Solid Wood Incorporated Site (West Bay Park) Interim Action Report Revision 1

September 2010 Parametrix

Solid Wood Incorporated Site (West Bay Park) Interim Action Report Revision 1.0

Prepared for

City of Olympia P.O. Box 1967 Olympia, WA 98507

Prepared by

Parametrix 4660 Kitsap Way, Suite A Bremerton, WA 98312-2357 T. 360.377.0014 F. 360.479.5961 www.parametrix.com

CITATION

Parametrix. 2010. Solid Wood Incorporated Site (West Bay Park) Interim Action Report Revision 1. Prepared by Parametrix, Bremerton, Washington. September 2010.

CERTIFICATION

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned.

inde

Prepared by Lara Linde

linkulme 9/13/10

Checked by David Dinkuth, P.E.

TABLE OF CONTENTS

1.	INT	RODUCTION 1-1
2.	INT	ERIM ACTION ACTIVITIES
	2.1	AREA A
	2.2	AREA B
	2.3	AREA C
	2.4	AREA D
	2.5	AREA E
	2.6	CATCH BASIN REMOVAL2-3
	2.7	WOODEN FLUME DECOMMISSIONING2-3
	2.8	PILING REMOVAL AND SEDIMENT TESTING2-3
	, ,	2.8.1 Piling Removal
	2.0	2.8.2 Sediment Testing
	2.9	DATA QUALITY ASSURANCE/QUALITY CONTROL2-5
3.	CO	NCLUSIONS
	3.1	INTERIM ACTION RESULTS
	3.2	SEDIMENT TESTING RESULTS
4.	REF	ERENCES
LI	51 0	F FIGURES
	1	Interim Action Areas and ROWF-1
	2	Site Features and Cap AreasF-3
LI	ST OI	F TABLES
	1	Area A Confirmation Sample Results
	2	Area A Clean Stockpile Sample Results
	3	Area A Contaminated Stockpile Sample Results
	4	Area B Confirmation Sample Results
	5	Area B Stockpile Sample Results
	6	Area C Stockpile Sample Results
	7	Area D Confirmation Sample Results
	8	Area D Clean Stockpile Sample Results
	9	Area D Contaminated Stockpile Sample Results
	10	Catch Basin Sample Results Summary
		*

TABLE OF CONTENTS (CONTINUED)

APPENDICES

- A Photos
- B Chemical Laboratory Results
- C Disposal Summary
- D Sediment Field Logs and Reference Sediment Map
- E Biological Report

KEY TERMS

AET	apparent effects threshold
AO	administrative order
bgs	below ground surface
BNSF	Burlington Northern Santa Fe Railway
City	City of Olympia
CSLs	cleanup screening levels
Ecology	Washington State Department of Ecology
gpm	gallons per minute
IA	Interim Action
mg/kg	milligrams per kilogram
ORC	Oxygen Release Compound TM
PAHs	polycyclic aromatic hydrocarbons
PCP	pentachlorophenol
PID	photoionization detector
PSEP	Puget Sound Estuary Program Guidelines
RI/FS	Remedial Investigation/Feasibility Study
RLs	Remedial Levels
ROW	right of way
SMS	Sediment Management Standards
SSAPA	Sediment Sampling and Analysis Plan Appendix
TOC	total organic carbon
TPH	total petroleum hydrocarbons

1. INTRODUCTION

This Interim Action (IA) Report describes cleanup activities performed at the Solid Wood Incorporated Site over the summer and fall of 2009. The goal of the IA was to remove contaminated soils associated with historical site uses as well as numerous wooden piling located on the shoreline of the site. The IA was performed under the oversight of the Washington State Department of Ecology (Ecology) in accordance with the site's Agreed Order (No. DE-08-TCPSR-5415) and approved Remedial Investigation/ Feasibility Study (RI/FS) Work Plans (Parametrix 2008, 2009a;b). Cleanup activities were performed by the City of Olympia (City) as a necessary first step in the development of the site into a new City of Olympia park (West Bay Park). Park construction began immediately following the IA and was completed in summer 2010.

The IA addressed eight areas of the site as described below. Refer to Figure 1 (located at the end of this report) for a site plan showing the areas addressed.

- Area A An upland area partially located within the former Burlington Northern Santa Fe Railway (BNSF) right of way (ROW). The IA consisted of the excavation and removal of soil contaminated with Bunker C fuel oil and polycyclic aromatic hydrocarbons (PAHs).
- Area B A second upland area also partially located within the former BNSF ROW. The IA also consisted of excavation and removal of shallow soil contaminated with Bunker C fuel oil and PAHs.
- Area C An upland area located substantially on the former BNSF ROW. The IA consisted of placement of a soil and pavement cap over shallow surface soils contaminated with PAHs.
- Area D A shoreline area that formerly contained a wood burner. The IA consisted of excavation and removal of soils contaminated with metals and dioxins.
- Area E A shoreline area containing metal scrap. The IA consisted of excavation of the affected soils, screening to remove the scrap, and off-site scrap disposal. Screened soils were found to be uncontaminated during earlier testing (Parametrix 2009a) and were used on-site as fill.
- Catch Basins Four catch basins located in upland areas were removed. Soil samples were collected immediately below the basins that confirmed that contamination was not present.
- Wooden Flume A buried wooden flume was exposed and plugged with concrete. The purpose of the plug was to attempt to eliminate a groundwater seep with a significant discharge flow rate.
- Piling A total of 437 wooden piling were removed from six intertidal areas. Sediment samples were collected following piling removal to assess sediments for the presence of contaminants.

Figure 1 depicts all cleanup areas described above. Also depicted is the surface area percentage of each cleanup area relative to location within and outside of the former BNSF ROW. This representation was made to aid the City in determining distribution of costs for potential cost recovery. Representative photos of the IA areas are included in Appendix A.

2. INTERIM ACTION ACTIVITIES

The following sections provide detailed descriptions of the interim action activities performed at each site area. IA areas are shown in Figure 1. Analytical Laboratory data for each area are summarized in Tables 1 through 12. Analytical laboratory reports are provided in Appendix B. Appendix B also includes a Quality Assurance/Quality Control (QA/QC) review memorandum for the laboratory data.

2.1 AREA A

Contaminated soils were excavated and removed from the footprint outlined on Figure 1. Excavated material was field-screened using a photoionization detector (PID) supplemented with olfactory and visual observations to make the final determination of the limits of excavation. Confirmation samples were collected on the side walls and bottom of the excavation at the locations shown on Figure 1.

Analytical results for the confirmation samples are compared to Remedial Levels (RLs) established in the RI/FS Work Plan (Parametrix 2008) in Table 1. As shown, none of the confirmation samples exceeded the applicable RLs.

During excavation activities, obviously contaminated soil was stockpiled separately from clean overburden. Wood planking, pilings, and other wooden debris encountered during the excavation were segregated and removed. The estimated quantity of soil excavated from Area A (including both stockpiles) was 3,303 tons, while the average depth of excavation was 10 feet below ground surface (bgs). Dewatering occurred continually during the excavation activities. Removed water was discharged to the City's sanitary sewer system under permit. Compliance with permit discharge criteria was verified by sampling performed by the Contractor.

Soil stockpiles were sampled and evaluated against the RLs for suitability for on-site re-use or off-site disposal. Results of the stockpile sampling are contained in Tables 2 and 3. As shown, RLs were not exceeded in the overburden samples, and this material (1,680 tons) was reused as backfill in Area A.

Oxygen Release CompoundTM (ORC) was mixed with clean imported backfill below the depth of 4 feet to provide an oxygen source for naturally-occurring bacteria. At elevations of 4 feet bgs to the surface, clean overburden was applied in compacted lifts to complete the backfill. A total of 1,500 pounds of ORC was applied at an approximate rate of 1.5 pounds per cubic yard. The purpose of the ORC was to promote enhanced bioattenuation of residual groundwater contamination by providing a source of oxygen to stimulate naturally occurring aerobic bacteria.

The contaminated soil stockpile (1,623 tons) was transported and disposed of at the Weyerhaeuser Landfill located in Castle Rock, Washington. A summary sheet of daily tonnages delivered to the landfill is included in Appendix C; disposal certifications are contained within the project files and are available upon request. Wood debris was transported and disposed of at the Roosevelt Regional Landfill.

2.2 AREA B

Soils were excavated and removed from the Area B footprint shown on Figure 1. Excavated material was field-screened similarly to Area A. Confirmation samples were also collected on the sidewalls and bottom of the excavation shown on Figure 1. Results of the samples are

compared to RLs in Table 4. Further excavation was required on the eastern sidewall of Area B based on the results of sample BSW03. Additional confirmation samples were collected on the bottom and sidewalls.

All of the soil from the Area B excavation was stockpiled in one location, without segregation, and sampled. Results of the Area B stockpile samples are presented in Table 5. The average depth of the excavation was between 4 and 5 feet bgs. No groundwater was encountered during the excavation. Wooden pilings and wood debris encountered in the excavation were removed.

A total of 363 tons of soil stockpiled from Area B were transported and disposed of at the Weyerhaeuser Landfill. Wood debris was transported and disposed of at the Roosevelt Regional Landfill.

2.3 AREA C

In Area C, initial activities consisted of the removal of existing rail lines and ties. Steel rails were removed off-site for recycling. Rail ties were disposed of at the Roosevelt Regional Landfill. Surface soils were then excavated along the former rail spur to subgrade (Figure 1). Excavations ranged from 1 to 4 feet deep depending on location and subgrade requirements. All contaminated soil (1,340 tons) from Area C was stockpiled in one location on-site and disposed of at the Weyerhaeuser Landfill. No confirmation samples were collected; however, two stockpile samples were collected for disposal characterization purposes. Results of the stockpile samples are presented in Table 6.

After excavation was completed, geotextile fabric was installed in the bottom of the excavation to provide a visual marker. A cap was constructed over the geotextile that consisted of either a minimum of 12 inches of clean, vegetated soil or asphalt pavement. Figure 2 shows the relative locations of the Area C cap and as-designed park features. No significant departures from the as-designed features were made during park construction.

2.4 AREA D

Area D soils were excavated from within the footprint shown on Figure 1 during low tide and screened visually for staining as an indication of the presence of wood ash and associated metals and dioxins. Obviously contaminated soil was stockpiled separately from clean overburden. Piling and other wooden and metal debris encountered during the excavation were segregated for later removal.

Due to proximity to the waters of Budd Inlet, the Area D excavation could not be left open overnight and was backfilled with imported sand fill at the end of each work shift. Prior to backfilling, confirmation samples were collected along the excavation sidewalls and bottom. Initially, seven sidewall and four bottom confirmation samples were collected; results for these samples are compared to RLs in Table 7. Additional excavation was required in the northeastern and southeastern corners of the footprint (DSW02 and DSW04), and confirmation samples were collected along the sidewalls. Results for these the two additional confirmation samples (DSW08 and DSW09) were below RLs, and the excavation was considered complete.

The estimated quantity of material excavated from Area D in both stockpiles was 2,346 tons; the average excavation depth was 5 feet. Groundwater was encountered in the bottom of some portions of the excavation due to subsurface soil irregularities and proximity to the shoreline.

Both overburden and contaminated soil stockpiles were sampled and evaluated against RLs for suitability of on-site re-use or disposal. All but one of the stockpile samples contained concentrations of dioxins in excess of the RL. Results of the stockpile sampling are contained in Tables 8 and 9. Both stockpiles (2,346 tons) were transported and disposed of at the Weyerhaeuser Landfill.

Following the restoration of Area D and construction of the Rotary Point Area park features, approximately 80 yards of new beach gravel were placed at the foot of the new concrete stairs just to the south of Area D. The gravel was placed to a thickness of approximately 1.25 feet within the footprint shown on Figures 1 and 2.

2.5 AREA E

General grading activities for park construction in Area E resulted in the removal of several hundred cubic yards of soil to establish subgrade. Metal debris larger than 2 inches in diameter was screened from this soil and removed from the site. A visual inspection at completed subgrade showed that no significant metal debris remained. Screened soil was re-used on site as fill. Approximately 20 tons of mixed metal, concrete, and wood debris screened from Area E was disposed of at the Roosevelt Regional Landfill.

2.6 CATCH BASIN REMOVAL

A total of four catch basins were removed from the site as part of general site demolition (Figure 1). One soil sample from the beneath each catch basin was collected to investigate for contamination (Table 10). All sample results were below RLs, and no soil removal was performed.

2.7 WOODEN FLUME DECOMMISSIONING

An apparent wooden flume, situated as shown on Figure 1, was located and plugged with concrete in an attempt to eliminate a groundwater seep at the shoreline. Earlier test results from the seep detected the presence of total copper at concentrations slightly over the RL (Parametrix 2009a). However, dissolved copper in the seep sample was below the RL.

The flume was uncovered at a depth of 4 feet in a test pit dug approximately 20 feet upland of the ordinary high tide line. Rather than a flume, the feature appeared to be discarded wood planking that extended to the shoreline and acted as a drainage conduit for groundwater. Water flow from the flume was estimated at 15 gallons per minute (gpm). Approximately 10 cubic yards of concrete was deposited into the excavation to plug the feature. Flow onto the beach was stopped initially, but resumed at the same apparent rate 4 days later, indicating that the attempt to plug the flume was unsuccessful.

2.8 PILING REMOVAL AND SEDIMENT TESTING

2.8.1 Piling Removal

A total of 437 pilings were removed from six distinct areas depicted on Figure 1. Three methods were used to remove the approximately 30-foot-length piles which included a vibratory extractor, manually cutting off each pile with a hand-held gas powered chainsaw, and removal by an excavator with thumb. Vibratory extraction was the preferred and original method of piling removal and a total of 98 piles were removed using this method. Open holes remaining after removal were backfilled with pea gravel. Based on visual and olfactory

observation by Parametrix and City personnel, it was observed that none of the piling removed had been treated with creosote. The primary evidence for this was the presence of bark on all of the piling. Upon consultation with the Washington State Department of Fish and Wildlife and Ecology, it was determined pilings could be cut with a chainsaw or broken off with an excavator a minimum of 2 feet below the mudline. A total of 205 piles were cut off with a chainsaw, and 134 piles were broken off by an excavator, both 2 feet below the mudline. Work to cut or break off pilings was conducted during low-tide conditions so that pilings were easily accessible. Removed piling and cut-off stubs were disposed of at the Roosevelt Regional Landfill. A total of 315 tons of pilings and wood debris were disposed of for the project including the pilings, cut-off stubs, and wood debris from Areas A through E.

2.8.2 Sediment Testing

2.8.2.1 Sample Collection and Chemical Testing

A total of seven sediment samples were collected from the piling areas following completion of the removal activities (SD25 through SD31; Figure 1). The objective of the post-removal sampling was to assess post-removal sediment conditions relative to Ecology's Sediment Management Standards (SMS). Samples were located at the same stations as a previous set of samples collected prior to removal (Parametrix 2009b). Two reference sediment samples were also collected by Bio-Marine Enterprises (M/V Kittewake) from Ecology-approved reference sediment stations located in Carr Inlet. A map of the reference sediment stations is provided in Appendix D. A physical description of each sediment sample is provided in Table 2-1 below. Field logs for the sediment samples collected at the site are included in Appendix D.

	Table 2-1. Sediment Sample Description Summary
Station ID	Description
SD-25	Gray-black, organic silty sand, scattered shells, hydrogen sulfide odor, occasional wood fragments, live mussels, barnacles, and clams in sample vicinity, intertidal zone.
SD-26	Gray-black, slightly silty gravelly sand, shells and wood fragments, slight organic odor, live mussels, barnacles, and clams in sample vicinity, intertidal zone.
SD-27	Gray-black, slightly silty gravelly sand, scattered shells and wood fragments, slight organic odor, live mussels, barnacles, and clams in sample vicinity, intertidal zone.
SD-28	Gray-black, organic silty sand, shells and occasional wood fragments, slight organic odor, live mussels, barnacles, and clams in sample vicinity, intertidal zone.
SD-29	Gray-black, silty gravelly sand, scattered shells and wood fragments, slight organic odor, live mussels, barnacles, and clams in sample vicinity, intertidal zone.
SD-30	Gray-brown, slightly silty sandy gravel, slight to no odor, intertidal zone.
SD-31	Gray, silty sandy gravel, no shells or wood fragments, no odor, live barnacles in sample vicinity, intertidal zone.
RF-01	Gray-brown, slightly silty medium sand, no odor or live organisms (collected by Bio- Marine Enterprises).
RF-02	Gray-brown, silty sand, no odor or live organisms (collected by Bio-Marine Enterprises).

The previous sampling event targeted sediments adjacent to the piling to assess for piling-related contaminants and the potential to spread those contaminants during removal. The results of the testing showed that the only constituents present at concentrations of concern were total petroleum hydrocarbons (TPH) at 95 to 1,400 milligrams per kilogram (mg/kg). The Ecology screening level for TPH is 100 mg/kg. The City made the

determination to move forward with the piling removal and agreed to Ecology's request to collect the post-removal sediments for testing.

All post-removal sediment samples were analyzed for PAHs (SMS constituents), diesel and lube oil range hydrocarbons, pentachlorophenol (PCP), total organic carbon (TOC), total solids, total sulfides, ammonia, grain size, and total volatile solids. The two reference sediment samples obtained were also analyzed for this list of constituents. Chemical results for the sediment sampling results are compared to SMS and apparent effects threshold (AET) values in Tables 11 and 12. The only screening criterion exceeded was for TPH in all seven samples (131 to 490 mg/kg). Exceedance of this criterion triggered follow-on biological testing.

2.8.2.2 Biological Testing

Sufficient sample volume was collected and archived so that follow-on biological testing of sediments could be performed if necessary. Five samples with a range of TPH concentrations and the two reference samples were selected for biological testing. A composite sample consisting of one-third (by volume) sample SD26 and two-thirds (by volume) sample SD27 was included as one of the five samples to provide a sample with a TPH concentration in the mid range of the samples submitted. This sample was also analyzed for TPH as reported in Tables 11 and 12.

Biological testing was performed by Newfields of Port Gamble, Washington; the biological testing report is provided in Appendix E. Biological tests consisted of a 10-day amphipod solid phase survival test using Eohaustorius estuarius, a 20-day polychaete solid phase survival and growth test using Neanthes arenaceodentata, and a sediment larval test using Mytilus galloprovincialis conducted according to Puget Sound Estuary Program Guidelines (PSEP 1995). Test species were selected based on the requirements of Table 6 of Ecology's Sediment Sampling and Analysis Plan Appendix (SSAPA, Ecology 2008) and the results of grain size analyses. Since the sediments potentially contained PAHs, the biological tests were exposed to ultra-violet radiation according to Appendix D of the SSAPA.

The results of the biological testing are summarized in the following excerpt from biological testing report Section 4.4, Summary:

"Two samples (SD29 and SD30) failed to meet SQS [sediment quality standards] or CSL [cleanup screening levels] performance criteria for one or more of the bioassay tests performed on the West Bay Park sediments (Table 17). The failures for the amphipod and polychaete at station SD29 are consistent with the concentrations of total ammonia produced most likely from the decay of mussels that were observed in these tests (see Section 5). The response at station SD30 was restricted to the larval test organism and is not correlated to total ammonia effects."

The laboratory noted that SD-29 had a strong dead mollusk odor and contained whole mussel shells, some of which contained tissue (see Figure 2 of the biological report). The response of the SD29 test organisms were observed to be consistent with elevated ammonia levels most likely due to the decaying mussel tissue.

2.9 DATA QUALITY ASSURANCE/QUALITY CONTROL

The QA/QC data memorandum in Appendix B provides a discussion of data quality control results including instances where QC criteria were not met. In these instances, associated

analytical data was flagged with an appropriate qualifier to notify the user. A summary of the QA/QC discussion is provided here. It should be noted that all qualified data are considered valid as qualified and acceptable for use.

A total of ten diesel range hydrocarbon results for Area A soil and piling sediment samples experienced interference from lube oil range hydrocarbons. The associated diesel results are considered estimates and have been flagged with a "J" qualifier.

Dioxins were detected in each method blank associated with the dioxins analyses. Sample detections that were less than five times the method blank detection were qualified as estimated due to blank contamination and a flagged with "BJ" qualifier.

Benzo(a)pyrene was recovered at slightly above control limits in the spike blank and spike blank duplicate for samples from Areas A and B. All associated samples were non-detect, with the exception of Area B sample WB-SO-BSP04-0000. This one detection was qualified as estimated and flagged with a "J" qualifier.

3. CONCLUSIONS

3.1 INTERIM ACTION RESULTS

IA activities were successfully completed according to the project work plans and satisfy the requirements of the site's Agreed Order as follows:

- All soil in Areas A, B, C, and D with contamination in excess of the RLs was either removed or capped.
- All metal debris was removed from Area E.
- Groundwater in the vicinity of Area A with residual concentrations of contaminants will be subject to enhanced bioattenuation for approximately one year following application of the ORC. Following that, any remaining contamination will attenuate naturally. Four quarters of groundwater monitoring have been performed to assess groundwater quality downgradient of Area A (Parametrix 2010). The results of this testing indicate that contaminated groundwater has not migrated away from the immediate vicinity of Area A (i.e., no contamination has been detected in the downgradient wells).
- The attempt to plug the wooden flume was not successful. However, no further assessment work will be performed at the associated groundwater seep (Seep 1; Figure 1) since the only metal concentration that exceeded its remediation level in the seep was total copper (Parametrix 2009a). The appropriate state and national toxic substances criteria for surface water (EPA 2010; Ecology 2006) apply to the dissolved copper fraction, thus we conclude that no further monitoring is necessary.

3.2 SEDIMENT TESTING RESULTS

Six of the eight sediment samples collected failed to meet Ecology's screening criteria for TPH. Per the RI/FS Work Plan, follow on biological testing was conducted on five of the samples. Two of the five (SD29 and SD30) failed to meet the SQS or CSL performance criteria for one or more of the bioassay tests. SD29 failed all organism tests when compared to the SQS while SD30 failed only the larval development test. When comparing to CSLs, SD29 and SD30 failed the larval development test and SD29 failed the amphipod test.

Test failures in sample SD29 may be attributable to ammonia produced from the decay of mussel tissue present in the sample. The laboratory noted that SD29 contained many whole mussel shells containing tissue; decay of this tissue during storage is a likely contributing factor to elevated ammonia concentrations measured in the sample. The initial ammonia concentration measured in SD29 was 85 milligrams per liter (mg/l) as compared to a range of 1.27 to 25.0 mg/l measured in the other four site samples. SD29 was also observed to contain a strong dead mollusk odor during sample preparation procedures. Responses seen in SD30 in the larval development test could not be correlated with specific sample matrix or water quality observations.

4. REFERENCES

- Ecology. 2006. Washington State Department of Ecology. Water Quality Standards for Surface Waters of the State of Washington (Chapter 173-201A WAC). Section 240 Toxic Substances, Table 240(3). November 20.
- Ecology. 2008. Sediment sampling and analysis plan appendix, guidance on the development of sediment sampling and analysis plans meeting the requirements of the sediment management standards (Chapter 173-204 WAC). Ecology Publication No. 03-09-043. February.
- EPA. 2010. United States Environmental Protection Agency. National Toxics Rule (40 CFR Part 131). Section 131.36 Toxics Criteria for those states not complying with the Clean Water Act section 303(c)(2)(B). Internet download current as of August 18.
- Parametrix. 2008. Work plan for remedial investigation/feasibility study and interim action, Solid Wood Incorporated Site (West Bay Park). Prepared for City of Olympia Parks, Arts, and Recreation Department. October.
- Parametrix. 2009a. Technical memorandum: Solid Wood Incorporated Site RI/FS and IA Work plan addendum no. 2 seep sampling and storm drain line survey results and approaches to address metals in seeps. Prepared for City of Olympia Parks, Arts, and Recreation Department. June 15.
- Parametrix. 2009b. Technical memorandum: Solid Wood Incorporated Site RI/FS and IA work plan addendum no. 3 post piling removal sediment sampling and analysis plan. Prepared for City of Olympia Parks, Arts, and Recreation Department. July 28.
- Parametrix. 2010. Technical memorandum: Solid Wood Incorporated Site fourth quarter groundwater monitoring results, November 2009. Prepared for City of Olympia Parks, Arts, and Recreation Department. January 5.
- PSEP. 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Interim final report. Puget Sound Estuary Program, U.S. Environmental Protection Agency Region 10, Seattle, Washington.

FIGURES

PILING REMOVAL AREA FOOTPRINT

- SEEP SAMPLE LOCATION

Interim Action Areas & ROW

0 100 SCALE IN FEET Solid Wood Incorporated Site (West Bay Park) Olympia, Washington Site Features and Cap Areas

TABLES

Table 1. Area A Confirmation Sample Results

· · · · · ·	Ar	rea A Sample No.	ASW01	ASW02	ASW03	ASW04		ASW05		ASW06		ASW07		ASW07(dup)		ABT01	ABT02		ABT03		ABT04	
	S	ample Depth (ft):	7	7	5	7		6.5		6		7		7		10	10		10		10	
PARAMETERS	Units	Date Sampled:	8/26/09	8/26/09	8/27/09	8/27/09		8/27/09		8/28/09		8/28/2009		8/28/2009		8/26/09	8/27/09		8/27/09		8/28/09	
		RL																				
TOTAL PETROLEUM HYDROCARBONS																						
Diesel Range Organics	mg/kg	2000	40 U	33 U	32 U	32	U	30	U	33	U	31	U	32	U	33 U	39	U	35	U	37	U
Lube Oil Range Organics	mg/kg	2000	81 U	66 U	63 U	63	U	60	U	69		76		63	U	65 U	77	U	70	U	75	U
METALS																						
Lead	mg/kg	250	8.1 U	6.6 U	6.3 U	6.3	U	6.0	U	6.5	U	6.1	U	6.3	U	6.5 U	7.7	U	7.0	U	7.5	U
AROMATIC VOLATILE ORGANIC COMPOUND	os																					
Benzene	mg/kg	0.03	0.021 U	0.02 U	0.02 U	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U	0.02 U	0.02	U	0.02	U	0.021	U
Toluene	mg/kg	7	0.1 U	0.065 U	0.059 U	0.066	U	0.055	U	0.081	U	0.074	U	0.086	U	0.061 U	0.079	U	0.074	U	0.1	U
Ethylbenzene	mg/kg	6	0.1 U	0.065 U	0.059 U	0.066	U	0.055	U	0.081	U	0.074	U	0.086	U	0.061 U	0.079	U	0.074	U	0.1	U
m,p-Xylene	mg/kg	9	0.1 U	0.065 U	0.059 U	0.066	U	0.055	U	0.081	U	0.074	U	0.086	U	0.061 U	0.079	U	0.074	U	0.1	U
o-Xylene	mg/kg	9	0.1 U	0.065 U	0.059 U	0.066	U	0.055	U	0.081	U	0.074	U	0.086	U	0.061 U	0.079	U	0.074	U	0.1	U
CARCINOGENIC POLYCYCLIC AROMATIC H	YDROCARE	BONS																				
Benzo(a)anthracene	mg/kg	-	0.011 U	0.0088 U	0.0084 U	0.0084	U	0.0079	U	0.0087	U	0.0081	U	0.0084	U	0.0087 U	0.01	U	0.0094	U	0.01	U
Chrysene	mg/kg	-	0.011 U	0.0088 U	0.0084 U	0.0084	U	0.0079	U	0.022		0.0081	U	0.0084	U	0.0087 U	0.01	U	0.0094	U	0.01	U
Benzo(b)fluoranthene	mg/kg	-	0.011 U	0.0088 U	0.0084 U	0.0084	U	0.0079	U	0.0087	U	0.0081	U	0.0084	U	0.0087 U	0.01	U	0.0094	U	0.01	U
Benzo(k)fluoranthene	mg/kg	-	0.011 U	0.0088 U	0.0084 U	0.0084	U	0.0079	U	0.0087	U	0.0081	U	0.0084	U	0.0087 U	0.01	U	0.0094	U	0.01	U
Benzo(a)pyrene	mg/kg	0.1	0.011 U	0.0088 U	0.0084 U	0.0084	U	0.0079	U	0.0087	U	0.0081	U	0.0084	U	0.0087 U	0.01	U	0.0094	U	0.01	U
Indeno(1,2,3-cd)pyrene	mg/kg	-	0.011 U	0.0088 U	0.0084 U	0.0084	U	0.0079	U	0.0087	U	0.0081	U	0.0084	U	0.0087 U	0.01	U	0.0094	U	0.01	U
Dibenzo(a,h)anthracene	mg/kg	-	0.011 U	0.0088 U	0.0084 U	0.0084	U	0.0079	U	0.0087	U	0.0081	U	0.0084	U	0.0087 U	0.01	U	0.0094	U	0.01	U
Total cPAHs as Benzo(a)pyrene ¹	mg/kg	0.1	0.0083 U	0.0066 U	0.0063 U	0.0063	U	0.0060	U	0.0067		0.0061	U	0.0063	U	0.0066 U	0.0076	U	0.0071	U	0.0076	U

Notes:

- No comparative value established.

¹ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values.

cPAHs Carginogenic Polycyclic Aromatic Hydrocarbons.

ft Feet.

mg/kg Milligrams per kilogram.

RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.

Table 2. Area A Clean Stockpile Sample Results																
		Area A Sample No.	ASP01		ASP02		ASP03		ASP04		ASP05		ASP06		ASP14	
PARAMETERS	Unite	Sample Depth (ft): Date Sampled:	0.5 8/28/09		0.5 8/31/09											
	Onits	RL	0/20/03		0/20/03		0/20/03		0/20/03		0/20/03		0/20/03		0/01/03	
TOTAL PETROLEUM HYDROCARBONS																
Diesel Range Organics	mg/kg	2000	65	J	140	J	56	U	120	J	65	U	45	J	120) U
Lube Oil Range Organics	mg/kg	2000	540		840		570		980		490		330		710)
METALS																
Lead	mg/kg	250	11		15		13		5.4	U	14.0		10		11	U
AROMATIC VOLATILE ORGANIC COMPOUNDS																
Benzene	mg/kg	0.03	0.02 UJI	Н	0.02	U	0.02	2 U								
Toluene	mg/kg	7	0.07 UJI	Н	0.062	U	0.061	U	0.065	U	0.06	U	0.063	U	0.05	ίU
Ethylbenzene	mg/kg	6	0.07 UJI	Н	0.062	U	0.061	U	0.065	U	0.06	U	0.063	U	0.05	U ز
m,p-Xylene	mg/kg	9	0.07 UJI	Н	0.062	U	0.061	U	0.065	U	0.06	U	0.063	U	0.05	U ز
o-Xylene	mg/kg	9	0.07 UJI	Н	0.062	U	0.061	U	0.065	U	0.06	U	0.063	U	0.05	i U
CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS																
Benzo(a)anthracene	mg/kg	-	0.028		0.0290		0.049		0.02		0.056		0.0074	U	0.037	,
Chrysene	mg/kg	-	0.063		0.1100		0.088		0.056		0.11		0.017		0.077	'
Benzo(b)fluoranthene	mg/kg	-	0.024		0.0240		0.057		0.021		0.098		0.0074	U	0.041	1
Benzo(k)fluoranthene	mg/kg	-	0.015		0.0120		0.038		0.013		0.054		0.0074	U	0.024	ł
Benzo(a)pyrene	mg/kg	0.1	0.025		0.0330		0.037		0.021		0.063		0.0097		0.033	3
Indeno(1,2,3-cd)pyrene	mg/kg	-	0.012		0.0082	U	0.025		0.0095		0.049		0.0074	U	0.016	ز
Dibenzo(a,h)anthracene	mg/kg	-	0.0077 l	U	0.0082	U	0.0094		0.0072	U	0.018		0.0074	U	0.0073	5
Total cPAHs as Benzo(a)pyrene ¹	mg/kg	0.1	0.0339		0.0414		0.0557		0.0283		0.0916		0.0284		0.0463	3

Notes:

- No comparative value established.

¹ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values.

cPAHs Carginogenic Polycyclic Aromatic Hydrocarbons.

ft Feet.

J Analyte was detected; the reported concentration should be considered an estimate.

mg/kg Milligrams per kilogram.

RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.

Table 3. Area A Contaminated Stockpile Sample Results

		Area A Sample No.	ASP07		ASP08		ASP08(dup)		ASP09		ASP10		ASP11		ASP12		ASP13	
DADAMETEDS	Unite	Sample Depth (ft):	0.5		0.5		0.5		0.5		0.5		0.5		0.5		0.5	
PARAMETERS	Units	BI	0/20/09		0/20/09		0/20/09		0/20/09		0/20/09		0/20/09		0/20/09		0/31/09	
TOTAL PETROLEUM HYDROCARBONS																		
Diesel Range Organics	mg/kg mg/kg	2000 2000	2300 6400	J	340 1000	J	380 910		3000 4400		3300 5500		2400 3800		90 240		740 1300	
METALS																		
Lead	mg/kg	250	6.2	U	6.1	U	8.3		6.4		14		6.1	U	5.9	U	150	
AROMATIC VOLATILE ORGANIC COMPOUNDS																		
Benzene	mg/kg	0.03	0.02	U	0.02	U	0.02	U	0.02		0.02	U	0.02	U	0.02	U	0.02	U
Toluene	mg/kg	7	0.074	U	0.078	U	0.081	U	0.07	U	0.061	U	0.07	U	0.073	U	0.047	U
Ethylbenzene	mg/kg	6	0.14		0.078	U	0.081	U	0.07	U	0.061	U	0.07	U	0.073	U	0.047	U
m,p-Xylene	mg/kg	9	0.22		0.078	U	0.081	U	0.07	U	0.061	U	0.07	U	0.073	U	0.047	U
o-Xylene	mg/kg	9	0.074	U	0.078	U	0.081	U	0.12		0.061	U	0.07	U	0.073	U	0.047	U
CARCINOGENIC POLYCYCLIC AROMATIC HYDF	OCARBON	S																
Benzo(a)anthracene	mg/kg	-	0.085		0.0140		0.031		0.35		0.23		0.23		0.0078	U	0.17	
Chrysene	mg/kg	-	0.44		0.0210		0.098		0.7		0.59		0.62		0.015		0.38	
Benzo(b)fluoranthene	mg/kg	-	0.096		0.1000		0.025		0.13		0.12		0.1		0.0078	U	0.069	
Benzo(k)fluoranthene	mg/kg	-	0.024		0.0810		0.014		0.036		0.078		0.042		0.0078	U	0.04	
Benzo(a)pyrene	mg/kg	0.1	0.072		0.1100		0.029		0.2		0.2		0.22		0.0078	U	0.14	
Indeno(1,2,3-cd)pyrene	mg/kg	-	0.0082	U	0.0470		0.012		0.045		0.04		0.021		0.0078	U	0.024	
Dibenzo(a,h)anthracene	mg/kg	-	0.0092	_	0.0200		0.0082	U_	0.015	_	0.03	_	0.018		0.0078	U	0.014	
Total cPAHs as Benzo(a)pyrene ¹	mg/kg	0.1	0.0982	_	0.1364		0.0386		0.2646	_	0.2557		0.2673		0.0060		0.1721	

Notes:

- No comparative value established.

¹ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values.

cPAHs Carginogenic Polycyclic Aromatic Hydrocarbons.

ft Feet.

mg/kg Milligrams per kilogram.

RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.

Table 4. Area B Confirmation Sample Results												
		Area B Sample No.	BSW01	BSW02	BSW03	BSW04	BSW05	BSW06	BSW032	BBT01	BBT01(dup)	BBT02
		Sample Depth (ft):	2	2	2	2	3	3	2	4.5	4.5	5
PARAMETERS	Units	Date Sampled:	8/26/09	8/26/09	8/26/09	8/26/09	9/1/09	9/1/09	9/1/09	8/26/09	8/26/09	9/1/09
		MTCA A										
TOTAL PETROLEUM HYDROCARBONS												
Diesel Range Organics	mg/kg	2000	27 U	26 U	220 U	27 U	31 U	27 U	28 U	27 U	27 U	28 U
Lube Oil Range Organics	mg/kg	2000	54 U	65	2800	54 U	61 U	54 U	93	55	54 U	100
METALS												
Lead	mg/kg	250	5.4 U	5.3 U	55	5.4 U	6.1 U	5.4 U	12	5.4 U	5.4 U	5.5 U
AROMATIC VOLATILE ORGANIC COMPOUNDS												
Benzene	mg/kg	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Toluene	mg/kg	7	0.082 U	0.04 U	0.05 U	0.037 U	0.064 U	0.067 U	0.059 U	0.046 U	0.047 U	0.061 U
Ethylbenzene	mg/kg	6	0.082 U	0.04 U	0.05 U	0.037 U	0.064 U	0.067 U	0.059 U	0.046 U	0.047 U	0.061 U
m,p-Xylene	mg/kg	9	0.082 U	0.04 U	0.05 U	0.037 U	0.064 U	0.067 U	0.059 U	0.046 U	0.047 U	0.061 U
o-Xylene	mg/kg	9	0.082 U	0.04 U	0.05 U	0.037 U	0.064 U	0.067 U	0.059 U	0.046 U	0.047 U	0.061 U
CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS												
Benzo(a)anthracene	mg/kg	-	0.0072 U	0.0075	0.034	0.0072 U	0.0081 U	0.0072 U	0.0074 U	0.0072 U	0.0072 U	0.0073 U
Chrysene	mg/kg	-	0.0072 U	0.0083	0.088	0.0072 U	0.0081 U	0.0072 U	0.016	0.0072 U	0.0072 U	0.0073 U
Benzo(b)fluoranthene	mg/kg	-	0.0072 U	0.0110	0.07	0.0072 U	0.0081 U	0.0072 U	0.013	0.0072 U	0.0072 U	0.0073 U
Benzo(k)fluoranthene	mg/kg	-	0.0072 U	0.0070 U	0.015	0.0072 U	0.0081 U	0.0072 U	0.0086	0.0072 U	0.0072 U	0.0073 U
Benzo(a)pyrene	mg/kg	0.1	0.0072 U	0.0084	0.036	0.0072 U	0.0081 U	0.0072 U	0.011	0.0072 U	0.0072 U	0.0073 U
Indeno(1,2,3-cd)pyrene	mg/kg	-	0.0072 U	0.0071	0.022	0.0072 U	0.0081 U	0.012	0.011	0.0072 U	0.0072 U	0.0073 U
Dibenzo(a,h)anthracene	mg/kg	-	0.0072 U	0.0070 U	0.01	0.0072 U	0.0081 U	0.0072 U	0.0074 U	0.0072 U	0.0072 U	0.0073 U
Total cPAHs as Benzo(a)pyrene ¹	mg/kg	0.1	0.0054 U	0.0117	0.0520	0.0054 U	0.0061 U	0.0063	0.01516	0.0054 U	0.0054 U	0.0055 U

Notes:

- No comparative value established.

¹ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values. cPAHs Carcinogenic Polycyclic Aromatic Hydrocarbons.

ft Feet.

mg/kg Milligrams per kilogram. RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.

Table 5. Area B Stockpile Sample Results								
		Area B Sample No.	BSP01	BSP02	BSP03	BSP04	BSP05	BSP06
		Sample Depth (ft):	0.5	0.5	0.5	0.5	0.5	0.5
PARAMETERS	Units	Date Sampled:	8/26/09	8/26/09	8/26/09	8/26/09	8/26/09	8/26/09
		RL						
Diesel Range Organics	mg/kg	2000	43 U	34 U	48 U	74 U	33 U	84 U
Lube Oil Range Organics	mg/kg	2000	690	430	670	1200	440	1400
METALS								
Lead	mg/kg	250	18	17	13	20	10	7.7
AROMATIC VOLATILE ORGANIC COMPOUNDS								
Benzene	mg/kg	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Toluene	mg/kg	7	0.048 U	0.063 U	0.052 U	0.044 U	0.042 U	0.049 U
Ethylbenzene	mg/kg	6	0.048 U	0.063 U	0.052 U	0.044 U	0.042 U	0.049 U
m,p-Xylene	mg/kg	9	0.048 U	0.063 U	0.052 U	0.044 U	0.042 U	0.049 U
o-Xylene	mg/kg	9	0.048 U	0.063 U	0.052 U	0.044 U	0.042 U	0.049 U
CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS								
Benzo(a)anthracene	mg/kg	-	0.1	0.0430	0.033	0.037 U	0.048	0.041
Chrysene	mg/kg	-	0.17	0.0840	0.063	0.089	0.066	0.078
Benzo(b)fluoranthene	mg/kg	-	0.16	0.0770	0.06	0.067	0.06	0.12
Benzo(k)fluoranthene	mg/kg	-	0.036	0.0360 U	0.014	0.037 U	0.016	0.027
Benzo(a)pyrene	mg/kg	0.1	0.082	0.0420	0.033	0.037 J	0.031	0.066
Indeno(1,2,3-cd)pyrene	mg/kg	-	0.06	0.0360	0.024	0.037 U	0.022	0.054
Dibenzo(a,h)anthracene	mg/kg	-	0.036 U	0.0360 U	0.0077	0.037 U	0.0072 U	0.017
Total cPAHs as Benzo(a)pyrene ¹	mg/kg	0.1	0.1211	0.0620	0.0475	0.0335	0.0466	0.0927

Notes:

- No comparative value established.

¹ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values.

cPAHs Carcinogenic Polycyclic Aromatic Hydrocarbons.

ft Feet.

J Analyte was detected; the reported concentration should be considered an estimate.

mg/kg Milligrams per kilogram.

RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.

Table 6. Area C Stockpile Sample Results

		Stockpile Sample No.	CSP01	CSP02
		Sample Depth (ft):	0.5	0.5
PARAMETERS	Units	Date Sampled:	8/28/09	8/28/09
		RL		
TOTAL PETROLEUM HYDROCARBONS				
Diesel Range Organics	mg/kg	2000	81 U	82 U
Lube Oil Range Organics	mg/kg	2000	1400	680
CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS				
Benzo(a)anthracene	mg/kg	-	0.23	0.12
Chrysene	mg/kg	-	0.43	0.23
Benzo(b)fluoranthene	mg/kg	-	0.37	0.21
Benzo(k)fluoranthene	mg/kg	-	0.25	0.12
Benzo(a)pyrene	mg/kg	0.1	0.25	0.13
Indeno(1,2,3-cd)pyrene	mg/kg	-	0.14	0.11
Dibenzo(a,h)anthracene	mg/kg	-	0.039	0.030
Total cPAHs as Benzo(a)pyrene ¹	mg/kg	0.1	0.3572	0.1913

Notes:

- No comparative value established.

¹ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values.

cPAHs Carcinogenic Polycyclic Aromatic Hydrocarbons.

ft Feet.

mg/kg Milligrams per kilogram.

RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.

	Area	Sample No.	DSW01	DSW02	DSW03	DSW04	DSW05	DSW06	DSW07	DSW08	DSW09	DBT01	DBT01 (dup)	DBT02	DBT03	DBT04
	Sample	Depth (ft):	1	1	0.5	0.5	0.5	1	0.5	1	0.5	0.5	0.5	5	3	4.5
PARAMETERS	Units	Sampled:	9/14/09	9/14/09	9/14/09	9/15/09	9/15/2009	9/16/2009	9/16/2009	10/2/2009	10/2/2009	9/14/2009	9/14/2009	9/15/2009	9/15/2009	9/16/2009
		RL														
METALS																
Antimony	mg/kg	-	5.8 U	9.4 U	5.6 U	6.1 U	9.1 U	5.7 U	5.8 U	NA	NA	9.1 U	9.3 L	J 8.6 U	6.8 U	17 U
Arsenic	mg/kg	20	12 U	19 U	11 U	12 U	18 U	11 U	12 U	NA	NA	18 U	19 L	J 17 U	14 U	17 U
Beryllium	mg/kg	-	0.58 U	0.94 U	0.56 U	0.61 U	0.91 U	0.57 U	0.58 U	NA	NA	0.91 U	0.93 L	J 0.86 U	0.68 U	1.7 U
Cadmium	mg/kg	2	0.58 U	0.95	0.56 U	0.61 U	0.91 U	0.57 U	0.58 U	NA	NA	1.5	1.3	1.6	0.68 U	1.7 U
Chromium	mg/kg	2000	15	31	17	17	14	18	19	NA	NA	30	32	32	18	7.4
Copper	mg/kg	390	20	81	16	31	20	23	23	NA	NA	41	53	32	61	16
Lead	mg/kg	250	5.8 U	32	5.6 U	12	9.1 U	5.7 U	12	NA	NA	9.1 U	14	8.6 U	24	27
Mercury	mg/kg	2	0.29 U	0.47 U	0.28 U	0.3 U	0.45 U	0.29 U	0.29 U	NA	NA	0.45 U	0.46 L	J 0.43 U	0.34 U	0.83 U
Nickel	mg/kg	38	19	32	19	22	18	21	20	NA	NA	25	25	25	22	8.3 U
Selenium	mg/kg	-	12 U	19 U	11 U	12 U	18 U	11 U	12 U	NA	NA	18 U	19 L	J 17 U	14 U	33 U
Silver	mg/kg	-	0.58 U	0.94 U	0.56 U	0.61 U	0.91 U	0.57 U	0.58 U	NA	NA	0.91 U	0.93 L	J 0.86 U	0.68 U	1.7 U
Thallium	mg/kg	-	5.8 U	0.9 U	5.6 U	6.1 U	9.1 U	5.7 U	5.8 U	NA	NA	9.1 U	9.3 L	J 8.6 U	0.7 U	17 U
Zinc	mg/kg	410	36	280	2.8	100	32	33	40	NA	NA	68	82	49	74	36
DIOXINS AND FURANS																
Total TCDD-TEQ ¹	ng/kg-dry	11	0.204	205.938	2.617	17.580	3.883	7.804	4.204	5.476 B	J 0.862 BJ	10.586	5.270	0.246	0.761	10.103

Table 7. Area D Confirmation Sample Results

Notes:

- No comparative value established.

¹ Total TCDD-TEQ calculated by miltiplying the isomer concentration by the toxicity equivalency factor and summing across all isomers. Half the practical quantitation limit was used for non-detect values. BJ Analyte was detected; the reported concentration should be considered an estimate due to method blank contamination.

ft Feet.

mg/kg Milligrams per kilogram.

NA Not analyzed.

ng/kg Nanograms per kilogram.

RL Remedial level established in the RI/FS Work Plan.

TCDD 2,3,7,8-Tetracholor-dibenzo-p-dioxin.

TEQ Toxicity Equivalency Concentration.

U Analyte not detected above given practical quantitation limit.

Table 8. Area D Clean Stockpile Sample Results

		Area D Sample No.	DSP01	DSP02	DSP03	DSP04	DSP05
		Sample Depth (ft):	0.5	0.5	0.5	0.5	0.5
PARAMETERS	Units	Date Sampled:	9/16/09	9/16/09	9/16/09	9/16/09	9/16/09
		RL					
METALS							
Antimony	mg/kg	-	12	7.6	5.8 U	7	6.1
Arsenic	mg/kg	20	12 U	12U	12 U	12 U	12.0 U
Beryllium	mg/kg	-	0.60 U	0.59 U	0.58 U	0.60 U	0.61 U
Cadmium	mg/kg	2	0.60 U	0.59 U	0.58 U	0.60 U	0.61 U
Chromium	mg/kg	2000	26	27	26	27	24.0
Copper	mg/kg	390	83	110	45	73	100
Lead	mg/kg	250	40	40	32	30	46
Mercury	mg/kg	2	0.3	0.3 U	0.29 U	0.3 U	0.31
Nickel	mg/kg	38	28	26	24	25	32
Selenium	mg/kg	-	12 U				
Silver	mg/kg	-	0.6 U	0.59 U	0.58 U	0.6 U	0.61 U
Thallium	mg/kg	-	6 U	5.9 U	5.8 U	6 U	6.1 U
Zinc	mg/kg	410	130	98	62	110	120.0
DIOXINS AND FURANS							
Total TCDD-TEQ ¹	ng/kg-dry	11	9.9969	16.3199	27.2083	42.4618	32.08

Notes:

- No comparative value established.

¹ Total TCDD-TEQ calculated by miltiplying the isomer concentration by the toxicity equivalency factor and summing across all isomers. Half the practical quantitation limit was used for non-detect values. If Feet.

mg/kg Milligrams per kilogram.

ng/kg Nanograms per kilogram.

RL Remedial level established in the RI/FS Work Plan.

TCDD 2,3,7,8-Tetracholor-dibenzo-p-dioxin.

TEQ Toxicity Equivalency Concentration.

U Analyte not detected above given practical quantitation limit.

Table 9. Area D Contaminated Stockpile Sample Results

		Area D Sample No.	DSP06	DSP07	DSP08	DSP09	DSP10	DSP11	DSP12
		Sample Depth (ft):	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PARAMETERS	Units	Date Sampled:	9/16/09	9/16/09	9/16/09	9/16/09	9/16/09	9/16/09	9/16/09
		RL							
METALS									
Antimony	mg/kg	-	11	15	8.7	11	6.8 U	7 U	6.8
Arsenic	mg/kg	20	18 U	16 U	17 U	20 U	14 U	14 U	14
Beryllium	mg/kg	-	0.92 U	0.82 U	0.83 U	1 U	0.68 U	0.7 U	0.68
Cadmium	mg/kg	2	0.92 U	0.82 U	0.83 U	1 U	0.68 U	0.7 U	0.68
Chromium	mg/kg	2000	25	28	25	33	22	28	17
Copper	mg/kg	390	130	140	140	99	93	56	66
Lead	mg/kg	250	50	58	68	50	54	31	42
Mercury	mg/kg	2	0.46 U	0.41 U	0.42 U	0.5 U	1	0.35 U	0.34
Nickel	mg/kg	38	25	24	34	41	26	27	26
Selenium	mg/kg	-	18 U	16 U	17 U	20 U	14 U	14 U	14
Silver	mg/kg	-	0.92 U	5.8	0.83 U	1 U	0.68 U	0.7 U	0.68
Thallium	mg/kg	-	9.2 U	8.2 U	8.3 U	1 U	6.8 U	7 U	6.8
Zinc	mg/kg	410	190	220	4.2	5	120	88	93
DIOXINS AND FURANS									
Total TCDD-TEQ ¹	ng/kg-dry	11	59.5717	31.0084	39.604	62.6143	66.166	78.761	41.405

Notes:

- No comparative value established.

¹ Total TCDD-TEQ calculated by miltiplying the isomer concentration by the toxicity equivalency factor and summing across all isomers. Half the practical quantitation limit was used for non-detect values. ft Feet.

mg/kg Milligrams per kilogram.

ng/kg Nanograms per kilogram.

RL Remedial level established in the RI/FS Work Plan.

TCDD 2,3,7,8-Tetracholor-dibenzo-p-dioxin.

TEQ Toxicity Equivalency Concentration.

U Analyte not detected above given practical quantitation limit.

Exceeds site specific remedial level.

	•	
l	2	
	_	

/09

6.8 14 0.68 0.68 17 66 42 0.34 26 14	
26 14 0.68 6.8 93	U U U

T-9

Table 10	Catch Basin	Samplo	Boculte	Summary ¹
Table IU.	Catch basin	Sample	nesuits	Summary

		Catch Basin No.	CB-01		CB-02		CB-03		CB-04	
		Sample Depth (ft) ² :	0.5		0.5		0.5		3	
PARAMETERS	Units	Date Sampled:	8/12/09		8/12/09		8/12/09		8/12/09	
		RL								
TOTAL PETROLEUM HYDROCARBONS										
Diesel Range Organics	mg/kg	2000	30	U	65	U	29	U	75	
Lube Oil Range Organics	mg/kg	2000	60	U	880		77		130	
Gasoline Range Organics	mg/kg	100	7.1	U	5.4	U	5.4	U	11.0	U
METALS										
Chromium	ma/ka	2000	14		17		14		16	
Copper	mg/kg	390	10		18		13		17	
Lead	mg/kg	250	6	U	13		5.9	U	5.5	U
Nickel	mg/kg	38	13		24		15		20	
Zinc	mg/kg	410	21		54		24		80	
VOLATILE ORGANIC COMPOUNDS										
Acetone	mg/kg	-	0.047		0.004	U	0.035		0.038	
Carbon Disulfide	mg/kg	-	0.015		0.0008	Ū	0.0021		0.00084	U
2-Butanone	mg/kg	-	0.0075		0.004	U	0.0048	U	0.0042	U
1,2,4-Trimethylbenzene	mg/kg	-	0.0012	U	0.0008	U	0.00097	U	0.014	
sec-Butylbenzene	mg/kg	-	0.0012	U	0.0008	U	0.00097	U	0.0010	
p-Isopropyltoluene	mg/kg	-	0.0012	U	0.0008	U	0.00097	U	0.0065	
SEMI-VOLATILE ORGANIC COMPOUNDS										
Phenanthrene	mg/kg	-	0.0079	U	0.014		0.0078	U	0.21	
Fluoranthene	mg/kg	-	0.014		0.017		0.0078	U	0.0073	U
Pyrene	mg/kg	-	0.0095		0.016		0.0078	U	0.0073	U
1-Methylnaphthalene	mg/kg	5	0.0079	U	0.0078	U	0.0078	U	0.16	
2-Methylnaphthalene	mg/kg	5	0.0079	U	0.0078	U	0.0078	U	0.11	
Acenaphthylene	mg/kg	-	0.0079	U	0.0078	U	0.0078	U	0.016	
Acenaphthene	mg/kg	-	0.0079	U	0.0078	U	0.0078	U	0.015	
Fluorene	mg/kg	-	0.0079	U	0.0078	U	0.0078	U	0.08	
CARCINOGENIC POLYNUCLEAR AROMATIC HYDROCARBONS										
Benzo(a)anthracene	mg/kg	-	0.0079	U	0.0078	U	0.0078	U	0.0073	U
Chrysene	mg/kg	-	0.0079	U	0.0130		0.0078	U	0.0073	U
Benzo(b)fluoranthene	mg/kg	-	0.0079	U	0.0091		0.0078	U	0.0073	U
Benzo(k)fluoranthene	mg/kg	-	0.0079	U	0.0078	U	0.0078	U	0.0073	U
Benzo(a)pyrene	mg/kg	0.1	0.0079	U	0.0110		0.0078	U	0.0073	U
Indeno(1,2,3-cd)pyrene	mg/kg	-	0.0079	U	0.0078	U	0.0078	U	0.0073	U
Dibenzo(a,h)anthracene	mg/kg	-	0.0079	U	0.0078	U	0.0078	U	0.0073	U
Total cPAHs as Benzo(a)pyrene ³	mg/kg	0.1	0.0060	U	0.0136		0.0546	U	0.0055	U

Notes:

- No comparative value established.

¹ Only detected analytes are reported for metals and volatile/semi-volatile organic compounds.

² Sample depth was recorded from surface of soil under the catch basin.

³ Total of individal cPAHs multipled by benzo(a)pyrene toxcity equivalency factor - half the practical quantitation limit was used for non-detect values. cPAHs Carcinogenic Polynuclear Aromatic Hydrocarbons.

ft Feet.

mg/kg Milligrams per kilogram.

RL Remedial level established in the RI/FS Work Plan.

U Analyte not detected above given practical quantitation limit.

Table 11. Piling Sediment Sample Re	sults Compa	red to SMS	;											
		Sediment	Sample No.	SD25	SD26	SD27	SD26/27	SD28	SD29	SD30	SD30 (dup)	SD31	RF01	RF02
		Sample	e Depth (ft):	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PARAMETERS	Units	Dat	e Sampled:	9/28/09	9/28/09	9/28/09	9/28/2009 ³	9/28/09	9/28/09	9/28/09	9/28/09	9/28/09	9/30/09	9/30/09
		CSL	SMS											
TOTAL PETROLEUM HYDROCARBO	NS													
Diesel Range Organics	mg/kg dw	v 100 ¹	-	68 U	94 J	37	J 63 L	J 37	87	50	J 77 J	17 U	31 U	32 U
Lube Oil Range Organics	mg/kg dw	/ 100 ¹	-	490	37	320	320	99	330	320	370	81	62 U	63 U
POLYNUCLEAR AROMATIC HYDRO	CARBONS ²													
Total LPAHs	mg/kg oc	780	370	2.8391	7.9936	3.4709	NA	7.9871	2.6074	3.1496	10.1359	2.6420 U	35.8750 U	19.3667 U
Naphthalene	mg/kg oc	: 170	99	0.3636 U	1.2838 U	0.4286 l	U NA	0.7727	0.4103 U	0.4545 l	J 0.7143 U	0.4091 U	5.1250 U	2.7667 U
Acenaphthylene	mg/kg oc	66	66	0.0982 U	0.2639 U	0.1852	NA	0.0780 U	0.0690 U	0.1042 l	J 0.0645 U	0.1875 U	5.1250 U	2.7667 U
Acenaphthene	mg/kg oc	57	16	0.3318 U	1.2838 U	0.4286 l	U NA	0.7727	0.4103 U	0.4545 l	J 0.7143 U	0.4091 U	5.1250 U	2.7667 U
Fluorene	mg/kg oc	; 79	23	0.3636 U	1.2838 U	0.4286 l	U NA	0.9545	0.4103 U	0.4545 l	J 0.7143 U	0.4091 U	5.1250 U	2.7667 U
Pentachlorophenol	mg/kg oc	; -	-	9.0909 U	32.4324 U	11.0714 l	U NA	19.0909 U	10.2564 U	11.3636 l	J 17.8571 U	10.4545 U	131.2500 U	70.0000 U
Phenanthrene	mg/kg oc	480	100	0.9545	1.3108	0.9643	NA	1.1818	0.4872	0.7727	6.3571	0.4091 U	5.1250 U	2.7667 U
Anthracene	mg/kg oc	: 1200	220	0.3636 U	1.2838 U	0.6071	NA	3.4545	0.4103 U	0.4545 l	J 0.8571	0.4091 U	5.1250 U	2.7667 U
2-Methylnaphthalene	mg/kg oc	64	38	0.3636 U	1.2838 U	0.4286 l	U NA	0.7727	0.4103 U	0.4545 l	J 0.7143 U	0.4091 U	5.1250 U	2.7667 U
Total HPAHs	mg/kg oc	5300	960	13.2955	16.0135	24.8571	NA	67.4091	8.6410	7.3182	40.4286	4.0909 U	51.2500 U	27.6667 U
Fluoranthrene	mg/kg oc	: 1200	160	2.5	2.7027	3.2143	NA	15	1.4615	1.2273	12.1429	0.4091 U	5.1250 U	2.7667 U
Pyrene	mg/kg oc	: 1400	1000	3.1818	2.7027	6.4286	NA	14.0909	1.4615	1.0909	11.4286	0.4091 U	5.1250 U	2.7667 U
Benzo(a)anthracene	mg/kg oc	270	110	1.0227	1.2838 U	2.8571	NA	6.8182	0.6923	0.5	2.3571	0.4091 U	5.1250 U	2.7667 U
Chrysene	mg/kg oc	460	110	1.2955	1.2838 U	3.9286	NA	6.8182	0.9231	0.7273	4.5714	0.4091 U	5.1250 U	2.7667 U
Benzo(b)fluoranthene	mg/kg oc	; -	-	1.8864	1.6216	2.7500	NA	5.9091	1.3846	1	3.8571	0.4091 U	5.1250 U	2.7667 U
Benzo(k)fluoranthene	mg/kg oc	; -	-	0.4091	1.2838 U	0.75	NA	5	0.4103 U	0.4545 l	J 1.1429	0.4091 U	5.1250 U	2.7667 U
Total Benzofluoranthenes	mg/kg oc	450	230	2.2955	2.9054	3.5	NA	10.9091	1.7949	1.4545	5	0.8182 U	10.2500 U	5.5333 U
Benzo(a)pyrene	mg/kg oc	210	99	1.1364	1.2838 U	2.4643	NA	5.9091	0.7949	0.6364	1.7857	0.4091 U	5.1250 U	2.7667 U
Indeno(1,2,3-cd)pyrene	mg/kg oc	88	34	0.6364	1.2838 U	0.8929	NA	2.9091	0.4872	0.4545 l	J 1.0714	0.4091 U	5.1250 U	2.7667 U
Dibenzo(a,h)anthracene	mg/kg oc	33	12	0.3636 U	1.2838 U	0.4286	U NA	1.1818	0.4103 U	0.4545 l	J 0.7143 U	0.4091 U	5.1250 U	2.7667 U
Benzo(g,h,i)perylene	mg/kg oc	; 78	31	0.8636	1.2838 U	1.1429	NA	3.7727	0.6154	0.7727 l	J 1.3571	0.4091 U	5.1250 U	2.7667 U
CONVENTIONALS														
Total Organic Carbon	%	-	-	4.4	0.74	2.8	NA	2.2	3.9	2.2	1.4	2.2	0.16	0.3
Total Solids	%	-	-	37.7	67.8	54.9	NA	32.9	38.1	69.2	61.5	71.1	79.8	76.6
Total Volatile Solids	%	-	-	16.3	3.6	13.5	NA	21.8	23.2	9.6	15.5	4.8	1.22	1.3
Total Sulfides	mg/kg	-	-	115	2.95 U	3.64 l	U NA	32.5	415	2.89 l	J 5.37	2.81 U	2.5 U	2.5 U
Ammonia	mg/kg	-	-	37	0.7 U	0.9 l	U NA	1.5 U	29	13	3.1	0.7 U	4.3	11
Grain Size (fines)	%	-	-	47.8	23.2	18.0	NA	41.9	26.3	17.1	20.6	31.4	61.5	81.0

Notes:

- No comparative value established.

¹ Ecology screening concentration for sediments applicable to the sum of the diesel range organics and lube oil range organics results.

² All results normalized to total organic carbon.

³ Sample consists of a composite of 1/3 SD26 and 2/3 SD27 prepared on 10/27/09 and analyzed on 11/5/09.

CSL Cleanup screening level.

dw Dry weight.

ft Feet.

HPAHs High molecular weight polynuclear aromatic hydrocarbons.

J Analyte was detected; the reported concentration should be considered an estimate.

LPAHs Low molecular weight polynuclear aromatic hydrocarbons.

mg/kg Milligrams per kilogram.

NA Not analyzed.

oc Organic carbon.

RL Remedial level established in the RI/FS Work Plan. SMS Sediment Management Standards (WAC173-204-320 Table I). U Analyte not detected above given practical quantitation limit.

Exceeds screening level.

Table 12. Piling Sediment Sample Results Compared to AET Values

				Se	diment Sample No. Sample Depth (ft):	SD25 0.5	SD26 0.5	SD27 0.5	SD26/27 0.5	SD28 0.5	SD29 0.5	SD30 0.5	SD30 (dup) 0.5	SD31 0.5	RF01 0.5	RF02 0.5
PARAMETERS	Units		Dry Woight Angl	one of SMS	Date Sampled:		9/28/09	9/28/09	9/28/2009 ³	9/28/09	9/28/09	9/28/09	9/28/09	9/28/09	9/30/09	9/30/09
	-	LAET	Source ¹	2AET	Source ¹											
TOTAL PETROLEUM HYDRO	CARBONS															
Diesel Range Organic	s mg/kg dw	100^{2}	-	-	-	68 U	94 J	37 J	63 U	37	87	50 J	77 J	17 U	31 U	32 U
Lube Oil Range Orgar	iics mg/kg dw	100 ²	-	-	·	490	37	320	320	99	330	320	370	81	62 U	63 U
POLYNUCLEAR AROMATIC	HYDROCARBONS															
Total LPAHs	ma/ka dw	5.20	LAET-O/M	5.20	2LAET-O/M	0.1366	0.0667	0.117	NA	0.191	0.115	0.077	0.151	0.063 U	0.0574 U	0.0581 U
Naphthalene	ma/ka dw	2.10	LAET-O/M	2.10	2LAET-O/M	0.016 U	0.0095 U	0.012 U	NA	0.017	0.016 U	0.01 U	0.01 U	0.009 U	0.0082 U	0.0083 U
Acenaphthylene	mg/kg dw	1.30	LAET-A/B	1.30	2LAET-A/B	0.016 U	0.0095 U	0.025	NA	0.017 U	0.016 U	0.01 U	0.01 U	0.009 U	0.0082 U	0.0083 U
Acenaphthene	mg/kg dw	0.50	LAET-O/M	0.50	2LAET-O/M	0.0146 U	0.0095 U	0.012 U	NA	0.017	0.016 U	0.01 U	0.01 U	0.009 U	0.0082 U	0.0083 U
Fluorene	mg/kg dw	0.54	LAET-O/M	0.54	2LAET-O/M	0.016 U	0.0095 U	0.012 U	NA	0.021	0.016 U	0.01 U	0.01 U	0.009 U	0.0082 U	0.0083 U
Pentachlorophenol	ma/ka dw	0.36	LAET-A	0.69	2LAET-B	0.40 U	0.24 U	0.31 U	NA	0.42 U	0.40 U	0.25 U	0.25 U	0.23 U	0.21 U	0.21 U
Phenanthrene	ma/ka dw	1.50	LAET-O/M	1.50	2LAET-O/M	0.042	0.0097	0.027	NA	0.026	0.019	0.017	0.089	0.009 U	0.0082 U	0.0083 U
Anthracene	ma/ka dw	0.96	LAET-O/M	0.96	2LAET-O/M	0.016 U	0.0095 U	0.017	NA	0.076	0.016 U	0.01 U	0.012	0.009 U	0.0082 U	0.0083 U
2-Methvlnaphthalene	ma/ka dw	0.67	LAET-O/M	0.67	2LAET-O/M	0.016 U	0.0095 U	0.012 U	NA	0.017	0.016 U	0.01 U	0.01 U	0.009 U	0.0082 U	0.0083 U
Total HPAHs	ma/ka dw	12.00	LAET-M	17.00	2LAET-O	0.585	0.1185	0.696	NA	1.483	0.337	0.161	0.566	0.09 U	0.082 U	0.083 U
Fluoranthrene	ma/ka dw	1.70	LAET-M	2.50	2LAET-O	0.11	0.02	0.09	NA	0.33	0.057	0.027	0.17	0.009 U	0.0082 U	0.0083 U
Pvrene	ma/ka dw	2.60	LAET-M	3.30	2LAET-O	0.14	0.02	0.18	NA	0.31	0.057	0.024	0.16	0.009 U	0.0082 U	0.0083 U
Benzo(a)anthracene	ma/ka dw	1.30	LAET-M	1.60	2LAET-O	0.045	0.0095 U	0.08	NA	0.15	0.027	0.011	0.033	0.009 U	0.0082 U	0.0083 U
Chrysene	ma/ka dw	1.40	LAET-M	2.80	2LAET-O	0.057	0.0095 U	0.11	NA	0.15	0.036	0.016	0.064	0.009 U	0.0082 U	0.0083 U
Benzo(b)fluoranthene	ma/ka dw	-	-	-	-	0.083	0.0120	0.077	NA	0.13	0.054	0.022	0.054	0.009 U	0.0082 U	0.0083 U
Benzo(k)fluoranthene	ma/ka dw	-	-	-	-	0.018	0.0095 U	0.021	NA	0.11	0.016 U	0.01 U	0.016	0.009 U	0.0082 U	0.0083 U
Total Benzofluoranthe	nes ma/ka dw	3.20	LAET-M	3.60	2LAET-O	0.101	0.0215	0.098	NA	0.24	0.07	0.032	0.07	0.018 U	0.0164 U	0.0166 U
Benzo(a)pyrene	ma/ka dw	1.60	LAET-O/M	1.60	2LAET-O/M	0.05	0.0095 U	0.069	NA	0.13	0.031	0.014	0.025	0.009 U	0.0082 U	0.0083 U
Indeno(1,2,3-cd)pyren	e ma/ka dw	0.60	LAET-M	0.69	2LAET-O	0.028	0.0095 U	0.025	NA	0.064	0.019	0.01 U	0.015	0.009 U	0.0082 U	0.0083 U
Dibenzo(a,h)anthrace	ne ma/ka dw	0.23	LAET-O/M	0.23	2LAET-O/M	0.016 U	0.0095 U	0.012 U	NA	0.026	0.016 U	0.01 U	0.01 U	0.009 U	0.0082 U	0.0083 U
Benzo(g,h,i)perylene	mg/kg dw	0.67	LAET-M	0.72	2LAET-O/M	0.038	0.0095 U	0.032	NA	0.083	0.024	0.017 U	0.019	0.009 U	0.0082 U	0.0083 U
CONVENTIONALS																
Total Organic Carbon	%	-	-	-	-	4.4	0.74	2.8	NA	2.2	3.9	2.2	1.4	2.2	0.16	0.3
Total Solids	%	-	-	-	-	37.7	67.8	54.9	NA	32.9	38.1	69.2	61.5	71.1	79.8	76.6
Total Volatile Solids	%	-	-	-	-	16.3	3.6	13.5	NA	21.8	23.2	9.6	15.5	4.8	1.22	1.3
Total Sulfides	ma/ka dw	-	-	-	-	115	2.95 U	3.64 L	NA	32.5	415	2.89 U	5.37	2.81 U	2.5 U	2.5 U
Ammonia	ma/ka dw	-	-	-	-	37	0.7 U	0.9 U	NA	1.5 U	29	13	3.1	0.7 U	4.3	11
Grain Size (fines)	%	-	-	-	-	47.8	23.2	18.0	NA	41.9	26.3	17.1	20.6	31.4	61.5	81.0

Notes:

- No comparative value established.

Source: 1988 Update and Evaluation of Puget Sound AET, prepared for EPA by Barrick, et.al. 1988, unless otherwise noted. The code

- ¹ represents the type of values (e.g. , LAET) and the type of test organism that set the value.
- ² Ecology screening concentration for sediments applicable to the sum of the diesel range organics and lube oil range organics results.
- ³ Sample consists of a composite of 1/3 SD26 and 2/3 SD27 prepared on 10/27/09 and analyzed on 11/5/09.

AET Puget Sound Apparent Effects Threshold.

dw Dry weight.

ft Feet.

HPAHs High molecular weight polynuclear aromatic hydrocarbons.

italics Reporting limit exceeds screening level.

J Analyte was detected; the reported concentration should be considered an estimate.

LPAHs Low molecular weight polynuclear aromatic hydrocarbons.

mg/kg Milligrams per kilogram.

NA Not analyzed.

SMS Sediment Management Standrads.

U Analyte not detected above given practical quantitation limit. LAET Lowest Apparent Effects Threshold.

2LAET Second Lowest Apparent Effects Threshold.

- A Amphipod mortality.
- O Oyster larval abnormaility.
- B Benthic abundance.
- M Microtox luminescence.
- Exceeds screening level.

APPENDIX A

Photos

Photo 1. Area A prior to construction during the Phase II Rail Spur Investigation looking northeast.

Photo 2. Area A after clearing and grading just prior to start of remediation looking southwest.

Photo 3. Excavating Area A looking southeast.

Photo 4. Entire excavation open after extra excavation overseen by Ecology has been completed. Covered stockpiles of segregated excavated material from Area A can be seen to the south in the background.

Photo 5. Mixing ORC with clean imported backfill material looking northwest.

Photo 6. Backfilling Area A excavation looking northwest. Suitable re-usable onsite soil on the bottom (darker) and clean imported material on the top (lighter).

Photo 7. Compacting backfill material looking south towards the Capitol Bulding.

Photo 8. Area A looking southwest completely backfilled and restored.

Photo 9. Area B looking south prior to construction.

Photo 10. Excavation at Area B looking east. Large timbers noted throughout excavation.

Photo 11. Excavating additional material at Area B looking east.

Photo 12. Backfilled Area B to the west and additional excavation to the east.

Photo 13. Area C prior to construction looking south along the rail spur.

Photo 14. Area C looking north after rail removal, excavation, and geotextile marker installed.

Photo 15. Former wood burner foundation looking north at Area D prior to construction.

Photo 16. Area D after clearing looking east.

Photo 17. Excavating Area D during low tide looking south.

Photo 18. Additional excavation at Area D looking west.

Photo 19. Compacting Area D after additional excavation, looking northeast.

Photo 20. Remediation completed at Area D looking east.

Photo 21. Pilings along shoreline prior to construction, looking northwest.

Photo 22. Pilings removed with the vibratory extractor, looking west.

Photo 23. Pilings cut two feet below mudline with a chainsaw, looking north.

Photo 24. Shoreline looking northwest after pilings have been removed.

Photo 25. Area E looking northwest after debris screening.

Photo 26. Flume during exploratory excavation showing flow stopped.

Photo 27. Exploratory excavation for flume.

Photo 28. Flume flowing again at same rate four days later after concrete was placed in the pit in Photo 27.

APPENDIX B

Chemical Laboratory Results

Parametrix

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

411 108th AVENUE NE, SUITE 1800 BELLEVUE, WA 98004-5571 T. 425.458.6200 F. 425.458.6363 www.parametrix.com

TECHNICAL MEMORANDUM

Date:	August 23, 2010
То:	Project File
From:	Annika Deutsch
Subject:	Quality Assurance/Quality Control Review for West Bay Interim Action Soil Data
cc:	David Dinkuhn
Project Number:	235-1577-024 (04/04)
Project Name:	West Bay Interim Action Soil Data Validation Revision No. 1

INTRODUCTION

This technical memorandum summarizes the results of an internal quality assurance/quality control (QA/QC) review of analytical results for soil samples collected between August 12 and November 2, 2009. Eighty-eight soil samples (including five field duplicates) were submitted to OnSite Environmental, Inc., (Redmond, WA) for analysis. Some samples were sent to Pace Analytical Services, Inc., (Minneapolis, MN) for dioxin analysis.

All soil samples were analyzed for percent moisture and one or more of the following: dioxins; benzene, toluene, ethylbenzene, and xylenes (BTEX); diesel- and lube oil-range hydrocarbons; gasoline; volatile organic compounds (VOCs); semivolatile organic compounds (SVOCs); full list or carcinogenic polycyclic aromatic hydrocarbons (PAHs); lead; priority pollutant metals; toxicity characteristic leaching procedure (TCLP) lead; total organic carbon; total solids; total volatile solids; total sulfides; ammonia; and grain size. Fifteen samples were also collected for TCLP metals but were placed on hold and not analyzed. A summary of samples and analyses is provided in Table 1.

Final laboratory data were submitted to Parametrix via a Tier II-type data report (OnSite Laboratory Reference Numbers 0908-098, 0908-204, 0908-205, 0908-211, 0908-217, 0909-004, 0909-025, 0909-122, 0909-148 and 148B, 0909-149, 0909-249, 0910-022, 0910-035; Pace Laboratory Reference Numbers 10114088 and 10112776). All data and analytical QC elements were reviewed against laboratory and method QC criteria, and qualifiers were applied where judged appropriate.

DATA REVIEW SUMMARY

Analytical Methods and Holding Times

All analyses requested on the COC were conducted. All samples collected were prepared and analyzed using standard methods. All method holding times were met.

Blanks

No laboratory method blank contamination was observed, with the exception of those analyzed for dioxins. There were dioxins detected in each method blank associated with the following laboratory reports: 0910-035; 0909-122; 0909-148; 0909-149. Sample detections that were less than five times the method blank detection were

qualified as estimated due to blank contamination "BJ" (as shown in Table 2). No other samples were qualified based on this blank contamination.

Per the Final RI/FS Work Plan, no trip blanks were associated with these soil samples. Additionally, disposable collection equipment was used; therefore, no rinsate blanks were required.

Field Duplicates

A total of five (5) field duplicates were collected for 83 soil samples. The Final RI/FS Work Plan required 1 in 20 field duplicates; therefore, this requirement was met. For these soil samples, a 50% relative percent difference (RPD) was used as an initial check. All field duplicate RPDs were below 50% with the exception of all but one detected PAHs and ammonia in sample WB-SO-SD30-0005 and its duplicate. These high RPDs are likely due to natural heterogeneity in the soil, and no results were qualified as a result.

Additional Analytical QC Results

In reports 0908-211 and -205, benzo(a)pyrene was recovered at slightly above control limits in the Spike Blank (SB) and SB Duplicate (SBD). All samples were non-detect, with the exception of WB-SD-BSP04-0000. This one detection was qualified as estimated "J", and no other samples were qualified.

The laboratory duplicate RPD was slightly high for selenium in 0909-148B and lead in 0909-217 and 0909-004. All other QC results were acceptable; therefore, no selenium or lead data were qualified as a result.

All other analytical QC results were in control, indicating acceptable analytical accuracy and precision.

Laboratory Qualified Data

Some diesel-range hydrocarbons in lab reports 0908-217 and 0909-249 were qualified "N" by the laboratory, indicating that the lube oil-range hydrocarbons were interfering with the diesel-range result. These results have been qualified as estimated "J" as a result and are indicated in Table 2.

Pace Analytical also qualified some dioxin results as estimated "J". These results are not included in the Table 2 but are considered to be estimates.

Table 2 summarizes all data qualified based on this review (i.e., does not include laboratory qualified data).

CONCLUSION

All samples were analyzed within holding times, and appropriate standard methods were used. Some laboratory method blank contamination was observed for dioxin analyses. Analytical accuracy and precision were determined to be generally acceptable based on this review. Field duplicate results were acceptable considering the heterogeneity of soil samples. All data reported should be considered valid as qualified and acceptable for further use.

