Remedial Investigation Feasibility Study Report Sudbury Road Landfill Walla Walla, Washington

September 15, 2014

Prepared for: City of Walla Walla

Prepared by

Remedial Investigation Feasibility Study Report Sudbury Road Landfill Walla Walla, Washington

September 15, 2014

Prepared for

City of Walla Walla 55 Moore Street Walla Walla, WA 99362

Prepared by

4621 South Custer Spokane, WA 99223

In Association With

FLOYD | SNIDER 601 Union St, Suite 600 Seattle, WA 98101

200 Sixth Avenue, Suite 1100 Seattle, WA 98121

J-U-B ENGINEERS. INC. 2810 W. Clearwater Avenue, Suite 201 Kennewick, WA 99336

TABLE OF CONTENTS

1.0	INTRODUCTION				
	1.1	1.1 PURPOSE AND OBJECTIVES			
	1.2	REPORT ORGANIZATION	1-2		
	1.3	SITE DESCRIPTION AND SETTING			
		1.3.1 Surrounding Land Use	1-2		
		1.3.2 Surrounding Residential Populations	1-2		
		1.3.3 Beneficial Use	1-3		
		1.3.3.1 Water Uses and Water Rights	1-3		
		1.3.3.2 Ecological Resources	1-5		
		1.3.3.3 Cultural Resources	1-6		
		1.3.4 Geomorphology and Drainage	1-6		
		1.3.5 Site Geology	1-6		
		1.3.6 Hydrogeology	1-7		
	1.4	LANDFILL HISTORY AND DESCRIPTION	1-8		
		1.4.1 Landfill Development	1-9		
		1.4.2 Waste Disposal Process	1-9		
		1.4.2.1 Area 1	1-9		
		1.4.2.2 Area 2	1-10		
		1.4.2.3 Area 5	1-11		
		1.4.2.4 Area 6	1-12		
		1.4.2.5 Area 7	1-13		
		1.4.2.6 Asbestos Waste Area (Area 4)	1-14		
		1.4.2.7 Medical Waste Trench (Area 3)	1-15		
		1.4.2.8 Compost Area	1-16		
		1.4.3 Regulatory Criteria	1-16		
		1.4.4 Waste Composition	1-17		
	1.5	GROUNDWATER MONITORING	1-18		
		1.5.1 Monitoring Well Installations	1-18		
		1.5.2 Compliance Groundwater Monitoring Program	1-19		
		1.5.3 Summary of Groundwater Contamination	1-19		
		1.5.3.1 Area-wide Contamination	1-19		
		1.5.3.2 Localized Landfill Contamination	1-20		
		1.5.4 Prior Groundwater Studies	1-20		
	1.6	INTERIM ACTIONS	1-21		
		1.6.1 Area 6 Closure	1-21		
		1.6.2 North Drainage Stormwater Controls	1-21		
2.0	RI S	RI SCOPE AND METHODS			
	2.1	GEOPHYSICAL SURVEY	2-2		
	2.2	TEST PIT EXCAVATIONS	2-2		
	2.3	DRILLING PROGRAM	2-4		
		2.3.1 Soil Borings	2-4		
		2.3.2 Groundwater Monitoring Wells	2-4		
		2.3.3 Landfill Gas Monitoring Wells	2-5		
	2.4	SOIL SAMPLING	2-6		
	2.5	5 GROUNDWATER MONITORING			
	2.6	5 DATA VALIDATION			
	2.7	LANDFILL GAS MONITORING AND SAMPLING	2-9		

		2.7.1	Monitoring Program	2-9
		2.7.2	Area 2 Barhole Monitoring	2-9
		2.7.3	Gas Sampling Procedures	2-9
		2.7.4	Area 6 Landfill Gas Extraction System Evaluation	2-11
		2.7.5	Indoor Air Intrusion Evaluation	2-11
	2.8	AQUI	FER TESTING	2-11
	2.9	SURV	Ϋ́EY	2-12
3.0	RI F	IELD IN	IVESTIGATION FINDINGS	3-1
	3.1	DISPO	DSAL AREA CHARACTERIZATION	3-1
		3.1.1	Area 1	3-2
		3.1.2	Area 2	3-2
		3.1.3	Area 5	3-2
			3.1.3.1 Area 5 Stormwater	3-3
	3.2	SOIL	SAMPLE RESULTS	3-4
		3.2.1	Geotechnical Soil Characterization	3-4
		3.2.2	Soil Analytical Results	3-4
	3.3	LAND	DFILL GAS INVESTIGATION	3-5
		3.3.1	Barhole Probe Survey	3-5
		3.3.2	Landfill Gas Monitoring	3-5
			3.3.2.1 Methane	3-5
			3.3.2.2 Volatile Organic Compounds	3-6
		3.3.3	Area 6 Landfill Gas Extraction System Evaluation	3-8
		3.3.4	Vapor Intrusion Evaluation	3-9
	3.4	AQUI	FERCHARACTERIZATION	3-9
	3.5	GROU	JNDWATER LEVELS, FLOW DIRECTION, AND RATE	3-10
	3.6	GROU	JNDWATER QUALITY EVALUATION	3-11
		3.6.1	Area-wide Groundwater Quality	3-12
			3.6.1.1 Regional Groundwater Quality	3-12
			3.6.1.2 Domestic Well Groundwater Quality	3-12
		3.6.2	MW-15 Groundwater Quality	3-13
		3.6.3	Landfill Well Groundwater Quality, Excluding MW-15	3-15
		3.6.4	Downgradient Off-Site Well Groundwater Quality	3-16
4.0	CON	ISTITU.	ENTS OF CONCERN, PROPOSED DRAFT CLEANUP LEVELS, AND F	POINTS OF
	CON	IPLIAN	NCE	4-1
	4.1	CHEM	AICALS IDENTIFIED IN GROUNDWATER	4-1
	4.2	DRAF	T CLEANUP LEVELS AND CONSTITUENTS OF CONCERN	4-2
		4.2.1	Groundwater Screening Levels and Constituents of Concern	4-2
			4.2.1.1 Applicable Groundwater Screening Levels	4-2
			4.2.1.2 Groundwater Screening Levels	4-2
			4.2.1.3 Proposed Draft Groundwater Cleanup Levels	4-3
	4.3	POINT	IS OF COMPLIANCE	4-4
5.0	CON	ICEPTU	JAL SITE MODEL	5-1
	5.1	SUSPI	ECTED SOURCES OF HAZARDOUS SUBSTANCES	5-1
	5.2	CONT	TAMINATED MEDIA	5-2

		5.2.1	Soil	5-2		
		5.2.2	Groundwater	5-2		
			5.2.2.1 Maximum Beneficial Use	5-2		
			5.2.2.2 Area-wide and Domestic Well Groundwater	5-2		
			5.2.2.3 Localized Groundwater near MW-15	5-3		
			5.2.2.4 Landfill Area Groundwater	5-3		
		5.2.3	Landfill Gas	5-3		
		5.2.4	Stormwater	5-4		
	5.3	FATE	AND TRANSPORT	5-4		
	5.4	RECE	PTORS/PATHWAYS OF EXPOSURE	5-5		
		5.4.1	Terrestrial Ecological Evaluation Exclusion	5-5		
6.0	REMEDIAL ACTION REQUIREMENTS					
	6.1	MTCA	A CLEANUP REQUIREMENTS	6-1		
	6.2	APPL	ICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS	6-2		
	6.3	REDE	VELOPMENT AND LAND USE GOALS	6-3		
7.0	PRE	PRELIMINARY REMEDIAL ALTERNATIVES SCREENING 7-1				
	7.1	IDEN	TIFICATION OF REMEDIAL ACTION OBJECTIVES	7-1		
	7.2	SCRE	ENING CRITERIA	7-2		
	7.3	EVAL	UATION OF CLEANUP ALTERNATIVES	7-2		
		7.3.1	Threshold Requirements	7-2		
		7.3.2	Requirement for Permanent Solution to the Maximum Extent Practicable	7-2		
		7.3.3	Requirement for a Reasonable Restoration Timeframe	7-4		
		7.3.4	Requirement for Consideration of Public Concerns	7-4		
	7.4	LANE	OFILL REMEDY COMPONENTS	7-4		
		7.4.1	Landfill Cap, Including Stormwater Controls	7-4		
		7.4.2	Source Area Groundwater Controls, Including Leachate Controls	7-4		
		7.4.3	Landfill Gas Collection and Treatment	7-5		
		7.4.4	Institutional Controls to Supplement Engineering Controls	7-5		
		7.4.5	Long-term Monitoring of Engineering Controls	7-5		
	7.5	TECH	NOLOGIES RETAINED IN REMEDIAL ALTERNATIVES FOCUSING ST	UDY 7-5		
		7.5.1	No/Limited Action	7-6		
		7.5.2	Monitored Natural Attenuation	7-6		
		7.5.3	Hydraulic Containment	7-6		
		7.5.4	Source Controls	/-/		
			7.5.4.1 Landfill Gas Extraction and Treatment	7-7		
			7.5.4.2 Leachate Controls, Including Capping	7-7		
		TEQU	7.5.4.3 Stormwater Controls	7-8		
	/.6	TECH	NOLOGIES RETAINED FOR FURTHER EVALUATION	7-8		
8.0	DET	AILED	EVALUATION OF REMEDIAL ALTERNATIVES	8-1		
	8.1	LAND	FILL GAS COLLECTION AND TREATMENT	8-1		

		8.1.1	Landfill Gas Control Methods	8-1			
			8.1.1.1 Passive Control	8-2			
			8.1.1.2 Convertible Control Systems	8-2			
			8.1.1.3 Active Control	8-2			
		8.1.2	Landfill Gas Control Features	8-3			
			8.1.2.1 Passive Collector Trench System	8-3			
			8.1.2.2 Active Collector Trench System	8-4			
			8.1.2.3 Active Extraction Well System	8-4			
			8.1.2.4 Venting Well System	8-5			
		8.1.3	Landfill Gas Treatment Systems	8-5			
		8.1.4	Landfill Gas Control System Evaluation and Configuration	8-7			
			8.1.4.1 Area 1	8-7			
			8.1.4.2 Area 2	8-8			
			8.1.4.3 Area 5	8-9			
		8.1.5	Compliance with MTCA Requirements and ARARs	8-10			
	8.2	LAND	DFILL CAP	8-10			
		8.2.1	Areas Considered for Landfill Cap	8-10			
		8.2.2	Conventional Cover with Geomembrane	8-11			
		8.2.3	Evapotranspiration Cover	8-11			
		8.2.4	Compliance with MTCA Requirements and ARARs	8-12			
	8.3	STOR	MWATER CONTROLS	8-12			
		8.3.1	Stormwater Areas of Concern	8-12			
		8.3.2	North Drainage Ditch	8-13			
			8.3.2.1 Alternative 1: Cast-In-Place Concrete Channel	8-13			
			8.3.2.2 Alternative 2: Cable-Block Channel	8-14			
			8.3.2.3 Alternative 3: Precast Concrete Channel	8-14			
		8.3.3	Area 5 Stormwater Erosion	8-15			
			8.3.3.1 Area 5 Stormwater Run-off	8-15			
		0.0.4	8.3.3.2 Area 5 Stormwater Run-on	8-15			
		8.3.4	Re-Grading Areas 2 & 5	8-17			
		8.3.5	Compliance with MTCA Requirements and ARARs	8-17			
9.0	PRE	PREFERRED REMEDIAL ALTERNATIVE					
	9.1	DESC	RIPTION OF PREFERRED REMEDIAL ALTERNATIVE	9-1			
		9.1.1	Landfill Cap	9-1			
		9.1.2	Stormwater Controls	9-2			
			9.1.2.1 North Drainage Ditch	9-3			
			9.1.2.2 Area 5 Stormwater Run-on	9-3			
		012	9.1.2.5 Area 5 Storniwater Kun-on	9-3			
		9.1.5	Landini Gas Controls	9-4			
			9.1.3.1 Alta 1 0.1.3.2 Area 2	9-4			
			9.1.3.2 Area 5	9-4			
	02	LONG	$\mathbf{S} = \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F}$	9-5			
).2	0 2 1	Groundwater	9-5			
		9.2.1	Landfill Gas	9-J Q_K			
		923	Landfill Cover	9-0 9_7			
		974	Stormwater Controls	9_7			
	93	INSTI	TUTIONAL CONTROLS	9_7			
	94	RESTORATION TIME FRAME 9.					
	9.5	ESTIN	MATED COSTS	9-9			

		9.5.1	Estimate	ed Cost of Preferred Alternative	9-9
		9.5.2	Estimate	ed Long-Term Monitoring Costs	9-9
		9.5.3	Total Es	timated Cost	9-10
	9.6	ATTA	INMENT	OF REMEDIAL ACTION OBJECTIVES	9-10
		9.6.1	Complia	nce with MTCA Requirements	9-10
			9.6.1.1	Threshold Requirements	9-10
			9.6.1.2	Requirements for Containment Systems	9-11
			9.6.1.3	Compliance with ARARs	9-12
			9.6.1.4	Chemical-specific ARARs	9-12
			9.6.1.5	Location-specific ARARs	9-12
			9.6.1.6	Action-specific ARARs	9-12
10.0	DRA	AFT CLE	EANUP A	CTION PLAN	10-1

11.0 REFERENCES

11-1

TABLETITLE

- 1 Well Construction Summary
- 2 Cover and MSW Thickness Summary
- 3 Soil Sample Analytical Data
- 4 Barhole Monitoring Results
- 5 Gas Well Monitoring Results
- 6 Landfill Gas VOC Data
- 7 Groundwater Analytical Data
- 8 Statistical Summary of Groundwater VOC Data
- 9 Statistical Summary of North Drainage Groundwater Data
- 10 Proposed Cleanup Levels for Groundwater
- 11 Initial Screening of Technologies and Process Options
- 12 Landfill Gas Control Technologies

FIGURE TITLE

- 1 Site Location
- 2 Vicinity Map
- 3 Remedial Investigation Exploration Locations
- 4 Locations of Geologic Cross Sections
- 5 Geologic Cross Section A-A'
- 6 Geologic Cross Section B-B'
- 7 Groundwater Elevation Map June 2012
- 8 Groundwater Elevation Map October 2012
- 9 Groundwater Elevation Map February 2013
- 10 Groundwater Elevation Trend
- 11 2005 Independent RI Locations
- 12 Area 2 Explorations
- 13 Area 5 Explorations
- 14 Landfill Gas Monitoring Results
- 15 Landfill Gas Monitoring Results (Barhole Detail)
- 16 Average RI Concentration of TCE and PCE
- 17 Proposed Landfill Gas Extraction Well Systems, Areas 1, 2, and 5
- 18 Stormwater Control Alternatives, Plates 1–6

APPENDIX TITLE

- A Boring and Well Construction Logs
- B Geophysical Investigation Report
- C Geotechnical Soils Report
- D Laboratory Analytical Reports
- E Aquifer Characterization Report
- F Groundwater Quality Trends and Box Plots
- G Historical Groundwater Data Summary
- H HWA GeoSciences Memorandum
- I Remediation Cost Estimates
- J Proposed Draft Cleanup Action Plan Text

LIST OF ABBREVIATIONS AND ACRONYMS

AO	Agreed Order No. 8456
ALS	ALS Environmental, Inc.
ARAR	Applicable or relevant and appropriate requirement
ASIL	Ambient source impact level
bgl	Below ground level
BNSF	BNSF Railway Company
CAP	Cleanup Action Plan
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
City	City of Walla Walla, Washington
CLP	Contract Laboratory Program
cm/sec	Centimeters per second
COC	Constituent of concern
CSI/A	Contaminant Source Identification/Assessment
DCA	Disproportionate cost analysis
DCAP	Draft Cleanup Action Plan
Ecology	Washington State Department of Ecology
EDR	Environmental Data Resources, Inc.
EM	Electromagnetic
FEMA	Federal Emergency Management Agency
ET	Evapotranspiration
Freon 11	Trichlorofluoromethane
Freon 12	Dichlorodifluoromethane
FS	Feasibility Study
ft²/day	Square feet per day
ft/ft	Feet per foot
ft/sec	Feet per second
GCL	Geosynthetic clay liner
gpm	Gallons per minute
HASP	Health and Safety Plan
HDPE	High-density polyethylene
Herrera	Herrera Environmental Consultants, Inc.
HHWF	Household Hazardous Waste Facility

HWA	HWA GeoSciences, Inc.
LCRS	Leachate collector and removal system
LF	Linear feet
LFG	Landfill gas
LHG	Washington State Licensed Hydrogeologist
MAG	Magnetic
MCL	maximum contaminant level
MFS	Minimum functional standards
µg/L	Micrograms per liter
mg/L	Milligram per liter
mL/min	Milliliters per minute
MNA	Monitored natural attenuation
MRL	Method reporting level
MSW	Municipal solid waste
MTCA	Washington State Model Toxics Control Act
NGS	National Geodetic Survey
NMOC	Non-methane organic compound
NAVD 88	North American Vertical Datum of 1988
OSWER	Office of Solid Waste and Emergency Response
PCB	Polychlorinated biphenyl
PCE	Tetrachloroethene
PP&L	Pacific Power and Light
PVC	Polyvinyl chloride
QAPP	Quality Assurance Project Plan
RA	Remedial alternative
RAO	Remedial action objective
RCW	Revised Code of Washington
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
SAP	Sampling and Analysis Plan
SCFM	Standard cubic feet per minute
Schwyn	Schwyn Environmental Services, LLC
SDG	Sample delivery group
Site	Sudbury Road Landfill

SM	Standard method
SQER	Small quantity emission rate
SVOC	Semivolatile organic compound
TAP	Toxic air pollutant
TCE	Trichloroethene
TDS	Total dissolved solids
TOC	Total organic carbon
TWL	Tausick Way Landfill
USEPA	U.S. Environmental Protection Agency
VOC	Volatile organic compound
Work Plan	Data Summary and Remedial Investigation Work Plan
WAC	Washington Administrative Code
WSDOT	Washington State Department of Transportation
WSP	Washington State Penitentiary
WWCHD	Walla Walla County Health Department
Zonge	Zonge International

THIS PAGE LEFT INTENTIONALLY BLANK

SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

The technical material and data contained in this Remedial Investigation/Feasibility Study document were prepared by Schwyn Environmental Services, LLC, with assistance from Floyd|Snider, Inc., Herrera Environmental Consultants, Inc., J-U-B Engineers, Inc., and USKH, Inc., under the supervision and direction of the undersigned Washington Licensed Hydrogeologist.

Craig C. Schwyer

Craig C. Schwyn, LHG Principal Hydrogeologist

September 15, 2013

Date

THIS PAGE LEFT INTENTIONALLY BLANK

1.0 INTRODUCTION

This City of Walla Walla, Washington (City) Sudbury Road Landfill (Site) Remedial Investigation (RI)/Feasibility Study (FS) Report has been prepared pursuant to Agreed Order No. 8456 (AO) between the City and the Washington State Department of Ecology (Ecology) effective May 26, 2011. This RI/FS was prepared in accordance with the AO, the Washington State Model Toxics Control Act (MTCA), Chapter 70.105D of the Revised Code of Washington (RCW), and the Washington Administrative Code (WAC) regulations, Chapter 173-340 WAC (Ecology 2007).

1.1 PURPOSE AND OBJECTIVES

The RI/FS was conducted to determine the nature and extent of contamination associated with the landfill and evaluates remedial actions appropriate for the Site. The RI incorporates exploration activities conducted in accordance with the Data Summary and Remedial Investigation Work Plan (Work Plan), Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP) (Schwyn 2011) approved by Ecology on January 6, 2012 (Ecology 2012a) and additional field work tasks described in the Sudbury RI Data Gap Review Memorandum (Schwyn 2012) approved by Ecology on August 9, 2012 (Ecology 2012b). The RI portion of this report (Sections 1 through 4) describes the methods used and data collected to close data gaps and characterize the nature and extent of contamination related to the Site. Section 5 presents a conceptual site model that provides the foundation for defining the objectives of the FS.

The purpose of the FS is to develop and evaluate applicable cleanup alternatives and recommend a preferred cleanup alternative for the Site in accordance with Chapters 173-340-350 through 173-340-390 WAC. Based on the results of the RI/FS, a Draft Cleanup Action Plan (CAP) will be prepared for submittal to Ecology in order to satisfy the requirements of the AO. The FS develops the focused set of Site applicable remedial alternatives that were presented and approved by Ecology in the Remedial Alternatives Focusing Study [RA Focusing Study (Schwyn 2013a)]. A list of potential cleanup action technologies were developed in the RA Focusing Study based on the nature and sources of the constituents of concern (COCs) identified for the Site, the environmental medium of concern (groundwater), and the potential exposure pathway (drinking water). Potentially applicable cleanup action technologies were screened against the criteria described in WAC 173-340-350(8)(b) and WAC 173-340-360(2)(a)(b) and a focused list of remedial alternatives was developed for review and approval by Ecology. The RA Focusing Study provided the basis for the alternatives that are further developed as part of this FS.

1.2 REPORT ORGANIZATION

The report is organized as follows:

- Section 1 summarizes existing data and information related to the Site;
- Section 2 presents the RI scope and methods;
- Section 3 presents the RI findings;
- Section 4 establishes draft cleanup levels and COCs;
- Section 5 presents a conceptual site model;
- Section 6 describes the remedial action requirements;
- Section 7 identifies the remedial action objectives (RAOs) and describes the preliminary remedial alternatives screening methodologies;
- Section 8 provides a detailed evaluation of the screened remedial alternatives;
- Section 9 describes the preferred remedial alternative;
- Section 10 presents text for a possible draft cleanup action plan; and
- Section 11 provides references for the sources of information cited throughout the report.

1.3 SITE DESCRIPTION AND SETTING

According to the AO, the Site is referred to as the Sudbury Road Landfill and is generally located at 414 Sudbury Road (now Landfill Road), Walla Walla, Washington 99362, about 4 miles west of the City of Walla and ¼ mile north of Highway 12, in the southwest quarter of Section 14, southeast quarter of Section 15, northeast quarter of Section 22, and northwest quarter of Section 23, Township 7 North, Range 35 East, Willamette Meridian (Figure 1). The landfill area itself is approximately 125 acres and is located in the western portion of an 828.86-acre City-owned parcel of land zoned and used for various waste management purposes (Figure 2). The Site is designated by Ecology as Facility No. 4446540. The AO defines the Site as the extent of contamination caused by the release of hazardous substances at the Site. The Site constitutes a Facility according to RCW 70.105D.020(5).

1.3.1 SURROUNDING LAND USE

The landfill is located in rural southeastern Washington and entirely surrounded by large expanses of rolling land used for dry-land wheat farming. The northern border of the landfill is defined by the 100-foot-wide BNSF Railway Company (BNSF) right-of-way, which was abandoned in 1988. The Washington State Penitentiary (WSP) is located immediately east of the City property, about 6,400 feet east of the landfill. The new State Highway 12 right-of-way lies approximately 300 feet south of the landfill entrance station and approximately 1,200 feet south of the landfill disposal areas. No significant changes to these land uses in the vicinity of the Site are expected in the near future.

1.3.2 SURROUNDING RESIDENTIAL POPULATIONS

Rural housing is located south of State Highway 12, approximately 500 feet south of the landfill scale house and more than 1,400 feet from the southern boundary of the landfill disposal area. Three

residences are located to the west of the landfill, between 4,500 feet and more than 8,000 feet from the western landfill boundary. One additional residence lies approximately 9,000 feet southwest of the landfill. The nearest residence north of the landfill is over 7,500 feet away. The WSP and its inmate population are located immediately east of the Site property boundary and more than 1.2 miles east of the landfill itself.

1.3.3 BENEFICIAL USE

According to Chapter 173-200 WAC (Ecology 1990), beneficial uses for waters of the state are defined as the "uses of waters of the state which include but are not limited to use for domestic, stock watering, industrial, commercial, agricultural, irrigation, mining, fish and wildlife maintenance and enhancement, recreation, generation of electric power and preservation of environmental and aesthetic values, and all other uses compatible with the enjoyment of the public waters of the state."

The land use, ecological resources, and cultural resources were considered herein because surface water and groundwater quality may influence other resources and their beneficial uses. To evaluate the potential beneficial uses in the vicinity of the landfill, in 2011 Environmental Data Resources, Inc. (EDR) conducted a search of state, federal, and local databases, as well as independent searches of State of Washington Water Resources and Water Well information databases. Beneficial use information and reports are discussed in the Work Plan. Surrounding land uses and wells are shown on Figure 2.

The potential beneficial uses that may be affected by activities at the landfill if a complete pathway of exposure to Site contaminants is present are the following:

- Water uses and water rights:
 - Groundwater (domestic, municipal, industrial, stock watering, or irrigation); and
 - Surface water (irrigation, stock watering),
- Ecological resources:
 - Wetland areas;
 - Threatened and endangered species habitat areas; and
 - Floodplain,
- Cultural resources:
 - Historic sites; and
 - U.S. Indian reservations.

1.3.3.1 Water Uses and Water Rights

Groundwater Use

Two active supply wells, Well #2 (also referred to as MW-2) and the Garver well, are used for landfill operations. The Garver well is located east of the landfill; it is 1,227 feet deep, constructed in the basalt aquifer, and used for dust control. Well #2 is located south of Area 5 and west of Area 6 (Figure 3). Well #2 is 155 feet deep and constructed in the gravel aquifer; the water is used for dust control, the

compost facility, and nonpotable purposes. Bottled drinking water is provided at the Site for potable purposes.

Searches for groundwater use in the vicinity of the landfill focused on wells and water rights within 1.5 miles of the landfill in the hydraulically downgradient directions (northwest, west, and southwest), and 2,000 feet of the landfill in the upgradient and cross-gradient directions (north, east, and south). The search distances conservatively encompass a region around the landfill that could possibly be affected by Site releases. Well information for surrounding properties was collected from several sources: EDR searches; Ecology's water rights information database (Water Resources Explorer, March 9, 2013), which provided copies of water right certificates and other documents detailing location, quantities of water allowed, and original water right holder were obtained; Ecology's Well Log Database (March 9, 2013), which provided available well logs maintained by Ecology detailing depth of well and information on the screened aquifer. In some cases, property owners provided well information and allowed sampling. No new water well reports were available since the Work Plan was published (refer to the Work Plan for water well report documentation).

No residences or water use was evident within the 2,000-foot search area north and east of the landfill. As mentioned above, the nearest wells to the northwest, west, and southwest are approximately 1 to 1.5 miles from the landfill boundary. The WSP is located approximately 1.2 miles east of the landfill. The resident populations of the State Penitentiary are provided City water for potable purposes. The penitentiary grounds are irrigated with well water. The penitentiary property is hydraulically upgradient of the Site and is not affected by landfill activities.

The area south of the landfill is generally rural residential housing. Two water districts provide water to most of the rural housing developments located south of State Highway 12. Several properties maintain water rights related to domestic or irrigation wells that are listed as active. Only two of these properties are within the 2,000-foot search area (see Figure 2):

- The Smith well property, located approximately 1,800 feet south of the landfill, has a certified water right on file with Ecology that allotted up to 11 acre-feet per year to be withdrawn from the old gravel and clay aquifer for irrigation and domestic purposes (Ecology Water Resources Explorer Record #G3-24731CWRIS).
- The Bonneville Power Administration property and substation is located 2,000 feet south of the landfill (3072 Heritage Road) and maintains an active water right (Water Resources Explorer). Several test wells are located on the property [well logs are available in the Hydrogeologic Report (EMCON 1995)], but one well is listed for domestic use. The domestic use well was originally installed in 1941 to a depth of 515 feet into the bedrock and then reconditioned in 1976. No water right information is available for this well in the Ecology Water Resources Explorer.

Four residential properties located northwest, west, and southwest of the landfill maintain their own domestic wells for water supply (Figure 2). No water rights were available in Ecology's Water Resources Explorer for any of these four well users:

- The Camp well is located approximately ³/₄ mile northwest of the landfill and owned by Camp Properties. A well log is not available for the well.
- The Small well is located approximately ³/₄ mile west of the landfill on a parcel owned by Mark and Kathleen Small. The well was installed in 1998 to a depth of 100 feet and is screened within gravels.
- The Kinman well is located approximately 1.5 miles west of the landfill and designated for domestic use. The well was installed in 2002 to a depth of 180 feet. The well is screened within a water-bearing gravel layer (Kinman well log).
- Two wells are located on the Schmidt property, which is located approximately 1.5 miles southwest of the landfill. One of the wells is 122 feet deep and designated for domestic purposes. The other well is 780 feet deep, constructed in basalt, and designated for irrigation purposes. No water rights are available for the irrigation well at this time.

Surface Water Use

No perennial creeks or waterways are located within 2,000 feet of the landfill. Three creeks or intermittent streams are identified within 1 mile of the landfill. Mill Creek is the largest and located approximately 1 mile south of the landfill in the Walla Walla Valley. Mud Creek, which is an intermittent stream, lies more than ¹/₂ mile northwest of the landfill at its closest point. A tributary of Mud Creek extends along the northern boundary of the landfill (the north drainage ditch). Several surface water rights are listed on Mud Creek and its tributaries. Very little information is available regarding whether these surface water rights are actively used.

1.3.3.2 Ecological Resources

No officially designated wilderness areas, wildlife preserves, or state-designated critical habitat areas are located within a mile of the landfill. Bald eagles, steelhead trout, and bull trout are endangered species listed for Walla Walla County; however, no critical habitat for these species is present at the landfill. Endangered salmon and steelhead species are also listed for Walla Walla County, but they are limited to the Walla Walla River, Mill Creek, the Snake River, and the Columbia River; therefore, no impacts on these species due to the landfill would be expected (refer to relevant material from the EDR Report that is included in the Work Plan).

The National Wetland Inventory identifies wetland areas within the Mill Creek basin, just over a mile from the landfill. No wetlands are identified within 2,000 feet of the landfill.

The nearest 100-year floodplain mapped by the Federal Emergency Management Agency (FEMA) is on Mill Creek, and it does not affect the Site.

1.3.3.3 Cultural Resources

No state or federal historic sites or U.S. Indian Reservations are located within a 1-mile radius of the landfill.

1.3.4 GEOMORPHOLOGY AND DRAINAGE

The Sudbury Road Landfill is located on Pleistocene terrace deposits on the northern flank of the Walla Walla Valley. The terrace surface has been dissected by intermittent drainages formed entirely in unconsolidated soils of the Palouse Formation and the Touchet beds. The southern City property boundary generally coincides with the edge of the terrace, where it drops steeply (approximately 50 feet) down to the Mill Creek and Walla Walla River floodplain (EMCON 1995).

The Site topography ranges in elevation from 904 feet [all elevations referenced to the North American Vertical Datum of 1988 (NAVD 88)] at the top of Area 6 to 782 feet in the southern drainage area (Figure 3). Natural slopes in the area are 20 percent or less (EMCON 1995).

The landfill area consists of a central plateau with elevations dropping to the north, east, and south. The elevation of the central plateau is approximately 840 feet in the vicinity of Well #2. Drainage bottoms located to the south and north lie at approximately 782 and 790 to 800 feet, respectively. The landfill disposal cells have historically been cut into the central plateau or built up on the side slopes of the plateau.

Intermittent drainages flow to the west and southwest around the landfill disposal areas. One intermittent drainage originates in the upland terrace to the east of the landfill and wraps around the east and south edges of Areas 1 and 7 (Figure 2). Another drainage borders the north side of Areas 5 and 6, originating near a minor drainage divide approximately 1,000 feet northeast of Area 7. The drainage extends west to southwest along the northwest property boundary. The draw is commonly called the "north drainage ditch."

Historically, stormwater passed through the north drainage ditch and flowed off-Site to the west, toward Mud Creek. During the last 100 years, the "natural channel" in the landfill area was altered significantly by the Northern Pacific Railroad and by agricultural activities that follow the channel to Mud Creek. More recently, stormwater drainage from portions of municipal solid waste (MSW) disposal Areas 5, 6, and 7 and from farmland north of the landfill was diverted to the north drainage ditch. Stormwater retention ponds (excavated pits) were constructed adjacent to Area 5, where the stormwater either infiltrated the soils and/or evaporated, rather than flowing off-Site.

1.3.5 SITE GEOLOGY

The Site lies on the northern flank of the Walla Walla Valley. The valley is bounded on the east by the Blue Mountains, which consist of a northeast-trending uplifted arch of Columbia River basalt; to the south by Horse Heaven Ridge, which is an extension of the Yakima Fold Belt; and to the north by the Touchet slope, which is an undulating surface of the Columbia Plateau that slopes gently southeast into the Walla Walla Valley. The Walla Walla Valley ends at the Columbia River at Wallula, approximately 27 miles west of the Site.

The subsurface geology beneath the landfill consists of (from upper to lower) Palouse silt; reworked lacustrine silt and clay of the Touchet beds; interbedded alluvial gravels in a clayey, silty, or sandy matrix, underlain by a basal unit informally termed the "old gravel and clay" by R.C. Newcomb (Newcomb 1965); and Columbia River basalt. The unconsolidated to semi-consolidated deposits overlying the Columbia River basalt may be 600 feet or more in thickness.

Vadose zone soils in the landfill area consist of silt, clayey silt, and fine sandy silt, which are interpreted to be soils of the Palouse Formation and the Touchet beds. These silty soils exhibit laboratory permeabilities in the range of 10⁻⁶ to 10⁻⁵ centimeters per second (cm/sec) (EMCON 1995; Schwyn 2010a). Underlying the silty soils is a unit consisting of consolidated to semi-consolidated, poorly graded gravel, silty gravel, and silt, which are interpreted to correlate with the "old gravel and clay" unit. Remolded samples of the gravelly silt unit indicated permeability on the order of 10⁻⁷ cm/sec (EMCON 1995). Geologic cross sections of the Site are shown on Figures 4, 5, and 6.

1.3.6 Hydrogeology

During the RI, groundwater was first encountered beneath the Site at depths from approximately 30 to 87 feet below ground level (bgl) in the lower silt horizon of the Touchet beds and/or the underlying alluvial gravel termed the "old gravel and clay" aquifer. This aquifer is locally used for domestic water supply purposes. Groundwater elevation contour maps constructed with depth-to-groundwater measurements collected during the June and October 2012 and February 2013 monitoring events are provided on Figures 7, 8, and 9.

The inferred groundwater flow direction is to the west and southwest, with an approximate horizontal gradient of 0.004 feet per foot (ft/ft) beneath the landfill. A vertical downward gradient was noted between the water levels in MW-3 and MW-15 (752.30 and 756.56 feet, respectively, in February 2013).

The groundwater levels in the vicinity of the landfill have been declining since 1997. Between 1997 and 2013, the water level has declined as much as 10 feet in MW-12 (resulting in the deepening of the well in 2008). The water level trends in selected landfill monitoring wells are shown on Figure 10.

The horizontal hydraulic conductivity (geometric mean) of the uppermost aquifer beneath the Site is 1.52×10^{-3} cm/sec, based on rising head slug tests conducted in monitoring wells MW-1, MW-3, MW-11, and MW-12 (EMCON 1995). Based on this information and an effective porosity of 0.3, the average groundwater flow velocity beneath the Site has been reported to be approximately 2.03 x 10^{-5}

cm/sec (21 feet per year). Pumping and recovery tests conducted during the RI with the use of a new well (MW-15D) screened in the gravel unit suggested more transmissive aquifer characteristics, as described in Sections 2.8 and 3.4

A second, more regional, deep aquifer is present in the underlying Columbia River basalts. Information from the driller's water well reports, within the vicinity of the Site, indicated that the basalt aquifer had a potentiometric surface in the range of 150 to 200 feet bgl and a positive upward gradient (EMCON 1995).

1.4 LANDFILL HISTORY AND DESCRIPTION

The landfill lies within a much larger City-owned parcel of land that was established for various waste management purposes. The earliest references to the City property date back to 1970, when the City proposed to purchase land to develop a spray irrigation farm for the disposal of industrial wastewater from the canning plants that were operating within the City, to provide land on which to dispose of future domestic waste, and to make needed improvements to the existing sewage treatment facilities. In 1970 and 1973, the City purchased a total of 967.17 acres of farmland and had it designated for waste management purposes. The westernmost 125 acres of the City property were set aside for landfill development. From 1971 to 2004, approximately 600 acres of the remaining property were used for the agronomic application of nonhazardous food processing wastewater. In April 2004, Seneca Foods, Inc., canceled the sprayfarm lease with the City and terminated the State Waste Discharge Permit with Ecology due to the declining cannery industry. Since 2004, the sprayfarm portion of the property has been dry land used for wheat farming under leases to another party. Additionally, portions of the former sprayfarm and the northwestern 200 acres of the City property are used for the agronomic application of biosolids, and the City has built an emergency sewer lagoon for the City wastewater/reuse water plant on 10 acres in the southeast corner of the property.

Currently, the City property is split by several linear parcels owned by Pacific Power and Light (PP&L), BNSF, and the Washington State Department of Transportation (WSDOT). PP&L owns a northsouth-trending strip of land that cuts across the east side of the City property (approximately 6,000 feet east of the landfill area). Large transmission lines extend over the PP&L land. The City property is further dissected by a BNSF right-of-way that roughly cuts the property into northern and southern halves. The 100-foot-wide right-of-way, which was part of BNSF's former Attalia to Walla Walla rail line, forms the northern boundary of the landfill. The railroad tracks were removed circa 1988, and the right-of-way functions as a road across the property.

In 2007, 57.79 acres of the original 967.17-acre parcel was acquired by WSDOT for the construction of rerouted State Highway 12. This resulted in approximately 80.5 acres of City land

becoming orphaned from the original City property on the south side of the highway. As of 2011, the parcel that is located on the north side of the highway and contiguous with the landfill consists of 828.86 acres, as shown on Figure 2.

1.4.1 LANDFILL DEVELOPMENT

The City used the Tausick Way Landfill (TWL), located within the eastern city limits of Walla Walla, for solid waste disposal from the late 1930s until 1978. By the mid-1970s, the TWL was nearing capacity, and in March 1976, the Walla Walla County Health Department (WWCHD) refused to issue a "Conforming Permit" for the TWL due to the limited remaining area.

Records indicate that planning for the Sudbury Road Landfill began in earnest during the middle of 1976 and continued through 1977. In 1976, the City Engineering Department prepared preliminary design plans for the Site. The plans called for the construction of a road onto the property extending north from Sudbury Road and the construction of a scale house and equipment building in the low valley of the intermittent drainage on the south side of the existing landfill. Three monitoring wells, now known as MW-1a, MW-2 (Well #2), and MW-3a were installed in late 1976. Groundwater samples were collected as part of a monthly program from August 1977 through June 1978 to establish background groundwater quality. On February 28, 1977, the Walla Walla Regional Planning Board of Adjustment granted a Conditional Use Permit to operate a landfill on the property, which was formerly zoned for agriculture use. In March 1977, the City submitted an Engineers Report with an Environmental Impact Statement, an Ecology Application for Disposal Site Permit, and a General Plan of Operation to the WWCHD. The Conforming Permit for the landfill was issued on June 27, 1977. News publications announced that the "New City Landfill on Sudbury Road" was opened to the public on July 10, 1978 (*Walla Walla Union Bulletin* 1978).

1.4.2 WASTE DISPOSAL PROCESS

MSW, asbestos waste, and medical waste have been placed in the landfill. Hazardous wastes have never knowingly been accepted at the landfill. MSW has been placed in five separate areas, commonly referred to as Areas 1, 2, 5, 6, and 7. The disposal area numbers are based on their location and do not imply a sequence of disposal. Asbestos waste has been disposed of in two separate cells. A single medical waste cell has been used. The approximate limits of the refuse disposal areas are shown on Figure 3. Descriptions of the waste filling practices are fully described in the Historical Study Report (Schwyn 2006) and summarized in the following subsections.

1.4.2.1 Area 1

Waste was first placed in Area 1, located on the southeast face of the landfill area, and continued off and on until about 1980 (City of Walla Walla 1988; Schwyn 2006). Area 1 consists of a trench fill

disposal cell. The bottom and cover materials are composed of native soil. Area 1 has no leachate collector system or landfill gas (LFG) extraction system. However, the LFG treatment system for Area 6 is constructed on top of the closed Area 1 cell.

The March 1977 Engineers Report (City of Walla Walla 1977) states that "disposal of the refuse would start at the toe of the south slope of the landfill then proceed up the slope to the edge of the plateau. After the south slope has been utilized, refuse would be disposed at the north slope in a similar sequence. Trenches would be excavated as needed perpendicular to the side slopes, generally following the final contour lines." Records indicate that this process was followed for the most part.

A review of photographs and preliminary design plans indicates that up to three trenches were excavated parallel to the curvature of the hillside. The design plans called for the trenches to be excavated 10 feet deep and 30 feet wide, with a bottom slope of 0.01 and side slope of 0.15. The 1988 Operation Plan (City of Walla Walla 1988) states that "the waste was placed with no compaction equipment on hand."

Test pits and one soil boring drilled through the waste during the RI indicated that the waste is covered by 11 to more than 17 feet of soil (mostly silt). The waste thickness found during the drilling of a gas well (GW-11) extended from 11 to 48 feet bgl. Several newspapers found near the bottom of the waste were dated January 1979.

In 2005 and 2009, a small amount of MSW originally deposited in Area 1 was removed and deposited in Area 7 to make way for the entrance roads and waste cell excavations that are part of Area 7. The excavations reformed the northern boundary of the cell to the configuration shown on Figure 3. The approximate limits of Area 1 are shown on Figure 3.

1.4.2.2 Area 2

Area 2 is located west of the equipment building on the south-central slope of the landfill property. Reports of Area 2 disposal practices are limited. According to Mr. Al Prouty, the landfill supervisor from 1985 into 1997, waste was placed in Area 2 for temporary disposal while the first trench in Area 5 was being excavated. Mr. Prouty thought the waste was placed in a shallow gully and on the native surface without trenching. An aerial photograph taken in July 1979 indicates that minor trenching may have occurred west of the equipment building; however, deliberate trenches do not appear to have been excavated for Area 2. Area 2 has no leachate collector system or LFG extraction system.

The limits of Area 2 were vague until Schwyn Environmental Services, LLC (Schwyn) conducted a test pit program on May 24, 2005. Additional test pits and one boring were completed during the RI. The approximate limits of Area 2, based on the findings of the test pit programs, are shown on Figures 3 and 12. MSW measured in soil boring SB-24 extended from 3 to 30 feet bgl. The measured thickness of

the cover soil ranged from 0.5 to 11 feet thick, with most observations less than 4 feet thick. Several newspapers found in the waste were dated March to December 1979.

1.4.2.3 Area 5

Area 5 is located at the northwest corner of the landfill parcel and was one of the first areas used for MSW disposal. The approximate limits of the disposal area are shown on Figure 3. The bottom and cover materials are composed of native soil. Area 5 has no leachate collector system or active LFG extraction system. One open gas vent is centrally located in the disposal area (see Figure 3) and vents LFG freely to the atmosphere.

The waste in Area 5 is located approximately 50 to 300 feet east of the western property line, extending north to the base of a draw that separates the landfill from the BNSF right-of-way (commonly referred to as the north drainage ditch) and bounded on the east by Area 6 and on the south by the central plateau. The north drainage ditch routes stormwater west around the landfill and was part of the original natural drainage. Based on an early topographic map for the landfill area (dated June 2, 1979), the natural surface elevation of the north drainage ditch was about 790 feet and sloped upward to the south to an elevation of approximately 830 feet on the central plateau.

The available information indicates that Area 5 was active from as early as 1978 through 1990. Historical maps and records suggest that Area 5 consists of four refuse-filled trenches (trenches 5a, 5b, 5c, and 5d). Recent information from the RI indicates that the MSW disposal area is larger than the maps describe. The historical maps and records suggest that each trench extends approximately 950 to 1,100 feet east to west. The four trenches were excavated side by side and extend about 450 feet south of the draw. Waste was first placed at the northern base of the hill along the draw. Trench profile drawings prepared for the 1980 Sanitary Landfill Permit indicate that trench 5a may have started as an excavation parallel and within the draw and that the planned depth of the trench was about 17 feet. As the trench was filled, another trench would have been used to cover the active cell. By this method, the trenches would stair-step up the hillside to the south.

Mr. Prouty stated that when he became the landfill supervisor in May 1985, trench 5b was approximately two-thirds full. Reports indicate that trenches 5c and 5d were operated from 1986 through 1989; however, minor discrepancies in the actual duration of disposal are apparent in the records.

A dual-purpose lysimeter/gas vent was installed against the north wall of trench 5d during the trench construction. Mr. Prouty installed the gas vent and lysimeter and stated that the pipe was set on the trench bottom and provided an accurate measure of the bottom elevation of the trench. Historical literature, hand notes, and verification measurements collected by Mr. Dennis Rakestraw (landfill

supervisor from 1997 to 2012) in 2005 indicate that the bottom elevation of the gas vent and presumably the corresponding bottom elevation of these two trenches are located at about 780 feet.

Mr. Prouty stated that in 1985 minimal soil cover (less than 1 foot) had been placed over the waste in trenches 5a and 5b; therefore, he placed a 5- to 8-foot-thick soil cover over the waste in 1985 and 1986. A temporary soil cover was placed over trenches 5c and 5d in 1988 and 1989 (City of Walla Walla 1988). Final cover material was placed over trenches 5c and 5d in 1994 consistent with the general closure and post-closure requirements (WAC 173-304-407). Exploration data from the RI indicate that the cover soil over Area 5 may range from 1.5 to greater than 14.5 feet thick. Most observations of the cover thickness exceeded 4 feet.

Mr. Prouty set stakes at the corners of each trench in March 1986. The trench corners and boundaries were provided in the 1988 Sudbury Road Landfill Utilization Plan (Dahl and Anderson-Perry. 1987); however, the boundaries do not correspond with the current surface morphology of the fill area, and MSW has been verified outside the drawn trench boundaries. A geophysical and test pit program was initiated during the RI to better define the waste limits shown on Figure 3.

Oral reports by Mr. Prouty and several written reports suggest that sections of trench 5a and possibly trench 5b may have been excavated near to or below the water table. Based on the planned profile, the northern Area 5 trenches were to be excavated 17 feet below the level of the draw. If excavated as designed, the bottom of trench 5a would be about 776 feet (NAVD 88) or approximately 16 feet above the elevation of the high water table recorded in March 2008. However, Mr. Prouty recollected that trenches 5a and 5b were being excavated 25 to 30 feet below the surface level of the draw and were being filled with uncompacted waste when he took over.

Mr. Prouty's recollections were verified during the RI. Seven borings were drilled though the northernmost trench to document the extent of the waste. The MSW layer in most of the borings ranged from 11 to 16 feet thick; however the MSW layer in SB-20 was 38.5 feet thick and extended 9.5 feet below the saturated zone observed in the boring. The base of the MSW layer in SB-19, SB-22, and SB-25 extended to within 1.5, 0.5, and 3 feet of the saturated zone observed in the borehole, respectively. The boring locations are shown on Figure 3. Borings drilled during the 2005 Independent RI just south of northernmost trench 5b (GP-6, B9RI, B10RI, B11RI, and B17RI) did not extend to groundwater, and at least 10 feet of separation was observed. The 2005 Independent RI exploration locations are shown on Figure 11.

1.4.2.4 Area 6

Area 6 is north-centrally located on the landfill parcel, adjacent to the east side of Area 5. Excavation of Area 6 began in late 1987, and deposition of MSW into the waste cell began as early as 1988. Area 6 was initially permitted and operated in accordance with Chapter 173-304 WAC regulations.

In September 1993, a Solid Waste Transition Permit (Chapter 173-351 WAC) was issued for Area 6 operations. In July 1997, use of Area 6 was granted a Full Permit for Municipal Solid Waste Landfilling for operation as an arid landfill in accordance with Chapter 173-351 WAC. Closure of Area 6 was completed in 2010 in accordance with the Chapter 173-351 WAC Operating Permit and the Revised Interim Action Plan (Schwyn 2010b).

Area 6 consists of three trenches extending roughly 1,400 feet north to south and 450 to 600 feet east to west. The northwestern half of the area abuts, and in some areas overlaps, Area 5; the southeast corner nearly touches Area 1. Area 7 abuts the east side of Area 6. The north edge of Area 6 is bounded by the north drainage ditch and the BNSF right-of-way.

From west to east, the Area 6 trenches are designated as trench 6a, 6, and 6b. The trench floor has a bottom elevation of 795 to 809 feet at the north end and is graded with an upward slope of 1 or 2 percent toward the south (Schwyn 2006). The Area 6 cell bottom is composed of compacted native silt without a leachate collector system. Six lysimeters were installed during the cell construction. Fluids were not detected in the lysimeters until 2005, when a small volume (several gallons) of fluid was sampled from one of the six lysimeter ports. Leachate has not been observed in the lysimeter sampling ports since that time.

In 2001 the City submitted an application for a vertical expansion permit to the WWCHD for Area 6. The application proposed upward expansion over the three trenches to a projected top elevation of 887 feet. The expansion permit was approved, and Area 6 reached its permitted maximum elevation in 2005. Waste disposal was transitioned into Area 7 during 2006. Limited additional waste was placed in Area 6 until 2008.

Full closure of Area 6 occurred in 2010 in accordance with the Operating Permit and Interim Action Plan. The closure consisted of an evapotranspiration (ET) cover that met the requirements of WAC 173-351-500(1)(b) for arid areas, a gas collector and treatment system, and surface water controls. The final cover system design was incorporated into the Area 6 Specifications and Plans (JUB 2010), which were reviewed by Ecology and approved by the WWCHD.

1.4.2.5 Area 7

In 1995, Area 6 and the initial design of the proposed lateral expansion into Area 7 were permitted as an arid design landfill in accordance with WAC 173-351-300(2)(b). Initially, Area 6 was expected to reach capacity in 2002, at which time operations would have been transferred into Area 7. In September 2001, the City submitted an application for a Solid Waste Permit renewal for the Site that included the lateral expansion into Area 7. In 2002, the agencies approved a vertical expansion of Area 6, which resulted in additional waste capacity and extended the life of the cell. In 2004, Ecology submitted a letter to the WWCHD that indicated the department could no longer support the expansion into Area 7.

without a liner system. The decision was based upon the groundwater contamination detected in MW-15, which suggested that the existing unlined cell design without leachate collection may not be protective of groundwater. The November 2004 Permit Application for the Area 7 Lateral Expansion was subsequently not approved.

In 2005, Shaw/EMCON/OWT, on behalf of the City, submitted a revised permit modification for the lateral expansion into Area 7 (Shaw/EMCON/OWT 2005). The revised Area 7 landfill design included significant modifications to the original design, including a composite liner, a leachate collector and removal system (LCRS), and an LFG collector and control system. The Area 7 composite liner consisted of a 12-inch layer of soil with permeability less than 1 x 10⁻⁵ cm/sec, a geosynthetic clay liner (GCL), a 60-mil high-density polyethylene (HDPE) geomembrane, and a 250-mil bi-planer geocomposite LCRS with collection piping as needed to maintain a leachate head below 1 foot. A LFG collector and control system was not required by Federal New Source Performance Standards but was proposed as a proactive and appropriate means to control the potential impacts of volatile organic compounds (VOCs) on groundwater.

The City started excavating soil from the proposed area in 1996, using the excavated material for daily cover in Area 6. Waste disposal in Area 7 began in 2006. Area 7 is 17.3 acres and authorized to accept approximately 1,592,000 cubic yards of waste (Schwyn 2006). The bottom elevation of Area 7 is designed to range from 792 to 780 feet (Shaw/EMCON/OWT 2005). The active Area 7 leachate evaporation ponds are located on the north side of the BNSF right-of-way.

1.4.2.6 Asbestos Waste Area (Area 4)

WWCHD correspondence with the City dated July 24, 1985 (Schwyn 2006) indicated that the City had "been allowing the disposal of asbestos in the landfill under certain specific conditions for the past several years." The correspondence goes on to state that the WWCHD recommends that the City adopt the new U.S. Environmental Protection Agency (USEPA) Asbestos Waste Management Guidance before accepting more asbestos for disposal in the landfill.

In accordance with the WWCHD recommendation, the City adopted the asbestos management guidance, and two asbestos waste cells were subsequently excavated at the Site. The oldest cell (Area 4a) is located between the western property line and Area 5, at the northwest corner of the landfill property (Figure 3). Mr. Prouty stated in 2005 (Schwyn 2006) that the first asbestos disposal cell consisted of several trenches excavated approximately 12 feet deep (bottom approximately level with the north drainage ditch at 793 feet). The west edge of the cell was cut 8 to 10 feet east of the fence so that a vehicle could pass by. Area 4a was small and filled very quickly due to the number of asbestos projects being conducted at that time. Mr. Prouty recalled that the cell was filled and covered by the end of 1985.

Area 4a was closed along with Area 5 in accordance with the closure and post-closure requirements for limited purpose landfills (Chapter 173-304 WAC).

The second asbestos trench (Area 4) located at the southwest corner of the landfill area was cut much bigger to accommodate the quantity of material being disposed of. The "Asbestos Waste Area" was operated from 1985 into 2004 in accordance with the Solid Waste Landfill General Facility Permit.

The asbestos waste trench extended approximately 860 feet north to south and was cut approximately 40 feet from the western property line. The trench was about 40 feet wide at its base, with nearly vertical sidewalls about 40 feet high. The trench was sloped to the south, and records indicate that the deepest point of the trench was 789.57 feet. Mr. Rakestraw indicated that approximately three lifts of asbestos were placed in the trench before its closure. Standard operating procedure was to cover the waste within 24 hours of disposal. "Extreme care was taken to not rupture any of the protective coating of the asbestos wrappings" (City of Walla Walla 1988). The asbestos waste area was closed in 2004, in accordance with the Chapter 173-304 WAC closure and post-closure criteria for limited purpose landfills. Asbestos wastes are now placed directly into Area 7.

1.4.2.7 Medical Waste Trench (Area 3)

Records indicate that before 1992 medical wastes generated by local medical facilities were either incinerated by the generator or transported out of the Walla Walla area for disposal. Walla Walla City Council documents indicate that the Site began accepting medical wastes on a 3-month trial basis on December 31, 1991. In March 1992, the City Council approved the continued collection and handling of medical waste at the Site. Medical wastes were accepted at the Site until 2004, when the trench was closed in accordance with the Chapter 173-304 WAC closure and post-closure requirements for limited purpose landfills.

During operation, the medical wastes were placed in a trench that ran parallel to the east side of the Asbestos Waste Area and was separated from it by a high soil berm. The trench measured approximately 880 feet long by 80 feet wide at its base. The deepest point of the trench was 788 feet (Schwyn 2006).

Several Site maps show an area labeled "Existing Covered Medical Waste" located east of the Medical Waste Trench. During the closure of the asbestos and medical waste areas in 2004, soil was removed from the area, and medical waste was not encountered. Based on these soil excavations, file documents, and aerial photographs reviewed during this RI, it is believed that the maps were incorrectly labeled.

1.4.2.8 Compost Area

In 2006, a temporary compost facility was constructed above the former asbestos and medical waste cells. A permanent facility that complied with Chapter 173-350 WAC was designed in 2007 and 2008. The compost facility was constructed and opened in 2009. The facility has an asphalt surface for working the compost. Stormwater is collected and diverted into a lined evaporation pond located on the southeast side of the compost area.

1.4.3 REGULATORY CRITERIA

The Site has been and continues to be operated in accordance with the applicable regulations as amended and current at the time. Development and permitting of the Site began in 1976, in accordance with Ecology's Regulation Relating to Minimum Functional Standards for Solid Waste Handling, Chapter 173-301 WAC (Ecology 1972). Conforming Permits were issued by the WWCHD annually under Chapter 173-301 WAC until the regulation was superseded by Chapter 173-304 WAC in 1985. All of Areas 1 and 2 and Area 5 trenches 5a and 5b were operated during the effective period of Chapter 173-301 WAC.

The Minimum Functional Standards for Solid Waste Handling (Chapter 173-304 WAC) was filed on October 28, 1985 (Ecology 1988), and the City made operational changes and prepared documents to comply with the new regulation. Area 5 trenches 5c and 5d and Area 6 operated from 1985 into 1993 in accordance with the Chapter 173-304 WAC regulatory criteria. Area 5 was also closed in accordance with Chapter 173-304 WAC closure and post closure requirements.

The operation of Area 6 was transitioned into the new operating standards of Chapter 173-351 WAC, Criteria for Municipal Solid Waste Landfills, which became effective on November 27, 1993 (Ecology 1993). A Solid Waste Transition Permit for the facility was issued on September 27, 1993, and on July 14, 1997, the WWCHD issued a Chapter 173-351 WAC Full Permit for Municipal Solid Waste Landfilling in Area 6. The closure of Area 6 in 2011 was also conducted in accordance with the requirements for arid areas [WAC 173-351-500(1)(b)].

All design and operations of Area 7 have been consistent with Chapter 173-351 WAC and the Municipal Solid Waste Landfilling Permit.

The asbestos and medical waste disposal trenches were operated as limited-purpose landfills in accordance with Chapter 173-304 WAC into 2004. The Solid Waste Handling Standards, Chapter 173-350 WAC, replaced Chapter 173-304 WAC and became effective on February 10, 2003. The City determined that it would not be economical to upgrade the asbestos and medical waste areas to meet the new standards, and, therefore, these two areas were closed in 2004, in accordance with the Chapter 173-304 WAC closure standards.

The compost facility was designed, constructed, and permitted in accordance with the Chapter 173-350 WAC standards.

1.4.4 WASTE COMPOSITION

Most of the waste disposed at the Site is mixed MSW that is transported to the Site by commercial and public garbage disposal service contractors from the City of Walla Walla and Walla Walla and Columbia Counties, which are predominantly rural counties with an agricultural economic base and little manufacturing or heavy industry. Permitted waste disposal at the Site has been limited to MSW, asbestos, and medical wastes. The Site has also provided special areas for disposing of animal carcasses. Hazardous substances have never knowingly been allowed into the landfill based on available information.

Appliances ("white goods") have historically been set aside for salvage and recycling. The appliances are stored (usually in the vicinity of Area 2) and retrieved by a salvage operation. When market conditions were not economical for recycling, or the appliances were not retrieved by the salvage operation within a reasonable time period, the appliances were disposed of in the active disposal area in use at that time, according to oral reports (Schwyn 2006).

Extensive City records indicate that measures to prevent the disposal of hazardous materials in the landfill were initiated during the early years of operation. Correspondence from Ecology and the WWCHD, as early as February 8, 1979, recommended that landfill operators screen loads to keep hazardous waste out of the landfill. Shortly thereafter, the City requested information about hazardous waste disposal practices from the WWCHD for incorporation into the landfill policy and procedure manual. In 1980, the City posted a notice at the scale house regarding the disposal of dangerous wastes.

Landfill records report several patron attempts to dispose of small quantities of hazardous waste in the landfill, suggesting that the landfill operators diligently tried to exclude the materials from the landfill. In 2005, Mr. Prouty stated that he was not aware of any large quantities of non-permitted materials being disposed of in the landfill but did remove unacceptable materials from the disposal area occasionally. Mr. Prouty also stated that he never allowed or observed the disposal of large quantities of potentially hazardous waste, such as lidded 55-gallon drums. He indicated that the established practice was to allow disposal of only empty, rinsed drums.

On June 3, 1986, the Dangerous Waste Regulation (Chapter 173-303 WAC) formally prohibited the disposal of certain hazardous wastes in MSW landfills. In 1993, the City constructed a Household Hazardous Waste Facility (HHWF) at the landfill to accept, recycle, and/or appropriately dispose of hazardous waste from noncommercial sources. The HHWF facility remains in operation and continues to prevent the disposal of hazardous materials in the landfill.

1.5 GROUNDWATER MONITORING

1.5.1 MONITORING WELL INSTALLATIONS

The City installed the first monitoring wells [MW-1a, Well #2 (also referred to as MW-2), and MW-3a] in November and December 1976 to monitor shallow groundwater downgradient of the landfill and provide background groundwater quality information. Well #2 was installed to greater depth for additional use as the landfill potable water supply well; however, in 1984 or 1985 landfill staff stopped using Well #2 as a potable water source and began using bottled water.

Since 1976, numerous additional wells have been installed to monitor upgradient and downgradient water quality beneath the landfill, sprayfarm, and sludge application areas. A summary of installation dates, well uses, casing sizes, screen intervals, and other information is provided in Table 1. Site well logs and driller's well reports are provided in Appendix A.

Some of the monitoring wells have been decommissioned or are no longer in use. MW-1a and MW-3a either went dry or had poor surface seals. These two wells were abandoned in 1986 and replaced with MW-1 and MW-3. Monitoring wells MW-1 and MW-3 had screens installed deep into the underlying aquifer and were replaced with MW-14 and MW-15 in 1999 and 2001, respectively, to better monitor the top of the first encountered water-bearing zone. Monitoring well MW-1 is currently unusable due to a pump stuck in the casing. MW-3 is still in usable condition. The location of MW-6 is unknown because the parking area of the landfill office was apparently constructed on top of the well.

Monitoring wells MW-4, MW-5, MW-7, MW-9, and MW-10 were originally installed to monitor the sprayfield and biosolids application areas; however, some of these wells have also been used to monitor upgradient groundwater quality for the landfill. MW-16 was installed in 2005 as part of the Independent RI to evaluate groundwater quality south of MW-15, downgradient of Area 5, and at the western property boundary. The Garver well was the original irrigation well installed on the property and is still used for irrigation, dust control, construction, and the compost facility. Well #2 is also used for nondomestic water purposes. The locations of the wells are shown on Figure 2.

The compliance groundwater monitoring system consists of three downgradient monitoring wells (MW-11, MW-14b, and MW-15) and one upgradient monitoring well (MW-12b). Monitoring wells MW-11 and MW-12 were installed in 1995 as part of the Chapter 173-351 WAC hydrogeologic study and were incorporated into the approved compliance monitoring program in 1995. MW-12 historically produced low quantities of water, and eventually the water table dropped below the screen section and water samples could not be obtained. In August 2008, MW-12b was drilled to a deeper depth near MW-12, which was decommissioned in accordance with state regulation. In June 2012, MW-14 was also decommissioned due to the decreasing water table and replaced with MW-14b, which was drilled to a deeper depth. The locations of the compliance wells are shown on Figures 2 and 3.

1.5.2 COMPLIANCE GROUNDWATER MONITORING PROGRAM

Monitoring began in 1976 after the installation of MW-1a, Well #2, and MW-3a. Initially, only groundwater elevations were measured so that the elevation of the landfill cell bottom could be designed to be above the water table. Collection of groundwater samples began the following year in August 1977 and continued on a monthly basis through July 1978. The sampling program was conducted at the request of Ecology to establish "baseline" groundwater quality before the landfill began operation. The groundwater samples were analyzed for pH, biological oxygen demand, chemical oxygen demand, chlorides, iron, total dissolved solids (TDS), total alkalinity, and total coliform bacteria.

Since July 1978, groundwater monitoring has been conducted on a quarterly schedule. Over time, the analytical parameters have been modified to address changes in the regulatory requirements for groundwater monitoring. Since September 1994, the landfill monitoring well samples have been analyzed for Appendix I and II detection monitoring constituents, per WAC 173-351-990. Numerous additional analyses were performed in 2002 and 2003 as part of an assessment monitoring program (Appendix III parameters). Dichlorodifluoromethane (Freon 12) was added to the analytical suite as a result of the assessment monitoring program. In June 2012, samples collected from downgradient compliance monitoring wells MW-11, MW-14b and MW-15 were analyzed for Appendix III assessment monitoring constituents, per WAC 173-351-990, and no new constituents were detected at concentrations greater than statistically significant background concentrations.

Currently, in accordance with the 2011 Operating Permit, monitoring wells MW-11, MW-12b, MW-14b, and MW-15 are sampled quarterly. The groundwater samples are analyzed for Appendix I and II detection monitoring constituents, per WAC 173-351-990, plus Freon 12, by an accredited laboratory in accordance with Chapter 173-50 WAC.

1.5.3 SUMMARY OF GROUNDWATER CONTAMINATION

Groundwater monitoring data collected since 1993 indicate the presence of groundwater contamination (primarily VOCs) in samples collected from monitoring wells located upgradient and downgradient of the sprayfarm and landfill areas. Since 2001, when MW-15 was installed, groundwater contamination with slightly different characteristics (VOCs with inorganic constituents) has been detected in downgradient monitoring well MW-15.

1.5.3.1 Area-wide Contamination

Groundwater monitoring data indicate that a number of VOCs [including chloroform, trichloroethene (TCE), and tetrachloroethene (PCE)] are present in upgradient wells on the eastern property boundary (over 1.4 miles east, and upgradient, of the landfill). The VOCs in groundwater have been present since at least 1993, when the City began monitoring for VOCs, and they persist in samples

collected as recently as 2013. Similarly, slightly lower VOC concentrations have regularly been detected in the landfill monitoring wells and two domestic water supply wells (Small and Camp wells). The Small and Camp residences are located approximately ³/₄ mile west and northwest of the landfill, respectively.

In 1999, Ecology, under cooperative agreement with the USEPA, published a Contaminant Source Identification/Assessment (CSI/A) Report (Ecology 1999). The CSI/A indicated that the relatively high VOC contaminant concentrations observed both upgradient and downgradient of the landfill, and the persistence of the concentrations with time, implied that the presence of a large continuous source. Ecology identified the WSP, which is located just east (and upgradient) of the Site, as a potential source of the VOC contamination at the landfill, because similar VOCs have been used and potentially disposed of on the penitentiary property.

An RI was conducted on the WSP in 2010 and 2011, and an RI/FS Report was prepared in 2012 (Parametrix 2012). Data provided in the report indicate the presence of a VOCs in groundwater beneath the WSP. The VOCs and their concentrations in groundwater are similar to the area-wide contamination observed beneath the entire City property and in the samples from the Camp and Small domestic wells.

1.5.3.2 Localized Landfill Contamination

In July 2001, monitoring well MW-15 was installed in the northwest corner of the landfill to monitor the downgradient groundwater quality of the uppermost aquifer immediately downgradient of Area 5. VOCs [including TCE, PCE, trichlorofluoromethane (Freon 11), Freon 12, vinyl chloride, chloroethane, 1,1-dichloroethane, and *cis*-1,2-dichloroethane) and inorganic constituents (including calcium, sodium, bicarbonate/alkalinity, chloride, and TDS] were detected at higher concentrations in this well relative to the concentrations in other Site wells and the background concentrations. With the exception of chloride and TDS, all of these constituents have exceeded the site-specific Chapter 173-351 WAC compliance levels (prediction intervals) on at least two consecutive occasions. These exceedances prompted the RI/FS of the Site.

1.5.4 PRIOR GROUNDWATER STUDIES

Various initial groundwater studies of the landfill were conducted in the 1970s and 1980s to comply with the requirements of the landfill Operating Permit, but they shed little light on the nature of the area-wide or localized VOC contamination. Three later studies are more significant.

The first was a 1993 hydrogeologic investigation conducted to meet the requirements of WAC 173-351-490. The resulting Hydrogeologic Report provided the first extensive report of the geology, hydrogeology, and groundwater quality of the landfill (EMCON 1995).

The second was an assessment monitoring program that was initiated in September 2002 in accordance with WAC 173-351-440. The extensive testing requirements of the assessment monitoring

program did not indicate the presence of other constituents in the landfill groundwater monitoring wells at concentrations greater than background concentrations, with exception of Freon 12. Freon 12 was subsequently added to the compliance monitoring program for the landfill.

The third was a recent study to characterize the MW-15 contamination and fulfill the requirements of WAC 173-351-440(6). A Work Plan was prepared in 2004 to guide the RI process (LAI 2004). An Independent RI was initiated in 2005 in general accordance with the 2004 RI Work Plan; however, the investigation was stalled in 2006 before all of the tasks had been completed because of a number of factors, including available funding and off-Site access. Relevant information from these previous studies was used to formulate the conceptual site model.

1.6 INTERIM ACTIONS

The detection of VOC and inorganic constituents in the MW-15 groundwater samples at concentrations greater than statistical background/upgradient concentrations in 2001 prompted the following interim actions:

- Redesign and construction of an alternative Area 6 closure; and
- Design and construction of stormwater controls on the north side of Area 5 and Area 6.

Each of these interim actions is described in the following subsections.

1.6.1 AREA 6 CLOSURE

The closure of Area 6 was performed as an interim action in 2010. Area 6 has no geosynthetic bottom liner or leachate collector system, and before 2010, it had no engineered or permitted top cover, LFG extraction and treatment system, or adequate surface water collection and control facilities. Therefore, on March 31, 2010, a Revised Interim Action Plan (Schwyn 2010b) was submitted to the agencies to address these landfill design features. The closure/interim action was approved by Ecology and constructed in 2010.

The interim action for the Area 6 closure consisted of the design and construction of (1) an ET cover that meets the requirements of WAC 173-351-500(1)(b) for arid areas, (2) an LFG collector and control system, and (3) a stormwater collector and conveyance system to divert water away from the active refuse disposal areas and the northern stormwater drainage area where percolating waters could potentially migrate into the Area 5 refuse. Details of the north stormwater drainage system are provided in the following section.

1.6.2 NORTH DRAINAGE STORMWATER CONTROLS

The drainage features of the north drainage ditch valley bottom have historically been modified to trap sediments and stormwater. This was accomplished by excavating depressions in the natural drainage

channel along the northern boundary of Area 5. Stormwater formerly pooled in the depressions, where it either infiltrated and/or evaporated. Studies of Area 5 suggest that a possible former source of leachate generation could have been the infiltration of the pooled surface water in the north drainage area and subsequent southward migration in the underlying soils into the Area 5 refuse.

Construction of stormwater drainage controls in the drainage located on the north side of Area 5 was determined to be an important engineering control for minimizing a possible contaminant transport mechanism for the migration of waste constituents to groundwater. The interim action that was constructed in 2010 was designed to promote stormwater flow through the valley adjacent to Area 5 and minimize pooling, thereby reducing the quantity of surface water available for infiltration through the refuse. The engineering design features of the interim action included (1) a sedimentation basin, (2) filling of depressions excavated in the valley bottom and surface grading to slope the valley to the west along the natural drainage channel, (3) installation of a culvert under the western perimeter roadway to allow the stormwater to flow off-Site, and (4) installation of erosion control mats in the stormwater channel.
2.0 RI SCOPE AND METHODS

This section describes the investigations conducted in support of the RI. The RI scope-of-work was based on an evaluation of all existing data obtained during previous investigations and compliance monitoring data collected from the Site. These data were used to formulate a preliminary conceptual model of the Site, establish data gaps, and formulate a work plan to complete the RI. The RI scope-of-work is detailed in the RI Work Plan (Schwyn 2011) and consisted of the following tasks:

- A geophysical survey was conducted to assist in the delineation of the horizontal extent of the solid waste at Areas 1, 2, and 5.
- Sixty one test pits and 13 trenches were excavated for the following:
 - Evaluation of the soil cover thickness over Areas 1, 2 and 5;
 - Collection of samples from Area 5 for soil characteristic (geotechnical) analysis; and
 - Delineation of the horizontal extent of the solid waste at Areas 2 and 5.
- Ten soil borings were drilled through the waste in Areas 1, 2, and 5 to obtain information about the MSW, MSW thickness, subsurface lithology, depth to groundwater, and soil samples for laboratory analysis.
- Seventeen groundwater monitoring wells were installed to complement the existing groundwater monitoring system.
- Seven LFG monitoring wells were installed to complement the existing gas monitoring system.
- Five soil samples were collected beneath the MSW in Areas 1, 2, and 5 to analyze for VOCs and assess the soil quality in the vadose zone beneath the MSW.
- Groundwater samples were collected from 26 groundwater monitoring wells during eight monitoring events to characterize the groundwater quality upgradient and downgradient of the Site, beneath the landfill, and in 4 downgradient domestic water supply wells.
- An LFG barhole survey (nine barholes) was conducted to assess the potential for LFG occurrence and migration at Area 2.
- LFG monitoring was conducted during five events at 10 gas monitoring wells (3 existing and 7 newly installed gas wells) to assess seasonal variability of methane, carbon dioxide, and oxygen.
- LFG sampling for VOC analysis was conducted at nine gas monitoring wells to evaluate the potential impact of LFG on groundwater and indoor air intrusion at the HHWF.

Initial field studies were conducted in April and May 2012. The technical approach for each field program, including the sampling strategy, locations, methods, and procedures, were identified in, and conducted in accordance with, the SAP, QAPP and HASP that were included in the Work Plan.

Evaluation of the preliminary data obtained from the initial field studies identified several additional data gaps or questions in areas where the field program had not achieved the desired objectives. Additional field studies were conducted in August 2012 to achieve the Work Plan objectives. The

inconclusive issues and additional scope of work are described in the Sudbury RI Data Gap Review Memorandum (Schwyn 2012).

The methods used in the field program to achieve the RI data collection objectives are described in the following subsections. The results of the studies are described in Section 3.

2.1 GEOPHYSICAL SURVEY

Zonge International (Zonge) completed a geophysical investigation to delineate the horizontal extent of the solid waste in Areas 1, 2, and 5 on April 24 to 26, and June 21, 2012. The horizontal extents of the buried debris were evaluated with the combined use of electromagnetic (EM) and magnetic (MAG) techniques. Location data were acquired simultaneously with the MAG and EM data with the use of a Trimble AG132 Differential Global Positioning System. Zonge processed and interpreted the field data and described the findings in a report, which is provided in Appendix B.

The results of the geophysical survey were inconclusive in terms of precisely defining the waste cell boundaries. The cover soil over Area 1 was greater than 17 feet thick and was judged to be too thick to make EM or MAG survey data useful. The precise limits of Area 2 and Area 5 were masked by the dispersion characteristics of the waste and past cover/excavation processes. The Area 2 and Area 5 results were similar to what was expected, but the degree of precision was inadequate to define the waste cell boundaries in critical areas such as the northern limits of Area 5 or the Area 2 boundary. This was identified as a data gap in the Sudbury RI Data Gap Review Memorandum, and additional test pit excavations were subsequently completed in critical areas to assess the waste boundary conditions.

2.2 TEST PIT EXCAVATIONS

The RI test pit program was conducted to accomplish the following:

- Collect samples for Area 5 soil characteristic (geotechnical) analysis;
- Evaluate the soil cover thickness over Areas 1, 2 and 5;
- Determine the lateral extent of the Area 2 MSW; and
- Determine the lateral extent of the MSW at the north side of Area 5.

A total of 28 test pits were excavated during the initial test pit program conducted on May 14 and 15, 2012. An additional 33 test pits were excavated in Area 2, and 13 trenches were excavated on the northern boundary of Area 5 on August 27, 2012, to fill data gaps presented by the imprecise geophysical survey results. All test pits were excavated with a Caterpillar 314C backhoe, operated by Braden and Nelson, Inc., under the observation of a Washington State Registered Hydrogeologist (LHG). Each test pit was excavated from the surface to the level of the first encountered MSW or the maximum reach of the backhoe (15 to 17 feet bgl). The test pits were backfilled with the excavated materials after the

observations had been recorded. The general locations of the test pits are shown on Figure 3. Detailed locations for the Area 2 test pits, the recorded depth to MSW, and the lateral extent of the MSW are shown on Figure 12. Detailed locations for the Area 5 test pits, the recorded depth to MSW, and the northern extent of MSW are shown on Figure 13.

Five test pits (TP-24 through TP-28) were excavated in Area 1 on May 15, 2012. MSW was encountered in only one test pit, at a depth of 12 feet bgl. All other Area 1 excavations terminated at the maximum reach of the backhoe (17 feet) without encountering MSW.

On May 15, 2012, one test pit (TP-24) was excavated in Area 2 in an attempt to record the MSW thickness; however, the waste extended beyond the reach of the backhoe, and the excavation was terminated. Thirty-three additional test pits (TP-29 through TP-62) were excavated on August 27, 2012, to record the depth to MSW and the lateral extent of the waste. These excavations were completed to compensate for the imprecise limits of the waste determined during the geophysical survey.

On May 15, 2012, twenty-three test pits (TP-1 through TP-23) were excavated in Area 5 to record the thickness of the soil cover and collect select soil samples for geotechnical analysis. Thirteen additional trenches (B-1 through B-13) were excavated on August 27, 2012, to determine the northern extent of Area 5 waste. The trenches were cut in a north-south alignment, and the north edge of Area 5 was determined by marking the soil-MSW contact.

Select soil samples were collected from Area 5 test pits for soils characteristics analysis (geotechnical analysis and lithologic descriptions). Grab and Shelby tube samples were collected from test pits 8, 19, and 20 (Figure 13). Five grab samples were collected from each test pit at approximate 1-foot intervals and placed in plastic zip-lock bags for moisture content analysis. Relatively undisturbed samples were collected using 18-inch-long, 4-inch-diameter Shelby tubes, which were pushed into the soil from 6 to 24 inches and 24 to 42 inches bgl with the backhoe bucket. These samples were tested to determine moisture content, grain size (with hydrometer), Atterberg limits, and in-situ permeability.

One additional bulk sample was collected in Area 5 from TP-12 where the cover soils are thick and the cover soils are potentially available for borrow. This sample was tested to determine moisture content, grain size (with hydrometer), Atterberg limits, moisture/density relationship, and remolded permeability. This sample consisted of approximately 50 pounds of soil composited while the test pit excavation was advanced. The sample was placed and transported within a sealed 5-gallon bucket.

The soil samples were analyzed by HWA GeoSciences, Inc. (HWA) of Bothell, Washington. The geotechnical soils report is provided in Appendix C.

2.3 DRILLING PROGRAM

A drilling program was conducted to evaluate the soil, groundwater, and LFG characteristics in the vicinity of the landfill. Subsurface explorations included 10 soil borings, 17 groundwater monitoring wells, and 7 gas monitoring wells. The boring and well locations are shown on Figure 3. Drilling, boring decommissioning, and well construction were performed by Environmental West Exploration of Spokane, Washington, in accordance with the Washington State Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 WAC). The borings were advanced under the observation of an LHG by means of sonic drilling methods with continuous cores for lithologic observation and select laboratory soil sample collection. Boring diameters were commensurate with the drilling objectives (i.e., soil boring, 2-inch-diameter monitoring well, 4-inch-diameter monitoring well, or 1-inch-diameter gas monitoring well). All samples were classified according to the Unified Soil Classification System, and lithologic descriptions were recorded on a field log along with information on MSW content and thickness, LFG odor, location of water-bearing strata, and well completion details. This information is summarized on the exploration logs provided in Appendix A.

All down-hole drilling equipment was decontaminated before use and between drilling locations in accordance with the SAP. Contaminated soil cuttings and other investigation-derived waste generated during the drilling were placed in drums and disposed of in the active cell (Area 7) of the landfill. Borings were backfilled to the surface with bentonite chips (3/8-inch minus) and hydrated with potable water as the casing was withdrawn. MW-14 was installed in 1999 and replaced with MW-14b during the RI because the water level had dropped to near the top of the pump. MW-14 was decommissioned by filling the casing from the bottom to the surface with bentonite.

2.3.1 SOIL BORINGS

During May 2012, five borings were drilled in Area 1 (GP-11), Area 2 (SB-24), and the northern trench in Area 5 (SB-20, SB-21, and SB-22). The boring program was conducted to obtain information about the waste thickness, subsurface lithology, and depth to groundwater and to collect soil samples for laboratory analysis. Five additional borings (SB-19, SB-22, SB-23, SB-25, and SB-26) were drilled in August 2012 through the northern trench in Area 5 to better define the vertical extent of MSW in the northern trench. The boring locations are shown on Figure 3.

2.3.2 GROUNDWATER MONITORING WELLS

During May 2012, 10 new groundwater monitoring wells were installed on the Site, and 6 additional groundwater monitoring wells were installed on private land adjacent to and hydraulically downgradient of the landfill. Two pairs of the off-Site wells (MW-21S, MW-21D, MW-22S, MW-22D) were completed with screens located to monitor the shallow and deeper horizons of the old gravel and

clay aquifer. In August 2012, one additional groundwater monitoring well (MW-27) was installed along the north edge of Area 5 to better define the groundwater quality along the north side of Area 5. The monitoring well locations are shown on Figure 2.

The groundwater monitoring wells were constructed with a flush-threaded, 2-inch-diameter Schedule 40 polyvinyl chloride (PVC) screen and riser pipe. The monitoring well screens for the shallow wells (installed across the water table) were 15 feet in length, with the screen section set into the first encountered gravel unit. The monitoring well screens for the deeper wells (MW-21D and MW-22D) were installed with a 5-foot screen section set approximately 25 feet below the accompanying shallow well screen. MW-15D was constructed for the purposes of groundwater monitoring and to conduct pumping tests. The well was constructed with a flush threaded, 4-inch-diameter Schedule 40 PVC screen and riser pipe. The 15-foot screen section was set approximately 34 feet below the water table. Each well was constructed with 0.010-inch machine-slotted PVC pipe, and a flush-threaded end cap was installed at the bottom of each screen. Number 10/20 washed, rounded sand was packed around the screens to a minimum of 2 feet above the screened section. The sandpack was capped with a bentonite seal to within 1.5 feet of the surface. Each monitoring well was completed with a flush or aboveground locking protective cover. Flush and aboveground completions were surrounded with three steel protective bollards.

Each groundwater monitoring well was developed by means of surging, bailing, and pumping techniques. Well development continued until the turbidity of the purge water was visibly low. All development water was contained and discharged into the landfill's lined leachate evaporation pond.

2.3.3 LANDFILL GAS MONITORING WELLS

Seven LFG monitoring wells were installed to complement the existing gas monitoring system (Figure 3). Each boring was advanced by means of sonic drilling equipment. Each gas well was constructed with ³/₄-inch diameter PVC casing with a 5-foot, 0.010-slot screen section installed in the boring. The screen sections were positioned at the following approximate locations:

- GW-7D: at the water table elevation 31 to 36 feet bgl;
- GW-7S, GW-8, and GW-9: 10 to 15 feet bgl;
- GW-10: 5 to 10 bgl;
- GW-11: centrally located in the MSW, 25 to 30 feet bgl; and
- GW-12: 26 to 31 feet bgl.

For each of the gas wells (except for GW-11), a filter pack was installed around each screen, extending from the bottom of the end cap to about 2 foot above the screen. GW-11 has a filter pack that also extends approximately 2 feet below the screen. The filter pack material consists of 3/8-inch commercially prepared and prewashed rounded free-flowing pea-gravel. The filter pack was capped with

a bentonite seal to within 1.5 feet of the surface. Each gas well was completed with a flush or aboveground locking protective cover. All aboveground completions were surrounded with three steel protective bollards. Each gas well casing was capped with an expandable stop-cock plug and brass quick-connect air hose fitting.

2.4 SOIL SAMPLING

Select soil samples were collected from five soil borings (GW-11, SB-21, SB-23, SB-24, and SB-26) for laboratory analysis of VOCs. The sample intervals were selected to assess the soil quality in the vadose zone beneath the MSW. Five-gram soil samples were collected from the selected sample intervals in accordance with USEPA Method 5035A, Closed System Analysis for VOCs. The soil vials were labeled, logged onto a chain-of-custody form, placed in a chilled cooler, and transported to ALS Environmental, Inc. (ALS) in Kelso Washington via next day delivery service. The laboratory analytical reports are provided in Appendix D.

2.5 GROUNDWATER MONITORING

Groundwater samples were collected from the following wells for laboratory analysis (see Figure 2):

- Site wells: MW-11, MW-12b, MW-14b, MW-15, and MW-16;
- New wells: MW-15D, MW-17, MW-18, MW-19, MW-20, MW-21S, MW-21D, MW-22S, MW-22D, MW-23, MW-24, MW-25, MW-26, and MW-27;
- Upgradient wells: MW-5, MW-9, and MW-10; and
- Domestic wells: Small, Camp, Kinman, and Schmidt.

As part of the RI, eight groundwater monitoring events were conducted between June 2012 and February 2013. Each groundwater monitoring event was conducted between 30 and 45 days apart. The groundwater monitoring program included the measurement of depth to water in each monitoring well, the measurement of field parameters including pH, conductivity, and temperature, and the collection of groundwater samples for laboratory analysis. Depth to groundwater was not measured in the domestic water supply wells. Field measurements were recorded on Groundwater Sampling Data Sheets.

Groundwater samples were collected from each monitoring well with the use of dedicated Grundfos RediFlo2 groundwater sampling pumps. Domestic well groundwater samples were collected from the nearest available hose bib connecting to the existing pumping system. Samples collected for analysis of dissolved metals were field filtered and preserved. Each sample was labeled, logged on a chain-of-custody form, placed in a chilled cooler, and transported to ALS for analysis. The laboratory analytical reports are provided in Appendix D.

The Site well samples and samples from all of the new monitoring wells were analyzed for VOCs and the following conventional chemistry constituents: calcium, sodium, magnesium, potassium, sulfate, chloride, manganese, iron, ammonia, nitrate, alkalinity, total organic carbon (TOC), and TDS. Samples collected from the upgradient and domestic wells were analyzed for VOCs only. The following laboratory analytical methods were used:

- VOCs were analyzed by USEPA Method 8260, with vinyl chloride by USEPA Method 8260 SIM to reach a method reporting level (MRL) of 0.02 micrograms per liter (μ g/L).
- Dissolved calcium, iron, manganese, magnesium, potassium, and sodium were analyzed by USEPA Method 6010C.
- Chloride, nitrate, and sulfate were analyzed by Standard Method (SM) 300.0.
- Alkalinity was analyzed by SM 2320B.
- Ammonia was analyzed by SM 4500.
- TOC was analyzed by USEPA Method 415.1.
- TDS was analyzed by SM 2540C.

During the first groundwater monitoring event (June 2012), groundwater samples collected from Site wells MW-11, MW-14b, and MW-15 were also analyzed for WAC 173-351-990 Appendix III parameters. The Appendix III analytical suite was initiated to determine if any additional parameters should be added to the subsequent RI sampling events. The following laboratory analytical methods were used for the Appendix III suite of parameters:

- Dissolved metals (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, tin, vanadium, and zinc) were analyzed by USEPA Method 6010C.
- Total mercury was analyzed by USEPA Method 7470A.
- Organochlorine pesticides were analyzed by USEPA Method 8081A.
- Polychlorinated biphenyls (PCBs) (also referred to as Aroclors) were analyzed by USEPA Method 8082.
- Organophosphorus compounds were analyzed by USEPA Method 8141A.
- Chlorinated herbicides were analyzed by USEPA Method 8151A.
- VOCs were analyzed by USEPA Method 8260C.
- Semivolatile organic compounds (SVOCs) were analyzed by USEPA Method 8270D.
- Total cyanide and sulfide were analyzed by SM 4500.

The analytical results for the Appendix III parameters did not indicate the presence of any new constituents, and the SAP for subsequent sampling events included no modifications to the standard suite of analyses implemented for the Site, upgradient, and domestic wells.

2.6 DATA VALIDATION

A Tier I data quality review was performed on all RI samples, including soil, vapor, and groundwater data resulting from soil and groundwater laboratory analysis performed by ALS and LFG analysis performed by Fremont Analytical of Seattle, Washington, and Air Toxics of Folsom, California. The analytical data were validated in accordance with the following:

- Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Data Review (USEPA 2004); and
- CLP National Functional Guidelines for Organic Data Review (USEPA 2008).

The review encompassed data from two soil sampling events, two LFG sampling events, and eight groundwater sampling events that took place between May 2012 and February 2013. A total of 22 sample delivery groups (individual laboratory reports) were received from ALS: 3 for soil and 19 for groundwater. Two sample delivery groups (SDGs) were received for LFG: one from Fremont Analytical and one from Air Toxics. The following paragraphs describe two very limited data quality concerns noted in these sample delivery groups.

For the VOC analysis of soil sample "Dup" from SDG K1204954, the surrogate recovery of 4bromofluorobenze was outside the control limits (88 to 127 percent) because it exceeded the upper control limit by 1 percent. Per the USEPA guidelines, only detected volatile target compounds were qualified. Specifically, for soil sample "Dup," m,p-xylene was the only detected target compound and was qualified "J" (estimated). With the addition of this data qualifier, the VOC result from this sample was determined to be of acceptable quality for use as qualified.

For the "nitrate as nitrogen" analysis of groundwater in SDGs K1209358 and K1300254, the samples were received by the laboratory with a slight exceedance of the holding time to complete both sample check-in and analysis. The maximum holding time exceedance for SDG K1209358 was 9 hours; the maximum holding time exceedance for SDG K1300254 was 4 hours.

Therefore, the nitrate as nitrogen results for samples MW-12b, MW-14b, MW-16, MW-23, D-23, and MW-25 from SDG K1209358 and samples D-19, MW-22D and MW-22S from SDG K1300254 have been qualified "J" (estimated) due to analysis outside of the method holding times. With that qualified added, the Nitrate data for those samples was determined to be of acceptable quality for use as qualified.

For all the other media, analyses, and SDGs, the laboratory followed the specified analytical method and met USEPA CLP National Functional Guidelines. Accuracy was acceptable, as demonstrated by the matrix spike, laboratory control sample, or reference material percent recovery values. Precision was acceptable, as demonstrated by the matrix spike/matrix spike duplicate, laboratory control sample/laboratory control sample duplicate, or sample/sample duplicate relative percent differences. All

of the RI data, as reported by the laboratory, except for the qualified data discussed in the previous paragraphs, were determined to be acceptable for use.

2.7 LANDFILL GAS MONITORING AND SAMPLING

2.7.1 MONITORING PROGRAM

The LFG investigative field activities discussed in the following four sections included the following:

- Barhole study in Area 2 to evaluate the potential for LFG occurrence and migration;
- Installation of seven gas monitoring wells;
- Monitoring of 10 gas wells, including 3 existing gas wells and 7 newly installed gas wells for LFG;
- Evaluation of Area 6 LFG extraction system; and
- Collection of LFG samples from nine gas monitoring wells for VOC analysis to evaluate the potential impact of LFG on groundwater and indoor air intrusion at the HHWF.

The LFG monitoring and sampling locations are shown on Figure 14.

2.7.2 AREA 2 BARHOLE MONITORING

A barhole-probe survey was conducted on May 8, 2012, by Herrera Environmental Consultants, Inc. (Herrera) in Area 2 of the landfill to evaluate the potential presence of LFG. Seven probes (BHSB-1 through BHSB-7) were spaced approximately 100 to 150 feet apart to provide coverage across the area. Two additional probes (BHSB-8 and BHSB-9) were placed in the center of Area 2 (Figure 15). After the more complete delineation of Area 2 by means of test pits during the second phase of work, one barhole location, BHSB-3, was determined to be outside the waste area.

A 1-inch-diameter steel casing with a 4-inch-long steel mesh screen was driven at each of the nine locations to a depth of 1 to 2 feet with a slide hammer. Polyethylene tubing was connected with an airtight seal to the screened zone within the casing, and the tubing was extended to the surface. A LandTec GEM 2000 Gas Analyzer was connected to the tubing, and the barhole probe was monitored for methane, carbon dioxide, oxygen, static pressure, and barometric pressure. A minimum of one probe volume of gas was evacuated before the measurements were recorded, and then the probe was purged until the methane, carbon dioxide, and oxygen measurements stabilized (varying by less than 10 percent over three consecutive measurements). Measurements were recorded at approximately each 1/4-tubing volume. The final recorded measurements included the stabilized percentages.

2.7.3 GAS SAMPLING PROCEDURES

Field testing was performed at two existing gas wells (GW-5 and GW-6) to establish baseline conditions in refuse areas where active LFG collection is not being performed, and at LFG well GW-3 to

establish baseline conditions within the Area 6 refuse where active LFG collection is currently being performed (GW-2 and GW-4 could not be located in Area 6 for evaluation; reported as abandoned). Seven new LFG monitoring wells (GW-7S, GW-7D, GW-8, GW-9, GW-10, GW-11, and GW-12) were monitored at the northern, southern, eastern, and western perimeters of the landfill areas (Figure 14). The following parameters were monitored at each LFG well:

- Methane;
- Carbon dioxide;
- Oxygen;
- Gas pressure (well head pressure); and
- Barometric pressure.

Gas monitoring was performed in May, July, August, and November 2012 and February 2013 to assess seasonal variability. Methane, carbon dioxide, and oxygen concentrations were measured using a LandTec GEM 2000 during the first monitoring event and an Elkins Earthworks Envision Gas Analyzer during subsequent monitoring events. Each day, the instruments were calibrated according to manufacturers' instructions before the gas monitoring activities began. The gas wells were monitored by connecting the gas analyzer via silicone tubing and a water trap to the wellhead.

To ensure that representative measurements were collected, the gas wells were purged until the methane, carbon dioxide, and oxygen percentages stabilized. To provide an adequate purge rate, purging was conducted with the testing instrument [purge rate of 300 milliliters/minute (mL/min) for the GEM 2000 and 450 mL/min for the Elkins]. Purge times were calculated for each well based on the construction details.

Barometric pressures were obtained from atmospheric data collected at the Walla Walla Airport. Gas pressure was measured at the wellhead before each well was purged. The methane, carbon dioxide, and oxygen percentages were monitored every ¹/₄ well volume purged from the respective gas well. It was assumed that the parameters stabilized when they varied by less than 10 percent for three consecutive measurements. The final recorded measurements were represented by the stabilized methane, carbon dioxide, and oxygen percentages.

Additionally, one round of gas samples was collected from gas wells GW-5, GW-6, GW-7S, GW-7D, GW-8, GW-9, GW-10, GW-11 and GW-12 for laboratory analysis of VOCs. The gas samples were collected in a specially prepared canister (Summa canister) and analyzed for VOCs by gas chromatography/mass spectrometry in accordance with USEPA Method TO-15. Laboratory-certified Summa canisters (6-liter volume), flow controllers, and Teflon tubing were acquired from the analytical laboratory for the collection of the gas samples.

Before sampling, each gas well was purged, as discussed above, until the methane, carbon dioxide, and oxygen percentages stabilized. The flow controller was then connected to the gas well, and a passive integrated sample was collected over a 1-hour period. The gas pressure of the Summa canister was recorded before, during, and after the collection of the gas sample. The gas sample was then transported to the laboratory under standard chain-of-custody procedures within the 14-day holding time. The laboratory analytical reports are provided in Appendix D.

2.7.4 AREA 6 LANDFILL GAS EXTRACTION SYSTEM EVALUATION

The evaluation of the Area 6 LFG extraction system was based on normal flare station operating parameters and observations of 11 existing Area 6 extraction wells, which were monitored for vacuum and flow rate with the use of an Elkins Earthworks Envision Gas Analyzer (Figure 14). The valve positions of the extraction wells were also noted. LFG and pressure conditions were observed at gas monitoring well GW-3; wells GW-2 and GW-4 could not be located and were reported as abandoned.

2.7.5 INDOOR AIR INTRUSION EVALUATION

Well GW-10 was installed near the HHWF foundation to measure LFG adjacent to the structure (Figure 14). Gas monitoring was performed as described in Section 2.7.3.

2.8 AQUIFER TESTING

Aquifer testing was conducted in accordance with the Work Plan. The goals of aquifer testing were to characterize the first encountered aquifer beneath the landfill and to assess the hydraulic connection between the hydrostratigraphic zones screened in MW-15D, MW-3, and MW-15. The aquifer testing consisted of four parts: a baseline water-level survey, step-discharge pumping tests, a 28-hour constant-discharge pumping test, and a water-level recovery test. The aquifer test implementation, results, and analysis are described in greater detail in Appendix E.

Constant-discharge aquifer testing was performed on September 26 and 27, 2012; MW-15D was used as the pumping well with a calculated average flow rate of 24.8 gallons per minute (gpm) over 28 hours. This rate was selected based on the results of step-discharge testing performed on MW-15D. Drawdown and recovery water level data were collected from pumping well MW-15D, and observation wells MW-3, MW-15, MW-18, and MW-27. All data were collected with automated pressure transducers, imported into Aqtesolv Professional 4.5 for analysis.

Drawdown data from three observation wells and recovery data from the pumping well were used to estimate the aquifer characteristics. The Cooper-Jacob straight-line solution (Cooper and Jacob 1946), the Theis (1935) method for confined conditions, extended by Hantush (1961) for partially penetrating wells, and other solutions were used to estimate the aquifer characteristics. Fluctuation in the ambient water levels due to unknown sources resulted in limitations in the suitability of the data from some

observation wells for curve-matching techniques. The water levels in wells monitored for baseline conditions showed a daily pattern of fluctuation. These inflections were filtered out for wells with sufficient displacement.

2.9 SURVEY

All exploration points and new wells, and location specific topographic elevations were surveyed by a land surveyor licensed in the State of Washington. The horizontal datum that was used is North American Datum of 1983 (NAD 83), Washington State Plane Coordinate System, South Zone, US Survey Feet. The basis of position was established using a new holding National Geodetic Survey (NGS) control point "City of Walla Walla Control Sudbury," installed at the security gate entrance of the Sudbury Road Landfill in September 2012. The vertical datum is the North American Vertical Datum of 1988 (NAVD 88) based on an NGS control point "City of Walla Walla Control Sudbury" elevation of 826.52 feet.

The top of the PVC casing of each groundwater monitoring well was surveyed for horizontal (plus or minus 1.0 foot) and vertical (plus or minus 0.01 foot) control. A small mark was placed on the well casing rim to indicate the surveyed point. The locations of soil borings, test pits, barholes, and gas wells were surveyed to horizontal (plus or minus 1.0 foot) and vertical ground level (plus or minus 0.1 foot) control.

Previous vertical elevation survey data (i.e., existing monitoring wells) were based on a Sitespecific datum. These elevations were corrected by +2.57 feet to convert the elevations to NAVD 88. Attempts were made to correct and use NAVD 88 elevation data for all the reported elevations in the RI.

Area specific topographic survey was conducted in the vicinity of the compost facility and southern side of Area 5. These data were used for stormwater control and diversion planning.

3.0 RI FIELD INVESTIGATION FINDINGS

This section describes the data collected to close the data gaps identified in the Ecologyapproved Work Plan as amended and characterize the nature and extent of contamination at the Site. The field studies were conducted to achieve the following objectives and fill the identified data gaps:

- To further develop an understanding of the hydrostratigraphy beneath the Site.
- To fill the following data gaps related to groundwater contamination:
 - Neither the off-Site, nor the source(s) of the VOC contamination in the MW-15 specific samples had been fully identified. In particular, it had not been established whether Area 5 or Area 6 was contributing to the contamination found at MW-15.
 - Neither the extent nor the source(s) of the Freon 11 and 12 contamination in the landfill monitoring wells had been fully characterized.
 - The source(s) of inorganic constituent contamination in the MW-15-specific samples had not been fully characterized.
 - The vertical extent of contamination within the aquifer had not been evaluated.
 - The impact of the upgradient area-wide contamination on the Site and domestic well groundwater had not been fully characterized.
 - The source(s) of the VOCs impacts observed in the Small and Camp wells had not been established.
- To fill the following data gaps related to the LFG:
 - The presence/absence or character of LFG in Areas 1 and 2;
 - The potential impact of the LFG on groundwater quality near Area 1 and Area 5;
 - The extent and pathways of the LFG migration (there was insufficient data on the presence/absence of LFG extending beyond the waste limits for Areas 1, 2, and 5);
 - The quality and flow rate of gas from the gas extraction system and the radius of influence of the Area 6 LFG extraction wells to determine the effectiveness of the Area 6 interim action; and
 - The presence/absence and quality of VOCs in LFG near the HHWF consistent with the vapor intrusion guidelines.
- To further develop an understanding of the lateral and vertical extents of the MSW and the soil cover thicknesses at Areas 1, 2, and 5.
- To evaluate the soil quality beneath the MSW.

3.1 DISPOSAL AREA CHARACTERIZATION

MSW disposal Areas 1, 2, and 5 were evaluated during the RI by means of a geophysical survey and test pit and soil boring programs to better understand the horizontal and vertical extent of the MSW and the thickness of the soil cover over the MSW. The geophysical survey was inconclusive in precisely defining the waste cell boundaries due to signal masking and dispersion caused by thick soil cover, scattered debris outside the main disposal areas, and surrounding area soil disturbance.

Therefore, the test pit and soil boring programs and historical data were used to better define the lateral and vertical extents of waste and the thickness of the oil cover over the waste.

3.1.1 AREA 1

The approximate limits of Area 1 are shown on Figure 3. The observed MSW and cover soil thicknesses are provided in Table 2.

Observations from four test pits and one soil boring indicated that the upper waste surface is covered by 11 to more than 17 feet of soil (mostly local silt with a thin surface gravel layer for vehicle travel). The cover thickness was not assessed (due to the terrain and subsurface utilities) on the southern slope or in the west corner of Area 1.

The MSW thickness observed during the installation of GW-11 extended from 11 to 48 feet bgl. Intermediate cover layers (silt zones up to 4 feet thick) were observed in the top 25 feet of waste; however, no intermediate cover was observed in the lower 21 feet of waste. Much of the MSW in Are 1 appeared to have been partially burned. Soil cuttings collected near the bottom of the waste contained newspaper fragments dated January 1979.

3.1.2 AREA 2

Thirty-four test pits and one soil boring were used to define the Area 2 waste boundary and the thicknesses of the MSW and the cover soils. The approximate limits of Area 2 are shown on Figure 12. The observed MSW and cover soil thicknesses are provided in Table 2.

The MSW cover soil consisted of silt common to the Site vicinity. The cover thickness ranged from 0.5 to 11 feet; however, the thickness in all but three test pits was 4 feet or less.

The observed MSW thickness in Area 2 was highly variable. The recorded thicknesses in the interior test pits (those not located near the area boundary) and boring SB-24 ranged from 1 to 27 feet. Some test pits were not able to penetrate zones of consolidated MSW, while others encountered soil with limited MSW. Several newspapers found near the bottom of the waste were dated March 1979.

3.1.3 AREA 5

RI information from 23 test pits, 13 trenches, and seven soil borings excavated on the northern boundary, along with soil borings and gas well installation data from previous investigations, was used to define the Area 5 waste boundaries and MSW and cover soil thicknesses. The MSW boundary evaluation focused on the north side of Area 5. The approximate limits of Area 5 based on the RI data are shown on Figure 13. The MSW and cover soil thicknesses observed during the RI are provided in Table 2.

The MSW cover soil consisted of silt common to the Site vicinity. The observed cover soil thickness ranged from 1.5 to 15.5 feet. Cover soil of approximately 10 feet or greater was observed over

most of the area. Cover soil less than 5 feet thick was observed on the south side of Area 5 in four test pits (Figure 13). Shallow cover was also observed in TP-21/B-1 and B-2 at the northeastern boundary of Area 5 (3 and 4.5 feet, respectively); however, some of the cover soil in these areas was likely removed during the RI to create drilling pads.

Historical records indicate that the first disposal in Area 5 started as an excavation parallel and within the north drainage ditch. As the trench was filled, another trench would be excavated on the adjacent hillside (south side of trench), and the soils from the second trench would be used to cover the active cell. By this method, the trenches would stair-step up the hillside to the south. The RI findings suggest that this historical information is correct. Trench bottom elevations (base of MSW) were observed to be lower to the north and progressively higher to the south. Correspondingly, the separation between the base of the MSW and the groundwater table was less to the north relative to the separation to the south.

Borings drilled through the MSW at the northern extent of Area 5 indicated that the MSW thickness was about 11 to 16 feet thick in most borings. The separation between the base of the MSW and the groundwater table (based on February 2013 water table elevations) ranged from 7 to 21 feet. Boring SB-20 was an anomaly. The MSW thicknesses in SB-20 was 49.5 feet and extended approximately 11 feet beneath the groundwater table (based on February 2013 water table elevations).

A review of soil boring information and drilling information for gas wells GW-5 and GW-6 from the 2005 Independent RI (refer to Table 1 and the boring logs in Appendix A) indicates that as the explorations move south, the MSW zone thickens. The exploration data also indicate that the bottom elevation of the MSW rises, providing more separation from groundwater.

3.1.3.1 Area 5 Stormwater

Control of stormwater is important to prevent leachate generation. The general surface slopes in Area 5 promote stormwater drainage to the north and west. Drainage to the north is toward the north drainage ditch, where waters are directed off-Site as described in more detail in the following discussion of the north drainage ditch. Two linear road cuts located on the north slope of Area 5 likely impede stormwater flow and potentially promote infiltration. Drainage to the west reaches a shallow depression on the west side of Area 5, where stormwater is directed overland to the northwest (see the following description of the southwest area). No additional large depressions or areas where stormwater would pool were observed during the RI.

North Drainage Ditch

The north drainage ditch routes stormwater west along the north side of Area 5. The drainage features of the north drainage ditch valley bottom were historically modified by the creation of pits to

trap sediments and stormwater. The practice was discontinued in 2005, and an interim action (described in Section 1.6) was conducted in 2010 to promote stormwater flow through the valley adjacent to Area 5 and minimize pooling, thereby reducing the quantity of surface water available for infiltration.

The location of the Area 5 boundary (Figure 13) and knowledge of where the stormwater pits had been located before 2005 indicate that the former stormwater pits were located within several feet (at most 20 feet) of the MSW. During the RI, the engineering controls implemented during the 2010 interim action were observed to be promoting drainage past Area 5. However, the constructed drainage pathway is filling with soil and vegetation, which were observed to be impeding water movement during the RI. It appears that the existing drainage ditch is approximately 30 to 40 feet from the MSW in Area 5.

Southwest Side of Area 5

Stormwater run-on occurs at the south side of Area 5, in the vicinity of the entrance to the compost facility. The stormwater flows from the entrance point over the west side of Area 5 toward the northwest corner of the Site. Observations during the RI indicated the presence of boggy areas on the surface of Area 5 and soil cover erosion during storm events in this area.

3.2 SOIL SAMPLE RESULTS

3.2.1 GEOTECHNICAL SOIL CHARACTERIZATION

Grab, bulk, and Shelby tube soil samples were collected from the Area 5 soil cover material to analyze the soil characteristics (geotechnical analysis and lithologic descriptions). The laboratory testing was conducted by HWA for future use during the FS in evaluating soil infiltration and ET capacities. The laboratory testing indicated that the soil is composed of silt with an average (geometric mean) permeability of 4.1×10^{-6} cm/sec. The soils report is provided in Appendix C.

3.2.2 SOIL ANALYTICAL RESULTS

During the RI, select soil samples were collected from soil borings GW-11, SB-21, SB-23, SB-24, and SB-26 for laboratory analysis of VOCs. The sample intervals were selected to assess the soil quality in the vadose zone beneath the MSW. The laboratory results are summarized in Table 3. The laboratory analytical reports (2012 data only) are provided in Appendix D.

The analytical results indicated the presence of low-concentration VOCs in all soil samples collected during the RI. Nine VOCs were detected in the sample from Area 1, whereas no more than three VOCs were detected in all the other samples. The results suggest the potential for downward migration of leachate or impacts from LFG.

Four soil samples were also collected from beneath the MSW during the 2005 Independent RI. The MRLs reported for the 2005 samples were several orders of magnitude higher than the MRLs reported during this RI. The analytical results from the 2005 sampling indicated no VOCs in any of the samples at concentrations equal to or greater than the MRL.

3.3 LANDFILL GAS INVESTIGATION

3.3.1 BARHOLE PROBE SURVEY

The barhole survey was conducted to determine the presence/absence and character of LFG in shallow soils across Area 2. The monitoring results are provided in Table 4, and the barhole locations are shown on Figure 15. The results indicated no methane concentrations in eight of the nine probes; a concentration of 0.1 percent methane was detected at location BHSB-7 to the northeast. The presence of dense silt around the probe screen prevented adequate air circulation at several locations, including BHSB-7 and BHSB-9, and the pump in the gas analyzer shut off after approximately one probe tubing volume had been purged. However, the detection of carbon dioxide indicates that air was entering the barhole screen from the surrounding formation and not short-circuiting to ground surface. The absence of methane detections during the barhole survey suggests that methane was not penetrating into the silt cover above the MSW.

3.3.2 LANDFILL GAS MONITORING

LFG monitoring was conducted at 10 new and existing gas wells:

- Gas well GW-3 represents baseline conditions within Area 6 refuse where LFG collection is currently being performed.
- Gas wells GW-5 and GW-6 represent baseline conditions in refuse areas where LFG collection is not being performed.
- Gas wells GW-7S and GW-7D were installed to evaluate the potential for contaminant transfer from LFG to groundwater and to represent conditions beyond the northwest corner of Area 5.
- Gas well GW-8 represents conditions beyond the northern junction of Areas 5 and 6.
- Gas well GW-9 represents conditions beyond the southeastern perimeter of Area 1.
- Gas well GW-10 was installed specifically to evaluate the potential for vapor intrusion into the HHWF.
- Gas well GW-11 represents conditions within Area 1 MSW.
- Gas well GW-12 represents conditions along the center of the western landfill perimeter.

3.3.2.1 Methane

The results of methane monitoring at the 10 gas wells are provided in Table 5. Wells completed in MSW in Area 1 (GW-11), Area 5 (GW-6), between Areas 5 and 6 (GW-5), and Area 6 (GW-3) exhibited high methane concentrations, ranging between 12.5 and 66.6 percent by volume. All of the other measurements indicated no methane at perimeter wells, except for two events at GW-7S (0.1 and

0.4 percent by volume) and one event at GW-10 (0.7 percent by volume). The perimeter well results indicate that LFG migration, if any, is insignificant beyond the landfill boundary.

3.3.2.2 Volatile Organic Compounds

Historical LFG sampling performed in 2006 at groundwater monitoring wells MW-15 and MW-16, positioned outside the western perimeter of Area 5, and in 2009 at LFG monitoring wells GW-5 and GW-6, positioned within Area 5 refuse, indicated the presence of many VOCs. In 2012, existing gas wells GW-5 and GW-6, as well as newly installed gas wells (GW-7S, GW-7D, GW-8, GW-9, GW-10, GW-11, and GW-12) were analyzed for VOCs. The analytical results indicated the presence of VOCs in LFG at some level in all samples collected during the RI. The laboratory analytical results are provided in Table 6.

Theoretical Landfill Gas Contribution to Groundwater

Groundwater may be contaminated by leachate and/or LFG as it passes through or beneath the landfill waste. To determine if LFG should be considered a contaminant transfer pathway to groundwater, Henry's Law equilibrium concentrations were calculated for VOCs identified in Site groundwater and measured in LFG at GW-5, GW-6, and GW-11 (wells screened in the Area 1 and 5 refuse). The following equation was used to calculate the theoretical equilibrium concentration of select VOCs detected in LFG associated with a concentration of $0.5 \,\mu$ g/L in groundwater:

 $Cw = Cg \div H(1,000 \text{ liters per cubic meter})$

Where: Cw = VOC concentration in water ($\mu g/L$)

Cg = VOC concentration in gas (micrograms per cubic meter)

H = Henry's Law constant of VOC (dimensionless)

The theoretical concentrations of VOCs of interest in LFG associated with a minimum detectable concentration of 0.5 μ g/L in groundwater are provided in the following table. The VOCs selected for evaluation included constituents that were detected in groundwater in either Site or background wells, or constituents whose concentration in LFG was high enough to create a potential detection in groundwater at 0.5 μ g/L or greater.

	Henry's Law	Calculated Equilibrium	Perimeter Well Concentration	Refuse Well Concentration
Volatile Organic	Constant*	Concentration	Range	Range
1,1-Dichloroethene	0.635	317.5	ND	261– 480
Chloroethane	0.275	137.5	ND	194–785
Chloroform	0.0794	39.7	ND	ND
cis-1,2-Dichloroethene	0.087	43.4	ND	4,300–12,500
trans-1,2-Dichloroethene	0.212	106	ND	197–704
Freon 11	2.17	1,085	ND-31	254– 2,930
Freon 12	2.85	1,425	ND-1,200	950– 12,400
Freon 114	63.7	31,850	ND-930	731–7,600
Toluene	0.124	62	ND-6.6	10,900-19,900
Trichloroethene	0.204	102	ND-10	2,190-6,870
Tetrachloroethene	0.331	165.5	ND-2,700	3,100–17,000
Vinyl chloride	0.75	375	ND	830-3,560

*Based on temperature of 10° Celsius, provided in Minnesota Pollution Control Agency Risk-based Guidance for the Vapor Intrusion Pathway Intrusion Screening Values for Vapor Intrusion Risk Evaluation table found at http://www.pca.state.mn.us/index.php/view-document.html?gid=3162.

Perimeter wells include GW-7S, GW-7D, GW-8, GW-9, GW-10, and GW-12.

Refuse wells include GW-5, GW-6, and GW-11.

Bold value indicates reported groundwater concentration that exceeds the calculated equilibrium concentration in landfill gas.

 $\mu g/m^3 =$ micrograms per cubic meter.

ND = not detected at or above the method reporting level.

The analytical results indicate that a majority of the VOCs detected in groundwater theoretically could have been introduced through LFG in the MSW areas, based on the concentrations found at GW-5, GW-6, and/or GW-11. The LFG concentrations reported in the perimeter gas well samples are less than the threshold required to theoretically affect groundwater.

Landfill Gas Migration Potential

Gas samples collected from perimeter gas wells GW-8, GW-9, and GW-12 and interior gas well GW-10 located near the HHWF indicated the presence of up to seven VOCs reported at concentrations mostly near the MRLs. Reported concentrations of Freon 11, Freon 114, and PCE were greater than the MRLs but significantly less than the theoretical concentration required to affect groundwater based on the Henry's Law calculation. The low-concentration presence of VOCs in the perimeter wells indicates minor lateral migration of LFG at the landfill boundary, with limited, if any, potential to affect groundwater.

Four VOCs in LFG were detected at both GW-7S and GW-7D (1,1-dichloroethane, Freon 12, PCE, and toluene), a paired set of gas wells (shallow and deep) lying outside Area 5 and close to MW-15. Additionally, Freon 114 was detected in the shallow well. The VOC concentrations in the

shallow well were approximately two orders of magnitude higher than the concentrations reported in the deeper well. The presence of high concentrations of Freon 114 and PCE at shallow well GW-7S suggests lateral migration from refuse through a shallow soil pathway; low concentrations of six VOCs detected in GW-7D indicates relatively minor lateral migration at depth.

3.3.3 AREA 6 LANDFILL GAS EXTRACTION SYSTEM EVALUATION

The evaluation of the Area 6 LFG extraction system consisted of observing the system setup and operating parameters, measuring LFG concentrations and flow characteristics at each of the 11 extraction wells (EW-1 through EW-11), and measuring LFG concentrations and pressure at observation well GW-3, located at the center of the system. The system measurements are summarized in the following table.

Extraction	CH ₄	CO ₂	02	CH ₄ /CO ₂	Balance	Flow
Well	(ppmv)	(ppmv)	(ppmv)		(ppmv)	(scfm)
1	46.30	36.80	0.00	1.30	16.90	8
2	45.90	36.80	0.00	1.20	17.30	18
3	44.80	37.90	0.00	1.40	17.30	20
4	45.10	35.90	0.10	1.30	18.80	6
5	51.60	38.90	0.00	1.30	9.30	24
6	52.60	30.60	0.00	1.30	8.00	28
7	29.10	33.50	0.00	0.80	37.40	8
8	45.00	37.10	0.00	1.20	17.90	10
9	20.80	27.20	0.00	0.80	52.00	7
10	41.70	35.90	0.00	1.20	22.30	15
11	45.90	38.70	NR	1.20	15.40	15

 $CH_4 = Methane$

 $CO_2 = Carbon dioxide$

NR = Not recorded

 $O_2 = Oxygen$

Ppmv = Parts per million by volume

Scfm = Standard cubic feet per minute

The extraction wells are located approximately 200 feet apart across Area 6. Static pressure was measured at gas monitoring well GW-3 five times between May 2012 and February 2013 (Figure 14). Four of the five measurements showed generally positive pressures during extraction system operations, indicating a buildup of methane in the central portion of Area 6. After this testing, GW-3 was connected to the extraction system to induce negative pressure to withdraw the methane. Farther away,

measurements at perimeter gas well GW-8, located approximately 200 feet northwest of the extraction system, indicated no detected methane and fluctuating positive and negative vacuum near zero over the monitoring period. Based on these results, it appears that the well radius of influence is approximately at or less than 100 feet, and the extraction system was not allowing LFG to migrate to the landfill boundary. Therefore, additional radius of influence testing at the perimeter wells did not appear to be warranted and was not conducted.

The methane concentrations measured in wells EW-7 and EW-9 were 29.1 and 20.8 (percent by volume), respectively, significantly less than the range of 41.7 to 52.6 detected in the other nine extraction wells. Despite an increase in the valve positions at these locations without an increase in oxygen, the methane concentrations consistently remained low, indicating that the valve positions at these wells were at the optimum extraction flow setting.

Based on the measured methane concentrations in the extraction wells, the system testing, and discussions with City operations staff, the system appears to be operating at an optimum extraction flow rate without the introduction of oxygen. Therefore, no further modifications to the system operation are recommended at this time.

3.3.4 VAPOR INTRUSION EVALUATION

GW-10 was installed to evaluate the potential for LFG to affect indoor air quality at the HHWF. No methane was detected in four of the five measurements performed, and the one positive reading of 0.7 percent by volume was well below the 5 percent threshold established for further evaluation in the SAP. In addition, no VOC concentrations exceeded the draft Washington State Method C Soil Gas Screening Levels (Ecology 2009) that trigger the need for further analysis (see the following table). Based on these finding, no vapor intrusion modeling was performed.

	Freon 11 (µg/m ³)	Freon 12 (µg/m ³)	Tetrachloroethene (µg/m ³)	Toluene (µg/m ³)	1,1,1- Trichloroethane (µg/m ³)	m,p- Xylenes (μg/m ³)
Screening level*	7,000	1,800	42	49,000	48,000	1,000
GW-10	31	280	28	6.6	24	4.3

*Draft Washington State Method C Soil Gas Screening Levels (Ecology 2009) $\mu g/m^3$ = micrograms per cubic meter

3.4 AQUIFER CHARACTERIZATION

Drawdown data from three observation wells and recovery data from the pumping well were used to estimate the aquifer characteristics. The Cooper-Jacob straight-line solution (Cooper and Jacob 1946), the Theis (1935) method for confined conditions, extended by Hantush (1961) for partially penetrating wells, and other solutions were used to estimate the aquifer characteristics. Fluctuations in the ambient water levels resulted in limitations in terms of the suitability of the data from some observation wells for curve-matching techniques. Water levels in wells monitored for baseline conditions showed a daily pattern of fluctuation. These inflections were filtered out for wells with sufficient displacement. A detailed account of the testing and analysis and the results are provided in Appendix E.

A geometric mean of the results yields an overall estimated transmissivity in the aquifer of approximately 4,000 square feet per day (ft²/day) in the vicinity of the test, and a hydraulic conductivity of approximately 1.4 x 10^{-2} cm/sec (40 feet per day). Using this hydraulic conductivity and an effective porosity of 0.3, the average groundwater flow velocity beneath the Site was calculated to be approximately 1.9 x 10^{-4} cm/sec (193 feet per year). The aquifer testing indicated a storativity of approximately 2 x 10^{-3} , which is at the higher end of the range for confined aquifers of this type and is consistent with semi-confined aquifer conditions.

The aquifer test results indicate hydraulic connectivity between the screened interval of MW-15D and hydrostratigraphic zones represented by monitoring well screens for the deeper monitoring well MW-3 and shallower monitoring wells MW-15, MW-18, and MW-27. Minimal recharge (leakage) from the overlying silt unit to the old gravel and clay aquifer was identified with the use of the Hantush-Jacob/Hantush solution for leakage into a confined aquifer (Hantush and Jacob 1955; Hantush 1964). The results indicate a hydraulic connection between the screened intervals of MW-15D and MW-3, which are located approximately 26 feet below the bottom of the MW-15D screened interval. Although both wells are assumed to be within the same gravel aquifer unit, the dampened response in MW-3 suggests a more complex local hydrostratigraphy at depth, such as the presence of one or more lower permeability layers within the gravel aquifer unit.

3.5 GROUNDWATER LEVELS, FLOW DIRECTION, AND RATE

Depth to groundwater was measured in each monitoring well (not domestic wells) during each monitoring event, and the respective elevation was calculated using NAVD 88. Three groundwater elevation contour maps were prepared using the elevation data from the monitoring events in June 2012, October 2012, and February 2013. The groundwater contours and projected groundwater flow direction from these three monitoring events are shown on Figures 7, 8, and 9, respectively. The inferred groundwater flow direction on all three figures is to the west and southwest, with an approximate horizontal gradient of 0.004 ft/ft beneath the landfill. A vertical downward gradient is indicated, based on the difference in water levels in MW-3 and MW-15 (752.30 and 756.56 feet, respectively, in February, 2013). Using a hydraulic conductivity of 1.4×10^{-2} cm/sec and an effective

porosity of 0.3, the average horizontal groundwater flow velocity beneath the landfill was calculated to be approximately 1.9×10^{-4} cm/sec (193 feet per year).

Little water level fluctuation was observed during the monitoring period. Minor daily water level fluctuations were observed during the aquifer test baseline survey, and a longer term decline of the groundwater potentiometric surface is apparent. Data-logging pressure transducers deployed during the baseline aquifer test from July 12 through September 25, 2012, indicated daily water level fluctuations of approximately 0.2 to 0.4 foot. The water level fluctuations occurred in a highly consistent daily pattern and were attributed to the effects of earth tides. A review of water levels since 1997 indicates a steady decline in the vicinity of the landfill with as much as 10 feet of elevation loss in MW-12. The declining water levels result in greater separation between the base of the MSW and groundwater, providing more protection of the groundwater from the impacts due to leachate.

3.6 GROUNDWATER QUALITY EVALUATION

The discussions in this section are based on an evaluation of the groundwater data collected during the RI (June 2012 through February 2013). The laboratory analytical results from the eight RI groundwater sampling events are summarized in Table 7, and the analytical reports are provided in Appendix D. The analytical results in Table 7 have been organized and evaluated by group of well data:

- Upgradient wells: MW-5, MW-9, MW-10, MW-12b, and MW-25;
- Site wells: MW-3, MW-11, MW-14b, MW-15D, MW-16, MW-17, MW-18, MW-23, MW-24, MW-26, and MW-27 (excludes MW-15);
- MW-15 (most contaminated Site well);
- Downgradient wells: MW-19, MW-20, MW-21S/D, MW-22S/D; and
- Domestic wells: Camp, Kinman, Schmidt, and Small.

VOCs were detected in groundwater samples from all of the wells except two of the domestic wells (Kinman well and Schmidt well). The most prevalent detected VOCs were PCE and TCE. The average concentrations detected during the RI are shown on Figure 16.

No exceedance of the proposed MTCA Method B cleanup levels for groundwater (see Section 4 for cleanup level justification) was reported for samples from any of the wells, except MW-15. Two VOCs in MW-15 (PCE and vinyl chloride) consistently exceeded the proposed MTCA Method B cleanup levels for groundwater during the RI sampling period.

No specific trends or MTCA exceedances were observed for the metals results, with the exception of manganese. Manganese concentrations of up to 1.27 milligrams per liter (mg/L), which exceeded the USEPA's secondary drinking water standard, were initially detected in the new wells;

however, the concentrations decreased with time (presumably due to better well development), and the highest concentrations were detected in the samples from upgradient well MW-25. The discussion of inorganic parameters is limited to leachate indicator constituents (calcium, chloride, potassium, sodium, sulfate, and TDS) reported in groundwater samples collected from the four wells located in alignment along the north drainage ditch (from upgradient to downgradient: MW-24, MW-23, MW-27, and MW-15).

Statistical VOC data for the RI samples including mean, standard deviation, standard error, median, lower and upper quartile, maximum and minimum concentrations, and percentage of detections are provided in Table 8. Statistical data for calcium, chloride, potassium, sodium, sulfate, and TDS for wells MW-24, MW-23, MW-27, to MW-15 are provided in Table 9. Box plot diagrams for the inorganic constituents and VOCs reported for these wells are provided in Appendix F.

3.6.1 AREA-WIDE GROUNDWATER QUALITY

3.6.1.1 Regional Groundwater Quality

Regionally, the groundwater in the vicinity of the landfill contains low concentrations of chloroform, PCE, and TCE. The groundwater analytical data included in the RI/FS Report for the WSP (Parametrix 2012) indicate the presence of these VOCs in groundwater beneath the WSP, which is upgradient of the Site. The VOCs and concentrations in groundwater at the Site are similar to the area-wide contamination observed beneath the entire City property and in samples from the Camp and Small domestic wells.

The average upgradient concentrations of chloroform, PCE, and TCE, based on the RI sample results, are 1.17, 0.64, and 1.69 μ g/L, respectively. Similar VOC concentrations have regularly been detected in the landfill monitoring wells (see Tables 7 and 8) and two domestic water supply wells (Small and Camp wells).

3.6.1.2 Domestic Well Groundwater Quality

The groundwater results from the four domestic supply wells that were sampled indicated the presence of VOCs in two of the wells. The detected VOCs include chloroform (up to 0.67 μ g/L), PCE (up to 1.5 μ g/L), and TCE (up to 0.62 μ g/L) in the samples from the Small well, and PCE (up to 0.88 μ g/L) in the samples from the Camp well. VOCs were not detected in the samples collected from the Kinman and Schmidt wells. The maximum and mean concentrations in the samples from the Small and Camp wells compared to the concentrations in the upgradient well samples are shown in the following table.

	Upgradient Well		Small V	Vell	Camp Well	
	Maximum Mean		Maximum	Iaximum Mean		Mean
	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)
Chloroform	2.1	1.17	0.67	0.52	ND	ND
Tetrachloroethene	0.9	0.64	1.5	1.35	0.88	0.67
Trichloroethene	2	1.69	0.62	0.33	ND	ND

 $\mu g/L = micrograms per liter$

ND = not detected at or above the method reporting level

The VOC concentrations and direction of groundwater flow suggest that the contamination detected in the Camp and Small domestic wells is the result of area-wide contamination, with limited, if any, contribution from the Site. VOCs that are unique to the Site, such as 1,1-dichloroethane, *cis*-1,2-dichloroethane, Freon 12, and vinyl chloride, have not been detected in the domestic well samples. The maximum and mean concentrations of chloroform and TCE reported in the samples from the Small and Camp wells, and the maximum and mean concentrations of PCE in the samples from the Camp well are all less than the respective concentrations in the upgradient well samples. The maximum and mean PCE concentrations in the Small well are slightly greater than the concentrations in the upgradient well samples; however, these comparisons are based on the recent RI data. Historical maximum PCE concentrations reported in MW-5 (7.1 μ g/L on April 13, 1993) and MW-9 (4.1 μ g/L on April 13, 1993) have been decreasing with time. Therefore, it is difficult to determine whether the slightly higher concentrations in the samples from the Small well are the result of landfill contribution or the tail end of the regional PCE plume.

The groundwater flow direction also influences the potential landfill impact on domestic well groundwater quality. The groundwater flow path from the Site (to the west and southwest) does not extend within the reach of the Camp well, which is located ³/₄ mile northwest of the landfill. The groundwater flow path from MW-15 could, however, intercept the Small well. Based on a groundwater flow rate of 193 feet per year, contaminants from the vicinity of MW-15 would take approximately 24 years to reach the Small well (assuming no retention factor).

3.6.2 MW-15 GROUNDWATER QUALITY

MW-15 had the highest overall concentrations of VOCs reported for any of the wells monitored during the RI sampling period. Leachate indicator concentrations for alkalinity, calcium, potassium, sodium, sulfate, and TDS reported in the MW-15 samples were also greater than the concentrations in the other well samples. Concentrations of these constituents generally increase as groundwater moves past Area 5 (see the box plots in Appendix F). The maximum detected concentrations of VOCs and select inorganic constituents in the MW-15 samples compared with the maximum background concentrations during the RI are summarized in the following table.

Analyte	Maximum Concentration	Maximum Background Concentration
1,1-Dichloroethane (µg/L)	4.1	<0.5
Chloroethane (µg/L)	0.61	<0.5
<i>cis</i> -1,2-Dichloroethene (µg/L)	14.0	<0.5
Dichlorodifluoromethane (µg/L)	3.4	<0.5
Tetrachloroethene (µg/L)	6.8	0.64
Trichloroethene (µg/L)	2.2	2.0
Trichlorofluoromethane (µg/L)	0.63	<0.5
Vinyl chloride (µg/L)	1.2	< 0.02
Calcium (mg/L)	163	109
Chloride (mg/L)	126	140
Potassium	8.83	7.9
Sodium (mg/L)	69.9	33.9
Sulfate (mg/L)	44.3	36.4
TDS (mg/L)	988	770

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

TDS = total dissolved solids

PCE, TCE, 1,1-dichloroethane, *cis*-1,2-dichloroethene, Freon 12, and vinyl chloride were reported in all the MW-15 samples, at concentrations greater the regional background concentrations. Concentrations of chloroethane (detected twice), toluene (detected once), and Freon 11 (detected three times) were also reported in the MW-15 samples.

Chloroethane and vinyl chloride were unique constituents that were reported only in the MW-15 samples. The compounds *cis*-1,2-dichloroethene and 1,1-dichloroethane were also reported in downgradient off-Site wells MW-19 and MW-20 (*cis*-1,2-dichloroethene only). These constituents are common breakdown products of PCE and TCE in anaerobic environments.

Freon 11 and Freon 12, which are commonly reported in the Site monitoring wells, are also commonly reported in MW-15 sample results. Regionally (area-wide) reported constituents that are also found in MW-15 include low concentrations of PCE and TCE. Chloroform, which is found regionally, has never been reported in MW-15, most likely due to anoxic groundwater conditions. It is likely that the PCE and TCE concentrations in MW-15 are in part due to the low regional (background) concentrations.

Time-series plots of the VOC detections in MW-15 since August 2001, provided in Appendix F, indicate that all of the VOCs detected in MW-15 are showing decreasing trends, with exception of *cis*-1,2-dichloroethene, which is a breakdown product and is observed to increase in concentration as the parent compounds decrease.

Inorganic constituents, including calcium, chloride, potassium, sodium, sulfate, and TDS in the MW-15 samples are generally greater than the respective concentrations in other wells. Elevated concentrations of these constituents can be indicators of leachate impact on groundwater quality. Monitoring wells MW-24, MW-23, MW-27, and MW-15 are generally located in line with the groundwater flow direction from upgradient to downgradient along the northern boundary of Area 5. Statistical data for calcium, chloride, potassium, sodium, sulfate, and TDS for wells MW-24, MW-23, MW-27 and MW-15 are provided in Table 9, and box plot diagrams are provided in Appendix F. These data generally indicate increasing concentrations as the groundwater travels downgradient past Area 5. Conversely, concentrations of chloroform, a chlorinated VOC that is stable in aerobic conditions, decrease from upgradient well MW-24 to less than the MRL in MW-15. These concentration trends suggest a leachate impact on groundwater in the vicinity of Area 5, an indication that is supported by the finding that some of the MSW in Area 5 is within the saturated zone.

3.6.3 LANDFILL WELL GROUNDWATER QUALITY, EXCLUDING MW-15

A review of the RI groundwater quality data for the other Site monitoring wells (excluding MW-15) indicates the common presence of chloroform, PCE, Freon 11, and Freon 12. Additionally, TCE was detected in five of the Site wells (MW-15D, MW-17, MW-23, MW-24, and MW-27), all located in the vicinity of Area 5.

The average chloroform concentrations in the Site wells ranged from 0.54 to 1.28 μ g/L. The average chloroform concentrations in upgradient well MW-12b was 0.79 μ g/L, with a combined upgradient well average of 1.17 μ g/L. The chloroform concentrations detected in the landfill well samples, therefore, fall within the range of chloroform concentrations typical of the regional groundwater quality.

The average PCE concentrations in the Site wells ranged from 0.69 to 1.95 μ g/L. The average PCE concentrations in upgradient well MW-12b was 0.93 μ g/L, with a combined upgradient well average of 0.64 μ g/L. The average PCE concentrations in most Site wells (see Table 8) are slightly greater than the average concentrations in MW-12b and upgradient wells (regional), indicating possible landfill contribution of PCE to groundwater. A time-trend plot of historical PCE concentrations in MW-11 (see Appendix F) suggests an increasing trend with time, although the highest detected concentration during the RI was 1.5 μ g/L.

Freon 11 was reported in monitoring wells MW-16, MW-17, and MW-18, at concentrations up to 1.2 μ g/L. Freon 12 was reported in all of the Site wells except MW-3, MW-15D, MW-17, and MW-24, at concentrations up to 1.0 μ g/L. The Freon 11 and Freon 12 could indicate landfill impacts on groundwater via LFG (see the subsection "Theoretical LFG Contribution to Groundwater" in Section 3.3.2.2).

3.6.4 DOWNGRADIENT OFF-SITE WELL GROUNDWATER QUALITY

The shallow downgradient off-Site monitoring wells are MW-19, MW-20, MW-21S, and MW-22S. The downgradient off-Site monitoring wells with screens placed deeper in the aquifer are MW-21D and MW-22D. The analytical results indicate off-Site movement of VOCs in the shallow and deeper aquifer zones. Common VOCs detected in all downgradient well samples include chloroform (up to 0.91 μ g/L) and PCE (up to 1.9 μ g/L). The highest downgradient off-Site VOC concentrations are generally found in either MW-19 or MW-20. The VOCs detected in MW-19 and MW-20 are similar to those found in MW-15 and include PCE, TCE, 1,1-dichloroethane (MW-19 only), chloroform, *cis*-1,2-dichloroethene, Freon 11, and Freon 12. The concentrations of chloroform and TCE in the deep wells are slightly less than the regional concentrations; however, the concentrations of PCE (up to 1.2 μ g/L) and Freon 11 (up to 0.89 μ g/L) are greater than the regional background concentrations and possibly indicate landfill contribution of at least these two constituents. Freon 12 (up to 1.4 μ g/L) is also found in all of the shallow downgradient wells, indicating off-Site movement of VOCs in the shallow aquifer

4.0 CONSTITUENTS OF CONCERN, PROPOSED DRAFT CLEANUP LEVELS, AND POINTS OF COMPLIANCE

A large number of environmental samples have been collected at the Site as part of the activities described in this report. In order to develop screening and draft cleanup levels, the existing data set was examined for the media of concern. The environmental media sampled at the Site were soil, LFG, and groundwater. However, soil and LFG are not considered media for which cleanup levels need to be established because the affected soil and LFG are within the permitted landfill boundaries, with little potential for human exposure. Groundwater, on the other hand, shows impacts downgradient of the MSW cells; therefore, cleanup levels must be established for groundwater. The following table indicates the analyte groups for which Site groundwater samples were tested historically for groundwater and when that testing was conducted.

	Remedial Investigation (2012–2013)		Appendix III Parameters (2002 and 2012)*			
Site samples	Conventional parameters	VOCs	SVOCs	Metals	PCBs	Pesticides/ herbicides

*Source: WAC 173-351-990, Appendix III, list of parameters

PCB = Polychlorinated biphenyl

SVOC = Semivolatile organic compound

VOC = Volatile organic compound

Table 7 summarizes all the RI groundwater sampling results for detected analytes to identify COCs for the Site. The steps for identifying the COCs were as follows:

- Step 1—identify detected chemicals by media.
- Step 2—develop screening levels for detected chemicals by media.
- Step 3—compare concentrations of detected chemicals to screening levels.

4.1 CHEMICALS IDENTIFIED IN GROUNDWATER

During the RI, groundwater samples were analyzed for the following chemical groups:

- Conventional parameters by various USEPA methods;
- VOCs by USEPA Method 8260C;
- SVOCs by USEPA Method 8270C;
- Pesticides/herbicides by USEPA Methods 8081A/8141A/8151A:
- PCBs by USEPA Method 8082; and
- Metals by various USEPA methods.

Groundwater has been collected regularly from monitoring wells at the Site for compliance monitoring purposes and a significant amount of data exist. These data are summarized in Appendix G.

Table 10 lists the constituents that were detected during the RI and their maximum detected concentrations. To be protective, all constituents detected in groundwater during the RI were retained for the development of groundwater screening levels regardless of their frequency of detection.

4.2 DRAFT CLEANUP LEVELS AND CONSTITUENTS OF CONCERN

4.2.1 GROUNDWATER SCREENING LEVELS AND CONSTITUENTS OF CONCERN

The following pathway was considered for the establishment of groundwater screening levels at the Site: protection of human health via drinking water as the highest beneficial use.

In developing screening levels for the Site, it is relevant to note that there are currently no complete exposure pathways from groundwater at the Site itself, because groundwater from the Site wells is only used for nonpotable purposes. There is a potential pathway of exposure for resident's downgradient of the landfill who currently use wells for domestic purposes, if contaminants from the Site were to migrate to these wells at levels exceeding applicable screening levels or drinking water standards. As described in Section 5.4 below, however, sampling at selected downgradient domestic wells has indicated detections of COCs consistently less than the screening levels and the National Primary Drinking Water Standard maximum contaminant levels.

Because the Site is not located within 2,000 feet of any perennial creeks or waterways, protection of surface water resources was not considered as a pathway for the establishment of groundwater screening levels.

4.2.1.1 Applicable Groundwater Screening Levels

Consistent with MTCA requirements in WAC 173-340-720(4) for selecting Method B groundwater cleanup levels, the following promulgated standards were used to identify concentrations that would be protective of human health via drinking water consumption and/or inhalation of vapors that are volatilized from water:

- Protection of human health via drinking water consumption: MTCA Method B groundwater cleanup levels; and
- Protection of human health via drinking water consumption: state and federal drinking water maximum contaminant levels (MCLs).

4.2.1.2 Groundwater Screening Levels

The most stringent screening levels for PCE and vinyl chloride in groundwater are listed in the following table. PCE and vinyl chloride were the only chemicals with concentrations that exceeded their respective screening levels at the Site. Where multiple criteria were available for a chemical, the lowest value was selected, consistent with MTCA [WAC 173-340-720 (4)(b)(i)]. The MTCA Method B cleanup

level of 4 μ g/L was selected as the screening level for TCE. The maximum detected TCE concentration is 2.2 μ g/L, and TCE was therefore eliminated as a COC. All applicable screening levels are provided in Table 10. The following table is a summary of chemicals that were detected during the RI in groundwater samples at concentrations greater than the proposed screening levels and are, therefore, considered to be COCs at the Site. The highest concentrations were detected in monitoring well MW-15, with vinyl chloride detected in MW-15 only. The maximum and average concentrations of PCE in the groundwater samples collected from the Site wells were less than the screening levels in all the wells except MW-15.

Constituent of Concern	Screening Level (µg/L)	Maximum Detected Concentration (µg/L)
Tetrachloroethene	5	6.8
Vinyl chloride	0.029	1.2

 $\mu g/L = micrograms per liter$

Chloroethane was detected during the RI. A cleanup level is not proposed for chloroethane because no applicable or relevant and appropriate requirements (ARARs) or MTCA cleanup levels are available. Chloroethane was also detected at a very low frequency at the Site (1 percent). Elimination of chemicals as COCs at a Site based on infrequent or anomalous detection is consistent with the COC screening approach described in USEPA Risk Assessment Guidance (USEPA 1989).

4.2.1.3 Proposed Draft Groundwater Cleanup Levels

Proposed draft groundwater cleanup levels have been developed for PCE and vinyl chloride based on the screening levels in the previous table. The rationale for cleanup level development is as follows:

- The cleanup level for PCE is based on the most stringent of the ARARs and is, therefore, equal to the screening level of $5 \mu g/L$, as indicated in the following summary table.
- The cleanup level for vinyl chloride has been adjusted upward from the screening level of 0.029 μ g/L. In accordance with WAC 173-340-720, groundwater cleanup levels for individual hazardous substances may be adjusted provided that in making these adjustments, (1) the cleanup level is at least as stringent as the most stringent concentration established under applicable state and federal laws (in this case, MCLs), and the cleanup level is at least as stringent as the concentration is sufficiently protective if the hazard index does not exceed 1 and the total excess cancer risk does not exceed 1 in 100,000 (1 x 10⁻⁵).

The proposed adjusted cleanup level for vinyl chloride is provided in the following table, along with the associated risk. The table indicates that this value, even with the upward adjustment, meets the intent of WAC 173-340-720. The value is less than the state and federal MCL of 2 μ g/L and meets the

risk requirements with a total excess cancer risk of 1.0×10^{-5} and a hazard index of 0.11 (including the risk posed by PCE). The values indicated in the following table are, therefore, proposed as draft groundwater cleanup levels for PCE and vinyl chloride.

	Draft Proposed	Associated Risk Values			
Constituent of Concern	Cleanup Level (µg/L)	Excess Cancer Risk	Hazard Quotient		
Tetrachloroethene	5.0	2.3 x 10 ⁻⁷	0.1		
Vinyl chloride	0.29	9.9 x 10 ⁻⁶	0.01		
	Total Risk	$1.0 \ge 10^{-5}$	0.11		

 $\mu g/L = micrograms per liter$

The average concentrations of PCE and TCE detected during the RI sampling event are shown on Figure 16. Although not a COC, TCE is included in the figure because it was detected so frequently at the Site. The PCE concentrations are compared to the proposed draft cleanup level for PCE. The figure indicates that while PCE has been detected Site-wide, it has been detected at concentrations exceeding the proposed cleanup level in only monitoring well MW-15. The extent of vinyl chloride is limited to MW-15, where it has been detected at concentrations exceeding its proposed cleanup level during all RI and historical sampling events.

4.3 POINTS OF COMPLIANCE

Points of compliance (locations where the cleanup levels must be achieved) are established for each affected medium at the Site. The media of concern, the COCs, the pathways of exposure, and the locations of the exceedances of the proposed cleanup levels were identified during the RI process and are summarized in Section 5, Conceptual Site Model. Groundwater is the only identified environmental medium of concern; therefore, the points of compliance are identified for groundwater only.

The standard point of compliance for groundwater under MTCA is "throughout the site from the uppermost level of the saturated zone extending vertically to the lowest depth which could potentially be affected by the site" [WAC 173-340-720(8)(b)]. However, for landfills, a conditional point of compliance is typically used that sets the point of compliance at the downgradient edge of the waste cells, or the landfill boundary, whichever is closer [WAC 173-340-720(8)(c)]. For this Site, the downgradient boundary coincides with the western edge of Area 5; therefore, the conditional point of compliance should be set along the western property boundary. Compliance may be monitored by a series of

monitoring wells located as close as practical to this boundary; from north to south, the wells are MW-3, MW-15D, MW-15, MW-18, MW-16, and MW-14B.

THIS PAGE LEFT INTENTIONALLY BLANK

5.0 CONCEPTUAL SITE MODEL

This section describes the conceptual site model developed from the available information about the landfill as described in the preceding sections. According to MTCA, the goal of the conceptual site model is to identify the potential or suspected sources of hazardous substances, the types and concentrations of hazardous substances, the potentially contaminated media, and the potential exposure pathways and receptors. The conceptual site model provides the foundation for defining the objectives of the FS.

5.1 SUSPECTED SOURCES OF HAZARDOUS SUBSTANCES

Most of the waste disposed of at the Site is MSW transported to the Site by commercial and public garbage disposal service contractors from the City, as well as Walla Walla and Columbia Counties, which are predominantly rural counties with an agricultural economic base and little manufacturing or heavy industry. Permitted waste disposal at the Site has been limited to MSW, asbestos, and medical wastes. The Site has also provided special areas for animal carcass disposal. Hazardous substances have never knowingly been allowed into the landfill based on the available information.

Based on the RI data, the suspected sources of hazardous substances found in groundwater at the landfill include the following

- LFG;
- Direct disposal of MSW in groundwater; and
- Leachate.

LFG was observed in all MSW disposal areas during the RI. The elevated VOC concentrations in the LFG samples indicated high potential for LFG contaminants to migrate to groundwater. The VOCs in LFG are likely the primary contributor to the groundwater quality impacts observed at the landfill.

Direct disposal of MSW in groundwater appears to be limited to a small area located within the northern Area 5 disposal trench. VOC and inorganic constituent concentrations in groundwater do not increase significantly downgradient of the MSW in groundwater, and therefore the small area of deposition below the groundwater table is not considered a significant contaminant source. MSW occurrence below the water table was observed only in SB-20; however, wet soils were observed near the base of the MSW in several other borings in the vicinity of SB-20. The declining elevation of the regional groundwater table is beneficially providing greater separation of the MSW and groundwater with time and, therefore, should provide better protection from the migration of VOCs to groundwater.

The RI data indicate that leachate could be a contributing source based on the following:

- Conventional parameter concentrations in MW-15 exceed the background and upgradient well data.
- Low level VOCs were detected in soil samples collected beneath the MSW in Areas 1, 2, and 5. The low level VOCs observed in soil below the MSW are not considered a significant contaminant source to groundwater.
- Thin (less than 5 feet thick) landfill cover soils were observed above all of Area 2 and a small portion of Area 5.
- Stormwater drainage channels extend along the north side of Area 5, and stormwater run-on was observed in the southwestern portion of Area 5. Boggy areas and erosion channels were also observed in the southwestern portion of Area 5.

5.2 CONTAMINATED MEDIA

5.2.1 SOIL

Soil is not considered a medium of concern at the Site. No human exposure is possible because the contaminated soils were found beneath the permitted landfill cells at depths greater than 15 feet bgl, the areas of contamination are capped, and institutional controls [such as those described in WAC 173-340-440(1)(a)(b)(c) and (d)] are in effect for the landfill as a requirement of the Municipal Solid Waste Permit.

5.2.2 GROUNDWATER

5.2.2.1 Maximum Beneficial Use

The maximum beneficial use of groundwater is for drinking water purposes, so groundwater concentrations were compared to cleanup levels appropriate for drinking water use (refer to Table 10). PCE and vinyl chloride concentrations exceed applicable standards and were defined as the COCs for the Site (but constrained to only well MW-15 only). The maximum detected PCE concentration in groundwater is 6.8 μ g/L, which is greater than the proposed cleanup level of 5.0 μ g/L, and the maximum detected vinyl chloride concentration is 1.2 μ g/L, which is greater than the proposed cleanup level of 5.0 μ g/L, and the maximum detected vinyl chloride concentration is 1.2 μ g/L, which is greater than the proposed cleanup level of 0.29 μ g/L based on the MTCA Method B approach but less than the state and federal drinking water standard of 2.0 μ g/L.

5.2.2.2 Area-wide and Domestic Well Groundwater

Groundwater monitoring data have indicated the presence of low concentrations of chloroform, PCE, and TCE in groundwater extending from the eastern boundary of the City property (6,300 feet east and hydraulically upgradient of the landfill boundary) and as far west as the Small domestic supply well (4,600 feet west of the landfill boundary). None of the concentrations detected outside of the landfill boundary exceeded applicable cleanup levels. One or more of these three contaminants were also detected in samples from all of the wells tested during the RI, except the Schmidt and Kinman
domestic supply wells. Based on the RI data, these contaminants observed upgradient of the landfill, and at least in part beneath and downgradient of the landfill originate from an upgradient source.

5.2.2.3 Localized Groundwater near MW-15

The contaminants detected in groundwater samples from MW-15 and off-Site wells downgradient of MW-15 are distinct from those detected in all the other Site and downgradient domestic wells in that they consist of a broader list of VOCs. The constituent list includes PCE, TCE, chloroethane, 1,1-dichloroethane, *cis*-1,2-dichloroethane, Freon 12, Freon 11, and vinyl chloride, but not chloroform. Concentrations of PCE and vinyl chloride in MW-15 exceeded the draft proposed cleanup levels. No other constituent in a downgradient off-Site well sample exceeded a screening level.

Inorganic constituents, including calcium, sodium, bicarbonate, chloride, alkalinity, and TDS, were also detected in groundwater samples from MW-15. The concentrations of these constituent concentrations do not exceed the screening levels but are possible indicators of landfill leachate impacts on groundwater in the vicinity of MW-15.

5.2.2.4 Landfill Area Groundwater

Common contaminants detected in groundwater monitored by the Site monitoring wells include chloroform, PCE, Freon 11, and Freon 12. TCE was also detected in five of the Site wells located in the vicinity of Area 5.

Average PCE concentrations in most Site wells are slightly higher than the average PCE concentrations detected in wells upgradient of the landfill, indicating possible landfill contribution of PCE to groundwater. The presence of Freon 11 and Freon 12 likely indicates landfill impacts on groundwater, as noted above. Based on these findings, the landfill is likely having an impact on groundwater; however, none of the detected constituents exceeded a screening level, and therefore groundwater in the landfill area (with the exception of MW-15) does not appear to be contaminated by concentrations greater than the proposed draft cleanup levels.

5.2.3 LANDFILL GAS

LFG is generated during the decomposition of refuse by anaerobic bacteria and the release of VOCs from the disposed waste products. The LFG studies conducted during the RI indicate that while off-Site methane migration has not occurred, the VOCs found in LFG at Areas 1 and 5 are at high enough concentrations to pose a risk of directly contaminating groundwater (cross-media pathway). Area 6 has an LFG collector system (active since 2010); Areas 1 and 5 do not. Soil vapor intrusion at the HHWF was not considered a significant concern.

5.2.4 STORMWATER

Stormwater itself is not considered a potentially contaminated medium because there are no pathways for stormwater at the Site to encounter hazardous materials before running off-Site. However, stormwater infiltration through or adjacent to the MSW and the subsequent generation and downward migration of leachate to groundwater has been identified as a possible cause of groundwater contamination. The leachate appears to be the primary source of conventional parameter impact to groundwater, while the VOC impacts from leachate appear to be minor. The areas of concern include the following:

- The north drainage ditch engineering controls implemented during the 2010 interim action promote drainage past Area 5. However, the constructed drainage pathway is filling with soil and vegetation, which is impeding water movement off-Site. It appears that the existing drainage ditch is approximately 30 to 40 feet from the MSW in Area 5.
- Stormwater run-on occurs at the southwest side of Area 5, in the vicinity of the entrance to the compost facility.
- Stormwater flow on the surface of Area 5 has caused erosion of the soil cover on the west side of Area 5.
- Two linear road cuts located on the north slope of Area 5 likely impede stormwater flow and potentially promote infiltration.
- The soil cover thickness over Area 2 may be insufficient to prevent infiltration of precipitation and stormwater.

5.3 FATE AND TRANSPORT

Chlorinated VOCs can be very persistent in the environment and can travel downgradient significant distances before attenuating. Attenuation can occur by direct adsorption of molecules to soil organic carbon, by biodegradation, or by simple dispersion of the molecules away from the core of the plume into surrounding groundwater as it travels downgradient. With biodegradation, the presence of biodegradation "daughter products" such as *cis*-1,2-dichloroethene and vinyl chloride (found in MW-15) suggests that biodegradation of the plume is significant and occurring in and near the source area. This is typical of plumes in anaerobic environments found in groundwater affected by landfill leachate or LFG, because the bacteria that are capable of biodegrading chlorinated compounds typically live in highly reducing anaerobic environments; however, once the chlorinated plume migrates beyond the limited area of anaerobic activity, little further degradation is expected to occur in the oxidizing environment found in downgradient groundwater.

Therefore, the primary fate and transport mechanism in downgradient groundwater is advective transport and dispersion of the contaminants downgradient until the contaminants eventually attenuate by dispersion or become firmly bound to soil organic matter in the aquifer. The growth or decay of the plume depends on the balance between groundwater flow and the amount of contaminant mass being

replenished to the aquifer. If the source of the contamination can be controlled, the plume is expected to diminish in size as it is transported downgradient in groundwater. Alternatively, if the source mass is increased, the plume will grow in size, because it overwhelms the attenuation ability of the aquifer.

5.4 RECEPTORS/PATHWAYS OF EXPOSURE

Groundwater is the primary contaminated medium at this Site and its highest beneficial use is for drinking. Exceedances above the draft cleanup levels have been detected only at MW-15. Offproperty migration of contaminants in groundwater has occurred, but not at concentrations that are causing exceedances of the draft cleanup levels in the nearest off-Site monitoring wells. Currently, there are no complete exposure pathways from groundwater at the Site itself, because groundwater from Site wells is not used for potable purposes.

Possible receptors of contaminants in groundwater are downgradient domestic well users. However, domestic well users are located over ³/₄ mile downgradient of the Site, and a review of VOC concentrations in their wells by the Washington State Department of Health in 2012 (WDOH 2012) indicated that the concentrations were safe for individuals who use the groundwater for drinking, showering, bathing, and cooking. VOC concentrations detected in two residential wells during the RI were consistently less than the screening levels and the National Primary Drinking Water Standard maximum contaminant levels. Therefore, the risk to domestic well groundwater users does not reach a level that requires action.

The LFG studies conducted during the RI indicate that off-Site methane migration and soil vapor intrusion into the HHWF and equipment building are not pathways of exposure.

5.4.1 TERRESTRIAL ECOLOGICAL EVALUATION EXCLUSION

A terrestrial ecological evaluation was not conducted for the Site, because all the contaminated soil and MSW in inactive cells is covered by a physical barrier (soil cover), and institutional controls [such as those described in WAC 173-340-440(1)(a)(b)(c) and (e)] are in effect for the landfill as a requirement of the Municipal Solid Waste Permit. Additionally, any possible soil contamination is expected to be greater than 15 feet bgl and would, therefore, also meet the standard point of compliance described in WAC 173-340-7490(4)(b). These conditions are sufficient to meet the exclusion criteria described in WAC 173-340-7491(1)(a), (b), or(c).

THIS PAGE LEFT INTENTIONALLY BLANK

6.0 REMEDIAL ACTION REQUIREMENTS

This section identifies the requirements that must be met for a remedial alternative to comply with MTCA. The landfill is composed of seven disposal areas (Areas 1 through 7) and covers approximately 125 acres of a larger 828.86-acre City-owned parcel that is zoned as "reserved" and used for various waste management purposes. All disposal areas have been closed except for Area 7. Area 7 is a lined cell with leachate controls operating in compliance with Chapter 173-351 WAC, is still actively accepting waste, and is not included in the FS.

6.1 MTCA CLEANUP REQUIREMENTS

In order to meet the requirements of MTCA, the selected remedy must be protective of human health and the environment. WAC 173-340-360(2)(a) specifies four threshold criteria that all cleanup actions must satisfy:

- Protect human health and the environment.
- Comply with cleanup standards (WAC 173-340-700 through 173-340-760).
- Comply with applicable local, state, and federal laws (WAC 173-340-710).
- Provide for compliance monitoring (WAC 173-340-410 and WAC 173-340-720 through 173-340-760).

In addition, WAC 173-340-360(2)(b) specifies three other criteria that alternatives must satisfy:

- Use permanent solutions to the maximum extent practicable.
- Provide for a reasonable restoration timeframe.
- Consider public concerns (WAC 173-340-600).

Because of the typical size and history of solid waste landfills, it is impracticable to treat solid waste or remove solid waste from a landfill as part of a cleanup action. MTCA allows containment for sites that contain large volumes of materials with relatively low levels of hazardous substances, like MSW landfills [refer to WAC 173-340-370(3)]. Further, MTCA uses the landfill closure requirements as the minimum requirements for landfill cleanup actions [refer to WAC 173-340-710(7)(c)].

