

Sediment Site Characterization
Evaluation of Bellingham Bay
Creosote Piling and Structure
Removal, Cornwall Avenue Landfill
Mapping, Boulevard Park Overwater
Walkway Feasibility, and Dioxin
Background Sampling and Analysis
Bellingham, Washington

Prepared for Washington State Department of Ecology

June 26, 2009 17330-17

Sediment Site Characterization **Evaluation of Bellingham Bay** Creosote Piling and Structure Removal, Cornwall Avenue Landfill Mapping, Boulevard Park Overwater Walkway Feasibility, and Dioxin **Background Sampling and Analysis** Bellingham, Washington

Prepared for Washington State Department of Ecology

June 26, 2009 17330-17

Prepared by Hart Crowser, Inc.

Colleen Rust

Senior Staff

Hydrogeologist

Anne Conrad Senior Staff

Geochemist

Page Muslin

Roger McGinnis, PhD

Senior Associate

Environmental Chemist

Fax 206.328.5581 Tel 206.324.9530

CONTENTS	<u>Page</u>
EXECUTIVE SUMMARY	ES-1
1.0 INTRODUCTION	1
2.0 SEDIMENT ASSESSMENT	3
2.1 Deviations from SAP	3
2.2 Sample and Survey Location Control	4
2.3 Sediment Core Samples	4
2.4 Surface Sediment Grab Samples	5
3.0 SEDIMENT ANALYSES AND DATA QUALITY	6
3.1 Chemical Analysis	6
3.2 Bioassay Testing	7
3.3 Sediment Profile Imaging (SPI) Testing	8
4.0 BELLINGHAM BAY-WIDE DIOXIN BACKGROUND INVESTIGATION	9
4.1 Sample Locations	9
4.2 Analytical Results	9
4.3 Summary and Conclusions	10
5.0 R.G. HALEY SITE SEDIMENT INVESTIGATION	11
5.1 Sample Locations	11
5.2 Sediment Sampling and Observations	11
5.3 Sediment Physical Characteristics	12
5.4 Chemical Analysis	12
5.5 Sediment Bioassay Testing Results 5.6 Summary and Conclusions	1 <i>7</i> 18
3.0 Summary and Conclusions	10
6.0 CORNWALL AVENUE LANDFILL SITE	19
6.1 Sample Locations	19
6.2 Distribution of Municipal Refuse and Wood Waste	20
6.3 Summary and Conclusions	22
7.0 BELLINGHAM BAY PILING STUDY AREA	22
7.1 Sample Locations	23
7.2 Sediment Sampling and Observations	23

Hart Crowser Page i 17330-17 June 26, 2009

CON	NTENTS (Continued)	<u>Page</u>
7.4 7.5	Sediment Physical Characteristics Chemical Analysis Sediment Bioassay Testing Results Summary and Conclusions	24 24 26 27
8.0	REFERENCES	27
9.0	LIMITATIONS	29
TAE	BLES	
1 2 3 4 5 6 7 8 9 10	Sediment Sample Collection Data Sediment Sample Testing Summary Sediment Quality Criteria Compared to Laboratory Detection and Quantita Grain Size and Conventional Parameter Results for Sediment Samples Analytical Results and TCDD TEQs for Bay-Wide Sediment Samples Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry- Analytical Results for R.G. Haley Sediment Samples Compared to SMS Crite Analytical Results and TCDD TEQs for R.G. Haley Sediment Samples Analytical Results for Bellingham Bay Piling Study Area Sediment Samples O Dry-Weight Criteria Analytical Results for Bellingham Bay Piling Study Area Sediment Samples SMS Criteria Analytical Results and TCDD TEQs for Bellingham Bay Piling Study Area Sediment Samples O SMS Criteria Analytical Results and TCDD TEQs for Bellingham Bay Piling Study Area Sediment Samples O SMS Criteria	-Weight Criteria teria Compared to AET Compared to
1 2 3 4 5 6 7 8 9 10	Vicinity Map Site Plan Bellingham Bay Recent Dioxin/Furan Surface Sample Location Map and Di Bellingham Bay Historical Dioxin/Furan Surface Sample Location Map and Samish Bay Reference Sample Location Map Bellingham Bay-Wide Sediment Dioxin/Furan Congener Ratios R.G. Haley Site Sample Location Plan and Sediment Criteria Exceedances R.G. Haley Site Dioxin TEQ Data Bioassay Sample Location Plan and Sediment Criteria Exceedances Cornwall Avenue Landfill SPI and Core Location Plan Showing Core Mater Cornwall Avenue Landfill SPI and Core Location Plan Showing Wood Was Refuse Distribution	Dioxin TEQ Data

<u>Page</u>

FIGURES (Continued)

- 12 Cornwall Avenue Landfill SPI and Core Location Plan Showing Wood Waste/Municipal Refuse Distribution with Recent Sedimentation
- Bellingham Bay Piling Study Area Sample Location Plan and Sediment Criteria Exceedances
- 14 Bellingham Bay Piling Study Area Dioxin TEQ Data

APPENDIX A FIELD DOCUMENTATION VIBRACORE LOGS

TABLES

- A-1 Sample Location Coordinates
- A-2 Surface Sediment Grab Sample Descriptions

FIGURES

A-1 Key to Exploration Logs

A-2 and A-3 Vibracore Log BBP-SC-01 and BBP-SC-02 A-4 through A-12 Vibracore Log RGH-SC-01 through RGH-SC-09

APPENDIX B-1 CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

B-1-1

Chemical Data Quality Review for R. G. Haley Site

B-1-1

APPENDIX B-2 CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

B-2-1

Chemical Data Quality Review for Bellingham Bay Piling Study Area

B-2-1

CONTENTS (Continued)	<u>Page</u>
APPENDIX B-3 CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS	B-3-1
Chemical Data Quality Review for Bellingham Bay Dioxin Background Investigation	B-3-1
APPENDIX B-4 CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS	B-4-1
Chemical Data Quality Review for Reference Sample	B-4-1
CERTIFICATES OF ANALYSIS ANALYTICAL RESOURCES, INC. TEST AMERICA - SACRAMENTO	
APPENDIX C SEDIMENT TOXICITY TESTING DATA QUALITY REVIEW AND LABORATORY REPORTS NORTHWESTERN AQUATIC SCIENCES	C-1
Amphipod (Eohaustorius estuarius) 10-Day Toxicity Test Juvenile Polychaete (Neanthes arenaceodentata) 20-Day Toxicity Test Larval (Mytilus galloprovincialis) 10-Day Toxicity Test	C-1 C-2 C-3
ATTACHMENT C-1 BIOLOGICAL ASSESSMENT OF SEDIMENT FROM BELLINGHAM BAY LABORATORY REPORT AND SUPPORTING DOCUMENTATION NORTHWESTERN AQUATIC SCIENCES	

APPENDIX D CORNWALL AVENUE LANDFILL SEDIMENT PROFILE IMAGE (SPI) REPORT

Hart Crowser Page iv 17330-17 June 26, 2009

APPENDIX E CORNWALL AVENUE LANDFILL SEDIMENT VIBRACORE LOCATIONS, DESCRIPTIONS, AND LOGS

TABLES

- E-1 Cornwall Avenue Landfill Vibracore Location Coordinates
- E-2 Cornwall Avenue Landfill Sediment Coring Observations

APPENDIX F
PHOTOGRAPHS
BELLINGHAM, WASHINGTON

SEDIMENT SITE CHARACTERIZATION **EVALUATION OF BELLINGHAM BAY CREOSOTE PILING AND STRUCTURE** REMOVAL, CORNWALL AVENUE LANDFILL MAPPING, BOULEVARD PARK OVERWATER WALKWAY FEASIBILITY, AND DIOXIN BACKGROUND SAMPLING AND ANALYSIS **BELLINGHAM. WASHINGTON**

EXECUTIVE SUMMARY

Bellingham Bay is undergoing cleanup and environmental restoration as part of the Bellingham Bay Demonstration Pilot - a collaborative effort by representatives from local, state, federal and tribal governments to cleanup Bellingham Bay, control pollution sources, and restore habitat. Part of the cleanup work includes removal of creosote-treated pilings and structures to reduce sources of potential pollution to the bay and biota. The R.G. Haley and Bellingham Bay Piling Study areas were sampled and analyzed to assess conditions associated with creosote-treated structures. Sediment investigations were conducted at the Cornwall Avenue Landfill site to assess the extent of municipal refuse and wood debris, and bay-wide sampling and analysis were performed to evaluate bay-wide background surface sediment dioxin conditions in Bellingham Bay.

Bellingham Bay background dioxin concentrations are comparable to those reported in the Bellingham Bay dredged material disposal site and higher than unimpacted Puget Sound background locations. Overall, surface sediment dioxin concentrations in Bellingham Bay have decreased by a factor of about 10 or more compared to concentrations reported in 2000. This decrease in surface sediment concentrations is most likely due to high rates of sediment deposition of cleaner material from the Nooksack River, which has mixed with and buried contaminated surface sediment.

R.G. Haley sediment chemical concentrations were below screening criteria for surface sediment samples, but there were exceedances in subsurface sediment samples. The sediments adjacent to a derelict pier structure showed exceedances of criteria for semivolatile organic compounds (SVOCs) at most locations sampled. Sediment larval bioassay testing results indicated biological impacts in surface sediment even though chemical concentrations were less than screening criteria. Sediment chemical concentrations at the R.G. Haley site generally tend to increase with depth suggesting that sediment deposition may be burying historical contaminated sediment or degradation or redistribution/mixing of sediments may be occurring in this area. Diesel- and heavy oil-range hydrocarbons, pentachlorophenol, polycyclic aromatic hydrocarbons (PAHs), and dioxins detected in surface sediment samples at the

Page ES-1 Hart Crowser

R.G. Haley site may be a result of migration from the upland or seepage upward through the sediment.

Sediment profiling imaging (SPI) and plan view images collected at the Cornwall Avenue Landfill site did not identify significant amounts of municipal refuse or wood waste (sawdust/woodchips) on the surface. Core samples generally identified less than 5 percent of municipal refuse at depths varying from 1 to 5 feet below the surface. Wood waste, in the form of sawdust, woodchips, or pieces of bark, was observed in layers at depths varying from the surface to the bottom of the cores. Sedimentation rates near the landfill appear to be relatively high based on the presence of greater than 1 foot of clean overlying sediment in more than half of the core samples.

Chemical concentrations in surface sediment samples collected from the Pilings Area between Boulevard Park and the Cornwall Avenue Landfill were below applicable screening criteria while subsurface sediment samples had only minor exceedances of screening criteria. Surface sediment passed both chronic and acute biological toxicity tests. Due to the gravelly substrate, sample locations had to be moved 10 to 25 feet offshore from the pilings and, therefore, results may not accurately reflect sediment conditions adjacent to the pilings.

Page ES-2 Hart Crowser

1.0 INTRODUCTION

This report presents the results of several sediment investigations performed for the Washington State Department of Ecology (Ecology) in Bellingham Bay, Washington (Figure 1). Bellingham Bay is undergoing cleanup and environmental restoration as part of the Bellingham Bay Demonstration Pilot - a collaborative effort by representatives from local, state, federal, and tribal governments to cleanup Bellingham Bay, control pollution sources, and restore habitat. Part of the cleanup work includes removal of creosote-treated pilings and structures to reduce sources of potential pollution to the bay and biota. The R.G. Haley and Bellingham Bay Piling Study areas were sampled and analyzed as part of the current sediment investigation to assess conditions associated with creosote-treated structures. Additional sediment investigations were conducted at the Cornwall Avenue Landfill site, along the alignment of a proposed overwater walkway between Boulevard Park and Cornwall Avenue Landfill, and an evaluation of bay-wide background dioxin conditions in Bellingham Bay. These areas are shown on Figure 2, except the bay-wide sample locations, which are shown on Figures 3 and 4.

The shoreline area between Boulevard Park and the Cornwall Avenue Landfill site connects two known listed sites under the Model Toxics Control Act (MTCA; Chapter 173-340 WAC). The City is currently conducting a feasibility study at the Boulevard Park site to evaluate shoreline redevelopment and a proposed overwater walkway from Boulevard Park to the Cornwall Avenue Landfill. Boulevard Park was also the location of a coal gasification plant from 1900 to 1950. Ecology is currently negotiating an Agreed Order with the City of Bellingham (City) to conduct a remedial investigation/feasibility study (RI/FS) to evaluate potential environmental effects from the historical plant and to evaluate potential cleanup alternatives. Draft RI/FSs have been completed at the Cornwall Avenue Landfill (Landau 2007) and R.G Haley (GeoEngineers 2007) sites. These documents are currently under Ecology review prior to finalization for public review.

The specific objectives of this multiple site study were to:

- Characterize the sediment quality near creosote-treated pilings and derelict dock structures at the R.G. Haley site;
- Characterize the sediment quality near creosote-treated pilings between Boulevard Park and the Cornwall Avenue Landfill (Bellingham Bay Piling Study area);

Hart Crowser Page 1 17330-17 June 26, 2009

- Map the extent and depth of municipal refuse in sediments at the Cornwall Avenue Landfill site; and
- Collect and analyze sediment samples for a dioxin background study in Bellingham Bay.

Additional tasks requested by Ecology during the course of investigation included:

- Characterize the extent, thickness, and depth of wood waste at the Cornwall Avenue Landfill site;
- Collect and analyze three additional subsurface sediment core samples at the R.G. Haley site;
- Assess the general physical condition and stability of the sheet pile wall at the R.G. Haley site. Evaluation of the sheet pile wall was documented under separate cover in a letter report submitted to Ecology (Hart Crowser 2009); and
- Collect and analyze sediment samples along the proposed overwater walkway between Boulevard Park and Cornwall Avenue Landfill. Ecology through a cost-sharing agreement with the City collected and tested sediment samples for this study. Sediment sample testing results are presented under separate cover (Herrenkohl 2009)..

Data collected from these investigations provide information to evaluate potential removal of creosote-treated structures, and adds to existing data for individual cleanup sites as well as the bay at large.

The sediment characterization program was performed in accordance with the Ecology-approved Sampling and Analysis Plan (SAP) prepared for this project (Hart Crowser 2008). Sediment sampling, handling, and analysis were conducted in general accordance with the protocols established by the Puget Sound Estuary Program (PSEP 1997a, 1997b, and 1997c), and Ecology's Sediment Sampling and Analysis Plan Appendix (SAPA; Ecology 2008).

Sample analytical results were compared to Ecology Sediment Management Standards (SMS; Chapter 173-204 WAC) criteria for both chemistry and biological toxicity testing analyses.

Following summary discussions of sediment collection, analysis, and data quality, results for each of the four study areas are presented in subsequent sections of

this report. The additional tasks regarding wood waste at the Cornwall Avenue Landfill and additional sediment cores for the R. G. Haley site are included in this report.

2.0 SEDIMENT ASSESSMENT

Sediment sampling, collection, handling, and analysis were performed in general accordance with the Ecology-approved SAP. With the exception of several vibracore samples discussed below, samples met acceptance criteria. The samples collected were acceptable for chemical, physical, and bioassay analyses.

The number and type of samples collected from each area are summarized in Table 1.

Vessel support for sediment coring, surface sediment grab sampling, and sediment profile imaging (SPI) were performed by Gravity Environmental and BioMarine Enterprises under subcontract to Hart Crowser.

2.1 Deviations from SAP

Deviations from the Ecology-approved SAP are summarized below and are discussed in more detail in the applicable report sections.

R.G. Haley Investigation

- Vibracore recovery for location RGH-SC-07 was below the SAP criteria of 75 percent despite multiple coring attempts.
- Due to low grab sampler recovery, multiple sediment surface grabs were collected at each location to provide sufficient sediment volume from the 0to 12-cm-depth interval for chemistry analysis and bioassays.

Cornwall Avenue Landfill Investigation

- Several proposed sample locations along multiple transects could not be accessed due to shallow water.
- Little municipal refuse was identified in the SPI and plan view photos of surface sediment so vibracore locations were selected by following the outer boundary of surface refuse based on a draft RI/FS prepared by Landau rather than selecting locations based on SPI images.

Page 3 Hart Crowser

Bellingham Bay Pilings Study Area

- Sample locations were shifted 10 to 25 feet bayward due to gravelly substrate, large rocks, and eelgrass adjacent to the pilings, which prevented adequate sample recovery and, therefore, results may not accurately reflect sediment conditions adjacent to the pilings.
- Due to low recovery, sediment cores BBP-SC-01 and BBP-SC-02 were not sectioned into 2-foot-depth intervals as planned. Rather, each core was composited and homogenized over its entire length for chemical analysis and, therefore, chemical concentration changes with depth cannot be evaluated.
- No sample was collected at coring location BBP-SC-03, due to refusal and poor recovery after each of the four sampling attempts at this location.
- Due to low grab sampler recovery, multiple sediment surface grabs were collected at each location to provide sufficient sediment volume from the 0to 12-cm-depth interval for chemistry analysis and bioassays.

2.2 Sample and Survey Location Control

A differential global positioning system (DGPS) was used onboard the sampling vessels in conjunction with visual triangulation methods for location positioning. The DGPS receiver was placed on the sampling device deployment boom or Aframe to accurately record the sampling location position within 1 to 2 meters. Once the sampler was deployed, the actual position was recorded when the sampler was on the bottom and the deployment cable was in a vertical position. State Plane (Northing and Easting) coordinates for sampling locations are presented in Table A-1 (Appendix A).

2.3 Sediment Core Samples

Sediment core samples were collected using a vibracore sampling device. The vibracore device uses a vibration source to drive a core tube or sample barrel into unconsolidated water-saturated sediments. The core tube was constructed of 4-inch-diameter Lexan (clear polycarbonate) in which the sediment sample was recovered. A Lexan core catcher attached to the end of the barrel was used to hold the undisturbed sediment inside the barrel when withdrawn from the seafloor sediments.

During sampling, a core tube was driven below the sediment surface with the vibracore device until the desired penetration was achieved. Upon retrieval of

Page 4 Hart Crowser

the core, the acceptability was assessed relative to the criteria established in the SAP. Vibracore samples could not be collected at several proposed locations due to refusal (e.g., gravel, wood bark). In general, core locations were moved slightly and repeated attempts were made until recovery was achieved. In addition, a number of vibracore samples did not meet core recovery acceptance criteria. In these cases, core locations were moved slightly and repeated attempts were made until recovery was achieved. In a few instances, recovery was still below acceptance criteria, primarily due to the presence of gravel and cobbles, wood debris (e.g., wood chips, dust, bark), and very soft sediments.

After sample collection, the outside surface of the core tube was cleaned with saltwater and visually examined. Cores collected from the Cornwall Avenue Landfill were photographed and examined to determine the depth and thickness of refuse and wood debris. Cores collected from the R.G. Haley site and Bellingham Bay Piling Study areas were divided into 2-foot sections for possible sediment testing. Each sediment section was visually examined in general accordance with ASTM Standard Practice D 2488, the Standard Practice for the Classification of Soils (Visual-Manual Procedure). A photograph was also taken of each section. Selected, representative photographs are presented in Appendix F. Sample descriptions were documented on core logs (Appendix A). Selected depth interval sections were then homogenized, placed in designated containers, and submitted for chemical analyses.

2.4 Surface Sediment Grab Samples

Sediment surface samples were collected using either a 0.1 m² power grab or a double 0.1 m² van Veen grab sampler. Upon retrieval of the surface sediment grab samples, the acceptability of each grab was assessed relative to the criteria established in the SAP. Samples from each surface grab location were collected from the 0- to 12-cm-depth interval and homogenized and submitted for chemical and bioassay laboratory testing. The 0- to 12-cm depth represents the assumed biologically active zone of the sediments in Bellingham Bay based on previous work for the Whatcom Waterway site (Anchor and Hart Crowser 2000). Descriptions for sediment grab samples are presented in Table A-2 (Appendix A).

Wet sieving was performed in the field for surface grab samples using a 63micron (No. 230) sieve and a graduated cylinder to estimate the fine and coarse fraction of the sediments following PSEP protocols. Wet sieving was completed to obtain equivalent grain size distribution between Bellingham Bay site samples and Samish Bay reference sediment samples for bioassay testing.

Page 5 Hart Crowser

A Samish By reference sample (Samish Bay Ref 1) was collected using a double 0.1 m² van Veen grab sampler by BioMarine Enterprises after site samples were collected and field wet sieving was performed. Reference sample coordinates and description are presented in Tables A-1 and A-2 (Appendix A).

3.0 SEDIMENT ANALYSES AND DATA QUALITY

3.1 Chemical Analysis

Samples for analysis of conventional parameters and SMS chemicals were submitted to Analytical Resources, Inc. (ARI) of Tukwila, WA. Samples were analyzed for semivolatile organic compounds (SVOCs) following EPA Method 8270D. Analyses for conventional chemicals included total organic carbon (TOC) following Plumb (1981), ammonia by EPA Method 350.1 modified, sulfide by EPA Method 376.2, and total solids and total preserved solids by EPA Method 160.3 modified. Selected samples for mercury were prepared and analyzed by EPA Method 7471A, while samples for other SMS metals were analyzed following EPA Method 6010B. Diesel- and motor oil-range petroleum hydrocarbons were analyzed following the Northwest diesel- and heavy oil-range petroleum hydrocarbon method (NWTPH-Dx). Polychlorinated biphenyls (PCBs) were analyzed following EPA Method 8082. Samples for dioxin/furan analysis were subcontracted to TestAmerica - Sacramento, CA for analysis following EPA Method 1613. Sample analyses are summarized in Table 2.

Sediment results for non-ionizable SVOCs and PCBs were organic carbonnormalized when TOC concentrations were between 0.5 to 3.5 percent per current Ecology guidance (personal communication with Dr. Pete Adolphson of Ecology dated January 20, 2009). Results of the sediment chemical analysis of organic carbon-normalized data were compared to SMS marine criteria, including sediment quality standards (SQS) and cleanup screening levels (CSL) as described in WAC 173-204-320. Samples with TOC concentrations outside the 0.5 to 3.5 percent range were compared to Apparent Effects Threshold (AET) values including Lowest Apparent Effects Threshold (LAET) and Second Lowest Apparent Effects Threshold (2LAET) in accordance with SMS protocols. Laboratory method detection limits (MDLs) and practical quantitation limits (PQLs) are compared to sediment screening criteria in Table 3.

The marine SQS and LAET numerical chemical concentration criteria define the degree of sediment quality that is expected to cause no adverse effects to biological resources in Puget Sound marine sediments. The CSL and 2LAET represent concentrations above which adverse biological effects are considered to be significant.

Page 6 Hart Crowser

In addition to chemical analysis, laboratory physical parameter testing (grain size and specific gravity) were performed for selected samples collected from R.G. Haley site and the Bellingham Bay Pilings Study area.

Overall, the Data Quality Objectives (DQOs), as set forth in the SAP, were achieved, and the data for this project are acceptable for use, as qualified. No results were rejected as a result of the QA/QC review; therefore, data for this project are 100 percent complete. Results for several analytes were qualified as estimated concentrations based on minor exceedances of quality control criteria. A detailed chemical data quality review and chemical laboratory certificates of analysis are presented in Appendix B.

Analytical results for samples collected from each site within Bellingham Bay are described separately in subsequent sections of this report.

3.2 Bioassay Testing

Surface grab samples for bioassay toxicity testing were submitted to Northwestern Aquatic Sciences of Newport, OR. Both chronic and acute bioassay tests were performed as described in the SAP. The tests conducted were the 10-day amphipod survival test using *Eohaustorius estuarius*, the 20-day polychaete growth test using Neanthes arenaceodentata, and the 10-day larval sediment test using Mytilus galloprovincialis.

Three reference samples with grain size spanning the range for samples from Bellingham Bay were collected from Samish Bay for statistical comparison of bioassay test results. Sample locations are shown on Figure 5., Due to the similar percent fines of sediment samples submitted for bioassay analysis, only one reference, Samish Bay Ref 1, was used for statistical comparison. iological endpoint data for each test were compared against those in the reference and control sediment. Data interpretation was conducted based on guidelines in Ecology's SAPA (Ecology 2008). These criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from Chapter 173-204 WAC and the Ecology SAPA. Two numerical comparisons are made under SMS-the SQS and the CSL. The SQS is more stringent than the CSL, allowing for a smaller biological response in the test treatments.

Reference and control sediment results were acceptable. Reference toxicant results were within control limits for the three test species. Control charts for the reference toxicants are included in laboratory reports presented in Attachment C-1. Overall, the DQOs were met, and the data are acceptable for use. No

Page 7 Hart Crowser

results were rejected as a result of the QA/QC review; therefore, data for this project are 100 percent complete.

Bioassay test results are described separately for each site within Bellingham Bay in subsequent sections of this report. Bioassay laboratory reports are presented in Appendix C.

Amphipod Test Criteria

Under the SMS program, a test treatment fails SQS if the mean mortality is statistically significantly higher than that of the reference treatment, and the mean mortality in the test sediment is greater than 25 percent. Tests fail the CSL if the test treatment mortality is both statistically significantly higher and 30 percent greater than the reference sediment.

Juvenile Polychaete Test Criteria

Suitability determinations for the juvenile polychaete test are based on mean individual growth (MIG) rates. A test fails SQS if the MIG is statistically different in the test sediment than in the reference and the MIG in the test sediment is less than 70 percent of the reference. The treatments fail CSL if MIG is statistically different from the reference sediment and is less than 50 percent of the reference.

Larval Test Criteria

For the larval test, sediment fails SQS if the number of normal larvae in the test treatment is significantly less than that of the reference, and is less than 85 percent of the reference sediment. Tests fail CSL if the number of normal larvae is significantly less than the reference sediment, and is less than 70 percent of the reference sediment.

3.3 Sediment Profile Imaging (SPI) Testing

SPI testing was performed at 141 locations at the Cornwall Avenue Landfill by Science Applications International Corporation (SAIC) of Bothell, WA under a subcontract to Hart Crowser. Three SPI images up to 20 cm (~8 inches) depth were collected at each location. In addition, plan view (surface) photographic images were collected at each location. Images from each location were evaluated for the presence of municipal refuse and wood waste (sawdust/woodchips). The SPI results are discussed in Section 6.0, and the subcontractor report and SPI/plan view data are provided in Appendix D.

Hart Crowser Page 8

4.0 BELLINGHAM BAY-WIDE DIOXIN BACKGROUND INVESTIGATION

Historical dioxin sampling and analyses in Bellingham Bay have focused on specific potential point sources and sufficient data have not been available to compare results to bay-wide background concentrations. Recently the Puget Sound Dredged Material Management Program (DMMP) agencies collected 70 surface sediment samples at locations throughout Puget Sound to provide information on dioxin and furan congener concentrations (USACE 2008). However, the DMMP agencies study was designed to obtain background concentrations that have not been impacted by potential known or likely sources of dioxins and furans and, therefore, they did not collect samples from Bellingham Bay.

Surface sediment samples were collected and analyzed for dioxins/furans as part of this Ecology study to determine overall background concentrations in Bellingham Bay.

4.1 Sample Locations

Six surface sediment grab samples were collected from subtidal locations in Bellingham Bay (Figure 3). Sample locations were selected to be:

- Collocated with one location (BBDx-SS-04; Georgia-Pacific wastewater treatment outfall) with previously reported (Anchor and Hart Crowser 2000) dioxin results to evaluate temporal trends;
- Locations where other contractors plan to obtain complete SMS chemical analyses (BBDx-SS-01 and BBDx-SS-02); and
- General, bay-wide background locations (BBDx-SS-03, BBDx-SS-05, and BBDx-SS-06).

The surface sediment samples were collected from 0 to 12 cm for chemical analysis of dioxins/furans. State Plane coordinates for the sampling locations are presented in Table A-1. Sediment descriptions are presented in Table A-2.

4.2 Analytical Results

Analytical results for dioxins/furans expressed as 2,3,7,8-TCDD toxic equivalents (TEQs) are presented in Table 5 and on Figure 3. TEQs were calculated using the World Health Organization (WHO) 2005 toxic equivalency factors (TEFs) for mammals. Non-detected results were assigned a concentration of one-half the laboratory reporting limit.

Page 9 Hart Crowser

Analytical results are also compared to previously acquired dioxin/furan data from part of the Whatcom Waterway preremedial design investigation (Anchor 2009) on Figure 3. Historical dioxin/furan data from Bellingham Bay (Anchor and Hart Crowser 2000; SAIC 2008) are shown on Figure 4.

TEQ concentrations ranged from 1.5 to 14.3 ng/kg, with an average of 8.52 ng/kg. The highest TEQ concentration was detected at location BBDx-SS-03 located offshore of the Cornwall Avenue Landfill and R.G. Haley sites.

Sample BBDx-SS-04, located near the former Georgia-Pacific wastewater treatment outfall, had a dioxin TEQ concentration of 12.7 ng/kg, much lower than reported historical concentrations of 136.9 and 127.9 ng/kg.

Sample BBDx-SS-02, located outside the I & J Waterway by the former Georgia-Pacific wastewater treatment plant, had a dioxin TEQ concentration of 3.2 ng/kg, lower than reported historical concentrations of 22 to 32.8 ng/kg.

Dioxin TEQ concentrations for the samples collected from the six background locations are within the range reported (mean of 6.9 ng/kg and maximum of 12.2 ng/kg) by the US Army Corps of Engineers (USACE) Dredged Material Management Office (DMMO) for the Bellingham Bay dredged material disposal site.

TEQ concentrations are greater than reported in the DMMP's 2008 Puget Sound Background Study. TEQ concentrations in the Puget Sound study ranged from 0.24 to 11.63 ng/kg with a lognormal mean of 1.35 and a median of 1.0 ng/kg. The relative congener ratios in samples collected from Bellingham Bay were similar to those presented in the DMMP study (Figure 6). The octachlorodibenzodioxin (OCDD) relative ratio is excluded from Figure 4 because the OCDD congener is typically present at much higher concentrations than other congeners, regardless of dioxin source, and dominates the relative fraction.

4.3 Summary and Conclusions

Based on results discussed above, while dioxin TEQ concentrations are greater than unimpacted Puget Sound background, concentrations are comparable to those reported in the Bellingham Bay dredged material disposal site.

Overall, surface sediment dioxin concentrations in Bellingham Bay have decreased by a factor of about 10 or more compared to previously reported concentrations (Anchor and Hart Crowser 2000). This decrease in surface sediment concentrations is most likely due to high rates of sediment deposition

Page 10 Hart Crowser

of cleaner material from the Nooksack River, which has mixed with and buried contaminated surface sediment.

5.0 R.G. HALEY SITE SEDIMENT INVESTIGATION

This investigation was performed to evaluate surface and subsurface sediment quality adjacent to creosote-treated pilings and structures near the R.G. Haley site and to add to the site data set. As part of source control and habitat restoration efforts in Bellingham Bay, the Washington State Department of Natural Resources plans to remove creosote-treated pilings and structures near the R.G. Haley site. Results of this investigation will provide baseline sediment conditions and provide information on potential sediment impacts from structure and piling removal. In addition, the investigation provides information on the extent of surface and subsurface sediment impacts from the R.G. Haley site.

The R.G. Haley site is located at 500 Cornwall Avenue and borders Bellingham Bay. Previous activities on the upland area of the site included wood treatment processes until 1985. The property was purchased by Douglas Management Co. in 1990. The site reportedly has been inactive since 1985.

In 2001, an oil seep was observed discharging into Bellingham Bay from the shoreline, and investigations revealed that portions of the site were contaminated with wood treatment chemicals at concentrations exceeding state regulatory cleanup levels. A draft RI/FS has been completed and is currently under review by Ecology prior to issuance for public review.

5.1 Sample Locations

Six vibracore samples (RGH-SC-01 through RGH-SC-06) and three sediment grab samples (RGH-SS-01 through RGH-SS-03) were collected from subtidal locations adjacent to a derelict wood structure offshore from the R.G. Haley site. Three additional vibracore samples (RGH-SC-07 through RGH-SC-09) were collected between the structure and Cornwall Avenue Landfill site (Figure 7). Sample location numbers and coordinates are presented in Table A-1 (Appendix A).

5.2 Sediment Sampling and Observations

Vibracore Samples

Sediment cores were collected to a depth of up to 6 feet below the sedimentwater interface. Sediment from cores RGH-SC-01 through RGH-SC-06 were extruded and processed on the vessel. Cores RGH-SC-07 through RGH-SC-09

Page 11 Hart Crowser

were transported to a nearby warehouse operated by the Port where the sediment was extruded and processed. Sediment cores were sectioned into 2-foot-depth intervals (0 to 2, 2 to 4, and 4 to 6 feet) and each section was homogenized for chemical analysis. Selected sediment samples from the nine cores were submitted for chemical analysis.

Sediment Grab Samples

Surface sediment samples (0 to 12 cm) were collected from locations RGH-SS-01, RGH-SS-02, and RGH-SS-03 (Figure 7). Multiple grabs were collected at each location to provide sufficient sediment volume for chemical analysis and bioassays. Sample descriptions are presented in Table A-2 (Appendix A). Sediment from the three surface samples was submitted for chemical analysis.

