MW-22 INVESTIGATION REPORT

Former Chevron Bulk Terminal #100-1327 1602 North Northlake Way Seattle, Washington

August 11, 2006

Prepared for:

Chevron Environmental Management Company 6001 Bollinger Canyon Road, K2252 San Ramon, CA 94583

Prepared by:

Science Applications International Corporation 18912 North Creek Parkway, Suite 101 Bothell, WA 98011

SITE INVESTIGATION REPORT

Former Chevron Bulk Terminal #100-1327 1602 North Northlake Way Seattle, Washington

Prepared by:

Science Applications International Corporation 18912 North Creek Parkway, Suite 101 Bothell, Washington

Prepared for:

Chevron Environmental Management Company 6001 Bollinger Canyon Rd., Room K2252 San Ramon, CA 94583-2324

August 11, 2006

Simon Kline L.G. Geologist (425) 482-3312 Peter Catterall Senior Project Manager (425) 482-3321

TABLE OF CONTENTS

	page
1.0	INTRODUCTION
2.0	PROJECT BACKGROUND
2.0	SITE DESCRIPTION
2.2	FACILITY HISTORY
3.0	REGULATORY HISTORY
4.0	PREVIOUS INVESTIGATIONS
5.0	PROJECT METHODOLOGY
5.1	UTILITY LOCATES
5.2	SOIL BORINGS
5.	2.1 Boring Locations
5.	2.2 Soil Borings – Direct-push (Geoprobe)
5.	2.3 Soil Borings – Drilling (Hollow-stem Auger)
5.	2.4 Soil Borings – Hand Auger
5.3	ORGANIC VAPOR SCREENING
5.4	SOIL SAMPLE COLLECTION 8
5.5	ABANDONMENT OF DIRECT-PUSH AND HOLLOW-STEM AUGER SOIL BORINGS9
5.6	Soils Analysis
5.7	BORING LOCATIONS SURVEY
5.8	D ECONTAMINATION P ROCEDURES10
5.9	QUALITY CONTROL PROCEDURES
5.10	Well Monument Replacement
6.0	SUBSURFACE CONDITIONS
6.1	SOIL CONDITIONS
6.2	GROUND WATER CONDITIONS
6.3	Hydrogeology11
7.0	ANALYTICAL RESULTS
7.1	Soil
8.0	EXTENT OF PETROLEUM IMPACT 13
9.0	CONCLUSIONS
10.0	REFERENCES

LIST OF FIGURES

Figure 1. Vicinity MapFigure 2. Aerial Photo of Site with Properties BoundariesFigure 3. Site MapFigure 4. Investigation Area with Soil Borings and Monitor Well LocationsFigure 5. Petroleum Hydrocarbon Concentrations in Soil

LIST OF TABLES

 Table 1. Summary of Soil Analytical Results

LIST OF APPENDICES

APPENDIX A. SOIL BORING COMPLETION LOGS

APPENDIX B. LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

LIMITATIONS

SAIC's investigation was restricted to collection and analyses of a limited number of environmental samples, visual observations and field data, in addition to summarizing available information from previous site documents. Note that not all pertinent documents were available at the time of the investigation. SAIC cannot guarantee the accuracy or interpretation from previous site investigations. Because the current investigation consisted of collecting and evaluating a limited supply of information, SAIC may not have identified all potential items of concern and, therefore, SAIC warrants only that the project activities under this contract have been performed within the parameters and scope communicated by Chevron and reflected in the contract. This report is intended to be used in its entirety; taking or using excerpts from this report is not permitted and any party doing so does at its own risk.

1.0 INTRODUCTION

Science Applications International Corporation (SAIC) on behalf of Chevron Environmental Management Company (Chevron) and at the request of the Washington State Department of Ecology performed a limited environmental investigation at former bulk fuel terminal (100-1327) now owned by the King County METRO transit authority and currently known as Metro King County Facilities North. The purpose of this investigation was to determine if soil in the vicinity of monitor well MW-22 is acting as a source for the petroleum hydrocarbons observed in groundwater samples collected from monitor well MW-22.

2.0 PROJECT BACKGROUND

2.1 SITE DESCRIPTION

The former Chevron property at 1602 North Northlake Way is located in the northwest quarter of the northwest quarter in Section 19, Township 25 North and Range 4 East. The property is situated on the north shore of Lake Union in a mixed-use residential and industrial neighborhood (**Figure 1**). Surrounding the property is North Northlake Way to the north, a City of Seattle public park (Gas Works Park) to the east and North Northlake Place to the south and west (**Figure 2**). The former Chevron bulk terminal is now owned and operated by King County Metro Transit Division (METRO). This property is divided into two operable areas, a north yard located on the north side of N. Northlake Way and a south yard located adjacent to the north shore of Lake Union and south of N. Northlake Place (**Figure 2**). The investigation area is located slightly east of the north and south yards on property owned by the City of Seattle Department of Transportation and the Seattle Department of Parks and Recreation. Specifically, the investigation conducted was performed at locations surrounding monitoring well MW-22 (**Figure 3**) situated in a flat gravel parking lot and the western most tip of Gasworks Park between N. Northlake Way and N. Northlake Place.

2.2 FACILITY HISTORY

Between 1925 and 1927, Standard Oil of California (Chevron) developed the site as a marine bulk fuel storage and distribution facility and constructed eleven aboveground storage tanks (ASTs), transfer piping, truck loading racks and various small buildings in the north yard. Petroleum product stored in the north yard was linked to the south yard by underground piping

installed beneath N. Northlake Way that transported petroleum products from a fuel dock on Lake Union (**Figure 3**). Prior to 1925, the south yard was occupied by a sheet metal facility and a tannery. By 1960, the California Spray and Chemical Company occupied the south yard and a railroad spur located between the north and south yards (used to transport coal and later fuel oil to the old Gas Works facility) bisected the two parcels. In 1982, METRO purchased the entire property from Chevron and refurbished the seven remaining tanks, piping, fuel racks and docks for diesel fuel storage. In 1992, the bulk fuel storage tanks were cleaned and taken out of use, and the product lines connecting the north and south yards were flushed, cleaned and abandoned in-place. A 500-gallon underground heating oil tank was removed from an area adjacent to the office and the tank-truck loading rack in the north yard. Between 1998 and 1999, the seven remaining ASTs in the north yard were demolished and removed and the former tank farm area paved and converted to parking for METRO vehicles.

Currently, METRO is using the north yard for office and shop space, parking and storage. The north yard is zoned industrial/commercial 45 (I/C 45). Adjacent to the north yard are public right-of-ways, small businesses and two recently constructed mixed-use buildings. The south yard is used to store equipment, materials, and METRO vehicles. A dock extends out into Lake Union and is currently leased for private use (**Figure 2**). The south yard is currently zoned I/C 45 with an urban maritime overlay.

3.0 REGULATORY HISTORY

Chevron and METRO entered into a Consent Decree (CD) with the Washington Department of Ecology (WDOE) in 1999 to provide for remedial action at the Site. As Phase I of the CD, metals contamination present in the shallow superficial soils beneath the former AST area of the north yard was excavated and removed. Phase II of the CD addressed separate phase hydrocarbon (SPH) impacts detected in several monitoring wells in the north yard and high concentrations of dissolved phase petroleum in groundwater throughout the site. Phase II remedial activities included injection of hydrogen peroxide to address pockets of residual petroleum in soils and dissolved phase petroleum in groundwater across the site. This was later augmented by several enhanced fluid recovery events for SPH removal at select wells in the north yard, installation of a biosparge system across the south yard to treat dissolved phase petroleum that may be migrating to the surface waters of Lake Union and a small soil excavation performed in the immediate vicinity of well MW-8 in the south yard to address a pocket of residual petroleum which was acting as a source for dissolved phase hydrocarbons in groundwater at this location. As a component of the CD, routine groundwater gauging and sampling has been conducted at select compliance monitoring wells at the site since 1999.

4.0 PREVIOUS INVESTIGATIONS

A number of investigations have been conducted at this site. The most comprehensive investigation to date has been the remedial investigation/feasibility study (RI/FS) conducted by Associated Geotechnology Inc. (AGI) under contract with METRO in 1993. The RI/FS characterized the nature and extent of specific chemical compounds in soil and groundwater

resulting from activities at the site and developed and evaluated cleanup action alternatives. Supplemental investigations were conducted by AGI, Pacific Environmental Group (PEG) and Foster Wheeler Environmental Corporation (Foster Wheeler) to augment existing site data and to develop site-specific risk based cleanup levels for soil and groundwater.

Foster Wheeler prepared a draft Cleanup Action Plan (CAP) in 1998. The selected remedial alternative presented in the CAP consisted of a two-phase approach. The first phase of the cleanup addressed the Tank Farm area of the North Yard, and the second phase of the cleanup was developed to address the "Lower Areas" soil and groundwater, which includes the southern portion of the North Yard and the South Yard property.

The first phase (Phase I), which was completed in 1999, consisted of AST demolition/removal and shallow soil (metals) remediation in the tank farm area of the North Yard. The tank farm area was paved, and is currently used as parking for Metro vehicles. The second phase (Phase II) was based on Alternative 2 of the RI/FS, but was modified to include hydrogen peroxide injection in place of groundwater extraction, air stripping, and vapor extraction. The CAP established site-specific risk based cleanup levels (CULs) for the remedial action.

In 1999, Terra Vac Corp. (Terra Vac) began implementation of the Phase II remediation by performing an eight-week pilot study to evaluate the effectiveness of hydrogen peroxide injection to enhance chemical oxidation and bioremediation of the petroleum hydrocarbon plume impacting on-site groundwater. Based on the results of this study, a full-scale injection program was started in January 2000. The hydrogen peroxide injection program was discontinued in December 2000 in order collect several rounds of post injection data to evaluate the effectiveness of the program. Based on the results of post injection monitoring, it was decided that the hydrogen peroxide injection program would not be re-instated, and that alternative remediation methods would be evaluated.

Delta Environmental Consultants, Inc. (Delta) performed three enhanced fluid recovery (EFR) events for removal of separate phase petroleum hydrocarbons at monitoring wells MW-3, MW-9, MW-10, MW-12, MW-27, and MW-28 between April 4, and May 24, 2001. No measurable volume of SPH was recovered during the EFR events.

In early 2002, Delta installed a biosparge injection system, consisting of six injection wells, to address benzene at concentrations above the site-specific CULs in the South Yard of the site. The system was designed as an alternative method to peroxide injection for delivery of oxygen to the subsurface. This system was designed to enhance biological degradation of benzene in the South Yard soils. The system was operated until June 2003, when it was shut down in order to allow collection of additional groundwater monitoring data with the system off. As all wells in the South Yard are currently in compliance with the benzene cleanup level for the site, there are no current plans to restart the system.

In October 2003, Science Applications International Corporation (SAIC) directed the closure of monitoring well MW-8, and oversaw excavation of a test pit in the vicinity of the former monitoring well. The test pit was excavated in order to investigate the possible existence of a localized source contributing benzene to groundwater in that area. Approximately 350 tons of

soil was transported off-site for thermal treatment. A new monitoring well, MW-8A was installed in November 2003 at the approximate location of the former MW-8. A groundwater sample collected at MW-8A for the 4th quarter 2003 monitoring event indicated that the concentration of benzene in groundwater in that area was 14.8 ug/l, which is below the site-specific benzene CUL (43 ug/l).

5.0 PROJECT METHODOLOGY

The purpose of this investigation is to collect additional information regarding the possible existence of a discrete source of petroleum hydrocarbons in the vicinity of MW-22 that may be contributing to the elevated levels of benzene that have historically been detected in groundwater from this well. As shown in **Figure 3**, MW-22 is located in a triangular gravel parking area between N. Northlake Way and N. Northlake Place, directly southwest of a concrete wall that was formerly used as a containment wall for ASTs associated with Seattle City Light's Lake Union Gas Works (now Gas Works Park). The well was installed in August 1997 as part of a supplemental environmental investigation conducted by PEG. Analytical data collected during the installation suggests that the soils surrounding MW-22 were not significantly impacted by petroleum hydrocarbons; however, benzene has consistently been detected in groundwater samples from this well at concentrations exceeding the site-specific CULs established in the CAP. The goal of this investigation was to further examine the possible existence of a discrete source (pocket) of residual petroleum hydrocarbons that may be present in the area surrounding MW-22.

5.1 UTILITY LOCATES

Prior to the start of this investigation, SAIC contacted all public utilities and requested that any subsurface piping or lines in the vicinity of MW-22 be marked prior to the commencement of any intrusive subsurface work. On May 16, 2006 Applied Professional Services (APS) located and marked the location of the underground fuel transfer piping between the north and south yards along with several water lines that were also present within the investigation area. Each of the proposed soil boring locations was located using a Trimble GPS device and marked.

5.2 SOIL BORINGS

The investigation work plan proposed the completion of twelve soil borings (P-1 through P-12) in the vicinity of MW-22 (**Figure 4**). All soil borings either were advanced to the groundwater table or to a depth where contamination was no longer present. Soil boring logs are included with this report as **Appendix A**.

5.2.1 Boring Locations

The investigation work plan specified that the soil borings would be placed in an outwardly progressing radial pattern from MW-22 to best delineate the extent of contamination. These locations were adhered to with the exceptions of P-9, that was originally located too close to the northern park boundary wall and was re-located approximately 8 feet towards the north, and P-1

which was originally placed within five feet of the underground pipelines and was later relocated approximately 18 feet towards the east on a line directly towards MW-22. In summary, eight of the boreholes were located in the triangular parking area between the park boundary and North Northlake Place. Two borings were located in the 10-foot wide Department of Transportation (DOT) Right-of-Way between the park boundary and North Northlake Way and two borings were located inside the western tip of Gasworks Park. SAIC subcontracted Cascade Drilling Incorporated (CDI) of Woodinville, WA to perform all drilling and subsurface activities. Each boring was cleared with an air-knife and vacuum rig or hand auger to a minimum depth of 8 ft bgs prior to using any powered drilling equipment. During borehole clearance by air-knife, a 3 1/4-inch outside diameter, stainless-steel, hand auger was used to collect soil samples above a depth of 8 feet bgs at 2, 4 and 6 feet bgs respectively. The hand auger was decontaminated prior to obtaining samples at each sample depth in the same boring and decontaminated again between each boring location.

5.2.2 Soil Borings – Direct-push (Geoprobe)

On May 17, 2006, CDI completed four soil borings and collected soil samples from locations P-2, P-5, P-9 and P-11 using a direct-push Geoprobe rig. With the direct-push method, continuous soil samples were collected inside a 2-inch diameter, 4-foot long, plastic sampling tube. Soil was logged and sampled along 1-foot segments of the entire core. Soil borings advanced by the direct-push method were completed up to depths of 20, 14, 15 and 15 feet bgs. at locations P-2, P-5, P-9 and P-11 respectively.

During field activities on May 18, 2006, the Geoprobe rig experienced an equipment failure at boring location P-6 due to dense sands and slough in the borehole. As a result of this equipment failure, the Geoprobe sampler and a section of drive rod were pushed until refusal was encountered at 16 feet bgs. and left in the borehole with the upper-most section of the drive rod at a depth not less than three feet bgs. Following the equipment failure, it was decided that given the difficult soil conditions present the remaining boreholes would be completed using a hollow-stem auger drilling rig in place of the Geoprobe.

5.2.3 Soil Borings – Drilling (Hollow-stem Auger)

SAIC and CDI resumed work on June 12, 2006 to drill the remaining six boreholes in the parking lot with a hollow-stem auger rig. Once the 8.25-inch steel auger bit had been advanced to each desired sampling depth, a 2 3/8-inch split-spoon sampler was driven (hammered) 1.5 feet into the undisturbed soils ahead of the auger to collect the sample. The number of hammer blows needed to drive the spoon every 6 inches (blow count) was recorded for geotechnical information. The split-spoon sampler was then extracted from the boring and opened up for field examination and sample collection. Split-Spoon samplers were decontaminated prior to, and between use at each boring and sampled depth. Split-spoon sampling was continuous from approximately ten feet bgs up to the maximum depth explored in borings P-1b, P-3, P-4, P-6a, P-7 and P-8.

5.2.4 Soil Borings – Hand Auger

Two of the soil borings completed, P-10 and P-12, were within the boundaries of Gas Works Park, where use of mechanized drilling equipment may have resulted in damage to the turf surface and to underground utilities i.e. sprinklers system components etc. As a result, rather than attempting to position a hollow-stem auger drill rig at these two locations, hand tools were used to perform these two borings. Once each sampling location had been marked, the turf at each location was cut out with a shovel and placed on visqueen for later replacement. A posthole digger was then used to remove the upper 6-12 inches of top-soil at each location until the Geogrid that had been placed in the park as an indicator of the contact between the landscaping top-soil and the contaminated native soils was encountered. This Geogrid was detected in boring P-10 at approximately 1-foot bgs and at approximately 8-inches bgs in boring P-12. Once encountered, the Geogrid was cut using a utility knife and the borehole was subsequently cleared using an air-knife with an extended vacuum hose. Soil samples were collected from each of these two borings by hand auger at 2-foot intervals between ground surface and 8-feet bgs and continuously below 8-feet bgs to the maximum depth explored of 16 feet bgs in boring P-10.

5.3 ORGANIC VAPOR SCREENING

Immediately following collection, soil samples from each sampled depth were field screened for organic-vapor content to aid in selecting soil samples to be preserved for later laboratory analysis. The screening procedure involved placing an aliquot of soil from each sampled interval into a Ziploc bag, resealing the bag and allowing the sample temperature to equilibrate with the ambient temperature. Immediately prior to screening, the soil within the bag was disaggregated. The bag was then partially opened and the probe end of a flame ionization detector (FID) was inserted into the open headspace of the bag and the resulting vapor concentration recorded. FID results from soil screening are presented on the soil boring logs contained in **Appendix A**.

5.4 SOIL SAMPLE COLLECTION

An SAIC field geologist, licensed in Washington State, logged each sample in accordance with the Unified Soil Classification System Visual-Manual Procedure (ASTM D-2488). Soil properties, such as color, lithology, density, texture, and moisture content, were recorded on boring logs. In addition, the presence of hydrocarbon odors and soil sheen were also noted. Samples collected for volatile organic compounds (VOCs) analysis were collected in a manner consistent with EPA Method 5035 procedures using disposable syringe samplers and placed into 40 ml VOA vials containing either methanol or sodium sulfide. Soil samples selected for semi-volatile and metals analysis were placed into laboratory supplied 4 oz glass jars. The jars were sealed, labeled, and place in a pre-cooled ice chest with wet ice while at the site and during transport to the analytical laboratory.

Soil cuttings produced during drilling activities and decontamination water from cleaning drilling augers was contained in 55-gallon DOT-approved drums, labeled and temporarily stored on plastic sheeting in the south yard of the METRO facilities north property. Upon receipt of analytical results, SAIC arranged for the pick-up and treatment/disposal of all soil and water generated by Rinker Materials of Everett, WA.

5.5 ABANDONMENT OF DIRECT-PUSH AND HOLLOW-STEM AUGER SOIL BORINGS

Following completion of each soil boring to the target depth (or refusal) and collection of soil samples, each boring was abandoned in compliance with Chapter 173-160 WAC "Minimum Standards for Construction and Maintenance of Wells" and per the previously approved work plan presented to WDOE, Seattle DOT and Seattle Parks and Recreation. Specifically, each soil boring was backfilled to within three feet of the surrounding surface with bentonite pellets and hydrated with potable water. Between two and three feet on Portland cement was then poured on top of the bentonite to form a surface seal and prevent the bentonite form expanding through to the surface. At the locations within the gravel parking area, approximately 6-inches of paving gravel (reserved to the side at the beginning of the air knife and vacuum clearance) was returned to the top of each boring location to restore the surface. At the two locations (P-10 and P-12) in the landscaped area of Gas Works Park, the soil borings were abandoned in a similar manner except three feet of sand was placed on top of the bentonite to bring the boring to above the geogrid, after which the clean top soil that had been encountered above the geogrid was returned to each bore hole and the tuff that had been cut out at each of these location restored, compacted and watered.

5.6 SOILS ANALYSIS

At a minimum, one soil sample from each boring location was collected for laboratory analysis. Additional samples were preserved and submitted for analysis when based on field screening results hydrocarbon impacts were present. All soil samples collected were submitted to TestAmerica Corp. in Bothell, WA under proper chain of custody procedures for analysis. Chain of custody forms are included in **Appendix B**.

Each of the soil sample submitted to the laboratory were analyzed for the following:

- Gasoline-range hydrocarbons by WDOE Method NWTPH-Gx
- Diesel- and oil-range hydrocarbons by WDOE Method NWTPH-Dx extended with silica gel cleanup
- Benzene, toluene, ethylbenzene and xylenes (BTEX) by USEPA Method 8021

In addition to the above listed analyses, samples were also collected and submitted to the laboratory for the following pre-disposal characterization analyses:

- Total metals analysis (Hg, Cd, Cr, Pb and As) using EPA Method 6000/7000
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270
- Hydrocarbon Identification Analysis (HCID) using WDOE Method NWTPH-HCID

5.7 BORING LOCATIONS SURVEY

Following completion of all sampling activities, the relative vertical elevation and lateral position of each boring location was determined. The vertical ground surface elevation at each boring was surveyed with respect to the north side Top-of-Casing (TOC) at three existing monitor wells (MW-14, -15 and -22) with known elevations using an automatic level and survey

rod. The lateral position of each soil boring was re-verified with respect to monitor wells MW-14, -15 and -22 (used as benchmark locations) using a fiberglass surveyors' tape.

5.8 **DECONTAMINATION PROCEDURES**

All re-usable soil sampling equipment was decontaminated by washing with a phosphate-free detergent (Alconox) solution, followed by a tap water rinse and a final rinse with de-ionized water. Hand augers, split-spoon samplers and sample collection bowls were decontaminated immediately after collecting, logging, and screening each sample. Steel Geoprobe rods, hollow-stem augers, and drill rods were decontaminated using a hot-water pressure washer between each sampling location. All other disposable sampling equipment, such as Geoprobe sample sleeves, gloves, plastic bags etc. were discarded following use.

5.9 QUALITY CONTROL PROCEDURES

To assess sample quality during the course of this investigation, quality assurance samples (trip blanks and field blanks) along with duplicate soil samples were collected and submitted for analysis.

Two laboratory supplied trip blank samples were placed in the sample cooler with samples to be analyzed for volatile constituents during the duration of drilling activities. The trip blanks accompanied the samples as they were being collected and during shipment to the laboratory. Each trip blank was analyzed for VOCs by EPA Method 8021. None of the trip blanks submitted for analysis contained any target analyte at a concentration exceeding the laboratory reporting limits.

Two field blanks (FB-061206 and FB-061406) were filled under field conditions using distilled water. These field blanks were analyzed to determine if sample collection methods or field conditions influenced sample results. The field blanks were analyzed for VOCs by EPA 8021. None of the field blanks submitted for analysis contained any target analyte at a concentration exceeding the laboratory reporting limits.

One duplicate sample was collected from P-6 at a depth of 16 feet bgs and analyzed for the same constituents (TPH-Gx, TPH-Dx, TPH-Ox and BTEX) as the principle sample P-6-16. Analytical results for the duplicate sample D-061206 collected from P-6 were within generally acceptable limits. Based on the QA/QC sample results from this event, the data collected has been deemed valid and useable.

5.10 WELL MONUMENT REPLACEMENT

During drilling activities the well monument for monitor well MW-22 was replaced with a new flush mounted monument set in concrete. The former vault was in a raised position, the concrete pad the monument was set in had cracked through in several areas and the monument top was no longer flush with the surrounding gravel parking lot. Following replacement, the rim elevation of the new monument and the TOC elevation of the well were re-surveyed with respect to the TOC at wells MW-14 and -15.

6.0 SUBSURFACE CONDITIONS

6.1 SOIL CONDITIONS

Previous investigations have determined that the soil underlying the site generally consist of glacial till, recessional sand and a variety of fill materials. The parking area and DOT Right-Of-Way are covered with packed gravel from the surface to approximately six-inches bgs. The surface at each of the boring locations in Gasworks Park is comprised of grass sod and approximately 12-inches of landscaping soil resting on top of a plastic mesh Geogrid. The Geogrid was installed as part of the Gas Work Park cleanup action and serves two purposes 1) to stabilize the clean landscaping soil placed on top of the impacted native soils as a barrier, and 2) as an indicator of the contact between the clean upper top-soils and the contaminated native soils. The soil encountered directly beneath the Geogrid from approximately 2-4 feet bgs are comprised of gray to black silty sands informally referred to as the Gasworks Formation.

Subsurface soil encountered during drilling activities consisted primarily of various fill materials consisting of yellowish-brown to dark brown, poorly- to well-sorted sands with some organics, gravel and trace amounts of silt. Borings close to the former railroad contained a thin layer of black material at two feet bgs that may consist of coal dust and/or pitch. The depth of these fill materials in the borings ranged from 0.5 to 16 feet bgs with a consistency ranging from loose to very dense. A native recessional sand was encountered in borings P-6, P-7 and P-8. This poorly sorted, fine to medium grained sand had some rounded gravel clasts and a dense consistency with visible bedding. The depth of this layer ranged from 16 feet bgs to 21 feet bgs. This recessional sand has also been documented in the South Yard to a maximum depth of 37 feet bgs (AGI, 1993).

The underlying glacial till was encountered in borings P-6, P-7 and P-8. The very dense, pinkish gray till consisted of sandy silt or silty sand with occasional gravel clasts and greenish-brown mottling. When encountered, depth to the till ranged between 19 and 22.5 feet bgs (maximum extent of soil borings). Previous investigations have encountered the till as deep as 73 feet bgs immediately north of the North Yard. The thickness of the till layer present beneath the site has not been determined.

6.2 GROUND WATER CONDITIONS

Ground water depth was measured at 13.51 feet bgs in monitoring well MW-22 on May 17, 2006. Ground water found in the soil borings ranged from 12.5 feet bgs in boring P-1B and P-11 to 15 feet bgs at boring P-10. No ground water samples were collected as part of this investigation. Quarterly and Semi-annual ground water monitoring has been conducted at the site since 1999 with an established flow towards the southwest and Lake Union.