Under MTCA, closed landfills are considered to be sites that have used "containment of hazardous substances" as the remedial action. Under WAC 173-340-740(6)(f), MTCA defines the expectation for containment sites as follows:

WAC 173-340-740(6)(f): The department recognizes that, for those cleanup actions selected under this chapter that involve containment of hazardous substances, the soil cleanup levels will typically not be met at the points of compliance specified in (b) through (e) of this subsection. In these cases, the cleanup action may be determined to comply with cleanup standards, provided:

(i) The selected remedy is permanent to the maximum extent practicable using the procedures in WAC 173-340-360;

(ii) The cleanup action is protective of human health. The department may require a site-specific human health risk assessment conforming to the requirements of this chapter to demonstrate that the cleanup action is protective of human health;

(iii) The cleanup action is demonstrated to be protective of terrestrial ecological receptors under WAC 173-340-7490 through 173-340-7494;

(iv) Institutional controls are put in place under WAC 173-340-440 that prohibit or limit activities that could interfere with the long-term integrity of the containment system;

(v) Compliance monitoring under WAC 173-340-410 and periodic reviews under WAC 173-340-430 are designed to ensure the long-term integrity of the containment system; and

(vi) The types, levels, and amount of hazardous substances remaining on-site and the measures that will be used to prevent migration and contact with those substances are specified in the draft cleanup action plan.

For closed solid waste landfills (or closed solid waste landfill cells), Ecology allows containment to be part of the remedial action. It is unnecessary to evaluate removal actions or perform a disproportionate cost analysis (DCA) for removal, as otherwise required under WAC 173-340-360); however, the specific remedy selected for the landfill must demonstrate that the other elements of containment are met as defined by Sections (ii) through (iv) above.

6.2 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

In accordance with MTCA, all cleanup actions must comply with applicable state and federal laws [WAC 173-340-710(1)]. MTCA defines applicable state and federal laws to include legally applicable requirements and those requirements Ecology determines are relevant and appropriate requirements based on consideration of the criteria in WAC 173-340-710(4). Collectively, these requirements are referred to as ARARs. The potential ARARs for this project include the following:

- MTCA Cleanup Regulation (Chapter 173-340 WAC);
- Minimum Functional Standards for Solid Waste Handling (Chapter 173-304, WAC);
- Criteria for Municipal Solid Waste Landfills (Chapter 173-351 WAC);
- Solid Waste Handling Standards (Chapter 173-350 WAC);
- Dangerous Waste Regulations (Chapter 173-303 WAC);
- State Environmental Policy Act (SEPA) Rules (Chapter 197-11 WAC);
- Safe Drinking Water Act, Primary Drinking Water Regulations [Code of Federal Regulations Title 40, Part 141 (40 CFR 141)]
- State Water Code and Water Rights (Chapters 173-150 and 173-154 WAC);
- Underground Injection Control Program (Chapter 173-218 WAC);

- State Water Pollution Control Act (Chapter 90.48 RCW);
- Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 RCW);
- Washington Clean Air Act (Chapter 70.94 WAC);
- General Regulations for Air Pollution Sources (Chapter 173-400 WAC);
- Operating Permit Regulation (Chapter 173-401 WAC);
- Occupational Safety and Health Act (29 CFR 1910.120);
- Washington Industrial Safety and Health Act (Chapter 49.17 RCW); and
- Accreditation of Environmental Laboratories (Chapter 173-50 WAC).

6.3 REDEVELOPMENT AND LAND USE GOALS

In order to meet the cleanup requirements identified above, it is important to identify whether there are any future redevelopment plans for the Site to ensure that the selected remedy meets the goals for the landfill in both its present state and future configurations.

The Sudbury Road Landfill covers approximately 125 acres of a larger 828.86-acre City-owned parcel that is zoned as "reserved" and used for various waste management purposes. Area 7 of the landfill is operating in compliance with a Chapter 173-351 WAC Solid Waste Permit. The total fill date for Area 7, cells 1 through 3, is projected to be in the year 2038, with available expansion areas to the north or east of the landfill.

Land use of the Site into the foreseeable future is designated for waste disposal purposes. After the closure of the landfill, an environmental covenant will be recorded on the landfill property and will meet at a minimum the requirements stipulated in WAC 173-351-500(1)(h).

THIS PAGE LEFT INTENTIONALLY BLANK

7.0 PRELIMINARY REMEDIAL ALTERNATIVES SCREENING

The RA Focusing Study (Schwyn 2013a) was prepared for the Site and submitted to Ecology on November 8, 2013, and subsequently approved by Ecology. As part of the RA Focusing Study, a list of potential cleanup action technologies was compiled on the basis of the nature and sources of the COCs identified for the Site, the environmental medium of concern (groundwater), and the potential exposure pathway (drinking water). Potentially applicable cleanup action technologies were screened against the criteria described in WAC 173-340-350(8)(b) and WAC 173-340-360(2)(a)(b). The RA Focusing Study provided the basis for the alternatives that are evaluated as part of this FS and was used as the baseline for the evaluation.

7.1 IDENTIFICATION OF REMEDIAL ACTION OBJECTIVES

The RAOs must address all of the affected media, and the recommended cleanup alternative must achieve all of the RAOs to be considered a viable cleanup action. Based on the RI findings, the only environmental medium that requires cleanup is groundwater. Exceedances of the proposed groundwater cleanup levels have been detected only at well MW-15, which is at the conditional point of compliance. Off-Site migration of contaminants in groundwater has occurred; however, there were no exceedances of the proposed cleanup levels in samples from the nearest off-Site monitoring and domestic wells. There are no complete exposure pathways from groundwater at the landfill itself, because groundwater from Site wells is only used for nonpotable purposes. The suspected sources of hazardous substances detected in groundwater at the landfill include contact of MSW with groundwater (localized and considered a minor source), landfill leachate, and LFG.

Protection of human health and the environment at the Site can be achieved through the fulfillment of the following RAOs:

- Protect groundwater resources by eliminating, reducing, or controlling the suspected sources of COCs (specifically PCE and vinyl chloride) detected in groundwater at the landfill.
- Prevent direct contact with landfill contents to protect human and terrestrial receptors;
- Control stormwater runoff, run-on, and erosion;
- Control contaminant leaching to groundwater by minimizing stormwater infiltration at the landfill;
- Control and treatment of LFG buildup; and
- Control and/or treatment of contaminated groundwater and/or leachate.

7.2 SCREENING CRITERIA

Three general criteria were established to screen the potential cleanup technologies identified for the Site. These criteria provide a basis for evaluating the minimum requirements and procedures for selecting cleanup actions described in WAC 173-340-360(2)(a)(b) and help form a basis for evaluating whether a potential cleanup technology, if implemented, would meet the baseline standards established for alternatives screening in WAC 173-340-350(8)(b).

- **Technical Feasibility/Effectiveness.** The technical feasibility criterion relates to engineering factors associated with the ability of the technology to function effectively and achieve meaningful progress toward the RAOs, based on site-specific characteristics, including the nature and extent of the COCs, waste/source type and locations, site hydrogeology, and time required to achieve the proposed cleanup levels. The effectiveness criterion relates to the ability of the technology to achieve the RAOs.
- *Implementability*. This criterion relates to administrative and field issues associated with the technology, including ARARs, construction schedule, constructability, access, monitoring, operation and maintenance, and community concerns.
- *Cost.* Both relative cost and cost-effectiveness are considered for this criterion to ensure that the cost of the preferred remedial alternative is proportionate to the environmental benefit obtained. For this screening, knowledge of typical technology costs for prior projects and engineering judgment were used to determine the cost of a technology relative to that of other similar technologies.

7.3 EVALUATION OF CLEANUP ALTERNATIVES

As set forth in WAC 173-340-360, MTCA requires that cleanup alternatives be compared to a number of criteria to evaluate the adequacy of each alternative in achieving the intent of the regulations and to serve as a basis for comparing the relative merits of the developed cleanup alternatives. Consistent with MTCA, the alternatives were evaluated in terms of their compliance with threshold requirements, permanence, and restoration timeframe.

7.3.1 THRESHOLD REQUIREMENTS

As specified in WAC 173-340-360(2)(a), all cleanup actions must meet the following threshold requirements:

- Protection of human health and the environment;
- Compliance with cleanup levels specified under MTCA;
- Compliance with applicable state and federal laws; and
- Provisions for compliance monitoring.

7.3.2 REQUIREMENT FOR PERMANENT SOLUTION TO THE MAXIMUM EXTENT PRACTICABLE

WAC 173-340-200 defines a permanent solution as one in which cleanup levels can be met without the requirement for further action at the original site or any other site involved in the cleanup

action, other than the approved disposal site for any residue from the treatment of hazardous substances. Ecology recognizes that permanent solutions may not be practicable for all sites. To determine whether a cleanup action is permanent to the "maximum extent practicable," MTCA requires the use of a DCA [WAC 173-340-360(3)(b)]. Evaluation of the practicability of a given alternative is a comparative evaluation of whether the incremental increase in cost associated with increasingly protective cleanup actions is substantial and disproportionate to the incremental increase in environmental benefit. In accordance with WAC 173-340-360(3)(f), the following criteria are used to evaluate and compare each technology when conducting a DCA:

- **Overall protectiveness** of human health and the environment, including the degree to which site risks are reduced, the risks during implementation, and the improvement of overall environmental quality;
- *Long-term effectiveness*, including the degree of certainty that the alternative will be successful, the long-term reliability, the magnitude of residual risk, and the effectiveness of controls required to manage treatment residues and remaining waste;
- *Management of short-term risks*, including the protection of human health and the environment during construction and implementation;
- *Permanent reduction in toxicity, mobility, and volume of hazardous substances,* including the reduction or elimination of hazardous substance releases and sources of releases;
- *Implementability*, including consideration of whether the alternative is technically possible; the availability of necessary off-site facilities, services, and materials; administrative and regulatory requirements; the scheduling, size, and complexity of construction; monitoring requirements; access for construction, operations, and monitoring; and integration with existing facility operations;
- *Cleanup costs*, including capital costs and operation and maintenance costs; and
- *Consideration of public concerns*, which will be addressed by the receipt of public comments related to the CAP.

In the DCA, cleanup alternatives are arranged from most to least permanent based on the criteria specified in WAC 173-340-360(3)(f). Costs are disproportionate to benefits if the incremental costs of the more permanent alternative exceed the incremental benefits achieved by the lower cost alternative [WAC 173-340-360(3)(e)(i)]. Alternatives that exhibit disproportionate costs are considered "impracticable." When the benefits of two alternatives are equivalent, MTCA specifies that Ecology select the least costly alternative [WAC 173-340-360(3)(e)(i)(C)]. For closed solid waste landfills (or landfill cells), Ecology allows containment of wastes rather than removal as the primary component of the remedial action. As described in Section 6.1, it is therefore unnecessary to evaluate removal actions or perform a DCA for removal (as otherwise required under WAC 173-340-360).

7.3.3 REQUIREMENT FOR A REASONABLE RESTORATION TIMEFRAME

WAC 173-340-360(4)(b) specifies that the following factors be considered in establishing a "reasonable" timeframe:

- Potential risks to human health and the environment;
- Practicability of achieving a shorter restoration timeframe;
- Current use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases from the Site;
- Potential future use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases from the Site;
- Availability of alternative water supplies;
- Likely effectiveness and reliability of institutional controls;
- Ability to control and monitor migration of hazardous substances from the Site;
- Toxicity of the hazardous substances at the Site; and
- Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar site conditions.

7.3.4 REQUIREMENT FOR CONSIDERATION OF PUBLIC CONCERNS

The draft final RI/FS Report will be issued for public comment to provide the public an opportunity to express any concerns. Those concerns will be considered by Ecology and, if appropriate, a responsiveness summary will be prepared and the RI/FS Report will be modified in response to the public concerns.

7.4 LANDFILL REMEDY COMPONENTS

This section generally describes the components of the landfill remedy, which are considered in more detail, and identifies their purpose and how they relate to the condition of a landfill. A review of the remedies is included in the evaluation of remedial alternatives for the landfill and incorporated into the detailed evaluation of alternatives described in Section 8.0.

7.4.1 LANDFILL CAP, INCLUDING STORMWATER CONTROLS

Implementing a landfill cap and managing stormwater at a landfill minimizes infiltration of waters into the landfill, minimizes the potential for contaminant leaching to groundwater, and prevents conveyed stormwater from coming into direct contact with landfill contents.

7.4.2 SOURCE AREA GROUNDWATER CONTROLS, INCLUDING LEACHATE CONTROLS

The amount of leachate entering groundwater must be limited or controlled at a landfill. For closed disposal areas, this can be accomplished by minimizing the amount of groundwater interacting with the solid waste by means of capping and stormwater controls.

7.4.3 LANDFILL GAS COLLECTION AND TREATMENT

An additional component of the remedy is ensuring that the LFG is addressed properly. This may be accomplished by a LFG collector and treatment system or monitoring to ensure that the LFG levels are safe. Various gas systems can meet this requirement and, similar to the landfill cap, the final design is based on the conditions of the LFG itself. The LFG system must be designed to capture the gas within a landfill and ensure that the gas does not migrate outside of the landfill boundary and is discharged safely. If necessary, the LFG controls may also include provisions for the protection of buildings, utility corridors, and other surface and subsurface structures to ensure that the LFG does not enter these structures and provides safety to human health and the environment.

7.4.4 INSTITUTIONAL CONTROLS TO SUPPLEMENT ENGINEERING CONTROLS

As part of the remedy for a landfill, institutional controls are typically implemented to ensure the integrity of the containment systems and the health and safety of the landfill users. Typical controls include long-term operation and maintenance plans, and activity and use restrictions and implementation procedures. The exact nature of the institutional controls is site-specific and depends on the selected remedy for the landfill cap, stormwater controls, and leachate controls. There are numerous methods of implementing the selected institutional controls, one of which is a restrictive covenant that outlines the controls on a landfill.

7.4.5 LONG-TERM MONITORING OF ENGINEERING CONTROLS

Long-term monitoring ensures that the engineering controls implemented for the landfill remain effective and have been designed properly. Stormwater monitoring is not required as part of the MTCA process for the landfill because the conveyed stormwater at the Site will not come into contact with the solid waste.

7.5 TECHNOLOGIES RETAINED IN REMEDIAL ALTERNATIVES FOCUSING STUDY

In addition to a review of the components of the remedy for a landfill, potentially applicable cleanup action technologies for the Site were evaluated as part of the RA Focusing Study (Schwyn 2013a). The technologies evaluated in the RA Focusing Study are described in Table 11. A brief description of the technologies is included in the following subsections for each retained alternative, along with the rationale for including (or excluding) them in the detailed evaluation of the alternatives for the Site, which is provided in Section 8.0. These technologies could be implemented in combination with other technologies or as stand-alone treatments in particular areas, depending on the Site conditions. Technologies that are not appropriate or not implementable for the Site or do not meet the

remedial action requirements defined in Section 6.0 are shown as rejected in Table 11 and were, therefore, not evaluated further.

7.5.1 NO/LIMITED ACTION

The no-action alternative does not meet the RAOs defined in Section 7.3 and was not retained for further evaluation. A limited-action alternative would consist of keeping current conditions at the landfill (i.e., no additional source control or engineering controls), while implementing minimum requirements, such as institutional controls and long-term monitoring, as outlined in Chapter 173-304 WAC or Chapter 173-351 WAC. This alternative does not meet the RAOs defined in Section 7.3; therefore, it was not retained for further evaluation. However, both institutional controls and long-term monitoring are required under MTCA to ensure the long-term integrity of the containment system at the landfill.

7.5.2 MONITORED NATURAL ATTENUATION

Monitored natural attenuation (MNA) involves routine groundwater sampling and analysis to monitor the results of one or more naturally occurring physical, chemical, or biological processes that reduce the mass, toxicity, volume, or concentration of chemicals in site soils and/or groundwater. MNA is a mechanism by which COCs are reduced (often slowly) through natural means without other control, removal, treatment, or aquifer-modifying activities. These in-situ processes may include biodegradation; dispersion; dilution; sorption; volatilization; and chemical or biological stabilization, transformation, or destruction of contaminants. Groundwater monitoring data and fate and transport modeling are typically required to evaluate the effectiveness of MNA in terms of its protection of potential receptors, such as downgradient domestic water supply from groundwater wells.

MNA cannot typically be implemented as a sole remediation method while source areas (i.e., the landfill mass) remain. Source control (including removal and/or treatment of hazardous substances) must be conducted to the maximum extent practicable to prevent further groundwater contamination in order for MNA to conform with the expectations in MTCA [WAC 173-340-370(7)]. The use of MNA as a sole remediation method would be inconsistent with MTCA, and was not retained for further evaluation.

7.5.3 HYDRAULIC CONTAINMENT

Hydraulic containment involves pumping contaminated groundwater from the subsurface and treating the groundwater ex-situ before it is discharged. Pump and treat is the most common form of groundwater remediation at sites with plumes that have migrated off-site because it typically is very effective in stopping the migration of the plume. However, groundwater concentrations of all COCs are below Site cleanup levels, except for PCE and vinyl chloride at well MW-15, an on-Site well.

Downgradient groundwater in all other on-Site and off-Site wells currently meet the cleanup levels and will be monitored routinely to ensure that the groundwater conditions are improving over time and the COCs are not migrating off-site. The cost of hydraulic containment is disproportionate to the benefit that would be provided; therefore, this alternative was not retained for further evaluation.

7.5.4 SOURCE CONTROLS

Source controls at an MSW landfill typically consist of engineering controls that are put in place to minimize risks to human health and the environment associated with the containment of solid waste within the landfill.

7.5.4.1 Landfill Gas Extraction and Treatment

Many landfills require venting to prevent gas pressure buildup below the landfill cap and to prevent damage to the vegetative cover. LFG extraction (passive or active) is also necessary if the landfill produces excessive odors, if final use of the landfill will involve public access, if buildings may be adversely affected (inhalation or explosion hazards), or to comply with ARARs. Common LFG control technologies include the means to collect, convey, and treat gas to meet regulatory requirements and to mitigate odors or uncontrolled releases that may pose safety and health concerns. LFG control objectives are generally focused on off-site migration and/or on-site accumulation control. The VOC concentrations detected in LFG at the Site indicate that a significant potential for LFG contaminants to migrate to groundwater; therefore, this alternative was retained for further evaluation.

7.5.4.2 Leachate Controls, Including Capping

Landfill leachate is produced as a result of solid waste biodegradation and movement of water through the waste (via infiltration or groundwater flow). Leachate collector and treatment was not required as part of the closure of Areas 1, 2, 5, and 6 and was not deemed necessary because of limited rainfall. Also, groundwater is generally not in contact with solid waste at the landfill (with the exception of a small area within the northern Area 5 disposal trench). It is also infeasible to install a leachate collector and treatment system in the closed areas as a remedial alternative; therefore, this alternative was not retained for further evaluation. A leachate collector system was installed in Area 7 (refer to Section 1.4.2.5). Waste disposal in Area 7 of the landfill began in 2006, and Area 7 is still currently accepting MSW (and is not included in this FS).

The primary purpose of implementing leachate controls at the Site would be to minimize or eliminate the infiltration of water through the solid waste. This can be accomplished with stormwater controls and by the installation of a geosynthetic/multimedia cap, low-permeability or ET soil cover, or manipulation and/or reconstruction of the existing soil cover. Therefore, the landfill cap alternative was retained for further evaluation.

7.5.4.3 Stormwater Controls

Stormwater control is necessary at a landfill to direct and control stormwater runoff and run-on to minimize water infiltration into the landfill, which will reduce leachate production and minimize cap erosion. Stormwater surface controls at a landfill may include surface grading, stormwater channel construction, and/or run-on prevention. Existing stormwater controls are currently in place (refer to Section 1.6.2); however, some improvements could be made, and this alternative was therefore retained for further evaluation.

7.6 TECHNOLOGIES RETAINED FOR FURTHER EVALUATION

Based on the preliminary screening described in Section 7.5, along with a review of the components of the remedy for landfills described in Section 7.4, the following technologies, or combination of technologies, were retained for detailed evaluation:

- LFG extraction and destruction
 - Active control
 - Passive control
- Landfill cap
 - Geomembrane cap
 - ET cap
- Stormwater controls
 - Impervious runoff channel (north drainage ditch)
 - Re-grading areas to prevent Area 5 run-on
 - Piping run-on away from Area 5
 - Runoff control berms on Area 5

8.0 DETAILED EVALUATION OF REMEDIAL ALTERNATIVES

8.1 LANDFILL GAS COLLECTION AND TREATMENT

The LFG studies conducted during the RI indicate that while off-Site LFG migration has not occurred, the VOCs found in LFG in Areas 1 and 5 are at high enough concentrations to pose a risk of contaminating groundwater (cross-media pathway). Area 6 has an LFG collector system (active since 2010). Areas 1 and 5 have no collector system; however, an open gas vent is present at Area 5. The location of the existing LFG system is shown on Figure 17. An evaluation of the existing LFG extraction system indicates that it is effectively controlling LFG in Area 6. Based on the RI findings, soil vapor intrusion into the HHWF is not considered a significant concern. Mitigating actions associated with LFG control should take current landfill regulations in WAC 173-351-200(4) into account, requiring gas control, monitoring and compliance with subsurface migration standards.

This section evaluates the LFG control component of the remedy that would be used to manage LFG. This section also identifies the design constraints for the LFG control systems and identifies the alternatives that may be used as part of the selected remedy for the landfill.

8.1.1 LANDFILL GAS CONTROL METHODS

This section presents the general technologies used to control LFG at landfills. LFG control methods typically rely on either a passive or active collector system. Convertible passive and active control systems are often considered to address potential changing conditions as the composition of LFG changes with time.

Common LFG control technologies include the means to collect, convey, and treat gas to meet the regulatory requirements and mitigate odors or uncontrolled releases that may pose safety and health concerns. The objectives of LFG control are generally focused on off-site migration and/or on-site accumulation. LFG control systems that address migration and accumulation can be categorized as active, passive, or a combination of both. The control objectives and strategies for the Site will focus on both offsite migration and on-site accumulation, considering both active and passive systems.

Off-site LFG migration is driven by a pressure gradient that develops over time between the gasproducing waste and the atmosphere. Gas can migrate through permeable soil, including a cover above or native material to the side or bottom. The rate of gas migration is determined by the magnitude of the pressure gradient, the type and permeability of the soils, and the geometry of the interface between the solid waste and the soil. Landfill cover systems can contribute to the pressure gradient by preventing LFG escape and causing lateral migration. If the gradient is interrupted by a vent to the atmosphere, the path of least resistance will be through the vent instead of the surrounding soils.

8.1.1.1 Passive Control

Passive venting of LFG to control off-site migration and on-site accumulation has been successfully demonstrated throughout the United States. The type of passive vent system used often depends on the depth of solid waste and the type of cover system. Shallow landfills, less than approximately 20 feet deep, can be vented by means of a horizontal trench and perforated pipe system. A deeper landfill may require the installation of vertical wells vented to the atmosphere to provide the necessary "break" in the LFG pressure gradient.

Effective control of on-site gas accumulation at landfill cells that have been closed for a long period or at low-volume and relatively shallow sites can usually be achieved by means of trenches or wells installed immediately below the landfill cover. Additionally, effective perimeter control of LFG migration can usually be achieved by means of simple passive ventilation trenches buried within the edge of the solid waste or native soil. Such passive vent systems consist of a slotted or perforated pipe buried within highly permeable backfill materials (i.e., drain rock). The trench depth depends on the thickness of the solid waste, such that the perforated pipe is placed at approximately one-half the solid waste depth. The burial depth can vary, depending on the native soil conditions or whether changes in the depth of the solid waste edge are required to accommodate a landfill cover system.

8.1.1.2 Convertible Control Systems

A well-designed, integrated landfill control system should ensure that LFG does not migrate beyond the property boundary or accumulate on-site, potentially affecting on-site facilities or groundwater. Converting to an active collector system is generally achieved by providing separate, discrete connections for individual trenches and wells from an unperforated header, allowing locationspecific vacuum or venting control. Additionally, impermeable barriers are generally installed in perimeter venting trenches (at the edge of the waste) to allow them to be converted to active systems without inducing excess amounts of atmospheric air and creating a potential fire hazard. Barrier installation costs can be high when compared to the cost of gas venting trenches alone.

8.1.1.3 Active Control

Active LFG control systems are commonly used to extract LFG for destruction, cogeneration, and/or control of off-site migration. Such systems typically include vertical wells or deep horizontal trenches installed throughout the solid waste. The term "active" refers to the application of a vacuum to a gas ventilation system, usually by means of centrifugal blowers (i.e., exhausters) driven by electric motors. Instead of providing a passive "break" in the pressure gradient between the waste and the atmosphere, an active system "pulls" the gas out by applying a negative (vacuum) pressure at the collection points. The gas is then conveyed to a treatment system for destruction (e.g., flare system),

8-2

adsorption (e.g., granular activated carbon), or it is vented to the atmosphere, depending on the concentrations of gas constituents.

The effectiveness of an active LFG collector system depends greatly on the design and operation of the system and on the methane generation capability of the landfill waste. An effective collector system should be designed and configured as follows:

- To handle the maximum LFG generation rate,
- With a sufficient radius of influence to effectively collect LFG from all areas of the landfill, and
- To monitor and adjust the operation of individual extraction wells and trenches.

Many configurations of wells and trenches, including perimeter systems and in-refuse networktype systems, have proven to be successful at controlling LFG and eliminating off-site migration at a wide variety of landfills. The Area 6 LFG collector system includes gas extraction wells and no trenches.

Landfill settlement is a concern for in-refuse horizontal collectors. Active control systems are balanced by adjusting the vacuum level applied to the perforated piping within the trench or well system. Typically, a radius of influence and appropriate vacuum level are estimated based on the soil permeability, site geometry, and collector design. Monitoring probes located within the vicinity of the LFG collectors can be used to adjust a control system until a proper radius of influence is achieved, without creating an excessive vacuum. Usually, an active system's applied vacuum is balanced to evacuate LFG within a defined area without pulling in air from above the surface or surrounding soil. Where excess atmospheric air (oxygen-rich air) is pulled into the solid waste, either inadvertently or by design, the collector system must be monitored and controlled to avoid potential fires.

8.1.2 LANDFILL GAS CONTROL FEATURES

Design features generally applicable to a variety of passive venting or active collector systems are briefly described in the following subsections.

8.1.2.1 Passive Collector Trench System

A full perimeter passive collector trench system may average approximately 6 feet in depth. A backhoe or small track hoe could excavate the trench to a minimum width of 2 feet. The geotextile, bedding/backfill, pipeline, and appurtenances would then be installed within the trench. It would be necessary to adhere to Occupational Safety and Health Administration (OSHA) guidelines for work in hazardous locations (i.e., protective clothing and ambient air monitoring).

Riser vents for passive collection pipelines are typically 4-inch-diameter HDPE pipes that are tied into main horizontal collectors. It is not necessary to include valves on the risers because the system maintains near-atmospheric pressures. Depending on the site conditions, risers typically extend a minimum of 6 feet above grade and terminate in a bird screen or rain cap. Cleanouts are spaced at

8-3

300-foot intervals, depending on the horizontal trench layout. Cleanouts consist of angled (45 degrees) 4-inch-diameter HDPE risers for the insertion of a vacuum or flushing wand and hose.

8.1.2.2 Active Collector Trench System

An active perimeter collector trench system would be similar to the passive trench system; however, it may include an impermeable barrier to minimize air intrusion at the waste boundary. Active collector trenches that are not installed at the waste boundary would not include an impermeable barrier. The perimeter perforated piping would be connected to a solid header or manifold with valve stations to allow discrete control of trench segments. Active collection trenches would be installed to a depth of 7 to 8 feet.

For an active collector system, a separate HDPE solid pipe header, buried below grade, would be installed to provide vacuum to key points in the perforated collector pipeline, based on the perimeter collector length. Control valves with flow monitoring ports, installed in hand holes on a lateral that connects the vacuum header to the perforated collector, would allow adjustment of suction pressure to various points in the system. The suction header, control valves, and laterals would also be necessary to balance the applied vacuum to the entire perimeter system, as required.

An active system requires vacuum pressure supplied by single-stage, explosion-proof centrifugal blowers/exhausters. Typically located on a concrete pad, the system includes header piping, a condensate collector (i.e., water knockout), isolation valves, and blower/vent pipes. A weatherproof control panel and power supply also would be required. To reduce noise and/or screen the exhauster equipment from view, a small ventilated enclosure may be supplied.

8.1.2.3 Active Extraction Well System

An extraction well system is similar to an active collector trench system, except the trenches are replaced with wells. The wells would generally be constructed to extend down to seasonal low groundwater or the bottom of the MSW. Wells are typically 6-inch-diameter HDPE, with a deeper screened zone (bottom 5 to 10 feet of the well) sized for collection when combined with a cover system with collector trenches. When a below-cover trench system is not used, wells are either screened throughout the solid waste depth or partitioned to maximize the radius of influence with a surface plug to minimize short-circuiting. Based on the age and type of waste, wells are typically installed on a 200-foot grid; however, the actual spacing depends on the type of cover system, extent of waste, proximity to buildings, and proximity to perimeter trenches.

Area 6 has an ET cover system and 11 extraction wells with 4-inch-diameter HDPE screened sections extending through the entire refuse thickness (ranging between 10 and 60 feet). The wells were

installed at distances ranging from approximately 90 to 155 feet apart based on preliminary extraction tests.

8.1.2.4 Venting Well System

Venting wells are typically 6-inch-diameter HDPE with a screened zone throughout the solid waste depth. They are vented to a manifold or directly to the atmosphere. Based on the age and type of waste, wells would be installed on a 50-foot grid, depending on the type of cover system, extent of waste, proximity to buildings, and proximity to perimeter trenches.

8.1.3 LANDFILL GAS TREATMENT SYSTEMS

LFG treatment systems generally require active gas collection, although vent-mounted flares and odor control canisters have been developed for passive collector systems. Treatment options are limited in areas that produce low concentrations of methane and non-methane organic compounds (NMOCs). Moreover, a perimeter active collector system may cause atmospheric air to be drawn in, further diluting LFG contaminants. Methane measured over a 9-month period ranged from 12.5 to 19.7 percent in an Area 1 gas monitoring well (GW-11) and 51.5 to 66.6 percent in two Area 5 gas monitoring wells (GW-5 and GW-6), allowing for a wide range of treatment technology applications, including flare systems. No gas well has been installed in Area 2; therefore, no methane measurements directly associated with the waste have been made.

Most active LFG control systems that do not recover energy terminate in a combustion flare. Flares have been shown to effectively combust all the methane while destroying at least 98 percent of the NMOCs and odorous sulfur compounds typically found in LFG; however, landfill sites that have been closed for many years and exhibit low gas generation and declining methane concentrations frequently do not produce gas with sufficient energy content to sustain combustion. The minimum methane concentration required for continuous flaring is approximately 20 percent by volume, depending on atmospheric conditions; however, flares typically are designed to operate at a 50 percent methane feed. The use of an auxiliary fuel, such as natural gas or propane, can ensure continuous combustion with low-energy LFG, but this practice is expensive and usually avoided. Typically, older landfills with minimal LFG generation also exhibit very low concentrations of NMOCs and sulfur compounds. In these cases, it is often the practice to vent an LFG exhauster directly to the atmosphere. Periodic exhaust monitoring is then used to ensure that acceptable levels of NMOC and methane emissions are maintained.

Flare systems can have enclosed or open flames, be stationary or portable, be designed for low methane content and low gas flow, and be powered by standard power sources or by solar-charged batteries. The existing Site flare, set up in Area 1 to treat LFG extracted and conveyed from Area 6, is a 4-foot-diameter, 40-foot-tall John Zink Enclosed ZTOF Biogas system. The system is controlled by a

8-5

programmable logic controller that receives and transmits signals associated with operating conditions. If an unacceptable operating condition occurs, the control system discontinues the flow of gas or adjusts the operating parameters to address the problem. Control of the flare includes an initial purge cycle, an automatic ignition sequence, and fail-safe controls. A self-checking flame scanner monitors the pilot flame or main flame, and integrated shut-down features prevent equipment damage. The system includes three thermocouples at varying heights designed for LFG destruction at flow rates ranging from 150 to 350 standard cubic feet per minute (SCFM), assuming 50 percent methane content. The system currently is operating at 159 SCFM; the blower is rated to a maximum of 380 SCFM.

The existing flare has the capacity for an additional 191 SCFM. Potential contributions from Areas 1, 2, and 5 are estimated at 7, 3, and 108 SCFM, respectively, totaling 118 SCFM. These contributions are based on a proportional distribution associated with current maximum estimates of MSW deposited as follows:

- Area 1 60,000 cubic yards estimated on the basis of gas well and test pit logs and the historical reported trench dimensions (700 feet long, 90 feet wide, and 25 feet deep);
- Area 2 35,000 cubic yards estimated on the basis of soil boring and test pit logs and topographic information (200-foot-diameter cylinder, 30 feet deep); and
- Area 5 900,000 cubic yards estimated on the basis of the cross section and reported historical trench dimensions (1,100 feet long, 450 feet wide, and 50 feet deep).

The Area 6 volume of 1,326,327 cubic yards was estimated for design of the Area 6 interim action, on the basis of waste disposal records (S&W 2009).

Because a proven treatment system and infrastructure with adequate capacity are already present on the site, no other active treatment options will be considered for use. As the landfill continues to age and methane production diminishes, other treatment options that work in tandem with, or eventually replace, the existing system may become applicable.

Venting involves collecting LFG at a particular point through a vertical well or across a network of wells that are joined by a manifold. Active venting requires applying a vacuum to the collector system; passive venting allows the natural buildup of pressure in the landfill to expel gas through the vent pipe. Venting relies on the dilution of toxic chemicals in the atmosphere, the concentrations of which are measured at the property boundary. The viability of venting is determined by evaluating the concentrations of toxic air pollutants (TAPs) at the discharge point to establish baseline conditions and then modeling expected conditions at benchmark locations (i.e., at the source, fence line, and maximum impact distance). Landfill emissions must meet small quantity emission rate (SQER) loading limits, based on TAP concentrations, at downgradient compliance locations. Whereas the existing flare has been permitted for use at the landfill, venting would require additional permitting, based on modeling results.

8.1.4 LANDFILL GAS CONTROL SYSTEM EVALUATION AND CONFIGURATION

The LFG control technologies appropriate for Areas 1, 2, and 5 are described in Table 12. A detailed discussion of the LFG control alternatives, as well as no action, for each area is provided in the following subsections. The RAOs relate to a reduction in contaminant volume, toxicity, and mobility. Mobility considerations are related specifically to the potential for transfer of VOCs from LFG to groundwater; there is no evidence that methane is migrating laterally beyond the landfill boundary.

8.1.4.1 Area 1

No Action

The no action option provides a baseline for comparison with other technologies. This option involves no processes, and no further construction would be necessary. The methane content should remain relatively stable in the short term, with LFG continuing to provide a potential source for groundwater contamination. The no action option would be ineffective at reducing the volume, toxicity, or mobility of LFG, and it would not meet the RAOs in a timely manner or provide additional protection against groundwater degradation.

Venting Well System

Considering the age, distribution, and density of refuse at Area 1, multiple vent wells would effectively reduce the volume and mobility of LFG over time. The vent well spacing would be determined on the basis of LFG measurements collected after the first well installation. The concentrations of four TAPs measured at gas well GW-11 significantly exceed the ambient source impact levels (ASILs) used for screening purposes, indicating that venting potentially would not be possible for Area 1 (additional testing would be required, along with modeling to estimate contaminant loading at the points of compliance, in support of the permit negotiations). If allowable, the buildup of LFG would decrease over time, resulting in volume and mobility decreases; however, the timeframe for meeting these RAOs is unknown. Reduction of toxicity would not be achieved. The effectiveness at reducing VOC concentrations in groundwater would be evaluated by comparing the long-term monitoring results at MW-11 and MW-25. The timeframe for meeting the RAOs is unknown.

Active Collector Trench

An active collector trench would consist of a trench surrounding and extending down to the refuse. Based on observations in test pits and gas well GW-11, the cover thickness ranges from 11 to 17 feet bgl. Trench systems typically cannot effectively capture LFG deeper than 20 feet. With refuse extending to 48 feet bgl in GW-11, a trench system would not be effective for this area.

Extraction Well System

Gas well GW-11 is located immediately adjacent to the flare system used to treat gas collected from Area 6. Methane concentrations in GW-11 ranged from 12.5 to 19.7 percent during monitoring

performed from May 2012 to February 2013. The refuse extends approximately 48 feet bgl at GW-11, but the bottom depth of the refuse is unknown, based on four test pits completed to the northeast. A cost-effective option would be to install one extraction well at the TP-25 location, approximately 140 feet northeast of GW-11, and a second extraction well in the vicinity of GW-11. Both would be connected to the flare system for LFG destruction. This option would meet the RAOs in a timely manner and the existing flare has capacity to receive the LFG.

8.1.4.2 Area 2

No Action

The no action option provides a baseline for comparison with other technologies. This option involves no processes, and no further construction would be necessary. Based on a barhole survey (see Section 3.3.1), methane was detected in only one of nine test points, at a concentration of 0.1 percent, indicating negligible LFG migration through the existing cover material. Methane was detected once during six monitoring periods extending from May to February 2013, at a concentration of 0.7 percent in gas well GW-10, located approximately 140 feet to the northeast. It is unclear whether LFG from Area 2 is contributing to groundwater contamination. During monitoring performed for the RI, the same three VOCs were detected in groundwater from upgradient well MW-11 and downgradient well MW-14B.

The soil cover thicknesses range from 0.5 to 11 feet, overlying MSW with variable thicknesses ranging from 0.5 feet near the edge of the area to a maximum of 27 feet in the center. It has reportedly been over 30 years since this area has accepted MSW, which was placed on the surface and not compacted.

LFG generation rates would continue to decrease over time in this area, due to natural biodegradation, indicating that the volume and toxicity of LFG would continue to decrease under the no action option. However, considering that LFG may be contributing to groundwater contamination, reduction of mobility would not be achieved.

Venting Well System

Considering the age, distribution, and density of refuse at Area 2, one to four vent wells would effectively reduce the volume and mobility of LFG (toxicity would not be addressed). The vent well spacing would be determined on the basis of LFG measurements collected after the first well installation. No VOC data are available for Area 2; therefore, it is unknown whether modeling would be required or whether contaminant loading might exceed the SQER loading limits (additional testing would be required to support the permit negotiations with Ecology according to Chapter 173-460 WAC, Controls for New Sources of Toxic Air Pollutants). If allowable, the buildup of LFG would decrease over time, resulting in volume and mobility decreases; however, the timeframe for meeting these RAOs is unknown. Reduction of toxicity would not be achieved.

Active Collector Trench

Area 2 is semi-circular, with an approximate circumference of 1,000 feet. Based on observations in test pits, the cover thickness ranges from 0.5 to 11 feet. An active collector trench would be installed to surround the waste and extend into the refuse. Perforated collection piping would be laid within the trench, surrounded by bedding material and covered with a low-permeability seal. A lateral pipe would be connected to the Area 6 header system by Area 5. This option would meet the RAOs in a timely manner.

Extraction Well System

Area 2 is approximately 400 feet in diameter. Based on an MSW thickness of 27 feet in the center of this area and the limited extent of refuse, one extraction well would be adequate to reduce the volume, toxicity, and mobility of LFG. A lateral pipe would be connected to the Area 6 header system by Area 5, and ultimately to the flare system for LFG destruction. This option would meet the RAOs in a timely manner and the existing flare has capacity to receive the LFG.

8.1.4.3 Area 5

No Action

The no action option provides a baseline for comparison with other technologies. This option involves no processes, and no further construction would be necessary. Methane readings at gas wells GW-5 and GW-6 exceeded 50 percent during monitoring every other month from May 2012 to February 2013. The wells also exhibited positive pressure consistently over this period. LFG from Area 5 appears to be contributing to groundwater contamination, based on the VOC sampling discussed in Section 3.3.2.2. These findings indicate that no action is not a viable option for Area 5.

Venting Well System

Considering the size of Area 5 and the methane concentrations measured at GW-5 and GW-6, a vent well system does not appear to be a viable option for Area 5. Similar to Area 1, concentrations of four TAPs measured at both gas wells significantly exceed the ASILs, indicating that venting may not be possible on the basis of TAPs loading.

Active Collector Trench System

Based on soil borings completed in this area during the RI, the bottom of the MSW is 48 to 50 feet bgl in some areas. Typically trench systems are not effective when MSW extends below 20 feet. Considering the size of this area and the depth of the MSW, an active collector trench system would not be an appropriate option.

Extraction Well System

The conditions at Area 5 are similar to those at Area 6, including the size, waste volume and distribution, and methane concentrations. Area 5 would be suitable for an extraction well system comparable to the system operating at Area 6. The Area 6 conveyance system was constructed with two

expansion tees on the header installed along the Area 5 border, allowing a direct hookup. Assuming an area of influence with a radius of 150 feet extending from each well, seven extraction wells would be sufficient to remove gas from Area 5. The wells would be screened through the waste, ranging in depth from approximately 10 to 50 feet. The existing flare is currently operating at approximately 45 percent flow capacity, leaving what appears to be adequate room for the estimated additional LFG from Area 5.

The extraction well system would be effective at reducing the volume, toxicity, and mobility of LFG. Its effectiveness at reducing VOC concentrations in groundwater would be evaluated by comparing the long-term monitoring results at MW-15 and upgradient wells. The extraction well system would meet the RAOs in a timely manner (refer to Section 9.4 for restoration time frame).

8.1.5 COMPLIANCE WITH MTCA REQUIREMENTS AND ARARS

The LFG control component of the remedy described in this section complies with the MTCA requirements for a selected remedy and applicable ARARs defined in Section 6.3. A description of how the MTCA requirements are met is included in Section 9.0.

8.2 LANDFILL CAP

This section evaluates the landfill cap components of the remedy, which will be used to minimize the infiltration of stormwater.

8.2.1 AREAS CONSIDERED FOR LANDFILL CAP

The RI identified portions of the existing soil cover in Areas 2 and 5 that are relatively thin and/or experiencing significant erosion. The cover thickness identified in test pits in Area 2 ranged from 6 inches to 11 feet (Table 2). The vast majority of the test pits at Area 2 indicate that the existing soil cover is less than 5 feet thick (Figure 12). These thin areas of cover provide opportunity for stormwater to infiltrate directly into the waste; therefore, the approximately 3-acre Area 2 is being considered for a new cover.

The cover thickness identified in test pits in Area 5 ranged from 1.5 to 15 feet (Table 2). The vast majority of the test pits indicate that the soil cover is more than 5 feet thick (Figure 13). Therefore, the soil cover is much thicker than the soil cover at Area 2. However, it appears that the cover soil placed on the south end of Area 5 has migrated down to the toe of the slope onto the north face of Area 5, leaving behind the thin cover layer on the top of Area 5. During the RI, many deep ruts in the cover due to runoff were identified. Several depressions are present along the north face of Area 5, along the access roads that bisect Area 5; these ditches tend to intercept any sheet runoff before it can flow into the north drainage ditch. Therefore, regrading of the approximately 13-acre Area 5, as well as a new cover, is being considered.

Two types of cover systems were evaluated: a conventional Resource Conservation and Recovery Act (RCRA) Subtitle C barrier cover and an ET cover.

8-10

8.2.2 CONVENTIONAL COVER WITH GEOMEMBRANE

Final cover systems for landfills typically are multicomponent cover systems consisting of the following layers, from bottom to top: (1) hydraulic barrier layer (composite layer with geomembrane overlying compacted soil or GCL, (2) drainage layer (geosynthetic drainage material), (3) protective layer (native soils), and (4) erosion control layer (topsoil).

One option for a typical landfill cover involves the following layers, from bottom to top (1) an 18-inch thickness of compacted soil, (2) a geomembrane, (3) a geonet for drainage, (4) a 24-inch thickness of soil for protection (hydraulic barrier), and (5) a 6-inch thickness of soil with vegetation. Because the fine-grained soils at the Site are relatively difficult to compact to the degree required for a hydraulic barrier (1 x 10^{-5} cm/sec), the hydraulic barrier layer should consist of a GCL rather than a 24-inch thickness of compacted soil. This is a fairly typical final cover for a landfill and is the base barrier that was used in the development of Area 7.

The advantage of a conventional barrier cover is that a physical barrier is constructed to prevent stormwater from infiltrating the waste. It is also a standard design than can be applied to many different landfill sites.

There are several disadvantages to a conventional barrier cover. They are expensive to construct and maintain. The functionality is limited to the integrity of the geomembrane cover, which can leak. The geomembrane covers have a finite lifespan. Flexibility with gas collector system is limited, because any excavations after the cover is installed could compromise the integrity of the cover system.

8.2.3 EVAPOTRANSPIRATION COVER

There are several alternative covers for landfills. One alternative that takes advantage of the arid climate and fine-grained soils native to Walla Walla is an ET cover, which works with the forces of nature rather than attempting to control them. In this type of cover system, a layer of fine-grained soil is covered by native grasses, and it contains no barrier layers. The ET cover uses two natural processes to control infiltration into the waste: (1) the fine grained soils with a high water holding capacity provide a natural water reservoir, and (2) natural evaporation from the soil and plant transpiration (ET) empty the soil water reservoir. The thickness of the ET cover depends on the annual water balance for the specific site. It is an inexpensive, practical, easily maintained, and self-renewing biological system. The ET cover would remain effective over extended time periods, perhaps centuries.

There are several advantages to the ET cover. Because it is a natural and self-renewing system, it is less prone to failure and has a longer life than conventional cover systems. It is also easily repaired. Typically, the construction cost and long-term maintenance costs associated with an ET cover are less relative to those of conventional cover systems. Finally, there are also more options for gas control because drilling and installation of gas wells or piping does not threaten the integrity of the cover.

8-11

The disadvantages associated with the ET cover include a need for site-specific designs because the climate, soil, plant cover, and site requirements are unique for each site. It also requires a significant amount of adequate soil nearby in order to be cost effective.

The ET cover was successfully used in the closure of Area 6 in 2010 and provided a substantial saving in project costs relative to those of a conventional cover system. The ET cover on Area 6 has been functioning quite well since 2010; there is no noticeable erosion, and the vegetation layer appears healthy.

8.2.4 COMPLIANCE WITH MTCA REQUIREMENTS AND ARARS

The landfill cap component of the remedy described in this section complies with the MTCA requirements for a selected remedy and applicable ARARs defined in Section 6.3. A description of how the MTCA requirements are met is included in Section 9.0.

8.3 STORMWATER CONTROLS

Stormwater itself is not considered a contaminated medium. However, stormwater infiltration through or adjacent to the MSW and the subsequent generation and downward migration of leachate to groundwater has been identified as a possible cause of groundwater contamination.

As part of the Area 6 closure in 2010, several stormwater improvements were constructed. Runoff control berms were constructed on Area 6, sedimentation ponds were constructed north and south of Area 6, and an erosion control mat was constructed along the north drainage ditch. The runoff control berms have been working well by providing a stormwater travel path that has not eroded the landfill cap. The sedimentation ponds also appear to be functioning well. Some concerns related to stormwater infiltration in portions of Areas 2 and 5, and the north drainage ditch are described below.

8.3.1 STORMWATER AREAS OF CONCERN

The RI results indicate the following areas of concern related to stormwater at the Site:

- The erosion control mat along the north drainage ditch is filling with soil and vegetation, which is impeding water movement off-Site.
- Stormwater flow on the surface of Area 5 has caused erosion of the soil cover on the southwest and west sides of Area 5.
- Stormwater run-on occurs at the southwest side of Area 5, in the vicinity of the entrance to the compost facility.
- Two linear road cuts located on the north slope of Area 5 likely impede stormwater flow and potentially promote infiltration.
- The soil cover thickness over Area 2 may be insufficient to prevent the infiltration of precipitation and stormwater.

The primary goal of the stormwater controls related to the landfill is to maintain a separation between the landfill contents and stormwater that is collected and conveyed in the stormwater system.

Three stormwater alternatives for the north drainage ditch and two options for controlling stormwater run-on at the southwest corner of Area 5 are evaluated below to improve stormwater flow. As previously discussed, the landfill cap on Areas 2 and 5 will be graded to thicken the cover and encourage stormwater flow away from the landfill and into the north and south drainages.

8.3.2 NORTH DRAINAGE DITCH

The existing north drainage ditch was constructed in 2010 as an interim remedial measure to stop surface water from infiltrating the MSW in Area 5. The north drainage ditch has a triangular cross section that is lined with an erosion control mat. The erosion control mat was designed to allow vegetation to grow through the fabric, allowing the native grasses to assist in holding the mat in place and prevent soil erosion. Currently, the erosion control mat remains visible in only a few locations where the grass has not completely grown over the mat. A visual inspection of the soil and vegetation in the north drainage ditch indicates that the channel is functioning as designed, although sediments are collecting in the ditch.

Although sufficient for erosion protection, the existing sediment and vegetation in the channel have the potential to encourage infiltration and possible long-term overflow into the Area 5 MSW. The north drainage ditch could be further improved by the construction of a water-impermeable layer to encourage all collected run-on and runoff to pass off-Site with no infiltration. Three protection alternatives were evaluated:

- 1. Cast-in-place concrete channel,
- 2. Cable-blocks, and
- 3. Precast concrete channel.

8.3.2.1 Alternative 1: Cast-In-Place Concrete Channel

The first alternative is to line the north drainage ditch with cast-in-place concrete as the primary barrier to infiltration along with a geomembrane liner that would be provided beneath the concrete channel for secondary protection. Figure 18a, Plate 1, illustrates a cross-sectional view of this alternative. The slope of the new channel would be the same as that of the existing channel (0.7%). Lining the channel with concrete would provide a smoother channel surface, which would result in higher flow velocities. The average channel velocity (during a 25-year storm) would change from 2.3 ft/sec to 4.7 ft/sec. These higher velocities would allow more sediment to be conveyed through the channel instead of being deposited in the channel, thus making the channel self-cleaning.

Based upon typical soil particle sizes found at the Sudbury Landfill, a minimum velocity of 1.2 ft/sec is recommended to prevent sedimentation in the channel. Calculated water velocity in the proposed concrete-lined north drainage ditch during a storm event with a 2-year recurrence interval is approximately 1 ft/sec. During a 10-year storm, velocities are expected to be approximately 3 ft/sec.

Therefore, typical annual rainfall events many not have the velocity required to completely scour the channel, but larger storm events will.

Although the channel will be self-cleaning, a box-shaped channel would also provide ability to be manually cleaned because it could be custom-sized to the width of the City's skid steer. Therefore, the cross section would be modified from triangular to rectangular, allowing the base of the channel to be mechanically cleaned out by the City's compact rubber-tired skid steer, if needed.

A portion of stormwater runoff from Area 5 flows to the north via sheet flow into the north drainage ditch. In an effort to encourage this sheet flow runoff to find its way into the channel and not undermine the vertical concrete walls, a strip of geomembrane liner would bolt to the top of the concrete channel as shown in Plate 1 of Figure 18a. Moreover, in order to prevent soil erosion, construction of a soil erosion mat along the south side of the channel is proposed.

8.3.2.2 Alternative 2: Cable-Block Channel

The second alternative is to line the north drainage ditch with geomembrane as the primary layer with a layer of concrete cable-blocks on top for mechanical protection. Figure 18a, Plate 2, illustrates a typical concrete cable-block. The footprint of each block is about 1 square foot. Multiple blocks are interconnected with steel cables that run through the blocks. Figure 18a, Plate 3, illustrates a cross-sectional view of this alternative. The geomembrane is sandwiched between geotextile fabrics to protect the geomembrane from abrasion.

The width of the channel allows the City's compact rubber-tired skid steer to clean out the channel when needed. The cable-blocks allow for a relatively easy installation of mechanical protection, because the blocks form a mat that can be lifted and placed into position. The ridges on the blocks, however, are not ideal for mechanically cleaning the channel. The bucket on the skid steer has the potential of knocking or chipping out pieces of block. This alternative would not have the self-cleaning abilities of Alternative 1.

8.3.2.3 Alternative 3: Precast Concrete Channel

Figure 18a, Plate 4, illustrates a cross-sectional view of the north drainage ditch with a precast concrete channel. This is essentially the same as Alternative 1 with a pre-cast channel instead of a cast in place channel. Pea gravel is placed between the geomembrane and the concrete channel to protect the geomembrane and allow compacted placement of the concrete channel.

The advantages of the rectangular cross-sectional dimensions are noted in the discussion of Alternative 1 (cast-in-place concrete channel), although a precast concrete channel would likely not be custom sized to the exact width of the proposed cleaning equipment. From a infiltration potential prospective, the channel is equal to the cast-in-place channel. Use of precast concrete allows relatively

easy placement of the concrete channel because sections of the channel can be moved and set into place. Care is needed during placement so that the channel segments line up flush horizontally and vertically and the joints are grouted watertight.

8.3.3 AREA 5 STORMWATER EROSION

Erosion of the Area 5 soil cover is occurring at the southwest and west sides of Area 5. The stormwater is generated by two sources:

- 1. General surface drainage off of Area 5 (stormwater runoff); and
- 2. Stormwater run-on from pervious surfaces located between the north and eastern side of the compost area and south of Area 5.

Rutting and soil erosion of the Area 5 soil cover has occurred where these sources of runoff and run-on combine then flow northwest across the western edge of Area 5 to the north drainage ditch.

8.3.3.1 Area 5 Stormwater Run-off

An erosion control berm is proposed to facilitate the movement of Area 5 stormwater runoff, address the rutting and soil erosion concerns on the southwest and west sides of Area 5, and impede runon (more substantial run-on prevention measures are addressed in the following section). Erosion control berms are V-shaped channels that are lined with a mat specifically designed to prevent soil erosion. Soil erosion control berms were used on the Area 6 cap and are functioning well. Figure 18a, Plate 5, illustrates a cross section of the proposed erosion control berm in Area 5.

The erosion control berm would extend along the entire southern boundary and west side of Area 5 in order to convey stormwater runoff from Area 5 to the north drainage ditch, as shown on Figure 18a, Plate 6. The total length of the berm would be about 1,500 feet, and it would have a maximum 4 percent slope.

8.3.3.2 Area 5 Stormwater Run-on

Stormwater generated in a relatively small area between the south side of Area 5 and the north and northeast sides of the compost pad currently collects at the southwest corner of Area 5 and then flows north to the north drainage ditch. Although an erosion control berm could address the rutting and soil erosion concerns on the southwest side of Area 5, no amount of run-on onto Area 5 should be allowed. Therefore, the stormwater generated between Area 5 and the compost facility must be diverted away from Area 5. One reasonable place to direct the runoff from this small area is south into the existing compost facility lagoon.

The compost facility lagoon was designed to retain leachate from a 25-year, 24-hour rainfall event. The proposed stormwater diversion would increase the pervious surface drainage basin for the lagoon by approximately 20%, and stormwater calculations indicate the potential for an additional 2.8-

inch rise in the water elevation in the compost lagoon from a 25-year, 24-hour rainfall event. Therefore, the typical storm event will not impose a burden on the lagoon. Additionally, the leachate collection sumps are monitored daily as part of the Leachate Management Plan. Draw-off locations are provided in the leachate collection sumps to allow trucks to remove leachate as necessary to be used for dust control or to be hauled to the other landfill leachate collection pond. The daily monitoring and ability to pump water from the lagoon mitigate any effects that an anomalous storm event could have on pond sizing.

Two options that would direct the stormwater run-on waters into the compost facility lagoon include:

- 1. Re-grading the area to the north and east of the compost facility to route the runoff from this area onto the compost pad and into the compost lagoon, and
- 2. Construction of a catch basin and pipeline to route the runoff directly to the compost facility lagoon.

Option 1: Regrading

Stormwater runoff generated between the compost facility and Area 5 could be controlled by adding soil to construct an elevated berm north of the existing compost facility entrance road, and resloping the grade so that stormwater flows south onto the compost pad and into the compost lagoon. This would require:

- Construction of an elevated berm, adding up to six feet of soil on the north side of the existing compost facility entrance road, to provide a grade to the south. The elevated berm would cover a portion of Area 5 which currently has very thin cover and requires additional fill. Therefore, the additional fill would accomplish two components of the remedial action.
- Reconstructing and raising the grade of approximately 200 linear feet (LF) of the existing compost facility access road.
- Elimination of the culvert that directs stormwater north under the existing roadway and regrading the drainage east of the compost facility to the south and west back onto the compost pad.
- Construction of a new culvert under the new roadway, to direct stormwater generated south of Area 5, south into the regraded valley east of the compost facility.

Figure 18b, Plate 7 depicts the proposed extents of fill for the grading alternative.

Option 2: Culvert and Pipe

Instead of re-grading the valley east of the compost pad, a subsurface pipe could be used to convey stormwater runoff directly to the compost facility lagoon.

This option would require:

- Elimination of the existing culvert that directs stormwater north under the existing roadway.
- Construction of a new culvert to direct stormwater generated south of Area 5 to the south side of the road.

- Construction of a catch basin and sediment retention sump on the south side of the compost facility entrance road. The sediment retention sump would need to be cleaned out periodically using mechanical equipment available at the composting facility.
- Construction of approximately 500 LF of 12-inch diameter pipe extending from the catch basin to the compost lagoon. This would require cutting open the liner and installing a new pipe penetration boot as is typical on all pipe penetrations through geomembrane liners.

This alternative is depicted as Plate 8 on Figure 18b.

8.3.4 RE-GRADING AREAS 2 & 5

As previously mentioned, two linear road cuts located on the north slope of Area 5 likely impede stormwater flow and potentially promote infiltration. Moreover, runoff channels are present in several locations on Area 5, which likely have led to reduced cover thickness in those areas as well as infiltration. Re-grading of Area 5 will be necessary to eliminate these road cuts and provide a uniform slope down towards the north drainage ditch. The grading of Area 5 will create smooth and rolling hills in order to promote sheet flow for runoff and minimize drainage channels. All runoff will be directed to flow via sheet flow towards either the north drainage ditch or the runoff control berm.

Area 2 was also noted as having areas where the cover is very thin. Re-grading this area will increase the cover thickness and minimize the ability for stormwater to infiltrate into the waste.

Costs for these two improvements are incorporated in the landfill cap systems described in Section 8.2.

8.3.5 COMPLIANCE WITH MTCA REQUIREMENTS AND ARARS

The stormwater control component of the remedy described in this section complies with the MTCA requirements for a selected remedy and applicable ARARs defined in Section 6.3. A description of how the MTCA requirements are met is included in Section 9.0.

THIS PAGE LEFT INTENTIONALLY BLANK

9.0 PREFERRED REMEDIAL ALTERNATIVE

The preferred remedial alternative for the Site consists of containment (capping) of the solid waste with measures to prevent or control its impact on surrounding environmental media, such as capture of LFG and controls on stormwater to prevent leachate generation. It also includes provisions for long-term monitoring and institutional controls.

As described previously, MTCA defines specific requirements for a selected remedy to be protective of human health and the environment and identifies criteria that must be met by each alternative. In addition, landfill regulations guide the selection of other requirements that must be satisfied for a landfill to be closed in a fashion that reduces or prevents the release of solid waste constituents, leachate, and LFG, to the ground, groundwater, surface water, and the atmosphere. The regulations also require that a landfill continue operation and maintenance of the selected remedy and ongoing monitoring of the various media at the landfill.

9.1 DESCRIPTION OF PREFERRED REMEDIAL ALTERNATIVE

The components of the selected remedy (the preferred alternative) include the following:

- Landfill cap improvement using an ET cover over Areas 2 and 5, including grading design including grading design to facilitate drainage.
- Stormwater controls:
 - Cast-in-place concrete channel for the north drainage ditch;
 - Erosion control berm for Area 5 runoff; and
 - Diversion of run-on from the southwest side of Area 5 to the compost lagoon.
- Active LFG extraction and destruction in Areas 1, 2, and 5.
- Long-term monitoring of:
 - Groundwater;
 - LFG;
 - Landfill cap; and
 - Stormwater controls.
- Institutional controls.

The components of the preferred alternative are discussed in the following subsections, along with a summary of how the preferred alternative meets the MTCA cleanup action requirements.

9.1.1 LANDFILL CAP

The recommended final cover alternative for both Area 2 and Area 5 is the ET cover. Because it is a natural and self-renewing system, an ET cover is less prone to failure, has a longer life than conventional cover systems, and is easier to repair. There is a significantly lower construction cost and lower long-term maintenance costs associated with an ET cover compared to conventional cover systems.

Finally, there are also more options for gas control because drilling and installation of gas wells or piping does not threaten the integrity of the cover.

An ET cover was the final cover selection for the Area 6 closure in 2010; therefore, a site-specific design has already been completed. As described in a January 2010 memorandum prepared by HWA. (provided in Appendix H), a 4.8-foot-thick layer of native soils loosely compacted in 24-inch lifts at 85 percent of maximum compaction was the design solution for the Area 6 cover. The top foot of the cover incorporated Class B biosolids from the Walla Walla Wastewater Treatment Plant as well as compost from the compost facility at the Site to create an organic topsoil layer in which dry land vegetation would thrive. Follow-up inspections indicate that the Area 6 cover is performing well. Therefore, the same ET cover could be used at Areas 2 and 5.

Although the ET cover design was previously approved by Ecology for the Area 6 closure, Ecology may require the completion of another site-specific design based on the proposed stockpile source for the cover. If another site-specific design is required, it is anticipated that the design would be similar to that described in the HWA memorandum.

To meet the requirements of the ET cover functionality and address overall site drainage, including potential infiltration via the road cuts on the north side of Area 5, a grading design will also need to be completed. Because Area 2 has an existing thin soil cover, it is anticipated that the entire 4.8-foot-thick ET cover will have to be hauled in from a nearby stockpile site. However, the relatively deep layer of soil on portions of Area 5 could potentially be moved to the upper end of Area 5 and possibly to Area 2 also. The suitability of the existing Area 5 soil cover, required compaction (or loosening and scarification) efforts, and installation methodology would be described in the design document.

A grading permit may be required by the City for this work. The planning-level cost estimate for the recommended final cover system is \$1,130,000, as detailed in Appendix I. The cost estimate assumes that the entire 4.8-foot-thick cover for Areas 2 and 5 would be hauled in from a stockpile site located at the landfill.

9.1.2 STORMWATER CONTROLS

The preferred alternative includes the following stormwater controls:

- Construction of a cast-in-place concrete channel in the north drainage ditch to promote surface water discharge off-Site.
- Construction of an erosion control berm to facilitate the movement of Area 5 stormwater runoff and to repair erosion features in the Area 5 cover.
- Surface elevation regrading to prevent stormwater run-on to Area 5.
- Regrading of Areas 2 and 5 performed during the placement of the ET covers described in Section 9.9.1
The stormwater controls included in the preferred alternative for each of these areas are summarized in the following subsections.

9.1.2.1 North Drainage Ditch

A cast-in-place concrete channel was selected for the improvement of the north drainage ditch. A geomembrane layer would provide secondary protection underneath the concrete channel. The concrete cast-in-place channel will promote a "scouring" velocity that is designed to flush sediments from the ditch flow line.

Although the ditch is designed to be self-cleaning, the City may wish to occasionally remove sediment and wind-blown debris. Therefore, the cross-sectional shape of the ditch would be rectangular. This would allow the City's compact rubber-tired skid steer to be driven within the ditch. The proposed cast-in-place concrete channel design includes reinforced concrete and a pea gravel base to provide the structural support needed for the skid steer (Figure 18a, Plate 1).

The cast-in-place concrete channel is designed to allow sheet runoff from Area 5 to enter into the ditch. The proposed design includes a strip of geomembrane that is bolted to the top of the concrete channel and covered with an erosion control mat on the south side of the ditch to prevent undermining and rutting as the sheet flow enters the channel (Figure 18a, Plate 1).

The planning-level cost estimate for the north drainage ditch improvements including design and construction is \$303,000, as detailed in Appendix I.

9.1.2.2 Area 5 Stormwater Run-off

An erosion control berm is proposed to facilitate the movement of Area 5 surface drainage, address the rutting and soil erosion concerns on the southwest and west sides of Area 5, and impede runon. The erosion control berm would consist of a V-shaped channel lined with an erosion control mat. The erosion control berm would extend along the entire southern boundary and west side of Area 5 to convey stormwater runoff from Area 5 to the north drainage ditch, as shown on Figure 18a, Plate 6. The total length of the berm would be about 1,500 feet, and it would have a maximum 4 percent slope.

The planning-level cost estimate for the Area 5 runoff control berm including design and construction is \$41,500, as detailed in Appendix I.

9.1.2.3 Area 5 Stormwater Run-on

The selected alternative for run-on prevention at the southwest side of Area 5 includes the construction of an elevated berm north of the compost facility to prohibit stormwater generated south of Area 5 to flow north, and regrading the surface soil in the valley east of the compost facility to divert stormwater south and west onto the compost pad, and ultimately into the compost facility lagoon (refer to Figure 18b, Plate 7). The alternative requires the reconstruction of approximately 200 LF of the existing

compost access road in order to raise the grade of the road and prevent runoff from flowing north. The additional stormwater from a 25-year, 24-hour rainfall event diverted into the compost facility lagoon is calculated to cause a 2.8-inch rise in the water level within the lagoon, which is not expected to burden the lagoon during typical storm events. Additionally, the daily monitoring and ability to pump water from the lagoon mitigates any effects that an anomalous storm event could have on pond sizing.

The planning level cost estimate for the Area 5 run-on elimination including design and construction is \$100,500, as detailed in Appendix I. The pipeline alternative is less expensive at \$75,000; however, periodic sediment removal by mechanical means would be required, pipelines are subject to plugging, and cutting open the lagoon liner for a new pipe penetration introduces risk of damaging the existing liner. Moreover, construction of the elevated berm to the north of the compost facility (the preferred alternative) will also provide the needed additional cover thickness on Area 5.

9.1.3 LANDFILL GAS CONTROLS

LFG controls must be sufficient to prevent LFG from impacting groundwater, protect human health from toxic gases, prevent explosion hazards, and to demonstrate that LFG is not migrating off-site at unacceptable levels. Monitoring has shown that LFG is present only within the boundaries of the Site. The existing LFG flare system is currently operating at approximately 45 percent flow capacity, leaving adequate capacity for the estimated additional LFG from Areas 1, 2, and 5.

9.1.3.1 Area 1

The extraction well system hooked to existing Area 6 gas treatment system was selected for controlling the Area 1 LFG. It would entail the installation of two extraction wells and connection of the wells to the existing header at the flare station. The LFG is of low quality at this location, but if the extraction rate is monitored and the optimum flow rate is determined during initial testing and operation, two extraction wells should effectively prevent the buildup of LFG and reduce the migration of VOCs to groundwater.

The planning-level cost estimate of the extraction well system is \$55,000, as detailed in Appendix I.

9.1.3.2 Area 2

The extraction well system hooked to existing Area 6 gas treatment system was selected for controlling LFG in Area 2. Considering the small size of this area, one extraction well should effectively reduce the volume, toxicity, and mobility of LFG. An active collector trench would also be an effective option, but the construction cost would be excessive, making the extraction well system the preferred option. The planning-level cost estimates for the construction of these two options are \$74,500 for extraction well and \$276,000 for the trench system, as detailed in Appendix I.

9.1.3.3 Area 5

The extraction well system hooked to existing Area 6 gas treatment system was selected for controlling LFG in Area 5. MSW is buried too deep to effectively implement a trench system. Based on the methane concentrations in wells GW-5 and GW-6, which are greater than those measured in the 11 extraction wells in Area 6, an extraction system would prevent vertical migration of LFG and reduce the LFG contribution to groundwater contamination.

The proposed locations of seven extraction wells with a radius of 150 feet, comparable to the spacing of the extraction wells in Area 6, are shown on Figure 17. The wells would be screened throughout the depth of MSW and linked by a header system, which would be connected to the Area 6 header expansion tee located near the east side of Area 5. During the extraction well installation the existing Area 5 gas vent would be decommissioned to prevent short-circuiting of the LFG to surface or intake of surface air. Vent decommissioning would be accomplished by filling the vent from bottom to top with concrete

The planning-level cost estimate for the extraction well system is approximately \$196,500, as detailed in Appendix I.

9.2 LONG-TERM MONITORING

To ensure that the components of the preferred alternative are implemented efficiently and are operating properly, long-term monitoring of the various components must be implemented. The following subsections describe the monitoring requirements for the landfill to ensure that the remedy is effective and provides long-term protection of human health and the environment. The current landfill monitoring plans will be modified as described, and the modified Compliance Monitoring Plan will be included as an appendix of the Engineering Design Report, in accordance with the MTCA compliance monitoring requirements.

9.2.1 GROUNDWATER

The goal of groundwater monitoring is to confirm that the landfill remedy is performing adequately and that the engineering controls are working and to document that PCE and vinyl chloride concentrations in groundwater are stable or decreasing. Both on-site and downgradient off-Site groundwater will be monitored. The contaminant concentrations in downgradient off-Site groundwater currently meet the cleanup levels; therefore, the groundwater will be monitored to ensure that the conditions are stable or improving over time. On-site monitoring will be conducted to monitor changes in groundwater quality after implementation of the preferred alternative. Periodic monitoring for a broader spectrum of constituents other than VOCs will be conducted to ensure that changes in the environmental conditions do not cause release of other contaminants that could adversely affect groundwater.

As discussed previously, monitoring wells MW-11, MW-12b, MW-14b, and MW-15 are currently being sampled quarterly in accordance with the Solid Waste Operating Permit. The groundwater samples are analyzed for Appendix I and II detection monitoring constituents, per WAC 173-351-990, plus Freon 12, in accordance with Chapter 173-50 WAC. Specific details of the groundwater monitoring are included in the Revised Compliance Monitoring Plan (Schwyn 2013b). In addition to the routine landfill compliance sampling, groundwater samples will also be collected quarterly from downgradient monitoring wells MW-19 and MW-20 and annually from the Small and Camp wells for VOC analysis. Additionally, groundwater samples will be collected annually from MW-11, MW-12b, MW-14b, and MW-15 and analyzed for Appendix III parameters, per WAC 173-351-990. The locations of the wells are shown on Figure 2.

The original groundwater monitoring plan and SAP for the Site was included in the Hydrogeologic Report (EMCON 1995), and the SAP was subsequently approved during the permitting process required by Chapter 175-351 WAC. Since the SAP approval, several permit modifications have been made (in 1999, 2001, 2007, 2012, and 2013) and approved by the WWCHD. It is anticipated that the existing monitoring plans will be modified during the design process to account for the additional monitoring discussed in this section.

The groundwater monitoring results will be reported quarterly, with annual summary reports, and the findings will be reviewed at least every 5 years during 5-year MTCA review process. Modifications to the monitoring locations, analyses, or frequency will be documented at that time. Long-term monitoring of off-site groundwater is expected to occur for a minimum period of 5 years, or at least 2 years after the cleanup levels for groundwater are achieved.

9.2.2 LANDFILL GAS

Typically, LFG collector systems require two types of monitoring: operational and performance. The locations of the gas wells, the frequency of monitoring, and the specific monitoring requirements will be defined in an Operations, Maintenance, and Monitoring Plan to be included as part of the LFG system design report.

To optimize the control system, operational monitoring will be required during system startup. Ongoing monitoring will be required, based on the system response after full build-out, to ensure that the LFG control system is operating effectively.

Performance monitoring will likely be required at the landfill perimeter using existing gas monitoring wells. Performance of the control systems will likely be based on not exceeding the methane lower explosive limit at the Site boundary and diminishing VOC concentrations in groundwater monitoring wells located downgradient of Areas 1 and 5.

Mitigating actions associated with LFG control must also take current landfill regulations [WAC 173-351-200(4)] into account, requiring monitoring and compliance with gas control standards.

9.2.3 LANDFILL COVER

Annual landfill cover inspection, maintenance and repair procedures will be conducted to preserve the intended function of the ET covers. The following cover conditions will be observed and documented:

- Appearance and condition of the vegetation;
- Vegetation stress or death due to LFG;
- Deposition of eroded soil at the toe of steep slopes;
- Soil erosion;
- Rills or cracks in the cover;
- Changes in the surface slope and settlement of waste;
- Intrusion by humans or animals;
- Holes of any kind that allow surface runoff to enter the MSW directly;
- Wildlife trails created on the cover; and
- Damage by vehicles or maintenance machines.

Maintenance and repairs will be conducted on an as-needed basis to maintain the integrity of the ET covers. Long term care will continue until a registered professional engineer certifies to the WWCHD and Ecology that post closure activities are no longer needed.

9.2.4 STORMWATER CONTROLS

Currently, stormwater monitoring is not conducted at the Site. Previously, the landfill operated under the Statewide General Industrial Stormwater Permit; however, follow-up inspections by Ecology confirmed the relative lack of runoff at the landfill, and the permit was consequentially terminated by Ecology. It is suggested however that routine visual inspections and maintenance be conducted to ensure functionality of the stormwater control system.

Inspection and maintenance will be conducted on annual schedule. Inspections should document disturbances that result in erosion, settlement, ponded stormwater, and blockage of ditch flow lines. Maintenance will be conducted on an as needed basis.

9.3 INSTITUTIONAL CONTROLS

In accordance with WAC 173-340-440, MTCA requires that institutional controls such as environmental covenants be imposed on contaminated property whenever the remedial action conducted will result in remaining hazardous substances in soil, groundwater, or other media at concentrations that exceed the applicable cleanup levels, or when Ecology determines that such controls "are required to assure the continued protection of human health and the environment or the integrity of the interim or cleanup action." An environmental covenant is also required on the deed to meet the requirements stipulated in WAC 173-351-500(1)(h). The covenant will also describe with specificity the activity or limitations that prohibit uses and activities that:

- Threaten the integrity of any cover, waste containment, stormwater control, gas, leachate, public access control, or environmental monitoring systems;
- May interfere with the operation and maintenance, monitoring, or other measures necessary to ensure the integrity of the landfill and continued protection of human health and the environment; and
- May result in the release of solid waste constituents or otherwise exacerbate exposures.

The purpose of an environmental covenant is to prohibit activities that may interfere with a cleanup action, operation and maintenance, or monitoring or activities that may result in the release of a hazardous substance that was contained as a part of the cleanup action. Environmental covenants must be recorded in order to provide adjoining property owners, future purchasers, and tenants, as well as the general public, notice of the restrictions on use of the property. Property owners are also required to notify Ecology prior to any lease or sale of the restricted property.

To ensure that the selected components of the preferred alternative are operated efficiently and continue to be operated and maintained properly, an environmental covenant will be used as a legal measure to provide a clear record of the responsibilities and restrictions for the landfill. The environmental covenant will also ensure that the remedial action remains protective of human health and the environment and that the required landfill maintenance and monitoring are performed as necessary, in coordination with Ecology. The environmental covenant will be developed as part of the process associated with the Draft CAP and will be implemented for the landfill portion of the City-owned parcel.

9.4 **RESTORATION TIME FRAME**

Criteria for establishing whether a cleanup action provides for a reasonable restoration time frame are described in WAC 173-340-360(4)(b). The preferred remedial alternative for the Site consists of containment (capping) of the solid waste with measures to prevent or control its impact on surrounding environmental media, including capture of LFG and controls on stormwater to prevent leachate generation. It also includes provisions for long-term monitoring and institutional controls. Because containment of the MSW is the primary source control, long-term LFG removal and treatment will be necessary until VOC generation diminishes during the MSW degradation process.

The VOCs in LFG are likely the primary contributor to the groundwater quality impacts observed at the landfill. Based on empirical data from other sites, such as the Pasco Landfill (GSI 2014), COC

concentrations in groundwater at the CPOC is expected to decline immediately after LFG system startup. At the Pasco Landfill, PCE concentrations similar to those observed at the Sudbury Landfill dropped to non-detectable concentrations within several months of system startup.

A conservative conceptual timeframe to meet the RAOs is 6.2 years based on the following assumptions:

- The primary component of the groundwater contamination observed in MW-15 is from Area 5 with the overriding influence on groundwater quality emanating from the LFG contaminant to groundwater pathway;
- When the LFG system is turned on the vapor pressure at the capillary fringe will be reduced and the LFG to groundwater pathway will be eliminated;
- A particle of contamination traveling from the upgradient side of Area 5 (east side) to MW-15 will travel at 193 ft/yr through the 1,190 ft distance; and
- Vinyl chloride is the degradation product of the PCE in groundwater and will be eliminated as the PCE source diminishes.

9.5 ESTIMATED COSTS

9.5.1 ESTIMATED COST OF PREFERRED ALTERNATIVE

The components of the preferred alternative and the estimated cost for each component, including field construction and construction oversight costs, are as follows:

- ET cover in Areas 2 and 5: \$1,130,000;
- Cast-in-place concrete panels to improve the north drainage ditch: \$303,000;
- Stormwater runoff erosion control berm construction along the south and west sides of Area 5: \$41,500;
- Area 5 stormwater run-on prevention facilities: \$100,500; and
- LFG extraction well systems in Areas 1, 2, and 5: \$326,500.

The total estimated cost for construction of the preferred alternative is \$1,901,500. These costs are conceptual and subject to change after completion of the engineering design. The cost for administrative and Ecology oversight related to the preparation of the Draft CAP, formal agreements, and Engineering Design Report; contractor bidding; construction closeout; annual agency interaction; and 5-year reviews for a 10-year post-construction period is estimated at an additional \$400,000, as detailed in Appendix I. The total estimated cost for the preferred alternative is \$2,301,500.

9.5.2 ESTIMATED LONG-TERM MONITORING COSTS

The estimated planning-level cost estimates for third-party long-term monitoring based on a 10-year post-construction monitoring and restoration period are the following:

• Groundwater monitoring and reporting: \$537,000, which includes off-site lease agreements for two properties and off-site well decommissioning for six off-site wells;

- LFG field monitoring (no laboratory analysis) and reporting: \$170,000; and
- Landfill cover and stormwater system monitoring with minor maintenance: \$50,000, assuming these systems will be monitored and maintained according to the normal landfill closure monitoring requirements after the 10-year remedial action period.

The total estimated cost for long-term monitoring is \$757,000, as detailed in Appendix I.

9.5.3 TOTAL ESTIMATED COST

The total estimated cost for construction, administration, and monitoring of the preferred alternative for a 10-year period is \$3,058,500.

9.6 ATTAINMENT OF REMEDIAL ACTION OBJECTIVES

The remedy was evaluated for its compliance with MTCA cleanup goals, including those for containment remedies. As described in the following subsections, the proposed preferred alternative meets the requirements of MTCA and achieves the RAOs established for the Site.

9.6.1 COMPLIANCE WITH MTCA REQUIREMENTS

Certain minimum requirements must be met for a selected remedy to comply with the requirements of MTCA. This section discusses how the preferred alternative meets these requirements.

9.6.1.1 Threshold Requirements

The threshold criteria identified in WAC 173-340-360(2)(a) that must be met by the selected remedy and the reasons that the preferred alternative meets them are as follows:

- **Protect human health and the environment.** The landfill cap will prevent direct contact with solid waste by people, plants, and terrestrial receptors. The landfill cap and stormwater controls will decrease the amount of generated leachate by limiting the infiltration of stormwater. The stormwater controls will ensure that stormwater will not come in contact with solid waste. The LFG extraction well systems for Areas 1, 2, and 5 will collect VOCs entrained in the LFG and route them through the flare system for destruction, limiting the source of VOCs and minimizing the LFG to groundwater cross-media-contaminant pathway. Source control actions, such as the LFG system, are expected to further improve groundwater conditions. The monitoring and maintenance requirements combined with the environmental covenant will ensure that the cap, stormwater controls and LFG system are maintained over time. The proposed presumptive remedy protects human health and the environment and meets the expectations for the protection of terrestrial receptors in Chapter 173-340 WAC.
- **Comply with cleanup standards (WAC 173-340-700 through 173-340-760).** The landfill cap will allow soil with COC concentrations greater than the cleanup levels to be left in place as long as the requirements for a containment remedy are met. The COC concentrations in groundwater will comply with the proposed MTCA Method B cleanup levels at the point of compliance at the edge of the waste. All COC concentrations in groundwater are already in compliance, with the exception of PCE and vinyl chloride at well MW-15. The concentrations in downgradient off-Site groundwater currently meet the cleanup levels and will be monitored routinely to ensure that the groundwater conditions

are improving over time and the COCs are not migrating off-site. The LFG controls will control cross-media contamination of groundwater by VOCs. The presence of LFG will continue indefinitely as long a methane is being produced, and LFG control will be integrated into the overall management of the landfill operations.

- Comply with applicable local, state, and federal laws (WAC 173-340-710). The designed landfill cap, in conjunction with the proposed stormwater infrastructure, will ensure compliance with the requirements of WAC 173-340-710(7)(c). The LFG control requirements apply to the specific landfill regulations, as outlined in Section 6.3 (ARARs). The other components of the preferred alternative are consistent with the applicable regulations.
- Provide for compliance monitoring (WAC 173-340-410 and WAC 173-340-720 through 173-340-760). Compliance monitoring of LFG and groundwater will be conducted, as described in Section 9.2.

WAC 173-340-360(2)(b) specifies three additional criteria that must be satisfied by the preferred

alternative. The following list indicates how the preferred alternative satisfies the criteria:

- Use permanent solutions to the maximum extent practicable. The preferred alternative is permanent to the maximum extent practicable for closed solid waste cells. The landfill cap will prevent direct contact by potential receptors and stormwater controls will limit infiltration. Monitoring and maintenance requirements, along with an environmental covenant, will ensure that the containment remedy will remain protective over time.
- **Provide for a reasonable restoration timeframe.** An ET cover is already in place over Area 6 and is functioning as designed. The ET cover for Areas 2 and 5 will be constructed within 1 to 2 years after Ecology approves the design, a reasonable timeframe. The implementation of the LFG control systems will occur concurrently with the construction of the landfill cap. A reduction in COC concentrations in groundwater is expected within several months after the LFG system startup. The COC concentrations in groundwater are expected to be in compliance within a reasonable timeframe, likely within 6.2 years or less after the LFG collection efforts begin.
- **Consider public concerns (WAC 173-340-600).** The preferred alternative will be submitted to Ecology and eventually described in a CAP produced by Ecology, which will be issued for public review.

9.6.1.2 Requirements for Containment Systems

Several additional elements of WAC 173-340-740(6)(f) identify the requirements of a containment remedial action and allow soil and solid waste with concentrations greater than the soil cleanup levels to remain in place. The preferred alternative meets these requirements in the following ways:

• **Institutional controls are in place.** An environmental covenant will be established to ensure that the components of the preferred alternative, including the landfill cap, maintenance and monitoring of the LFG control systems, and groundwater monitoring, are implemented. The landfill is fenced, and maintenance and monitoring of the LFG control systems in Areas 1, 2, and 5 will be performed. There are currently four domestic water supply wells in the vicinity of the landfill, the closest being ³/₄ mile away. These supply wells have been tested, and VOCs that are present are likely a result of area-wide aquifer

contamination (refer to Section 3.6.1.2). It is against Washington State regulation to install a drinking water well within 1,000 feet of a landfill.

- Compliance monitoring and periodic reviews are designed to ensure long-term integrity of the system. Monitoring of the LFG control systems will be implemented and included in the Operations, Maintenance, and Monitoring Plans for the LFG control systems installed in Areas 1, 2, and 5. Likewise, groundwater will continue to be monitored until it is fully in compliance with the cleanup levels, at which point groundwater monitoring will continue in accordance with the Solid Waste Permit for the Site.
- Types, levels, and amounts of hazardous substances remaining on-site and the description of the measures used to prevent migration and contact are specified in the CAP. The material remaining within Areas 1, 2, and 5 is MSW containing low concentrations of hazardous substances. A Final CAP produced by Ecology will acknowledge these areas as previously closed solid waste landfill cells and identify the components of the containment remedy.

9.6.1.3 Compliance with ARARs

The preferred alternative complies with the following chemical-, location, and action-specific ARARs under WAC 173-340-710.

9.6.1.4 Chemical-specific ARARs

The preferred alternative is predicted to attain concentration-based cleanup levels developed under MTCA for the COCs in groundwater at the Site. Refer to Section 4.0 for a detailed discussion of how the cleanup levels were identified.

9.6.1.5 Location-specific ARARs

No location-specific ARARs that apply to the preferred alternative have been identified.

9.6.1.6 Action-specific ARARs

Action-specific ARARs are requirements that define acceptable management practices and are usually specific to certain kinds of activities that occur or are specific to the technologies that are used during the implementation of cleanup actions. The preferred alternative will comply with the requirements discussed in the following subsections.

Landfill Standards

The preferred alternative will comply with the standards for landfill closure requirements as identified in Chapters 173-304 and 173-351 WAC. Containment of landfill waste is relied on as the remedy for landfills, and, therefore, landfill capping (including stormwater controls) and LFG controls are remedies to comply with the landfill standards and to address contaminated groundwater at the Site. Institutional controls will also be implemented to augment the engineering controls and to protect human health and the environment. Long-term monitoring will be performed to ensure that the components of the preferred remedy are operating as intended.

Federal, State, and Local Air Quality Protection Programs

Regulations promulgated under the federal Clean Air Act (United States Code, Title 42, Section 7401) and the Washington State Clean Air Act (Chapter 70.94 RCW) govern the release of airborne contaminants from point and nonpoint sources. These requirements apply to the Site because the preferred alternative will extract and destroy LFG, which may require permitting. Additionally, any construction activities associated with the preferred alternative will need to meet all federal, state, and local air quality requirements for controlling fugitive dust and other emissions.

Federal and State Worker Safety Regulations

The safety of workers implementing remedies at hazardous waste sites are covered by the following regulations:

- Health and Safety for Hazardous Waste Operations and Emergency Response (HAZWOPER), Chapter 296-62 WAC; and Health and Safety, 29 CFR 1901.120;
- Occupational Safety and Health Act; and
- Washington Industrial Safety and Health Act (WISHA), Chapter 296-62 WAC, Chapter 296-155 WAC, and Chapter 49.1 RCW.

THIS PAGE LEFT INTENTIONALLY BLANK

10.0 DRAFT CLEANUP ACTION PLAN

Ecology is responsible for the cleanup action selection and the completion of the cleanup action plan (CAP). The CAP sets forth requirements that the cleanup must meet to achieve the cleanup standards and cleanup action objectives for the Site. As described in WAC 173-340-380(1)(a) the CAP shall include:

- A general description of the selected cleanup action developed in accordance with WAC 173-340-350 through 173-340-390.
- A summary of the rationale for selecting the proposed alternative.
- A brief summary of other cleanup action alternatives evaluated in the remedial investigation/feasibility study (RI/FS).
- Cleanup standards for each hazardous substance and for each medium of concern at the site.
- The schedule for implementation of the cleanup action plan.
- Institutional controls required as part of the cleanup action.
- Applicable state and federal laws for the cleanup action.
- A preliminary determination by the department that the cleanup action will comply with WAC 173-340-360.
- Where the cleanup action involves on-site containment, specification of the types, levels, and amounts of hazardous substances remaining on site and the measures that will be used to prevent migration and contact with those substances.

Text and figures for Ecology's use in the preparation of a draft CAP, based on the preferred alternative described in this RI/FS, are provided in Appendix J.

THIS PAGE LEFT INTENTIONALLY BLANK

11.0 REFERENCES

City of Walla Walla. 1977. Engineering Report, City of Walla Walla Sanitary Landfill with Application for Disposal Site Permit and SEPA Documents. March 18.

. 1988. *City of Walla Walla, Sudbury Road Landfill Operating Plan.* June 20.

Cooper, H.H. and C.E. Jacob. 1946. A generalized graphical method for evaluating formation constants and summarizing well field history. *American Geophysical Union Transactions*, vol. 27, pp. 526-534.

Dahl, Norman & Associates (Dahl) and Anderson-Perry & Associates, Inc.(Anderson-Perry). 1987. *Final Report, Sudbury Road Landfill Utilization Plan for City of Walla Walla*. December.

EMCON. 1995. Hydrogeologic Report, Sudbury Road Landfill, Walla Walla County, Washington. June.

GSI Water Solutions, Inc. 2014. Pasco Landfill – Zone E VOC Occurrence and Alternative Source Assessment. Prepared for Weyerhaeuser NR Company. 2014.

Hantush, M.S. 1961. Drawdown Around a Partially Penetrating Well and Aquifer Tests on Partially Penetrating Wells. *Jour. of the Hyd. Div., Proc. of the Am. Soc. of Civil Eng.*, vol. 87, no. HY4, pp. 83-98 and HY5, pp. 171-194.

Hantush, M.S. and C.E. Jacob. 1955. *Non*-Steady Radial Flow in an Infinite Leaky Aquifer. *American Geophysical Union Transactions*, vol. 36, no. 1, pp. 95-100.

J-U-B Engineers, Inc. (JUB). 2010. *Specifications and Plans, Area 6 Closure, Sudbury Road Landfill*. Prepared by J-U-B Engineers, Kennewick, Washington for the City of Walla Walla. January.

Landau Associates, Inc. (LAI). 2004. *Remedial Investigation Work Plan, Sudbury Road Landfill, Walla Walla, Washington*. Prepared for the City of Walla Walla. April 22.

Newcomb, R.C. 1965. *Groundwater and Ground-Water Resources of the Walla Walla River Basin, Washington-Oregon*. Water Supply Bulletin 21. State of Washington, Division of Water Resources.

Parametrix. 2012. Final Remedial Investigation and Feasibility Study (RI/FS) Report, Washington State Penitentiary, Walla Walla, Washington. Prepared for Washington State Department of Corrections. November.

Schwyn Environmental Services, LLC (Schwyn). 2013a. *Remedial Alternatives Focusing Study, Sudbury Road Landfill, Walla Walla, Washington*. Prepared for the City of Walla Walla. November 8.

——. 2013b. *Revised Compliance Monitoring Plan, City of Walla Walla Sudbury Road Landfill.* Letter to Kevin Tureman, R.S., Walla Walla County Health Department. June 28.

——. 2012. *Memorandum: Sudbury RI – Data Gap Review*. To Frank Nicholson, P.E., City of Walla Walla. August 6.

9/15/2014//Sudbury Landfill RI/FS Report

———. 2011. Data Summary and Remedial Investigation Work Plan, Sudbury Road Landfill, Walla Walla, Washington. With accompanying Sampling and Analysis Plan, Quality Assurance Project Plan, and Health and Safety Plan. Prepared by Schwyn for the City of Walla Walla. 28 December.

———. 2010a. Area 5 Landfill Gas Probe Installation and Sampling Report for the Sudbury Road Landfill, Walla Walla, Washington. Prepared by Schwyn for the City of Walla Walla. January 22.

———. 2010b. *Revised Interim Action Plan, Sudbury Road Remedial Action, Walla Walla, Washington.* Prepared by Schwyn for the City of Walla Walla, Solid Waste Division. March 31.

———. 2006. *Sudbury Road Landfill Historical Study Report, Walla Walla, Washington.* Prepared by Schwyn for the City of Walla Walla, Solid Waste Division . January 17.

Shannon & Wilson (S&W). 2009. *Sudbury Road Landfill Notice of Construction Permit Application*. Prepared by S&W for the City of Walla Walla, Washington. October 22.

Shaw/EMCON/OWT, Inc. 2005. Solid Waste Permit Modification for Lateral Expansion of Sudbury Road Landfill in Compliance with WAC 173-351. Prepared for the City of Walla Walla. May.

Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. *American Geophysical Union Transactions*, vol. 16, pp. 519–524.

U.S. Environmental Protection Agency (USEPA). 2008. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review. EPA-540/R-99/008. October.

——. 2004. USEPA National Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. OSWER 9240.1-45, EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

———. 1991. Conducting Remedial Investigations/Feasibility Studies for CERCLA Municipal Landfill Sites. OSWER Directive 9355.3-11. EPA 540/P-91/001. February.

——. 1989. *Risk Assessment Guidance for Superfund*. Volume 1, *Human Health Evaluation Manual (Part A)*. Interim Final. EPA/540/1-89/002. Office of Emergency and Remedial Response, Washington, D.C. Available at: <u>http://www.epa.gov/oswer/riskassessment/ragsa/index.htm</u>. December.

——. 1981. Presumptive Remedy for CERCLA Municipal Landfill Sites Directive. OSWER Directive 9355.3-11.

Walla Walla Union Bulletin. 1978. New city landfill on Sudbury Road opens Monday. Whitman College Penrose Library. On microfiche. July 9.

Washington State Department of Ecology (Ecology). 2012a. Email Correspondence Re: Sudbury Data Gap Review. To Frank Nicholson, Craig Schwyn, Melissa K. Warner, and Diane Singer. From Marni Solheim. August 9.

——. 2012b. Sudbury Road Landfill – December 28, 2011, Data Summary and RI Work Plan (Including SAP/QAPP and HSP) and Independent Remedial Investigation Methods. Letter to Frank Nicholson, City of Walla Walla Public Works, from Marni Solheim, Senior Regulatory & Facilities Specialist, Eastern Regional Office. January 6.

———. 2009. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Washington State Department of Ecology, Toxics Cleanup Program. Publication Number 09-09-047. Draft. October 2009.

———. 2007. *Washington Administrative Code*. Chapter 173-340, Model Toxics Control Act Cleanup Regulation. Compiled by Ecology's Toxics Cleanup Program. Publication No. 94-06. November.

———. 1999. Sudbury Road Landfill Site, Contaminant Source Identification/Assessment Report. Prepared under a Site Assessment Cooperative Agreement between the Washington State Department of Ecology and the U.S. Environmental Protection Agency. June.

———. 1993. *Washington Administrative Code*. Chapter 173-351, Criteria for Municipal Solid Waste Landfills. October.

———. 1990. *Washington Administrative Code*. Chapter 173-200, Water Quality Standards for Ground Waters of the State of Washington. December.

———. 1988. *Washington Administrative Code*. Chapter 173-304, Minimum Functional Standards for Solid Waste Handling. October.

——. 1972. *Washington Administrative Code*. Chapter 175-301, Regulation Relating to Minimum Functional Standards for Solid Waste Handling. Adopted October 24, 1972; effective November 27, 1972.

Washington State Department of Health (WDOH). 2012. *Private Well Volatile Organic Compound Exposure Near Sudbury Road, Walla Walla, Walla Walla County, Washington.* Letter Health Consultation prepared by the WDOH under a cooperative agreement with the Agency for Toxic Substances and Disease Registry. July 18.

TABLE 1WELL CONSTRUCTION SUMMARYSudbury Landfill Remedial Investigation Feasibility StudyCity of Walla Walla, Washington

		Well E	levation	Depth	Casing		Scree	n Depth	Screen E	levation
	Date	Ground	TOC	Drilled	Diameter	Screen	Тор	Bottom	Тор	Bottom
Well	Drilled	(Ft Above	MSL)	(Ft-BGL)	(Inches)	Туре	(Ft-	-BGL)	(Ft Abo	ve MSL)
MW-1	8/26/1986	788.57	791.45	121	2	0.01 slot S.S.	108	118	680.6	670.6
MW-2	12/1/1976	802.57		155	5	Perforated Steel	80	155	722.6	647.6
MW-3	9/18/1986	788.37	791.35	121	2	0.01 slot S.S.	108	118	680.4	670.4
MW-4	8/1/1983	802.97	806.48	71	5	Perforated Steel	51	71	752.0	732.0
MW-5	9/8/1983	822.97	826.44	82	5	Perforated Steel	62	82	761.0	741.0
MW-9	9/20/1991	901.27	904.01	210	5	0.01 slot PVC	63	83	838.3	818.3
MW-10	12/27/1993	869.97	872.38	47	2	0.01 slot PVC	29.4	44.7	840.6	825.3
MW-11	2/10/1995	794.38	797.55	41	2	0.01 slot PVC	25.5	40.5	768.9	753.9
MW-12	2/9/1995	826.07	828.90	62	2	0.01 slot PVC	46.5	61.5	779.6	764.6
MW-12b	8/28/2008	827.94	830.73	80.5	2	0.01 slot PVC	60	80	767.9	747.9
MW-14	8/12/1999	833.07	835.80	82	2	0.01 slot PVC	66	82	767.1	751.1
MW-14b	5/23/2012	832.43	834.89	107	2	0.01 slot PVC	91.6	106.6	740.8	725.8
MW-15	7/17/2001	790.02	792.61	46.5	2	0.01 slot PVC	28	43	762.0	747.0
MW-15D	5/23/2012	789.64	792.04	87	4	0.01 slot PVC	68	83	721.6	706.6
MW-16	8/31/2005	813.72	816.32	69	2	0.01 slot PVC	54	69	759.7	744.7
MW-17	5/12/2012	844.75	847.01	97	2	0.01 slot PVC	79.6	94.6	765.1	750.1
MW-18	5/20/2012	807.52	810.11	63	2	0.01 slot PVC	47.1	62.1	760.4	745.4
MW-19	5/20/2012	814.83	814.30	77	2	0.01 slot PVC	59.6	74.6	755.2	740.2
MW-20	5/15/2012	789.51	791.83	57	2	0.01 slot PVC	41.6	56.6	747.9	732.9
MW-21S	5/12/2012	794.84	794.27	58	2	0.01 slot PVC	39.6	54.6	755.2	740.2
MW-21D	5/13/2012	796.59	796.04	83	2	0.01 slot PVC	75.6	80.6	721.0	716.0
MW-22S	5/13/2012	813.91	813.26	82	2	0.01 slot PVC	65.6	80.6	748.3	733.3
MW-22D	5/14/2012	814.29	813.60	112	2	0.01 slot PVC	105.6	110.6	708.7	703.7
MW-23	5/21/2012	794.05	796.49	52	2	0.01 slot PVC	36.6	51.6	757.5	742.5
MW-24	5/22/2012	796.85	799.30	47	2	0.01 slot PVC	26.6	41.6	770.3	755.3
MW-25	5/22/2012	793.00	795.44	42	2	0.01 slot PVC	25.6	40.6	767.4	752.4
MW-26	5/9-10/2012	832.63	834.91	92	2	0.01 slot PVC	76.6	91.6	756.0	741.0
MW-27	8/29/2012	791.98	794.50	52	2	0.01 slot PVC	41.6	51.6	750.4	740.4
GW-5	8/6/2009	843.67	847.00	48.5	0.5	0.03 slot Sch 80 PVC	25	30	818.7	813.7
GW-6	8/6/2009	800.87		39	0.5	0.03 slot Sch 80 PVC	20	25	780.9	775.9
GW-7S	5/7/2012	789.10	791.68	17	0.75	0.01 slot PVC	12	17	777.1	772.1
GW-7D	5/7/2012	789.45	792.10	37	0.75	0.01 slot PVC	31.1	36.3	758.4	753.2
GW-8	5/7/2012	805.91	808.58	15	0.75	0.01 slot PVC	10	15	795.9	790.9
GW-9	5/7/2012	792.97	795.77	15	0.75	0.01 slot PVC	10	15	783.0	778.0
GW-10	5/7/2012	796.23	795.62	10	0.75	0.01 slot PVC	5	10	791.2	786.2
GW-11	5/8/2012	831.73	834.53	57	0.75	0.01 slot PVC	25	30	806.7	801.7
GW-12	5/7/2012	822.34	824.86	31	0.75	0.01 slot PVC	26	31	796.3	791.3
Garver	12/8/1967	89.57		1227	10	?	?	?		

Notes:

TOC = Top of casing

Ft Above MSL = Feet above mean sea level (NAVD 88)

Ft-BGL = Feet below ground level

S.S. = Stainless steel

TABLE 2 COVER AND MSW THICKNESS SUMMARY

Sudbury Landfill Remedial Investigation Feasibility Study

City of Walla Walla, Washington

	Ground	Cover	Depth to	MSW	MSW	MSW Base		MSW - Water Table
	Elevation	Thickness	MSW	Bottom	Thickness	Elevation	Water Table	Separation
Location	(Ft MSL)	(Ft)	(Ft BGL)	(Ft BGL)	(Ft)	(Ft MSL)	*(Ft MSL)	*(Ft)
Area 1								
GW-11	831.7	11	11	48	37	783.7	760	24
TP-25	833.8	12	12	ND	ND	ND	ND	ND
TP-26	834.4	>16.5	ND	ND	ND	ND	ND	ND
TP-27	834.5	>17	ND	ND	ND	ND	ND	ND
TP-28	836.4	>17	ND	ND	ND	ND	ND	ND
Area 2								
TP-24	812.0	3	3	>10	ND	ND	ND	ND
SB-24	812.0	3	3	30	27	782.0	759	23
TP-29	820.6	NA	none to 12'	NA	Likely none	ND	ND	ND
TP-30	820.1	NA	none to 15'	NA	Likely none	ND	ND	ND
TP-31	817.0	NA	none to 16'	NA	Likely none	ND	ND	ND
TP-32	813.4	NA	none to 16'	NA	Likely none	ND	ND	ND
TP-33	811.5	NA	none to 15'	NA	Likely none	ND	ND	ND
TP-34	810.3	NA	none to 15'	NA	Likely none	ND	ND	ND
TP-35	813.0	11	11	>14	ND	ND	ND	ND
TP-36	815.6	6	6	9	3	806.6	759	48
TP-37	816.6	3	3	4	1	812.6	759	54
TP-38	818.1	3	3	3.5	0.5	814.6	759	56
TP-39	820.4	NA	none to 16'	NA	Likely none	ND	ND	ND
TP-40	816.3	2.5	2.5	5	2.5	811.3	759	52
TP-41	814.9	2.5	2.5	8	5.5	806.9	759	48
TP-42	813.6	3	3	>3	ND	ND	ND	ND
TP-43	812.5	5	5	>5	ND	ND	ND	ND
TP-44	809.1	6	6	>9	ND	ND	ND	ND
TP-45	804.6	1.5	1.5	2	0.5	802.6	759	44
TP-46	804.9	2	2	3	1	801.9	759	43
TP-47	801.7	4	4	>9	ND	ND	ND	ND
TP-48	796.4	0.5	0.5	2	1.5	794.4	759	35
TP-49	794.7	0.5	0.5	9	8.5	785.7	759	27
TP-50	796.2	3	3	4	1	792.2	759	33
TP-51	794.7	1.5	1.5	>7	>5.5	ND	ND	ND
TP-52	793.8	2	2	>5	>3	ND	ND	ND
TP-53	793.4	2.5	2.5	6	4	787.4	759	28
TP-54	785.2	NA	NSQ to 4'	4	NSQ	ND	ND	ND
1P-55	/82.0	3	3	5	2	//7.0	/59	18
1P-56	/85.1	2	2	3	1	782.1	759	23
1P-57	/94.1	NA	none to 16'	NA	Likely none	ND	ND	ND
1P-58	806.1	NA	none to 10'	NA -	Likely none			ND
1P-59	804.1	4	4	5	1	799.1	759	40
1P-60	804.3	2	2	1	5	797.3	759	38
1P-61	810.1	2	2	8	6	802.1	759	43
19-62	811.8	5	5	5.5	0.5	806.3	759	47

TABLE 2 COVER AND MSW THICKNESS SUMMARY

Sudbury Landfill Remedial Investigation Feasibility Study

City of Walla Walla, Washington

	Ground	Cover	Depth to	MSW	MSW	MSW Base		MSW - Water
	Flevation	Thickness	MSW	Bottom	Thickness	Flevation	Water Table	Separation
Location	(Ft MSL)	(Ft)	(Ft BGL)	(Ft BGL)	(Ft)	(Ft MSL)	*(Ft MSL)	*(Ft)
Aroa E	/		/	/				
TP_1	847 3	13.0	13.0	ND		ND	ND	ND
	842.7	10.0	10.0					
	836.0	4.0	4.0					
TP-4	828.6	4.0	4.0					
TP-5	816.8	33	1.0					
TP-6	815.3	10.0	10.0					
TP-7	837.6	14.0	14.0					
TP-8	845.2	13.5	13.5					
	843.3	14.0	14.0					
TP-10	837 9	15.5	15.5	ND		ND	ND	
TP-11	839.8	14.5	14.5	ND		ND	ND	
TP-12	837.5	15.0	15.0	ND	ND	ND	ND	ND
TP-13	836.1	11.5	11.5	ND	ND	ND		
TP-14	829.5	5.5	5.5	ND	ND	ND		
TP-15	818.0	9.5	9.5	ND	ND	ND	ND	ND
TP-16	804.2	10.5	10.5	ND	ND	ND	ND	ND
TP-17	808.5	10.5	10.5	ND	ND	ND	ND	ND
TP-18	*820	>14.5		ND	ND	ND	ND	ND
TP-19	*825	11	11	ND	ND	ND	ND	ND
TP-20	804.6	10.5	10.5	ND	ND	ND	ND	ND
TP-21	797.7	3.0	3.0	5.0	2.0	792.7	760.4	32
TP-22	795.1	5.5	5.5	ND	ND	ND	ND	ND
TP-23	802.4	5.5	5.5	ND	ND	ND	ND	ND
B-1/TP-21	797.0	3.0	3.0	ND	ND	ND	ND	ND
B-2	796.7	4.5	4.5	ND	ND	ND	ND	ND
B-3	796.7	6.0	6.0	ND	ND	ND	ND	ND
B-4	794.9	9.0	9.0	ND	ND	ND	ND	ND
B-5/TP-22	795.3	5.5	5.5	ND	ND	ND	ND	ND
B-6	793.3	7.0	7.0	ND	ND	ND	ND	ND
B-7	792.7	6.0	6.0	ND	ND	ND	ND	ND
B-8	793.1	7.0	7.0	ND	ND	ND	ND	ND
B-9	792.8	8.0	8.0	ND	ND	ND	ND	ND
B-10	792.1	9.0	9.0	ND	ND	ND	ND	ND
B-11	791.9	8.0	8.0	ND	ND	ND	ND	ND
B-12	792.2	11.0	11.0	ND	ND	ND	ND	ND
B-13	792.9	7.0	7.0	ND	ND	ND	ND	ND
SB-19	793.4	12.0	12.0	28.0	16.0	765.4	758.1	7
SB-20	797.6	11.0	11.0	49.5	38.5	748.1	759.2	-11
SB-21	798.7	3.0	3.0	17.0	14.0	781.7	760.4	21
SB-22	794.8	13.0	13.0	29.5	16.5	765.3	758.6	7
SB-23	796.0	9.0	9.0	25.5	16.5	770.5	758.9	12
SB-25	798.3	13.0	13.0	27.5	14.5	770.8	759.5	11
SB-26	800.0	11.5	11.5	23.0	11.5	777.0	759.9	17

TABLE 2 COVER AND MSW THICKNESS SUMMARY

Sudbury Landfill Remedial Investigation Feasibility Study

City of Walla Walla, Washington

Location	Ground Elevation (Ft MSL)	Cover Thickness (Ft)	Depth to MSW (Ft BGL)	MSW Bottom (Ft BGL)	MSW Thickness (Ft)	MSW Base Elevation (Ft MSL)	Water Table *(Ft MSL)	MSW - Water Table Separation *(Ft)
Area 5 (Co	ontinued)							
B9RI	800.8	3.0	3.0	33.0	30.0	767.8	758.0	10
B10RI	*802	11.0	11.0	31.0	20.0	771.0	758.9	12
B11RI	*808	21.0	21.0	33.0	12.0	775.0	759.9	15
B12RI	*822	16.5	16.5	41.0	24.5	781.0	759.5	22
B14RI	*842	10.0	10.0	48.0	38.0	794.0	760.2	34
B17RI	*820	10.0	10.0	40.0	30.0	780.0	758.7	21
B18RI	*825	8.0	8.0	21.0	13.0	804.0	758.0	46
GW-5	843.7	13.0	13.0	36.5	23.5	807.2	760.2	47
GW-6	800.9	3.0	3.0	32.5	29.5	768.4	758.0	10

Notes:

Ft MSL = Feet above mean sea level (NAVD 88)

Ft BGL = Feet below ground level

Water table elevation based on February 2013 depth to water measurements

NA = Not applicable

ND = Not Determined

NSQ = nonsignificant quantity (scattered debris in soil)

* = Estimated

TABLE 3SOIL ANALYTICAL DATASudbury Landfill Remedial Investigation Feasibility StudyCity of Walla Walla, Washington

Exploration	Date Sampled	1,1-Dichloroethane (µg/kg)	Acetone (µg/kg)	Carbon disulfide (µg/kg)	cis-1,2-Dichloroethene (µg/kg)	Methyl ethyl ketone (µg/kg)	Methyl iso butyl ketone (µg/kg)	Methylene chloride (µg/kg)	Tetrachloroethene (µg/kg)	Toluene (µg/kg)	Trichloroethene (µg/kg)	Xylene (meta & para) (µg/kg)
GW11@56'	5/8/2012	8.8	6,500	6.7	5.6 U	16,000	53	170	5.6 U	9	5.8	8.5
SB24@32'	5/21/2012	5.5 U	22 U	5.5 U	11	22 U	22 U	18	7.1	5.5 U	5.5 U	7.8
SB-24 Dup	5/21/2012	4.7 U	19 U	4.7 U	15	19 U	19 U	22	10	4.7 U	4.7 U	11 J
SB21@27'	5/22/2012	5 U	20 U	5 U	22	20 U	20 U	11	5.9	5 U	5 U	5 U
SB-23-29.5-30	8/28/2012	5.1	19 U	4.8 U	50	19 U	19 U	9.5 U	4.8 U	4.8 U	4.8 U	4.8 U
SB-26-28.5-29	8/29/2012	5 U	20 U	5 U	14	20 U	20 U	9.9 U	5.3	5 U	5 U	5 U
GP-3-21.5-22	7/6/2005	100 U	1000 U	100 U	100 U	1000 U	1000 U	1000 U	30.0 U	100 U	30.0 U	400 U
GP-4-18-18.5	7/6/2005	100 U	1000 U	100 U	100 U	1000 U	1000 U	1000 U	30.0 U	100 U	30.0 U	400 U
GP-6-15-15.5	7/6/2005	100 U	1000 U	100 U	100 U	1000 U	1000 U	1000 U	30.0 U	100 U	30.0 U	400 U
B-9RI-35'	8/29/2005	100 U	1000 U	100 U	100 U	1000 U	1000 U	1000 U	30.0 U	100 U	30.0 U	400 U
B-10RI-34'	8/30/2005	100 U	1000 U	100 U	100 U	1000 U	1000 U	1000 U	30.0 U	100 U	30.0 U	400 U
B-11RI-34'	8/30/2005	100 U	1000 U	100 U	100 U	1000 U	1000 U	1000 U	30.0 U	100 U	30.0 U	400 U
B-12RI-44'	8/30/2005	100 U	1000 U	100 U	100 U	1000 U	1000 U	1000 U	30.0 U	100 U	30.0 U	400 U

Notes

Only volatile organic compounds detected on a regular basis in the landfill area groundwater are presented on table.

U = analyte not detected at or above the indicated laboratory reporting level.

J = analyte detected, numeric result is considered an estimate.

µg/kg = micrograms per kilogram.

TABLE 4BARHOLE MONITORING RESULTSSudbury Landfill Remedial Investigation Feasibility StudyCity of Walla Walla, Washington

Gas Well Identification	Date of Measurement	Bottom of Barhole (ft bgs)	Barometric Pressure (inches Hg)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide (% volume)	Oxygen (% volume)
SBBH-1	5/8/2012	2	29.09	2.8	0	0.2	21
SBBH-2	5/8/2012	2	29.11	2.9	0	0.8	19.4
SBBH-3	5/8/2012	2	29.1	3.03	0	2.6	18.4
SBBH-4	5/8/2012	2	29.14	0.01	0	8.2	11.6
SBBH-5	5/8/2012	2	29.15	0.07	0	1	20
SBBH-6	5/8/2012	2	29.13	0.09	0	0.7	19.7
SBBH-7 ¹	5/8/2012	2	29.12	0.19	0.1	0.6	18.8
SBBH-8	5/8/2012	1	29.11	0.09	0	0.5	19.5
SBBH-9 ²	5/8/2012	2	29.1	-0.03	0	0	20.1

1 Readings did not stabilize. GEM 2000 shut down after 44 seconds due to tight silt formation.

2 Readings did not stabilize. GEM 2000 shut down after 25 seconds due to tight silt formation.

Hg = mercury

bgs = below ground surface

TABLE 5GAS WELL MONITORING RESULTSSudbury Landfill Remedial Investigation Feasibility StudyCity of Walla Walla, Washington

Gas Well	Date of	Barometric Pressure (inches Ha)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide	Oxygen (% volume)
			(1101103 1120)			
GW-3	5/14/2012	29.09	1.34	59.9	39.6	0
GVV-3	7/11/2012	30.00	1.41	57.3	42.8	0
GW-3	9/27/2012	30.06	3.01	59.8	40.2	0
GW-3	11/29/2012	29.70	4.15	58.5	40.9	0
GW-3	2/14/2013	30.50	-0.1	59.5	40.1	0
GW-5	5/10/2012	29.38	0.26	66.6	55.6	0
GW-5	5/13/2012	29.18	0	65.6	36.1	0
GW-5	7/11/2012	30.00	0.44	61.3	36.7	0
GW-5	9/26/2012	30.01	0.18	54.9	34.9	0
GW-5	11/29/2012	29.70	1.16	62.4	37.3	0
GW-5	2/14/2013	30.49	-0.49	62.1	37.2	0
GW-6	5/9/2012	29.21	0.38	55.3	33.8	0
GW-6	7/11/2012	30.00	0.3	53.8	33.9	0
GW-6	9/26/2012	30.01	0.53	63	37.0	0
GW-6	11/29/2012	29.71	0.66	52.4	35.4	0
GW-6	2/14/2013	30.49	-0.31	51.5	32.2	0.3
GW-7S	5/9/2012	29.22	0.12	0	19.3	0
GW-7S	5/11/2012	29.35	0.04	0	16.6	2.4
GW-7S	7/11/2012	30.00	0.06	0.4	19.3	0
GW-7S	9/26/2012	30.01	-0.13	0	19.6	1.3
GW-7S	11/29/2012	29.71	NR	0.1	18.9	0
GW-7S	2/14/2013	30.49	0.01	0	13.6	6.5
GW-7D	5/9/2012	29.17	0.08	0	0.2	21.5
GW-7D	5/11/2012	29.41	0.02	0	0.9	19.8
GW-7D	7/11/2012	30.00	0.02	0	0	22.7
GW-7D	9/26/2012	30.01	-0.16	0	0	22.5
GW-7D	11/29/2012	29.71	0.03	0	0.1	21.8
GW-7D	2/14/2013	30.49	0.01	0	0	NR ¹
GW-8	5/9/2012	29.16	0	0	1.9	18.9
GW-8	5/11/2012	29.40	0	0	1.5	18
GW-8	7/11/2012	30.00	0.02	0	1.1	19
GW-8	9/26/2012	30.01	-0.17	0	0.6	21.2
GW-8	11/29/2012	29.69	0.03	0	0.5	20.6
GW-8	2/14/2013	30.50	-0.01	0	0.5	NR ¹
GW-9	5/9/2012	29.16	0.03	0	1.9	19.4
GW-9	5/11/2012	29.34	0	0	1.9	17.9
GW-9	7/11/2012	30.00	NR	0	1.4	17.3
GW-9	9/26/2012	30.02	NR	0	1.8	18.9
GW-9	11/29/2012	29.70	0.01	0	1.5	19.6
GW-9	2/14/2013	30.50	0	0	1.0	NR ¹
GW-10	5/9/2012	29.22	0.26	0	5.6	12.1
GW-10	5/13/2012	29.32	0.03	0.7	6.8	11.3
GW-10	7/11/2012	30.00	0.35	0	7.6	8.7
GW-10	9/27/2012	30.06	0.52	0	8.3	8
GW-10	11/29/2012	29.70	0.18	0	7.7	8.7
GW-10	2/14/2013	30.50	-0.16	0	6.2	8.9

TABLE 5GAS WELL MONITORING RESULTSSudbury Landfill Remedial Investigation Feasibility StudyCity of Walla Walla, Washington

Gas Well Identification	Date of Measurement	Barometric Pressure (inches Hg)	Well Head Pressure (inches H20)	Methane (% volume)	Carbon Dioxide (% volume)	Oxygen (% volume)
GW-11	5/8/2012	29.09	0.62	19.7	20.4	0
GW-11	5/11/2012	29.36	0.26	13.5	17.8	0
GW-11	7/11/2012	30.00	0.13	12.5	18.8	0
GW-11	9/26/2012	30.02	NR	15.5	20.1	0
GW-11	11/29/2012	29.69	0.5	16.4	21.0	0
GW-11	2/14/2013	30.49	-0.2	14.2	20.6	0.2
GW-12	5/9/2012	29.18	0.18	0	1.3	19.5
GW-12	5/11/2012	29.35	0.16	0	2.3	17.2
GW-12	7/11/2012	30.00	0.14	0	0.9	19.4
GW-12	9/26/2012	30.00	-0.06	0	1.1	19.2
GW-12	11/29/2012	29.71	0.22	0	1.2	18.3
GW-12	2/14/2013	30.49	-0.17	0	1.1	NR ¹
Notes: 1 Oxgen senso Hg – mercury. NR – not reporte	r malfunction					

Page 1 of 2

TABLE 6LANDFILL GAS VOC DATASudbury Landfill Remedial Investigation Feasibility StudyCity of Walla Walla, Washington

Sample Location	MW-15	MW-16	GW-5	GW-6	GW-05	GW-06	GW-07D	GW-07S	GW-08	GW-09	GW-10	GW-11	GW-12
Sample Date	8/9/2006	8/9/2006	9/12/2009	9/12/2009	5/13/2012	5/9/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	5/13/2012	5/11/2012	5/11/2012
EPA TO-15 Analyte	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
1,1,1-Trichloroethane	6.7 U	5.0 U	430 U	130 U	0.623 U	134	5.2 U	6.8 U	5.2 U	5.2 U	24	0.623 U	5.2 U
1,1-Dichloroethane	99	5.0 U	430 U	470	55	1790	3.8 U	7.9	3.9 U	3.9 U	3.8 U	3250	3.9 U
1,1-Dichloroethene	8.8	5.0 U	430 U	220	480	261	3.8 U	5 U	3.8 U	3.8 U	3.7 U	374	3.8 U
1,2,4-Trichlorobenzene	130 U	130 U	430 U	130 U	9.5	1.15 U	28 U	37 U	28 U	28 U	28 U	1.15 U	28 U
1,2,4-Trimethylbenzene			970	420	1160	892	5.7	6.2 U	5.8	4.7 U	4.6 U	1180	4.9
1,2-Dichlorobenzene	6.7 U	5.0 U	430 U	130 U	0.925 U	19.2	5.7 U	7.5 U	5.7 U	5.7 U	5.6 U	5.77	5.7 U
1,2-Dichloroethane	6.7 U	5.0 U	430 U	130 U	22.7	88.1	3.8 U	5.1 U	3.9 U	3.9 U	3.8 U	95.2	3.9 U
1,2-Dichloropropane	12	5.0 U	430 U	130 U	45.8	194	4.4 U	5.8 U	4.4 U	4.4 U	4.3 U	199	4.4 U
1,3,5-Trimethylbenzene			450	230	699	426	4.7 U	6.2 U	4.7 U	4.7 U	4.6 U	618	4.7 U
1,4-Dichlorobenzene	6.7 U	5.0 U	430 U	130 U	46.2	258	5.7 U	7.5 U	5.7 U	5.7 U	5.6 U	187	5.7 U
2-Hexanone	6.7 U	5.0 U	430 U	130 U	0.757 U	804	16 U	20 U	16 U	16 U	15 U	1.74 U	16 U
4-Ethyltoluene			430 U	220	680	619	4.7 U	6.2 U	4.7 U	4.7 U	4.6 U	981	4.7 U
Acetone	45 M	37	4,300 U	1,300 U	1360	772	22 U	30 U	23 U	23 U	22 U	849	23 U
Acrolein			430 U	130 U	1.49 U	1.49 U						49.6	
Benzene	6.7 U	5.0 U	940	1,700	1490	1740	3 U	4 U	3 U	3 U	3 U	1220	3 U
Bromodichloromethane	6.7 U	5.0 U	430 U	130 U	1.35 U	136	6.4 U	8.4 U	6.4 U	6.4 U	6.3 U	1.35 U	6.4 U
Bromoform	6.7 U	5.0 U	430 U	130 U	0.867 U	0.867 U	9.8 U	13 U	9.9 U	9.9 U	9.7 U	0.867 U	9.9 U
Carbon disulfide	20	15	430 U	130 U	86.2	62.3	12 U	16 U	12 U	12 U	12 U	0.467 U	12 U
Chlorobenzene	6.7 U	5.0 U	430 U	130 U	768	0.497 U	4.4 U	5.8 U	4.4 U	4.4 U	4.3 U	0.497 U	4.4 U
Chloroethane	36	5.0 U	430 U	970	236	785	10 U	13 U	10 U	10 U	9.9 U	194	10 U
Chloromethane	6.7 U	5.0 U	430 U	150	99.5	61.8	20 U	26 U	20 U	20 U	19 U	91.2	20 U
cis-1,2-Dichloroethene	65	5.0 U	11,000	19,000	10200	12500	3.8 U	5 U	3.8 U	3.8 U	3.7 U	4300	3.8 U
Cyclohexane			1,600	5,300	1100	1490	3.3 U	4.3 U	3.3 U	3.3 U	3.2 U	2510	3.3 U
Dichlorodifluoromethane (Freon12)	650 M	150	430 U	7,900	950	5980	12	1200	180	420	280	12400	4.7 U
Ethyl acetate			870 U	1,200	902	606						503	
Ethylbenzene	6.7 U	6.5	6,400	3,900	8550	4290	4.1 U	5.4 U	4.1 U	4.1 U	4.1 U	5670	4.1 U
Freon 114			430 U	1,600	731	1490	6.6 U	930	37	150	59	7600	6.7 U
iso-Propanol			5,100	1,300	1020	76.7	9.3 U	12 U	9.4 U	9.4 U	9.2 U	400	9.4 U
4-Methyl-2-pentanone (MIBK)	6.7 U	5.0 U	920	1,100	2990	0.971 U	3.9 U	5.1 U	3.9 U	3.9 U	3.8 U	0.971 U	3.9 U
Methyl methacrylate			870 U	260 U	0.76 U	28.8						10.5	
Methylene chloride	55	46	1,100	2,300	1270	0.848 U	33 U	44 U	33 U	33 U	33 U	0.848 U	33 U
Methyl-Tert-Butyl Ether	6.7 U	5.0 U	430 U	130 U	19.6	46.1	3.4 U	4.5 U	3.4 U	3.4 U	3.4 U	30	3.4 U
Naphthalene	130 U	130 U	430 U	130 U	493	56.2						0.898 U	
n-Heptane			8,800	14,000	10900	7510	3.9 U	5.1 U	3.9 U	3.9 U	3.8 U	10400	3.9 U
n-Hexane			1,900	5,800	3120	4800	3.3 U	4.4 U	3.4 U	3.4 U	3.3 U	9490	3.4 U
Propene			430 U	13,000	2660	3880						21500	

Page 2 of 2

TABLE 6LANDFILL GAS VOC DATASudbury Landfill Remedial Investigation Feasibility StudyCity of Walla Walla, Washington

Sample Location	MW-15	MW-16	GW-5	GW-6	GW-05	GW-06	GW-07D	GW-07S	GW-08	GW-09	GW-10	GW-11	GW-12
Sample Date	8/9/2006	8/9/2006	9/12/2009	9/12/2009	5/13/2012	5/9/2012	5/11/2012	5/11/2012	5/11/2012	5/11/2012	5/13/2012	5/11/2012	5/11/2012
EPA TO-15 Analyte	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Styrene	12	14	430 U	230	645	436	4 U	5.3 U	4.1 U	4.1 U	4 U	793	4.1 U
Tetrachloroethene	550	5.0 U	4,000	9,900	3100	17000	14	2700	6.5 U	200	28	9110	6.5 U
Tetrahydrofuran			790	580	2840	592	2.8 U	3.7 U	2.8 U	2.8 U	2.8 U	1900	2.8 U
Toluene	28	23	52,000	26,000	10900	19900	5.6	4.7 U	6	3.6 J	6.6	17200	6.4
trans-1,2-Dichloroethene	6.7 U	5.0 U	430 U	260	197	624	3.8 U	5 U	3.8 U	3.8 U	3.7 U	704	3.8 U
trans-1,3-Dichloropropene	6.7 U	5.0 U	430 U	130 U	1.67 U	1.67 U	4.3 U	5.7 U	4.3 U	4.3 U	4.3 U	1.67 U	4.3 U
Trichloroethene	190	20	2,000	3,200	2190	6870	5.1 U	10	5.1 U	5.1 U	5 U	6250	5.1 U
Trichlorofluoromethane (Freon 11)	6.7 U	16	430 U	160	254	544	5.3 U	7 U	14	16	31	2930	5.4 U
Vinyl acetate	6.7 U	5.0 U	4,300 U	1,300 U	54.1 J	88.4 J						150 J	
Vinyl chloride	220	5.0 U	430 U	2,200	830	1660	2.4 U	3.2 U	2.4 U	2.4 U	2.4 U	3560	2.4 U
Xylene (meta & para)	24	23	15,000	8,200	8390	5400	6.3	5.4 U	5.3	4.1 U	4.3	5400	5
Xylene (ortho)	8.0	6.1	3,300	2,400	4920	3080	4.1 U	5.4 U	4.1 U	4.1 U	4.1 U	3050	4.1 U

Notes:

Only detected analytes in one or more of the samples are reported on table.

U = Compound was analyzed for, but not detected above the laboratory reporting limit.

J = analyte detected, numeric result is considered an estimate.

-- = No result for particular analyte.

City of Walla Walla, Washington

	Nitrate (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Iron (mg/L)	Manganese (mg/L)	Ammonia (total as nitrogen) (mg/L)	Total Organic Carbon (mg/L)	Total Dissolved Solids (mg/L)	1,1-Dichloroethane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (Freon 12) (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (Freon 11) (µg/L)	Vinyl chloride (µg/L)	Vinyl chloride by SIM (µg/L)
MW-03			-	1	-																			
6/8/2012	9.8	105	17.5	138	49.5	7.1	30.9	243	0.02 U	0.005 U	0.05 U	0.51	633	0.5 U	0.5 U	0.55	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/11/2012	10.5	110	16.8	138	50.1	7.19	32.7	300	0.02 U	0.005 U	0.05 U	0.5 U	745	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.89	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/14/2012	10.1	103	16.2	135	45.1	6.79	31.8	253	0.02 U	0.005 U	0.05 U	0.55	783	0.5 U	0.5 U	0.66	0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/19/2012	10.1	105	16.7	144	48	6.89	35.1	253	0.01 U	0.002 U	0.05 U	0.57	667	0.5 U	0.5 U	0.51	0.5 U	0.5 U	0.86	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/25/2012	10.0	108	16.7	137	48.5	7.01	32.5	249	0.02 U	0.005 U	0.05 U	0.53	643	0.5 U	0.5 U	0.56	0.5 U	0.5 U	0.94	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/27/2012	11.8	103	17	136	48.5	7.2	32.5	242	0.02 U	0.005 U	0.05 U	0.5 U	572	0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.95	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/8/2013	10.2	106	17.3	136	48.5	7.09	31.9	252	0.02 U	0.005 U	0.05 U	0.69	613	0.5 U	0.5 U	0.58	0.5 U	0.5 U	0.89	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/11/2013	9.8	106	17.7	130	49.4	7.25	30.7	258	0.02 U	0.005 U	0.05 U	0.57	553	0.5 U	0.5 U	0.68	0.5 U	0.5 U	0.92	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
MW-05		-	-	-	•	-	-								T					T				
6/5/2012														0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.77	0.5 U	1.7	0.5 U	0.5 U	0.02 U
7/11/2012														0.5 U	0.5 U	0.54	0.5 U	0.5 U	0.65	0.5 U	1.7	0.5 U	0.5 U	0.02 U
8/15/2012														0.5 U	0.5 U	0.67	0.5 U	0.5 U	0.71	0.5 U	2.0	0.5 U	0.5 U	0.02 U
8/15/2012 (Dup)														0.5 U	0.5 U	0.7	0.5 U	0.5 U	0.66	0.5 U	2.1	0.5 U	0.5 U	0.02 U
9/18/2012														0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.64	0.5 U	1.8	0.5 U	0.5 U	0.02 U
10/22/2012														0.5 U	0.5 U	0.68	0.5 U	0.5 U	0.79	0.5 U	1.9	0.5 U	0.5 U	0.02 U
11/27/2012														0.5 U	0.5 U	0.74	0.5 U	0.5 U	0.76	0.5 U	1.9	0.5 U	0.5 U	0.02 U
1/8/2013														0.5 U	0.5 U	0.6	0.5 U	0.5 U	0.63	0.5 U	1.7	0.5 U	0.5 U	0.02 U
2/13/2013														0.5 U	0.5 U	0.71	0.5 U	0.5 U	0.64	0.5 U	1.9	0.5 U	0.5 U	0.02 U
MW-09		1	1	1	1	1	-														· · 1		[
6/5/2012														0.5 U	0.5 U	0.81	0.5 U	0.5 U	0.54	0.5 U	1.4	0.5 U	0.5 U	0.02 U
7/10/2012														0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.62	0.5 U	1.7	0.5 U	0.5 U	0.02 U
8/15/2012														0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.64	0.5 U	1.7	0.5 U	0.5 U	0.02 U
9/18/2012														0.5 U	0.5 U	0.83	0.5 U	0.5 U	0.54	0.5 U	1.4	0.5 U	0.5 U	0.02 U
10/22/2012														0.5 U	0.5 U	0.99	0.5 U	0.5 U	0.62	0.5 U	1.6	0.5 U	0.5 U	0.02 U
11/27/2012														0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.54	0.5 U	1.7	0.5 U	0.5 U	0.02 U
1/8/2013														0.5 U	0.5 U	0.82	0.5 U	0.5 U	0.52	0.5 U	1.3	0.5 U	0.5 U	0.02 U
2/13/2013														0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.57	0.5 U	1.6	0.5 U	0.5 U	0.02 U
MW-10		1	1	1	1	1	I	I	I	I														0.00.11
6/5/2012														0.5 U	0.5 U	1.6	0.5 U	0.5 U	0.68	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/10/2012														0.5 U	0.5 U	2.1	0.5 U	0.5 U	0.72	0.5 U	0.5 0	0.5 0	0.5 0	0.02 U
8/15/2012														0.5 U	0.5 U	2.0	0.5 U	0.5 U	0.72	0.5 U	0.5 0	0.5 0	0.5 0	0.02 U
9/18/2012														0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.59	0.5 U	0.5 0	0.5 0	0.5 0	0.02 U
10/22/2012														0.5 0	0.5 0	2.0	0.5 0	0.5 0	0.72	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0
1/2//2012														0.5 0	0.5 0	2.1 1 7	0.5 0	0.5 0	0.00	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0
1/8/2013														0.5 0	0.5 0	1.7	0.5 0	0.5 0	0.59	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0
2/13/2013														0.5 0	0.5 0	2.1	0.5 0	0.5 0	0.71	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0

City of Walla Walla, Washington

	Nitrate (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Iron (mg/L)	Manganese (mg/L)	Ammonia (total as nitrogen) (mg/L)	Total Organic Carbon (mg/L)	Total Dissolved Solids (mg/L)	1,1-Dichloroethane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (Freon 12) (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (Freon 11) (µg/L)	Vinyl chloride (µg/L)	Vinyl chloride by SIM (µg/L)
MW-11					•				•											•				
6/6/2012	8.0	89.4	36.7	85	35.4	8.01	27.6	267	0.02 U	0.005 U	0.051	0.66	583	0.5 U	0.5 U	1.1	0.5 U	0.56	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/9/2012	8.0	88.6	36.3	85.5	34.5	7.7	27.8	271	0.02 U	0.005 U	0.05 U	0.6	493	0.5 U	0.5 U	1.1	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/14/2012	7.9	85.5	35.2	85.1	31.6	7.38	27.5	271	0.02 U	0.005 U	0.05 U	0.63	577	0.5 U	0.5 U	1.4	0.5 U	0.55	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/18/2012	8.0	85	35.9	88	34.4	7.86	30.5	268	0.02 U	0.005 U	0.05 U	0.63	583	0.5 U	0.5 U	1.2	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/23/2012	8.0	87.4	36.1	83.9	34.7	7.89	28.1	273	0.02 U	0.005 U	0.05 U	0.56	572	0.5 U	0.5 U	1.4	0.5 U	0.51	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/28/2012	9.7	89.2	37	87.4	35.6	8.04	27.8	263	0.02 U	0.005 U	0.05 U	0.5 U	580	0.5 U	0.5 U	1.4	0.5 U	0.56	1.5	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/9/2013	8.0	87.8	34.6	83.7	33	7.43	28.1	275	0.02 U	0.005 U	0.05 U	0.64	548	0.5 U	0.5 U	1.2	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/13/2013	10.1	89.6	37.4	86.2	35.3	8.13	30.2	273	0.02 U	0.005 U	0.05 U	0.53	544	0.5 U	0.5 U	1.4	0.5 U	0.63	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
MW-12b					-	-																		
6/8/2012	9.6	108	30	139	48.1	7.46	32.2	276	0.093	0.005 U	0.05 U	0.56	720	0.5 U	0.5 U	0.93	0.5 U	0.5 U	0.84	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/12/2012	9.9	108	29.4	138	47.6	7.44	33.9	311	0.02 U	0.005 U	0.05 U	0.5 U	770	0.5 U	0.5 U	0.79	0.5 U	0.5 U	0.74	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/13/2012	9.4	103	28.3	135	44.7	7.19	32.6	282	0.02 U	0.005 U	0.05 U	0.58	620	0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.79	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/17/2012	9.4 J	102	29.1	140	46.7	7.48	36.2	271	0.0307	0.005 U	0.05 U	0.63	699	0.5 U	0.5 U	0.83	0.5 U	0.5 U	0.68	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/22/2012	9.4	103	28.6	133	46.6	7.66	32.7	278	0.02 U	0.005 U	0.05 U	0.7	664	0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.82	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/27/2012	11.3	106	29.9	133	48.7	7.76	32.6	274	0.02 U	0.005 U	0.05 U	0.5 U	556	0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.77	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/9/2013	9.5	109	29.3	136	45.2	7.15	34.9	279	0.02 U	0.005 U	0.05 U	0.68	680	0.5 U	0.5 U	0.91	0.5 U	0.5 U	0.74	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/12/2013	11.6	107	30.7	133	48.9	7.9	36.4	284	0.02 U	0.005 U	0.05 U	0.57	612	0.5 U	0.5 U	0.96	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
MW-14b	0.0	404	47.0	4.40	40	7.44	07.4	000	0.00.11	0.0450	0.05.11	0.05	744	0.5.11	0.5.11	4.4	0.5.11	0.50	0.07	0.5.11	0.5.11	0.5.11	0.5.11	0.00.11
6/7/2012	8.3	121	17.3	143	48	7.41	37.4	280	0.02 U	0.0453	0.05 U	0.65	/11	0.5 U	0.5 U	1.1	0.5 U	0.56	0.67	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/11/2012	9.0	122	17.4	147	49.2	7.44	39.9	318	0.02 0	0.0459	0.05 U	0.5 0	723	0.5 0	0.5 0	0.78	0.5 U	0.56	0.68	0.5 U	0.5 0	0.5 0	0.5 0	0.02 U
8/13/2012	8.7	117	17.1	141	45.9	7.2	37.3	285	0.02 0	0.0165	0.05 U	0.54	680	0.5 0	0.5 0	1.1	0.5 U	0.61	0.85	0.5 0	0.5 U	0.5 0	0.5 U	0.02 U
9/17/2012	0.7 J	110	17.4	147	40.7	7.00	20.4	200	0.02 0	0.0054	0.05 U	0.50	600	0.5 0	0.5 0	0.00	0.5 U	0.5 0	0.72	0.5 0	0.5 0	0.5 0	0.5 0	0.02 U
10/23/2012	0.7	119	10	141	49.0 50.2	7.02	30.4 49.7	209	0.02 0	0.005 U	0.05 U	0.51	675	0.5 0	0.5 0	0.09	0.5 0	0.01	0.92	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0
11/28/2012	0.0	122	17.0	142	50.5	7.00	40.7	203	0.02 0	0.005 U	0.05 U	0.57	670	0.5 0	0.5 0	0.90	0.5 0	0.67	0.91	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0
1/9/2013	0.0	121	17.2	142	40	7.62	40.1	293	0.02 0	0.005 U	0.05 U	0.57	500	0.5 0	0.5 0	0.04	0.5 0	0.34	1.0	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0
2/12/2013	10.9	123	18.5	141	49.J	7.02	40.1	290	0.02 0	0.005 U	0.05 U	0.59	611	0.5 0	0.5 0	1.0	0.5 0	0.71	1.0	0.5 0	0.5 U	0.5 U	0.5 0	0.02 0
2/12/2013 (Dup)	10.0	122	10.0	141	50.0	1.15	40.0	201	0.02 0	0.000 0	0.00 0	0.00	011	0.0 0	0.0 0	1.0	0.0 0	0.72	1.1	0.0 0	0.0 0	0.0 0	0.0 0	0.02 0
6/6/2012	6.9	152	54.1	126	48.5	83	37.9	491	0.02.11	0.0363	0.05.11	1 38	988	3.1	0.5.11	0511	9.1	2.8	5	0.59	1.6	0.63	0.67	0.78
6/6/2012 (Dup)	6.9	151	52.3	127	48.5	8.23	38	484	0.02 U	0.0361	0.05 U	1.29	953	3	0.5 U	0.5 U	9	2.9	4.8	0.5 U	1.6	0.65	0.62	0.79
7/12/2012	6.2	160	69.7	117	48.5	8.32	41.3	620	0.02 U	0.046	0.05 U	1.15	917	3.8	0.5 U	0.5 U	12	2.2	5.5	0.5 U	1.9	0.5 U	0.92	1.0
8/13/2012	6.6	150	61.1	121	44.5	7.94	38.7	507	0.02 U	0.0428	0.05 U	1.22	845	3.7	0.61	0.5 U	11	2.7	5.1	0.5 U	2.0	0.63	0.7	0.7
9/19/2012	6.1	162	68.2	120	48.1	8.19	44.1	553	0.01 U	0.0496	0.05 U	1.25	884	3.9	0.5 U	0.5 U	12	1.9	5.3	0.5 U	1.8	0.5 U	0.87	1.2
10/23/2012	6.2	157	66.5	117	49.9	8.66	40.8	539	0.02 U	0.0523	0.05 U	1.12	879	4	0.5 U	0.5 U	13	2.2	5.7	0.5 U	2.0	0.5 U	0.88	1.1
11/28/2012	8.4	155	60.5	121	48.7	8.33	39.4	485	0.02 U	0.0474	0.05 U	1.06	857	4.1	0.5 U	0.5 U	12	2.7	5.5	0.5 U	2.2	0.58	0.82	0.76
11/28/2012 (Dup)	8.1	157	64.5	123	49.6	8.52	38.6	505	0.02 U	0.0459	0.05 U	1.13	856	4.1	0.58	0.5 U	12	2.8	5.5	0.5 U	2.1	0.68	0.8	0.94
1/8/2013	6.2	162	66.7	117	48.6	8.33	40.5	544	0.02 U	0.0533	0.05 U	1.38	833	3.9	0.5 U	0.5 U	13	2.9	5.4	0.5 U	1.9	0.5 U	0.84	0.87
2/12/2013	7.8	163	69.9	119	50.4	8.83	44.3	533	0.02 U	0.0486	0.05 U	1.3	859	3.9	0.5 U	0.5 U	14	3.4	6.8	0.5 U	2.2	0.5 U	0.78	0.68

City of Walla Walla, Washington

	Nitrate (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Iron (mg/L)	Manganese (mg/L)	Ammonia (total as nitrogen) (mg/L)	Total Organic Carbon (mg/L)	Total Dissolved Solids (mg/L)	1,1-Dichloroethane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (Freon 12) (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (Freon 11) (µg/L)	Vinyl chloride (µg/L)	Vinyl chloride by SIM (µg/L)
MW-15D	40.7	445	40.0	400	50	7.50	20.5	004	0.00.11	0.0450	0.000	0.04	507	0.5.11	0.5.11	0.00	0.5.11	0.5.11	4.4	0.5.11	0.54	0.5.11	0.5.11	0.00.11
6/8/2012	10.7	115	19.6	136	52	7.56	30.5	281	0.02 U	0.0158	0.066	0.61	597	0.5 U	0.5 U	0.68	0.5 U	0.5 U	1.1	0.5 U	0.51	0.5 U	0.5 U	0.02 U
7/11/2012	10.5	108	18.4	130	00.0 47.1	7.42	30.1	288	0.02 0	0.0064	0.05 U	0.5 0	620	0.5 U	0.5 U	0.54	0.5 U	0.5 U	0.89	0.5 U	0.5 0	0.5 U	0.5 U	0.02 0
0/10/2012	10.3	117	10.4	138	50.3	7.00	33.3	289	0.02 0	0.003.0	0.05 U	0.52	628	0.5 U	0.5 0	0.7	0.5 U	0.5 0	0.94	0.5 0	0.53	0.5 U	0.5 0	0.02 U
9/19/2012 10/25/2012	10.7	118	18.7	133	50.9	7.33	31	283	0.0107	0.002 U	0.05 U	0.5 U	651	0.5 U	0.5 U	0.02	0.5 U	0.5 U	0.91	0.5 U	0.55	0.5 U	0.5 U	0.02 U
11/27/2012	12.4	113	18.8	131	50.2	7.64	30.8	283	0.02 U	0.005 U	0.05 U	0.55	691	0.5 U	0.5 U	0.73	0.5 U	0.5 U	1.1	0.5 U	0.69	0.5 U	0.5 U	0.02 U
1/8/2013	10.8	113	18.4	131	48.7	7.15	30.6	299	0.02 U	0.005 U	0.05 U	0.78	645	0.5 U	0.5 U	0.62	0.5 U	0.5 U	0.87	0.5 U	0.52	0.5 U	0.5 U	0.02 U
2/11/2013	10.4	113	19.8	124	51.5	7.68	29.4	326	0.02 U	0.005 U	0.05 U	0.64	621	0.5 U	0.5 U	0.75	0.5 U	0.5 U	1.0	0.5 U	0.58	0.5 U	0.5 U	0.02 U
MW-16									0.02 0	0.000 0	0.00 0	0.01		0.0 0	0.0 0		0.0 0	0.0 0		0.0 0	0.00	0.0 0	0.0 0	0.02 0
6/8/2012	8.7	120	22.5	145	51.3	7.33	34.8	289	0.02 U	0.005 U	0.05 U	0.5 U	712	0.5 U	0.5 U	0.62	0.5 U	0.62	0.82	0.5 U	0.5 U	0.84	0.5 U	0.02 U
7/12/2012	8.9	116	20.6	146	48.3	6.87	36.1	312	0.02 U	0.005 U	0.05 U	0.5 U	771	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.68	0.5 U	0.5 U	0.69	0.5 U	0.02 U
8/14/2012	8.4	111	19.9	140	44.3	6.64	36.1	274	0.02 U	0.005 U	0.05 U	0.56	764	0.5 U	0.5 U	0.61	0.5 U	0.58	0.73	0.5 U	0.5 U	0.96	0.5 U	0.02 U
9/17/2012	8.4 J	110	20.4	146	47.5	6.95	37.7	278	0.02 U	0.005 U	0.05 U	0.69	687	0.5 U	0.5 U	0.54	0.5 U	0.5 U	0.64	0.5 U	0.5 U	0.64	0.5 U	0.02 U
10/22/2012	8.5	113	20.9	142	49	7.25	35.7	280	0.02 U	0.005 U	0.05 U	0.57	687	0.5 U	0.5 U	0.59	0.5 U	0.5	0.68	0.5 U	0.5 U	0.68	0.5 U	0.02 U
11/27/2012	10.3	115	20.5	145	48.6	7.26	35.7	275	0.02 U	0.005 U	0.05 U	0.61	753	0.5 U	0.5 U	0.61	0.5 U	0.69	0.71	0.5 U	0.5 U	0.94	0.5 U	0.02 U
1/9/2013	8.7	117	21	143	48.8	7.09	35.3	282	0.02 U	0.005 U	0.098	0.53	648	0.5 U	0.5 U	0.57	0.5 U	0.54	0.63	0.5 U	0.5 U	0.75	0.5 U	0.02 U
2/13/2013	8.4	116	21.4	138	50.6	7.28	34.2	282	0.02 U	0.005 U	0.05 U	0.5 U	608	0.5 U	0.5 U	0.7	0.5 U	0.58	0.66	0.5 U	0.5 U	0.94	0.5 U	0.02 U
MW-17			1	•	1	1															•	•		
6/7/2012	10.1	113	29.1	141	47.7	8	29	299	0.02 U	0.0649	0.05 U	0.75	669	0.5 U	0.5 U	0.66	0.5 U	0.5 U	0.77	0.5 U	0.5 U	0.63	0.5 U	0.02 U
7/9/2012	10.4	114	30.3	139	49.8	8.07	29.8	297	0.0282	0.0271	0.05 U	0.67	698	0.5 U	0.5 U	0.5	0.5 U	0.5 U	1.3	0.5 U	0.5 U	0.68	0.5 U	0.02 U
8/13/2012	9.9	107	28.6	136	45.6	7.62	28.9	292	0.02 U	0.0146	0.05 U	0.66	625	0.5 U	0.5 U	0.66	0.5 U	0.5 U	1.8	0.5 U	0.58	1.0	0.5 U	0.02 U
9/17/2012	9.9	107	28.8	142	47.2	7.83	31.2	297	0.02 U	0.0117	0.05 U	0.73	676	0.5 U	0.5 U	0.54	0.5 U	0.5 U	1.8	0.5 U	0.57	0.66	0.5 U	0.02 U
10/22/2012	10.0	111	29.6	136	48.5	8.07	29.5	299	0.02 U	0.0087	0.05 U	0.58	700	0.5 U	0.5 U	0.66	0.5 U	0.5 U	2.5	0.5 U	0.7	0.72	0.5 U	0.02 U
11/26/2012	11.9	112	29.1	135	48.3	7.99	29	298	0.02 U	0.0055	0.05 U	0.79	657	0.5 U	0.5 U	0.66	0.5 U	0.5 U	2.6	0.5 U	0.63	0.73	0.5 U	0.02 U
1/9/2013	10.1	113	29.5	135	47.9	7.87	29.4	306	0.02 U	0.0058	0.05 U	0.67	661	0.5 U	0.5 U	0.62	0.5 U	0.5 U	2.4	0.5 U	0.59	0.66	0.5 U	0.02 U
2/13/2013	10.0	112	30.1	131	49.7	8.05	28.8	306	0.02 U	0.0068	0.05 U	0.78	623	0.5 U	0.5 U	0.73	0.5 U	0.5 U	2.4	0.5 U	0.64	0.85	0.5 U	0.02 U
MW-18			1	-	1	1	-									Т								
6/7/2012	9.5	121	28.4	157	51.2	8.17	32.8	315	0.02 U	0.0175	0.05 U	0.59	764	0.5 U	0.5 U	0.68	0.5 U	0.58	1.0	0.5 U	0.5 U	0.93	0.5 U	0.02 U
7/11/2012	9.7	123	29.1	153	52.4	8.16	33.2	337	0.02 U	0.0094	0.05 U	0.5 U	837	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.97	0.5 U	0.5 U	0.89	0.5 U	0.02 U
8/13/2012	9.4	119	28.5	152	49.2	7.87	32.5	321	0.02 U	0.005 U	0.05 U	0.58	740	0.5 U	0.5 U	0.65	0.5 U	0.61	1.1	0.5 U	0.5 U	1.2	0.5 U	0.02 U
8/13/2012 (Dup)	9.3	117	29.3	151	50.7	8.07	32.7	316	0.02 U	0.005 U	0.05 U	0.57	647	0.5 U	0.5 U	0.67	0.5 U	0.63	1.1	0.5 U	0.5 U	1.2	0.5 U	0.02 U
9/19/2012	9.6	123	28.7	161	51.4	8.01	36.6	317	0.01 U	0.002 U	0.05 U	0.5 U	6/1 755	0.5 U	0.5 U	0.58	0.5 U	0.5 U	0.99	0.5 U	0.5 U	0.82	0.5 U	0.02 U
10/22/2012	9.5	120	29.5	152	53.2	ö.47	33.3 22.5	310	0.02 U	0.005 U	0.05 U	0.59	755	0.5 U	0.5 U	0.64	0.5 U	0.54	1.2	0.5 U	0.5 U	0.96	0.5 U	0.02 U
11/26/2012	11.2	123	29.7	152	54.2	8.49 8.20	33.5 22.0	312	0.02 U	0.005 U	0.05 U	0.63	113	0.5 U	0.5 U	0.64	0.5 U	0.6	1.2	0.5 U	0.5 U	1.1	0.5 U	0.02 U
11/26/2012 (Dup)	11.3	121	29.1	151	53.2	0.29	33.0 22.4	310	0.02 U	0.005 U	0.05 0	0.64	704	0.5 U	0.5 0	0.64	0.5 U	0.00	1.2	0.5 0	0.5 0	1.1	0.5 U	0.02 U
1/9/2013	9.7	120	29.0	102	54.1	0.20	33.4	320	0.02 0	0.005 U	0.077	0.60	704	0.5 0	0.5 0	0.57	0.5 0	0.51	0.99	0.5 0	0.5 0	0.93	0.5 0	0.02 0
2/12/2013	9.4	120	30.0	140	54.1	0.39	JZ.J	330	0.02 0	0.005 0	0.05 0	0.02	104	0.5 U	0.5 U	0.7	0.5 U	0.00	1.1	0.5 U	0.5 U	1.1	0.5 U	0.02 0

City of Walla Walla, Washington

	Nitrate (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Iron (mg/L)	Manganese (mg/L)	Ammonia (total as nitrogen) (mg/L)	Total Organic Carbon (mg/L)	Total Dissolved Solids (mg/L)	1,1-Dichloroethane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (Freon 12) (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (Freon 11) (µg/L)	Vinyl chloride (µg/L)	Vinyl chloride by SIM (µg/L)
MW-19												I				0.50	-		1.0					
6/6/2012	9.1	128	21.3	129	53.4	7.71	39.4	332	0.0225	0.0098	0.05 U	0.71	745	0.92	0.5 U	0.52	9	1.4	1.8	0.5 U	1.3	0.5 U	0.5 U	0.02 U
7/11/2012	10.0	127	21.1	138	52.5	7.39	43.2	387	0.02 U	0.005 U	0.05 U	0.5 U	790	0.94	0.5 U	0.5	9.5	1.2	1.6	0.5 U	1.3	0.5 U	0.5 U	0.02 U
7/11/2012 (Dup)	9.8	126	21.2	134	52.9	7.39	42.3	375	0.02 U	0.005 U	0.05 U	0.51	759	0.91	0.5 U	0.5 U	9.3	1.2	1.6	0.5 U	1.2	0.5 U	0.5 U	0.02 U
8/15/2012	9.3	108	24.8	128	41	7.23	40.3	326	0.02 0	0.005 0	0.05 U	0.67	732	1.1	0.5 U	0.64	9.7	1.3	1.8	0.5 U	1.4	0.5 U	0.5 0	0.02 U
9/19/2012	9.2	121	21	132	49.0	7.40 6.76	43.3	320	0.0209	0.0139	0.05 U	0.54	724	0.9	0.5 0	0.5 0	7.0	0.01	1.2	0.5 0	1.1	0.5 U	0.5 0	0.02 U
10/25/2012	9.4	132	19.1	129	40.2	6.74	41.1	320	0.02 0	0.005 U	0.05 U	0.5 0	700	0.99	0.5 0	0.65	9.0	1.1	1.0	0.5 0	1.4	0.5 U	0.5 0	0.02 U
10/25/2012 (Dup)	9.4	125	19.1 21.4	130	40.1 52.9	0.74	41.1	329	0.02 0	0.005 U	0.05 U	0.5 0	700	0.90	0.5 0	0.05	9.3	1.1	1.0	0.5 0	1.4	0.5 0	0.5 0	0.02 0
1/20/2012	9.4	125	21.4	130	50.8	7.55	30.0	320	0.02 0	0.005 U	0.05 U	0.00	700	0.07	0.5 0	0.04	9.0	1.4	1.9	0.5 0	1.4	0.5 U	0.5 0	0.02 0
1/8/2013	9.4	120	21.1	120	52.1	7.44	40.5	339	0.02.0	0.005 U	0.054	0.72	659	0.94	0.5 0	0.00	8.8	1.2	1.7	0.5 U	1.0	0.5 U	0.5 U	0.02.0
2/11/2013	9.4	120	22.4	125	53.7	7.74	39.3	342	0.02 U	0.005 U	0.05 U	0.00	672	1	0.5 U	0.65	8.8	1.2	1.7	0.5 U	1.3	0.5 U	0.5 U	0.02.U
MW-20	0.1	121		120	00.1	7.7.1	00.0	012	0.02 0	0.000 0	0.00 0	0.10	012	· · ·	0.0 0	0.00	0.0		1.0	0.0 0	1.0	0.0 0	0.0 0	0.02 0
6/8/2012	9.7	124	28	150	53.1	8.25	32.5	299	0.02 U	0.255	0.05 U	0.71	816	0.5 U	0.5 U	0.59	0.5 U	0.62	1.2	0.5 U	0.5 U	0.85	0.5 U	0.02 U
7/12/2012	10.3	122	27.1	152	51.5	7.98	33.9	348	0.02 U	0.111	0.05 U	0.5 U	822	0.5 U	0.5 U	0.5 U	0.59	0.51	1.0	0.5 U	0.5 U	0.68	0.5 U	0.02 U
8/15/2012	10.0	124	21.6	149	50.1	7.45	33	305	0.02 U	0.005 U	0.05 U	0.62	754	0.5 U	0.5 U	0.69	0.55	0.61	1.2	0.5 U	0.51	1.1	0.5 U	0.02 U
9/19/2012	10.3	121	26.8	157	51.1	7.84	36.2	314	0.01 U	0.0082	0.05 U	0.5 U	607	0.5 U	0.5 U	0.52	0.51	0.5 U	1.1	0.5 U	0.50 U	0.66	0.5 U	0.02 U
10/22/2012	10.0	123	27.3	145	52.9	8.14	33.4	315	0.02 U	0.0078	0.05 U	0.59	708	0.5 U	0.5 U	0.63	0.59	0.55	1.2	0.5 U	0.50 U	0.73	0.5 U	0.02 U
11/26/2012	12.2	122	27.2	148	52.9	8.12	33.3	311	0.02 U	0.0058	0.05 U	0.83	780	0.5 U	0.5 U	0.61	0.59	0.59	1.2	0.5 U	0.50 U	0.72	0.5 U	0.02 U
1/8/2013	10.3	122	27	148	51.3	7.92	33.3	318	0.02 U	0.005 U	0.05 U	0.66	741	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.92	0.5 U	0.50 U	0.66	0.5 U	0.02 U
2/11/2013	10.0	123	28	141	52.8	8.23	32.3	325	0.02 U	0.005 U	0.05 U	0.68	683	0.5 U	0.5 U	0.65	0.53	0.5 U	1.2	0.5 U	0.50 U	0.83	0.5 U	0.02 U
MW-21D																								
6/6/2012	10.4	119	19.2	150	53.9	7.73	31.2	295	0.02 U	0.0081	0.05 U	0.71	704	0.5 U	0.5 U	0.54	0.5 U	0.5 U	0.89	0.5 U	0.5 U	0.53	0.5 U	0.02 U
7/10/2012	10.7	122	19.3	151	54.3	7.73	31.7	297	0.02 U	0.005 U	0.05 U	0.77	655	0.5 U	0.5 U	0.55	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/14/2012	10.3	115	19.4	147	50	7.51	30.9	291	0.02 U	0.005 U	0.05 U	0.51	721	0.5 U	0.5 U	0.89	0.5 U	0.5 U	1.2	0.5 U	0.54	0.76	0.5 U	0.02 U
9/18/2012	10.4	114	18.9	155	52.1	7.53	34.2	294	0.02 U	0.005 U	0.05 U	0.69	713	0.5 U	0.5 U	0.58	0.5 U	0.5 U	0.92	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/24/2012	10.4	126	17.7	150	50.5	7.13	31.8	294	0.02 U	0.005 U	0.05 U	0.5 U	732	0.5 U	0.5 U	0.7	0.5 U	0.5 U	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/26/2012	12.3	118	19.4	149	53.6	7.8	31.2	299	0.02 U	0.005 U	0.05 U	0.65	744	0.5 U	0.5 U	0.68	0.5 U	0.5 U	0.94	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/8/2013	10.4	119	19.3	147	52.6	7.56	30.9	304	0.02 U	0.005 U	0.05 U	0.65	684	0.5 U	0.5 U	0.64	0.5 U	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/12/2013	10.3	120	20.1	144	54.1	7.91	30.7	308	0.02 U	0.005 U	0.05 U	0.64	608	0.5 U	0.5 U	0.73	0.5 U	0.5 U	0.94	0.5 U	0.5 U	0.56	0.5 U	0.02 U
MW-21S					(0.0					a (=a														0.00.11
6/6/2012	9.1	116	25.4	141	49.3	7.93	32.5	300	0.02 U	0.159	0.05 U	0.85	693	0.5 U	0.5 U	0.5 U	0.5 U	0.6	0.84	0.5 U	0.5 U	0.93	0.5 U	0.02 U
//10/2012	9.9	118	25.3	143	49.6	7.73	33.9	308	0.02 U	0.106	0.05 U	0.55	621	0.5 U	0.5 U	0.51	0.5 U	0.51	8.0	0.5 U	0.5 U	0.84	0.5 U	0.02 U
ö/14/2012	9.0	114	20.1	139	40.0	7.00 7.65	32.4 25 7	297	0.02 U	0.070	0.05 U	0.64	710	0.5 0	0.5 0	0.03	0.5 U	0.64	0.88	0.5 0	0.5 0	0.76	0.5 0	0.02 U
3/10/2012	9.0 Q Q	102	23.1	140	40.2	7.00	33.7	291	0.02 0	0.002	0.05 0	0.04	675	0.5 0	0.5 0	0.0	0.5 0	0.5 0	0.00	0.5 0	0.5 0	0.70	0.5 0	0.02 0
10/24/2012	3.3 11 8	116	25.7	139	49.2	7.87	32.4	302	0.02 0	0.0229	0.05 U	0.5.0	696	0.5 0	0.5 0	0.05	0.5 0	0.53	0.91	0.5 0	0.50	0.84	0.5 0	0.02.0
1/8/2013	10.0	119	25	137	47.8	7.47	31.8	303	0.02 U	0.016	0.05 U	0.62	701	0.5 U	0.5 U	0.54	0.5 U	0.5 U	0.8	0.5 U	0.5 U	0.84	0.5 U	0.02 U
2/12/2013	9.9	118	26.3	135	49.6	7.85	31.9	308	0.02 U	0.0105	0.05 U	0.63	613	0.5 U	0.5 U	0.68	0.5 U	0.54	0.92	0.5 U	0.5 U	1.0	0.5 U	0.02 U
_,, _0.0													•											

City of Walla Walla, Washington

	Nitrate (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Iron (mg/L)	Manganese (mg/L)	Ammonia (total as nitrogen) (mg/L)	Total Organic Carbon (mg/L)	Total Dissolved Solids (mg/L)	1,1-Dichloroethane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (Freon 12) (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (Freon 11) (µg/L)	Vinyl chloride (µg/L)	Vinyl chloride by SIM (µg/L)
MW-22D				T .==	I = . =																			
6/6/2012	10.0	121	19.2	157	54.5	7.98	32.4	290	0.02 U	0.236	0.05 U	0.73	697	0.5 U	0.5 U	0.55	0.5 U	0.5 U	0.83	0.5 U	0.5 U	0.64	0.5 U	0.02 U
7/10/2012	10.4	120	18.8	155	53.9	7.64	32.9	305	0.02 U	0.141	0.05 U	0.53	/14	0.5 U	0.5 U	0.56	0.5 U	0.5 U	0.87	0.5 U	0.5 U	0.57	0.5 U	0.02 U
8/14/2012	10.1	117	18.4	154	49.3	7.39	32.5	300	0.02 0	0.101	0.05 U	0.5	/08 657	0.5 0	0.5 0	0.91	0.5 0	0.5 0	0.79	0.5 0	0.54	0.89	0.5 U	0.02 U
9/20/2012	10.3	124	19.2	162	52.9	7.00	30.9	297	0.01 0	0.105	0.05 0	0.5 U	725	0.5 U	0.5 U	0.00	0.5 0	0.5 U	0.78	0.5 U	0.5 U	0.5 0	0.5 U	0.02 0
10/24/2012	10.2	120	10.1	152	54.8	7.42	32.5	292	0.02 0	0.0393	0.00	0.5 0	695	0.5 0	0.5 0	0.04	0.5 0	0.5 0	1.0	0.5 0	0.5 0	0.50	0.5 0	0.02 0
1/20/2012	10.4	124	18.8	154	53	7.54	32.0	205	0.02 0	0.0115	0.05 U	0.04	728	0.5 0	0.5 0	0.00	0.5 0	0.5 0	0.78	0.5 0	0.5 0	0.55	0.5 0	0.02 0
2/12/2013	10.4 3	124	10.0	1/18	54.6	7.83	31.9	313	0.02 0	0.0113	0.05 U	0.64	671	0.5 0	0.5 0	0.34	0.5 0	0.5 0	0.76	0.5 0	0.5 0	0.5 0	0.5 0	0.02 0
2/12/2013 MW-22S	10.1	121	10.7	140	54.0	1.00	01.0	010	0.02 0	0.0005	0.00 0	0.04	0/1	0.0 0	0.0 0	0.74	0.0 0	0.0 0	0.00	0.0 0	0.0 0	0.07	0.0 0	0.02 0
6/6/2012	92	122	25.5	156	52.8	8.08	33.8	309	0.02.11	0.0155	0.05.11	0.74	779	0.5 U	05.0	0.57	0.5 U	0.68	0.97	05.0	0511	0.98	0511	0.02.11
7/10/2012	9.4	123	25.8	154	53.4	7.97	34.5	314	0.02 U	0.0104	0.05 U	0.74	686	0.5 U	0.5 U	0.58	0.5 U	0.59	0.88	0.5 U	0.5 U	0.87	0.5 U	0.02 U
8/14/2012	9.1	118	25.4	153	49.1	7.8	33.6	309	0.02 U	0.005 U	0.05 U	0.55	744	0.5 U	0.5 U	0.7	0.5 U	0.66	0.89	0.5 U	0.5 U	1.2	0.5 U	0.02 U
9/20/2012	9.3	122	24.6	162	50.3	7.48	37.4	309	0.01 U	0.003	0.05 U	0.5 U	660	0.5 U	0.5 U	0.57	0.5 U	0.5	0.84	0.5 U	0.5 U	0.74	0.5 U	0.02 U
10/24/2012	9.2	129	25.6	153	54.1	8.08	34.3	300	0.02 U	0.005 U	0.052	0.5 U	727	0.5 U	0.5 U	0.7	0.5 U	0.56	1.0	0.5 U	0.5 U	0.86	0.5 U	0.02 U
11/26/2012	10.9	122	25.9	153	51	8.61	33.9	308	0.02 U	0.005 U	0.05 U	0.65	748	0.5 U	0.5 U	0.67	0.5 U	0.61	0.96	0.5 U	0.5 U	0.84	0.5 U	0.02 U
1/8/2013	9.4 J	122	25.8	154	52.3	7.96	34.5	318	0.02 U	0.005 U	0.077	0.69	697	0.5 U	0.5 U	0.6	0.5 U	0.5	0.83	0.5 U	0.5 U	0.81	0.5 U	0.02 U
2/12/2013	9.1	121	27.1	147	54.5	8.37	33.2	328	0.02 U	0.005 U	0.05 U	0.65	636	0.5 U	0.5 U	0.7	0.5 U	0.62	1.0	0.5 U	0.5 U	0.98	0.5 U	0.02 U
MW-23				•	•	•					I				I			<u> </u>				I		
6/7/2012	10.2	109	25.4	124	44.5	7.65	31	281	0.02 U	0.0253	0.05 U	0.73	736	0.5 U	0.5 U	0.66	0.5 U	1.0	0.85	0.5 U	0.63	0.5 U	0.5 U	0.02 U
7/9/2012	10.5	113	26	122	46.6	7.75	31.7	290	0.02 U	0.0083	0.05 U	0.56	601	0.5 U	0.5 U	0.55	0.5 U	0.79	1.1	0.5 U	0.66	0.5 U	0.5 U	0.02 U
8/15/2012	10.2	99.2	26.1	120	41.5	7.41	30.3	284	0.02 U	0.0125	0.05 U	0.59	689	0.5 U	0.5 U	0.68	0.5 U	0.97	1.0	0.5 U	0.73	0.5 U	0.5 U	0.02 U
9/17/2012	10.2 J	106	25.3	125	44.9	7.49	33.2	291	0.0234	0.005 U	0.05 U	0.63	705	0.5 U	0.5 U	0.55	0.5 U	0.67	0.97	0.5 U	0.69	0.5 U	0.5 U	0.02 U
9/17/2012 (Dup)	10.2 J	104	24.8	124	44	7.38	33.4	292	0.02 U	0.005 U	0.05 U	0.67	677	0.5 U	0.5 U	0.55	0.5 U	0.67	1.0	0.5 U	0.66	0.5 U	0.5 U	0.02 U
10/22/2012	10.3	109	26.3	121	46.6	7.82	31.6	292	0.02 U	0.005 U	0.05 U	0.61	656	0.5 U	0.5 U	0.66	0.5 U	0.78	1.2	0.5 U	0.73	0.5 U	0.5 U	0.02 U
11/27/2012	12.1	112	26.8	121	48.1	7.88	31.2	291	0.02 U	0.005 U	0.05 U	0.63	636	0.5 U	0.5 U	0.63	0.5 U	0.93	1.2	0.5 U	0.82	0.5 U	0.5 U	0.02 U
1/9/2013	10.3	112	25.5	118	44.9	7.51	30.5	293	0.02 U	0.005 U	0.05 U	0.64	644	0.5 U	0.5 U	0.59	0.5 U	0.77	1.0	0.5 U	0.71	0.5 U	0.5 U	0.02 U
2/11/2013	10.6	110	25.6	98.8	44.9	7.5	30	304	0.02 U	0.005 U	0.05 U	0.72	596	0.5 U	0.5 U	0.65	0.5 U	0.7	1.1	0.5 U	0.7	0.5 U	0.5 U	0.02 U
MW-24			1	r	1	1		-	1	r							-			T	T			
6/7/2012	9.0	100	25.9	101	41.9	7.54	29.6	285	0.02 U	0.146	0.05 U	0.74	600	0.5 U	0.5 U	0.76	0.5 U	0.5 U	0.78	0.5 U	0.7	0.5 U	0.5 U	0.02 U
7/9/2012	10.5	101	25.6	103	43.1	7.39	30.8	279	0.02 U	0.04	0.05 U	0.63	594	0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.89	0.5 U	0.66	0.5 U	0.5 U	0.02 U
8/15/2012	10.3	117	27.5	101	49.6	7.97	30	280	0.02 U	0.0501	0.05 U	0.63	592	0.5 U	0.5 U	0.83	0.5 U	0.5 U	1.1	0.5 U	0.89	0.5 U	0.5 U	0.02 U
9/17/2012	10.2	96	24.8	104	42	7.52	32.5	281	0.02 U	0.0050	0.05 U	0.68	64/	0.5 U	0.5 U	0.65	0.5 U	0.5 U	1.1	0.5 U	0.75	0.5 U	0.5 U	0.02 U
10/22/2012	10.5	90.0	25.4	101	42.9	7.59	3U.8	2/9	0.02 U		0.05 U	80.0	5/6	0.5 U	0.5 U	0.71	0.5 U	0.5 U	1.2	0.5 U	0.00	0.5 U	0.5 U	0.02 U
11/27/2012	12.4	101	25.4	103	43.5	7.00	30.0	280	0.02 U	0.005 U	0.000	0.0	021 505	0.5 U	0.5 0	0.72	0.5 0	0.5 U	1.3	0.5 0	0.82	0.5 U	0.5 U	0.02 U
1/9/2013	10.0	102	24.8	39.0	42	7.46	30.2	200	0.02 U	0.005.0	0.093	0.0	561	0.5 U	0.5 0	0.73	0.5 U	0.5 U	1.4	0.5 0	0.04	0.5 U	0.5 U	0.02 0
1/9/2013 (Dup)	10.0	104	24.0	115	42.4	7.10	30.4	204	0.02 0	0.0004	0.071	00.0 99.0	563	0.5 0	0.5 0	0.74	0.5 0	0.5 0	1.0	0.5 0	0.01	0.5 0	0.5 0	0.02 0
2/11/2013	10.1	100	20.2	110	74.7	1.21	50	202	0.02 0	0.000 0	0.00 0	0.00	000	0.0 0	0.0 0	0.71	0.0 0	0.0 0	1.4	0.0 0	0.01	0.0 0	0.0 0	0.02 0

City of Walla Walla, Washington

	Nitrate (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Iron (mg/L)	Manganese (mg/L)	Ammonia (total as nitrogen) (mg/L)	Total Organic Carbon (mg/L)	Total Dissolved Solids (mg/L)	1,1-Dichloroethane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (Freon 12) (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (Freon 11) (µg/L)	Vinyl chloride (µg/L)	Vinyl chloride by SIM (µg/L)
MW-25		1	1	1	1	-									I	I				T				
6/8/2012	7.5	75.1	33.9	60.3	27.6	7.8	24.2	224	0.124	1.17	0.05 U	0.68	521	0.5 U	0.5 U	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/9/2012	9.0	76	32.6	61.8	28	7.37	25.3	230	0.02 U	0.624	0.05 U	0.54	469	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.51	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/13/2012	9.0	73.2	31	61.5	26.1	7.19	24.8	225	0.02 U	0.671	0.05 U	0.56	452	0.5 U	0.5 U	1.7	0.5 U	0.5 U	0.64	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/17/2012	9.6 J	71.8	30.4	64.1	26.9	7.13	26.9	224	0.0211	0.0939	0.05 U	0.59	477	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/22/2012	10.1	76	31.7	61.9	28.5	7.56	25.7	226	0.02 U	0.021	0.05 U	0.56	468	0.5 U	0.5 U	1.5	0.5 U	0.5 U	0.57	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/27/2012	11.8	75.6	31	66	28	7.39	25.7	221	0.02 U	0.0143	0.05 U	0.5 U	484	0.5 U	0.5 U	1.5	0.5 U	0.5 U	0.55	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/9/2013	10.2	77.9	30.3	62	27.5	7.1	25.6	227	0.02 U	0.006	0.074	0.56	472	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.51	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/13/2013	10.8	80.2	33	60.9	30.4	7.81	25.2	228	0.02 U	0.0058	0.05 U	0.53	459	0.5 U	0.5 U	1.6	0.5 U	0.5 U	0.53	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
MW-26		1	1	1	1	-									I	I				T				
6/8/2012	8.2	110	36.1	110	43	8.31	29.3	304	0.02 U	0.0103	0.05 U	0.5 U	664	0.5 U	0.5 U	1.1	0.5 U	0.63	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/9/2012	8.4	107	35.6	108	42.5	8.5	30.4	317	0.02 U	0.0055	0.05 U	0.5	596	0.5 U	0.5 U	0.88	0.5 U	0.51	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/13/2012	8.1	100	34.2	103	39.3	8.17	29.2	309	0.02 U	0.005 U	0.05 U	0.55	598	0.5 U	0.5 U	1.1	0.5 U	0.67	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/17/2012	8.0	98.5	33.3	104	39.5	8.14	31.1	305	0.02 U	0.005 U	0.05 U	0.59	613	0.5 U	0.5 U	0.98	0.5 U	0.52	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/17/2012 (Dup)	8.0	98.1	33.5	105	39.8	8.27	31.3	313	0.02 U	0.005 U	0.05 U	0.58	656	0.5 U	0.5 U	0.97	0.5 U	0.52	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/22/2012	8.1	98.9	34	101	40.4	8.42	29.1	309	0.02 U	0.005 U	0.05 U	0.56	603	0.5 U	0.5 U	1.2	0.5 U	0.56	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/27/2012	9.7	103	34.4	102	41.3	8.46	29.2	307	0.02 U	0.005 U	0.05 U	0.53	661	0.5 U	0.5 U	1.2	0.5 U	0.69	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/9/2013	8.1	102	33.5	98.6	39.3	8	28.5	310	0.02 U	0.005 U	0.05 U	0.59	523	0.5 U	0.5 U	1.1	0.5 U	0.59	1.0	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/13/2013	8.0	103	35.2	93.9	41.9	8.65	27.9	310	0.02 U	0.005 U	0.05 U	0.54	624	0.5 U	0.5 U	1.4	0.5 U	0.7	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
MW-27		1	T	1	1	-				T														
9/17/2012	10.2	105	25.8	131	45.1	7.55	32.5	287	0.02 U	0.005 U	0.05 U	0.66	665	0.5 U	0.5 U	0.51	0.5 U	0.5 U	0.91	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/22/2012	10.2	109	27	126	47.2	7.72	30.7	292	0.02 U	0.005 U	0.05 U	0.61	673	0.5 U	0.5 U	0.61	0.5 U	0.5 U	1.0	0.5 U	0.53	0.5 U	0.5 U	0.02 U
10/22/2012 (Dup)	10.2	108	26.6	127	46.6	7.68	30.6	291	0.02 U	0.005 U	0.05 U	0.6	653	0.5 U	0.5 U	0.59	0.5 U	0.5 U	1.1	0.5 U	0.51	0.5 U	0.5 U	0.02 U
11/27/2012	12.2	110	26.8	128	47.4	7.83	30.5	286	0.02 U	0.005 U	0.05 U	0.6	725	0.5 U	0.5 U	0.61	0.5 U	0.53	1.1	0.5 U	0.57	0.5 U	0.5 U	0.02 U
1/8/2013	10.4	111	24.5	126	42.6	6.96	30.3	296	0.02 U	0.005 U	0.051	0.66	660	0.5 U	0.5 U	0.6	0.5 U	0.5 U	0.93	0.5 U	0.52	0.5 U	0.5 U	0.02 U
2/11/2013	10.2	111	27.8	122	47.7	7.93	29.5	295	0.02 U	0.005 U	0.05 U	0.72	671	0.5 U	0.5 U	0.61	0.5 U	0.5 U	0.96	0.5 U	0.52	0.5 U	0.5 U	0.02 U
2/11/2013 (Dup)	10.1	114	28.1	121	48.4	8.09	29.1	306	0.02 U	0.005 U	0.05 U	0.86	519	0.5 U	0.5 U	0.59	0.5 U	0.5 U	0.97	0.5 U	0.5	0.5 U	0.5 U	0.02 U
Camp Ranch		1	r	1	1																		r	
6/6/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.86	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
6/6/2012 (Dup)														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.81	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/10/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.88	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/14/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.78	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/18/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.73	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/25/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.86	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/28/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/7/2013														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/13/2013														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.53	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U

City of Walla Walla, Washington

	Nitrate (mg/L)	Calcium (mg/L)	Sodium (mg/L)	Chloride (mg/L)	Magnesium (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)	Iron (mg/L)	Manganese (mg/L)	Ammonia (total as nitrogen) (mg/L)	Total Organic Carbon (mg/L)	Total Dissolved Solids (mg/L)	1,1-Dichloroethane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (Freon 12) (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (Freon 11) (µg/L)	Vinyl chloride (µg/L)	Vinyl chloride by SIM (µg/L)
Kinman Ranch		1		1																				
6/6/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/10/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/14/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/18/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/25/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/28/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/7/2013														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/13/2013														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
Schmidt																								
6/6/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/10/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/14/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/18/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/25/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/28/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
1/7/2013														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/13/2013														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
Small Ranch																								
6/6/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
7/10/2012														0.5 U	0.5 U	0.57	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	
7/10/2012 (Dup)														0.5 U	0.5 U	0.61	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
8/14/2012														0.5 U	0.5 U	0.61	0.5 U	0.5 U	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
9/18/2012														0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
10/25/2012														0.5 U	0.5 U	0.6	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
11/28/2012														0.5 U	0.5 U	0.66	0.5 U	0.5 U	1.5	0.5 U	0.62	0.5 U	0.5 U	0.02 U
1/7/2013														0.5 U	0.5 U	0.56	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U
2/13/2013														0.5 U	0.5 U	0.67	0.5 U	0.5 U	1.4	0.5 U	0.51	0.5 U	0.5 U	0.02 U
Notes: Only VOC analytes Blank space indicat	detected d	uring the RI	FS samplin particular a	ng are prese	ented on tab	le.																		

