	
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	8.41	mg/kg	0.066	BKB	07/08/2004 08:38
EAD - ICP		LEAD	197	rng/kg	0.0661	BKB	07/08/2004 08:38
ZINC - ICP		ZINC	5440	mg/kg	0.132	вкв	07/08/2004 08:38
1070205-08	SAMPLE ID: AOC-	5-18 Depth 2 Feet					
otal Metals by	Inductively Coupled	Plasma	•				
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	232	mg/kg	0.100	BKB	07/08/2004 08:38
EAD - ICP		LEAD	7190	mg/kg	9.99	ВКВ	07/08/2004 08:38
ZINC - ICP		ZINC	246000	mg/kg	4.00	ВКВ	07/08/2004 08:38
Ю70205-09 fotal Metais by хармим - ICP	SAMPLE ID: AOC- Inductively Coupled EPA 200.7/60108		52.6	mg/kg	0.050	BK8	07/08/2004 08:38
EAD - ICP		LEAD	3970	ma/ka	0.500	BK8	07/08/2004 08:38
(INC - ICP		ZINC		mg/kg	0.400	BKB	07/08/2004 08:38
070205-10 otal Metals by	SAMPLE ID: AOC-						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	57.1	mg/kg	0.098	вкв	07/08/2004 08:38
EAD - ICP		LEAD	4990	mg/kg	0.977	вкв	07/08/2004 08:38
INC - ICP		ZINC	30000	mg/kg	0.391	BKB	07/08/2004 08:38
	SAMPLE ID: AOC-						
MIUM - ICP	EPA 200.7/6010B	CADMIUM	4.91	mg/kg	0,059	BKB	07/08/2004 08:38
LAD - ICP		LEAD	224	mg/kg	0.0586	BKB	07/08/2004 08:38
		ZINC	1520	mg/kg	0.023	BKB	07/08/2004 08:38
070205-12 otal Metals by	SAMPLE ID: MW-1 Inductively Coupled	Wellpad South 15 Feet Plasma					
INC - ICP	EPA 200,7/6010B	ZINC	5440	mg/kg	0.100	вкв	07/08/2004 08:38

ORIGINAL

report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

C		CERT	IFICATE	OF	ANAI	_Y	SIS
	CLIENT:	Linebach Funkhouser Inc.	PRO	DJECT NAME:	Bay Zinc		
	ATTN:	Roy Funkhouser 4059 Shelbyville Rd. Louisville KY, 40220	PROJE	CT NUMBER:	100-02		
	PHONE: FAX:	(502) 895-5009 (502) 895-4005		SUBMITTED:	07/17/04 12:0	00	
REPORT	DATE: 07/2	9/04 08:13	REPORT NUMBER: 40	71901			PAGE: 1 OF 1
CI SAMPLE 4071901-01 4071901-02 4071901-03 4071901-04 4071901-05	AOC AOC AOC AOC	NTS ID# 3-10 Depth 1 Foot Plus 3-11 Depth 1 Foot Plus 3-14 Depth 6" Plus 3-17 Depth 6" Plus 3-17 Depth 6" Plus 1-2 Depth 1 Foot Plus		DATE TIME 07/16/2004 0915 07/16/2004 0930 07/16/2004 0915 07/16/2004 1000 07/16/2004 1545	MATRIX Soft Soft Soft Soft		
SAMPLE/ ANALYSIS	METH	<u>i</u>	RESUL			тесн	DATE/TIME
4071901-01 Total Metal	s by Inducti	PLE ID: AOC 3-10 Depth 1 Foot Plu vely Coupled Plasma					
CADMIUM - IC	CP EPA 2	00.7/6010B CADMIUM	5.5 208	mg/L mg/L	0.005	BKB	07/23/2004 13:28 07/23/2004 13:28
ZINC - ICP		ZINC	6800	mg/L	0.053	BKB	07/23/2004 13:28
4071901-02 Total Metal CADMIUM - IC LEAD - ICP 7 ICP	s by Inducti	PLE ID: AOC 3-11 Depth 1 Foot Plu vely Coupled Plasma 00.7/6010B CADMIUM LEAD ZINC	4.7 4.7 124 3700	mg/L mg/L mg/L	0.003 0.005 0.030	BKB BKB BKB	07/23/2004 13:28 07/23/2004 13:28 07/23/2004 13:28
4ur 1901-03 Total Metal		PLE ID: AOC 3-14 Depth 6" Plus vely Coupled Plasma					
CADMIUM - IC	CP EPA 2	00.7/6010B CADMIUM LEAD	<u>4.8</u> 184	mg/L	0.002	BKB BKB	07/23/2004 13:28 07/23/2004 13:28
ZINC - ICP		ZINC	7500	mg/L	0.022	вкв	07/23/2004 13:28
4071901-04	s by Inducti	PLE ID: AOC 3-17 Depth 6" Plus vely Coupled Plasma 00.7/6010B CADMIUM LEAD ZINC	3.6 182 6300	mg/L mg/L mg/L	0.004 0.006 0.037	BKB BKB BKB	07/23/2004 13:28 07/23/2004 13:28 07/23/2004 13:28
4071901-05		PLE ID: AOC 1-2 Depth 1 Foot Plus	3				
CADMIUM - 10		00.7/6010B CADMIUM	8.4	mg/L	0.005	BKB	07/23/2004 13:28
LEAD - ICP ZINC - ICP		LEAD	11.4 9300	mg/L	0.009	BKB BKB	07/23/2004 13:28 07/23/2004 13:28
		2010	5005		0.002		CITEOREO I TOLO

This report may not be reproduced except in full.

(

Authorized for Release By:

Richard D. Reid - Laboratory Director

COPY

AOC-5

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

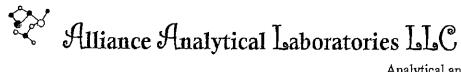
Attn: Roy Funkhouser

Date Received: 5/16/2003 Date of Report: 5/20/2003

Project: Bay Zinc

Sample Identification:

Lab ID	Sample Description	Date and Time Received
103177-(01-06)	Misc. Soils; Cd, Pb and Zn	5/16/2003 10:15 AM


Comments:

Soil sample results reported on a dry-weight basis.

)Iliam Riku

William R. Rice Laboratory Director

(

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soll Date Received: 5/16/2003 Date Completed: 5/20/2003 Date Reported: 5/20/2003

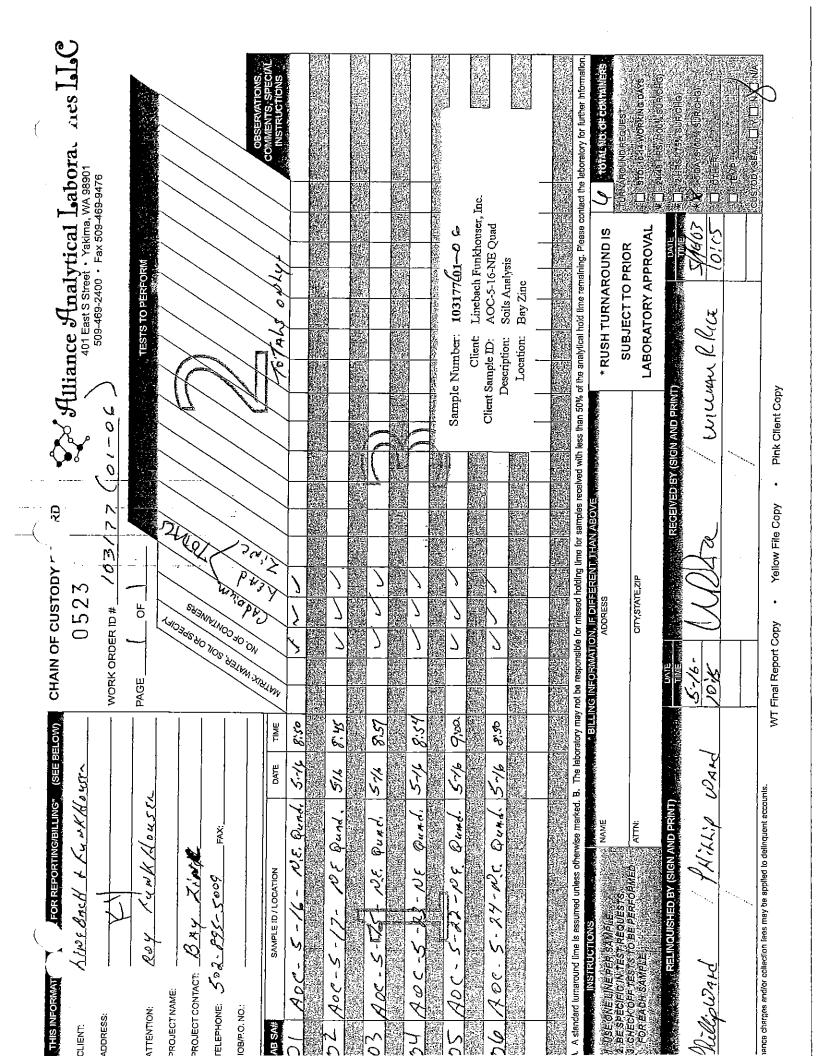
Lab Sample ID: 103177-(01-06)

Sample Results

(

Lab Sample ID	Sample ID/Desc	Analyte	Method		% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7			ND				0.000
Medioo Dialik		Lead							mg/L	0.006
			EPA 200.7			ND	·		mg/L	0.2
		Zinc	EPA 200.7			0.021			mg/L	0.007
103177-01	AOC 5-16 NE QD	Cadmium	EPA 200.7		15.6	ND			mg/Kg	0.006
		Lead	EPA 200.7		15.6	132			mg/Kg	0.2
		Zinc	EPA 200.7		15.6	1990			mg/Kg	0.007
103177-02	AOC 5-17 NE QD	Cadmium	EPA 200.7		15.3	ND			mg/Kg	0.006
		Lead	EPA 200.7	·	15.3	30.3			mg/Kg	0.2
		Zinc	EPA 200.7		15.3	303			mg/Kg	0.007
103177-03	AOC 5-15 NE QD	Cadmium	EPA 200.7		. 15.3	ND	-		mg/Kg	0.006
		Lead	EPA 200.7		15.3	ND			mg/Kg	0.2
		Zinc	EPA 200.7		15.3	94.3			mg/Kg	0.007
103177-04	AOC 5-23 NE QD	Cadmium	EPA 200.7		16.4	ND	ND	NA	mg/Kg	0,006
		Lead	EPA 200.7		16.4	386	364	5.8	mg/Kg	0.2
		Zinc	EPA 200.7		1 6.4	7400	6990	5.7	mg/Kg	0.007
103177-05	AOC 5-22 NE QD	Cadmium	EPA 200.7		17.4	10.7			mg/Kg	0.006
		Lead	EPA 200.7		17.4	1261			mg/Kg	0.2
		Zinc	EPA 200.7		17.4	19200	•	,	mg/Kg	0.2
			2/11/2007	٩	17.7	10200			nigaty.	0.007
103177-06	AOC 5-24 NE QD	Cadmium	EPA 200.7		15.8	ND			mg/Kg	0.006
		Lead	EPA 200.7		15.8	341			mg/Kg	0.2
		Zinc	EPA 200.7		15.8	4990			mg/Kg	0.007

Analytical and Consulting Services


Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil Date Received: 5/16/2003 Date Completed: 5/20/2003 Date Reported: 5/20/2003

Lab Sample ID: 103177-(01-06)

Quality Control Summary

Lab Sample ID	Analyte	Method		Sample Result	True Value	Result	Spike Conc	% Rec	Units	MDL
103177-01 MS	Cadmium	EPA 200.7		ND		0.70				
100177-01140	Lead	EPA 200.7		1.59		0.79 2.45	0.9 0.9	27.5 96.2	mg/L mg/L	0.005 0.2
	Zinc	EPA 200.7		23.9		24.7	0.9	89.9	mg/L	0.007
IPC Stnd	Cadmium	EPA 200,7			2.0	1.90		95.0	mg/L	0.006
B ID 051903-200.7	Lead	EPA 200.7	-		2.0	1.99		99.4	mg/L	0.2
	Zinc	EPA 200.7	·	·	2.0	1.95		97.7	mg/L	0.007
Strid - Ki	Cadmium	EPA:200.7		12:27	1.5	1.46		97.1	mg/L	0.006
1903-200.7	Lead	EPA 200.7	m <u></u>	• .	1.5	1.52		101	mg/L	0.2
• <i>=</i>	Zinc	EPA 200.7	••	÷	1.5	1.49		99.1	mg/L	0.007

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 5/28/2003 Date of Report: 5/31/2003

Project: Bay Zinc

Sample Identification:

1	Lab ID	Sample Description	Date and Time Received
	103299-(01-03)	Misc. Soils; Cd, Pb and Zn	5/28/2003 11:30 AM

Comments:

.....

Soil sample results reported on a dry-weight basis.

William FRice

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

(

Project: Metals, Soil Date Received: 5/28/2003 Date Completed: 5/30/2003 Date Reported: 5/31/2003

Lab Sample ID: 103299-(01-03)

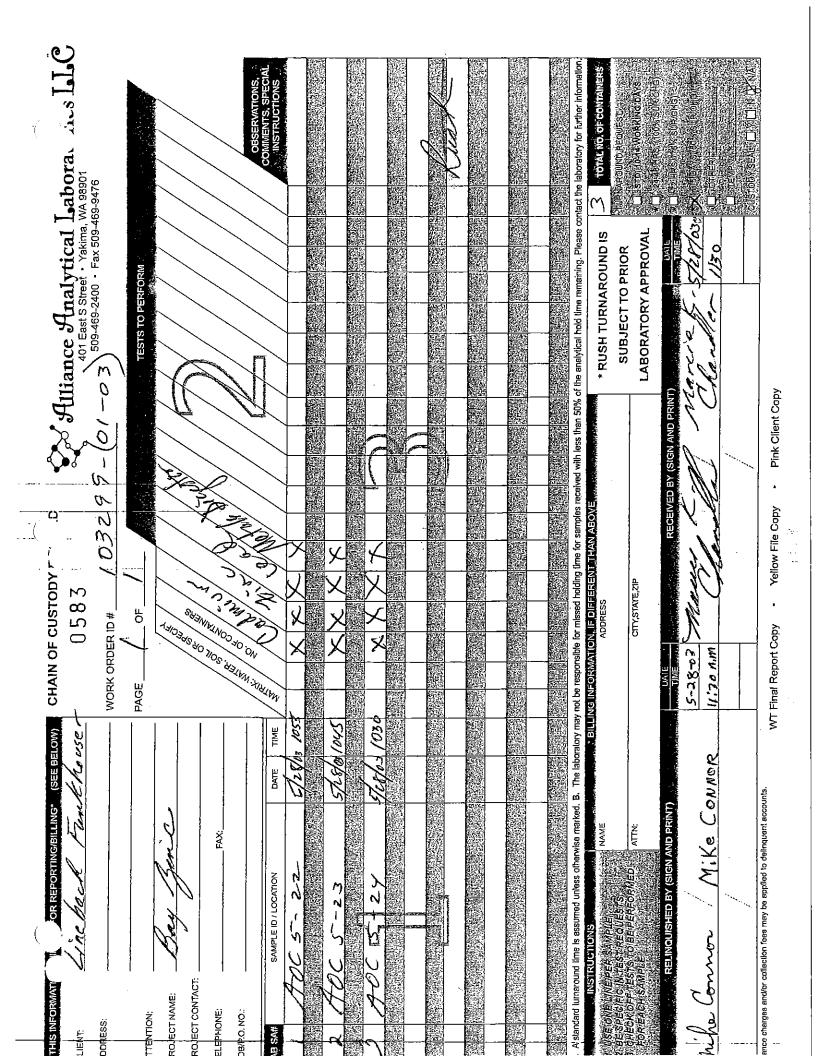
Sample Results

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL.
Method Blank		.							-
Methoo Diank		Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.011			mg/L	0.007
103299-01	AOC 5-22	Cadmium	EPA 200.7	18.7	2.26			mg/Kg	0.006
		Lead	EPA 200.7	18.7	86.7			mg/Kg	0.2
		Zinc	EPA 200.7	18.7	9286			mg/Kg	0.007
103299-02		Cadmium	EPA 200.7	18.7	ND	ND	NA	mg/Kg	0.006
7 55	1.1.5 52.5	Lead	EPA 200.7	· 18.7	44.6	35.2	23.6	mg/Kg	0.2
<u> </u>	V.,_ 2-1	Zinc 🛫	EPA 200.7	18.7	479	457	4.6	mg/Kg	0.007
103299-03	AOC 5-24	Cadmium	EPA 200.7	17.6	ND			mg/Kg	0.006
		Lead	EPA 200,7	17.6	65.2	•		mg/Kg	0.2
		Zinc	EPA 200.7	17.6	1240			mg/Kg	0.2

· ...

Analytical and Consulting Services

. . . .


Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil Date Received: 5/28/2003 Date Completed: 5/30/2003 Date Reported: 5/31/2003

Lab Sample ID: 103299-(01-03)

Quality Control Summary

Lab Sample ID	Analyte	Method	Sample Result	True Value	Result	Spike Conc	% Rec	Units	MDL
103299-01 MS	Cadmium	EPA 200.7	0.024		0.86	1.0	83.8	mg/L	0.006
	Lead	EPA 200.7	0.92		1.78	1.0	85.7	mg/L	0.2
	Zinc	EPA 200.7	NA		NA	NA	NA	mg/L	0.007
IPC Stnd	Cadmium	EPA 200.7		2.0	1.90		94.8	mg/L	0.000
B ID 053003-200.7	Lead	EPA 200.7		2.0	1.97		98.3	mg/L	0.006 0.2
	Zinc	EPA 200.7		2.0	1.92		95.8	mg/L	0.2
ം,∩്ര Stnd ം	Cadmium	E <u>PA_</u> 200.7	noni inicizio	1.5	1.45		96.8	mg/L	0.006
003-200.7	Lead	EPA 200.7	-	1.5	1.49		99.5	mg/L	0.000
9 - 1.2 4	Zinc		nip s, t	1,5	1.45		97.2	mg/L	0.007

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 4/29/2003 Date of Report: 5/1/2003

Project: Bay Zinc

Sample Identification:

Lab ID	Sample Description	Date and Time Received
102901-(01-10)	Misc. Soils; Cd, Pb and Zn	4/29/2003 8:05 AM

Comments:

Soil sample results reported on a dry-weight basis.

illiam Pla

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil Date Received: 4/29/2003 Date Completed: 4/30/2003 Date Reported: 5/1/2003

Lab Sample ID: 102901-(01-10)

Sample Results

Lab Sample ID	Sample ID/Des	c Analyte	Method	% Moist	ure Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7		ND				
		Lead	EPA 200.7		ND			mg/L	0.006
		Zinc	EPA 200.7		0.11			mg/L	0.2
					0.11			mg/L	0.007
102901-01	AOC 5-9	Cadmium	EPA 200.7	17.6	ND			mg/Kg	0.006
		Lead	EPA 200.7	17.6	29.1			mg/Kg	0.2
	-	Zinc	EPA 200.7	17.6	219			mg/Kg	0.007
102901-02	AOC 5-10	Cadmium	EPA 200.7	17 E					
/ · · · ·		Lead	EPA 200.7	17.5	81.8			mg/Kg	0.006
	tere Bala	Zinc	EPA 200.7	- 17.5	1855			mg/Kg	0.2
		2.00	רְהָאַ צְטָּט.ו	17.5	16629			mg/Kg	0.007
102901-03	AOC 5-4	Cadmium	EPA 200.7	17.7	12.5			mg/Kg	0.006
		Lead	EPA 200.7	17.7	253			mg/Kg	0.000
		Zinc	EPA 200.7	17.7	5139			mg/Kg	0.007
								ing.rig	0.007
102901-04	AOC 5-11	Cadmium	EPA 200.7	16.7	21.1			mg/Kg	0.006
		Lead	EPA 200.7	16.7	1759			mg/Kg	0,2
		Zinc	EPA 200.7	16.7	12027			mg/Kg	0.007
102901-05	AOC 5-1	Cadmium	EPA 200.7	17.7	0.50				
		Lead	EPA 200.7	17.7	0.59 87.7			mg/Kg	0.006
		Zinc	EPA 200.7	17.7	8697			mg/Kg	0.2
			EI /1200./	11.7	0097			mg/Kg	0.007
02901-06	AOC 5-7 6 inch	Cadmium	EPA 200.7	21.7	16.2			mg/Kg	0.006
-		Lead	EPA 200.7	21.7	258			mg/Kg	0.2
		Zinc	EPA 200.7	21.7	25450			mg/Kg	0.007
02901-07	AOC 5-2	Cadmium	EDA 200 7	46.5					
-		Lead	EPA 200.7 EPA 200.7	16.7 16.7	ND			mg/Kg	0.006
		Zinc	EPA 200.7	16.7 16.7	69.1			mg/Kg	0.2
				16.7	5624			mg/Kg	0.007
02901-08	AOC 5-5 6 inch	Cadmium	EPA 200.7	18.4	32.0	33.7	5.3	mg/Kg	0.006
ſ		Lead	EPA 200.7	18.4	836	839	0.4	mg/Kg	0.000
Υ		Zinc	EPA 200.7	18.4	17107	17398	1.7	mg/Kg	0.007
02501-09	AOC 5-3	Cadmium	EDA 200 7					-	
		Lead	EPA 200.7	18.9	ND			mg/Kg	0.006
		Zinc	EPA 200.7	18.9	21.5			mg/Kg	0.2
			EPA 200.7	18.9	265			mg/K g	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil Date Received: 4/29/2003 Date Completed: 4/30/2003 Date Reported: 5/1/2003

Lab Sample ID: 102901-(01-10)

Sample Results

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
102901-10	AOC 5-8 6 inch	Cadmium Lead	EPA 200.7 EPA 200.7	20.8 20.8	ND 15.0			mg/Kg mg/Kg	0.006 0.2
		Zinc	EPA 200.7	20.8	6461			mg/Kg	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil Date Received: 4/29/2003 Date Completed: 4/30/2003 Date Reported: 5/1/2003

Lab Sample ID: 102901-(01-10)

Quality Control Summary

Lab Sample ID	Analyte	Method		Sample Result	True Value	Result	Spike Conc	% Rec	Units	MDL
102901 MS	Cadmium	EPA 200.7		ND		0.80	1.0	79.6	mg/L	0.006
	Lead	EPA 200.7		0.33		1.26	1.0	93.1	mg/L	0.2
	Zinc	EPA 200.7		2.50		3.47	1.0	96.7	mg/L	0,007
IPC Stnd	Cadmium	EPA 200.7			2.0 [.]	1.84		91,9	mg/L	0.006
B ID 043003-200.7	Lead	EPA 200.7			2.0	2.02		101	mg/L	0.2
2 N <u>11</u>	Zinc	EPA 200.7	····		2.0	1.92		96.0	mg/L	0,007
The Study of the	Cadmium	EPA 200.7	, n·- *	(1.5	1.42		94.5	mg/L	0.006
1003-200.7	Lead	EPA 200.7	·	-	1.5	1.55		103	mg/L	0.2
: '	Zinc	EPA 200.7		2	1.5	1.49		99.1	mg/L	0.007

н н (401 East Street • Yakima, WA 98901 509-469-2400 • Fax 509-469-9476	TESTS TO PERFORM		Client: Linebach Funkhouser, Inc. Sample ID: AOC5.9 MISC Description: Soil Technics: Day Zing			A RAX TO LA				AUCH NY CALL		of the analytical hold time remain	* RUSH TURNAROUND IS (0 TOTAL NO OF CONTAINERS SLIP. LECT TO PRIOR			MALLY EVS. D THE	
CHAIN OF CUSTODY - D)579 «№#_[0210 (-(01-(č		Sumple Number:	De Client Sn	A PAR A A A A A A A A A A A A A A A A A	2011 T X X X T 12							Name and a second large and a second large and a second second large and a second large and a second large and s Y not be responsible for missed holding time for samples received with less than 50% i	BILLING INFORMATION, IF DIFERENCITIAN ABOVE AND AN ABOVE AND ADDRESS	CITY,STATE,ZIP	H-24 1 , OFF	TIS WILLIAM / WILLIAM	
THIS INFORMATI	5377	Louisville, Ky 40202 ATTENTION: Rey Euclebource	ROJECT NAME: Jay ZUTAC	5-248-605	AB SA# SAMPLE ID / LOCATION DATE TIME	1 405 5-9 4-28 1515	1615	S ADC 5 ET 4 28 120	$\frac{1}{2} = \frac{1}{2} $	- 53-5	1 700 5 - 1 (0 10 14 29 1735 1 10 200 5 - 5 (0 10 14 29 1926	11 AOC S-3 4-19 10:00	architectures of the wise marked. B.	ATONS BAMPELER PECOUESTS	II: CHECK OFF (FESTS IO BE PERFORMED)	RELINQUISHED BY (SIGN AND PRINT)	12110 1 Larx Ching	ianca charges and/or collection lees may be applied to delinquent accounts.

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 5/1/2003 Date of Report: 5/8/2003

Project: Bay Zinc

Sample Identification:

Lab ID	Sample Description	Date and Time Received
102960-(01-11)	Misc. Soils; Cd, Pb and Zn	5/1/2003 4:10 PM
102960-12	Rinsate; Cd, Pb, and Zn	5/5/2003 4:10 PM

Comments:

Soil sample results reported on a dry-weight basis.

William RACCE

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil, Water Date Received: 5/1/2003 Date Completed: 5/6/2003 Date Reported: 5/8/2003

Lab Sample ID: 102960-(01-12)

Sample Results

Lab Sample ID	Sample ID/Desc	Analyte	Method		% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7			ND			mg/L	0.006
		Lead	EPA 200.7			ND			mg/L	0.2
-		Zinc	EPA 200.7			0.047			mg/L	0.007
102960-01	AOC 5-10 12"	Cadmium	EPA 200.7		13.6	ND			mg/Kg	0.006
		Lead	EPA 200.7		13.6	ND			mg/Kg	0.2
-		Zinc	EPA 200.7	÷	13.6	573			mg/Kg	0.007
102960-02	AOC 5-11 12"	Cadmium	EPA 200.7	••	12.0	ND			mg/Kg	0.006
/ 1 771.	195	Lead	EPA 200.7		12.0	ND			mg/Kg	0.000
	· · · ·	Zinc	EPA 200.7		12.0	84.5			mg/Kg	0.007
102960-03	AOC 5-10 18"	Cadmlum	EPA 200.7		16.0	ND			mg/Kg	0.006
		Lead	EPA 200.7		16.0	ND			mg/Kg	0.006 0.2
		Zinc	EPA 200.7		16.0	712			mg/Kg	0.007
102960-04	AOC 5-11 18"	Cadmium	EPA 200.7	• .	16.4	ND	ND	NA	maWa	0.000
	,	Lead	EPA 200.7		16.4	ND	ND	NA	mg/Kg	0.006
		Zinc	EPA 200.7		16.4	216	222	3.1	mg/Kg mg/Kg	0.2 0.007
102960-05	AOC 5-4 12"	Cadmium	EPA 200.7		14.7	ND			malka	0.000
		Lead	EPA 200.7		14.7	16.8			mg/Kg	0.006
		Zinc	EPA 200.7		14.7	777			mg/Kg mg/Kg	0.2 0.007
100000 00									0.00	
102960-06	AOC 5-4 18"	Cadmium	EPA 200.7		16.2	ND			mg/Kg	0.006
		Lead	EPA 200.7		16.2	ND			mg/Kg	0.2
	,	Zinc	EPA 200.7		16.2	1005			mg/Kg	0.007
102960-07	AOC 5-5 12"	Cadmium	EPA 200.7		12.0	ND			mg/Kg	0.006
		Lead	EPA 200.7		12.0	ND			mg/Kg	0.2
		Zinc	EPA 200.7		12.0	64.6			mg/Kg	0.007
102960-08	AOC 5-5 18"	Cadmium	EPA 200.7		16.3	ND			mg/Kg	0.006
1		Lead	EPA 200.7		16.3	ND			mg/Kg	0.2
		Zinc	EPA 200.7		16.3	67.5			mg/Kg	0.007
102960-09	AOC 5-7 12"	Cadmium	EPA 200.7		14.2	ND	ND	NA	mg/Kg	0.006
		Lead	EPA 200.7		14.2	ND	ND	NA	mg/Kg	0.2
		Zinc	EPA 200.7		14.2	146	164	11.6	mg/Kg	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

ľ

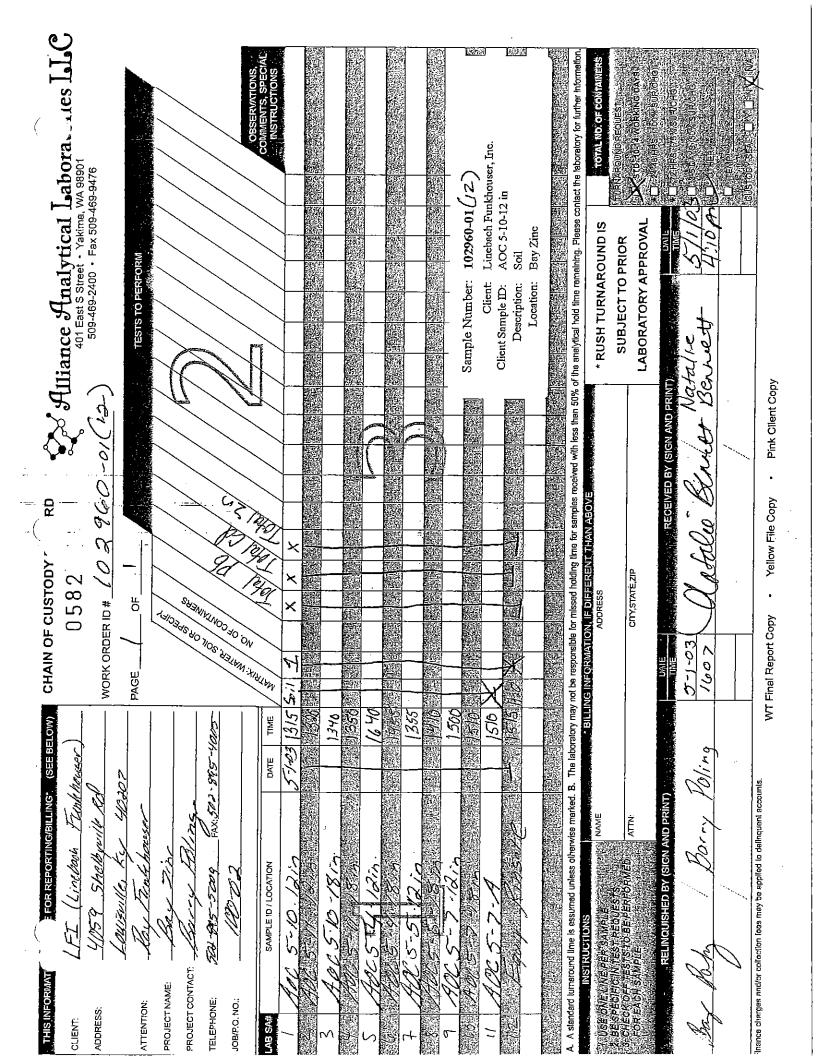
Project: Metals, Soil, Water Date Received: 5/1/2003 Date Completed: 5/6/2003 Date Reported: 5/8/2003

Lab Sample ID: 102960-(01-12)

Sample Results

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
102960-10	AOC 5-7 18"	Cadmium	EPA 200.7	16.8	ND			maKa	0.000
		Lead	EPA 200.7	16.8	ND			mg/Kg mg/Kg	0.006 0.2
		Zinc	EPA 200.7	16.8	314			mg/Kg	0.007
102960-11	AOC 5-7-A	Cadmium	EPA 200.7	12.7	ND			mg/Kg	0.006
		Lead	EPA 200.7	12.7	ND			mg/Kg	0.2
		Zinc	EPA 200.7	12.7	69.0			mg/Kg	0.007
102960-12	Equip Rinsate	Cadmium	EPA 200.7	- 17 - ¹⁷ -	ND			mg/L	0.006
(ħ.,	Lead	EPA 200.7	/* *	ND			mg/L	0.2
l,	Р 3.	Zinc	EPA 200.7	• •	ND			mg/L	0.007

Analytical and Consulting Services


Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil, Water Date Received: 5/1/2003 Date Completed: 5/6/2003 Date Reported: 5/8/2003

Lab Sample ID: 102960-(01-12)

Quality Control Summary

Lab Sample ID	Analyte [‡]	Method		Sample Result	True Value	Result	Spike Conc	% Rec	Units	MDL
102960-03 MS	Cadmium	EPA 200.7		ND		0.93	1.0	92.9	mg/L	0.006
	Lead	EPA 200.7		ND		1.10	1.0	110,2	mg/L	0,2
	Zinc	EPA 200.7		8.54		9.52	1.0	97.9	mg/L	0.007
IPC Stnd	Cadmlum	EPA 200.7			2.0	1.87		93.7	mg/L	0.006
B ID 050603-200.7	Lead	EPA 200.7			2.0	1.98		99.1	mg/L	0.2
L 1.25	Zinc	EPA 200.7	ے بے د	· · · -	2.0	1.90		95.2	mg/L	0.007
700\$ Stnd Steel	Cadmium	EPA 200.7	area.	677	1.5	1.50		99.9	mg/L	0.006
1603-200.7	Lead	EPA 200.7			1,5	1.50		100	mg/L	0.2
5 5 A.	Zinc	EPA 200.7			1.5	1.45		96.4	mg/L	0.007

REPORT DATE: 11/21/03 10:58

CERTIFICATE OF ANALYSIS

CLIENT: Linebach Funkhouser Inc. 4059 Shelbyville Rd. Louisville KY, 40220 ATTN: Roy Funkhouser PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

FAX: (502) 895-4005

SUBMITTED: 11/05/03 07:37

PAGE: 1 OF 4

CI SAMPLE	CLIENTS ID#	<u> </u>			DATE	TIME	MATRIX		
3110501-01	AOC-5-7 Surface		• • • •	ana an a'	11/04/2003	1153	Soil		
3110501-02	AOC-5-7 1				11/04/2003	1154	Soil		
3110501-03	AOC-5-7 2	7			11/04/2003	1155	Soil		
3110501-04	AOC-5-8 Surface	~			11/04/2003	1150	Soil		
3110501-05	AOC-5-8 1				11/04/2003	1151	Soil		
3110501-06	AOC-5-8 2'				11/04/2003	1152	Soil		
3110501-07	AOC-5-11 Surface				11/04/2003		Soil		
3110501-08	AOC-5-11 1'				11/04/2003		Soil		· .
3/10501-09 3110501-10	AOC-5-11 2'	· •		·	11/04/2003		Soil		
3110501-10	AOC-5-12 Surface	· · · ·			11/04/2003	1123	Soil	-	
3110501-12	AOC-5-12 2				11/04/2003	· · - ·	Soil		• '
3110501-12	AOC-5-12 Z AOC-5-13 Surface	•			11/04/2003	1125	Soil	f > f	TOTELL
3110501-14	AOC-5-13 Sunade				11/04/2003	1208	Soil	1 1	
3110501-15	AOC-5-13 2'	1		et fo	11/04/2003 11/04/2003	1209	Soll	$\gamma \in \Gamma X$	IGINAL
3110501-16	AOC-5-14 Surface					1210	Soil	,	
3110501-17	AOC-5-14 1'				11/04/2003	1119	Soli C-7		
3110501-18	AOC-5-14 2'				11/04/2003	1120	Soll		
3110501-10	AOC-5-15 Surface				11/04/2003 11/04/2003	1121 1100	Soil		
01-20	AOC-5-15 1'				11/04/2003	1100	Soil Soil		
5. J01-21	AOC-5-15 2				11/04/2003	1103	Soil		
3110501-22	AOC-5-19 Surface				11/04/2003	1130	Soil		
3110501-23	AOC-5-19 1'				11/04/2003	1131	Soil		
3110501-24					11/04/2003		Soil		
	AOC-5-19 2				11/04/2003				
SAMPLE/ ANALYSIS	AOC-5-19 2'	PARAMETER		RESUL			DETECT		DATE/TIME
SAMPLE/ Analysis	METHOD	_		RESUL					
SAMPLE/ ANALYSIS 3110501-01	METHOD SAMPLE ID: AOC-5	– – -7 Surface		RESUL			DETECT		DATE/TIME
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by	METHOD ŚAMPLE ID: AOC-5 Inductively Coupled	- 7 S urface Plasma			TS UN	TS		TECH	<u> </u>
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KP	METHOD SAMPLE ID: AOC-5	7 Surface Plasma CADMIUM		5.01	TS UN mg/kg	TS	DETECT LIMIT	BKB	11/21/2003 09:04
SAMPLE/ WALYSIS 1110501-01 Total Metals by CADMIUM - KCP EAD - KCP	METHOD ŚAMPLE ID: AOC-5 Inductively Coupled	7 Surface Plasma CADMIUM LEAD	· · · · · · · · · · · · · · · · · · ·	5.01 263	TS UN	TS		TECH	11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by	METHOD ŚAMPLE ID: AOC-5 Inductively Coupled	7 Surface Plasma CADMIUM		5.01	TS UN mg/kg	ITS	DETECT LIMIT 0.108	BKB	11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP EINC - KCP 2110501-02	METHOD ŚAMPLE ID: AOC-5 Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1		5.01 263	TS UN mg/kg mg/kg	ITS	0.108 2.16	BKB BKB	11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP EINC - KCP 2110501-02	METHOD ŚAMPLE ID: AOC-5 Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1		5.01 263	TS UN mg/kg mg/kg	ITS	0.108 2.16	BKB BKB	11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP EINC - KCP 2110501-02	METHOD ŚAMPLE ID: AOC-5 Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1		5.01 263 6020	TS UNI mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432	BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP ZINC - KCP 2110501-02 Fotal Metals by CADMIUM - KCP	METHOD SAMPLE ID: AOC-5 Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5 Inductively Coupled	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM		5.01 263 6020 6.30	TS UNI mg/kg mg/kg mg/kg	TS J	0.108 2.16 0.432 0.104	BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP ZINC - ICP 2110501-02 Fotal Metals by CADMIUM - ICP EAD - ICP	METHOD SAMPLE ID: AOC-5 Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5 Inductively Coupled	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD		5.01 263 6020 6.30 481	TS UNI mg/kg mg/kg mg/kg mg/kg	TS	0.108 2.16 0.432 0.104 2.08	BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 2INC - KCP Cotal Metals by CADMIUM - KCP EAD - KCP 2INC - KCP	METHOD SAMPLE ID: AOC-5 Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5 Inductively Coupled	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM		5.01 263 6020 6.30	TS UNI mg/kg mg/kg mg/kg	TS	0.108 2.16 0.432 0.104	BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP 2110501-02 Cotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/60108 SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/60108 SAMPLE ID: AOC-5-	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2'	· · · · · · · · · · · · · · · · · · ·	5.01 263 6020 6.30 481	TS UNI mg/kg mg/kg mg/kg mg/kg	TS	0.108 2.16 0.432 0.104 2.08	BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP 2110501-02 Cotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2'		5.01 263 6020 6.30 481	TS UNI mg/kg mg/kg mg/kg mg/kg	TS	0.108 2.16 0.432 0.104 2.08	BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP 2110501-02 Cotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/60108 SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/60108 SAMPLE ID: AOC-5-	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2'		5.01 263 6020 6.30 481	TS UNI mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.432 0.104 2.08 0.416	BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM		5.01 263 6020 6.30 481 6020 10.3	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	0.108 2.16 0.432 0.104 2.08 0.416	BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KP EAD - KP LINC - KCP Cotal Metals by CADMIUM - KCP LINC - ICP LINC - ICP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD		5.01 263 6020 6.30 481 6020 10.3 812	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.104 2.08 0.416 0.100 1.99	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC		5.01 263 6020 6.30 481 6020 10.3	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	0.108 2.16 0.432 0.104 2.08 0.416	BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 2INC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC 8 Surface		5.01 263 6020 6.30 481 6020 10.3 812	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.104 2.08 0.416 0.100 1.99	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 2INC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC 8 Surface		5.01 263 6020 6.30 481 6020 10.3 812	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.104 2.08 0.416 0.100 1.99	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 2INC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC 8 Surface		5.01 263 6020 6.30 481 6020 10.3 812	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.104 2.08 0.416 0.100 1.99	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC 8 Surface Plasma CADMIUM		5.01 263 6020 6.30 481 6020 10.3 812 6640	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.432 0.104 2.08 0.416 0.100 1.99 0.399	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC 8 Surface Plasma CADMIUM		5.01 263 6020 6.30 481 6020 10.3 812 6640	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.432 0.104 2.08 0.416 0.100 1.99 0.399	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC 8 Surface Plasma CADMIUM		5.01 263 6020 6.30 481 6020 10.3 812 6640 13.6	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.432 0.104 2.08 0.416 0.100 1.99 0.399	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04
SAMPLE/ ANALYSIS 3110501-01 Fotal Metals by CADMIUM - KCP EAD - KCP 21NC - KCP	METHOD SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B SAMPLE ID: AOC-5- Inductively Coupled EPA 200.7/6010B	7 Surface Plasma CADMIUM LEAD ZINC 7 1' Plasma CADMIUM LEAD ZINC 7 2' Plasma CADMIUM LEAD ZINC 8 Surface Plasma CADMIUM	Authorize	5.01 263 6020 6.30 481 6020 10.3 812 6640 13.6	TS UNI mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TS	DETEC1 LIMIT 0.108 2.16 0.432 0.432 0.104 2.08 0.416 0.100 1.99 0.399	BKB BKB BKB BKB BKB BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