															Analyse	s					
Report #	Sample #	Date	Time	Matrix	% Moisture	Dioxins	Gx	BTEX	Dx I	Lead	VOCs	SVOCs	PAHs	cPAHs	PCP PP Metals	TCLP Metals	TCLP Lead	TOC TS	Total Sulfides	Ammonia Gr	ain Size TVS
0910-035	WB-SO-DSW08-0010	10/2/2009	755	soil	х	Х															
0910-035	WB-SO-DSW09-0005	10/2/2009	825	soil	x	х															
0908-211	WB-SO-ASW04-0070	8/27/2009	1010	soil	х			х	х	Х				х							
0908-211	WB-SO-ABT02-0100	8/27/2009	1040	soil	x			х	x	х				х							
0908-211	WB-SO-ABT03-0100	8/27/2009	1600	soil	х			x	x	х				х							
0908-211	WB-SO-ASW05-0065	8/27/2009	1645	soil	х			х	x	х				х							
0909-025	WB-SO-BSW05-0030	9/1/2009	1330	soil	х			х	х	х				х							
0909-025	WB-SO-BSW06-0030	9/1/2009	1410	soil	х			х	x	х				х							
0909-025	WB-SO-BBT02-0050	9/1/2009	1435	soil	х			х	x	х				х							
0908-098	WB-SO-CB01-0050	8/12/2009	750	soil	х		Х		х		х	Х			х						
0908-098	WB-SO-CB02-0050	8/12/2009	800	soil	х		х		x		x	х			x						
0908-098	WB-SO-CB03-0050	8/12/2009	810	soil	х		х		x		x	х			x						
0908-098	WB-SO-CB04-0030	8/12/2009	905	soil	х		х		x		x	х			x						
0908-217	WB-SO-ASP01-0005	8/28/2009	900	soil	х			х	х	Х				х							
0908-217	WB-SO-ASP02-0005	8/28/2009	910	soil	х			x	x	х				х							
0908-217	WB-SO-ASP03-0005	8/28/2009	920	soil	х			х	x	х				х							
0908-217	WB-SO-ASP04-0005	8/28/2009	930	soil	х			x	x	х				x							
0908-217	WB-SO-ASP05-0005	8/28/2009	940	soil	х			х	x	х				х							
0908-217	WB-SO-ASP06-0005	8/28/2009	950	soil	х			х	x	х				х							
0908-217	WB-SO-ASP07-0005	8/28/2009	1000	soil	х			х	x	х				х							
0908-217	WB-SO-ASP08-0005	8/28/2009	1010	soil	x			x	x	х				x							
0908-217	WB-SO-ASP08-1005	8/28/2009	1015	soil	x			x	x	X				x							
0908-217	WB-SO-ASP09-0005	8/28/2009	1020	soil	х			x	x	х				x							
0908-217	WB-SO-ASP10-0005	8/28/2009	1030	soil	х			x	x	х				x							
0908-217	WB-SO-ASP11-0005	8/28/2009	1040	soil	х			x	x	х				x							
0908-217	WB-SO-ASP12-0005	8/28/2009	1050	soil	х			x	x	х				x							
0908-217	WB-SO-CSP01-0005	8/28/2009	1210	soil	x				x					x							
0908-217	WB-SO-CSP02-0005	8/28/2009	1220	soil	x				x					x							
0908-217	WB-SO-ASW06-0060	8/28/2009	820	soil	x			x	x	х				x							
0908-217	WB-SO-ABT04-0100	8/28/2009	1050	soil	х			x	x	х				x							
0908-217	WB-SO-ASW07-0070	8/28/2009	1250	soil	x			x	x	х				x							
0908-217	WB-SO-ASW07-1070	8/28/2009	1250	soil	х			x	x	х				x							
0909-122	WB-SO-DSW01-0010	9/14/2009	849	soil	х	х									х						
0909-122	WB-SO-DSW02-0010	9/14/2009	928	soil	х	x									x						
0909-122	WB-SO-DBT01-0050	9/14/2009	955	soil	х	х									x						
0909-122	WB-SO-DBT01-1050	9/14/2009	1012	soil	х	x									x						
0909-122	WB-SO-DSW03-0005	9/14/2009	1204	soil	х	x									x						
0909-122	WB-SO-DSW04-0005	9/15/2009	838	soil	х	х									x						
0908-204	WB-SO-ASW01-0070	8/26/2009	1405	soil	х			х	х	х				х							
0908-204	WB-SO-ASW02-0070	8/26/2009	1407	soil	х			х	x	х				х							
0908-204	WB-SO-ABT01-0100	8/26/2009	1410	soil	х			х	x	х				х							
0908-204	WB-SO-BSW01-0020	8/26/2009	1620	soil	х			х	x	х				х							
0908-204	WB-SO-BSW02-0020	8/26/2009	1623	soil	х			х	x	х				х							
0908-204	WB-SO-BSW03-0020	8/26/2009	1626	soil	х			х	x	х				х							
0908-204	WB-SO-BSW04-0020	8/26/2009	1630	soil	х			х	x	х				х							
0908-204	WB-SO-BBT01-0045	8/26/2009	1634	soil	x			х	x	х				x							
0908-204	WB-SO-BBT01-1045	8/26/2009	1635	soil	x			x	x	х				x							
0908-204	WB-SO-ASW03-0050	8/27/2009	905	soil	x			х	x	х				x							
0909-148	WB-SO-DBT02-0050	9/15/2009	956	soil	x	х									x-148B						
0909-148	WB-SO-DBT03-0030	9/15/2009	1300	soil	x	x									x-148B						
0909-148	WB-SO-DSW05-0005	9/15/2009	1305	soil	x	x									x-148B						
0909-148	WB-SO-DSW06-0010	9/16/2009	900	soil	х	x									x-148B						

Table 1. West Bay Interim Action Summary of Samples and Analyses

														Analyse	S							
Report #	Sample #	Date	Time	Matrix	% Moisture	Dioxins	Gx	BTEX	Dx	Lead	VOCs	SVOCs PAHs cPAHs	PCP	PP Metals	TCLP Metals	TCLP Lead	TOC	TS	Total Sulfides	Ammonia	Grain Size	TVS
0909-148	WB-SO-DSW07-0005	9/16/2009	910	soil	х	х								x-148B								
0909-148	WB-SO-DBT04-0045	9/16/2009	920	soil	х	х								x-148B								
0908-205	WB-SO-BSP01-0000	8/26/2009	1530	soil	х			х	Х	х		x										
0908-205	WB-SO-BSP02-0000	8/26/2009	1532	soil	х			х	х	х		x										
0908-205	WB-SO-BSP03-0000	8/26/2009	1536	soil	х			х	х	х		x										
0908-205	WB-SO-BSP04-0000	8/26/2009	1539	soil	х			х	х	х		x										
0908-205	WB-SO-BSP05-0000	8/26/2009	1542	soil	х			х	х	х		x										
0908-205	WB-SO-BSP06-0000	8/26/2009	1548	soil	х			х	х	х		x										
0909-004	WB-SO-BSW032-0020	9/1/2009	900	soil	х			х	х	х		x										
0909-149	WB-SO-DSP01-0005	9/16/2009	1040	soil	х	х								х	hold							
0909-149	WB-SO-DSP02-0005	9/16/2009	1045	soil	х	х								х	hold							
0909-149	WB-SO-DSP03-0005	9/16/2009	1050	soil	х	х								х	hold							
0909-149	WB-SO-DSP04-0005	9/16/2009	1055	soil	х	х								х	hold							
0909-149	WB-SO-DSP05-0005	9/16/2009	1100	soil	х	х								х	hold							
0909-149	WB-SO-DSP06-0005	9/16/2009	1110	soil	х	х								х	hold							
0909-149	WB-SO-DSP07-0005	9/16/2009	1115	soil	х	х								х	hold							
0909-149	WB-SO-DSP08-0005	9/16/2009	1120	soil	х	х								х	hold							
0909-149	WB-SO-DSP09-0005	9/16/2009	1125	soil	х	х								х	hold							
0909-149	WB-SO-DSP10-0005	9/16/2009	1130	soil	х	х								х	hold							
0909-149	WB-SO-DSP11-0005	9/16/2009	1145	soil	х	х								х	hold							
0909-149	WB-SO-DSP12-0005	9/16/2009	1150	soil	х	х								х	hold							
0909-149	WB-SO-DSP13-0005	9/16/2009	1155	soil	х	х								х	hold							
0909-149	WB-SO-DSP14-0005	9/16/2009	1200	soil	х	х								х	hold	х						
0909-149	WB-SO-DSP15-0005	9/16/2009	1205	soil	х	х								х	hold							
0909-249	WB-SO-SD25-0005	9/28/2009	815	soil	х				Х			x	х				х	х	Х	х	х	х
0909-249	WB-SO-SD26-0005	9/28/2009	945	soil	х				х			x	х				x	х	х	х	х	х
0909-249	WB-SO-SD27-0005	9/28/2009	1000	soil	х				х			x	х				x	х	х	х	х	х
0909-249	WB-SO-SD28-0005	9/28/2009	830	soil	х				х			x	х				x	х	х	х	х	х
0909-249	WB-SO-SD29-0005	9/28/2009	845	soil	х				х			x	х				x	х	х	х	х	х
0909-249	WB-SO-SD30-0005	9/28/2009	900	soil	х				х			x	х				x	х	х	х	х	х
0909-249	WB-SO-SD30-1005	9/28/2009	915	soil	х				х			x	х				x	х	х	х	х	х
0909-249	WB-SO-SD31-0005	9/28/2009	930	soil	x				x			x	х				x	х	x	x	x	х
0910-022	WB-SD-RF01-0005	9/30/2009	1300	soil	x				Х				х				х	х	х	x	х	х
0910-022	WB-SD-RF02-0005	9/30/2009	1400	soil	х				х				х				x	x	х	х	х	х

Bold indicates a field duplicate

Report	Sample ID	Analyte	Qualifier	Reason
	WB-SO-DSW08-0010	2.3.7.8-TCDF	BJ	Method blank contamination
		Total TCDF	BJ	Method blank contamination
0910-035	WB-SO-DSW09-0005	2.3.4.7.8-PeCDF	BJ	Method blank contamination
		Total PeCDF	BJ	Method blank contamination
0908-205	WB-SO-BSP04-0000	Benzo(a)pyrene	J	SB/SBD out of control limits
	WB-SO-SD26-0005	Diesel	J	Lube oil-interference
0909-249	WB-SO-SD27-0005	Diesel	J	Lube oil-interference
	WB-SO-SD30-0005	Diesel	J	Lube oil-interference
	WB-SO-SD30-1005	Diesel	J	Lube oil-interference
	WB-SO-ASW04-0070	BTEX	UJH	Holding time exceedance
	WB-SO-ABT02-0100	BTEX	UJH	Holding time exceedance
0908-211	WB-SO-ABT03-0100	BTEX	UJH	Holding time exceedance
	WB-SO-ASW05-0065	BTEX	UJH	Holding time exceedance
	WB-SO-ASP01-0005	Diesel	J	Lube oil-interference
	WB-SO-ASP02-0005	Diesel	J	Lube oil-interference
	WB-SO-ASP04-0005	Diesel	J	Lube oil-interference
	WB-SO-ASP06-0005	Diesel	J	Lube oil-interference
	WB-SO-ASP07-0005	Diesel	J	Lube oil-interference
	WB-SO-ASP08-0005	Diesel	J	Lube oil-interference
	WB-SO-ASP01-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP02-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP03-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP04-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP05-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP06-0005	BTEX	UJH	Holding time exceedance
		Benzene	UJH	Holding time exceedance
		Toluene	UJH	Holding time exceedance
	WB-SO-ASP07-0005	Ethylbenzene	JH	Holding time exceedance
0908-217		m,p-Xylene	JH	Holding time exceedance
		o-Xylene	UJH	Holding time exceedance
	WB-SO-ASP08-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP08-1005	BTEX	UJH	Holding time exceedance
		Benzene	JH	Holding time exceedance
		Toluene	UJH	Holding time exceedance
	WB-SO-ASP09-0005	Ethylbenzene	UJH	Holding time exceedance
		m,p-Xylene	UJH	Holding time exceedance
		o-Xylene	JH	Holding time exceedance
	WB-SO-ASP10-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP11-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASP12-0005	BTEX	UJH	Holding time exceedance
	WB-SO-ASW06-0060	BTEX	UJH	Holding time exceedance
	WB-SO-ABT04-0100	BTEX	UJH	Holding time exceedance
	WB-SO-ASW07-0070	BTEX	UJH	Holding time exceedance
	WB-SO-ASW07-1070	BTEX	UJH	Holding time exceedance

Table 2. West Bay Interim Action Qualified Soil Data

BJ = Analyte was detected; the reported concentration should be considered an estimate due to method blank contamination

J = Analyte was detected; the reported concentration should be considered an estimate

JH = Analyte was detected; the reported concentration should be considered an estimate due to exceeded method holding time

UJH = Analyte was not detected at the PQL or MRL. Concentration reported should be considered an estimate due to exceeded method holding time

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 18, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0908-098

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 13, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 12, 2009, and received by the laboratory on August 13, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx and Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Date Extracted:	8-14-09
Date Analyzed:	8-14-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-CE	301-0050		WB-SO-CE	WB-SO-CB02-0050				
Lab ID:	08-098-01			08-098-02	08-098-02				
	Result	Flags	POI	Result	Flags	POI			
	nooun	i lugo	I QL	nooun	i lugo	I QL			
TPH-Gas	ND		7.1	ND		5.4			
Surrogate Recovery:									
Fluorobenzene	91%			97%					

3

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx

Date Extracted:	8-14-09
Date Analyzed:	8-14-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-CB	03-0050		WB-SO-CE	WB-SO-CB04-0030				
Lab ID:	08-098-03			08-098-04					
		-		.	-	DOL			
	Result	Flags	PQL	Result	Flags	PQL			
TPH-Gas	ND		5.4	ND		11			
Surrogate Recovery:	104%			101%					
Fluorobelizelle	104 /0			10176					

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-14-09
Date Analyzed:	8-14-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: MB0814S1

	Result	Flags	PQL
TPH-Gas	ND		5.0
Surrogate Recovery: Fluorobenzene	94%		

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	8-14-09
Date Analyzed:	8-14-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-105-01 Original	08-105-01 Duplicate	RPD	Flags
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	113%	109%		

NWTPH-Dx

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-CB01-0050	WB-SO-CB02-0050	WB-SO-CB03-0050
Lab ID:	08-098-01	08-098-02	08-098-03
Diesel Range:	ND	ND	ND
PQL:	30	65	29
Identification:			
Lube Oil Range:	ND	880	77
PQL:	60	59	59
Identification:		Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	108%	108%	82%
Flags:	Υ	Y,U1	Y

NWTPH-Dx

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-CB04-0030
Lab ID:	08-098-04
Diesel Range:	75
PQL:	28
Identification:	Diesel Fuel#2
Lube Oil Range:	130
PQL:	55
Identification:	Lube Oil
Surrogate Recovery	
o-Terphenyl:	77%
Flags:	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0813S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification:	
o-Terphenyl:	91%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-051-10	08-051-10 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery o-Terphenyl:	97%	88%

Flags:	Y	Y

VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-CB01-0050
	WD-30-CD01-0030

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0012
Chloromethane	ND		0.0058
Vinyl Chloride	ND		0.0012
Bromomethane	ND		0.0012
Chloroethane	ND		0.0058
Trichlorofluoromethane	ND		0.0012
1,1-Dichloroethene	ND		0.0012
Acetone	0.047		0.0058
lodomethane	ND		0.0058
Carbon Disulfide	0.015		0.0012
Methylene Chloride	ND		0.0058
(trans) 1,2-Dichloroethene	ND		0.0012
Methyl t-Butyl Ether	ND		0.0012
1,1-Dichloroethane	ND		0.0012
Vinyl Acetate	ND		0.0058
2,2-Dichloropropane	ND		0.0012
(cis) 1,2-Dichloroethene	ND		0.0012
2-Butanone	0.0075		0.0058
Bromochloromethane	ND		0.0012
Chloroform	ND		0.0012
1,1,1-Trichloroethane	ND		0.0012
Carbon Tetrachloride	ND		0.0012
1,1-Dichloropropene	ND		0.0012
Benzene	ND		0.0012
1,2-Dichloroethane	ND		0.0012
Trichloroethene	ND		0.0012
1,2-Dichloropropane	ND		0.0012
Dibromomethane	ND		0.0012
Bromodichloromethane	ND		0.0012
2-Chloroethyl Vinyl Ether	ND		0.0058
(cis) 1,3-Dichloropropene	ND		0.0012
Methyl Isobutyl Ketone	ND		0.0058
Toluene	ND		0.0058
(trans) 1,3-Dichloropropene	ND		0.0012

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	08-098-01
Client ID:	WB-SO-CB01-0050

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0012
Tetrachloroethene	ND		0.0012
1,3-Dichloropropane	ND		0.0012
2-Hexanone	ND		0.0058
Dibromochloromethane	ND		0.0012
1,2-Dibromoethane	ND		0.0012
Chlorobenzene	ND		0.0012
1,1,1,2-Tetrachloroethane	ND		0.0012
Ethylbenzene	ND		0.0012
m,p-Xylene	ND		0.0023
o-Xylene	ND		0.0012
Styrene	ND		0.0012
Bromoform	ND		0.0012
Isopropylbenzene	ND		0.0012
Bromobenzene	ND		0.0012
1,1,2,2-Tetrachloroethane	ND		0.0012
1,2,3-Trichloropropane	ND		0.0012
n-Propylbenzene	ND		0.0012
2-Chlorotoluene	ND		0.0012
4-Chlorotoluene	ND		0.0012
1,3,5-Trimethylbenzene	ND		0.0012
tert-Butylbenzene	ND		0.0012
1,2,4-Trimethylbenzene	ND		0.0012
sec-Butylbenzene	ND		0.0012
1,3-Dichlorobenzene	ND		0.0012
p-Isopropyltoluene	ND		0.0012
1,4-Dichlorobenzene	ND		0.0012
1,2-Dichlorobenzene	ND		0.0012
n-Butylbenzene	ND		0.0012
1,2-Dibromo-3-chloropropane	ND		0.0058
1,2,4-Trichlorobenzene	ND		0.0012
Hexachlorobutadiene	ND		0.0058
Naphthalene	ND		0.0012
1,2,3-Trichlorobenzene	ND		0.0012

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	102	55-125
Toluene-d8	110	56-127
4-Bromofluorobenzene	98	54-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-098-02 Client ID: WB-SO-CB02-0050

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00080
Chloromethane	ND		0.0040
Vinyl Chloride	ND		0.00080
Bromomethane	ND		0.00080
Chloroethane	ND		0.0040
Trichlorofluoromethane	ND		0.00080
1,1-Dichloroethene	ND		0.00080
Acetone	ND		0.0040
lodomethane	ND		0.0040
Carbon Disulfide	ND		0.00080
Methylene Chloride	ND		0.0040
(trans) 1,2-Dichloroethene	ND		0.00080
Methyl t-Butyl Ether	ND		0.00080
1,1-Dichloroethane	ND		0.00080
Vinyl Acetate	ND		0.0040
2,2-Dichloropropane	ND		0.00080
(cis) 1,2-Dichloroethene	ND		0.00080
2-Butanone	ND		0.0040
Bromochloromethane	ND		0.00080
Chloroform	ND		0.00080
1,1,1-Trichloroethane	ND		0.00080
Carbon Tetrachloride	ND		0.00080
1,1-Dichloropropene	ND		0.00080
Benzene	ND		0.00080
1,2-Dichloroethane	ND		0.00080
Trichloroethene	ND		0.00080
1,2-Dichloropropane	ND		0.00080
Dibromomethane	ND		0.00080
Bromodichloromethane	ND		0.00080
2-Chloroethyl Vinyl Ether	ND		0.0040
(cis) 1,3-Dichloropropene	ND		0.00080
Methyl Isobutyl Ketone	ND		0.0040
Toluene	ND		0.0040
(trans) 1,3-Dichloropropene	ND		0.00080

VOLATILES by EPA 8260B Page 2 of 2

08-098-02
WB-SO-CB02-0050

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00080
Tetrachloroethene	ND		0.00080
1,3-Dichloropropane	ND		0.00080
2-Hexanone	ND		0.0040
Dibromochloromethane	ND		0.00080
1,2-Dibromoethane	ND		0.00080
Chlorobenzene	ND		0.00080
1,1,1,2-Tetrachloroethane	ND		0.00080
Ethylbenzene	ND		0.00080
m,p-Xylene	ND		0.0016
o-Xylene	ND		0.00080
Styrene	ND		0.00080
Bromoform	ND		0.00080
Isopropylbenzene	ND		0.00080
Bromobenzene	ND		0.00080
1,1,2,2-Tetrachloroethane	ND		0.00080
1,2,3-Trichloropropane	ND		0.00080
n-Propylbenzene	ND		0.00080
2-Chlorotoluene	ND		0.00080
4-Chlorotoluene	ND		0.00080
1,3,5-Trimethylbenzene	ND		0.00080
tert-Butylbenzene	ND		0.00080
1,2,4-Trimethylbenzene	ND		0.00080
sec-Butylbenzene	ND		0.00080
1,3-Dichlorobenzene	ND		0.00080
p-IsopropyItoluene	ND		0.00080
1,4-Dichlorobenzene	ND		0.00080
1,2-Dichlorobenzene	ND		0.00080
n-Butylbenzene	ND		0.00080
1,2-Dibromo-3-chloropropane	ND		0.0040
1,2,4-Trichlorobenzene	ND		0.00080
Hexachlorobutadiene	ND		0.0040
Naphthalene	ND		0.00080
1,2,3-Trichlorobenzene	ND		0.00080

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	102	55-125
Toluene-d8	106	56-127
4-Bromofluorobenzene	92	54-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID: WB	-SO-CB03-0050
Client ID: WB	-SO-CB03-0050

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00097
Chloromethane	ND		0.0048
Vinyl Chloride	ND		0.00097
Bromomethane	ND		0.00097
Chloroethane	ND		0.0048
Trichlorofluoromethane	ND		0.00097
1,1-Dichloroethene	ND		0.00097
Acetone	0.035		0.0048
lodomethane	ND		0.0048
Carbon Disulfide	0.0021		0.00097
Methylene Chloride	ND		0.0048
(trans) 1,2-Dichloroethene	ND		0.00097
Methyl t-Butyl Ether	ND		0.00097
1,1-Dichloroethane	ND		0.00097
Vinyl Acetate	ND		0.0048
2,2-Dichloropropane	ND		0.00097
(cis) 1,2-Dichloroethene	ND		0.00097
2-Butanone	ND		0.0048
Bromochloromethane	ND		0.00097
Chloroform	ND		0.00097
1,1,1-Trichloroethane	ND		0.00097
Carbon Tetrachloride	ND		0.00097
1,1-Dichloropropene	ND		0.00097
Benzene	ND		0.00097
1,2-Dichloroethane	ND		0.00097
Trichloroethene	ND		0.00097
1,2-Dichloropropane	ND		0.00097
Dibromomethane	ND		0.00097
Bromodichloromethane	ND		0.00097
2-Chloroethyl Vinyl Ether	ND		0.0048
(cis) 1,3-Dichloropropene	ND		0.00097
Methyl Isobutyl Ketone	ND		0.0048
Toluene	ND		0.0048
(trans) 1,3-Dichloropropene	ND		0.00097

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	08-098-03
Client ID:	WB-SO-CB03-0050

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00097
Tetrachloroethene	ND		0.00097
1,3-Dichloropropane	ND		0.00097
2-Hexanone	ND		0.0048
Dibromochloromethane	ND		0.00097
1,2-Dibromoethane	ND		0.00097
Chlorobenzene	ND		0.00097
1,1,1,2-Tetrachloroethane	ND		0.00097
Ethylbenzene	ND		0.00097
m,p-Xylene	ND		0.0019
o-Xylene	ND		0.00097
Styrene	ND		0.00097
Bromoform	ND		0.00097
Isopropylbenzene	ND		0.00097
Bromobenzene	ND		0.00097
1,1,2,2-Tetrachloroethane	ND		0.00097
1,2,3-Trichloropropane	ND		0.00097
n-Propylbenzene	ND		0.00097
2-Chlorotoluene	ND		0.00097
4-Chlorotoluene	ND		0.00097
1,3,5-Trimethylbenzene	ND		0.00097
tert-Butylbenzene	ND		0.00097
1,2,4-Trimethylbenzene	ND		0.00097
sec-Butylbenzene	ND		0.00097
1,3-Dichlorobenzene	ND		0.00097
p-IsopropyItoluene	ND		0.00097
1,4-Dichlorobenzene	ND		0.00097
1,2-Dichlorobenzene	ND		0.00097
n-Butylbenzene	ND		0.00097
1,2-Dibromo-3-chloropropane	ND		0.0048
1,2,4-Trichlorobenzene	ND		0.00097
Hexachlorobutadiene	ND		0.0048
Naphthalene	ND		0.00097
1,2,3-Trichlorobenzene	ND		0.00097

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	105	55-125
Toluene-d8	110	56-127
4-Bromofluorobenzene	100	54-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-098-04 Client ID: WB-SO-CB04-0030

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.00084
Chloromethane	ND		0.0042
Vinyl Chloride	ND		0.00084
Bromomethane	ND		0.00084
Chloroethane	ND		0.0042
Trichlorofluoromethane	ND		0.00084
1,1-Dichloroethene	ND		0.00084
Acetone	0.038		0.0042
lodomethane	ND		0.0042
Carbon Disulfide	ND		0.00084
Methylene Chloride	ND		0.0042
(trans) 1,2-Dichloroethene	ND		0.00084
Methyl t-Butyl Ether	ND		0.00084
1,1-Dichloroethane	ND		0.00084
Vinyl Acetate	ND		0.0042
2,2-Dichloropropane	ND		0.00084
(cis) 1,2-Dichloroethene	ND		0.00084
2-Butanone	ND		0.0042
Bromochloromethane	ND		0.00084
Chloroform	ND		0.00084
1,1,1-Trichloroethane	ND		0.00084
Carbon Tetrachloride	ND		0.00084
1,1-Dichloropropene	ND		0.00084
Benzene	ND		0.00084
1,2-Dichloroethane	ND		0.00084
Trichloroethene	ND		0.00084
1,2-Dichloropropane	ND		0.00084
Dibromomethane	ND		0.00084
Bromodichloromethane	ND		0.00084
2-Chloroethyl Vinyl Ether	ND		0.0042
(cis) 1,3-Dichloropropene	ND		0.00084
Methyl Isobutyl Ketone	ND		0.0042
Toluene	ND		0.0042
(trans) 1,3-Dichloropropene	ND		0.00084

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	08-098-04
Client ID:	WB-SO-CB04-0030
Compound	Pag

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.00084
Tetrachloroethene	ND		0.00084
1,3-Dichloropropane	ND		0.00084
2-Hexanone	ND		0.0042
Dibromochloromethane	ND		0.00084
1,2-Dibromoethane	ND		0.00084
Chlorobenzene	ND		0.00084
1,1,1,2-Tetrachloroethane	ND		0.00084
Ethylbenzene	ND		0.00084
m,p-Xylene	ND		0.0017
o-Xylene	ND		0.00084
Styrene	ND		0.00084
Bromoform	ND		0.00084
Isopropylbenzene	ND		0.00084
Bromobenzene	ND		0.00084
1,1,2,2-Tetrachloroethane	ND		0.00084
1,2,3-Trichloropropane	ND		0.00084
n-Propylbenzene	ND		0.00084
2-Chlorotoluene	ND		0.00084
4-Chlorotoluene	ND		0.00084
1,3,5-Trimethylbenzene	ND		0.00084
tert-Butylbenzene	ND		0.00084
1,2,4-Trimethylbenzene	0.014		0.00084
sec-Butylbenzene	0.0010		0.00084
1,3-Dichlorobenzene	ND		0.00084
p-Isopropyltoluene	0.0065		0.00084
1,4-Dichlorobenzene	ND		0.00084
1,2-Dichlorobenzene	ND		0.00084
n-Butylbenzene	ND		0.00084
1,2-Dibromo-3-chloropropane	ND		0.0042
1,2,4-Trichlorobenzene	ND		0.00084
Hexachlorobutadiene	ND		0.0042
Naphthalene	ND		0.00084
1,2,3-Trichlorobenzene	ND		0.00084

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	106	55-125
Toluene-d8	100	56-127
4-Bromofluorobenzene	97	54-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Date Extracted:	8-13-09
Date Analyzed:	8-13-09
Matrix:	Soil

Units: mg/kg (ppm)

Lab ID: MB0813S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0050
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0813S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene	ND		0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-Isopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010
	Percent		Control
Surrogate	Recovery		Limits
Dibromofluoromethane	104		55-125
Toluene-d8	111		56-127
4-Bromofluorobenzene	101		54-130

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	8-13-09
Date Analyzed:	8-13-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: SB0813S1

Compound	Spike Amount	SB	Percent Recovery	SBD	Percent Recoverv	Recovery Limits	Flags
		•	,	•	,		
1,1-Dichloroethene	0.0500	0.0438	88	0.0426	85	70-130	
Benzene	0.0500	0.0425	85	0.0429	86	70-128	
Trichloroethene	0.0500	0.0446	89	0.0443	89	70-124	
Toluene	0.0500	0.0446	89	0.0448	90	73-123	
Chlorobenzene	0.0500	0.0461	92	0.0454	91	73-115	

		RPD		
	RPD	Limit	Flags	
1,1-Dichloroethene	3	16		
Benzene	1	15		
Trichloroethene	1	14		
Toluene	0	14		
Chlorobenzene	1	13		

21

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	POL	Method	Date Prepared	Date Analyzed	Flage
	WB-SO-CB01-0050	FGL	Method	Fiepaleu	Anaryzeu	T lags
Laboratory ID:	08-008-01					
N-Nitrosodimethylamine	ND	0.040	EPA 8270	8-14-09	8-14-09	
Pyridino		0.040	EPA 8270	8-14-09	8-14-09	
Phonol		0.040	EPA 0270	8 14 00	8 14 09	
		0.040	EPA 0270	8 14 00	8 14 09	
his (2 Chloraothyl) othor		0.040	EPA 0270	8 14 00	8 14 09	
2 Chlorophonol		0.040	EPA 0270	8 14 00	8 14 09	
		0.040	EPA 0270	8 14 00	8 14 09	
1,4 Dichlorobonzono		0.040	EPA 8270	8-14-09	8-14-09	
		0.040	EPA 0270	8 14 00	8 14 09	
1 2 Dichlorohonzono		0.040	EPA 0270	8 14 00	8 14 09	
2 Mothylphonol (o Crosol)		0.040	EPA 8270	8-14-09	8-14-09	
bis(2 Chloroisopropyl)other		0.040	EPA 8270	8-14-09	8-14-09	
(2,4) Mothylphonol (m p Crosol		0.040	EPA 8270	8-14-09	8-14-09	
N Nitroso di p propylamino		0.040	EPA 8270	8-14-09	8-14-09	
Hovachloroothano		0.040	EPA 8270	8-14-09	8-14-09	
Nitrobonzono		0.040	EPA 8270	8-14-09	8-14-09	
Isophorope		0.040	EPA 8270	8-14-09	8-14-09	
2-Nitrophenol		0.040	EPA 8270	8-14-09	8-14-09	
2.4-Dimethylphenol		0.040	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270	8-14-09	8-14-09	
2 4-Dichlorophenol	ND	0.040	EPA 8270	8-14-09	8-14-09	
1 2 4-Trichlorobenzene	ND	0.040	EPA 8270	8-14-09	8-14-09	
Nanhthalene	ND	0.040	EPA 8270/SIM	8-14-09	8-14-09	
4-Chloroaniline	ND	0.040	EPA 8270	8-14-09	8-14-09	
Hexachlorobutadiene	ND	0.040	EPA 8270	8-14-09	8-14-09	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270	8-14-09	8-14-09	
2-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
1-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270	8-14-09	8-14-09	
2.4.6-Trichlorophenol	ND	0.040	EPA 8270	8-14-09	8-14-09	
2.3-Dichloroaniline	ND	0.040	EPA 8270	8-14-09	8-14-09	
2.4.5-Trichlorophenol	ND	0.040	EPA 8270	8-14-09	8-14-09	
2-Chloronaphthalene	ND	0.040	EPA 8270	8-14-09	8-14-09	
2-Nitroaniline	ND	0.040	EPA 8270	8-14-09	8-14-09	
1.4-Dinitrobenzene	ND	0.040	EPA 8270	8-14-09	8-14-09	
Dimethylphthalate	ND	0.040	EPA 8270	8-14-09	8-14-09	
1.3-Dinitrobenzene	ND	0.040	EPA 8270	8-14-09	8-14-09	
2.6-Dinitrotoluene	ND	0.040	EPA 8270	8-14-09	8-14-09	
1,2-Dinitrobenzene	ND	0.040	EPA 8270	8-14-09	8-14-09	
Acenaphthylene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	

22

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CB01-0050					
Laboratory ID:	08-098-01					
2,4-Dinitrophenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
Acenaphthene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
4-Nitrophenol	ND	0.040	EPA 8270	8-14-09	8-14-09	
2,4-Dinitrotoluene	ND	0.040	EPA 8270	8-14-09	8-14-09	
Dibenzofuran	ND	0.040	EPA 8270	8-14-09	8-14-09	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270	8-14-09	8-14-09	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270	8-14-09	8-14-09	
Diethylphthalate	ND	0.040	EPA 8270	8-14-09	8-14-09	
4-Chlorophenyl-phenylether	ND	0.040	EPA 8270	8-14-09	8-14-09	
4-Nitroaniline	ND	0.040	EPA 8270	8-14-09	8-14-09	
Fluorene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
N-Nitrosodiphenylamine	ND	0.040	EPA 8270	8-14-09	8-14-09	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270	8-14-09	8-14-09	
4-Bromophenyl-phenylether	ND	0.040	EPA 8270	8-14-09	8-14-09	
Hexachlorobenzene	ND	0.040	EPA 8270	8-14-09	8-14-09	
Pentachlorophenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
Phenanthrene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Anthracene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Carbazole	ND	0.040	EPA 8270	8-14-09	8-14-09	
Di-n-butylphthalate	ND	0.040	EPA 8270	8-14-09	8-14-09	
Fluoranthene	0.014	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Benzidine	ND	0.40	EPA 8270	8-14-09	8-14-09	
Pyrene	0.0095	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Butylbenzylphthalate	ND	0.040	EPA 8270	8-14-09	8-14-09	
bis-2-Ethylhexyladipate	ND	0.040	EPA 8270	8-14-09	8-14-09	
3,3'-Dichlorobenzidine	ND	0.40	EPA 8270	8-14-09	8-14-09	
Benzo[a]anthracene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Chrysene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
bis(2-Ethylhexyl)phthalate	ND	0.040	EPA 8270	8-14-09	8-14-09	
Di-n-octylphthalate	ND	0.040	EPA 8270	8-14-09	8-14-09	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[k]fluoranthene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[a]pyrene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Indeno[1,2,3-cd]pyrene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[g,h,i]perylene	ND	0.0079	EPA 8270/SIM	8-14-09	8-14-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	57	19 - 97				
Phenol-d6	67	22 - 108				
Nitrobenzene-d5	64	21 - 106				
2-Fluorobiphenyl	65	29 - 107				
2,4,6-Tribromophenol	73	44 - 121				
Terphenyl-d14	82	37 - 120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyta	Pooult	POL	Mathad	Date Bropprod	Date Applyzed	Flogo
		FQL	Methou	Flepaleu	Analyzeu	Flays
Laboratory ID:						
N Nitrosodimothylamino	ND	0.030	EDA 8270	8-14-00	8-14-09	
Pyridino		0.039	EPA 8270	8-14-09	8-14-09	
Phonol		0.039	EPA 8270	8-14-09	8-14-09	
Aniline		0.000	EPA 8270	8-14-09	8-14-09	
his (2-Chloroethyl) ether		0.000	EPA 8270	8-14-09	8-14-09	
2-Chlorophenol		0.000	EPA 8270	8-14-09	8-14-09	
1.3-Dichlorobenzene		0.000	EPA 8270	8-14-09	8-14-09	
1 4-Dichlorobenzene	ND	0.000	EPA 8270	8-14-09	8-14-09	
Benzyl alcohol	ND	0.000	EPA 8270	8-14-09	8-14-09	
1 2-Dichlorobenzene	ND	0.000	EPA 8270	8-14-09	8-14-09	
2-Methylphenol (o-Cresol)	ND	0.000	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroisopropyl)ether	ND	0.039	EPA 8270	8-14-09	8-14-09	
(3+4)-Methylphenol (m.p.Cresol)	ND ND	0.039	EPA 8270	8-14-09	8-14-09	
N-Nitroso-di-n-propylamine	ND	0.039	EPA 8270	8-14-09	8-14-09	
Hexachloroethane	ND	0.039	EPA 8270	8-14-09	8-14-09	
Nitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Isophorone	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Nitrophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2.4-Dimethylphenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroethoxy)methane	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,4-Dichlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,2,4-Trichlorobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Naphthalene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
4-Chloroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
Hexachlorobutadiene	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Chloro-3-methylphenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
1-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Hexachlorocyclopentadiene	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,4,6-Trichlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,3-Dichloroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,4,5-Trichlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Chloronaphthalene	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Nitroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,4-Dinitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Dimethylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,3-Dinitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,6-Dinitrotoluene	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,2-Dinitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Acenaphthylene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
3-Nitroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CB02-0050					
Laboratory ID:	08-098-02					
2,4-Dinitrophenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
Acenaphthene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
4-Nitrophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,4-Dinitrotoluene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Dibenzofuran	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,3,5,6-Tetrachlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,3,4,6-Tetrachlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
Diethylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Chlorophenyl-phenylether	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Nitroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
Fluorene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
N-Nitrosodiphenylamine	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,2-Diphenylhydrazine	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Bromophenyl-phenylether	ND	0.039	EPA 8270	8-14-09	8-14-09	
Hexachlorobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Pentachlorophenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
Phenanthrene	0.014	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Anthracene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Carbazole	ND	0.039	EPA 8270	8-14-09	8-14-09	
Di-n-butylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
Fluoranthene	0.017	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzidine	ND	0.39	EPA 8270	8-14-09	8-14-09	
Pyrene	0.016	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Butylbenzylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
bis-2-Ethylhexyladipate	ND	0.039	EPA 8270	8-14-09	8-14-09	
3,3'-Dichlorobenzidine	ND	0.39	EPA 8270	8-14-09	8-14-09	
Benzo[a]anthracene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Chrysene	0.013	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
bis(2-Ethylhexyl)phthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
Di-n-octylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
Benzo[b]fluoranthene	0.0091	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[k]fluoranthene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[a]pyrene	0.011	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Indeno[1,2,3-cd]pyrene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[g,h,i]perylene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	72	19 - 97				
Phenol-d6	86	22 - 108				
Nitrobenzene-d5	85	21 - 106				
2-Fluorobiphenyl	68	29 - 107				
2,4,6-Tribromophenol	69	44 - 121				
Terphenyl-d14	83	37 - 120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyta	Pooult	POL	Mathad	Date Bropprod	Date	Flogo
		FQL	Wethou	Flepaleu	Analyzeu	Flays
Laboratory ID:						
N Nitrosodimothylamino	<u> </u>	0.030	EDA 8270	8-14-09	8-14-09	
Pyridine		0.039	EPA 8270	8-14-09	8-14-09	
Phonol		0.039	EPA 8270	8-14-09	8-14-09	
Aniline		0.000	EPA 8270	8-14-09	8-14-09	
his (2-Chloroethyl) ether		0.000	EPA 8270	8-14-09	8-14-09	
2-Chlorophenol		0.000	EPA 8270	8-14-09	8-14-09	
1 3-Dichlorobenzene	ND	0.000	EPA 8270	8-14-09	8-14-09	
1 4-Dichlorobenzene	ND	0.000	EPA 8270	8-14-09	8-14-09	
Benzyl alcohol	ND	0.000	EPA 8270	8-14-09	8-14-09	
1 2-Dichlorobenzene	ND	0.000	EPA 8270	8-14-09	8-14-09	
2-Methylphenol (o-Cresol)	ND	0.000	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroisopropyl)ether	ND	0.039	EPA 8270	8-14-09	8-14-09	
(3+4)-Methylphenol (m.p.Cresol)	ND ND	0.039	EPA 8270	8-14-09	8-14-09	
N-Nitroso-di-n-propylamine	ND	0.039	EPA 8270	8-14-09	8-14-09	
Hexachloroethane	ND	0.039	EPA 8270	8-14-09	8-14-09	
Nitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Isophorone	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Nitrophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2.4-Dimethylphenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroethoxy)methane	ND	0.039	EPA 8270	8-14-09	8-14-09	
2.4-Dichlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,2,4-Trichlorobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Naphthalene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
4-Chloroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
Hexachlorobutadiene	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Chloro-3-methylphenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
1-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Hexachlorocyclopentadiene	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,4,6-Trichlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,3-Dichloroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,4,5-Trichlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Chloronaphthalene	ND	0.039	EPA 8270	8-14-09	8-14-09	
2-Nitroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,4-Dinitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Dimethylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,3-Dinitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,6-Dinitrotoluene	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,2-Dinitrobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Acenaphthylene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
3-Nitroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CB03-0050					
Laboratory ID:	08-098-03					
2,4-Dinitrophenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
Acenaphthene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
4-Nitrophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,4-Dinitrotoluene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Dibenzofuran	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,3,5,6-Tetrachlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
2,3,4,6-Tetrachlorophenol	ND	0.039	EPA 8270	8-14-09	8-14-09	
Diethylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Chlorophenyl-phenylether	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Nitroaniline	ND	0.039	EPA 8270	8-14-09	8-14-09	
Fluorene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
N-Nitrosodiphenylamine	ND	0.039	EPA 8270	8-14-09	8-14-09	
1,2-Diphenylhydrazine	ND	0.039	EPA 8270	8-14-09	8-14-09	
4-Bromophenyl-phenylether	ND	0.039	EPA 8270	8-14-09	8-14-09	
Hexachlorobenzene	ND	0.039	EPA 8270	8-14-09	8-14-09	
Pentachlorophenol	ND	0.20	EPA 8270	8-14-09	8-14-09	
Phenanthrene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Anthracene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Carbazole	ND	0.039	EPA 8270	8-14-09	8-14-09	
Di-n-butylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
Fluoranthene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzidine	ND	0.39	EPA 8270	8-14-09	8-14-09	
Pyrene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Butylbenzylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
bis-2-Ethylhexyladipate	ND	0.039	EPA 8270	8-14-09	8-14-09	
3,3'-Dichlorobenzidine	ND	0.39	EPA 8270	8-14-09	8-14-09	
Benzo[a]anthracene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Chrysene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
bis(2-Ethylhexyl)phthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
Di-n-octylphthalate	ND	0.039	EPA 8270	8-14-09	8-14-09	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[k]fluoranthene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[a]pyrene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Indeno[1,2,3-cd]pyrene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[g,h,i]perylene	ND	0.0078	EPA 8270/SIM	8-14-09	8-14-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	62	19 - 97				
Phenol-d6	<i>/6</i>	22 - 108				
Nitrobenzene-d5	/1	21 - 106				
2-FIUORODIPNENYI	69	29 - 107				
2,4,6-1 ribromophenol	66	44 - 121				
Terphenyl-d14	87	37 - 120				

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	POI	Method	Date Prepared	Date Analyzed	Flags
Client ID:	WB-SO-CB04-0030	1.42	method	riopaida	Analyzou	i lugo
Laboratory ID:	08-098-04					
N-Nitrosodimethylamine	ND	0.037	EPA 8270	8-14-09	8-14-09	
Pvridine	ND	0.037	EPA 8270	8-14-09	8-14-09	
Phenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
Aniline	ND	0.037	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroethyl)ether	ND	0.037	EPA 8270	8-14-09	8-14-09	
2-Chlorophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
1.3-Dichlorobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
1.4-Dichlorobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
Benzyl alcohol	ND	0.037	EPA 8270	8-14-09	8-14-09	
1.2-Dichlorobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
2-Methylphenol (o-Cresol)	ND	0.037	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroisopropyl)ether	ND	0.037	EPA 8270	8-14-09	8-14-09	
(3+4)-Methylphenol (m.p-Cresol)) ND	0.037	EPA 8270	8-14-09	8-14-09	
N-Nitroso-di-n-propylamine	ND	0.037	EPA 8270	8-14-09	8-14-09	
Hexachloroethane	ND	0.037	EPA 8270	8-14-09	8-14-09	
Nitrobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
Isophorone	ND	0.037	EPA 8270	8-14-09	8-14-09	
2-Nitrophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,4-Dimethylphenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroethoxy)methane	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,4-Dichlorophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
1,2,4-Trichlorobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
Naphthalene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
4-Chloroaniline	ND	0.037	EPA 8270	8-14-09	8-14-09	
Hexachlorobutadiene	ND	0.037	EPA 8270	8-14-09	8-14-09	
4-Chloro-3-methylphenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
2-Methylnaphthalene	0.16	0.037	EPA 8270	8-14-09	8-14-09	
1-Methylnaphthalene	0.11	0.037	EPA 8270	8-14-09	8-14-09	
Hexachlorocyclopentadiene	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,4,6-Trichlorophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,3-Dichloroaniline	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,4,5-Trichlorophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
2-Chloronaphthalene	ND	0.037	EPA 8270	8-14-09	8-14-09	
2-Nitroaniline	ND	0.037	EPA 8270	8-14-09	8-14-09	
1,4-Dinitrobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
Dimethylphthalate	ND	0.037	EPA 8270	8-14-09	8-14-09	
1,3-Dinitrobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,6-Dinitrotoluene	ND	0.037	EPA 8270	8-14-09	8-14-09	
1,2-Dinitrobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
Acenaphthylene	0.016	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
3-Nitroaniline	ND	0.037	EPA 8270	8-14-09	8-14-09	

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CB04-0030					
Laboratory ID:	08-098-04					
2,4-Dinitrophenol	ND	0.18	EPA 8270	8-14-09	8-14-09	
Acenaphthene	0.015	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
4-Nitrophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,4-Dinitrotoluene	ND	0.037	EPA 8270	8-14-09	8-14-09	
Dibenzofuran	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,3,5,6-Tetrachlorophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
2,3,4,6-Tetrachlorophenol	ND	0.037	EPA 8270	8-14-09	8-14-09	
Diethylphthalate	ND	0.037	EPA 8270	8-14-09	8-14-09	
4-Chlorophenyl-phenylether	ND	0.037	EPA 8270	8-14-09	8-14-09	
4-Nitroaniline	ND	0.037	EPA 8270	8-14-09	8-14-09	
Fluorene	0.080	0.037	EPA 8270	8-14-09	8-14-09	
4,6-Dinitro-2-methylphenol	ND	0.18	EPA 8270	8-14-09	8-14-09	
N-Nitrosodiphenylamine	ND	0.037	EPA 8270	8-14-09	8-14-09	
1,2-Diphenylhydrazine	ND	0.037	EPA 8270	8-14-09	8-14-09	
4-Bromophenyl-phenylether	ND	0.037	EPA 8270	8-14-09	8-14-09	
Hexachlorobenzene	ND	0.037	EPA 8270	8-14-09	8-14-09	
Pentachlorophenol	ND	0.18	EPA 8270	8-14-09	8-14-09	
Phenanthrene	0.21	0.037	EPA 8270	8-14-09	8-14-09	
Anthracene	0.16	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Carbazole	ND	0.037	EPA 8270	8-14-09	8-14-09	
Di-n-butylphthalate	ND	0.037	EPA 8270	8-14-09	8-14-09	
Fluoranthene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Benzidine	ND	0.37	EPA 8270	8-14-09	8-14-09	
Pyrene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Butylbenzylphthalate	ND	0.037	EPA 8270	8-14-09	8-14-09	
bis-2-Ethylhexyladipate	ND	0.037	EPA 8270	8-14-09	8-14-09	
3,3'-Dichlorobenzidine	ND	0.37	EPA 8270	8-14-09	8-14-09	
Benzo[a]anthracene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Chrysene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
bis(2-Ethylhexyl)phthalate	ND	0.037	EPA 8270	8-14-09	8-14-09	
Di-n-octylphthalate	ND	0.037	EPA 8270	8-14-09	8-14-09	
Benzo[b]fluoranthene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[k]fluoranthene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[a]pyrene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Indeno[1,2,3-cd]pyrene	ND	0.0073	EPA 8270/SIM	8-14-09	8-14-09	
Dibenz[a,h]anthracene	ND	0.00/3	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[g,h,i]perylene	ND	0.00/3	EPA 8270/SIM	8-14-09	8-14-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	66	19 - 97				
Phenol-db	/4	22 - 108				
NITRODENZENE-05	//	21 - 106				
∠-riuoropipnenyi	<i>/5</i>	29 - 107				
	80	44 - 121				
i erpnenyi-a14	101	37 - 120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

29

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0814S1					
N-Nitrosodimethylamine	ND	0.033	FPA 8270	8-14-09	8-14-09	
Pyridine	ND	0.033	EPA 8270	8-14-09	8-14-09	
Phenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
Aniline	ND	0.033	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	8-14-09	8-14-09	
2-Chlorophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
1.3-Dichlorobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
1.4-Dichlorobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
Benzyl alcohol	ND	0.033	EPA 8270	8-14-09	8-14-09	
1.2-Dichlorobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	8-14-09	8-14-09	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	8-14-09	8-14-09	
N-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	8-14-09	8-14-09	
Hexachloroethane	ND	0.033	EPA 8270	8-14-09	8-14-09	
Nitrobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
Isophorone	ND	0.033	EPA 8270	8-14-09	8-14-09	
2-Nitrophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,4-Dimethylphenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,4-Dichlorophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
Naphthalene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
4-Chloroaniline	ND	0.033	EPA 8270	8-14-09	8-14-09	
Hexachlorobutadiene	ND	0.033	EPA 8270	8-14-09	8-14-09	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,3-Dichloroaniline	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
2-Chloronaphthalene	ND	0.033	EPA 8270	8-14-09	8-14-09	
2-Nitroaniline	ND	0.033	EPA 8270	8-14-09	8-14-09	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
Dimethylphthalate	ND	0.033	EPA 8270	8-14-09	8-14-09	
1,3-Dinitrobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	8-14-09	8-14-09	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
3-Nitroaniline	ND	0.033	EPA 8270	8-14-09	8-14-09	

30

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL page 2 of 2

page 2 01 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0814S1					
2,4-Dinitrophenol	ND	0.17	EPA 8270	8-14-09	8-14-09	
Acenaphthene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
4-Nitrophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,4-Dinitrotoluene	ND	0.033	EPA 8270	8-14-09	8-14-09	
Dibenzofuran	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270	8-14-09	8-14-09	
Diethylphthalate	ND	0.033	EPA 8270	8-14-09	8-14-09	
4-Chlorophenyl-phenylether	ND	0.033	EPA 8270	8-14-09	8-14-09	
4-Nitroaniline	ND	0.033	EPA 8270	8-14-09	8-14-09	
Fluorene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270	8-14-09	8-14-09	
N-Nitrosodiphenylamine	ND	0.033	EPA 8270	8-14-09	8-14-09	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270	8-14-09	8-14-09	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270	8-14-09	8-14-09	
Hexachlorobenzene	ND	0.033	EPA 8270	8-14-09	8-14-09	
Pentachlorophenol	ND	0.17	EPA 8270	8-14-09	8-14-09	
Phenanthrene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
Anthracene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
Carbazole	ND	0.033	EPA 8270	8-14-09	8-14-09	
Di-n-butylphthalate	ND	0.033	EPA 8270	8-14-09	8-14-09	
Fluoranthene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
Benzidine	ND	0.33	EPA 8270	8-14-09	8-14-09	
Pyrene	ND	0.0067	FPA 8270/SIM	8-14-09	8-14-09	
Butylbenzylphthalate	ND	0.033	FPA 8270	8-14-09	8-14-09	
bis-2-Ethylbexyladinate	ND	0.033	EPA 8270	8-14-09	8-14-09	
3 3'-Dichlorobenzidine	ND	0.000	EPA 8270	8-14-09	8-14-09	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-14-09	8-14-09	
Chrysene	ND	0.0007	EPA 8270/SIM	8-14-09	8-14-09	
his (2-Ethylhexyl) nhthalate	ND	0.033	FPA 8270	8-14-09	8-14-09	
	ND	0.000	EPA 8270	8-14-09	8-14-09	
Benzolbifluoranthene	ND	0.000	EPA 8270/SIM	8-14-09	8-14-09	
Benzo[k]fluoranthene		0.0007	EPA 8270/SIM	8-14-09	8-14-09	
Bonzolalpyropo		0.0007	EPA 8270/SIM	8-14-00	8-14-00	
Indono[1,2,3,cd]pyrono		0.0007	EPA 8270/SIM	8-14-00	8-14-00	
Dibonz[a blanthracono		0.0007	EPA 8270/SIM	8-14-09	8-14-09	
Benzola h ilpervlene		0.0007	EPA 8270/SIM	8-14-09	8-14-09	
Surrogate:	Percent Recovery	Control Limite		0-14-03	0-14-03	
2-Eluorophenol	6A	10 - 07				
Phenol-d6	7/	13-31 22-108				
Nitrobenzene-d5	74	21 - 100				
2-Eluorobinhenvl	66	29 - 107				
2 4 6-Tribromonhenol	68	<u>23 - 107</u> <u>44 - 191</u>				
Z,-,0 Thereinophenoi Ternhenvl-d14	83	37 _ 120				
	00	57 - 120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SEMIVOLATILES by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	814S1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	1.10	1.06	1.33	1.33	83	80	27 - 100	4	37	
2-Chlorophenol	0.933	0.886	1.33	1.33	70	67	23 - 104	5	43	
1,4-Dichlorobenzene	0.404	0.386	0.667	0.667	61	58	23 - 86	5	40	
N-Nitroso-di-n-propylamine	0.524	0.534	0.667	0.667	79	80	28 - 96	2	37	
1,2,4-Trichlorobenzene	0.396	0.372	0.667	0.667	59	56	25 - 90	6	40	
4-Chloro-3-methylphenol	1.12	1.13	1.33	1.33	84	85	44 - 106	1	31	
Acenaphthene	0.502	0.504	0.667	0.667	75	76	39 - 93	0	28	
4-Nitrophenol	1.25	1.22	1.33	1.33	94	92	30 - 124	2	31	
2,4-Dinitrotoluene	0.587	0.593	0.667	0.667	88	89	53 - 109	1	34	
Pentachlorophenol	1.02	1.01	1.33	1.33	77	76	47 - 122	1	33	
Pyrene	0.581	0.575	0.667	0.667	87	86	55 - 108	1	29	
Surrogate:										
2-Fluorophenol					67	65	19 - 97			
Phenol-d6					75	72	22 - 108			
Nitrobenzene-d5					76	72	21 - 106			
2-Fluorobiphenyl					69	69	29 - 107			
2,4,6-Tribromophenol					71	71	44 - 121			
Terphenyl-d14					83	82	37 - 120			

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	8-14&17-09
Date Analyzed:	8-14,17&18-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-098-01 Client ID: **WB-SO-CB01-0050**

Analyte	Method	Result	PQL
Antimony	6010B	ND	6.0
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.60
Cadmium	6010B	ND	0.60
Chromium	6010B	14	0.60
Copper	6010B	10	1.2
Lead	6010B	ND	6.0
Mercury	7471A	ND	0.30
Nickel	6010B	13	3.0
Selenium	6010B	ND	12
Silver	6010B	ND	0.60
Thallium	6020	ND	6.0
Zinc	6010B	21	3.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	8-14&17-09
Date Analyzed:	8-14,17&18-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-098-02 Client ID: **WB-SO-CB02-0050**

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.9
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.59
Cadmium	6010B	ND	0.59
Chromium	6010B	17	0.59
Copper	6010B	18	1.2
Lead	6010B	13	5.9
Mercury	7471A	ND	0.29
Nickel	6010B	24	2.9
Selenium	6010B	ND	12
Silver	6010B	ND	0.59
Thallium	6020	ND	5.9
Zinc	6010B	54	2.9

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	8-14&17-09
Date Analyzed:	8-14,17&18-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-098-03 Client ID: **WB-SO-CB03-0050**

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.9
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.59
Cadmium	6010B	ND	0.59
Chromium	6010B	14	0.59
Copper	6010B	13	1.2
Lead	6010B	ND	5.9
Mercury	7471A	ND	0.29
Nickel	6010B	15	2.9
Selenium	6010B	ND	12
Silver	6010B	ND	0.59
Thallium	6020	ND	5.9
Zinc	6010B	24	2.9

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	8-14&17-09
Date Analyzed:	8-14,17&18-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-098-04 Client ID: **WB-SO-CB04-0030**

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.5
Arsenic	6010B	ND	11
Beryllium	6010B	ND	0.55
Cadmium	6010B	ND	0.55
Chromium	6010B	16	0.55
Copper	6010B	17	1.1
Lead	6010B	ND	5.5
Mercury	7471A	ND	0.27
Nickel	6010B	20	2.7
Selenium	6010B	ND	11
Silver	6010B	ND	0.55
Thallium	6020	ND	5.5
Zinc	6010B	80	2.7

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	8-14-09
Date Analyzed:	8-14&18-09
Matrix:	Soil

Units: mg/kg (ppm)

Lab ID: MB0814S2&MB0814S3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Beryllium	6010B	ND	0.50
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Copper	6010B	ND	1.0
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Nickel	6010B	ND	2.5
Selenium	6010B	ND	10
Silver	6010B	ND	0.50
Thallium	6020	ND	5.0
Zinc	6010B	ND	2.5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

37

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-17-09
Date Analyzed:	8-17-09

Soil
mg/kg (ppm)

Lab ID: MB0817S1

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.0

TOTAL METALS EPA 6010B/6020/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	8-14-09
Date Analyzed:	8-14&18-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-068-41

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Beryllium	ND	ND	NA	0.50	
Cadmium	ND	ND	NA	0.50	
Chromium	10.4	11.2	8	0.50	
Copper	16.8	16.5	1	1.0	
Lead	8.42	8.11	4	5.0	
Mercury	ND	ND	NA	0.25	
Nickel	13.5	13.6	1	2.5	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	5.0	
Zinc	51.6	54.2	5	2.5	

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 8-17-09 Date Analyzed: 8-17-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-061-07

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Antimony	ND	ND	NA	5.0	

TOTAL METALS EPA 6010B/6020/7471A MS/MSD QUALITY CONTROL

Date Extracted:	8-14-09
Date Analyzed:	8-14&18-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-068-41

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	92.1	92	90.7	91	2	
Beryllium	50	45.5	91	45.5	91	0	
Cadmium	50	46.6	93	46.2	92	1	
Chromium	100	105	95	105	95	0	
Copper	50	64.5	95	64.9	96	1	
Lead	250	235	91	234	90	1	
Mercury	0.50	0.516	103	0.491	98	5	
Nickel	100	104	90	105	91	1	
Selenium	100	89.4	89	88.9	89	1	
Silver	25	22.0	88	22.0	88	0	
Thallium	50	38.6	77	40.6	81	5	
Zinc	100	143	92	145	94	1	

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	8-17-09
Date Analyzed:	8-17-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-061-07

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Antimony	100	80.1	80	82.3	82	3	

% MOISTURE

Date Analyzed: 8-13-09

Client ID	Lab ID	% Moisture
WB-SO-CB01-0050	08-098-01	16
WB-SO-CB02-0050	08-098-02	15
WB-SO-CB03-0050	08-098-03	15
WB-SO-CB04-0030	08-098-04	9

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by					4 WB-SO-CB04-0020	3 WB-SU-CAU3-0150	2 WB-SU-CEU2-DUSD	1 WB-SO-0301-0050	Lav.D Stimulo Identification	Jampieu by. LINNE	D. Dinkulu	Project Manager:	Project Name:	Project Number:	Company	Phone: (425) 883-3881 · Fax: (425) 885-4603	MA OnSite
DISTRIBUTION LEGEND: White - OnSite Copy Y					300	thrametrix	Company				V 09.05 V V	Q180	0080	9/2/10 0750 Son1 6	Date Time Sempled Sempled Heats Cont	(other)		(TPH analysis 5 working days)	X 2 Day 3 Day	Same Day 1 Day	(Check One)	Turnaround Request (Inworking days)	Chain of C
allow - Report Copy Pink - Client C					8/13/08 10000	0541 m/e1/8			}					XXXX	NWTF NWTF Volatili Halogo Semiv PAHs	PH-Gx PH-Dx es by enated olatile by 82	BTE 8260 d Vola s by 70D /	K B ttiles by 3270D SIM	y 8260)B		aboratory Number:	istody
Chromatograms with final report						EIM EDD,	Comparis Special Instructions:								PCBs Pestici Herbic Total F TCLP HEM t PP	by 80 ides b ides c RCRA Metal by 166 Metal by 166	82 y 808 y 811 Meta s 4 <i>e</i> t <i>a</i>	1A 51A Is (8)			Requested Analysts	860-80	Page of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 31, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0908-204

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 27, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 26 and 27, 2009, and received by the laboratory on August 27, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ASW01-0070	WB-SO-ASW02-0070
Lab ID:	08-204-01	08-204-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.021	ND		0.020
Toluene	ND		0.10	ND		0.065
Ethyl Benzene	ND		0.10	ND		0.065
m,p-Xylene	ND		0.10	ND		0.065
o-Xylene	ND		0.10	ND		0.065
Surrogate Recovery: Fluorobenzene	101%			104%		

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	WB-SO-AB 08-204-03	T01-0100		WB-SO-BSW01-0020 08-204-04				
	Result	Flags	PQL	Result	Flags	PQL		
Benzene	ND		0.020	ND		0.020		
Toluene	ND		0.061	ND		0.082		
Ethyl Benzene	ND		0.061	ND		0.082		
m,p-Xylene	ND		0.061	ND		0.082		
o-Xylene	ND		0.061	ND		0.082		
Surrogate Recovery: Fluorobenzene	104%			96%				

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	WB-SO-BS 08-204-05	SW02-0020	WB-SO-BSW03-0020 08-204-06				
	Result	Flags	PQL	Result	Flags	PQL	
Benzene	ND		0.020	ND		0.020	
Toluene	ND		0.040	ND		0.050	
Ethyl Benzene	ND		0.040	ND		0.050	
m,p-Xylene	ND		0.040	ND		0.050	
o-Xylene	ND		0.040	ND		0.050	
Surrogate Recovery: Fluorobenzene	100%			107%			

5

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	WB-SO-BSW04-0020 08-204-07		WB-SO-BBT01-0045 08-204-08			
	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.037	ND		0.046
Ethyl Benzene	ND		0.037	ND		0.046
m,p-Xylene	ND		0.037	ND		0.046
o-Xylene	ND		0.037	ND		0.046
Surrogate Recovery: Fluorobenzene	109%			101%		

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	WB-SO-BBT01-1045 08-204-09		WB-SO-ASW03-0050 08-204-10			
	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.047	ND		0.059
Ethyl Benzene	ND		0.047	ND		0.059
m,p-Xylene	ND		0.047	ND		0.059
o-Xylene	ND		0.047	ND		0.059
Surrogate Recovery: Fluorobenzene	101%			108%		

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Fluorobenzene

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
Surrogate Recovery:			

102%

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-204-07 Original	08-204-07 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	109%	106%		

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0828S1 SB	Percent Recovery	SBD0828S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.959	96	0.973	97	2	
Toluene	0.916	92	0.953	95	4	
Ethyl Benzene	0.914	91	0.962	96	5	
m,p-Xylene	0.912	91	0.962	96	5	
o-Xylene	0.933	93	0.976	98	5	

Surrogate Recovery:		
Fluorobenzene	99%	99%

NWTPH-Dx

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASW01-0070	WB-SO-ASW02-0070	WB-SO-ABT01-0100
Lab ID:	08-204-01	08-204-02	08-204-03
Diesel Range:	ND	ND	ND
PQL:	40	33	33
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	81	66	65
Identification:			
Surrogate Recovery			
o-Terphenyl:	72%	78%	71%
Flags:	Y	Y	Y

NWTPH-Dx

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-BSW01-0020	WB-SO-BSW02-0020	WB-SO-BSW03-0020
Lab ID:	08-204-04	08-204-05	08-204-06
Diesel Range:	ND	ND	ND
PQL:	27	26	220
Identification:			
Lube Oil Range:	ND	65	2800
PQL:	54	53	280
Identification:		Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	80%	85%	88%
Flags:	Y	Υ	Y,U1

NWTPH-Dx

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-BSW04-0020	WB-SO-BBT01-0045	WB-SO-BBT01-1045
Lab ID:	08-204-07	08-204-08	08-204-09
Diesel Range:	ND	ND	ND
PQL:	27	27	27
Identification:			
Lube Oil Range:	ND	55	ND
PQL:	54	54	54
Identification:		Lube Oil	
Surrogate Recovery			
o-Terphenyl:	75%	77%	80%
Flags:	Y	Υ	Y

NWTPH-Dx

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASW03-0050
Lab ID:	08-204-10

85%

Diesel Range:	ND
PQL:	32

Identification:

o-Terphenyl:

Lube Oil Range: PQL:	ND 63
Identification:	
Surrogate Recovery	

Flags:	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0827S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification: Surrogate Recovery	
o-Terphenyl:	90%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-204-04	08-204-04 DUP		
Diesel Range:	ND	ND		
PQL:	25	25		
RPD:	N/A			

Surrogate Recovery		
o-Terphenyl:	80%	74%
Flags:	Y	Y

cPAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW01-0070					
Laboratory ID:	08-204-01					
Benzo[a]anthracene	ND	0.011	EPA 8270/SIM	8-27-09	8-31-09	
Chrysene	ND	0.011	EPA 8270/SIM	8-27-09	8-31-09	
Benzo[b]fluoranthene	ND	0.011	EPA 8270/SIM	8-27-09	8-31-09	
Benzo[k]fluoranthene	ND	0.011	EPA 8270/SIM	8-27-09	8-31-09	
Benzo[a]pyrene	ND	0.011	EPA 8270/SIM	8-27-09	8-31-09	
Indeno(1,2,3-c,d)pyrene	ND	0.011	EPA 8270/SIM	8-27-09	8-31-09	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270/SIM	8-27-09	8-31-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	39 - 103				
Pyrene-d10	75	39 - 115				
Terphenyl-d14	73	50 - 118				
				Date	Date	
-------------------------	------------------	----------------	--------------	----------	----------	-------
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW02-0070					
Laboratory ID:	08-204-02					
Benzo[a]anthracene	ND	0.0088	EPA 8270/SIM	8-27-09	8-28-09	
Chrysene	ND	0.0088	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[b]fluoranthene	ND	0.0088	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[k]fluoranthene	ND	0.0088	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[a]pyrene	ND	0.0088	EPA 8270/SIM	8-27-09	8-28-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0088	EPA 8270/SIM	8-27-09	8-28-09	
Dibenz[a,h]anthracene	ND	0.0088	EPA 8270/SIM	8-27-09	8-28-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	39 - 103				
Pyrene-d10	89	39 - 115				
Terphenyl-d14	63	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ABT01-0100					
Laboratory ID:	08-204-03					
Benzo[a]anthracene	ND	0.0087	EPA 8270/SIM	8-27-09	8-28-09	
Chrysene	ND	0.0087	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[k]fluoranthene	ND	0.0087	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[a]pyrene	ND	0.0087	EPA 8270/SIM	8-27-09	8-28-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270/SIM	8-27-09	8-28-09	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270/SIM	8-27-09	8-28-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	39 - 103				
Pyrene-d10	101	39 - 115				
Terphenyl-d14	70	50 - 118				

19

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSW01-0020					
Laboratory ID:	08-204-04					
Benzo[a]anthracene	ND	0.0072	EPA 8270/SIM	8-27-09	8-29-09	
Chrysene	ND	0.0072	EPA 8270/SIM	8-27-09	8-29-09	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270/SIM	8-27-09	8-29-09	
Benzo[k]fluoranthene	ND	0.0072	EPA 8270/SIM	8-27-09	8-29-09	
Benzo[a]pyrene	ND	0.0072	EPA 8270/SIM	8-27-09	8-29-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270/SIM	8-27-09	8-29-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	8-27-09	8-29-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	39 - 103				
Pyrene-d10	97	39 - 115				
Terphenyl-d14	64	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSW02-0020					
Laboratory ID:	08-204-05					
Benzo[a]anthracene	0.0075	0.0070	EPA 8270/SIM	8-27-09	8-29-09	
Chrysene	0.0083	0.0070	EPA 8270/SIM	8-27-09	8-29-09	
Benzo[b]fluoranthene	0.011	0.0070	EPA 8270/SIM	8-27-09	8-29-09	
Benzo[k]fluoranthene	ND	0.0070	EPA 8270/SIM	8-27-09	8-29-09	
Benzo[a]pyrene	0.0084	0.0070	EPA 8270/SIM	8-27-09	8-29-09	
Indeno(1,2,3-c,d)pyrene	0.0071	0.0070	EPA 8270/SIM	8-27-09	8-29-09	
Dibenz[a,h]anthracene	ND	0.0070	EPA 8270/SIM	8-27-09	8-29-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	39 - 103				
Pyrene-d10	91	39 - 115				
Terphenyl-d14	64	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSW03-0020					
Laboratory ID:	08-204-06					
Benzo[a]anthracene	0.034	0.0075	EPA 8270/SIM	8-27-09	8-31-09	
Chrysene	0.088	0.0075	EPA 8270/SIM	8-27-09	8-31-09	
Benzo[b]fluoranthene	0.070	0.0075	EPA 8270/SIM	8-27-09	8-31-09	
Benzo[k]fluoranthene	0.015	0.0075	EPA 8270/SIM	8-27-09	8-31-09	
Benzo[a]pyrene	0.036	0.0075	EPA 8270/SIM	8-27-09	8-31-09	
Indeno(1,2,3-c,d)pyrene	0.022	0.0075	EPA 8270/SIM	8-27-09	8-31-09	
Dibenz[a,h]anthracene	0.010	0.0075	EPA 8270/SIM	8-27-09	8-31-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	88	39 - 103				
Pyrene-d10	87	39 - 115				
Terphenyl-d14	88	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSW04-0020					
Laboratory ID:	08-204-07					
Benzo[a]anthracene	ND	0.0072	EPA 8270/SIM	8-26-09	8-29-09	
Chrysene	ND	0.0072	EPA 8270/SIM	8-26-09	8-29-09	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270/SIM	8-26-09	8-29-09	
Benzo[k]fluoranthene	ND	0.0072	EPA 8270/SIM	8-26-09	8-29-09	
Benzo[a]pyrene	ND	0.0072	EPA 8270/SIM	8-26-09	8-29-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270/SIM	8-26-09	8-29-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	8-26-09	8-29-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	39 - 103				
Pyrene-d10	102	39 - 115				
Terphenyl-d14	70	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BBT01-0045					
Laboratory ID:	08-204-08					
Benzo[a]anthracene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Chrysene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[k]fluoranthene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[a]pyrene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	39 - 103				
Pyrene-d10	91	39 - 115				
Terphenyl-d14	93	50 - 118				

24

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BBT01-1045					
Laboratory ID:	08-204-09					
Benzo[a]anthracene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Chrysene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[k]fluoranthene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[a]pyrene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	8-27-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	39 - 103				
Pyrene-d10	91	39 - 115				
Terphenyl-d14	94	50 - 118				

and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW03-0050					
Laboratory ID:	08-204-10					
Benzo[a]anthracene	ND	0.0084	EPA 8270/SIM	8-27-09	8-30-09	
Chrysene	ND	0.0084	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[k]fluoranthene	ND	0.0084	EPA 8270/SIM	8-27-09	8-30-09	
Benzo[a]pyrene	ND	0.0084	EPA 8270/SIM	8-27-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0084	EPA 8270/SIM	8-27-09	8-30-09	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270/SIM	8-27-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	39 - 103				
Pyrene-d10	90	39 - 115				
Terphenyl-d14	94	50 - 118				

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0827S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-27-09	8-28-09	
Chrysene	ND	0.0067	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	8-27-09	8-28-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	8-27-09	8-28-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	8-27-09	8-28-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	8-27-09	8-28-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	83	39 - 103				
Pyrene-d10	105	39 - 115				
Terphenyl-d14	112	50 - 118				

cPAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

0 0					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-1	59-05									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0528	0.0542	0.0833	0.0833	ND	63	65	29 - 104	3	27	
Acenaphthylene	0.0660	0.0689	0.0833	0.0833	ND	79	83	44 - 111	4	20	
Acenaphthene	0.0683	0.0719	0.0833	0.0833	ND	82	86	45 - 108	5	19	
Fluorene	0.0703	0.0753	0.0833	0.0833	ND	84	90	49 - 113	7	16	
Phenanthrene	0.0701	0.0754	0.0833	0.0833	ND	84	91	43 - 124	7	36	
Anthracene	0.0906	0.0961	0.0833	0.0833	ND	109	115	51 - 115	6	17	
Fluoranthene	0.0854	0.0920	0.0833	0.0833	ND	103	110	42 - 140	7	27	
Pyrene	0.0816	0.0880	0.0833	0.0833	ND	98	106	40 - 140	8	30	
Benzo[a]anthracene	0.0761	0.0844	0.0833	0.0833	ND	91	101	33 - 134	10	21	
Chrysene	0.0719	0.0776	0.0833	0.0833	ND	86	93	32 - 141	8	21	
Benzo[b]fluoranthene	0.0784	0.0850	0.0833	0.0833	ND	94	102	35 - 139	8	32	
Benzo[k]fluoranthene	0.0719	0.0783	0.0833	0.0833	ND	86	94	44 - 124	9	23	
Benzo[a]pyrene	0.0935	0.104	0.0833	0.0833	ND	112	125	34 - 130	11	28	
Indeno(1,2,3-c,d)pyrene	0.0791	0.0874	0.0833	0.0833	ND	95	105	50 - 127	10	20	
Dibenz[a,h]anthracene	0.0704	0.0760	0.0833	0.0833	ND	85	91	58 - 122	8	15	
Benzo[g,h,i]perylene	0.0732	0.0802	0.0833	0.0833	ND	88	96	47 - 126	9	21	
Surrogate:											
2-Fluorobiphenyl						77	81	39 - 103			
Pyrene-d10						103	112	39 - 115			
Terphenyl-d14						94	104	50 - 118			

28

TOTAL LEAD EPA 6010B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-ASW01-0070	08-204-01	ND	8.1
WB-SO-ASW02-0070	08-204-02	ND	6.6
WB-SO-ABT01-0100	08-204-03	ND	6.5
WB-SO-BSW01-0020	08-204-04	ND	5.4
WB-SO-BSW02-0020	08-204-05	ND	5.3
WB-SO-BSW03-0020	08-204-06	55	5.6
WB-SO-BSW04-0020	08-204-07	ND	5.4
WB-SO-BBT01-0045	08-204-08	ND	5.4
WB-SO-BBT01-1045	08-204-09	ND	5.4
WB-SO-ASW03-0050	08-204-10	ND	6.3

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

29

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0831S1

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 8-31-09 Date Analyzed: 8-31-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-204-06

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	49.2	51.8	5		5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-204-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	289	96	286	95	1	

32

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

% MOISTURE

Date Analyzed: 8-27-09

Client ID	Lab ID	% Moisture
WB-SO-ASW01-0070	08-204-01	38
WB-SO-LL-ASW02-0070	08-204-02	24
WB-SO-ABT01-0100	08-204-03	23
WB-SO-BSW01-0020	08-204-04	7
WB-SO-BSW02-0020	08-204-05	5
WB-SO-BSW03-0020	08-204-06	11
WB-SO-BSW04-0020	08-204-07	7
WB-SO-BBT01-0045	08-204-08	8
WB-SO-BBT01-1045	08-204-09	7
WB-SO-ASW03-0050	08-204-10	21

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by		10 WB-SD-ASW03-0050	9 WB-50-BBT01-1045	8 MB-56-BBTD1-0045	2 MB-50-BSW04-0020	0600-50N53-15-GM 7	5 WB-50-BSW02-0720	4 WB-50-BSW01-6020	3 WB-SO-ABTO1-0100	2 WB-SO 455 ASW02-0070	1 WB-SO-ASW01-0070	Company: Project Number: Project Number: Project Number: Project Name: WWAT BAIN TA Project Manager: WWAT BAIN TA Sampled by: NMAN
Reviewed by/Date			1 Name	5 pages	Speaky	futuretrix		8/27/109 09/05 V V	V V Jeegi V	11034	1620	1691	1623	1620	1410	1407	Slauber 1405 Soil 4	Turnaround Request (In working days) L Check One) (Check One) Same Day 1 Day Same Day 3 Day Standard (7 working days) 3 Day (TPH analysis 5 working days) (other) Opte Time # of
			OSII SONAS	2/29 1150	Shbo balltl	Santa antis											XX	NWTPH-Gx/BTEX 67/11/2 NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D PAHs by 8270D / SIM CPAHC
Chromatograms with final report						EIM EDD,	Comments/Special Instructions:		<									PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664 <i>Lund</i> % Moisture

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 31, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0908-205

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 27, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 26, 2009, and received by the laboratory on August 27, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

PAHs EPA 8270D/SIM Analysis

The Spike Blank/Spike Blank Duplicate had one recovery slightly above control limits, due to a small upward bias in the instruments' calibration. No further action was taken.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Ethyl Benzene

Surrogate Recovery: Fluorobenzene

m,p-Xylene

o-Xylene

Client ID:	WB-SO-BS	SP01-0000	WB-SO-BSP02-0000				
Lab ID:	08-205-01			08-205-02			
	Result	Flags	PQL	Result	Flags	PQL	
Benzene	ND		0.020	ND		0.020	
Toluene	ND		0.048	ND		0.063	

ND

ND

ND

101%

0.048

0.048

0.048

ND

ND

ND

106%

OnSite Environmental, Inc.	14648 NE 95 th	¹ Street,	Redmond,	WA	98052 (42	25) 883-3881
----------------------------	---------------------------	----------------------	----------	----	-----------	--------------

0.063

0.063

0.063

3

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	WB-SO-B 08-205-03	WB-SO-BSP03-0000 08-205-03			WB-SO-BSP04-0000 08-205-04		
	Result	Flags	PQL	Result	Flags	PQL	
Benzene	ND		0.020	ND		0.020	
Toluene	ND		0.052	ND		0.044	
Ethyl Benzene	ND		0.052	ND		0.044	
m,p-Xylene	ND		0.052	ND		0.044	
o-Xylene	ND		0.052	ND		0.044	
Surrogate Recovery: Fluorobenzene	108%			105%			

BTEX EPA 8021B

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	WB-SO-B 08-205-05	WB-SO-BSP05-0000 08-205-05			WB-SO-BSP06-0000 08-205-06		
	Result	Flags	PQL	Result	Flags	PQL	
Benzene	ND		0.020	ND		0.020	
Toluene	ND		0.042	ND		0.049	
Ethyl Benzene	ND		0.042	ND		0.049	
m,p-Xylene	ND		0.042	ND		0.049	
o-Xylene	ND		0.042	ND		0.049	
Surrogate Recovery: Fluorobenzene	109%			100%			

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: MB0828S2

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050

Surrogate Recovery: Fluorobenzene 101%

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-205-01 Original	08-205-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	101%	100%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0828S1 SB	Percent Recovery	SBD0828S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.959	96	0.973	97	2	
Toluene	0.916	92	0.953	95	4	
Ethyl Benzene	0.914	91	0.962	96	5	
m,p-Xylene	0.912	91	0.962	96	5	
o-Xylene	0.933	93	0.976	98	5	

Surrogate Recovery:		
Fluorobenzene	99%	99%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

NWTPH-Dx

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-BSP01-0000	WB-SO-BSP02-0000	WB-SO-BSP03-0000
Lab ID:	08-205-01	08-205-02	08-205-03
Diesel Range:	ND	ND	ND
PQL:	43	34	48
Identification:			
Lube Oil Range:	690	430	670
PQL:	54	54	56
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	86%	83%	91%
Flags:	Y,U1	Y,U1	Y,U1

NWTPH-Dx

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-BSP04-0000	WB-SO-BSP05-0000	WB-SO-BSP06-0000
Lab ID:	08-205-04	08-205-05	08-205-06
Diesel Range:	ND	ND	ND
PQL:	74	33	84
Identification:			
Lube Oil Range:	1200	440	1400
PQL:	55	54	53
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	73%	86%	95%
Flags:	Y,U1	Y,U1	Y,U1

10

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0827S1
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Surrogate Recovery	
o-Terphenyl: Flags:	87% Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0827S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Surrogate Recovery o-Terphenyl:	90%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	8-27-09 8-27-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	08-150-07	08-150-07 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	88%	88%
Flags:	Y	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	8-27-09 8-27-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	08-159-02	08-159-02 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery		
o-Terphenyl:	87%	83%

Υ

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Y

14

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSP01-0000					
Laboratory ID:	08-205-01					
Benzo[a]anthracene	0.10	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Chrysene	0.17	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[b]fluoranthene	0.16	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[k]fluoranthene	0.036	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[a]pyrene	0.082	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	0.060	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Dibenz[a,h]anthracene	ND	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	39 - 103				
Pyrene-d10	86	39 - 115				
Terphenyl-d14	89	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSP02-0000					
Laboratory ID:	08-205-02					
Benzo[a]anthracene	0.043	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Chrysene	0.084	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[b]fluoranthene	0.077	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[k]fluoranthene	ND	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[a]pyrene	0.042	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	0.036	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Dibenz[a,h]anthracene	ND	0.036	EPA 8270/SIM	8-28-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	39 - 103				
Pyrene-d10	85	39 - 115				
Terphenyl-d14	87	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSP03-0000					
Laboratory ID:	08-205-03					
Benzo[a]anthracene	0.033	0.0074	EPA 8270/SIM	8-28-09	8-30-09	
Chrysene	0.063	0.0074	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[b]fluoranthene	0.060	0.0074	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[k]fluoranthene	0.014	0.0074	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[a]pyrene	0.033	0.0074	EPA 8270/SIM	8-28-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	0.024	0.0074	EPA 8270/SIM	8-28-09	8-30-09	
Dibenz[a,h]anthracene	0.0077	0.0074	EPA 8270/SIM	8-28-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	39 - 103				
Pyrene-d10	86	39 - 115				
Terphenyl-d14	85	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSP04-0000					
Laboratory ID:	08-205-04					
Benzo[a]anthracene	ND	0.037	EPA 8270/SIM	8-28-09	8-30-09	
Chrysene	0.089	0.037	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[b]fluoranthene	0.067	0.037	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[k]fluoranthene	ND	0.037	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[a]pyrene	ND	0.037	EPA 8270/SIM	8-28-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	ND	0.037	EPA 8270/SIM	8-28-09	8-30-09	
Dibenz[a,h]anthracene	ND	0.037	EPA 8270/SIM	8-28-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	39 - 103				
Pyrene-d10	84	39 - 115				
Terphenyl-d14	86	50 - 118				
				Date	Date	
-------------------------	------------------	----------------	--------------	----------	----------	-------
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSP05-0000					
Laboratory ID:	08-205-05					
Benzo[a]anthracene	0.048	0.0072	EPA 8270/SIM	8-28-09	8-30-09	
Chrysene	0.066	0.0072	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[b]fluoranthene	0.060	0.0072	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[k]fluoranthene	0.016	0.0072	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[a]pyrene	0.031	0.0072	EPA 8270/SIM	8-28-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	0.022	0.0072	EPA 8270/SIM	8-28-09	8-30-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	8-28-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	39 - 103				
Pyrene-d10	95	39 - 115				
Terphenyl-d14	96	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-SBP06-0000					
Laboratory ID:	08-205-06					
Benzo[a]anthracene	0.041	0.0070	EPA 8270/SIM	8-28-09	8-30-09	
Chrysene	0.078	0.0070	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[b]fluoranthene	0.12	0.0070	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[k]fluoranthene	0.027	0.0070	EPA 8270/SIM	8-28-09	8-30-09	
Benzo[a]pyrene	0.066	0.0070	EPA 8270/SIM	8-28-09	8-30-09	
Indeno(1,2,3-c,d)pyrene	0.054	0.0070	EPA 8270/SIM	8-28-09	8-30-09	
Dibenz[a,h]anthracene	0.017	0.0070	EPA 8270/SIM	8-28-09	8-30-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	39 - 103				
Pyrene-d10	89	39 - 115				
Terphenyl-d14	90	50 - 118				

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Chrysene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	39 - 103				
Pyrene-d10	100	39 - 115				
Terphenyl-d14	68	50 - 118				

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	28S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0566	0.0622	0.0833	0.0833	68	75	31 - 102	9	30	
Acenaphthylene	0.0701	0.0740	0.0833	0.0833	84	89	48 - 104	5	26	
Acenaphthene	0.0619	0.0668	0.0833	0.0833	74	80	46 - 105	8	26	
Fluorene	0.0688	0.0715	0.0833	0.0833	83	86	52 - 107	4	25	
Phenanthrene	0.0681	0.0694	0.0833	0.0833	82	83	58 - 104	2	21	
Anthracene	0.0775	0.0787	0.0833	0.0833	93	94	56 - 103	2	21	
Fluoranthene	0.0784	0.0786	0.0833	0.0833	94	94	65 - 111	0	20	
Pyrene	0.0753	0.0752	0.0833	0.0833	90	90	65 - 115	0	20	
Benzo[a]anthracene	0.0768	0.0764	0.0833	0.0833	92	92	55 - 111	1	19	
Chrysene	0.0679	0.0690	0.0833	0.0833	82	83	58 - 121	2	19	
Benzo[b]fluoranthene	0.0786	0.0797	0.0833	0.0833	94	96	57 - 120	1	20	
Benzo[k]fluoranthene	0.0842	0.0849	0.0833	0.0833	101	102	52 - 123	1	21	
Benzo[a]pyrene	0.0925	0.0934	0.0833	0.0833	111	112	49 - 106	1	22	II
Indeno(1,2,3-c,d)pyrene	0.0820	0.0809	0.0833	0.0833	98	97	56 - 125	1	22	
Dibenz[a,h]anthracene	0.0852	0.0848	0.0833	0.0833	102	102	55 - 129	0	24	
Benzo[g,h,i]perylene	0.0837	0.0825	0.0833	0.0833	100	99	55 - 122	1	23	
Surrogate:										
2-Fluorobiphenyl					71	77	39 - 103			
Pyrene-d10					100	100	39 - 115			
Terphenyl-d14					68	69	50 - 118			