J = analyte detected, numeric result is considered an estimate.

U = analyte not detected at or above the indicated laboratory reporting level.

µg/L = micrograms per liter.

mg/L = milligrams per liter.

TABLE 8 STATISTICAL SUMMARY OF GROUNDWATER VOC DATA Sudbury Landfill Remedial Investigation Feasibility Study City of Walla Walla, Washington

				Standard				% Non-
Constituent Name	Well	Ν	Mean	Deviation	Median	Min.	Max.	Detects
Upgradient Wells: MW-5, MW-	-9, MW-10,	MW-12b,	and MW	-25				
Chloroform (ug/L)	MW-05	8	0.64	0.07	0.64	0.54	0.74	0
Chloroform (ug/L)	MW-09	8	0.94	0.11	1.00	0.81	1.10	0
Chloroform (ug/L)	MW-10	8	1.90	0.23	2.00	1.60	2.10	0
Chloroform (ug/L)	MW-12b	8	0.93	0.08	0.95	0.79	1.00	0
Chloroform (ug/L)	MW-25	8	1.43	0.18	1.45	1.20	1.70	0
Constituent Statistics		5	1.17	0.06	1.00	0.54	2.10	
Tetrachloroethene (ug/L)	MW-05	8	0.70	0.07	0.68	0.63	0.79	0
Tetrachloroethene (ug/L)	MW-09	8	0.57	0.05	0.56	0.52	0.64	0
Tetrachloroethene (ug/L)	MW-10	8	0.68	0.06	0.70	0.59	0.72	0
Tetrachloroethene (ug/L)	MW-12b	8	0.79	0.07	0.78	0.68	0.90	0
Tetrachloroethene (ug/L)	MW-25	8	0.48	0.15	0.52	0.25	0.64	25
Constituent Statistics		5	0.64	0.04	0.68	0.25	0.90	
Trichloroethene (ug/L)	MW-05	8	1.83	0.12	1.85	1.70	2.00	0
Trichloroethene (ug/L)	MW-09	8	1.55	0.16	1.60	1.30	1.70	0
Constituent Statistics		2	1.69	0.02	1.73	1.30	2.00	
MW-15								
1,1-Dichloroethane (ug/L)	MW-15	8	3.80	0.31	3.90	3.10	4.10	0
Chloroethane (ug/L)	MW-15	8	0.30	0.13	0.25	0.25	0.61	87.5
Chloroform (ug/L)	MW-15	8	ND		ND	ND	<0.5	100
cis-1,2-Dichloroethene (ug/L)	MW-15	8	12.01	1.48	12.00	9.10	14.00	0
Dichlorodifluoromethane (ug/L)	MW-15	8	2.60	0.48	2.70	1.90	3.40	0
Tetrachloroethene (ug/L)	MW-15	8	5.54	0.56	5.45	5.00	6.80	0
Trichloroethene (ug/L)	MW-15	8	1.95	0.20	1.95	1.60	2.20	0
Trichlorofluoromethane (ug/L)	MW-15	8	0.39	0.19	0.25	0.25	0.63	62.5
Vinyl chloride (ug/L)	MW-15	8	0.91	0.18	0.85	0.70	1.20	0
Site Wells: MW-3, MW-11, MW	/-14b, MW-1	16, MW-1	7, MW-18	8, MW-23, M	W-24, MW	-26 and	MW-27	
Chloroform (ug/L)	MW03	8	0.55	0.13	0.57	0.25	0.68	12.5
Chloroform (ug/L)	MW-11	8	1.28	0.14	1.30	1.10	1.40	0
Chloroform (ug/L)	MW-14b	8	0.97	0.13	0.98	0.78	1.10	0
Chloroform (ug/L)	MW-15D	8	0.67	0.07	0.69	0.54	0.75	0
Chloroform (ug/L)	MW-16	8	0.56	0.13	0.60	0.25	0.70	12.5
Chloroform (ug/L)	MW-17	8	0.63	0.07	0.66	0.50	0.73	0
Chloroform (ug/L)	MW-18	8	0.62	0.07	0.65	0.50	0.70	0
Chloroform (ug/L)	MW-23	8	0.62	0.05	0.64	0.55	0.68	0
Chloroform (ug/L)	MW-24	8	0.72	0.08	0.72	0.57	0.83	0
Chloroform (ug/L)	MW-26	8	1.12	0.16	1.10	0.88	1.40	0
Chloroform (ug/L)	MW-27	5	0.59	0.04	0.61	0.51	0.61	0
Constituent Statistics		11	0.76	0.04	0.66	0.25	1.40	
Dichlorodifluoromethane (ug/L)	MW-11	8	0.45	0.16	0.53	0.25	0.63	37.5
Dichlorodifluoromethane (ug/L)	MW-14b	8	0.56	0.14	0.59	0.25	0.71	12.5
Dichlorodifluoromethane (ug/L)	MW-16	8	0.53	0.13	0.56	0.25	0.69	12.5
Dichlorodifluoromethane (ug/L)	MW-18	8	0.49	0.15	0.56	0.25	0.61	25
Dichlorodifluoromethane (ug/L)	MW-23	8	0.83	0.12	0.79	0.67	1.00	0
Dichlorodifluoromethane (ug/L)	MW-26	8	0.61	0.08	0.61	0.51	0.70	0
Dichlorodifluoromethane (ug/L)	MW-27	5	0.31	0.13	0.25	0.25	0.53	80
Constituent Statistics		7	0.54	0.03	0.56	0.25	1.00	
Tetrachloroethene (ug/L)	MW03	8	0.94	0.08	0.93	0.86	1.10	0
Tetrachloroethene (ug/L)	MW-11	8	1.23	0.15	1.20	1.10	1.50	0
Tetrachloroethene (ug/L)	MW-14b	8	0.80	0.13	0.79	0.67	1.00	0
Tetrachloroethene (ug/L)	MW-15D	8	0.98	0.09	0.97	0.87	1.10	0
Tetrachloroethene (ug/L)	MW-16	8	0.69	0.06	0.68	0.63	0.82	0
Tetrachloroethene (ug/L)	MW-17	8	1.95	0.65	2.10	0.77	2.60	0

TABLE 8 STATISTICAL SUMMARY OF GROUNDWATER VOC DATA Sudbury Landfill Remedial Investigation Feasibility Study City of Walla Walla, Washington

				Standard				% Non-
Constituent Name	Well	Ν	Mean	Deviation	Median	Min.	Max.	Detects
	MW-18	8	1 07	0.10	1.05	0 07	1 20	0
Tetrachloroethene (ug/L)	MW-23	8	1.07	0.10	1.05	0.85	1.20	0
Tetrachloroethene (ug/L)	MW-24	8	1.00	0.12	1.00	0.00	1.20	0
Tetrachloroethene (ug/L)	MW-26	8	1.20	0.11	1.10	1.00	1.30	0
Tetrachloroethene (ug/L)	MW-27	5	0.98	0.08	0.96	0.91	1.10	0
Constituent Statistics		11	1.09	0.16	1.05	0.63	2.60	-
- · · · · · · · · · · · · · · · · · · ·			0.54	0.40	0.50	0.05		10.5
Trichloroethene (ug/L)	MW-15D	8	0.54	0.13	0.56	0.25	0.69	12.5
Trichloroethene (ug/L)		8	0.53	0.18	0.59	0.25	0.70	25
Trichloroethene (ug/L)	NNV-24	0 8	0.71	0.06	0.71	0.63	0.82	0
Trichloroethene (ug/L)	MW-27	5	0.70	0.00	0.73	0.00	0.03	20
Constituent Statistics	10100 27	5	0.40	0.04	0.52	0.25	0.89	20
		Ŭ	0.01	0.04	0.00	0.20	0.00	
Trichlorofluoromethane (ug/L)	MW-16	8	0.81	0.13	0.80	0.64	0.96	0
Trichlorofluoromethane (ug/L)	MW-17	8	0.74	0.12	0.70	0.63	1.00	0
Trichlorofluoromethane (ug/L)	MW-18	8	0.99	0.13	0.95	0.82	1.20	0
Constituent Statistics		3	0.85	0.00	0.80	0.63	1.20	
Downgradient Wells: MW-19,	MW-20, MV	V-21S/D,	MW-22S/	'D				
1,1-Dichloroethane (ug/L)	MW-19	8	0.99	0.08	0.98	0.90	1.10	0
Chloroform (ug/L)	MW-19	8	0.55	0.13	0.59	0.25	0.65	12.5
Chloroform (ug/L)	MW-20	8	0.56	0.14	0.60	0.25	0.69	12.5
Chloroform (ug/L)	MW-21D	8	0.66	0.12	0.66	0.54	0.89	0
Chloroform (ug/L)	MW-21S	8	0.54	0.13	0.57	0.25	0.68	12.5
Chloroform (ug/L)	MW-22D	8	0.65	0.13	0.60	0.54	0.91	0
Chloroform (ug/L)	MW-22S	8	0.64	0.06	0.64	0.57	0.70	0
Constituent Statistics		6	0.60	0.03	0.60	0.25	0.91	
cis-1,2-Dichloroethene (ug/L)	MW-19	8	9.08	0.64	9.25	7.80	9.70	0
cis-1,2-Dichloroethene (ug/L)	MW-20	8	0.48	0.15	0.54	0.25	0.59	25
Constituent Statistics		2	4.78	0.25	4.90	0.25	9.70	
Dichlorodifluoromethane (ug/L)	MW-19	8	1 16	0.28	1 20	0.51	1 40	0
Dichlorodifluoromethane (ug/L)	MW-20	8	0.45	0.20	0.53	0.01	0.62	37.5
Dichlorodifluoromethane (ug/L)	MW-21S	8	0.40	0.17	0.54	0.25	0.64	25
Dichlorodifluoromethane (ug/L)	MW-22S	8	0.59	0.07	0.60	0.50	0.68	0
Constituent Statistics		4	0.67	0.08	0.57	0.25	1.40	Ū
T () () () ()	1044 40		4 70	0.00	4.00	4.00	4.00	
Tetrachloroethene (ug/L)	MW-19	8	1.70	0.22	1.80	1.20	1.90	0
Tetrachloroethene (ug/L)		0	1.13	0.11	1.20	0.92	1.20	0
Tetrachloroethone (ug/L)		0	0.90	0.10	0.93	0.69	1.20	0
Tetrachloroothono (ug/L)	MW 22D	0	0.07	0.00	0.87	0.00	1.20	0
Tetrachloroothono (ug/L)	MW 225	0	0.92	0.14	0.90	0.70	1.20	0
Constituent Statistics	10100-223	6	1 08	0.07	0.93	0.83	1.00	0
		0	1.00	0.05	0.95	0.70	1.50	
Trichloroethene (ug/L)	MW-19	8	1.31	0.10	1.30	1.10	1.40	0
Trichloroethene (ug/L)	MW-20	8	0.28	0.09	0.25	0.25	0.51	87.5
Trichloroethene (ug/L)	MW-21D	8	0.29	0.10	0.25	0.25	0.54	87.5
Trichloroethene (ug/L)	MW-22D	8	0.29	0.10	0.25	0.25	0.54	87.5
Constituent Statistics		4	0.54	0.00	0.25	0.25	1.40	
Trichlorofluoromethane (ug/L)	MW-20	8	0.78	0.15	0.73	0.66	1.10	0
Trichlorofluoromethane (ug/L)	MW-21D	8	0.39	0.20	0.25	0.25	0.76	62.5
Trichlorofluoromethane (ug/L)	MW-21S	8	0.90	0.14	0.84	0.76	1.20	0
Trichlorofluoromethane (ug/L)	MW-22D	8	0.55	0.21	0.57	0.25	0.89	25
Trichlorofluoromethane (ug/L)	MW-22S	8	0.91	0.14	0.87	0.74	1.20	0
Constituent Statistics		5	0.71	0.03	0.73	0.25	1.20	
	l	1	1			l	1	
Page 3 of 3

TABLE 8 STATISTICAL SUMMARY OF GROUNDWATER VOC DATA Sudbury Landfill Remedial Investigation Feasibility Study City of Walla Walla, Washington

Constituent Name	Well	Ν	Mean	Standard Deviation	Median	Min.	Max.	% Non- Detects
Domestic Wells Camp & Small								
Chloroform (ug/L)	Small	8	0.52	0.17	0.59	0.25	0.67	25
Tetrachloroethene (ug/L)	Small	8	1.35	0.11	1.40	1.20	1.50	0
Trichloroethene (ug/L)	Small	8	0.33	0.15	0.25	0.25	0.62	75
Tetrachloroethene (ug/L)	Camp	8	0.67	0.23	0.76	0.25	0.88	12.5

Notes:

Statistics based on remedial investigation data collected from June 2012 through February 2013.

Table summary only includes constituents with detected concentrations.

Vinyl chloride was only reported in MW-15. Vinyl chloride statistics are not provided for other wells.

Statistics calculated with Sanitas for Groundwater V9.3.

N = number of samples (sample population).

TABLE 9 STATISTICAL SUMMARY OF SELECT NORTH DRAINAGE GROUNDWATER DATA Sudbury Landfill Remedial Investigation Feasibility Study City of Walla Walla, Washington

Constituent Name	Well	N	Mean	Standard Deviation	Median	Lower Quartile	Upper Quartile	Min.	Max.	
Wells Ordered From Upgradient (East) to Downgradient (West)										
Chloroform (ug/L)	MW-24	8	0.72	0.08	0.72	0.68	0.77	0.57	0.83	
Chloroform (ug/L)	MW-23	8	0.62	0.05	0.64	0.57	0.66	0.55	0.68	
Chloroform (ug/L)	MW-27	5	0.59	0.04	0.61	0.56	0.61	0.51	0.61	
Chloroform (ug/L)	MW-15	8	ND	ND	ND	ND	ND	ND	<0.5	
Calcium (mg/L)	MW24	8	102.1	6.52	101.0	98.3	102.5	96.0	117.0	
Calcium (mg/L)	MW23	8	108.8	4.47	109.5	107.5	112.0	99.2	113.0	
Calcium (mg/L)	MW27	5	109.2	2.49	110.0	107.0	111.0	105.0	111.0	
Calcium (mg/L)	MW15	8	157.6	4.93	158.5	153.5	162.0	150.0	163.0	
Chloride (mg/L)	MW24	8	103.5	4.88	102.0	101.0	103.5	99.6	115.0	
Chloride (mg/L)	MW23	8	118.7	8.35	121.0	119.0	123.0	98.8	125.0	
Chloride (mg/L)	MW27	5	126.6	3.29	126.0	124.0	129.5	122.0	131.0	
Chloride (mg/L)	MW15	8	119.80	3.06	119.5	117.0	121.0	117.0	126.0	
Potassium (mg/L)	MW24	8	7.48	0.24	7.47	7.30	7.58	7.22	7.97	
Potassium (mg/L)	MW23	8	7.63	0.17	7.58	7.50	7.79	7.41	7.88	
Potassium (mg/L)	MW27	5	7.60	0.38	7.72	7.26	7.88	6.96	7.93	
Potassium (mg/L)	MW15	8	8.36	0.27	8.33	8.25	8.50	7.94	8.83	
Sodium (mg/L)	MW24	8	25.6	0.86	25.4	25.0	25.8	24.8	27.5	
Sodium (mg/L)	MW23	8	25.9	0.52	25.8	25.5	26.2	25.3	26.8	
Sodium (mg/L)	MW27	5	26.4	1.27	26.8	25.2	27.4	24.5	27.8	
Sodium (mg/L)	MW15	8	64.6	5.53	66.6	60.8	69.0	54.1	69.9	
Sulfate (mg/L)	MW24	8	30.6	0.89	30.4	30.0	30.8	29.6	32.5	
Sulfate (mg/L)	MW23	8	31.2	1.01	31.1	30.4	31.7	30.0	33.2	
Sulfate (mg/L)	MW27	5	30.7	1.11	30.5	29.9	31.6	29.5	32.5	
Sulfate (mg/L)	MW15	8	40.9	2.34	40.7	39.1	42.7	37.9	44.3	
Total Dissolved Solids (mg/L)	MW24	8	598.50	25.92	595	584	611	563	647	
Total Dissolved Solids (mg/L)	MW23	8	657.90	49.33	650	619	697	596	736	
Total Dissolved Solids (mg/L)	MW27	5	678.80	26.33	671	663	699	660	725	
Total Dissolved Solids (mg/L)	MW15	8	882.80	49.85	869	851	901	833	988	

Notes:

Statistics based on remedial investigation data collected from June 2012 through February 2013.

Statistics calculated with Sanitas for Groundwater V9.3.

N = number of samples (sample population).

ND = not detected at or above the method reporting level.

TABLE 10

PROPOSED CLEANUP LEVELS FOR GROUNDWATER BASED ON PROTECTION OF DRINKING WATER CONSUMPTION

Sudbury Landfill Remedial Investigation Feasibility Study

City of Walla Walla, Washington

		MTCA Method Cleanu	B Groundwater p Level	Federal Maximum	WA State Maximum	EPA Lifetime	Unadjusted	Maximum Detected Value	Proposed Adjusted		
Analyte	Unit	Carcinogen	Non- Carcinogen	Contaminant Level	Contaminant Level	Health Advisory ¹	Minimum of Applicable SLs	(RI Data 2012- 2013)	Cleanup Level ²	Cancer Risk	Hazard Quotient
Conventionals			¥			y		,			
Alkalinity	mg/L							620			
Ammonia (total as nitrogen)	mg/L					30	30	0.098			
Chloride	mg/L							162			
Nitrate	mg/L			10000	10000		10000	12.4			
Sulfate	mg/L							48.7			
Sulfide	mg/L										
Metals											
Calcium	mg/L							163			
Iron	mg/L		11				11	0.124			
Magnesium	mg/L							54.8			
Manganese ³	mg/L		2.24			0.3	0.3	1.17			
Potassium	mg/L							8.83			
Sodium	mg/L							69.9			
VOCs											
1,1-Dichloroethane	µg/L		1600				1600	4.1			
Chloroethane ³	µg/L							0.61			
Chloroform	µg/L		80	80	80		80	2.1			
cis-1,2-Dichloroethene	µg/L		16	70	70		16	14			
Dichlorodifluoromethane	µg/L					1000	1000	3.4			
Tetrachloroethene	µg/L	21	48	5	5		5	6.8	5	2.4E-07	0.10
Toluene	µg/L		640	1000	1000		640	0.59			
Trichloroethene (TCE) ⁴	µg/L	0.54	4	5	5		4	2.2			
Trichlorofluoromethane	µg/L		2400				2400	1.2			
Vinyl chloride (VC)	µg/L	0.029	24	2	2		0.029	1.2	0.29	9.9E-06	0.008
									Total	1.0E-05	0.11

Notes:

Bold values exceeds applicable screening levels.

1 EPA Lifetime Health Advisory levels are non-enforceable standards. The values have been included here where no other standard exists for comparative purposes only. http://water.epa.gov/drink/standards/hascience.cfm

2 Per WAC 173-340-720(7), groundwater cleanup levels for individual hazardous substances may be adjusted provided that the hazard index does not exceed one (1) and the total excess cancer risk does not exceed one in one hundred thousand (1 x 10-5). Risk calculations using Equations 720-1 and 720-2 of WAC 173-340-720 have been completed to determine cleanup level adjustments that meet these while still meeting cancer risk and hazard quotient requirements. The cleanup level for VC has therefore been adjusted upward.

3 A cleanup level is not proposed for chloroethane, because no ARARs or MTCA cleanup levels are available. Additionally, chloroethane is not retained as a COC due to its low detection frequency at the Site (1%) per USEPA's Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (EPA, 1989).

Per Ecology guidance published in September 2012 (Ecology 2012c), the MTCA Method B cleanup level for TCE in groundwater is 4 µg/L, based on a downward adjustment of the state and federal MCL of 5 µg/L per WAC 173-340-720(7)(b). Therefore, this MTCA Method B non-carcinogenic cleanup level was selected as the screening level for TCE rather than the minimum screening level of 0.54 µg/L.

TABLE 11 INITIAL SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS Sudbury Landfill Remedial Investigation/ Feasibility Study

City of Walla Walla, Washington

General Response Action	Implemented by	Remedial Technology	Description	Technical Feasibility/ Effectiveness	Implementability	Cost	Retained/ Rejected				
	Groundwater Cleanup Action Objective: Protect groundwater by reducing or controlling migration of contaminant-bearing groundwater.										
No Action	No Action	None	No activities taken to address groundwater beyond current compliance monitoring activities.	Does not achieve CAOs.	High	Low	Retained. Retained for baseline comparison purposes.				
Limited Action	Institutional Controls	Land Use Restrictions	Land use restrictions are measures undertaken to limit or prohibit activities that may interfere with the integrity of a cleanup action or result in exposure to hazardous substances at a site.	This control could be effective for the Site because it could restrict the use of groundwater or the construction of structures in the contaminated areas. It does not directly address contamination removal or treatment.	This can be an acceptable method for preventing human contact with hazardous media and institutional controls are commonly in effect at landfill sites. It can be difficult to implement on private property due to potential public resistance, and the necessary cooperation of multiple agencies and local governments.	Low	Retained. Retained for evaluation in combination with other response actions.				
	Long-Term Monitoring	Groundwater Monitoring	Periodic monitoring of groundwater is conducted to assess changes in groundwater quality that might be attributed to contaminant leaching, migration, natural attenuation processes, or active remediation.	Long-term monitoring can be an effective method for evaluating chemical changes in groundwater and is likely feasible at the Site. It does not directly address contamination removal or treatment.	This is an established and accepted technology. An adequate groundwater monitoring system is available at the Site.	Low to moderate	Retained. Retained for evaluation in combination with other response actions.				
In-Situ Treatment	Chemical Treatment	Air Sparging	Injected air strips volatiles from the groundwater. VOCs which partition into the rising air are collected by a vacuum extraction system installed in the unsaturated zone. Oxygen may enhance biodegradation.	Air sparging can be an effective technology for removing VOCs; however, the mass transfer efficiency decreases for VOCs at very low concentrations such as those reported at the Site. The effectiveness of this technology can be affected by very small changes in soil permeability/heterogeneity, which can lead to localized treatment around the sparge points or leave areas untreated. Oxygen added to the contaminated groundwater can enhance aerobic biodegradation of contaminants below and above the water table, but may have adverse effects on anaerobic degradation.	This is an established and accepted technology. It may be difficult to implement at the Site due to subsurface conditions, fine-grained horizons, matrix of the gravel aquifer, and Site geology. Pilot testing would likely be needed to evaluate the use of air sparging at the Site before proceeding with full-scale remedial action using this technology. A performance monitoring program would be required to assess the effectiveness of this technology. This approach has low O&M requirements.	Low to moderate	Rejected . Rejected due to low concentrations of VOCs in groundwater and heterogeneous soil profile.				
		In-well Air Stripping	Compressed air is injected at depth in a double cased well with an upper and lower screen. The injected air lifts the water in the well and causes it to flow out the upper screen, wile groundwater enters the well through the lower screen. VOCs are partially stripped through the air-lift process. Vapors are drawn off by a vacuum extraction system and treated. The discharge of water from the upper screen and intake of water through the lower screen establishes an in-situ hydraulic circulation cell through which groundwater is repeatedly circulated and treated.	In-well air stripping may be technically feasible at the Site; however, in-well air strippers are most effective at sites that contain high concentrations of dissolved contaminants. Effective installations require a well-defined contaminant plume and well- placed screens to prevent the spread of contamination. The treatment effectiveness can also be limited by the groundwater flow regime around the well and can be limited by the pumping capacity and resulting radius of influence.	Pilot scale system testing would likely be required to determine whether the technology is implementable at the Site. Air sparging or pump and treat technologies would likely provide greater assurance of success.	Moderate	Rejected . Other technologies would likely provide greater assurance of success.				

TABLE 11 INITIAL SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS Sudbury Landfill Remedial Investigation/ Feasibility Study City of Walla Walla, Washington

General Response Action In-Situ Treatment (continued)	Implemented by Physical/ Chemical Treatment (continued)	Remedial Technology Chemical Oxidation	Description Injection of oxidizing agents such as ozone, hydrogen peroxide, or permanganate to rapidly destroy organic compounds.	Technical Feasibility/ Effectiveness Chemical oxidation can be an effective technology for removing VOCs from groundwater. The effectiveness of this technology can be limited by low permeability soils and rapid groundwater flow, both of which are present at the Site. Chemical oxidation can interfere with anaerobic degradation processes and can potentially mobilize metals. A treatability study and reaction transport model are typically required to assess feasibility.	Implementability This is an established and accepted technology. It may be difficult to implement at the Site due to the heterogeneous soil profile. Proper and uniform distribution of oxidant can be difficult in heterogeneous materials. A pilot testing and performance monitoring program would be required to assess the effectiveness of this technology. This approach has high O&M requirements.	Cost Medium to high	Retained/ Rejected Rejected. Rejected due to heterogeneous soil profile.
	Chemical Treatment	Permeable Reactive Barrier (PRB), with or without Funnel and Gate.	Installation of an engineered subsurface treatment zone across the flow path of a dissolved contaminant plume. As groundwater passes through the zone, it is treated in-situ by reactive media. Often used in conjunction with impermeable wall sections (funnels) to force groundwater to flow through the permeable sections containing the reactive media.	PRBs can be an effective method for the reductive dechlorination of chlorinated constituents; however, PRBs can lose permeability with age and can affect groundwater flow vectors. A PRB could increase the downward gradient in the Site aquifer if the barrier is not tied into an underlying low permeability soil zone.	Potentially implementable as a partially penetrating barrier to a depth of 50 ft. Construction of a deeper barrier is not considered feasible. May need other technologies to funnel the contaminants through the PRB (funnel and gate system).	High	Rejected . Full- scale barrier along property boundary considered infeasible. Would require prohibitive periodic replacement of reactive material.
	Biological Treatment	Enhanced Anaerobic Biodegradation	Enhance biodegradation accelerates the natural biodegradation process by providing nutrients, electron acceptors, and/or microorganisms to degrade (metabolize) organic contaminants in groundwater. Typical enhancements include oxygen, nitrates, or solid phase peroxide products such as an oxygen releasing compound (ORC).	Enhanced biodegradation can be an effective technology for removing VOCs from groundwater. Its effectiveness can be limited by the spacing of injection points and the heterogeneity of the subsurface materials. Under anaerobic conditions, contaminants may be degraded to a product that is more hazardous than the original contaminant. For example, trichloroethene frequently biodegrades to the persistent and more toxic vinyl chloride.	This is an established and accepted technology. It would likely be difficult to implement at the Site due to the heterogeneity of the subsurface soil. Pilot testing and microcosm testing would likely be needed to evaluate the use of enhanced biodegradation at the Site before proceeding with full-scale remedial action using this technology. This approach has high O&M requirements to ensure continued effectiveness of the contact technologies.	Moderate to high	Rejected. Effectiveness limited by heterogeneity of the subsurface materials. Possibility of increasing vinyl chloride concentrations in groundwater. Pilot testing costs.
	Biological, Chemical, and Physical Treatment	Monitored Natural Attenuation	Reliance on one or more physical, chemical, or biological processes that reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater. These in-situ processes include biodegradation; dispersion; dilution; sorption; volatilization; and chemical or biological stabilization, transformation, or destruction of contaminants. Typically requires source control and long-term monitoring to verify performance.	MNA is an accepted technology that has been implemented at numerous sites across the country. It can be easy to implement because little to no aggressive action is required. A long-term groundwater monitoring system would be required to verify the effectiveness of this approach. Institutional controls may be required.	Preliminary groundwater quality data suggest that natural biodegradation is already occurring locally at the Site as evidenced by increased vinyl chloride and cis-1,2-dichloroethene concentrations at MW- 15. MNA is readily implemented using the existing monitoring well system, or with additional wells, and/or additional geochemical testing. This approach has low O&M requirements with moderate monitoring requirements.	Low to moderate	Retained. Retained for evaluation in combination with other response actions.

TABLE 11 INITIAL SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS Sudbury Landfill Remedial Investigation/ Feasibility Study

			-	
City of	Walla	Walla,	Washington	

General Response Action Containment	Implemented by Vertical Barriers	Remedial Technology Slurry Wall/Sheet	Description A subsurface vertical wall constructed with	Technical Feasibility/ Effectiveness This can be an effective technology for preventing	Implementability Potentially implementable at the Site as a partially	Cost Moderate	Retained/ Rejected Rejected. No base
		Piles/Grout Curtains	impermeable material such as low permeability trench fill (slurry), sheet piles, or grout curtains. The wall is often keyed into a low permeability natural base, such as clay or competent bedrock.	horizontal migration of contaminants. However, the barrier can affect groundwater flow vectors and may not retain the contaminants if the barrier is not tied into a low permeability soil horizon. It provides containment only; it does not treat groundwater or provide source removal. Because no active treatment is occurring, additional remedial action may be required to control contaminant concentrations. Degradation of the slurry wall may occur over time.	penetrating barrier to a depth of 50 feet. Construction of a deeper barrier is not considered feasible. May need other remedial technologies to treat contaminants. May increase the downward gradient in the aquifer, and contaminated groundwater may naturally flow around the barrier.	to high	formation to tie barrier wall into.
	Hydraulic Containment	Pumping	Uses groundwater pumping to form a hydraulic barrier and control off-site migration of contaminants. May require groundwater treatment before discharge	This can be an effective technology for preventing contaminant migration, and is commonly coupled with an ex-situ treatment technology. Capture zone modeling would likely be necessary to design a system to adequately prevent contaminant migration.	This is a common and accepted technology. Limitations can include long duration to meet cleanup goals and rebound (pumping depresses the groundwater level, leaving residuals sorbed to the soil, and after the groundwater level returns to its normal level, contaminants sorbed onto soil become dissolved.) This approach has high O&M requirements.	Moderate to high	Retained. Retained as a contingent technology to control offsite migration, not as a primary treatment of MW-15 groundwater.
Ex-Situ Treatment of Extracted Groundwater	Physical Treatment	Air Stripping	Transfer of VOCs from the aqueous phase to the vapor phase by bringing the groundwater into contact with air, typically in a counter current manner using packed towers or bubble tray aerators.	Air stripping can be an effective technology for removing moderate to high VOC concentrations from groundwater; however, the mass transfer efficiency can decrease for VOCs at very low concentrations such as those reported at the Site. It can be effective for removing miscible compounds such as vinyl chloride. Air strippers transfer the VOCs from groundwater to air and do not destroy contaminants. Additional waste streams are generated that may require treatment.	This is a common, well-established, and accepted technology. Small systems for point-of-use treatment are available. Off-gas treatment by activated carbon adsorption or catalytic oxidation may be added. This approach has average O&M requirements.	Moderate	Rejected. Inefficient at removing low concentrations of VOCs.
		Carbon Adsorption	Removal of dissolved VOCs from groundwater by adsorption onto granular activated carbon (GAC).	GAC can be an effective technology for removing most VOCs; however, its effectiveness can be limited for water-soluble compounds such as dichloroethane. GAC has a short-term duration, especially for high concentrations and would require a high frequency of operation and maintenance. This process requires transport and disposal or regeneration of spent carbon.	This is a common, well-established, and accepted technology that could be implementable. This approach has high O&M requirements including monitoring of influent and effluent stream, replacement of carbon, and backwashing.	Medium to high	Retained. Retained for evaluation in combination with hydraulic containment.

TABLE 11 INITIAL SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS Sudbury Landfill Remedial Investigation/ Feasibility Study

City of Walla Walla, Washington

General Response Action Ex-Situ Treatment	Implemented by	Remedial Technology	Description	Technical Feasibility/ Effectiveness	Implementability	Cost	Retained/ Rejected
of Extracted Groundwater (continued)	Treatment (continued)		extracted groundwater by means of natural biological, physical, and chemical processes.	from extracted groundwater in warm, dry climates. The system can cause the direct release of contaminants to the atmosphere and emission control is generally not feasible. A large amount of space and storage capacity for winter months is required. The extraction rate and volume for full- time groundwater extraction would be required to size the pond and determine ultimate feasibility.	treatment of contaminated groundwater. The climate is acceptable for evaporation, and land for pond construction is likely available at the Site. There are potential regulatory issues related to volatilization to the atmosphere. This approach has moderate to high construction costs and low O&M requirements.	moderate	Retained for evaluation in combination with hydraulic containment.
		Sprinkler Irrigation	The process uses pressure to force water contaminated with VOCs through a sprinkler irrigation system. The pressure change transfers the contaminants from the dissolved phase to the vapor phase.	Sprinkler irrigation can be an effective technology for treating low-concentration VOCs in groundwater. It is used primarily to treat contaminants that readily transfer from the dissolved phase to the vapor phase. The system causes the direct release of contaminants to the atmosphere and emission control is not feasible.	Sprinkler irrigation technology could be implemented at the Site. There are potential regulatory issues related to volatilization to the atmosphere. There is a potential for direct release of contaminants to soil. Sprinkler irrigation could potentially be coupled with evaporation pond treatment. This approach has low O&M requirements.	Low to moderate	Retained. Retained for evaluation in combination with hydraulic containment.
		Source Co	ntrol Cleanup Action Objective: Protect groundwa	ter by reducing or controlling the source of VOC cont	aminants available to groundwater.		
Source Removal	MSW Removal	Excavation of MSW from Area 2 and from beneath the Water Table in Area 5, with Disposal in a Permitted Landfill (Area 7)	Excavation and disposal in a permitted landfill is used to remove the contaminant source (MSW) from the environment.	Excavation and removal of MSW is impractical in most cases due to the health hazards, construction difficulties, and high cost. Removal of the MSW from Area 2 is likely feasible if proper health and safety controls are applied; however, the volume of waste that would require excavation and transport would be impractical. Removal of MSW from beneath the water table in Area 5 is not considered feasible without extensive shoring of MSW and soil. Excavation of the MSW from beneath the water table would likely only be effective in removing a small portion of the contaminant source.	Excavation and removal of MSW is not commonly implemented, except when MSW materials have high toxicity or present an elevated hazard to human health or the environment. The Sudbury Landfill remedial investigation did not indicate that the MSW mass in Area 2 or the MSW beneath the water table in Area 5 present a high toxicity source or large component of the overall contamination. It likely could not be implemented for MSW at depth or beneath the water table. It possibly could be implemented at Area 2, however, the MSW removal has disproportionate cost compared to other technologies.	High	Rejected: Rejected based on disproportionate cost and virtual infeasibility to excavate MSW from below water table.
Landfill Gas Control	Landfill Gas Extraction and Destruction	Landfill Gas Extraction and Destruction	Landfill gas is extracted using a an extraction well and vacuum-blower system. The extracted gas is destroyed using a flare system.	Landfill gas extraction and treatment is technically feasible and is currently being implemented for Area 6. It has been shown to be effective as a source control technique, and may reduce the VOC contaminants in gas that are available to partition to groundwater.	Landfill gas extraction and treatment is currently being conducted at Area 6, and the system could be expanded to other disposal areas at the Site. The existing gas treatment system is capable of accepting gas from other areas of the Site.	Moderate	Retained. Retained as an expansion of the existing system.
Leachate Control	MSW Cover	Low Permeability or Evapotranspiration Soil Cover	Low permeability soil or evapotranspiration soil cap installed over MSW areas to limit infiltration/recharge and leaching of contaminants into groundwater.	This can be an effective technology that forms a barrier between the contaminated media and the surface, restricts the infiltration of surface water, and limits the generation of leachate. A soil cover provides containment only; it does not treat groundwater.	This common landfill technology can be straightforward to implement and can meet requirements of Chapter 173-351 WAC. Previous studies at the Sudbury Landfill have found that low permeability soil used as an evapotranspiration cover can be effective at the Site. Low permeability soil is available on the Site.	Low to moderate	Retained. This technology has shown to be effective at the site.

TABLE 11 INITIAL SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS Sudbury Landfill Remedial Investigation/ Feasibility Study City of Walla Walla, Washington

Implemented by	Remedial Technology	Description	Technical Feasibility/ Effectiveness	Implementability	Cost	Retained/ Rejected
MSW Cover (continued)	Geosynthetic/ Multimedia Cap	Geosynthetic/Multimedia cap installed over MSW areas to limit infiltration/recharge and leaching of contaminants into groundwater.	This can be an effective technology that forms a barrier between the contaminated media and the surface, restricts the infiltration of surface water, and limits the generation of leachate. A cap provides containment only; it does not treat groundwater.	This common landfill technology can be straightforward to implement and can meet the requirements of Chapter 173-351 WAC.	Moderate to high	Retained. Retained as a contingent cover design.
	Reconstruction of Existing Area 5 Soil Cover	Manipulation of existing low-permeability soil cover on Area 5 to promote drainage and limit infiltration/recharge and leaching of contaminants into groundwater.	Reconstruction and/or manipulation of the existing Area 5 soil cover may be technically feasible, and could be effective in the minimizing the generation of leachate. Studies at the Sudbury Landfill have found that sufficient low permeability soil may cover the MSW, but the undulating surface may retain surface water and promote infiltration. This technology would enhance the effectiveness of existing cover systems.	This common landfill technology is likely easy to implement, could enhance the effectiveness of the existing cover system over Area 5, and can meet the requirements of Chapter 173-351 WAC.	Low	Retained. This technology would enhance the effectiveness of existing cover systems.
Stormwater Controls	Surface Grading, Construction of Stormwater Channels, and Run- on Prevention.	Stormwater controls are implemented at landfills to prevent erosion, and stormwater run-on, pooling, and infiltration.	Construction of stormwater controls can be an effective method of preventing erosion, run-on, pooling, and infiltration, and are a requirement of the Solid Waste Permit and Chapter 173-351 WAC.	Stormwater controls are commonly implemented at landfills to prevent erosion, infiltration, and the generation of leachate. Interim measures have been implemented at the Site.	Low	Retained. Stormwater controls have been implemented at the Site and can be effective at minimizing leachate generation.
ction objective solid waste s and maintenance reactive barrier ganic compound on Administrative C) Code					

Notes:

General Response Action

Leachate Control

(continued)

CAO = Cleanup action objective

MSW = Municipal solid waste

O&M = Operations and maintenance

PRB = Permeable-reactive barrier

VOC = Volatile organic compound

WAC = Washington Administrative Code

TABLE 12 LANDFILL GAS CONTROL TECHNOLOGIES Sudbury Landfill Remedial Investigation Feasibility Study City of Walla Walla, Washington

LFG Control Technology	Advantages	Disadvantages	Applicability to Areas 1, 2, and 5
Cap/cover System	Simple Low maintenance	Moderate cost Needs to work in concert with LFG system	High
Passive trench venting	Low cost Minimal O&M Convertible to active system Compatible with multiple systems Effective at waste extents Works well with impermeable cover systems Works well with semi permeable covers over subsurface collection layers (i.e., crushed rock under asphalt pavement)	Limited radius of influence within landfill MSW may extend too deep in Areas 1 and 5 for trenches.	Low - Areas 1 and 5 Moderate - Area 2
Perimeter barriers	Controls migration at waste extents	Moderate to high cost MSW may extend too deep in Areas 1 and 5 for trenches.	Low - Areas 1 and 5 Moderate - Area 2
Extraction wells	Discrete zone control Compatible with multiple systems May be connected to existing header and flare system	Moderate maintenance required Moderate cost Limited radius of influence	High
Active collection trenches	Discrete zone control Compatible with multiple systems	Moderate maintenance required Moderate cost Limited radius of influence MSW may extend too deep in Areas 1 and 5 for trenches.	Low - Areas 1 and 5 Moderate - Area 2
Notes: LFG = Landfill gas MSW = Municipal so O&M = Operations a	lid waste nd maintenance		

F:hprojects/Schtywn-Sudbury/GIS/MXD/Schwyn Request/2013 RI Figures/Figure 2 (Landfill Vicinity Map).mxd 3/18/20

dfill igton	Rer Exj	nedial Investigation ploration Locations	Figure 3			
ls		 Intermittent Creek 10-ft. Index Topographic Contour³ Compost Area Compost Lagoon 				
Points ²		Creek				
2012) ng Pre-2012	2)	City Property Boundary				
(New 2012) (Existing Pr	e-2012)	Drainage Pipe				
		Sedimentation Pond				

ojects/Schywn-Sud bury/GIS/MXD/Schwyn Reques/2013 RI Figures/Figure 4 (Location of Geologic Cross-Section), mxd 3/18/2014

F:\projects\Schywn-Sudbury\GIS\MXD\Schwyn Request2013 RI Figures\Figure 11 (2005 Independent RI Locations).mxd 3/18/2

Notes:

- 1. "S" and "D" designations on Monitoring Well and Gas Well Locations indicate Shallow and Deep Completions,
- Respectively. %CH4 = Percent Methane %CO2 = Percent Carbon Dioxide
- Map created by Floyd|Snider, Inc.
- · Orthoimage provided by City of Walla Walla and dated 2012.

	Legend A Gas Vent Barhole A Gas Well (New 2012) A Gas Well (Existing Pre-2 A Abandoned Gas Well Abandoned Gas Well Landfill Extraction Well Settlement Monitoring St Landfill Gas Collection S Compliance Wells Sedimentation Pond Drainage Pipe Landfill Areas Landfill Areas Landfill Boundary City Property Boundary Creek	2012) ation ystem
	Creek Spring Intermittent Creek 10-ft. Index Topographic Compost Area Compost Lagoon	Contour ³
lfill gton	Landfill Gas Monitoring Results	Figure 14

-6).svg 7/24/2014

APPENDIX A

Boring and Well Construction Logs

APPENDIX A

Remedial Investigation Logs

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 32 ft. Groundwater (ft BGL): 29.5 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 793.41 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278724
Longitude/Easting: 2169799

Remarks:

						1
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 0-7					ML: Light brownish gray Sandy SILT, fine sand with trace clay, some roots, soft, low plasticity, dry. [Fill] @ 3.75 ft.: damp.	
Core 7-12					@ 10 ft.: very dark gray.	
Core 12-17			12 13 14 14 15 16		MSW: Municipal Solid Waste composed of plastic, paper, fabric, newspapers, metal cans, and wood. Strong odor with gas eminating from hole while drilling.	Bentonite Chips
Core 17-22			17 18 19 20 21		@ 17 ft.: 6" layer of gray silt. @18 ft.: metal wire blocks core barrel.	
Core 22-27			22 		@ 22 ft.: metal, plastic, paper, wood fragemnts, and cardboard. Strong odor.	
Core			25 26 27 27 28		ML: Greenish gray Sandy SiL I, fine sand with trace clay, soft to medium stiff, low plasticity, moist to wet, moderate odor.	
21-52			29 2 -29 2 -30 -31		ML: Greenish gray Sandy SILT, fine sand with trace clay, soft to medium stiff, low plasticity, moist to wet, moderate odor. @ 28.5 ft.: mottling. @ 29 ft.: wet	

Drill Date: 5/21/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 54.5 ft. Groundwater (ft BGL): 40 Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 797.63 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278901
Longitude/Easting: 2170146

Remarks:

SAMPLE DRI TYPE / ID RECC	VE / BLOW	DEPTH FT BGS	USCS SYMBOL	Sample Description Well	Construction Detail
Core 0-6.5				ML: Light olive brown Sandy SILT, with fine sand, soft, low plasticity, dry to damp. [Fill]	
Core 19.5-29.5				MSW: Municipal Solid Waste composed of cardboard, fabric, wire, metal, paper, and plastic underlain by ~1 foot of dark stained silt. MSW appears to have been burned.	
Core 29.5-39.5		24 		 @ 24 ft.: newspaper dated March 1980. @ 24.5 ft.: dark gray silt layer (6"), dark brown, damp. @ 30 ft.: metal plastic, twigs, intermixed with dark gray silt layers. 	Bentonite Chips
Notes: ft BGL = feet USCS = Unifi	below grou ed Soil Cla	ind leve	l on Svste	m ऱ = denotes groundwater table	Page 1 of 2

Drill Date: 5/21/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 54.5 ft. Groundwater (ft BGL): 40 Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 797.63 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278901
Longitude/Easting: 2170146

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 39.5-44.5 Core 44.5-49.5			→ 36 → 36 → 37 → 38 → 39 → 40 → 41 → 42 → 43 → 44 → 45 → 44 → 45 → 46 → 47 → 48 → 49 → -		 MSW, cont. @ 39.5 ft.: 6" layer of wood and silt. @ 40 ft.: 12" layer of silt. @ 41 ft.: 6" layer of metal, plastic, cardboard, twigs and wood debris. Appears burned. @41.5 to 49.5 ft.: Silt intermixed with small amounts of MSW (glass and metal). 	
Core 49.5-54.5					ML: Dark brown SILT with wire intermixed. [Fill]	
			52 53 54		GM: Dark brown Silty GRAVEL with sand and cobbles, fine to coarse sub-angular to sub-rounded basalt gravel, well graded, loose, moderate plasticity fines, wet. Reddish staining at interface of overlying silt.	

Drill Date: 5/22/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 32 ft. Groundwater (ft BGL): 29 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 798.68 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 279084
Longitude/Easting: 2170534

Remarks: Soil Sample (SB21 @ 27') collected for laboratory analysis.

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 0-7					ML: Dark brown Sandy SILT, fine sand, soft to medium stiff, low plasticity, dry to damp. [Fill] @ 2 ft.: gray.	
Core					plastic, tires, wood, cardboard, glass, and paper. Waste appears burned.	
					@ 8.5 ft.: 6" layer of gray silt.	
Core 12-17					 @ 12 ft.: leather, newspaper dated July 1980, fabric, tires, and plastic. @14 ft.: 4" layer of silt. 	Bentonite
Core 17-22			17 18 19 20		ML: Gray Sandy SILT, fine sand, soft, low plasticity, dry. @ 19 ft.: light brownish gray.	_ ^ ^ ^ Chips
Core 22-27			21 22 23 23 24 24 25 26		 @ 22 ft.: olive brown to light browninsh gray. @ 23.5 ft.: light yellowish brown @ 24 ft.: damp 	
Core 27-32			→ 27 → 28 ▼ 29 → 30 → 31		@ 27 ft.: moist. @ 29 ft.: wet.	

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 33 ft. Groundwater (ft BGL): 30 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 794.79 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278794
Longitude/Easting: 2169931

Remarks:

SMPLE DBNE/ LOW DEFIN USS Sample Description Well Construction Detail Core 0.8 4 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Core 0-8 0.8 0.8 0.1 ML: Brown Sandy SILT, fine sand with trace clay, soft, low plasticity, dry to damp. [Fil] Core 8-13 0.8 1.1 0.4 4 ft.: damp. 0.8 1.1 0.8 8 ft.: very dark gray. 0.9 0.11 0.1 0.1 0.1 0.1 0.11 0.1 0.1 0.1 0.1 0.11 0.1 0.1 0.1 0.1 0.11 0.1 0.1 0.1 0.1 0.11 0.1 0.1 0.1 0.1 0.11 0.1 0.1 0.1 0.1 0.11 0.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 1.2 0.1 0.1 0.	SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 8-13 @ 8 ft.: very dark gray. @ 9 ft.: gley mottling. @ 10.25 ft.: wood fragment (section of plywood). Core 13-18 Core 13 13-18 MSW: Municipal Solid Waste composed of plastic bags, paper, wood and cardboard. @ 18 ft.: paper, yarn, plastic, wood, wood debris, metal, and wire. @ 18 ft.: glass, plastic, paper, wood, a book, and metal. Core 23-28 @ 23 ft.: glass, plastic, paper, wood, a book, and metal.	Core 0-8				ML: Brown Sandy SILT, fine sand with trace clay, soft, low plasticity, dry to damp. [Fill]	
Bother @ 8 ft: very dark gray. @ 9 ft: gley mottling. @ 10.25 ft: wood fragment (section of plywood). Image: transmission of transmission	Core				@ 4 ft.: damp.	
Core 13-18 13-18 Core 18-23 Core 23-28 Core 28-33	8-13				 @ 8 ft.: very dark gray. @ 9 ft.: gley mottling. @ 10.25 ft.: wood fragment (section of plywood). 	
Core 18-23 @ 18 ft.: paper, yarn, plastic, wood, wood debris, metal, and wire. Core 23-28 @ 23 ft.: glass, plastic, paper, wood, a book, and metal. Core 28-33 @ 23 ft.: glass, plastic, paper, wood, a book, and metal.	Core 13-18				MSW: Municipal Solid Waste composed of plastic bags, paper, wood and cardboard.	Bentonite Chips
Core 23-28 Core 28-33 Core 28-33 Core	Core 18-23				@ 18 ft.: paper, yarn, plastic, wood, wood debris, metal, and wire.	
Core 28-33	Core 23-28				@ 23 ft.: glass, plastic, paper, wood, a book, and metal.	
ML: Dark olive gray Sandy SILT, fine sand with trace clay, mottling, soft to medium stiff, low plasticity, moist to wet. @ 30 ft.: wet.	Core 28-33		28 − 29 ▼ 30 − 31 − 32		ML: Dark olive gray Sandy SILT, fine sand with trace clay, mottling, soft to medium stiff, low plasticity, moist to wet. @ 30 ft.: wet.	

USCS = Unified Soil Classification System

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 30.5 ft. Groundwater (ft BGL): NA Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 795.98 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278848
Longitude/Easting: 2170041

Remarks: Soil sample (SB-23 29.5-30) collected for laboratory analysis.

SAMPLE TYPE / ID	DRIVE / BLO RECOVERY COU	W DEPTH NT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 0-9				ML: Yellowish brown Sandy SILT, fine sand with trace clay, soft, low plasticity, dry to damp. [Fill] @ 2.5 ft.: dark gray.	
Core 9-14				MSW: Municipal Solid Waste composed of plastic, paper, wood, cardboard, grass clippings, fabric, and metal wire. @ 11.5 ft.: 6" silt layer. @ 12 ft.: yellow and white material, 1 cm. thick layer, powdery.	
Core 14-19		14 		@ 14 ft.: wire blocked drilling shoe.	Bentonite Chips
Core 19-24		19 		@ 19 ft.: wire (significant quantity), rubber tire fragment, ceramic, metal, and plastic bags.	
Core 24-29		24		@ 24 ft.: carpet, wood, and plastic.	
	19/6	26 		ML: Dark greenish gray Sandy SILT, fine sand, low to moderate plasticity, damp. @ 27 ft.: dark yellowish brown.	
30.5	36/0	5" 		∖ @ 30 ft.: moist.	

Drilled By: Environmental West Exp.

Sample Method: 4.25-in Sonic Core

Drill Date: 5/21/2012

Boring Diameter: 6.75-in

Boring Depth (ft BGL): 37 ft. Groundwater (ft BGL): None

Drill Type: Sonic

Boring ID: SB-24

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Logged By: E. Ramirez (Floyd|Snider) Site Location: Sudbury Road Landfill Ground Elevation: 812.04 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 277592 Longitude/Easting: 2170421

Remarks: Soil Sample (SB24 @ 32' and duplicate) collected for laboratory analysis.

Notes:

ft BGL = feet below ground level

USCS = Unified Soil Classification System

Boring ID: SB-25

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 34 ft. Groundwater (ft BGL): 30.5 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 798.26 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278957
Longitude/Easting: 2170264

						1
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DE COUNT F	EPTH T BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 0-9					ML: Brown Sandy SILT, fine sand with trace clay, soft, low plasticity, dry to damp. [Fill] @ 3.5 ft.: very dark gray.	
Core 9-14			8 9 10 11 11 12		@ 9.5 ft.: 4" layer of plywood and debris.	
Core 14-19		-	13 14 15 16 17 18		MSW: Municipal Solid Waste composed of plastic bags, paper, cardboard, and metal wire. Strong odor. Newspaper dated 1979.	Bentonite Chips
Core 19-24			19 20 21 22 22 23		@ 19 ft.: plastic bags, cardboard, metal wire, bricks, and wood fragements.	
Core 24-29		-	24 25 26 27		@ 24 ft.: cardboard, wire, wood, plastic bags, colored glass, and styrofoam.	
Core 29-34			28 29 30 31 32 33		 ML: Greenish gray Sandy SILT, fine sand with trace clay, soft to medium stiff, low to moderate plasticity, moist to wet. @ 30.5 ft.: wet, caliche mottling. @ 31 ft.: brown. 	

Boring ID: SB-26

Drill Date: 8/29/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 29.5 ft. Groundwater (ft BGL): NA Project:Sudbury Road Landfill Remedial InvestigationClient:City of Walla WallaSite Location:Sudbury Road LandfillGround Elevation:800.02 ft. (NAVD 88)Coordinate System:NAD 83 SP, WA SouthLatitude/Northing:279015Longitude/Easting:2170377

Remarks: Soil sample (SB-26 28.5-29) collected for laboratory analysis.

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail		
Core 0-8					ML: Brown Sandy SILT, fine sand with trace clay, soft, low plasticity, dry to damp. Small roots in upper 3 ft. [Fill]			
Core 8-13					@ 8.5 ft.: dark greenish gray.			
Core 13-18			12 13 14 14 15 16		 MSW: Municipal Solid Waste composed of plastic debris, plastic bags, plywood, styrofoam, and cardboard. Moderate odor. @ 12 ft.: appears burned. @ 15 ft.: fabric and wood fragments. 	Bentonite		
Core 18-23					@ 18 ft.: grass clippings, plastic, foam, wood, and plywood.			
Core 23-28		18/6"		РГI	ML: Greenish gray Sandy SILT, fine sand with trace clay, soft to medium stiff, non- to low plasticity, damp to moist.			
SS 28- 29.5		25/6" 36/6"	28					

ft BGL = feet below ground level

USCS = Unified Soil Classification System

¥

Unique Well ID: BCE 345

Drill Date: 5/23/2012 Logged By: C. Schwyn/E. Ramirez Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 107 ft. Groundwater (ft BGL): 73 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 832.43 ft. (NAVD 88)
Casing Elevation: 834.89 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 277440
Longitude/Easting: 2169585

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USC: SYME	S BOL	Sample Description		W	ell Con	struction
			-4		_					
										Locking Cap
										PVC Cap
								_		Protective Steel Casing
Core	$\langle \langle \rangle \rangle$		E,			ML: Brown SILT, trace sand and clay, low plasticity, blocky	┤┡┩			g
0-7						structure, loose, dry.	· · · · · · · · · · · · · · · · · · ·			Concrete
			3				ľ			Pad
			<u> </u>				,	$^{\wedge}$		
	[]		5				1			2-in. dia.
			6				/	$^{\wedge}$		threaded
Core	1.1.		7			@ 7 ft.; laminated (1/4 -1/8" thick), dry to moist.	/	$^{\wedge}$		PVC, 2.9 ft
/-1/							/			ft BGL
							/			
							/			
			-12				/	$^{\wedge}$		
			13				/			
							/			Devile
			15				· · · ·	$^{\wedge}$		Chips
	<pre>//////</pre> ///////////////////////////////////		17				/	$^{\circ}$		
Core 17-27						@ 17 ft.: moist.		$^{\circ}$		
								$^{\circ}$		
								\wedge		
	公公		21					^		
							/	$^{\circ}$		
								$^{\circ}$		
			25					$^{\circ}$		
			26					\wedge		
Core			-27			0.07 %		$^{\wedge}$		
27-37						@ 27 ft.: dry - powdery.		$^{\circ}$		
			- 29				/	^		
	公公		30					^		
							/	\sim		
							· /	$^{\circ}$		
	1.1.1						/	\wedge	$ \wedge $	
Notes: ft BGL =	feet belov	w groun	id level	I .		USCS = Unified Soil Classification System			Pa	age 1 of 3
ft BTOC	; = feet bel	ow top	of well	casin	g	😴 🛛 = denotes groundwater table				

Unique Well ID: BCE 345

Drill Date: 5/23/2012 Logged By: C. Schwyn/E. Ramirez Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 107 ft. Groundwater (ft BGL): 73 ft.

ft BTOC = feet below top of well casing

Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 832.43 ft. (NAVD 88)
Casing Elevation: 834.89 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 277440
Longitude/Easting: 2169585

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBC	DL	Sample Description	Well Construction			Construction
					-					Detail
Core 37-47			35 			ML: SILT, cont.	 		< < < < <	
0			42 43 44 44 45 46 47			@ 44-45 ft.: some fine sand, dry to moist.			< < < <	I── Bentonite Chips
47-57			48 49 50 51 51 52 53 54			@ 47-52 ft.: very stiff.			< < < < <	
Core 57-67			55 56 57 57 58 59 60 60 61 62 63			@ 55 ft.: whitish caliche mottling.			< < < < < < < < < < < < < < < < < < <	
Core 67-77			64 65 66 66 67 68 69 71 71 72			@ 68 ft.: whitish caliche mottling.@ 72 ft.: very moist.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	< < < < < < <	
Notes:					11				1	
ft BGL =	feet belov	w grour	ıd level			USCS = Unified Soil Classification System				Page 2 of 3

= denotes groundwater table

¥

Drill Date: 5/23/2012 Logged By: C. Schwyn/E. Ramirez Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 107 ft. Groundwater (ft BGL): 73 ft.

Monitoring Well ID: MW-14b

Unique Well ID: BCE 345

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 832.43 ft. (NAVD 88) Casing Elevation: 834.89 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 277440 Longitude/Easting: 2169585

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
			▼ 73 −74 −75 −70		ML: SILT. cont. @ 73 ft.: wet. @ 75-77 ft.: moist.	
Core 77-87					@ 78.5 ft.: brown to dark brown.	
			81 		@ 81 ft.: moist.	
			84 85 86 86		@ 83 ft.: 12" zone of heavy caliche mottling.	
Core 87-97					@ 87 ft.: 6" thick fine to medium sand lens.	 ∧ ∧ ∧ ∧ 10-20 Colo. silica sand
			91 92 93 93 94		@ 91 ft.: iron oxide mottling, increasing downward.	● 0.01-in. slot PVC, 91.6 to
Core			95 96 97			106.6 ft BGL
97-107			98 99 100 101		GM: Dark brown Silty GRAVEL with cobbles, loose to moderately dense, well graded, fine to coarse sub-angular to sub-rounded sand, basalt gravel and cobbles, moist.	
					appears dry at 100 ft and wet at 101 ft. @ 103 ft.: 8" silty sand lens, immediately above 2" zone of heavy iron oxide cementation.	
	/`./`/					Bottom cap

Notes:

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BCE 338

Drill Date: 5/23/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 8.75-in Boring Depth (ft BGL): 87 ft. Groundwater (ft BGL): 30 ft.

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 789.64 ft. (NAVD 88) Casing Elevation: 792.04 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278598 Longitude/Easting: 2169554

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOI	Sample Description	We	l Cons Det	truction ail
								Locking Cap
							A	PVC Cap
								Protective
Core	1.1.		0		ML: Very dark gravish brown SILT trace fine sand soft to			Steel Casing
0-7					medium stiff, low plasticity, damp.			Concrete
			$\overline{}_{3}^{2}$					Pau
			4					
			5					
			6			\wedge	\land	
Core			7			\land	\land	
7-17			8		@ 7.5 to 17 ft.: sandy silt.	\land	\land	
					@ 8.5 ft.: dark brown.	\land	\wedge	4-in dia
						\land	$ \overline{\wedge} $	flush
						\land		PVC, 2.4 ft
			13					AGL to 68 ft BGL
			14					
								Bentonite Chips
						\wedge	\wedge	
Core 17-27						\land	\land	
						\wedge	\land	
			20			\land	\land	
	公众		21		@ 21 ft.: sandy silt.	\land	\land	
			22			\land		
			23		@ 23 ft.: 4" sandy lens.			
			25		@ 24 ft.: moist.			
	1		26					
Core			-27					
27-37			28				\land	
			₹ 29 ₹ 30		@ 30 ft.: wet.	\land	\land	
							\land	
ht BGL =	= feet belov	w aroun	nd level	I	USCS = Unified Soil Classification System		Pa	ae 1 of 3

ft BTOC = feet below top of well casing

USCS = Unified Soil Classification System

Unique Well ID: BCE 338

Drill Date: 5/23/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 8.75-in Boring Depth (ft BGL): 87 ft. Groundwater (ft BGL): 30 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 789.64 ft. (NAVD 88)
Casing Elevation: 792.04 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278598
Longitude/Easting: 2169554

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BG	USCS SYMBOL	Sample Description	Well Construction Detail
Core 37-47			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ML: SILT, cont. GM: Dark yellowish brown Silty GRAVEL with cobbles, medium dense, well graded, fine to coarse sub-angular to sub-rounded sand, basalt gravel and cobbles, wet. @ 42 ft.: 8" sandy lens.	\lambda \lambda \lambda 4-in. dia. \lambda \lambda flush threaded \lambda \lambda \lambda PVC, 2.4 ft \lambda \lambda \lambda AGL to 68 ft \lambda \lambda \lambda \lambda \lambd
Core 47-57		-45	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
Core 57-67			X X <td> @ 59 ft.: dark brown. ML: Dark brown Sandy SILT, fine to medium sand, soft, low plasticity, wet. @ 62 ft.: 6" sandy lens. GM: Dark gravish brown Silty GRAVEL with cobbles. loose </td> <td></td>	 @ 59 ft.: dark brown. ML: Dark brown Sandy SILT, fine to medium sand, soft, low plasticity, wet. @ 62 ft.: 6" sandy lens. GM: Dark gravish brown Silty GRAVEL with cobbles. loose 	
Notes: ft BGL =	feet belo	w ground level	⊠ ⊠ ⊠ ⊠	USCS = Unified Soil Classification System	Page 2 of 3

Unique Well ID: BCE 338

Drill Date: 5/23/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 8.75-in Boring Depth (ft BGL): 87 ft. Groundwater (ft BGL): 30 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 789.64 ft. (NAVD 88)
Casing Elevation: 792.04 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278598
Longitude/Easting: 2169554

						1	
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail	
Core 67-77			68 69 70 71	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	GM: Silty GRAVEL, Cont.		10-20 Colo. silica sand
Core 77-82			72 73 74 75 76 77 78 78 80	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	@ 73 ft.: dry. @ 75 ft.: moist.		0.01-in. slot PVC, 68 to 83 ft BGL
Core 82-87			81 82 83 84 85 86 87		 @ 83.5 ft.: 12" silt layer. @ 85 ft.: decreasing moisture, mosit to damp. @ 86 ft.: dry. 		Bottom cap

BBH 612 Unique Well ID:

Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 844.75 ft. (NAVD 88)
Casing Elevation: 847.01 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278853
Longitude/Easting: 2170655

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail		
						Locking Cap		
						PVC Cap		
Core						Protective Steel Casing		
0-7					ML: Dark yellowish brown Sandy SILT, fine sand and trace clay, soft, low plasticity, damp.	Concrete Pad		
Core 7-17			4 5 6 7 			2-in. dia. flush threaded PVC, 2.3 ft AGL to 79.6 ft BGL		
					@ 9 ft.: olive gray.	A A 8.75-in A A borehole		
					MSW: Municipal Solid Waste mixed with soil, moderate to high compaction, strong odor. @ 13 to 15 ft.: Highly compact plastic, paper, wood, carpet.			
Core 17-27			17 18 19 20 21		@ 17 ft.: Moderately compact soil, paper, wood, metal, and fabric intebedded with soil.	Bentonite Chips		
			22 		@ 22 ft.: Newspapers, plastic metal.			
			25		@ 24 ft.: Uncompacted soil.			
Core 27-37			27		@ 27 ft.: Fabric, with dark staining.			
Notes: ft BGL = ft BTOC	feet belo	w grour ow top	nd level of well	l casing	USCS = Unified Soil Classification System = denotes groundwater table	Page 1 of 3		

BBH 612 Unique Well ID:

Drill Date: 5/11/2012	Project: Sudbury Road Landfill Remedial Investigation
Logged By: E. Ramirez (Floyd Snider)	Client: City of Walla Walla
Drilled By: Environmental West Exp.	Site Location: Sudbury Road Landfill
Drill Type: Sonic	Ground Elevation: 844.75 ft. (NAVD 88)
Sample Method: 4.25-in Sonic Core	Casing Elevation: 847.01 ft. (NAVD 88)
Boring Diameter: 8.75-in to 38 ft. 6.75-in to 97 ft	Coordinate System: NAD 83 SP, WA South
Boring Depth (ft BGI): 97 ft	Latitude/Northing: 278853
Groundwater (ft BGL): 76 ft.	Longitude/Easting: 2170655

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons De	struction tail
Core 37-47 Core 47-57					MSW: Municipal Solid Waste, cont. @ 37 ft.: Loosely compacted plastic, paper, wood, asphalt, concrete, and aggregates. @ 47 ft.: Wood, tire, rounded cobbles, gravel, paper, plastic, newpaper and grass. Newspaper dated 1984.		2-in. dia. flush threaded PVC, 2.3 ft AGL to 79.6 ft BGL 6.75-in borehole
Core 57-67					ML: Very pale orange Sandy SILT, fine to medium sand, soft to firm, low plasticity, damp. Some metal and debris intermixed with the soil. @ 57.5 ft.: dark yellow brown.		Bentonite Chips
ft BGL = ft BTOC	feet belo = feet belo	w grour low top	nd level of well	l casing	USCS = Unified Soil Classification System = denotes groundwater table	Pa	age 2 of 3

Unique Well ID: BBH 612

Drill Data: 5/11/2012	Project: Sudbury Road Landfill Remedial Investigation
Lagrad Pur E Damiraz (EloudiSpidar)	Client: City of Walla Walla
Drilled By: Environmental West Evo	Site Location: Sudbury Road Landfill
Drill Type, Sopie	Ground Elevation: 844.75 ft. (NAVD 88)
Sample Method: 4.05 in Cania Cara	Casing Elevation: 847.01 ft. (NAVD 88)
Boring Diameter: 9 75 in to 29 ft 6 75 in to 07 ft	Coordinate System: NAD 83 SP. WA South
Boring Depth (ft BGL): 07 ft	Latitude/Northing: 278853
Groundwater (ft BGL): 76 ft	Longitude/Easting: 2170655
	o

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMB0	; DL	Sample Description	We	ell C	onstruction Detail
Core 67-77			64 65 66 66 67 68 69			ML: SILT, cont. @ 67 ft.: moist.		A A	
			→ 70 → 71 → 72 → 73 → 74 → 75 → 76			@ 72 ft.: caliche mottling.@ 73 ft.: wet.		< < < < <	
Core 77-87						@ 80 to 83 ft.: caliche mottling.		************************************	
Core 87-97						GM: Moderate brown Silty GRAVEL with cobbles, sand and clay, medium dense, well graded, fine to coarse sub-angular to well-rounded sand, gravel and cobbles, fines exhibit moderate plasticity, wet.			 10-20 Colo. silica sand 0.01-in. slot PVC, 79.6 to 94.6 ft BGL
			92 93 94 94 95 96 96			@ 95 ft.: 6" sandy lens.			— Bottom cap

Notes:

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BCE 343

Drill Date: 5/20/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 63 ft. Groundwater (ft BGL): 35.5 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 807.52 ft. (NAVD 88)
Casing Elevation: 810.11 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278422
Longitude/Easting: 2169556

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons	truction
							Locking Cap PVC Cap Protective
Core 0-8					Fill: Crushed glass with some soil. ML: Very dark grayish brown Sandy SILT, soft to medium		Steel Casing Concrete Pad
Core 8-18					@ 8 ft.: 2" lens of white material, possible asbestos. ML: Brown Sandy SILT, trace fine sand and clay, soft, low plasticity, damp.		2-in. dia. flush threaded PVC, 2.5 ft AGL to 47.1
Core 18-28			- 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 23 - 23		@ 12.5 ft.: stiff.		ft BGL Bentonite Chips
Core 28-38			24 25 26 27 28 29 30		 @ 23.5 ft.: 6" sandy lens. @ 29 ft.: moist. 		
Notes: ft BGL = ft BTOC	= feet belo	w grour	nd level	l casing	USCS = Unified Soil Classification System	Pa	ge 1 of 2

Unique Well ID: BCE 343

Drill Date: 5/20/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 63 ft. Groundwater (ft BGL): 35.5 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 807.52 ft. (NAVD 88)
Casing Elevation: 810.11 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278422
Longitude/Easting: 2169556

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction
			31 		ML: SILT, cont.	
			¥ → 36 → 37 → 38		CL: Yellowish Brown Silty CLAY, medium stiff, high plasticity, wet.	
					ML: Brown Sandy SILT, trace fine sand and clay, soft, medium to high plasticity, caliche mottling, wet.	
			45 46 47 48		@ 44 ft.: dark yellowish brown, low plasticity fines.	← 10-20 Colo. silica sand
Core 48-58					@ 48 ft.: brown.	0.01-in. slot
Core 58-63					 @ 56 ft.: moist, increased caliche mottling. @ 58 ft.: dark brown, with grayish brown caliche mottling. @ 59 ft.: 12" sandy lens. 	62.1 ft BGL
					GM: Dark brown Silty GRAVEL with cobbles, medium dense, well graded, fine to coarse sub-angular to sub-rounded sand, basalt gravel and cobbles (some fractured), rust staining and mottling, wet.	Bottom cap

Notes: ft BGL = feet below ground level

ft BTOC = feet below top of well casing

Unique Well ID: BBH 611

Drill Date: 5/20/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 77 ft. Groundwater (ft BGL): 55.5 ft.

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 814.83 ft. (NAVD 88) Casing Elevation: 814.30 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278754 Longitude/Easting: 2169354

Remarks:

						1		
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	'	Well (
								Detall
Coro			0					Flush Monument
0-7	公公				ML: Brown Sandy SILT, soft, low plasticity, dry.		Ì	PVC Cap
			2					
	ふぼ		3					
	[.]		5				^	
			6			\land		
	//		-7			\land		
Core						\land	\land	
			L.			\land	\land	
	公公				@ 10 ft.: damp.	\land	\wedge	2 in dia
						\land	\wedge	flush
						\land	\land	threaded PVC 0.2 ft
	公公					\land	\land	BGL to 59.6
					@12.5 ft.: 6" fine sand lens.	\land	\land	ft BGL
						\land	\land	- Dontonito
						\land	\land	Chips
			- 16			\land		
Core	$\langle \cdot \rangle$					\land		
17-27	公公					\land		
					@19 ft.: 6" fine sand lens.			
			20					
			- 22					
	公公		23					
			24					
			- 25					
			26		@ 25.5 ft.: 12" fine sand lens.			
Core	1.1.		27					
27-37			28					
			29					
	\sum		30					
	公公		31					
	$\langle n \rangle \langle n \rangle$		32				\land	
Notes:	feet helo	w arour	nd level	1	USCS - Unified Soil Classification System			Page 1 of 2
1.000		a groui			USUS – Unineu Sui Classification System			Fayerus

ft BTOC = feet below top of well casing

= denotes groundwater table ¥

Unique Well ID: BBH 611

Drill Date: 5/20/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 77 ft. Groundwater (ft BGL): 55.5 ft.

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 814.83 ft. (NAVD 88) Casing Elevation: 814.30 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278754 Longitude/Easting: 2169354

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	U S1	ISCS (MBOL	Sample Description	Well Construction Detail
Core 37-47						ML: SILT, cont. @38 ft.: 8" fine sand lens. @ 39 ft.: moist.	
Core 47-57						 @ 45 ft.: dark yellowish brown mottling. @ 48 to 52.5 ft.: white caliche mottling. 	
Core 57-67						 @ 54 ft.: grayish brown, some white caliche with occasional rust staining. @ 55.5 ft.: wet. 	 ∧ ∧
			60 61 62 63 64 65 65 66			@60 ft.: sporadic rust staining.@ 64 ft.: olive brown.	
Notes: ft BGL =	feet belo	w grour	nd level			USCS = Unified Soil Classification System	Page 2 of 3

ft BTOC = feet below top of well casing

= denotes groundwater table ¥

Unique Well ID: BBH 611

Drill Date: 5/20/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 77 ft. Groundwater (ft BGL): 55.5 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 814.83 ft. (NAVD 88)
Casing Elevation: 814.30 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278754
Longitude/Easting: 2169354

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons De	struction etail
Core 67-77			67 68 69 70 71		ML: SILT, cont. SM: Brown Silty SAND, fine to medium, angular to subrounded sand, loose, poorly graded, wet. GM: Dark brown Silty GRAVEL with sand and cobbles, fine to coarse sub-angular to well-rounded basalt gravel, well		- 0.01-in. slot PVC, 59.6 to 74.6 ft BGL
					graded, moderately dense, low plasticity fines, wet. @ 74.5 ft.: 6" sandy gravel lens with sand primarily composed of coarse basalt.		- Bottom cap

Unique Well ID: **BCE 337**

Drill Date: 5/15/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 57 ft. Groundwater (ft BGL): 32 ft.

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 789.51 ft. (NAVD 88) Casing Elevation: 791.83 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278509 Longitude/Easting: 2169123

Remarks:

					1		
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Wel	l Construction
			1 				Steel Casing
Core 0-7					ML: Dark yellowish brown Sandy SILT, trace sand and clay,	┦╙╫╞	
			2		soft, low plasticity, dry.	\wedge	 Concrete ∧ Pad
	公众		3			\land	\wedge
						∧ _/	\wedge
			5				^
			6				\wedge
Core			7				^
/-1/							
					@ 9 ft.: damp.		2-in. dia.
							∧ flush threaded
			-12				A PVC, 2.9 ft
			13				∧ ft BGL
			14				
					@ 14.5 ft.: 4" sandy lens.		Chips
			- 17				
Core 17-27							
			19				\wedge
	公众		20			\land	^
			21				^
			22				^
			23 24				
			25				
Core			27		@ 27.4 · maint		$\overline{\mathbf{A}}$
27-37			-28				~
			29				
ft BGL =	feet belov	w groun	id level		USCS = Unified Soil Classification System		Page 1 of 2

ft BTOC = feet below top of well casing

= denotes groundwater table ¥

Unique Well ID: BCE 337

Drill Date: 5/15/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 57 ft. Groundwater (ft BGL): 32 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 789.51 ft. (NAVD 88)
Casing Elevation: 791.83 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278509
Longitude/Easting: 2169123

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	We	ell Cons De	struction tail
Core 37-47 Core 47-57			→ 30 → 31 → 32 → 33 → 34 → 35 → 36 → 37 → 38 → 39 → 40 → 42 → 43 → 44 → 45 → 46 → 47 → 48 → 49 → 50 → 51 → 52 → 53 → 54 → 55 → 55		 ML: SILT, cont. @ 32 ft.: wet. SM: Brown Silty SAND, poorly graded, loose, wet. ML: Brown Sandy SILT, medium dense, moderate plasticity, some mottling, wet. GM: Olive brown Silty GRAVEL with sand and cobbles, fine to coarse sub-angular to well-rounded basalt sand, gravel, and cobbles, well graded, loose, wet. SM: Dark yellowish brown Silty SAND, fine to medium sand, poorly graded, loose to moderately dense, wet. @ 47 ft.: dark brown. @ 47 ft.: dark brown. @ 47 ft.: dean sand (SP), trace fines, felsic and mafic grains. GM: Dark brown Silty GRAVEL with sand and cobbles, fine to coarse sub-angular to well-rounded basalt sand, gravel and cobbles, well graded, loose, fines have moderate plasticity, wet. 			10-20 Colo. silica sand 0.01-in. slot PVC, 41.6 to 56.6 ft BGL
			57					Bottom cap

Unique Well ID: BCE 342

Drill Date: 5/13/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 83 ft. Groundwater (ft BGL): 40 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 796.59 ft. (NAVD 88) Casing Elevation: 796.04 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278381 Longitude/Easting: 2169232

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	v	Vell Cons	struction
Core 0-8					ML: Brown to dark brown Sandy SILT, trace sand and clay, loose, low plasticity, dry.			Flush Monument PVC Cap
Core 8-18					@ 11 ft.: 12" fine sand lens. @13 ft.: 6" fine sand lens.			2-in. dia. flush threaded PVC, 0.5 ft AGL to 75.6 ft BGL
Core 18-28					@ 21 ft.: moist.			Bentonite Chips
Core 28-38			25 26 27 27 28 29 30 30 31 31 32					
Notes: ft BGL = ft BTOC	feet belov = feet bel	w grour low top	nd level of well	casing	USCS = Unified Soil Classification System		Pa	ge 1 of 3

Unique Well ID: BCE 342

Drill Date: 5/13/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 83 ft. Groundwater (ft BGL): 40 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 796.59 ft. (NAVD 88)
Casing Elevation: 796.04 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278381
Longitude/Easting: 2169232

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	W	ell Construction Detail
Core 38-48			→ 33 → 34 → 35 → 36 → 37 → 38 → 39 → 40 → 41 → 41 → 42 → 43		ML: SILT, cont. @ 37 ft.: mottling. @ 40 ft.: wet.		
Core 48-58			44 44 45 46 47 48 49 50 51 52 53		GC: Olive brown Clayey GRAVEL with sand and cobbles, fine to coarse sub-rounded to rounded basalt gravel, moderate grading, moderate to high plasticity fines, wet.		
Core 58-68			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 GM: Dark brown Silty GRAVEL with sand and cobbles, fine to coarse sub-angular to well-rounded basalt gravel, loose, well graded, moderate plasticity fines, wet. @ 59 ft.: dark reddish brown. @ 65 to 68 ft.: strong brown above very dark gray mottling. 	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Notes: ft BGL = ft BTOC	feet belov = feet bel	w grour ow top	nd level of well	casing	USCS = Unified Soil Classification System = denotes groundwater table		Page 2 of 3

Unique Well ID: BCE 342

Drill Date: 5/13/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 83 ft. Groundwater (ft BGL): 40 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 796.59 ft. (NAVD 88)
Casing Elevation: 796.04 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278381
Longitude/Easting: 2169232

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well	Construction Detail
Core 68-78 Core 78-83					GM: GRAVEL, cont. @ 68 ft.: moisture decreases to damp to moist. @ 77 ft.: moisture decreases to dry. @ 78 ft.: wet.		 10-20 Colo. silica sand 0.01-in. slot PVC, 75.6 to 80.6 ft BGL Bottom cap
					@ 82 ft.: increasing fines.		

Unique Well ID: **BCE 341**

Drill Date: 5/12/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 58 ft. Groundwater (ft BGL): 37 ft.

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 794.84 ft. (NAVD 88) Casing Elevation: 794.27 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278388 Longitude/Easting: 2169241

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons	truction ail
Core 0-8					ML: Dark grayish brown Sandy SILT, soft, low plasticity, dry.		Flush Monument
Core 8-18			- - - - - - - - - - - - - - - - - - -		@ 11 ft.: 12" fine sand lens.		2-in. dia. flush threaded PVC Cap Concrete Pad
Core 18-28			12 13 14 15 16 17 18 19 20 21 22 23 24		@ 11 ft.: 12" fine sand lens. @14 ft.: 6" fine sand lens.		PVC, 0.25 ft BGL to 39.6 ft BGL Bentonite Chips
Core 28-38			24 25 26 27 28 29 30 31 32		@ 24 ft.: moist. @ 27 ft.: medium plasticity.		
ft BGL =	feet belov	w grour	nd level of well	casing	USCS = Unified Soil Classification System	Pa	ge 1 of 2

Unique Well ID: BCE 341

Drill Date: 5/12/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 58 ft. Groundwater (ft BGL): 37 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 794.84 ft. (NAVD 88)
Casing Elevation: 794.27 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278388
Longitude/Easting: 2169241

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well	Construction Detail
Core 38-48			→ 33 → 34 → 35 → 36 → 37 → 38 → 39 → 40 → 41 → 42 → 43 → 44		ML: SILT, cont. @ 37 ft.: wet. @ 40 ft.: mottling.		 10-20 Colo. silica sand
Core 48-58			- 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52		GM: Olive brown Silty GRAVEL with sand and cobbles, fine to coarse angular to sub-rounded basalt gravel, loose, well graded, low to high plasticity fines, wet.		0.01-in. slot PVC, 39.6 to 54.6 ft BGL
							— Bottom cap

Notes:

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BCE 340

Drill Date: 5/14/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 112 ft. Groundwater (ft BGL): 45 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 814.29 ft. (NAVD 88) Casing Elevation: 813.60 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278242 Longitude/Easting: 2168933

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	US SYN	CS //BOL	Sample Description		W	ell Con	struction
							+		De	
Core	~ ~ ~ ~ ~		<u> </u>		111					Monument
0-7			1			ML: Brown Sandy SILT, soft, low plasticity, dry.		Ħ		PVC Cap
	公公		2					\wedge		
			3					\wedge		
								\wedge		
			5					\wedge		
			6			@ 5 ft.: 6" caliche mottling.				
Core			7					\wedge		
7-11			8					\wedge		
			9			@ 8 ft.: 8" fine sand lens.				
			10			(200, 10, 10) find could long		\wedge		2-in. dia.
Core										threaded
11-15			12					$\overline{\mathbf{A}}$		PVC, 0.3 ft AGL to
			13					\wedge		105.6 ft BGL
	公公		14					\wedge		
Core								\wedge		Bentonite
15-17						@15 ft.: 6" fine sand lens.		\wedge		ompo
Core	1.1.1							\wedge		
17-27								\wedge		
						@19-22 ft.: fine sand content increases.		\wedge		
								\wedge		
								\wedge		
								\wedge		
								\wedge		
						@ 24 ft.: 8" fine sand lens.		\wedge		
			- 25					\wedge		
			\mathbf{L}_{27}^{20}					\wedge		
Core 27-37			2/					\wedge		
2/ 0/			- 29					\wedge	\land	
	\sum							\wedge	\land	
								\wedge		
								\wedge		
Notes:	✓ `↓		<u> </u>						1.1	
ft BGL =	feet belo	w groun	d level			USCS = Unified Soil Classification System			Pa	age 1 of 4
⊥ tt BTOC	= teet bel	low top	ot well	casi	na	alpha = denotes groundwater table				

Unique Well ID: BCE 340

Drill Date: 5/14/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 112 ft. Groundwater (ft BGL): 45 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 814.29 ft. (NAVD 88) Casing Elevation: 813.60 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278242 Longitude/Easting: 2168933

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well	Construction Detail
Core 37-47					ML: SILT, cont.		
Core 47-57 Core			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		@ 45 ft.: wet. @ 52 ft.: brown/dark brown.		 Bentonite Chips
57-67			58 59 60 61 61 62 63 64 64 65 66		SM: Dark brown Silty SAND, angular basalt sand, loose, moderate grading, wet. @ 58 to 58.5 ft.: caliche mottling . ML: Dark yellowish brown Sandy SILT, medium stiff, low plasticity, wet.		
Notes: ft BGL = ft BTOC	feet belov	w grour low top	nd level	casing	USCS = Unified Soil Classification System		Page 2 of 4

Unique Well ID: **BCE 340**

Drill Date: 5/14/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 112 ft. Groundwater (ft BGL): 45 ft.

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 814.29 ft. (NAVD 88) Casing Elevation: 813.60 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278242 Longitude/Easting: 2168933

Remarks:

SAMPLE	DRIVE /	BLOW DEF	тн	USCS		Well Construction
TYPE / ID	RECOVERY	COUNT	3GS	SYMBOI	Sample Description	Detail
Core 67-77			- 67 - 68		ML: SILT, cont.	
			- 71 - 71 - 72 - 73 - 73 - 74 - 74		@ 71 to 76 ft.: fining of unit downward from Dark brown Clayey SILT to Silty CLAY, medium stiff, moderate to high plasticity, mottling in lower ft.	
Core 77-87			·75 ·76 ·77 · ·77 · ·78 ·		GM: Dark brown Silty GRAVEL with sand and cobbles, fine to coarse sub-angular to well-rounded basalt gravel, well graded, loose, moderate plasticity fines, wet.	
			- 80 - 81 - 82 - 83 -		@ 82 ft.: dark yellowish brown with dark brown mottling.	
Core 87-97			- 85 - 86 - 87 - 88	8 : 8 : 8 : 8 : 8 : 8 8 : 8 : 8 : 8 : 8	@ 87 ft.: brown/dark brown.	
			- 89 - 90 - 91 - 92 - - 93			
			- 94 - 95 - 95 - 96 - 97		@ 94 ft.: dark reddish brown.	
Oore 97-107			- 98 - - 99 -		@ 97 ft.: dark brown, fines increase.	
ft BGL =	feet below	w ground le	evel		USCS = Unified Soil Classification System	Page 3 of 4

ft BTOC = feet below top of well casing

= denotes groundwater table ¥

Unique Well ID: BCE 340

Drill Date: 5/14/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 112 ft. Groundwater (ft BGL): 45 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 814.29 ft. (NAVD 88)
Casing Elevation: 813.60 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278242
Longitude/Easting: 2168933

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons Det	struction tail
Core 107-112			- 100 - 101 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 108 - 107 - 108 - 107 - 108 - 101 - 101 - 101 - 102 - 01 - 101 - 102 - 01 - 02 - 01 - 01		GM: GRAVEL, cont. @ 103 ft.: dark yellowish brown, with 6" silty clay lens.		10-20 Colo. silica sand 0.01-in. slot PVC, 105.6 to 110.6 ft BGL Bottom cap

Unique Well ID: BCE 339

Drill Date: 5/13/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 82 ft. Groundwater (ft BGL): 45 ft.

Remarks: Warm, light breeze

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 813.91 ft. MSL Casing Elevation: 813.26 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278250 Longitude/Easting: 2168939

BLOW DEPTH SAMPLE DRIVE / USCS Well Construction Sample Description TYPE / ID RECOVERY COUNT FT BGS SYMBOL Detail Flush -0 Monument Core ML: Brown Sandy SILT, soft, low plasticity, dry to damp. 0-7 PVC Cap Core 7-17 @ 8 ft.: 12" fine sand lens. 2-in. dia. @10 ft.: 6" fine sand lens. flush threaded PVC, 0.25 ft BGL to 65.6 12 ft BGL Λ - 15 Bentonite 1 Chips 16 Core 17-27 18 19 20 \wedge @20 ft.: 8" fine sand lens. - 21 Λ 22 23 24 25 26 27 Core 27-37 29 Λ 30 Λ 31 Λ 32 Notes: ft BGL = feet below ground level USCS = Unified Soil Classification System Page 1 of 3 ft BTOC = feet below top of well casing = denotes groundwater table ¥

Unique Well ID: BCE 339

Drill Date: 5/13/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 82 ft. Groundwater (ft BGL): 45 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 813.91 ft. MSL Casing Elevation: 813.26 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278250 Longitude/Easting: 2168939

Remarks: Warm, light breeze

ft BTOC = feet below top of well casing

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	S	USCS SYMBC	DL	Sample Description		Well Construction Detail \Lambda \Lambda		
			33 34 35				ML: SILT, cont.				
Core 37-47			36 37 38 39 40 41				@ 38 ft.: olive brown, moist.			< < < < <<<<<<>>	
			42 43 44 44 V 45				@ 43 ft.: dark grayish brown.				
Core 47-57			46 47 48 49				@ 45 ft.: wet. @ 47.5 ft.: olive brown.			<	
			50 51 52 53 53 54				@ 52 ft.: brown/dark brown.	A		 	
Core 57-67							@ 59 to 61 ft.: mottling.			 	
			60 61 62 63 64 65 65 66				-	< < <u></u>		< <	
Notes: ft BGL =	feet belov	Image: Notes: Image: USCS = Unified Soil Classification System Page 2 of 3									

= denotes groundwater table

¥

Unique Well ID: BCE 339

Drill Date: 5/13/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 82 ft. Groundwater (ft BGL): 45 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 813.91 ft. MSL Casing Elevation: 813.26 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278250 Longitude/Easting: 2168939

neman	13. Wai	in, ngi		20			
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail	า
Core 67-77					SM: Dark brown Silty SAND, angular basalt sand, loose, moderate grading, wet. ML: Dark brown Sandy SILT, medium stiff, low plasticity, wet.	■ 10-20 silica s	Colo. sand
Core 77-82					 @ 73.5 ft.: dark brown/brown. CL: Fining of unit downward from Olive brown Clayey SILT to Silty CLAY, moderate to high plasticity, mottling at 78 to 79 ft. 	0.01-in PVC, 1 80.6 ft	n. slot 65.6 to ∶BGL
					GM: Dark brown Silty GRAVEL with sand and cobbles, fine to coarse sub-angular to well-rounded basalt gravel, loose, well graded, moderate plasticity fines, wet.	Bottor	n cap

Remarks: Warm, light breeze

Unique Well ID: BBH 613

Drill Date: 5/21/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 52 ft. Groundwater (ft BGL): 32 Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 794.05 ft. (NAVD 88) Casing Elevation: 796.49 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278929 Longitude/Easting: 2170158

			-					
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBO	Sample Description	w	ell Cons' Det	struction tail
								Locking Cap
			2				┩┼─	PVC Cap
								Protective
Core	1.1.		0		ML: Gravich brown Sandy SILT, find cand with trace clay			Steel Casing
0-3			1 		soft, low plasticity, roots in upper 1.5 ft., dry.			Concrete
			2					Pau
Core 3-7					@ 3.5 ft : color transitions from dark brown to light vallowish			
			5		brown to very dark grayish brown	\land	\land	
			6			^	\land	
Core			7		@ 7 ft.: brown.			
/-1/								
								2-in. dia.
						~	\wedge	flush threaded
			12			∧	\land	PVC, 2.6 ft AGL to 36.6
			13			∧	\land	ft BGL
								Bentonite
			10					Chips
Core			17					
17-27			18		@ 17 ft.: caliche mottling.	∧	\wedge	
			19			∧	\land	
			20			^	\wedge	
			-22					
			24					
			25			\land	\wedge	
			26			^	\land	
Core 27-37	公八		28				\land	
	公众		29					
Notes:	factheles	u arour				/	P	
ft BTOC	= feet bel	w grour ow top	of well	casing	= denotes groundwater table		Ра	ge 1 of 2

Unique Well ID: BBH 613

Drill Date: 5/21/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 52 ft. Groundwater (ft BGL): 32 Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 794.05 ft. (NAVD 88) Casing Elevation: 796.49 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278929 Longitude/Easting: 2170158

Remarks:

SAMPLE DF TYPE / ID REC	IVE / BLOW	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 7.2		→ 30 → 31 → 32 → 33 → 35 → 35 → 36 → 37 → 38 → 37 → 38 → 40 → 41 → 42 → 44 → 45 → 46 → 47 → 48 → 49 → 50 → 51 → 52		 ML: Silt, cont. @ 32 ft.: grayish brown, 1 cm layer of solid caliche, wet. @ 34 ft.: dark brown. @ 37 ft.: hematite staining, periodic cobble and coarse gravel embedded in silt. @ 40 ft.: very dark grayish brown. @ 42 ft.: brown. SP: Dark reddish brown clean SAND, subangular, basalt, wet. GM: Dark brown Silty GRAVEL and cobbles with silty matrix, fine to coarse sub-angular to well-rounded basalt gravel, well graded, moderate plasticity fines, wet. 	A A B B B B

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BBH 615

Drill Date: 5/22/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 47 ft. Groundwater (ft BGL): 26.5 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Elevation: 796.85 ft. (NAVD 88) Casing Elevation: 799.30 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 279135 Longitude/Easting: 2170601

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USC SYME	S BOL	Sample Description	\ \	Vell Cons Det	truction ail
									Locking Cap PVC Cap Protective Steel Casing
Core 0-7			0 1 2 3 4 5 6			ML: Dark grayish brown Sandy SILT, fine sand with trace clay, soft to medium stiff, low plasticity, roots in upper 1 ft., damp to moist. @ 3 ft.: very dark grayish brown.		*	Concrete Pad
Core 7-9 Core 9-12						@ 7 ft.: brown, dry to damp.			2-in. dia. flush threaded
Core 12-17			12 13 14 15 16						PVC, 2.8 ft AGL to 26.6 ft BGL Bentonite Chips
Core 17-27						@ 17 ft.: dark grayish brown, moist.			
Core 27-37			25 26 27 27 27 28 29 30			@ 26.5 ft.: wet.			10-20 Colo. silica sand
Notes: ft BGL = ft BTOC	= feet belov c = feet bel	v grour ow top	nd level of well	casin	ng	USCS = Unified Soil Classification System		Pa	ge 1 of 2

Unique Well ID: BBH 615

Drill Date: 5/22/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 47 ft. Groundwater (ft BGL): 26.5 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 796.85 ft. (NAVD 88)
Casing Elevation: 799.30 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 279135
Longitude/Easting: 2170601

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well	Construction Detail
Core 37-47				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ML: SILT, cont. GM: Dark brown Silty GRAVEL with cobbles in a silty matrix, fine to coarse sub-angular to well-rounded basalt gravel, well graded, moderate plasticity fines, wet.		0.01-in. slot PVC, 26.6 to 41.6 ft BGL
			40 41 42 43 43 44 44 45 46	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.			── Bottom cap ▲ Bentonite Chips

Unique Well ID: BCE 348

Drill Date: 5/22/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 42 ft. Groundwater (ft BGL): 26 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 793.00 ft. (NAVD 88)
Casing Elevation: 795.44 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 277931
Longitude/Easting: 2171770

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH	USCS SYMBOL	Sample Description W	ell Construction Detail
		-4			Locking Cap
Core 0-7				Fill: sand and gravel with silt (road base). ML: Very dark grayish brown Sandy SILT, fine sand with trace clay, soft to medium stiff, low plasticity, damp.	Concrete Pad
Core 7-17				@ 7 ft.: dark grayish brown, moist.	∧ ∧ ∧ ∠ 2-in. dia.
				@ 12 ft.: hematite mottling and staining.	 threaded PVC, 2.5 ft AGL to 25.6 ft BGL Bentonite Chips
Core 17-27				@ 17 ft.: brown.	
Core 27-37				@ 26 ft.: wet. GM: Dark brown Sandy GRAVEL with cobbles in a silty matrix, fine to coarse sub-angular to well-rounded basalt gravel loose well graded moderate plasiticity fines wet	 10-20 Colo. silica sand
Notes: Image: State and the planting index, index in graded,					

Unique Well ID: BCE 348

Drill Date: 5/22/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 42 ft. Groundwater (ft BGL): 26 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 793.00 ft. (NAVD 88)
Casing Elevation: 795.44 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 277931
Longitude/Easting: 2171770

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail		
Core 37-42					GM: GRAVEL, cont.		0.01-in. slot PVC, 25.6 to 40.6 ft BGL Bottom cap	

Unique Well ID: BCE 336

Drill Date: 5/9/2012 Logged By: C. Schwyn/E. Ramirez Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 92 ft. Groundwater (ft BGL): 75 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 832.63 ft. (NAVD 88) Casing Elevation: 834.91 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278040 Longitude/Easting: 2170640

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	US SYN	SCS MBOL	Sample Description	W	ell Cons	truction
								Det	
									Locking Cap
									PVC Cap
									Protective Steel Casing
Core						ML: Brown SILT, trace sand and clay, soft, low plasticity, dry			g
0-7						to damp.	\land	\wedge	Concrete Pad
	$\langle \rangle / \rangle$						\land	\wedge	
			4				∧	\wedge	
			5				^	\land	
			6				∧	\land	
Core			7						
7-17			8						
						@ 9 ft.: 12" zone of very fine sand.			2-in dia
								\wedge	flush
			12				\land	\wedge	PVC, 2.9 ft
							\land	\wedge	AGL to 76.6 ft BGL
			14				^	\wedge	
			15				^		Bentonite Chips
			16						ompo
Core									
			20						
			21			@ 20 ft.: 12" zone of very fine sand.	\land	\wedge	
			22				∧	\wedge	
			23					\land	
			24				^	\wedge	
			25					\wedge	
	~		20						
Core 27-37			28						
			29						
Notes:				, , , , <u>, , , , , , , , , , , , , , , </u>			_ 1 1	<u> </u>	
ft BGL =	= ieet beiov = feet bel	w grour low top	of well	ı casi	ing	usus = Unitied Soil Classification System		Pa	ge 1 of 3

Unique Well ID: **BCE 336**

Drill Date: 5/9/2012 Logged By: C. Schwyn/E. Ramirez Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 92 ft. Groundwater (ft BGL): 75 ft.

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 832.63 ft. (NAVD 88) Casing Elevation: 834.91 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278040 Longitude/Easting: 2170640

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	W	onstruction Detail	
Core 37-47					ML: SILT, cont.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	— Bentonite Chips
Core 47-57			+ 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 + 55				< < < < < < < <	
Core 57-67					 @ 57 ft.: white caliche with yellow brown mottling. @ 60 ft.: appears wet. 		< < < < <	

ft BTOC = feet below top of well casing

USCS = Unified Soil Classification System

Unique Well ID: BCE 336

Drill Date: 5/9/2012 Logged By: C. Schwyn/E. Ramirez Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 92 ft. Groundwater (ft BGL): 75 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 832.63 ft. (NAVD 88) Casing Elevation: 834.91 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278040 Longitude/Easting: 2170640

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMB0	; OL	Sample Description	W	ell Cons	truction
Core 67-77			64 65 66 67 68 69 70 71 72			ML: SILT, cont.			
Core 77-87						 @ 72 ft.: damp-moist. @ 73.5 ft.: caliche mottling. GM: Dark yellowish brown Sandy GRAVEL with cobbles in a silty matrix, fine to coarse sub-angular to well-rounded basalt gravel, well graded, wet. 			10-20 Colo. silica sand
Core 87-92			83 84 85 86 87 88 89 90 91 92						0.01-in. slot PVC, 76.6 to 91.6 ft BGL Bottom cap

Notes:

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BHP200

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 52 ft. Groundwater (ft BGL): 31 ft. Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 791.98 ft. (NAVD 88)
Casing Elevation: 794.50 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 278771
Longitude/Easting: 2169852

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	US SYN	SCS MBOL	Sample Description	W	ell Cons Det	struction ail
									Locking Cap PVC Cap
									Protective Steel Casing
Core 0-4						ML: Light brownish gray Sandy SILT, fine sand with trace clay, soft, low plasticity, dry.			Concrete Pad
Core			3 4					\wedge	
4-7			5 6 			@ 5.5 ft.: very dark gray.			
Core 7-17			7 8 9			@ 7 ft.: damp to moist.			
									2-in. dia. flush threaded PVC, 2.5 ft AGL to 41.6
								∧ ∧	ft BGL
									Bentonite Chips
Core 17-27									
			20 21						
			22 23			@ 21.5 ft.: 8" fine sand lens.			
			24 25 25					\wedge	
Core 27-37			26 			@ 27.25 ft.: 12" black medium sand lens. @28.25 ft.: olive gray, mottled.			
Notes: ft BGL = ft BTOC	feet belov = feet bel	w grour ow top	nd level of well	casi	ing	USCS = Unified Soil Classification System <i>y</i> = denotes groundwater table		Pa	ge 1 of 2

Unique Well ID: BHP200

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 52 ft. Groundwater (ft BGL): 31 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 791.98 ft. (NAVD 88) Casing Elevation: 794.50 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278771 Longitude/Easting: 2169852

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Core 37-47			 30 31 32 33 34 35 36 37 38 39 40 		ML: Silt, cont. @ 31 ft.: brown, wet. @ 32-33 ft.: caliche mottling. @ 34.5 ft.: 6" medium sand lens. @ 38-42.5 ft.: reddish mottling.	 ∧ ∧
			41 42 43 44 44	·· ·· ⊠ ⊠ ⊠ ⊠	GM: Brown Silty GRAVEL, trace clay to coarse sub-rounded gravel, moderately graded, medium dense, wet. @ 43.5 ft.: 6" reddish mottled silt lens. @ 44.5 ft.: gravel size decreases to smaller sub-angular to sub-rounded coarse gravel.	silica sand
Core			46		SP: Dark reddish brown SAND, subangular, poorly graded, loose, wet.	0.01-in. slot PVC, 41.6 to
47-52			48 49 50 51 52		GM: Dark reddish brown Sandy GRAVEL, trace fines, angular coarse sand to sub-rounded fine to coarse gravel, moderately graded, loose, wet. With depth, the gravel size fraction increases as the sand fraction decreases.	51.6 ft BGL

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BBH 614

Drill Date: 5/7/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 4.25-in Boring Depth (ft BGL): 37 ft. Groundwater (ft BGL): 32 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Elevation: 789.45 ft. (NAVD 88) Casing Elevation: 792.10 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278725 Longitude/Easting: 2169657

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons Det	truction ail
			E.				Locking Cap
							PVC Cap
							Protective
Core	1.1.						Steel Casing
0-7	公公		1		root tubes and oganic material present. damp.		Conorato
			2				Pad
			4				
			5				
			6				
Core			7 				
7-14			E,				
							3/4-in. dia.
							flush
			12		@ 12 ft : coliche long		PVC, 2.7 ft
					@ 13 ft.: blocky structure. drv.		AGL to 31.3
Core							Rontonito
14 17							Chips
Core			17		@ 16 ft.: stiff, laminated loess with basalt flakes.		
17-27			18				
					ML: SILT, cont.		
	公公		24		@ 24 ft.; black mottling.		
Coro			27		@ 25.5 π.: 6" caliche zone.		
27-37							
			29				0.40
			30		@ 29.5 ft.: 12" caliche zone.		3/8-in. pea gravel
			₹_32				9
	公公				@ 32 ft.: gray brown, wet.		
	1				6" calicne zone.		0.01-in. slot
	公众		35				36.3 ft BGL
	1		$ = \frac{36}{37}$		@ 36 ft.: gray brown with redddish brown mottling.		
			0,			/	Bottom cap

Notes:

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BBH 610

Drill Date: 5/7/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 4.25-in Boring Depth (ft BGL): 17 ft. Groundwater (ft BGL): None Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Elevation: 789.10 ft. (NAVD 88) Casing Elevation: 791.68 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278720 Longitude/Easting: 2169650

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons Det	truction ail
Core 0-7 Core 7-12 Core 12-17			$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$		ML: Brown Sandy SILT, trace sand and clay, low plasticity, root tubes and organic material present, moist. @ 6 ft.: blocky structure, dry. @ 11 ft.: caliche lens, stiff, dry.		Locking Cap PVC Cap Protective Steel Casing Concrete Pad Bentonite Chips 3/4-in. dia. flush threaded PVC, 2.7 ft AGL to 12 ft BGL 3/8-in. pea gravel 0.01-in. slot PVC, 12 to 17 ft BGL Bottom cap
			10			1	

BCE 336 Unique Well ID:

Drill Date: 5/7/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 4.25-in Boring Depth (ft BGL): 15 ft. Groundwater (ft BGL): None

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 805.91 ft. (NAVD 88) Casing Elevation: 808.58 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 279406 Longitude/Easting: 2170855

Remarks:

SAMPLE DRIVE / BLOW DEPTH USCS TYPE / ID RECOVERY COUNT FT BGS SYMBOL Sample Description Description	struction tail
Core 0-6 0-6 Core 6-12 Core 6-12 Core 6-12 Core 6-12 Core 6-12 Core 6-12 Core 6-12 Core 6-12 Core 6-12 Core 6-12 Core 1-1 0 0 0 0 0 0 0 0 0 0 0 0 0	Locking Cap PVC Cap Protective Steel Casing Concrete Pad Bentonite Chips 3/4-in. dia. flush threaded PVC, 2.7 ft AGL to 10 ft BGL 3/8-in. pea gravel 0.01-in. slot PVC, 10 to 15 ft BGL Bottom cap

ft BGL = feet below ground level ft BTOC = feet below top of well casing USCS = Unified Soil Classification System = denotes groundwater table ₽

Unique Well ID: BCE 347

Drill Date: 5/7/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 4.25-in Boring Depth (ft BGL): 15 ft. Groundwater (ft BGL): None Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 792.97 ft. (NAVD 88)
Casing Elevation: 795.77 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 277941
Longitude/Easting: 2171779

Remarks:

			_				
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Const Deta	ruction ail
Core 0-7 Core 7-15			$\begin{array}{c} - & -3 \\ - & -2 \\ - & -1 \\ - & 0 \\ - & 1 \\ - & 2 \\ - & -1 \\$		ML: Dark brown Sandy SILT, trace sand and clay, low plasticity, moist. @ 8 ft.: blocky structure, dry.		Locking Cap PVC Cap Protective Steel Casing Concrete Pad Bentonite Chips 3/4-in. dia. flush threaded PVC, 2.7 ft AGL to 10 ft BGL 3/8-in. pea gravel 0.01-in. slot PVC, 10 to 15 ft BGL Bottom cap
1	1 1 1						

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BCE 346

Drill Date: 5/7/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 4.25-in Boring Depth (ft BGL): 10 ft. Groundwater (ft BGL): None Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Elevation: 796.23 ft. (NAVD 88) Casing Elevation: 795.62 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 277639 Longitude/Easting: 2170741

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	W	ell Cons Deta	truction ail
Cutter					Asphalt Fill: Crushed rock			Flush Monument PVC Cap Bentonite
Core 2-5					Fill: Silty Sandy GRAVEL with cobbles. ML: Light brown SILT, trace sand, moist.			Chips 3/4-in. dia. flush threaded
Core 5-8			5 6 7					PVC, 0.6 to 5 ft BGL 0.01-in. slot PVC, 5 to 10
Core 8-10								3/8-in. pea gravel Bottom cap

Unique Well ID: BCE 350

Drill Date: 5/8/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 57 ft. Groundwater (ft BGL): None Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 831.73 ft. (NAVD 88)
Casing Elevation: 834.53 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 277720
Longitude/Easting: 2171246

Remarks: Soil Sample (GW-11 @ 56') collected for laboratory analysis. SAMPLE DRIVE / BLOW DEPTH USCS Well Construction Sample Description TYPE / ID RECOVERY COUNT FT BGS SYMBOL Detail Locking Cap **PVC** Cap -2 Protective Steel Casing **H** -0 Core Fill: Crushed Rock 0-7 Concrete -2 ML: Dark brown Sandy SILT, moist. [Fill] Pad Core 7-12 -9 3/4-in. dia. - 10 flush 11 threaded MSW: Municipal Solid Waste composed primarily of plastic, 1 - 12 paper, and metal, with layers of brown to black silt. PVC, 2.7 ft Core AGL to 25 ft 12-15 - 13 BGI ML: Light brown SILT, dry. [Fill] Bentonite 15 Core MSW: Municipal Solid Waste. Chips 16 15-17 - 17 Core 17-22 18 ML: Brown SILT, dry. [Fill] - 19 - 20 - 21 22 Core MSW: Municipal Solid Waste composed of refuse, 1 22-27 23 woodwaste, plastic, and paper. MSW appears burned. - 24 ML: Brown SILT, dry. [Fill] 3/8-in. pea 25 gravel - 26 - 27 Core 0.01-in. slot MSW: Municipal Solid Waste composed of refuse, 27-37 - 28 PVC. 25 to woodwaste, plastic, cardboard, wire, glass, and paper, with 30 ft BGL 20 layers of brown to black silt. MSW appears burned in some zones. Bottom cap 30 3 32 33 Notes:

ft BGL = feet below ground level ft BTOC = feet below top of well casing

Unique Well ID: BCE 350

Drill Date: 5/8/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 57 ft. Groundwater (ft BGL): None Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location: Sudbury Road Landfill
Ground Elevation: 831.73 ft. (NAVD 88)
Casing Elevation: 834.53 ft. (NAVD 88)
Coordinate System: NAD 83 SP, WA South
Latitude/Northing: 277720
Longitude/Easting: 2171246

Remarks: Soil Sample (GW-11 @ 56') collected for laboratory analysis.

Unique Well ID: BCE 344

Drill Date: 5/7/2012 Logged By: B. Carpenter (Herrera) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 4.25-in Boring Depth (ft BGL): 31 ft. Groundwater (ft BGL): None Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Elevation: 822.34 ft. (NAVD 88) Casing Elevation: 824.86 ft. (NAVD 88) Coordinate System: NAD 83 SP, WA South Latitude/Northing: 278140 Longitude/Easting: 2169566

Remarks:

				-			
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Const Deta	ruction ail
Core					ML: Dark brown Sandy SILT, trace sand and clay, low		Locking Cap PVC Cap Protective Steel Casing
0-5 Core 5-12					plasticity, moist.		Concrete Pad
			7 		@ 8-9 ft.: animal bones and hair, piece of plastic, dry.		3/4-in. dia. flush threaded
Core 12-14 Core 14-19			13 		@ 12 ft.: dense, wind blown laminations [loess].		AGL to 26 ft BGL Bentonite Chips
Core 19-26			18 19 20 21 22 23 23		ML: SILT, cont.		
Core 26-31			24 25 26 27 27 28 29 30				3/8-in. pea gravel 0.01-in. slot PVC, 26 to 31 ft BGL
							Bottom cap

Notes:

ft BGL = feet below ground level ft BTOC = feet below top of well casing

SOIL CLASSIFICATION SYSTEM

Μ	AJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
	CLEAN		GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COURSE	GRAVEL	GRAVEL	GP	POORLY-GRADED GRAVEL
GRAINED SOILS	More than 50% of coarse	GRAVEL	GM	SILTY GRAVEL
	sieve	WITH FINES	GC	CLAYEY GRAVEL
	SAND	CLEAN	SW	WELL-GRADED SAND, FINE TO COARSE SAND
More than 50%	SAND	SAND	SP	POORLY-GRADED SAND
200 sieve	More than 50% of coarse fraction retained on No. 4 sieve	SAND WITH FINES	SM	SILTY SAND
			SC	CLAYEY SAND
			ML	SILT
FINE GRAINED SOILS	SILT AND CLAY liquid limit less than 50	INORGANIC	CL	CLAY
		ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
			MH	HIGH-PLASTICITY SILT, ELASTIC SILT
More than 50% passes No. 200 sieve	SILT AND CLAY liquid limit more than 50	INORGANIC	СН	HIGH-PLASTICITY CLAY, FAT CLAY
		ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
н	GHLY ORGANIC SOILS		PT	PEAT

Notes:

- 1. Field classification is based on visual examination of soil in general accordance with ASTM D2488.
- 2. Where laboratory index testing has been conducted, soil classification is based on ASTM D2487.
- 3. USCS group symbols correspond to the symbols used by the Unified Soil Classification System and ASTM Classification methods.

Soil Classification and Key

APPENDIX A

Historical Logs

Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy	WATER WE State of V	LL REPORT	Application	n No	
1) OWNER: Name CITY OF 11/	- ila Ini-ila	<u> </u>		• • • • • • • • • • • • • • • • • • • •	
LOCATION OF WELL	IR CLAIG	Address 3CX 7/1	5		~ _
Bearing and distance from section or subdivision co	ner	TaY	NE VA Sec 22 T	7	<u>, </u>
(3) PROPOSED USE: Domestic	trial 🗇 Municipal 🗇	(10) WELL LOG			
Irrigation 📋 Test V	Well 🕅 Other	Formation: Describe by color,	character, size of mate	rial and stru	cture
(4) TYPE OF WORK. Owner's number of	weil /	show thickness of aquifers and stratum penetrated, with at l	i the kind and nature o east one entry for each	f the materi change of	ial in forma
(if more than one) New well 1921 Method:	Dug Dered D	MATER	IAL	FROM	Т
Deepened	Cable 👷 Driven 🗍	- I.c.pscil		0	2
Reconditioned	Rotary 🗌 Jetted 🔲	- Sand + BR	own (lay	23	4
(5) DIMENSIONS:	2"	Sa	rel	42	- 4
Drilled 121 ft. Depth of completed	well (7) tt	BROW, Clay	+ GRAVEL	48	2
		- BROW	2 Clay	73	7
(6) CONSTRUCTION DETAILS:		BROWN Clay	* GRAVEL	29	_8
Casing installed: Diam. from T	2 ft. to 118 ft.	- Brown	lay	\$7	9
Threaded [2]	ft. to ft.	- IKEWA (lay +	- GRAVEL	72	Ľ
Weided Diam. from	ft. to ft.	- CRavel-	M. CER	77	
Perforations: Yes 🗆 No 🕱					
Type of perforator used					
SIZE of perforations in. h	by in.				1
perforations from	ft. to ft.	7 Sacks Fili	FRR Sand 10-	20	
perforations from	ft. to ft.	- FROM 121	TO 90 FT		
Screens: Var H					
Manufacturer's Name Johnson	N	Tumped in 15	Sacks Va	A Cla	L
Type 316 Mod	el No	FROM 90 TO	6'	1	
Diam. 2. Slot size $\times 010$ from 10	28 ft. to 118 ft.				
Diam Slot size from	ft. to ft.	_ IFT OF Same	<u>6 To</u>	5	
Gravel packed: Yes I No X Size of a	zravel.	- p - (<u> </u>		
Gravel placed from ft. to	ft.	ERO OL T	SACKS TORI	LAND	
Surface seal: yes of No. 7. The second			CROUND A	erer!	
Material used in seal	ptn? ft.		······		
Did any strata contain unusable water?	Yes 🗌 No 🗌	· · · · · · · · · · · · · · · · · · ·		1	
Type of water? Depth of	strata		-	1	
method of sealing strata off					
7) PUMP: Manufacturer's Name			- · · · ·		
Туре:					
8) WATER LEVELS: Land-surface elevati	ion				
atic level 23' above mean sea level	ei				
rtesian pressure	Date		· · · · · · · · · · · · · · · · · · ·	+	
Artesian water is controlled by	n value etc.)			1.	
	P, VAIVE, E(C.)			+	
b) WELL IESIS: Drawdown is amount lowered below static	water level is	Work started 8-77	10 86 0000 9	-14	~ 10
as a pump test made? Yes 🖉 No 🗌 If yes, by who	om? URI IIER	WITH A STATE	19. u. Completed	I Ø	.
tt. drawdown	a after hrs.	WELL DRILLER'S ST.	ATEMENT:		
		This well was drilled un true to the best of my in-	ider my jurisdiction	and this r	eport
covery data (time taken as zero when pump turn	ed off) (water level	vo viac best Of my Kill	micuge and Denei.		~
measured from well top to water level)		NAME HARDTA	10 DETIII	NG (\sum_{n}
Dico 23	me Water Level	(Person, firm,	or corporation) (Type or prin	nt)
.00 24'		Address RT3 Bo	x 67 Daalla	Walla	ĩ.
01 23'		un	······································		/
Date of test 7-8-56		[Signed] Mike	Hardina		
ner testft. drawdow	m afterhrs.	·	(Well Driller	•••••••••••••••••	
g.p.m. Date		1 7 7	4	- /	c
mperature of water J	made? Yes (No de	License No 1/3	Data 10~	20	10 4

STATE OF W WNER: Name_tIIUUUU	Address Add
WNER: Name.till(1 U ull (L ull (L ull (U ull	Address <u>JEE BELOID</u> <u>I FY A FY A FY A FY SCC</u> (10) WELL LOG: <u>T A A 35</u> Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in eq stratum penetrated, with at least one entry for each change of formati <u>MATERIAL</u> FROM TO <u>T CP SOI</u> SOU <i>SHOW Clux</i> . <i>C</i> 35 Brown <i>Clay WITL Fille</i> Sand <u>Some</u> <i>waTec</i> 35 36 <i>Clay</i> Brown 38 49 <i>Clay</i> - Brown 49 53
OCATION OF WELL: County Unit a full a fu	(10) WELL LOG: TOTATION: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in el stratum penetrated, with at least one entry for each change of formati MATERIAL FROM TO TOP SOIL & Brown Clux O 35 Brown Clay with Filthe Saud Some water 35 36 Clay Brown 49 53
and distance from section or subdivision corner COPOSED USE: Domestic Industrial Municipal Irrigation Test Well Other PE OF WORK: Owner's number of well # / New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well	(10) WELL LOG: 77 M P. 35 Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in en- stratum penetrated, with at least one entry for each change of formati MATERIAL FROM TO TOP SOIL & Brown Cluy, O 35 Brown Clay wiTh Fine Sand Some water 35 36 Clay Brown 36 38 Clay - Brown 49 53
COPOSED USE: Domestic Industrial Municipal Irrigation Test Well Other Irrigation TPE OF WORK: Owner's number of well # / New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well 5 Ided 5 inches. NSTRUCTION DETAILS: Sing installed: 5 Sing installed: 7 Diam. from ft. to Welded "Diam. from ft. to ft.	(10) WELL LOG: <u>7</u> <u>M</u> <u>7</u> <u>35</u> Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in edistratum penetrated, with at least one entry for each change of formation <u>MATERIAL</u> FROM TO <u>MATERIAL</u> FROM TO <u>7</u> <u>0</u> <u>6</u> <u>50</u> <u>1</u> <u>5</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>50</u> <u>1</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>50</u> <u>1</u> <u>5</u> <u>7</u> <u>6</u> <u>7</u> <u>6</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>5</u> <u>6</u> <u>7</u>
Irrigation [] Test Well [] Other Image: Stransform of the strain one) New well [] Method: Dug [] Bored [] Deepened [] Cable [] Driven [] Reconditioned [] Rotary [] Jetted [] MENSIONS: Diameter of well 5 Ided [] S ft. Depth of completed well (] S Installed: 5 Sing installed: 5 O' Welded [] Diam. from	(10) WELL LOG. Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in ed- stratum penetrated, with at least one entry for each change of formati MATERIAL FROM TO TOP SOIL & Brown Clux, O 35 Brown Clay Luith Fille Sand Same water 35 36 Clay Brown 36 38 Clay - Brown 49 53
TPE OF WORK: Owner's number of well # / (if more than one)	Pormation: Describe of color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in en- stratum penetrated, with at least one entry for each change of formati <u>MATERIAL</u> FROM TO <u>Top Soil + Brown cluy</u> 0 35 <u>Brown clay with Fine Saud</u> <u>Some water</u> 35 36 <u>Clay Brown</u> 36 38 <u>Clay - Brown</u> 49 53
PE OF WORK: Owner's number of well # / New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well 5 Ied 5 inches. NSTRUCTION DETAILS: sing installed: 5 Sing installed: 5 Diam. from ft. to C Welded "Diam. from ft. to ft.	MATERIAL FROM TO TOP SOIL & Brown clux 0 35 Brown clay with Fine Sand Some water 35 36 Clay Brown 36 38 Clay - Brown 49 53
New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well 5 Ied .5 ft. Depth of completed well NSTRUCTION DETAILS: sing installed: 5 Diam. from ft. to .	Top Soil & Brown clux 0 35 Brown clay with Fine Sand Some water 35 36 Clay Brown 36 38 Gravel - Cement - Brown 38 49 Clay - Brown 49 53
Deepened Cable Driven Cable Dri	Brown 2 Jay with Fine Sand Some water 35 36 Clay Brown 36 38 Clay - Brown 49 53
MENSIONS: Diameter of well inches. Iedft. Depth of completed well ft. Instruction DETAILS: sing installed: Diam. fromft. toft. toft. Threaded Diam. fromft. toft.	Brown 2 Jay with Fine Sand Some water 35 36 Clay Brown 36 38 Gravel - Cement - Brown 38 49 Clay - Brown 49 53
MENSIONS: Diameter of well 5 inches. Ied 5 ft. Depth of completed well 6 ft. NSTRUCTION DETAILS: sing installed: 5 Diam. from 6 ft. to 65 ft. Threaded 7 Diam. from ft. to ft. to ft. C Welded 7 Diam. from ft. to ft. t. forations: Yes 7 No 7 MACLEUR	Clay Brown 49 53
Iedft. Depth of completed wellft. INSTRUCTION DETAILS: sing installed: 5 " Diam. fromft. toft. Threaded Diam. fromft. toft. 65 ft. Welded Diam. fromft. toft. 65 ft. C Welded Diam. fromft. toft. 65 ft. forations: Yes No	Clay Brown 36 38 Cravel - Cement - Brown 38 49 Clay - Brown 49 53
NSTRUCTION DETAILS: sing installed: <u>5</u> "Diam. from <u>0</u> ft. to <u>65</u> ft. Threaded <u>1</u> "Diam. from <u>ft. to</u> ft. <u>6</u> Welded <u>1</u> "Diam. from <u>ft. to</u> ft. ft. to <u>ft.</u> to <u>ft. to</u> ft. Welded <u>1</u> "Diam. from <u>ft. to</u> ft. Threaded <u>1</u> "Diam. from <u>ft. to</u> ft. The forations: Yes <u>1</u> No <u>1</u> What for the formula formul	Clay-Brown 49 53
sing installed: <u>5</u> "Diam. from <u>0</u> ft. to <u>65</u> ft. Threaded <u>1</u> "Diam. from <u>ft. to ft.</u> <u>6</u> Welded <u>1</u> "Diam. from <u>ft. to ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u> ft. to <u>ft.</u>	Clay - Brown 49 53
Threaded Diam. from ft. to ft. Threaded Diam. from ft. to ft. Welded Diam. from ft. to ft. fforations: Yes No HA closed	Clay - Brown 49 53
C Welded " Diam. from ft. to ft.	Clay - Brown 49 53
rforations: Yes INO I MACLING	
IES IT NO WAR	
Type of perforator used 110 MIAC	Dravel - Lemen 1 - 10+04-53 6
SIZE of perforations in. by in.	
perforations from ft. to ft.	
TO perforations from ft. to ft.	IN. W. Fid Fil #1
periorations from ft. to ft.	
eens: Yes D No D	SEGIN AT THE NORTHEAST CORNER
Manufacturer's Name	SECTION 22 IN THOUSHIP 7 NORTH.
Diam. Slot size from ft to ft	RANGE 35. EAST OF THE WILLAMETTE
Diam Slot size from ft. to ft.	MERIDIAN AND RUNNING THENCE
2/ 1//d	SOUTHERY ALONG THE EAST LINE OF
Gravel placed from 35 Size of gravel: 74	SAID SECTION 22, A DISTANCE OF
t. to	533 REET ; THENCE WESTERLY
face seal: Yes - No - To what depth? ft.	AT RIAGHT ANGLES TO THE EAST
Material used in seal DE4 164 11C	LINE OT SAID SECTION 22, A
Type of water? Depth of strata	DISTANCE OF 4/1 FEFF 10
Method of sealing strata off	THE STIE OF TEST WELL T
MP	
Type:	
TER LEVELS: Land-surface elevation above mean sea levelft.	JAN 1 19/1
1 27_ft. below top of well Date // DY 21-76	>
Artegian water is controlled by	DEPARTMENT OF EQULOGY
(Cap, valve, etc.)	SPOKA _ NECTONAL OFFICE
LL TESTS: Drawdown is amount water level is	
iowered below static level	Work started 1/04 15
gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:
·· · · ·	This well was drilled under my jurisdiction and this report
·· · · · · ·	true to the best of my knowledge and belief.
data (time taken as zero when pump turned off) (water level red from well top to water level)	
Water Level Time Water Level Time Water Level	NAME LOW CI W MAHall
	(rerson, nrm, or corporation) (Type or print) RTH - T - All (rt - T - T)
	Address MI - 2 BOX /// MII 104 Freewalcy
	P it at int tak
f test	[Signed]. Jowell Mathewall
	(Well Driller)
re of water S. Was a chemical analysis made? Yes D No	License No. C-81 Date Nec. 16, 1971
	40 perforations from 25 ft. to 45 ft. perforations from ft. to ft. to ft. weinight for the state of the state o

File Origina, and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy

WATER WELL REPORT

.pplication No.

-

Permit	No.			
Permit	NO.	٠	•	

STATE OF	WASHINGTON Well-2 Permit No.
(1) OWNER: Name Walk Walk City	Address
(2) LOCATION OF WELL: County	, SELABELOW
paring and distance from section or subdivision corner	124 NEU NEU 21- 6 2:
(3) PROPOSED USE: Domestic [] Industrial [] Municipal [(10) WELL LOG: $T = \Lambda' \rho =$
Irrigation 🗌 Test Well 🗗 Other	Formation: Describe by color, character, size of material and structure show thickness of aquifers and the kind and nature of the material in stratum penetrated, with at least one entry for each charge of form
(4) TYPE OF WORK: Owner's number of well # 2	MATERIAL FROM
New well Method: Dug Bored	Tip soil & clay Brown D
Reconditioned Rotary Jetted	
(5) DIMENSIONS:	- Clay-Tan 57 7
Drilled <u>155</u> ft. Depth of completed well <u>155</u> ft	
(6) CONSTRUCTION DETENT	- (stavel Lement-1stown 79
Cosing installed	CLAV - Promp 95 C
Threaded []	· · · · · · · · · · · · · · · · · · ·
π DVC Welded π	Gravel Lement - Brown 471
Porferetion -	
Type of perforator used MLChine	6 tavel Med- Joure Water 106 1
SIZE of perforations in. by in	
perforations from	. Oraver cement - Rucun 115
perforations from <u>d.C.</u> ft. to <u>135</u> ft	CLAN - Require 120 1
	2
Screens: Yes No	Gravel & Cement - Brown 122 1.
Type Model No	
Diam Slot size from ft. to ft	- Cal Ay - Brown 124 1
Diam	
Gravel packed: Yes No Size of gravel: 34 / 1/4	BENET WATER BEALING, 12/ 15
Surface seel	BEGIN AT ITTE NORTHEAST CORM
Material used in seal	NOPTH RAUGE 35 EAST OF THE
Did any strata contain unusable water? Yes 🗌 No 🛛	WILLAMETTE MERIDIAN AND
Type of water? Depth of strata	RULING THEIRE SOUTHERAN
Method of sealing strata of	ALONG THE EAST LINE OF SAIL
(7) PUMP: Manufacturer's Name	SECTION 22, A DISTANCE OF
Туре:	1270 FEET, THE WESTERIC
(8) WATER LEVELS: Land-surface elevation above mean sea level.	(1) RIGHI ANGLE / MALTHE
Static level ft. below top of well Date Dec. 14-	TO DISTANCE OF 150 FEET TO THE
Artesian pressure	SITE OF TEST WELL # 2
(Cap, valve, etc.)	
(9) WELL TESTS: Drawdown is amount water level is	
Was a pump test made? Yes 🗌 No 🕒 If yes, by whom?	Work started DCC. 1. 19 / 6 Completed DCC. 1.5. 15
field: gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:
······································	This well was drilled under my jurisdiction and this repo
Recovery data (time taken as zero when numn turned off) (motor laural	a de to the best of my knowledge and bener.
measured from well top to water level) Time Water Level Time Water Level Time Water Level	NAME LOWCH W, MANATT (Person. firm, or corporation) (Type or print)
	Address R.T. # 2 Box 111 MITTON Free
	Found of Ma D. H
Date of test	
ailer test gal./min. with 3.0tt. drawdown after hrs.	[Signed]

Department of Ecology with Second Copy — Owner's Copy Third Copy — Diller's Copy	WATER: WEL	L REPORT	Application	No	
	STATE OF WA	SHINGTON	Permit No.	••••	
OWNER: Name TY OF	Unita Wall	Address BEY 178	7 }		
(4) LOCATION OF WELL: County.	112 LUSIL	· _ NW · NE	Z1/4 Sec 2 2 T	7	35 w.m
(3) PROPOSED USE: Domestic Industrial	□ Municipai □	(10) WELL LOG:			
Irrigation 🗋 Test Well	🕅 Other 🗌	Formation: Describe by color, char	acter, size of materi	al and stru	cture, an
(4) TYPE OF WORK: Owner's number of well	2	show inickness of aquifers and the stratum penetrated, with at least i	kind and nature of one entry for each	the materi change of	al in eac. formation
(if more than one)	□ Bored □	MATERIAL		FROM	ТО
Deepened Cable	e 🗖 Driven 🗌 -	1 opsail		0	23
Reconditioned 🗌 Rota	ry 🗌 Jetted 🔲 .	DRawn (lay	+ ind	23	42
(5) DIMENSIONS: Diameter of well	inches.		<u> </u>	42	59
Drilledft. Depth of completed well	L	- OROHIN	=1ay	57	-61
(6) CONSTRUCTION DETAILS:		BROWN Clay +	· C. Ravel	74	96
Casing installed: 2	110	BRUM	Clay	96	101
Threaded (M Diam. from	ft. to <u>1.1.2</u> ft.	GRavel . W.	ster	101	121
Welded Diam. from	ft. to ft			1	
Perforations: Vor C No W	-				
Type of perforator used	-	PTSE	·		(
SIZE of perforations in. by	in	For 121 To	<u>s p-20 [</u>	TITER	o
perforations from	to ft			i	
perforations from	to ft. -	Pumped in 13	Sacks 1	Kol C	lay
Screens: w		FROM 90 TO	/6 [']		
Manufacturer's Name JOAASCA	/ -				
Type 316 Model N	To	Put in Sand	FROM /	6 10	10
Diam. 2. Slot size	ft. to	D.T. G.C.	· · · · · · · · · · · · · · · · · · ·		
Slot size from	ft. to ft	FRD IN TO	ACKS OR	LANC	<u> </u>
Gravel packed: Yes 🗌 No 🕅 Size of grave	ei:		LACONA	K PE	(
Gravel placed from ft. to					
Surface seal: Yes 🙀 No 🗌 To what depth?	n				
Material used in seal				i	
Type of water?	Yes No D		•		
Method of sealing strata off					
(7) PUMP: Manufacture No.					
Type:	н.р. –	· · ·			
(8) WATER LEVELS Land-surface elevenes			· · · · ·		
above mean sea level	ft. =				
Artesian pressure	te / C - 2 - 2 - 2				
Artesian water is controlled by					
(Cap, va	=				
(9) WELL TESTS: Drawdown is amount water lowered below static level	er level is $-\frac{1}{2}$	lork started 9-14 19 8	6 Completed	0-21	-10 86
Was a pump test made? Yes Y No \Box If yes, by whom?	URILLER -				
" " "	er / hrs. V	VELL DRILLER'S STATE	LMEN1:		
	tr	This well was drilled under ue to the best of my knowle	my jurisdiction a dge and belief.	and this r	eport is
Recovery data (time taken as zero when pump turned o	off) (water level	. /	.1		-
Time Water Leyel Time Water Level Time	Water Level N	AME HARDING	DRELLIN	V6 (-0
00 28 00 26		(Person, firm, or o	corporation) (1	Cype or pri	nt)
	A	ddress (YT3 Boy67	Walla W.	a.[.].e	Un,
Data of tas: $10-1-94$		n.1. 11	1.		
Bailer test	fter b [:	Signed]	Loling		
rtesian flow			(men Dimer)	2-1	
emperature of water	e? Yes I No 🙀 L	icense No///	Date	29	, 19 <i>S</i> .6
10/29/06 10	1				

MW-3

File Original and First Copy with
Department of Ecology
Second Copy - Owner's Copy
Third Copy - Driller's Copy

WATER-WELL REPORT STATE OF WASHINGTON

MW-3A

Application	No.	

Permit No. ..

(1) OWNER: Name Walla Walla CiTy	Address	
LOCATION OF WELL: County LUCITA LUC	A. SEE BELOW 7	35
cearing and distance from section or subdivision corner	AllALINEHLIEH C	H.A. W.M.
(3) PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG: $\overline{\tau} = 1$	0 20
Irrigation [] Test Well [] Other	Formation: Describe by color character size of material and	<u> .75</u>
(4) TVPF OF WORK ()wher's number of well 7	show thickness of aquijers and the kind and nature of the mat stratum penetrated, with at least one entry jor each change	erial in each
(4) THE OF WORK: Owner's number of went 3 (if more than one)	MATERIAL FROM	MI TO
Deepened Cable P- Driven	Top Soil & Clar Brown A	20
Reconditioned [] Rotary [] Jetted []		
(5) DIMENSIONS: Diameter of weil 5 inches	- Gravel in Brown clay 20	21
Drilled <u><u>S</u>ft. Depth of completed well <u><u>S</u>(<u>t</u>. tt.</u></u>		
(6) CONSTRUCTION DETAILS.	- Clay- Drow 4 21	29
Cosing installed $\overline{\Gamma}$	CLAN- TAK TO	1 74
Casing instanted: "Diam. from ft. to		
25 [#] Py C Welded - "Diam. from ft. to ft.	Gravel Brown Astron 3	4 62
Perforations		
Type of perforator used MAChine	- Clay-Browhy 62	64
SIZE of perforations in. by in.		
perforations fromft. toft.	- OFAVET SOM ERAUTER 62	
perforations from ft. to ft.	- CARINA 80-81 /-4	81
A. O	00 00 01	
Screens: Yes No		
Type Model No	BEGIN AT THE NORTHWES	7
Diam	CORVER OF THE NORTH EAST OF	LARTER
Diam Slot size from ft. to ft.	OF THE NORTHENST QUARTER O	<u>_</u>
Gravel packed: Yes No D Size of gravel: 14	PANCE 3E EAST OF THE	PRIH
Gravel placed from ft. to ft. to ft.	MILL AMETTE MEDIALAD	wn
Surface seal: Yes - No To what depth? 25 #	RUNING THENCE SOUTHER	24
Material used in seal $BrnTon Tc$	ALONG THE WESTLINE OF.	SKID
Did any strata contain unusable water? Yes I No B	WORTHEAST QUARTER OF THE	:
Method of sealing strata off	NORTHEAST QUARTER OF STALL	2
(7) PIIMP: W	SECTION 22, ADISTANCE OF	
Type: H P	AT RIGHT ANGI IS TO SAID	
	WEST LING OF THE NORTHEA	57
(o) WAIER LEVELS: Land-surface elevation above mean sea level	QUARTER OT THE NORTH FAST	-
Artesian pressure	QUARTER of SAID SECTION 22	<u> </u>
Artesian water is controlled by	A DISTANCE OF 50 FEET TO	
(Cap, valve, etc.)	ITESILE OF TEST WELL M	73
(9) WELL TESTS: Drawdown is amount water level is lowered below static level	Wart started MAY 14 10 76 amelian MAY 2	$\frac{1}{1}$ 10 7(-
Was a pump test made? Yes No 4 If yes, by whom?		<u></u>
" " " " "	WELL DRILLER'S STATEMENT:	
<u>, , , , , , , , , , , , , , , , , , , </u>	This well was drilled under my jurisdiction and this true to the best of my knowledge and belief.	report is
Recovery data (time taken as zero when pump turned off) (water level		
Time Water Level Time Water Level Time Water Level	NAME LOW ell WIMANDATT	
	(Person, firm, or corporation) (Type or)	print)
	Address Ret 2 Box /11 Miller Fre	manaTer
Date of text	D I I II II II	
Bailer test_2.5_gal/min. with_40_tt drawdown after / h-	[Signed] Frendly the Maril 100	•••••
Artesian flow		
remperature of water	License No. $C = \delta I$ Date $\delta C = \delta C$, 19.7.6
1.1.177 (NX		
III'VI I YUSE ADDITIONAL SHE	ETS IF NECESSARY)	-

File Original and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy

	MW-4
WATER. WELL REPORT	

Application No.

