Adapt Engineering, Inc.

615 – 8th Avenue South Seattle, Washington 98104

> Tel (206) 654-7045 Fax (206) 654-7048

November 9, 2007

Adapt Project No. WA07-15008-PH2

The Echelbarger Company

22833 Bothell Everett Highway, Suite 207 Bothell, WA 98021

Attention: Nicholas Echelbarger

Subject: Limited Phase II Environmental Site Assessment Marketplace Retail Center 18001 Bothell Everett Highway SE Bothell, WA 98012

Dear Mr. Echelbarger,

Adapt Engineering, Inc. (Adapt) is pleased to provide you with the results of our Limited Phase II Environmental Site Assessment for the above-referenced site. This report is provided for The Echelbarger Company and their agents. If this report is to be reproduced and/or transmitted to a third party, it must be reproduced and/or transmitted in its entirety. Any exceptions will be made only with the written permission of Adapt. Authorization to perform this project was given by Adapt proposal number P-3057, dated October 5, 2007, signed by Mr. Nicholas Echelbarger on October 12, 2007.

Adapt appreciates the opportunity to be of service to you on this project. Should you have any questions concerning this report, or if we can assist you in any way, please feel free to contact us at (206) 654-7045.

Respectfully Submitted,

Adapt Engineering, Inc.

In T. Bhenl

John T. Bhend, L.G. Senior Project Manager

JTB/jtb

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
1.1 1.2	SITE DESCRIPTION PROJECT BACKGROUND	.1
1.3	SCOPE OF WORK AND AUTHORIZATION	.1 .1
2.0	ACTIVITIES	.1
2.2	SAMPLE COLLECTION AND OBSERVATIONS	.1
3.0	RESULTS	.2
3.1 3.2	SUBSURFACE CONDITIONS - SOIL SUBSURFACE CONDITIONS - GROUNDWATER	.2 .3
4.0	QUANTITATIVE ANALYSES	.3
5.0	CONCLUSIONS AND RECOMMENDATIONS	.4
6.0	LIMITATIONS	.4

Attachments:

- Appendix A Figures and Tables Appendix B Subsurface Exploration Procedures and Boring Logs
- Appendix C Laboratory Certification

1.0 INTRODUCTION

1.1 Site Description

The subject site is located at 18001 Bothell Everett Highway SE in Bothell, Washington (Section 18, Township 27 North, Range 5 East, W.M.). The subject site is located at the intersection of Bothell Everett Highway SE and 180th Street SE (Figure 1).

The western tax parcel of the subject site is referred to as the Marketplace Retail Center and currently supports The Plaid Pantry/Shell Station, Key Bank, and two 1983/1984-vintage retail/commercial buildings with a combined thirteen tenant spaces, one of which includes the Prime Cleaners dry cleaners business. The non-building areas of the western tax parcel are asphalt-paved. The eastern tax parcel of the subject site is currently vacant and was previously used as a recreational vehicle (RV) and boat storage lot and consists of an unpaved gravel lot with no buildings.

North Creek is located approximately ½ mile west of the site.

1.2 Project Background

It is our understanding that a gasoline station and dry cleaning facility have been operated at the subject site and that previous soil sampling completed by others indicated elevated concentrations of benzene and tetrachloroethene is soil samples collected at depths up to about 22 feet below ground surface (bgs) at locations in the vicinity of the gasoline station and dry cleaning facility. Based upon this information, a limited Phase II ESA was recommended.

1.3 Purpose

The purpose of this assessment is to evaluate the potential for a large-scale release at the subject site. This preliminary study is not sufficient to delineate the vertical and lateral extent of possible on-site or off-site contamination.

1.4 Scope of Work and Authorization

The scope of work for this project consisted of the collection of soil (and groundwater, if present) and analytical testing of recovered samples for dry cleaning solvents and petroleum hydrocarbons. Authorization to perform this project was given by Adapt proposal number P-3057, dated October 5, 2007, signed by Mr. Nicholas Echelbarger on October 12, 2007.

2.0 ACTIVITIES

2.1 Sample Collection and Observations

The originally proposed scope of work consisted of the advancement of five hollow stem auger (HSA) borings on the subject property, with three of the borings to be completed as 2-inch diameter PVC groundwater monitoring wells. However, only three borings were completed because of increased drilling depths at one location and time delays caused by damage to an unmarked underground irrigation water line. All three borings were completed as groundwater monitoring wells.

Boring B-5 (completed as MW-1) was advanced to a depth of 42 feet bgs, boring B-6

(completed as MW-2) was advanced to a depth of 30 feet bgs, and boring B-7 (completed as MW-3) was advanced to a depth of 35 feet bgs. Monitoring well MW-1 was constructed of 15 feet of 0.010-inch slotted PVC screen and monitoring wells MW-2 and MW-3 were constructed of 10 feet of 0.010-inch slotted PVC screen. Each well was completed flush to grade with a traffic rated monument and each well head was secured with a locking airtight cap.

The borings were advanced using a track-mounted drill rig owned and operated by Cascade Drilling, Inc., under subcontract to our firm. The borings were supervised, sampled, and logged by an Adapt Licensed Geologist.

Soil samples were collected at 5-foot intervals from the site exploration. Discrete soil samples for volatile compounds were collected in compliance with EPA Method 5035A. Samples were collected using a Power Stop Handle and Easy Draw Syringe. The syringe was pushed into the core or the bottom of the borehole to obtain an approximately 5-gram soil sample. The soil core was then placed in an empty 40 ml glass vial with a Teflon lined lid with septum. Discrete soil samples from non-volatile compounds were collected using a gloved hand and transferred to a clean 4-ounce glass jar with a Teflon lined lid. After collection, the samples were immediately transported to a subcontracted analytical laboratory under Adapt's chain-of-custody procedures. All soil samples were field screened using a MiniRae 10.6ev Photoionization Detector (PID).

A submersible pump was used to purge water from the monitoring wells until the water became relatively clear and free of significant sediment prior to sampling. Samples were then collected in laboratory prepared glass containers with teflon-lined lids using polyethylene tubing and extracting the sample using a peristaltic pump. Then, as with the soil samples, the groundwater samples were stored at 4 degrees C, and transported as soon as possible to a subcontracted analytical laboratory under Adapt's chain-of-custody procedures.

A differential leveling survey was conducted to determine the relative elevation of each wellhead.

Figure 2 shows the approximate locations of the borings, site boundaries, and pertinent site features. Subsurface exploration logs and soil sampling procedures are described in Appendix B.

3.0 RESULTS

3.1 Subsurface Conditions - Soil

The site borings located near the gasoline station and dry cleaning facility generally disclosed dense to very dense, moist, brown, sand with varying amounts of silt and gravel that extended to a depth of approximately 30 to 35 feet bgs. Wet soils were generally encountered around approximately 25 feet bgs. The site boring located in the eastern portion of the asphalt-paved parking lot generally disclosed dense to very dense, moist, brown, gravelly sand with silt that extended to a depth of approximately 18 feet bgs. The underlying soils were interpreted to be hard, moist, gray, silt that extended to approximately 40 feet bgs. The underlying soils were interpreted to be very dense, wet, gray silty fine sand to a depth of approximately 42 feet bgs. All recovered soil samples were field screened using a MiniRae Photoionization Detector (PID).

Samples collected from B-6 exhibited gasoline petroleum odors and measurable PID readings ranged from 18 to 234 parts-per-million (ppm). Samples collected from B-5 and B-7 did not exhibit obvious signs of contaminant impacts such as stains, or odors, and measurable PID

readings ranged from 0.0 to 0.3 ppm.

3.2 Subsurface Conditions - Groundwater

Groundwater levels were observed across the subject site at depths ranging from approximately 20.7 to 25.5 feet bgs in the monitoring wells prior to sampling activities (see Table 1). Based on the observed groundwater level measurements, the inferred groundwater flow direction appears to be toward the west-southwest.

Groundwater samples were collected from monitoring wells MW-1, MW-2, and MW-3 on October 25, 2007. We did not observe a sheen or light, non-aqueous phase liquid (LNAPL) at the time of our sampling.

4.0 QUANTITATIVE ANALYSES

The analytical testing was performed by Friedman & Bruya's laboratory in Seattle, Washington, which is a Washington state certified laboratory.

Selected soil and groundwater samples were analyzed for gasoline-range Total Petroleum Hydrocarbons (TPH) by Ecology Method NWTPH-Gx; benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B; and volatile organic compounds (VOCs) by EPA method 8260B.

<u>Soil</u>

Soil samples B-6:2' and B-6-25' exhibited detectable concentrations of gasoline-range TPH and BTEX. Gasoline-range TPH (43 parts-per-million (ppm)) was detected at a concentration above the Model Toxics Control Act (MTCA) Method A Soil Cleanup Level for Unrestricted Land Uses value of 30 ppm in sample B-6:2'. Benzene (1.4 ppm and 0.65 ppm) was detected at concentrations above the MTCA Method A Soil Cleanup Level for Unrestricted Land Uses value of 0.03 ppm in samples B-6:2' and B-6:25', respectively.

Analytical test results are summarized in Table 2, and analytical test certificates are included in Appendix C.

Groundwater

The groundwater sample collected from MW-1 did not exhibit detectable concentrations of gasoline-range TPH and VOCs.

The groundwater sample collected from MW-2 exhibited detectable concentrations of gasolinerange TPH and BTEX. Benzene (42 parts-per-billion (ppb)) was detected at a concentration above the MTCA Method A Cleanup Level for Groundwater value of 5 ppb.

The groundwater sample collected from MW-3 exhibited detectable concentrations of tetrachloroethene and chloroform. Tetrachloroethene (45 ppb) was detected at a concentration above the MTCA Method A Cleanup Level for Groundwater value of 5 ppb.

Analytical results are summarized on Table 3, and analytical test certificates are included in Appendix C.

5.0 CONCLUSIONS AND RECOMMENDATIONS

It is our understanding that a gasoline station and dry cleaning facility have been operated at the subject site and that previous soil sampling completed by others indicated elevated concentrations of benzene and tetrachloroethene is soil samples collected at depths up to about 22 feet bgs at locations in the vicinity of the gasoline station and dry cleaning facility. Based upon this information, a limited Phase II ESA was recommended. The results of the Limited Phase II ESA appear to indicate obvious indications that possible significant impacts to soil and groundwater have resulted from the operations associated with the on-site gasoline station and dry cleaning facility.