5.3 Sediment Physical Characteristics

Visual sample descriptions of sediment cores and surface sediment grabs are presented in Appendix A. Surface grab samples (RGH-SS-01, RGH-SS-02, and RGH-SS-03) collected adjacent to the wooden structure closest to shore contained abundant fine refuse, primarily glass and brick fragments. There is little evidence for recent sedimentation in these samples since the surface layer contains cobbles and gravel (Table 4). The upper 3 to 6 inches of core samples collected from these locations also contain cobbles and gravel.

Core samples typically contained large amounts of wood debris, primarily sawdust and wood chips. Cores collected further offshore (RGH-SC-04, RGH-SC-5, and RGH-SC-06) and closer to the Cornwall Avenue landfill (RGH-SC-07, RGH-SC-08, and RGH-SC-09) generally contained silt or sand in the upper 3 to 12 inches though, in most cases, wood debris was mixed throughout this layer. An oily sheen was observed at the surface of cores collected from locations RGH-SC-04 and RGH-SC-05.

5.4 Chemical Analysis

Analytical results for the R.G. Haley sediment samples as compared to the AET dry-weight sediment quality criteria are presented in Table 6. Analytical results compared to the SMS sediment quality criteria are presented in Table 7. Compounds exceeding applicable SMS or AET screening criteria are shown on Figure 7. Analytical results for dioxins/furans expressed as 2,3,7,8-TCDD TEQs are presented in Table 8 and on Figure 8.

Page 12 Hart Crowser

Conventional Sediment Analyses

TOC concentrations ranged from 1.47 to 38.6 percent for all samples collected and analyzed from the R.G. Haley site. TOC concentrations in the three sediment surface samples ranged from 2.2 to 4.13 percent. TOC concentrations in the nine vibracore samples ranged from 1.47 to 38.6 percent. The maximum TOC concentration was reported in sample RGH-SC-07-2-4′. The highest TOC concentrations were present in the 2- to 4- and 4- to 6-foot-depth intervals and are likely associated with large amounts of wood debris observed (refer to Appendix A) in the core samples.

Total solids concentrations ranged from 29.3 to 84.7 percent in the vibracore samples. Total solids concentrations ranged from 67.4 to 81.5 percent in the surface sediment samples.

Total sulfide concentrations in the three surface sediment samples were relatively high, ranging from 503 to 1,420 mg/kg with the highest concentration detected in sample RGH-SS-01. Sulfide is indicative of organic-rich, anaerobic sediment and may be associated with low oxygen due to degradation of wood waste observed in these samples.

Ammonia concentrations in the three surface sediment samples ranged from 3.39 to 6.34 mg/kg with the highest concentration detected in RGH-SS-03.

Diesel- and Motor Oil-Range Petroleum Hydrocarbons

Diesel-range petroleum hydrocarbons concentrations ranged from 8.8 U to 670 mg/kg, with the highest detection in sample RGH-SC-08-4-5.5′. Heavy oil-range petroleum hydrocarbons concentrations ranged from 18 U to 950 mg/kg, with the highest detection in sample RGH-SC-09-4-5.5′.

The depth of maximum TPH concentration varies by location. The maximum TPH concentrations for locations RGH-SC-02, RGH-SC-04, and RGH-SC-05 were detected in the uppermost (0- to 2-foot-depth) interval. As noted earlier, petroleum sheen was observed in the samples RGH-SC-04-0-2′ and RGH-SC-05-0-2′. For locations RGH-SC-01, RGH-SC-06, and RGH-SC-07, the maximum TPH concentration was detected in the deepest interval sampled (about 4 to 6 feet deep). The highest TPH concentrations span a wider depth range for locations RGH-SC-03, RGH-SC-08, and RGH-SC-09 with similar concentrations in both the 2- to 4- and 4- to 6-foot-depth intervals. Overall, the maximum TPH concentrations (greater than 800 mg/kg) were detected in subsurface samples at locations RGH-07, RGH-08, and RGH-09, located in the southern portion of the site nearer the Cornwall Avenue Landfill.

Hart Crowser Page 13 17330-17 June 26, 2009

No sediment criteria have been established for TPH though Ecology has determined that impacts may occur at concentrations greater than 200 mg/kg (personal communication with Dr. Pete Adolpson, Ecology, on June 2, 2009); Total TPH concentrations are below the MTCA Method A screening criterion of 2,000 mg/kg for upland soil.

Mercury

Mercury was detected at concentrations above CSL at core locations RGH-03, RGH-06, RGH-08, and RGH-09 (Figure 7) with the highest concentration (11.3 mg/kg) in sample RGH-SC-08-4-5.5′. None of the surface (0 to 12 cm) sediment samples tested (locations RGH-SS-01, RGH-SS-02, and RGH-SS-03) exceeded SQS. Mercury concentrations increase with depth with highest concentrations in the 4- to 6-foot-depth interval suggesting a historical source that is being attenuated with more recent sediment deposition.

Non-Polar Semivolatile Organic Compounds

Except for six samples collected from the R.G. Haley site, the samples contained greater than 3.5 percent organic carbon likely due to petroleum hydrocarbons and wood debris in the samples and, therefore, sample results for most non-polar organics were compared to AET criteria rather than the organic carbon-normalized SMS.

TOC in the following samples was within the 0.5 to 3.5 percent range for organic carbon normalization and results for these samples were compared to SMS: RGH-SS-02; RGH-SS-03; RGH-SC-01-0-2'; RGH-SC-02-2-4'; RGH-SC-04-4-6'; and RGH-SC-05-2-4'. Non-polar organic compound results for other samples were compared to AET criteria.

PAHs

PAHs were the most prevalent compounds detected that exceeded sediment screening criteria (Figure 7). PAHs are usually associated with creosote, coal tar, oil, and incomplete combustion of organic matter. PAHs are a component of creosote, a wood preservative, and are likely associated with former creosote wood treating at the R.G. Haley facility or treated pilings and structures along the shoreline.

The depth of maximum PAH concentration varies by location. The highest total PAH concentrations and the greatest number of LAET and 2LAET exceedances were detected in the 2- to 4-foot-depth interval at location RGH-03 and the 4- to 6-foot-depth interval at location RGH-06. These sample locations are at the

Hart Crowser Page 14

western end of the derelict wooden structure immediately offshore of the R.G. Haley site (Figure 7) and may reflect either an upland source or historical inwater disposal of creosote. Locations RGH-08 and RGH-09, located between the derelict structure and the Cornwall Avenue Landfill, also had maximum total PAH concentrations in the deepest interval sampled (4 to 5.5 feet) though only fluoranthene in sample RGH-08-4-5.5' exceeded the LAET.

For locations RGH-02, RGH-04, and RGH-05, the highest total PAH concentrations were detected in the 0- to 2-foot-depth interval though there were exceedances of AET criteria only in sample RGH-04–0-2′. Phenanthrene and fluoranthene exceeded their respective LAET in sample RGH-04–0-2′. For samples RGH-SC-04-0-2′ and RGH-SC-05-0-2′, PAHs are likely associated with the petroleum sheen that was observed in the cores.

None of the surface (0 to 12 cm) sediment samples tested (locations RGH-SS-01, RGH-SS-02, and RGH-SS-03) exceeded sediment screening criteria.

Phthalates

Phthalates are ubiquitous in the environment. They are used in a wide range of products, primarily as plasticizers and coatings, and are also common in wastewater and stormwater discharges.

Dimethylphthalate and butylbenzylphthlate exceeded sediment screening criteria in four samples (Figure 7). Core locations RGH-07 and RGH-08, between the derelict wooden structure and the Cornwall Avenue Landfill, exceeded AET criteria in the 0- to 2-foot-depth interval possibly suggesting either surface water runoff or the Cornwall Avenue Landfill as potential sources. Sample RGH-07-0-2' exceeded the 2LAET for dimethylphthalate while sample RGH-08-0-2' exceeded the LAET for butylbenzylphthlate. The LAET for dimethylphthalate was also exceeded in the 4- to 5.5-foot-depth interval at location RGH-08 indicating historical deposition.

Locations RGH-02 and RGH-03 exceeded the 2LAET for dimethylphthalate and LAET for butylbenzylphthalate, respectively, in the 4- to 6-foot-depth interval, suggesting older deposition.

None of the surface (0 to 12 cm) sediment samples tested (locations RGH-SS-01, RGH-SS-02, and RGH-SS-03) exceeded sediment screening criteria.

Hart Crowser Page 15

Phenois

The compound 2,4-dimethylphenol, often associated with wood waste as well as creosote and coal tar, exceeded the sediment CSL in the 2- to 4-foot-depth interval sample collected from RGH-SC-07. However, this compound was only detected in one other sample, the 2- to 4-foot-depth interval from location RGH-SC-06 but below SQS. Other phenols (e.g., phenol, 2-methylphenol, 4-methylphenol), also often associated with wood waste, creosote, and coal tar, were detected in a number of samples but the concentrations were below their respective SQS.

Pentachlorophenol is the only other polar compound detected that exceeded SQS and CSL. Pentachlorophenol is a wood preservative and is likely associated with former wood treating activities at the R.G. Haley facility.

With the exception of locations RGH-05, RGH-06, and RGH-07, pentachlorophenol was detected in the other surface samples and core samples collected and analyzed though most concentrations were less than the SQS. The highest pentachlorophenol concentrations do not appear to be associated with locations of highest PAH concentrations.

The highest pentachlorophenol concentrations were typically in the intermediate (2- to 4-foot-depth) and deepest (4- to 6-foot-depth) core samples though pentachlorophenol was also detected in surface samples and shallow cores (0to 2-foot) with the exception of the three locations listed earlier. Pentachlorophenol concentrations increase with depth in cores collected from locations RGH-08 and RGH-09, located between the derelict wooden structure and the Cornwall Avenue Landfill. Pentachlorophenol concentrations at RGH-08 in the 0- to 2-, 2- to 4-, and 4- to 5.5-foot-depth intervals are 150, 450, and 4,100 µg/kg, respectively, compared to its SQS and CSL of 360 and 690 µg/kg, respectively. Pentachlorophenol concentrations at RGH-09 in the 0- to 2-, 2- to 4-, and 4- to 5.5-foot-depth intervals are 91, 260, and 420 µg/kg, respectively.

Pentachlorophenol concentrations in samples collected from RGH-01 exceed its SQS in the 0- to 2- and 4- to 6-foot-depth intervals with the highest concentration in the deepest sample. The only other pentachlorophenol exceedance was in RGH-03-2-4' (720 μ g/kg)., which exceeded its CSL of 690 μ g/kg.

In two locations, RGH-02 and RGH-04, the highest pentachlorophenol concentrations were detected in the 0- to 2-foot-depth interval though concentrations were below the SQS. The presence of highest pentachlorophenol concentrations vary by location in shallow and deep sediment samples suggests both historical and potential on-going releases.

Page 16 Hart Crowser

Dioxins/Furans

Dioxin in the vicinity of the R.G. Haley site is likely associated with pentachlorophenol use and/or releases. Dioxin is known to be contaminant produced in the manufacturing of pentachlorophenol and dioxins are also formed during combustion of pentachlorophenol or pentachlorophenol-treated wood. Dioxins are also produced during chlorine bleaching of wood pulp.

Samples from six locations (Figure 8) were submitted for dioxin analysis. The total TEQ concentrations, based on the non-detects equaling one half the reporting limit, range from 1.55 to 557 ng/kg (Table 8), with the highest concentration reported in sample RGH-SC-03-0-2'. Sample concentrations are within the range or somewhat higher than the range of 52 to 200.8 ng/kg (Figure 4) previously reported (Anchor and Hart Crowser 2000).

TEQ concentrations in three surface (0 to 12 cm) sediment samples (RGH-01, RGH-02, and RGH-03) collected adjacent to the derelict structure closest to shore range from 80.9 to 167 ng/kg. These concentrations are significantly higher than the average Bellingham Bay background concentration of 8.52 ng/kg (See Section 4.0), the Puget Sound average background concentration of 1.35 ng/kg, and the range reported (mean of 6.9 ng/kg and maximum of 12.2 ng/kg) by the DMMO for the Bellingham Bay dredged material disposal site.

Samples from multiple depth intervals were analyzed for dioxin at only three locations (RGH-01, RGH-02, and RGH-06). Dioxin concentrations generally increase with depth and tend to be correlated with pentachlorophenol but too few core samples were analyzed to establish a trend. Additional dioxin analysis of core samples would be required to definitively determine whether dioxins are associated with pentachlorophenol.

5.5 Sediment Bioassay Testing Results

Bioassay testing was performed on two surface sediment samples and one reference sample (Samish Bay Ref 1). Sample RGH-SS-02 was not submitted for bioassay testing, as insufficient volume was collected for both chemistry and bioassay testing after eight sediment grab attempts. The reference location was selected to match the grain size distribution of the sediment samples.

Suitability determinations are based on a comparison of responses observed in the test treatments versus those in the reference treatment. Based on similarity in grain size, sample Samish Bay Ref 1 was used for comparison of test treatments RGH-SS-01 and RGH-SS-03.

Page 17 Hart Crowser

The laboratory results and sediment bioassay summary are presented in Appendix C. Bioassay results are present graphically on Figure 9.

Amphipod Test Results

No significant differences were observed for samples RGH-SS-01 or RGH-SS-03 relative to the Samish Bay reference sediment. Both sediment samples also met the SQS and CSL; thus passing overall.

Juvenile Polychaete Test Results

There were no significant decreases in MIG in any of the test treatments relative to the reference sediment (Appendix C). In addition, there was adequate growth in each of the test treatments to meet both the SQS and CSL.

Larval Test Results

Statistically significant decreases in normal survivors were observed in samples RGH-SS-01 and RGH-SS-03, relative to the Samish Bay reference. The number of normal larvae in test sediment RGH-SS-01 was 68.9 percent compared to the reference sediment. Test sediment RGH-SS-01 failed the SQS of 85 percent, and also failed the CSL of 70 percent. The number of normal larvae in test sediment RGH-SS-03 was 77.6 percent compared to the reference sediment. Test sediment RGH-SS-03 failed the SQS, but passed the CSL (Appendix C).

5.6 Summary and Conclusions

Chemical concentrations, and most SQS and AET exceedances, generally, though not definitively, tend to increase with depth suggesting natural attenuation due to sediment deposition may be occurring. The maximum TPH concentrations were detected in subsurface samples collected from the southern portion of the site nearer the Cornwall Avenue Landfill.

Sediment analytical data for the R.H. Haley site show that the concentrations of SMS chemicals of concern were below their respective SQS for the three surface sediment samples collected from 0 to 12 cm but there were exceedances of SMS or AET criteria for subsurface sediment samples. Sulfide concentrations in the three surface sediment samples were high, indicating organic-rich, anaerobic sediment, possibly due to degradation of wood waste observed in these samples.

The sediments adjacent to the derelict structure showed exceedances for the SMS and AET criteria for SVOCs at most locations sampled (RGH-01, RGH-02,

Hart Crowser Page 18 17330-17 June 26, 2009

RGH-03, RGH-04, and RGH-06). The largest number and highest concentrations of chemicals detected offshore from the R.G. Haley site were detected at locations RGH-03 and RGH-06, located closest to the site. There were no exceedances of sediment criteria in samples collected from RGH-05.

Sediment larval testing results indicated biological impacts to sediment at locations RGH-01 and RGH-03 even though chemical concentrations were less than SMS and AET criteria. RGH-SS-01 failed both the SQS and the CSL for normal larval development. RGH-SS-03 also failed the SQS for the larval development bioassay. Biological impacts may be due to high concentrations of sulfide in the samples.

6.0 CORNWALL AVENUE LANDFILL SITE

The Cornwall Avenue Landfill site is located at the south end of Cornwall Avenue, south of R.G. Haley, and adjacent to Bellingham Bay. Most of the site was originally tideflats and sub-tidal areas. From 1888 to 1946, the site was used for sawmill operations, including log storage and wood disposal. The site was used for municipal waste disposal from approximately 1953 until 1965. The site is owned by the City, the Port and the State of Washington. A draft RI/FS has been completed and is currently under review by Ecology prior to issuance for public review.

6.1 Sample Locations

SPI/Plan View Images Sample Locations

SPI data were collected from 141 subtidal locations offshore of the Cornwall Avenue Landfill (Figure 10). Samples were collected along multiple transects. Several proposed locations could not be accessed due to shallow water or locations which plotted on land. State Plane coordinates for the sampling locations are presented in Appendix D.

The SPI report and SPI data are provided in Appendix D, and the Cornwall Avenue Landfill sediment vibracore locations, descriptions, and vibracore logs are provided in Appendix E.

Sediment Coring Sample Locations

Vibracore samples were collected from 44 subtidal locations adjacent to Cornwall Avenue Landfill site. SPI data were to be used to determine subsequent sediment core sampling locations. However, as so little municipal

Page 19 Hart Crowser

refuse was identified in the SPI and plan view photos of surface sediment, apparently due to high sedimentation rates, vibracore locations were selected by following the outer boundary of surface refuse based on a draft RI/FS prepared by Landau (2007). Core locations were selected on each side of the refuse boundary line (Figure 10). Additional core locations were selected both inside and outside the refuse boundary line to provide additional information on the extent of refuse and wood debris. Two locations (CW-139 and CW-136) were not collocated with a SPI site. Additionally, two coring locations (BLVD-09 and RGH-07) sampled in conjunction with neighboring investigations, were located within the Cornwall Avenue Landfill site and are also included on Figure 10. State Plane coordinates for the core sampling locations are presented in Table E-1.

Sediment cores were collected to a depth of up to 8.5 feet (penetration) below the sediment-water interface. Sediment was extruded aboard the vessel into a wooden trough where it was visually examined to determine the presence of municipal refuse and wood waste (sawdust/woodchips). Representative photographs are presented in Appendix E. Since the objective was to map the extent and depth of refuse and wood debris, no samples were collected for chemistry or bioassay analyses.

6.2 Distribution of Municipal Refuse and Wood Waste

A summary of the SPI observations and interpretation relative to the presence of municipal refuse and wood waste is presented in SAIC'S SPI Survey Report in Appendix D. Identification of sawdust and woodchips in SPI images is based on visual interpretation of photographs and is subjective.

Images and cores from each location were evaluated for the presence of municipal refuse and wood debris (sawdust/woodchips). A summary of the core observations and interpretation relative to the presence of municipal refuse and wood waste is presented in Table E-2.

Locations with Discernable Wood Waste or Municipal Refuse

Locations with any discernable amount of municipal refuse or wood debris (sawdust/woodchips) on the sediment surface or within the sediment core is presented on Figure 11. Only municipal refuse was identified in 16 of the 141 subtidal locations (approximately 11 percent) while only wood waste (sawdust and/or woodchips) was identified in 21 of the 141 subtidal locations (approximately 15 percent). Both municipal refuse and wood waste are present in 26 locations (approximately 18 percent). In many cases, sawdust is present only on the surface in small amounts and identification is subjective. In cases

Hart Crowser Page 20

where small amounts of apparent sawdust were observed in SPI images, it was generally present as very thin layers (typically less than 0.5 cm) on the surface.

As shown on Figure 11, no discrete areas of municipal refuse were evident though general trends were observed. The outer boundary of municipal refuse (both surface and core samples) corresponds with the outer boundary of surface refuse determined in the draft Cornwall Avenue Landfill RI/FS (Landau 2007). The draft RI/FS also established a boundary of significant municipal refuse (greater than 50 percent surface refuse) closer to shore (Figure 11). Significant areas of surface municipal refuse were not identified in SPI and plan view images or in sediment cores during the current investigation. Most samples in this investigation contained less than 5 percent municipal refuse and, in many cases, only one piece of refuse was present. In addition, it is unknown whether surface refuse observed in SPI and plan view images is of recent origin or is from historical landfill operations. The lack of refuse observed in surface sediments during this investigation is likely a result of recent sediment deposition over materials observed during the previous surveys in 1996 and 2002 (Landau 2007).

There is also no clear pattern for the distribution of wood waste though there is a small cluster of locations on the southwestern edge of the Cornwall Avenue Landfill, outside the municipal refuse boundary, where only wood waste was observed (Figure 11).

In general, both wood waste and municipal refuse were identified along the entire length of the former landfill though observable municipal refuse concentrations were lower than those reported in the draft Cornwall Avenue Landfill RI/FS.

Locations with Wood Waste and/or Municipal Refuse and Less than 1 foot of Recent Sedimentation

Figure 12 shows locations with greater than 1 foot of accumulated wood waste containing greater than 50 percent sawdust and/or woodchips or any discernable municipal refuse with less than 1 foot of recent overlying sediment. Figure 12 incorporates information from both SPI and plan view images (Appendix D) and sediment core samples (Table E-1 and Figure 10).

Locations with greater than 1 foot of accumulated wood containing greater than 50 percent sawdust and/or woodchips with less than 1 foot of recent overlying sediment are primarily in the southernmost portion of the landfill (CW-02, CW-03, CW-108, and CW-120).

Page 21 Hart Crowser 17330-17 June 26, 2009

Samples with any discernable municipal refuse and less than 1 foot of recent overlying sediment are primarily located in the southwestern portion of the landfill within the significant municipal refuse boundary as presented in the draft Cornwall Avenue Landfill RI/FS. There are also a small number of locations with municipal refuse in the northern part of the landfill that are covered with less than 1 foot of overlying sediment.

The only location that contained both wood waste and municipal refuse is CW-53, located near the middle of the landfill area.

6.3 Summary and Conclusions

SPI and plan view images did not identify significant amounts of municipal refuse or wood waste (sawdust/woodchips) on the surface of the Cornwall Avenue Landfill site. Core samples indicated minimal amounts (generally less than 5 percent) of municipal refuse, primarily degraded plastic, at depths varying from 1 to 5 feet below the surface. Wood waste, in the form of sawdust, woodchips, or pieces of bark, was observed in layers at depths varying from the surface to the bottom of the cores.

Surface refuse was only observed in four of the SPI and surface plan view images, likely due to burial of refuse by surface sediment deposition. A surface sediment layer of greater than 1 foot was observed at approximately 55 percent of the coring locations. The average thickness of this overlying sediment layer was approximately 1.4 feet.

Locations with discernable municipal refuse or significant sawdust and/or woodchips with less than 1 foot of overlying sediment were primarily in the south and southwest areas of the landfill.

Sedimentation rates near the landfill appear to be relatively high based on the presence of greater than 1 foot of clean overlying sediment in more than half of the core samples (Figures 10 and 12).

7.0 BELLINGHAM BAY PILING STUDY AREA

The Bellingham Piling Study area is located between Boulevard Park and the Cornwall Avenue Landfill site and includes numerous derelict pilings that were once part of a historical railroad trestle adjacent to the existing shoreline. Surface sediment grab samples and cores were collected to evaluate sediment quality adjacent to the pilings before removal by the Department of Natural Resources.

Hart Crowser Page 22

7.1 Sample Locations

Two vibracore samples (BBP-SC-01 and BBP-SC-02) and three surface sediment grab samples (BBP-SS-01 through BBP-SS-03) were collected from subtidal locations adjacent to three sets of derelict pilings between the Cornwall Avenue Landfill site and Boulevard Park (Figure 13). Attempts were made to collect samples at the proposed coordinates, but due to gravelly substrate, large rocks, and eelgrass, sample locations were shifted progressively bayward (approximately 10 to 25 feet) until sediment samples could be collected. As a result of this shifting, sample results may not be indicative of the sediment quality close to the pilings. In addition, chemical concentration changes with depth could not be determined since the entire core lengths were homogenized and composited due to poor recovery in multiple coring attempts. No sample was collected at coring location BBP-SC-03, due to refusal and poor recovery after each of four sampling attempts at this location.

7.2 Sediment Sampling and Observations

Vibracore Samples

Sediment cores were collected at two (BBP-SC-01 and BBP-SC-02) of the three proposed coring locations. The two successful cores were driven to a depth of 4 to 5 feet below the sediment-water interface before refusal due to coarse-grained sediments. Recovery of the two cores was below the SAP criteria of 75 percent. However, after multiple attempts and subsequent shifting of the core locations, it was decided to collect sediments for chemical analysis from the cores with the highest recoveries even if acceptance criteria were not met. This field decision was made based on the concept that although moving further away from the pilings would provide better recovery, the chemical results would be less representative of sediment adjacent to the pilings.

Sediment from each core was extruded and processed on the vessel. The sediment cores were photographed and visual observations and sediment descriptions were documented on core logs (Appendix A). Due to the low recovery, the sediment cores were not sectioned into 2-foot-depth intervals as planned. Rather, each core was composited and homogenized over its entire length for chemical analysis and, therefore, chemical concentration changes with depth cannot be evaluated.

Sediment Grab Samples

Sediment surface samples (BBP-SS-01 through BBP-SS-03) were collected using a power grab sampler at three locations (Figure 13). The original proposed sample

locations were shifted due to the presence of eelgrass, cobbles, and wood waste preventing closure of the grab sampler. Multiple sediment surface grabs were collected at each location to provide sufficient sediment volume from the 0- to 12-cm-depth interval for chemistry and bioassays (Table 2).

7.3 Sediment Physical Characteristics

Surface sediment samples and sediment cores were photographed and visual observations and sediment descriptions were documented on core logs presented in Appendix A. Visual sample descriptions of surface sediment grabs are presented in Table A-2.

Physical parameters were determined only on samples BBP-SS-01 and BBP-SS-02. Samples consisted primarily of sandy gravel. Grain size results are summarized in Table 4. The surface sediment grab samples were additionally analyzed for Atterberg limits and specific gravity. Laboratory analysis results are presented in Appendix B.

7.4 Chemical Analysis

Chemical analysis was conducted on the five sediment samples (two composite core samples and three surface sediment samples). The sediments were analyzed for total metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc), SVOCs, TOC, total solids, ammonia, total sulfides, and NWTPH-Dx. Three surface sediment grab samples and core sample BBP-SC-01 were analyzed for dioxins/furans. Analytical results for the Bellingham Bay Piling Study area sediment samples compared to the AET dry-weight sediment quality criteria are presented in Table 9. Analytical results compared to the SMS criteria are presented in Table 10. Analytical results for dioxins/furans with TCDD TEQs are presented in Table 11.

Conventional Sediment Analyses

TOC concentrations ranged from 2.4 to 86.5 percent. TOC concentrations in the three surface sediment samples ranged from 2.4 to 86.5 percent with the maximum TOC concentration reported in the sample BBP-SS-03 located directly north of Boulevard Park. The high TOC concentration is associated with the extensive wood debris and slight oily sheen observed in sample BBP-SS-03 (Table A-2). TOC concentrations for the coring locations were 9.49 percent for BBP-SC-01 and 10.1 percent for BBP-SC-02.

Total solids concentrations ranged from 20.4 to 67 percent. Preserved total solids concentrations ranged from 18.8 to 69.5 percent.

Page 24 Hart Crowser

Total sulfide concentrations in the three surface sediment samples and two core samples ranged from 212 to 393 mg/kg with the highest concentration detected in core sample BBP-SC-02.

Ammonia concentrations in the three surface sediment samples and two vibracore samples ranged from 2.82 to 10.4 mg/kg with the highest concentration detected in sample BBP-SS-01.

Diesel- and Motor Oil-Range Petroleum Hydrocarbons

Diesel-range petroleum hydrocarbons concentrations ranged from 10 to 61 mg/kg, with the highest detection in sample BBP-SS-03 located directly north of Boulevard Park (Figure 13). Heavy oil-range petroleum hydrocarbons concentrations ranged from 15 to 180 mg/kg, with the highest detection in sample BBP-SS-03. An oily sheen was observed in samples BBP-SS-01 and BBP-SS-03.

Metals

Arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc were detected in one or more of the sediment samples analyzed; however, at concentrations below SQS. Silver was not detected in any of the samples analyzed.

Non-Polar Semivolatile Organic Compounds

Only sample BBP-SS-01 had a TOC concentration within the 0.5 to 3.5 percent range for organic carbon normalization of results. Therefore, only sample BBP-SS-01 was compared to SMS criteria for non-polar organic compounds. Results for other samples were compared to AET dry-weight criteria.

PAHs were detected in all samples collected from the pilings area. However, concentrations for individual PAHs as well as total low molecular weight PAHs (LPAHs) and total high molecular weight PAHs (HPAHs) were below their applicable SMS and AET criteria, with the following exceptions.

Phenanthrene and fluoranthene in surface (0 to 12 cm) sample BBP-SS-02 exceeded the LAET, but were below the 2LAET (Figure 13).

Phthalates were detected at all sample locations but only butylbenzylphthalate exceeded LAET in sample BBP-SC-02.

Page 25 Hart Crowser

Phenois

Phenol and/or 4-methylphenol were detected in all samples but concentrations were below their respective SQS.

Dioxins/Furans

The total TEQ concentrations ranged from 1.11 to 16.1 ng/kg, with the highest detection in sample BBP-SS-03 (Figure 14). Dioxin TEQs are lower than concentrations at the R.G. Haley site and are comparable to those detected in the bay-wide study (Section 4.0 and Figure 3).

7.5 Sediment Bioassay Testing Results

Bioassay testing was performed on two surface sediment samples (BBP-SS-01 and BBP-SS-02) and one reference sample (Samish Bay Ref 1). The same reference sample (Samish Bay Ref 1) was used for the Bellingham Bay Piling Study area samples and the R.G. Haley site samples based on grain size distribution. The laboratory results and sediment bioassay summary are presented in Appendix C. Bioassay results are present graphically on Figure 9.

Amphipod Test Results

Relative to the Samish Bay reference, no significant differences were observed for BBP-SS-01 or BBP-SS-02. Both sediment samples also met the SQS and CSL; thus passing overall.

Juvenile Polychaete Test Results

There were no significant decreases in MIG in any of the test treatments, relative to the reference treatment (Appendix C). In addition, there was adequate growth in each of the test treatments to meet both the SQS and CSL.

Larval Test Results

There was no significant decrease in normal development for samples BBP-SS-01 or BBP-SS-02 compared to the Samish Bay reference sample. Normal development in each of the test treatments met the numeric threshold for both SQS and CSL (Appendix C); thus passing overall.

Page 26 Hart Crowser

7.6 Summary and Conclusions

Analytical data show that the concentrations of SMS chemicals of concern were below the corresponding SQS for surface sediment sample BBP-SS-01. Surface samples BBP-SS-02 and BBP-SS-03 had TOC concentrations outside the range for normalization, and were compared to AET criteria. The concentrations of the chemicals of concern were below the corresponding AETs with the following exceptions. Phenanthrene and fluoranthene in BBP-SS-02 exceeded the LAET, but were less than the 2LAET.

The core samples were also compared to the AET criteria due to high organic content. The concentrations of chemicals of concern were below corresponding AETs with the exception of butylbenzylphthalate in BBP-SC-02, which was above the LAET but below the 2LAET.

Sediment bioassay results indicate acceptable organism growth and survival in the surface sediment tested from the Bellingham Bay Piling Study area.

8.0 REFERENCES

Anchor Environmental and Hart Crowser 2000. Remedial Investigation and Feasibility Study for the Whatcom Waterway Site. Prepared for Georgia-Pacific Corporation.

Anchor QEA 2009. Preremedial Design Investigation Data Report, Whatcom Waterway. Prepared for the Port of Bellingham. March 2009.

Ecology 1995. Sediment Management Standards (SMS), Chapter 173-204 WAC, Publication No. 960252, Olympia, WA.

Ecology 2008. Sediment Sampling and Analysis Plan Appendix. Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards (Chapter 173-203 WAC). Ecology Publication No. 03-09-043.

EPA 1983. U.S. Environmental Protection Agency Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020.

EPA 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA540/R-99/008, October 1999.

Page 27 Hart Crowser 17330-17 June 26, 2009

EPA 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004, October, 2004.

EPA 2008. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 4th Update.

Hart Crowser 2008. Sampling and Analysis Plan, Bellingham Bay Sediment Investigations, Bellingham, Washington. Job No. 17330-17. September 2008.

Hart Crowser 2009. Summary of Field Visit and Geotechnical Recommendations – Bulkhead at R.G. Haley Cleanup Site. Memorandum Report to Lucy McInerney, Washington State Department of Ecology. January 6, 2009.

Herrenkohl 2009. Final Report Focused Environmental Site Assessment Boulevard Park Shoreline and Overwater Walkway, Bellingham, WA. Prepared for the City of Bellingham Parks and Recreation Department by Herrenkohl Consulting LLC in association with Reid Middleton, Inc.

Landau 2007. Ecology Review Draft, Cornwall Avenue Landfill Remedial Investigation/Feasibility Study, Bellingham, WA. Prepared for the Port of Bellingham by Landau Associates, Inc.

Personal Communication between Mark Herrenkohl of Herrenkohl Consulting LLC and Dr. Peter Adolphson of the Washington State Department of Ecology. Email communication on January 20, 2009.

Personal communication between Roger McGinnis, Hart Crowser, and Dr. Pete Adolpson, Ecology, on June 2, 2009);

Plumb, R.H., Jr. 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report EPA/CE-81-1. US EPA and US Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

PSEP 1997a. Recommended Protocols for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples. Final Report. Prepared for U.S. Environmental Protection Agency, Seattle, WA.

PSEP 1997b. Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment, and Tissue Samples. Final Report. Prepared for U.S. Environmental Protection Agency, Seattle, WA.