	TE: 11/21/03 10:58		PORT NUMBER: 31105	U'1			PAGE: 2 C
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECT LIMIT		
110601-04	SAMPLE ID: AOC-	5-8 Surface				— []	RIGINA
otal Metals t	y Inductively Couple	d Plasma				• •	
EAD - ICP	EPA 200.7/60108	LEAD	1030	mg/kg	2.12	вкв	11/21/2003 09:04
INC - ICP		ZINC	10700	mg/kg	0.424	BKB	11/21/2003 09:04
110501-05	SAMPLE ID: AOC-	5-8 1'					
otal Metals b	y Inductively Couple	d Plasma					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	7.16	mg/kg	0.102	BKB	11/21/2003 09:04
EAD - ICP		LEAD	590	mg/kg	2.04	BKB	11/21/2003 09:04
NC - ICP		ZINC	9150	mg/kg	0.408	BKB	11/21/2003 09:04
10501-06	SAMPLE ID: AOC-		······································		· · ·		
otal Metals b	y Inductively Couple	d Plasma					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	32.0	mg/kg	0.087	BKB	11/21/2003 09:04
AD-ICP		LEAD	5340	mg/kg	1.73	BKB	11/21/2003 09:04
		ZINC	14900	mg/kg	0.347	BKB	11/21/2003 09:04
110501-07	SAMPLE ID: AOC-						
otal Metals b	y Inductively Couple	d Plasma					
DMIUM - ICP	EPA 200.7/6010B	CADMIUM	7.52	mg/kg	0.106	ВКВ	11/21/2003 09:04
AD - ICP		LEAD	583	mg/kg	2.12	BKB	11/21/2003 09:04
IC - ICP		ZINC	4760	mg/kg	0.424	BKB	11/21/2003 09:04
10501-08	SAMPLE ID: AOC-	5-11 1'					
	y Inductively Coupled						
UM - ICP	EPA 200.7/6010B	CADMIUM	16.8	mg/kg	0.093	BKB	11/21/2003 09:04
- KP		LEAD	861	mg/kg	1.87	BKB	11/21/2003 09:04
NC - ICP		ZINC	4800	mg/kg	0.373	BKB	11/21/2003 09:04
10501-09	SAMPLE ID: AOC-	5-11 2'	<u> </u>		-		
tal Metals b	y Inductively Coupled						
DMIUM - ICP	EPA 200.7/60108	CADMUM	40.7	mg/kg	0.102	вкв	11/21/2003 09:04
AD - ICP		LEAD	2080	mg/kg	2.05	BKB	11/21/2003 09:04
IC - ICP		ZINC	10000	mg/kg	0.410	ВКВ	11/21/2003 09:04
10501-10	SAMPLE ID: AOC-8	5-12 Surface					
tal Metals b	y Inductively Coupled						
DMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.673	mg/kg	0.104	ВКВ	11/21/2003 09:04
AD - ICP		LEAD	2310	mg/kg	2.07	BKB	11/21/2003 09:04
C-ICP		ZINC	13600	mg/kg	0.414	BKB	11/21/2003 09:04
10501-11	SAMPLE ID: AOC-5	5-12 1'					
tal Metals b	Inductively Coupled						
DMIUM - KCP	EPA 200.7/6010B	CADMIUM	43.3	mg/kg	0.098	вкв	11/21/2003 09:04
		LEAD	2580	mg/kg	1.96	ВКВ	11/21/2003 09:04
D-ICP		ZINC	17300	mg/kg	0.392	BKB	11/21/2003 09:04
·						i	
C-KCP	SAMPLE ID: AOC-5	-12 2'					
IC - ICP 10501-12	SAMPLE ID: AOC-5						
ic - icp 10501-12 tal Metals by	SAMPLE ID: AOC-5 / Inductively Coupled EPA 200.7/6010B		39.3	mg/ka	0.099	вкв	11/21/2003 09:04
AD-ICP IC-ICP 10501-12 tal Metals by DMIUM-ICP AD-ICP	/ Inductively Coupled	Plasma	39,3	mg/kg	0.099	ВКВ	<u>11/21/2003 09:04</u> 11/21/2003 09:04

sport may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

	: <u>11/21/03</u> 10:58	REPORT NUM	ABER: 311050)1		,	PAGE: 3 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS		тесн	
3110501-13	SAMPLE ID: AOC-5-1					Ŀ.	
-	Inductively Coupled F			_			
	EPA 200.7/6010B		8.75	mg/kg	0.100	ВКВ	11/21/2003 09:04
EAD - ICP		LEAD	581	mg/kg	2.00	BKB	11/21/2003 09:04
2INC - ICP		ZINC	10500	mg/kg	0.400	BKB	11/21/2003 09:04
3110501-14	SAMPLE ID: AOC-5-1						
-	Inductively Coupled F						
	EPA 200.7/6010B		6.02	mg/kg	0.101	BKB	11/21/2003 09:04
EAD-ICP		LEAD	563	mg/kg	2.02	BKB	11/21/2003 09:04
UNC-ICP		ZINC	7580	mg/kg	0.403	BKB	11/21/2003 09:04
110501-15	SAMPLE ID: AOC-5-1	-					
•	Inductively Coupled F						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	8.49	mg/kg	0.102	BKB	11/21/2003 09:04
EAD - ICP		LEAD	949	mg/kg	2.04	BKB	11/21/2003 09:04
			6500	mg/kg	0.408	BKB	11/21/2003 09:04
110501-16	SAMPLE ID: AOC-5-1						
otal Metals by	Inductively Coupled F	Plasma					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	12.6	mg/kg	0.102	вкв	11/21/2003 09:04
EAD - ICP		LEAD	1440	mg/kg	2.04	BKB	11/21/2003 09:04
INC - ICP		ZINC	13900	mg/kg	0.409	ВКВ	11/21/2003 09:04
UM ICP	SAMPLE ID: AOC-5-1 Inductively Coupled F EPA 200.7/6010B	² lasma CADMIUM	20.7	mg/kg	0.095	BKB	11/21/2003 09:04
EAD - ICP	· · · · ·	LEAD	2810	mg/kg	1.89	вкв	11/21/2003 09:04
	<u> </u>		11300	mg/kg	0.378	BKB	11/21/2003 09:04
110501-18	SAMPLE ID: AOC-5-1						
	Inductively Coupled F						
ADMIUM - ICP	EPA 200.7/6010B		17.9	mg/kg	0.094	BKB	11/21/2003 09:04
EAD - ICP		LEAD	1710	mg/kg	1.88	BKB	11/21/2003 09:04
INC - ICP			7890	mg/kg	0.376	ВКВ	11/21/2003 09:04
110501-19	SAMPLE ID: AOC-5-1						
-	Inductively Coupled P						
	EPA 200.7/6010B		21.9	mg/kg	0.098	вкв	11/21/2003 09:04
EAD - ICP		LEAD	2160	mg/kg	1,95	вкв	11/21/2003 09:04
INC. IOD				malka		BKB	11/21/2003 09:04
INC - ICP			15500	mg/kg	0.390		
110501-20	SAMPLE ID: AOC-5-1	5 1'			0.390		
110501-20 otal Metals by I	nductively Coupled P	5 1' lasma					
110501-20 otal Metals by I ADMIUM - ICP		5 1' lasma CADMIUM	22.1	mg/kg	0.390	вкв	11/21/2003 09:04
110501-20 otal Metals by ADMIUM - ICP EAD - ICP	nductively Coupled P	5 1' lasma CADMIUM LEAD	22.1 3170				
110501-20 otal Metals by I ADMIUM - ICP EAD - ICP	nductively Coupled P	5 1' lasma CADMIUM	22.1	mg/kg	0.085	ВКВ	11/21/2003 09:04
110501-20 otal Metals by I ADMIUM - ICP EAD - ICP INC - ICP 110501-21	nductively Coupled P	5 1' lasma CADMIUM LEAD ZINC 5 2'	22.1 3170	mg/kg mg/kg	0.085	вкв вкв	11/21/2003 09:04 11/21/2003 09:04
110501-20 otal Metals by I ADMIUM - ICP EAD - ICP INC - ICP 110501-21	nductively Coupled P EPA 200.7/6010B SAMPLE ID: AOC-5-1	5 1' lasma CADMIUM LEAD ZINC 5 2'	22.1 3170	mg/kg mg/kg	0.085	вкв вкв	11/21/2003 09:04 11/21/2003 09:04
110501-20 otal Metals by I ADMIUM - ICP EAD - ICP INC - ICP 110501-21 otal Metals by I	nductively Coupled P EPA 200.7/6010B SAMPLE ID: AOC-5-11 nductively Coupled P	5 1' lasma CADMIUM LEAD ZINC 5 2' lasma	22.1 3170 19300	mg/kg mg/kg mg/kg	0.085 1.70 0.340	BKB BKB BKB	11/21/2003 09:04 11/21/2003 09:04 11/21/2003 09:04

report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: ab@ColumbiaInspection.com

?ORT DAT	E: 11/21/03 10:58	REPO	RT NUMBER: 311050	01		-	PAGE: 4 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	тесн	DATE/TIME
3110501-21 Total Metals b	SAMPLE ID: AOC-						<u> </u>
3110501-22 Total Metals by CADMIUM - ICP	SAMPLE ID: AOC- y Inductively Coupled EPA 200.7/6010B		36.7	mg/kg	0.087	ВКВ	11/21/2022 20:01
LEAD - ICP		LEAD	2270	mg/kg	1.75	BKB	11/21/2003 09:04
ZINC - ICP		ZINC	13800	mg/kg	0.350	BKB	11/21/2003 09:04
3110501-23 Total Metals by CADMUM - ICP	SAMPLE ID: AOC-4 y Inductively Coupled EPA 200.7/6010B		27.1	mg/kg	0.103	вкв	11515552 00.07
EAD - ICP		LEAD	1830	mg/kg	2.07	BKB	11/21/2003 09:04 11/21/2003 09:04
ZINC - ICP		ZINC	10100	mg/kg	0.413	BKB	11/21/2003 09:04
	SAMPLE ID: AOC-4 Inductively Coupled				_		
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	34.9	mg∕kg	0.107	вкв	11/21/2003 09:04
EAD - ICP		LEAD	1760	mg/kg	2.14	BKB	11/21/2003 09:04
		ZINC	9970	mg/kg	0.427	ВКВ	11/21/2003 09:04

SINGINAL

Thin report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING stomer Name: Link '4cWSER' and '2005' Stop Coputer frees: 5:2555' Stop Coputer frees: 5:255' Stop Coputer frees: 5:255' Stop Coputer frees: 5:
Surfine Date Time

Ć

•

ĺ

(

31 57 85	*	<u>,</u>							i –		<u></u>	<u> </u>	.	<u>—</u> —	<u> </u>	<u> </u>	T	-			<u></u> .	
Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed		· · · · · · · · · · · · · · · · · · ·																		FOR LABORATORY USE ONLY PO# r: <u>3/1/05/04</u> Cash/check # Amount Paid: \$	
[27]7133 N. Lombard, Portland, OR 97203 □ 4901 E. 20th Street, Fife, WA 98424 □ 4592 E 2nd Street, Ste 'A', Benicia, CA 94510 □ 797 Channel Street, San Pedro, CA 90731					· · · · · · · · · · · · · · · · · · ·	ł	12	> × ×								<u>\</u>					FOR Inspection Job Number: Laboratory Project Number:	
7133 N. Lombard, Por 4901 E. 20th Street, Fi 4592 E 2nd Street, St 797 Channel Street, Sa	17 K	2	Notification Method(s)	🗂 Telephone	C Ernall	EX-Mail	Sample Titne	1.19	02 1	1121	1100	11.05	7011	1130	1131	1\32					Date/Time Date/Time ///	
руу133 N. I П 4901 Е. 2 П 4592 Е 2 П 797 Сћал	BAY E	100/	Notifis				Sample Date	n e.i.	11 011	11/04	11 04	11 04	nlot	11 lot	11/24	11/01					May	
	Project Name:	Project Number: [P.O. Number:	Testing Priority	Z	C Rush	Due Date:	Sample Matrix	ک _ہ (501	- <u>ī</u>	Sol	Sol	Sol	Spi ;	Sor	125					Received By: Recoived By:	
COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	<u>, tate RAC</u>	ERAPLEY CARE	-6-	542-635-1105	Barn Corte A submitted		Sample Description/UN Number	A:00-5-14 Switace	400-5-14 1'	ADC-5-14 2'	Aoc-55-15 Surface	A. 15-15 1	ADC-5-15 2'	Aix-5-19 Surface		Ax-5-19 2'				k	C. Cor C. Date Time pico Date Time	
	Customer Name:	Attention: Address:	[P]rone:	Fax	Sumpler:		Sample id#													-Relimmished Bu-	Relinquik61 By:	

% ₿

ストレート・ション・シストレートがない。1999年のためでは、今天に発行し、ション・1999年の1999年にあるためであるためであるためであるかですがあれている。1999年にあった。1999年に、1999年

(

l

(

REPORT DATE	E: 07/08/04 15:37	REF	PORT NUMBER: 407020)5			PAGE: 2 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	тесн	DATE/TIME
1070205-07 Total Metals by	SAMPLE ID: AOC 3 Inductively Coupled	I-13 Depth 1 Foot Plasma					<u></u>
CADMIUM - ICP	EPA 200,7/60108	CADMIUM	6.41	mg/kg	0.066	BKB	07/08/2004 08:38
EAD - ICP		LEAD	197	mg/kg	0.0661	BKB	07/08/2004 08:38
INC - ICP		ZINC	5440	mg/kg	0.132	вкв	07/08/2004 08:38
	SAMPLE ID: AOC- Inductively Coupled	-18 Depth 2 Feet Plasma					
ADMIUM - ICP	EPA 200,7/6010B	CADMIUM	232	mg/kg	0,100	BKB	07/08/2004 08:38
EAD - ICP		LEAD	7190	mg/kg	9.99	BKB	07/08/2004 08:38
INC - ICP		ZINC	246000	mg/kg	4.00	вкв	07/08/2004 08:38
070205-09 otal Metals by ADMIUM - ICP	SAMPLE ID: AOC- Inductively Coupled EPA 200.7/60108	5-19 Depth 2 Feet Plasma CADMIUM	52.6	mg/kg	0.050	вкв	07/08/2004 08:38
EAD - ICP		LEAD	3970	mg/kg	0.500	BKB	07/08/2004 08:38
INC - ICP		ZINC	29300	mg/kg	0,400	вкв	07/08/2004 08:38
	SAMPLE ID: AOC-! Inductively Coupled	-20 Depth 2 Feet Plasma		in dense og ette			andersen ander ander ander ander an an
ADMIUM - ICP	EPA 200 7/6010B	CADMIUM	57.1	mg/kg	0,098	вкв	07/08/2004 08:38
EAD - ICP		LEAD	4990	mg/kg	0.977	вкв	07/08/2004 08:38
INC - ICP	<u> </u>	ZINC	30000	mg/kg	0.391	BKB	07/08/2004 08:38
	SAMPLE ID: AOC-E Inductively Coupled	-21 Depth 2 Feet Plasma					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	4,91	mg/kg	0.059	вкв	07/08/2004 08:38
EAD - ICP		LEAD	224	mg/kg	0,0586	вкв	07/08/2004 08:38
		ZINC	1520	mg/kg	0.023	вкв	07/08/2004 08:38
	SAMPLE ID: MW-1 Inductively Coupled	Wellpad South 15 Feet Plasma					
INC - ICP	EPA 200.7/6010B	ZINC	5440	mg/kg	0.100	вкв	07/08/2004 08:38

This report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed																						IICI	4070205 rot	our that the Cash/check #	A.	
tland, OR 97203 fe, WA 98424 'A', Benleia, CA 9451 n Pedro, CA 90731						יייר דייק קואו	27	 >		×.	×	X	$\frac{1}{x}$	XXX	XXX	XXX	×××	XXX	X X X	× × ×	X			Immediate Job Mamber	I aboratory Project Number	Are Date:	
 7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 E 2nd Street, Ste 'A', Benicia, CA 94510 797 Channel Street, San Pedro, CA 90731 	Buy Zine	100-02		Notification Method(s)	. 🗖 Telephone	ALT Email of Fast	Z Malt	Sample Sample	Date Time	6/29/04 1640	1638	7.4.7	大部に取入	Xalician	4461	254	18.25	18.23	1820	1812	6/30/04 0948	 	Date/Time		10000 B	00 75N	Mert 150
קרים	Project Name:	Project Number:	P.O, Number:	Teuing Provity	Normal		Due Date:		Matrix	Sure Que	(C.S.)	Ver V								-	Sij		Received By:			Kecconvert	the way
COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	Prashout Findebarren Dur.	in khouser	4059 Shelby ville Road	Louirville 495-5009	502 - 895 - 4005	Tar V. Finch Conners Domitted			Sample Description/UN Number	WELL P.A.D NONTH & FEET DEBY	PAD EVEST 2	Secret 8	1 Jac 1		~	~	104	И	Ч	2	SOUTH 1			tilie 6		Dataffuna	
COLUM. CHA.	Customer Name					oler:			Sample id [#]	AC.	ци,		T		405-3-9	406-3-13	ABC-5-18	426-5-19	92-2-JOH	406-5-21	Mur- 113 were AN		Ralinquished By:	12.1		Relinquishez By.	

; .

()

(

• (•

07/08/04 03:55pm P. 005

REPORT DATE: 09/09/04 08:43

CERTIFICATE OF ANALYSIS

CLIENT: Linebach Funkhouser Inc. ATTN: **Roy Funkhouser** 4059 Shelbyville Rd. Louisville KY, 40220

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009 FAX: (502) 895-4005

SUBMITTED: 08/27/04 09:13

PAGE: 1 OF 2

	CLIENTS ID#			DATE	TIME	MATRIX			
1082707-01	AOC 1-X	Note: 2' 3" = approxima		08/25/2004	2120	Soil			
082707-02	5-5 23		_	08/25/2004	1835	Soil			
082707-03	5-6 23"	4 foot total excavation	-	08/25/2004	1905	Soil			
082707-04	5-7 2'3"	from original top surfac	e of	08/25/200 4	1930	Soil			
1082707-05	5-8 2'3"	backfilled material		08/25/2004	2000	Sof			
1082707-06	5-11 23'			08/25/2004	1715	Soil			
082707-07	5-12 23			08/25/2004	1730	Soil			
1082707-08	5-13 23			08/25/2004	1750	Soil			
082707-09	5-14 2'3"			08/25/2004	1810	Soil			
4082707-10	Dup-1/ Duplicate			08/25/2004	1111	Soll			
082707-11	Rinsate			08/25/2004	2100	Water			
AMPLE/ NALYSIS	METHOD	PARAMETER	RESULT	rs un	ITS	DETECTION	тесн	DATE/TIME	
082707-01	SAMPLE ID: AC	0C 1-X							
	/ Inductively Coup	led Plasma							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.433	mg/k	g	0.092	BKB	09/08/2004	14:09
1D - ICP		LEAD	15.0	mg/k	9	0.0921	BKB	09/08/2004	14:09
		ZINC	71.1	mg/k	g	0.018	BKB	09/08/2004	14:09
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.550	mg/k	g	0.102	вкв	09/08/2004	
			0.529	mg/k	-	0.102	BKB	09/08/2004	
EAD - ICP	SAMPLE ID. F.C.	ZINC	0.529 29.4	mg/k	-	0.102	BKB BKB	09/08/2004 09/08/2004	
UNC - ICP 082707-03	SAMPLE ID: 5-6	ZINC	-		-				
UNC - ICP 082707-03 Total Metals by	Inductively Coup	ZINC 2'3" led Plasma	29.4	mg/k	9	0.020	BKB	09/08/2004	14:09
INC - 1CP 082707-03 otal Metals by ADMIUM - 1CP		ZINC 2'3" led Plasma CADMIUM	29.4	mg/k mg/k	9	0.020	ВКВ	09/08/2004 09/08/2004	14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP	Inductively Coup	ZINC 2'3" led Plasma CADMIUM LEAD	29.4 0.635 ND	mg/k mg/k mg/k	g g 	0.020	BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP	P Inductively Coup EPA 200.7/60108	ZINC 2'3" led Plasma CADMIUM LEAD ZINC	29.4	mg/k mg/k	g g 	0.020	ВКВ	09/08/2004 09/08/2004	14:09 14:09 14:09
INC - ICP 082707-03 Otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04	Planductively Coup EPA 200.7/60108 SAMPLE ID: 5-7	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3"	29.4 0.635 ND	mg/k mg/k mg/k	g g 	0.020	BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by	SAMPLE ID: 5-7	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma	29.4 0.635 ND 32.4	mg/k mg/k mg/k	9 9 9	0.020 0.135 0.135 0.027	BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP	PA 200.7/60108	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM	29.4 0.635 ND 32.4 0.515	mg/k mg/k mg/k	9 9 9 9 9	0.020 0.135 0.135 0.027 0.080	BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP EAD - ICP	SAMPLE ID: 5-7	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD	29.4 0.635 ND 32.4 0.515 ND	mg/kj mg/kj mg/kj mg/kj mg/kj	9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805	BKB BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09
UNC - ICP 082707-03 Total Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 Total Metals by ADMIUM - ICP EAD - ICP INC - ICP	SAMPLE ID: 5-7 Inductively Coupl SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/60108	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC	29.4 0.635 ND 32.4 0.515	mg/k mg/k mg/k	9 9 9 9 9	0.020 0.135 0.135 0.027 0.080	BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-05	SAMPLE ID: 5-8	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC 2'3"	29.4 0.635 ND 32.4 0.515 ND	mg/kj mg/kj mg/kj mg/kj mg/kj	9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805	BKB BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP INC - ICP 082707-05 otal Metals by	SAMPLE ID: 5-8 SAMPLE ID: 5-8 Inductively Coupl SAMPLE ID: 5-8 Inductively Coupl	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma	29.4 0.635 ND 32.4 0.515 ND 30.1	mg/kj mg/kj mg/kj mg/kj mg/kj	9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805	BKB BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP INC - ICP INC - ICP INC - ICP 082707-05 otal Metals by ADMIUM - ICP	SAMPLE ID: 5-8	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813	mg/k mg/k mg/k mg/k mg/k mg/k	9 9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805	BKB BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP EAD - ICP 082707-05 otal Metals by ADMIUM - ICP EAD - ICP	SAMPLE ID: 5-8 SAMPLE ID: 5-8 Inductively Coupl SAMPLE ID: 5-8 Inductively Coupl	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813 0.553	mg/k mg/k mg/k mg/k mg/k	9 9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805 0.016	ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP EAD - ICP 082707-05 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP INC - ICP	SAMPLE ID: 5-8 SAMPLE ID: 5-8 Inductively Coupl SAMPLE ID: 5-8 Inductively Coupl	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813	mg/k mg/k mg/k mg/k mg/k mg/k	9 9 9 9 9 9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805 0.016 0.084	ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 Total Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 Total Metals by ADMIUM - ICP EAD - ICP 082707-05 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-05 082707-05	SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/6010B EPA 200.7/6010B SAMPLE ID: 5-8 Inductively Coupl EPA 200.7/6010B	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC 1 2'3"	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813 0.553	mg/k mg/k mg/k mg/k mg/k mg/k mg/k	9 9 9 9 9 9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805 0.016 0.084 0.0838	ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP INC - ICP 082707-05 otal Metals by ADMIUM - ICP EAD - ICP NC - ICP NC - ICP NC - ICP 082707-06 otal Metals by	SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/6010B SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/6010B SAMPLE ID: 5-8 Inductively Coupl EPA 200.7/6010B	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC 1 2'3"	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813 0.553	mg/k mg/k mg/k mg/k mg/k mg/k mg/k	9 9 9 9 9 9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805 0.016 0.084 0.0838	ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 Total Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 Total Metals by ADMIUM - ICP EAD - ICP 082707-05 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-05 082707-05	SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/6010B EPA 200.7/6010B SAMPLE ID: 5-8 Inductively Coupl EPA 200.7/6010B	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC 1 2'3"	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813 0.553	mg/k mg/k mg/k mg/k mg/k mg/k mg/k	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805 0.016 0.084 0.0838	ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ ВКВ	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 Total Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 Total Metals by ADMIUM - ICP EAD - ICP 082707-05 otal Metals by ADMIUM - ICP EAD - ICP 082707-06 otal Metals by ADMIUM - ICP	SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/6010B SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/6010B SAMPLE ID: 5-8 Inductively Coupl EPA 200.7/6010B	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC 1 2'3" ed Plasma CADMIUM	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813 0.553 174	mg/k mg/k mg/k mg/k mg/k mg/k mg/k mg/k	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.020 0.135 0.135 0.027 0.080 0.0805 0.016 0.084 0.0838 0.017	BKB BKB BKB BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09
INC - ICP 082707-03 otal Metals by ADMIUM - ICP EAD - ICP INC - ICP 082707-04 otal Metals by ADMIUM - ICP EAD - ICP 082707-05 otal Metals by ADMIUM - ICP EAD - ICP NC - ICP 082707-06 otal Metals by ADMIUM - ICP	SAMPLE ID: 5-7 Inductively Coupl EPA 200.7/6010B EPA 200.7/6010B SAMPLE ID: 5-8 Inductively Coupl EPA 200.7/6010B SAMPLE ID: 5-1 Inductively Coupl EPA 200.7/6010B	ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" led Plasma CADMIUM LEAD ZINC 2'3" ed Plasma CADMIUM LEAD ZINC 1 2'3" ed Plasma CADMIUM LEAD ZINC 1 2'3" ed Plasma CADMIUM LEAD ZINC	29.4 0.635 ND 32.4 0.515 ND 30.1 0.813 0.553 174			0.020 0.135 0.135 0.027 0.080 0.0805 0.016 0.084 0.0838 0.017	BKB BKB BKB BKB BKB BKB BKB	09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004 09/08/2004	14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09 14:09

REPORT NUMBER: 4082707

COLUMBIA INSPECTION, INC. 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

1

Ξ2

	E: 09/09/04 08:43	RE	PORT NUMBER: 40827)7			PAGE: 2 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	ТЕСН	DATE/TIME
4082707-06 Total Metals by	SAMPLE ID: 5-11 Inductively Coupled						
LEAD - ICP	EPA 200.7/6010B	LEAD	47.5	mg/kg	0.118	вкв	09/08/2004 14:09
ZINC - ICP		ZINC	936	mg/kg	0.024	BKB	09/08/2004 14:09
4082707-07 Fotal Metais by	SAMPLE ID: 5-12 Inductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.734	mg/kg	0.115	8K8	09/08/2004 14:09
LEAD - ICP		LEAD	0.861	mg/kg	0.115	BKB	09/08/2004 14:09
ZINC - ICP		ZINC	36,9	mg/kg	0.023	ВҚВ	09/08/2004 14:09
4082707-08 Fotal Metals by	SAMPLE ID: 5-13 Inductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	2.19	mg/kg	0.106	вкв	09/08/2004 14:09
LEAD - ICP		LEAD	2.69	mg/kg	0.106	ВКВ	09/08/2004 14:09
ZINC - ICP		ZINC	56.8	mg/kg	0.021	BKB	09/08/2004 14:09
4082707-09 Totai Metals by	SAMPLE ID: 5-14 Inductively Coupled						
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	2.07	mg/kg	0.066	BKB	09/08/2004 14:09
EAD - ICP		LEAD	5.43	mg/kg	0.0662	вкв	09/08/2004 14:09
ZINC - ICP		ZINC	63.6	mg/kg	0.013	BKB	09/08/2004 14:09
•	SAMPLE ID: Dup-1 Inductively Coupled	Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	2.22	mg/kg	0.123	BKB	09/08/2004 14:09
<u>) - ICP</u>		LEAD	1.97	mg/kg	0.123	BKB	09/08/2004 14:09
		ZINC	55.2	mg/kg	0.025	BKB	09/08/2004 14:09
1082707-11 Fotal Metals by	SAMPLE ID: Rinsa Inductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	ND	mg/kg	0.001	вкв	09/08/2004 14:09
EAD - ICP		LEAD	0.00167	mg/kg	0.00111	вкв	09/08/2004 14:09
ZINC - ICP		ZINC	0.002	mg/kg	0.0002	BKB	09/08/2004 14:09

CRIGINAL

report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

REPORT DA	TE: 08/08/05 10:	54 REPO	RT NUMBER: 4081303				PAGE: 2 OF 3
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	TECH	DATE/TIME
NOI	re:						
San	nples						

5-18-1' 5**-19-1**' 5-20-1' 5-21-1'

were collected at total excavation depth of 3 feet below grade (1 foot below initial soil removal depth of 2 feet)

4081303-26	SAMPLE ID: AOC	5-18-1'						
Total Metals by	Inductively Coupled							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.62	mg/kg	0,116	вкв	08/17/2004	13:55
LEAD - KCP		LEAD	3.32	mg/kg	0.116	BKB	08/17/2004	13:55
ZINC - ICP		ZINC	142	mg/kg	0.023	ВКВ	08/17/2004	13:65
4081303-29	SAMPLE ID: AOC	5-19-1'		···· ·································			·	
Total Metals by	Inductively Coupled	Plasma						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.996	mg/kg	0.091	BKB	08/17/2004	13:65
LEAD - ICP		LEAD	3,85	mg/kg	0.0914	вкв	08/17/2004	13:55
ZINC - ICP		ZINC	30.4	mg/kg	0,018	BKB	08/17/2004	18:55
4081303-32	SAMPLE ID: AOC	5-20-1'						
Total Metals by	Inductively Coupled	Plasma						
CADMIUM - ICP	EPA 200,7/50108	CADMIUM	4.49	mg/kg	0,087	вкв	08/17/2004	13:55
LEAD - ICP		LEAD	15,0	mg/kg	0.0873	BKB	08/17/2004	13:55
ZINC - ICP		ZINC	563	mg/kg	0.017	ВКВ	08/17/2004	13:55
4081303-35	SAMPLE ID: AOC !							
Total Metals by	Inductively Coupled	Plasma						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.94	rng/kg	0.100	BKB	08/17/2004	13:55
LEAD - ICP		LEAD	4.16	mg/kg	0,100	BKB	08/17/2004	13:55
ZINC - ICP		ZINC	64.1	mg/kg	0.020	BKB	08/17/2004	13:55
4081303-38	SAMPLE ID: AOC 5	-8-2						
Total Metals by	Inductively Coupled							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.12	mg/kg	0.068	вкв	08/17/2004	

This report may not be reproduced except in full.

1

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone:(503) 286-9464 Fax:(503) 286-5355 E-mail:lab@ColumbiaInspection.com

REPORT DATE: 08/08/05 10:54		REPO	RT NUMBER: 408130)3			PAGE: 3 OF 3		
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	TECH	DATE/TIME		
4081303-38 Total Metals by	SAMPLE ID: AOC Inductively Coupled								
LEAD - ICP	EPA 200.7/6010B	LEAD	2.86	mg/kg	0.0676	вкв	08/17/2004 13:55		
ZINC - ICP		ZINC	276	mg/kg	0.014	BKB	08/17/2004 13:55		
4081303-41 Total Metals by CADMIUM - ICP	SAMPLE ID: Dup 1 Inductively Coupled EPA 200,7/6010B		1.60	mg/kg	0.084	BKB	08/17/2004 13:55		
LEAD - ICP		LEAD	18.4	mg/kg	0.0839	BKB	08/17/2004 13:55		
ZINC - ICP		ZINC	488	mg/kg	0.017	вка	08/17/2004 13:55		
4081303-42 Total Metals by	SAMPLE ID: Dup 2 Inductively Coupled								
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.25	mg/kg	0.094	BKØ	08/17/2004 13:55		
LEAD - ICP		LEAD	3.82	mg/kg	0.0944	BKB	08/17/2004 13:55		
ZINC - ICP		ZINC	275	mg/kg	0.019	BKB	08/17/2004 13:55		

This report may not be reproduced except in full.

Ĺ

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

	Shipped Orgynamed	• • •	Ph: (310) 833-1557 Fax: (310) 833-1585	Analyses To Be Performed																	EOR LABORATORY USE OF		nber: Cash/Check #	Amount Paid: \$	CI Form 100 (COC) Rev B7/7/99
		7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 East 2 nd Street, Suite A, Benicia, CA 94510	in Pedro, CA 90731					 	90 90 0	<u>7</u> 7 	> > Y											Inspection Job Number:	Laboratory Project Number:	Due Date:	arpë Bl
(:	7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 East 2 nd Street, Suite A, Benicia, CA 9-	797 Channel Street, San Pedro, CA	Bur Zove	10-02	٦.	Ld Telephone	JE FAX	Due Date LA Mail	Sample Sample			1430	2000	1715	25 <u>7</u>	1750	1610	<u><u> </u></u>	V 2100	Date/Time		Date/Time	120 120	ie) Top es Cappe
				Project Name	Project Number:	- P.O. Number:	- D Normal		Due Date	Sample	2							×	>	NATER	Received By:	·	Received By: 7	All The sea	7"Frem Original
	COLLECTION INCRECTION	ULUMBLA INSFECTION, IN CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING		rich Fünkhauser	Y CONCE	Shellwilly NOV. 25-5-16 4	4805	Colden Dubmitted		Comolo Danciosina (IN Number	2121	22	1.0	2'3"	2'3"	2'3"		2'3'	~	2	Dale Time	- 2/32	Date/Time Rec		Yellow Copy - Client Copy 27 "
(CULUMBLA L CHAIN OF (NON-COMMER		Customer Name: Linebich	21	Addiness: 202 - 202	1941	Sampler: B. C. P. L.		Same	<u>لا</u>	5-6		5.8	5-11	5-12	5-13	5-14	DUPE	REASED	Relinquistred By:	I they he legh	Relinquished By:	,	White Copy - Laboratory Yell

1987 282 902 noitoaqan sidmuloO

Colur	COLUMBIA INSPECTION, INC.								- John	Sugged liest their D	$\langle \rangle$
Ű,	CHAIN OF CUSTODY RECORD AND		33 N. Lomi 01 E. 20th	7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424	and, OR WA 98	97203 424		Ph: (503) 286-9464 Ph: (253) 922-8781		Fax: (503) 285-7831 Fax: (253) 922-8957	
)-NON	NON-COMMERCIAL BILL OF LADING	(04 D	Channel S	1 4394 East 2 Surger, Surfe A, Benicia, Control 1797 Channel Street, San Pedro, CA	A, Benicia Pedro, C	r, CA 9451 A 90731		Ph: (707) 748-7587 Ph: (310) 833-155 7		Fax: (707) 748-7764 Fax: (310) 833-1585	
	-		0.17				Ψ	Analyses To Be Performed	Performed		
Customer Name:		Project Name:	Project Name: Devi T3-NS	2							-
Attention:	Example (10400)	Project Number:	2.0-00	,/,							
Address:	tosg Shallywille Kol wille	P.O. Number	100-02-	3							
Phone: (22	- , CHS - 5009	Testine Priority .		Notification Method(s)							
FAX: SC	-) 895-445-	Z Normaí	Ü	🖸 Telephone		- <u>-</u>					
Sampler: 2	MAXEY COVIE - Submitted	C Rush	Ξ,	JZİ FAX							
		Due Date		Ed Mail	p,	$\frac{-1}{q}$					
Sample id#	Sample Description/UN Number	Sample Matrix	Sample Date	Sample	5	IZ I	((<u></u>
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Stad not	مربعه		X		+			
					+						
				255							
	5-8 3'			2005			X	KH0	0		
	5-11 3'			077/				<u>, </u>			
				173C			-				
· .	5-13 3'			1755			Ņ				
	15-14 3'	->	-&	1815		ר אין אין					
								_			=1
					-						
Relinquished By:	1 1 Date Time Received By			Date/Time			ਬ	JR LABORA	FOR LABORATORY USE ONLY		
A	L 1 M/ 2130		_,		Inspectio	Inspection Job Number:	iber:		- 8	PO #	
Relinquished/By:	Deter Time Received By			Date/Jime	Laborato	Laboratory Project Number:	Number:		🗖 Cash/Check #	**	-
<u> </u>		100	- la	08-20 08-30	Due Date:				Amount Paid: 5.	id: \$	
While Copy - Laboratory	Yellow Copy - Client Copy		() <i>are +</i>			1			CI Form 100 (COC) Rev B7/7/99	ev B7/7/99	-1
	<u>२</u>		コードンシ	ご しぜこ	5 C C		1200	6			

(

(

1887 282 502 noitpaganI sidmuloD

SWMU-6

,

I.

--- ORT DATE: 07/29/04 08:21

.

REPORT NUMBER: 4071903

PAGE: 2 OF 2

4071903-09 Total Metals by	SAMPLE ID: SWM Inductively Coupled	U 6-2(E) East Composite I Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.3	mg/L	0,007	BKB	07/23/2004 13:28
LEAD - ICP		LEAD	25.0	mg/L	0.011	BKB	07/23/2004 13:28
ZINC - ICP		ZINC	450	mg/L	0,007	BKB	07/23/2004 13:28
4071903-10 Total Metals by	/ Inductively Coupled			_			
IUM - ICP	EPA 200.7/6010B	CADMIUM	4.1	mg/L	0.008	BKB	07/23/2004 13:28
<u>ווטא - ICP</u> וב-ש - ICP	EPA 200.7/6010B	LEAD	<u>4.1</u> 261	mg/L mg/L	0.008	BKB	07/23/2004 13:28

ORIGINAL

report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail:lab@ColumbiaInspection.com

REPORT DATE: 08/19/04 07:29

REPORT NUMBER: 4081303

PAGE: 2 OF 3

4081303-25 S Total Metals by Inde	AMPLE ID: SWMM-6-1-A (W) uctively Coupled Plasma	 				
(<u> </u>	PA 200.7/60108 CADMIUM	1.10	mg/kg	0.116	вкв	08/17/2004 13:55
D-ICP	LEAD	2.54	mg/kg	D.116	BKB	08/17/2004 13:55
		36.2	mg/kg	0.023	ÐKB	08/17/2004 13:55

Authorized for Release By:Richard D. Reid - Laboratory Director

West Warehouse

(

ł,

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 12/5/02 Date of Report: 12/6/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101074-(001-010)	Misc. Soils; Cd, Pb, and Zn	12/5/2002 2:25 PM
101074-011	Equip Blank; Cd, Pb, and Zn	12/5/2002 2:25 PM

Comments:

Soil sample results reported on a dry-weight basis.

William Rhie

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser	Project:	Metais, S/W
4059 Shelbyville Road	Date Received:	12/5/2002
Louisville, KY 40207	Date Completed:	12/6/2002
	Date Reported:	12/6/2002

Lab Sample ID: 101074-(001-011)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		0.037			mg/L	0.007
101074-001	WH1-1	Cadmium	EPA 200.7	8.0	3.14			mg/Kg	0.006
		Lead	EPA 200.7	8.0	845			mg/Kg	0.2
		Zinc	EPA 200.7	8.0	4854			mg/Kg	0.007
101074-002	WH1-2	Cadmium	EPA 200.7	7.8	17.7			mg/Kg	0.006
		Lead -	EPA 200.7	7.8	1590			mg/Kg	0.2
n an Angel Angel Angeland		Zinc	.EPA 200.7	7.8	8640			mg/Kg	0.007
101074-003	WH1-3	Cadmium:_	EPA 200.7	. 7.3	3.87			mg/Kg	0.006
		Lead in_	- EPA 200.7	7.3	557			mg/Kg	0.2
		Zinc	EPA 200.7	7.3	3578			mg/Kg	0.007
101074-004	WH1-4	Cadmium	EPA 200.7	5.9	ND			mg/Kg	0.006
		Lead	EPA 200.7	5.9	289			mg/Kg	0.2
	•	Zinc	EPA 200.7	5.9	2340			mg/Kg	0.007
101074-005	WH1-5	Cadmium	EPA 200.7	9.0	1.23			mg/Kg	0.006
		Lead	EPA 200.7	9.0	545			mg/Kg	0.2
		Zinc	EPA 200.7	9.0	3804			mg/Kg	0.007
101074-006	WH1-6	Cadmium	EPA 200.7	8.2	ND	ND	NA	mg/Kg	0.005
		Lead	EPA 200.7	8.2	399	456	13.5	mg/Kg	0.2
		Zinc	EPA 200.7	8.2	2480	2963	17.7	mg/Kg	0.007
101074-007	WH1-7	Cadmium	EPA 200.7	7.6	1.15			mg/Kg	0.006
		Lead	EPA 200.7	7.6	634			mg/Kg	0.2
		Zinc	EPA 200.7	7.6	3290			mg/Kg	0.007
101074-008	WH1-8	Cadmium	EPA 200.7	8.7	3.30			mg/Kg	0.006
		Lead	EPA 200.7	8.7	789			mg/Kg	0.2
		Zinc	EPA 200.7	8.7	5223			mg/Kg	0.007
0107 4-00 9	WH1-9	Cadmium	EPA 200.7	8.4	53.1			mg/Kg	0.005
		Lead	EPA 200.7	8.4	589			mg/Kg	0.2
		Zinc	EPA 200.7	8.4	6800			mg/Kg	0.007

Analytical and Consulting Services

Linebach Funkhouser	Project:	Metals, S/W
4059 Shelbyville Road	Date Received:	12/5/2002
Louisville, KY 40207	Date Completed:	12/6/2002
· ·	Date Reported:	12/6/2002

Lab Sample ID: 101074-(001-011)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL.
101074-010	WH1-2B	Cadmium	EPA 200.7	7.8	ND			mg/Kg	0.006
		Lead	EPA 200.7	7.8	336			mg/Kg	0.2
		Zinc	EPA 200.7	7.8	2245			mg/Kg	0.007
101074-011	Equip Rinsate	Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		ND			mg/L	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road	Project: Date Received:	Metals, S/W 12/5/2002
Louisville, KY 40207	Date Completed:	12/6/2002
	Date Reported:	12/6/2002

Quality Control Summary

.ab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101074-010 MS	Cadmium	EPA 200.7	1.0	0.900	89.8	mg/L	0.006
	Lead	EPA 200.7	5.0	10.5	116.4	mg/L	0.2
	Zinc	EPA 200.7	25.0	59.7	114.2	mg/L	0.007
PC Stnd	Cadmium	EPA 200.7	2.0	1.91	95.6	mg/L	0.006
	Lead	EPA 200.7	2.0	1.99	99.5	mg/L	0.2
	Zinc	EPA 200.7	2.0	1.99	99.3	. mg/L	0.007
CS Stnd	. Cadmium	EPA 200.7	2,0	1.83	91.7	mg/L	0.006
	- Lead	EPA 200. 7	- 2.0	1.97	98.3	mg/L	0.2
·	Zinc	EPA 200.7	·	1.87	93.7	mg/L	0.007

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 12/7/02 Date of Report: 12/11/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101081-(001-010)	Misc. Soils; Cd, Pb, and Zn	12/7/2002 12:30 PM
101081-011	Equip Blank; Cd, Pb, and Zn	12/7/2002 12:30 PM

Comments:

Soil sample results reported on a dry-weight basis.