In Adapt's opinion, the presence of contaminated soil and groundwater at the subject property represents a potential "Recognized Environmental Condition" to the site. The MTCA Cleanup Regulation Chapter 173-340-300(2) describes the requirements for reporting hazardous substance releases to Ecology. It is Adapt's professional opinion that it would be prudent for the property owner/operator to consult with an environmental attorney to discuss issues relating to the reporting requirements, and how they may apply to the conditions at the subject site.

Given that our assessment was limited and peripheral to the potential source areas, it is possible that a release may have occurred that was not discovered during our assessment. If future subsurface work encounters, stained, odorous, or otherwise contaminated soils, such soils should be managed as contaminated soils, which may include additional analytical testing an off-site treatment or disposal.

6.0 LIMITATIONS

Information contained in this report is based upon site characterization, field observations, and the laboratory analyses completed for this study. Conclusions presented are professional opinions based upon our interpretation of the analytical laboratory test results, as well as our experience and observations during the field activities. The location and depth of the exploration, as well as the analytical scope were completed within the site and proposal constraints. Adapt's observations and the analytical data are limited to the vicinity of each test probe and do not necessarily reflect conditions across the site. No other warranty, express or implied is made. In the event that additional information regarding either the site or surrounding properties becomes known, or changes to existing conditions occurs, the conclusions in this report should be reviewed, and if necessary, revised to reflect the updated information. Project specific limitations are presented in the appropriate sections of this report.

This report has been prepared for the exclusive use of The Echelbarger Company and their agents for specific application to the project site. Use or reliance upon this report by a third is at their own risk. Adapt does not make any representation or warranty, express or implied, to such other parties as to the accuracy or completeness of this report or the suitability of its use by such other parties for any purpose whatever, known or unknown, to Adapt.

Adapt appreciates the opportunity to be of service to you on this project. Should you have any questions concerning this report, or if we can assist you in any way, please contact us at (206) 654-7045.

Respectfully Submitted, Wash Adapt Engineering, Inc. 74 ersed Geo John T. Bhend, L. G. Senior Project Manager JOHN T. BHEND

Dary S. Petrarca, L.H.G. Principal

JTB/jtb

APPENDIX A

FIGURES AND TABLES

Well ID	MW-1	MW-2	MW-3								
	Top of C	asing Elevati	ion (feet)								
	99.38	93.01	99.82								
Date	Depth to Water (feet)										
10/25/2007	21.83	20.67	25.50								
10/31/2007	21.99	20.62	25.68								
	Water L	evel Elevatio	on (feet)								
10/25/2007	77.55	72.34	74.32								
10/31/2007	77.39	72.39	74.14								

Table 1: Well Elevations and Water Levels

Notes:

Site datum assigned elevation of 100.00 feet

			3/9/199	10/	MTCA					
Sample ID	B-1-5	B-2-4/5	SP-1	SP-2	B-3-4/5	B-4-4/5	В	-6	B-7	Method A
Depth	22.5'	17.5'/22.5'	4-6'	0-2'	17.5'/22.5'	17.5'/22.5'	2'	25'	30'	Cleanup
TPH-Gx	NT	NT	NT	NT	<5.6	<5.6	43	18	NT	30/100*
Benzene	NT	NT	NT	NT	0.065	<0.056	1.4	0.65	<0.03	0.03
Toluene	NT	NT	NT	NT	<0.056	<0.056	0.56	1.8	<0.05	7
Ethylbenzene	NT	NT	NT	NT	<0.056	<0.056	0.34	0.25	<0.05	6
Total xylenes	NT	NT	NT	NT	<0.056	<0.056	2.6	2.1	<0.1	9
Tetrachloroethene	0.2	<0.057	0.24	0.56	NT	NT	NT	NT	0.063	0.05
Trichloroethene	<0.057	<0.057	<0.054	<0.053	NT	NT	NT	NT	<0.03	0.03
cis-1,2-dichloroethene	0.33	<0.057	<0.054	<0.053	NT	NT	NT	NT	<0.05	NV
Chloroform	<0.057	<0.057	<0.054	<0.053	NT	NT	NT	NT	<0.05	NV

Table 2: Summary of Analytical Results - Soil

Bolded values indicates exceedance of the MTCA Method A cleanup level

All concentrations given in parts per million (ppm), which is equivalent to milligrams per kilogram

* = Value is 30 ppm if benzene is detected, 100 ppm if benzene is not detected

NT = Not tested

NA = Not available

NV = No value has been established for this compound

TPH-Gx = Total petroleum hydrocarbons - gasoline

MTCA = Model Toxics Control Act (MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses shown)

	10/	10/31/2007 (Adapt)							
	MW-1	MW-2	MW-3	Method A					
TPH-Gx	<100	320	NT	800/1,000*					
Benzene	<1	42	<1	5					
Toluene	<1	10	<1	1,000					
Ethylbenzene	<1	1	<1	700					
Total xylenes	<3	7	<2	1,000					
Tetrachloroethene	<1	NT	45	5					
Trichloroethene	<1	NT	<1	5					
cis-1,2-dichloroethene	<1	NT	<1	NV					
Chloroform	<1	NT	1.3	NV					

Table 3: Summary of Analytical Results - Groundwater

Bolded values indicates exceedance of the MTCA Method A cleanup level All concentrations given in parts per billion (ppb), which is equivalent to micrograms per liter

* = Value is 800 ppb if benzene is detected, 1000 ppb if benzene is not detected

NT = Not tested

NA = Not available

NV = No value has been established for this compound

TPH-Gx = Total petroleum hydrocarbons - gasoline

MTCA = Model Toxics Control Act (MTCA Method A Groundwater Cleanup Levels shown)

APPENDIX B

SUBSURFACE EXPLORATION PROCEDURES AND BORING LOGS

APPENDIX B

SUBSURFACE EXPLORATION PROCEDURES AND BORING LOGS

Hollow-Stem Auger Borings

The field exploration program conducted for this study consisted of advancing a series of three (3) hollow-stem auger borings. The approximate locations are illustrated on Figure 2. These locations were obtained in the field by taping and pacing from existing site features.

The hollow-stem auger borings were advanced on October 22-24, 2007 by Cascade Drilling, Inc., a local exploration drilling company under subcontract to our firm. Each boring consisted of advancing a 4-inch inside diameter hollow-stem auger with a track-mounted drill rig. During the drilling process, soil samples were generally obtained at 5-foot depth intervals. The borings were continuously observed and logged in the field by a geologist from our firm.

Prior to each boring, the hollow-stem augers were pressure-washed with hot water and sampling tools were scrubbed with a stiff brush and a solution of Liquinox (a phosphate free detergent) and water, and then rinsed with potable water and deionized water.

Characterization of Soil

Disturbed soil samples were collected at 5-foot intervals by using the Standard Penetration Test Procedure, as described in ASTM: D-1586. This test and sampling method consists of driving a standard 3-inch outside diameter split-barrel sampler a distance of 18 inches into the soil with a 140-pound hammer free falling a distance of 30 Inches. The number of blows for each 6-inch interval is recorded. The number of blows required to drive the sampler the final 12 inches is considered the Standard Penetration Resistance "N" or blow count. The blow counts are presented in the boring logs in this appendix. If a total of 50 blows are recorded within one 6-inch interval, the blow count is recorded as 50 blows for the actual number of inches of penetration. The blow count or N" value, provides a measure of the relative density of granular soils or the relative consistency of cohesive soils.

All soil samples were field screened using a MiniRae 10.6ev Photoionization Detector (PID). Field screen samples were collected from the remaining soil in the sampled interval. A representative soil sample was placed in a Ziplock® type plastic bag and sealed. The sample was allowed to volatilize for at least 10 minutes prior to obtaining a reading. The PID tip was inserted in small hole poked in the bag just prior to reading. The highest PID reading observed was recorded on the boring log sheet, as were any subjective olfactory impressions of the sample by the on-site geologist.

Monitoring Well Construction

The monitoring well was constructed of ten (10) to fifteen (15) feet of 2-inch diameter schedule 40 PVC well screen (0.010 slot size) with the remainder of the wells constructed of 2-inch diameter schedule 40 PVC casing. The screened interval for MW-1 was set at 27 feet to 42 feet bgs, MW-2 was set at 20 feet to 30 feet bgs, and MW-3 was set at 25 feet to 35 feet bgs. Filter pack sand (2/12 sand) was placed around the well screen up to a level approximately two (2) feet above the top of the well screen. Bentonite chips were placed above the filter pack sand to a level approximately two (2) feet bgs. A surface seal consisting of concrete was placed around the well casing and flush-mount well monument from a depth of approximately two (2) feet bgs up to the ground surface.

	Adapt Engli 615 - 8th Avenu Seattle, Washin	neering, Inc. le South gton 98104	BORING/M Project : Mai Location : 180	ION rketpla 01 Bo hell V	Boring No. : B-5											
A	DAPT Fax (206) 654-70 Fax (206) 654-70	045 048	Client : The Project No : WA	e Eche 07-15	elbarg 5008-l	ger Co PH1	mpar	ıy			Monitoring weil MW					
Grou Eleva	nd Surface Elevation : N/A tion Reference : N/A	Casing Ele	evation: N/A							_	Page: 01 of 02					
DEPTH (feet)	SOIL DE	ESCRIPTION		SAMPLE TYPE	SAMPLE NUMBER	BLOW	PID READING	GROUND WATER	WELL	LABO	RATORY TESTING					
- 0 -	2" asphalt over very de medium SAND with tra	ense, moist, b ace silt	rown, gravelly,													
										- Flush-mounte - concrete seal						
- 5 -					5'	23 50/5"	0.0		- -	Bentonite chip	IS					
									-							
-10-					10'	50/3"	0.0		•	-2" I.D. schedu Bentonite bac	le 40 PVC with					
-15-					15'	50/3"	0.0									
	Hord maint grou SH								-							
-20-	Tiard, moist, gray, SiL	i with clay	• • •		20'	38 27 42	0.0	D 10/31 2007								
-25-					25'	50/5"	0.0				and backfill					
			-							2" I.D. schedu 0.010" slots	lle 40 PVC with					
-30				T Appre	ved El···	h-Mourt	ed.			0 10 2	0 30 40 50					
LE	GEND 2-inch O. D. Split-Spoon Sample (SPT Blowcount)	Sample not Rec	rel	Monume	ved FIUS ent with ule 40 P	Concrete	Seal	NUTPH-D Ex 8010	Grain Size Analysis							
	3 ¼ - Inch O.D. Dames & Moore Sample (Equivalent SPT Blowcount Shown)	ATD at Time of Drillin	g Eentro Bento	chedule - and Sel	40 PVC ect 10-2	with 0.20 0 Sand E	⊢inch lackfill		(% Tines shown) 200 Wash (% fines	shown)						
	Shelby Tube Sample	Perched Ground	dwater Bento	onite Bao	ckfill			TV PP	- Torvane Reading (t - Pocket Pentetrome	sf) ter Reading (tsf)	PID - Photo Ionization Detector (PP SPT - Standard Penetration Test	°M)				
Start D	Date : 10/22/07	C	ompletion Date :		10/	22/07					Logged By :	JTE				