Hart Crowser Page 28

PSEP 1997c. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Final Report. Prepared for U.S. Environmental Protection Agency, Seattle, WA.

Science Applications International Corporation 2008. Dioxin/Furan Concentrations at the Non-Dispersive Open-Water Dredged Material Disposal Sites in Puget Sound. Prepared for Washington State Department of Natural Recourses. July 2008.

USACE 2008. Puget Sound Dioxin/PCB Survey, OSV Bold, 2008. http://www.nws.usace.army.mil/PublicMenu/Menu.cfm?sitename=DMMO&pag ename=Dioxin_Work_Group. January 21, 2009.

9.0 LIMITATIONS

Work for this project was performed, and this report prepared, in general accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Ecology for specific application to the referenced property. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

J:\Jobs\1733017\Bellingham Bay Investigation Report.doc

Page 29 Hart Crowser

Table 1 - Sediment Sample Collection Data

Site	Vibracore Locations	Vibracore Sediment Samples	Surface Sediment Samples	SPI
R.G. Haley Site	9	27	3	0
Cornwall Avenue Landfill Site	44	0	0	141
Bellingham Bay Piling Study Area	3	2(a)	3	0
Bay-Wide Dioxin Background Study	0	0	6	0
Boulevard Park Study	9	62	9	0
Samish Bay Reference	0	0	3	0

⁽a) Vibracore sediment sample could not be collected at one location.

Table 2 - Sediment Sample Testing Summary

											"			ts		.≥	ent
					č				fides		-urans		g,	J Limi	sity	Gravit	Cont
	ARI Job	TA-SAC	Mercury	Metals ¹	NWTPH-Dx	SVOCs	3s	Ammonia	Total Sulfides	O	Dioxins/Furans	Bioassay	Grain Size	Atterberg Limits	Bulk Density	Specific Gravity	Moisture Content
Sample Number	No.	Project No.	₩	Me	≩	SV	PCBs	Am	٦	700	음	읆	Gra	Att	Bal	Spe	Mo
Boulevard Park Study		_						7		·			_		_		
Surface Sediment Samples																	
·	NQ36,																
BLVD-SS-01	NV31			х	х	x		х	x	х		х	x				
BLVD-SS-02	NQ36			x	x			x	x	x							
BLVD-SS-03	NQ36			х	х			х	х	х							
BLVD-SS-04	NQ36			x	x			x	x	x							
BLVD-SS-05	NQ36			x	x			x	x	x							
BLVD-SS-06	NQ36			x	X			x	X	x			х				
BLVD-SS-07	NQ36			x	X			x	X	x		x	X				
BLVD-SS-08	NQ36			X	X			X	X	x		^	X				
BLVD-SS-09	NQ36			X	X		х	x	X	X		х	X				
	NUSO			X	×		X	×	X	×		×	X				
Sediment Core Samples																	
	NR34,																
BLVD-SC-01-0-2'	NV30			x	х	x				х							
	NR34,																
BLVD-SC-01-2-4'	NV30			х	х	x				х							
	NR34,																
BLVD-SC-01-4-6'	NV30			х	х	x				х							
	NR34,			^	^	^				^							
BLVD-SC-02-2-4'	OI72			х	х	x				х							
DL v D-00-02-2-4	NR34,			_ ^	_ ^	_ ^				_ ^							
DI)/D CC 03 C 8!					١.,					.,							
BLVD-SC-02-6-8'	OI72			X	X	х				х							
BLVD-SC-03-4-6'	NR34			х	х												
BLVD-SC-03-6-8'	NR34			х	х												
	NR34,																
BLVD-SC-04-0-2'	NV30			Х	х	Х				Х							
	NR34,																
BLVD-SC-04-2-4'	OI72					х				х							
	NR34,																
BLVD-SC-04-4-6'	OI72					х				х							
BLVD-SC-04-8-10'	NR34			х	х								х	х		х	х
BLVD-SC-04-10-10.5'	NR34														х		х
BLVD-SC-05-6-8'	NR34			х	х												
BLVD-SC-05-8-9.5'	NR34			x	x												
BLVD-SC-05-9.5-10'	NR34			^	_ ^								x	x		×	x
BLVD-SC-05-10-10.5'	NR34												^	^	х	^	x
BLVD-SC-05-10.5-12'	NR34			х	х								х	х	^	х	X
BLVD-SC-05-13.5-14'	NR34			^	^									^		^	^
BLVD-SC-06-0-2'	NR34				١.,								Х				
				X	X												
BLVD-SC-06-2-4'	NR34			х	x												
BLVD-SC-06-4-6'	NR34			Х	х												
BLVD-SC-06-6-8'	NR34												х	х		х	х
BLVD-SC-06-8-9'	NR34														х		х
BLVD-SC-06-12-14'	NR33												х	х		x	х
BLVD-SC-06-14-14.5'	NR33														х		х
BLVD-SC-07-0-4'	NR33			х	х												
BLVD-SC-08-0-2'	NR33			x	х												
BLVD-SC-08-2-2.5'	NR33														х		х
BLVD-SC-08-2.5-4'	NR33			x	х								х	х		х	х
BLVD-SC-08-4-6'	NR33			х	х												
BLVD-SC-08-8-8.5'	NR33														х		х
BLVD-SC-08-8.5-10'	NR33												х	х		x	х
BLVD-SC-08-14-14.5'	NR33												1		x		x
BLVD-SC-09-0-2'	NR33			x	х		x								^		``
	NR33,			^	^		^										
BLVD-SC-09-2-3'	NV29			х	х	х	v			х							
DE V D-00-03-2-3	NR33,			^	_ ^	^	Х			_ ^							
BLVD SC 00 3 4!							١,,										
BLVD-SC-09-3-4'	NV29			х	Х	х	Х			х							
	NR33,																
	NV29,																
BLVD-SC-09-4-6'	OG54			х	x	х	х			х							
	NR33,																
	NV29,																
BLVD-SC-09-6-8'	OG54			х	х	х	х			х							
BLVD-SC-09-8-8.5'	NR33														х		х
l e e e e e e e e e e e e e e e e e e e	NR33,	1			Ī	Ī								Ī	ĺ		Ì
	ININOS,																

Table 2 - Sediment Sample Testing Summary

		1		1			1	ı		ı	1	ı	ı			ı	
Sample Number	ARI Job No.	TA-SAC Project No.	Mercury	Metals ¹	NWTPH-Dx	SVOCs	PCBs	Ammonia	Total Sulfides	тос	Dioxins/Furans	Bioassay	Grain Size	Atterberg Limits	Bulk Density	Specific Gravity	Moisture Content
R.G. Haley Site																	
Surface Sediment Samples RGH-SS-01 RGH-SS-02 RGH-SS-03	NM56 NM56 NM56	G8I030194 G8I030194 G8I030194	x x x		x x x	x x x		x x x	x x x	x x x	x x x	x x	x x x				
Sediment Core Samples RGH-SC-01-0-2' RGH-SC-01-0-2' RGH-SC-01-4-6' RGH-SC-02-0-2' RGH-SC-02-2-4' RGH-SC-03-0-2' RGH-SC-03-0-2' RGH-SC-03-0-2' RGH-SC-04-0-2' RGH-SC-04-0-2' RGH-SC-04-0-2' RGH-SC-05-0-2' RGH-SC-06-0-2' RGH-SC-06-0-2' RGH-SC-06-0-2' RGH-SC-07-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2' RGH-SC-09-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2' RGH-SC-08-0-2'	NM56 NM56 NM56 NM56 NM56 NM56 NM56 NM56	G8I030194 G8I030194 G8I030194 G8I030194 G8I030194 G8I030194 G8I030194 G8I030194	x x x x x x x x x x x x x x x x x x x		x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x				x x x x x x x x x x x x x x x x x x x	x x x x x						
Bellingham Bay Piling Study Surface Sediment Samples																	
BBP-SS-01 BBP-SS-02 BBP-SS-03	NM66 NM66 NM66	G81030305 G81030305 G81030305		x x x	x x x	x x x		x x x	x x x	x x x	x x x	x x	x x	x x		x x	x x
Sediment Core Samples BBP-SC-01 BBP-SC-02	NM66 NM66	G8I030305		x x	x x	x x		x x	x x	x x	x						
Bay-Wide Dioxin Background	Study																
Surface Sediment Samples BBDx-SS-01 BBDx-SS-02 BBDx-SS-03 BBDx-SS-04 BBDx-SS-05 BBDx-SS-05	NQ49 NQ49 NQ49 NQ49 NQ49 NQ49	G81240290 G81240290 G81240290 G81240290 G81240290 G81240290									x x x x x						

Table 2 - Sediment Sample Testing Summary

Sample Number	TA-SAC Project No.	Mercury	Metals ¹	NWTPH-Dx	SVOCs	PCBs	Ammonia	Total Sulfides	тос	Dioxins/Furans	Bioassay	Grain Size	Atterberg Limits	Bulk Density	Specific Gravity	Moisture Content
Samish Bay Reference																
Surface Sediment Samples																
Samish Bay Ref 1							Х	Х	Х		Х	Х				
Samish Bay Ref 2							Х	Х	Х		Х	Х				
Samish Bay Ref 3							Х	Х	Х		Х	Х				

¹ Metals analysis will include the SMS Metals: arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc.

Table 3 - Sediment Quality Criteria Compared to Laboratory Detection and Quantitation Limits

Sheet 1 of 2

	Sample ID SMS (OC normalized for non-ionizable		etection and			Sheet 1 01 2
Sample ID	•			AETs (dry wt)	MDL P	QL
Sampling Date	SQS	CSL	LAET	2LAET		
Metals in mg/kg						
Arsenic	57	93	57	93	0.52	5
Cadmium	5.1	6.7	5.1	6.7	0.02	0.2
Chromium	260	270	260	270	0.28	0.5
Copper	390	390	390	390	0.04	0.2
Lead	450	530	450	530	0.2	2
Mercury	0.41	0.59	0.41	0.59	0.005	0.05
Nickel			140	140	0.31	1
Silver	6.1	6.1	6.1	6.1	0.11	0.3
Zinc	410	960	410	960	0.28	1
PAHs in ug/kg						
Naphthalene	99000	170000	2100	2400	8.7	20
Acenaphthylene	66000	66000	1300	1300	8.7	20
Acenaphthene	16000	57000	500	730	8.2	20
Fluorene	23000	79000	540	1000	9	20
Phenanthrene	100000	480000	1500	5400	8.4	20
Anthracene	220000	1200000	960	4400	7.7	20
2-Methylnaphthalene	38000	64000	670	1400	8.2	20
1-Methylnaphthalene					7.2	20
Total LPAHs	370000	780000	5200	13000		-
Fluoranthene	160000	1200000	1700	2500	7.9	20
Pyrene	100000	1400000	2600	3300	7.8	20
Benzo(a)anthracene	110000	270000	1300	1600	5.9	20
Chrysene	110000	460000	1400	2800	6.6	20
Benzo(b)fluoranthene					9.5	20
Benzo(k)fluoranthene					9.3	20
Total Benzofluoranthenes	230000	450000	3200	3600		
Benzo(a)pyrene	99000	210000	1600	3000	8.2	20
Indeno(1,2,3-cd)pyrene	34000	88000	600	690	8.6	20
Dibenz(a,h)anthracene	12000	33000	230	540	8.6	20
Benzo(g,h,i)perylene	31000	78000	670	720	6.8	20
Total HPAHs	960000	5300000	12000	17000		
Chlorinated Benzenes in ug/k						
1,2-Dichlorobenzene	2300	2300	35	50	7.9	20
1,3-Dichlorobenzene			170	170	7.4	20
1,4-Dichlorobenzene	3100	9000	110	120	7.4	20
1,2,4-Trichlorobenzene	810	1800	31	51	9.1	20
Hexachlorobenzene	380	2300	22	70	8	20
						Hart Crowser

Hart Crowser 1733017\Bellingham Bay Investigation Report Table 3

Table 3 - Sediment Quality Criteria Compared to Laboratory Detection and Quantitation Limits

Sheet 2 of 2

Sample ID	SMS (OC normalized for	non-ionizable organics)	AE	ETs (dry wt)	MDL	PQL
Sampling Date	SQS	CSL	LAET	2LAET		
Phthalate Esters in ug/kg						
Dimethylphthalate	53000	53000	71	160	7.	8 20
Diethylphthalate	61000	110000	200	200	1	6 20
Di-n-Butylphthalate	220000	1700000	1400	1400	1	2 20
Butylbenzylphthalate	4900	64000	63	900	1	1 20
bis(2-Ethylhexyl)phthalate	47000	78000	1300	1900	1	1 200
Di-n-Octyl phthalate	58000	4500000	6200	6200	8.	3 20
Miscellaneous Compounds in	n ug/kg					
Dibenzofuran	15000	58000	540	700	7.	6 20
Hexachlorobutadiene	3900	6200	11	120	8.	1 20
N-Nitrosodiphenylamine	11000	11000	28	40	8.	7 20
Hexachloroethane					7.	2 20
Ionizable Organic Compound	ls in ug/kg					
Phenol	420	1200	420	1200	1	4 20
2-Methylphenol	63	63	63	63	1	4 20
4-Methylphenol	670	670	670	670	1	3 20
2,4-Dimethylphenol	29	29	29	29	1	5 20
Pentachlorophenol	360	690	360	690	4	8 100
Benzyl Alcohol	57	73	57	73	1	4 20
Benzoic Acid	650	650	650	650	12	0 200
Conventionals in %						
Total Organic Carbon						0.02
Preserved Total Solids						0.01
Total Solids						0.01
Conventionals in mg/kg						
N-Ammonia						0.1
Sulfide						1
TPH in mg/kg						
Diesel-Range Hydrocarbons					0.	5 5
Motor Oil-Range Hydrocarbo	ons				3.	3 10

Note: MDL and PQL will vary based on initial sample weight, dry weight corrections, and dilution factors. These limits are the laboratory reported limits.

Table 4 - Grain Size and Conventional Parameter Results for Sediment Samples

Sample ID	SAMISH BAY REF 1	BBP-SS-01	BBP-SS-02	RGH-SS-01	RGH-SS-02	RGH-SS-03
Sampling Date	08/29/08	8/26/2008	8/26/2008	8/26/08	8/26/08	8/26/08
Grain Size in %						
Gravel	0.1	11.6	9.1	55.2	56	19.5
Very Coarse Sand	1.5	5.3	8.2	11.8	9.2	7.3
Coarse Sand	17.3	5.4	6.9	9.5	11.5	9.9
Medium Sand	60.2	16	19.7	13.7	16.5	19.5
Fine Sand	11.2	34.7	30.6	7.6	5	20.2
Very Fine Sand	1.4	12.9	9.2	2	0.8	12.4
Coarse Silt	3.0	4.3	1.7			1.3
Medium Silt	0.2	4.9	3.8			1.3
Fine Silt	1.1	1.1	2.6			2
Very Fine Silt	1.0	0.5	1.5			1.2
8-9 Phi Clay	0.7	0.5	1.5			1.3
9-10 Phi Clay	0.9	0.9	1.7			1.3
> 10 Phi Clay	1.3	1.9	3.5			2.7
Total Fines	8.3	14.1	16.2	0.2	1.1	11.1
Conventionals in %						
Total Organic Carbon	1.16					
Preserved Total Solids	70.40					
Total Solids	81.00					
Conventionals in mg/kg						
N-Ammonia	8.69					
Sulfide	8.42					

Blank indicates sample not analyzed for specific analyte or screen size.

Table 5 - Analytical Results and TCDD TEQs for Bay-Wide Sediment Samples

Sheet 1 of 2

Table 5 - Allalytical R	esuits a		LUS IUI Day	-wide	Seuiment Sa	ilibie2			•	Dilect i di 2
Sample ID Sampling Date	TEF	BBDX-SS-01 9/19/2008	TEQ ND=1/2 RL	TEQ ND=0	BBDX-SS-02 9/19/2008	TEQ ND=1/2 RL	TEQ ND=0	BBDX-SS-03 9/19/2008	TEQ ND=1/2 RL	TEQ ND=0
Depth Interval		0 to 12 cm			0 to 12 cm			0 to 12 cm		
Percent Moisture		59.1			49			61.4		
Dioxins in ng/kg										
2,3,7,8-TCDD	1	0.32 U	0.16	C	0.31 U	0.155	0	0.62 U	0.31	0
1,2,3,7,8-PeCDD	1	0.61 U	0.305	C	0.92 U	0.46	0	3.2 U	1.6	0
1,2,3,4,7,8-HxCDD	0.1	2.1 U	0.105	C	2.3 T	0.23	0.23	16	1.6	1.6
1,2,3,6,7,8-HxCDD	0.1	1.5 U	0.075	C		0.48	0.48	22	2.2	2.2
1,2,3,7,8,9-HxCDD	0.1	1.2 T	0.12	0.12	2 3 U	0.15	0	16	1.6	1.6
1,2,3,4,6,7,8-HpCDD	0.01	33	0.33	0.33	90	0.9	0.9	290	2.9	2.9
OCDD	0.0003	280	0.084	0.084	630	0.189	0.189	1300	0.39	0.39
2,3,7,8-TCDF	0.1	0.98 T	0.098	0.098	2.6 U C	0.13	0	23 J	2.3	2.3
1,2,3,7,8-PeCDF	0.03	0.34 U	0.0051	C	0.35 U	0.00525	0	1.2 U	0.018	0
2,3,4,7,8-PeCDF	0.3	0.37 U	0.0555	C	0.57 T	0.171	0.171	1.9 U	0.285	0
1,2,3,4,7,8-HxCDF	0.1	0.59 T	0.059	0.059	1.4 T	0.14	0.14	4.2 T	0.42	0.42
1,2,3,7,8,9-HxCDF	0.1	0.24 U	0.012	C	0.35 T	0.035	0.035	0.67 U	0.0335	0
2,3,4,6,7,8-HxCDF	0.1	0.32 U	0.016	C	0.37 U	0.0185	0	1.1 T	0.11	0.11
1,2,3,6,7,8-HxCDF	0.1	0.34 U	0.017	C	0.45 U	0.0225	0	1.7 T	0.17	0.17
1,2,3,4,6,7,8-HpCDF	0.01	4.7 T	0.047	0.047	' 11 J	0.11	0.11	27 J	0.27	0.27
1,2,3,4,7,8,9-HpCDF	0.01	0.39 U	0.00195	C	0.69 U	0.00345	0	2.7 T	0.027	0.027
OCDF	0.0003	16 T	0.0048	0.0048	3 41	0.0123	0.0123	110	0.033	0.033
Total TCDD		4.7			56			640		
Total PeCDD		6.3			64			780		
Total HxCDD		19			120			1200		
Total HpCDD		68			190			540		
Total TCDF		0.98			4.2			74		
Total PeCDF		0.76			2.1			11		
Total HxCDF		3.8			18			30		
Total HpCDF		17			50			130		
Total TEQ			1.50	0.743		3.21	2.27		14.3	12.0

Sample ID	TEF	BBDX-SS-04	TEQ	TEQ	BBDX-SS-05	TEQ	TEQ	BBDX-SS-06	TEQ	TEQ
Sampling Date		9/19/2008	ND=1/2 RL	ND=0	9/18/2008	ND=1/2 RL	ND=0	9/18/2008	ND=1/2 RL	
Depth Interval		0 to 12 cm	.,,_		0 to 12 cm	.,,_		0 to 12 cm	,	
Percent Moisture		62.4			70.4			51.6		
		02. 4			70.4			01.0		
Dioxins in ng/kg				_						
2,3,7,8-TCDD	1	1.5 U	0.75	0		2.5	2.5		1.5	1.5
1,2,3,7,8-PeCDD	1	3.4 U	1.7	0		3	3		0.8	0
1,2,3,4,7,8-HxCDD	0.1	14	1.4	1.4		8.0	0.8		0.255	0
1,2,3,6,7,8-HxCDD	0.1	18	1.8	1.8		0.55	0	0.0 .	0.86	0.86
1,2,3,7,8,9-HxCDD	0.1	13 T	1.3	1.3		0.88	0.88		8.0	8.0
1,2,3,4,6,7,8-HpCDD	0.01	220	2.2	2.2		1.4	1.4		1.2	1.2
OCDD	0.0003		0.189	0.189		0.162	0.162		0.177	0.177
2,3,7,8-TCDF	0.1	26 CON	2.6	2.6	18 CON	1.8	1.8	12 CON	1.2	1.2
1,2,3,7,8-PeCDF	0.03	1.8 T	0.054	0.054	0.85 U	0.01275	0	0.85 U	0.01275	0
2,3,4,7,8-PeCDF	0.3	1.8 U	0.27	0	1.6 T	0.48	0.48	1.2 U	0.18	0
1,2,3,4,7,8-HxCDF	0.1	2.6 U	0.13	0	2.2 T	0.22	0.22	1.7 U	0.085	0
1,2,3,7,8,9-HxCDF	0.1	0.4 U	0.02	0	0.44 U	0.022	0	0.43 U	0.0215	0
2,3,4,6,7,8-HxCDF	0.1	0.85 U	0.0425	0	0.74 U	0.037	0	0.56 U	0.028	0
1,2,3,6,7,8-HxCDF	0.1	0.53 U	0.0265	0	0.88 U	0.044	0	1.1 T	0.11	0.11
1,2,3,4,6,7,8-HpCDF	0.01	16 J	0.16	0.16	10 U	0.05	0	14 J	0.14	0.14
1,2,3,4,7,8,9-HpCDF	0.01	1.3 T	0.013	0.013	0.74 U	0.0037	0	0.87 U	0.00435	0
OCDF	0.0003	47	0.0141	0.0141	31 T	0.0093	0.0093	42	0.0126	0.0126
Total TCDD		490			350			220		
Total PeCDD		660			430			280		
Total HxCDD		1200			610			430		
Total HpCDD		390			260			260		
Total TCDF		70			49			24		
Total PeCDF		8.1			7			1.2 U		
Total HxCDF		9.8			20			14		
Total HpCDF		62			32			55		
Total TEQ		-	12.7	9.73	-	12.0	11.3		7.39	6.00

U = Not detected at the reporting limit (RL) indicated.

CON = Confirmation analysis. J = Estimated value.

ND = Not detected.

TEF = Toxicity Equivalence Factor. Blank indicates not applicable.

T = Value is between the method reporting limit and the method detection limit.

E = Estimated result. Result concentration exceeds the calibration range.

Table 6 - Analytical Resu	ults for	R.G. H	laley Sedim	nent Samples	Compared to	AET Dry-Weigh	nt Criteria	Sheet 1 of 12
Sample ID	AE	ΞΤs	RGH-SS-01	RGH-SS-02	RGH-SS-03	RGH-SC-01-0-2'	RGH-SC-01-2-4'	RGH-SC-01-4-6'
Sampling Date	LAET	2LAET	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			0 to 12 cm	0 to 12 cm	0 to 12 cm	0 to 2 feet	2 to 4 feet	4 to 6 feet
Metals in mg/kg								
Mercury	0.41	0.59	0.10	0.05	0.13	0.13	0.27	0.16
PAHs in ug/kg								
Naphthalene	2100	2400	15 T	19 U	25	20	82	37
Acenaphthylene	1300	1300	9.9 T	19 U	21	21	26	13 T
Acenaphthene	500	730	10 T	10 T	17 T	14 T	110	89
Fluorene	540	1000	19 U	12 T	23	16 T	160	120
Phenanthrene	1500	5400	100	120	190	200	1100	680
Anthracene	960	4400	23	22	47	53	310	290
2-Methylnaphthalene	670	1400	15 T	28	25	26	95	130
1-Methylnaphthalene			15 T	26	25	22	84	140
Total LPAHs	5200	13000	158	164	323	324	1788	1229
Fluoranthene	1700	2500	180	150	350	530	1600	720
Pyrene	2600	3300	160	130	300	510	1400	700
Benzo(a)anthracene	1300	1600	55	57	140	150	480	160
Chrysene	1400	2800	86	75	210	270	660	230
Benzo(b)fluoranthene			68	69	200	200	600	160
Benzo(k)fluoranthene			62	67	150	220	430	160
Total Benzofluoranthenes	3200	3600	130	136	350	420	1030	320
Benzo(a)pyrene	1600	3000	63	79	180	210	610	130
Indeno(1,2,3-cd)pyrene	600	690	28	24	45	49	130	56 T
Dibenz(a,h)anthracene	230	540	19 U	19 U	10 T	19 T	61	59 U
Benzo(g,h,i)perylene	670	720	33	26	51	45	130	71
Total HPAHs	12000	17000	735	677	1636	2203	6101	2387
Chlorinated Benzenes in ug/kg								
1,2-Dichlorobenzene	35	50	19 U	19 U	19 U	19 U	20 U	20 U
1,3-Dichlorobenzene	170	170	19 U	19 U	19 U	19 U	20 U	20 U
1,4-Dichlorobenzene	110	120	19 U	19 U	19 U	19 U	20 U	11 T
1,2,4-Trichlorobenzene	31	51	19 U	19 U	19 U	19 U	20 U	20 U
Hexachlorobenzene	22	70	19 U	19 U	19 U	19 U	20 U	20 U
Phthalate Esters in ug/kg								
Dimethylphthalate	71	160	19 U	19 U	19 U	19 U	14 T	20 U
Diethylphthalate	200	200	19 U	19 U	19 U	19 U	20 U	20 U
Di-n-Butylphthalate	1400	1400	19 U	19 U	19 U	19 U	20 U	20 U
Butylbenzylphthalate	63	900	19 U	19 U	19 U	19 U	20 U	20 U
bis(2-Ethylhexyl)phthalate	1300	1900	140	25	86	170	130	190
Di-n-Octyl phthalate	6200	6200	19 U	19 U	19 U	19 U	20 U	20 U

Hart Crowser 1733017\Bellingham Bay Investigation Report Chem Results Tables - Table 6

Table 6 - Analytical Resu	lts for	R.G. H	laley Sedim	ent Samples	Compared to	AET Dry-Weigh	nt Criteria	Sheet 2 of 12
Sample ID	Al	ΞΤs	RGH-SS-01	RGH-SS-02	RGH-SS-03	RGH-SC-01-0-2'	RGH-SC-01-2-4'	RGH-SC-01-4-6'
Sampling Date	LAET	2LAET	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			0 to 12 cm	0 to 12 cm	0 to 12 cm	0 to 2 feet	2 to 4 feet	4 to 6 feet
Miscellaneous Compounds in ug	J/kg							
Dibenzofuran	540	700	19 U	19 U	14 T	16 T	84	31
Hexachlorobutadiene	11	120	19 U	19 U	19 U	19 U	20 U	20 U
N-Nitrosodiphenylamine	28	40	19 U	19 U	19 U	19 U	20 U	120 U
Hexachloroethane			19 U	19 U	19 U	19 U	20 U	20 U
Ionizable Organic Compounds ir	ug/kg							
Phenol	420	1200	30	32	19 U	41	20 U	20 U
2-Methylphenol	63	63	19 U	19 U	19 U	19 U	20 U	20 U
4-Methylphenol	670	670	19 U	19 U	29	19 U	20 U	16 T
2,4-Dimethylphenol	29	29	19 U	19 U	19 U	19 U	20 U	20 U
Pentachlorophenol	360	690	83 T	51 T	180	380	270	530
Benzyl Alcohol	57	73	19 U	19 U	19 U	19 U	20 U	20 U
Benzoic Acid	650	650	190 U	190 U	190 U	190 U	200 U	200 U
Conventionals in %								
Total Organic Carbon			4.13	2.38	2.2	2.87	4.24	8.12
Preserved Total Solids			79.3	80.3	64.5			
Total Solids			75.6	81.5	67.4	73.9	75.4	74.2
Conventionals in mg/kg								
N-Ammonia			3.39	5.01	6.34			
Sulfide			1420	1190	503			
TPH in mg/kg								
Diesel-Range Hydrocarbons			19	12	17	37	43	220
Motor Oil-Range Hydrocarbons			69	42	63	110	120	450
Total TPH	200 ^a		88	54	80	147	163	670

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 3 of 12

Sample ID		ETs	RGH-SC-02-0-2'	RGH-SC-02-2-4'	RGH-SC-02-4-6'	RGH-SC-03-0-2'	RGH-SC-03-2-4'
Sampling Date	LAET	2LAET	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			0 to 2 feet	2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet
Metals in mg/kg							
Mercury	0.41	0.59	0.08	0.07	0.08	0.48	0.70
PAHs in ug/kg							
Naphthalene	2100	2400	48	31	14 T	23	40
Acenaphthylene	1300	1300	20 U	19 U	19 U	25	68
Acenaphthene	500	730	48	19 U	19 U	24	37
Fluorene	540	1000	68	19 U	19 U	31	60
Phenanthrene	1500	5400	490	22	39	350	670
Anthracene	960	4400	120	19 U	11 T	70	260
2-Methylnaphthalene	670	1400	63	19 U	16 T	29	33
1-Methylnaphthalene			60	19 U	12 T	30	24
Total LPAHs	5200	13000	774	53	64	523	1135
Fluoranthene	1700	2500	550	27	98	520	4000
Pyrene	2600	3300	550	59	120	550	4000
Benzo(a)anthracene	1300	1600	250	19 U	28	160	340
Chrysene	1400	2800	270	19 U	46	340	1500
Benzo(b)fluoranthene			280	19 U	52	210	740
Benzo(k)fluoranthene			230	19 U	52	290	830
Total Benzofluoranthenes	3200	3600	510	19 U	104	500	1570
Benzo(a)pyrene	1600	3000	270	19 U	47	220	490
Indeno(1,2,3-cd)pyrene	600	690	56	19 U	9.7 T	48	170
Dibenz(a,h)anthracene	230	540	17 T	19 U	19 U	20 U	59 U
Benzo(g,h,i)perylene	670	720	56	19 U	14 T	44	170
Total HPAHs	12000	17000	2529	86	466.7	2382	12240
Chlorinated Benzenes in ug/kg	J						
1,2-Dichlorobenzene	35	50	20 U	19 U	19 U	20 U	20 U
1,3-Dichlorobenzene	170	170	20 U	19 U	19 U	20 U	20 U
1,4-Dichlorobenzene	110	120	20 U	19 U	19 U	20 U	20 U
1,2,4-Trichlorobenzene	31	51	20 U	19 U	19 U	20 U	20 U
Hexachlorobenzene	22	70	20 U	19 U	19 U	20 U	20 U
Phthalate Esters in ug/kg							
Dimethylphthalate	71	160	17 T	19 U	590	20 U	19 T
Diethylphthalate	200	200	20 U	19 U	19 U	20 U	20 U
Di-n-Butylphthalate	1400	1400	19 T	19 U	19 U	20 U	20 U
Butylbenzylphthalate	63	900	20 U	19 U	19 U	20 U	20 U
bis(2-Ethylhexyl)phthalate	1300	1900	390	19 U	270	190	640
Di-n-Octyl phthalate	6200	6200	20 U	19 U	19 U	20 U	20 U

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 4 of 12

Sample ID	Al	ΞTs	RGH-SC-02-0-2'	RGH-SC-02-2-4'	RGH-SC-02-4-6'	RGH-SC-03-0-2'	RGH-SC-03-2-4'
Sampling Date	LAET	2LAET	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			0 to 2 feet	2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet
Miscellaneous Compounds in u	g/kg						
Dibenzofuran	540	700	42	19 U	19 U	21	25
Hexachlorobutadiene	11	120	20 U	19 U	19 U	20 U	20 U
N-Nitrosodiphenylamine	28	40	20 U	19 U	19 U	20 U	20 U
Hexachloroethane			20 U	19 U	19 U	20 U	20 U
Ionizable Organic Compounds in	n ug/kg						
Phenol	420	1200	20 U	19 U	19 U	20 U	18 T
2-Methylphenol	63	63	20 U	19 U	19 U	20 U	20 U
4-Methylphenol	670	670	20 U	19 U	19 U	20 U	26
2,4-Dimethylphenol	29	29	20 U	19 U	19 U	20 U	20_U
Pentachlorophenol	360	690	230	96 U	170	220	720
Benzyl Alcohol	57	73	20 U	19 U	18 T	20 U	20 U
Benzoic Acid	650	650	200 U	190 U	250	200 U	200 U
Conventionals in %							
Total Organic Carbon			5.01	1.47	6.86	4.32	7.94
Preserved Total Solids							
Total Solids			73.2	84.7	80	47.8	39.8
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			32	18	25	46	180
Motor Oil-Range Hydrocarbons			100	100	92	140	510
Total TPH	200 ^a		132	118	117	186	690