William fire

William R. Rice Laboratory Director

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207	Project: Date Received: Date Completed: Date Reported:	Metals, S/W 12/7/2002 12/10/2002 12/11/2002
•	Date Completed:	:

Lab Sample ID: 101081-(001-011)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank		Cadmium	EPA 200.7		ŇD			to a l	0.000
moniou Biank		Lead	EPA 200.7		ND			mg/L	0.006
								mg/L	0.2
		Zinc	EPA 200.7	•	0.016			mg/L	0.007
101081-001	WH2-1	Cadmium	EPA 200.7	12.7	0.81			mg/Kg	0.005
		Lead	EPA 200.7	12.7	520			mg/Kg	0.2
		Zinc	EPA 200.7	12.7	2913			mg/Kg	0.007
101081-002	WH2-2	Cadmium	EPA 200.7	12.8	5.07			mg/Kg	0.006
	- '	Lead	EPA 200.7	12.8	783			mg/Kg	0.2
		Zinc .	EPA 200.7		5548			mg/Kg	0.007
101081-003	WH2-3	Cadmium .	EPA 200.7	12.3	14.1			mg/Kg	0.006
			EPA 200,7	12.3	1414			mg/Kg	0.000
		Zinc	EPA 200.7	12.3	6639			mg/Kg	0.007
		LING	EI /(200.)	12.5	0000			ш д ихд	0.007
01081-004	WH2-4	Çadmium	EPA 200.7	10.8	1.52			mg/Kg	0.006
		Lead	EPA 200.7	10.8	534			mg/Kg	0.2
		Zinc	EPA 200.7	10.8	3230		,	mg/Kg	0.007
01081-005	WH2-5	Cadmium	EPA 200.7	11.0	0.26			mg/Kg	0.005
		Lead	EPA 200.7	11.0	479			mg/Kg	0.2
		Zinc	EPA 200.7	11.0	2893			mg/Kg	0.007
01081-006	WH2-6	Cadmium	EPA 200.7	12.3	7.96	10.1	23.8	mg/Kg	0.00 6
		Lead	EPA 200.7	12,3	3082	3058	0.8	mg/Kg	0.2
		Zinc	EPA 200.7	12.3	12366	12089	2.3	mg/Kg	0 .007
01081-007	WH2-7	Cadmium	EPA 200.7	13.8	23.5			mg/Kg	0.006
		Lead	EPA 200.7	13.8	6138			mg/Kg	0.2
		Zinc	EPA 200.7	13.8	27072			mg/Kg	0.007
01081-008	WH2-8	Cadmium	EPA 200.7	19.3	26.8			mg/Kg	0.006
		Lead	EPA 200.7	19.3	4215			mg/Kg	0.2
		Zinc	EPA 200.7	19.3	28056			mg/Kg	0.007
01081-009	WH2-9	Cadmium	EPA 200.7	13.3	26.9			mg/Kg	0.006
		Lead	EPA 200.7	13.3	20.3 3026			mg/Kg	0.000
•				10.0	1020			mg/ng	U. Z

l

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207	Project: Date Received: Date Completed: Date Reported:	Metals, S/W 12/7/2002 12/10/2002 12/11/2002
--	---	--

Lab Sample ID: 101081-(001-011)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
101081-010	WH-2A	Cadmium	EPA 200.7	16.7	29.8			mg/Kg	0.006
		Lead	EPA 200.7	16.7	5550			mg/Kg	0.2
		Zinc	EPA 200.7	16.7	31646			mg/Kg	0.007
101081-011	Equip Blank	Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		ND			mg/L	0.007

v

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, S/W Date Received: 12/7/2002 12/10/2002 Date Completed: Date Reported: 12/11/2002

Quality Control Summary

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101081-004 MS	Cadmium	EPA 200.7	1.0	0.923	90.0	mg/L	0.006
	Lead	EPA 200.7	5.0	12.6	93.3	mg/L	0.2
	Zinc	EPA 200.7	20.0	68.9	104.0	mg/L	0.007
IPC Stnd	Cadmium	EPA 200.7	2.0	1.91	95.4	mg/L	0.006
	Lead	EPA 200.7	2.0	1.94	97.0	mg/L	0.2
	Zinc	EPA 200.7	2.0	1.96	98.1	mg/L	0.007
QCS Stnd	_ Cedmium	EPA 200.7	2.0	1.92	96.2	mg/L	0.006
	Lead	EPA 200.7	2.0	1.95	97.6	mg/L	0.2
	Zinc	: ::EPA 200.7	2.0	1.95	97.5	mg/L	0.007

Analytical and Consulting Services

Certificate of Analysis

Client: Linebach Funkhouser, Inc. 4059 Shelbyville Road Louisville, KY 40207

Attn: Roy Funkhouser

Date Received: 12/12/02 Date of Report: 12/13/02

Sample Identification:

Lab ID	Sample Description	Date and Time Received
101099-(001-019)	Misc. Soils; Cd, Pb, and Zn	12/12/2002 1:15 PM

Comments:

Soil sample results reported on a dry-weight basis.

Williamfre

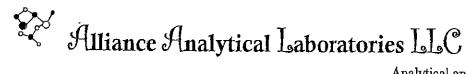
William R. Rice Laboratory Director

Analytical and Consulting Services

Louisville, KY 40207 Date (Metals, Soil Received: 12/12/2002 Completed: 12/13/2002 Reported: 12/13/2002
-----------------------------	--

Lab Sample ID: 101099-(001-019)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
Method Blank 1		Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND	•		mg/L	0.2
		Zinc	EPA 200.7		0.038			mg/L	0.007
Method Blank 2		Cadmium	EPA 200.7		ND			mg/L	0.006
		Lead	EPA 200.7		ND			mg/L	0.2
		Zinc	EPA 200.7		D.066			mg/L	0.007
101099-001	WH-1 (1-1.5)	Cadmium	EPA 200:7	6.2	ND			mg/Kg	0.006
÷.		Lead	EPA 200.7	6.2	57.5			mg/Kg	0.2
5.19		Zinc	EPA 200.7	6.2	408		,	mg/Kg	0.007
101099-002	WH-1 (1.5-2)	Cadmium	EPA 200.7	20.2	82.7			mg/Kg	0.006
- <u>2</u>		Lead ····	EPA 200.7	20.2	9885			mg/Kg	0.2
-		Zinc 🕠	EPA 200.7	20.2	50843			mg/Kg	0.007
101099-003	WH-2 (1-1,5)	Cadmium	EPA 200.7	8.7	6.10			mg/Kg	0.006
		Lead	EPA 200.7	8.7	1184			mg/Kg	0.2
		Zinc	EPA 200.7	8.7	6044			mg/Kg	0.007
101099-004	WH-2 (1.5-2)	Cadmium	EPA 200.7	11.9	52,8			mg/Kg	0.006
		Lead	EPA 200.7	11.9	5065			mg/Kg	0.2
		Zinc	EPA 200.7	11.9	27440			mg/Kg	0,007
101099-005	WH-3 (1-1.5)	Cadmium	EPA 200.7	10.0	ND			mg/Kg	0.006
		Lead	EPA 200.7	10.0	348			mg/Kg	0.2
		Zinc	EPA 200.7	10.0	1003			m g /Kg	0.007
101099-006	WH-3 (1.5-2)	Cadmium	EPA 200.7	15.6	48.7			mg/Kg	0.006
		Lead	EPA 200.7	15.6	4303			mg/Kg	0.2
		Zinc	EPA 200.7	15.6	24180			mg/Kg	0.007
101099-007	WH-4 (1-1.5)	Cadmium	EPA 200.7	8.0	ND			mg/Kg	0.00 6
		Lead	EPA 200.7	8.0	39.1			mg/Kg	0.2
		Zinc	EPA 200.7	8.0	1034			mg/Kg	0.007
101099-008	WH-4 (1.5-2)	Cadmium	EPA 200.7	11.5	28.2	28.8	2.2	mg/Kg	0.006
		Lead	EPA 200.7	11.5	5 575	6383	13.5	mg/Kg	0.2
		Zinc	EPA 200.7	11.5	22059	218 61	0.9	mg/Kg	0.007



Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207	Project: Date Received: Date Completed: Date Reported:	Metals, Soll 12/12/2002 12/13/2002 12/13/2002

Lab Sample ID: 101099-(001-019)

Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL
101099-009	WH-5 (1-1.5)	Cadmium	EPA 200.7	8.8	2 5.1			mg/Kg	0.006
		Lead	EPA 200.7	8.8	2368			mg/Kg	0.2
		Zinc	EPA 200.7	8.8	12 970			mg/Kg	0.007
101099-010	WH-5 (1.5-2)	Cadmium	EPA 200.7	15.2	118			malka	0.000
		Lead	EPA 200.7	15.2	5816			mg/Kg	0.006 0.2
		Zinc	EPA 200.7	15.2	32575			mg/Kg mg/Kg	0.2
101099-011	WH-6 (1-1.5)	Cadmium	EPA 200.7	8.0	24.0			04	
	••••••(1-1.5)			8.9	34.2			mg/Kg	0.006
		Lead Zinc	EPA 200.7 EPA 200.7	8.9 8.9	5082 22718			mg/Kg mg/Kg	0.2 0.007
01000.010									
01099-012			EPA 200.7	14.1	88.0	79.8	9.7	mg/Kg	0.006
· · · · ·	52 		- EPA 200.7	14.1	834 .	821	1.7	mg/Kg	0.2
· · · · · ·			-EPA 200.7	14.1	16734	15309	8.9	mg/Kg	0.007 ·
101099-013	WH-7 (1-1.5)	Cadmium	EPA 200.7	12.0	30.7			mg/Kg	0.006
		Lead	EPA 200.7	12.0	8603			mg/Kg	0.2
		Zinc	EPA 200.7	12.0	34203	、		mg/Kg	0.007
101099-014	WH-7 (1.5-2)	Cadmium	EPA 200.7	17.9	177.6			mg/Kg	0.006
		Lead	EPA 200.7	17.9	39.7			mg/Kg	0.2
		Zinc	EPA 200.7	17.9	1 7136			mg/Kg	0.007
101099-015	WH-8 (1-1.5)	Cadmium	EPA 200.7	9.2	12.2			mg/Kg	0.006
		Lead	EPA 200.7	9.2	755			mg/Kg	0.2
		Zinc	EPA 200.7	9.2	4968			mg/Kg	0.007
101099-016	WH-8 (1.5-2)	Cedmium	EPA 200.7	16.9	27.8			mg/Kg	0.006
		Lead	EPA 200.7	16.9	30.3			mg/Kg	0.2
		Zinc	EPA 200.7	16.9	3766			mg/Kg	0.007
101099-017	WH-9 (1-1.5)	Cadmium	EPA 200.7	11.5	26.5			mg/Kg	0.006
	• • •	Lead	EPA 200,7	11.5	430			mg/Kg	0.000
		Zinc	EPA 200.7	11.5	5182			mg/Kg	0.007
J1099-01B	WH-9 (1.5-2)	Cadmium	EPA 200.7	18.0	6 4.1			mg/Kg	0.006
	. ,	Lead	EPA 200,7	18.0	78.4			mg/Kg	0.2
		Zinc	EPA 200.7	18.0	9067			mg/Kg	0.007

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207	Project: Date Received: Date Completed: Date Reported:	Metals, Soil 12/12/2002 12/13/2002 12/13/2002
--	---	--

Lab Sample ID: 101099-(001-019)

	Lab Sample ID	Sample ID/Desc	Analyte	Method	% Moisture	Result	Dup Result	RPD	Units	MDL	
	101099-019	WH-8A (1-1.5)	Cadmium	EPA 200.7	11.2	13.9			mg/Kg	0.006	
			Lead	EPA 200.7	11.2	16.1			mg/Kg	0.2	
·			Zinc	EPA 200.7	11.2	1923			mg/Kg	0.007	

Analytical and Consulting Services

Linebach Funkhouser 4059 Shelbyville Road Louisville, KY 40207

Project: Metals, Soil Date Received: 12/12/2002 Date Completed: 12/13/2002 Date Reported: 12/13/2002

Quality Control Summary

Lab Sample ID	Analyte	Method	True Value	Result	% Rec	Units	MDL
101099-016 MS	Cadmium	EPA 200.7	2.0	2.08	84.6	mg/L	0.006
	Lead	EPA 200.7	2.0	2.15	86.2	mg/L	0.2
	Zinc	EPA 200.7	18.0	66.0	72.8	mg/L	0.007
101099-019 MS	Cadmium	EPA 200.7	2.0	1.85	83.4	mg/L	0.006
	Lead	EPA 200.7	2.0	1.93	86.1	mg/L	0.2
	Zinc	EPA 200.7	20.0	41.9	82.5	mg/L	0.007
IPC Stnd	Cadmium	- EPA 200.7	2.0	1.93	96.3	mg/L	0.006
	Lead	EPA 200.7	2.0	1.98	99.0	mg/L	0.2
2	Zinc	EPA 200.7	2.0	2.01	100.6	mg/L	0.007
QCS Stnd	Scadmlum :	EPA 200.7	· . 1.5	1.42	94,7	mg/L	0.006
	Lead	EPA 200.7	1.5	1.46	97.6	mg/L	0.2
·	Zinc	EPA 200.7	1.5	1.48	98.7	mg/L	0.007

ł		Page / of 2	Preservative used	Turn Around Time	Rush (1-2 Days)	+Priority (3-5 Days)	Normat (7-10 Days)	Results needed by:	12/11e/02m	* Please call to verify	rush charges before submitting samples		Remarks									Sample condition upon receipt:	pping #:	Chain of custody seal for.	Cooler:	test price list/quote. Fax 509-469-9476
·								<u> </u>														Sample con	Carner & shipping #:	Chain of cur		to the latest Fax
	LLC					Analysis required	·																			Signature by the client/client agent assumes responsibility for payment for indicated tests according to the latest price list/quote. 01 East S Street Y akima, WA 98901 509-469-2400 T oll free 866-469-2400 Fax 509-469-947
• ·	atories	. :	Finkland	1	100-02	Analysis																Ţ	fre			nt for indicated Toll free
	Alliance Analytical Laboratories I.J.C	Custody	Client phone: Project Mánager	ampler Signature	Project Name (24)) W KI)			90	180									X. I	X	Sampled by: I	Received by.	Received by:	Received by:	nsibility for payme 509–469-2400
	Ilytica	Chain of Custody	Client phone: F			Billing phone:						# containers			~							Time: S	Time: 13 :/5	<u> </u>	1	ssumes respons 98901 50
	ce Ana		569-205			- - -					l La	Matrix/type	SolL	Soll	Solt	1901	2011	Soil Soil	Sol	ر ک	Soll	<u></u>	 	Date: 12-112-101	Date:	t/client agent assu Yakima, WA 98
	llian		ENC.								-895- 2005	Time	-	1210	1155	007)		1135	1140	1125	1130					client/client t Yakim
	\$ \$		FUNKAHOUSEN, ENC.	Chen.	40207	3 ARUNE				a here	Ъ.	Date	15/21	-						-+	- 	92	102			Signature by the cl 401 East S Street
				Client address. 4059 SheerBYVILLE NOAD	Lavisvice ky &	THE: JAME AJ	Iress: tr		Ģ	Mail, Cell (Fax)results to:	7	Sample identification	1-45	~1	-2 1-1.5			J - 4	4 1.5-2		0 1.5-2	hu/z	12/12/02	Relinquished by:	hed by:	Signatu 401 Eae
(Cient warno.	LINE P	Client address: 4059 Sites	LavisV.	cuing nar	Billing address:	;# 0	ŧ Ź	Mail, Cai		B S B	1-4M		WH-2	H-HM	1.0H-2		- H - H	5- <u>+</u> -2	3		Received Late:	Relinquist	Relinquished by:	

.

Allitation of custory Page 2 of 2 Destine of custory Page 2 of 2 <t< th=""><th></th><th></th><th></th><th><i>f</i></th></t<>				<i>f</i>
Degnetic Clain of Custody Pagnetic Standards Clain of Custody Pagnetic Standards Standards Project Namaga: Standards Namaga: Standards Standards Namaga: Standards Standards Namaga: Namaga: Standards	Alliance	e Analytic	al Laboratories I.I.C	•
Clear printe Clear printe Preservation Preservation Remain State Remain State Project Manare State Preservation Preservation Remain State Remain State Remain State Project Manare State Project Manare State Preservation Remain State Remain State Remain State Remain State Preservation Preservation Remain State Remain State Remain State Remain State Remain State Preservation Preservation Remain State Remain State Remain State Remain State Remain State Remain State Preservation Remain State Preservation Remain State Remain State Remain State Remain State Remain State Preservation Preservation Remain State Remain State Remain State Remain State Remain State Preservation Remain State Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Preservation Premain State Preservation Prese		Chain o	of Custody	
Project Name & At International State Project Name & At International State Turn Project Name & At International State Project Name & At International State Project Name & At International State Turn Project Name & At International State Project Name & At International State Project Na		Client phone	a: Project Manager	Preservative used
Projet Name & #. Projet Name & #. Effing phone Analysis for utred Efficientian Date Intel 21/0/0 Solut I-1-5 21/0/0 Solut I-1-5 10/05 Sol	Citient address:		Sarripter Signatúre:	Turn Around Time
Diffig plotes Analysis fequred Instruction Analysis fequred			Project Name & #:	*Rush (1-2 Days)
I results to: I re	Billing name;	Billing phone		Volumity (2.4. Daries)
(results to: A A tentification Date Time Matrichysis # 1-1.5 1/2/0.5 Solu 1 X A 1-1.5 1/2/0.5 Solu 1 X A 1-1.5 1/10.5 Solu 1 X A 1.5-2 1/10.5 Solu 1	Billing address;			Normal (7-10 Days)
(results to: Date Time MattAdvyte # containers Inflication Date Time MattAdvyte # containers I-I-I-S 12/10/07 UITS Solu T X I-I-I-S 12/10/07 UITS Solu T X I-I-I-S 11/10/S Solu X D D I-I-I-S 11/10/S Solu X D D D I-I-I-S 11/10/S Solu X D	P.O.#) WZ	Results needed by:
Contraction Date Time Matrixorps # containers $1-1.5$ $12/10b2$ $1(15)$ $Sol(L)$ 1 X $1-1.5$ $12/10b2$ $1(15)$ $Sol(L)$ 1 X 1 $1.5-2$ $1/10c$ $Sol(L)$ 1 X 1 100 $Sol(L)$ 1 $1.5-2$ $1/10c$ $Sol(L)$ 1 X 1 1000 1000 1000 $1.5-2$ $1/10c$ $Sol(L)$ 1 X 10000 1000 10000 10000	Mail, Cait, Fax results to:		183	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				* Please call to venify rush charges before submittion sammles
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date Time			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1-1.5 12/10/02 1115	<u>, </u>		Remarks
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.5-2- / 1120	SOLL		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Soll / 15/1-1	Soll		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Solution		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Solu -		
I:S-Z I:OSD SoLC I X I I X I I X I I X I I Y I Y I Y I Y I Y I Y I Y I Y I Y I Y I Y I Y I Y I Y I Y I Y Y I Y Y Y I Y				
A I.S-2 Ito2 Sout X X Time: Sampled by: Sample condition upon receipt: Time: Received by: Carrier & shipping #: Date: Time: Received by: Carrier & shipping #:	1.5-2 1 102D			
A I.S-2 [102] Solution X X Time: Sampled by: Sample condition upon receipt: Time: Received by: Sample condition upon receipt: Date: Time: Received by: Carrier & shipping # Date: Time: Received by: Carrier & shipping # Container: Date: Time: Received by:				
Time: Sampled by; Sample condition upon receipt: Time: Received by: Carrier & shipping #: Date: Time: Received by: Carrier & shipping #: Date: Time: Received by: Contain of custody seal for; Container: Time: Received by: Container;	A 1.5-2 [102	1 1		
Time: Received by: Cerrier & shipping #: Date: Time: Received by: Cerrier & shipping #: Date: Time: Received by: Crain of custody seal for: Container: Time Received by: Container:	sampled Date :	Time:	Sampled by:	Sample condition upon receipt:
Date: Time: Received by: Chain of custody seal for: Date: Time Received by: Container:	Received Date:	Time	Received by:	Carrier & shipping #
Date: Time Received by: Container.			Received by:	
Crementers but the alternative second by:			D	
		Di 111 -	received by:	
				rax 008-408-84/6

____(

(

Ć

	NT
Ć	

CERTIFICATE OF ANALYSIS

CLIENT: Linebach Funkhouser Inc. 4059 Shelbyville Rd. Louisville KY, 40220 ATTN: Roy Funkhouser

PHONE: (502) 895-5009

FAX: (502) 895-4005

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

SUBMITTED: 07/23/03 10:05

REPORT DATE:	: 07/24/03 12:06	REPO	RT NUMBER: 307	2301			PAGE:	1 OF
CI SAMPLE	CLIENTS ID#		DATE	TIME	MATRIX			
3072301-01	AOC5-SP/ Main Stock	ojle	07/22	/2003 0925	Soil			
3072301-02	WWH-SP/ West War		07/22	/2003 0950	Soil			
3072301-03	WH-SP/ Warehouse		07/22	/2003 0950	Soil			
3072301-04	Dup-1/ Duplicate		07/22	/2003 1100	Soil			
3072301-05	WH-1/ West Warehou	use 1	07/22	/2003 1215	Soil			
3072301-06	WH-2/West Warehor	use 2	07/22	/2003 1235	Soil			
3072301-07	WH-3/ West Warehou	use 3	07/22	/2003 1250	Soil			
3072301-08	WH-4/ West Warehor	use 4	07/22	/2003 1300	Soil			
3072301-09	WH-5/ West Warehou	use 5	07/22	/2003 1330	Soil			
3072301-10	WH-6/ West Warehou	use õ	07/22	/2003 1340	Soil			
3072301-11	WH-7/ West Warehou	use 7		/2003 1350	Soli			
3072301-12	WH-8/ West Warehow	use 8	07/22	/2003 1355	Soli			
3072301-13 -	WH-9/ West Warehou	use 9	07/22	/2003 1400	Soil			
3072301-14	Equipment Rinsate 1		07/22	/2003 1415	Water			
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS			TECH	DATE/TIME	
7301-01	SAMPLE ID: AOC5-	SP/ Main Stockpile						
. inity Character	eristics Leachate Pr	ocedure (TCLP) Metals						
C. JUM, TCLP	EPA 200.7/6010B	• •	0.056	mg/L	0.020	GW	07/24/2003 10:27	
LEAD, TCLP - ICP		LEAD	0.090	mg/L	0,040	GW	07/24/2003 10:27	-
3072301-02		P/West Warehouse Stockpile						-
		••••••						
Toxicity Characte	eristics Leachate Pre	ocedure (TCLP) Metals						
Cadmium, TCLP - ICP	EPA 200.7/6010B	CADMIUM	1.9	mg/L	0.020	GW	67/24/2003 10:27	
LEAD, TCLP - ICP		LEAD	34	mg/L	0,40	GW	07/24/2003 10:27	
3072301-03	SAMPLE ID: WH-SP	/ Warehouse Trench Stockpile						
Toxicity Characte	eristics Leachate Pr	ocedure (TCLP) Metals						
CADMIUM, TCLP -	EPA 200.7/6010B	CADMUM	0.73	mg/L	0.020	GW	07/24/2003 10:27	
LEAD, TCLP - ICP		LEAD	15	mg/L	0.40	GW	07/24/2003 10:27	
3072301-04	SAMPLE ID: Dup-1/	Duplicate						
Toxicity Characte	eristics Leachate Pr	ocedure (TCLP) Metals						
CADMUM, TCLP -	EPA 200.7/6010B	CADMIUM	1.1	mg/L	0.020	GW	07/24/2003 10:27	
LEAD, TCLP - ICP		LEAD	26	mg/L	0.40	GW	07/24/2003 10:27	
3072301-05	SAMPLE ID: WH-1/ V	Vest Warehouse 1						
	nductively Coupled							
-				_	a / * -	D 111	-	
CADMSUM - ICP	EPA 200.7/6010B	CADMIUM	117	mg/kg	0.120	GW	07/24/2003 07:42	
ND-ICP		LEAD	12900	mg/kg	12.0	GW	07/24/2003 07:42	
J-ICP			47200	mg/kg	2.40	GW	07/24/2003 07:42	
							$\wedge \wedge$	
- ·	be reproduced except i	n full.	thorized for Releas		191	IK	11/	/

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

ORT DATE:	07/24/03 12:0	6 REPORT	NUMBER:3072	301			PAGE:	205
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS		TECH	DATE/TIME	NOTE
3072301-06	SAMPLE ID: WH-2/	West Warehouse 2		-				
Fotal Metals by I	nductively Coupled	Plasma						
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	41.2	mg/kg	0.107	GW	07/24/2003 07:42	
EAD - ICP		LEAD	51.0	mg/kg	0.107	GW	07/24/2003 07:42	
ZINC - ICP		ZINC	3660	mg/kg	0.213	GW	07/24/2003 07:42	
3072301-07	SAMPLE ID: WH-3/	West Warehouse 3						
otal Metals by In	nductively Coupled	Plasma						
ADMIUM - ICP	EPA 200.7/60108	CADMIUM	73.7	mg/kg	0.108	GW	07/24/2003 07:42	
EAD - ICP		LEAD	1070	mg/kg	0.108	GW	07/24/2003 07:42	
INC - ICP		ZINC	10600	mg/kg	0.215	GW	07/24/2003 07:42	
072301-08	SAMPLE ID: WH-4/	West Warehouse 4		_	<u> </u>			
otal Metals by I	nductively Coupled	Plasma					-	
ADMIUM - KCP	EPA 200.7/6010B	CADMIUM	85.3	mg/kg	0,11 5	GW	07/24/2003 07:42	
EAD - ICP		LEAD	1990	mg/kg	1.15	GW	07/24/2003 07:42	
ZINC - ICP		ZINC	11600	mg/kg	0.230	GW	07/24/2003 07:42	
072301-09	SAMPLE ID: WH-5/	West Warehouse 5						
	nductively Coupled							
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	73.9	rng/kg	0.111	GW	07/24/2003 07:42	
I-ICP			301	mg/kg	0.111	GW	07/24/2003 07:42	
- .	•••••		6270	mg/kg	0.223	GW	07/24/2003 07:42	
072301-10	SAMPLE ID: WH-6/	West Warehouse 6			· ·			
	ductively Coupled							
ADMIUM - ICP	EPA 200,7/6010B	CADMIUM	37.2	mg/kg	0.114	G₩	07/24/2003 07:42	
EAD - ICP		LEAD	109	mg/kg	0.114	GW	07/24/2003 07:42	
INC - ICP	<u></u>	ZINC	3880	mg/kg	0.227	GW	07/24/2003 07:42	
072301-11	SAMPLE ID: WH-7/							
	ductively Coupled							
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	34,5	mg/kg	0.103	GW	07/24/2003 07:42	
EAD - ICP		LEAD	659	mg/kg	0.103	GW	07/24/2003 07:42	
INC - ICP		ZINC	4760	mg/kg	0.207	GW	07/24/2003 07:42	
072301-12	SAMPLE ID: WH-B/							
	ductively Coupled							
•	EPA 200.7/6010B	CADMUM	19.2	mg/kg	0.103	GW	07/24/2003 07:42	
EAD - ICP		LEAD	19.2	mg/kg	0.103	GW	07/24/2003 07:42	
INC-ICP					0.206	GW	07/24/2003 07:42	
			2090	mg/kg 	0.200	~~~		
	SAMPLE ID: WH-9/1							
-	ductively Coupled		0.55		0.400	GW		
	EPA 200.7/60108		9,55	mg/kg		GW	07/24/2003 07:42	
			43,7	mg/kg	0.109	GW	07/24/2003 07:42	
AD - ICP		LEAD ZINC	1170	mg/kg	0.022	GW	07/24/2003 07:42	

I nis report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

ORT DAT	E: 07/24/03 12:0	96	REPORT	NUMBER:3072	PAGE: 3 OF 7						
SAMPLE/ ANALYSIS	METHOD	PARAMETER		RESULTS	UNITS		TECH	DATE/TIME	NOTES		
3072301-14 Total Metals by	SAMPLE ID: Equip Inductively Couple										
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		ND	mg/L	0.001	GW	07/24/2003 10:54			
LEAD - ICP		LEAD		0.013	mg/L	0,001	GW	07/24/2003 10:54	-		
ZINC-ICP		ZINC		0.013	mg/L	0.001	GW	07/24/2003 10:54			

rus report may not be reproduced except in full.

j

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

ORT DATE: 07/24/03 12:06

REPORT NUMBER:3072301

PAGE: 4 OF 7

Total Metals by Inductively Coupled Plasma - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
BATCH: Batc	h 3G23005 - EPA 30	51									
QC SAMPLE:	Blank (3G23005-BLK1)				Prepared:	07/23/03	Analyzed: 07	//24/03		
CADMIUM		ND	0.100	mg/kg							
LEAD		ND	0,100	-							
ZINC		0.200	0.020	•							QB-
QC SAMPLE:	Calibration Blank (3G)	23005-CCB1)				Prepared:	07/23/03_/	Analyzed: 07	/24/03		
CADMIUM		0.0011	0.001	mg/kg							
LEAD		ND	0.00100	-							
ZINC		0.0038	0.0002	•							
QC SAMPLE:	Calibration Blank (3G)	23005-CCB2)				Prepared:	07/23/03	Analyzed: 07	//24/03		
CADMIUM		ND	0.001	mg/kg							
LEAD		0.0 034	0.00100								
ZINC		0.0305	0.0002	٠							
QC SAMPLE:	Calibration Blank (3G	23005-CCB3)				Prepared:	07 <i>1</i> 23/03 A	Analyzed: 07	/24/03		
CADMIUM		ND	0.001	mg/kg							
LEAD		0.0203	0,00100	•							
ZINC		0.0197	0.0002	-							
AMPLE:	Duplicate (3G23005-D)	JP1)		Source: 3072	301-13	Prepared:	07/23/03 A	halyzed: 07	/24/03		
MUP .		23.8	0:105	∵mg/kg		9.55			85.5	15	Α-
Ľ		16 <i>.</i> 9	0.105			43.7			88.4	15	Α-
ZINU	,	1600	0.210	•		1170			31.0	15	A
QC SAMPLE:	Reference (3G23005-S	RM1)				Prepared:	07/23/03 A	nalyzed: 07	/24/03		
CADMIUM		1.03	0.001	mg/kg	1.00		103	85-115			
LEAD	•	1.01	0.00100	•	1.00		101	85-115			
ZINC		0.998	0.0002	•	1,00		99.8	85-115			

'i, report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: tab@ColumbiaInspection.com

ORT DATE: 07/24/03 12:06

REPORT NUMBER:3072301

PAGE: 5 OF 7

Total Metals by Inductively Coupled Plasma - Quality Control

Batch/Sample	2/Analyte	Result	Detection	Units	Spike Level	Source Result %R	REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Bate	ch 3G23005 - EPA 3051										
QC SAMPLE:	Reference (3G23005-SRM2)					Prepared: 07/23	/03 A	nalyzed: 07	/24/03		
CADMUM		0.997	0.001	mg/kg	1.00	1	99.7	85-115			
LEAD		1.02	0.00100		1.00		102	85-115			
ZINC		0.996	0.0002	•	1.00	1	9 9.6	85-115			
OC SAMPLE:	Reference (3G23005-SRM3)					Prepared: 07/23	103 A	nalyzed: 07	//24/03		
CADMIUM		0.994	0.001	mg/kg	1.00	1	9 9.4	85-115			
LEAD		1.04	0.00100		1.00		104	85-115			
ZINC		0.979	0.0002	•	1.00	1	97.9	85-115			
QC SAMPLE:	Reference (3G23005-SRM4)					Prepared: 07/23/	/03 A	nalyzed: 07	//24/03		
CADMIUM		0.0256	0.001	mg/kg	0.0243		105	80-120			
LEAD		0.0603	0.00100	•	0.0585		103	85-115			
ZINC		1.12	0.0002	-	1.09		103	92-107			
BATCH: Bate	ch 3G23011 - EPA 3015				-						
QC SAMPLE:						Prepared: 07/23/	/03 A	nalyzed: 07	/24/03		
CADMIUM											
		ND	0.001	 mg/L		•					
		ND 0.011	0.001 0.001	mg/L		•					
				mg/L							
LEAD	Calibration Blank (3G23011-	0.011 0.017	0.001	mg/L		Prepared: 07/23/	103_A	nalyzed: 07	//24/03		
LEAD	Calibration Blank (3G23011-	0.011 0.017	0.001	mg/L		·	103 A	nalyzed: 07	//24/03		<u></u>
LEAD QY <u>MPLE:</u> CA. JM	Calibration Blank (3G23011-	0.011 0.017 CCB1)	0.001 0.001	-		·	<u>103 A</u>	nalyzed: 07	//24/03		
LEAD QY <u>MPLE:</u> Ch. JM LEAD	Calibration Blank (3G23011-	0.011 0.017 CCB1) ND	0.001 0.001 0.0009	-		·	<u>'03 A</u>	nalyzed: 07	//24/03	-	
LEAD	Calibration Blank (3G23011- Calibration Blank (3G23011-	0.011 0.017 CCB1) ND 0.014 0.002	0.001 0.001 0.0009 0.0009	-		·					
LEAD CALLE: CALLUM LEAD ZINC	·	0.011 0.017 CCB1) ND 0.014 0.002	0.001 0.001 0.0009 0.0009	-		Prepared: 07/23/					
LEAD QY <u>MPLE:</u> CA.JM LEAD ZINC QC SAMPLE:	·	0.011 0.017 CCB1) ND 0.014 0.002 CCB2)	0.001 0.001 0.0009 0.0009 0.0009	mg/L		Prepared: 07/23/					

7 me report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

ORT DATE: 07/24/03 12:06

REPORT NUMBER:3072301

PAGE: 6 OF 7

Total Metals by Inductively Coupled Plasma - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Bate	h 3G23011 - EPA 3015						<u> </u>				
QC SAMPLE:	Matrix Spike (3G23011-MS1)			Source: 3072	2301-14	Prepared: (07 <i>123/</i> 03 A	nalyzed: 01	7/24/03		
CADMUM		0.871	0.001	mg/L	1.11	ND	78.5	60-120			
LEAD		1.01	0.001		1.11	0.013	89,8	80-12 0			
ZINC		0.986	0.001	-	1,11	0.013	87.7	80-120			
QC SAMPLE:	Reference (3G23011-SRM1)					Prepared: (07 <i>1231</i> 03 A	nalyzed: 0	7/24/03		
CADMIUM		1.00	0.0009	mg/L	1.00		100	85-115			
LEAD		1.06	0.0009	•	1.00		106	8 5-115			
ZINC		0.998	0.0009	•	1.00		99.8	85-115			
QC SAMPLE:	Reference (3G23011-SRM2)					Prepared: (07/23/03 A	nalyzed: 0	7/24/03		
CADMIUM	·	1.03	0.0009	mg/L	1.00		103	85-115			
LEAD		1.09	0.0009	· •	1.00		109	85-115			
ZINC		1.02	0.0009	•	1.00		102	85-115			
QC SAMPLE:	Reference (3G23011-SRM3)					Prepared: (07/23/03 A	nalyzed: 0	7/24/03		
CADMIUM		0.024	0.0009	mg/L	0.0243	-	98.8	80-120			
LEAD	• • •	0.066	0.0009	٠.	0.0585		113	85-115			
ZINC	· · · · ·	1.13	0.0009	•	1.09		104	92-107			

have report may not be reproduced except in full.

(

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fac: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

ORT DATE:

CERTIFICATE OF ANALYSIS

07/24/03 12:06

REPORT NUMBER:3072301

PAGE: 7 OF 7

Toxicity Characteristics Leachate Procedure (TCLP) Metals - Quality Control

Batch/Sample	/Analyte	Result	Detection Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
BATCH: Bato	h 3G23012 - EPA 3015										
QC SAMPLE:	Blank (3G23012-BLK1)					Prepared:	07/23/03	Analyzed: 0	7/24/03		
CADMIUM		ND	0.020	mg/L							
LEAD		ND	0.040	•							
QC SAMPLE:	Calibration Blank (3G23012-	CB1)				Prepared:	07/23/03	Analyzed: 0	7/24/03	··· <u> </u>	
CADMIUM		ND	0.018	mg/L							
LEAD		ND	0.036	-							
QC SAMPLE:	Calibration Blank (3G23012-4	CB2)				Prepared:	07/23/03	Analyzed: 0	7/24/03		
CADMIUM		ND	0.018	mg/L							
LEAD.		'ND	0.036	•							
QC SAMPLE:	Duplicate (3G23012-DUP1)			Source: 3072	2301 <u>-04</u>	Prepared:	07/23/03	Analyzed: 0	7/24/03		
CADMILM		1.13	0.020	mg/L		1.1			2.69	15	
LEAD		25.6	0.40	ĸ		26			1.55	15	
OC SAMPLE:	Matrix Spike (3G23012-MS1)			_Source: 3072	2301-01	Prepared:	07/23/03	Analyzed: 0	7/24/03		
CADMIUM		1.11	0.020	mg/L	1.11	0.056	95.0	80-120			
LEAD	T.B. 1997 Alexandria	1.15	0,040	•	1.11	0.090	95.5	80-120			
CO SAMPLE:	Reference (3G23012-SRM1)	<u>entere.</u>				Prepared:	07/23/03	Analyzed: 0	7/24/03		
UM		1,01	0.018	mg/L	1,00		101	85-115			
i	· · · ·	1.06	0.036	×	1.00		106	85-115			
QC SAMPLE:	Reference (3G23012-SRM2)	× .	•			Prepared:	07/23/03	Analyzed: 0	7/24/03		
CADMIUM		1.02	0.018	mg/L	1.00		102	85-115			
LEAD		1.04	0.036	•	1.00		104	85-115			
QC SAMPLE:	Reference (3G23012-SRM3)					Prepared:	07/23/03	Analyzed: 0	7/24/03		
CADMIUM		0.0248	0.018		0.0243		102	80-120		-	•
LEAD		0.0607	0,036	•	0.0585		104	85-115			
Data Qualifie	ers:						<u> </u>				_
Qualifier	Notes										
A-01	The RPDs for duplicate data	were high	due to the fact	that they were	trace lev	els and the	sample is	non-homoga	eneous.		
QB-01	The method blank contains a which is negligible according	nalyte at a	concentration							płe result,	_

inis report may not be reproduced except in full.