STATE OF M	ASHINGTON	Permit No.		
(1) OWNER: Name CITY OF WALLA WALLA	C/o Publ	ic Works Departmen	t wa o	0262
') LOCATION OF WELL: county Walla Walla	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	Sul - in -	.,иАЭ	2504
Bearing and distance from (section) or subdivision corner Shi a far 1	$4 - 111^{\circ} = 10$	1, 200 , Sec. 14 T	[N., R:	355Ew
(3) PROPOSED LISE: Denote a la l		ico i ii jupprox.		
Irrigation Test Well 51 Other	(10) WELL LUG:		······································	
	show thickness of aquifer.	s and the kind and nature of t at least one entry for each cl	he materi	cture, a al in ec torman
4) TYPE OF WORK: Owner's number of well (if more than one)	MA	TERIAL	FROM	TO
New well 🕅 Method: Dug 🗌 Bored 🗌 Deepened	Tu	DSUIL	0	2
Reconditioned Rotary Jetted		4 6 2 1	23	25
(5) DIMENSIONS:	BROWN	Vay + GRAVEL	25	38
Drilled 32 ft. Depth of completed well 33 ft.	Set	ad	35	_6 3
CONCERNICE CONCERNING	- Oravel	- ivetra	63	
6) CONSTRUCTION DETAILS:				·
3/ Casing installed: 5 " Diam. from O it. to 52 ft.				
Welded				
Dian. Hom				
Perforations: Yes X No C				
SIZE of perforations				
160 perforations from 62 ft. to \$2 ft.			. i	
perforations from ft. to ft.				
ft. to ft. to ft.				
Screens: Yes 🗆 No 🕱				
Manufacturer's Name		· · · · · · · · · · · · · · · · · · ·		
Diam				·
Diam				
Gravel nacked: we do not not not not not not not not not no				
Gravel placed from ft. to ft.		· · · · · · · · · · · · · · · · · · ·		· .
Surface and 2.5				
Surface seal: Yes ∇ No \Box To what depth? 35 ft.	DEPARTAL			
Did any strata contain unusable water? Yes 🗍 No 🕅	SOURTHE HE	MONAL CECIPE		
Type of water? Depth of strata			÷	
Method of sealing strata off		1		**
7) PUMP: Manufacturer's Name	·			
Type:			1	
8) WATER LEVELS: Land-surface elevation 3/2	· · · · · · · · · · · · · · · · · · ·			
tatic level 41 ft. below top of well Date 9-14-53				
rtesian pressurelbs. per square inch Date				
Artesian water is controlled by(Cap, valve. etc.)		i		
9) WELL TESTS: Drawdown is amount water level is				
as a pump test made? Yes I No OF If yes by whom?	Work started 9-8	19.373 Completed 9.	15	., 19.5
eld: gal/min. with ft. drawdown after hrs.	WELL DRILLER'S	STATEMENT:	- 24	
· · · · · ·	This well was drille	d under my jurisdiction a	d this r	anort
· · · · · ·	true to the best of my	knowledge and belief.	ia tins i	cpore i
ecovery data (time taken as zero when pump turned off) (water level measured from well top to water level)	11	0	12	
Time Water Level Time Water Level Time Water Level	NAME TAROLA	4. DRILLINE	Co	nt)
		· · RO 1. I II	//	, /. /
	Address MT J So	3" Walla Wa	/l.a	WA.
Date of test	2-1	11 1.		
iler test	[Signed] Multi	(Well Driller)		
estan flow		(wen bittlet)	A	-
nperature of water	License No. 173			190.
		•		

File (Original	and	First (Copy	with
Depa	rtment o	of Ec	ology		
Secor	ld Copy	O1	wner's	Cop	v
Third	I Сору –	- Dri	ller's (Copy	•

	MW-5
WATER WELL REPORT	Application No.
STATE OF WASHINGTON	Permit No.
LLA C/O Pub Address P, O, B	Lic Works Department Dx 478, Walla Walla, WA 99362
la Walla	NW 1 SE 1 Sec 14 T 7 N. R 35EW

(1) OWNER: Name CITY OF WALLA WALLA	C/o Public Works Department	TYLA 00262
1) LOCATION OF WELL: County Walla Walla	1/W = 5	1
Bearing and distance from (section) or subdivision corner SW of Sec.	14-N.55°E 4100 FT (APDCA	(\mathbf{X})
(3) PROPOSED USE: Domestic	(10) WELL LOG:	
Irrigation 🗌 Test Well 🕅 Other	Formation: Describe by color, character, size of materia show thickness of aquifers and the kind and nature of	il and structure, $a\tau$ the material in eac
(4) TYPE OF WORK: Owner's number of well (if more than one)	MATERIAL	FROM 1 TO
New well 📜 Method: Dug 🗌 Bored 🗌	Trace	
Reconditioned Retary Jetted	- GRaus (41 56
(5) DIMENSIONS: Diameter of well 6 inches.	BROWS Chy + GARVel- water	56 71
		· · · · · · · · · · · · · · · · · · ·
(b) CONSTRUCTION DETAILS: Plast Casing installed: <u>5</u> "Diam. from <u>Q</u> ft. to <u>21</u> ft. Threaded <u>I</u> Diam. from ft. to <u>ft.</u> to ft. to <u>ft.</u> to ft. to <u>ft.</u> to ft. to f		
Perforations: Yes 🕅 No 🗆		<u> </u>
Type of perforator used DR111 SIZE of perforations 10 by C CC01CASin 1.60 perforations from 51 ft. to 1.60 ft.	ECEMED	
Screens:	JT 2 4 1983	
Manufacturer's Name		
Type	DEPARIMENT OF ELOLOGY	
Diam. Slot size from the to the ft.	SPOKANE RECTONAL OFFICE	~
<u> </u>		· · · · · · · · · · · · · · · · · · ·
Gravel packed: Yes No 🔉 Size of gravel:		
Surface seal: w T w T + 40		
Material used in seal PURCLAND Coment		
Did any strata contain unusable water? Yes 🗌 No 🙀		
Type of water? Depth of strata Method of sealing strata off		
(7) PIIMD .		
(1) I UMII: Manufacturer's Name		
(8) WATER LEVELS: Land-surface elevation 3/0 above mean sea level	· · · · · · · · · · · · · · · · · · ·	
Artesian water is controlled by		1
(9) WELL TESTS: Drawdown is amount water level is		1
Was a pump test made? Yes No 🛛 If yes, by whom?	Work started	5-6 19 5
Yield: gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:	
······································	This well was drilled under my jurisdiction a	nd this report is
Recovery data (time taken as zero when nump turned off) (mater loud)	true to the best of my knowledge and belief.	
measured from well top to water level) Time Water Level Time Water Level Time Water Level	NAME HARDING (Person. firm. or corporation) (T	ype or print)
	Address KT 3 So 3 to Walla 4	1/1a Wr.
Date of test	m.b. 11 1.	
Bailer test	[Signed]	
Artesian flow	License No 172 Data 9-1	9 105
10/24/33 Via	иссные 110	
(USE ADDITIONAL SHE	ETS IF NECESSARY)	

MW-6

File Original and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy	WATER WE STATE OF V	LL REPORT VASHINGTON	Application 1 Permit No	No	
OWNER: Name CITY of UV.	1/a Usila	Address Bux 4-	73		
) LOCATION OF WELL: County /	Marta Ma	110 541	NIN San 23 T	7 x B	35
Bearing and distance from section or subdivision of	orner	<i>4</i>	4	ZN., R	W .IVI.
(3) PROPOSED USE: Demotio		(10) WELL LOG			·····
Irrigation Test	Well M Other	Formation: Describe by colo	r character size of materia	l and stru	cture and
		show thickness of aquifers a stratum penetrated, with at	nd the kind and nature of t least one entry for each c	he materi hange of	al in each
(4) IYPE OF WORK: Owner's number of (if more than one)	well 6	MATE	RIAL	FROM	то
Deepened	Dug 📋 Bored 🗍	TOPS	oil	C	20
Reconditioned	Rotary [] Jetted []	Sand + 1	PRIVER CLAY	20	25
(5) DIMENSIONS:		BRice	a (lay	25	77
Drilled 75 ft. Depth of complete	d well $\sqrt{5}$ ft	Sand +	C-Ravel	77	83
		- Jana		83	75
(6) CONSTRUCTION DETAILS:		- DROWN (1	ay + C-Ravel-40	tres	143
Casing installed: \mathcal{L} Diam. from \mathcal{T}	2 ft. to 148 ft.	ORGUEL	- Glater	173	72.
Welded Welded Welded	ft. to ft.	· · ·			
Perforations: Yes No M					
SIZE of perforations in	hv in				
perforations from	ft. to ft.				
perforations from	ft. to ft.		22.514 6		51
perforations from	ft. to ft.	$-\frac{1}{100}$	U-10 TITER DA	net	Kem
Screens: Yes No D					
Manufacturer's Name 20h h Son	/	Pumped in	15 Sacks	Vil	Clay
Diam. 2 Slot size 210 from	odel No	FROM 122	To 16'		/
Diam Slot size from	ft. to ft.				
Gravel packed: you a start		_ Sand FRO.	n 16 To	10'	·
Gravel placed from	to the ft				
Surface and h		- Tul in	Jacks Ca	ment	ERC
Material used in ceal	depth? ft.	<i>10</i>	KOHINI LEH	e/	
Did any strata contain unusable water	? Yes 🗌 No 🗍				
Type of water? Depth o	of strata			I	
Method of sealing strata off					
(7) PUMP: Manufacturer's Name					
Туре:	н.р				· · · · · · · · · · · · · · · · · · ·
(8) WATER LEVELS: Land-surface eleve	ation	·····			
Static level 6.3 ft. below top of we	11 Date 10-22-86				
Artesian pressure lbs. per square inc	h Date				
Artesian water is controlled by(O	Cap, valve, etc.)				
(9) WFLL TESTS. Drawdown is amount	nt water level is				
(3) WELL TESTS. lowered below stati	c level	Work started 8-18	19 86 Completed	1-19	<u>~ 19. 86</u>
Yield: S gal./min. with 2 ft. drawdov	wn after / hrs.	WELL DRILLER'S S	TATEMENT:		
	**	This well was drilled	under my jurisdiction a	nd this r	eport is
	**	true to the best of my k	nowledge and belief.		cport 13
Recovery data (time taken as zero when pump tur measured from well top to water level)	rned off) (water level	11	Λ		
Time Water Level Time Water Lovel	Time Water Level	NAME HARDIN	6 URILLING		2
00 63 00 63					
· · · · · · · · · · · · · · · · · · ·	······	Address AT 3 1203	(G) Walla	Wall	a W
Date of test $5-26 \cdot 96$		mil	11 1.		
Bailer test	own afterhrs.	[Signed]	(Well Driller)		
Artesian flow			11	.70	
remperature of water	is made? Yes 🗌 No 🕅	License No.		æ.)	, 19.2.6
10129186 00	•				

(

MW - 7

File O Depar Secon Third	riginal and First Copy with tment of Ecology d Copy — Owner's Copy Copy — Driller's Copy	WATER WE state of w	LL REPORT Ashington	Application . Permit No.	No	
(\cdot)	OWNER: Name CITY	Willa Willy	Address Box	6,75		
•	LOCATION OF WELL: County	1.Walla ilia	11.;SE	14 SAV 14 Sec 13 T.	7 N. R. 35	
Bearn	ng and distance from section or subdivision	corner				
(3)	PROPOSED USE: Domestic 🗆 In	dustrial 📋 Municipal 🗍	(10) WELL LOG:	• · · · · · · · · · · · · · · · · · · ·		
	Irrigation 🗌 Te	2st Well 🙀 Other 🗌	Formation: Describe by col show thickness of aquifers	or, character, size of materic and the kind and nature of t least one entry for each	il and structure the material in	e, ana L'each
(4)	TYPE OF WORK: Owner's number	of well 7	MAT	ERIAL	FROM : 7	ГО
	New well 🕱 Metho Deepened 📋	od: Dug □ Bored □ Cable 🕅 Driven □	Tapic	211	0	5
	Reconditioned []	Rotary 🗌 Jetted 📋	BROWN	Clay	28 4	<u>'0</u>
(5)	DIMENSIONS: Diameter of Drilled / 5 /	well $\frac{2}{5}$ inches.	- MRown C	d	45 6	\$
(6)	CONSTRUCTION DETAILS			BROWN (184	687	9-
(0)	Casing installed: 7 and	2 170	GRAVEL + 9	1, It le Brein Cla	145 1	60
	Threaded Diam. from Welded Diam. from	ft. to ft.	6ravel	- water	160 19	81
	Perforations: Yes No 🕅					-
	SIZE of perforations	ın. by in.				
	perforations from	ft to ft				
	perforations from	ft. to				·
	Screens: Yes No Manufacturer's Name Type Jiam. 2. Slot size from Diam. Slot size from	Model No	7 Sack 10 181 TO 14	-20 Filter Se 8	ad FR	f.m.
(Gravel packed: Yes No 🕢 Size	e of gravel:	Pumped in 148 To 16	15 Sack Vol	1_ <i>Clay</i> _	F.R.
S	Surface seal: Yes 🕞 No 🗌 To wh Material used in seal Did any strata contain unusable wa Type of water?	at depth? ft. iter? Yes No hof strata	PUT in 9 To GROUP.	Sacks PORT	S' TOI	0'_
(7)	Method of sealing strata off					
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Type:	н.р			+	······
(8) Static Artesi	WATER LEVELS: Land-surface e above mean se level 39. ft. below top of an pressure lbs. per square Artesian water is controlled by	levation a level				
(9) 1	WELL TESTS: Drawdown is am lowered below s	iount water level is tatic level	Work started / (2 = /	1986 Completed	$\frac{1}{10^{\circ}2}$	86
Was a Vield:	pump test made? Yes 21 No [] If yes, h 10^{-2} zail/min, with 3^{-11} draw	y whom? DRiller	WELL DRILLER'S	STATEMENT:		
· · · · · · · · · · · · · · · · · · ·	······································	······································	This well was drilled	i under my jurisdiction :	and this repo	ort is
Recove me Dum	ery data (time taken as zero when pump easured from well top to water level) e Water Level + Time Water Level 7 47 7 7 7 7	turnea off) (water level Time Water Level	NAME HARDIN	6 DRILLING firm, or corporation,	Co Type or print)	
			Address RT 3 BO	× 67 Wella	Wa 1/a	Wn
Da Bailer	te of test $10^{-1}3 - 8.6$	udown off	[Signed] Mile	Harding		
Artesia	an dow	woown after	License No. 177	(Well-Driller)	28 10	86
	10/79/PC A	uysis mader res 📋 No 🕍	Lacense 110	Date	H	·

File Depa Seco	Original and First Copy with urtment of Ecology and Copy—Owner's Copy	ELL. REPORT
Third	Copy-Driller's Copy STATE OF V	WASHINGTON Water Right Permit No
1)	OWNER: Name CITY - Liglla willa	Address 7 %
(2)	LOCATION OF WELL: County Walls Walls	White UE year ?? + 74 y p 35 yu
(2a)	STREET ADDDRESS OF WELL (or nearest address)	
(3)	PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG or ABANDONMENT PROCEDURE DESCRIPTION
(4)	DeWater Test Well X Other	Formation: Describe by color, character, size of material and structure, and show thickness of aquifers and the kind and nature of the material in each stratum penetrated with the strategy end of the structure of the material in each stratum penetrated
(-)	Abadaard 2	MATERIAL FROM TO
	Abandoned □ New well A Method: Dug □ Bored □ Deepened □ Cable ⊠ Driven □ Reconditioned □ Rotary □ Jetted □	1 0 21 1 0 21
(5)	DIMENSIONS: Discussion in 10	Made Garal 1 Sec. 1 57 -94
/	Drilled 2.20 fact Death of second days in 13.0	Med - Gauge 15-8 (3
	CONCEPTION DEPTH OF COMDIETED Well 120 Ht.	Med-Gravel + proun Clas 63 76
(O)	CONSTRUCTION DETAILS:	Med-GRavel- (water) 76 84
	Casing installed: Diam. from Diam. from JUft, toft.	Med- E-Ravel + BRown (1ay 84 121
	Liner installed [] t. toft. toft.	BROWN (lay 121 124
	Diam. fromft. toft.	M-d GRaver (Water) 124 132
	Perforations: Yes No	BROWN (1ay 132 134
	SIZE of perforations	Med-GRALIT & DROWA (Tay 134 169
	in. byin.	BROWN Clay + Small GRAver 163 175
		Med Gravel + Drown Clay 115 178
	perforations from ft to ft	BROWN Clay 118 220
	Manufacturer's Name_Johnson	Inton Eilter So I Adam I S' Conner
	Type PVC Sch 40 Model Not A-98	For 120 The 25'
	Diam. 5" Slot size ,020 from 90 ft. to 105 ft.	1 K C/h / 30 / 0 / 5
	Diam. 5" Slot aize .0.20 from 115 ft. to 130 ft.	FROM 75' TO 13' - Filled W. Th Famer
	Gravel packed: Yes X No Size of gravel Ky TD 3/4	
	Gravel placed from 220 th to 130 th	FROM 13 TU 10 - Send Cushion
	Surface seal: Yes A No to what depth?	FROM 10 0' - Neat CEMENT
		In ER
	Type of water?	
	Method of seeling strata off	
7)	DIIMO	HU DEC 2000
• ,	- Manufacturer's Name	
	Туре: Н.Р	DEPARTITIE
8)	WATER LEVELS: above mean sea level ft.	SPOKANE RECION ECOLORY
	Static level ft, below top of well DateQ -2.4	OCHAL OFFICE
	Arresian pressureIbs. per square inch Date	
	(Cap. valve, etc.))	10-10 39 12-2 195
9)	WELL TESTS: Drawdown is amount water level is lowered below static level	Work started_/L. / C
•	Was a pump test made? Yes A No If yes, by whom?	WELL CONSTRUCTOR CERTIFICATION:
4	rield gal./min. with ft. drawdown after hrs.	I constructed and/or accept responsibility for construction of this well.
		and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best
I	Recovery data (time taken as zero when pump turned off) (water level measured	knowledge and belief.
1	rom well top to water level) Time Water Level Time Water Level Time Water Level	Hanney Dat UTAK Co
<u>) (</u>	20 125	NAME TAROTNE LIA OR CORPORATION (TYPE OR PRINT)
<u></u>	<u>3 +5</u>	Lac we have the test the test
1.5	27 59	Address $\Lambda / 3 DCX / YC W 3/19 W 3/19 U 3.$
	Date of test 12-5-89	mika 1/2 1/ 177
ε	Bailer test gal./min, with ft. drawdown after hrs.	(Signed) ////////////////////////////////////
ļ	lirtest gal./min. with stem set at ft. for hrs.	Contractor's Registration
,	rtesian flow	No. HARDIOC 1321 Date 12-11 . 1987

Artesian flow

_g.p.m. Date

Temperature of water 2 Was a chemical analysis made? Yes No

(USE ADDITIONAL SHEETS IF NECESSARY)

MW -8

* X 4	MW-DA	
File Original and First Copy with	SLI DEDOR Start Card No. 0.55	-642
Department of Écology TVALLIN VVI Second Copy-Owner's Copy	ELL ALFON	
Third Copy—Driller's Copy	Water Right Permit No.	
OWNER: Nome City of Walla Walla	Address Box 478 Walla Walla	
	SHI SHI 35 7	14
2) LOCATION OF WELL: County Walla Walla	<u></u>	N., RW.M.
(2a) STREET ADDDRESS OF WELL (or nearest address)	Walla Land Fill	
(3) PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG or ABANDONMENT PROCEDURE I	DESCRIPTION
DeWater Test Well 🔯 Other	Formation: Describe by color, character, size of material and stuties thickness of aquifers and the kind and nature of the material in each s	ucture, and show tratum penetrated,
(4) TYPE OF WORK: Owner's number of well	with at least one entry for each change of information.	
Abandoned New well Method: Dug Bored	MATERIAL FR	$\frac{10}{2}$
Deepened Cable 🔏 Driven 🗌 Beconditioned D Botary D Jetted D	CIL 2	1 57
	GRavelt Send 5	-2 58
(5) DIMENSIONS: Diameter of well inches.	GRAVEL- WATER 5	8 63 -
Drilledfeet. Depth of completed wellfft.	- Gravel + Brown Clay 6	3760
(6) CONSTRUCTION DETAILS:	GRAVEL- WATER 7	6 84
Casing installed:* Diam. fromft. toft	GRavel + BRown Clay 8	4 45
Uner installed Difference Control Cont	I	
Threaded & Diam. from th. to th		
Perforations: Yes Nola	Val-Cha Fram 95 TO S	H
SIZE of perforationa in. byin		
perforations fromft. toff	10/20 Filter Sand 84	10 61
perforations from ft. to ft	t.	
perforations fromft. toft	1. Vol-Clay FRom 61 To	_1q
		F. 0
Manufacturer's Name JOANSON	- Neat Cement FRom 10 1	00
Type JAAA 1855 JPEI Model No 2702	-	
Diam. Slot size from ft to ft to	t.	
Gravel packed: Yes No X Signature		
Gravel placed from ff to ff		
Surface seal: Yes No 10 What deputy	· · · · · · · · · · · · · · · · · · ·	
Did any strata contain unuaable water? Yes No	-	
Type of water?Depth of strata	-	
Method of sealing strata off	-	
(7) PUMP: Manufacturer's Name	-	
Туре: Н.Р		
(8) WATER LEVELS: Land-surface elevation		
Static level 62 ft. below top of well Date 11-18-91		
Artesian pressure Ibs. per square inch Date	-	
Artesian water is controlled by(Cap, valve, etc.))	- 10- 30 19/completed 11-18	1991
(9) WELL TESTS: Drawdown is amount water level is lowered below static level	Work started	
Was a pump test made? Yes No K If yes, by whom?	WELL CONSTRUCTOR CERTIFICATION:	
Yield: gal./min. with It. drawdown after hre	I constructed and/or accept responsibility for construct	ction of this well,
<u> </u>	"Materials used and the information reported above are	true to my best
Recovery data (time taken as zero when pump turned off) (water level measured from well too to water level)	knowledge and belief.	
Time Water Level Time Water Level Time Water Level	NAME HARDING DRILLING CO	
	(PERSON, FIRM, OR CORPORATION)	(TYPE OR PRINT)
	Address XT8 Box 106 WALLA V	MILA, a
Date of test	mil. M 1.	173
Bailer test 15 nal (min with 3 th drawdown after 1 hr.	(Signed) Kell DRILLER)	<u>+ / </u>
Airtest gai,/min, with stem set at ft, for fr:	Contractor's Registration	. 91
Artesian flow 0.p.m. Date _//-/8-9/	No. HARDIDC HI32 V(Date	, 19_//
Temperature of water 52 Was a chemical analysis made? Yes 🗌 . No 🔯	(USE ADDITIONAL SHEETS IF NECESSA	RY)
CY 050-1-20 (10/87) -1329		

Solo	CN27 CU-L	We (THY MU	ت يتيم. 1576 م	I I
File C Depa Seco Third	Driginal and First Copy with rtment of Ecology nd Copy—Owner's Copy Copy—Driller's Copy A Copy	ASHINGTON Water Right Permit No.		
-	OWNER Nome CITY OF WALLA VIALLE	Address Bry 473 Walls	<u>[].]]</u>	2
.}_		NE NE	· · · ·	F835.
(2)	LOCATION OF WELL: County VIIII WHELT	V Sec_P	N., H	<u>~~</u>
(2a)	STREET ADDDRESS OF WELL (or nearest address)			DIDTION
(3)	PROPOSED USE: Domestic Industrial Municipal Intrigation Intrigation Intrigation DeWater Test Well M Other	(10) WELL LOG or ABANDONMENT PROCEDUR Formation: Describe by color, character, size of material an- thickness of aquifers and the kind and nature of the material in ea thickness of aquifers.	d structure, ich stratum	and show penetrated,
(4)	TYPE OF WORK: Owner's number of well 9	with at least one entry for each change of information. MATERIAL	FROM	тот
	Abandoned Dew well A Method: Dug Device Bored Devices	Towsil - Berchert	0	35 1
	Reconditioned Rotary Jetted	it's clay	35	47
(5)	DIMENSIONS: Diameter of well (1) inches	mediumaroich Brichay	47	55
(0)	Drilled 210 feet Depth of completed well 83 ft.	Smart gravel Br. Clay	55	66
(6)		12 clay	66	
(0)	Casing installed $\frac{1}{1000}$ ($D = 0$ is the $\frac{1}{1000}$ the $\frac{1}{1000}$ the	Smgravel Pretty 0414	15	83.
	Welded \Box S \bullet Diam, from $\frac{1}{7}$ $\frac{1}{2}$ th. to $\frac{1}{2}$ $\frac{1}{3}$ th.	Smight prover clay	\$-3	102
	Liner installed • Diam. fromft. to ft.	Propan-Kedelay smgrant	102	119
	Perforations: Yes No X	Sagrand provaday	119	140
	Type of perforator used	Bround Real Charles Gungrand	140	182
	SIZE of perforations in. by in.	Fine site sauce type or clay	185	710
	perforations fromft. toft.	Fine sond Super Freday application	210	211
	perforations fromft. toft.			4
	Screens: Yes No X		L	· · ·
	Manufacturer's Name J. J. H. H. C. A. Type I. M. C. A.	Vali Chy Farm 211 To 3	<u>></u>	
	Diam	10/20 Filter Saud Advance	p 12	<u>YC</u>
$\underline{\mathcal{D}}$	DiamSlot sizefromft. toft.	Science Frence Frence	· · · · · · · · · · · · · · · · · · ·	
	Gravel packed: Yes No Size of gravel	NI LICH STILL TI	Va	
	Gravel placed fromft. toft.	your day then the		
	Surface seal: Yes No To what depth?	MENT CONTRACTOR		
	Did any strata contain unusable water? Yes No 🗹	<u> </u>		
	Type of water?Depth of strata	D I tilled 10		
	Method of sealing strata off	Ky C		
(7)	PUMP: Manufacturer's Name Graun ECS			
	Туре:Н.Р	65		+
(8)	WATER LEVELS: Land-surface elevation above mean sea level ft.			
	Static level ft. below top of well. Date			
	Artesian water is controlled by (feo value atc.))			
$\frac{1}{\sqrt{2}}$	WELL TECTO: Drawdown is amount water lavel is lowered below static level	Work started 1-20 19 Completed	<u></u>	
(3)	Was a pump test made? Yes No Hyper, by whom? hrs.	WELL CONSTRUCTOR CERTIFICATION:	struction	of this well,
		and its compliance with all Washington well co	nstruction	standards. to my best
	u u u u u	Materials used and the information reported above knowledge and belief.	3 4/6 //00	(0)
	Recovery data (time taken as zero when pump turned on) (water level ineasured from well top to water level)	I I A A II.C.	:	
	Time Water Level Time Water Level Time Water Level	NAME <u>AT A VAL INAL CITTATA CD</u>	CTYPE	OR PRINT)
		Address Rt & Box 106 Wallal	Ullal	1/2 11
1	Date of test	H. It est. A.	110	78-
Ċ	Reilerteet 15 nel /min with 5 th drawdown after 1 hra	(Signed) <u>Alland Katolin</u> License (WELL DRILLER)	3 NOLO 2	L
	Airtest gal./min. with stem set at ft. for hrs.	Contractor's Registration Orion Herrichten 11- 2-		.91
	Artesian flow g.p.m. Date 10-25-91	No. 1. 1. 1. 1. 1. 1. 1. Date 11-25		, 19
	Temperature of water 54 Was a chemical analysis made? Yes \Box No \boxtimes	USE ADDITIONAL SHEETS IF NECE	SSARY)	

time weath	- Owner's Copy • Oniller's Copy	STATE	DF WASHINGTON Water Right Permit No.	BED
(1) OWNE	R: Name Lity of	WALL WALLA	Address	
(2) LOCA	TON OF WELL: Courty W	ALLA WALLA	. NW 14 1450 12 T	7N N
(2a) STREI	TADDRESS OF WELL (or near	maddines) farmers	field	
(3) PROP	DSED USE: Domestic	industrial 🗌 Manicipal 📋	(10) WELL LOG of ABANDONMENT PROCEDUR	EDESCR
	Irrigation DeWater	Teet Well '9 Other	Formation: Describe by color, cheracter, size of material and souchure,	and show th
(4) TYPE	OF WORK: Owner's number of	well MW-10	and the kind and nature of the material in each stratum penetrated, v change of information.	101 81 10851 C
Abando	ned 🗆 New well 🎉	Method: Dug 🗋 🛛 Bared 💋	I) II FF ID MATERIAL	FIRO
	Despened	Cable Driven		\rightarrow
(5) DIMEN	BIONS: Diamater of well	8 inc	JUTT TIDIST SILT	+0
Driffed		leted well 45.4	" MATU S. H TTOLL OF ATHLE	125
(8) CONS	RUCTION DETAIL Q.			
Casing	installad: X · Diam	tom T3 to 30.40	, FILT MOUST, HED BOUDAL	
Weided Liner ins	talled [] Diam	t. fromft. to	* HUNCO SHETE WOL BUCK	
Threade	d 🕺* Olem	fromft_ to	n handle star harden	
Perform	tons: Yes No 🕅		Gravel time to Course	
iype of p SiZE of c	errorator used	in. by		
	perforations from	t. 10	n Laturated	
	perforations from		_ft.	
	perforations from	11, 10	_R	
Screens	: Yes X No	<	MERCHED WELER	_d S
Туре	PVI Sch 41	2 Model No.	-	
Diem.	Slot sizetro	mt. to	"t.	
Diam.	Slot size fro	mft. to	_t.	
Gravel p		Size of gravel 15-20 401	<u>نا</u>	·
Chaves by		T_ B Y_ /	· · · · · · · · · · · · · · · · · · ·	-+
Material u	seal: Yes (A No) T	what depth? <u>3()</u>	n	
Did any s	rete contain unusable water? Yes			
Type of w	aler?	Depth of strata		
Method a	sealing strata of			
7) PUMP:	Manufacturer's Name N	М		- +
Type:		H.P		
8) WATER	LEVELS: Land-surface elevation above mean sea leve	n 1	R	
Static leve Artesian n		L'below top of well Dete		
	Artesian water is controlled by			
	COTO	(Cap, velve, etc.)	Work Started 19. Completed 1.2	27.9
Wasapu	Drawdown is amount wa	ler level is lowered below static level If yes, by whom?	WELL CONSTRUCTOR CERTIFICATION:	
Yheid:	gal/min. with	t. drawdown alterh	rs. I constructed and/or accept responsibility for construct	ion of this
**	f1	59	" compliance with all Washington well construction stands	irds. Mater
17 Remains	tt	64	- LANIN HALAGE TO ALCONT	
top to wat	uaua (ume lavel) H level) Water Lavel	Arumed off) (water level measured from w	NAME DIVIK GIVINENIAL WEST EV	CHEPPUNT
·····		Time Water Leve	Address	-
		1.5	- island Went if () BAAFIN	onen Na
			(WELL DALLEA)	on root into
			Contractor's	
Baller test	get./min. with	IL Oremdown after h		

<u></u>		an a	- ī	.0G	OF E	XPLOR/	ATORY BORING
PRO LOC DRIL DRIL LOG	PROJECT NAMEStokely USA, Inc.LOCATIONWalla Walla, WashingtonDRILLED BYEnvironmental West ExplorationDRILL METHODHollow Stem AugerLOGGED BYCraig Schwyn						BORING NO. 10 PAGE 1 OF 3 GROUND ELEV. TOTAL DEPTH 47.00' DATE COMPLETED 12/27/93
SAMPLING METHOD AND NUMBER	PID (in ppm)	BLOWS PER 6-INCHES	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES LITHOLOGIC COLUMN	WELL Details	LITHOLOGIC DESCRIPTION
		5-11-15 8-7-8 3-5-6 4-4-4		- 20-			 0 to 27.0 feet: SILT (ML), grayish brown, trace fine to medium sand, low plasticity, damp. ④ 5.0 feet: no sand, mottled white, 1/8-inch laminations. ④ 10.0 feet: light olive brown, trace angular fine sand. ④ 14.5 to 14.8 feet: lense with some medium to fine sand.
		REMARK	5			·	

EMCON Northwest, Inc.

۰.

LOG OF EXPLORATORY BORING

PROJECT NAME Stokely USA, Inc. LOCATION DRILLED BY DRILL METHOD LOGGED BY

Walla Walla, Washington **Environmental West Exploration** Hollow Stem Auger Craig Schwyn

BORING NO. 10 PAGE 2 OF 3 GROUND ELEV. TOTAL DEPTH 47.00' DATE COMPLETED 12/27/93

LOG OF EXPLORATORY BORING

DRILLED BY DRILL METHOD LOGGED BY -

PROJECT NAMEStokely USA, Inc.LOCATIONWalla Walla, WashingtonDRILLED BYEnvironmental West Exploration Hollow Stem Auger Craig Schwyn

BORING NO. 10 PAGE GROUND ELEV. 3 OF 3 TOTAL DEPTH 47.00' DATE COMPLETED 12/27/93

SAMPLING METHOD AND NUMBER	PID (in ppm)	BLOWS PER 6-INCHES >	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	NWN COLUMN LITHOLOGKC	WELL DETAILS	LITHOLOGIC DESCRIPTION
				45 - 50 -				 ③ 47.0 feet: SILTY GRAVEL (GM), continued. ④ 47.0 feet: no sample attempt: hard gravel. Total depth drilled = 47.0 feet. WELL COMPLETION DETAILS: + 2.3 to 29.4 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC blank riser pipe. 29.4 to 44.7 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. + 3.0 to 3.0 feet: 6-inch-diameter, locking steel riser pipe. + 0.4 to 2.0 feet: Concrete. 2.0 to 27.0 feet: Bentonite chips hydrated with potable water. 27.0 to 47.0 feet: 10 - 20 Colorado Silica Sand.
			5	 .			æ	0896-001.01.STOKE.L52/se:2.01/09/94STOKE

File C Depa Seco Third	Driginal and First Copy with rtment of Ecology nd Copy — Owner's Copy Copy — Driller's Copy STATE OF W	Start Card No. 19172 Start Card No. 19172 UNIQUE WELL I.D. # ABJ 9 (ASHINGTON Water Right Permit No	26
Įn	OWNER: Name City of Walla Walla Add	1055 P.O. Box 478 Walla Walla, Wa 99:	362
(iz) (29)	LOCATION OF WELL: County Walla Walla	- <u>NE 1/4 NE 1/4 Soc 22 T. JN N. R.</u>	<u>358,</u> w.
(3)	PROPOSED USE: Domestic Industrial Municipal I Irrigation Test Well X Other I	(10) WELL LOG or ABANDONMENT PROCEDURE DESCRIPT Formation: Describe by color, character, size of material and structure, and show thickne and the kind and nature of the material in each stratum penetrated, with at least one	10N ess of aquife entry for eac
(4)	TYPE OF WORK: Owner's number of well (If more than one) multiple Abandoned New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted	change of information. → → → → → → → → → → → → → → → → → → →	то
(5)	DIMENSIONS: Diameter of well 8 inches. Drilled 41 feet. Depth of completed well 41 ft.	silt dash brown 0 saturated at 29 ft.	411
(6)	CONSTRUCTION DETAILS: Casing installed: Diam. from ft. to		
	Perforations: Yes No Xe Type of perforator used		
, · · ·	Screens: Yes X No		
	Surface seal: Yes No Jo what depth? 23 ft. Material used in seal Bantonute Church 10 Did any strata contain unusable water? Yes No No Type of water? Depth of strata Method of sealing strata off		
(7)	PUMP: Manufacturer's Name H.P.		
(8)	WATER LEVELS: Land-surface elevation above mean sea level	Work Started	ell, and its
(9)	WELL TESTS: Drawdown is amount water level is lowered below static level Was a pump test made? Yes No If yes, by whom? Yield: ft. drawdown after " " " " " " " " " "	the information reported above are true to my best knowledge and belic NAME ENVICED MEASON FIRM OF CORPORATION Address P O BLOX HDPS SYCLONE	11 <u>Cn</u> 11 <u>Cn</u> 11 <u>A</u>
т	Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level) ime Water Level Time Water Level Time Water Level Time Date of test	(Signed) (JULM (JLAAMEN License No.] (WELL DRILLER) Contractor's Registration No. <u>ENVIRIUE INFP</u> Date <u></u> (USE ADDITIONAL SHEETS IF NECESSARY)	19 <u></u>
	Date of test	Ecology is an Equal Opportunity and Affirmative Action employer. cial accommodation needs, contact the Water Resources Program 407-6600. The TDD number is (206) 407-6006.	. For spe- n at (206)

EMCON

PRC LOC DRII DRI LOC)JECT N. XTION LLED BY LL METH GGED BY	AME Wa Sud Env IOD Ho Jol	Illa Walla, Was dbury Road La vironmental W llow Stem Auç hn Latta	shington ndfill est ger		BORING NO. MW-11 PAGE 2 OF 2 GROUND ELEV. 791.65' TOTAL DEPTH 41.00' DATE COMPLETED 02/10/95
SAMPLING METHOD AND NUMBER	ground Water Levels	BLOWS PER 6 INCHES	DEPTH N FEET SAMPLES	BORING DETAILS	LITHOLOGIC	LITHOLOGIC DESCRIPTION
SS		11-30- 50/5"				 14.0 to 41.5 feet: SILT (ML), continued. 40.0 feet: orange gray to light brownish gray, very stiff to hard, wet, mottled iron oxide stain. Total depth drilled = 41.0 feet. Total depth sampled = 41.5 feet. WELL COMPLETION DETAILS: 0 to 25.5 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC blank riser pipe. 25.5 to 40.5 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots (screened 26.0 to 40.0 feet). 40.5 to 41.0 feet: 2-inch-diameter threaded end cap. 0 to 1.0 foot: Concrete. 1.0 to 23.0 feet: Bentonite chips hydrated with potable water. 23.0 to 41.0 feet: 10 - 20 Colorado Silica Sand.

EMCON

counts.

(

LOG OF EXPLORATORY BORIF Decommissioned August 28, 2008							
PROJECT NAMEWalla Walla, WashingtonLOCATIONSudbury Road LandfillDRILLED BYEnvironmental WestDRILL METHODHollow Stem AugerLOGGED BYJohn Latta						BORING NO. MW-12 PAGE 1 OF 2 GROUND ELEV. 823.53' TOTAL DEPTH 62.00' DATE COMPLETED 02/10/95	
SAMPLING METHOD AND NUMBER	GROUND WATER LEVELS	BLOWS PER 6 INCHES	DEPTH W RET	SAMPLES	BORING DETAILS	COLUMN	LITHOLOGIC DESCRIPTION
SS		2-4-6	5				O to 17.0 feet: SILT (ML), light brownish gray with a trace of fine to medium sand, stiff, damp. Bedded and laminated locally. Micaceous.
SS		9-13-17	10 				~
SS		14-20-25	20				17.0 to 23.0 feet: CLAYEY SILT (ML/CL), light brownish gray to brown, silt with a little to few percent clay, very stiff, damp. Laminated and bedded.
SS		7-26-40	25 - -				23.0 to 45.0 feet: SILT (ML), light brownish gray to brown, hard, damp.
SS		29-50/5"	- 30- 				@ 30.0 feet: 1/2-inch-thick vertical clastic dike filled with fine to medium sand.
SS		36-33-39	- 35 - 				
REMARKS (1) Washington Department of Ecology Unique Well No. ABJ 927. (2) SS = Split-spoon sampler driven by a 140-pound harmmer with a 30-inch drop. Split-spoon is 2-1/2 I.D. unless otherwise noted. (3) Consistency of fines based upon blow counts.							

EMCON
PRC LOC DRII DRII LOC)JECT N. XATION LLED BY LL METH GED BY	AME Wa Suc Env IOD Ho JOI Joi	LOG Illa Walla, W dbury Road I vironmental ' Ilow Stem A nn Latta	OF EXP ashington Landfill West .uger	'LOR	ATORY BORIN(Decommissioned August 28, 2008 BORING NO. MW-12 PAGE 2 OF 2 GROUND ELEV. 823.53' TOTAL DEPTH 62.00' DATE COMPLETED 02/10/95	
SAMPLING METHOD AND NUMBER	ground Water Levels	BLOWS PER 6 INCHES	DEPTH IN FEET	SAMPLES BORING DETAILS	NWN COLUMN LITHOLOGIC	LITHOLOGIC DESCRIPTION	
SS		14-30- 50/3"				23.0 to 45.0 feet: SILT (ML) , continued. @ 40.0 feet: mottled appearance due to caliche.	
3" SS	⊻ 2/10/95 50.75'	8-23-50	45			45.0 to 50.0 feet: SILTY GRAVEL (GP-GM) , brown, medium to coarse subrounded basaltic gravel and some silt, hard, wet.	
3" SS		⊽ 2/10/95 50.75'	40-50/5"				50.0 to 58.0 feet: GRAVEL (GP), dark brownish gray, coarse to medium subrounded basaltic gravel, a few percent fine subrounded basaltic gravel, a few percent coarse to fine sand, and a trace silt, hard drilling, wet to moist.
3" SS			9/1'- 53 50/4" 6/1"- 60			58.0 to 62.0 feet: SILTY SANDY GRAVEL	
3" SS		6/1"- 50/2"				with a few percent of medium to coarse; subrounded basaltic gravel, some coarse to medium sand, some fine sand and some silt, hard drilling, wet.	
			65			Total depth drilled = 62.0 feet. Total depth sampled = 62.0 feet. WELL COMPLETION DETAILS: 0 to 46.5 feet: 2-inch-diameter, flush-threaded,	
			70-			 Schedule 40 PVC blank riser pipe. 46.5 to 61.5 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots (screened 47.0 to 61.0 feet). 61.5 to 62.0 feet: 2-inch-diameter threaded end cap. 	
						0 to 41.0 feet: Bentonite chips hydrated with potable water. 41.0 to 62.0 feet: 10 - 20 Colorado Silica Sand.	
		EMARKS	n Department of	Ecology Uniqu Split-spoon is 2	e Well No.	. ABJ 927. (2) SS = Split-spoon sampler driven by a 140-pound unless otherwise noted. (3) Consistency of fines based upon blow	

EMCON

counts.

Der Berner de Prinz Gery wills Subjection de Subjectino de Subjection de Subjection de Subjection de Subjection de		Decommissioned	August 28, 2008 MW^{-1^2}	ا مر م	ц
WHER: How Cit, of Walle Walle How R.D. Baf 47.8 Load La Lualla Load Reg 10 CONDORO OF WELL: construction and the construction of the set	File C Depa Seco Third	riginal and First Copy with trment of Ecology nd Copy — Owner's Copy Copy — Driller's Copy	LL REPORT UNIQUE WELL I.D. # A.	BJ	727
DICATION OF WELL: Construction Carlot Sec of State Marchael 0) PROPOSED USE: Draws and some UAAL and Low Low Low Process of some UAAL and Low Low Process of some UAAL and Low Process of the Low Process of some UAAL and Low Process of the Low Process of th		DWNER: Name City of Walla Walla Add	1055 P.O. Box 478 Walle Walls, wa	99.3	162
a) STREET ADDRESS OF WELL browned sweets LLABLA Marclual b) PROPOSED USE Developing International c) TYPE OF WORK: One of the Marcle and the Marcle and the stress of the Marcle and	(2)	LOCATION OF WELL: county Walla Walla	- SE 1/4 SW 1/4 Sec_14_T_	N_R	35 E.W.A
PROPOSED USE: Derestie Interview Multiput I Derestie Interview (10) WELL USG or ABANDOMMENT PROCEMPTION Interview Enderstiel Interview 10) TYPE OF WORK: Comment of with MULTI I Bandraded Interview Interview <td< td=""><td>(2a)</td><td>STREET ADDRESS OF WELL (or nearest address) walls</td><td>a land fill</td><td></td><td></td></td<>	(2a)	STREET ADDRESS OF WELL (or nearest address) walls	a land fill		
Image: Control Device: The output of the model of the model of the output of the model of the output of the model of the output of the model of th	(3)	PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG or ABANDONMENT PROCEDURE DE	SCRIPTI	ON
1) TYPE OF WORK: Other analysis, and analysis,		DeWater Test Well X Other	Formation: Describe by color, character, size of material and structure, and s and the kind and nature of the material in each stratum penetrated, with at change of information	feast one e	ntry for eac
ADDITION I Intervention of the according of t	(4)	TYPE OF WORK: Owner's number of well $\mathcal{M} \mathcal{W} \mathcal{H} \mathcal{I} \mathcal{I}$	mw#12 MATERIAL	FROM	то
Differst Diverse of avail 8 inchest Drived Gal rest. Drived of avail 20 2.5 Construction Detrails: 2 Drived of available 2.0 2.5 Performations: Vest No No 2.0 2.5 Proof profered reampled Drived of available 2.0 2.5 4.15 Proof profered reampled Drived of available 2.0 2.5 4.15 Proof profered reampled Drived of available 2.0 2.5 4.15 Proof profered reampled Drived of available 2.0 2.5 4.15 Diam Distribute Distribute 1.0 1.0 1.0 1.0 1.0 Diam Distribute Diam Distribute 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		Abandoned I New well g Method: Dug Bored D Deepened Cable Driven Reconditioned Rotary Jetted J	sitt light brown dry	0	20
0 CONSTRUCTION DETAILS: Diam. from	(5)	DIMENSIONS: Diameter of well 8 inches. Drilled 62 feet. Depth of completed well 62 ft.	clayer silt, brown	20	25
Casing installed:	(6)	CONSTRUCTION DETAILS:	sitt dark brown dry	25	415
Image: Additional intermediation intermediatin intermediation intermediation intermediation intermediation int	•••	Casing installed: Diam. from ft. to	sitty grund, cobbels, some	45	62
Type optionation used in. by in. SEC optionations in. by in. perforations from ft. to ft. perforations from ft. to ft. perforations from ft. to ft. generations from ft. to ft. perforations from ft. to ft. generations from ft. to ft. generations from ft. to ft. ft. to ft. ft.		Perforations: Yes No X	fine rand		
		Type of perforator used			
Screens: 'voo in too		perforations from ft. to			
Manufacture's Name JOBANAM po PVC Sch size point 21' Site size from Diam Site size from Diam 21' Site size from Gravel packet 'ves & No Size of gravel 10/3.0 band Gravel packet 'ves & No Size of gravel 10/3.0 band Bit size from fit Surface seal: 'ves & No Size of gravel 10/3.0 band Did any state ontain unuable water? No & No Did any state ontain unuable water? No & No Of any state ontain unuable water? No & No PUMP: Manufacture's Name ////////////////////////////////////		Screens: Yes X · No			
Diam. Stot size from ft. to ft. Gravel paced from 41 to Stot size of gravel 10/20 Jack Gravel paced from 41 to Stot size of gravel 10/20 Jack Gravel paced from 41 to Stot size of gravel 10/20 Jack Material used in seal No To Material used in seal Stot Size of gravel 10/20 Jack Did any strate contain unusable water? Yes No X Yes No X Type of watar? Depth of strata 3 Stat size of gravel 10/20 Jack Stat size of gravel 10/20 Jack 0 PUMP: Manufacturer's Name A H.P. To 17po: The blow top of wall 0 date stat size of gravel of wall 0 date stat size of gravel of wall 0 date Artesian mater is controlled by (Cap, valve, etc.) Work Started 2 = 9 13 Gravel of state 2 = 10 19 Gravel of state 10 WELL TESTS: Drawdown is amount water level work on the date of wall on the date of wall on the date of wall on the state of state 1 = onstruction adar/or accept responsibility for construction of this well, and it to not meet 1 = onstruction adar/or accept responsibility for construction of this well, and ithe information reported above are true to my b		Manufacturer's Name Johnson rpe PVC Sch 40 Model No. Diam. 2 ¹¹ Stot size 010 from 47 ft. to 62 ft.			
Surface seel: Yes X No I , To what depth? 41 tt. Material used in seal Buttomut Chrips		Diam. Slot size from ft. to ft. Gravel packed: Yes No Size of gravel 10/20 Sound Gravel placed from 41 ft. to 62 ft.			
Type of water? Depth of strata Method of sealing strata off Bepth of strata I) PUMP: Type: Method of sealing strata off I) WATER LEVELS: Land-suffice elevelion It Type: Box man seal sevel II) WATER LEVELS: Land-suffice elevelion It Artesian water is controlled by (Csp, valve, etc.) Vield: gal./min. with III: It yes, by whom? Yield: gal./min. with III: It. drawdown after III: III: III: Water Level III: Method water III: Water Level III: Water Level III: Water Level III: Method water III: Method water		Surface seal: Yes No			
7) PUMP: Manufacturer's Name Manufacturer's Name 7) PUMP: Manufacturer's Name Manufacturer's Name 7) WATER LEVELS: Land-surface elevation it. below top of well Date 8) WATER LEVELS: Land-surface elevation it. below top of well Date Artesian water is controlled by (Cap, valve, etc.) Work Started 2 - 9 19 Grupteted 2 - 10 19 Grupteted 9) WELL TESTS: Drawdown is amount water level is lowered below static level Work Started 2 - 9 19 Grupteted 2 - 10 19 Grupteted 1 - 10 19 Grupteted 2 - 10 19 Grupteted 2 - 10 19 Grupteted 1 - 10 19 Grupteted 2 - 10 19 Grupteted 1 - 10 19 Grupteted 1 - 10 19 Grupteted 2 - 10 19 Grupteted 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 <td></td> <td>Type of water? Depth of strata Method of sealing strata off</td> <td></td> <td></td> <td></td>		Type of water? Depth of strata Method of sealing strata off			
B) WATER LEVELS: Land-surface elevelion above mean sea level ft. Static level ft. below top of well Date ft. Artesian pressure tbs. per square inch. Date ft. Artesian pressure tbs. per square inch. Date ft. Matter is controlled by (Cap. valve. etc.) Work Starled ft. Wark a pump test made? Yes No X If yes, by whom? is constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief. """"""""""""""""""""""""""""""""""""	(7)	PUMP: Manufacturer's Name			
State level It below top i well bala Artesian pressure Its per square inch Date Artesian water is controlled by (Cap, valve, etc.) Work Started 19. Well TESTS: Drawdown is amount water level is lowered below static level Was a pump test made? Yes No X If yes, by whom? It drawdown after If well gal./min. with If it me taken as zero when pump turned off) (water level measured from well If me Water Level Time Water Level Date of test gal./min. with stem set at Artesian flow gal./min. with stem set at Artesian flow gap.m. Temperature of water Was a chemical analysis made?	(8)	WATER LEVELS: Land-surface elevation above mean sea level tt.	 Apple ASS TRACE AND ADDRESS OF A DECK AND ADDRESS OF A DECK ADDRESS OF ADDRESS OF ADDRESS OF A DECK ADDRESS OF ADDRES ADDRESS OF ADDRESS OF ADDR		
(Cap, valve, etc.) Work Started	•	Artesian water is controlled by			
Was a pump test made? Yes No X If yes, by whom? If yes, by whow? If yes, by whow? If	(9)	(Cap, valve, etc.)	Work Started, 19. 95 mpleted	10	19
""""""""""""""""""""""""""""""""""""		Was a pump test made? Yes No X If yes, by whom? Yield: ft. drawdown afterhrs.	WELL CONSTRUCTOR CERTIFICATION: I constructed and/or accept responsibility for construction	of this we	ell, and its
Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level) NAME Count of the contractors Time Water Level Time Water Level Date of test		11 11 11 11 11 11 11 11 11	compliance with all Washington well construction standards. the information reported above are true to my best knowledge	. Materials e and belie	used and If, ,
Date of test	т	Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level) me Water Level Time Water Level Time Water Level	NAME Environmental Whist 2461	KANU KANU	
Date of test			(Signed) Dan Classen License	9 No. 18	327
Artesian flow g.p.m. Date Temperature of water Was a chemical analysis made? Yes No X		Date of test	Contractor's Registration No. FANJARWEIDIPP Date 2-11		_, 19
		Artesian flow g.p.m. Date Temperature of water Was a chemical analysis made? Yes No 2	(USE ADDITIONAL SHEETS IF NECESSA	RY)	_

2

÷

Garver Well

Appli. 8758 STATE OF WASHINGTON POR. 8090 DEPARTMENT OF CONSERVATION DIVISION OF WATER RESOURCES

Record by Driller Source Driller's Record Location: State of WASHINGTON County Walla Walla Area Map NE. 4 SW. 4 secl4. T. 7. N. R. 35E. E. Drilling Co. Moore & Anderson Address. P. O. Box 1228- Walla Wall Method of Drilling. Cable Date. No Dwner. Richard Garver	Diagram o	f Section
Source Driller's Record Location: State of WASHINGTON CountyWalla Walla Area	Diagram o	f Section
Location: State of WASHINGTON CountyWalla Walla Area	Diagram o	f Section
CountyWalla Walla Area Map ME. 4 SW. 4 secl4. T. 7. N. R. 35E. E. Drilling CoMoore & Anderson AddressP. O. Box 1228- Walla Wall Method of DrillingCable DateNo DwnerRichard Garver	Diagram o	f Section
Area Map NE. ¼ SW. ¼ secl4T. 7N., R. 35E. E. Drilling Co Moore & Anderson AddressP. OBox 1228- Walla Wall Method of Drilling	Diagram o	f Section
Map NE. ¼ SW. ¼ secl4T7N., R35E. E. Drilling CoMoore & Anderson AddressP. O. Box 1228- Walla Wall Method of DrillingCable DateNo DwnerRichard Garver	Diagram o	f Section
NE. 1/4 SW. 1/4 secl4T. 7N., R. 35E. E. Drilling Co Moore & Anderson Address. P. O. Box 1228- Walla Wall Method of Drilling cable Date. No Dwner. Richard Garver	Diagram o	f Section
Drilling Co Moore & Anderson AddressPOBox 1228- Walla Wall Method of DrillingCable Date. No Dwner. Richard Garver	Diagram o	f Section
Address P. O. Box 1228- Walla Wall Method of Drilling cable Date No Dwner, Richard Garver	a, Maal	ningto
Method of Drilling cable Date No Dwner Richard Garver		
Dwner_Richard Garver	Vanhan	2010
		19 ليكر
Address P. O. Box 1002 Walla Wal	la. Wa.	ahinat
WL: 150' Date Dec. 8 19.67	Dims.:]	227 X
CORRS- LATION MATERIAL	From (feet)	To (feet)
Irrigation	screens, etc	•)
Clay and soil		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Clay w/coarse sand & gravel hrm		
Clay, brown, some gravel		2
Clay, brown	28	- 4
Claw and manal	3	<u>(</u> 4 71
MAY ALL FRYAL		10
Gravel	. 14	88
Gravel Clay & gravel	14	88
Gravel Gravel Gravel (water to drill with at	14	88 93
Gravel Clay & gravel Gravel (water to drill with at 116')	14 5 57	88 93 150
Gravel Gravel Gravel (water to drill with at 116') Gravel with clay	14 5 57 10	88 93 150 160
Gravel Gravel (water to drill with at ll6') Gravel with clay Gravel (Static level 100')	14 5 57 10 19	88 93 150 160 179
Gravel Gravel (water to drill with at ll6') Gravel with clay Gravel (Static level 100') Gravel & clay	14 5 57 10 19 18	88 93 150 160 179 197
Gravel Gravel (water to drill with at 116') Gravel with clay Gravel (Static level 100') Gravel & clay Gravel	14 5 57 10 19 18 13	88 93 150 160 179 197 210
Gravel Gravel (water to drill with at ll6') Gravel with clay Gravel (Static level 100') Gravel & clay Gravel Clay & Gravel, sticky brown	14 5 57 10 19 18 13 6	88 93 150 160 179 197 210 216

Garver Well

	No	/			
CORES	KATEGAL	from (feet	n .)	To (feet)	*
LATION	Durth (organd				¥.,
	Deputien star	6	8	288	1
	CIAY, president a st	2	1	309	
	blay, blue	2	5	334	
	Clay, dain die graan	3	8	372	
	Liay, dara, ground with some				
	Clay, Henter Broom Hat		0	382	4.3 ⁴ 5.
	hard shale		28	_410_	
	Clay, dark green hand		2	412	
	Shale, dark gray, hard	8			
	Rock & Gravel, broken with		io	1.22	8
	clay		10	432	
	Shale, brwon	1	13	445	
	Gravel, with some clay	1	14	459	
	Clay, brown		2	1.62	
	Clay, brown, sticky		35	497	
	Clay, brown		25	522	
	Clay, blue		10	532	2
	Shale, blue		10	540)
	Blackrock	<u>_</u>	0	ESI	
	Rock gray				
	Sometone, vellow-white, red	<u>-</u>			<u>د</u> الأ
	dich hm.				
	Rock reddish brown, harder		<u></u>		7
	Rock, gray, hard		57		
	Rock dark gray		23	04	V
	Deck, dark grav, softer		_10	0	
	Rock black w/some blue, br	oken			
	acceptione (Static level 200	T)	13	60	22
-	BOBUSICONS (Deater		23	61	36
	Rock, DIACK		33	7	19
	Rock, black W/ But Shate		2	7	21
	Shale, brown		9	7	30
	Rock, black	8	2	7 7	57
_	Rock, blck w/blue soapston	731)	2	4 7	181
	Rock, black(Static level 1	15 1			

STATE OF WASHINGTON DEPARTMENT OF CONSERVATION DIVISION OF WATER RESOURCES WELL LOG Record by.... Source..... Location: State of WASHINGTON County..... Area Map..... Diagram of Section Drilling Co..... Address Owner_____ Address SWL:_____ Date_____ 19____ Dims:_____ COLER From (feet) To (feet) MATERIAL LATION (Transcribe driller's terminology literally but furaphrase as necessary, in parentheses, If material water-bearing, so state and record static level if reported. Give depths in feet below iand-surface datum unless otherwise indicated. Correlate with stratigraphic column, if feasible. Following log of materials, list all casings, perforations, screens, etc.) Rock, black, harder 15 796 33 829 Rock, black, softer 36 865 Rock, gray, softer 11 876 Rock, gray, hard Rock, black 176 1052 1061 9 Rock, gray 1198 Rock, black(Water at 1077') 137 Changed to 10" hole at 1100' Static level 169' hole at 1131' Static level 162' hole at 1136' Static level 159' hole at 1151' Static level 157' hole at 1170' 2 1200 Rock, gray

Rock, black (Static level 155'

n

Rock, gray

=

After pumping Static level was at 150

154'

Turn up

Sheet____of___sheets

9

18

1218

Log of Exploration

Exploration No. MW-12b

	Ser	víces	>			Sheet	1 of 5
Proj	ect: C	ity of	Walla \	Nalla S	Sudbu	ry Road Landfill Monitoring Well MW-12 Replacement	
Star Finis Wea Geo Drille Meth	t Date: sh Date ather Co logist: (er: Env nod: 6-	8/28/2 8/29 onditio Craig S vironm in dia.	2008 //2008 /ns: Cle Schwyn ental W TUBE	ear, Wa l /est Ex X	arm p.	Well Construction Ground El: 825.37 PVC Casing El: 828.26 Datum: NAVD 88 Total Depth (BGL): 80.5 ft Completion: 6-in. dia. locking steel monument with concrete s Seal (BGL): Bentonite chips 1.5 to 58 ft Sandpack (BGL): Colo. silica sand (6 ft 10/20 & 16.5 ft 20/40) Casing: 2-in. dia. flush threaded PVC +2.8 to 60.0 ft BGL Screen: 0.01-in. slot PVC 60 to 80 ft BGL, with 4 in. bottom ca	} urface pad 58 to 80.5 ft.
ample Number	는 Sample 이 Interval	slows per 6-inch nterval	ampler Type)epth (feet)	ISCS Symbol	Water Level InformationDate:8/28/08 8/29/08Time:3:00 1:40Depth to Water (ft BGL):59.7Depth to Water (ft BTOC):62.20	Comments
0	BOL	шт	の Crob			Sample Description	Drilling Action
	5 <u>9.5</u>	<u>10</u>	Drill Chips 1.5-in			Damp	
	11	<u>12</u> 11	SPT Drill Chips	10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 -			
	<u>19.5</u> 21	<u>7</u> <u>10</u> 14	1.5-in SPT	18 - 19 - 20 -		Moist	

Exploration No. MW-12b

Sheet 2 of 5

Proj	ect: C	ity of	Walla V	Valla S	Sudbu	ry Road Landfill Monitoring Well MW-12 Replacement	
ole Number	Sample Interval	s per 6-inch ⁄al	oler Type	(feet)	S Symbol		
Samp	<u>Top</u> Bot	Blow: Interv	Samp	Dept	USC:	Sample Description	Comments Drilling Action
.,					ML	Light brown Silt (continued)	
				 22-		trace sand, low plasticity, laminated, stiff, moist.	
				 23-			
				 24 -			
	25		Drill	 25 -			
			Chips	 26-			
				 27 -			
				 28-			
	oo -	40		 29-			
	<u>29.5</u> 31	<u>12</u> 1.5-in <u>16</u> SPT 17	1.5-in SPT	 30-			
				 31 -			
				 32_			
				 33-			
				 34 -			
	35		Drill	 35 -			
			onpo	 36 -			
				37 -			
				 38 -			
				39-		Clayey silt, whitish mottling, moderate plasticity.	
	<u>39.5</u> 41	<u>8</u> 12	1.5-in SPT	40 -			
		16	0	 41 -			
				42 -			
				43 -			
				44 -			
	45		Drill Chips	45 -			

Exploration No. MW-12b

Sheet 3 of 5

Proj	ect: C	ity of \	Walla V	Valla S	Sudbu	ry Road Landfill Monitoring Well MW-12 Replacement					
ple Number	Sample Interval	s per 6-inch val	pler Type	h (feet)							
Sam	<u>Top</u> Bot	Blow Inter	Sam	Dept	nsc	Sample Description	Comments Drilling Action				
				46 -	ML	Light brown Silt (continued) trace sand, low plasticity, laminated, stiff, moist.					
				47 -							
				48 -			Drilling slows @ 48				
	<u>49.5</u>	<u>49.5</u> <u>100</u> 1.5-in	1.5-in	49-	GM	Brown silty Gravel with sand, 0.5 - 1" sub-rounded basalt gravel,					
	50	8"	SPT	50-		up to 40% clay/silt matrix, very dense, moist.					
				_ 51 -							
				_ 52 -							
				_ 53 -	53-						
				_ 54 -							
	55	Drill Chips		_ 55 -		Dark brown, sandy Gravel with little silt.					
				_ 56 _							
				57 -							
	<u>59.5</u> 61	<u>9</u> 16	1.5-in SPT	1.5-in SPT	1.5-in SPT	1.5-in SPT	1.5-in SPT		SM	Dark reddish brown fine Sand with little silt, dense, wet.	⊻ Water @ ATD 59.7' BGL
	0.	25	01.1	60 -		@ 60.5: Whitish brown Silt with some fine sand.					
				61 -	GM	Grayish brown gravely Sand with silt. Sub-rounded gravel up to 1/2 inch, very dense, wet.					
				62-			Interlayered wet and moist zones				
				63-			from 60 to 72 ft.				
	<u>64.5</u>	<u>100</u>	1.5-in	64		Dark brown fine Gravel with silty sand matrix, sub-angular gravel,					
	65	6"	SPT	65-		approx. 40% silty sand matrix, very dense, wet.					
				_ 66 _							
				67							
				68-							
	<u>69.5</u> 71	<u>6</u>	1.5-in	69- 	ML	Reddish brown Silt with clay and little fine to medium sand,					
	7.1	<u> </u>	571	70 -		with day and little line to medium sand, hematite red staining,					

Exploration No. MW-12b

Sheet 4 of 5

Pro	Project: City of Walla Walla Sudbury Road Landfill Monitoring Well MW-12 Replacement										
ple Number	l Sample Interval	rs per 6-inch val	pler Type	th (feet) S Symbol		th (feet) SS Symbol					
Sam	<u>Top</u> Bot	Blow Inter	Sam	Dept	USC	Sample Description	Comments Drilling Action				
					ML	Reddish brown Silt (continued) with clay and little fine to medium sand, hematite red staining, very stiff, moist to wet.	Ŭ				
							Drilling slows				
				73-							
	<u>74.5</u>	<u>100</u>	1.5-in	74-	GM	Grayish brown Gravel with little silty sand, sub-rounded					
	75	5"	SPT	SPT	75 -		basaltic gravel up to 1.5 inches, very dense, wet.				
				76 -			Producing substantial water				
				 77 -							
				 78-							
	79.5	100	1.5-in	 79-		Approximate 30% silt sand matrix	Water @ 59.7' BGL				
	80	7"	SPT	80 -							
						Boring terminated at 80.5 ft					
	 Notes: 1. Lithologic descriptions and stratigraphic contacts are based on field interpretations and are approximate. 2. Refer to "Soil Classification and Key" figure for explanation of graphics and symbols. 3. BGL = below ground level 4. BTOC = blow top of casing 										

SOIL CLASSIFICATION SYSTEM

Μ	AJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COURSE	ORAVEE	GRAVEL	GP	POORLY-GRADED GRAVEL
GRAINED SOILS	More than 50% of coarse	GRAVEL	GM	SILTY GRAVEL
	sieve	WITH FINES	GC	CLAYEY GRAVEL
	SAND	CLEAN	SW	WELL-GRADED SAND, FINE TO COARSE SAND
More than 50% retained on No. 200 sieve	SAND	SAND	SP	POORLY-GRADED SAND
	More than 50% of coarse	SAND	SM	SILTY SAND
	sieve	WITH FINES	SC	CLAYEY SAND
			ML	SILT
FINE GRAINED SOILS	SILT AND CLAY liquid limit less than 50	INORGANIC	CL	CLAY
		ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
			MH	HIGH-PLASTICITY SILT, ELASTIC SILT
More than 50% passes No. 200 sieve	SILT AND CLAY liquid limit more than 50	INORGANIC	СН	HIGH-PLASTICITY CLAY, FAT CLAY
		ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
Н	GHLY ORGANIC SOILS		PT	PEAT

Notes:

- 1. Field classification is based on visual examination of soil in general accordance with ASTM D2488.
- 2. Where laboratory index testing has been conducted, soil classification is based on ASTM D2487.
- 3. USCS group symbols correspond to the symbols used by the Unified Soil Classification System and ASTM Classification methods.

Soil Classification and Key

	MAJOR		GRAPHIC I SYMBOL S	LETTER YMBOL ⁽¹⁾	TYPICAL DESCRIPTIONS ⁽²⁾⁽³⁾		
e)	GRAVEL AND GRAVELLY SOIL	CLEAN GRAVEL (Little or no fines)		GW	Well-graded gravel; gravel/sand mixture(s); little or no fines Poorly graded gravel; gravel/sand mixture(s); little or no fines		
HED SO material i sieve siz	(More than 50% of coarse fraction retained	GRAVEL WITH FINES (Appreciable amount of	S S S S S S S S S S S S S S S S S S S		Silty gravel; gravel/sand/silt mixture(s)		
RAIN % of 200		fines)	1211	GC	Clayey gravel; gravel/sand/clay mixture(s)		
E-G an 50 an No	SAND AND	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines		
ARS ore th jer th	SANDY SOIL	(Little of no intes)		SP	Poorly graded sand; gravelly sand; little or no fines		
O N La	(More than 50% of coarse fraction passed	SAND WITH FINES		SM	Silty sand; sand/silt mixture(s)		
	through No. 4 sieve)	(Appreciable amount of fines)"	11/1	SC	Clayey sand; sand/clay mixture(s)		
L	SILT A	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity		
SOI mater 00 sid	(Liquid limi	it less than 50)	///h	CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay		
NED % of 1 No. 2	(OL	Organic silt; organic, silty clay of low plasticity		
SRAI an 50 than size		NDCLAY		MH	Inorganic silt; micaceous or diatomaceous fine sand		
NE-O ore the				СН	Inorganic clay of high plasticity; fat clay		
(Mo is sn	(Liquia limit	greater than 50)		ОН	Organic clay of medium to high plasticity; organic silt		
	HIGHLY ORGA	ANIC SOIL		PT	Peat; humus; swamp soil with high organic content		
			GRAPHIC	LETTER			
	OTHER MAT	TERIALS	SYMBOL S	SYMBOL	TYPICAL DESCRIPTIONS		
	PAVEM	ENT	A	AC or PC	Asphalt concrete pavement or Portland cement pavement		
	ROCI	K		RK	Rock (See Rock Classification)		
-	WOO	D	Harrison and	WD	Wood, lumber, wood chips		
	DEBR	IS	1/2/2/2	DB	Construction debris, garbage		
2. Soil as c of S 3. Soil	oustined in ASTM D 2488. \ Solls for Engineering Purp description terminology is Primary i Secondary C Additional C	Where laboratory index testi oses, as outlined in ASTM D based on visual estimates (i Constituent: > 5 constituents: > 30% and < 5 > 15% and < 3 constituents: > 5% and < 1 <	ng has been condu 2487. n the absence of 0% - "GRAVEL," 0% - "very gravel! 0% - "gravel!y," "s 5% - "with gravel, 5% - "trace gravel	laboratory tes "SAND," "SILT y," "very sand andy," "silty," " "with sand," I," "trace sand	stifications are based on the <i>Standard Test Method for Classifica</i> stifications are based on the <i>Standard Test Method for Classifica</i> at data) of the percentages of each soil type and is defined as follow T," "CLAY," etc. etc. etc. "with silt," etc. 1," "trace silt," etc., or not noted.		
SAMPLE	Drilling a	and Sampling Ke	ey YPE		Field and Lab Test Data		
	Sample Identification Numb Recovery Depth Interv Sample Depth Interv Portion of Sample Retain for Archive or Analys FOUNDWATER	CodeDescriptionPP = 1.0Pocket Penetrometer, tsfTV = 0.5Torvane, tsfPID = 100Photoionization Detector VOC screening, ppmW = 10Moisture Content, %D = 120Dry Density, pcf-200 = 60Material smaller than No. 200 sieve, %GSGrain Size - See separate figure for dataALAtterberg Limits - See separate figure for dataGTOther Geotechnical TestingCAChemical Analysis					
G V Ap	proximate water elevation	at time of drilling (ATD) or or	i sate inetes. are				
G	proximate water elevation els can fluctuate due to pre	at time of drilling (ATD) or or ecipitation, seasonal conditio	ns, and other fact	tors.			

Drill Date: 8/31/2005

Monitoring Well ID: MW-16

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Surf Elev. & Datum: 810.9 ft. MSL Casing Elevation: 813.39 ft. MSL Coordinate System: NAD 83 Latitude/Northing: 278,211.43 Longitude/Easting: 2,169,578.97

Logged By: Craig Schwyn Drilled By: Environmental West Exp. Drill Type: 6" Tubex Sample Method: Grab/2.4" SS Boring Diameter: 6.5-in Boring Depth (ft BGS): 69 ft. Groundwater (ft BTOC): 58.02

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons Det	struction ail
							Locking Steel Casing
							PVC Cap
Grab					ML: Brown Silt, trace sand and clay, low plasticity, damp.		Concrete Pad
			2 3 				
Drill Chips							
Drill Chips			9 10				
							2-in. dia. flush
Drill			13 				threaded PVC, 2.4 ft AGL to 54 ft
Chips							BGL
			17 				
Drill Chips							
			21 				
Drill			23 				
Chips			25 26				Bentonite Chips
			27				-
Net			29				
ft BGS =	feet belo = feet bel	w groui ow top	nd surfa of well	ace casing	USCS = Unified Soil Classification System	Pa	ge 1 of 2

Notes:

ft BGS = feet below ground surface ft BTOC = feet below top of well casing

Exploration No. **GW-5**

	Sen	rices	>			Log of Exploration	Sheet	1 of	3
Start Finis Wea Geol Drilli Sam Ope	t Date: ther Co logist: (ng Met ple Me rator: E ect: W	8/6/20 8/6/2 2 8/6/2 2 7 8 2 7 8 2 8 2 8 2 8 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	009 2009 ns: W Schwyr 6-in dia 4-in. d West I Valla S	arm, Wi n a. Sonic lia. Core Exp. Sudbury	indy e v Road	Landfill Gas Well Completion Surface E Total Boring Depth (BGL): 48.5 ft Total Cas Completion: Locking steel above ground monur Seal (BGL): Bentonite chips, 2 to 18.3 ft and 35 Gravel pack (BGL): 5/8-minus rounded gravel, 1 Casing: 1/2-in. dia. flush threaded Sch. 80 PVC Screen (BGL): 0.03-in. slot Sch. 80 PVC, 25 to 3 I Landfill Onsite RI	Elevation: 841 sing Depth (B nent with con to 48.5 ft 8.3 to 35 ft 4, +2.80 to 25 30 ft BGL, with	.05 ft MSL TOC): 32.80 crete surface ft BGL h bottom cap	ft pad
		Ľ.		_					
mple Number	H Sample B Interval	w Counts / 6-i	mpler Type	pth (feet)	CS Symbol]	Comme	nts
Sai	Bot	Blo	Sar	Del	N	Sample Description		Drilling A	ction
	<u>0</u> 7 17		4-in Core 4-in Core	$ \begin{array}{c} - 1$	ML	Grayish brown Silt , trace sand, low plasticity, soft, c 2 ft recovery, saturated with drilling water	iry.		
	<u>17</u> 27		4-in Core	- 13- - 14- - 15- - 16- - 17- - 18- - 19-		Municipal Solid Waste. Medium dense MSW consisting of fabric, wood, yard waste, with 6" thick layers of silt interspe @ 17 to 20 ft: engine parts, metal, wire, and soil	paper, & ersed.		

Exploration No. GW-5

3

Sheet 2 of

Proj	roject: Walla Walla Sudbury Road Landfill Onsite RI										
		Ľ.				Start Date: 8/6/2009 Surface Elevation	on: 841.05 ft MSL				
er		-i-9			_	Finish Date: 8/7/2009					
g	al /al	ts /	/pe	()	oqu	Geologist: Craig Schwyn					
nZ	terv	un	τ,	eet	eet	eet	ym	Drilling Method: 6-in dia. Sonic			
ole	ы S	ŏ	olei	h (f	S S	Sample Method: 4-in. dia. Core					
am a	<u>Top</u>	MO	am	eptl	Ö		Comments				
ő	Bot	В	ŝ	Ď	ΰ	Sample Description	Drilling Action				
				_ 20 _	Municipal Solid Waste (cont.)						
						@ 20 to 22 ft: gray silt, moist, compact.					
				<u> </u>							
						@ 22 to 27 ft; black wood tires and decomposed MSW					
				<u> </u>							
				- 23 -							
				24							
				- 24 -							
				_ 25 _							
				20							
				<u> </u>							
	07		4			© 27 to 20 ft black paper wood and decomposed MCW					
	<u>21</u> 37		4-IN Core	— 27 —		@ 27 to 30 It: black, paper, wood, and decomposed MSW.					
	57		Cole								
				<u> </u>							
				20							
				- 29 -							
				_ 30 _	@ 30 to 31 ft: silt.						
				_ 30 _							
				- 31 -		@ 31 to 36 ft: glass, rock, and paper.					
				01							
				<u> </u>							
				— 33 —							
				— 34 —							
				- 35 -		@ 35.5 to 36.5 ft: disturbed silt.					
				26							
				- 30 -	ML	Grayish brown Silt, with little clay and fine sand, stiff,					
	<u>37</u>		4-in	_ 37_		low plasticity, moist.					
	47		Core	<u> </u>		Some bedding structure observed in the silt with medium					
				- 38 -		to coarse sand.					
				— 39 —							

Total Depth: 48.5 ft.

Continued X

Exploration No. **GW-5**

Sheet <u>3</u> of <u>3</u>

Proj	Project: Walla Walla Sudbury Road Landfill Onsite RI										
ole Number	Sample Interval	Counts / 6-in.	oler Type	h (feet)	S Symbol	Start Date:8/6/2009Surface ElevatioFinish Date:8/7/2009Geologist:Craig SchwynDrilling Method:6-in dia. SonicSample Method:4-in. dia. Core	n: 841.05 ft MSL				
Sam	<u>Top</u> Bot	Blow	Sam	Deptl	JSC	Sample Description	Comments Drilling Action				
S-1a S-1b S-1c	<u>47</u> 48.5	23 33 51	3-in SS	$\begin{array}{c} \textcircled{0} \\ -40 \\ -41 \\ -42 \\ -43 \\ -44 \\ -45 \\ -46 \\ -47 \\ -48 $	ML	Grey brown Silt, with little clay and sand, stiff, low plasticity, mo @ 42 ft: Light brown Light brown Silt with medium to coarse subangular basaltic sand interspersed with layers of brown, very dense, silt; moist. Grades to very fine Sand with silt and medium to coarse sand. Boring drilled to 47 feet and sampled to 48.5 feet. Gas well constructed in boring to 30 ft BGL.	Drilling Action ist.				
 Notes: Lithologic descriptions and stratigraphic contacts are based on field interpretations and are approximate. Refer to "Soil Classification and Key" figure for explanation of graphics and symbols. BGL = below ground level AGL = above ground level TOC = top of casing BTOC = below top of casing SS = Split Spoon Sampler (2.42 -in. I.D.) SPT = Standard Penetration Test Sampler (1.5 -in. I.D.) 											

Exploration No. **GW-6**

2	Serv	rices	\geq			Shee	t <u>1</u> of <u>2</u>
Start Finis Wea Geol Drilli Sam Oper	t Date: ther Co logist: 0 ng Met ple Me rator: E ect: W	8/6/20 8/7/2 2 anditio Craig S hod: 6 hod: 6 thod: nviro.	009 2009 ns: W Schwyr S-in dia 4-in. d West I Valla S	arm, Wi n I. Sonic ia. Core Exp. Sudbury	ndy	Landfill Gas Well CompletionSurface Elevation: 79Total Boring Depth (BGL): 39 ftTotal Casing Depth (Completion:Locking steel above ground monument with coSeal (BGL):Bentonite chips, 1.5 to 13 ft and 30 to 39 ftGravel pack (BGL):5/8-minus rounded gravel, 13 to 30 ftCasing:1/2-in. dia. flush threaded Sch. 80 PVC, +2.48 to 2Screen (BGL):0.03-in. slot Sch. 80 PVC, 20 to 25 ft BGL, y	8.25 ft MSL BTOC): 27.48 ft phorete surface pad 0 ft BGL with bottom cap
		ċ					
Sample Number	g I Sample to Interval	Blow Counts / 6-ii	Sampler Type	Depth (feet)	USCS Symbol	Sample Description	Comments Drilling Action
	0	_	4-in		ML	Gravish brown Silt , trace sand, low plasticity, soft, dry.	
	7		Core	- 1 - - 2 - - 3 -		(Landfill Cover)	
				_ 4 _		Municipal Solid Waste @ about 3 to 5 ft.	
				- 5 -		Medium dense MSW consisting of wood, yard waste, with 6" thick layers of silt interspersed. Plug of paper @ 7 ft is dated 8/10/1980	
				- 6 -		Flug of paper @ 7 it is dated of 10/1960	
	<u>7</u> 17		4-in Core	- 7 -		@ 7 to 11 ft: 4 ft recovery Silt, paper, glass, and kitchen rubbish.	
				- 8 -			
				<u> </u>			
				— 10 —			
				_ 11_ _ 12_			
				— 13 —			
				— 14 —			
				— 15 —			
	17		4-in	- 16 -		@ 17 to 27 ft: tires, paper, cardboard, carpet pads, wood.	Rapid drilling
	27		Core	- 1/- - 18-		MSW interspersed with layers of silt. Material with sales prediction date of 1979.	
	-						

Exploration No. **GW-6**

2

Sheet 2 of

Proj	ect: W	alla W	Valla S	udbury	Road	Landfill Onsite RI		
le Number	Sample Interval	Counts / 6-in.	ler Type	(feet)	Symbol	Start Date:8/6/2009Surface ElevationFinish Date:8/7/2009Geologist:Craig SchwynDrilling Method:6-in dia. SonicSample Method:4-in. dia. Core	n: 798.25 ft MSL	
dui	<u>Top</u>	ŇC	dm	spth	SS	· ·	Comments	
Sa	Bot	B	Sa	De	n	Sample Description	Drilling Action	
				_ 20 _		Municipal Solid Waste (cont.)		
	<u>27</u> 37		4-in Core	-20212223232325262728272829282930313232323232323233		@ 27 to 32 ft: black, paper, wood, metal, and decomposed M Newspaper dated October 1979.	ISW.	
S-1a S-1b S-1c S-1d	<u>37</u> 39	<u>7</u> 9 <u>12</u> 15	3-in SS	- 33 - - 34 - - 35 - - 36 - - 37 - - 38 -	ML	 @ 36 to 37 ft: Olive brown Silt, with little clay and fine to medium grained sand lenses up to 1/2-in. thick, firm, very @ 37 to 39 ft: Olive Silt, with trace clay and some fine to medium grained sand, mottled, low plasticity, wet. 	moist.	
						Boring drilled to 37 feet and sampled to 39 feet.		
						Gas well constructed in boring to 25 ft BGL.		
Not	 Notes: Lithologic descriptions and stratigraphic contacts are based on field interpretations and are approximate. Refer to "Soil Classification and Key" figure for explanation of graphics and symbols. BGL = below ground level AGL = above ground level TOC = top of casing BTOC = below top of casing SS = Split Spoon Sampler (2.42 -in. I.D.) SPT = Standard Penetration Test Sampler (1.5 -in. I.D.) 							

Sample Method: 2.125" macro-core

Drill Date: 7/5/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 14 ft.

Logged By: Craig Schwyn

Boring ID: GP-1a

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 834 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,296.29 Longitude/Easting: 2,170,203.40

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core					ML: brown Silt, trace sand, low plasticity, soft, dry.	
core					MW: Municipal Solid Waste with 1.5 ft thick layers of silt, damp.	^^/ ^^/ ^^/ ^^/ ^^/ ^^/
core						AAA AAA AAA AAA AAA AAA AAAA AAAAAAAAA
core					@ 14 ft. Refusal in municipal solid waste.	

Sample Method: 2.125" macro-core

Drill Date: 7/5/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 6 ft.

Logged By: Craig Schwyn

Boring ID: GP-1b

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 834 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,266.63 Longitude/Easting: 2, 170, 193.10

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core			0 1 2 3		ML: Brown Silt, trace sand, low plasticity, soft, dry.	AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
core					MW: Municipal Solid Waste with silt, damp. @6 ft: Refusal in municipal solid waste.	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Sample Method: 2.125" macro-core

Drill Date: 7/5/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 7 ft.

Logged By: Craig Schwyn

Boring ID: GP-1c

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 833 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,256.33 Longitude/Easting: 2,170,178.66

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction
						Bottan
core					ML: Brown Silt, trace fine sand, low plasticity, soft, dry.	^^^ ^^ ^^ ^^
core					MW: Municipal Solid Waste with 1.5 ft thick layers of silt, damp. @7 ft: Refusal in municipal solid waste.	A Chips

Boring ID: GP-2

Drill Date: 7/8/2005 Logged By: Craig Schwyn Drilled By: Environmental West Exp. Drill Type: Geoprobe Sample Method: 2.125" macro-core Boring Diameter: 2.125" Boring Depth (ft BGS): 52 ft. Groundwater (ft BTOC): Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 831 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,227.90 Longitude/Easting: 2,170,142.79

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core				ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
				@ 1 ft: grey brown, laminated, stiff	
core				@ 4 ft: brown	
		6 7		@ 7 ft: damp.	
core				@ 8-12 ft: layered damp and dry silts.	
core				@12-30 ft: layered sandly silt and clayey silt.	
		14 			
core					
ooro					
core					
core		23 24		@ 24-27.5 ft: clavey Silt. massive structure, damp.	
					AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
core		27		@27.5 ft: Silt.	^^/ Chips ^^/ ^^/
		29 			
core		31		@ 31-34 ft: layered (6-inch lenses) clayey silt, silt, and fine sandy silt. Clayey silts damp. Sandy silts dry.	
Notes: ft BGS = ft BTOC	feet belo = feet bel	w ground surfa ow top of well	ace casing	USCS = Unified Soil Classification System = denotes groundwater table	Page 1 of 2

S	chwyn Enwironn Services	nental		Boring ID: GP-2		
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail	
core				Brown Silt (continued), damp to dry.		
Drv Pt				@38 ft: Drive solid point due to slit sloughing into hole and filling core barrel.		
core		43 				
core		46		/		
core		48 		V SM: Silty fine Sand, loose, dry. ML: Brown clayey Silt, blocky structure, firm, damp.		

Sample Method: 2.125" macro-core

Drill Date: 7/6/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 39 ft.

Logged By: Craig Schwyn

Boring ID: GP-3

Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location:Sudbury Road, Walla Walla, WA
Ground Surf Elev. & Datum: 787 ft. MSL (Topo Map)
Casing Elevation:
Coordinate System: NAD 83
Latitude/Northing: 278,716.05
Longitude/Easting: 2,169,730.66

Remarks: Groundwater sample collected from screened section set 36-39 BGS. SAMPLE DRIVE / BLOW DEPTH USCS Well Construction Sample Description TYPE / ID RECOVERY SYMBOL COUNT FT BGS Detail core ML: Light brown Silt, trace sand, soft, dry. @ 2 ft: grey brown core @ 7-8 ft: trace medium sand, subangular. core @ 12 ft: damp. core 13 core @ 18-20 ft: little medium to coarse sand. Notes: ft BGS = feet below ground surface USCS = Unified Soil Classification System Page 1 of 2 ft BTOC = feet below top of well casing

S	chwyn Envíronn Servíces	nental				Boring ID: GP-3
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core GP3 21.5-22			20 21 22		@ 21 ft: Grey brown clayey Silt, blocky structure, wet.@ 21.5-22 ft: collect soil sample for analysis	AA AA AA AA AA AA AA AA AA AA AA AA AA
core			23 24 25			A A A A A A A A A A A A A A A Check water A A Ievel. Not Sufficient
core			26 27 27		SM: Brown silty fine Sand, damp ML: Brown clayey Silt, laminated structure @ 27 -28.5 ft: little fine to medium sand.	A quantity for A sampling.
			29 29 30		SM: Brown silty Sand with clay, fine to coarse angular sand, trace gravel, damp to wet.	 ^^/ ^^/ ^^/ ^^/ ^^/ @ 29 ft: ^^/ A^/ Hard ^^/ ^^/ ^^/ ^^/
core					ML: Brown clayey Silt with sand and silty Sand with clay.	
Wtr. smplr GP-3					@ 35 ft: drive water sampler to 39 ft, pull back 3 ft to expose 3 ft of stainless steel screen. Collect groundwater sample.	^^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^ ^ ^ ^ ^ ^ ^

Notes: ft BGS = feet below ground surface ft BTOC = feet below top of well casing

Sample Method: 2.125" macro-core

Drill Date: 7/6/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 34 ft.

Logged By: Craig Schwyn

Boring ID: GP-4

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 788 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,841.80 Longitude/Easting: 2,169,959.43

Remarks: Groundwater sample collected from screen section set 30-34 ft. BGS Well Construction SAMPLE DRIVE / BLOW DEPTH USCS Sample Description TYPE / ID RECOVERY SYMBOL COUNT FT BGS Detail core ML: Grey brown Silt, trace sand, low plasticity, soft, dry. @ 4 ft: brown, trace clay, laminated core core @ 12 ft: reddish brown core 13 core Bentonite Chips @ 18-18.5 ft soil sample collected. GP-4 18-18.5 Notes: USCS = Unified Soil Classification System ft BGS = feet below ground surface Page 1 of 2 ft BTOC = feet below top of well casing

6	chwyn Envíronn Servíces	nental				Boring ID: GP-4		
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	US SYI	SCS MBOL	Sample Description	Well Construction Detail	
core			20					
core						@ 24-25.5 ft: clayey Silt.		
core			28			@ 27.5 ft: drive water sampler to 34 ft, pull back 4 ft to expose 4 ft of stainless steel screen. Collect groundwater sample.		
Wtr Smplr			29 					
GP-4			31					

Sample Method: 2.125" macro-core

Drill Date: 7/6/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 36 ft.

Logged By: Craig Schwyn

Boring ID: GP-5

Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location:Sudbury Road, Walla Walla, WA
Ground Surf Elev. & Datum: 790 ft. MSL (Topo Map)
Casing Elevation:
Coordinate System: NAD 83
Latitude/Northing: 278.968.22
Longitude/Easting: 2,170,208.23

Remark	marks: Groundwater sample collected from screen section set 33-36 ft BGS											
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail						
core					ML: Grey brown Silt, trace fine sand and clay, low plasticity, soft, damp. Sandy silts laminated, dry, periodic root tubes.Clayey silts blocky, damp.							
core					@ 3 ft: brown, dry							
core			7 									
core					@ 12 ft: dark reddish brown, moisture increasing.							
core					@ 19 ft: increasing clay content.	A A A A A A A A Bentonite Chips						
Notes: ft BGS = ft BTOC	feet belo = feet bel	w groui ow top	nd surfa	ace casing	USCS = Unified Soil Classification System \mathbf{x} = denotes groundwater table	Page 1 of 2						

Boring ID: GP-5						
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core					 @ 21-23 ft: saturated. @ 23 ft: whitish brown clayey silt with calcite cementation, nodules, and thin (2 mm) lenses, very stiff, damp. 	
Wtr Sampler			24 		@ 24 ft: drive water sampler to 30 ft, pull back 4 ft to expose 4 ft of stainless steel screen. Dry. Pull back 1 ft to 25 ft. Dry.	No sample
core			28 29 30 31		Reddish brown clayey silt, blocky structure, damp to wet.	
Wtr Smplr GP-5					@ 32 ft: drive water sampler to 36 ft, pull back 3 ft to expose 3 ft of stainless steel screen. Collect groundwater sample.	

Sample Method: 2.125" macro-core

Drill Date: 7/7/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 35 ft.

Logged By: Craig Schwyn

Boring ID: GP-6

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 791 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 279,108.41 Longitude/Easting: 2,170,513.94

Remarks: Groundwater sample collected from screen section set 32-35 ft. BGS BLOW DEPTH SAMPLE DRIVE / USCS Well Construction Sample Description TYPE / ID SYMBOL RECOVERY COUNT FT BGS Detail core ML: Light brown Silt, trace clay and fine sand, low plasticity, soft, dry. Sandy silts laminated, dry, periodic root tubes. Clayey silts blocky, damp. core @ 6 ft: damp. @ 8 to 10 ft: little sand, clay increasing with depth. core @ 10 to 15 ft: little clay, very stiff. core 13 @ 15 ft: trace clay, laminated, firm, methane odor. GP-6 15 15-15.5 @ 15-15.5 ft: collect soil sample for analysis. core Bentonite Chips Notes: USCS = Unified Soil Classification System ft BGS = feet below ground surface Page 1 of 2 ft BTOC = feet below top of well casing
6	chwyn Envíronn Servíces	nental				Boring ID: GP-6
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core			20 21 22 22 23			
core			23		@ 24.5 -27.5 ft: little fine to medium sand, wet.	
core			27 		 @ 27.5 to 28.5 ft: whitish brown clayey Silt with calcite cementation, nodules, and thin (2 mm) lenses, very stiff, damp. @ 28.5 to 30 ft: sandy Silt with calcite, wet. @ 30 ft: clayey Silt with calcite, damp. 	
Wtr Smplr GP-6					31 ft: drive water sampler to 35 ft, pull back 3 ft to expose 3 ft of stainless steel screen. Collect groundwater sample.	

Sample Method: 2.125" macro-core

Drill Date: 7/7/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 17 ft.

Logged By: Craig Schwyn

Boring ID: GP-7

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 799 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,687.45 Longitude/Easting: 2,169,801.15

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core					ML: Brown Silt, trace fine sand , low plasticity, soft, dry.	
core			6 7 8 9 10 11		MW: Municipal Solid Waste with 1.5 ft thick layers of silt, damp.	 A^^^^^^^^ A^^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ Bentonite A^^^^^^< A^^^^^^< Chips A^^^^^^^< A^^^^^^< A^^^^^< A^^^^< A^^^^< A^^^^^< A^^^^^<
core			12 		∫ @ 17 ft: Befusal in municipal solid waste	
core			13 		@ 17 ft: Refusal in municipal solid waste.	

Sample Method: 2.125" macro-core

Boring Depth (ft BGS): 36.4 ft.

Drill Date: 7/7/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Logged By: Craig Schwyn

Boring ID: GP-8

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 803 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 279,078.75 Longitude/Easting: 2,171,351.86

Remarks: Groundwater sample collected from screen set 32.4-36.4 ft. BGS DRIVE / SAMPLE BLOW DEPTH USCS Well Construction Sample Description TYPE / ID RECOVERY SYMBOL COUNT FT BGS Detail core ML: Brown Silt, trace fine sand, low plasticity, soft, damp. Sandy silts laminated, dry, periodic root tubes. Clayey silts blocky, damp. core core @ 11 ft: whitish brown, calcite cementation, nodules, and thin core lenses (2 mm), very stiff, dry. 12 13 core 15 Bentonite Chips core Notes: ft BGS = feet below ground surface USCS = Unified Soil Classification System Page 1 of 2 ft BTOC = feet below top of well casing

S	chwyn Envíronn Servíces	nental				Boring ID: GP-8
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core					@ 24.5 to 25 ft: wet. Calcitic Silt above and below are damp.	
			27		SM: @ 27 ft: Olive brown silty fine Sand, wet.	
core			29 		ML: Light olive brown calcitic clayey Silt, blocky structure, very stiff, damp. @ 31 ft: Medium brown sandy Silt, wet.	
Wtr Smplr GP-8			33 		 @ 34 ft: brown sandy Silt with red mottling and coarse basaltic gravel. @ 36 ft: Refusal. Total Depth of soil core 	
					@ 36 ft: drive water sampler to 36.4 ft, pull back 4 ft to expose 4 ft of stainless steel screen within borehole. Collect groundwater sample.	L

Boring ID: B-9RI

Logged By: Craig SchwynClient: City of Walla WallaDrilled By: Environmental West Exp.Site Location:Sudbury Road, Walla Walla, WADrill Type: 6-in. dia. TUBEXGround Surf Elev. & Datum: 798 ft. MSL (Topo Map)Sample Method: Grab/1.5-in SPTCasing Elevation:Boring Diameter: 6.5"Coordinate System: NAD 83Boring Depth (ft BGS): 53 ft.Latitude/Northing: 278,698.49Crewedwater (ft BTOC): 40.0Longitude/Easting: 2 169 820.80	
Groundwater (ft BTOC): 43.2 Longitude/Easting: 2,169,820.80	

Remarks: Installed and sampled temporary well screened from 48-53 ft. Purged 2.5 gal. of groundwater and collected VOC samples. Remove casing and bentonite boring to surface.

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail	
Grab					ML: Light brown Silt, trace sand, low plasticity, soft, dry.		
Chips Drill Chips			3 4 5		MW: Municipal Solid Waste with silt, damp.		
Drill Chips			6 7 				
Drill Chips			13 14 15 16 17 18				
Drill Chips			19 				
Drill Chips			20 24 25 26 27			AAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAA	e
Drill Chips			28 29 				
Notes: ft BGS = ft BTOC	feet belo = feet be	w grour low top	nd surfa	ace casing	USCS = Unified Soil Classification System	Page 1 of 2	

Chuyn Environmental Services						Boring ID: B-9RI
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
1.5-in SPT B935		8 20 17	33 		ML: Olive grey Silt, damp. Dark grey Silt with little clay and sand, stiff, landfill gas odor, moist, @35.5 ft up to 1.5 " dia. basalt gravel.	
Drill Chips			39 40 41 42 43		Brown Silt , very damp.	
Drill Chips			44 45 46 47		 @ 45 ft: brown clayey silt @ 48-53 ft: collect water sample 	
Drill Chips			48 49 50 51			
Drill Chips			52		GM: Brownish fine Gravel with sand and silt, wet.	

Drill Date: 8/30/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring Depth (ft BGS): 35

Sample Method: Grab/2.4-in SS

Boring ID: B-10RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 800 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,833.60 Longitude/Easting: 2,170,046.97

6	chwyn Enwironn Services	nental			Boring ID: B-10RI
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BG	USCS SYMBOL	Sample Description	Well Construction Detail
Drill Chips					
Drill Chips					
Drill Chips				ML: Olive grey Silt, damp.	
2.4-in SS B1034		4 6		ML: Brown Silt with trace medium rounded sand, some vertical root tubes and stringers of calcite, wet.	

Drill Date: 8/30/2005

Boring Diameter: 6.5

Groundwater (ft BTOC):

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Boring Depth (ft BGS): 35.5

Sample Method: Grab/2.4" SS

Boring ID: B-11RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 806 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,995.06 Longitude/Easting: 2,170385.77

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab					ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
Drill Chips			4 			
Drill Chips			9 			
Drill Chips					@ 15 ft: grey	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
			19			
Notes: ft BGS = ft BTOC	feet belo = feet bel	w groui ow top	nd surfa of well	ace casing	USCS = Unified Soil Classification System	Page 1 of 2

Boring ID: B-12RI

Drill Date: 8/30/2005 Logged By: Craig Schwyn Drilled By: Environmental West Exp. Drill Type: 6-in. dia. TUBEX Sample Method: Grab/2.4-in SS Boring Diameter: 6.5 Boring Depth (ft BGS): 48.5 Groundwater (ft BTOC): Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 820 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,876.57 Longitude/Easting: 2,170, 269.11

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab				ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
Drill Chips					
Drill Chips					
Drill Chips				MW: Municipal Solid Waste, dry to damp.	
Drill Chips					
Drill Chips		24 			AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Drill Chips					
ft BGS =	feet belo = feet be	w ground surfation with the second seco	ace casing	USCS = Unified Soil Classification System	Page 1 of 2

6	chwyn Environn Services	nental	Boring ID: B-12RI				
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail	
Drill Chips			33 		MW: Municipal Solid Waste (cont.)		
Drill Chips							
2.4-in SS B1244		7 11 14	41 42 43 43 44 44 45 46		ML: Brown Silt ML: Brown Silt, trace sand and clay, iron mottling, 0.25-in., laminations, stiff, damp.		
			47		Snap casing, boring terminated at 48.5'		

Drill Date: 8/30/2005

Logged By: Craig Schwyn

Drill Type: 6-in. diam. TUBEX

Sample Method: Drill Chips

Boring Depth (ft BGS): 53.5

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-14RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 840 ft. MSL (Topo Map) **Casing Elevation:** Coordinate System: NAD 83 Latitude/Northing: 278,909.90 Longitude/Easting: 2,170,703.74

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab					ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
Drill Chips						
Drill Chips			9 		MW: Municipal Solid Waste with silt, damp.	
Drill Chips			14 15 16 17 18			
Drill Chips						
Drill Chips			24 25 26 27			AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Drill Chips			28 29 30 31 32			
Notes: ft BGS = ft BTOC	= feet belo	w groun	nd surfa	ace	USCS = Unified Soil Classification System	Page 1 of 2

6	chwyn Envíronn Servíces	nental			Boring ID: B-14RI
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Drill Chips				MW: Municipal Solid Waste (cont.)	
Drill Chips					
Drill Chips					
Drill Chips				ML: Brown Silt	

Drill Date: 8/31/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Sample Method: Drill Chips

Boring Depth (ft BGS): 13 ft.

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-15RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 840 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,902.61 Longitude/Easting: 2,170,693.33

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab Drill Chips			- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 8 - 0		ML: Light brown Silt, trace sand, low plasticity, soft, dry.	^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^<
Drill Chips						
Drill Chips					MW: Municipal Solid Waste with silt, damp.	

Drill Date: 8/31/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Sample Method: Drill Chips

Boring Depth (ft BGS): 15 Ft.

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-16RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 828 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 279,012.25 Longitude/Easting: 2,170,679.78

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab					ML: Light brown Silt, trace sand, low plasticity, soft, dry. MW: Municipal Solid Waste with silt, damp.	
Drill Chips						^^^^^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
Drill Chips			9 			
Drill Chips						

Boring ID: B-17RI

Remarks: Installed and sampled temporary well screened from 63-68 ft. Purge 16 gal. and collect VOC sample with Grundfos pump. Remove casing and bentonite boring to surface.

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH	USCS SYMBOL	Sample Description	Well Construction Detail	
Grab				ML: Light brown Silt, trace sand, low plasticity, soft, dry.		
Drill Chips						
Drill Chips				MW: Municipal Solid Waste with silt, damp.		
Drill Chips						
Drill Chips						
Drill Chips						
Drill Chips		28 				
Notes: It BGS = feet below ground surface USCS = Unified Soil Classification System Page 1 of 2 It BTOC = feet below top of well casing ✓ = denotes groundwater table Page 1 of 2						

Chwyn Environmental Services					Boring ID: B-17RI	
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Drill Chips						AAAAAA AAAAAA AAAAAA AAAAAA AAAAAA AAAAA
Drill Chips					ML: Grey Silt, low plasticity, damp.	
Drill Chips			43 44 45 46 47		@ 45 ft: Brown, trace clay, damp	
Drill Chips			48 49 50 51 51			
Drill Chips					@ 54 ft: clayey, moist to wet.	
Drill Chips		-	58 59 60 61 62			
Drill Chips Drill			63 64 65 66		@63-68 ft: collect water sample @ 64.5 ft: Brown sandy Silt, with clay, moist.	
Chips			67		GM: Brown silty Gravel, wet.	

Drill Date: 9/1/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Sample Method: 2.4-in SS

Boring Depth (ft BGS): 31.5

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-18RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 840 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,543.76 Longitude/Easting: 2,169,823.27

Remarks:

Notes:

ft BGS = feet below ground surface ft BTOC = feet below top of well casing USCS = Unified Soil Classification System = denotes groundwater table

APPENDIX B

Geophysical Study Report

July 18, 2012 Zonge Ref. 12069

Craig C. Schwyn, L.Hg. Schwyn Environmental Services 4621 South Custer Court Spokane, WA 99223

> Geophysical Investigation Sudbury Road Landfill Walla Walla, Washington

Dear Mr. Schwyn;

Zonge International has completed a geophysical investigation at the Sudbury Road Landfill located west of Walla Walla, Washington. The Sudbury Road Landfill has historically been used for the disposal of a wide variety of debris and waste. The objective of this survey was to delineate the horizontal extent of disposal areas in closed cells, defined as Areas 1, 2, and 5, at the landfill.

GEOPHYSICAL SURVEY

Figure 1 shows the location of Areas 1, 2, and 5 within the greater extent of the landfill property. The size of each area is 6, 1.5, and 15-acres respectively. The geophysical investigation utilized both electromagnetic and magnetic methods in order to define subsurface conductivity and magnetic response, both properties being influenced by the type and quantity of material buried at the site. Fieldwork was completed by a Senior Geophysicist and Geophysical Technician with Zonge International on April 24-26 and June 21, 2012.

Fundamentals of each geophysical technique and their application to the delineation of buried materials are described in a technical note included as Appendix B, *Geophysical Detection of Buried Objects*.

EM31 Data Acquisition:

Electromagnetic data were acquired using a Geonics EM31 terrain conductivity meter. Both quadrature-phase (apparent conductivity) and in-phase data were recorded. The EM31 was run in the "continuous" sampling mode, recording the EM response at 0.1 second intervals (approximately 0.6 feet) using a nominal line spacing of 20 feet. Instrument problems with the EM31 precluded data collection in April after Area 5 was completed. During the June deployment additional EM31 data were acquired in Area 2. Soils overlying Area 1 were judged to be too thick to make EM31 data useful.

Magnetic Data Acquisition:

The MAG survey was conducted using a Geometrics G858G cesium magnetometer/ gradiometer. As with the EM, this instrument was run in the "continuous" sampling mode, recording the magnetic field at 0.1 second intervals (approximately 0.6 feet) using a nominal line spacing of 20 feet.

GPS Navigation

Location data were acquired simultaneously with the MAG and EM31 data using a Trimble AG132 Differential Global Positioning System (DGPS). That system provides visual feedback to the operator to assure that he is "on line" and that the survey area is covered uniformly. This system is a real time differential GPS system using the Omnistar satellite subscription service or a Coast Guard beacon for the differential correction. The GPS system has "sub-meter" accuracy; hence positions are generally good to $\pm 1-2$ feet, but may be off by 2-3 feet.

Data Processing

MAG and EM data were processed using the GeoSoft OASISmontaj[™] data processing and analysis software. Magnetic data are presented in Appendix A as the Magnetic Analytic Signal, the Total Magnetic Field, and the Vertical Magnetic Gradient. The Analytic Signal is our preferred presentation because it reduces the bipolar nature of the response and centers the anomaly over the "source" object.

RESULTS AND INTERPRETATION

Data coverage of this survey is shown on Figure 1, *Site Exploration Plan*. Figures 2, 3, and 4 are *Geophysical Interpretation Summary* plots for Areas 1, 2, and 5 respectively. Those figures include the interpreted limits of buried landfill materials. Data plots are included in Appendix A.

The magnetic response over debris is typically chaotic, with numerous highs and lows of varying dimensions. The magnetic analytic signal is our preferred presentation of the magnetic data as it removes the bipolar (plus and minus) nature of the anomalies and centers the anomaly over the source. Areas with a chaotic MAG response are shown with a magenta diagonal hatch in Figures 2 - 4.

The EM31 response over debris is also chaotic in nature, with both highs and lows associated with each anomalous zone. The EM31 quadrature-phase response is a measure of terrain conductivity, and is reported in units of conductivity, millisiemen/meter

(mS/m). Areas showing high apparent conductivity are indicative of extensive conductive debris.

The high apparent conductivities can also be indicative of a higher clay content in the cap materials overlying the debris and/or conductive interstitial water.

Area 1

Figure 2 is a *Geophysical Interpretation Summary* for Area 1. Magnetic data plots are included in Appendix as Figures A1-A3. The interpretation shows a large area on top of the raised cell which we have labeled *thick cover over debris*. Over this area there is a diffuse magnetic response, indicative of debris at a depth of greater than 10-15 feet. A large linear magnetic anomaly was observed trending to the north-east which we have labeled *linear "pipe-like" mag anomaly* on Figure 2. The MAG response on the south-east facing slope indicated scattered shallow and surface debris. Debris was more prevalent on the lower portion of the slope. Surface materials on the west, and the gas processing facility produced a strong magnetic response precluding any further interpretation in those areas.

No EM31 data were acquired over Area 1. The anticipated thick soil cover over debris greatly reduces the utility of EM31 data in this area.

Area 2

Figure 3 is a *Geophysical Interpretation Summary* for Area 2. Magnetic and EM data plots are included in Appendix A as Figures A4-A8. The interpretation shows a large area of *shallow scattered debris*, based mostly on the magnetic gradient data. Within that zone a smaller area, which we have interpreted as the limits of landfill debris, showed a stronger magnetic response as well as a distinct conductivity high.

Area 5

Figure 4 is a *Geophysical Interpretation Summary* for Area 5. Magnetic and EM data plots are included in Appendix A as Figures A9-A13. This large area appears more complex than the other areas, with possible disposal trenches and areas of thick cover. The figures include locations of some of the test pits excavated by Schwyn following the geophysical survey. Test pit locations were not necessarily based on the geophysical data.

The magnetic response over most of the site is interpreted as *deeper debris fill*. On the eastern portion of the site there is some indication of linear trenches. On the south central portion of the site the stronger magnetic response is interpreted as higher concentrations of shallow debris.

Background EM31 apparent conductivity was 20-35 millisiemen per meter (mS/m). In Figure 4, we have outlined two different levels of elevated and high conductivity. Areas with conductivities in excess of 100 mS/m are shown on the south and south-west portions of the site. This high conductivity is interpreted as due to high concentrations of

debris. Alternative interpretations would be higher clay content in the cap materials and/or more conductive interstitial water (often associated with household debris).

Areas with elevated apparent conductivities in excess of 55 mS/m but less than 100 mS/m (shown with a dashed hatch) are indicative of 1) debris at a greater depth, i.e., under a thicker cover, or 2) a different character to the debris with less soluble, conductive materials.

Toward the eastern portions of Area 5 there are fingers and/or islands where the apparent conductivity is less than 55 mS/m. Those fingers in the EM data tend to coincide with areas of background magnetic field. These may be 1) areas between trenches or cells, 2) areas of yet deeper burial, or 3) differences in the nature of the fill materials.

CONCLUSIONS

The geophysical data displayed several levels of response, indicating differing character to the fill materials and/or differing thickness of cover over the fill. While we have attempted to put meaningful interpretations to the differing geophysical responses additional ground truth information may be necessary to refine those interpretations. The geophysical data are most useful in delineating boundaries of the fill and transitions within the fill.

CLOSURE

Zonge International has performed this work in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No warranty, express or implied, beyond exercise of reasonable care and professional diligence, is made. This report is intended for use only in accordance with the purposes of the study described within.

Geophysical surveys performed as part of this survey may or may not successfully detect or delineate any or all subsurface objects or features present. Locations, depths and scale of buried objects or subsurface features mapped as a result of this survey are a result of geophysical interpretation only, and should be considered as confirmed, actual, or accurate only where recovered by excavation or drilling. We appreciate the opportunity to perform this geophysical investigation. Should you require further information concerning the field investigation, or this report, please contact us at your convenience.

Sincerely,

Zonge International, Inc.

Poul Bhl

Rowland B. French, L.G. Senior Geophysicist

LIST OF FIGURES

- Figure 1. Site Exploration Plan
- Figure 2. Geophysical Interpretation Summary Area 1
- Figure 3. Geophysical Interpretation Summary Area 2
- Figure 4. Geophysical Interpretation Summary Area 5

LIST OF APPENDICIES

Appendix A – Data Plots Appendix B – Technical Note: Geophysical Detection of Buried Objects

File: Zonge-Walla Walla landfill rpt01.doc Zonge Project: 12069

2170000

2170500

2171000

2171500

2172000

2172500

Prepared by

TRUSTED GEOPHYSICS

LEGEND

V

MAGNETIC DATA PATH

EM31 DATA PATH

MONITORING WELL

GAS MONITORING WELL

LANDFILL AREAS FROM SCHWYN

FIGURE 1

SITE EXPLORATION PLAN

NAD83 / *NAD 1983 StatePlane Washington South FIPS 4602 Feet

500

Prepared by:

Chwyn Environmental Services

Prepared for:

REVISION: B-18-JUL-12

MAGNETIC DATA PATH

INTERPRETED LIMITS OF LANDFILL DEBRIS

MAG INTERPRETATION

SHALLOW & SURFACE DEBRIS DEEPER DEBRIS FILL

MONITORING WELL GAS MONITORING WELL

LANDFILL AREAS FROM SCHWYN

FIGURE 2

GEOPHYSICAL INTERPRETATION SUMMARY AREA 1

Prepared by:

Zonge TRUSTED GEOPHYSICS.

DATE

Prepared for:

chwyn Envíronmental Servíces

LEGEND

279200

279000

MAGNETIC DATA PATH

EM31 DATA PATH

INTERPRETED LIMITS OF LANDFILL DEBRIS

MAG INTERPRETATION

SHALLOW DEBRIS FILL DEEPER DEBRIS FILL

EM INTERPRETATION

 $\mathbf{\nabla}$

*TP1

Ð

HIGH CONDUCTIVITY AREA (>100 mS/m) ELEVATED CONDUCTIVITY AREAS

(>55 mS/m) MONITORING WELL

GAS MONITORING WELL

TEST PIT (SCHWYN 2012)

MONITORING WELL (SCHWYN 2012)

LANDFILL AREAS FROM SCHWYN

FIGURE 4

GEOPHYSICAL INTERPRETATION SUMMARY AREA 5 - DATA PLOT

Geophysical Investigation Sudbury Road Landfill Walla Walla, Washington

APPENDIX A – DATA PLOTS

- Figure A1. Magnetic Analytic Signal; Area 1 Data Plot
- Figure A2. Total Magnetic Field; Area 1 Data Plot
- Figure A3. Vertical Magnetic Gradient; Area 1 Data Plot
- Figure A4. Magnetic Analytic Signal; Area 2 Data Plot
- Figure A5. Total Magnetic Field; Area 2 Data Plot
- Figure A6. Vertical Magnetic Gradient; Area 2 Data Plot
- Figure A7. EM31 Apparent Conductivity; Area 2 Data Plot
- Figure A8. EM31 In-phase Response; Area 2 Data Plot
- Figure A9. Magnetic Analytic Signal; Area 5 Data Plot
- Figure A10. Total Magnetic Field; Area 5 Data Plot
- Figure A11. Vertical Magnetic Gradient; Area 5 Data Plot
- Figure A12. EM31 Apparent Conductivity; Area 5 Data Plot
- Figure A13. EM31 In-phase Response; Area 5 Data Plot

LEGEND

MAGNETIC DATA PATH

MONITORING WELL GAS MONITORING WELL

LANDFILL AREAS FROM SCHWYN

FIGURE A1

MAGNETIC ANALYTIC SIGNAL AREA 1 - DATA PLOT

US survey foot NAD83 / *NAD 1983 StatePlane Washington South FIPS 4602 Feet

FIGURE A2

TOTAL MAGNETIC FIELD AREA 1 - DATA PLOT

US survey foot NAD83 / *NAD 1983 StatePlane Washington South FIPS 4602 Feet

FIGURE A3

VERTICAL MAGNETIC GRADIENT AREA 1 - DATA PLOT

REVISION: B-18-JUL-12

DATE: APRIL 2012

FILE: Area2_AnSig.map

ZONGE PROJECT 12069

INQE TRUST GEOPHYSICS. FD

2170000 2170200 2170400 2170600 2170800 277800 277800 55100 277600 277600 54900 54700 54500 54300 54100 MW-11 53900 53700 277400 277400 53500 53300 53100 52900 52700 52500 2170000 2170200 2170400 2170600 2170800 Total **Magnetic Field** (nT) LEGEND MAGNETIC DATA PATH MONITORING WELL LANDFILL AREAS FROM SCHWYN Scale 1:2400 100 0 100 **FIGURE A5** US survey foot NAD83 / *NAD 1983 StatePlane Washington South FIPS 4602 Feet **TOTAL MAGNETIC FIELD AREA 2 - DATA PLOT** Prepared by: **Geophysical Investigation** Sudbury Road Landfill ΠΟΕ Walla Walla, Washington

REVISION: B=18-JUL-12

DATE: APRIL 2012

FILE: Area2_Top.map

ZONGE PROJECT 12069

TRU GEOPHYSICS

REVISION: B-18-JUL-12

DATE: APRIL 2012

FILE: Area2.map

TRU GEOPHYSICS

REVISION: A-18-JUL-12

REVISION: B-18-JUL-12

TRUS GEOPHYSICS

¢ ▼ MAGNETIC DATA PATH

MONITORING WELL GAS MONITORING WELL

LANDFILL AREAS FROM SCHWYN

FIGURE A9

MAGNETIC ANALYTIC SIGNAL AREA 5 - DATA PLOT

(nT)

LEGEND

MAGNETIC DATA PATH

MONITORING WELL GAS MONITORING WELL

LANDFILL AREAS FROM SCHWYN

FIGURE A10

TOTAL MAGNETIC FIELD AREA 5 - DATA PLOT

LEGEND

MAGNETIC DATA PATH

MONITORING WELL GAS MONITORING WELL

LANDFILL AREAS FROM SCHWYN

FIGURE A11

VERTICAL MAGNETIC GRADIENT AREA 5 - DATA PLOT

♦ ▼ EM31 DATA PATH MONITORING WELL GAS MONITORING WELL LANDFILL AREAS FROM SCHWYN

FIGURE A12

EM31 APPARENT CONDUCTIVITY AREA 5 - DATA PLOT

♦▼

EM31 DATA PATH

MONITORING WELL

GAS MONITORING WELL

LANDFILL AREAS FROM SCHWYN

FIGURE A13

EM31 IN-PHASE RESPONSE AREA 5 - DATA PLOT

Geophysical Investigation

Sudbury Road Landfill

Walla Walla, Washington

APPENDIX B

Technical Note

GEOPHYSICAL DETECTION OF BURIED OBJECTS

Zonge International

Trusted Geophysics Environmental • Groundwater • Geotechnical

Photo 1-EM61

Photo 2-GPR

Photo 3-Magnetometer

Zonge International, Inc. 8366 SW Nimbus Ave., Beaverton, OR 97008 (503) 992-6723 Fax: (503) 746-7094 www.zonge.com • ZongeOR@zonge.com

GEOPHYSICAL DETECTION OF BURIED OBJECTS

INTRODUCTION

Several geophysical techniques are used for locating buried objects such as underground storage tanks, pipes, utilities, drums and other debris. These techniques are used routinely, and are often recommended or required by state agencies, funding institutions and/or the EPA, particularly on sites where underground burial of steel drums or other debris may have occurred or where underground storage tanks are suspected.

Geophysics is generally used in the early reconnaissance phase of these investigations as a guide to sampling, excavation and/or placement of monitoring wells. In this paper we describe three of the most common geophysical techniques, electromagnetics (EM), magnetics (MAG) and ground penetrating radar (GPR).

Photo 4-EM31

UTILITY OF GEOPHYSICS:

First, a few words about "geophysics" as used for environmental and geotechnical engineering applications. Surface geophysical techniques probe subsurface materials (soils and rock) using surface instruments. This is done by measuring physical signals which have interacted with the earth materials. These signals may be electrical, magnetic, acoustic (seismic) or electromagnetic.

Surface geophysics offers several advantages over other exploration techniques:

1) Surface geophysical methods are *Hon-intrusive* 'in that they do not disturb the ground surface, or stir up any contaminants which might be in the soil.

2) Geophysical methods *measure earth properties over a large volume*. Whereas drilling only samples the earth at the point of the borehole, the measured geophysical response is affected by earth materials several feet, or tens of feet, away from the instrument sensor. This allows broad areas to be effectively "screened" with a series of surface measurements.

3) Most geophysical equipment used in environmental and geotechnical applications *can be hand carried*. Geophysical surveys do not require vehicular access, but only a walking path, clear of brush and obstacles.

4) Geophysical surveys are relatively *inexpensive* and can be performed quickly.

TYPICAL OBJECTIVES:

Geophysics may be used in either a reconnaissance mode, or in a detailed survey mode. In the reconnaissance mode, geophysics is used to "screen" large areas to determine the presence or absence of buried objects. In more detailed surveys, the location and extent of the object is mapped in greater detail. This facilitates the efficient excavation of tanks or debris, aids the effective placement of monitoring wells, or improves the design of a sampling program. The techniques discussed here are also useful for objectives other than identifying buried objects. Electromagnetic induction (EM) is especially useful in mapping changes in soil (e.g. sand or gravel channels), mapping clay aquitards, and mapping contaminant leachate plumes in groundwater. GPR can be used to map shallow stratigraphy or to map zones of disturbed soils.

GEOPHYSICAL METHODS:

Three geophysical methods are commonly used in the search for buried objects: 1) electromagnetic induction (EM), 2) magnetics (MAG), and 3) ground penetrating radar (GPR). EM and magnetics are complementary methods, most effective in the reconnaissance mode but also useful for more detailed work. GPR is most effective for detailed work, but may also be used in reconnaissance surveys.

Electromagnetic Methods:

The electromagnetic induction (EM) technique measures the electrical conductivity of the earth by inducing a time varying electric current in the earth. This is shown schematically in Figure 1. The EM technique was developed to measure natural soil conductivity to aid in identifying soil types and to measure rock conductivity in order to identify zones of conductive mineralization.

Man-made metallic objects are generally orders of magnitude more conductive than natural soils. Thus, the electric currents induced in the ground by EM instruments will be dramatically affected by the presence of any man made metallic object. Examples include pipes, tanks, cables, concrete reinforcing steel, or steel drums. By looking for anomalous signals which cannot be attributed to natural soils, buried metallic objects can readily be identified.

Frequency-domain EM – EM31

Frequency-domain EM systems transmit a sinusoidal waveform at a fixed frequency, or at

TRUSTED GEOPHYSICS...

Environmental · Groundwater · Geotechnical

multiple frequencies. The resulting secondary magnetic field may be phase shifted, depending on the nature of the target. Both the in-phase component (in phase with the primary magnetic field) and the quadrature phase component (shifted 90° from the primary field) can be measured to provide the phase shift information.

The Geonics EM31 is a common frequency domain EM instrument, often used for buried object detection. The cover photo 4 shows the EM31 in a field situation. Figure 1 is a schematic showing the principles of operation. A transmitter coil is in one end of the boom and a receiver coil in the other end. Depth of investigation for the EM-31 is generally 10-15 feet, but it may detect large metal objects at a somewhat greater distance. The instrument can quickly cover a wide area, mapping anomalous areas (metallic object locations) as well as changes in the soil character.

Figure 2 shows some sample data over a disposal site where 55 gallon steel drums had been dumped in a field and then covered with soil. The noisy and/or negative "apparent" conductivity is a clear indicator of metallic objects. The EM31 also records an "in-phase response" which aids in identifying metallic conductors. Data in Figure 2 indicate the zone of burial covers most of the northwest expanse of the site.

Time-domain EM - EM61

Time-domain EM systems transmit a magnetic pulse, with a duration in the order of tens of microseconds (μ s). That magnetic pulse induces electric currents in the ground as well as in any metallic object which is buried (or on the surface) within its range of influence. Currents induced in metallic conductors decay at a much slower rate than currents induced in the ground. Hence, metallic conductors can be easily identified.

The EM61-MK2a (cover photo 1) is a timedomain metal detector manufactured by Geonics, Ltd., of Toronto, Canada. The EM61-MK2a instrument consists of two horizontal air cored coils, 1.0

FIGURE 1 PRINCIPLES OF ELECTROMAGNETIC INDUCTION

meter by 0.5 meters in size. The bottom coil acts as a receiver and transmitter and the top coil as a receiver. The instrument weighs about 75 lbs. and is pulled by one operator.

The Geonics EM61-MK2a has 4 time gates, to measure the rate of decay of the signal, and two receiver coils, to measure the field gradient. The rate of decay is dependant on the size, shape, and orientation of the metallic object. Generally, the EM61 is used to estimate gross target parameters, but can be used for more detailed discrimination of targets, particularly in identifying unexploded ord-nance (UXO) materials.

The two receiver coils are very helpful in the differentiating between near surface objects and deeper objects. Since the amplitude of the response is highly dependent on the distance between the coil assembly and target, small near surface targets often produce a response orders of magnitude larger than targets having greater size at deeper depths. This masking effect from the near surface materials

TRUSTED GEOPHYSICS...

Environmental · Groundwater · Geotechnical

Geophysical Detection Of Buried Objects

is drastically reduced by processing output of the two coils, essentially subtracting a portion of the bottom coil response from the top coil response. This is referred to as the differential mode or the differential signal.

Figure 3 shows some sample data over a 55 gallon steel drum partially buried, essentially flush with the surface of the ground. The response from the top and bottom coils is indicative of a substantial metallic presence. The relatively weak differential response is indicative of a shallow target.

FIGURE 2 EM31 & MAGNETIC GRIDS

A) EM31 Apparent Conductivity

B) EM31 In-Phase Response

Conge

1813900

1813800

Distance (feet)

1813700

1813600

TRUSTED GEOPHYSICS

Environmental • Groundwater • Geotechnical

Geophysical Detection Of Buried Objects

Magnetic Methods:

Magnetic methods measure disturbances in the earth's natural magnetic field. These disturbances are caused by magnetic materials, either magnetic rocks, or man made objects containing iron or steel. This is shown schematically in Figure 4. Most soils have negligible magnetization (both induced and remnant). Thus, most magnetic disturbances from shallow sources can be attributed to iron or steel objects which have been placed there by man's activities.

Magnetometers used for buried object detection usually measure the gradient of the magnetic field. This is done by measuring the difference between the magnetic field at two sensors separated vertically by two or three feet. This configuration is more sensitive to nearby disturbances, and is less effected by disturbances caused by distant objects or shallow bedrock.

Photo 3 on the cover shows a magnetometer/ gradiometer. This instrument can also cover wide areas quickly, providing complementary data to EM. Figure 2 includes total magnetic field data, gradiometer data, and magnetic analytic signal data over the barrel disposal area. The large deviations in both total field and gradient are indicative of steel objects in close proximity.

Ground Penetrating Radar:

Ground penetrating radar (GPR), like other radar techniques, sends out an electromagnetic pulse (radio wave or microwave) which is reflected off a "target" and returns to the receiver. GPR operates at lower frequencies (80-1500 MHz) than other radar to obtain better penetration in the earth materials. The antenna is pulled slowly along the ground surface to produce a continuous subsurface profile.

Photo 2 on the cover shows a GPR unit in operation. The 400 MHz antenna shown is being pushed in its cart. The control and recording unit is carried on the cart enabling one person operation.

Figure 5 is an example GPR profile over a shallow vault. The vertical scale is a time scale, giving the time for the radar pulse to travel down to the reflector and return to the receiver. Knowing the pulse velocity in the soils, we can convert this to depth. The horizontal scale corresponds to distance along the surface. Fiducial time marks on the record are placed at four foot intervals. The vault

TRUSTED GEOPHYSICS...

Environmental · Groundwater · Geotechnical

lid reflector shown appears as a hyperbola on the record. The vault lid produces a strong reflection with a characteristic ringing of the electronics, which appears as a dark red or blue band below the first arrival from the vault lid.

GPR is a tool for looking at selected areas in detail. Its continuous subsurface profiles give a graphic portrayal of subsurface conditions, and often provide an excellent means of accurately locating pipes and tanks. However, the GPR depth of exploration is strongly dependent on soil conductivity and subsurface conditions. In dry, sandy soils useful data may be obtained from depths down to 15 feet, whereas in conductive clay soils, typical of the Willamette valley, investigation depth is often limited to 2 or 3 feet.

FIGURE 5 SAMPLE GPR PROFILE

DISCUSSION:

As we have stressed, EM and magnetics are effective in screening large areas quickly to identify areas where buried objects may be present. Often these techniques can provide a rough estimate of the size and depth of the object causing the anomalous readings. The choice of frequency domain EM (i.e. EM31) versus time-domain EM (i.e. EM61) depends on the objectives and the site. The EM61 is very effective at identifying small pieces of metal (e.g. unexploded ordnance), and offers some depth and discrimination capability. It is also less sensitive to cultural noise (e.g. buildings, vehicles, etc.) than the EM31. The EM61 can often resolve anomalies which are close together, where the EM31 does not. However, the EM61 requires a tight line spacing, typically 1 meter, to assure the area is covered. Also, the wheeled cart is difficult or impossible to operate on some sites (the EM61 can also be carried on a shoulder harness but is very awkward).

The EM31 is favored over the EM61 on more open sites where the objective is to locate underground tanks, drums, or collections of debris. The broader sphere of influence of the EM31 allows it to be run on a coarser line spacing, typically 5-20 feet depending on the target.

A major limitation of both EM and MAG is their sensitivity to cultural noise. Buildings, fences, metallic surface debris, and vehicles all create cultural noise. The EM and magnetic instruments respond to any metallic objects, whether buried or in plain view above ground. Thus, areas within 20 to 40 feet of buildings, vehicles or pipelines will be masked by the strong response from those objects. EM and magnetics will not be able to definitively identify other buried objects within that masked zone.

GPR on the other hand is fairly immune to those forms of cultural noise. The radar signal is confined to a broad beam, spreading at roughly a 45° angle, beneath the antenna. Most antennas are well shielded with little upward propagation of the pulse. Thus GPR can be run next to buildings, fences and parked vehicles. GPR may be run inside buildings and even over reinforced concrete.

Because the GPR beam is directional, it does not have the same utility as a reconnaissance tool

TRUSTED GEOPHYSICS.

Environmental • Groundwater • Geotechnical

Geophysical Detection Of Buried Objects

as the EM and MAG techniques. Whereas the latter techniques would readily detect a large tank 10 or 20 feet off the survey line, GPR would not detect the tank unless the survey line passed directly over it.

CONCLUSIONS

No geophysical technique should be used without some form of "ground truth" provided by drilling, excavation, or some other form of sampling. The geophysical signature of an underground storage tank may be very similar to that of a buried automobile. However, geophysics can eliminate random drilling or extensive excavation when searching for underground tanks or other materials.

To conclude, EM, magnetic, and GPR methods are effective, complimentary techniques used in the detection and delineation of subsurface metallic objects. The choice of technique or techniques depends very much on both site conditions and the survey objective.

FURTHER READING:

- Benson, R.C., Glaccum, R.A., and Noel, M.R., 1982, Geophysical techniques for sensing buried wastes and waste migration: Report prepared by TECHNOS, Inc. for EPA, Advanced Monitoring Systems Division, Las Vegas, pp.235.
- Evans, R.B., 1982, Currently available geophysical methods for use in hazardous waste site investigations: from Risk Assessment at Hazardous Waste Sites, ACS symposium series No.204, p.93-115.
- French, R.B., Williams, T.R., and Foster, A.R., 1988, Geophysical surveys at a superfund site, Western Processing, Washington: Proc. of SAGEEP, March 1988, Golden, Colorado, p.747-753.
- McNeill, J.D., 1990, Use of electromagnetic methods for groundwater studies: in Geotechnical and Environmental Geophysics, ed.: S.H.Ward, SEG, IG#5, p.191:218.
- Romig, Phillip, 1992, Engineering and Environmental Geophysics Get Top Billing at SAGEEP.: The Leading Edge Vol. 11, No. 11, P.36-37.

DISCUSSION OF GEOPHYSICAL

TECHNIQUES

GEOPHYSICAL DETECTION OF BURIED

OBJECTS

Zonge International, Inc. 8366 SW Nimbus Avenue Beaverton, OR 97008 www.zonge.com Phone: (503) 992-6723

TRUSTED GEOPHYSICS

Environmental · Groundwater · Geotechnical

APPENDIX C

Geotechnical Soils Report

June 15, 2012 HWA Project No. 2012-054-23

Schwyn Environmental Services 4621 South Custer Court Spokane, Washington 99223

Attention: Mr. Craig Schwyn, L.H.G.

Subject: MATERIALS LABORATORY REPORT Sudbury Remedial Investigation Geotechnical Laboratory Testing Program Sudbury Road Landfill Walla Walla, Washington

Dear Mr. Schwyn;

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the subject project. Herein we present the results of our laboratory analyses, which are summarized on the attached Figures. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE INFORMATION: The subject samples were delivered to our laboratory on May 21st, 2012 by FED-EX delivery. Upon receipt, the samples were logged-in and a roster was prepared as shown on Table 1 presented at the end of this report. The samples were delivered in small Ziploc bags or Shelby tubes.

MOISTURE CONTENT OF SOIL: The moisture content of the soil sample (percent by dry mass) was determined in general accordance with ASTM D 2216. The results are shown on Figure 1.

PARTICLE SIZE ANALYSIS OF SOILS: Selected samples were tested to determine the particle size distribution in general accordance with ASTM D422, using both sieve and hydrometer analysis. The results are summarized on the attached Particle Size Analysis reports shown on Figures 2 and 3, which also provide information regarding the classification of the sample and the moisture content at the time of testing.

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ATTERBERG LIMITS): Selected samples were tested using method ASTM D4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index reports shown on Figure 4.

LABORATORY COMPACTION CHARACTERISTICS OF SOIL (PROCTOR TEST): One bulk sample was tested using method ASTM D698 (Standard Proctor) Method B.

21312 30th Drive SE Suite 110 Bothell, WA 98021.7010

> Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com

The test was performed on the portion of the sample passing 3/8", as required by the test procedure. The test results are summarized on the attached Laboratory Compaction Characteristics of Soil report shown on Figure 5.

HYDRAULIC CONDUCTIVITY OF SOIL (FLEXI-WALL TRIAXIAL CHAMBER METHOD): The hydraulic conductivity (also commonly referred to as coefficient of permeability) of selected samples was measured in general accordance with method ASTM D5084. One sample was remolded at approximately 2% over optimum moisture content within a 4-inch Proctor mold to about 95 percent of the materials maximum Proctor density as determined in the laboratory per ASTM D 698 as detailed in Table 2 below.

SAMPLE
DESIGNATIONUCSMOISTURE
CONTENTDRY UNIT
WEIGHTRELATIVE
COMPACTIONTP-12 BulkML17.0%100.9 pcf95.8%

TABLE 2 PERMEABILITY TEST SAMPLE RE-MOLDING PARAMETERS

Three other samples, extracted from Shelby tubes were also tested. For each sample, test specimen dimensions and weight were recorded prior to placement within a flexible membrane within a triaxial pressure chamber. An effective confining pressure of 3.0 psi was applied to simulate near-surface ground conditions. Saturation was induced by subjecting the test specimen to a flow gradient ranging from 2.9 to 12.8 generated by a back-pressure differential of 2 psi and testing was conducted until inflow was approximately equal to outflow and the hydraulic conductivity was essentially steady. The test results are presented in detail on Figures 6 through 9.

CLOSURE: Experience has shown that laboratory test values for soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested sample may represent. HWA also makes no warranty as to how representative either the sample tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance or variance that affect sample representativeness.

No copy should be made of this report except in its entirety.

0.0-----

June 15, 2012 HWA Project No. 2012-054-23

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Steven E. Greene, L.G., L.E.G. Vice-President

Ashley Crane Laboratory Supervisor

SEG:AC:seg

Attachments:

Figure 1 Summary of Material Properties

Figures 2 – 3 Particle-Size Analysis of Soils

Figure 4 Liquid Limits, Plastic Limit and Plasticity Index of Soils

Figure 5 Laboratory Compaction Characteristics of Soils

Figures 6 – 9 Hydraulic Conductivity of Soils

Exploration	Depth Interval	Sample Type	Moisture Content	Particle Size w/Hydro	Atterberg Limits	Proctor (ASTM D 698)	Permeability Triaxial
TP-8	6-24"	Shelby Tube	Best	Best	Best Sample		Best Sample
TP-8	24 - 42"	Shelby Tube	Sample	Sample			_
TP-19	6-24"	Shelby Tube	Best	Best	Best Sample		Best Sample
TP-19	24 – 42"	Shelby Tube	Sample	Sample	Xe.		
TP-20	6-24"	Shelby Tube	Best	Best	Best Sample		Best Sample
TP-20	24 – 42"	Shelby Tube	Sample	Sample			
TP-12		Bulk	Χ	X	X	X	X
TP-8	1	Ziploc Bag	X				
TP-8	2	Ziploc Bag	X				
TP-8	3	Ziploc Bag	X				
TP-8	4	Ziploc Bag	X				
TP-8	5	Ziploc Bag	X				
TP-19	1	Ziploc Bag	X				
TP-19	2	Ziploc Bag	X				
TP-19	3	Ziploc Bag	Χ				
TP-19	4	Ziploc Bag	Χ				
TP-19	5	Ziploc Bag	X				
TP-20	1	Ziploc Bag	X				
TP-20	2	Ziploc Bag	X				
TP-20	3	Ziploc Bag	X				
TP-20	4	Ziploc Bag	X				
TP-20	5	Ziploc Bag	X				

 Table 1
 Sudbury Remedial Investigation – Sample Inventory

X-Test Requested

7-		E		DENSITY	STURE		ATTERBERG LIMITS (%)									NC	
EXPLORATION DESIGNATION	TOP DEPTH (feet)	BOTTOM DEP (feet)	MOISTURE CONTENT (%)	MAXIMUM DRY	OPTIMUM MOI CONTENT	LL	PL	PI	% GRAVEL	% SAND	% SILT	% CLAY	ASTM SOIL CLASSIFICATIO	SAMPLE DESCRIPTION			
TP-08	1		14.0										ML	Light yellowish brown, SILT			
TP-08	2		14.1										ML	Light olive brown, SILT			
TP-08	3		15.1										ML	Olive brown, SILT			
TP-08	4		15.2										ML	Light olive brown, SILT			
TP-08	5		15.6										ML	Light olive brown, SILT			
TP-08 (ST)	2	3.5	14.7			NP	NP	NP		22.2	73.0	4.7	ML	Olive brown, SILT with sand			
TP-12	0		9.5	105.3	16.7	24	23	1	0.1	12.0	81.5	6.3	ML	Light olive brown, SILT			
TP-19	1		14.1										ML	Light olive brown, SILT			
TP-19	2		14.1										ML	Light olive brown, SILT			
TP-19	3		7.6										ML	Light yellowish brown, SILT			
TP-19	4		8.6										ML	Light yellowish brown, SILT			
TP-19	5		9.6										ML	Light yellowish brown, SILT			
TP-19 (ST)	2	3.5	13.9			27	23	4		13.3	84.6	2.1	ML	Olive brown, SILT			
TP-20	1		18.7										ML	Olive brown, SILT			
TP-20	2		18.4										ML.	Olive brown, SILT			
TP-20	3		15.5										ML.	Olive brown, SILT			
TP-20	4		13.9						-				ML	Olive brown, SILT			
TP-20	5		15.3		-								ML	Olive brown, SILT			
TP-20 (ST)	0.5	2.0	20.6		•	32	27	5		12.2	81.4	6.3	ML	Olive brown, SILT			

Notes: 1. This table summarizes information presented elsewhere in the report and should be used in conjunction with the report text, other graphs and tables, and the exploration logs. 2. The classification of soils in this table is based on ASTM D2487 and D2488 as applicable.

Sudbury Road LF Remedial Investigation Walla Walla, Washington

SUMMARY OF MATERIAL PROPERTIES

PAGE: 1 of 1

MATSUM W/COMPACTION 2012-054.GPJ 6/15/12

PROJECT NO .: 2012-054

FIGURE: 1

HWAGRSZ 2012-054.GPJ 6/15/12

Sudbury Road LF Remedial Investigation Walla Walla, Washington LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318

PROJECT NO.: 2012-054

FIGURE: 4

LABORATORY COMPACTION CHARACTERISTICS OF SOIL

CLIENT: Schwyn Environmental Ser	HWAGEC	SCIENC	es Inc.				
PROJECT: Sudbury Landfill Remed	lial Investigatio	n		SAMPLE ID: 1P-12, BUIK			
Date Sampled:	Date Received	mpled By: <u>Client</u>	Teste	Tested By: AC			
	Date Received	5/21/2012	- Date Teste	. U. U/24/2	012		
Light olive brown SILT (ML)							
MATERIAL SOURCE, SAMPLE LOCA	TION AND DEP	ГН:					
TP-12, Bulk Sample		2 8 2200					
Designation: XASTM D 698	ASTM D 15	57 Natur	al Moisture Co	ntent: 1	11.9 %		
Method: A XB		Oversize: 0	% retaine	ed on:	3/8 · in.		
Preparation: Dry X Moist	Rammer: X A	uto Manual	Assumed	S.G.: 2	2.65		
		L					
Dry Donoity (nof) 101.2	I est Da	105.2	102.1	1	01.0		
Moisture Content (%) 12.4	14.6	16.6	19.2		21.1		
	1	10.0					
110 105 105 100 100 95 10 12 14 16	18		Rock Cor per ASTM Lab Proct	rected Curve 1 D4718 or Curve turation Line	30		
	Moisture	Content (%)					
Data Summary*	Test	/alues At Other C	Versize Perce	ntages			
Percent Oversize <5%	0.0% 5.0%	10.0% 15.0	0% 20.0%	25.0%	30.0%		
Max. Dry Density (pcf)* 105.3	105.3 107.2	109.3 111	.4 113.6	115.8	118.2		

values corrected for oversize material per ASTM D4718, using assumed Specific Gravity shown and oversize moisture content of 1% Reviewed By:

15.1

14.3

4

13.6

15.9

Optimum Moisture (%)*

16.7

16.7

FIGURE 5

12.0

12.8

This report applies only to the items tested, and may be reproduced in full, with written approval of HWA GEOSCIENCES INC.

Hydraulic Conductivity (a.k.a. Permeability) Test Report Method ASTM D 5084

Project	Sudbury RI	Assumed Specific Gravity	2.65	HWAGEOSCIENC	ES INC.
Client	0	Initial Sample Area (cm2)	40.94	Final Sample Area (cm2)	41.13
Project number	2012-054	Initial Sample Length (cm)	12.20	Final Sample Length (cm)	12.67
Date	5/30/2012	Initial Sample Volume (cc)	499.5	Final Sample Volume (cc)	521.1
Technician	HB	Initial moisture (%)	17.0	Final moisture (%)	25.0
Sample point	TP-12 Remolded Bulk Sample	Initial wet unit wt. (pcf)	118.1	Final wet unit weight (pcf)	119.5
Sample number	0	Initial dry unit wt. (pcf)	100.9	Final dry unit weight (pcf)	95.5
Sample depth	6"-24"	Initial void ratio	0.638	Final void ratio	0.731
Sample description	Olive brown, SILT (ML)	Initial porosity	0.390	Final porosity	0.422
		Initial saturation (%)	70.7	Final saturation (%)	90.8

Hydraulic Conductivity (a.k.a. Permeability) Test Report Method ASTM D 5084

Project	Sudbury RI	Assumed Specific Gravity	2.65	HWAGEOSCIENCI	ES INC.
Client	0	Initial Sample Area (cm2)	39.63	Final Sample Area (cm2)	39.63
Project number	2012-054	Initial Sample Length (cm)	12.65	Final Sample Length (cm)	12.65
Date	5/23/2012	Initial Sample Volume (cc)	501.2	Final Sample Volume (cc)	501.2
Technician	JH	Initial moisture (%)	14.7	Final moisture (%)	21.9
Sample point	TP-8	Initial wet unit wt. (pcf)	118.0	Final wet unit weight (pcf)	124.9
Sample number	0	Initial dry unit wt. (pcf)	102.8	Final dry unit weight (pcf)	102.4
Sample depth	24"-48"	Initial void ratio	0.608	Final void ratio	0.614
Sample description	Olive brown, SILT with sand (ML)	Initial porosity	0.378	Final porosity	0.381
		Initial saturation (%)	64.1	Final saturation (%)	94.5

	Hvdraulic	Running Average of	Maximum % Deviation from Average		Effective	
	Conductivity	4 Readings	(should be less	Flow Ratio	Confining	Other
Run No.	(cm/s)	(cm/s)	than 25%)	(0.75 to 1.25 required)	Stress (psi)	Information
1	5.1E-06	n.a.		0.94	3	Maximum Gradient
2	5.1E-06	n.a.		0.94	3	12.1
3	5.8E-06	n.a.		1.00	3	Minimum Gradient
4	5.5E-06	5.4E-06	7.0%	0.96	3	8.5
Final	5.6E-06	5.5E-06	6.5%	1.00	3	Max. Back Pressure (psi)
						16.0
						Min. Back Pressure (psi)
						16.0

.

Hydraulic Conductivity (a.k.a. Permeability) Test Report

Sudbury RI
0
2012-054
5/23/2012
AC
TP-19
0
24"-48"
Olive brown, SILT (ML)

Assumed Specific Gravity 2.65 Initial Sample Area (cm2) 40.17 Initial Sample Length (cm) 12.09 Initial Sample Volume (cc) 485.8 Initial moisture (%) 13.9 Initial wet unit wt. (pcf) 97.4 Initial dry unit wt. (pcf) 85.5 Initial void ratio 0.933 0.483 Initial porosity Initial saturation (%) 39.4

HWAGEOSCIENCES INC.

Final Sample Area (cm2)	41.22
Final Sample Length (cm)	11.89
Final Sample Volume (cc)	489.9
Final moisture (%)	29.9
Final wet unit weight (pcf)	110.2
Final dry unit weight (pcf)	84.8
Final void ratio	0.949
Final porosity	0.487
Final saturation (%)	83.3

FIGURE: 8

Hydraulic Conductivity (a.k.a. Permeability) Test Report Method ASTM D 5084

Project	Sudbury RI	Assumed Specific Gravity	2.65	HWAGEOSCIENC	ES INC.
Client	0	Initial Sample Area (cm2)	40.39	Final Sample Area (cm2)	40.12
Project number	2012-054	Initial Sample Length (cm)	14.94	Final Sample Length (cm)	14.83
Date	5/24/2012	Initial Sample Volume (cc)	603.6	Final Sample Volume (cc)	595.2
Technician	JH	Initial moisture (%)	20.6	Final moisture (%)	34.5
Sample point	TP-20	Initial wet unit wt. (pcf)	105.0	Final wet unit weight (pcf)	116.4
Sample number	0	Initial dry unit wt. (pcf)	87.1	Final dry unit weight (pcf)	86.5
Sample depth	6"-24"	Initial void ratio	0.898	Final void ratio	0.911
Sample description	Olive brown, SILT (ML)	Initial porosity	0.473	Final porosity	0.477
		Initial saturation (%)	60.7	Final saturation (%)	100.4

	Hydraulic	Running Average of	Maximum % Deviation from Average		Effective	
×:	Conductivity	4 Readings	(should be less	Flow Ratio	Confining	Other
Run No.	(cm/s)	(cm/s)	than 25%)	(0.75 to 1.25 required)	Stress (psi)	Information
1	3.6E-05	n.a.		0.98	3	Maximum Gradient
2	2.4E-06	n.a.		0.98	3	10.5
3	1.6E-06	n.a.		0.97	3	Minimum Gradient
4	1.7E-06	1.1E-05	245.9%	1.00	3	4.3
Final	2.5E-06	2.1E-06	23.2%	0.95	3	Max. Back Pressure (psi)
						17.0
						Min. Back Pressure (psi)
						16.0

APPENDIX D

Laboratory Analytical Reports Provided on CD

APPENDIX E

Aquifer Test Report

Sudbury Road Landfill

Aquifer Test Report

Prepared for

Schwyn Environmental Services 2621 South Custer Ct. Spokane, Washington 98223

Prepared by FLOYD | SNIDER 601 Union Street Suite 600

Suite 600 Seattle, Washington 98101

March 2013

LIMITATIONS

This report has been prepared for the exclusive use of Schwyn Environmental Services; their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this report for any purpose other than that originally intended, unless Floyd|Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd|Snider.

Table of Contents

1.0	Intro	duction		1-1					
2.0	Sum	Summary of Field Activities2-1							
	2.1	BASEL	INE WATER LEVEL SURVEY	2-1					
	2.1	STEP [DISCHARGE TESTING	2-1					
	2.2	AQUIF	ER TESTING	2-2					
		2.2.1	Test Setup	2-2					
		2.2.2	Constant-discharge Testing	2-3					
		2.2.3	Recovery Testing	2-3					
3.0	Aquif	er Test	Analysis and Results	3-1					
	3.1	AQUIF	ER TEST DATA QUALITY REVIEW AND ANALYSIS	3-1					
	3.2	AQUIF	ER TEST RESULTS	3-3					
	3.3	HYDRA	AULIC CONNECTIVITY	3-3					
4.0	Refer	ences.		4-1					

List of Tables

Table 3.1Aquifer Test Analyses

List of Figures

- Figure 2.1 Aquifer Test Monitoring Well Locations
- Figure 2.2 Water Level Trends in Aquifer Test Wells, July 12 through September 25, 2012
- Figure 2.3 Water Level Trends in Aquifer Test Wells, September 8 through September 25, 2012
- Figure 3.1 Comparison of MW-15 Test Drawdown (9/25/12 to 9/26/12) with Antecedent Example (9/21/12 to 9/22/12)
- Figure 3.2 Comparison of MW-3 Test Drawdown (9/25/12 to 9/26/12) with Antecedent Example (9/21/12 to 9/22/12)

List of Appendices

- Appendix A Aquifer Test Boring Logs
- Appendix B Time Displacement Plots
- Appendix C Aquifer Test Solutions

List of Abbreviations/Acronyms

Acronym/ Abbreviation	Definition
bgs	Below ground surface
gpm	Gallons per minute
Landfill	Sudbury Road Landfill
NAVD88	North American Vertical Datum of 1988
psi	Pounds per square inch
RI/FS	Remedial Investigation/Feasibility Study
Work Plan	Data Summary and Remedial Investigation Work Plan

1.0 Introduction

This aquifer test report has been prepared as part of remedial investigation/feasibility study (RI/FS) activities at the Sudbury Road Landfill (Landfill) in accordance with the Data Summary and Remedial Investigation Work Plan (Work Plan; Schwyn Environmental 2011). In this report, field activities are summarized and the results of hydrogeologic field testing and analysis are presented. This hydrogeologic information is intended to be used to characterize the first encountered aquifer beneath the Landfill and to assess the hydraulic connection between the hydrostratigraphic zones screened in MW-15D, MW-3, and MW-15.
2.0 Summary of Field Activities

Aquifer test field activities were carried out in accordance with the Work Plan. Aquifer testing consisted of four parts: baseline water-level survey, step discharge pumping tests, 24-hour constant-discharge pumping test, and water-level recovery test. Relevant details of these field activities are summarized in this section.

Monitoring well locations for the pumping well and observation wells used in aquifer testing are illustrated on Figure 2.1. Monitoring well logs are included as Appendix A.

2.1 BASELINE WATER LEVEL SURVEY

Data-logging pressure transducers were deployed in MW-15D, MW-3, and MW-15 to collect baseline water level data from July 12 through September 25, 2012. A data-logging barometric pressure transducer was deployed concurrently for barometric compensation of water level pressure data. Barometrically compensated water level trends for these three monitoring wells are presented for an approximate 10 week period in Figure 2.2 and for an approximate 2-week period in Figure 2.3. No long-term antecedent data were collected for observation wells MW-18 or MW-27. Water level measurements in MW-15 were adjusted by 0.47 foot to reflect movement of the pressure transducer on August 15, 2012.

Water levels generally fluctuated in each of these three wells by approximately 0.2 to 0.4 foot during the monitoring period. Water levels in MW-3 and MW-15 exhibited a slight decreasing trend in July, on the order of approximately 0.1 to 0.2 foot, but stabilized in August and remained stable through the start of aquifer testing in late September. No long-term antecedent trends in water levels were identified that are relevant for aquifer test analysis.

Water levels in all three wells fluctuated in a highly consistent daily pattern, as illustrated in Figure 2.3. The timing of the daily fluctuation is consistent with the effects of Earth tides, which cause diurnal fluctuations in aquifer head, resulting in higher water levels coincident with the period between moonrise and moonset (Ferris et al. 1962). In the days preceding aquifer testing, moonrise in the vicinity occurred at approximately 2 p.m., moon transit occurred at approximately 7 p.m., and moonset occurred at approximately 12 a.m. This period corresponds to the recurring daily peak in water levels in the three wells. The magnitude of the daily fluctuation is approximately 0.1 foot or less, which is substantial enough to result in identifiable inflections of time-displacement curves for drawdown in observation wells (refer to Section 3.1 below).

2.1 STEP DISCHARGE TESTING

Step discharge testing was performed on MW-15D on September 25, 2012 to estimate the maximum sustainable yield rate suitable for 24-hour constant-discharge testing. Pumping rates were monitored in gallons per minute (gpm) throughout step discharge testing. MW-15D was pumped at approximately 16.5 gpm for 10 minutes, at approximately 20.5 gpm for 30 minutes, approximately 25 gpm for 40 minutes, and approximately 30 gpm for 87 minutes. The results of step drawdown testing are summarized in the table below.

MW-15D Approximate Pumping Rate (gallons per minute)	Duration (minutes)	Maximum Drawdown (feet)
16.5	10	10.2
20.5	30	16.95
25	40	27.35
30	87	40.15

The static water level prior to step discharge testing in MW-15D was 36.15 feet from the top of casing. At 30 gpm, with 40.15 feet of displacement, the water level was drawn down to 76.3 feet below the top of well casing, which is below the top of the well screen and within a few feet of the top of the pump. Based on these results, the maximum pumping rate MW-15D was capable of sustaining for a 24-hour test was estimated to be approximately 25 gpm.

2.2 AQUIFER TESTING

On September 26, 2012, constant-discharge aquifer testing was performed using MW-15D as the pumping well in accordance with the procedures detailed in the Work Plan. Aquifer testing was intended to produce a significant stress on the aquifer within the vicinity of the pumping well to provide estimated aquifer characteristics and information about hydraulic connections between the hydrostratigraphic zones screened in MW-3, MW-15, and the pumping well MW-15D.

2.2.1 Test Setup

The following procedures and equipment were used to perform the constant-discharge aquifer test:

- A Grundfos of Redi-flo 4 25E3 electric submersible pump was installed in MW-15D and was controlled via a Grundfos CU300 controller unit. The pump was suspended in the well using a steel wire secured at the ground surface. The pump was equipped with a check valve to prevent backflow during the recovery portion of the test. A 2-inch diameter flexible hose discharge line was attached to the pump and extended up through the 4-inch diameter well casing and along the ground surface. 2-inch and 1.5-inch smooth-walled suction hoses were used to convey water from MW-15D to discharge into a dry creek bed approximately 300 feet west.
- A Seametrics 2-inch diameter, in-line, totalizing electronic flow meter was installed between two 6-foot sections of 2-inch polyvinyl chloride (PVC) solid pipe in the discharge line, to ensure that flow conditions suitable for producing accurate flow meter readings were met, in accordance with the manufacturer's specifications. The flow meter was pre-calibrated and verified by comparing with flow rates measured using a 5-gallon bucket and a stopwatch.
- A Honda E3500 gasoline generator was used to provide power for the pump, pump controller, and laptop computer.
- Aquistar PT2X pressure transducers were used to record groundwater levels in the pumping well and observation wells during the aquifer tests. The transducers installed in MW-3 and MW-15 were rated for use at 30 pounds per square inch (psi), and the transducer in MW-15D was rated for use at 50 psi. These instruments, which consist of pressure transducers that measure potentiometric head recorded by

integrated dataloggers, were deployed on fixed-length lines into wells. A laptop computer was used to program the pressure transducers at their prescribed data collection intervals and to synchronize all transducer clocks to a standard reference time within 1-second accuracy. Following the constant-discharge and recovery tests, all data were uploaded to the laptop.

- A data-logging barometric pressure transducer was deployed concurrently for barometric compensation of water level pressure data.
- An electronic water level indicator was used to measure groundwater levels manually in the control and observation wells prior to, during, and following each aquifer test. The manual measurements were used as a check on the transducer measurements.

2.2.2 Constant-discharge Testing

Constant-discharge testing was conducted on September 25 and 26, 2012 using MW-15D as the pumping well. MW-15D was pumped at approximately 25 gpm for 28 hours. Pumping was initiated at 14:45 on September 25 and halted at 18:45 on September 26. A total of approximately 41,712 gallons were pumped from MW-15D. The calculated average flow rate for MW-15D was 24.8 gpm.

Water level data were collected from MW-3, MW-15D, MW-15, MW-18, and MW-27. Transducers in MW-3, MW-15D, and MW-15 were programmed to read and record data at 1-second intervals. Transducers in MW-18 and MW-27 were programmed to record data at 2-second intervals.

Field personnel remained on-site throughout the test to verify that discharge from the pumping well remained constant, to fuel the generator, and to collect manual water level measurements. It was determined that sufficient aquifer stress had been achieved following 28 hours of pumping. Pumping was halted and data collection was continued to monitor the recovery portion of the test.

2.2.3 Recovery Testing

Recovery test measurements were collected on September 26 and 27, 2012. Water level data were collected from the five test wells (MW-3, MW-15D, MW-15, MW-18, and MW-27) at the same recording intervals as during constant-discharge testing. Transducers were removed from the wells and uploaded on the morning of September 27. Water levels in all five wells substantially recovered within approximately the first 90 minutes, so that no water level data from September 27 were used in recovery analysis.

3.0 Aquifer Test Analysis and Results

This section presents results and analysis of the aquifer testing described in the previous section. A summary of the results of aquifer testing is provided in Table 3.1, including estimated values for hydraulic conductivity, transmissivity, and storativity. Appendix B contains timedisplacement curves for all test wells for both drawdown and recovery testing. Appendix C includes curve-fitting results for results used for estimating aquifer parameters. These results indicate that aquifer testing was properly conducted and that the resulting aquifer characteristics are suitable for use as part of the RI/FS.

3.1 AQUIFER TEST DATA QUALITY REVIEW AND ANALYSIS

Drawdown and recovery data were compensated for barometric pressure using Aqua4Plus software and then exported to Excel for processing. Pressure data were converted from pounds per square inch to feet of displaced water. Drawdown results were separated from recovery results. Portions of the datasets with 1-second interval measurements were filtered to reduce the number of records for data collected later in the test. Displacement and pumping rate data were imported into Aqtesolv Professional 4.5 for analysis.