6.3 HYDROGEOLOGY

Ground water in the northern portion of the site is present within a discontinuous, semi-confined, water-bearing unit within the upper portion of the till. South of Northlake Way, the aquifer is comprised of assorted fill materials and the recessional sand unit until it contacts with Lake

Union. Aquifer testing previously conducted at the site has indicated a sustained yield estimated at 2 gpm and ranging from 0.5 to 3 gpm (Foster and Wheeler, 1998). WDOE has determined that this shallow aquifer is unlikely to be a potential future source of drinking water based on aquifer testing (WDOE letter dated August 10, 1998).

7.0 ANALYTICAL RESULTS

7.1 SOIL

Site-specific CULs for soil and ground water were established in the CAP for the site (Foster Wheeler Environmental, 1998). These CULs are based upon estimates of the highest beneficial use and reasonable amount of exposure expected to occur under current and future site conditions.

For benzene and cPAHs, MTCA Method C Industrial soil CULs were established for the site, while the CULs for metals in soil were based on Method A CULs.

Each of the soil samples submitted for analysis was analyzed for gasoline-, diesel- and heavy oilrange hydrocarbons and BTEX. Soil sample analytical results for these constituents are summarized in **Table 1** and the associated laboratory analytical reports are included in **Appendix B**. **Figure 5** depicts the resulting analytical data for TPH as gasoline, diesel, heavy oils and benzene respectively. Results from the samples submitted for analyses indicate the following:

- Gasoline-range hydrocarbons at concentrations exceeding the site-specific cleanup level of 4,520 mg/kg were detected in the 16 foot bgs samples from borings P-1B and P-3 located in the gravel parking area.
- Neither Diesel nor Heavy Oil-range hydrocarbons were detected at concentrations exceeding the respective site-specific cleanup levels of 5,140 mg/kg and 5,780 mg/kg in any of the samples submitted for analysis.
- Benzene was not detected in any of the samples collected at a concentration exceeding the site-specific cleanup level of 4,530 mg/kg.

Although Toluene, Ethylbenzene and Xylenes were not included as chemicals of concern (COCs) for soil when the site-specific cleanup levels were developed, Ethylbenzene and Total Xylenes were detected in three of the samples submitted for analysis at concentrations exceeding the MTCA Method A Cleanup Standards.

Analytical results from sample P-2-15 collected for soil disposal characterization indicate:

• Chromium, lead and arsenic were detected but were not present at concentrations exceeding the site-specific cleanup levels (Mercury and cadmium were not present at concentrations at or above the laboratory detection limits).

• Napthalene (18.6 mg/kg), 1-methylnaphthalene (27.5 mg/kg) and 2-methylnaphthalene (31.1 mg/kg) were present at concentrations exceeding the site-specific cleanup level of 18 mg/kg.

Sample P-2-15 was the only sample collected during this investigation analyzed for metals or cPAHs.

8.0 EXTENT OF PETROLEUM IMPACT

The lateral extent of soil contamination is well defined by analytical results and field testing such as sheen, odors and headspace vapor screening results. Soil exceeding the site-specific CULs appears to be limited to a thin smear zone at approximately 14-19 feet bgs beneath the western end of the DOT lot parking area as evidence by the sampling results from borings P-1B, P-2, P-3 and P-6A. Gasoline-range hydrocarbon contamination above the site-specific CULs was detected in borings P-1B and P-3; while gasoline range hydrocarbons exceeding MTCA Method A CULs were also detected in borings P-2 and P-6A. These borings are generally located downgradient (southwest) from where the former tank truck loading rack in the southeast portion of the North Yard had been positioned (**Figure 5**). It is possible that impacted soil may be present at boring locations P-5 and P-9, but due to Geoprobe refusal, soil below 15 feet bgs, and representing the capillary fringe, could not be collected from these borings.

The vertical extent of the contamination is relatively thin with P-3 exceeding cleanup levels at 16 feet bgs but undetected at 14.5 feet and 19 feet bgs respectively. The vertical extent of identified impacted soils indicates that the petroleum hydrocarbon contamination is heaviest in the semi-confined aquifer above the till at the ground water table and capillary zone.

All the samples that exceeded the site-specific cleanup levels were located in the capillary zone of the semi-confined aquifer above the glacial till between 14-20 feet bgs.

9.0 CONCLUSIONS

The goal of this study was to determine the extent and possible source of impacted soil and ground water in the vicinity of monitor well MW-22. Petroleum impacted soils are primarily concentrated at the soil/ground water interface to the west of MW-22 and north of MW-15. The limited vertical extent of this contamination is likely due to transport along the water table from a source (loading racks) in the North Yard (**Figure 3**). The direction of the hydraulic gradient indicates that the underground transfer piping between the north and south yards is not acting as a source or preferential conduit for the contamination observed in well MW-22.

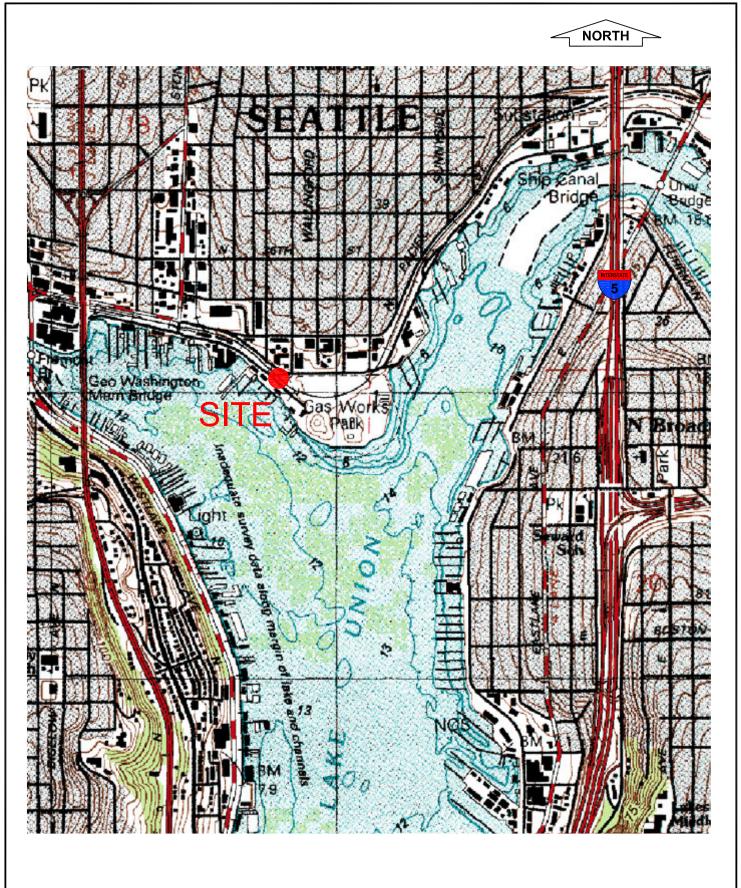
10.0 REFERENCES

Applied Geotechnology Inc., Draft Remedial Investigation / Feasibility Study, Facilities North Site, Seattle, WA, November, 1993

Foster Wheeler Environmental, *Estimate of Sustainable Well Yield and Slug Test Data, Former Chevron Bulk Terminal 100-1327 and Current King County Metro Transit Terminal, Seattle, WA*, June, 1998

Foster Wheeler Environmental, *Cleanup Level Development for the Former Chevron Bulk Terminal 100-1327 and Current King County Metro Transit Terminal, Seattle, WA, April, 1998*

TABLES


FIGURES

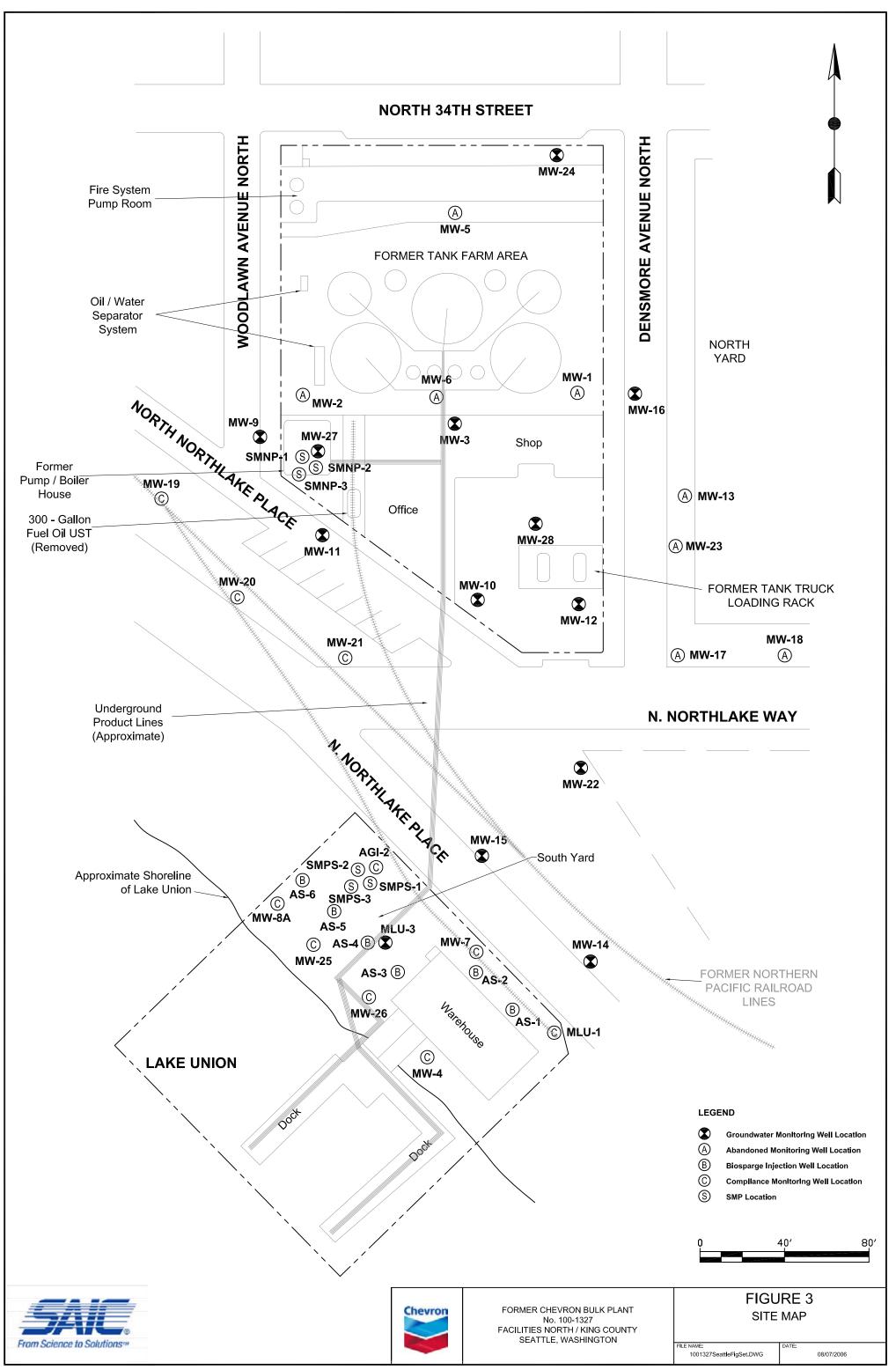
APPENDIX A

SOIL BORING COMPLETION LOGS

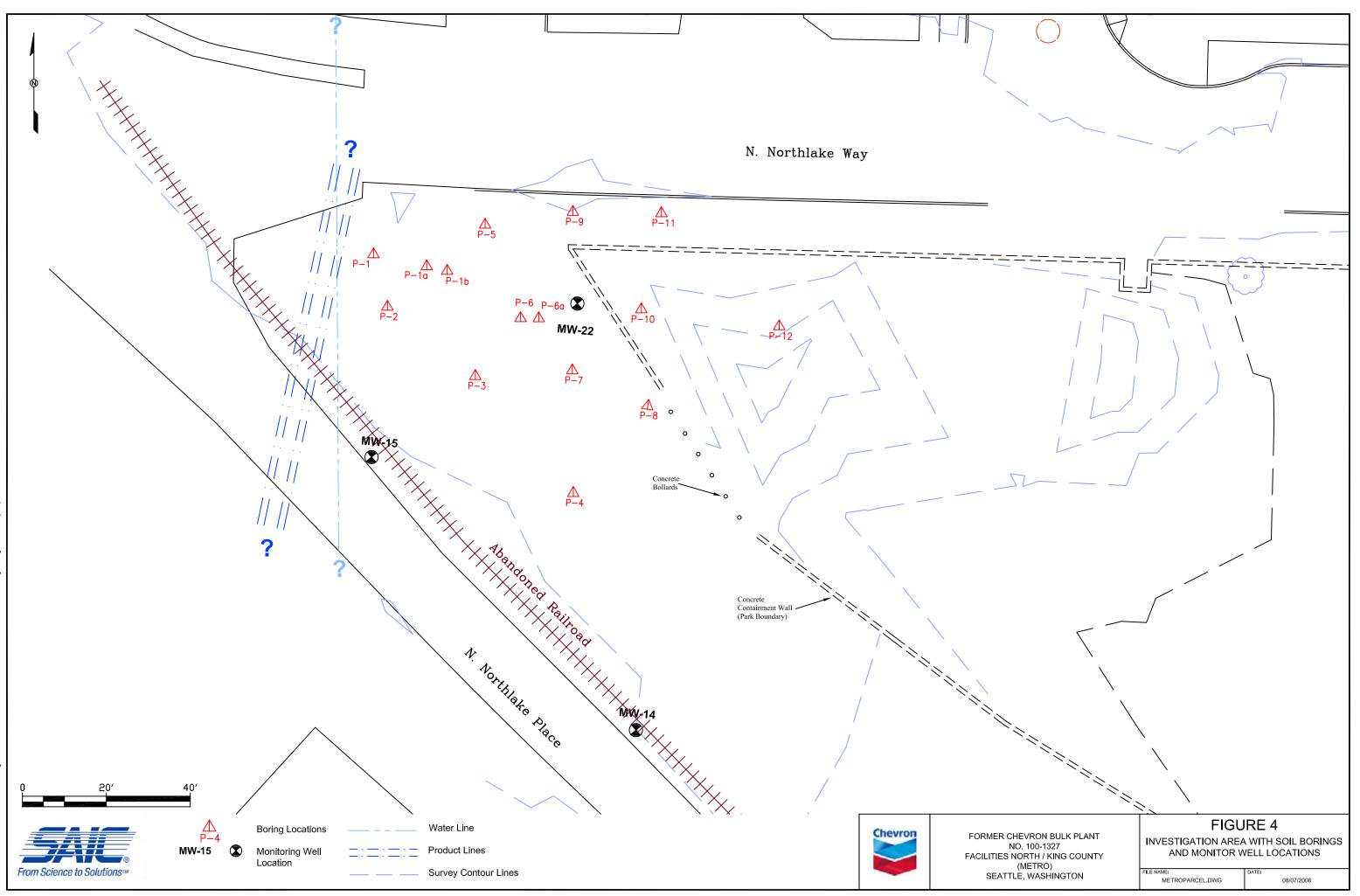
APPENDIX B

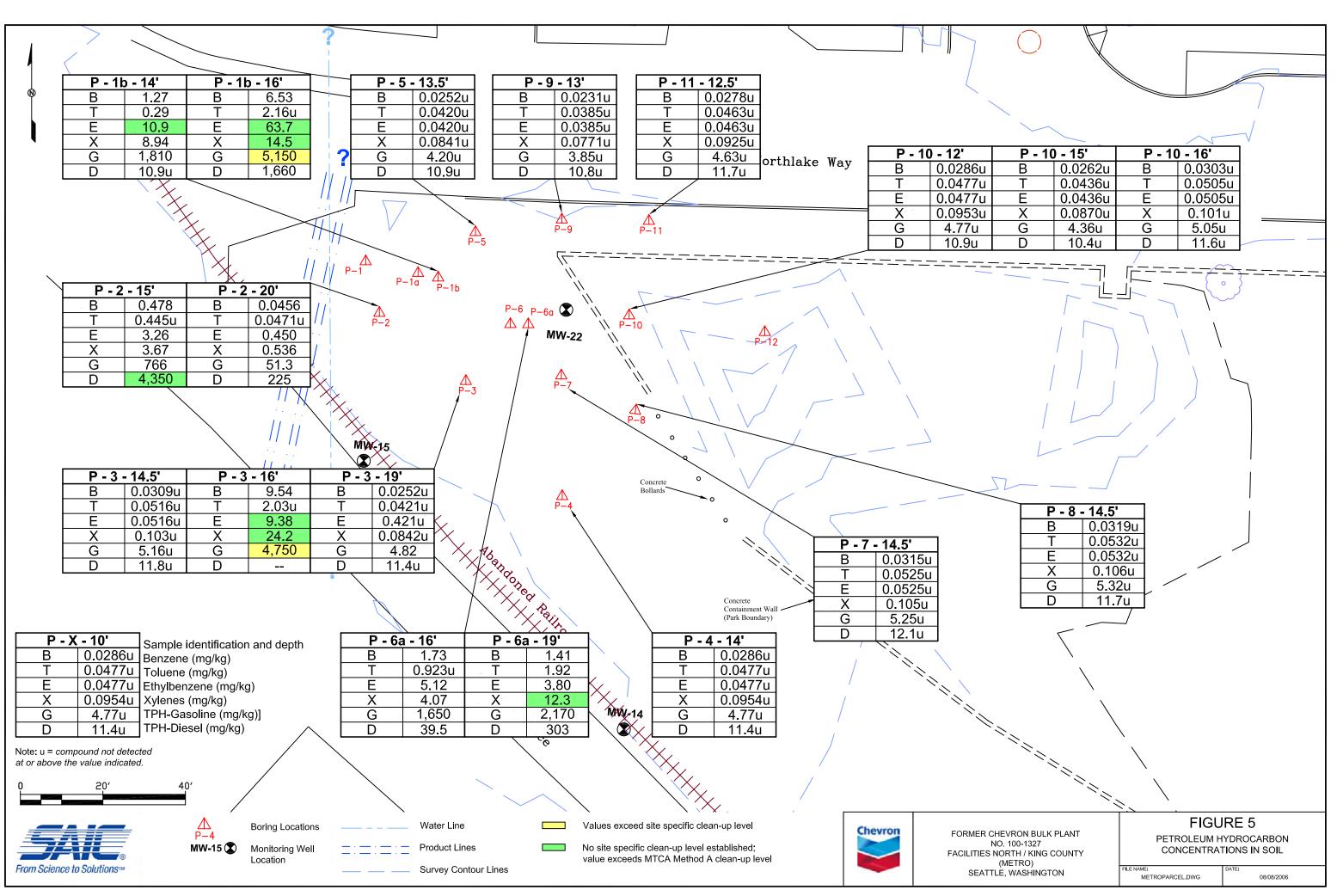
LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

FORMER CHEVRON BULK PLANT NO. 100-1327 FACILITIES NORTH / KING COUNTY (METRO) SEATTLE, WASHINGTON


FIGURE 1 VICINITY MAP

DATE:


FILE NAME: 10013275SeattleFigSetApr04_bdk.dwg


08/07/2006

A 25:20 - 30\80\80 megan portons with the state of the st

Table 1. Summary of Soil Analytical Data Results Former Chevron Facility #100-1327 1602 North Northlake Place Seattle, Washington

Sample ID	Sample Depth (feet)	Sample Date	Benzene ¹ (r	ng/kg)	Toluene (mg/kg)	1	Ethylbenze (mg/kg)		Xylene ¹ (m	g/kg)	Gasoline-Ran Hydrocarbons (mg/kg)	_	Diesel-Ra Hydrocarbo (mg/kg	ons ³	Heavy Oil-R Hydrocarbo (mg/kg)	ons ³
Direct Push and Ho	ollow Stem Auger S	amples														
P-1B-14	14	06/14/06	1.27		0.286		10.9		8.94		1,810		4,590		559	U
P-1B-16	16	06/14/06	6.53		2.16	U	63.7		14.5		5,150		1,660		282	U
P-2-15 ⁴	15	05/17/06	0.478		0.445	U	3.26		3.67		766		4,350		571	U
P-2-20	20	05/17/06	0.456		0.0471	U	0.450		0.536		51.3		225		29.4	U
P-3-14.5	14.5	06/12/06	0.0309	U	0.0516	С	0.0516	U	0.103	U	5.16	U	11.8	U	29.5	U
P-3-16	16	06/12/06	9.54		2.03	U	9.38		24.2		4,750					
P-3-19	19	06/12/06	0.0252	U	0.041	U	0.041	U	0.0842	U	4.82		11.4	U	28.4	U
P-4-14	14	06/12/06	0.0286	U	0.0477	U	0.0477	U	0.0U954		4.77	U	11.4	U	28.6	U
P-5-13.5	13.5	05/17/06	0.0252	U	0.042	U	0.042	U	0.0841	U	4.20	U	10.9	U	27.2	U
P-6A-16	16	06/12/06	1.73		0.923	U	5.12		4.07		1,650		39.5		27.7	U
P-6A-19	19	06/12/06	1.41		1.92		3.80		12.3		2,170		303		37.0	
P-7-14.5	14.5	06/13/06	0.0315	U	0.0525	U	0.0525	U	0.105	U	5.25	U	12.1	U	30.3	U
P-8-14.5	14.5	06/13/06	0.0319	U	0.0532	U	0.0532	U	0.106	U	5.32	U	11.7	U	29.3	U
P-9-13	13	05/17/06	0.0231	U	0.0385	U	0.385	U	0.771	U	3.85	U	10.8	U	26.9	U
P-10-12	12	06/14/06	0.0286	U	0.0477	С	0.0477	U	0.0953	U	4.77	С	10.6	U	26.5	U
P-10-15	15	06/14/06	0.0262	U	0.0436	U	0.0436	U	0.0872	U	4.36	U	10.4	U	25.9	U
P-10-16	16	06/14/06	0.0303	U	0.0505	U	0.0505	U	0.101	U	5.05	U	11.6	U	29.0	U
P-11-12.5	12.5	05/17/06	0.0278	U	0.0463	U	0.0463	U	0.0925	U	4.63	U	11.7	U	29.2	U

<u>Table 1.</u> Summary of Soil Analytical Data Results Former Chevron Facility #100-1327 1602 North Northlake Place Seattle, Washington

Sample ID	Sample Depth (feet)	Sample Date	Benzene ¹ (mg/	/kg)	Toluene ¹ (mg/kg)	I	Ethylbenzene ¹ (mg/kg)	Xylene ¹ (mg/kg)	Hyd	line-Range ocarbons ² mg/kg)		Diesel-Range Hydrocarbons ³ (mg/kg)	Heavy Oil- Hydrocarl (mg/k	bons ³
Duplicate Samples														
D-061206		06/12/06	1.70		0.443	U	1.64	1.27		623		254	28.4	U
Field Blank Sample	S													
FB-06/12/06		06/12/06	0.0300	U	0.0500	U	0.0500 U	0.100 U	5	.00	U			
FB-06/14/06		06/14/06	0.0300	U	0.0500	U	0.0500 U	0.100 U	5	.00	U			
Quality Assurance	Samples													
QA-051706		05/17/06	0.0300	U	0.0500	U	0.0500 U	0.100 U	5	.00	U			
QA-1		06/12/06	0.0300	U	0.0500	U	0.0500 U	0.100 U	5	.00	U			
QA-1		06/13/06	0.0300	U	0.0500	U	0.0500 U	0.100 U	5	.00	U			
QA-1		06/14/06	0.0300	U	0.0500	U	0.0500 U	0.100 U	5	.00	U		-	
Site Specific Soil C	leanup Levels		4,530		NA		NA	NA		4,520		5,140	5,780)

NOTES:

Bold highlight cells indicate the concentration exceeds the Site Specific Cleanup Level.

U = Analyte Not Detected at or Above the Reporting Limit; mg/kg = milligrams per kilogram; "--" = Not analyzed NA = Not Applicable

1 = BTEX analyzed by EPA 8021B. Collection method by EPA 5035.

2 = Gasoline-Range Hydrocarbons analyzed by Ecology Method NWTPH-Gx. Collection method by EPA 5035.

3 = Diesel- and heavy oil-range hydrocarbons analyzed by Ecology Method NWTPH-Dx ext. with Silica Gel Cleanup.

4 = Sample also analyzed for Hydrocarbon Identification (HCID) by Ecology Method NWTPH-HCID, carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270 SIM and total metals by EPA Method 6000/7000 series. Diesel-Range hydrocarbons were detected using the HCID method. Arsenic (1.37 mg/kg), Chromium (35.4 mg/kg) and Lead (16.6 mg/kg) were detected in the sample. Anthracene (5.53 mg/kg), Fluorene (4.07 mg/kg), **1-Methylnaphthalene (27.5 mg/kg), 2-Methylnaphthalene (31.1 mg/kg), Naphthalene (18.6 mg/kg)**, Phenanthrene (5.69 mg/kg) and Pyrene (0.457 mg/kg) were also detected in this soil sample. All analytes listed above were detected at concentrations less than the site specific cleanup levels for soil with the exception of total naphthalenes (77.2 mg/kg), including 1- and 2-methylnaphthalene. The cleanup level for total naphthalenes is 18 mg/kg.

	<i>–</i> 170	1	SOIL E	SORIN	NGL	.OG			BORING No: P-1A PAGE 1 of 2		
CLIENT: Ch DATE: 05/1	: Seattle, WA evron EMC		DRILLE DRILL M SAMPL HOLE D HOLE D	METHO E METH DIAMET	D: Air HOD: I ER: 1	Knife Hand 0 inch	Auger		WELL DIAMETER: n/a WELL DEPTH: n/a WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a CASING ELEVATION: n/a		
									CASING ELEVATION: h/a		
Moisture Content	Blow Counts	Analytica Sample Number	FID (ppm)	Water Level	Recovery Sau	Interval a	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backf Materi	
								GP	GRAVEL Fill (6 inches). Air knife to 8 feet below	Grave	el
Dry Moist			0.9				$ \begin{array}{c} $	SP/SW	ground surface. Dark grayish-black SAND with fine gravel. Fragments of lamp black?/pitch present (fill). Chunks of concrete blocks present (fill). Dark grayish-brown SAND with fine gravel. No sheen, no odor. P-1 completed at 5 feet due to refusal (encountered a 6-inch concrete pipe and 1-inch steel pipe).		Bentonite Chips Concrete
							9				

5	ДД		SOIL B	ORIN	NG L	.0G			BORING No: P-1B PAGE 1 of 2	
PROJECT: 1 LOCATION: CLIENT: Ch DATE: 06/12 LOGGED B	Seattle, WA evron EMC 4/06		SAMPLE	IETHO E METH IAMET	D: Air HOD: ER: 8	Knife/ Hand . .25-to	ı, Inc. /Hollow St Auger/D& 10 inches	M Samp	WELL DIAMETER: n/a er WELL DEPTH: n/a	
Moisture Content	Blow Counts	Analytical Sample	FID (ppm)	Water Level	Recovery Sa	Interval ald	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry		Number		Wat	Rec	Inte	DEI	GP	GRAVEL fill (6 inches). Air knife to 8 feet below	Gravel
			0.0				1 2 	SW	ground surface. Dark brown fine to coarse SAND with organics and trace gravel and silt. Slight sheen, no hydrocarbon odor.	Concrete
			0.0				3 4 5		Dark yellowish-brown medium sand with trace gravel and silt. Slight sheen, no hydrocarbon odor. Grades to brown with more coarse sand.	
Moist			0.0				6 7 	SP	Grades to grayish brown color.	Bentonite Chips
			0.0				8 9 10 11		Grades to dark brown medium to coarse SAND with occassional gravel and trace silt. Slight sheen, slight hydrocarbon odor.	