(

Authorized for Release By: Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: ab@ColumbiaInspection.com

ICE Malytical-Jaboraton SlJC 401, East S Street Analytical-Jaboraton SlJC 509-463-2400Fax 509-4976	O O OBSERVATIONS, OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS		H S A A	3072301 survey for further information.	D IS TOTAL NO. OF CONTAINERS TOTAL NO. OF CO	
Форма Mutianice Malytical-Jabo 401. East S Street - Yakima, W49890 401. East S Street - Yakima, W49890 509-463-2200 Fax 509-489-9476 11581 S TO PERFORM				χ Λ ν χ Z	ABOVE * RUSH TURNAROUND IS * RUSH TURNAROUND IS SUBJECT TO PRIOR	val Keid 7
	1, 414 576 56 56 56 56 50 50 50 50 50 50 50 50 50 50 50 50 50				MATION AD G	7 2
REPORTINGIBILLING (SEE BELOW) THE FULLING (SEE BELOW) JAN 16 TULZ J	· у Ра/116 · Surg EXX.500. 895-4005 2. 10004 DATE TIME	11/2 1 1 1 2 2 2 9:50 500	25 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NAME ATTN: ATTN: AND PRIMT	La Contradición de la contradici
THIS INFORMATION FOR	CULECT CONTACT LEPHONE: 3 BIP.O. NO.: B SAM	2 WH WHAT SA	11 5 11 11 15 15 15 15 15 15 15 15 15 15	W W	INSTRUCTIONS 105E ONELINE PER SAMPLE 2. BESPECIFIC INTEST PHAUESTS 3. OHECKICHTESTS TO BE PERFORMED GOR EX OHSAMPLE E. M. EX OHSAMPLE RELINQUISHED BY (SIG	nance charges

CERTIFICATE	OF	ANALYSI	S
-------------	----	---------	---

CLIENT: Linebach Funkhouser Inc. 4059 Shelbyville Rd. Louisville KY, 40220

ATTN: Roy Funkhouser

PHONE: (502) 895-5009

FAX: (502) 895-4005

SUBMITTED: 07/28/03 10:55

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

REPORT DATE:	07/31/03 09:48		REPORT NUMBE	R: 30726	303				PA	GE: 1 OF 2
CI SAMPLE	CLIENTS ID#			D/	ATE T	IME 1	MATRIX			
072803-01	WH-1A			07	/24/2003 1	1500	Soil			
072803-02	WH-2A			07	/24/2003 1	1455 3	Soil			
072803-03	WH-3A			07	/24/2003 1	1445	Soil			
072803-04	WH-4A			07	/24/2003 1	1440	Soil		0010	STREE.
3072803-05	WH-5A			07			Soil		$(\mathcal{M}) \subseteq \{1,$	ANIS
3072803-06	WH-6A						Soil		O	JUNA
3072803-07	WH-7A						Soil		-	
3072803-08	Duplicate						Soil			
3072803-09	Equipment Rinsate		<u> </u>	07	/24/2003 1	1520	Water			
SAMPLE/ ANALYSIS	METHOD	PARAMETER		RESULTS		's _		TECH	DATE/TIME	<u> </u>
	SAMPLE ID: WH-1A									
Fotal Metals by Ir	ductively Coupled	Plasma								
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		1.57	mg/kg		0.102	GW	07/29/2003 0	8:39
LEAD - ICP		LEAD	n an an an Anna an Ann Anna an Anna an	35.5	mg/kg		0.102	GW	07/29/2003 0	·,
TINC - ICP	r	ZINC		263	mg/kg		0,020	GW	07/29/2003 0	8:39
403-02	SAMPLE ID: WH-2A								1	
Metals by Ir	ductively Coupled	Plasma								
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	· · ·	4.94	mg/kg		0.107	GW	07/29/2003 0	8:39
EAD - ICP	<u>-</u>	LEAD		38.7	mg/kg		0.107	GW	07/29/2003 0	8:39
INC - ICP		ZINC		487	mg/kg		0.021	GW	07/29/2003 -0	8:39
3072803-03 Total Metals by Ir CADMIUM - ICP LEAD - ICP	SAMPLE ID: WH-3A ductively Coupled EPA 200.7/6010B	Plasma CADMIUM LEAD	<u>-</u>	1.23	mg/kg mg/kg		0.118	GW GW	07/29/2003 0 07/29/2003 0	· · · · · · · · · · · · · · · · · · ·
ZINC - ICP		ZINC		94.0	mg/kg		0.024	GW	07/29/2003 0	8:39
	SAMPLE ID: WH-4A ductively Coupled I	Diasma								
ADMIUM-ICP	EPA 200,7/60108	CADMIUM		4.67	mg/kg		0.103	GW	07/29/2003 0	8:39
EAD - ICP		LEAD		26.1	mg/kg		0.103	GW	07/29/2003 0	
ZINIC - ICP		ZINC		453	mg/kg		0.021	GW	07/29/2003 0	8:39
	SAMPLE ID: WH-5A		· · · · ·		·					
OLAL MELAIS DV V	EPA 200.7/60108	CADMIUM		5.45	mg/kg		0.108	GW	07/29/2003 0	8:39
•				175	mg/kg		0.108	GW	07/29/2003 0	8:39
CADMIUM - ICP		LEAD					0.022	GW	07/29/2003 0	8;39
ADMIUM - ICP EAD - ICP		ZINC		1080)	mg/kg		0.022			
CADMIUM - ICP EAD - ICP 2INC - ICP 5072803-06	SAMPLE ID: WH-6A ductively Coupled F	ZINC		1080)	mg/kg		·	_		
CADMIUM - ICP LEAD - ICP ZINC - ICP 1072803-06 Fotal Metals by In		ZINC		1080)	mg/kg		0.114	GW	07/29/2003 0	
EADWIUM - ICP EAD - ICP UNC - ICP 1072803-06 Total Metals by In	ductively Coupled F	zinc Plasma		<u> </u>			·	_	07/29/2003 0 07/29/2003 0	
ADMUM - ICP EAD - ICP INC - ICP 072803-06 otal Metals by In ADMUM - ICP EAD - ICP	ductively Coupled F	ZINC Plasma CADMIUM LEAD		13.1	mg/kg		0.114	GW		

Authorized for Release By:

Robal Offer Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone; (503) 286-9464 Fax: (503) 286-5355 E-mail:lab@ColumbiaInspection.com

	E: 07/31/03 09:48	REPORT	NUMBER: 307280)3			PAGE: 2 OF
SAMPLE/	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	TECH	
3072803-06	SAMPLE ID: WH-6A	L .					
Fotal Metals by ZINC - ICP	/ Inductively Coupled EPA 200.7/60108	Plasma ZINC	2010	mg/kg	0.046	GW	07/29/2003 08:39
	SAMPLE ID: WH-7A						
Fotal Metals by CADMUM-ICP	/ Inductively Coupled EPA 200.7/6010B		22.0	mg/kg	0.120	GW	07/29/2003 08:39
EAD - ICP		LEAD	18.6	mg/kg	0.120	GW	07/29/2003 08:39
ZINC - ICP		ZINC	2140)	mg/kg	0.048	GW	07/29/2003 08:39
3072803-08	SAMPLE ID: Duplic	ate					
	y Inductively Coupled EPA 200.7/60108		17.2	mg/kg	0.100	GW	07/29/2003 08:39
		LEAD	15.7	mg/kg	0.100	GW	07/29/2003 08:39
LEAD - ICP			1800	mg/kg	0.040	GW	07/29/2003 08:39
3072803-09	SAMPLE ID: Equip	ment Rinsate			,		
	y Inductively Coupled EPA 200.7/6010B	Plasma CADMIUM	ND	mg/L	0.001	GW	07/29/2003 09:43
LEAD - ICP		LEAD		mg/L	0.001	GW	07/29/2003 09:43
ZINC - ICP	· · · · · · · · · · · · · · · · · · ·	ZINC	ND	mg/L	0.001	GW	07/29/2003 09:43

, report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

ORIGINAL

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

(<u>~</u>								<u> </u>			[Ţ					 		۹ 	
Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (707) 748-7587 Fax: (707) 748-7764	Andreis To Be Performad																				FOR LABORATORY USE ONLY	PO# FO# Cash check #			
7133 N. Liombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 E 2nd Street, Ste 'Å', Benicia, CA 94510 747 Channel Street, Stan Pedro, CA 90731			· · · · · · · · · · · · · · · · · · ·	Re Pe	20	12 18 18	16 76 76											+++++++++++++++++++++++++++++++++++++++				Inspection Job Number:	Due Date:		
X 7133 N. Liombard, Portland, OR 97203 14901 E. 20th Street, Fife, WA 98424 14592 E 2nd Street, Ste 'A', Benicia, CA		12a y 212C	200	Notification Method(n)	Č 🗂 Telepitone	Email			Dute Time,	+		$\frac{1}{1}$	7-24 1440	1	4	$\frac{1}{\sqrt{2}}$	4	7-24 15-20	 		 , Date/Time		P D Trater 1 mg	5	
>₹ ₽ ₽ ₽ ₽	ב	J'roject Nathe:	Project Number: P.O. Namber;	Testing Trisply	Nurmal		Due Date:	Sample	Matrix				1.201	100	9011	5, 1	5011	.05H			Danimad Plu		Received By.		
COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD		Linchech tunk houser	Koy Funk houser	502-895-5009	209 - 895- 400	12/1-29			Sumple Description/UN Nutuber	W/H - 1A	WH - 2.H	WH - 3A	W/H - 41A	WH-5A	WH-COA	WH-7A	WH DAD 2	Eavis Rinsett					or Date/Time	· · · · · · · · · · · · · · · · · · ·	
COLUME	NON-CO	Customer Nane;	Atlention:	Phone:	Litte:	, .			Somple id#					1								Relinquished By	Reletiquished By		

Ć

Areas East (NB-1) and South (AOC-10) of the New Building

CERTIFIC	CATE OF	ANALYSI	S
----------	---------	---------	---

CLIENT:	Linebach Funkhouser Inc.
ATTN:	Roy Funkhouser
	4059 Shelbyville Rd.
	Louisville KY, 40220

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

C

Ţ

FAX: (502) 895-4005

SUBMITTED: 07/19/04 15:30

REPORT DATE:	07/29/04 08:21		REPORT NUMBE	R: 4071	903		· · · · -		P/	AGE: 1 O
SAMPLE	CLIENTS ID#					TIME	MATRIX			
071903-01	NB1-1(W)Wall New B			0	7/17/2004	1215	Soil			
071903-02	NB1-1(W) Floor New	Building West Floor		07	7/17/2004	1210	Soil			
071903-03	NB1-2(E)Wall New Bu	ilding East Wall		03	7/17/2004	1200	Soil			
071903-04	NB1-2(E)Floor New B	uilding East Floor		03	7/17/2004	1215	Seil			
071903-05	AOC-10-1(W) Wall W	est Wall		0	7/17/2004	1315	Soil			
071903-06	AOC-10-1(W) Floor W	/est Floor		07	7/17/2004	1300	Soil			
071903-07	AOC-10-2(E) Wall East	st Wall		07	7/17/2004	1305	Soil			
071903-08	AOC-10-2(E) Wall East	st Floor	•	07	7/17/2004	1310	Soil			
071903-09	SWMU 6-2(E) East C	omposite		07	7/17/2004	1635	Soil			
071903-10	SWMU 6-1(W) West	Composite		07	7/17/2004	1630	Soil			
071903-11	WH-2-1 (W) West Co	mposite		07	7/17/2004	1135	Soil			
071903-12	WH-2-2(E) East Com	•				1130	Soil			
071903-13	Dup 1				/17/2004	1700	Soil			
	· · ·		······				<u> </u>			···-
AMPLE/ NALYSIS	METHOD	PARAMETER		RESULTS	UNI	TS	DETECTIO LIMIT	N TECH	DATE/TIME	
071903-01	SAMPLE ID: NB1-1	(W)Wall New Buildin	West Walls						· · · · ·	
al Metals by In	ductively Coupled									
DMIUM - ICP	EPA 200.7/6010B	CADMIUM		4.4	mg/L		0.009	BKB	07/23/2004	13:28
AD - ICP		LEAD		5.04	mg/L	•	0.015	вкв	07/23/2004	13:28
NC - ICP	· · · · · ·	ZINC		2700	mg/L		0.088	BKB	07/23/2004	13:28
071903-02	SAMPLE ID: NR1.1	(W) Floor New Buildi	Wast Floor		_				· · · · · · ·	
	ductively Coupled		ig west floor							
ADMIUM - ICP	EPA 200.7/60108	CADMIUM		7.4	ma/l		0.007	вкв	07/23/2004	12-28
EAD - ICP	EFA 200.000100	LEAD	·	3,42	mg/L mg/L		0.011	BKB	07/23/2004	
INC - ICP	~	ZINC		4400			0.067	BKB	07/23/2004	
				4400	mg/L	:	0.007	DICD	0112012004	15.20
071903-03		(E)Wall New Building	East Wall							
•	ductively Coupled									
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM		9.5	mg/L		0.010	BKB	07/23/2004	
EAD - ICP		LEAD		4.85	mg/L		0.017	вкв	07/23/2004	13:28
NC - ICP		ZINC	· · · · · · · · · · · · · · · · · · ·	5000	mg/L		0.10	BKB	07/23/2004	13:28
071903-04	SAMPLE ID: NB1-2	(E)Floor New Buildin	East Floor							
otal Metals by In	ductively Coupled	Plasma								
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM		17	mg/L		0.007	BKB	07/23/2004	13:28
EAD - ICP		LEAD		4.90	mg/L		0.011	BKB	07/23/2004	13:28
NC - ICP		ZINC		5600	mg/L		0.067	BKB	07/23/2004	13:28
071903-05	SAMPLE ID: AOC-1	0-1(W) Wall West Wa	I							
otal Metals by In	ductively Coupled	Plasma								
ADMIUM - ICP	EPA 200.7/60108	CADMIUM		0.57	mg/L		0.005	вкв	07/23/2004	13:28
EAD - ICP		LEAD		3.74	mg/L		0.008	вкв	07/23/2004	13:28
NC - ICP		ZINC		29	mg/l.		0.005	BKB	07/23/2004	
071903-06	SAMPLE ID: AOC-1	0-1(W) Floor West Fl	wor		· · · ·				31 G11	JAL
1	be reproduced excep	A 1. C. H								

Richard D. Reid - Laboratory Director

JORT DAT	E: 07/29/04 08:21	REPORT	NUMBER: 407190)3			PAGE: 2 OF
SAMPLE/ Analysis	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	тесн	DATE/TIME
4071903-06 Total Metals by	SAMPLE ID: AOC- Inductively Coupled	10-1(W) Floor West Floor Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.1	mg/L	0.014	вкв	07/23/2004 13:28
LEAD - ICP		LEAD	5.42	mg/L	0.023	BKB	07/23/2004 13:28
ZINC - ICP		ZING	32	mg/L	0.014	BKB	07/23/2004 13:28
1071903-07 Fotal Metals by	SAMPLE ID: AOC-	10-2(E) Wall East Wall I Plasma					
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	D.87	mg/L	0.004	BKB	07/23/2004 13:28
EAD - ICP		LEAD	4.45	mg/L	0.006	ВКВ	07/23/2004 13:28
ZINC - ICP		ZINC	27	mg/L	0.004	BKB	07/23/2004 13:28
4071903-08 Гotal Metals by сармии - ICP	SAMPLE ID: AOC- Inductively Coupled EPA 200.7/60108	10-2(E) Wali East Floor 9 Plasma CADMIUM	0.96	ma/L	0.006	вкв	07/23/2004 13:28
EAD - ICP		LEAD	5.23	mg/L	0.010	BKB	07/23/2004 13:28
ZINC - ICP	<u> </u>		31	mg/L	0.006	вкв	07/23/2004 13:28
1071903-09 Fotal Metals by	SAMPLE ID: SWM	U 6-2(E) East Composite					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.3	mg/L	0.007	вкв	07/23/2004 13:28
EAD - ICP	- V	LEAD	25.0	 mg/L	0.011	BKB	07/23/2004 13:28
INC - ICP		ZINC	450	mg/L	0,007	ВКВ	07/23/2004 13:28
071903-10 otal Metals by	SAMPLE ID: SWM	U 6-1(W) West Composite I Plasma					
MIUM - ICP	EPA 200.7/6010B	CADMIUM	4.1	mg/i.	0.008	вкв	07/23/2004 13:28
J-ICP	··	LEAD	261	mg/L	0.013	ВКВ	07/23/2004 13:28
				-	0.008		

ORIGINAL

This report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

COLUMBIA	COLUMBIA INSPECTION, INC.		7133 N. Lombard, Portland, OR 97203	Portland, O	R 97203	Ph: (503) 286-9464 Fax: (503) 285-7831
CHAIN OF NON-COMMEF	CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING		4901 E. 20th Street, Fife, WA 98424 4592 E 2nd Street, Ste 'A', Benicia, CA 94510 797 Channel Street, San Pedro, CA 90731	, Fife, WA Ste 'A', Bei , San Pedro	98424 nicia, CA 94510 , CA 90731	Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585
Customer Name: Z	Kar Thank & the	Project Name:	120			Analysis To Be Performed
Attention:	y a trut have we	Project Number:	Entration of the second			
Address: $2 \times 2 \times 2$	1	P.O. Number:				
Phone:	A 24	Testing Priority	Notification Method(3)	1	Ū	
Fax:		Mormal	. 🗍 Telephone	2	Z	
Sumpler:	Submitted	C Rush	Email Finall	184	> [e. 7 e	· · · · · · · · · · · · · · · · · · ·
		Due Date:	/L⊡·Mail			
		Sample		<u>_</u>	7 <u>7</u>	
1. 1.	Sample Description UN Mumber	Matrix	Date 1 time $7 - 17 + 12/5$			
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Enter Wet - Par	-	~		+	
SERVALE MELL PER	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		\ 	< ×		
4 2 18 24 25 26 2	Think the the start				1.	
1. 6. 6. 6. 1. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	11/2 4 Mail		2121 1315	X		
12.4 111.154	West Faller		7-17 1300	×	×	
1 Cloral Man	Var & ident		7-17 1505	5 2 2	<u> </u>	
New Ellinge	They They		7-17 1210	X	4 X	
TUNIN LE	1 .7 Carps with		7-12 1635	Х Х	X	
「「「「「「「」」	here of the well	~	7-17 1630	YX	<u> </u>	
154 84 (41)	1865 + Jugar 4 + 1		7-17 1135	Y V		
11/1 5/2/E>	East Converse		7-17 1130	X X		
D_{left} +	/	\times	-17 1700	+ 4	t	
	Date/Time	Raceived By:	Date/Time		NOI	FOR LABORAFORY USE ONLY
and the second and the	001/10/11/			Inspectio	Inspection Job Number:	PO#
Relfinquished By:	Date/Time	Received By:	Date/Time	Laborate	Laboratory Project Number.	Cash/check #
				Due Date:	1	Amount Paid: \$

.

(

ţ

Warehouse Entryway AOC

YS	I S
	YS

CLIENT: Linebach Funkhouser Inc. ATTN: Roy Funkhouser 4059 Shelbyville Rd. Louisville KY, 40220

PROJECT NAME: Bay Zinc

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

FAX: (502) 895-4005

SUBMITTED: 08/13/04 11:00

Bit Bud-01 WH2-N-1 O-1* 000122004 0016 Seid Bit Bud-04 WH2-N-2 O-1* 000122004 0000 Seid Bit Bud-05 WH2-N-2 O-1* 000122004 0000 Seid Bit Bud-10 WH2-K-2 O-1* 00122004 0001 Seid Bit Bud-13 WH2-K-2 O-1* 00122004 0000 Seid Bit Bud-13 WH2-K-2 O-1* 00122004 0000 Seid Bit Bud-16 WH2-K-1 O-1* 00122004 0000 Seid Bit Bud-14 WH2-K-2 O-1* 00122004 0000 Seid Bit Bud-14 WH2-K-2 O-1* 00122004 0000 Seid Bit Bud-15 WH2-K-1 O-1* 00122004 0000 Seid Bit Bud-15 SAMPLE ID: WH2-K-1 O-1* 00122004 13:55 Bit Bud-15 SAMPLE ID: WH2-K-2 O-1* 00172004 13:55 Bit Bud-16 SAMPLE ID:	REPORT DATE:	08/25/04 09:23	<u> </u>	REPORT NUMBER:	408	31304				PAGE: 1 C	
NUMBER DBT20204 DB00 Self BERSHOLD WTE-M-2 2.5 DBT20204 DB00 Self BERSHOLD WTE-M-2 2.5 DBT20204 DB00 Self BERSHOLD WTE-M-2 2.5 DBT20204 DB01 DBT20204 DB02 Self BERSHOLD WTE-M-2 0.1 DBT20204 DB02 Self Self BERSHOLD WTE-M-1 DBT20204 DB02 Self Self Self BERSHOLD WTE-M-1 DBT20204 DB02 Self Self Self BERSHOLD WTE-M-1 DBT20204 DB04 Self Self Self BERSHOLD WTE-M-1 DBTEECTION DMTT TECH DATE/TIME BERSHOLD WTE-M-1 OT DETECTION DMTT TECH DATE/TIME BERSHOLD SAMPLE ID: WH2-M-2 0.4' DMT DMTT DETECTION DMTT DETECTION DMTT DETECTION DMTT DMTT	SAMPLE	CLIENTS ID#			_	DATE			_		
BitsDate WrizH2 23' DB/120204 06/10 Sai BitsDate WrizH2 23' DB/120204 06/10 Sai BitsDate WrizH2 24' DB/120204 06/10 Sai BitsDate WrizH2 24' DB/120204 06/12 Sai BitsDat-10 WrizH2 24' DB/120204 06/000 Sai BitsDat-12 WrizH2 24' DB/120204 06/12 Sai BitsDat-13 WrizH2 24' DB/120204 06/12 Sai BitsDat-16 WrizH2 22' DB/120204 06/12 Sai BitsDat-16 WrizH2 22' DB/120204 06/12 Sai BitsDat-16 WrizH2 4' C4' DB/12/2004 06/12 Sai BitsDat-15 WrizH2 2' DI' DETECTION DI'/// DU'// D	081304-01	WH2-N-1 0-1'				08/12/2004	0915	Sol			
Northol WH2E-10-1 09/12/2004 08/33 Sall 06/30-10 WH2E-20-1 06/12/2004 08/35 Sall 06/30-10 WH2E-20-1 06/12/2004 08/35 Sall 06/30-10 WH2E-20-1 06/12/2004 08/35 Sall 08/30-18 WH2W-10-1 06/12/2004 08/35 Sall 08/30-18 WH2W-112-3 08/12/2004 08/15 Sall 08/30-19 WH2S-20-01 08/12/2004 08/15 Sall 08/30-19 WH2S-20-01 08/12/2004 08/15 Sall 08/30-201 SAMPLE ID: WH2-12-3 08/12/2004 08/12 Sall 08/30-41 SAMPLE ID: WH2-1-1-1 DEFECTION LMIT TECH DATE/TIME 08/30-40 SAMPLE ID: WH2-1-1-1 08/12/2004 08/12/2004 13/55 0-10P LEAD 34/00 mg/lig 1.68 09/17/2004 13/55 0-10P LEAD 34/00 mg/lig 0.104 B/K6 09/17/2004 13/55	81304-04	WH2-N-2 0-1'				08/12/2004	0900	Soil			
Bitsbart D WH2E-2 0.1 06/12/2004 09/45 Sall Bitsbart D WH2E-2 0.4 06/12/2004 09/45 Sall Bitsbart D WH2E-4 0.4'' 06/12/2004 09/45 Sall Bitsbart D WH2E-4 0.4'' 06/12/2004 09/17 Sall Bitsbart D WH2E-2 2.3'' 06/12/2004 09/17 Sall Bitsbart D WH2E-2 0.1'' 06/12/2004 09/17 Sall Bitsbart D WH2E-2 0.1'' 06/12/2004 09/17 Sall Bitsbart D WH2E-2 0.1'' 06/12/2004 09/17 Sall Bitsbart D WH2E-1 0.1'' 06/12/2004 00/17 Dat Bitsbart D MMULE ID WH2E-1 0.1'' DEFECTION DATE/TIME Bitsbart D MM1E ID WH2E-1 0.1'' DEFECTION DATE/TIME Bitsbart D MM1M 10.4'' MSB 0.07'' Bitsbar 04/17/2004 13.55<	81304-06	WH2-N-2 2-3'				08/12/2004	0910	Soil			
Number Millez 2 23* 08/12/2004 0855 Sai BISDU-12 WH26-2 24* 08/12/2004 0855 Sai BISDU-13 WH26-2 10* 08/12/2004 0855 Sai BISDU-14 WH26-2 04* 08/12/2004 0855 Sai BISDU-15 WH26-2 04* 08/12/2004 0855 Sai BISDU-16 WH26-2 04* 08/12/2004 0855 Sai BISDU-19 WH26-2 04* 08/12/2004 0855 Sai METHOD PARAMETER RESULTS UNITS DETECTION MALYSIS METHOD PARAMETER RESULTS	81304-07	WH2-E-1 0-1'				08/12/2004	0933	Soil			
Non-Lit WH2×1 0-1' DB/12/2004 0620 Scil B1304-16 WH2×1 0-1' 08/12/2004 0620 Scil B1304-16 WH2×1 0-1' 08/12/2004 0620 Scil B1304-16 WH2×1 2-3' 08/12/2004 0645 Scil B1304-18 WH2×5-2 0-1' 08/12/2004 0645 Scil MMPLE/ WH2×5-2 0-1' 08/12/2004 0645 Scil MAPLE/ WH2×5-2 0-1' 08/12/2004 0645 Scil MB1451 METHOD PARAMETER RESULTS UNITS DETECTION 12104 SAMPLE ID: WH2-H-1 0-1' 1455 Scil Scil Scil 12104 SAMPLE ID: WH2-H-2 0-1' 14500 mg/kg 7.80 BKB 08/17/2004 13.55 12104 SAMPLE ID: WH2-H-2 0-1' 14500 mg/kg 1.66 BKB 08/17/2004 13.55 12104 SAMPLE ID: WH2-H-2 0-1' Scil mg/kg	81304-10	WH2-E-2 0-1'				08/12/2004	0945	Sof		ι	
NUMBER WIR2W-1 0-11 08/12/2004 08/01 Sel 19/13/04-19 WIR2W-1 2-3' 08/12/2004 06/01 Sel 19/13/04-19 WIR2W-1 2-3' 08/12/2004 06/01 Sel 19/13/04-19 WIR2W-1 2-3' 08/12/2004 06/01 Sel 19/13/04-11 WIR2W-1 2-3' 08/12/2004 06/01 Sel 10/14/15/05 METHOD PARAMETER RESULTS UNITS DETECTION LIMIT TECH DATE/TIME 10/14/12/04 SAMPLE ID: WH2-N-1 0-1' 0.078 EKB 08/17/2004 13.55 10/15/04 SAMPLE ID: WH2-N-2 0-1' 14500 mg/kg 0.104 BKB 08/17/2004 13.55 13/15/07 LEAD 3400 mg/kg 0.104 BKB 08/17/2004 13.55 13/16/07 EAD 3400 mg/kg 0.104 BKB 08/17/2004 13.55 13/16/07 DAMELE I	81304-12	WH2-E-2 2-3'				08/12/2004	0955	Soli			
Display Devise Devise Devise Set BERDA-18 WH2-8-2 0.41 0.041/2/2004 0.681 5.64 BERDA-19 WH2-8-2 2.31 0.041/2/2004 0.685 5.64 IALYSIS METHOD PARAMETER RESULTS UNITS DETECTION IALYSIS METHOD PARAMETER RESULTS UNITS DATE/TIME IALMOST SAMPLE ID: WH2-N-1 0-1' State DATE/TIME DATE/TIME ISTOCP LEAD 34000 mg/kg 1.66 BKB DeV17/2004 13.55 ISTOCP ZIANC 24200 mg/kg 0.104 BKB DETECTION </td <td>81304-13</td> <td>WH2-S-1 0-1'</td> <td></td> <td></td> <td></td> <td>08/12/2004</td> <td>0820</td> <td>Soil</td> <td></td> <td></td>	81304-13	WH2-S-1 0-1'				08/12/2004	0820	Soil			
Substration WH2-S2 D-1' DB/12/2004 0845 Soli DP1304-21 WH2-S2 2-3' DP12/2004 0845 Soli MMPLE/ IMBI/SU-21 WH2-S2 2-3' DETECTION IMBI/SU-2004 0845 Soli MAPLE/ IMBI/SU-21 METHOD PARAMETER RESULTS UNITS DETECTION IMBI/SU-2004 0845 Soli Naturesis METHOD PARAMETER RESULTS UNITS DETECTION IMBI/SU-2004 13:55 DS100-000 METHOD PARAMETER RESULTS UNITS DETECTION IMBI/SU-2004 13:55 DS100-000 FEA 200.7/6010B CADMIUM 460 mg/kg 0.078 BKB 08/17/2004 13:55 DS100-044 SAMPLE ID: WH2-N-2 0-1' colal Metais by Inductively Coupled Plasma 0.104 BKB 08/17/2004 13:55 DS100-05 CADMIUM 53.1 mg/kg 0.104 BKB 08/17/2004 13:55 DS100-06 CADMIUM 53.1 mg/kg 0.125 BKB 08/17/2004 13:55 DS100-07 LEAD 807 mg/kg 0.125 BKB 08/17/2004 13:55 DS100-07 LEAD	81304-16	WH2-W-1 0-1'				08/12/2004	0800	Soil			
District WH2-52 2-3" D00/12/2004 0855 Sol MAPLE/ VALYSIS METHOD PARAMETER RESULTS UNITS DETECTION LIMIT TECH DATE/TIME 381304-01 SAMPLE ID; WH2-N-1 0-1' colal Metais by Inductively Coupled Plasma 00/12/00/1 0.078 BKB 08/17/2004 13:55 30104-01 SAMPLE ID; WH2-N-1 0-1' colal Metais by Inductively Coupled Plasma 0.078 BKB 08/17/2004 13:55 30104-04 SAMPLE ID; WH2-N-2 0-1' colal Metais by Inductively Coupled Plasma 0.078 BKB 08/17/2004 13:55 30204-04 SAMPLE ID; WH2-N-2 0-1' colal Metais by Inductively Coupled Plasma 0.104 BKB 08/17/2004 13:55 30304-04 SAMPLE ID; WH2-N-2 0-1' 0.104 BKB 08/17/2004 13:55 306-1CP LEAD 6970 mg/kg 10.4 BKB 08/17/2004 13:55 306-1CP LEAD 23' mg/kg 0.125 BKB 08/24/2004 13:55 300-1CP LEAD 325 mg/kg 0.125 BKB	081304-18	WH2-W-1 2-3				08/12/2004	0810	Soli			
AMPLE/ AMPLE/ ALYSIS METHOD PARAMETER RESULTS UNITS DETECTION LIMIT TECH DATE/TIME B81304-01 SAMPLE ID: WH2-N-1 0-1' 001 MITS UNITS UNITS DETECTION LIMIT TECH DATE/TIME B81304-01 SAMPLE ID: WH2-N-1 0-1' 001 MID 0-0' BKB 08/17/2004 13:55 D-ICP LEAD 34000 mg/kg 7.80 BKB 08/17/2004 13:55 D81304-04 SAMPLE ID: WH2-N-2 0-1' 014 Method 014 014 BKB 08/17/2004 13:55 D81304-04 SAMPLE ID: WH2-N-2 0-1' 014 BKB 08/17/2004 13:55 DATOP LEAD 6970 mg/kg 0.104 BKB 08/17/2004 13:55 DATOP LEAD 24200 mg/kg 0.104 BKB 08/17/2004 13:55 DATOP LEAD 24200 mg/kg 0.125 BKB 08/17/2004 13:56	081304-19	WH2-S-2 0-1'				08/12/2004	0845	Sol			
Martysis METHOD PARAMETER RESULTS UNITS LIMIT TECH DATE/TIME D81304-01 SAMPLE ID: WH2-N-1 0-1' obtal deal deal<	081304-21	WH2-S-2 2-3'				08/12/2004	0855	Soil		···	
otal Metals by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/80108 CADMIUM 460 mg/kg 0.078 BKB 08/17/2004 13:55 2-ICP LEAD 34000 mg/kg 7.80 BKB 08/17/2004 13:55 3-ICP ZINC 145000 mg/kg 1.58 BKB 08/17/2004 13:55 D81304-04 SAMPLE ID: WH2-N-2 0-1' 13:55 D81304-04 SAMPLE ID: WH2-N-2 0-1' BKB 08/17/2004 13:55 D81304-06 SAMPLE ID: WH2-N-2 0-1' BKB 08/17/2004 13:55 D81304-06 SAMPLE ID: WH2-N-2 2-3' 01/1 BKB 08/17/2004 13:55 D81304-06 SAMPLE ID: WH2-N-2 2-3' 0.125 BKB 08/17/2004 13:55 D81304-06 SAMPLE ID: WH2-F-1 0-1' 0.125 BKB 08/24/2004 15:08	AMPLE/ Nalysis	METHOD	PARAMETER	R	ESVL	TS UN	IITS_		TECH	DATE/TIME	
ADMIUM - ICP EPA 200.7/6010B CADMIUM 460 mg/kg 0.078 BKB 04/17/2004 13:55 >-ICP LEAD 34000 mg/kg 7.80 BKB 06/17/2004 13:55 >-ICP ZINC 14500 mg/kg 1.56 BKB 06/17/2004 13:55 D81304-04 SAMPLE ID: WH2-N-2 0-1' 01 BKB 06/17/2004 13:55 Data Metals by Inductively Coupled Plasma ADMIUM 53.1 mg/kg 0.104 BKB 06/17/2004 13:55 INC - ICP LEAD 8970 mg/kg 10.4 BKB 06/17/2004 13:55 INC - ICP LEAD 8970 mg/kg 10.4 BKB 06/17/2004 13:55 D81304-06 SAMPLE ID: WH2-N-2 2-3' 0 0 0.125 BKB 08/24/2004 15:08 ADMIUM - ICP EPA 200.7/6010B CADMIUM 8.06 mg/kg 0.125 BKB 08/24/2004 15:08 BOB1304-07 SAMPL											
Christian Top EPA 200, 1702100 CLEAD 34000 mg/kg 7.80 BKB 06/17/2004 13.55 3-ICP ZINC 145000 mg/kg 1.56 BKB 06/17/2004 13.55 Delt304-04 SAMPLE ID: WH2-N-2 0-1' 0.104 BKB 06/17/2004 13.55 Delt304-04 SAMPLE ID: WH2-N-2 0-1' 0.104 BKB 06/17/2004 13.55 Delt304-04 SAMPLE ID: WH2-N-2 0-1' 0.104 BKB 06/17/2004 13.55 Delt50 EEAD 6970 mg/kg 10.4 BKB 06/17/2004 13.55 Delt50 ZINC 24200 mg/kg 0.104 BKB 06/17/2004 13.55 Delt304-06 SAMPLE ID: WH2-N-2 2-3' 0.125 BKB 08/24/2004 15.08 Del 10P ZINC 2000 mg/kg 0.125 BKB 08/24/2004 15.08	otal Metais by Ir		Piasma								
J-TCP ZINC 14500 mg/kg 1.56 BKB 08/17/2004 13.55 061304-04 SAMPLE ID; WH2-N-2 0-1' otal Metals by Inductively Coupled Plasma 0.104 BKB 08/17/2004 13.55 ADMIUM - ICP EPA 200.7/6010B CADMIUM 53.1 mg/kg 0.104 BKB 08/17/2004 13.55 EAD - ICP LEAD 6970 mg/kg 10.4 BKB 08/17/2004 13.55 BR1304-06 SAMPLE ID; WH2-N-2 2-3' mg/kg 2.08 BKB 08/17/2004 13.55 061304-06 SAMPLE ID; WH2-N-2 2-3' otal Metals by Inductively Coupled Plasma 0.125 BKB 08/24/2004 15.08 ADMIUM - ICP EPA 200.7/6010B CADMIUM 8.08 mg/kg 0.125 BKB 08/24/2004 15.08 BAD - ICP LEAD 2000 mg/kg 0.125 BKB 08/24/2004 15.08 BAD- ICP LEAD 2100 mg/kg 0.042 BKB 08/17/2004 13.55 <td>ADMIUM - ICP</td> <td>EPA 200.7/6010B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> v</td> <td></td> <td></td>	ADMIUM - ICP	EPA 200.7/6010B						v			
Linc Linc House High DB1304-04 SAMPLE ID: WH2-N-2 0-1' Obtiget Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 53.1 mg/kg 0.104 BKB 08/17/2004 13:55 EAD - ICP LEAD 6970 mg/kg 10.4 BKB 08/17/2004 13:55 EAD - ICP LEAD 6970 mg/kg 10.4 BKB 08/17/2004 13:55 De1304-06 SAMPLE ID: WH2-N-2 2-3' 0tal Metals by Inductively Coupled Plasma 0.125 BKB 08/24/2004 16:08 DAMIUM - ICP EPA 200.7/6010B CADMIUM 8.08 mg/kg 0.125 BKB 08/24/2004 15:08 NC - ICP LEAD 325 mg/kg 0.125 BKB 08/24/2004 15:08 NC - ICP ZINC 2000 mg/kg 0.42 BKB 08/17/2004 13:55 NC - ICP ZINC 2000 mg/kg 0.44 BKB 08/17/2004 13:55 INC - ICP <td>D-ICP</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td><u> </u></td> <td></td>	D-ICP						_		<u> </u>		
olai Metais by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 63.1 mg/kg 0.104 BKB 08/17/2004 13:55 ADMIUM - ICP EPA 200.7/6010B CADMIUM 6370 mg/kg 0.104 BKB 08/17/2004 13:55 DB1304-06 SAMPLE ID: WH2-N-2 2.3' Otal Metais by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM BLB mg/kg 0.125 BKB 08/24/2004 15:08 CP LEAD 325 mg/kg 0.125 BKB 08/24/2004 15:08 ADMIUM - ICP EPA 200.7/6010B CADMIUM 8.08 mg/kg 0.125 BKB 08/17/2004 13:05 BADMIUM - ICP EPA 200.7/6010B CADMIUM 123 <th cols<="" td=""><td>- ICP</td><td></td><td>ZINC</td><td>14</td><td>\$5000</td><td>mg/i</td><td>¢g</td><td>1.56</td><td>BKB</td><td>08/17/2004 13:55</td></th>	<td>- ICP</td> <td></td> <td>ZINC</td> <td>14</td> <td>\$5000</td> <td>mg/i</td> <td>¢g</td> <td>1.56</td> <td>BKB</td> <td>08/17/2004 13:55</td>	- ICP		ZINC	14	\$5000	mg/i	¢g	1.56	BKB	08/17/2004 13:55
ADMIUM - ICP EPA 200,7/60108 CADMIUM 53.1 mg/kg 0.104 BKB 08/17/2004 13:55 EAD - ICP LEAD 6970 mg/kg 10.4 BKB 08/17/2004 13:55 ING - ICP ZINC 24200 mg/kg 2.08 BKB 08/17/2004 13:55 D81304-06 SAMPLE ID: WH2-N-2 2-3' 50 15.00 12.5 BKB 08/17/2004 13:55 D81304-06 SAMPLE ID: WH2-N-2 2-3' 50 15.00 15.08 8KB 08/17/2004 15:08 D81304-06 SAMPLE ID: WH2-N-2 2-3' 500 70 15.08 8KB 08/24/2004 16:08 ADMIUM - ICP EPA 200.7/60108 CADMIUM 2000 mg/kg 0.042 BKB 08/17/2004 13:55 D81304-07 SAMPLE ID: WH2-E-1 0-1' 13:400 mg/kg 10.4 BKB 08/17/2004 13:55 INC - ICP LEAD 13:400<	081304-04 otal Metals by Ir										
DAD-LCP LDAD Data High is Dire Dire <thdire< th=""> Dire Dire</thdire<>	ADMIUM - ICP			53	3.1	mg/l	g	0.104	BKB	08/17/2004 13:55	
NC - KCP ZINC 24200 mg/kg 2.08 BKB 08/17/2004 13:55 081304-06 SAMPLE ID: WH2-N-2 2-3' otal Metals by inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 8.08 mg/kg 0.125 BKB 08/24/2004 15:08 EAD - ICP LEAD 325 mg/kg 0.125 BKB 08/24/2004 15:08 INC - ICP LEAD 325 mg/kg 0.125 BKB 08/24/2004 15:08 081304-07 SAMPLE ID: WH2-E-1 0-1' 0-1' 0.042 BKB 08/17/2004 13:55 081304-07 SAMPLE ID: WH2-E-1 0-1' 0-1' 0-1' 0-1' otal Metals by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 123 mg/kg 0.104 BKB 08/17/2004 13:55 INC - ICP ZINC 96800 mg/kg 10.4 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 04/	EAD - ICP		LEAD	65	970	mg/l	g	10.4	BKB	08/17/2004 13:55	
otal Metals by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 8.08 mg/kg 0.125 BKB 08/24/2004 15:08 EAD - ICP LEAD 325 mg/kg 0.125 BKB 08/24/2004 15:08 INC - ICP ZINC 2000 mg/kg 0.042 BKB 08/24/2004 15:08 081304-07 SAMPLE ID: WH2-E-1 0-1' 0.042 BKB 08/24/2004 13:08 081304-07 SAMPLE ID: WH2-E-1 0-1' 0.042 BKB 08/24/2004 13:08 0atl Metals by Inductively Coupled Plasma mg/kg 0.104 BKB 08/17/2004 13:55 EAD - ICP LEAD 13400 mg/kg 10.4 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 0.062 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1'	INC - ICP		ZINC	24	1200	mg/i	g	2.08	8KB	08/17/2004 13:55	
EAD - ICP EDA D DEC mgr.g D.042 BKB 08/24/2004 15:08 INC - ICP ZINC 2000 mg/kg 0.042 BKB 08/24/2004 15:08 081304-07 SAMPLE ID: WH2-E-1 0-1' otal Metals by Inductively Coupled Plasma 123 mg/kg 0.104 BKB 08/17/2004 13:55 EAD - ICP LEAD 13400 mg/kg 10.4 BKB 08/17/2004 13:55 INC - ICP LEAD 13400 mg/kg 10.4 BKB 08/17/2004 13:55 INC - ICP ZINC 96800 mg/kg 2.08 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 0.062 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 0.062 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 0.062 BKB 08/17/2004 13:55	CADMIUM - ICP	ductively Coupled	Plasma CADMIUM				-				
NRC - ICP Zitto Ingrig 081304-07 SAMPLE ID: WH2-E-1 0-1' otal Metals by Inductively Coupled Plasma 123 mg/kg 0.104 BKB 08/17/2004 13:55 EAD - ICP LEAD 13400 mg/kg 10.4 BKB 08/17/2004 13:55 INC - ICP LEAD 13400 mg/kg 2.08 BKB 08/17/2004 13:55 INC - ICP ZINC 96800 mg/kg 2.08 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 0tal Metals by Inductively Coupled Plasma 0tal Metals by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 95.3 mg/kg 0.062 BKB 08/17/2004 13:55 EAD - ICP LEAD 16000 mg/kg 6.22 BKB 08/17/2004 13:55 INC - ICP ZINC 81300 mg/kg 1.24 BKB 08/17/2004 13:55 081304-12 SAMPLE ID: WH2-E-2 2.3' otal Metals by	···							··· ···			
otal Metals by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 123 mg/kg 0.104 BKB 08/17/2004 13:55 EAD - ICP LEAD 13400 mg/kg 10.4 BKB 08/17/2004 13:55 INC - ICP LEAD 13400 mg/kg 10.4 BKB 08/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 01 06/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 04/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 06/17/2004 13:55 081304-10 SAMPLE ID: WH2-E-2 0-1' 08/17/2004 13:55 081304-12 EAD 16000 mg/kg 6.22 BKB 08/17/2004 13:55 INC - ICP LEAD 16000 mg/kg 1.24 BKB 08/17/2004 13:55 INC - ICP ZINC 81300 mg/kg 1.24 BKB 08/17/2004 13:55 081304-1	INC - ICP			2			<u></u>	0,042			
ADMIDM ID Ingrkg 10.4 BKB 08/17/2004 13:55 EAD - ICP LEAD 13400 mg/kg 10.4 BKB 08/17/2004 13:55 INC - ICP ZINC 96800 mg/kg 2.08 BKB 08/17/2004 13:55 0B1304-10 SAMPLE ID: WH2-E-2 0-1' 08/17/2004 13:55	081304-07 otal Metals by Ir										
EDD EDD Intervention Intervention INC - ICP ZINC 96800 mg/kg 2.08 BKB 08/17/2004 13:55 0B1304-10 SAMPLE ID: WH2-E-2 0-1'	ADMIUM - ICP	EPA 200.7/6010B	CADMIUM								
NC - ICP ZING Control Ingrig 081304-10 SAMPLE ID: WH2-E-2 0-1' otal Metals by inductively Coupled Plasma ADMIUM - ICP EPA 200,7/6010B CADMIUM 95.3 mg/kg 0.062 BKB 08/17/2004 13:55 EAD - ICP LEAD 16000 mg/kg 6.22 BKB 08/17/2004 13:55 INC - ICP ZINC 81300 mg/kg 1.24 BKB 08/17/2004 13:55 081304-12 SAMPLE ID: WH2-E-2 2-3' otal Metals by Inductively Coupled Plasma 0011112	EAD - ICP										
otal Metals by Inductively Coupled Plasma ADMIUM - ICP EPA 200.7/6010B CADMIUM 95.3 mg/kg 0.062 BKB 08/17/2004 13:55 EAD - ICP LEAD 16000 mg/kg 6.22 BKB 08/17/2004 13:55 INC - ICP ZINC 81300 mg/kg 1.24 BKB 08/17/2004 13:55 OB1304-12 SAMPLE ID: WH2-E-2 2-3' otal Metals by Inductively Coupled Plasma	INC - ICP		ZINC	94	6800	mg/	<u>9</u>	2.08	вкв	08/1//2004 13:55	
ADMION ICF EPA 200, norton Orbinion Octor Ingrig Fill Fi		nductively Coupled	Plasma					0.000	848	09/47/0004 13:55	
INC - ICP ZINC 81300 mg/kg 1.24 BKB 08/17/2004 13:55 081304-12 SAMPLE ID: WH2-E-2 2-3' otal Metals by Inductively Coupled Plasma 000		EPA 200.7/6010B									
081304-12 SAMPLE ID: WH2-E-2 2-3' otal Metals by Inductively Coupled Plasma				· · · · · · · · · · · · · · · · ·							
otal Metals by Inductively Coupled Plasma					.500	ing/	NY I	1.24	<u> </u>		
	-	nductively Coupled	Plasma	3	n a	mo/	ka	0.110	вкв	08/24/2004 15:08	
							<u> </u>	d D. Reid - Lab	orator	y Director	

Richard D. Reid'- Laboratory Director

7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com COLUMBIA INSPECTION, INC.