Aquifer, borehole, well construction, and well location information was entered into Aqtesolv based on boring log information (refer to Appendix A). The silt unit was entered as an upper aquitard (b') with a depth of 40 feet. The gravel unit in which pumping well MW-15D is screened was entered as a confined aquifer, with an assumed thickness (b) of 100 feet, underlain by a lower aquitard (b'') assumed to be 250 feet thick. An aquifer isotropic ratio (K_z/K_r) of 0.1 vertical to horizontal was generally assumed. Pumping wells and observation wells were entered as partially penetrating wells. The screened interval for MW-3 is located within the gravel aquifer unit, at greater depth than MW-15D. The screened intervals of MW-15, MW-18, and MW-27 span the contact between the upper silt aquitard and gravel aquifer units, and penetrate the gravel aquifer unit to varying depths. Screened interval elevation information is summarized in Table 3.1.

Based on the presence of a 5-foot thick clay layer noted in the boring log for MW-3 at 96 feet below ground surface (bgs; refer to Appendix A), separate analyses were performed in which aquifer dimension assumptions were varied. Use of a thinner aquifer (b=50 feet) and a shallower, thinner aquitard (b"=5 feet) did not result in substantial change in curve fitting results or aquifer test solutions. Separate analyses in which the upper silt aquitard and gravel aquifer units were assumed to be a single unconfined aquifer, in which the Theis (1935) method corrected for unconfined aquifers was used, produced results similar to those derived from confined aquifer assumptions, but poor curve matches were observed for the Neuman (1974), Moench (1997), and Tartakovsky-Neuman (2007) unconfined aquifer solutions. Therefore, confined aquifer assumptions were considered more appropriate and accurate for aquifer analysis, and solutions for unconfined aquifers are not presented in this report.

The quality of the drawdown and recovery data sets from the five test wells was evaluated for the suitability of using standard curve-matching techniques. In some cases, the data were found to have limitations that affected analysis. The following is a summary of the considerations affecting analysis of drawdown data:

• Drawdown data for the pumping well, MW-15D, were not used for analysis in favor of the recovery data because pumping well data typically understate the transmissivity of the formation (Fetter 2001).

- The drawdown displacement curves for observation wells MW-3 and MW-15 include ambient water level fluctuations attributed to Earth tides (refer to Section 2.1 above) that are substantial relative to the overall test measurements (refer to Appendix B and Figures 2.2 and 2.3). An example of the recurring pattern from a day 4 days before the test is overlain atop the drawdown displacement results for MW-15 in Figure 3.1 and for MW-3 in Figure 3.2. A simple subtraction of the two curves is shown to approximate what the data set would resemble without the ambient fluctuation.
- Based on the curve suggested by the subtraction of ambient fluctuation data in Figure 3.1, the ambient fluctuation was visually filtered out of the curve-matching analysis for MW-15. Because the approximate pattern of the ambient fluctuation is known, the displacement (refer to Table 3.1) of 0.31 feet is sufficient to allow analysis despite the ambient fluctuations, which account for approximately 0.1 feet of total displacement.
- The effects of the ambient water level fluctuations are visible in the drawdown displacement curves for observation wells MW-18 and MW-27 (refer to Appendix B) and were visually filtered out during curve-matching analysis. The displacement (refer to Table 3.1) for the two observation wells of 0.90 and 0.72 feet, respectively, is sufficient to allow curve-matching analysis. The magnitude of the fluctuations on both curves was on the order of 0.1 foot.
- The displacement for MW-3 is considered insufficient to allow accurate analysis given the magnitude of ambient fluctuation. Ambient fluctuations of up to 0.06 foot are greater than the apparent drawdown displacement resulting from pumping (less than approximately 0.025 foot; refer to Appendix B). No solutions for MW-3 drawdown are provided.

The following is a summary of the considerations affecting data analysis decisions for analysis of recovery data:

- Recovery analysis for MW-15D was limited to the Cooper-Jacob (1946) solution, which is considered the preferred solution for analysis in a pumping well, because it removes the influence of turbulent flow, wells skins, and partial penetration (Fetter 2001). Ambient water level fluctuations were negligible relative to the test displacement of 34.51 feet (refer to Table 3.1).
- For observation wells, ambient fluctuations were unable to be filtered out of recovery results sufficiently to provide for accurate curve-matching. Based on antecedent monitoring (refer to Figures 2.2 and 2.3), the daily cycle of fluctuation attributed to Earth tides was in a period of falling water levels during the recovery portion of the test, which is based on rising water levels. Curve-matching analyses were attempted using the initial 100 minutes of observation well recovery test results, during which the most displacement occurred. These analyses were considered unsuccessful because of the very limited displacement (0.11 feet, 0.08 feet, 0.04 feet, and 0.02 feet in MW-15, MW-18, MW-27, and MW-3, respectively) relative to the ambient fluctuations. No solutions are presented using recovery data from observation wells.

Subject to these limitations, drawdown and recovery in the selected pumping and observation wells were analyzed using one or more solutions in Aqtesolv:

• The Cooper-Jacob (1946) straight-line solution

- The Theis (1935) method for confined conditions, extended by Hantush (1961) for partially penetrating wells
- The Dougherty-Babu (1984) solution, which accounts for wellbore storage and wellbore skin for partially penetrating wells in confined aquifers
- The Hantush-Jacob (1955)/Hantush (1964) solution for partially penetrating wells in a leaky confined aquifer, with no storage in the aquitard

3.2 AQUIFER TEST RESULTS

Results of aquifer analysis are summarized in Table 3.1.

Analyses yielded transmissivity estimates ranging from 1,900 to 13,000 feet²/day, hydraulic conductivity estimates from 23 to 140 feet/day (6.7×10^{-3} to 4.9×10^{-2} cm/s), and storativity values from 6.5×10^{-4} to 2.7×10^{-2} . Prior to aquifer testing, the estimated hydraulic conductivity of the unit was 1.5×10^{-3} cm/s (EMCON 1995), which is slightly lower than the lowest hydraulic conductivity values estimated based on this test.

The aquifer characteristics estimated from the solutions analyses provide for a sufficient degree of confidence in the accuracy of the results for use in the RI/FS. The range of aquifer parameters estimated from these results is reasonable and likely reflects the different well screen depths, placement relative to the contact between the upper silt aquitard and gravel aquifer, heterogeneities in aquifer materials, and horizontal distance from each other. To normalize the different ranges associated with these conditions, a geometric mean of the results was calculated. The geometric mean indicates an estimated overall transmissivity in the aquifer in the vicinity of the test of approximately 4,000 feet²/day and a hydraulic conductivity of approximately 40 feet/day (1.4×10^{-2} cm/s). These values provide an indication of the tendency of the aquifer in this area to transmit water, and should be used in conjunction with information about the local aquifer thickness, hydraulic gradient, and other factors.

Storativity results are generally at the higher end of the range of values for confined aquifers of 0.005 to 0.00005 (Freeze and Cherry 1979).

3.3 HYDRAULIC CONNECTIVITY

The results indicate hydraulic connectivity between the screened interval of the pumping well (MW-15D) and hydrostratigraphic zones represented by well screens for the deeper observation well (MW-3) and shallower observation wells (MW-15, MW-18, and MW-27).

The results suggest that the screened interval of the pumping well, MW-15D (approximately 706 to 721 feet relative to the North American Vertical Datum of 1988 [NAVD88]) is located in a zone of similar transmissivity relative to three wells in the surrounding vicinity screened at shallower depths (i.e., MW-15, MW-18, and MW-27 are all screened from above 740 NAVD88) that penetrate the upper portions of the aquifer. A degree of homogeneity in the shallow portion of the aquifer can be seen in the similar responses in, and estimated transmissivity values derived from, MW-18 and MW-27. MW-18 is located 175 feet south of the pumping well, MW-15D, and MW-27 is located 344 feet northeast of MW-15D.

Storativity results at the higher end of the range for confined aquifers are consistent with a semiconfined aquifer with observation well screens crossing the assumed upper contact of the aquifer with the overlying aquitard. MW-15, with one storativity result (2.7 x 10^{-2}) greater than the range for confined aquifers, has the majority of its screened interval in the overlying silt unit. Analysis using the Hantush-Jacob (1955)/Hantush (1964) solution for leakage into a confined aquifer did not result in acceptable fits over a range of leakage factors (r/B). The curve used in the Hantush-Jacob solution for leaky confined aquifers, which resembles a Theis curve that is flattened during late time in the test due to leakage, does not match the site data or results without flattening associated with leakage, and was not used to estimate aquifer properties. This suggests minimal recharge to the aquifer tested from leakage through the aquitard, which may be attributable to the well screens that cross into this unit, and the silt unit serving as an extension of the aquifer. As noted previously, analysis using solutions for unconfined aquifer conditions, such as Neuman (1974), did not result in acceptable curve fits.

These results, and the strong response of the three shallower wells to pumping in MW-15D, suggest that MW-15D exists in semi-confined conditions, with hydraulic connectivity between the upper silt aquitard and the gravel aquifer occurring under test conditions. The penetration of all three of the shallower wells into the gravel unit, however, limits the conclusions that can be drawn from these test results regarding the communication between the silt and gravel units.

Although MW-3 results were not suitable for estimating aquifer parameters, because of the low displacement and "noise" from ambient water level fluctuations, the results indicate a hydraulic connection between the screened intervals of MW-15D and MW-3, which is located approximately 26 feet below the bottom of the MW-15D screened interval. Although both wells are assumed to be within the same gravel aquifer unit, the results suggest a more complex local hydrostratigraphy at these depths. Local hydrostratigraphy may be influenced by one or more lower-permeability layers such as the 5-foot thick clay unit identified in the boring log at 96 to 101 feet bgs (approximately 688 to 693 feet NAVD88).

4.0 References

- Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- Dougherty, D.E and D.K. Babu, 1984. Flow to a partially penetrating well in a double-porosity reservoir, Water Resources Research, vol. 20, no. 8, pp. 1116-1122.
- EMCON. 1995. Hydrogeologic Report, Sudbury Road Landfill, Walla Walla County, Washington. June.
- Ferris, J.G., Knowles, D.B., Brown, R.H., and Stallman, R.W. 1962. Theory of aquifer tests: U.S. Geological Survey Water-Supply Paper 1536-E, 173 p.
- Fetter, C.W. 2001. Applied Hydrogeology. Prentice-Hall Inc. Upper Saddle River, N.J.
- Freeze, R.A. and Cherry, J.A., 1979. Groundwater. Prentice-Hall Inc.; Englewood Cliffs, N.J.
- Hantush, M.S. and C.E. Jacob, 1955. Non-steady radial flow in an infinite leaky aquifer, Am. Geophys. Union Trans., vol. 36, no. 1, pp. 95-100.
- Hantush, M.S., 1964. *Advances in Hydroscience*, chapter *Hydraulics of Wells*, pp 281–442. Academic Press.
- Moench, A.F., 1997. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer, Water Resources Research, vol. 33, no. 6, pp. 1397-1407.
- Neuman, S.P., 1974. Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response, Water Resources Research, vol. 10, no. 2, pp. 303-312.
- Schwyn Environmental. 2011. Data Summary and Remedial Investigation Work Plan, Sudbury Road Landfill. Prepared for City of Walla Walla. December.
- Tartakovsky, G.D. and S.P. Neuman, 2007. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer, Water Resources Research, W01410, doi:1029/2006WR005153.
- Theis, C.V. 1935. "The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-water Storage." *Transactions, American Geophysical Union 16:519–524.*

Sudbury Road Landfill

Aquifer Test Report

Tables

FLOYDISNIDER

Table 3.1 Aquifer Test Analyses¹

Observation Well	Observation Well Screen Length (ft) and Elevation (ft MSL)	Maximum Displacement (ft)	Analysis Method ²	Aquifer Model	Estimated Transmissivity (ft ² /min)	Estimated Transmissivity (ft ² /day)	Estimated Hydraulic Conductivity (ft/day)	Estimated Hydraulic Conductivity (cm/s)	Estimated Storativity ()
Drawdown Analyses									
MW-15 ³	15	0.31	Cooper-Jacob (1946)	Confined	8.8	13,000	130	4.6E-02	2.7E-02
	747.52–762.52		Theis (1935)/Hantush (1961)	Confined	9.7	14,000	140	4.9E-02	8.5E-03
MW-18	15	0.90	Cooper-Jacob (1946)	Confined	1.4	1,900	19	6.7E-03	1.7E-03
	745.42–760.42		Theis (1935)/Hantush (1961)	Confined	1.3	1,900	19	6.7E-03	2.7E-03
MW-27	10	0.72	Cooper-Jacob (1946)	Confined	1.6	2,300	23	8.1E-03	6.5E-04
	740.38–750.38		Theis (1935)/Hantush (1961)	Confined	1.6	2,300	23	8.1E-03	6.8E-04
Recovery Analyses									
MW-15D	15	34.51	Cooper-Jacob (1946)	Confined	3.5	5,000	50	1.8E-02	NA ⁴
	706.64–721.64								

Geometric mean	2.8	4,000	40	1.4E-02	2.8E-03

Notes:

- 1 Results are from constant-discharge and recovery testing between September 25 and September 27, 2012, with MW-15D as the pumping well. Solutions are based on the assumptions that include the following. Pumping and observation wells are partially penetrating. A saturated aquifer thickness (b) of 100 feet was assumed. An aquifer isotropic ratio (Kz/Kr) of 0.1 vertical to horizontal was assumed. The borehole diameter, r(w) for the pumping well MW-15D was 0.36 foot, and the inside radius of the well casing, r(c) for MW-15D was 0.166 foot. Refer to curve-fitting solutions and boring logs for additional details.
- 2 Results obtained using the Dougherty-Babu solution for observation wells were identical to those obtained using the Theis/Hantush method, indicating that no wellbore effects influenced curve-fitting for observation wells. The curve used in the Hantush-Jacob solution for leaky confined aquifers, which resembles a Theis curve that is flattened during late time in the test due to leakage, did not match the site data as well as results without flattening associated with leakage.
- 3 The drawdown displacement curve for Monitoring Well MW-15 includes ambient water level fluctuations that are substantial relative to the overall test measurements. The effect of the fluctuations was visually filtered out of the curve-matching analysis for MW-15 drawdown displacement. Maximum displacement during drawdown was increased by an estimated 0.1 feet from ambient water level fluctuations. 4 Storativity cannot be determined accurately in the pumping well using the Cooper-Jacob solution.

Abbreviations:

- cm/s Centimeters per second
- gpm Gallons per minute
- ft Feet
- min Minute
- MSL Mean sea level
- NA Not applicable

Sudbury Road Landfill

Sudbury Road Landfill

Aquifer Test Report

Figures

\mmerry\data\projects\Schywn-Sudbury\Field Work Related\Aquifer testing\Revised Aquifer Test Report February 2013\Figures\Sudbury Aquifer Test Figure 2.2.docx

\merry\data\projects\Schywn-Sudbury\Field Work Related\Aquifer testing\Revised Aquifer Test Report February 2013\Figures\Sudbury Aquifer Test Figure 2.3.docx

\merry\data\projects\Schywn-Sudbury\Field Work Related\Aquifer testing\Revised Aquifer Test Report February 2013\Figures\Sudbury Aquifer Test Figure 3.1.docx

March 2013

\merry\data\projects\Schywn-Sudbury\Field Work Related\Aquifer testing\Revised Aquifer Test Report February 2013\Figures\Sudbury Aquifer Test Figure 3.2.docx

March 2013

Sudbury Road Landfill

Aquifer Test Report

Appendix A Aquifer Test Boring Logs

M	W		3
---	---	--	---

Fil De Se Th	e Original and First Copy with partment of Ecology WATE cond Copy — Owner's Copy ird Copy — Diller's Copy STA	ER2WE	LL REPORT	Application Permit No.	No	
(OWNER: Name TY OF (U.I.	The Let.	116 mm B= 478			
١ ,4) LOCATION OF WELL: COUNTY 1/1	(11.1	Audress NW. NF		7	25
Be	aring and distance from section or subdivision corner Ground	nd sur	face elevation (201	(2) = 788.3	7 ft N	JJw.M. JAVD88
(3) PROPOSED USE: Demontin E. Industrial E. M					
(0	Irrigation [] Test Well 18 Oth	nicipal	Ecomotion: Describe by color above			
		<u> </u>	show thickness of aquifers and the stratum penetrated, with at least of	kind and nature of material kind and nature of ne entry for each	the materi	al in each
(4) IIPE OF WORK: Owner's number of well 3 (if more than one)		MATERIAL		FROM	TO
	. New well [X] Method: Dug ☐ H Deepened ☐ Cable 67 H	Bored	1 opsail		0	23
	Reconditioned [] Rotary []	Jetted	BROWN Clay	+ Sand	23	42
(5) DIMENSIONS: Diameter of well	ín ab ee	Sand		42	59
	Drilledft. Depth of completed weil	inches.	BROHLD (-lay	59	-61
(6	CONSTRUCTION DETAILS.		BRAINS (14)	Rauel	61	74-
1.0	Casing installed: 2	10	BRUIUD	Clay	96	101
	Threaded Of Thread	1. 1. ft.	6Ruuel W.	Ter	101	121
	Welded Diam. from ft. to	ft.				
	Perforations: Vet C No R					
	Type of perforator used		PUT IN S Suit	· · · · · · · ·	+ 1+00	<u> </u>
	SIZE of perforations in. by	in.	FROM 121' TO	10'	TITER	
	perforations from ft. to	ft.		·		
		ft.	- Pumped in 13	Sacks	Kol (Jay
	Screens: Yes No []		- FROM 90 TO 1	6		
(Manufacturer's Name JOANSON		PJ in Sand	FROM 1	1 10	10
C	Diam. 2 Slot size $Old \text{ from } OS \text{ ft to } I$	118 .				
	Diam		Put in 9 Sa	KS POR	TLANK	2 Ceo
	Gravel packed: yes I No II Size of gravely		FROM 10' TO	EROUND	Kere	/
	Gravel placed from	ft.				
	Surface seal: yes a No Contraction during				-	
	Material used in seal	ft.			i	
	Did any strata contain unusable water? Yes []	No 🗌		•		
	Method of sealing strata off			·		
(7)				AP100-990, -00-00-1001-01-01-01-01-01-01-01-01-01-0		
(•)	Type: HP					
(8)	WATER IEVELS. Land-surface elevation			· · · · · · · · · · · · · · · · · · ·		
(0) Stat	above mean sea level	ft.				
Arte	sian pressure					
	Artesian water is controlled by					
(9)	WEII TESTS. Drawdown is amount water level i	, 		· · · · · · · · · · · · · · · · · · ·		
(J) Was	NELL IESIS: Drawdown is anount water level i lowered below static level	15	Work started 9-18 19 8	6 Completed 1	0-21	× 19. 8. 6
Yiel	$\frac{d}{d} = \frac{1}{2} $	hrs.	WELL DRILLER'S STATE	MENT:		
••			This well was drilled under	my jurisdiction	and this r	eport is
		••	true to the best of my knowled	ge and belief.		oport 15
Reco	very data (time taken as zero when pump turned off) (wat neasured from well top to water level)	er level	HARDFOLF	DASIT		7
<u></u>	me Water Leyel Time Water Level Time Water	· Level	NAME ////////////////////////////////////	prporation) (?	Fype or pri	-0 nt)
			Address /YT3 Boy67	Walla W	a.f.l.e	Wn.
	Date of test $10 - 1 - 36$		m. h. 21	1.		
Baile	er test		[Signed]	Well Driller)		
Arte Tem	sian flow		License No 173	Data In-	-24	1001
	10/29/06 10	No	Lacense No	Date <i>J.U</i>		, 1976

Unique Well ID: BCE 338

Drill Date: 5/23/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 8.75-in Boring Depth (ft BGL): 87 ft. Groundwater (ft BGL): 30 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 789.64 ft. MSL Casing Elevation: 792.04 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278598 Longitude/Easting: 2169554

Remarks: Warm, partly cloudy

Unique Well ID: BCE 338

Drill Date: 5/23/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 8.75-in Boring Depth (ft BGL): 87 ft. Groundwater (ft BGL): 30 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 789.64 ft. MSL Casing Elevation: 792.04 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278598 Longitude/Easting: 2169554

Remarks: Warm, partly cloudy

Unique Well ID: BCE 338

Drill Date: 5/23/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 8.75-in Boring Depth (ft BGL): 87 ft. Groundwater (ft BGL): 30 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 789.64 ft. MSL Casing Elevation: 792.04 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278598 Longitude/Easting: 2169554

Notes: ft BGL = feet below ground level

ft BTOC = feet below top of well casing

Unique Well ID: BCE 343

Drill Date: 5/20/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 63 ft. Groundwater (ft BGL): 35.5 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 807.52 ft. MSL Casing Elevation: 810.11 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278422 Longitude/Easting: 2169556

Remarks: Warm, Breeze

Unique Well ID: BCE 343

Drill Date: 5/20/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 63 ft. Groundwater (ft BGL): 35.5 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 807.52 ft. MSL Casing Elevation: 810.11 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278422 Longitude/Easting: 2169556

Remarks: Warm, Breeze

Unique Well ID: BHP200

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 52 ft. Groundwater (ft BGL): 31 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 791.98 ft. MSL Casing Elevation: 794.50 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278771 Longitude/Easting: 2169852

Remarks:

SAMPLE	DRIVE /	BLOW COUNT	DEPTH FT BGS			Sample Description	W	Well Construction			
								Det	all		
									Locking Cap		
								┩┼──	PVC Cap		
									Protective		
									Steel Casing		
Core 0-4						ML: Light brownish gray Sandy SILT, fine sand with trace			0		
-						clay, soft, low plasticity, dry.		Ì∧ `	Pad		
	公八										
Core	六〇										
						@ 5.5 ft.: very dark gray.					
			Ē,								
Core	八八		F.			@ 7 ft.: damp to moist.					
/-1/	$\sum \sum$		Ē.								
	公公										
									2-in. dia. flush		
									threaded		
	$\left \right\rangle \right \right\rangle \right\rangle$		12						AGL to 41.6		
			13				\land		ft BGL		
			14				\land	\land			
	<pre>/<1</pre>		15				\land		Bentonite Chips		
			16				\land	\land	Chipo		
Core			17				\land	\land			
17-27			18				\land	\land			
			19				\land	\land			
			20				\land	\land			
			21			@ 01 5 th . 9" fine cond long	\land	\land			
	$\sum_{i=1}^{n}$		22								
			23								
	<u></u>		24								
			25								
			26								
Core			27								
27-37						@ 27.25 ft.: 12" black medium sand lens. @28.25 ft.: olive gray, mottled					
	六六		-29								
Notes:								17 \1			
ft BGL =	feet below	w grour	nd level			USCS = Unified Soil Classification System		Pa	ge 1 of 2		
TURIOC	= 1661 Del	ow top	OT Well	cas	ang	= denotes groundWater table					

Unique Well ID: BHP200

Drill Date: 8/28/2012 Logged By: E. Ramirez (Floyd|Snider) Drilled By: Environmental West Exp. Drill Type: Sonic Sample Method: 4.25-in Sonic Core Boring Diameter: 6.75-in Boring Depth (ft BGL): 52 ft. Groundwater (ft BGL): 31 ft. Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location: Sudbury Road Landfill Ground Elevation: 791.98 ft. MSL Casing Elevation: 794.50 ft. MSL Coordinate System: NAD/NAVD 88 Latitude/Northing: 278771 Longitude/Easting: 2169852

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons	istruction etail	
Core 37-47			→ 30 → 31 → 32 → 33 → 34 → 35 → 36 → 37 → 38 → 39 → 40		ML: Silt, cont. @ 31 ft.: brown, wet. @ 32-33 ft.: caliche mottling. @ 34.5 ft.: 6" medium sand lens. @ 38-42.5 ft.: reddish mottling.		10-20 Colo.	
			41 42 43 44 44	······································	GM: Brown Silty GRAVEL, trace clay to coarse sub-rounded gravel, moderately graded, medium dense, wet. @ 43.5 ft.: 6" reddish mottled silt lens. @ 44.5 ft.: gravel size decreases to smaller sub-angular to sub-rounded coarse gravel.		silica sand	
Core			45		SP: Dark reddish brown SAND, subangular, poorly graded, loose, wet.		0.01-in. slot PVC, 41.6 to 51.6 ft BGI	
47-52			48 49 50 51 52		GM: Dark reddish brown Sandy GRAVEL, trace fines, angular coarse sand to sub-rounded fine to coarse gravel, moderately graded, loose, wet. With depth, the gravel size fraction increases as the sand fraction decreases.		Bottom cap	

ft BGL = feet below ground level ft BTOC = feet below top of well casing **Sudbury Road Landfill**

Aquifer Test Report

Appendix B Time Displacement Plots

Sudbury Road Landfill

Aquifer Test Report

Appendix C Aquifer Test Solutions

Groundwater Plots

MW-15 VOC In Groundwater Trends

Time Series

Time Series

Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Constituent: cis-1,2-Dichloroethene Analysis Run 3/22/2013 1:55 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Time Series

Constituent: Dichlorodifluoromethane Analysis Run 3/22/2013 1:55 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Time Series

Constituent: Tetrachloroethene Analysis Run 3/22/2013 1:55 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Constituent: Trichloroethene Analysis Run 3/22/2013 1:55 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Time Series

Constituent: Trichlorofluoromethane Analysis Run 3/22/2013 1:55 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Time Series

Constituent: Vinyl chloride Analysis Run 3/22/2013 1:55 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

MW-11 Tetrachloroethene In Groundwater Trend

Time Series

Constituent: Tetrachloroethene Analysis Run 3/22/2013 2:22 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Box and Whisker Plots Area 5 North Drainage Wells

From Upgradient to Downgradient MW-24, MW-23, MW-27, MW-15

Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Box & Whiskers Plot

Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 3/23/2013 5:31 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Constituent: 1,1-Dichloroethane Analysis Run 4/24/2013 1:05 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Constituent: cis-1,2-Dichloroethene Analysis Run 4/24/2013 1:05 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Constituent: Dichlorodifluoromethane Analysis Run 4/24/2013 1:05 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Box & Whiskers Plot

Constituent: Tetrachloroethene Analysis Run 4/24/2013 1:05 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Constituent: Trichloroethene Analysis Run 4/24/2013 1:05 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Constituent: Trichlorofluoromethane Analysis Run 4/24/2013 1:05 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2

Box & Whiskers Plot

Constituent: Vinyl chloride Analysis Run 4/24/2013 1:05 PM Facility: Sudbury Road Landfill Client: City of Walla Walla Data File: S2
APPENDIX G

Historical Data

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Upgradient Wells	•	•			•
MW-05	MW-5 Q1-91	03/01/1991	Х	Х	
MW-05	MW-5 Q2-91	06/01/1991	Х	Х	
MW-05	MW-5 Q3-91	09/01/1991	Х	Х	
MW-05	MW-5 Q4-91	12/01/1991	Х	Х	
MW-05	MW-5 Q1-92	03/01/1992	Х	Х	
MW-05	MW-5 Q2-92	06/01/1992	Х	Х	
MW-05	MW-5 Q3-92	09/01/1992	Х	Х	
MW-05	MW-5 Q4-92	12/01/1992	Х	Х	
MW-05	MW-5 Q1-93	03/30/1993	Х	Х	Х
MW-05	MW-5 Q2-93	04/13/1993			Х
MW-05	MW-5 Q2(Jun)-93	06/14/1993	Х	Х	Х
MW-05	MW-5 Q3-93	09/01/1993	Х	Х	Х
MW-05	MW-5 Q4- 93	12/01/1993	Х	Х	
MW-05	MW-5 Q1-94	03/01/1994	Х		
MW-05	MW-5 Q2-94	04/01/1994		Х	
MW-05	MW-5 Q3-94	08/01/1994	Х	Х	Х
MW-05	MW-5 Q3(Sept)-94	09/01/1994	Х	Х	Х
MW-05	MW-5 Q4-94	10/01/1994		Х	
MW-05	MW-5 Q4(Nov)-94	11/01/1994	Х	Х	Х
MW-05	MW-5 Q4(Dec)-94	12/01/1994	Х	Х	Х
MW-05	MW-5 Q1-95	01/01/1995	Х	Х	Х
MW-05	MW-5 Q1(Feb)-95	02/01/1995	Х	Х	Х
MW-05	MW-5 Q4-95	10/30/1995	Х		
MW-05	MW-5 Q4(Dec)-95	12/20/1995	Х	Х	Х
MW-05	MW-5 Q1-96	02/01/1996	Х		
MW-05	MW-5 Q2-96	05/01/1996	Х	Х	Х
MW-05	MW-5 Q3-96	09/01/1996	Х	Х	Х
MW-05	MW-5 Q4-96	10/01/1996	Х	Х	Х
MW-05	MW-5 Q1-97	03/24/1997	Х	Х	
MW-05	MW-5 Q2-97	06/24/1997	Х	Х	Х
MW-05	MW-5 Q3-97	09/11/1997	Х	Х	Х
MW-05	MW-5 Q4-97	11/25/1997	Х	Х	Х
MW-05	MW-5 Q1-98	03/25/1998	Х	Х	Х
MW-05	MW-5 Q3-98	09/21/1998	Х	Х	Х
MW-05	MW-5 Q4-98	12/30/1998	Х	Х	Х
MW-05	MW-5 Q1-99	03/03/1999	Х	Х	Х
MW-05	MW-5 Q2-99	06/14/1999	Х	Х	Х
MW-05	MW-5 Q1-00	03/15/2000	Х		Х
MW-05	MW-5 Q3-00	09/27/2000	Х		Х
MW-05	MW-5 Q3-01	09/06/2001	Х		Х
MW-05	MW-5 Q4-01	12/14/2001	Х		Х
MW-05	MW-5 Q1-02	03/27/2002	Х		Х
MW-05	MW-5 Q2-04	06/17/2004			Х
MW-07	MW-7 Q3-98	07/01/1998			Х
MW-07	MW-7 Q1-01	01/31/2001			Х
MW-07	MW-7 Q3-10	07/15/2010			Х
MW-07	MW-7 Q4-10	11/03/2010			Х
MW-07	SLF-MW-07-GW-110510	11/05/2010	Х	Х	Х
MW-07	SLF-MW-07-GW-021011	02/10/2011	Х	Х	Х
MW-09	MW-9 Q1-93	03/30/1993			Х
MW-09	MW-9 Q2-93	04/13/1993			X

Upgradient Wells Continued MW-09 MW-9 Q2(Jun)-93 06/14/1993 X MW-09 MW-9 Q3-93 08/31/1993 X MW-09 MW-9 Q3(Sept)-93 09/01/1993 X MW-09 MW-9 Q1-98 02/01/1998 X MW-09 MW-9 Q2-98 07/01/1998 X MW-09 MW-9 Q2-98 07/15/2010 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 MW-9 Q4-10 11/04/2010 X MW-09 MW-9 Q4-10 11/04/2010 X MW-09 SLF-MW-09-GW-021011 02/10/2011 X MW-09 SLF-MW-09-GW-021011 02/10/2011 X MW-10 MW-10 Q1-98 02/01/1998 X MW-10 MW-10 Q3-98 07/01/	
MW-09 MW-9 Q2(Jun)-93 06/14/1993 X MW-09 MW-9 Q3-93 08/31/1993 X MW-09 MW-9 Q3(Sept)-93 09/01/1993 X MW-09 MW-9 Q1-98 X X MW-09 MW-9 Q2-98 02/01/1998 X MW-09 MW-9 Q2-98 07/01/1998 X MW-09 MW-9 Q1-02 01/31/2002 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q1-02<	
MW-09 MW-9 Q3-93 08/31/1993 X MW-09 MW-9 Q3(Sept)-93 09/01/1993 X MW-09 MW-9 Q1-98 02/01/1998 X MW-09 MW-9 Q2-98 07/01/1998 X MW-09 MW-9 Q3(Sept)-93 02/01/1998 X MW-09 MW-9 Q2-98 07/01/1998 X MW-09 MW-9 Q3-10 01/31/2002 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 SLF-MW-09-GW-021011 02/01/1998 X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X	
MW-09 MW-9 Q3(Sept)-93 09/01/1993 X MW-09 MW-9 Q1-98 02/01/1998 X MW-09 MW-9 Q2-98 07/01/1998 X MW-09 MW-9 Q1-02 01/31/2002 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X MW-10 MW-10 Q1-02 03/27/2002 X X	
MW-09 MW-9 Q1-98 02/01/1998 X MW-09 MW-9 Q2-98 07/01/1998 X MW-09 MW-9 Q1-02 01/31/2002 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X MW-10 MW-10 Q1-02 03/27/2002 X X	
MW-09 MW-9 Q2-98 07/01/1998 X MW-09 MW-9 Q1-02 01/31/2002 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X MW-10 MW-10 Q1-02 03/27/2002 X X	
MW-09 MW-9 Q1-02 01/31/2002 X MW-09 MW-9 Q3-10 07/15/2010 X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 SLF-MW-09-GW-021011 02/01/1998 X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X MW-10 MW-10 Q1-02 03/27/2002 X X	
MW-09 MW-9 Q3-10 07/15/2010 X MW-09 SLF-MW-09-GW-110410 11/04/2010 X X MW-09 MW-9 Q4-10 11/04/2010 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X MW-10 MW-10 Q1-02 03/27/2002 X X	
MW-09 SLF-MW-09-GW-110410 11/04/2010 X X X MW-09 MW-9 Q4-10 11/04/2010 X X X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X MW-10 MW-10 Q1-02 03/27/2002 X	
MW-09 MW-9 Q4-10 11/04/2010 X MW-09 SLF-MW-09-GW-021011 02/10/2011 X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X MW-10 MW-10 Q1-02 03/27/2002 X X	
MW-09 SLF-MW-09-GW-021011 02/10/2011 X X X MW-10 MW-10 Q1-98 02/01/1998 X X MW-10 MW-10 Q3-98 07/01/1998 X X MW-10 MW-10 Q1-02 03/27/2002 X	
MW-10 MW-10 Q1-98 02/01/1998 X MW-10 MW-10 Q3-98 07/01/1998 X MW-10 MW-10 Q1-02 03/27/2002 X	
MW-10 MW-10 Q3-98 07/01/1998 X MW-10 MW-10 Q1-02 03/27/2002 X	
MW-10 MW-10 Q1-02 03/27/2002 X	
MW-10 MW-10 Q3-10 07/15/2010 X	
MW-10 MW-10 Q4-10 11/04/2010 X	
MW-10 SLF-MW-10-GW-110410 11/04/2010 X X X X	
MW-10 SLF-MW-10-GW-021011 02/10/2011 X X X X	
MW-12 MW-12 Q1-95 03/01/1995 X X X X	
MW-12 MW-12 Q3-95 07/01/1995 X X X X	
MW-12 MW-12 Q3(Sept)-95 09/20/1995 X X X X	
MW-12 MW-12 Q4t-95 10/30/1995 X X X X	
MW-12 MW-12 Q4(Nov)-95 11/29/1995 X X	
MW-12 MW-12 Q4(Dec)-95 12/20/1995 X X X X	
MW-12 MW-12 Q1-96 02/01/1996 X X X X	
MW-12 MW-12 Q2-96 05/29/1996 X X X X	
MW-12 MW-12 Q2(Jun)-96 06/01/1996 X	
MW-12 MW-12 Q3-96 09/01/1996 X X X X	
MW-12 MW-12 Q4-96 10/01/1996 X X X X	
MW-12 MW-12 Q1-97 03/24/1997 X X X X	
MW-12 MW-12 Q2-97 06/24/1997 X X X X	
MW-12 MW-12 Q3-97 09/11/1997 X X	
MW-12 MW-12 Q4-97 11/25/1997 X X X X	
MW-12 MW-12 Q1-98 03/25/1998 X X X X	
MW-12 MW-12 Q2-98 06/29/1998 X X	
MW-12 MW-12 Q3-98 09/21/1998 X X X X	
MW-12 MW-12 Q4-98 12/30/1998 X X X X	
MW-12 MW-12 Q1-99 03/03/1999 X X X X	
MW-12 MW-12 Q2-99 06/14/1999 X X X X	
MW-12 MW-12 Q3-99 09/22/1999 X X X X	
MW-12 MW-12 Q4-99 12/09/1999 X X X X	
MW-12 MW-12 Q1-00 03/15/2000 X X X X	
MW-12 MW-12 Q2-00 06/21/2000 X X X X	
MW-12 MW-12 Q3-00 09/27/2000 X X X X	
MW-12 MW-12 Q4-00 12/05/2000 X X X X	
MW-12 MW-12 Q1-01 03/27/2001 X X X	
MW-12 MW-12 Q2-01 06/27/2001 X X X	
MW-12 MW-12 Q3-01 09/06/2001 X X X	
MW-12 MW-12 Q4-01 12/14/2001 X X X	
MW-12 MW-12 Q1-02 03/27/2002 X X X X	
MW-12 MW-12 Q2-02 06/13/2002 X X X X	
MW-12 MW-12 Q3-02 09/18/2002 X X X X	

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Upgradient Wells Con	tinued	· · ·			
MW-12	MW-12 Q4-02	12/17/2002	Х	Х	Х
MW-12	MW-12 Q1-03	03/26/2003	Х	Х	Х
MW-12	MW-12 Q2-03	06/26/2003	Х	Х	Х
MW-12	MW-12 Q3-03	09/25/2003	Х	Х	Х
MW-12	MW-12 Q4-03	12/18/2003	Х	Х	Х
MW-12	MW-12 Q1-04	03/17/2004	Х	Х	Х
MW-12	MW-12 Q2-04	06/17/2004	Х	Х	Х
MW-12	MW-12 Q3-04	09/30/2004	Х	Х	Х
MW-12	MW-12 Q4-04	12/15/2004	Х	Х	Х
MW-12	MW-12 Q1-05	03/31/2005	Х	Х	Х
MW-12	MW-12 Q2-05	06/23/2005	Х	Х	Х
MW-12	MW-12 Q3-05	09/29/2005	Х	Х	Х
MW-12	MW-12 Q1-06	03/30/2006	Х	Х	Х
MW-12	MW-12 Q2-06	06/21/2006	Х	Х	Х
MW-12	MW-12 Q3-06	09/21/2006	Х	Х	Х
MW-12	MW-12 Q3-07	09/26/2007	Х	Х	Х
MW-12b	MW-12b Q3-08	09/24/2008	X	X	X
MW-12b	MW-12b Q4-08	12/17/2008	X	X	X
MW-12b	MW-12b Q1-09	03/20/2009	X	X	X
MW-12b	MW-12b Q2-09	06/24/2009	X	X	X
MW-12b	MW-12b Q3-09	09/24/2009	X	X	X
MW-12b	MW-12b Q4-09	12/18/2009	X	X	X
MW-12b	MW-12b Q2-10	06/23/2010	X	X	X
MW-12b	MW-12b Q3-10	09/29/2010	X	X	X
MW-12b	MW-12b Q4-10	12/15/2010	X	X	X
MW-12b	MW-12b Q1-2011	03/24/2011	X	X	X
Downgradient Wells					
MW-01	MW-1 Q1-91	01/01/1991	Х	Х	
MW-01	MW-1 Q2-91	04/01/1991	Х	Х	
MW-01	MW-1 Q3-91	07/01/1991	X	X	
MW-01	MW-1 Q4-91	10/01/1991	X	X	
MW-01	MW-1 Q1-92	01/01/1992	X	X	
MW-01	MW-1 Q2-92	04/01/1992	X	X	
MW-01	MW-1 Q3-92	07/01/1992	X	X	
MW-01	MW-1 Q4-92	10/01/1992	X	X	
MW-01	MW-1 Q1-93	01/01/1993	X	X	
MW-01	MW-1 Q2-93	04/01/1993	X	X	
MW-01	MW-1 Q3-93	07/01/1993	X	X	
MW-01	MW-1 Q4-93	10/01/1993	X	X	
MW-01	MW-1 Q1-94	03/01/1994	X		
MW-01	MW-1 Q2-94	04/01/1994	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Х	
MW-01	MW-1 Q3-94	08/01/1994	X	X	X
MW-01	MW-1 Q3(Sept)-94	09/01/1994	X	X	X
MW-01	MW-1 04-94	10/01/1994	Λ	X	Λ
MW-01	MW-1 Q4(Nov)-94	11/01/1994	X	X	×
MW-01	MW-1 Q4(Dec)-94	12/01/1994	X	X	X
MW-01	MW-1 Q1-95	01/01/1005	X	X	X
MW/-01	MW-1 01(Feb)-95	02/01/1005	X	×	X
MW-01	MW-1 Q3-95	07/01/1005	X	X	X
MW-01	MW-1 01(Sen)-95	09/20/1005	X	× ×	X
M/\/_01	MW/-1 04-95	12/18/1005	×	×	~
	10100-1 04-30	12/10/1990	^	^	^

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells C	Continued	•			
MW-01	MW-1 Q1-96	02/01/1996	Х	Х	Х
MW-01	MW-1 Q2-96	05/01/1996	Х	Х	Х
MW-01	MW-1 Q3-96	09/01/1996	Х	Х	Х
MW-01	MW-1 Q4-96	10/01/1996	Х	Х	Х
MW-01	MW-1 Q1-97	03/24/1997	Х	Х	
MW-01	MW-1 Q2-97	06/24/1997	X	X	Х
MW-01	MW-1 Q3-97	09/11/1997	X	X	X
MW-01	MW-1 Q4-97	11/25/1997			Х
MW-01	MW-1 Q1-98	03/25/1998	Х	Х	Х
MW-01	MW-1 Q2-98	06/29/1998	Х	Х	Х
MW-01	MW-1 Q3-98	09/21/1998	Х	Х	Х
MW-01	MW-1 Q1-99	03/03/1999	X	X	X
MW-01	MW-1 Q2-99	06/14/1999	X	X	X
MW-01	MW-1 Q3-99	09/22/1999	X	X	X
MW-01	MW-1 Q4-99	12/09/1999	X	X	X
MW-01	MW-1 Q1-00	03/15/2000	X	X	X
MW-01	MW-1 Q2-00	06/21/2000	X	X	X
MW-01	MW-1 Q3-00	09/27/2000	X	X	X
MW-01	MW-1 Q4-00	12/05/2000	Х	Х	Х
MW-01	MW-1 Q1-01	03/27/2001	Х	Х	Х
MW-01	MW-1 Q2-01	06/27/2001	Х	Х	Х
Well #2	MW-13 Q4-02	12/17/2002			X
MW-03	MW-3 Q1-91	01/01/1991	Х	Х	
MW-03	MW-3 Q2-91	04/01/1991	X	X	
MW-03	MW-3 Q3-91	07/01/1991	X	X	
MW-03	MW-3 Q4-91	10/01/1991	X	X	
MW-03	MW-3 Q1-92	01/01/1992	X	X	
MW-03	MW-3 Q2-92	04/01/1992	X	X	
MW-03	MW-3 Q3-92	07/01/1992	Х	Х	
MW-03	MW-3 Q4-92	10/01/1992	X	X	
MW-03	MW-3 Q1-93	01/01/1993	Х	Х	
MW-03	MW-3 Q2-93	04/01/1993	Х	Х	
MW-03	MW-3 Q3-93	07/01/1993	Х	Х	
MW-03	MW-3 Q4-93	10/01/1993	Х	Х	
MW-03	MW-3 Q1-94	02/01/1994	Х		
MW-03	MW-3 Q1(Mar)-94	03/01/1994	Х		
MW-03	MW-3 Q2-94	04/01/1994		Х	
MW-03	MW-3 Q3-94	08/01/1994	Х	Х	Х
MW-03	MW-3 Q3(Sept)-94	09/01/1994	Х	Х	Х
MW-03	MW-3 Q4-94	10/01/1994		Х	
MW-03	MW-3 Q4(Nov)-94	11/01/1994	Х	Х	Х
MW-03	MW-3 Q4(Dec)-94	12/01/1994	Х	Х	Х
MW-03	MW-3 Q1-95	01/01/1995	Х	Х	Х
MW-03	MW-3 Q1(Feb)-95	02/01/1995	Х	Х	Х
MW-03	MW-3 Q3-95	07/01/1995	Х	Х	Х
MW-03	MW-3 Q3(Sept)-95	09/20/1995		Х	Х
MW-03	MW-3 Q4-95	12/18/1995	Х	Х	Х
MW-03	MW-3 Q1-96 Dup	02/01/1996		Х	Х
MW-03	MW-3 Q1-96	02/01/1996	Х	Х	Х
MW-03	MW-3 Q2-96	05/01/1996	Х	Х	Х
MW-03	MW-3 Q3-96	09/01/1996	X	Х	Х

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells (Continued	•			
MW-03	MW-3 Q4-96	10/01/1996	Х	Х	Х
MW-03	MW-3 Q1-97	03/24/1997	Х	Х	
MW-03	MW-3 Q2-97	06/24/1997	Х	Х	Х
MW-03	MW-3 Q3-97	09/11/1997	Х	Х	Х
MW-03	MW-3 Q4-97	11/25/1997	Х	Х	
MW-03	MW-3 Q1-98	03/25/1998	X	X	Х
MW-03	MW-3 Q2-98	06/29/1998	Х	Х	Х
MW-03	MW-3 Q3-98	09/21/1998	Х	Х	Х
MW-03	MW-3 Q4-98	12/30/1998	Х	Х	Х
MW-03	MW-3 Q1-99	03/03/1999	Х	Х	Х
MW-03	MW-3 Q2-99	06/14/1999	Х	Х	Х
MW-03	MW-3 Q3-99	09/22/1999	Х	Х	Х
MW-03	MW-3 Q4-99	12/09/1999	X	X	X
MW-03	MW-3 Q1-00	03/15/2000	X	X	X
MW-03	MW-3 Q2-00	06/21/2000	X	X	X
MW-03	MW-3 Q3-00	09/27/2000	X	X	X
MW-03	MW-3 Q4-00	12/05/2000	X	X	X
MW-03	MW-3 Q1-01	03/27/2001	X	X	X
MW-03	MW-3 Q2-01	06/27/2001	X	X	X
MW-11	MW-11 Q1-95	03/01/1995	X	X	X
MW-11	MW-11 Q1-95 Dup	03/01/1995	Х	Х	Х
MW-11	MW-11 Q3-95	07/01/1995	X	X	X
MW-11	MW-11 Q3-95 Dup	07/01/1995	X	X	X
MW-11	MW-11 Q3(Sept)-95	09/20/1995	X	X	X
MW-11	MW-11 Q3(Sept)-95 Dup	09/20/1995	X	X	X
MW-11	MW-11 Q4-95	10/30/1995	X	X	X
MW-11	MW-11 Q4-95 Dup	10/30/1995	X	X	X
MW-11	MW-11 Q4(Nov)-95	11/29/1995	X	X	
MW-11	MW-11 Q4(Nov)-95 Dup	11/29/1995	Х	Х	
MW-11	MW-11 Q4(Dec)-95	12/18/1995	Х	Х	Х
MW-11	MW-11 Q1-96	02/01/1996	Х	Х	Х
MW-11	MW-11 Q2-96	05/01/1996	Х	Х	Х
MW-11	MW-11 Q2-96 Dup	05/01/1996		Х	
MW-11	MW-11 Q2(Jun)-96	06/01/1996			Х
MW-11	MW-11 Q3-96	09/01/1996	Х	Х	Х
MW-11	MW-11 Q4-96	10/01/1996	Х	Х	Х
MW-11	MW-11 Q1-97	03/24/1997	Х	Х	Х
MW-11	MW-11 Q2-97	06/24/1997	Х	Х	Х
MW-11	MW-11 Q3-97	09/11/1997	Х	Х	
MW-11	MW-11 Q4-97	11/25/1997	Х	Х	Х
MW-11	MW-11 Q1-98	03/25/1998	Х	Х	Х
MW-11	MW-11 Q2-98	06/29/1998	Х	Х	Х
MW-11	MW-11 Q3-98	09/21/1998	Х	Х	Х
MW-11	MW-11 Q4-98	12/30/1998	Х	Х	Х
MW-11	MW-11 Q1-99	03/03/1999	Х	Х	Х
MW-11	MW-11 Q2-99	06/14/1999	Х	Х	Х
MW-11	MW-11 Q3-99	09/22/1999	Х	Х	Х
MW-11	MW-11 Q4-99	12/09/1999	Х	Х	Х
MW-11	MW-11 Q1-00	03/15/2000	Х	Х	Х
MW-11	MW-11 Q2-00	06/21/2000	Х	Х	Х
MW-11	MW-11 Q3-00	09/27/2000	Х	Х	Х

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells C	Continued				
MW-11	MW-11 Q4-00	12/05/2000	Х	Х	Х
MW-11	MW-11 Q1-01	03/27/2001	Х	Х	Х
MW-11	MW-11 Q2-01	06/27/2001	Х	Х	Х
MW-11	MW-11 Q3-01	09/06/2001	Х	Х	Х
MW-11	MW-11 Q4-01	12/14/2001	Х	Х	Х
MW-11	MW-11 Q1-02	03/27/2002	Х	Х	Х
MW-11	MW-11 Q2-02	06/13/2002	Х	Х	Х
MW-11	MW-11 Q3-02	09/18/2002	Х	Х	Х
MW-11	MW-11 Q4-02	12/17/2002	Х	Х	Х
MW-11	MW-11 Q1-03	03/26/2003	Х	Х	Х
MW-11	MW-11 Q2-03	06/26/2003	Х	Х	Х
MW-11	MW-11 Q3-03	09/25/2003	Х	Х	Х
MW-11	MW-11 Q4-03	12/18/2003	Х	Х	Х
MW-11	MW-11 Q1-04	03/17/2004	Х	Х	Х
MW-11	MW-11 Q2-04	06/17/2004	Х	Х	Х
MW-11	MW-11 Q3-04	09/30/2004	Х	Х	Х
MW-11	MW-11 Q4-04	12/15/2004	Х	Х	Х
MW-11	MW-11 Q1-05	03/31/2005	Х	Х	Х
MW-11	MW-11 Q2-05	06/23/2005	Х	Х	Х
MW-11	MW-11 Q3-05	09/29/2005	Х	Х	Х
MW-11	MW-11 Q4-05	12/14/2005	Х	Х	Х
MW-11	MW-11 Q1-06	03/30/2006	Х	Х	Х
MW-11	MW-11 Q2-06	06/21/2006	Х	Х	Х
MW-11	MW-11 Q3-06	09/21/2006	Х	Х	Х
MW-11	MW-11 Q4-06	12/28/2006	Х	Х	Х
MW-11	MW-11 Q1-07	03/22/2007	Х	Х	Х
MW-11	MW-11 Q2-07	06/28/2007	Х	Х	Х
MW-11	MW-11 Q3-07	09/26/2007	Х	Х	Х
MW-11	MW-11 Q4-07	12/27/2007	Х	Х	Х
MW-11	MW-11 Q1-08	03/27/2008	Х	Х	Х
MW-11	MW-11 Q2-08	06/25/2008	Х	Х	Х
MW-11	MW-11 Q3-08	09/24/2008	Х	Х	Х
MW-11	MW-11 Q4-08	12/17/2008	Х	Х	Х
MW-11	MW-11 Q1-09	03/20/2009	Х	Х	Х
MW-11	MW-11 Q2-09	06/24/2009	Х	Х	Х
MW-11	MW-11 Q3-09	09/24/2009	Х	Х	Х
MW-11	MW-11 Q4-09	12/18/2009	Х	Х	Х
MW-11	MW-11 Q1-10	03/30/2010	Х	Х	Х
MW-11	MW-11 Q2-10	06/23/2010	Х	Х	Х
MW-11	MW-11 Q3-10	09/29/2010	Х	Х	Х
MW-11	MW-11 Q4-10	12/15/2010	Х	Х	Х
MW-11	MW-11 Q1-2011	03/24/2011	Х	Х	Х
MW-11	MW-11 Q2-2011	6/21/2011	Х	Х	Х
MW-11	MW-11 Q3-2011	9/28/2011	Х	Х	Х
MW-11	MW-11 Q4-2011	12/14/2011	Х	Х	Х
MW-11	MW-11 Q1-2012	3/28/2012	Х	Х	Х
MW-14	MW-14 Q3-99	09/22/1999	Х	Х	Х
MW-14	MW-14 Q4-99	12/09/1999	Х	Х	Х
MW-14	MW-14 Q1-00	03/15/2000	Х	Х	Х
MW-14	MW-14 Q2-00	06/21/2000	Х	Х	Х
MW-14	MW-14 Q3-00	09/27/2000	Х	Х	Х

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells C	Continued				•
MW-14	MW-14 Q4-00	12/05/2000	Х	Х	Х
MW-14	MW-14 Q1-01	03/27/2001	Х	Х	Х
MW-14	MW-14 Q2-01	06/27/2001	Х	Х	Х
MW-14	MW-14 Q3-01	09/06/2001	Х	Х	Х
MW-14	MW-14 Q4-01	12/14/2001	Х	Х	Х
MW-14	MW-14 Q1-02	03/27/2002	Х	Х	Х
MW-14	MW-14 Q2-02	06/13/2002	Х	Х	Х
MW-14	MW-14 Q3-02	09/18/2002	Х	Х	Х
MW-14	MW-14 Q4-02	12/17/2002	Х	Х	Х
MW-14	MW-14 Q1-03	03/26/2003	Х	Х	Х
MW-14	MW-14 Q2-03	06/26/2003	Х	Х	Х
MW-14	MW-14 Q3-03	09/25/2003	Х	Х	Х
MW-14	MW-14 Q4-03	12/18/2003	Х	Х	Х
MW-14	MW-14 Q1-04	03/17/2004	Х	Х	Х
MW-14	MW-14 Q2-04	06/17/2004	Х	Х	Х
MW-14	MW-14 Q3-04	09/30/2004	Х	Х	Х
MW-14	MW-14 Q4-04	12/15/2004	Х	Х	Х
MW-14	MW-14 Q1-05	03/31/2005	Х	Х	Х
MW-14	MW-14 Q2-05	06/23/2005	Х	Х	Х
MW-14	MW-14 Q3-05	09/29/2005	Х	Х	Х
MW-14	MW-14 Q4-05	12/14/2005	Х	Х	Х
MW-14	MW-14 Q1-06	03/30/2006	Х	Х	Х
MW-14	MW-14 Q3-06	09/21/2006	Х	Х	Х
MW-14	MW-14 Q4-06	12/28/2006	Х	Х	Х
MW-14	MW-14 Q1-07	03/22/2007	Х	Х	Х
MW-14	MW-14 Q2-07	06/28/2007	Х	Х	Х
MW-14	MW-14 Q3-07	09/26/2007	Х	Х	Х
MW-14	MW-14 Q4-07	12/27/2007	Х	Х	Х
MW-14	MW-14 Q1-08	03/27/2008	Х	Х	Х
MW-14	MW-14 Q2-08	06/25/2008	Х	Х	Х
MW-14	MW-14 Q3-08	09/24/2008	Х	Х	Х
MW-14	MW-14 Q4-08	12/17/2008	Х	Х	Х
MW-14	MW-14 Q1-09	03/20/2009	Х	Х	Х
MW-14	MW-14 Q2-09	06/24/2009	Х	Х	Х
MW-14	MW-14 Q3-09	09/24/2009	Х	Х	Х
MW-14	MW-14 Q4-09	12/18/2009	Х	Х	Х
MW-14	MW-14 Q1-10	03/30/2010	Х	Х	Х
MW-14	MW-14 Q2-10	06/23/2010	Х	Х	Х
MW-14	MW-14 Q3-10	09/29/2010	Х	Х	Х
MW-14	MW-14 Q4-10	12/15/2010	Х	Х	Х
MW-14	MW-14 Q1-2011	03/24/2011	Х	Х	Х
MW-14	MW-14 Q2-2011	6/21/2011	Х	Х	Х
MW-14	MW-14 Q3-2011	9/28/2011	Х	Х	Х
MW-14	MW-14 Q4-2011	12/14/2011	Х	Х	Х
MW-14	MW-14 Q1-2012	3/28/2012	Х	Х	х
MW-15	MW-15 Q3-01	09/06/2001	X	X	X
MW-15	MW-15 Q4-01	12/14/2001	X	X	X
MW-15	MW-15 Q1-02	03/27/2002	X	X	X
MW-15	MW-15 Q2-02	06/13/2002	X	X	X
MW-15	MW-15 Q3-02	09/18/2002	X	X	X
MW-15	MW-15 Q4-02	12/17/2002	X	X	X
-	· ·· · · -				

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells C	Continued	•			
MW-15	MW-15 Q1-03	03/26/2003	Х	Х	Х
MW-15	MW-15 Q2-03	06/26/2003	Х	Х	Х
MW-15	MW-15 Q3-03	09/25/2003	Х	Х	Х
MW-15	MW-15 Q4-03	12/18/2003	X	X	X
MW-15	MW-15 Q1-04	03/17/2004	X	X	X
MW-15	MW-15 Q2-04	06/17/2004	X	X X	X
MW-15	MW-15 Q3-04	09/30/2004	X	X	X
MW-15	MW-15 Q4-04	12/15/2004	X	X	X
MW-15	MW-15 Q1-05	03/31/2005	X	X	X
MW-15	MW-15 Q2-05	06/23/2005	Х	Х	Х
MW-15	MW-15 Q3-05	09/29/2005	X	X	X
MW-15	MW-15 Q4-05	12/14/2005	X	X	X
MW-15	MW-15 Q1-06	03/30/2006	X	X	X
MW-15	MW-15 Q2-06	06/21/2006	X	X	X
MW-15	MW-15 Q3(Sept)-06	09/21/2006	X	X	X
MW-15	MW-15 Q4-06	12/28/2006	X	×	X
MW-15	MW-15 Q1-07	03/22/2007	X	×	X
MW-15	MW-15 Q2-07	06/28/2007	X	X	X
MW-15	MW-15 Q3-07	09/26/2007	X	X	X
MW-15	MW-15 Q4-07	12/27/2007	Х	Х	Х
MW-15	MW-15 Q1-08	03/27/2008	Х	Х	Х
MW-15	MW-15 Q2-08	06/25/2008	Х	Х	Х
MW-15	MW-15 Q3-08	09/24/2008	Х	Х	Х
MW-15	MW-15 Q4-08	12/17/2008	Х	Х	Х
MW-15	MW-15 Q1-09	03/20/2009	Х	Х	Х
MW-15	MW-15 Q2-09	06/24/2009	Х	Х	Х
MW-15	MW-15 Q3-09	09/24/2009	Х	Х	Х
MW-15	MW-15 Q4-09	12/18/2009	Х	Х	Х
MW-15	MW-15 Q1-10	03/30/2010	Х	Х	Х
MW-15	MW-15 Q2-10	06/23/2010	Х	Х	Х
MW-15	MW-15 Q3-10	09/29/2010	Х	Х	Х
MW-15	MW-15 Q4-10	12/15/2010	Х	Х	Х
MW-15	MW-15 Q1-2011	03/24/2011	Х	Х	Х
MW-15	MW-15 Q2-2011	6/21/2011	Х	Х	Х
MW-15	MW-15 Q3-2011	9/28/2011	Х	Х	Х
MW-15	MW-15 Q4-2011	12/14/2011	Х	Х	Х
MW-15	MW-15 Q1-2012	3/28/2012	Х	Х	Х
MW-16	MW-16 Q3-05	09/01/2005	Х	Х	Х
MW-16	MW-16 Q2-06	06/21/2006	Х	Х	Х
MW-16	MW-16 Q3(Sept)-06	09/21/2006	Х	Х	Х
MW-16	MW-16 Q1-2011	03/24/2011			Х
Residential Wells	·				
Camp Ranch	Camp Q1-05	03/31/2005			Х
Camp Ranch	Camp Q2-05	06/23/2005			X
Camp Ranch	Camp Q3-05	09/29/2005			Х
Camp Ranch	Camp Q3-06	09/21/2006			Х
Camp Ranch	Camp Q2-09	06/24/2009			X
Kinman Ranch	Kinman Q1-05	03/31/2005			X
Kinman Ranch	Kinman Q2-05	06/23/2005			X
Small Ranch	Small 061302	06/13/2002			Х
Small Ranch	Small 062602	06/26/2002			Х

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Residential Wells	s Continued				
Small Ranch	Small Q1-04	03/17/2004			Х
Small Ranch	Small Q3-04	09/30/2004			Х
Small Ranch	Small Q4-04	12/15/2004			Х
Small Ranch	Small Q1-05	03/31/2005			Х
Small Ranch	Small Q3-05	09/29/2005			Х
Small Ranch	Small Q3-06	09/21/2006			Х
Small Ranch	Small Q2-09	06/24/2009			Х
Small Ranch	Small Q3-10	09/29/2010			Х
Notes:					
X indicates that a	sample was collected and analyz	zed for the specified chemical	group.		
Blank indicates the	at a sample was not analyzed for	r the specified chemical group			

Page 10 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells												
MW-05	MW-5 Q1-91	03/01/1991	NA	0.05	NA	NA	56	700	9.87	NA	NA	NA	NA
MW-05	MW-5 Q2-91	06/01/1991	NA	0.05	NA	NA	39.6	640	10	NA	NA	NA	NA
MW-05	MW-5 Q3-91	09/01/1991	NA	0.025	NA	NA	65	750	10.25	NA	NA	NA	NA
MW-05	MW-5 Q4-91	12/01/1991	NA	NA	NA	NA	151	1080	1.3	NA	NA	NA	NA
MW-05	MW-5 Q1-92	03/01/1992	NA	0.05	NA	NA	80.8	710	10.9	NA	NA	NA	NA
MW-05	MW-5 Q2-92	06/01/1992	NA	0.05	NA	NA	74.7	700	9.7	NA	NA	NA	NA
MW-05	MW-5 Q3-92	09/01/1992	NA	0.05	NA	NA	50.1	600	11.5	NA	NA	NA	NA
MW-05	MW-5 Q4-92	12/01/1992	NA	0.05	NA	NA	49.4	610	11.4	NA	NA	NA	NA
MW-05	MW-5 Q1-93	03/30/1993	NA	0.1 U	NA	NA	55	735	53.8	NA	NA	NA	NA
MW-05	MW-5 Q2(Jun)-93	06/14/1993	NA	0.1 U	NA	NA	51.6	610	11.6	NA	NA	NA	NA
MW-05	MW-5 Q3-93	09/01/1993	NA	0.1 U	NA	NA	54.8	575	11.8	NA	NA	NA	NA
MW-05	MW-5 Q4- 93	12/01/1993	NA	0.1 U	NA	NA	61.2	582	11.7	NA	NA	NA	NA
MW-05	MW-5 Q1-94	03/01/1994	220	NA	NA	NA	NA	593	NA	7.1	NA	512	NA
MW-05	MW-5 Q3-94	08/01/1994	204.1	0.0025 U	NA	NA	58.5	570	14.2	6.9	32.8	431	5.5
MW-05	MW-5 Q3(Sept)-94	09/01/1994	195	0.0025 U	NA	NA	49.6	570	11.6	7	19.1	195	1.3
MW-05	MW-5 Q4(Nov)-94	11/01/1994	206	0.0025 U	257	NA	49.9	630	11.5	6.8	26.3	428	1.4
MW-05	MW-5 Q4(Dec)-94	12/01/1994	200	0.0025 U	261	NA	64.6	740	13	6.8	26.6	387	1.37
MW-05	MW-5 Q1-95	01/01/1995	204	0.0025 U	263	NA	56.8	810	14.4	6.8	22.2	468	0.8
MW-05	MW-5 Q1(Feb)-95	02/01/1995	116	0.0025 U	265	NA	61.1	770	14.5	6.7	21.6	456	0.865
MW-05	MW-5 Q4-95	10/30/1995	NA	NA	NA	NA	NA	840	14.5	NA	NA	NA	NA
MW-05	MW-5 Q4(Dec)-95	12/20/1995	210	0.0025 U	185	NA	166.5	961	16.2	NA	23.1	660	1.07
MW-05	MW-5 Q1-96	02/01/1996	NA	NA	NA	NA	NA	910	NA	7.1	NA	NA	NA
MW-05	MW-5 Q2-96	05/01/1996	NA	NA	NA	NA	NA	840	NA	7.2	NA	NA	NA
MW-05	MW-5 Q3-96	09/01/1996	219	0.05 U	219	NA	70	850	16	7.04	33	494	0.05 U
MW-05	MW-5 Q4-96	10/01/1996	212	0.05 U	212	NA	76	860	14	7.2	29	492	0.5 U

Page 11 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued												
MW-05	MW-5 Q1-97	03/24/1997	216	0.05 U	NA	NA	68	880	14	5.35	28	503	0.5 U
MW-05	MW-5 Q2-97	06/24/1997	210	0.05 U	210	NA	57	640	13	6.9	27	453	0.5 U
MW-05	MW-5 Q3-97	09/11/1997	210	NA	210	NA	56.3	712	12	7.23	24.6	424	NA
MW-05	MW-5 Q4-97	11/25/1997	212	0.05 U	NA	NA	55.6	612	13.7	7.81	NA	403	0.5 U
MW-05	MW-5 Q1-98	03/25/1998	207	0.05 U	207	NA	47.7	515	NA	7.12	25.8	408	0.5 U
MW-05	MW-5 Q3-98	09/21/1998	222	0.05 U	NA	NA	44.4	705	12.8	7.27	24.5	418	0.8
MW-05	MW-5 Q4-98	12/30/1998	212	0.05 U	212	NA	47	680	13.8	7.2	27.8	412	0.6
MW-05	MW-5 Q1-99	03/03/1999	207	0.05 U	207	NA	43.7	436	13.3	7.8	26	416	0.5 U
MW-05	MW-5 Q2-99	06/14/1999	215	0.05 U	215	NA	41.8	353	NA	7.31	24	449	0.6
MW-05	MW-5 Q1-00	03/15/2000	NA	NA	NA	NA	NA	729	NA	7.53	NA	NA	NA
MW-05	MW-5 Q3-00	09/27/2000	NA	NA	NA	NA	NA	640	NA	7.75	NA	NA	NA
MW-05	MW-5 Q3-01	09/06/2001	NA	NA	NA	NA	NA	560	NA	7.7	NA	NA	NA
MW-05	MW-5 Q4-01	12/14/2001	NA	NA	NA	NA	NA	120	NA	7.54	NA	NA	NA
MW-05	MW-5 Q1-02	03/27/2002	NA	NA	NA	NA	NA	490	NA	7.25	NA	NA	NA
MW-07	SLF-MW-07-GW-110510	11/05/2010	74	0.073	NA	20 U	NA	NA	1.6	NA	5 U	NA	NA
MW-07	SLF-MW-07-GW-021011	02/10/2011	74	0.05 U	NA	NA	NA	NA	1.4	NA	5 U	NA	NA
MW-09	SLF-MW-09-GW-110410	11/04/2010	330	0.1	NA	20 U	NA	NA	16	NA	28	NA	NA
MW-09	SLF-MW-09-GW-021011	02/10/2011	320	0.05 U	NA	NA	NA	NA	12	NA	27	NA	NA
MW-10	SLF-MW-10-GW-110410	11/04/2010	160	0.08	NA	20 U	NA	NA	6.6	NA	36	NA	NA
MW-10	SLF-MW-10-GW-021011	02/10/2011	150	0.05 U	NA	NA	NA	NA	6.8	NA	24	NA	NA
MW-12	MW-12 Q1-95	03/01/1995	321	0.0025 U	393.7	NA	182.8	1397	11.7	8.13	51.7	903	78.04
MW-12	MW-12 Q3-95	07/01/1995	346	0.0025 U	NA	NA	202.4	1400	10.6	6.2	53.6	849	2.21
MW-12	MW-12 Q3(Sept)-95	09/20/1995	320	0.0025 U	290	NA	193.1	157.5	10.8	6.5	57.9	815.3	NA
MW-12	MW-12 Q4t-95	10/30/1995	330	0.0025 U	310	NA	NA	162	10.6	7.78	5.8	762.9	NA
MW-12	MW-12 Q4(Nov)-95	11/29/1995	345	0.0025 U	310	NA	210.7	132	16.4	NA	39.6	782.3	24.5

Page 12 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued	•											
MW-12	MW-12 Q4(Dec)-95	12/20/1995	230	0.0025 U	200	NA	221.7	1142	17.7	NA	41	770	3.1
MW-12	MW-12 Q1-96	02/01/1996	NA	NA	NA	NA	NA	1400	NA	6.8	NA	NA	NA
MW-12	MW-12 Q2-96	05/29/1996	NA	NA	NA	NA	NA	1390	NA	6.26	NA	NA	NA
MW-12	MW-12 Q3-96	09/01/1996	338	0.05 U	338	NA	190	1420	12	6.68	41	764	0.6
MW-12	MW-12 Q4-96	10/01/1996	320	0.1	320	NA	220	1390	12	6.62	48	840	0.7
MW-12	MW-12 Q1-97	03/24/1997	342	0.05 U	342	NA	220	1270	12	7.13	45	818	0.9
MW-12	MW-12 Q2-97	06/24/1997	339	0.05 U	339	NA	180	1280	12	7.09	40	800	0.5
MW-12	MW-12 Q3-97	09/11/1997	328	0.05 U	328	NA	182	1308	10.4	7.23	43.7	738	0.5
MW-12	MW-12 Q4-97	11/25/1997	335	0.05 U	NA	NA	210	822	11.6	7.65	NA	752	0.8
MW-12	MW-12 Q1-98	03/25/1998	298	0.05 U	298	NA	194	690	NA	7.2	54.6	725	0.7
MW-12	MW-12 Q2-98	06/29/1998	325	0.05 U	325	NA	199	884	12.2	7.1	41.4	791	0.7
MW-12	MW-12 Q3-98	09/21/1998	321	0.05 U	NA	NA	196	633	11.5	7.55	45	808	0.8
MW-12	MW-12 Q4-98	12/30/1998	295	0.05 U	295	NA	230	696	12.2	7.51	44.9	764	0.6
MW-12	MW-12 Q1-99	03/03/1999	302	0.05 U	302	NA	205	546	12.2	7.46	43.6	799	0.7
MW-12	MW-12 Q2-99	06/14/1999	317	0.05 U	317	NA	194	769	NA	7.23	44.2	800	0.8
MW-12	MW-12 Q3-99	09/22/1999	313	0.05 U	313	NA	193	742	11.3	6.96	42	852	0.5
MW-12	MW-12 Q4-99	12/09/1999	329	0.05 U	329	NA	200	1361	11.8	7.53	43.2	714	0.8
MW-12	MW-12 Q1-00	03/15/2000	316	NA	316	NA	186	1352	10.9	7.6	40.8	NA	NA
MW-12	MW-12 Q2-00	06/21/2000	323	0.05 U	323	NA	206	1384	11.8	7.79	42.7	823	0.8
MW-12	MW-12 Q3-00	09/27/2000	308	0.05 U	308	NA	189	1147	NA	8	NA	747	0.5 U
MW-12	MW-12 Q4-00	12/05/2000	305	0.05 U	305	NA	199	1030	11.1	7.98	41.1	792	0.8
MW-12	MW-12 Q1-01	03/27/2001	314	0.05 U	314	NA	184	620	11	8.3	39.9	816	0.7
MW-12	MW-12 Q2-01	06/27/2001	318	0.05 U	318	NA	191	530	11.9	7.4	41.5	644	0.9
MW-12	MW-12 Q3-01	09/06/2001	314	0.05 U	314	NA	205	590	12.4	7.65	45	736	0.8
MW-12	MW-12 Q4-01	12/14/2001	320	0.05 U	320	NA	209	490	12.1	7.65	43	700	0.6

Page 13 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued												
MW-12	MW-12 Q1-02	03/27/2002	314	0.05 U	314	NA	184	849	12.1	7.4	44.5	976	0.7
MW-12	MW-12 Q2-02	06/13/2002	289	0.05 U	289	NA	194	877	12	7.39	46.8	868	0.6
MW-12	MW-12 Q3-02	09/18/2002	322	0.05 U	322	NA	182	859	11.9	7.35	42.6	632	1
MW-12	MW-12 Q4-02	12/17/2002	315	0.05 U	315	NA	184	877	13	7.32	42	776	1
MW-12	MW-12 Q1-03	03/26/2003	310	0.05 U	315	NA	173	877	12	7.32	45	772	1.1
MW-12	MW-12 Q2-03	06/26/2003	307	0.05 U	307	NA	174	853	10	7.2	45	804	1
MW-12	MW-12 Q3-03	09/25/2003	304	0.05 U	304	NA	161	863	10.9	7.14	46	760	0.5 U
MW-12	MW-12 Q4-03	12/18/2003	301	0.05 U	301	NA	190	791	10	7.28	51	865	1.1
MW-12	MW-12 Q1-04	03/17/2004	305	0.05 U	305	NA	199	684	10	7.37	45	890	1
MW-12	MW-12 Q2-04	06/17/2004	304	0.05 U	304	NA	186	737	9.4	7.37	44.9	820	1.1
MW-12	MW-12 Q3-04	09/30/2004	303	0.05 U	303	NA	190	737	9.6	6.84	43.6	856	0.9
MW-12	MW-12 Q4-04	12/15/2004	308	0.05 U	308	NA	240	700	9.8	7.13	44.6	880	1.1
MW-12	MW-12 Q1-05	03/31/2005	302	0.05 U	302	2 U	185	NA	11.4	NA	54	750	0.9
MW-12	MW-12 Q2-05	06/23/2005	300	0.05 U	300	NA	183	NA	11.5	NA	47	780	1
MW-12	MW-12 Q3-05	09/29/2005	291	0.05 U	291	2 U	176	NA	11.2	NA	48	785	1.5
MW-12	MW-12 Q1-06	03/30/2006	300	0.05 U	300	NA	174	769	12.1	7.22	45.5	755	1
MW-12	MW-12 Q2-06	06/21/2006	477	0.05 U	477	NA	100	751	19.8	7.18	31.6	788	1.2
MW-12	MW-12 Q3-06	09/21/2006	397	0.05 U	397	NA	126	NA	20.2	NA	37.5	735	1.4
MW-12	MW-12 Q3-07	09/26/2007	292	NA	292	NA	59	NA	NA	NA	17.8	NA	NA
MW-12b	MW-12b Q3-08	09/24/2008	295	0.05 U	295	NA	165	818	11.7	7.12	33.9	713	1
MW-12b	MW-12b Q4-08	12/17/2008	296	0.05 U	NA	NA	170	831	NA	7.2	35.6	NA	0.9
MW-12b	MW-12b Q1-09	03/20/2009	293	0.05 U	295	NA	173	825	12.5	7.15	37	737	0.5 U
MW-12b	MW-12b Q2-09	06/24/2009	304	0.05 U	295	NA	157	724	13	7.37	40	691	0.8
MW-12b	MW-12b Q3-09	09/24/2009	295	0.05 U	295	NA	168	748	12.4	7.38	39	700	0.84
MW-12b	MW-12b Q4-09	12/18/2009	287	0.05 U	NA	NA	164	758	12.9	7.38	41.2	669	0.76

Page 14 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued	•											
MW-12b	MW-12b Q2-10	06/23/2010	292	0.05 U	295	NA	126	854	12.8	6.7	42.3	696	0.71
MW-12b	MW-12b Q3-10	09/29/2010	299	0.05 U	NA	NA	161	NA	12.6	NA	41.7	1360	1.2
MW-12b	MW-12b Q4-10	12/15/2010	299	0.05 U	NA	NA	161	847	11.5	6.77	39.6	709	0.83
MW-12b	MW-12b Q1-2011	03/24/2011	284	0.05 U	NA	NA	158	NA	11.7	NA	39.3	556	0.69
MW-12b	MW-12b Q2-2011	6/21/2011	273	0.05 U	NA	NA	144	868	11.6	6.65	38.3	767	0.92
MW-12b	MW-12b Q3-2011	9/28/2011	277	0.05 U	NA	NA	151	859	9.9	6.54	35.9	687	0.62
MW-12b	MW-12b Q4-2011	12/14/2011	277	0.05 U	NA	NA	142	842	9.5	6.65	34.8	620	0.71
MW-12b	MW-12b Q1-2012	3/28/2012	279	0.05 U	NA	NA	143	847	10.4	6.85	39.2	681	0.82
Downgra	dient Wells												
MW-01	MW-1 Q1-91	01/01/1991	NA	0.05	NA	NA	111	750	0.0069	NA	NA	NA	NA
MW-01	MW-1 Q2-91	04/01/1991	NA	0.05	NA	NA	100	740	0.0091	NA	NA	NA	NA
MW-01	MW-1 Q3-91	07/01/1991	NA	0.05	NA	NA	99	750	0.0088	NA	NA	NA	NA
MW-01	MW-1 Q4-91	10/01/1991	NA	0.05	NA	NA	107	780	0.0013	NA	NA	NA	NA
MW-01	MW-1 Q1-92	01/01/1992	NA	0.05	NA	NA	105.7	740	0.0083	NA	NA	NA	NA
MW-01	MW-1 Q2-92	04/01/1992	NA	0.05	NA	NA	109.2	725	0.0097	NA	NA	NA	NA
MW-01	MW-1 Q3-92	07/01/1992	NA	0.05	NA	NA	110.7	740	0.0084	NA	NA	NA	NA
MW-01	MW-1 Q4-92	10/01/1992	NA	0.05	NA	NA	110.1	700	0.0084	NA	NA	NA	NA
MW-01	MW-1 Q1-93	01/01/1993	NA	0.1 U	NA	NA	112.3	900	0.0379	NA	NA	NA	NA
MW-01	MW-1 Q2-93	04/01/1993	NA	0.1 U	NA	NA	112.9	750	0.0086	NA	NA	NA	NA
MW-01	MW-1 Q3-93	07/01/1993	NA	0.1 U	NA	NA	102.6	465	0.0079	NA	NA	NA	NA
MW-01	MW-1 Q4-93	10/01/1993	NA	0.1 U	NA	NA	102.4	725	0.0084	NA	NA	NA	NA
MW-01	MW-1 Q1-94	03/01/1994	160	NA	NA	NA	NA	694	NA	6.2	NA	601	NA
MW-01	MW-1 Q3-94	08/01/1994	162.5	0.0025 U	NA	NA	118.8	796	8.6	NA	41.1	545	32.3
MW-01	MW-1 Q3(Sept)-94	09/01/1994	165	0.0025 U	NA	NA	117.5	670	8.4	7	37.7	535	33.1
MW-01	MW-1 Q4(Nov)-94	11/01/1994	174	0.0025 U	NA	NA	116.9	840	8.4	7	49.2	525	39.4

Page 15 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-01	MW-1 Q4(Dec)-94	12/01/1994	210	0.0025 U	NA	NA	119.4	800	9	6.6	50	543	0.9
MW-01	MW-1 Q1-95	01/01/1995	172.2	0.0025 U	NA	NA	103.7	880	9.3	6.4	40.8	508	1.3
MW-01	MW-1 Q1(Feb)-95	02/01/1995	156	0.0025 U	NA	NA	99.4	870	9.1	7.2	38.7	527	0.655
MW-01	MW-1 Q3-95	07/01/1995	165	0.0025 U	NA	NA	119.4	840	9	6.3	54.7	397	0.73
MW-01	MW-1 Q1(Sep)-95	09/20/1995	170	0.0025 U	NA	NA	120.7	830	9.9	6.2	53.7	586.8	NA
MW-01	MW-1 Q4-95	12/18/1995	180	0.0025 U	NA	NA	139.7	820	13.9	NA	46.5	608	3.34
MW-01	MW-1 Q1-96	02/01/1996	NA	NA	NA	NA	NA	750	NA	6.8	NA	NA	NA
MW-01	MW-1 Q2-96	05/01/1996	NA	NA	NA	NA	NA	740	NA	7.2	NA	NA	NA
MW-01	MW-1 Q3-96	09/01/1996	175	0.05 U	NA	NA	110	940	9.2	6.43	47	525	0.5 U
MW-01	MW-1 Q4-96	10/01/1996	171	0.05 U	NA	NA	130	960	9	7.2	49	582	0.5 U
MW-01	MW-1 Q1-97	03/24/1997	172	0.05 U	NA	NA	120	710	9.2	7.15	49	531	0.5 U
MW-01	MW-1 Q2-97	06/24/1997	166	0.05 U	NA	NA	110	720	9	6.62	110	560	0.5 U
MW-01	MW-1 Q3-97	09/11/1997	160	0.05 U	NA	NA	103	822	7.6	6.93	40.2	486	0.5 U
MW-01	MW-1 Q1-98	03/25/1998	150	0.05 U	NA	NA	103	548	NA	7.12	79	464	0.5 U
MW-01	MW-1 Q2-98	06/29/1998	165	0.05 U	NA	NA	119	642	9.1	7.3	45.5	523	0.5 U
MW-01	MW-1 Q3-98	09/21/1998	174	0.05 U	NA	NA	113	475	9.1	7.55	42.2	574	0.5 U
MW-01	MW-1 Q1-99	03/03/1999	161	0.05 U	NA	NA	104	384	8.5	7.34	39.3	475	0.5 U
MW-01	MW-1 Q2-99	06/14/1999	162	0.05 U	NA	NA	104	440	NA	7.29	39.4	1080	0.5 U
MW-01	MW-1 Q3-99	09/22/1999	156	0.05 U	NA	NA	95.1	409	8	7.01	36.6	468	0.5 U
MW-01	MW-1 Q4-99	12/09/1999	156	0.05 U	NA	NA	101	790	8.5	7.54	38.2	463	0.5 U
MW-01	MW-1 Q1-00	03/15/2000	150	NA	NA	NA	88.8	733	7.8	7.65	34.5	NA	NA
MW-01	MW-1 Q2-00	06/21/2000	152	0.05 U	NA	NA	97.6	746	8.3	7.85	35.7	476	0.5 U
MW-01	MW-1 Q3-00	09/27/2000	150	0.05 U	NA	NA	93.4	598	NA	8.03	NA	408	0.5 U
MW-01	MW-1 Q4-00	12/05/2000	154	0.05 U	NA	NA	93.6	567	8.3	8.07	38.4	472	0.5 U
MW-01	MW-1 Q1-01	03/27/2001	151	0.05 U	NA	NA	95.7	300	8	7.9	33.1	416	0.5 U

Page 16 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-01	MW-1 Q2-01	06/27/2001	156	0.05 U	NA	NA	90.1	320	9	7.51	34.9	438	0.7
MW-03	MW-3 Q1-91	01/01/1991	NA	0.05	NA	NA	74	525	7	NA	NA	NA	NA
MW-03	MW-3 Q2-91	04/01/1991	NA	0.05	NA	NA	107	750	9.14	NA	NA	NA	NA
MW-03	MW-3 Q3-91	07/01/1991	NA	0.05	NA	NA	100	750	8.46	NA	NA	NA	NA
MW-03	MW-3 Q4-91	10/01/1991	NA	0.05	NA	NA	77	600	1.3	NA	NA	NA	NA
MW-03	MW-3 Q1-92	01/01/1992	NA	0.05	NA	NA	96.2	660	8.1	NA	NA	NA	NA
MW-03	MW-3 Q2-92	04/01/1992	NA	0.05	NA	NA	104.6	660	9.4	NA	NA	NA	NA
MW-03	MW-3 Q3-92	07/01/1992	NA	0.05	NA	NA	105.3	625	8.2	NA	NA	NA	NA
MW-03	MW-3 Q4-92	10/01/1992	NA	0.05	NA	NA	111.9	680	0.97	NA	NA	NA	NA
MW-03	MW-3 Q1-93	01/01/1993	NA	0.1 U	NA	NA	126.4	934	41.2	NA	NA	NA	NA
MW-03	MW-3 Q2-93	04/01/1993	NA	0.1 U	NA	NA	113.1	740	8.7	NA	NA	NA	NA
MW-03	MW-3 Q3-93	07/01/1993	NA	0.1 U	NA	NA	115.7	770	8.8	NA	NA	NA	NA
MW-03	MW-3 Q4-93	10/01/1993	NA	0.1 U	NA	NA	123.3	790	9.2	NA	NA	NA	NA
MW-03	MW-3 Q1-94	02/01/1994	NA	NA	NA	NA	6.9	NA	NA	NA	NA	NA	NA
MW-03	MW-3 Q1(Mar)-94	03/01/1994	190	NA	NA	NA	7.5	730	NA	7	NA	703	NA
MW-03	MW-3 Q3-94	08/01/1994	177.4	0.0025 U	NA	NA	127.5	918	9.1	NA	37.2	619	34.9
MW-03	MW-3 Q3(Sept)-94	09/01/1994	165	0.0025 U	NA	NA	131.2	710	8.9	7.2	33.6	608	32.2
MW-03	MW-3 Q4(Nov)-94	11/01/1994	170	0.0025 U	NA	NA	130.1	880	8.7	7	43.9	531	38.4
MW-03	MW-3 Q4(Dec)-94	12/01/1994	150	0.0025 U	NA	NA	129.6	850	9.4	7.1	44.1	539	1
MW-03	MW-3 Q1-95	01/01/1995	162.4	0.0025 U	NA	NA	111.3	830	9.5	6.7	35.1	489	0.7
MW-03	MW-3 Q1(Feb)-95	02/01/1995	144	0.0025 U	NA	NA	112.5	850	9.7	NA	35.4	546	0.624
MW-03	MW-3 Q3-95	07/01/1995	200	0.0025 U	NA	NA	153.6	950	10.4	6.3	54	626	1.11
MW-03	MW-3 Q4-95	12/18/1995	190	0.0025 U	NA	NA	154.2	853	14.9	NA	40.6	590	0.82
MW-03	MW-3 Q1-96	02/01/1996	NA	NA	NA	NA	NA	1320	NA	7.1	NA	NA	NA
MW-03	MW-3 Q2-96	05/01/1996	NA	NA	NA	NA	NA	780	NA	7.5	NA	NA	NA

Page 17 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-03	MW-3 Q3-96	09/01/1996	183	0.05 U	NA	NA	140	1040	10.2	NA	44	583	0.5 U
MW-03	MW-3 Q4-96	10/01/1996	179	0.1 U	NA	NA	160	1070	10	7.4	47	674	0.5 U
MW-03	MW-3 Q1-97	03/24/1997	185	0.05 U	NA	NA	150	834	11	7.08	49	586	0.5
MW-03	MW-3 Q2-97	06/24/1997	196	0.05 U	NA	NA	160	930	10	7.03	44	632	0.5 U
MW-03	MW-3 Q3-97	09/11/1997	153	0.05 U	NA	NA	124	830	8.4	7.99	39.2	528	0.5 U
MW-03	MW-3 Q4-97	11/25/1997	146	0.05 U	NA	NA	117	444	9.5	7.95	NA	416	0.5 U
MW-03	MW-3 Q1-98	03/25/1998	163	0.05 U	NA	NA	139	880	NA	7.72	39.4	480	0.5 U
MW-03	MW-3 Q2-98	06/29/1998	189	0.05 U	NA	NA	154	751	10.7	7.43	45.1	614	0.5 U
MW-03	MW-3 Q3-98	09/21/1998	195	0.05 U	NA	NA	156	539	10.7	7.49	41.8	656	0.7
MW-03	MW-3 Q4-98	12/30/1998	142	0.05 U	NA	NA	85.4	486	7.3	8.4	31	372	0.9
MW-03	MW-3 Q1-99	03/03/1999	138	0.05 U	NA	NA	86	285	7.1	8.7	28.9	365	0.5 U
MW-03	MW-3 Q2-99	06/14/1999	206	0.05 U	NA	NA	152	620	NA	7.46	41.2	696	0.5
MW-03	MW-3 Q3-99	09/22/1999	214	0.05 U	NA	NA	98.2	574	10.6	7.4	43.3	680	0.5 U
MW-03	MW-3 Q4-99	12/09/1999	225	0.05 U	NA	NA	154	928	10.3	8.28	41.9	593	0.5
MW-03	MW-3 Q1-00	03/15/2000	198	NA	NA	NA	154	986	10	7.72	39.9	NA	NA
MW-03	MW-3 Q2-00	06/21/2000	210	0.05 U	NA	NA	169	1048	10.7	7.73	42.9	600	0.5 U
MW-03	MW-3 Q3-00	09/27/2000	177	0.05 U	NA	NA	150	844	NA	8.04	NA	561	0.5 U
MW-03	MW-3 Q4-00	12/05/2000	196	0.05 U	NA	NA	138	708	9.8	7.9	40.2	612	0.5 U
MW-03	MW-3 Q1-01	03/27/2001	158	0.05 U	NA	NA	125	410	9.5	7.6	36.4	616	0.5 U
MW-03	MW-3 Q2-01	06/27/2001	206	0.05 U	NA	NA	155	410	10.9	7.5	39.1	620	0.6
MW-11	MW-11 Q1-95	03/01/1995	318	0.0025 U	401.1	NA	169.7	1262	13.3	7.44	50.9	845	75.97
MW-11	MW-11 Q1-95 Dup	03/01/1995	NA	NA	400.5	NA	NA	NA	NA	NA	NA	NA	NA
MW-11	MW-11 Q3-95	07/01/1995	335	0.0025 U	NA	NA	181.3	1320	11.4	6.2	54.7	814	1.6
MW-11	MW-11 Q3-95 Dup	07/01/1995	336	0.0025 U	NA	NA	179	1320	11.4	6.2	55	823	2.67
MW-11	MW-11 Q3(Sept)-95	09/20/1995	323	0.0025 U	280	NA	177.7	1320	12.9	6.3	54	816.7	NA

Page 18 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-11	MW-11 Q3(Sept)-95 Dup	09/20/1995	325	0.0025 U	280	NA	177.7	1320	12.8	6.3	54.3	793	NA
MW-11	MW-11 Q4-95	10/30/1995	360	0.0025 U	340	NA	NA	150	11.6	7.37	49.3	754.3	NA
MW-11	MW-11 Q4-95 Dup	10/30/1995	360	0.0025 U	340	NA	177.7	150	11.2	7.36	49.2	768	NA
MW-11	MW-11 Q4(Nov)-95	11/29/1995	310	0.0025 U	270	NA	174.5	124	15.5	NA	41.4	766.2	3.7
MW-11	MW-11 Q4(Nov)-95 Dup	11/29/1995	330	0.0025 U	310	NA	186.4	123	16.5	NA	43.6	750.7	4.85
MW-11	MW-11 Q4(Dec)-95	12/18/1995	320	0.0025 U	280	NA	194.2	1172	17.6	NA	44.4	812	8.25
MW-11	MW-11 Q1-96	02/01/1996	NA	NA	NA	NA	NA	1290	NA	6.5	NA	NA	NA
MW-11	MW-11 Q2-96	05/01/1996	NA	NA	NA	NA	NA	840	NA	6.29	NA	NA	NA
MW-11	MW-11 Q3-96	09/01/1996	319	0.05 U	319	NA	170	1140	14	6.43	46	750	0.06
MW-11	MW-11 Q4-96	10/01/1996	308	0.05 U	398	NA	200	1145	12	6.5	48	860	0.5 U
MW-11	MW-11 Q1-97	03/24/1997	326	0.05 U	326	NA	200	1400	12	6.32	48	754	0.8
MW-11	MW-11 Q2-97	06/24/1997	321	0.05	321	NA	180	1200	11	6.52	43	786	0.5
MW-11	MW-11 Q3-97	09/11/1997	310	0.05 U	310	NA	182	1288	10.3	7.39	42.4	720	0.5 U
MW-11	MW-11 Q4-97	11/25/1997	327	0.05 U	NA	NA	192	1185	11.2	7.33	NA	788	0.5 U
MW-11	MW-11 Q1-98	03/25/1998	312	0.05 U	312	NA	182	810	NA	6.94	44.3	741	0.6
MW-11	MW-11 Q2-98	06/29/1998	324	0.05 U	324	NA	188	894	12	7.18	44.9	784	0.7
MW-11	MW-11 Q3-98	09/21/1998	336	0.05 U	NA	NA	183	1553	11.5	7.27	48.7	806	0.8
MW-11	MW-11 Q4-98	12/30/1998	318	0.05 U	318	NA	197	592	12.4	7.49	49.8	744	0.6
MW-11	MW-11 Q1-99	03/03/1999	312	0.05 U	312	NA	184	664	12.2	7.3	47.2	769	0.7
MW-11	MW-11 Q2-99	06/14/1999	316	0.05 U	316	NA	177	823	NA	7.2	47	773	0.8
MW-11	MW-11 Q3-99	09/22/1999	320	0.05 U	320	NA	168	603	11.4	7.1	41	804	0.6
MW-11	MW-11 Q4-99	12/09/1999	326	0.05 U	326	NA	190	603	12	7.4	46	745	0.8
MW-11	MW-11 Q1-00	03/15/2000	320	NA	320	NA	181	1392	11.1	7.57	43.4	NA	NA
MW-11	MW-11 Q2-00	06/21/2000	320	0.05 U	320	NA	190	1319	11.8	7.5	48	775	0.7
MW-11	MW-11 Q3-00	09/27/2000	307	0.05 U	307	NA	183	1317	NA	7.71	NA	726	0.6

Page 19 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued	•											
MW-11	MW-11 Q4-00	12/05/2000	312	0.05 U	312	NA	182	1005	11.5	7.73	46.1	824	0.7
MW-11	MW-11 Q1-01	03/27/2001	314	0.05 U	314	NA	170	560	11.3	7.1	43.5	688	0.7
MW-11	MW-11 Q2-01	06/27/2001	310	0.05 U	310	NA	170	580	12.1	7.18	42.5	732	2.1
MW-11	MW-11 Q3-01	09/06/2001	314	0.05 U	314	NA	175	575	12.5	7.14	46.6	688	0.9
MW-11	MW-11 Q4-01	12/14/2001	322	0.05 U	322	NA	180	730	12.8	7.38	44.9	816	0.6
MW-11	MW-11 Q1-02	03/27/2002	312	0.05 U	312	NA	191	822	13	7.21	42.3	836	0.7
MW-11	MW-11 Q2-02	06/13/2002	291	0.05 U	291	NA	184	894	13.3	7.16	44.6	796	0.8
MW-11	MW-11 Q3-02	09/18/2002	320	0.05 U	320	NA	172	883	13.2	7.14	40.8	788	0.7
MW-11	MW-11 Q4-02	12/17/2002	320	0.05 U	320	NA	177	879	13	7.09	39	940	0.9
MW-11	MW-11 Q1-03	03/26/2003	313	0.05 U	320	NA	174	879	13	7.09	39	916	0.9
MW-11	MW-11 Q2-03	06/26/2003	316	0.05 U	316	NA	175	864	11	7.14	41	808	1
MW-11	MW-11 Q3-03	09/25/2003	310	0.05 U	310	NA	151	855	12.3	6.94	41	700	0.5 U
MW-11	MW-11 Q4-03	12/18/2003	304	0.05 U	304	NA	177	776	11	7.14	42	820	0.9
MW-11	MW-11 Q1-04	03/17/2004	307	0.05 U	307	NA	198	665	10	7.73	38	750	1.6
MW-11	MW-11 Q2-04	06/17/2004	311	0.05 U	311	NA	170	714	10.7	7.02	36.9	792	1
MW-11	MW-11 Q3-04	09/30/2004	310	0.05 U	310	NA	177	683	10.6	7.04	36.1	848	0.7
MW-11	MW-11 Q4-04	12/15/2004	304	0.05 U	304	NA	147	659	10.3	7.01	36.6	880	1
MW-11	MW-11 Q1-05	03/31/2005	302	0.05 U	302	2 U	151	NA	12.5	NA	44	700	0.6
MW-11	MW-11 Q2-05	06/23/2005	302	0.05 U	302	NA	150	NA	12.1	NA	39.2	705	0.8
MW-11	MW-11 Q3-05	09/29/2005	302	0.05 U	302	2 U	140	NA	11.9	NA	39.7	740	0.7
MW-11	MW-11 Q4-05	12/14/2005	296	0.05 U	296	NA	142	686	12.4	7.15	36	665	1.1
MW-11	MW-11 Q1-06	03/30/2006	318	0.05 U	318	NA	131	699	11.7	7.14	37.6	730	0.9
MW-11	MW-11 Q2-06	06/21/2006	301	0.05 U	301	NA	128	718	11.2	7	37.6	663	0.6
MW-11	MW-11 Q3-06	09/21/2006	296	0.05 U	296	NA	132	NA	11.3	NA	37.1	656	0.9
MW-11	MW-11 Q4-06	12/28/2006	294	0.05 U	294	NA	151	736	10.9	7.36	35.3	671	0.8

Page 20 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-11	MW-11 Q1-07	03/22/2007	310	0.05 U	310	NA	136	730	11.5	7.07	36.8	643	1
MW-11	MW-11 Q2-07	06/28/2007	294	0.05 U	294	NA	132	728	11.2	7.45	36.8	631	0.7
MW-11	MW-11 Q3-07	09/26/2007	286	0.05 U	286	NA	127	732	10.8	6.91	35.2	575	0.6
MW-11	MW-11 Q4-07	12/27/2007	287	0.05 U	287	NA	126	730	10.9	6.89	34.9	623	0.9
MW-11	MW-11 Q1-08	03/27/2008	288	0.05 U	288	NA	126	745	11.1	6.94	35.5	635	0.7
MW-11	MW-11 Q2-08	06/25/2008	282	0.05 U	282	NA	128	748	10.8	6.99	36.5	703	0.8
MW-11	MW-11 Q3-08	09/24/2008	284	0.05 U	284	NA	124	726	10.3	7.09	33.3	539	0.9
MW-11	MW-11 Q4-08	12/17/2008	286	0.05 U	NA	NA	99	735	NA	7.03	31	NA	0.8
MW-11	MW-11 Q1-09	03/20/2009	282	0.05 U	288	NA	117	717	10.9	7.14	33.7	608	0.6
MW-11	MW-11 Q2-09	06/24/2009	296	0.05 U	282	NA	113	639	10.8	7.26	34	593	0.8
MW-11	MW-11 Q3-09	09/24/2009	281	0.05 U	284	NA	110	649	10.7	7.1	33	599	0.79
MW-11	MW-11 Q4-09	12/18/2009	278	0.05 U	NA	NA	107	654	10.9	7.15	33.8	579	0.59
MW-11	MW-11 Q1-10	03/30/2010	288	0.05	NA	NA	102	NA	9.9	NA	32	557	0.51
MW-11	MW-11 Q2-10	06/23/2010	289	0.05 U	282	NA	80.3	719	10.6	6.67	34.2	573	0.88
MW-11	MW-11 Q3-10	09/29/2010	290	0.05 U	NA	NA	102	NA	10.4	NA	33.8	139	1.22
MW-11	MW-11 Q4-10	12/15/2010	288	0.05 U	NA	NA	101	716	9.51	6.71	31.8	515	0.83
MW-11	MW-11 Q1-2011	03/24/2011	286	0.05 U	NA	NA	101	NA	9.8	NA	33.9	540	0.5 U
MW-11	MW-11 Q2-2011	6/21/2011	281	0.05 U	NA	NA	96.2	752	9.74	6.46	32.9	615	0.79
MW-11	MW-11 Q3-2011	9/28/2011	270	0.05 U	NA	NA	97.2	745	8.3	6.45	30.7	563	0.51
MW-11	MW-11 Q4-2011	12/14/2011	266	0.05 U	NA	NA	89.6	725	9.01	6.52	28.7	641	0.69
MW-11	MW-11 Q1-2012	3/28/2012	275	0.05 U	NA	NA	87.8	718	8.52	6.68	31.0	568	0.85
MW-14	MW-14 Q3-99	09/22/1999	150	0.05 U	150	NA	109	280	7.5	7.36	44.1	538	0.5 U
MW-14	MW-14 Q4-99	12/09/1999	168	0.05 U	168	NA	110	584	8.1	8.12	45.5	485	0.5
MW-14	MW-14 Q1-00	03/15/2000	119	NA	119	NA	79.9	571	6.8	8.16	32.7	NA	NA
MW-14	MW-14 Q2-00	06/21/2000	117	0.05 U	117	NA	79.6	581	7	8.25	33.4	414	0.5 U

Page 21 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued	•											
MW-14	MW-14 Q3-00	09/27/2000	111	0.05 U	111	NA	69.2	533	NA	8.58	NA	353	0.5 U
MW-14	MW-14 Q4-00	12/05/2000	108	0.05 U	108	NA	92.4	497	6.8	8.48	29.5	394	0.5 U
MW-14	MW-14 Q1-01	03/27/2001	112	0.05 U	112	NA	43.3	350	5.9	8.8	15.4	278	0.5 U
MW-14	MW-14 Q2-01	06/27/2001	112	0.05 U	112	NA	42.8	405	6.1	8.01	18.1	278	0.5 U
MW-14	MW-14 Q3-01	09/06/2001	118	0.05 U	118	NA	85.3	375	8	7.81	34.7	350	0.5 U
MW-14	MW-14 Q4-01	12/14/2001	134	0.05 U	134	NA	92	340	7.8	8.36	38.6	420	0.5 U
MW-14	MW-14 Q1-02	03/27/2002	124	0.05 U	124	NA	65.2	388	7.2	8.04	25	302	0.5 U
MW-14	MW-14 Q2-02	06/13/2002	103	0.05 U	106	NA	71.7	422	7.7	8.02	30.6	420	0.1 U
MW-14	MW-14 Q3-02	09/18/2002	129	0.05 U	129	NA	62.8	352	7.6	8.08	24.8	358	0.5 U
MW-14	MW-14 Q4-02	12/17/2002	117	0.05 U	117	NA	58	419	6.7	7.99	27	354	0.5 U
MW-14	MW-14 Q1-03	03/26/2003	120	0.05 U	117	NA	61	419	7	7.99	27	408	0.5 U
MW-14	MW-14 Q2-03	06/26/2003	136	0.05 U	136	NA	84	370	6	8.02	38	420	0.5 U
MW-14	MW-14 Q3-03	09/25/2003	110	0.05 U	110	NA	52	354	6	7.94	23	332	0.5 U
MW-14	MW-14 Q4-03	12/18/2003	140	0.05 U	140	NA	99	491	7	7.83	53	404	0.6
MW-14	MW-14 Q1-04	03/17/2004	136	0.05 U	136	NA	78	385	6.5	7.82	33	368	0.5 U
MW-14	MW-14 Q2-04	06/17/2004	132	0.05 U	132	NA	57.8	372	5.5	7.8	30.7	424	0.5 U
MW-14	MW-14 Q3-04	09/30/2004	136	0.05 U	136	NA	65.8	373	5.6	7.82	31.5	436	0.5 U
MW-14	MW-14 Q4-04	12/15/2004	131	0.05 U	131	NA	65.4	357	5.6	7.55	31.6	396	0.5 U
MW-14	MW-14 Q1-05	03/31/2005	148	0.05 U	148	2 U	79.1	NA	6.7	NA	46.2	408	0.5 U
MW-14	MW-14 Q2-05	06/23/2005	115	0.08	115	NA	40.5	NA	5.3	NA	18.5	252	0.5 U
MW-14	MW-14 Q3-05	09/29/2005	122	0.05 U	122	2 U	44.8	NA	5.4	NA	23.2	344	0.5 U
MW-14	MW-14 Q4-05	12/14/2005	131	0.05 U	131	NA	44.8	374	5.6	7.69	23.4	336	0.5 U
MW-14	MW-14 Q1-06	03/30/2006	157	0.05 U	157	NA	59.3	345	5.9	7.75	37.7	376	0.5 U
MW-14	MW-14 Q3-06	09/21/2006	127	0.05 U	127	NA	43.6	NA	6	NA	22.3	313	0.5 U
MW-14	MW-14 Q4-06	12/28/2006	123	0.05 U	123	NA	49.8	487	6.3	7.48	26.5	345	0.5 U

Page 22 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-14	MW-14 Q1-07	03/22/2007	156	0.05 U	156	NA	81.7	430	6.2	8.03	48.3	458	0.6
MW-14	MW-14 Q2-07	06/28/2007	127	0.05 U	127	NA	42.1	374	5.1	7.85	23.2	287	0.5 U
MW-14	MW-14 Q3-07	09/26/2007	134	0.05 U	134	NA	36.9	415	5.4	7.23	19.9	259	0.5 U
MW-14	MW-14 Q4-07	12/27/2007	148	0.05 U	148	NA	41.8	415	5.8	7.33	23.9	322	0.5 U
MW-14	MW-14 Q1-08	03/27/2008	168	0.05 U	168	NA	58	488	6.4	7.59	33.7	364	0.5
MW-14	MW-14 Q2-08	06/25/2008	138	0.05 U	138	NA	38.9	425	5.4	7.23	20.6	345	0.5 U
MW-14	MW-14 Q3-08	09/24/2008	142	0.05 U	142	NA	38.1	462	5.9	7.35	22.5	284	0.6
MW-14	MW-14 Q4-08	12/17/2008	146	0.05 U	NA	NA	52	502	NA	7.68	28.6	NA	0.5 U
MW-14	MW-14 Q1-09	03/20/2009	136	0.05 U	168	NA	42.8	504	5.6	7.29	22.2	304	0.5 U
MW-14	MW-14 Q2-09	06/24/2009	164	0.05 U	138	NA	53.3	382	6.4	7.58	27.9	373	0.5 U
MW-14	MW-14 Q3-09	09/24/2009	152	0.05 U	142	NA	52.5	415	6.24	7.78	27.1	354	5 U
MW-14	MW-14 Q4-09	12/18/2009	152	0.05 U	NA	NA	72.7	448	6.62	7.46	46.9	427	0.5 U
MW-14	MW-14 Q1-10	03/30/2010	166	0.05	NA	NA	52.2	NA	6.78	NA	28.3	334	0.5
MW-14	MW-14 Q2-10	06/23/2010	165	0.05 U	138	NA	78.7	448	7.81	7.21	44.3	428	0.5 U
MW-14	MW-14 Q3-10	09/29/2010	151	0.05 U	NA	NA	54	NA	5.1	NA	25.9	677	0.65
MW-14	MW-14 Q4-10	12/15/2010	151	0.05 U	NA	NA	49.8	512	4.86	7.38	22.2	121	0.5 U
MW-14	MW-14 Q1-2011	03/24/2011	160	0.05 U	NA	NA	77	NA	5.8	NA	38.1	437	0.5 U
MW-14	MW-14 Q1-2011	03/24/2011	160	0.05 U	NA	NA	77	NA	5.8	NA	38.1	437	0.5 U
MW-14	MW-14 Q1-2011	6/21/2011	140	0.05 U	NA	NA	54.4	575	6.08	7.00	38.1	387	0.5 U
MW-14	MW-14 Q1-2011	9/28/2011	175	0.05 U	NA	NA	56.4	560	5.1	7.04	38.1	387	0.50 U
MW-14	MW-14 Q1-2011	12/14/2011	154	0.05 U	NA	NA	52.8	509	5.43	7.11	38.1	376	0.5 U
MW-14	MW-14 Q1-2011	3/28/2012	164	0.05 U	NA	NA	78.3	566	6.03	7.23	38.1	460	0.52
MW-15	MW-15 Q3-01	09/06/2001	648	0.05 U	648	NA	105	415	9.5	7.55	44.8	992	1.7
MW-15	MW-15 Q4-01	12/14/2001	568	0.05 U	568	NA	116	360	9.3	7.35	43.4	924	1.3
MW-15	MW-15 Q1-02	03/27/2002	570	0.05 U	570	NA	114	985	9.6	7.04	44	856	1

Page 23 of 43

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-15	MW-15 Q2-02	06/13/2002	613	0.05 U	613	NA	99.2	1053	9.3	7.03	47	1060	1.2
MW-15	MW-15 Q3-02	09/18/2002	658	0.05 U	658	NA	109	1046	9.6	7.02	42.1	868	2.2
MW-15	MW-15 Q4-02	12/17/2002	598	0.05 U	598	NA	120	1012	10	7.07	41	812	1.6
MW-15	MW-15 Q1-03	03/26/2003	634	0.05 U	598	NA	274 J	1012	9	7.07	43	936	2
MW-15	MW-15 Q2-03	06/26/2003	658	0.05 U	658	NA	117	1012	7	6.95	44	980	2.4
MW-15	MW-15 Q3-03	09/25/2003	618	0.05 U	618	NA	99	1049	8	6.97	41	890	0.9
MW-15	MW-15 Q4-03	12/18/2003	593	0.05 U	593	NA	115	902	8	7.02	45	940	2.2
MW-15	MW-15 Q1-04	03/17/2004	513	0.05 U	513	NA	145	761	8.7	7.01	42	920	1.8
MW-15	MW-15 Q2-04	06/17/2004	564	0.05 U	564	NA	113	818	7.1	6.9	39.3	820	2.1
MW-15	MW-15 Q3-04	09/30/2004	566	0.05 U	566	NA	133	782	7.3	6.9	38.6	880	1.7
MW-15	MW-15 Q4-04	12/15/2004	520	0.05 U	520	NA	130	780	7.8	6.8	39.6	915	1.5
MW-15	MW-15 Q1-05	03/31/2005	716	0.05 U	716	2 U	101	NA	7.7	NA	49	965	2.1
MW-15	MW-15 Q2-05	06/23/2005	94	0.19	94	NA	132	NA	8.1	NA	42.9	945	2.4
MW-15	MW-15 Q3-05	09/29/2005	532	0.05 U	532	2 U	125	NA	8.2	NA	44.9	890	1.6
MW-15	MW-15 Q4-05	12/14/2005	502	0.05 U	502	NA	131	820	8.8	7.05	39.8	875	1.7
MW-15	MW-15 Q1-06	03/30/2006	64	0.05 U	64	NA	111	859	7.5	7	45.6	898	1.7
MW-15	MW-15 Q2-06	06/21/2006	528	0.05 U	528	NA	124	876	7.7	7	45	880	1.5
MW-15	MW-15 Q3(Sept)-06	09/21/2006	582	0.05 U	582	NA	128	NA	8.1	NA	45.1	905	1.6
MW-15	MW-15 Q4-06	12/28/2006	628	0.05 U	628	NA	107	969	7.3	7.02	43.6	931	2.5
MW-15	MW-15 Q1-07	03/22/2007	606	0.05 U	606	NA	133	935	8.9	7.04	43.4	853	2
MW-15	MW-15 Q2-07	06/28/2007	555	0.05 U	555	NA	133	947	7.6	6.99	46.6	885	1.5
MW-15	MW-15 Q3-07	09/26/2007	586	0.05 U	586	NA	115	945	7.2	6.93	43.4	924	1.9
MW-15	MW-15 Q4-07	12/27/2007	557	0.05 U	557	NA	133	943	9.2	6.9	39.9	855	2
MW-15	MW-15 Q1-08	03/27/2008	498	0.05 U	498	NA	148	952	10	6.98	41.1	812	1.3
MW-15	MW-15 Q2-08	06/25/2008	512	0.05 U	512	NA	144	961	9.1	6.98	39.8	820	1.5
MW-15	MW-15 Q3-08	09/24/2008	488	0.05 U	488	NA	132	949	9.9	7.04	40.6	777	1.9

Page 24 of 43

TABLE G2 HISTORICAL SUMMARY OF CONVENTIONAL GROUNDWATER CHEMISTRY DATA City of Walla Walla Sudbury Road Landfill

		Parameter	Alkalinity (mg/L)	Ammonia (mg/L)	3icarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	litrate (mg/L)	oH (std pH units)	Sulfate (mg/L)	rotal Dissolved Solids (mg/L)	rotal Organic Carbon (mg/L)
Location	Sample ID	Sample Date		`			0	0	~	<u> </u>		F	F
MW-15	MW-15 Q4-08	12/17/2008	475	0.05 U	NA	NA	147	946	NA	7.14	42.1	NA	1.3
MW-15	MW-15 Q1-09	03/20/2009	467	0.05 U	498	NA	151	947	9.3	7.11	42.6	824	1.1
MW-15	MW-15 Q2-09	06/24/2009	507	0.05 U	512	NA	141	826	9.9	7.26	39	856	1.3
MW-15	MW-15 Q3-09	09/24/2009	489	0.05 U	488	NA	140	851	7.5	7.12	38.3	861	1.63
MW-15	MW-15 Q4-09	12/18/2009	447	0.05 U	NA	NA	138	877	8.91	7.27	44.5	857	1.01
MW-15	MW-15 Q1-10	03/30/2010	490	0.05	NA	NA	138	NA	8.2	NA	42.4	796	1.06
MW-15	MW-15 Q2-10	06/23/2010	472	0.05 U	512	NA	144	1002	9.01	6.59	45.4	837	1.22
MW-15	MW-15 Q3-10	09/29/2010	467	0.05 U	NA	NA	144	NA	9.17	NA	44	488	1.81
MW-15	MW-15 Q4-10	12/15/2010	488	0.05 U	NA	NA	139	1005	8.12	6.76	42.7	837	1.43
MW-15	MW-15 Q1-2011	03/24/2011	499	0.05 U	NA	NA	136	NA	8.18	NA	44.8	860	1.57
MW-15	MW-15 Q2-2011	6/21/2011	455	0.05 U	NA	NA	136	1038	9.19	6.53	41.8	901	1.20
MW-15	MW-15 Q3-2011	9/28/2011	452	0.05 U	NA	NA	136	1036	7.2	6.30	39.3	860	1.06
MW-15	MW-15 Q4-2011	12/14/2011	438	0.05 U	NA	NA	136	1008	7.3	6.58	37.3	776	1.28
MW-15	MW-15 Q1-2012	3/28/2012	486	0.05 U	NA	NA	136	1023	6.21	6.64	43.3	884	1.64
MW-16	MW-16 Q3-05	09/01/2005	541	NA	NA	NA	185	NA	11.6	NA	45.1	NA	NA
MW-16	MW-16 Q2-06	06/21/2006	256	0.05 U	256	NA	130	690	9.5	7.23	42.6	618	0.6
MW-16	MW-16 Q3(Sept)-06	09/21/2006	262	0.05 U	262	NA	163	NA	9.9	NA	42.1	671	0.5

Notes:

Only samples that were tested for at least one Conventional Analyte appear in this Table. See Table D.1 for an complete Analytical Schedule by sample.

J Analyte was detected, the result is an estimated value.

U Analyte was not detected at the given reporting limit.

NA Not analyzed

	Somelo ID	Parameter	Antimony (µg/L)	Arsenic (µg/L)	Barium (µg/L)	Beryllium (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cobalt (µg/L)	Copper (µg/L)	Lead (µg/L)	Mercury (µg/L)	Nickel (µg/L)	Selenium (µg/L)	Silver (µg/L)	Thallium (µg/L)	Vanadium (µg/L)	Zinc (µg/L)	Calcium (mg/L)	Cyanide (mg/L)	Iron (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Potassium (mg/L)	Sodium (mg/L)
Location		Sample Date																		<u> </u>	Į		ļļ		
Opgradien		00/04/4004	N1.0	NIA			NIA	N10	NIA	N1.4	NIA	NIA	N10	NIA	N14	NIA			NIA		0.00		0.005	NIA	
MVV-05	MW-5 Q1-91	03/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.39	NA	0.005	NA	NA
MVV-05	MW-5 Q2-91	06/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.01	NA	0.005	NA	NA
IVIVV-05	MW-5 Q3-91	09/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.76	NA	0.005	NA	NA
IVIVV-05	MW-5 Q4-91	12/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.17	NA	0.025	NA	NA
	MW 5 Q1-92	03/01/1992	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	INA NA	NA NA	NA NA	NA NA	INA NA	NA NA	0.18	NA NA	0.0005	NA NA	NA NA
IVIVV-05	MW-5 Q2-92	06/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.69	NA	0.0005	NA	NA
IVIVV-05	MW-5 Q3-92	09/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.46	NA	0.006	NA	NA
IVIVV-05	MW-5 Q4-92	12/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.94	NA	0.0005	NA	NA
IVIVV-05	MW-5 Q1-93	03/30/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.96	NA	0.001	NA	NA
MVV-05	MW-5 Q2(Jun)-93	06/14/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.262	NA	0.003 0	NA	NA
MVV-05	MW-5 Q3-93	09/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.086	NA	0.003 0	NA	NA
IVIVV-05	MW-5 Q4- 93	12/01/1993	NA	NA -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 0.010	NA	NA	NA	NA	NA	NA	0.433	NA	0.003 0	NA	NA
IVIVV-05	MW-5 Q2-94	04/01/1994	NA	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.013	NA	NA	NA	NA	NA 00.5	NA	NA	NA 00.4	NA	NA	NA
IVIVV-05	MW-5 Q3-94	08/01/1994	NA 10.11	NA	NA	NA	NA	NA 0.4	NA	NA	NA	NA	NA	NA	NA	NA 0.000 LL	NA 0.010	NA	68.5	NA	NA 0.0107	33.4	NA	9.3	14.4
	MW 5 Q3(Sept)-94	09/01/1994	10.0	0.01 0		0.0002 0	20	9.4	0.005 0	3.5	2.0	NA	0.5 0	50	50	0.002 0	0.013	231.0	00.7	NA NA	0.0137	22.4	NA	6.4	13.1
	WW-5 Q4-94	10/01/1994		0.01 11	NA NA		NA	NA 0.0		NA 0.11	INA 0.11	NA		5.7	INA 5 LL		NA			NA NA	NA		NA		
	MW 5 Q4(NOV)-94	11/01/1994	10 0	0.01 0	NA NA	0.0002 0	20	6.3	0.005 U	20	20	NA	0.5 0	50	50	0.002 0	0.011	158.8	01.7	NA NA	0.0091	31.7	NA	7.5	15.7
IVIV-05	MW-5 Q4(Dec)-94	12/01/1994	10 0	0.01 0	120	0.0002 0	20	5.7	0.005 0	2.0	20	NA	0.5 0	50	50	0.002 0	0.012	259.7	74.1	NA NA	0.0219	19.4	NA 10.11	0.5	13.7
IVIV-05	MW 5 Q1-95	01/01/1995	10 0	10 0	130	20	20	13	10 0	2.01	20	NA	0.5 0	50	50	20	19	293.4	95.1	NA NA	0.0177	34.6	10 0	7.4	22.9
IVIV-05	MW-5 Q1(Feb)-95	02/01/1995	5 0	10 0	290	2.0	20	10 0	10 0	20 0	20	NA	0.04 0	50		20	49	100	48.3	NA NA	0.33	19.4	10 0	0.5	13.1
1VIV-05	MW 5 Q2 06	12/20/1995	0.02	0.5 0	93.8	0.02 0	0.03	0.7	0.2	1.85	1.41	NA	1.7	50	0.02 0	0.02 0	10.5	188	141.2	NA NA	238	48.7	0.00141	7.4	35.8
CU-VVIVI	WW 5 Q2-96	00/01/1996	0.03	0.5 0	01.1		0.07	0.0	0.30	1.1	0.52	NA	4.3		0.11	0.02 0	10.2	150		NA NA	0.176	05 0		INA 6.0	1NA 22.4
IVIV-05	NIVV-5 Q3-96	09/01/1996	NA 50 LL	NA 5 U	NA 64			NA 5 U	NA 10.11			NA		NA 5 U	NA 10.11	NA 5 U	NA 11	NA 212	81.0	NA NA	0.176	35.8	0.005 U	0.9	22.1
05-VVIVI	NIV-5 Q4-96	02/24/1007	50 U	50	62	0.02 0	40	50	10 U	10 0	2.0	NA	20 0	50	10 0	50	10	312	09.7 70.0	NA NA	0.135	30.0	0.005 U	9.07	22.9
CU-VVIVI	WW-5 Q1-97	05/24/1997	50 U	50	63	50	40	50	10 0	10 0	20	NA	20 0	50	10 0	50	14	101	76.0	NA NA	0.05	30	0.005 0	0.07	19.6
MW 05	WW-5 Q2-97	00/24/1997	50 0	50	65	50	40	50	10 U	10 0	0	NA	20 0	50	10 0	50	14	212	73.2		0.115	32.0	0.007	6.96	20.5
	WW-5 Q3-97	11/25/1007	50 0	50	511	50	40	50	10 U	10 0	2.0	NA	20 0	50	10 0	50	15	212	70.6		0.113	32.7 21.1	0.005 U	6.4	20.0
MW-05	MW-5 01-98	03/25/1008	50 0	50	50	50	40	50	10 11	10 0	20	NA	20 0	50	10 U	50	10	213	70.0	NA	0.104	31.1	0.005.0	6.7	19.0
MW 05	MW 5 02 08	00/21/1008	0.04.11	111	59/	0.04.11	40	0.6	0.4	0.8	0.70	NA NA	200	50	0.04.11	0.04.11	10.4	106	70		0.314	31.2	0.003 0	7.6	17.4
MW-05	MW-5 QJ-90	12/30/1008	50 11	511	50.4	5 11	4 11	5.0	10 11	10 11	211	NΔ	20.11	50	10 11	5.04 0	10.4	275	77.0	NA	1 22	32.4	0.00120	7.0	16.9
MW-05	MW-5 Q4 50 MW-5 01-99	03/03/1999	50 U	50	55	50	40	50	10 U	10 U	211	NA	20 0	50	10 U	511	14	185	72.5	NA	0.239	32.0	0.005 11	6 38	15.5
MW-05	MW-5 02-99	06/14/1999	0.02.11	24	58.2	0.02.11	0.03	53	0.5	0.8	57	NA	69	15	0.02.11	0.03	10.9	371	73.1	NA	0.464	31.4	0.005 U	7 78	15.5
MW-07	SI F-MW-07-GW-110510	11/05/2010	NA	311	NA	NA	4 11	10 11	NA	10 11	1]	0.5.11	NA NA	NA	NA	NA NA	NA	NA	15	NA	NA	NA	0.000 0	NA	63
MW-07	SLF-MW-07-GW-021011	02/10/2011	NA	311	NA	NA	40	10 U	NA	10 U	1 []	0.5 U	NA	NA	NA	NA	NA	NA	14	NA	NA	NA	0.011 U	NA	6.4
MW-07	SLF-MW-09-GW-110410	11/04/2010	NΔ	3311	NΔ	NΔ	4411	11 11	NΔ	11 11	66	0.5 U	ΝΔ	NΔ	ΝA	NΔ	ΝΔ	NΔ	88	NΔ	NA	NΔ	0.011	ΝΔ	34
MW-09	SI F-MW-09-GW-021011	02/10/2011	NA	3.50	NΔ	NA	4 11	10 11	NΔ	10 11	1	0.5 U	NA	NΔ	NA	NA	ΝΔ	NΔ	90	NA	NΔ	ΝΔ	0.012	NΔ	35
MW-10	SLF-MW-10-GW-110410	11/04/2010	NA	311	NΔ	NA	411	10 11	NΔ	10 11	1	0.5 U	NA	NΔ	NA	NA	ΝΔ	NΔ	48	NA	NΔ	ΝΔ	0.01 11	NΔ	16
MW-10	SI F-MW-10-GW-021011	02/10/2011	NA	311	NΔ	NA	411	10 11	NΔ	10 11	1 11	0.5 U	NA	NΔ	NA	NA	ΝΔ	NΔ	45	NA	NΔ	NA	0.011 11	NΔ	17
MW-12	MW-12 Q1-95	03/01/1995	511	10 11	410	211	4	10 11	10 11	20 11	211	NA	0.04 11	511	10 11	211	.36	NA	52 7	NA	380	34.5	0 172	10.1	63
MW-12	MW-12 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 11	5.0	NA	NA	30 11	140.5	NA	NA	58.6	NA	10.4	65
MW-12	MW-12 Q3(Sept)-95	09/20/1995	0.1	0.7	93.1	0.02 []	0.44	1.4	1.69	2.81	0.05	NA	13.2	5.0	0.04	0.02 []	9.4	6.9	76.6	NA	0.039	50.4	0.0994	9.2	61.2
MW-12	MW-12 Q4t-95	10/30/1995	0.1	0.6	97.9	0.07	0.31	5.5	4.1	2.93	0.05	NA	66.3	5 U	0.02 U	0.02 U	10.8	5.5	143.1	NA	0.039	59.5	0.109	8.5	45.1
MW-12	MW-12 Q4(Nov)-95	11/29/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	109.5	NA	NA	62.2	NA	9.3	72

			(L)			L)	(L)	j/L)				•		L)		((T)		Î	Î		ng/L)	ng/L)	g/L)	7
			/6rl) /	hg/L)	(J/Br	/6rl) (/Brl) u	ồrl) u	g/L)	(1/Br	(_)	(hg/L	g/L)	/brl) u)/L)	1/6rl)	6rl) u	E I	(mg/l	(mg/l	L L	u) ur	se (n	ш ш	mg/L
			luom	nic (L) E	llium	niur	min	alt (µ	per (I	l (hg/	ury (el (h	niu	er (µç	lium	adiur	/бп)	ium	nide ((mg/	nesiu	gane	ssiu) un
	O america ID	Parameter	Anti	Arse	Bari	Bery	Cadı	Chrc	Cob	Copl	Leac	Merc	Nick	Sele	Silve	Thal	Vana	Zinc	Calc	Cyar	ron	Mag	Man	Pota	Sodi
Location	sample ID	Sample Date				_			_												_		_		
		12/20/1005	0.12	0.5.11	106	0.02	0.15	0.0	2.07	5.6	1.25	ΝΔ	25.1	5 11	0.02.11	0.02.11	12.6	5.5	160.7	ΝΔ	2 20	60.8	0.0078	0.2	75.1
M\\\/_12	MW-12 Q4(Dec)-95	02/01/1995	0.12	0.5 0	90.3	0.03	0.13	9.9	7.58	2.15	0.03	NA	175	50	0.02 0	0.02.0	10.1	3.3	NA		0.030	09.0 NA	0.0970	9.3 NA	73.1 NA
MW-12	MW-12 Q1 90	05/29/1996	0.22	0.0 0	98	0.02.0	0.10	17	5 29	2.10	0.00	NA	12.7	5.0	0.02 0	0.02.0	10.1	33.1	NA	NA	0.033	NA	0.075	NA	NA
MW-12	MW-12 Q3-96	09/01/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	125	NA	2.33	56.8	0.046	9.1	59.9
MW-12	MW-12 Q4-96	10/01/1996	50 U	5 U	84	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	127	NA	2.32	58	0.062	8.7	59.2
MW-12	MW-12 Q1-97	03/24/1997	50 U	5 U	90	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	128	NA	3.49	59.3	0.08	9.47	59.6
MW-12	MW-12 Q2-97	06/24/1997	50 U	5 U	102	5 U	4 U	8	10 U	10 U	2 U	NA	26	5 U	10 U	22	18	10 U	130	NA	4.29	60.6	0.099	9.9	60.9
MW-12	MW-12 Q3-97	09/11/1997	50 U	5 U	96	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	132	NA	2.03	60.2	0.065	9.73	59.3
MW-12	MW-12 Q4-97	11/25/1997	50 U	5 U	144	5 U	4 U	25	16	42	5	NA	46	5 U	10 U	5 U	58	46	119	NA	7.39	54.7	0.161	10.7	58.4
MW-12	MW-12 Q1-98	03/25/1998	50 U	5 U	88	5 U	4 U	8	10 U	10 U	2 U	NA	24	5 U	10 U	5 U	13	10 U	125	NA	0.854	55.8	0.029	10.2	57.8
MW-12	MW-12 Q2-98	06/29/1998	50 U	5 U	102	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	10 U	10 U	124	NA	1.49	57.2	0.027	7.9	58.2
MW-12	MW-12 Q3-98	09/21/1998	0.13	1 U	100	0.05	0.3	21.7	3.21	2.5	0.62	NA	46.4	5 U	0.04 U	0.04 U	14.2	3	126	NA	3.78	58.9	0.032	10.5	57.1
MW-12	MW-12 Q4-98	12/30/1998	50 U	5 U	89	5 U	4 U	5 U	10 U	10 U	2 U	NA	67	5 U	10 U	5 U	14	3 U	135	NA	2.09	59.4	0.054	10.3	56.2
MW-12	MW-12 Q1-99	03/03/1999	50 U	5 U	83	5 U	4 U	5 U	10 U	10 U	2 U	NA	41	5 U	10 U	5 U	12	10 U	130	NA	3.9	59.9	0.097	9.34	54.3
MW-12	MW-12 Q2-99	06/14/1999	0.1	3.6	92	0.03	0.04	18.1	2.55	2.5	6.94	NA	53.3	24	0.02 U	0.03	12.8	1.24	124	NA	1.38	55.9	0.043	10.2	52.7
MW-12	MW-12 Q3-99	09/22/1999	50 U	5 U	83	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	137	NA	35.1	61	0.567	10.2	55.4
MW-12	MW-12 Q4-99	12/09/1999	50 U	5 U	90	5 U	4 U	5 U	10 U	10 U	2 U	NA	41	5 U	10 U	5 U	16	10 U	137	NA	9.18	62	0.167	11	55.8
MW-12	MW-12 Q1-00	03/15/2000	50 U	10 U	80	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	132	NA	4.02	62.2	0.071	8.8	57.8
MW-12	MW-12 Q2-00	06/21/2000	50 U	5 U	84	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	122	NA	5.93	55.8	0.1	8.7	49.3
MW-12	MW-12 Q3-00	09/27/2000	50 U	5 U	80	5 U	4 U	5 U	10 U	10 U	20	NA	20 U	5 U	10 U	5 U	14	10 U	122	NA	1.53	56.6	0.026	8.2	49.7
MW-12	MW-12 Q4-00	12/05/2000	50 U	50	87	50	4 U	50	10 U	10 U	20	NA	20 U	5 U	10 U	50	15	10 U	121	NA	1.87	58.4	0.033	9	52.4
MW-12	MW-12 Q1-01	03/27/2001	50 U	50	94	50	4 U	50	10 U	10 U	20	NA	20 U	50	10 U	50	18	10 U	136	NA	0.942	62.1	0.018	8.63	53.2
MVV-12	MVV-12 Q2-01	06/27/2001	50 U	50	85	50	40	50	26	10 U	20	NA	20 0	50	10 U	50	14	10 U	135	NA	2.47	62	0.05	8.3	51.2
IVIVV-12	MVV-12 Q3-01	09/06/2001	50 0	50	82	50	50	50	11	10 0	20	NA	20 0	50	10 0	50	15	10 0	133	NA	1.49	61.2	0.031	9.36	50.1
	MW/ 12 Q4-01	12/14/2001	50 0	50	00.0 05.4	50	50	50	10 U	10 0	20	NA	20.0	10 0	10 0	50	10.9	10 0	100		0.002	61.0	0.0195	9.24	50.4 40.2
MW/ 12	MW/ 12 Q1-02	05/27/2002	50 U	50	00.4 90	50	50	50	10 0	10 U	20	NA	20 0	10 U	10 0	50	20	10 0	121		0.004	62.4	0.0197	0.02	49.2 50.9
M\\\/_12	MW-12 Q2-02	00/13/2002	50 U	50	84.6	50	50	511	19	10 U	20	NA	20 0	5 11	10 0	50	17	10 0	12/		1.2	58.4	0.0220	9.07	17.1
MW-12	MW-12 Q3-02	12/17/2002	50 U	50	83.4	50	50	50	10 11	10 U	211	NA	20 0	10 11	10 U	511	12.7	10 U	124	ΝA	0.423	60.2	0.0231	8.41	47.1
MW-12	MW-12 Q1-03	03/26/2003	50 U	5.0	80.2	5.0	5.0	8	30	10 U	20	NA	20 U	10 U	10 U	5.0	13	10 U	127	0.01 U	5.53	57.2	0.0000	8.54	45.2
MW-12	MW-12 Q2-03	06/26/2003	50 U	5 U	78	5.0	5 U	6.6	12	10 U	20	NA	20 U	10 U	10 U	5 U	17	10 U	127	0.01 U	0.382	56	0.0085	7.63	43.5
MW-12	MW-12 Q3-03	09/25/2003	50 U	5 U	72	5 U	5 U	7.1	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	11	10 U	123	0.01 U	0.173	55.5	0.0074	7.97	42.8
MW-12	MW-12 Q4-03	12/18/2003	50 U	8 U	75	5 U	5 U	7.6	11	10 U	2 U	NA	20 U	8 U	10 U	5 U	14	10 U	127	0.01 U	0.131	55.4	0.005 U	8.32	44.1
MW-12	MW-12 Q1-04	03/17/2004	50 U	5 U	78	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13.2	10 U	127	NA	0.16	58.7	0.005 U	9.19	44.1
MW-12	MW-12 Q2-04	06/17/2004	50 U	5 U	75.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	14	10 U	124	NA	0.603	60.5	0.0106	9.19	45.2
MW-12	MW-12 Q3-04	09/30/2004	50 U	5 U	81.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	130	NA	0.604	59.2	0.0132	8.44	44.5
MW-12	MW-12 Q4-04	12/15/2004	50 U	5 U	78.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15.5	10 U	125	NA	0.182	58.1	0.005 U	8.65	42.7
MW-12	MW-12 Q1-05	03/31/2005	50 U	5 U	79	5 U	5 U	5 U	26	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	127	NA	1.92	58.4	0.0447	7.67	43.7
MW-12	MW-12 Q2-05	06/23/2005	50 U	5 U	82	5 U	5 U	5 U	14	10 U	4 U	NA	20 U	5 U	10 U	5 U	12	10 U	126	NA	0.443	58.1	0.012	8.82	43.2
MW-12	MW-12 Q3-05	09/29/2005	50 U	5 U	80.6	5 U	5 U	5 U	88	10 U	2 U	NA	20 U	5 U	10 U	5 U	10	10 U	12.8	NA	1.32	60.7	0.0249	8.4	46.6
MW-12	MW-12 Q1-06	03/30/2006	50 U	5 U	76.5	5 U	5 U	5 U	107	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	143	NA	4.59	58.8	0.091	9.65	42
MW-12	MW-12 Q2-06	06/21/2006	50 U	5 U	90.6	5 U	5 U	5 U	189	15	2 U	NA	37	5 U	10 U	5 U	17	10 U	138	NA	0.287	63.6	0.0277	9.31	45.6
MW-12	MW-12 Q3-06	09/21/2006	50 U	5 U	86.3	5 U	5 U	5 U	85	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	132	NA	0.738	60.1	0.018	9.2	43.5
MW-12	MW-12 Q3-07	09/26/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	123	NA	7.98	57.7	0.19	9.1	43.3

		Parameter	Antimony (µg/L)	Arsenic (µg/L)	Barium (µg/L)	Beryllium (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cobalt (µg/L)	Copper (µg/L)	Lead (µg/L)	Mercury (µg/L)	Nickel (µg/L)	Selenium (µg/L)	Silver (µg/L)	Thallium (µg/L)	Vanadium (µg/L)	Zinc (µg/L)	Calcium (mg/L)	Cyanide (mg/L)	Iron (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Potassium (mg/L)	Sodium (mg/L)
Location	Sample ID	Sample Date			-	-	•	Ű	•	•	-	-	-	•,	•,		-			J. J	-	_	-	-	•.
Upgradier	t Wells Continued	00/04/0000	50.11		0.05				40.11	40.11	40.11				40.11			40.11			0.000	50.0	0.0050	0.44	
MVV-12b	MW-12b Q3-08	09/24/2008	50 U	50	86.5	50	50	50	10 U	10 U	10 U	NA	20 0	50	10 U	50	14	10 U	111	NA	0.228	52.3	0.0053	8.11	29.5
IVIVV-12D	MW-12D Q4-08	12/17/2008	50 0	50	73	50	50	50	10 0	10 0	10 0	NA	20.0	50	10 0	50	12	10.0	112	NA	0.093	52.7	0.005 U	7.96	30.8
IVIVV-12D	MW-12D Q1-09	03/20/2009				NA 5 U	NA	NA				NA		NA 5 U		NA 5.11	NA 44		120	NA NA	0.088	55.3	0.005 U	8.46	33.5
MW 12D	MW 126 Q2-09	06/24/2009	50 0		00. I							NA	20.0				14		110	NA NA	0.0446	54.7	0.005 U	0.14	33.4
WW 12D	MW 12b Q3-09	09/24/2009	NA 50 U	NA 5.11	05 0	NA 5.11	INA 5 U	INA 5 U	10.11	10 U	NA 2 11	NA	NA 20.11	INA 5 LL	10 U	INA 5 U	12.6	10 U	120	NA NA	0.024	56 7	0.005 U	0.14	34.2
MW 120	MW 12b Q2 10	06/22/2010	50 0	50	03.2	50	50	50	10 U	10 0	2.0	NA NA	20 0	30	10 0	50	15.0	10 0	120		0.0302	50.7	0.005 0	0.4	20.4
MW 12b	MW 12b 02 10	00/23/2010	50 U		04.3 NA					NA		NA	20.0	4 U NA		5 U NA	NA		117	NA NA	0.225	54.6	0.005	0.00	32.7
MW 120	MW 12b Q3-10	12/15/2010	50 11	5.11	71.6	5.11	5.11	5.11	10 11	10.11	211	NA NA	20.11	5.11	10.11	5.11	12	10.11	117	NA NA	0.235	52.1	0.005 U	0.33	22.2
MW-120	MW-125 Q4-10	03/24/2011	50 U	50	70.2	50	5.0	50	10 U	10 0	2 0	NA	20.0	10 11	10 U	50	14.5	10 U	117	NA	0.101	52	0.005 U	7 77	32.6
MW-12b	MW-126 Q1-2011	6/21/2011	50 U	50	66	511	5.0	50	10 U	10 0	2 0	NA	20.0	5 11	10 U	50	14.5	10 U	108	ΝA	0.2	49.3	0.005 U	7.49	29.5
MW-12b	MW-125 Q2 2011 MW-12b O3-2011	9/28/2011	50 U	50	73	50	5.0	10 11	10 U	10 U	2 U	NA	20 0	4 11	20 11	50	20 11	10 U	112	NA	0.02 0	52.2	0.0050 U	7.43	30.6
MW-12b	MW-12b Q0-2011	12/14/2011	50 U	5.0	74.8	5 U	5 U	5.0	10 U	10 U	2 U	NA	20 U	5 U	10 U	5.0	16.1	10 U	103	NA	0.0224	48.9	0.0050 U	7.37	30.30
MW-12b	MW-12b Q1-2012	3/28/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	109.0	NA	0.047	49.9	0.005 U	7.87	31.9
Downgrad	lient Wells	0,20,2012																			0.0.11		0.000 0		0.10
MW-01	MW-1 Q1-91	01/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.9	NA	0.005	NA	NA
MW-01	MW-1 Q2-91	04/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.02	NA	0.005	NA	NA
MW-01	MW-1 Q3-91	07/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.69	NA	0.04	NA	NA
MW-01	MW-1 Q4-91	10/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.16	NA	0.05	NA	NA
MW-01	MW-1 Q1-92	01/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.025	NA	0.001	NA	NA
MW-01	MW-1 Q2-92	04/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.48	NA	0.001	NA	NA
MW-01	MW-1 Q3-92	07/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.38	NA	0.001	NA	NA
MW-01	MW-1 Q4-92	10/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.12	NA	0.001	NA	NA
MW-01	MW-1 Q1-93	01/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.2	NA	0.006	NA	NA
MW-01	MW-1 Q2-93	04/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.438	NA	0.014	NA	NA
MW-01	MW-1 Q3-93	07/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.096	NA	0.0003 U	NA	NA
MW-01	MW-1 Q4-93	10/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.432	NA	0.001	NA	NA
MW-01	MW-1 Q2-94	04/01/1994	NA	7.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-01	MW-1 Q3-94	08/01/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.5	NA	NA	43.8	NA	6.6	13.3
MW-01	MW-1 Q3(Sept)-94	09/01/1994	10 U	0.01 U	NA	0.002 U	2 U	9.8	0.005 U	2 U	2 U	NA	50 U	5 U	5 U	0.002 U	0.015 U	80 U	86.7	NA	NA	40.2	NA	7	11.1
MW-01	MW-1 Q4-94	10/01/1994	NA	5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-01	MW-1 Q4(Nov)-94	11/01/1994	10 U	0.01 U	NA	0.002 U	2 U	9.9	0.005 U	2 U	2 U	NA	50 U	5 U	5 U	0.002 U	0.016	80 U	72.8	NA	0.005 U	38.3	NA	7.6	11.8
MW-01	MW-1 Q4(Dec)-94	12/01/1994	10 U	0.01 U	NA	0.002 U	2 U	8.5	0.005 U	2 U	2 U	NA	50 U	5 U	5 U	0.002 U	0.012	80 U	81.6	NA	0.005 U	36	NA	6.7	12.8
MW-01	MW-1 Q1-95	01/01/1995	10 U	10 U	220	2 U	2 U	12.4	10 U	2.8	2 U	NA	50 U	5 U	10 U	2 U	12	80 U	70.8	NA	0.005 U	29.3	0.001 U	10.3	52.4
MW-01	MW-1 Q1(Feb)-95	02/01/1995	5 U	10 U	380	2 U	2 U	10 U	10 U	20 U	2 U	NA	40 U	5 U	5 U	2 U	55	50 U	51.1	NA	0.08	19.9	0.001 U	6.3	9.2
MW-01	MW-1 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5 U	NA	NA	30 U	82.9	NA	NA	37	NA	7.5	13.5
MW-01	MW-1 Q1(Sep)-95	09/20/1995	0.04	0.5 U	61	0.02 U	0.08	0.7	0.42	0.72	0.12	NA	6.6	5 U	0.06	0.02 U	10.6	11.4	58.8	NA	0.027	86.2	0.00016	6.5	12.7
MW-01	MW-1 Q4-95	12/18/1995	0.04	0.5 U	65.8	0.02 U	0.08	1.4	0.16	1.97	0.28	NA	1.6	5 U	0.02 U	0.02 U	12.8	5.2	114.2	NA	0.079	42.5	0.00099	6.43	14.99
MVV-01	MW-1 Q1-96	02/01/1996	0.02 U	0.5	61.7	0.02 U	0.07	2.5	0.14	1.55	0.06	NA	1.7	5 U	0.02 U	0.02 U	13.2	5.7	NA	NA	0.027	NA	0.00012	NA	NA
	WW-1 Q2-96	05/01/1996	0.02 U	0.6	63.9	0.02 U	0.16	0.8	0.36	1.3	0.17	NA	4.3	5 U	0.1	0.02 U	12	10.7	NA	NA	NA	NA 44.0	NA 0.005 Li	NA -	NA 10.5
	IVIVV-1 Q3-96	09/01/1996	NA	NA -	NA 57	NA	NA	NA	NA	NA 40.11	NA	NA	NA 00.11	NA E LL	NA	NA	NA	NA	90.2	NA	0.052	41.6	0.005 U	/	12.5
	IVIVV-1 Q4-96	10/01/1996	0.5 U	5	5/	50	4 U	50	10 U	10 U	20	NA	20.0	5 U	10 U	50	16	10	89.7	NA	0.0/1	41.2	0.005 U	6.2	12.3
	WW-1 Q1-97	03/24/1997	50 U	50	58	50	4 U	50	10 U	10 U	20	NA	20.0	5 U	10 U	50	15	11	/9.2	NA	0.087	36.9	0.005 U	6.58	12
10-1111	11/11/11 22-91	00/24/1997	0.00	50	00.0	50	4 U	50	10.0	10 0	2 U	INA	20.0	ъU	10.0	50	GI	10.0	84	INA	0.063	30.0	0.005 U	7.1	12.1

			g/L)	Ê	ſ	g/L)	g/L)	ug/L)		ſ		L)		9/L)		(T)	ig/L)		(JL)	(T)		(mg/L)	(mg/L)	mg/L)	(T)
		Parameter	ıtimony (µ	senic (µg/	irium (µg/l	eryllium (µ	ıdmium (µ	ıromium (I	obalt (µg/L	pper (µg/I	ad (µg/L)	ercury (µg	ckel (µg/L)	lenium (µ	lver (µg/L)	allium (µg	inadium (l	nc (µg/L)	ılcium (mç	anide (mç	n (mg/L)	agnesium	anganese	otassium (dium (mg
Location	Sample ID	Sample Date	Ar	Ar	B	ä	õ	Ċ	ŏ	ŏ	Le	ž	ΪŻ	Se	Si	⊨ É	Aa Va	z	ů	G	L S	Ĕ	Ě	P	Š
Downgra	dient Wells Continued			-		•							••							•	•		••		
MW-01	MW-1 Q3-97	09/11/1997	50 U	5 U	62	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	56	78.6	NA	0.034	36.2	0.005 U	6.61	11.6
MW-01	MW-1 Q1-98	03/25/1998	50 U	5 U	60	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	82.6	NA	0.72	37.2	0.005 U	6.8	12.5
MW-01	MW-1 Q2-98	06/29/1998	50 U	5 U	59	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	81.2	NA	0.043	37.2	0.005 U	6	12.2
MW-01	MW-1 Q3-98	09/21/1998	0.04 U	1 U	62.1	0.04 U	0.2	1.3	0.47	1.2	0.12	NA	12.5	5 U	0.04 U	0.04 U	12	3	82.2	NA	0.08	39.1	0.00122	7.9	1.2
MW-01	MW-1 Q1-99	03/03/1999	50 U	5 U	54	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	81.1	NA	0.267	37.3	0.006	6.4	11.5
MW-01	MW-1 Q2-99	06/14/1999	0.02 U	2.3	56.8	0.02 U	0.11	4.5	0.57	1.5	0.41	NA	7.6	15	0.02 U	0.04	10.9	2.5	82.9	NA	0.102	37.4	0.005 U	7.7	12
MW-01	MW-1 Q3-99	09/22/1999	50 U	5 U	53	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	76.1	NA	0.029	34.3	0.005 U	6.1	11.6
MW-01	MW-1 Q4-99	12/09/1999	50 U	5 U	55	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	77.4	NA	0.167	35.9	0.006	6.5	11.9
MW-01	MW-1 Q1-00	03/15/2000	50 U	10 U	54	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	75.4	NA	0.136	35.5	0.005 U	5.9	12.3
MW-01	MW-1 Q2-00	06/21/2000	50 U	5 U	49	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	72.9	NA	0.09	33.8	0.005 U	6.1	11.4
MW-01	MW-1 Q3-00	09/27/2000	50 U	5 U	49	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	72.4	NA	0.077	33.3	0.005 U	6	11.1
MW-01	MW-1 Q4-00	12/05/2000	50 U	5 U	53	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	71.2	NA	0.098	34.3	0.005 U	6.4	11.8
MW-01	MW-1 Q1-01	03/27/2001	50 U	5 U	56	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	76.6	NA	0.061	35.1	0.005	5.82	12.1
MW-01	MW-1 Q2-01	06/27/2001	50 U	5 U	54	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	78.1	NA	0.063	35.8	5 U	5.4	11.8
MW-03	MW-3 Q1-91	01/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.1	NA	0.005	NA	NA
MW-03	MW-3 Q2-91	04/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.03	NA	0.005	NA	NA
MW-03	MW-3 Q3-91	07/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.12	NA	0.005	NA	NA
MW-03	MW-3 Q4-91	10/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.09	NA	0.05	NA	NA
MW-03	MW-3 Q1-92	01/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.05	NA	0.005	NA	NA
MW-03	MW-3 Q2-92	04/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.51	NA	0.005	NA	NA
MW-03	MW-3 Q3-92	07/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.42	NA	0.002	NA	NA
MW-03	MW-3 Q4-92	10/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.029	NA	0.0005	NA	NA
MW-03	MW-3 Q1-93	01/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.9	NA	0.003	NA	NA
MW-03	MW-3 Q2-93	04/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.2	NA	0.0003 U	NA	NA
MW-03	MW-3 Q3-93	07/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.11	NA	0.0003 U	NA	NA
MW-03	MW-3 Q4-93	10/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.383	NA	0.0003 U	NA	NA
MW-03	MW-3 Q2-94	04/01/1994	NA	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-03	MW-3 Q3-94	08/01/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	93.2	NA	NA	44.8	NA	6.6	17
MW-03	MW-3 Q3(Sept)-94	09/01/1994	10 U	0.01 U	NA	0.002 U	2 U	10.2	0.005 U	2 U	2 U	NA	50 U	5 U	NA	0.005 U	0.016	80 U	88.7	NA	NA	44.8	NA	7.1	14.3
MW-03	MW-3 Q4-94	10/01/1994	NA	5 U	NA	NA	NA	NA	NA	NA	NA	NA	50 U	0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-03	MW-3 Q4(Nov)-94	11/01/1994	10 U	0.01 U	NA	0.002 U	2 U	7.7	0.005 U	2 U	20	NA	50 U	5 U	5 U	0.005 U	0.014	80 U	73.7	NA	5 U	41	NA	7.6	16.3
MW-03	MW-3 Q4(Dec)-94	12/01/1994	10 U	0.01 U	NA	0.002 U	20	9.2	0.005 U	20	20	NA	50 U	50	50	0.005 U	0.016	80 U	79.8	NA	50	37	NA	7.6	16.8
MW-03	MW-3 Q1-95	01/01/1995	10 U	10 U	230	20	20	14.5	10 U	20	20	NA	50 U	50	50	20	14	80 U	68.9	NA	50	29.8	10 U	/	12.8
MW-03	MW-3 Q1(Feb)-95	02/01/1995	50	10 U	390	20	3	10 U	10 U	20 U	2 U	NA	40 U	50	10 U	20	10 U	50 U	50.9	NA	50	21.6	10 U	6.3	11.4
MW-03	MW-3 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	50	NA	NA	30 U	101.4	NA	NA	46.3	NA	1.1	16.3
MW-03	MW-3 Q3(Sept)-95	09/20/1995	0.1	0.6	62.4	0.02 U	0.06	1.6	0.36	2.69	0.19	NA	8.6	50	0.07	0.02	12.4	6.4	NA	NA	0.021	NA	0.00035	NA	NA
MW-03	IVIVV-3 Q4-95	12/18/1995	0.05	0.5 U	/6.2	0.02 U	0.04	1.9	0.17	2.52	0.23	NA	3.5	50	0.02 U	0.02 U	14.9	4.4	112.9	NA	0.044	47.6	0.00038	6.62	20.5
IVIVV-03	IVIVV-3 Q1-96 Dup	02/01/1996	0.02 U	0.5	61.8	0.02 U	0.03	2.5	0.11	1.33	0.06	NA	1./	5 U	0.02 U	0.02 U	15.5	3.4	NA	NA	0.021	NA	0.00011	NA	NA
IVIVV-03	IVIVV-3 Q1-96	02/01/1996	0.02 0	0.5 0	59.9	0.02 U	0.02 U	2.7	0.11	1.37	0.06	NA	1.9	5 U	0.02 U	0.02 U	15.5	(NA	NA	0.02 U	NA	0.00029	NA	NA
	IVIVV-3 Q2-96	00/01/1996	0.04	0.5	/5.8	0.02 U	0.27	1.9	0.36	2.9	0.64	NA	5.1 NIA	5 U	0.2	0.02 0	13.3	23	NA 440	NA NA	NA 0.040	INA 52.0		NA	NA 10.7
	IVIVV-3 Q3-96	09/01/1996			NA 70	NA E U	INA 4 I I		NA 40.11	INA 40.11	INA O U	NA		NA	NA 40.11	NA E U	NA 47	NA 40.11	110	NA NA	0.042	53.3	0.005 U	8.1	18.7
	NIN/ 2 04 07	10/01/1996	50 U	50 0	73	50	4 U	5 U	10 0	10 0	20	NA	20.0	50	10 U	50	1/	10 0	93.3	NA NA	0.034	45.2	0.005 U	6.00	10.5
IVIVV-03	IVIVV-3 QT-97	03/24/1997	50 U	50	/6	50	4 U	5 U	10 0	10 0	20	NA	20.0	50	10 0	50	15	10	93.9	INA NA	0.032	40.1	0.005 U	0.90	10.4
10100-03	11/11/2 22-91	00/24/1997	0.00	50	84	5 U	4 U	5 U	10.0	10.0	2 U	NA	20.0	50	10.0	50	17	10.0	99.9	INA	0.046	49	0.005 U	1.4	17