A							BORING No: P-1B PAGE 2 of 2 WELL DIAMETER: p/2	
	etro)	DRILL N SAMPLI HOLE D	METHOD E METH PIAMETE): Air K OD: Hi ER: 8.2	(nife/Hollow St and Auger/D& 5-to 10 inches	M Sampl	er WELL DEPTH: n/a ler WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a	
							CASING ELEVATION: n/a	
Blow Counts	Analytical Sample Number	FID (ppm)	>		E)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
100/3"		10.5	\bigtriangledown			-	Same as above. Grades to blue-gray coarse SAND with trace gravel. Heavy sheen, strong hydrocarbon odor.	
100/4"	P-1B-14	3,617				SP	Grades to a gray color with occassional gravel.	Bootenite Chine
100/5"	P-1B-16	7,314				-	Heavy sheen, strong hydrocarbon odor.	
50/6"		2,500						
	INDO/5"	Do-1327 eattle, WA (Metro) ron EMC 6 Simon Kline Blow Counts Analytical Sample Number 100/3" 100/4" P-1B-14	D-1327 DRILLE eattle, WA (Metro) DRILL N ron EMC SAMPLI 6 HOLE D Simon Kline HOLE D Blow Analytical Sample Q 100/3" 10.5 100/4" P-1B-14 3,617 100/5" P-1B-16 7,314	0-1327 eattle, WA (Metro) ron EMC Simon Kline DRILLER: Casc DRILL METHOL SAMPLE METH HOLE DIAMETE HOLE DEPTH: Blow Counts Analytical Sample Number Image: Counts of the second Diameter of t	0-1327 eattle, WA (Metro) DRILLER: Cascade Dr ron EMC 6 SAMPLE METHOD: Air K Simon Kline HOLE DIAMETER: 8.2 Blow Counts Analytical Sample Number Image: Counts of the second	eattle, WA (Metro) DRILL METHOD: Air Knife/Hollow Si ron EMC SAMPLE METHOD: Hand Auger/D8 6 HOLE DIAMETER: 8.25-to 10 inches Simon Kline HOLE DEPTH: 18 feet Blow Analytical Sample Image: Sample Sample Sample Image: Sample Sampl	D-1327 Battle, WA (Metro) ron EMC Sample Simon Kline Blow Counts Analytical Sample Number 100/3" P-1B-14 100/5" P-1B-16 Counts DRILLER: Cascade Drilling, Inc. DRILLMETHOD: Air Knife/Hollow Stem Aug SAMPLE METHOD: Hand Auger/D&M Samp HOLE DIAMETER: 8.25-to 10 inches HOLE DEPTH: 18 feet 100/3" 10.5 Methods 100/4" P-1B-14 100/4" P-1B-16 Counts 100/5" P-1B-16 Counts DRILLER: Cascade Drilling, Inc. DRILLMETHOD: Air Knife/Hollow Stem Aug SAMPLE METHOD: Hand Auger/D&M Samp HOLE DIAMETER: 8.25-to 10 inches Sample 100/5" P-1B-16 Counts 100/5" P-1B-16 Counts 100/5" P-1B-16 Counts 100/5" P-1B-16 Counts	PAGE 2 of 2 Delacy PAGE 2 of 2 Delacy DRILLER: Cascade Drilling, Inc. WELL DAMETER: - In/a DRILL METHOD: Air Kafelvialow Sam Auger WELL DAMETER: - In/a Samme HOLE DEPTH: 0: Hand Auger/DAM Sampler WELL DAMETER: - In/a HOLE DEPTH: 10: Hand Auger/DAMES manyler WELL CASING: n/a HOLE DEPTH: 10: Hand Auger/DAMES manyler WELL CASING: n/a HOLE DEPTH: 10: fair dayser/DAMES FILTER PACK: n/a HOLE DEPTH: 10: fair dayser/DAMES FILTER PACK: n/a Blow Analytical Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. 100/3" Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. 100/3" Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. 100/3" Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. 100/3" Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. 100/4" P-1B-14 3,617 Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. 100/4" P-1B-16 7,314 Image: Cascade Drilling, Inc. Image: Cascade Drilling, Inc. 100/5" P-1B-16 7,314 Image: Cascade Dril

SOIL CLASSIFICATION GRAPHIC SYMBOLS

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

PROJECT: 1 LOCATION: CLIENT: Che DATE: 05/17 LOGGED BY	Seattle, WA evron EMC 7/06		SAMPLE	R: Caso IETHOI E METH IAMET	cade [D: Air HOD: ER: 1	Drilling Knife Hand .5 to 1			BORING No: P-2 PAGE 1 of 2 WELL DIAMETER: n/a WELL DEPTH: n/a WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a	
									CASING ELEVATION: n/a	
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sa	Interval a	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry							_	GP	GRAVEL fill (6 inches). Air knife to 8 feet below	Gravel
Moist			1.1					SP/G P	Grades to a more reddish color.	Concrete
			0.2					SP/S M/G P	Yellowish-brown coarse SAND with fine to medium sand and gravel, trace silt, no sheen and no hydrocarbon odor. Reddish-brown fine to coarse SAND with silt and occassional gravel. Wood chips present. Slight sheen, no hydrocarbon odor.	Bentonite Chips
NOTES:							 11		One inch layer of black sand at 10.5 feet. Grades to gray color. No sheen, no hydrocarbon odor.	

PROJECT: 10		®	DRILLE	R: Cas	cade [Drillin	g, Inc.		BORING No: P-2 PAGE 2 of 2 WELL DIAMETER: n/a WELL DEPTH: n/a				
CLIENT: Chev DATE: 05/17/0 LOGGED BY:	06	eiro)	SAMPLI	E MET	HOD: TER: 1	Hand .5 to 7	/Direct Pus Auger/Dua 10 inches	r/Dual-Tube Sampler WELL CASING: n/a					
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery	Interval	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material			
Moist			3.7	\bigtriangledown			12	sw/	Gray fine to coarse SAND with gravel. No sheen, no hydrocarbon odor.				
Wet		P-2-15	314 1,740				14 15 	GP	Grades to heavy sheen and strong hydrocarbon odor. Interbedded silt and sand layers from 15 to 15.5 feet.				
							16 17		Gray SAND with silt and occassional gravel.	Ċ			
Moist							18	SP					
Wet		P-2-20	86.2				20						
							20 21 22 		at 20 feet (field observations indicate refusal due to h				

SOIL CLASSIFICATION GRAPHIC SYMBOLS

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

5	AI		SOIL B	ORIN	NG L	.0G			BORING No: P-3 PAGE 1 of 2	
PROJECT: 1 LOCATION: CLIENT: Chi DATE: 06/12	Seattle, WA evron EMC	(Metro)	SAMPLE	IETHO E METH	D: Air IOD:	Knife Hand	g, Inc. /Hollow Si Auger/D& 10 inches	M Samp	WELL DIAMETER: n/a er WELL DEPTH: n/a	
LOGGED B	r: Simon Kli	ine	HOLE D	EPTH:	21 fe	et			FILTER PACK: n/a CASING ELEVATION: n/a	
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery S	Interval a	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry								GP	GRAVEL fill (6 inches). Air knife to 8 feet below ground surface.	Gravel
			0.0					SW/ GP	Dark brown fine to coarse SAND with gravel, coal dust fragments. Slight sheen, no hydrocarbon odor.	Concrete
Moist			0.0					SW	Yellowish-brown fine to coarse SAND with occassional gravel. Decayed wood present. Slight sheen, no hydrocarbon odor. Grades to less decayed wood and trace silt.	e Chips
			0.0				7 8 9	SP	Yellowish-brown medium to coarse SAND with occassional gravel. Slight sheen, no hydrocarbon odor.	Bentonite Chips
	8 17 20		0.0				 10	sw/	Yellowish-brown medium to coarse SAND with gravel. Decayed wood at 9.5 feet. Slight sheen, no hydrocarbon odor.	
	19 25		0.0				 11	GP	Grades to larger gravel and no sheen.	
NOTES:								•	·	

LIENT: Chev ATE: 06/12/0	eattle, WA (Mo vron EMC	etro)	SAMPLI	IETHO E METH NAMET	D: Air HOD: ER: 8	Knife Hand .25 to	g, Inc. #Hollow St Auger/D& 0 10 inches	M Sampl					
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sau	Interval ald	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfil Materia			
Moist	29 24 29		5.7				 12	SW/ GP	Yellowish-brown coarse SAND with occassional gravel. No hydrocarbon odor, no sheen.				
	30 7		166	\bigtriangledown				SP					
Wet	18 25 28	P-3-14.5	747				14 — — 15 —	SW	Gray fine to coarse SAND with occassional gravel.				
	30 50/6"	P-3-16	31.5				 16		Grades to increasing fine gravel. Moderate sheen, moderate hydrocarbon odor.				
	19 29 43						 17 		Grayish-brown medium to coarse SAND. No sheen, slight hydrocarbon odor.				
	19 30 50/6"	P-3-19	31.6				18	SP	Grades to coarse sand.				
Moist	25 33 50/6"						 20		Heaving sands from 19.5 to 21 feet.				
							21 — 		P-3 completed at 21 feet.				

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

	411	•	SOIL B	ORIN	NG L	.0G			BORING No: P-4 PAGE 1 of 2	
PROJECT: LOCATION: CLIENT: Ch DATE: 06/12 LOGGED B	Seattle, WA evron EMC 2/06		SAMPL	IETHO E METH NAMET	D: Air HOD: ER: 8	r Knife Hand 3.25 to	Hollow S	tem Auger &M Sampler s	WELL DIAMETER: n/a WELL DEPTH: n/a WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a CASING ELEVATION: n/a	
									CASING ELEVATION IVa	
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery g	Interval a	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry								GP	GRAVEL fill (6 inches). Air knife to 8 feet below ground surface.	Gravel
Moist			0.1					SP/SW	Yellowish-brown SAND with occassional fine to coarse gravel. Slight sheen, no odor. Grades to a more reddish color. Cobbles present. Yellowish-brown SAND with fine to coarse gravel. Slight sheen, no hydrocarbon odor.	Bentonite Chips
	10 23		0.0				9	SP/GP	Grades to brown gravelly sand with iron staining. No hydrocarbon odor, very slight sheen	
	17		0.5				10			
	17		0.5						Grades to decreasing gravel and trace silt.	

CLIENT: Chev DATE: 06/12/0	eattle, WA (M /ron EMC	etro)	SAMPL	METHO E METI DIAMET	D: Air HOD: I ER: 8	Knife Hand .25 to	g, Inc. /Hollow Ste Auger/D&I 10 inches	M Sample	BORING No: P-4 PAGE 2 of 2 WELL DIAMETER: n/a WELL DEPTH: n/a WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a CASING ELEVATION: n/a		
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sau	Interval a	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material	
Moist	20 24 18 25		10.1				12 13	SP/ GP	No hydrocarbon odor, no sheen		
Wet	33 17 17	P-4-14	4.2	\bigtriangledown			 14 		Brown SAND and trace silt. Slight sheen, no hydrocarbon odor.		
	28 18 26		5.3				15 — — — 16 —		Grades to trace gravel.		
	27 25		7.5				 17	SP/S W			
Moist	50/6" 31 50/4"		14.4				18		Grades to small cobbles and no sheen.		
	22		11.8				19 20				
	50						21		P-4 completed at 21 feet.		

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

PROJECT: LOCATION: CLIENT: Ch DATE: 05/1 LOGGED B	Seattle, WA evron EMC 7/06		SAMPLE	IETHO E METH IAMET	D: Air IOD: ER: 1	Knife/ Hand . .5 to 1	ı, Inc. /Direct Pu Auger/Du 0 inches		PAGE 1 of 2 WELL DIAMETER: n/a WELL DEPTH: n/a WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a CASING ELEVATION: n/a	
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery S	Interval	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry			0.1					GP SW/ GP	GRAVEL fill (6 inches). Air knife to 8 feet below ground surface. Dark yellowish-brown fine to coarse SAND, with gravel. No sheen, no hydrocarbon odor.	Gravel
Moist			0.5					SW	Grades to dark a yellowish-brown color with gravel lenses. No sheen, no hydrocarbon odor.	Bentonite Chips

5	AIC		SOIL E	BORII	NG L	.0G	i		BORING No: P-5 PAGE 2 of 2	
CLIENT: Che DATE: 05/17	Seattle, WA (M vron EMC	letro)	SAMPL	METHC .E MET DIAMET)D: Air HOD: FER: 1	[·] Knife Hand .5 to	g, Inc. e/Direct Pus I Auger/Dua 10 inches		WELL DIAMETER: n/a WELL DEPTH: n/a Sampler WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a	
									CASING ELEVATION: n/a	
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sar	Interval aldu	(Ŧ	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Moist							12 — 13 —		Same as above. Grades to brown with rust-colored mottling/banding at 12 feet.	Bentonite Chips
Wet		P-5-13.5	0.9						TD at 14 feet with field observations indicating	
NOTES:									refusal due to heaving sands.	

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

	AA		SOIL B	ORI	NG L	.0G			BORING No: P-6 PAGE 1 of 2	
PROJECT: LOCATION: CLIENT: Ch DATE: 05/1 LOGGED B	Seattle, WA evron EMC 8/06		SAMPLE	IETHO E METH NAMET	D: Air HOD: ER: 1	Knife/ Hand . .5 to 1	ı, Inc. /Direct Pu Auger/Du 0 inches		WELL DIAMETER: n/a WELL DEPTH: n/a	
				r —		.		r	 Т	
Moisture Content		Analytical Sample Number	FID (ppm)	Water Level	Recovery S	Interval	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry								GP	GRAVEL fill (6 inches). Air knife to 8 feet below ground surface.	Gravel
Moist			0.4 0.6 0.2 1.6					SP/G P	Yellowish-brown coarse SAND with occassional gravel. No sheen, no odor. Grades to medium to coarse sand. Yellowish-brown medium to coarse SAND with gravel. Slight sheen, no odor. Grades to trace silt. Increased gravel content.	Bentonite Chips
NOTES:			0.0				10 — — — 11 —			

5	AIC		SOIL B	ORII	NG L	.OG			BORING No: P-6 PAGE 2 of 2	
PROJECT: 10 LOCATION: S CLIENT: Chev DATE: 05/18/ LOGGED BY:	eattle, WA (M vron EMC 06	etro)		NETHC E MET	DD: Air HOD: FER: 1	Knife/I Hand A .5 to 10	Direct Pus		WELL SCREEN: n/a FILTER PACK: n/a	
									CASING ELEVATION: n/a	
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sa	Interval	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Moist			0.0						No sample due to 4-foot length sampling rod stuck in boring. P-6 completed at 15 feet. Sampling rods stuck and abandoned in boring from 12 to 15 feet (gravel refusal).	Bentonite Chips United Sampler Sampler Sampler
							16 17 18 18 19			
NOTES:							20 21 22			

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

PROJECT: 100- LOCATION: Sea									PAGE 1 of 2	
CLIENT: Chevro	attle, WA	(Metro)		IETHOI	D: Air	Knife/	ı, Inc. /Hollow St Auger/D&		WELL DIAMETER: n/a er WELL DEPTH: n/a	
DATE: 06/12/06 LOGGED BY: \$		ne		IAMET	ER: 8	.25 to	10 inches		WELL SCREEN: n/a FILTER PACK: n/a CASING ELEVATION: n/a	
	I					. 1				
	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery S	Interval	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry									GRAVEL fill (6 inches). Air knife to 8 feet below ground surface.	Gravel
							1		Yellowish-brown GRAVEL with coarse sand and organic wood debris. No sheen, no hydrocarbon odor.	Đ
							2			Concrete
			0.0				- 			
							3			
			0.0				4	GP	slight sheen, no hydrocarbon odor.	
Moist			0.0				6		Increasing fine to medium sand.	sdir
							7—			Bentonite Chips
										Ber
			0.0				8		Dark brown fine to coarse SAND occassional fine gravel and trace silt. Slight sheen, no odor.	
	22						9		Grades to brownish-gray	
	50/6"		0.0				10	SW		
	21		0.0							
	30						11 —			

5	ĄÆ	—	SOIL E	BORI	NG L	.0G			BORING No: P-6A PAGE 2 of 2			
CLIENT: Chev DATE: 06/12/0	eattle, WA (M	etro)	SAMPL	VETHO E METI DIAMET	D: Air HOD: I ER: 8	Knife/ Hand /	, Inc. Hollow Ste Auger/D&I 10 inches	VI Sampl				
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Recovery	Interval aldu	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material		
Moist	35 100/5"							SP	No Recovery from 12 to 13 feet.			
Wet	50/2"		23	\bigtriangledown				0.14	Olive brown fine to coarse SAND with trace silt. No sheen, slight hydrocarbon odor.			
	20 23		98				15	SW				
	40 21	P-6A-16.5	17.4				16 — — — 17 —		Grades to a dark gray color with a moderate sheen and moderate hydrocarbon odor.			
	50/6"						 18	SP	Dark gray coarse SAND.			
	33 50/6"						 19					
Moist		P-6A-19	7,617				20		Greenish-brown, mottled sandy SILT (Till) with occassional gravel, no sheen, no hydrocabon odor. No Recovery from 19.5 to 21 feet.			
	49 50/2"		262.3				21 — — 22 —	ML				
OTES:									P-6A completed at 22.5 feet.			

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

	®		ORI					BORING No: P-7 PAGE 1 of 2	
Seattle, WA evron EMC 2/06		drill M Sample Hole D	IETHO E METH IAMET	D: Air HOD: ER: 8	Knife/ Hand .25 to	/Hollow St Auger/D&	M Sampl	WELL DIAMETER: n/a r WELL DEPTH: n/a	
Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sa	Interval aldu	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
		0.0					GP SW	GRAVEL fill (6 inches). Air knife to 8 feet below ground surface. Yellowish-brown fine to coarse SAND with gravel. Slight sheen, no hydrocarbon odor.	Gravel
		0.0						Brown coarse SAND with trace gravel. Slight sheen, no hydrocarbon odor.	
		0.3					SP	Same as above but with increasing gravel	Bentonite Chips
		0.7				8			
19 50 17 34 19		0.0				9 10 11	sw	Yellowish-brown fine to coarse SAND with gravel. Slight sheen, no hydrocarbon odor.	
	Py: Simon Kli Blow Counts 19 50 17 34	E Seattle, WA (Metro) Nevron EMC 2/06 Y: Simon Kline Blow Counts Analytical Sample Number - - - - - - - - - - - - -	Eseattle, WA (Metro) PRILL M SAMPLE 2/06 Y: Simon Kline HOLE D HOLE D H	E Seattle, WA (Metro) Revron EMC 2/06 Y: Simon Kline Blow Counts Analytical Sample Number 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Seattle, WA (Metro) DRILL METHOD: Air Nevron EMC SAMPLE METHOD: 2/06 HOLE DIAMETER: 8 Y: Simon Kline HOLE DEPTH: 22 fer Blow Analytical Sample Number Image: Control of the second	Seattle, WA (Metro) DRILL METHOD: Air Knife, Biow Analytical Sample Blow Analytical Image: Sample and the same and th	Seattle, WA (Metro) DRILL METHOD: Air Knife/Hollow St Iewron EMC SAMPLE METHOD: Hand Auger/D& Z06 HOLE DIAMETER: 8.25 to 10 inches Y: Simon Kline HOLE DEPTH: 22 feet Blow Analytical Sample Number Image: Construction of the standard	Seattle, WA (Metro) Everon EMC SAMPLE METHOD: Air Knife/Hollow Stem Auge SAMPLE METHOD: Hand Auger/D&M Sampl HOLE DIAMETER: 8.25 to 10 inches HOLE DEPTH: 22 feet Blow Analytical image: state inchese in	10:137 DRILLER (Cascale Dolling, Inc. WELL DAMETER: - n/a Seates WA (More) DRILLER (Cascale Dolling, Inc. WELL DETH: - n/a seates WA (More) DRILLER METHOD: An online diagenDAM Sampler WELL CARTER: - n/a word BLOC HOLE DEPTH: - 22 feet WELL CARTER: - n/a Y: Senon Kline HOLE DEPTH: - 22 feet FLTER PACK - n/a Blow Analytical 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0 0.0 11 0.0 0.0 0.0 0.0 13 0.0 0.0 0.0 0.0 14 0.0 0.0 0.0 0.0 14 0.0 0.0 0.0 0.0 14 0.0 0.0 0.0 0.0 0.0 15 0.0 0.0 0.0 0.0 0.0 0.0 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 0

CLIENT: Chev DATE: 06/12/0	eattle, WA (M	etro)	SAMPL	IETHO E METI DIAMET	D: Air HOD: ER: 8	Knife Hand .25 to	g, Inc. /Hollow Str Auger/D&I 10 inches			
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sa	Interval aldu	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Moist	26 30 40 13		0.0 5				 12 13	sw	Interbedded silt layers to 13.5 feet.	
Wet	13 12 18 36	P-7-14.5	2.5	\bigtriangledown		_	14 <u> </u>		Grades to dark olive-brown color and trace gravel, no hydrocarbon odor, very slight sheen	
Moist	50/6" 26 50/4"		1.7 19.5				16 17 		Dark olive-brown medium to coarse SAND with occassional gravel. Slight sheen, no hydrocarbon odor.	
Wet	16 50/5.5"		92.7				18 19 20	SP	Grades to fine to medium sand with gravel. Slight sheen, no hydrocarbon odor.	
	40 50/2"						21	ML	Sandy SILT (Till). No hydrocarbon odor, no sheen. P-7 completed at 22 feet.	

MAJOR DIVISIONS	SYM	BOLS		TYP	ICAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels o	r gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels o	r gravel-sand mix	ktures, little or no fi	nes
	GM		Silty gr	ravels, gravel-sar	id-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or g	avelly sands, littl	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, l	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mi	xtures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-cla	y mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye plasticity	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to	medium plastici clays, lean	ty, gravelly clays, s clays	andy clays, silty
LL<50	OL		Organi	ic silts and organi	c silty clays of lo	w plasticity	
	MH		Inorgani	ic silts, micaceous	s or diatomaceou	s fine sandy or silt	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high (plasticity, fat clay	S	
LL>50	ОН		Organ	nic clays of mediu	m to high plastici	ty, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly o	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						

5	All		SOIL B	ORI	NG L	.OG			BORING No: P-8	
PROJECT: 1	100-1327		DRILLEI	R: Case	cade l	Drilling	a. Inc		PAGE 1 of 2 WELL DIAMETER: n/a	
LOCATION:		(Metro)					/Hollow St	tem Auge		
CLIENT: Ch							Auger/D&			
DATE: 06/12							10 inches	6	WELL SCREEN: n/a	
LOGGED B	Y: Simon Kl	ine	HOLE D	EPTH:	19 fe	et			FILTER PACK: n/a	
									CASING ELEVATION: n/a	
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sar	Interval a	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry								GP	GRAVEL fill (6 inches). Air knife to 8 feet below ground surface.	Gravel
									Yellowish-brown mottled coarse SAND with	
								1	occassional fine to medium sand and gravel. Slight	
							1 —	1	sheen, no hydrocarbon odor.	e e
										Concrete
										jon in the second se
							2—			
			0.0					1		
								1		
							_			
							3—	SP		
									Same as above grading to a more medium-grained	
							4 —	-	sand.	
			0.0				_	-		
								1		
								1		
							5 —	1		
							_		Yellowish-brown fine to coarse SAND with	
Moist							6 —	1	occassional gravel. Slight sheen, no hydrocarbon odor.	
			0.0						0001.	Ŋ
								•		, Line and
								1		te
							7 —	1		toni
							_	1		Bentonite Chips
							8—			
			0.0				_	~~~		
								SW		
								1		
	20						9 —	1		
	20						-	1		
	25						_]		
							10 —	1		
	30		0.0				_	4		
	10							4		
	13						-	1		
	15		0.0				11 —		Same as sbove with grading to trace gravel.	
NOTES:										

LIENT: Chev ATE: 06/12/0	eattle, WA (Mo	etro)	PAGE 2 of 2 DRILLER: Cascade Drilling, Inc. WELL DIAMETER: n/a DRILL METHOD: Air Knife/Hollow Stem Auger WELL DEPTH: n/a SAMPLE METHOD: Hand Auger/D&M Sampler WELL CASING: n/a HOLE DIAMETER: 8.25 to 10 inches WELL SCREEN: n/a HOLE DEPTH: 19 feet FILTER PACK: n/a CASING ELEVATION: n/a									
Moisture Content	Blow Counts	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sau	Interval aldu	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material		
Moist	20 26 26 26		0.0						Same as above.			
	16 50/6" 23	P-8-14.5	0.0			-	 14 15	SW	Same as above with grading to trace silt. Same as above with grading to trace fine sand.			
Wet	50/4" 27 34 48		0.0 27.1					SP	Yellowish-brown coarse SAND with occassional gravel and trace silt. No sheen, no hydrocarbon odor.			
Moist	32 50/6"		2.4				18 — 19 —	ML	Pinkish-gray sandy SILT (Till). No sheen, no odor. P-8 completed at 19 feet.			
							20					
OTES:												

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

	6	OIL B	BORII						BORING No: P-9 PAGE 1 of 2	
PROJECT: 10 LOCATION: S CLIENT: Chev DATE: 05/17/ LOGGED BY:	eattle, WA (Metro vron EMC 06)			drili Samf Hole	PLE METH): Hand <i>J</i> OD: Har R: 1.25	ing, inc. Auger/Direct-Push nd Auger/Dual Tube Sampler to 10 inches	WELL DIAMETER: n/a WELL DEPTH: n/a WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a	
									CASING ELEVATION: n/a	
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Sar Kecovery	Interval aldu	DEPTH (ft.)	SOIL TYPE	LITHOL	OGY / DESCRIPTION	Backfill Material
Dry		0.6					SP	Yellowish-brown coarse no hydrocarbon odor.	e SAND with trace gravel. No sheen,	
		0.6				4	SP	Yellowish-brown fine to No sheen, no hydrocar	o coarse SAND with occasional gravel. bon odor .	Chips
Moist		0.6				6 7	SP	Same as above, No sh	neen, no hydrocarbon odor.	Bentonite Chips
		0.6				8 — 		Yellowish-brown silty fi No sheen, no hydrocar	ne to coarse SAND with trace gravel. bon odor.	
		0.8				10 11	SW	Grades to trace silt. No	o hydrocarbon odor, no sheen.	
NOTES:										

SA	S S	OIL E	BORI					BORING No: P-9 PAGE 2 of 2	
PROJECT: 100 LOCATION: Se CLIENT: Cheve DATE: 05/17/0 LOGGED BY: 5	eattle, WA (Metro) ron EMC 06				drili Sami Hole	PLE METH	D: Hand / IOD: Har ER: 1.25	Auger/Direct-Push WELL DEPTH: n/a Id Auger/Dual Tube Sampler WELL CASING: n/a to 10 inches WELL SCREEN: n/a FILTER PACK: n/a	
								CASING ELEVATION: n/a	
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sar	Interval ad	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Moist						 12	sw	Same as above. No hydrocarbon odor, no sheen. No recovery from 12 to 13 feet. Grayish-brown sitly fine to coarse SAND.	Chips
Wet	P-9-13	0.9	\bigtriangledown				SM		Bentonite Chips
NOTES:						15 16 17 17 18 19 19 20 21 22		P-9 completed at 15 feet bgs.	