ORIGINAL

PORT DATE:	08/25/04 09:23	REPO	RT NUMBER: 408130	4			PAGE: 2 O
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	TECH	DATE/TIME
4081304-12 Fotal Metals by I	SAMPLE ID: WH2- nductively Coupled						
LEAD - ICP	EPA 200.7/6010B	LEAD	1870	mg/kg	0.110	вкв	08/24/2004 15:08
ZINC - ICP		ZINC	9350	mg/kg	0,366	BKB	08/24/2004 15:08
•	SAMPLE ID: WH2- nductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	40.4	mg/kg	0.102	BKB	08/17/2004 13:55
EAD - ICP		LEAD	11000	mg/kg	10.2	BKB	08/17/2004 13:55
ZINC - ICP		ZINC	49500	mg/kg	2.04	BKB	08/17/2004 13:55
	SAMPLE ID: WH2- nductively Coupled	Plasma				5//5	
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	126	mg/kg	0.077	BKB	08/17/2004 13:55
EAD - ICP		LEAD	11800	mg/kg	7.73	BKB	08/17/2004 13:55
ZINC - ICP			81300	mg/kg	1,55	BKB	08/17/2004 13:55
4081304-18 Fotal Metals by II	SAMPLE ID; WH2- inductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	13.8	mg/kg	0.087	BKB	08/24/2004 15:08
EAD - ICP		LEAD	510	mg/kg	0.0868	вкв	08/24/2004 15:08
LINC - ICP	<u> </u>	ZINC	3690	mg/kg	0.289	BKB	08/24/2004 15:08
4081304-19 Fotal Metals by I	SAMPLE ID: WH2- nductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	. 53.4	mg/kg	0.110	ВКВ	08/17/2004 13:55
D - ICP		LEAD	8020	mg/kg	11.0	BKB	08/17/2004 13:55
.J - ICP		ZINC	48300	mg/kg	2.21	BKB	08/17/2004 13:55
1081304-21 Fotal Metals by In	SAMPLE ID: WH2- aductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.733	mg/kg	0.102	BKB	08/24/2004 15:08
EAD - ICP	······································	LEAD	5.65	mg/kg	0,102	BKB	08/24/2004 15:08
ZINC - ICP		ZINC	44.2	mg/kg	0.034	вкв	08/24/2004 15:08

ORIGINAL

***is report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC. 7133 N. Lombard, Portland, OR 97203 Phone:(503) 286-9464 Fax:(503) 286-5355 E-mail:lab@ColumbiaInspection.com

· (Ph: (503) 286-9464 Fax: (503) 285-7831 Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764 Ph: (310) 833-1557 Fax: (310) 833-1585	Analysis To Be Performed	(E- 2+104-0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	75 74/ 1-0	λ μου (ε-ε τs τ) μ+ο	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4															FOR LABORATORY USE ONLY	#Od	Cash/check #	Amount Paid: \$	
	7133 N. Lombard, Portland, OR 97203 4901 E. 20th Street, Fife, WA 98424 4592 E 2nd Street, Ste 'A', Benicia, CA 94510 797 Channel Street, San Pedro, CA 90731			Methodds)	phone	K 4	Sample	XXX STO	4 30	9.35	500	905	410 1 1 0	9.20	455 1111	9 YO	945	950	455 1111	820	330			Inspection Job Number:	Date/Time Laboratory Project Number:	Due Date:	and the second se
(, ,	C 7133 N. Lomb 1901 E. 20th S 1 4592 E 2nd S 797 Channel S	Project Name:		Testing Riporty Notification Method(s)	Normal Telephone	C Rush (A Email Due Date: (A Mail	Sample	\$-12-Dil						7		4						, 	Received By: Date	•	Received By: Date		
	COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	Linchen Fuck havier	2-7 4-2	545 - 1250 A	500%-			1-0 1-N- e H/M		3-5	1-0 2-1-0 Him		WH 2 - + - x - 2 - 19	WH2-E-1 (2-1	W 4 6 - E - 1 1 - 2	W. 2. E-1 3.3	WUH8-E-3 0-1		1.4.14.2-E- 2 -3-3	16/42-5-1 0-1	10 H 8 - 5 - 1 - 1 - 2	124 2-5-1 2-3	Les 200 Date Time	11	Dátě/Timo	Color	
(COLUM CHA NON-CO	Customer Name:	Attention: Address:		Fax:	Sampler:		oduipic tur				7						-					Rolinquished By:	all	Relinquished By		

: : : : : :

.

•

r

CLIENT: Linebach Funkhouser Inc. ATTN: Bradley Coyle 114 Fairfax Avenue

Louisville KY, 40207

PROJECT NAME: Bay Zinc Soils tests

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

FAX: (502) 895-4005

SUBMITTED: 01/19/05 11:15

REPORT DATE: 04/15/05 07:30 REPORT NUMBER: 5011905 PAGE: 1 OF 5 CI SAMPLE CLIENTS JO# TIME MATRIX DATE WH2-W-5 1'-2' 5011905-01 01/18/2005 1100 Soil 5011905-02 WH2-W-5 2-3' 01/18/2005 1105 Soil 5011905-03 WH2-W-5 3'-4' 01/18/2005 1110 Soil 5011905-04 WH2-W-4 1'-2' 01/18/2005 1115 Soil 5011905-05 WH2-W-4 2-3 01/18/2005 1120 Soil 5011905-06 WH2-W-4 3'-4' 01/18/2005 1125 Soil 5011905-07 WH2-W-3 1'-2' 01/18/2005 1130 Soil WH2-W-3 2'-3' 5011905-08 01/18/2005 1135 Soll 5011905-09 WH2-W-3 3'-4" 01/18/2005 1140 Soil WH2-W-3 5'-6' 5011905-11 01/18/2005 1150 Soil 5011905-12 WH2-E-4 1'-2' 01/18/2005 1155 Soil 5011905-13 WH2-E-4 2'-3' 01/18/2005 1200 Soil WH2-E-4 3'-4' 5011905-14 01/18/2005 1205 Soil 5011905-15 WH2-E-3 1'-2' 01/18/2005 1210 Soil 5011905-16 WH2-E-3 2'-3' 01/18/2005 1215 Soil 5011905-18 WH2-S-6 1'-2' 01/18/2005 1235 Soil 5011905-19 WH2-S-6 2'-3' 01/18/2005 1240 Soil WH2-S-5 1'-2' 05-21 01/18/2005 1250 Soil WH2-S-4 1-2 01/18/2005 1305 Soil WH2-S-4 2-3 6011905-25 01/18/2005 1310 Soil 5011905-27 WH2-S-3 1'-2' 01/18/2005 1320 Soil 5011905-28 WH2-S-3 2'-3' 01/18/2005 1325 Soil 5011905-32 WH-E-3 5'-6' 01/18/2005 1230 Soil 5011905-33 WH-S-3 5'-6' 01/18/2005 1340 Soil WH-N-3 1'-2' 5011905-34 01/18/2005 1345 Soil 5011905-35 WH-N-3 2'-3' 01/18/2005 1350 Soil 5011905-36 WH-N-3 3'-4' 01/18/2005 1355 Soil 5011905-38 WH-N-4 2'-3' 01/18/2005 1405 Soll WH-N-4 3'-4' 5011905-39 01/18/2005 1400 Soil

SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS		тесн	DATE/TIME
5011905-01	SAMPLE ID: WH2	W-5 1'-2'					
Total Metals by	Inductively Coupled	1 Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	57.2	mg/kg	0.218	вкв	02/07/2005 09:07
LEAD - ICP		LEAD	6510	mg/kg	2.18	BKB	01/31/2005 14:21
ZINC - ICP		ZINC	48900	mg/kg	4,36	вкв	02/07/2005 09:07
5011905-02	SAMPLE ID: WH2	W-5 2'-3'				· ·	
Total Metals by	Inductively Coupled	i Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	37,9	mg/kg	0.165	вкв	02/07/2005 09:07
LEAD - ICP		LEAD	54.0	mg/kg	1.55	ВКВ	02/07/2005 09:07
This report may r	not be reproduced exce	pt in full.	Authorized for Relea	se By:	uhl	B	Cent

Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: ab@ColumbiaInspection.com

	E: 04/15/05 07:30	<u>Ri</u>	EPORT NUMBER: 50119	ບວ 			PAGE: 2 0
SAMPLE/ Analysis	METHOD	PARAMETER	RESULTS	UNITS		TECH	DATE/TIME
5011905-02	SAMPLE ID: WH2						
otal Metals by	Inductively Coupled	d Plasma					
	EPA 200.7/6010B	ZINC	22500	mg/kg	0.309	BKB	02/07/2005 09:07
011905-03	SAMPLE ID: WH2	-W-5 3'-4'					
otal Metals by	/ Inductively Coupled	d Plasma					
ADMIUM - ICP	EPA 200.7/60108	CADMIUM	1,93	mg/kg	0.292	вкв	02/15/2005 15:39
INC - ICP		ZINC	675	mg/kg	0.058	ВКВ	02/15/2005 15:39
011905-04	SAMPLE ID: WH2						
otal Metals by	Inductively Coupled						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	15.2	mg/kg	0.242	вкв	02/16/2005 09:28
EAD - ICP		LEAD	671	mg/kg	0.242	BKB	02/16/2005 09:28
011905-05	SAMPLE ID: WH2-	W.4. 2'-3'	· · · · · · · · · · · · · · · · · · ·				
	Inductively Coupled						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	112	mg/kg	0.175	вкв	02/07/2005 00:07
EAD - ICP		LEAD		mg/L	7.89	BKB	02/07/2005 09:07
INC - ICP		ZINC	74600	mg/kg	3,50	BKB	02/07/2005 09:07
011905-06	SAMPLE ID: WH2-						
	inductively Coupled						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.000		0.000	DVD	
EAD - ICP	217(200.000100	LEAD	0.633	mg/kg	0.226	BKB	02/07/2005 09:07
NC - ICP				mg/kg mg/kg	0.226	ВКВ ВКВ	01/31/2005 14:21
014005.07				ing/kg	0.045		02/0/12/005/09/07
011905-07 Metals by	SAMPLE ID: WH2- Inductively Coupled						
wotais by wwWIUM - ICP	EPA 200,7/6010B			_		•	
EAD - ICP	LFA 200.7/0010B	CADMIUM	47.5	mg/kg	0.050	BKB	02/07/2005 09:07
		ZINC	6430	mg/kg	5.00	BKB	01/20/2005 11:02
			53200	mg/kg	1.00	ВКВ	02/07/2005 09:07
011905-08	SAMPLE ID: WH2-						
otal ivietals by ADMIUM - ICP	Inductively Coupled						
AD - ICP	EPA 200.7/6010B		153	mg/kg	0.108	BKB	02/07/2005 09:07
NC - ICP		LEAD	17000	mg/kg	10.8	ВКВ	01/31/2005 14:21
		ZINC		mg/kg	2.17	BKB	02/07/2005 09:07
011905-09	SAMPLE ID: WH2-						
	Inductively Coupled						
						BKB	02/07/2005 09:07
ADMIUM - ICP	EPA 200.7/60108		3.04	mg/kg	0.200	01/0	
ADMIUM - ICP AD - ICP	EPA 200.7/60108	LEAD	8.63	mg/kg	0.200	BKB	02/07/2005 09.07
ADMIUM - ICP AD - ICP NC - ICP	EPA 200.7/60108	<u> </u>					
ADMIUM - ICP AD - ICP NC - ICP 11 1905-11	SAMPLE ID: WH2-V	LEAD ZINC N-3 5'-6'	8.63	mg/kg	0.200	BKB	02/07/2005 09.07
ADMIUM - ICP AD - ICP NC - ICP 11 1905-11 Dtal Metals by		LEAD ZINC N-3 5'-6'	8.63	mg/kg	0.200	BKB	02/07/2005 09:07
ADMIUM - ICP EAD - ICP NC - ICP 111905-11 Dtal Metals by ADMIUM - ICP	SAMPLE ID: WH2-V	LEAD ZINC N-3 5'-6' Plasma CADMIUM	8.63	mg/kg	0.200	ВКВ ВКВ	02/07/2005 09:07
ADMIUM - ICP EAD - ICP NC - ICP 2011905-11 Dtal Metals by ADMIUM - ICP EAD - ICP	SAMPLE ID: WH2-V Inductively Coupled	LEAD ZINC N-3 5'-6' Plasma CADMIUM LEAD	8.63 111	mg/kg mg/kg	0.200	ВКВ ВКВ	02/07/2005 09.07 02/07/2005 09:07
ADMIUM - ICP EAD - ICP NC - ICP 2011905-11 Dtal Metals by ADMIUM - ICP EAD - ICP	SAMPLE ID: WH2-V Inductively Coupled	LEAD ZINC N-3 5'-6' Plasma CADMIUM	8.63 111 0.539	mg/kg mg/kg mg/kg	0.200 0.040 0.146	BKB BKB BKB BKB	02/07/2005 09.07 02/07/2005 09:07 02/07/2005 09.07
ADMIUM - ICP SAD - ICP NC - ICP 011905-11 otal Metals by ADMIUM - ICP SAD - ICP NC - ICP 011905-12	SAMPLE ID: WH2-V Inductively Coupled EPA 200.7/6010B SAMPLE ID: WH2-E	LEAD ZINC N-3 5'-6' Plasma CADMIUM LEAD ZINC E-4 1'-2'	8.63 111 0.539 3.51	mg/kg mg/kg mg/kg mg/L	0.200 0.040 0.146 0.656	BKB BKB BKB BKB	02/07/2005 09.07 02/07/2005 09:07 02/07/2005 09.07 01/27/2005 14:50
ADMIUM - ICP EAD - ICP NC - ICP 011905-11 otal Metals by ADMIUM - ICP EAD - ICP NC - ICP 011905-12 otal Metals by	SAMPLE ID: WH2-V Inductively Coupled EPA 200.7/6010B	LEAD ZINC N-3 5'-6' Plasma CADMIUM LEAD ZINC E-4 1'-2'	8.63 111 0.539 3.51	mg/kg mg/kg mg/kg mg/L	0.200 0.040 0.146 0.656	BKB BKB BKB BKB	02/07/2005 09.07 02/07/2005 09:07 02/07/2005 09.07 01/27/2005 14:50
ADMIUM - ICP AD - ICP NC - ICP 11905-11 otal Metals by ADMIUM - ICP AD - ICP NC - ICP 11905-12 otal Metals by ADMIUM - ICP	SAMPLE ID: WH2-V Inductively Coupled EPA 200.7/6010B SAMPLE ID: WH2-E	LEAD ZINC N-3 5'-6' Plasma CADMIUM LEAD ZINC E-4 1'-2'	8.63 111 0.539 3.51	mg/kg mg/kg mg/kg mg/L	0.200 0.040 0.146 0.656	BKB BKB BKB BKB	02/07/2005 09.07 02/07/2005 09:07 02/07/2005 09:07 01/27/2005 14:50 02/07/2005 09:07
ADMIUM - ICP EAD - ICP NC - ICP 011905-11 otal Metals by ADMIUM - ICP EAD - ICP NC - ICP 11905-12	SAMPLE ID: WH2-V Inductively Coupled EPA 200.7/6010B SAMPLE ID: WH2-E Inductively Coupled	LEAD ZINC N-3 5'-6' Plasma CADMIUM LEAD ZINC E-4 1'-2' Plasma	8.63 111 0.539 3.51 32.5	mg/kg mg/kg mg/kg mg/L mg/kg	0.200 0.040 0.146 0.656 0.029	ВКВ ВКВ ВКВ ВКВ ВКВ	02/07/2005 09.07 02/07/2005 09:07 02/07/2005 09.07 01/27/2005 14:50

The report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

AMPLE/	E: 04/15/05 07:30		REPORT NUMB	-R: 20119	05		_	PAGE: 3 (
NALYSIS	METHOD	PARAMETER		RESULTS	UNITS			DATE/TIME
011905-13	SAMPLE ID: WH2-	E-4 2'-3'						
	y Inductively Coupled							
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM		51.0	mg/kg	0.244	BKB	02/07/2005 09:07
AD - ICP		LEAD		23.7	mg/L	1.10	BKB	01/27/2005 14:50
		ZINC		3410	mg/kg	0.049	BKB	02/07/2005 09:07
11905-14	SAMPLE ID: WH2-I							·····
	/ Inductively Coupled	Plasma						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM		9.41	mg/kg	0.167	вкв	02/15/2005 15:39
VC - ICP		ZINC		1140	mg/kg	0.033	ВКВ	02/15/2005 15:39
11905-15	SAMPLE ID: WH2-	E-3 1'-2'		·				
	/ Inductively Coupled	Plasma						
DMIUM - ICP	EPA 200.7/6010B	CADMIUM		186	mg/kg	0.112	вкв	02/07/2005 09:07
AD - ICP		LEAD		22600	mg/kg	5.61	BKB	01/20/2005 11:02
IC - ICP		ZINC	25% 2140	250000	mg/kg	2.24	BKB	02/07/2005 09:07
11905-16	SAMPLE ID: WH2-	-3 2'-3'						
	Inductively Coupled							
DMIUM - ICP	EPA 200.7/6010B	CADMIUM		1.82	mg/kg	0.250	вкв	02/15/2005 15:39
AD - ICP	· · · · · · · · · · · · · · · · · · ·	LEAD		37.5	mg/kg	0.189	BKB	01/31/2005 14:21
IC - ICP		ZINC		237	mg/kg	0.050	BKB	02/15/2005 15:39
11905-18	SAMPLE ID: WH2-S	5.6 1'.2'						
	Inductively Coupled							
AD - ICP	EPA 200.7/6010B	LEAD		9.67	mg/kg	0,269	вкв	04/08/2005 13:35
305-19	SAMPLE ID: WH2-S			0.01	ingrag	0,209		04/06/2003 13:35
	Inductively Coupled							
AD - ICP	EPA 200,7/6010B	LEAD		2.45		.	b	
				3.45	mg/kg	0.134	BKB	04/08/2005 13:35
11905-21	SAMPLE ID: WH2-S							
nai metais by DMIUM - ICP	Inductively Coupled		•					
AD - ICP	EPA 200.7/6010B			26.0	mg/kg	0.186	BKB	02/15/2005 15:39
		LEAD		1730	mg/kg	0.186	BKB	02/15/2005 15:39
				19100	mg/kg	3.71	BKB	02/15/2005 15:39
11905-24	SAMPLE ID: WH2-S							
	Inductively Coupled							
DMIUM - ICP	EPA 200,7/6010B	CADMIUM		53.8	mg/kg	0.209	ВКВ	02/07/2005 09:07
AD - ICP	·	LEAD		458	mg/kg	0.209	BKB	01/31/2005 14:21
<u> </u>		ZINC		24100	mg/kg	0.417	вкв	02/07/2005 09:07
IC - ICP								
11905-25	SAMPLE ID: WH2-S							
11905-25 tal Metals by	SAMPLE ID: WH2-S Inductively Coupled							
11905-25 tal Metals by DMIUM - ICP				0.923	mg/kg	0.237	вкв	02/07/2005 09:07
1 905-25 al Metals by DMIUM - ICP D - ICP	Inductively Coupled	Plasma		0.923 7.36	mg/kg mg/L	0.237		02/07/2005 09:07
1 1905-25 tal Metals by DMIUM - ICP AD - ICP	Inductively Coupled	Plasma CADMIUM					вкв	
11 905-25 tal Metals by DMIUM - ICP AD - ICP C - ICP	Inductively Coupled EPA 200.7/6010B	Plasma CADMIUM LEAD ZINC		7.36	mg/L	1.06	вкв	01/27/2005 14:50
11905-25 tal Metals by DMIUM - ICP AD - ICP C - ICP 11905-27	Inductively Coupled EPA 200.7/6010B SAMPLE ID: WH2-S	Plasma CADMIUM LEAD ZINC -3 1'-2'		7.36	mg/L	1.06	вкв	01/27/2005 14:50
11905-25 tal Metais by DMIUM - ICP AD - ICP C - ICP 11905-27 tal Metais by	Inductively Coupled EPA 200.7/6010B	Plasma CADMIUM LEAD ZINC -3 1'-2'		7.36 77.6	mg/L mg/kg	1.06 0.047	ВКВ	01/27/2005 14:50 02/07/2005 09:07
DMIUM - ICP AD - ICP IC - ICP 11905-27	Inductively Coupled EPA 200.7/6010B SAMPLE ID: WH2-S Inductively Coupled I	Plasma CADMIUM LEAD ZINC -3 1'-2' Plasma		7.36	mg/L	1.06	BKB BKB BKB	01/27/2005 14:50

eport may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

ORT DAT	E: 04/15/05 07:30		REPORT NUMBE	ER: 50119	05			PAGE: 4 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER		RESULTS	UNITS	DETECTION	тесн	DATE/TIME
5011905-28	SAMPLE ID: WH2							
Total Metals by	y Inductively Couple	d Plasma						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		0.931	mg/kg	0,239	вкв	02/07/2005 09:07
LÉAD - ICP		LEAD		5.88	mg/kg	0.239	BKB	02/07/2005 09:07
ZINC - ICP	,	ZINC		87.7	mg/kg	0.048	BKB	02/07/2005 09:07
5011905-32	SAMPLE ID: WH-	5'-6'						
Total Metals by	/ Inductively Couples	d Plasma						
CADMIUM - ICP	EPA 200.7/60108	CADMIUM		0.901	mg/kg	0.188	8KB	02/07/2005 09:07
LEAD - ICP		LEAD		6.23	mg/L	0,845	вкв	01/27/2005 14:50
ZINC - ICP		ZINC		49.0	mg/kg	0.038	BKB	02/07/2005 09:07
5011905-33	SAMPLE ID: WH-	6-3 5'-6'						
Total Metals by	Inductively Couple	d Plasma						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		1.03	mg/kg	0.138	вкв	02/07/2005 09:07
LEAD - ICP		LEAD		5.05	mg/L	0.619	BKB	01/27/2005 14:50
ZINC - ICP		ZINC		46.2	mg/kg	0,028	BKB	02/07/2005 09:07
	SAMPLE ID: WH-!	N-3 1'-2'						
	/ Inductively Coupled							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		828	mg/kg	0.108	вкв	02/07/2005 09:07
LEAD - ICP	•	LEAD		35500	mg/kg	5.00	BKB	01/20/2005 11:02
ZINC - ICP		ZINC	22% 2N	224000	mg/kg	2.15	BKB	02/07/2005 09:07
5011905-35	SAMPLE ID: WH-I	1.3. 21.91						
	/ Inductively Coupled							
? 'IUM - ICP	EPA 200.7/6010B	CADMIUM		20.0	mg/kg	0.199	вкв	02/07/2005 09:07
- ICP		LEAD		37.1	mg/kg	1.99	BKB	02/07/2005 09:07
ZINC - ICP				10500	mg/kg	0,397	BKB	02/07/2005 09:07
5011905-36								
	SAMPLE ID: WH-N Inductively Coupled							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM		0.589		0.218	вкв	00/07/0005 00:07
LEAD - ICP	EFA 200.1100105	LEAD		2.40	mg/kg	0.218	BK8	02/07/2005 09:07
ZINC - ICP		ZINC		 891	mg/L mg/kg	0.044	BKB	02/07/2005 09:07
- · · · -			·		ing/kg	0.044	DND	020112005 09,01
5011905-38 Fetel Metele hu	SAMPLE ID; WH-N							
	Inductively Coupled							
	EPA 200.7/6010B			229	mg/kg	0.239	BKB	02/07/2005 09:07
EAD - ICP	·	LEAD		25400	ng/L	11.3	BKB	01/27/2005 14:50
	·····		24% 7N	241000	mg/kg	4.78	BKB	02/07/2005 09:07
5011905-39	SAMPLE ID: WH-M							
	Inductively Coupled							
CADMIUM - ICP	EPA 200.7/60108	CADMIUM		0.772	mg/kg	0.151	BKB	02/07/2005 09:07
ZINC - ICP		ZINC		97.5	mg/kg	0.030	вкв	02/07/2005 09:07

This report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC. 7133 N. Lombard, Portland, OR 97203 Phone:(503) 286-9464 Fax:(503) 286-5355 E-mail:lab@ColumbiaInspection.com

CLIENT: Linebach Funkhouser Inc. ATTN: Bradley Coyle 114 Fairfax Avenue Louisville KY, 40207 PROJECT NAME: Bay Zinc Soils tests

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009

FAX: (502) 895-4005

SUBMITTED: 04/21/05 13:52

REPORT DATE	: 04/29/05 14;18		REPORT NUMBER:	5042	105				PAGE: 1 OF
CI SAMPLE	E-5 0'-1' E-5 2'-3'			DA	TE	TIME	MATRIX		
5042105-01	E-50'-1'	••		- 04	120/2005	0815	Soil		
5042105-02	E-5 2-3			04	/20/2005	0815	Soil		
5042105-04	E-6 0'-1'			04	/20/2005	0830	Soil		
5042105-05	E-62-3			04	/20/2005	0830	Soil		
5042105-07	E-7 0'-1'			04	/20/2005	0845	Soil		
5042105-08	E-7 2-3			04	/20/2005	0845	Soil		
5042105-10	E-8 0'-1'			04	/20/2005	0900	Soli		
5042105-11	E-8 2'-3'			04	120/2005	0900	Soil		
5042105-13	E-90'-1'			04	/20/2005	0915	Soil		
5042105-14	E-92-3			04	/20/2005	0915	Soil		
5042105-16	E-10 0'-1'			04	12012005	0930	Soil		
5042105-17	E-10 2'-3'			04	/20/2005	0930	Soil		
5042105-19	E-11 0'-1'			04	/20/2005	0945	Soil		81.0
5042105-20	E-11 2'-3'			04	/20/2005	0945	Sol		WICININI
5042105-22	E-120'-1'			04	120/2005	1000	Soil	V	RIGINAL
5042105-23	E-12 2'-3'			04	/20/2005	1000	Soil		
⁵⁰⁴ 2105-31	E-15 0'-1'			04	/20/2005	1045	Soii		
105-32	E-15 2-3			04	120/2005	1045	Sof		
5042105-34	E-160'-1'			04	120/2005	1130	Soil		
5042105-35	E-16 2'-3'			04	/20/2005	1130	Soil		
5042105-37	E-17 0'-1'			04	120/2005	1100	Soil		
5042105-38	E-17 2'-3'			04	/20/2005	1100	Soil		
Sample/ Analysis	METHOD	PARAMETER	R	ESULTS	UN	ITS		TECH	DATE/TIME
5042105-01	SAMPLE ID: E-5 0	-1'							
otal Metals by l	Inductively Coupled	Plasma							
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	42	2.9	mg/k	g	0.195	вкв	04/27/2005 09:05
EAD - ICP		LEAD	64	440	mg/l	9	19.5	вкв	04/27/2005 09:05
LINC - ICP		ZINC	55	3100	mg/l	g	3.90	8K8	04/27/2005 09:05
6042105-02	SAMPLE ID: E-5 2								
	Inductively Coupled								
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	· · · · · · · · · · · · · · · · · · ·	5.0	mg/ł		0.378	вкв	04/27/2005 09:05
EAD - ICP		LEAD		0.2	mg/l		0,378	BKB	04/27/2005 09:05
			36	5400	mg/k	à –	7.55	вкв	04/27/2005 09:05
5042105-04	SAMPLE ID: E-6 0'								
-	Inductively Coupled		•	F 4		_	0.000	DVD	04070005 00.02
ADMIUM - ICP	EPA 200.7/6010B			54 22	mg/l		0.238	BKB	04/27/2005 09:05
EAD - ICP		LEAD	33		mg/k		0.238	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	27	760	mg/k	g	0.048	BKB	04/27/2005 09:05
5042105-05 Fotal Metals by I	SAMPLE ID: E-6 2 Inductively Coupled								
otal motala by I	madourory coupled	1 /401114							
									~~~~~

report may not be reproduced except in full.

Authorized for Release By:

David J. Melander For Richard D. Reid - Laborator

U

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com



SAMPLE/	E: 04/29/05 14:18		EPORT NUMBER: 50421	05		<u> </u>	PAGE; 2 OF
ANALYSIS	МЕТНОД	PARAMETER	RESULTS	UNITS	DETECTK LIMIT	N TECH	DATE/TIME
5042105-05	SAMPLE ID: E-6 2					_	
	Inductively Couple	d Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	4.86	mg/kg	0.183	вкв	04/27/2005 09:05
LEAD - ICP		LEAD	395	mg/kg	0.183	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	11900	 mg/kg	3.67	BKB	04/27/2005 09:05
5042105-07	SAMPLE ID: E-7 0		<u> </u>				
Fotal Metals by	Inductively Coupled						
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	24.9	malka	0.407	DVO	<b>6</b> / <b>1111111111111</b>
EAD - ICP		LEAD	3920	mg/kg mg/kg	0.187	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	36200	mg/kg	3.73	BKB	04/27/2005 09:05
5042105-08	SAMPLE ID: E-7 2				3.13	BKB	04/27/2005 09:05
	Inductively Coupled	∼ I Plasma					
CADMIUM - ICP	EPA 200.7/60108	CADMIUM		_	_		
EAD - ICP			0.523	mg/kg	0.194	BKB	04/27/2005 09:05
INC - ICP		ZINC	14.9	mg/kg	0.194	ВКВ	04/27/2005 09:05
			273	mg/kg	0.039	BKB	04/27/2005 09:05
042105-10 Intel Matela hv	SAMPLE ID: E-8 0						
	Inductively Coupled						
	EPA 200.7/6010B		7.15	mg/kg	0.149	BKB	04/27/2005 09:05
EAD - ICP		LEAD	535	mg/kg	0.149	BKB	04/27/2005 09:05
		ZINC	9110	mg/kg	2.99	BKB	04/27/2005 09:05
042105-11	SAMPLE ID: E-8 2						
otal Metals by	Inductively Coupled	Plasma					
IIUM - ICP	EPA 200.7/60108	CADMIUM	1.17	mg/kg	0.433	BKB	04/27/2005 09:05
<u>ICP - لا ا</u>		LEAD	21.1	mg/kg	0.433	BKB	04/27/2005 09:05
INC - ICP		ZINC	2250	mg/kg	0.087	BKB	04/27/2005 09:05
042105-13	SAMPLE ID: E-9 0'						
otal Metais by I	inductively Coupled						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	4.02	mafka	0.040	DVO	6 ( log / const
AD - ICP		LEAD	158	mg/kg	0.218	BKB	04/27/2005 09:05
NC-ICP		ZINC	4320	mg/kg mg/kg	0.218		04/27/2005 09:05
42105-14	SAMPLE ID: E-9 2'-				0.044	BKB	04/27/2005 09:05
	nductively Coupled						
ADMIUM - ICP	EPA 200.7/60108	CADMIUM					
AD - ICP	CI A 200.1100180	LEAD	35.3	mg/kg	0.214		04/27/2005 09:05
NC - ICP	·	ZINC	5.62	mg/kg	0.214		04/27/2005 09:05
			20000	mg/kg	4.28	BKB	04/27/2005 09:05
142105-16 Motola by k	SAMPLE ID: E-10 0						
	nductively Coupled						
AD - ICP	EPA 200,7/6010B	CADMIUM	12.2	mg/kg	0.189	BKB	04/27/2005 09:05
		LEAD	1450	mg/kg	0,189	8KB	04/27/2005 09:05
			15700	mg/kg	3.78		04/27/2005 09:05
42105-17	SAMPLE ID: E-10 2						
	nductively Coupled	Plasma					
DMIUM - ICP	EPA 200.7/60108	CADMIUM	0.469	mg/kg	0.223	вкв (	04/27/2005 09:05
AD - ICP		LEAD	7.19	mg/kg	0.223		74/27/2005 09:05
IC - ICP		ZINC	63.6	mg/kg	0.045		04/27/2005 09:05
				<u> </u>		0,0	TELIZOU U3.00

T' *port may not be reproduced except in full.

Authorized for Release By:David J. Melander For Richard D. Reid -

Lobersteen Divortee



Sample/ Analysis	METHOD	PARAMETER	REPORT NUMBER: 504:		DETECT	ION	PAGE: 3
5042105-19	SAMPLE ID: E-11		RESULT		ЦМП		DATE/TIME
Total Metals b	by Inductively Couple	U-1 d Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM					
LEAD - ICP		LEAD		mg/kg	0.143	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	7.19	mg/kg	0.143	BKB	04/27/2005 09:05
 5042105-20				mg/kg	0.029	BKB	04/27/2005 09:05
Total Metais b	SAMPLE ID: E-11 y Inductively Couple	2'-3' d Plasma					
CADMIUM - ICP	EPA 200.7/6010B		41.6	mg/kg	0.214	вкв	04/27/2005 09:05
LEAD - ICP		LEAD	6.16	mg/kg	0.214	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	22200	mg/kg	4.28	BKB	04/27/2005 09:05
5042105-22	SAMPLE ID; E-12	0'-1'					04/21/2000 03:03
Total Metals b	y Inductively Coupled	d Plasma					
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	0.773	malke	0.004		_ /
EAD - ICP		LEAD	15.7	mg/kg	0.234	BKB	04/27/2005 09:05
UNC-ICP		ZINC		mg/kg	0.234	BKB	04/27/2005 09:05
5042105-23	SAMPLE ID: E-12			mg/kg	0.047	BKB	04/27/2005 09:05
otal Metais by	y Inductively Coupled	d Plasma				-	
ADMIUM - ICP	EPA 200.7/60108		4.31	mg/kg	0.269	вкв	04/27/2005 09:05
EAD - ICP		LEAD	106	mg/kg	0.269	BKB	04/27/2005 09:05
INC - ICP			1570	mg/kg	0.054	- <u></u>	04/27/2005 09:05
042105-31 otal Metals by	SAMPLE ID: E-15 ( Inductively Coupled	0'-1' I Plasma					
'IUM - ICP	EPA 200.7/6010B	CADMIUM	18.9				
<u>ــــــــــــــــــــــــــــــــــــ</u>		LEAD		mg/kg	0.228	BKB	04/27/2005 09:05
INC - ICP		ZINC	2300	mg/kg mg/kg	<u>0.228</u> 4.56	BKB	04/27/2005 09:05
042105-32 otal Metals by	SAMPLE ID: E-15 2 Inductively Coupled				4.56	BKB	04/27/2005 09:05
ADMIUM - ICP	EPA 200.7/6010B						
EAD - ICP	EI 7 200.1100 100	CADMIUM LEAD		mg/kg	0.138	BKB	04/27/2005 09:05
INC - ICP			6.76	mg/kg	0.138	ВКВ	04/27/2005 09:05
				mg/kg	0.028	BKB	04/27/2005 09:05
042105-34 otal Metals by	SAMPLE ID: E-16 0 Inductively Coupled	''-1' Plasma					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	5.34	mg/kg	0.164	вкв	04/27/2005 09:05
		LEAD	310	mg/kg	0.164	BKB	04/27/2005 09:05
NC - ICP		ZINC	1920	mg/kg	0.033	BKB	04/27/2005 09:05
042105-35 otal Metals by	SAMPLE ID: E-16 2 Inductively Coupled	'ଏ' Plasma					
DMIUM - ICP	EPA 200.7/60108	CADMIUM	4.72	maka	0144	DVD	01070055
		LEAD	424	mg/kg	0.144		04/27/2005 09:05
AD - KP		ZINC	1710	mg/kg	0.144		04/27/2005 09:05
AD - KP				mg/kg	0.029	BKB	04/27/2005 09:05
AD - KP NC - ICP 42105-37	SAMPLE ID: E-17 0						
AD - KP NC - ICP 42105-37 Mail Metals by	Inductively Coupled	Plasma	· · · · · ·				
AD - ICP NC - ICP 42105-37 Ital Metals by DMIUM - ICP		Plasma CADMIUM	11.3	mg/kg	0.163	ВКВ	04/27/2005 09:05
AD - ICP NC - ICP 4 <b>2105-37</b> Dtal Metals by ADMIUM - ICP AD - ICP	Inductively Coupled	Plasma CADMIUM LEAD	11.3 1040	mg/kg mg/kg	0.163		04/27/2005 09:05 04/27/2005 09:05
AD - ICP NC - ICP 4 <b>2105-37</b> otal Metals by NDMIUM - ICP	Inductively Coupled	Plasma CADMIUM				BKB	04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05

Authorized for Release By:David J. Melander For Richard D. Reid -



PORT DATE:	04/29/05 14:18	04/29/05 14:18 REPORT NUMBER: 5042105										
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	тесн						
	SAMPLE ID: E-17 2 iductively Coupled				<u> </u>							
CADMIUM - ICP	EPA 200.7/6010B		231	mg/kg	0.238	вкв	04/27/2005 09:05					
LEAD - ICP		LEAD	29500	mg/kg	23.8	ВКВ	04/27/2005 09:05					
ZINC - ICP		ZINC	105000	mg/kg	4.75	ВКВ	04/27/2005 09:05					

ORIGINAL

report may not be reproduced except in full.