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 5 of 12

Sample ID			RGH-SC-03-4-6'	RGH-SC-04-0-2'	RGH-SC-04-2-4'	RGH-SC-04-4-6'	RGH-SC-05-0-2'
Sampling Date Depth Interval	LAET	2LAET	8/26/08 4 to 6 feet	8/26/08 0 to 2 feet	8/26/08 2 to 4 feet	8/26/08 4 to 6 feet	8/26/08 0 to 2 feet
Deptil Interval			4 10 6 1661	0 to 2 feet	2 10 4 1661	4 10 6 1661	0 10 2 1661
Metals in mg/kg							
Mercury	0.41	0.59	1.59	0.23	0.11	0.09	0.30
PAHs in ug/kg							
Naphthalene	2100	2400	120 U	130	27	14 T	50
Acenaphthylene	1300	1300	120 U	95	20 U	20 U	37
Acenaphthene	500	730	120 U	110	20 U	20 U	43
Fluorene	540	1000	120 U	180	20 U	20 U	43
Phenanthrene	1500	5400	230	2700	34	28	480
Anthracene	960	4400	79 T	370	10 T	20 U	150
2-Methylnaphthalene	670	1400	120 U	54	20 U	20 U	14 T
1-Methylnaphthalene			120 U	55	20 U	20 U	12 T
Total LPAHs	5200	13000	309	3585	71	42	803
Fluoranthene	1700	2500	550 J	2300	53	31	730
Pyrene	2600	3300	630	2500	48	26	640
Benzo(a)anthracene	1300	1600	260 J	140	13 T	20 U	280
Chrysene	1400	2800	370	1200	20	11 T	340
Benzo(b)fluoranthene			320	750	18 T	14 T	340
Benzo(k)fluoranthene			210	570	21	20 U	360
Total Benzofluoranthenes	3200	3600	530	1320	39	14 T	700
Benzo(a)pyrene	1600	3000	230	550	18 T	11 T	380
Indeno(1,2,3-cd)pyrene	600	690	72 T	190	20 U	20 U	81
Dibenz(a,h)anthracene	230	540	120 U	31 T	20 U	20 U	32
Benzo(g,h,i)perylene	670	720	86 T	190	20 U	20 U	80
Total HPAHs	12000	17000	2728	8421	230	107	3263
Chlorinated Benzenes in ug/kg							
1,2-Dichlorobenzene	35	50	120 U	20 U	20 U	20 U	20 U
1,3-Dichlorobenzene	170	170	120 U	20 U	20 U	20 U	20 U
1,4-Dichlorobenzene	110	120	120 U	20 U	20 U	20 U	20 U
1,2,4-Trichlorobenzene	31	51	120 U	20 U	20 U	20 U	20 U
Hexachlorobenzene	22	70	120 U	20 U	20 U	20 U	20 U
Phthalate Esters in ug/kg							
Dimethylphthalate	71	160	120 U	20 U	20 U	20 U	20 U
Diethylphthalate	200	200	120 U	20 U	20 U	20 U	20 U
Di-n-Butylphthalate	1400	1400	120 U	20 U	20 U	20 U	20 U
Butylbenzylphthalate	63	900	69 JT	20 U	20 U	20 U	20 U
bis(2-Ethylhexyl)phthalate	1300	1900	470 J	59	20 U	20 U	11 T
Di-n-Octyl phthalate	6200	6200	120 U	20 U	20 U	20 U	20 U

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 6 of 12

Sample ID	Al	ΞTs	RGH-SC-03-4-6'	RGH-SC-04-0-2'	RGH-SC-04-2-4'	RGH-SC-04-4-6'	RGH-SC-05-0-2'
Sampling Date	LAET	2LAET	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			4 to 6 feet	0 to 2 feet	2 to 4 feet	4 to 6 feet	0 to 2 feet
Miscellaneous Compounds in u	g/kg						
Dibenzofuran	540	700	120 U	160	20 U	20 U	21
Hexachlorobutadiene	11	120	120 U	20 U	20 U	20 U	20 U
N-Nitrosodiphenylamine	28	40	120 U	20 U	20 U	20 U	20 U
Hexachloroethane			120 U	20 U	20 U	20 U	20 U
Ionizable Organic Compounds in	n ug/kg						
Phenol	420	1200	120 U	22	20 U	20 U	20 U
2-Methylphenol	63	63	120 U	20 U	20 U	20 U	20 U
4-Methylphenol	670	670	120 U	46	20 U	20 U	19 T
2,4-Dimethylphenol	29	29	120 U	20 U	20 U	20 U	20 U
Pentachlorophenol	360	690	590 U	130	99 U	98 U	99 U
Benzyl Alcohol	57	73	120 U	20 U	20 U	20 U	20 U
Benzoic Acid	650	650	1200 U	200 U	200 U	200 U	200 U
Conventionals in %							
Total Organic Carbon			10.1	10.6	4.22	1.64	4.8
Preserved Total Solids							
Total Solids			39.3	59.9	50.5	56.1	44.7
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			110	28	13	8.8 U	120
Motor Oil-Range Hydrocarbons			240	75	28	18 U	200
Total TPH	200 ^a		350	103	41	18 U	320

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 7 of 12

Sample ID		ΞTs	RGH-SC-05-2-4'	RGH-SC-05-4-6'	RGH-SC-06-0-2'	RGH-SC-06-2-4'	RGH-SC-06-4-6'
Sampling Date	LAET	2LAET	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet	4 to 6 feet
Metals in mg/kg							
Mercury	0.41	0.59	0.09	0.29	0.20	0.74	0.83 J
PAHs in ug/kg							
Naphthalene	2100	2400	20 U	29	38	120	480
Acenaphthylene	1300	1300	20 U	16 T	20 U	16 T	440
Acenaphthene	500	730	20 U	20 U	20 U	15 T	110
Fluorene	540	1000	20 U	20	11 T	17 T	440
Phenanthrene	1500	5400	12 T	470	130	140	3300
Anthracene	960	4400	20 U	110	30	28	1100
2-Methylnaphthalene	670	1400	20 U	20 U	20 U	94	200
1-Methylnaphthalene			20 U	20 U	20 U	64	170
Total LPAHs	5200	13000	20 U	645	209	336	5870
Fluoranthene	1700	2500	17 T	680	180	120	4200
Pyrene	2600	3300	19 T	610	180	140	5100
Benzo(a)anthracene	1300	1600	20 U	160	52	54	2100
Chrysene	1400	2800	20 U	250	77	77	2300
Benzo(b)fluoranthene			20 U	120	40	52	2100
Benzo(k)fluoranthene			20 U	150	58	50	1200
Total Benzofluoranthenes	3200	3600	20 U	270	98	102	3300
Benzo(a)pyrene	1600	3000	20 U	170	61	72	2400
Indeno(1,2,3-cd)pyrene	600	690	20 U	92	35	38	1300
Dibenz(a,h)anthracene	230	540	20 U	18 T	20 U	20 U	460
Benzo(g,h,i)perylene	670	720	20 U	110	42	48	1400
Total HPAHs	12000	17000	20 U	2360	725	651	22560
Chlorinated Benzenes in ug/kg							
1,2-Dichlorobenzene	35	50	20 U	20 U	20 U	20 U	59 U
1,3-Dichlorobenzene	170	170	20 U	20 U	20 U	20 U	59 U
1,4-Dichlorobenzene	110	120	20 U	20 U	20 U	20 U	59 U
1,2,4-Trichlorobenzene	31	51	20 U	20 U	20 U	20 U	59 U
Hexachlorobenzene	22	70	20 U	20 U	20 U	20 U	59 U
Phthalate Esters in ug/kg							
Dimethylphthalate	71	160	20 U	20 U	20 U	20 U	59 U
Diethylphthalate	200	200	20 U	20 U	20 U	20 U	59 U
Di-n-Butylphthalate	1400	1400	20 U	20 U	20 U	20 U	59 U
Butylbenzylphthalate	63	900	20 U	20 U	20 U	20 U	59 U
bis(2-Ethylhexyl)phthalate	1300	1900	20 U	20 U	20 U	14 T	59 U
Di-n-Octyl phthalate	6200	6200	20 U	20 U	20 U	20 U	59 U

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 8 of 12

Sample ID	Al	ΞTs	RGH-SC-05-2-4'	RGH-SC-05-4-6'	RGH-SC-06-0-2'	RGH-SC-06-2-4'	RGH-SC-06-4-6'
Sampling Date	LAET	2LAET	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet	4 to 6 feet
Miscellaneous Compounds in u	g/kg						
Dibenzofuran	540	700	20 U	11 T	20 U	32	180
Hexachlorobutadiene	11	120	20 U	20 U	20 U	20 U	59 U
N-Nitrosodiphenylamine	28	40	20 U	20 U	20 U	20 U	59 U
Hexachloroethane			20 U	20 U	20 U	20 U	59 U
Ionizable Organic Compounds in	n ug/kg						
Phenol	420	1200	20 U	21	20 U	15 T	56 T
2-Methylphenol	63	63	20 U	20 U	20 U	20 U	59 U
4-Methylphenol	670	670	20 U	23	22	89	230
2,4-Dimethylphenol	29	29	20 U	20 U	20 U	15 T	59 U
Pentachlorophenol	360	690	98 U	98 U	98 U	98 U	300 U
Benzyl Alcohol	57	73	20 U	20 U	20 U	20 U	59 U
Benzoic Acid	650	650	200 U	200 U	200 U	200 U	590 U
Conventionals in %							
Total Organic Carbon			2.38	6.39	4.08	3.89	8.08
Preserved Total Solids							
Total Solids			45	44.1	44.3	48.4	44.3
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			12	41	61	50	110
Motor Oil-Range Hydrocarbons			21 U	72	99	64	190
Total TPH	200 ^a		12	113	160	114	300

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 9 of 12

Sample ID		Ts	RGH-SC-07-0-2'	RGH-SC-07-2-4	RGH-SC-07-4-6.8'	RGH-SC-08-0-2'	RGH-SC-08-2-4
Sampling Date			9/24/08	9/24/08	9/24/08	9/24/08	9/24/08
Depth Interval	LAET	ZLAET	9/24/06 0 to 2 feet	2 to 4 feet	4 to 6.8 feet	9/24/06 0 to 2 feet	2 to 4 feet
Берит ппетуаг			0 to 2 feet	2 to 4 feet	4 10 6.6 feet	0 to 2 feet	2 to 4 feet
Metals in mg/kg							
Mercury	0.41	0.59	0.2	0.2 U	0.09 U	1.0	0.9
PAHs in ug/kg							
Naphthalene	2100	2400	670	5900	840	13 T	27
Acenaphthylene	1300	1300	36	110	33	17 T	26
Acenaphthene	500	730	47	90	17 T	11 T	17 T
Fluorene	540	1000	63	170	32	13 T	19 T
Phenanthrene	1500	5400	580	840	180	120	180
Anthracene	960	4400	110	97	26	34	41
2-Methylnaphthalene	670	1400	38	210	35	20 U	32
1-Methylnaphthalene			38	230	34	20 U	27
Total LPAHs	5200	13000	1506	7207	1128	208	310
Fluoranthene	1700	2500	760	490	130	210	330
Pyrene	2600	3300	600	250	89	150	250
Benzo(a)anthracene	1300	1600	210	24	20 U	110	190
Chrysene	1400	2800	390 J	27	20 U	130	220
Benzo(b)fluoranthene			220	35	22	110	220
Benzo(k)fluoranthene			190	35	20	100	170
Total Benzofluoranthenes	3200	3600	410	70	42	210	390
Benzo(a)pyrene	1600	3000	310	42	27	120	240
Indeno(1,2,3-cd)pyrene	600	690	95	19 T	11 T	34	70
Dibenz(a,h)anthracene	230	540	39	20 U	20 U	14 T	20 U
Benzo(g,h,i)perylene	670	720	120	36	15 T	38	68
Total HPAHs	12000	17000	2934	958	314	1016	1758
Chlorinated Benzenes in ug/kg							
1,2-Dichlorobenzene	35	50	20 U	20 U	20 U	20 U	20 U
1,3-Dichlorobenzene	170	170	20 U	20 U	20 U	20 U	20 U
1,4-Dichlorobenzene	110	120	20 U	20 U	20 U	20 U	20 U
1,2,4-Trichlorobenzene	31	51	20 U	20 U	20 U	20 U	20 U
Hexachlorobenzene	22	70	20 U	20 U	20 U	20 U	20 U
Phthalate Esters in ug/kg							
Dimethylphthalate	71	160	180	20 U	20 U	30	20 U
Diethylphthalate	200	200	20 U	20 U	20 U	20 U	20 U
Di-n-Butylphthalate	1400	1400	20 U	20 U	20 U	18 T	20 U
Butylbenzylphthalate	63	900	20 U	20 U	20 U	110	20 U
bis(2-Ethylhexyl)phthalate	1300	1900	100	20 U	20 U	84	250
Di-n-Octyl phthalate	6200	6200	20 U	20 U	20 U	20 U	60 U

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sheet 10 of 12

Sample ID	Al	ΞTs	RGH-SC-07-0-2'	RGH-SC-07-2-4'	RGH-SC-07-4-6.8'	RGH-SC-08-0-2'	RGH-SC-08-2-4'
Sampling Date	LAET	2LAET	9/24/08	9/24/08	9/24/08	9/24/08	9/24/08
Depth Interval			0 to 2 feet	2 to 4 feet	4 to 6.8 feet	0 to 2 feet	2 to 4 feet
Miscellaneous Compounds in u	g/kg						
Dibenzofuran	540	700	38	160	32	20 U	20 U
Hexachlorobutadiene	11	120	20 U	20 U	20 U	20 U	20 U
N-Nitrosodiphenylamine	28	40	20 U	20 U	20 U	20 U	20 U
Hexachloroethane			20 U	20 U	20 U	20 U	20 U
Ionizable Organic Compounds in	n ug/kg						
Phenol	420	1200	18 T	40	31	20 U	15 T
2-Methylphenol	63	63	20 U	32	20 U	20 U	20 U
4-Methylphenol	670	670	34	44	13 J	18 T	21
2,4-Dimethylphenol	29	29	20 U	42	20 U	20 U	20 U
Pentachlorophenol	360	690	98 U	99 U	97 U	150	450
Benzyl Alcohol	57	73	20 U	20 U	20 U	20 U	20 U
Benzoic Acid	650	650	200 U	200 U	200 U	200 U	200 U
Conventionals in %							
Total Organic Carbon			11.3	38.6	22.6	14.9	27.3
Preserved Total Solids							
Total Solids			53.8	29.7	35.6	38.4	33.8
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			63	210	330	210	320
Motor Oil-Range Hydrocarbons			170	190	650	670	800
Total TPH	200 ^a		233	400	980	880	1120

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

Sample ID Sampling Date	AE LAET	Ts 2LAET	RGH-SC-08-4-5.5' 9/24/08	RGH-SC-09-0-2' 9/24/08	RGH-SC-09-2-4' 9/24/08	RGH-SC-09-4-5.5' 9/24/08
Depth Interval			4 to 5.5 feet	0 to 2 feet	2 to 4 feet	4 to 5.5 feet
Metals in mg/kg						
Mercury	0.41	0.59	11.3	0.56	1.5	1.9
PAHs in ug/kg						
Naphthalene	2100	2400	84	15 T	32	68
Acenaphthylene	1300	1300	37 T	14 T	19 T	88
Acenaphthene	500	730	140	20 U	14 T	59
Fluorene	540	1000	110	12 T	24	71
Phenanthrene	1500	5400	780	96	120	680
Anthracene	960	4400	450	33	83	200
2-Methylnaphthalene	670	1400	180	12 T	26	70
1-Methylnaphthalene			120	10 T	25	58
Total LPAHs	5200	13000	1601	170	292	1166
Fluoranthene	1700	2500	2000	170	400	1200
Pyrene	2600	3300	1100	130	250	710
Benzo(a)anthracene	1300	1600	490	97	190	310
Chrysene	1400	2800	620	160	230	520
Benzo(b)fluoranthene			330	80	120	440
Benzo(k)fluoranthene			270	77	110	410
Total Benzofluoranthenes	3200	3600	600	157	230	850
Benzo(a)pyrene	1600	3000	340	78	110	480
Indeno(1,2,3-cd)pyrene	600	690	66	23	34	140
Dibenz(a,h)anthracene	230	540	60 U	20 U	20 U	47
Benzo(g,h,i)perylene	670	720	100	25	34	150
Total HPAHs	12000	17000	5316	840	1478	4407
Chlorinated Benzenes in ug/kg						
1,2-Dichlorobenzene	35	50	60 U	20 U	20 U	20 U
1,3-Dichlorobenzene	170	170	60 U	20 U	20 U	20 U
1,4-Dichlorobenzene	110	120	60 U	20 U	20 U	20 U
1,2,4-Trichlorobenzene	31	51	60 U	20 U	20 U	20 U
Hexachlorobenzene	22	70	60 U	20 U	20 U	20 U
Phthalate Esters in ug/kg						
Dimethylphthalate	71	160	110	20 U	20 U	12 T
Diethylphthalate	200	200	60 U	20 U	18 T	20 U
Di-n-Butylphthalate	1400	1400	190	20 U	20 U	20 U
Butylbenzylphthalate	63	900	60 U	20 U	20 U	20 U
bis(2-Ethylhexyl)phthalate	1300	1900	940	120	180	200
Di-n-Octyl phthalate	6200	6200	200 U	20 U	59 U	59 U

Table 6 - Analytical Results for R.G. Haley Sediment Samples Compared to AET Dry-Weight Criteria

			•	•	•	, ,
Sample ID	AE	Ts	RGH-SC-08-4-5.5'	RGH-SC-09-0-2'	RGH-SC-09-2-4'	RGH-SC-09-4-5.5'
Sampling Date	LAET	2LAET	9/24/08	9/24/08	9/24/08	9/24/08
Depth Interval			4 to 5.5 feet	0 to 2 feet	2 to 4 feet	4 to 5.5 feet
Miscellaneous Compounds in ug/	/kg					
Dibenzofuran	540	700	110	20 U	15 T	42
Hexachlorobutadiene	11	120	60 U	20 U	20 U	20 U
N-Nitrosodiphenylamine	28	40	60 U	20 U	20 U	20 U
Hexachloroethane			60 U	20 U	20 U	20 U
Ionizable Organic Compounds in	ug/kg					
Phenol	420	1200	60 U	20 U	260	22
2-Methylphenol	63	63	60 U	20 U	20 U	20 U
4-Methylphenol	670	670	48 T	20 U	76	27
2,4-Dimethylphenol	29	29	00_U	20 U	20 U	20 U
Pentachlorophenol	360	690	4100	91 T	260	420
Benzyl Alcohol	57	73	60 U	20 U	20 U	20 U
Benzoic Acid	650	650	600 U	200 U	200 U	200 U
Conventionals in %						
Total Organic Carbon			18.9	3.69	7.41	5.32
Preserved Total Solids						
Total Solids			29.3	43.4	42.1	41.3
Conventionals in mg/kg						
N-Ammonia						
Sulfide						
TPH in mg/kg						
Diesel-Range Hydrocarbons			670	300	130	360
Motor Oil-Range Hydrocarbons			690	500	300	950
Total TPH	200 ^a		1360	800	430	1310

U = Not detected at the reporting limit indicated.

T = Value is between the method reporting limit and the method detection limit.

Italic = Reporting limit is greater than screening criteria. If the analyte was present,

the laboratory reported estimated concentrations between the MDL and the PQL.

The MDL was below screening criteria for all analytes.

Bold = Concentration is greater than LAET.

Bold/Box = Concentration is greater that 2LAET.

Blank indicates sample not analyzed for specific analyte or no criteria available.

a = Proposed TPH screening value (Pete Adolphson, Ecology, personal communication)

Sheet 1 of 12 Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria Sample ID SMS RGH-SS-01 (a) RGH-SS-02 RGH-SS-03 RGH-SC-01-0-2' RGH-SC-01-2-4' (a) RGH-SC-01-4-6' (a) Sampling Date SQS CSL 8/26/08 8/26/08 8/26/08 8/26/08 8/26/08 8/26/08 Depth Interval 0 to 12 cm 0 to 12 cm 0 to 12 cm 0 to 2 feet 2 to 4 feet 4 to 6 feet Metals in mg/kg Mercury 0.41 0.59 0.10 0.05 0.13 0.13 0.27 0.16 PAHs in mg/kg OC Naphthalene 99 170 0.36 T 0.80 U 1.14 0.70 1.93 0.46 66 66 0.24 T 0.80 U 0.95 0.73 0.61 0.16 T Acenaphthylene Acenaphthene 16 57 0.24 T 0.42 T 0.77 T 0.49 T 2.59 1.10 Fluorene 23 79 0.46 U 0.50 T 1.05 0.56 T 3.77 1.48 Phenanthrene 100 480 2.42 5.04 8.64 6.97 25.94 8.37 220 0.92 1.85 3.57 Anthracene 1200 0.56 2.14 7.31 0.36 T 0.91 2.24 2-Methylnaphthalene 38 64 1.18 1.14 1.60 1-Methylnaphthalene 0.36 T 1.09 1.14 0.77 1.98 1.72 Total LPAHs 370 780 3.82 6.89 14.68 11.29 42.17 15.14 Fluoranthene 160 1200 4.36 6.30 15.91 18.47 37.74 8.87 Pyrene 1000 1400 3.87 5.46 13.64 17.77 33.02 8.62 Benzo(a)anthracene 270 1.33 2.39 6.36 5.23 11.32 1.97 110 Chrysene 110 460 2.08 3.15 9.55 9.41 15.57 2.83 Benzo(b)fluoranthene 1.65 2.90 9.09 6.97 14.15 1.97 Benzo(k)fluoranthene 1.50 2.82 6.82 7.67 10.14 1.97 Total Benzofluoranthenes 14.63 3.94 230 450 3.15 5.71 15.91 24.29 Benzo(a)pyrene 210 3.32 8.18 7.32 1.60 99 1.53 14.39 Indeno(1,2,3-cd)pyrene 34 88 0.68 1.01 2.05 1.71 3.07 0.69 T Dibenz(a,h)anthracene 12 33 0.46 U 0.80 U 0.45 T 0.73 U 0.66 T 1.44 Benzo(g,h,i)perylene 31 78 0.80 1.09 2.32 1.57 3.07 0.87 **Total HPAHs** 960 5300 17.80 28.45 74.36 76.76 143.89 29.40 Chlorinated Benzenes in mg/kg OC 1,2-Dichlorobenzene 2.3 2.3 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 0.25 U 1,3-Dichlorobenzene 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 0.25 U 3.1 9 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 1,4-Dichlorobenzene 0.14 T 1.2.4-Trichlorobenzene 0.81 1.8 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 0.25 U Hexachlorobenzene 0.38 2.3 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 0.25 U Phthalate Esters in mg/kg OC Dimethylphthalate 53 53 0.46 U 0.80 U 0.86 U 0.66 U 0.33 T 0.25 U Diethylphthalate 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 0.25 U 61 110 Di-n-Butylphthalate 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 0.25 U 220 1700 64 0.46 U 0.80 U 0.86 U 0.66 U 0.47 U 0.25 U Butylbenzylphthalate 4.9 bis(2-Ethylhexyl)phthalate 47 78 3.39 1.05 3.91 5.92 3.07 2.34

0.80 U

0.86 U

Di-n-Octyl phthalate

58

4500

0.46 U

Hart Crowser

0.25 U

0.47 U

0.66 U

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 2 of 12

Table I - Allalytical Nest	1113 101	11.0.	naicy ocumine	iit Gairipics (Joinpared to	ONIO Officia		
Sample ID	S	MS	RGH-SS-01 (a)	RGH-SS-02	RGH-SS-03	RGH-SC-01-0-2'	RGH-SC-01-2-4' (a)	RGH-SC-01-4-6' (a)
Sampling Date	SQS	CSL	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			0 to 12 cm	0 to 12 cm	0 to 12 cm	0 to 2 feet	2 to 4 feet	4 to 6 feet
Miscellaneous Compounds in m	g/kg OC							
Dibenzofuran	15	58	0.46 U	0.80 U	0.64 T	0.56 T	1.98	0.38
Hexachlorobutadiene	3.9	6.2	0.46 U	0.80 U	0.86 U	0.66 U	0.47 U	0.25 U
N-Nitrosodiphenylamine	11	11	0.46 U	0.80 U	0.86 U	0.66 U	0.47 U	1.48 U
Hexachloroethane			0.46 U	0.80 U	0.86 U	0.66 U	0.47 U	0.25 U
Ionizable Organic Compounds ir	ı ug/kg							
Phenol	420	1200	30	32	19 U	41	20 U	20 U
2-Methylphenol	63	63	19 U	19 U	19 U	19 U	20 U	20 U
4-Methylphenol	670	670	19 U	19 U	29	19 U	20 U	16 T
2,4-Dimethylphenol	29	29	19 U	19 U	19 U	19 U	20 U	20 U
Pentachlorophenol	360	690	83 T	51 T	180	380	270	530
Benzyl Alcohol	57	73	19 U	19 U	19 U	19 U	20 U	20 U
Benzoic Acid	650	650	190 U	190 U	190 U	190 U	200 U	200 U
Conventionals in %								
Total Organic Carbon			4.13	2.38	2.2	2.87	4.24	8.12
Preserved Total Solids			79.3	80.3	64.5			
Total Solids			75.6	81.5	67.4	73.9	75.4	74.2
Conventionals in mg/kg								
N-Ammonia			3.39	5.01	6.34			
Sulfide			1420	1190	503			
TPH in mg/kg								
Diesel-Range Hydrocarbons			19	12	17	37	43	220
Motor Oil-Range Hydrocarbons			69	42	63	110	120	450
Total TPH	200 ^a		88	54	80	147	163	670

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 3 of 12

Sample ID		MS	RGH-SC-02-0-2' (a)	RGH-SC-02-2-4'	RGH-SC-02-4-6' (a)	RGH-SC-03-0-2' (a)	RGH-SC-03-2-4' (a)
Sampling Date	SQS	CSL	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			0 to 2 feet	2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet
Metals in mg/kg							
Mercury	0.41	0.59	0.08	0.07	0.08	0.48	0.70
PAHs in mg/kg OC							
Naphthalene	99	170	0.96	2.11	0.20 T	0.53	0.50
Acenaphthylene	66	66	0.40 U	1.29 U	0.28 U	0.58	0.86
Acenaphthene	16	57	0.96	1.29 U	0.28 U	0.56	0.47
Fluorene	23	79	1.36	1.29 U	0.28 U	0.72	0.76
Phenanthrene	100	480	9.78	1.50	0.57	8.10	8.44
Anthracene	220	1200	2.40	1.29 U	0.16 T	1.62	3.27
2-Methylnaphthalene	38	64	1.26	1.29 U	0.23 T	0.67	0.42
1-Methylnaphthalene			1.20	1.29 U	0.17 T	0.69	0.30
Total LPAHs	370	780	15.45	3.61	0.93	12.11	14.29
Fluoranthene	160	1200	10.98	1.84	1.43	12.04	50.38
Pyrene	1000	1400	10.98	4.01	1.75	12.73	50.38
Benzo(a)anthracene	110	270	4.99	1.29 U	0.41	3.70	4.28
Chrysene	110	460	5.39	1.29 U	0.67	7.87	18.89
Benzo(b)fluoranthene			5.59	1.29 U	0.76	4.86	9.32
Benzo(k)fluoranthene			4.59	1.29 U	0.76	6.71	10.45
Total Benzofluoranthenes	230	450	10.18	1.29 U	1.52	11.57	19.77
Benzo(a)pyrene	99	210	5.39	1.29 U	0.69	5.09	6.17
Indeno(1,2,3-cd)pyrene	34	88	1.12	1.29 U	0.14 T	1.11	2.14
Dibenz(a,h)anthracene	12	33	0.34 T	1.29 U	0.28 U	0.46 U	0.74 U
Benzo(g,h,i)perylene	31	78	1.12	1.29 U	0.20 T	1.02	2.14
Total HPAHs	960	5300	50.48	5.85	6.80	55.14	154.16
Chlorinated Benzenes in mg/kg	g OC						
1,2-Dichlorobenzene	2.3	2.3	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
1,3-Dichlorobenzene			0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
1,4-Dichlorobenzene	3.1	9	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
1,2,4-Trichlorobenzene	0.81	1.8	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
Hexachlorobenzene	0.38	2.3	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
Phthalate Esters in mg/kg OC							
Dimethylphthalate	53	53	0.34 T	1.29 U	8.60	0.46 U	0.24 T
Diethylphthalate	61	110	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
Di-n-Butylphthalate	220	1700	0.38 T	1.29 U	0.28 U	0.46 U	0.25 U
Butylbenzylphthalate	4.9	64	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
bis(2-Ethylhexyl)phthalate	47	78	7.78	1.29 U	3.94	4.40	8.06
Di-n-Octyl phthalate	58	4500	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 4 of 12

Sample ID	SI	MS	RGH-SC-02-0-2' (a)	RGH-SC-02-2-4'	RGH-SC-02-4-6' (a)	RGH-SC-03-0-2' (a)	RGH-SC-03-2-4' (a)
Sampling Date	SQS	CSL	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			0 to 2 feet	2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet
Miscellaneous Compounds in mo	g/kg OC						
Dibenzofuran	15	58	0.84	1.29 U	0.28 U	0.49	0.31
Hexachlorobutadiene	3.9	6.2	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
N-Nitrosodiphenylamine	11	11	0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
Hexachloroethane			0.40 U	1.29 U	0.28 U	0.46 U	0.25 U
Ionizable Organic Compounds in	ug/kg						
Phenol	420	1200	20 U	19 U	19 U	20 U	18 T
2-Methylphenol	63	63	20 U	19 U	19 U	20 U	20 U
4-Methylphenol	670	670	20 U	19 U	19 U	20 U	26
2,4-Dimethylphenol	29	29	20 U	19 U	19 U	20 U	U
Pentachlorophenol	360	690	230	96 U	170	220	720
Benzyl Alcohol	57	73	20 U	19 U	18 T	20 U	20 U
Benzoic Acid	650	650	200 U	190 U	250	200 U	200 U
Conventionals in %							
Total Organic Carbon			5.01	1.47	6.86	4.32	7.94
Preserved Total Solids							
Total Solids			73.2	84.7	80	47.8	39.8
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			32	18	25	46	180
Motor Oil-Range Hydrocarbons			100	100	92	140	510
Total TPH	200 ^a		132	118	117	186	690

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 5 of 12

Sample ID	SI	ИS	RGH-SC-03-4-6' (a)	RGH-SC-04-0-2' (a)	RGH-SC-04-2-4' (a)	RGH-SC-04-4-6'	RGH-SC-05-0-2' (a)
Sampling Date	SQS	CSL	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			4 to 6 feet	0 to 2 feet	2 to 4 feet	4 to 6 feet	0 to 2 feet
Metals in mg/kg							
Mercury	0.41	0.59	1.59	0.23	0.11	0.09	0.30
PAHs in mg/kg OC							
Naphthalene	99	170	1.19 U	1.23	0.64	0.85 T	1.04
Acenaphthylene	66	66	1.19 U	0.90	0.47 U	1.22 U	0.77
Acenaphthene	16	57	1.19 U	1.04	0.47 U	1.22 U	0.90
Fluorene	23	79	1.19 U	1.70	0.47 U	1.22 U	0.90
Phenanthrene	100	480	2.28	25.47	0.81	1.71	10.00
Anthracene	220	1200	0.78 T	3.49	0.24 T	1.22 U	3.13
2-Methylnaphthalene	38	64	1.19 U	0.51	0.47 U	1.22 U	0.29 T
1-Methylnaphthalene			1.19 U	0.52	0.47 U	1.22 U	0.25 T
Total LPAHs	370	780	3.06	33.82	1.68	2.56	16.73
Fluoranthene	160	1200	5.45 J	21.70	1.26	1.89	15.21
Pyrene	1000	1400	6.24	23.58	1.14	1.59	13.33
Benzo(a)anthracene	110	270	2.57 J	1.32	0.31 T	1.22 U	5.83
Chrysene	110	460	3.66	11.32	0.47	0.67 T	7.08
Benzo(b)fluoranthene			3.17	7.08	0.43 T	0.85 T	7.08
Benzo(k)fluoranthene			2.08	5.38	0.50	1.22 U	7.50
Total Benzofluoranthenes	230	450	5.25	12.45	0.92	0.85 T	14.58
Benzo(a)pyrene	99	210	2.28	5.19	0.43 T	0.67 T	7.92
Indeno(1,2,3-cd)pyrene	34	88	0.71 T	1.79	0.47 U	1.22 U	1.69
Dibenz(a,h)anthracene	12	33	1.19 U	0.29 T	0.47 U	1.22 U	0.67
Benzo(g,h,i)perylene	31	78	0.85 T	1.79	0.47 U	1.22 U	1.67
Total HPAHs	960	5300	27.01	79.44	5.45	6.52	67.98
Chlorinated Benzenes in mg/kg	g OC						
1,2-Dichlorobenzene	2.3	2.3	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
1,3-Dichlorobenzene			1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
1,4-Dichlorobenzene	3.1	9	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
1,2,4-Trichlorobenzene	0.81	1.8	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
Hexachlorobenzene	0.38	2.3	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
Phthalate Esters in mg/kg OC							
Dimethylphthalate	53	53	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
Diethylphthalate	61	110	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
Di-n-Butylphthalate	220	1700	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
Butylbenzylphthalate	4.9	64	0.68 JT	0.19 U	0.47 U	1.22 U	0.42 U
bis(2-Ethylhexyl)phthalate	47	78	4.65 J	0.56	0.47 U	1.22 U	0.23 T
Di-n-Octyl phthalate	58	4500	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 6 of 12