22

TOTAL LEAD EPA 6010B

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-BSP01-0000	08-205-01	18	5.4
WB-SO-BSP02-0000	08-205-02	17	5.4
WB-SO-BSP03-0000	08-205-03	13	5.6
WB-SO-BSP04-0000	08-205-04	20	5.5
WB-SO-BSP05-0000	08-205-05	10	5.4
WB-SO-BSP06-0000	08-205-06	7.7	5.3

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0827S2

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:8-27-09Date Analyzed:8-27-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-157-21

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	8.45	8.90	5	5.0	

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	8-27-09
Date Analyzed:	8-27-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-157-21

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	223	86	239	92	7	

% MOISTURE

Date Analyzed: 8-27-09

Client ID	Lab ID	% Moisture
WB-SO-BSP01-0000	08-205-01	8
WB-SO-BSP02-0000	08-205-02	8
WB-SO-BSP03-0000	08-205-03	10
WB-SO-BSP04-0000	08-205-04	9
WB-SO-BSP05-0000	08-205-05	8
WB-SO-BSP06-0000	08-205-06	5

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Signature A			6 WB-50-BS706-0000	5 WB-51-BSP15-0000	4 WB-50-85 PO-1-0000	3 WB-50-B5703-0000	2 WB-50-BSP02-0700	1 WB-50-BSP01-0770	Lab ID Sample Identification	Sample up L. UNNUL	D. DINKMAN	Project Manager:	Project Name:	Project Number: 235 - 1577 - 024	Parametrix	Phone: (425) 883-3881 • Fax: (425) 885-4603	Environmental Inc.	MA OnSite
										4					Seletor	Date Sampled		 	(TP		X N D	San			
Reviewed by/Date			ARE	a all	Speed	Parame	Company			1548	542	153/1	1536	1532	1520 Stil	Time Sampled Matrix	(other)		ndard (7 working d H analysis 5 worki		av	ne Day	(Check One)	Turnaround Reque (in working days)	Chain
			0	þ	¢-	frix		-	 -	<i><</i>					Ļ	Contended of NWTF	ин-нс		ays) ng days)		3 Dav	1 Day			of Cu
f :			8276	1/2/2	827/09	2/12/2				<				»	××	NWTF NWTF	PH-Gx PH-Dx		r op	ly	/			aborator	Istod
			8 1150	1120	54120	24 W	and the second									Haloge Semiv	es by enated olatile	d Vola	tiles t 3270E	oy 82)	260B			y Numbe	V
Chron			\mathcal{O}			~\	Comine			←					X	PAHs PCBs Pestici	by 82 by 80 ides b	70D / 82 v 808	SIM	cP	AHz		Regi	Ť	
latograms v							nis/Special) In									Herbic Total F	ides I RCRA	by 818 Meta	51A Is (8)				nesiled/An	0	
vith final re							structions									TCLP HEM t	Metal	s 64					alvsis	8-2	
port										<						heo	rd							0500	Page
																% Mo	isturo							-204	

ITON LEGEND: White - Onsite Copy Tellow - Report Copy Plink - Cilent Copy

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 1, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0908-211

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 28, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 27, 2009, and received by the laboratory on August 28, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

PAHs EPA 8270D/SIM Analysis

The Spike Blank/Spike Blank Duplicate had one recovery slightly above control limits, due to a small upward bias in the instruments' calibration. No further action was taken.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

BTEX EPA 8021B

Date Extracted:	8-30-09
Date Analyzed:	8-30-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ASW04-0070	WB-SO-ABT02-0100
Lab ID:	08-211-01	08-211-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.066	ND		0.079
Ethyl Benzene	ND		0.066	ND		0.079
m,p-Xylene	ND		0.066	ND		0.079
o-Xylene	ND		0.066	ND		0.079
Surrogate Recovery: Fluorobenzene	100%			117%		

BTEX EPA 8021B

Date Extracted:	8-30-09
Date Analyzed:	8-30-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ABT03-0100	WB-SO-ASW05-0065
Lab ID:	08-211-03	08-211-04

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.074	ND		0.055
Ethyl Benzene	ND		0.074	ND		0.055
m,p-Xylene	ND		0.074	ND		0.055
o-Xylene	ND		0.074	ND		0.055
Surrogate Recovery: Fluorobenzene	96%			100%		

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-30-09
Date Analyzed:	8-30-09

Matrix: Soil Units: mg/kg (ppm)

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050

Surrogate Recovery: Fluorobenzene 92%

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	8-30-09
Date Analyzed:	8-30-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-212-03 Original	08-212-03 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	95%	96%		

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	8-30-09
Date Analyzed:	8-30-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0830S1 SB	Percent Recovery	SBD0830S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.899	90	0.916	92	2	
Toluene	0.983	98	0.976	98	1	
Ethyl Benzene	1.01	101	1.02	102	1	
m,p-Xylene	1.05	105	1.04	104	1	
o-Xylene	1.04	104	1.04	104	0	

Surrogate Recovery:		
Fluorobenzene	94%	93%

7

NWTPH-Dx

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASW04-0070	WB-SO-ABT02-0100	WB-SO-ABT03-0100
Lab ID:	08-211-01	08-211-02	08-211-03
Diseal Danses			ND
Diesel Range:	ND	ND	ND
PQL:	32	39	35
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	63	77	70
Identification:			
Surrogate Recovery			
o-Terphenyl:	76%	77%	68%
Flags:	Y	Y	Y

NWTPH-Dx

Date Extracted:	8-28-09
Date Analyzed:	8-28-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASW05-0065
Lab ID:	08-211-04
Diesel Range:	ND
PQL:	30
Identification:	
Lube Oil Range:	ND
PQL:	60
Identification:	
Surrogate Recovery	
o-Terphenyl:	75%
Flags:	Y

9

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	8-28-09 8-28-09
Matrix: Units:	Soil mg/kg (ppm)
Lab ID:	MB0828S1
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification:	
Surrogate Recovery o-Terphenyl:	94%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	8-28-09 8-28-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	08-211-04	08-211-04 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery		
o-Terphenyl:	75%	69%
Flags:	Y	Y

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW04-0070					
Laboratory ID:	08-211-01					
Benzo[a]anthracene	ND	0.0084	EPA 8270/SIM	8-28-09	8-31-09	
Chrysene	ND	0.0084	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[k]fluoranthene	ND	0.0084	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[a]pyrene	ND	0.0084	EPA 8270/SIM	8-28-09	8-31-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0084	EPA 8270/SIM	8-28-09	8-31-09	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270/SIM	8-28-09	8-31-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	39 - 103				
Pyrene-d10	82	39 - 115				
Terphenyl-d14	80	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ABT02-0100					
Laboratory ID:	08-211-02					
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	8-28-09	8-31-09	
Chrysene	ND	0.010	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[k]fluoranthene	ND	0.010	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	8-28-09	8-31-09	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	8-28-09	8-31-09	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	8-28-09	8-31-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	39 - 103				
Pyrene-d10	71	39 - 115				
Terphenyl-d14	71	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ABT03-0100					
Laboratory ID:	08-211-03					
Benzo[a]anthracene	ND	0.0094	EPA 8270/SIM	8-28-09	8-31-09	
Chrysene	ND	0.0094	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[k]fluoranthene	ND	0.0094	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[a]pyrene	ND	0.0094	EPA 8270/SIM	8-28-09	8-31-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270/SIM	8-28-09	8-31-09	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270/SIM	8-28-09	8-31-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	39 - 103				
Pyrene-d10	87	39 - 115				
Terphenyl-d14	86	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW05-0065					
Laboratory ID:	08-211-04					
Benzo[a]anthracene	ND	0.0079	EPA 8270/SIM	8-28-09	8-31-09	
Chrysene	ND	0.0079	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[k]fluoranthene	ND	0.0079	EPA 8270/SIM	8-28-09	8-31-09	
Benzo[a]pyrene	ND	0.0079	EPA 8270/SIM	8-28-09	8-31-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270/SIM	8-28-09	8-31-09	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	8-28-09	8-31-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	39 - 103				
Pyrene-d10	81	39 - 115				
Terphenyl-d14	79	50 - 118				

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0828S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Chrysene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	8-28-09	8-29-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	39 - 103				
Pyrene-d10	100	39 - 115				
Terphenyl-d14	68	50 - 118				

PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

						Pere	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	F	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB08	28S1									
	SB	SBD	SB	SBD	5	SB	SBD				
Naphthalene	0.0566	0.0622	0.0833	0.0833	6	68	75	31 - 102	9	30	
Acenaphthylene	0.0701	0.0740	0.0833	0.0833	8	84	89	48 - 104	5	26	
Acenaphthene	0.0619	0.0668	0.0833	0.0833	7	74	80	46 - 105	8	26	
Fluorene	0.0688	0.0715	0.0833	0.0833	8	83	86	52 - 107	4	25	
Phenanthrene	0.0681	0.0694	0.0833	0.0833	8	82	83	58 - 104	2	21	
Anthracene	0.0775	0.0787	0.0833	0.0833	ę	93	94	56 - 103	2	21	
Fluoranthene	0.0784	0.0786	0.0833	0.0833	ę	94	94	65 - 111	0	20	
Pyrene	0.0753	0.0752	0.0833	0.0833	ę	90	90	65 - 115	0	20	
Benzo[a]anthracene	0.0768	0.0764	0.0833	0.0833	ę	92	92	55 - 111	1	19	
Chrysene	0.0679	0.0690	0.0833	0.0833	8	82	83	58 - 121	2	19	
Benzo[b]fluoranthene	0.0786	0.0797	0.0833	0.0833	ę	94	96	57 - 120	1	20	
Benzo[k]fluoranthene	0.0842	0.0849	0.0833	0.0833	1	01	102	52 - 123	1	21	
Benzo[a]pyrene	0.0925	0.0934	0.0833	0.0833	1	11	112	49 - 106	1	22	I
Indeno(1,2,3-c,d)pyrene	0.0820	0.0809	0.0833	0.0833	ę	98	97	56 - 125	1	22	
Dibenz[a,h]anthracene	0.0852	0.0848	0.0833	0.0833	1	02	102	55 - 129	0	24	
Benzo[g,h,i]perylene	0.0837	0.0825	0.0833	0.0833	1	00	99	55 - 122	1	23	
Surrogate:											
2-Fluorobiphenyl						71	77	39 - 103			
Pyrene-d10					1	00	100	39 - 115			
Terphenyl-d14					6	68	69	50 - 118			

TOTAL LEAD EPA 6010B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-ASW04-0070	08-211-01	ND	6.3
WB-SO-ABT02-0100	08-211-02	ND	7.7
WB-SO-ABT03-0100	08-211-03	ND	7.0
WB-SO-ASW05-0065	08-211-04	ND	6.0

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0831S1

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 8-31-09 Date Analyzed: 8-31-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-204-06

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	49.2	51.8	5		5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-204-06

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	289	96	286	95	1	

21

% MOISTURE

Date Analyzed:	8-28-09		
Client ID		Lab ID	% Moisture
WB-SO-ASW04-0070)	08-211-01	21
WB-SO-ABT02-0100		08-211-02	35
WB-SO-ABT03-0100		08-211-03	29
WB-SO-ASW05-0065	5	08-211-04	16

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

· ·	Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by				4 WB-60-ASW05-0065	3 WB-SO-ABT03-0100	-WB-50-A-ha	WB-SD-ASWOG-LA	2 WB-SI - A BTO2 -0100	1 WB-SO-ASW02-0070	L-UNAL Labur Samale lightifustion	Sampled by:	Project Manager	235-1577-124	Friend Number	Phone: (425) 883-3881 • Fax: (425) 885-4603	Environmental Inc.	MA OnSite
DISTRIBUTION LEGEND: White - OnSite Copy	Reviewed by/Date	13260	here we	Speedy	Perandrix	Panane trix	Vinametrix	company		,	ganlog heurs sont 4	Santin 1600 Sout 4			4 ITAS CHUI POLICA	Vanlua 1010 Sin 1 4	(other) Date Time # of Sampled Sampled Watrix Cont.		Standard (7 working days) (TPH analysis 5 working days)	X 2 Day 3 Day	Same Day 1 Day	(Check One)	Turnaround Request (In working days)	Chain of C
Yellow - Report Copy Pink - Client Copy	Chr	2009 1365	82109 13:05	0260 6/21/B	\$12x107 0920	207 0 80/8 T/8	-51/10-178157715-E	pare prine - Chick			×× ×	XX				XX	NWTPH-G NWTPH-D Volatiles b Halogenat Semivolati PAHs by 8 PCBs by 8	x/BTEX x y 8260B ed Volat les by 8 270D / 5 082	iles by 270D) 8260B 2 PAt		.	_aboratory Number:	ustody
	romatograms with final report						EIM EDD6	Alphand Budgh Budges in Sh			×.				×	×	Pesticides Herbicides Total RCR. TCLP Meta HEM by 16	by 8081 by 815 A Metals als 564	A 1A s (8)			equested Analysis	8 0	Page
											E	\times			\leftarrow	×	% Moistur	e						of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 3, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 04/05 Laboratory Reference No. 0908-217

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 28, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures
Case Narrative

Samples were collected on August 28, 2009, and received by the laboratory on August 28, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP01-0005	WB-SO-ASP02-0005	WB-SO-ASP03-0005
Lab ID:	08-217-01	08-217-02	08-217-03
Diesel Range:	65	140	ND
PQL:	29	31	56
Identification:	Diesel Range Organics	Diesel Range Organics	
Lube Oil Range:	540	840	570
PQL:	57	62	58
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	121%	125%	123%
Flags:	Y,N	Y,N	Y,U1

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP04-0005	WB-SO-ASP05-0005	WB-SO-ASP06-0005
Lab ID:	08-217-04	08-217-05	08-217-06
Diesel Range:	120	ND	45
PQL:	27	65	28
Identification:	Diesel Range Organics		Diesel Range Organics
Lube Oil Range:	980	490	330
PQL:	54	54	56
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	98%	90%	125%
Flags:	Y,N	Y,U1	Y,N

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP07-0005	WB-SO-ASP08-0005	WB-SO-ASP08-1005
Lab ID:	08-217-07	08-217-08	08-217-09
Diesel Range:	2300	340	380
PQL:	150	31	31
Identification:	Diesel Range Organics	Diesel Range Organics	Diesel Range Organics
Lube Oil Range:	6400	1000	910
PQL:	310	61	62
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery	070/	1070/	210/
o-ierpnenyi:	81%	127%	81%
Flags:	Y,N	Y,N	Y

5

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP09-0005	WB-SO-ASP10-0005	WB-SO-ASP11-0005
Lab ID:	08-217-10	08-217-11	08-217-12
Diesel Range:	3000	3300	2400
PQL:	150	150	150
Identification:	Diesel Range Organics	Diesel Range Organics	Diesel Range Organics
Lube Oil Range:	4400	5500	3800
PQL:	300	290	300
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	91%	90%	90%
Flags:	Υ	Υ	Y

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP12-0005	WB-SO-ASW06-0060	WB-SO-ABT04-0100
Lab ID:	08-217-13	08-217-16	08-217-17
Diesel Range:	90	ND	ND
PQL:	29	33	37
Identification:	Diesel Range Organics		
Lube Oil Range:	240	69	ND
PQL:	59	65	75
Identification:	Lube Oil	Lube Oil	
Surrogate Recovery			
o-Terphenyl:	85%	86%	85%
Flags:	Υ	Y	Υ

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASW07-0070	WB-SO-ASW07-1070
Lab ID:	08-217-18	08-217-19
Diesel Range:	ND	ND
PQL:	31	32
Identification:		
Lube Oil Range:	76	ND
PQL:	61	63
Identification:	Lube Oil	
Surrogate Recovery		
o-Terphenyl:	77%	124%
Flags:	Y	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0831S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification:	
Surrogate Recovery o-Terphenyl:	130%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	8-31-09 8-31-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	08-217-06	08-217-06 DUP
Diesel Range: PQL:	40.5 25	41.3 25
RPD:	2	
Surrogate Recovery		
o-Terphenyl:	125%	108%
Flags:	Y,N	Y,N

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-221-01	08-221-01 DUP
Diesel Range:	ND	ND
PQL:	25	25
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	98%	95%
Flags:	Y	Y
i lagoi	•	•

NWTPH-Dx

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-CSP01-0005	WB-SO-CSP02-0005	
Lab ID:	08-217-14	08-217-15	
Diesel Range:	ND	ND	
PQL:	81	82	
Identification:			
Lube Oil Range:	1400	680	
PQL:	57	54	
Identification:	Lube Oil	Lube Oil	
Surrogate Recovery			
o-Terphenyl:	80%	86%	
Flags:	Y,U1	Y,U1	

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0901S1
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Surrogate Recovery	
Flags:	65% Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Flags:

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-224-02	08-224-02 DUP
Diesel Range: PQL:	ND 107	ND 91
RPD:	N/A	
Surrogate Recovery o-Terphenyl:	76%	77%

Y,U1

Y,U1

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP01-0005					
Laboratory ID:	08-217-01					
Benzo[a]anthracene	0.028	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.063	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.024	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.015	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.025	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.012	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	39 - 103				
Pyrene-d10	73	39 - 115				
Terphenyl-d14	91	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP02-0005					
Laboratory ID:	08-217-02					
Benzo[a]anthracene	0.029	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.11	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.024	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.012	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.033	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	39 - 103				
Pyrene-d10	78	39 - 115				
Terphenyl-d14	106	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP03-0005					
Laboratory ID:	08-217-03					
Benzo[a]anthracene	0.049	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.088	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.057	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.038	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.037	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.025	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.0094	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	39 - 103				
Pyrene-d10	73	39 - 115				
Terphenyl-d14	109	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP04-0005					
Laboratory ID:	08-217-04					
Benzo[a]anthracene	0.020	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.056	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.021	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.013	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.021	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.0095	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	39 - 103				
Pyrene-d10	78	39 - 115				
Terphenyl-d14	115	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP05-0005					
Laboratory ID:	08-217-05					
Benzo[a]anthracene	0.056	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.11	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.098	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.054	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.063	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.049	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.018	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	39 - 103				
Pyrene-d10	75	39 - 115				
Terphenyl-d14	112	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP06-0005					
Laboratory ID:	08-217-06					
Benzo[a]anthracene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.017	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.0097	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	39 - 103				
Pyrene-d10	79	39 - 115				
Terphenyl-d14	107	50 - 118				

20

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP07-0005					
Laboratory ID:	08-217-07					
Benzo[a]anthracene	0.085	0.082	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.44	0.082	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.096	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.024	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.072	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.0092	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	39 - 103				
Pyrene-d10	71	39 - 115				
Terphenyl-d14	91	50 - 118				

and is intended only for the use of the individual or company to whom it is addressed.

21

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP08-0005					
Laboratory ID:	08-217-08					
Benzo[a]anthracene	0.14	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.21	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.10	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.081	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.11	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.047	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.020	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	39 - 103				
Pyrene-d10	78	39 - 115				
Terphenyl-d14	91	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP08-1005					
Laboratory ID:	08-217-09					
Benzo[a]anthracene	0.031	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.098	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.025	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.014	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.029	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.012	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	39 - 103				
Pyrene-d10	76	39 - 115				
Terphenyl-d14	100	50 - 118				

and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP09-0005					
Laboratory ID:	08-217-10					
Benzo[a]anthracene	0.35	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.70	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.13	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.036	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.20	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.045	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.015	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	39 - 103				
Pyrene-d10	102	39 - 115				
Terphenyl-d14	96	50 - 118				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP10-0005					
Laboratory ID:	08-217-11					
Benzo[a]anthracene	0.23	0.078	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.59	0.078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.12	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.078	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.20	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.040	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.030	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	39 - 103				
Pyrene-d10	99	39 - 115				
Terphenyl-d14	97	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP11-0005					
Laboratory ID:	08-217-12					
Benzo[a]anthracene	0.23	0.16	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.62	0.16	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.10	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.042	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.22	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.021	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.018	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	39 - 103				
Pyrene-d10	88	39 - 115				
Terphenyl-d14	89	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP12-0005					
Laboratory ID:	08-217-13					
Benzo[a]anthracene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.015	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[a]pyrene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	39 - 103				
Pyrene-d10	84	39 - 115				
Terphenyl-d14	96	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CSP01-0005					
Laboratory ID:	08-217-14					
Benzo[a]anthracene	0.23	0.036	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.43	0.036	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.37	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.25	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.25	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.14	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.039	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	39 - 103				
Pyrene-d10	81	39 - 115				
Terphenyl-d14	96	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CSP02-0005					
Laboratory ID:	08-217-15					
Benzo[a]anthracene	0.12	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.23	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.21	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.12	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.13	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.11	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.030	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	39 - 103				
Pyrene-d10	79	39 - 115				
Terphenyl-d14	96	50 - 118				

29

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW06-0060					
Laboratory ID:	08-217-16					
Benzo[a]anthracene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.022	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[a]pyrene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	39 - 103				
Pyrene-d10	79	39 - 115				
Terphenyl-d14	92	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ABT04-0100					
Laboratory ID:	08-217-17					
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	39 - 103				
Pyrene-d10	71	39 - 115				
Terphenyl-d14	96	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW07-0070					
Laboratory ID:	08-217-18					
Benzo[a]anthracene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	39 - 103				
Pyrene-d10	69	39 - 115				
Terphenyl-d14	101	50 - 118				

32

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW07-1070					
Laboratory ID:	08-217-19					
Benzo[a]anthracene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[a]pyrene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	39 - 103				
Pyrene-d10	71	39 - 115				
Terphenyl-d14	105	50 - 118				

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0901S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	39 - 103				
Pyrene-d10	98	39 - 115				
Terphenyl-d14	95	50 - 118				

cPAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	01S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0662	0.0653	0.0833	0.0833	79	78	31 - 102	1	30	
Acenaphthylene	0.0678	0.0658	0.0833	0.0833	81	79	48 - 104	3	26	
Acenaphthene	0.0708	0.0688	0.0833	0.0833	85	83	46 - 105	3	26	
Fluorene	0.0721	0.0712	0.0833	0.0833	87	85	52 - 107	1	25	
Phenanthrene	0.0717	0.0709	0.0833	0.0833	86	85	58 - 104	1	21	
Anthracene	0.0699	0.0691	0.0833	0.0833	84	83	56 - 103	1	21	
Fluoranthene	0.0764	0.0757	0.0833	0.0833	92	91	65 - 111	1	20	
Pyrene	0.0794	0.0788	0.0833	0.0833	95	95	65 - 115	1	20	
Benzo[a]anthracene	0.0697	0.0694	0.0833	0.0833	84	83	55 - 111	0	19	
Chrysene	0.0792	0.0791	0.0833	0.0833	95	95	58 - 121	0	19	
Benzo[b]fluoranthene	0.0788	0.0775	0.0833	0.0833	95	93	57 - 120	2	20	
Benzo[k]fluoranthene	0.0784	0.0825	0.0833	0.0833	94	99	52 - 123	5	21	
Benzo[a]pyrene	0.0695	0.0716	0.0833	0.0833	83	86	49 - 106	3	22	
Indeno(1,2,3-c,d)pyrene	0.0772	0.0781	0.0833	0.0833	93	94	56 - 125	1	22	
Dibenz[a,h]anthracene	0.0789	0.0800	0.0833	0.0833	95	96	55 - 129	1	24	
Benzo[g,h,i]perylene	0.0782	0.0788	0.0833	0.0833	94	95	55 - 122	1	23	
Surrogate:										
2-Fluorobiphenyl					81	77	39 - 103			
Pyrene-d10					91	92	39 - 115			
Terphenyl-d14					91	90	50 - 118			

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ASP01-0005	WB-SO-ASP02-0005
Lab ID:	08-217-01	08-217-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.070	ND		0.062
Ethyl Benzene	ND		0.070	ND		0.062
m,p-Xylene	ND		0.070	ND		0.062
o-Xylene	ND		0.070	ND		0.062
Surrogate Recovery: Fluorobenzene	92%			84%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-S0-ASP03-0005	WB-SO-ASP04-0005
Lab ID:	08-217-03	08-217-04

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.061	ND		0.065
Ethyl Benzene	ND		0.061	ND		0.065
m,p-Xylene	ND		0.061	ND		0.065
o-Xylene	ND		0.061	ND		0.065
Surrogate Recovery: Fluorobenzene	95%			95%		

37
BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Client ID:	WB-SO-ASP05-0005			WB-SO-ASP05-0005 WB-SO	WB-SO-AS)-ASP06-0005		
Lab ID:	08-217-05	08-217-05			08-217-06			
	Result	Flags	PQL	Result	Flags	PQL		

	6			•
Benzene	ND	0.020	ND	0.020
Toluene	ND	0.060	ND	0.063
Ethyl Benzene	ND	0.060	ND	0.063
m,p-Xylene	ND	0.060	ND	0.063
o-Xylene	ND	0.060	ND	0.063
Surrogate Recovery: Fluorobenzene	90%		86%	

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Client ID:	WB-SO-ASP07-0005	WB-SO-ASP08-0005
Lab ID:	08-217-07	08-217-08

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.074	ND		0.078
Ethyl Benzene	0.14		0.074	ND		0.078
m,p-Xylene	0.22		0.074	ND		0.078
o-Xylene	ND		0.074	ND		0.078
Surrogate Recovery: Fluorobenzene	87%			86%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Client ID:	WB-SO-ASP08-1005	WB-SO-ASP09-0005
Lab ID:	08-217-09	08-217-10

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	0.021		0.020
Toluene	ND		0.081	ND		0.070
Ethyl Benzene	ND		0.081	ND		0.070
m,p-Xylene	ND		0.081	ND		0.070
o-Xylene	ND		0.081	0.12		0.070
Surrogate Recovery: Fluorobenzene	94%			90%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Client ID:	WB-SO-ASP10-0005	WB-SO-ASP11-0005
Lab ID:	08-217-11	08-217-12

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.061	ND		0.070
Ethyl Benzene	ND		0.061	ND		0.070
m,p-Xylene	ND		0.061	ND		0.070
o-Xylene	ND		0.061	ND		0.070
Surrogate Recovery: Fluorobenzene	94%			93%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ASP12-0005	WB-SO-ASW06-0060
Lab ID:	08-217-13	08-217-16

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.073	ND		0.081
Ethyl Benzene	ND		0.073	ND		0.081
m,p-Xylene	ND		0.073	ND		0.081
o-Xylene	ND		0.073	ND		0.081
Surrogate Recovery: Fluorobenzene	91%			98%		

42

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Client ID:	WB-SO-ABT04-0100	WB-SO-ASW07-0070
Lab ID:	08-217-17	08-217-18

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.021	ND		0.020
Toluene	ND		0.10	ND		0.074
Ethyl Benzene	ND		0.10	ND		0.074
m,p-Xylene	ND		0.10	ND		0.074
o-Xylene	ND		0.10	ND		0.074
Surrogate Recovery: Fluorobenzene	107%			95%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ASW07-1070
Lab ID:	08-217-19

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.086
Ethyl Benzene	ND		0.086
m,p-Xylene	ND		0.086
o-Xylene	ND		0.086
Surrogate Recovery: Fluorobenzene	95%		

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Fluorobenzene

Lab ID: MB0831S1

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
Surrogate Recovery:			

93%

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

MB0831S2

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
Surrogate Recovery: Fluorobenzene	92%		

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-217-05 Original	08-217-05 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	90%	89%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Lab ID:	08-217-19 Original	08-217-19 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	95%	90%		

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0831S1 SB	Percent Recovery	SB0831S1 DUP SBD	Percent Recovery	RPD	Flags
Benzene	0.947	95	0.979	98	3	
Toluene	1.01	101	1.02	102	2	
Ethyl Benzene	0.994	99	1.02	102	3	
m,p-Xylene	1.05	105	1.06	106	1	
o-Xylene	1.02	102	1.04	104	2	

Surrogate Recovery:		
Fluorobenzene	89%	93%

49

TOTAL LEAD EPA 6010B

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-ASP01-0005	08-217-01	11	5.7
WB-SO-ASP02-0005	08-217-02	15	6.2
WB-SO-ASP03-0005	08-217-03	13	5.8
WB-SO-ASP04-0005	08-217-04	ND	5.4
WB-SO-ASP05-0005	08-217-05	14	5.4
WB-SO-ASP06-0005	08-217-06	10	5.6
WB-SO-ASP07-0005	08-217-07	ND	6.2
WB-SO-ASP08-0005	08-217-08	ND	6.1
WB-SO-ASP08-1005	08-217-09	8.3	6.2
WB-SO-ASP09-0005	08-217-10	6.4	6.0
WB-SO-ASP10-0005	08-217-11	14	5.8
WB-SO-ASP11-0005	08-217-12	ND	6.1
WB-SO-ASP12-0005	08-217-13	ND	5.9
WB-SO-ASW06-0060	08-217-16	ND	6.5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL LEAD EPA 6010B

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-ABT04-0100	08-217-17	ND	7.5
WB-SO-ASW07-0070	08-217-18	ND	6.1
WB-SO-ASW07-1070	08-217-19	ND	6.3

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0901S2

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-1-09 Date Analyzed: 9-1-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-217-01

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	9.67	5.46	56	С	5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:SoilUnits:mg/kg (ppm)

Lab ID: 08-217-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	222	85	217	83	2	

% MOISTURE

Date Analyzed:	8-31-09	
Client ID	Lab ID	% Moisture
WB-SO-ASP01-0005	08-217-01	13
WB-SO-ASP02-0005	08-217-02	19
WB-SO-ASP03-0005	08-217-03	14
WB-SO-ASP04-0005	08-217-04	8
WB-SO-ASP05-0005	08-217-05	8
WB-SO-ASP06-0005	08-217-06	10
WB-SO-ASP07-0005	08-217-07	19
WB-SO-ASP08-0005	08-217-08	18
WB-SO-ASP08-1005	08-217-09	19
WB-SO-ASP09-0005	08-217-10	17
WB-SO-ASP10-0005	08-217-11	14
WB-SO-ASP11-0005	08-217-12	18
WB-SO-ASP12-0005	08-217-13	15
WB-SO-CSP01-0005	08-217-14	110
WB-SO-CSP02-0005	08-217-15	110
WB-SO-ASW06-0060	08-217-16	23
WB-SO-ABT04-0100	08-217-17	33
WB-SO-ASW07-0070	08-217-18	18
WB-SO-ASW07-1070	08-217-19	21

55

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

	rams with final report \Box	Chromatog				Date	Reviewed by/I			Reviewed by/Date
										Received by
		<u> </u>			4		((),	Relinquished by
			1745	28/08	Ø	R	Xa/	l	2NC	Received by
			5HO	28/09	8		, h)		A	Relinquished by
			الدعا	23/09	9		Souch		P	Received by
· day TAT)	Undah, 169-23(2	(S)AI	1620	122/09	¢.	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Parane		By Ney	Relinquished by
	pecial instructions:	Comments/S)			DEIO		Company		Signature	
			<u> </u>	\times			10:20	\langle	Sa-Aspag- atas	S-gn of
	XX		X	$\overline{\mathbf{x}}$			51:01		-St-ASpt8- 1005	A WB-
	X		×	>			21:01		SO-ASPOB - OUUS	S WB-S
	XXX			\mathbf{i}			10:05		Sr - ASP07 -0005	7 WB-S
	XX		×.	\succ			0950		o-ASPOG-ORDS	6 MB-SO
	XX		×	\times			0940		50-1-1505- CEUS	S-BM C
; ;	XX			\times			0930		5-ASP14-0055	41350
	XX		×	\times			0920		0-ASP03-CESS	3 3-50
	XX		×.	\prec			0160		50-ASP02-005	2 MB-S
X	XX		×	\times		So 4	- 2060 boye	2/8	50- ASPOI - 0005	1 MBES
% Mo	Total F TCLP HEM t 2 Z	PCBs Pestici Herbic	Halogo Semiv	NWTF Volatil	NWTF NWTF	# of Eltix Cont.	Time ed Sampled M	Date Sampl	Sample Identification	LabiD
isture	ACRA Metals Dy 166	by 808 ides by	olatiles	PH-Dx	PH-HC PH-Gx/)	(other		HARDY	Sampled by:
	Metals	32 / 8081/ y 8151	Volatil s by 82 OD / S	3260B	ID BTEX	working days)	(TPH analysis 5 V]	UNTERZ	Project Manager:
	(8)	A A .	es by 70D IM			ing days)	Standard (7 work		FBAX PARK	Project Name:
			8260E			🗌 3 Day	2 Day		-1577024 04/05	- 232 -
						1 Day	Same Day		FRAME/PLIX	Droiect Number
	ed Analysis	Request				ne)	(Check O		hone: (425) 883-3881 • Fax: (425) 885-4603	Company: O
08-217			Number:	ratory I	Labo	equest days)	Turnaround R (in working)		invironmental Inc.	
ige of	Pa			ody	Just	lin of (Cha		Insite	

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Project Number: Sampled by: R. HARDY Project Name: Project Manager: **END** Company: Relinquished by Received by Received by Relinquished by 3 hub -Sa - ASIP12 - OUUS Reviewed by/Date Received by Relinquished by \sim б WS-SC-ASW07-1070 MB-50- (15pg 1-0005 WR-SO-ASW07-0070 MB-SO-ASD 11 - 0005 MB-50- HSW06-0060 JB-SO-ABTOH -000 MB-50-HSP10-2005 B-SO-CSP02- 0055 APA MELICIX Phone: (425) 883-3881 • Fax: (425) 885-4603 **Environmental Inc.** Ĵ InSite Sample Identification HAN HAR HD HZQ-UI SOL DISTRIBUTION LEGEND: White - OnSite Copy CA **GETTER HEIG** Day A A Standard (7 working days) Same Day (TPH analysis 5 working days 0280 1220 Turnaround Request (in working days) Suercy Company 1250 10:50 216 sempled Wein Parametrix 9401 1250 S Reviewed by/Date **Sunn** 1032 (Check One) Chain of Custody (other) 🗌 3 Day 🗌 1 Day font; NWTPH-HCID Yellow - Report Copy Laboratory Number: DAG NWTPH-Gx/BTEX 8/20109 8/28/07 Ø 8 NWTPH-Dx \succ Volatiles by 8260B SUM Halogenated Volatiles by 8260B Pink - Client Copy 1620 042 1620 Semivolatiles by 8270D AHe by 8270D / SIM **Comments/Special Instructions** PCBs by 8082 Chromatograms with final report Requested Analysis (2) Addred 91, 109. 28 (2 day TAT Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664 LEAD RIE \times Page 08-217 앜 ည % Moisture

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 3, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 04/05 Laboratory Reference No. 0908-217

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 28, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 28, 2009, and received by the laboratory on August 28, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP01-0005	WB-SO-ASP02-0005	WB-SO-ASP03-0005
Lab ID:	08-217-01	08-217-02	08-217-03
Diesel Range:	65	140	ND
PQL:	29	31	56
Identification:	Diesel Range Organics	Diesel Range Organics	
Lube Oil Range:	540	840	570
PQL:	57	62	58
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	121%	125%	123%
Flags:	Y,N	Y,N	Y,U1

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP04-0005	WB-SO-ASP05-0005	WB-SO-ASP06-0005
Lab ID:	08-217-04	08-217-05	08-217-06
Diesel Range:	120	ND	45
PQL:	27	65	28
Identification:	Diesel Range Organics		Diesel Range Organics
Lube Oil Range:	980	490	330
PQL:	54	54	56
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	98%	90%	125%
Flags:	Y,N	Y,U1	Y,N

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP07-0005	WB-SO-ASP08-0005	WB-SO-ASP08-1005
Lab ID:	08-217-07	08-217-08	08-217-09
Diesel Range:	2300	340	380
PQL:	150	31	31
Identification:	Diesel Range Organics	Diesel Range Organics	Diesel Range Organics
Lube Oil Range:	6400	1000	910
PQL:	310	61	62
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery	070/	1070/	210/
o-ierpnenyi:	81%	127%	81%
Flags:	Y,N	Y,N	Y

5

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP09-0005	WB-SO-ASP10-0005	WB-SO-ASP11-0005
Lab ID:	08-217-10	08-217-11	08-217-12
Diesel Range:	3000	3300	2400
PQL:	150	150	150
Identification:	Diesel Range Organics	Diesel Range Organics	Diesel Range Organics
Lube Oil Range:	4400	5500	3800
PQL:	300	290	300
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	91%	90%	90%
Flags:	Υ	Υ	Y

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP12-0005	WB-SO-ASW06-0060	WB-SO-ABT04-0100
Lab ID:	08-217-13	08-217-16	08-217-17
Diesel Range:	90	ND	ND
PQL:	29	33	37
Identification:	Diesel Range Organics		
Lube Oil Range:	240	69	ND
PQL:	59	65	75
Identification:	Lube Oil	Lube Oil	
Surrogate Recovery			
o-Terphenyl:	85%	86%	85%
Flags:	Υ	Y	Υ

NWTPH-Dx

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASW07-0070	WB-SO-ASW07-1070
Lab ID:	08-217-18	08-217-19
Diesel Range:	ND	ND
PQL:	31	32
Identification:		
Lube Oil Range:	76	ND
PQL:	61	63
Identification:	Lube Oil	
Surrogate Recovery		
o-Terphenyl:	77%	124%
Flags:	Y	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0831S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification:	
Surrogate Recovery o-Terphenyl:	130%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	8-31-09 8-31-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	08-217-06	08-217-06 DUP
Diesel Range: PQL:	40.5 25	41.3 25
RPD:	2	
Surrogate Recovery		
o-Terphenyl:	125%	108%
Flags:	Y,N	Y,N

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-221-01	08-221-01 DUP
Diesel Range:	ND	ND
PQL:	25	25
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	98%	95%
Flags:	Y	Y
i lagoi	•	•

NWTPH-Dx

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-CSP01-0005	WB-SO-CSP02-0005		
Lab ID:	08-217-14	08-217-15		
Diesel Range:	ND	ND		
PQL:	81	82		
Identification:				
Lube Oil Range:	1400	680		
PQL:	57	54		
Identification:	Lube Oil	Lube Oil		
Surrogate Recovery				
o-Terphenyl:	80%	86%		
Flags:	Y,U1	Y,U1		

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0901S1
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Surrogate Recovery	
Flags:	65% Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Flags:

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-224-02	08-224-02 DUP
Diesel Range: PQL:	ND 107	ND 91
RPD:	N/A	
Surrogate Recovery o-Terphenyl:	76%	77%

Y,U1

Y,U1

cPAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP01-0005					
Laboratory ID:	08-217-01					
Benzo[a]anthracene	0.028	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.063	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.024	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.015	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.025	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.012	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0077	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	39 - 103				
Pyrene-d10	73	39 - 115				
Terphenyl-d14	91	50 - 118				
				Date	Date	
-------------------------	------------------	----------------	--------------	----------	----------	-------
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP02-0005					
Laboratory ID:	08-217-02					
Benzo[a]anthracene	0.029	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.11	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.024	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.012	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.033	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	39 - 103				
Pyrene-d10	78	39 - 115				
Terphenyl-d14	106	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP03-0005					
Laboratory ID:	08-217-03					
Benzo[a]anthracene	0.049	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.088	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.057	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.038	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.037	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.025	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.0094	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	39 - 103				
Pyrene-d10	73	39 - 115				
Terphenyl-d14	109	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP04-0005					
Laboratory ID:	08-217-04					
Benzo[a]anthracene	0.020	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.056	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.021	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.013	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.021	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.0095	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	79	39 - 103				
Pyrene-d10	78	39 - 115				
Terphenyl-d14	115	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP05-0005					
Laboratory ID:	08-217-05					
Benzo[a]anthracene	0.056	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.11	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.098	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.054	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.063	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.049	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.018	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	39 - 103				
Pyrene-d10	75	39 - 115				
Terphenyl-d14	112	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP06-0005					
Laboratory ID:	08-217-06					
Benzo[a]anthracene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.017	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.0097	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	39 - 103				
Pyrene-d10	79	39 - 115				
Terphenyl-d14	107	50 - 118				

20

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP07-0005					
Laboratory ID:	08-217-07					
Benzo[a]anthracene	0.085	0.082	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.44	0.082	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.096	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.024	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.072	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.0092	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	39 - 103				
Pyrene-d10	71	39 - 115				
Terphenyl-d14	91	50 - 118				

and is intended only for the use of the individual or company to whom it is addressed.

21

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP08-0005					
Laboratory ID:	08-217-08					
Benzo[a]anthracene	0.14	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.21	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.10	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.081	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.11	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.047	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.020	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	39 - 103				
Pyrene-d10	78	39 - 115				
Terphenyl-d14	91	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP08-1005					
Laboratory ID:	08-217-09					
Benzo[a]anthracene	0.031	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.098	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.025	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.014	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.029	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.012	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	39 - 103				
Pyrene-d10	76	39 - 115				
Terphenyl-d14	100	50 - 118				

and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP09-0005					
Laboratory ID:	08-217-10					
Benzo[a]anthracene	0.35	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.70	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.13	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.036	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.20	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.045	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.015	0.0080	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	39 - 103				
Pyrene-d10	102	39 - 115				
Terphenyl-d14	96	50 - 118				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP10-0005					
Laboratory ID:	08-217-11					
Benzo[a]anthracene	0.23	0.078	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.59	0.078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.12	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.078	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.20	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.040	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.030	0.0078	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	39 - 103				
Pyrene-d10	99	39 - 115				
Terphenyl-d14	97	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP11-0005					
Laboratory ID:	08-217-12					
Benzo[a]anthracene	0.23	0.16	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.62	0.16	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.10	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.042	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.22	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.021	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.018	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	39 - 103				
Pyrene-d10	88	39 - 115				
Terphenyl-d14	89	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP12-0005					
Laboratory ID:	08-217-13					
Benzo[a]anthracene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.015	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[a]pyrene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0078	EPA 8270/SIM	9-1-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	39 - 103				
Pyrene-d10	84	39 - 115				
Terphenyl-d14	96	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CSP01-0005					
Laboratory ID:	08-217-14					
Benzo[a]anthracene	0.23	0.036	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.43	0.036	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	0.37	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.25	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.25	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.14	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.039	0.0076	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	39 - 103				
Pyrene-d10	81	39 - 115				
Terphenyl-d14	96	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-CSP02-0005					
Laboratory ID:	08-217-15					
Benzo[a]anthracene	0.12	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	0.23	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	0.21	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	0.12	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	0.13	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	0.11	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	0.030	0.0072	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	39 - 103				
Pyrene-d10	79	39 - 115				
Terphenyl-d14	96	50 - 118				

29

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW06-0060					
Laboratory ID:	08-217-16					
Benzo[a]anthracene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	0.022	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[a]pyrene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270/SIM	9-1-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	39 - 103				
Pyrene-d10	79	39 - 115				
Terphenyl-d14	92	50 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ABT04-0100					
Laboratory ID:	08-217-17					
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	39 - 103				
Pyrene-d10	71	39 - 115				
Terphenyl-d14	96	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW07-0070					
Laboratory ID:	08-217-18					
Benzo[a]anthracene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	39 - 103				
Pyrene-d10	69	39 - 115				
Terphenyl-d14	101	50 - 118				

32

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASW07-1070					
Laboratory ID:	08-217-19					
Benzo[a]anthracene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Chrysene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Benzo[a]pyrene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270/SIM	9-1-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	39 - 103				
Pyrene-d10	71	39 - 115				
Terphenyl-d14	105	50 - 118				

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0901S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Chrysene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	9-1-09	9-2-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	39 - 103				
Pyrene-d10	98	39 - 115				
Terphenyl-d14	95	50 - 118				

cPAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	01S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0662	0.0653	0.0833	0.0833	79	78	31 - 102	1	30	
Acenaphthylene	0.0678	0.0658	0.0833	0.0833	81	79	48 - 104	3	26	
Acenaphthene	0.0708	0.0688	0.0833	0.0833	85	83	46 - 105	3	26	
Fluorene	0.0721	0.0712	0.0833	0.0833	87	85	52 - 107	1	25	
Phenanthrene	0.0717	0.0709	0.0833	0.0833	86	85	58 - 104	1	21	
Anthracene	0.0699	0.0691	0.0833	0.0833	84	83	56 - 103	1	21	
Fluoranthene	0.0764	0.0757	0.0833	0.0833	92	91	65 - 111	1	20	
Pyrene	0.0794	0.0788	0.0833	0.0833	95	95	65 - 115	1	20	
Benzo[a]anthracene	0.0697	0.0694	0.0833	0.0833	84	83	55 - 111	0	19	
Chrysene	0.0792	0.0791	0.0833	0.0833	95	95	58 - 121	0	19	
Benzo[b]fluoranthene	0.0788	0.0775	0.0833	0.0833	95	93	57 - 120	2	20	
Benzo[k]fluoranthene	0.0784	0.0825	0.0833	0.0833	94	99	52 - 123	5	21	
Benzo[a]pyrene	0.0695	0.0716	0.0833	0.0833	83	86	49 - 106	3	22	
Indeno(1,2,3-c,d)pyrene	0.0772	0.0781	0.0833	0.0833	93	94	56 - 125	1	22	
Dibenz[a,h]anthracene	0.0789	0.0800	0.0833	0.0833	95	96	55 - 129	1	24	
Benzo[g,h,i]perylene	0.0782	0.0788	0.0833	0.0833	94	95	55 - 122	1	23	
Surrogate:										
2-Fluorobiphenyl					81	77	39 - 103			
Pyrene-d10					91	92	39 - 115			
Terphenyl-d14					91	90	50 - 118			

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Client ID:	WB-SO-ASP01-0005	WB-SO-ASP02-0005
Lab ID:	08-217-01	08-217-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.070	ND		0.062
Ethyl Benzene	ND		0.070	ND		0.062
m,p-Xylene	ND		0.070	ND		0.062
o-Xylene	ND		0.070	ND		0.062
Surrogate Recovery: Fluorobenzene	92%			84%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-S0-ASP03-0005	WB-SO-ASP04-0005
Lab ID:	08-217-03	08-217-04

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.061	ND		0.065
Ethyl Benzene	ND		0.061	ND		0.065
m,p-Xylene	ND		0.061	ND		0.065
o-Xylene	ND		0.061	ND		0.065
Surrogate Recovery: Fluorobenzene	95%			95%		

37

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Client ID:	WB-SO-AS	P05-0005		WB-SO-AS	SP06-0005	
Lab ID:	08-217-05	08-217-05		08-217-06		
	Result	Flags	PQL	Result	Flags	PQL

	6			•
Benzene	ND	0.020	ND	0.020
Toluene	ND	0.060	ND	0.063
Ethyl Benzene	ND	0.060	ND	0.063
m,p-Xylene	ND	0.060	ND	0.063
o-Xylene	ND	0.060	ND	0.063
Surrogate Recovery: Fluorobenzene	90%		86%	

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Client ID:	WB-SO-ASP07-0005	WB-SO-ASP08-0005
Lab ID:	08-217-07	08-217-08

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.074	ND		0.078
Ethyl Benzene	0.14		0.074	ND		0.078
m,p-Xylene	0.22		0.074	ND		0.078
o-Xylene	ND		0.074	ND		0.078
Surrogate Recovery: Fluorobenzene	87%			86%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Client ID:	WB-SO-ASP08-1005	WB-SO-ASP09-0005
Lab ID:	08-217-09	08-217-10

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	0.021		0.020
Toluene	ND		0.081	ND		0.070
Ethyl Benzene	ND		0.081	ND		0.070
m,p-Xylene	ND		0.081	ND		0.070
o-Xylene	ND		0.081	0.12		0.070
Surrogate Recovery: Fluorobenzene	94%			90%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Client ID:	WB-SO-ASP10-0005	WB-SO-ASP11-0005
Lab ID:	08-217-11	08-217-12

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.061	ND		0.070
Ethyl Benzene	ND		0.061	ND		0.070
m,p-Xylene	ND		0.061	ND		0.070
o-Xylene	ND		0.061	ND		0.070
Surrogate Recovery: Fluorobenzene	94%			93%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ASP12-0005	WB-SO-ASW06-0060
Lab ID:	08-217-13	08-217-16

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.073	ND		0.081
Ethyl Benzene	ND		0.073	ND		0.081
m,p-Xylene	ND		0.073	ND		0.081
o-Xylene	ND		0.073	ND		0.081
Surrogate Recovery: Fluorobenzene	91%			98%		

42

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Client ID:	WB-SO-ABT04-0100	WB-SO-ASW07-0070
Lab ID:	08-217-17	08-217-18

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.021	ND		0.020
Toluene	ND		0.10	ND		0.074
Ethyl Benzene	ND		0.10	ND		0.074
m,p-Xylene	ND		0.10	ND		0.074
o-Xylene	ND		0.10	ND		0.074
Surrogate Recovery: Fluorobenzene	107%			95%		

BTEX EPA 8021B

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-ASW07-1070
Lab ID:	08-217-19

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.086
Ethyl Benzene	ND		0.086
m,p-Xylene	ND		0.086
o-Xylene	ND		0.086
Surrogate Recovery: Fluorobenzene	95%		

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Fluorobenzene

Lab ID: MB0831S1

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
Surrogate Recovery:			

93%

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

MB0831S2

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
Surrogate Recovery: Fluorobenzene	92%		

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-217-05 Original	08-217-05 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	90%	89%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31&9-1-09

Lab ID:	08-217-19 Original	08-217-19 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	95%	90%		

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0831S1 SB	Percent Recovery	SB0831S1 DUP SBD	Percent Recovery	RPD	Flags
Benzene	0.947	95	0.979	98	3	
Toluene	1.01	101	1.02	102	2	
Ethyl Benzene	0.994	99	1.02	102	3	
m,p-Xylene	1.05	105	1.06	106	1	
o-Xylene	1.02	102	1.04	104	2	

Surrogate Recovery:		
Fluorobenzene	89%	93%

49

TOTAL LEAD EPA 6010B

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-ASP01-0005	08-217-01	11	5.7
WB-SO-ASP02-0005	08-217-02	15	6.2
WB-SO-ASP03-0005	08-217-03	13	5.8
WB-SO-ASP04-0005	08-217-04	ND	5.4
WB-SO-ASP05-0005	08-217-05	14	5.4
WB-SO-ASP06-0005	08-217-06	10	5.6
WB-SO-ASP07-0005	08-217-07	ND	6.2
WB-SO-ASP08-0005	08-217-08	ND	6.1
WB-SO-ASP08-1005	08-217-09	8.3	6.2
WB-SO-ASP09-0005	08-217-10	6.4	6.0
WB-SO-ASP10-0005	08-217-11	14	5.8
WB-SO-ASP11-0005	08-217-12	ND	6.1
WB-SO-ASP12-0005	08-217-13	ND	5.9
WB-SO-ASW06-0060	08-217-16	ND	6.5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL LEAD EPA 6010B

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil	
Units:	mg/kg (ppm)	

Client ID	Lab ID	Result	PQL
WB-SO-ABT04-0100	08-217-17	ND	7.5
WB-SO-ASW07-0070	08-217-18	ND	6.1
WB-SO-ASW07-1070	08-217-19	ND	6.3
TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0901S2

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-1-09 Date Analyzed: 9-1-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-217-01

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	9.67	5.46	56	С	5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:SoilUnits:mg/kg (ppm)

Lab ID: 08-217-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	222	85	217	83	2	

% MOISTURE

Date Analyzed:	8-31-09	
Client ID	Lab ID	% Moisture
WB-SO-ASP01-0005	08-217-01	13
WB-SO-ASP02-0005	08-217-02	19
WB-SO-ASP03-0005	08-217-03	14
WB-SO-ASP04-0005	08-217-04	8
WB-SO-ASP05-0005	08-217-05	8
WB-SO-ASP06-0005	08-217-06	10
WB-SO-ASP07-0005	08-217-07	19
WB-SO-ASP08-0005	08-217-08	18
WB-SO-ASP08-1005	08-217-09	19
WB-SO-ASP09-0005	08-217-10	17
WB-SO-ASP10-0005	08-217-11	14
WB-SO-ASP11-0005	08-217-12	18
WB-SO-ASP12-0005	08-217-13	15
WB-SO-CSP01-0005	08-217-14	110
WB-SO-CSP02-0005	08-217-15	110
WB-SO-ASW06-0060	08-217-16	23
WB-SO-ABT04-0100	08-217-17	33
WB-SO-ASW07-0070	08-217-18	18
WB-SO-ASW07-1070	08-217-19	21

55

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

	rams with final report \Box	Chromatog				Date	Reviewed by/I			Reviewed by/Date
										Received by
		<u> </u>			4		((),	Relinquished by
			1745	28/08	Ø	R	Xa/	l	2NC	Received by
			5HO	28/09	8		, h)		A	Relinquished by
			الدعا	23/09	9		Souch		P	Received by
· day TAT)	Undah, 169-23(2	(S)AI	1620	122/09	¢.	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Parane		By Ney	Relinquished by
	pecial instructions:	Comments/S)			DEIO		Company		Signature	
			<u> </u>	\times			10:20	\langle	Sa-Aspag- atas	S-gn of
	XX		X	$\overline{\mathbf{x}}$			51:01		-St-ASpt8- 105	A WB-
	X		×	>			21:01		SO-ASPOB - OUUS	S WB-S
	XXX			\mathbf{i}			10:05		Sr - ASP07 -0005	7 WB-S
	XX		×.	\succ			0950		o-ASPOG-ORDS	6 MB-SO
	XX		X	\times			0940		50-1-1505- CEUS	S-BM C
; ;	XX			\times			0930		5-ASP14-0055	41350
	XX		×	\times			0920		0-ASP03-CESS	3 3-50
	XX		×.	\prec			0160		50-ASP02-005	2 MB-S
X	XX		×	\times		So 4	- 2060 boye	2/8	50- ASPOI - 0005	1 MBES
% Mo	Total F TCLP HEM t 22	PCBs Pestici Herbic	Haloge Semiv	NWTF Volatil	NWTF NWTF	# of Eltix Cont.	Time ed Sampled M	Date Sampl	Sample Identification	LabiD
isture	ACRA Metals Dy 166 TZ	by 808 ides by	olatiles	PH-Dx	PH-HC PH-Gx/)	(other		HARDY	Sampled by:
	Metals	32 / 8081/ y 8151	Volatil s by 82 OD / S	3260B	ID BTEX	working days)	(TPH analysis 5 V]	UNTERZ	Project Manager:
	(8)	A A .	es by 70D IM			ing days)	Standard (7 work		FBAX PARK	Project Name:
			8260E			🗌 3 Day	2 Day		-1577024 04/05	- 232 -
						1 Day	Same Day		FRAME/PLIX	
	ed Analysis	Request				ne)	(Check O		hone: (425) 883-3881 • Fax: (425) 885-4603	Company: O
08-217			Number:	ratory I	Labo	equest days)	Turnaround R (in working)		invironmental Inc.	
ige of	Pa			ody	Just	lin of (Cha		Insite	

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Project Number: Sampled by: R. HARDY Project Name: Project Manager: **END** Company: Relinquished by Received by Received by Relinquished by 3 hrs -Sa - ASIP12 - OUUS Reviewed by/Date Received by Relinquished by \sim б WS-SC-ASW07-1070 MB-50- (15pg 1-0005 WR-SO-ASW07-0070 MB-SO-ASD 11 - 0005 MB-50- HSW06-0060 JB-SO-ABTOH -000 MB-50-HSP10-2005 B-SO-CSP02- 0055 APA MELICIX Phone: (425) 883-3881 • Fax: (425) 885-4603 **Environmental Inc.** Ĵ InSite Sample Identification HAN HAR HD HZQ-UI SOL DISTRIBUTION LEGEND: White - OnSite Copy CA **GETTER** UELE Day A A Standard (7 working days) Same Day (TPH analysis 5 working days 0280 1220 Turnaround Request (in working days) Suercy Company 1250 10:50 216 sempled Wein Parametrix 9401 1250 S Reviewed by/Date **Sunn** 1032 (Check One) Chain of Custody (other) 🗌 3 Day 🗌 1 Day font; NWTPH-HCID Yellow - Report Copy Laboratory Number: DAG NWTPH-Gx/BTEX 8/20109 8/28/07 Ø 8 NWTPH-Dx \succ Volatiles by 8260B Sum. Halogenated Volatiles by 8260B Pink - Client Copy 1620 042 1620 Semivolatiles by 8270D AHe by 8270D / SIM **Comments/Special Instructions** PCBs by 8082 Chromatograms with final report Requested Analysis (2) Addred 91, 109. 28 (2 day TAT Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664 LEAD RIE \times Page 08-217 앜 ည % Moisture

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0908-224

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on August 31, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 31, 2009, and received by the laboratory on August 31, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

BTEX EPA 8021B

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

Surrogate Recovery: Fluorobenzene

Client ID: Lab ID:	WB-SO-ASP1 08-224-01	3-0005		WB-SO-ASP1 08-224-02	4-0005	
	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.047	ND		0.050
Ethyl Benzene	ND		0.047	ND		0.050
m,p-Xylene	ND		0.047	ND		0.050
o-Xylene	ND		0.047	ND		0.050

96%

100%

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
Surrogate Recovery: Fluorobenzene	94%		

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1&2-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-226-01 Original	08-226-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	105%	96%		

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0901S1 SB	Percent Recovery	SBD0901S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.917	92	0.965	97	5	
Toluene	0.930	93	0.972	97	4	
Ethyl Benzene	0.953	95	0.993	99	4	
m,p-Xylene	0.966	97	1.00	100	4	
o-Xylene	0.975	98	1.00	100	3	

Surrogate Recovery:		
Fluorobenzene	90%	95%

NWTPH-Dx

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-ASP13-0005	WB-SO-ASP14-0005
Lab ID:	08-224-01	08-224-02
Diesel Range:	740	ND
PQL:	29	120
Identification:	Diesel Range Organics	
Lube Oil Range:	1300	710
PQL:	57	54
Identification:	Lube Oil	Lube Oil
Surrogate Recovery		
o-Terphenyl:	71%	76%
Flags:	Y	Y,U1

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0901S1
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification:	
Surrogate Recovery o-Terphenyl:	65%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-224-02	08-224-02 DUP
Diesel Range: PQL:	ND 107	ND 91
RPD:	N/A	
Surrogate Recovery		

o-Terphenyl:	76%	77%
Flags:	Y,U1	Y,U1

9

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

cPAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP13-0005					
Laboratory ID:	08-224-01					
Benzo[a]anthracene	0.17	0.0077	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	0.38	0.0077	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	0.069	0.0077	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	0.040	0.0077	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	0.14	0.0077	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	0.024	0.0077	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	0.014	0.0077	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	80	39 - 103				
Pyrene-d10	79	39 - 115				
Terphenyl-d14	83	50 - 118				

10

cPAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-ASP14-0005					
Laboratory ID:	08-224-02					
Benzo[a]anthracene	0.037	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	0.077	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	0.041	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	0.024	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	0.033	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	0.016	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	0.0073	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	39 - 103				
Pyrene-d10	65	39 - 115				
Terphenyl-d14	85	50 - 118				

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0902S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	39 - 103				
Pyrene-d10	77	39 - 115				
Terphenyl-d14	112	50 - 118				

12

cPAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Pere	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	02S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0594	0.0612	0.0833	0.0833	71	73	31 - 102	3	30	
Acenaphthylene	0.0738	0.0773	0.0833	0.0833	89	93	48 - 104	5	26	
Acenaphthene	0.0650	0.0683	0.0833	0.0833	78	82	46 - 105	5	26	
Fluorene	0.0665	0.0704	0.0833	0.0833	80	85	52 - 107	6	25	
Phenanthrene	0.0667	0.0712	0.0833	0.0833	80	85	58 - 104	7	21	
Anthracene	0.0702	0.0763	0.0833	0.0833	84	92	56 - 103	8	21	
Fluoranthene	0.0729	0.0779	0.0833	0.0833	88	94	65 - 111	7	20	
Pyrene	0.0656	0.0783	0.0833	0.0833	79	94	65 - 115	18	20	
Benzo[a]anthracene	0.0695	0.0732	0.0833	0.0833	83	88	55 - 111	5	19	
Chrysene	0.0701	0.0744	0.0833	0.0833	84	89	58 - 121	6	19	
Benzo[b]fluoranthene	0.0699	0.0744	0.0833	0.0833	84	89	57 - 120	6	20	
Benzo[k]fluoranthene	0.0745	0.0786	0.0833	0.0833	89	94	52 - 123	5	21	
Benzo[a]pyrene	0.0664	0.0724	0.0833	0.0833	80	87	49 - 106	9	22	
Indeno(1,2,3-c,d)pyrene	0.0622	0.0658	0.0833	0.0833	75	79	56 - 125	6	22	
Dibenz[a,h]anthracene	0.0656	0.0693	0.0833	0.0833	79	83	55 - 129	5	24	
Benzo[g,h,i]perylene	0.0537	0.0590	0.0833	0.0833	64	71	55 - 122	9	23	
Surrogate:										
2-Fluorobiphenyl					72	76	39 - 103			
Pyrene-d10					75	93	39 - 115			
Terphenyl-d14					105	118	50 - 118			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B

Date Extracted:	8-31-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-ASP13-0005	08-224-01	150	5.7
WB-SO-ASP14-0005	08-224-02	11	5.4

14

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0831S2

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:8-31-09Date Analyzed:8-31-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-221-01

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	ND	ND	NA		5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	8-31-09
Date Analyzed:	8-31-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-221-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	230	92	232	93	1	

% MOISTURE

Date Analyzed:	9-1-09		
Client ID		Lab ID	% Moisture
WB-SO-ASP13-00	05	08-224-01	13
WB-SO-ASP14-00	05	08-224-02	8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed by/Date	Heceived by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	9.66%			N4			2 WB-SDASPI4-MDS-	1 WB-SI-ASP13-0005	Environmental Inc. Phone: (425) 883-3881 • Fax: (425) 885-4603 Company: Project Number: D355-1577-024 Project Name Webyt Bady Project Name Webyt Bady Project Name Webyt Bady Sampled by: Sampled by: Sa	
DISTRIBUTION LEGEND: White - OnSite Copy			03780)	Speat	Spealy	e Yavametrix			· · ·				V. M30 V V	Stalle Mar Serif 4	Immaround Request (In working days) Immaround Request (In working days) Same Day 1 Day Same Day 3 Day Standard (7 working days) 3 Day (TPH analysis 5 working days) (other) Date Time # of Sampled Sampled Wettrix	
fellow - Report Copy Pink - Client Co			8/3/108 1220	\$31/09 1220	8/31/09 0945	8/31/09 0945	Date Time								NWTPH-GX/BTEX IN IG NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D PAHs by 8270D / SIM CTATES	
Chromatograms with final report		- -						· · · · · · · · · · · · · · · · · · ·							PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0909-004

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on September 1, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 1, 2009, and received by the laboratory on September 1, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

BTEX EPA 8021B

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-SO-BSW032-0020
Lab ID:	09-004-01

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.059
Ethyl Benzene	ND		0.059
m,p-Xylene	ND		0.059
o-Xylene	ND		0.059

Surrogate Recovery:	
Fluorobenzene	92%

3

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050

Surrogate Recovery: Fluorobenzene 94% 4

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1&2-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-226-01 Original	08-226-01 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	105%	96%		

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0901S1 SB	Percent Recovery	SBD0901S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.917	92	0.965	97	5	
Toluene	0.930	93	0.972	97	4	
Ethyl Benzene	0.953	95	0.993	99	4	
m,p-Xylene	0.966	97	1.00	100	4	
o-Xylene	0.975	98	1.00	100	3	

Surrogate Recovery:		
Fluorobenzene	90%	95%

NWTPH-Dx

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-BSW032-0020
Lab ID:	09-004-01
Diesel Range:	ND
PQL:	28
Identification:	
Lube Oil Range:	93
PQL:	56
Identification:	Lube Oil
Surrogate Recovery	
o-Terphenyl:	66%
Flags:	Υ

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0901S1	
Diesel Range: PQL:	ND 25	
Identification:		
Lube Oil Range: PQL: Identification:	ND 50	
Surrogate Recovery o-Terphenyl:	65%	
Flags:	Y	

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	08-224-02	08-224-02 DUP
Diesel Range: PQL:	ND 107	ND 91
RPD:	N/A	
Surrogate Recovery		

o-Terphenyl:	76%	77%
Flags:	Y,U1	Y,U1
Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSW032-0020					
Laboratory ID:	09-004-01					
Benzo[a]anthracene	ND	0.0074	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	0.016	0.0074	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	0.013	0.0074	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	0.0086	0.0074	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	0.011	0.0074	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	0.011	0.0074	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	77	39 - 103				
Pyrene-d10	63	39 - 115				
Terphenyl-d14	87	50 - 118				

10

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0902S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	39 - 103				
Pyrene-d10	77	39 - 115				
Terphenyl-d14	112	50 - 118				

11

cPAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	02S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0594	0.0612	0.0833	0.0833	71	73	31 - 102	3	30	
Acenaphthylene	0.0738	0.0773	0.0833	0.0833	89	93	48 - 104	5	26	
Acenaphthene	0.0650	0.0683	0.0833	0.0833	78	82	46 - 105	5	26	
Fluorene	0.0665	0.0704	0.0833	0.0833	80	85	52 - 107	6	25	
Phenanthrene	0.0667	0.0712	0.0833	0.0833	80	85	58 - 104	7	21	
Anthracene	0.0702	0.0763	0.0833	0.0833	84	92	56 - 103	8	21	
Fluoranthene	0.0729	0.0779	0.0833	0.0833	88	94	65 - 111	7	20	
Pyrene	0.0656	0.0783	0.0833	0.0833	79	94	65 - 115	18	20	
Benzo[a]anthracene	0.0695	0.0732	0.0833	0.0833	83	88	55 - 111	5	19	
Chrysene	0.0701	0.0744	0.0833	0.0833	84	89	58 - 121	6	19	
Benzo[b]fluoranthene	0.0699	0.0744	0.0833	0.0833	84	89	57 - 120	6	20	
Benzo[k]fluoranthene	0.0745	0.0786	0.0833	0.0833	89	94	52 - 123	5	21	
Benzo[a]pyrene	0.0664	0.0724	0.0833	0.0833	80	87	49 - 106	9	22	
Indeno(1,2,3-c,d)pyrene	0.0622	0.0658	0.0833	0.0833	75	79	56 - 125	6	22	
Dibenz[a,h]anthracene	0.0656	0.0693	0.0833	0.0833	79	83	55 - 129	5	24	
Benzo[g,h,i]perylene	0.0537	0.0590	0.0833	0.0833	64	71	55 - 122	9	23	
Surrogate:										
2-Fluorobiphenyl					72	76	39 - 103			
Pyrene-d10					75	93	39 - 115			
Terphenyl-d14					105	118	50 - 118			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:SoilUnits:mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-BSW032-0020	09-004-01	12	5.6

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0901S2

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:9-1-09Date Analyzed:9-1-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-217-01

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	9.67	5.46	56	С	5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	9-1-09
Date Analyzed:	9-1-09

Matrix:SoilUnits:mg/kg (ppm)

Lab ID: 08-217-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	222	85	217	83	2	

16

% MOISTURE

Date Analyzed: 9-1-09

Client ID

Lab ID

% Moisture

WB-SO-BSW032-0020

09-004-01

10

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	é eméricais					1 MB-CEINSA-12-GM		Environmental Inc. Phone: (425) 883-3881 • Fax: (425) 885-4603 Company: Project Number: 235 - 1577-024 Project Name: WEAT BAIN Project Name: WEAT BAIN Sampled by: L. LAWAL Sample Identification
Reviewed by/Date			(QXE 9/108/324	YZEI '' '' ''''''''''''''''''''''''''''''	Speech Mang ~ 9/1/09 1101	- thrametrix aliles inf	Compean)					VV + 1105 0010 100111.	XV // // // // //	Samulet NWTPH-HCID NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8270D Check One) (Check One) (The analysis 5 working days) (NWTPH-HCID NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8270D
Chromatograms with final report						EIM EDD,	Comments/Special Instructions:							PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664 WMA % Moisture

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0909-025

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on September 2, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 1, 2009, and received by the laboratory on September 2, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

BTEX EPA 8021B

Date Extracted:	9-2-09
Date Analyzed:	9-3-09

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	WB-S0-BS 09-025-01	W05-0030		WB-S0-BS 09-025-02	W06-0030	
	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		0.020	ND		0.020
Toluene	ND		0.064	ND		0.067
Ethyl Benzene	ND		0.064	ND		0.067
m,p-Xylene	ND		0.064	ND		0.067
o-Xylene	ND		0.064	ND		0.067
Surrogate Recovery: Fluorobenzene	99%			76%		

BTEX EPA 8021B

Date Extracted:	9-2-09
Date Analyzed:	9-3-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	WB-S0-BBT02-0050
Lab ID:	09-025-03

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.061
Ethyl Benzene	ND		0.061
m,p-Xylene	ND		0.061
o-Xylene	ND		0.061

Surrogate Recovery:	
Fluorobenzene	86%

4

BTEX EPA 8021B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-2-09
Date Analyzed:	9-2-09

Matrix: Soil Units: mg/kg (ppm)

	Result	Flags	PQL
Benzene	ND		0.020
Toluene	ND		0.050
Ethyl Benzene	ND		0.050
m,p-Xylene	ND		0.050
o-Xylene	ND		0.050
Surrogate Recovery: Fluorobenzene	95%		

5

BTEX EPA 8021B DUPLICATE QUALITY CONTROL

Date Extracted:	9-2-09
Date Analyzed:	9-2-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	08-216-11 Original	08-216-11 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	97%	94%		

BTEX EPA 8021B SB/SBD QUALITY CONTROL

Date Extracted:	8-2-09
Date Analyzed:	8-2-09

Matrix: Soil Units: mg/kg (ppm)

Spike Level: 1.00 ppm

Lab ID:	SB0902S1 SB	Percent Recovery	SBD0902S1 SBD	Percent Recovery	RPD	Flags
Benzene	0.869	87	0.898	90	3	
Toluene	0.889	89	0.917	92	3	
Ethyl Benzene	0.918	92	0.943	94	3	
m,p-Xylene	0.940	94	0.963	96	3	
o-Xylene	0.963	96	0.968	97	0	

Surrogate Recovery:		
Fluorobenzene	87%	90%

NWTPH-Dx

Date Extracted:	9-2-09
Date Analyzed:	9-3-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SO-BSW05-0030	WB-SO-BSW06-0030	WB-SO-BBT02-0050
Lab ID:	09-025-01	09-025-02	09-025-03
Diesel Range:	ND	ND	ND
PQL:	31	27	28
Identification:			
Lube Oil Range:	ND	ND	100
PQL:	61	54	55
Identification:			Lube Oil
Surrogate Recovery			
o-Terphenyl:	106%	101%	112%
Flags:	Υ	Y	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-2-09
Date Analyzed:	9-3-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0902S2
Diesel Range:	ND
PQL:	25
Identification:	
Lube Oil Range:	ND
PQL:	50
Surrogate Recovery	
o-Terphenyl:	104%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	9-2-09
Date Analyzed:	9-3-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	09-007-05	09-007-05 DUP
Diesel Range:	ND	ND
PQL:	25	25
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	106%	100%
Flags:	Υ	Y

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSW05-0030					
Laboratory ID:	09-025-01					
Benzo[a]anthracene	ND	0.0081	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	ND	0.0081	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0081	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0081	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	ND	0.0081	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0081	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	39 - 103				
Pyrene-d10	66	39 - 115				
Terphenyl-d14	86	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BSW06-0030					
Laboratory ID:	09-025-02					
Benzo[a]anthracene	ND	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	ND	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	ND	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	0.012	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0072	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	72	39 - 103				
Pyrene-d10	80	39 - 115				
Terphenyl-d14	101	50 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-BBT02-0050					
Laboratory ID:	09-025-03					
Benzo[a]anthracene	ND	0.0073	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	ND	0.0073	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0073	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0073	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	ND	0.0073	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0073	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	39 - 103				
Pyrene-d10	77	39 - 115				
Terphenyl-d14	97	50 - 118				

13

cPAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0902S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Chrysene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	9-2-09	9-3-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	39 - 103				
Pyrene-d10	77	39 - 115				
Terphenyl-d14	112	50 - 118				

cPAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	02S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0594	0.0612	0.0833	0.0833	71	73	31 - 102	3	30	
Acenaphthylene	0.0738	0.0773	0.0833	0.0833	89	93	48 - 104	5	26	
Acenaphthene	0.0650	0.0683	0.0833	0.0833	78	82	46 - 105	5	26	
Fluorene	0.0665	0.0704	0.0833	0.0833	80	85	52 - 107	6	25	
Phenanthrene	0.0667	0.0712	0.0833	0.0833	80	85	58 - 104	7	21	
Anthracene	0.0702	0.0763	0.0833	0.0833	84	92	56 - 103	8	21	
Fluoranthene	0.0729	0.0779	0.0833	0.0833	88	94	65 - 111	7	20	
Pyrene	0.0656	0.0783	0.0833	0.0833	79	94	65 - 115	18	20	
Benzo[a]anthracene	0.0695	0.0732	0.0833	0.0833	83	88	55 - 111	5	19	
Chrysene	0.0701	0.0744	0.0833	0.0833	84	89	58 - 121	6	19	
Benzo[b]fluoranthene	0.0699	0.0744	0.0833	0.0833	84	89	57 - 120	6	20	
Benzo[k]fluoranthene	0.0745	0.0786	0.0833	0.0833	89	94	52 - 123	5	21	
Benzo[a]pyrene	0.0664	0.0724	0.0833	0.0833	80	87	49 - 106	9	22	
Indeno(1,2,3-c,d)pyrene	0.0622	0.0658	0.0833	0.0833	75	79	56 - 125	6	22	
Dibenz[a,h]anthracene	0.0656	0.0693	0.0833	0.0833	79	83	55 - 129	5	24	
Benzo[g,h,i]perylene	0.0537	0.0590	0.0833	0.0833	64	71	55 - 122	9	23	
Surrogate:										
2-Fluorobiphenyl					72	76	39 - 103			
Pyrene-d10					75	93	39 - 115			
Terphenyl-d14					105	118	50 - 118			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL LEAD EPA 6010B

Date Extracted:	9-2-09
Date Analyzed:	9-3-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-BSW05-0030	09-025-01	ND	6.1
WB-SO-BSW06-0030	09-025-02	ND	5.4
WB-SO-BBT02-0050	09-025-03	ND	5.5

TOTAL LEAD EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-2-09
Date Analyzed:	9-2-09

Soil
mg/kg (ppm)

Lab ID: MB0902S2

Analyte	Method	Result	PQL
Lead	6010B	ND	5.0

TOTAL LEAD EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:9-2-09Date Analyzed:9-2-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 08-216-12

Analyte	Sample Result	Duplicate Result	RPD	Flags	PQL
Lead	ND	ND	NA		5.0

TOTAL LEAD EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	9-2-09
Date Analyzed:	9-2-09

Matrix:SoilUnits:mg/kg (ppm)

Lab ID: 08-216-12

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	219	87	226	90	3	

19

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

% MOISTURE

Date Analyzed: 9-2-09

Client ID	Lab ID	% Moisture
WB-SO-BSW05-0030	09-025-01	18
WB-SO-BSW06-0030	09-025-02	8
WB-SO-BBT02-0050	09-025-03	9

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Received by Reviewed by/Date	Relinquished by	Relinquished by	1 WB-SO-BSW05-0030 2 WB-SO-BSW06-0030 3 WB-SO-BSW05-0030	Project Number: Project Number: Project Name: Project Manages: Sampled by: Sampled by: Sam	Company: Jan 100 Day 14
DISTRIBUTION LEGEND: White - OnSite Copy	2000 11	Sacra Marchine	V 1435 V V	Same Day 1 Day 2 Day 3 Day Standard (7 working days) (TPH analysis 5 working days) (TPH analysis 5 working days) (other) (other) Date Time to the total	Chain of C Turnaround Request (In Working days)
ellow - Report Copy Pink - Client Co	0071 80816 2/2/61 2/2	1/2/109 12:020 9/2/29 12:020		NWTPH-Gx/BTEX MUY NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D PAHs by 8270D / SIM CPAHS	Aboratory Number:
Chromatograms with final report		EM EDDs		PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664 - WAA	Page of O 9 - 0 2 1

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 29, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0909-122

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on September 15, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 14 and 15, 2009, and received by the laboratory on September 15, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

9-21&23-09

Date Extracted:

TOTAL METALS EPA 6010B/6020/7471A

Date Analyzed:	9-23&24-09		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID: Client ID:	09-122-01 WB-SO-DSW01-0010		
Analyte	Method	Result	PQL
Antimony	6010B	ND	5.8
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.58
Cadmium	6010B	ND	0.58
Chromium	6010B	15	0.58
Copper	6010B	20	1.2
Lead	6010B	ND	5.8
Mercury	7471A	ND	0.29
Nickel	6010B	19	2.9
Selenium	6010B	ND	12
Silver	6010B	ND	0.58
Thallium	6020	ND	5.8
Zinc	6010B	36	2.9

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted: Date Analyzed:	9-21&23-09 9-23&24-09		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID: Client ID:	09-122-02 WB-SO-DSW02-0010		
Analyte	Method	Result	PQL
Antimony	6010B	ND	9.4
Arsenic	6010B	ND	19
Beryllium	6010B	ND	0.94
Cadmium	6010B	0.95	0.94
Chromium	6010B	31	0.94
Copper	6010B	81	1.9
Lead	6010B	32	9.4
Mercury	7471A	ND	0.47
Nickel	6010B	32	4.7
Selenium	6010B	ND	19
Silver	6010B	ND	0.94
Thallium	6020	ND	0.9
Zinc	6010B	280	4.7

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.
TOTAL METALS EPA 6010B/6020/7471A

Date Extracted: Date Analyzed:	9-21&23-09 9-23&24-09		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID: Client ID:	09-122-03 WB-SO-DBT01-0050		
Analyte	Method	Result	PQL
Antimony	6010B	ND	9.1
Arsenic	6010B	ND	18
Beryllium	6010B	ND	0.91
Cadmium	6010B	1.5	0.91
Chromium	6010B	30	0.91
Copper	6010B	41	1.8
Lead	6010B	ND	9.1
Mercury	7471A	ND	0.45
Nickel	6010B	25	4.5
Selenium	6010B	ND	18
Silver	6010B	ND	0.91
Thallium	6020	ND	9.1
Zinc	6010B	68	4.5

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted: Date Analyzed:	9-21&23-09 9-23&24-09		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID: Client ID:	09-122-04 WB-SO-DBT01-1050		
Analyte	Method	Result	PQL
Antimony	6010B	ND	9.3
Arsenic	6010B	ND	19
Beryllium	6010B	ND	0.93
Cadmium	6010B	1.3	0.93
Chromium	6010B	32	0.93
Copper	6010B	53	1.9
Lead	6010B	14	9.3
Mercury	7471A	ND	0.46
Nickel	6010B	25	4.6
Selenium	6010B	ND	19
Silver	6010B	ND	0.93
Thallium	6020	ND	9.3
Zinc	6010B	82	4.6

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted: Date Analyzed:	9-21&23-09 9-23&24-09		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID: Client ID:	09-122-05 WB-SO-DSW03-0005		
Analyte	Method	Result	PQL
Antimony	6010B	ND	5.6
Arsenic	6010B	ND	11
Beryllium	6010B	ND	0.56
Cadmium	6010B	ND	0.56
Chromium	6010B	17	0.56
Copper	6010B	16	1.1
Lead	6010B	ND	5.6
Mercury	7471A	ND	0.28
Nickel	6010B	19	2.8
Selenium	6010B	ND	11
Silver	6010B	ND	0.56
Thallium	6020	ND	5.6
Zinc	6010B	27	2.8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted: Date Analyzed:	9-21&23-09 9-23&24-09		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID: Client ID:	09-122-06 WB-SO-DSW04-0005		
Analyte	Method	Result	PQL
Antimony	6010B	ND	6.1
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.61
Cadmium	6010B	ND	0.61
Chromium	6010B	17	0.61
Copper	6010B	31	1.2
Lead	6010B	12	6.1
Mercury	7471A	ND	0.30
Nickel	6010B	22	3.0
Selenium	6010B	ND	12
Silver	6010B	ND	0.61
Thallium	6020	ND	6.1
Zinc	6010B	100	3.0

TOTAL METALS EPA 6010B/6020/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: Date Analyzed:	9-21&23-09 9-23&24-09		
Matrix: Units:	Soil mg/kg (ppm)		
Lab ID:	MB0921S3,MB0923S1&M	IB0923S4	
Analyte	Method	Result	PQL
Antimony	6010B	ND	5.0
Arsenic	6010B	ND	5.0
Beryllium	6010B	ND	0.50
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Copper	6010B	ND	1.0
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Nickel	6010B	ND	2.5
Selenium	6010B	ND	10
Silver	6010B	ND	0.50
Thallium	6020	ND	5.0
Zinc	6010B	ND	2.5

TOTAL METALS EPA 6010B/6020/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-148-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Antimony	ND	ND	NA	5.0	
Arsenic	ND	ND	NA	10	
Beryllium	ND	ND	NA	0.50	
Cadmium	0.935	0.821	13	0.50	
Chromium	18.6	17.7	5	0.50	
Copper	18.5	19.2	4	1.0	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	
Nickel	14.6	14.1	4	2.5	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	5.0	
Zinc	28.6	27.8	3	2.5	

TOTAL METALS EPA 6010B/6020/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-148-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	100	106	106	107	107	1	
Arsenic	100	93.6	94	95.0	95	2	
Beryllium	100	99.2	99	101	101	2	
Cadmium	50	48.2	94	48.6	95	1	
Chromium	100	114	95	114	96	0	
Copper	50	68.0	99	69.4	102	2	
Lead	250	223	89	225	90	1	
Mercury	0.50	0.480	96	0.495	99	3	
Nickel	100	105	90	105	91	1	
Selenium	100	93.9	94	94.2	94	0	
Silver	25	24.5	98	24.3	97	1	
Thallium	100	93.8	94	93.6	94	0	
Zinc	100	122	94	123	94	0	

% MOISTURE

Date Analyzed: 9-21-09

Client ID	Lab ID	% Moisture
WB-SO-DSW01-0010	09-122-01	14
WB-SO-DSW02-0010	09-122-02	47
WB-SO-DBT01-0050	09-122-03	45
WB-SO-DBT01-1050	09-122-04	46
WB-SO-DSW03-0005	09-122-05	11
WB-SO-DSW04-0005	09-122-06	18

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

www.pacelabs.com

Report Prepared for:

David Baumeister Onsite Environmental, Inc. 14648 NE 95th Street Redmond WA 98052

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Prepared Date:

September 29, 2009

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10112590 Sample Receipt Date: 09/16/2009 Client Project #: 235-1577-024 Client Sub PO #: N/A State Cert #: C218

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed and prepared by:

pri C. Munga

Scott Unze, Project Manager (612) 607-6383 (612) 607-6444 (fax) scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of OnSite Environmental, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 64-121%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Since the quantification of the native 2,3,7,8-substituted isomers was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained, or "E" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standards. The results show that the spiked native compounds were recovered at 91-119%. These results indicate a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

					far a star		starii Starii					1									
540 Page /	22	ster	nsite-env.com				<u>00 t</u>	0 0 2	200		0 0 5	000				situuctions				tre cre	
110112		er: David Baumeis	ail: dbaumeister@o er: 235-15	Je:												arments/Special Ins				n teder & b	
	lboratory Reference	Project Manag	em: Project Numb	Project Nan		2	SQ					1							ک ک	Mease rehn	
	2						DINXI										8855				
	$\sum_{i=1}^{n}$	^		1		7						3					allal allal	<u>, hal</u>			
		lest:	av are			2	8 8	-	2		24 C	39 1									
	<i></i>	Turnaround Requ	1 Day 2 D	Other:		Date Samoled Sam	7/14/05 (084	20 1	0.50	701	N ISO	9/15/101 08			 	Company	te				
				an a													à				
ن ۲	883-3881	ice, Inc.	, MN 55414				6	0	0		· • •) ; .) .	· · · · ·	 · · · · · · · · · · · · · · · · · · ·		J				
mental	A 98052 - (425)	nalytical Serv	oxin manger Minneapolis			mpte Identifica	00-10	00-20	1- ODST	11-1055	3- Cons	5000-1					en la	• •			
OnSite Environ	, Redmond, W/	atory: Pace A	cou unze / Un 1 St. Ste. 200	12) 607-6383			0-Dsw	0- PSW	0-DBT0	D-00ro)-DSW	owso-0					thun the	1000010			•
	E 95th Street	tract Labor	: 1700 Elm	Number: (6	me:		web-s	12-Su	WB-S	12-Su	12-Su	LUB-SI				iched hv		lished by:	ed by:	lished by:	ed bv:

Report No.....10112590_8290

2

Page 4 of 14

		al 🗍 Pace Other		
Tracking #: 12 684 EIWD1	90620511		FROM	
Custody Seal on Cooler/Box Present: [Jyes 🛛 no Sea	als intact: 🗌 yes 🔲	no Proj Name	
Packing Material: 🔲 Bubble Wrap	Bubble Bags 🗔 None	0 🛛	Temp Blank: Yes	No
Thermometer Used 80344042 or 17942	5 Type of Ice: W	et Blue None E	Samples on ice, cooling process	s has begun
Cooler Temperature	Biological Tiss	ue is Frozen: Yes No	Date and initials of person contents:	exemining
Temp should be above freezing to 6°C		Comments:		
Chain of Custody Present:		<u>A</u> 1.		
Chain of Custody Filled Out:		<u>A 2.</u>		·····
Chain of Custody Relinquished:		/A 3.		
Sampler Name & Signature on COC:		/A 4.		
Samples Arrived within Hold Time:		A [5.		
Short riold I ime Analysis (<72hr):		A 6.		
nusi tum Around time riequested:		<u>n (f.</u>		
Suilicient Volume:		<u>A 0.</u>		
-Page Containers Used:		A 9.		
Containere Intect		A 10		
Elitered volume received for Dissolved tests		A 11	* * * ****	
Semple Labels match COC:	Nut Bre Ning Ciny	12MB-50-DB	TDI-1050 02	treco
-Includes date/time/ID/Analysis Matrix	yan Stra		1-30 010	100501
All containers needing acid/base preservation have b		A 13.	3 H2SO4 NaOH	
All containers needing preservation are found to be		Samp #		
compliance with EPA recommendation.				
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DR	O (water: DYes DNo	completed	preservative	
Samples checked for dechlorination:		14.		
Headspace in VOA Vials (>6mm):		15.		
Frip Blank Present:	□Yes □No □MA	18.	4	7
Frip Blank Custody Seals Present	⊡Yes ⊡No ⊡NA	Γ]
Pace Trip Blank Lot # (if purchased):		<u>L</u>]
Client Notification/ Resolution:	######################################		Field Data Required? Y	/ N
Person Contacted:	Date	/Time:		
Comments/ Resolution:				
······································				

				<u> </u>
Project Manager Review:	(J)		Date: ハペトロ(0%	1

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 10.8 7.2 10.0 F909 F909 BLA	SO-DSW01 2590001 928A_18 9 9 9 9 317 928A_09 & NK-21533	F90929A_02	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/14/2009 09/24/2009 09/28/2009	9 08:49 9 08:55 9 19:00 9 23:26	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.13 0.71		0.086 J 0.086 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	30	2.00 2.00 2.00	85 85 97
2,3,7,8-TCDD Total TCDD	ND 0.75		0.100 0.100 J	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	3C 3C	2.00 2.00 2.00	99 113 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.130 0.110 0.120	1,2,3,4,7,6-HXCDF- 1,2,3,6,7,8-HXCDF- 2,3,4,6,7,8-HXCDF- 1,2,3,7,8,9-HXCDF- 1,2,3,7,8,9-HXCDF-	13C 13C 13C 13C 13C	2.00 2.00 2.00 2.00 2.00	79 70 75 84 88
1,2,3,7,8-PeCDD Total PeCDD	ND 0.48		0.150 0.150 J	1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCD	-13C F-13C F-13C	2.00 2.00 2.00	79 72 81
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND		0.073 0.072	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	84 84
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND 0.10		0.085 0.073 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.120 0.120 0.110 0.120	2,3,7,8-TCDD-37Cl4	4	0.20	91
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.22 ND 0.63	 	0.079 BJ 0.086 0.082 BJ	Total 2,3,7,8-TCDE Equivalence: 0.21 r (Using 2005 WHO) ng/Kg Factors - Us	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.99 0.99		0.150 J 0.150 J				
OCDF OCDD	0.60 9.60		0.140 BJ 0.160 J				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

RL = Reporting Limit.