Authorized for Release By:David J. Melander For Richard D. Reid -

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com



CLIENT: Linebach Funkhouser Inc. ATTN: Bradley Coyle 114 Fairfax Avenue Louisville KY, 40207

PROJECT NAME: Bay Zinc Soils tests

PROJECT NUMBER: 100-02

PHONE: (502) 895-5009 FAX: (502) 895-4005

SUBMITTED: 04/21/05 13:52

042105-01	CLIENTS ID#								
5042105-01					DATE	TIME	MATRIX		
	E-50'-1'				04/20/2005	0815	Sol		
5042105-02	E-52-3				04/20/2005	<b>08</b> 15	Sol		
5042105-03	E-5 3'-4'				04/20/2005	0815	Soil		
5042105-04	E-60'-1'				04/20/2005	0830	Sol		
5042105-05	E-6 2-3'				04/20/2005	0830	Soil		
5042105-06	E-63'-4'				04/20/2005	0830	Sol		
5042105-07	E-7 0'-1'				04/20/2005	0845	Soil		
6042105-08	E-7 2-3				04/20/2005	0845	Soil		
5042105-10	E-8 0'-1'				04/20/2005	6900	Soil		
5042105-11	E-8 2-3				04/20/2005	0900	Soil		
5042105-13	E-90'-1'				04/20/2005	0915	Sol		
5042105-14	E-9 2-3				04/20/2005	0915	Soli		
5042105-16	E-10 0'-1'				04/20/2005	0930	Soil		
5042105-17	E-102-3				04/20/2005	0930	Sol		
5042105-19	E-11 0-1'				04/20/2005	0945	Soil		
5042105-20	E-11 2-3				04/20/2005	0945	Sol		
5042105-21	E-11 3'-4'				04/20/2005	0945	Soil		
5042105-22	E-120'-1'				04/20/2005	1000	Sol		
5042105-23	E-12 2-3				04/20/2005	1000	Sol		
5042105-25	E-13 0'-1'				04/20/2005	1015	Sol		
5042105-26	E-13 2'-3'				04/20/2005	1015	Soil		
5042105-28	E-14 0'-1'				04/20/2005	1030	Soil		
5042105-29	E-14 2-3				04/20/2005	1030	Soil		
5042105-31	E-15 0-1'				04/20/2005	1045	Soli		
5042105-32	E-15 2-3				<b>04/20/200</b> 5	1045	Soll		
5042105-34	E-16 0'-1'				04/20/2005	1130	Soll		
5042105-35	E-16 2-3				04/20/2005	1130	Soil		
5042105-37	E-17 0-1				04/20/2005	1100	Soil		
5042105-38	E-17 2-3'				04/20/2005	1100	Soil		
5042105-39	E-17 3'-4'				04/20/2005	1100	Soil		
5042105-41	E-18 2'-3'				04/20/2005	1115	Soil		
5042105-42	E-18 3'-4'				04/20/2005	1115	Soil		
Sample/ Analysis	METHOD	PARAMETER		RESUL	rs un	ITS	DETECTIO LIMIT	N TECH	DATE/TIME
· · · · · · · · · · · · · · · · · · ·	SAMPLE ID: E-5 0'-	 1'							
	ductively Coupled								
	EPA 200 7/6010B	CADMIUM		42.9	mg/r	a	0.195	вкв	04/27/2005 09:05
LEAD - ICP		LEAD	· , · · · · · · · · · · · · · · · · · ·	6440	mg/k		19,5	BKB	04/27/2005 09.05
ZINC - ICP		ZINC	<u>-</u>	58100	mg/k		3.90	BKB	04/27/2005 09:05
	SAMPLE ID: E-5 2'- ductively Coupled							· ·	
	EPA 200.7/6010B	CADMIUM		45.0	mg/k	a	0.378	вкв	04/27/2005 09:05
·····						· ·			
This report may not I	be reproduced excep	t in fuß.	Authorized	for Rel	ease By:	/	Cul.	$\frac{1}{2}$	lent
					Ē		ID. Reid - La	t <u> </u>	Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone:(503) 286-9464 Fax:(503) 286-5355 E-mail:lab@ColumbiaInspection.com

•



SAMPLE/	: 05/18/05 14:04	REP	ORT NUMBER: 504210		DETECTION		PAGE: 2
ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS		TECH	DATE/TIME
5042105-02	SAMPLE ID: E-5 2						
	nductively Coupled	Plasma					
LEAD - ICP	EPA 200.7/60108	LEAD	60,2	mg/kg	D.378	вкв	04/27/2005 09:05
ZINC - ICP		ZINC	36400	mg/kg	7.55	BKB	04/27/2005 09:05
5042105-03	SAMPLE ID: E-5 3'-						
Fotal Metals by I	nductively Coupled	Plasma					
CADMIUM - ICP	EPA 200.7/60108		0.456	mg/kg	0.120	BKB	05/18/2005 10:22
5042105-04	SAMPLE ID: E-6 0'-						
Total Metals by I	nductively Coupled	Plasma					
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	4.54	mg/kg	0.238	вкв	04/27/2005 09:05
EAD - ICP		LEAD	333	mg/kg	0.238	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	2760	mg/kg	0.048	BKB	04/27/2005 09:05
5042105-05	SAMPLE ID: E-6 2'-	3'					<u></u>
Fotal Metals by I	nductively Coupled						
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	4,86	mg/kg	0.183	BKB	04/27/2005 09:05
EAD - ICP		LEAD	395	mg/kg	0.183	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	11900	mg/kg	3.67	BKB	04/27/2005 09:05
5042105-06 Fotal Metals by Ir LEAD - ICP	SAMPLE ID: E-6 3'- nductively Coupled EPA 200.7/60108		7.93	mg/kg	0.227	вкв	05/18/2005 10:22
	SAMPLE ID: E-7 0'- Iductively Coupled						
ADMIUM - ICP	EPA 200.7/60108	CADMIUM	24.9	mg/kg	0.187	вкв	04/27/2005 09:05
EAD - ICP		LEAD	3920	mg/kg	18.7	BKB	04/27/2005 09:05
2INC - ICP		ZINC	36200	mg/kg	3.73	BKB	04/27/2005 09,05
5042105-08 Fotal Metals by Ir	SAMPLE ID: E-7 2'-						
CADMIUM - ICP	EPA 200,7/60108	CADMIUM	0.523	malka	0,194	вкв	04/07/0005 00:05
EAD - ICP		LEAD	14.9	mg/kg	0.194		04/27/2005 09:05
ZINC - ICP		ZINC	273	mg/kg mg/kg	0.039	BK8 BKB	04/27/2005 09:05
5042105-10				11919		<u>DRD</u>	V-112003 08.03
	SAMPLE ID: E-8 0'- iductively Coupled						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	7 4 5			bide.	
EAD - ICP		LEAD	<u>7.15</u> 535	mg/kg		BKB	04/27/2005 09:05
INC - ICP		ZINC	9110	mg/kg		BKB	04/27/2005 09:05
042105-11	SAMPLE ID: E-8 2'-	3'	0110	mg/kg		<u>BKB</u>	04/27/2005 09:05
-	ductively Coupled						
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	1.17	mg/kg	0.433	вкө	04/27/2005 09:05
EAD - ICP		LEAD	21.1	mg/kg		BKB	04/27/2005 09:05
		ZINC	2250	mg/kg	0.087	вкв	04/27/2005 09:05
otal Metals by in	SAMPLE ID: E-9 0'-1 ductively Coupled	Plasma					
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	4.02	mg/kg	0.218	BKB	04/27/2005 09:05
EAD - ICP		LEAD	158	mg/kg	0.218		04/27/2005 09:05
INC - ICP							

This report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail:lab@ColumbiaInspection.com



	E: 05/18/05 14:04	F	EPORT NUMBER: 504210	5			PAGE: 3 OF
8AMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	ТЕСН	DATE/TIME
6042105-14	SAMPLE ID: E-9 2'						
	Inductively Coupled	Plasma					
CADMIUM - ICP	EPA 200.7/6010B		35.3	_mg/kg	0.214	вкв	04/27/2005 09:05
EAD - ICP		LEAD	5.62	mg/kg	0.214	BKB	04/27/2005 09:05
ZINC - ICP	<u></u>	ZINC	20000	mg/kg	4,28	BKB	04/27/2005 09:05
5042105-16	SAMPLE ID: E-10 (	)'-1'					
Total Metals by	<b>Inductively</b> Coupled	Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	12.2	mg/kg	0.189	BKB	04/27/2005 09:05
EAD - ICP		LEAD	1450	mg/kg	0.189	вкв	04/27/2005 09:05
ZINC - ICP		ZINC	15700	mg/kg	3.78	ВКВ	04/27/2005 09:05
5042105-17	SAMPLE ID: E-10 2	r.3'		-			
Total Metals by	Inductively Coupled	Plasma					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0.469	mg/kg	0.223	өкв	04/27/2005 09:05
EAD - ICP		LEAD	7.19	mg/kg	0.223	BKB	04/27/2005 09:05
ZINC - ICP		ZINC	63.6	mg/kg	0.045	8KB	04/27/2005 09:05
5042105-19	SAMPLE ID: E-11 C	•					
•	Inductively Coupled						
	EPA 200.7/60108	CADMIUM	7,60	mg/kg	0.143	BKB	04/27/2005 09:05
		LEAD	7,19	/mg/kg	0.143	BKB	04/27/2005 09:05
		ZINC	2170	mg/kg	0,029	BKB	04/27/2005 09:05
5042105-20 Fotal Metals by	SAMPLE ID: E-11 2 Inductively Coupled						
	EPA 200 7/6010R	CADMININ	44.0	mafra	004	BIZD	04070005 00.05
·	EPA 200.7/6010B		41.6	mg/kg	0.214	8KB	04/27/2005 09:05
EAD - ICP	EPA 200.7/6010B	LEAD	6.16	mg/kg	0.214	BKB	04/27/2005 09:05
EAD - ICP ZINC - ICP 5042105-21	SAMPLE ID: E-11 3	LEAD ZINC					
EAD - ICP ZINC - ICP 5042105-21 Fotal Metals by		LEAD ZINC	6.16 22200	mg/kg mg/kg	0.214 4.28	BKB BKB	04/27/2006 09:05 04/27/2005 09:05
CADMIUM - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B	LEAD ZINC '-4' Plasma CADMIUM	6.16	mg/kg	0.214	BKB	04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0	LEAD ZINC '-4' Plasma CADMIUM '-1'	6.16 22200	mg/kg mg/kg	0.214 4.28	BKB BKB	04/27/2006 09:05 04/27/2005 09:05
EAD - ICP 2NC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma	6.16 22200 1.48	mg/kg mg/kg mg/kg	0.214 4.28 0.182	BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22
EAD - ICP INC - ICP io42105-21 iotal Metals by ADMIUM - ICP iotal Metals by ADMIUM - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0	LEAD ZINC '-4' Plasma CADMIUM '-1'	6.16 22200 1.48 0.773	mg/kg mg/kg mg/kg mg/kg	0.214 4.28	BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM	6.16 22200 1.48	mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234	BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP 2INC - ICP 5042105-23	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/5010B SAMPLE ID: E-12 2	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3'	6.16 22200 1.48 0.773 15.7	mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234	BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP 2INC - ICP 5042105-23 Fotal Metals by	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/6010B	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3'	6.16 22200 1.48 0.773 15.7	mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234	BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP 2INC - ICP 5042105-23 Fotal Metals by CADMIUM - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/5010B SAMPLE ID: E-12 2	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3'	6.16 22200 1.48 0.773 15.7	mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234	BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by 2ADMIUM - ICP 5042105-22 Fotal Metals by 2ADMIUM - ICP EAD - ICP 5042105-23 Fotal Metals by 2ADMIUM - ICP EAD - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 2 Inductively Coupled	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3' Plasma	6.16 22200 1.48 0.773 15.7 308	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.234 0.047	BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by 2ADMIUM - ICP 5042105-22 Fotal Metals by 2ADMIUM - ICP EAD - ICP 5042105-23 Fotal Metals by 2ADMIUM - ICP EAD - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 2 Inductively Coupled	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM	6.16 22200 1.48 0.773 15.7 308 4.31	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.234 0.047 0.269	BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/16/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by 2ADMIUM - ICP 5042105-22 Fotal Metals by 2ADMIUM - ICP EAD - ICP 5042105-23 Fotal Metals by 2ADMIUM - ICP EAD - ICP 2INC - ICP 2INC - ICP 2INC - ICP 2INC - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/60108	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAO ZINC '-1'	6.16 22200 1.48 0.773 15.7 308 4.31 106	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.234 0.047 0.269 0.269	BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP 5042105-23 Fotal Metals by CADMIUM - ICP EAD - ICP EAD - ICP EAD - ICP 5042105-25 Fotal Metals by 5042105-25 Fotal Metals by	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-13 0 Inductively Coupled	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAD ZINC '-1' Plasma	6.16 22200 1.48 0.773 15.7 308 4.31 106 1570	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.047 0.269 0.269 0.269 0.054	BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP FOTAL Metals by CADMIUM - ICP EAD - ICP FAD - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/60108	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAD ZINC '-1' Plasma CADMIUM	6.16 22200 1.48 0.773 15.7 308 4.31 106 1570 2.23	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.047 0.269 0.269 0.269 0.269 0.054	BKB BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP INC - ICP <b>5042105-21</b> Fotal Metals by CADMIUM - ICP <b>5042105-22</b> Total Metals by CADMIUM - ICP EAD - ICP <b>5042105-23</b> Total Metals by CADMIUM - ICP EAD - ICP <b>5042105-25</b> Total Metals by CADMIUM - ICP <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>5042105-25</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>50</b>	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/60108 SAMPLE ID: E-13 0 Inductively Coupled	LEAD ZINC '-4' Plasma CADMIUM '-1' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAD ZINC '-1' Plasma CADMIUM LEAD	6.16 22200 1.48 0.773 15.7 308 4.31 106 1570 2.23 8.69	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.047 0.269 0.269 0.269 0.269 0.269 0.054	BKB BKB BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP INC - ICP <b>5042105-21</b> Fotal Metals by CADMIUM - ICP <b>5042105-22</b> Fotal Metals by CADMIUM - ICP EAD - ICP <b>5042105-23</b> Fotal Metals by CADMIUM - ICP EAD - ICP <b>5042105-25</b> Fotal Metals by CADMIUM - ICP <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b> <b>505</b>	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-13 0 Inductively Coupled EPA 200.7/6010B	LEAD ZINC '-4' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAD ZINC '-1' Plasma CADMIUM LEAD ZINC	6.16 22200 1.48 0.773 15.7 308 4.31 106 1570 2.23	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.047 0.269 0.269 0.269 0.269 0.269 0.054	BKB BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP 2INC - ICP 5042105-21 Fotal Metals by CADMIUM - ICP 5042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP 2INC - ICP 2042105-23 Fotal Metals by CADMIUM - ICP EAD - ICP 2INC - ICP	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-13 0 Inductively Coupled EPA 200.7/6010B	LEAD ZINC '-4' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAD ZINC '-1 Plasma CADMIUM LEAD ZINC '-1 '-1 Plasma CADMIUM LEAD ZINC	6.16 22200 1.48 0.773 15.7 308 4.31 106 1570 2.23 8.69	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.047 0.269 0.269 0.269 0.269 0.269 0.054	BKB BKB BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP INC - ICP S042105-21 Fotal Metals by CADMIUM - ICP S042105-22 Fotal Metals by CADMIUM - ICP EAD - ICP S042105-23 Fotal Metals by CADMIUM - ICP EAD - ICP S042105-25 Fotal Metals by CADMIUM - ICP EAD - ICP S042105-25 Fotal Metals by CADMIUM - ICP EAD - ICP S042105-25 Fotal Metals by CADMIUM - ICP EAD - ICP S042105-26 Fotal Metals by S042105-26 Fotal Metals by	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-13 0 Inductively Coupled EPA 200.7/6010B	LEAD ZINC '-4' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAD ZINC '-1' Plasma CADMIUM LEAD ZINC '-1' Plasma CADMIUM LEAD ZINC	6.16           22200           1.48           0.773           15.7           308           4.31           106           1570           2.23           8.69           649	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.047 0.269 0.269 0.269 0.269 0.054 0.054	BKB BKB BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05
EAD - ICP ZINC - ICP <b>5042105-21</b> Fotal Metals by CADMIUM - ICP <b>5042105-22</b> Fotal Metals by CADMIUM - ICP EAD - ICP <b>5042105-23</b> Fotal Metals by CADMIUM - ICP EAD - ICP <b>5042105-25</b> Fotal Metals by CADMIUM - ICP <b>5042105-26</b>	SAMPLE ID: E-11 3 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 0 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-12 2 Inductively Coupled EPA 200.7/6010B SAMPLE ID: E-13 0 Inductively Coupled EPA 200.7/6010B	LEAD ZINC '-4' Plasma CADMIUM LEAD ZINC '-3' Plasma CADMIUM LEAD ZINC '-1 Plasma CADMIUM LEAD ZINC '-1 '-1 Plasma CADMIUM LEAD ZINC	6.16 22200 1.48 0.773 15.7 308 4.31 106 1570 2.23 8.69	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.214 4.28 0.182 0.234 0.234 0.234 0.047 0.269 0.269 0.269 0.269 0.259 0.054 0.072 0.072 0.0723 0.014	BKB BKB BKB BKB BKB BKB BKB BKB BKB	04/27/2005 09:05 04/27/2005 09:05 05/18/2005 10:22 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05 04/27/2005 09:05

This report may not be reproduced except in full.

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC. 7133 N. Lombard, Portland, OR 97203 Phone:(503) 286-9464 Fax:(503) 286-5355 E-mail:lab@ColumbiaInspection.com

	E: 05/18/05 14:04		REPORT NUMBER: 504210		<del>.</del>		PAGE: 4 C		
8AMPLE/ Analysis	METHOD	PARAMETER	RESULTS	UNITS	DETECTION	тесн	DATE/TIME		
<b>504</b> 2105-26	SAMPLE ID: E-13								
Total Metals by	Inductively Couple	d Plasma							
ZINC - ICP	EPA 200.7/60108	ZINC	71.6	mg/kg	0.051	вкв	05/18/2005 10:22		
5042105-28	SAMPLE ID: E-14	0'-1'					·····		
Total Metals by	Inductively Couple								
CADMIUM - ICP	EPA 200 7/6010B	CADMIUM	23.4	mg/kg	0.119	8KB	05/18/2005 10:22		
LEAD - ICP		LEAD	2780	mg/kg	11.9	BKB	05/18/2005 10:22		
ZINC - ICP		ZINC	18600	mg/kg	2.38	BKB	05/18/2005 10:22		
5042105-29	SAMPLE ID: E-14	A( a)							
	Inductively Couple								
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	0 53		8447	=1/0			
EAD - ICP		LEAD	0.572	mg/kg	0.147	BKB	05/18/2005 10:22		
ZINC - ICP		ZINC	<u> </u>	mg/kg	0.147	BKB	05/18/2005 10:22		
			01.0	mg/kg	0.029	BKB	05/18/2005 10:22		
5042105-31 Fatal Matala by	SAMPLE ID: E-15								
	Inductively Couple								
CADMIUM - ICP	EPA 200.7/60108	CADMIUM	18.9	mg/kg	0.228	BKB	04/27/2005 09:05		
EAD - ICP		LEAD	2560	mg/kg	0.228	BKØ	04/27/2005 09:05		
			23000	mg/kg	4.56	BKB	04/27/2005 09:05		
042105-32	SAMPLE ID; E-15								
otal Metals by	Inductively Couple	d Plasma							
ADMIUM - ICP	EPA 200.7/60108	CADMIUM	0.745	mg/kg	0,138	BKÐ	04/27/2005 09:05		
EAD - ICP		LEAD	6.76	mg/kg	0.138	BKÐ	04/27/2005 09:05		
UNC-ICP		ZINC	52.1	mg/kg	0.028	BKØ	04/27/2005 09:05		
5042105-34	SAMPLE ID: E-16	0'-1'							
otal Metals by	Inductively Couple	d Plasma							
ADMIUM - ICP	EPA 200.7/60108	CADMIUM	5.34	mg/kg	0,164	вкв	04/27/2005 09:05		
EAD ICP		LEAD	310	mg/kg		BKB	04/27/2005 09:05		
INC - ICP		ZINC	1920	mg/kg		BK8	04/27/2005 09:05		
042105-35	SAMPLE ID; E-16	21.21		· · · · · · · · · · · · · · · · · · ·					
	Inductively Coupled								
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	4.72		0.144	вкө			
EAD - ICP		LEAD	424	mg/kg			04/27/2005 09:05		
INC - ICP		ZINC	1710	mg/kg mg/kg		BKB BKB	04/27/2005 09:05		
				111brv8	0.029		04/2/12005 09:05		
042105-37 Iotal Metals by	SAMPLE ID: E-17								
ADMIUM ~ ICP	Inductively Coupled EPA 200.7/60108			_					
EAD - ICP	EFA 200.(100108			mg/kg		BKB	04/27/2005 09:05		
INC - ICP	- • • • • • • • • • • • • • • • • •	ZINC	1040	mg/kg		BK8	04/27/2005 09:05		
	·····		10800	mg/kg	3.26	BKB	04/27/2005 09:05		
042105-38	SAMPLE ID: E-17								
	nductively Coupled	i Plasma							
ADMIUM - ICP	EPA 200.7/6010B	CADMIUM	231	mg/kg	0.238	вкв	04/27/2005 09:05		
EAD - ICP		LEAD	29500	mg/kg	23.8		04/27/2005 09:06		
		ZINC	105000	mg/kg	4.75	вкв	04/21/2005 09:05		
	SAMPLE ID: E-17 ;	3'-4'	· · · · · · ·				<u>_</u>		
042105-39									
	nductively Coupled	Plasma							

This report may not be reproduced except in full.

ĺ

Authorized for Release By Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail:lab@ColumbiaInspection.com

REPORT DAT	E: 05/18/05 14:04	REPO	RT NUMBER: 504210	)5			PAGE: 5 OF
SAMPLE/ ANALYSIS	METHOD	PARAMETER	RESULTS	UNITS	DETECTION LIMIT	TECH	DATE/TIME
5042105-39 SAMPLE ID: E-17 3'-4 Total Metals by Inductively Coupled P							
LEAD - ICP	EPA 200.7/6010B	LEAD	8,50	mg/kg	0.168	BKB	05/18/2005 10:22
ZINC - ICP		ZINC	42.7	mg/kg	0.034	вкв	05/18/2005 10:22
5042105-41 Total Metals by	SAMPLE ID: E-18 : Inductively Coupled						
CADMIUM - JCP	EPA 200.7/60108	CADMIUM	20.7	mg/kg	0.132	BKB	05/18/2005 10:22
LEAD - ICP		LEAD	3600	mg/kg	13.2	8KB	05/18/2005 10:22
ZINC - ICP		ZINC	20700	mg/kg	2.64	8K8	05/18/2005 10:22
5042105-42 Total Metals by	SAMPLE ID: E-18	•					
CADMIUM - ICP	EPA 200.7/6010B	CADMIUM	3.56	mg/kg	0.125	вкв	05/18/2005 10.22
LEAD - ICP		LEAD	3.96	mg/kg	0.125	BKB	05/18/2005 10:22
ZINC - ICP		ZINC	346	mg/kg	0.025	BKB	05/18/2005 10:22

This report may not be reproduced except in full.

ĺ

Authorized for Release By:Richard D. Reid - Laboratory Director

COLUMBIA INSPECTION, INC 7133 N. Lombard, Portland, OR 97203 Phone: (503) 286-9464 Fax: (503) 286-5355 E-mail: lab@ColumbiaInspection.com

3 Ph: (503) 286-9464 Far: (503) 285-7831 Ph: (553) 922-8781 Far: (253) 922-8957 Ph: (763-740-740 Far: (253) 922-8957	010	Analysis To Be Performed																								ECRLADORATORY USE ONLY		Laboratory Project Number: <u>、 、 、 、 、 、 、 、 、 Cash/check # </u>	Amount Paid: \$
Z 7133 N. Lombard, Portland, OR 97203 11 4901 E. 20th Street, Fife, WA 98424	4324 E 2110 Street, Ste A.; Bencia, UA 34 797 Channel Street, San Pedro, CA 90731							af	97		x	x	X	X	X	X	X	X	X	X	X		X			-	Inspection Job Number:	Laboratory Projec	Due Date:
Jorobard, Por Oth Street, Fl	inu street, ste mel Street, Sa	Zrie	2,5		Notification Method(a)	Telephone	C Emzil		Sample	Time	1215	(2ZD)	15 + <del>- 15 - 3</del> -	હો <u>મ</u> ર્ગ્યું	<u> 1245</u>	1250	12:55	130	1305	1310	1315	1320	13255	13:30	1335	Date/Tane		Date/Time	11.15
전 7133 N. I 더 4901 E. 2	197 Chan	KAV G	1	100-02	<u> Najie</u> N	·	U		Sample	Dute	1-1551-1														$\uparrow$			6	
עָטַג		Project Name:	Project Number:	P.O. Number:	Testing Priprity	Mormal		Due Date:	Sample	Matrix	Scil						-								*	Received By.		Received By.	1 and a lot
COLUMBIA INSPECTION, INC. CHAIN OF CUSTODY RECORD	NON-COMMERCIAL BILL OF LADING	LIDVERSIEN FWXHENSER IN	Harder Conce	14 FAIR HAVE Now KY 48257	502-475-5047	50% - 1/5 -400 5	1324 PLET Cite D Submitted			Sample Description/		WHZ-E-3 3-4'	WH 2-5-6 1-2'	WHZ-5-6 2-3'	WH2-5-6 3'-4	Witz S-6 1-2'	WHZ- 5-55 223	τ.	ľ	~	-S -	2-5-5	Ŷ	-5-3	1WH2-5-3 4	( ) Dater	_ / _	br. DateTime	
COLUN	NON-C	Customer Name:	Attention:	Address:	Phone:	Fax:	Sumpler:			Sample id#	14		ر ق		63		22		24		56	<b>i</b>			₹0	Ralinguished B		Rolinquided By	

6.q

2035865322

noitoeqenl eidmulo) - q81:50 20 81 net

ł

(	Ph. (503) 286-9464 Fax: (503) 285-7831 Ph. (253) 922-8781 Fax: (253) 922-8957 Ph. (707) 748-7587 Fax: (707) 748-7764 Ph. (310) 833-1557 Fax: (310) 833-1585	Analysis To Bc Performed												X 135 X						EXELABORATORY USE ONLY	3/ if PO#	NV 205 Cash/check #	Amount Paid: \$	
	<ul> <li>7133 N. Lombard, Portland, OR 97203</li> <li>4901 E. 20th Street, Fife, WA 98424</li> <li>4592 E 2nd Street, Ste 'A', Benicla, CA 94510</li> <li>797 Channel Street, San Pedro, CA 90731</li> </ul>			20.70 Z	🗖 Telephane			Sumple	1225 X	1230 × 1	1340 ×	1345 × ×	1350 X	1355 X	14cc ×	HL5 × 1	1410 × 1410			DuteTime EXX LA	Inspection Job Number:	Date: Time J. Laboratory Project Number: 🕉	Due Date	
(			E E	P.O. Number: 120:70 2			Due Duto:										> >			Received By:				
	COLUMBIA INSPECTION, INC CHAIN OF CUSTODY RECORD AND NON-COMMERCIAL BILL OF LADING	= Lineistit runkthus-R	-	502-EVENTERAL LEU, KY	turs	Submitted		Sample Dcscription/UN Number	- HWI	WH-E-3 5-6'	ν, V	WH-N-3 1-2'	- ۲۰ ۲۰		WH N-4 F-2'	WH-N-+ 2-3	WH - N - 4 3-4'			Date	L. Cup 1-15 20	Date		
( )	COLU NON-C	Customer Name:	Attention:	Address: Phone:	Fax:	Sampler:		Sumple id#	3(	32		/		36		38-1				Relarquated By	1 the	Relinquished By		

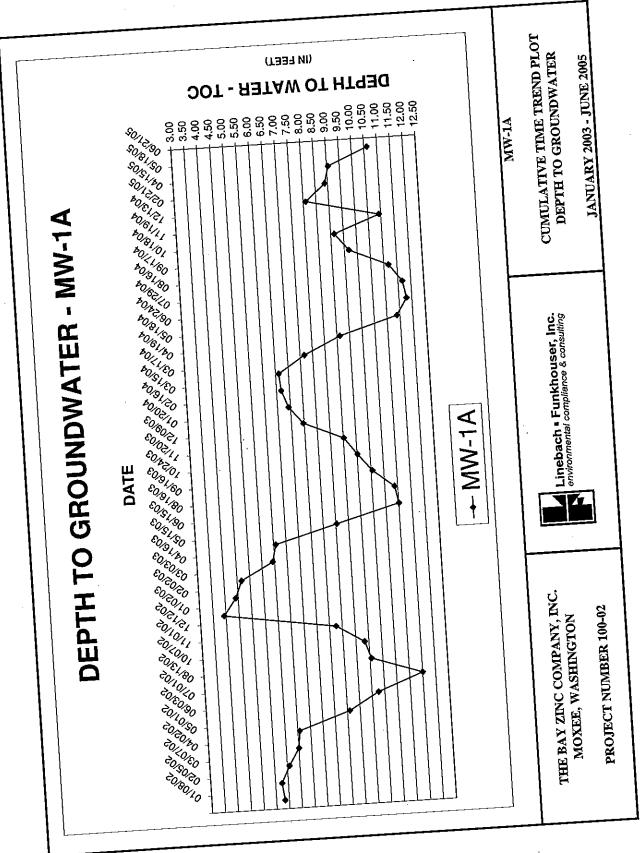
۴.q

981:50 20 81 nst

CIALNOF CUSTODIN RECORD $\Box$ 4901 E. 20th Street, Fife, WA 9843       AND $\Box$ 4501 E. 20th Street, Fife, WA 9843       AND $\Box$ 4501 E. 20th Street, Fife, WA 9843       AND $\Box$ 4501 E. 20th Street, St	CIALNOF CUSTODIV RECORD     Cloth Street, File, WA 9413       AND     Contract Line     901 E. 20th Street, Strevi, San Petonica, CA 9011       None $567R_{12}T$ $Contract Line     Cloth Street, Strevi, San Petonic, CA 9011       None     567R_{12}T Contract Line     Project Numer:     fAY       None     567R_{12}T Contract Line     Project Numer:     fAY Zaic       None     Sair Party     Cortic Line     Project Numer:     fAY Zaic       None     Sair Party Cortic Line     Project Numer:     fAY Zaic       Name     Sair Party Cortic Line     Project Numer:     fAY Zaic       Cartic Party Cortic Line     Sample     Cortic Line     Anditic       Cartic Party     Cortic Line     Sample     Cortic Line     Anditic       M_12 - W - 4 T^2 Sairt     Mirc     Nir       M_12 - W - 4 T^2 Sairt     Mirc     Nir       M_12 - W - 4 T^2 Sairt     Mirc     Nir       Mir     Mirc     Mirc     Nir     Nir       Mir     Mirc     Mirc     Nir     Nir       Mir     Mir     Mirc     Nir     Nir   $	COLUN	COLUMBIA INSPECTION, INC.	ים`	7133 N. Lo	mbard, Por	7133 N. Lombard, Portland, OR 97203	Ph: (503) 286-9464 Fax: (503) 285-7831
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH	AN OF CUSTODY RECORD AND		4901 E. 201 4592 E 2nd	th Street, Fi d Street, Ste	fe, WA 98424 : 'A'. Benicia. CA 94510	Ph: (253) 922-8781 Fax: (253) 922-8957 Ph: (707) 748-7587 Fax: (707) 748-7764
Note $\int_{\partial M} \frac{\partial M}{\partial t} \partial$	Note: $f_{abst}^{abst} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} = \frac{M_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} = \frac{M_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} = \frac{M_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} = \frac{M_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast} = \frac{M_{abst}^{bast} f_{abst}^{bast} f_{abst}^{bast$	NON-CI	OMERCIAL BILL OF LADING		797 Chann	el Street, Sa	in Pedro, CA 90731	Ph: (310) 833-1557 Fax: (310) 833-1585
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ustame Name;	Furtherser	Project Name:	124Y ZI	<u></u>		nalysis To Be Performed
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	tenior	-	Project Number:	100-0	~		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ddress:	WE LOW KY 4020	P.O. Number:	27.031			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1016:	502-4415-52017	Lesting Roonly	Notificar	ion Method(s)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Jou Ests - Hurs		Ξ ·	ekephone		
Dual Date         Zi Mail         Main	Duo Date:     Zin Julia       Sample     Sample       Sample     Sample       Mattix     Date       Time     Sample       Suit     I/16/65       IIIO     X       IIIO		M	C Rush	ă	ll and	-	
Sample     Sample </td <td>Sample     Sample     Sample     Sample       Matrix     Date     Time       Matrix     Date     Time       Matrix     Jule     Time       Matrix     Jule     N       Matrix     Jule       Matrix     Jule   <td></td><td></td><td>Due Date:</td><td><u></u></td><td>1al</td><td></td><td></td></td>	Sample     Sample     Sample     Sample       Matrix     Date     Time       Matrix     Date     Time       Matrix     Jule     Time       Matrix     Jule     N       Matrix     Jule       Matrix     Jule <td></td> <td></td> <td>Due Date:</td> <td><u></u></td> <td>1al</td> <td></td> <td></td>			Due Date:	<u></u>	1al		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample Description(0N Number         Matrix         Date         Time         Ime $MH2 - W - 5$ $i^2 - 2^2$ $S_{i,i}$ $I_{16}[6S]$ $R_{i0} S$ $N$ $WR2 - W - 5$ $3^2 + 4^2$ $N_{10} S$ $N_{10} S$ $N_{10} S$ $N_{10} S$ $WR2 - W - 5$ $3^2 + 4^2$ $N_{10} S$ $N_{10} S$ $N_{10} S$ $N_{10} S$ $WR2 - W - 4$ $2^2 - 3^2$ $N_{10} S$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $WR2 - W - 3$ $1^2 - 2^2$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $WR2 - W - 3$ $1^2 - 2^2$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $WH2 - W - 3$ $1^2 - 2^2$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $WH2 - W - 3$ $1^2 - 5^2$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $WH2 - W - 3$ $1^2 - 5^2$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $WH2 - W - 3$ $1^2 - 5^2 - 4^2$ $N_{12} S$ $N_{12} S$ $N_{12} S$ $N_{1$			Sample	Sample	Sample		
$\begin{split} & MAZ - W - 5 - 1 - 2' 5 U + 1/8 65 1 He 65 X = 0 \\ & W - W - 5 - 3' - 4' & M 0 = X = 0 \\ & W - W - 5 - 3' - 4' & M 5 = 0 \\ & W - 4 - 2' - 3' - 1' - 2' & M 5 = 0 \\ & W - 4 - 3' - 4' - 1' - 2' & M 5 = 0 \\ & W - 4 - 3' - 3' - 3' - 1' - 1' - 1' - 2' = 0 \\ & W - 3 - 3' - 3' - 3' - 1' - 1' - 1' - 2' = 0 \\ & W - 4 - 3 - 3' - 3' - 1' - 1' - 1' - 2' = 0 \\ & W - 2 - W - 3 - 3' - 3' - 1' - 1' - 1' - 2' = 0 \\ & W - 2 - W - 3 - 3' - 3' - 1' - 1' - 1' - 2' = 0 \\ & W - 2 - W - 3 - 3' - 1' - 1' - 1' - 1' - 2' - 1' - 1' - 1$	$\begin{split} & \text{MAZ-W-5}  f^{-2}'  \text{Scid}  \text{Meles}  \text{Heo}  \text{N}  \text{Mo}  \text{N}  \text{Mo}  \text{N}  \text{Mo}  \text{N}  \text{Mo}  \text{N}  \text{Mo}  \text{N}  \text{Mo}  \text$	Sumple id#	Sumple Description/UN Number	Matrix	Date	Time		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Sul	ilié/c5	lico	N N	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 12-25	•	 	ilos		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- M - 5			Nio	×.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbb{I}\mathbb{I}\mathbb{Z} - W - \mathcal{H} = \mathbb{Z}^{-2}$ $\mathbb{I}\mathbb{I}\mathbb{Z} - W - \mathbb{Z}$ $\mathbb{I}\mathbb{I}\mathbb{Z}$ $\mathbb{X}$ $\mathbb{Y}$ <t< td=""><td></td><td>H-M-</td><td></td><td></td><td>)H5</td><td></td><td></td></t<>		H-M-			)H5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$VH2-W-4$ $5-4'$ $1125$ $\times$ $7\%$ $1125$ $\times$ $7\%$ $1125$ $\times$ $1125$ $1125$ $1125$ $1125$		W-4			1120	×	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MH2-W-3$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2^{-}$ $1+2$		- W-4			1125	×	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b>,</b>	W3			0511		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MH2 - W-3       3 ² -4'       1140       ×       1140       ×       1 $U+2 - W-3$ $5^2L'$ 1150       ×       1150       ×       1       1 $WH2 - E - 4$ $1^22'$ 1150       ×       1155       ×       1       1 $WH2 - E - 4$ $1^22'$ 1155       ×       1155       ×       1       1 $WH2 - E - 4$ $1^22'$ 1150       ×       1200       ×       1       1 $WH2 - E - 4$ $3^2 - 4^2$ 1200       ×       1200       ×       1       1 $WH2 - E - 4$ $3^2 - 4^2$ 1200       ×       1       1       1       1 $WH2 - E - 4$ $3^2 - 4^2$ $1200$ ×       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td></td> <td>- W-3</td> <td></td> <td></td> <td>135</td> <td></td> <td></td>		- W-3			135		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{1}{152} - \sqrt{-3} + \frac{1}{5}' + \frac{1}{5}' + \frac{1}{155} + \frac{1}{5} +$		- \\\'-3 .			140		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$WHZ = E - H$ $1:ZC$ $1:ZC$ $X$ $1:ZC$ $X$ $1:ZC$ $WHZ = E - H$ $2-3$ $1:ZC$ $X$ $1:ZC$ $X$ $1:ZC$ $WHZ = E - H$ $2-4$ $2-4$ $2-4$ $2-4$ $2-7$ $1:ZC$ $X$ $WHZ = E - H$ $2-4$ $2-4$ $2-4$ $2-7$ $1:ZC$ $X$ $1:ZC$ $WHZ = E - H$ $2-4$ $2-4$ $2-4$ $2-7$ $1:ZC$ $X$ $1:ZC$ $WHZ = E - H$ $2-4$ $2-4$ $2-4$ $2-7$ $1:ZC$ $X$ $1:ZC$ $WHZ = E - H$ $Z-H$ $Z_1C$ $X$ $1:ZC$ $X$ $1:ZC$ $X$ $WHZ = E - H$ $Z^2 + H$ $1:ZC$ $X$ $1:ZC$ $X$ $Y$ $WHZ = E - H$ $Z^2 + H$ $1:ZC$ $X$ $1:ZC$ $X$ $WHZ = E - H$ $Z^2 + H$ $1:ZC$ $X$ $1:ZC$ $X$ $WHZ = E - H$ $Z^2 + H$ $1:ZC$ $X$ $1:ZC$ $X$ $WHZ = E - H$ $Z^2 + H$ $X$ $1:ZC$ $X$ $Y$ $W_{TZ} = X$ $1:ZC$ $X$ $1:ZC$ $X$ $W_{TZ} = X$		<u></u>			1145		
$\begin{split} WHZ - E - 4 & 1^{-}2' \\ WHZ - E - 4 & 2^{-}3' \\ WHZ - E - 4 & 3^{-}4' \\ WHZ - E - 4 & 3^{-}4' \\ WHZ - E - 4 & 3^{-}4' \\ WHZ - E - 3 & 1^{-}2' \\ WHZ - E - 4 & 3^{-}4' \\ WH$	WHZ $E - 4$ $1^2 Z'$ $1155$ $X$ $1260$ $X$ <		- W-3			1150	×	
$ \frac{W42 - E - 4}{WH2 - E - 4} \frac{2.3}{3^2 - 4} $ $ \frac{WH2 - E - 4}{3^2 - 4} \frac{3^2 - 4}{3^2 - 4} \frac{12c5}{W} $ $ \frac{12c5}{WH2 - E - 4} \frac{3^2 - 4}{3^2 - 4} \frac{3^2 - 4}{W} \frac{12c5}{W} $ $ \frac{12c5}{WH2 - E - 4} \frac{3^2 - 4}{3^2 - 4} \frac{12c5}{W} $ $ \frac{12c5}{WH2 - E - 4} \frac{12c}{W} \frac{12c}{W} $ $ \frac{12c5}{WH2 - E - 4} \frac{12c}{W} 12$	WH2 - E -4 2-3' WH2 - E -4 2-3' WH2 - E -4 $3^{-4}$ WH2 - E -3 $1^{-2}$ WH2 - E -3 $1^{-2}$ WH2 - E -3 $1^{-2}$ WH2 - E -3 $1^{-2}$ WH2 - E -3 $1^{-5}$ WH2 - E -3 $1^{-$		- E -4			1155	X	
$ \frac{ WH2-E-H-3^{-}+H}{ WH2-E-3 ^{-2}} + \frac{ WH2-E-H-3^{-}+H}{ WH2-E-3 ^{-2}} +  V2E-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5$	$\begin{bmatrix} WH2 - E - 4 & 3^{-} + 4 \\ WH2 - E & -3 & 1^{-}2^{-} \\ 1 & 1 & 12 \\ \hline WH2 - E & -3 & 1^{-}2^{-} \\ \hline WH2 - E & 1^{-}3^{-} \\ \hline WH2 - E & 1^{-}1^{-}5^{-} \\ \hline WH2 - E & 1^{-}1^{-}1^{-} \\ \hline WH2 - E & 1^{-}1^{-} \\ \hline WH2 - E & 1^{-}1^{-}1^{-} \\ \hline WH2 - E & 1^{-}1^{-}1^{-} \\ \hline WH2 - E & 1^{-}1^{-}1^{-} \\ \hline WH2 - E & 1^{-}1^{-}1^{-}1^{-}1^{-}1^{-}1^{-}1^{-}$		+			1200		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 5 - 4			1205	X	
Date Time     Date Time     Received Br.     Date Time     FOR LABORATORY USE ONLY       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1	Date Time     Date Time     Date Time     Date Time       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1	1	NH2.E-3		4	1210	***	
Under State Received By: Date/ 11/5 Inspection. Job Number: 201/205 Cashroh Date/Time Laboratory Project Number: 201/205 Cashroh Project Number: 201/205 Cashr	Ling     Lingection Job Number:       DutoTime     Received By:       DutoTime     Laboratory Project Number:       Dute Date:     DutoTime	Felinquisted By	Data	Recoived By:	00	Date/Time	FOR	LABORATORY USE ONLY
DuteTime Received By: DateTime Laboratory Project Number: 2021/2025	Date/Time Received By: Date/Time Laboratory Project Number: 201/2015	X	- Cul Inter	al and the	11 control	21/1/	<u> </u>	PO#
		Ecliquished By	Dute/	Received By:		Date/Time	Laboratory Project Number: 🔁	5671/285 Castr/check #
							Due Date:	Amount Paid: S