	Adapt Engin 615 - 8th Avenu Seattle, Washin	n eering, Inc. e South gton 98104	BORING/MONITORING WELL LOG Boring No. Project : Marketplace Retail Center Location : 18001 Bothell Everett Highway SE											
A	DAPT <i>Tel (206) 654-70</i> <i>Fax (206) 654-7</i>	045 048	B Client : T Project No : V	othell, \ he Ech VA07-1	NA 98 elbarg 5008-	8012 ger Co PH1	ompai	ny			Monitoring	3 Well No.: MW-1		
Groun Elevat	nd Surface Elevation : N/A tion Reference : N/A	Casing El	evation: N/A								Page: 02 of	02		
DEPTH (feet)	SOIL DE	ESCRIPTION		SAMPLE TYPE	SAMPLE	BLOW COUNT	PID READING	GROUND WATER	WELL	LABC	DRATORY TE	STING		
-30	Hard, moist, brown, gr Trace gravel Very dense, wet, gray Boring terminated @ ~ Groundwater encount	ay, SILT with , silty fine SAN -42.0' bgs ered @ 41.0' b	clay ID ogs		35 [™] 30' 35' 40'	30 50/6"	0.0 0.0	ATD		-Select #2/12	2 sand backfill dule 40 PVC with			
-50- -55- -60-	GEND	Sample not Rec	bovered			sh-Mount Concrete	ed Seal	WITE-LO E-S 8010	Type of Analytical Testing Performed					
	CALC Constraints of the second s	ATD Static Water Lee	vel Reading	[•] I.D. Schec entonite Ba [•] Schedule ots and Sel	iule 40 F ckfill 40 PVC lect 10-2	VC with with 0.20)-inch Backfill		Grain Size Analysis (% fines shown)) 200 Wash (% fines s	MOIST Plastic Limit	MOISTURE CONTENT			
Start D	Grab Sample (Soil Cuttings)	Perched Ground	dwater B	entonite Ba	ckfill	22/07		PP	 Forvarie Reading (ts) Pocket Pentetromete 	rr Reading (tsf)	SPT - Standard Pen	ed By		

	615 - 8th Avenue Seattle, Washing	e ering, Inc. South ton 98104	BORING Project : M Location : 1	/MON /larketpl 8001 B	Boring No. : B-6								
А	DAPT Fax (206) 654-70 Fax (206) 654-70	45 948	E Client : ⊺ Project No : ∖	Bothell, The Ech WA07-1	WA 9 elbarç 5008-	8012 ger Co PH1	ompar	ıy				Monitoring We M	II No.: W-2
Grou Eleva	nd Surface Elevation : N/A tion Reference : N/A	Casing Ele	evation: N/A					-	-			Page: 01 of 02	
DEPTH (feet)	SOIL DE	SCRIPTION		SAMPLE TYPE	SAMPLE NUMBER	BLOW COUNT	PID READING	GROUND WATER	WE	LL	LABO	RATORY TESTIN	G
	2" asphalt over very de	ense, moist, b	rown, fine to										
	medium SAND with http	e gravei					105				-Flush-mounte	d well monument with	TPH-GX
				+			105						
				+					- 👹				
- 5 -	Becomes gray			ļπ	5'	50/6"	67			8 -	-Bentonite chip	DS	
				+									
				Ţ									
				+					- 🕅				
-10-	No recovery in sampler				10'	50/6"			- 🕅		-2" I.D. schedu	Ile 40 PVC with	
				+					- 🕅		Bentonite bac	<u>kfill</u>	
				+									
				Ī									
-15-				 	15'	50/5"	70.0						
	Becomes fine SAND with little silt			++++		50/5	70.9		- 🕅				
				+					- 🕅				
				+					- 🛛	\otimes			
				+					-				
-20-	Becomes fine SAND			μ	20'	50/4"	18.1	10/31					
	with little graver			+				2007	-				
				+					-				
				+					-				
-25-	Becomes wet			†⊥	25'	50/6"	234	ATD		-	-Select #2/12 s	sand backfill	TPH-GX BTEX
				†	1								
				Ţ]						-2" I.D. schedu	le 40 PVC with	
Ø				ļ					-		0.010" slots		
-30-				O.T. Appro	oved Flu	sh-Mount	ed	WTPH-D E	Type of A	Analytical	0 10 2	0 30 40 5	0
	GEND 2-inch O. D. Split-Spoon Sample	Sample not Hec	rel XXX 2	Vell Monum	ent with dule 40 F	Concrete VC with	Seal	8010	Testing F Grain Siz	Performed			
	3 ¹ / ₄ - Inch O.D. Dames & Moore Sample (Equivalent SPT Blowcount Shown)	ATD at Time of Drillin		entonite Ba	cktill 40 PVC	with 0.20)-inch		(% fines	shown)		maturai Liquio Limit	I
	Shelby Tube Sample		ver neauring statistical s	lots and Se lentonite Ba	lect 10-2	20 Sand E	ackf ill	TV	- Torvane I	Reading (tsf)	PID - Photo Ionization Detector	r (PPM)
≝ Start □	Oate: 10/24/07	Perched Ground	ompletion Date :		10/	24/07		PP	- Pocket P	entetromete	er Reading (tsf)	SPT - Standard Penetration Te Logged By :	st J.T.B.

	Adapt Engin 615 - 8th Avenu Seattle, Washin	n eering, Inc. e South gton 98104	BORING/MONITORING WELL LOG Project : Marketplace Retail Center Location : 18001 Bothell Everett Highway SE Bothell W0 89012										Boring No. : B-6					
A	DAPT Fax (206) 654-70 Fax (206) 654-70	045 048	Client : Project No :	The Eche WA07-15	elbarg 008-F	jer Co PH1	mpan	У					Moni	torir	ng We M	II No.: I W-2		
Grou Eleva	nd Surface Elevation : N/A tion Reference : N/A	Casing Ele	vation: N/A				(5						Page :	02 o	of 02			
DEPTH (feet)	SOIL DE	ESCRIPTION		SAMPLE TYPE	SAMPLE NUMBER	BLOW COUNT	PID READING	GROUNE WATER	WELL		LABORATORY TESTING				G			
-30-	√Very dense, wet, gray	, fine SAND wi	th little gra		30'	50/6"	64.8		_									
	Boring terminated @ ~ Groundwater encount	~30.5' bgs ered @ 25.0' b	as						-									
			0 -	4 -					-									
				+ -					-									
-35-				+ -					-					 				
				+ -					-					 				
				+ -					-									
				+ -					-									
									-									
-40-				1					-									
									-		1			İ				
									-	i	i			i				
				4 -					-									
-45-				+ -					-					 				
				+ -					-									
				+ -					-					 				
				+ -					-									
				+ -					-									
-50-				+ -					-									
				1 -					-									
				Ī					-									
									-									
-55-				↓.					-	i	i			i i				
				4 -					-									
				4 -					-									
				+ -					-									
				+ -					-					 				
60		Sample not Reco		D.O.T. Approv	/ed Flus	sh-Mounte	d	WTPH-D Ex	Type of Analytical	0	10	20	30	4	0	50		
	GEND 2-inch O. D. Split-Spoon Sample (SPT Blowcount)	Static Water Leve		2" I.D. Sched	ule 40 P'	VC with	Jedi	8010	Grain Size Analysis	Plastic	MOIS	STURE	E CON tural		r ————————————————————————————————————	t		
	3 ¼ - Inch O.D. Dames & Moore Sample (Equivalent SPT Blowcount Shown)	ATD at Time of Drilling	el Reading	2" Schedule 4 slots and Sele	0 PVC 1	with 0.20 0 Sand B	inch ackfill	×× ()	(% imes snown) 200 Wash (% fines s	hown)		110			jero =1111	J		
	Shelby Tube Sample	Perched Ground	water	Bentonite Bac	kfill			TV PP	- Torvane Reading (tsf - Pocket Pentetromete) er Reading	(tsf)	F	PID - Pho SPT - Sta	oto Ioniza ndard Pe	ation Detect	or (PPM) est		
Start D	Date 10/24/07	Co	ompletion Dat	e:	10/2	24/07								Log	ged By	J.T.B		

	Adapt Engineering, Inc. 615 - 8th Avenue South Seattle, Washington 98104	BORING/M Project : Ma Location : 180	Boring No. : B-7											
A	DAPT <i>Tel (206) 654-7045</i> <i>Fax (206) 654-7048</i>	Bot Client : The Project No : WA	thell, V e Eche \07-15	VA 98 elbarg 5008-	8012 ger Co PH1	ompar	чу		Monitoring We M					
Grour Eleva	nd Surface Elevation : N/A Casing E tion Reference : N/A	levation: N/A		_			-			Page: 01 of 02				
DEPTH (feet)	SOIL DESCRIPTION		SAMPLE LYPE	SAMPLE	SOUNT	PID READING	GROUND WATER	WELL	LABO	RATORY TESTING				
	2" asphalt over very dense, moist, b medium SAND	prown, gravelly,							-Flush-mounte	d well monument with				
- 5 -				5'	50/5"	0.0		- - - -	-Bentonite chip	NS				
-10-				10'	50/3"	0.0		- - -	-2" I.D. schedu Bentonite bac	le 40 PVC with kfill				
-15-	Becomes silty fine SAND	- - - -		15'	50/4"	0.2		- - -						
-20-	No recovery in sampler	• • •		20'	50/4"									
-25-	No recovery in sampler			25'	50/2"	0.0	10/31 2007		-Select #2/12 s	and backfill				
-30- LE	GEND Sample not Re	ncovered	T. Appro Monume	ved Flue	sh-Mount Concrete	ed Seal	ATD WTPH-D E 8010	Type of Analytical Testing Performed	0.010' slots	0 30 40 50				
	2-inch O, D. Split-Spoon Sample (SPT Blowcount) ATD at Time of Drill 3 % - Inch O, D. Dames & Moore Sample (Equivalent SPT Blowcount Shown) DATE Static Water Le DATE Static Water Le DATE Perched Groun	evel Reading 2" Sr slots	D. Sched onite Bac chedule and Sel onite Bac	lule 40 F ckfill 40 PVC ect 10-2 ckfill	WC with with 0.20 20 Sand E	⊱inch ∃ackfill	TV PP	Grain Size Analysis (% fines shown) 200 Wash (% fines s - Torvane Reading (tsf - Pocket Pentetromete	Plastic Limit hown) r Reading (tsf)	PID - Photo Ionization Detector (PPM) SPT - Standard Penetration Test				