B = Less than 10x higher than method blank level

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc. Report No.....10112590_8290

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 18.4 44.8 10.1 F908 F909 BLA	SO-DSW02 2590002 928A_19 9 9 9 317 928A_09 & NK-21533	2-0010 F90929A_02	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/14/2009 09/24/2009 09/29/2009	9 09:28 9 08:55 9 19:00 9 00:12	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 1700.0	75	0.35 E 0.35	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C		2.00 2.00 2.00	89 88
2,3,7,8-TCDD Total TCDD	29.0 5000.0		0.41 0.41	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDF-1	3C 3C 13C	2.00 2.00 2.00	102 116
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	51.0 730.0	48 	0.22 E 1.10 0.64	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,7,8,9-HxCDF-	13C 13C 13C 13C	2.00 2.00 2.00 2.00 2.00	64 73 82 98
1,2,3,7,8-PeCDD Total PeCDD	100.0 3500.0		0.51 0.51	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C F-13C F-13C	2.00 2.00 2.00	70 65 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	40.0 33.0	47 	0.29 E 0.39 0.36	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	79 80
1,2,3,7,8,9-HxCDF Total HxCDF	6.2 320.0		0.28 0.33	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	54.0 110.0 99.0 3300.0	 	0.65 0.51 0.43 0.53	2,3,7,8-TCDD-37Ck	4	0.20	98
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	160.0 7.6 190.0	 	0.18 0.20 0.19	Total 2,3,7,8-TCDE Equivalence: 200 n (Using 2005 WHO) g/Kg Factors - Us	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1100.0 2200.0		0.85 0.85				
OCDF OCDD	72.0 3600.0		0.23 0.14				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = PCDE Interference

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 16.8 42.6 9.64 F909 BLA	SO-DBT01- 2590003 928A_20 9 9 9 9 9 928A_09 & NK-21533	-0050 F90929A_02	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/14/200 09/16/200 09/24/200 09/29/200	9 09:55 9 08:55 9 19:00 9 00:59	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	90.00	6.0	0.16 E 0.16	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1 2 3 7 8-PeCDF-1	3C	2.00 2.00 2.00	91 89 103
2,3,7,8-TCDD Total TCDD	1.60 680.00		0.26 0.26	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-PeCDD-1	3C 3C -13C	2.00 2.00 2.00	104 120 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.70 33.00	2.6 	0.23 E 0.14 J 0.18	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HxCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00	70 75 83 96
1,2,3,7,8-PeCDD Total PeCDD	4.70 380.00		0.38 J 0.38	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD	-13C)F-13C)F-13C	2.00 2.00 2.00	75 68 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 1.10 1.10	1.9 	0.11 E 0.14 J 0.12 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	78 73
1,2,3,7,8,9-HxCDF Total HxCDF	0.25 9.10		0.12 J 0.12	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.30 7.40 6.30 420.00	 	0.45 J 0.21 0.16 0.27	2,3,7,8-TCDD-37Cl	4	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3.40 0.26 7.10		0.14 J 0.16 J 0.15	Total 2,3,7,8-TCDI Equivalence: 9.7 n (Using 2005 WHO	D g/Kg Factors - U	Ising PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	58.00 120.00		0.25 0.25				
OCDF OCDD	3.20 150.00		0.18 J 0.29				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 16.9 42.2 9.77 F908 F909 BLA	SO-DBT01- 2590004 228A_21 g g 317 228A_09 & NK-21533	-1050 F90929A_02	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/14/200 09/16/200 09/24/200 09/29/200	09 10:12 09 08:55 09 19:00 09 01:45	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF 2,3,7,8-TCDD Total TCDD	54.00 1.00 440.00	3.00 	0.22 E 0.22 0.22 0.22	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C 3C	2.00 2.00 2.00 2.00 2.00	90 86 99 101 114
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.40 13.00	1.10 	0.34 E 0.16 J 0.25	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	81 67 72 81 88
1,2,3,7,8-PeCDD Total PeCDD	2.10 230.00		0.52 J 0.52	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCE 1,2,3,4,7,8 9-HpCE)-13C)F-13C)F-13C	2.00 2.00 2.00	74 66 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.60 0.59	0.91	0.16 E 0.14 J 0.14 J	1,2,3,4,6,7,8-HpCE OCDD-13C	D-13C	2.00 4.00	78 71
1,2,3,7,8,9-HxCDF Total HxCDF	4.50	0.16	0.14 I 0.15 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	9-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.60 3.70 3.10 220.00	 	0.54 J 0.33 J 0.16 J 0.34	2,3,7,8-TCDD-37C	14	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.20 0.20 4.50	 	0.14 J 0.16 J 0.15 J	Total 2,3,7,8-TCDI Equivalence: 4.9 n (Using 2005 WHO	D g/Kg Factors - L	Jsing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	30.00 58.00		0.15 0.15				
OCDF OCDD	2.20 88.00		0.21 J 0.31				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10112590_8290

ND = Not Detected NA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 12.7 8.5 11.6 F908 F909 BLAI	SO-DSW03 2590005 28A_22 g g 317 028A_09 & NK-21533	3-0005 F90929A_02	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/14/2009 09/16/2009 09/24/2009 09/29/2009	9 12:04 9 08:55 9 19:00 9 02:31	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.28 2.90		0.180 J 0.180	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1 2 3 7 8-PeCDF-1	30	2.00 2.00 2.00	71 73 88
2,3,7,8-TCDD Total TCDD	ND 14.00		0.130 0.130	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-PeCDD-1	3C 3C -13C	2.00 2.00 2.00	91 104 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.37 6.50	 	0.150 0.230 J 0.190	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HxCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	67 70 78 85
1,2,3,7,8-PeCDD Total PeCDD	0.45 12.00		0.300 J 0.300	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD	-13C 0F-13C 0F-13C	2.00 2.00 2.00 2.00	74 67 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 1.00 0.49	3.1	0.110 E 0.150 J 0.069 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	77 76
1,2,3,7,8,9-HxCDF Total HxCDF	0.19 13.00		0.160 J 0.120	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.84 2.50 1.30 24.00	 	0.150 J 0.180 J 0.150 J 0.160	2,3,7,8-TCDD-37Cl	4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	27.00 1.90 76.00	 	0.120 0.120 J 0.120	Total 2,3,7,8-TCDI Equivalence: 2.3 n (Using 2005 WHO	D g/Kg Factors - Us	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	54.00 94.00		0.120 0.120				
OCDF OCDD	51.00 580.00		0.170 0.260				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not DetectedNA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10112590_8290

Page 11 of 14

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 14.0 14.1 12.1 F908 F909 BLA	SO-DSW04 2590006 28A_23 9 9 9 928A_09 & NK-21533	I-0005 F90929A_02	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/15/200 09/16/200 09/24/200 09/29/200	9 08:38 9 08:55 9 19:00 9 03:17	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.20 85.00		0.110 0.110	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1.2.3,7.8-PeCDF-1	3C	2.00 2.00 2.00	91 89 102
2,3,7,8-TCDD Total TCDD	1.60 170.00		0.110 0.110	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF	3C 3C -13C	2.00 2.00 2.00	106 121 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.60 43.00	3.6 	0.330 E 0.180 J 0.250	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C -13C	2.00 2.00 2.00 2.00	69 75 83 91
1,2,3,7,8-PeCDD Total PeCDD	6.80 140.00		0.210 0.210	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C 0F-13C 0F-13C	2.00 2.00 2.00	77 69 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.00 1.80	4.6	0.089 E 0.086 J 0.054 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	85 85
1,2,3,7,8,9-HxCDF Total HxCDF	0.69 22.00		0.080 J 0.077	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.80 13.00 11.00 220.00	 	0.130 0.150 0.150 0.140	2,3,7,8-TCDD-37Cl	4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	17.00 1.60 42.00	 	0.060 0.073 J 0.067	Total 2,3,7,8-TCDI Equivalence: 17 ng (Using 2005 WHO	D g/Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.00 560.00		0.310 0.310				
OCDF OCDD	22.00 1300.00		0.100 0.350				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

BLANK-21533	Matrix	Solid
F90928A_17	Dilution	NA
20.1 g	Extracted	09/24/2009 19:00
F90817	Analyzed	09/28/2009 22:40
F90928A_09 & F90929A_02	Injected By	SMT
	BLANK-21533 F90928A_17 20.1 g F90817 F90928A_09 & F90929A_02	BLANK-21533MatrixF90928A_17Dilution20.1 gExtractedF90817AnalyzedF90928A_09 & F90929A_02Injected By

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.029 0.029	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-TCDD-13C	2.00 2.00 2.00	79 80
2,3,7,8-TCDD Total TCDD	ND ND		0.035 0.035	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	90 92 105 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.070 0.044 0.057	1,2,3,4,7,8+HxCDF-13C 2,3,4,6,7,8+HxCDF-13C 1,2,3,7,8,9+HxCDF-13C 1,2,3,7,8,9+HxCDF-13C	2.00 2.00 2.00 2.00	65 70 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.500 0.500	1,2,3,4,7,8-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	84 73 65 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	 	0.029 0.034 0.028	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 77 76
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.039 0.032	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.045 0.047 0.050 0.047	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.042 ND 0.094	 	0.033 J 0.048 0.041 J	Total 2,3,7,8-TCDD Equivalence: 0.29 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	 ND	0.063	0.026 I 0.026			
OCDF OCDD	0.120 0.920		0.026 J 0.073 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	LCS- F909 20.3 F908 F909 BLAI	21534)28A_13 g)17)28A_09 & NK-21533	F90929A_02	Matrix Dilution Extracted Analyzed Injected By	Solid NA 09/24/2009 19: 09/28/2009 19: SMT	00 35
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.20	98	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,2,7,8 Poc DF 13C	2.00 2.00	78 77
2,3,7,8-TCDD Total TCDD	0.20	0.21	105	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	91 103
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.99 0.94	99 94	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,2,4,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	64 67 76
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.91	91	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	61 71 65 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	0.93 1.01 0.99	93 101 99	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	72 75 75
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	0.98	98	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	0.96 0.94 0.98	96 94 98	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.09 1.07	109 107			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	0.97	97			
OCDF OCDD	2.00 2.00	2.07 2.37	103 119			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range

X = Background subtracted value

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Reviewed by/Date DIST	Received by	Relinquished by	Received by	Relinquished by Van / Acher	Received by Vala Ab chett	Relinquished by				12 5000-40M52-05-8M 9	5 WB-SO-DSW03-0005 V	4 WB-SO-DBTD1-1050	3 WB-52-DBTO1-0050	2 WB-S0-DSW02-0010	WB-SD- 18W81-0010 1	Sampledby: UNDE	Project Namey West Bruy Project Namegon In Lun Du	Project Number: 235-1577-024	Company	Environmental Inc.	OnSite
Reviewed by/Date			COPE S	Space of	Speedy	Kurmetrix "			x	15/08 28 V V	1 1204 1 1	6101	0955	0928	4/109 0849 Soil 2	Date Ume (other)	X Standard (7 working days) (TPH analysis 5 working days)	□ Same Day □ 1 Day	(Check One)	Turnaround Request Lat	Chain of Cus
v - Report Copy Pink - Client Copy			NIGLOS / ISO	1/15/09 11:50	1/12/12 14/12	115/00 9:42	গু আল									NWTPH-Gx/B NWTPH-Dx Volatiles by 82 Halogenated V Semivolatiles t PAHs by 82701 PCBs by 8082	60B folatiles by 82 by 8270D D / SIM	260B		ooratory Number:	stody
hromatograms with final report						ELM EDD5	omments/Special/linstructions:									Pesticides by 8 Herbicides by 8 Total RCRA M TCLP Metals HEM by 1664 PPM Diox 1 n	3081A 8151A etals (8) tals s (8-2	90)	itequested Analysis	09-122	Page of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 30, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0909-148

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on September 16, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 15 and 16, 2009, and received by the laboratory on September 16, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-01 Client ID: **WB-SO-DBT02-0050**

Analyte	Method	Result	PQL
Antimony	6010B	ND	8.6
Arsenic	6010B	ND	17
Beryllium	6010B	ND	0.86
Cadmium	6010B	1.6	0.86
Chromium	6010B	32	0.86
Copper	6010B	32	1.7
Lead	6010B	ND	8.6
Mercury	7471A	ND	0.43
Nickel	6010B	25	4.3
Selenium	6010B	ND	17
Silver	6010B	ND	0.86
Thallium	6020	ND	8.6
Zinc	6010B	49	4.3

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-02 Client ID: **WB-SO-DBT03-0030**

Analyte	Method	Result	PQL
Antimony	6010B	ND	6.8
Arsenic	6010B	ND	14
Beryllium	6010B	ND	0.68
Cadmium	6010B	ND	0.68
Chromium	6010B	18	0.68
Copper	6010B	61	1.4
Lead	6010B	24	6.8
Mercury	7471A	ND	0.34
Nickel	6010B	22	3.4
Selenium	6010B	ND	14
Silver	6010B	ND	0.68
Thallium	6020	ND	0.7
Zinc	6010B	74	3.4

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-03 Client ID: **WB-SO-DSW05-0005**

Analyte	Method	Result	PQL
Antimony	6010B	ND	9.1
Arsenic	6010B	ND	18
Beryllium	6010B	ND	0.91
Cadmium	6010B	ND	0.91
Chromium	6010B	14	0.91
Copper	6010B	20	1.8
Lead	6010B	ND	9.1
Mercury	7471A	ND	0.45
Nickel	6010B	18	4.5
Selenium	6010B	ND	18
Silver	6010B	ND	0.91
Thallium	6020	ND	9.1
Zinc	6010B	32	4.5

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-04 Client ID: **WB-SO-DSW06-0010**

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.7
Arsenic	6010B	ND	11
Beryllium	6010B	ND	0.57
Cadmium	6010B	ND	0.57
Chromium	6010B	18	0.57
Copper	6010B	23	1.1
Lead	6010B	ND	5.7
Mercury	7471A	ND	0.29
Nickel	6010B	21	2.9
Selenium	6010B	ND	11
Silver	6010B	ND	0.57
Thallium	6020	ND	5.7
Zinc	6010B	33	2.9

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-05 Client ID: **WB-SO-DSW07-0005**

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.8
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.58
Cadmium	6010B	ND	0.58
Chromium	6010B	19	0.58
Copper	6010B	23	1.2
Lead	6010B	12	5.8
Mercury	7471A	ND	0.29
Nickel	6010B	20	2.9
Selenium	6010B	ND	12
Silver	6010B	ND	0.58
Thallium	6020	ND	5.8
Zinc	6010B	40	2.9

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-06 Client ID: **WB-SO-DBT04-0045**

Method	Result	PQL
6010B	ND	17
6010B	ND	17
6010B	ND	1.7
6010B	ND	1.7
6010B	7.4	1.7
6010B	16	3.3
6010B	27	17
7471A	ND	0.83
6010B	ND	8.3
6010B	ND	33
6010B	ND	1.7
6020	ND	17
6010B	36	8.3
	Method 6010B 6010B 6010B 6010B 6010B 6010B 7471A 6010B 6010B 6010B 6010B	Method Result 6010B ND 6010B ND 6010B ND 6010B 7.4 6010B 7.4 6010B 27 7471A ND 6010B 27 7471A ND 6010B ND 6010B 27 7471A ND 6010B ND

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	MB0921S3,MB0923S1&MB0923S4

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.0
Arsenic	6010B	ND	5.0
Beryllium	6010B	ND	0.50
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Copper	6010B	ND	1.0
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Nickel	6010B	ND	2.5
Selenium	6010B	ND	10
Silver	6010B	ND	0.50
Thallium	6020	ND	5.0
Zinc	6010B	ND	2.5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-148-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Antimony	ND	ND	NA	5.0	
Arsenic	ND	ND	NA	10	
Beryllium	ND	ND	NA	0.50	
Cadmium	0.935	0.821	13	0.50	
Chromium	18.6	17.7	5	0.50	
Copper	18.5	19.2	4	1.0	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	
Nickel	14.6	14.1	4	2.5	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	5.0	
Zinc	28.6	27.8	3	2.5	

TOTAL METALS EPA 6010B/6020/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23&24-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-148-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	100	106	106	107	107	1	
Arsenic	100	93.6	94	95.0	95	2	
Beryllium	100	99.2	99	101	101	2	
Cadmium	50	48.2	94	48.6	95	1	
Chromium	100	114	95	114	96	0	
Copper	50	68.0	99	69.4	102	2	
Lead	250	223	89	225	90	1	
Mercury	0.50	0.480	96	0.495	99	3	
Nickel	100	105	90	105	91	1	
Selenium	100	93.9	94	94.2	94	0	
Silver	25	24.5	98	24.3	97	1	
Thallium	100	93.8	94	93.6	94	0	
Zinc	100	122	94	123	94	0	

% MOISTURE

Date Analyzed: 9-21-09

Client ID	Lab ID	% Moisture
WB-SO-DBT02-0050	09-148-01	42
WB-SO-DBT03-0030	09-148-02	27
WB-SO-DSW05-0005	09-148-03	45
WB-SO-DSW06-0010	09-148-04	13
WB-SO-DSW07-0005	09-148-05	14
WB-SO-DBT04-0045	09-148-06	70

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

www.pacelabs.com

Report Prepared for:

David Baumeister Onsite Environmental, Inc. 14648 NE 95th Street Redmond WA 98052

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Prepared Date:

September 30, 2009

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10112775 Sample Receipt Date: 09/18/2009 Client Project #: 235-1577-024 Client Sub PO #: N/A State Cert #: C218

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed and prepared by:

pri C. Maye

Scott Unze, Project Manager (612) 607-6383 (612) 607-6444 (fax) scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of OnSite Environmental, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 54-120%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Since the quantification of the native 2,3,7,8-substituted isomers was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained, or "E" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standards. The results show that the spiked native compounds were recovered at 91-119%. These results indicate a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Sa	ample Condition	n Upon Receipt	
Pace Analytical"	M.C.J.	- Lal	
Client Nam	0: <u>Chrute</u>	<u>c Chiv</u>	
Courier: Fed Ex 7 UPS USPS C Courier: Fed Ex 7 UPS USPS C Co Tracking #: 1268 FIW 1397	lient Commercial 015266	Pace Other	Cotonal Río Dia Deta
Custody Seal on Cooler/Box Present: U ye	s 🖾 no Seal	s Intact: 🗋 yes 📋	no
Packing Material:	ole Bage 🔲 None	Other	Temp Blank: Yes No
Thermometer Used 80344042, or 179425	Type of loe: We	t Blue None 🔲	Samples on ice, cooling process has begun
Cooler Temperature Top Temp should be above freezing to 6°C Top	Biological Tissue	e is Frozen: Yes No Comments:	Date and initials of person exemining contents:
Chain of Custody Present:	CIXES CINO CIN/A	1.	
Chain of Custody Filled Out:		2.	
Chain of Custody Relinquished:		3.	
Sampler Name & Signature on COC:		4.	
Samples Arrived within Hold Time:		5.	· · · · · · · · · · · · · · · · · · ·
Short Hold Time Analysis (<72hr):		6.	
Rush Turn Around Time Requested:		7.	
Sufficient Volume:		8.	
Correct Containers Used:		9.	
-Pace Containers Used:			
Containers Intact:		10.	
Filtered volume received for Dissolved tests		11.	
Sample Labels match COC:	EIYes DNO DINA	12.	
-Includes date/time/ID/Analysis Matrix:			
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	Dyes DNo KINA	13. 🗆 ^{HNO3}	
All containers needing preservation are found to be in compliance with EPA recommendation.		Samp #	1
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (we	ater DYea DNo	initial when completed	Lot # of added preservative
Samples checked for dechlorination:		14.	
Headspace in VOA Vials (>6mm):	CIYES CINO DINA	15.	
Trip Blank Present:		16.	
Trip Blank Custody Seals Present			
Pace Trip Blank Lot # (if purchased):			
Client Natiflastian/ Pasabilian			Field Data Required? V / N
Person Contected	Date	/Time [,]	FIERI Data Arquitout to / Te
Comments/ Besolution:	D(A)		
	<u></u>		
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
Project Manager Review:	()		Date: 19/18/09
Note: Whenever there is a discrepancy affecting North F-L213Rev.00, 05Aug2009	h Carolina compliance s	amples, a copy of this form w 1700 Eim :	ill be sent to the Rash Calylical SEMNE s, Inc. Street SE, Suite 200, Minneapolls, MN 55414

Report No.....10112775_8290

Page 5 of 14

E, Suite 200,

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB-\$ 1011 F909 SMT 15.8 39.5 9.58 F908 F909 BLAN	SO-DBT02- 2775001 29A_12 9 9 17 29A_02 & NK-21533	-0050 F90929A_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/15/200 09/18/200 09/24/200 09/29/200	09 09:56 09 09:13 09 19:00 09 12:33	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.26	0.10	0.100 l 0.100 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1 2 3 7 8-PeCDF-1	30	2.00 2.00 2.00	90 84 101
2,3,7,8-TCDD Total TCDD	ND ND		0.130 0.130	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-PeCDD-1	3C 3C -13C	2.00 2.00 2.00	101 106 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.140 0.190 0.160	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00	74 78 85 91
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.150 0.150	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	0-13C 0F-13C 0F-13C	2.00 2.00 2.00	74 63 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND		0.110 0.100 0.097	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	66 62
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.100 0.100	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	9-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.12	 	0.120 0.120 0.110 0.120 J	2,3,7,8-TCDD-37Cl	14	0.20	95
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.24 ND 0.93	 	0.160 BJ 0.160 0.160 BJ	Total 2,3,7,8-TCDI Equivalence: 0.24 (Using 2005 WHO	D ng/Kg Factors - U	Jsing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.50 3.00		0.120 J 0.120 J				
OCDF OCDD	2.20 30.00		0.230 J 0.180				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not DetectedNA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB-3 1011 F909 SMT 14.0 12.0 12.3 F908 F909 BLAI	SO-DBT03- 2775002 29A_13 9 9 9 17 29A_02 & NK-21533	-0030 F90929A_1	Matrix Dilution Collected Received 8 Extracted Analyzed	Solid NA 09/15/2009 09/18/2009 09/24/2009 09/29/2009	9 13:00 9 09:13 9 19:00 9 13:20	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 7.20	0.40	0.071 E 0.071	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00	96 87
2,3,7,8-TCDD Total TCDD	0.20 13.00		0.110 J 0.110	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDF-1	3C 3C 3C	2.00 2.00 2.00	110 111 120
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.17 1.40	 	0.100 0.100 J 0.100 J	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,4,7,8-HXCDF	-13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	85 71 76 85 90
1,2,3,7,8-PeCDD Total PeCDD	0.38 8.00		0.190 J 0.190	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C)F-13C	2.00 2.00 2.00	73 64 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND	0.16	0.097 E 0.100	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	66 66
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.51		0.110 0.095 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.17 0.54 0.34 6.80	 	0.088 J 0.087 J 0.120 J 0.097	2,3,7,8-TCDD-37Cl	4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.81 ND 2.50	 	0.085 J 0.110 0.098 J	Total 2,3,7,8-TCDI Equivalence: 0.86 (Using 2005 WHO	D ng/Kg Factors - Us	sing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	7.70 15.00		0.092 0.092				
OCDF OCDD	1.90 40.00		0.094 J 0.160				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 11.0 27.9 7.92 F908 F909 BLA	SO-DSW05 2775003 229A_14 9 9 9 9 9 9 9 9 9 9 9 29A_02 & NK-21533	5-0005 F90929A_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/15/2009 09/18/2009 09/24/2009 09/29/2009	9 13:05 9 09:13 9 19:00 9 14:06	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.45 6.90		0.22 J 0.22	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	89 83
2,3,7,8-TCDD Total TCDD	0.40 17.00		0.17 J 0.17	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDF-1	3C 3C 3C	2.00 2.00 2.00	100 102 111
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.41 0.44 5.20	 	0.37 J 0.25 J 0.31 J	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	o5 73 78 87 88
1,2,3,7,8-PeCDD Total PeCDD	26.00	1.50	0.35 I 0.35	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD	-13C)F-13C	2.00 2.00 2.00	76 66 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 	1.60 0.61 0.41	0.19 0.18 0.12	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	73 71 69
1,2,3,7,8,9-HxCDF Total HxCDF	ND 6.00		0.16 0.16 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.60 2.80 2.20 51.00	 	0.51 J 0.35 J 0.27 J 0.37	2,3,7,8-TCDD-37Cl	4	0.20	95
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	14.00 0.90 36.00	 	0.17 0.18 J 0.18	Total 2,3,7,8-TCDI Equivalence: 2.3 n (Using 2005 WHO	D g/Kg Factors - Us	sing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	49.00 110.00		0.24 0.24				
OCDF OCDD	34.00 380.00		0.20 0.69				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 10.6 10.0 9.53 F908 F909 BLA	SO-DSW06 2775004 229A_15 9 9 317 029A_02 & NK-21533	5-0010 F90929A_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/24/2009 09/29/2009	9 09:00 9 09:13 9 19:00 9 14:53	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF 2,3,7,8-TCDD	0.75 17.00 1.20	 	0.140 J 0.140 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1	3C 3C	2.00 2.00 2.00 2.00	91 83 98 99
Total TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	88.00 0.60 10.00	0.58 	0.140 0.150 E 0.120 J 0.140	1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	3C -13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	104 85 73 78 85
1,2,3,7,8-PeCDD Total PeCDD	3.00 75.00		0.350 J 0.350	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD	-13C -13C)F-13C)F-13C	2.00 2.00 2.00 2.00	88 76 64 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.95 0.49	2.60	0.120 E 0.120 J 0.084 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	67 64
1,2,3,7,8,9-HxCDF Total HxCDF	11.00	0.27	0.140 T 0.120	1,2,3,4-1CDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.50 5.00 4.10 110.00	 	0.140 0.110 J 0.110 J 0.120	2,3,7,8-TCDD-37Cl	4	0.20	94
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	25.00 1.70 75.00	 	0.180 0.230 J 0.200	Total 2,3,7,8-TCDI Equivalence: 7.6 n (Using 2005 WHO	D g/Kg Factors - Us	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	94.00 200.00		0.330 0.330				
OCDF OCDD	67.00 710.00		0.270 0.150				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

I = Interference present

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB-3 1011 F909 SMT 11.2 13.8 9.65 F908 F909 BLAI	SO-DSW07 2775005 29A_16 g g 17 29A_02 & NK-21533	7-0005 F90929A_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/24/200 09/29/200	9 09:10 9 09:13 9 19:00 9 15:39	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.54 8.10		0.140 J 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13 2,2,4,7,8 PeCDF-13	3C	2.00 2.00 2.00	93 87 101
Total TCDD	13.00		0.150 J 0.150	2,3,4,7,8-PeCDF-1, 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF-	3C 3C -13C	2.00 2.00 2.00	99 105 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.31 7.20	0.38	0.190 J 0.240 I 0.210	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C -13C	2.00 2.00 2.00 2.00	72 78 84 91
1,2,3,7,8-PeCDD Total PeCDD	1.50 22.00		0.300 J 0.300	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C F-13C	2.00 2.00 2.00	75 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.96 0.47	2.50	0.083 E 0.110 J 0.110 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	59 61
1,2,3,7,8,9-HxCDF Total HxCDF	12.00	0.16	0.120 I 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.20 3.40 2.10 45.00	 	0.230 J 0.230 J 0.110 J 0.190	2,3,7,8-TCDD-37Cl	4	0.20	97
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	25.00 1.50 63.00	 	0.200 0.170 J 0.180	Total 2,3,7,8-TCDI Equivalence: 3.9 no (Using 2005 WHO) g/Kg Factors - U	sing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	64.00 140.00		0.440 0.440				
OCDF OCDD	51.00 490.00		0.270 0.210				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Report No.....10112775_8290

without the written consent of Pace Analytical Services, Inc.

Page 11 of 14

ND = Not Detected NA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 16.6 76.0 3.99 F908 F909 BLA	SO-DBT04- 2775006 229A_17 9 9 9 317 029A_02 & NK-21533	0045 F90929A_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/24/200 09/29/200	9 09:20 9 09:13 9 19:00 9 16:25	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.90 24.00		0.85 J 0.85	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1	30	2.00 2.00 2.00	98 90 108
2,3,7,8-TCDD Total TCDD	0.66 12.00		0.58 J 0.58	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-PeCDD-1	3C 3C -13C	2.00 2.00 2.00	104 110 94
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 2.60 23.00	 	1.20 1.30 J 1.20	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	74 79 83 98
1,2,3,7,8-PeCDD Total PeCDD	3.80 39.00		0.77 J 0.77	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD	-13C 0F-13C 0F-13C	2.00 2.00 2.00	71 56 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.00 5.20	 1 3	0.72 J 1.10 J 0.70 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	60 54
1,2,3,7,8,9-HxCDF Total HxCDF	2.90 61.00		0.63 J 0.80	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.30 6.20 3.20 67.00	 	0.62 J 1.10 J 1.10 J 0.93	2,3,7,8-TCDD-37Cl	4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	39.00 5.60 110.00		1.50 1.30 J 1.40	Total 2,3,7,8-TCDI Equivalence: 10 ng (Using 2005 WHO	D g/Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	71.00 140.00		0.91 0.91				
OCDF OCDD	79.00 550.00		1.70 1.80				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

BLANK-21533	Matrix	Solid
F90928A_17	Dilution	NA
20.1 g	Extracted	09/24/2009 19:00
F90817	Analyzed	09/28/2009 22:40
F90928A_09 & F90929A_02	Injected By	SMT
	BLANK-21533 F90928A_17 20.1 g F90817 F90928A_09 & F90929A_02	BLANK-21533MatrixF90928A_17Dilution20.1 gExtractedF90817AnalyzedF90928A_09 & F90929A_02Injected By

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.029 0.029	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-TCDD-13C	2.00 2.00 2.00	79 80
2,3,7,8-TCDD Total TCDD	ND ND		0.035 0.035	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	90 92 105 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.070 0.044 0.057	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	65 70 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.500 0.500	1,2,3,4,7,8-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	84 73 65 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	 	0.029 0.034 0.028	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 77 76
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.039 0.032	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.045 0.047 0.050 0.047	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.042 ND 0.094	 	0.033 J 0.048 0.041 J	Total 2,3,7,8-TCDD Equivalence: 0.29 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	 ND	0.063	0.026 I 0.026			
OCDF OCDD	0.120 0.920		0.026 J 0.073 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	LCS- F909 20.3 F908 F909 BLAI	21534)28A_13 g)17)28A_09 & NK-21533	F90929A_02	Matrix Dilution Extracted Analyzed Injected By	Solid NA 09/24/2009 19: 09/28/2009 19: SMT	00 35
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.20	98	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,2,7,8 Poc DF 13C	2.00 2.00	78 77
2,3,7,8-TCDD Total TCDD	0.20	0.21	105	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	91 103
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.99 0.94	99 94	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,2,4,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	64 67 76
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.91	91	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	61 71 65 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	0.93 1.01 0.99	93 101 99	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	72 75 75
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	0.98	98	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	0.96 0.94 0.98	96 94 98	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.09 1.07	109 107			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	0.97	97			
OCDF OCDD	2.00 2.00	2.07 2.37	103 119			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range

X = Background subtracted value

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Reviewed by/Date	Received by	Received by	Relinquished by	Received by	Relinquished by				6 WB-SO-DETD4-0045	5 MB-SO-DSW07-0005	4 WB-SO-DSW/06-0010	3 WB-SO-DSW15-0205	2 NBISO-DETU3-0030	1 WB-SI-787782-0050	Comparing (425) 883-3881 • Fax: (425) 885-4603 Comparing WWWATIX Project Number: Project Name Project Manager: WWAT BANK Sampled by: Sampled by: Sampled by: Sampled by:
Reviewed by/Date		CAE	Speedy	Speedy	Junamotry				T A QCW F	1 011P0	9/16/09 00 10 11P	4 1305	1 47 1300 1 1	9/15/07/56 Shil 2	Chain of Turneround Request (In working days) Check One) (Check One) Same Day 1 Day 2 Day 3 Day Standard (7 working days) 3 Days) (TPH analysis 5 working days) (other) (other) 5 trunte
		Sludos 1	9/10/09 1	A/16/09 1	9/16/19			· ·		-					NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Dx Volatiles by 8260B
Chromatograms		1640	040	HHH	1444 EIM EI	Ime Comments/Speciali									PAHs by 8270D PAHs by 8270D PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Patricities by 8151A
with final report			i, *.		005		· · · · ·	· · · · · · · · · · · · · · · · · · ·	4					××	TCLP Metals HEM by 1664 RP Metals Dickins 09-1
									 E						% Moisture

•

···,•

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 13, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0909-148B

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on September 16, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 15 and 16, 2009, and received by the laboratory on September 16, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Total Metals EPA 6010B/7471A Analysis

The duplicate RPD for Selenium is outside control limits due to the inherently high percentage variability of samples that are within five times the detection limit.

The practical quantitation limit for Selenium in sample WB-SO-DBT04-0045 is elevated due to interferences present in the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

TOTAL METALS EPA 6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23,10-8&9-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-04 Client ID: **WB-SO-DSW06-0010**

Analyte	Method	Result	PQL
Antimony	6020	ND	1.7
Arsenic	6020	ND	3.4
Mercury	7471A	0.040	0.034
Selenium	6020	0.45	0.29
Thallium	6020	ND	0.34

TOTAL METALS EPA 6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23,10-8&9-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-148-05 Client ID: **WB-SO-DSW07-0005**

Analyte	Method	Result	PQL
Antimony	6020	ND	1.7
Arsenic	6020	ND	3.5
Mercury	7471A	ND	0.035
Selenium	6020	0.50	0.29
Thallium	6020	ND	0.35

TOTAL METALS EPA 6020/7471A

Date Extracted:	9-21&23-09
Date Analyzed:	9-23,10-8&9-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	09-148-06
Client ID:	WB-SO-DBT04-0045

Analyte	Method	Result	PQL
Antimony	6020	ND	5.0
Arsenic	6020	ND	10
Mercury	7471A	0.13	0.10
Selenium	6020	ND	2.0
Thallium	6020	ND	1.0

TOTAL METALS EPA 6020/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23,10-8&9-09
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0921S3&MB0923S1

Analyte	Method	Result	PQL
Antimony	6020	ND	1.5
Arsenic	6020	ND	5.0
Mercury	7471A	ND	0.030
Selenium	6020	ND	0.25
Thallium	6020	ND	0.30

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6020/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23,10-8&9-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-148-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Antimony	ND	ND	NA	1.5	
Arsenic	3.93	4.04	3	3.0	
Mercury	ND	ND	NA	0.030	
Selenium	1.20	0.920	26	0.25	С
Thallium	ND	ND	NA	0.3	

TOTAL METALS EPA 6020/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-21&23-09
Date Analyzed:	9-23,10-8&9-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-148-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Antimony	100	114	114	124	124	9	
Arsenic	100	105	101	103.0	99	2	
Mercury	0.50	0.480	96	0.495	99	3	
Selenium	100	108	107	104	102	5	
Thallium	50	48.5	97	48.7	97	0	

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Relinquished by	Received by	Relinquished by				6 MB-50-DBTD4-0045	5 MB-50-DSW07-0005	4 WB-SO-DSW/06-DOID	3 WB-SO-DSW05-0005	2 Warso-2003-0030	1 WB-SU-78703-0050	Project Name Project Manager: Sampled by: Market Market Market Market Market Market Market Ma
Reviewed by/Date		(WX C	Speedy	Speedy	Interneting				1 L COM	0916	9/16/09 09/09 1	4 1305	14/300 1 1	9/15/09/156 Shil 2	Turnaround Request (Inworking days) Check One) Same Day 1 Day 2 Day 3 Day X Standard (7 working days) (TPH analysis 5 working days) (other) (other) Date
		711487 (670	9/12/09 1640	Million In MM	4/16/19 1444	bate									NWTPH-Gx/BTEX Laboratory NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D PAHs by 8270D / SIM Simonal Particular Simonal Particular Simonal
Chromatograms with final report	T1-1.0 L	Hg -0.10	AS - 10 AS - 10	Nontra State	EIM EDDS MALL									XX	PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664 Remetals Discussion METALS & RE ANALLS SEE COMMENTS
			ب	1212				· · ·	E			1 7°		\times	% Moisture

~

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 29, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0909-149

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on September 16, 2009.

Please note that the subcontracted data will follow in the final report.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

C.

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 16, 2009, and received by the laboratory on September 16, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-01 Client ID: **WB-SO-DSP01-0005**

Analyte	Method	Result	PQL
Antimony	6010B	12	6.0
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.60
Cadmium	6010B	ND	0.60
Chromium	6010B	26	0.60
Copper	6010B	83	1.2
Lead	6010B	40	6.0
Mercury	7471A	ND	0.30
Nickel	6010B	28	3.0
Selenium	6010B	ND	12
Silver	6010B	ND	0.60
Thallium	6020	ND	6.0
Zinc	6010B	130	3.0

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-02 Client ID: **WB-SO-DSP02-0005**

Analyte	Method	Result	PQL
Antimony	6010B	7.6	5.9
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.59
Cadmium	6010B	ND	0.59
Chromium	6010B	27	0.59
Copper	6010B	110	1.2
Lead	6010B	40	5.9
Mercury	7471A	ND	0.30
Nickel	6010B	26	3.0
Selenium	6010B	ND	12
Silver	6010B	ND	0.59
Thallium	6020	ND	5.9
Zinc	6010B	98	3.0

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-03 Client ID: **WB-SO-DSP03-0005**

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.8
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.58
Cadmium	6010B	ND	0.58
Chromium	6010B	26	0.58
Copper	6010B	45	1.2
Lead	6010B	32	5.8
Mercury	7471A	ND	0.29
Nickel	6010B	24	2.9
Selenium	6010B	ND	12
Silver	6010B	ND	0.58
Thallium	6020	ND	5.8
Zinc	6010B	62	2.9

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-04 Client ID: **WB-SO-DSP04-0005**

Analyte	Method	Result	PQL
Antimony	6010B	7.0	6.0
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.60
Cadmium	6010B	ND	0.60
Chromium	6010B	27	0.60
Copper	6010B	73	1.2
Lead	6010B	30	6.0
Mercury	7471A	ND	0.30
Nickel	6010B	25	3.0
Selenium	6010B	ND	12
Silver	6010B	ND	0.60
Thallium	6020	ND	6.0
Zinc	6010B	110	3.0

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-05 Client ID: **WB-SO-DSP05-0005**

Analyte	Method	Result	PQL
Antimony	6010B	6.1	6.1
Arsenic	6010B	ND	12
Beryllium	6010B	ND	0.61
Cadmium	6010B	ND	0.61
Chromium	6010B	24	0.61
Copper	6010B	100	1.2
Lead	6010B	46	6.1
Mercury	7471A	ND	0.31
Nickel	6010B	32	3.1
Selenium	6010B	ND	12
Silver	6010B	ND	0.61
Thallium	6020	ND	6.1
Zinc	6010B	120	3.1

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-06 Client ID: **WB-SO-DSP06-0005**

Analyte	Method	Result	PQL
Antimony	6010B	11	9.2
Arsenic	6010B	ND	18
Beryllium	6010B	ND	0.92
Cadmium	6010B	ND	0.92
Chromium	6010B	25	0.92
Copper	6010B	130	1.8
Lead	6010B	50	9.2
Mercury	7471A	ND	0.46
Nickel	6010B	25	4.6
Selenium	6010B	ND	18
Silver	6010B	ND	0.92
Thallium	6020	ND	9.2
Zinc	6010B	190	4.6

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-07 Client ID: **WB-SO-DSP07-0005**

Analyte	Method	Result	PQL
Antimony	6010B	15	8.2
Arsenic	6010B	ND	16
Beryllium	6010B	ND	0.82
Cadmium	6010B	ND	0.82
Chromium	6010B	28	0.82
Copper	6010B	140	1.6
Lead	6010B	58	8.2
Mercury	7471A	ND	0.41
Nickel	6010B	24	4.1
Selenium	6010B	ND	16
Silver	6010B	5.8	0.82
Thallium	6020	ND	8.2
Zinc	6010B	220	4.1

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-08 Client ID: **WB-SO-DSP08-0005**

Analyte	Method	Result	PQL
Antimony	6010B	8.7	8.3
Arsenic	6010B	ND	17
Beryllium	6010B	ND	0.83
Cadmium	6010B	ND	0.83
Chromium	6010B	25	0.83
Copper	6010B	140	1.7
Lead	6010B	68	8.3
Mercury	7471A	ND	0.42
Nickel	6010B	34	4.2
Selenium	6010B	ND	17
Silver	6010B	ND	0.83
Thallium	6020	ND	8.3
Zinc	6010B	190	4.2
Date Extracted:	9-22&23-09		
-----------------	------------		
Date Analyzed:	9-23&24-09		

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-09 Client ID: **WB-SO-DSP09-0005**

Analyte	Method	Result	PQL
Antimony	6010B	11	10
Arsenic	6010B	ND	20
Beryllium	6010B	ND	1.0
Cadmium	6010B	ND	1.0
Chromium	6010B	33	1.0
Copper	6010B	99	2.0
Lead	6010B	50	10
Mercury	7471A	ND	0.50
Nickel	6010B	41	5.0
Selenium	6010B	ND	20
Silver	6010B	ND	1.0
Thallium	6020	ND	10
Zinc	6010B	190	5.0

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-10 Client ID: **WB-SO-DSP10-0005**

Analyte	Method	Result	PQL
Antimony	6010B	ND	6.8
Arsenic	6010B	ND	14
Beryllium	6010B	ND	0.68
Cadmium	6010B	ND	0.68
Chromium	6010B	22	0.68
Copper	6010B	93	1.4
Lead	6010B	54	6.8
Mercury	7471A	1.0	0.34
Nickel	6010B	26	3.4
Selenium	6010B	ND	14
Silver	6010B	ND	0.68
Thallium	6020	ND	6.8
Zinc	6010B	120	3.4

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-11 Client ID: **WB-SO-DSP11-0005**

Analyte	Method	Result	PQL
Antimony	6010B	ND	7.0
Arsenic	6010B	ND	14
Beryllium	6010B	ND	0.70
Cadmium	6010B	ND	0.70
Chromium	6010B	28	0.70
Copper	6010B	56	1.4
Lead	6010B	31	7.0
Mercury	7471A	ND	0.35
Nickel	6010B	27	3.5
Selenium	6010B	ND	14
Silver	6010B	ND	0.70
Thallium	6020	ND	7.0
Zinc	6010B	88	3.5

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-12 Client ID: **WB-SO-DSP12-0005**

Analyte	Method	Result	PQL
Antimony	6010B	ND	6.8
Arsenic	6010B	ND	14
Beryllium	6010B	ND	0.68
Cadmium	6010B	ND	0.68
Chromium	6010B	17	0.68
Copper	6010B	66	1.4
Lead	6010B	42	6.8
Mercury	7471A	ND	0.34
Nickel	6010B	26	3.4
Selenium	6010B	ND	14
Silver	6010B	ND	0.68
Thallium	6020	ND	6.8
Zinc	6010B	93	3.4

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-13 Client ID: **WB-SO-DSP13-0005**

Analyte	Method	Result	PQL
Antimony	6010B	7.2	6.6
Arsenic	6010B	ND	13
Beryllium	6010B	ND	0.66
Cadmium	6010B	ND	0.66
Chromium	6010B	21	0.66
Copper	6010B	96	1.3
Lead	6010B	67	6.6
Mercury	7471A	ND	0.33
Nickel	6010B	26	3.3
Selenium	6010B	ND	13
Silver	6010B	ND	0.66
Thallium	6020	ND	6.6
Zinc	6010B	120	3.3

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-14 Client ID: **WB-SO-DSP14-0005**

Analyte	Method	Result	PQL
Antimony	6010B	12	7.8
Arsenic	6010B	ND	16
Beryllium	6010B	ND	0.78
Cadmium	6010B	ND	0.78
Chromium	6010B	22	0.78
Copper	6010B	220	1.6
Lead	6010B	110	7.8
Mercury	7471A	ND	0.39
Nickel	6010B	34	3.9
Selenium	6010B	ND	16
Silver	6010B	ND	0.78
Thallium	6020	ND	7.8
Zinc	6010B	290	3.9

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-149-15 Client ID: **WB-SO-DSP15-0005**

Analyte	Method	Result	PQL
Antimony	6010B	22	8.0
Arsenic	6010B	ND	16
Beryllium	6010B	ND	0.80
Cadmium	6010B	ND	0.80
Chromium	6010B	35	0.80
Copper	6010B	140	1.6
Lead	6010B	89	8.0
Mercury	7471A	ND	0.40
Nickel	6010B	28	4.0
Selenium	6010B	ND	16
Silver	6010B	ND	0.80
Thallium	6020	ND	8.0
Zinc	6010B	240	4.0

TOTAL METALS EPA 6010B/6020/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	MB0922S3,MB0923S2&MB0923S3

Analyte	Method	Result	PQL
Antimony	6010B	ND	5.0
Arsenic	6010B	ND	10
Beryllium	6010B	ND	0.50
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Copper	6010B	ND	1.0
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Nickel	6010B	ND	2.5
Selenium	6010B	ND	10
Silver	6010B	ND	0.50
Thallium	6020	ND	5.0
Zinc	6010B	ND	2.5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B/6020/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-149-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Antimony	9.69	9.16	6	5.0	
Arsenic	ND	ND	NA	10	
Beryllium	ND	ND	NA	0.50	
Cadmium	ND	ND	NA	0.50	
Chromium	21.3	24.1	12	0.50	
Copper	69.4	67.7	3	1.0	
Lead	33.6	28.1	18	5.0	
Mercury	ND	ND	NA	0.25	
Nickel	23.3	21.9	6	2.5	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	
Thallium	ND	ND	NA	5.0	
Zinc	106	95.2	10	2.5	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/6020/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-22&23-09
Date Analyzed:	9-23&24-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-149-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Antimony	100	110	100	107	97	2	
Arsenic	100	97.3	97	99.6	100	2	
Beryllium	50	51.9	104	51.3	103	1	
Cadmium	50	48.8	98	48.5	97	1	
Chromium	100	112	91	115	94	3	
Copper	50	112	86	112	85	0	
Lead	250	259	90	257	89	1	
Mercury	0.50	0.504	101	0.498	100	1	
Nickel	100	116	93	115	92	1	
Selenium	100	94.0	94	97.0	97	3	
Silver	25	24.7	99	23.6	94	5	
Thallium	50	49.9	100	51.2	102	3	
Zinc	100	192	86	206	100	7	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TCLP LEAD by EPA 1311/6010B

Date Prepared:	9-28-09
Date Extracted:	9-29-09
Date Analyzed:	9-29-09

Matrix:	TCLP Extract
Units:	mg/L (ppm)

Client ID	Lab ID	Result	PQL
WB-SO-DSP14-0005	09-149-14	ND	0.20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TCLP LEAD by EPA 1311/6010B METHOD BLANK QUALITY CONTROL

9-28-09
9-29-09
9-29-09
TCLP Extract mg/L (ppm)
MB0929T1

Analyte	Method	Result	PQL
Lead	6010B	ND	0.20

TCLP LEAD by EPA 1311/6010B DUPLICATE QUALITY CONTROL

Date Prepared:	9-28-09
Date Extracted:	9-29-09
Date Analyzed:	9-29-09

Matrix:TCLP ExtractUnits:mg/L (ppm)

Lab ID: 09-149-14

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	ND	ND	NA	0.20	

TCLP LEAD by EPA 1311/6010B MS/MSD QUALITY CONTROL

Date Prepared:	9-28-09
Date Extracted:	9-29-09
Date Analyzed:	9-29-09

Matrix:TCLP ExtractUnits:mg/L (ppm)

Lab ID: 09-149-14

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	10	9.35	94	9.01	90	4	

% MOISTURE

Date Analyzed:	9-22-09		
Client ID		Lab ID	% Moisture
WB-SO-DSP01-0005		09-149-01	17
WB-SO-DSP02-0005		09-149-02	15
WB-SO-DSP03-0005		09-149-03	14
WB-SO-DSP04-0005		09-149-04	16
WB-SO-DSP05-0005		09-149-05	18
WB-SO-DSP06-0005		09-149-06	46
WB-SO-DSP07-0005		09-149-07	39
WB-SO-DSP08-0005		09-149-08	40
WB-SO-DSP09-0005		09-149-09	50
WB-SO-DSP10-0005		09-149-10	27
WB-SO-DSP11-0005		09-149-11	28
WB-SO-DSP12-0005		09-149-12	27
WB-SO-DSP13-0005		09-149-13	25
WB-SO-DSP14-0005		09-149-14	36
WB-SO-DSP15-0005		09-149-15	37

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Stability of the former of the	10 WB-CA-TEPIN-MARK	SURPHICE - 05- an S	5000-8005C-05-GM 8	7 WB-51-25907-0005	Salo- 2005-19-50- 91	5 WB-50-25905-0005	4 MB-SO-DGP14-0005	3 WB-81-25903-0015	2 MB-51-25802-1705	7 MB-50-10920-00-5	Lab ID Sample Identification	Sampled by: L-UNCL	Projection anger DINKWAY	What BMX	235-1577-024	Prinieri Number	Phone: (425) 883-3881 • Fax: (425) 885-4603	Environmental Inc.	MA OnSite
Reviewed by/Date			L'AL	Speedy	Speedy	Yannehix		1130 1 1	lias	UC11	1115	0110	1100	1055	1050	1 1045	Miller 1040 Soil 2	Date Time # dt # Sampled Sampled Matery com 2	(other)		X Standard (7 working-days)	2 Day 3 Day	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Cu
			1/4/03 14UN	W/14/09 (640	4 16/09 1-(-14	Glib/00 1444	Date											NWTF NWTF Volatile Haloge Semiv PAHs	PH-Gx/ PH-Dx es by a enated olatiles by 827	BTEX B260B I Volati s by 82 70D / S	les by 270D	8260E	3		poratory Number:	stody
Chromatograms with final report		we flow - 1	GA Alded 9/25/09. Dis / 2 day		for the analyzeds	Archive remaining volume											XXX	PCBs Pestici Herbic Total F TCLP HEM t Dt	by 800 ides b ides b RCRA Metals by 166 Metals by 166	32 y 8081 y 8151 Metals 3 4 <i>b</i> + <i>R</i> 1 S	A (8) XD LS	>		Requested Analysis	09-149	Page of

Į

٠.

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Reviewed by/Date	Received by	Relinquished by	Reinquished by	Received by	Relinquished by	Project Days Sampled by: Sampled by: I WB-SD-DSPID-0705 I WB-SD-DSPID-0705 I WB-SD-DSPID-0705 I WB-SD-DSPID-0705 I WB-SD-DSPID-0705	Project Number: 255-1577-024 Project Name:	Environmental Inc. Phone: (425) 883-3881 • Fax: (425) 885-4603	MA OnSite
Reviewed by/Date			Speedy	in Speedy	- thrametrix	CTPH analysis 5 working days) The The The The The The The The The The	Same Day 1 Day	Turnaround Request Li (in working days) Li (Check One) I	Chain of Cu
		THERUI LETA	a/16/02 1640	a/16/09/1444	Millon 1444	Image: Second	y 8260B	aboratory Number:	istody
Chromatograms with final report		WHYDRAN MIZS 107, WS (Z amy TATI	In Improve on martin	fix fithing a milling	Archive remaining villighe	PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals (HO HEM by 1664 HEM by 1664 DU/XMNS DU/XMNS TCLP LEA % Moisture	<u>ر</u> ی) ک	09-149 Recipested Analysis	Page 2 of 3

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

, .

www.pacelabs.com

Report Prepared for:

David Baumeister Onsite Environmental, Inc. 14648 NE 95th Street Redmond WA 98052

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Prepared Date: October 2, 2009 Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10112776 Sample Receipt Date: 09/18/2009 Client Project #: 235-1577-024 Client Sub PO #: N/A State Cert #: C218

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed and prepared by:

pri C. Maye

Scott Unze, Project Manager (612) 607-6383 (612) 607-6444 (fax) scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on fifteen samples submitted by a representative of OnSite Environmental, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 46-117%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained, or "E" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standards. The results show that the spiked native compounds in the laboratory spike sample were recovered at 87-105%. These results indicate a high degree of accuracy for these determinations. Somewhat variable results were obtained for selected congeners in the matrix spike samples, due to the levels of these compounds or interferences in the sample material.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Street, Redmond, WA 98052 (425) 883-3881		Laboratory Reference 4	• • 09 - 1 4 3
Laboratory: Pace Analytical Service, Inc. on: Scott Unze / Dioxin Manger	Turmaround Request 1 Day 2 Day 3 Day	Project Manage emai	r. David Baumeister II. dbaumeister@onsite-env.com
00 Elm St. Ste. 200 Minneapolis, MN 55414 er: (612)607-6383	Candena Carateria	Project Numbe Project Name	235. ISTI-024
Samble (dentification	Date Time Sambled Sambled Marry	i ≢o Con	
3-50- DSP 01-0005	Sillings toro >	1 DIOXINS	192
8-50-05802 - COOS	1 1005		
8-50-DSP03-0005	1 0.501		
B-50-08 PO4-0005	1055		
6-50 -05P05-0005	en		S OC
B- 20 - 05P 06- (1205	QU7		9 Q °
3-50- p5607 - 0005			542
8-50-05008- mus	1120		f q u
8-50-05901-0005			<u>60 a</u>
3-50-p5610-0005	<u>V 1030 V</u>		01.0
Signature	Company	Date Trave Com	ments/Special Instructions
N C C	<u>CKE</u>	311-110-45 30	
	\mathcal{M}		
1 by :			
Studen	PAce	9/10/09 9/5	
by:		Please when	n when the we
「おここでで、文文本、「新学校に、大学では正正にない」ので、文文を通信	「「「「「「「「「「「「「「「「「「「「「」」」」」		

Page And Page And Laboratory Reference A Laboratory Reference A Project Manager David Baumeister Broject Manager David Baumeister Project Name	DIOXINS 6 11 0 13 0 13 0 13 0 14	2530 Blager rehm toter & large
Invariant Tiby 2.Day 3.Day fandari Other		Comment of the second of the s
A contract Laboratory: Pace Analytical Service, Inc. NE 95th Street. Redmond, WA 98052 (425) 833 3381 NE 95th Street. Redmond, WA 98052 (425) 833 3381 Ontract Laboratory: Pace Analytical Service, Inc. ontract Laboratory: Pace Analytical Service, Inc. ict Person: Scott Unze/Dioxin Manger ict Person: Scott Unze/Dioxin Manger Ses: 1700 Elm:St. Ste. 200 Minneapolis, MN 55414 Filme:	Sam- 21-25-05-05-01 Sam- 21-250-05-01 Sam- 21-250-05-01 Sam- 21-250-05-01 Sam- 21-250-05-01	luished by:

	Sar Sace Analytical [®] Client Name	nple	Con	dition Sife	n Upon Receipt	Project #	0
Courier: Tracking Custody	□ Fed Ex □ UPS □ USPS □ Clie #: 12 68 4 El W 13976 Seal on Cooler/Box Present: □ yes	nt ロ 1 ジョ	Comr	nercial 6 Seale	Pace Other	optonal (Pf6): Due pate (Pf6): Name	
Packing	Material: 🔲 Bubble Wrap 🛛 Bubble	Bage		None	Other	Temp Blank: Yes No	-
Thermo	neter Used 80344042 of 179425	Туре	of ice	: Wet	Blue None	Samples on ice, cooling process has beg	un
Cooler 7	Semperature 2.2	Biolo	gical	Tissue	is Frozen: Yes No	Date and Initiale of person examini contents: <u>7/17/09</u>	ng
Chain of	Quid be above freezing to 6°C				Comments:	1.1.00	1
Chain of	Custody Present:	Lives			1.		
Chain of		CJY68			2.		
Sempler	Name & Signature on COO				3.		
Sampler					4.		
Chart U	Anived within Hold Lime:	2.JY88			5.		
Buch Tu	and time Analysis (2017):</th <th>LIYes</th> <th></th> <th></th> <th>6.</th> <th></th> <th></th>	LIYes			6.		
Cufficien	in Around 1888 Requested:	LI Yes			7.		
Correct (i volume.	LIVES			8.	<u> </u>	
-Pace	Containers Used		LINO Filhio		9.		
Containe	re Intact				40		
Filtered	Nume received for Dissolved tosts				10.		
Sempla I	abole match COC:	LIYes			11.		┥┥
-inclu	les dato/timo/ID/Anglusio	SC.	L/N0	LIWA	12.		
All contain	are needing acid/base preservation have been			ETANA	HNO3	H2SO4 NaOH HCI	+
checked. All contain	Noncompliance are noted in 13.	1103	C1140		Samp#		
complianc	e with EPA recommendation.	[]Yes	DNo	ZIN/A			
Exceptions:	VOA, Colform, TOC, Oli and Grease, WI-DRO (wate	_{r]} ⊡Yes	DNo		Initial when completed	Lot # of added preservative	\Box
Samples	checked for dechlorination:	∐Yes	0No	ÇAN/A	14.		
Headspa	ce in VOA Vials (>6mm):		CINo	ZINA	15.	· · · · · · · · · · · · · · · · · · ·	
Trip Blan	k Present:	⊡Yes	⊡No	ØN/A	16.	`\	
Trip Blan	k Custody Seals Present	∐Yes	ШNo				
Pace Trip	Blank Lot # (if purchased):				L		Ш
Client N	otification/ Resolution:					Field Data Required? Y / N	+
Pe	rson Contacted:			Date/	Time:		
Comme	nts/ Resolution:					·	
					······································		
							_
·			<u></u>				
							+
Projec	t Manager Review:					Date: 09/18/09	
Note: Wh F-L2	enever there is a discrepancy affecting North C I3Rev.00, 05Aug2009	arolina c	omplia	ance sa	mples, a copy of this form wi 1700 Elm S	ii be sent to the Numbroardine: SEMME , in treet SE, Suite 200, Minneapolis, MN 5541	04

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 11.3 14.4 9.70 F908 F909 BLA	SO-DSP01 2776001 30A_05 9 9 317 330A_02 & NK-21538	-0005 F90930A_11	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/25/2009 09/30/2009	9 10:40 9 09:13 9 16:30 9 11:38	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	180.00	8.10	0.130 E 0.130	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C		2.00 2.00 2.00	70 66 74
2,3,7,8-TCDD Total TCDD	1.80 320.00		0.220 Y 0.220 Y	1,2,3,7,8-PeCDF-13 2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	3C 3C 42C	2.00 2.00 2.00	74 75 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.60 43.00	2.10 	0.170 E 0.200 J 0.190	1,2,3,4,7,8-HXCDF- 1,2,3,6,7,8-HXCDF- 2,3,4,6,7,8-HXCDF- 1,2,3,7,8,9-HXCDF- 1,2,3,4,7,8,9-HXCDF-	13C 13C 13C 13C 13C	2.00 2.00 2.00 2.00 2.00	72 66 69 70 74
1,2,3,7,8-PeCDD Total PeCDD	4.50 150.00		0.390 J 0.390	1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCDI	13C F-13C F-13C	2.00 2.00 2.00	70 58 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.10 1.30	1.60 0.22	0.080 E 0.100 J 0.100 J 0.100 J 0.110 I	1,2,3,4,6,7,8-HpCDI OCDD-13C 1,2,3,4-TCDD-13C	D-13C	2.00 2.00 4.00 2.00	57 52 NA
Total HxCDF	9.00		0.098	1,2,3,7,8,9-HxCDD-	13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.80 3.80 3.30 110.00	 	0.330 J 0.200 J 0.180 J 0.240	2,3,7,8-TCDD-37Cl4	1	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	8.40 0.55 19.00	 	0.110 0.190 J 0.150	Total 2,3,7,8-TCDD Equivalence: 8.9 ng (Using 2005 WHO F) J/Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	55.00 110.00		0.400 0.400				
OCDF OCDD	18.00 290.00		0.120 0.350				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc. Report No.....10112776_8290

ND = Not DetectedNA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 10.4 15.2 8.84 F908 F909 BLA	SO-DSP02 2776002 930A_06 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 2 0 2 0 2	-0005 F90930A_11	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/25/200 09/30/200	9 10:45 9 09:13 9 16:30 9 12:24	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 110.00	5.4	0.13 E 0.13	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00	78 69 78
2,3,7,8-TCDD Total TCDD	2.20 530.00		0.19 Y 0.19 Y	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 78 2.00 79 2.00 84 2.00 75 2.00 66 2.00 73 2.00 73 2.00 73 2.00 80	78 79 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.00 45.00	2.7	0.27 E 0.37 J 0.32	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF	-13C -13C -13C -13C -13C		75 66 73 73 80
1,2,3,7,8-PeCDD Total PeCDD	6.70 350.00		0.48 0.48	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C)-13C)F-13C	2.00 2.00 2.00	69 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2.3,4.6,7,8-HxCDF	2.70 2.70	4.8	0.14 E 0.15 J 0.21 J	1,2,3,4,7,8,9-10-00-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C		2.00 2.00 4.00	57 54 52
1,2,3,7,8,9-HxCDF Total HxCDF	0.68 21.00		0.14 J 0.16	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.60 10.00 8.60 350.00	 	0.19 J 0.25 0.21 0.22	2,3,7,8-TCDD-37Cl	4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	29.00 1.80 68.00	 	0.15 0.28 J 0.21	Total 2,3,7,8-TCDI Equivalence: 15 ng (Using 2005 WHO	D)/Kg Factors - U	sing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	180.00 350.00		0.62 0.62				
OCDF OCDD	53.00 890.00		0.28 0.73				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U909 SMT 10.9 15.1 9.22 U909 U909 BLA	SO-DSP03- 12776003 929A_09 - 9 9 9 9 911 929A_02 & NK-21538	-0005 U90929A_16	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/25/200 09/29/200	9 10:50 9 09:13 9 16:30 9 19:19	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF 2,3,7,8-TCDD	9.8 190.0 3.6	 	0.49 0.49 0.67	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13 2,3,4,7,8-PeCDF-13	3C 3C	2.00 2.00 2.00 2.00	63 72 73 74
Total TCDD	440.0		0.67	1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-HxCDF-	3C -13C	2.00 2.00 2.00	85 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	4.1 5.7 71.0	 	0.55 J 0.41 0.48	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD-	-13C -13C -13C -13C	2.00 2.00 2.00 2.00	77 79 76 93
1,2,3,7,8-PeCDD Total PeCDD	9.1 340.0		0.80 0.80	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD	-13C F-13C	2.00 2.00 2.00	82 73 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.5 3.5 4 8		0.55 0.70 J 0.69 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	69 54
1,2,3,7,8,9-HxCDF Total HxCDF	59.0	0.90	0.54 I 0.62	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	11.0 21.0 18.0 460.0	 	1.40 0.95 1.60 1.30	2,3,7,8-TCDD-37Ck	4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	41.0 2.7 110.0		0.54 0.77 J 0.65	Total 2,3,7,8-TCDE Equivalence: 27 ng (Using 2005 WHO) /Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	410.0 780.0		2.20 2.20				
OCDF OCDD	61.0 1900.0		1.60 0.78				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U900 SMT 12.0 15.7 10.1 U900 U900 BLA	SO-DSP04- 12776004 929A_10 - 9 9 9 911 929A_02 & NK-21538	-0005 U90929A_16	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/25/2009 09/29/2009	9 10:55 9 09:13 9 16:30 9 20:08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	16.0 520.0		0.48 0.48	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDE-12	30	2.00 2.00 2.00	66 74 74
2,3,7,8-TCDD Total TCDD	5.8 1000.0		0.84 0.84	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C 13C	2.00 2.00 2.00	75 87 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	7.4 12.0 140.0		0.57 0.40 0.48	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,7,8,9-HxCDF-	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	75 78 74 89
1,2,3,7,8-PeCDD Total PeCDD	16.0 710.0		0.94 0.94	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	81 70 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	9.6 6.3 7 9		0.32 0.48 0.42	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	65 46
1,2,3,7,8,9-HxCDF Total HxCDF	1.8 88.0		0.42 0.59 J 0.45	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	14.0 28.0 25.0 810.0	 	0.94 1.50 0.73 1.10	2,3,7,8-TCDD-37Ck	4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	47.0 3.3 110.0	 	0.62 1.00 J 0.83	Total 2,3,7,8-TCDE Equivalence: 42 ng (Using 2005 WHO) /Kg Factors - Us	sing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	480.0 950.0		1.50 1.50				
OCDF OCDD	56.0 2200.0		0.59 0.72				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U900 SMT 11.6 17.9 9.49 U900 U900 BLA	SO-DSP05 12776005 929A_11 g g 911 929A_02 & NK-21538	-0005 U90929A_16	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/25/2009 09/29/2009	9 11:00 9 09:13 9 16:30 9 20:57	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	12.0 290.0		0.56 0.56	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	57 65 70
2,3,7,8-TCDD Total TCDD	6.1 620.0		0.98 0.98	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C 3C	2.00 2.00 2.00	70 71 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.1 6.1 91.0	 	0.70 J 0.58 0.64	1,2,3,4,7,6-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,4,7,8,9-HXCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	75 75 75 87
1,2,3,7,8-PeCDD Total PeCDD	13.0 370.0		1.20 1.20	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C 0F-13C	2.00 2.00 2.00	79 73 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	4.4 2.7 4 1		0.31 J 0.51 J 0.53 J	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	66 52
1,2,3,7,8,9-HxCDF Total HxCDF	41.0	0.74	0.43 I 0.45	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	9.9 20.0 18.0 410.0	 	0.93 0.96 0.70 0.86	2,3,7,8-TCDD-37Cl	4	0.20	68
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	23.0 57.0	1.40	0.52 0.59 I 0.55	Total 2,3,7,8-TCDI Equivalence: 32 ng (Using 2005 WHO	D g/Kg Factors - Us	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	320.0 610.0		1.60 1.60				
OCDF OCDD	30.0 1400.0		1.40 0.55				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 F909 SMT 16.2 50.3 8.06 F908 F909 BLA	SO-DSP06 2776006 330A_07 g g 317 330A_02 & NK-21538	-0005 F90930A_11	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/25/200 09/30/200	09 11:10 09 09:13 09 16:30 09 13:11	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 530.0	38	0.40 E 0.40	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	97 86
2,3,7,8-TCDD Total TCDD	7.6 1300.0		0.29 Y 0.29 Y	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDF-1	3C 3C 3C	2.00 2.00 2.00	112 110 117
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	 200.0	16 16 	0.57 E 0.56 E 0.57	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,4,7,8-HXCDF	-13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	95 82 81 79 83
1,2,3,7,8-PeCDD Total PeCDD	21.0 840.0		0.58 0.58	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	0F-13C	2.00 2.00 2.00	78 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	10.0	19	0.33 E 0.27	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	57 55
2,3,4,6,7,6-HXCDF 1,2,3,7,8,9-HxCDF Total HxCDF	3.1 83.0		0.38 0.42 J 0.35	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	15.0 40.0 29.0 1100.0	 	1.10 0.63 0.51 0.74	2,3,7,8-TCDD-37Cl	4	0.20	94
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	54.0 4.8 62.0	 	0.58 0.44 J 0.51	Total 2,3,7,8-TCDI Equivalence: 49 ng (Using 2005 WHO	D g/Kg Factors - L	Jsing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	740.0 1300.0		1.50 1.50				
OCDF OCDD	79.0 3900.0		0.66 1.30				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Report No.....10112776_8290

without the written consent of Pace Analytical Services, Inc.

Page 13 of 27

ND = Not Detected NA = Not Applicable NC = Not Calculated

> Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U910 BAL 14.2 42.0 8.23 U909 U910 BLA	SO-DSP07 2776007 001B_07 g 911 001B_02 & NK-21538	-0005 U91001B_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/25/2009 10/01/2009) 11:15) 09:13) 16:30) 22:51	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 870.00	34.0	0.64 E 0.64	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C		2.00 2.00 2.00	60 70 70
2,3,7,8-TCDD Total TCDD	5.80 1600.00		0.88 0.88	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	3C 3C	2.00 2.00 2.00	70 72 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.70 14.00 220.00	 	0.61 0.50 0.55	1,2,3,4,7,8-HXCDF- 1,2,3,6,7,8-HXCDF- 2,3,4,6,7,8-HXCDF- 1,2,3,7,8,9-HXCDF- 1,2,3,4,7,8,9-HXCDF-	13C 13C 13C 13C 13C	2.00 2.00 2.00 2.00 2.00	81 71 74 81 90
1,2,3,7,8-PeCDD Total PeCDD	11.00 700.00		1.10 1.10	1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCD	-13C F-13C F-13C	2.00 2.00 2.00	76 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	7.10 6.10 6.80		0.82 0.83 0.97	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	83 68 Y
1,2,3,7,8,9-HxCDF Total HxCDF	55.00	1.6	0.57 E 0.80	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	7.30 13.00 10.00 500.00	 	0.76 0.56 0.46 0.59	2,3,7,8-TCDD-37Cl4	1	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	16.00 0.94 26.00	 	0.42 0.48 J 0.45	Total 2,3,7,8-TCDD Equivalence: 27 ng/ (Using 2005 WHO I) /Kg Factors - Us	ing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	91.00 180.00		0.62 0.62				
OCDF OCDD	10.00 250.00		0.46 J 1.40				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Report No.....10112776_8290

without the written consent of Pace Analytical Services, Inc.