۶.q

Ł

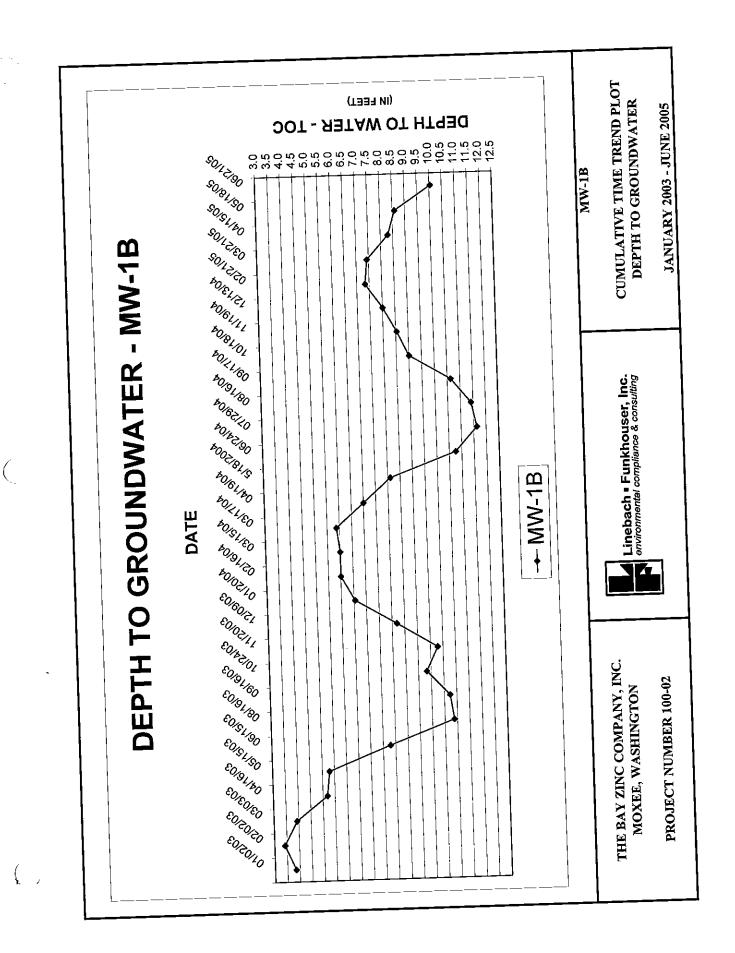

 $\sim \int_{-\infty}^{\infty}$ 

2035862322

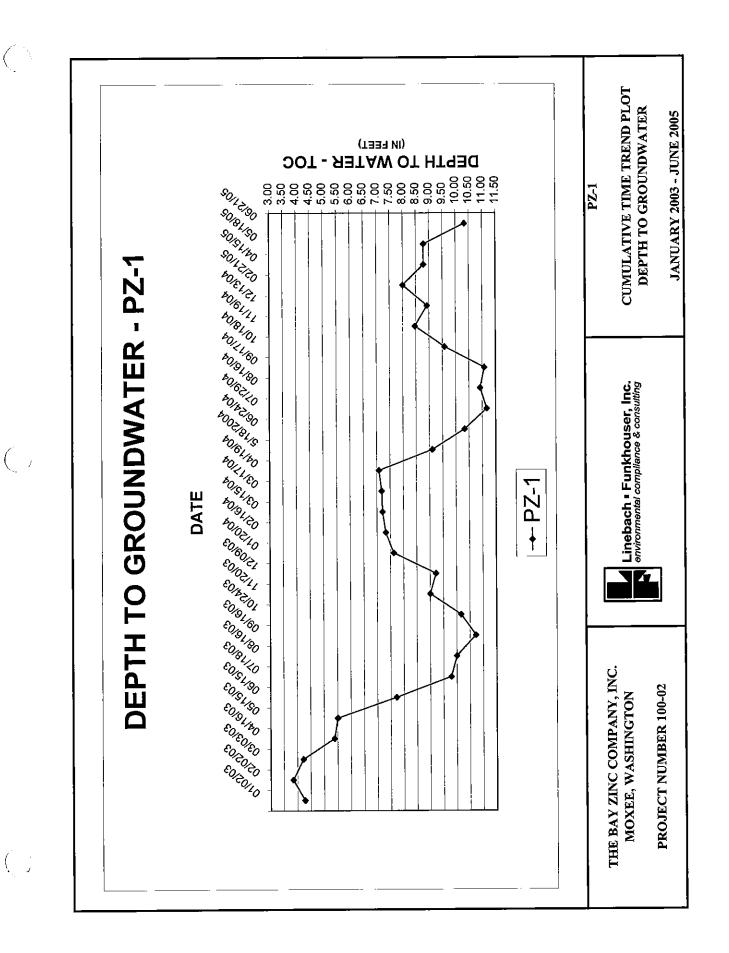
noitosqeni eidmulo0 q71:50 20 81 net

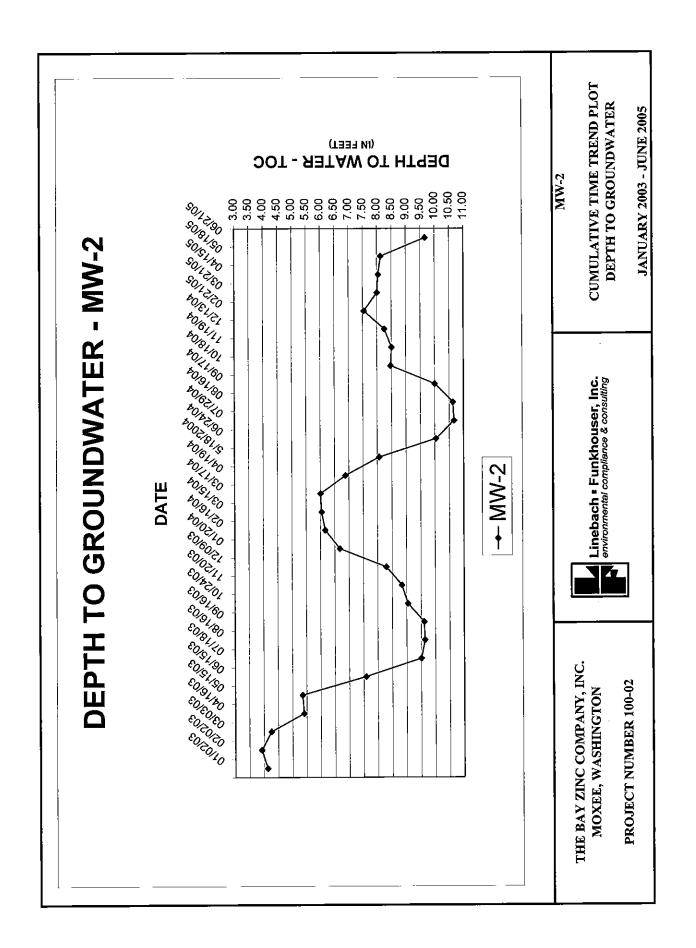
#### Appendix C

Time-Trend Plots of Groundwater Levels in Monitoring Wells

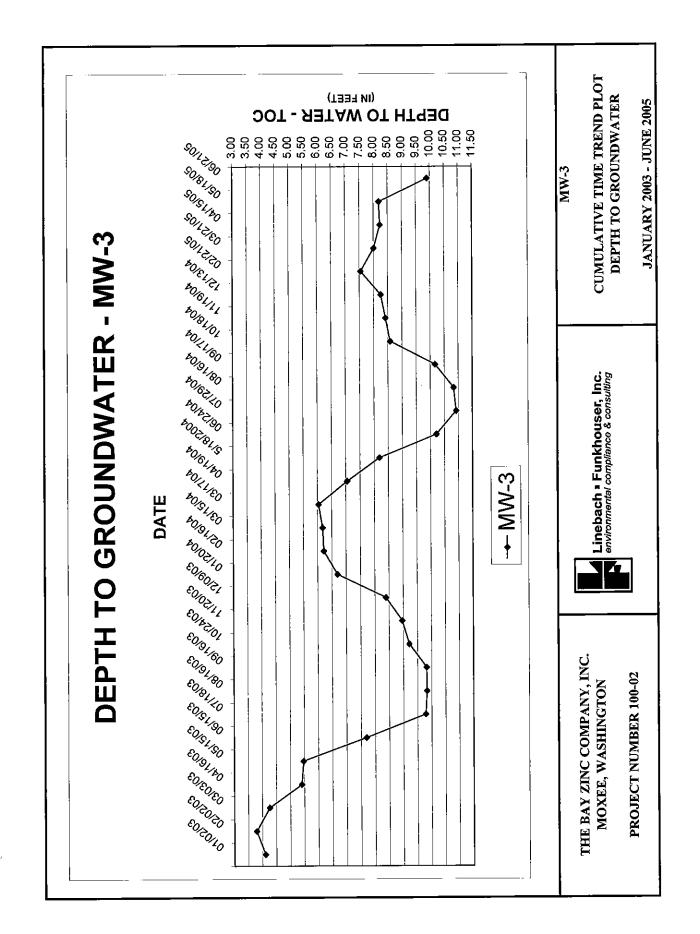



 $\langle \cdot \rangle$ 

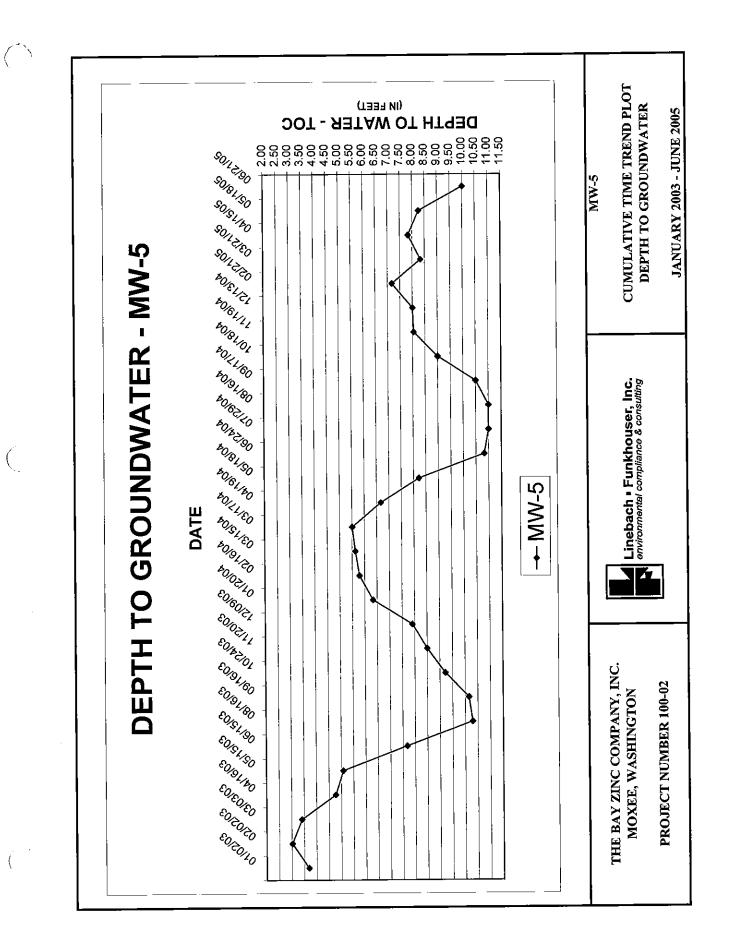

(


. . . . . .

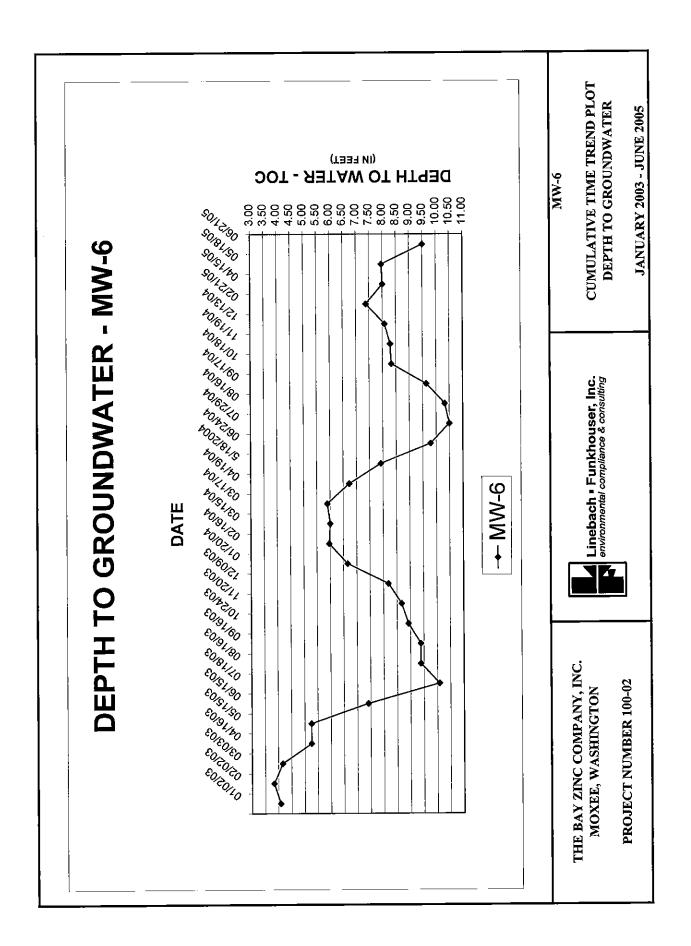
. .