	Adapt Engli 615 - 8th Avenu Seattle, Washin	n eering, Inc. le South lgton 98104	Inc. BORING/MONITORING WELL LOG Boring No.: Project Marketplace Retail Center B- Location 18001 Bothell Everett Highway SE											B- 7		
A	DAPT Fax (206) 654-70 Fax (206) 654-70	045 1048	B Client : T Project No : W	othell, \ he Ech /A07-18	VA 98 elbarg 5008-1	3012 ger Co PH1	mpar	лу				Мо	onitorii	ng We M	II No.: W-3	
Grour Eleva	nd Surface Elevation : N/A tion Reference : N/A	Casing Ele	vation: N/A				17					Pa	ge:02 d	of 02		
DEPTH (feet)	SOIL DE	ESCRIPTION		SAMPLE TYPE	SAMPLE NUMBER	BLOW	PID READING	GROUND WATER	WELL	1	LABORATORY TESTING					
-35-	Very dense, wet, brow Becomes gravelly	vn, silty fine SA	ND		30'	37 50/5" 4 7	0.0			- Selec - 2" I.D 0.010	t #2/12	sand t	PVC with			
	Boring terminated @ ~ Groundwater encount	~36.5' bgs ered @ 29.75'	bgs			50/6"			-							
-40-									• - -							
-45-									• - -							
-50-									- - -							
-55-									- - - -							
	GEND 2-inch O. D. Split-Spoon Sample (SPT Blowcount) 3 ¼ - Inch O.D. Dames & Moore Sample (Equivalent SPT Blowcount Shown) Shelby Tube Sample Grab Sample (Soil Cuttings)	Sample not Recc ATD Static Water Leve ATD Static Water Leve DATE Static Water Leve Perched Ground	vered D. d Reading State 2 vater Reading Be	O.T. Appro ell Monume I.D. Sched entonite Bad Schedule ots and Sel	ved Flus ent with ule 40 P ckfill 40 PVC ect 10-2	sh-Mount Concrete VC with with 0.20 0 Sand E	ed Seal -inch eackfill		Type of Analytical Testing Performed Grain Size Analysis (% fines shown) 200 Wash (% fines s Torvane Reading (tsf Pocket Pentetromete	0 Plastic L	10 MOIST	Image:				
Start D	ate: 10/23/07	Co	ompletion Date :		10/	23/07							Log	aed By :	JTI	

APPENDIX C

LABORATORY CERTIFICATION

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

November 1, 2007

John Bhend, Project Manager Adapt Engineering 615 8th Avenue South Seattle, WA 98104

Dear Mr. Bhend:

Included are the results from the testing of material submitted on October 24, 2007 from the WA07-15008-PH2, F&BI 710321 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures ADP1101R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 24, 2007 by Friedman & Bruya, Inc. from the Adapt Engineering WA07-15008-PH2, F&BI 710321 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Adapt Engineering</u>
710321-01	B-6:2'
710321-02	B-6:25'
710321-03	B-7:30'

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/07 Date Received: 10/24/07 Project: WA07-15008-PH2, F&BI 710321 Date Extracted: 10/25/07 Date Analyzed: 10/25/07

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B-6:2' 710321-01	1.4	0.56	0.34	2.6	43	103
B-6:25' 710321-02	0.65	1.8	0.25	2.1	18	101
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	93

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	B-7:30'		Client:	Adapt Engineering	
Date Received:	10/24/07		Project:	WA07-15008-PH2, F&	BI 710321
Date Extracted:	10/25/07		Lab ID:	710321-03	
Date Analyzed:	10/26/07		Data File:	102527.D	
Matrix:	Soil		Instrument:	GCMS5	
Units:	mg/kg (ppm)	Operator:	MB	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
Dibromofluoromet	hane	86	32	147	
1.2-Dichloroethane	e-d4	98	35	150	
Toluene-d8		87	35	149	
4-Bromofluorobenz	zene	92	42	164	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorom	ethane	<0.5	Tetrach	loroethene	0.063
Chloromethane		< 0.05	Dibromo	ochloromethane	< 0.05
Vinyl chloride		< 0.05	1,2-Dibr	omoethane (EDB)	< 0.05
Bromomethane		<0.5	Chlorobe	enzene	< 0.05
Chloroethane		<0.5	Ethylber	nzene	< 0.05
Trichlorofluoromet	thane	<0.5	1,1,1,2-T	etrachloroethane	< 0.05
Acetone		<0.5	m,p-Xyle	ene	< 0.1
1,1-Dichloroethene)	< 0.05	o-Xylene)	< 0.05
Methylene chloride	9	<0.5	Styrene		< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane	•	< 0.05	Bromofo	rm	< 0.05
2,2-Dichloropropar	ne	< 0.05	n-Propy	lbenzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	imethylbenzene	< 0.05
2-Butanone (MEK)		<0.5	1,1,2,2-1	etrachloroethane	< 0.05
1,2-Dichloroethane	e (EDC)	< 0.05	1,2,3-Tri	ichloropropane	< 0.05
1,1,1-Trichloroetha	ane	<0.05	2-Chloro	otoluene	< 0.05
I, I-Dichloroproper	ie	<0.05	4-Chloro	otoluene	< 0.05
Carbon Tetrachlori	ide	< 0.05	tert-But	ylbenzene	< 0.05
Benzene		< 0.03	1,2,4-1ri	imethylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropar	1e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichloromet	hane	< 0.05	I,3-Dich	lorobenzene	< 0.05
Dibromomethane		<0.05	I,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<0.5	I,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	I,2-Dibr	omo-3-chloropropane	< 0.05
trang 1.2 Dista		<0.05	1,2,4-111	cilloropenzene	<0.1
trans-1,3-Dichloro	propene	<0.05	Hexachl	oroputadiene	< 0.1
1,1,2-1richloroetha	ane	<0.05	Naphtha	alene	< 0.05
2-Hexanone		<0.5	1,2,3-111	ichlorobenzene	<0.1
1,3-Dicnioropropar	ie	<0.05			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	Method Blan	ık	Client:	Adapt Engineering	
Date Received:	Not Applicat	ole	Project:	WA07-15008-PH2, F&	BI 710321
Date Extracted:	10/25/07		Lab ID:	071656 mb	
Date Analyzed:	10/25/07		Data File:	102505.D	
Matrix:	Soil		Instrument:	GCMS5	
Units:	mg/kg (ppm))	Operator:	MB	
			Lowon	Unnor	
Surrogatos		% Pocovory:	Lower	Upper	
Dibromofluoromoth	2220		29	LIIIII. 147	
1 2 Dichloroothano	d	86	35	147	
Toluono $d8$	-44	86	35	130	
4-Bromofluorobenz	ene	110	42	145	
1 Di omonuoi obenz		110	1~	101	
		Concentration	_	_	Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	Tetrachl	loroethene	< 0.025
Chloromethane		< 0.05	Dibromo	ochloromethane	< 0.05
Vinyl chloride		< 0.05	1,2-Dibr	omoethane (EDB)	< 0.05
Bromomethane		< 0.5	Chlorobe	enzene	< 0.05
Chloroethane		< 0.5	Ethylber	nzene	< 0.05
Trichlorofluoromet	hane	< 0.5	1,1,1,2-T	etrachloroethane	< 0.05
Acetone		< 0.5	m,p-Xyle	ene	< 0.1
1,1-Dichloroethene	1	< 0.05	o-Xylene)	< 0.05
Methylene chloride	•	<0.5	Styrene		< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Isopropy	lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromofo	rm	< 0.05
2,2-Dichloropropan	e	< 0.05	n-Propyl	lbenzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	Bromobe	enzene	< 0.05
Chloroform		< 0.05	1,3,5-Tri	methylbenzene	< 0.05
2-Butanone (MEK)		< 0.5	1,1,2,2-T	etrachloroethane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	1,2,3-Tri	chloropropane	< 0.05
1,1,1-Trichloroetha	ine	< 0.05	2-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	4-Chloro	otoluene	< 0.05
Carbon Tetrachlori	de	< 0.05	tert-But	ylbenzene	< 0.05
Benzene		< 0.03	1,2,4-Tri	imethylbenzene	< 0.05
Trichloroethene		< 0.03	sec-Buty	lbenzene	< 0.05
1,2-Dichloropropan	e	< 0.05	p-Isopro	pyltoluene	< 0.05
Bromodichlorometh	nane	< 0.05	1,3-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,4-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	< 0.5	1,2-Dich	lorobenzene	< 0.05
cis-1,3-Dichloropro	pene	< 0.05	1,2-Dibr	omo-3-chloropropane	< 0.05
1 oluene		< 0.05	1,2,4-1ri	chlorobenzene	<0.1
trans-1,3-Dichlorop	propene	<0.05	Hexachl	oroputadiene	<0.1
1,1,2-1richloroetha	ine	<0.05	Naphtha	alene	< 0.05
2-Hexanone	_	<0.5	1,2,3-111	chlorobenzene	<0.1
1,3-Dichloropropan	e	<0.05			

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/07 Date Received: 10/24/07 Project: WA07-15008-PH2, F&BI 710321

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:710321-02 (Duplicate)

Laboratory could 100	Laboratory couch room on (D apricato)								
Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)					
Benzene	mg/kg (ppm)	0.65	0.60	8					
Toluene	mg/kg (ppm)	1.8	1.7	6					
Ethylbenzene	mg/kg (ppm)	0.25	0.25	0					
Xylenes	mg/kg (ppm)	2.1	2.1	0					
Gasoline	mg/kg (ppm)	18	19	5					

Laboratory Code:Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	86	70-130
Toluene	mg/kg (ppm)	0.5	90	70-130
Ethylbenzene	mg/kg (ppm)	0.5	92	70-130
Xylenes	mg/kg (ppm)	1.5	90	70-130
Gasoline	mg/kg (ppm)	20	86	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/07 Date Received: 10/24/07 Project: WA07-15008-PH2, F&BI 710321

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code:710331-01 (Duplicate)