								•									_					(L)	L)	Ŷ	
			(J/Br	Ţ.	Ĵ	ng/L)	(J/Gr	(hg/L)	Ĵ	٦))/L)		(1/ɓr	•	g/L)	hg/L)		g/L)	g/L)		(mg/	(mg/	(mg/l	g/L)
) Yu	Brl) ;	ſ6rl)	[] E	I) m	Ē	l/6rl)	6rl)	(J/B	ر (hi	1/6rl	E E	hg/L	л) г	ш ш	g/L)	L L	e (m	g/L)	sium	Jese	E	ů)
		Parameter	imo	enic	ium	yllit	amir	omi	balt	oper	л) р	cur	kel (eniu	/er (lliu	adiu	n) o	ciun	anide	L L	gnes	ngar	assi	dium
Location	Sample ID	Sample Date	Ant	Ars	Bar	Ber	Cac	ch	Ö	Ö	Lea	Mei	Nic	Sel	Silv	The	Var	Zin	Cal	Š	Iroi	Ma	Mai	Pot	Soc
Downgrad	dient Wells Continued	Campio Dato	<u> </u>	ļ	ļ	<u> </u>							II	I				ļ	1	<u> </u>	ļ		ļI		4
MW-03	MW-3 Q3-97	09/11/1997	50 U	5 U	82	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	98.5	NA	0.027	48.6	0.005 U	7.27	17.5
MW-03	MW-3 Q4-97	11/25/1997	50 U	5 U	5 U	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	19	10 U	62.8	NA	0.095	37.2	0.005 U	7	19.2
MW-03	MW-3 Q1-98	03/25/1998	50 U	5 U	67	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	90.9	NA	0.48	44.8	0.005 U	7.2	17.9
MW-03	MW-3 Q2-98	06/29/1998	50 U	5 U	82	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	95.6	NA	0.055	46.8	0.005 U	6.3	17.1
MW-03	MW-3 Q3-98	09/21/1998	0.04 U	1 U	79.8	0.04 U	0.2	1.2	0.52	1.4	0.08	NA	11.6	5 U	0.05	0.04 U	12.8	2	96.2	NA	0.032	47.6	0.00025	8.1	16.5
MW-03	MW-3 Q4-98	12/30/1998	50 U	5 U	37	5 U	4 U	5 U	10 U	18	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	29.5	NA	0.648	43.1	0.022	9.4	32.8
MW-03	MW-3 Q1-99	03/03/1999	50 U	5 U	33	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	26.4	NA	0.126	40.8	0.005 U	8.4	29
MW-03	MW-3 Q2-99	06/14/1999	0.02 U	4.1	86.4	0.02 U	0.04	8.8	0.8	1.3	0.1	NA	10.4	28	0.02 U	0.03	13	2.8	107	NA	0.094	50.6	0.005 U	8.5	17.2
MW-03	MW-3 Q3-99	09/22/1999	50 U	5 U	42	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	104	NA	0.265	49.4	0.006	6.4	16.4
MW-03	MW-3 Q4-99	12/09/1999	50 U	5 U	79	5 U	4 U	5 U	10 U	10 U	2 U	NA	330	5 U	10 U	5 U	16	10 U	97.4	NA	0.373	54.4	0.011	8.1	18.5
MW-03	MW-3 Q1-00	03/15/2000	50 U	10 U	82	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	106	NA	0.06	52.8	0.005 U	6.9	18.3
MW-03	MW-3 Q2-00	06/21/2000	50 U	5 U	82	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	105	NA	0.051	49.6	0.005 U	7.1	16.7
MW-03	MW-3 Q3-00	09/27/2000	50 U	5 U	75	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	97	NA	0.042	47.8	0.005 U	6.8	17
MW-03	MW-3 Q4-00	12/05/2000	50 U	5 U	80	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	92.3	NA	0.199	47.7	0.006	7.1	17.6
MW-03	MW-3 Q1-01	03/27/2001	50 U	5 U	77	5 U	4 U	5 U	10 U	10 U	2 U	NA	78	5 U	10 U	5 U	18	10 U	88.2	NA	0.054	42	0.005	6.28	17.8
MW-03	MW-3 Q2-01	06/27/2001	50 U	5 U	84	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	108	NA	0.062	52.3	5 U	6.5	17.5
MW-11	MW-11 Q1-95	03/01/1995	5 U	10 U	500	2 U	3	10 U	10 U	20 U	2 U	NA	4 U	5 U	10 U	2 U	40	50 U	66.6	NA	NA	36	0.027	10.3	1
MW-11	MW-11 Q1-95 Dup	03/01/1995	5 U	10 U	410	2 U	3	10 U	10 U	20 U	2 U	NA	4 U	5 U	10 U	2 U	37	NA	NA	NA	NA	NA	NA	NA	NA
MW-11	MW-11 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5	NA	NA	30 U	151.8	NA	NA	54.1	NA	9.9	48.7
MW-11	MW-11 Q3-95 Dup	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5	NA	NA	30 U	149.1	NA	NA	53.6	NA	9.9	49.2
MW-11	MW-11 Q3(Sept)-95	09/20/1995	0.05	0.05 U	109	0.02 U	0.06	1.7	0.6	0.61	0.05	NA	9.7	5 U	0.08	0.02 U	9.1	1.2	71.6	NA	0.035	96.5	0.00048	8.6	46.3
MW-11	MW-11 Q3(Sept)-95 Dup	09/20/1995	0.03	0.05 U	109	0.02 U	0.06	1.7	0.64	1.03	0.07	NA	9.3	5 U	0.03	0.02 U	9.4	1.8	71.29	NA	0.035	126.1	0.00054	8.5	45.6
MW-11	MW-11 Q4-95	10/30/1995	0.02 U	0.5 U	113	0.1	0.05	8.1	0.57	0.97	0.05	NA	8.4	5 U	0.02 U	0.02 U	11.7	3.9	141.9	NA	0.038	59	0.00047	8.5	45.1
MW-11	MW-11 Q4-95 Dup	10/30/1995	0.02 U	0.5 U	113	0.09	0.05	8.2	0.56	1.02	0.05	NA	7.7	5 U	0.02 U	0.02 U	11.6	3.7	142.3	NA	0.039	60.2	0.00044	8.5	45.1
MW-11	MW-11 Q4(Nov)-95	11/29/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	111.88	NA	NA	52.33	NA	8.75	53.63
MW-11	MW-11 Q4(Nov)-95 Dup	11/29/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	111.18	NA	NA	55.57	NA	9.05	53.23
MW-11	MW-11 Q4(Dec)-95	12/18/1995	0.13	0.6	133	0.11	0.18	6.5	3.47	37.4	3.57	NA	18.3	5 U	0.02 U	0.03	16.3	17.3	186.4	NA	7.86	59.5	0.0822	8.7	55.7
MW-11	MW-11 Q1-96	02/01/1996	0.02 U	0.5 U	95.7	0.02 U	0.02	5.3	1.5	0.88	0.03	NA	2.9	5 U	0.02 U	0.02 U	11.5	4.3	NA	NA	0.034	NA	0.00107	NA	NA
MW-11	MW-11 Q2-96	05/01/1996	0.03	0.5 U	107	0.02 U	0.04	1.6	1.8	2.6	0.27	NA	6.4	50	0.21	0.02 U	10	1.5	NA	NA	0.038	NA	0.0017	NA	NA
MVV-11	MW-11 Q2-96 Dup	05/01/1996	0.02	0.5 0	109	0.02 U	0.04	1.6	1.9	0.6	0.16	NA	6.3	5 U	0.64	0.02 U	10.2	0.9	NA 100	NA	0.041	NA F4.0	0.00128	NA	NA 45.0
	MW 11 Q3-96	09/01/1996		NA 5 U		NA E LL	NA 4 LL	NA 5 U		10 U		NA	NA 20.11	NA E LL	NA 10.11	NA 5.11	INA 14		129	NA NA	0.116	51.0	0.005 0	9.2	45.9
	MW 11 Q4-96	10/01/1996	50 0	50	94	50	4 0	50	10 0	10 0	20	NA	20 0	50	10 0	50	14	10 0	133	NA NA	0.316	52.8	0.007	0.46	46.5
	MW-11 Q1-97	03/24/1997	50 0	50	96	50	40	50	10 0	10 0	20	NA	20.0	50	10 0	50	11	10 0	130	NA NA	2.53	53.1	0.044	9.46	48
	MW 11 Q2-97	06/24/1997	50 0	50	107	50	40	50	10 0	10 0	20	NA	20.0	50	10 0	50	14	10 0	135	NA NA	0.152	54	0.005 0	9.8	51.1
	MW 11 Q3-97	09/11/1997	50 0	50	5.11	50	40	50	10 0	10 0	20	NA	20 0	50	10 U	50	10	10 0	132	NA NA	0.338	53.0	0.009	9.71	50.1
	MW 11 Q4-97	02/25/1997	50 0	50	50	50	4 0	50	10 0	10 0	20	NA	20.0	50	10 0	50	18	10 0	129	NA NA	1.04	51.9	0.02	9.6	50.4
		06/20/1998	50 0	50	99	50	4 U 1 U	50	10 U	10 U	20	NA NA	20.0	50	10 U	50	13	10 0	100		0.120	52.5 40.0	0.032	9.9	54.1
	MW-11 03-09	00/23/1330	0.00	111	106	0.05	40	31	1 1 9	100	20	NA NA	16	50	0.05	0.04 11	10.6	2 2	120		2.04	49.9	0.005 0	10.9	52.5
	MW-11 01-00	12/30/1002	50.09	511	100	5.0	0.5	5.4	1.10	1.9	0.04	NA NA	20.11	50	10 11	5.04 0	10.0	10.11	1/2		2.04	54	0.0174	10.0	56.5
M = 11	MW-11 01-00	03/03/1000	50 0	50	107	50	40	50	10 U	10 0	20	NA	20 0	50	10 U	50	14	10.0	19/	NA	0.305	5/ 1	0.001	9.22	52.8
M\A/_11	MW-11 02-99	06/14/1000	0.02.11	26	102	0.02.11	0.03	11.8	1 26	13	0.08	NΔ	13.7	18	0.02.11	0.04	11.2	0.33	134	NA	0.000	52.1	0.005	10.23	52.0
M\\/_11	MW-11 03-99	09/22/1000	50 11	5.0	95	5 11	<u>4</u> 11	5 11	10 11	10 11	211	NA	20 11	5 11	10 11	5.04	14	10 11	120	NA	0.300	50 9	0.005	Q 1	54 1
MW-11	MW-11 Q4-99	12/09/1999	50 U	50	108	50	4 U	5 U	10 U	10 U	21	NA	20 U	5 U	10 U	5.0	16	10 U	134	NA	0.189	53.8	0.005 U	10	54.4
						~ 7							_, _	~ ~		~ ~ ~									

								î									î					(J/f)	/L)	L)	
			(hg/L)	g/L)	g/L)	(hg/L)	(hg/L)	1/6rl)	٦ ۲	g/L)	(ıg/L)	Ĵ	(hg/L)	Ĺ	hg/L)	(hg/L		ng/L)	ng/L)		0 (mg	e (mg	/gm) i	lg/L)
			ony	ic (µ	й) ш	ium	ium	nium	t (µg	er (hi	(hg/L	L L	forl)	iu	/6rl)) m	lium	hg/L	L) L	de (r	ng/L	esiur	anes	sium	<u>ב</u>
		Parameter	ntim	rsen	ariu	eryll	adm	hron	obal	oddo	ead	ercu	icke	elen	lver	illir	anac	nc (alciu	yani	ı) uc	agn	ang	otas	odiu
Location S	Sample ID	Sample Date	Ā	A	ä	ă	ö	Ū	Ŭ	Ŭ	Ľ	Σ	ž	Ň	S	F	Š	zi	ö	Ű.	- L	Μ	Σ	ď	Ň
Downgradient Wells	Is Continued				-															-					
MW-11 MW-11 G	Q1-00	03/15/2000	50 U	10 U	104	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	129	NA	0.554	52.5	0.01	9.2	55.8
MW-11 MW-11 C	Q2-00	06/21/2000	50 U	5 U	97	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	125	NA	0.02 U	49	0.005 U	8.5	49.8
MW-11 MW-11 C	Q3-00	09/27/2000	50 U	5 U	92	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	124	NA	0.109	50.5	0.005 U	9	53
MW-11 MW-11 C	Q4-00	12/05/2000	50 U	50	99	50	4 U	5 U	10 U	10 U	20	NA	20 U	5 U	10 U	50	13	10 U	123	NA	0.455	52	0.007	9.7	55.1
MVV-11 MVV-11 C	Q1-01	03/27/2001	50 U	50	110	50	4 U	50	10 U	10 U	20	NA	20 U	50	10 U	50	14	10 U	131	NA	0.03	52.3	0.006	9.46	56.1
	Q2-01	06/27/2001	50 U	50	105	50	40	50	10 U	10 U	20	NA	20 0	50	10 0	50	12	10 0	133	NA NA	20 0	52.7	5 U	9	54.2
	Q3-01	09/06/2001	50 U	50	95	50	50	50	10 0	10 0	20	NA	20 0	50	10 0	50	12	10 0	129		0.07	52	0.005 U	9.86	54
	Q4-01	02/27/2002	50 U	50	105	50	50	50	10 U	10 U	2.0	NA	20 0	10 U	10 0	50	10.1	10 0	100		0.02 0	52.3	0.005 U	9.02	52.6
MW-11 MW-11 C	02-02	06/13/2002	50 U	50	107	511	5.0	511	10 U	10 U	2 0	NA	20.0	10 U	10 0	511	14	10 U	120	NA	2.08	54.9	0.003 0	10.5	57.3
MW-11 MW-11 C	03-02	09/18/2002	50 U	50	96.2	50	5.0	511	10 U	10 U	211	NA	20 0	5 11	10 U	511	14	10 U	129	0.01 []	0.02.11	52.9	0.005 11	10.0	55
MW-11 MW-11 C	Q4-02	12/17/2002	50 U	5.0	106	5.0	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5.0	11.4	10 U	129	0.01 U	0.102	54.4	0.005 U	9.83	55.8
MW-11 MW-11 C	Q1-03	03/26/2003	50 U	5 U	97.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	14	10 U	121	0.01 U	1.31	50	0.0256	9.4	51.7
MW-11 MW-11 G	Q2-03	06/26/2003	50 U	5 U	95	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	133	0.01 U	0.02 U	51.7	0.005 U	9.26	53.8
MW-11 MW-11 C	Q3-03	09/25/2003	50 U	5 U	88	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	12	10 U	122	NA	1.69	49.1	0.03	8.73	50.5
MW-11 MW-11 C	Q4-03	12/18/2003	50 U	8 U	88	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	8 U	10 U	5 U	14	10 U	127	NA	0.183	48.9	0.005 U	9.31	52.5
MW-11 MW-11 G	Q1-04	03/17/2004	50 U	5 U	89.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13.5	10 U	122	NA	0.026	49.8	0.005 U	10.3	52.6
MW-11 MW-11 G	Q2-04	06/17/2004	50 U	5 U	87.2	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	13	10 U	117	NA	0.427	49.7	0.0063	9.78	52.8
MW-11 MW-11 C	Q3-04	09/30/2004	50 U	5 U	90.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	12	10 U	120	NA	0.072	47.4	0.005 U	9.49	51.8
MW-11 MW-11 C	Q4-04	12/15/2004	50 U	5 U	94.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15.1	10 U	117	NA	0.104	47.6	0.005 U	9.21	51.5
MW-11 MW-11 C	Q1-05	03/31/2005	50 U	5 U	87	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	13	10 U	116	NA	0.45	46.7	0.0102	8.49	51.7
MW-11 MW-11 G	Q2-05	06/23/2005	50 U	5 U	91	5 U	5 U	5 U	10 U	10 U	4 U	NA	20 U	5 U	10 U	5 U	11	10 U	115	NA	0.142	46.3	0.005 U	10	51.4
MW-11 MW-11 G	Q3-05	09/29/2005	50 U	5 U	92.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	117	NA	0.038	48.3	0.005 U	8.8	54.7
MW-11 MW-11 C	Q4-05	12/14/2005	50 U	5 U	89	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	118	NA	0.02 U	46	0.005 U	9.04	50.5
MW-11 MW-11 C	Q1-06	03/30/2006	50 U	5 U	82.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	10 U	10 U	116	NA	0.407	43.3	0.0083	9.83	48.7
MW-11 MW-11 C	Q2-06	06/21/2006	50 U	5 U	88.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	114	NA	0.03	45.8	0.005 U	9.31	49.9
MW-11 MW-11 G	Q3-06	09/21/2006	50 U	5 U	86.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	110	NA	0.128	43.4	0.005 U	10	46.7
MW-11 MW-11 C	Q4-06	12/28/2006	50 U	5 U	84.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	114	NA	0.223	43.9	0.005 U	9.1	47.3
MW-11 MW-11 C	Q1-07	03/22/2007	50 U	5 U	82.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	111	NA	0.454	44.9	0.0071	7.8	49.5
MW-11 MW-11 C	Q2-07	06/28/2007	50 U	5 U	83.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	110	NA	0.406	43.7	0.005 U	10	48.2
MVV-11 MVV-11 C	Q3-07	09/26/2007	50 U	50	74.3	50	5 U	5 U	10 U	10 U	20	NA	20 U	5 U	10 U	50	11	10 U	108	NA	0.084	43.1	0.005 U	9	46.8
MVV-11 MVV-11 C	Q4-07	12/27/2007	50 U	50	78.3	50	50	50	10 U	10 U	20	NA	20 0	50	10 U	50	12	10 U	111	NA	0.043	44	0.005 U	8.65	47
	Q1-08	03/27/2008	50 U	50	69.8	50	50	50	10 0	10 0	20	NA	20 0	10 0	10 0	50	10 0	10 0	101	NA	0.297	41.6	0.005 U	9.3	43.1
	Q2-08	06/25/2008	50 U	50	71.7	50	50	50	10 0	10 0	20	NA	20 0	50	10 0	50	10 0	10 0	103		0.035	41.0	0.005 U	9.11	44.6
	Q3-06	12/17/2008	50 0	50	79.0	50	50	50	10 U	10 0	2 11	NA	20.0	50	10 0	50	13	10 0	90.2	NA NA	0.02 0	39.7	0.005 0	0.03	43.1
	Q4-06	02/20/2000	50 U				5.0	NA		NA		NA	20.0	5.0			NA		94.1 101		0.23	39.5	0.0939	0.02 8.02	40.9
M\V/_11 M\\/_11 C	02-09	06/24/2009	50 11	5.11	70.3	5.0	5 11	5 11	10 LL	10 11	211	NA	20.11	5 11	10 11	5.11	10	10.11	97.0	NA NA	0.02 0	40.7 30.7		8.46	44.0
MW-11 MM//_11 C	03-09	09/24/2009	NA	NA	ΝΔ	NΔ	NA	NA	NA	NA	NA	NA	NA	NA	ΝΔ	NΔ	NΔ	NA	97.9	ΝΔ	0.02.04	30.4	0.005 0	8 47	42.5
MW-11 MW-11 C	Q4-09	12/18/2009	50 11	5.0	77.8	511	511	511	10 11	10 11	211	NA	20 11	511	10 11	511	12.5	10 11	100	NA	0.02.0	40.8	0.005.0	8.66	43.4
MW-11 MW-11 C	Q1-10	03/30/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	95.1	NA	0.02 U	38.5	0.005	8.44	41.1
MW-11 MW-11 C	Q2-10	06/23/2010	50 U	5 U	77.7	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	4 U	10 U	5 U	14	10 U	95.8	NA	0.05 U	37.3	0.005 U	8.35	38.9
MW-11 MW-11 C	Q3-10	09/29/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	98.4	NA	0.569	39.5	0.0101	8.73	40.5
MW-11 MW-11 C	Q4-10	12/15/2010	50 U	5 U	63.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	95.6	NA	0.027	38.1	0.005 U	8.59	40.2

			(L)			(L)	L)	j/L)				•		L)		7	(T)		(Î		ng/L)	ng/L)	g/L)	<u> </u>
			jou) v	(hg/L)	hg/L)	ßrl) u	ſ6rl) u	й) ш	(J/bi	hg/L)	(L)	(hg/L	g/L)	/6rl) u	g/L)	l/6rl)	6rl) u	L.	l/gm)	(mg/l	(r)	un (r	ese (n	ш) ш	(mg/L
			imon	enic	ium (ylliun	miun	omiu	alt (µ	per (6rl) p	cury	(h	niun	er (hi	lium	adiuı	/Brl) ;	sium	nide	(mg	jnesi	Igane	assiu	lium
Location	Sample ID	Parameter Sample Date	Ant	Ars	Bar	Ber	Cad	Chr	Cob	Cop	Lea	Mer	Nicl	Sele	Silv	Tha	Van	Zinc	Calc	Cya	Iron	Maç	Mar	Pot	Sod
Downgrad	dient Wells Continued	Sample Date																							<u> </u>
MW-11	MW-11 Q1-2011	03/24/2011	50 U	5.0	71.9	5.0	5 U	5 U	10 U	10 U	211	NA	20 U	10 U	10 U	5.0	13.6	10 U	95	NA	0.0353	37.9	0.005 U	8 05	39.6
MW-11	MW-11 Q2-2011	6/21/2011	50 U	5 U	61	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5.0	11	10 U	93.2	NA	0.025	36.8	0.005 U	7.83	36.2
MW-11	MW-11 Q3-2011	9/28/2011	50 U	5 U	68	5 U	5 U	10 U	10 U	10 U	2 U	NA	20 U	16 U	20 U	5 U	20 U	10 U	98.0	NA	0.025	39.5	0.0050 U	8.46	38.6
MW-11	MW-11 Q4-2011	12/14/2011	50 U	5 U	67.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14.1	10 U	84.9	NA	0.020 U	35.8	0.0050 U	7.70	36.9
MW-11	MW-11 Q1-2012	3/28/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	91.3	NA	0.020 U	36.5	0.005 U	8.21	38.0
MW-14	MW-14 Q3-99	09/22/1999	50 U	5 U	49	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	102	NA	8.83	36	0.213	7.2	12.4
MW-14	MW-14 Q4-99	12/09/1999	50 U	5 U	64	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	127	NA	24.8	46.6	0.468	9.5	13
MW-14	MW-14 Q1-00	03/15/2000	50 U	10 U	40	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	62.9	NA	1.35	27.5	0.032	4.6	10.6
MW-14	MW-14 Q2-00	06/21/2000	50 U	5 U	32	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	57.9	NA	0.108	25.4	0.008	5	9.96
MW-14	MW-14 Q3-00	09/27/2000	50 U	5 U	35	5 U	4 U	5 U	10 U	10 U	2 U	NA	35	5 U	10 U	5 U	14	10 U	59	NA	0.162	24.6	0.008	4.5	9.93
MW-14	MW-14 Q4-00	12/05/2000	50 U	5 U	31	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	59.7	NA	1.2	24.6	0.24	5.4	10.4
MW-14	MW-14 Q1-01	03/27/2001	50 U	5 U	31	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	22	10 U	51.8	NA	0.267	23.5	0.008	4.09	9.76
MW-14	MW-14 Q2-01	06/27/2001	50 U	15	26	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	20	10 U	51.5	NA	0.334	22.7	0.01	3.2	9.31
MW-14	MW-14 Q3-01	09/06/2001	50 U	5 U	32	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	62.1	NA	0.154	26.3	0.005	5.07	10
MW-14	MW-14 Q4-01	12/14/2001	50 U	5 U	37	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.6	10 U	70.2	NA	0.129	29.2	0.0057	5.52	11.2
MW-14	MW-14 Q1-02	03/27/2002	50 U	5 U	25.1	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	20	10 U	57.1	NA	0.082	25.7	0.005 U	4.41	9.98
MW-14	MW-14 Q2-02	06/13/2002	50 U	5 U	30.2	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	18	10 U	61.4	NA	0.122	27.1	0.005 U	5.74	10.6
MW-14	MW-14 Q3-02	09/18/2002	50 U	5 U	25.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	19	10 U	56.8	NA	0.035	23.8	0.005 U	4.95	9.86
MW-14	MW-14 Q4-02	12/17/2002	50 U	5 U	39.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	10.5	10 U	50.3	0.02	0.213	22.2	0.005 U	4.79	9.57
MW-14	MW-14 Q1-03	03/26/2003	50 U	50	33	5 U	5 U	5 U	10 U	10 U	2 U	NA	21	10 U	10 U	50	14	10 U	48.2	0.01 U	0.521	21.1	0.0132	4.49	8.69
MW-14	MW-14 Q2-03	06/26/2003	50 U	50	35.1	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	50	18	10 U	69.6	0.01 U	0.45	26.7	0.011	4.98	10.8
MW-14	MW-14 Q3-03	09/25/2003	50 U	50	27	50	50	50	10 U	10 U	20	NA	20 U	10 U	10 U	50	18	10 U	54.1	0.01 U	0.097	22.4	0.005 U	4.49	9.21
MVV-14	MW-14 Q4-03	12/18/2003	50 U	80	37	50	50	50	10 U	10 U	20	NA	20 0	80	10 U	50	11	10 U	86.2	NA 0.01.11	1.72	31.5	0.041	5.94	12.4
	MW-14 Q1-04	03/17/2004	50 0	50	32.8	50	50	50	10 0	10 0	20	NA	20 0	50	10 U	50	14	10 0	66.5	0.01 U	0.102	27.1	0.005 U	6.06	10.8
	MW-14 Q2-04	06/17/2004	50 0	50	29.2	50	50	50	10 0	10 0	20	NA	20.0	10 0	10 0	50	15	10 0	59.2		0.056	25.9	0.005 0	5.19	10.6
	N/W/ 14 Q3-04	12/15/2004	50 U	50	33.7	50	50	50	10 U	10 U	2.0	NA	20.0	5 11	10 U	50	10	10 0	62.5	0.01 U	0.479	24.3	0.0133	4.97	10.4
	MW 14 Q1 05	02/21/2005	50 U	50	34.2	50	50	5.11	10 U	10 U	2.0	NA	20 0	10 11	10 0	50	20	10 U	79.1	0.01 0	7.21	24.0	0.005 0	5.35	11.0
M\\/_14	MW-14 Q1-05	06/23/2005	50 U	50	25	50	50	5.11	10 U	10 U	4 11	NA	35	5 11	10 U	50	17	10 U	44	ΝΔ	0.45	10	0.0932	4.08	8.83
MW-14	MW-14 Q2 05	09/29/2005	50 U	50	26.5	50	5.0	5.0	10 U	10 U	211	NA	44	5 11	10 U	50	17	10 U	51.6	NA	0.45	20.8	0.005 11	3.84	10.3
MW-14	MW-14 Q4-05	12/14/2005	50 U	5 U	20.0	5 U	5 U	5 U	10 U	10 U	2 U	NA	46	5.0	10 U	50	15	10 U	54	NA	0.081	20:0	0.005 U	4 53	9.67
MW-14	MW-14 Q1-06	03/30/2006	50 U	5 U	34.4	5 U	5 U	5.8	10 U	10 U	2 U	NA	62	5 U	10 U	5 U	10	10 U	60.8	NA	1.4	23.7	0.034	5.31	9.73
MW-14	MW-14 Q3-06	09/21/2006	50 U	5 U	30	5 U	5 U	5 U	10 U	10 U	2 U	NA	35	5 U	10 U	5 U	17	10 U	56.3	NA	0.18	21.7	0.005 U	4.7	10.2
MW-14	MW-14 Q4-06	12/28/2006	50 U	5 U	38.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	36	5 U	10 U	5 U	12	10 U	47.3	NA	0.28	19.6	0.0085	4.6	8.56
MW-14	MW-14 Q1-07	03/22/2007	50 U	5 U	25.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	81.8	NA	0.818	31.2	0.0198	5.5	12.7
MW-14	MW-14 Q2-07	06/28/2007	50 U	5 U	27.7	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	55.5	NA	0.143	21.7	0.005 U	5.5	10.2
MW-14	MW-14 Q3-07	09/26/2007	50 U	5 U	21.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	49.1	NA	0.137	20.4	0.005 U	4.6	9.19
MW-14	MW-14 Q4-07	12/27/2007	50 U	5 U	30.7	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	56.5	NA	0.144	22.3	0.0057	5.35	10
MW-14	MW-14 Q1-08	03/27/2008	50 U	5 U	32.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10.5	10 U	5 U	11.5	10 U	85.8	NA	0.439	32.9	0.012	6.37	12.3
MW-14	MW-14 Q2-08	06/25/2008	<u>5</u> 0 U	5 U	28.4	5 U	5 U	6.1	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	53.6	NA	0.089	21.9	0.005 U	4.95	9.76
MW-14	MW-14 Q3-08	09/24/2008	50 U	5 U	29.7	5 U	5 U	5.6	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	16	10 U	48.2	NA	0.104	19.9	0.005 U	4.46	9.04
MW-14	MW-14 Q4-08	12/17/2008	50 U	5 U	25	5 U	5 U	5.1	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	49	NA	0.096	20.4	0.005 U	4.46	9.1
MW-14	MW-14 Q1-09	03/20/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	52.7	NA	0.225	21.3	0.0068	4.75	9.71
MW-14	MW-14 Q2-09	06/24/2009	50 U	5 U	36.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	68.4	NA	0.143	26.5	0.0057	5.21	11.5

		Parameter	Antimony (µg/L)	Arsenic (µg/L)	3arium (µg/L)	3eryllium (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cobalt (µg/L)	Copper (µg/L)	-ead (µg/L)	Mercury (µg/L)	Vickel (µg/L)	Selenium (µg/L)	Silver (µg/L)	Thallium (µg/L)	/anadium (µg/L)	zinc (µg/L)	Calcium (mg/L)	Cyanide (mg/L)	ron (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Potassium (mg/L)	Sodium (mg/L)
Location	Sample ID	Sample Date	`	•			0	Ŭ	Ŭ	0	_	E	2	"	07		-	N	0	Ŭ	-	E	2	ш	
Downgrad	ient Wells Continued							I																	
MW-14	MW-14 Q3-09	09/24/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	63.9	NA	0.049	25.1	0.005 U	5.16	11.2
MW-14	MW-14 Q4-09	12/18/2009	50 U	5 U	36.1	5 U	50	5	10 U	10 U	20	NA	20 U	5 U	10 U	5 U	14.1	10 U	65.9	NA	1.13	26.7	0.0324	5.4	11.2
MW-14	MW-14 Q1-10	03/30/2010	NA	NA	NA 10.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.5	NA	0.507	29.7	0.0133	5.82	12.2
MVV-14	MW-14 Q2-10	06/23/2010	50 U	5 U	43.2	50	50	5.3	10 0	10 U	20	NA	20 0	20	10 0	50	14	10 0	73.7	NA	0.905	27.6	0.0219	5.7	11.2
IVIVV-14	MW-14 Q3-10	09/29/2010	NA 50.11	NA	NA 22.4	NA	NA	NA	NA 40.11	NA 40.11	NA	NA	NA 20.11	NA	NA 40.11	NA	NA 12	NA 40.11	71.9	NA	1.22	27.2	0.0294	5.68	11
MVV-14	MW-14 Q4-10	12/15/2010	50 0	50	33.4	50	50	50	10 0	10 0	20	NA	20 0	50	10 0	50	13	10 0	70.8	NA	1.86	26.4	0.0461	5.65	10.7
IVIVV-14	MW-14 Q1-2011	03/24/2011	50 0	50	31.3	50	50	5.8	10 0	10 0	20	NA	20 0	10 0	10 0	50	14.5	10 0	83.3	NA	1.59	31.6	0.0409	5.97	12.4
IVIVV-14	MW-14 Q2-2011	0/21/2011	50 0	50	34	50	50	5.0 0	10 0	10 0	20	NA	20 0	50	10 0	50	11	10 0	62.3	NA	0.191	24.0	0.0054	4.80	9.55
IVIVV-14	MW-14 Q3-2011	9/28/2011	50 0	50	3/	50	50	10 0	10 0	10 0	20	NA	20 0	10 0	20 0	50	20 0	10 0	89.2	NA	2.710	33.4	0.0584	6.12	12.8
NIVV-14	MW-14 Q4-2011	12/14/2011	50 0	5 0	33.8	50	50	1.1	10.0	10 0	20	NA	20.0	50	10.0	50	16.2	10.0	02.0	NA NA	0.0499	25.6	0.0050 0	5.05	10.7
NIVV-14	MW-14 Q1-2012	3/28/2012				INA 5 LL		NA 5 U			NA	NA	NA 20.11	NA 5 U		NA 5.11	NA 44		/5.5	NA NA	0.149	28.8	0.005 0	5.67	12.0
NIV 15	NW 15 Q3-01	09/06/2001	50 0	50	240	50	50	50	10 0	10 0	20	NA NA	20.0	50	10 0	50	14	10 0	170		0.034	50.2	0.025	9.92	05.1
N/N/ 15	MW 15 Q1 02	12/14/2001	50 U	50	240	50	50	50	10 U	10 0	20	NA NA	20 0	10 0	10 U	50	17.9	10 0	173		0.0719	50.3	0.0101	0.59	90.1
MW 15	MW 15 02 02	06/12/2002	50 0	50	220	50	50	50	10 U	10 U	20	NA NA	20 0	10 U	10 U	50	10	10 0	174		0.001	59.5 60.2	0.0072	9.56	93.0
MW-15	MW-15 Q2-02	00/13/2002	50 11	5.0	274	50	5.0	50	10 U	10 U	2.0	NA	20 0	5 11	10 U	50	17	10 U	175		0.02 0	59.4	0.0104	10.8	00.8
MW-15	MW-15 Q3-02	12/17/2002	50 U	5.0	2/4	50	5.0	50	10 U	10 0	2.0	NA	20 0	10 11	10 U	50	13.2	10 U	162		0.047	56.0	0.0075	10.0	99.0 87
MW-15	MW-15 Q4-02	03/26/2003	50 U	5.0	263	50	50	50	10 U	10 U	211	NA	20 0	10 U	10 U	50	14	10 U	165	0.01 U	0.105	55.7	0.0000	9.46	110
MW-15	MW-15 Q2-03	06/26/2003	50 U	5.11	226	511	511	511	10 U	10 U	211	NA	20 0	10 U	10 U	511	16	10 U	176	0.01 U	0.18	56	0.0053	8.56	99.3
MW-15	MW-15 Q3-03	09/25/2003	50 U	5.0	229	5.0	5.0	5.0	10 U	10 U	21	NA	20 U	10 U	10 U	5.0	13	10 U	167	0.01 U	0.026	54	0.005 U	8.7	91.6
MW-15	MW-15 Q4-03	12/18/2003	50 U	8.U	225	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	8 U	10 U	5 U	18	10 U	168	NA	0.064	51.5	0.005	8.95	92.1
MW-15	MW-15 Q1-04	03/17/2004	50 U	5 U	202	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14.8	10 U	158	NA	0.061	53.5	0.005 U	10.3	90.4
MW-15	MW-15 Q2-04	06/17/2004	50 U	5 U	201	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15	10 U	152	NA	0.024	52.2	0.0051	9.46	94.4
MW-15	MW-15 Q3-04	09/30/2004	50 U	5 U	205	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	14	10 U	154	NA	0.02 U	50.6	0.005 U	8.47	74.7
MW-15	MW-15 Q4-04	12/15/2004	50 U	5 U	202	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	163	NA	0.02 U	55.7	0.005 U	10.1	75
MW-15	MW-15 Q1-05	03/31/2005	50 U	5 U	251	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	178	NA	0.02 U	57.1	0.0165	9.4	124
MW-15	MW-15 Q2-05	06/23/2005	50 U	5 U	221	5 U	5 U	5 U	10 U	10 U	4 U	NA	20 U	5 U	10 U	5 U	14	10 U	167	NA	0.02 U	55.2	0.0185	9.44	87.1
MW-15	MW-15 Q3-05	09/29/2005	50 U	5 U	213	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	168	NA	0.02 U	57.2	0.0163	8.7	75.1
MW-15	MW-15 Q4-05	12/14/2005	50 U	5 U	198	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	170	NA	0.02 U	55.1	0.0246	9.11	69.8
MW-15	MW-15 Q1-06	03/30/2006	50 U	5 U	194	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	174	NA	0.02 U	53	0.038	9.49	74.2
MW-15	MW-15 Q2-06	06/21/2006	50 U	5 U	212	5 U	5 U	5 U	10 U	10 U	2.7	NA	20 U	5 U	10 U	5 U	14	10 U	162	NA	0.02 U	53	0.0436	9.34	75.6
MW-15	MW-15 Q3(Sept)-06	09/21/2006	50 U	5 U	221	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	167	NA	0.02 U	53.2	0.0521	9.38	82.2
MW-15	MW-15 Q4-06	12/28/2006	50 U	5 U	226	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	173	NA	0.02 U	52.5	0.0641	9.2	90.5
MW-15	MW-15 Q1-07	03/22/2007	50 U	5 U	200	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	163	NA	0.02 U	52.2	0.0588	8.8	86.5
MW-15	MW-15 Q2-07	06/28/2007	50 U	5 U	211	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	169	NA	0.02 U	55.4	0.0477	10.1	78
MW-15	MW-15 Q3-07	09/26/2007	50 U	5 U	188	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	169	NA	0.795	55.1	0.0655	9.4	81.1
MW-15	MW-15 Q4-07	12/27/2007	50 U	5 U	208	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	163	NA	0.02 U	53.5	0.0505	8.98	66.8
MW-15	MW-15 Q1-08	03/27/2008	50 U	5 U	163	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	11.8	10 U	149	NA	0.02 U	51.3	0.0369	9.38	57
MW-15	MW-15 Q2-08	06/25/2008	50 U	5 U	178	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	160	NA	0.024	52.8	0.0375	9.12	62.2
MW-15	MW-15 Q3-08	09/24/2008	50 U	5 U	193	5 U	5 U	5 U	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	15	10 U	151	NA	0.02 U	51.3	0.04	9.02	61.7
MW-15	MW-15 Q4-08	12/17/2008	50 U	5 U	151	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	145	NA	0.02 U	49.4	0.0273	8.38	59
MW-15	MW-15 Q1-09	03/20/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	158	NA	0.02 U	53.2	0.0342	9.01	57.2
MW-15	MW-15 Q2-09	06/24/2009	50 U	5 U	198	5 U	5 U	5 U	10 U	19	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	160	NA	0.02 U	53	0.0409	8.86	66.5
MW-15	MW-15 Q3-09	09/24/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	159	NA	0.02 U	52.5	0.0343	8.87	65.5

TABLE G3 HISTORICAL SUMMARY OF METALS GROUNDWATER DATA City of Walla Walla Sudbury Road Landfill

		Parameter	Antimony (µg/L)	Arsenic (µg/L)	3arium (µg/L)	3eryllium (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cobalt (µg/L)	Copper (µg/L)	-ead (µg/L)	Mercury (µg/L)	vickel (µg/L)	Selenium (µg/L)	Silver (µg/L)	Thallium (µg/L)	/anadium (µg/L)	Zinc (µg/L)	Calcium (mg/L)	Syanide (mg/L)	ron (mg/L)	//agnesium (mg/L)	Manganese (mg/L)	otassium (mg/L)	Sodium (mg/L)
Location	Sample ID	Sample Date	`	•			0	U	Ŭ	U	-	E	2	"	•		-	, N	0	0	-	E	2		
Downgrad	ient Wells Continued	1																					1		
MW-15	MW-15 Q4-09	12/18/2009	50 U	5 U	194	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14.2	10 U	161	NA	0.02 U	53.8	0.0331	8.86	62.1
MW-15	MW-15 Q1-10	03/30/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	159	NA	0.02 U	52.9	0.0327	8.78	58.2
MW-15	MW-15 Q2-10	06/23/2010	50 U	5 U	186	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	159	NA	0.02 U	50.3	0.036	8.76	52.6
MW-15	MW-15 Q3-10	09/29/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	161	NA	0.0214	53.9	0.0299	8.9	55.3
MW-15	MW-15 Q4-10	12/15/2010	50 U	5 U	166	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	154	NA	0.023	51.3	0.0297	8.57	55
MW-15	MW-15 Q1-2011	03/24/2011	50 U	5 U	198	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.4	10 U	163	NA	0.02 U	51.5	0.0472	8.56	63.8
MW-15	MW-15 Q2-2011	6/21/2011	50 U	5 U	160	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	150	NA	0.020 U	48.9	0.0335	8.00	53.9
MW-15	MW-15 Q3-2011	9/28/2011	50 U	5 U	174	5 U	5 U	10 U	10 U	10 U	2 U	NA	20 U	6 U	20 U	5 U	20 U	10 U	158	NA	0.0200 U	52.7	0.0335	8.63	59.7
MW-15	MW-15 Q4-2011	12/14/2011	50 U	5 U	168	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16.0	10 U	143	NA	0.032	50.0	0.0341	8.12	54.9
MW-15	MW-15 Q1-2012	3/28/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	155.0	NA	0.036	50.3	0.0394	8.59	60.1
MW-15	MW-15 Q1-2011	03/24/2011	50 U	5 U	198	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.4	10 U	163	NA	0.02 U	51.5	0.0472	8.56	63.8
MW-15	MW-15 Q1-2011	03/24/2011	50 U	5 U	198	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.4	10 U	163	NA	0.02 U	51.5	0.0472	8.56	63.8
MW-15	MW-15 Q1-2011	03/24/2011	50 U	5 U	198	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.4	10 U	163	NA	0.02 U	51.5	0.0472	8.56	63.8
MW-15	MW-15 Q1-2011	03/24/2011	50 U	5 U	198	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.4	10 U	163	NA	0.02 U	51.5	0.0472	8.56	63.8
MW-16	MW-16 Q3-05	09/01/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	213	NA	NA	NA	NA	17.2	21.8
MW-16	MW-16 Q2-06	06/21/2006	50 U	5 U	88.8	5 U	5 U	7.2	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	20	15	119	NA	0.313	51.9	0.0345	7.8	23.6
MW-16	MW-16 Q3(Sept)-06	09/21/2006	50 U	5 U	85.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	19	10 U	119	NA	2.04	51.8	0.0275	7.97	23.5
Notes: Only sar U Ana	nples that were tested for a lyte was not detected at th	at least one metal a e given reporting li	analyte ap mit.	pear in thi	s Table. S	ee Table D.1	for a con	nplete anal	ytical sched	ule by sam	ple.														

NA Not analyzed

TABLE G4 HISTORICAL SUMMARY OF VOLATILE ORGANIC CONSTITUENT GROUNDWATER DATA City of Walla Walla Sudbury Road Landfill

			L)	L)	(J/E					(hg/L)		ie (hg/L)	٦ ٦	((Jug/L)		g/L)		
		Parameter	-Dichloroethane (µg	-Dichloroethane (µg	:-Dichloropropane (µ	nzene (µg/L)	iloroethane (µg/L)	iloroform (µg/L)	iloromethane (µg/L)	-1,2-Dichloroethene	sopropyltoluene Cymene) (µg/L)	ch lorodifi uoromethai	-Propylbenzene (µg/	trachloroethene (µg/)	luene (µg/L)	chloroethene (µg/L)	chlorofluoromethan	ıyl chloride (µg/L)	lene (meta & para) (µ	lene (ortho) (µg/L)	lene (total) (µg/L)
Location	Sample ID	Sample Date	۲,	1,2	1,2	Be	ά	Ċ	Ċ	cis	-д -	ă	isc	Це Ц	۴ ا	Ē	Ē		×	×y	×y
Upgradier	nt Wells																				
MW-05	MW-5 Q1-93	03/30/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	5.3	0.5 U	0.5 U	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q2-93	04/13/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	7.1	0.5 U	2.6	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q2(Jun)-93	06/14/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	6.5	0.5 U	4	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q3-93	09/01/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	5.5	0.5 U	3.7	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q3-94	08/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	1.3	NA	0.5 U	NA	NA	NA	5.6	0.5 U	3.4	0.6	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q3(Sept)-94	09/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	4.2	0.5 U	2.6	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4(Nov)-94	11/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	4.2	0.5 U	0.5 U	0.6	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4(Dec)-94	12/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	3.83	0.5 U	2.39	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-95	01/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	3.7	0.5 U	2.4	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1(Feb)-95	02/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4(Dec)-95	12/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	2	1 U	1	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q2-96	05/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-96	09/01/1996	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q4-96	10/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q2-97	06/24/1997	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-97	09/11/1997	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q4-97	11/25/1997	0.5 U	NA	NA	0.5 U	0.5 U	0.8	NA	0.5 U	NA	NA	NA	3	0.5 U	2.5	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-98	03/25/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	3	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q4-98	12/30/1998	0.5 U	NA	NA	0.5 U	0.5 U	0.7	NA	0.5 U	NA	NA	NA	2.3	0.5 U	2.7	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	2	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.8	NA	0.5 U	NA	NA	NA	2.5	0.5 U	2.8	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	2	0.6 U	3	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1.9	1 U	2.8	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.87	NA	0.5 U	NA	NA	NA	1.8	0.5 U	3.4	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.83	NA	0.5 U	NA	NA	NA	1.8	0.5 U	3.1	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.84	NA	0.5 U	NA	NA	NA	1.7	0.5 U	3.2	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q2-04	06/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.75	NA	0.5 U	NA	0.5 U	NA	1.3	0.5 U	2.8	0.5 U	0.5 U	NA	NA	NA
MW-07	MW-7 Q3-98	07/01/1998	NA	NA	NA	NA	NA	0.5 UJ	NA	NA	NA	NA	NA	1.26	NA	0.5 UJ	NA	NA	NA	NA	NA
MW-07	MW-7 Q1-01	01/31/2001	0.5 U	NA	NA	NA	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	NA	NA	NA
MW-07	MW-7 Q3-10	07/15/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-07	MW-7 Q4-10	11/03/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-07	SLF-MW-07-GW-110510	11/05/2010	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-07	SLF-MW-07-GW-021011	02/10/2011	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	10	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-09	MW-9 Q1-93	03/30/1993	0.5 U	NA	NA	NA	1 U	0.5 U	NA	0.5 U	NA	NA	NA	3.6	NA	0.5 U	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q2-93	04/13/1993	0.5 U	NA	NA	NA	1 U	1.5	NA	0.5 U	NA	NA	NA	4.1	NA	2.6	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q2(Jun)-93	06/14/1993	0.5 U	NA	NA	NA	1 U	0.2 U	NA	0.5 U	NA	NA	NA	2.3	NA	1.7	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q3-93	08/31/1993	0.5 U	NA	NA	NA	1 U	1.3	NA	0.5 U	NA	NA	NA	3.1	NA	2.3	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q3(Sept)-93	09/01/1993	0.5 U	NA	NA	NA	1 U	1.3	NA	0.5 U	NA	NA	NA	3.1	NA	2.3	0.5 U	0.2 U	NA	NA	NA

TABLE G4 HISTORICAL SUMMARY OF VOLATILE ORGANIC CONSTITUENT GROUNDWATER DATA City of Walla Walla Sudbury Road Landfill

		Parameter	-Dichloroethane (µg/L)	-Dichloroethane (µg/L)	-Dichloropropane (µg/L)	nzene (µg/L)	loroethane (µg/L)	loroform (µg/L)	loromethane (µg/L)	-1,2-Dichloroethene (µg/L)	sopropyltoluene Cymene) (µg/L)	chlorodifluoromethane (µg/L)	-Propylbenzene (µg/L)	rachloroethene (µg/L)	uene (µg/L)	chloroethene (µg/L)	chlorofluoromethane (µg/L)	iyl chloride (µg/L)	ene (meta & para) (µg/L)	ene (ortho) (µg/L)	ene (total) (µg/L)
Location	Sample ID	Sample Date	7,7	1,2	1,2	Be	ch	ch	ch	cis	el-q)	Ğ	iso	Tet	Tol	Tri	Ĩ	Vin	Хyl	ХуІ	ХуІ
Upgradien	t Wells Continued	Cumpic Dute				II							I								
MW-09	MW-9 Q1-98	02/01/1998	NA	NA	NA	NA	NA	1.05	NA	NA	NA	NA	NA	1.8	NA	2.5	NA	NA	NA	NA	NA
MW-09	MW-9 Q2-98	07/01/1998	NA	NA	NA	NA	NA	0.5 UJ	NA	NA	NA	NA	NA	1.6	NA	3.2	NA	NA	NA	NA	NA
MW-09	MW-9 Q1-02	01/31/2002	0.5 U	NA	NA	NA	0.5 U	1.2	NA	0.5 U	NA	NA	NA	0.9	NA	4	0.5 U	0.5 U	NA	NA	NA
MW-09	MW-9 Q3-10	07/15/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.87	0.5 U	0.5 U	NA	0.5 U	NA	0.62	0.5 U	1.5	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-09	SLF-MW-09-GW-110410	11/04/2010	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.63	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.53	1 U	1.1	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-09	MW-9 Q4-10	11/04/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.77	0.5 U	0.5 U	NA	0.5 U	NA	0.54	0.5 U	1.4	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-09	SLF-MW-09-GW-021011	02/10/2011	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.72	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.49	1 U	1.2	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-10	MW-10 Q1-98	02/01/1998	NA	NA	NA	NA	NA	2.04	NA	NA	NA	NA	NA	0.5 UJ	NA	0.5 UJ	NA	NA	NA	NA	NA
MW-10	MW-10 Q3-98	07/01/1998	NA	NA	NA	NA	NA	1.49	NA	NA	NA	NA	NA	0.5 UJ	NA	0.5 UJ	NA	NA	NA	NA	NA
MW-10	MW-10 Q1-02	03/27/2002	0.5 U	NA	NA	NA	0.5 U	1.7	NA	0.5 U	NA	NA	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	NA	NA	NA
MW-10	MW-10 Q3-10	07/15/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.7	0.5 U	0.5 U	NA	0.5 U	NA	0.52	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-10	MW-10 Q4-10	11/04/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-10	SLF-MW-10-GW-110410	11/04/2010	0.2 U	0.2 U	0.2 U	0.2 U	1 U	1.1	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.39	1 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-10	SLF-MW-10-GW-021011	02/10/2011	0.2 U	0.2 U	0.2 U	0.2 U	1 U	1.5	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.49	1 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-12	MW-12 Q1-95	03/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	2.2	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-95	07/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.7	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3(Sept)-95	09/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4t-95	10/30/1995	10	NA	NA	10	1 U	10	NA	1 U	NA	NA	NA	10	1 U	1 U	10	1 U	NA	NA	1 U
MW-12	MW-12 Q4(Dec)-95	12/20/1995	10	NA	NA	10	1 U	10	NA	1 U	NA	NA	NA	10	1 U	1 U	10	1 U	NA	NA	1 U
MW-12	MW-12 Q1-96	02/01/1996	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
MVV-12	MW-12 Q2-96	05/29/1996	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
NIVV-12	MVV-12 Q2(Jun)-96	06/01/1996	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
	MW 12 Q3-96	09/01/1996	10	NA	NA NA	10	10	10	NA NA	10	NA	NA NA	NA NA	10	10	10	10	10	NA	NA NA	10
	MW 12 01 07	02/24/1007	1 U	NA NA	NA NA	1 1	1 1	1 1	NA NA	1 11	NA NA	NA NA	NA NA	1 1	1 1	1 11	1 1	1 1			1 1
MW/_12	MW-12 Q1-97	06/24/1997	1	NΔ	NΔ	111	1	1	NΔ	1	NΔ	NΔ	ΝA	1 11	1	1	111	1	NΔ	ΝΔ	1
MW-12	MW-12 Q2 57 MW-12 Q4-97	11/25/1997	0511	NA	NA	0511	0511	0.6	NA	0511	NA	NA	NA	0.6	0511	0511	0511	0511	NA	NA	0511
MW-12	MW-12 Q1-98	03/25/1998	0.0 U	NA	NA	0.0 U	0.0 U	1 U	NA	0.0 U	NA	NA	NA	0.0 1 U	0.0 U	0.0 U	0.0 U	0.0 U	NA	NA	0.0 U
MW-12	MW-12 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-98	12/30/1998	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-99	09/22/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-99	12/09/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q2-00	06/21/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-00	12/05/2000	0.5 U	NA	NA	0.5 U	0.5 U	0.54	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	NA	NA	0.51	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Location	Sample ID	Parameter Sample Date	1,1-Dichloroethane (µg/L)	1,2-Dichloroethane (µg/L)	1,2-Dichloropropane (µg/L)	Benzene (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	Chloromethane (µg/L)	cis-1,2-Dichloroethene (µg/L)	p-lsopropyltoluene (p-Cymene) (µg/L)	Dichlorodifluoromethane (µg/L)	iso-Propylbenzene (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Vinyl chloride (µg/L)	Xylene (meta & para) (µg/L)	Хylene (ortho) (µg/L)	Xylene (total) (µg/L)
-----------	-------------------	--------------------------	---------------------------	---------------------------	----------------------------	----------------	---------------------	-------------------	----------------------	-------------------------------	---	--------------------------------	--------------------------	--------------------------	----------------	------------------------	-------------------------------	-----------------------	-----------------------------	-----------------------	-----------------------
Upgradien	t Wells Continued																				
MW-12	MW-12 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.54	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.61	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.61	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.63	NA	0.5 U	NA	NA	NA	0.5	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q2-02	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-02	09/18/2002	1 U	NA	NA	0.5 U	1 U	1 U	NA	1 U	NA	1 U	NA	1 U	0.5 U	1 U	1 U	1 U	NA	NA	0.5 U
MW-12	MW-12 Q4-02	12/17/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.59	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-03	03/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q2-03	06/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.53	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.97	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-03	09/25/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q4-03	12/18/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	0.5 U	NA	0.58	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-04	03/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.57	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q2-04	06/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	0.5 U	NA	0.5	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-04	09/30/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	0.5 U	NA	0.52	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q4-04	12/15/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.54	NA	0.5 U	NA	0.5 U	NA	0.55	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.58	0.5 U	0.5 U	NA	0.5 U	NA	0.52	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12	MW-12 Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.52	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12	MW-12 Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12	MW-12 Q1-06	03/30/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.51	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q2-06	06/21/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12	MW-12 Q3-07	09/26/2007	NA	NA	NA	0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	0.5 U	NA	NA	NA	NA	NA	0.5 U
MW-12b	MW-12b Q3-08	09/24/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.75	NA	0.5 U	NA	0.5 U	NA	0.9	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q4-08	12/17/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.78	NA	0.5 U	NA	0.5 U	NA	0.72	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q1-09	03/20/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.73	NA	0.5 U	NA	0.5 U	NA	0.81	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q2-09	06/24/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.89	NA	0.5 U	NA	0.5 U	NA	0.73	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q3-09	09/24/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	0.5 U	NA	0.69	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q4-09	12/18/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.88	NA	0.5 U	NA	0.5 U	NA	0.67	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q2-10	06/23/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.68	NA	0.5 U	NA	0.5 U	NA	0.61	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q3-10	09/29/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.93	0.5 U	0.5 U	NA	0.5 U	NA	0.77	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12b	MW-12b Q4-10	12/15/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.65	NA	0.5 U	NA	0.5 U	NA	0.65	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12b	MW-12b Q1-2011	03/24/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.83	0.5 U	0.5 U	NA	0.5 U	NA	0.62	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12b	MW-12b Q2-2011	6/21/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.94	0.5 U	0.5 U	NA	0.5 U	NA	0.73	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12b	MW-12b Q3-2011	9/28/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.70	0.5 U	0.5 U	NA	0.5 U	NA	0.68	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12b	MW-12b Q4-2011	12/14/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.73	0.5 U	0.5 U	NA	0.5 U	NA	0.61	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-12b	MW-12b Q1-2012	3/28/2012	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.89	0.5 U	0.5 U	NA	0.5 U	NA	0.71	0.5 U	0.5 U	0.5 U	0.02 U	0.5 U	0.5 U	NA

												L L					~				
					Ŷ					۲۲)		/6rl)					T/6r				
			(L)	(L)	1/6r					orl)		ne	Ę	Ę			e (F		l/6rl		
			δrl)	ôrl)	l) əı				<u>ا</u> ر-)	ene		etha	ôrl)	6rl)		g/L)	han	î	(a)	Ê	•
			ane	ane	pan		1/6r	Ĵ	6rl)	eth	ene	l ŭ	ene	ene		Sirl) é	met	1/6r	par	l/6rl	ig/L
			eth	eth	bro	Ţ.	l) el	6rl)	ane	oro	nlo:	nor	u zue	ethe	-	ene	oro	de (l	бо 13) (o	1) (I
			oro	oro	oro	3rl)	han	E	eth	lich	pylt ne)	difi	ylbe	oro	Brl)	beth	offu	oric	net	orth	ota
			ichl	ichl	ichl	ene	oet	ofo	E O	5	pro me	oro	rop	chle	ane	loro	lord	chl	l) e() ei	ie (t
		Parameter	1-D	2-D	2-D	enz	lold	loi	loi	<u>.</u>	ှင့် နူ	ichl	<u>с</u>	etra	olue	rich	rich	inyl	yler	yler	yler
Location	Sample ID	Sample Date	7	7	1,	<u>n</u>	с	C	c	ci	9 g		is.	Ĕ	ř	F	Ē	>	×	×	×
Downgrad	ient Wells									-	-		-				-				
MW-01	MW-1 Q3-94	08/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.9	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q3(Sept)-94	09/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	0.9	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q4(Nov)-94	11/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q4(Dec)-94	12/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	0.91	NA	0.5 U	NA	NA	NA	0.78	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q1-95	01/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q1(Feb)-95	02/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q3-95	07/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MVV-01	MW-1 Q1(Sep)-95	09/20/1995	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
MVV-01	MW-1 Q4-95	12/18/1995	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
	MW-1 Q1-96	02/01/1996	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
	MW-1 Q2-96	05/01/1996	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
	MW 1 Q4 96	09/01/1996	10	NA NA	NA	10	10	10	NA NA	10	NA NA	NA NA	NA NA	10	10	10	10	10	NA NA	NA NA	10
	MW 1 02 07	10/01/1996	10	NA NA	NA	10	10	10	NA NA	10	NA NA	NA NA	NA NA	10	10	10	10	10	NA NA	NA NA	10
	MW 1 02 07	00/24/1997	1 11	NA NA	NA NA	111	1 1	1	NA NA	111	NA NA	NA NA	NA NA	111	111	1 11	111	111	NA NA		1 1
MW-01	MW-1 Q3-97	11/25/1007	0511	ΝA	NA	0511	0511	0511	NA	0.5.11	NA	NA	NA	0.8	0.5.11	0511	0.5.11	0.5.11	NA	NA	0511
MW-01	MW-1 Q1-98	03/25/1998	1 11	NA	NA	1 1	1 11	0.0 0	NA	1 1	NA	NA	NA	1	0.0 0	0.0 0	0.0 0	1 1	NA	NA	0.5 0
MW-01	MW-1 Q2-98	06/29/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q3-99	09/22/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q4-99	12/09/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	0.9 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q2-00	06/21/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q4-00	12/05/2000	0.5 U	NA	NA	0.5 U	0.5 U	0.76	NA	0.5 U	NA	NA	NA	0.64	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.77	NA	0.5 U	NA	NA	NA	0.66	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.78	NA	0.5 U	NA	NA	NA	0.66	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Well #2	MW-13 Q4-02	12/17/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.79	0.5 U	0.5 U	NA	NA	NA	0.67	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-03	MW-3 Q3-94	08/01/1994	NA	NA	NA	0.6	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.6	2.2	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q3(Sept)-94	09/01/1994	NA	NA	NA	0.5 U	0.5 U	0.7	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q4(Nov)-94	11/01/1994	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q4(Dec)-94	12/01/1994	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q1-95	01/01/1995	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q1(Feb)-95	02/01/1995	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q3-95	07/01/1995	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q3(Sept)-95	09/20/1995	NA	NA	NA	1 U	1 U	1 U	NA	10	NA	NA	NA	10	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q4-95	12/18/1995	NA	NA	NA	10	1 U	1 U	NA	1 U	NA	NA	NA	1 U	10	1 U	1 U	1 U	NA	NA	1 U

										<u>ب</u> ۲		1/6rl)					(J/Br		•		
			9/L)	g/L)	hg/L					Sirl) e		ane	g/L)	<u>ب</u>		•	1) e(l/6n)		
			ìrl) e	îri) e) eu		Ê		g/L)	Jene	۵	etha	in) و	6rl) o		ig/L)	thai	Ę	ra) (٦ آ	î
			Jane	Jane	opa		/6rl	J/L)	n) e	oeth	J/L)	E D	cene	ene		e (h	me	/6rl)	ba	ſ6rl)	l/6rl
			oeth	oeth	opre	g/L)	ne (ôrl) i	ane		(hč	ION	enz	eth	٦L)	hen	lord	qe	ta 8	(or) (le
			lor	lor	lor	n) e	tha	orm	neth	Dict	ene)	odif	bylb	lord	ồrl) e	oet	ofIL	lori	(me	ort	(tot:
			Dich	Dict	Dict	zen	proe	prof	Lou	, , ,	y m c			ach	ene	hlor	hlor	L C	ne	ne	ne
	1	Parameter	,1-L	,2-I	,2-I	3en:	chlo	Shlo	bld	is-		Dich	so-l	etra	olu	Ticl	_ric	/iny	(yle	(yle	(yle
Location	Sample ID	Sample Date	-	1	-		0	0	0	0	4 C		.=			F	F		<u>^</u>	<u>^</u>	^
Downgrad	ient Wells Continued				1																
MW-03	MW-3 Q1-96 Dup	02/01/1996	NA	NA	NA	10	1 U	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
MW-03	MW-3 Q1-96	02/01/1996	NA	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
MW-03	MW-3 Q2-96	05/01/1996	NA	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
IVIVV-03	MW-3 Q3-96	09/01/1996	NA	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
NNV 02	MW 2 02 07	10/01/1996	NA NA	NA NA	NA NA	111	1 1	1 1	NA NA	111	NA NA	NA NA	NA NA	111	1.1	1 1	1.1	1.1		NA NA	1 U
MW-03	MW-3 Q2-97	00/24/1997	NA	ΝA	NA NA	111	1	10	NA NA	111	NA NA	NA NA	NA NA	111	1 1	1 11	1 1	1 1	NA NA	NA NA	1 1
MW-03	MW-3 Q3-97 MW-3 Q1-98	03/25/1998	NA	NA	NA	1 11	1 []	1	NA	111	NA	NA	NA	111	1 1	1 1	1 1	1 1	NA	NA	1 1
MW-03	MW-3 Q2-98	06/29/1998	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q3-98	09/21/1998	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q4-98	12/30/1998	NA	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q1-99	03/03/1999	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q2-99	06/14/1999	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q3-99	09/22/1999	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q4-99	12/09/1999	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q1-00	03/15/2000	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q2-00	06/21/2000	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q3-00	09/27/2000	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q4-00	12/05/2000	NA	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	NA	NA	0.63	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q1-01	03/27/2001	NA	NA	NA	0.5 U	0.5 U	0.51	NA	0.5 U	NA	NA	NA	0.75	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q2-01	06/27/2001	NA	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.72	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-95	03/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.8	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-95 Dup	03/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.6	0.5 U	0.5 U	0.8	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-95	07/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	1	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-95 Dup	07/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	1	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3(Sept)-95	09/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q3(Sept)-95 Dup	09/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-95	10/30/1995	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1	1 U	1 U	1	1 U	NA	NA	1 U
MW-11	MW-11 Q4-95 Dup	10/30/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4(Dec)-95	12/18/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q1-96	02/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q2-96	05/01/1996	1 U	NA	NA	10	1 U	1 U	NA	10	NA	NA	NA	10	10	1 U	10	10	NA	NA	1 U
MW-11	MW-11 Q2(Jun)-96	06/01/1996	10	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
IVIVV-11	IVIVV-11 Q3-96	09/01/1996	1 U	NA	NA	10	1 U	1 U	NA	10	NÁ	NA	NA	10	10	1 U	10	10	NA	NA	1 U
IVIVV-11	IVIVV-11 Q4-96	10/01/1996	10	NA	NA	10	1 U	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	1 U
		06/24/1997	10			10	10	1		10				10	10	10	10	10			10
	MW 11 04 07	11/25/1007	0.5.11	NA NA				11		0.5.11		NA NA			0.5.11	0.5.11	10	0.5.11	INA NA	NA NA	0.5.11
		03/25/1000	1.5 0			1.5 0	0.5 0	1.1		1 11				0.9	0.5 0	0.3 0	1	0.5 0			0.5 0
10100-11		03/23/1990	10	NA	INA	10	10	I	INA	10	NA N	NA NA	INA	10	10	10	10	10	NA NA	INA	10

Location	Sample ID	Parameter Samole Date	1,1-Dichloroethane (µg/L)	1,2-Dichloroethane (µg/L)	1,2-Dichloropropane (µg/L)	Benzene (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	Chloromethane (µg/L)	cis-1,2-Dichloroethene (µg/L)	p-Isopropyltoluene (p-Cymene) (µg/L)	Dichlorodifluoromethane (µg/L)	iso-Propylbenzene (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Vinyl chloride (µg/L)	Xylene (meta & para) (µg/L)	Xylene (ortho) (µg/L)	Xylene (total) (µg/L)
Downgrad	ient Wells Continued											1	1					1	1		
MW-11	MW-11 Q2-98	06/29/1998	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-98	12/30/1998	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.8	NA	0.5 U	NA	NA	NA	2.3	0.5 U	2.8	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-99	09/22/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-99	12/09/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q2-00	06/21/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1.1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-00	12/05/2000	0.5 U	NA	NA	0.5 U	0.5 U	0.98	NA	0.5 U	NA	NA	NA	0.64	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.98	NA	0.5 U	NA	NA	NA	0.68	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.99	NA	0.5 U	NA	NA	NA	0.69	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.75	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.73	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	NA	NA	0.78	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-02	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.97	NA	0.5 U	NA	NA	NA	0.67	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-02	09/18/2002	1 U	NA	NA	0.5 U	1 U	1.1	NA	1 U	NA	1 U	NA	1 U	0.5 U	1 U	1 U	1 U	NA	NA	0.5 U
MW-11	MW-11 Q4-02	12/17/2002	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	1 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-03	03/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.94	NA	0.5 U	NA	0.5 U	NA	0.63	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-03	06/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.64	NA	0.82	1.1	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-03	09/25/2003	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	0.56	NA	0.71	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-03	12/18/2003	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	0.75	NA	0.87	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-04	03/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.8	NA	0.75	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-04	06/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.8	NA	0.75	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-04	09/30/2004	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.71	NA	0.84	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-04	12/15/2004	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.63	NA	0.85	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	NA	0.8	NA	0.84	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0.5 U	NA	0.77	NA	0.81	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	NA	0.5 U	NA	0.88	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q4-05	12/14/2005	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.76	NA	0.93	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-06	03/30/2006	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.94	NA	0.91	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-06	06/21/2006	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.8	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	NA	0.84	NA	0.87	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q4-06	12/28/2006	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.93	NA	0.81	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-07	03/22/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.72	NA	0.78	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-07	06/28/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.69	NA	0.93	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-07	09/26/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.69	NA	0.9	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-07	12/27/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.63	NA	0.93	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U

			(-	ſ	(1/					hg/L)		e (ng/L)	î				(hg/L)		(-1/6		
			ichloroethane (µg/	ichloroethane (µg/	ichloropropane (µ	ene (µg/L)	roethane (µg/L)	roform (µg/L)	romethane (µg/L)	,2-Dichloroethene (propyltoluene /mene) (µg/L)	lorodifluoromethan	ropylbenzene (µg/l	ichloroethene (µg/l	ene (µg/L)	iloroethene (µg/L)	ilorofluoromethane	l chloride (µg/L)	ne (meta & para) (µ	ne (ortho) (µg/L)	ле (total) (µg/L)
	T	Parameter	,1-D	,2-C	,2-C	ßenz	chlo	hlo	old	is-		Dich	So-F	etra	olu	rict	rict	'iny	yle	(ylei	(ylei
Location	Sample ID	Sample Date	-	-	~	ш	0	0	0	0	9 9 1			F		F		>	×	×	×
Downgrad	lient Wells Continued																				
MW-11	MW-11 Q1-08	03/27/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.3	NA	0.5 U	NA	0.92	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-08	06/25/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.8	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MVV-11	IVIVV-11 Q3-08	09/24/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.76	NA	1	0.5 0	0.5 U	0.5 0	0.5 U	NA	NA	0.5 U
	MW-11 Q4-08	12/17/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.83	NA	0.99	0.5 U	0.5 U	0.5 0	0.5 U	NA	NA	0.5 U
	MW 11 Q1-09	03/20/2009	0.5 0	NA NA	NA NA	0.5 0	0.5 U	1.2	NA NA	0.5 0		0.52	NA NA	1.1	0.5 0	0.5 0	0.5 0	0.5 0		NA NA	0.5 U
$M_{\Lambda}/_{-11}$	MW-11 Q2-09	00/24/2009	0.5 U	ΝA	NA	0.5 0	0.5 U	1.3	NA	0.5 0	NA NA	0.5 0	NA NA	0.90	0.09	0.5 0	0.5 0	0.5 0	NA NA	NA NA	0.5 U
MW-11	MW-11 Q3-09	12/18/2009	0.5 0	NA	NA	0.5 U	0.5 U	1.3	NA	0.5 U	NA	0.55	NA	0.31	0.5 U	0.5 U	0.5 0	0.5 0	NA	NA	0.5 U
MW-11	MW-11 Q1-10	03/30/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	NA	0.52	NA	11	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q2-10	06/23/2010	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	0.5 U	NA	0.85	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-10	09/29/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.5	0.5 U	0.5 U	NA	0.5 U	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q4-10	12/15/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.98	NA	0.5 U	NA	0.5 U	NA	0.94	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-2011	03/24/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	NA	0.5 U	NA	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q2-2011	6/21/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	NA	0.51	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q3-2011	9/28/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0.5 U	NA	0.50 U	NA	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q4-2011	12/14/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.0	0.5 U	0.5 U	NA	0.60	NA	0.96	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q1-2012	3/28/2012	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	NA	0.58	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q3-99	09/22/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-14	MW-14 Q4-99	12/09/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-14	MW-14 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-14	MW-14 Q2-00	06/21/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-14	MW-14 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-14	MW-14 Q4-00	12/05/2000	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.79	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.82	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.85	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.76	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-02	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.66	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-02	09/18/2002	1 U	NA	NA	0.5 U	1 U	1 U	NA	1 U	NA	1 U	NA	1 U	0.5 U	1 U	1 U	1 U	NA	NA	0.5 U
MW-14	MW-14 Q4-02	12/17/2002	0.5 U	NA	NA	0.5 U	0.5 U	1 U	NA	0.5 U	NA	1.6	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-03	03/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.68	NA	0.5 U	NA	1.2	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-03	06/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.76	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.61	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-03	09/25/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.67	NA	0.5 U	NA	1.1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
IVIVV-14	IVIVV-14 Q4-03	12/18/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.82	NA	0.5 U	NÁ	1.9	NÁ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NÁ	NA	0.5 U
IVIVV-14	IVIVV-14 Q1-04	03/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.82	NA	0.5 0	NA	1./	NA	0.5 U	0.5 0	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
	IVIVV-14 Q2-04	00/17/2004	0.5 U		NA	0.5 U	0.5 U	0.53	NA	0.5 U	NA	1.3	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
	IVIVV-14 Q3-04	12/15/2004	0.5 0		INA NIA	0.5 0	0.5 0	0.70		0.5 0		1.4		0.5 0	0.5 0	0.5 U	0.5 0	0.5 0			0.5 0
10100-14	10100-14 Q4-04	12/15/2004	0.5 U	NA	NA	0.5 U	0.5 U	U./	INA	0.5 U	INA	1.2	INA	U.5 U	0.5 U	0.5 U	0.5 U	0.5 U	INA	INA	0.5 U

										-		g/L)					Ĵ				
			Î	Ŷ	(T)					hg/L		e (hi	$\widehat{}$				/6rl)		JL)		
			1/6rl	1/6rl	6rl) :				Î) eu		han	hg/L	T/br		Ę	ane		จิศ) (-	
			ne (ne (ane		g/L)	î	l/6rl	othe	e 🔒	met	ue (I	()) e(/6rl)	leth	g/L)	ara	g/L)	/r)
			tha	tha	rop	Ê	ŝrl) e	ng/L	ne (loe	lue hg/L	ō	Jzei	ther		aue	Lon To	n) e	ୁ କ	н) (н	6rl)
			roe	loe	rop	/6rl)	ane	E E	itha	chlo	e) (i	iflu	lbei	roet	1/6rl	ethe	onl	oride	eta	rtho	tal)
			chlo	chlo	chlo	ne (beth	ofor	ame	ij	nen	log	, do	old) e(oroe	orof	chlo	E)	io) é	e (to
		Parameter	-Dic	-Dic	Ģ	nze	lore	lore	lore	7,	Cyr	olk	Ľ,	trac	luer	chlc	chle	ž	lene	lene	lene
Location	Sample ID	Sample Date	<u>۲</u>	1,2	1,2	Be	сh	сh	Сh	cis	교승	ă	isc	Le T	L 5	Ë	Ē	-i,	×	xy	×y
Downgrad	lient Wells Continued																				
MW-14	MW-14 Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.78	0.5 U	0.5 U	NA	1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.51	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 U	NA	0.83	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q4-05	12/14/2005	0.5 U	NA	NA	0.5 U	0.5 U	0.63	NA	0.5 U	NA	0.94	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-06	03/30/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.58	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	NA	0.86	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q4-06	12/28/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.65	NA	0.5 U	NA	1.7	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-07	03/22/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	0.85	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-07	06/28/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-07	09/26/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-07	12/27/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-08	03/27/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.74	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-08	06/25/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
IVIVV-14	MW-14 Q3-08	09/24/2008	0.5 0	NA	NA	0.5 U	0.5 0	0.5 0	NA	0.5 0	NA	0.74	NA	0.5 0	0.5 0	0.5 U	0.5 0	0.5 0	NA	NA	0.5 0
N/N/ 14	MW 14 Q1 00	12/17/2008	0.5 0	NA NA	NA	0.5 0	0.5 U	0.5 0	NA NA	0.5 0		0.53	NA NA	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0		NA NA	0.5 0
M\A/_14	MW-14 Q1-09	06/20/2009	0.5 U	NA NA	NA	0.5 0	0.5 U	0.5 0	NA NA	0.5 0	NA NA	0.00	NA NA	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	NA NA	NA NA	0.5 U
M\\/_14	MW-14 Q2-09	09/24/2009	0.5 0	NΔ	NΔ	0.5 U	0.5 0	0.52	NΔ	0.5 U	ΝA	1.4	ΝA	0.5 0	0.5 0	0.5 U	0.5 0	0.5 0	NA	ΝΔ	0.5 0
MW-14	MW-14 Q3 03	12/18/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.61	NA	0.5 U	NA	0.88	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-10	03/30/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.61	0.5 U	0.5 U	NA	1.3	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q2-10	06/23/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.53	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-10	09/29/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.76	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q4-10	12/15/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	1.1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-2011	03/24/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.55	0.5 U	0.5 U	NA	0.71	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q2-2011	6/21/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.60	0.5 U	0.5 U	NA	1.2	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q3-2011	9/28/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.62	0.5 U	0.5 U	NA	1.3	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q4-2011	12/14/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.68	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q1-2012	3/28/2012	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.67	0.5 U	0.5 U	NA	1.4	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.02 U	0.5 U	0.5 U	NA
MW-15	MW-15 Q3-01	09/06/2001	7.6	NA	NA	0.5 U	1.7	0.5 U	NA	9.2	NA	NA	NA	11	0.5 U	3.8	1.6	1.4	NA	NA	0.5 U
MW-15	MW-15 Q4-01	12/14/2001	5.8	NA	NA	0.5 U	1.2	0.5 U	NA	8.1	NA	NA	NA	9.2	0.5 U	3.4	1.4	2.1	NA	NA	0.5 U
MW-15	MW-15 Q1-02	03/27/2002	5.8	NA	NA	0.5 U	1.4	0.5 U	NA	8.1	NA	NA	NA	8.6	0.5 U	3.1	1.3	2.8	NA	NA	0.5 U
MW-15	MW-15 Q2-02	06/13/2002	5.5	NA	NA	0.5 U	1.5	0.5 U	NA	8.5	NA	NA	NA	9.4	0.5 U	3	1	3.4	NA	NA	0.5 U
MW-15	MW-15 Q3-02	09/18/2002	6.2	NA	NA	0.5 U	1.5	1 U	NA	8.9	NA	9.4	NA	9.5	0.5 U	3.5	1	3.7	NA	NA	0.5 U
MW-15	MW-15 Q4-02	12/17/2002	6.1	NA	NA	0.5 U	1.4	1 U	NA	8.8	NA	13	NA	9.9	0.5 U	3.7	1.4	3.3	NA	NA	0.5 U
MW-15	MW-15 Q1-03	03/26/2003	4.8	NA	NA	0.5 U	1.1	0.5 U	NA	6.8	NA	10	NA	7.4	0.5 U	2.8	1.1	2.4	NA	NA	0.5 U
MW-15	MW-15 Q2-03	06/26/2003	5.2	NA	NA	0.5 U	1.2	0.5 U	NA	8.4	NA	11	NA	9.5	0.5 U	3.3	1.2	2.7	NA	NA	0.5 U
IVIVV-15	IVIVV-15 Q3-03	09/25/2003	5.9	NA	NA	0.5 U	1.4	0.5 U	NA	9.4	NA	10	NA	9.2	0.5 U	3.4	1.1	3.8	NA	NA	0.5 U
IVIVV-15	IVIVV-15 Q4-03	12/18/2003	5.1	NA	NA	0.5 U	1.1	0.5 U	NA	8.6	NA NA	11	NA NA	9.9	0.5 0	3	1	2.8	NA	NA	0.5 U
10100-15	10100-15 Q1-04	03/17/2004	4.5	NA NA	NA	U.5 U	U./8	0.5 U	INA	1.1	INA	9.9	INA	0./	0.08	2.0	0.97	1.8	INA	NA NA	0.5 U

Location	Sample ID	Parameter Sample Date	1,1-Dichloroethane (µg/L)	1,2-Dichloroethane (µg/L)	1,2-Dichloropropane (µg/L)	Benzene (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	Chloromethane (µg/L)	cis-1,2-Dichloroethene (µg/L)	p-Isopropyltoluene (p-Cymene) (µg/L)	Dichlorodifluoromethane (µg/L)	iso-Propylbenzene (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Vinyl chloride (µg/L)	Хуlene (meta & para) (µg/L)	Xylene (ortho) (µg/L)	Хуlene (total) (µg/L)
Downgrad	Int wells Continued	00/47/0004	4.0	NIA	NIA	0.5.11	4.0	0.5.11	NIA	7 5	NIA	44		-	0.5.11	0.5		0.0	NIA	NIA	0.5.11
MVV-15	MW-15 Q2-04	06/17/2004	4.6	NA	NA	0.5 U	1.9	0.5 U	NA	7.5	NA	11	NA	/	0.5 U	2.5	1	2.3	NA	NA	0.5 U
IVIVV-15	MW-15 Q3-04	09/30/2004	4.5	NA	NA	0.5 U	0.78	0.5 U	NA	8	NA	8.4	NA	7.5	0.5 U	2.7	1.2	1.9	NA	NA	0.5 U
MW 15	WW 15 01 05	12/15/2004	4.1 5.6			0.5 0	0.74	0.5 U		1.1	NA NA	7.0	NA NA	7.0	0.5 U	2.0	1.1	1.9			0.5 U NA
MW-15	MW-15 Q1-05	06/23/2005	J.0	0.5 0	0.5 U	0.5 0	0.93	0.5 0	0.5 U	83	NA	9.4	ΝA	7.5	0.5 0	27	1.1	2.4	0.5 0	0.5 U	NA
MW-15	MW-15 Q2-05	09/29/2005	5.5	0.5 U	0.5 U	0.5 U	0.85	0.5 U	0.5 U	11	NA	7	NA	7.5	0.5 U	3	1.1	2.4	0.5 U	0.5 U	NA
MW-15	MW-15 Q4-05	12/14/2005	4.5	NA	NA	0.5 U	0.74	0.5 U	NA	8.6	NA	6.7	NA	6.9	0.5 U	2.5	1.3	1.6	NA	NA	0.5 U
MW-15	MW-15 Q1-06	03/30/2006	4.6	NA	NA	0.5 U	0.67	0.5 U	NA	7.9	NA	6.6	NA	6.5	0.5 U	2.4	1.2	1.6	NA	NA	0.5 U
MW-15	MW-15 Q2-06	06/21/2006	4.1	NA	NA	0.5 U	0.69	0.5 U	NA	7.5	NA	5.9	NA	6.5	0.5 U	2.1	1.1	1.6	NA	NA	0.5 U
MW-15	MW-15 Q3(Sept)-06	09/21/2006	6.3	0.5 U	0.5 U	0.5 U	1	0.5 U	0.5 U	12	NA	3.8	NA	7.9	0.5 U	3	0.5 U	3	0.5 U	0.5 U	NA
MW-15	MW-15 Q4-06	12/28/2006	4.3	NA	NA	0.5 U	0.61	0.5 U	NA	8.6	NA	0.57 U	NA	6.3	0.5 U	2.1	0.69	1.9	NA	NA	0.5 U
MW-15	MW-15 Q1-07	03/22/2007	4.4	NA	NA	0.5 U	0.57	0.5 U	NA	8.7	NA	4.3	NA	5.6	0.5 U	2.2	1	1.5	NA	NA	0.5 U
MW-15	MW-15 Q2-07	06/28/2007	3.7	NA	NA	0.5 U	0.5 U	0.5 U	NA	8	NA	5.3	NA	6.1	0.5 U	2.1	1.2	1.3	NA	NA	0.5 U
MW-15	MW-15 Q3-07	09/26/2007	5.4	NA	NA	0.5 U	0.66	0.5 U	NA	12	NA	4	NA	6.9	0.5 U	2.5	0.56	2	NA	NA	0.5 U
MW-15	MW-15 Q4-07	12/27/2007	3.9	NA	NA	0.5 U	0.64	0.5 U	NA	8.7	NA	4.1	NA	5.5	0.5 U	2	1.1	1.6	NA	NA	0.5 U
MW-15	MW-15 Q1-08	03/27/2008	3.7	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.8	NA	4.8	NA	6.4	0.5 U	2.2	1.1	1.2	NA	NA	0.5 U
MW-15	MW-15 Q2-08	06/25/2008	3.1	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.3	NA	5.4	NA	5.5	0.5 U	1.9	1.1	0.96	NA	NA	0.5 U
MW-15	MW-15 Q3-08	09/24/2008	3.2	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.8	NA	4.1	NA	6	0.5 U	1.7	1.1	1.1	NA	NA	0.5 U
MW-15	MW-15 Q4-08	12/17/2008	3.3	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.8	NA	5.2	NA	4.9	0.5 U	1.9	0.84	1.1	NA	NA	0.5 U
MW-15	MW-15 Q1-09	03/20/2009	3	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.1	NA	3.9	NA	5.6	0.5 U	1.9	1.1	0.8	NA	NA	0.5 U
MW-15	MW-15 Q2-09	06/24/2009	3.6	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.5	NA	3.5	NA	5.1	0.5 U	1.9	0.9	0.95	NA	NA	0.5 U
MW-15	MW-15 Q3-09	09/24/2009	2.9	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.1	NA	4.1	NA	4.5	0.5 U	1.7	1.1	0.68	NA	NA	0.5 U
MW-15	MW-15 Q4-09	12/18/2009	3.3	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.1	NA	3.6	NA	4.8	0.5 U	1.8	0.92	0.9	NA	NA	0.5 U
MW-15	MW-15 Q1-10	03/30/2010	2.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.5	NA	3.6	NA	5	0.5 U	1.6	1.1	0.66	0.5 U	0.5 U	NA
MW-15	MW-15 Q2-10	06/23/2010	2.4	NA	NA	0.5 U	0.5 U	0.5 U	NA	6.7	NA	2.4	NA	4	0.5 U	1.5	0.72	0.55	NA	NA	0.5 U
MW-15	MW-15 Q3-10	09/29/2010	3.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	8.9	NA	3.3	NA	5.1	0.5 U	1.9	0.89	0.84	0.5 U	0.5 U	NA
MW-15	MW-15 Q4-10	12/15/2010	2.4	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.2	NA	3.1	NA	4.3	0.5 U	1.4	0.79	0.76	NA	NA	0.5 U
MW-15	MW-15 Q1-2011	03/24/2011	3.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	9.4	NA	2.6	NA	4.6	0.5 U	1.7	0.65	0.77	0.5 U	0.5 U	NA
MW-15	MW-15 Q1-2011	03/24/2011	3.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	9.4	NA	2.6	NA	4.6	0.5 U	1.7	0.65	0.77	0.5 U	0.5 U	NA
MW-15	MW-15 Q2-2011	6/21/2011	3.0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	9.3	NA	3.4	NA	5.0	0.5 U	1.7	0.65	0.51	0.5 U	0.5 U	NA
MW-15	MW-15 Q3-2011	9/28/2011	2.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	7.8	NA	2.8	NA	4.5	0.5 U	1.7	0.65	0.5 U	0.5 U	0.5 U	NA
MW-15	MW-15 Q4-2011	12/14/2011	2.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	7.6	NA	3.3	NA	4.0	0.5 U	1.7	0.65	0.5 U	0.5 U	0.5 U	NA
MW-15	MW-15 Q1-2012	3/28/2012	3.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	9.0	NA	3.0	NA	4.7	0.5 U	1.7	0.65	0.66	0.5 U	0.5 U	NA
MW-16	MW-16 Q3-05	09/01/2005	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	5 U	1 U	1.61	1 U	1 U	1 U	1 U	0.2 U	2 U	1 U	NA
MW-16	MW-16 Q2-06	06/21/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.54	NA	0.5 U	NA	0.74	NA	0.52	0.5 U	0.5 U	1.8	0.5 U	NA	NA	0.5 U
MW-16	MW-16 Q3(Sept)-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.63	NA	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	NA
MW-16	MW-16 Q1-2011	03/24/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 U	NA	0.54	NA	0.64	0.5 U	0.5 U	0.74	0.5 U	0.5 U	0.5 U	NA

TABLE G4 HISTORICAL SUMMARY OF VOLATILE ORGANIC CONSTITUENT GROUNDWATER DATA City of Walla Walla Sudbury Road Landfill

		Parameter	,1-Dichloroethane (µg/L)	,2-Dichloroethane (µg/L)	,2-Dichloropropane (µg/L)	ienzene (µg/L)	:hloroethane (µg/L)	:hloroform (µg/L)	:hloromethane (µg/L)	is-1,2-Dichloroethene (µg/L)	-Isopropyltoluene -Cymene) (µg/L)	ichlorodifluoromethane (µg/L)	so-Propylbenzene (µg/L)	etrachloroethene (µg/L)	oluene (µg/L)	richloroethene (µg/L)	richlorofluoromethane (µg/L)	inyl chloride (µg/L)	:ylene (meta & para) (µg/L)	ylene (ortho) (µg/L)	ylene (total) (µg/L)
Location	Sample ID	Sample Date	-	-	-	8	0	0	0	υ	d 3			⊢	+	F	F	>	×	×	×
Residentia	al Wells																				
Camp	Camp Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.74	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.67	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.73	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.76	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q2-09	06/24/2009	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Kinman	Kinman Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Kinman	Kinman Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small 061302	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small 062602	06/26/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q1-04	03/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.99	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q3-04	09/30/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.52	NA	0.5 U	NA	0.5 U	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q4-04	12/15/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.51	NA	0.5 U	NA	0.5 U	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.55	0.5 U	0.5 U	NA	0.5 U	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.54	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.51	0.5 U	0.5 U	NA	0.5 U	NA	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q2-09	06/24/2009	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.56	0.5 U	0.5 U	NA	0.5 U	NA	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q3-10	09/29/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.62	0.5 U	0.5 U	NA	0.5 U	NA	1.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Notes: Only Only	Small Q3-10 09/29/2010 0.5 U 0.5 U 0.5 U 0.62 0.5 U 0.5 U NA 1.5 0.5 U 0.5 U																				

uyu

U Analyte was not detected at the given reporting limit.

UJ Analyte was not detected, and the given reporting limit is an estimated value.

NA Not analyzed

APPENDIX H

HWA GeoSciences Memorandum

HWA GEOSCIENCES INC.

Geotechnical & Pavement Engineering • Hydrogeology • Geoenvironmental • Inspection & Testing

January 27, 2010 HWA Project No. 2009-094-21

J-U-B Engineers, Inc. 2810 Clearwater Avenue, Suite 201 Kennewick, Washington 98336

Alex Fazzari, P.E. Attention:

Subject: **Alternative FINAL COVER DESIGN AREA 6 CLOSURE** Sudbury Road Landfill Walla Walla, Washington

Dear Alex:

We understand that the City of Walla Walla is proposing the use of an alternative final cover system comprised of an Evapotranspiration Cap for the Area 6 closure at Sudbury Road Landfill. At your request, HWA Geosciences Inc., has conducted laboratory and engineering analyses to calculate the minimum depth for a monolithic soil layer comprised of on-site soils to ensure that the required water storage of the cover is less than the available water storage capacity of the soil. The current EPA guidance (Albright et al, 2009) based on data from the Alternative Cover Assessment Program (ACAP), is that typical composite cover systems exhibit percolation rate in the range of 4 mm/year. In contrast, a performance criteria limiting basal flow through a soil cover to less than 3% of annual precipitation has been proposed by Hauser (2009) based on measured leakage rates from conventional covers (compacted soil, and composite covers) which range from 2 to 10% of annual precipitation. However, for the purposes of this evaluation, a percolation rate of less than 4mm/year from the base of the cover soil layer was used as the limiting design criteria.

Monolithic Water Storage Layer

The proposed cover soil (native soils from the existing on-site stockpile) consist of sandy Silt (ML) found at the Sudbury Road landfill site predominately belonging to the map unit locally termed Touchet Beds which consist of fine-grained soils deposited in ponded waters from a succession of glacial outburst floods. These soils are classified as silt loam using the USDA soil classification and appear to have a water storage capacity ranging between 17 to 20 percent (USDA physical properties for Walla Walla silt loam). The material samples used in this evaluation were obtained by a City of Walla Walla representative at three locations within the stockpile area as shown on Figure 1.

19730 - 64th Avenue W. Suite 200 Lynnwood, WA 98036.5957

> Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com

The material utilized is this evaluation has the following general characteristics:

Moderate relative density	Moderate Compressibility
Non-plastic	High Frost Susceptibility
Non-Expansive	Low permeability
Moderate friction angle	High capillary potential
Slight cohesion	Low organic content

Table 1 General Characteristics of Stockpile Soils

Laboratory testing of the soil samples was performed by HWA GeoSciences, at our laboratory in Lynnwood, Washington. Laboratory tests included determination of in-situ moisture content, grain size distribution, soil moisture-density relationship determination (proctor), and hydraulic conductivity of soils. The laboratory tests were conducted in general accordance with appropriate American Society of Testing and Materials (ASTM) standards, and are discussed in further detail in Appendix A.

Table 2	Summary o	f Laboratory	Test Results	for	Stockpile Soils
---------	-----------	--------------	---------------------	-----	------------------------

Engineering Properties	Laboratory Value
Field Moisture	Gravimetric = 10%, Volumetric = 18%
Maximum Density (ASTM D 698)	106.7 pcf
Optimum Moisture (ASTM D 698)	18.1% by dry weight
Specific Gravity	2.73
Hydraulic Conductivity	3.0×10^{-5} cm/sec.

Sample	Sand	Silt	Clay
Designation	(2.0 to 0.05 mm)	(0.05 to 0.002 mm)	<0.002 mm
1-3 Composite	40%	55%	5%

Table 3 Stockpile Soil Gradation (USDA Classification)

Table 4 Estimated Soil Water Characteristics (USDA)

Field Capacity	0.243
Wilting Point	0.058
Available Water Holding Capacity Volume	0.185

Design Criteria Assumptions

1. The soil water characteristic curve properties of the stockpile soils used in this analysis are based on those presented by Albright (2009) and are summarized below:

- I. Residual water content is 0%
- II. Van Genuchten "n" value is 1.3
- III. Van Genuchten α is 0.01; and
- IV. Exponent of pore interaction is -2

2. Stockpile sample soils consist of 40% sand, 55% silt and 5% clay (USDA classification).

3. Precipitation data measured on site from 1991 through June 2004 was used to estimate the required thickness of cover soil for water storage. For the period from 1991 through June 2004, average annual precipitation was 11.53 inches per year. The maximum annual precipitation amount measured at this location was 16.47 inches during 1996 (See Table 5).

4. The nearest weather station with long term weather reporting is located at the Whitman Mission and was available on-line from the Western Regional Climate Center and NOAA's National Weather service website. For the period from 1962 to 2009, average annual precipitation was 13.95 inches per year. The maximum annual precipitation amount measured at this location was 20.8 inches also during 1996.

5. Data from the Western Regional Climate Center was used to obtain average temperature, snowfall, dew point; wind velocity and cloud cover input.

Design Analysis

Precipitation records were collected from a weather station located at the Sudbury Road Landfill site from 1991 through June, 2004. The data was summarized in the Design report prepared by EMCON and is summarized in Table 5 below:

Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	тот
1991	0.71	1.00	0.72	0.74	2.35	1.10	0.42	0.33	0.00	0.79	2.03	1.41	11.60
1992	0.78	1.29	0.38	0.98	0.41	1.74	1.94	0.53	0.75	0.03	2.01	0.24	11.06
1993	1.05	0.60	0.90	1.00	1.24	1.48	0.86	1.06	0.00	0.33	0.06	1.79	10.37
1994	1.14	0.88	0.67	0.38	0.79	1.38	0.28	0.16	0.11	0.32	0.68	0.35	7.14
1995	0.09	0.46	2.13	2.28	0.75	1.11	0.49	0.69	1.47	1.16	1.21	1.63	13.47
1996	2.04	2.68	0.61	2.33	1.58	0.82	0.00	0.44	0.02	1.62	1.62	2.71	16.47
1997	2.45	0.61	1.38	2.06	1.14	0.05	0.46	0.00	0.84	1.09	1.11	0.85	12.04
1998	1.70	0.99	0.32	1.00	2.27	0.63	0.18	0.04	0.53	0.65	1.82	0.69	10.82
1999	1.13	1.15	1.04	0.72	0.44	0.22	0.15	0.10	0.75	1.26	1.45	1.65	10.06
2000	1.08	2.01	1.68	0.43	1.57	0.90	0.00	0.00	1.09	1.02	0.99	0.99	11.76
2001	0.87	0.72	1.17	1.53	0.51	1.32	0.23	0.18	0.51	1.53	1.75	1.27	11.59
2002	1.09	1.27	1.71	0.94	1.26	1.31	0.08	0.00	0.19	0.11	0.89	2.97	11.82
2003	3.67	1.77	1.27	0.98	0.71	0.34	0.00	0.26	0.17	0.35	0.86	1.42	11.08
2004	2.45	1.32	1.03	0.65	0.94	1.27	-	-	-	-	-	-	-
MIN	0.09	0.46	0.32	0.38	0.41	0.05	0.00	0.00	0.00	0.03	0.06	0.24	7.14
MAX	3.67	2.68	2.13	2.33	2.35	1.74	1.94	1.06	1.47	1.62	2.03	2.97	16.47
AVG	1.45	1.20	1.07	1.14	1.07	0.98	0.39	0.29	0.50	0.79	1.27	1.38	11.53

 Table 5 Annual Rainfall Measured at Sudbury Road Landfill (inches)

The precipitation data for 1996 in Table 5 and the estimated soil water characteristics contained in Table 4 were used to estimate the required thickness of the soil cover for the water balance modeling as described in the following section.

Soil-Water Storage

Soil's ability to absorb and retain water is controlled by their pore structure. Typically, finergrained soils (silty or clayey soils) can store more water than more coarse (sandy) soils. The available water holding capacity is defined as the quantity of water that can be stored within the soil before significant drainage occurs. Soil scientists define the available water holding capacity as the difference between the soil's field capacity (volume of stored water under a tension of 33 kPa) and its wilting point (volume of stored water under tension greater than 1500 kPa). The wilting point is traditionally considered to be the moisture content below which plants do not have the ability to remove additional water.

The soils available water holding capacity defined as cm/cm (or inches per inch) as used in this evaluation is about 0.185 derived as the average between the range of 0.17 to 0.20 reported by the USDA for the Walla Walla silt loam (see table in Appendix A). In order to determine the minimum thickness of the soil layer that will have the ability to store infiltrated precipitation with minimal drainage site rainfall records were utilized (Emcon, 2005). According to the data contained in Table 5, the wettest year on record at the site was in 1996 when 16.47 inches was measured. Using this site data and local evaporation data a minimum soil layer thickness was estimated using criteria developed for estimating change in monthly soil storage required to accommodate potential infiltration as described by Benson (2006) as summarized in Table 6 below:

Month	Monthly Precipitation	Monthly Evaporation	PET Coefficient	Monthly PET	P/PET	P/PET Threshold	Does it exceed Threshold?
	(cm)	(cm)		(cm/mo.)			
January	5.18	2.99	0.55	1.64	3.15	>0.51	Yes
February	6.81	3.98	0.70	2.79	2.44	>0.51	Yes
March	1.55	6.4	0.78	4.99	0.31	>0.32	No
April	5.92	10.67	0.84	8.96	0.66	>0.97	No
May	4.01	14.22	0.88	12.51	0.32	>0.97	No
June	2.08	18.63	0.88	16.39	0.13	>0.97	No
July	0.00	22.9	0.88	20.15	0.00	>0.97	No
August	1.12	22.47	0.86	19.32	0.06	>0.97	No
September	0.05	17.78	0.80	14.22	0.00	>0.34	No
October	4.11	12.09	0.70	8.46	0.49	>0.34	Yes
November	4.11	6.54	0.58	3.79	1.08	>0.51	Yes
December	6.88	3.57	0.53	1.89	3.65	>0.51	Yes

 Table 6 Data for Calculating Required Storage for 1996 site

Month	Required Storage (cm)					
January	5.97					
February	7.44					
March	0.0					
April	0.0					
May	0.0					
June	0.0					
July	0.0					
August	0.0					
September	0.0					
October	1.19					
November	4.79					
December	7.58					
Total	26.87					

Table 7 Estimate of Required Storage per Month for 1996 Precipitation

Change in storage calculated using the following equation:

$\Delta S = P - \beta PET - \Lambda$

Where:

Climate	Season	β	٨
No	Fall-	0.30	2.71
Snow	Winter		
&	Spring-	1.00	16.78
Frozen	Summer		
Ground			
Snow	Fall-	0.37	-0.89
&	Winter		
Frozen	Spring-	1.00	16.78
Ground	Summer		
E. 11 0 XXZ		0	F 1

Fall & Winter Months= September – February Spring and Summer Months= March - August

Required Cover Thickness = L

L = (Required Storage) / (Available Volume)

L= (26.87 cm) / (0.185) = 145.2 cm, say 145 cm (1.45 m), or 4.8 feet.

Water Balance Modeling

Water balance modeling was conducted to evaluate the performance of the proposed Evapotranspiration cover with the purpose of verifying that the sum of water storage capacity of the cover, runoff, and evapotranspiration is greater than rainfall and that the performance criteria of a percolation rate of less than 4mm/year from the base of the cover soil layer was achieved during simulations.

Simulations were conducted using WinUNSAT-H, which is the Microsoft Windows version of the FORTRAN program UNSAT-H developed at Pacific Northwest National Laboratory for use

6

at Hanford Nuclear Reservation. The Windows version was developed by Professor P. S. Bosscher of the University of Wisconsin-Madison and is widely used for cover design.

Input

The following data and property assumptions where used as input for the simulations:

<u>Precipitation.</u> Data Obtained from the Western Regional Climate Center and NOAA's National Weather Service for Whitman Mission Station.

<u>Air Temperature.</u> Average maximum and minimum daily temperature data was obtained from the Western Regional Climate Center for the Whitman Mission station. The dew point data available was for the Spokane region as available from the Western Regional Climate Center.

Solar Radiation. The average monthly solar radiation was obtained from the Western Regional Climate Center for the Spokane region.

<u>Wind Speed</u>. The average monthly wind speed was obtained from the Western Regional Climate Center for the Walla Walla Airport

<u>Geotechnical Data</u>. The geotechnical input parameters consisted of those summarized previously in Tables 3 and 4 and those assumptions listed in the Design Criteria section.

<u>Vegetation Data</u>. Assumptions with regard to vegetation input parameters were made based on the intent to install a dense perennial grass vegetative layer in accordance with the erosion and stabilization vegetation currently growing along the SR-12 embankments adjacent to the project site. Assumptions included: first day of germination at day 91, last day of transpiration at day 290, a LAI of 2.0, established during day 211 and declining after day 266, Area coverage percentage of 40%, and root length density parameters of a = 1.16, b = 0.13, and c = 0.02

Simulation Strategy

Initially, three simulation runs were conducted to "warm-up" the profile using the soil suction head determined for end of each simulated year as input for the initial conditions on the next most recent year. During the warm-up simulations daily precipitation data for the three most recent complete records 2006, 2007, and 2008 measured at the Whitman Mission Station was used. After these simulations were run, the data collected at the Whitman Mission in 1996, which is the wettest year on record at that location was run. The results are summarized in Table 8 below:

Simulation Year ¹	Annual Precipitation (inches/cm)	Annual Runoff (cm)	Annual ET (cm)	Depth where percolation rate < 4mm (cm)
2006	16.53 / 41.99	4.6	31.2	≈79
2007	13.29 / 33.76	3.6	26.6	≈114
2008	12.98 / 32.97	3.6	28.6	≈118
1996	20.8 / 52.8	8.7	41.3	≈129

Table 8 Summary of WinUNSAT-H Predictions for Sudbury Road Landfill

1-Daily Precipitation Data for 1996, 2006, 2007, and 2008 collected at Whitman Mission Weather Station.

Conclusions

- 1. Based on the computer simulations, the proposed alternative final cover system will transmit less than 4 mm of percolation into the underlying waste after 3 years of typical precipitation and one year of the historically wettest.
- 2. The alternative final cover will have at least 4.8 feet of earthen material that is capable of sustaining the proscribed ground cover, which will transpire infiltrating water and provide erosion protection.

Construction, Quality Control and Quality Assurance

Construction

- Smooth the existing surface grade prior to placement of cover soil by blading to remove existing ruts and furrows with a low ground pressure tracked dozer.
- Grades shall be maintained from a minimum slope of 3 to 5% and a maximum slope of 33%. Grades shall be maintained so that when the final cover is completed; all areas drain to the perimeter drains.
- Soil will be hauled from the soil stockpile and placed in lifts not exceeding 24 inches in thickness. Soils shall be placed by spreading and grading with a low ground pressure tracked dozer. Ruts created by the use of rubber tired equipment shall be scarified during the spreading, blading, and compaction process. Rubber tired equipment will not be allowed on the final cover surface.

- In order to achieve maximum water storage capacity and promote plant growth, the cover soil material shall be placed at about an in-place density of 82 percent and not more than 88 percent of its maximum Standard Proctor density at moisture content range of optimum to 4% dry of optimum (ASTM D 698).
- After placement and compaction, compost or biosolids should be spread over the upper surface of the soil cover and tilled or tracked into place with low ground pressure tracked equipment.
- The construction of surface runoff control features will be completed in conjunction with the Evapotranspiration Cap cover soil layer.

Test Strip Construction

At the beginning of cover construction, we recommend that the Contractor be required to construct a test strip using the equipment and demonstrate the means and methods the Contractor expects to use for handling, placement and compaction of the cover soil. The test strip should be constructed by placement and compaction of 2 lifts of not more than 24 inches in thickness each over the entire designated area. The test section should be constructed within a 10,000 SF area designated by the Engineer as shown on the approved plans. The construction of the test strip should be monitored by the Engineer and the owner's field CQA representative. The Contractor should employ independent field QC testing during construction of the test strip to obtain real-time feedback with regard to the affects of procedures and/or equipment type to in-place soil moisture/density.

Quality Control

The Contractor should provide independent field and laboratory quality control services during construction of the soil cover to verify that project requirements are met prior to acceptance testing by the Engineer.

Quality Assurance

Quality assurance and cover acceptance will be conducted by the Engineer supported by the Owner's on-site field representative.

The thickness of additional soil required to construct the final cover layer can be estimated by reviewing of the map shown on Figure 2, which depicts the measured thickness of the existing intermediate cover soils that are currently in-place over waste on Area 6. The thickness of the existing intermediate cover will be counted as part of the final cover.

To verify that the final cover soil properties will be consistent with the soil properties assumed for the analysis, visual observation, grain size analysis, hydraulic conductivity testing, and inplace density testing will be utilized as discussed below:

- Visual Observation Continuous observations of material placed as final cover soil and compost. Where visual observations indicate the soil is not similar to the typical material sampled from the on-site stockpile during design, a sample will be obtained for grain size analysis to verify suitability.
- Moisture/Density Relationship A Moisture/Density relationship curve should be determined for soils identified as having a significantly different grading than that sampled from the stockpile during design, but which is considered suitable by the Engineer for use as cover soil. The Moisture/density relationship should be determined for the new material in accordance with ASTM D 698 for use in the field.
- **Hydraulic Conductivity** A minimum of one sample per soil type identified and used during construction of the final cover layer shall be tested for remolded hydraulic conductivity. The sample should be remolded at field moisture content to approximately 85% of the Standard Proctor maximum dry density. The laboratory measured hydraulic conductivity of each remolded soil sample shall be equal to or less than the design rate of 3.0 x 10⁻⁵ cm/sec.
- **In-Place Density** A minimum of three random tests per lift per acre of final cover soil constructed. An in-place density of no less than 82 percent of the standard proctor maximum dry density will be required unless a greater density is required to attain the appropriate minimum hydraulic conductivity stated above.

Layer	Property	Procedure	Frequency	Requirement
Intermediate	Quantity	Estimate from	N/A	N/A
Cover		Figure 2		
Cover Soil	Thickness	Survey/Grade	1 per 10,000 sf	4.8 feet total
		Stakes		above waste
Cover Soil	Material	Visual/Gradation	As-needed or if	
		ASTM D 422	soil type or	Silt Loam
		sieve &	source changes	
		hydrometer		
Cover Soil	Moisture/Density	ASTM D 698	As-needed or if	N/A
			soil type	
			changes	
Cover Soil	Hydraulic	Laboratory Test	1 soil type	<3.0 x 10 ⁻⁵
	Conductivity	ASTM D 5084		cm/sec.
Cover Soil	Compaction	Field	3 per lift per	82% to 88% or
		Moisture/Density	acre	as needed to
				meet
				permeability.
Compost/Biosoilds	Thickness	Field-Visual	As needed	1-inch
				Minimum

Table 9 Construction Quality Assurance

*Note-In place thickness of intermediate cover soil can be counted as part of the final cover thickness.

January 27, 2010 HWA Project No. 2009-094-21

We appreciate the opportunity to provide geotechnical services on this project. Should you have any questions or comments, or if we may be of further service, please do not hesitate to call.

Sincerely,

HWA GEOSCIENCES INC.

Steven E. Greene, L.G., L.E.G. Vice President

Attachments:

Figure 1. Figure 2 Sample Location Map Estimated Cover Soil Requirements

Appendix A: Soils Data

Figures A-1 - A-2Particle Size Analyses of Soils (USDA Classification)Figure A-3USDA Soils Classification ChartFigures A-4Laboratory Compaction Characteristics of SoilsFigures A-5 - A-6Hydraulic Conductivity of SoilsUSDA Table of Soil Physical Properties for Walla Walla silt loam

Appendix B: Climatological Data

Record of Climatological Observations-Whitman Mission Station (1996, 2006, 2007, and 2008)

Appendix C: Simulation Input

Climatological Input

Appendix D: Simulation Output

Suction Head Input Simulation Summaries Water Balance Plots for 2006, 2007, 2008, and 1996 January 27, 2010 HWA Project No. 2009-094-21

References

- Albright, W., (2009) Cover Design Steps, Selection, Validation, Basic Soil Physics (2009), Desert Research Institute, Reno, Nevada.
- Benson, C., (2000) "A Tutorial for WinUNSAT-H", Powerpoint presentation, University of Wisconsin-Madison.
- Benson, C., (2006) "An Introduction to Water Balance Modeling, University of Wisconsin-Madison.
- EMCON, (2005), "Solid Waste Permit Application for Lateral Expansion, Sudbury Road Landfill, Walla Walla, Washington, Prepared for the City of Walla Walla, Washington", May, 2005.
- Hauser, V.L, (2009), *Evapotranspiration Covers for Landfills and Waste Sites*, CRC press, 203 p.

APPENDIX A

Soil Data

PROJECT NO.: 2009-094

FIGURE: A-2

USDA TEXTURAL CLASSIFICATION 2009-094.GPJ 1/26/10

2009-094

A-3 FIGURE:

LABORATORY COMPACTION CHARACTERISTICS OF SOIL

CLIENT: J-U-B Engineers		HWAGEOSCIENCES INC.
PROJECT: Alternative Final Cover	Design-Area 6, Sudbry Rd LF	SAMPLE ID: <u>1-3 Comp</u>
PROJECT NO: 2009094	Sampled By: <u>Client</u>	Tested By: <u>SEG</u>
Date Sampled: <u>12/09/2009</u>	Date Received: <u>12/11/2009</u>	Date Tested: <u>12/12/2009</u>
MATERIAL TYPE OR DESCRIPTION	:	
Light brown SILT with fine sand (ML)		
MATERIAL SOURCE, SAMPLE LOCA	ATION AND DEPTH:	
Composite of stockpile samples No. 1	-3	
Designation: X ASTM D 698	ASTM D 1557 Natura	al Moisture Content: <u>11.8</u> %
Method: XA B	C Oversize: 0	% retained on: <u>3/4</u> in.
Preparation: Dry X Moist	Rammer: Auto X Manual	Assumed S.G.; 2.6
	Test Data	
Dry Density (pcf) 101.9	103.6 105.9	106.7 101.9
Moisture Content (%) 11.8	13.6 16.2	18.1 20.6
		_ Rock Corrected Curve
		per ASTM D4718
		Lab Proctor Curve
115		100% Saturation Line
105		
	╶┼╶┤╶┼╊╌╎╼╂╶╎╴╎╴┠╸┥╴┽╸┆	
100		
4 6 8 10	0 12 14 16	18 20 22 24
	Moisture Content (%)	

Data Summary		Test V	alues At O	ther Over	size Perce	entages		
Percent Oversize	<5%	0.0%	5.0%	10.0%	15.0%	20.0%	25.0%	30.0%
Max. Dry Density (pcf)*	106.7	106.7	108.6	110.5	112.5	114.6	116.7	118.9
Optimum Moisture (%)*	18.1	18.1	17.2	16.4	15.5	14.7	13.8	13.0

values corrected for oversize material per ASTM D4718, using assumed Specific Gravity shown and oversize material per ASTM D4718, using assumed Specific Gravity shown and oversize the statement of 1% Reviewed By:

This report applies only to the items tested, and may be reproduced in full, with written approval of HWA GEOSCIENCES INC.

Hydraulic Conductivity (a.k.a. Permeability) Test Report Method ASTM D 5084

Motiou / Willing D 0004					
Project	Alternative Final Cover Design: Area 6	Assumed Specific Gravity	2.70	HWAGEOSCIENC	ES INC.
Client	?	Initial Sample Area (cm2)	81.37	Final Sample Area (cm2)	81.36
Project number	2009-094	Initial Sample Length (cm)	11.66	Final Sample Length (cm)	11.64
Date	12/17/2009	Initial Sample Volume (cc)	948.4	Final Sample Volume (cc)	947.1
Technician	HB/AC	Initial moisture (%)	11.9	Final moisture (%)	26,6
Sample point	0.85	Initial wet unit wt. (pcf)	98.6	Final wet unit weight (pcf)	111.0
Sample number	Composite	Initial dry unit wt. (pcf)	88.1	Final dry unit weight (pcf)	87.7
Sample depth	NA	Initial void ratio	0.912	Final void ratio	0.921
Sample description	Remolded silty Sand	Initial porosity	0.477	Final porosity	0.479
		Initial saturation (%)	35.2	Final saturation (%)	78.0

	Hydraulic	Running Average of	Maximum % Deviation from Average		Effective	Other Information
	Conductivity	4 Readings	(should be less	Flow Ratio	Confining	Maximum Gradient
Run No.	(cm/s)	(cm/s)	than 25%)	(0.75 to 1.25 required)	Stress (psi)	13.3
1	3.0E-05	n.a.		1.19	3	Minimum Gradient
2	2.5E-05	n.a.		1.17	3	10.9
3	2.4E-05	n.a.		1.15	3	Max. Back Pressure (psi)
4	2.3E-05	2.5E-05	17.2%	1.21	3	6.0
5	2.6E-05	2.4E-05	6.7%	1.20	3	Min. Back Pressure (psi)
Final	2.4E-05	2.4E-05	6.0%	1.18	3	6.0
			-		•	

Hydraulic Conductivity (a.k.a. Permeability) Test Report Method ASTM D 5084

Mothod / to Thin D 0004					~
Project	Alternative Final Cover Design, Area 6	Assumed Specific Gravity	2.65	HWAGEOSCIENC	ES INC.
Client	J-U-B Engineers Inc.	Initial Sample Area (cm2)	82.76	Final Sample Area (cm2)	82.76
Project number	2009-094	Initial Sample Length (cm)	11.68	Final Sample Length (cm)	11.68
Date	12/17/2009	Initial Sample Volume (cc)	967.0	Final Sample Volume (cc)	967.0
Technician	HB/AC	Initial moisture (%)	12.1	Final moisture (%)	26.0
Sample point	0.9	Initial wet unit wt. (pcf)	105.6	Final wet unit weight (pcf)	118.4
Sample number	Composite	Initial dry unit wt. (pcf)	94.2	Final dry unit weight (pcf)	93,9
Sample depth	NA	Initial void ratio	0.756	Final void ratio	0.760
Sample description	Remolded silty Sand	Initial porosity	0.431	Final porosity	0,432
		Initial saturation (%)	42.4	Final saturation (%)	90.8

	Hydraulic	Running Average of	Maximum % Deviation from Average		Effective	Other Information
	Conductivity	4 Readings	(should be less	Flow Ratio	Confining	Maximum Gradient
Run No.	(cm/s)	(cm/s)	than 25%)	(0.75 to 1.25 required)	Stress (psi)	13.0
1	3.0E-05	n.a.		1.00	3	Minimum Gradient
2	2,8E-05	n.a.		0.95	3	9.5
3	2.7E-05	n.a.		1.00	3	Max. Back Pressure (psi)
4	2.4E-05	2.7E-05	11.5%	1.00	3	6.0
5	2,8E-05	2.7E-05	10.0%	0.97	3	Min. Back Pressure (psi)
Final	2.5E-05	2.6E-05	7.8%	0.98	3	6.0

Checked by:

APPENDIX B

Climatological Input Data

WHITMAN MISSION, WASHINGTON

Monthly Average Temperature (Degrees Fahrenheit)

(459200)

File last updated on Dec 22, 2009

*** Note *** Provisional Data *** After Year/Month 200908

a = 1 day missing, b = 2 days missing, c = 3 days, ..etc..,

z = 26 or more days missing, A = Accumulations present

Long-term means based on columns; thus, the monthly row may not

sum (or average) to the long-term annual value.

MAXIMUM ALLOWABLE NUMBER OF MISSING DAYS : 5

Individual Months not used for annual or monthly statistics if more than 5 days are missing.

Individual Years not used for annual statistics if any month in that year has more than 5 days missing.

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN
(8)										C1 04	1005	00.00	45.04
1962	Z	Z	Z	;Z	Z	Z	sz	Z	Z	51.94	46.05	39.82	45.94
1963	29.00	40.38	46.65	49.48	57.89	65.80	67.39	71,16	66.88	55.16	44.38	32.65	52.23
1964	39.85	40.34	43.21	49.42	55.95	65.07	70.90	67.20 a	60.35	49.50	40.48	32.39	51.22
1965	36.08	42.32	40.97	53.55	57.10a	64.43	71.94	71.52	58.83	54.71	44.73 b	35.88 a	52.67
1966	36.95	38.93	44.90	50.92	59.21	63.28	68.68	69.31	65.82	52.55	44.21 a	41.05	52,98
1967	43.67 a	42.59	44.95	46.55	57.06	67.43	73.29	74.68	67.92	53.40	41.18	36.45	54.10
1968	37.71	42.64	47.74	48.93	57.68	65.62	73.55	68.18	62.72	49.60	42.33	32.68	52.45
1969	21.66	35.25	44.39	50.80	60.84	69.17	70.66	68.10	63.75	48.56	42.23	35.87	50.94
1970	33.66	41.32	43.76	46.95	58.74	69.48	74.03	70.48	58.00	48.71	40.98 a	36.16	51.86
1971	41.07 a	40.12	42.16	49.40	59.05	62.08	72.23	73.71	56.72	48.32	42.80	37.08	52.06
1972	32.94	37.00	47.65	47.43	59.40 a	66.33	70.66	71.24	57.62 d	50.05	41.73	27.24	50.77
1973	30.32	37.00	46.90	50.73	59.87	65.40	71.00	70.00	61.98	51.68	41.07	40.55	52.21
1974	28.66	43.05	45.29 c	50.45	56.00	67.17	70.37	70.35	61.63	49.69	44.23	38.97	52.16
1975	34.48	35.36	41.53	46.08	55.94	62.62	73.98	66.87	60.57	52.03	41.52	37.56	50.71
1976	37.81	39.12	42.15	47.75	57.15	60.60	70.11	67.50	64.05	49.37	41.53	33.52	50.89
1977	25.13	40.45	44.76	53.23	54.52	67.82	69.68	74.42	59.42	49.34	40.03	37.11	51.32
1978	32.39	39.38	46.97 a	50.62	56.39	65.22	71.15	68.42	59.62	48.90	33.18	30.90	50.26
1979	15.06	37.12	45.68	51.42	59.08	65.38	71.31	71.30 a	64.14b	53.02	35.93	38.73	50.68
1980	26.37	35.98	43.43 a	53.48	58.25 a	62.21 a	a 70.52	65.47	61.73	49.62b	42.57	37.87 a	50.62
1981	36.61 c	38.98	46.11	50.85	56.87	61.97	68.76	71.76b	61.15	48.44	42.59 a	36.63	51.73
1982	33.90	38.91	44.11	47.02	56.13	67.43	69.69	68.27	57.25	47.97	35.88	35.00	50.13
1983	38.85	41.54	46.82	48.42	59.27	63.20	67.68	71.24	56.73	49.45	46.40	23.35	51.08
1984	33.74 n	39.76	47.76	49.58	54.69	62.57	70.95	68.97	61.70j	47.79	41.33	28.87	51.23
1985	27.03	31.89	43.85	54.72	59.94	64.88	75.02	66.52	56.70	Z	27.90	20.07 a	48.05
1986	33.77	38.84	48.42	50.40	58.66	69.97	70.34	74.44	59.63	52.35	43.73	32.74	52.77
1987	30.19	39.38	47.52	54.58	61.63	66.83	69.58	68.37	63.80	50.13	42.86b	34.58	52.45
1988	33.13	39.59	45.03	52.80	57.98	64.68	70.79	67.98	60.98	55.60	45.55	33.31	52.29
1989	38.08	23.36	42.27	53.07	56.37	66.25	69.65	68.61	60.65	50.56	45.15	34.23	50.69
1990	40.26	36.98	44.82	54.70	56.42	64.32	72.74	70.81	66.12	50.23	45.43	25.00	52.32

http://www.wrcc.dri.edu/cgi-bin/cliMONtavt.pl?wa9200

1991	30.58	44.11	43.13	51.72	56.06	60.77	70.61	72.23	62.22	49.95	40.72	37.53	51.64
1992	38.87	42.02	47.15	53.73	60.84	69.28	69.82	70.63	59.37	51.29	40.83	33.21	53.09
1993	22.90	28.68	41.15	51.27	61.53	63.60	66.37	67.08	61.02	52.42	33.88	36.34	48.85
1994	39.84	36.27	46.19	55.40	60.27	64.58	74.18	70.81	63.87	49.74	40.83	36.66	53.22
1995	33.29	42.66	44.34	49.37	58.27	62.83	71.73	66.21	64.27	48.87	45.07	34.68	51.80
1996	33.60	31.78	43.66	52.65	55.31	63.30	72.65	69.19	60.32	50.68	39.35 j	32.82 a	51.45
1997	31.10p	40.05	47.74	49.63	60.06	63.70	69,66	72,56	63.45	50.61	41.40	35.98	54.08
1998	36,191	41.84	44.89	49.42	Z	265.18	Z	z z	66.92	Z	2 Z	:35.80a	48.60
1999	40.60 a	42.77	44.94	47.98	54,95	64.15	69.13	70.91 b	59,23	48.84	45.26 a	139.62 a	52.36
2000	36.02 b	39.34	44.10	53.35	58,55	64,13	70.90	69.57 a	60,05	49.11	33.88 a	131.72a	50.89
2001	33.33 a	36.52	45.02	49.25	59.02	62.33	70.23 a	171.10a	64.03	49.68 a	u 41.66 a	137.00a	51.60
2002	37.32	38.34	41.84	51.30	56.27	66.50	73.92	67.50	60.38	46.82	39.05	39.00	51.52
2003	40.40	38.84	49.34	50.78	57.76	67.15	73.98	71.85	63.90	54.50	37.22	34.94	53,39
2004	27.79	38.29	48.76	51.52	57.97	66.05	73.63	73.76	61.48	52.52	39.92	36.87	52,38
2005	33.19	35.82	47.82	51.47	60.82	63.72	72.53	71.73	60.12	52.18	39.20	29.27	51.49
2006	42.79	35.29	44.73	50.78	58.77	66.32	75.52	69.63	61.63	49.95	42.20	31.02	52.39
2007	30.87	37.98	46.24	50.33	58.92	65.93	75.13	69.15	60.70	49.11	38.97	36.34	51.64
2008	31.58	39.79	42.98	47.18	59.03	63.48	71.21	69.74	59.60	48.35	41.73	26.45	50.10
2009	33.68	35,39	41.02	48.87	58.10	66.47	73.11	71.74	63.28	46.60 <i>e</i>	a 41.69 c	26.30 i	52.72
					Peric	d of Re	cord Sta	atistics					
MEAN	33.72	38.37	45.00	50.62	58.06	65.04	71.32	70.05	61.53	50.43	41.12	34.29	51.71
S.D.	5.87	3.86	2.21	2.35	1.84	2.24	2.12	2.29	2.81	2.13	3.75	4.49	1.05
SKEW	-0,83	-1.59	-0.04	0.08	-0.04	0.21	0.04	0.16	0.28	0.66	-1.33	-1.15	-0.26
MAX	43.67	44.11	49.34	55.40	61.63	69.97	75.52	74.68	67.92	55.60	46.40	41.05	54.10
MIN	15.06	23.36	40.97	46.08	54.52	60.60	66.37	65.47	56.70	46.60	27.90	20.07	48.85
NO	45	47	47	47	46	47	46	46	46	46	46	47	41
1K9													

ï

WHITMAN MISSION, WASHINGTON

Period of Record General Climate Summary - Growing Degree Days

	Station:(459200) WHITMAN MISSION													
	From Year=1962 To Year=2009													
	Growing Degree Days for Selected Base Temperature (F)													
Base	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual	
40 M	48	66	178	320	560	751	971	932	645	332	116	49	4967	
40 S	48	114	292	612	1172	1923	2894	3825	4470	4802	4918	4967	4967	
45 M	16	22	74	184	405	601	816	777	495	195	47	17	3649	
45 S	16	38	112	296	701	1302	2118	2894	3390	3585	3632	3649	3649	
50 M	4	5	23	83	258	451	661	622	349	92	15	4	2566	
50 S	4	9	32	114	372	824	1485	2106	2455	2548	2562	2566	2566	
55 M	0	1	5	29	138	304	506	467	213	34	4	0	1700	
55 S	0	1	6	35	172	476	982	1449	1662	1696	1699	1700	1700	
60 M	0	0	1	7	59	173	353	315	105	7	1	0	· 1021	
60 S	0	0	1	8	67	241	593	909	1013	1021	1021	1021	1021	
					Corn	Growi	ng De	gree I	Days					
50 M	22	39	118	210	354	467	594	576	438	249	61	23	3150	
50 S	22	61	179	389	743	1209	1804	2380	2818	3066	3127	3150	3150	

M = Monthly Data

S - Running sum of monthly data.

Growing Degree Day units are computed as the difference between the daily average temperature and the base temperature. (Daily Ave. Temp. - Base Temp.) One unit is accumulated for each degree Fahrenheit the average temperature is above the base temperature. Negative numbers are discarded. Example: If the days high temperature was 95 and the low temperature was 51, the base 60 heating degree day units is ((95 + 51) / 2) - 60 = 13. This is done for each day of the month and summed. Corn Growing Degree Day units have the limitations that the maximum daily temperatures greater than 86 F are set to 86 F and minimums less than 50 F are set to 50 F.

Table updated on Dec 28, 2009

Months with 5 or more missing days are not considered

Years with 1 or more missing months are not considered

Page 1 of 2

WHITMAN MISSION, WASHINGTON

Monthly Total Precipitation (inches)

(459200)

File last updated on Dec 22, 2009

*** Note *** Provisional Data *** After Year/Month 200908

a = 1 day missing, b = 2 days missing, c = 3 days, ..etc..,

z = 26 or more days missing, A = Accumulations present

Long-term means based on columns; thus, the monthly row may not

sum (or average) to the long-term annual value.

MAXIMUM ALLOWABLE NUMBER OF MISSING DAYS : 5

Individual Months not used for annual or monthly statistics if more than 5 days are missing.

Individual Years not used for annual statistics if any month in that year has more than 5 days missing.

YEAR (S)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN
1962	$0.00\mathrm{z}$	$0.00\mathrm{z}$	$0.00\mathrm{z}$	0.00 z	$0.00\mathrm{z}$	$0.00\mathrm{z}$	$0.00\mathrm{z}$	$0.00\mathrm{z}$	$0.00\mathrm{z}$	2.14	1.42	2.12	5.68
1963	0.74	1.50	0.62	1.75	0.60	0.17	0.49	0.87	0.60	0.51	1.78	1.63	11.26
1964	0.74	0.00	0.25	0.46	0.06	1.15	1.14	0.29	0.23	0.64	2.16	4.41	11.53
1965	2.99	0.40	0.16	1.53	0.71	0.70	0.63	1.52	0.19	0.43	1.92	0.50	11.68
1966	1.91	0.53	1.36	0.14	0.44	1.11	1.66	0.14	0.13	0.63	2.56	2.65	13.26
1967	1.64	0.28	1.53	0.98	1.49	0.65	0,02	0.00	0.70	0.45	0.82	0.90	9.46
1968	0.83	2.10	0.57	0.19	0.61	1.01	0,36	0.82	1.27	1.61	2.43	2.22	14.02
1969	4.15	0.92	0.73	2.31	1.07	0.84	0.02	0.00	0.56	1.26	0.48	1.97	14.31
1970	4.92	1.95	1.35	0.91	0.58	1.20	0.21	0.01	1.07	1,38	2.22	0.49	16.29
1971	1.03	0.69	1.21	0.94	1.45	2.86	0.57	0.62	0.99	0.78	2.39	2.76	16.29
1972	1.49	1.20	2.19	0.52	1.71	0.61	1.13	0.21	0.01	0.58	0.94	2.15	12.74
1973	0.92	1.22	0.86	0.25	0.95	0.22	0.10	0.01	1.38	1.19	4.38	4.98	16.46
1974	0.87	1.12	1.50	2.21	0.27	0.48	1.20	0.00	0.00	0.40	1.40	1.64	11.09
1975	3.52	1.39	0.81	1.05	0.54	0.75	0.28	1.25	0.00	1.48	1.16	1.99	14.22
1976	1.63	1.00	0.99	1.52	0.80	0.45	0.17	1.34	0.08	0.57	0.78	0.79	10.12
1977	0.43	0.47	1.19	0.10	1.01	0.32	0.37	3.50	1.25	0.47	1.65	3.03	13.79
1978	2.41	0.99	0.62	2.96	0.54	0.54	0.70	2.20	1.67	0.02	1.69	1.77	16.11
1979	1.27	1.10	1.49	1.40	0.78	0.19	0.13	0.93	0.41	2.26	2.14	0.86	12.96
1980	2.44	1.34	1.40	0.81	1.56	0.58	0.23	0.37	1.22	2.48	1.23	2.20	15.86
1981	0.99	2.22	2.00	0.80	2.09	2.24	0.47	0.04	0.88	1.41	1.65	1.65	16.44
1982	1.15	0.88	1.83	1.12	0.35	1.12	0.61	0.39	1.69	2.58	0.90	2.30	14.92
1983	1.67	2.09	2.65	1.03	0.71	1.32a	1.01	0.63	0.64	1.20	3.07	2.46	18.48
1984	0.70 a	1.91	2.83	1.26	1.34	1.94	0.04	0.34	0.72	1.18	2.80	1.68 c	16.74
1985	0.61 a	1.33 a	1.19a	0.42	0.58	0.68	0.18	0.94	1.09	0.87	2.36a	0.78	11.03
1986	1.94	2.75	1.63	0.77	1.31	0.13	0.66	0.09	1.42	0.81	2.73 a	0.58 a	14.82
1987	0.86	0.89	0.76	0.47	1.60	0.61	0.77	0.15	0.02	0.01	0.80	0.84 a	7.78
1988	1.32	0.38	1.16	3.12	1.61	0.52	0.10	0.00	0.34	0.10	1.98 a	0.72	11.35
1989	2.14 a	1.37	2.87	1.28	2.08	0.28	0.04	0.83	0.17	0.39	1.10	0.87 a	13.42
1990	0.76	0.32b	1.40	2.12	2.35	0.62	0.19	1.06	0.04	1.82	1.08	1.63	13.39
1991	1.06	0.62	1.66	0.55	4.38	2.00	0.32	0.27	0.00	1.02	3.14a	0.64	15.66

http://www.wrcc.dri.edu/cgi-bin/cliMONtpre.pl?wa9200
Monthly Precipitation, WHITMAN MISSION, WASHINGTON

Page	2	of	2
1 age	2	\mathbf{u}	4

1992	0.76	1.12	0.33	1.26	0.33	0.96	1.61	1.35	0.96	0.88	1.60 a	1.10a	12.26
1993	1.29	1.12	1.26	2.52	2.00	1.98	1.26	1.96	0.00	0.45	0.27	1.05	15.16
1994	2.32 a	1.56	0.28	1.15	1.02	0.76	0.29	0.00	0.48	1.49	2.97 a	1.67 a	13.99
1995	2.46	1.23	2.23	2.57	1.10	2.17	0.68	0.88	0.89	2.22	2.48 a	1.50g	18.91
1996	2.72 c	2.39	0.90	2.45	1.81	1.03	0.01	0.05	0.64	1.92	2.83	4.05 a	20.80
1997	1.84 a	0.96	1.64 a	2.24	0.73	0.96	0.66	0.00	1.44	1.64	1.34	0.97	14.42
1998	2.64	1.21	1.08	1.23	$0.00\mathrm{z}$	0.48	0.00z	$0.00\mathrm{z}$	0.80	$0.00\mathrm{z}$	0.00z	1.35 a	8.79
1999	0.74	1.58	1.09	0.63	1.52	0.30	0.01	0.36	0.00	1.18	1.32 a	1.27b	10.00
2000	2.29 a	2.86	2.85	0.65	2.41	0.98	0.26	0.00	1.38	1.62	1.75 a	1.12	18.17
2001	1.05	0.89	1.47	2.38	0.75	1.74	0.31	0.01	0.28	2.04	2.16a	1.36a	14.44
2002	0.73 a	1.21	1.44	0.83	1.23	1.86	0.48	0.00	0.35	0.19	1.06 a	2.72 a	12.10
2003	2.89 a	2.49	1.57	2.89	0.69	0.00	0.00	0.14	1.26	0.30	1.54	3.23 a	17.00
2004	3.41 a	2.46	0.59	1.41	1.62	1.45	0.14	1.02	0.29	1.06	1.85 a	1.14a	16.44
2005	0.57 a	0.10	1.08	1.43	1.65	0.84	0.14	0.01	0.11	1.26	1.12a	2.39a	10.70
2006	2.55 a	0.97	2.05	2.56	1.51	1.25	0.04	0.00	0.66	0.66	1.94 a	2.34a	16.53
2007	1.04 b	1.65	2.13	0.91	0.52	1.30	0.30	0.49	0.28	1.18	1.91 a	1.58b	13.29
2008	1.56 a	0.55	1.39	0.51	1.26	0.74	0.38	0.36	0.35	0.45	2.11 a	3.32a	12.98
2009	2.10a	0.98	2.59	1.51	1.11	1.04	0.13	1.05	0.00	2.10 a	0.80c	2.80i	13.41
					Period	of Rec	ord Stat	tistics					
MEAN	1.70	1.24	1.38	1.32	1.19	0.96	0.45	0.58	0.62	1.09	1.79	1.82	13.95
S.D.	1.02	0.70	0.70	0.82	0.75	0.64	0.43	0.72	0.52	0.69	0.81	1.04	2.67
SKEW	1.08	0.51	0.45	0.56	1.68	0.92	1.24	1.92	0.45	0.41	0.61	1.05	0.06
MAX	4.92	2.86	2.87	3.12	4.38	2.86	1.66	3.50	1.69	2.58	4.38	4.98	20.80
MIN	0.43	0.00	0.16	0.10	0.06	0.00	0.00	0.00	0.00	0.01	0.27	0.49	7.78
NO YRS	47	47	47	47	46	47	46	46	47	47	47	46	44

,

WASHINGTON	7	Ŧ	М	A	Μ	T	3	A	5	С	N	\mathcal{D}	
ARLINGTON	33	36	37	40	45	49	51	52	50	45	40	37	43
ELLENSBURG	15	24	27	31	38	43	46	47	43	37	32	25	34
EPHRATA	21	27	28	33	39	44	45	44	41	38	30	27	35
FORT LEWIS AAF	35	36	38	40	43	47	50	51	48	44	39	33	42
HOQUIAM	36	40	36	40	46	49	53	55	54	49	46	41	45
MCCHORD AFB	32	35	36	38	43	48	52	52	49	43	37	33	42
MOSES LAKE	22	27	29	33	40	44	45	44	41	38	30	27	35
OLYMPIA	36	36	38	41	45	50	53	49	50	42	40	33	43
PASCO	29	31	35	35	37	40	43	44	41	40	35	28	37
PORT ANGELES	33	35	36	40	45	48	50	51	49	45	41	37	43
QUILLAYUTE	38	37	40	42	46	50	53	53	51	46	42	35	44
SEATTLE-TACOMA AP	35	36	39	42	46	49	53	53	51	46	40	35	44
SEATTLE URBAN SITE													
SPOKANE	25	26	30	34	39	44	45	41	40	35	30	24	34
SPOKANE-FAIRCHILD	23	26	31	33	39	45	46	45	40	36	30	23	35
STAMPEDE PASS													
WALLA WALLA	23	29	32	35	42	47	47	48	43	40	36	30	38
WHIDBEY ISLAND	34	36	38	41	45	49	51	52	50	45	39	36	43
YAKIMA	23	26	29	34	40	44	48	45	44	37	28	24	35

•

.

WASHINGTON

.

AVERAGE WIND SPEED - MPH

STATION	ID	Years	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	0ct	Nov	Dec	Ann
ARLINGTON AIRPORT AWOS	KAWO	1996-2006	5.6	4.9	6.2	5.2	4.8	4.5	4.5	4.3	3.6	4.1	5.2	5,3	4.9
BELLINGHAM AP ASOS	KBLI	1996-2006	9.0	8.0	8.9	7.4	7.4	7.8	8.0	7.4	5,8	6.4	8.0	8.7	7.7
BREMERTON AIRPORT AWOS	KPWT	1996-2006	5.9	5.4	6.3	5.7	5.7	5.5	5.0	4.6	4.7	5.1	5.0	5.2	5.3
BURLINGTON-MT VERNON AP	KBVS	2003-2006	7.0	6.1	7,2	6.1	5.1	5.2	5.1	4.7	4.5	5.1	6.3	6.3	5.7
DEER PARK AIRPORT	KDEW	1999-2006	5.3	5.4	6.6	6.8	7.0	6.6	6.0	5.6	5.1	5.2	5.1	4,9	5.8
ELLENSBURG AIRPORT ASOS	KELN	1998-2006	4.3	5.4	9.7	11.4	12,9	15.0	15.4	13.5	10.5	8.0	4.9	4.2	9.5
EPHRATA AIRPORT ASOS	KEPH	1996-2006	6.9	7.9	8.8	9.1	9.5	10.0	9.7	8.8	8.2	7.6	6.9	6.6	8.3
EVERETT-PAINE FLD ASOS	KPAE	1996-2006	9.3	8.2	9,2	8.1	7.6	7.3	7.1	6.9	6.3	7.3	8.9	9.0	8.0
FORT LEWIS-GRAY AAF	KGRF	1996-2006	6.4	6.5	7.5	6.7	6.6	6.5	6.1	5,8	5.6	6.0	6.0	6.6	6.4
FRIDAY HARBOR AP ASOS	KFHR	1997-2006	7.2	7.2	7.3	5.8	5.2	5.3	4.8	4.1	3.6	4.9	6.7	7.9	5.8
HANFORD	KHMS	1996-2006	7.5	8.2	9.4	9.2	9.9	10.3	9.9	9.2	8.4	8.0	7.8	7.2	8.8
HOQUIAM AIRPORT ASOS	KHQM	1996-2006	11.0	10.3	10.3	9.1	9.0	8.9	8.4	7.9	7.5	8,5	10,0	11.1	9.3
KELSO-LONGVIEW AP ASOS	KKLS	1996-2006	5.9	5.0	5.4	4.8	4.6	5.2	5.8	5.4	4.4	4.1	5.0	5.8	5.1
MOSES LAKE AIRPORT ASOS	KMWH	1996-2006	6.4	6.9	8.1	8.1	8.5	8.6	7.9	7.3	6,9	7.0	6.5	5.9	7.3
OLYMPIA AIRPORT ASOS	KOLM	1996-2006	6.0	5.5	6.6	5,8	5.9	5.9	5.3	4.9	4.6	5.3	5.7	5.9	5.6
OMAK AIRPORT ASOS	KOMK	1998-2006	5.0	5.9	7.3	7.9	7.8	8.0	8.4	8.3	8.0	6.9	5.2	4,2	6.9
ORCAS ISLAND AP AWOS	KORS	2004-2006	7.4	5.6	5.8	5,8	5.6	5.6	6.0	5.8	4.3	5.0	6.5	5.9	5.8
PASCO-TRI CITIES ASOS	KPSC	1996-2006	6.7	6.4	7.8	7.5	8.0	8.0	6.9	6.5	5.6	6.0	6.3	6.1	6.8
PORT ANGELES AP ASOS	KCLM	1996-2006	4.2	4.7	5.2	5.9	6.4	6.6	6.6	5.6	4.6	4.2	4.2	4.6	5.2
PULLMAN-MOSCOW AP ASOS	KPUW	1996-2006	9.1	8,5	8,8	7.8	7.2	6.1	4.7	5.1	5.5	6.6	8.6	9.3	7.3
QUILLAYUTE AIRPORT ASOS	KUIL	1996-2006	6.5	6.2	6.5	5.8	5.2	4.8	4.6	4.2	3.9	4.8	5.8	6.3	5.4
RENTON AIRPORT ASOS	KRNT	1996-2006	6.5	6.7	7.5	7.3	7.3	7.4	7.6	7.2	6.5	5.9	5.8	6.1	6.8
SEATTLE-BOEING FIELD	KBFI	1996-2006	6.4	5,9	7.1	6.5	6.5	6.5	6.1	5.8	5.4	5.7	6.1	6.3	6.2
SEATTLE-TACOMA AP ASOS	KSEA	1996-2006	8.3	8.2	8.5	7.4	7.3	7.2	7.0	6.4	6.5	6.9	7.5	8.3	7.5
SHELTON AIRPORT ASOS	KSHN	1996-2006	4.4	4.8	6,2	6.4	7.5	8.0	8.1	7.3	5.3	4.9	4.4	4.5	6.0
SKYKOMISH AP, WA (S88).	WIN	1992-1994	5.5	5.1	5.4	6.4	5.8	5.3	4.2	4.3	4.2	4.3	4.1	4.8	4.9
SPOKANE INTL AP ASOS	KGEG	1996-2006	8.7	8.2	10.2	9.5	9.5	9.3	8.8	8.2	8.0	8.3	8.4	8.1	8.7
SPOKANE-FAIRCHILD AFB	KSKA	1996-2006	10.1	9.6	10.7	10.2	9.7	9.2	8.5	8.5	8.3	8,9	9.6	9.6	9.4
SPOKANE-FELTS FLD ASOS	KSFF	1996-2006	4.5	4.6	6.5	6.4	6.5	6.4	6.3	5.8	5.1	4.9	4.7	4.3	5.5
STAMPEDE PASS ASOS	KSMP	1996-2006	7.0	7.7	7.5	7.3	7.6	8.1	8.3	7.8	7.5	7.5	7.3	7.2	7.6
TACOMA NARROWS AP ASOS	KTIW	1999-2006	7.0	6.7	7.6	6.8	6.8	6.5	6.2	5.5	5.4	6.2	6.5	6.4	6.5
TACOMA-MCCHORD AFB	KTCM	1996-2006	7.4	7.3	8.6	7.7	7.6	7.5	7.0	6.5	6.3	6.8	7.1	7.2	7.2
TOLEDO AIRPORT	KTDO	1996-2006	3.4	4.3	4.9	4.9	4.5	4.6	4.7	4.3	3.9	3.6	3.5	3.5	4.1
VANCOUVER AIRPORT ASOS	KVUO	1996-2006	5.6	5.5	5.0	4.7	4.7	5.2	5.5	5.1	4.2	4.0	4.8	5.6	5.0
WALLA WALLA AP ASOS	KALW	1996-2006	8.0	8.0	9.8	9.1	9.1	9.3	9.1	8.8	8.1	7.8	7.7	7.6	8.5
WENATCHEE-PANGBORN AP	KEAT	1996-2006	3.3	4.2	7.1	8.4	9.3	10.3	9.8	9.2	7.8	6.0	4.0	3,3	6.9
WHIDBEY ISLAND NAS	KNUW	1996-2006	10.7	9.5	10.9	9.0	7.9	7.4	6.9	6.3	5.9	8.3	10.2	11.0	8.6
YAKIMA AIRPORT ASOS	KYKM	1996-****	4.0	5.5	6.8	7.3	7.5	7.9	7.2	6.7	6.3	5.6	4.7	3.8	6.0

Station: State:	ation: WHITMAN MISSION ate: WA County: WALLA WALLA Standard Time:												Reco	rd of C	limatol	ogical O	bservati	ons	
Observs (1	ation .ST)	1 Time)	Tempe	rature	: 0800) Pre	cipitat	iion: 9900			TI	hese dat	a are q	uality cont	trolled and observ	d may not l ations	be identical	to the or	ʻiginal
	T		Ten	perati	ıre (°	F)			Precipitation (see	**)			Ņ	ionthly Tem	perature (°F)	1		Monthly	Precipitation
r c l y M i e	H B D	24 hrs. at obse tir	ending rvation ne	at O b s e				24 Hour / at obse	Amounts ending ervation time	At Observation Time									
i a n r a r y	t y	Max.	Min.	r v a t i o n	Daily Mean	Daily CDD	Daily HDD	Rain, melted I snow, etc. 1 (Inches & a hundredths)	Snow, ice pellets (Inches & tenths)	Snow, ice pellets, hail, ice on ground (Inches)	Mean Temp	Mean Max	Mean Min	Highest Temp	Lowest Temp	Monthly CDD	Monthly HDD	Precip	Snowfall
19960 19960	1 1 2 11 2 11 3 11 3 11 4 11 5 11 6 11 5 11 6 11 6 11 7 11 8 11 16 11 12 11 12 11 12 11 12 11 12 12 12 11 12 12 12 11 12 12 12 11 12 12 12 11 12 12 12 11 12 12 12 11 12 12 12 12 11 12 12 12 12 12 11 12 12 12 12 12 11 12 12 12 12 12 11 12	$\begin{array}{c} 54\\ 40\\ 62\\ 56\\ 41\\ 36\\ 31\\ 46\\ 38\\ 52\\ 60\\ 42\\ 58\\ 62\\ 60\\ 42\\ 58\\ 62\\ 60\\ 40\\ 47\\ 42\\ 41\\ 44\\ 44\\ 42\\ 5\\ 37\\ 7\\ 26\\ 0\\ 35\\ 15\\ -2\end{array}$	29 30 30 36 30 27 27 30 32 32 31 27 26 27 44 46 31 20 21 28 33 28 29 26 25 20 18 18 10 -7 -22	99999 99999 50 38 31 27 30 33 32 41 32 28 45 58 46 33 32 28 45 58 46 33 21 28 40 42 30 37 28 28 40 42 28 40 42 28 40 42 28 40 28 20 28 40 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	42 35 46 46 36 22 9 38 35 38 42 44 43 53 53 39 31 29 34 40 53 53 40 53 53 40 53 53 40 53 53 40 53 53 53 53 53 53 53 53 53 53 53 53 53		23 30 19 19 29 33 6 27 20 27 23 21 22 12 22 6 31 32 30 29 30 31 36 34 34 34 34 34 34 36 31 22 29 30 31 31 27 27 23 27 27 23 27 27 23 27 27 23 27 27 20 27 29 29 29 29 29 29 29 29 29 29 29 29 29	999.99 999.99 999.99 T T 0.10 0.47 0.02 0.22 0 0 0 T 0.10 0.11 0.14 0 0.11 0.30 0.04 0 T 0.50 0.07 0 0.55 0.05 0.05 0.06 0	9999.9 9999.9 9999.9 0 0 0 0 0 0 0 0 0 0	99999 99999 0 1 99999 99999 99999 99999 99999 99999 99999 99999 99999 99999 0 10 9	33.6	42.0	25.2	62	-22	0	966	2.2 ^L 2.72	10.5
							Th	e '*' flags in P	reliminary indicat	e the data has not	completed	processin	ig and qua	ility control a	nd may cont	ain errors			
			T=	TRA	CE. A	=Acc	umula	All 9's (e.g	nce last measure.	etc.) in the data co B=Accumulated a	mount incl	ludes estin	ne value v nated valu	vas not receiv es. S≓Include	ed or is miss	nig juent value, E-	=Estimated am	ount.	**

.

Station: WHITMAN MISSION		Record of Climatological Observations								
Observation Time Temperatures 0800 Presidentes 0800		Thes	se data	are qu	ality cont	rolled and	l may not h	be identical	to the or	iginal
(LST)				1		observ	ations			0
n Temperature (°F) Precipitation (see **	*)			М	onthiy Temp	erature (°F)			Monthly l	Precipitation
I're V M 24 hrs. ending at at <td>At Observation Time Snow, ice pellets, hail, ice on ground (Inches)</td> <td>Mean I Temp</td> <td>Mean Max</td> <td>Mean Min</td> <td>Highest Temp</td> <td>Lowest Temp</td> <td>Monthly CDD</td> <td>Monthly HDD</td> <td>Precip</td> <td>Snowfall</td>	At Observation Time Snow, ice pellets, hail, ice on ground (Inches)	Mean I Temp	Mean Max	Mean Min	Highest Temp	Lowest Temp	Monthly CDD	Monthly HDD	Precip	Snowfall
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 9 8 10 8 6 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31.8	41.8	21.8		-21	0	957	2.39	4.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-							

1996 05 1 1996 05 2 1996 05 3 1996 05 3 1996 05 4 1996 05 5 1996 05 6 1996 05 7 1996 05 8 1996 05 10 1996 05 10 1996 05 12	1996 04 1 1996 04 2 1996 04 3 1996 04 3 1996 04 5 1996 04 5 1996 04 6 1996 04 7 1996 04 8 1996 04 10 1996 04 10 1996 04 12 1996 04 12 1996 04 13 1996 04 13 1996 04 14 1996 04 13 1996 04 12 1996 04 12 1996 04 12 1996 04 12 1996 04 12 1996 04 22 1996 04 26 1996 04 26 199	1996 03 13 1996 03 14 1996 03 15 1996 03 16 1996 03 17 1996 03 17 1996 03 20 1996 03 20 1996 03 22 1996 03 22 1996 03 22 1996 03 24 1996 03 26 1996 03 27 1996 03 28 1996 03 29 1996 03 30
67 64 60 59 62 65 69 63 61 64 68 71	$\begin{array}{c} 47\\ 60\\ 60\\ 59\\ 67\\ 73\\ 77\\ 81\\ 82\\ 75\\ 65\\ 65\\ 59\\ 63\\ 74\\ 73\\ 70\\ 63\\ 61\\ 66\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62$	59 58 60 57 60 65 62 58 58 58 58 38 45 50 54 53 56 57
45 40 41 40 29 33 43 31 29 33 46 49	42 43 29 31 39 45 46 48 47 42 42 32 44 33 35 31 36 40 47 44 39 31 38 40 47 44 39 31 36 40 47 44 39 31 36 40 47 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	34 37 31 32 27 32 33 27 32 34 31 19 23 33 33 33 33 33 33 36 37
47 46 43 45 34 46 45 39 38 46 53 51	44 48 44 42 39 50 46 48 56 47 49 46 44 43 50 44 43 51 51	35 37 49 39 37 33 42 45 32 43 38 31 23 34 39 33 42 40 42
56 52 51 50 46 49 56 47 45 49 57 60	45 52 45 45 49 56 61 64 56 61 56 54 51 55 53 47 48 46 51 51 51 51 51 51 51 57	47 46 51 46 45 44 49 48 43 44 45 29 34 42 44 43 46 47
0 0 0 0 0 0 0 0 0 0 0 0 0		
9 13 14 15 19 16 9 18 20 16 8 5	20 13 20 20 16 9 4 1 0 4 9 11 14 17 19 14 14 8 12 14 14 18 17 19 14 14 8	18 19 14 19 20 21 16 17 22 21 19 20 36 31 23 21 23 21 22 19 18
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.54 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	52.6	43.7
	65.8	54.7
	39.5	32.6
	82	68
	29	19
	0	0
	362	653
	2.45	0.90
	0	0

http://www1.ncdc.noaa.gov/pub/orders/4161703551943dat.html

•

1996 09 1996 09	1996 08 1 1996 08 2 1996 08 2 1996 08 2 1996 08 3 1996 08 4 1996 08 7 1996 08 7 1996 08 1 1996 08 2 1996 08 2	1996 07 1: 1996 07 1: 1996 07 1: 1996 07 1: 1996 07 1: 1996 07 2: 1996 0
80 2 79 3 81 4 82 5 73 5 73 5 73 5 73 7 74 8 82 9 86 0 85 1 89	93 93 93 79 84 95 101 1042 295 388 498 998 799 88 98 99 90 91 92 84 94 95 388 498 694 792 8799 90 91 92 84 92 84 93 94 95 95 96 98 98 98 98 98 98 91 92 93 94 95 96 97 98	3 94 4 101 5 98 5 100 7 100 8 82 9 75 1 82 2 88 3 96 4 102 5 100 5 100 6 100 7 107 8 101 9 100 9 7
43 42 46 50 52 48 47 50 47 41 44	52 60 46 48 59 45 43 47 51 49 55 45 47 45 56 48 49 42 40 42 44 85 55 57 83 49	51 52 60 63 60 52 48 48 53 49 48 50 56 47 59 60 859 56
48 46 50 52 53 49 60 60 48 44 47	66 63 57 69 58 55 55 55 56 56 57 65 9 69 50 48 49 55 74 61 53 57 54	62 68 79 70 66 56 62 61 61 59 60 67 68 75 68 75 70 69
62 61 64 63 61 61 66 67 63 67	73 77 63 62 70 61 64 71 75 80 70 68 74 77 75 70 64 60 62 67 72 74 72 268 66 77 68	73 77 79 82 80 67 62 63 68 69 72 76 78 74 83 81 84 76 77
0 0 1 0 0 0 1 2 0 2	8 12 0 5 0 0 6 11 10 5 0 0 0 0 0 2 5 7 9 7 3 12 12 12 13 5 0 0 0 13 5 0 0 0 14 15 5 0 0 0 15 10 10 10 10 10 10 10 10 10 10	8 12 14 17 15 2 0 0 3 4 7 11 13 9 18 16 19 11 12
3 4 1 0 2 4 4 0 0 2 0	0 2 3 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0	0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0,01 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0		
0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	69.2	72.6
	89,4	92.4
	49.0	52.9
	104	107
	40	39
	160	261
	24	16
	0.05	0.01
	0	0

Record of Cl	imato	ologi	cal (Obse	rvati	ions									
19960912 89	47	56	68	13	0		0	11	0	I I		[]	.		
1996/09/13 82	54	59	68	3	õ	0.05	0		0						
1996 09 14 80	56	56	68	3	0	0.09	0		0	ļ					
1996/09/15 76	56	57	66	1	0	0.32	0		0						
1996 09 16 70	48	50	59	0	6	Т	0		0						
1996 09 17 70	46	47	58	0	7	0	0		0						
1996/09/18 70	41	46	56	0	9	0	0		0						
1996/09/19 71	43	53	57	0	8	0.15	0		0						
1996/09/20 70	46	47	58	0	7	0.03	0		0						
1996/09/21 70	41	45	56	0	9	0	0		0						
1996/09/22 68	42	43	55	0	10	0	0		0						
1996 09 23 65	27	29	46	0	19	0	0		0						
1996 09 24 64	29	29	47	0	18	0	0		0						
1996/09/25 64	29	31	47	0	18	0	0		0						
19960926 71	30	41	51	0	14	0	0		0						
19960927 73	41	42	57	0	8	0	0		0						
19960928 87	42	49	65	0	0	0	0		0						
1996/09/29 90	48	51	69	4	0	0	0		0						
1996/09/30 87	42	44	65	0	0	0	0	L	0	60,3	76.7	43.9	90	27	20
1996 10 1 83	35	37	59	0	6	0	0	1	0						
1996 10 2 75	34	37	55	0	10	0	0		0						
1996103 69	37	42	53	0	12	0	0	1	0						
1996104 80	40	41	60	0	5	Т	0		0						
199610 5 78	41	50	60	0	5	0.05	0		0						
199610672	39	42	56	0	9	0	0	11	0						

Ó

50.7

65.0

36.4

0.64

Page 6 of 8

http://www1.ncdc.noaa.gov/pub/orders/4161703551943dat.html

40 34

38

28

36

72 75

56 56

44

41

113

1996 10 7

4

29

20 20

0.06 0,06

0.14

0.42

0,11

0.06 0.12 0.49 0.07 T T

0.27

0,07

Т

0.03 0

0.02 0.01

Т

0.01

0

0

1,92

1996 11 12 52	28	31	40	0	25	0	0	0									
199611113 56	30	48	43	0	22	0.13	0	0									
199611114 59	42	43	51	0	14	0,05	0	0									
199611115199999	999999	199999	99999	999999	999999	T	0	0									
199611116 99999	999999	199999	99999	999999	999999	0	U O	0									
19901111799999	0000010	19999	99999 99999	22222	00000	0.04	0	0									
100611110 00000	0000010	100000	00000	999999	00000	1.00	0	0 0									
10061100 40	22	35	36	77777 N	22222	0.23	0	ŏ									
199611121 48	24	26	36	0	29	0.23	ů ľ	ň									
199611122 99999	00000	30 4	00000	00000	0000	0.03	i o i	ů									
199611123 34	28	28	31	0	34	T	ŏ	ŏ									ł
199611124 28	25	27	27	Ō	38	0.21	0.5	ō									1
199611125 30	23	23	27	0	38	0,02	0	0									1
1996 11 26 33	23	29	28	0	37	Т	0	0									
1996 11 27 99999	99999 9	99999K	99999	99999	99999	0	0	0									
1996 [128 99999	999999	99999	99999	999999	99999	0	0	0									
1996 [[29 99999	999999	999998	99999	999999	99999	0	0	0									
19961130 47	99999	46	99999	99999	99999	0	0	0				65	23			2.83	0.5
1996121 54	38	43	46	0	19	Т	0	0									
199612 2 47	36	39	42	0	23	0	0	0									
199612 3 46	34	34	40	0	25	0.09	U Q	0									
199612 4 44	24	39	34	0	31	0.00	0	N N									
199012 5 49	33	41	41 41	0	24	0.09		0									
199012 01 47	21	28	42	0	23	0	0	0					1				
199612 8 51	38	44	40	ů ů	20	0.09	ů ř	0									
19961219 46	36	40	41	õ	24	0.26	ő	ň									
19961210 43	37	37	40	ň	25	0.43	ň	ŏ									
19961211 50	32	32	41	ŏ	24	0.08	0	Ő									
1996 12 12 50	32 9	99999	41	õ	24	0.08	0	ō									
1996 12 13 51	32 9	99999	42	0	23	0,15	0	0									
1996 12 14 49	32	33	41	0	24	0	0	0									
1996 12 15 48	29	32	39	0	26	0	0	0									
19961216 51	31	31	41	0	24	Т	0	0									
19961217 42	19	19	31	0	34	0	0	0									
19961218 26	18	22	22	0	43	0	0	0									
19961219 26	22	25	24	0	41	0	0	0									
1996121201 37	25	31	31	0	34	0.06	0	0									
19901221 32	27	21	30	0	35	0.01											
10061222 29	20	24	20	0	30	0.01		1									
100612123 27	23	24	26	ň	30	0.02	1.0	2									
19961225 27	24	20000	26	ő	39	999 99	99999	3									
1996122699999	13	13	99999	99999	999999	0.85	3.0	6									
19961227 16	13	15	15	0	50	1.00	6.0	9									
19961228 26	-2	ĩ	12	ō	53	Т	9999.9	9									
19961229 13	1	13	7	0	58	0.46	4.0	11									
1996 12 30 41	13	14	27	0	38	0	0	9									
19961231 52	14	40	33	0	32	0.34	0	6	32.6	39.9	25.3	54	-2	0	959	4.05	14.8
					The '	*1 flags in Pro	liminary indicate	the data has no	t completed j	processing	and quali	ity control an	d may conta	in errors			
						All 9's (e.g.	999999, 9 <mark>99999,</mark> 9, e	tc.) in the data o	olumn indic	ate that th	e value wa	as not receive	d or is missi	ng			
	**T='	TRAC	CE. A=	-Accur	nulated	d amount sin	ce last measure. B	=Accumulated a	nnount inclu	des estima	ted value	s. S=Included	l in a subseq	uent value. E=	Estimated amo	ount.	