Page 14 of 27

ND = Not Detected NA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 BAL 10.7 40.0 6.40 U90 U91 BLA	SO-DSP08 12776008 001B_08 g 9 911 001B_02 & NK-21538	-0005 U91001I	3_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/25/200 10/01/200	9 11:20 9 09:13 9 16:30 9 23:39	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg		Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	630.0	32.0	0.71 0.71	Е	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1 2 3 7 8-PoCDE-1	30	2.00 2.00 2.00	69 79 78
2,3,7,8-TCDD Total TCDD	7.1 1700.0		0.60 0.60		2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 13C	2.00 2.00 2.00	80 94 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	13.0 14.0 180.0	 	0.40 0.67 0.54		1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	75 79 87 97
1,2,3,7,8-PeCDD Total PeCDD	13.0 950.0		0.66 0.66		1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD	0-13C 0F-13C 0F-13C	2.00 2.00 2.00	82 88 99
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	10.0 6.6 9.5	 	0.98 0.91 1.00	J	1,2,3,4,6,7,8-HpCE OCDD-13C	DD-13C	2.00 4.00	88 72 Y
1,2,3,7,8,9-HxCDF Total HxCDF	83.0	2.0	0.80 0.93	E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	0-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	12.0 24.0 20.0 980.0	 	0.94 1.40 1.20 1.20		2,3,7,8-TCDD-37C	14	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	39.0 3.2 79.0	 	0.61 0.67 0.64	J	Total 2,3,7,8-TCD Equivalence: 36 no (Using 2005 WHO	D g/Kg Factors - U	Ising PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	260.0 610.0		1.20 1.20					
OCDF OCDD	40.0 900.0		0.59 2.40					

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

Report No.....10112776_8290

Page 15 of 27

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U900 SMT 16.1 48.5 8.29 U900 U900 BLA	SO-DSP09 12776009 929A_14 - 9 9 911 929A_02 & NK-21538	-0005 U90929A_16	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/25/2009 09/29/2009	9 11:25 9 09:13 9 16:30 9 23:25	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	600.0	25	0.68 E 0.68	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PoCDE-1	30	2.00 2.00 2.00	65 73 76
2,3,7,8-TCDD Total TCDD	8.8 1900.0		0.93 0.93	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C 3C	2.00 2.00 2.00	76 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	15.0 15.0 180.0	 	0.76 0.59 0.67	1,2,3,4,7,0-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	76 76 74 89
1,2,3,7,8-PeCDD Total PeCDD	28.0 930.0		0.99 0.99	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C 0F-13C	2.00 2.00 2.00	81 71 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	17.0 9.4 9.1		0.78 0.52 0.52	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	67 51
1,2,3,7,8,9-HxCDF Total HxCDF	2.9 100.0		0.32 0.45 J 0.57	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	17.0 34.0 29.0 980.0	 	1.50 1.80 1.80 1.70	2,3,7,8-TCDD-37Cl	4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	42.0 3.9 110.0	 	0.96 1.30 J 1.20	Total 2,3,7,8-TCDI Equivalence: 60 ng (Using 2005 WHO	D g/Kg Factors - Us	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	530.0 1000.0		2.60 2.60				
OCDF OCDD	51.0 2500.0		1.20 1.50				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 BAL 14.1 22.6 10.9 U909 U910 BLA	SO-DSP10 12776010 001B_09 9 9 911 001B_02 & NK-21538	-0005 U91001B_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/25/200 10/02/200	9 11:30 9 09:13 9 16:30 9 00:28	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	250.0	9.8	0.60 E 0.60	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDE-1	30	2.00 2.00 2.00	62 72
2,3,7,8-TCDD Total TCDD	5.4 940.0		0.44 0.44	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C -13C	2.00 2.00 2.00	68 80 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	7.8 9.9 180.0		0.65 0.45 0.55	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	69 69 74 83
1,2,3,7,8-PeCDD Total PeCDD	18.0 620.0		0.82 0.82	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C)F-13C)F-13C	2.00 2.00 2.00	73 72 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	21.0 20.0 36.0		1.10 0.43 1.10	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	68 52 Y
1,2,3,7,8,9-HxCDF Total HxCDF	520.0	4.4	0.61 E 0.79	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	20.0 64.0 34.0 940.0	 	2.70 1.50 1.60 2.00	2,3,7,8-TCDD-37Cl	4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	430.0 32.0 1400.0	 	0.83 1.70 1.30	Total 2,3,7,8-TCDI Equivalence: 64 ng (Using 2005 WHO) /Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1200.0 2200.0		2.30 2.30				
OCDF OCDD	740.0 6000.0		0.68 0.60				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U910 BAL 14.7 29.5 10.4 U900 U910 BLA	SO-DSP11 12776011 001B_10 g 911 001B_02 & NK-21538	-0005 U91001B_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/25/2009 10/02/2009	9 11:45 9 09:13 9 16:30 9 01:18	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	440.0	20.0	0.57 E 0.57	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PoCDE-1	30	2.00 2.00 2.00	66 78 76
2,3,7,8-TCDD Total TCDD	8.6 1100.0		0.59 0.59	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C -13C	2.00 2.00 2.00 2.00	76 90 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	9.9 14.0 200.0	 	0.74 0.63 0.69	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	74 75 79 93
1,2,3,7,8-PeCDD Total PeCDD	21.0 830.0		0.51 0.51	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C 0F-13C	2.00 2.00 2.00	77 81 89
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	23.0 16.0 28.0	 	1.30 0.46 0.97	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	83 68 Y
1,2,3,7,8,9-HxCDF Total HxCDF	390.0	4.3	0.59 E 0.84	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	24.0 73.0 49.0 1200.0	 	1.90 1.60 0.80 1.40	2,3,7,8-TCDD-37Cl	4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	320.0 25.0 980.0	 	1.30 2.00 1.70	Total 2,3,7,8-TCDI Equivalence: 77 ng (Using 2005 WHO) /Kg Factors - Us	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1500.0 2700.0		4.00 4.00				
OCDF OCDD	580.0 7700.0		2.40 3.50				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U910 BAL 13.8 27.9 9.92 U900 U910 BLA	SO-DSP12 12776012 001B_11 9 9 911 001B_02 & NK-21538	-0005 U91001B_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/25/2009 10/02/2009	9 11:50 9 09:13 9 16:30 9 02:07	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 190.0	7.7	0.50 E 0.50	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	72 86 81
2,3,7,8-TCDD Total TCDD	4.3 550.0		0.65 0.65	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDF-1	3C 3C 3C	2.00 2.00 2.00	83 98
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.2 5.9 99.0	 	0.69 0.50 0.59	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	2.00 75 2.00 77 2.00 77 2.00 82 2.00 97
1,2,3,7,8-PeCDD Total PeCDD	13.0 390.0		0.59 0.59	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C 0F-13C	2.00 2.00 2.00	75 84 91
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.0 7.0 14.0		1.10 0.78 0.93	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 2.00 4.00	84 68 Y
1,2,3,7,8,9-HxCDF Total HxCDF	2.3 200.0		0.75 J 0.89	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	16.0 37.0 24.0 600.0	 	1.40 1.20 0.87 1.20	2,3,7,8-TCDD-37Cl	4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	170.0 14.0 510.0	 	0.76 0.69 0.73	Total 2,3,7,8-TCDI Equivalence: 41 ng (Using 2005 WHO	D g/Kg Factors - Us	sing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	710.0 1300.0		2.40 2.40				
OCDF OCDD	330.0 3800.0		0.25 0.43				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U910 BAL 14.1 19.8 11.3 U909 U910 BLA	SO-DSP13 2776013 001B_12 g g 011 001B_02 & NK-21538	-0005 U91001B_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/25/200 10/02/200	9 11:55 9 09:13 9 16:30 9 02:55	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF 2,3,7,8-TCDD	 120.0 3.1	4.9	0.43 E 0.43 0.45	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1	3C 3C	2.00 2.00 2.00 2.00	72 82 78 79
Total TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	390.0 3.3 3.8 61.0	 	0.45 0.42 J 0.41 J 0.41	1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	3C -13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00) 90) 90) 79) 83) 86) 86
1,2,3,7,8-PeCDD Total PeCDD	8.1 280.0		0.60 0.60	1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C -13C 0F-13C 0F-13C	2.00 2.00 2.00 2.00	96 83 79 80
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	7.2 4.5 8.5	 	0.54 0.55 0.52	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	74 50 Y
1,2,3,7,8,9-HxCDF Total HxCDF	130.0	1.6 	0.56 I 0.54	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	9.3 24.0 16.0 420.0	 	0.59 0.87 0.79 0.75	2,3,7,8-TCDD-37CI	4	0.20	89
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	120.0 9.5 360.0	 	0.77 0.76 0.77	Total 2,3,7,8-TCDI Equivalence: 26 ng (Using 2005 WHO) J/Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	470.0 870.0		1.10 1.10				
OCDF OCDD	220.0 2600.0		0.55 0.92				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10112776_8290

Page 20 of 27

ND = Not Detected NA = Not Applicable

NC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U910 BAL 13.4 34.4 8.78 U909 U910 BLA	SO-DSP14 2776014 001B_13 g 9 911 001B_02 & NK-21538	-0005 U91001B_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/200 09/18/200 09/25/200 10/02/200	9 12:00 9 09:13 9 16:30 9 03:44	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 120.0	4.9	0.53 E 0.53	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00	63 73
2,3,7,8-TCDD Total TCDD	2.8 360.0		0.62 0.62	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C 3C	2.00 2.00 2.00	73 85 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.1 4.1 55.0	 	0.78 J 0.51 J 0.64	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	-13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	2.00 71 2.00 73 2.00 73 2.00 77 2.00 87
1,2,3,7,8-PeCDD Total PeCDD	6.4 220.0		0.50 0.50	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C 0F-13C	2.00 2.00 2.00	76 80 83
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.9 6.1 12.0		0.81 0.49 0.53	1,2,3,4,6,7,8-HpCD OCDD-13C)D-13C	2.00 2.00 4.00	77 61 Y
1,2,3,7,8,9-HxCDF Total HxCDF	2.9 170.0		0.74 J 0.64	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	7.9 24.0 14.0 250.0	 	0.88 1.30 0.79 0.98	2,3,7,8-TCDD-37Cl	4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	140.0 12.0 430.0	 	0.89 0.72 0.81	Total 2,3,7,8-TCDI Equivalence: 25 ng (Using 2005 WHO	D)/Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	490.0 890.0		1.80 1.80				
OCDF OCDD	310.0 3100.0		1.50 0.59				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

.

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 U910 BAL 12.7 37.2 7.96 U909 U910 BLA	SO-DSP15 2776015 001B_14 g g 911 001B_02 & NK-21538	-0005 U91001B_18	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 09/16/2009 09/18/2009 09/25/2009 10/02/2009	9 12:05 9 09:13 9 16:30 9 04:32	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	290.0	15.0	0.86 E 0.86	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1 2 3 7 8-PeCDE-1	30	2.00 2.00 2.00	66 75 70
2,3,7,8-TCDD Total TCDD	10.0 870.0		0.33 0.33	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C 12C	2.00 2.00 2.00	73 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	7.7 95.0	6.7	1.80 E 1.70 1.80	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,7,8,9-HxCDF-	-13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	90 68 69 77 96
1,2,3,7,8-PeCDD Total PeCDD	31.0 740.0		0.78 0.78	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C F-13C	2.00 2.00 2.00	70 83 90
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 6.6 11.0	9.2	0.65 E 0.47 0.67	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	81 68 Y
1,2,3,7,8,9-HxCDF Total HxCDF	3.8 91.0		0.65 J 0.61	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	38.0 98.0 70.0 1200.0	 	1.10 1.40 0.68 1.10	2,3,7,8-TCDD-37Ck	4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	140.0 12.0 480.0	 	0.40 0.75 0.57	Total 2,3,7,8-TCDE Equivalence: 100 n (Using 2005 WHO) g/Kg Factors - Us	sing PRL/2	where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	2700.0 4900.0		2.70 2.70				
OCDF OCDD	350.0 17000.0		1.30 0.73				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

Report No.....10112776_8290

Page 22 of 27

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-21538	Matrix	Solid
Filename	U90929B_12	Dilution	NA
Total Amount Extracted	20.3 g	Extracted	09/25/2009 16:30
ICAL ID	U90911	Analyzed	09/30/2009 10:52
CCal Filename(s)	U90929A_16 & U90929B_15	Injected By	SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.110 0.110	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 79 78
2,3,7,8-TCDD Total TCDD	ND ND		0.150 0.150	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	77 89 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.110 0.088 0.099	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,2,4,7,8,9-HxCDF-13C	2.00 2.00 2.00	85 87 85
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.092 0.092	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	94 90 80 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	 	0.098 0.092 0.074	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 48
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.14		0.110 0.093 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.120 0.088 0.091 0.099	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	0.100 0.140 0.120	Total 2,3,7,8-TCDD Equivalence: 0.18 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.37 0.72		0.310 J 0.310 J			
OCDF OCDD	ND 1.40		0.270 0.320 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Value below calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	LCS-2 U9092 20.2 g U9091 U9092 BLAN	21539 29A_15 1 12 29A_02 & U K-21538	190929A_16	Matrix Dilution Extracted Analyzed Injected By	Solid NA 09/25/2009 16: 09/30/2009 00: SMT	30 13
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	103	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	60 69 70
2,3,7,8-TCDD Total TCDD	0.20	0.18	92	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	70 73 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	1.03 0.99	103 99	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	82 72 74 75
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.88	88	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	78 73 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	0.98 1.05 1.01	98 105 101	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	67 52
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.03	103	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	0.98 1.01 0.97	98 101 97	2,3,7,8-TCDD-37Cl4	0.20	71
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	0.98 0.95	98 95			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	1.05	105			
OCDF OCDD	2.00 2.00	1.73 2.05	87 103			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range

X = Background subtracted value

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Y = RF averaging used in calculations

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	WB 101 U90 10.9 U90 U90 BLA	-SO-DSP01- 12776001-M)929B_02 5 g)911)929A_16 & \NK-21538	0005-MS S U90929B_15	Matrix Dilution Extracted Analyzed Injected By	Solid NA 09/25/2009 09/30/2009 SMT	9 16:30 9 02:41	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.42	210	2,3,7,8-TCDF- 2,3,7,8-TCDD-	13C 13C	2.00 2.00	68 79 77
2,3,7,8-TCDD	0.20	0.24	119	1,2,3,7,8-PeCL 2,3,4,7,8-PeCL 1,2,3,7,8-PeCL 1,2,2,4,7,8-PeCL	DF-13C DF-13C DD-13C	2.00 2.00 2.00	79 90
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.11 1.09	111 109	1,2,3,4,7,8-HX 1,2,3,6,7,8-HX 2,3,4,6,7,8-HX 1,2,3,7,8,9-HX	DF-13C DF-13C DF-13C DF-13C DF-13C	2.00 2.00 2.00 2.00	85 77 80 79
1,2,3,7,8-PeCDD	1.00	1.08	108	1,2,3,4,7,8-110 1,2,3,6,7,8-Hx 1,2,3,4,6,7,8-H 1 2 3 4 7 8 9-H	DD-13C DD-13C pCDF-13C	2.00 2.00 2.00 2.00	84 74 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.15 1.13 1.12	115 113 112	1,2,3,4,6,7,8-H OCDD-13C	pCDD-13C	2.00 4.00	68 50
1,2,3,7,8,9-HxCDF	1.00	1.07	107	1,2,3,4-TCDD- 1,2,3,7,8,9-Hx0	13C CDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.09 1.21 1.15	109 121 115	2,3,7,8-TCDD-3	37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.47 0.98	147 98				
1,2,3,4,6,7,8-HpCDD	1.00	4.38	438				
OCDF OCDD	2.00 2.00	2.41 14.69	121 735				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	WB-S 10112 U9092 11.2 g U9091 U9092 BLAN	O-DSP01-00 1776001-MSD 29B_03 1 1 29A_16 & U9 K-21538	05-MSD) 00929B_15	Matrix Dilution Extracted Analyzed Injected By	Solid NA 09/25/2009 09/30/2009 SMT	9 16:30 9 03:30	
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.35	175	2,3,7,8-TCDF-1 2,3,7,8-TCDD-1	3C 3C	2.00 2.00 2.00	63 69 72
2,3,7,8-TCDD	0.20	0.23	114	1,2,3,7,8-PeCD 2,3,4,7,8-PeCD 1,2,3,7,8-PeCD	F-13C D-13C	2.00 2.00 2.00	72 72 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.10 1.10	110 110	1,2,3,6,7,8-HxC 2,3,4,6,7,8-HxC 1,2,3,7,8,9-HxC	DF-13C DF-13C DF-13C DF-13C	2.00 2.00 2.00 2.00	76 75 76
1,2,3,7,8-PeCDD	1.00	1.02	102	1,2,3,4,7,8-HXC 1,2,3,6,7,8-HXC 1,2,3,4,6,7,8-Hi 1,2,3,4,7,89-Hi	DD-13C DD-13C DCDF-13C DCDF-13C	2.00 2.00 2.00 2.00	82 71 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.10 1.09 1.11	110 109 111	1,2,3,4,6,7,8-Hp OCDD-13C	CDD-13C	2.00 4.00	66 54
1,2,3,7,8,9-HxCDF	1.00	1.07	107	1,2,3,4-TCDD-1 1,2,3,7,8,9-HxC	3C CDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.06 1.13 1.09	106 113 109	2,3,7,8-TCDD-3	37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.25 1.03	125 103				
1,2,3,4,6,7,8-HpCDD	1.00	2.62	262				
OCDF OCDD	2.00 2.00	2.05 7.82	102 391				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

 $\mathcal{P}_{ace Analytical}^{\mathsf{M}}$

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - Onsite Environmental, Inc.

Client Sample ID	WB-SO-DSP01-0005			Dry Weights	
Lab Sample ID	10112776001	Sample Filename	F90930A_05	Sample Amount	9.70 g
MSID	10112776001-MS	MS Filename	U90929B_02	MS Amount	9.0 g
MSD ID	10112776001-MSD	MSD Filename	U90929B_03	MSD Amount	9.6 g

	Sample Conc. MS/MSD Qs MS Qm MSD Qm			Background Subtracted				
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.000	0.20	0.42	0.35	18.3	174	136	24.5
2,3,7,8-TCDD	1.766	0.20	0.24	0.23	4.6	111	106	5.4
1,2,3,7,8-PeCDF	0.000	1.00	1.11	1.10	1.2	110	108	1.3
2,3,4,7,8-PeCDF	2.611	1.00	1.09	1.10	1.2	107	108	1.0
1,2,3,7,8-PeCDD	4.455	1.00	1.08	1.02	5.5	104	98	6.1
1,2,3,4,7,8-HxCDF	0.000	1.00	1.15	1.10	4.3	114	109	4.5
1,2,3,6,7,8-HxCDF	1.099	1.00	1.13	1.09	3.6	112	108	3.7
2,3,4,6,7,8-HxCDF	1.340	1.00	1.12	1.11	0.9	111	110	1.0
1,2,3,7,8,9-HxCDF	0.000	1.00	1.07	1.07	0.4	107	106	0.4
1,2,3,4,7,8-HxCDD	1.751	1.00	1.09	1.06	2.7	108	105	2.9
1,2,3,6,7,8-HxCDD	3.787	1.00	1.21	1.13	6.2	117	110	6.6
1,2,3,7,8,9-HxCDD	3.260	1.00	1.15	1.09	5.2	112	106	5.5
1,2,3,4,6,7,8-HpCDF	8.441	1.00	1.47	1.25	16.4	140	117	17.8
1,2,3,4,7,8,9-HpCDF	0.553	1.00	0.98	1.03	5.3	97	102	5.2
1,2,3,4,6,7,8-HpCDD	54.955	1.00	4.38	2.62	50.1	389	210	59.8
OCDF	18.357	2.00	2.41	2.05	16.3	112	94	18.2
OCDD	289.314	2.00	14.69	7.82	61.0	605	252	82.3

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate Qm = Quantity Measured Qs = Quantity Spiked % Rec. = Percent Recovery RPD = Relative Percent Difference NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin

CDF = Chlorinated dibenzo-p-furan

T = Tetra

Pe = Penta

Hx = Hexa

Hp = Hepta

O = Octa

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 8, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024-04-05 Laboratory Reference No. 0909-249

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on September 29, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 28, 2009, and received by the laboratory on September 29, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

Date Extracted:	9-29-09
Date Analyzed:	10-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SD-SD25-0005	WB-SD-SD26-0005	WB-SD-SD27-0005
Lab ID:	09-249-01	09-249-02	09-249-03
Diesel Range:	ND	94	37
PQL:	68	18	23
Identification:		Diesel Range Organics	Diesel Range Organics
Lube Oil Range:	490	37	320
PQL:	60	36	46
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	91%	98%	88%
Flags:	Y,U1	Y,N	Y,N

3

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Date Extracted:	9-29-09
Date Analyzed:	10-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SD-SD28-0005	WB-SD-SD29-0005	WB-SD-SD30-0005
Lab ID:	09-249-04	09-249-05	09-249-06
Diesel Range:	37	87	50
PQL:	31	30	19
Identification:	Diesel Range Organics	Diesel Range Organics	Diesel Range Organics
Lube Oil Bange:	99	330	320
	62	59	37
	02	00	07
Identification:	Lube Oil	Lube Oil	Lube Oil
Surrogate Recovery			
o-Terphenyl:	96%	89%	82%
Flags:	Y	Υ	Y,N

NWTPH-Dx

Date Extracted:	9-29-09
Date Analyzed:	10-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SD-SD30-1005	WB-SD-SD31-0005
Lab ID:	09-249-07	09-249-08
Diesel Range:	77	ND
PQL.	19	17
Identification:	Diesel Range Organics	
Lube Oil Range:	370	81
PQL:	38	34
Identification:	Lube Oil	Lube Oil
Surrogate Recovery		
o-Terphenyl:	90%	78%
Flags:	Y,N	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	9-29-09
Date Analyzed:	9-29-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0929S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification:	
Surrogate Recovery o-Terphenyl:	102%
Flags:	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	9-29-09 9-29-09	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	09-245-03	09-245-03 DUP
Diesel Range: PQL:	5790 130	4990 130
RPD:	15	
Surrogate Recovery o-Terphenyl:		
Flags:	Y,F	Y,F

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

• • •	–	501		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SD-SD25-0005					
Laboratory ID:	09-249-01					
Naphthalene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.40	EPA 8270	10-5-09	10-5-09	
Phenanthrene	0.042	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	0.11	0.079	EPA 8270	10-5-09	10-5-09	
Pyrene	0.14	0.079	EPA 8270	10-5-09	10-5-09	
Benzo[a]anthracene	0.045	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	0.057	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	0.083	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	0.018	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	0.050	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	0.028	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	0.038	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	49	19 - 97				
Phenol-d6	64	22 - 108				
Nitrobenzene-d5	57	21 - 106				
2-Fluorobiphenyl	70	29 - 107				
2,4,6-Tribromophenol	81	44 - 121				
Terphenyl-d14	87	37 - 120				

Analyte	Result	POL	Method	Date Prepared	Date Analyzed	Flags
Client ID	WB-SD-SD26-0005		Method	ricparca	Analyzeu	Tiugo
Laboratory ID:	09-249-02					
Naphthalene	ND	0.0095	FPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.24	EPA 8270	10-5-09	10-6-09	
Phenanthrene	0.0097	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	0.020	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Pvrene	0.020	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Benzolalanthracene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	0.012	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	55	19 - 97				
Phenol-d6	64	22 - 108				
Nitrobenzene-d5	57	21 - 106				
2-Fluorobiphenyl	67	29 - 107				
2,4,6-Tribromophenol	78	44 - 121				
Terphenyl-d14	81	37 - 120				

Analuta	Decult	DOI	Mothod	Date	Date	Flore
Analyte		PQL	Method	Prepared	Analyzed	Flags
	WB-SD-SD27-0005					
Laboratory ID:	09-249-03					
Naphthalene	ND	0.012	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.012	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	0.025	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.31	EPA 8270	10-5-09	10-6-09	
Phenanthrene	0.027	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	0.017	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	0.090	0.062	EPA 8270	10-5-09	10-6-09	
Pyrene	0.18	0.062	EPA 8270	10-5-09	10-6-09	
Benzo[a]anthracene	0.080	0.062	EPA 8270	10-5-09	10-6-09	
Chrysene	0.11	0.062	EPA 8270	10-5-09	10-6-09	
Benzo[b]fluoranthene	0.077	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	0.021	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	0.069	0.062	EPA 8270	10-5-09	10-6-09	
Indeno[1,2,3-cd]pyrene	0.025	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	0.032	0.012	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	49	19 - 97				
Phenol-d6	60	22 - 108				
Nitrobenzene-d5	57	21 - 106				
2-Fluorobiphenyl	62	29 - 107				
2,4,6-Tribromophenol	72	44 - 121				
Terphenyl-d14	72	37 - 120				

Analyta	Pooult	POL	Mathad	Date Bronorod	Date	Flogo
Allaryte Client ID:		FQL	Method	Flepaleu	Analyzeu	Flags
	WB-SD-SD20-0005					
Laboratory ID:	09-249-04	0.047		40 5 00	40 7 00	
Naphthalene	ND	0.017	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.017	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.017	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.017	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.017	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	0.021	0.017	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.42	EPA 8270	10-5-09	10-6-09	
Phenanthrene	0.26	0.083	EPA 8270	10-5-09	10-6-09	
Anthracene	0.076	0.017	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	0.33	0.083	EPA 8270	10-5-09	10-6-09	
Pyrene	0.31	0.083	EPA 8270	10-5-09	10-6-09	
Benzo[a]anthracene	0.15	0.083	EPA 8270	10-5-09	10-6-09	
Chrysene	0.15	0.083	EPA 8270	10-5-09	10-6-09	
Benzo[b]fluoranthene	0.13	0.083	EPA 8270	10-5-09	10-6-09	
Benzo[k]fluoranthene	0.11	0.083	EPA 8270	10-5-09	10-6-09	
Benzo[a]pyrene	0.13	0.083	EPA 8270	10-5-09	10-6-09	
Indeno[1,2,3-cd]pyrene	0.064	0.017	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	0.026	0.017	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	0.083	0.083	EPA 8270	10-5-09	10-6-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	41	19 - 97				
Phenol-d6	55	22 - 108				
Nitrobenzene-d5	45	21 - 106				
2-Fluorobiphenyl	61	29 - 107				
2,4,6-Tribromophenol	76	44 - 121				
Terphenyl-d14	73	37 - 120				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SD-SD29-0005					
Laboratory ID:	09-249-05					
Naphthalene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.40	EPA 8270	10-5-09	10-6-09	
Phenanthrene	0.019	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	0.057	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Pyrene	0.057	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]anthracene	0.027	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	0.036	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	0.054	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	0.031	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	0.019	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	0.024	0.016	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	47	19 - 97				
Phenol-d6	58	22 - 108				
Nitrobenzene-d5	48	21 - 106				
2-Fluorobiphenyl	57	29 - 107				
2,4,6-Tribromophenol	71	44 - 121				
Terphenyl-d14	69	37 - 120				

12

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SD-SD30-0005					
Laboratory ID:	09-249-06					
Naphthalene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.25	EPA 8270	10-5-09	10-6-09	
Phenanthrene	0.017	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	0.027	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Pyrene	0.024	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]anthracene	0.011	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	0.016	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	0.022	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	0.014	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	0.017	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	62	19 - 97				
Phenol-d6	73	22 - 108				
Nitrobenzene-d5	66	21 - 106				
2-Fluorobiphenyl	71	29 - 107				
2,4,6-Tribromophenol	77	44 - 121				
Terphenyl-d14	80	37 - 120				

13

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SO-SD30-1005					
Laboratory ID:	09-249-07					
Naphthalene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.25	EPA 8270	10-5-09	10-5-09	
Phenanthrene	0.089	0.051	EPA 8270	10-5-09	10-5-09	
Anthracene	0.012	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	0.17	0.051	EPA 8270	10-5-09	10-5-09	
Pyrene	0.16	0.051	EPA 8270	10-5-09	10-5-09	
Benzo[a]anthracene	0.033	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	0.064	0.051	EPA 8270	10-5-09	10-5-09	
Benzo[b]fluoranthene	0.054	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	0.016	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	0.025	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	0.015	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	0.019	0.010	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	51	19 - 97				
Phenol-d6	66	22 - 108				
Nitrobenzene-d5	57	21 - 106				
2-Fluorobiphenyl	70	29 - 107				
2,4,6-Tribromophenol	81	44 - 121				
Terphenyl-d14	82	37 - 120				

Matrix: Soil Units: mg/Kg

Analyte	Result	POL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	WB-SD-SD31-0005	1 42	methou	ricparea	Analyzou	Tiago
Laboratory ID:	09-249-08					
Naphthalene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.23	EPA 8270	10-5-09	10-6-09	
Phenanthrene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Pyrene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]anthracene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	ND	0.0090	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	61	19 - 97				
Phenol-d6	69	22 - 108				
Nitrobenzene-d5	63	21 - 106				
2-Fluorobiphenyl	65	29 - 107				
2,4,6-Tribromophenol	81	44 - 121				
Terphenyl-d14	74	37 - 120				

15

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1005S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.17	EPA 8270	10-5-09	10-5-09	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Pyrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	54	19 - 97				
Phenol-d6	61	22 - 108				
Nitrobenzene-d5	62	21 - 106				
2-Fluorobiphenyl	66	29 - 107				
2,4,6-Tribromophenol	83	44 - 121				
Terphenyl-d14	87	37 - 120				

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-24	49-07									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	0.916	0.987	1.33	1.33	ND	69	74	38 - 97	7	30	
2-Chlorophenol	0.853	0.972	1.33	1.33	ND	64	73	28 - 102	13	38	
1,4-Dichlorobenzene	0.273	0.383	0.667	0.667	ND	41	57	14 - 84	34	41	
N-Nitroso-di-n-propylamine	0.457	0.478	0.667	0.667	ND	69	72	25 - 104	4	39	
1,2,4-Trichlorobenzene	0.370	0.425	0.667	0.667	ND	55	64	23 - 93	14	37	
4-Chloro-3-methylphenol	1.13	1.09	1.33	1.33	ND	85	82	49 - 113	4	31	
Acenaphthene	0.479	0.461	0.667	0.667	ND	72	69	37 - 101	4	40	
4-Nitrophenol	1.22	1.13	1.33	1.33	ND	92	85	30 - 136	8	31	
2,4-Dinitrotoluene	0.534	0.471	0.667	0.667	ND	80	71	36 - 122	13	32	
Pentachlorophenol	1.19	1.09	1.33	1.33	ND	89	82	15 - 143	9	34	
Pyrene	0.697	0.572	0.667	0.667	0.105	89	70	24 - 138	20	39	
Surrogate:											
2-Fluorophenol						48	56	19 - 97			
Phenol-d6						60	65	22 - 108			
Nitrobenzene-d5						53	62	21 - 106			
2-Fluorobiphenyl						65	70	29 - 107			
2,4,6-Tribromophenol						77	82	44 - 121			
Terphenyl-d14						90	77	37 - 120			

% MOISTURE

Date Analyzed:	9-29-09		
Client ID		Lab ID	% Moisture
WB-SD-SD25-0005		09-249-01	59
WB-SD-SD26-0005		09-249-02	30
WB-SD-SD27-0005		09-249-03	46
WB-SD-SD28-0005		09-249-04	60
WB-SD-SD29-0005		09-249-05	58
WB-SD-SD30-0005		09-249-06	33
WB-SD-SD30-1005		09-249-07	34
WB-SD-SD31-0005		09-249-08	27

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

	Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Simplifie	8 JB-SO- 5031- 0805	7 MB-50- 5030-1005	6 WB-SD- SD30- 0005	5 MB-50- 5029- Odus	4 MB-50-5028 - 0705	3 MB-50-5027-0005	2 mB-SD-SDZ6-000S	1 WB-SD-SD25-0005	Environmental Inc. Phone: (425) 083-3881 • Fax: (425) 085-4603 Company: Project Number: 2:35-1577-02:4-04-05 Project Name: WSST BAY PARK Project Manager: DAVID DINKUHN Sampled by: II Manuel Icentification	A A Ancita
DISTRIBUTION LEGEND: White - OnSite Copy	Reviewed by/Date					5180)	Jul PmX		V 09:30 V 4	09:15 4	09.00	H 54:80	1 at 180	10:00	1 09:45 4	9/28/09 UB:15 SD 6	Turnaround Request (In working days) (Check One) Same Day 1 Day 2 Day 1 Day Standard (7 working days) (TPH analysis 5 working days) (other) Date Time	Chain of C
Yellow - Report Copy Pink - Cli	· · ·					9/29/09 832	FKS1 60/22/6		×		×	×	×	×	· ~~	×	NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D	ustody
ent copy a) pap pa	Chromatograms with t	GINGL HYD	PAHS, SEE	PQLS IS IN	SUMOF DIE	D PLS. REPO	TEN EDD	Comments/Special Instruc					×:		×-		PAHs by 8270D / SIM () PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals	
L = 0.36 ms/	final report	ROMETER	ATTACHED TABLE I	00 mg/Kg	SEL & dIL RANGE	INT POLS SO THAT	Ŷ		XX X X X X		XXXXXXX	XXXXXX	XXXXXXX			XXXXXXXX	HENT DY TOGA 90 MOISINGE TO PENTAL HLOROPHENDL PLP TOL (8290) TOL (8290) T) Pace of

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

Professional Analytical Services

Oct 6 2009 **On-Site Environmental** 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your 235-1577-024-04-05 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
WB-SD-SD25-0005	Soil	09-A015904	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE
WB-SD-SD26-0005	Soil	09-A015905	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE
WB-SD-SD27-0005	Soil	09-A015906	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE
WB-SD-SD28-0005	Soil	09-A015907	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE
WB-SD-SD29-0005	Soil	09-A015908	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE
WB-SD-SD30-0005	Soil	09-A015909	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE
WB-SD-SD30-10005	Soil	09-A015910	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE
WB-SD-SD31-0005	Soil	09-A015911	DEM, NUT, CONV, GRAIN SIZE, GRAIN SIZE

Your samples were received on Tuesday, September 29, 2009. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young

Laboratory Manager

PO Number: 09-249

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients **DEM=Demand**

MIN=Minerals

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

Date Received: 09/29/09 Date Reported: 10/ 6/09

AMTEST Identification Number09-A015904Client IdentificationWB-SD-SD25-0005Sampling Date09/28/09, 08:15All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	37.7	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	16.3	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	4.4	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	115.	mg/kg		2.7	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	37.	mg/Kg		1.3	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	10.3 %	GRAVEL	11.9	ASTM D422	МО	09/30/09
- 2	4.00	1.60 %			ASTM D422	MO	09/30/09
-1	2.00	9.10 %	SAND	40.3	ASTM D422	МО	09/30/09
0	1.00	5.80 %			ASTM D422	МО	09/30/09
+1	0.50	6.00 %			ASTM D422	МО	09/30/09
+ 2	0.25	7.60 %			ASTM D422	МО	09/30/09
+ 3	0.125	11.8 %			ASTM D422	МО	09/30/09
+ 4	0.063	7.20 %	SILT	22.9	ASTM D422	МО	09/30/09
+ 5	0.032	< 0.1 %			ASTM D422	МО	09/30/09
+ 6	0.016	6.10 %			ASTM D422	МО	09/30/09
+ 7	0.008	4.40 %			ASTM D422	МО	09/30/09
+ 8	0.004	5.20 %			ASTM D422	МО	09/30/09
+ 9	0.002	1.90 %	CLAY	24.9	ASTM D422	МО	09/30/09
+ 10	0.001	0.50 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	22.5 %			ASTM D422	MO	09/30/09

aron W Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

Date Received: 09/29/09 Date Reported: 10/ 6/09

AMTEST Identification Number09-A015905Client IdentificationWB-SD-SD26-0005Sampling Date09/28/09, 09:45All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	67.8	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	3.6	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	0.74	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	< 2.95	mg/kg		1.5	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	< 0.7	mg/Kg		0.74	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	12.1 %	GRAVEL	14.0	ASTM D422	МО	09/30/09
- 2	4.00	1.90 %			ASTM D422	МО	09/30/09
-1	2.00	10.0 %	SAND	63.0	ASTM D422	МО	09/30/09
0	1.00	11.6 %			ASTM D422	МО	09/30/09
+1	0.50	13.2 %			ASTM D422	МО	09/30/09
+ 2	0.25	23.0 %			ASTM D422	МО	09/30/09
+ 3	0.125	5.20 %			ASTM D422	МО	09/30/09
+ 4	0.063	5.00 %	SILT	15.5	ASTM D422	МО	09/30/09
+ 5	0.032	< 0.1 %			ASTM D422	МО	09/30/09
+ 6	0.016	3.00 %			ASTM D422	МО	09/30/09
+ 7	0.008	2.70 %			ASTM D422	МО	09/30/09
+ 8	0.004	4.80 %			ASTM D422	МО	09/30/09
+ 9	0.002	1.30 %	CLAY	7.70	ASTM D422	MO	09/30/09
+ 10	0.001	0.30 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	6.10 %			ASTM D422	MO	09/30/09

aron W Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

Date Received: 09/29/09

Date Reported: 10/ 6/09

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

5

AMTEST Identification Number09-A015906Client IdentificationWB-SD-SD27-0005Sampling Date09/28/09, 10:00All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	54.9	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	13.5	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	2.8	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	< 3.64	mg/kg		1.8	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	< 0.9	mg/Kg		0.91	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	34.3 %	GRAVEL	38.9	ASTM D422	МО	09/30/09
- 2	4.00	4.60 %			ASTM D422	MO	09/30/09
-1	2.00	12.8 %	SAND	43.1	ASTM D422	МО	09/30/09
0	1.00	7.10 %			ASTM D422	МО	09/30/09
+1	0.50	7.90 %			ASTM D422	МО	09/30/09
+ 2	0.25	8.80 %			ASTM D422	МО	09/30/09
+ 3	0.125	6.50 %			ASTM D422	МО	09/30/09
+ 4	0.063	3.50 %	SILT	12.9	ASTM D422	МО	09/30/09
+ 5	0.032	2.20 %			ASTM D422	МО	09/30/09
+ 6	0.016	2.80 %			ASTM D422	МО	09/30/09
+7	0.008	2.10 %			ASTM D422	МО	09/30/09
+ 8	0.004	2.30 %			ASTM D422	МО	09/30/09
+ 9	0.002	0.40 %	CLAY	5.10	ASTM D422	МО	09/30/09
+ 10	0.001	< 0.1 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	4.70 %			ASTM D422	MO	09/30/09

aron W Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

AMTEST Identification Number09-A015907Client IdentificationWB-SD-SD28-0005Sampling Date09/28/09, 08:30All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	32.9	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	21.8	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	2.2	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	32.5	mg/kg		3.0	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	< 1.5	mg/Kg		1.5	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	7.40 %	GRAVEL	8.40	ASTM D422	MO	09/30/09
- 2	4.00	1.00 %			ASTM D422	MO	09/30/09
-1	2.00	5.20 %	SAND	49.8	ASTM D422	MO	09/30/09
0	1.00	8.90 %			ASTM D422	MO	09/30/09
+1	0.50	7.40 %			ASTM D422	MO	09/30/09
+ 2	0.25	9.10 %			ASTM D422	MO	09/30/09
+ 3	0.125	19.2 %			ASTM D422	MO	09/30/09
+ 4	0.063	12.3 %	SILT	27.7	ASTM D422	MO	09/30/09
+ 5	0.032	0.70 %			ASTM D422	MO	09/30/09
+ 6	0.016	4.40 %			ASTM D422	MO	09/30/09
+7	0.008	6.10 %			ASTM D422	MO	09/30/09
+ 8	0.004	4.20 %			ASTM D422	MO	09/30/09
+ 9	0.002	2.40 %	CLAY	14.2	ASTM D422	MO	09/30/09
+ 10	0.001	1.20 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	10.6 %			ASTM D422	MO	09/30/09

Date Received: 09/29/09 Date Reported: 10/ 6/09

aron W Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

Date Reported: 10/ 6/09

Date Received: 09/29/09

AMTEST Identification Number09-A015908Client IdentificationWB-SD-SD29-0005Sampling Date09/28/09, 08:45All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	38.1	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	23.2	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	3.9	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	415.	mg/kg		2.6	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	29.	mg/Kg		1.3	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	25.1 %	GRAVEL	28.5	ASTM D422	МО	09/30/09
- 2	4.00	3.40 %			ASTM D422	MO	09/30/09
-1	2.00	12.9 %	SAND	45.4	ASTM D422	МО	09/30/09
0	1.00	9.70 %			ASTM D422	МО	09/30/09
+1	0.50	8.80 %			ASTM D422	МО	09/30/09
+ 2	0.25	7.10 %			ASTM D422	МО	09/30/09
+ 3	0.125	6.90 %			ASTM D422	МО	09/30/09
+ 4	0.063	5.40 %	SILT	14.9	ASTM D422	МО	09/30/09
+ 5	0.032	< 0.1 %			ASTM D422	МО	09/30/09
+ 6	0.016	2.30 %			ASTM D422	МО	09/30/09
+7	0.008	3.00 %			ASTM D422	МО	09/30/09
+ 8	0.004	4.20 %			ASTM D422	МО	09/30/09
+ 9	0.002	1.40 %	CLAY	11.4	ASTM D422	МО	09/30/09
+ 10	0.001	0.50 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	9.50 %			ASTM D422	MO	09/30/09

aron W Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

Date Received: 09/29/09 Date Reported: 10/ 6/09

AMTEST Identification Number09-A015909Client IdentificationWB-SD-SD30-0005Sampling Date09/28/09, 09:00All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	69.2	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	9.6	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	2.2	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	< 2.89	mg/kg		1.4	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	13.	mg/Kg		0.72	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	39.5 %	GRAVEL	41.8	ASTM D422	МО	09/30/09
- 2	4.00	2.30 %			ASTM D422	MO	09/30/09
-1	2.00	8.00 %	SAND	37.9	ASTM D422	МО	09/30/09
0	1.00	6.20 %			ASTM D422	МО	09/30/09
+1	0.50	8.00 %			ASTM D422	МО	09/30/09
+ 2	0.25	10.1 %			ASTM D422	МО	09/30/09
+ 3	0.125	5.60 %			ASTM D422	МО	09/30/09
+ 4	0.063	4.50 %	SILT	13.9	ASTM D422	МО	09/30/09
+ 5	0.032	2.60 %			ASTM D422	МО	09/30/09
+ 6	0.016	2.30 %			ASTM D422	МО	09/30/09
+7	0.008	2.30 %			ASTM D422	МО	09/30/09
+ 8	0.004	2.20 %			ASTM D422	МО	09/30/09
+ 9	0.002	0.80 %	CLAY	6.20	ASTM D422	МО	09/30/09
+ 10	0.001	0.30 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	5.10 %			ASTM D422	MO	09/30/09

aron W Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

Date Received: 09/29/09 Date Reported: 10/ 6/09

AMTEST Identification Number09-A015910Client IdentificationWB-SD-SD30-10005Sampling Date09/28/09, 09:15All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	61.5	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	15.5	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	1.4	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	5.37	mg/kg		1.6	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	3.1	mg/Kg		0.81	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	33.2 %	GRAVEL	36.0	ASTM D422	MO	09/30/09
- 2	4.00	2.80 %			ASTM D422	MO	09/30/09
-1	2.00	10.8 %	SAND	43.4	ASTM D422	MO	09/30/09
0	1.00	6.70 %			ASTM D422	MO	09/30/09
+1	0.50	9.00 %			ASTM D422	MO	09/30/09
+ 2	0.25	11.2 %			ASTM D422	MO	09/30/09
+ 3	0.125	5.70 %			ASTM D422	MO	09/30/09
+ 4	0.063	3.90 %	SILT	14.6	ASTM D422	MO	09/30/09
+ 5	0.032	2.40 %			ASTM D422	MO	09/30/09
+ 6	0.016	2.00 %			ASTM D422	MO	09/30/09
+ 7	0.008	3.60 %			ASTM D422	MO	09/30/09
+ 8	0.004	2.70 %			ASTM D422	MO	09/30/09
+ 9	0.002	0.40 %	CLAY	6.00	ASTM D422	MO	09/30/09
+ 10	0.001	< 0.1 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	5.60 %			ASTM D422	MO	09/30/09

aron W Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05 PO Number: 09-249

AMTEST Identification Number09-A015911Client IdentificationWB-SD-SD31-0005Sampling Date09/28/09, 09:30All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	71.1	%		0.1	SM 2540G	SL	09/30/09
Total Volatile Solids	4.8	%		0.1	SM 2540-G	SL	09/30/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	2.2	%		0.05	SW 846 9060	SL	10/01/09

Minerals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfides	< 2.81	mg/kg		1.4	PSEP p32	SL	10/01/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	< 0.7	mg/Kg		0.70	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	32.3 %	GRAVEL	34.3	ASTM D422	MO	09/30/09
- 2	4.00	2.00 %			ASTM D422	MO	09/30/09
-1	2.00	5.60 %	SAND	34.4	ASTM D422	MO	09/30/09
0	1.00	3.70 %			ASTM D422	MO	09/30/09
+1	0.50	7.20 %			ASTM D422	MO	09/30/09
+ 2	0.25	10.6 %			ASTM D422	MO	09/30/09
+ 3	0.125	7.30 %			ASTM D422	MO	09/30/09
+ 4	0.063	11.3 %	SILT	25.1	ASTM D422	MO	09/30/09
+ 5	0.032	0.10 %			ASTM D422	MO	09/30/09
+ 6	0.016	6.80 %			ASTM D422	MO	09/30/09
+ 7	0.008	4.40 %			ASTM D422	MO	09/30/09
+ 8	0.004	2.50 %			ASTM D422	MO	09/30/09
+ 9	0.002	1.30 %	CLAY	6.30	ASTM D422	MO	09/30/09
+ 10	0.001	0.70 %			ASTM D422	MO	09/30/09
> + 10	< 0.001	4.30 %			ASTM D422	MO	09/30/09

Date Received: 09/29/09 Date Reported: 10/ 6/09

aron W ν Aaron W. Young Laboratory Manager

QC Summary for sample numbers: 09-A015904 to 09-A015911

DUPLICATES

DUFLICAT	_3				
SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUPLICATE VALUE	RPD
09-A015911	Total Organic Carbon	%	2.2	2.4	8.7
09-A015911	Total Organic Carbon	%	2.2	1.7	26.
09-A015904	Available Ammonia	mg/Kg	14.	16.	13.
09-A015904	Available Ammonia	mg/Kg	14.	18.	25.
09-A016201	Available Ammonia	mg/Kg	3.4	3.4	0.00
09-A015807	Total Solids	%	31.3	32.6	4.1
09-A015817	Total Solids	%	79.1	79.1	0.00
09-A015911	Total Solids	%	71.1	70.5	0.85
09-A015911	Total Volatile Solids	%	4.8	5.6	15.
09-A015911	Total Sulfides	mg/kg	< 2	< 2	
09-A015904		%	10.3	10.3	0.00
09-A015904		%	10.3	9.10	12.
09-A015904	- 2	%	1.60	1.20	29.
09-A015904	- 2	%	1.60	2.10	27.
09-A015904	-1	%	9.10	7.20	23.
09-A015904	-1	%	9.10	7.40	21.
09-A015904	0	%	5.80	6.20	6.7
09-A015904	0	%	5.80	5.60	3.5
09-A015904	+1	%	6.00	5.80	3.4
09-A015904	+1	%	6.00	6.00	0.00
09-A015904	+ 2	%	7.60	6.80	11.
09-A015904	+ 2	%	7.60	8.20	7.6
09-A015904	+ 3	%	11.8	12.6	6.6
09-A015904	+ 3	%	11.8	13.0	9.7
09-A015904	+ 4	%	7.20	9.30	25.
09-A015904	+ 4	%	7.20	8.00	11.
09-A015904	+ 5	%	< 0.1	< 0.1	
09-A015904	+ 5	%	< 0.1	1.00	
09-A015904	+ 6	%	6.10	4.80	24.
09-A015904	+ 6	%	6.10	4.80	24.
09-A015904	+ 7	%	4.40	5.70	26.
09-A015904	+ 7	%	4.40	4.70	6.6
09-A015904	+ 8	%	5.20	5.20	0.00
09-A015904	+ 8	%	5.20	5.20	0.00
09-A015904	+ 9	%	1.90	1.90	0.00
09-A015904	+ 9	%	1.90	3.30	54.
09-A015904	+ 10	%	0.50	0.50	0.00

QC Summary for sample numbers: 09-A015904 to 09-A015911...

DUPLICATES continued....

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUPLICATE	VALUE	RPD
09-A015904	+ 10	%	0.50	1.60		100
09-A015904	> + 10	%	22.5	22.5		0.00
09-A015904	> + 10	%	22.5	20.1		11.
MATRIX SF	VIKES					
SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
09-A015911	Available Ammonia	mg/Kg	< 0.5	24.	25.	96.00 %
09-A016202	Available Ammonia	mg/Kg	8.8	35.	25.	104.80 %
09-A015910	Total Sulfides	mg/kg	3.30	90.4	100.	87.10 %
STANDAR) REFERENCE MATERIA	ALS	1	1		
ANALYTE		UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Total Organic	Carbon	%	1.0	0.87		87.0 %
Available Amı	nonia	mg/Kg	2.5	2.6		104. %
Available Amı	nonia	mg/Kg	25.	25.		100. %
Total Sulfides		mg/kg	180.	170.		94.4 %
BLANKS						
B LANKS Analyte		UNITS	RESULT			
BLANKS ANALYTE Total Organic	Carbon	UNITS %	RESULT < 0.05			
BLANKS ANALYTE Total Organic Available Ami	Carbon nonia	UNITS % mg/Kg	RESULT < 0.05 < 0.5			
BLANKS ANALYTE Total Organic Available Ami Available Ami	Carbon nonia nonia	UNITS % mg/Kg mg/Kg	RESULT < 0.05 < 0.5 < 0.5			
BLANKS ANALYTE Total Organic Available Ami Available Ami Total Solids	Carbon nonia nonia	UNITS % mg/Kg mg/Kg %	RESULT < 0.05 < 0.5 < 0.5 < 0.1			
BLANKS ANALYTE Total Organic Available Ami Available Ami Total Solids Total Solids	Carbon nonia nonia	UNITS % mg/Kg mg/Kg % %	RESULT < 0.05 < 0.5 < 0.5 < 0.1 < 0.1			
BLANKS ANALYTE Total Organic Available Ami Available Ami Total Solids Total Solids Total Solids	Carbon nonia nonia Solids	UNITS % mg/Kg mg/Kg % % %	RESULT < 0.05 < 0.5 < 0.5 < 0.1 < 0.1 < 0.1			

File :X:\DIESELS\VIGO\DATA\V091001\1001-V10.D Operator : ZT Acquired : 1 Oct 09 6124 p using AcqMethod V090730F.M Instrument : Vigo Sample Name: 09-249-01 Misc Info : Vial Number: 10

File :X:\DIESELS\VIGO\DATA\V091001\1001-V27.D Operator : ZT Acquired : 2 Oct 09 5:31 a using AcqMethod V090730F.M Instrument : Vigo Sample Name: 09-249-02 Misc Info : Vial Number: 27

File :X:\DIESELS\VIGO\DATA\V091001.SEC\1001-V79.D Operator : ZT Acquired : 2 Oct 09 6:51 a using AcqMethod V090730F.M Instrument : Vigo Sample Name: 09-249-03 Misc Info : Vial Number: 79

and the second s

File :X:\DIESELS\VIGO\DATA\V091001\1001-V29.D Operator : ZT Acquired : 2 Oct 09 6:51 a using AcqMethod V090730F.M Instrument : Vigo Sample Name: 09-249-04 Misc Info : Vial Number: 29

File :X:\DIESELS\VIGO\DATA\V091001.SEC\1001-V77.D Operator : ZT Acquired : 2 Oct 09 5:31 a using AcqMethod V090730F.M Instrument : Vigo Sample Name: 09-249-05 Misc Info : Vial Number: 77


```
File :X:\DIESELS\VIGO\DATA\V091001.SEC\1001-V81.D
Operator : ZT
Acquired : 2 Oct 09 8:11 a using AcqMethod V090730F.M
Instrument : Vigo
Sample Name: 09-249-06
Misc Info :
Vial Number: 81
```



```
File :X:\DIESELS\VIGO\DATA\V091001\1001-V31.D
Operator : ZT
Acquired : 2 Oct 09 8:11 a using AcqMethod V090730F.M
Instrument : Vigo
Sample Name: 09-249-07
Misc Info :
Vial Number: 31
```


File :X:\DIESELS\VIGO\DATA\V091001\1001-V08.D Operator : ZT Acquired : 1 Oct 09 4124 p using AcqMethod V090730F.M Instrument : Vigo Sample Name: 09-249-08 Misc Info : Vial Number: 8

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 12, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024-04-05 Laboratory Reference No. 0910-022

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on October 2, 2009

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 30, 2009, and received by the laboratory on October 2, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

Date Extracted:	10-6-09
Date Analyzed:	10-6-09

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	WB-SD-RF01-0005	WB-SD-RF02-0005
Lab ID:	10-022-01	10-022-02
Diesel Range:	ND	ND
PQL:	31	32
Identification:		
Lube Oil Range:	ND	ND
PQL:	62	63
Identification:		
Surrogate Recovery		
o-Terphenyl:	71%	59%
Flags:	Y	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	10-6-09
Date Analyzed:	10-6-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB1006S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL:	ND 50
Identification: Surrogate Recovery	
o-Terphenyl:	71%
Flags:	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	10-6-09
Date Analyzed:	10-6-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	10-028-01	10-028-01 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Becovery		

o-Terphenyl:	64%	65%
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SD-RF01-0005					
Laboratory ID:	10-022-01					
Naphthalene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.21	EPA 8270	10-5-09	10-6-09	
Phenanthrene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Pyrene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]anthracene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	ND	0.0082	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	76	19 - 97				
Phenol-d6	82	22 - 108				
Nitrobenzene-d5	83	21 - 106				
2-Fluorobiphenyl	69	29 - 107				
2,4,6-Tribromophenol	76	44 - 121				
Terphenyl-d14	88	37 - 120				

PAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	WB-SD-RF02-0005					
Laboratory ID:	10-022-02					
Naphthalene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.21	EPA 8270	10-5-09	10-6-09	
Phenanthrene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Pyrene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]anthracene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	ND	0.0083	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	39	19 - 97				
Phenol-d6	45	22 - 108				
Nitrobenzene-d5	44	21 - 106				
2-Fluorobiphenyl	45	29 - 107				
2,4,6-Tribromophenol	65	44 - 121				
Terphenyl-d14	81	37 - 120				

7

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1005S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Fluorene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Pentachlorophenol	ND	0.17	EPA 8270	10-5-09	10-5-09	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Anthracene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Pyrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Chrysene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-5-09	10-7-09	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	54	19 - 97				
Phenol-d6	61	22 - 108				
Nitrobenzene-d5	62	21 - 106				
2-Fluorobiphenyl	66	29 - 107				
2,4,6-Tribromophenol	83	44 - 121				
Terphenyl-d14	87	37 - 120				

8

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-24	49-07									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	0.916	0.987	1.33	1.33	ND	69	74	38 - 97	7	30	
2-Chlorophenol	0.853	0.972	1.33	1.33	ND	64	73	28 - 102	13	38	
1,4-Dichlorobenzene	0.273	0.383	0.667	0.667	ND	41	57	14 - 84	34	41	
N-Nitroso-di-n-propylamine	0.457	0.478	0.667	0.667	ND	69	72	25 - 104	4	39	
1,2,4-Trichlorobenzene	0.370	0.425	0.667	0.667	ND	55	64	23 - 93	14	37	
4-Chloro-3-methylphenol	1.13	1.09	1.33	1.33	ND	85	82	49 - 113	4	31	
Acenaphthene	0.479	0.461	0.667	0.667	ND	72	69	37 - 101	4	40	
4-Nitrophenol	1.22	1.13	1.33	1.33	ND	92	85	30 - 136	8	31	
2,4-Dinitrotoluene	0.534	0.471	0.667	0.667	ND	80	71	36 - 122	13	32	
Pentachlorophenol	1.19	1.09	1.33	1.33	ND	89	82	15 - 143	9	34	
Pyrene	0.697	0.572	0.667	0.667	0.105	89	70	24 - 138	20	39	
Surrogate:											
2-Fluorophenol						48	56	19 - 97			
Phenol-d6						60	65	22 - 108			
Nitrobenzene-d5						53	62	21 - 106			
2-Fluorobiphenyl						65	70	29 - 107			
2,4,6-Tribromophenol						77	82	44 - 121			
Terphenyl-d14						90	77	37 - 120			

% MOISTURE

Date Analyzed:	10-5&6-09		
Client ID		Lab ID	% Moisture
WB-SD-RF01-0005		10-022-01	19
WB-SD-RF02-0005		10-022-02	21

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

Professional Analytical Services

Oct 9 2009 **On-Site Environmental** 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your 235-1577-024-04-05 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
WB-SD-RF01-0005	Soil	09-A016201	DEM, NUT, CONV, GRAIN SIZE
WB-SD-RF02-0005	Soil	09-A016202	DEM, NUT, CONV, GRAIN SIZE

Your samples were received on Friday, October 2, 2009. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Method Detection Limits (MDL's), as opposed to Practical Quantitation Limits (PQL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

UN Aaron W. Young Laboratory Manage

BACT = Bacteriological CONV = Conventionals **TC=Total Coliforms**

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals** APC=Aerobic Plate Count

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05

AMTEST Identification Number09-A016201Client IdentificationWB-SD-RF01-0005Sampling Date09/30/09, 13:00All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	79.8	%		0.01	SM 2540G	MO	10/05/09
Total Volatile Solids	1.22	%		0.01	PSEP p20	MO	10/07/09
Total Sulfides	< 2.5	mg/kg		1.00	PSEP p32	SL	10/08/09

Demand

PARAMETER	RESULT	UNITS Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	0.16	%	0.05	SW 846 9060	SL	10/08/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	4.3	mg/Kg		0.63	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	< 0.1 %	GRAVEL	0.10	ASTM D422	MO	10/06/09
- 2	4.00	0.10 %			ASTM D422	MO	10/06/09
-1	2.00	0.30 %	SAND	38.4	ASTM D422	MO	10/06/09
0	1.00	< 0.1 %			ASTM D422	MO	10/06/09
+1	0.50	0.50 %			ASTM D422	MO	10/06/09
+ 2	0.25	14.2 %			ASTM D422	MO	10/06/09
+ 3	0.125	23.4 %			ASTM D422	MO	10/06/09
+ 4	0.063	7.50 %	SILT	60.1	ASTM D422	MO	10/06/09
+ 5	0.032	50.4 %			ASTM D422	MO	10/06/09
+ 6	0.016	0.90 %			ASTM D422	MO	10/06/09
+ 7	0.008	0.50 %			ASTM D422	MO	10/06/09
+ 8	0.004	0.80 %			ASTM D422	MO	10/06/09
+ 9	0.002	0.10 %	CLAY	1.40	ASTM D422	MO	10/06/09
+ 10	0.001	< 0.1 %			ASTM D422	MO	10/06/09
> + 10	< 0.001	1.30 %			ASTM D422	MO	10/06/09

Date Received: 10/02/09 Date Reported: 10/ 9/09

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: 235-1577-024-04-05

AMTEST Identification Number09-A016202Client IdentificationWB-SD-RF02-0005Sampling Date09/30/09, 13:00All results reported on a dry weight basis.

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	76.6	%		0.01	SM 2540G	MO	10/05/09
Total Volatile Solids	1.30	%		0.01	PSEP p20	MO	10/07/09
Total Sulfides	< 2.5	mg/kg		1.00	PSEP p32	SL	10/08/09

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	0.30	%		0.05	SW 846 9060	SL	10/08/09

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Available Ammonia	11.	mg/Kg		0.65	Plumb 1981	TS	10/05/09

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
	4.75	< 0.1 %	GRAVEL	***	ASTM D422	MO	10/06/09
- 2	4.00	< 0.1 %			ASTM D422	MO	10/06/09
-1	2.00	< 0.1 %	SAND	19.1	ASTM D422	MO	10/06/09
0	1.00	0.10 %			ASTM D422	MO	10/06/09
+1	0.50	1.60 %			ASTM D422	MO	10/06/09
+ 2	0.25	3.70 %			ASTM D422	MO	10/06/09
+ 3	0.125	13.7 %			ASTM D422	MO	10/06/09
+ 4	0.063	21.3 %	SILT	78.4	ASTM D422	MO	10/06/09
+ 5	0.032	53.6 %			ASTM D422	MO	10/06/09
+ 6	0.016	2.30 %			ASTM D422	MO	10/06/09
+ 7	0.008	0.90 %			ASTM D422	MO	10/06/09
+ 8	0.004	0.30 %			ASTM D422	MO	10/06/09
+ 9	0.002	0.50 %	CLAY	2.60	ASTM D422	MO	10/06/09
+ 10	0.001	0.30 %			ASTM D422	MO	10/06/09
> + 10	< 0.001	1.80 %			ASTM D422	MO	10/06/09

Professional Analytical Services

Date Received: 10/02/09 Date Reported: 10/ 9/09 CLIENT ID: WB-SD-RF02-0005 LAB SAMPLE NO: 09-A016202

LA

BORATO E monu Aaron W. Young Laboratory Manager

QC Summary for sample numbers: 09-A016201 to 09-A016202

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUPLICATE VALUE	RPD
09-A016202	Total Organic Carbon	%	0.30	0.30	0.00
09-A016202	Total Organic Carbon	%	0.30	0.35	15.
09-A015904	Available Ammonia	mg/Kg	14.	16.	13.
09-A015904	Available Ammonia	mg/Kg	14.	18.	25.
09-A016201	Available Ammonia	mg/Kg	3.4	3.4	0.00
09-A016201	Total Solids	%	79.8	80.0	0.25
09-A016201	Total Volatile Solids	%	1.22	1.22	0.00
09-A016202	Total Sulfides	mg/kg	< 2.5	< 2.5	
09-A016201		%	< 0.1	< 0.1	
09-A016201		%	< 0.1	0.10	
09-A016201	- 2	%	0.10	< 0.1	
09-A016201	- 2	%	0.10	< 0.1	
09-A016201	-1	%	0.30	< 0.1	
09-A016201	-1	%	0.30	0.30	0.00
09-A016201	0	%	< 0.1	< 0.1	
09-A016201	0	%	< 0.1	0.10	
09-A016201	+1	%	0.50	0.50	0.00
09-A016201	+1	%	0.50	0.80	46.
09-A016201	+ 2	%	14.2	10.4	31.
09-A016201	+ 2	%	14.2	15.9	11.
09-A016201	+ 3	%	23.4	29.6	23.
09-A016201	+ 3	%	23.4	25.8	9.8
09-A016201	+ 4	%	7.50	4.50	50.
09-A016201	+ 4	%	7.50	3.30	78.
09-A016201	+ 5	%	50.4	51.5	2.2
09-A016201	+ 5	%	50.4	50.2	0.40
09-A016201	+ 6	%	0.90	0.90	0.00
09-A016201	+ 6	%	0.90	0.40	77.
09-A016201	+ 7	%	0.50	0.50	0.00
09-A016201	+ 7	%	0.50	1.00	67.
09-A016201	+ 8	%	0.80	0.80	0.00
09-A016201	+ 8	%	0.80	0.80	0.00
09-A016201	+ 9	%	0.10	0.10	0.00
09-A016201	+ 9	%	0.10	0.10	0.00
09-A016201	+ 10	%	< 0.1	< 0.1	
09-A016201	+ 10	%	< 0.1	< 0.1	
09-A016201	> + 10	%	1.30	1.30	0.00
09-A016201	> + 10	%	1.30	1.30	0.00

QC Summary for sample numbers: 09-A016201 to 09-A016202...

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
09-A015911	Available Ammonia	mg/Kg	< 0.5	24.	25.	96.00 %
09-A016202	Available Ammonia	mg/Kg	8.8	35.	25.	104.80 %
09-A016201	Total Sulfides	mg/kg	< 2.5	11.4	15.0	76.00 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Total Organic Carbon	%	1.1	0.96	87.3 %
Available Ammonia	mg/Kg	2.5	2.6	104. %
Available Ammonia	mg/Kg	25.	25.	100. %
Total Sulfides	mg/kg	100.	82.8	82.8 %

BLANKS

DEATTING		
ANALYTE	UNITS	RESULT
Total Organic Carbon	%	< 0.05
Available Ammonia	mg/Kg	< 0.5
Available Ammonia	mg/Kg	< 0.5
Total Sulfides	mg/kg	< 2.5

PAGE: 2

12		
AN	OnSite	
V	Environmental	inc.

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Subcontract Laboratory: AMDEST

Contact Person:

Address:

Phone Number:

R	U	S	H
---	---	---	---

3 Day

Turnaround	Request:

1 Day 2 Day

Standard

5 day Other:

Laboratory Reference #:	10-022
Project Manager:	David Baumeister
email:	dbaumeister@onsite-env.com
Project Number:	235-1577-024-04-05
Project Name:	

Page _____ of _____

Date/Time:

-		and the second	and the second	Land and the second states of the	and composed with the party	Self a long base for	and the product of the for	and the second second	Hard of the second second second second		and the second second second
Lab IE	D	Sample Identification		Date Sampled	Time Sampled	Matrix	# of Cont.	Grain	size, F	Requested Analysis T.V.S.	
201	WB-SC	1-RF01-0005		9/30/01	1300	S	21	TOC.T	otal Soli	ds. Total Sulfides	Ammon
202	WB-SD	-RF02-0005		L	1400	J	L			L	
		Signature		Com	ipany		Date	Time		Comments/Special Instructions	
Relind	quished by:	2 Th	OVE	Sito	EU	-	10/2/051	1445	Include	Hudrometer	
Recei	ived by:	-en-	Aur	19092			1012100	reacy			
Relino	quished by:									P=18.6	
Recei	ived by:									НNЛ	
Relino	quished by:										
Recei	ived by:										

									.•		;		
Reviewed by/Date	Received by	Relinquished by	Received by .	Relinquished by	Received by	Relinquished by					2 WB-50	1 W B-5D	Project Name: Project Name: Project Name: Project Name: Project Name: Project Namager: D. O.; n.k.v.h.n./
)	UPS	BX TH	Bh Hg	1	Signature of the second second				- RF02 - 000 5	- RF01 - 0005	Ite Ponmental Inc. 25) 883-3881 · Fax: (425) 885-4603 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot
						for y					9/30	9/30	
Reviewed by	986		UPS	PMX	PMX	Dici-	Company				0041	1300	Lunaiound (Inworkin (Check me Day ay ay ay ay ay ay ay ay ay ay ay ay a
y/Date						Mar				 	SD	g	One) One) One) One) One) One) One) One)
						NINC						-	I Day Bary Days) I Day Days)
	~												
	5	•	loi i	6	9/30		-0E				×		
	R	•				8				 			Volatiles by 8260B
	J		0	0	-	1	TUNE						Halogenated Volatiles by 8260B
	3		S S C	230	00	9							Semivolatiles by 8270D
			<u> </u>				6			 	\times	\times	PAHs by 8270D / SIM (3)
hrom	9	9 (E . t	4 °C	ري ج د	ينين جو 1	コポミニ	Omine			 	-		Pesticides by 8081A
atogr	4	i ciud	- Atto	<u>د</u> د :		2 12	(<i>B</i>)			 			Herbicides by 8151A
ams v	4	0 2 7	whed 1	۲. ۲	nge	202				 			Total RCRA Metals (8)
with fi	i,	Ydro	5	2	٩	PG	191010						TCLP Metals
inal re		う っとくの	لم ۲	sige m	5	S	ions:			 	4	\times	HEM by 1064 BMOISNRE
port	3	۲ ۲	•••	ヘンナ	5	so †1	-			 	\times	\succ	Pentachlor ophenol (PCP)(E)
	159	-		stal	ð i	nat				 	$\frac{\times}{\times}$	\sim	
				าสนา	vg/kc	Sur				 	$\overline{\mathbf{x}}$	X	Tutel S. 15 Jac
				с f	5	, of	-				×	×	Annonia No o
				۶HA		dic					\succ	\sim	Gruin Size ()
				<u> </u>		Ċ.					×	X	* Moisture

DN LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 13, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0910-035

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on October 2, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

www.pacelabs.com

Report Prepared for:

David Baumeister Onsite Environmental, Inc. 14648 NE 95th Street Redmond WA 98052

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Prepared Date: October 12, 2009 Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10114088 Sample Receipt Date: 10/06/2009 Client Project #: 235-1577-024 Client Sub PO #: N/A State Cert #: C218

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

October 13, 2009

Scott Unze, Project Manager (612) 607-6383 (612) 607-6444 (fax) scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on two samples submitted by a representative of Onsite Environmental, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 44-95%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained, or "P" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 86-106%. These results indicate a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

	1151	الا الا
1 10088 135 135 1202	8 6 1	
10-0 er: David Baumei ali: dbaumeister@		
boratory Reference Project Manag em Project Nar	NS/FURA	T=0.4
2	DIOXI	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Day		
l Request: 2 Day 3 Standard		
Turnaround 1 Day Other:		
5 414		
ental Inc 62 · (425) 883-388 fical Service, Inc Manger nneapolis, MN 5	5-000 - 2001	
NVIPORM edmond, wA 980 ory: Pace Analyt tt Unze / Dioxin I t. Ste. 200 Mir) 607-6383	DSW0	
NE 95th Street, R INE 95th Street, R contract Laborato act Person: Scoi ess: 1700 Elm S le Number: (612	108-50 (UB-50	quished by: Ned by: Quished by: Ned by: Ved by:
Date 5 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

Report No.....10114088_8290

Page 4 of 11

	San	ple	Cor	nditio	on Upon	Receipt			- •
Face Analytical"	ient Nama:	ŕ	Sec.	+\$	Pin 1'	Man		. 1614	Arc
	ent name.		<u>My</u>	<u>ر</u> • د			ruproject	#	·····
Courier: \Box Fed Ex \Box UPS \Box Tracking #: $\bot 2 684 \Xi [W]$	USPS Clien	n 🗆	Com Z	mercia	al 🗍 Paca	o Other		Qotonal Proj. Due Date Proj. Due Date	
Custody Seal on Cooler/Box Pre	sent: ∐yes	Þ	no	Sea	is intact:		[∠] no	MANANAMEN	
Packing Material: D Bubble Wra	ip Bubble !	Bags		None	C Othe	r	Temp Bla	ınk: Yes	No
Thermometer Used 80344042	or 179425	Type	of lo	e: We	Blue	None	Samples or	ice, cooling proc	ess has begun
Cooler Temperature ($\underline{)}, \underline{U}^{\dagger}$	Biolo	ogical	Tissu	le is Frozen	Yes No	Date an conte	d initials of pers	on examining
Chain of Custoria Development		_			Commen	t s:		10/0	2/09
Chain of Custody Present:		/ Yes			<u>A 1.</u>				
Chain of Custody Filled Out:		ETYes	- No		<u> 2.</u>	· · · · · · · · · · · · · · · · · · ·			
Sompler Name & Chanduished:		/CIYes			<u>A 3.</u>				
Sampler Name & Signature on CO(<u></u>	LIYes	L/No		4.				
Short Hold Time Anchesis (1711)		LAYes			5.	·····			· · · · · · · · · · · · · · · · · · ·
Ruch Turn Around Time D			JZINO		6.		•••••		·····
Sufficient Volume	ðd;		<u>ZNo</u>		7.				
Correct Containers Llead	<i>-</i>	VIYes	LINO		8.				
Page Containers Lines		ZiYes			9.				
Containers Intert		UYes	Ļ∕/No			······			·····
Siltered volume mechanistics Direct	<u></u>	2)Yes			10.	······			
Sample Labels match 000	ad tests	UYes		DKVA	11.				
Sample Labels match COU:	and a second	@Yes	[]No	[]n/a	12.				
All containers needing acid/base preservati	Matrix:					H		A NoOLL	
checked. Noncompliance are noted in 13.	L	.]Yes	ΠNο	2 Kva	13. Samo #	D'"			
compliance with EPA recommendation.	und to be in []Yes	⊡No	ÇIN/A	Gamp #				
Exceptions: VOA, Coliform, TOC, Oil and Great	39, WI-DRO (water)	JYes	12/No		Initial when completed		Lot # of adde preservative	d	
Samples checked for dechlorination:	C]Yes	⊡No	ØN/A	14.				
Headspace in VOA Vials (>6mm):	C	lYes		DAKVA	15.				
I np Blank Present:	E]Yes	[]No	ZINA	16.				
Trip Blank Custody Seals Present	E]Yes	⊡№	λΩΝ/Α					
Pace Trip Blank Lot # (if purchased):	<u>addaman</u>								
Client Notification/ Resolution:							Field Data Be	cuired? V	/ N
Person Contacted:	·····			Date/1	ime:			danea. I	
Comments/ Resolution:				-					
								**************************************	*******
Project Manager Review:		1	P				Date	infall.a	
		Ċ	-						والمعارضة المراجعين في قد الما علمان
vote: Whenever there is a discrepancy af F-L213Rev.00, 05Aug2009	ecting North Carol	lina co	mpliar	ice san	nples, a copy	of this form 1700 Eim	will be sent to the Street SE, Suite	Novi Acalylical S 200, Minneapolis,	EMINES, Inc. MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 P910 BAL 17.0 10.8 15.1 P910 P910 BLAI	SO-DSW08 4088001 010B_15 g g 006 010B_03 & NK-21732	9-0010 P91010B_1	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 10/02/200 10/06/200 10/06/200 10/11/200	09 07:55 09 09:19 09 17:30 09 03:48	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.39 4.60		0.096 BJ 0.096	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1 2 3 7 8-DeCDE-1	30	2.00 2.00 2.00	68 84 58
2,3,7,8-TCDD Total TCDD	 16.00	0.23	0.096 I 0.096	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C 3C	2.00 2.00 2.00	55 68 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.53 9.10	0.25 	0.120 I 0.200 J 0.160	1,2,3,4,7,3-1 XCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDDF	-13C -13C -13C -13C -13C	2.00 2.00 2.00 2.00 2.00	78 63 70 67 95
1,2,3,7,8-PeCDD Total PeCDD	1.00 15.00		0.120 J 0.120	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCE	0-13C 0F-13C 0F-13C	2.00 2.00 2.00	83 79 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.70 1.50	1.40	0.100 J 0.250 P	1,2,3,4,6,7,8-HpCE OCDD-13C	D-13C	2.00 4.00	85 53 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.58 44.00		0.180 J 0.180 J 0.180	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	0-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.20 6.20 3.00 42.00	 	0.240 J 0.220 0.220 J 0.230	2,3,7,8-TCDD-37C	14	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	54.00 3.30 160.00	 	0.310 0.510 0.410	Total 2,3,7,8-TCDI Equivalence: 5.1 n (Using 2005 WHO	D g/Kg Factors - U	Jsing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	150.00 260.00		0.510 0.510				
OCDF OCDD	110.00 920.00		0.330 0.500				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

Report No.....10114088_8290

ND = Not DetectedNA = Not ApplicableNC = Not Calculated

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Onsite Environmental, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	WB- 1011 P910 BAL 16.8 17.1 13.9 P910 P910 BLA	SO-DSW09 4088002 010B_16 g g 006 010B_03 & NK-21732	P91010B_19	Matrix Dilution Collected Received Extracted Analyzed	Solid NA 10/02/2000 10/06/2000 10/06/2000 10/11/2000	9 08:25 9 09:19 9 17:30 9 04:36	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.68	0.19	0.13 I 0.13 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1	3C	2.00 2.00 2.00	63 76 57
2,3,7,8-TCDD Total TCDD	ND 2.60		0.19 0.19	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1 1,2,3,4,7,8-PeCDD-1	3C 3C -13C	2.00 2.00 2.00	55 67 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.15 0.40	 	0.15 0.12 BJ 0.14 BJ	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C -13C	2.00 2.00 2.00 2.00	72 70 63 90
1,2,3,7,8-PeCDD Total PeCDD	3.80	0.16	0.14 I 0.14	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,6,7,8-HpCD	0-13C 0F-13C 0F-13C	2.00 2.00 2.00	81 73 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 0.22 ND	0.23	0.19 I 0.15 J 0.15	1,2,3,4,6,7,8-HpCD OCDD-13C	D-13C	2.00 4.00	77 44 Y
1,2,3,7,8,9-HxCDF Total HxCDF	ND 4.10		0.20 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	9-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.41 0.89 0.64 7.60	 	0.29 J 0.26 J 0.33 J 0.29	2,3,7,8-TCDD-37Cl	14	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5.70 ND 12.00	 	0.40 0.37 0.38	Total 2,3,7,8-TCDI Equivalence: 0.75 (Using 2005 WHO	D ng/Kg Factors - U	sing PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	18.00 40.00		0.68 0.68				
OCDF OCDD	11.00 140.00		0.62 1.10				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-21732	Matrix	Solid
Filename	P91009A_08	Dilution	NA
Total Amount Extracted	10.5 g	Extracted	10/06/2009 17:30
ICAL ID	P91006	Analyzed	10/09/2009 20:12
CCal Filename(s)	P91009A_05 & P91009A_21	Injected By	BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.048 0.110		0.042 J 0.042 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1 2 3 7 8-PeCDF-13C	2.00 2.00 2.00	70 85 73
2,3,7,8-TCDD Total TCDD	ND ND		0.061 0.061	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	78 90 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.052 0.039 0.091	 	0.031 J 0.021 J 0.026 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 78 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.042 0.042	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	88 86 84 80
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND	0.033 0.026	0.025 0.025 0.023	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 95 Y
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.029		0.032 0.026 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.100 0.094 0.090 0.095	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.230	0.038 P 0.049 0.044	Total 2,3,7,8-TCDD Equivalence: 0.095 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.390 0.750		0.083 J 0.083 J			
OCDF OCDD	0.520 2.700		0.100 J 0.062 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	LCS P91 10.0 P91 P91 BLA	3-21733 009A_06) g 006 009A_05 & NK-21732	P91009A_21	Matrix Dilution Extracted Analyzed Injected By	Solid NA 10/06/2009 17: 10/09/2009 18: BAL	:30 :31
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.18	91	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	67 85
2,3,7,8-TCDD Total TCDD	0.20	0.19	94	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	70 74 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.92 0.89	92 89	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	68 76 76 75
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.86	86	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	89 82 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	0.92 0.90 0.91	92 90 91	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	78 82 92 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	0.88	88	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	0.94 0.95 0.98	94 95 98	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.03 0.99	103 99			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	1.01	101			
OCDF OCDD	2.00 2.00	2.01 2.12	100 106			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

R = Recovery outside of target range

Y = RF averaging used in calculations

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

	Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by 13, 74,	Signature						2 WB-50-DSW09-0	WB-50-DSW 08-	Company: Phone: (425) 883-3881 · Fax: (425) Company: Project Number: 2 35 - 1577 - 0.74 Project Name: Project Manager: D. D', J, K Jhn Sampled by: B, H C, AV Stimple I I (continent)
DISTRI					future-	three	in the second second							0005 id	c 01 010C	
BUTION LEGEND: White - C	Reviewed by/Date			On Sto	JASSOC	ALPIND SI	Paranetria	Company						(0325 SO	L 0755 SO	Immanung Regund (in working days) (In working days) Same Day 2 Day 2 Day 1 Standard (7 working daysis 5 working day 1 Standard (7 working daysis 5 working day (TPH analysis 5 working daysis 5 working day (TPH analysis 5 working daysis 5 working daysing for the same daysis 5 working daysing for the same daysis 5 working daysing for the same daysing f
DnSite Copy Yellow - Rep				tra laiz	1 10/2	2/01 10220	101	Date						4	ی ا	OF OF OF OF Ays 3 Day NWTPH-HCID Ays Labora NWTPH-Gx/BTEX NWTPH-Dx
ort Copy Pink - Client C				(UP1 1350)	156	r 1130	a 1150	Time		· · ·	· ·					Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D PAHs by 8270D / SIM
ору	Chromatograms with fi			4			1	Comments/Special/Instruct								PCBs by 8082 Pesticides by 8081A Pesticides by 8151A Pesticides by 8151A Total RCRA Metals (8) TCLP Metals
	inal report 🗆							lons			· · ·			×	×	HEM by 1664
														K	X	% Moisture

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 9, 2009

David Dinkuhn Parametrix, Inc. 4660 Kitsap Way, Suite A Bremerton, WA 98312

Re: Analytical Data for Project 235-1577-024 Laboratory Reference No. 0911-009

Dear David:

Enclosed are the analytical results and associated quality control data for samples submitted on November 3, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 27, 2009, and received by the laboratory on November 3, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Matrix:	Soil					
Units:	mg/kg (ppm)					
			Date	Date		
Analyte	Result	PQL	Prepared	Analyzed	Flags	-
Lab ID:	11-009-01					
Client ID:	WB-SD-SD26/27-0005					_
Diesel Range	ND	63	11-4-09	11-5-09	Y,U1	
Lube Oil	320	41	11-4-09	11-5-09	Y	
Surrogate: o-terphenyl	79%	50-150				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx METHOD BLANK QUALITY CONTROL Date Extracted: 11-4-09 Date Analyzed: 11-4-09 Matrix: Soil Units: mg/kg (ppm) Lab ID: MB1104S1 **Diesel Range:** ND PQL: 25 Identification: Lube Oil Range: ND PQL: 50 Identification: ---Surrogate Recovery o-Terphenyl: 77% Flags: Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

4

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	11-4-09 11-5-09		
Matrix:	Soil mg/kg (ppm)		
Lab ID:	11-012-01	11-012-01 DUP	
Diesel Range:	/ 45.7	34.7	
PQL:	25	25	
RPD:	27		
Surrogate Recovery			
o-Terphenyl:	86%	90%	
Flags:	Y	Ŷ	
			·
·			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

		% MOISTURE		
Date Analyzed:	11-4-09			
		1		
Client ID		Lab ID	% Mo	isture

WB-SD-SD26/27-0005

11-009-01

39

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

6

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in the diesel range are impacting the lube oil range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Reviewed by/Date	Received by	Received by	Relinquished by	Received by	Relinquished by	Science						1 WB-SD-SD26/2	Lab.10 Sample Identification	Sampled by: .X.A.:W.M.	Project Manager. U-U-ZKCF2	HOJECT NAME:	225-1577-024	Prior Number	Phone: (425) 883-3881 • Fax: (425) 88	Environmental	M OnSite
Reviewed by/Date				Shar Chitwood	JALJ PIMV	Company						7-0005 10/27/09 500 So A	Date Tine 1 of Date Sampled Value Bonk	(other)	(IPH analysis 5 working days	2 Standard (7 working days)	f 🗆 🗆 2 Day 🗌 3 Day	Same Day 1 Day	385-4603 (Check One)	Inc. Turnaround Request	Chain of
Chroma	· ·			E 11/3/07 940 1 15	11/2/06/09/00/ 01	Bare Some Comment	· · ·) 	X	NWTP NWTP Volatile Haloge Semive PAHs I PCBs Pestici	H-HC H-Gx/ H-Dx es by f enated olatile by 827 by 800	ID /BTEX 8260B I Volatil s by 82 70D / S 82 y 8081.	es by 70D IM	8260E	3		Laboratory Number:	Custody
tograms with final report	= 100 malks EIM			The And The And	n 1 7, c. h.t								Herbic Total F TCLP HEM b	ides b RCRA Metals py 166	vy 8151 Metals s i4	A (8)				11-000	Page of

`

NOTDIDITIONI I EDENID. Within - Onein Onny Vallow - Bannt Comy Pink - Cliant Conv

APPENDIX C

Disposal Summary

	Contaminated So	bil	Concrete Haul	
Daily Tonnage	Date delivered	disposal site		
193.1	9/8/2009	Weyerhaeuser	26.64	9/25/2009 Concrete Recycler
301.1	9/9/2009	Weyerhaeuser	28	9/25/2009 Concrete Recycler
194.4	9/10/2009	Weyerhaeuser	26.1	9/25/2009 Concrete Recycler
184.3	9/11/2009	Weyerhaeuser	24.52	9/25/2009 Concrete Recycler
259.2	9/14/2009	Weyerhaeuser	26.81	9/25/2009 Concrete Recycler
348.7	9/15/2009	Weyerhaeuser	26.3	9/25/2009 Concrete Recycler
328.0	9/16/2009	Weyerhaeuser	26.76	9/25/2009 Concrete Recycler
499.0	9/17/2009	Weyerhaeuser	25.19	9/25/2009 Concrete Recycler
308.0	9/18/2009	Weyerhaeuser	29.19	9/25/2009 Concrete Recycler
208.4	9/19/2009	Weyerhaeuser direct haul	25.54	9/28/2009 Concrete Recycler
364.4	9/21/2009	Weyerhaeuser	24.97	9/28/2009 Concrete Recycler
488.7	9/22/2009	Weyerhaeuser	23.28	9/28/2009 Concrete Recycler
78.4	9/23/2009	Weyerhaeuser	30.19	9/28/2009 Concrete Recycler
178.3	10/5/2009	Weyerhaeuser		
440.3	10/6/2009	Weyerhaeuser		
395.3	10/7/2009	Weyerhaeuser		
344.0	10/8/2009	Weyerhaeuser		
368.1	10/9/2009	Weyerhaeuser		
178.5	10/12/2009	Weyerhaeuser		
31.7	10/13/2009	Weyerhaeuser		
			343.49	

5,691.9

6035.39

APPENDIX D

Sediment Field Logs and Reference Sediment Map

PARAMETRIX

ï

Form 02-EN-98/Rev. 10/02

	FIELD PARAMETERS SOIL SAMPLING	Sample #: 5DZ
Project Number:	235-1577-024	
Project Name:	WEST BAY PARK	
Project Address:	900 W. BAY DRIVE	
Client Name:	OLIMPIA PARKS	
Sample Location:	SEE SKETCH	
Date:	9/28/09	
Sampled By:	D. DINKHHN	
Depth of Sample (feet):	0-4"	·····
Date/Time Sampled:	9/28/09 0815	
Air temperature:	50°F	
Weather Conditions:	いこう	
PID Measurements (ppm):	NA	
Sample Number:	WB- 5D- 5D25-0005	
Sampled By:	D . D こ ス エ エ ス	
Laboratory:	ON SITE / NEW FIELDS	
Chain-of-Custody (yes/no):	VES	
Date Sent to Lab:	9/29/09	-
Shipment Method:	μρs	
Remarks/Notes:	NOUD BLIENER CONC. BLOCK	
(LRAY-BLACK, OEGO	invic (the	
BILTY SAND, SCA	TREEN SO25	5
SHELLS + HS ODOG	SAMPLE GOLLE	FLIED FROM
MUSSELS, RADNAL WOOT	D'FRAGS, LIVE INTERTIDAL ZOWI	E USING
Sample	VICINITY DISPOSABLE SCOO	P. LOCATION
	STAKED BY SUK	ever pretor
Signature:	finkuhn TO SAMPLING	<i>α</i> ·

PARAMETRIX

. Form 02-EN-98/Rev. 10/02

	FIELD PARAMETERS SOIL SAMPLINGSample #: SD 26
Project Number:	235-1577-024
Project Name:	WEST BAY PARK
Project Address:	900 WEST BAY DRIVE
Client Name:	OLYMPIA PARKS
Sample Location:	SEE SKETCH
Date:	9/28/09
Sampled By:	D-DINKUHN
Depth of Sample (feet):	0-4"
Date/Time Sampled:	9/28/09 0945
Air temperature:	SO°F
Weather Conditions:	<u>500</u>
PID Measurements (ppm):	NA
Sample Number:	WB-50-5026-0005
Sampled By:	D.DINKUHN
Laboratory:	ON SITE NEWFIELDS
Chain-of-Custody (yes/no):	YES
Date Sent to Lab:	9/29/09
Shipment Method:	<u> </u>
Remarks/Notes:	DOD BURNER CONCRETE POINT \$ 5020
(I MAY - BLACK, SL. S	NUTY)] [[]
GRAVELLY SAND, SI	+ = LLS \ V / SAMPLE COLLECTED FROM
AND WOOD FRAGMEN	MIS, SL INTERMOAL ZONE USING
ORGANICOROR, LIU	TE TINSFELS, DISPOSABLE SCOOP. LOCATION
VICINITY	STAKED BY SURVEY PRIOR TO SAMPLING.
Signature:	Sinfula

. Form 02-EN-98/Rev. 10/02

	FIELD PARAMETERS SOIL SAMPLINGSample #: SD	27
Project Number:	235- 1577-024	
Project Name:	WEST BAY PARK	
Project Address:	900 WEST BAY DRIVE	
Client Name:	OLYMPIA PARKS	
Sample Location:	SEE SKETCH	
Date:	9/28/09	1
Sampled By:	D.DINKUHN	
Depth of Sample (feet):	0-4"	
Date/Time Sampled:	9/28/09 1000	
Air temperature:	SOOF	
Weather Conditions:	SUN	
PID Measurements (ppm):	NA	
Sample Number:	WB-50-5027-0005	1
Sampled By:	D. DINKUHN	1
Laboratory:	ON SITE NEW FIELDS	
Chain-of-Custody (yes/no):	YES	
Date Sent to Lab:	9/29/09	
Shipment Method:	LIPS	-
Remarks/Notes:	1000 BURNER CONCRETE TELOCIK	
GRAY-BUACK,	POINT	
SUSILTY, GRAVELLY	5027	
SAND, SCATTERE	o SAMPLE COLLECTED	
SHELLS AND WOOD	FRAGS., FRIM INTERTIOAL ZONE	
SL. OLGANIC ODOR,	CIVE LISING UBPOSTOF SCOOP.	
LUNDERS, BARNHOF	LOCATION STAKED BY	
	1. CAMPLING	
Signature:	1 mpinn	

PARAMETRIX

,

Form 02-EN-98/Rev. 10/02

	FIELD PARAMETI SOIL SAMPLIN	ERS GSample #: ≦D 2 €
Project Number:	235- 1577-024	
Project Name:	WEST BAY PARK	<
Project Address:	900 UEST BAY	DRIVE
Client Name:	OLYMPIA PARKS	
Sample Location:	SEE SKETCH	
Date:	9/29/09	
Sampled By:	D.D.NKUHN	
Depth of Sample (feet):	0-4"	
Date/Time Sampled:	9/28/09 0	0830
Air temperature:	SO°F	
Weather Conditions:	Sun	
PID Measurements (ppm):	NA	
Sample Number:	WB-5D-5D28-0	005
Sampled By:	D.DINKUHN	
Laboratory:	ON SITE NEW FIL	ELDS
Chain-of-Custody (yes/no):	YES	
Date Sent to Lab:	9/29/09	
Shipment Method:	μps	
Remarks/Notes: W00	OD BUCHER CONC	CRETE BLOCK
GRAY-BLACK, ORGANIN SILTY SAND, SHELL & OCCASIONAL WOOD LIVE MUSSIFLS, BARN & CLAMS, SL. ORG Sin Sample	SAMPLE CULLECTED FROM INTERTIDAL ZONE USING DISPOSABLE SCOOP. LOCATION STRUED BY SURVEY DRIOR TO SAMPLING.	
Signature:	16 Linkulw	

Form 02-EN-98/Rev. 10/02

PARAMETRIX

	FIELD PARAMETERS SOIL SAMPLING	Sample #: <u>SD</u> 2
Project Number:	235-1577-024	
Project Name:	WEST BAY PARK	4
Project Address:	900 WEST BAY D	RIVE
Client Name:	OLYMPIA PARKS	
Sample Location:	SEE SKETCH	
Date:	9/28/09	
Sampled By:	D-DINKUHN	
Depth of Sample (feet):	0-4"	
Date/Time Sampled:	9/28/09 084	5
Air temperature:	SOOF	
Weather Conditions:	Su N	
PID Measurements (ppm):	NA	
Sample Number:	WB-5D-5029-	- 0005
Sampled By:	J-DINKUHN	
Laboratory:	ONSATE NEWF	IELDS
Chain-of-Custody (yes/no):	YES	
Date Sent to Lab:	9/29/09	
Shipment Method:	LPS	
Remarks/Notes:	WOOD BLIENER CONK	C. BLOCK
1244-BLACK	POINT 25	SAMPLE CALLER PO
SILTY, GRAVENT SA	NO,	FROM INTERTINAL
SCAMERED SHELL	AND	ZONE USING DISD-
WOUD FRAGMENTS, S	Sh. ORGANIC	OSABLE SCOOP.
ODOR, LIVE MUSSEL	LOCATION STAKED	
HWD CUTINSINSI	By SURVEY PRIOR	
N		TO SAMPLING.
Signature:	Ip linkohn	

	FIELD PARAMETERS SOIL SAMPLING	Sample #: <u><り</u> ろひ
Project Number: Project Name: Project Address: Client Name: Sample Location: Date: Sampled By:	235-1577-024 WEST BAY PARK 900 WEST BAY DRIVE OLYMPIA PARKS SEE SKETCH 9/20/04 D. DINKUHN	
Depth of Sample (feet): Date/Time Sampled: Air temperature: Weather Conditions: PID Measurements (ppm):	0"-4" 9/28/09 0900 50°F SUN NA	
Sample Number: Sampled By: Laboratory: Chain-of-Custody (yes/no): Date Sent to Lab: Shipment Method:	WB-5D-5D30-0005 D. DINKUHN ONSITE/NEWFIELDS YES 9/29/09 HPS	
Remarks/Notes: WOO SD30 GEAY-BEOWN, SL SILTY, SANOY GEAVE SL. TO NO ODOR	DO BLIENER POINT SAMPLE COLL FROM INTERT USING DISPO SCOOP. LOCA iBy SURVEY P SAMPLING.	J
Signature:	DUPLICATE (

PARAMETRIX

Form 02-EN-98/Rev. 10/02

	FIELD PARAMETERS SOIL SAMPLING	Sample #: SD3
Project Number:	235-1577-024	
Project Name:	West bay park	
Project Address:	900 WEST BAY DRIVE	
Client Name:	OLYMPIA PARKS	
Sample Location:	SEE SKETCH	
Date:	9/28/09	
Sampled By:	D. DINKUHN	· · · · · · · · · · · · · · · · · · ·
Depth of Sample (feet):	0-4"	
Date/Time Sampled:	9/28/09 0930	
Air temperature:	50°F	
Weather Conditions:	รแก	
PID Measurements (ppm):	NA	
Sample Number:	WB-50-503 -0005	
Sampled By:	D.DINKUHN	
Laboratory:	ON SITE / NEWFIELDS	
Chain-of-Custody (yes/no):	YES	· · · · · · · · · · · · · · · · · · ·
Date Sent to Lab:	09/29/09	
Shipment Method:	μ́ρs	
Remarks/Notes: (JBOD	BURNER POINT	
5031	FROM FROM	COLLECTED M INTERTIOAL
GAX, SILTY, SANDY	ZONE USI	NG DISPOSABLE
GRAVEL, NO CHELL	son scoop. Lo	CATION STAKED
LIVE BARNACLES IN	oor, By Sueve Sample Vicinity SAMPLINE	y prior to
$N \rightarrow$		
Signature:	Dinkuhn)	

Appendix D Reference Sediment Samples

Two reference sediment samples were collected by Charles Eaton of Bio-Marine Enterprises on September 30, 2009. The samples were collected from Ecology approved reference sample stations in Carr Inlet.