J IIII J IIII	Poperting	Sample Posult	Duplicate Posult	Relative Percent
Analyte	Units	Sample Result	Duplicate Result	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Chloromethane	mg/kg (ppm)	< 0.05	<0.05	nm
Vinyl chloride	mg/kg (ppm)	< 0.05	<0.05	nm
Bromomethane	mg/kg (ppm)	<0.5	<0.5	nm
Chloroethane	mg/kg (ppm)	<0.5	<0.5	nm
Trichlorofluoromethane	mg/kg (ppm)	<0.5	<0.5	nm
Acetone	mg/kg (ppm)	<0.5	<0.5	nm
1,1-Dichloroethene	mg/kg (ppm)	<0.05	<0.05	nm
Methylene chloride	mg/kg (ppm)	<0.5	<0.5	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	<0.05	nm
1,1-Dichloroethane	mg/kg (ppm)	<0.05	<0.05	nm
2,2-Dichloropropane	mg/kg (ppm)	< 0.05	<0.05	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	<0.05	<0.05	nm
Chloroform	mg/kg (ppm)	<0.05	<0.05	nm
2-Butanone (MEK)	mg/kg (ppm)	<0.5	<0.5	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	<0.05	<0.05	nm
1,1,1-1 richloroethane	mg/kg (ppm)	<0.05	<0.05	nm
I,I-Dichloropropene	mg/kg (ppm)	<0.05	<0.05	nm
Carbon Tetrachloride	mg/kg (ppm)	<0.05	<0.05	nm
Benzene	mg/kg (ppm)	< 0.03	<0.03	nm
1 P. Dishlarana and	mg/kg (ppm)	<0.03	<0.03	nm
1,2-Dichioropropane	mg/kg (ppm)	<0.05	<0.05	nm
Dibute and the second sec	mg/kg (ppm)	<0.05	<0.03	1111
A Methyl 2 pentenene	mg/kg (ppm)	<0.05	<0.05	nm
4-Methyl-2-pentalione	mg/kg (ppm)	<0.5	<0.5	nm
Teluene	mg/kg (ppm)	<0.05	<0.05	IIII
trans 13 Dichlerenrenene	mg/kg (ppm)	< 0.05	<0.05	nm
1 1 2-Trichloroethane	mg/kg (ppm)	<0.05	<0.05	nm
2-Hevanone	mg/kg (ppm)	<0.05	<0.05	nm
1.3-Dichloropropane	mg/kg (ppin)	<0.05	<0.05	nm
Tetrachloroethene	mg/kg (ppm)	<0.00	<0.025	nm
Dibromochloromethane	mg/kg (ppm)	<0.05	<0.05	nm
12-Dibromoethane (EDB)	mg/kg (ppm)	<0.05	<0.05	nm
Chlorobenzene	mg/kg (ppm)	< 0.05	<0.05	nm
Ethylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm
1.1.1.2-Tetrachloroethane	mg/kg (ppm)	< 0.05	<0.05	nm
m,p-Xylene	mg/kg (ppm)	<0.1	<0.1	nm
o-Xvlene	mg/kg (ppm)	< 0.05	<0.05	nm
Styrene	mg/kg (ppm)	< 0.05	< 0.05	nm
Isopropylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
Bromoform	mg/kg (ppm)	< 0.05	< 0.05	nm
n-Propylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
Bromobenzene	mg/kg (ppm)	< 0.05	<0.05	nm
1,3,5-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	<0.05	nm
1,2,3-Trichloropropane	mg/kg (ppm)	< 0.05	<0.05	nm
2-Chlorotoluene	mg/kg (ppm)	< 0.05	<0.05	nm
4-Chlorotoluene	mg/kg (ppm)	< 0.05	<0.05	nm
tert-Butylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm
1,2,4-Trimethylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm
sec-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
p-Isopropyltoluene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,3-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,4-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,4-Trichlorobenzene	mg/kg (ppm)	<0.1	<0.1	nm
Hexachlorobutadiene	mg/kg (ppm)	<0.1	<0.1	nm
Naphthalene	mg/kg (ppm)	<0.05	<0.05	nm
1,2,3-Trichlorobenzene	mg/kg (ppm)	<0.1	<0.1	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/07 Date Received: 10/24/07 Project: WA07-15008-PH2, F&BI 710321

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code:710329-02 (Matrix Spike)

J	- 1			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	mø/kø (nnm)	2.5	<0.05	55	24-139
Chloromethane	mg/kg (ppm)	2.5	<0.05	75	30-153
Vinyl chloride	mg/kg (nnm)	2.5	<0.05	84	41-150
Bromomethane	mg/kg (ppm)	2.5	<0.5	122	54-150
Chloroethane	mg/kg (ppm)	2.5	<0.5	101	36-161
Trichlorofluoromethane	mg/kg (nnm)	2.5	<0.5	109	46-164
Acetone	mg/kg (ppm)	2.5	<0.5	103	47-157
1.1-Dichloroethene	mg/kg (ppm)	2.5	<0.05	94	22-144
Methylene chloride	mg/kg (nnm)	2.5	<0.5	80	38-149
trans-1.2-Dichloroethene	mg/kg (ppm)	2.5	<0.05	98	53-138
1.1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	103	65-125
2.2-Dichloropronane	mg/kg (nnm)	2.5	<0.05	98	26-153
cis-1.2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	100	59-140
Chloroform	mg/kg (ppm)	2.5	< 0.05	104	67-126
2-Butanone (MEK)	mg/kg (ppm)	2.5	<0.5	114	40-160
1.2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	106	68-127
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	104	61-134
1.1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	94	59-128
Carbon Tetrachloride	mg/kg (ppm)	2.5	< 0.05	101	54-138
Benzene	mg/kg (ppm)	2.5	< 0.03	98	61-129
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	99	61-132
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	104	69-129
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	107	56-138
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	106	65-135
4-Methyl-2-pentanone	mg/kg (ppm)	2.5	< 0.5	112	62-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	106	63-134
Toluene	mg/kg (ppm)	2.5	< 0.05	102	59-137
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	111	67-133
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	102	71-130
2-Hexanone	mg/kg (ppm)	2.5	< 0.5	113	56-157
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	106	71-128
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	98	63-131
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	109	58-132
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	106	71-132
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	99	65-125
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	102	69-130
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	105	69-129
m,p-Xylene	mg/kg (ppm)	5	<0.1	103	67-134
o-Xylene	mg/kg (ppm)	2.5	< 0.05	103	73-130
Styrene	mg/kg (ppm)	2.5	<0.05	106	68-127
Isopropyidenzene	mg/kg (ppm)	2.5	<0.05	105	50-147
Bromotorm	mg/kg (ppm)	2.5	<0.05	97	50-142
n-Propylbenzene	mg/kg (ppm)	2.5	<0.05	103	70-129
Bromobenzene	mg/kg (ppm)	2.5	<0.05	100	09-132
1,3,5-1 rimethylbenzene	mg/kg (ppm)	2.0	<0.05	103	71-129
1,1,2,2-Tetrachioroethane	mg/kg (ppm)	2.0	<0.05	99	04-138
2. Chlorotolion opi opane	mg/kg (ppm)	2.5	<0.05	105	00-135
4 Chlorotoluono	mg/kg (ppm)	2.0	<0.05	101	68 126
tert-Butylbanzana	mg/kg (ppm)	2.5	<0.05	105	70-128
1.2.4 Trimethylhonzone	mg/kg (ppm)	2.5	<0.05	103	71 120
sec-Butylbenzene	mg/kg (ppm)	2.5	<0.05	102	58-136
n-Isopropyltoluene	mg/kg (ppm)	2.5	<0.05	105	70-131
1 3-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	90	70-125
1 4-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	96	69-121
1.2-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	101	68-128
12-Dibromo-3-chloropropape	mg/kg (nnm)	25	<0.05	111	55-151
1.2.4-Trichlorobenzene	mg/kg (ppm)	2.5	<0.03	103	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.1	100	55-145
Naphthalene	mg/kg (nnm)	2.5	<0.05	105	53-155
1.2.3-Trichlorobenzene	mg/kg (ppm)	2.5	<0.1	108	55-152
	0 0 41 7				

ENVIRONMENTAL CHEMISTS

Date of Report: 11/01/07 Date Received: 10/24/07 Project: WA07-15008-PH2, F&BI 710321

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code:Laboratory Control Sample

j j j j	1		Percent	
	Reporting	Snike	Recovery	Accentance
A]	Luite	J	LCC	Cuitanie
Analyte	Units	Level		Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	63	29-163
Chloromethane	mg/kg (ppm)	2.5	78	28-147
Vinyl chloride	mg/kg (ppm)	2.5	89	38-143
Bromomethane	mg/kg (ppm)	2.5	124	32-163
Chloroethane	mg/kg (ppm)	2.5	103	10-165
Trichlorofluoromethane	mg/kg (ppm)	2.5	133	22-167
Acetone	mg/kg (ppm)	2.5	109	20-172
1,1-Dichloroethene	mg/kg (ppm)	2.5	103	42-140
Methylene chloride	mg/kg (ppm)	2.5	88	53-137
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	70-122
1,1-Dichloroethane	mg/kg (ppm)	2.5	97	77-114
2.2-Dichloropropane	mg/kg (ppm)	2.5	95	65-135
cis-1 2-Dichloroethene	mg/kg (nnm)	2.5	93	77-120
Chloroform	mg/kg (ppm)	2.5	95	76-117
2-Butanone (MEK)	mg/kg (nnm)	25	112	52-153
1 2-Dichloroethane (FDC)	mg/kg (ppm)	2.5	100	76-116
1.1.1.Trichloroethane	mg/kg (ppm)	2.5	95	70-110
1.1 Dishlavanyanana	mg/kg (ppm)	2.5	00	76 120
Carban Tatrashlarida	mg/kg (ppm)	2.3	90	70-123
Carbon retractionae	mg/kg (ppm)	2.3	90	70-110
Benzene	mg/kg (ppm)	2.5	93	70-118
Trichloroethene	mg/kg (ppm)	2.5	93	75-121
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	78-123
Bromodichloromethane	mg/kg (ppm)	2.5	100	79-126
Dibromomethane	mg/kg (ppm)	2.5	98	79-121
4-Methyl-2-pentanone	mg/kg (ppm)	2.5	103	52-151
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	98	80-127
Toluene	mg/kg (ppm)	2.5	96	76-122
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	106	80-126
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	96	77-121
2-Hexanone	mg/kg (ppm)	2.5	106	67-126
1,3-Dichloropropane	mg/kg (ppm)	2.5	97	76-122
Tetrachloroethene	mg/kg (ppm)	2.5	92	77-124
Dibromochloromethane	mg/kg (ppm)	2.5	105	73-127
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	98	78-126
Chlorobenzene	mg/kg (ppm)	2.5	95	79-113
Fthylbenzene	mg/kg (nnm)	25	97	77-120
1112-Tetrachloroethane	mg/kg (ppm)	2.5	100	79-125
m n-Yylana	mg/kg (ppm)	5	00	70-121
a Vylene	mg/kg (ppm)	25	08	PO 122
0-Aylelle Stamono	mg/kg (ppm)	2.3	90 102	00-123 91 194
Jaannenvilhangene	mg/kg (ppm)	2.3	102	01-124 70 199
Isopropyidenzene	mg/kg (ppm)	2.5	100	79-123
Bromotorm	mg/kg (ppm)	2.5	95	65-124
n-Propylbenzene	mg/kg (ppm)	2.5	95	77-123
Bromobenzene	mg/kg (ppm)	2.5	92	78-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	96	79-123
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	92	73-121
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	94	69-123
2-Chlorotoluene	mg/kg (ppm)	2.5	92	77-120
4-Chlorotoluene	mg/kg (ppm)	2.5	93	77-121
tert-Butylbenzene	mg/kg (ppm)	2.5	97	77-124
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	94	78-123
sec-Butylbenzene	mg/kg (ppm)	2.5	96	77-122
p-Isopropyltoluene	mg/kg (ppm)	2.5	97	79-126
1 3-Dichlorobenzene	mg/kg (nnm)	25	93	78-119
1.4-Dichlorobenzene	mg/kg (ppm)	2.5	90	77-114
1.9 Dichlorobonzono	mg/kg (ppm)	2.5	03	79 120
1.9 Dibromo 2 chloropropane	mg/kg (ppm)	2.5	109	66 199
1,2-Dibiono-5-Chioropropane	mg/kg (ppm)	2.3	102	00-133
1,2,4-111011010Denzene	mg/kg (ppm)	2.3	90	/1-129
nexacinorodutaciene	ing/kg (ppm)	2.5	9/	00-134
Naphthalene	mg/kg (ppm)	2.5	96	51-158
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	99	37-182