,

This page was dynamically generated on Wed Dec 30 13:18:13 EST 2009 by http://www.ncdc.noaa.gov/dailyform/DlyFORMv2

Station: WH	IITMAN	1 MISS	ION	Youn4-	WA		WATTA Pto-	dard Time				Reco	rd of Cl	imatol	ogical O	bservati	ons	
Observation	Time '	Fempe	rature	: 0800) Prec	ipitat	ion: 9900	IOATU TIMU:		TI	iese dat	a are qu	ality cont	rolled and	l may not b	e identical	to the or	iginal
(LST)														observ	ations			
р		Tem	perati	ıre (°l	ŋ			Precipitation (see	**)			N	lonthly Tem _I	erature (°F)			Monthly	Precipitation
r e I Y M i e o D m e P a	24 hrs. (at obser tin	ending vation 1e	at O b s e		-		24 Hour A at obse	Amounts ending rvation time	At Observation Time									
i a t n r h a y	Max.	Min.	r v a t i n	Daily Mean	Daily CDD	Daily HDD	Rain, melted I snow, etc. (Inches & a hundredths) a	Snow, ice pellets (Inches & tenths)	Snow, ice pellets, hail, ice on ground (Inches)	Mean Temp	Mean Max	Mean Min	Highest Temp	Lowest Temp	Monthly CDD	Monthly HDD	Precip	Snowfall
2006 01 1 2006 01 2 2006 01 3 2006 01 3 2006 01 3 2006 01 4 2006 01 5 2006 01 7 2006 01 7 2006 01 8 2006 01 9 2006 01 11 2006 01 12 2006 01 13 2006 01 14 2006 01 12 2006 01 15 2006 01 17 2006 01 17 2006 01 17 2006 01 17 2006 01 17 2006 01 17 2006 01 12 2006 01 20 2006 01 20 2006 01 20 2006 01 20 2006 01 20 2006 01 20 2006 01 20 2006 01 20 <tr< td=""><td>53 52 54 48 53 53 42 57 51 58 60 53 55 57 44 47 53 54 44 53 59 43 88 90 54 59 50 54 57 59</td><td>36 35 29 30 30 31 37 33 47 46 37 40 42 33 33 31 31 31 31 31 31 31 31 31 31 31</td><td>999999 38 29 32 31 31 40 40 40 47 57 46 40 54 42 34 42 34 47 31 37 44 47 31 37 29 29 29 29 35 38 45 38 56</td><td>45 44 42 39 42 37 47 42 53 53 45 48 50 39 40 42 43 42 38 43 42 43 42 43 33 341 42 45 8 41 42 53 341 42 53 45 45 45 45 45 45 45 45 45 45 45 45 45</td><td></td><td>20 21 23 26 23 28 18 23 12 20 17 15 26 27 23 27 23 27 23 25 23 20 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 21 22 32 32 32</td><td>999.99 0.62 0.06 0.04 0 0 0.06 0.07 T 0.02 0.06 0 0.09 0.32 0.46 0 0.34 0.25 0.05 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td></td><td>42.8</td><td>51 5</td><td>34.0</td><td>60</td><td>27</td><td></td><td>680</td><td>2 55</td><td></td></tr<>	53 52 54 48 53 53 42 57 51 58 60 53 55 57 44 47 53 54 44 53 59 43 88 90 54 59 50 54 57 59	36 35 29 30 30 31 37 33 47 46 37 40 42 33 33 31 31 31 31 31 31 31 31 31 31 31	999999 38 29 32 31 31 40 40 40 47 57 46 40 54 42 34 42 34 47 31 37 44 47 31 37 29 29 29 29 35 38 45 38 56	45 44 42 39 42 37 47 42 53 53 45 48 50 39 40 42 43 42 38 43 42 43 42 43 33 341 42 45 8 41 42 53 341 42 53 45 45 45 45 45 45 45 45 45 45 45 45 45		20 21 23 26 23 28 18 23 12 20 17 15 26 27 23 27 23 27 23 25 23 20 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 22 30 21 22 32 32 32	999.99 0.62 0.06 0.04 0 0 0.06 0.07 T 0.02 0.06 0 0.09 0.32 0.46 0 0.34 0.25 0.05 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0			42.8	51 5	34.0	60	27		680	2 55	
					· · · · · ·	The	*** flags in P	reliminary indicate	the data has not o	completed	processin	g anđ qua	lity control a	nd may conta	in errors			
		**T=	TRA(CE. A	⇒Accu	mula	All 9's (e.g ted amount si	. 999999, 99999, 9 nce last measure. I	etc.) in the data co B=Accumulated an	lumn indi nount incl	cate that t udes estim	he value w ated value	as not receiv s. S≓Include	ed or is missi d in a subseq	ng uent value. E=	Estimated am	ount.	

.

Record of Climatological Observations

Page 1 of 24

Station: WHITMAN MISSION **Record of Climatological Observations** State: WA County: WALLA WALLA Standard Time: These data are quality controlled and may not be identical to the original Observation Time Temperature: 0800 Precipitation: 0800 observations (LST) Monthly Precipitation Monthly Temperature (°F) Temperature (°F) Precipitation (see **) at 24 hrs. ending 24 Hour Amounts ending At Observation b at observation Time at observation time Y time Ş е e Daily Daily Daily Mean CDD HDD а Mean Mean Mean Highest Lowest Monthly Monthly r Precip Snowfall CDD HDD Temp Max Min Temp Temp v r Rain, melted Snow, ice pellets. Snow, ice pellets a snow, etc. hail, ice Max. Min, t (Inches & (Inches & on ground tenths) i hundredths) (Inches) n 2006 02 1 2006 02 2 2006 02 3 2006 02 4 0,07 0.07 0.06 2006 02 5 Т 29 29 30 2006 02 6 2006 02 7 2006 02 8 2006 02 9 0.20 34 2006 02 10 2006 02 11 2006/02/12 2006 02 13 2006 02 14 0.14 2006 02 15 2006/02/16 2006 02 17 29 47 2006 02 1 2006/02/19 2006 02 20 2006 02 21 Û 2006 02 22 2006 02 23 2006/02/24 0.01 2006 02 25 36 34 17 2006 02 26 Ō 0.09 2006 02 27 2006 02 28 ō 0.33 35.3 46.5 24.1 0,97 2006/03/1 0.05 Т 2006 03 2 29 18 2006 03 3 0.01 2006 03 4 2006036 21 18 0.09 Û 2006/03/7 0.05 Û 2006 03 8 T 2006 03 9 2006 03 10 0.10 Т 2006/03/11 33 27 27 50 25 2006/03/12 2006/03/13

200603 14 54 200603 15 53 200603 16 57 200603 17 57 200603 19 54 200603 19 54 200603 20 54 200603 20 54 200603 20 54 200603 20 54 200603 20 61 200603 23 66 200603 24 67 200603 26 45 200603 26 45 200603 28 63 200603 28 62 200603 29 62 200603 29 62 200603 30 62 200603 30 62 200603 31 62	33 28 35 39 33 30 30 28 33 42 44 43 36 29 33 42 44 44 45 29 33 42 44	42 35 49 43 35 33 33 33 42 44 58 44 42 33 43 45 49 48	44 41 46 48 45 42 42 43 47 54 56 53 41 42 48 52 53 54	0 2 0 1 0 2 0 1 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 4 0.0 9 0.7 0.3 0.0.3 3 0.0 2 0.0 1 0 0 0.1 3 0.0 3 0.0 3 0.0 2 0.3 0.1 0.0 3 0.0 3 0.0 3 0.0 2 0.0 1 0.0 2 0.1 3 0.0 2 0.0 3 0.0 2 0.0	T 02 0 32 15 001 00 0 001 0 001 57 53 0 003 001 001 003 001 003 001 003			44.7	56.0	33.5	67	22	0	620	2.05	0
200604 1 65 200604 2 57 200604 3 62 200604 4 61 200604 5 53 200604 6 52 200604 7 63 200604 8 60 200604 9 61 200604 8 60 200604 10 63 200604 10 63 200604 12 64 200604 13 64 200604 16 58 200604 16 58 200604 17 56 200604 19 63 200604 20 71 200604 21 73 200604 20 71 200604 25 56 200604 25 56 200604 25 56 200604 27 <	40 31 33 44 39 43 33 44 43 45 31 43 45 31 43 49 41 30 35 30 34 39 31 27 33 39 36 40 41 45 38 49 41 30 45 30 45 30 45 45 45 30 45 45 45 45 45 45 45 45 45 45	45 33 44 47 43 44 50 46 45 50 46 45 50 48 54 51 41 37 38 38 38 34 41 37 38 38 34 44 45 50 48 55 43 50 48 55 43 44 44 50 44 45 50 46 45 50 54 54 54 54 54 54 54 54 54 54 54 54 54	53 44 853 46 48 46 48 47 52 54 55 54 55 53 55 56 44 46 52 53 55 56 63 58 53 55 56 63 58		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} .06\\ .37\\ .02\\ .40\\ .03\\ .68\\ 0\\ .03\\ .12\\ .43\\ .07\\ .04\\ .01\\ 0\\ .21\\ .07\\ .01\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$			50.8	64.0	37.5	81	27	0	420	2.56	0
2006 05 1 64 2006 05 3 64 2006 05 3 64 2006 05 4 69 2006 05 5 73 2006 05 6 78 2006 05 8 64 2006 05 9 62 2006 05 9 62 2006 05 10 66 2006 05 11 75 2006 05 12 75 2006 05 13 68	33 28 27 30 32 40 50 41 29 30 38 47 29	49 36 33 39 40 52 51 43 39 38 47 50 38	49 46 50 53 59 60 53 46 48 57 61 49	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 9 9 9 5 0 6 0 5 0 9 9 6 0 7 0 8 0 4 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

Page 3 of 24

2006 05 14 2006 05 15 83 53 64 1 64 70 75 77 79 75 62 53 5 10 12 14 0 2006 05 16 65 67 60 54 2006 05 17 Õ Ō 58 59 59 59 98 91 2006 05 18 2006 05 19 0 3 2 3 0.75 Ó 2006 05 20 2006 05 21 0,06 2006 05 22 2006/05/23 0.45 2006/05/24 0.02 Ð, 2006 05 25 2006 05 26 0.05 n 0.07 2006 05 20 2006 05 27 2006 05 28 2006 05 29 2006 05 30 2006 05 31 0.03 6 0.01 54 54 57 63 0.01 83 2 58,8 74.0 43.5 1.51 52 67 61 2006 06 1 2006/06/2 0 0 2 0 2006 06 3 2006 06 4 0.30 0.16 2006 06 5 0.49 2006/06/6 2006/06/7 2006/06/8 0.06 73 78 78 79 2006/06/9 55 61 2006/06/10 2006/06/1 56 55 3 0 5 3 2006/06/12 0.07 2006/06/13 0.12 2006/06/14 2006 06 15 2006 06 16 2006 06 17 75 80 76 77 79 57 55 59 58 2006/06/18 Ō 2006 06 19 4 2006/06/20 2006/06/21 2006/06/22 54 2006 06 23 2006/06/24)625 2006 06 26 2006/06/27 2006 06 28 2006 06 29 2006 06 30 0.05 80.8 51.8 1.25 66,3 2006 07 1 2006 07 2 2006 07 3 2006 07 3 2006 07 4 2006 07 5 18 Т 2006 07 6 68 Т 2006/07/7 2006 07 8 2006 07 9 2006/07/10 2006 07 11 2006 07 12 2006 07 13 82 71 60 66 6 0 Ö 0.04

$\begin{array}{ccccc} 2006 & 07 & 14 & 88 \\ 2006 & 07 & 15 & 94 \\ 2006 & 07 & 16 & 91 \\ 2006 & 07 & 17 & 95 \\ 2006 & 07 & 18 & 92 \\ 2006 & 07 & 20 & 92 \\ 2006 & 07 & 20 & 92 \\ 2006 & 07 & 21 & 101 \\ 2006 & 07 & 23 & 106 \\ 2006 & 07 & 24 & 108 \\ 2006 & 07 & 25 & 104 \\ 2006 & 07 & 26 & 98 \\ 2006 & 07 & 27 & 98 \\ 2006 & 07 & 28 & 101 \\ 2006 & 07 & 29 & 92 \\ 2006 & 07 & 30 & 86 \\ 2006 & 07 & 31 & 77 \\ \end{array}$	55 54 50 52 57 48 48 59 62 64 64 64 58 59 68 58 55 44	67 63 69 63 59 63 62 71 72 73 74 68 69 73 65 61 53	72 74 71 74 75 70 70 70 78 81 84 84 86 84 78 79 85 75 71 61	7 9 6 9 10 5 5 13 16 19 21 19 13 14 20 10 6 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75.5	94.5	56.6	108	44	337	4	0.04	0
2006 08 1 80 2006 08 2 82 2006 08 3 86 2006 08 4 90 2006 08 5 91 2006 08 6 93 2006 08 7 97 2006 08 8 98 2006 08 9 90 2006 08 9 90 2006 08 10 89 2006 08 11 89 2006 08 12 81 2006 08 13 85 2006 08 14 92 2006 08 17 89 2006 08 19 95 2006 08 20 99 2006 08 23 93 2006 08 24 86 2006 08 24 85 2006 08 24 85 2006 08 27 92 2006 08 28 97 2006 08	47 47 46 49 49 47 54 61 66 54 56 47 45 51 57 56 47 47 51 47 50 49 53 47 47 49 47 49 48 40	60 59 54 57 54 61 72 70 60 61 56 52 51 66 53 557 50 53 50 53 50 49 68 50 44	64 65 66 70 70 70 70 70 70 70 70 70 70 73 64 65 69 73 73 73 73 73 73 73 73 73 73 73 73 73	0 0 1 5 5 1 1 3 7 8 0 0 4 8 8 2 6 10 8 7 6 5 0 1 6 7 8 0 0 4 8 8 8 2 6 10 7 8 0 0 0 4 8 8 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$				69.6	89.4	49.9	99	40	164	12	0	0
2006 09 1 79 2006 09 2 85 2006 09 3 88 2006 09 4 85 2006 09 5 98 2006 09 6 93 2006 09 7 94 2006 09 8 88 2006 09 9 91 2006 09 10 78 2006 09 12 85	36 38 41 44 56 51 50 49 48 43 38 39	38 40 44 68 65 53 55 52 62 44 39 43	58 62 65 77 72 72 69 70 61 65 62	0 0 0 12 7 7 4 5 0 0	7 3 0 0 0 0 0 0 0 4 0 3	0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

Page 5 of 24

2006 09 13 90 2006 09 14 83 2006 09 15 67 2006 09 16 61 2006 09 18 75 2006 09 19 69 2006 09 20 68 2006 09 20 68 2006 09 20 67 2006 09 23 67 2006 09 24 74 2006 09 26 79 2006 09 27 84 2006 09 28 84 2006 09 28 88 2006 09 29 88 2006 09 28 84	44 47 38 43 38 41 47 51 52 39 36 36 36 36 36 36 36 38 40 44 41 42	59 50 43 45 41 45 54 54 40 38 36 38 40 44 42 43	67 65 53 52 54 58 60 60 53 52 55 57 59 62 64 65 65	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 12 13 11 7 5 5 12 13 10 8 6 3 1 0 0	0 0 0,03 T 0 0,07 0 0,07 0 0 0 0 0 0 0 0 0 0 0 0 0			61.6	80.4	42.9	98	36	37	130	0.66	0
2006 10 1 85 2006 10 2 75 2006 10 3 73 2006 10 5 61 2006 10 5 61 2006 10 6 66 2006 10 7 70 2006 10 8 67 2006 10 9 63 2006 10 10 59 2006 10 10 59 2006 10 11 65 2006 10 12 73 2006 10 13 76 2006 10 15 73 2006 10 15 73 2006 10 16 63 2006 10 18 61 2006 10 20 68 2006 10 24 63 2006	41 40 41 47 36 39 46 34 35 25 25 28 30 31 45 49 40 44 47 47 30 26 30 32 34 32 32 34 32 5 25 26 11	42 43 47 50 39 49 48 38 36 25 28 30 33 55 50 45 50 52 48 30 26 47 26 13	63 58 57 57 58 49 53 58 51 49 42 45 51 53 52 59 56 51 53 53 54 58 47 47 47 47 47 47 47 47 47 46 44 29		2 7 8 7 16 12 7 14 16 23 20 14 12 13 6 9 14 12 13 6 9 14 12 13 8 18 18 18 18 18 18 19 9 21 36	0 0 T T 0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			50.0	65.5	34.4	85	11	0	458	0.66	0
2006 11 1 43 2006 11 2 38 2006 11 3 35 2006 11 4 56 2006 11 5 68 2006 11 7 75 2006 11 7 75 2006 11 7 75 2006 11 9 59 2006 11 10 54 2006 11 11 59 2006 11 11 59 2006 11 11 54 2006 11 11 54 2006 11 12 53	9 24 26 34 53 53 62 44 36 32 40 39	999999 27 34 55 53 68 63 44 44 49 40 47	26 31 31 45 61 61 69 56 48 43 50 46	0 0 0 0 4 0 0 0 0 0	39 34 34 20 4 4 0 9 17 22 15 19	0 0 0.11 0.12 0.05 0.20 0.04 0.26 0.20 0.02 0.05 T	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0									

Page 6 of 24

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 1 0 42.2	51.4 33.0 75	9 4 682	1.94 0								
$ \begin{bmatrix} 2006 12 & 1 & 31 & 17 & 19 & 24 & 0 & 41 & 0 \\ 2006 12 & 2 & 34 & 17 & 22 & 26 & 0 & 39 & 0 \\ 2006 12 & 3 & 24 & 20 & 20 & 22 & 0 & 43 & 0 \\ 2006 12 & 4 & 23 & 20 & 23 & 22 & 0 & 43 & 0 \\ 2006 12 & 5 & 29 & 23 & 25 & 26 & 0 & 39 & T \\ 2006 12 & 5 & 29 & 23 & 25 & 27 & 28 & 0 & 37 & 0 \\ 2006 12 & 6 & 31 & 25 & 27 & 28 & 0 & 37 & 0 \\ 2006 12 & 8 & 34 & 28 & 30 & 31 & 0 & 34 & 0 \\ 2006 12 & 8 & 34 & 28 & 30 & 31 & 0 & 34 & 0 \\ 2006 12 & 9 & 31 & 28 & 28 & 30 & 0 & 35 & 0 \\ 2006 12 & 10 & 33 & 28 & 31 & 31 & 0 & 34 & 0.10 \\ 2006 12 & 10 & 33 & 28 & 31 & 31 & 0 & 34 & 0.10 \\ 2006 12 & 11 & 41 & 28 & 33 & 35 & 0 & 30 & 0.07 \\ 2006 12 & 11 & 41 & 28 & 33 & 35 & 0 & 30 & 0.07 \\ 2006 12 & 12 & 56 & 32 & 45 & 44 & 0 & 21 & 0.04 \\ 2006 12 & 13 & 57 & 40 & 52 & 49 & 0 & 16 & 0.13 \\ 2006 12 & 15 & 65 & 39 & 43 & 52 & 0 & 13 & 0.38 \\ 2006 12 & 16 & 45 & 22 & 22 & 31 & 0 & 34 & 0 \\ 2006 12 & 16 & 45 & 22 & 22 & 31 & 0 & 34 & 0 \\ 2006 12 & 18 & 28 & 16 & 16 & 22 & 0 & 43 & 0 \\ 2006 12 & 18 & 28 & 16 & 16 & 62 & 0 & 43 & 0 \\ 2006 12 & 10 & 25 & 30 & 28 & 0 & 37 & 0.07 \\ 2006 12 & 20 & 25 & 33 & 25 & 24 & 0 & 41 & 0 \\ 2006 12 & 20 & 25 & 33 & 28 & 0 & 37 & 0.07 \\ 2006 12 & 21 & 30 & 25 & 30 & 28 & 0 & 37 & 0.07 \\ 2006 12 & 23 & 43 & 24 & 28 & 34 & 0 & 31 & 0.04 \\ 2006 12 & 24 & 38 & 24 & 27 & 31 & 0 & 34 & 0.02 \\ 2006 12 & 24 & 38 & 24 & 27 & 31 & 0 & 34 & 0.02 \\ 2006 12 & 25 & 46 & 25 & 99999 & 36 & 0 & 29 & 9999.99 \\ 2006 12 & 26 & 40 & 26 & 33 & 33 & 0 & 32 & 0.31 \\ 2006 12 & 27 & 34 & 31 & 31 & 33 & 0 & 32 & 0.31 \\ 2006 12 & 28 & 39 & 22 & 22 & 31 & 0 & 34 & 0.20 \\ 2006 12 & 28 & 39 & 22 & 22 & 31 & 0 & 34 & 0.20 \\ 2006 12 & 28 & 39 & 18 & 19 & 29 & 0 & 36 & 0 \\ 2006 12 & 30 & 9 & 18 & 19 & 29 & 0 & 36 & 0 \\ 2006 12 & 31 & 27 & 26 & 27 & 27 & 0 & 38 & 0 \\ \end{bmatrix}$	0 0 0 0 0 0 0 0 0 9999.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31.0	37.2 24.8 65 processing and quality control and	15 0 1044 may contain errors	2.34 0								
The '*' flags in Preliminary indicate the data has not completed processing and quality control and may contain errors All 9's (e.g. 9999999, 9999999, etc.) in the data column indicate that the value was not received or is missing												
**T=TRACE. A=Accumulated amount since last measure. B=Accumulated amount includes estimated values. S=Included in a subsequent value. E=Estimated amount.												

.

Stati Stati	ion:	WI W	HITMAÌ	N MISS	SION	~~~~~t		1 T A	WALLA Stor	wlard Time				Reco	rd of C	limatolo	ogical O	bservati	ons	
Obe	0.770	YY I	n Time '	Tampa	roturo	• 0800) Pro	vinitat	ion: 9000	aaro milei	an aine in the subscription of	TI	hese dat	a are qu	ality cont	rolled and	i may not l	e identical	to the or	iginal
0.05	erva (L	ST)	rempe	rature	: 0000		приат	1011, 9900						·	observ	ations			Ũ
Ţ	Т	Т		Ten	iperati	ure (°	F)			Precipitation (see	**)			λ	fonthly Tem	perature (°F)	****		Monthly	Precipitation
r e l i m		d D D a a	24 hrs, at obser tin	ending rvation ne	at O b s c				24 Hour / at obso	Mounts ending rvation time	At Observation Time									
i n n r y		t y	Max.	Min.	r v t i o n	Daily Mean	Daily CDD	Daily HDD	Rain, melted I snow, etc. (Inches & a hundredths) g	Snow, ice pellets (Inches & tenths)	7 Snow, ice pellets, hail, ice a on ground g (Inches)	Mean Temp	Mean Max	Mean Min	Highest Temp	Lowest Temp	Monthly CDD	Monthly HDD	Precip	Snowfall
200 200 200 200 200 200 200 200 200 200	077 0 077 0 007 00000000	11 1 11 2 11 2 11 3 11 3 11 3 11 3 11 3 11 5 11 5 11 5 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 12 1 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 <td< td=""><td>32 57 57 49 42 48 47 56 52 59 43 30 32 52 52 53 43 50 52 52 53 54 55 54 55 54 55 54 54 55 54 54 55 54 54 57 57 58 54 57 58 51 44 53 51 44 53 51 52 53 54 57</td><td>24 27 41 33 27 27 36 39 31 31 31 10 8 7 6 6 6 12 19 16 19 20 20 20 22 30 20 227 18 9 30 29 27 27</td><td>999999 57 43 34 27 39 45 42 32 31 10 8 18 6 12 22 19 19 33 20 29 25 18 31 30 29 25 18 31 30 29 27 27 27</td><td>28 42 49 41 35 38 42 48 42 45 32 20 18 15 16 15 19 22 21 27 34 33 31 31 31 30 29</td><td></td><td>37 23 16 24 30 27 23 27 23 17 23 33 45 47 50 49 9 50 46 43 43 43 43 8 31 22 5 30 41 32 25 30 41 32 45 34 34 34 35 36</td><td>999.99 0.02 0.59 0.28 0.02 T 0.08 T 0 0 0 0 T T 999.99 0.01 T T 7 999.99 0.01 T T 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>30.9</td><td>38.9</td><td>22.8</td><td>59</td><td>6</td><td>0</td><td>1049</td><td>1.04</td><td>0</td></td<>	32 57 57 49 42 48 47 56 52 59 43 30 32 52 52 53 43 50 52 52 53 54 55 54 55 54 55 54 54 55 54 54 55 54 54 57 57 58 54 57 58 51 44 53 51 44 53 51 52 53 54 57	24 27 41 33 27 27 36 39 31 31 31 10 8 7 6 6 6 12 19 16 19 20 20 20 22 30 20 227 18 9 30 29 27 27	999999 57 43 34 27 39 45 42 32 31 10 8 18 6 12 22 19 19 33 20 29 25 18 31 30 29 25 18 31 30 29 27 27 27	28 42 49 41 35 38 42 48 42 45 32 20 18 15 16 15 19 22 21 27 34 33 31 31 31 30 29		37 23 16 24 30 27 23 27 23 17 23 33 45 47 50 49 9 50 46 43 43 43 43 8 31 22 5 30 41 32 25 30 41 32 45 34 34 34 35 36	999.99 0.02 0.59 0.28 0.02 T 0.08 T 0 0 0 0 T T 999.99 0.01 T T 7 999.99 0.01 T T 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30.9	38.9	22.8	59	6	0	1049	1.04	0
20	070	որ	1 31	L 21	<u> </u>	L 29		1 30 The	e '*' flags in Pi	reliminary indicat	e the data has not o	50.9 completed	processin	g and qua	lity control a	nd may conta	in errors	11/49	E 1.04	U
				مەرى 10 م					All 9's (e.g	. 9999999, 999999.9,	etc.) in the data co	lumn indi	cate that t	he value w	as not receiv	ed or is missi	ng	E-Contractor		
1				~*T	=IRA(UE, A	=Acci	imula	ted amount si	nce last measure. I	s=accumulated an	nount incl	uues estin	nated valu	es. S=Include	a m a subseq	uent value, E≠	Estimated am	ount.	

Record of Climatological Observations State: WA County: WALLA WALLA Standard Time: These data are quality controlled and may not be identical to the original **Observation Time Temperature: 0800 Precipitation: 0800** observations (LST) Monthly Temperature (°F) Monthly Precipitation Temperature (°F) Precipitation (see **) at 24 hrs. ending 24 Hour Amounts ending At Observation at observation b Μ at observation time Time Y time s Ð е е n Daily Daily Daily Mean CDD HDD я Mean Mean Mean Highest Lowest Monthly Monthly r Precip Snowfall Min Temp Temp CDD HDD Temp Max r Rain, melted Snow, ice pellets, Snow, ice pellets a snow, etc. hail, ice Max. Min. t (Inches & (Inches & on ground i tenths) hundredths) (Inches) n 2007 02 1 T 2007 02 2 2007 02 3 2007 02 4 2007 02 5 2007 02 6 31 0.13 Т 31 33 T 0 0 32 34 0 2007 02 7 21 2007 02 8 0.07 2007/02/9 0.14 30 35 2007 02 10 0.18 2007 02 11 0.24 2007 02 12 0.10 2007 02 13 2007 02 14 2007 02 15 19 0.19 2007/02/16 0,16 55 72 53 53 54 2007/02/17 2007 02 18 2007 02 18 2007 02 19 2007 02 20 2007 02 21 2007 02 22 34 Ť n n 27 34 0.01 n Т n Т 2007/02/23 0.19 0.3 Δ 2007 02 24 0.02 2007 02 24 2007 02 25 2007 02 26 2007 02 27 2007 02 28 30 29 37 24 27 25 Ó 0.03 38 40 0.19 29 Т 38.0 46.1 29.8 1.65 0.3 33 32 2007/03/1 2007 03 2 2007 03 3 0.07 27 26 26 0.05 37 39 39 2007 03 4 2007 03 5 2007 03 6 0.01 Т 2007/03/7 **n** 0.48 2007/03/8 2007 03 9 2007 03 10 Т £, Т 2007 03 11 Т 67 46 46 57 0 8 2007 03 12 2007 03 13 0.09

Station: WHITMAN MISSION

	38 37 37 32 39 30 30 30 35 35 35 35 37 38 32 32 32 32 33 33 23 24 43 37 37 37 41 47 7 38 32 32 32 32 34 37 37 37 37 37 37 37 37 37 37	38 27 37 32 51 39 36 51 39 36 51 39 34 29 34 29 34 29 34 29 34 29 34 29 34 29 34 29 34 29 34 29 34 24 30 37 41 35 42 40 47 51 43 43 44 47 51 43 43 44 47 51 43 44 47	48 42 41 49 55 54 50 42 50 46 39 41 45 55 54 50 46 39 41 45 55 54 50 46 39 41 45 55 55 45 50 46 39 41 45 55 55 45 50 46 39 41 45 55 55 50 46 39 41 47 55 55 50 46 39 41 47 55 55 55 55 50 43 47 77 54 55 55 59 99 43 47 75 46 46 49 43 47 55 55 55 57 57 57 57 57 57 57 57 57 57		$\begin{array}{c} 17\\ 23\\ 24\\ 16\\ 11\\ 10\\ 11\\ 15\\ 23\\ 15\\ 15\\ 7\\ 21\\ 26\\ 24\\ 23\\ 20\\ 14\\ 15\\ 19\\ 26\\ 24\\ 20\\ 15\\ 11\\ 10\\ 6\\ 16\\ 22\\ 18\\ 18\\ 11\\ 9\\ 3\\ 12\\ 8\\ 1\\ 6\\ 12\\ 11\\ 7\\ 16\\ 13\\ 13\\ 9\\ 3\\ 12\\ 8\\ 1\\ 1\\ 17\\ 16\\ 17\\ 17\\ 13\\ 5\\ . \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0			46.2	59.0	33.5	76	24	0	573	0.91	0
08 60 61 62 65 72 81 93 0 78 1 81 2 80 3	47 38 34 34 38 47 40 46 47 42 45 46	51 43 43 44 47 55 53 55 51 54 54 48	58 49 48 52 60 61 70 63 62 63 64	000000000000000000000000000000000000000	7 16 17 17 13 5 4 0 2 3 2 1	0.08 0.30 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0									

2007 05 14 69 2007 05 15 78 2007 05 16 86 2007 05 17 82 2007 05 18 78 2007 05 19 81 2007 05 20 70 2007 05 20 70 2007 05 20 70 2007 05 20 70 2007 05 23 70 2007 05 23 70 2007 05 25 78 2007 05 26 78 2007 05 27 83 2007 05 29 71 2007 05 29 71 2007 05 30 81 2007 05 30 81 2007 05 31 85	35 39 46 48 47 55 47 45 46 37 54 37 43 51 41 39 38 45	42 48 59 56 55 58 52 46 47 54 57 46 51 61 49 54 52	52 59 66 63 68 59 54 56 54 65 58 61 67 58 55 60 65	0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 6 0 2 0 6 11 9 11 0 7 4 0 7 10 5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		58.9	74.8	43.1	93	34	11	189	0.52	0
2007/06 1 91 2007/06 2 95 2007/06 3 98 2007/06 4 98 2007/06 5 86 2007/06 6 67 2007/06 7 66 2007/06 9 80 2007/06 9 80 2007/06 9 80 2007/06 9 80 2007/06 10 75 2007/06 11 71 2007/06 12 71 2007/06 13 76 2007/06 14 76 2007/06 15 76 2007/06 18 76 2007/06 19 99 2007/06 21 93 2007/06 23 79 2007/06 24 76 2007/06 25 76 2007/06 25 76 2007/06	47 56 61 62 55 46 49 43 50 58 53 43 53 43 53 43 54 54 50 50 42 49 60 56 45 53 47 34 45 50 59 50	$\begin{array}{c} 64\\ 64\\ 71\\ 69\\ 56\\ 49\\ 52\\ 50\\ 61\\ 54\\ 53\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55$	69 76 80 80 71 57 57 58 57 65 63 63 63 63 63 63 61 69 77 75 62 57 65 63 63 61 69 77 75 62 65 62 55 67 70 74 63 63	4 11 15 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 8 7 8 0 0 3 8 0 0 3 8 0 2 2 4 0 0 3 0 2 2 4 0 0 3 0 2 2 2 4 0 0 0 2 2 2 4 0 0 0 2 2 2 4 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $			65.9	81.1	50.8	98	34	98	62	1.30	0
2007 07 1 81 2007 07 2 89 2007 07 3 88 2007 07 4 93 2007 07 5 102 2007 07 6 107 2007 07 7 97 2007 07 8 93 2007 07 9 91 2007 07 10 95 2007 07 11 98 2007 07 12 103 2007 07 13 98	45 56 55 52 59 65 58 56 55 53 53 53 59 61	57 62 66 65 64 77 68 69 68 64 64 70 74	63 73 72 73 81 86 78 75 73 74 76 81 80	0 8 7 8 16 21 13 10 8 9 11 16 15	2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

Page 11 of 24

2007 07 14 2007 07 15 2007 07 16 2007 07 17 2007 07 18 2007 07 18 2007 07 19 2007 07 20 2007 07 21 2007 07 23 2007 07 23 2007 07 24 2007 07 25 2007 07 25 2007 07 25 2007 07 25 2007 07 28 2007 07 29 2007 07 18 2007 00 18 2007 00 18	96 97 95 94 88 87 84 82 91 96 96 96 88 96 98 98 98 96 91 87	63 61 59 58 58 60 55 56 57 61 61 49 54 57 56 65 58 48	74 74 66 62 63 59 68 69 71 69 56 61 68 73 69 62 57	80 79 77 76 73 74 70 69 74 79 69 75 78 77 81 75 68	15 14 12 11 8 9 5 4 9 14 14 4 10 13 12 16 10 3		T T 0 0,04 0,26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		75.1	93.4	56.9	107	45	325	2	0.30	0
2007/08 1 2007/08 2 2007/08 3 2007/08 5 2007/08 5 2007/08 5 2007/08 6 2007/08 7 2007/08 8 2007/08 10 2007/08 11 2007/08 12 2007/08 13 2007/08 14 2007/08 15 2007/08 15 2007/08 15 2007/08 15 2007/08 15 2007/08 15 2007/08 12 2007/08 22 2007/08 22 2007/08 24 2007/08 25 2007/08 25 2007/08 25 2007/08 26 2007/08 26 2007/08 26 2007/08 27 2007/08 26 2007/08 27 2007/08 28 2007/08 29 2007/08 29 2007/08 29 2007/08 20 2007/08 2	91 98 100 91 86 90 88 84 86 84 82 91 86 90 99 102 89 82 83 66 69 83 87 89 82 83 87 89 93 89 78 89 78 89 5 103	45 49 57 51 51 57 62 52 53 39 50 47 47 49 54 51 57 54 52 48 50 57 54 51 57 54 51 47 47 49 54 41 43 48 63	53 57 68 62 63 57 64 64 60 58 53 53 53 54 74 60 53 53 54 74 60 61 58 55 54 55 54 51 62 58 849 74 83 70	68 74 73 69 71 73 69 69 61 71 69 69 61 71 69 74 78 70 66 61 60 61 66 9 72 71 61 65 72 83	3 9 14 8 4 6 8 8 4 4 0 6 2 4 9 13 5 1 5 0 0 1 4 3 7 6 0 0 0 7 18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		69.1	87.7	50.6	103	39	159	22	0.49	0
2007 (99 1) 2007 (99 2) 2007 (99 3) 2007 (99 3) 2007 (99 4) 2007 (99 5) 2007 (99 6) 2007 (99 9) 2007 (99 9) 2007 (99 10) 2007 (99 11) 2007 (99 12)	96 87 90 91 80 85 83 80 78 84 80 89	50 51 53 55 53 52 46 36 36 35 37 40	53 55 55 64 57 53 47 39 37 37 40 53	73 69 72 73 67 69 65 58 57 60 59 65	8 4 7 8 2 4 0 0 0 0 0 0 0	0 0 0 0 0 0 7 8 5 6 0	0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										

Page 12 of 24

2007 09 13 89 2007 09 14 84 2007 09 15 81 2007 09 16 82 2007 09 17 75 2007 09 19 68 2007 09 20 75 2007 09 21 72 2007 09 21 72 2007 09 22 76 2007 09 23 71 2007 09 24 69 2007 09 25 72 2007 09 25 72 2007 09 26 76 2007 09 26 76 2007 09 28 81 2007 09 28 81 2007 09 25 58 2007 09 29 58 200	42 43 43 47 50 60 53 54 541 43 35 39 39 54 37 33 39 44 37 33 39 54 33 36 33 36 33 33 36 51 33 33 37 44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 1 0	0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 2 0 2 0 7 0 2 0 7 0 5 0 9 0.18 4 T			60.7	79.0	42.4	96	33	35	155	0.28	0
20071011 63 200710 2 66 200710 3 65 200710 4 64 200710 5 62 200710 5 62 200710 7 62 200710 8 74 200710 8 74 200710 8 74 200710 8 74 200710 9 71 200710 10 71 200710 10 12 200710 10 14 200710 13 62 200710 14 69 200710 15 67 200710 14 58 200710 15 67 200710 14 58 200710 14 58 200710 120 63 200710 20 63 200710 20 63 <td>45 51 49 52 50 50 37 33 35 44 48 5 333 33 333 44 38 33 32 33 32 33 31 44 36 3 36 4 41 4 36 4 41 4 37 3 37 3 38 4 37 3 38 4 20 2 19 2 18 2 26 3 21 2</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td> <td>49.1</td> <td>63.4</td> <td>34.9</td> <td>75</td> <td>18</td> <td>0</td> <td>486</td> <td>1.18</td> <td>0</td>	45 51 49 52 50 50 37 33 35 44 48 5 333 33 333 44 38 33 32 33 32 33 31 44 36 3 36 4 41 4 36 4 41 4 37 3 37 3 38 4 37 3 38 4 20 2 19 2 18 2 26 3 21 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			49.1	63.4	34.9	75	18	0	486	1.18	0
2007 11 1 56 2007 11 2 58 2007 11 3 52 2007 11 4 70 2007 11 5 70 2007 11 6 56 2007 11 7 58 2007 11 7 58 2007 11 8 57 2007 11 9 56 2007 11 10 65 2007 11 10 65 2007 11 10 65 2007 11 11 60 2007 11 12 60	21 3 20 2 19 2 27 4 32 3 24 2 25 3 31 3 36 5 26 4 29 6	8 39 2 39 7 36 4 49 3 51 55 40 1 42 5 44 6 43 4 51 5 43 6 43 4 51 5 43 60 45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 0 16 0 199 0 6 0 4 0 15 0 13 0 11 0 12 0 4 0.066 12 0 12 0 12 0 10 0 12 0 12 0 10 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										

Page 13 of 24

2007 11 13 64 2007 11 14 55 2007 11 15 39 2007 11 16 53 2007 11 16 53 2007 11 17 59 2007 11 19 44 2007 11 19 44 2007 12 14 24 2007 12 14 24 2007 12 12 40 2007 12 12 33	40 18 18 36 48 41 32 32 20 18 9 20	40 19 36 53 51 42 32 38 21 99999 30	52 37 29 45 54 51 38 36 31 26 27	0 0 0 0 0 0 0 0 0 0 0 0	13 28 36 20 11 14 27 29 34 39 38	0.07 0 0.02 0.14 0.37 0.15 0.53 0.07 0 999.99 0.02	A	0 0 0 0 0 0 0 0 0 0 0 0										
2007 11 24 33 2007 11 25 32 2007 11 26 31 2007 12 27 41 2007 11 28 46 2007 11 29 47 2007 11 30 33	29 22 28 29 26 27 29	29 28 29 39 30 31 30	31 27 30 35 36 37 31	0 0 0 0 0 0	34 38 35 30 29 28 34	0 0 0.07 0 0.29 0.10		0 0 0 0 0 0.3 0	0 0 0 0 T T T	39.0	50.2	27.8	70	18	0	775	1.91	0.3
2007 12 1 30 2007 12 2 43 2007 12 3 55 2007 12 4 64 2007 12 4 64 2007 12 5 67 2007 12 6 55 2007 12 8 34 2007 12 10 31 2007 12 10 31 2007 12 13 36 2007 12 16 46 2007 12 16 46 2007 12 18 47 2007 12 19 54 2007 12 19 54 2007 12 19 54 2007 12 12 46 2007 12 20 53 2007 12 24 50 2007	25 27 40 49 35 35 31 28 17 19 26 25 26 25 26 25 26 25 26 25 26 22 7 28 29 33 35 40 27 23 29 34 5 40 27 23 29 34 5 35 35 35 31 28 29 31 30 32 29 32	27 43 55 49 37 35 32 28 19 26 26 30 27 28 32 29 43 35 44 41 28 29 32 29 99999 37 33 37 37 30 36 33	28 35 48 57 51 45 36 31 26 25 28 28 30 37 38 40 45 47 37 34 45 47 37 34 33 34 35 33 34 36 37 37 37		37 30 17 8 14 20 29 34 40 37 37 34 37 37 35 28 27 25 20 18 28 31 28 23 30 32 31 29 26 28 28 The	0.04 0.03 0.13 0.01 0 T 0.63 0.02 0 0 0 T T 0 0 0 T T 0 0 0 T T 0 0 0 T T 0 0 0 0 T T 0 0 0 0 T T 0 0 0 0 T T 0	A	T T 0 0 0 0 1.0 1.0 1.0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T O O O O O I I I I I T T T T T T T T	36,3 completed	43.1 processin	29.5 g and qua	67 lity control a	17 nd may conta	0 nin errors	880	1.58	2.0
						All 9's (c	g.	999999, 999999.9,	etc.) in the data c	olumn indi	cate that t	he value w	as not receiv	ed or is miss	ing			
	**T='	TRAC	E, A=	Accu	imula	ted amount	sin	ce last measure. I	B=Accumulated a	mount incl	udes estim	ated value	es. S=Include	d in a subseq	uent value. E=	Estimated and	ount.	

Page 14 of 24

r

Stati	on: W	нітма	N MISS	ION								<u></u>	Reco	rd of C	limatol	ngical O	hservati	ons	
State	: W	A		(Count	y: WA	ALLA	WALLA Star	idard Time:		T)	basa dat			trolled on	d mov not I	vo identicol	to the or	iginal
Obse	rvatio	n Time	Tempe	rature	: 080	0 Prec	cipitat	lon: 9900			1	liese ua	a are q	uanty com	observ	a may not i	Je identical	to the of	iginai
) T	(11)						** · · · · · · · · · · · · · · · · · ·	***				F				X.f	Duestation
Р			ICA	ot	ure (~	r) I	ľ		Precipitation (see	· ^ ·)				fontiny rem	perature (-r)			atomaty	rrecipitation
r e 1 Y i e	M o I	24 hrs, at obse ti	ending ervation me	Ю b s e				24 Hour / at obse	mounts ending rvation time	At Observation Time									
i a n r a y	t h	Max,	Min,	r v a t i n	Daily Mean	Daily CDD	Daily HDD	Rain, melted F snow, etc. 1 (Inches & a hundredths) g	Snow, ice pellets (Inches & tenths)	Snow, ice pellets, hail, ice on ground g (Inches)	Mean Temp	Mean Max	Mean Min	Highest Temp	Lowest Temp	Monthly CDD	Monthly HDD	Precip	Snowfall
200 200 200 200 200 200 200 200 200 200	801 801	43 2 33 30 57 5 59 5 59 6 42 0 45 1 53 2 340 4 34 5 53 6 41 7 375 9 45 0 51 1 32 2 27 3 26 5 18 6 30 7 31 8 32 9 34	19 18 24 28 42 34 31 27 32 33 34 32 28 26 28 17 18 22 24 28 20 5 6 5 4 8 16 14 19 31	99999 24 28 56 45 34 40 34 45 47 32 28 31 18 28 31 28 20 7 6 5 8 16 31 19 5 34	31 26 27 43 51 43 40 35 39 39 44 44 44 44 44 44 40 35 39 39 44 44 43 40 28 40 26 16 16 16 16 16 11 19 24 23 29 36		34 39 38 22 25 30 26 26 26 21 31 35 24 36 37 31 30 25 39 49 49 49 49 49 49 40 25 32 25 30 26 26 21 21 25 24 36 37 25 24 36 25 24 24 22 25 25 30 26 26 26 26 26 26 26 26 26 26 26 26 26	999.99 0 0 T T 0.02 0.03 T 0.02 0.01 0.01 0.01 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0	9999.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	999999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
200	8013	1 43	33	40	38	0	27	T	0	2	31.6	40.4	22,8	59	4	0	1028	1.56	7.1
							The	All 9's (e.g	reuminary indicat , 9999999, 999999.9.	e the data has not etc.) in the data co	completed	cate that	ig and qua the value v	vas not receiv	red or is miss	ing			
			**ፐ-	- ፕቦ እ	OF A	-1.00	muto	tad amount si	noo lost moneuro	R=A counsulated or	nountino	ludee actin	nated volu	os S=Include	vI in a subsoc	went value E=	Fetimated any	auot	

.

Stati State	Station: WHITMAN MISSION State: WA County: WALLA WALLA Standard Time:											Record of Climatological Observations									
Obse	rvat (LS	ion ' ST)	Time '	Fempe	rature	: 080	0 Pree	cipita	tion: 0800	en e	<u>amin's composition and an anno 1997 ao amin's anno 1997 ao amin's anno 1997 ao amin's ao amin's</u>	These data are quality controlled and may not be identical to the original observations									
	Ť	Ń		Ten	iperat	ure (°	F)			Precipitation (see	**)				Monthly Precipitation						
r c l Y l e m a	M	D	24 hrs. at obsen tin	ending vation 1e	at O b s e				24 Hour A at obse	smounts ending rvation time	At Observation Time	jat								-	
i a n r a r y	t h	у	Max.	Min.	r v a t i o n	Daily Mean	CDD	Datly HDD	Rain, melled I snow, etc. I (Inches & a hundredths)	Snow, ice pellets (Inches & tenths)	Snow, ice pellets, hail, ice on ground g (Inches)	Mean Temp	Mean Max	Mean Min	Highest Temp	Lowest Temp	CDD	Monthly HDD	Precip	Snowfall	
2000 2000 2000 2000 2000 2000 2000 200	8 02 8 02	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	43 46 42 34 40 45 47 48 50 58 55 54 55 49 54 55 49 54 55 40 46 49 58 50 46 49 58 50 46 50 46 50 46 50 55 55 55 55 55 55 55 55 55 55 55 55	36 34 31 27 24 34 36 40 43 40 40 43 5 34 24 25 26 21 24 23 25 26 28 29 36 27 28 22	38 37 31 28 36 36 43 44 48 49 43 39 525 25 25 25 25 25 25 25 25 25 25 25 25	40 40 37 31 32 40 42 44 47 49 48 45 46 38 37 40 41 33 35 38 36 39 9 44 42 41 40 42 24 140 42 28 35 38 36 39 44 440 40 37 37 37 37 37 37 37 37 37 37 37 37 37		25 25 28 34 33 25 23 21 18 16 17 20 19 27 28 25 24 32 37 30 27 29 26 21 23 24 25 23 21 18	0.09 T 0.15 0.12 0 0 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 1.7\\ 1.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	T 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.8	40.2	30.4		21		721	0.55	27	
200 200 200 200 200 200 200 200 200 200	08 03 08	1 2 3 4 5 6 7 8 9 10 11 12	66 55 53 50 54 56 63 59 58 61 60 57	36 27 28 39 25 21 24 39 28 27 40 27	41 30 41 39 32 24 39 45 29 99999 45 29	51 41 41 45 40 39 44 49 43 44 50 42	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 24 20 25 26 21 16 22 21 15 23	0.08 0 0.02 0 0 T 0.08 T 0 0 0.15 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					· · · · · · · · · · · · · · · · · · ·					

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 34 36 37 37 40 30 30 30 30 30 30 30 30 30 30 30 30 30	41 43 37 41 45 30 36 36 24 33 31	43 43 46 45 45 48 46 39 43 38 47 46 39 41 43 37 41 43 38	0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 2 <t< th=""><th>2 0. 2 0. 9 0. 0 0. 0 0. 7 0. 6 0. 7.7 0. 8 0. 4 0. 2 0. 8 0. 6 0. 2 0. 7.7 0. 0.2 0. 7.7 0.</th><th>15 29 17 005 002 00 004 004 004 004 00 00 00 00</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>43.0</th><th>55.0</th><th>31.0</th><th>66</th><th>21</th><th>0</th><th>675</th><th>1.39</th><th>0</th></t<>	2 0. 2 0. 9 0. 0 0. 0 0. 7 0. 6 0. 7.7 0. 8 0. 4 0. 2 0. 8 0. 6 0. 2 0. 7.7 0. 0.2 0. 7.7 0.	15 29 17 005 002 00 004 004 004 004 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43.0	55.0	31.0	66	21	0	675	1.39	0
2008/04 1 52 2008/04 2 53 2008/04 3 56 2008/04 4 66 2008/04 5 53 2008/04 4 66 2008/04 5 53 2008/04 4 66 2008/04 5 53 2008/04 4 66 2008/04 5 53 2008/04 5 51 2008/04 10 58 2008/04 10 58 2008/04 11 62 2008/04 13 78 2008/04 14 83 2008/04 16 59 2008/04 16 59 2008/04 18 68 2008/04 23 64 2008/04 23 53 2008/04 23 64 2008/04 24 59 2008/04	22 23 24 26 32 36 38 33 32 35 33 31 33 31 35 34 33 32 32 32 32 32 36 41 36 25 31 40 40 38	23 26 36 36 33 37 35 43 37 35 43 37 35 43 37 35 43 37 35 43 37 35 43 36 35 33 36 42 42 39 31 40 51 47 38	37 38 40 46 43 47 49 45 42 47 48 49 56 62 47 47 47 53 44 41 43 44 50 50 49 42 51 56 59 50		8	0 0 0 0 0 0 0 0 0 0 0 0 0 0			47.2	61.3	33.0		22	0	528	0.51	0
2008 05 1 58 2008 05 2 62 2008 05 3 71 2008 05 3 71 2008 05 5 72 2008 05 6 76 2008 05 8 68 2008 05 9 63 2008 05 10 66 2008 05 11 70 2008 05 12 64	32 27 36 44 41 45 48 42 32 37 46 37	39 36 46 47 45 54 49 44 42 46 47 43	45 45 54 55 57 61 60 55 48 52 58 51	0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

2008/61 1 82 55 59 69 47 0 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		59.0 72.7	45.4	96	27	37	214	1.26	0
All 9's (e.g. 999999, 99999, etc.) in the data column indicate that the value was not received or is missing	2008061 82 55 59 69 4 0 0.06 2008062 76 50 53 63 0 2 0 2008063 73 50 54 62 0 3 0 2008064 4 62 48 50 55 0 10 0.22 2008065 69 47 53 58 0 7 T 2008066 66 846 48 57 0 8 0.05 2008066 7 61 47 50 54 0 11 0.01 200806 9 76 51 59 64 0 1 0.01 200806 10 76 44 47 60 0 5 T 200806 10 76 44 47 60 0 5 T 200806 11 56 45 48 51 0 14 0.26 200806 13 79 48	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53.5 78.8 spleted processing	48.1 5 and quality	103 y control an	41 ud may conta	62 11n crrors	100	0.74	0
CELEAT D. AEACODOMICO SIGNAL VIEW DAT DESCRIP, DEACTION AND DECOMPT VIEW ACCOUNT OF A NORMOUND OF A NO	All 9's (c. **T=TRACE_A=Accumulated amount	g. 9999999, 999999.9, etc ince last measure R=	c.) in the data colum	nn indicate that th	te value was	s not receive S=Included	ed or is missi Lin a subsec	ng uent value E=	Estimated amo	unt.	

Station: WHITMAN MISSION	Record of Climatological Observations									
State: WA County: WALLA WALLA Standard Time:										
Observation Time Temperature: 0700 Precipitation: 0700 (LST)	observations									
D Temperature (°F) Precipitation (see **)	Monthly Temperature (°F)	Monthly Precipitation								
r r c t t c t t c t t c t t t t t t t t t t t t t										
i a t y n r h a h r h y u u u n r n r n r n n n r n n n n r Daily (Daily (Daily) n Nean CDD HDD Rain, melted F snow, etc. 1 (Inches & a t (Inches & a t o n n	Mean Mean Mean Highest Lowest Monthly Monthly Temp Max Min Temp Temp CDD HDD	Precip Snowfall								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.38 0								
The ^{1*1} flags in Preliminary indicate the data has r	11.2 09.7 32.3 100 36 212 11	00								
All 9's (e.g. 999999, 99999, etc.) in the data	a column indicate that the value was not received or is missing									
**T=TRACE, A=Accumulated amount since last measure, B=Accumulated	ated amount includes estimated values. S=Included in a subsequent value. E=Estimated amount.									

Station: WHITMAN MISSION	Record of Climatological Observations								
State: WA County: WALLA WALLA Standard Time:	These data are quality controlled and may not be identical to the original								
Observation Time Temperature: 0800 Precipitation: 0800	observations								
Temperature (%) Precipitation (see **)	Monthly Temperature (%)	Monthly Precipitation							
P at at r 24 hrs. ending 0 I Y at observation i c 0 m n at e i c i c i c i c i i i c i i i c i i i c i i i <td></td> <td></td>									
i a t y n r h a r h y Max. Min. t t y u u u u u u u u u u u u u u u u u u u	Mean Mean Mean Hignest Lowest Monthly Monthly Temp Max Min Temp Temp CDD HDD	Precip Snowfall							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	69.7 88.7 50.7 106 40 181 26	0.36 0							
* 2008 09 i 71 43 48 57 0 8 0 0 0 * 2008 09 2 74 37 39 56 0 9 0 0 0 * 2008 09 3 77 39 42 58 0 7 0 0 0 * 2008 09 4 80 42 42 61 0 4 0 0 0 * 2008 09 5 80 42 42 61 0 4 0 0 0 * 2008 09 5 80 42 42 61 0 4 0 0 0 * 2008 09 5 80 42 42 61 0 4 0 0 0 * 2008 09 5 82 42 51 62 0 3 0 0 0 * 2008 09 7 84 43 45 64 0 1 0 0 0 * 2008 09 8 83									

* 2008 09 11 77 * 2008 09 12 86 * 2008 09 13 89 * 2008 09 14 82 * 2008 09 15 86 * 2008 09 16 85 * 2008 09 17 87 * 2008 09 19 92 * 2008 09 10 92 * 2008 09 10 92 * 2008 09 20 84 * 2008 09 21 64 * 2008 09 23 67 * 2008 09 24 71 * 2008 09 25 70 * 2008 09 26 75 * 2008 9 28 78 <	36 38 36 37 38 40 40 40 48 55 53 35 35 35 35 35 35 32 32 32 32 34	38 41 47 38 38 40 41 50 55 55 56 46 40 46 40 46 40 42 33 35 999999	57 62 64 59 62 64 63 70 70 59 62 51 53 55 57 55 57 55 57 55	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 3 1 6 3 3 1 2 0 0 6 3 14 12 10 8 8 10	0 0 0 0 0 0 0 0 999,99 0.18 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			59.6	79.3	39.9	92	32	10	165	0,19	0
2008 10 1 78 2008 10 2 83 2008 10 2 83 2008 10 2 83 2008 10 4 76 2008 10 5 67 2008 10 5 67 2008 10 8 66 2008 10 8 66 2008 10 8 66 2008 10 18 66 2008 10 12 59 2008 10 13 60 2008 10 13 60 2008 10 13 63 2008 10 14 75 2008 10 16 60 2008 10 16 60 2008 10 20 62 2008 10 22 60 2008	40 44 49 52 49 45 49 30 19 19 19 44 25 25 37 36 29 28 34 23 24 22 23 23 23 23 24 29	44 53 52 61 49 49 58 35 29 35 34 19 44 52 26 43 37 55 29 40 35 23 25 26 49 24 24 24 24 24 24 26 30 46	59 64 65 64 58 54 61 50 44 43 45 39 40 60 64 43 54 55 49 45 45 44 46 45 41 40 42 41 40 42 41 40 41		6 1 0 1 7 11 4 15 21 22 20 26 5 5 21 22 20 26 5 5 21 22 21 22 20 26 5 5 21 22 22 20 26 5 5 21 22 22 20 26 5 5 21 22 22 22 22 22 22 22 22 22	0 0.06 0.32 0.05 T T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e the	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48.4 completed	64.9 Drocessin	<u>31.8</u>	83	19 19		508	0.45	0
						All 9's (e.g	, 999999, 99999.9,	etc.)	in the data co	olumn indi	cate that t	he value w	as not receiv	ed or is miss	ing			
	**T	=TRA	CE. A=	=Acci	imula	ted amount s	nce last measure.	B=A	ccumulated a	mount incl	udes estin	ated value	es. S=Include	d in a subseq	uent value. E=	Estimated amo	ount.	

Station: WHITMAN MISSION	Record of Climatological Observations											
State: WA County: WALLA WALLA Standard Time:	These data are quality controlled and may not be identical to the original observations											
Observation Time Temperature: 0700 Precipitation: 0700 (LST)												
P Temperature (°F) Precipitation (see **)	Monthly Temperature (°F)	Monthly Precipitation										
r at e 24 hrs. ending o 0 i Y Mi at observation i Y o D time s e e												
i a t y n r h a h y y y h h h h h h h h h h h h	Mean Mean Highest Lowest Monthly Monthly Temp Max Min Temp Temp CDD HDD	Precip Snowfall										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
<u>108 1 30 43 32 33 38 0 27 0.01 0 0 41.7 51.6 31.9 70 21 0 689 2.11 0</u>												
The '*' flags in Preliminary indicate the data has not a All O's (a.g. 000000, 00000, at a Vin the data as	completed processing and quality control and may contain errors											
Au 5's (e.g. 555557, 57557, etc.) In the (lata co	nount includes estimated values. S=Included in a subsequent value. E=Estimated amo	energia de la companya de la compa										

Station: WHITMAN MISSION н ъ tological Ob J .C.C.

Statio State:	Station: WHITMAN MISSION State: WA County: WALLA WALLA Standard Time:												Record of Climatological Observations									
Obser	vatio (LSI	on Time ' ()	Tempe	rature	: 080) Pre	cipitat	iion: 0800					These data are quality controlled and may not be identical to the original observations									
Ъ	Π		Ten	perati	ure (°	F)]	Precipitation (see	**)			Ν	fonthly Tem	perature (°F)			Monthly	Precipitation	
r c l Y i c m	M o I	24 hrs. at obse tin	ending rvation 1e	at O b s e				24 Hour at obs	At	mounts ending vation time	4	At Observation Time							-			
i a n r a r y	t h	y Max.	Min.	r v a t i o n	Daily Mean	Daily CDD	Daily HDD	Rain, melted snow, etc. (Inches & hundredths)	F 1 a g	Snow, ice pellets (Inches & tenths)	F SI 1 g	now, ice pellets, hail, ice on ground (Inches)	Mean Temp	Mean Max	Mean Min	Highest Temp	Lowest Temp	Monthly CDD	Monthly HDD	Precip	Snowfall	
2008 2008 2008 2008 2008 2008 2008 2008	12 12 12 12 12 12 12 12 12 12 12 12 12 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32 37 34 20 24 29 36 28 29 27 28 34 17 10 -10 8 5 -7 -6 -7 -4 2 11 12 14 37 34 30 31	38 46 34 29 50 38 30 42 29 35 37 17 15 -7 8 16 15 5 9 -4 13 3 999999 959999 15 41 48 33 38	36 43 46 33 29 31 41 43 39 39 43 32 42 27 15 4 2 12 12 6 2 3 5 122 19 28 44 43 38 38		29 22 19 32 36 34 24 22 26 26 22 33 38 50 61 63 53 53 53 59 63 62 60 53 34 34 63 57 21 22 7 27 27	0.04 0.21 0 0 0 0.25 T T 0 0 0.25 T T 0 0 0.05 0.34 0.05 0.34 0.05 0 0.13 0.55 T 0.31 0.36 T 0 999,99 0.13 0.20 0.23 0.31 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.5	35,2	17.7	59	-10	0	1186	3.32		
	11-					ĻŽ	The	e '*' flags in F	re	liminary indicate	e th	e data has not c	ompleted	processing	g and qua	lity control a	nd may conta	in errors		0,04	~~~	
All 9's (e.g. 999999, 99999, etc.) in the data column ind											etc.	umm indic	ate that th	he value w	as not receiv	ed or is missi	ng	Patrick				
			×*1=	=1 RA(CE. A	=Acci	umula	ted amount s	in	ce last measure, E	R≓V	secumulated an	iount inclu	ades estim	ated value	es. S=include	a in a subseq	uent value. E=	Estimated amo	sunt.		

This page was dynamically generated on Tue Jan 05 15:18:15 EST 2010 by http://www.ncdc.noaa.gov/dailyform/DlyFORMv2

SPOKANE, WASHINGTON NORMALS, MEANS, AND EXTREMES

LATITUDE: 47 Deg. 38 Min. N LONGITUDE: 117 Deg. 32 Min. W ELEVATION: FT. GRND 2356 BARO 2360 TIME ZONE: PACIFIC WBAN: 24157

	(a)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
TEMPERATURE (Deg. F)														
Normals														
-Daily Maximum		33.2	40.6	47.7	57.0	65.8	74.7	83.1	82.5	72.0	58.6	41.4	33.8	57.5
-Daily Minimum		20.8	25.9	29.6	34.7	41.9	49.2	54.4	54.3	45.8	36.0	28.8	21.7	36.9
-Monthly		27.1	33.3	38.7	45.9	53.9	62.0	68.8	68.4	58.9	47.3	35.1	27.8	47.3
Extremes														
-Record Highest	48	59	63	71	90	96	101	103	108	98	86	67	56	108
-Year		1971	1995	1960	1977	1986	1992	1967	1961	1988	1980	1975	1980	AUG 1961
-Record Lowest	48	-22	-17	-7	17	24	33	37	35	24	10	-21	-25	-25
-Year		1979	1979	1989	1966	1954	1984	1981	1965	1985	1991	1985	1968	DEC 1968
NORMAL DEGREE DAYS														
Heating (base 65 Deg. F)		1175	888	815	57	344	139	30	56	123	549	897	1153	6842
Cooling (base 65 Deg. F)		0	0	0	0	0	49	148	161	40	0	0	0	398
% OF POSSIBLE SUNSHINE	47	28	41	55	61	65	67	80	78	72	55	29	23	55
MEAN SKY COVER(tenths)														
Sunrise - Sunset	48	8.3	7.9	7.3	7.1	6.6	6.1	3.9	4.2	4.8	6.3	8.1	8.4	6.6
MEAN NUMBER OF DAYS:														
Sunrise to Sunset														
-Clear	48	3.1	3.4	4.5	4.5	5.9	7.3	16.1	15.2	12.3	8.0	3.3	2.8	86.4
-Partly Cloudy	48	4.1	4.9	7.8	8.2	10.1	10.3	8.5	8.6	8.3	7.8	5.0	3.9	87.5
-Cloudy	48	23.8	19.9	18.7	17.3	15.0	12.5	6.4	7.3	9.3	15.2	21.7	24.2	191.4
Precipitation														
01 inches or more	48	13.9	11.1	11.2	8.9	9.4	7.9	4.7	4.9	5.5	7.5	12.6	14.6	112.1
Snow, Ice Pellets, Hail														
1.0 inches or more	48	5.1	2.8	1.5	0.2	0.*	0.0	0.0	0.0	0.0	0.1	2.1	4.9	16.7
Thunderstorms	48	0.*	0.*	0.3	0.7	1.6	2.8	2.4	2.1	0.8	0.3	0.1	0.0	11.2
Heavy Fog Visibility		*												
1/4 mile or less	48	9.3	7.1	3.0	1.2	0.8	0.5	0.2	0.3	0.8	4.0	8.5	11.7	47.5
Temperature Deg. F														-
------------------------------	----	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	----------
Maximum		0.0	0.0		0.*		0.1		7 1					10.7
22 Deg. F and above	30		0.0		0.*	0.3	2.1	8.4	7.1	0.9	0.0	0.0	0.0	18.7
Minimum	00	14.1	4.8	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.9	13.8	37.6
22 Dag. E and halow	26	26.2	22.2	20 6	10.2	16	0.0			0.0	0.2	20.2	266	1077
Dog F and below	26	20.2	22.3	20.0	10.2	1.0		0.0		0.8	9.3	20.2	20.0	137.7
	00	2.5	0.5	0,1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	1.0	4.9
AV. STATION PRES. (mb)	22	933.9	932.9	930.2	931.0	930.5	930.9	931.8	931.5	932.8	933.8	932.7	934.1	932.2
RELATIVE HUMIDITY (%)														
Hour 04	36	86	85	81	77	77	75	65	63	71	79	87	88	78
Hour 10 (Local Time)	36	84	80	69	57	52	49	41	43	51	65	83	86	63
Hour 16	36	79	69	54	44	40	36	28	28	34	49	76 ·	83	52
Hour 22	36	84	81	73	66	63	58	46	46	56	70	85	87	68
PRECIPITATION (in.)														
Water Equivalent														
-Normal		1.98	1.49	1.49	1.18	1.41	1.26	0.67	0.72	0.73	0.99	2.15	2.42	16.49
-Maximum Monthly	48	4.96	3.94	3.81	3.08	5.71	3.06	2.33	1.83	2.05	4.05	5.10	5.13	5.71
-Year		1959	1961	1995	1948	1948	1964	1990	1976	1959	1950	1973	1964	MAY 1948
-Minimum Monthly	48	0.38	0.35	0.31	0.08	0.20	0.16	T	Т	Т	0.03	0.22	0.60	Т
-Year		1985	1988	1965	1956	1982	1960	1994	1988	1990	1987	1976	1976	JUL 1994
-Maximum in 24 hrs	48	1.48	1.11	1.08	1.01	1.67	2.07	1.80	1.09	1.12	1.23	1.41	1.60	2.07
-Year		1954	1963	1995	1982	1948	1964	1990	1959	1973	1994	1960	1951	JUN 1964
Snow, Ice Pellets, Hail														
-Maximum Monthly	48	56.9	28.5	15.3	6.6	3.5	Т	0.0	0.0	T	6.1	24.7	42.0	56.9
-Year		1950	1975	1962	1964	1967	1994			1991	1957	1955	1964	JAN 1950
-Maximum in 24 hrs	48	13.0	11.0	6.1	4.9	3.5	Т	0.0	0.0	T	6.1	9.0	12.1	13.0
-Year		1950	1993	1989	1964	1967	1994			1991	1957	1973	1951	JAN 1950
WIND										-				
Mean Speed (mph)	48	8.8	9.2	9.6	10.0	9.2	9.3	8.6	8.3	8.2	8.2	8.7	8.7	8.9
Prevailing Direction														
through 1964		NE	SSW	SSW	SW	SSW	SSW	SW	SW	NE	SSW	NE	NE	SSW
Fastest Mile														
-Direction(!!)	46	SW	SW	SW	SW	W	SW							
-Speed(mph)	46	59	54	54	52	49	44	43	50	38	56	54	51	59
-Year		1972	1949	1971	1987	1957	1986	1970	1982	1961	1950	1949	1956	JAN 1972

Peak Gust														
-Direction(!!)	12	SW	S	W	SW	W	SW	SW	W	SW	SW	SW	22	22
-Speed(mph)	12	56	51	52	62	53	49	51	47	47	62	56	63	63
-Date		1986	1987	1988	1987	1986	1989	1989	1993	1987	1991	1990	1995	DEC 1995

(a) - Length of Record in Years, although individual months may be missing. 0.* or * - The value is between 0.0 and 0.05.

Normals - Based on the 1961 - 1990 record period.

Extremes - Dates are the most recent occurrence.

Wind Dir.- Numerals show tens of degrees clockwise from true north. "00" indicates calm.

Resultant Directions are given to whole degrees.

APPENDIX C

Simulation Input

Climate Data InputWhitman Mission 2006Project NameSudbury LandfillProject Number2009-094-21

Day (Month)	Day (Year)	Max. air temp (F)	Min. air temp (F)	Dew. pt temp (F)	Solar Radiation (langleys)	Avg wind speed (MPH)	Avg cloud cover (tenths)	Precipitation (in)
1	1	54	29	23	112.95	8	8.3	0
2	2	40	30	23	112.95	8	8.3	0.62
3	3	62	30	23	112.95	8	8.3	0.06
4	4	56	36	23	112.95	8	8.3	0.04
5	5	41	30	23	112.95	8	8.3	0
6	6	36	27	23	112.95	8	8.3	0
7	7	31	27	23	112.95	8	8.3	0.06
8	8	46	30	23	112.95	8	8.3	0.07
9	9	38	32	23	112.95	8	8.3	0
10	10	43	32	23	112.95	8	8.3	0.02
11	11	52	31	23	112.95	8	8.3	0.06
12	12	60	27	23	112.95	8	8.3	0
13	13	42	26	23	112.95	8	8.3	0.09
14	14	58	27	23	112.95	8	8.3	0.32
15	15	62	44	23	112.95	8	8.3	0.46
16	16	60	46	23	112.95	8	8.3	0
17	17	46	31	23	112.95	8	8.3	0.34
18	18	41	20	23	112.95	8	8.3	0.25
19	19	36	21	23	112.95	8	8.3	0.05
20	20	40	28	23	112.95	8	8.3	0.02
21	21	47	33	23	112.95	8	8.3	0
22	22	41	28	23	112.95	8	8.3	0
23	23	42	29	23	112.95	. 8	8.3	0
24	24	44	26	23	112.95	8	8.3	0
25	25	42	25	23	112.95	8	8.3	0
26	26	37	20	23	112.95	8	8.3	0.02
27	27	26	18	23	112.95	8	8.3	0
28	28	30	18	23	112.95	8	8.3	0.07
29	29	35	10	23	112.95	8	8.3	0
30	30	15	-7	23	112.95	8	8.3	0

January

				,					
	31	31	-2	-22	23	112.95	8	8.3	0
	1	32	-4	-21	29	176.01	8	7.9	0.07
	2	33	-2	-20	29	176.01	8	7.9	0
	3	34	-2	-21	29	176.01	8	7.9	0.07
	4	35	6	-13	29	176.01	8	7.9	0.06
	5	36	18	1	29	176.01	8	7.9	0
	6	37	49	18	29	176.01	8	7.9	0
	7	38	57	37	29	176.01	8	7.9	0
	8	39	61	45	29	176.01	8	7.9	0
	9	40	66	48	29	176.01	8	7.9	0.2
	10	41	54	24	29	176.01	8	7.9	0
	11	42	42	24	29	176.01	8	7.9	0
\geq	12	43	45	25	29	176.01	8	7.9	0
	13	44	48	26	29	176.01	8	7.9	0
	14	45	48	25	29	176.01	8	7.9	0.14
see a second	15	46	51	26	29	176.01	8	7.9	0
Q	16	47	51	26	29	176.01	8	7.9	0
Ū.	17	48	54	26	29	176.01	8	7.9	0
	18	49	54	39	29	176.01	8	7.9	0
	19	50	62	44	29	176.01	8	7.9	0
	20	51	57	38	29	176.01	8	7.9	0
	21	52	63	37	29	176.01	8	7.9	0
	22	53	51	33	29	176.01	8	7.9	0
	23	54	49	35	29	176.01	8	7.9	0
	24	55	44	30	29	176.01	8	7.9	0.01
	25	56	41	32	29	176.01	8	7.9	0
	26	57	35	14	29	176.01	8	7.9	0
	27	58	35	15	29	176.01	8	7.9	0.09
	28	59	36	19	29	176.01	8	7.9	0.33
	29	60	43	19	29	176.01	8	7.9	0
₩₩ \$	1	61	41	22	32	279.21	9.8	7.3	0.05
	2	62	50	24	32	279.21	9.8	7.3	0
	3	63	61	25	32	279.21	9.8	7.3	0.01
	4	64	62	40	32	279.21	9.8	7.3	0
	5	65	49	32	32	279.21	9.8	7.3	0
	6	66	38	32	32	279.21	9.8	7.3	0.09
	7	67	57	35	32	279.21	9.8	7.3	0.05

	8	68	47	35	32	279.21	9.8	7.3	0
	9	69	45	39	32	279.21	9.8	7.3	0.1
	10	70	52	39	32	279.21	9.8	7.3	0
	11	71	59	42	32	279.21	9.8	7.3	0
	12	72	68	47	32	279.21	9.8	7.3	0
	13	73	59	34	32	279.21	9.8	7.3	0
_	14	74	58	34	32	279.21	9.8	7.3	0
$\overline{\mathbf{O}}$	15	75	65	37	. 32	279.21	9.8	7.3	0.02
	16	76	60	31	32	279.21	9.8	7.3	0
	17	77	57	32	32	279.21	9.8	7.3	0.32
2	18	78	60	27	32	279.21	9.8	7.3	0.15
	19	79	65	32	32	279.21	9.8	7.3	0.01
	20	80	62	33	32	279.21	9.8	7.3	0
	21	81	58	27	32	279.21	9.8	7.3	0
	22	82	55	32	32	279.21	9.8	7.3	0.02
	23	83	58	34	32	279.21	9.8	7.3	0
	24	84	58	31	32	279.21	9.8	7.3	0.01
	25	85	38	19	32	279.21	9.8	7.3	0.57
	26	86	45	23	32	279.21	9.8	7.3	0.53
	27	87	50	33	32	279.21	9.8	7.3	0
	28	88	54	33	32	279.21	9.8	7.3	0.03
	29	89	53	33	32	279.21	9.8	7.3	0.01
	30	90	56	36	32	279.21	9.8	7.3	0
	31	91	57	37	32	279.21	9.8	7.3	0.08
	1	92	47	42	35	398.18	9.1	7.1	0.06
	2	93	60	43	35	398.18	9.1	7.1	0.37
	3	94	60	29	35	398.18	9.1	7.1	0.02
	4	95	59	31	35	398.18	9.1	7.1	0.4
	5	96	67	31	35	398.18	9.1	7.1	0.03
	6	97	73	39	35	398.18	9.1	7.1	0.68
	7	98	77	45	35	398.18	9.1	7.1	0
	8	99	81	46	35	398.18	9.1	7.1	0.03
	9	100	82	48	35	398.18	9.1	7.1	0.12
	10	101	75	47	35	398.18	9.1	7.1	0.43
	11	102	65	47	35	398.18	9.1	7.1	0.07
	12	103	65	42	35	398.18	9.1	7.1	0.04
	13	104	59	42	35	398.18	9.1	7.1	0.01

	14	105	63	32	35	398.18	9.1	7.1	0
	15	106	74	34	35	398.18	9.1	7.1	0.21
0	16	107	73	48	35	398.18	9.1	7.1	0.07
	17	108	70	39	35	398.18	9.1	7.1	0.01
	18	109	63	42	35	398.18	9.1	7.1	0
	19	110	61	33	35	398.18	9.1	7.1	0
	20	111	60	35	35	398.18	9.1	7.1	0
	21	112	61	31	35	398.18	9.1	7.1	0
	22	113	65	36	35	398.18	9.1	7.1	0
	23	114	61	40	35	398.18	9.1	7.1	0
	24	115	66	47	35	398.18	9.1	7.1	0
	25	116	62	44	35	398.18	9.1	7.1	0
	26	117	62	39	35	398.18	9.1	7.1	0
	27	118	62	39	35	398.18	9.1	7.1	0
	28	119	63	31	35	398.18	9.1	7.1	0
	29	120	69	38	35	398,18	9.1	7.1	0
	30	121	70	44	35	398.18	9.1	7.1	0.01
	1	122	67	45	42	497.37	9.1	6.6	0
	2	123	64	40	42	497.37	9.1	6.6	0
	3	124	60	41	42	497.37	9.1	6.6	0
	4	125	59	40	42	497.37	9.1	6.6	0
	5	126	62	29	42	497.37	9.1	6.6	0
	6	127	65	33	42	497.37	9.1	6.6	0
	7	128	69	43	42	497.37	9.1	6.6	0.03
	8	129	63	31	42	497.37	9.1	6.6	0.03
	9	130	61	29	42	497.37	9.1	6.6	0
	10	131 '	64	33	42	497.37	9.1	6.6	0
	11	132	68	46	42	497.37	9.1	6.6	0
	12	133	71	49	42	497.37	9.1	6.6	0
	13	134	70	51	42	497.37	9.1	6.6	0
	14	135	72	54	42	497.37	9.1	6.6	0
\geq	15	136	72	55	42	497.37	9.1	6.6	0
σ	16	137	71	52	42	497.37	9.1	6.6	0
\geq	17	138	71	53	42	497.37	9.1	6.6	0
	18	139	71	46	42	497.37	9.1	6.6	0
	19	140	71	46	42	497.37	9.1	6.6	0
	20	141	66	44	42	497.37	9.1	6.6	0.75

	21	142	67	42	42	497.37	9.1	6.6	0
	22	143	60	48	42	497.37	9.1	6.6	0.06
	23	144	61	38	42	497.37	9.1	6.6	0.45
	24	145	65	38	42	497.37	9.1	6.6	0.02
	25	146	74	40	42	497.37	9.1	6.6	0.05
	26	147	79	45	42	497.37	9.1	6.6	0.07
	27	148	78	49	42	497.37	9.1	6.6	0.03
	28	149	72	46	42	497.37	9.1	6.6	0.01
	29	150	66	44	42	497.37	9.1	6.6	0.01
	30	151	68	39	42	497.37	9.1	6.6	0
	31	152	69	44	42	497.37	9.1	6.6	0
	1	153	74	44	47	562.44	9.3	6.1	0
	2	154	80	57	47	562.44	9.3	6.1	0
	3	155	87	55	47	562.44	9.3	6.1	0.3
	4	156	86	60	47	562.44	9.3	6.1	0.16
	5	157	77	43	47	562.44	9.3	6.1	0.49
	6	158	78	40	47	562.44	9.3	6.1	0
	7	159	88	49	47	562.44	9.3	6.1	0
	8	160	91	57	47	562.44	9.3	6.1	0.06
•	9	161	85	49	47	562.44	9.3	6.1	0
	10	162	74	42	47	562.44	9.3	6.1	0
	11	163	78	51	47	562.44	9.3	6.1	0
	12	164	76	40	47	562.44	9.3	6.1	0
	13	165	82	42	47	562.44	9.3	6.1	0.07
(I)	14	166	85	49	47	562.44	9.3	6.1	0.12
Č	15	167	83	47	47	562.44	9.3	6.1	0
	16	168	84	42	47	562.44	9.3	6.1	0
う	17	169	78	52	47	562.44	9.3	6.1	0
	18	170	66	42	47	562.44	9.3	6.1	0
	19	171	69	38	47	562.44	9.3	6.1	0
	20	172	79	37	47	562.44	9.3	6.1	0
	21	173	82	41	47	562.44	9.3	6.1	0
	22	174	82	51	47	562.44	9.3	6.1	0
	23	175	82	51	47	562.44	9.3	6.1	0
	24	176	71	47	47	562.44	9.3	6.1	0
	25	177	72	46	47	562.44	9.3	6.1	0
	26	178	76	50	47	562.44	9.3	6.1	0

.

	27	179	81	56	47	562.44	9.3	6.1	0
	28	180	73	51	47	562.44	9.3	6.1	0
	29	181	76	46	47	562.44	9.3	6.1	0
	30	182	81	47	47	562.44	9.3	6.1	0.05
	1	183	88	54	47	599.42	9.1	3.9	0
	2	184	93	54	47	599.42	9.1	3.9	0
	3	185	98	60	47	599.42	9.1	3.9	0
	4	186	91	64	47	599.42	9.1	3.9	0
	5	187	77	44	47	599.42	9.1	3.9	0
	6	188	77	39	47	599.42	9.1	3.9	0
	7	189	88	42	47	599.42	9.1	3.9	0
	8	190	94	47	47	599.42	9.1	3.9	0
	9	191	95	56	47	599.42	9.1	3.9	0
	10	192	90	48	47	599.42	9.1	3.9	0
	11	193	88	46	47	599.42	9.1	3.9	0
	12	194	94	46	47	599.42	9.1	3.9	0
	13	195	94	51	47	599.42	9.1	3.9	0.04
	14	196	101	52	47	599.42	9.1	3.9	0
\geq	15	197	98	60	47	599.42	9.1	3.9	0
	16	198	100	63	47	599.42	9.1	3.9	0
5	17	199	100	60	47	599.42	9.1	3.9	0
	18	200	82	52	47	599.42	9.1	3.9	0
	19	201	75	48	47	599.42	9.1	3.9	0
	20	202	77	48	47	599.42	9.1	3.9	0
	21	203	82	53	47	599.42	9.1	3.9	0
	22	204	88	49	47	599.42	9.1	3.9	0
	23	205	96	48	47	599.42	9.1	3.9	0
	24	206	102	50	47	599.42	9.1	3.9	0
	25	207	100	56	47	599.42	9.1	3.9	0
	26	208	100	47	47	599.42	9.1	3.9	0
	27	209	107	59	47	599.42	9.1	3.9	0
	28	210	101	60	47	599.42	9.1	3.9	0
	29	211	100	68	47	599.42	9.1	3.9	0
	30	212	92	59	47	599.42	9.1	3.9	0
	31	213	97	56	47	599.42	9.1	3.9	0
	1	214	93	52	48	511.7	8.8	4.2	0
	2	215	93	60	48	511.7	8.8	4.2	0

HWA Project No. 2009-094

7,000

	3	216	79	46	48	511.7	8.8	4.2	0
	4	217	76	48	48	511.7	8.8	4.2	0
	5	218	81	59	48	511.7	8.8	4.2	0
	6	219	77	45	48	511.7	8.8	4.2	0
	7	220	84	43	48	511.7	8.8	4.2	0
	8	221	95	47	48	511.7	8.8	4.2	0
	9	222	100	51	48	511.7	8.8	4.2	0
	10	223	101	49	48	511.7	8.8	4.2	0
	11	224	104	55	48	511.7	8.8	4.2	0
	12	225	95	45	48	511.7	8.8	4.2	0
	13	226	88	47	48	511.7	8.8	4.2	0
4	14	227	94	54	48	511.7	8.8	4.2	0
Š	15	228	98	56	48	511.7	8.8	4.2	0
ົດ	16	229	94	56	48	511.7	8.8	4.2	0
J	17	230	92	48	48	511.7	8.8	4.2	0
\triangleleft	18	231	79	49	48	511.7	8.8	4.2	0
	19	232	79	42	48	511.7	8.8	4.2	0
	20	233	86	42	48	511.7	8.8	4.2	0
	21	234	80	40	48	511.7	8.8	4.2	0
	22	235	84	40	48	511.7	8.8	4.2	0
	23	236	92	42	48	511.7	8.8	4.2	0
	24	237	96	44	48	511.7	8.8	4.2	0
	25	238	96	48	48	511.7	8.8	4.2	0
	26	239	98	50	48	511.7	8.8	4.2	0
	27	240	89	55	48	511.7	8.8	4.2	0
	28	241	78	57	48	511.7	8.8	4.2	0
	29	242	83	48	48	511.7	8.8	4.2	0
	30	243	100	53	48	511.7	8.8	4.2	0
	31	244	86	49	48	511.7	8.8	4.2	0
an Carl an Anna an Anna an Anna Anna Anna Anna	1	245	80	43	43	379.55	8.1	4.8	0
	2	246	79	42	43	379.55	8.1	4.8	0
	3	247	81	46	43	379.55	8.1	4.8	0
	4	248	82	50	43	379.55	8.1	4.8	0
	5	249	73	52	43	379.55	8.1	4.8	0.02
	6	250	73	48	43	379.55	8.1	4.8	0
	7	251	74	47	43	379.55	8.1	4.8	0
	8	252	82	50	43	379.55	8.1	4.8	0

	9	253	86	47	43	379.55	8.1	4.8	0
	10	254	85	41	43	379.55	8.1	4.8	0
	11	255	89	44	43	379.55	8.1	4.8	0
5	12	256	89	47	43	379.55	8.1	4.8	0
Ŭ Ŭ	13	257	82	54	43	379.55	8.1	4.8	0
	14	258	80	56	43	379.55	8.1	4.8	0
	15	259	76	56	43	379.55	8.1	4.8	0
Q	16	260	70	48	43	379.55	8.1	4.8	0.03
Ō	17	261	70	46	43	379.55	8.1	4.8	0
Ð	18	262	70	41	43	379.55	8.1	4.8	0
S	19	263	71	43	43	379.55	8.1	4.8	0.07
	20	264	70	46	43	379.55	8.1	4.8	0
	21	265	70	41	43	379.55	8.1	4.8	0.47
	22	266	68	42	43	379.55	8.1	4.8	0.07
	23	267	65	27	43	379.55	8.1	4.8	0
	24	268	64	29	43	379.55	8.1	4.8	0
	25	269	64	29	43	379.55	8.1	4.8	0
	26	270	71	30	43	379.55	8.1	4.8	0
	27	271	73	41	43	379.55	8.1	4.8	0
	28	272	87	42	43	379.55	8.1	4.8	0
	29	273	90	48	43	379.55	8.1	4.8	0
	30	274	87	42	43	379.55	8.1	4.8	0
	1	275	83	35	40	232.49	7.8	6.3	0
	2	276	75	34	40	232.49	7.8	6.3	0
	3	277	69	37	40	232.49	7.8	6.3	0
	4	278	80	40	40	232.49	7.8	6.3	0
	5	279	78	41	40	232.49	7.8	6.3	0.04
	6	280	72	39	40	232.49	7.8	6.3	0
	7	281	75	38	40	232.49	7.8	6.3	0
	8	282	81	40	40	232.49	7.8	6.3	0
	9	283	79	38	40	232.49	7.8	6.3	0.04
	10	284	75	39	40	232.49	7.8	6.3	0
	11	285	79	52	40	232.49	7.8	6.3	0
	12	286	75	44	40	232.49	7.8	6.3	0
L	13	287	74	47	40	232.49	7.8	6.3	0
$\overline{\mathbf{O}}$	14	288	61	45	40	232.49	7.8	6.3	0
ā	15	289	62	43	40	232.49	7.8	6.3	0.01