			•	•			
Sample ID	SI	MS	RGH-SC-03-4-6' (a)	RGH-SC-04-0-2' (a)	RGH-SC-04-2-4' (a)	RGH-SC-04-4-6'	RGH-SC-05-0-2' (a)
Sampling Date	SQS	CSL	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			4 to 6 feet	0 to 2 feet	2 to 4 feet	4 to 6 feet	0 to 2 feet
Miscellaneous Compounds in m	g/kg OC						
Dibenzofuran	15	58	1.19 U	1.51	0.47 U	1.22 U	0.44
Hexachlorobutadiene	3.9	6.2	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
N-Nitrosodiphenylamine	11	11	1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
Hexachloroethane			1.19 U	0.19 U	0.47 U	1.22 U	0.42 U
Ionizable Organic Compounds in	n ug/kg						
Phenol	420	1200	20 U	22	20 U	20 U	20 U
2-Methylphenol	63	63	20 U	20 U	20 U	20 U	20 U
4-Methylphenol	670	670	20 U	46	20 U	20 U	19 T
2,4-Dimethylphenol	29	29	24 U	20 U	20 U	20 U	20 U
Pentachlorophenol	360	690	210 U	130	99 U	98 U	99 U
Benzyl Alcohol	57	73	20 U	20 U	20 U	20 U	20 U
Benzoic Acid	650	650	200 U	200 U	200 U	200 U	200 U
Conventionals in %							
Total Organic Carbon			10.1	10.6	4.22	1.64	4.8
Preserved Total Solids							
Total Solids			39.3	59.9	50.5	56.1	44.7
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			110	28	13	8.8 U	120
Motor Oil-Range Hydrocarbons			240	75	28	18 U	200
Total TPH	200 ^a		350	103	41	18 U	320

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 7 of 12

Sample ID		ИS	RGH-SC-05-2-4'	RGH-SC-05-4-6' (a)	RGH-SC-06-0-2' (a)	RGH-SC-06-2-4' (a)	RGH-SC-06-4-6' (a)
Sampling Date	SQS	CSL	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet	4 to 6 feet
Metals in mg/kg							
Mercury	0.41	0.59	0.09	0.29	0.20	0.74	0.83 J
PAHs in mg/kg OC							
Naphthalene	99	170	0.84 U	0.45	0.93	3.08	5.94
Acenaphthylene	66	66	0.84 U	0.25 T	0.49 U	0.41 T	5.45
Acenaphthene	16	57	0.84 U	0.31 U	0.49 U	0.39 T	1.36
Fluorene	23	79	0.84 U	0.31	0.27 T	0.44 T	5.45
Phenanthrene	100	480	0.50 T	7.36	3.19	3.60	40.84
Anthracene	220	1200	0.84 U	1.72	0.74	0.72	13.61
2-Methylnaphthalene	38	64	0.84 U	0.31 U	0.49 U	2.42	2.48
1-Methylnaphthalene			0.84 U	0.31 U	0.49 U	1.65	2.10
Total LPAHs	370	780	0.84 T	10.09	5.12	8.64	72.65
Fluoranthene	160	1200	0.71 T	10.64	4.41	3.08	51.98
Pyrene	1000	1400	0.80 T	9.55	4.41	3.60	63.12
Benzo(a)anthracene	110	270	0.84 U	2.50	1.27	1.39	25.99
Chrysene	110	460	0.84 U	3.91	1.89	1.98	28.47
Benzo(b)fluoranthene			0.84 U	1.88	0.98	1.34	25.99
Benzo(k)fluoranthene			0.84 U	2.35	1.42	1.29	14.85
Total Benzofluoranthenes	230	450	0.84 U	4.23	2.40	2.62	40.84
Benzo(a)pyrene	99	210	0.84 U	2.66	1.50	1.85	29.70
Indeno(1,2,3-cd)pyrene	34	88	0.84 U	1.44	0.86	0.98	16.09
Dibenz(a,h)anthracene	12	33	0.84 U	0.28 T	0.49 U	0.51 U	5.69
Benzo(g,h,i)perylene	31	78	0.84 U	1.72	1.03	1.23	17.33
Total HPAHs	960	5300	1.51 T	36.93	17.77	16.74	279.21
Chlorinated Benzenes in mg/kg	g OC						
1,2-Dichlorobenzene	2.3	2.3	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
1,3-Dichlorobenzene			0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
1,4-Dichlorobenzene	3.1	9	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
1,2,4-Trichlorobenzene	0.81	1.8	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
Hexachlorobenzene	0.38	2.3	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
Phthalate Esters in mg/kg OC							
Dimethylphthalate	53	53	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
Diethylphthalate	61	110	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
Di-n-Butylphthalate	220	1700	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
Butylbenzylphthalate	4.9	64	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
bis(2-Ethylhexyl)phthalate	47	78	0.84 U	0.31 U	0.49 U	0.36 T	0.73 U
Di-n-Octyl phthalate	58	4500	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U

Sheet 8 of 12

Sample ID	SI	MS	RGH-SC-05-2-4'	RGH-SC-05-4-6' (a)	RGH-SC-06-0-2' (a)	RGH-SC-06-2-4' (a)	RGH-SC-06-4-6' (a)
Sampling Date	SQS	CSL	8/26/08	8/26/08	8/26/08	8/26/08	8/26/08
Depth Interval			2 to 4 feet	4 to 6 feet	0 to 2 feet	2 to 4 feet	4 to 6 feet
Miscellaneous Compounds in mo	g/kg OC						
Dibenzofuran	15	58	0.84 U	0.17 T	0.49 U	0.82	2.23
Hexachlorobutadiene	3.9	6.2	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
N-Nitrosodiphenylamine	11	11	0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
Hexachloroethane			0.84 U	0.31 U	0.49 U	0.51 U	0.73 U
Ionizable Organic Compounds in	ug/kg						
Phenol	420	1200	20 U	21	20 U	15 T	56 T
2-Methylphenol	63	63	20 U	20 U	20 U	20 U	59 U
4-Methylphenol	670	670	20 U	23	22	89	230
2,4-Dimethylphenol	29	29	20 U	20 U	20 U	15 T	59 U
Pentachlorophenol	360	690	98 U	98 U	98 U	98 U	300 U
Benzyl Alcohol	57	73	20 U	20 U	20 U	20 U	59 U
Benzoic Acid	650	650	200 U	200 U	200 U	200 U	590 U
Conventionals in %							
Total Organic Carbon			2.38	6.39	4.08	3.89	8.08
Preserved Total Solids							
Total Solids			45	44.1	44.3	48.4	44.3
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			12	41	61	50	110
Motor Oil-Range Hydrocarbons			21 U	72	99	64	190
Total TPH	200 ^a		12	113	160	114	300

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 9 of 12

Sample ID		SMS RGH-SC-07-0-		RGH-SC-07-2-4' (a)	RGH-SC-07-4-6.8' (a)	RGH-SC-08-0-2' (a)	RGH-SC-08-2-4' (a)
Sampling Date	SQS	CSL	9/24/08	9/24/08	9/24/08	9/24/08	9/24/08
Depth Interval	Interval		0 to 2 feet	2 to 4 feet	4 to 6.8 feet	0 to 2 feet	2 to 4 feet
Metals in mg/kg							<u> </u>
Mercury	0.41	0.59	0.2	0.2 U	0.09 U	1.0	0.9
PAHs in mg/kg OC							
Naphthalene	99	170	5.93	15.28	3.72	0.09 T	0.10
Acenaphthylene	66	66	0.32	0.28	0.15	0.11 T	0.10
Acenaphthene	16	57	0.42	0.23	0.08 T	0.07 T	0.06 T
Fluorene	23	79	0.56	0.44	0.14	0.09 T	0.07 T
Phenanthrene	100	480	5.13	2.18	0.80	0.81	0.66
Anthracene	220	1200	0.97	0.25	0.12	0.23	0.15
2-Methylnaphthalene	38	64	0.34	0.54	0.15	0.13 U	0.12
1-Methylnaphthalene			0.34	0.60	0.15	0.13 U	0.10
Total LPAHs	370	780	13.33	18.67	4.99	1.40	1.14
Fluoranthene	160	1200	6.73	1.27	0.58	1.41	1.21
Pyrene	1000	1400	5.31	0.65	0.39	1.01	0.92
Benzo(a)anthracene	110	270	1.86	0.06	0.09 U	0.74	0.70
Chrysene	110	460	3.45 J	0.07	0.09 U	0.87	0.81
Benzo(b)fluoranthene			1.95	0.09	0.10	0.74	0.81
Benzo(k)fluoranthene			1.68	0.09	0.09	0.67	0.62
Total Benzofluoranthenes	230	450	3.63	0.18	0.19	1.41	1.43
Benzo(a)pyrene	99	210	2.74	0.11	0.12	0.81	0.88
Indeno(1,2,3-cd)pyrene	34	88	0.84	0.05 T	0.05 T	0.23	0.26
Dibenz(a,h)anthracene	12	33	0.35	0.05 U	0.09 U	0.09 T	0.07 U
Benzo(g,h,i)perylene	31	78	1.06	0.09	0.07 T	0.26	0.25
Total HPAHs	960	5300	25.96	2.48	1.39	6.82	6.44
Chlorinated Benzenes in mg/k	g OC						
1,2-Dichlorobenzene	2.3	2.3	0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
1,3-Dichlorobenzene			0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
1,4-Dichlorobenzene	3.1	9	0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
1,2,4-Trichlorobenzene	0.81	1.8	0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
Hexachlorobenzene	0.38	2.3	0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
Phthalate Esters in mg/kg OC							
Dimethylphthalate	53	53	1.59	0.05 U	0.09 U	0.20	0.07 U
Diethylphthalate	61	110	0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
Di-n-Butylphthalate	220	1700	0.18 U	0.05 U	0.09 U	0.12 T	0.07 U
Butylbenzylphthalate	4.9	64	0.18 U	0.05 U	0.09 U	0.74	0.07 U
bis(2-Ethylhexyl)phthalate	47	78	0.88	0.05 U	0.09 U	0.56	0.92
Di-n-Octyl phthalate	58	4500	0.18 U	0.05 U	0.09 U	0.13 U	0.22 U
• •							Llast Cravias

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sheet 10 of 12

Sample ID	SN	/IS	RGH-SC-07-0-2' (a)	RGH-SC-07-2-4' (a)	RGH-SC-07-4-6.8' (a)	RGH-SC-08-0-2' (a)	RGH-SC-08-2-4' (a)
Sampling Date	SQS	CSL	9/24/08	9/24/08	9/24/08	9/24/08	9/24/08
Depth Interval			0 to 2 feet	2 to 4 feet	4 to 6.8 feet	0 to 2 feet	2 to 4 feet
Miscellaneous Compounds in m	g/kg OC						
Dibenzofuran	15	58	0.34	0.41	0.14	0.13 U	0.07 U
Hexachlorobutadiene	3.9	6.2	0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
N-Nitrosodiphenylamine	11	11	0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
Hexachloroethane			0.18 U	0.05 U	0.09 U	0.13 U	0.07 U
Ionizable Organic Compounds ir	n ug/kg						
Phenol	420	1200	18 T	40	31	20 U	15 T
2-Methylphenol	63	63	20 U	32	20 U	20 U	20 U
4-Methylphenol	670	670	34	44	13 J	18 T	21
2,4-Dimethylphenol	29	29	20 U	42	20 U	20 U	20 U
Pentachlorophenol	360	690	98 U	99 U	97 U	150	450
Benzyl Alcohol	57	73	20 U	20 U	20 U	20 U	20 U
Benzoic Acid	650	650	200 U	200 U	200 U	200 U	200 U
Conventionals in %							
Total Organic Carbon			11.3	38.6	22.6	14.9	27.3
Preserved Total Solids							
Total Solids			53.8	29.7	35.6	38.4	33.8
Conventionals in mg/kg							
N-Ammonia							
Sulfide							
TPH in mg/kg							
Diesel-Range Hydrocarbons			63	210	330	210	320
Motor Oil-Range Hydrocarbons			170	190	650	670	800
Total TPH	200 ^a		233	400	980	880	1120

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

Sample ID		ИS	RGH-SC-08-4-5.5' (a)	RGH-SC-09-0-2' (a)	RGH-SC-09-2-4' (a)	RGH-SC-09-4-5.5' (a)
Sampling Date	SQS	CSL	9/24/08	9/24/08	9/24/08	9/24/08
Depth Interval			4 to 5.5 feet	0 to 2 feet	2 to 4 feet	4 to 5.5 feet
Metals in mg/kg						
Mercury	0.41	0.59	11.3	0.56	1.5	1.9
PAHs in mg/kg OC						
Naphthalene	99	170	0.44	0.41 T	0.43	1.28
Acenaphthylene	66	66	0.20 T	0.38 T	0.26 T	1.65
Acenaphthene	16	57	0.74	0.54 U	0.19 T	1.11
Fluorene	23	79	0.58	0.33 T	0.32	1.33
Phenanthrene	100	480	4.13	2.60	1.62	12.78
Anthracene	220	1200	2.38	0.89	1.12	3.76
2-Methylnaphthalene	38	64	0.95	0.33 T	0.35	1.32
1-Methylnaphthalene			0.63	0.27 T	0.34	1.09
Total LPAHs	370	780	8.47	4.61	3.94	21.92
Fluoranthene	160	1200	10.58	4.61	5.40	22.56
Pyrene	1000	1400	5.82	3.52	3.37	13.35
Benzo(a)anthracene	110	270	2.59	2.63	2.56	5.83
Chrysene	110	460	3.28	4.34	3.10	9.77
Benzo(b)fluoranthene			1.75	2.17	1.62	8.27
Benzo(k)fluoranthene			1.43	2.09	1.48	7.71
Total Benzofluoranthenes	230	450	3.17	4.25	3.10	15.98
Benzo(a)pyrene	99	210	1.80	2.11	1.48	9.02
Indeno(1,2,3-cd)pyrene	34	88	0.35	0.62	0.46	2.63
Dibenz(a,h)anthracene	12	33	0.32 U	0.54 U	0.27 U	0.88
Benzo(g,h,i)perylene	31	78	0.53	0.68	0.46	2.82
Total HPAHs	960	5300	28.13	22.76	19.95	82.84
Chlorinated Benzenes in mg/kg	OC					
1,2-Dichlorobenzene	2.3	2.3	0.32 U	0.54 U	0.27 U	0.38 U
1,3-Dichlorobenzene			0.32 U	0.54 U	0.27 U	0.38 U
1,4-Dichlorobenzene	3.1	9	0.32 U	0.54 U	0.27 U	0.38 U
1,2,4-Trichlorobenzene	0.81	1.8	0.32 U	0.54 U	0.27 U	0.38 U
Hexachlorobenzene	0.38	2.3	0.32 U	0.54 U	0.27 U	0.38 U
Phthalate Esters in mg/kg OC						
Dimethylphthalate	53	53	0.58	0.54 U	0.27 U	0.23 T
Diethylphthalate	61	110	0.32 U	0.54 U	0.24 T	0.38 U
Di-n-Butylphthalate	220	1700	1.01	0.54 U	0.27 U	0.38 U
Butylbenzylphthalate	4.9	64	0.32 U	0.54 U	0.27 U	0.38 U
bis(2-Ethylhexyl)phthalate	47	78	4.97	3.25	2.43	3.76
Di-n-Octyl phthalate	58	4500	1.06 U	0.54 U	0.80 U	1.11 U

Table 7 - Analytical Results for R.G. Haley Sediment Samples Compared to SMS Criteria

•			_	•		
Sample ID	SN		RGH-SC-08-4-5.5' (a)	RGH-SC-09-0-2' (a)	RGH-SC-09-2-4' (a)	RGH-SC-09-4-5.5' (a)
Sampling Date	SQS	CSL	9/24/08	9/24/08	9/24/08	9/24/08
Depth Interval			4 to 5.5 feet	0 to 2 feet	2 to 4 feet	4 to 5.5 feet
Miscellaneous Compounds in mo	g/kg OC					
Dibenzofuran	15	58	0.58	0.54 U	0.20 T	0.79
Hexachlorobutadiene	3.9	6.2	0.32 U	0.54 U	0.27 U	0.38 U
N-Nitrosodiphenylamine	11	11	0.32 U	0.54 U	0.27 U	0.38 U
Hexachloroethane			0.32 U	0.54 U	0.27 U	0.38 U
Ionizable Organic Compounds in	ug/kg					
Phenol	420	1200	60 U	20 U	260	22
2-Methylphenol	63	63	60 U	20 U	20 U	20 U
4-Methylphenol	670	670	48 T	20 U	76	27
2,4-Dimethylphenol	29	29	60 U	20 U	20 U	20 U
Pentachlorophenol	360	690	4100	91 T	260	420
Benzyl Alcohol	57	73	60 U	20 U	20 U	20 U
Benzoic Acid	650	650	600 U	200 U	200 U	200 U
Conventionals in %						
Total Organic Carbon			18.9	3.69	7.41	5.32
Preserved Total Solids						
Total Solids			29.3	43.4	42.1	41.3
Conventionals in mg/kg						
N-Ammonia						
Sulfide						
TPH in mg/kg						
Diesel-Range Hydrocarbons			670	300	130	360
Motor Oil-Range Hydrocarbons			690	500	300	950
Total TPH	200 a		1360	800	430	1310

U = Not detected at the reporting limit indicated.

T = Value is between the method reporting limit and the method detection limit.

Italic = Reporting limit is greater than screening criteria. If the analyte was present,

the laboratory reported estimated concentrations between the MDL and the PQL.

The MDL was below screening criteria for all analytes.

Bold = Concentration is greater than SQS.

Bold/Box = Concentration is greater that CSL.

(a) TOC concentration outside of range (00.5 to 3.5%) for OC normalization.

Blank indicates sample not analyzed for specific analyte or no criteria available.

a = Proposed TPH screening value (Pete Adolphson, Ecology, personal communication)

Table 8 - Analytical Results and TCDD TEQs for R.G. Haley Sediment Samples

Sheet 1 of 4

Table 6 - Allalytical r	results a	na icod ie	42 IOI K.G.	панеу	Sediment Sai	libies			Onc	Ct i Oi T
Sample ID		RGH-SS-01	TEQ	TEQ	RGH-SS-02	TEQ	TEQ	RGH-SS-03	TEQ	TEQ
Sampling Date		8/26/2008	ND=1/2 RL	ND=0	8/26/2008	ND=1/2 RL	ND=0	8/26/2008	ND=1/2 RL	ND=0
Depth Interval		0 to 12 cm			0 to 12 cm			0 to 12 cm		
Percent Moisture		21.4			20.2			32		
Dioxins in ng/kg										
2,3,7,8-TCDD	1	1.9	1.9	1.9	28	28	28	6	6	6
1,2,3,7,8-PeCDD	1	8.5	8.5	8.5	42	42	42	22	22	22
1,2,3,4,7,8-HxCDD	0.1	17	1.7	1.7	230	23	23	74	7.4	7.4
1,2,3,6,7,8-HxCDD	0.1	120	12	12	85	8.5	8.5	170	17	17
1,2,3,7,8,9-HxCDD	0.1	46	4.6	4.6	190	19	19	66	6.6	6.6
1,2,3,4,6,7,8-HpCDD	0.01	2900 E	29	29	3000 E	30	30	4500 E	45	45
OCDD	0.0003	24000 E	7.2	7.2	21000 E	6.3	6.3	39000 E	11.7	11.7
2,3,7,8-TCDF	0.1	3.2 CON	0.32	0.32	3.3 CON	0.33	0.33	3.7 CON	0.37	0.37
1,2,3,7,8-PeCDF	0.03	6.8	0.204	0.204	8.5	0.255	0.255	8.9	0.267	0.267
2,3,4,7,8-PeCDF	0.3	7.1	2.13	2.13	5.8	1.74	1.74	10	3	3
1,2,3,4,7,8-HxCDF	0.1	41	4.1	4.1	35	3.5	3.5	60	6	6
1,2,3,7,8,9-HxCDF	0.1	1.5	0.15	0.15	2.3 T	0.23	0.23	1.7 T	0.17	0.17
2,3,4,6,7,8-HxCDF	0.1	6.6	0.66	0.66	5	0.5	0.5	11	1.1	1.1
1,2,3,6,7,8-HxCDF	0.1	11	1.1	1.1	9.1	0.91	0.91	16	1.6	1.6
1,2,3,4,6,7,8-HpCDF	0.01	590	5.9	5.9	390	3.9	3.9	730	7.3	7.3
1,2,3,4,7,8,9-HpCDF	0.01	33	0.33	0.33	23	0.23	0.23	42	0.42	0.42
OCDF	0.0003	2300	0.69	0.69	1400	0.42	0.42	3100 E	0.93	0.93
Total TCDD		41			200			72		
Total PeCDD		73			210			170		
Total HxCDD		520			990			1100		
Total HpCDD		5100			5000			8800		
Total TCDF		22			24			25		
Total PeCDF		83			51			110		
Total HxCDF		780			540			1100		
Total HpCDF		2800			1800			3600		
Total TEQ			80.5	80.5		169	169		137	137

Table 8 - Analytical Results and TCDD TEQs for R.G. Haley Sediment Samples

•				•	•				
Sample ID	RGH-SC-01-0-2'	TEQ	TEQ	RGH-SC-01-2-4'	TEQ	TEQ	RGH-SC-02-0-2	TEQ	TEQ
Sampling Date	8/26/2008	ND=1/2 RL	ND=0	8/26/2008	ND=1/2 RL	ND=0	8/26/2008	ND=1/2 R	ND=0
Depth Interval	0 to 2 ft			2 to 4 ft			0 to 2 ft		
Percent Moisture	33.4			26.5			31.6		
Dioxins in ng/kg									
2,3,7,8-TCDD	4	4	4	3.1	3.1	3.1	39	39	39
1,2,3,7,8-PeCDD	17	17	17	25	25	25	34	34	34
1,2,3,4,7,8-HxCDD	68	6.8	6.8	66	6.6	6.6	250	25	25
1,2,3,6,7,8-HxCDD	160	16	16	310	31	31	160	16	16
1,2,3,7,8,9-HxCDD	57	5.7	5.7	100	10	10	110	11	11
1,2,3,4,6,7,8-HpCDD	4500	45	45	7900 E	79	79	4400	44	44
OCDD	40000 E	12	12	63000 E	18.9	18.9	36000 E	10.8	10.8
2,3,7,8-TCDF	3.1 CON, J	0.31	0.31	9.5 CON	0.95	0.95	5.5 CON	0.55	0.55
1,2,3,7,8-PeCDF	10	0.3	0.3	20	0.6	0.6	13	0.39	0.39
2,3,4,7,8-PeCDF	10	3	3	19	5.7	5.7	8.6	2.58	2.58
1,2,3,4,7,8-HxCDF	62	6.2	6.2	130	13	13	48	4.8	4.8
1,2,3,7,8,9-HxCDF	4.7	0.47	0.47	8.2	0.82	0.82	5.6	0.56	0.56
2,3,4,6,7,8-HxCDF	10	1	1	22	2.2	2.2	7.5	0.75	0.75
1,2,3,6,7,8-HxCDF	17	1.7	1.7	42	4.2	4.2	12	1.2	1.2
1,2,3,4,6,7,8-HpCDF	860	8.6	8.6	1500	15	15	710	7.1	7.1
1,2,3,4,7,8,9-HpCDF	47	0.47	0.47	85	0.85	0.85	40	0.4	0.4
OCDF	3200	0.96	0.96	5300	1.59	1.59	3200	0.96	0.96
Total TCDD	68			68			250		
Total PeCDD	130			200			240		
Total HxCDD	900			1500			1500		
Total HpCDD	8000			13000			7800		
Total TCDF	33			61			81		
Total PeCDF	130			270			110		
Total HxCDF	1200			2200			990		
Total HpCDF	3800			6100			3300		
Total TEQ		130	130		219	219		199	199

 Table 8 - Analytical Results and TCDD TEQs for R.G. Haley Sediment Samples

Sample ID Sampling Date Depth Interval	RGH-SC-02-2-4' 8/26/2008 2 to 4 ft	TEQ ND=1/2 R	TEQ ND=0	RGH-SC-03-0-2' 8/27/2008 0 to 2 ft	TEQ ND=1/2 RL	TEQ ND=0	RGH-SC-04-0-2' 8/27/2008 0 to 2 ft	TEQ ND=1/2 RL	TEQ ND=0
Percent Moisture	12.8			58.9			41.9		
	12.0			30.5			41.5		
Dioxins in ng/kg									
2,3,7,8-TCDD	3.3	3.3	3.3	58	58	58	19	19	19
1,2,3,7,8-PeCDD	14	14	14	110	110	110	39	39	39
1,2,3,4,7,8-HxCDD	24	2.4	2.4	260	26	26	68	6.8	6.8
1,2,3,6,7,8-HxCDD	99	9.9	9.9	580	58	58	230	23	23
1,2,3,7,8,9-HxCDD	44	4.4	4.4	150	15	15	72	7.2	7.2
1,2,3,4,6,7,8-HpCDD	2700 E	27	27	15000	150	150	5500	55	55
OCDD	23000 E	6.9	6.9	220000 E	66	66	49000 E	14.7	14.7
2,3,7,8-TCDF	1.2 CON,J	0.12	0.12	22 CON	2.2	2.2	8.4 CON	0.84	0.84
1,2,3,7,8-PeCDF	5.3	0.159	0.159	32	0.96	0.96	14	0.42	0.42
2,3,4,7,8-PeCDF	5.8	1.74	1.74	32	9.6	9.6	14	4.2	4.2
1,2,3,4,7,8-HxCDF	38	3.8	3.8	210	21	21	72	7.2	7.2
1,2,3,7,8,9-HxCDF	2.9	0.29	0.29	7.2	0.72	0.72	6.4	0.64	0.64
2,3,4,6,7,8-HxCDF	5.7	0.57	0.57	31	3.1	3.1	13	1.3	1.3
1,2,3,6,7,8-HxCDF	9.3	0.93	0.93	51	5.1	5.1	24	2.4	2.4
1,2,3,4,6,7,8-HpCDF	480	4.8	4.8	2600	26	26	910	9.1	9.1
1,2,3,4,7,8,9-HpCDF	26	0.26	0.26	140 J	1.4	1.4	51	0.51	0.51
OCDF	2200	0.66	0.66	13000	3.9	3.9	3400	1.02	1.02
Total TCDD	62			730			260		
Total PeCDD	160			1000			330		
Total HxCDD	730			4100			1300		
Total HpCDD	5000			29000			10000		
Total TCDF	20			150			79		
Total PeCDF	74			340			180		
Total HxCDF	670			3900			1300		
Total HpCDF	2300			13000			3700		
Total TEQ		81.2	81.2		557	557	0.00	192	192
		- · ·-							

Sample ID	RGH-SC-05-0-2'	TEQ	TEQ	RGH-SC-06-0-2'	TEQ	TEQ	RGH-SC-06-2-4'	TEQ	TEQ
Sampling Date	8/27/2008	ND=1/2 RL	ND=0	8/27/2008	ND=1/2 RL	ND=0	8/27/2008	ND=1/2 RL	ND=0
Depth Interval	0 to 2 ft			0 to 2 ft			2 to 4 ft		
Percent Moisture	58.4			55.1			51.4		
Dioxins in ng/kg									
2,3,7,8-TCDD	1.4	1.4	1.4	0.78 T	0.78	0.78	0.23 U	0.115	
1,2,3,7,8-PeCDD	5.1 T	5.1	5.1	2.7 T	2.7	2.7	0.49 U	0.245	
1,2,3,4,7,8-HxCDD	11	1.1	1.1	6.5	0.65	0.65	0.35 U	0.0175	
1,2,3,6,7,8-HxCDD	45	4.5	4.5	28	2.8	2.8	1.2 T	0.12	0.12
1,2,3,7,8,9-HxCDD	13	1.3	1.3	9.3	0.93	0.93	1.1 T	0.11	0.11
1,2,3,4,6,7,8-HpCDD	1500	15	15	990	9.9	9.9	26	0.26	0.26
OCDD	10000 E	3	3	7500 E	2.25	2.25	250	0.075	0.075
2,3,7,8-TCDF	6.4 CON	0.64	0.64	5.1 CON	0.51	0.51	1.4 U CON	0.07	
1,2,3,7,8-PeCDF	3.9 T	0.117	0.117	2.2 T	0.066	0.066	0.7 T	0.021	0.021
2,3,4,7,8-PeCDF	4.1 T	1.23	1.23	2.4 T	0.72	0.72	0.72 U	0.108	
1,2,3,4,7,8-HxCDF	12	1.2	1.2	8	8.0	8.0	1.7 T	0.17	0.17
1,2,3,7,8,9-HxCDF	1.3 T	0.13	0.13	2.3 T	0.23	0.23	0.25 T	0.025	0.025
2,3,4,6,7,8-HxCDF	2.6 T	0.26	0.26	1.9 T	0.19	0.19	0.74 T	0.074	0.074
1,2,3,6,7,8-HxCDF	4.2 T	0.42	0.42	2.5 U	0.125		0.64 T	0.064	0.064
1,2,3,4,6,7,8-HpCDF	130	1.3	1.3	89	0.89	0.89	6.5	0.065	0.065
1,2,3,4,7,8,9-HpCDF	7.4	0.074	0.074	5.4 T	0.054	0.054	0.43 U	0.00215	
OCDF	570	0.171	0.171	420	0.126	0.126	12	0.0036	0.0036
Total TCDD	150			67			15		
Total PeCDD	180			110			14		
Total HxCDD	1000			600			28		
Total HpCDD	6700			3400			73		
Total TCDF	71			35			15		
Total PeCDF	39			21			2.2		
Total HxCDF	230			140			8.7		
Total HpCDF	610			410			16		
Total TEQ		36.9	36.9		23.7	23.6		1.55	0.988

U = Not detected at the reporting limit (RL) indicated.

CON = Confirmation analysis.

J = Estimated value.

ND = Not detected.

TEF = Toxicity Equivalence Factor. Blank indicates not applicable.

T = Value is between the method reporting limit and the method detection limit.

E = Estimated result. Result concentration exceeds the calibration range.

Table 9 - Analytical Results for Bellingham Bay Piling Study Area Sediment Samples Compared to AET Dry-Weight Criteria

•	•	•			•	, ,	
Sample ID	AE	Ts	BBP-SS-01	BBP-SS-02	BBP-SS-03	BBP-SC-01	BBP-SC-02
Sampling Date	LAET		8/26/2008	8/26/2008	8/26/2008	8/27/2008	8/27/2008
Depth Interval			0 to 12 cm	0 to 12 cm	0 to 12 cm	0 to 4.5 ft	0 to 4 ft
Metals in mg/kg							
Arsenic	57	93	7 U	8 U	20 U	7	10 U
Cadmium	5.1	6.7	0.3	0.3	2	0.4	0.4 U
Chromium	260	270	22.9	25.2	15	26.5	28
Copper	390	390	12.7	14.5	32	18.1	18.2
Lead	450	530	5	8	30	7	7
Mercury	0.41	0.59	0.08	0.11	0.2 U	0.11	0.08 U
Nickel	140	140	26	30	19	36	38
Silver	6.1	6.1	0.4 U	0.5 U	1 U	0.4 U	0.6 U
Zinc	410	960	43	46	84	48	57
PAHs in ug/kg							
Naphthalene	2100	2400	25	80	170	37	88
Acenaphthylene	1300	1300	42	170	200	120	53
Acenaphthene	500	730	13 T	110	44	14 T	26
Fluorene	540	1000	12 T	380	50	14 T	22
Phenanthrene	1500	5400	130	2000	860	280	210
Anthracene	960	4400	53	430	270	160	200
2-Methylnaphthalene	670	1400	12 T	99	44	21	40
1-Methylnaphthalene			17 T	140	39	20	38
Total LPAHs	5200	13000	275	3170	1594	625	599
Fluoranthene	1700	2500	350	2400	1500	960	1100
Pyrene	2600	3300	390	2000	1500	1000	940
Benzo(a)anthracene	1300	1600	220	1100	1000	720	670
Chrysene	1400	2800	280	1200	1200	820	700
Benzo(b)fluoranthene			180	1100	1300	660	760
Benzo(k)fluoranthene			140	1100	940	660	870
Total Benzofluoranthenes	3200	3600	320	2200	2240	1320	1630
Benzo(a)pyrene	1600	3000	190	1200	1400	740	840
Indeno(1,2,3-cd)pyrene	600	690	56	400	340	130	160
Dibenz(a,h)anthracene	230	540	11 T	76	65	29	32
Benzo(g,h,i)perylene	670	720	52 J	360	310	110 J	140 J
Total HPAHs	12000	17000	1869	10936	9555	5829	6212
Chlorinated Benzenes in ug/kg							
1,2-Dichlorobenzene	35	50	19 U	20 U	20 U	20 U	20 U
1,3-Dichlorobenzene	170	170	19 U	20 U	20 U	20 U	20 U
1,4-Dichlorobenzene	110	120	19 U	20 U	20 U	20 U	20 U
1,2,4-Trichlorobenzene	31	51	19 U	20 U	20 U	20 U	20 U
Hexachlorobenzene	22	70	19 U	20 U	20 U	20 U	20 U

Table 9 - Analytical Results for Bellingham Bay Piling Study Area Sediment Samples Compared to AET Dry-Weight Criteria

Sample ID	A	ETs	BBP-SS-01	BBP-SS-02	BBP-SS-03	BBP-SC-01	BBP-SC-02
Sampling Date	LAET	2LAET	8/26/2008	8/26/2008	8/26/2008	8/27/2008	8/27/2008
Depth Interval			0 to 12 cm	0 to 12 cm	0 to 12 cm	0 to 4.5 ft	0 to 4 ft
Phthalate Esters in ug/kg							
Dimethylphthalate	71	160	19 U	20 U	20 U	20 U	20 U
Diethylphthalate	200	200	19 U	20 U	20 U	20 U	20 U
Di-n-Butylphthalate	1400	1400	19 U	20 U	20 U	20 U	20 U
Butylbenzylphthalate	63	900	19 U	20 U	20 U	20 U	71
bis(2-Ethylhexyl)phthalate	1300	1900	11 T	35	290	20 U	20 U
Di-n-Octyl phthalate	6200	6200	19 U	20 U	20 U	20 U	20 U
Miscellaneous Compounds in ug/kg							
Dibenzofuran	540	700	19 U	93	48	10 T	13 T
Hexachlorobutadiene	11	120	19 U	20 U	20 U	20 U	20 U
N-Nitrosodiphenylamine	28	40	19 U	20 U	20 U	20 U	20 U
Hexachloroethane			19 U	20 U	20 U	20 U	20 U
Ionizable Organic Compounds in ug/kg							
Phenol	420	1200	48	15 T	23	16 T	40
2-Methylphenol	63	63	19 U	20 U	20 U	20 U	20 U
4-Methylphenol	670	670	19 U	20 U	63	27	33
2,4-Dimethylphenol	29	29	19 U	20 U	20 U	20 U	20 U
Pentachlorophenol	360	690	96 U	98 U	99 U	99 U	98 U
Benzyl Alcohol	57	73	19 U	20 U	20 U	20 U	20 U
Benzoic Acid	650	650	190 U	200 U	200 U	200 U	200 U
Conventionals in %							
Moisture Content			48.61	59.92			
Preserved Total Solids			69.5	50.9	18.8	64.4	38.4
Total Solids			65.3	62.2	20.4	67	48.1
Total Organic Carbon			2.4	4.1	86.5	9.49	10.1
Conventionals in mg/kg							
Ammonia (NH3) as Nitrogen (N)			10.4	6.93	2.82	2.88	3.79
Sulfide			212	265	290	234	393
Specific Gravity			2.66	2.65			
TPH in mg/kg							
Diesel Range Hydrocarbons			10	15	61	22	41
Motor Oil			15	16 U	180	20	36
Total TPH	200 ^a		25	15	241	42	77

U = Not detected at the reporting limit indicated.