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

PROJECT: 10 LOCATION: S CLIENT: Chev DATE: 06/14/(LOGGED BY:	0-1327 eattle, WA (Metro) vron EMC 06	OIL B			DRILL SAMF HOLE	ER: Casca METHOD PLE METHO DIAMETE DEPTH:	: Air Knif OD: Han R: 2 to 1	d Auger WELL DEPTH: n/a WELL CASING: n/a	WELL DIAMETER: n/a uger WELL DEPTH: n/a WELL CASING: n/a WELL SCREEN: n/a FILTER PACK: n/a		
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Recovery Recovery	Interval ald	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material		
Dry		3.8					TS SP	Top soil and sod. <u>Geogrid at 1 foot below surface</u> Dark brown SAND (Gasworks Formation) with trace silt. No hydrocarbon odor, no sheen.		Sand Top Soil O	
Maiat		0.0					0.04	Brownish-gray SAND with trace fine gravel. No hydrocarbon odor, slight sheen. Grades to light brown color and occassional gravel. No hydrocarbon odor, slight sheen		Bentonite Chips	
Moist		0.2				8	SW	very slight sheen, no hydrocarbon odor		Bento	
NOTES:		0.4				10 10 11		Increased gravel content. No odor, no sheen.			

S AI		SOIL E	BORIN	NG L	.OG			BORING No: P-10 PAGE 2 of 2	
PROJECT: 10 LOCATION: S CLIENT: Che ^a DATE: 06/14/ LOGGED BY:	Seattle, WA (Metro) vron EMC 06)			drili Sami Hole	LER: Casc L METHOE PLE METH E DIAMETE E DEPTH:	D: Air Kn OD: Har ER: 2 to	ife/Hand Auger WELL DEPTH: n/a nd Auger WELL CASING: n/a 10 inches WELL SCREEN: n/a FILTER PACK: n/a	
								CASING ELEVATION: n/a	
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Recovery S	Interval ald	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Moist	P-10-12	0.4					SW	Same as above. Grades to decreasing gravel. No hydrocarbon odor, very slight sheen.	Rentronite Chins
Wet	P-10-15 P-10-16	0.3 0.4	\bigtriangledown			15— — — 16—		Grades to increasing gravel. No hydrocarbon odor, no sheen.	
NOTES:								P-10 completed at 16 feet bgs	

MAJOR DIVISIONS	SYM	BOLS		TYPI	CAL SOIL	DESCRIPT	IONS
	GW		Well g	raded gravels or	gravel-sand mix	tures, little or no	fines
GRAVELS	GP		Poorly	graded gravels o	r gravel-sand mix	tures, little or no	fines
	GM		Silty gr	avels, gravel-san	d-silt mixtures		
	GC		Clayey	gravels, gravel-s	and-clay mixtures	S	
	SW		Well gr	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, lit	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mi	xtures		
	SC/SM		Clayey	sands with a tou	ch of gravel		
	SC		Clayey	r sands, sand-clay	y mixtures		
	ML			cla	ery fine sands, roo ayey silts with slig	ht plasticity	
SILTS & CLAYS	CL		Inorgan	ic clays of low to	medium plasticity clays, lean c		andy clays, silty
LL<50	OL		Organi	c silts and organi	c silty clays of low	v plasticity	
	MH		Inorgai	nic silts, micaceo	us or diatomaceo silts	us fine sandy or s	ilty soils elastic
SILTS & CLAYS	СН		Inorgai	nic clays of high p	blasticity, fat clays		
LL>50	ОН		Organi	c clays of mediun	n to high plasticity	r, organic silty cla	ys, organic silts
		7 [
HIGHLY ORGANIC SOILS	PT		Peat a	nd other highly or	ganic soils		
	C 11 1						
FILL MATERIAL	FILL						
	ASPHALT	-					

PROJECT: 10 LOCATION: S CLIENT: Chev DATE: 05/17/0 LOGGED BY:	0-1327 eattle, WA (Metro ron EMC 16	SOIL B	ORII		DRILL DRILL SAMF HOLE		: Air Kn OD: Har R: 2-inc	ife/Direct Push WELL DEPTH: n/a nd Auger/Dual Tube Sampler WELL CASING: n/a	
								CASING ELEVATION: n/a	
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sau	Interval aldu	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Dry		0.9					GP SP SP/ GP	Gravel surface to 6 inches. Air Knife to 8 feet below ground surface. Yellowish-brown medium to coarse SAND with trace gravel. No hydrocarbon odor, no sheen. Yellowish-brown medium to coarse SAND with gravel. No sheen, no hydrocarbon odor.	sq
Moist		0.9					SP	Yellowish-brown medium to coarse SAND with trace gravel. No hydrocarbon odor, no sheen.	Bentonite Chips
NOTES:		0.9				9 	ML	Grayish-brown fine to coarse sandy SILT with trace gravel. No hydrocarbon odor, no sheen.	

S A		SOIL E	BORIN	NG L	_OG			BORING No: P-11 PAGE 2 of 2	
PROJECT: 10 LOCATION: S CLIENT: Che ⁱ DATE: 05/17/ LOGGED BY:	Seattle, WA (Metro vron EMC 06)			drili Sami Hole): Air Kni OD: Han ER: 2-inc	fe/Direct Push WELL DEPTH: n/a nd Auger/Dual Tube Sampler WELL CASING: n/a h max. WELL SCREEN: n/a FILTER PACK: n/a	
								CASING ELEVATION: n/a	
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sar	Interval ad	E)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Moist Wet	P-11-12.5	0.8						Same as above. Grades to grayish-brown color. Brownish mottling at 13 feet. No hydrocarbon odor, no sheen. P-11 completed at 15 feet bgs.	Bentonite Chips
NOTES:						22			

MAJOR DIVISIONS	SYM	BOLS		TYPI	CAL SOIL	DESCRIPT	IONS
	GW		Well g	raded gravels or	gravel-sand mix	tures, little or no	fines
GRAVELS	GP		Poorly	graded gravels o	r gravel-sand mix	tures, little or no	fines
	GM		Silty gr	avels, gravel-san	d-silt mixtures		
	GC		Clayey	gravels, gravel-s	and-clay mixtures	S	
	SW		Well gr	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, lit	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mi	xtures		
	SC/SM		Clayey	sands with a tou	ch of gravel		
	SC		Clayey	r sands, sand-clay	y mixtures		
	ML			cla	ery fine sands, roo ayey silts with slig	ht plasticity	
SILTS & CLAYS	CL		Inorgan	ic clays of low to	medium plasticity clays, lean c		andy clays, silty
LL<50	OL		Organi	c silts and organi	c silty clays of low	v plasticity	
	MH		Inorgai	nic silts, micaceo	us or diatomaceo silts	us fine sandy or s	ilty soils elastic
SILTS & CLAYS	СН		Inorgai	nic clays of high p	blasticity, fat clays		
LL>50	ОН		Organi	c clays of mediun	n to high plasticity	r, organic silty cla	ys, organic silts
		7 [
HIGHLY ORGANIC SOILS	PT		Peat a	nd other highly or	ganic soils		
	C 11 1						
FILL MATERIAL	FILL						
	ASPHALT	-					

S ai		SOIL B	BORIN	۱G L	.0G			BORING No: P-12 PAGE 1 of 2	
PROJECT: 10 LOCATION: S CLIENT: Chev DATE: 06/14/C LOGGED BY:	eattle, WA (Metr rron EMC 06	0)			DRILI SAMF HOLE	LER: Casca METHOD PLE METHO DIAMETE DEPTH: 1	: Air Kni DD: Han R: 2 to 1	ng, Inc. WELL DIAMETER: n/a ie/Hand Auger WELL DEPTH: n/a d Auger WELL CASING: n/a	
			<u> </u>	T	. 1				
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sa	Interval aldu	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
						_	тѕ	Sod to 6 inches below ground surface.	Sod
							15	Geogrid at 9 inches below ground surface. Light brown silty fine to coarse SAND with a trace of fine gravel.	Top Soil
		2.9					SW	Grades to black color (Gasworks Formation). No hydrocarbon odor, no sheen. Increasing gravel content. No hydrocarbon odor, slight sheen.	Sand
Moist		5						Debris layer at 5.5 feet Very dark brown silty fine to medium SAND with	
		0.7					SM	organics and trace fine gravel. Light grayish-brown coarse SAND and occassional gravel, no silt. Slight sheen, hydrocarbonno odor.	Bentonite Chips
NOTES:		1.8				9 <u> </u>	SP	Grades to medium sand and trace gravel. Harder and more compact at 11.5 feet. No hydrocarbon odor, no sheen.	4

S AI		SOIL E	BORI					BORING No: P-12 PAGE 2 of 2	
PROJECT: 10 LOCATION: S CLIENT: Chev DATE: 06/14/0 LOGGED BY:	eattle, WA (Metro vron EMC 06)			drili Sami Hole	LER: Casca L METHOD PLE METHO E DIAMETE E DEPTH: 1	: Air Kni OD: Han R: 2 to 1	fe/Hand Auger WELL DEPTH: n/a d Auger WELL CASING: n/a 0 inches WELL SCREEN: n/a FILTER PACK: n/a	
								CASING ELEVATION: n/a	
Moisture Content	Analytical Sample Number	FID (ppm)	Water Level	Recovery Sar	Interval	DEPTH (ft.)	SOIL TYPE	LITHOLOGY / DESCRIPTION	Backfill Material
Moist							SP	Same as above. Refusal at 12 feet bgs. Cobbles up to 8 inches diameter.	Bentonite
								P-12 completed at 12 feet bgs (refusal due to cobbles).	
NOTES:									

MAJOR DIVISIONS	SYM	BOLS		TYP	CAL SOIL	DESCRIPT	IONS
	GW		Well g	graded gravels or	gravel-sand mi	xtures, little or no	fines
GRAVELS	GP		Poorly	graded gravels of	r gravel-sand mix	ttures, little or no fi	nes
	GM		Silty g	ravels, gravel-san	d-silt mixtures		
	GC		Clayey	y gravels, gravel-s	and-clay mixture	S	
	SW		Well g	raded sands or gr	avelly sands, little	e or no fines	
	SP		Poorly	graded sands or	gravelly sands, li	ttle or no fines	
SANDS	SM		Silty sa	ands, sand-silt mix	ktures		
	SC/SM		Clayey	y sands with a tou	ch of gravel		
	SC		Clayey	y sands, sand-clay	mixtures		
	ML		Inorga	anic silts and very	fine sands, rock silts with slight	flour, silty or claye	y sands or clayey
SILTS & CLAYS	CL		Inorga	nic clays of low to		y, gravelly clays, s	andy clays, silty
LL<50	OL		Organ	ic silts and organic			
			5	5	, , , , , , , , , , , , , , , , , , ,		
	MH		Inorgani	ic silts, micaceous	or diatomaceou:	s fine sandy or silty	y soils elastic silts
SILTS & CLAYS	СН		Inorga	nic clays of high p	lasticity, fat clays	3	
LL>50	ОН		Orgar	nic clays of mediur	n to high plastici	y, organic silty cla	ys, organic silts
HIGHLY ORGANIC SOILS	PT		Peat a	ind other highly or	ganic soils		
FILL MATERIAL	FILL						
	ASPHALT						
					1	1	

May 31, 2006

Peter Catterall SAIC - Bothell 18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011

RE: Metro #100-1327

Enclosed are the results of analyses for samples received by the laboratory on 05/17/06 16:35. The following list is a summary of the Work Orders contained in this report, generated on 05/31/06 17:17.

If you have any questions concerning this report, please feel free to contact me.

Work OrderProjectProjectNumberBPE0606Metro #100-1327100-1327

TestAmerica - Seattle, WA

Kamevich

Sandra Yakamavich, Project Manager

SAIC - Bothell

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

100-1327 Peter Catterall

Metro #100-1327

Report Created: 05/31/06 17:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP-11-12.5	BPE0606-01	Soil	05/17/06 10:35	05/17/06 16:35
P-9-13	BPE0606-02	Soil	05/17/06 11:25	05/17/06 16:35
P-5-13.5	BPE0606-03	Soil	05/17/06 12:00	05/17/06 16:35
P-2-15	BPE0606-04	Soil	05/17/06 13:55	05/17/06 16:35
P-2-20	BPE0606-05	Soil	05/17/06 13:55	05/17/06 16:35
QA-051706	BPE0606-06	Soil	05/17/06 08:00	05/17/06 16:35

TestAmerica - Seattle, WA

Lauramerich rdra

Sandra Yakamavich, Project Manager

SAIC - Bothell

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327 Peter Catterall

Report Created: 05/31/06 17:17

Hydrocarbon Identification by Washington DOE Method NWTPH-HCID

TestAmerica	-	Seattle,	WA
-------------	---	----------	----

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPE0606-04 (P-2-15)		Soil	l		Samp	led: 05/1	7/06 13:55			
Gx Range Hydrocarbons	NWTPH-HCID	ND		22.5	mg/kg dry	1x	6E20030	05/20/06 14:34	05/23/06 23:00	
Kerosene Range Hydrocarbons	"	ND		56.2	"	"	"		"	
Diesel Range Hydrocarbons	"	DET		56.2	"	"	"	"	"	
Insulating Oil Range Hydrocarbons	"	ND		112	"	"	"	"		
Heavy Fuel Oil Range Hydrocarbons	"	ND		112	"	"	"		"	
Lube Oil Range Hydrocarbons	"	ND		112	"	"	"	"	"	
Surrogate(s): 2-FBP			96.4%		50 -	150 %	"		"	
Octacosane			81.4%		50 -	150 %	"		"	

TestAmerica - Seattle, WA

auamerich

Sandra Yakamavich, Project Manager

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	05/31/06 17:17

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

			7	TestAmeric	ea - Seat	tle, WA					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPE0606-01	(SP-11-12.5)		Soi	il		Samp	oled: 05/	17/06 10:35			
Gasoline Range Hy	ydrocarbons	NWTPH-Gx/802 1B	ND		4.63	mg/kg dry	1x	6E19066	05/19/06 15:45	05/20/06 02:04	
Benzene		"	ND		0.0278	"	"	"		"	
Toluene		"	ND		0.0463	"	"	"		"	
Ethylbenzene		"	ND		0.0463	"	"	"		"	
Xylenes (total)		"	ND		0.0925	"	"	"	"	"	
Surrogate(s):	4-BFB (FID)			87.8%		50 -	- 150 %	"		"	
	4-BFB (PID)			106%		53 -	- 142 %	"		"	
BPE0606-02	(P-9-13)		Soi	il		Samp	oled: 05/	17/06 11:25			
Gasoline Range Hy	ydrocarbons	NWTPH-Gx/802 1B	ND		3.85	mg/kg dry	1x	6E19066	05/19/06 15:45	05/20/06 02:35	
Benzene		"	ND		0.0231	"	"	"	"	"	
Toluene		"	ND		0.0385	"	"	"		"	
Ethylbenzene		"	ND		0.0385	"	"	"		"	
Xylenes (total)		"	ND		0.0771	"	"	"	"	"	
Surrogate(s):	4-BFB (FID)			89.2%		50 -	- 150 %	"		"	
	4-BFB (PID)			106%		53 -	- 142 %	"		"	
BPE0606-03	(P-5-13.5)		Soi	il		Samp	oled: 05/	17/06 12:00			
Gasoline Range Hy	ydrocarbons	NWTPH-Gx/802 1B	ND		4.20	mg/kg dry	lx	6E19066	05/19/06 15:45	05/20/06 03:35	
Benzene		"	ND		0.0252	"	"	"		"	
Foluene		"	ND		0.0420	"	"	"	"	"	
Ethylbenzene		"	ND		0.0420	"	"	"	"	"	
Xylenes (total)		"	ND		0.0841	"	"	"	"	"	
Surrogate(s):	4-BFB (FID)			85.3%		50 -	- 150 %	"		"	
	4-BFB (PID)			105%		53 -	- 142 %	"		"	
BPE0606-04	(P-2-15)		Soi	il		Samp	oled: 05/	17/06 13:55			
Gasoline Range H	ydrocarbons	NWTPH-Gx/802 1B	766		44.5	mg/kg dry	10x	6E19066	05/19/06 15:45	05/19/06 18:09	
Benzene		"	0.478		0.267		"	"	"		
Toluene		"	ND		0.445		"	"	"	"	
Ethylbenzene		"	3.26		0.445		"	"	"		
									"		

Surrogate(s): 4-BFB (FID) 4-BFB (PID)

TestAmerica - Seattle, WA

Xylenes (total)

americh

"

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

..

"

..

lx

"

Page 4 of 21

0.890

"

"

50 - 150 %

53 - 142 %

3.67

128%

114%

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	05/31/06 17:17

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPE0606-05 (P-2-20)		Soi	Soil			Sampled: 05/17/06 13:55				
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	51.3		4.71	mg/kg dry	1x	6E19066	05/19/06 15:45	05/20/06 04:06	
Benzene	"	0.0456		0.0283	"	"	"	"		
Toluene	"	ND		0.0471	"	"	"			
Ethylbenzene	"	0.450		0.0471	"	"	"	"		
Xylenes (total)	"	0.536		0.0942	"	"	"	"		I-(
Surrogate(s): 4-BFB (FID)			122%		50 -	- 150 %	"		"	
4-BFB (PID)			117%		53 -	- 142 %	"		"	
BPE0606-06 (QA-051706)		Soil		Sampled: 05/17/06 08:00						
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.00	mg/kg wet	1x	6E19066	05/19/06 15:45	05/19/06 19:10	
Benzene	"	ND		0.0300	"	"	"	"		
Toluene	"	ND		0.0500	"	"	"			
Ethylbenzene	"	ND		0.0500	"	"			"	
Xylenes (total)	"	ND		0.100	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)		91.3%			50 -	50 - 150 % "			"	
4-BFB (PID)			106%		53 -	- 142 %	"		"	

TestAmerica - Seattle, WA

Sandra Javameirich Sandra Yakamavich, Project Manager

SAIC - Bothell 18912 North Creek Parkway S Bothell, WA/USA 98011	18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011				Metro # 100-1327 Peter Cat		27	Report Created: 05/31/06 17:17		
Se	mivolatile Petrolo		cts by N estAmeric			h Acio	d/Silica G	el Clean-ur)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPE0606-01 (SP-11-12.5)		Soi	1		Samp	led: 05/1	17/06 10:35			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		11.7 29.2	mg/kg dry "	1x "	6E20027 "	05/20/06 14:23	05/23/06 18:29	
Surrogate(s): 2-FBP Octacosane			88.1% 90.1%			150 % 150 %	"		"	
BPE0606-02 (P-9-13)		Soi	I							
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		10.8 26.9	mg/kg dry "	1x "	6E20027	05/20/06 14:23	05/23/06 18:58	
Surrogate(s): 2-FBP Octacosane			78.7% 81.4%			150 % 150 %	"		"	
BPE0606-03 (P-5-13.5)		Soi	l		Samp	led: 05/1	17/06 12:00			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		10.9 27.2	mg/kg dry "	1x "	6E20027 "	05/20/06 14:23	05/23/06 19:13	
Surrogate(s): 2-FBP Octacosane			68.4% 81.3%			150 % 150 %	"		"	
BPE0606-04 (P-2-15)		Soi	l		Samp	led: 05/1	17/06 13:55			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	4350 ND		228 571	mg/kg dry "	20x "	6E20027 "	05/20/06 14:23	05/24/06 12:02 "	
Surrogate(s): 2-FBP Octacosane			NR 70.6%		50 -	150 % 150 %	"		"	S-01
BPE0606-05 (P-2-20)		Soi			Samp	led: 05/1	17/06 13:55			

Diesel Range Hydr			225		11.7	mg/kg dry	1x	6E20027	05/20/06 14:23	05/23/06 20:03	
Lube Oil Range Hy	drocarbons	"	ND		29.4	"	"	"		"	
Surrogate(s):	2-FBP			118%		50 -	150%	"		"	
	Octacosane			88.2%		50 -	150 %	"		"	

Sandra Javameirich Sandra Yakamavich, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 6 of 21

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327

Peter Catterall

Report Created: 05/31/06 17:17

	Total Metals by EPA 6000/7000 Series Methods TestAmerica - Seattle, WA													
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes				
BPE0606-04 (P-2-15)		Soil			Samp	led: 05/1	7/06 13:55							
Arsenic	EPA 6020	1.37		0.490 n	ng/kg dry	1x	6E22004	05/22/06 08:30	05/24/06 23:11					
Chromium	"	35.4		0.490	"		"	"	"					
Mercury	EPA 7471A	ND		0.382	"	"	6E23027	05/23/06 10:50	05/23/06 12:45					
BPE0606-04RE1 (P-2-15)		Soil												
Cadmium	EPA 6020	ND		0.644 m	ng/kg dry	1x	6E25050	05/25/06 14:00	05/26/06 11:45					
Lead	"	16.6		0.644	"	"	"	"	"					

TestAmerica - Seattle, WA

Sandra Javamerich

Sandra Yakamavich, Project Manager

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	05/31/06 17:17

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPE0606-04 (P-2-15)		Soi	1		Samp	oled: 05/1	7/06 13:55			
Acenaphthene	8270C-SIM	ND		0.227	mg/kg dry	20x	6E20025	05/20/06 14:04	05/22/06 16:20	
Acenaphthylene	"	ND		0.227			"			
Anthracene	"	5.53		0.227	"		"	"		
Benzo (a) anthracene	"	ND		0.227	"	"	"	"	"	
Benzo (a) pyrene	"	ND		0.227	"	"	"		"	
Benzo (b) fluoranthene	"	ND		0.227	"		"			
Benzo (k) fluoranthene	"	ND		0.227	"		"			
Benzo (b & k) fluoranthene	"	ND		0.454	"	"	"			
Benzo (ghi) perylene	"	ND		0.227	"	"	"	"		
Chrysene	"	ND		0.227	"	"		"		
Dibenz (a,h) anthracene	"	ND		0.227	"	"		"		
Fluoranthene	"	ND		0.227	"	"	"	"		
Fluorene	"	4.07		0.227	"		"	"	"	
Indeno (1,2,3-cd) pyrene	"	ND		0.227	"	"	"	"		
I-Methylnaphthalene	"	27.5		0.227	"		"	"	"	
Naphthalene	"	18.6		0.227	"	"		"		
Phenanthrene	"	5.69		0.227	"	"		"		
Pyrene	"	0.457		0.227	"	"	"	"		
Surrogate(s): p-Terphenyl-d14			92.1%		50	- 147 %	"		"	

BPE0606-04RE1 (P-2-15)		Soil		Sai	npled: 05/	17/06 13:55			
2-Methylnaphthalene	8270C-SIM	31.1		0.567 mg/kg dry	50x	6E20025	05/20/06 14:04	05/23/06 13:19	
Surrogate(s): p-Terphenyl-d14		ł	88.4%		0 - 147 %	"		"	

TestAmerica - Seattle, WA

Sandra Jewamerich Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

100-1327 Peter Catterall

Metro #100-1327

Report Created: 05/31/06 17:17

	Conventional Chemistry Parameters by APHA/EPA Methods TestAmerica - Seattle, WA													
Analyte	Method	Method Result MDL* MRL Units Dil Batch Prepared Analyzed Notes												
BPE0606-04 (P-2-15)		Soi	l	Samp	17/06 13:55									
Hexavalent Chromium	EPA 7196A	EPA 7196A ND 1.0 mg/kg dry 1x 6E30074 05/30/06 10:22 05/31/06 16:23												

TestAmerica - Seattle, WA

Sandra Jacamerich

Sandra Yakamavich, Project Manager

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	05/31/06 17:17

		Physic	cal Paramet	ers by A estAmeric			EPA N	Iethods			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPE0606-01	(SP-11-12.5)		Soil			Samj	pled: 05/1	7/06 10:35			
Dry Weight		BSOPSPL003R0 8	86.9		1.00	%	1x	6E22039	05/22/06 13:49	05/23/06 00:00	
BPE0606-02	(P-9-13)		Soil			Samj	pled: 05/1	7/06 11:25			
Dry Weight		BSOPSPL003R0 8	91.3		1.00	%	1x	6E22039	05/22/06 13:49	05/23/06 00:00	
BPE0606-03	(P-5-13.5)		Soil			Samj	pled: 05/1	7/06 12:00			
Dry Weight		BSOPSPL003R0 8	93.2		1.00	%	1x	6E22039	05/22/06 13:49	05/23/06 00:00	
BPE0606-04	(P-2-15)		Soil			Samj	pled: 05/1	7/06 13:55			
Dry Weight		BSOPSPL003R0 8	87.3		1.00	%	1x	6E22039	05/22/06 13:49	05/23/06 00:00	
BPE0606-05	(P-2-20)		Soil			Samj	pled: 05/1	7/06 13:55			
Dry Weight		BSOPSPL003R0 8	86.6		1.00	%	lx	6E22039	05/22/06 13:49	05/23/06 00:00	

Sandra Gavamerich

Sandra Yakamavich, Project Manager

SAIC - Bothell 18912 North Creek Parkway Bothell, WA/USA 98011	18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011					Project Name:Metro #100-1327Project Number:100-1327Project Manager:Peter Catterall					Report Created: 05/31/06 17:17			
Hydrocar	bon Identificatio	on by Wash	0		od NWT - Seattle, V		'ID - La	borato	ry Q	uality Co	ontrol	Result	\$	
QC Batch: 6E20030	Soil Prep	paration Met	hod: HCII	D (WA)										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	%∧ RPD	(Limits)) Analyzed	Notes
Blank (6E20030-BLK1)								Extr	acted:	05/20/06 14	:34			
Gx Range Hydrocarbons	NWTPH-HCI	ND		20.0	mg/kg wet	1x							05/23/06 22:00	
Kerosene Range Hydrocarbons	D "	ND		50.0	"									
Diesel Range Hydrocarbons		ND		50.0	"									
Insulating Oil Range Hydrocarbons		ND		100	"									
Heavy Fuel Oil Range Hydrocarbons		ND		100	"									
Lube Oil Range Hydrocarbons		ND		100	"								"	
Surrogate(s): 2-FBP Octacosane		Recovery: 9 9	9.2% 6.0%	Li	mits: 50-150 50-150								05/23/06 22:00 "	
Duplicate (6E20030-DUP1)				QC Source	: BPE0606-	04		Extr	acted:	05/20/06 14	:34			
Gx Range Hydrocarbons	NWTPH-HCI	ND		22.2	mg/kg dry	1x	ND					(50)	05/23/06 22:15	
Kerosene Range Hydrocarbons	D "	ND		55.6			ND					"		
Diesel Range Hydrocarbons		DET		55.6	"		5460				15.8%	, "		
Insulating Oil Range Hydrocarbons		ND		111	"		ND					"		
Heavy Fuel Oil Range Hydrocarbons		ND		111	"		ND					"		
Lube Oil Range Hydrocarbons		ND		111	"		ND					"		
Surrogate(s): 2-FBP Octacosane		Recovery: 9. 8.	8.6% 2.7%	Li	mits: 50-150 50-150								05/23/06 22:15 "	
Duplicate (6E20030-DUP2)				QC Source	: BPE0610-	05		Extr	acted:	05/20/06 14	:34			
Gx Range Hydrocarbons	NWTPH-HCI D	ND		23.1	mg/kg dry	1x	ND					(50)	05/23/06 22:45	
Kerosene Range Hydrocarbons	"	ND		57.8	"	"	ND					"		
Diesel Range Hydrocarbons		ND		57.8	"		ND					"	"	
Insulating Oil Range Hydrocarbons		ND		116	"	"	ND					"	"	

.. Lube Oil Range Hydrocarbons ND 116 ND -------------05/23/06 22:45 Surrogate(s): 2-FBP " Recovery: 94.4% Limits: 50-150% 93.1% " " Octacosane 50-150%

ND

116

TestAmerica - Seattle, WA

Heavy Fuel Oil Range Hydrocarbons

..