0	10	000	00	07	40	000 40	70	<u> </u>	0.0
ب ل ل	10	290	62	37	40	232.49	7.8	0.3	0.3
Ö	17	291	56	23	40	232.49	7.8	0.3	0
0	18	292	54	24	40	232.49	7.8	6.3	0
	19	293	55	39	40	232.49	7.8	6.3	0.06
	20	294	55	29	40	232.49	7.8	6.3	0.19
	21	295	54	26	40	232.49	7.8	6.3	0
	22	296	58	28	40	232.49	7.8	6.3	0
	23	297	56	33	40	232.49	7.8	6.3	0
	24	298	56	34	40	232.49	7.8	6.3	0
	25	299	60	38	40	232.49	7.8	6.3	0.02
	26	300	57	35	40	232.49	7.8	6.3	0
	27	301	51	31	40	232.49	7.8	6.3	0
	28	302	64	34	40	232.49	7.8	6.3	0
	29	303	65	38	40	232.49	7.8	6.3	0
	30	304	50	38	40	232.49	7.8	6.3	0
	31	305	44	28	40	232.49	7.8	6.3	0
	1	306	49	25	36	118.39	7.7	8.1	0
	2	307	50	26	36	118.39	7.7	8.1	0
	3	308	44	28	36	118.39	7.7	8.1	0.11
	4	309	57	41	36	118.39	7.7	8.1	0.12
	5	310	52	37	36	118.39	7.7	8.1	0.05
	6	311	52	38	36	118.39	7.7	8.1	0.2
	7	312	57	32	36	118.39	7.7	8.1	0.04
	8	313	53	36	36	118.39	7.7	8.1	0.26
	9	314	65	29	36	118.39	7.7	8.1	0.2
	10	315	65	29	36	118.39	7.7	8.1	0.02
	11	316	41	33	36	118.39	7.7	8.1	0.05
Same,	12	317	52	28	36	118.39	7.7	8.1	0
Û	13	318	56	30	36	118.39	7.7	8.1	0.09
<u>_</u>	14	319	59	42	36	118.39	7.7	8.1	0.04
3	15	320	48	32	36	118.39	7.7	8.1	0.01
$\overline{\mathbf{O}}$	16	321	48	32	36	118.39	7.7	8.1	0.01
>	17	322	45	32	36	118.39	7.7	8.1	0
0	18	323	48	32	36	118.39	7.7	8.1	Ō
2	19	324	45	31	36	118.39	7.7	8.1	0
	20	325	40	32	36	118.39	7.7	8.1	0.11
	20	326	48	24	36	118.39	7.7	8.1	0
		~~~			~~			<del>.</del>	•

	22	327	48	31	36	118.39	7.7	8.1	0
	23	328	34	28	36	118.39	7.7	8.1	0
	24	329	28	25	36	118.39	7.7	8.1	0.26
	25	330	30	23	36	118.39	7.7	8.1	0.05
	26	331	33	23	36	118.39	7.7	8.1	0
	27	332	46	30	36	118.39	7.7	8.1	0.32
	28	333	46	30	36	118.39	7.7	8.1	0
	29	334	45	29	36	118.39	7.7	8.1	0
	30	335	47	29	36	118.39	7.7	8.1	0
	1	336	54	38	30	92.02	7.6	8.4	0
	2	337	47	36	30	92.02	7.6	8.4	0
	3	338	46	34	30	92.02	7.6	8.4	0
	4	339	44	24	30	92.02	7.6	8.4	0
	5	340	49	33	30	92.02	7.6	8.4	0
	6	341	47	36	30	92.02	7.6	8.4	0
	7	342	48	31	30	92.02	7.6	8.4	0
	8	343	51	38	30	92.02	7.6	8.4	0
	9	344	46	36	30	92.02	7.6	8.4	0
	10	345	43	37	30	92.02	7.6	8.4	0.1
	11	346	50	32	30	92.02	7.6	8.4	0.07
L	12	347	50	32	30	92.02	7.6	8.4	0.04
$\overline{0}$	13	348	51	32	30	92.02	7.6	8.4	0.13
ā	14	349	49	32	30	92.02	7.6	8.4	0.03
forman forman	15	350	48	29	30	92.02	7.6	8.4	0.38
۵ ۵	16	351	51	31	30	92.02	7.6	8.4	0
Ŭ	17	352	42	19	30	92.02	7.6	8.4	0
Û	18	353	26	18	30	92.02	7.6	8.4	0
$\square$	19	354	26	22	30	92.02	7.6	8.4	0
	20	355	37	25	30	92.02	7.6	8.4	0
	21	356	32	27	30	92.02	7.6	8.4	0.07
	22	357	29	20	30	92.02	7.6	8.4	0.04
	23	358	29	23	30	92.02	7.6	8.4	0.09
	24	359	27	24	30	92.02	7.6	8.4	0.02
	25	360	27	24	30	92.02	7.6	8.4	0
	26	361	25	13	30	92.02	7.6	8.4	0.86
	27	362	16	13	30	92.02	7.6	8.4	0.31
	28	363	26	-2	30	92.02	7.6	8.4	0.2

29	364	13	1	30	92.02	7.6	8.4	0
30	365	41	13	30	92.02	7.6	8.4	0
 31	366	52	14	30	92.02	7.6	8.4	0

HWA Project No. 2009-094

. .

.

.

### Climate Data Input Whitman Mission 2007 Project Name

Project Number

Sudbury Landfill 2009-094-21

Day (Month)	Day (Year)	Max. air temp (F)	Min. air temp (F)	Dew. pt temp (F)	Solar Radiation (langleys)	Avg wind speed (MPH)	Avg cloud cover (tenths)	Precipitation (in)
1	1	54	29	23	112.95	8	8.3	0
2	2	40	30	23	112.95	8	8.3	0.02
3	3	62	30	23	112.95	8	8.3	0.59
4	4	56	36	23	112.95	8	8.3	0.28
5	5	41	30	23	112.95	8	8.3	0.02
6	6	36	27	23	112.95	8	8.3	0
7	7	31	27	23	112.95	8	8.3	0.08
8	8	46	30	23	112.95	8	8.3	0
9	9	38	32	23	112.95	8	8.3	0
10	10	43	32	23	112.95	8	8.3	0
11	11	52	31	23	112.95	8	8.3	0
12	12	60	27	23	112.95	8	8.3	0
13	13	42	26	23	112.95	8	8.3	0
14	14	58	27	23	112.95	8	8.3	0
15	15	62	44	23	112.95	8	8.3	0
16	16	60	46	23	112.95	8	8.3	0
17	17	46	31	23	112.95	8	8.3	0.01
18	18	41	20	23	112.95	8	8.3	0
19	19	36	21	23	112.95	8	8.3	0
20	20	40	28	23	112.95	8	8.3	0
21	21	47	33	23	112.95	8	8.3	0
22	22	41	28	23	112.95	8	8.3	0
23	23	42	29	23	112.95	8	8.3	0
. 24	24	44	26	23	112.95	8	8.3	0
25	25	42	25	23	112.95	8	8.3	0
26	26	37	20	23	112.95	8	8.3	0.02
27	27	26	18	23	112.95	8	8.3	0.01
28	28	30	18	23	112.95	8	8.3	0
29	29	35	10	23	112.95	8	8.3	. 0
30	30	15	-7	23	112.95	8	8.3	0.01

January

	31	31	-2	-22	23	112.95	8	8.3	0
	1	32	-4	-21	29	176.01	8	7.9	0
· · · ·	2	33	-2	-20	29	176.01	8	7.9	0
	3	34	-2	-21	29	176.01	8	7.9	0
	4	35	6	-13	29	176.01	8	7.9	0.13
	5	36	18	1	29	176.01	8	7.9	0
	6	37	49	18	29	176.01	8	7.9	0
	7	. 38	57	37	29	176.01	8	7.9	0
	8	39	61	45	29	176.01	8	7.9	0.07
	9	40	66	48	29	176.01	8	7.9	0.14
	10	41	54	24	29	176.01	8	7.9	0.18
	11	42	42	24	29	176.01	8	7.9	0.24
>	12	43	45	25	29	176.01	8	7.9	0.1
	13	44	48	26	29	176.01	8	7.9	0
<u>u</u>	14	45	48	25	29	176.01	8	7.9	0
second Second	15	46	51	26	29	176.01	8	7.9	0.19
Q	16	47	51	26	29	176.01	8	7.9	0.16
Û	17	48	54	26	29	176.01	8	7.9	0
	18	49	54	39	29	176.01	8	7.9	0
	19	50	62	44	29	176.01	8	7.9	0
	20	51	57	38	29	176.01	8	7.9	0.01
	21	52	63	37	29	176.01	8	7.9	0
	22	53	51	33	29	176.01	8	7.9	0
	23	54	49	35	29	176.01	8	7.9	0.19
	24	55	44	30	29	176.01	8	7.9	0.02
	25	56	41	32	29	176.01	8	7.9	0.03
	26	57	35	14	29	176.01	8	7.9	0.19
	27	58	35	15	29	176.01	8	7.9	0
	28	59	36	19	29	176.01	8	7.9	0
	29	60	43	19	29	176.01	8	7.9	
	1	61	41	22	32	279.21	9.8	7.3	0
	2	62	50	24	32	279.21	9.8	7.3	0.07
	3	63	61	25	32	279.21	9.8	7.3	0.05
	4	64	62	40	32	279.21	9.8	7.3	0
	5	65	49	32	32	279.21	9.8	7.3	0.01
	6	66	38	32	32	279.21	9.8	7.3	0
	7	67	57	35	32	279.21	9.8	7.3	0

	8	68	47	35	32	279.21	9.8	7.3	0.48
	9	69	45	39	32	279.21	9.8	7.3	0
	10	70	52	39	32	279.21	9.8	7.3	0
	11	71	59	42	32	279.21	9.8	7.3	0
	12	72	68	47	32	279.21	9.8	7.3	0
	13	73	59	34	32	279.21	9.8	7.3	0.09
C	14	74	58	34	32	279.21	9.8	7.3	0
0	15	75	65	37	32	279.21	9.8	7.3	0
	16	76	60	31	32	279.21	9.8	7.3	0
	17	77	57	32	32	279.21	9.8	7.3	0
2	18	78	60	27	32	279.21	9.8	7.3	0
	19	79	65	32	32	279.21	9.8	7.3	0
	20	80	62	33	32	279.21	9.8	7.3	0.28
	21	81	58	27	32	279.21	9.8	7.3	0
	22	82	55	32	32	279.21	9.8	7.3	0
	23	83	58	34	32	279.21	9.8	7.3	0.05
	24	84	58	31	32	279.21	9.8	7.3	0.01
	25	85	38	19	32	279.21	9.8	7.3	0.2 ·
	26	86	45	23	32	279.21	9.8	7.3	0.36
	27	87	50	33	32	279.21	9.8	7.3	0.45
	28	88	54	33	32	279.21	9.8	7.3	0.08
	29	89	53	33	32	279.21	9.8	7.3	0
	30	90	56	36	32	279.21	9.8	7.3	0
	31	91	57	37	32	279.21	9.8	7.3	0
	1	92	47	42	35	398.18	9.1	7.1	0.02
	2	93	60	43	35	398.18	9.1	7.1	0
	3	94	60	29	35	398.18	9.1	7.1	0
	4	95	59	31	35	398.18	9.1	7.1	0
	5	96	67	31	35	398.18	9.1	7.1	0
	6	97	73	39	35	398.18	9.1	7.1	0
	7	98	77	45	35	398.18	9.1	7.1	0
	8	99	81	46	35	398.18	9.1	7.1	0
	9	100	82	48	35	398.18	9.1	7.1	0.22
	10	101	75	47	35	398.18	9.1	7.1	0
	11	102	65	47	35	398.18	9.1	7.1	0
	12	103	65	42	· 35	398.18	9.1	7.1	0
	13	104	59	42	35	398.18	9.1	7.1	0

adore e con	14	105	63	32	35	398.18	9.1	7.1	0
s manne	15	106	74	34	35	398.18	9.1	7.1	0.19
0	16	107	73	48	35	398.18	9.1	7.1	0.01
4	17	108	70	39	35	398.18	9.1	7.1	0.32
	18	109	63	42	35	398.18	9.1	7.1	0
	19	110	61	33	35	398.18	9.1	7.1	0
	20	111	60	35	35	398.18	9.1	7.1	0
	21	112	61	31	35	398.18	9.1	7.1	0
	22	113	65	36	35	398.18	9.1	7.1	0.11
	23	114	61	40	35	398.18	9.1	7.1	0.04
	24	115	66	47	35	398.18	9.1	7.1	0
	25	116	62	44	35	398.18	9.1	7.1	0
	26	117	62	39	35	398.18	9.1	7.1	0
	27	118	62	39	35	398.18	9.1	7.1	0
	28	119	63	31	35	398.18	9.1	7.1	0
	29	120	69	38	35	398.18	9.1	7.1	0
	30	121	70	44	35	398.18	9.1	7.1	0
	1	122	67	45	42	497.37	9.1	6.6	0
	2	123	64	40	42	497.37	9.1	6.6	0.08
	3	124	60	41	42	497.37	9.1	6.6	0.3
	4	125	59	40	42	497.37	9.1	6.6	0
	5	126	62	29	42	497.37	9.1	6.6	0
	6	127	65	33	42	497.37	9.1	6.6	0
	7	128	69	43	42	497.37	9.1	6.6	0
	8	129	63	31	42	497.37	9.1	6.6	0
	9	130	61	29	42	497.37	9.1	6.6	0.01
	10	131	64	33	42	497.37	9.1	6.6	0
	11	132	68	46	42	497.37	9.1	6.6	0
	12	133	71	49	42	497.37	9.1	6.6	0
	13	134	70	51	42	497.37	9.1	6.6	0
	14	135	72	54	42	497.37	9.1	6.6	0
$\geq$	15	136	72	55	42	497.37	9.1	6.6	0
	16	137	71	52	42	497.37	9.1	6.6	0
$\geq$	17	138	71	53	42	497.37	9.1	6.6	0
	18	139	71	46	42	497.37	9.1	6.6	0
	19	140	71	46	42	497.37	9.1	6.6	0
	20	141	66	44	42	497.37	9.1	6.6	0

	21	142	67	42	42	497.37	9.1	6.6	0.01
	22	143	60	48	42	497.37	9.1	6.6	0.05
	23	144	61	38	42	497.37	9.1	6.6	0.01
	24	145	65	38	42	497.37	9.1	6.6	0
	25	146	74	40	42	497.37	9.1	6.6	0
	26	147	79	45	42	497.37	9.1	6.6	0
	27	148	78	49	42	497.37	9.1	6.6	0.06
	28	149	72	46	42	497.37	9.1	6.6	0
	29	150	66	44	42	497.37	9.1	6.6	0
	30	151	68	39	42	497.37	9.1	6.6	0
	31	152	69	44	42	497.37	9.1	6.6	0
	1	153	74	44	47	562.44	9.3	6.1	0
	2	154	80	57	47	562.44	9.3	6.1	0
	3	155	87	55	47	562.44	9.3	6.1	0
	4	156	86	60	47	562.44	9.3	6.1	0
	5	157	77	43	47	562.44	9.3	6.1	0.38
	6	158	78	40	47	562.44	9.3	6.1	0.15
	7	159	88	49	47	562.44	9.3	6.1	0
	8	160	91	57	47	562.44	9.3	6.1	0
	9	161	85	49	47	562.44	9.3	6.1	0
	10	162	74	42	47	562.44	9.3	6.1	0.42
	11	163	78	51	47	562.44	9.3	6.1	0.02
	12	164	76	40	47	562.44	9.3	6.1	0
	13	165	82	42	47	562.44	9.3	6.1	0
(D)	14	166	85	49	47	562.44	9.3	6.1	0
<u>C</u>	15	167	83	47	47	562.44	9.3	6.1	0
	16	168	84	42	47	562.44	9.3	6.1	0
	17	169	78	52	47	562.44	9.3	6.1	0
	18	170	66	42	47	562.44	9.3	6.1	0
	19	171	69	38	47	562.44	9.3	6.1	0
	20	172	79	37	47	562.44	9.3	6.1	0
	21	173	82	41	47	562.44	9.3	6.1	0
	22	174	82	51	47	562.44	9.3	6.1	0
	23	175	82	51	47	562.44	9.3	6.1	0
	24	176	71	47	47	562.44	9.3	6.1	0
	25	177	72	46	47	562.44	9.3	6.1	0.1
	26	178	76	50	47	562.44	9.3	6.1	0

	27	179	81	56	47	562.44	9.3	6.1	0
	28	180	73	51	47	562.44	9.3	6.1	0
	29	181	76	46	47	562.44	9.3	6.1	0
	30	182	81	47	47	562.44	9.3	6.1	0.23
	1	183	88	54	47	599.42	9.1	3.9	0
	2	184	93	54	47	599.42	9.1	3.9	0
	3	185	98	60	47	599.42	9.1	3.9	0
	4	186	91	64	47	599.42	9.1	3.9	0
	5	187	77	44	47	599.42	9.1	3.9	0
	6	188	77	39	47	599.42	9.1	3.9	0
	7	189	88	42	47	599.42	9.1	3.9	0
	8	190	94	47	47	599.42	9.1	3.9	0
	9	191	95	56	47	599.42	9.1	3.9	0
	10	192	90	48	47	599.42	9.1	3.9	0
	11	193	88	46	47	599.42	9.1	3.9	0
	12	194	94	46	47	599.42	9.1	3.9	0
	13	195	94	51	47	599.42	9.1	3.9	0
	14	196	101	52	47	599.42	9.1	3.9	0
>	15	197	98	60	47	599.42	9.1	3.9	0
	16	198	100	63	47	599.42	9.1	3.9	0
	17	199	100	60	47	599.42	9.1	3.9	0
-	18	200	82	52	47	599.42	9.1	3.9	0.04
	19	201	75	48	47	599.42	9.1	3.9	0.26
	20	202	77	48	47	599.42	9.1	3.9	0
	21	203	82	53	47	599.42	9.1	3.9	0
	22	204	88	49	47	599.42	9.1	3.9	0
	23	205	96	48	47	599.42	9.1	3.9	0
	24	206	102	50	47	599.42	9.1	3.9	0
	25	207	100	56	47	599.42	9.1	3.9	0
	26	208	100	47	47	599.42	9.1	3.9	0
	27	209	107	59	47	599.42	9.1	3.9	0
	28	210	101	60	47	599.42	9.1	3.9	0
	29	211	100	68	47	599,42	9.1	3.9	0
	30	212	92	59	47	599.42	9.1	3.9	0
	31	213	97	56	47	599.42	9.1	3.9	0
	1	214	93	52	48	511.7	8.8	4.2	0
	2	215	93	60	48	511.7	8.8	4.2	0

	3	216	79	46	48	511.7	8.8	4.2	0
	4	217	76	48	48	511.7	8.8	4.2	0
	5	218	81	59	48	511.7	8.8	4.2	0
	6	219	77	45	48	511.7	8.8	4.2	0
	7	220	84	43	48	511.7	8.8	4.2	0
	8	221	95	47	48	511.7	8.8	4.2	0
	9	222	100	51	48	511.7	8.8	4.2	0
	10	223	101	49	48	511.7	8.8	4.2	0
	11	224	104	55	48	511.7	8.8	4.2	0
	12	225	95	45	48	511.7	8.8	4.2	. 0
	13	226	88	47	48	511.7	8.8	4.2	0
	14	227	94	54	48	511.7	8.8	4.2	0
š	15	228	98	56	48	511.7	8.8	4.2	0
ົດ	16	229	94	56	48	511.7	8.8	4.2	0
5	17	230	92	48	48	511.7	8.8	4.2	0
$\triangleleft$	18	231	79	49	48	511.7	8.8	4.2	0
•	19	232	79	42	48	511.7	8.8	4.2	0.04
	20	233	86	42	48	511.7	8.8	4.2	0.34
	21	234	80	40	48	511.7	8.8	4.2	0.11
	22	235	84	40	48	511.7	8.8	4.2	0
	23	236	92	42	48	511.7	8.8	4.2	0
	24	237	96	44	48	511.7	8.8	4.2	0
	25	238	96	48	48	511.7	8.8	4.2	0
	26	239	98	50	48	511.7	8.8	4.2	0
	27	240	89	55	48	511.7	8.8	4.2	0
	28	241	78	57	48	511.7	8.8	4.2	· 0
	29	242	83	48	48	511.7	8.8	4.2	0
	30	243	100	53	48	511.7	8.8	4.2	0
	31	244	86	49	48	511.7	8.8	4.2	0
	1	245	80	43	43	379.55	8.1	4.8	0.1
	2	246	79	42	43	379.55	8.1	4.8	0
	3	247	81	46	43	379.55	8.1	4.8	0
	4	248	82	50	43	379.55	8.1	4.8	0
	5	249	73	52	43	379.55	8.1	4.8	0
	6	250	73	48	43	379.55	8.1	4.8	0
Α.	7	251	74	47	43	379.55	8.1	4.8	0
	8	252	82	50	43	379.55	8.1	4.8	0

	9	253	86	47	43	379.55	8.1	4.8	0
	10	254	85	41	43	379.55	8.1	4.8	0
	11	255	89	44	43	379.55	8.1	4.8	0
	12	256	89	47	43	379.55	8.1	4.8	0
Ŭ Ŭ	13	257	82	54	43	379.55	8.1	4.8	0
endende Canal	14	258	80	56	43	379.55	8.1	4.8	0
Č	15	259	76	56	43	379.55	8.1	4.8	0
Ð	16	260	70	48	43	379.55	8.1	4.8	0
Ō	17	261	70	46	43	379.55	8.1	4.8	0
U	18	262	70	41	43	379.55	8.1	4.8	0
S	19	263	71	43	43	379.55	8.1	4.8	0
	20	264	70	46	43	379.55	8.1	4.8	0
	21	265	70	41	43	379.55	8.1	4.8	0
	22	266	68	42	43	379.55	8.1	4.8	0
	23	267	65	27	43	379.55	8.1	4.8	0
	24	268	64	29	43	379.55	8.1	4.8	0
	25	269	64	29	43	379.55	8.1	4.8	0
	26	270	71	30	43	379.55	8.1	4.8	0
	27	271	73	41	43	379.55	8.1	4.8	0
	28	272	87	42	43	379.55	8.1	4.8	0
	29	273	90	48	43	379.55	8.1	4.8	0.18
	30	274	87	42	43	379.55	8.1	4.8	0
	1	275	83	35	40	232.49	7.8	6.3	0.2
	2	276	75	34	40	232.49	7.8	6.3	0.03
	3	277	69	37	40	232.49	7.8	6.3	0.03
	4	278	80	40	40	232.49	7.8	6.3	0.02
	5	279	78	41	40	232.49	7.8	6.3	0.03
	6	280	72	39	40	232.49	7.8	6.3	0
	7	281	75	38	40	232.49	7.8	6.3	0
	8	282	81	40	40	232.49	7.8	6.3	0
	9	283	79	38	40	232.49	7.8	6.3	. 0
	10	284	75	39	40	232.49	7.8	6.3	0
	11	285	79	52	40	232.49	7.8	6.3	0.11
	12	286	75	44	40	232.49	7.8	6.3	0
L	13	287	74	47	40	232.49	7.8	6.3	0
$\overline{\mathbf{O}}$	14	288	61	45	40	232.49	7.8	6.3	0
ā	15	289	62	43	40	232.49	7.8	6.3	0

0	16	290	62	37	40	232.49	7.8	6.3	0.13
5	17	291	56	23	40	232.49	7.8	6.3	0.28
ŏ	18	292	54	24	40	232.49	7.8	6.3	0.05
0	19	293	55	39	40	232.49	7.8	6.3	0.28
	20	294	55	29	40	232.49	7.8	6.3	0
	21	295	54	26	40	232.49	7.8	6.3	0
	22	296	58	28	40	232.49	7.8	6.3	0
	23	297	56	33	40	232.49	7.8	6.3	0
	24	298	56	34	40	232.49	7.8	6.3	0
	25	299	60	38	40	232.49	7.8	6.3	0
	26	300	57	35	40	232.49	7.8	6.3	0
	27	301	51	31	40	232.49	7.8	6.3	0
	28	302	64	34	40	232.49	7.8	6.3	0
	29	303	65	38	40	232.49	7.8	6.3	0
	30	304	50	38	40	232.49	7.8	6.3	0.02
	31	305	44	28	40	232.49	7.8	6.3	0
	1	306	49	25	36	118.39	7.7	8.1	0
	2	307	50	26	36	118.39	7.7	8.1	0
	3	308	44	28	36	118.39	7.7	8.1	0
	4	309	57	41	36	118.39	7.7	8.1	0
	5	310	52	37	36	118.39	7.7	8.1	0
	6	311	52	38	36	118.39	7.7	8.1	0
	7	312	57	32	36	118.39	7.7	8.1	0
	8	313	53	36	36	118.39	7.7	8.1	0
	9	314	65	29	36	118.39	7.7	8.1	0
	10	315	65	29	36	118.39	7.7	8.1	0.06
	11	316	41	33	36	118.39	7.7	8.1	0.02
<u>L</u>	12	317	52	28	36	118.39	7.7	8.1	0
Q	13	318	56	30	36	118.39	7.7	8.1	0.07
	14	319	59	42	36	118.39	7.7	8.1	0
2	15	320	48	32	36	118.39	7.7	8.1	0.02
Û	16	321	48	32	36	118.39	7.7	8.1	0.14
2	17	322	45	32	36	118.39	7.7	8.1	0.37
O	18	323	48	32	36	118.39	7.7	8.1	0.15
	19	324	45	31	36	118.39	7.7	8.1	0.53
	20	325	40	32	36	118.39	7.7	8.1	0.07
	21	326	48	24	36	118.39	7.7	8.1	0

	22	327	48	31	36	118.39	7.7	8.1	0
·	23	328	34	28	36	118.39	7.7	8.1	0.02
	24	329	28	25	36	118.39	7.7	8.1	0
	25	330	30	23	36	118.39	7.7	8.1	0
	26	331	33	23	36	118.39	7.7	8.1	0
	27	332	46	30	36	118.39	7.7	8.1	0.07
	28	333	46	30	36	118.39	7.7	8.1	0
	29	334	45	29	36	118.39	7.7	8.1	0.29
	30	335	47	29	36	118.39	7.7	8.1	0.1
lande for and an and a failed of the fail	1	336	54	38	30	92.02	7.6	8.4	0.04
	2	337	47	36	30	92.02	7.6	8.4	0.03
	. 3	338	46	34	30	92.02	7.6	8.4	0.13
	4	339	44	24	30	92.02	7.6	8.4	0.01
	5	340	49	33	30	92.02	7.6	8.4	0
	6	341	47	36	30	92.02	7.6	8.4	0
	7	342	48	31	30	92.02	7.6	8.4	0.63
	8	343	51	38	30	92.02	7.6	8.4	0.02
	9	344	46	36	30	92.02	7.6	8.4	0
	10	345	43	37	30	92.02	7.6	8.4	0.03
	11	346	50	32	30	92.02	7.6	8.4	0
	12	347	50	32	30	92.02	7.6	8.4	0
۵ آ	13	348	51	32	30	92.02	7.6	8.4	0
ă	14	349	49	32	30	92.02	7.6	8.4	0
5	15	350	48	29	30	92.02	7.6	8.4	0
	16	351	51	31	30	92.02	7.6	8.4	0
ö	17	352	42	19	30	92.02	7.6	8.4	0.04
õ	18	353	26	18	30	92.02	7.6	8.4	0
$\square$	19	354	26	22	30	92.02	7.6	8.4	0.02
	20	355	37	25	30	92.02	7.6	8.4	0.02
	21	356	32	27	30	92.02	7.6	8.4	0.02
	22	357	29	20	30	92.02	7.6	8.4	0
	23	358	29	23	30	92.02	7.6	8.4	0.17
	24	359	27	24	30	92.02	7.6	8.4	0
	25	360	27	24	30	92.02	7.6	8.4	0
	26	361	25	13	30	92.02	7.6	8.4	0.31
	27	362	16	13	30	92.02	7.6	8.4	0
	28	363	26	-2	30	92.02	7.6	8.4	0.1

29	364	13	1	30	92.02	7.6	8.4	0
30	365	41	13	30	92.02	7.6	8.4	0.01
 31	366	52	14	30	92.02	7.6	8.4	0

.

## Climate Data InputWhitman Mission 2008Project NameSudbury Landfill

Project Number

2009-094-21

Day (Month)	Day (Year)	Max. air temp (F)	Min. air temp (F)	Dew. pt temp (F)	Solar Radiation (langleys)	Avg wind speed (MPH)	Avg cloud cover (tenths)	Precipitation (in)
. 1	1	54	29	23	112.95	8	8.3	0
2	2	40	30	23	112.95	8	8.3	0
3	3	62	30	23	112.95	8	8.3	0
4	4	56	36	23	112.95	8	8.3	0
5	5	41	30	23	112.95	8	8.3	0
6	6	36	27	23	112.95	8	8.3	0.02
7	7	31	27	23	112.95	8	8.3	0.03
8	8	46	30	23	112.95	8	8.3	0
, 9	9	38	32	23	112.95	8	8.3	0.02
10	10	43	32	23	112.95	8	8.3	0.01
11	11	52	31	23	112.95	8	8.3	0.01
12	12	60	27	23	112.95	8	8.3	0
13	13	42	26	23	112.95	8	8.3	0.11
14	14	58	27	23	112.95	8	8.3	0.01
15	15	62	44	23	112.95	8	8.3	0.05
16	16	60	46	23	112.95	8	8.3	0
17	17	46	31	23	112.95	8	8.3	0
18	18	41	20	23	112.95	8	8.3	0
19	19	36	21	23	112.95	8	8.3	0
20	20	40	28	23	112.95	8	8.3	0.09
21	21	47	33	23	112.95	8	8.3	0.08
22	22	41	28	23	112.95	8	8.3	0
23	23	42	29	23	112.95	8	8.3	0
24	24	44	26	23	112.95	8	8.3	0
25	25	42	25	23	112.95	8	8.3	0
26	26	37	20	23	112.95	8	8.3	0
27	27	26	18	23	112.95	8	8.3	0.09
28	28	30	18	23	112.95	8	8.3	1.04
29	29	35	10	23	112.95	8	8.3	0
30	30	15	-7	23	112.95	8	8.3	0

.

January

	31	31	-2	-22	23	112.95	8	8.3	0
	1	32	-4	-21	29	176.01	8	7.9	0.09
	2	33	-2	-20	29	176.01	8	7.9	0
	3	34	-2	-21	29	176.01	8	7.9	0.15
	4	35	6	-13	29	176.01	8	7.9	0.12
	5	36	18	1	29	176.01	8	7.9	0
	6	37	49	18	29	176.01	8	7.9	0.08
	7	38	57	37	29	176.01	8	7.9	0
	8	39	61	45	29	176.01	8	7.9	0
	9	40	66	48	29	176.01	8	7.9	0
	10	41	54	24	29	176.01	8	7.9	0
	11	42	42	24	29	176.01	8	7.9	0
>	12	43	45	25	29	176.01	8	7.9	0
	13	44	48	26	29	176.01	8	7.9	0
	14	45	48	25	29	176.01	8	7.9	0
2	15	46	51	26	29	176.01	8	7.9	0
<u>_</u>	16	47	51	26	29	176.01	8	7.9	0.03
.O	17	48	54	26	29	176.01	8	7.9	0
and some	18	49	54	39	29	176.01	8	7.9	0
	19	50	62	44	29	176.01	8	7.9	0
	20	51	57	38	29	176.01	8	7.9	0
	21	52	63	37	29	176.01	8	7.9	0
	22	53	51	33	29	176.01	8	7.9	0
	23	54	49	35	29	176.01	8	7.9	0
	24	55	44	30	29	176.01	8	7.9	0.02
	25	56	41	32	29	176.01	8	7.9	0.05
	26	57	35	14	29	176.01	8	7.9	0
	27	58	35	15	29	176.01	8	7.9	0
	28	59	36	19	29	176.01	8	7.9	0.01
	29	60	43	19	29	176.01	8	7.9	0
	1	61	41	22	32	279.21	9.8	7.3	0.08
	2	62	50	24	32	279.21	9.8	7.3	0
	3	63	61	25	32	279.21	9.8	7.3	0
	4	64	62	40	32	279.21	9.8	7.3	0.02
	5	65	49	32	32	279.21	9.8	7.3	0
	6	66	38	32	32	279.21	9.8	7.3	0
	7	67	57	35	32	279.21	9.8	7.3	0

	8	68	47	35	32	279.21	9.8	7.3	0.08
	9	69	45	39	32	279.21	9.8	7.3	0
	10	70	52	39	32	279.21	9.8	7.3	0
	11	71	59	42	32	279.21	9.8	7.3	0.15
	12	72	68	47	32	279.21	9.8	7.3	0
	13	73	59	34	32	279.21	9.8	7.3	0.15
C	14	74	58	34	32	279.21	9.8	7.3	0.29
U	15	75	65	37	32	279.21	9.8	7.3	0.17
<u> </u>	16	76	60	31	32	279.21	9.8	7.3	0.05
	17	77	57	32	32	279.21	9.8	7.3	0.02
$\geq$	18	78	60	27	32	279.21	9.8	7.3	0
	19	79	65	32	32	279.21	9.8	7.3	0.04
	20	80	62	33	32	279.21	9.8	7.3	0.04
	21	81	58	27	32	279.21	9.8	7.3	0
	22	82	55	32	32	279.21	9.8	7.3	0
	23	83	58	34	32	279.21	9.8	7.3	0
	24	84	58	31	32	279.21	9.8	7.3	0.01
	25	85	38	19	32	279.21	9.8	7.3	0
	26	86	45	23	32	279.21	9.8	7.3	0
	27	87	50	33	32	279.21	9.8	7.3	0.03
	28	88	54	33	32	279.21	9.8	7.3	0
	29	89	53	33	32	279.21	9.8	7.3	0.05
	30	90	56	36	32	279.21	9.8	7.3	0.1
	31	91	57	37	32	279.21	9.8	7.3	0.11
	1	92	47	42	35	398.18	9.1	7.1	0
	2	93	60	43	35	398.18	9.1	7.1	0
	3	94	60	29	35	398.18	9.1	7.1	0
	4	95	59	31	35	398.18	9.1	7.1	• 0
	5	96	67	31	35	398.18	9.1	7.1	0.03
	. 6	97	73	39	35	398.18	9.1	7.1	0.03
	7	98	77	45	35	398.18	9.1	7.1	0
	8	99	81	46	35	398.18	9.1	7.1	0.01
	· 9	100	82	48	35	398.18	9.1	7.1	0.02
	10	101	75	47	35	398.18	9.1	7.1	0
	11	102	65	47	35	398.18	9.1	7.1	0
	12	103	65	42	35	398.18	9.1	7.1	0
,	13	104	59	42	35	398.18	9.1	7.1	0

R. Solicional and a	14	105	63	32	35	398.18	9.1	7.1	0.07
	15	106	74	34	35	398.18	9.1	7.1	0.16
Q	16	107	73	48	35	398.18	9.1	7.1	0
$\triangleleft$	17	108	70	39	35	398.18	9.1	7.1	0
	18	109	63	42	35	398.18	9.1	7.1	0
	19	110	61	33	35	398.18	9.1	7.1	0
	20	111	60	35	35	398.18	9.1	7.1	0
	21	112	61	31	35	398.18	9.1	7.1	0
	22	113	65	36	35	398.18	9.1	7.1	0.01
	23	114	61	40	35	398.18	9.1	7.1	0.02
	24	115	66	47	35	398.18	9.1	7.1	0.11
	25	116	62	44	35	398.18	9.1	7.1	
	26	117	62	39	35	398.18	9.1	7.1	0
	27	118	62	39	35	398.18	9.1	7.1	0
	28	119	63	31	35	398.18	9.1	7.1	0
	29	120	69	38	35	398.18	9.1	7.1	0.04
	30	121	70	44	35	398.18	9.1	7.1	0.01
	1	122	67	45	42	497.37	9.1	6.6	0
	2	123	64	40	42	497.37	9.1	6.6	0
	3	124	60	41	42	497.37	9.1	6.6	0
	4	125	59	40	42	497.37	9.1	6.6	0.13
	5	126	62	29	42	497.37	9.1	6.6	0
	6	127	65	33	42	497.37	9.1	6.6	0
	7	128	69	43	42	497.37	9.1	6.6	0.03
	8	129	63	31	42	497.37	9.1	6.6	0
	9	130	61	29	42	497.37	9.1	6.6	0
	10	131	64	33	42	497.37	9.1	6.6	0
	11	132	68	46	42	497.37	9.1	6.6	0.1
	12	133	71	49	42	497.37	9.1	6.6	0.01
	13	134	70	51	42	497.37	9.1	6.6	0
	14	135	72	54	42	497.37	9.1	6.6	0.26
$\sim$	15	136	72	55	42	497.37	9.1	6.6	0.02
$\overline{\mathbf{O}}$	16	137	71	52	42	497.37	9.1	6.6	0
$\geq$	17	138	71	53	42	497.37	9.1	6.6	0
	18	139	71	46	42	497.37	9.1	6.6	0
	19	140	71	46	42	497.37	9.1	6.6	0
	20	141	66	44	42	497.37	9.1	6.6	0

	21	142	67	42	42	497.37	9.1	6.6	0.32
	22	143	60	48	42	497.37	9.1	6.6	0.02
	23	144	61	38	42	497.37	9.1	6.6	0.19
	24	145	65	38	42	497.37	9.1	6.6	0
	25	146	74	40	42	497.37	9.1	6.6	0.1
	26	147	79	45	42	497.37	9.1	6.6	0.04
	27	148	78	49	42	497.37	9.1	6.6	0
	28	149	72	46	42	497.37	9.1	6.6	0
	29	150	66	44	42	497.37	9.1	6.6	0.04
	30	151	68	39	42	497.37	9.1	6.6	0
	31	152	69	44	42	497.37	9.1	6.6	0
	1	153	74	44	47	562.44	9.3	6.1	0.06
	2	154	80	57	47	562.44	9.3	6.1	0
	3	155	87	55	47	562.44	9.3	6.1	0
	4	156	86	60	47	562.44	9.3	6.1	0.22
	5	157	77	43	47	562.44	9.3	6.1	0
	6	158	78	40	47	562.44	9.3	6.1	0.05
	7	159	88	49	47	562.44	9.3	6.1	0.01
	8	160	91	57	47	562.44	9.3	6.1	0
	9	161	85	49	47	562.44	9.3	6.1	0.01
	10	162	74	42	47	562.44	9.3	6.1	0
	11	163	78	51	47	562.44	9.3	6.1	0.26
	12	164	76	40	47	562.44	9.3	6.1	0
	13	165	82	42	47	562.44	9.3	6.1	0
(1)	14	166	85	49	47	562.44	9.3	6.1	· 0
Č	15	167	83	47	47	562.44	9.3	6.1	0
3	16	168	84	42	47	562.44	9.3	6.1	0
	17	169	78	52	47	562.44	9.3	6.1	0
	18	170	66	42	47	562.44	9.3	6.1	0
	19	171	69	38	47	562.44	9.3	6.1	0
	20	172	79	37	47	562.44	9.3	6.1	0
	21	173	82	41	47	562.44	9.3	6.1	0
	22	174	82	51	47	562.44	9.3	6.1	0.13
	23	175	82	51	47	562.44	9.3	6.1	0
	24	176	71	47	47	562.44	9.3	6.1	0
	25	177	72	46	47	562.44	9.3	6.1	0
	26	178	76	50	47	562.44	9.3	6.1	0

.

	27	179	81	56	47	562.44	9.3	6.1	0
	28	180	73	51	47	562.44	9.3	6.1	0
	29	181	76	46	47	562.44	9.3	6.1	0
	30	182	81	47	47	562.44	9.3	6.1	0
	1	183	88	54	47	599.42	9.1	3.9	0
	2	184	93	54	47	599.42	9.1	3.9	0.37
	3	185	98	60	47	599.42	9.1	3.9	0
	4	186	91	64	47	599.42	9.1	3.9	0
	5	187	77	44	47	599.42	9.1	3.9	0
	6	188	77	39	47	599.42	9.1	3.9	0
	7	189	88	42	47	599.42	9.1	3.9	0
	8	190	94	47	47	599.42	9.1	3.9	0
	9	191	95	56	47	599.42	9.1	3.9	0
	10	192	90	48	47	599.42	9.1	3.9	0
	11	193	88	46	47	599.42	9.1	3.9	0
	12	194	94	46	47	599.42	9.1	3.9	0
	13	195	94	51	47	599.42	9.1	3.9	0
	14	196	101	52	47	599.42	9.1	3.9	0
>	15	197	98	60	47	599.42	9.1	3.9	0
	16	198	100	63	47	599.42	9.1	3.9	0
5	17	199	100	60	47	599.42	9.1	3.9	0
	18	200	82	52	47	599.42	9.1	3.9	0
	19	201	75	48	47	599.42	9.1	3.9	0
	20	202	77	48	47	599.42	9.1	3.9	0
	21	203	82	53	47	599.42	9.1	3.9	0
	22	204	88	49	47	599.42	9.1	3.9	0
	23	205	96	48	47	599.42	9.1	3.9	0.01
	24	206	102	50	47	599.42	9.1	3.9	0
	25	207	100	56	47	599.42	9.1	3.9	0
	26	208	100	47	47	599.42	9.1	3.9	0
	27	209	107	59	47	599.42	9.1	3.9	0
	28	210	101	60	47	599.42	9.1	3.9	0
	29	211	100	68	47	599.42	9.1	3.9	0
	30	212	92	59	47	599.42	9.1	3.9	0
	31	213	97	56	47	599.42	9.1	3.9	0
	1	214	93	52	48	511.7	8.8	4.2	0
	2	215	93	60	48	511.7	8.8	4.2	0

	3	216	79	46	48	511.7	8.8	4.2	0
	4	217	76	48	48	511.7	8.8	4.2	0
	5	218	81	59	48	511.7	8.8	4.2	0
	6	219	77	45	48	511.7	8.8	4.2	0
	7	220	84	43	48	511.7	8.8	4.2	0
	8	221	95	47	48	511.7	8.8	4.2	0
	9	222	100	51	48	511.7	8.8	4.2	0
	10	223	101	49	48	511.7	8.8	4.2	0
	11	224	104	55	48	511.7	8.8	4.2	0
	12	225	95	45	48	511.7	8.8	4.2	0
	13	226	88	47	48	511.7	8.8	4.2	0
ž	14	227	94	54	48	511.7	8.8	4.2	0
Š	15	228	98	56	48	511.7	8.8	4.2	0
ຄ	16	229	94	56	48	511.7	8.8	4.2	0
Š	17	230	92	48	48	511.7	8.8	4.2	0
$\triangleleft$	18	231	79	49	48	511.7	8.8	4.2	0
	19	232	79	42	48	511.7	8.8	4.2	0.14
	20	233	86	42	48	511.7	8.8	4.2	0.07
	21	234	80	40	48	511.7	8.8	4.2	0.1
	22	235	84	40	48	511.7	8.8	4.2	0.01
	23	236	92	42	48	511.7	8.8	4.2	0
	24	237	96	44	48	511.7	8.8	4.2	0
	25	238	96	48	48	511.7	8.8	4.2	0
	26	239	98	50	48	511.7	8.8	4.2	0.04
	27	240	89	55	48	511.7	8.8	4.2	0
	28	241	78	57	48	511.7	8.8	4.2	0
	29	242	83	48	48	511.7	8.8	4.2	0
	30	243	100	53	48	511.7	8.8	4.2	0
	31	244	86	49	48	511.7	8.8	4.2	0
	1	245	80	43	43	379.55	8.1	4.8	0
	2	246	79	42	43	379.55	8.1	4.8	0
	. 3	247	81	46	43	379.55	8.1	4.8	0
	4	248	82	50	43	379.55	8.1	4.8	0
	5	249	73	52	43	379.55	8.1	4.8	0
	6	250	73	48	43	379.55	8.1	4.8	0
	7	251	74	47	43	379.55	8.1	4.8	0
	8	252	82	50	43	379.55	8.1	4.8	0

	9	253	86	47	43	379.55	8.1	4.8	0
	10	254	85	41	43	379.55	8.1	4.8	0
	11	255	89	44	43	379.55	8.1	4.8	0
<u> </u>	12	256	89	47	43	379.55	8.1	4.8	0
ğ	13	257	82	54	43	379.55	8.1	4.8	0
2	14	258	80	56	43	379.55	8.1	4.8	0
	15	259	76	56	43	379.55	8.1	4.8	0
Q	16	260	70	48	43	379.55	8.1	4.8	0
Ó.	17	261	70	46	43	379.55	8.1	4.8	0
U .	18	262	70	41	43	379,55	8.1	4.8	0
S	19	263	71	43	43	379.55	8.1	4.8	0
	20	264	70	46	43	379.55	8.1	4.8	0
	21	265	70	41	43	379.55	8.1	4.8	0.18
	22	266	68	42	43	379.55	8.1	4.8	0
	23	267	65	27	43	379.55	8.1	4.8	0.01
	24	268	64	29	43	379.55	8.1	4.8	0
	25	269	64	29	43	379.55	8.1	4.8	0
	26	270	71	30	43	379.55	8.1	4.8	0
	27	271	73	41	43	379.55	8.1	4.8	0
	28	272	87	42	43	379.55	8.1	4.8	0
	29	273	90	48	43	379.55	8.1	4.8	0
	30	274	87	42	43	379.55	8.1	4.8	0
	1	275	83	35	40	232.49	7.8	6.3	0
	2	276	75	34	40	232.49	7.8	6.3	0
	3	277	69	37	40	232.49	7.8	6.3	0.06
	4	278	80	40	40	232.49	7.8	6.3	0.32
	5	279	78	41	40	232.49	7.8	6.3	0.05
	6	280	72	39	40	232.49	7.8	6.3	0
	7	281	75	38	40	232.49	7.8	6.3	0
	8	282	81	40	40	232.49	7.8	6.3	0
	9	283	79	38	40	232.49	7.8	6.3	0
	10	284	75	39	40	232.49	7.8	6.3	0.01
	11	285	79	52	40	232.49	7.8	6.3	0
	12	286	75	44	40	232.49	7.8	6.3	0
L.	13	287	74	47	40	232.49	7.8	6.3	0
Ð	14	288	61	45	40	232.49	7.8	6.3	0
Ō	15	289	62	43	40	232.49	7.8	6.3	0

0	16	200	60	27	40	000 40	70	6.0	0
ž	10	290	62 50	37	40	232.49	7.0	0.3	0
0	17	291	56	23	40	232.49	7.8	6.3	0
O	18	292	54	24	40	232.49	7.8	6.3	0.01
	19	293	55	39	40	232.49	7.8	6.3	0
	20	294	55	29	40	232.49	7.8	6.3	0
	21	295	54	26	40	232.49	7.8	6.3	0
	22	296	58	28	40	232.49	7.8	6.3	0
	23	297	56	33	40	232.49	7.8	6.3	0
	24	298	56	34	40	232.49	7.8	6.3	0
	25	299	60	38	40	232.49	7.8	6.3	0
	26	300	57	35	40	232.49	7.8	6.3	0
	27	301	51	31	40	232.49	7.8	6.3	0
	28	302	64	34	40	232.49	7.8	6.3	0
	29	303	65	38	40	232.49	7.8	6.3	0
	30	304	50	38	40	232.49	7.8	6.3	0
	31	305	44	28	40	232.49	7.8	6.3	0
	1	306	49	25	36	118.39	7.7	8.1	0.04
	2	307	50	26	36	118.39	7.7	8.1	0.08
	3	308	44	28	36	118.39	7.7	8.1	0.02
	4	309	57	41	36	118.39	7.7	8.1	0.19
	5	310	52	37	36	118.39	7.7	8.1	0.03
	6	311	52	38	36	118.39	7.7	8.1	0.03
	7	312	57	32	36	118.39	7.7	8.1	0.07
	8	313	53	36	36	118.39	7.7	8.1	0.02
	9	314	65	29	36	118.39	7.7	8.1	0.7
	10	315	65	29	36	118.39	7.7	8.1	0.02
	11	316	41	33	36	118.39	7.7	8.1	0.01
Summer	12	317	52	28	36	118.39	7.7	8.1	0.64
Û	13	318	56	30	36	118.39	7.7	8.1	0.1
	14	319	59	42	36	118.39	7.7	81	0
E	15	320	48	32	36	118 39	77	8.1	0 0
$\overline{0}$	16	321	48	32	36	118.39	77	8.1	0 0
>	17	322	45	32	36	118.39	77	8.1	0
0	18	323	48	32	36	118 39	7.7	8.1	0
Z	19	324	45	31	36	118 39	77	8.1	0
_	20	325	_,0 ⊿∩	32	36	118 30	77	8 1	0
	20	326	40	5Z 24	36	119.39	77	0.1	0 02
	21	520	40	24	30	110.39	1.1	0.1	0.03
	22	327	48	31	36	118.39	7.7	8.1	0.02
----------	----	-----	----	------	----	--------	-----	-----	------
	23	328	34	28	36	118.39	7.7	8.1	0
	24	329	28	25	36	118.39	7.7	8.1	0
	25	330	30	23	36	118.39	7.7	8.1	0
	26	331	33	23	36	118.39	7.7	8.1	0.02
	27	332	46	30	36	118.39	7.7	8.1	0
ι.	28	333	46	30	36	118.39	7.7	8.1	0.01
	29	334	45	29	36	118.39	7.7	8.1	0.07
	30	335	47	29	36	118.39	7.7	8.1	0.01
	1	336	54	38	30	92.02	7.6	8.4	0.04
	2	337	47	36	30	92.02	7.6	8.4	0.21
	3	338	46	34	30	92.02	7.6	8.4	0
	4	339	44	24	30	92.02	7.6	8.4	0
	5	340	49	33	30	92.02	7.6	8.4	0
	6	341	47	36	30	92.02	7.6	8.4	0
	7	342	48	31	30	92.02	7.6	8.4	0
	8	343	51	38	30	92.02	7.6	8.4	0.25
	9	344	46	36	30	92.02	7.6	8.4	0
	10	345	43	. 37	30	92.02	7.6	8.4	0
	11	346	50	32	30	92.02	7.6	8.4	0
L.	12	347	50	32	30	92.02	7.6	8.4	0
Ō	13	348	51	32	30	92.02	7.6	8.4	0.05
ă	14	349	49	32	30	92.02	7.6	8.4	0.34
<b>Ç</b>	15	350	48	29	30	92.02	7.6	8.4	0.12
ັດ	16	351	51	31	30	92.02	7.6	8.4	0.06
Ŭ	17	352	42	19	30	92.02	7.6	8.4	0
Ŭ	18	353	26	18	30	92.02	7.6	8.4	0.13
	19	354	26	22	30	92.02	7.6	8.4	0.55
	20	355	37	25	30	92.02	7.6	8.4	0
	21	356	32	27	30	92.02	7.6	8.4	0.31
	22	357	29	20	30	92.02	7.6	8.4	0.36
	23	358	29	23	30	92.02	7.6	8.4	0
	24	359	27	24	30	92.02	7.6	8.4	0
	25	360	27	24	30	92.02	7.6	8.4	0
	26	361	25	13	30	92.02	7.6	8.4	0.13
	27	362	16	13	30	92.02	7.6	8.4	0.2
	28	363	26	-2	30	92.02	7.6	8.4	0.03

29	364	13	1	30	92.02	7.6	8.4	0.46
30	365	41	13	30	92.02	7.6	8.4	0.08
31	366	52	14	30	92.02	7.6	8.4	0

ACAM

.

## Climate Data Input

<u>Project Name</u> Project Number

Sudbury Landfill 2009-094-21

#### 1996 Whitman Mission

Day (Month)	Day (Year)	Max. air temp (F)	Min. air temp (F)	Dew. pt temp (F)	Solar Radiation (langleys)	Avg wind speed (MPH)	Avg cloud cover (tenths)	Precipitation (in)
1	1	54	29	23	112.95	8	8.3	0
2	2	40	30	23	112.95	8	8.3	0
3	3	62	30	23	112.95	8	8.3	0
4	4	56	36	23	112.95	8	8.3	0
5	5	41	30	23	112.95	8	8.3	0
6	6	36	27	23	112.95	8	8.3	0.1
7	7	31	27	23	112.95	8	8.3	0
8	8	46	30	23	112.95	8	8.3	0.47
9	9	38	32	23	112.95	8	8.3	0.02
10	10	43	32	23	112.95	8	8.3	0.22
11	11	52	31	23	112.95	8	8.3	0
12	12	60	27	23	112.95	8	8.3	0
13	13	42	26	23	112.95	8	8.3	0
14	14	58	27	23	112.95	8	8.3	0
15	15	62	44	23	112.95	8	8.3	0.1
16	16	60	46	23	112.95	8	8.3	0.01
17	17	46	31	23	112.95	8	8.3	0.14
18	18	41	20	23	112.95	8	8.3	0
19	19	36	21	23	112.95	8	8.3	0.11
20	20	40	28	23	112.95	8	8.3	0.3
21	21	47	33	23	112.95	8	8.3	0.04
22	22	41	28	23	112.95	8	8.3	0
23	23	42	29	23	112.95	8	8.3	0
24	24	44	26	23	112.95	8	8.3	0.5
25	25	42	25	23	112.95	8	8.3	0.07
26	26	37	20	23	112.95	8	8.3	0
27	27	26	18	23	112.95	8	8.3	0.01
28	28	30	18	23	112.95	8	8.3	0.52
29	29	35	10	23	112.95	8	8.3	0.05
30	30	15	-7	23	112.95	8	8.3	0.06

HWA Project No. 2009-094

HWA GeoSciences Inc.

. .

	31	31	-2	-22	23	112.95	8	8.3	0
	1	32	-4	-21	29	176.01	8	7.9	0
	2	33	-2	-20	29	176.01	8	7.9	0
	3	34	-2	-21	29	176.01	8	7.9	0
	4	35	6	-13	29	176.01	8	7.9	0.17
	5	36	18	1	29	176.01	8	7.9	0
	6	37	49	18	29	176.01	8	7.9	0.18
	7	38	57	37	29	176.01	8	7.9	0.22
	8	39	61	45	29	176.01	8	7.9	0.5
	9	40	66	48	29	176.01	8	7.9	0.12
	10	41	54	24	29	176.01	8	7.9	0
	11	42	42	24	29	176.01	8	7.9	0
>	12	43	45	25	29	176.01	8	7.9	0
	13	44	48	26	29	176.01	8	7.9	0
	14	45	48	25	29	176.01	8	7.9	0
	15	46	51	26	29	176.01	8	7.9	0
Ω	16	47	51	26	29	176.01	8	7.9	0
Ū	17	48	54	26	29	176.01	8	7.9	0.05
	18	49	54	39	29	176.01	8	7.9	0.1
	19	50	62	44	29	176.01	8	7.9	0.12
	20	51	57	38	29	176.01	8	7.9	0.03
	21	52	63	37	29	176.01	8	7.9	0.27
	22	53	51	33	29	176.01	8	7.9	0.18
	23	54	49	35	29	176.01	8	7.9	0.18
	24	55	44	30	29	176.01	8	7.9	0
	25	56	41	32	29	176.01	8	7.9	0.04
	26	57	35	14	29	176.01	8	7.9	0.23
	27	58	35	15	29	176.01	8	7.9	0
	28	59	36	19	29	176.01	8	7.9	0
	29	60	43	19	29	176.01	8	7.9	0
	1	61	41	22	32	279.21	9.8	7.3	0
	2	62	50	24	32	279.21	9.8	7.3	0
	3	63	61	25	32	279.21	9.8	7.3	0.06
	4	64	62	40	32	279.21	9.8	7.3	0.03
	5	65	49	32	32	279.21	9.8	7.3	0.19
	6	66	38	32	32	279.21	9.8	7.3	0
	7	67	57	35	32	279.21	9.8	7.3	0

	8	68	47	35	32	279.21	9.8	7.3	0.21
	9	69	45	39	32	279.21	9.8	7.3	0
	10 -	70	52	39	32	279.21	9.8	7.3	0
	11	71	59	42	32	279.21	9.8	7.3	0.04
	12	72	68	47	32	279.21	. 9.8	7.3	0.16
	13	73	59	34	32	279.21	9.8	7.3	0
	14	74	58	34	32	279.21	9.8	7.3	0
5	15	75	65	37	32	279.21	9.8	7.3	0
	16	76	60	31	32	279.21	9.8	7.3	0
	17	77	57	32	32	279.21	9.8	7.3	0
2	18	78	60	27	32	279.21	9.8	7.3	0
	19	79	65	32	32	279.21	9.8	7.3	0
	20	80	62	33	32	279.21	9.8	7.3	0
	21	81	58	27	32	279.21	9.8	7.3	0
	22	82	55	32	32	279.21	9.8	7.3	0.12
	23	83	58	34	32	279.21	9.8	7.3	0
	24	84	58	31	32	279.21	9.8	7.3	0.07
	25	85	38	19	32	279.21	9.8	7.3	0
	26	86	45	23	32	279.21	9.8	7.3	0
	27	87	50	33	32	279.21	9.8	7.3	· 0
	28	88	54	33	32	279.21	9.8	7.3	0
	29	89	53	33	32	279.21	9.8	7.3	0
	30	90	56	36	32	279.21	9.8	7.3	· 0
	31	91	57	37	32	279.21	9.8	7.3	0.02
	1	92	47	42	35	398.18	9.1	7.1	0.54
	2	93	60	43	35	398.18	9.1	7.1	0.03
	3	94	60	29	35	398.18	9.1	7.1	0
	4	95	59	31	35	398.18	9.1	7.1	0
	5	96	67	31	35	398.18	9.1	7.1	0
	6	97	73	39	35	398.18	9.1	7.1	0
	7	98	77	45	35	398.18	9.1	7.1	0
	8.	99	81	46	35	398.18	9.1	7.1	0
	9	100	82	48	35	398.18	9.1	7.1	0
	10	101	75	47	35	398.18	9.1	7.1	0.05
	11	102	65	47	35 -	398.18	9.1	7.1	0.03
	12	· 103	65	42	35	398.18	9.1	7.1	0.26
	13	104	59	42	35	398.18	9.1	7.1	0

Mathick serve	14	105	63	32	35	398.18	9.1	7.1	0
	15	106	74	34	35	398.18	9.1	7.1	0
0	16	107	73	48	35	398.18	9.1	7.1	0.06
$\triangleleft$	17	108	70	39	35	398.18	9.1	7.1	0.12
	18	109	63	42	35	398.18	9.1	7.1	0.23
	19	110	61	33	35	398.18	9.1	7.1	0
	20	111	60	35	35	398.18	9.1	7.1	0.29
	21	112	61	31	35	398.18	9.1	7.1	0
	22	113	65	36	35	398.18	9.1	7.1	0
	23	114	61	40	35	398.18	9.1	7.1	0.18
	24	115	66	47	35	398.18	9.1	7.1	0.63
	25	116	62	44	35	398.18	9.1	7.1	0
	26	117	62	39	35	398.18	9.1	7.1	0.03
	27	118	62	39	35	398.18	9.1	7.1	0
	28	119	63	31	35	398.18	9.1	7.1	0
	29	120	69	38	35	398.18	9.1	7.1	0
	30	121	70	44	35	398.18	9.1	7.1	0
	1	122	67	45	42	497.37	9.1	6.6	0
	2	123	64	40	42	497.37	9.1	6.6	0
	3	124	60	41	42	497.37	9.1	6.6	0
	4	125	59	40	42	497.37	9.1	6.6	0
	5	126	62	29	42	497.37	9.1	6.6	0
	6	127	65	33	42	497.37	9.1	6.6	0
	7	128	69	43	42	497.37	9.1	6.6	0
	8	129	63	31	42	497.37	9.1	6.6	0
	9	130	61	29	42	497.37	9.1	6.6	0
	10	131	64	33	42	497.37	9.1	6.6	0
	11	132	68	46	42	497.37	9.1	6.6	0
	12	133	71	49	42	497.37	9.1	6.6	0
	13	134	70	51	42	497.37	9.1	6.6	0
	14	135	72	54	42	497.37	9.1	6.6	0.44
$\geq$	15	136	72	55	42	497.37	9.1	6.6	0.24
	16	137	71	52	42	497.37	9.1	6.6	0.12
$\geq$	17	138	71	53	42	497.37	9.1	6.6	0.07
	18	139	71	46	42	497.37	9.1	6.6	0.38
	19	140	71	46	42	497.37	9.1	6.6	0.2
	20	141	66	44	42	497.37	9.1	6.6	0

	21	142	67	42	42	497.37	9.1	6.6	0
	22	143	60	48	42	497.37	9.1	6.6	0.34
	23	144	61	38	42	497.37	9.1	6.6	0.01
	24	145	65	38	42	497.37	9.1	6.6	0
	25	146	74	40	42	497.37	9.1	6.6	0
	26	147	79	45	42	497.37	9.1	6.6	0
	27	148	78	49	42	497.37	9.1	6.6	0
	28	149	72	46	42	497.37	9.1	6.6	0
	29	150	66	44	42	497.37	9.1	6.6	0
	30	151	68	39	42	497.37	9.1	6.6	0.01
	31	152	69	44	42	497.37	9.1	6.6	0
	1	153	74	44	47	562.44	9.3	6.1	0
	2	154	80	57	47	562.44	9.3	6.1	0
	3	155	87	55	47	562.44	9.3	6.1	0
	4	156	86	60	47	562.44	9.3	6.1	0
	5	157	77	43	47	562.44	9.3	6.1	0
	6	158	78	40	47	562.44	9.3	6.1	0
	7	159	88	49	47	562.44	9.3	6.1	0
	8	160	91	57	47	562.44	9.3	6.1	0
	9	161	85	49	47	562.44	9.3	6.1	0
	10	162	74	42	47	562.44	9.3	6.1	0
	11	163	78	51	47	562.44	9.3	6.1	0
	12	164	76	40	47	562.44	9.3	6.1	0
	13	165	82	42	47	562.44	9.3	6.1	0
(D	14	166	85	49	47	562.44	9.3	6.1	· 0
Ě	15	167	83	47	47	562.44	9.3	6.1	0
	16	168	84	42	47	562.44	9.3	6.1	0
	17	169	78	52	47	562.44	9.3	6.1	0
	18	170	66	42	47	562.44	9.3	6.1	0
	19	171	69	38	47	562.44	9.3	6.1	0
	20	172	79	37	47	562.44	9.3	6.1	0
	21	173	82	41	47	562.44	9.3	6.1	0
	22	174	82	51	47	562.44	9.3	6.1	0
	23	175	82	51	47	562.44	9.3	6.1	0
	24	176	71	47	47	562.44	9.3	6.1	0.14
	25	177	72	46	47	562.44	9.3	6.1	0
	26	178	76	50	47	562.44	9.3	6.1	0

,

	27	179	81	56	47	562.44	9.3	6.1	0.62
	28	180	73	51	47	562.44	9.3	6.1	0.27
	29	181	76	46	47	562.44	9.3	6.1	0
	30	182	81	47	47	562.44	9.3	6.1	0
	1	183	88	54	47	599.42	9.1	3.9	0
	2	184	93	54	47	599.42	9.1	3.9	0
	3	185	98	60	47	599.42	9.1	3.9	0
	4	186	91	64	47	599.42	9.1	3.9	0
	5	187	77	44	47	599.42	9.1	3.9	0
	6	188	77	39	47	599.42	9.1	3.9	0
	7	189	88	42	47	599.42	9.1	3.9	0
	8	190	94	47	47	599.42	9.1	3.9	0
	9	191	95	56	47	599.42	9.1	3.9	0
	10	192	90	48	47	599.42	9.1	3.9	0
	11	193	88	46	47	599.42	9.1	3.9	0
	12	194	94	46	47	599.42	9.1	3.9	0
	13	195	94	51	47	599.42	9.1	3.9	0
	14	196	101	52	47	599.42	9.1	3.9	0
>	15	197	98	60	47	599.42	9.1	. 3.9	0
	16	198	100	63	47	599.42	9.1	3.9	0
5	17	199	100	60	47	599.42	9.1	3.9	0
	18	200	82	52	47	599.42	9.1	3.9	0.01
	19	201	75	48	47	599.42	9.1	3.9	0
	20	202	77	48	47	599.42	9.1	3.9	0
	21	203	82	53	47	599.42	9.1	3.9	0
	22	204	88	49	47	599.42	9.1	3.9	0
	23	205	96	48	47	599.42	9.1	3.9	0
	24	206	102	50	47	599.42	9.1	3.9	0
	25	207	100	56	47	599.42	9.1	3.9	0
	26	208	100	47	47	599.42	9.1	3.9	0
	27	209	107	59	47	599.42	9.1	3.9	0
	28	210	101	60	47	599.42	9.1	3.9	0
	29	211	100	68	47	599.42	9.1	3.9	0
	30	212	92	59	47	599.42	9.1	3.9	0
	31	213	97	56	47	599.42	9.1	3.9	0
	1	214	93	52	48	511.7	8,8	4.2	0
	2	215	93	60	48	511.7	8.8	4.2	0

	3	216	79	46	48	511.7	8.8	4.2	0.05
	4	217	76	48	48	511.7	8.8	4.2	· 0
	5	218	81	59	48	511.7	8.8	4.2	0
	6	219	77	45	48	511.7	8.8	4.2	0
	7	220	84	43	48	511.7	8.8	4.2	0
	8	221	95	47	48	511.7	8.8	4.2	0
	9	222	100	51	48	511.7	8.8	4.2	0
	10	223	101	49	48	511.7	8.8	4.2	0
	11	224	104	55	48	511.7	8.8	4.2	0
	12	225	95	45	48	511.7	8.8	4.2	0
	13	226	88	47	48	511.7	8.8	4.2	0
ζ,	14	227	94	54	48	511.7	8.8	4.2	0
Š	15	228	98	56	48	511.7	8.8	4.2	0
ັດ	16	229	94	56	48	511.7	8.8	4.2	0
$\square$	17	230	92	48	48	511.7	8.8	4.2	0
$\triangleleft$	18	231	79	49	48	511.7	8.8	4.2	0
	19	232	79	42	48	511.7	8.8	4.2	0
	20	233	86	42	48	511.7	8.8	4.2	0
	21	234	80	40	48	511.7	8.8	4.2	0
	22	235	84	40	48	511.7	8.8	4.2	0
	23	236	92	42	48	511.7	8.8	4.2	0
	24	237	96	44	48	511.7	8.8	4.2	0
	25	238	96	48	48	511.7	8.8	4.2	0
	26	239	98	50	48	511.7	8.8	4.2	0
	27	240	89	55	48	511.7	8.8	4.2	0
	28	241	78	57	48	511.7	8.8	4.2	0
	29	242	83	48	48	511.7	8.8	4.2	0
	30	243	100	53	48	511.7	8.8	4.2	0
	 31	244	86	49	48	511.7	8.8	4.2	0
	1	245	80	43	43	379.55	8.1	4.8	0
	2	246	79	42	43	379.55	8.1	4.8	0
	3	247	81	46	43	379.55	8.1	4.8	0
	4	248	82	50	43	379.55	8.1	4.8	0
	5	249	73	52	43	379.55	8.1	4.8	0
	6	250	73	48	43	379.55	8.1	4.8	0
	7	251	74	47	43	379.55	8.1	4.8	0
	8	252	82	50	43	379.55	8.1	4.8	0

	9	253	86	47	43	379.55	8.1	4.8	0
	10	254	85	41	43	379.55	8.1	4.8	0
	11	255	89	44	43	379.55	8.1	4.8	0
	12	256	89	47	43	379.55	8.1	4.8	0
<u> </u>	13	257	82	54	43	379.55	8.1	4.8	0.05
2	14	258	80	56	43	379.55	8.1	4.8	0.09
	15	259	76	56	43	379.55	8.1	4.8	0.32
Q	16	260	70	48	43	379.55	8.1	4.8	0
Ō	17	261	70	46	43	379.55	8.1	4.8	0
Φ	18	262	70	41	43	379.55	8.1	4.8	0
S	19	263	71	43	43	379.55	8.1	4.8	0.15
	20	264	70	46	43	379.55	8.1	4.8	0.03
	21	265	70	41	43	379.55	8.1	4.8	0
	22	266	68	42	43	379.55	8.1	4.8	. 0
	23	267	65	27	43	379.55	8.1	4.8	0
	24	268	64	29	43	379.55	8.1	4.8	0
	25	269	64	29	43	379.55	8.1	4.8	0
	26	270	71	30	43	379.55	8.1	4.8	0
	27	271	73	41	43	379.55	8.1	4.8	0
	28	272	87	42	43	379.55	8.1	4.8	0
	29	273	90	48	43	379.55	8.1	4.8	0
	30	274	87	42	43	379.55	8.1	4.8	0
	1	275	83	35	40	232.49	7.8	6.3	0
	2	276	75	34	40	232.49	7.8	6.3	0
	3	277	69	37	40	232.49	7.8	6.3	0
	4	278	80	40	40	232.49	7.8	6.3	0
	5	279	78	41	40	232.49	7.8	6.3	0.05
	6	280	72	39	40	232.49	7.8	6.3	0
	7	281	75	38	40	232.49	7.8	6.3	0
	8	282	81	40	40	232.49	7.8	6.3	0
	9	283	79	38	40	232.49	7.8	6.3	0
	10	284	75	39	40	232.49	7.8	6.3	0
	11	285	79	52	40	232.49	7.8	6.3	0
	12	286	75	44	40	232.49	7.8	6.3	0
S	13	287	74	47	40	232.49	7.8	6.3	0.06
ā	14	288	61	45	40	232.49	7.8	6.3	0.06
ě	15	289	62	43	40	232.49	7.8	6.3	0.14

0	16	290	62	37	40	232.49	7.8	6.3	0
- C	17	291	56	23	40	232.49	7.8	6.3	0
õ	18	292	54	24	40	232.49	7.8	6.3	0.42
0	19	293	55	39	40	232.49	7.8	6.3	0.11
	20	294	55	29	40	232.49	7.8	6.3	0
	21	295	54	26	40	232.49	7.8	6.3	0
	22	296	58	28	40	232.49	7.8	6.3	0.06
	23	297	56	33	40	232.49	7.8	6.3	0.12
	24	298	56	34	40	232.49	7.8	6.3	0.49
	25	299	60	38	40	232.49	7.8	6.3	0.07
	26	300	57	35	40	232.49	7.8	6.3	0
	27	301	51	31	40	232.49	7.8	6.3	0
	28	302	64	34	40	232.49	7.8	6.3	0
	29	303	65	38	40	232.49	7.8	6.3	0.27
	30	304	50	38	40	232.49	7.8	6.3	0.07
	31	305	44	28	40	232.49	7.8	6.3	0
	1	306	49	25	36	118.39	7.7	8.1	0
	2	307	50	26	36	118.39	7.7	8.1	0
	3.	308	44	28	36	118.39	7.7	8.1	0
	4	309	57	41	36	118.39	7.7	8.1	0.03
	5	310	52	37	36	118.39	7.7	8.1	0
	6	311	52	38	36	118.39	7.7	8.1	0.02
	7	312	57	32	36	118.39	7.7	8.1	0.01
	8	313	53	36	36	118.39	7.7	8.1	0
	9	314	65	29	36	118.39	7.7	8.1	0
	10	315	65	29	36	118.39	7.7	8.1	0
	11	316	41	33	36	118.39	7.7	8.1	0.01
<b>S</b>	12	317	52	28	36	118.39	7.7	8.1	0
Q	13	318	56	30	36	118.39	7.7	8.1	0.13
2	14	319	59	42	36	118.39	7.7	8.1	0.05
	15	320	48	32	36	118.39	7.7	8.1	0
Û	16	321	48	32	36	118.39	7.7	8.1	0
>	17	322	45	32	36	118.39	7.7	8.1	0.04
	18	323	48	32	36	118.39	7.7	8.1	0.03
	19	324	45	31	36	118.39	7.7	8.1	1.9
	20	325	40	32	36	118.39	7.7	8.1	0.23
	21	326	48	24	36	118.39	7.7	8.1	0.03

	22	327	48	31	36	118.39	7.7	8.1	0.12
	23	328	34	28	36	118.39	7.7	8.1	0
	24	329	28	25	36	118.39	7.7	8.1	0.21
	25	330	30	23	36	118.39	7.7	8.1	0.02
	26	331	33	23	36	118.39	7.7	8.1	0
	27	332	46	30	36	118.39	7.7	8.1	0
	28	333	46	30	36	118.39	7.7	8.1	0
	29	334	45	29	36	118.39	7.7	8.1	0
	30	335	47	29	36	118.39	7.7	8.1	0
	1	336	54	. 38	30	92.02	7.6	8.4	0
	2	337	47	36	30	92.02	7.6	8.4	0
	3	338	46	34	30	92.02	7.6	8.4	0.09
	4	339	44	24	30	92.02	7.6	8.4	0
	5	340	49	33	30	92.02	7.6	8.4	0.09
	6	341	47	36	30	92.02	7.6	8.4	0
	7	342	48	31	30	92.02	7.6	8.4	0
	8	343	51	38	30	92.02	7.6	8.4	0.09
	9	344	46	36	30	92.02	7.6	8.4	0.26
	10	345	43	37	30	92.02	7.6	8.4	0.43
	11	346	50	32	30	92.02	7.6	8.4	0.08
L.	12	347	50	32	30	92.02	7.6	8.4	0.08
Ō	13	348	51	32	30	92.02	7.6	8.4	0.15
ă	14	349	49	32	30	92.02	7.6	8.4	0
<b>S</b> ama	15	350	48	29	30	92.02	7.6	8.4	0
<u>م</u>	16	351	51	31	30	92.02	7.6	8.4	0
Ŭ	17	352	42	19	30	92.02	7.6	8.4	0
Ŭ	18	353	26	18	30	92.02	7.6	8.4	0
$\square$	19	354	26	22	30	92.02	7.6	8.4	0
	20	355	37	25	30	92.02	7.6	8.4	0.06
	21	356	32	27	30	92.02	7.6	8.4	0.01
	22	357	29	20	30	92.02	7.6	8.4	0.01
	23	358	29	23	30	92.02	7.6	8.4	0.02
	24	359	27	24	30	92.02	7.6	8.4	0.03
	25	360	27	24	30	92.02	7.6	8.4	0
	26	361	25	13	30	92.02	7.6	8.4	0.85
	27	362	16	13	30	92.02	7.6	8.4	1
	28	363	26	-2	30	92.02	7.6	8.4	0

29	364	13	1	30	92.02	7.6	8.4	0.46
30	365	41	13	30	92.02	7.6	8.4	0
 31	366	52	14	30	92.02	7.6	8.4	0.34
			and the second					A CONTRACTOR OF

# APPENDIX D

# WinUnsat-H

Simulation Output

#### ACAP DESIGN SUCTION HEAD INPUT

#### 2006-1.45 (Used in 2007 simulation) Head Valuse at end of 2006

#### 2007-1.45 (Used 2008 Simulation) Head values at end of 2007

Day=365	1	0	354.56	Day=365	1	0	203.3
Day=365	2	0	354.47	Day=365	2	0	203.2
Day=365	3	0	354.38	Day=365	3	0	203.11
Dav=365	4	0	354.31	Day=365	4	0	203.03
Day=365	5	0	354.24	Day=365	5	0	202.96
Day=365	6	0	354.18	Day=365	6	0	202.89
Dav=365	7	0	354.14	Day=365	7	0	202.83
Day=365	8	0	354.1	Day=365	8	0	202.77
Day=365	9	0	354.06	Day=365	9	0	202.68
Dav=365	10	1	354.06	Day=365	10	1	202.65
Dav=365	11	2	354.56	Day=365	11	2	202.68
Dav=365	12	3	356.06	Day=365	12	3	203.41
Dav=365	13	4	358.6	Day=365	13	4	204.84
Dav=365	14	5	362.2	Day=365	14	5	206.99
Dav=365	15	6	366.92	Day=365	15	6	209.89
Dav=365	16	7	372.81	Dav=365	16	7	213.56
Dav=365	17	8	379.95	Dav=365	17	8	218.05
Dav=365	18	9	388,44	Dav=365	18	9	223,41
Dav=365	19	10	398.4	Dav=365	19	10	229.71
Dav=365	20	11	409.97	Dav=365	20	11	237.01
Dav=365	21	12	423.32	Dav=365	21	12	245.41
Dav=365	22	13	438.64	Dav=365	22	13	255
Dav=365	23	14	456.19	Dav=365	23	14	265.91
Dav=365	24	15	476.25	Dav=365	24	15	278.26
Dav=365	25	16	499.17	Dav=365	25	16	292.2
Dav=365	26	17	525.36	Dav=365	26	17	307.92
Dav=365	27	18	555 31	Dav=365	27	18	325.62
Dav=365	28	19	589.63	Dav=365	28	19	345.52
Dav=365	29	20	629.02	Dav=365	29	20	367.89
Day=365	30	21	674.35	Dav=365	30	21	393.02
Day=365	31	22	726 65	Dav=365	31	22	421.24
Day=365	32	23	787 17	Dav=365	32	23	452.94
Day=365	33	24	857.37	Dav=365	33	24	488.53
Day=365	34	25	939.04	Day=365	34	25	528.5
Day=365	35	26	1034 22	Day=365	35	26	573 38
Day=365	36	27	1145 28	Day=365	36	27	623.78
Day=365	37	28	1274 89	Day=365	37	28	680.36
Day=365	38	29	1425 84	Day=365	38	29	743.85
Day=365	30	30	1600.92	Day=365	39	30	815.08
Day=365	40	31	1802.52	Day=365	40	31	894 94
Day=365	41	32	2032 14	Day=365	41	32	984 38
Day=365	42	33	2289 7	Day=365	42	33	1084 47
Day=365	43	34	2573.02	Day=365	43	34	1196 31
Day=365	44	35	2877.36	Day=365	44	35	1321.07
Day=365	45	36	3195.66	Day=365	45	36	1459.99
Day=365	46	37	3519 42	Day=365	46	37	1614 29
Day=365	47	38	3840.09	Day=365	47	38	1785 19
Day=365	48	39	4150 61	Day=365	48	39	1973.83
Dav=365	49	40	4446 41	Day=365	49	40	2181.15
24, 000	70	- <b>v</b>	110.41	24y 000			

.

Day=365	50	41	4725.67	Day=365	50	41	2407.8
Day=365	51	42	4988.95	Day=365	51	42	2653.96
Day=365	52	43	5238.38	Day=365	52	43	2919.14
Day=365	53	44	5476.83	Day=365	53	44	3202.04
Day=365	54	45	5707.3	Day=365	54	45	3500.39
Day=365	55	46	5932.45	Day=365	55	46	3810.91
Day=365	56	47	6154.42	Day=365	56	47	4129.38
Day=365	57	48	6374.82	Day=365	57	48	4450.91
Day=365	58	49	6594.69	Day=365	58	49	4770.23
Day=365	59	50	6814.59	Day=365	59	50	5082.2
Day=365	60	51	7034.72	Day=365	60	51	5382.21
Day=365	61	52	7254.96	Day=365	61	52	5666.56
Day=365	62	53	7474.96	Day=365	62	53	5932.64
Day=365	63	54	7694.18	Dav=365	63	54	6179.01
Day=365	64	55	7911.96	Dav=365	64	55	6405.29
Dav=365	65	56	8127.57	Dav=365	65	56	6611.93
Dav=365	66	57	8340.21	Dav=365	66	57	6800.03
Dav=365	67	58	8549.08	Dav=365	67	58	6971.03
Dav=365	68	59	8753.39	Dav=365	68	59	7126.54
Dav=365	69	60	8952.4	Day=365	69	60	7268 19
Dav=365	70	61	9145 42	Day=365	70	61	7397 5
Dav=365	71	62	9331 84	Day=365	71	62	7515.83
Day=365	72	63	9511 16	Day=365	72	63	7624.37
Day=365	73	64	9682.99	Day=365	73	64	7724 1
Day=365	74	65	9847.04	Day=365	74	65	7815.88
Day=365	75	66	10003 15	Day=365	75	66	7900 4
Day=365	76	67	10151 28	Day=365	76	67	7978 25
Day=365	70	68	10701.20	Day=365	70	68	8049 95
Day=365	78	60	10/23 92	Day=365	78	69	8115 02
Day=365	70	70	105/8 85	Day=365	70	70	8176 56
Day=365	80	70	10666 58	Day=365	80	70	8232.23
Day=365	81	72	10777 51	Day=365	81	72	8283.27
Day=365	82	73	10882.07	Day=365	82	73	8330
Day=365	83	70	10002.07	Day=365	83	7/	8372 74
Day=365	84	75	11073 0/	Day=365	84	75	8/11 70
Day=365	85	76	11162 23	Day=365	85	76	8//7/5
Day=365	86	70	11246.07	Day-365	86	70	8/80 02
Day=365	87	78	11240.07	Day=365	87	78	8500.02
Day=365	88	70	11/02 33	Day=365	88	70	8537 04
Day=365	80	80	11402.33	Day=365	80	80	8562.04
Day=365	09	81	11470.00	Day-365	00	90 81	8585.06
Day-365	90	82	11614 73	Day-365	90	82	8606.34
Day=305	91	02	11691 22	Day-305	91	02	8626 12
Day=305	92	97 87	11746 14	Day=305	92	94 84	9644 62
Day=305	93	04	11740.14	Day-305	93	95	9662.02
Day-305	94	00	11009.70	Day-300	94	00	0002.02
Day=305	90	00	11072.31	Day-300	90	00	0070.04
Day-305	90	07	11934.00	Day-305	90	07	0094.32
Day=300	91 00	00	11990.19	Day=305	91 91	00	0708.00
Day=305	90	09	12000.0/	Day=305	90	09	0720 00
Day-305	39	90	12110.24	Day=305	400	90	0130.03
Day=305	100	91	12170.41	Day=365	100	91	0703.13
⊔ay=365	101	92	12236,48	Day=365	101	92	8/6/.35

Day=365	102	93	12296.51	Day=365	102	93	8781.56
Day=365	103	94	12356.56	Day=365	103	94	8795.84
Day=365	104	95	12416.65	Day=365	104	95	8810.25
Day=365	105	96	12476.81	Day=365	105	96	8824.84
Day=365	106	97	12537.04	Day=365	106	97	8839.65
Day=365	107	98	12597.33	Day=365	107	98	8854.7
Day=365	108	99	12657.66	Day=365	108	99	8870.02
Day=365	109	100	12718	Day=365	109	100	8885.62
Day=365	110	101	12778.3	Day=365	110	101	8901.51
Day=365	111	102	12838.53	Day=365	111	102	8917.68
Day=365	112	103	12898.63	Day=365	112	103	8934.13
Day=365	113	104	12958.54	Day=365	113	104	8950.85
Day=365	114	105	13018.21	Day=365	114	105	8967.82
Day=365	115	106	13077.58	Day=365	115	106	8985.03
Day=365	116	107	13136.58	Day=365	116	107	9002.44
Day=365	117	108	13195.13	Day=365	117	108	9020.04
Day=365	118	109	13253.17	Day=365	118	109	9037.79
Day=365	119	110	13310.63	Day=365	119	110	9055.65
Day=365	120	111	13367,44	Day=365	120	111	9073.61
Dav=365	121	112	13423.52	Dav=365	121	112	9091.62
Dav=365	122	113	13478.82	Dav=365	122	113	9109.64
Dav=365	123	114	13533.25	Dav=365	123	114	9127.62
Dav=365	124	115	13586.74	Dav=365	124	115	9145.53
Dav=365	125	116	13639.23	Dav=365	125	116	9163.33
Dav=365	126	117	13690.64	Dav=365	126	117	9180.98
Dav=365	127	118	13740.91	Dav=365	127	118	9198.44
Dav=365	128	119	13789.97	Dav=365	128	119	9215.67
Dav=365	129	120	13837.75	Dav=365	129	120	9232.62
Dav=365	130	121	13884.2	Dav=365	130	121	9249.27
Dav=365	131	122	13929.24	Dav=365	131	122	9265.56
Dav=365	132	123	13972.82	Dav=365	132	123	9281.47
Dav=365	133	124	14014.89	Dav=365	133	124	9296.96
Dav=365	134	125	14055.38	Dav=365	134	125	9311.99
Dav=365	135	126	14094.24	Dav=365	135	126	9326.52
Dav=365	136	127	14131.43	Dav=365	136	127	9340.52
Dav=365	137	128	14166.88	Dav=365	137	128	9353.96
Dav=365	138	129	14200.56	Dav=365	138	129	9366.81
Dav=365	139	130	14232.43	Dav=365	139	130	9379.04
Dav=365	140	131	14262.44	Dav=365	140	131	9390.61
Dav=365	141	132	14290,54	Dav=365	141	132	9401.51
Dav=365	142	133	14316.72	Dav=365	142	133	9411.71
Dav=365	143	134	14340.92	Dav=365	143	134	9421.17
Dav=365	144	135	14363.12	Dav=365	144	135	9429.89
Dav=365	145	136	14383.3	Dav=365	145	136	9437.83
Dav=365	146	137	14401.42	Dav=365	146	137	9444.99
Dav=365	147	138	14417.47	Dav=365	147	138	9451.35
Dav=365	148	139	14431.42	Dav=365	148	139	9456.89
Dav=365	149	140	14443.25	Dav=365	149	140	9461.59
Dav=365	150	141	14452.96	Dav=365	150	141	9465.46
Dav=365	151	142	14460.52	Dav=365	151	142	9468.47
Dav=365	152	143	14465.92	Dav=365	152	143	9470.63
Dav=365	153	144	14469.17	Dav=365	153	144	9471.93
,	. – –						

Day=365	154	144	14469.37	Day=365	154	144	9472.01
Day=365	155	144	14469.56	Day=365	155	144	9472.09
Day=365	156	144	14469.72	Day=365	156	144	9472.15
Day=365	157	144	14469.86	Day=365	157	144	9472.21
Day=365	158	144	14469.98	Day=365	158	144	9472.25
Day=365	159	144	14470.08	Day=365	159	144	9472.29
Day=365	160	144	14470.15	Day=365	160	144	9472.32
Day=365	161	144	14470.21	Day=365	161	144	9472.34
Day=365	162	144	14470.24	Day=365	162	144	9472.36
Day=365	163	145	14470.25	Day=365	163	145	9472.36

### 2008-1.45 (Used in 1996 simulation) Head values at end of 2008

Dav=365	1	0	202.6
Day-305	1	0	202.0
Day=365	2	0	202.51
Day=365	3	0	202.42
Day=365	4	0	202.34
Day=365	5	0	202.26
Day=365	6	0	202.19
Dav=365	7	0	202.13
Dav=365	8	0	202 07
Dav=365	a a	ñ	201 98
Day-365	10	1	201.00
Day-305	10	י ס	201.95
Day=365	11	2	201.98
Day=365	12	3	202.69
Day=365	13	4	204.1
Day=365	14	5	206.22
Day=365	15	6	209.08
Dav=365	16	7	212.71
Dav=365	17	8	217.15
Dav=365	18	q	222.46
Day-365	10	10 .	228.68
Day-365	20	11	225.00
Day=305	20	11	235.91
Day=365	21	12	244.21
Day=365	22	13	253.69
Day=365	23	14	264.46
Day=365	24	15	276.65
Day=365	25	16	290.41
Dav=365	26	17	305.92
Dav=365	27	18	323.36
Dav=365	28	19	342.96
Day 265	20	20	264.07
Day=305	29	. 20	2004.97
Day=365	30	21	389.68
Day=365	31	22	417.4
Day=365	32	23	448.5
Day=365	33	24	483.39
Day=365	34	25	522.51
Day=365	35	26	566.38
Dav=365	36	27	615.56
Dav=365	37	28	670.68
Day=365	38	20	732 42
Day=265	20	20	901 EA
Day=305	39	00	001.04
Day=365	40	31	0/0.00
Day=365	41	32	965.26
Day=365	42	33	1061.68
Day=365	43	34	1169.11
Day=365	44	35	1288.59
Day=365	45	36	1421.18
Day=365	46	37	1567.94
Dav=365	47	38	1729.87
Dav=365	48	39	1907 9
Dav=365		<u>10</u>	2102.75
Day-303	43	40	2102.10

Day=365	50	41	2314.86
Day=365	51	42	2544.23
Day=365	52	43	2790.28
Day=365	53	44	3051.7
Dav=365	54	45	3326.35
Dav=365	55	46	3611.21
Dav=365	56	47	3902 49
Day=365	57	48	4195.81
Day=365	59	40	4100.01
Day-305	50	40	4770.09
Day-305	59	50	4770.00
Day=365	60	51	5042.39
Day=365	61	52	5300.14
Day=365	62	53	5541
Day=365	63	54	5763.62
Day=365	64	55	5967.6
Day=365	65	56	6153.32
Day=365	66	57	6321.7
Day=365	67	58	6474.06
Dav=365	68	59	6611.86
Dav=365	69	60	6736.6
Dav=365	70	61	6849 71
Day=365	71	62	6952 49
Day-365	70	62	7046.08
Day-365	72	64	7121 46
Day=365	73	04	7131.40
Day=365	74	65	7209.48
Day=365	75	66	7280.81
Day=365	76	67	7346.06
Day=365	77	68	7405.71
Day=365	78	69	7460.2
Day=365	79	70	7509.91
Day=365	80	71	7555.18
Day=365	81	72	7596.32
Day=365	82	73	7633.63
Dav=365	83	74	7667.39
Dav=365	84	75	7697.88
Dav=365	85	76	7725.36
Day=365	86	77	7750.00
Day=365	87	78	7772 32
Day=305	07	70	7702.02
Day=305	00	19	7940.00
Day=365	89	80	7010.23
Day=365	90	81	7826.36
Day=365	91	82	7840.91
Day=365	92	83	7854.07
Day=365	93	84	7866.03
Day=365	94	85	7876.98
Day=365	95	86	7887.06
Day=365	96	87	7896.45
Dav=365	97	88	7905.27
Dav=365	98	89	7913.65
Dav=365	99	90	7921 71
Dav=365	100	Q1	7929 54
Day-265	104	00	7027 05
Day-305	101	92	1931.23

.

Day=365	102	93	7944.9
Day=365	103	94	7952.57
Day=365	104	95	7960.33
Day=365	105	96	7968.21
Day=365	106	97	7976.26
Dav=365	107	98	7984.51
Dav=365	108	99	7992 99
Day=365	109	100	8001 71
Day=365	110	100	8010 60
Day-365	110	101	8010.03
Day=305	111	102	8019.93
Day-305	112	103	0029.43
Day=365	113	104	8039.2
Day=365	114	105	8049.22
Day=365	115	106	8059.48
Day=365	116	107	8069.98
Day=365	117	108	8080.68
Day=365	118	109	8091.58
Day=365	119	110	8102.65
Day=365	120	111	8113.86
Day=365	121	112	8125.19
Dav=365	122	113	8136.62
Dav=365	123	114	8148.11
Dav=365	124	115	8159.63
Day=365	125	116	8171 16
Day=365	126	117	8182.65
Day=305	120	110	0102.00
Day=300	127	110	0194.00
Day=305	128	119	8205.42
Day=365	129	120	8216.64
Day=365	130	121	8227.7
Day=365	131	122	8238,58
Day=365	132	123	8249.23
Day=365	133	124	8259.64
Day=365	134	125	8269.78
Day=365	135	126	8279.61
Day=365	136	127	8289.11
Day=365	137	128	8298.25
Day=365	138	129	8307.01
Dav=365	139	130	8315.37
Dav=365	140	131	8323.3
Dav=365	141	132	8330.78
Dav=365	142	133	8337 79
Day=365	143	134	8344 31
Day=365	140	135	8350 32
Day-365	144	126	9255 91
Day=305	140	100	0300.01
Day-305	140	107	0300.70
Day=365	147	130	0305,17
Day=365	148	139	8369.01
Day=365	149	140	8372.27
Day=365	150	141	8374.96
Day=365	151	142	8377.06
Day=365	152	143	8378.56
Day=365	153	144	8379.46

Day=365	154	144	8379.52
Day=365	155	144	8379.57
Day=365	156	144	8379.62
Day=365	157	144	8379.66
Day=365	158	144	8379.69
Day=365	159	144	8379.71
Day=365	160	144	8379.74
Day=365	161	144	8379.75
Day=365	162	144	8379.76
Day=365	163	145	8379.76

# UNSAT-H Version 2.03 SIMULATION SUMMARY

Title: 2006 1.45 Sudbury Rd LF-Alternative Cover Design

Transpiration Scheme is:	_	1				
Potential Evapotranspiration	=	= 1.	6588I	E+02	2	[cm]
Potential Transpiration	= 6	5.25	90E+	01	[cr	n]
Actual Transpiration	= 3	.49	93E+(	)0	[cn	n]
Potential Evaporation	= 6	5.00	93E+	02	[cr	n]
Actual Evaporation	= 2	.76	96E+(	)1	[cn	n]
Evaporation during Growth		= 1	.2646	E+(	D1	[cm]
Total Runoff =	4.60	)84]	E <b>+00</b>	[	cm]	
Total Infiltration =	3.73	3781	E <b>+01</b>	[	cm]	
Total Drainage at Base of Pro	file	= 2	2.2208	3E-0	)3	[cm]
Total Applied Water	= 4	4.19	86E+	01	[01	n]
Actual Rainfall =	4.1	986	E+01	[	cm]	
Actual Irrigation =	0.0	000	E+00	[	cm]	
Total Final Moisture Storage	=	= 2	7786	E+0	1	[cm]
Mass Balance Error	= 1	1.45	75E-(	)2	[cn	n]
Total Successful Time Steps	=	= 1	0186	81		-
Total Attempted Time Steps		=	10186	81		
Total Time Step Reductions (	DHN	MA	X) =	5	634	
Total Changes in Surface Bou	inda	ry =	= 23	290	)9	
Total Time Actually Simulate	ed	=	3.650	0E+	-02	[days]

Total water flow (cm) across different depths at the end of 3.6500E+02 days:

DEPTH	FLOW	DEPTH	H FLOW	DEPT	H FLOW
0.000	9.6817E+00	0.050	 9.6774E+00	0.150	9.6536E+00
0.250	9.6280E+00	0.350	9.6008E+00	0.450	9.5722E+00
0.550	9.5423E+00	0.650	9.5115E+00	0.800	9.4639E+00
0.950	9.4140E+00	1.500	9.2279E+00	2.500	8.8590E+00
3.500	8.4862E+00	4.500	8.1191E+00	5.500	7.7616E+00
6.500	7.4151E+00	7.500	7.0801E+00	8.500	6.7570E+00
9.500	6.4467E+00	10.500	6.1492E+00	11.500	5.8640E+00
12.500	5.5904E+00	13.500	5.3278E+00	14.500	5.0758E+00
15.500	4.8341E+00	16.500	4.6023E+00	17.500	4.3800E+00
18.500	4.1670E+00	19.500	3.9632E+00	20.500	3.7683E+00
21.500	3.5823E+00	22.500	3.4047E+00	23.500	3.2357E+00
24.500	3.0750E+00	25.500	2.9225E+00	26.500	2.7781E+00

	27.500	2.6417E+00	28.500	2.5134E+00	29.500	2.3930E+00
	30.500	2.2802E+00	31.500	2.1751E+00	32.500	2.0771E+00
	33.500	1.9860E+00	34.500	1.9014E+00	35.500	1.8228E+00
	36.500	1.7495E+00	37.500	1.6811E+00	38.500	1.6170E+00
	39.500	1.5566E+00	40.500	1.4995E+00	41.500	1.4454E+00
	42.500	1.3938E+00	43.500	1.3444E+00	44.500	1.2972E+00
	45.500	1.2519E+00	46.500	1.2083E+00	47.500	1.1664E+00
	48.500	1.1261E+00	49.500	1.0873E+00	50.500	1.0500E+00
	51.500	1.0140E+00	52.500	9.7929E-01	53.500	9.4593E-01
	54.500	9.1386E-01	55.500	8.8300E-01	56.500	8.5329E-01
	57.500	8.2472E-01	58.500	7.9720E-01	59.500	7.7068E-01
	60.500	7.4510E-01	61.500	7.2042E-01	62.500	6.9656E-01
	63.500	6.7353E-01	64.500	6.5129E-01	65.500	6.2979E-01
	66.500	6.0900E-01	67.500	5.8887E-01	68.500	5.6941E-01
	69.500	5.5059E-01	70.500	5.3239E-01	71.500	5.1477E-01
	72.500	4.9773E-01	73.500	4.8122E-01	74.500	4.6519E-01
	75.500	4.4964E-01	76.500	4.3456E-01	77.500	4.1993E-01
	78.500	4.0573E-01	79.500	3.9193E-01	80.500	3.7850E-01
	81.500	3.6546E-01	82.500	3.5280E-01	83.500	3.4050E-01
	84.500	3.2854E-01	85.500	3.1691E-01	86.500	3.0559E-01
	87.500	2.9457E-01	88.500	2.8385E-01	89.500	2.7343E-01
	90.500	2.6329E-01	91.500	2.5339E-01	92.500	2.4374E-01
	93.500	2.3434E-01	94.500	2.2517E-01	95.500	2.1625E-01
	96.500	2.0759E-01	97.500	1.9918E-01	98.500	1.9103E-01
	99.500	1.8313E-01	100.500	1.7549E-01	101.500	1.6808E-01
	102.500	1.6092E-01	103.500	1.5397E-01	104.500	1.4727E-01
	105.500	1.4078E-01	106.500	1.3451E-01	107.500	1.2845E-01
	108.500	1.2260E-01	109.500	1.1696E-01	110.500	1.1152E-01
	111.500	1.0627E-01	112.500	1.0121E-01	113.500	9.6325E-02
	114.500	9.1612E-02	115.500	8.7073E-02	116.500	8.2682E-02
	117.500	7.8461E-02	118.500	7.4392E-02	119.500	7.0461E-02
	120.500	6.6677E-02	121.500	6.3027E-02	122.500	5.9500E-02
	123.500	5.6097E-02	124.500	5.2808E-02	125.500	4.9640E-02
	126.500	4.6575E-02	127.500	4.3607E-02	128.500	4.0730E-02
	129.500	3.7953E-02	130.500	3.5256E-02	131.500	3.2638E-02
	132.500	3.0091E-02	133.500	2.7618E-02	134.500	2.5203E-02
	135.500	2.2840E-02	136.500	2.0529E-02	137.500	1.8263E-02
	138.500	1.6044E-02	139.500	1.3858E-02	140.500	1.1698E-02
	141.500	9.5613E-03	142.500	7.4461E-03	143.500	5.3434E-03
	144.050	4.1986E-03	144.150	3.9891E-03	144.250	3.7814E-03
	144.350	3.5706E-03	144.450	3.3612E-03	144.550	3.1571E-03
	144.650	2.9461E-03	144.750	2.7376E-03	144.850	2.5271E-03
	144.950	2.3180E-03	145.000	2.2208E-03-		
-						

# UNSAT-H Version 2.03 SIMULATION SUMMARY

Title:2007-1.45 Sudbury Rd LF-Alternative Cover Design

Transpiration Scheme is:	= 1
Potential Evapotranspiration	= 1.6588E+02 [cm]
Potential Transpiration	= 6.2590E+01 [cm]
Actual Transpiration	= 4.3346E+00 [cm]
Potential Evaporation	= 6.0093E+02 [cm]
Actual Evaporation	= 2.2334E+01 [cm]
Evaporation during Growth	= 8.8296E+00 [cm]
Total Runoff =	3.5450E+00 [cm]
Total Infiltration =	2.9018E+01 [cm]
Total Drainage at Base of Pro	file = 5.1422E-03 [cm]
Total Applied Water	= 3.2563E+01 [cm]
Actual Rainfall =	3.2563E+01 [cm]
Actual Irrigation =	0.0000E+00 [cm]
Total Final Moisture Storage	= 3.0445E+01 [cm]
Mass Balance Error	= 1.3729 E-02  [cm]
Total Successful Time Steps	= 974953
Total Attempted Time Steps	= 974953
Total Time Step Reductions (	DHMAX) = 5640
Total Changes in Surface Bou	andary = 258980
Total Time Actually Simulate	d = 3.6500E + 02 [days]

Total water flow (cm) across different depths at the end of 3.6500E+02 days:

DEPTH	FLOW	DEPTH	H FLOW	DEPT	H FLOW
0.000	6.6835E+00	0.050	6.6810E+00	0.150	6.6683E+00
0.250	6.6535E+00	0.350	6.6368E+00	0.450	6.6184E+00
0.550	6.5985E+00	0.650	6.5774E+00	0.800	6.5439E+00
0.950	6.5077E+00	1.500	6.3709E+00	2.500	6.0805E+00
3.500	5.7822E+00	4.500	5.4917E+00	5.500	5.2166E+00
6.500	4.9586E+00	7.500	4.7186E+00	8.500	4.4971E+00
9.500	4.2917E+00	10.500	4.0999E+00	11.500	3.9198E+00
12.500	3.7498E+00	13.500	3.5888E+00	14.500	3.4359E+00
15.500	3.2902E+00	16.500	3.1513E+00	17.500	3.0185E+00
18.500	2.8914E+00	19.500	2.7698E+00	20.500	2.6534E+00
21.500	2.5419E+00	22.500	2.4354E+00	23.500	2.3335E+00

,

24.500	2.2362E+00	25.500	2.1435E+00	26.500	2.0554E+00	
27.500	1.9717E+00	28.500	1.8924E+00	29.500	1.8176E+00	
30.500	1.7471E+00	31.500	1.6810E+00	32.500	1.6192E+00	
33.500	1.5619E+00	34.500	1.5089E+00	35.500	1.4602E+00	
36.500	1.4157E+00	37.500	1.3753E+00	38.500	1.3389E+00	
39.500	1.3063E+00	40.500	1.2774E+00	41.500	1.2519E+00	
42.500	1.2298E+00	43.500	1.2107E+00	44.500	1.1944E+00	
45.500	1.1806E+00	46.500	1.1690E+00	47.500	1.1594E+00	
48.500	1.1516E+00	49.500	1.1452E+00	50.500	1.1398E+00	
51.500	1.1352E+00	52.500	1.1311E+00	53.500	1.1272E+00	
54.500	1.1235E+00	55.500	1.119 <b>7</b> E+00	56.500	1.1156E+00	
57.500	1.1112E+00	58.500	1.1063E+00	59.500	1.1009E+00	
60.500	1.0949E+00	61.500	1.0883E+00	62.500	1.0811E+00	
63.500	1.0732E+00	64.500	1.0646E+00	65.500	1.0554E+00	
66.500	1.0455E+00	67.500	1.0351E+00	68.500	1.0242E+00	
69.500	1.0127E+00	70.500	1.0008E+00	71.500	9.8844E-01	
72.500	9.7568E-01	73.500	9.6258E-01	74.500	9.4923E-01	
75.500	9.3567E-01	76.500	9.2189E-01	77.500	9.0796E-01	
78.500	8.9389E-01	79.500	8.7969E-01	80.500	8.6542E-01	
81.500	8.5106E-01	82.500	8.3663E-01	83.500	8.2215E-01	
84.500	8.0766E-01	85.500	7.9315E-01	86.500	7.7859E-01	
87.500	7.6407E-01	88.500	7.4955E-01	89.500	7.3504E-01	
90.500	7.2057E-01	91.500	7.0611E-01	92.500	6.9169E-01	
93.500	6.7732E-01	94.500	6.6301E-01	95.500	6.4876E-01	
96.500	6.3454E-01	97.500	6.2038E-01	98.500	6.0624E-01	
99.500	5.9222E-01	100.500	5.7826E-01	101.500	5.6435E-01	
102.500	5.5051E-01	103.500	5.3670E-01	104.500	5.2293E-01	
105.500	5.0925E-01	106.500	4.9561E-01	107.500	4.8203E-01	
108.500	4.6841E-01	109.500	4.5484E-01	110.500	4.4127E-01	
111.500	4.2778E-01	112.500	4.1433E-01	113.500	4.0091E-01	
114.500	3.8758E-01	115.500	3.7426E-01	116.500	3.6103E-01	
117.500	3.4787E-01	118.500	3.3475E-01	119.500	3.2171E-01	
120.500	3.0870E-01	121.500	2.9576E-01	122.500	2.8288E-01	
123.500	2.7010E-01	124.500	2.5735E-01	125.500	2.4464E-01	
126.500	2.3201E-01	127.500	2.1943E-01	128.500	2.0694E-01	
129.500	1.9446E-01	130.500	1.8203E-01	131.500	1.6961E-01	
132.500	1.5726E-01	133.500	1.4490E-01	134.500	1.3260E-01	
135.500	1.2034E-01	136.500	1.0810E-01	137.500	9.5905E-02	
138.500	8.3707E-02	139.500	7.1535E-02	140.500	5.9372E-02	
141.500	4.7223E-02	142.500	3.5094E-02	143.500	2.2955E-02	
144.050	1.6278E-02	144.150	1.5068E-02	144.250	1.3861E-02	
144.350	1.2653E-02	144.450	1.1445E-02	144.550	1.0238E-02	
144.650	9.0313E-03	144.750	7.8245E-03	144.850	6.6152E-03	
144.950	5.4065E-03	145.000	5.1422E-03			

## UNSAT-H Version 2.03 SIMULATION SUMMARY

Title:2008-1.45 Sudbury Rd LF-Alternative Cover Design

Transpiration Scheme is:	=	- 1				
Potential Evapotranspiration	:	= 1	.658	8E+(	02	[cm]
Potential Transpiration	=	6.25	590E	2+01	[c	m]
Actual Transpiration	= 4	4.74	21E	+00	[c	m]
Potential Evaporation	=	6.00	)93E	2+02	[c	m]
Actual Evaporation	= 2	2.38	63E	+01	[c	m]
Evaporation during Growth		= 1	8.95	59E+	-00	[cm]
Total Runoff =	3.5	753	E+0	0	[cm]	
Total Infiltration =	2.8	987	E+0	1	[cm]	
Total Drainage at Base of Pro	ofile	=	6.74	32E-	-03	[cm]
Total Applied Water	=	3.2	563I	E+01	[c	m]
Actual Rainfall =	3.2	2563	3E+(	)1	[cm]	
Actual Irrigation =	0.0	)000	)E+(	)0	[cm]	
Total Final Moisture Storage		= 3	8.08	0E+	01	[cm]
Mass Balance Error	=	1.00	595E	<b>E-02</b>	[c)	m]
Total Successful Time Steps			981	514	-	-
Total Attempted Time Steps			98	1514		
Total Time Step Reductions (	DH	MA	X) =	=	5652	,
Total Changes in Surface Bou	unda	ary	=	2544	.33	
Total Time Actually Simulate	ed	=	3.6	500E	+02	[days]

Total water flow (cm) across different depths at the end of 3.6500E+02 days:

FLOW	DEPTH	I FLOW	DEPT	H FLOW
			an max dang man man juan land, tani dani	
5.1242E+00	0.050	5.1254E+00	0.150	5.1200E+00
5.1125E+00	0.350	5.1031E+00	0.450	5.0919E+00
5.0793E+00	0.650	5.0654E+00	0.800	5.0428E+00
5.0174E+00	1.500	4.9200E+00	2.500	4.7007E+00
4.4728E+00	4.500	4.2523E+00	5,500	4.0468E+00
3.8583E+00	7.500	3.6873E+00	8.500	3.5346E+00
3.3978E+00	10.500	3.2745E+00	11.500	3.1625E+00
3.0606E+00	13.500	2.9673E+00	14.500	2.8818E+00
2.8031E+00	16.500	2.7306E+00	17.500	2.6634E+00
2.6012E+00	19.500	2.5435E+00	20.500	2.4897E+00
2.4396E+00	22.500	2.3929E+00	23.500	2.3491E+00
	FLOW 5.1242E+00 5.1125E+00 5.0793E+00 5.0174E+00 4.4728E+00 3.8583E+00 3.3978E+00 3.0606E+00 2.8031E+00 2.6012E+00 2.4396E+00	FLOWDEPTH5.1242E+000.0505.1125E+000.3505.0793E+000.6505.0174E+001.5004.4728E+004.5003.8583E+007.5003.3978E+0010.5003.0606E+0013.5002.8031E+0016.5002.6012E+0019.5002.4396E+0022.500	FLOWDEPTHFLOW5.1242E+000.0505.1254E+005.1125E+000.3505.1031E+005.0793E+000.6505.0654E+005.0174E+001.5004.9200E+004.4728E+004.5004.2523E+003.8583E+007.5003.6873E+003.3978E+0010.5003.2745E+003.0606E+0013.5002.9673E+002.8031E+0016.5002.7306E+002.4396E+0022.5002.3929E+00	FLOWDEPTHFLOWDEPT5.1242E+000.0505.1254E+000.1505.1125E+000.3505.1031E+000.4505.0793E+000.6505.0654E+000.8005.0174E+001.5004.9200E+002.5004.4728E+004.5004.2523E+005.5003.8583E+007.5003.6873E+008.5003.3978E+0010.5003.2745E+0011.5003.0606E+0013.5002.9673E+0014.5002.8031E+0016.5002.7306E+0017.5002.6012E+0019.5002.5435E+0020.5002.4396E+0022.5002.3929E+0023.500

24.500	2.3081E+00	25.500	2.2695E+00	26.500	2.2332E+00
27.500	2.1988E+00	28.500	2.1662E+00	29.500	2.1353E+00
30.500	2.1056E+00	31.500	2.0772E+00	32.500	2.0499E+00
33.500	2.0235E+00	34.500	1.9980E+00	35.500	1.9734E+00
36.500	1.9494E+00	37.500	1.9259E+00	38.500	1.9030E+00
39.500	1.8805E+00	40.500	1.8583E+00	41.500	1.8364E+00
42.500	1.8147E+00	43.500	1.7933E+00	44.500	1.7720E+00
45.500	1.7509E+00	46.500	1.7299E+00	47.500	1.7090E+00
48.500	1.6883E+00	49.500	1.6676E+00	50.500	1.6471E+00
51.500	1.6266E+00	52.500	1.6062E+00	53.500	1.5858E+00
54.500	1.5655E+00	55.500	1.5453E+00	56.500	1.5250E+00
57.500	1.5047E+00	58.500	1.4845E+00	59.500	1.4644E+00
60.500	1.4442E+00	61.500	1.4241E+00	62.500	1.4039E+00
63.500	1.3839E+00	64.500	1.3638E+00	65.500	1.3438E+00
66.500	1.3239E+00	67.500	1.3040E+00	68.500	1.2842E+00
69.500	1.2644E+00	70.500	1.2447E+00	71.500	1.2250E+00
72.500	1.2053E+00	73.500	1.1857E+00	74.500	1.1662E+00
75.500	1.1467E+00	76.500	1.1272E+00	77.500	1.1078E+00
78.500	1.0885E+00	79.500	1.0692E+00	80.500	1.0501E+00
81.500	1.0310E+00	82.500	1.0119E+00	83.500	9.9301E-01
84.500	9.7414E-01	85.500	9.5535E-01	86.500	9.3661E-01
87.500	9.1798E-01	88.500	8.9945E-01	89.500	8.8105E-01
90.500	8.6275E-01	91.500	8.4453E-01	92.500	8.2645E-01
93.500	8.0848E-01	94.500	7.9061E-01	95.500	7.7287E-01
96.500	7.5525E-01	97.500	7.3773E-01	98,500	7.2034E-01
99.500	7.0309E-01	100.500	6.8595E-01	101.500	6.6891E-01
102.500	6.5200E-01	103.500	6.3521E-01	104.500	6.1849E-01
105.500	6.0193E-01	106.500	5.8544E-01	107.500	5.6907E-01
108.500	5.5282E-01	109.500	5.3664E-01	110.500	5.2053E-01
111.500	5.0449E-01	112.500	4.8849E-01	113.500	4.7257E-01
114.500	4.5669E-01	115.500	4.4091E-01	116.500	4.2518E-01
117.500	4.0952E-01	118.500	3.9393E-01	119.500	3.7839E-01
120.500	3.6294E-01	121.500	3.4757E-01	122.500	3.3226E-01
123.500	3.1704E-01	124.500	3.0193E-01	125.500	2.8689E-01
126.500	2.7194E-01	127.500	2.5707E-01	128.500	2.4227E-01
129.500	2.2758E-01	130.500	2.1293E-01	131.500	1.9835E-01
132.500	1.8385E-01	133.500	1.6941E-01	134.500	1.5504E-01
135.500	1.4070E-01	136.500	1.2640E-01	137.500	1.1215E-01
138.500	9.7966E-02	139.500	8.3795E-02	140.500	6.9661E-02
141.500	5.5541E-02	142.500	4.1439E-02	143.500	2.7352E-02
144.050	1.9604E-02	144.150	1.8204E-02	144.250	1.6801E-02
144.350	1.5403E-02	144.450	1.3999E-02	144.550	1.2596E-02
144.650	1.1195E-02	144.750	9.7928E-03	144.850	8.3894E-03
144.950	6.9870E-03	145.000	6.7432E-03		

a.

## UNSAT-H Version 2.03 SIMULATION SUMMARY

Title: 1996-1.45 Sudbury Rd LF-Alternative Cover Design

Transpiration Scheme is:	= 1			
Potential Evapotranspiration	= 1.65	88E+(	02	[cm]
Potential Transpiration	= 6.2590	E+01	[cr	n]
Actual Transpiration	= 6.2535	E+00	[cn	n]
Potential Evaporation	= 6.0093	E+02	[cr	n]
Actual Evaporation	= 3.5009	E+01	[cn	n]
Evaporation during Growth	= 1.3	424E+	-01	[cm]
Total Runoff =	8.7299E+	·00	[cm]	
Total Infiltration =	4.3238E+	·01	[cm]	
Total Drainage at Base of Pro	file $= 1.0$	)819E-	-02	[cm]
Total Applied Water	= 5.1968	3E+01	[c1	n]
Actual Rainfall =	5.1968E-	-01	[cm]	
Actual Irrigation =	0.0000E-	+00	[cm]	
Total Final Moisture Storage	= 3.27	779E+	01	[cm]
Mass Balance Error	= -4.3351	E-03	[cn	n]
Total Successful Time Steps	= 90	7742		
Total Attempted Time Steps	= 90	07742		
Total Time Step Reductions (	DHMAX)	=	5053	
Total Changes in Surface Bou	ndary =	1908	89	
Total Time Actually Simulate	d = 3.	6500E	+02	[days]

Total water flow (cm) across different depths at the end of 3.6500E+02 days:

DEPTH	FLOW	DEPTH	I FLOW	DEPT	H FLOW
0.000	8.2294E+00	0.050	8.2338E+00	0.150	8.2269E+00
0.250	8.2177E+00	0.350	8.2064E+00	0.450	8.1934E+00
0.550	8.1789E+00	0.650	8.1632E+00	0.800	8.1380E+00
0.950	8.1102E+00	1.500	8.0048E+00	2.500	7.7728E+00
3.500	7.5298E+00	4.500	7.2889E+00	5.500	7.0565E+00
6.500	6.8354E+00	7.500	6.6263E+00	8.500	6.4305E+00
9.500	6.2477E+00	10.500	6.0776E+00	11.500	5.9195E+00
12.500	5.7725E+00	13.500	5.6358E+00	14.500	5.5084E+00
15.500	5.3898E+00	16.500	5.2792E+00	17.500	5.1760E+00
18.500	5.0794E+00	19.500	4.9888E+00	20.500	4.9035E+00
21.500	4.8229E+00	22.500	4.7466E+00	23.500	4.6741E+00
24.500	4.6049E+00	25.500	4.5387E+00	26.500	4.4752E+00

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.500	4.4140E+00	28.500	4.3549E+00	29.500	4.2977E+00
33.500 4.0834E+00 34.500 4.0324E+00 35.500 3.9821E+00   36.500 3.9323E+00 37.500 3.8827E+00 38.500 3.833E+00   42.500 3.6332E+00 43.500 3.5815E+00 44.500 3.5232E+00   45.500 3.4764E+00 46.500 3.4228E+00 47.500 3.3685E+00   48.500 3.136E+00 49.500 3.2582E+00 50.500 3.0202E+00   51.500 3.1468E+00 52.500 3.0909E+00 53.500 3.0352E+00   57.500 2.8161E+00 58.500 2.7629E+00 59.500 2.7104E+00   66.500 2.6587E+00 61.500 2.0707E+00 62.500 2.139E+00   66.500 2.3678E+00 67.500 2.3227E+00 68.500 2.2786E+00   75.500 1.1935E+00 76.500 1.9558E+00 77.500 1.9187E+00   75.500 1.8821E+00 79.500 1.8462E+00 80.500 1.6074E+00   75.500 1.8821E+00 75.500 1.6432E+00 80.500 1.5101E+00   75.500 1.542E+00 80.500	30.500	4.2421E+00	31.500	4.1880E+00	32.500	4.1352E+00
36.500   3.9323E+00   37.500   3.8827E+00   38.500   3.8333E+00     39.500   3.7338E+00   40.500   3.7340E+00   41.500   3.6333E+00     42.500   3.6330E+00   43.500   3.5815E+00   44.500   3.5293E+00     45.500   3.4764E+00   46.500   3.4282E+00   47.500   3.3685E+00     54.500   2.9797E+00   55.500   2.9246E+00   55.500   2.8701E+00     57.500   2.8161E+00   58.500   2.7629E+00   55.500   2.7104E+00     66.500   2.6378E+00   61.500   2.609E+00   62.500   2.5579E+00     66.500   2.3678E+00   70.500   2.1930E+00   71.500   2.1316E+00     72.500   1.109E+00   73.500   2.0710E+00   74.500   1.9187E+00     75.500   1.8821E+00   79.500   1.8462E+00   80.500   1.8107E+00     75.500   1.893E+00   75.500   1.9187E+00   81.500   1.7414E+00   83.500   1.7073E+00     84.500   1.6736E+00   <	33.500	4.0834E+00	34.500	4.0324E+00	35.500	3.9821E+00
39.500 3.7838E+00 40.500 3.7340E+00 41.500 3.6838E+00   42.500 3.6330E+00 43.500 3.5815E+00 44.500 3.293E+00   45.500 3.136E+00 49.500 3.2282E+00 50.500 3.2026E+00   51.500 3.1468E+00 52.500 3.0909E+00 53.500 3.0352E+00   54.500 2.9797E+00 55.500 2.9246E+00 56.500 2.8701E+00   60.500 2.687E+00 61.500 2.6079E+00 62.500 2.579E+00   63.500 2.5089E+00 64.500 2.4609E+00 65.500 2.4139E+00   66.500 2.3678E+00 67.500 2.13227E+00 68.500 2.2786E+00   65.500 2.3478E+00 70.500 2.1930E+00 71.500 2.1516E+00   72.500 2.1109E+00 73.500 2.0710E+00 74.500 2.0319E+00   78.500 1.8821E+00 79.500 1.8462E+00 80.500 1.8107E+00   84.500 1.6736E+00 85.500 1.6403E+00 85.500 1.6074E+00   87.500 1.2919E+00 97.500	36.500	3.9323E+00	37.500	3.8827E+00	38.500	3.8333E+00
42.500 $3.6330E+00$ $43.500$ $3.5815E+00$ $44.500$ $3.5293E+00$ $45.500$ $3.4764E+00$ $46.500$ $3.4228E+00$ $50.500$ $3.2026E+00$ $51.500$ $3.1468E+00$ $52.500$ $3.9099E+00$ $53.500$ $3.0352E+00$ $54.500$ $2.9797E+00$ $55.500$ $2.9246E+00$ $56.500$ $2.8701E+00$ $57.500$ $2.8161E+00$ $58.500$ $2.7629E+00$ $65.500$ $2.7104E+00$ $60.500$ $2.6587E+00$ $61.500$ $2.4092E+00$ $65.500$ $2.2786E+00$ $66.500$ $2.3678E+00$ $67.500$ $2.3227E+00$ $68.500$ $2.2786E+00$ $69.500$ $2.2354E+00$ $70.500$ $2.1930E+00$ $71.500$ $2.1139E+00$ $72.500$ $2.1109E+00$ $73.500$ $2.0710E+00$ $74.500$ $2.0319E+00$ $75.500$ $1.9935E+00$ $76.500$ $1.9558E+00$ $77.500$ $1.9187E+00$ $78.500$ $1.8821E+00$ $79.500$ $1.8462E+00$ $80.500$ $1.6074E+00$ $81.500$ $1.6736E+00$ $85.500$ $1.6403E+00$ $86.500$ $1.6074E+00$ $87.500$ $1.3840E+00$ $91.500$ $1.4465E+00$ $92.500$ $1.2317E+00$ $99.500$ $1.2202E+00$ $100.500$ $1.1726E+00$ $101.500$ $1.1434E+00$ $102.500$ $1.2202E+00$ $100.500$ $1.004E+00$ $107.500$ $9.7238E-01$ $108.500$ $1.2202E+00$ $100.500$ $1.004E+00$ $107.500$ $9.7238E-01$ $111.500$ $8.6198E-01$ $109.500$ <t< td=""><td>39.500</td><td>3.7838E+00</td><td>40.500</td><td>3.7340E+00</td><td>41.500</td><td>3.6838E+00</td></t<>	39.500	3.7838E+00	40.500	3.7340E+00	41.500	3.6838E+00
45.500 $3.4764E+00$ $46.500$ $3.4228E+00$ $47.500$ $3.3685E+00$ $48.500$ $3.136E+00$ $49.500$ $3.2582E+00$ $50.500$ $3.0352E+00$ $54.500$ $2.9797E+00$ $55.500$ $2.9246E+00$ $56.500$ $2.8701E+00$ $57.500$ $2.8161E+00$ $58.500$ $2.7629E+00$ $59.500$ $2.7104E+00$ $66.500$ $2.6587E+00$ $61.500$ $2.4609E+00$ $65.500$ $2.4139E+00$ $66.500$ $2.3678E+00$ $67.500$ $2.3227E+00$ $68.500$ $2.2786E+00$ $72.500$ $2.109E+00$ $73.500$ $2.930E+00$ $71.500$ $2.0319E+00$ $72.500$ $2.109E+00$ $73.500$ $2.0710E+00$ $74.500$ $2.0319E+00$ $75.500$ $1.9935E+00$ $76.500$ $1.9558E+00$ $77.500$ $1.9187E+00$ $78.500$ $1.8821E+00$ $79.500$ $1.8462E+00$ $80.500$ $1.6074E+00$ $81.500$ $1.6736E+00$ $85.500$ $1.6403E+00$ $85.500$ $1.6074E+00$ $90.500$ $1.3746E+00$ $91.500$ $1.4465E+00$ $92.500$ $1.4151E+00$ $93.500$ $1.2202E+00$ $100.500$ $1.1726E+00$ $101.500$ $1.1434E+00$ $102.500$ $1.1242E+00$ $91.500$ $1.6403E+00$ $95.500$ $1.2317E+00$ $99.500$ $1.2020E+00$ $100.500$ $1.1726E+00$ $101.500$ $1.434E+00$ $102.500$ $1.124E+00$ $10.500$ $1.0354E+01$ $10.500$ $8.937E-01$ $111.500$ $8.6198E+01$ $109.500$ $1.67$	42.500	3.6330E+00	43.500	3.5815E+00	44.500	3.5293E+00
48.500 3.3136E+00 49.500 3.2582E+00 50.500 3.2026E+00   51.500 3.1468E+00 52.500 3.0909E+00 53.500 3.0352E+00   54.500 2.9797E+00 55.500 2.9246E+00 56.500 2.8701E+00   60.500 2.6587E+00 61.500 2.6079E+00 62.500 2.579E+00   63.500 2.3678E+00 67.500 2.3227E+00 68.500 2.2786E+00   65.500 2.354E+00 70.500 2.1930E+00 74.500 2.0319E+00   72.500 2.1109E+00 73.500 2.0710E+00 74.500 2.0319E+00   78.500 1.8821E+00 79.500 1.8462E+00 80.500 1.6074E+00   84.500 1.6736E+00 82.500 1.7414E+00 83.500 1.6074E+00   84.500 1.6736E+00 85.500 1.6403E+00 86.500 1.6074E+00   95.500 1.2219E+00 97.500 1.2617E+00 98.500 1.2172E+00   90.500 1.2020E+00 105.500 1.02617E+00 98.500 1.2317E+00   95.500 1.22191E+00 97.500 <td>45.500</td> <td>3.4764E+00</td> <td>46.500</td> <td>3.4228E+00</td> <td>47.500</td> <td>3.3685E+00</td>	45.500	3.4764E+00	46.500	3.4228E+00	47.500	3.3685E+00
51.500 3.1468E+00 52.500 3.0909E+00 53.500 3.0352E+00   54.500 2.9797E+00 55.500 2.9246E+00 56.500 2.8701E+00   60.500 2.6587E+00 61.500 2.6079E+00 62.500 2.5579E+00   63.500 2.5089E+00 64.500 2.4609E+00 65.500 2.4139E+00   66.500 2.3678E+00 67.500 2.3227E+00 68.500 2.1516E+00   72.500 2.1109E+00 73.500 2.0710E+00 74.500 2.0319E+00   75.500 1.9935E+00 76.500 1.9558E+00 77.500 1.9187E+00   75.500 1.8821E+00 79.500 1.8462E+00 83.500 1.6707E+00   84.500 1.6736E+00 85.500 1.6403E+00 86.500 1.6074E+00   87.500 1.5746E+00 88.500 1.5422E+00 95.500 1.3223E+00   95.500 1.2020E+00 100.500 1.1726E+00 95.500 1.2323E+00   95.500 1.2020E+00 100.500 1.1726E+00 95.500 1.2322E+00   95.500 1.22020E+00 105.500<	48.500	3.3136E+00	49.500	3.2582E+00	50.500	3.2026E+00
54.5002.9797E+0055.5002.9246E+0056.5002.8701E+0057.5002.8161E+0058.5002.7629E+0059.5002.7104E+0060.5002.6587E+0061.5002.6079E+0062.5002.5579E+0063.5002.3089E+0064.5002.3227E+0068.5002.2786E+0066.5002.334E+0070.5002.1930E+0071.5002.1516E+0072.5002.1109E+0073.5002.0710E+0074.5002.0319E+0075.5001.9935E+0076.5001.9558E+0077.5001.9187E+0078.5001.8821E+0079.5001.8462E+0080.5001.6774E+0084.5001.6736E+0085.5001.6403E+0089.5001.5101E+0090.5001.5746E+0088.5001.5422E+0089.5001.5101E+0093.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00115.5007.6378E-01110.5008.7378E-01113.5008.0761E-01114.5007.8058E-01112.5005.9521E-01122.5005.6923E-01123.5003.433E-01121.5005.7376E-01135.5004.9204E-01124.5005.4338E-01124.5005.1765E-01125.5004.9204E-01125.5004.6654E-01127.5004.4115E-01128.5004.1591E-01125.500 <t< td=""><td>51.500</td><td>3.1468E+00</td><td>52.500</td><td>3.0909E+00</td><td>53.500</td><td>3.0352E+00</td></t<>	51.500	3.1468E+00	52.500	3.0909E+00	53.500	3.0352E+00
57.500 $2.8161E+00$ $58.500$ $2.7629E+00$ $59.500$ $2.7104E+00$ $60.500$ $2.6587E+00$ $61.500$ $2.6079E+00$ $62.500$ $2.5579E+00$ $63.500$ $2.3089E+00$ $67.500$ $2.3227E+00$ $68.500$ $2.2786E+00$ $69.500$ $2.2354E+00$ $70.500$ $2.1930E+00$ $71.500$ $2.1319E+00$ $72.500$ $2.1109E+00$ $73.500$ $2.0710E+00$ $74.500$ $2.0319E+00$ $75.500$ $1.9935E+00$ $76.500$ $1.9558E+00$ $77.500$ $1.9187E+00$ $81.500$ $1.7758E+00$ $82.500$ $1.7414E+00$ $83.500$ $1.6074E+00$ $84.500$ $1.6736E+00$ $85.500$ $1.6403E+00$ $86.500$ $1.6074E+00$ $87.500$ $1.8746E+00$ $88.500$ $1.5422E+00$ $89.500$ $1.2101E+00$ $90.500$ $1.4782E+00$ $91.500$ $1.4465E+00$ $92.500$ $1.4151E+00$ $93.500$ $1.2019E+00$ $97.500$ $1.2617E+00$ $98.500$ $1.2317E+00$ $99.500$ $1.2020E+00$ $100.500$ $1.1726E+00$ $101.500$ $1.1434E+00$ $102.500$ $1.1144E+00$ $103.500$ $1.004E+00$ $107.500$ $9.7238E-01$ $114.500$ $7.6078E-01$ $119.500$ $6.4757E-01$ $114.500$ $7.8058E-01$ $109.500$ $1.2500$ $6.4757E-01$ $122.500$ $4.6654E-01$ $127.500$ $4.4115E-01$ $128.500$ $4.1591E-01$ $122.500$ $4.6654E-01$ $127.500$ $4.4115E-01$ $128.500$ $4.072E-01$ </td <td>54.500</td> <td>2.9797E+00</td> <td>55.500</td> <td>2.9246E+00</td> <td>56.500</td> <td>2.8701E+00</td>	54.500	2.9797E+00	55.500	2.9246E+00	56.500	2.8701E+00
60.500 $2.6587E+00$ $61.500$ $2.6079E+00$ $62.500$ $2.5579E+00$ $63.500$ $2.5089E+00$ $64.500$ $2.4609E+00$ $65.500$ $2.4139E+00$ $66.500$ $2.3678E+00$ $67.500$ $2.3227E+00$ $68.500$ $2.2786E+00$ $69.500$ $2.2354E+00$ $70.500$ $2.1930E+00$ $71.500$ $2.1516E+00$ $72.500$ $2.1109E+00$ $73.500$ $2.0710E+00$ $74.500$ $2.0319E+00$ $75.500$ $1.9935E+00$ $76.500$ $1.9558E+00$ $77.500$ $1.9187E+00$ $81.500$ $1.7758E+00$ $82.500$ $1.7414E+00$ $83.500$ $1.6074E+00$ $84.500$ $1.6736E+00$ $85.500$ $1.6403E+00$ $86.500$ $1.6074E+00$ $87.500$ $1.5746E+00$ $88.500$ $1.5422E+00$ $89.500$ $1.5101E+00$ $90.500$ $1.4782E+00$ $91.500$ $1.2617E+00$ $98.500$ $1.2317E+00$ $96.500$ $1.2919E+00$ $97.500$ $1.2617E+00$ $98.500$ $1.2317E+00$ $99.500$ $1.2020E+00$ $100.500$ $1.0286E+00$ $100.500$ $1.0278E+01$ $102.500$ $1.1144E+00$ $103.500$ $1.004E+00$ $107.500$ $9.7238E-01$ $118.500$ $8.6198E-01$ $109.500$ $9.1691E-01$ $110.500$ $8.8937E-01$ $114.500$ $7.8058E-01$ $112.500$ $8.473E-01$ $113.500$ $8.0761E-01$ $114.500$ $7.8058E-01$ $112.500$ $5.9521E-01$ $122.500$ $5.6923E-01$ $122.500$ $6.4757E-01$ $130.500$ <	57.500	2.8161E+00	58.500	2.7629E+00	59.500	2.7104E+00
63.5002.5089E+0064.5002.4609E+0065.5002.4139E+0066.5002.3678E+0067.5002.3227E+0068.5002.2786E+0069.5002.2354E+0070.5002.1930E+0071.5002.1516E+0072.5002.1109E+0073.5002.0710E+0074.5002.0319E+0075.5001.9935E+0076.5001.9558E+0077.5001.9187E+0078.5001.8821E+0079.5001.8462E+0080.5001.8107E+0084.5001.6736E+0082.5001.7414E+0083.5001.7073E+0087.5001.5746E+0088.5001.6403E+0095.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.4151E+0093.5001.2919E+0097.5001.2617E+0098.5001.2317E+0095.5001.2202E+00100.5001.004E+00107.5009.7238E-01102.5001.1144E+00103.5001.004E+00107.5009.7238E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01112.5005.9521E-01122.5005.6923E-01123.5005.4338E-01115.5005.7765E-01125.5004.9204E-01126.5004.6654E-01127.5003.4778E-0113.5003.6772E-01123.5005.4338E-01135.5002.1718E-01131.5003.6072E-01123.5005.4338E-01135.5002.1776E-01134.5002.6637E-01135.500	60.500	2.6587E+00	61.500	2.6079E+00	62.500	2.5579E+00
66.5002.3678E+0067.5002.3227E+0068.5002.2786E+0069.5002.2354E+0070.5002.1930E+0071.5002.1516E+0072.5002.1109E+0073.5002.0710E+0074.5002.0319E+0075.5001.9935E+0076.5001.9558E+0077.5001.9187E+0081.5001.7758E+0082.5001.7414E+0083.5001.8107E+0084.5001.6736E+0085.5001.6403E+0086.5001.6074E+0087.5001.5746E+0088.5001.5422E+0089.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.3217E+0093.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.004E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01112.5005.9521E-01122.5005.6923E-01120.5006.2133E-01121.5005.9521E-01122.5006.4757E-01120.5003.9075E-01130.5002.6707E-01134.5002.6637E-01123.5003.1584E-01135.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01135.500	63.500	2.5089E+00	64.500	2.4609E+00	65.500	2.4139E+00
69.5002.2354E+0070.5002.1930E+0071.5002.1516E+0072.5002.1109E+0073.5002.0710E+0074.5002.0319E+0075.5001.9935E+0076.5001.9558E+0077.5001.9187E+0081.5001.7758E+0082.5001.7414E+0083.5001.8107E+0084.5001.6736E+0085.5001.6403E+0086.5001.6074E+0087.5001.5746E+0088.5001.5422E+0089.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.4151E+0093.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0045E+00104.5001.0570E+01115.5007.8058E-01106.5001.0044E+00107.5009.7238E-01114.5007.8058E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01125.5004.9204E-01125.5004.9204E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01123.5003.438E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01135.500	66.500	2.3678E+00	67.500	2.3227E+00	68.500	2.2786E+00
72.5002.1109E+0073.5002.0710E+0074.5002.0319E+0075.5001.9935E+0076.5001.9558E+0077.5001.9187E+0085.5001.8821E+0079.5001.8462E+0080.5001.8107E+0081.5001.7758E+0082.5001.7414E+0083.5001.7073E+0084.5001.6736E+0085.5001.6403E+0086.5001.6074E+0087.5001.5746E+0088.5001.5422E+0089.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.004E+00107.5009.7238E-01102.5001.1144E+00103.5001.004E+00107.5009.7238E-01111.5008.6198E-01110.5008.3473E-01110.5008.8937E-01111.5007.0338E-01112.5005.9521E-01120.5006.4757E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01122.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01135.5002.5835E-02144.4502.3416E-02144.5502.8250E-02144.6	69.500	2.2354E+00	70.500	2.1930E+00	71.500	2.1516E+00
75.500 $1.9935E+00$ 76.500 $1.9558E+00$ 77.500 $1.9187E+00$ 78.500 $1.8821E+00$ 79.500 $1.8462E+00$ $80.500$ $1.8107E+00$ $81.500$ $1.7758E+00$ $82.500$ $1.7414E+00$ $83.500$ $1.7073E+00$ $84.500$ $1.6736E+00$ $85.500$ $1.6403E+00$ $86.500$ $1.6074E+00$ $87.500$ $1.5746E+00$ $88.500$ $1.5422E+00$ $89.500$ $1.5101E+00$ $90.500$ $1.4782E+00$ $91.500$ $1.4465E+00$ $92.500$ $1.4151E+00$ $93.500$ $1.3840E+00$ $94.500$ $1.3530E+00$ $95.500$ $1.2232E+00$ $96.500$ $1.2919E+00$ $97.500$ $1.2617E+00$ $98.500$ $1.2317E+00$ $99.500$ $1.2020E+00$ $100.500$ $1.1726E+00$ $101.500$ $1.0570E+00$ $102.500$ $1.1144E+00$ $103.500$ $1.0856E+00$ $104.500$ $1.0570E+00$ $105.500$ $1.0286E+01$ $109.500$ $9.1691E-01$ $110.500$ $8.8937E-01$ $111.500$ $8.6198E-01$ $112.500$ $8.3473E-01$ $113.500$ $8.0761E-01$ $114.500$ $7.8058E-01$ $112.500$ $5.9521E-01$ $122.500$ $5.6923E-01$ $122.500$ $5.4338E-01$ $125.500$ $4.9204E-01$ $125.500$ $4.9204E-01$ $126.500$ $4.6654E-01$ $127.500$ $4.4115E-01$ $128.500$ $4.1591E-01$ $129.500$ $3.9075E-01$ $130.500$ $3.6570E-01$ $131.500$ $4.0637E-01$ $132.500$ $3.1584E-01$ $132.500$	72.500	2.1109E+00	73.500	2.0710E+00	74.500	2.0319E+00
78.5001.8821E+0079.5001.8462E+0080.5001.8107E+0081.5001.7758E+0082.5001.7414E+0083.5001.7073E+0084.5001.6736E+0085.5001.6403E+0086.5001.6074E+0087.5001.5746E+0088.5001.5422E+0089.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.4151E+0093.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.076E+00101.5001.0570E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01117.5007.0038E-01118.5006.7391E-01119.5006.4757E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01122.5003.9075E-01130.5003.6570E-01131.5003.4072E-01125.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-011	75.500	1.9935E+00	76.500	1.9558E+00	77.500	1.9187E+00
81.5001.7758E+0082.5001.7414E+0083.5001.7073E+0084.5001.6736E+0085.5001.6403E+0086.5001.6074E+0087.5001.5746E+0088.5001.5422E+0089.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.4151E+0093.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01117.5007.0038E-01115.5007.5370E-01116.5007.2697E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01122.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01137.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01<	78.500	1.8821E+00	79.500	1.8462E+00	80.500	1.8107E+00
84.5001.6736E+0085.5001.6403E+0086.5001.6074E+0087.5001.5746E+0088.5001.5422E+0089.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.4151E+0093.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01122.5005.4338E-01127.5004.4115E-01128.5004.1591E-01126.5004.6654E-01127.5004.6176E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01138.5001.6820E-01139.5001.4378E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01144.5003.3089E-02144.1503.0670E-02144.5502.0998E-02 <t< td=""><td>81.500</td><td>1.7758E+00</td><td>82.500</td><td>1.7414E+00</td><td>83.500</td><td>1.7073E+00</td></t<>	81.500	1.7758E+00	82.500	1.7414E+00	83.500	1.7073E+00
87.5001.5746E+0088.5001.5422E+0089.5001.5101E+0090.5001.4782E+0091.5001.4465E+0092.5001.4151E+0093.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01117.5007.0038E-01112.5005.9521E-01122.5005.6923E-01120.5006.2133E-01121.5005.9521E-01122.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01144.503.3089E-02144.4502.3416E-02144.5502.0998E-02	84.500	1.6736E+00	85.500	1.6403E+00	86.500	1.6074E+00
90.5001.4782E+0091.5001.4465E+0092.5001.4151E+0093.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01120.5006.2133E-01127.5004.4115E-01128.5004.1591E-01126.5004.6654E-01127.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01144.5503.3089E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02<	87.500	1.5746E+00	88.500	1.5422E+00	89.500	1.5101E+00
93.5001.3840E+0094.5001.3530E+0095.5001.3223E+0096.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01120.5006.2133E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01135.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5003.089E-02144.1503.0670E-02143.5002.8250E-02144.6501.8580E-02144.4502.3416E-02144.5502.0998E-02144.6501.3560E-02144.5001.0819E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02 <td>90.500</td> <td>1.4782E+00</td> <td>91.500</td> <td>1.4465E+00</td> <td>92.500</td> <td>1.4151E+00</td>	90.500	1.4782E+00	91.500	1.4465E+00	92.500	1.4151E+00
96.5001.2919E+0097.5001.2617E+0098.5001.2317E+0099.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01117.5007.0038E-01118.5006.7391E-01119.5006.4757E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01123.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01138.5004.6637E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5003.3089E-02144.1503.0670E-02143.5002.8250E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	93.500	1.3840E+00	94.500	1.3530E+00	95.500	1.3223E+00
99.5001.2020E+00100.5001.1726E+00101.5001.1434E+00102.5001.1144E+00103.5001.0856E+00104.5001.0570E+00105.5001.0286E+00106.5001.0004E+00107.5009.7238E-01108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01117.5007.0038E-01121.5005.9521E-01122.5005.6923E-01120.5006.2133E-01121.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.6501.8580E-02144.4502.3416E-02144.2502.8250E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02144.7501.6819E-02144.8501.3744E-02	96.500	1.2919E+00	97.500	1.2617E+00	98.500	1.2317E+00
102.500 $1.1144E+00$ $103.500$ $1.0856E+00$ $104.500$ $1.0570E+00$ $105.500$ $1.0286E+00$ $106.500$ $1.0004E+00$ $107.500$ $9.7238E-01$ $108.500$ $9.4456E-01$ $109.500$ $9.1691E-01$ $110.500$ $8.8937E-01$ $111.500$ $8.6198E-01$ $112.500$ $8.3473E-01$ $113.500$ $8.0761E-01$ $114.500$ $7.8058E-01$ $115.500$ $7.5370E-01$ $116.500$ $7.2697E-01$ $117.500$ $7.0038E-01$ $118.500$ $6.7391E-01$ $119.500$ $6.4757E-01$ $120.500$ $6.2133E-01$ $121.500$ $5.9521E-01$ $122.500$ $5.6923E-01$ $123.500$ $5.4338E-01$ $124.500$ $5.1765E-01$ $125.500$ $4.9204E-01$ $126.500$ $4.6654E-01$ $127.500$ $4.4115E-01$ $128.500$ $4.1591E-01$ $129.500$ $3.9075E-01$ $130.500$ $3.6570E-01$ $131.500$ $3.4072E-01$ $132.500$ $3.1584E-01$ $133.500$ $2.9107E-01$ $134.500$ $2.6637E-01$ $135.500$ $2.4175E-01$ $136.500$ $2.1718E-01$ $137.500$ $1.9267E-01$ $141.500$ $9.5054E-02$ $142.500$ $7.0726E-02$ $143.500$ $4.6436E-02$ $144.050$ $3.3089E-02$ $144.450$ $2.3416E-02$ $144.250$ $2.8250E-02$ $144.650$ $1.8580E-02$ $144.750$ $1.6162E-02$ $144.850$ $1.3744E-02$ $144.950$ $1.1326E-02$ $145.000$ $1.0819E-02$ $144.850$ $1.3744E-02$	99.500	1.2020E+00	100.500	1.1726E+00	101.500	1.1434E+00
105.500 $1.0286E+00$ $106.500$ $1.0004E+00$ $107.500$ $9.7238E-01$ $108.500$ $9.4456E-01$ $109.500$ $9.1691E-01$ $110.500$ $8.8937E-01$ $111.500$ $8.6198E-01$ $112.500$ $8.3473E-01$ $113.500$ $8.0761E-01$ $114.500$ $7.8058E-01$ $115.500$ $7.5370E-01$ $116.500$ $7.2697E-01$ $117.500$ $7.0038E-01$ $118.500$ $6.7391E-01$ $119.500$ $6.4757E-01$ $120.500$ $6.2133E-01$ $121.500$ $5.9521E-01$ $122.500$ $5.6923E-01$ $123.500$ $5.4338E-01$ $124.500$ $5.1765E-01$ $125.500$ $4.9204E-01$ $126.500$ $4.6654E-01$ $127.500$ $4.4115E-01$ $128.500$ $4.1591E-01$ $129.500$ $3.9075E-01$ $130.500$ $3.6570E-01$ $131.500$ $3.4072E-01$ $132.500$ $3.1584E-01$ $133.500$ $2.9107E-01$ $134.500$ $2.6637E-01$ $135.500$ $2.4175E-01$ $136.500$ $2.1718E-01$ $137.500$ $1.9267E-01$ $141.500$ $9.5054E-02$ $142.500$ $7.0726E-02$ $143.500$ $4.6436E-02$ $144.050$ $3.3089E-02$ $144.450$ $2.3416E-02$ $144.250$ $2.8250E-02$ $144.650$ $1.8580E-02$ $144.750$ $1.6162E-02$ $144.850$ $1.3744E-02$ $144.950$ $1.1326E-02$ $145.000$ $1.0819E-02$ $144.850$ $1.3744E-02$	102.500	1.1144E+00	103.500	1.0856E+00	104.500	1.0570E+00
108.5009.4456E-01109.5009.1691E-01110.5008.8937E-01111.5008.6198E-01112.5008.3473E-01113.5008.0761E-01114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01117.5007.0038E-01118.5006.7391E-01119.5006.4757E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01123.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02144.2502.8250E-02144.6501.8580E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	105.500	1.0286E+00	106.500	1.0004E+00	107.500	9.7238E-01
111.500 $8.6198E-01$ $112.500$ $8.3473E-01$ $113.500$ $8.0761E-01$ $114.500$ $7.8058E-01$ $115.500$ $7.5370E-01$ $116.500$ $7.2697E-01$ $117.500$ $7.0038E-01$ $118.500$ $6.7391E-01$ $119.500$ $6.4757E-01$ $120.500$ $6.2133E-01$ $121.500$ $5.9521E-01$ $122.500$ $5.6923E-01$ $123.500$ $5.4338E-01$ $124.500$ $5.1765E-01$ $125.500$ $4.9204E-01$ $126.500$ $4.6654E-01$ $127.500$ $4.4115E-01$ $128.500$ $4.1591E-01$ $129.500$ $3.9075E-01$ $130.500$ $3.6570E-01$ $131.500$ $3.4072E-01$ $132.500$ $3.1584E-01$ $133.500$ $2.9107E-01$ $134.500$ $2.6637E-01$ $135.500$ $2.4175E-01$ $136.500$ $2.1718E-01$ $137.500$ $1.9267E-01$ $138.500$ $1.6820E-01$ $139.500$ $1.4378E-01$ $140.500$ $1.1940E-01$ $141.500$ $9.5054E-02$ $142.500$ $7.0726E-02$ $143.500$ $4.6436E-02$ $144.050$ $3.3089E-02$ $144.150$ $3.0670E-02$ $144.250$ $2.8250E-02$ $144.650$ $1.8580E-02$ $144.750$ $1.6162E-02$ $144.850$ $1.3744E-02$ $144.950$ $1.1326E-02$ $145.000$ $1.0819E-02$ $144.850$ $1.3744E-02$	108.500	9.4456E-01	109.500	9.1691E-01	110.500	8.8937E-01
114.5007.8058E-01115.5007.5370E-01116.5007.2697E-01117.5007.0038E-01118.5006.7391E-01119.5006.4757E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01123.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.3502.5835E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	111.500	8.6198E-01	112.500	8.3473E-01	113.500	8.0761E-01
117.5007.0038E-01118.5006.7391E-01119.5006.4757E-01120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01123.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.3502.5835E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	114.500	7.8058E-01	115.500	7.5370E-01	116.500	7.2697E-01
120.5006.2133E-01121.5005.9521E-01122.5005.6923E-01123.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	117.500	7.0038E-01	118.500	6.7391E-01	119.500	6.4757E-01
123.5005.4338E-01124.5005.1765E-01125.5004.9204E-01126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	120.500	6.2133E-01	121.500	5.9521E-01	122.500	5.6923E-01
126.5004.6654E-01127.5004.4115E-01128.5004.1591E-01129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	123.500	5.4338E-01	124.500	5.1765E-01	125.500	4.9204E-01
129.5003.9075E-01130.5003.6570E-01131.5003.4072E-01132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.3502.5835E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	126.500	4.6654E-01	127.500	4.4115E-01	128.500	4.1591E-01
132.5003.1584E-01133.5002.9107E-01134.5002.6637E-01135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.3502.5835E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	129.500	3.9075E-01	130.500	3.6570E-01	131.500	3.4072E-01
135.5002.4175E-01136.5002.1718E-01137.5001.9267E-01138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.3502.5835E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	132.500	3.1584E-01	133.500	2.9107E-01	134.500	2.6637E-01
138.5001.6820E-01139.5001.4378E-01140.5001.1940E-01141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.3502.5835E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	135.500	2.4175E-01	136.500	2.1718E-01	137.500	1.9267E-01
141.5009.5054E-02142.5007.0726E-02143.5004.6436E-02144.0503.3089E-02144.1503.0670E-02144.2502.8250E-02144.3502.5835E-02144.4502.3416E-02144.5502.0998E-02144.6501.8580E-02144.7501.6162E-02144.8501.3744E-02144.9501.1326E-02145.0001.0819E-02144.8501.3744E-02	138.500	1.6820E-01	139.500	1.4378E-01	140.500	1.1940E-01
144.050 3.3089E-02 144.150 3.0670E-02 144.250 2.8250E-02   144.350 2.5835E-02 144.450 2.3416E-02 144.550 2.0998E-02   144.650 1.8580E-02 144.750 1.6162E-02 144.850 1.3744E-02   144.950 1.1326E-02 145.000 1.0819E-02	141.500	9.5054E-02	142.500	7.0726E-02	143.500	4.6436E-02
144.350 2.5835E-02 144.450 2.3416E-02 144.550 2.0998E-02   144.650 1.8580E-02 144.750 1.6162E-02 144.850 1.3744E-02   144.950 1.1326E-02 145.000 1.0819E-02	144.050	3.3089E-02	144.150	3.0670E-02	144.250	2.8250E-02
144.650 1.8580E-02 144.750 1.6162E-02 144.850 1.3744E-02 144.950 1.1326E-02 145.000 1.0819E-02	144.350	2.5835E-02	144.450	2.3416E-02	144.550	2.0998E-02
144.950 1.1326E-02 145.000 1.0819E-02	144.650	1.8580E-02	144.750	1.6162E-02	144.850	1.3744E-02
	144.950	1.1326E-02	145.000	1.0819E-02		

HWA GeoSciences Inc.









APPENDIX I

# **Remediation Cost Estimates**




PROJECT:

Sudbury Landfill

**DATE**: 2/26/2014

# PROJECT DESCRIPTION:

ET Cover for Area 2 and Area 5

CLIE	NΤ	
		•

# City of Walla Walla

CLIENT PR	OJ. NO.	J-U-B PROJ. NO.: 30-11-012-002				
ITEM			9	SCHEDULE OF VALUES		
NO.	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST	
1 2 3 4 5 6 7 8	Mobilization Construction Surveying Materials Testing Area 2 Soil Cover Area 5 Soil Cover Settlement Monitoring Station Area 2 Anti-Erosion Layer Area 5 Anti-Erosion Layer	1 1 24,200 104,867 2 1 1	LS LS CY CY EA LS LS	\$67,000 \$17,000 \$11,000 \$4 \$550 \$12,000 \$45,000	\$67,000 \$17,000 \$11,000 \$96,800 \$419,467 \$1,100 \$12,000 \$45,000	
	SUBTOTAL				\$669,367	
	WALLA WALLA SALES TAX			8.90%	\$59,574	
	SUBTOTAL				\$728,940	
Continger	ю			30%	\$218,682	
Engineeri	ng and Construction Phase Services			25%	\$182,235	
			TOTA	L ESTIMATED COSTS	\$1,129,857	
BBH		J-U-B ENGINEERS, INC.				
	SUITE 201. 2810 WEST CI FARW	ATER AVE., KENNEWICK, WAS	SHINGTON 99	336 (509) 783-2144		



PROJECT:

Sudbury Landfill

**DATE**: 7/15/2014

PROJECT DESCRIPTION:

North Ditch Storm Drainage Alternative 1: CIP Concrete

	L I	N	L	•	
~		v	L	•	

# City of Walla Walla

CLIENT PR	OJ. NO.	J-U	J-U-B PROJ. NO.: 30-11-012-002						
ITEM		SCHEDULE OF VALUES							
NO.	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST				
1 2 3 4 5 6 7	Mobilization 6" CIP Concrete 6" Leveling Pea Gravel Base 60-mil HDPE Liner HDPE Anchor Trench Earthwork Erosion Control Mat	1 175 383 28,320 2,360 961 1,115	LS CY CY SF LF CY SY	\$18,000 \$350 \$30 \$1.80 \$4 \$6 \$20	\$18,000 \$61,250 \$11,490 \$50,976 \$9,440 \$5,766 \$22,300				
	SUBTOTAL				¢170 222				
<u> </u>	SOBIOTAL			<u> </u>	<i>Φ</i> 1/7,∠∠∠				
	WALLA WALLA SALES TAX			8.90%	\$15.951				
<u> </u>	SUBTOTAL			0010	\$195.173				
Continger				30%	\$58,552				
Engineeri	ing and Construction Phase Services			25%	\$48,793				
			TOTA	AL ESTIMATED COSTS	\$302,518				
חסט									
	SUITE 201, 2810 WEST CLEARV	WATER AVE., KENNEWICK, WAS	SHINGTON 99	336 (509) /83-2144					



PROJECT:

Sudbury Landfill

**DATE**: 7/15/2014

PROJECT DESCRIPTION:

North Ditch Storm Drainage Alternative 2:Cable Block

CLIENT:		City of Walla Walla							
CLIENT PR	OJ. NO.	J-U-B PROJ. NO.: 30-11-012-002							
ITEM		SCHEDULE OF VALUES							
NO.	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST				
1 2 3 4 5 6	Mobilization Armortec 55S Mat 16 oz Nonwoven Fabric 60-mil HDPE Liner HDPE Anchor Trench Earthwork Erosion Control Mat	1 15,906 36,580 18,290 2,360 725 1,115	LS SF SF LF CY SY	\$47,000 \$11 \$5 \$1.80 \$4 \$6 \$20	\$47,000 \$174,966 \$182,900 \$32,922 \$9,440 \$4,350 \$22,300				
	SUBTOTAL				\$473,878				
	WALLA WALLA SALES TAX			8.90%	\$42,175				
0 11	SUBTOTAL			2001	\$516,053				
Continger	1Cy			30%	\$154,816				
Engineeri	ng and Construction Phase Services			25%	\$129,013				
			τοτα	L ESTIMATED COSTS	\$700 882				
					<i>ψ177</i> ,002				
LLR		J-U-B ENGINEERS, INC.	***************************************						
	SUITE 201, 2810 WEST CL	EARWATER AVE., KENNEWICK, WAS	SHINGTON 993	336 (509) 783-2144					
		· · ·							



PROJECT:

Sudbury Landfill

**DATE**: 7/15/2014

PROJECT DESCRIPTION:

North Ditch Storm Drainage Alternative 3:Precast Concrete

CLI	EN	T:	

# City of Walla Walla

CLIENT PR	OJ. NO.	J-U-	B PROJ. NO.:	30-11-012-002	
ITEM			SCHEDULE OF VALUES	LE OF VALUES	
NO.	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST
1 2 3 4 5 6 7	Mobilization Split Culvert 5076, Base Only 6" Leveling Pea Gravel Base 60-mil HDPE Liner HDPE Anchor Trench Earthwork Erosion Control Mat	1 1,180 274 27,140 2,360 770 1,115	LS LF CY SF LF CY SY	\$38,000 \$211 \$30 \$1.80 \$4 \$6 \$20	\$38,000 \$248,980 \$8,220 \$48,852 \$9,440 \$4,620 \$22,300
	SUBTOTAI				\$380 412
					¢000,112
	WALLA WALLA SALES TAX			8.90%	\$33,857
	SUBTOTAL				\$414,269
Continger	лсу			30%	\$124,281
Engineeri	ng and Construction Phase Services			25%	\$103,567
			TOTA	L ESTIMATED COSTS	\$642,116
LLK		J-U-B ENGINEERS, INC.			
	SUITE 201, 2810 WEST CLEA	RWATER AVE., KENNEWICK, WAS	SHINGTON 99	336 (509) 783-2144	



# ENGINEER'S OPINION OF PROBABLE COST

		INEER 3 OF INION OF FRU	JDADLE	0031	
PROJEC	T:	Sudbury Landfill		DATE:	7/15/2014
PROJEC	T DESCRIPTION:	Area 5 Stormwater Runoff Erosion (	Control Berm		
CLIENT:		City of Walla Walla			
CLIENT PR	ROJ. NO.	J-l	J-B PROJ. NO.:	30-11-012-002	
ITEM				SCHEDULE OF VALUES	S
NO.	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COS
1 2	Mobilization Erosion Control Mat (1190' x 8.5')	1 1,124	LS SY	\$2,000 \$20	\$2 \$22

1 2	Mobilization Erosion Control Mat (1190' x 8.5')	1 1,124	LS SY	\$2,000 \$20	\$2,000 \$22,478
	SUBTOTAL				\$24,478
	WALLA WALLA SALES TAX			8.90%	\$2,179
	SUBTOTAL				\$26,656
Continger	ncy			30%	\$7,997
Engineeri	ng and Construction Phase Services			25%	\$6,664
			TOT 4		¢ 44, 047
			IUIA	LESTIMATED COSTS	\$41,317
BBH		J-U-B ENGINEERS INC			
			SHINGTON 00	336 (500) 783-2111	
	SUITE 201, 2010 WEST CLEARWA	TEN AVE., INCOMENSION, WA	37111010101 77	000 (007) /0022 144	
1					



Sudbury Landfill

**DATE:** 7/15/2014

# PROJECT DESCRIPTION:

Area 5 Stormwater Runon - Alternative 1

CLIENT:		City of Walla Walla							
CLIENT PF	ROJ. NO.	J-U-B PROJ. NO.: 30-11-012-002							
ITEM		SCHEDULE OF VALUES							
NO.	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST				
1 2 3 4 5 6 7	Mobilization Remove Existing Asphalt Remove Existing 12-inch Concrete Culvert Imported Fill 12-inch SD Culvert CSTC HMA Pavement	1 590 36 4,430 30 140 130	LS SY LF CY LF Ton Ton	\$6,000 \$10 \$1 \$6 \$40 \$30 \$120	\$6,000 \$5,900 \$36 \$26,580 \$1,200 \$4,200 \$15,600				
	SUBTOTAL				\$59,516				
				0.0001					
	WALLA WALLA COUNTY SALES TAX			8.90%	\$5,297 \$64 912				
Continae	ncv			30%	\$19.444				
Engineer	ing and Construction Phase Services			25%	\$16,203				
			TOTA	L ESTIMATED COSTS	\$100,460				
BBH	SUITE 201, 2810 WEST CLE	J-U-B ENGINEERS, INC. ARWATER AVE., KENNEWICK, WAS	HINGTON 99:	336 (509) 783-2144					



PROJECT:

Sudbury Landfill

DATE:

7/18/2014

PROJECT DESCRIPTION:

Area 5 Stormwater Runon - Alternative 2

CLIENT:		City of Walla Walla						
CLIENT PI	ROJ. NO.	J-U-B PROJ. NO.: 30-11-012-002						
ITEM			SCHEDULE OF VALUES	ES				
NO.	DESCRIPTION	QUANTITY	UNIT	UNIT PRICE	TOTAL COST			
NO. 1 3 4 5 6 7 8	Mobilization Remove Existing 12-inch Concrete Culvert 12-inch SD Culvert Roadway Repair 12-inch SD Pipe Sedimentation Structure Pipe Penetration into Existing HDPE Lagoon Liner	1 36 36 1 483 1 1	LS LF LS LF EA LS	\$4,000 \$1 \$35 \$2,000 \$35 \$10,000 \$10,000	\$4,000 \$36 \$1,260 \$2,000 \$16,905 \$10,000 \$10,000			
	SUBTOTAL				\$44,201			
	WALLA WALLA COUNTY SALES TAX SUBTOTAL			8.90%	\$3,934 <b>\$48,135</b>			
Continge	ency	City of Walla Walla           J-U-B PROJ. NO:: 30-11-012-002           SCHEDULE OF VALUES           QUANTITY         UNIT         UNIT PRICE         TOTAL COST           1         LS         \$4,000         \$4,000           36         LF         \$35         \$1,260           36         LF         \$35         \$1,260           1         LS         \$2,000         \$2,000           483         LF         \$35         \$16,905           1         EA         \$10,000         \$10,000           1         EA         \$10,000         \$10,000           1         LS         \$30%         \$3,934           1         S48,135         \$30%         \$14,440     <						
Engineer	ring and Construction Phase Services		ΤΟΤΑ	25% AL ESTIMATED COSTS	\$12,034 <b>\$74,609</b>			
					· •			
BBH		J-U-B ENGINEERS, INC	·					
	SUITE 201, 2810 WEST CLEARW	ATER AVE., KENNEWICK, WA	SHINGTON 99	336 (509) 783-2144				

# Table LFG-2. Cost Estimate for LFG Control Systems, Areas 1, 2, and 5 Sudbury LF, Walla Walla, Washington Preliminary Engineer's Opinion of Probable Cost Prepared by Herrera Environmental Consultants, Date 2/11/14 by BAC/MMS

							Extended	
Item No.	Description	Quantity	Unit	ι	Jnit Price		Amount	Comments
	Extraction Well System Area 1							
1	Extraction well	2	ea	\$	5,555.00	\$	11,110.00	4" HDPE
2	Control valve station	2	ea	\$	350.00	\$	700.00	2" PVC Flo-Wing
3	Gas flow meter	1	ea	\$	4,500.00	\$	4,500.00	FCI GF90 Mass Flow Meter
4	Electrical connection	1	ea	\$	1,500.00	\$	1,500.00	Connect at flare
5	Trench excavation	15	cu yards	\$	12.00	\$	180.00	12" wide x 12" deep x 350'
6	Non-perforated pipe/backfill	350	lft	\$	20.00	\$	7.000.00	4" HDPE
				•		•	,	Worst case (cover material can
7	Disposal (soil)	25	ton	\$	89.00	\$	2 225 00	be segregated from MSW)
8	Carsonite stakes	20	63	¢	25.00	¢ ¢	2,220.00	50' spacing
0	System startup and testing	1	ea le	φ Φ	5 000 00	φ Φ	5 000 00	50 spacing
9	System startup and testing	1	15	φ	5,000.00	φ	5,000.00	
	Outstatel					۴	00 445 00	
						\$	32,415.00	
	Tax (8.9%)					\$	2,884.94	
	Contingency (30%)					\$	10,589.98	
	Engineering and Construction Pha	se Service	es (25%)			\$	8,824.98	7
	Total					\$	54,714.90	
	Extraction Well System Area 2							
1	Extraction well	1	ea	\$	5,555.00	\$	5,555.00	4" HDPE
2	Control valve station	1	ea	\$	350.00	\$	350.00	2" PVC Flo-Wing
3	Trench excavation	47	cu yards	\$	12.00	\$	564.00	12" wide x 12" deep x 575'
4	Non-perforated pipe/backfill	1280	lft	\$	20.00	\$	25,600.00	4" HDPE
	· · · · · F • · · • · • • F · F • · • • • · · · ·			Ŧ		+	,	Worst case (cover material can
5	Disposal (soil)	71	top	¢	80 00	¢	6 310 00	be segregated from MSW/)
6	Carsonite stakes	26	63	Ψ ¢	25.00	Ψ ¢	650.00	50' spacing
7	System startup and testing	20	ea lo	φ Φ	23.00 5 000 00	φ Φ	5 000 00	50 spacing
1	System startup and testing	1	IS	Ф	5,000.00	Ф	5,000.00	
	Subtotal					\$	44,038.00	
	Tax (8.9%)					\$	3,919.38	
	Contingency (30%)					\$	14,387.21	
	Engineering and Construction Pha	se Service	es (25%)			\$	11,989.35	_
	Total					\$	74,333.94	
	Active Collector Trench Area 2							
1	Control valve station	1	ea	\$	750.00	\$	750.00	2" PVC Flo-Wing
2	Trench excavation (deep)	741	cu yards	\$	12.00	\$	8,892.00	12" wide x 20' deep x 1,000'
3	Trench excavation (shallow)	42	cu yards	\$	12.00	\$	504.00	12" wide x 12' deep x 430'
4	Non-perforated pipe/backfill	1,000	lft	\$	20.00	\$	20,000.00	4" HDPE
5	Non-perforated pipe/backfill	1135	lft	\$	20.00	\$	22,700.00	4" HDPE
				•		•	,	Worst case (cover material can
6	Disposal (soil)	1175	ton	\$	89.00	\$	104 575 00	be segregated from MSW)
7	Carsonite stakes	/3	63	¢	25.00	¢	1 075 00	50' spacing
, 0	System startup and testing	40	le le	ψ ¢	5 000 00	φ ¢	5,000,00	So spacing
0	System startup and testing	1	15	φ	3,000.00	φ	3,000.00	
	Subtotal					¢	162 /06 00	
						¢	103,490.00	
	Tax (8.9%)					\$	14,551.14	
	Conlingency (30%)	o .	(050)			\$	53,414.14	
	Engineering and Construction Pha	se Service	es (25%)			\$	44,511.79	7
	Iotal					\$	275,973.07	
	Extraction Well System Area 5							
1	Extraction well	7	ea	\$	5,555.00	\$	38,885.00	4" HDPE
2	Control valve stations	7	ea	\$	350.00	\$	2,450.00	2" PVC Flo-Wing
3	Gas flow meter	1	ea	\$	4,500.00	\$	4,500.00	FCI GF90 Mass Flow Meter
4	Electrical connection	1	ea	\$	6,500.00	\$	6,500.00	Connect power at Area 6 T
5	Trench excavation	78	cu yards	\$	12.00	\$	936.00	12" wide x 12" deep x 2,100
6	Non-perforated pipe/backfill	2.100	lft	\$	20.00	\$	42,000.00	4" HDPE
-	1 1. <del> </del>	.,		Ŧ		Ŧ	,	Worst case (cover material can
7	Disposal (soil)	117	ton	¢	80 00	¢	10 413 00	he segregated from MSW/)
0	Carconito stakos	117	00	φ Φ	25.00	φ Φ	550.00	50' spacing
Ö	Carsullite Slakes	2Z ^	ea Io	¢	∠0.00	¢	5 000 00	ou spacing
9	System stanup and testing	1	IS	¢	5,000.00	¢	5,000.00	
10	vent Decommissioning	1	IS	\$	5,000.00	\$	5,000.00	
	Subtotal					\$	116,234.00	
	Tax (8.9%)					\$	10,344.83	
	Contingency (30%)					\$	37,973.65	
	Engineering and Construction Pha	se Service	es (25%)			\$	31,644.71	
	Total		. /			\$	196,197.18	
								-

#### OPINION OF POSSIBLE COST Sudbury Landfill Remedial Investigation Feasibility Study City of Walla Walla, Washington

ADMINISTRATION & OVERSIGHT COSTS	QUANTITY	UNIT	UNIT COST	TOTAL COST(a)
			0111 0001	
Engineering Design Report, Bidding	1	LS	\$200,000	\$200,000
Construction Close-out Report	1 1	LS	\$50,000	\$50,000
Annual Agency Interaction	10	YR	\$5,000	\$50,000
Ecology Oversight	10	YR	\$5,000	\$50,000
Assistance with 5-Year Review	2	YR	\$25,000	\$50,000
	TOTAL ADMINISTRATION COSTS			\$400,000
LONG-TERM COSTS				
Groundwater Monitoring(b)	10	YR	\$50,500	\$505,000
Off-site Lease Agreements	10	YR	\$2,000	\$20,000
Off-site Monitoring Well Decommissioning(c)	6	EA	\$2,000	\$12,000
LFG Monitoring(d)	10	YR	\$17,000	\$170,000
Operation and Maintenance(e)	10	YR	\$5,000	\$50,000
TOTAL LONG-TERM MONITORING COST \$757.000				

Notes:

(a) All cost values are estimates and should not be interpreted as final construction or project costs.

(b) Assumes sampling of 2 wells quarterly for VOCs, 6 wells annually for Appendix III parameters, quarterly and annual reports.

(c) Assumes systems evaluation and minor maintenance.

(d) LFG monitoring of perimeter gas wells quarterly, plus quarterly and annual reports.

(e) Assumes systems evaluation and minor maintenance.

CAP = Cleanup Action Plan

EA = Each

LS = Lump sum

FT = Foot

O&M = Operations and Maintenance

YR = Year

APPENDIX J

# **Proposed Draft Cleanup Action Plan Text**



## DISCLAIMER FOR DRAFT CLEANUP ACTION TEXT

The following text and figures are provided by the City for Ecology's use in the preparation of a draft cleanup action plan. The remedial action is based on the preferred alternative described in the RI/FS. Ecology is responsible for the cleanup action selection and the preparation of the cleanup action plan and is neither bound nor required to use any portion of this text.

## THIS PAGE LEFT INTENTIONALLY BLANK

# **TABLE OF CONTENTS**

1.0	INT 1.1	RODUCTION ADMINISTRATIVE DOCUMENTATION	1-1 1-1			
2.0	SUN	IMARY OF SITE CONDITIONS AND AFFECTED MEDIA	2-1			
	2.1	SITE DESCRIPTION AND SETTING	2-1			
		2.1.1 Site Location	2-1			
		2.1.2 Local Populations	2-1			
		2.1.3 Site Geology	2-1			
		2.1.4 Hydrogeology	2-2			
	2.2	LANDFILL AND GROUNDWATER MONITORING HISTORY	2-2			
	2.3	SUMMARY OF PREVIOUS INVESTIGATIONS AND CLEANUP ACTIONS	2-3			
		2.3.1 Assessment Monitoring and Domestic Well Sampling	2-3			
		2.3.2 Independent Remedial Investigation	2-3			
		2.3.3 Site MTCA Listing and Agreed Order	2-4			
		2.3.4 Interim Actions	2-4			
		2.3.5 Remedial Investigation	2-4			
	2.4	SUSPECTED SOURCES OF HAZARDOUS SUBSTANCES	2-5			
		2.4.1 Landfill Gas	2-5			
		2.4.2 Municipal Solid Waste in Contact with Groundwater	2-5			
		2.4.3 Leachate	2-5			
	2.5	CONTAMINATED MEDIA	2-6			
		2.5.1 Soil	2-6			
		2.5.2 Groundwater	2-6			
		2.5.3 Landfill Gas	2-6			
		2.5.4 Stormwater	2-7			
3.0	CLE	EANUP STANDARDS	3-1			
	3.1	CONSTITUENTS OF CONCERN	3-1			
		3.1.1 Chemicals Identified in groundwater	3-1			
	3.2	GROUNDWATER CLEANUP LEVELS	3-1			
	3.3	POINTS OF COMPLIANCE	3-2			
	3.4	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS	3-3			
4.0	SEL	ECTED CLEANUP ACTION AND JUSTIFICATION FOR SELECTION	4-1			
	4.1	4.1 CLEANUP ACTION ALTERNATIVES CONSIDERED				
	4.2	4.2 SELECTED CLEANUP ACTION 4-				
	4.3	ATTAINMENT OF REMEDIAL ACTION OBJECTIVES	4-2			

Page

		4.3.1	Complia	ance with MTCA Requirements	4-3
			4.3.1.1	Threshold Requirements	4-3
			4.3.1.2	Requirements for Landfill Containment Systems	4-4
		4.3.2	Complia	ance with ARARs	4-5
			4.3.2.1	Chemical-specific ARARs	4-5
			4.3.2.2	Location-specific ARARs	4-5
			4.3.2.3	Action-specific ARARs	4-5
5.0	DES	CRIPTI	ON OF T	HE SELECTED CLEANUP ACTION	5-1
	5.1	DESC	RIPTION	OF SELECTED CLEANUP ACTION	5-1
		5.1.1	Landfill	Cap	5-1
		5.1.2	Stormwa	ater Controls	5-1
			5.1.2.1	North Drainage Ditch	5-1
			5.1.2.2	Area 5 Stormwater Run-off	5-2
			5.1.2.3	Area 5 Stormwater Run-on	5-2
		5.1.3	Landfill	Gas Controls	5-3
	5.2	COMI	PLIANCE	MONITORING	5-3
		5.2.1	Groundy	water	5-3
		5.2.2	Landfill	Gas	5-4
		5.2.3	Landfill	Cover	5-5
		5.2.4	Stormwa	ater Controls	5-5
	5.3	INSTI	TUTIONA	AL CONTROLS	5-6
	5.4	PERIC	DDIC REV	/IEW	5-6
	5.5	IMPL	EMENTA	TION SCHEDULE	5-7
6.0	REF	ERENC	ES		6-1

# FIG

FIGURES				
<u>Figure</u>	Title			
1	Site Location			
2	Vicinity Map			
3	Average RI Groundwater Concentrations of TCE and PCE			

- 3 4
- Stormwater Control Alternatives Proposed Landfill Gas Extraction Well Systems 5

# LIST OF ABBREVIATIONS AND ACRONYMS

AO	Agreed Order No. 8456
ARARs	Applicable or relevant and appropriate requirements
bgl	Below ground level
City	City of Walla Walla, Washington
CAP	Cleanup action plan
CFR	Code of Federal Regulations
COC	Constituent of concern
DCAP	Draft cleanup action plan
Ecology	Washington State Department of Ecology
Freon 11	Trichlorofluoromethane
Freon 12	Dichlorodifluoromethane
FS	Feasibility Study
HHWF	Household Hazardous Waste Facility
LFG	Landfill gas
μg/L	Micrograms per liter
MCL	Maximum contaminant level
MSW	Municipal solid waste
MSWLF	Municipal solid waste landfill
MTCA	Washington State Model Toxics Control Act
PCE	Tetrachloroethene
RCW	Revised Code of Washington
RAO	Remedial action objective
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
Site	Sudbury Road Landfill
TCE	Trichloroethene
TDS	Total dissolved solids
USEPA	U.S. Environmental Protection Agency
VOC	Volatile organic compound
WAC	Washington Administrative Code
WSP	Washington State Penitentiary

## THIS PAGE LEFT INTENTIONALLY BLANK

#### **1.0 INTRODUCTION**

This Draft Cleanup Action Plan (DCAP) defines cleanup standards and describes a cleanup action for the City of Walla Walla, Washington (City) Sudbury Road Landfill (Site). The Site is an operating municipal solid waste (MSW) landfill generally located at 414 Sudbury Road (now Landfill Road), Walla Walla, Washington (Figure 1). The DCAP has been prepared pursuant to the requirements of the Model Toxics Control Cleanup Act (MTCA) administered by the Washington State Department of Ecology (Ecology) under Chapter 173-340 of the Washington Administrative Code (WAC). This DCAP provides a general description of the cleanup action at the Site and sets forth requirements that the cleanup must meet to achieve the cleanup standards and cleanup action objectives for the Site. The selected cleanup action was identified as the preferred cleanup action for the Site in the *Remedial Investigation/Feasibility Study* [Schwyn Environmental Services, LLC (Schwyn), 2014]

The selected cleanup action is intended to fulfill the requirements of the MTCA. As described in WAC 173-340-380(1)(a) this DCAP includes:

- A general description of the selected cleanup action developed in accordance with WAC 173-340-350 through 173-340-390.
- A summary of the rationale for selecting the proposed alternative.
- A brief summary of other cleanup action alternatives evaluated in the remedial investigation/feasibility study (RI/FS).
- Cleanup standards for each hazardous substance and for each medium of concern at the site.
- The schedule for implementation of the cleanup action plan.
- Institutional controls required as part of the cleanup action.
- Applicable state and federal laws for the cleanup action.
- A preliminary determination by the department that the cleanup action will comply with WAC 173-340-360.
- Where the cleanup action involves on-site containment, specification of the types, levels, and amounts of hazardous substances remaining on site and the measures that will be used to prevent migration and contact with those substances.

## **1.1 ADMINISTRATIVE DOCUMENTATION**

Documents used to develop this DCAP and the decisions contained herein are contained in Ecology's files. The administrative record for this Site is on file and available for public review by appointment at Ecology's Eastern Regional Office, located at 4601 N. Monroe, Spokane, Washington 99205-1295. Documents previously available for public comment are also available at the Walla Walla Public Library. The following documents were used to develop the cleanup action:

- Ecology, 2007. *Washington Administrative Code*. Chapter 173-340, Model Toxics Control Act Cleanup Regulation. Compiled by Ecology's Toxics Cleanup Program. Publication No. 94-06. November.
- Ecology, 1993. *Washington Administrative Code*. Chapter 173-351, Criteria for Municipal Solid Waste Landfills. October.
- J-U-B Engineers, Inc. 2010. Specifications and Plans, Area 6 Closure, Sudbury Road Landfill. January.
- Schwyn, 2014. *Remedial Investigation/Feasibility Study, Sudbury Road Landfill, Walla Walla, Washington.* September.

## 2.0 SUMMARY OF SITE CONDITIONS AND AFFECTED MEDIA

## 2.1 SITE DESCRIPTION AND SETTING

## 2.1.1 SITE LOCATION

The Sudbury Road Landfill is generally located at 414 Landfill Road (formerly Sudbury Road), Walla Walla, Washington 99362, about 4 miles west of the city of Walla Walla and 0.25 mile north of Highway 12 (Figure 1). The landfill itself covers approximately 125 acres and is composed of seven active and former disposal areas (Areas 1 through 7). The landfill is located within the western portion of an 828.86-acre City-owned parcel of land that is zoned and used for various waste management purposes (Figure 2). The landfill is located in rural southeastern Washington and entirely surrounded by large expanses of rolling hills used for dry-land wheat farming.

#### 2.1.2 LOCAL POPULATIONS

The Washington State Penitentiary (WSP) and its inmate population are located immediately east of the Site property boundary and more than 1.2 miles east of the landfill itself. Groundwater under the WSP property is hydraulically upgradient of the Site. The WSP is a known hazardous waste site with documented releases of tetrachloroethene (PCE) to groundwater. The closest rural residential populations are located approximately 2,000 feet or more south of the landfill.

Four residential properties located northwest, west, and southwest of the landfill maintain their own domestic wells for water supply (Figure 2) and are, in general, hydraulically downgradient of the landfill:

- The Camp well is located approximately 0.75 mile northwest of the landfill. Low concentrations of PCE [up to 0.88 micrograms per liter ( $\mu$ g/L)], have been detected in groundwater samples collected from the Camp Well.
- The Small well is located approximately 0.75 mile west of the landfill. Low concentrations of volatile organic compounds (VOCs), including chloroform (up to 0.67  $\mu$ g/L), PCE (up to 1.5  $\mu$ g/L), and trichloroethene (TCE; up to 0.62  $\mu$ g/L) have been detected in groundwater samples collected from the Small well.
- The Kinman well is located approximately 1.5 mile west of the landfill. VOCs have not been detected in groundwater samples collected from the Kinman well.
- Two wells are located on the Schmidt property, which is located approximately 1.5 mile southwest of the landfill. One well is 122 feet deep and designated for domestic purposes. The other is 780 feet deep, constructed in basalt, and designated for irrigation purposes. VOCs have not been detected in groundwater samples collected from the Schmidt well that is used for domestic purposes, and the deep basalt well was not sampled for the RI.

#### 2.1.3 SITE GEOLOGY

The Site lies on the northern flank of the Walla Walla Valley. The subsurface geology beneath the landfill consists of (from upper to lower) Palouse silt; reworked lacustrine silt and clay of the Touchet

beds; interbedded alluvial gravels in a clayey, silty, or sandy matrix, informally termed the "old gravel and clay"; and Columbia River basalt. The unconsolidated to semi-consolidated deposits overlying the Columbia River basalts may be 600 feet or more in thickness.

Vadose zone soils in the landfill area consist of silt, clayey silt, and fine sandy silt, which are interpreted to be soils of the Palouse Formation and the Touchet beds. These silty soils exhibit laboratory permeabilities in the range of  $10^{-6}$  to  $10^{-5}$  centimeters per second. Underlying the silty soils is a unit consisting of consolidated to semi-consolidated, poorly-graded gravel, silty gravel, and silt, which are interpreted to correlate with the "old gravel and clay" unit.

#### 2.1.4 HYDROGEOLOGY

Groundwater beneath the Site is first encountered at depths from approximately 30 to 87 feet below ground level (bgl) in the lower silt horizon of the Touchet beds and/or the underlying alluvial gravel aquifer. The inferred groundwater flow direction is to the west and southwest, with an approximate horizontal gradient of 0.004 feet per foot beneath the landfill. The calculated groundwater velocity is about 190 feet/year. The groundwater levels in the vicinity of the landfill have been declining, and since 1997, the water level in MW-12 has declined as much as 10 feet.

A second, more regional, deep aquifer is present in the underlying Columbia River basalts. Information from the driller's water well reports, within the vicinity of the Site, indicated that the basalt aquifer had a potentiometric surface in the range of 150 to 200 feet bgl and a positive upward gradient (EMCON 1995).

#### 2.2 LANDFILL AND GROUNDWATER MONITORING HISTORY

The Sudbury Road Landfill is currently operating in accordance with the standards of Chapter 173-351 WAC, Criteria for Municipal Solid Waste Landfills (Ecology 1993) and a Municipal Solid Waste Landfill (MSWLF) Permit issued by the Walla Walla County Health Department (WWCHD). The initial Conforming Permit for the landfill was issued on June 27, 1977, and news publications announced that the "New City Landfill on Sudbury Road" was opened to the public on July 10, 1978 (*Walla Walla Union Bulletin* 1978). Municipal solid waste (MSW), asbestos waste, and medical waste have been placed on the landfill property since that time. Hazardous wastes have never knowingly been accepted at the landfill. MSW has been placed in five separate areas, commonly referred to as Areas 1, 2, 5, 6, and 7. Asbestos waste has been disposed of in two separate cells (4a and 4). A single medical waste cell has been used. In 2006, a temporary composting facility was constructed above the former asbestos and medical waste cells, and a permanent facility that complied with Chapter 173-350 WAC was constructed and opened in 2009. The approximate limits of the refuse disposal areas are shown on Figure 2. The practices used to fill the waste disposal areas are fully described in the RI/FS Report (Schwyn 2014).

Groundwater monitoring has been conducted on a quarterly schedule since July 1978. In July 2001, monitoring well MW-15 was installed in the northwest corner of the landfill to monitor the groundwater quality of the uppermost aquifer immediately downgradient of Area 5. VOCs, including TCE, PCE, trichlorofluoromethane (Freon 11), dichlorodifluoromethane (Freon 12), vinyl chloride, chloroethane, 1,1-dichloroethane, and cis-1,2-dichloroethane, and inorganic constituents, including calcium, sodium, bicarbonate/alkalinity, chloride, and total dissolved solids (TDS), were detected at higher concentrations in MW-15 relative to the concentrations in other Site wells and the area-wide background concentrations of PCE, TCE, and chloroform. Concentrations of all of these constituents in MW-15 except chloride and TDS have exceeded the site-specific Chapter 173-351 WAC compliance levels (prediction intervals) on at least two consecutive occasions. These exceedances prompted further investigation and remedial actions at the Site.

# 2.3 SUMMARY OF PREVIOUS INVESTIGATIONS AND CLEANUP ACTIONS

#### 2.3.1 Assessment Monitoring and Domestic Well Sampling

In September 2002, an assessment monitoring program was initiated in accordance with WAC 173-351-440. Assessment monitoring increases the number of constituents tested from the number routinely tested for during detection monitoring. The tests resulted in only one additional constituent found to be present at concentrations greater than background concentrations – Freon 12. Freon 12 was subsequently added to the routine monitoring program for the landfill.

Groundwater monitoring for VOCs in three domestic wells (Small, Camp, and Kinman) was initiated in 2002. The wells are located hydraulically downgradient, approximately 0.75 to 1.5 mile west and northwest of the landfill. Low concentrations of chloroform, PCE, and TCE were detected in groundwater samples collected from the Small well, and low levels of PCE were detected in groundwater samples collected from the Camp Well. VOCs were not reported in the Kinman well. Periodic sampling continued into 2013. A review of VOC concentrations in the domestic wells by the Washington State Department of Health in 2012 (WDOH 2012) indicated that the concentrations were safe for individuals who use the groundwater for drinking, showering, bathing, and cooking.

#### 2.3.2 INDEPENDENT REMEDIAL INVESTIGATION

Preliminary remedial studies were initiated in 2004 to characterize the MW-15 contamination and fulfill the requirements of WAC 173-351-440(6) (WAC was revised in 2012). A Work Plan was prepared to guide the RI process (LAI 2004). An Independent RI was initiated in 2005 in general accordance with the 2004 RI Work Plan; however, the investigation was stalled in 2006 before all of the tasks had been completed because of a number of factors, including available funding and off-Site access.

#### 2.3.3 SITE MTCA LISTING AND AGREED ORDER

In January 2010, Ecology submitted an Early Notice Letter to the City. The Early Notice Letter indicated that Ecology was aware that a release of hazardous substances had occurred at the Sudbury Road Landfill, and that the site would be added to the database of known or suspected contaminated sites, with further remedial actions to be taken in accordance with the MTCA. Agreed Order No. 8456 (AO) was subsequently initiated between the City and Ecology and became effective May 26, 2011. The AO required the City to conduct a RI/FS to investigate the nature and extent of contaminants of concern in groundwater associated with the Sudbury Road Landfill.

#### 2.3.4 INTERIM ACTIONS

Interim actions were initiated at the Site in 2010 consistent with the Revised Interim Action Plan (Schwyn 2010). The interim actions included:

- Area 6 closure design and construction; and
- Design and construction of stormwater controls on the north side of Area 5 and Area 6.

The Area 6 closure consisted of the design and construction of (1) an evapotranspiration (ET) cover that met the requirements of WAC 173-351-500(1)(b) for arid areas (WAC was revised in 2012), (2) a landfill gas (LFG) collector and control system, and (3) a stormwater collector and conveyance system.

Construction of stormwater drainage control located on the north side of Area 5 and 6 (commonly referred to as the north drainage ditch) was needed to prevent stormwater from infiltrating into Area 5 and 6 refuse. The interim action was designed to promote stormwater flow through the valley adjacent to Area 5 and 6 and minimize pooling. The engineering design features of the interim action included (1) a sedimentation basin, (2) filling of depressions in the valley bottom and grading to direct stormwater flow to the west, (3) installation of a culvert under the western perimeter roadway to allow the stormwater to flow off-Site, and (4) installation of erosion control mats in the stormwater channel.

#### 2.3.5 REMEDIAL INVESTIGATION

In 2012 and 2013, a RI was conducted in accordance with the AO. The scope of work was detailed in the RI Work Plan (Schwyn 2011). Initial field studies were conducted in April and May 2012, and additional field studies were conducted in August 2012 to achieve the Work Plan objectives. The methods and findings of the RI were presented in the Final Draft RI/FS Report (Schwyn 2014). The RI/FS Report was finalized after a public comment period. The following sections are based on the findings of the RI/FS.

#### 2.4 SUSPECTED SOURCES OF HAZARDOUS SUBSTANCES

Most of the waste disposed of at the Site is MSW transported to the Site by commercial and public garbage disposal service contractors from the City, as well as Walla Walla and Columbia Counties, which are predominantly rural counties with an agricultural economic base and little manufacturing or heavy industry. Permitted waste disposal at the Site has been limited to MSW, asbestos, and medical wastes. The Site has also provided special areas for animal carcass disposal. Hazardous substances have never knowingly been allowed into the landfill based on the available information.

Based on the RI data, the suspected sources of hazardous substances found in groundwater at the landfill include the following

- LFG;
- Direct disposal of MSW in groundwater; and
- Leachate.

#### 2.4.1 LANDFILL GAS

During the RI, LFG was observed in all of the MSW disposal areas. Laboratory analysis of the LFG indicated the presence of VOCs at concentrations that could impact groundwater quality; if not controlled, the LFG has the potential to transfer contaminants to underlying groundwater by means of chemical equilibrium processes. Area 1, 2, and 5 do not have LFG control systems in place. An evaluation of the LFG extraction system in Area 6 indicates that the system is effectively controlling LFG in Area 6.

#### 2.4.2 MUNICIPAL SOLID WASTE IN CONTACT WITH GROUNDWATER

Direct disposal of MSW in groundwater appears to be limited to a small area located within the northern Area 5 disposal trench. VOC and inorganic constituent concentrations in groundwater do not increase significantly downgradient of the MSW in groundwater, and therefore the small area of deposition below the groundwater table is not considered a significant contaminant source. MSW occurrence below the water table was observed only in one soil boring (SB-20); however, wet soils were observed near the base of the MSW in several other borings located along the northern Area 5 disposal trench. The declining elevation of the regional groundwater table is beneficially providing greater separation of the MSW and groundwater with time and, therefore, should provide better protection from the migration of VOCs to groundwater.

#### **2.4.3 LEACHATE**

Leachate could be a contributing source of hazardous substances as a result of the following:

• Infiltration of precipitation and stormwater into MSW due to insufficient soil cover. Thin landfill cover soils were observed over most of Area 2 and portions of Area 5.

- Infiltration of stormwater into, or near the MSW, that may saturate or wet the MSW, allowing leachate to percolate downward. There are three areas of concern:
  - An unlined stormwater drainage channel that extends along the north side of Area 5 approximately 30 to 40 feet from where MSW is buried.
  - Stormwater run-on observed in the southwestern portion of Area 5
  - Boggy areas and erosion channels observed in the southwestern portion of the Area 5 cover soil.
- Improper grading of soil cover, which promotes surface water retention and infiltration. Two linear road cuts on the north slope of Area 5 and erosion channels and boggy areas on the west side of Area 5 likely impede stormwater flow and potentially promote infiltration.
- VOCs detected in soil samples collected beneath the MSW in Areas 1, 2, and 5. The VOCs in soil may be an indicator of downward leachate migration or an indicator of LFG impact on soil, or a combination of both.

### 2.5 CONTAMINATED MEDIA

#### 2.5.1 SOIL

Soil is not a medium in need of cleanup at the Site. No human exposure is possible because contaminated soils are found beneath the permitted landfill cells at depths greater than 15 feet bgl, the areas of contamination are capped, and institutional controls [such as those described in WAC 173-340-440(1)(a)(b)(c) and (d)] are in effect for the landfill as a requirement of the MSWLF Permit.

#### 2.5.2 GROUNDWATER

Based on the RI findings, the environmental medium that requires cleanup is groundwater. Exceedances of the groundwater cleanup levels for PCE and vinyl chloride have been detected at well MW-15, which is located at the downgradient property boundary. Average concentrations of PCE detected during the RI are shown on Figure 3. Vinyl chloride was only detected in MW-15. Off-property migration of contaminants in groundwater has occurred; however, there were not exceedances of the cleanup levels in samples from the off-Site monitoring and domestic wells nearest to MW-15.

#### 2.5.3 LANDFILL GAS

LFG is generated during the decomposition of refuse by anaerobic bacteria and the release of VOCs from the disposed waste products. The LFG studies conducted during the RI indicate that while off-Site methane migration has not occurred, the VOCs found in LFG at Areas 1 and 5 are at high enough concentrations that controls need to be put in place. Area 6 has an LFG control system that is effectively capturing LFG (active since 2010); Areas 1, 2, and 5 do not have LFG control systems. Investigation of soil vapor intrusion into the Household Hazardous Waste Facility (HHWF) did not indicate LFG was at concentrations that posed a risk to workers or customers of the Site at the HHWF.

## 2.5.4 STORMWATER

Stormwater is not a potentially contaminated medium because there are no pathways for stormwater at the Site to encounter hazardous materials before running off-Site.

## THIS PAGE LEFT INTENTIONALLY BLANK

#### 3.0 CLEANUP STANDARDS

The MTCA cleanup regulations provide that a cleanup action must comply with the site-specific cleanup standards described in WAC 173-340-700, which include cleanup levels for hazardous substances at the Site, the locations or points of compliance where the cleanup levels must be met, and applicable or relevant and appropriate requirements (ARARs) based on federal and state laws.

#### 3.1 CONSTITUENTS OF CONCERN

A large number of environmental samples have been collected at the Site. The existing data set was examined for the media of concern. The environmental media sampled at the Site were soil, LFG, and groundwater. Soil and LFG are not considered media for which cleanup levels need to be established because the affected soil lies under capped area and LFG is an accepted and managed element of operating landfills with little potential for human exposure if controlled. Groundwater does show impacts beneath and downgradient of the landfill and therefore, cleanup levels must be established for groundwater.

#### **3.1.1** CHEMICALS IDENTIFIED IN GROUNDWATER

PCE and vinyl chloride were the only chemicals with concentrations that exceeded their respective federal and state screening levels and are the COCs at the Site. The most stringent screening levels for PCE and vinyl chloride in groundwater are listed in the following table.

Constituent of Concern	Screening Level (µg/L)	Maximum Detected Concentration (µg/L)
Tetrachloroethene	5	6.8
Vinyl chloride	0.029	1.2

 $\mu g/L = micrograms per liter$ 

The highest concentrations were detected in monitoring well MW-15, with vinyl chloride detected in MW-15 only. The maximum and average concentrations of PCE in the groundwater samples collected from the Site wells were less than the screening levels in all wells except MW-15.

#### **3.2 GROUNDWATER CLEANUP LEVELS**

There is a pathway of exposure for groundwater downgradient of the landfill, especially the residential properties who currently use wells for domestic purposes. Therefore, groundwater cleanup

levels at the Site were established on the basis of the protection of human health related to drinking water as the highest beneficial use.

MTCA Method B groundwater cleanup levels were developed for the COCs; PCE and vinyl chloride. The cleanup levels were developed as follows:

- The cleanup level for PCE is based on the most stringent of the ARARs and is, therefore, equal to the screening level of  $5 \mu g/L$ .
- The cleanup level for vinyl chloride was adjusted upward from the screening level of 0.029  $\mu$ g/L to 0.29  $\mu$ g/L. In accordance with WAC 173-340-720, groundwater cleanup levels for individual hazardous substances may be adjusted provided that in making these adjustments, (1) the cleanup level is at least as stringent as the most stringent concentration established under applicable state and federal laws [in this case, Maximum Contaminant Levels (MCLs)], and the cleanup level is at least as stringent as the concentrations that protect human health. A concentration is sufficiently protective if the hazard index does not exceed 1 and the total excess cancer risk does not exceed 1 in 100,000 (1 x 10⁻⁵).

The adjusted cleanup level for vinyl chloride is provided in the following table, along with the associated risk. The table indicates that this value, even with the upward adjustment, meets the intent of WAC 173-340-720. The value is less than the state and federal MCL of 2  $\mu$ g/L and meets the risk requirements with a total excess cancer risk of 1.0 x 10⁻⁵ and a hazard index of 0.11 (including the risk posed by PCE).

		Associated Risk Values	
Constituent of Concern	Cleanup Level (µg/L)	Excess Cancer Risk	Hazard Quotient
Tetrachloroethene	5.0	$2.3 \times 10^{-7}$	0.1
Vinyl chloride	0.29	9.9 x 10 ⁻⁶	0.01
	Total Risk	1.0 x 10 ⁻⁵	0.11

 $\mu g/L = micrograms per liter$ 

## 3.3 POINTS OF COMPLIANCE

Points of compliance (locations where the cleanup levels must be achieved) are established for each affected medium at the Site. Groundwater is the only identified environmental medium of concern; therefore, the points of compliance are identified for groundwater only.

The standard point of compliance for groundwater under MTCA is "throughout the site from the uppermost level of the saturated zone extending vertically to the lowest depth which could potentially be affected by the site" [WAC 173-340-720(8)(b)]. However, for landfills, a conditional point of compliance is typically used that sets the point of compliance at the downgradient edge of the waste cells, or the landfill boundary, whichever is closer [WAC 173-340-720(8)(c)]. For this Site, the downgradient boundary coincides with the western edge of Area 5; therefore, a conditional point of compliance is set at

the western property boundary. Compliance may be monitored by a series of monitoring wells located as close as practical to this boundary; from north to south, the wells are MW-3, MW-15D, MW-15, MW-18, MW-16, and MW-14B.

## **3.4 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS**

In accordance with MTCA, all cleanup actions must comply with applicable state and federal laws [WAC 173-340-710(1)]. MTCA defines applicable state and federal laws to include legally applicable requirements and those requirements Ecology determines, based on consideration of the criteria in WAC 173-340-710(4), are relevant and appropriate requirements. Collectively, these requirements are referred to as ARARs. The potential ARARs for this project include the following:

- MTCA Cleanup Regulation (Chapter 173-340 WAC);
- Minimum Functional Standards for Solid Waste Handling (Chapter 173-304, WAC);
- Criteria for Municipal Solid Waste Landfills (Chapter 173-351 WAC);
- Solid Waste Handling Standards (Chapter 173-350 WAC);
- Dangerous Waste Regulations (Chapter 173-303 WAC);
- State Environmental Policy Act (SEPA) Rules (Chapter 197-11 WAC);
- Safe Drinking Water Act, Primary Drinking Water Regulations [Code of Federal Regulations Title 40, Part 141 (40 CFR 141)]
- State Water Code and Water Rights (Chapters 173-150 and 173-154 WAC);
- Underground Injection Control Program (Chapter 173-218 WAC);
- State Water Pollution Control Act (Chapter 90.48 RCW);
- Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 RCW);
- Washington Clean Air Act (Chapter 70.94 WAC);
- General Regulations for Air Pollution Sources (Chapter 173-400 WAC);
- Operating Permit Regulation (Chapter 173-401 WAC);
- Occupational Safety and Health Act (29 CFR 1910.120);
- Washington Industrial Safety and Health Act (Chapter 49.17 RCW); and
- Accreditation of Environmental Laboratories (Chapter 173-50 WAC).

#### 4.0 SELECTED CLEANUP ACTION AND JUSTIFICATION FOR SELECTION

The cleanup action described in this section was selected based on the evaluation of various alternatives presented in the RI/FS Report (Schwyn 2014). The selected cleanup action complies with the MTCA requirements in WAC 173-340-360. The cleanup action will include active remediation components, compliance monitoring and institutional controls, all of which are described below.

#### 4.1 CLEANUP ACTION ALTERNATIVES CONSIDERED

A range of cleanup action alternatives were considered during the RI/FS process. Initially, candidate remedial technologies applicable for the Site were identified and screened in the remedial action (RA) focusing study (Schwyn 2013a). A list of potential cleanup action technologies was compiled on the basis of the nature and sources of the COCs identified for the Site, the environmental medium of concern (groundwater), and the potential exposure pathway (drinking water). Potentially applicable cleanup action technologies were then screened against the criteria described in WAC 173-340-350(8)(b) and WAC 173-340-360(2)(a)(b) and a condensed set of remedial technologies was identified for detailed evaluation in the FS.

Based on the preliminary screening of technologies in the RA Focusing Study, the following technologies, or combination of technologies, were retained for detailed evaluation in the FS:

- No or limited actions
  - No action
  - Limited action:
    - o Institutional controls
    - Long-term monitoring
- In-situ biological, chemical, and physical treatment:
   Monitored natural attenuation
- Hydraulic containment: groundwater extraction with ex-situ treatment by one of the following methods:
  - Carbon adsorption
  - Evaporation
  - Sprinkler irrigation
- Source elimination or controls:
  - LFG extraction and treatment
  - Leachate controls:
    - o Geosynthetic/multimedia cap
    - Low-permeability or evapotranspiration soil cover
    - o Manipulation and/or reconstruction of existing soil cover
  - Stormwater controls:
    - o Surface regrading
    - Stormwater channel construction
    - o Run-on prevention.

In-situ biological, chemical, and physical treatment and hydraulic containment were evaluated in the FS and were eliminated because COCs above the cleanup levels have not been detected in the off-Site monitoring wells. Limited actions, including institutional controls and long-term monitoring were retained and coupled with all engineering control technologies evaluated to fulfil the MTCA expectations for containment sites identified in WAC 173-340-740(6)(f).

### 4.2 SELECTED CLEANUP ACTION

The selected cleanup action for the Site consists of improved capping of several solid waste cells, capture and destruction of LFG, and controls on stormwater to prevent leachate generation. It also includes provisions for long-term monitoring and institutional controls.

The MTCA defines specific requirements for a selected remedy to be protective of human health and the environment and identifies criteria that must be met by each alternative. In addition, landfill regulations guide the selection of other requirements that must be satisfied for a landfill to be closed in a fashion that reduces or prevents the release of solid waste constituents, leachate, and LFG to the ground, groundwater, surface water, and the atmosphere. The regulations also require that a landfill continue operation and maintenance of the selected remedy and ongoing monitoring of the various media at the landfill.

The components of the selected cleanup action for the Site consist of:

- Landfill cap improvement using an ET cover over Areas 2 and 5, including grading design
- Stormwater controls:
  - Cast-in-place concrete for the north drainage ditch;
  - Erosion control berm for Area 5 runoff; and
  - Diversion of run-on from the southwest side of Area 5.
- Active LFG extraction and destruction in Areas 1, 2, and 5.
- Long-term monitoring of:
  - Groundwater;
  - LFG;
  - Landfill cap; and
  - Stormwater controls.
- Institutional controls.

The components of the selected cleanup action are discussed in Section 5. A summary of how the selected cleanup action meets the MTCA cleanup action requirements is included in the following subsections.

## 4.3 ATTAINMENT OF REMEDIAL ACTION OBJECTIVES

The remedy was evaluated for its compliance with MTCA cleanup goals, including those for landfill remedies. As described in the following subsections, the selected cleanup action meets the requirements of MTCA and achieves the remedial action objectives (RAOs) established for the Site. Protection of human health and the environment at the Site can be achieved through the fulfillment of the following RAOs:

- Protect groundwater resources by eliminating, reducing, or controlling the suspected sources of COCs (specifically PCE and vinyl chloride) detected in groundwater at the landfill.
- Prevent direct contact with landfill contents to protect human and terrestrial receptors;
- Control of stormwater runoff and run-on, and erosion;
- Control of contaminant leaching to groundwater by minimizing stormwater infiltration at the landfill; and
- Control and destruction of LFG.

#### 4.3.1 COMPLIANCE WITH MTCA REQUIREMENTS

Certain minimum requirements must be met for a selected remedy to comply with the requirements of MTCA. This section discusses how the selected cleanup action meets these requirements.

#### **4.3.1.1** Threshold Requirements

The threshold criteria identified in WAC 173-340-360(2)(a) that must be met by the selected remedy and the reasons that the selected cleanup action meets them are as follows:

- **Protect human health and the environment.** The landfill cap will prevent direct contact with solid waste by people, plants, and terrestrial receptors. The landfill cap and stormwater controls will decrease the amount of generated leachate by limiting the infiltration of stormwater. The stormwater controls will ensure that stormwater will not come in contact with solid waste. The LFG extraction well systems for Areas 1, 2, and 5 will collect VOCs entrained in the LFG and route them through the flare system for destruction, limiting the source of VOCs and minimizing the LFG to groundwater cross-media-contaminant pathway. Source control actions, such as the LFG system, are expected to further improve groundwater conditions. The monitoring and maintenance requirements combined with the environmental covenant will ensure that the cap, stormwater controls and LFG system are maintained over time. The selected cleanup action protects human health and the environment and meets the expectations for the protection of terrestrial receptors in Chapter 173-340 WAC.
- **Comply with cleanup standards (WAC 173-340-700 through 173-340-760).** The landfill cap will allow soil with COC concentrations greater than the cleanup levels to be left in place as long as the requirements for a containment remedy are met. The COC concentrations in groundwater will comply with the MTCA Method B cleanup levels at the point of compliance at the edge of the waste. All COC concentrations in groundwater are already in compliance, with the exception of PCE and vinyl chloride at well MW-15. The concentrations in downgradient off-Site groundwater currently meet the cleanup levels and will be monitored routinely to ensure that the groundwater conditions are improving over time and the COCs are not migrating off-site. The LFG controls will control cross-media contamination of groundwater by VOCs. The presence of LFG will continue indefinitely as long a methane is being produced, and LFG control will be integrated into the overall management of the landfill operations.

- **Comply with applicable local, state, and federal laws (WAC 173-340-710).** The designed landfill cap, in conjunction with the proposed stormwater infrastructure, will ensure compliance with the requirements of WAC 173-340-710(7)(c). The LFG control requirements apply to the specific landfill regulations, as outlined in Section 6.3 (ARARs). The other components of the selected remedial action are consistent with the applicable regulations.
- Provide for compliance monitoring (WAC 173-340-410 and WAC 173-340-720 through 173-340-760). Compliance monitoring of LFG and groundwater will be conducted consistent with an agency approved compliance monitoring plan.

WAC 173-340-360(2)(b) specifies three additional criteria that must be satisfied by the selected

remedial action. The following list indicates how the remedial action satisfies the criteria:

- Use permanent solutions to the maximum extent practicable. The selected cleanup action is permanent to the maximum extent practicable for closed solid waste cells. The landfill cap will prevent direct contact by potential receptors and stormwater controls will limit infiltration. Monitoring and maintenance requirements, along with an environmental covenant, will ensure that the containment remedy will remain protective over time.
- **Provide for a reasonable restoration timeframe.** An ET cover is already in place in Area 6 and is functioning as designed. The ET cover for Areas 2 and 5 will be constructed within 1 to 2 years after Ecology approves the design, a reasonable timeframe. The implementation of the LFG control systems will occur concurrently with the construction of the landfill cap. A significant reduction in COC concentrations in groundwater is expected within several months after the LFG system startup. The COC concentrations in groundwater are expected to be in compliance within a reasonable timeframe, likely within 6.2 years or less after the LFG collection efforts begin.
- **Consider public concerns (WAC 173-340-600).** A public comment period will be held to allow the public and parties affected by the cleanup action an opportunity to provide comment on this cleanup action plan. Public comments and concerns will be addressed in a responsiveness summary and incorporated as appropriate in the final cleanup action plan.

#### 4.3.1.2 Requirements for Landfill Containment Systems

Several additional elements of WAC 173-340-740(6)(f) identify the requirements of a containment remedial action and allow soil and solid waste with concentrations greater than the soil cleanup levels to remain in place. The selected cleanup action meets these requirements in the following ways:

- **Institutional controls are in place.** An environmental covenant will be established to ensure that the components of the cleanup action, including the landfill cap, maintenance and monitoring of the LFG control systems, and groundwater monitoring, are implemented. The landfill is fenced, and maintenance and monitoring of the LFG control systems in Areas 1, 2, and 5 will be performed.
- Compliance monitoring and periodic reviews are designed to ensure long-term integrity of the system. Monitoring of the LFG control systems will be implemented and included in the Operations, Maintenance, and Monitoring Plans for the LFG control systems installed in Areas 1, 2, and 5. Likewise, groundwater will continue to be monitored

until it is fully in compliance with the cleanup levels, at which point groundwater monitoring will continue in accordance with the MSWLF Permit for the Site.

• Types, levels, and amounts of hazardous substances remaining on-site and the description of the measures used to prevent migration and contact are specified in the CAP. The material remaining within Areas 1, 2, and 5 is MSW. Measures to prevent migration of hazardous substances within the MSW off-Site and contact with the MSW consist of placement of cover over the waste, LFG extraction and destruction, and minimizing production of leachate through stormwater controls, along with institutional controls and compliance monitoring.

#### 4.3.2 COMPLIANCE WITH ARARS

The selected cleanup action complies with the following chemical-, location-, and action-specific ARARs under WAC 173-340-710.

#### 4.3.2.1 Chemical-specific ARARs

The selected cleanup action is predicted to attain concentration-based cleanup levels developed under MTCA for the COCs in groundwater at the Site. A 6 to 7 year restoration time-frame was identified in the RI/FS for attainment of COC in groundwater cleanup levels.

#### 4.3.2.2 Location-specific ARARs

No location-specific ARARs that apply to the selected cleanup action have been identified.

#### 4.3.2.3 Action-specific ARARs

Action-specific ARARs are requirements that define acceptable management practices and are usually specific to certain kinds of activities that occur or are specific to the technologies that are used during the implementation of cleanup actions. The selected cleanup action will comply with the requirements discussed in the following subsections.

#### Landfill Standards

The selected cleanup action will comply with the standards for landfill closure requirements as identified in Chapters 173-301, 173-304, or 173-351 WAC. Containment of landfill waste is relied on as the remedy for landfills, and, therefore, landfill capping (including stormwater controls) and LFG controls are the selected remedies to comply with the landfill standards and to address contaminated groundwater at the Site. Institutional controls will also be implemented to augment the engineering controls and to protect human health and the environment. Long-term monitoring will be performed to ensure that the components of the preferred remedy are operating as intended.

#### Federal, State, and Local Air Quality Protection Programs

Regulations promulgated under the federal Clean Air Act (United States Code, Title 42, Section 7401) and the Washington State Clean Air Act (Chapter 70.94 RCW) govern the release of airborne

contaminants from point and nonpoint sources. These requirements apply to the Site because the selected cleanup action will extract and destroy LFG, which may require permitting. Additionally, any construction activities associated with the selected cleanup action will need to meet all federal, state, and local air quality requirements for controlling fugitive dust and other emissions.

#### Federal and State Worker Safety Regulations

The safety of workers implementing remedies at hazardous waste sites are covered by the following regulations:

- Health and Safety for Hazardous Waste Operations and Emergency Response (HAZWOPER), Chapter 296-62 WAC; and Health and Safety, 29 CFR 1901.120;
- Occupational Safety and Health Act; and
- Washington Industrial Safety and Health Act (WISHA), Chapter 296-62 WAC, Chapter 296-155 WAC, and Chapter 49.1 RCW.

## THIS PAGE LEFT INTENTIONALLY BLANK
## 5.0 DESCRIPTION OF THE SELECTED CLEANUP ACTION

The general details for the selected cleanup action are presented below. Additional details will be provided in the Engineering Design Report, which will be prepared by the City of Walla Walla for Ecology review and approval prior to implementation of the selected cleanup action at the Site.

# 5.1 DESCRIPTION OF SELECTED CLEANUP ACTION

#### 5.1.1 LANDFILL CAP

An ET cover will be constructed over Area 2 and Area 5.

An ET cover was the final cover selection for the Area 6 closure in 2010; therefore, several key aspects of the design have already been completed. As described in a January 2010 memorandum prepared by HWA (provided in RI/FS Report Appendix H), a 4.8-foot-thick layer of native soils loosely compacted in 24-inch lifts at 85 percent of maximum compaction was the design solution for the Area 6 cover. The top foot of the cover incorporated Class B biosolids from the Walla Walla Wastewater Treatment Plant as well as compost from the compost facility at the Site to create an organic topsoil layer in which dry land vegetation would thrive. Follow-up inspections indicate that the Area 6 cover is performing well. Therefore, the same ET cover design will be used at Areas 2 and 5.

To meet the requirements of the ET cover functionality and address overall site drainage, including potential infiltration via the road cuts on the north side of Area 5, a grading design will be prepared. The suitability of the existing Area 5 soil cover, required compaction (or loosening and scarification) efforts, and installation methodology will be described in the engineering design report. The source for soil to be used to complement the existing thin cover on Area 2 will also be identified in the Engineering Design Report.

## 5.1.2 STORMWATER CONTROLS

Stormwater controls are specifically needed on the north, west, and south sides of Area 5. The stormwater controls include improvement to the north drainage ditch channel, Area 5 stormwater runoff and to repair erosion features in the Area 5 cover, and surface elevation regrading to prevent stormwater run-on to Area 5. Regrading of Areas 2 and 5 will also be performed during the placement of the ET covers. The stormwater controls required for the north drainage ditch and Area 5 runoff and run-on are summarized in the following subsections.

#### 5.1.2.1 North Drainage Ditch

A cast-in-place concrete channel was selected for the improvement of the north drainage ditch. A geomembrane will provide secondary protection underneath the concrete channel. The concrete cast-in-

place channel will have a slope at 0.7% toward the west, which will promote a "scouring" velocity that is designed to flush sediments from the ditch flow line.

Although the ditch will be designed to be self-cleaning, the City may wish to occasionally remove sediment and wind-blown debris. Therefore, the cross-sectional shape of the ditch will be rectangular to allow the City's compact rubber-tired skid steer to be driven within the ditch. The cast-in-place concrete channel design will include reinforced concrete and a pea gravel base to provide the structural support needed for the skid steer. The general design is shown on Figure 4.

The cast-in-place concrete channel will be designed to allow sheet runoff from Area 5 to enter into the ditch. The design will include a strip of geomembrane that is bolted to the top of the concrete channel and covered with an erosion control mat on the south side of the ditch to prevent undermining and rutting as the sheet flow enters the channel (Figure 4).

#### 5.1.2.2 Area 5 Stormwater Run-off

An erosion control berm will be constructed to facilitate the movement of Area 5 surface drainage, address the rutting and soil erosion concerns on the southwest and west sides of Area 5, and impede run-on. The erosion control berm will consist of a V-shaped channel lined with an erosion control mat as shown on Figure 4. The erosion control berm will extend along the entire southern boundary and west side of Area 5 and sloped to convey stormwater runoff from Area 5 to the north drainage ditch, as shown on Figure 4. The total length of the berm will be about 1,500 feet, and it will have a maximum 4 percent slope.

#### 5.1.2.3 Area 5 Stormwater Run-on

The selected alternative for run-on prevention at the southwest side of Area 5 includes the construction of an elevated berm north of the compost facility to prohibit stormwater generated south of Area 5 to flow north, and regrading the surface soil in the valley east of the compost facility to divert stormwater south and west onto the compost pad, and ultimately into the compost facility lagoon. The alternative requires the reconstruction of approximately 200 LF of the existing compost access road in order to raise the grade of the road and prevent runoff from flowing north. The general configuration is shown on Figure 4. The addition stormwater from a 25-year, 24-hour rainfall event diverted into the compost facility lagoon is calculated to cause a 2.8-inch rise in the water level within the lagoon, which the lagoon has capacity to handle in accordance with the surface impoundment standards of chapter 173-350 WAC.. Additionally, daily monitoring and the ability to pump water from the lagoon and use it in the compost process or move excess water to landfill leachate lagoons mitigates any effects that an anomalous storm event could have on pond sizing.

#### 5.1.3 LANDFILL GAS CONTROLS

LFG controls on Areas 1, 2, and 5 must prevent LFG from impacting groundwater. LFG controls will also protect human health from toxic gases, prevent explosion hazards, and ensure that LFG will not migrate off-site in the future. To date, monitoring has shown that LFG is present only within the boundaries of the Site and is not intruding into the HHWF.

The current LFG extraction and gas treatment system for Area 6 will be expanded to include Areas 1, 2 and 5. The existing flare is currently operating at approximately 45 percent flow capacity, leaving adequate capacity for the estimated additional LFG from Areas 1, 2, and 5. Two extraction wells will be installed in Area 1, one extraction well will be installed in Area 2, and seven extraction wells will be installed in Area 5. The extraction wells will be linked by a header system to the existing flare station for LFG destruction. Refer to Figure 5 for the locations of the proposed landfill gas extraction wells.

At Area 1, one extraction well will be located near GW-11 and a second extraction well will be installed approximately 140 feet northeast of GW-11. Considering the small size of Area 2, one extraction well that is centrally located in the MSW should effectively reduce the volume, toxicity, and mobility of LFG. The locations of the seven Area 5 extraction wells will be spaced with a radius of 150 feet, comparable to the spacing of the extraction wells in Area 6. The extraction wells will be screened throughout the depth of MSW in each area. During the extraction well installation the existing Area 5 gas vent will be decommissioned to prevent short-circuiting of the LFG to surface or intake of surface air. Vent decommissioning will be accomplished by filling the vent from bottom to top with concrete

## 5.2 COMPLIANCE MONITORING

Compliance monitoring will be conducted in accordance with WAC 173-340-410. Detailed requirements will be described in the Compliance Monitoring Plan which will be a part of the Engineering Design Report The following subsections describe the monitoring requirements for the landfill to ensure that the remedy is effective and provide long-term protection of human health and the environment.

#### 5.2.1 GROUNDWATER

The goal of groundwater monitoring is to confirm that the landfill remedy is performing adequately and that the engineering controls are working and to document that PCE and vinyl chloride concentrations in groundwater are stable or decreasing. Both on-site and downgradient off-Site groundwater will be monitored. The contaminant concentrations in downgradient off-Site groundwater currently meet the cleanup levels; therefore, the groundwater will be monitored to ensure that the conditions are stable or improving over time. On-site monitoring will be conducted to monitor changes in groundwater quality after implementation of the cleanup actions. Periodic monitoring for a broader spectrum of constituents other than VOCs will be conducted to ensure that changes in the environmental conditions do not cause release of other contaminants that could adversely affect groundwater.

Monitoring wells MW-11, MW-12b, MW-14b, and MW-15 are currently being sampled quarterly in accordance with the MSWLF Permit. The groundwater samples are analyzed for Appendix I and II detection monitoring constituents, per WAC 173-351-990, plus Freon 12, in accordance with Chapter 173-50 WAC. Specific details of the groundwater monitoring are included in the Revised Compliance Monitoring Plan (Schwyn 2013b). In addition to the routine landfill compliance sampling, groundwater samples will also be collected quarterly from downgradient off-Site monitoring wells MW-19 and MW-20 and annually from the Small and Camp wells for VOC analysis. Additionally, groundwater samples will be collected annually from MW-11, MW-14b, and MW-15 and analyzed for Appendix III parameters, per WAC 173-351-990.

The original groundwater monitoring plan and SAP for the Site was included in the Hydrogeologic Report (EMCON 1995), and the SAP was subsequently approved during the permitting process required by Chapter 175-351 WAC. Since the SAP approval, several permit modifications have been made (in 1999, 2001, 2007, 2012, and 2013) and approved by the WWCHD. Sampling, analysis, and quality assurance procedures will comply with the Compliance Monitoring Plan in effect at the time.

The groundwater monitoring results will be reported quarterly, with annual summary reports, and the findings will be reviewed at least every 5 years during the 5-year MTCA review process. Modifications to the monitoring locations, analyses, or frequency will be documented at that time. Long-term monitoring of off-site groundwater will occur for a minimum period of 5 years, or at least 2 years after the cleanup levels for groundwater are achieved.

#### 5.2.2 LANDFILL GAS

Typically, LFG collector systems require two types of monitoring: operational and performance. The locations of the gas wells, the frequency of monitoring, and the specific monitoring requirements will be defined in an Operations, Maintenance, and Monitoring Plan to be included as part of the Engineering Design Report.

To optimize the control system, operational monitoring will be required during system startup. Ongoing monitoring will be required, based on the system response after full build-out, to ensure that the LFG control system is operating effectively.

Performance monitoring will be conducted in Area 1 (GW-11) and Area 5 (GW-5 and GW-6), and at the landfill perimeter using existing gas monitoring wells (GW-7S, GW-7D, GW-8, GW-9, GW-10, and GW-12). Performance of the control systems will be based on not exceeding the methane lower explosive limit at the Site boundary and diminishing VOC concentrations in groundwater monitoring wells located downgradient of Areas 1 and 5. LFG monitoring will occur for a minimum

period of 5 years, or at least 2 years after the cleanup levels for groundwater are achieved. Mitigating actions associated with LFG control will also take current landfill regulations [WAC 173-351-200(4)] into account, requiring monitoring and compliance with gas control standards.

### 5.2.3 LANDFILL COVER

Annual landfill cover inspection, maintenance and repair procedures will be conducted to preserve the intended function of the ET covers. The following cover conditions will be observed and documented:

- Appearance and condition of the vegetation;
- Vegetation stress or death due to LFG;
- Deposition of eroded soil at the toe of steep slopes;
- Soil erosion;
- Rills or cracks in the cover;
- Changes in the surface slope and settlement of waste;
- Intrusion by humans or animals;
- Holes of any kind that allow surface runoff to enter the MSW directly;
- Wildlife trails created on the cover; and
- Damage by vehicles or maintenance machines.

Maintenance and repairs will be conducted on an as-needed basis to maintain the integrity of the ET covers. Long term care will continue for at least a 30-year period and until a registered professional engineer certifies to the WWCHD and Ecology that post closure activities are no longer needed. The inspections will likely be combined with the inspections already being conducted per the Post-Closure Plan for Area 6.

## 5.2.4 STORMWATER CONTROLS

Currently, stormwater monitoring is not conducted at the Site. Previously, the landfill operated under the Statewide General Industrial Stormwater Permit; however, follow-up inspections by Ecology confirmed the relative lack of runoff at the landfill, and the permit was consequentially terminated by Ecology.

Inspection of stormwater controls will be conducted on an annual schedule consistent with the inspection of the ET covers. Inspections will document disturbances that result in erosion, settlement, ponded stormwater, and blockage of ditch flow lines. Maintenance will be conducted on an as needed basis.

# 5.3 INSTITUTIONAL CONTROLS

In accordance with WAC 173-340-440, MTCA requires that institutional controls such as environmental covenants be imposed on contaminated property whenever the remedial action conducted will result in remaining hazardous substances in soil, groundwater, or other media at concentrations that exceed the applicable cleanup levels, or when Ecology determines that such controls "are required to assure the continued protection of human health and the environment or the integrity of the interim or cleanup action." An environmental covenant is also required on the deed to meet the requirements stipulated in WAC 173-351-500(1)(h). The covenant will describe with specificity the activity or limitations that prohibit uses and activities that:

- Threaten the integrity of any cover, waste containment, stormwater control, gas, leachate, public access control, or environmental monitoring systems;
- May interfere with the operation and maintenance, monitoring, or other measures necessary to ensure the integrity of the landfill and continued protection of human health and the environment; and
- May result in the release of solid waste constituents or otherwise exacerbate exposures.

The purpose of an environmental covenant is to prohibit activities that may interfere with a cleanup action, operation and maintenance, or monitoring or activities that may result in the release of a hazardous substance that was contained as a part of the cleanup action. Environmental covenants must be recorded in order to provide adjoining property owners, future purchasers, and tenants, as well as the general public, notice of the restrictions on use of the property. Property owners are also required to notify Ecology prior to any lease or sale of the restricted property.

To ensure that the components of the remedial action are operated efficiently and continue to be operated and maintained properly, an environmental covenant will be used as a legal measure to provide a clear record of the responsibilities and restrictions for the landfill. The environmental covenant will also ensure that the remedial action remains protective of human health and the environment and that the required landfill maintenance and monitoring are performed as necessary, in coordination with Ecology. The environmental covenant will be developed as part of the Consent Decree.

# **5.4 PERIODIC REVIEW**

WAC 173-340-420 states at sites where a cleanup action requires an institutional control, a periodic review shall be completed no less frequently than every five years after the initiation of a cleanup action. Since the waste materials will remain on-site and institutional controls will be required, periodic reviews shall take place at this Site until the groundwater cleanup levels are achieved at the conditional point of compliance. Monitoring data shall be reviewed on a frequency of every five years to continue to assess the effectiveness of the groundwater contamination treatment.

When the groundwater cleanup levels are achieved at the conditional point of compliance, the acting jurisdictional health department will regulate routine closure and post-closure activities consistent with the role of the jurisdictional health department described in WAC 173-351-460.

# 5.5 IMPLEMENTATION SCHEDULE

The implementation schedule for the cleanup actions has not been fully determined at this time. There will be a 30-day public comment period for the DCAP, after which Ecology will consider public comments before issuing the Final CAP. Construction of the remedy is expected to occur during the spring and summer of 2016.

# THIS PAGE LEFT INTENTIONALLY BLANK

## 6.0 **REFERENCES**

EMCON. 1995. *Hydrogeologic Report, Sudbury Road Landfill, Walla Walla County, Washington.* Prepared for the City of Walla Walla. June.

Schwyn Environmental Services, LLC (Schwyn). 2014. Draft Final Remedial Investigation/Feasibility Study Report, Sudbury Road Landfill, Walla Walla, Washington. Prepared for the City of Walla Walla. September 15.

———. 2013a. *Remedial Alternatives Focusing Study, Sudbury Road Landfill, Walla Walla, Washington.* Prepared for the City of Walla Walla. November 8.

——. 2013b. *Revised Compliance Monitoring Plan, City of Walla Walla Sudbury Road Landfill.* Letter to Kevin Tureman, R.S., Walla Walla County Health Department. June 28.

——. 2011. Data Summary and Remedial Investigation Work Plan, Sudbury Road Landfill, Walla Walla, Washington. With accompanying Sampling and Analysis Plan, Quality Assurance Project Plan, and Health and Safety Plan. Prepared by Schwyn for the City of Walla Walla. 28 December.

———. 2010. *Revised Interim Action Plan, Sudbury Road Remedial Action, Walla Walla, Washington.* Prepared by Schwyn for the City of Walla Walla, Solid Waste Division. March 31.

U.S. Environmental Protection Agency (USEPA). 1989. *Risk Assessment Guidance for Superfund*. Volume 1, *Human Health Evaluation Manual (Part A)*. Interim Final. EPA/540/1-89/002. Office of Emergency and Remedial Response, Washington, D.C. Available at: <u>http://www.epa.gov/oswer/riskassessment/ragsa/index.htm</u>. December.

*Walla Walla Union Bulletin.* 1978. New City Landfill on Sudbury Road Opens Monday. Whitman College Penrose Library, microfiche. 9 July.

Washington State Department of Ecology (Ecology). 2007. *Washington Administrative Code*. Chapter 173-340, Model Toxics Control Act Cleanup Regulation. Compiled by Ecology's Toxics Cleanup Program. Publication No. 94-06. November.

———. 1993. *Washington Administrative Code*. Chapter 173-351, Criteria for Municipal Solid Waste Landfills. October.

Washington State Department of Health (WDOH). 2012. *Private Well Volatile Organic Compound Exposure Near Sudbury Road, Walla Walla, Walla Walla County, Washington.* Letter Health Consultation prepared by the WDOH under a cooperative agreement with the Agency for Toxic Substances and Disease Registry. July 18.





F:hprojects/Schtywn-Sudbury/GIS/MXD/Schwyn Request/2013 RI Figures/Figure 2 (Landfill Vicinity Map).mxd 3/18/20



I:\GIS\Projects\Schywn-Sudbury\MXD\CAP\Figure 3 (Average RI Concentration of TCE and PCE).mxd 7/23/2014