Italic = Reporting limit is greater than screening criteria. If the analyte was present, the laboratory reported estimated concentrations between the MDL and the PQL. The MDL was below screening criteria for all analytes.

Bold = Concentration is greater than LAET.

Blank indicates sample not analyzed for specific analyte or no criteria available.

a = Proposed TPH screening value (Pete Adolphson, Ecology, personal communication)

T = Value is between the method reporting limit and the method detection limit.

Γable 10 - Analytical Results for Ε	Bellingham	Bay Pi	ling Study Ar	ea Sediment Sam	ples Compared	to SMS Criteria	Sheet 1 o
Sample ID	SM		BBP-SS-01	BBP-SS-02 (a)	BBP-SS-03 (a)	BBP-SC-01 (a)	BBP-SC-02 (a)
Sampling Date	SQS		8/26/2008	8/26/2008	8/26/2008	8/27/2008	8/27/2008
Depth Interval			0 to 12 cm	0 to 12 cm	0 to 12 cm	0 to 4.5 ft	0 to 4 ft
Metals in mg/kg							
Arsenic	57	93		8 U	20 U	7	10 U
Cadmium	5.1	6.7		0.3	2	0.4	0.4 U
Chromium	260	270		25.2	15	26.5	28
Copper	390	390		14.5	32	18.1	18.2
Lead	450	530		8	30	7	7
Mercury	0.41	0.59		0.11	0.2 U	0.11	0.08 U
Nickel			26	30	19	36	38
Silver	6.1	6.1	0.4 U	0.5 U	1 U	0.4 U	0.6 U
Zinc	410	960	43	46	84	48	57
AHs in mg/kg OC							
Naphthalene	99	170	1.04	1.95	0.20	0.39	0.87
Acenaphthylene	66	66	1.75	4.15	0.23	1.26	0.52
Acenaphthene	16	57	0.54 T	2.68	0.05	0.15 T	0.26
Fluorene	23	79	0.50 T	9.27	0.06	0.15 T	0.22
Phenanthrene	100	480	5.42	48.78	0.99	2.95	2.08
Anthracene	220	1200	2.21	10.49	0.31	1.69	1.98
2-Methylnaphthalene	38	64	0.50 T	2.41	0.05	0.22	0.40
1-Methylnaphthalene			0.71 T	3.41	0.05	0.21	0.38
Total LPAHs	370	780	11.46	77.32	1.84	6.59	5.93
Fluoranthene	160	1200	14.58	58.54	1.73	10.12	10.89
Pyrene	1000	1400	16.25	48.78	1.73	10.54	9.31
Benzo(a)anthracene	110	270	9.17	26.83	1.16	7.59	6.63
Chrysene	110	460	11.67	29.27	1.39	8.64	6.93
Benzo(b)fluoranthene			7.50	26.83	1.50	6.95	7.52
Benzo(k)fluoranthene			5.83	26.83	1.09	6.95	8.61
Total Benzofluoranthenes	230	450	13.33	53.66	2.59	13.91	16.14
Benzo(a)pyrene	99	210	7.92	29.27	1.62	7.80	8.32
Indeno(1,2,3-cd)pyrene	34	88	2.33	9.76	0.39	1.37	1.58
Dibenz(a,h)anthracene	12	33	0.46 T	1.85	0.08	0.31	0.32
Benzo(g,h,i)perylene	31	78	2.17 J	8.78	0.36	1.16 J	1.39 J
Total HPAHs	960	5300	77.88	266.73	11.05	61.42	61.50
hlorinated Benzenes in mg/kg OC							
1,2-Dichlorobenzene	2.3	2.3	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
1,3-Dichlorobenzene			0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
1,4-Dichlorobenzene	3.1	9	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
1,2,4-Trichlorobenzene	0.81	1.8	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
Hexachlorobenzene	0.38	2.3	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U

Table 10 - Analytical Results for Be	ellingham	Bay P	iling Study Ar	rea Sediment Sam	ples Compared	to SMS Criteria	Sheet 2 of 2
Sample ID	SI	MS	BBP-SS-01	BBP-SS-02 (a)	BBP-SS-03 (a)	BBP-SC-01 (a)	BBP-SC-02 (a)
Sampling Date	SQS	CSL	8/26/2008	8/26/2008	8/26/2008	8/27/2008	8/27/2008
Depth Interval			0 to 12 cm	0 to 12 cm	0 to 12 cm	0 to 4.5 ft	0 to 4 ft
Phthalate Esters in mg/kg OC							
Dimethylphthalate	53	53	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
Diethylphthalate	61	110	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
Di-n-Butylphthalate	220	1700	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
Butylbenzylphthalate	4.9	64	0.79 U	0.49 U	0.02 U	0.21 U	0.70
bis(2-Ethylhexyl)phthalate	47	78	0.46 T	0.85	0.34	0.21 U	0.20 U
Di-n-Octyl phthalate	58	4500	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
Miscellaneous Compounds in mg/kg OC							
Dibenzofuran	15	58	0.79 U	2.27	0.06	0.11 T	0.13 T
Hexachlorobutadiene	3.9	6.2	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
N-Nitrosodiphenylamine	11	11	0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
Hexachloroethane			0.79 U	0.49 U	0.02 U	0.21 U	0.20 U
Ionizable Organic Compounds in ug/kg							
Phenol	420	1200	48	15 T	23	16 T	40
2-Methylphenol	63	63	19 U	20 U	20 U	20 U	20 U
4-Methylphenol	670	670	19 U	20 U	63	27	33
2,4-Dimethylphenol	29	29	19 U	20 U	20 U	20 U	20 U
Pentachlorophenol	360	690	96 U	98 U	99 U	99 U	98 U
Benzyl Alcohol	57	73	19 U	20 U	20 U	20 U	20 U
Benzoic Acid	650	650	190 U	200 U	200 U	200 U	200 U
Conventionals in %							
Moisture Content			48.61	59.92			
Preserved Total Solids			69.5	50.9	18.8	64.4	38.4
Total Solids			65.3	62.2	20.4	67	48.1
Total Organic Carbon			2.4	4.1	86.5	9.49	10.1
Conventionals in mg/kg							
Ammonia (NH3) as Nitrogen (N)			10.4	6.93	2.82	2.88	3.79
Sulfide			212	265	290	234	393
Specific Gravity			2.66	2.65			
TPH in mg/kg							
Diesel Range Hydrocarbons			10	15	61	22	41
Motor Oil			15	16 U	180	20	36
Total TPH	200 ^a		25	15	241	42	77

U = Not detected at the reporting limit indicated.

Italic = Reporting limit is greater than screening criteria. If the analyte was present, the laboratory reported estimated concentrations between the MDL and the PQL. The MDL was below screening criteria for all analytes.

Bold = Concentration is greater than SQS.

Bold/Box = Concentration is greater that CSL.

Blank indicates sample not analyzed for specific analyte or no criteria available.

T = Value is between the method reporting limit and the method detection limit.

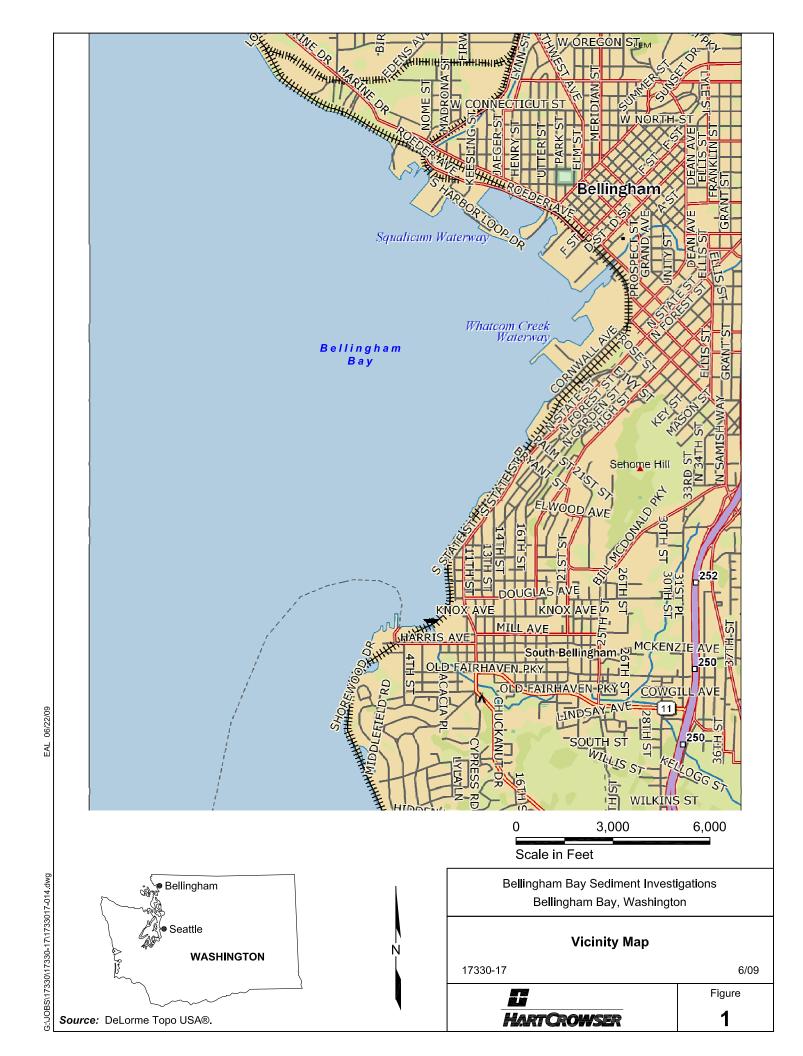
⁽a) TOC concentration outside of range (0.5 to 3.5%) for OC normalization.

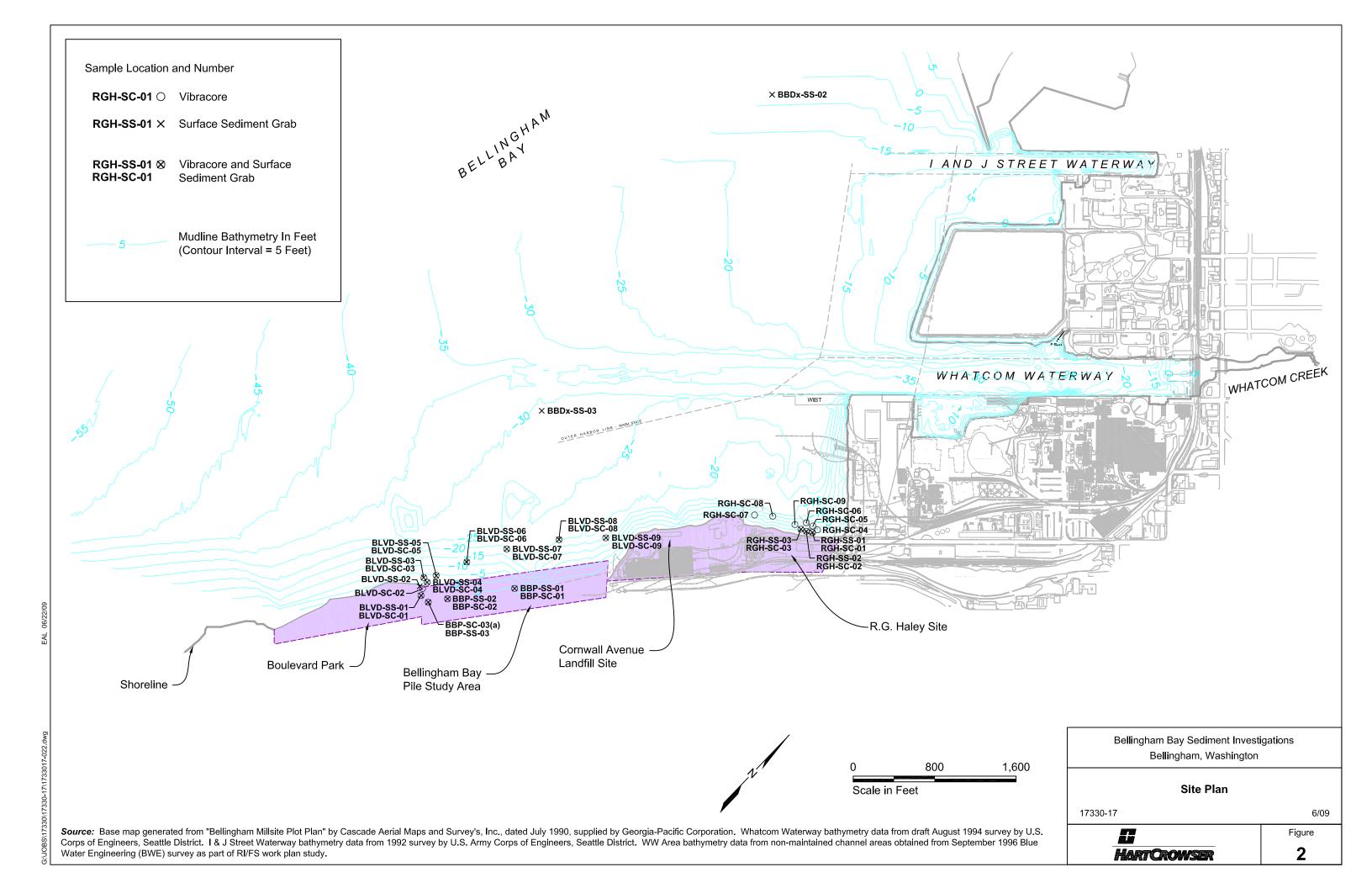
a = Proposed TPH screening value (Pete Adolphson, Ecology, personal communication)

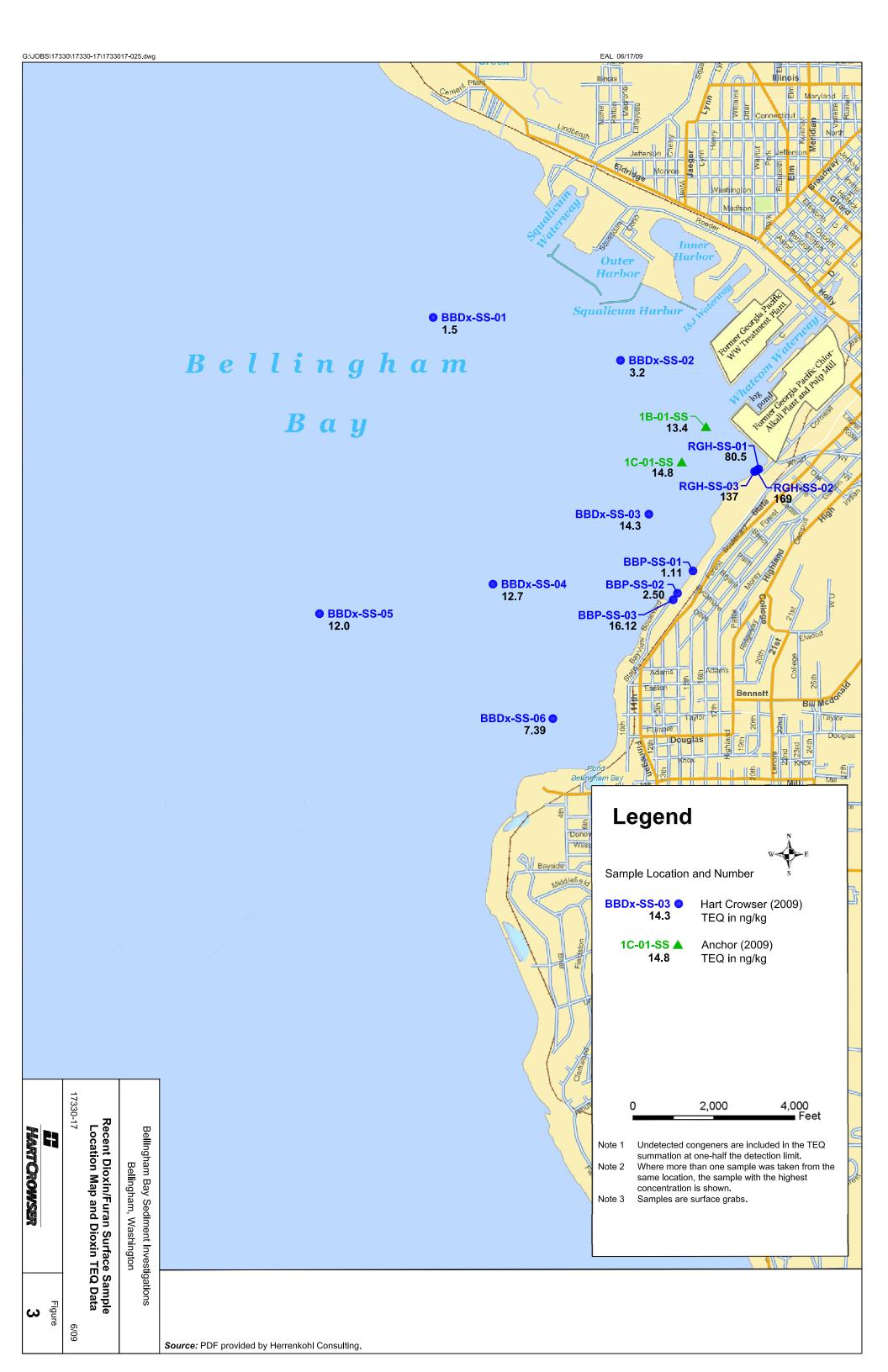
Table 11 - Analytical	Results	and TCDD TE	Qs for Bell	inghan	n Bay Piling St	udy Area S	Sedime	nt Samples	Sheet 1	of 2
Sample ID Sampling Date Depth Interval		BBP-SS-01 8/26/2008 0 to 12 cm	TEQ ND=1/2 RL	TEQ ND=0	BBP-SS-02 8/26/2008 0 to 12 cm	TEQ ND=1/2 RL	TEQ ND=0	BBP-SS-03 8/26/2008 0 to 12 cm	TEQ ND=1/2 RL	TEQ ND=0
Percent Moisture		30.3			36.8			80.1		
Dioxins in ng/kg										
2,3,7,8-TCDD	1	0.093 U	0.0465	0	0.17 U	0.085	0	1.6 J	1.6	1.6
1,2,3,7,8-PeCDD	1	0.19 U	0.095	0	0.66 J	0.66	0.66	4.6 U	2.3	0
1,2,3,4,7,8-HxCDD	0.1	0.53 J	0.053	0.053	1.3 J	0.13	0.13	4.6 J	0.46	0.46
1,2,3,6,7,8-HxCDD	0.1	1.5 J	0.15	0.15	3.1 J	0.31	0.31	19	1.9	1.9
1,2,3,7,8,9-HxCDD	0.1	1.1 J	0.11	0.11	2.2 J	0.22	0.22	12 J	1.2	1.2
1,2,3,4,6,7,8-HpCDD	0.01	32	0.32	0.32	59	0.59	0.59	410	4.1	4.1
OCDD	0.0003	350 B	0.105	0.105	540 B	0.162	0.162	5800 B	1.74	1.74
2,3,7,8-TCDF	0.1	0.78 CON	0.078	0.078	1.8 CON	0.18	0.18	7 CON	0.7	0.7
1,2,3,7,8-PeCDF	0.03	0.14 U	0.0021	0	0.32 J	0.0096	0.0096	2.2 U	0.033	0
2,3,4,7,8-PeCDF	0.3	0.14 U	0.021	0	0.38 J	0.114	0.114	2.2 J	0.66	0.66
1,2,3,4,7,8-HxCDF	0.1	0.43 J	0.043	0.043	1 J	0.1	0.1	5.1 J	0.51	0.51
1,2,3,7,8,9-HxCDF	0.1	0.079 U	0.00395	0	0.3 J	0.03	0.03	0.81 U	0.0405	0
2,3,4,6,7,8-HxCDF	0.1	0.23 U	0.0115	0	0.73 J	0.073	0.073	2.3 J	0.23	0.23
1,2,3,6,7,8-HxCDF	0.1	0.19 U	0.0095	0	0.51 J	0.051	0.051	2 U	0.1	0
1,2,3,4,6,7,8-HpCDF	0.01	5.1	0.051	0.051	9.5	0.095	0.095	46	0.46	0.46
1,2,3,4,7,8,9-HpCDF	0.01	0.34 J	0.0034	0.0034	0.54 U	0.0027	0	3.3 U	0.0165	0
OCDF	0.0003	19	0.0057	0.0057	31	0.0093	0.0093	220	0.066	0.066
Total TCDD		6.3			20			93		
Total PeCDD		10			33			95		
Total HxCDD		23			61			190		
Total HpCDD		76			140			740		
Total TCDF		2.3			9			56		
Total PeCDF		1.7			4.4			25		
Total HxCDF		6.2			15			73		
Total HpCDF		18			33			180		
Total TEQ			1.10865	0.9191		2.8216	2.7339		16.116	13.626

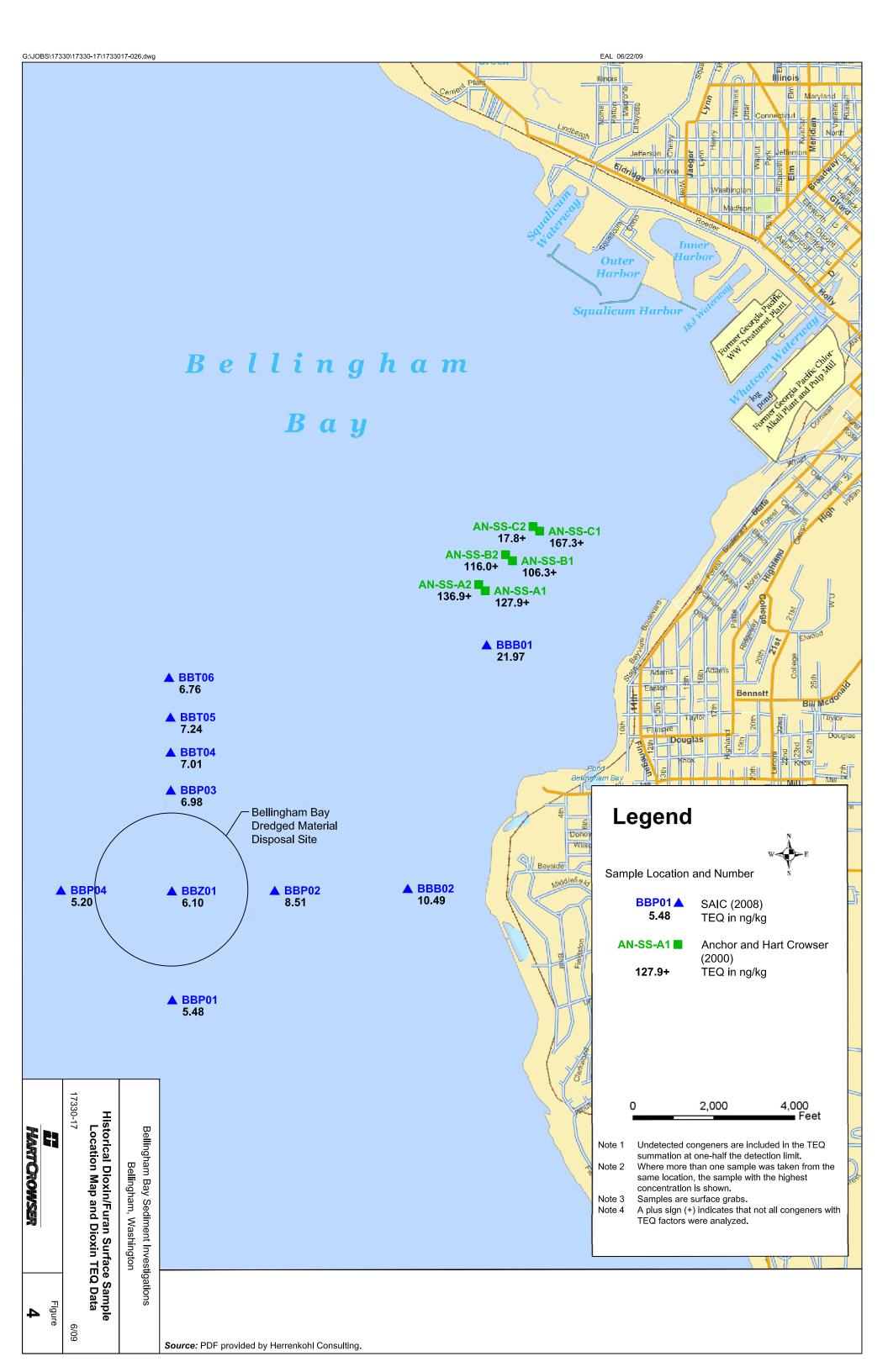
Sample ID Sampling Date	TEF	BBP-SC-01 8/26/2008	TEQ ND=1/2 RL	TEQ ND=0
Depth Interval		0 to 4.5 ft		
Percent Moisture		31.7		
Dioxins in ng/kg				
2,3,7,8-TCDD	1	1.6	1.6	1.6
1,2,3,7,8-PeCDD	1	0.54 J	0.54	0.54
1,2,3,4,7,8-HxCDD	0.1	0.88 J	0.088	0.088
1,2,3,6,7,8-HxCDD	0.1	2.1 J	0.21	0.21
1,2,3,7,8,9-HxCDD	0.1	1.4 J	0.14	0.14
1,2,3,4,6,7,8-HpCDD	0.01	31	0.31	0.31
OCDD	0.0003	250 B	0.075	0.075
2,3,7,8-TCDF	0.1	1.6 CON	0.16	0.16
1,2,3,7,8-PeCDF	0.03	0.35 J	0.0105	0.0105
2,3,4,7,8-PeCDF	0.3	0.38 J	0.114	0.114
1,2,3,4,7,8-HxCDF	0.1	0.53 U	0.0265	0
1,2,3,7,8,9-HxCDF	0.1	0.12 U	0.006	0
2,3,4,6,7,8-HxCDF	0.1	0.18 J	0.018	0.018
1,2,3,6,7,8-HxCDF	0.1	0.28 J	0.028	0.028
1,2,3,4,6,7,8-HpCDF	0.01	5.4	0.054	0.054
1,2,3,4,7,8,9-HpCDF	0.01	0.29 J	0.0029	0.0029
OCDF	0.0003	16	0.0048	0.0048
Total TCDD		27		
Total PeCDD		35		
Total HxCDD		45		
Total HpCDD		65		
Total TCDF		14		
Total PeCDF		4.4		
Total HxCDF		7.5		
Total HpCDF		18		
Total TEQ			3.3877	3.3552

U = Not detected at the reporting limit (RL) indicated.

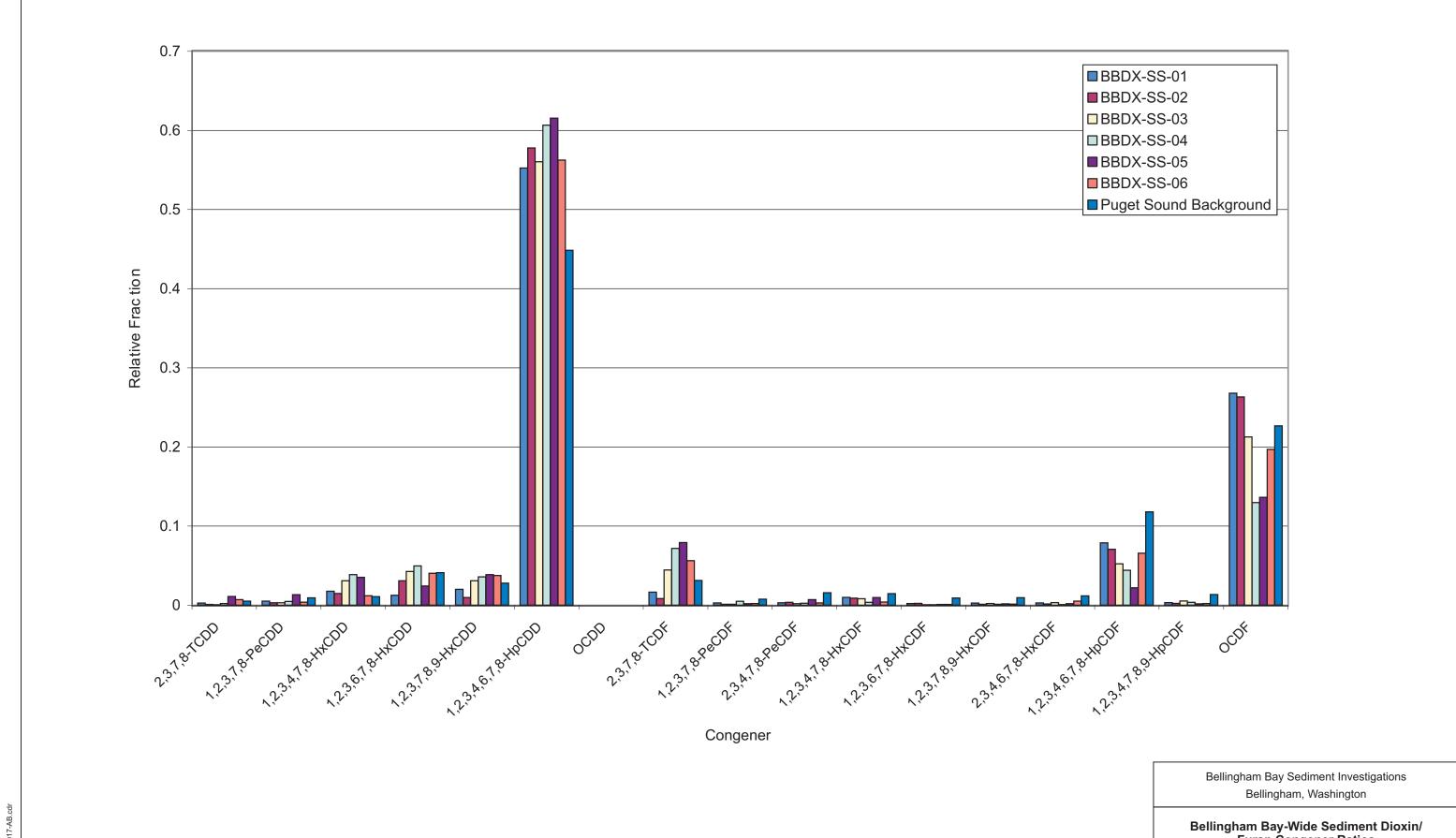

CON = Confirmation analysis. J = Estimated value.