ND

Sandra Gewameirich

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

..

Sandra Yakamavich, Project Manager

SAIC - Both	ell				Project N	Name:	Metro	#100-132	27						
18912 North	Creek Parkway So	outh, Suite 101			Project N	Number:	100-132	27						Report Create	ed:
Bothell, WA	/USA 98011				Project N	Aanager:	Peter Ca	atterall						05/31/06 17:	:17
Gaso	line Hydrocarbo	ons (Benzene	o Naphth	alene) a		-		1 EPA 80	21B -	Labo	oratory (Qualit	y Cont	rol Results	
					TestAmeric	a - Seattle, V	VA								
QC Batch	: 6E19066	Soil Pre	paration N	lethod:	EPA 5030B	(MeOH)									
Analyte		Method	Result	MI	DL* MR	L Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (6E1906	6-BLK1)								Ext	racted:	05/19/06 15	5:45			
Gasoline Range Hydro	ocarbons	NWTPH-Gx/	ND		5.00) mg/kg wet	1x							05/19/06 17:09	
Benzene		8021B	ND		0.0200) "									
Toluene			ND		0.0500		"							"	
Ethylbenzene			ND		0.0500) "	"								
Xylenes (total)		"	ND		0.100) "									
Surrogate(s):	4-BFB (FID)		Recovery:	91.3%		Limits: 50-1509	% "							05/19/06 17:09	
2001 4 2000 (2)	4-BFB (PID)			104%		53-142								"	
LCS (6E19066-	-BS1)								Ext	racted:	05/19/06 15	5:45			
Gasoline Range Hydro	ocarbons	NWTPH-Gx/	50.6		5.00) mg/kg wet	lx		50.0	101%	(75-125)			05/19/06 18:39	
Benzene		8021B "	0.599		0.0200) "	"		0.482	124%					
Toluene			3.51		0.0500) "	"		4.18	84.0%				"	
Ethylbenzene			0.814		0.0500) "	"		0.838	97.1%					
Xylenes (total)			4.33		0.100) "	"		4.82	89.8%				"	
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery:	105% 106%		Limits: 50-1509 53-142								05/19/06 18:39 "	
Duplicate (6E1	9066-DUP1)				QC Sou	rce: BPE0583-	04		Ext	racted:	05/19/06 15	5:45			
Gasoline Range Hydro		NWTPH-Gx/	ND		4.61	mg/kg dry	1x	ND				60.1%	(40)	05/19/06 22:02	RP-
Benzene		8021B "	ND		0.0185	5 "	"	ND				NR	(35)		
Toluene			ND		0.0461	"	"	ND				93.1%	"		RP-
Ethylbenzene			ND		0.0461	. "	"	ND				105%	"		RP-
Xylenes (total)			ND		0.0923	3 "		ND				107%	"		RP-
Surrogate(s):	4-BFB (FID)		Recovery:	93.1%		Limits: 50-1509	% "							05/19/06 22:02	
	4-BFB (PID)			103%		53-142	% "							"	
Matrix Spike (6E19066-MS1)				QC Sou	rce: BPE0583-	04		Exti	racted:	05/19/06 15	5:45			
Gasoline Range Hydro	ocarbons	NWTPH-Gx/ 8021B	45.4		4.6	mg/kg dry	1x	0.597	46.1	97.2%	(42-125)			05/19/06 22:32	
Benzene			0.555		0.0185	5 "	"	ND	0.445	125%	(45-125)			"	
Toluene			3.24		0.0461	. "	"	0.00817	3.85	83.9%	(55-125)				
					0.046			0.00201	0.773	05 00/	(53-132)				
Ethylbenzene		"	0.737		0.0461			0.00291	0.775	95.0%	(33-132)				
Ethylbenzene Xylenes (total)		"	0.737 3.96					0.00291		93.0% 88.8%					

Levamerich landra

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

SAIC - Bothell				Project Na	ine.	Metro	#100-132	27						
18912 North Creek Parkway S	outh, Suite 101			Project Nu	mber:	00-132	27						Report Create	
Bothell, WA/USA 98011				Project Ma	inager: I	Peter Ca	atterall						05/31/06 17:	17
Semivolatile I	Petroleum Pro	ducts by I					an-up -	Labor	atory	Quality	Cont	rol Res	ults	
			Те	stAmerica	- Seattle, W	A								
QC Batch: 6E20027	Soil Pre	paration N	lethod: EP	A 3550B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6E20027-BLK1)								Ext	racted:	05/20/06 14	4:23			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.0	mg/kg wet	1x							05/23/06 16:44	
Lube Oil Range Hydrocarbons		ND		25.0	"	"								
Surrogate(s): 2-FBP		Recovery:	86.3%	Li	imits: 50-150%	5 ″							05/23/06 16:44	
Octacosane			85.5%		50-150%	6 "							"	
LCS (6E20027-BS1)								Ext	racted:	05/20/06 14	4:23			
Diesel Range Hydrocarbons	NWTPH-Dx	58.5		10.0	mg/kg wet	1x		66.7	87.7%	(61-120)			05/23/06 16:55	
Lube Oil Range Hydrocarbons		54.4		25.0	"			"	81.6%	(50-150)			"	
Surrogate(s): 2-FBP		Recovery:	95.6%	Li	imits: 50-150%	5 "							05/23/06 16:55	
Octacosane			93.8%		50-150%	6 "							"	
Duplicate (6E20027-DUP1)				QC Source	e: BPE0618-0	1		Ext	racted:	05/20/06 14	4:23			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		13.5	mg/kg dry	1x	ND				NR	(50)	05/23/06 17:25	
Lube Oil Range Hydrocarbons		ND		33.7	"	"	ND				NR	"		
Surrogate(s): 2-FBP		Recovery:	63.1%	Li	imits: 50-150%	<u>;</u> "							05/23/06 17:25	
Octacosane			78.7%		50-150%	6 "							"	
Duplicate (6E20027-DUP2)				QC Source	e: BPE0606-0	4		Ext	racted:	05/20/06 14	4:23			
Diesel Range Hydrocarbons	NWTPH-Dx	3660		226	mg/kg dry	20x	4350				17.2%	(50)	05/24/06 11:36	
Lube Oil Range Hydrocarbons		ND		565	"		ND				23.3%	, "	"	
Surrogate(s): 2-FBP		Recove	ry: NR	Li	imits: 50-150%	<i>"</i>							05/24/06 11:36	
Octacosane			69.1%		50-1509	6 "							"	
Matrix Spike (6E20027-MS1)				OC Source	e: BPE0618-0	1		Ext	racted:	05/20/06 14	4:23			
Diesel Range Hydrocarbons	NWTPH-Dx	75.8		13.3	mg/kg dry	1x	ND	88.8	85.4%				05/23/06 18:01	
Lube Oil Range Hydrocarbons		73.2		33.3	"		ND	"	82.4%					
Surrogate(s): 2-FBP		Recovery:	84.7%	Li	imits: 50-150%	5 "							05/23/06 18:01	
Octacosane			93.7%		50-150%	6 "							"	

Sandra Jewameirich Sandra Yakamavich, Project Manager

SAIC - Bothell				Project Na	me:	Metro	#100-132	27						
18912 North Creek Parkway So	outh, Suite 101			Project Nu		100-132	27						Report Crea	ted:
Bothell, WA/USA 98011	,			Project Ma		Peter Ca	atterall						05/31/06 1	7:17
	Total Metal	s by EPA 60	00/7000 S	eries Mo	ethods -	Labora	ntory Qua	ality Co	ontro	l Results				
		v			- Seattle,			2						
QC Batch: 6E22004	Soil Prej	paration Met	hod: EPA	3050B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6E22004-BLK1)								Extr	acted:	05/22/06 08	:30			
Arsenic	EPA 6020	ND		0.500	mg/kg wet	1x							05/24/06 22:30	
Chromium	"	ND		0.500	"									
LCS (6E22004-BS1)								Extr	acted:	05/22/06 08	:30			
Arsenic	EPA 6020	41.0		0.500	mg/kg wet	1x		40.0	102%	(80-120)			05/24/06 22:36	
Chromium	"	41.7		0.500	"	"		"	104%	"				
Duplicate (6E22004-DUP1)				QC Source	e: BPE0610	-01		Extr	acted:	05/22/06 08	:30			
Arsenic	EPA 6020	7.17		0.579	mg/kg dry	1x	3.22				76.0%	6 (30)	05/24/06 22:53	DP-
Chromium	"	40.4		0.579	"	"	28.6				34.2%	5 "		DP-
Matrix Spike (6E22004-MS1)				QC Source	: BPE0610	-01		Extr	acted:	05/22/06 08	:30			
Chromium	EPA 6020	75.6		0.579	mg/kg dry	1x	28.6	46.3	102%	(30-163)			05/24/06 22:48	
Arsenic	"	45.1		0.579	"		3.22	"	90.5%	(57-125)				
Post Spike (6E22004-PS1)				QC Source	: BPE0610	-01		Extr	acted:	05/22/06 08	:30			
Chromium	EPA 6020	0.151			ug/ml	1x	0.0494	0.100	102%	(75-125)			05/24/06 22:42	
Arsenic	"	0.109			"		0.00556	"	103%	"			"	
QC Batch: 6E23027	Soil Prej	paration Met	hod: EPA	. 7471A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6E23027-BLK1)								Extr	acted:	05/23/06 10	:50			
Mercury	EPA 7471A	ND		0.400	mg/kg wet	1x							05/23/06 11:52	
LCS (6E23027-BS1)								Extr	acted:	05/23/06 10	:50			
Mercury	EPA 7471A	0.669		0.400	mg/kg wet	1x		0.667	100%	(80-120)			05/23/06 11:55	
Matrix Spike (6E23027-MS1)				QC Source	: BPE0610	-01		Extr	acted:	05/23/06 10	:50			
Mercury	EPA 7471A	0.829		0.463	mg/kg dry	1x	ND	0.772	107%	(70-130)			05/23/06 11:57	

 Matrix Spike Dup
 (6E23027-MSD1)
 QC Source:
 BPE0610-01
 Extracted:
 05/23/06 10:5V

 Mercury
 EPA 7471A
 0.781
 -- 0.463 mg/kg dry
 1x
 ND
 0.772 101%
 (70-130)
 5.96% (30)
 05/23/06 12:5V

TestAmerica - Seattle, WA

Levamerich dra

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

SAIC - Bothell				Project Na	me:	Metro	#100-132	27						
18912 North Creek Parkway So	outh, Suite 101			Project Nu	mber:	100-132	27						Report Crea	ited:
Bothell, WA/USA 98011				Project Ma	mager:	Peter Ca	atterall						05/31/06 1	7:17
	Total Metal	s by EPA 60			e thods - - Seattle,		ntory Qua	ality Co	ontro	l Results	5			
QC Batch: 6E25050	Soil Prej	paration Meth	nod: EPA	3050B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6E25050-BLK1)								Extr	acted:	05/25/06 14	:00			
Cadmium	EPA 6020	ND		0.515	mg/kg wet	1x							05/26/06 11:05	
Lead	"	ND		0.515	"	"								
LCS (6E25050-BS1)								Extr	acted:	05/25/06 14	:00			
Cadmium	EPA 6020	42.7		0.510	mg/kg wet	1x		40.8	105%	(80-120)			05/26/06 11:11	
Lead	"	43.1		0.510	"			"	106%	"			"	
Duplicate (6E25050-DUP1)				QC Source	e: BPE0606	-04RE1		Extr	acted:	05/25/06 14	:00			
Lead	EPA 6020	17.4		0.644	mg/kg dry	1x	16.6				4.71%	ú (30)	05/26/06 11:28	
Cadmium		ND		0.644	"		ND				25.1%	, "		
Matrix Spike (6E25050-MS1)				QC Source	e: BPE0606	-04RE1		Extr	acted:	05/25/06 14	:00			
Cadmium	EPA 6020	57.7		0.682	mg/kg dry	1x	0.0901	54.5	106%	(80-120)			05/26/06 11:22	
Lead	"	75.9		0.682	"		16.6	"	109%	(29-166)				
Post Spike (6E25050-PS1)				QC Source	e: BPE0606	-04RE1		Extr	acted:	05/25/06 14	:00			
Cadmium	EPA 6020	0.102			ug/ml	lx	0.000140	0.100	102%	(75-125)			05/26/06 11:17	
Lead		0.126			"	"	0.0258	"	100%				"	

Sandra Jeuameirich Sandra Yakamavich, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 15 of 21

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager: **Metro #100-1327** 100-1327

Peter Catterall

Report Created: 05/31/06 17:17

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batch: 6E20025	Soil Pre	paration Met	hod: EPA	3550B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6E20025-BLK2)								Ext	acted:	05/20/06 14	:04			
Acenaphthene	8270C-SIM	ND		0.0100	mg/kg wet	1x							05/22/06 13:36	
Acenaphthylene		ND		0.0100	"	"							"	
Anthracene		ND		0.0100	"	"							"	
Benzo (a) anthracene		ND		0.0100	"	"							"	
Benzo (a) pyrene		ND		0.0100	"	"							"	
Benzo (b) fluoranthene		ND		0.0100	"	"							"	
Benzo (k) fluoranthene		ND		0.0100	"	"							"	
Benzo (b & k) fluoranthene		ND		0.0200	"	"							"	
Benzo (ghi) perylene		ND		0.0100	"	"							"	
Chrysene		ND		0.0100	"	"							"	
Dibenz (a,h) anthracene		ND		0.0100	"	"							"	
Fluoranthene		ND		0.0100	"	"							"	
Fluorene		ND		0.0100	"	"							"	
Indeno (1,2,3-cd) pyrene		ND		0.0100	"	"							"	
1-Methylnaphthalene		ND		0.0100	"	"							"	
2-Methylnaphthalene		ND		0.0100	"	"							"	
Naphthalene		ND		0.0100	"	"							"	
Phenanthrene		ND		0.0100	"	"							"	
Pyrene		ND		0.0100	"	"							"	
Surrogate(s): p-Terphenyl-d14		Recovery: 1	27%	L	imits: 50-147%	"							05/22/06 13:36	
LCS (6E20025-BS2)								Ext	acted:	05/20/06 14	:04			
Acenaphthene	8270C-SIM	0.685		0.0100	mg/kg wet	1x		0.667	103%	(70-125)			05/22/06 14:08	
Acenaphthylene		0.645		0.0100	"	"		"	96.7%	(70-133)			"	
Anthracene		0.711		0.0100	"	"		"	107%	(70-152)			"	
Benzo (a) anthracene		0.627		0.0100	"	"		"	94.0%	(60-125)			"	
Benzo (a) pyrene		0.689		0.0100	"	"		"	103%	(64-134)			"	
Benzo (b) fluoranthene		0.718		0.0100	"	"		"	108%	(62-147)			"	
Benzo (k) fluoranthene		0.696		0.0100	"	"		"	104%	(60-144)			"	
Benzo (ghi) perylene		0.640		0.0100	"	"		"	96.0%	(57-137)			"	
Chrysene		0.720		0.0100	"	"		"	108%	(70-139)			"	
Dibenz (a,h) anthracene		0.661		0.0100	"	"		"	99.1%	(56-140)			"	
Fluoranthene		0.749		0.0100	"	"		"	112%	(70-141)			"	
Fluorene		0.750		0.0100	"			"	112%	(76-132)			"	
Indeno (1,2,3-cd) pyrene		0.643		0.0100		"		"	96.4%				"	

TestAmerica - Seattle, WA

1-Methylnaphthalene

2-Methylnaphthalene

Naphthalene

Phenanthrene

avament

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

109%

115%

96.4%

108%

.,

(46-128)

(41-125)

(43-125)

(73-125)

Sandra Yakamavich, Project Manager

Page 16 of 21

0.0100

0.0100

0.0100

0.0100

0.730

0.765

0.643

0.722

..

SAIC - Bothell				Project Na	ame:	Metro	#100-132	27						
18912 North Creek Parkway S	outh, Suite 101			Project N	umber:	100-132	27						Report Create	ed:
Bothell, WA/USA 98011	,			Project M	anager:	Peter C	atterall						05/31/06 17	:17
Polynuclear	Aromatic Co	mpounds	by GC/MS	with Sel	ected Ion I	Monito	ring - I	aborat	orv ())uality (Contro	l Resul	ts	
1 019 11 010 01		inpoundo ,			i - Seattle, V		g 2		0- j 🔍	unity c				
QC Batch: 6E20025	Soil Pre	paration M	ethod: EPA	A 3550B										
Analyte	Method	Result	MDL*	MRL	. Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (6E20025-BS2)								Extr	acted:	05/20/06 14	:04			
Pyrene	8270C-SIM	0.679		0.0100	mg/kg wet	1x		0.667	102%	(68-140)		(05/22/06 14:08	
Surrogate(s): p-Terphenyl-d14		Recovery:	126%	1	Limits: 50-1479	% "							05/22/06 14:08	
Matrix Spike (6E20025-MS1)				QC Sourc	e: BPE0618-0	03		Extr	acted:	05/20/06 14	:04			
Acenaphthene	8270C-SIM	0.743		0.0122	mg/kg dry	1x	ND	0.816	91.1%	(67-132)		(05/22/06 14:41	
Acenaphthylene		0.698		0.0122	"	"	ND	"	85.5%	(65-142)			"	
Anthracene		0.777		0.0122	"	"	ND		95.2%	(66-158)				
Benzo (a) anthracene		0.690		0.0122	"	"	ND		84.6%	(41-156)				
Benzo (a) pyrene		0.744		0.0122	"	"	ND		91.2%	(52-148)				
Benzo (b) fluoranthene		0.791		0.0122	"	"	ND		96.9%	(53-151)				
Benzo (k) fluoranthene		0.756		0.0122	"	"	ND		92.6%	(46-161)				
Benzo (ghi) perylene		0.677		0.0122	"	"	ND		83.0%	(26-154)				
Chrysene		0.792		0.0122	"	"	ND		97.1%	(55-155)				
Dibenz (a,h) anthracene		0.709		0.0122	"	"	ND		86.9%	(27-157)				
Fluoranthene		0.827		0.0122	"	"	ND		101%	(46-172)				
Fluorene		0.808		0.0122	"	"	ND		99.0%	(66-143)				
Indeno (1,2,3-cd) pyrene		0.688		0.0122	"		ND		84.3%	(24-159)				
1-Methylnaphthalene		0.835		0.0122	"		0.00252		102%	(39-140)				
2-Methylnaphthalene		0.879		0.0122	"		0.00187		102%	(32-139)				
Naphthalene		0.733		0.0122	"		0.00130		89.7%	(38-134)		_		
Phenanthrene		0.800		0.0122			ND		98.0%	(63-139)				
Pyrene		0.300		0.0122	"		ND		90.4%					
Surrogate(s): p-Terphenyl-d14		Recovery:			Limits: 50-1479	% "	ND		90.470	(31-172)			05/22/06 14:41	
Matrix Spike Dup (6E20025-MS		0.749		-	e: BPE0618-0		ND			05/20/06 14		((50))	05/22/06 15:14	
Acenaphthene	8270C-SIM	0.748		0.0120	mg/kg dry "	1x "	ND	0.800	93.5%	(67-132)	0.6719		05/22/06 15:14	
Acenaphthylene		0.700		0.0120	"		ND		87.5%		0.2869			
Anthracene		0.765		0.0120			ND		95.6%	(66-158)	1.56%			
Benzo (a) anthracene		0.695		0.0120	"		ND		86.9%	(41-156)	0.7229			
Benzo (a) pyrene		0.758		0.0120	"		ND		94.8%	(52-148)	1.86%			
Benzo (b) fluoranthene		0.730		0.0120	"		ND		91.2%	(53-151)	8.02%			
Benzo (k) fluoranthene		0.851		0.0120			ND		106%	(46-161)	11.8%			
Benzo (ghi) perylene		0.673		0.0120			ND		84.1%	(26-154)	0.593%			
Chrysene		0.795		0.0120	"		ND		99.4%	(55-155)	0.3789			
Dibenz (a,h) anthracene		0.706		0.0120	"	"	ND	"	88.2%	(27-157)	0.424%		"	
Fluoranthene	"	0.815		0.0120	"	"	ND	"	102%	(46-172)	1.46%			
Fluorene	"	0.802		0.0120	"	"	ND	"	100%	(66-143)	0.745%		"	
Indeno (1,2,3-cd) pyrene		0.688		0.0120	"	"	ND	"	86.0%	(24-159)		6 (43)	"	
1-Methylnaphthalene		0.851		0.0120	"	"	0.00252	"	106%	(39-140)	1.90%	6 (50)		

avamerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327 Peter Catterall

Report Created: 05/31/06 17:17

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Laboratory Quality Control Results TestAmerica - Seattle, WA EPA 3550B QC Batch: 6E20025 Soil Preparation Method: Spike % (Limits) % Amt REC RPD Source Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes Result QC Source: BPE0618-03 Matrix Spike Dup (6E20025-MSD1) Extracted: 05/20/06 14:04 2-Methylnaphthalene 8270C-SIM 0.894 0.0120 0.00187 05/22/06 15:14 mg/kg dry $1 \mathbf{x}$ 0.800 112% (32-139) 1.69% (50) ---.. .. Naphthalene 0.748 0.0120 0.00130 " 93.3% (38-134) 2.03% " .. ---Phenanthrene .. 0.793 0.0120 ... ND ., (63-139) 0.879% " ... 99.1% ----.. 0.745 0.0120 ND " 93.1% (51-172) 0.944% " ... Pvrene ----Limits: 50-147% " 05/22/06 15:14 Surrogate(s): p-Terphenyl-d14 Recovery: 113%

TestAmerica - Seattle, WA

Levamerich

Sandra Yakamavich, Project Manager

SAIC - Bothell				Project Na	me:	Metro	#100-132	27						
18912 North Creek Parkway So	outh, Suite 101			Project Nu	mber:	100-132	.7						Report Crea	ted:
Bothell, WA/USA 98011				Project Ma	anager:	Peter Ca	atterall						05/31/06 1	7:17
Conv	rentional Chen	nistry Paran	·		EPA Met		Laborate	ory Qu	ality	Control	Resu	lts		
QC Batch: 6E30074	Soil Prej	paration Meth	od: Spe	cial Proce	edure									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	Analyzed	Notes
Blank (6E30074-BLK1)								Extr	acted:	05/30/06 10	:22			
Hexavalent Chromium	EPA 7196A	ND		1.0	mg/kg wet	1x							05/31/06 16:23	
LCS (6E30074-BS1)								Extr	acted:	05/30/06 10	:22			
Hexavalent Chromium	EPA 7196A	23		1.0	mg/kg wet	1x		24.8	92.7%	(80-120)			05/31/06 16:23	
Duplicate (6E30074-DUP1)				QC Source	e: BPE0606	-04		Extr	acted:	05/30/06 10	:22			
Hexavalent Chromium	EPA 7196A	ND		1.0	mg/kg dry	1x	ND				NR	(30)	05/31/06 16:23	
Matrix Spike (6E30074-MS1)				QC Source	e: BPE0606	-04		Extr	acted:	05/30/06 10	:22			
Hexavalent Chromium	EPA 7196A	ND		1.0	mg/kg dry	1x	ND	24.1	NR	(75-125)			05/31/06 16:23	MS-2

Levamerich rdra

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327 Peter Catterall

Report Created: 05/31/06 17:17

	Physical Parameters by APHA/ASTM/EPA Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA													
QC Batch: 6E22039	Soil Prej	paration Met	hod: Dry	Weight										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6E22039-BLK1)) Extracted: 05/22/06 13:49													
Dry Weight	BSOPSPL00 3R08	100		1.00	%	1x							05/23/06 00:00	

TestAmerica - Seattle, WA

Sandra Levermerich

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager: **Metro #100-1327** 100-1327

Peter Catterall

Report Created: 05/31/06 17:17

Notes and Definitions

Report Specific Notes: DP-1 Sample RPD exceeded the laboratory control limit. I-06 The analyte concentration may be artificially elevated due to coeluting compounds or components. MS-2 The Matrix Spike and/or Matrix Spike Duplicate were below the acceptance limits due to sample matrix interference. See Laboratory Control Sample. RP-4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences. Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA _ Not Reported / Not Available dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). _ METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* _ METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data. Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Sandra Jewamerich Sandra Yakamavich. Project Manager

CONTRACTOR AND INCOME.