Sample RF-01 was collected from a reference station in Carr Inlet that historically provides sediments with 15 percent fines on average and consisted of gray-brown silty medium sand free of odor and organisms. RF-02 historically provides sediments with 33 percent fines and consisted of gray-brown silty sand also free of odor and organisms. A map of these sample locations is provided below. A spreadsheet with sample coordinates is attached.

Parametrix reference sediment collection, 30-September-2009

Carr Inlet Ref Sed Nav.09.xls

Charles M. Eaton Bio-Marine Enterprises cmeaton@msn.com

PARAMETIX, Carr Inlet Reference Sediment Collection 30-September-2009

						Distance	Sample Location		Station Target		GPS
			Recorded	Predicted	Predicted	to Center	DGPS (Trimble NT300D)		NAD 1983		Status
Station	Sample	Time	Depth	Tide (m.):	Depth, m.	of Station	NAD 1983,	Dec. Minutes	Decima	l Minutes	PDOP/
No.	No.		m.		(MLLW)	(meters)	Latitude	Longitude	Latitude	Longitude	HDOP
MSMP 43	1	1241	21.2	1.86	-19.3	0.2	47 17.8700	122 44.5449	47 17.8700	122 44.5450	1.1
(15% fines)											
CR-23W	1	1358	17.8	2.9	-13.6	0.2	47 19.9792	122 40.5831	47 19.9790	122 40.5830	1.0
(33% fines)											
APPENDIX E

Biological Report

BIOLOGICAL TESTING OF SEDIMENT FOR SOLID WOOD INCORPORATED SITE (WEST BAY PARK)

OLYMPIA, WASHINGTON

REVISED AUGUST 2010: VERSION 1.2

PREVIOUS SUBMITTAL: JANUARY 2010

PREPARED FOR: PARAMETRIX, INC. 4660 KITSAP WAY BREMERTON, WA 98312

PREPARED BY: NEWFIELDS PO BOX 216 4729 NE VIEW DRIVE PORT GAMBLE, WA 98364

1.0 INTRODUCTION

NewFields conducted biological toxicity testing with sediment samples collected by Parametrix as part of a sediment characterization being performed at the Solid Wood Incorporated Site (West Bay Park) in Olympia, Washington. Sediments were evaluated for biological effects following guidance provided by the Washington State Department of Ecology (WDOE) Sediment Management Standards (SMS) under the Washington Administrative Code (WAC) 173-204-315. This report presents the results of the toxicity testing portion of the West Bay Park sediment investigation.

2.0 METHODS

This section summarizes the test methods followed for this biological characterization. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the WDOE Sampling and Analysis Plan Appendix (SAPA; Ecology 2008), and the various updates presented during the Annual Sediment Management Review meetings (SMARM). Sediment toxicity was evaluated using three standard PSEP bioassays; the 10-day amphipod test, the juvenile polychaete survival and growth test, and the 48 to 96-hour benthic larval test.

2.1 SAMPLE AND ANIMAL RECEIPT

Eight test sediments were collected on September 28, 2009 and were received at NewFields on October 1, 2009. Reference sediments were collected from two stations within Carr Inlet on September 30, 2009 and were also received at NewFields on October 1, 2009. Sediment samples were stored in a walk-in cold room at $4 \pm 2^{\circ}$ C in the dark. For the purposes of this report, the sample identifiers are abbreviated to their unique identifier. For example, sample WB-SD-SD25-0005 is abbreviated as sample SD25 in the following text. Four of the eight samples collected were chosen by Parametrix to be evaluated for biological effects based upon the results of chemical analyses. In addition, a composite sample composed of samples SD26 (1/3 by volume) and SD27 (2/3 by volume) was also included in the suite of testing. This sample was composited by Newfields personnel on October 27, 2009. Subsamples of this composited sample were delivered to Parametrix on October 28, 2009 for subsequent chemical analyses. Test sediments were not sieved prior to testing; however, large debris (wood or rock larger than ~3 cm) was manually removed to prevent a negative impact on the survival and recovery of the test organisms (i.e., mortality due to crushing). All tests were conducted within the eight-week (56 day) holding time.

Amphipods (*Eohaustorius estuarius*) were supplied by Northwest Aquatic Sciences in Newport, Oregon. Animals were held in native sediment at 15°C prior to test initiation. Juvenile polychaete worms (*Neanthes arenaceodentata*) were utilized from in-house cultures. Juvenile polychaetes were held in seawater at 20°C (*Neanthes* were cultured in water-only and were not held in sediment prior to testing). *Mytilus galloprovincialis* (mussel) broodstock were provided by Taylor Shellfish, Inc. in Shelton, Washington. Broodstock were held in unfiltered seawater at 16°C prior to spawning.

Native *E. estuarius* sediment from Yaquina Bay, Oregon was provided by Northwest Aquatic Sciences for use as control sediment treatments for the amphipod and juvenile polychaete tests.

2.2 SAMPLE GRAIN SIZE AND REFERENCE COMPARISON

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare the chemical and biological responses of project sediments to. The percent fines value is defined as the amount of sediment that passes through a 62.5- μ m sieve, expressed as a percentage of the total sample analyzed. This is also the sum of the silt and clay

fraction of sediment. Conventional grain-size analyses were performed on the project sediments by AmTest Laboratories and Analytical Resources, Inc. The percent-fines determination of the project sediments are summarized in Table 1. For evaluating the biological interpretive guidance for the SMS bioassays, this report will utilize reference sediment RF02 for for all samples. Given the difference between the grain size of reference sediment RF01 and all other treatments, this reference will not be used for comparison.

Treatment	Percent Fines	Treatment Compared To:
RF01	4.7	
RF02	21.3	
SD25	47.8	RF02
SD26/27	23.2 / 18	RF02
SD28	41.9	RF02
SD29	26.3	RF02
SD30	20.6	RF02

Table 1. Sample and Reference Grain Size Comparison.

2.3 ULTRA-VIOLET LIGHT EXPOSURE

Test sediment samples were exposed to ultra-violet (UV) light during the entire test exposure. The UV light regime followed guidance provided by Sub-Appendix D (Ecology 2008) and in consultation with Ecology. UV light was provided by fluorescent light ballast containing one Duro-Test Vita-Lite® (40W, 5500°K, 91 CRI) fluorescent bulb and one standard fluorescent bulb (Phillips F40CW). The UV bulbs were placed within 12" above the sediment surface. All test chambers in the UV exposures were left uncovered to prevent any UV loss. Tests were conducted on water-tables to ensure that the additional lighting did not alter water temperatures in the test chambers. In all other respects, the methods followed the standard testing protocols are summarized below.

2.4 10-DAY AMPHIPOD BIOASSAY

The 10-day acute toxicity test with *E. estuarius* was initiated on October 28, 2009. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solventrinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. Seven replicate chambers were prepared for each test treatment, the two reference sediments, and the native control sediment. The control and reference sediments were tested with the test treatments. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure porewater and overlying ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/4000V Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 15°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination. Target test parameters were:

Dissolved Oxygen:	≥5.0 mg/L
pH:	7.8 ± 0.5 units
Temperature:	15 ± 1°C
Salinity:	28 ± 1‰

The tests were initiated by randomly allocating 20 *E. estuarius* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope. A water-only, 4-day reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests.

2.5 20-DAY JUVENILE POLYCHAETE BIOASSAY

The 20-day chronic toxicity test with *N. arenaceodentata* was initiated on November 5, 2009. Test exposures were prepared with approximately 175 mL of sediment placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. Seven replicate chambers were prepared for each test treatment, the two reference sediments, and control sediment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure overlying and interstitial ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as overlying and interstitial ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/4000V Spectrophotometer.

Test chambers were placed in randomly assigned positions in a water bath at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured. Dissolved oxygen, temperature, pH, and salinity were then monitored in the surrogates daily until test termination. Target test parameters were:

5.5 mg/L
.8 ± 0.5 units
0 ± 1°C
8 ± 2‰

The juvenile polychaete test was initiated by randomly allocating five *N. arenaceodentata* into each test chamber, and observing whether each of the worms successfully buried into the sediment. Worms that did not bury within approximately one hour were replaced with healthy worms. The 20-day test was conducted as a static-renewal test, with exchanges of 300 mL of water occurring every third day. *N. arenaceodentata* were fed every other day with 40 mg of

TetraMarin® (approximately 8 mg dry weight per worm). At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered worms transferred into a Petri dish. The number of surviving and dead worms was determined. All surviving worms were then transferred to pre-weighed, aluminum foil weigh-boats, and then dried in a drying oven at 60°C for approximately 24 hours. Each weigh-boat was removed, cooled in a dessicator, and then weighed on a microbalance to 0.01 mg. A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment test, using cadmium chloride. The cadmium reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests.

2.6 LARVAL DEVELOPMENTAL BIOASSAY

Test sediment was evaluated using the larval benthic toxicity test with the mussel, *M. galloprovencialis*. The mussel larval test was initiated on October 30, 2009. The control and reference sediments were tested with the test treatments. To prepare the test exposures, 18 g (\pm 1 g) of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 900 mL with 0.45-µm filtered seawater. Six replicate chambers were prepared for each test treatment, reference sediment, and the native sediment control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 16°C.

To collect gametes for each test, mussels were placed in clean seawater and acclimated at 16°C for approximately 20 minutes. The water bath temperature was then increased over a period of 15 minutes to 20°C. Mussels were held at 20°C and monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs are transferred to fresh seawater and filtered through a .5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite is made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Eggsperm solutions were periodically homogenized with a perforated plunger during the fertilization process and sub-samples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 27,000 embryos to each test chamber.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogates to prevent loss or transfer of larvae by adhesion to water-quality probes. Ammonia and sulfides in the overlying water were measured on Day 0 and Day 2. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S⁻² were monitored using a HACH DR/4000V Spectrophotometer. Target test parameters were as follows:

Dissolved Oxygen:	≥4.8 mg/L
pH:	7.8 ± 0.5 units
Temperature:	16 ± 1°C
Salinity:	28 ± 1‰

The development test was conducted as a static test without aeration. The protocol calls for test termination when 95% of the embryos in the control have reached the prodissoconch I stage (approximately 48-60 hours). At termination, the overlying seawater was decanted into a clean 1-L jar and mixed with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 5% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% alcohol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped prodissoconch I stage larvae. A water-only reference-toxicant test with copper sulfate was conducted concurrently with the sediment test.

2.7 DATA ANALYSIS AND QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment.

All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

For the larval test, the normalized combined mortality and abnormality endpoint was used to evaluate the test sediment. This was based on the number of normal larvae in each treatment and reference sample divided by the mean number of normal larvae in the control replicates, as defined in Ecology (2005).

For SMS suitability determinations, comparisons were made according to SAPA and Fox et al. (1998). Data reported as percent mortality or survival were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

3.0 RESULTS

The results of the sediment testing, including a summary of test results and water quality observations are presented in this section. Data for each of the replicates, as well as laboratory bench sheets are provided Appendix A and statistical analyses are provided in Appendix B.

3.1 10-DAY AMPHIPOD BIOASSAY

The bioassay test with *E. estuarius* was validated with 4% mortality in the native sediment control, which met the SMS performance criteria of $\leq 10\%$ mortality. This indicates that the test conditions were suitable for adequate amphipod survival. Mean survival for all samples is shown in Table 2. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 3, 4, and 5.

The LC_{50} for the cadmium reference-toxicant test was 9.0 mg Cd/L, which is within the control chart limits (4.2 to 12.0 mg Cd/L) at the time of testing, indicating that the test organisms used in this study were of similar sensitivity of those previously tested at NewFields.

Temperature and dissolved oxygen measurements were within acceptable limits throughout the test. Salinity was observed slightly below the recommended limits of 28 ± 1 ppt (minimum of 26 ppt). These salinities were still well within the tolerance range of 2 - 28 ppt (USACE 1998) for this estuarine species. Measurements of pH were recorded slightly above the recommended limits beginning on Day 1 throughout all test treatments, increasing over the duration of the test. The slight increase over time is an artifact of conducting the UV light exposure procedure. Algal growth is also stimulated in the test chambers due to the UV light exposure and this increased growth is often associated with a rise in pH. Values within the test chambers reached a maximum of 9.3 pH units, but were still within the tolerance range of the test organisms. These deviations would not be expected to affect the test results. Any procedures that may have been employed to adjust the salinity or pH of the test chambers may have been more detrimental to the test design and could have been interpreted as biasing the test results. No corrective action was taken with these deviations.

All except one (SD29) of the test treatments had ammonia levels below the threshold concentration of 30 mg/L total ammonia (Barton 2002). The initial measurement for SD29 for interstitial ammonia was 85.2 mg/L, well above the threshold level. Initial sulfide concentrations in interstitial water were below the NOEC (3.47 mg/L; Kendall and Barton 2004) for most samples; all final concentrations were below this level. Initial sulfides in sample SD28 was above the threshold for major effects seen in polychaetes(15 mg/L) at 15.38 mg/L. Sulfide concentrations appear to have dropped rapidly based on the high rate of survival in these samples and concentrations below 1 mg/L at test termination. Ammonia and sulfide concentrations were detected at levels expected to influence the toxicity in samples SD29 and SD28, respectively, to the amphipod *E. estuarius*.

Mean mortality in the reference treatments (RF01 and RF02) was 3 and 1% respectively, which met the SMS performance criteria (<25% mortality) and indicated that the reference sediments were acceptable for suitability determination. Mean mortality in the five test treatments ranged from 4 -64%.

Treatment	Replicate	Number	Number	Percentage	Mean Pe	ercentage	Standard Deviation	
nouthont	Rophouto	Initiated	Surviving	Survival	Survival	Mortality		
	1	20	19	95				
	2	20	20	100				
Control	3	20	18	90	96	4	4.2	
	4	20	19	95				
	5	20	20	100				
	1	20	18	90				
	2	20	20	100				
RF01	3	20	20	100	97	3	4.5	
	4	20	20	100				
	5	20	19	95				
	1	20	19	95				
	2	20	20	100				
RF02	3	20	20	100	99	1	2.2	
	4	20	20	100				
	5	20	20	100				
	1	20	19	95				
	2	20	19	95				
SD25	3	20	18	90	95	5	3.5	
	4	20	20	100				
	5	20	19	95				
	1	20	18	90				
	2	20	20	100				
SD26/27	3	20	19	95	96	4	4.2	
	4	20	19	95				
	5	20	20	100				
	1	20	17	85				
	2	20	19	95				
SD28	3	20	19	95	95	5	6.1	
	4	20	20	100				
	5	20	20	100				
	1	20	14	70				
	2	20	17	85				
SD29	3	20	5	25	36	64	39.6	
	4	20	0	0				
	5	20	0	0				
	1	20	18	90				
	2	20	19	95				
SD30	3	20	19	95	93	7	5.7	
	4	20	17	85				
	5	20	20	100				

 Table 2. Test Results for Echaustorius estuarius.

Treatment	Dissolved Oxygen (mg/L)			Temperature (°C)			Salinity (ppt)			pH (units)		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	8.4	8.1	9.7	15.5	15.2	15.7	28.0	28	28	8.3	8.2	8.5
RF01	8.4	8.0	9.7	15.5	15.2	15.7	28.0	28	28	8.4	8.2	8.7
RF02	8.4	8.0	9.6	15.5	15.2	15.7	28.0	28	28	8.5	8.2	8.9
SD25	8.0	7.6	9.1	15.8	15.6	16.3	27.5	27	28	8.4	8.1	9.1
SD26/27	8.4	7.9	9.4	15.6	15.2	15.8	26.6	26	27	8.5	8.2	8.9
SD28	8.3	7.8	9.0	15.6	15.3	16.0	27.8	27	28	8.6	8.2	9.3
SD29	8.0	7.5	9.4	15.7	15.4	16.4	28.0	28	28	8.5	8.2	8.9
SD30	8.4	7.9	9.5	15.5	15.2	15.8	27.5	27	28	8.3	8.1	8.8

Table 3. Water Quality Summary for *Eohaustorius estuarius*.

Treatment	Overlying Ammonia (mg/L Total)		Inters Amn (mg/L	stitial nonia Total)	Overlying (mg/L	g Sulfides Total)	Interstitial Sulfides (mg/L Total)		
	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	
Control	0.00	0.00	<0.5	<0.5	0.002	0.016	0.024	0.031	
RF01	1.04	0.00	9.08	NA	0.037	0.000	0.419	0.341	
RF02	2.53	0.00	14.2	1.77	0.026	0.018	0.560	0.185	
SD25	4.93	2.93	25.0	5.78	0.037	0.053	0.419	0.210	
SD26/27	0.60	<0.5	1.27	<0.5	0.011	0.004	0.240	0.061	
SD28	2.93	0.77	20.2	2.19	0.017	0.034	15.38	0.222	
SD29	14.3	23.9	85.2	44.1	0.017	0.046	0.388	0.031	
SD30	1.42	<0.5	3.83	1.12	0.010	0.008	0.192	0.106	

Test Conditions: PSEP E. estuarius (SMS)									
Sample Identification	RF01, RF02, SD25, SD26/27, SD28, SD29, SD30								
Date sampled	September 28-30, 2009								
Date received at NewFields Northwest	October 1, 2009								
Test dates	October 28 – N	ovember 7, 2009							
Sample storage conditions	4°C, dark, nitro	ogen headspace							
Days of holding Recommended: ≤8 weeks (56 days)	30	days							
Source of control sediment	Yaquina E	Bay, Oregon							
Test Species	E. es	tuarius							
Supplier	Northwestern Aquatic	Science, Newport, OR							
Date acquired	October	27, 2009							
Acclimation/holding time	1	day							
Age class	Subadu	lt, 3-5 mm							
Test Procedures	PSEP 1995 with	SMARM revisions							
Regulatory Program	S	MS							
Test location	NewFields Nort	hwest Laboratory							
Test type/duration	10-Da	ay static							
Control water	North Hood Ca	nal, sand filtered							
Test temperature	Recommended: $15 \pm 1 \degree C$	Achieved: 15.2 - 16.4 °C							
Test Salinity	Recommended: 28 ± 1 ppt	Achieved: 26 - 28 ppt							
Test dissolved oxygen	Recommended: > 5.0 mg/L	Achieved: 7.5 - 9.7 mg/L							
Test pH	Recommended: 7.8 ± 0.5	Achieved: 8.1 – 9.3							
SMS control performance standard	Recommended: Control <u><</u> 10% mortality	Achieved: 4% Pass							
SMS reference performance standard	Recommended: Reference mortality < 25%	Achieved: 3 and 1% Pass							
SMS pass/fail SQS	Treatment – Reference < 25% mortality = PASS	SD29 Fail; All Others Pass							
SMS pass/fail CSL	Treatment – Reference < 30% mortality = PASS	SD29 Fail; All Others Pass							
Reference Toxicant LC ₅₀	9.0 mg Cd/L	mg NH ₄ /L							
Acceptable Range	4.2 to 12.0 mg Cd/L	4.2 to 12.0 mg NH ₄ /L							
Test Lighting	Cont	inuous							
Test chamber	1-Liter Gla	ss Chamber							
Replicates/treatment	5 + 2 surrogates (one used for WQ measurements through the test)								
Organisms/replicate	20								
Exposure volume	175 mL sediment/ 775 mL water								
Feeding	N	one							
Water renewal	N	one							
Deviations from Test Protocol	Salinity and pH								

Table 5. Test Condition Summary for Echaustorius estuarius.

3.2 20-DAY JUVENILE POLYCHAETE BIOASSAY

No mortality was observed in the *N. arenaceodentata* control sediment and mean individual growth (MIG) in the control sediment was 0.526 mg/ind/day. These values fall within the test acceptability criteria of <10% mean mortality and \geq 0.38 mg/ind/day mean individual growth (Kendall 1996), indicating that the test conditions were suitable for adequate polychaete survival and growth. A summary of the test results for all samples is shown in Table 6. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 7, 8, and 9.

The LC_{50} for the cadmium reference-toxicant test was 11.1 mg Cd/L, which is within the control chart limits (0.3 to 13.5 mg Cd/L) at the time of testing, indicating that the test organisms used in this study were of similar sensitivity of those previously tested at NewFields.

Temperature and dissolved oxygen measurements were within acceptable limits throughout the test. Salinity and pH was recorded slightly above the recommended limits throughout all test treatments. The slight increase over time is an artifact of conducting the UV light exposure procedure. The slight increase in salinity is most likely due to evaporation from the uncovered test chambers. Conducting the test without covers was required to avoid impeding UV light transmittance. Salinity reached a maximum of 32 ppt, within the tolerance range for *N. arenaceodentata* of 20-35 ppt (USACE 1998). Algal growth is also stimulated in the test chambers due to the UV light exposure and this increased growth is often associated with a rise in pH. Values within the test chambers reached a maximum of 8.6 pH units, but were still within the tolerance range (6-9 units) of the test organisms. These deviations would not be expected to affect the test results. The static-renewal design of the test was able to temper the deviations at the time of water exchange (every 3 days). Any additional procedures that may have been employed to adjust the salinity or pH of the test chambers may have been more detrimental the test design and could have been interpreted as biasing the test results. No corrective action was taken with these deviations.

All except one (SD29) of the test treatments had ammonia levels in the overlying water below the no-effect threshold concentration of 10 mg/L total ammonia (Kendall 2004). The initial measurement for SD29 for overlying water was 15.4 mg/L and interstitial ammonia was 43.4 mg/L. Initial sulfide concentrations in interstitial water were below the NOEC (3.47 mg/L; Kendall and Barton 2004) for most samples; all final concentrations were below this level. Initial sulfides in sample SD25 was close to the threshold for minor effects (5.5 mg/L; Kendall 2004) at 4.26 mg/L. Sulfide concentrations appear to have dropped rapidly due to the high rate of survival in these samples and concentrations below 1 mg/L at test termination. Ammonia and sulfide concentrations were detected at levels expected to influence the toxicity in samples SD29 and SD25, respectively, to the polychaete *N. arenaceodentata*.

Mean individual growth for the reference treatments compared to the Control were greater than 80% of the Control, meeting the recommended SMS performance standards (Ecology 2008). These results indicate that these reference sediments were acceptable for suitability determination. Survival in the test treatments ranged from 96 to 100%; MIG in the test treatments ranged from 0.394 to 0.571 mg/ind/day.

Treatment	Replicate	Number Initiated	Number Surviving	Individual Growth	Mean Mortality	MIG (mg/ind/day)	MIG Std Dev	
	1	E	5	(mg/ind/day)	(%)	× 0 , , ,		
		5 5	5	0.471				
Control	2	5 5	5	0.529	0	0 5 2 6	0.000	
Control	3	5	5	0.571	0	0.526	0.080	
Treatment Control RF01 SD25 SD26/27 SD28	4	5	5	0.429				
	5	5	5	0.632				
	1	5	5	0.491				
	2	5	5	0.513	0	0.540	0.000	
RF01	3	5	5	0.481	0	0.519	0.080	
	4	5	5	0.657				
	5	5	5	0.454				
	1	5	5	0.599				
DEOO	2	5	5	0.670		0.000	0.129	
RF02	3	5	5	0.602	0	0.623		
	4	5	5	0.443				
	5	5	5	0.799				
	1	5	5	0.543				
	2	5	5	0.454				
SD25	3	5	5	0.345	4	0.450	0.077	
	4	5	5	0.500				
	5	5	4	0.407				
	1	5	5	0.486				
	2	5	5	0.603				
SD26/27	3	5	5	0.454	0	0.514	0.058	
	4	5	5	0.536				
	5	5	5	0.491				
	1	5	5	0.415				
	2	5	5	0.495				
SD28	3	5	5	0.479	0	0.455	0.042	
	4	5	5	0.404				
	5	5	5	0.484				
	1	5	5	0.381				
	2	5	4	0.275				
SD29	3	5	5	0.422	4	0.394	0.075	
	4	5	5	0.478				
	5	5	5	0.412				
	1	5	5	0.577				
	2	5	5	0.465				
SD30	3	5	5	0.530	4	0.571	0.101	
	4	5	4	0.736				
	5	5	5	0.548				

 Table 6. Test Results for Neanthes arenaceodentata.

Treatment	Dissolved Oxygen (mg/L)			Temperature (°C)			Salinity (ppt)			pH (units)		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.5	7.1	7.7	19.8	19.5	20.2	29.0	28	30	8.0	7.9	8.2
RF01	7.4	7.2	7.7	20.1	19.6	20.3	28.9	28	30	8.0	7.9	8.4
RF02	7.5	7.3	7.8	20.1	19.7	20.3	30.0	29	32	8.2	8.0	8.6
SD25	7.4	7.1	7.8	20.1	19.7	20.3	29.5	28	31	8.4	8.2	8.6
SD26/27	7.4	7.1	7.6	20.1	19.6	20.3	28.4	27	30	8.1	7.9	8.5
SD28	7.3	7.0	7.8	20.0	19.5	20.3	28.8	28	30	8.3	8.0	8.5
SD29	7.4	6.6	8.0	19.7	19.1	20.3	29.6	28	31	8.3	8.0	8.5
SD30	7.3	7.1	7.6	20.0	19.6	20.3	28.7	28	30	8.0	7.9	8.3

Table 7. Water Quality Summary for Neanthes arenaceodentata.

Treatment	Overlying Ammonia (mg/L Total)		Interstitial Ammonia (mg/L Total)		Overlying Sulfides (mg/L Total)		Inters Sulf (mg/L	stitial ides Total)
	Day 0	Day 20	Day 0	Day 20	Day 0	Day 20	Day 0	Day 20
Control	<0.05	2.93	<0.05	3.34	0.004	0.020	0.046	0.025
RF01	1.32	< 0.5	7.85	0.514	0.095	0.017	0.419	1.030
RF02	4.09	<0.05	13.3	1.10	0.066	0.065	0.187	0.170
SD25	6.75	0.877	20.7	1.02	0.017	0.018	4.255	0.165
SD26/27	< 0.5	< 0.5	2.26	< 0.5	0.026	0.015	0.111	0.310
SD28	4.98	< 0.5	18.6	0.939	0.036	0.011	0.711	0.255
SD29	15.4	<0.05	43.4	< 0.5	0.042	0.044	0.222	0.465
SD30	< 0.5	< 0.5	< 0.5	0.560	0.005	0.007	0.107	0.690

Test Conditions: PSEP N. arenaceodentata (SMS)						
Sample Identification	RF01, RF02, SD25, SD26/27, SD28, SD29, SD30					
Date sampled	September 28-30, 2009					
Date received at NewFields Northwest	October 1, 2009					
Test dates	November 5 –	25, 2009				
Sample storage conditions	4°C, dark, nitroger	n headspace				
Days of holding		•				
Recommended: ≤8 weeks (56 days)	38 day	S				
Source of control sediment	Yaquina Bay,	Oregon				
Test Species	N. arenaceo	dentata				
Supplier	In-House C	ulture				
Date acquired	Isolated Novemb	per 4, 2009				
Acclimation/holding time	1 day					
Age class	Juvenile (Initial weig	ght 0.255 mg)				
Test Procedures	PSEP 1995 with SM	ARM revisions				
Regulatory Program	SMS					
Test location	NewFields Northwest Laboratory					
Test type/duration	20-Day static renewal					
Control water	North Hood Canal, sand filtered					
Test temperature	Recommended: 20 ± 1 °C	Achieved: 19.1 - 20.3 °C				
Test Salinity	Recommended: 28 ± 2 ppt	Achieved: 27 - 32 ppt				
lest dissolved oxygen	Recommended: > 6.0 mg/L	Achieved: 6.6 - 8.0 mg/L				
Test pH	Recommended: 7.8 ± 0.5	Achieved: 7.9 – 8.6				
Initial biomass	Minimum: 0.25 mg	0.255 mg				
SMS control performance standard	Recommended:	Achieved: 0% Pass				
· · · · · · · · · · · · · · · · · · ·	$Control \leq 10\%$ mortality					
(Mean Individual Growth - MIG)	> 0.72 mg/ind/day	Achieved:				
	Minimum: > 0.38 mg/ind/day	0.526 mg/ind/day Pass				
SMS reference performance standard	Recommended: MIGReference/MIGControl > 80%	Achieved: 98.7 and 100% Pass				
SMS pass/fail SQS	SQS Acceptability: MIG _{Treatment} /MIG _{Reference} ≥ 70%	All Pass				
SMS pass/fail CSL	CSL Acceptability: MIG _{Treatment} /MIG _{Reference} ≥ 50%	All Pass				
Reference Toxicant LC ₅₀	11.1 mg C	Cd/L				
Acceptable Range	0.3 to 13.5	mg/L				
Test Lighting	Continuc	pus				
Test chamber	1-Liter Glass Chamber					
Replicates/treatment	5 + 2 surrogates (one used for WC the test	Q measurements throughout				
Organisms/replicate	5					
Exposure volume	175 mL sediment/ 9	950 mL water				
Feeding	40 mg/jar every other day (8r	ng/ind every other day)				
Water renewal	Water renewed every third day	(1/3 volume of exposure				
Deviations from Test Protocol	Salinity an	d pH				
		- F				

 Table 9. Test Condition Summary for Neanthes arenaceodentata.

3.3 LARVAL DEVELOPMENT BIOASSAY

The larval development test with *M. galloprovencialis* was validated by 6.4% mean combined mortality in the control treatment, within the SMS acceptability criteria of <30%. A summary of the test results for all samples is shown in Table 10. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 11, 12, and 13.

Salinity and temperature were within the acceptable limits throughout the duration of the test. Dissolved oxygen concentrations fell below the recommended range in treatments SD25, SD28, and SD29 on Day 1 of the testing period. Aeration was initiated on these treatments on Day 1. This corrective action succeeded in raising the dissolved oxygen to acceptable limits and levels remained within limits for the duration of the test. Measurements of pH were recorded slightly above the recommended limits beginning on Day 2 (termination day) throughout several test treatments. Values within the test chambers reached a maximum of 8.5 pH units, but were still within the tolerance range of the test organisms. These deviations would not be expected to affect the test results.

The highest recorded total ammonia value was 1.88 mg/L total ammonia in the sample SD28 at test termination. This value is well below the mean No Observed Effect Concentration (LOEC) of 6.7 mg/L total ammonia based upon historical data from this laboratory. Ammonia and sulfide values detected in the test chambers were below the threshold values for *M. galloprovencialis* and should not be a contributing factor to any toxic response observed.

The EC₅₀ for the copper reference-toxicant test for combined proportion normal was 12.3 μ g Cu/L, within the control chart limits (2.9 to 15.3 μ g Cu/L) at the time of testing. The results of the reference-toxicant test indicate that the test organisms used in this study were similar in sensitivity to those previously tested at NewFields.

Mean control-normalized normal survival in the reference treatments (RF01 and RF02) was 96.3 and 86.1%; mean normal survival in the test treatments ranged from 18.6% to 94.7%.

Treatment	Replicate	Combined Normal Survival (%) ¹	Mean Combined Normal Survival (%)	Std. Dev.	Normalized Combined Mortality/Abnormality (NCMA)	Mean NCMA (%)	Std. Dev.
	1	100.0			0.0		
	2	100.0			0.0		
Control	3	80.2	93.6	9.2	19.8	6.4	9.2
	4	100.0			0.0		
	5	87.7			12.3		
	1	89.4			10.6		
	2	100.0			0.0		
RF01	3	94.7	96.3	4.5	5.3	3.7	4.5
	4	100.0			0.0		
	5	97.7			2.3		
	1	86.0			14.0		
	2	92.8			7.2		
RF02	3	77.8	86.1	5.8	22.2	13.9	5.8
	4	83.8			16.2		
	5	90.2			9.8		
	1	83.4			16.6		
	2	99.5			0.5		
SD25	3	88.3	93.0	6.9	11.7	7.0	6.9
	4	97.7			2.3		
	5	96.2			3.8		
	1	94.7			5.3		
	2	90.5			9.5		
SD26/27	3	98.4	94.7	3.4	1.6	5.3	3.4
	4	97.7			2.3		
	5	92.0			8.0		
	1	70.2			29.8		
	2	51.8			48.2		
SD28	3	98.0	76.8	17.7	2.0	23.2	17.7
	4	75.5			24.5		
	5	88.3			11.7		
	1	4.1			95.9		
0000	2	3.0	10.0	00.4	97.0		00.4
SD29	3	77.8	18.6	33.1	22.2	81.4	33.1
	4	3.4			96.6		
	5	4.9			95.1		
	1	49.2			50.8		
0500	2	64.2	47.4	40.4	35.8	50.0	40.4
SD30	3	42.4	47.4	10.1	57.6	52.6	10.1
	4	38.7			61.3		
	5	42.4			5/.6		

 Table 10. Test Results for Mytilus galloprovencialis.

¹ Reference and treatment normal survivals are normalized to mean Control normal survival.

Disso Treatment		olved Oxygen (mg/L)		Temperature (°C)		pH (units)		Salinity (ppt)				
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.6	7.4	8.0	16.3	16.0	16.8	8.2	8.0	8.4	28.0	28	28
RF01	7.3	7.2	7.4	16.4	15.7	16.9	8.1	7.9	8.3	28.7	28	29
RF02	6.4	5.6	7.2	16.4	16.1	16.8	8.1	8.0	8.2	28.3	28	29
SD25	5.3	4.7	5.8	16.1	15.7	16.5	8.0	7.9	8.1	28.7	28	29
SD26/27	6.1	4.0	8.1	16.3	15.5	16.8	8.1	7.9	8.4	28.0	28	28
SD28	5.5	1.7	8.3	16.1	15.6	16.7	8.1	7.8	8.5	28.7	28	29
SD29	6.4	5.9	7.3	16.4	16.1	16.8	8.0	7.9	8.0	28.0	28	28
SD30	6.3	5.9	7.1	16.2	15.8	16.5	8.1	8.0	8.2	28.0	28	28

Table 11. Water Quality Summary for *Mytilus galloprovencialis*.

Table 12. Ammonia and Sulfide Summary	y for <i>M</i>	lytilus g	gallo	provencialis.
---------------------------------------	----------------	-----------	-------	---------------

Treatment	Overlying (mg/L	Ammonia Total)	Overlying Sulfides (mg/L Total)		
	Initial	Final	Initial	Final	
Control	<0.5	<0.5	0.003	0.000	
RF01	<0.5	<0.5	0.096	0.006	
RF02	<0.5	<0.5	0.115	0.001	
SD25	<0.5	<0.5	0.091	0.000	
SD26/27	<0.5	<0.5	0.096	0.002	
SD28	1.50	1.88	0.060	0.001	
SD29	<0.5	<0.5	0.044	0.003	
SD30	<0.5	<0.5	0.068	0.000	

Test Conditions: PSEP M. galloprovencialis (SMS)						
Sample Identification	RF01, RF02, SD25, SD26/27, SD28, SD29, SD30					
Date sampled	September 28-30, 2009					
Date received at NewFields Northwest	October 1. 200	9				
Test dates	October 30 – Novembe	er 1, 2009				
Sample storage conditions	4°C, dark, nitrogen he	adspace				
Holding time		•				
Recommended: < 8 weeks (56 days)	32 days					
Test Species	M. galloprovenc	ialis				
Supplier	Taylor Shellfish, Shel	ton, WA				
Date acquired	October 28, 20	09				
Acclimation/holding time	2 days					
Age class	<2-h old embryos					
Test Procedures	PSEP 1995 with SMARM revisions					
Regulatory Program	SMS					
Test location	NewFields Northwest Laboratory					
Test type/duration	48-60 Hour static test (Actual: 48 hours)					
Control water	North Hood Canal sea water, 0.45µm filtered					
Test temperature	Recommended: 16 \pm 1 °C	Achieved: 15.5-16.9 °C				
Test Salinity	Recommended: 28 \pm 1 ppt	Achieved: 28-29 ppt				
Test dissolved oxygen	Recommended: > 5.0 mg/L	Achieved: 1.7-8.7 mg/L				
Test pH	Recommended: 7.8 ± 0.5 Achieved: 7.8-					
Stocking Density	Recommended: 20 – 40 embryos/mL Achieved: 27 embryos/mL					
SMS control performance standard	Recommended: Control normal survival <u>></u> 70%	Achieved: 93.6%, Pass				
SMS reference performance standard	Recommended: Reference survival/Control survival <u>></u> 65%	Achieved: 96.3 and 86.1%, Pass				
SMS pass/fail SQS	(Treatment normal/Control normal)/ (Reference normal/ Control normal) > 0.85 = PASS	SD29 and SD30 Fail				
SMS pass/fail CSL	(Treatment normal/Control normal)/ (Reference normal/ Control normal) SD29 and SD30 Fa > 0.70 = PASS					
Reference Toxicant LC ₅₀	12.3 µg Cu/L	·				
Acceptable Range	2.9 to 15.3 µg C	u/L				
Test Lighting	14hr Light / 10hr I	Dark				
Test chamber	1-Liter Glass Char	mber				
Replicates/treatment	5 + 1 surrogate (used for WQ measu test)	rements throughout the				
Exposure volume	18 g sediment/ 900 m	nL water				
Feeding	none					
Water renewal	none					
Deviations from Test Protocol	Dissolved oxygen and pH					

Table for reet contaition culturally for mythice ganoprovenenaner	Table 13. Test Condition S	Summary for Mytilus	galloprovencialis.
---	----------------------------	---------------------	--------------------

4.0 DISCUSSION

Sediments were evaluated based on Sediment Management Standards (SMS) criteria. The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology Sampling and Analysis Plan Appendix (WDOE 2008). Comparisons were made for each treatment against the reference sample. Two numerical comparisons were made under SMS, the Sediment Quality Standards (SQS) and the Cleanup Standards Limit (CSL).

4.1 AMPHIPOD TEST SUITABILITY DETERMINATION

Under the SMS program, a treatment will fail SQS if mean mortality in the test sediment is >25% more than the mean mortality in the appropriate reference sediment and the difference is statistically significant ($p \le 0.05$). Treatments fail the CSL if mean mortality in the test treatment >30%, relative to the reference sediment and the difference is statistically significant.

Sample SD29 failed to meet both the SQS and the CSL criteria compared to reference RF02. All other sediment treatments analyzed in the *E. estuarius* bioassay met the requirements for SQS and CSL (passing). The comparison results are summarized in Table 14 below. Initial and final total ammonia concentrations in interstitial water samples for this sample (86 and 44 mg/L respectively) exceeded the threshold value of 30 mg/L provided by Barton (2002).

Treatment	Mean Mortality (%)	Comparison To:	Statistical ly More than Reference ?	Mortality Comparison to Reference M _T .M _R (%)	Fails SQS? > 25 %	Fails CSL? > 30 %
Control	4					
RF01	3					
RF02	1					
SD25	5	RF02	Yes	4	No	No
SD26/27	4	RF02	No	3	No	No
SD28	5	RF02	No	4	No	No
SD29	64	RF02	Yes	63	Yes	Yes
SD30	7	RF02	Yes	6	No	No

Table 14. SMS Comparison for *Eohaustorius estuarius*.

SQS: Statistical Significance and M_T - M_R >25%

CSL: Statistical Significance and M_T-M_R >30%

4.2 JUVENILE POLYCHAETE TEST SUITABILITY DETERMINATION

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG). A test treatment fails SQS criteria if MIG is statistically lower in the test treatment, relative to the reference, and MIG in the test treatment is <70% that of the reference. The treatments will fail CSL criteria if MIG is significantly lower than the reference treatment and is <50% that of the treatment.

Sample SD29 failed to meet the SQS criteria compared to reference RF02, but passed the CSL criteria. All other sediment treatments met the requirements for SQS and CSL (passing). The comparison results are summarized in Table 15 below. The initial overlying water concentrations of total ammonia in this sample (15.4 mg/L) exceeded the threshold value (10

mg/L) provided by Kendall (2004). The final (20 day) water concentrations did not exceed this threshold.

Treatment	MIG (mg/ind/day)	Comparis on To:	Statistic ally Less than Referenc e?	MIG Relative to Reference MIG _{T/} MIG _R (%)	Fails SQS? < 70%	Fails CSL? < 50%
Control	0.526					
RF01	0.519					
RF02	0.623					
SD25	0.450	RF02	Yes	72.2	No	No
SD26/27	0.514	RF02	No	82.5	No	No
SD28	0.455	RF02	Yes	73.0	No	No
SD29	0.394	RF02	Yes	63.2	Yes	No
SD30	0.571	RF02	No	91.7	No	No

Table 15. SMS Comparison for *Neanthes arenaceodentata*.

SQS: Statistical Significance and $MIG_T/MIG_R < 70\%$ CSL: Statistical Significance and $MIG_T/MIG_R < 50\%$

4.3 LARVAL TEST SUITABILITY DETERMINATION

Larval test treatments fail SQS criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if the normal larval development in the test treatment is less than 85% of the normal development in the reference. Treatments fail CSL criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if the normal larval development in the test treatment is less than 70% of the normal development in the reference.

Samples SD29 and SD30 failed to meet both the SQS and the CSL criteria compared to reference RF02. All other sediment treatments met the requirements for SQS and CSL (passing). The comparison results are summarized in Table 16 below.

Treatment	Mean Normal Survival (%)	Comparison To:	Statistically Less than Reference?	Normal Survival Comparison to Reference (N _T /N _C)/(N _R /N _C)	Fails SQS? < 85%	Fails CSL? < 70%
Control	93.6					
RF01	96.3					
RF02	86.1					
SD25	93.0	RF02	No	108.0	No	No
SD26/27	94.7	RF02	No	110.0	No	No
SD28	76.8	RF02	No	89.2	No	No
SD29	18.6	RF02	Yes	21.6	Yes	Yes
SD30	47.4	RF02	Yes	55.1	Yes	Yes

 Table 16. SMS Comparison for Mytilus galloprovencialis.

SQS: Statistical Significance and N_{CT}<0.85*N_{CR}

CSL: Statistical Significance and $N_{\text{CT}}{<}0.70^*N_{\text{CR}}$

4.4 RESULTS OF CHEMICAL ANALYSES

Analytical chemistry results were provided by Parametrix. Results of the total petroleum hydrocarbon analyses performed on the West Bay Park sediments are summarized in Table 17 below.

Treatment	Diesel Range Organics	Lube Oil Range Organics	Sum TPH	CSL ² (Sum of Diesel and Lube Oil Range Results)
	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw
RF01	31U	62U	93U ¹	100
RF02	32U	63U	95U ¹	100
SD25	68U	490	558/U ¹	100
SD26/27	63U	320	383/U ¹	100
SD28	37	99	136	100
SD29	87	330	417	100
SD30 ³	77	370	447	100

 Table 17. Total Petroleum Hydrocarbon Analytical Results

mg/kg dw = milligrams per kilogram dry weight

U = Analyte not detected above given practical quantitation limit

¹ Sum includes U flagged data result(s)

² Cleanup Screening Level (CSL) based on the sum of the diesel range organics and lube oil range organics results

³ Duplicate analysis results

BOLD = Exceeds CSL criterion

4.5 SUMMARY

Two samples (SD29 and SD30) failed to meet SQS or CSL performance criteria for one or more of the bioassay tests performed on the West Bay Park sediments (Table 17). The failures for the amphipod and polychaete at station SD29 are consistent with the concentrations of total ammonia that were observed in these tests. The response at station SD30 by the larval test organism is not correlated to total ammonia effects.

Treatmen	Referenc e	Sedimer	nt Quality Stan	dards	Cleanup Screening Levels					
t	Compare d To:	Amphipod	Amphipod Polychaete Larval		Amphipod	Polychaete	Larval			
SD25	RF02									
SD26/27	RF02									
SD28	RF02									
SD29	RF02	Х	Х	Х	X		Х			
SD30	RF02			Х			Х			

Table 17. Summary of West Bay Park SMS Evaluation.

X = Does not meet criterion

5.0 ADDITIONAL DATA

5.1 AMMONIA AND SULFIDE SUMMARY

Initial ammonia concentrations measured in sample SD29 in the *E. estuarius* (85.2 mg/L) and the *N. arenaceodentata* test (43.4 mg/L) were at levels that may have impacted the survival and growth of the test organisms. Table 18 summarizes the initial ammonia and sulfide data for three bioassay tests performed on the West Bay Park sediments.

Interstitial sulfides measured in sample SD28 in the *E. estuarius* test (15.38 mg/L) was at levels suspected to cause mortality in amphipods; however no decrease in survival was expressed in this treatment. This sulfide measurement taken from the surrogate chamber may not have been representative of all replicates of this treatment.

Responses observed in the treatment SD30 in the larval development test do not seem to be associated with ammonia or sulfides.

	Tota	I Ammonia (m	ng/L)	Total Sulfides (mg/L)					
Treatment	Inter	stitial	Overlying	Inte	rstitial	Overlying			
	Amphipod	Polychaete	Larval	Amphipod	Polychaete	Larval			
Control	<0.5	<0.5	<0.5	0.024	0.046	0.003			
RF01	9.08	7.85	<0.5	0.419	0.419	0.096			
RF02	14.2	13.3	<0.5	0.560	0.187	0.115			
SD25	25.0	20.7	<0.5	0.419	4.255	0.091			
SD26/27	1.27	2.26	<0.5	0.240	0.111	0.096			
SD28	20.2	18.6	1.50	15.38	0.711	0.060			
SD29	85.2	43.4	<0.5	0.388	0.222	0.044			
SD30	3.83	< 0.5	<0.5	0.192	0.107	0.068			

Table 18. Initial Measurements of Ammonia and Sulfides.

5.2 ANECDOTAL OBSERVATIONS

Inspection of the two sediments (SD29 and SD30) that expressed significant biological responses may contribute additional information to the interpretation of the results. Below is a brief description of the two sediments in question including photographs (Figures 1-4).

5.2.1 Sample SD29

Sample SD29 was a dark sediment having a strong dead mollusk odor. While distributing this sediment to the bioassay test chambers many whole mussel shells were discovered, many still containing tissue. When possible, these shells and tissue matter were removed and not included in the bioassay test chamber. Figure 1 below shows the appearance of the sediment as removed from the sample container. Figure 2 below shows the sorted material retained after wet-sieving sample SD29 through a 0.5mm sieve. This photograph shows this sample containing woody debris, rock and pebble, shell fragments, mussel shells, barnacle shells, and clam shells.

Mussel and barnacle species are typically found associated with a hard substrate in the intertidal zone. The specimens of mussels and barnacles in this sample still contained tissue, indicating that these organisms were recently removed or scraped off of an attachment point. These could possible have been an artifact of the piling removal associated with this biological

evaluation. The decomposition of the tissue contributed by these mussels and barnacles may have been the contributing factor to the elevated ammonia concentrations observed in this sample, and consequently the negative biological responses observed in the bioassays.

Figure 1. Sample SD29

Figure 2. Sample SD29 Material Recovered After Wet-Sieving

5.2.2 Sample SD30

Sample SD30 was of a brown color having no distinguishing odor. This sample contained many large rocks and pebbles that were not included into the bioassay test chambers. Figure 3 below shows the appearance of the sediment as removed from the sample container. Figure 4 below depicts the size of the rocks that were hand removed from the sample. No woody debris is evident in this sample. There are no obvious physical characteristics that may explain the biological responses observed in this treatment.

Figure 4. Sample SD30 Material Recovered After Wet-Sieving

6.0 REFERENCES

- Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Ecology 2005. DMMP/SMS Clarification Paper: Interpreting Sediment Toxicity Tests: Consistency between Regulatory Programs. Presented at the 17th Annual Sediment Management Annual Review Meeting by Tom Gries, Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Ecology 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards (Chapter 173-204 WAC), Sediment Management Unit, Department of Ecology, Bellevue, Washington. Revised February 2008.
- Fox, D, DA Gustafson, and TC Shaw. 1998. Biostat Software for the Analysis of DMP/SMS. Presented at the 10th Annual Sediment Management Annual Review Meeting.
- Kendall, D, 1996. DMMP/SMS Clarification Paper: Neanthes 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size and Feeding Protocol. Presented at the 9th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, and Barton, J, 2004. DMMP/SMS Clarification Paper: Ammonia and Sulfide Guidance Relative to Neanthes Growth Bioassay. Presented at the 16th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- PSEP 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.
- PSEP. 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- PSEP 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: Testing Manual. EPA 823-B-98-004. February 1998.

APPENDIX A

LABORATORY DOCUMENTS

Eohaustorius estuarius Amphipod Bioassay:

Laboratory Data Sheets... A.1.1

Reference Toxicant Test... A.1.2

Neanthes arenaceodentata Juvenile Polychaete Bioassay:

Laboratory Data Sheets... A.2.1

Reference Toxicant Test... A.2.2

Mytilus galloprovencialis Bivalve Embryo Bioassay:

Laboratory Data Sheets... A.3.1

Reference Toxicant Test... A.3.2

Biological Testing Results for West Bay Park Sediment Evaluation

APPENDIX A.1.1

Eohaustorius estuarius Amphipod Bioassay Laboratory Data Sheets 10-DAY SOLID PHASE TEST OBSERVATION DATA

×

NEWFIELDS

1

CLIENT		· · ·	PROJECT	r	•1			SPECIES			NEWFIELDS	LABORATORY	/	PROTOCOL	
Paramatrix	IBER		West Bay		NAGER			Eohaustorius	estuarius		Port Gamble	Bath 5		PSEP 1995	
		-	B. Hester					28-Oct-09			7-Nov-09				
#E = Emergence	Initial #	of sms≜		<u> </u>	1			ENDPOINT	DATA AND OB	SERVATIONS			The second second		
#M = Number of Mortality G = Growth	organi		Date Day 1		Day 2	Date	Day 3	Day 4	Date	Date	Day 7	Date	Date	Date	
(fungal, bacterial, or algal) D = No Air Flow (DO?) N = Normal	:	20	10/20	10/29 10/30		10(31		11/01	11/2.	11)3	4	11/15	1116	11.7	Number
	-	[Technicia	in	Technician	Tech	nician	Technician	Technician	Technician	Technician	Technician	Technician	Technician BH	Alive
Client/NewFields ID	Rep	Jar #	MME	<u>}</u>	MMB	J	L.	JL	MMB	MMB	MMB	MMB	B		
	1		N		NI		J	N	N	N	N	N	N	N	19
	2		1									<u> </u>			20
Control	3		ĺ ĺ												18 (r
	4			5	,		• •								19 Ir
	5												∇		20
	1												G	6	18
	2												6		20
WB-SD-RF01	3												G		20
	4						ļ						6		20
	5												6	1	19
	1	ļ 						4					G	6	19
	2						[6		<u></u>			G	<u> </u>	20
WB-SD-RF02	3		ļļ					N					6		20
	4							6							20
	5		V		<u> </u>			6				<u> </u>	G .		20
	1		<u>।</u> ह		N			N	N			+ $-$	6	6	19
	2		M					15	IE				6	1 15	17
WB-SD-SD25	3				J.	<u> </u>	<u>)</u>	N	N	¥			6		
	4		\downarrow		IE,G		4	4	6	6	6	6	<u> </u>		
	5		1 2E	-	N	11	E	115,6	IE.IM	Im	125		U U	1 1 1 1 1	

Page 1 of 2

.....

10-DAY SOLID PHASE 1 LST OBSERVATION DATA

NEWFIELDS

CLIENT			PROJECT			SPECIES			NEWFIELDS	LABORATORY	PROTOCOL		
NEWFIELDS JOB NUN	IBER		PROJECT B. Hester	MANAGER		TEST START 28-Oct-09	DATE		TEST END D/ 7-Nov-09	ATE		PSEP 1995	
#E = Emergence	Initial #	of				ENDPOINT	DATA AND OB	SERVATIONS					
#M = Number of Mortality	Organi	sms	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	
G = Growth			Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	
D = No Air Flow (DO?) N = Normal	:	20	10/20	05/01 1	10/31	11/01	11/2	11]3	1114	11/5	4/12	11.7	Number
			Technicia	n Technician	Technician	Technician	Technician	Technician	Technician	Technician	Technician	Technician	Alive
Client/NewFields ID	Rep	Jar#	Minte	5 MMB	r	JL	MMB	MMB	MMB	MMB	4	ISH	
	1		N	N	Ņ	N	N	ろ	N	N	G	6	18
	2			l							N		20
WB-SD-MIXX	3										6-	G	19
	4				<u> </u>						N		19
	5					- V	<u> </u>						20
	1					4	4		ļ	ļ	6	6	17
	2				Ø	N	И				G	6	19
WB-SD-SD28	3				4	6	GIM				G	6	19
	4		 -		N	N	N			ļ	12	6	20
	5		1		15	4	IE	V	<u> </u>		G	6	20
	1		ZE	N	N N	28,6	N	IM G	IM,G	6	6-	6	14 m
	2		N			ġ	N	N	N	N	G	6	17 in
WB-SD-SD29	3		N	N	V	6	6, IM	6,1E, 2M	G	6	G	6	B 3m
	4		G	6	6	4	6	GSM	6	6	G	6	0 5m
	5		N	N	N	9	G,IM	G, 15M(?	6,15M	<u> </u>	6	6	0
	1		N	N	<u> </u>	N	N	N	N	<u>N</u>	6	6	18
	2						<u> </u>		<u> </u>		G	6	19
WB-SD-SD30	3		 					ļ	<u> </u>		6	6	
	4		,				ļ	V		4	6		15
	5		↓	¥	1	ード	<u> </u>	LIE			G		IRU

O Mat suspended ~ 2 cm about surface of sediment, MMB 11/5/09.

NEWFIELDS

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT			PROJECT]	SPECIES			NEWFIELD	LABORATORY		PROTOCOL		
Paramatrix			West Bay			4	Eonaustorius estuari	us	TIME	Port Gambi	e Bath 5		PSEP 1995		
NEWFIELDS JOB NUMBER			PROJECT M	ANAGER		28.Oct.09		1400	7-Nor-09			300			
<u>1</u>			D. Mester												
									WATER QUALIT	Y DATA					
		Te	est Conditions	s	DO (mg/L) >5.0 mg/L		Temperature (°C) 15±1		Salinity (ppt) 28±1	pH 7.8±0.5		Tech	Date		
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter ppt		meter unit					
Control	0	wa	27	6	8.1	6	15.5	1	28		8,2	R	10/28		
WB-SD-RF01	0	wa	30		8.0		15.6		28		8.2				
WB-SD-RF02	0	wa	38		8.0		15.6		28		8.2				
WB-SD-SD25	0	wq	6		7.9		15.6		28		8.3				
WB-SD-MIXX	0	WQ	37		7.9		15.6		27		8.2				
WB-SD-SD28	0	wq	20		7.8		15.5		28		8.2				
WB-SD-SD29	0	wq	13		7.5		15.5		28		8.2				
WB-SD-SD30	0	wq	25	\mathbb{V}	7.9	V	15.6	V	28	V	8.	× ·	\vee		
Control	1	wq	27	6	9.7	6	15.1	!	28	(8.4	MMB	1929/09		
WB-SD-RF01	1	wq	30		9.7		15.1		38		8.4				
WB-SD-RF02	1	wq	38		9.6		15.1		28		8.5				
WB-SD-SD25	1	wq	Q		9.1		(5.3		58		8.4				
WB-SD-MIXX	1	wq	37		9.4		15.2		27		8.4				
WB-SD-SD28	1	wa	90		8.9		15.2		28		8.3				
WB-SD-SD29	1	wa	13		9.4		(5.3		78		8.5				
WB-SD-SD30	1	wo	25		9.5		151		58		8.3				

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT			PROJECT]	SPECIES			NEWFIELDS	S LABORATORY	PROTOCOL.				
Paramatrix			West Bay				Eohaustorius estuari	us		Port Gambi	e Bath 5		PSEP 1995			
NEWFIELDS JOB NUMBER			PROJECT M	ANAGER			TEST START DATE		TIME	TEST END I	DATE					
			B, Hester													
					WATER QUALITY DATA											
		Те	est Condition		DO (mg/L) >5.0 mg/L	Temperature (°C) 15±1		Salinity (ppt) 28±1		pH 7.8±0.5		Tech	Date			
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit					
Control	2	WQ	27	6	8.2	و	15.5	١	58	L.	8.4	MMB	10130109			
WB-SD-RF01	2	wq	30		8.0		15.7		58		8.4	1				
WB-SD-RF02	2	wq	38		0.8		15.6		58		8.5					
WB-SD-SD25	2	wa	6		7.6		15.6		78		8.1					
WB-SD-MIXX	2	wq	37		8.0		(5.8		27		8.4					
WB-SD-SD28	2	wa	90		7.8		15.6		98		8.3					
WB-SD-SD29	2	wa	13		7.7		15.6		98		8.4					
WB-SD-SD30	2	wa	25	\downarrow	1.8	J	15.3		28	↓ ↓	8.2					
Control	3	wq	27	6	8.5	6	15.5	1	28	1	8.4)L	10/31/09			
WB-SD-RF01	3	wq	30		8.4	1	15.6		28		8.4					
WB-SD-RF02	3	wq	38		8.4		15.6		28		B.5					
WB-SD-SD25	3	wq	6		7.7		16.3		28		8.3					
WB-SD-MIXX	з	WQ	37		8.4		15.5		27		8.4					
WB-SD-SD28	3	wq	20		8.1		15.7		28		8.4					
WB-SD-SD29	3	wa	13		7.9		15.8		28		8.5					
WB-SD-SD30	3	wo	25	140	8.3	6	15.6	4	28		8.3	4	+			

.

NEWFIELDS

WB-SD-SD30

25

WQ

5

J

8.2

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT Paramatrix NEWFIELDS JOB NUMBER	Paramatrix West Bay NEWFIELDS JOB NUMBER PROJECT					~	SPECIES Eohaustorius estuari TEST START DATE	us	TIME	Port Gambi		PROTOCOL PSEP 1995	
			B. Hester							7-Nov-09		1300	
									WATER QUALIT	Y DATA			, <u></u> ,
	Test Cor				DO (mg/L) >5.0 mg/L		emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7.8±0.5	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
Control	4	wq	27	6	8.4	6	15.6	1	28	1	8.4	JL _	11/01
WB-SD-RF01	4	WQ	30		8.4		15.6		28		8.4		
WB-SD-RF02	4	WQ	30		8.4		15.5		28		8.5		
WB-SD-SD25	4	wq	6		7.8		15.9		28		8.4		
WB-SD-MIXX	4	wq	37	Π	8.3	Π	15.5		27		8.4		
WB-SD-SD28	4	wa	20	1	8.1		15.8		28		<i>Q.5</i>		
WB-SD-SD29	4	wq	13		7.8		15.7		23		0.8		
WB-SD-SD30	4	wq	25	р	8.2	Þ	15.7		28	10	8.3	4	4
Control	5	wq	27	6	8.3	6	15.3	1	38	l	8.2	MMb	11/2
WB-SD-RF01	5	wq	30		8.3	1	15.5	١	58		8.2		Ì
WB-SD-RF02	5	wq	38		8.3		15.4		28		8.3		
WB-SD-SD25	5	wa	6	1 6	7.8		15.9		27		8,2		
WB-SD-MIXX	5	wq	37		8.3		15.5		26		8.2		
WB-SD-SD28	5	wa	20		8.2		15.3		28		8.4		
WB-SD-SD29	5	wa	13		7.9		15.5		28		8.4		

 $\mathbf{1}$

15.4

 \mathbf{V}

27

1

J

8.1

L

10 DAY SOLID HASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT			PROJECT			٦	SPECIES			NEWFIELD		PROTOCOL		
Paramatrix			West Bay				Eohaustorius estuari	ius		Port Gamb	PSEP 1995			
NEWFIELDS JOB NUMBER			PROJECT M	ANAGER		7	TEST START DATE		TIME	TEST END	DATE		TIME	
			B. Hester				28-Oct-09		1500					
				r					WATER QUALIT					
		Te	est Condition	s	DO (mg/L)	Temperature (°C)		Salinity (ppt)		рН			_	
Client/NewFields ID	Client/NewFields ID Day Rep			>5.0 mg/L meter mg/L		meter deg C		meter	28±1 ppt	meter	7.8±0.5 unit	lecn	Date	
Control 6 WC		wq	27	6	8.5	6	15.2	1	28		8,2	CR	11/3/09	
WB-SD-RF01	6	wq	30		8.5		15.2		28		8.3			
WB-SD-RF02	6	wq	38		8.5		15.2		28		8.4			
WB-SD-SD25	6	wq	6		7.8		15.6		27		8.4			
WB-SD-MIXX	6	wq	37		8.6		15.5		27		8.4		· · · · · · ·	
WB-SD-SD28	6	wa	20	<u> </u>	8.5		15.3		28		8.6			
WB-SD-SD29	6	wq	13		7.9		15.4		28		8.5			
WB-SD-SD30	6	wq	25	V .	8.4	\mathbb{V}	15.2	\vee	27	v	8.	∇	¥	
Control	7	wq	27	<u>ر</u>	8.2	6	15.3	١	38	ł	& .3	MMB	11/4/09	
WB-SD-RF01	7	wq	30		8.3		(5,2		28		8.4			
WB-SD-RF02	7	wq	38		8.3		15.2		28		8.5			
WB-SD-SD25	7	wq	6		7.8		15.8		27		8.5			
WB-SD-MIXX	7	wq	37		8.4		15.2		26		8.5			
WB-SD-SD28	7	wa	20		9.0		15.4		28		8.8			
WB-SD-SD29	7	wq	13		7.8		15.5		58		8.6			
WB-SD-SD30	7	wo	25		8.3	$ \downarrow$	15.4	1	27		8.4	J.	-1/	
10 DAY SOLID ► HASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT Paramatrix			PROJECT West Bay				SPECIES Eohaustorius estuari	us		NEWFIELDS Port Gamble	BABORATORY		PROTOCOL PSEP 1995
NEWFIELDS JOB NUMBER			PROJECT M B. Hester	ANAGER			TEST START DATE 28-Oct-09		тіме 1400	TEST END I 7-Nov-09	DATE		TIME 1300
		·							WATER QUALIT				
		T€	est Conditions		DO (mg/L) >5.0 mg/L	Te	emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7.8±0.5	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
Control	8	wq	77	6	8.1	6	(5.5	1	58		8.2	MMB	11509
WB-SD-RF01	8	wa	30		8.6		15.5		38		8.4		
WB-SD-RF02	8	WQ	38		8.4		15.6		86		8.5		
WB-SD-SD25	8	WQ	6		8.1		(5.9		わけ		8.3		
WB-SD-MIXX	8	wq	37		8.7		16.6		36		8.6		
WB-SD-SD28	8	wq	30		8.8		15.6		22		9.20		
WB-SD-SD29	8	WQ	13		8.2		15.7		28		8.5		
WB-SD-SD30	8	WQ	25	\checkmark	8.3	4	15.6	\$	やす		8.3	¢.	
Control	9	WQ	27	6	8.3	2	15.5		28	(8.5	স্	1116
WB-SD-RF01	9	WQ	30		8.3	(15.4		28	1	8.7		1
WB-SD-RF02	9	wq	38		8.3		15.7		28		8.9		
WB-SD-SD25	9	WQ	6		·8.4		15,8		27		8.9		
WB-SD-MIXX	9	wq	37		8.4		15.8		27		8.9		
WB-SD-SD28	9	wa	20		8.3		15.6		27		9.3		
WB-SD-SD29	9	wa	3		8.5		15.7		28		8.9		
WB-SD-SD30	9	wa	25	\mathbb{V}	8.5		15.5		27		8.8	\square	

, e ·

Ochecked pH in all rep.'s: 09.3 @9.0 @9.3 @9.0 @9.2

CLIENT	PROJECT	ŗ	SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Paramatrix	West Bay		Eohaustorius estuarius		Port Gamble Bath 5	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	[TEST START DATE	TIME	TEST END DATE	TIME
	B. Hester	l	28-Oct-09	1400	7-Nov-09	1300

									WATER QUALIT	Y DATA			
		Te	st Conditions		DO (mg/L) >5.0 mg/L	Т	emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7.8±0.5	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
Control	10	wq	27	6	81	Y	5.7	ļ	28	(8.3	jL	11/07
WB-SD-RF01	10	wq	30		8.3		15.5		28		Q.5		
WB-SD-RF02	10	wq	38		8.3		15.6		28		8.7		
WB-SD-SD25	10	WQ	6		8.3		16.1		2.7		9.1		
WB-SD-MIXX	10	wa	37		8.1		15.8		26		B.b		
WB-SD-SD28	10	wq	20		8.0		16.0		27		9,0		
WB-SD-SD29	10	WQ	13		7.6		16.4		28		8.7		
WB-SD-SD30	10	WQ	25	\bigtriangledown	વુ.ડ	9	15.8	4-	27	4	8.7	4	t

	PRE Commer	TEST	VINITIAL + OVERLYING	FINAL /)OV) / €	OTHE FOREW	R (ci rcle one) ATER (PW)	DAY of (circle one)	TEST: _	<u>&</u>	uu.
		Ca	libration Standa	rds Temper	ature	S	ample temperati	ire should	be within	
		Date	<u>.</u>	Ten	operatur	e: ±	1°C of standards nd date of analys	s temperatu sis.	ire at time	
l	<u> </u>	11/210		0						J
Samj Des	ple ID or cription	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading an Initials	d Sample Preserved (Y/N)	pH	Sal (ppt)	Sul mg/
Cr	strol	รมภา.	10/28/09 MM	Ø	20.0	1115109 M	ne y	\mathbf{N}		0.0
RF	= 0			1.04	1					0.0
RI	=02			2,53						0.02
SD	25			4.93						0.0
м	IXX			0.603					X	0.0
SD	28			<i>้</i> 2.93						0.0
80	129			14.3						0.0
80	050			1.42		6	J			0.0
Ca	rtrol	SWID.	10128109 MMB	0 205 - 1.42	0.06	11/5/09 MM	BY	7.2	29	0.0
RF	-01			9.08	1			7.4	30	0.41
RF	-0 3			14.2				74	30	20.1
SD	25			25.0	ļ			7.3	28	0.4
MI	Χχ			1.27				7.5	26	6.0
50	98			20.2				7.5	29	8 0.6 15.
SD	29			85.2				7.7	29	0.3
SD	30			3.83				7.2	28	0.19

•

Ammonia and Sulfide Analysis Record

	Client/Proj Olympia PRI	ect: City UULS ETEST	INITIAL X	Organism: Edns FINAL /	OTHE POREW	R (circle one) ATER (PW) (Test Duration (days): 16 DAY of TEST: (circle one)				
		Cal Date	libration Stand: :	ards Tempera Tem	ature iperature	e: Sa ±1 an	mple temperatur °C of standards d date of analysi	re should temperat s.	be within ure at time	-	
Sa I	ample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L	
	Cantrol	Suron.	11/9/09 MMB	Ø	20.0	11/9/09.mm	BN	\backslash		0.01	
R	F·OL			Ø						Ø	
J e	F.02			ø						0.018	
ק (25			2.93					Х	0.05	
<u> </u>	Λιχχ			40.5				/		0.004	
<u>и</u>	28			0.773						0.03	
>	29			23.9				/		0.04	
	30	J	V	20.5	¥	¥	¥	/		0.008	
	antrol	Suron.	11/9/09 MMB	40.5	20.0	119109 MME	s N	7.6	28	0.03	
R	2F.01			3		1		8.0	29	0.34	
R	F.02			1.77				8.1	99	0.185	
3	25			5.78				7.8	27	0.210	
	Λιχχ			40.5				8.0	77	0.06	
4	38			2.19				8.1	28	0.22.	
>	29			44.1				8.5	27	U 0.03	
<u>}</u>	30			1.12				8.0	27	0.106	
	18d 2.5	ml Sam	ph # 10 × n 0.031	naltiplier ×10 = 0.31	MMB omg/L	n[9109,	Not en Measure	angh L, NM	Sample B 11/9/1	e to	

ORGANISM RECEIPT LOG

Date:		Time:			NewFields E	Batch N	0.
10/27/0	ຊ	1350			NAS 9	839	8
Organism / Project	t:	1	Source:		<u>I</u>		
Eohs/			North	wisti	nn Agu	atic	Sciences
Address:					Invoi	ce Atta	ched
On F	File				Yes)	No
Phone:		1995.	Contact:		L		
On Fi	le		Or	, F	ile		
No. Ordered:		No. Received:	상태 · · · · · ·		Source Bate	:h:	
1350		1485			Fild.	colle	cted
Condition of Organ	nisms:	·	Approxin	nate Si	ze or Age:		
Geog			. 3-4	5 m	n		
Shipper:			B of L (T	racking	g No.)		
tedtx		-str	8704	- 9	284 9	828	
Condition of Conta	iner:		Received	d By:			
Good			MM	, >			
Confirmation of ID	of Organism:		1		Technician (Initials):
		Yes No) 19		MMB		
pH (Units)	Temp. (°C)	D. (m)	.O. g/L)	Con ((Incl	ductivity or Salinity lude Units)	Te (I	chnician nitials)
	8.4)	3	2-ppt	M	иB
Notes: U Una	ble to r	neasure, 1	not er	naig	h liqu	d.	MMB
					*]0	127/09
					2		*

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

SUBJECT: Animal Collection Data Sheet (shipping)

SOLD TO: Newfields Northwest

4729 NE View Dr. P.O. Box 216 Port Gamble WA 98364 Brian Hester/Collin Ray 360.297.6044

FedEx# 3689-9072-8

DATE OF SHIPMENT: 10-26-09

		ANIMA	L HISTORY		
Species			Age/Size		Number Shipped
Eohaustorius estuarius			3-5mm		1350+ 10%
	WA	TER QUALITY A	T TIME OF SHI	PMENT	
Temperature (°C): 145	pH:	8.2	Salinity (ppt):	28-5	D.O.(mg/L): 8. 4
Other:	<u> </u>				,
PACKAGED BY: YVE	NI	AICAHAMA	D	ATE: (0	-26.09
FIELD COLLECTION/C	ULTUR	E NOTES			
Collected 10 22 00 Version		D			
Interstitial WQ: Temp: 14.0) °C, Sali	к. inity 34.0 ppt. Salini	ity adjusted down	~5 ppt.	
Held at 15°C in aerated wate	er.	J	, , , , , , , , , , , , , , , , , , ,		
ADDITIONAL COMMEN	NTS		· · ·		,
2-liters of 0.5 mm sieved ho	me sedin	nent included.			

PLEASE RETURN ALL SHIPPING MATERIALS

If you have any questions, Please call Gary Buhler or Gerald Irissarri at (541) 265-7225. Thank You.

.