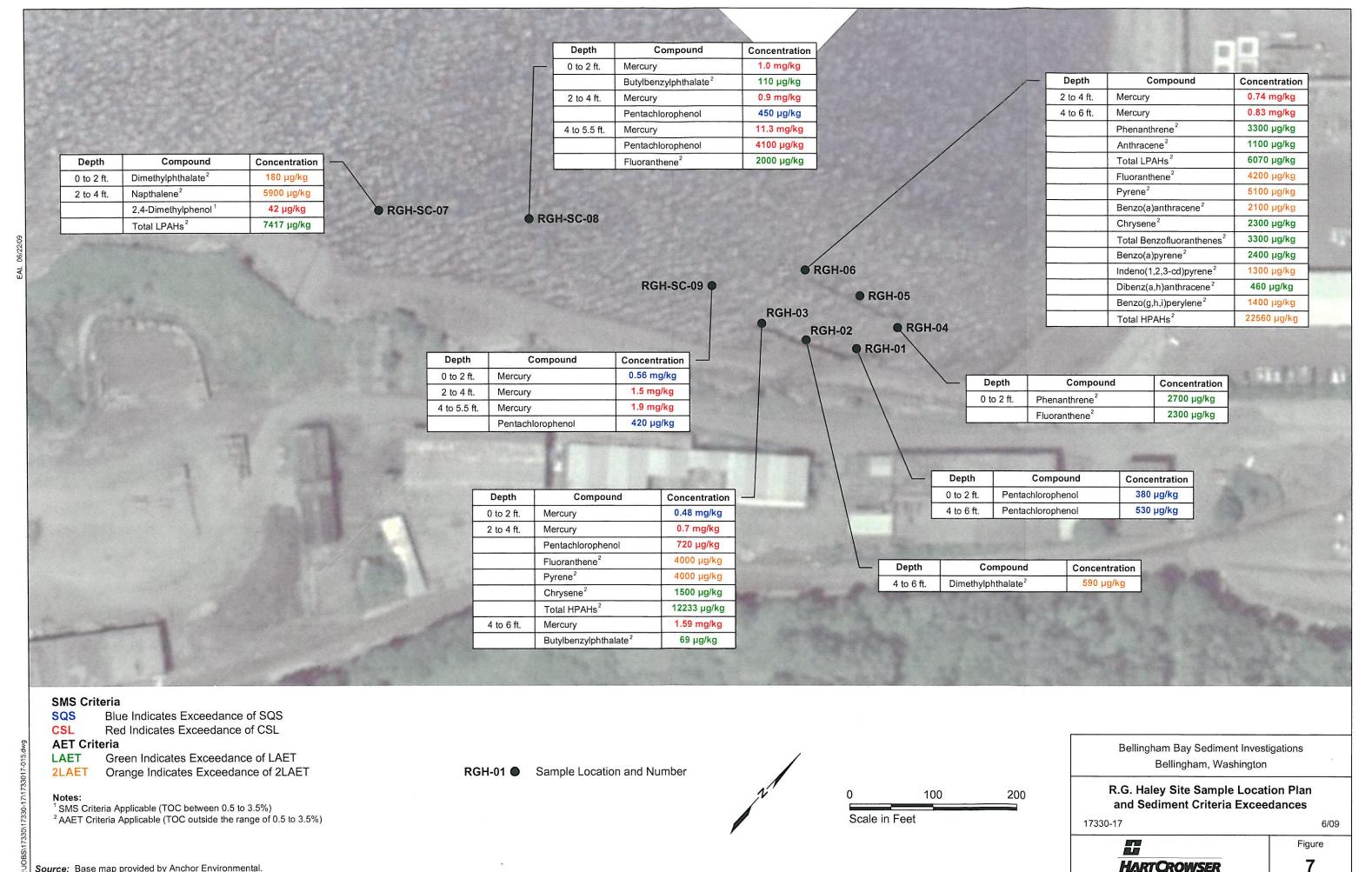

ND = Not detected.


TEF = Toxicity Equivalence Factor. Blank indicates not applicable.

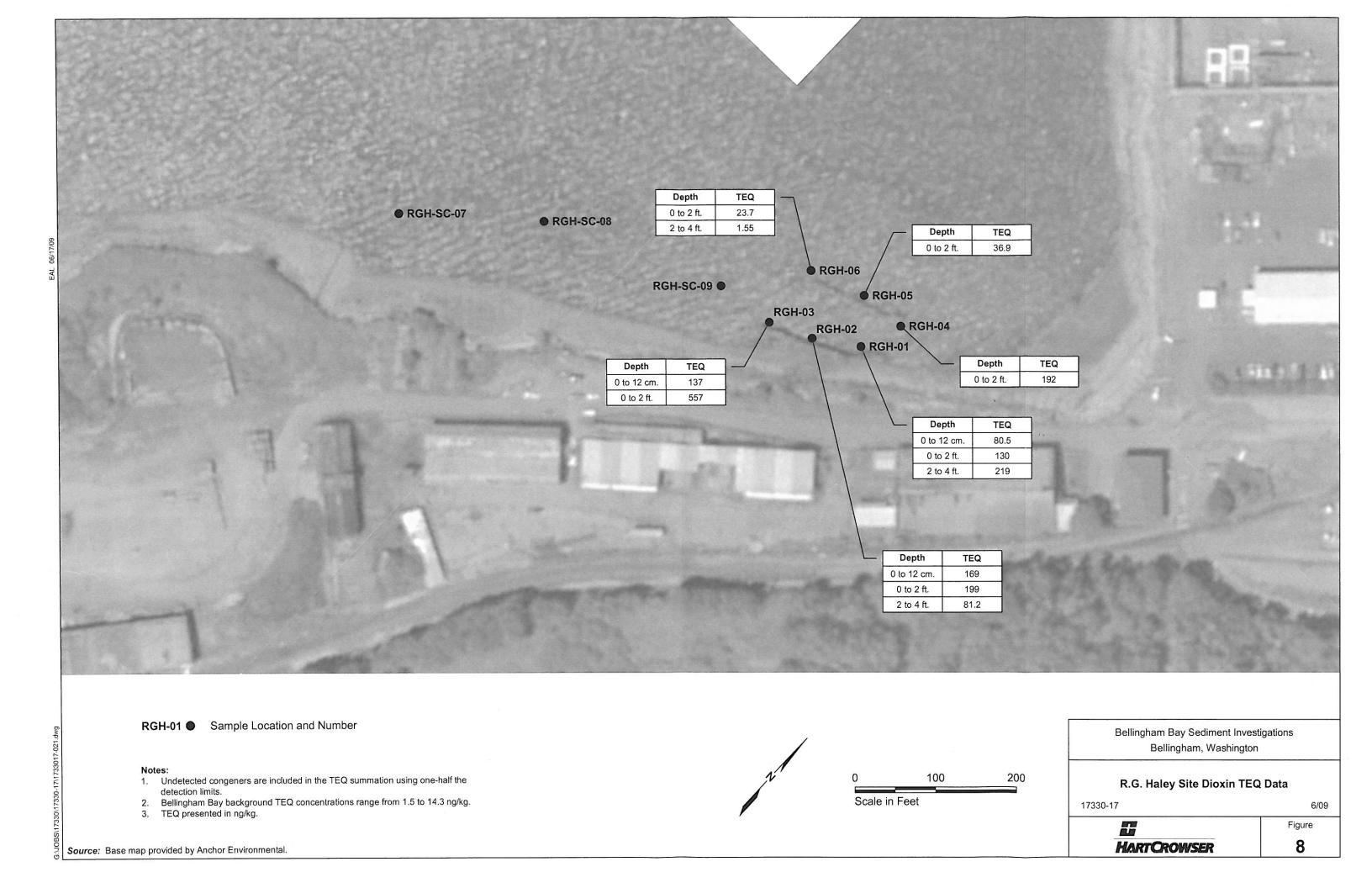

T = Value is between the method reporting limit and the method detection limit.

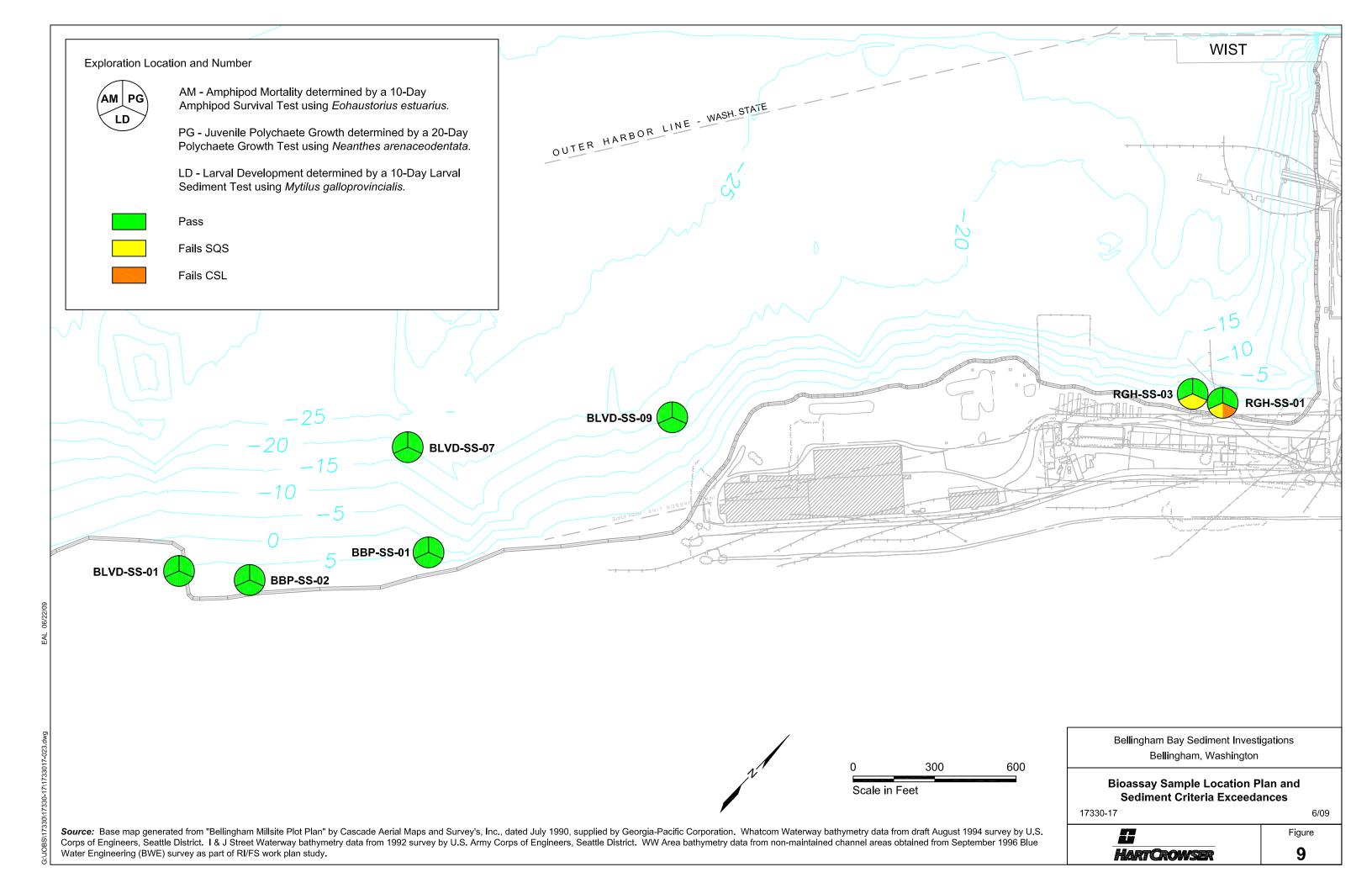
E = Estimated result. Result concentration exceeds the calibration range.

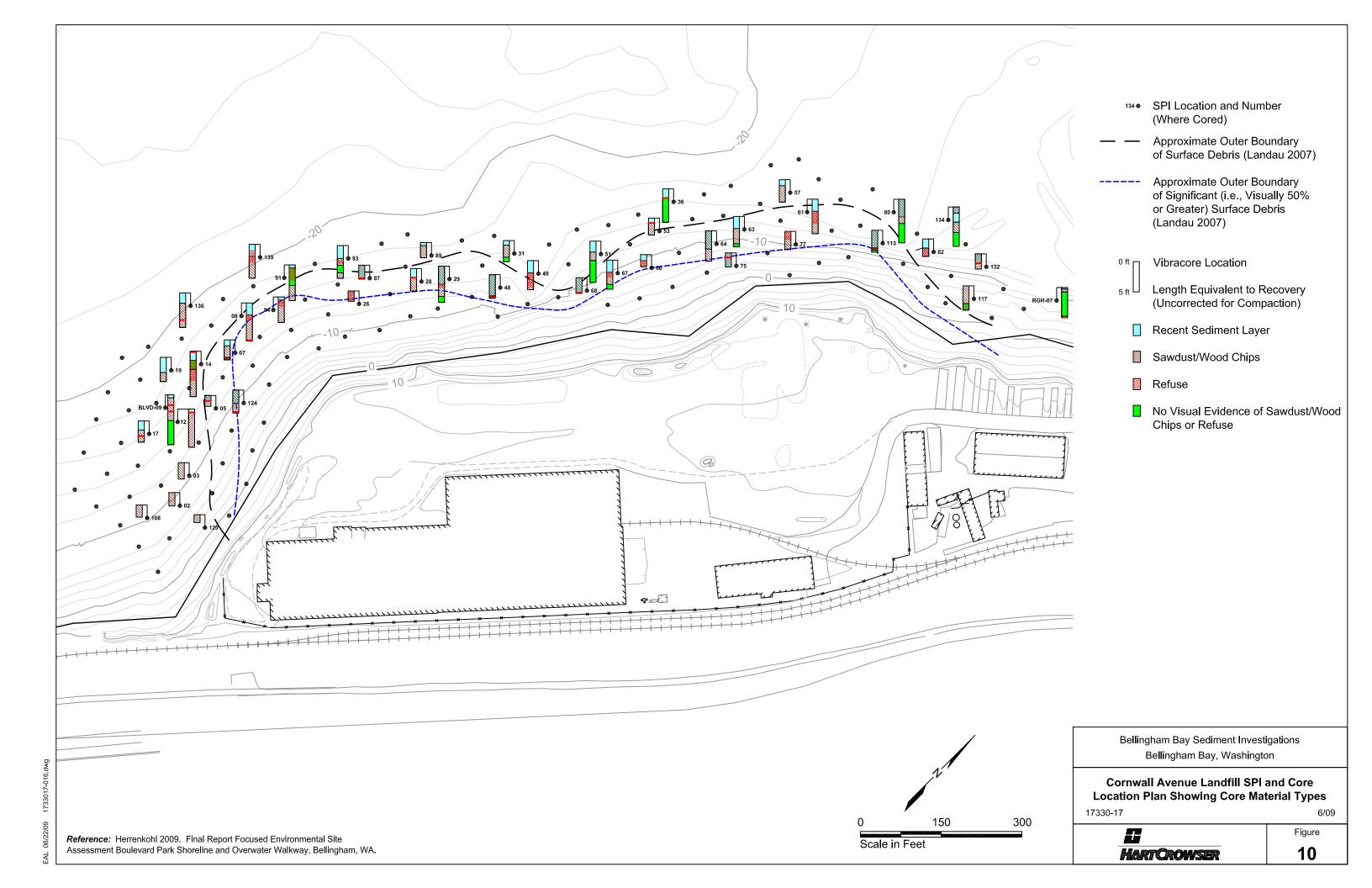


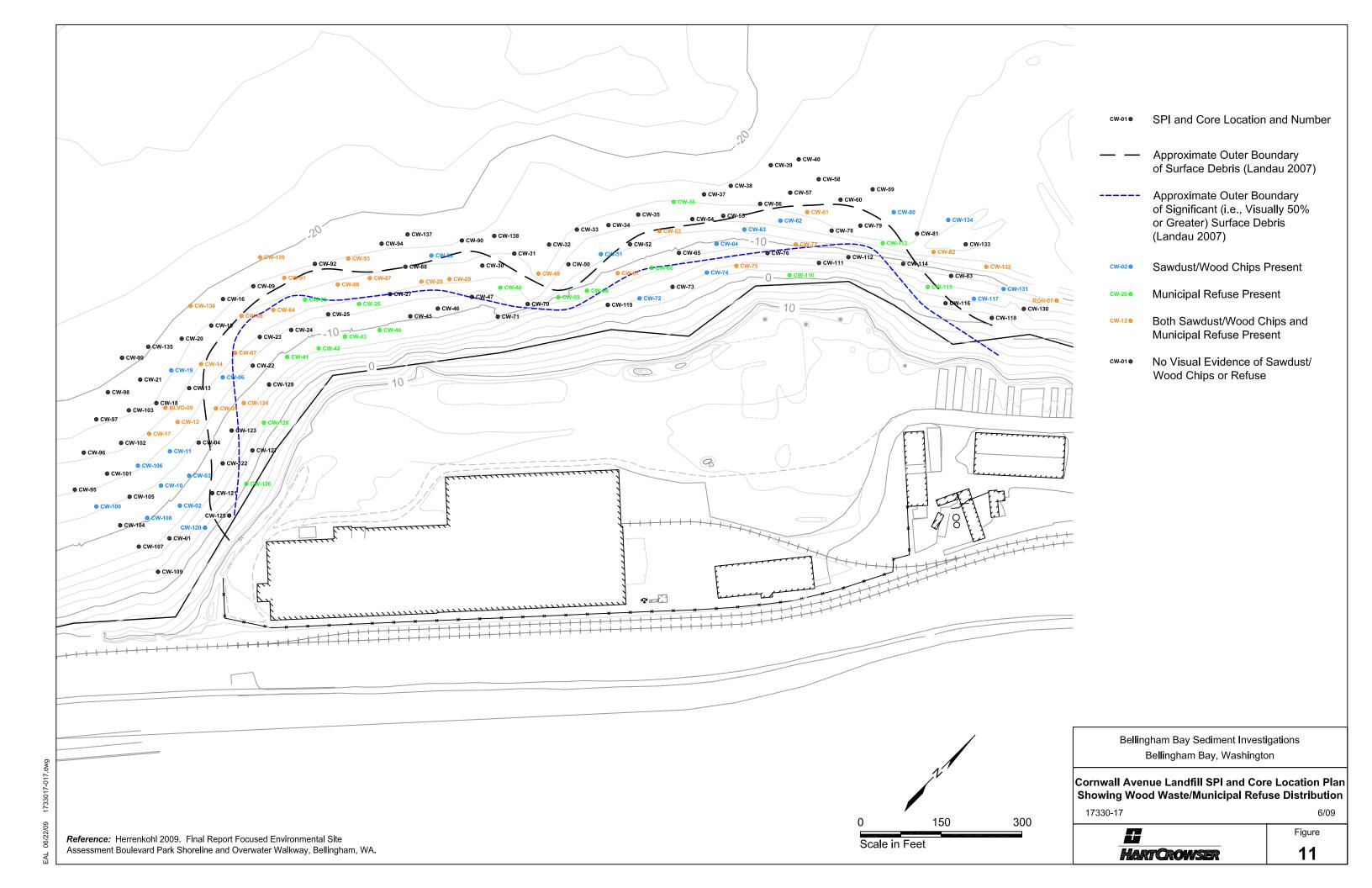

Furan Congener Ratios

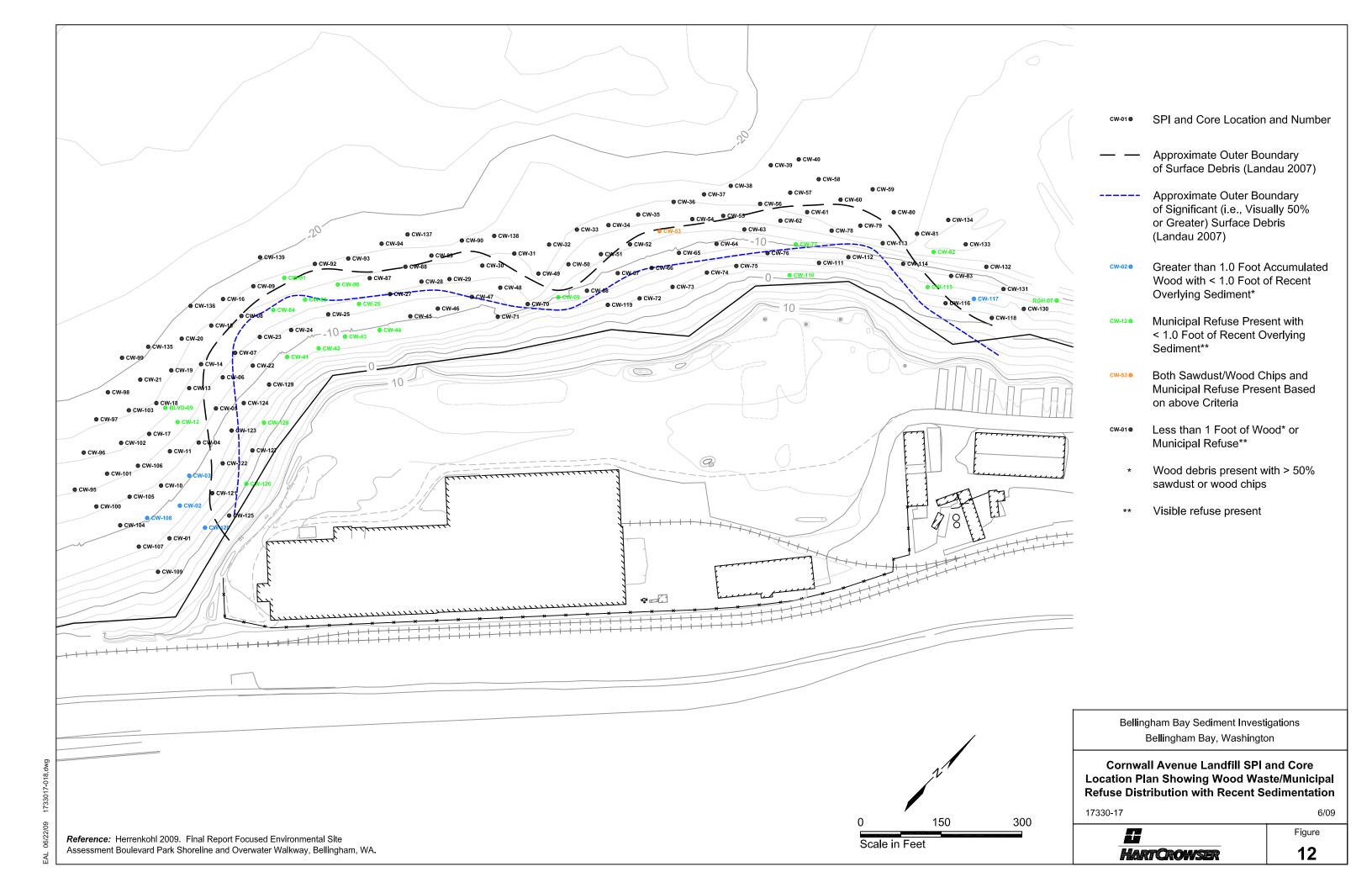
17330-17

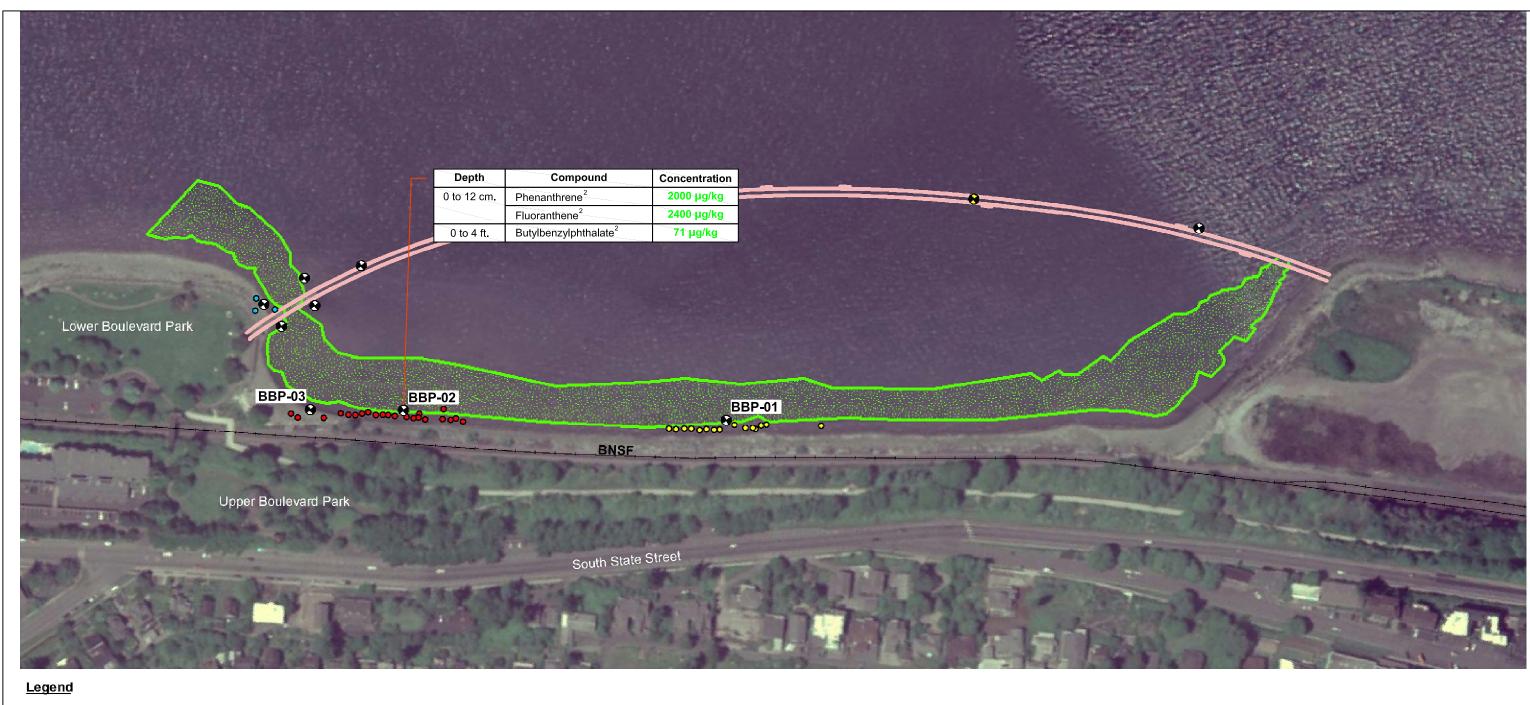

6/09




Figure 6




Source: Base map provided by Anchor Environmental.



Boulevard Park Dock Pilings

Proposed Walkway Alignment --- Railroad

Proposed City of Bellingham Surface Sediment and Coring Location Location Dependent on Alignment Option

Boulevard Park North Pilings Boulevard Park Beach Pilings Eelgrass Survey

AET Criteria

Green Indicates Exceedance of LAET

Notes:

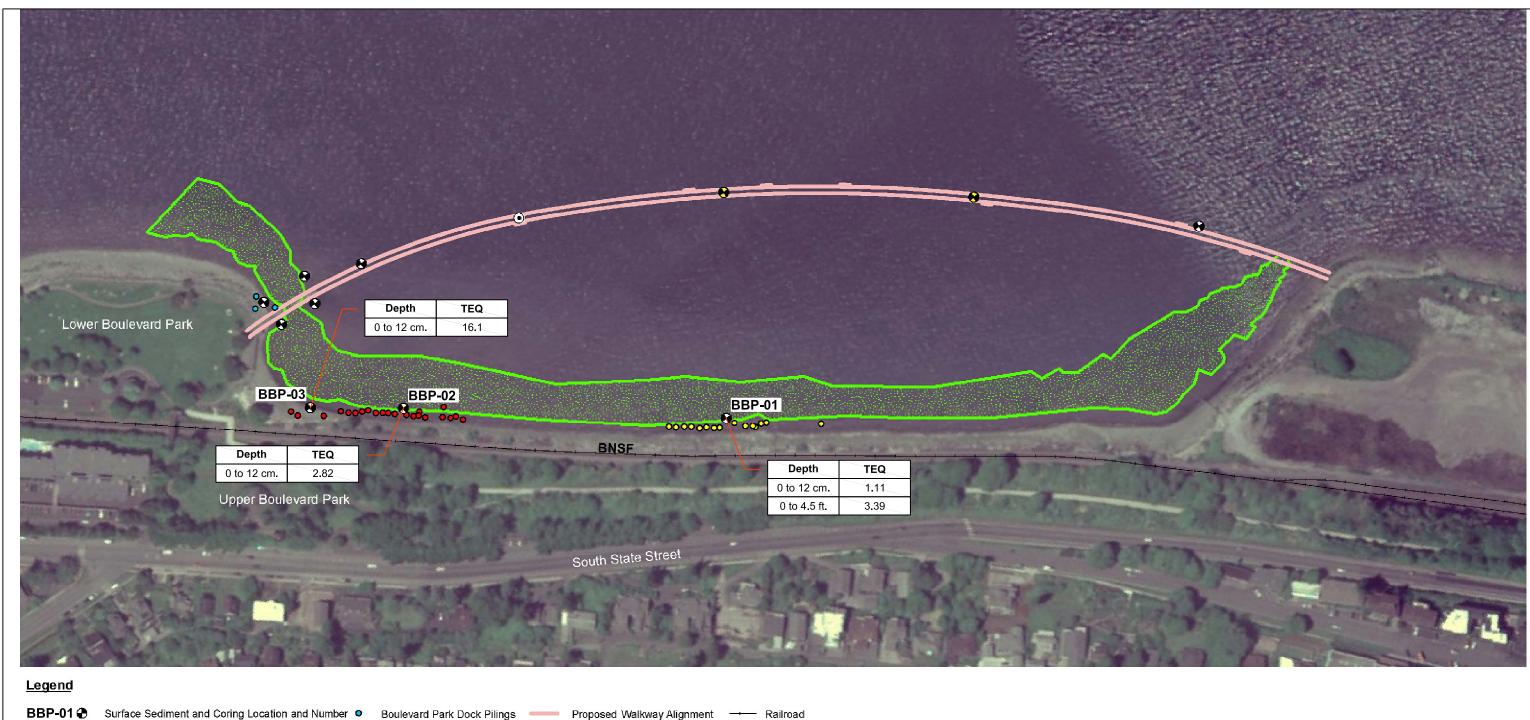
¹ SMS Criteria Applicable

²AET Criteria Applicable
No SQS, CSL, or 2LAET exceedances detected.

200 400 Scale in Feet

Bellingham Bay Sediment Investigations Bellingham, Washington

Bellingham Bay Piling Study Area Sample Location Plan and Sediment Criteria Exceedances 17330-17


HART CROWSER

Figure

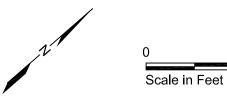
6/09

Source: Base map provided by Landau Associates (2007).

13

Boulevard Park Dock Pilings

--- Railroad


Proposed City of Bellingham Surface Sediment and Coring Location Location Dependent on Alignment Option

Boulevard Park North Pilings

Eelgrass Survey

Boulevard Park Beach Pilings

- 1. Undetected congeners are included in the TEQ summation using one-half the detection limits.
- Bellingham Bay background TEQ concentrations range from 1.5 to 14.3 ng/kg.
 TEQ presented in ng/kg.

200

400

Bellingham Bay Sediment Investigations Bellingham, Washington

Bellingham Bay Piling Study Area Dioxin TEQ Data

17330-17

6/09

HART CROWSER

Figure 14

Source: Base map provided by Landau Associates, 2007.