FAX 420-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 425-420-9200 FAX 924-9290 11922 E 1st Ave, Spokane, WA 99206-5302 509-924-9200 9405 SW Nimbus Ave, Besvirton, OR 97008-7145 FAX 906-9210 503-906-9200 FAX 382-7588 20332 Empire Ave, Ste F1, Bend, OR 97701-5712 541-383-9310 FAX 563-9210 907-563-9200

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

	(CHAIN OI	F CU	ST ()DY	RE	PO	RT							Work Order #	. B	PE0606	
NCA CLIENT: SALC						INVO	ICE TO): j).et	rC	att	roe	Q				OUND REQUEST	
REPORT TO: Peter C	attera	\mathcal{U}				-	1_		56	HC	-						lusiness Days *	
ADDRESS: $189/2$ No BOTALL UN PHONE: $125-462-332$ PROJECT NAME: MOXTC	rth cie	K PK Wey	/					~	J.	1	-					-	norganic Analyses	
PHONE: 425-452-332	FAX: 1425	-482-	556	6		P.O. N	UMBE	R:							10 7 57D.		fydrocarbon Analyses	
PROJECT NAME: MOLTO	2					L		PRES	ERVA	TTVE								र।
PROJECT NUMBER: 100	-1327			20	Į										310.			
1				~~	1		RE	QUEST	TED AN	ALYS	ES .					OTHER	Specify:	
SAMPLED BY: SIMM			X	Hall	\square	R.				Λ	*				······	• Furnermend Acquest	موسطان شمال معمل وبعد المقصدة. معاد وساء 	· · · · · · · · · · · · · · · · · · ·
CLIENT SAMPLE IDENTIFICATION		PLING E/TIME	R	har what was	H CI	CARINS	Å3	Cd	5	90	H.				MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	NCA WOID
1 3 P-11-12.5	sliploc	1035	~	/											3	2		01
2 P-9-13	5/17/06	125	$\overline{\mathbf{v}}$	v											5	2		02
3 P.5-13.5	5/17/06	1200		1											5	2		03
· P-2-15	5/17/06	1355	V	1	1	~	~	~	~	~	/		_	<u> </u>	5	2		04
s P-2-20	5/17/06	1322	~	1											S	2		05
- QA - 051706	5/17/06	0800	~											<u> </u>	TB	1	ADDED BY SY ON S 180	e (
7																		
8															•			
9																		
10																		
RELEASED BY: Ima	- Keng	~				DATE	51	17/	66	RECE	IVED B	Y:	14	~7		$\overline{\langle}$	DATE:5	117/00
RELEASED BY: IMQ PRINT NAME: TING	ing	FIRM: 5	ALC			TIME	- 1	61.	5	PRIN		E MEG	47	KIN	G P	UM: 54/		
RELEASED BY:	- 0-	5				DATE				RECE	IVED B	Y: 10	m	R	ant	\bigcirc		5/17/06
PRINT NAME: Mig	King	FIRM: S	41C			TIME	16	<u>35</u>		PRIN	T NAM	E:	B	lanki	ishin (FI	M: TA		1635
ADDITIONAL REMARKS:	\bigcirc														1		темр: 8,4 ж ра	ge of

June 19, 2006

Peter Catterall SAIC - Bothell 18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011

RE: Metro #100-1327

Enclosed are the results of analyses for samples received by the laboratory on 06/12/06 16:42. The following list is a summary of the Work Orders contained in this report, generated on 06/19/06 15:52.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
BPF0283	Metro #100-1327	100-1327

TestAmerica - Seattle, WA

avamench

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327 Peter Catterall

Report Created: 06/19/06 15:52

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P-6A-16	BPF0283-01	Soil	06/12/06 10:50	06/12/06 16:42
P-6A-19	BPF0283-02	Soil	06/12/06 11:00	06/12/06 16:42
QA-1	BPF0283-03	Soil	06/12/06 08:50	06/12/06 16:42
D-061206	BPF0283-04	Soil	06/12/06 12:00	06/12/06 16:42
FB-061206	BPF0283-05	Soil	06/12/06 10:50	06/12/06 16:42
P-3-14.5	BPF0283-06	Soil	06/12/06 12:35	06/12/06 16:42
P-3-19	BPF0283-07	Soil	06/12/06 12:59	06/12/06 16:42
P-4-14	BPF0283-08	Soil	06/12/06 14:09	06/12/06 16:42
P-3-16	BPF0283-09	Soil	06/12/06 12:40	06/12/06 16:42

TestAmerica - Seattle, WA

Lauramerich ndra

Sandra Yakamavich, Project Manager

SAIC - Bothell			Project Na	ame:	Metro #	100-13	27				
18912 North Creek Parkway So	outh, Suite 101		Project Nu	umber:	100-1327	7			R	eport Created:	
Bothell, WA/USA 98011	·		Project M	anager:	Peter Cat	terall			06	5/19/06 15:52	2
Gasoline	Hydrocarbons (B		Naphtha estAmeric			X by	NWTPH	-G and EPA	8021B		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	No	otes
BPF0283-01 (P-6A-16)		Soi	1		Samp	oled: 06/	12/06 10:50				
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	1650		92.3	mg/kg dry	20x	6F14015	06/14/06 09:21	06/14/06 19:	46	
Benzene	"	1.73		0.554	"	"	"	"	"		
Toluene	"	ND		0.923	"	"	"	"	"		
Ethylbenzene	"	5.12		0.923	"	"	"	"	"		
Xylenes (total)	"	4.07		1.85	"	"	"	"	"		I-0
Surrogate(s): 4-BFB (FID)			127%		50.	- 150 %	lx		"		
4-BFB (PID)			108%			- 142 %	"		"		
BPF0283-02 (P-6A-19)		Soi	1		Samp	oled: 06/	12/06 11:00				
Benzene	NWTPH-Gx/802 1B	1.41		0.229	mg/kg dry	10x	6F14015	06/14/06 09:21	06/14/06 20:	17	
Toluene	"	1.92		0.382	"	"	"	"	"		I-0
Ethylbenzene	"	3.80		0.382	"	"	"	"			
Xylenes (total)	"	12.3		0.765	"	"		"	"		
Surrogate(s): 4-BFB (PID)			155%		53 -	- 142 %	lx		"	SR-4	
BPF0283-02RE1 (P-6A-19)		Soi	1		Samp	oled: 06/	12/06 11:00				
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	2170		76.5	mg/kg dry	20x	6F14015	06/14/06 09:21	06/15/06 03:	59	
Surrogate(s): 4-BFB (FID)			193%		50 -	- 150 %	lx		"	SR-4	
BPF0283-03 (QA-1)		Soi	Soil Sampled: 06/12/06 08:50								
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.00	mg/kg wet	1x	6F14015	06/14/06 09:21	06/14/06 22:	57	
Benzene	"	ND		0.0300	"	"		"			

.. ., 0.100 Xylenes (total) ND -----" Surrogate(s): 4-BFB (FID) 93.0% 50 - 150 % " 4-BFB (PID) 105% 53 - 142 % " ,, Sampled: 06/12/06 12:00 Soil BPF0283-04 (D-061206) NWTPH-Gx/802 06/14/06 09:21 06/15/06 10:05 44.3 10x 6F14015 **Gasoline Range Hydrocarbons** 623 ----mg/kg dry 1B.. ., .. 0.266 Benzene 1.70 -----

0.0500

0.443

0.443

0.887

"

"

"

"

..

.,

"

..

..

..

..

ND

ND

1.64

1.27

.,

"

TestAmerica - Seattle, WA

Toluene

Ethylbenzene

Xylenes (total)

Ethylbenzene

Vamerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

..

...

.,

of custody document. This analytical report must be reproduced in its entirety.

I-06

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/19/06 15:52

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Note
BPF0283-04 (D-061206)		Soi	1		Samp	led: 06/	12/06 12:00			
Surrogate(s): 4-BFB (FID) 4-BFB (PID)			108% 104%			- 150 % - 142 %	lx "		06/15/06 10:05 "	
BPF0283-05 (FB-061206)		Soi	1		Samp	led: 06/	12/06 10:50			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.00	mg/kg wet	1x	6F14015	06/14/06 09:21	06/14/06 23:57	
Benzene	"	ND		0.0300	"	"	"	"	"	
Toluene	"	ND		0.0500	"	"	"	"	"	
Ethylbenzene	"	ND		0.0500	"	"	"	"	"	
Xylenes (total)	"	ND		0.100	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			92.3%		50 -	150 %	"		"	
4-BFB (PID)			108%			142 %	"		"	
BPF0283-06 (P-3-14.5)		Soi	1		Samp	led: 06/	12/06 12:35			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.16	mg/kg dry	1x	6F14015	06/14/06 09:21	06/15/06 00:27	
Benzene	"	ND		0.0309	"	"	"	"	"	
Toluene	"	ND		0.0516	"	"	"	"	"	
Ethylbenzene	"	ND		0.0516	"	"	"	"	"	
Xylenes (total)	"	ND		0.103	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			93.9%		50 -	150 %	"		"	
4-BFB (PID)			111%		53 -	142 %	"		"	
BPF0283-07 (P-3-19)		Soi	1		Samp	led: 06/	12/06 12:59			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	4.82		4.21	mg/kg dry	1x	6F14015	06/14/06 09:21	06/15/06 00:57	
Benzene	"	ND		0.0252	"	"	"	"	"	
		ND		0.0421	"	"			"	
Foluene		ЦD								
Foluene Ethylbenzene	"	ND		0.0421		"	"	"		

53 - 142 % "

Surrogate(s): 4-BFB (FID)

4-BFB (PID)

TestAmerica - Seattle, WA

auamarich dra

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

111%

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/19/06 15:52

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0283-08 (P-4-14)		Soi	il		Samp	oled: 06/	12/06 14:09			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		4.77	mg/kg dry	1x	6F14015	06/14/06 09:21	06/15/06 01:27	
Benzene	"	ND		0.0286	"		"	"	"	
Toluene	"	ND		0.0477	"	"	"	"	"	
Ethylbenzene	"	ND		0.0477	"	"	"	"	"	
Xylenes (total)	"	ND		0.0954		"	"	"	"	
Surrogate(s): 4-BFB (FID)			91.3%		50 -	- 150 %	"		"	
4-BFB (PID)			108%		53 -	- 142 %	"		"	
BPF0283-09 (P-3-16)		Soi	il		Samp	oled: 06/	12/06 12:40			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	4750		203	mg/kg dry	50x	6F14015	06/14/06 09:21	06/15/06 10:35	
Benzene	"	9.54		1.22	"	"		"	"	
Toluene	"	ND		2.03	"	"	"	"		
Ethylbenzene	"	9.38		2.03	"	"		"	"	
Xylenes (total)	"	24.2		4.06	"	"		"		I-
Surrogate(s): 4-BFB (FID)			114%		50 -	- 150 %	lx		"	
4-BFB (PID)			93.4%		53 -	- 142 %	"		"	

TestAmerica - Seattle, WA

Sandra Gestameirich Sandra Yakamavich, Project Manager

SAIC - Bothell 18912 North Creek Parkway So Bothell, WA/USA 98011	-			ume: umber: anager:	Metro # 100-1327 Peter Cat	,	27		-	Created: 06 15:52
Se	mivolatile Petrol		cts by N estAmeric			h Acid	l/Silica G	el Clean-up		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0283-01 (P-6A-16)		Soi	1		Samp	led: 06/1	2/06 10:50			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	39.5 ND		11.1 27.7	mg/kg dry "	1x "	6F13044 "	06/13/06 14:20 "	06/14/06 18:39	
Surrogate(s): 2-FBP Octacosane			86.0% 91.5%			150 % 150 %	"		"	
BPF0283-02 (P-6A-19)		Soi	1		Samp	led: 06/1	2/06 11:00			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	303 37.0		10.7 26.8	mg/kg dry "	1x "	6F13044 "	06/13/06 14:20	06/14/06 19:09	
Surrogate(s): 2-FBP Octacosane			120% 90.1%			150 % 150 %	"		"	
BPF0283-04 (D-061206)		Soi	1		Samp	led: 06/1	2/06 12:00			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	254 ND		11.4 28.4	mg/kg dry "	1x "	6F13044 "	06/13/06 14:20	06/14/06 13:37	
Surrogate(s): 2-FBP Octacosane			122% 89.4%			150 % 150 %	"		"	
BPF0283-06 (P-3-14.5)		Soi	1		Samp	led: 06/1	2/06 12:35			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		11.8 29.5	mg/kg dry "	1x "	6F13044 "	06/13/06 14:20	06/14/06 19:38	
Surrogate(s): 2-FBP Octacosane			97.6% 94.2%			150 % 150 %	"		"	
BPF0283-07 (P-3-19)		Soi	1		Samp	led: 06/1	2/06 12:59			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		11.4	mg/kg dry	1x	6F13044	06/13/06 14:20	06/14/06 20:07	
Lube Oil Range Hydrocarbons	"	ND		28.4		"		"	"	
Surrogate(s): 2-FBP Octacosane			96.3% 94.9%			150 % 150 %	"		"	
BPF0283-08 (P-4-14)		Soi	I		Samp	led: 06/1	2/06 14:09			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		11.4 28.6	mg/kg dry "	1x "	6F13044 "	06/13/06 14:20	06/14/06 20:37	
Surrogate(s): 2-FBP			88.8%		50 -	150 %	"		"	

accomment

Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

Page 6 of 12

87.1%

50 - 150 %

"

SAIC - Bo	thell			Project Na	me:	Metro	#100-132	27			
18912 Nor	th Creek Parkway S	outh, Suite 101		Project Nu	mber:	100-132	7			Report	Created:
Bothell, W	A/USA 98011			Project Ma	anager:	Peter Ca	atterall			06/19/0	6 15:52
		Dharata	al Davama	tong by		ACTM		[ath a da			
		rnysk	cal Paramet	estAmeric				lethous			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0283-01	(P-6A-16)		Soil	l		Sam	pled: 06/1	2/06 10:50			
Dry Weight		BSOPSPL003R0 8	91.1		1.00	%	1x	6F14052	06/14/06 15:30	06/15/06 00:00	
BPF0283-02	(P-6A-19)		Soil	l		Sam	pled: 06/1	2/06 11:00			
Dry Weight		BSOPSPL003R0 8	93.9		1.00	%	1x	6F14052	06/14/06 15:30	06/15/06 00:00	
BPF0283-04	(D-061206)		Soil	l		Sam	pled: 06/1	2/06 12:00			
Dry Weight		BSOPSPL003R0 8	86.9		1.00	%	1x	6F14052	06/14/06 15:30	06/15/06 00:00	
BPF0283-06	(P-3-14.5)		Soil	l		Sam	pled: 06/1	2/06 12:35			
Dry Weight		BSOPSPL003R0 8	84.9		1.00	%	1x	6F14052	06/14/06 15:30	06/15/06 00:00	

BPF0283-07	(P-3-19)		Soil		Sam	pled: 06/1	2/06 12:59		
Dry Weight		BSOPSPL003R0 8	87.3	 1.00	%	lx	6F14052	06/14/06 15:30	06/15/06 00:00
BPF0283-08	(P-4-14)		Soil		Sam	pled: 06/1	2/06 14:09		
Dry Weight		BSOPSPL003R0 8	86.1	 1.00	%	lx	6F14052	06/14/06 15:30	06/15/06 00:00
BPF0283-09	(P-3-16)		Soil		Sam	pled: 06/1	2/06 12:40		
Dry Weight		BSOPSPL003R0 8	88.4	 1.00	%	1x	6F14052	06/14/06 15:30	06/15/06 00:00

Lavamerich andra

Sandra Yakamavich, Project Manager

SAIC - Both	nell				Project 1	Name:	Metro	#100-132	7						
18912 North	Creek Parkway	South, Suite 101			Project 1	Number:	100-132	27						Report Create	:d:
Bothell, WA	/USA 98011				Project 1	Manager:	Peter Ca	atterall						06/19/06 15:	52
Gaso	line Hydrocarl	oons (Benzene t	o Naphth	alene) a	and BTEX	oy NWTPH	I-G and	I EPA 80	21B -	Labo	oratory (Qualit	y Cont	rol Results	
					TestAmeric	ca - Seattle, V	VA								
QC Batch	n: 6F14015	Soil Pre	paration N	lethod:	EPA 5030E	(MeOH)									
Analyte		Method	Result	Μ	IDL* MR	L Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6F1401	5-BLK1)								Ext	racted:	06/14/06 09	:21			
Gasoline Range Hydr	ocarbons	NWTPH-Gx/	ND	-	5.0	0 mg/kg wet	1x							06/14/06 11:39	
Benzene		8021B "	ND	-	0.030) "	"								
Toluene			ND	-	0.050) "									
Ethylbenzene			ND	-	0.050) "									
Xylenes (total)			ND	-	0.10) "	"								
Surrogate(s):	4-BFB (FID)		Recovery:	91.3%		Limits: 50-150	% "							06/14/06 11:39	
	4-BFB (PID)			106%		53-142								"	
LCS (6F14015	-BS1)								Ext	racted:	06/14/06 09	:21			
Gasoline Range Hydr	rocarbons	NWTPH-Gx/	46.3	-	5.0	0 mg/kg wet	1x		50.0	92.6%	(75-125)			06/14/06 12:40	
Benzene		8021B "	0.574	-	0.030) "	"		0.482	119%					
Toluene			3.43	-	0.050) "			4.18	82.1%					
Ethylbenzene			0.772	-	0.050) "	"		0.838	92.1%					
Xylenes (total)			4.18	-	0.10) "	"		4.82	86.7%					
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery:	105% 105%		Limits: 50-150 53-142								06/14/06 12:40 "	
Duplicate (6F1	4015-DUP1)				QC Sou	rce: BPF0163-	01		Ext	racted:	06/14/06 09	:21			
Gasoline Range Hydr		NWTPH-Gx/	13.9	-	6.0) mg/kg dry	1x	17.0				20.1%	(40)	06/14/06 15:19	
Benzene		8021B "	ND	-	0.036) "		ND				NR	(35)		
Toluene			ND	-	0.060) "		ND				14.3%	"		
Ethylbenzene			ND	-	0.060) "		ND				76.3%	"		RP-
Xylenes (total)			ND	-	0.12) "		ND				57.1%	"		RP-
Surrogate(s):	4-BFB (FID)		Recovery:	104%		Limits: 50-150	% "							06/14/06 15:19	
	4-BFB (PID)			104%		53-142	?% "							"	
Duplicate (6F1	4015-DUP2)				QC Sou	rce: BPF0163-	02		Ext	racted:	06/14/06 09	:21			
Gasoline Range Hydr	ocarbons	NWTPH-Gx/ 8021B	ND	-	5.6	9 mg/kg dry	1x	ND				15.3%	(40)	06/14/06 19:16	
Benzene		"	ND	-	0.034	2 "	"	ND				NR	(35)	"	
Toluene			ND	-	0.056) "	"	ND				11.8%	"	"	
Ethylbenzene			ND	-	0.056) "	"	ND				0.00%	"	"	
Xylenes (total)			ND	-	0.11	4 "	"	ND				2.29%	"	"	
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery:	96.8% 104%		Limits: 50-150 53-142								06/14/06 19:16 "	

Levamerich landra

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

SAIC - Bothell Metro #100-1327 Project Name: 18912 North Creek Parkway South, Suite 101 Project Number: 100-1327 Report Created: Bothell, WA/USA 98011 Project Manager: Peter Catterall 06/19/06 15:52

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batch: 6F14015	Soil Pre	paration M	lethod: EPA	A 5030B (MeOH)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	∾ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (6F14015-MS1)				QC Sourc	e: BPF0163-01			Ext	racted:	06/14/06 09	:21			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	68.1		6.00	mg/kg dry	1x	17.0	60.0	85.2%	(42-125)			06/14/06 15:50	
Benzene	"	0.663		0.0360	"	"	0.0142	0.579	112%	(45-125)			"	
Toluene	"	3.89		0.0600	"	"	0.0172	5.01	77.3%	(55-125)			"	
Ethylbenzene		0.873		0.0600	"	"	0.0217	1.00	85.1%	(53-132)				
Xylenes (total)	"	4.75		0.120	"	"	0.0878	5.79	80.5%	(59-125)				
Surrogate(s): 4-BFB (FID)		Recovery:	115%	L	imits: 50-150%	"							06/14/06 15:50	

4-BFB (PID)

107%

53-142% "

TestAmerica - Seattle, WA

Levamerich andra

Sandra Yakamavich, Project Manager

SAIC - Bothell				Project Na	me:	Metro	#100-132	27						
18912 North Creek Parkway S	outh, Suite 101			Project Nu	mber:	100-132	.7						Report Create	d:
Bothell, WA/USA 98011				Project Ma	nager:	Peter Ca	atterall						06/19/06 15:	52
Semivolatile I	Petroleum Pro	ducts by I			id/Silica C - Seattle, W		an-up -	Labor	atory	Quality	Cont	rol Re	sults	
QC Batch: 6F13044	Soil Pre	paration N	lethod: EPA	A 3550B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (6F13044-BLK1)								Extr	acted:	06/13/06 14	1:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.0	mg/kg wet	1x							06/14/06 05:48	
Lube Oil Range Hydrocarbons		ND		25.0	"	"							"	
Surrogate(s): 2-FBP Octacosane		Recovery:	98.4% 96.2%	Li	mits: 50-150% 50-150								06/14/06 05:48 "	
LCS (6F13044-BS1)								Extr	acted:	06/13/06 14	1:20			
Diesel Range Hydrocarbons	NWTPH-Dx	63.6		10.0	mg/kg wet	1x		66.7	95.4%	(61-120)			06/14/06 06:18	
Surrogate(s): 2-FBP Octacosane		Recovery:	101% 93.2%	Li	mits: 50-1509 50-1509								06/14/06 06:18 "	
Duplicate (6F13044-DUP1)				QC Source	e: BPF0283-0	4		Extr	acted:	06/13/06 14	4:20			
Diesel Range Hydrocarbons	NWTPH-Dx	72.8		11.5	mg/kg dry	1x	254				111%	(50)	06/14/06 10:14	DP-1
Lube Oil Range Hydrocarbons		ND		28.9	"	"	ND				83.4%	5 "	"	DP-1
Surrogate(s): 2-FBP Octacosane		Recovery:	95.1% 91.6%	Li	mits: 50-150% 50-150								06/14/06 10:14 "	
Matrix Spike (6F13044-MS1)				QC Source	: BPF0283-0	4		Extr	acted:	06/13/06 14	1:20			
Diesel Range Hydrocarbons	NWTPH-Dx	207		11.5	mg/kg dry	1x	254	76.7	-61.3%	(45-144)			06/14/06 10:44	MS-2
Surrogate(s): 2-FBP Octacosane		Recovery:	120% 93.4%	Li	mits: 50-1509 50-1509								06/14/06 10:44 "	

Sandra Jauamarich Sandra Yakamavich, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327 Peter Catterall

Report Created: 06/19/06 15:52

Physical Parameters by APHA/ASTM/EPA Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA													
QC Batch: 6F14052	Soil Prej	paration Met	hod: Dry V	Weight									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	CL AITHINS) % RPD	(Limits)	Analyzed	Notes
Blank (6F14052-BLK1)								Extracted	d: 06/14/06	15:30			
Dry Weight	BSOPSPL00 3R08	100		1.00	%	1x						06/15/06 00:00	

TestAmerica - Seattle, WA

Sandra Javamerich

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager: **Metro #100-1327** 100-1327

Peter Catterall

Report Created: 06/19/06 15:52

Notes and Definitions Report Specific Notes: DP-1 Sample RPD exceeded the laboratory control limit. I-06 The analyte concentration may be artificially elevated due to coeluting compounds or components. MS-2 The Matrix Spike and/or Matrix Spike Duplicate were below the acceptance limits due to sample matrix interference. See Laboratory Control Sample. RP-4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. SR-4 Due to sample matrix effects, the surrogate recovery was outside laboratory control limits. Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA _ Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). _ MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Sandra Jewamerich Sandra Yakamavich, Project Manager

Test Amarica

FAX 420-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 425-420-9200 FAX 924-9290 509-924-9200 11922 E 1st Ave, Spokane, WA 99206-5302 FAX 906-9210 9405 SW Numbus Ave, Beavarton, OR 97008-7145 503-906-9200 541-383-9310 FAX 382-7588 20332 Empire Ave, Ste Fl, Bend, OR 97701-5712 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