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

 \mathbf{a} - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probablility.

 ${f b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 \mathbf{ca} - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - The analyte indicated was found in the method blank. The result should be considered an estimate.

fc – The compound is a common laboratory and field contaminant.

 ${f fp}$ – Compounds in the sample matrix interfered with quantitation of the analyte. The reported concentration may be a false positive.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - The sample was extracted outside of holding time. Results should be considered estimates.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

 ${\bf J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

Ic - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 \mathbf{pc} – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 ${\bf pr}$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

 ${\bf ve}$ - The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The pattern of peaks present is not indicative of diesel.

 ${f y}$ - The pattern of peaks present is not indicative of motor oil.

710321			;	SAMPLE	CHAIN O	FC	CUS	тo	DY		M	ΕI	0/2	4/0	7			r	vS	1
a la tob	- Rh-	. 1		SAMPL	ERS (signa	lure,) (U	G	Im						Pag	re # _	POUNT	of	-
			PROJE	CT NAME/	NO.	ð	21.			Τ	PO	#		X S	tand	ard (2 Weeks)		
Company Magp Engineering Inc.			$- \mid \omega$	407-1500	8-1	OHZ		•						II R Rus	USH h chi	arge:	s authori	zed by:	-	
Address 45 615 8" Averale South										<u> </u>	<u> </u>		····.	_					OSAL	=
City, State, ZIP Sectle, WA 98004				REMAI	aks										¥⊋ D	ispo:	se af	ter 30 da	lys	
Phone # <u>906-654-7645</u>	Fax	# <u>206-65</u>	4- 7048		<u> </u>										п R П W	eturi Vill ca	n san all w	nples ith instr	uctions	
										ANA	LYS	ES RE	QUES	STEL)					
Sample ID	Lab ID	late Sanpled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPII-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	IIFS							ſ	lotes	
B-6:2'	01 A-D	10-24-07	OA15	Su: 1	4		X	X	es.				T							
8-1:25'	02	L	10.15	1			\mathbf{x}	X	4										<u> </u>	
<u> </u>	03 A-D	10-23-04	1310	1	1.				X											
	•																			
					1															
						'														
					·					i						+	-			
		ļ	 			 												0	······································	
					<u>t</u>		[Sa	mple	s re	ceiv	ed a	at	<u>~°C</u>	; 	
Friedman & Bruva. Inc.		SIGN	ATURE		P	RIN'	ſN.	ME					COM	ΙΡΛΝ	JY			DATE	TIME	
3012 16th Avenue West	Relinquis	shed b:	h	12	T	h	بر ا	Sha	n	(Ad	act				10-	2407	1325	<u>,</u>
Seattle, WA 98119-2029	Received	by: m lan	am		Nh	an	0	har	~	h		Ŧ,	BI		•		10/	4/07	13:21	<u> </u>
Ph. (206) 285-8282	Relinquis	shed b:										<u> </u>	<u></u>				1-16			
Fax (206) 283-5044	Received	by:	Į.								-+						+			
FORMS\COC\COC.DOC	L	····· 4	<u>,</u>	l	<u></u>							·		· · · · · · · · · · · · · · · · · · ·			1			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

November 6, 2007

John Bhend, Project Manager Adapt Engineering 615 8th Avenue South Seattle, WA 98104

Dear Mr. Bhend:

Included are the results from the testing of material submitted on October 31, 2007 from the WA07-15008-PH2, F&BI 710419 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures ADP1106R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 31, 2007 by Friedman & Bruya, Inc. from the Adapt Engineering WA07-15008-PH2, F&BI 710419 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Adapt Engineering</u>
710419-01	MW-1
710419-02	MW-2
710419-03	MW-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/06/07 Date Received: 10/31/07 Project: WA07-15008-PH2, F&BI 710419 Date Extracted: 11/01/07 Date Analyzed: 11/01/07

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-1 710419-01	<1	<1	<1	<3	<100	100
MW-2 710419-02	42	10	1	7	320	101
Method Blank	<1	<1	<1	<3	<100	101

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID: MW-1			Client:	Adapt Engineering	
Date Received:	10/31/07		Project:	WA07-15008-PH2, F&	BI 710419
Date Extracted:	11/01/07		Lab ID:	710419-01	
Date Analyzed:	11/02/07		Data File:	110138.D	
Matrix:	Water		Instrument:	GCMS5	
Units:	ug/L (ppb)		Operator:	MB	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
Dibromofluoromet	hane	78 [°]	75	125	
1,2-Dichloroethane	e-d4	77	67	133	
Toluene-d8		86	79	129	
4-Bromofluorobenz	zene	121	76	145	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorom	ethane	<1	Tetrach	loroethene	<1
Chloromethane		<1	Dibromo	ochloromethane	<1
Vinyl chloride		<0.2	1,2-Dibr	omoethane (EDB)	<1
Bromomethane		<1	Chlorob	enzene	<1
Chloroethane		<1	Ethylbe	nzene	<1
Trichlorofluoromet	thane	<1	1,1,1,2-T	Tetrachloroethane	<1
Acetone		<10	m,p-Xyle	ene	<2
1,1-Dichloroethene	<u>è</u>	<1	o-Xylene	<u>,</u>	<1
Methylene chloride	е	<5	Styrene		<1
trans-1,2-Dichloro	ethene	<1	Isopropy	ylbenzene	<1
1,1-Dichloroethane	9	<1	Bromofo	orm	<1
2,2-Dichloropropar	ne	<1	n-Propy	lbenzene	<1
cis-1,2-Dichloroeth	ene	<1	Bromob	enzene	<1
Chloroform		<1	1,3,5-Tri	imethylbenzene	<1
2-Butanone (MEK)		<10	1,1,2,2-1	etrachloroethane	<1
1,2-Dichloroethane	e (EDC)	<1	1,2,3-Tri	ichloropropane	<1
1,1,1-Trichloroetha	ane	<1	2-Chlore	otoluene	<1
1,1-Dichloroproper	ie	<1	4-Chloro	otoluene	<1
Carbon Tetrachlori	ide	<1	tert-But	ylbenzene	<1
Benzene		<1	1,2,4-1r	imethylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1,2-Dichloropropar	1e	<1	p-Isopro	pyltoluene	<1
Bromodichioromet	nane	<1	1,3-Dich	lorobenzene	<1
Dibromomethane		<l< td=""><td>I,4-Dich</td><td>lorobenzene</td><td><1</td></l<>	I,4-Dich	lorobenzene	<1
4-Methyl-2-pentan	ione	<10	1,2-Dich	lorobenzene	<1
cis-1,3-Dichloropro	pene	<1	1,2-Dibr	omo-3-chioropropane	<1
I oluene		<1	1,2,4-1r	ichlorobenzene	<1
trans-1,3-Dichloro	propene	<1	Hexachl	oroputadiene	<1
1,1,2-1 FICHIOFOETH	ane	<1 -10	Naphtha 1.9.2 T	alelle	<1
2-riexanone		<10	1,2,3-1r	icmorobenzene	<1
1,5-Dichioropropar	ie	<1			

Note: The reporting limit for vinyl chloride is equal to the MDL.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	MW-3		Client:	Adapt Engineering	
Date Received:	10/31/07		Project:	WA07-15008-PH2, F&	BI 710419
Date Extracted:	11/01/07		Lab ID:	710419-03	
Date Analyzed:	11/02/07		Data File:	110139.D	
Matrix:	Water		Instrument:	GCMS5	
Units:	ug/L (ppb)		Operator:	MB	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
Dibromofluorometl	nane	77	75	125	
1,2-Dichloroethane	-d4	75	67	133	
Toluene-d8		86	79	129	
4-Bromofluorobenz	zene	121	76	145	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	ethane	<1	Tetrach	loroethene	45
Chloromethane		<1	Dibromo	ochloromethane	<1
Vinyl chloride		< 0.2	1,2-Dibr	omoethane (EDB)	<1
Bromomethane		<1	Chlorobe	enzene	<1
Chloroethane		<1	Ethylber	nzene	<1
Trichlorofluoromet	hane	<1	1,1,1,2-T	etrachloroethane	<1
Acetone		<10	m,p-Xyle	ene	<2
1,1-Dichloroethene	•	<1	o-Xylene		<1
Methylene chloride	9	<5	Styrene		<1
trans-1,2-Dichloroe	ethene	<1	Isopropy	lbenzene	<1
1,1-Dichloroethane		<1	Bromofo	rm	<1
2,2-Dichloropropan	ie	<1	n-Propy	lbenzene	<1
cis-1,2-Dichloroeth	ene	<1	Bromobe	enzene	<1
Chloroform		1.3	1,3,5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1,1,2,2-T	etrachloroethane	<1
1,2-Dichloroethane	e (EDC)	<1	1,2,3-Tri	chloropropane	<1
1,1,1-Trichloroetha	ane	<1	2-Chloro	otoluene	<1
1,1-Dichloropropen	e	<1	4-Chloro	otoluene	<1
Carbon Tetrachlori	de	<1	tert-But	ylbenzene	<1
Benzene		<1	1,2,4-Tri	imethylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1,2-Dichloropropan	ie	<1	p-Isopro	pyltoluene	<1
Bromodichloromet	hane	<1	1,3-Dich	lorobenzene	<1
Dibromomethane		<1	1,4-Dich	lorobenzene	<1
4-Methyl-2-pentan	one	<10	1,2-Dich	lorobenzene	<1
cis-1,3-Dichloropro	pene	<1	1,2-Dibr	omo-3-chloropropane	<1
Toluene		<1	1,2,4-Tri	chlorobenzene	<1
trans-1,3-Dichloro	propene	<1	Hexachl	orobutadiene	<1
1,1,2-Trichloroetha	ane	<1	Naphtha	alene	<1
2-Hexanone		<10	1,2,3-Tri	chlorobenzene	<1
1,3-Dichloropropan	ie	<1			