APPENDIX A.1.2

Eohaustorius estuarius

Amphipod Bioassay

Reference Toxicant Test

CETIS	s Q	C Ch	art								Repor	t Date:	04 Jan	Page 1 of 1 -10 11:04 AM
Eohaus	toriu	s 10-d Su	ırvival	and Rebu	rial Sedime	nt Test								NewFields
Test Typ Protoco	pe: S pl: E	Survival-R EPA/600/I	leburia R-94/0	ıl 25 (1994)	Orga End	inism: Eol point: Pro	haustori portion	ius estuarius i Survived	(Amphipo	d) Materia Source	il: Ca : Re	dmium chlo ference To	oride xicant-REI	-
	EC50	14 12 10 8 6 4 80-AeW OC	-•		01 Aug-08-	23 Sep-08-	09 Oct-08	21 Oct-08-	14 Nov-08		01 Apr-09-		58 Oct-00	
		Sig	ima:	0.13842 1.94570	Count: CV:	20 23.91%		+1s Warning	Limit:	10.0841 +	2s Actio	on Limit:	4.24701	
Quality	Cont	rol Data						,						
Point Y	Year	Month	Day	Data	Delta	Sigma	Warn	ing Action	Test Lir	nk Analys	sis			
1 2	2008	Мау	30	8.87317	0.73475	0.37763			13-3382	-4100 20-767	2-2429	ŧ		
2		Jun	27	8.83113	0.69272	0.35602			14-3368	-4084 04-415	2-2772			
3		Jul	16	8.35797	0.21956	0.11284			09-4785	-0917 05-851	2-9332			
4			26	8.84336	0.70495	0.36231			04-2285	-3356 06-121	0-3839	ł		
5		Aug	1	9.11399	0.97557	0.50140			16-8866	-7768 08-676	6-3207	•		
6			26	6.09565	-2.04276	-1.04988	(-)		05-3187	-8218 10-786	8-4568	ł		
7		Sep	23	5.09679	-3.04162	-1.56325	(~)		02-2340	-6976 12-604	6-2683			
8		Oct	3	9.37148	1.23307	0.63374			12-9882	-1875 12-809	3-3143			
9			9	10.36136	2.22294	1.14249	(+)		07-7236	-5738 09-536	2-0444			
10			10	5.07151	-3.06690	-1.57624	(-)		08-5307	-5163 12-822	25-3680			
11			21	6.56493	-1.57349	-0.80870			02-5567	-7485 08-990	7-2675			
12			28	6.85362	-1.28480	-0.66033			11-3814	-9085 05-547	9-4141			
13		Nov	14	13.35570	5.21728	2.68144	(+)	(+)	10-0142	-7604 10-463	13-3899	1		
14		Dec	23	8.02451	-0.11391	-0.05854			04-4756	-6255 16-039	3-7069	1		
15 2	2009	Jan	13	6.73179	-1.40662	-0.72294			02-2312	-8980 19-285	7-8265			
16		Feb	6	6.26547	-1.87295	-0.96261			15-7764	-3447 07-623	5-2432	•		
17		Арг	7	8.24630	0.10788	0.05545			03-3346	-8852 06-988	2-7808			
18		May	26	8.60595	0.46753	0.24029			15-0082	-8781 12-445	2-3693			
19		Jul	10	9.88120	1.74279	0.89571			15-8878	-4364 11-305	6-1329	1		
20		Sep	15	8.22244	0.08402	0.04318			00-1415	-4162 19-194	6-6930)		
1.21		Oct	28	8.99170	0.85329	0.43855			11-1793	-4979 19-271	3-9222			

Analyst: BH Approval: BH

CETIS Te	est Summa	ary					Rep Test	ort Date: Link:	16 Nov-09 4:36 Pl 11-1793-497
≂ohaustorius	10-d Survival a	and Rebu	rial Sedimen	t Test					NewFields
rest No: Start Date: Ending Date: Setup Date: Comments:	12-2196-6405 28 Oct-09 05:0 01 Nov-09 06:1 28 Oct-09 05:0 P080418.70	00 PM 00 PM 00 PM	Test Type: Protocol: Dil Water: Brine:	Survival-Re EPA/600/R- Laboratory Not Applica	burial 94/025 (199 Seawater ble	4)	Duration: Species: Source:	4d 1h Eohaustorius est Northwestern Aq	uarius uatic Science, OR
Sample No: Sample Date: Receive Date: Sample Age:	06-0292-7500 28 Oct-09 05:0 N/A	00 PM	Code: Material: Source: Station:	602927500 Cadmium c Reference 1 P080418.70	hloride Foxicant)		Client: Project:	Internal Lab Reference Toxic	ant
Comparison S Analysis 08-9503-3305	Summary Endpoint Proportion Sur	vived	NOEL 5	LOE 10	<u>EL (</u>	ChV 7.07107	PMSD 32,80%	Method Dunnett's Multic	le Comparison
Point Estimate Analysis 19-2713-9222 Test Acceptate Analysis	e Summary Endpoint Proportion Sur bility Endpoint	vived	% Effe 50 Attrib	ect Con 8.99	nc-mg/L § 01705 (Statistic	95% LCL 6.428589 TAC Ran	95% UCL 12.57675 ge Overla	Method Trimmed Spear Decision	man-Karber
08-9503-3305 19-2713-9222	Proportion Sur Proportion Sur	vived vived	Contro Contro	ol Response ol Response	0.96667 0.96667	0.9 - NL 0.9 - NL	Yes Yes	Passes acce Passes acce	eptability criteria eptability criteria
Proportion Su	rvived Summa Control Type	ry Reps	Mean	Minimum	Maximum	SE	SD	CV	
2.5 5 10 20 40	Didition Water	3 3 3 3 3 3	0.73333 0.66667 0.53333 0.03333 0.00000	0.60000 0.40000 0.40000 0.00000 0.00000	0.90000 1.00000 0.70000 0.10000 0.00000	0.08819 0.17638 0.08819 0.03333 0.00000	0.15275 0.30551 0.15275 0.05774 0.00000	20.83% 45.83% 28.64% 173.21 0.00%	
Proportion Su	Irvived Detail	Ren 1	Ren 2	Ren 3					
0 2.5 5 10 20 40	Dilution Water	1.00000 0.90000 0.40000 0.70000 0.10000 0.00000	0.90000 0.60000 0.60000 0.50000 0.00000 0.00000	1.00000 0.70000 1.00000 0.40000 0.00000 0.00000			÷		

Page 1 of 1

CETIS D	ata	Wo	rksh	leet			Page 1 of 1 Report Date: 16 Nov-09 4:36 PM Link: 11-1793-4979
Eohaustorius	s 10-d	Survi	ival ar	nd Reburial S	ediment Test		NewFields
start Date: Ending Date: Sample Date	28 (01 1 : 28 (Dct-09 Nov-09 Dct-09	05:00 06:00 05:00	PM Spec PM Proto PM Mate	ies: Eohausto ocol: EPA/600/ rial: Cadmium	rius estuarius /R-94/025 (1994) chloride	Sample Code: 602927500 Sample Source: Reference Toxicant Sample Station: P080418.70
Conc-mg/L	Code	Rep	Pos	# Exposed	# Survived	# Reburied	Notes
0	D	1	7	10	10		
0		2	1	10	9		
25	U	3	13	10	10		
2.5		2	10	10	9		
2.5		2	1/	10	7		
5		1	17	10	4		
5		2	18	10	6		
5		3	3	10	10		
10		1	11	10	7		· · · · · · · · · · · · · · · · · · ·
10		2	8	10	5		
10		3	5	10	4		
20		1	6	10	1		
20		2	17	10	0		
20		3	9	10	0		
40		1	2	10	0		
40		2	4	10	0		
40		3	15	10	0		

Caumium Reference Toxicant Tes. Survival Data Sheet

								SPECIES		Foha	ustoriu	ie oetu	arius		
JLIENT		PRO	JECT		NEW	FIELDS JOB	NO.	PROJECT	MANAGE	R	NEWFIEL	DS LABOR	ATORY	PROTOC	OL
Paramatrix		V	Vest Ba	у				B. ⊦	lester		Port	Gamble	Bath 5	PSE	° 1995
				SURV	IVAL 8	& BEH/	AVIOR	DAT/	4						
OBSERVATI	ON KEY					a and	1000					6.2.2			
N = Normal				DATE			DATE								
LOE = Loss of equilit	bium			10/20109			INT	2~			1/21		PAIE	1/21	
Q = Quinscent	IN	ITIAL	#OF	101010.			101	SO.			121			901	
NB = No body	0	RGAN	ISMS	TECHNIC	AN	***********	TECHNICIA	N		TECHNIC	AN		TECHNIC	IAN	
F = Floating on surface	ce	10		K	NMR	MB		MB			JL		,	JL	
CLIENT/ NEWFIELDS ID	CONC. value units	REP	INITIAL NUMBER	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS
		1		10	ø	ЭF	0	ø	IF	10	Ø	IF	0	ø	Ŋ
Ref.Tox cadmium	0 mg/L	2	*****	10	ø	4F	10	Ø	1(=	10	ð	3F	9	}	2F
		3		(0	ø	こ	10	8	а	10	Ø	N	10	Ø	N
		1		10	Ø	(F	10	æ	N	10	ัต	N	9	}	N
Ref.Tox cadmium	2.5 mg/L	2		10	Ø	IF	10	Ø	(F	6	4	N	6	ø	IF
		3		10	ø	ιF	10	Ø	(F	37	3	IF	7	X	Ν
		1		10	ø	N	10	প	IF	5	5	1F	4	١	IF
Ref.Tox cadmium	5 mg/L	2		10	Ø	115	7	3	(F	7	ø	1F	6	ł	N
•.		3		0	Ø	٦F	0	Ø	N	10	8	IF	io_	ø	N
		1		10	Q	Ν	9	١	(F	7	2	N	7	Ø	Q.
Ref.Tox cadmium	10 mg/L	2		10	Ø	16	9	(N	7	2	١F	5	2	0
		3		10	ø	١F	10	Ø	(17	5	5	N	4	l	0
		1		10	ø	3F	8	2	Q	4	4	DC	I	3	θ
Ref.Tox cadmium	20 mg/L	2		10	ø	N	9	(N,	°45	4	Dζ	Ø	5	PC
		3		9	ł	JF	7	5	ЪС	3	4	DC,0	Ø	3	DC
		1		10	ঙ	IF.	6	4	Q	200	66	DС	<u> </u>		
Ref.Tox cadmium	40 mg/L	2		10	Ø	いの	3	7	DC	3ø	3				
		3		10	ø	と	4	6	DC	Ø	4	4			

1) Babies present, remained from chamber. MMB 10/29/09. 2) WC, JL 10/31

•••

Cadmium Reference Toxicant Test Water Quality Data Sheet .

-

	CLIENT	PROJECT	SPECIES		NEWFIELDS LABORATOR	Y	PROTOCOL
	Paramatrix	West Bay	Eohaustorius estua	arius	Port Gamble	Bath 5	PSEP 1995
\sim	NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK : 8.0mL	QUANTITY OF DILUENT	: 1500mL	NT MM	S
1	•	B. Hester	ACTUAL: 6.0119	ACTUAL: 15 C	10.19		128/09
	TESTID	LOT #:	TEST START DATE	TIME TES	BT END DATE		time t
	P080418.70	OBSIDTC	28Oct09	1700	01Nov09		1800

WATER QUALITY DATA

DILTIN.WAT.BATC	н	т	EMP REG	C#		REFE	RENCI	E TOX. M	ATERI	AL	REI	ERENCE	TOXXICANT	LOT NO.		96-H LC ₅₀	0
FSW102708.01						Ca	admi	um chlo	ride			cadn	nium				
TEST	CONDE				DO	(mg/L)	ŢΕ	MP(°C)	SA	L (ppt)		pH	TECHNICIAN	AMMONIA		SULFIDES	S
	SONDI	nono			2	5.0	1	5 <u>±</u> 1	2	8 <u>+</u> 1	8.0	±0.5	TECHNICIAN				
CLIENT/ NEWFIELOS ID	CONCEN	TRATION	DAY	REP	ļ	D.O.	`	TEMP.	54	LINITY	[рX	WQ TECH	AMMONIA	Tech	SULFIDES	t Tech
	value	units			meter	mg/L	mater	°c	met o r	ppt	meter	unit		METER ING/L	, n	eter (mg/L	
			0	Stock	6	7.1	6	IS.7	1	28	1	7.6	R				
			1	Surr	4	8.3	ہا	15.4	1	38	1	8.0	MMB				
Ref.Toxcadmium	0	mg/L	2	Surr	4	7.3	6	15.8	(27	(ょう	MMB				
			3	Surr	6	7.4	6	17.1	1	27	۱	7.2	JL.				
			4	Surr	9	7.1	6	16.3	l	27	1	7.6	I				
	-		0	Stock	6	7.6	6	15.6	۱	28	(7.7	CR				
			1	Surr	6	8.9	6	15.2	۱	58	(8.1	MMB				
Ref.Toxcadmium	2.5	mg/L	2	Surr	6	7.3	6	15.7	ł	28	(7.9	MALB				
			3	Surr	6	7.2	6	15.5	l	28	l	75	JL				
			4	Surr	6	73	6	15.4	ι	28	1	78	JL				190900
			0	Stock	6	7.9	6	156	(28		7.7	ŮŘ	100 (St. 2005) (St.			de la constante
ł			1	Surr	6	87	6	15.1	1	78	1	8.1	MMB				
Ref.Toxcadmium	5	mg/L	2	Surr	6	7.2	6	15.4	۱	38	(7.9	MMPS				
	1		3	Surr	6	7.1	6	15.4	ł	28	1	7.8	JL	tion configurates for			
			4	Surr	6	7.8	6	15.3	ł	28	1	8.0	<u> </u>				
			0	Stock	6	7.8	6	15.6	ł	28	1	7.8	(R				
			1	Surr	6	8.8	6	15.1	(28	1	8.(MMB				
Ref.Toxcadmium	10	mg/L	2	Surr	حا	٦.٣	Ś	15.3	(28	1	8.0	MMB		- 2.		
			3	Surr	6	7.7	6	15,5	{	28	(7.8	1				
			4	Surr	6	8.0	6	15,3	1	28	1	80	Jì	2014 Z 201			
			0	Stock	6	7.8	6	15.5	Ì	28		7 8	1 R	-0.0.2 P 1			
1			1	Surr	6	8.8	6	(5.0	1	28	1	8.3	MMB				
Ref.Toxcadmium	20	mg/L	2	Surr	Q	7.6	6	15.2	ł	28	(8.0	MAUB	105.6 338 21		0.00	1.20
			3	Surr	6	7.7	6	15.4	1	28	(7,9	JL				1990
			4	Surr	6	7.9	Ŭ	15.2	Ì	28	Ì	8.1	Ji				
			0	Stock	6	79	6	15.4	i	28		78	(R				
			1	Surr	<u>آ</u>	9.1	فا	15.6	ì	58	1	8 2	MMB				
Ref.Toxcadmium	40	mg/L	2	Surr	(0	7.7	6	15.2	(28	τ	81	MMB			100 A 10 A 40	
			3	Surr	Ŭ,		10		-	<u> </u>	İ.		-H-		172 (1917) 1921 (1917)		
			4	Surr	<u> </u>		Ĕ		<u> </u>								
	1						1				1			an san tagan ta	88. AQ 1. S		STR. BROK

APPENDIX A.2.1

Neanthes arenaceodentata

Juvenile Polychaete Bioassay

Laboratory Data Sheets

20-DAY SOLID PHASE BIOASSAY OBSERVATION DATASHEET

CLIENT	IT PROJECT).			PROJE	CT MAN	AGER			NEWFIE	LDS LA	BORAT	ORY	PROTO	COL		S	PECIES	
City of Olympia			West Ba	у			1101-0	010-860				B. Heste	г		Р	ort Gam	ble Bath	6	PSEF	P 1995	Nea	anthes	arenaceod	entata
			-	,				END	POINT D	ATA & O	BSERVA	TIONS			,									
#S= Number on the Surface #M= Number of Mortality L=Anoxic Surface F=Fungal Patches D=No Air Flow (D0?) U=Excess food N=Normal B=No Burrows	Date and Initials	116 75	1 20/1	1108 1108	CR 11/9	CR WIO	NINB	GR. 11/12	13H 11.13	Jr "1/14	JL 11/15	MMB 11/16	мм6 ¹¹ /17	UR. Whats	75	15	JL "hi)L ''1/22	Ъ 11/2	MM¢ 5 11(24	11(25	MBER REMAINING	ARE WEIGHT (mg)	TAL WEIGHT (mg)
CLIENTI NEWFIELDS ID REP	IAR INITIAL, B	۲	2	3	4	ę	ß	7	8	ை	10	11	12	13	14	15	16	17	18	19	20	<u>NN</u>	11	ТО
1	5	Ν	N	N	N	Ν	N	N	Ν	N	N	2	2	Ņ	¢	6	Z	N	6	6	Ŀ	5	1 88.60	136.94
2	5		****		U	υ		,		_							,			N	Ч	5	2 86.29	140-42
Control / 3	5				U	N									\bigvee	Ψ			\mathbf{V}	N		5	\$0.98	139.34
4	5			4	N										Ν	N			Ν	N		5	4 68.07 5	112.29
5	5	0000000	6	6								V	৬	\mathbf{V}	5	, J			سی	N	1	5	45.53 C	139.98
1	5		6,и	6		V						G	G	G					6	6	6	5	8 7 .88	138.24
2	5		N	N		V						6										5	78.94	131.52
WB-SD-RF01 / 3	5					N						હ							_				85.35 a	: 34.72
4	5					U.	$\left \right\rangle$					G										5	76.31	143.29
5	5				۶V	N	\bigvee	V	ł			G										6	71.59	118.27
1	5		/		G	G	N	U	6			G										5		150.4
2	5			4	G	G		N				હ										5	82.69	150.99
WB-SD-RF02 / 3	5			6	G	Gυ	V	N				6										5	85.84	147.32
4	5			6	G	G	6	G				ড										5	90.10	>35.4
5	5	Y		4	N	U	N	N		9	*	6	\downarrow	V	\forall	\forall	\triangleleft	4	Ψ		J	5	94.02	175,19
					Z¢	cro-	Tin	ع	1:7 	13.18	; 				Zer	ъ Т	Time			$\left : \right\rangle$	74.	५७ २०		
11/5/2009 PSEP West Bay 20d Neanthes	emplate Enópoint			10	tre	Wts	(m	J)	2 : = 3 : =	71.7	6			I	WU With	, W	s l bom	ng) S		3:	73.	, 3 25		Page 1

20-DAY SOLID PHASE BIOASSAY OBSERVATION DATASHEET

CLIENT			PROJE	СТ				JOB NO).			PROJE	CT MAN	AGER			NEWFI	ELDS LA	BORAT	ORY	PROTO	COL		S	PECIES	
City of Olymp	ia				West Bay	¥			1101-0	010-860				B. Hester	r		F	ort Gam	ble Bath	6	PSE	P 1995	Nea	anthes	arenaceod	entata
										END	POINT D	ATA & O	BSERVA	TIONS												
#S= Number on the Surface #M= Number of Moriality L=Anoxic Surface F=Fungal Patches A=Algal Patches D=No Air Flow (DO?) U=Excess food N=Normal B=No Burrows	initial fo organism 5	¥ 13	Date and Initials	2 7/h	1103 1103	JL u108	(R. 4/9	CR. Vlio	grava uhi	CR W/R	13H 1113	JL 14/14	JL 17/15	11/16 Numb	ммв 1117	UR. Whos	75 11/19	TS 11/20	儿)L "/22	75 11/L7	ммв 111р4	MMB (11/25	MBER REMAINING	ARE WEIGHT (mg)	otAL WEIGHT (mg)
CLIENTI NEWFIELD3 ID	REP	JAR	INITIAL Ø	ł	7	3	4	S	w	7	œ	a	9	7	12	13	14	15	16	17	18	19	20	NN	11	TC
	1		5	N	6	Ņ	N	Ν	N	G	6	N	Ņ	6	6	G	6	6	N	Ν	6	G	G	5	16 87.55	143.10
	2		5		6	\$	GU	G.U	N	V		6	Ŷ	1			(/					l	5	17 87,14	133.79
WB-SD-SD25 /	3		5		N	6	GU	G	6	G		6	6							Ą				5	18 83,60	119.41
	4		5		6	4	Ġ	GU	G	G		6	N							DC				5	(9 7 7. 20	128.50
	5		5		N	N	N	Ň	N	U	J	N	1	6						Ν				4	8 86.98	120.57
	1		5					1	Ч	N	N			Q										5	21 94.07	143.96
	2		5							١	ł													ς	22 78.09	139,68
WB-SD-MIXX /	3		5																					5	23 76.32	122.99
	4		5																					5	24 84.62	139.46
	5		5		4	A	V	V	V	V	J			Ţ										5	25 88.52	138.89
	1		5		6	6	G	GU	6	G	6			G						Ś				5	२७ ४१.९०	132.71
	2		5		6,4	6	G	G	N	GU	1	Ь	Å	G						<i></i>				5	27 76.80	127.54
WB-SD-SD28 /	3		5		A	6	G	G	6	GU		6,4	6,u	G						N				5	28 93.80	142.94
	4		5		6	6	GU	G	6-	G,U		G,u	N	6						Ą				5	29 95.84	137.47
	5		5	\mathbb{V}	G	6	G	G	6	G		G,U	6,4	50	\checkmark	Vi	$\downarrow \downarrow$		4	Ν	V			5	30 92.40	142.04

.

H

20-DAY SOLID PHASE BIOASSAY OBSERVATION DATASHEET

CLIENT			PROJE	ст				JOB NO).			PROJE	CT MAN	AGER			NEWFI	ELDS LA	BORAT	ORY	PROTO	COL		S	PECIES	
City of Olympi	ia				West Bay	/			1101-0	10-860				B. Heste	r		F	ort Gam	ble Bath	6	PSEF	1995	Nea	inthes	arenaceod	entata
#S∝ Number on the Surface #M≂ Number of Mortality L=Anoxic Surface F=Fungal Patches A=Algal Patches D=No Air Flow (DO?) U=Excess food N=Normal B=No Burrows	INITUAL & OL ORGANISME S	f đ	Date and Initials	2 2/11)(1107)r 1 ⁰⁹	CR_ Wa	CR_ 11/10	SWW 11/11	UR W/N	BH 11.13)L 11/14)L 11/16	NMB 11/16	NMB N I7	(R_ 11/18	TS 11119	TJ 11/20	ル "わい	JL "122	TS 11/23	MNB VUJ 24	NMB 11/25	WBER REMAINING	RE WEIGHT (mg)	TAL WEIGHT (mg)
CLIENT/ NEWFIELDS ID	REP	JAR	INITIAL Ø	۴	2	£	4	5	9	7	8	Ø	10	11	12	13	14	15	16	17	18	19	20	nN	∀ 1	10
	1		5	Ν	N	6	G	G	G	G	6	6	N	6	G	G	6	6-	Ν	7	G	G	6	5	31 90.63	130.02
	2		5	(6	6	G		6			4	6	6			1	-{	G	Q				Y	30.32 90.32	113.36
WB-SD-SD29 /	3		5		6	6	G		6			9	Ν	6					Ν	Ν				S	% .।१	(23.65
	4		5		6	6	G	V	G			G	6	6										5	89.18	138.24
	5		5		6	6	N	N	Ч			N	N	ઉ										5	55 89.02	131.45
	1		5		N	N	G	G	6					ଟ										5	90 83.2-3	142.19
	2		5				G	G,U	G															5	23. 07 24 24	130.79
WB-SD-SD30 /	3		5				G	G	6															5	88 75.39	129.42
	4		5				N	N	6			-												4	397 74.85	134.78
<u> </u>	5		5	\bigvee		Ð	ÌS C	G	6		V	<u>ৰ</u> ণ	ઝ	V		V		R	4	P		Y	V	5	4° 76.27	132,30
(DE	CR	11/9	(41 83.19	
																									12 84.86	

20 DAY SOLID PHASE BIOASSAY WATER QUALITY DATASHEET

CLIENT			PROJ	ЕСТ			START TIME/ END T	IME		DILUTION	WATE	R BATCH	PROTOCOL		TEST START DATE
City of Olympia	I				West Bay		1330 1	113	0	F	SW1	10409.01	PSEP 199	95	5-Nov-2009
JOB NUMBER			PROJI	ECT M/	ANAGER		NEWFIELDS LABOR	ATOR	Y	TEMP. REG	CDR./H	IOBO#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester								Neanthes arenace	odentata	25-Nov-2009
			1324886	DO (m	o/ \	TEMP	WATER QUA	LITY I SALIN	DATA		6 4				
TEST CONDITION	S				> 6.0		20 ± 1		28 ± 1			8.0±1.0	WATED		
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	mg/L	meter	°C	meter		ot	meter	unit	RENEWAL	Feeding	TECH/DATE
WB-SD-SD29 /	0	Surr	22	6	6.6	6	20.1		28			8.		BH	CR 11/5/09
WB-SD-SD29 /	1	Surr		6	7.5	4	19.5	١	29		(8.4			75 116
WB-SD-SD29 /	2	Surr		ų	7.4	6	19.5	1	20	1	t	8.1		JL	JL 11/07
WB-SD-SD29 /	3	Surr		6	7.3	6	19.2	l	30)	١	8.4	JU		JL 11/08
WB-SD-SD29 /	4	Surr		6	7.(6	20.3	ł	Ze	1	1	8.5		CR	CR 119
WB-SD-SD29 /	5	Surr		6	7.6	6	19.8	1	20	٩	l	8.4			CR 11/10
WB-SD-SD29 /	6	Surr		6	7.6	6	19.6	ţ	3	0	١	8. 2	MMB	7	MMB 11/11
WB-SD-SD29 /	7	Surr		6	7.2	6	19.5		3	0		8.0			(R W/12
WB-SD-SD29 /	8	Surr		6	7.2	6	20.2	l	2	9	l	8.2		BH	13H 11.13
WB-SD-SD29 /	9	Surr		Ų	7.3	$ \psi $	19.5	l	3	١	1	8.2	JL		JL 1/14
WB-SD-SD29 /	10	Surr		6	7.4	6	19.4	1	30	>	t	8.2		JL	JL 4/15
WB-SD-SD29 /	11	Surr		6	7.3	6	19.6	1	3	0	1	8.3			CR 11/16
WB-SD-SD29 /	12	Surr		j.	7.4	6	19.9	ł	3 (5	t	8.3	NMB -		MMB 1117
WB-SD-SD29 /	13	Surr		6	7.6	6	19.5	ί.	5	9	t	8.2			MMB 11/18
WB-SD-SD29 /	14	Surr		6	7,7	6	19.6		ລ	7	ι	8,3		Г	TS 11/19
WB-SD-SD29 /	15	Surr		io	7.9	4	19.4	[3	o]	8,3	T	- (TS 11/20
WB-SD-SD29 /	16	Surr		6	3.0	6	19.1	(30)	1	B.5		JL	r 11/21
WB-SD-SD29 /	17	Surr		6	7.7	6	19.5	l	30		1	8.3			Jr 11/22
WB-SD-SD29 /	18	Surr		6	7~8	6	19.8	1	30		(8.3	TS	TS	TS 11/23
WB-SD-SD29 /	19	Surr		6	2.6	6	19.9	1	31	\$	1	8.3			MMB 11/24
WB-SD-SD29 /	20	Surr		6	7.2	6	19.9	(30	د	1	8.(MMB (1/25

 \mathbf{b}_{2i}

a

v

CLIENT			PRO.	JECT			START TIME/ END 1	IME	DILUTI	ON WATE	RBATCH	PROTOCOL		TEST START DATE
City of Olympia					West Bay		1330 1	113	0	FSW1	10409.01	PSEP 199	95	5-Nov-2009
JOB NUMBER			PRO.	JECT M	ANAGER		NEWFIELDS LABOF	ATORY	TEMP.	RECDR./	HOBO#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester							Neanthes arenace	eodentata	25-Nov-2009
			92.622	DO (m	oll V	TEMP	WATER QUA	LITY D	ATA	- bH				
TEST CONDITIONS		1 1			<u>sec</u>		20 ± 1	CALIN	28 ± 1	P	8.0±1.0	MATEO		
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter		meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
Control /	0	Sun	23	6	7.3	6	19.8		29		7.9		BH	CR 11/5/09
Control /	1	Surr		4	7.4	6	19.9	1	୧୫	<u>\</u>	8.2			TS 11/6
Control /	2	Suri		6	7.6	6	19.8	1	29	}	B.0		N	JL 11/07
Control /	3	Suri		6	7.6	6	19.6	(29	l	B·2	JV		JL 4/08
Control /	4	Sur		6	7.4	6	20.0		29		8.2		CR	CR 11/9
Control /	5	Suri		6	7.6	6	19.5	1	29	1	7.9			UR ILIO
Control /	6	Suri		6	7.7	6	19.9	(29		8.1	MWB -		MMB 11/11
Control /	7	Suri		6	7.3	6	20.0	1	29		7.9			CR 11/12
Control /	8	Suri		6	7.4	6	20.2	1	29		8.1		KH	BH 11.13
Control /	9	Suri		6	7.4	4	19.8	l	30	۱	8.0	JL		JL 11/14
Control /	10	Suri		6	7.7	6	19.7	[29	{	8.1		JL	JL 11/15
Control /	11	Suri		6	7.3	6	19.8	1	28	1	8.1			CR WV6
Control /	12	Suri		6	7.4	6	20.0	i	29	- E	8.0	MMB		MMB 11/17
Control /	13	Suri		9	7.2	6	19.5	l	28	L L	7.9			MIMB 11/18
Control /	14	Suri		6	7.5	6	19.7	{	28	1	8.0		TS	75 11/19
Control /	15	Suri		6	7.1	6	19.7	1	29	(79	T		TS 11/20
Control /	16	Suri		6	7.6	6	19.7	ł	29	~	8.1		JL	JL 11/21
Control /	17	Suri		6	7.6	6	19.8	l	30		8.1			JL 4/22
Control /	18	Sun		6	7.7	4	19.8	1	30	(8.1	-15	Б	Tr 11/23
Control /	19	Suri	·	6	7.6	6	20.1	١	29	l	8.1			MMB 11/24
Control /	20	Sur		6	٦.3	6	0.06	1	30	(8.1			MMK 11/25

CLIENT			PRO.	JECT			START TIME/ END 1	IME	DILU	TION WATE	R BATCH	PROTOCOL		TEST START DATE
City of Olympia					West Bay		1330 1	11	30	FSW1	10409.01	PSEP 199	95	5-Nov-2009
JOB NUMBER			PRO.	JECT M	ANAGER		NEWFIELDS LABOR	RATOR	Y TEMF	P. RECDR./H	iobo#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester							Neanthes arenace	eodentata	25-Nov-2009
				laove	••••		WATER QUA		DATA					
TEST CONDITIONS		0.000		00 (m	ig/L) > 6.0	TEMP	(C) 20 ± 1	SALIN	28 ± 1	рн	8.0±1.0		200.000	
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	D.O. mg/L	meter	TEMP °C	meter	SALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
WB-SD-SD28 /	0	Sur	29	6	7.0	6	20.2	l	28	l	8.2		BH	(R 11/5/09
WB-SD-SD28 /	1	Sur	r	6	7.3	6	20.0	۱	29	1	8.3			TS 11/6
WB-SD-SD28 /	2	Sur	r	6	7.2	6	200	}	29	1	B.0		N	JL 11/07
WB-SD-SD28 /	3	Sur	-	$ \psi $	7.2	Ý	19.3	1	29	1	8.2	JL		JL 11/08
WB-SD-SD28 /	4	Sur	-	6	7.0	6	20.3	l	29	(8.4		CR	CR 119
WB-SD-SD28 /	5	Sur	ŕ	6	7.3	6	20.1	1	29		8.4			(R. Wio
WB-SD-SD28 /	6	Sur	-	\mathbf{b}	7.2	6	30.2	1	29	t	8.1	MMB -	~	MANUB 11/11
WB-SD-SD28 /	7	Sur	ŕ	6	7.0	6	20.2	1	29	1	8.0			CR W/12
WB-SD-SD28 /	8	Sur	-	6	7.2	6	20.2	Ĩ	29	Ì	8.2		15M	13H 11.13
WB-SD-SD28 /	9	Sur	-	6	7.1	4	19.8	l	30	ł	8.2	JL		JL 11/14
WB-SD-SD28 /	10	Sur		6	7.5	6	19.8	l	29	١	8-4		l	JL 11/15
WB-SD-SD28 /	11	Sur	r	6	7.1	6	20.0	{	28	1	8.4			CR 11/16
WB-SD-SD28 /	12	Sur	-	6	7.3	6	20.06	l	96	L L	8:4	MMB -		NIMUS 11/17
WB-SD-SD28 /	13	Sun	·	6	7.1	6	19.5	ſ	58	t	8.2			MAUE LILL&
WB-SD-SD28 /	14	Sur		6	7.7	6	19,8	l	28	(8.4		76	75 11/19
WB-SD-SD28 /	15	Sur		6	7.6	6	19.8	١	∂-૧	١	8.3	T		TS 11/20
WB-SD-SD28 /	16	Sur	r	ĺę –	7,8	6	20.0	t	29	1	8.5		JL	JUIDI
WB-SD-SD28 /	17	Sur	-	Ų	7,7	6	19.8	1	29		8.3			JL 11/22
WB-SD-SD28 /	18	Sur	·	6	7.6	6	19,9	t	ୡ୶	(8.3	R	K	-B 11/23
WB-SD-SD28 /	19	Sur	-	6	7.5	6	20.1	l	58	t	8.7			MMB 11/24
WB-SD-SD28 /	20	Sur	r	Ŷ	7.3	6	Jo. 2	1	58	ł	8.2			MMB 1125

CLIENT			PRÓ.	JECT			START TIME/ END T	IME	DILUT	ION WATE	R BATCH	PROTOCOL		TEST START DATE
City of Olympia					West Bay		1330 1	113	0	FSW1	10409.01	PSEP 19	95	5-Nov-2009
JOB NUMBER			PRO.	ест м	ANAGER		NEWFIELDS LABOR	RATOR	Y TEMP.	RECDR./	HOBO#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester							Neanthes arenac	eodentata	25-Nov-2009
	5,555,555			loo /m	-0.5	Tran	WATER QUA			- nu				
TEST CONDITIONS					g/c) <u>>6.0</u>	LCAUL	20 ± 1	SALIN	28 ± 1	pra	8.0±1.0	A A A A A A A A A A A A A A A A A A A	0.6.6.5	
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	mg/L	meter	°C	meter	ppt	meter	pH unit	RENEWAL	Feeding	TECH/DATE
WB-SD-SD30 /	0	Sun	32	6	7.6	6	20.2	1	29		8.0		13H	CR 11/5/09
WB-SD-SD30 /	1	Suri		6	7.4	6	20.0	1	ବ୍ୟ		81,2			TS 11(6
WB-SD-SD30 /	2	Suri		6	7.5	6	20.0	1	29	{	80		JL	JL 11/07
WB-SD-SD30 /	3	Suri		Ý	7.5	6	19.9	l	29	l	9.1	12		JL 11/08
WB-SD-SD30 /	4	Suri		6	7.2	6	20.3	١	28		8.3		CR	GR11/9
WB-SD-SD30 /	5	Suri		6	7.4	6	20.2	1	28	Ì	8.3			CR 11/10
WB-SD-SD30 /	6	Suri		6	7.5	6	20.1	1	29	١	8.0	MMB _	~	MMB 11/11
WB-SD-SD30 /	7	Suri		6	7.3	6	20.1)	29	1	7.9			CRUIR
WB-SD-SD30 /	8	Suri		6	7.2	6	20.2	1	29	l	8.0		BH	13H 11.13
WB-SD-SD30 /	9	Şuri		Ý	7.3	4	19.9	1	30	l	7.9	JL		JL 11/14
WB-SD-SD30 /	10	Suri		6	7.4	6	20.0	1	29	(8.0		L	JL 11/15
WB-SD-SD30 /	11	Suri		6	7.1	6	20.1	1	28	1	8.0			CR WIG
WB-SD-SD30 /	12	Sun		6	7.2	Ġ	20.1	۱ ا	29	1	7.9	MMB _		MMB 11/17
WB-SD-SD30 /	13	Suri	·	6	7.2	C	19.6	١	28	١.	P.F			MMB 11/18
WB-SD-SD30 /	14	Suri		6	7.3	6	h-0,0	(28	i	8,0		杠	75 11/19
WB-SD-SD30 /	15	Sun		6	7.1	6	19.9	1	29	1	7.9	75		F 11/20
WB-SD-SD30 /	16	Suri		Ý	7.4	4	20.0	1	28	1	8.0		JL	Jr 11/21
WB-SD-SD30 /	17	Suri		6	7.5	6	200	l	29	l	B.0			JL 11/22
WB-SD-SD30 /	18	Suri		6	7.6	6	20.0	1	29	(8.0	イ	5	TS 11/23
WB-SD-SD30 /	19	Suri	-	Ŀ	7.4	E	20.2	t	28	(7.9			MMB 11/24
WB-SD-SD30 /	20	Sun	·	6	7.2	6	20.2	(36	(ک ک			MMB 11/25

CLIENT			PRO	JECT			START TIME/ END T	IME	DII	UTION WAT	ER BATCH	PROTOCOL		TEST START DATE
City of Olympia					West Bay		1330 1	113	0	FSW	110409.01	PSEP 19	95	5-Nov-2009
JOB NUMBER			PRO.	ECT M	ANAGER		NEWFIELDS LABOR	ATOR	Y TE	MP. RECDR.	/HOBO#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester							Neanthes arenac	eodentata	25-Nov-2009
	Ang ing	Marindari	La distri		6/I)	TEMP	WATER QUA	LITY L	DATA					
TEST CONDITIONS	1	1 1			<u>>6.0</u>	1	20 ± 1	oruni i	$\frac{28 \pm 1}{8 \times 100}$		8.0±1.0	WATED		r
CLIENTINEWFIELDS ID	DAY	REP	JAR	meter	D.0. mg/L	meter	°C	meter	ppt	mete	r unit	RENEWAL	Feeding	TECH/DATE
WB-SD-MIXX /	0	Surr	33	6	7.1	6	20.3		27		8.3		BH	CR 11/5/09
WB-SD-MIXX /	1	Surr		6	- 7.4	6	20.1	1	28	{	<u> 8</u> , 3			75 11/6
WB-SD-MIXX /	2	Surr		6	7.5	6	20.1	[23	l	B.2		JL	JL 11/07
WB-SD-MIXX /	3	Surr		$ \psi $	7.5	6	19.9	ł	28	1	B.2	JL		JL 11/08
WB-SD-MIXX /	4	Surr		6	7.4	6	20.3	(28	2	8.5		CR	CR11/9
WB-SD-MIXX /	5	Surr		6	7.5	6	20.2	٦	28		8.4			UR 11/10
WB-SD-MIXX /	6	Surr		6	7.5	6	20.1	1	5E	1	0.8	MMB -		MMB 11/11
WB-SD-MIXX /	7	Surr		6	7.3	6	20.2	1	29	1	7.9			CR 11/2
WB-SD-MIXX /	8	Surr		b	7.4	6	20.1	١	29	١	8.0		19H	BH 11.13
WB-SD-MIXX /	9	Surr		6	7.5	6	19.9	l	30	1	8.0	JL		JL 11/14
WB-SD-MIXX /	10	Surr		6	7.5	6	20.0	ł	29	l	8.0		JL	JL 11/15
WB-SD-MIXX /	11	Surr		6	7.2	6	20,1	l	28	<u>l</u>	8.1			CR 1/16
WB-SD-MIXX /	12	Surr		6	4.F	6	30.0	(79	i (8.1	MMB	-7	MMUB 11/17
WB-SD-MIXX /	13	Surr		6	7.4	6	19.6	١	58	: l l	8.0			MMB 11/18
WB-SD-MIXX /	14	Surr		6	7,5	6	20,0		28	{	8,0		7	ys uliq
WB-SD-MIXX /	15	Surr		4	J.3	6	19.9	1	29	(7.9	75		-5 11/20
WB-SD-MIXX /	16	Surr		İφ	7,5	6	20.0	1	28	l	8.\		JL	JLII/21
WB-SD-MIXX /	17	Surr		4	7.5	Ϊ¢	20.0	ł	29	{	8.0			JL 11/22
WB-SD-MIXX /	18	Surr		6	76	6	20.0	(ર્ગ		8.0	T	T	75 11/23
WB-SD-MIXX /	19	Surr		6	7,4	6	20.2	١	28	(8.0			MMB 11/24
WB-SD-MIXX /	20	Surr		6	F. F	5	30.2	(29	Į	7.9			MMB 11125

CLIENT			PRO.	JECT			START TIME/ END T	IME	DILU	TION WATE	R BATCH	PROTOCOL		TEST START DATE
City of Olympia					West Bay		1330 1	1/3	0	FSW1	10409.01	PSEP 199	95	5-Nov-2009
JOB NUMBER			PRO.	JECT M	ANAGER		NEWFIELDS LABOR	ATOR	у темі	P. RECDR./I	HOBO#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester							Neanthes arenace	eodentata	25-Nov-2009
	989,685	435N)	Sa Sansara			TEME	WATER QUA		DATA	54				
TEST CONDITIONS					> 6.0	T SHILL	20 ± 1	O/ILA	$\frac{28 \pm 1}{28 \pm 1}$		8.0±1.0	WATED		r
CLIENT/NEWFIELDS ID	DAY	RĘ	P JAR	meter	mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
WB-SD-RF01 /	0	Su	rr 30	6	7.4	6	20.0	ł	28		81		BH	GR 11/5/09
WB-SD-RF01 /	1	Su	m	4	7.4	6	20.1	{	29	(8.3		0.42110-01	F 1116
WB-SD-RF01 /	2	Su	rr	Ý	7.4	6	20.2	ł	29		8.1		JL	JL 11/07
WB-SD-RF01 /	3	Su	rr	6	7,2	6	20.0	l	29		8.1	J		JL 4/08
WB-SD-RF01 /	4	Su	rr	6	7.3	6	20.3		29		8.4		R	(Rula
WB-SD-RF01 /	5	Su	rr	6	7.4	6	20.2	ł	Z9		8.3			CR 11/10
WB-SD-RF01 /	6	Su	rr	6	7.5	6	1.06	1	29	1	8.0	MMB -	~	MMB 11/11
WB-SD-RF01 /	7	Su	rr	6	7.2	6	20.2	٤	29		7.9			CR 11/12
WB-SD-RF01 /	8	Su	rr	6	7.3	6	20.2	l	ょう	l	7.9		BH	BH 11.13
WB-SD-RF01 /	9	Su	IL I	6	子4	6	19.9	l	30	1	7.9	JL		JL 1/14
WB-SD-RF01 /	10	Su	rr	4	7.6	6	20.0	l	29		8.0		JL	JL 11/15
WB-SD-RF01 /	11	Su	11	6	7.3	6	20.1	1	Z9		8.0			CR 11/16
WB-SD-RF01 /	12	Su	rr	6	7.7	Ŀ	20.0	(29	(8.0	MMB -		MMB 1117
WB-SD-RF01 /	13	Su	rr	6	7.4	5	19.6	١	58	ι	7.9			NUMB 11/18
WB-SD-RF01 /	14	Su	rr	ý	7.7	6	19,9	l	28	(7.9		T	53 11/19
WB-SD-RF01 /	15	Su	rr	6	7.4	6	19.8	1	29	{	79	TS		T5 11/20
WB-SD-RF01 /	16	Su	rr	6	7.6	4	19.9	Į	29	1	8.0		JL	JL 4/21
WB-SD-RF01 /	17	Su	rr	6	7,5	6	20.1	١	29	1	0.8			JL 11/22
WB-SD-RF01 /	18	Su	rr	6	7.7	φ	20.0	١	29	{	8.0	TS	٦٢	TS 11/23
WB-SD-RF01 /	19	Su	rr	6	7.5	6	20.2	(78	(8.0			MMB 11/24
WB-SD-RF01 /	20	Su	rr	6	7.4	6	30.3	(29	(7.9			MMB 11125

CLIENT			PROJ	JECT			START TIME/ END 1	IME	DILUTIC	ON WATE	ER BATCH	PROTOCOL		TEST START DATE
City of Olympia					West Bay		1330 1	11,	30	FSW1	10409.01	PSEP 199	95	5-Nov-2009
JOB NUMBER			PROJ	ЈЕСТ М	ANAGER		NEWFIELDS LABOR	ATOR	Y TEMP. I	RECDR./	HOBO#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester							Neanthes arenace	odentata	25-Nov-2009
	200. ook	(antiferent)			1		WATER QUA	LITY	DATA					
TEST CONDITIONS				DO (m	g/L) > 6.0	IEMH	20±1	SALIN	28 ± 1	рн	8.0±1.0			en en anter sont un de en
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	D.O. mg/L	meter	TEMP	meter	SALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
WB-SD-RF02 /	0	Surr	40	6	7.3	6	20.2	1	Z9	}	8.2		ВH	CR 11/5/09
WB-SD-RF02 /	1	Surr		6	7.5	6	20.1	1	29	۱	8.5			TS IIL6
WB-SD-RF02 /	2	Surr		Ý	7.5	6	20.2	[30	ł	8.3		JL	JL 11/07
WB-SD-RF02 /	3	Surr		6	7.5	6	20.0	\mathbf{l}	31	l	Q.3 °	l		J 11/08
WB-SD-RF02 /	4	Surr		6	7,3	6	20.3	1	30		8.6		CR	CR 11/9
WB-SD-RF02 /	5	Surr		6	7.4	6	20.3		30		8.4			CR 11/10
WB-SD-RF02 /	6	Surr		6	7.5	6	1.06	{	31	1	8.1	MMB -	- - >	MAUB 11/11
WB-SD-RF02 /	7	Surr		6	7.3	6	20.2		30		8.0			CR W12
WB-SD-RF02 /	8	Surr		6	7.3	6	20.2	l	30	1	8.1		BH	BH 11.13
WB-SD-RF02 /	9	Surr		6	7.4	6	20.0	l	32	1	8.1	JL		JL 11/14
WB-SD-RF02 /	10	Surr		6	7.5	6	20.0	l	30	l	8.2		JL	r 1/15
WB-SD-RF02 /	11	Surr		6	7.3	6	20.2		30	<u> </u>	8.2			CR 11/16
WB-SD-RF02 /	12	Surr		6	7.5	6	20.1	t	30	1	8.3	MMB	` `	MMB 11/17
WB-SD-RF02 /	13	Surr		ષ	7.5	4	(9.7	l	29	ι	8.1			MMB 11/18
WB-SD-RF02 /	14	Surr		6	7.8	6	20.0	(PE 8 2 9	(8,2		Z	75 11/19
WB-SD-RF02 /	15	Surr		6	7.5	4	20.1	١	29	(8.2	77		TS 11/20
WB-SD-RF02 /	16	Surr		6	7,7	Įų_	20.1	1	30	١	8.3		JL	JL 11/21
WB-SD-RF02 /	17	Surr		6	76	16	20.1	١	30	{	8.2			JL MIZZ
WB-SD-RF02 /	18	Surr		4	7,7	6	20,1	(30	1	8.2	Т	T	TS 11/23
WB-SD-RF02 /	19	Surr	<u> </u>	6	7.6	6	20.2	ŧ	30	(८.२			MMB 11/24
WB-SD-RF02 /	20	Sum		ما	7,5	6	80.3	1	31	(8.1			MMB 11/25
() M3	ē,	U	11	1191	04									

CLIENT			PRO.	JECT			START TIME/ END T	IME	DILUTION	WAT	ER BATCH	PROTOCOL		TEST START DATE
City of Olympia					West Bay		1330 1	117	30	FSW1	110409.01	PSEP 199	95	5-Nov-2009
JOB NUMBER			PRO.	JECT M	ANAGER		NEWFIELDS LABOR	ATOR	Y TEMP. RI	CDR./	HOBO#	TEST SPECIES		TEST END DATE
1101-010-860					B. Hester							Neanthes arenace	eodentata	25-Nov-2009
	030.220			DO (m	o#))	TEMP	WATER QUA	SALIA	DATA	DH				
TEST CONDITIONS				20,00	<u>> 6.0</u>		20 ± 1		28 ± 1		8.0±1.0	MATER		r
CLIENT/NEWFIELD3 ID	DAY	REP	JAR	meter	mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
WB-SD-SD25 /	0	Sur	г	6	7.1	6	20.2	1	28		8.3		M	CR11/5/09
WB-SD-SD25 /	1	Sur	r	6	7.2	6	20.1	(29	1	8.4			75 11(6
WB-SD-SD25 /	2	Sur	r	6	7.4	6	20.3	l	29		8.3		JL	JL 11/07
WB-SD-SD25 /	3	Sur	r	Ų	7.4	6	20.1	1	30	1	8.3	JL		JL 11/08
WB-SD-SD25 /	4	Sur	r	6	7.3	6	20.3	1	29	1	8.6		CR	(R-11/9
WB-SD-SD25 /	5	Sur	г	6	7.4	6	20.3	1	29	1	8.5			CRIIIO
WB-SD-SD25 /	6	Sur	r	6	7.4	6	20.Z	ł	30	١	8. Z	MMB -		MMB 11/11
WB-SD-SD25 /	7	Sur	r	6	7.3	6	20.2	1	@ 2930	1	8.2			CRUIZ
WB-SD-SD25 /	8	Sur	r	6	7.3	6	20.2	Ì	30	l	8.4		M1	13H 11.13
WB-SD-SD25 /	9	Sur	r	4	7.5	4	200	۱	31	۱	8.4	JL		JL 11/14
WB-SD-SD25 /	10	Sur	r	$\left(\right)$	7.6	6	20.0	l	30	1	8.5		12	JL 11/15
WB-SD-SD25 /	11	Sur	r	6	7.3	6	20.2	1	30	1	85			(R. 11/16
WB-SD-SD25 /	12	Sur	r	J	7.7	ف	J. 06	ł	30	۱	8.6	MMB	-	MAR IIII7
WB-SD-SD25 /	13	Sur	r	6	7.5	6	19.7	l	29	t	8.5			MMB 11/18
WB-SD-SD25 /	14	Sur	r	φ	7.8	6	20,1	١	29	l	8.5		K	75 11/19
WB-SD-SD25 /	15	Sur	r	6	7.4	þ	20, l	٦	29		8.4	T		TE 11/20
WB-SD-SD25 /	16	Sur	r	Ý	7.7	6	20.1	ł	29	1	8.4		JL	SL 11/21
WB-SD-SD25 /	17	Sur	r	6	7.6	6	20.1	1	30	}	8.4			JL 11/22
WB-SD-SD25 /	18	Sur	r	6	7.10	6	20.1	(30	(8.3	5	T	1 11/17
WB-SD-SD25 /	19	Sur	r	6	7.3	6	JO.3	l	29	t	8.2			MMB 11/24
WB-SD-SD25 /	20	Sur	τ.	6	7.2	6	20.3	ι	29	(8.2			MMB 11/25

OB CRW12

Ammonia and Sulfide Analysis Record

O Used 5ml sample & 5× multiplier, Mark 11/5/09.

Ammonia and Sulfide Analysis Record

Client/Proje Param	ct: netrix	k/ We	est Bay	(Organism:	Nean	thes		Te	Test Duration (days): 20						
PRE Commer	TES nts: _	T ,	OVER	IAL / LYING	(FINAL) / (OV) / (POR	EW	R (circle o ATER (P'	one) W) (cir	DAY of T rcle one)	TEST: _	20	-			
		Ca	libration	Standa	rds Temper	ature	;		Samp	ole temperatu	re should temperati	be within re at time				
24	Nov	vemb	er 2009		Ten کر	арега). О	iture	3.	and d	and date of analysis.						
Sample ID or Description	or Conc. n or Rep Date of Sampling an Initials				Ammonia Value (mg/L)	Te	mp C	Date Reading Initia	of g and ils	Sample Preserved (Y/N)	pH	Sal (ppt)	Sulf. mg/L			
OV Control	Su	ırr.	11/25/0	9 MMB	9.93	19	Ó	11/25/09	MMB	N			0.020			
OV RF01					40.5					1			6.017			
OV RF02					Ø								0.065			
OV SD25					0.877								0.018			
OV SDMIXX					40.5								0.015			
OV SD 28					40.5]						110.0			
OV SD 29					Ø								0.044			
OV SD 30	, 	ł		4	40.5		L			L.			0.007			
	Su	ırr										~	0.005=			
PW Control		+11. 	11/92/0	9 MMB	3.34 0514	20.	0				7.5	30	0.025			
PW RF01											7.5	78	1.03			
PW KF02					102						7.2	30	0.170			
PW SD25					1.020						7.2	29	0.165			
PW SDMIXX					20.5)						7.4	29	0.310			
PW SD 28									. <u> </u>		7.4	29	0.255			
PW SD 29					20.5						7.4	30	0.465			
PW SD 30		₩	×	b	0.560		,				7.2	29	0.690			

() SM MAUS 11/25/09. (2) Used Sml sample & 5× multiplies for PW S2, MAUS 11/25/09.

APPENDIX A.2.2

Neanthes arenaceodentata

Juvenile Polychaete Bioassay

Reference Toxicant Test

CETIS QC Chart 04 Jan-10 10:52 AM **Report Date: Reference Toxicant 96-h Acute Survival Test** NewFields Test Type: Survival Organism: Neanthes arenaceodentata (Polycha Material: Cadmium chloride Endpoint: Proportion Survived Source: Reference Toxicant-REF Protocol: PSEP (1995) 14 12-10 8-EC50 6-4-7. 0 Oct-08--60-IUC 22 Jul-08-29 Aug-08-30 Sep-08-15 Dec-08-Feb-09-22 May-09-0ct-09-05 Nov-09-17 Jul-08 88 2 12 Ы 6.91813 Count: 20 -1s Warning Limit: 3.63365 -2s Action Limit: 0.34917 Mean: Sigma: 3.28448 CV: 47.48% +1s Warning Limit: +2s Action Limit: 13.4871 10.2026 **Quality Control Data** Point Year Month Day Data Delta Sigma Warning Action **Test Link** Analysis 2008 -6.04314 06-1312-8965 10-8468-5592 1 Jul 17 0.87499 -1.83991 (-) 2 17 0.87499 -6.04314 -1.83991 (-) 09-5264-4294 10-3139-3283 3 22 2.65108 -4.26704 -1.29915 (-) 09-1847-5700 19-0325-7284 4 5 5.30308 -1.61504 -0.49172 09-6649-9664 19-2133-7136 Aug 5 29 4.77241 -2.14572 -0.65329 15-6320-1917 00-4033-1812 6 3,45835 1.05294 13-3931-9804 10-1469-9091 26 10.37648 Sep (+) 7 30 5.55412 -1.36401 -0.41529 12-4813-7676 16-8014-1063 0.71339 8 Oct 9 9.26124 2.34312 10-8928-1380 14-5099-7781 9 24 6.83792 -0.08021 -0.02442 01-6211-1396 02-6609-2616 10 6 7.98431 1.06619 0.32461 03-0276-3056 03-6039-0267 Nov 11 15 10.20151 3.28338 0.99967 04-2773-5757 11-9967-9635 Dec 12 23 10.35175 3.43362 1.04541 (+) 05-3594-8530 18-4696-4584 13 2009 Feb 9.89631 2.97818 0.90674 08-2613-0187 03-6192-0859 12 14 Mar 13 10.41923 3.50110 1.06595 06-4166-0913 14-5903-8301 (+) 15 22 0.07962 0.02424 06-2028-7021 01-7463-1270 May 6.99775 16 -4.81351 Jun 19 2.10462 -1.46553 05-1798-5894 14-0781-4256 (-) 17 2.75215 0.83793 14-8761-0675 14-7362-5223 Jul 8 9.67028 2.27142 18 Sep 9.18955 0.69156 11-1925-4533 10-0197-8961 11 19 Oct 1 5.82902 -1.08910 -0.33159 14-2143-9155 06-3990-2854 20 04-9635-3924 05-3870-0641 27 9.21191 2.29379 0.69837 21 Nov 5 11.10823 4.19010 1.27573 17-5107-1104 07-4788-9959 (+)

Analyst: BH Approval: BH

Page 1 of 1

CETIS Te	est Summ	arv					Rep	ort Date:	30 Nov-09 3:20 PM
Boforonco To	vicent OF h Acr	nto Suprin	rol Toot				resi		17-5107-1104
Reference To									NewFields
Test No:	04-4538-8796		Test Type:	Survival			Duration:	95h	
Start Date:	05 Nov-09 03:	30 PM	Protocol:	PSEP (199	95)		Species:	Neanthes arenace	odentata
Ending Date:	09 Nov-09 03:	00 PM	Dil Water:	Laboratory	Seawater		Source:	Other	
Setup Date:	05 Nov-09 03:	30 PM	Brine:	Not Applica	able			<u></u>	
Sample No:	12-9667-8725		Code:	129667872	25		Client:	Internal Lab	
Sample Date:	30 Nov-09 03:	18 PM	Material:	Cadmium of	chloride		Project:	Reference Toxicar	nt
Receive Date	: 30 Nov-09 03:	18 PM	Source:	Reference	Toxicant				
Sample Age:	N/A		Station:	P080418.7	1				
Comparison	Summary								
Analysis	Endpoint		NOEL	LO	EL	ChV	PMSD	Method	
18-0667-8047	Proportion Sur	vived	7.5	15		10.6066	N/A	Fisher Exact	
Point Estimat	e Summary								
Analysis	Endpoint		% Effe	ect Co	nc-mg/L	95% LCL	95% UCL	Method	
07-4788-9959	Proportion Sur	vived	50	11.	10823	10.15941	12.14566	Trimmed Spearm	an-Karber
Proportion St	urvived Summa	iry							
Conc-mg/L	Control Type	Reps	Mean	Minimum	Maximum	n SE	SD	cv	
0	Dilution Water	3	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
1.875		3	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
3.75		3	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
7.5		3	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
15		3	0.06667	0.00000	0.20000	0.06667	0.11547	173.21	
30	~~~~	3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00%	
Proportion Su	urvived Detail								
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3					
0	Dilution Water	1.00000	1.00000	1.00000					
1.875		1.00000	1.00000	1.00000					
3.75		1.00000	1.00000	1.00000					
7.5		1.00000	1.00000	1.00000					
15		0.00000	0.20000	0.00000					
30		0.00000	0.00000	0.00000					

HL Approval: HK

Page 1 of 1 30 Nov-09 3:20 PM 17-5107-1104

Report Date:

CETIS D	ata	Wo	rksh	leet			Re	port Date: nk:	30 Nov-09 3:20 PM 17-5107-1104
Reference To	xican	t 96-h	Acut	e Survival Te	st				NewFields
Start Date: Ending Date: Sample Date:	05 M 09 M : 30 M	Nov-09 Nov-09 Nov-09	9 03:3 9 03:0 9 03:1	0 PM Spec 0 PM Proto 8 PM Mate	ies: Neanthes ocol: PSEP (19 rial: Cadmiun	s arenaceodentata 995) n chloride	Sample Code: Sample Source: Sample Station:	1296678725 Reference Toxica P080418.71	ant
Conc-mg/L	Code	Rep	Pos	# Exposed	# Survived		Notes		
0	D	1	4	5	5				
0	D	2	8	5	5				
0	D	3	10	5	5		· · · · · · · · · · · · · · · · · · ·		
1.875		1	6	5	5				
1.875		2	12	5	5				
1.875		3	14	5	5				
3.75		1	1	5	5				
3.75		2	11	5	5				
3.75		3	18	5	5				
7.5		1	13	5	5				
7.5		2	7	5	5				
7.5		3	2	5	5				
15		1	15	5	0				
15		2	3	5	1				
15		3	16	5	0				
30		1	17	5	0				
30		2	5	5	0				
30		3	9	5	0				

Analyst: <u>BH</u> Reviewed By: <u>BH</u>

Page 1 of 1

96-H_JR REFERENCE TOXICANT . EST OBSERVATION DATASHEET

										SPECIES	Ne	anthe	s are	naced	denta	ita	
CLIENT City of Olv	mpia		PRO	JECT	t P	lav	NEW	FIELDS.	10B#	PROJECT	MANAGE	R ar	NEWFIEL	DS LAB Gamble	Bath 6	PROTOC	OL 1995
<i>v</i>	<u>-</u>		<u> </u>		5	SURVI	VAL 8	BEH		R DA	TA				Datir 0	1345	1770
#S= Number on the Su	rface						DAY 1			DAY 2			DAY 3			DAY 4	
#M= Number of Mortal	ity			-	n	DATE			DATE	1 0		DATE			DATE		
F=Fungal Patches D=No Air Flow (DO?)		ORG	AL # (ANISI	OF MS		١	116		۱۱	107		١(<i>0</i> 8		ι	1/9	
N=Normal B=No Burrown		1	5			TECHNIC	IAN	•••••	TECHNICIAN			TECHNIC	IAN		TECHNICIAN		
B-NO BUITOWS					•	-	Т			11			11.				
	CON	NC.			1			, ,	JL			50		9			
CLIEN I/ NEWFIELDS ID	value units		REP	NUN	BER	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS
			1	ç	5	5	Ø	2	5	Ø	N	<i>i</i> 5	ø	7	5	0	Ν
Ref.Tox cadmium	0	mg/L	2		1	5	Я	1	5	Ø	N	5	Ø	N	S	0	N
			3			5	Ø		5	Ð	N	5	ø	N	S	D	Ň
			1			5	Z		5	Ø	N	5	Ø	え	5	۵	N
Ref.Tox cadmium	1.875	mg/L	2			5	Ð		5	ø	Ν	5	Ø	N	S	6	۸J
			3			5	Ø		5	ÿ	И	5	Ø	N	5	$\overline{\mathcal{O}}$	N N
			1			5	Ø		5	Ď	N	5	Ø	Ν	<u>ح</u>	0	ม
Ref.Tox cadmium	3.75	mg/L	2			5	Ø		5	Ø	N	ζ	Ŕ	Ν	5	0	. 1
			3			5	Ø		5	Ø	И	5	Ø	Ν	5	0	N N
			1			5	Ø		5	Ì	N	6	Ø	2	5	6	N
Ref.Tox cadmium	7.5	mg/L	2			5	Ø		6	Ø	Ν	5	K	N	5	6	N
			3			5	Ø		5	Ø	N	5	Ø	N	5	D	N
			1			9	Ŷ		5	ð	Q	D. Øi	54	10/15	0	1	N
Ref.Tox cadmium	15	mg/L	2			5	D	I	5	Ø	Q	5	Ð	Q	}	4	N
			3			Ś	Ø		5	Ø	Q	4	l	0	0	4	N
			1			5	Ð		Ø	5	NA	\backslash			$\overline{\ }$		
Ref.Tox cadmium	30	mg/L	2			5	A		Ø	5			>			\mathbf{X}	
			3	······		ζ	Ø	V	R	5			<i>.</i>				

s,

OIE, JL "108

96-HOUR REFERENCE TOXICANT TEST WATER QUALITY DATASHEET

CLIENT	PROJECT	SPECIES	NEWFIELDS L	ABORATORY	PROTOCOL		
City of Olympia West Bay		Neanthes arenaceodentata	Po	ort Gamble Bath 6	PSEP 1995		
NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK : 4.5 mL	QUANTITY OF	DILUENT: 1500mL	INIT MMB		
1101-010-860	B. Hester	ACTUAL: 4.5099	ACTUAL:	500,09	DATE PREP 11509		
Test ID	LOT #:	TEST START DATE:	TIME	TEST END DATE	TIME		
P680418.71	OG SIOTC	05Nov09	1530	09Nov09	1500		

WATER QUALITY DATA

DILTIN.WAT.BATCH		TEMP	REC#				REFE	RENCE TOX. MATERIA		REFERENCE TOXICANT				
FSW110409.01							c	admium chloride			cadmium			
TEST (CONDIT	IONS				DO (mg/L) > 6.0		темр(с) -20 <u>+</u> 1		SAL (ppt) 28 <u>+</u> 1		рн 8.00 ± 1	TECHNICIAN	
CLIENT/ NEWEIEL DS ID	CONCEN	TRATION	DAY	PED		D.O.		TEMP.		SALINITY		pН	NO 7501	
	value	units	DAI	NE.	meter	mg/L	meter	°C	meter	ppt	meter	unit	WUTECH	
			0	Stock	6	7.7	6	19.3	۱	28		7.9	CR	
			1	Rep	4	7.5	6	19.4		ବଃ	1	8.3	य	
Ref.Toxcadmium	0	mg/L	2	Rep	6	7.7	6	19.1		28	[7.6	JL	
			3	Rep	6	7.7	6	19.0	1	28	l	7.9	N	
			4	Rep	6	7.5	6	19.6	1	28	ł	8.2	CR	
\$			0	Stock	6	7.8	6	19.6	1	28	1	8.0	CR	
ł			1	Rep	6	7.5	6	19.9	1	28	ł	8.4	م	
Ref.Toxcadmium	1.875	mg/L	2	Rep	6	7.6	6	19.7	l	28	l	7.8	IL	
			3	Rep	6	7.7	6	19.6	ł	28	l	8-1	N	
			4	Rep	6	5. ך	6	19.8		28		8.3	CR	
			0	Stock	6	7,8	6	19.7	1	28		8.0	R	
			1	Rep	6	7.5	6	20.0	۱	28	(8.4	T	
Ref.Toxcadmium	3.75	mg/L	2	Rep	le	7.6	6	19.9	1	28	1	7.9	JL	
			3	Rep	6	7.6	6	19.8	1	28	l	8-2	JL	
			4	Rep	6	7.5	6	20.1	11	29	۱	8.5	CR	

11/5/2009 PSEP West Bay 20d Neanthes template Cd RTWQ

.

96-HOUR REFERENCE TOXICANT TEST WATER QUALITY DATASHEET

CLIENT	PROJECT	SPECIES	NEWFIELDS	LABORATORY	PROTOCOL
City of Olympia	West Bay	Neanthes arenaceodentata	P	ort Gamble Bath 6	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK : 4.5 mL	QUANTITY O	F DILUENT: 1500mL	INIT MMB
1101-010-860	B. Hester	ACTUAL: 4.5099	ACTUAL:	1500.09	DATE PREP ++/+5/09-11/5/00
Test ID	LOT #:	TEST START DATE:	TIME	TEST END DATE	TIME TIME
P000718.71	OG SIDTC	05Nov09	1530	09Nov09	1500

WATER QUALITY DATA

DILTIN.WAT.BATCH		TEMP	REC#				REFE	RENCE TOX. MATERIAL					
FSW110409.01							с	admium chloride				cadmium	1
TEST O	ONDIT	IONS				DO (mg/L) > 6.0		темр(с) 20 <u>+</u> 1		SAL (ppt)		рн 8.00±1	TECHNICIAN
			0	Stock	6	7.7	6	19.9	١	28	1	8.	CR
			1	Rep	ý	7,5	6	20.1	ſ	28	{	8.4	T
Ref.Toxcadmium	7.5	mg/L	2	Rep	Ø	7.6	Q	20.0		28	ł	8.0	JL
			3	Rep	6	7.6	6	19.9	l	28	l	8.2	JL
			4	Rep	6	7.5	6	20.1		28	L	8,5	CR
			0	Stock	6	7.7	6	19.9	(28	1	8.1	R
			1	Rep	6	7.5	6	20.1	(28	{	8.4	TS
Ref.Toxcadmium	15	mg/L	2	Rep	\mathbf{V}	7.6	6	20.1	(28	(8.D	JL
1			3	Rep	$\langle \! \rangle$	7.5	6	200	(28	l	8.2	JL
			4	Rep	6	7.4	6	20.2		28	1	8.6	CR
			0	Stock	6	7.7	6	20.0	١	28	Ť.	81	CR
			1	Rep	6	7.5	6	20,3	{	28	١	8.4	ZT
Ref.Toxcadmium	30	mg/L	2	Rep	V	7.6	6	20.1	1	28	{	8.0	JL
		F	3	Rep									
			4	Rep			┠╼╼┥						······

APPENDIX A.3.1

Mytilus galloprovencialis

Bivalve Embryo Bioassay

Laboratory Data Sheets

LARVAL DEVELOPMENT TEST ENDPOINT DATA

					species Mytilus galloprovencialis							
CLIENT Paramatrix	West B	ay Jost	UMBER		PROJECT	MANAGER lester		NEWFIELD	Gamble	OCATION PF	OTOCOL PSEP (1995)	
ORGANISM BATCH						165c		11/1/09		TIME 7/	00	
		LAR	VAL C	BSERVAT	ON DA	TA			<u>× 1</u>			
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL		NUMBE	R	ĐA	TE	TECHNK	CIAN	C0)	IMENTS	
	1		\square	268		11/30	109	4	2			
	2		/	239	\$							
STOCKING DENSITY	3	-A		275								
	4	-/		280	<u></u>				_			
	5	/		21	/							
	1	279		VB	5							
	2	270			6				_		:	
Centrol /	3	215		<u><u>P</u></u>	2							
	4	352		4								
	5	235		2	3							
	1	238		4	3							
	2	274		- 2					-			
WB-SD-KF01-00057	3	252			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
	4	280		0	2		<u> </u>					
	5	260		<u> </u>			<u> </u>					
	1	229		\$	4		 					
	2	247		<u> </u>	2							
WB-SD-RF02-0005 /	3	207		5	1		_					
	4	223		2	0		<u> </u>					
	5	240)	<u> </u>	<u> </u>		ļ					
	1	222	-		>		<u> </u>					
	2	265	>		3							
W8-SD-SD25-0005 /	3	235	د	<u> </u>	>			<u> </u>				
	4	260	l	2	2		/	ļ.,				
	5	256	•	-	3	V	1	\mathbf{V}				

OWC OR 12/109

LARVAL DEVELOPMENT TEST ENDPOINT DATA

					SPECIES Mytilus galloprovencialis							
Paramatrix	West I	Зау Јов	NUMBER		B. H	manager Iester		NEWFIE	LDS LAB	ble / Bath 5	PROTOCOL PSEP (1995)	
DRGANISM BATCH						time ILL	0	TEST E	Ind dates	7 ITME	20	
1-102801		LAF	VAL C	BSERVATIC	N DA	TA	<u> </u>		4V.	<u>v.</u> ø <u>v</u>	- <u></u>	
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL		NUMBER		D	ATE	TECH	NICIAN	C	DMMENTS	
	1	187		5		NB	0/09	Ц	2			
	2	138		17								
WB-SD-SD28-0005 /	3	261		3								
	4	201		3								
	5	235		1								
	1	11		52								
	2	8		87								
WB-SD-SD29-0005 /	3	207		7								
	4	9		72								
	5	13		102	3							
	1	153	1	82								
	2	171		34								
WB-SD-SD30-0005 /	3	113		80	I							
	4	103		107	,							
	5	113		138	}	i						
	1	252		1								
	2	241		4								
WB-SD-SD26/27-0005 /	3	262		1								
	4	260	>	1			1					
	5	249	5	0		V	/	V				
LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT	1		SF	ECIES						NEWFIELDS L	AB/LOC	ATION	Pi	ROTOCOL
Paramatr	ix		١	Nest E	Bay			Mytil	us gallopro	ovenc	cialis		Port Gamble / Bath 5				SEP (1995)
JOB NUMBER			PROJECT MANA	GER		TE	ST START DA	TE			TIME		TEST END DA	TE		TI	ME
				B. Hes	ter			3000	xt09		1650		11/100	?			700
* Day 3&4 observations needed only	lf developme	nt endpoint not me	ot by day 2			WA	TER QU	ALIT	Y DATA								
	TEST			DC	D (mg/L)	T	Temp (°C)		Sal (ppt)		рН	· · · ·	ummonia		Sutfide		
		I	1		>5.0 DO		TEMP				7.6 X U.S					ECH	ATE
CLIENT/ NEWFIELDS ID	DAY	Random #	REP	meter	mg/l.	meter	°c	meter	ppt	meter	unit	Techn.	mg/L (total)	Techn.	mg/L (Total)		Ľ
Control /	0	32	WQ Surr	6	7.4	6	16.8	l	28	۱	8.0	$\left \right\rangle$			/	BH	10.30
Control /	1	32	WQ Surr	6	75	b	[6.0	{	28	1	8.3		$\overline{\}$			JL	10/31
Control /	2	32	WQ Surr	6	8.0	6	16.0]	28	ł	8.4			K		JL	11/01
Control /	3	32	WQ Surr	/													
Control /	4	32	WQ Surr	ł						/							
WB-SD-RF01-0005 /	0	52	WQ Surr	6	7.4	6	16.5	l	29	ł	7.9	K				вĤ	10.30
WB-SD-RF01-0005 /	1	52	WQ Surr	6	7.2	6	16.9	l	28	t	8.2				ľ	JL	10/31
WB-SD-RF01-0005 /	2	52	WQ Surr		7.2	6	15.7	ł	29	ł	B.3			<u> </u>		JL	lı/d
WB-SD-RF01-0005 /	3	52	WQ Surr				\rightarrow							\square			
WB-SD-RF01-0005 /	4	52	WQ Surr												$\mathbf{\mathbf{n}}$	_	
WB-SD-RF02-0005 /	0	5	WQ Surr	6	7.X	6	16.8	l	28	l	8.0					\$K	10.3 <i>0</i>
WB-SD-RF02-0005 /	1	5	WQ Surr	ķ	5.6	6	16.2	l	28	1	8.1					Jl	10/31
WB-SD-RF02-0005 /	2	5	WQ Surr	6	6.3	6	16.1	l	29	(8.2			\bigvee		JL	1401
WB-SD-RF02-0005 /	3	5	WQ Surr	1										\backslash			
WB-SD-RF02-0005 /	4	5	WQ Surr							$\left \right\rangle$			/			•	

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT	24		SI	PECIES						NEWFIELDS L	AB / LOCA	ATION	PI	ROTOCOL.
Paramatr	ix		\	Nest E	Bay			Mytil	us gallopro	ovenc	cialis		Port Gamble / Bath 5				SEP (1995)
JOB NUMBER			PROJECT MANA	GER		т	EST START DA	TE			TIME		TEST END DAT	E		Ϋ́	ME
				B. Hes	ter			3000	ct09		1650		11/1/	29			700
* Day 3&4 observations needed only	If development	nt endpoint not me	t by day 2			WA	TER QU	ALIT	Y DATA					<u> </u>			
	TEST			DC) (mg/L)	ĩ	emp (°C)		Sal (ppt)		рH	ŕ	mmonia		Sulfide		
CON	DITIONS	r			>5.0		16±1		31 ± 1	ļ	7.8±0.5	~	NA			ECH	АТЕ
CLIENT/ NEWFIELDS ID	DAY	Random #	REP	meter	mg/L	meter	°c	meter	ppt	meter	unit	Techn,	mg/L. (total)	Techn.	mg/L (Total)	-	
					ß							1					
WB-SD-SD25-0005 /	0	1	WQ Surr	6	5. Ø	6	16.5		29	l	8.1	• \				ВH	10.30
WB-SD-SD25-0005 /	1		WQ Surr	6	A.F	þ	16.0	۱	29	1	7.9					JL	10/31
WB-SD-SD25-0005 /	2		WQ Surr	6	5.3	6	15.7	l	28	l	8.1			X		Jl	11/01
WB-SD-SD25-0005 /	3		WQ Surr			/		Y									
WB-SD-SD25-0005 /	4	l	WQ Surr	1					/	/		,					
WB-SD-SD28-0005 /	0	21	WQ Surr	6	6.2	6	16.8	ł	28	ł	7.9					BH	10.30
WB-SD-SD28-0005 /	1	21	WQ Surr	6	$(0, \tilde{k})$	Þ	[6.5	l	28	١	8.0					JL	60/31
WB-SD-SD28-0005 /	2	21	WQ Surr	أه	8,1	6	15.5	t	28	(g.4			\langle		JL	น/งา
WB-SD-SD28-0005 /	3	21	WQ Surr			/		\wedge									
WB-SD-SD28-0005 /	4	21	WQ Surr	l						/					\sum	-	
WB-SD-SD29-0005 /	0	38	WQ Surr	6	6.6	6	16.7	l	28	1	7.8				-	oh	10:30
WB-SD-SD29-0005 /	1	38	WQ Surr	6	(.7)	6	16.1	Ĺ	29	1	8.0		\mathbf{n}			JL	10/31
WB-SD-SD29-0005 /	2	38	WQ Surr	6	8.3	6	15.6	l	29	ł	B.5		<u> </u>	\bigvee	1	JL	11/01
WB-SD-SD29-0005 /	3	38	WQ Surr	/													
WB-SD-SD29-0005 /	4	38	WQ Surr													~	
															1		

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT			PROJECT			SI	PECIES						NEWFIELDS L	AB / LOC	ATION	P	ROTOCOL
Paramatr	ix		\	West E	Зау			Mytil	us gallopro	ovenc	cialis		Port (Gamb	le / Bath 5	f	PSEP (1995)
JOB NUMBER			PROJECT MANA	GÉR		TE	EST START DA	TE			TIME		TEST END DA	TE		Т	IME
				B. Hes	ier 30Oct09 1650 11///09									1700			
 Day 384 observations needed only 	if developme	at endpoint not m	et by day 2			WA	TER QU	ALIT	Y DATA								
CON	TEST IDITIONS			D	0 (mg/L) >5.0	Ĩ	emp (°C) 16 ± 1		Sal (ppt) 31 ± 1		рН 7.8±0.5	Í	ummonia NA		Sulfide NA	Ŧ	щ
CLIENT/ NEWFIELDS ID	DAY	Random #	REP	meter	D.O. mg/l.	meter	TEMP.	meter	SALINITY ppt	meter	pH unit	A Techn.	MMONIA mg/L (total)	S Techn.	SULFIDE	TEC	DAT
WB-SD-SD30-0005 /	0	19	WQ Surr	6	7.3	6	168	l	28	۱	7.9					BA	10.30
WB-SD-SD30-0005 /	1	19	WQ Surr	6	5.9	6	16.4	[28	ł	8.0					N	10 31
WB-SD-SD30-0005 /	2	19	WQ Surr	6	6.1	6	16.1	l	28	Į	Q.Q			K		JL	11/01
WB-SD-SD30-0005 /	3	19	WQ Surr				<u> </u>									`	
WB-SD-SD30-0005 /	4	19	WQ Surr									/			$\left \right\rangle$		
WB-SD-SD26/27-0005 /	0	7	WQ Surr	6	7.1	6	16.5	[28	(8.0					BH	10.30
WB-SD-SD26/27-0005 /	1	7	WQ Surr	q	5.9	6	16.4	Ĺ	28	1	B-1					パ	10/31
WB-SD-SD26/27-0005 /	2	7	WQ Surr	ķ	5.9	Ý	15.8	1	28	1	8.2			\bigvee		Jı	11/01
WB-SD-SD26/27-0005 /	3	7	WQ Surr	1										\backslash		~	,
WB-SD-SD26/27-0005 /	4	7	WQ Surr	-											\backslash	~	

Ammonia and Sulfide Analysis Record

Cl	ient/Proje Nes+	ct: Bay		Organism: Larval	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Te	est Duratio イピー	n (days) 6 <i>0</i> h/):	
	PRE Comme	TEST /	INITIAL ØVERLYING	G (OV) /	OTHE POREW	R (circle on ATER (PW	1e) /) (cii	DAY of T rcle one)	TEST: _	<u>D</u>	
		Cal	ibration Stand	ards Tempera	ature	•	Samp +1°C	ole temperatur of standards	e should temperatu	be within re at time	
	11/5	109	•	Po Po		Ű.	and d	late of analysi	S.		
Samj Des	ple ID or cription	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date o Reading Initials	f and s	Sample Preserved (Y/N)	pH	Sal (ppt)	Sulf. mg/L
	ß	Bur	P0/08/01 CT	Ø	90.0	MUR 11/5	709 39-	Y	NA -	7	0.003
RF	- 01			Ø		(0.096
RF	-02			Ø							0.115
	25			40.5							0.091
	24/27			Ø		,					0,068
	28			20.5						\	0.096
	29			1.50							0.00
	30		V	×				$\square \Psi$	\	9	0.044
,	<u></u>										
											<u></u>
	<u></u>		······		<u> </u>	<u>1</u>					
			· · · · · · · · · · · · · · · · · · ·		<u> </u>						

Ammonia and Sulfide Analysis Record

Client/Proj Parametr	ect: Sx/We	st Bay	Organism: Mytilus			Test Duratio $\mathcal{Y} \mathcal{B}$	n (days -60):	
PR) Comme	ETEST	/ / INITIAL / OVERLYING	FINAL /	OTHE POREW.	R (circle one) ATER (PW)	DAY of 7 (circle one)	TEST: _	<u>a</u>	
	Ca	libration Standa	ards Tempera	ature	S	ample temperatu	re should	be within	
(1	Date		<u> </u>	perature		nd date of analysi	is.	ne at time	
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	d Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Control	Swm.	11/2/09 10	Ø	19.5	1115/09 MM	ng y	\backslash	/	0.000
REDI		1	Ø		1	1			0.006
RFDZ			Ø						0.005
SD25			20.5					$\overline{\mathbf{N}}$	0.001
507667			ø					\wedge	0.000
5D28			20.5					$(\)$	0.002
5D29			1.88						0.001
5D30			Ø						0.003
SedimentCon	tol	\checkmark	Ø	\downarrow					0.000
•••									

LARVAL DEVELOPMENT TEST INITIATION DATA SHEET

CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	LABORATORY	PROTOCOL
Paramatrix	West Bay		B. Hester	Port Gamble Bath 5	PSEP (1995)

TEST ORGANISM SPAWNING DATA

SPECIES			SAMPLE STORAGE
Mytilus galloprove	encialis		4 Degrees Celsius - dark
SUPPLIER		ORGANISM BATCH	SEDIMENT TREATMENT
Taylor she	llfish	TS 102809	none
DATE RECEIVED	TIME RECEIVED	DATE USED	TEST CHAMBERS
10.28.09	0900	10.30.09	1 L Mason Jars
SPAWNING METHOD	INITIAL SPAWNING TIME	FINAL SPAWNING TIME	EXPOSURE VOLUME
Hert shock	1330	1440	900mL seawater / 18g Sediment
MALES FEMALES	SPERM VIABILITY	EGG CONDITION	TIME OF SHAKE
6 4		6000	1200
BEGIN FERTILIZATION	END FERTILIZATION	CONDITION OF EMBRYOS	TIME OF INITIATION
1440	1650	6000	1650

SPECIAL CONDITIONS

UV LIGHT EXPOSURE (YES/NO)	AERATION FROM TEST INITIATION (YES/NO)
Yes	No
SCREEN TUBE TEST (YES/NO)	OTHER (EXPLAIN)
No	

EMBRYO DENSITY CALCULATIONS
E55 stock = 94.100 = 9400 eggs/nL
Test target 27,000.
$$\frac{27,000}{9400} = 2.87 \text{mL/chabe}$$