PHONE: 495-485-5560 P.O. NUMBER: PROJECT NAME: NUMBER: Petroleum Hydrocarbon Analyses PROJECT NAME: NUMBER: 100-1327 SAMPLED BY: TIML Kug Sampling CLIENT SAMPLE SAMPLING DATE/TIME SAMPLING IDENTIFICATION Gal 12/200 / 1050 1 P-GA: Gal 12/200 / 1050	>	PF028	E	Work Order #	,				•	PORT	RE)DY	STO	CU	CHAIN OF		
REPORT TO: Peter Contract Phase Ste 101 ADDRESS: 16912 NANTA CLEAR Phase Ste 101 Biblic 1 WA 930H PHONE: $495-475560$ FAX: $425-485-5566$ PROJECT NAME: $100 - 1327$ SAMPLED BY: TIME King / SIMON Kline CLIENT SAMPLE IDENTIFICATION DATE/TIME $1 P-6A^{-16}$ $6/12/d6$ 1050 $2 \times \times \times \times$		UND REQUEST	TURNAR							TE TO:	INVOIO						NCA CLIENT: 5 ALC
PROJECT NUMBER: 100 -1327 SAMPLED BY: TINK KNG / SIMON KIND CLIENT SAMPLE DATE/TIME 1 P-6A-16 1 P-6A-16 CD0 -1327 CLIENT SAMPLE 1 P-6A-16 CD0 -1327 CLIENT SAMPLE 1 P-6A-16 CD0 -1327 CLIENT SAMPLE CLIENT	را	rganic Analyses	Organic & In	10 7						MBER:	P.O. NU	2(6 11 6	54	A 9 50 H	with (REPORT TO: Peter (c ADDRESS: 1891) N OFACLE
PROJECT NUMBER: 100 -1327 SAMPLED BY: TINK KNG / 51 MON Kline CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME SAMPLING 1 P-6A-16 6/12/06 1050 2 X X X 1 1 5 2 5 2 5 2 1 0	1							ATIVE	ESERV				$\underline{\circ}$	50	+0-785-93	FAX: 40	PROJECT NAME: NO FOO
SAMPLED BY: TIME KWG / SIMON KIINO SAMPLED BY: TIME KWG / SIMON KIINO CLIENT SAMPLE SAMPLING Date/TIME SAMPLING Date/TIME SAMPLING IDENTIFICATION MATRIX # OF LOCATION / N IDENTIFICATION SAMPLING I	ĺ			570.						1							
SAMPLED BY: TIME Kug SIMON Kling CLIENT SAMPLE SAMPLING SAMPLING IDENTIFICATION DATE/TIME SAMPLED 1 P-6A-16 6/12/06 1050 2 X X		cify:	THER	[<u> </u>	<u> </u>	SES	ANALY	STED	REQUE			<u>ب</u>			,	
1 P-6A-16 6/12/06 1050 2 X X X 5 57 0		ian dandard nay baar Rail Charges.	Terrarrand Arquitte &								19	ں ا	8	1.6	Simon Kline	49 1:	SAMPLED BY: TIME KM
1 P-6A-16 6/12/06 1050 2 X X X 5 57 0	NCA VO ID										Dx L/s Sliengel	Btex EPA 503.	NW-SCHIC		SAMPLING DATE/TIME		1 E
	DI		2	5								. /		2		6/12/0	1 P-6A-16
	02		Ъ								Х,	Х	Х	1.	1100	ſ	2 P-6A-19
	03		l			_						Х	X	h.	0850		1
	24		2								X	X	X	¥.			
)5										X	\times	Х	Ň	1050	\checkmark	
)6		2								X	X	X		1235		6 P-3-14.5
1 P-3-19 1259 XXX 2	1		2								\times	X	X	W	, 1259		7 P-3-19
8 P-4-14 V 1409 X X X V 2 0	%		2	\checkmark							X	X	X	2	1409		8 P-4-14
9 V														V			9
10																	
RELEASED BY: TING LING DATE: 6/10/06 RECEIVED BY: COULD WLOWED DATE: 00.12	2.06	DATE: 00		<u>کر</u>	ts weave	: Colett	EIVED BY	REC	YOE	6/10	DATE:				9	Zno	RELEASED BY: TIUCE
RELEASED BY: TIME: 6/10/06 RECEIVED BY: COULD WLOWCA DATE: 00.12 PRINT NAME: Jule buy FIRM: SAIC TIME: 1642 PRINT NAME: COLOTE WEAVER FIRM: TA-S TIME: 164	2	<u>5 TIME: 16</u>	M: TA -	FIR	e weave	Colette	NT NAME:	PRIN	2	164	TIME:		*	IC	FIRM: SA	ing	PRINT NAME: Jule by
RELEASED BY: DATE: DATE: DATE:		DATE:				' :	EIVED BY	REC			DATE:					Y	RELEASED BY:
PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: TIME:		TOME:	М:	FIR			NT NAME:	PRIN			TIME:				FIRM:	<i></i>	
ADDITIONAL REMARKS:		TEMP:							-								ADDITIONAL REMARKS:
COC REV 09/04	OF	702 PAGE	W												-		COC REV 09/04

(A)nca	Test Anama- Revised Chain of Custody
A PHOU	Revised Chain of Custody

FAX 420-9210 FAX 924-9290 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 425-420-9200 509-924-9200 11922 E 1st Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 503-906-9200 FAX 906-9210 FAX 382-7588 541-383-9310 20332 Empire Ave, Ste F1, Bend, OR 97701-5712 FAX 563-9210 907-563-9200

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

BPF0283 Work Order #:

CHAIN OF CUSTODY REPORT

NCA CLIENT: 590						INVOIO	E TO:										TURNAR	OUND REQUEST	
REPORT TO: PEXEL ADDRESS: 1541 D MOTHER PHONE: 455-475-5760 PROJECT NAME: METRO	utt	rallo	5.	(s 11	21												in B	asiness Days *	
ADDRESS: 15912 N	1 arta	acek par) 71	e. 11														organic Analyses	
PHONE IN MOTHER	VEAN. L	14 7 801 J	1.7	6		P.O. NL	MBER	<u>.</u>								10 7 57D.		ydrocarbon Analyse	
PROJECT NAME: NE +W))	20 785 - 5	50	<u> </u>	l			PRES	ERVAT	TIVE						6			
											Τ					STD.	المتضيا لم		
	· -/3		· · · · ·			, }	REC	UEST	ED AN	IALYSE	ES I	l.,		L			OTHER	Specify:	
SAMPLED BY: TIME K	1MG /	Simon Kline	1. 6	R	10	19											• Tenarray Report	ing then mendand may have their Charg	n.
CLIENT SAMPLE IDENTIFICATION	D'	SAMPLING DATE/TIME	日府	5	BTex GPA Sc3.	Stie-oft										MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	NCA WO ID
1 P-6A-16	6/12	lab 1050	4	Х	X	X										5	2		01
2 P-6A-19		11100		X	X	X											8	<u></u>	02
3 GA-1		0850	h	X	Х												1		03
· D-061206			24	X	X	X			-								2		04
5 FB-061206	4	1 1050		X	\times	X											.		05
6 P-3-14.5		1235	A	X	X	Х			<u> </u>								2		06
7 P-3-19		1259	H	X	X	Х											2		07
8 P-4-14		1409	Ø	X	X	Х										V	2		08
9 P-3-16	06.17	2.06/1240	V	ļ												S	2		09
10									,										
RELEASED BY: TIMO	12n	cy.				DATE:	61	101	06	RECE	IVED E	BY: U	blet	g iui	uw	^		DATE: (12.00
PRINT NAME: Jule b	ling	FIRM: SA	IC	<u></u>		TIME:	16	42	_	PRINT	NAM	E: Col	ette	We	ave	<u>e</u> F1	M:TA	-S time:	1642
RELEASED BY:	X	v				DATE:				RECE	IVED E	BY:						DATE:	
PRINT NAME:	Į	FIRM:				TIME:				PRINT	Γ NAM	E:				FU	RM:	TIME:	
ADDITIONAL REMARKS:	····,									<u>.</u>						<u></u>		TEMP:	
COC REV 09/04																	W	67=2 P	AGE OF
•																	7	1	

Cw 061306

June 23, 2006

Peter Catterall SAIC - Bothell 18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011

RE: Metro #100-1327

Enclosed are the results of analyses for samples received by the laboratory on 06/14/06 17:30. The following list is a summary of the Work Orders contained in this report, generated on 06/23/06 17:11.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	<u>ProjectNumber</u>	
BPF0367	Metro #100-1327	100-1327	

TestAmerica - Seattle, WA

avamench

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

100-1327 Peter Catterall

Metro #100-1327

Report Created: 06/23/06 17:11

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
QA-1	BPF0367-01	Soil	06/14/06 08:05	06/14/06 17:30
P-1B-14	BPF0367-02	Soil	06/14/06 09:27	06/14/06 17:30
FB-061406	BPF0367-03	Soil	06/14/06 09:28	06/14/06 17:30
P-1B-16	BPF0367-04	Soil	06/14/06 09:48	06/14/06 17:30
P-10-12	BPF0367-05	Soil	06/14/06 13:50	06/14/06 17:30
P-10-15	BPF0367-06	Soil	06/14/06 14:19	06/14/06 17:30
P-10-16	BPF0367-07	Soil	06/14/06 14:40	06/14/06 17:30

TestAmerica - Seattle, WA

Lauramerich ndra

Sandra Yakamavich, Project Manager

SAIC - Bothell			Project Na	ime:	Metro #	100-13	27			
18912 North Creek Parkway So	outh, Suite 101		Project Nu	imber:	100-1327	I	Report Created:			
Bothell, WA/USA 98011			Project Ma	anager:	Peter Cat	terall			06/23/06 17:11	
Gasoline	Hydrocarbons (E		Naphtha estAmeric			X by	NWTPH-	G and EPA	8021B	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0367-01 (QA-1)		Soi	Soil Sampled: 06/14/06							
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.00	mg/kg wet	1x	6F16026	06/16/06 10:12	06/16/06 21	:34
Benzene		ND		0.0300	"	"	"	"	"	
Toluene		ND		0.0500	"	"	"		"	
Ethylbenzene	"	ND		0.0500	"	"	"	"	"	
Xylenes (total)	"	ND		0.100	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			90.7%		50 -	- 150 %	"		"	
4-BFB (PID)			104%		53 -	- 142 %	"		"	
BPF0367-02 (P-1B-14)		Soi	1		Samp	oled: 06/	14/06 09:27			
Benzene	NWTPH-Gx/802 1B	1.27		0.132	mg/kg dry	5x	6F16026	06/16/06 10:12	06/16/06 17	:32
Toluene	"	0.286		0.220	"	"	"	"	"	
Ethylbenzene	"	10.9		0.220	"	"	"		"	
Xylenes (total)	"	8.94		0.440	"	"	"	"	"	
Surrogate(s): 4-BFB (PID)			130%		53 -	- 142 %	lx		"	
BPF0367-02RE1 (P-1B-14)		Soi	1		Samp	oled: 06/	14/06 09:27			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	1810		88.1	mg/kg dry	20x	6F19035	06/19/06 10:34	06/19/06 17	:02
Surrogate(s): 4-BFB (FID)			134%		50 -	- 150 %	lx		"	
BPF0367-03 (FB-061406)		Soi	1		Samp	oled: 06/	14/06 09:28			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.00	mg/kg wet	1x	6F16026	06/16/06 10:12	06/16/06 22	2:04

	1B									
Benzene	"	ND		0.0300	"	"	"		"	
Toluene	"	ND		0.0500	"	"	"		"	
Ethylbenzene	"	ND		0.0500	"	"	"		"	
Xylenes (total)	"	ND		0.100	"		"	"	"	
Surrogate(s): 4-BFB (FID)		ç	91.7%		50	- 150 %	"		"	
4-BFB (PID)			104%		53	- 142 %	"		"	

BPF0367-04 (P-1B-16)		Soil		Samp	led: 06/1	4/06 09:48			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	5150	 216	mg/kg dry	50x	6F19035	06/19/06 10:34	06/19/06 17:32	
Benzene	"	6.53	 1.29	"	"	"			
Toluene	"	ND	 2.16	"	"	"	"		
Ethylbenzene	"	63.7	 2.16		"	"	"		
Xylenes (total)	"	14.5	 4.31	"	"		"		I-06

Sandra Gavamerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

SAIC - Both 18912 North Bothell, WA/	Creek Parkway South	ı, Suite 101		Project Nat Project Nu Project Ma	mber:	Metro # 100-1327 Peter Catt	1	27		-	oort Created: 23/06 17:11
	Gasoline Hy	ydrocarbons (B		Naphtha TestAmerica			X by	NWTPH	-G and EP	A 8021B	
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0367-04	(P-1B-16)		Soi	il		Samp	led: 06/	14/06 09:48			
Surrogate(s):	4-BFB (FID)			145%		50 -	150 %	lx		06/19/06 17:32	

BPF0367-05 (P-10-12)		Soil	l		Samp	led: 06/1	4/06 13:50		
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		4.77	mg/kg dry	1x	6F16026	06/16/06 10:12	06/17/06 00:05
Benzene	"	ND		0.0286	"	"			"
Toluene		ND		0.0477	"	"	"		
Ethylbenzene	"	ND		0.0477	"	"			
Xylenes (total)	"	ND		0.0953	"	"	"	"	"
Surrogate(s): 4-BFB (FID)			94.1%		50 -	150 %	"		"
4-BFB (PID)			108%		53 -	142 %	"		"

BPF0367-06 (P-10-15)		Soil			Samp	led: 06/1	4/06 14:19			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		4.36	mg/kg dry	1x	6F16026	06/16/06 10:12	06/17/06 01:05	
Benzene	"	ND		0.0262		"			"	
Toluene	"	ND		0.0436	"	"	"		"	
Ethylbenzene	"	ND		0.0436		"			"	
Xylenes (total)	"	ND		0.0872		"	"	"	"	
Surrogate(s): 4-BFB (FID)			91.2%		50 -	150 %	"		"	
4-BFB (PID)			106%		53 -	142 %	"		"	

BPF0367-07 (P-10-16)		Soil			Samp	led: 06/1	14/06 14:40			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.05	mg/kg dry	1x	6F20031	06/20/06 09:28	06/20/06 12:15	
Benzene	"	ND		0.0303		"	"		"	
Toluene	"	ND		0.0505		"	"			
Ethylbenzene	"	ND		0.0505		"	"			
Xylenes (total)	"	ND		0.101	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			92.4%		50 -	150 %	"		"	
4-BFB (PID)			96.4%		53 -	142 %	"		"	

auamerich dra

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

SAIC - Bothell 18912 North Creek Parkw Bothell, WA/USA 98011		Project Na Project Nu Project Ma	umber: 100-1327 Re						rt Created: 3/06 17:11	
	Semivolatile Petrol		cts by N estAmeric			h Acid	l/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0367-02 (P-1B-14)		Soi	1		Samp	led: 06/1	14/06 09:27			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	4590 ND		223 559	mg/kg dry "	20x "	6F16055 "	06/16/06 14:38	06/19/06 19:02	
Surrogate(s): 2-FBP Octacosane			306% 141%			150 % 150 %	"		"	SR-4
BPF0367-04 (P-1B-16)		Soi	I		Samp	led: 06/1	14/06 09:48			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	1660 ND		113 282	mg/kg dry "	10x "	6F16055 "	06/16/06 14:38	06/19/06 19:30	
Surrogate(s): 2-FBP Octacosane			162% 108%			150 % 150 %	"		"	SR-4
BPF0367-05 (P-10-12)		Soi	1		Samp	led: 06/1	14/06 13:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.6	mg/kg dry	1x	6F16055	06/16/06 14:38	06/19/06 19:45	
Lube Oil Range Hydrocarbons	"	ND		26.5	"	"	"	"	"	
Surrogate(s): 2-FBP Octacosane			79.9% 77.8%			150 % 150 %	"		"	
BPF0367-06 (P-10-15)		Soi	1		Samp	led: 06/1	14/06 14:19			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.4	mg/kg dry	1x	6F16055	06/16/06 14:38	06/19/06 14:31	
Lube Oil Range Hydrocarbons	"	ND		25.9	"	"	"	"	"	
Surrogate(s): 2-FBP			85.3%		50 -	150 %	"		"	
Octacosane			80.2%		50 -	150 %	"		"	
BPF0367-07 (P-10-16)		Soi	1		Samp	led: 06/1	14/06 14:40			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		11.6 29.0	mg/kg dry "	1x "	6F16055 "	06/16/06 14:38	06/19/06 20:11	
Surrogate(s): 2-FBP Octacosane			79.4% 76.1%			150 % 150 %	"		"	

Sandra Gavamerich

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/23/06 17:11

		Physic	cal Paramet	ters by A estAmeric			EPA N	lethods			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0367-02	(P-1B-14)		Soil			Sam	pled: 06/1	4/06 09:27			
Dry Weight		BSOPSPL003R0 8	88.9		1.00	%	1x	6F16059	06/16/06 14:44	06/19/06 00:00	
BPF0367-04	(P-1B-16)		Soil			Sam	pled: 06/1	4/06 09:48			
Dry Weight		BSOPSPL003R0 8	89.9		1.00	%	1x	6F16059	06/16/06 14:44	06/19/06 00:00	
BPF0367-05	(P-10-12)		Soil			Sam	pled: 06/1	4/06 13:50			
Dry Weight		BSOPSPL003R0 8	93.6		1.00	%	lx	6F16059	06/16/06 14:44	06/19/06 00:00	
BPF0367-06	(P-10-15)		Soil			Sam	pled: 06/1	4/06 14:19			
Dry Weight		BSOPSPL003R0 8	94.8		1.00	%	1x	6F16059	06/16/06 14:44	06/19/06 00:00	
BPF0367-07	(P-10-16)		Soil			Sam	pled: 06/1	4/06 14:40			
Dry Weight		BSOPSPL003R0 8	86.9		1.00	%	lx	6F16060	06/16/06 14:44	06/19/06 00:00	

Sandra Gewamwich Sandra Yakamavich, Project Manager

SAIC - Bot	hell				Project N	lame:	Metro	#100-132	.7						
18912 North	n Creek Parkway S	South, Suite 101			Project N	lumber:	100-132	27						Report Create	ed:
Bothell, WA	/USA 98011				Project N	lanager:	Peter Ca	atterall						06/23/06 17:	11
Gaso	oline Hydrocarl	oons (Benzene t	o Naphth	alene) a	nd BTEX b	y NWTPH	-G and	1 EPA 80	21B -	Labo	oratory (Qualit	y Cont	rol Results	
					TestAmeric	a - Seattle, V	VA								
QC Batcl	h: 6F16026	Soil Pre	paration N	lethod:	EPA 5030B	(MeOH)									
Analyte		Method	Result	М	DL* MR	L Units	Dil	Source Result	Spike Amt	o‰ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6F1602	26-BLK1)								Ext	racted:	06/16/06 10	:12			
Gasoline Range Hydr	rocarbons	NWTPH-Gx/	ND		- 5.00	mg/kg wet	1x							06/16/06 12:58	
Benzene		8021B "	ND		- 0.0300	"									
Toluene			ND		- 0.0500	"								"	
Ethylbenzene			ND		- 0.0500	"								"	
Xylenes (total)			ND		- 0.100	"								"	
Surrogate(s):	4-BFB (FID)		Recovery:	88.3%		Limits: 50-150	% "							06/16/06 12:58	
0 ()	4-BFB (PID)			106%		53-142								"	
LCS (6F16026	5-BS1)								Ext	racted:	06/16/06 10	:12			
Gasoline Range Hydr	rocarbons	NWTPH-Gx/	44.7		- 5.00	mg/kg wet	1x		50.0	89.4%	(75-125)			06/16/06 13:59	
Benzene		8021B "	0.570		- 0.0300	"			0.482	118%				"	
Toluene			3.32		- 0.0500	"			4.18	79.4%					
Ethylbenzene			0.750		- 0.0500	"			0.838	89.5%					
Xylenes (total)			4.04		- 0.100	"			4.82	83.8%				"	
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery:	100% 103%		Limits: 50-1509 53-142								06/16/06 13:59 "	
Duplicate (6F1	16026-DUP1)				QC Sour	ce: BPF0231-0)2		Ext	racted:	06/16/06 10	:12			
Gasoline Range Hydr	· · · · · ·	NWTPH-Gx/	ND				1x	ND				10.6%	(40)	06/16/06 15:30	
Benzene		8021B "	ND		- 0.0259	"		ND				NR	(35)		
Toluene			ND		- 0.0431	"		ND				82.9%			RP-
Ethylbenzene			ND		- 0.0431	"		ND				83.6%	, "		RP-
Xylenes (total)		"	ND		- 0.0862	"		ND				106%	"		RP-
Surrogate(s):	4-BFB (FID)		Recovery:	90.3%		Limits: 50-150	% "							06/16/06 15:30	
0 ()	4-BFB (PID)			106%		53-142								"	
Duplicate (6F1	16026-DUP2)				QC Sour	-ce: BPF0367-()5		Ext	racted:	06/16/06 10	:12			
Gasoline Range Hydr		NWTPH-Gx/ 8021B	ND		- 4.77	mg/kg dry	1x	ND				67.5%	(40)	06/17/06 00:35	RP-
Benzene		"	ND		- 0.0286	"		ND				NR	(35)	"	
Toluene			ND		- 0.0477	"		ND				10.9%	, "	"	
Ethylbenzene			ND		- 0.0477	"		ND				58.5%	, "	"	RP-
Xylenes (total)			ND		- 0.0953	"		ND				10.1%	, "	"	
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery:	92.3% 107%		Limits: 50-1509 53-142								06/17/06 00:35 "	

Levamerich landra

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

SAIC - Bothell 18912 North Creek Parkway Bothell, WA/USA 98011	South, Suite 101			Project Na Project Nu Project M	imber:	Metro 100-132 Peter Ca		27					Report Create 06/23/06 17:	
Gasoline Hydroca	bons (Benzene	to Naphth		-	y NWTPH - Seattle, W		I EPA 80	21B -	Labo	oratory (Qualit	y Cont	rol Results	
QC Batch: 6F16026	Soil Pre	paration N	lethod: EP	A 5030B (MeOH)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Matrix Spike (6F16026-MS1)				QC Sourc	e: BPF0231-0	2		Extr	acted:	06/16/06 10	:12			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	41.7		4.31	mg/kg dry	1x	0.836	43.1	94.8%	(42-125)			06/16/06 18:02	
Benzene	"	0.497		0.0259	"		ND	0.416	119%	(45-125)			"	
Toluene		2.89		0.0431	"		0.0206	3.60	79.7%	(55-125)			"	
Ethylbenzene		0.660		0.0431	"		0.0106	0.722	89.9%	(53-132)			"	
Xylenes (total)		3.52		0.0862	"		0.0431	4.16	83.6%	(59-125)			"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	106% 105%	I	imits: 50-150% 53-1429								06/16/06 18:02 "	
QC Batch: 6F19035	Soil Pre	paration N	lethod: EP	A 5030B (MeOH)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (6F19035-BLK1)								Extr	acted:	06/19/06 10	:34			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	ND		5.00	mg/kg wet	1x							06/19/06 12:07	
Benzene	"	ND		0.0300	"									
Toluene	"	ND		0.0500	"	"							"	
Ethylbenzene		ND		0.0500	"	"							"	
Xylenes (total)		ND		0.100	"									
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	92.7% 102%	Ι	imits: 50-150% 53-1429								06/19/06 12:07 "	
LCS (6F19035-BS1)								Extr	acted:	06/19/06 10	:34			
Gasoline Range Hydrocarbons	NWTPH-Gx/	44.8		5.00	mg/kg wet	1x		50.0	89.6%	(75-125)			06/19/06 12:38	
Benzene	8021B	0.574		0.0300				0.482	119%					
Toluene		3.37		0.0500				4.18	80.6%					
Ethylbenzene		0.750		0.0500				0.838					"	
Xylenes (total)		4.05		0.100					84.0%					
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:			imits: 50-150% 53-1429			1.02	01.070				06/19/06 12:38 "	
Duplicate (6F19035-DUP1)				QC Sourc	e: BPF0354-0	2		Extr	acted:	06/19/06 10):34			
Duplicate (6F19035-DUP1) Gasoline Range Hydrocarbons	NWTPH-Gx/	ND			e: BPF0354-0 mg/kg dry	2 1x	ND	Extr	acted:			6 (40)	06/19/06 14:31	
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B "			4.62							15.1%		06/19/06 14:31	
Gasoline Range Hydrocarbons Benzene		ND		4.62 0.0277		1x	ND				15.1% NR	(35)		
Gasoline Range Hydrocarbons Benzene Toluene	8021B "	ND ND		4.62 0.0277 0.0462		1x "	ND ND				15.1% NR 19.6%	(35)		
Gasoline Range Hydrocarbons Benzene	8021B "	ND		4.62 0.0277		lx "	ND		-acted: 		15.1% NR	(35) 6 " 6 "		RP-

Lauramerich dra

Sandra Yakamavich, Project Manager

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/23/06 17:11
Gasoline Hydrocarbons (Benzene to Naphthale	ne) and BTEX by NWTI TestAmerica - Seattle		ry Quality Control Results

QC Batch: 6F19035	Soil Prep	paration M	ethod: EPA	A 5030B (MeOH)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (6F19035-DUP1)				QC Sourc	e: BPF0354-02			Extr	acted:	06/19/06 10	:34			
Surrogate(s): 4-BFB (PID)		Recovery:	104%	L	imits: 53-142%	lx							06/19/06 14:31	
Matrix Spike (6F19035-MS1)				QC Sourc	e: BPF0354-02			Extr	acted:	06/19/06 10	:34			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	43.0		4.62	mg/kg dry	1x	0.868	46.2	91.2%	(42-125)			06/19/06 18:02	
Benzene	"	0.517		0.0277	"	"	ND	0.446	116%	(45-125)				
Toluene		3.07		0.0462	"	"	0.0151	3.86	79.1%	(55-125)				
Ethylbenzene		0.698		0.0462	"		0.00564	0.774	89.5%	(53-132)				
Xylenes (total)		3.76		0.0924	"	"	0.0255	4.46	83.7%	(59-125)			"	
Surrogate(s): 4-BFB (FID)		Recovery:	105%	L	imits: 50-150%	"							06/19/06 18:02	
4-BFB (PID)			106%		53-142%	"							"	

QC Batch: 6F20031	Soil Pre	paration N	lethod: EPA	5030B (MeOH)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6F20031-BLK1)								Extr	acted:	06/20/06 09	:28			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	ND		5.00	mg/kg wet	1x							06/20/06 11:17	
Benzene	"	ND		0.0300	"	"								
Toluene		ND		0.0500	"	"								
Ethylbenzene		ND		0.0500	"	"								
Xylenes (total)		ND		0.100	"	"							"	
Surrogate(s): 4-BFB (FID)		Recovery:	92.0%	L	imits: 50-150%	"							06/20/06 11:17	
4-BFB (PID)			95.3%		53-142%	"							"	
LCS (6F20031-BS1)								Extr	acted:	06/20/06 09	:28			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	51.2		5.00	mg/kg wet	1x		50.0	102%	(75-125)			06/20/06 11:46	
Benzene	"	0.592		0.0300	"	"		0.482	123%	"				
Toluene		3.44		0.0500	"			4.18	82.3%	"				
Ethylbenzene		0.715		0.0500	"	"		0.838	85.3%	"				
Xylenes (total)		3.88		0.100	"	"		4.82	80.5%	"			"	
Surrogate(s): 4-BFB (FID)		Recovery:	103%	L	imits: 50-150%	"							06/20/06 11:46	
4-BFB (PID)			92.0%		53-142%	"							"	