Note: The reporting limit for vinyl chloride is equal to the MDL.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	Method Bla	nk	Client:	Adapt Engineering						
Date Received:	Not Applica	ble	Project:	WA07-15008-PH2, F&	BI 710419					
Date Extracted:	11/01/07		Lab ID:	071700 mb						
Date Analyzed:	11/01/07		Data File:	110114.D						
Matrix:	Water		Instrument:	GCMS5						
Units: ug/L (ppb)			Operator:	MB						
			Lower	Upper						
Surrogates:		% Recovery:	Limit:	Limit:						
Dibromofluorometl	hane	79	75	125						
1.2-Dichloroethane	e-d4	77	67	133						
Toluene-d8		87	79	129						
4-Bromofluorobenz	zene	122	76 145							
		Concentration			Concentration					
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)					
Dichlorodifluorome	ethane	<1	Tetrach	loroethene	<1					
Chloromethane		<1	Dibromo	Dibromochloromethane						
Vinyl chloride		< 0.2	1,2-Dibr	1,2-Dibromoethane (EDB)						
Bromomethane		<1	Chlorobe	Chlorobenzene						
Chloroethane		<1	Ethylber	<1						
Trichlorofluoromethane		<1	1,1,1,2-T	etrachloroethane	<1					
Acetone		<10	m,p-Xyle	ene	<2					
1,1-Dichloroethene		<1	o-Xylene	<u>)</u>	<1					
Methylene chloride	e	<5	Styrene	<1						
trans-1,2-Dichloroethene		<1	Isopropy	<1						
1,1-Dichloroethane	<u>.</u>	<1	Bromofo	<1						
2,2-Dichloropropar	ne	<1	n-Propy	n-Propylbenzene						
cis-1,2-Dichloroeth	ene	<1	Bromobe	Bromobenzene						
Chloroform		<1	1,3,5-Tri	<1						
2-Butanone (MEK)		<10	1,1,2,2-T	1,1,2,2-Tetrachloroethane						
1,2-Dichloroethane	e (EDC)	<1	1,2,3-Tri	1,2,3-Trichloropropane						
1,1,1-Trichloroetha	ane	<1	2-Chloro	2-Chlorotoluene						
1,1-Dichloropropen	ie	<1	4-Chlorotoluene		<1					
Carbon Tetrachlori	ide	<1	tert-But	ylbenzene	<1					
Benzene		<1	1,2,4-Trimethylbenzene		<1					
Trichloroethene		<1	sec-Butylbenzene		<1					
1,2-Dichloropropar	ie	<1	p-Isopro	pyltoluene	<1					
Bromodichloromet	hane	<1	1,3-Dich	lorobenzene	<1					
Dibromomethane		<1	1,4-Dich	lorobenzene	<1					
4-Methyl-2-pentan	one	<10	1,2-Dich	lorobenzene	<1					
cis-1,3-Dichloropro	pene	<1	1,2-Dibr	omo-3-chloropropane	<1					
Toluene		<1	1,2,4-Tri	ichlorobenzene	<1					
trans-1,3-Dichloro	propene	<1	Hexachl	orobutadiene	<1					
1,1,2-Trichloroetha	ne	<1	Naphtha	alene	<1					
2-Hexanone		<10	1,2,3-Tri	ichlorobenzene	<1					
1,3-Dichloropropane		<1								

Note: The reporting limit for vinyl chloride is equal to the MDL.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/06/07 Date Received: 10/31/07 Project: WA07-15008-PH2, F&BI 710419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 710419-02 (Duplicate)

Laboratory could 110		acc)		
Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Benzene	ug/L (ppb)	42	44	5
Toluene	ug/L (ppb)	10	11	10
Ethylbenzene	ug/L (ppb)	1	1	0
Xylenes	ug/L (ppb)	7	7	0
Gasoline	ug/L (ppb)	320	330	3

Laboratory Code: Laboratory Control Sample

	Percent									
	Reporting	Spike	Recovery	Acceptance						
Analyte	Units	Level	LCS	Criteria						
Benzene	ug/L (ppb)	50	108	65-118						
Toluene	ug/L (ppb)	50	111	72-122						
Ethylbenzene	ug/L (ppb)	50	113	73-126						
Xylenes	ug/L (ppb)	150	112	74-118						
Gasoline	ug/L (ppb)	1,000	97	69-134						

ENVIRONMENTAL CHEMISTS

Date of Report: 11/06/07 Date Received: 10/31/07 Project: WA07-15008-PH2, F&BI 710419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code: 710419-03 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Dichlorodifluoromethane	ug/L (nnh)	<1	<1	nm
Chloromethane	ug/L (ppb)	<1	<1	nm
Vinvl chloride	ug/L (ppb)	< 0.2	<0.2	nm
Bromomethane	ug/L (ppb)	<1	<1	nm
Chloroethane	ug/L (ppb)	<1	<1	nm
Trichlorofluoromethane	ug/L (ppb)	<1	<1	nm
Acetone	ug/L (ppb)	<10	<10	nm
1,1-Dichloroethene	ug/L (ppb)	<1	<1	nm
Methylene chloride	ug/L (ppb)	<5	<5	nm
trans-1,2-Dichloroethene	ug/L (ppb)	<1	<1	nm
1,1-Dichloroethane	ug/L (ppb)	<1	<1	nm
2,2-Dichloropropane	ug/L (ppb)	<1	<1	nm
cis-1,2-Dichloroethene	ug/L (ppb)	<1	<1	nm
Chloroform	ug/L (ppb)	1.3	1.3	0
2-Butanone (MEK)	ug/L (ppb)	<10	<10	nm
1,2-Dichloroethane (EDC)	ug/L (ppb)	<1	<1	nm
1,1,1-1 richloroethane	ug/L (ppb)	<1	<1	nm
I,I-Dichloropropene	ug/L (ppb)	<1	<1	nm
Carbon Tetrachioride	ug/L (ppb)	<1	<1	nm
Delizene	ug/L (ppb)	<1	<1	1111
1 2 Dichloropropano	ug/L (ppb)	<1	<1	nm
Bromodichloromethane	ug/L (ppb)	<1	<1	nm
Dibromomethane	ug/L (ppb)	<1	<1	nm
4-Methyl-2-pentanone	ug/L (ppb)	<10	<10	nm
cis-1.3-Dichloropropene	ug/L (ppb)	<10	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
trans-1.3-Dichloropropene	ug/L (ppb)	<1	<1	nm
1,1,2-Trichloroethane	ug/L (ppb)	<1	<1	nm
2-Hexanone	ug/L (ppb)	<10	<10	nm
1,3-Dichloropropane	ug/L (ppb)	<1	<1	nm
Tetrachloroethene	ug/L (ppb)	45	46	2
Dibromochloromethane	ug/L (ppb)	<1	<1	nm
1,2-Dibromoethane (EDB)	ug/L (ppb)	<1	<1	nm
Chlorobenzene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
1,1,1,2-Tetrachloroethane	ug/L (ppb)	<1	<1	nm
m,p-Xylene	ug/L (ppb)	<2	<2	nm
o-Xylene	ug/L (ppb)	<1	<1	nm
Styrene	ug/L (ppb)	<1	<1	nm
Bround	ug/L (ppb)	<1	<1	nm
p Propylhonzono	ug/L (ppb)	<1	<1	nm
Bromobenzene	ug/L (ppb)	<1	<1	nm
135-Trimethylbenzene	ug/L (ppb)	<1	<1	nm
1 1 2 2-Tetrachloroethane	ug/L (ppb)	<1	<1	nm
1.2.3-Trichloropropane	ug/L (ppb)	<1	<1	nm
2-Chlorotoluene	ug/L (ppb)	<1	<1	nm
4-Chlorotoluene	ug/L (ppb)	<1	<1	nm
tert-Butylbenzene	ug/L (ppb)	<1	<1	nm
1,2,4-Trimethylbenzene	ug/L (ppb)	<1	<1	nm
sec-Butylbenzene	ug/L (ppb)	<1	<1	nm
p-Isopropyltoluene	ug/L (ppb)	<1	<1	nm
1,3-Dichlorobenzene	ug/L (ppb)	<1	<1	nm
1,4-Dichlorobenzene	ug/L (ppb)	<1	<1	nm
1,2-Dichlorobenzene	ug/L (ppb)	<1	<1	nm
1,2-Dibromo-3-chloropropane	ug/L (ppb)	<1	<1	nm
1,2,4-Trichlorobenzene	ug/L (ppb)	<1	<1	nm
Hexachlorobutadiene	ug/L (ppb)	<1	<1	nm
Naphthalene	ug/L (ppb)	<1	<1	nm
1,2,3- i richiorobenzene	ug/L (ppb)	<1	<1	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 11/06/07 Date Received: 10/31/07 Project: WA07-15008-PH2, F&BI 710419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code: 710390-02 (Matrix Spike)