 $\left\langle \cdot \right\rangle$ 

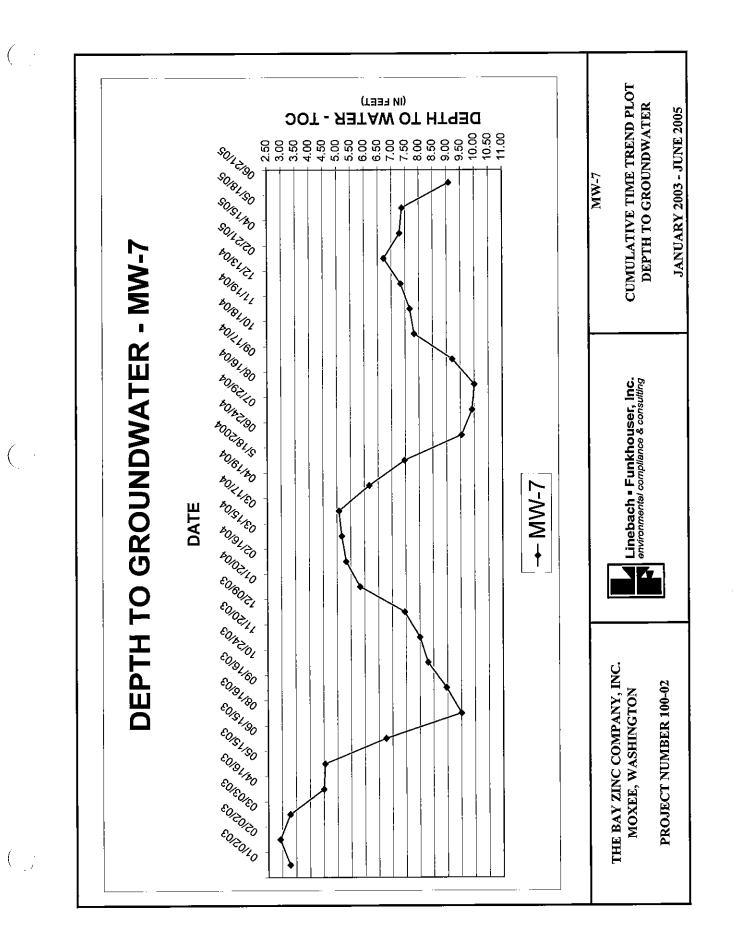


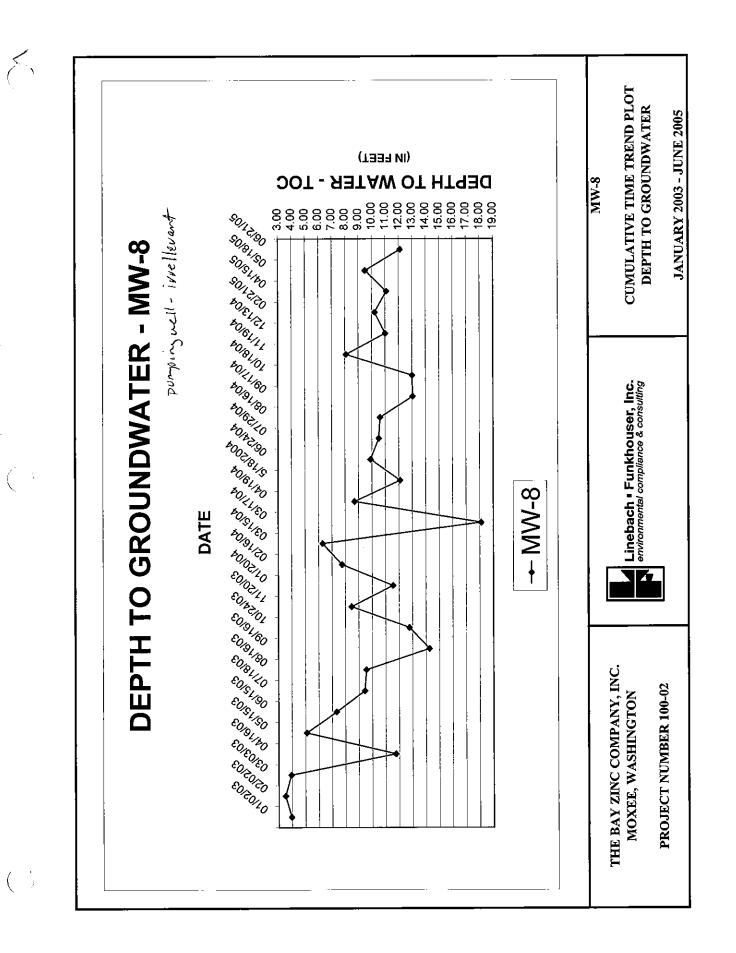


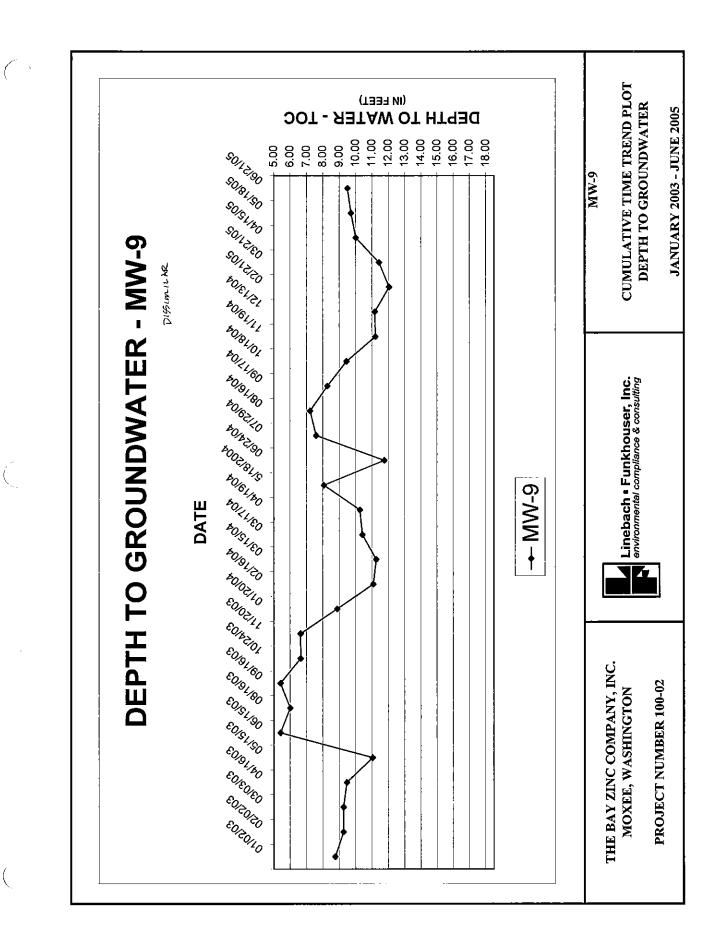


(

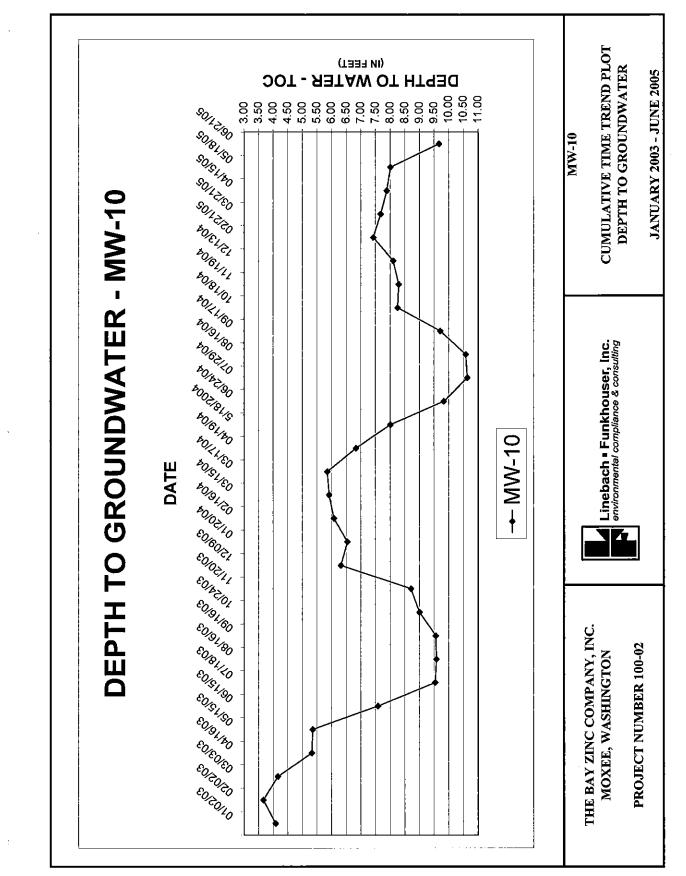


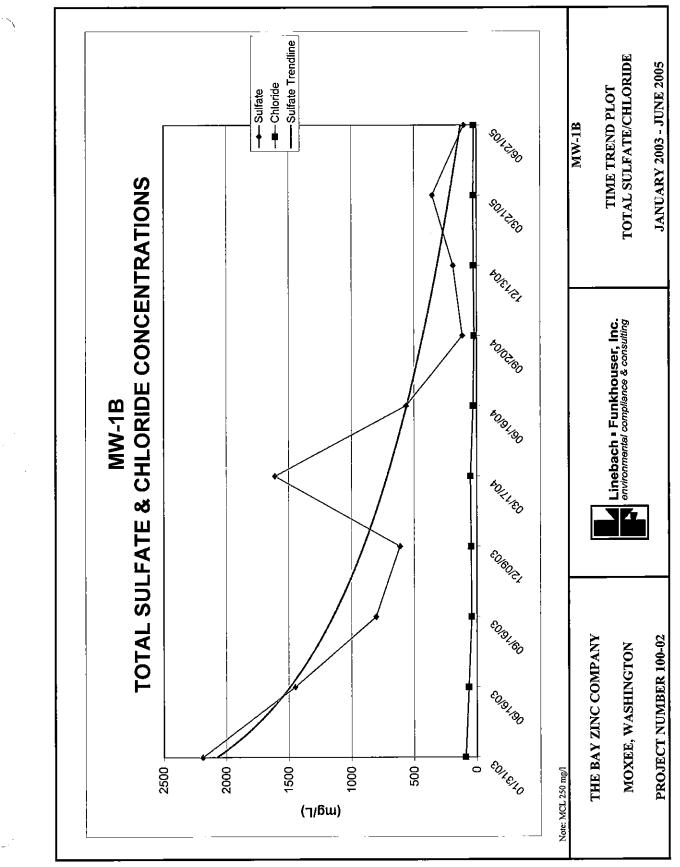
Ę



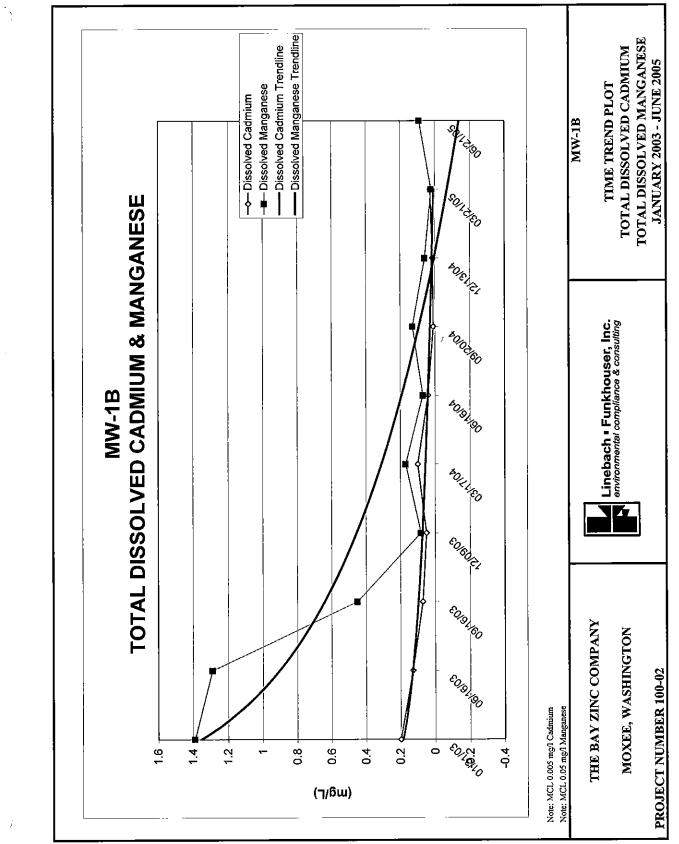


 $\left( \right)$ 





(

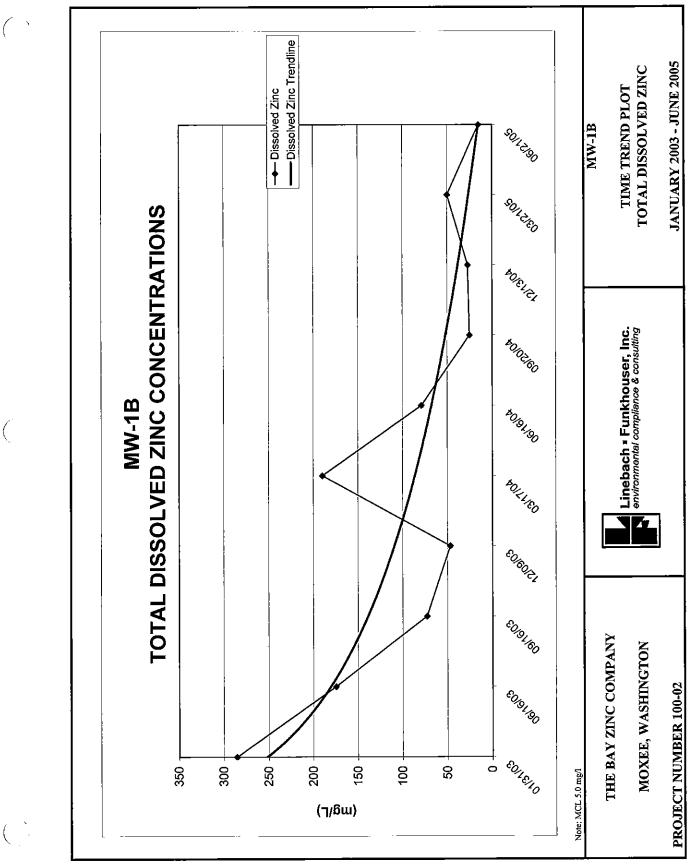

( ,

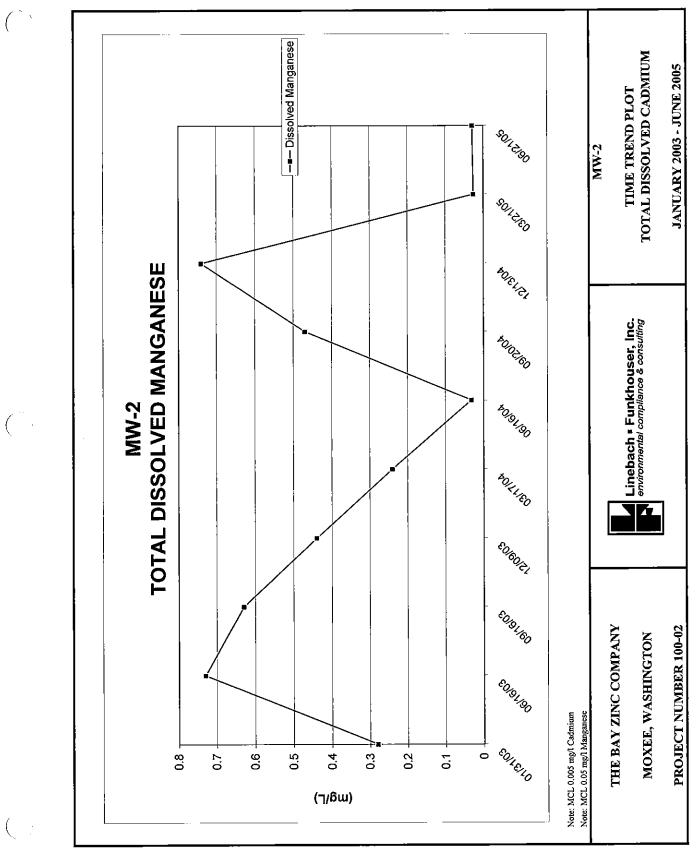


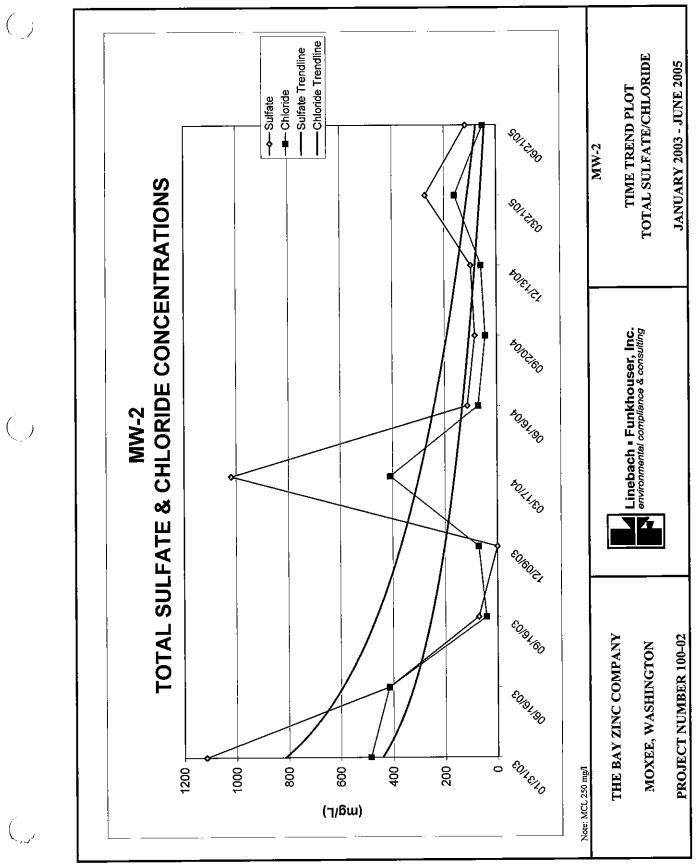


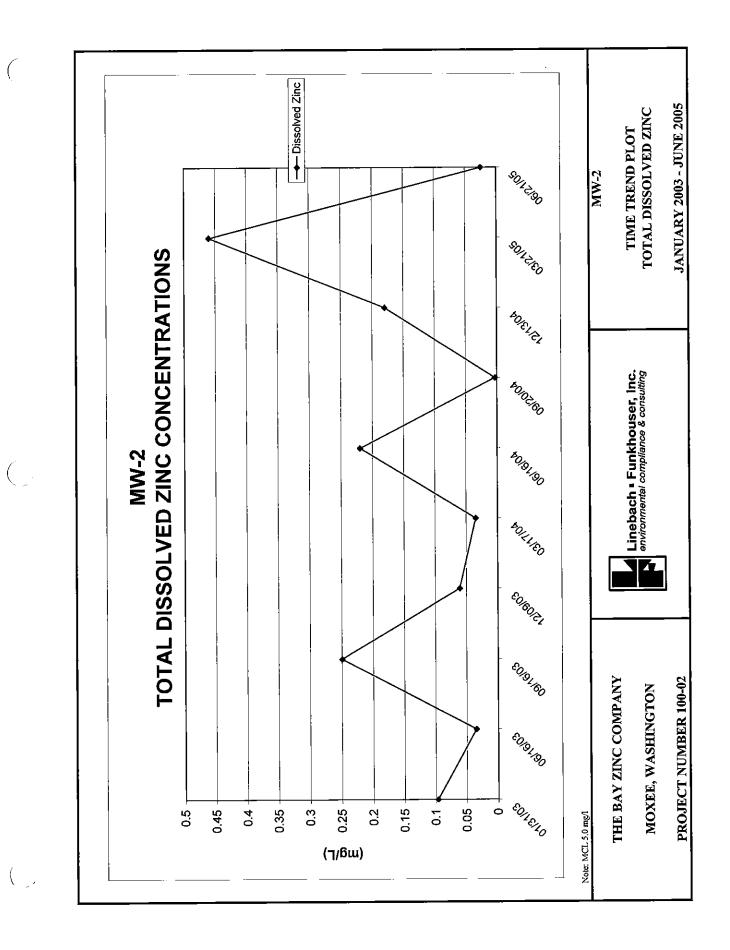


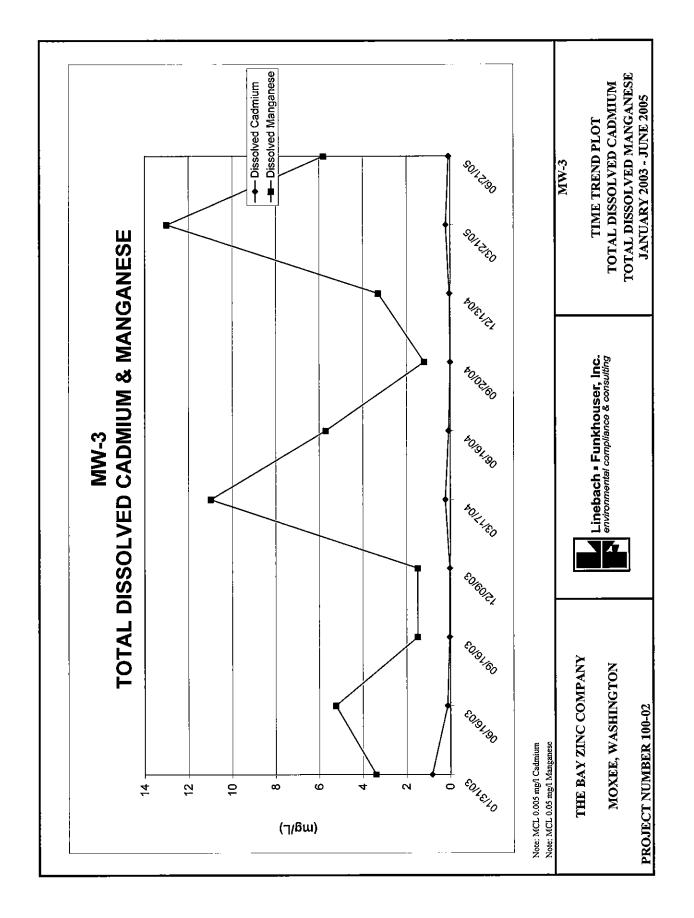




Ć

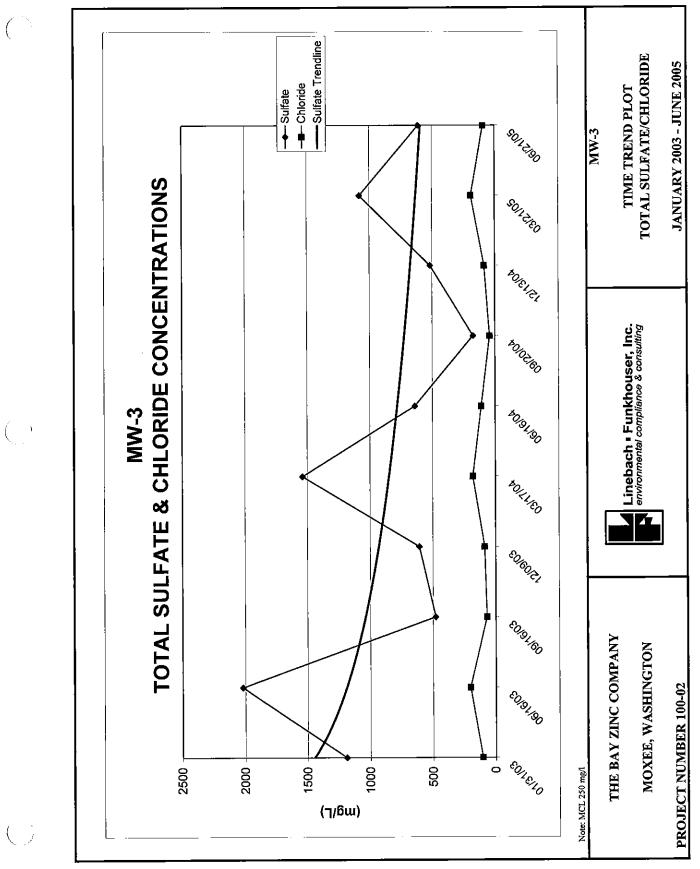


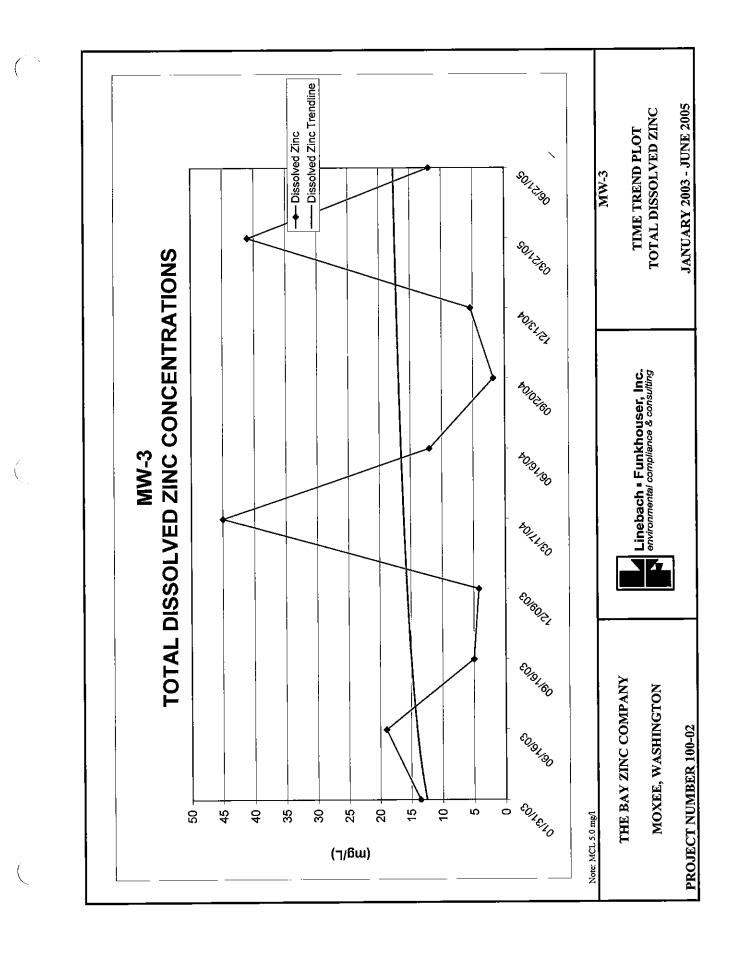


 $\left( \right)$ 

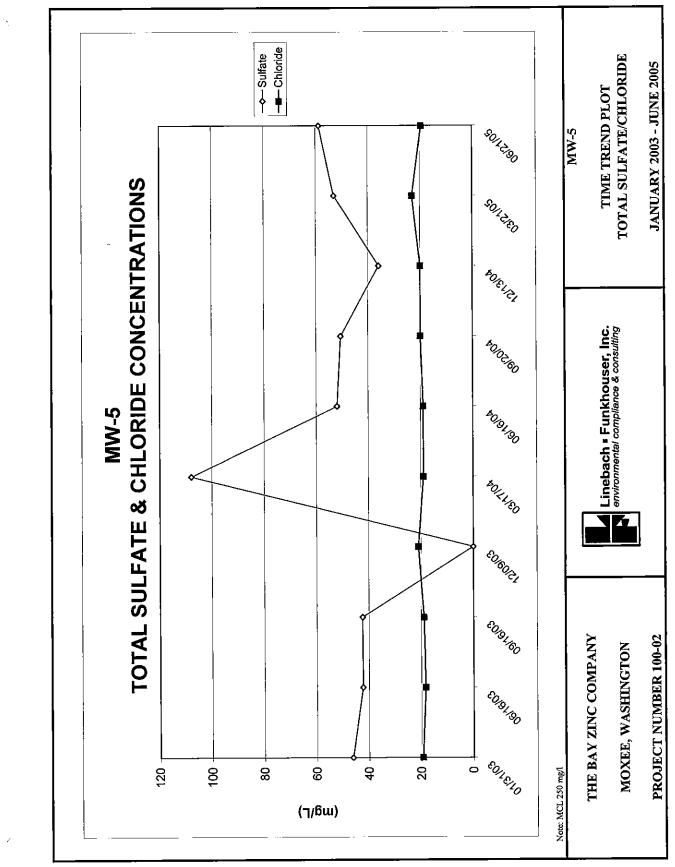

Ċ





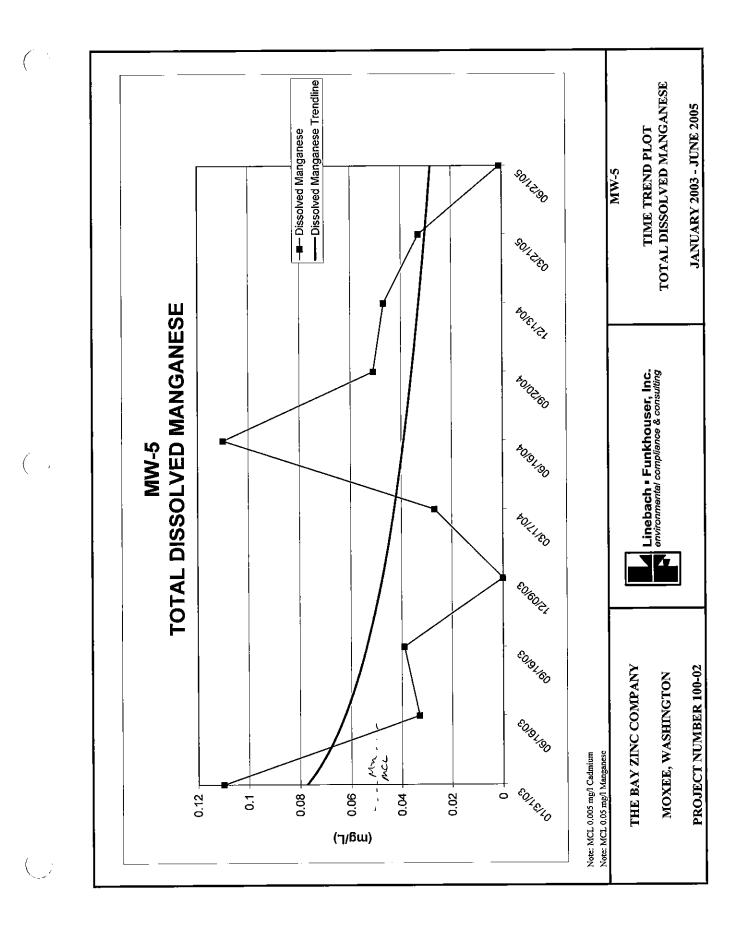


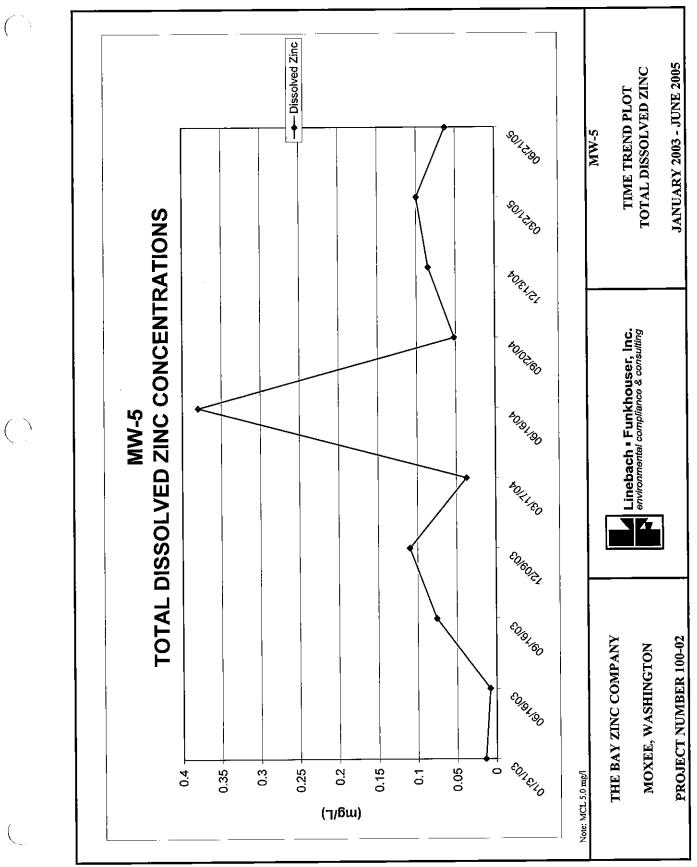



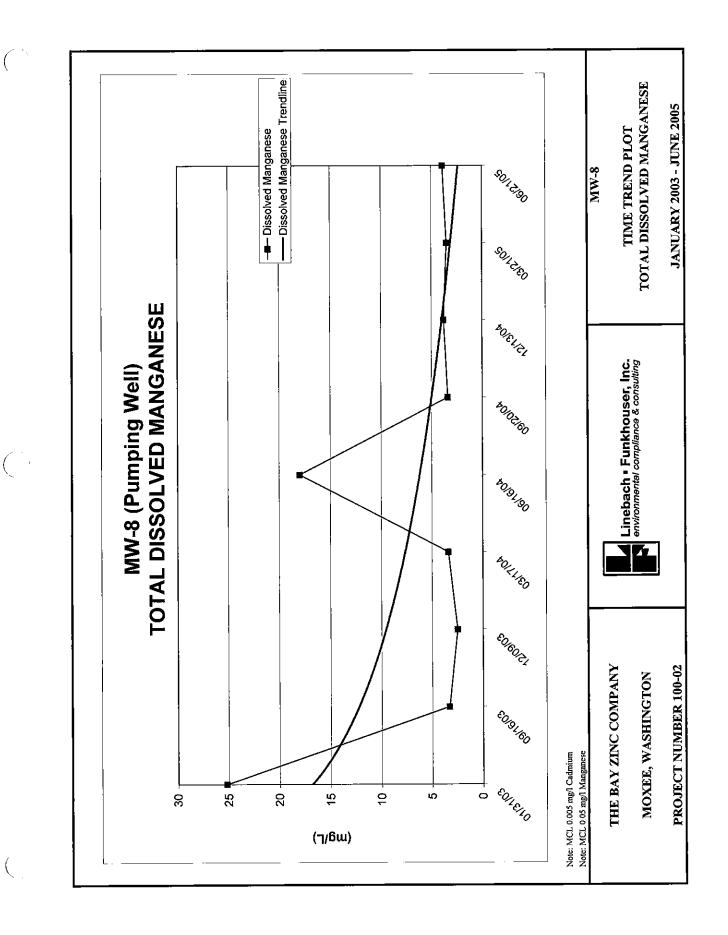

(

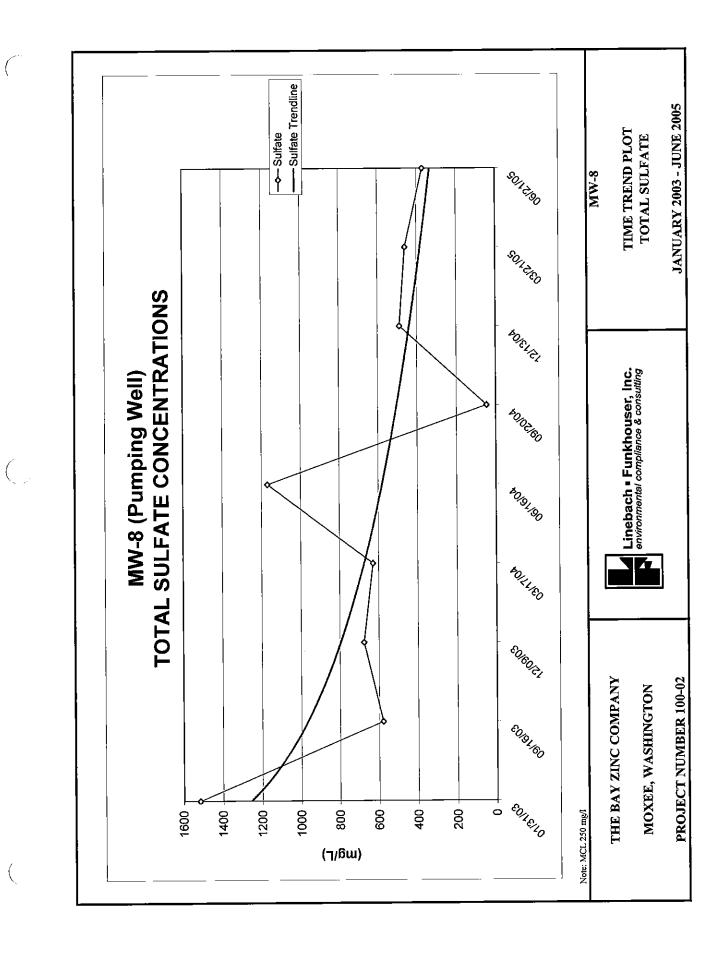
( ,



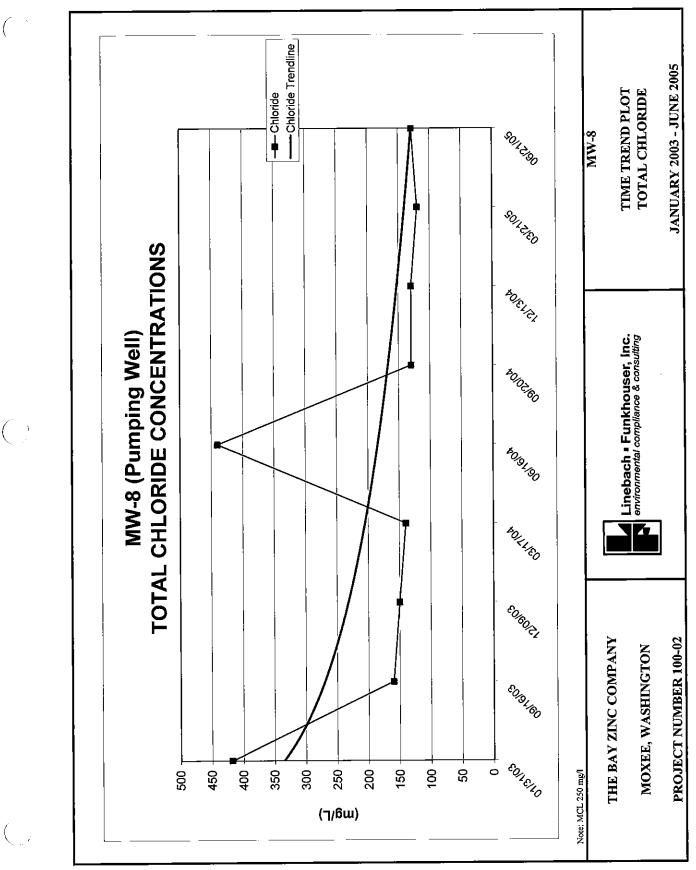





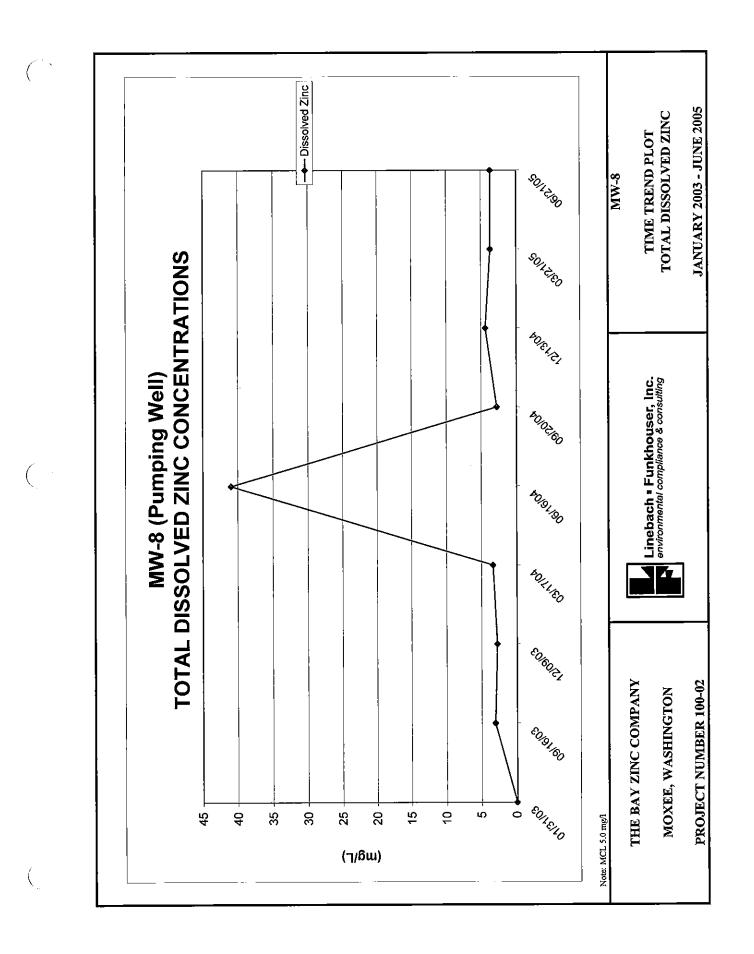


(

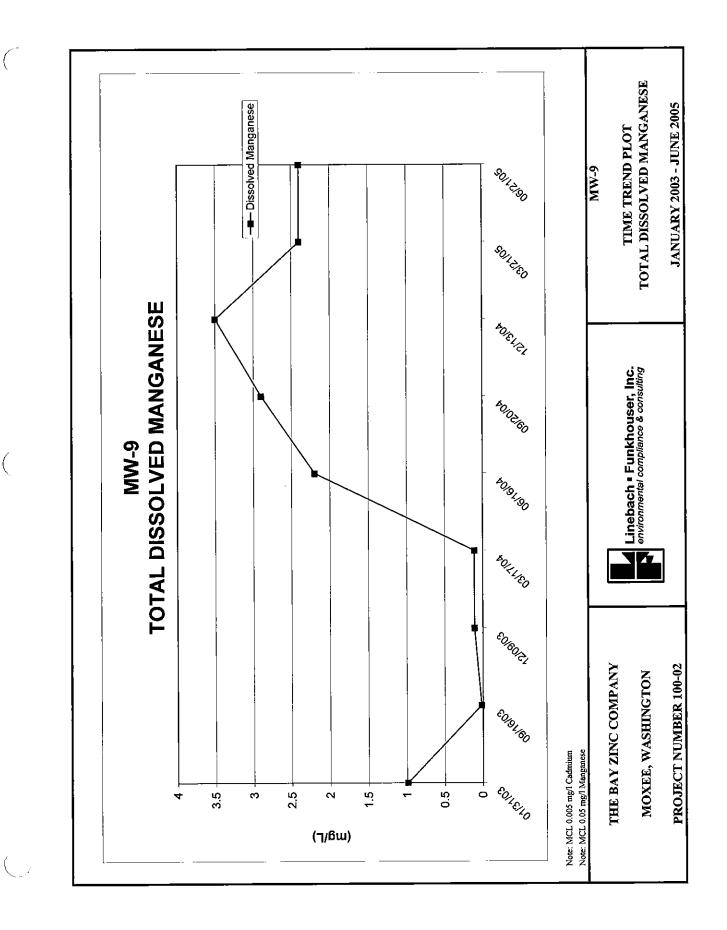

( .

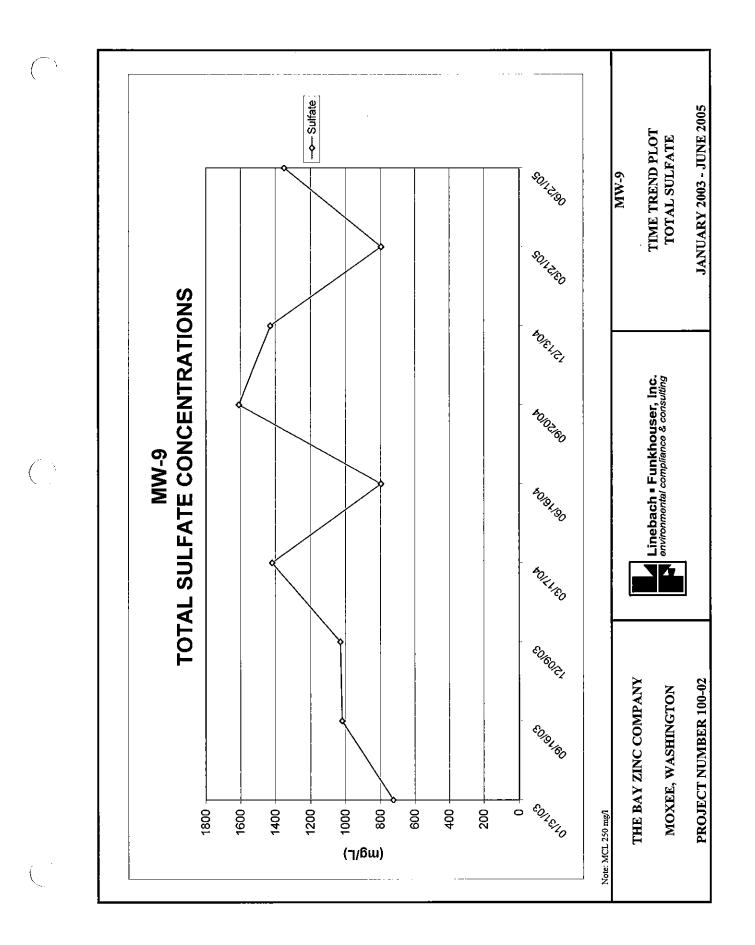


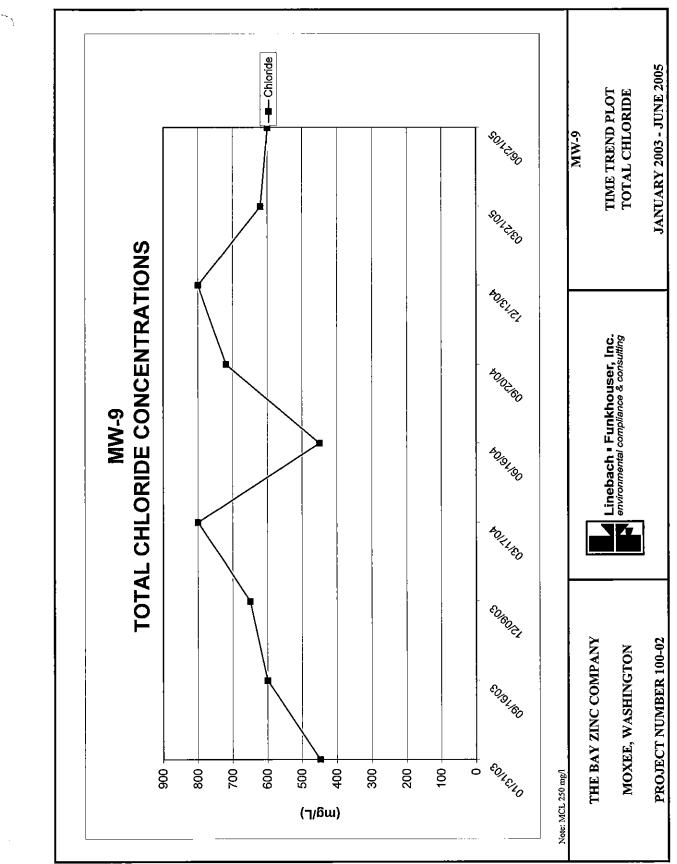



(______



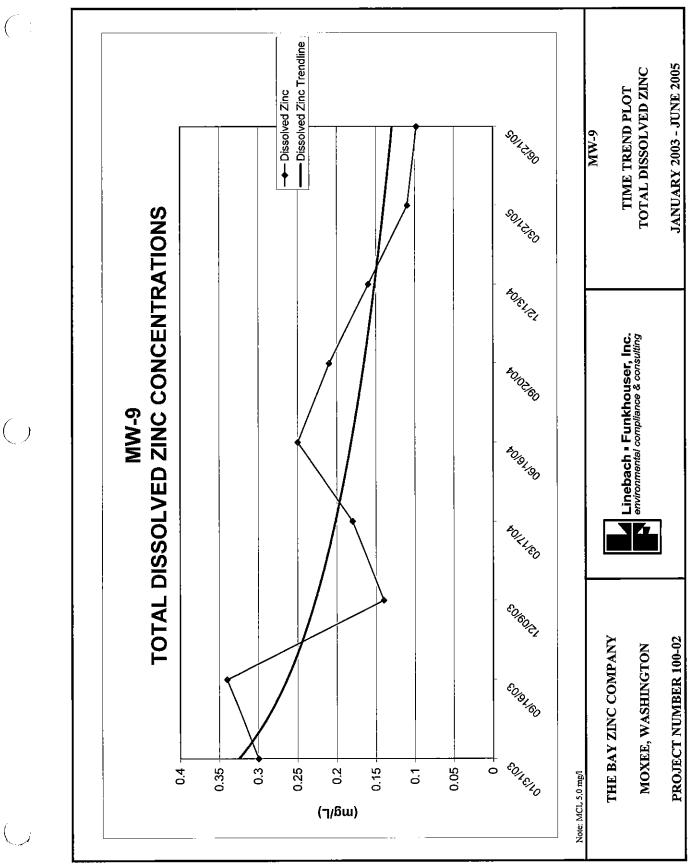



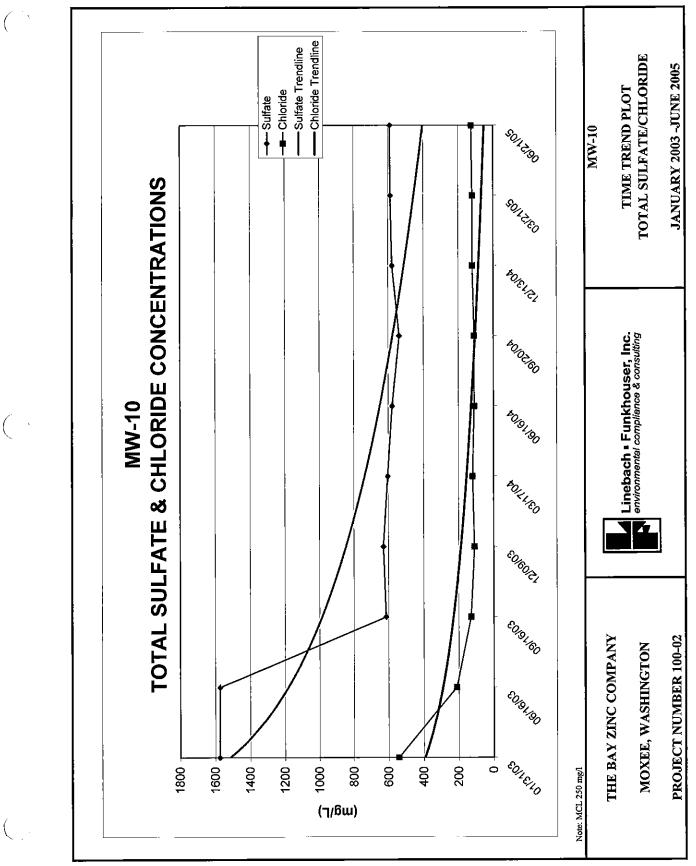


(



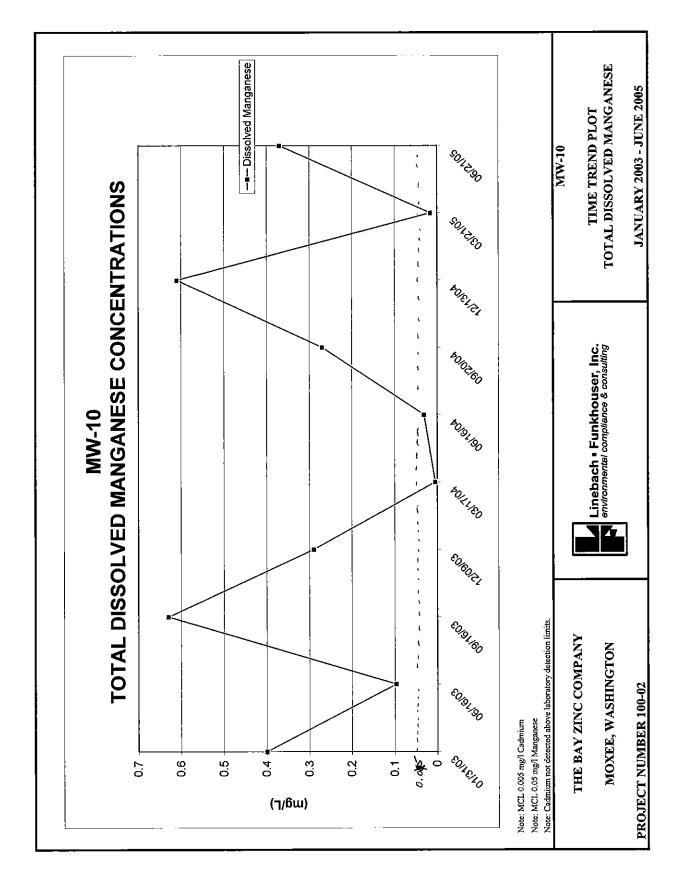

( )





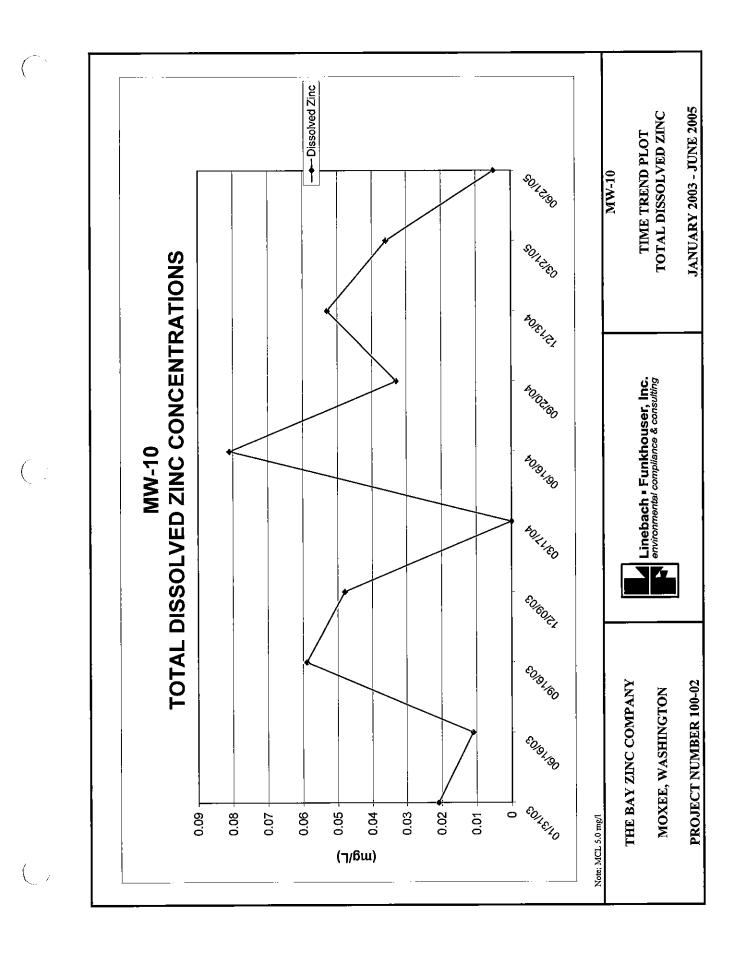


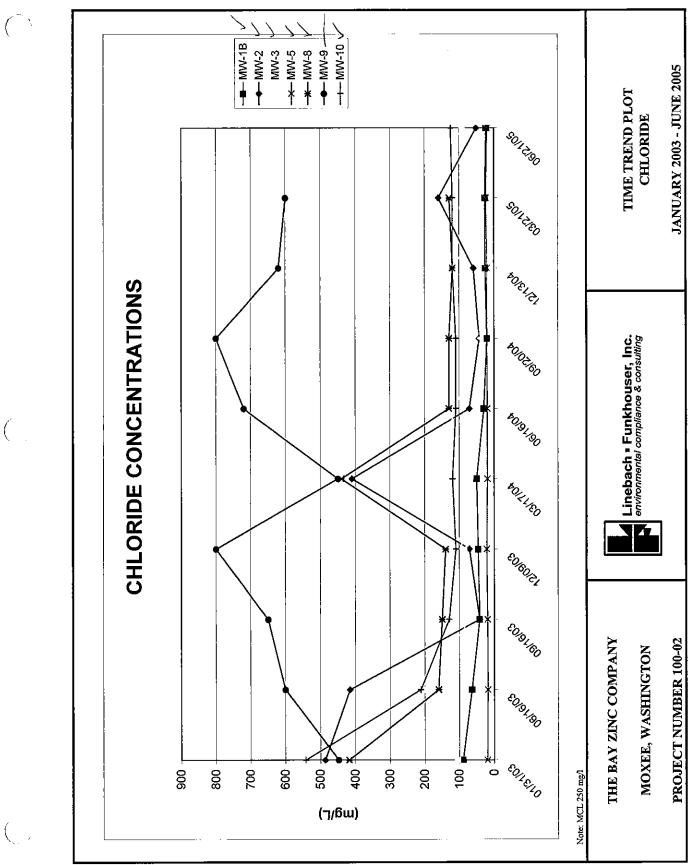


(

(

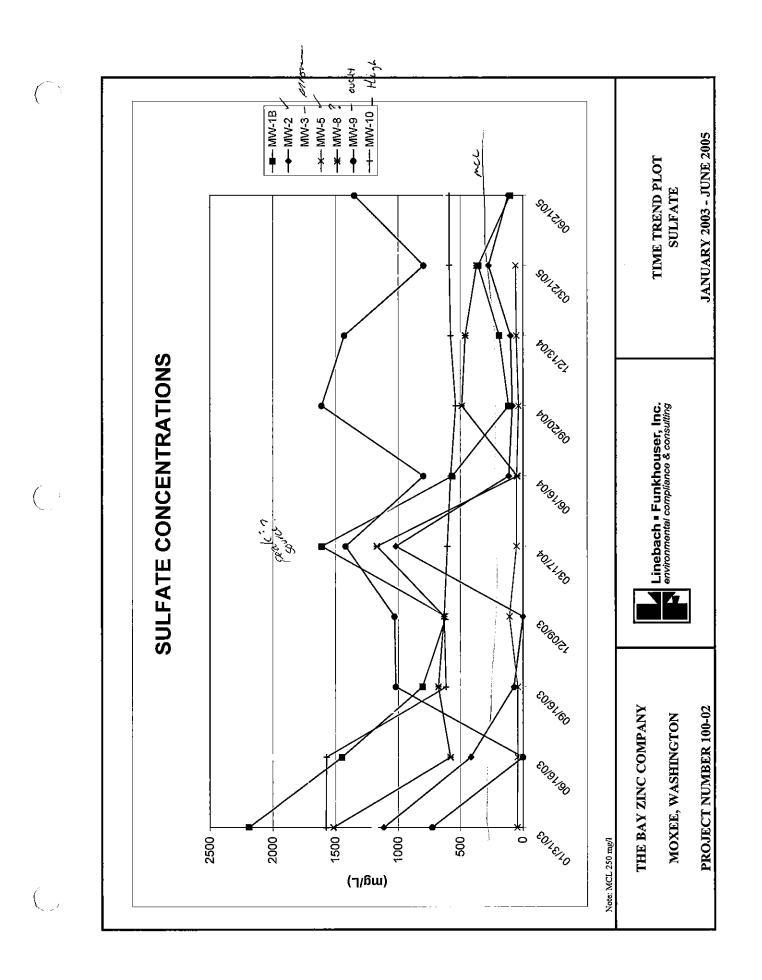


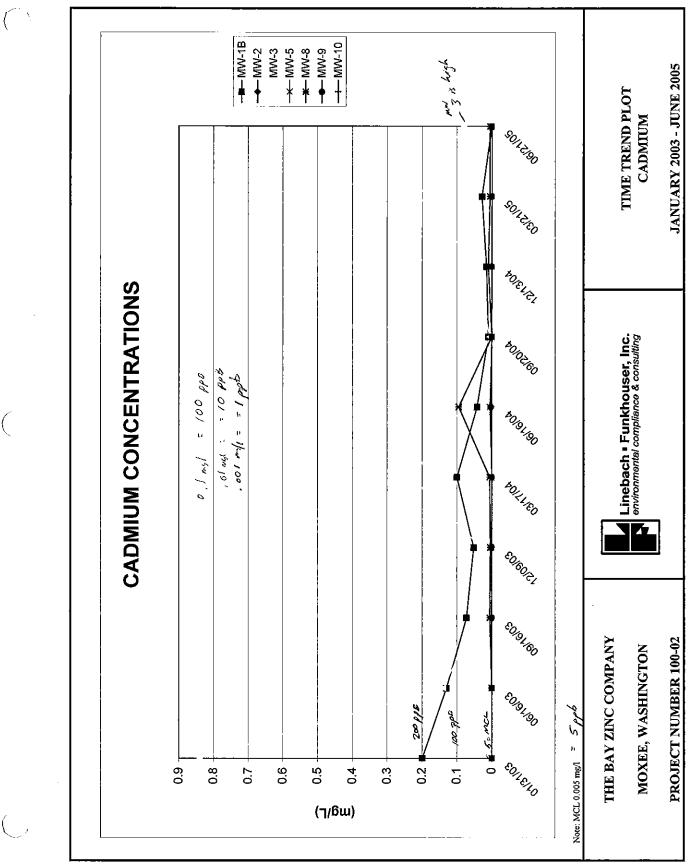


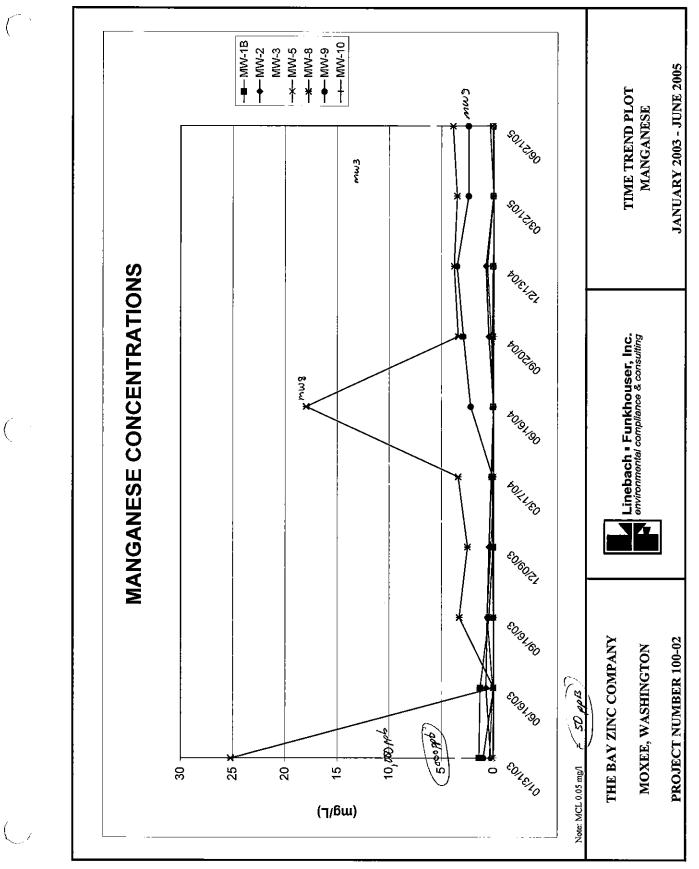

.

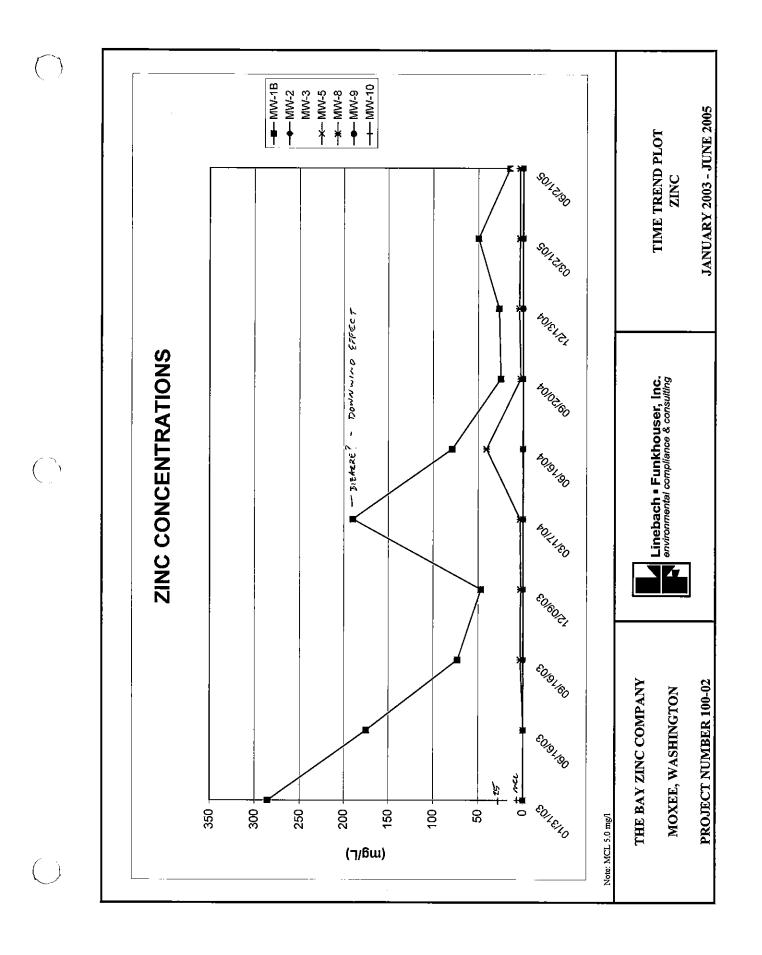



()


 $\left( \right)$ 


<u>(</u> .




h sua