Sandra Levermerich Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 9 of 13

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/23/06 17:11
Gasoline Hydrocarbons (Benzene to Naphthalene) and	d BTEX by NWT	PH-G and EPA 8021B - Laboratory Quality Co	ntrol Results

QC Batch: 6F20031	Soil Pre	paration N	fethod: EPA	A 5030B ((MeOH)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Duplicate (6F20031-DUP1)				QC Sourc	e: BPF0367-07			Extr	acted:	06/20/06 09	9:28			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	ND		5.05	mg/kg dry	1x	ND				8.00%	(40)	06/20/06 12:44	
Benzene	"	ND		0.0303	"		ND				NR	(35)	"	
Toluene	"	ND		0.0505	"		ND				35.2%	. "	"	RP-4
Ethylbenzene	"	ND		0.0505	"	"	ND				4.51%	. "	"	
Xylenes (total)	"	ND		0.101	"	"	ND				4.99%	, "		
Surrogate(s): 4-BFB (FID)		Recovery:	91.7%	I	imits: 50-150%	"							06/20/06 12:44	
4-BFB (PID)			96.7%		53-142%	"							"	
Matrix Spike (6F20031-MS1)				QC Sourc	e: BPF0367-07			Extr	acted:	06/20/06 09	9:28			A-01
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	52.4		5.05	mg/kg dry	1x	1.30	50.5	101%	(42-125)			06/21/06 10:42	
Benzene	"	0.605		0.0303	"		ND	0.487	124%	(45-125)			"	
Toluene		3.51		0.0505	"	"	0.0147	4.22	82.8%	(55-125)			"	
Ethylbenzene	"	0.731		0.0505	"		0.00793	0.846	85.5%	(53-132)			"	
Xylenes (total)	"	3.95		0.101	"		0.0226	4.87	80.6%	(59-125)				
Surrogate(s): 4-BFB (FID)		Recovery:	102%	I	imits: 50-150%	"							06/21/06 10:42	
4-BFB (PID)			91.1%		53-142%	"							"	

Sandra Gauamerich

Sandra Yakamavich, Project Manager

SAIC - Bothell				Project Na	une.		#100-132	:7					Demont C (. J.
18912 North Creek Parkway S	outh, Suite 101			Project Nu		100-132							Report Create	
Bothell, WA/USA 98011				Project M	anager:	Peter Ca	atterall						06/23/06 17	:11
Semivolatile F	Petroleum Pro	oducts by I			id/Silica (- Seattle, W		an-up -	Labora	ntory	Quality	Cont	rol Res	ults	
QC Batch: 6F16055	Soil Pre	paration N	lethod: EP	PA 3550B										
Analyte	Method	Result	MDL*	f MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6F16055-BLK1)								Extra	acted:	06/16/06 14	:38			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.0	mg/kg wet	1x							06/19/06 12:40	
Lube Oil Range Hydrocarbons		ND		25.0	"	"							"	
Surrogate(s): 2-FBP Octacosane		Recovery:	96.3% 86.7%	L	imits: 50-1509 50-150								06/19/06 12:40 "	
LCS (6F16055-BS1)								Extra	acted:	06/16/06 14	:38			
Diesel Range Hydrocarbons	NWTPH-Dx	59.1		10.0	mg/kg wet	1x		66.7	88.6%	(61-120)			06/19/06 13:05	
Surrogate(s): 2-FBP Octacosane		Recovery:	106% 84.2%	L	imits: 50-1509 50-150								06/19/06 13:05 "	
Duplicate (6F16055-DUP1)				QC Sourc	e: BPF0389-(13		Extra	acted:	06/16/06 14	:38			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		11.0	mg/kg dry	1x	ND				NR	(50)	06/19/06 13:34	
Lube Oil Range Hydrocarbons		ND		27.5	"	"	ND				NR	"	"	
Surrogate(s): 2-FBP Octacosane		Recovery:	82.9% 75.2%	L	imits: 50-1509 50-150								06/19/06 13:34 "	
Duplicate (6F16055-DUP2)				QC Sourc	e: BPF0367-(6		Extra	acted:	06/16/06 14	:38			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.5	mg/kg dry	1x	ND					(50)	06/19/06 13:49	
Lube Oil Range Hydrocarbons	"	ND		26.4	"		ND					"		
Surrogate(s): 2-FBP Octacosane		Recovery:	79.4% 80.3%	L	imits: 50-1509 50-150								06/19/06 13:49 "	
Matrix Spike (6F16055-MS1)				QC Sourc	e: BPF0389-(13		Extra	acted:	06/16/06 14	:38			
Diesel Range Hydrocarbons	NWTPH-Dx	58.2		11.2	mg/kg dry	1x	ND	74.4	78.2%	(45-144)			06/19/06 14:16	
Surrogate(s): 2-FBP Octacosane		Recovery:	93.7% 75.4%	L	imits: 50-1509 50-150								06/19/06 14:16 "	

Sandra Lavamerich

Sandra Yakamavich, Project Manager

SAIC - Bothell			Р	roject Nam	ie:	Metro	#100-132	27						
18912 North Creek Parkway	South, Suite 101		Р	roject Nun	iber:	100-132	7						Report Crea	ited:
Bothell, WA/USA 98011			Р	roject Man	ager:	Peter Ca	tterall						06/23/06 1	7:11
	Physical Paran	neters by A	PHA/ASTN	A/EPA N	lethods	- Labo	oratory (Quality	Con	trol Res	ults			
			Test	America -	Seattle,	WA								
QC Batch: 6F16059	Soil Prep	aration Met	hod: Dry V	Weight										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6F16059-BLK1)								Extra	cted:	06/16/06 14	:44			
Dry Weight	BSOPSPL00 3R08	100		1.00	%	1x						(06/19/06 00:00	
QC Batch: 6F16060	Soil Prep	paration Met	hod: Dry V	Weight										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6F16060-BLK1)								Extra	cted:	06/16/06 14	:44			
Dry Weight	BSOPSPL00 3R08	100		1.00	%	1x						(06/19/06 00:00	

Sandra Gauamerich

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager: **Metro #100-1327** 100-1327

Peter Catterall

Report Created: 06/23/06 17:11

Notes and Definitions

Report Specific Notes:

Report Sp	Jech	ine Notes:
A-01	-	Sample was shot between ccvs that were 12 hours 30 minutes apart.
I-06	-	The analyte concentration may be artificially elevated due to coeluting compounds or components.
RP-4	-	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
SR-4	-	Due to sample matrix effects, the surrogate recovery was outside laboratory control limits.
Laborato	ry R	eporting Conventions:
DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
NR/NA	-	Not Reported / Not Available
dry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
wet	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
MRL	-	METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
Dil	-	Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
Reporting Limits	-	Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic-Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Sandra Jewamerich Sandra Yakamavich, Project Manager

Test Analytical testing corporation

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-420-9200
 FAX 420-9210

 11922 E. First Ave, Spokane, WA 99206-5302
 509-924-9200
 FAX 924-9290

 9405 SW Nünbus Ave, Beaverton, OR 97008-7145
 503-906-9200
 FAX 906-9210

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563-9200
 FAX 563-9210

			СН	IAIN (OF C	USTC	DDY R	EPOI	RT								Work Or	der #:	BPFO	367
	IC.						INVOICE										-	FURNA	ROUND REQUE	ST
REPORT TO: Per	ter (atte	roel Teek PKI 98011					C	her	π	51								Business Days *	
ADDRESS. 102	NJ NC	INA	AGAIL	9													10 7	5	4 3 2	1 <1
bol	Hell,	WΠ	70011				P.O. NUM	IBER:				·····				w	┫└ݐݐ┙└──┙	Petroleum	Hydrocarbon Analyse	s
PHONE: 70 - 7 00	Motro	AX: 40	5-485-5566 attle	2			I,		PRES	ERVAT	IVE							4	3 2 1	<1
																	STD.			
PROJECT NUMBER:	CVX +	100 - 1	377			Xo			REQUEST	ED AN	ALYSES				L		го	HER	Specify:	
SAMPLED BY: 51	mon Kli	ne		35	- #.	1-H 2-H 2-H	H										* Turnaround	Requests les	ss than standard may in	cur Rush Charges.
CLIENT SAM IDENTIFICAT	IPLE		SAMPLING DATE/TIME	AS NO	# San	NUUT Walk	C PD										MATRIX (W, S. O)	# OF CONT.	LOCATION / COMMENTS	
0A-1	QA	6/1	4/06/0805	Х	\times			-									ξW	1		01
P-18-14	P-1B		0927	X	X	X											5	2		02
, FB-061406	FB	ŀ	0928	X	X												W	}		03
P-1B-16	P-1B		0948	X	X	X											5	9		04
7-10-12	P-10		1350	Х	X	Х			-								5	5		05
P-10-15	P-10		1 14(9	X	X	X	2										5	a		06
,P-10-16	P-10	v	144D	X	X	\times														07
												-								
<u> </u>																				
2	,											Λ	1	h						11
RELEASED BY:	na k Ina la	ne	Firm:	3010	^		DATE: TIME:	61	14/0	6	RECEIVED	BY:		am	let 1		FIRM:	TH		a.
PRINT NAME:	IVIA 12	ung	FIRM:	HIC			DATE:				RECEIVED		#IN	y Ca	THE U	-		1 11	DAT	11 0
RELEASED BY: PRINT NAME:		v	FIRM				TIME:				PRINT NAM	IE:	·				FIRM		тім	IE:
ADDITIONAL REMARKS:								<u></u>			<u>. I </u>								темр: 4-2°	PAGE OF
COC REV 09/2004																				

June 21, 2006

Peter Catterall SAIC - Bothell 18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011

RE: Metro #100-1327

Enclosed are the results of analyses for samples received by the laboratory on 06/13/06 12:01. The following list is a summary of the Work Orders contained in this report, generated on 06/21/06 15:54.

If you have any questions concerning this report, please feel free to contact me.

Work OrderProjectProjectNumberBPF0309Metro #100-1327100-1327

TestAmerica - Seattle, WA

Hamevich

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327 Peter Catterall

Report Created: 06/21/06 15:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
QA-1	BPF0309-01	Soil	06/13/06 08:15	06/13/06 12:01
P-7-14.5	BPF0309-02	Soil	06/13/06 08:50	06/13/06 12:01
P-8-14.5	BPF0309-03	Soil	06/13/06 10:14	06/13/06 12:01

TestAmerica - Seattle, WA

Lauramerich ndra

Sandra Yakamavich, Project Manager

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/21/06 15:54

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B TestAmerica - Seattle WA

		Τ	estAmeric	ca - Seat	tle, WA					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0309-01 (QA-1)		Soi	1		Samp	oled: 06/1	3/06 08:15			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.00	mg/kg wet	1x	6F16026	06/16/06 10:12	06/16/06 21:04	
Benzene	"	ND		0.0300	"		"		"	
Toluene	"	ND		0.0500	"		"		"	
Ethylbenzene	"	ND		0.0500	"		"		"	
Xylenes (total)	"	ND		0.100	"	"	"	"	"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)			92.7% 104%			- 150 % - 142 %	"		"	
BPF0309-02 (P-7-14.5)		Soi	I		Samp	oled: 06/1	3/06 08:50			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.25	mg/kg dry	1x	6F16026	06/16/06 10:12	06/16/06 16:31	
Benzene	"	ND		0.0315	"		"		"	
Toluene	"	ND		0.0525			"		"	
Ethylbenzene	"	ND		0.0525			"		"	
Xylenes (total)	"	ND		0.105		"		"	"	
Surrogate(s): 4-BFB (FID)			89.5%		50 -	- 150 %	"		"	
4-BFB (PID)			107%		53 -	- 142 %	"		"	
BPF0309-03 (P-8-14.5)		Soi	I		Samp	oled: 06/1	3/06 10:14			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		5.32	mg/kg dry	1x	6F16026	06/16/06 10:12	06/16/06 17:01	
Benzene	"	ND		0.0319			"	"		
Toluene	"	ND		0.0532	"		"			
Ethylbenzene	"	ND		0.0532	"		"	"	"	
Xylenes (total)	"	ND		0.106	"	"		"	"	

Surrogate(s): 4-BFB (FID)

4-BFB (PID)

TestAmerica - Seattle, WA

Sandra Gewameirich Sandra Yakamavich, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

"

"

89.7%

107%

50 - 150 %

53 - 142 %

″

"

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/21/06 15:54

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up TestAmerica - Seattle, WA

		1	estAmeric	a - Seau	le, wA					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BPF0309-02 (P-7-14.5)		Soi	I		Samp	oled: 06/	13/06 08:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		12.1	mg/kg dry	1x	6F14050	06/14/06 14:49	06/15/06 12:36	
Lube Oil Range Hydrocarbons	"	ND		30.3		"	"	"	"	
Surrogate(s): 2-FBP			94.3%		50 -	- 150 %	"		"	
Octacosane			92.9%		50 -	- 150 %	"		"	
BPF0309-03 (P-8-14.5)		Soi	I		Samp	oled: 06/	13/06 10:14			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		11.7	mg/kg dry	1x	6F14050	06/14/06 14:49	06/15/06 13:05	
Lube Oil Range Hydrocarbons	"	ND		29.3		"		"	"	
Surrogate(s): 2-FBP			92.0%		50 -	- 150 %	"		"	
Octacosane			92.8%		50 -	- 150 %	"		"	

TestAmerica - Seattle, WA

Lauramerich rdra

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

100-1327 Peter Catterall

Metro #100-1327

Report Created: 06/21/06 15:54

	Physical Parameters by APHA/ASTM/EPA Methods TestAmerica - Seattle, WA												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes		
BPF0309-02	(P-7-14.5)		Soil	l		Sam	pled: 06/1	3/06 08:50					
Dry Weight		BSOPSPL003R0 8	82.8		1.00	%	lx	6F14056	06/14/06 15:31	06/15/06 00:00			
BPF0309-03	(P-8-14.5)		Soil	l		Sam	pled: 06/1	3/06 10:14					
Dry Weight		BSOPSPL003R0 8	84.6		1.00	%	1x	6F14056	06/14/06 15:31	06/15/06 00:00			

TestAmerica - Seattle, WA

Sandra Javamerich

Sandra Yakamavich, Project Manager

SAIC - Both	ell				Project	Name:	Metr	o #100	0-1327							
18912 North	Creek Parkway S	South, Suite 101			Project	Number:	100-1	327							Report Create	ed:
Bothell, WA	/USA 98011				Project	Manager:	Peter	Cattera	all						06/21/06 15:	54
Gaso	line Hydrocarl	bons (Benzene t	o Naphth	alene) :	and BTEX	by NWT	'PH-G a	nd EP	PA 8021B	8 - L	abo	ratory (Qualit	y Conti	rol Results	
	·	x	•		TestAmeri	-						·	_	•		
QC Batch	: 6F16026	Soil Pre	paration N	lethod:	EPA 5030	B (MeOH)									
Analyte		Method	Result	N	IDL* MI	RL Uni	ts Di		ource Sp esult An		% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6F1602	6-BLK1)									Extrac	ted: (06/16/06 10	:12			
Gasoline Range Hydro	ocarbons	NWTPH-Gx/	ND	-	5.0	00 mg/kg w	vet 1x	-		-					06/16/06 12:58	
Benzene		8021B	ND	-	0.030	00 "		-		-					"	
Toluene		"	ND		0.050			-		-					"	
Ethylbenzene		"	ND		0.050			-		-					"	
Xylenes (total)			ND		0.10	00 "	"	-		-					"	
Surrogate(s):	4-BFB (FID)		Recovery:	88.3%		Limits: 50-	-150% "								06/16/06 12:58	
	4-BFB (PID)		necovery:	106%			-142% "								"	
LCS (6F16026-	-BS1)									Extrac	ted: (06/16/06 10	:12			
Gasoline Range Hydro	ocarbons	NWTPH-Gx/	44.7	-	5.0	00 mg/kg w	vet 1x	-	50	0.0 8	9.4%	(75-125)			06/16/06 13:59	
Benzene		8021B	0.570	-	0.030	00 "		-	0.4	482 1	18%				"	
Toluene		"	3.32	-	0.050	00 "	"	-	4.	18 7	9.4%	"				
Ethylbenzene		"	0.750	-	0.050	00 "	"	-	0.8	338 8	9.5%	"			"	
Xylenes (total)			4.04	-	0.10	. 00		-	4.	82 8	3.8%	"			"	
	4-BFB (FID) 4-BFB (PID)		Recovery:	100% 103%		Limits: 50- 53	-150% " -142% "								06/16/06 13:59 "	
Duplicate (6F1	6026-DUP1)				QC So	urce: BPF0	231-02			Extrac	ted: (06/16/06 10	:12			
Gasoline Range Hydro		NWTPH-Gx/	ND	-	4.3			N		-				(40)	06/16/06 15:30	
Benzene		8021B "	ND	-	0.025	59 "	"	N	JD -	-			NR	(35)	"	
Toluene			ND	-	0.043	31 "	"	N	JD -	-			82.9%	. "		RP-4
Ethylbenzene			ND	-	0.043	31 "	"	N	JD -	-			83.6%	, "		RP-4
Xylenes (total)			ND	-	0.080	52 "	"	Ν	JD -	-			106%	"	"	RP-4
Surrogate(s):	4-BFB (FID)		Recovery:	90.3%		Limits: 50-	-150% "								06/16/06 15:30	
ē (,	4-BFB (PID)			106%			-142% "								"	
Duplicate (6F1	6026-DUP2)				QC So	urce: BPF0	367-05			Extrac	ted: (06/16/06 10	:12			
Gasoline Range Hydro	ocarbons	NWTPH-Gx/ 8021B	ND	-	4.7	77 mg/kg d	ry 1x	N	D -	-			67.5%	(40)	06/17/06 00:35	RP-4
Benzene		"	ND	-	0.028	36 "	"	Ν	D -	-			NR	(35)	"	
Toluene			ND	-	0.047	77 "	"	Ν	D -	-			10.9%	. "	"	
Ethylbenzene		"	ND	-	0.047	77 "	"	Ν	D -	-			58.5%	, "	"	RP-4
Xylenes (total)		"	ND	-	0.095	53 "	"	Ν	D -	-			10.1%	, "	"	
Surrogate(s):	4-BFB (FID) 4-BFB (PID)		Recovery:	92.3% 107%		Limits: 50-	-150% " -142% "								06/17/06 00:35 "	

Levamerich landra

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sandra Yakamavich, Project Manager

SAIC - Bothell	Project Name:	Metro #100-1327	
18912 North Creek Parkway South, Suite 101	Project Number:	100-1327	Report Created:
Bothell, WA/USA 98011	Project Manager:	Peter Catterall	06/21/06 15:54

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica - Seattle, WA

QC Batch: 6F16026 Soil Preparation Method: EPA 5030B (MeOH)														
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (6F16026-MS1)				QC Sourc	e: BPF0231-02			Extr	acted:	06/16/06 10	:12			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	41.7		4.31	mg/kg dry	1x	0.836	43.1	94.8%	(42-125)			06/16/06 18:02	
Benzene		0.497		0.0259	"	"	ND	0.416	119%	(45-125)			"	
Toluene		2.89		0.0431	"	"	0.0206	3.60	79.7%	(55-125)				
Ethylbenzene		0.660		0.0431	"	"	0.0106	0.722	89.9%	(53-132)			"	
Xylenes (total)		3.52		0.0862		"	0.0431	4.16	83.6%	(59-125)			"	
Surrogate(s): 4-BFB (FID)		Recovery:	106%	L	imits: 50-150%	"							06/16/06 18:02	

4-BFB (PID)

105%

53-142% "

TestAmerica - Seattle, WA

Levamerich ndra

Sandra Yakamavich, Project Manager

SAIC - Bothell				Project Na	me:	Metro	#100-132	27						
18912 North Creek Parkway S	outh, Suite 101			Project Nu	mber:	100-132	7						Report Create	d:
Bothell, WA/USA 98011				Project Ma	nager:	Peter Ca	atterall						06/21/06 15:	54
Semivolatile l	Petroleum Pro	ducts by 1			id/Silica C - Seattle, W		an-up -	Labor	atory	Quality	Cont	rol Re	sults	
QC Batch: 6F14050	Soil Pre	paration N	lethod: EPA	A 3550B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (6F14050-BLK1)								Extr	acted:	06/14/06 14	:49			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.0	mg/kg wet	1x							06/15/06 10:37	
Lube Oil Range Hydrocarbons		ND		25.0	"	"							"	
Surrogate(s): 2-FBP Octacosane		Recovery:	94.0% 95.1%	Li	mits: 50-150% 50-150								06/15/06 10:37 "	
LCS (6F14050-BS1)								Extr	acted:	06/14/06 14	:49			
Diesel Range Hydrocarbons	NWTPH-Dx	65.6		10.0	mg/kg wet	1x		66.7	98.4%	(61-120)			06/15/06 11:07	
Surrogate(s): 2-FBP		Recovery:	104%	Li	mits: 50-150%	6 "							06/15/06 11:07	
Octacosane			95.3%		50-150	% "							"	
Duplicate (6F14050-DUP1)				QC Source	: BPF0309-0	2		Extr	acted:	06/14/06 14	:49			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		12.0	mg/kg dry	1x	ND				NR	(50)	06/15/06 11:36	
Lube Oil Range Hydrocarbons		ND		30.1	"	"	ND				NR	"	"	
Surrogate(s): 2-FBP		Recovery:	89.7%	Li	mits: 50-150%	6 "							06/15/06 11:36	
Octacosane			93.0%		50-150	% "							"	
Matrix Spike (6F14050-MS1)				QC Source	: BPF0309-0	2		Extr	acted:	06/14/06 14	:49			
Diesel Range Hydrocarbons	NWTPH-Dx	75.8		12.1	mg/kg dry	1x	ND	80.8	93.8%	(45-144)			06/15/06 12:06	
Surrogate(s): 2-FBP		Recovery:	97.7%	Li	mits: 50-150%	6 "							06/15/06 12:06	
Octacosane			93.7%		50-150	% "							"	

Sandra Jauamarich Sandra Yakamavich, Project Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 8 of 10

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager:

Metro #100-1327 100-1327 Peter Catterall

Report Created: 06/21/06 15:54

Physical Parameters by APHA/ASTM/EPA Methods - Laboratory Quality Control Results TestAmerica - Seattle, WA														
QC Batch: 6F14056 Soil Preparation Method: Dry Weight														
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt		(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6F14056-BLK1) Extracted: 06/14/06 15:31														
Dry Weight	BSOPSPL00 3R08	99.8		1.00	%	1x							06/15/06 00:00	

TestAmerica - Seattle, WA

Sandra Levermerich

Sandra Yakamavich, Project Manager

18912 North Creek Parkway South, Suite 101 Bothell, WA/USA 98011 Project Name: Project Number: Project Manager: **Metro #100-1327** 100-1327

Peter Catterall

Report Created: 06/21/06 15:54

Notes and Definitions

Report Specific Notes:

DET

RP-4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

Laboratory Reporting Conventions:

ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
NR/NA	-	Not Reported / Not Available
dry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
wet	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
MRL	-	METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
MDL*	-	METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
Dil	_	Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

accamerich Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test Analytical testing corporation

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-420-9200
 FAX 420-9210

 11922 E. First Ave, Spokane, WA 99206-5302
 509-924-9200
 FAX 924-9290

 9405 SW Nünbus Ave, Beaverton, OR 97008-7145
 503-906-9200
 FAX 906-9210

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563-9200
 FAX 563-9210

			СН	AIN (OF C	USTC	DDY R	EPO	RT								Work Or	der #:	BPFO	367	
CLIENT: SALC								TO:									TURNAROUND REQUEST				
REPORT TO: Peter Catteral						Chevron										in Business Days *					
ADDRESS: 18912 North Creek KWY																Organic & Inorganic Analyses					
Boi	nell,	WA	98011	,			P.O. NUM	DED.				. <u></u>					10 7 <i>STD.</i>	Patrolaum	4 3 2 Hydrocarbon Analyse		
PHONE: 405 - 485	3800 1	AX: 40	5-485-5566 attle	>			F.O. NOM			EDV47	C11/E									<1	
PROJECT NAME:	netro	1 5ê	atte				<u> </u>		PRES	ERVAT					1		STD.				
PROJECT NUMBER: CVX 100 - 13+7					<u>Xa</u>	REQUESTED ANALYSES												Specify:			
SAMPLED BY: 51	non Kli	ne.		22	- #.	# 3	ル										* Turnaround	Requests les	ss than standard may inc	ur Rush Charges.	
CLIENT SAM IDENTIFICAT	PLE		SAMPLING DATE/TIME	AS AS	# San	NWT W	CPD										MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	NCA WO ID	
QA-1	QA	6/1	4/06/0805	X	X												Ş W	1		01	
P-18-14	P-1B	[0927	ΪX	X	Х											5	2		02	
, FB-061406	FB	ļ	0928	\times	Х												W	}		03	
P-1B-16	₽-1B		0948	X	\times	X									ļ		5	9-		04	
7-10-12	P-10		1350	\times	X	X			-								5	5		05	
P-10-15	P-10	Ň	1 1419	X	X	X	8										5	2		06	
,P-10-16	P-10	•	144D	X	X	X														07	
8																					
9																					
10	l												1	h							
RELEASED BY:	na k Ina la	ne	FIRM:	SA 10	^		DATE: TIME:	61	14/a 12	6	RECEIVED			am	infil	(FIRM:	TH		m. a.	
PRINT NAME:	1 VIA 12	m	FIRM:				DATE:	_ / /			RECEIVED		U IN	y M	VTAT V	•	i		DAT		
PRINT NAME:		V	FIRM				TIME				PRINT NAM	IE:					FIRM		тім	E:	
ADDITIONAL REMARKS:			<u></u>			<u></u>						<u> </u>							темр: 4-2°	PAGE OF	
COC REV 09/2004																					