J	- 1			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Únits	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	99	50-150
Chloromethane	ug/L (ppb)	50	<1	120	21-170
Vinyl chloride	ug/L (ppb)	50	< 0.2	121	30-160
Bromomethane	ug/L (ppb)	50	<1	149	24-165
Chloroethane	ug/L (ppb)	50	<1	117	19-172
Trichlorofluoromethane	ug/L (ppb)	50	<1	133	38-149
Acetone	ug/L (ppb)	50	<10	117	19-169
1,1-Dichloroethene	ug/L (ppb)	50	<1	139	35-146
Methylene chloride	ug/L (ppb)	50	<5	124	68-124
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	122	69-124
1,1-Dichloroethane	ug/L (ppb)	50	<1	114	71-124
z,z-Dichloropropane	ug/L (ppb)	50	<1	117	20-100
cls-1,2-Dichloroethene	ug/L (ppb)	50	<1	120	77-124
2-Butanone (MEK)	ug/L (ppb)	50	<10	103	70-120 50-162
1.2 Dichloroothano (EDC)	ug/L (ppb)	50	<10	100	71 199
1.1.1-Trichloroethane	ug/L (ppb)	50	<1	105	67-131
1 1-Dichloropropene	ug/L (ppb)	50	<1	109	67-124
Carbon Tetrachloride	ug/L (ppb)	50	<1	124	60-135
Benzene	ug/L (ppb)	50	<1	107	73-119
Trichloroethene	ug/L (ppb)	50	<1	103	73-118
1,2-Dichloropropane	ug/L (ppb)	50	<1	106	77-123
Bromodichloromethane	ug/L (ppb)	50	<1	115	71-128
Dibromomethane	ug/L (ppb)	50	<1	113	61-138
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	120	70-133
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	93	56-144
Toluene	ug/L (ppb)	50	<1	100	69-130
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	92	64-139
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	99	65-141
2-Hexanone	ug/L (ppb)	50	<10	106	57-155
1,3-Dichloropropane	ug/L (ppb)	50	<1	100	81-121
Tetrachloroethene	ug/L (ppb)	50	<1	97	74-126
1.9 Dibromocnioromethane	ug/L (ppb)	50	<1	90	70-129
(EDB)	ug/L (ppb)	50	<1	105	80-124
Ethylbenzene	ug/L (ppb)	50	<1	105	77-120
1112-Tetrachloroethane	ug/L (ppb)	50	<1	105	78-120
m n-Xvlene	ug/L (ppb)	100	<2	109	75-126
o-Xvlene	ug/L (ppb)	50	<1	107	78-126
Styrene	ug/L (ppb)	50	<1	108	76-124
Isopropylbenzene	ug/L (ppb)	50	<1	123	80-125
Bromoform	ug/L (ppb)	50	<1	111	56-138
n-Propylbenzene	ug/L (ppb)	50	<1	104	79-126
Bromobenzene	ug/L (ppb)	50	<1	98	78-119
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	110	77-124
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	101	70-135
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	96	69-133
2-Chlorotoluene	ug/L (ppb)	50	<1	100	74-124
4-Chlorotoluene	ug/L (ppb)	50	<1	102	74-124
tert-Butylbenzene	ug/L (ppb)	50	<1	109	78-127 78-194
1,2,4-11111ettiyiDenzene	ug/L (ppb)	50	<1	111	70-124
sec-BulyIDenzene	ug/L (ppb)	50	<1	110	76 120
1 3-Dichlorobenzene	ug/L (ppb)	50	<1	103	74-121
1 4-Dichlorobenzene	$u_{6} = (ppb)$	50	<1	101	73-116
1.2-Dichlorobenzene	ug/L (ppb)	50	<1	109	74-123
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<1	99	56-148
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	102	65-132
Hexachlorobutadiene	ug/L (ppb)	50	<1	93	54-139
Naphthalene	ug/L (ppb)	50	<1	98	41-166
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	100	59-152

ENVIRONMENTAL CHEMISTS

Date of Report: 11/06/07 Date Received: 10/31/07 Project: WA07-15008-PH2, F&BI 710419

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code: Laboratory Control Sample

j i i j i i i j i i i j i i i j	- I		Percent	
	Reporting	Snike	Recovery	Accentance
A]t.	Units	J	LCC	Criterie
Analyte	Units	Level	LUS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	96	22-164
Chloromethane	ug/L (ppb)	50	93	43-147
Vinyl chloride	ug/L (ppb)	50	91	48-142
Bromomethane	ug/L (ppb)	50	104	37-160
Chloroethane	ug/L (ppb)	50	87	28-161
Trichlorofluoromethane	ug/L (ppb)	50	96	52-143
Acetone	ug/L (ppb)	50	110	21-187
1,1-Dichloroethene	ug/L (ppb)	50	97	61-127
Methylene chloride	ug/L (ppb)	50	96	59-131
trans-1,2-Dichloroethene	ug/L (ppb)	50	101	75-122
1.1-Dichloroethane	ug/L (ppb)	50	99	79-114
2.2-Dichloropronane	ug/L (nnh)	50	100	68-137
cis-1.2-Dichloroethene	ug/L (ppb)	50	106	78-122
Chloroform	ug/L (ppb)	50	100	75-116
2-Butanone (MFK)	ug/L (ppb)	50	108	50-165
1 2-Dichloroethane (FDC)	ug/L (ppb)	50	90	77-118
1.1.1.Trichloroethane	ug/L (ppb)	50	90	72-120
1.1 Dishlarananana	ug/L (ppb)	50	104	90 124
Corbon Totrachloride	ug/L (ppb)	50	104	60-124
Pangana	ug/L (ppb)	50	101	09-132 90_116
Delizelle	ug/L (ppb)	50	99	80-110
1 richloroethene	ug/L (ppb)	50	98	78-115
1,2-Dichloropropane	ug/L (ppb)	50	102	83-118
Bromodichloromethane	ug/L (ppb)	50	105	81-123
Dibromomethane	ug/L (ppb)	50	104	80-119
4-Methyl-2-pentanone	ug/L (ppb)	50	112	34-177
cis-1,3-Dichloropropene	ug/L (ppb)	50	93	85-124
Toluene	ug/L (ppb)	50	102	77-121
trans-1,3-Dichloropropene	ug/L (ppb)	50	96	81-125
1,1,2-Trichloroethane	ug/L (ppb)	50	102	76-120
2-Hexanone	ug/L (ppb)	50	108	31-187
1,3-Dichloropropane	ug/L (ppb)	50	103	76-121
Tetrachloroethene	ug/L (ppb)	50	100	81-117
Dibromochloromethane	ug/L (ppb)	50	94	78-125
1.2-Dibromoethane (EDB)	ug/L (ppb)	50	105	71-129
Chlorobenzene	ug/L (ppb)	50	95	79-110
Ethylbenzene	ug/L (nnh)	50	100	76-118
1112-Tetrachloroethane	ug/L (ppb)	50	105	73-125
m n-Xylene	ug/L (ppb)	100	104	65-128
o-Yylene	ug/L (ppb)	50	97	53-152
Styrene	ug/L (ppb)	50	98	83-121
Isopronylbenzene	ug/L (ppb)	50	108	75-130
Bromoform	ug/L (ppb)	50	100	60 122
Diolilololilli	ug/L (ppb)	50	90	00-132
Bromohongene	ug/L (ppb)	50	100	74 190
	ug/L (ppb)	50	102	74-120
1,3,5-1 rimetnyibenzene	ug/L (ppb)	50	109	81-120
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	100	64-126
1,2,3-1richloropropane	ug/L (ppb)	50	98	61-128
2-Chlorotoluene	ug/L (ppb)	50	102	82-120
4-Chlorotoluene	ug/L (ppb)	50	104	82-120
tert-Butylbenzene	ug/L (ppb)	50	109	81-125
1,2,4-Trimethylbenzene	ug/L (ppb)	50	109	78-125
sec-Butylbenzene	ug/L (ppb)	50	109	76-124
p-Isopropyltoluene	ug/L (ppb)	50	103	77-130
1,3-Dichlorobenzene	ug/L (ppb)	50	101	79-114
1,4-Dichlorobenzene	ug/L (ppb)	50	98	77-109
1,2-Dichlorobenzene	ug/L (ppb)	50	104	77-113
1.2-Dibromo-3-chloropropane	ug/L (ppb)	50	95	43-156
1.2.4-Trichlorobenzene	ug/L (ppb)	50	101	71-125
Hexachlorobutadiene	ug/L (nnb)	50	93	68-125
Nanhthalene	ug/L (ppb)	50	97	41-151
1.2.3-Trichlorobenzene	ug/L (ppb)	50	102	51-150
1,6,0° IIICHIOLODEHZEHE	ag/r (hhn)	50	102	51-155

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probablility.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - The analyte indicated was found in the method blank. The result should be considered an estimate.

fc – The compound is a common laboratory and field contaminant.

fp – Compounds in the sample matrix interfered with quantitation of the analyte. The reported concentration may be a false positive.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - The sample was extracted outside of holding time. Results should be considered estimates.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

 $\rm pr$ – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The pattern of peaks present is not indicative of diesel.

y - The pattern of peaks present is not indicative of motor oil.

																. /
710419 SA	AMPLE C	HAIN O	FC	US	то	DY		ME		i0-	. 81	- 0	7			V3
	SAMPLE	ERS (signal	lure)) /	\sum		B	O	9				Pe	age #_		
Send Report To John. Dhend	PROJEC	T NAME/N	10.	0	for w	<u> </u>	D	T	PO	#		X	Stan	dard	(2 Week	s)
Company Hapt Engineermy, Inc.	- ω	A07- 15	500	8-	Ph	R						R	RUS. 1sh cl	H harge	s author	rized by:
Address 615 8' Menio Juit	- REMAR	KS		-						<u>.</u>		=	- 5	SAME	LE DIS	POSAL
City, State, ZIP Seattle, WA 98104	-											8	Disp Retu	ose ai rn sa	fter 30 d mules	ays
Phone # 206-654-7045 Fax # 206-654-7048								Will	call v	all with instructions						
							ANA	LYS	ESRE		EST	ED				
Sample ID Lab late Time ID Sampled Sampled	Sample Type	# of containers	TPH-Diesel	TPII-Gasolino	3TEX by 8021B	VOCs by 8260	SVOCs by 8270	lIFS					-			Notes
MW-1 01AD10-3407 1200	GW	4.		X	X	X										
MW-2 014-9 1 1250	1	1		X	X										1	
MW-3 13A. V 1230	\checkmark	↓.				${ imes}$										
	1919-1911-19-19-19-1															
	*	•	1												~ *	
														ţ		
	<u></u>													†	[
	•	1		1	1		_			•					7	5
										\$	am	p les	ręce	uver	3 (***	<u>,</u>
Friedman & Bruya, Inc. SIGNATURE			RIN	ΓN	AMF				<u>_</u>	CO	MP.	ANY		<u> </u>	DATE	TIME
3012 16th Avenue West Relinquished b:	and	1/ John Bhend A					Ale	Kkipt- 10-31-07 15:					1530			
Seattle, WA 98119-2029 Received by:		Do		10	9				FBI						11	1
Ph. (206) 285-8282 Relinquished b:																
Fax (206) 283-5044 Received by: FORMS: COCY/COC DOC																_

ļ

I