RT target $\frac{27,000}{9400} = 0.29.50 \text{nL} = \frac{14 \text{nl} \text{ess stack}}{36 \text{ nl} \text{ CH20}}$
Define 0.100 n/
Minl

ORGANISM RECEIPT LOG

NewFields Batch No. Time: and the second Date: 10.28.09 0900 TS 102809 Taylor shellfish Organism / Project: Source: Mytilus galloprovencialis Invoice Attached Address: On File No Yes On File Contact: Phone: Karen Underwood Source Batch: No. Received: No. Ordered: 1 batch 1 batch Field Condition of Organisms: Approximate Size or Age: Adult B of L (Tracking No.) Shipper: Nenfields Courier NA **Received By: Condition of Container:** BH Good Confirmation of ID of Organism: Technician (Initials): No Yes **Conductivity or** Technician D.O. pН Temp. Salinity (Initials) (Units) (°C) (mg/L)(Include Units) × Notes: ransputed

APPENDIX A.3.2

Mytilus galloprovencialis

Bivalve Embryo Bioassay

Reference Toxicant Test

Musel Shell Development Test Test VI: 13-8607-6738 Musel Shell Development Test NewFields NewFields Test No: 17-8534-2045 Test Type: Development-Survival Duration: 48h Samri Date: 00 00-00 05:05 PM Protocol: EPA/60/R-86/136 (1695) Species: Wilus species Other Sample No: 04-5021-7476 Code: 450217476 Citent: Internal Lab Sample Date: 01 Doc-09 04:11 PM Material: Coper suffate Project: Reference Toxicant Sample Date: 01 Doc-09 04:11 PM Saurce: Reference Toxicant Saurce: Reference Toxicant Sample Age: NOEL LOEL ChV PMSD Method Comparison Summary NOEL LOEL ChV PMSD Dunnett's Multiple Comparison Analysis Endpoint NOEL Cone.yg/L 95% LCL 95% UCL Method 19-877-8834 Combined Proportion Normal 5 5.440802 0.864836 0.623171 Linear Interpolation							Report Date: 01 Dec-09 4:15				
Meeria in the second	CEIIS IE	est Summ	ary					Test	Link:	13-9607-6739	
Test No: 17-9534-2045 Test Type: Development.Survival Duration: 48h Start Date: 30 Oct-09 05:15 PM Protocol: EPA400/A-86/18 (1995) Species: Mydiba species Sample Date: 30 Oct-09 05:15 PM Brine: Not Applicable Source: Other Sample Date: 01 De-09 04:11 PM Material: Cooper sulfate Project: Reference Toxicant Sample Date: 01 De-09 04:11 PM Source: Reference Toxicant Reference Toxicant Sample Age: N/A Station: P03V420.21 Vitality Math.dot Comparison Summary NOEL LOEL ChV PMSD Math.dot Analysis Endpoint NOEL LOEL ChV PMSD Math.dot 18-9877-8634 Combined Proportion Normal 5 5.440802 0.8844938 6.023173 Linear Interpolation 18-9877-8634 Combined Proportion Normal 5 5.440802 0.8844938 6.023173 Linear Interpolation 19-977-8634 Combined Proportion Normal	Mussel Sheil	Development T	'est							NewFields	
Start Date: 30 Oct 09 05:15 PM Protocol: EPA/460/R-96/136 (1995) Species: Myliks species Sample No: 00-09 05:10 PM Dil Water Laboratory Seawater Source: Other Sample No: 00-09 05:11 PM Material: Copper suffate Project: Reference Toxicant Sample Age: N/I Source: Other Non-09 05:11 PM Material: Copper suffate Project: Reference Toxicant Sample Age: N/I Source: NOEL Cot Reference Toxicant Sample Age: N/I NOEL LOEL ChV PMSD Method Comparison Summary NOEL LOEL ChV PMSD Method Analysis Endpoint NOEL LOEL ChV PMSD Method 18-9877-8834 Combined Proportion Normal 5 5.440902 0.844938 6.023173 Linear Interpolation 18-9877-8834 Combined Proportion Normal 5 5.40092 1.5506 Cordergit 9.205263 1.57778	Test No:	17-9534-2045		Test Type:	Develop	ment-Survival		Duration:	48h		
Ending Date: 01 No.V 00 05:00 PM Dil Water: Laboratory Seawater Source: Other Satup Date: 30 00:00 00:15 FM Brine: Not Applicable Sample No: Other Sample No: 04:00:21-37 M Material: Corper sulfate Project: Reference Toxicant Sample Age: 10 De:09 04:11 PM Material: Corper sulfate Project: Reference Toxicant Sample Age: I/A Satorin: P0904020:1 Project: Reference Toxicant Analysis Endpoint NOEL LOEL ChV PMSD Material Analysis Endpoint NOEL LOEL Con-ug/L 95% LCL 95% LCL 95% UCL Method 16-9877-8634 Combined Proportion Normal 5 5.440802 0.8644938 6.023173 Linear Interpolation 16-9877-8634 Combined Proportion Normal 5 5.440802 0.854939 1.05506 Linear Interpolation 16-9877-8634 Endpoint K< Effect	Start Date:	30 Oct-09 05:	15 PM	Protocol:	EPA/600)/R-95/136 (19	95)	Species:	Mytilus species		
Setup Date: 30 OCI-09 05:15 P.M Brine: Not Applicable Sample Date: 01 Dac-09 04:11 PM Material: Cooper suffate Project: Reference Toxicant Bample Date: 01 Dac-09 04:11 PM Material: Cooper suffate Project: Reference Toxicant Bample Date: 01 Dac-09 04:11 PM Source: Reference Toxicant Reference Toxicant Sample Age: N/A Station: P090420.21 Reference Toxicant Comparison Summary Analysis Endpoint NOEL LOEL ChV PMSD Method Point Estimate Endpoint NOEL LOEL ChV PMSD Method 10 6.182206 4.37017 5.9877.6 Linear Interpolation Linear Interpolation 11 6.182206 4.370707 5.9877.6 Linear Interpolation Linear Interpolation 12 7.09179 1.987.440802 0.8844938 6.023173 Linear Interpolation 13 6.182206 4.370707 5.18453 7.988662 .997049 Qeo5	Ending Date:	01 Nov-09 05:	00 PM	Dil Water:	Laborato	ory Seawater		Source:	Other		
Sample No: 04-5021-7476 01 Dec-09 04:11 PM Sample Oate: Code: 01 Dec-09 04:11 PM Sample Oate: Code: 01 Dec-09 04:11 PM Sample Oate: Material: Poper: Poper: Station: Copper sulfate Pop0420.21 Client: Project: Internal Lab Reference Toxicant Compresion Summary Station: P090420.21 N/A Station: P090420.21 Compresion Summary Analysis Endpoint NOEL LOEL ChV PMSD Method Analysis Endpoint NOEL LOEL ChV PMSD Method Point Estimate Summary Station: % Effect Conc.µg/L 95% LCL 95% UCL Method 18-9877-8634 Combined Proportion Normal 5 5.440802 0.884493 6.023173 Linear Interpolation 18-9877-8634 Combined Proportion Normal 5 5.440802 0.884493 6.023174 Linear Interpolation 18-9877-8634 Combined Proportion Normal 5 1.43205 1.176778 5 1.4330 1.28732 1.635406 Corc-pig/L Endpoint Ntribute Statistic TAC Range </td <td>Setup Date:</td> <td>30 Oct-09 05:</td> <td>15 PM</td> <td>Brine:</td> <td>Not Appl</td> <td>licable</td> <td></td> <td></td> <td></td> <td></td>	Setup Date:	30 Oct-09 05:	15 PM	Brine:	Not Appl	licable					
Sample Date: 01 Dec-09 04:11 PM Source: Material: Copper sulfate Project: Reference Toxicant Banple Age: N/A Station: P090420.1 Reference Toxicant Analysis Endpoint N/A LOEL ChV PMSD Method Analysis Endpoint N/A LOEL ChV PMSD Method Point Estimate Endpoint N/A LOEL ChV PMSD Method Point Estimate Endpoint N/A Effect Conc-µg/L 95% LCL Method Linear Interpolation 10 6.182305 4.370707 6.957076 Linear Interpolation Linear Interpolation 11 6.182305 11.10641 10.06213 11.70778 Decision 4nalysis Endpoint Attribute Statistic TAC Range Overlap Decision 4n454343 Combined Proportion Normal Surgeria Ninimum Maximum SE SD Overlap Decision 04-754-45343	Sample No:	04-5021-7476		Code:	4502174	76		Client:	Internal Lab		
Receive Date: 01 Dec 09 04:11 PM Source: Reference Toxicant Station: P090420.21 Comparison Summary Analysis Endpoint N/A POSC PROPERTION NOTING 10 NOTE NOTE NOTE NOTE NOTE NOTE NOTE POSC PROPERTION NOTING 10 NOTE Statistice Notice Propertion NOTE Statistice Notice Propertion NOTE NOTE <td>Sample Date:</td> <td>01 Dec-09 04:</td> <td>11 PM</td> <td>Material:</td> <td>Copper s</td> <td>sulfate</td> <td></td> <td>Project:</td> <td>Reference Toxican</td> <td>ıt</td>	Sample Date:	01 Dec-09 04:	11 PM	Material:	Copper s	sulfate		Project:	Reference Toxican	ıt	
Sample Age: N/A Station: P090420.21 Comparison Summary Endpoint NOE LOE ChV PMSD Method Analysis Endpoint NOE LOE ChV PMSD Method Analysis Endpoint V Y Pf64 Dunnett's Multiple Comparison Point Estimate Summary Summary Station: V Pf64 Station: Method Analysis Endpoint V Fffect Conc-µg/L 96% LCL 95% UCL Method 18-9877-9634 Combined Proportion Normal 5 5.404002 0.8444938 6.025173 Linear Interpolation 15 7.009175 5.18453 7.998662 10.50263 11.50776 12.27036 11.30394 12.8732 Test Acceptability Analysis Endpoint Ntribute Statistic TAC Range Overtap Decision Overtap Method 10.05213 11.30394 12.8732 <	Receive Date	: 01 Dec-09 04:	11 PM	Source:	Reference	ce Toxicant					
Comparison Surverse Endpoint NOEL LOEL ChV PMSD Method 04-7544-5343 Combined Proportion Norma 5 10 7.07107 11.88% Dunnett's Multiple Comparison Point Estimate Findpoint % Effect Conc-µg/L 95% LCL 95% UCL Method Analysis Endpoint % Effect Conc-µg/L 95% LCL 95% UCL Method 18-8677-8634 Combined Proportion Normal 5 5.440802 0.8644938 6.023173 Linear Interpolation 10 6.182205 4.370707 6.9587076 20 7.931239 5.970497 9.205263 20 7.931239 11.30531 11.76778 20 11.10641 10.05213 11.76778 Endpoint Matribute Matribute NL - 0.25 No Passes acceptability criteria Combined Proportion Normal PMSD 0.47149 0.64842 0.02058 0.04077 0.70641	Sample Age:	N/A		Station:	P090420).21					
Analysis Endpoint NOEL LOEL ChV PMSD Method 04-7544-5343 Combined Proportion Norma 5 10 7.07107 11.88% Dunnett's Multiple Comparison Point Estimate Endpoint % Effect Conc-ug/L 95% LC Method 18-9877-8634 Combined Proportion Norma 5 5.440802 0.8644938 6.023173 Linear Interpolation 18-9877-8634 Combined Proportion Norma 5 5.09176 5.97067 6.957076 18 15 7.031239 5.970497 9.205263 1.00001 6.957076 40 11.10641 10.05213 11.76778 10.65205 1.00001 0.05213 11.76778 Conciput Attribute Statistic TAC Range Overlap Decision Combined Proportion Normal PMSD 0.1188 NL - 0.25 No Passes acceptability criteria Combined Proportion Normal PMSD 0.49754 0.00016 0.60470 0.00061 0.86453	Comparison 9	Summary							······································		
Od-7544-5343 Combined Proportion Norma 5 10 7.07107 11.88% Dunnett's Multiple Comparison Point Estimate Endpoint Yk Effect Conc-µg/L 95% LCL 95% UCL Method 18-9877-8634 Combined Proportion Norma 5 5.440802 0.8644938 6.023173 Linear Interpolation 18-9877-8634 Combined Proportion Norma 5 5.440802 0.8644938 6.023173 Linear Interpolation 18-9877-8634 Combined Proportion Norma 5 5.440802 0.8644938 6.023173 Linear Interpolation 19 6.182305 4.337070 6.987076 6.987076 Endpoint 50 10.05213 11.76778 10.05213 11.76778 10.05213 11.76778 10.047544-5343 Combined Proportion Norma PMS 0.11881 NL - 0.25 No Passes acceptability criteria Conduity Proportion Norma PMS 0.11881 NL - 0.25 No Passes acceptability criteria Consuppl/L Control Type Reps Maximum SE SD	Analysis	Endpoint		NOEL	L	OEL	ChV	PMSD	Method		
Point Estimate Endpoint % Effect Conc-µg/L 95% LCL 95% UCL Method 18-9877-8634 Combined Proportion Normal 5 5.440802 0.8644938 6.023173 Linear Interpolation 18-9877-8634 Combined Proportion Normal 5 5.440802 0.8644938 6.023173 Linear Interpolation 19 6.182305 4.370707 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.957076 6.9708292 10.5506 50 11.05778 50 12.7578 50 12.7578 50 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506 12.8732 10.5506	04-7544-5343	Combined Pro	portion No	orma 5	1	0	7.07107	11.88%	Dunnett's Multiple	Comparison	
Analysis Endpoint % Effer Conc-µg/L 95% LCL 95% UCL Method 18-9877-8634 Combined Proportion Normal 5 5.440802 0.8644938 6.023173 Linear Interpolation 18-9877-8634 Combined Proportion Normal 5 5.440802 0.8644938 6.023173 Linear Interpolation 19 6.182305 4.370707 6.957076 6.957076 6.957076 5.440802 0.8644938 6.023173 Linear Interpolation 19 5.970497 9.205263 7.988862 20 1.10641 10.05213 11.76778 5.000000 5.000000 10.05213 11.76778 5.000000 10.05213 11.76778 5.000000 0.04777 1.0394 12.8732 10.95360 9.90000 9.00000 Passes acceptability criteria Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Concipuf Control Type Rep Mainium Maximu SE SD C/ <td< td=""><td>Point Estimat</td><td>e Summary</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Point Estimat	e Summary									
18-9877-6634 Combined Proportion Normal 5 5.440802 0.8644938 6.023173 Linear Interpolation 19 6.182305 4.370707 6.957076 6.957076 15 7.009175 5.18453 7.988662 20 7.931239 5.970497 9.205263 20 7.931239 5.970497 9.205263 40 11.10641 10.05213 11.76778 Analysis Endpoint Attribute Statistic TAC Range Overlap Decision Od-7544-5343 Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Conc-µg/L Control Type Reps Mean Mainimum Maximum SE SD CV 2.5 3 0.91958 0.86770 1.00000 0.4077 0.07061 7.68% 2.5 3 0.91958 0.9296 0.94553 0.00468 0.00810 0.86% 2.5 3 0.91958 0.86770 1.00000 0.00000 0.00000 0.0006	Analysis	Endpoint		% Effe	ect C	Conc-µg/L	95% LCL	95% UCL	Method		
10 6.162305 4.37070 6.957076 15 7.009175 5.18453 7.988662 20 7.931239 5.970497 9.205263 25 8.959456 6.798292 10.53506 40 11.10641 10.05213 11.76778 Test Acceptability Analysis Endpoint Attribute Statistic TAC Range Overlap Pecision Ode 7001 Type Ode 7001 Type Reps Mainimum Maximum SE SD CV Conc-µg/L Contol Type Reps 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.93645 0.9296 0.94553 0.00468 0.00810 0.86% 2.5 3 0.93645 0.9296 0.94553 0.00468 0.00810 0.86% 2.6 3 0.93645 0.9296 0.94553 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 <td>18-9877-8634</td> <td>Combined Pro</td> <td>portion No</td> <td>ormal 5</td> <td>5</td> <td>5.440802</td> <td>0.8644938</td> <td>6.023173</td> <td>Linear Interpolation</td> <td>n</td>	18-9877-8634	Combined Pro	portion No	ormal 5	5	5.440802	0.8644938	6.023173	Linear Interpolation	n	
Image: second secon				10	6	6.182305	4.370707	6.957076			
20 7.931239 5.970497 9.205263 25 8.959456 6.792292 10.35306 40 11.10641 10.05213 11.76778 50 12.27036 11.30394 12.8732 Test Acceptability Analysis Endpoint Attribute Statistic TAC Range Overlap Decision Od-7544-5343 Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria 0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.91180 0.867938 0.95720 0.02338 0.04050 4.44% 10 3 0.66370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2.5 3 0.00000 0.0				15	7	.009175	5.18453	7.988662			
25 8.959466 6.79229 10.55506 40 11.10641 10.05213 11.76778 50 12.27036 11.30394 12.8732 Test Acceptability Analysis Endpoint Attribute Statistic TAC Range Overlap Decision Od-7544-5343 Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Conc-ug/L Control Type Reps Mean Minimum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.00010 0.60810 0.86% 5 3 0.91958 0.8996 0.94553 0.04688 0.00810 0.86% 5 3 0.91958 0.86770 0.00100 0.00000 <				20	7	.931239	5.970497	9.205263			
40 11.10641 10.05213 11.76778 50 12.27036 11.30394 12.8732 Test Acceptability Analysis Endpoint Attribute Statistic TAC Range Overlap Decision 04-7544-5343 Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Conc-µg/L Control Type Reps Mean Minimum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.93645 0.92996 0.94553 0.00468 0.00810 0.86% 50 3 0.91180 0.87938 0.95720 0.02338 0.40550 4.44% 10 3 0.65370 0.61479 0.68482 0.00000 0.00000 0.00000 0.00000 20 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 20 Dilution Water 0.89105 <t< td=""><td></td><td></td><td></td><td>25</td><td>8</td><td>3.959456</td><td>6.798292</td><td>10.53506</td><td></td><td></td></t<>				25	8	3.959456	6.798292	10.53506			
50 12.27036 11.30394 12.8732 Test Acceptability Analysis Endpoint Attribute Statistic TAC Range Overlap Decision 04-7544-5343 Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Proportion Normal Reps Mean Minimum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.93645 0.92996 0.94553 0.00468 0.00810 0.86% 5 3 0.91180 0.87938 0.95720 0.02338 0.04050 4.44% 10 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000				40	1	1.10641	10.05213	11.76778			
Test Acceptability Analysis Endpoint Attribute Statistic TAC Range Overlap Decision 04-7544-5343 Combined Provition Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Provition Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Provition Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Concug/L Control Type Reps Mean Minimum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.00468 0.00810 0.86% 5 3 0.91180 0.87938 0.95720 0.02338 0.40450 4.44% 10 3 0.65370 0.61479 0.68482 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 <td></td> <td></td> <td></td> <td>50</td> <td>1</td> <td>2.27036</td> <td>11.30394</td> <td>12.8732</td> <td></td> <td></td>				50	1	2.27036	11.30394	12.8732			
Analysis Endpoint Attribute Statistic TAC Range Overlap Decision 04-7544-5343 Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Proportion Normal Minimum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.91958 0.86770 0.02338 0.04050 4.44% 10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 2.5 Gontol Type Rep 1 Rep 2 Rep 3 S S S	Test Acceptal	bility									
04-7544-5343 Combined Proportion Normal PMSD 0.11881 NL - 0.25 No Passes acceptability criteria Combined Proportion Normal Winnum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.93645 0.92996 0.94553 0.00468 0.0010 0.86% 5 3 0.91180 0.87938 0.95720 0.02338 0.04050 4.44% 10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000	Analysis	Endpoint		Attrib	ute	Statistic	TAC Rang	e Overlap	Decision		
Combined Propertion Normal Summary Reps Mean Minimum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.93645 0.92966 0.94553 0.00468 0.00810 0.86% 5 3 0.91180 0.87938 0.95720 0.02338 0.04505 4.44% 10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.00000 0.00	04-7544-5343	Combined Pro	portion No	rmal PMSD		0.11881	NL - 0.25	No	Passes accept	tability criteria	
Conc-µg/L Control Type Reps Mean Minimum Maximum SE SD CV 0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.93645 0.92996 0.94553 0.00468 0.00810 0.86% 5 3 0.91180 0.87938 0.95720 0.02338 0.04050 4.44% 10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00% 2.5 Control Type Rep 1 Rep 2 Rep 3 2.5 0.83915 0.86770 1.00000 2.5 0.93385 0.94553 0.92996	Combined Pro	oportion Norma	al Summa	ry							
0 Dilution Water 3 0.91958 0.86770 1.00000 0.04077 0.07061 7.68% 2.5 3 0.93645 0.92996 0.94553 0.00468 0.00810 0.86% 5 3 0.91180 0.87938 0.95720 0.02338 0.04050 4.44% 10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 40 3 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 40 3 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 Combined Provision Normal Rep 1 Rep 2 Rep 3 Rep	Conc-µg/L	Control Type	Reps	Mean	Minimu	m Maximun	n SE	SD	cv		
2.5 3 0.93645 0.92996 0.94553 0.00468 0.00810 0.86% 5 3 0.91180 0.87938 0.95720 0.02338 0.04050 4.44% 10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 5 0.89105 0.86770 1.00000	0	Dilution Water	3	0.91958	0.86770	1.00000	0.04077	0.07061	7.68%		
5 3 0.91180 0.87938 0.95720 0.02338 0.04050 4.44% 10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Combined Proprtion Normal Detail Conc-µg/L Control Type Rep 1 Rep 2 Rep 3 0 Dilution Water 0.89105 0.86770 1.00000 2.5 0.93385 0.94553 0.92996 5 5 0.87938 0.95720 0.89883 10 0.68482 0.61479 0.66148 20 0.00000 0.00000 0.00000 40 0.00000 0.00000 0.00000	2.5		3	0.93645	0.92996	0.94553	0.00468	0.00810	0.86%		
10 3 0.65370 0.61479 0.68482 0.02059 0.03566 5.46% 20 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 40 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Conc-µg/L Control Type Rep 1 Rep 2 Rep 3 0 Dilution Water 0.89105 0.86770 1.00000 2.5 0.93385 0.94553 0.92996 5 0.87938 0.95720 0.89883 10 0.68482 0.61479 0.66148	5		3	0.91180	0.87938	0.95720	0.02338	0.04050	4.44%		
20 3 0.000000 0.000000 0.00000	10		3	0.65370	0.61479	0.68482	0.02059	0.03566	5.46%		
40 3 0.000000 0.000000 0.00000	20		3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00%		
Combined Proportion Normal Detail Rep 1 Rep 2 Rep 3 0 Dilution Water 0.89105 0.86770 1.00000 2.5 0.93385 0.94553 0.92996 5 0.87938 0.95720 0.89883 10 0.68482 0.61479 0.66148 20 0.00000 0.00000 0.00000	40		3	0.00000	0.00000	0.00000	0.00000	0.00000	0.00%		
Conc-µg/L Control Type Rep 1 Rep 2 Rep 3 0 Dilution Water 0.89105 0.86770 1.00000 2.5 0.93385 0.94553 0.92996 5 0.87938 0.95720 0.89883 10 0.68482 0.61479 0.66148 20 0.00000 0.00000 0.00000	Combined Pr	oportion Norma	al Detail								
0 Dilution Water 0.89105 0.86770 1.00000 2.5 0.93385 0.94553 0.92996 5 5 0.87938 0.95720 0.89883 10 0.68482 0.61479 0.66148 20 0.00000 0.00000 0.00000	Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3						
2.5 0.93385 0.94553 0.92996 5 0.87938 0.95720 0.89883 10 0.68482 0.61479 0.66148 20 0.00000 0.00000 0.00000 40 0.00000 0.00000 0.00000	0	Dilution Water	0.89105	0.86770	1.00000)					
5 0.67936 0.89720 0.68063 10 0.68482 0.61479 0.66148 20 0.00000 0.00000 0.00000 40 0.00000 0.00000 0.00000	2.5		0.93385	0.94553	0.92996))		11			
10 0.00402 0.01479 0.00140 20 0.00000 0.00000 0.00000 40 0.00000 0.00000 0.00000	10		0.0/938	0.90720	0.09000	2					
	20		0.00402	0.01479	0.00140	,)					
	40		0.00000	0.00000	0.00000)					

Page 1 of 1

Report Date: Link:

Page 1 of 1 01 Dec-09 4:15 PM

NewFields

13-9607-6739

CETIS Data Worksheet

	Mussei	Shell	Development Test	
--	--------	-------	------------------	--

Start Date: Ending Date:	30 C 01 N	Oct-09 Nov-09	05:15	PM Speci PM Proto	es: Mytilus sp col: EPA/600/	Decies /R-95/136 (199	5)	Sample Code: Sample Source:	450217476 Reference Toxicant
Sample Date:	01 L	Jec-09	04:1	1 PM Mater	ial: Copper s	ulfate		Sample Station:	P090420.21
Conc-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes
0	D	1	2	257	231	231	229		
0	D	2	6	257	224	224	223		
0	D	3	13	257	258	258	258		
2.5		1	8	257	241	241	240		
2.5		2	16	257	244	244	243		
2.5		3	12	257	241	241	239		
5		1	11	257	229	229	226		······································
5		2	3	257	252	252	246		
5		3	5	257	231	231	231		
10		1	9	257	265	265	176		
10		2	15	257	234	234	158		
10		3	14	257	254	254	170		
20		1	17	257	218	218	0		
20		2	1	257	191	191	0		
20		3	10	257	196	196	0		
40		1	18	257	42	42	0		
40		2	4	257	14	14	0		
∆ ∩		3	7	257	24	24	ĥ	I	····

Analyst: BH Reviewed By: BH

LARVAL DEVELOPMENT TEST COPPER REF TOX OBSERVATION SHEET

•

						species Mytilus gallop	rovenc	ialis			
CLIENT	PROJEC	T		JOB NUM	BER	PROJECT MANAGER		NEWFIELD	S LAB / LOO	ATION	PROTOCOL
Paramatrix	We	st Bay	/			B. Hester		Port G	amble / Inc	ubator	PSEP (1995)
P090420.21		M BATC	н S 102 <i>80</i> '	TEST ך /	0/30/01	I715			0 DATE:	TIME	1700
	1		LAF	RVAL (OBSERVA	TION DATA					
CLIENT/ NEWFIELDS /D	CO: value	NC. units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	ſ	DATE	TECHN	ICIAN	COMMENTS
				1	229	2	12/1	09	CR		
Ref.Tox Copper	0	µg/L		2	223	1			İ		·····
				3	258	0					
				1	240	1					
Ref.Tox Copper	2.5	µg/L		2	243	1					
				3	239	2					
				1	276	3					
Ref.Tox Copper	5	µg/L		2	246	6			<u> </u>		
				3	231	0					
				1	176	89	ļļ				
Ref.Tox Copper	10	µg/L		2	158	76			<u> </u>		
				3	120	84					·····
				1	0	218					
Ref.Tox Copper	20	µg/L		2	0	191			ļ		·····
				3	0	196					
				1	0	42					
Ref.Tox Copper	40	µg/L		2	D	14					
				3	0	24	V		\vee		

	1	293	11/30/09	CR.	
STOCKING DENSITY	2	240			
	3	237	\checkmark		

NEWFIELDS

LARVAL DEVELOPMENT TEST COPPER REF TOX WQ

~

NEWFIEL	.D2					COPPEI	K KEF				• 4		•	
CLIENT		PROJE	т			SPECIES			NEWFIELDS 1	AB / LOCATION	1	PROTOCO)L	
Paramatrix		1	Wes	t Bay		Mytilus ga	lloprove	encialis	Port	Gamble / Incu	bator	. Р	SEP (1	995)
JOB NUMBER		PROJEC	CT MAN	AGER		QUANTITY OF TO	DXICANT	: 0.039 mL	QUANTITY O	DILUENT: 500n	nL	INIT		
			B. H	ester		AGTUAL:			ACTUAL:					
rest id Prany コレン		LOT #:	ลกน	200	a	TEST START DA	TE:		TIME 1115	TEST END I		TIME	~ ~	1700
1010120.21		J	101	20	J	WATER	QUAL		DATA 11/100			Cuq	50	100
DILTIN.WAT.BA	тсн			ORG	ANISM	BATCH	REFER	ENCE TOX. M	ATERIAL	· · · ·	REFERI		T	
FSW1029109	.01							Co	pper Sulfate			Сор	per	
		s de les				DO (mg/L)		TEMP(C)	5	SAL (ppt)		pH		
						>5.0		16 <u>+</u> 1		28 <u>+</u> 1		7.8 <u>+</u> 0.5	ΞË	TE
CLIENT/ NEWFIELDS ID	CONCEN	VTRATION	DAY	REP		D.O.		TEMP.	\$	SALINITY	ļ	pH	_ ₽	ΨQ
	value	units			meter	mg/L	meter	°C	meter	ppt	meter	unit		
			0	Stock	6	7.8	6	16.0		28	1	8.2	154	10,30
			1	Stock	<u> _</u>	7.9		17.6		_28		6.1	JL	10/3
Ref.ToxCopper	0	hð\r	2	Stock		7.9		17.0		28		8.1	JIL.	11/01
			3	Stock	1-5-	70	1			20	4	00		
			4	Stock	<u> </u>	1.9		16.6	,	28		0.0	HAR.	11/3
			4	Stock	6	$\frac{t}{0}$	6	16.9		20		<u>8. x</u>	BR	0.50
Ref Toy -Conner	25	ualt	1	Stock	┣-\	<u> </u>		140		19		<u>D.L</u>	UL	[0]3]
	2.0	parc	~ ~	Stock	$\left \right $	D·L	$\left \right $	0.0		19		0.2	Jr-	11/01
			4	Stock		07	⊅	16.3	- 5	28	4	81	10	ulo
			0	Stock	6	71	6	164		28	1	82	NL14	10.21)
			1	Stock	Ĭ	8.1	Ť	16.8		7.9	1	8.2	<u></u>	10/3
Ref.ToxCopper	5	µg/L	2	Stock		8.2	17	16,6		29		8.3	JL	11/01
			3	Stock			17							- / - 1
			4	Stock		8.2	6	16.1	0	28	6	8.1	CR	113
			0	Stock	6	7.6	6	164	1	28	1	B.Z	15/1	10,30
			1	Stock	1	8.2		16.7		29		8.3	Ji	10/3/
Ref.ToxCopper	10	µg/L	2	Stock		8.2		16.6		29		8.3	JL	11/01
			3	Stock	tap_		4			• +				
			4	Stock	Ļ	8.2	Ļ	16.0	10	28	-1	8.	CR	11/3
			0	Stock	6	7.6	6	16.4		28		8.2	115/1	0.30
			1	Stock		8.2	1	16.7		29		8.1	Η <u>η</u>	10/3
Ret. LoxCopper	20	hð/r	2	Stock		8.2	┨┥┥──	16.5		29		0.3	JL	11/01
			3	Stock	♦	0 7				20	\mathbf{H}	87	10	1.12
			4	Stock	<u> </u>	71	17			20		3. <u>८</u>	UK.	$\frac{11}{11}$
			1	Stock	10	10	10	16.9		20	+	- Qi A	121	<u>10, 50</u> 1010
Ref Tox -Copper	40	uo/l	י י	Stock	+	01	}	16.6		20		0.2	リレ	10/51
1.67. TOX-OUPPEI		ъAıг	2	Stock	$\left \cdot \right $	D.L	┠╂──	16.5		24		2.2	JL	•1/01
			<u>ح</u>	Stock		92	6	150	- 6	78	10	87	10	1110
	<u> </u>		*	JOIOCK		\sim		1.2.7		10	1	0.6	10-	<u>11/5</u>

Biological Testing Results for West Bay Park Sediment Evaluation

APPENDIX B

STATISTICAL COMPARISONS

				Probability	Probability		Test		
Test	Endpoint	Treatment	Comparison	Normal	Homogeneous	Test Type	Probability	Significant?	One-Tail Comparison
Eohaustorius	Percent Mortality	RF01	Control	0.079	0.802	T-test Equal Var	0.676		Treatment <= Comparison
Eohaustorius	Percent Mortality	RF02	Control	0.212	0.176	T-test Equal Var	0.897		Treatment <= Comparison
Eohaustorius	Percent Mortality	SD26/27	RF01	0.079	0.802	T-test Equal Var	0.324		Treatment <= Comparison
Eohaustorius	Percent Mortality	SD25	RF01	0.576	0.241	T-test Equal Var	0.165		Treatment <= Comparison
Eohaustorius	Percent Mortality	SD28	RF01	0.116	0.914	T-test Equal Var	0.286		Treatment <= Comparison
Eohaustorius	Percent Mortality	SD29	RF01	0.608	0.026	T-test Unequal Var	0.008	Yes	Treatment > Comparison
Eohaustorius	Percent Mortality	SD30	RF01	0.696	0.543	T-test Equal Var	0.115		Treatment <= Comparison
Eohaustorius	Percent Mortality	SD26/27	RF02	0.212	0.176	T-test Equal Var	0.103		Treatment <= Comparison
Eohaustorius	Percent Mortality	SD25	RF02	0.377	0.867	T-test Equal Var	0.029	Yes	Treatment > Comparison
Eohaustorius	Percent Mortality	SD28	RF02	0.281	0.184	T-test Equal Var	0.098		Treatment <= Comparison
Eohaustorius	Percent Mortality	SD29	RF02	0.251	0.012	T-test Unequal Var	0.007	Yes	Treatment > Comparison
Eohaustorius	Percent Mortality	SD30	RF02	0.184	0.599	T-test Equal Var	0.024	Yes	Treatment > Comparison
Larval	Percent Normal Developmment	RF01	Control	0.036	0.075	Rankit Unequal Var	0.586		Treatment >= Comparison
Larval	Percent Normal Developmment	RF02	Control	0.262	0.004	T-test Unequal Var	0.053	Yes	Treatment < Comparison
Larval	Percent Normal Developmment	SD25	RF01	0.270	0.944	T-test Equal Var	0.168		Treatment >= Comparison
Larval	Percent Normal Developmment	SD26/27	RF01	0.570	0.191	T-test Equal Var	0.161		Treatment >= Comparison
Larval	Percent Normal Developmment	SD28	RF01	0.932	0.334	T-test Equal Var	0.015	Yes	Treatment < Comparison
Larval	Percent Normal Developmment	SD29	RF01	0.002	0.168	Mann-Whitney	0.017	Yes	Treatment < Comparison
Larval	Percent Normal Developmment	SD30	RF01	0.373	0.354	T-test Equal Var	0.000	Yes	Treatment < Comparison
Larval	Percent Normal Developmment	SD25	RF02	0.887	0.148	T-test Equal Var	0.949		Treatment >= Comparison
Larval	Percent Normal Developmment	SD26/27	RF02	0.517	0.947	T-test Equal Var	0.990		Treatment >= Comparison
Larval	Percent Normal Developmment	SD28	RF02	0.892	0.087	T-test Unequal Var	0.220		Treatment >= Comparison
Larval	Percent Normal Developmment	SD29	RF02	0.001	0.078	Rankit Equal Var	0.003	Yes	Treatment < Comparison
Larval	Percent Normal Developmment	SD30	RF02	0.657	0.750	T-test Equal Var	0.000	Yes	Treatment < Comparison
Neanthes	Individual Growth	RF01	Control	0.451	0.848	T-test Equal Var	0.447		Treatment >= Comparison
Neanthes	Individual Growth	RF02	Control	0.997	0.505	T-test Equal Var	0.903		Treatment >= Comparison
Neanthes	Individual Growth	SD25	RF01	0.695	0.900	T-test Equal Var	0.100		Treatment >= Comparison
Neanthes	Individual Growth	SD26/27	RF01	0.051	0.693	T-test Equal Var	0.454		Treatment >= Comparison
Neanthes	Individual Growth	SD28	RF01	0.127	0.450	T-test Equal Var	0.076		Treatment >= Comparison
Neanthes	Individual Growth	SD29	RF01	0.942	0.929	T-test Equal Var	0.017	Yes	Treatment < Comparison
Neanthes	Individual Growth	SD30	RF01	0.049	0.730	Mann-Whitney	0.838		Treatment >= Comparison
Neanthes	Individual Growth	SD25	RF02	0.990	0.473	T-test Equal Var	0.017	Yes	Treatment < Comparison
Neanthes	Individual Growth	SD26/27	RF02	0.631	0.278	T-test Equal Var	0.062		Treatment >= Comparison
Neanthes	Individual Growth	SD28	RF02	0.453	0.188	T-test Equal Var	0.012	Yes	Treatment < Comparison
Neanthes	Individual Growth	SD29	RF02	0.860	0.401	T-test Equal Var	0.004	Yes	Treatment < Comparison
Neanthes	Individual Growth	SD30	RF02	0.456	0.665	T-test Equal Var	0.251		Treatment >= Comparison

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=RF01 ------

The TTEST Procedure

gi	roup		N	Mean	Std Dev	Std Er	r Minimu	m Maxin	num
Co Re D:	ontrol eferen iff (1	ce -2)	5 5	0.1546 0.1095 0.0451	0.1465 0.1537 0.1501	0.065 0.068 0.094	5 7 9	0 0.32	218 218
group		Method		Mean	95% (CL Mean	Std Dev	95% CL	Std Dev
Control Referenc Diff (1- Diff (1-	ce -2) -2)	Pooled Sattert Method Pooled Satter	hwaite thwaite	0.1546 0.1095 0.0451 0.0451 Variance Equal Unequal	-0.027 -0.081 -0.173 -0.173	3 0.3364 4 0.3003 8 0.2640 9 0.2641 DF t V 8 815	0.1465 0.1537 0.1501 alue Pr > 0.48 0. 0.48 0.	0.0877 0.0921 0.1014 t 6474 6475	0.4209 0.4416 0.2876
				Equali	ty of Va	riances			
		M	ethod	Num DF	Den DF	F Valu	e Pr > F		
		F	olded F	4	4	1.1	0 0.9278		

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=RF02 -----

The TTEST Procedure

grou	p	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
Cont Refe Diff	rol rence (1-2)	5 5	0.1546 0.0451 0.1095	0.1465 0.1009 0.1257	0.0655 0.0451 0.0795	0 0	0.3218 0.2255	
group	Method		Mean	95% CL	Mean	Std Dev	95% CL Std Dev	
Control Reference Diff (1-2) Diff (1-2)	Pooled Satter Metho Poole Satte	thwaite d d rthwaite	0.1546 0.0451 0.1095 0.1095 Variance Equal Unequal	-0.0273 -0.0801 -0.0739 -0.0781 s D1 7.0973	0.3364 0.1703 0.2928 0.2970 F t Valu 8 1.3 1 1.3	0.1465 0.1009 0.1257 e Pr > t 8 0.2060 8 0.2106	0.0877 0.4209 0.0604 0.2898 0.0849 0.2409) }
			Equali	ty of Varia	ances			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded F	4	4	2.11	0.4877		

West Bay Statistical Comparison T-test Results, This is a 2-tailed result est Results, This is a 2 carrow -----See Summary Page for 1-tail Result 15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=RF02 -----

The TTEST Procedure

ç	group		N	Mean	Std Dev	Std	Err	Minimum	Maxim	num
C F I	Control Referen Diff (1	2)	5 5	1.4069 1.1948 0.2121	0.2273 0.0849 0.1716	0. 0. 0.	1016 0380 1085	1.1100 1.0797	1.57 1.29	708 989
group		Method		Mean	95%	CL Mean		Std Dev	95% CL	Std Dev
Control Referer Diff (1 Diff (1	l nce 1-2) 1-2)	Pooled Sattert Method Pooled Satter	hwaite thwaite	1.4069 1.1948 0.2121 0.2121 Variance Equal Unequal	1.124 1.089 -0.038 -0.065	7 1.6 4 1.3 1 0.4 3 0.4 DF 8 959	891 003 623 895 t Value 1.95 1.95	0.2273 0.0849 0.1716 Pr > t 0.086 0.107	0.1362 0.0509 0.1159	0.6531 0.2441 0.3287
				Equali	ty of Va	riances				
		М	ethod	Num DF	Den DF	F V	alue	Pr > F		
		F	olded F	4	4		7.16	0.0827		

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=RF01 -----

The TTEST Procedure

	group		Ν	Mean	Std Dev		Std E	rr	Minim	ium	Maxim	num
	Control Referen Diff (1	.ce -2)	5 5	0.5262 0.5192 0.00702	0.0800 0.0799 0.0799		0.03 0.03 0.05	58 57 06	0.42 0.45	94 40	0.63	317 570
group		Method		Mean	95%	CL M	ean		Std Dev		95% CL	Std Dev
Contro Refere Diff (Diff (ol ence (1-2) (1-2)	Pooled Sattert Method Pooled Satter	hwaite thwaite	0.5262 0.5192 0.00702 0.00702 Variance Equal Unequal	0.420 0.420 -0.109 -0.109	59 00 96 96 96 DF 8 8	0.625 0.618 0.123 0.123 t	5 4 6 6 Value 0.14 0.14	0.0800 0.0799 0.0799 Pr 0 0	> t .8930 .8930	0.0479 0.0479 0.0540	0.2298 0.2296 0.1532
				Equali	ty of Va	arian	ces					
		M	ethod	Num DF	Den DI	7	F Val	ue	Pr > F	•		
		F	olded F	r 4	4	1	1.	00	0.9987			

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=RF02 -----

The TTEST Procedure

gro	oup		N	Mean	Std Dev	Std E	lrr Minim	num Maxim	ıum
Con Ref Dif	ntrol Eeren Ef (1-	ce -2)	5 5	0.5262 0.6227 -0.0964	0.0800 0.1291 0.1074	0.03 0.05 0.06	558 0.42 577 0.44 579	294 0.63 28 0.79	917 89
group	I	Method		Mean	95% (CL Mean	Std Dev	95% CL	Std Dev
Control Reference Diff (1-2 Diff (1-2	2)] 2) ;	Pooled Sattert Method Pooled Satter	hwaite thwaite	0.5262 0.6227 -0.0964 -0.0964 Variance Equal Unequal	0.4269 0.4624 -0.2530 -0.2580	9 0.625 4 0.782 0 0.060 6 0.065 DF t 8 769	5 0.0800 9 0.1291 12 0.1074 7 7 Value Pr -1.42 0 -1.42 0	0.0479 0.0773 0.0725 > t 0.1933 0.2005	0.2298 0.3709 0.2057
				Equali	ty of Va	riances			
		M	ethod	Num DF	Den DF	F Val	ue Pr > F	,	
		F	olded F	· 4	4	2.	60 0.3764	L	

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=RF01 -----

The TTEST Procedure

Variable: rankit (Rank for Variable result)

	group		N	Mean	Std Dev	Std Err	Minimum	Maxim	ium
	Contro] Referer Diff (1	L nce L-2)	5 5	-0.0654 0.0654 -0.1307	1.1197 0.6442 0.9134	0.5008 0.2881 0.5777	-1.5466 -0.6554	0.74 0.74	:01 :01
group		Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
Contro Refere Diff (Diff (91 ence 1-2) 1-2)	Pooled Satterth	nwaite	-0.0654 0.0654 -0.1307 -0.1307	-1.4557 -0.7345 -1.4629 -1.5238	1.3250 0.8652 1.2015 1.2624	1.1197 0.6442 0.9134	0.6709 0.3859 0.6170	3.2176 1.8510 1.7499
		Method		Variance	es D	F t Valu	ue Pr >	t	
		Dooled		Faual		8 _0 ?	23 0.82	67	

Pooled	Equal	8	-0.23	0.8267
Satterthwaite	Unequal	6.3863	-0.23	0.8281

Equality of Variances

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.02	0.3095

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=26/27 -----

The TTEST Procedure

ç	group		N	Mean	Std Dev	5	Std Err	Minim	um Max	imum
F T T	RF01 Test Diff ((1-2)	5 5	0.1095 0.1546 -0.0451	0.1537 0.1465 0.1501		0.0687 0.0655 0.0949		0 0. 0 0.	3218 3218
group		Method		Mean	95%	CL Me	ean	Std Dev	95% C	L Std Dev
RF01 Test Diff (1 Diff (1	L-2) L-2)	Pooled Sattert Method Pooled Satter	hwaite l l thwaite	0.1095 0.1546 -0.0451 -0.0451 Variance Equal Unequal	-0.081 -0.027 -0.264 -0.264 s	L4 (73 (40 (41 (DF 8 9815	0.3003 0.3364 0.1738 0.1739 t Va -0 -0	0.1537 0.1465 0.1501 lue Pr .48 0 .48 0	0.092 0.087 0.101 > t .6474 .6475	1 0.4416 7 0.4209 4 0.2876
				Equali	ty of Va	ariand	ces			
		Μ	lethod	Num DF	Den DF	r I	7 Value	Pr > F		
		F	'olded H	r 4	4	1	1.10	0.9278	ł	

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD25 ------

The TTEST Procedure

	group N		Mean S	Std Dev	Std Err	Minimum	Maximum
	RF01 Test Diff (5 5 1-2)	0.1095 0.1997 -0.0902	0.1537 0.1191 0.1375	0.0687 0.0533 0.0870	0 0	0.3218 0.3218
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std Dev
RF01 Test Diff Diff	(1-2) (1-2)	Pooled Satterthwaite Method Pooled Satterthwaite	0.1095 0.1997 -0.0902 -0.0902 Variances Equal Unequal	-0.0814 0.0517 -0.2907 -0.2929 B DF 8 7.532	0.3003 0.3476 0.1103 0.1125 t Value -1.04	0.1537 0.1191 0.1375 Pr > t 4 0.3299 4 0.3318	0.0921 0.4416 0.0714 0.3423 0.0929 0.2634
			Equalit	y of Varia	nces		
		Method	Num DF	Den DF	F Value	Pr > F	
		Folded F	r 4	4	1.66	0.6338	

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD28 ------

The TTEST Procedure

9	group		N	Mean	Std Dev	Std Err	Minimu	m Maxi	mum
I T I	RF01 Test Diff	(1-2)	5 5	0.1095 0.1697 -0.0603	0.1537 0.1702 0.1621	0.0687 0.0761 0.1025		0 0.3 0 0.3	218 977
group		Method		Mean	95% C	L Mean	Std Dev	95% CL	Std Dev
RF01 Test Diff (1 Diff (1	1-2) 1-2)	Pooled Satter Metho Poole Satte	thwaite d d rthwaite	0.1095 0.1697 -0.0603 -0.0603 Variance Equal Unequal	-0.0814 -0.0415 -0.2968 -0.2972	0.3003 0.3810 0.1762 0.1766 DF t Va 8 -0 .85 -0	0.1537 0.1702 0.1621 lue Pr > .59 0. .59 0.	0.0921 0.1019 0.1095 t 5728 5729	0.4416 0.4889 0.3106
				Equali	ty of Var	iances			
			Method	Num DF	Den DF	F Value	Pr > F		
			Folded H	7 4	4	1.23	0.8484		

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD29 ------

The TTEST Procedure

grou	o N	Mean	Std Dev	Std Err	Minimum	Maximum	
RF01 Test Diff	5 5 (1-2)	0.1095 1.0332 -0.9238	0.1537 0.5449 0.4004	0.0687 0.2437 0.2532	0 0.3977	0.3218 1.5708	
group	Method	Mean	95% CI	Mean	Std Dev	95% CL Std Dev	•
RF01 Test Diff (1-2) Diff (1-2)	Pooled Satterthwaite Method Pooled Satterthwait	0.1095 1.0332 -0.9238 -0.9238 Varianc Equal Unequal	-0.0814 0.3566 -1.5077 -1.5905 es I 4.632	0.3003 1.7098 -0.3399 -0.2570 DF t Valu 8 -3.6 3 -3.6	$\begin{array}{ccc} 0.1537 \\ 0.5449 \\ 0.4004 \end{array}$ $\begin{array}{ccc} Pr > t \\ 55 & 0.006 \\ 55 & 0.016 \end{array}$	0.0921 0.441 0.3265 1.565 0.2704 0.767	6 9 0
		Equal	ity of Vari	ances			
	Method	Num DF	Den DF	F Value	Pr > F		
	Folded	F 4	4	12.57	0.0310		

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD30 ------

The TTEST Procedure

Variable: Result

	group	i -	Ν	Mean	Std Dev	Std Err	r Minimum	n Maxim	ium
	RF01 Test Diff	(1-2)	5 5	0.1095 0.2341 -0.1246	0.1537 0.1495 0.1516	0.0687 0.0669 0.0959	7 (9 (9	0.32 0.39	18 77
group		Method		Mean	95% C	L Mean	Std Dev	95% CL	Std Dev
RF01 Test Diff (Diff ((1-2) (1-2)	Pooled Sattert Method Pooled	hwaite	0.1095 0.2341 -0.1246 -0.1246 Variance Equal	-0.0814 0.0485 -0.3458 -0.3458	0.3003 0.4197 0.0965 0.0965 DF t Va	0.1537 0.1495 0.1516 alue Pr >	0.0921 0.0896 0.1024	0.4416 0.4296 0.2904
		Satter	thwaite	e Unequal	7.99	39 –1	L.30 0.2	2299	
				Equali	ty of Var	iances			
		М	lethod	Num DF	Den DF	F Value	e Pr > F		

Folded F 4 4 1.06 0.9585

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=SD25 -----

The TTEST Procedure

	group	0	Ν	Mean	Std Dev	Std Err	Minimum	Maxim	um
	RF01 Test Diff	(1-2)	5 5	1.4272 1.3335 0.0937	0.1455 0.1445 0.1450	0.0651 0.0646 0.0917	1.2393 1.1511	1.57 1.50	08 36
group		Method		Mean	95% CI	L Mean	Std Dev	95% CL :	Std Dev
RF01 Test Diff Diff	(1-2) (1-2)	Pooled Sattert Method	hwaite	1.4272 1.3335 0.0937 0.0937 Variance	1.2466 1.1541 -0.1177 -0.1177 s I	1.6079 1.5129 0.3052 0.3052 DF t Valu	0.1455 0.1445 0.1450 ne Pr > t	0.0872 0.0865 0.0979	0.4180 0.4151 0.2777
		Pooled Satter	thwaite	Equal Unequal	7.999	8 1.0 96 1.0	0.336 02 0.336	55 55	
				Equali	ty of Var:	iances			
		М	ethod	Num DF	Den DF	F Value	Pr > F		
		F	olded F	4	4	1.01	0.9894		

West Bay Statistical Comparison est Results, This is a z-carrow ----See Summary Page for 1-tail Result 15:50 Tuesday, January 5, 2010 T-test Results, This is a 2-tailed result

----- Test=Larval Endpoint=Percent Normal De Treatment=SD26/27 -----

The TTEST Procedure

	group N		Mean	Std Dev	Std Err	Minimum	Maximu	ım
	RF01 Test Diff (1-2)		1.4272 1.3486 0.0787	0.1455 0.0813 0.1178	0.0651 0.0363 0.0745	1.2393 1.2580	1.570 1.444)8 19
group		Method	Mean	95% CI	Mean	Std Dev	95% CL S	Std Dev
RF01 Test Diff Diff	(1-2) (1-2)	Pooled Satterthwaite Method Pooled Satterthwait	1.4272 1.3486 0.0787 0.0787 Variance Equal Unequal	1.2466 1.2477 -0.0932 -0.1018 es D 6.275	1.6079 1.4495 0.2505 0.2591 F t Valu 8 1.0 6 1.0	0.1455 0.0813 0.1178 ne Pr > t 06 0.322 06 0.330	0.0872 0.0487 0.0796	0.4180 0.2336 0.2257
	Equality of Variances							
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded	F 4	4	3.20	0.2857		

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=SD28 -----

The TTEST Procedure

	group N		Mean	Std Dev	Std Err	Minimum	Maximu	ım
	RF01 Test Diff (1	5 5 L-2)	1.4272 1.1005 0.3267	0.1455 0.2373 0.1968	0.0651 0.1061 0.1245	1.2393 0.8038	1.570 1.430)8)6
group		Method	Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
RF01 Test Diff (Diff (1-2) 1-2)	Pooled Satterthwaite Method	1.4272 1.1005 0.3267 0.3267 Variance	1.2466 0.8059 0.0397 0.0291	1.6079 1.3952 0.6137 0.6243 F t Valu	$\begin{array}{ccc} 0.1455 \\ 0.2373 \\ 0.1968 \end{array}$	0.0872 0.1422 0.1329	0.4180 0.6818 0.3770
		Satterthwaite	e Unequal	6.634	8 2.6	52 0.030 52 0.035	9	
			Equali	ty of Varia	ances			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded H	· 4	4	2.66	0.3663		

West Bay Statistical Comparison est Results, This is a z-carrow ----See Summary Page for 1-tail Result 15:50 Tuesday, January 5, 2010 T-test Results, This is a 2-tailed result

----- Test=Larval Endpoint=Percent Normal De Treatment=SD30 -----

The TTEST Procedure

S	group	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
RF01 Test Diff (5 5 L-2)	1.4272 0.7596 0.6677	0.1455 0.1026 0.1259	0.0651 0.0459 0.0796	1.2393 0.6713	1.5708 0.9298	
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std	Dev
RF01 Test Diff (1 Diff (1	2) 2)	Pooled Satterthwaite Method Pooled Satterthwaite	1.4272 0.7596 0.6677 0.6677 Variance Equal Unequal	1.2466 0.6322 0.4841 0.4804 s DF 8 7.1883	1.6079 0.8869 0.8512 0.8549 t Value 8.39	$\begin{array}{ccc} 0.1455 \\ 0.1026 \\ 0.1259 \end{array}$ $\begin{array}{ccc} Pr > t \\ Pr > t \\ Pr > .0001 \\ Pr > .0001 \end{array}$	0.0872 0 0.0614 0 0.0850 0	.4180 .2947 .2411
			Equali	ty of Varia	nces			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded F	4	4	2.01	0.5149		

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD25 -----

The TTEST Procedure

	group	Ν	Mean S	Std Dev	Std Err	Minimum	Maximum
	RF01 Test Diff (2	5 5 1-2)	0.5192 0.4498 0.0694	0.0799 0.0773 0.0786	0.0357 0.0346 0.0497	0.4540 0.3453	0.6570 0.5427
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std Dev
RF01 Test Diff (Diff (1-2) 1-2)	Pooled Satterthwaite Method Pooled Satterthwaite	0.5192 0.4498 0.0694 0.0694 Variances Equal Unequal	0.4200 0.3538 -0.0453 -0.0453 5 DF	0.6184 0.5459 0.1841 0.1841 T t Value 3 1.40 5 1.40	$\begin{array}{ccc} 0.0799 \\ 0.0773 \\ 0.0786 \end{array}$ $\begin{array}{ccc} Pr > t \\ 0 \\ 0.2005 \\ 0 \\ 0.2005 \end{array}$	0.0479 0.2296 0.0463 0.2223 0.0531 0.1507
			Equalit	ty of Varia	ances		
		Method	Num DF	Den DF	F Value	Pr > F	
		Folded F	r 4	4	1.07	0.9512	

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD26/27 -----

The TTEST Procedure

	group	N	Mean S	td Dev	Std Err	Minimum	Maximum	
	RF01 Test Diff (5 5 (1-2)	0.5192 0.5140 0.00524	0.0799 0.0578 0.0697	0.0357 0.0258 0.0441	0.4540 0.4539	0.6570 0.6032	
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std D	ev
RF01 Test Diff Diff	(1-2) (1-2)	Pooled Satterthwaite Method Pooled Satterthwaite	0.5192 0.5140 0.00524 0.00524 Variances Equal Unequal	0.4200 0.4422 -0.0964 -0.0982 DF 8 7.2839	0.6184 0.5857 0.1069 0.1087 T t Value 0.12 0.12	0.0799 0.0578 0.0697 Pr > t 0.9083 0.9086	0.0479 0.2 0.0346 0.1 0.0471 0.1	296 660 336
			Equalit	y of Varia	inces			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded H	F 4	4	1.91	0.5451		

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD28 -----

The TTEST Procedure

	group		N	Mean	Std Dev	Std Er	r Minimu	m Maxim	um
	RF01 Test Diff (1-2)		5 5	0.5192 0.4552 0.0640	0.0799 0.0424 0.0640	0.035 0.019 0.040	57 0.454 90 0.403 95 0	0 0.65 [°] 5 0.49 [°]	70 48
group		Method		Mean	95% (CL Mean	Std Dev	95% CL :	Std Dev
RF01 Test Diff Diff	(1-2) (1-2)	Pooled Satterth Method Pooled Sattert	nwaite thwaite	0.5192 0.4552 0.0640 0.0640 Variance Equal Unequal	0.420 0.402 -0.029 -0.034	0 0.6184 6 0.5079 3 0.1573 7 0.1626 DF t V 8 884	A 0.0799 0.0424 0.0640 Value Pr > 1.58 0. 1.58 0.	0.0479 0.0254 0.0432 t 1524 1642	0.2296 0.1219 0.1226
Equality						riances			
		Me	ethod	Num DF	Den DF	F Valu	ue Pr > F		
		Fo	olded F	4	4	3.5	5 0.2475		

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD29 -----

The TTEST Procedure

	group N		N	Mean	Std Dev	Std Err	Minimum	Maximu	ım
	RF01 Test Diff	(1-2)	5 5	0.5192 0.3936 0.1257	0.0799 0.0749 0.0774	0.0357 0.0335 0.0490	0.4540 0.2752	0.657 0.478	70 30
group		Method		Mean	95% CI	Mean	Std Dev	95% CL S	Std Dev
RF01 Test Diff Diff	(1-2) (1-2)	Pooled Sattert Method	hwaite	0.5192 0.3936 0.1257 0.1257 Variance	0.4200 0.3006 0.0127 0.0127	0.6184 0.4865 0.2386 0.2387 DF t Valu	$\begin{array}{ccc} 0.0799 \\ 0.0749 \\ 0.0774 \end{array}$ $\begin{array}{ccc} Pr > t \\ T = 0.027 \end{array}$	0.0479 0.0448 0.0523	0.2296 0.2151 0.1483
		Satter	thwaite	Unequal	7.966	51 2.5	57 0.03 57 0.03	33 34	
				Equali	ty of Vari	ances			
		M	ethod	Num DF	Den DF	F Value	Pr > F		
		F	olded F	4	4	1.14	0.9023		

----- Test=Larval Endpoint=Percent Normal De Treatment=SD29 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
fffffff	, ffffffffff	, ffffffffffffffffff	ſſſſſſſſſſſ	, ffffffffffffffffff	fffffffff
RF01	5	40.0	27.50	4.772607	8.0
Test	5	15.0	27.50	4.772607	3.0

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic40.0000Normal Approximation
Z2.5143One-Sided Pr > Z0.0060Two-Sided Pr > |Z|0.0119t Approximation

One-Sided	Pr	>	Z	0.0165
Two-Sided	Pr	>	Z	0.0331

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	6.8598	
DF	1	
Pr > Chi-Square	0.0088	

------ Test=Neanthes Endpoint=Individual Growth Treatment=SD30 ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

		Sum of	Expected	Std Dev	Mean
group	N	Scores	Under HO	Under HO	Score
fffffff	ſſſſſſſſſſ	ſſſſſſſſſſſſ	ſſſſſſſſſſſ	ſſſſſſſſſſſſſ	fffffffff
RF01	5	22.0	27.50	4.787136	4.40
Test	5	33.0	27.50	4.787136	6.60

Wilcoxon Two-Sample Test

Statistic22.0000Normal ApproximationZOne-Sided Pr < Z</td>ZZ<t

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	1.3200	
DF	1	
Pr > Chi-Square	0.2506	
15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=26/27 ------

The TTEST Procedure

gro	group N		Mean S	Std Dev	Std Err	Minimum	Maximur	n
RF(Te: Di:)2 st Ef (1-2)	5 5	0.0451 0.1546 -0.1095	0.1009 0.1465 0.1257	0.0451 0.0655 0.0795	0 0	0.2255 0.3218	5 8
group	Meth	.od	Mean	95% CL	Mean	Std Dev	95% CL St	td Dev
RF02 Test Diff (1-: Diff (1-:	2) Pool 2) Satt Met Poo Sat	ed erthwaite hod led terthwaite	0.0451 0.1546 -0.1095 -0.1095 Variances Equal Unequal	-0.0801 -0.0273 -0.2928 -0.2970	0.1703 0.3364 0.0739 0.0781 F t Value 8 -1.3 1 -1.3	0.1009 0.1465 0.1257 e Pr > t 8 0.2060 8 0.2100	0.0604 0.0877 0.0849	0.2898 0.4209 0.2409
			Equalit	cy of Varia	ances			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded F	r 4	4	2.11	0.4877		

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD25 -----

The TTEST Procedure

group	p N	Mean	Std Dev	Std Err	Minimum	Maximum
RF02 Test Diff	5 5 (1-2)	0.0451 0.1997 -0.1546	0.1009 0.1191 0.1104	0.0451 0.0533 0.0698	0 0	0.2255 0.3218
group	Method	Mean	95% CL	Mean	Std Dev	95% CL Std Dev
RF02 Test Diff (1-2) Diff (1-2)	Pooled Satterthwaite Method Pooled Satterthwaite	0.0451 0.1997 -0.1546 -0.1546 Variances Equal Unequal	-0.0801 0.0517 -0.3155 -0.3163 s D 7.787	$\begin{array}{c} 0.1703 \\ 0.3476 \\ 0.00642 \\ 0.00719 \\ \hline F t Value \\ 8 \\ 7 \\ -2.2 \\ 7 \\ -2.2 \\ \end{array}$	0.1009 0.1191 0.1104 e Pr > t 1 0.057 1 0.058	0.0604 0.2898 0.0714 0.3423 0.0746 0.2115
		Equalit	ty of Vari	ances		
	Method	Num DF	Den DF	F Value	Pr > F	
	Folded H	r 4	4	1.40	0.7546	

15:50 Tuesday, January 5, 2010

24

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD28 ------

The TTEST Procedure

Variable: Result

gro	group N		Mean	Std Dev	Std Err	Minimum	Maximum	
RF(Tes Dif)2 st Ef (1-	5 5 2)	0.0451 0.1697 -0.1246	0.1009 0.1702 0.1399	0.0451 0.0761 0.0885	0 0	0.2255 0.3977	
group	М	ethod	Mean	95% CL	Mean	Std Dev	95% CL Std Dev	
RF02 Test Diff (1-2 Diff (1-2	2) P 2) S	ooled atterthwaite Method	0.0451 0.1697 -0.1246 -0.1246 Variance	-0.0801 -0.0415 -0.3286 -0.3371	0.1703 0.3810 0.0793 0.0878	0.1009 0.1702 0.1399	0.0604 0.289 0.1019 0.488 0.0945 0.267	8 9 9
		Pooled Satterthwaite	Equal Unequal	6.5017	3 -1.42 7 -1.42	1 0.1965 1 0.2048	5 3	
			Equalı	ty of Varia	ances			
		Method	Num DF	Den DF	F Value	Pr > F		

Folded F 4 4 2.85 0.3352

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD29 ------

The TTEST Procedure

	group N		Mean	Std Dev	Std Err	Minimum	Maximum
	RF02 Test Diff (5 5 1-2)	0.0451 1.0332 -0.9881	0.1009 0.5449 0.3919	0.0451 0.2437 0.2478	0 0.3977	0.2255 1.5708
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std Dev
RF02 Test Diff (Diff ((1-2)	Pooled Satterthwaite Method Pooled Satterthwait	0.0451 1.0332 -0.9881 -0.9881 Variance Equal Unequal	-0.0801 0.3566 -1.5596 -1.6592 s D 4.273	0.1703 1.7098 -0.4166 -0.3170 F t Valu 8 -3.9 7 -3.9	0.1009 0.5449 0.3919 e Pr > t 9 0.004 9 0.014	0.0604 0.2898 0.3265 1.5659 0.2647 0.7507
			Equali	ty of Vari	ances		
		Method	Num DF	Den DF	F Value	Pr > F	
		Folded	F 4	4	29.19	0.0064	

15:50 Tuesday, January 5, 2010

----- Test=Eohaustorius Endpoint=Percent Mortality Treatment=SD30 ------

The TTEST Procedure

	group)	N	Mean	Std Dev	Std Err	Minimum	Maximum	
	RF02 Test Diff	(1-2)	5 C 5 C – C).0451).2341).1890	0.1009 0.1495 0.1275	0.0451 0.0669 0.0806	0 0	0.2255 0.3977	
group		Method		Mean	95% CI	L Mean	Std Dev	95% CL St	d Dev
RF02 Test Diff Diff	(1-2) (1-2)	Pooled Sattert Method	hwaite	0.0451 0.2341 -0.1890 -0.1890 Variance	-0.0801 0.0485 -0.3750 -0.3796 s	0.1703 0.4197 -0.00302 0.00162 DF t Valu	0.1009 0.1495 0.1275 e Pr > t	0.0604 0.0896 0.0861	0.2898 0.4296 0.2443
		Pooled Satter	thwaite	Equal Unequal	7.01	8 -2.3 51 -2.3	4 0.0472 4 0.0515	2	
				Equali	ty of Var:	iances			
		M	ethod	Num DF	Den DF	F Value	Pr > F		
		F	olded F	4	4	2.20	0.4645		

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=SD25 -----

The TTEST Procedure

Variable: Result

gr	group N		Mean	Std Dev	Std Err	Minimum	Maximum
RF Te Di	702 est ff (1-	5 5 2)	1.1948 1.3335 -0.1387	0.0849 0.1445 0.1185	0.0380 0.0646 0.0749	1.0797 1.1511	1.2989 1.5036
group	М	ethod	Mean	95% CL	Mean	Std Dev	95% CL Std Dev
RF02 Test Diff (1- Diff (1-	2) P 2) S	ooled atterthwaite Method Pooled Satterthwaite	1.1948 1.3335 -0.1387 -0.1387 Variance Equal Unequal	1.0894 1.1541 -0.3115 -0.3189 s DF 6.4707	1.3003 1.5129 0.0342 0.0415 T Value -1.89	$\begin{array}{ccc} 0.0849 \\ 0.1445 \\ 0.1185 \\ \end{array}$ $\begin{array}{ccc} Pr > t \\ 5 & 0.1016 \\ 0.1102 \\ \end{array}$	0.0509 0.2441 0.0865 0.4151 0.0800 0.2270
			Equali	ty of Varia	inces		
		Method	Num DF	Den DF	F Value	Pr > F	

Folded F 4 4 2.89 0.3282

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=SD26/27 -----

The TTEST Procedure

	group		N	Mean	Std Dev	Std	Err	Minimum	Maxin	num
	RF02 Test Diff (1-2)	5 5	1.1948 1.3486 -0.1538	0.0849 0.0813 0.0831	0.0 0.0 0.0)380)363)526	1.0797 1.2580	1.29 1.44	989 149
group		Method		Mean	95%	CL Mean	S	Std Dev	95% CL	Std Dev
RF02 Test Diff Diff	(1-2) (1-2)	Pooled Satterth Method Pooled Sattert	waite hwaite	1.1948 1.3486 -0.1538 -0.1538 Variance Equal Unequal	1.089 1.247 -0.275 -0.275	4 1.30 7 1.44 0 -0.03 0 -0.03 DF t 8	003 195 325 325 Value -2.92 -2.92	0.0849 0.0813 0.0831 Pr > t 0.0192 0.0192	0.0509 0.0487 0.0562	0.2441 0.2336 0.1593
				Equali	ty of Va	riances				
		M∈	thod	Num DF	Den DF	F Va	alue	Pr > F		
		Fc	lded F	· 4	4	1	L.09	0.9340		

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=SD28 -----

The TTEST Procedure

gro	group N		Mean	Std Dev	Std Err	Minimum	Maxim	num
RF0: Tes Dif:	2 t f (1-2)	5 5	1.1948 1.1005 0.0943	0.0849 0.2373 0.1782	0.0380 0.1061 0.1127	1.0797 0.8038	1.29 1.43	89 806
group	Metho	d	Mean	95% C	L Mean	Std Dev	95% CL	Std Dev
RF02 Test Diff (1-2 Diff (1-2) Poole) Satte <u>Meth</u> Pool Satt	d rthwaite od ed erthwait	1.1948 1.1005 0.0943 0.0943 Variance Equal Unequal	1.0894 0.8059 -0.1656 -0.1953	1.3003 1.3952 0.3542 0.3839 DF t Valu 8 0.8 86 0.8	0.0849 0.2373 0.1782 e Pr > t 4 0.427 4 0.440	0.0509 0.1422 0.1204	0.2441 0.6818 0.3414
			Equali	ity of Var	iances			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded	F 4	4	7.80	0.0716		

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=SD30 -----

The TTEST Procedure

	group N		Mean	Std Dev	Std Err	Minimum	Maximum	
	RF02 Test Diff (5 5 1-2)	1.1948 0.7596 0.4353	0.0849 0.1026 0.0942	0.0380 0.0459 0.0596	1.0797 0.6713	1.2989 0.9298	
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std	Dev
RF02 Test Diff (Diff ((1-2) (1-2)	Pooled Satterthwaite Method Pooled Satterthwaite	1.1948 0.7596 0.4353 0.4353 Variance Equal Unequal	1.0894 0.6322 0.2979 0.2971 s DF	1.3003 0.8869 0.5726 0.5734 T Value 7.33 9 7.33	0.0849 0.1026 0.0942 Pr > t 1 <.0001 1 <.0001	0.0509 0 0.0614 0 0.0636 0	.2441 .2947 .1804
			Equali	ty of Varia	ances			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded F	4	4	1.46	0.7239		

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD25 -----

The TTEST Procedure

	group	0	N	Mean	Std Dev	Std Err	Minimum	Maxim	ium
	RF02 Test Diff	(1-2)	5 5	0.6227 0.4498 0.1728	0.1291 0.0773 0.1064	0.0577 0.0346 0.0673	0.4428 0.3453	0.79 0.54	89 27
group		Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
RF02 Test Diff Diff	(1-2) (1-2)	Pooled Sattert Method	thwaite	0.6227 0.4498 0.1728 0.1728 Variance	0.4624 0.3538 0.0177 0.0114	0.7829 0.5459 0.3280 0.3342 F t Valu	$\begin{array}{c} 0.1291 \\ 0.0773 \\ 0.1064 \end{array}$	0.0773 0.0463 0.0719	0.3709 0.2223 0.2038
		Satter	thwaite	Unequal	6.544	7 2.5	0.039	3	
				Equali	ty of Vari	ances			
		Ν	lethod	Num DF	Den DF	F Value	Pr > F		
		E	Folded F	4	4	2.78	0.3451		

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD26/27 ------

The TTEST Procedure

	group	2	N	Mean	Std Dev	Std Err	Minimum	Maxim	num
	RF02 Test Diff	(1-2)	5 5	0.6227 0.5140 0.1087	0.1291 0.0578 0.1000	0.0577 0.0258 0.0632	0.4428 0.4539	0.79 0.60	989)32
group		Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
RF02 Test Diff Diff	(1-2) (1-2)	Pooled Sattert Method Pooled	thwaite	0.6227 0.5140 0.1087 0.1087 Variance Equal	0.4624 0.4422 -0.0371 -0.0492 s DF	0.7829 0.5857 0.2545 0.2666 7 t Valu 8 1.7	$\begin{array}{ccc} 0.1291 \\ 0.0578 \\ 0.1000 \end{array}$ $\begin{array}{ccc} Pr > t \\ 2 & 0.124 \\ 2 & 0.140 \end{array}$	0.0773 0.0346 0.0675	0.3709 0.1660 0.1916
		buccer		Equali	ty of Varia	ances		5	
		Ν	Method	Num DF	Den DF	F Value	Pr > F		
		F	Folded F	4	4	4.99	0.1485		

West Bay Statistical Comparison est Results, This is a z-carrow ----See Summary Page for 1-tail Result 15:50 Tuesday, January 5, 2010 T-test Results, This is a 2-tailed result

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD28 -----

The TTEST Procedure

	group N		Mean S	Std Dev	Std Err	Minimum	Maxim	um
	RF02 Test Diff (5 5 1-2)	0.6227 0.4552 0.1674	0.1291 0.0424 0.0961	0.0577 0.0190 0.0608	0.4428 0.4035	0.79 0.49	89 48
group		Method	Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
RF02 Test Diff Diff	(1-2) (1-2)	Pooled Satterthwaite Method Pooled Satterthwaite	0.6227 0.4552 0.1674 0.1674 Variances Equal Unequal	0.4624 0.4026 0.0273 0.00982 5 DF 8 4.8539	0.7829 0.5079 0.3076 0.3251 t Value 2.76 2.76	$\begin{array}{c} 0.1291 \\ 0.0424 \\ 0.0961 \end{array}$ $\begin{array}{c} Pr > t \\ 0.0248 \\ 0.0413 \end{array}$	0.0773 0.0254 0.0649	0.3709 0.1219 0.1841
			Equalit	y of Varia	nces			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded F	4	4	9.26	0.0533		

15:50 Tuesday, January 5, 2010

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD29 -----

The TTEST Procedure

	group N		Mean	Std Dev	Std Err	Minimum	Maximum	
	RF02 Test Diff (5 5 1-2)	0.6227 0.3936 0.2291	0.1291 0.0749 0.1055	0.0577 0.0335 0.0667	0.4428 0.2752	0.7989 0.4780	
group		Method	Mean	95% CL	Mean	Std Dev	95% CL Std Dev	
RF02 Test Diff Diff	(1-2) (1-2)	Pooled Satterthwaite Method Pooled Satterthwaite	0.6227 0.3936 0.2291 0.2291 Variance Equal Unequal	0.4624 0.3006 0.0752 0.0684 s DF 8 6.4172	0.7829 0.4865 0.3830 0.3899 T t Value 3.4 3.4	$\begin{array}{ccc} 0.1291 \\ 0.0749 \\ 0.1055 \end{array}$ $\begin{array}{ccc} \mathbf{Pr} > t \\ 3 \\ 0.0089 \\ 3 \\ 0.0129 \end{array}$	0.0773 0.3709 0.0448 0.2151 0.0713 0.2021	
			Equali	ty of Varia	inces			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded F	4	4	2.97	0.3163		

West Bay Statistical Comparison est Results, This is a z-carrow ----See Summary Page for 1-tail Result 15:50 Tuesday, January 5, 2010 T-test Results, This is a 2-tailed result

----- Test=Neanthes Endpoint=Individual Growth Treatment=SD30 -----

The TTEST Procedure

	group	þ	N	Mean	Std Dev	Std Err	Minimum	Maxim	um
	RF02 Test Diff	(1-2)	5 5	0.6227 0.5710 0.0516	0.1291 0.1011 0.1159	0.0577 0.0452 0.0733	0.4428 0.4649	0.79 0.73	89 64
group		Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
RF02 Test Diff Diff	(1-2) (1-2)	Pooled Sattert Method Pooled Satter	hwaite thwaite	0.6227 0.5710 0.0516 0.0516 Variance Equal Unequal	0.4624 0.4455 -0.1175 -0.1192 s D 7.566	0.7829 0.6966 0.2207 0.2224 F t Valu 8 0.7 4 0.7	0.1291 0.1011 0.1159 ne Pr > t 20 0.501 20 0.502	0.0773 0.0606 0.0783	0.3709 0.2906 0.2221
				Equali	ty of Vari	ances			
		М	lethod	Num DF	Den DF	F Value	Pr > F		
		F	'olded F	4	4	1.63	0.6478		

15:50 Tuesday, January 5, 2010

----- Test=Larval Endpoint=Percent Normal De Treatment=SD29 -----

The TTEST Procedure

Variable: rankit (Rank for Variable Result)

group	N	Mean	Std Dev	Std Err	Minimum	Maximum
RF02 Test Diff (1-2)	5 5	0.7156 -0.7156 1.4312	0.5923 0.5923 0.5923	0.2649 0.2649 0.3746	6.6E-17 -1.5466	1.5466 6.6E-17

group	Method	Mean	95% CL	Mean	Std Dev	95% CL 3	Std Dev
RF02 Test Diff (1-2) Diff (1-2)	Pooled Satterthwaite	0.7156 -0.7156 1.4312 1.4312	-0.0198 -1.4510 0.5674 0.5674	1.4510 0.0198 2.2950 2.2950	0.5923 0.5923 0.5923	0.3549 0.3549 0.4001	1.7019 1.7019 1.1347

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	3.82	0.0051
Satterthwaite	Unequal	8	3.82	0.0051

Equality of Variances

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.00	1.0000

Biological Testing Results for West Bay Park Sediment Evaluation

APPENDIX C

CHAIN-OF-CUSTODY FORMS

NEWFIELDS			NewFields Nor" west, LLC. Shipping: 4729 View Dr.				CHAIN OF CUSTQ~Y					
			-	Ma Port Tel: (360) 29	ding: P.O. Gamble, V 97-6040, Fa	Box 216 VA. 98364 ax: (360)297-7268				134	40	
Des	tination Lab: NEWFIELDS PT.CA	M34	e Originator: D.	Dinkuhn /P.	eranctr."	χ ^{Report Results To:} Ρ	ana nel	~;*	Phone: 3	w) 471.	3917	
Des	BRIAN HESTER	Contac	t Name: DG.vc	Dinkuhn		Contact Name: D. D	inkuhn		Fax:		<u> </u>	
Tur	10/1/09	Addres	s: 4660 k	citson way, Sui	tc A	Address:			Email:	·····		
1 00	Around lime STANDARD		Brenent	on, WA 9831	2							
Pro	ect Name	Phone:	360 377	0014	*	Analysis		Invoicing To: DAV	ND DINK	UAN)		
	West Bay Park	Fax:	360 479	5961	X			Comments or Special	instructions:	- CUEMI	CAL	
Con	iract/PO;	E-mail	Dinkuhn @	perametrix.com	ASSA			ANA LYS	IS. PER	Sm3(WA	173-204-510	
No	Sample ID	Matrix	No. & Type of Container	Date & Time	B10.			Preservation	Sample Temp Upon Receipt	L	AB ID	
Ľ	WB-5D-5025-2005	S D	1-52	9128 0815	X							
Ŀ	WB-50-5026-0005	<u> </u>		0 945	X							
<u> </u>	WB-50-5027-0005			1000	X						*	
	WB- 50 - 50 28.005			0830	X							
<u>_</u>	WB-50 - 50 29 - 0005			0845	X							
	WB-50-5030-0005			0900	X							
	WB-50-5030-1005			0915	X					•		
L.	WB- 50-5031-0005			V 0930	X							
	WB-50- RF01-0005			9/30 1300	X							
1(WB-50-RF02-0005	\vee	¥	J 1400	X							
11												
12												
13											 .	
14												
1		ļ										
16												
17												
18												
19		, 										
20												
Prin	t Name: Blaine, Handri	Print Name:	Recieved	t by: N V O	Print Name:			Print Name:	Recieved by:	1 mg	Matrix Codes FW = Fresh Waler	
Sigr	Signature: 13 A TALE Signature		NA AIN	1/1 M)	S NA	IN ININIT)	Signature:	nun	d'	SB = Salt & Brackish Water	
Affiliation: PMX			X		Ammiation	NX		Affiliation:	Hew Fields OT = Other			
Dati	ertime: 10/1/09/0850	Date/Time:	1/09/	10850 WHITE - return to originator	Date/Time:	e/Time: Date/Time: VSUCH IN 01/09 1040 Date/Time: 10/01				109 1040		

NewFields North St, LLC. Shipping: 4729 N w Dr. Mailing: P.O. Box 216 Port Gamble, WA. 98364 Tel: (360) 297-6040, Fax: (360)297-7268

Dest	ination Lab: Paranetrix	Samp	le Orlginator: N	en Fields		Report R	esults To:	100 ANY 1		Phone:	
Dest	nation Contact, David Oin Kung	Contac	^{ct Name:} B/161~	Hester		Contact N	ame:			Fax:	
Turn	10.37.01	Addres	58: R			Address:				Email:	
Proje	ect Name	Phone	£		1		0.00		Involcing To:		
		Fax:				Ana	llysis	<u> </u>	Comments or Special	Instructions:	
Cont	racVPO:	E-mail									
No.	Sample ID	Matrix	No. & Type of	Date & Time					Preservation	Sample Temp Upon Receipt	LAB ID
	WB-512-51736/22-0005	55	Container	10 2709 187				ia boli da National	401		
2	<u>, , , , , , , , , , , , , , , , , , , </u>	- 2.5	3 000 0	10 10 1 120					<u> 1 </u>		
3											
4											
5											
6	· · · · · · · · · · · · · · · · · · ·										
<u>/</u> 8				2 							
9											
10											
11											
12											
13											
19											
16	4										
17	1										
18											
19											
20	Relinquished by:		Recleved	by:		Relinqui	shed by:			Recleved by:	Matrix Codes
Print	Name Briga Hester	Print Name:	UDDIA	JZVHN	Print Name	•			Print Name:		FW = Fresh Water WW = Waste Water
Sign	alure:	Signature	app	ma	Signature:				Signature:		SB = Self & Brackish Water
Affilia	ation: Nr-Fields	Amilation:	mx	<u></u>	Affiliation:				Affiliation:		TS = plant & Animal Tissue
Date	Time: 12/19 12/11	Date/Time:	ioligala	9 0875	Date/Time:				Date/Time:		OT = Other
100362			<u></u> v	1				HER SAME	Realized in the second second		