APPENDIX A FIELD DOCUMENTATION

VIBRACORE LOGS

Table A-1 - Sample Location Coordinates

	Ac	tual	
	NAD 1983, S	SPCS, WA. N.	Mudline Elevation
Location	Northing	Easting	in Feet (MLLW)
	R.G. Haley	Site	
Surface Sediment Samples			
RGH-SS-01	639752.23	1240402.80	-11.3
RGH-SS-02	639717.65	1240352.04	-10.1
RGH-SS-03	639695.17	1240299.76	-12.5
Sediment Core Samples			
RGH-SC-01	639752.23	1240402.80	-8.7
RGH-SC-02	639717.65	1240352.04	-6.2
RGH-SC-03	639695.17	1240299.76	-5.3
RGH-SC-04	639805.12	1240421.34	-2.0
RGH-SC-05	639800.84	1240362.04	-3.3
RGH-SC-06	639777.61	1240293.09	-1.6
RGH-SC-07	639473.31	1239872.88	-3
RGH-SC-08	639591.38	1240010.19	-5.7
RGH-SC-09	639685.89	1240225.03	-12.8
	ellingham Bay P	iling Study	
Surface Sediment Samples	<u> </u>		
BBP-SS-01	637287.63	1238685.95	0.2
BBP-SS-02	636748.57	1238283.37	-5.6
BBP-SS-03	636590.48	1238170.88	-6.6
Sediment Core Samples		1200110100	
BBP-SC-01	637287.63	1238685.95	-15.1
BBP-SC-02	636748.57	1238283.37	-12.4
BBP-SC-03(a)	636590.48	1238170.88	-2.7
	Vide Dioxin Back		
Surface Sediment Samples		<u> </u>	
BBDx-SS-01	643795.15	1232478.73	-28.6
BBDx-SS-02	642566.99	1237078.74	-18.7
BBDx-SS-03	638732.06	1237644.31	-30.3
BBDx-SS-04	637137.64	1233722.86	-62.1
BBDx-SS-05	636558.88	1229401.50	-74.4
BBDx-SS-06	633754.73	1235086.13	-42.2
	Samish Bay Re		·
Samish Bay Ref1	581839.03	1226227.52	
Samish Bay Ref2	581861.41	1229858.57	-16.4
Samish Bay Ref3	581599.03	1227888.38	-16.6
Carrier Day Here	Boulevard Park		
Surface Sediment Samples			
BLVD-SS-01	636588.54	1238072.56	-2.9
BLVD-SS-02	636643.64	1237999.73	-4.5
BLVD-SS-03	636733.15	1237967.07	-14.3
BLVD-SS-04	636722.77	1238024.78	-12.5
BLVD-SS-05	636833.66	1238044.08	-20.8
BLVD-SS-06	637140.62	1238164.99	-25.0
BLVD-SS-07	637512.34	1238356.90	-23.3
BLVD-SS-08	637941.27	1238659.87	-22.8
BLVD-SS-09	638280.40	1238980.60	-17.3
DE 4 D-00-09	000200.40	120000.00	-17.3

Table A-1 - Sample Location Coordinates

	Ac	tual	
	NAD 1983, S	SPCS, WA. N.	Mudline Elevation
Location	Northing Easting		in Feet (MLLW)
Sediment Core Samples			
BLVD-SC-01	636587.32	1238072.94	-3.5
BLVD-SC-02	636647.73	1238035.63	-5.7
BLVD-SC-03	636733.68	1237970.70	-11.2
BLVD-SC-04	636724.58	1238025.62	-13.1
BLVD-SC-05	636835.59	1238039.29	-22.5
BLVD-SC-06	637143.69	1238163.85	-28.4
BLVD-SC-07	637512.36	1238356.10	-24.2
BLVD-SC-08	637941.21	1238662.69	-24.0
BLVD-SC-09	638278.00	1238979.34	-17.1

Coordinates are in Washington State Plane North NAD83

⁽a) Sample not collected due to refusal.

Table A-2 - Surface Sediment Grab Sample Descriptions

Sample Number	Collection Date	Visual Sediment Description	Comments	
R.G. Haley Site			I	
RGH-SS-01	8/26/2008	Saturated, very loose, black-gray, silty, sandy GRAVEL (GM) with small cobbles and moderate shell fragments.		
RGH-SS-02	8/26/2008	Saturated, very loose, black, silty, sandy GRAVEL (GM) with moderate cobbles.	van Veen power grab. Combined two grabs for chemistry. Barnacles, mussels, crabs, Ulva sp. Refuse including glass, brick, wire.	
RGH-SS-03	8/26/2008	Saturated, very loose, black, silty SAND (SM) with small cobbles and gravel, and moderate shell fragments.	van Veen power grab. Combined two grabs for chemistry and bioassay. Barnacles, cockle, crabs, polychaete. Brick fragments.	
Bellingham Bay Piling	gs Study Area			
BBP-SS-01	8/26/2008	Saturated, very loose, black-gray, silty SAND (SM), with scattered gravels and cobbles, and moderate shell fragments.	van Veen power grab. Combined five grabs for chemistry and bioassay. Crab, eelgrass, gastropod. Wood fragments and slight sheen on one grab.	
BBP-SS-02	8/26/2008	Saturated, very loose, black, silty SAND (SM), with scattered gravel and cobbles, and moderate shell fragments.	van Veen power grab. Combined two grabs for chemistry and bioassay. Hermit crab, eelgrass, polychaete. Metal cable, rope, and wood debris.	
BBP-SS-03	8/26/2008	Saturated, very soft, dark brown, fine organic PEAT (PT) with sand and scattered gravels and shell fragments.	van Veen power grab. Combined two grabs for chemistry and bioassay. Worm. Wood debris, and slight sheen on one grab.	
Bay-Wide Dioxin Sam	ples			
BBDx-SS-01	9/19/2008	Saturated, very soft, black-gray, sandy SILT (ML).	Double van Veen grab. Worms.	
BBDx-SS-02	9/19/2008	Saturated, very soft, black-gray, sandy, clayey SILT (CL).	Double van Veen grab. Worms.	
BBDx-SS-03	9/19/2008	Saturated, very soft, gray-black, clayey SILT (CL) with sand.	Double van Veen grab. Worms.	
BBDx-SS-04	9/19/2008	Saturated, very soft, gray-black, clayey SILT (CL) with sand.	Double van Veen grab. Worms, eelgrass, Macoma. Wood debris.	
BBDx-SS-05	9/18/2008	Saturated, very soft, black-gray, sandy SILT (ML).	Double van Veen grab. Worms, sea pen.	
BBDx-SS-06	9/18/2008			
Bioassay Reference	Sample	1		
Samish Bay Ref1	8/29/2008	Saturated, very loose, gray to olive, silty SAND (SM).	80% fines. Abundant worms, tubes.	

Note: REF SM-33 becomes Samish Bay Ref1

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on the later.

logs. SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance (N) in Blows/Foot	Approximate Shear Strength in TSF	
Very loose	0 to 4	Very soft	0 to 2	<0.125	
Loose	4 to 10	Soft	2 to 4	0.125 to 0.25	
Medium dense	10 to 30	Medium stiff	4 to 8	0.25 to 0.5	
Dense	30 to 50	Stiff	8 to 15	0.5 to 1.0	
Very dense	>50	Very stiff	15 to 30	1.0 to 2.0	
		Hard	>30	>2.0	

Sampling Test Symbols

1.5" I.D. Split Spoon

Grab (Jar)

3.0" I.D. Split Spoon

Shelby Tube (Pushed)

Cuttings

Bag

Core Run

SOIL CLASSIFICATION CHART

MA IOD DIVISIONS			SYMBOLS		TYPICAL
MAJOR DIVISIONS			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
		(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS LARGER THAN NO 200 SIEVE SIZE	SAND AND SANDY SOILS	CLEAN SANDS	• •	sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
		(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
		(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
FINE GRAINED SOILS		LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
	SILTS AND CLAYS			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS LEAN CLAYS
			**************************************	OL	ORGANIC SILTS AND ORGANIC SILT CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE		LIQUID LIMIT . GREATER THAN 50		MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
	SILTS AND CLAYS			СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
н	GHLY ORGANIC S	SOILS	ىلى ملى - على ـ	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

Moisture

Dry Little perceptible moisture

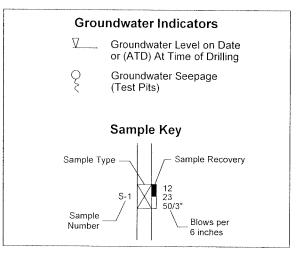
Damp Some perceptible moisture, likely below optimum

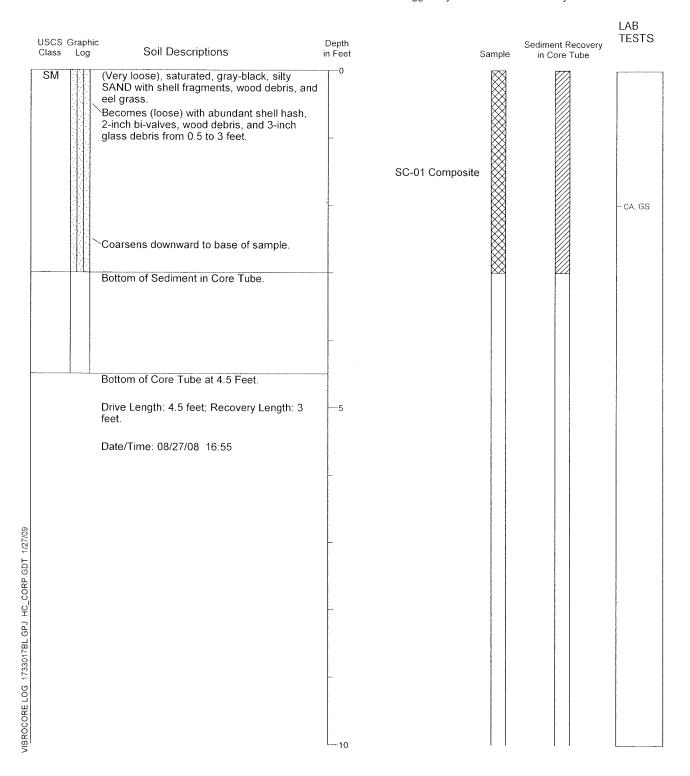
Moist Likely near optimum moisture content

Wet Much perceptible moisture, likely above optimum

Estimated Percentage <5
5 - 12
12 - 30
30 - 50

Laboratory Test Symbols				
GS	Grain Size Classification			
CN	Consolidation			
UU	Unconsolidated Undrained Triaxial			
CU	Consolidated Undrained Triaxial			
CD	Consolidated Drained Triaxial			
QU	Unconfined Compression			
DS	Direct Shear			
K	Permeability			
PP	Pocket Penetrometer			
	Approximate Compressive Strength in TSF			
TV	Torvane			
	Approximate Shear Strength in TSF			
CBR	California Bearing Ratio			
MD	Moisture Density Relationship			
AL	Atterberg Limits			
	Water Content in Percent			
	Liquid Limit			
	Natural Natural			
	Plastic Limit			
PID	Photoionization Detector Reading			
CA	Chemical Analysis			
DT	In Situ Density in PCF			
ОТ	Tests by Others			




Figure A-1

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Vibracore Log BBP-SC-01

Location: See Figure 2.
Mudline Elevation in Feet (MLLW): -15.1 Feet Water Depth in Feet: 14.3 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 637287.6 Easting: 1238685.9 Logged By: C. Rust Reviewed By: G. Both

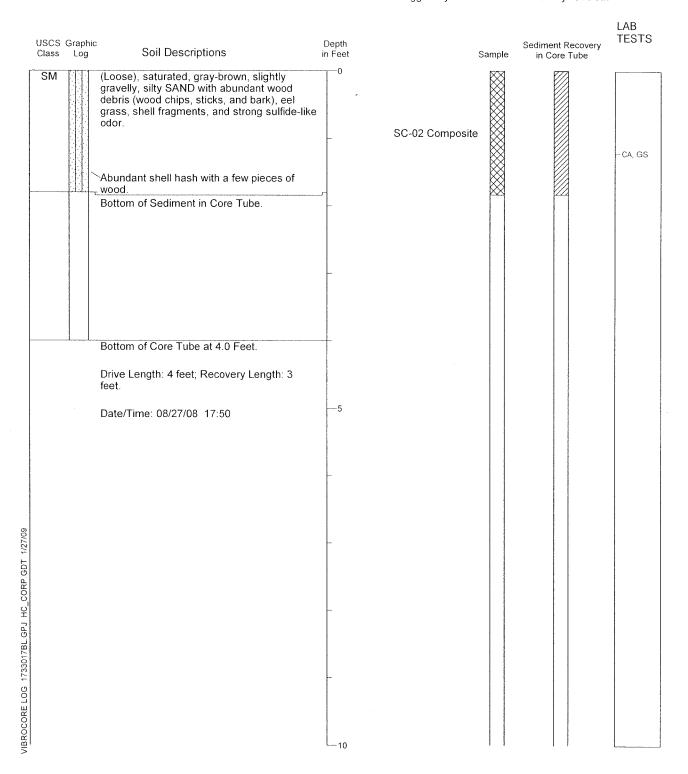
1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time

5. Sample intervals for chemical analysis were corrected for percent recovery


17330-17

8/08

Vibracore Log BBP-SC-02

Location: See Figure 2. Mudline Elevation in Feet (MLLW): -12.4 Feet Water Depth in Feet: 12.6 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 636748.6 Easting: 1238283.4 Logged By: C. Rust Reviewed By: G. Both

1. Refer to Figure A-1 for explanation of descriptions and symbols.

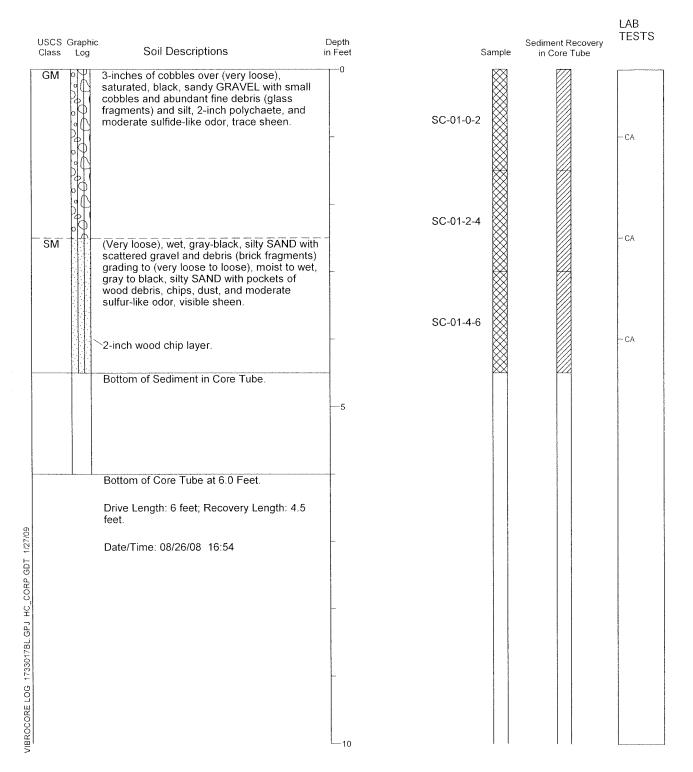
2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. Sample intervals for chemical analysis were corrected for percent recovery.



17330-17

8/08

Location: See Figure 2. Mudline Elevation in Feet (MLLW): -8.7 Feet Water Depth in Feet: 8.8 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639752.2 Easting: 1240402.8 Logged By: M. Herrenkohl Reviewed By: G. Both

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time

5. Sample intervals for chemical analysis were corrected for percent recovery.

17330-17

8/08

Location: See Figure 2. Mudline Elevation in Feet (MLLW): -6.2 Feet Water Depth in Feet: 8.2 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639717.7 Easting: 1240352

Logged By: M. Herrenkohl Reviewed By: G. Both

1. Refer to Figure A-1 for explanation of descriptions and symbols.

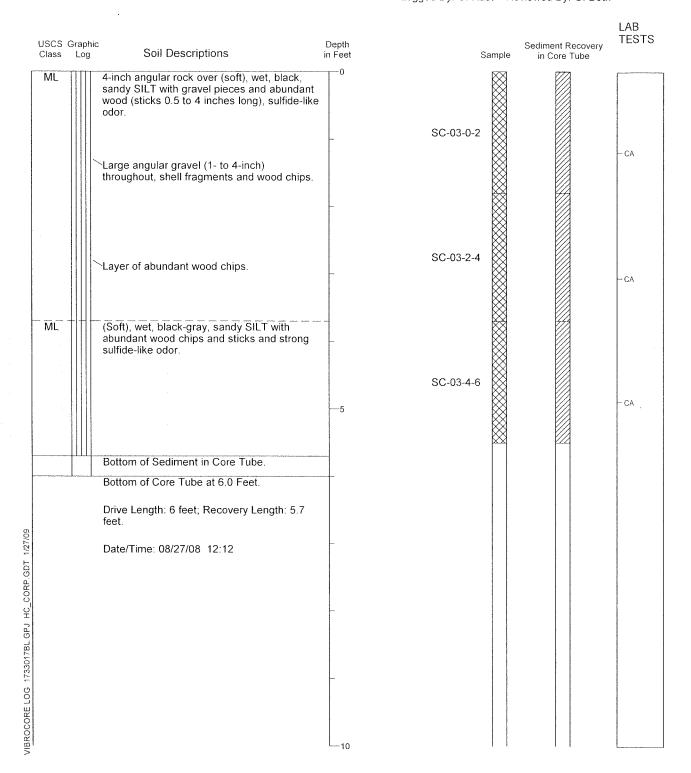
Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. Sample intervals for chemical analysis were corrected for percent recovery.

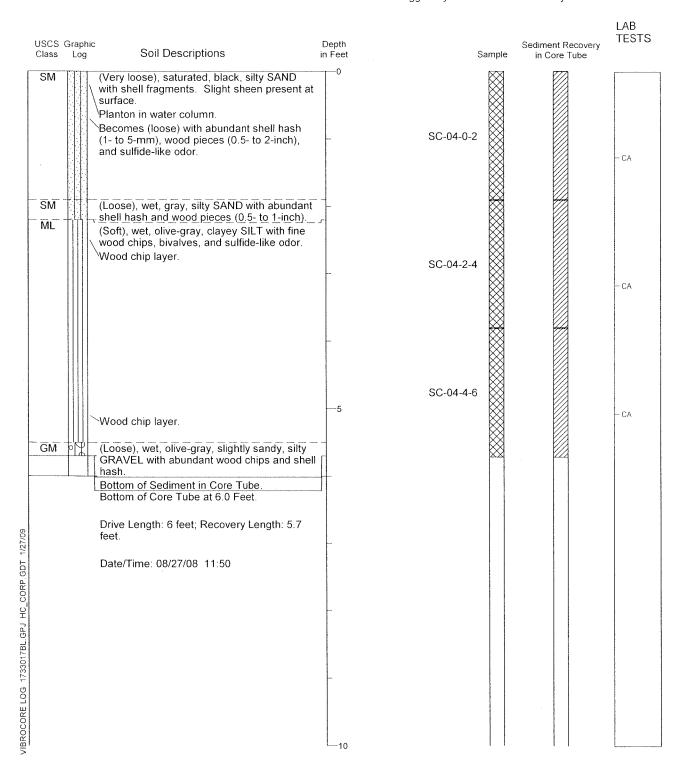

17330-17

8/08

Location: See Figure 2.

Mudline Elevation in Feet (MLLW): -5.3 Feet
Water Depth in Feet: 9 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639695.2 Easting: 1240299.8 Logged By: C. Rust Reviewed By: G. Both

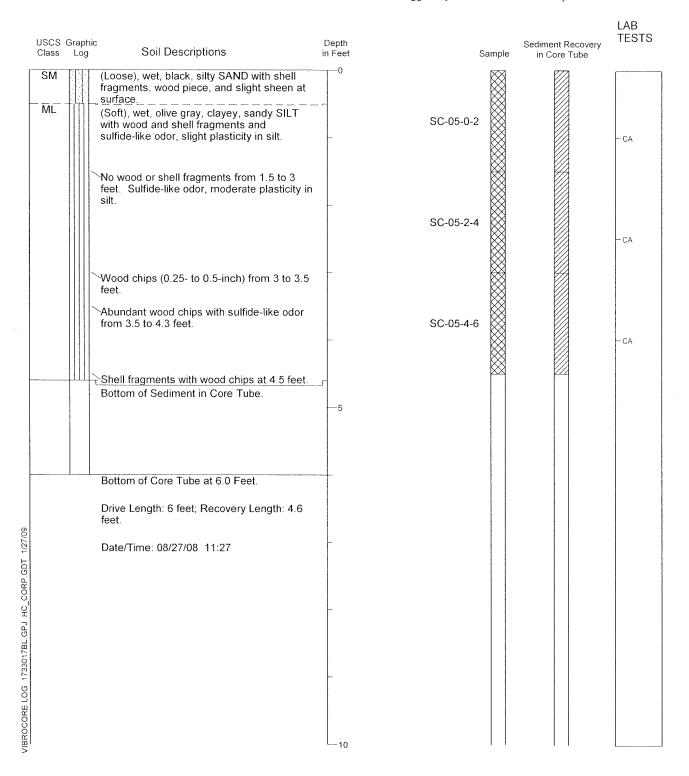

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
 with time.
- 5. Sample intervals for chemical analysis were corrected for percent recovery.

17330-17 Figure A-6 8/08

Location: See Figure 2.
Mudline Elevation in Feet (MLLW): -2.0 Feet
Water Depth in Feet: 6.5 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639805.1 Easting: 1240421.3 Logged By: C. Rust Reviewed By: G. Both

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
 with time.
- 5. Sample intervals for chemical analysis were corrected for percent recovery.



17330-17

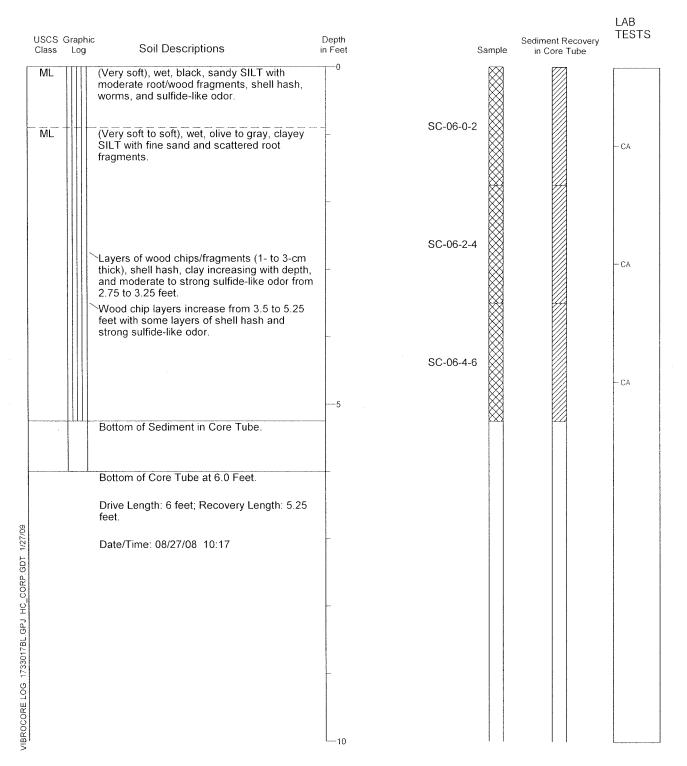
8/08

Location: See Figure 2.
Mudline Elevation in Feet (MLLW): -3.3 Feet
Water Depth in Feet: 8.3 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639800.8 Easting: 1240362 Logged By: C. Rust Reviewed By: G. Both

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. Sample intervals for chemical analysis were corrected for percent recovery.

17330-17


8/08

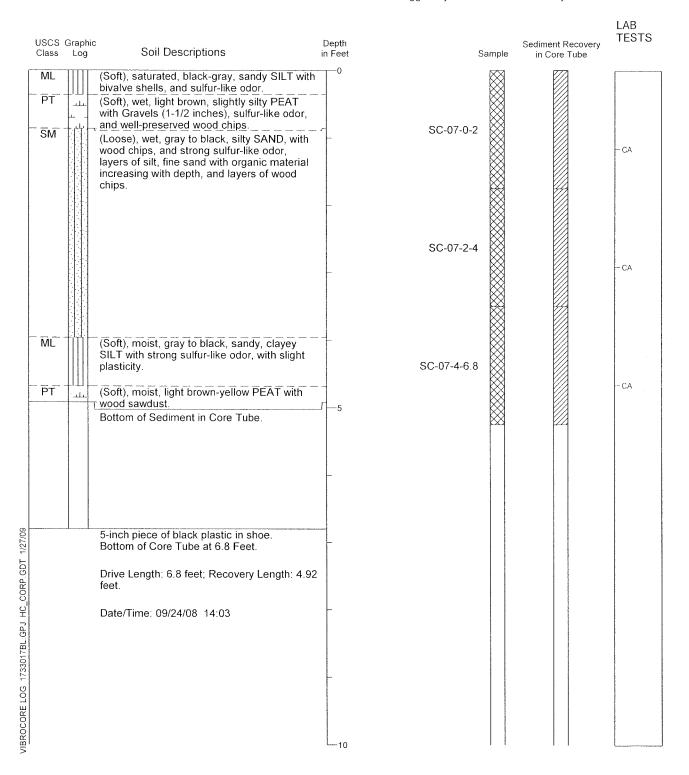
Location: See Figure 2.
Mudline Elevation in Feet (MLLW): -1.6 Feet

Water Depth in Feet: 8.4 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639777.6 Easting: 1240293.1

Logged By: M. Herrenkohl Reviewed By: G. Both

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487)
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
- 5. Sample intervals for chemical analysis were corrected for percent recovery.


17330-17

8/08

Vibracore Log RGH-SC-07

Location: See Figure 2.
Mudline Elevation in Feet (MLLW): -3.0 Feet
Water Depth in Feet: 12 Feet

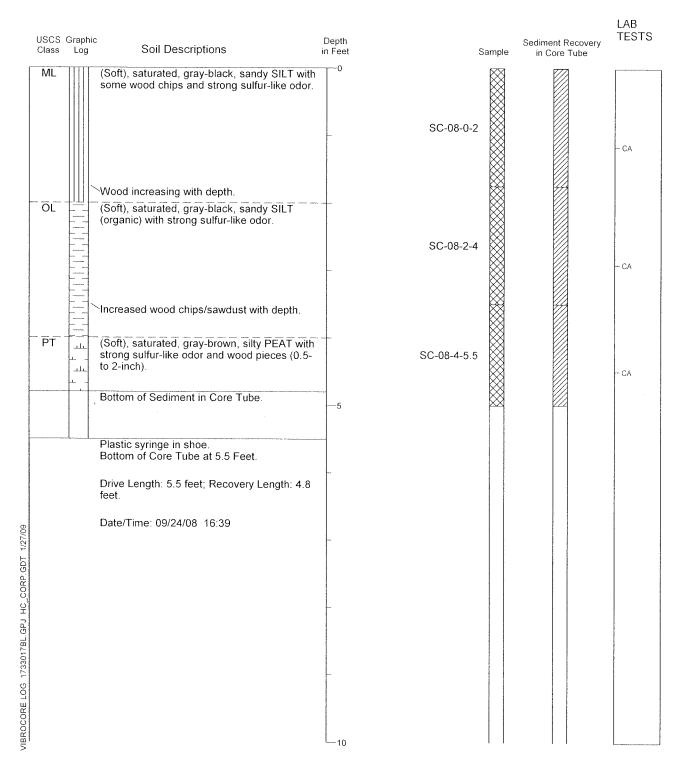
Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639473.3 Easting: 1239872.9 Logged By: C. Rust Reviewed By: G. Both

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
 with time.
- 5. Sample intervals for chemical analysis were corrected for percent recovery.

17330-17

9/08

Figure A-10


Vibracore Log RGH-SC-08

Location: See Figure 2.
Mudline Elevation in Feet (MLLW): -5.7 Feet

Water Depth in Feet: 18 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639591.4 Easting: 1240010.2

Logged By: C. Rust Reviewed By: G. Both

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

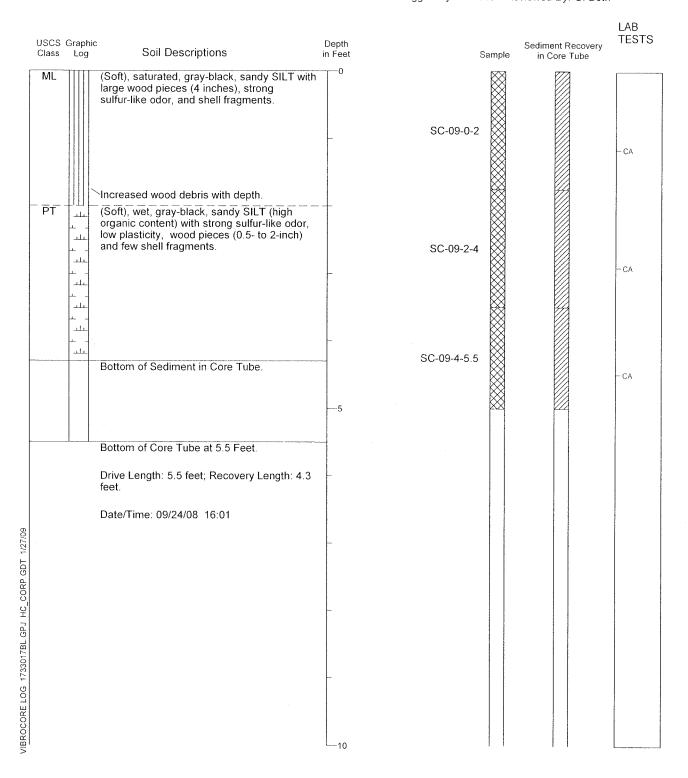
3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. Sample intervals for chemical analysis were corrected for percent recovery.

17330-17

9/08


Figure A-11

Vibracore Log RGH-SC-09

Location: See Figure 2.
Mudline Elevation in Feet (MLLW): -12.8 Feet

Water Depth in Feet: 20.5 Feet

Type of Sample: Vibracore Core Diameter: 4 inches Northing: 639685.9 Easting: 1240225 Logged By: C. Rust Reviewed By: G. Both

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487)

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. Sample intervals for chemical analysis were corrected for percent recovery.

17330-17 Figure A-12 9/08

APPENDIX B CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

APPENDIX B-1 CHEMICAL DATA QUALITY REVIEW AND **CERTIFICATES OF ANALYSIS**

Chemical Data Quality Review for R. G. Haley Site

Three surface sediment samples and eighteen sediment core samples were collected from the R.G. Haley site on August 26 and 27, 2008. Nine sediment core samples were collected on September 24, 2008. The samples were submitted to Analytical Resources, Inc. (ARI), in Tukwila, WA for analysis. Sample identifications, laboratory job numbers, and analytical tests are summarized in Table 4.

The samples were received at the laboratory with temperatures ranging from -0.2°C to 6°C. As sediment samples were frozen upon arrival, no results were qualified based on their temperature.

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by the laboratory. Hart Crowser performed the data review, using laboratory quality control results summary sheets and raw data, as required, to ensure they met data quality objectives for the project. Data review followed the format outlined in the National Functional Guidelines for Organic Data Review (EPA 1999) and the National Functional Guidelines for Inorganic Data Review (EPA 2004) modified to include specific criteria of the individual analytical methods. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries;
- Laboratory duplicate relative percent differences (RPDs);
- Internal standard (IS) recoveries (where applicable);
- Calibration criteria (where applicable); and
- Reporting limits (RL).

The data were determined to be acceptable for use, as qualified. Full laboratory results are presented at the end of this appendix. Results of the data reviews, organized by analysis class, follow.

Diesel- and Motor Oil-Range Hydrocarbons

Analytical Methods

The samples were extracted and the extracts were acid and silica gel cleaned. The samples were analyzed by gas chromatography with a flame ionization detector (GC/FID) following the NWTPH-Dx method.

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks.

Surrogate Recovery

Surrogate recoveries were within laboratory control limits.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within laboratory control limits.

Matrix Spike (MS) Recovery

MS and MSD recoveries were within laboratory control limits with the following exceptions:

- For sample RGH-SC-06-4-6′, the MS exceeded the control limits, while the MSD was within the control limits, with the RPD outside of the control limits due to sample heterogeneity. No results were qualified.
- For sample RGH-SC-07-0-2′, the MS exceeded the control limits, while the MSD was within the control limits, due to sample heterogeneity. No results were qualified.

Page B-1-2 Hart Crowser

Laboratory Duplicate Sample Analysis

No laboratory duplicate sample analyses were performed.

Initial Calibration Curves and Continuing Calibration Verification Checks (CCVs)

The initial calibration curves and CCVs were within acceptance criteria.

Semivolatile Organic Compounds (SVOCs)

Analytical Methods

The samples were extracted by EPA Method 3550B (sonication) following PSEP modifications to attain lower reporting limits. The samples were analyzed by gas chromatography/mass spectrometry (GC/MS) following EPA Method 8270D.

Sample Holding Times

The samples were prepared and analyzed within the holding time limits of 6 months for frozen samples.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors. Reporting limits for some compounds were elevated due to matrix interferences.

Blank Contamination

The method blank was non-detect with the following exceptions: Diethylphthalate had a detection above the RL. The associated samples were non-detect for diethylphthalate and no results were qualified.

Surrogate Recovery

Surrogate recoveries were within laboratory control limits with the following exceptions:

Hart Crowser Page B-1-3

Sample ID	Surrogate	Recovery in %	QC Limit in %	Qualifier	Comment
RGH-SC-01-4-6' Diluted	d14-p-terphenyl	98	21 to 97	NQ	Undiluted result in control
RGH-SC-03-2-4' Diluted	d14-p-terphenyl	98.4	21 to 97	NQ	Undiluted result in control
RGH-SC-03-4-6'	d5-nitrobenzene	23.4	29 to 87	NQ	Re-extract in control
RGH-SC-03-4-6'	2-fluorobiphenyl	26	32 to 88	NQ	Re-extract in control
RGH-SC-03-4-6'	d4-1,2- dichlorobenzene	23	25 to 82	NQ	Re-extract in control
RGH-SC-03-4-6'	d5-phenol	24.8	29 to 85	NQ	Re-extract in control
RGH-SC-03-4-6'	d4-2- chlorophenol	25.3	30 to 84	NQ	Re-extract in control
RGH-SC-04-0-2'	d14-p-terphenyl	102	21 to 97	NQ	Diluted result in control
RGH-SC-06-4-6'	d14-p-terphenyl	102	21 to 97	NQ	Diluted result in control
LCS-100808	d4-1,2- dichlorobenzene	32.2	33 to 79	NQ	All other surrogates in control

NQ - Not qualified.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within laboratory control limits with the following exceptions:

- For LCS-090308, the recovery of 1,2-dichlorobenzene was just below the control limits. The analyte was within control in the LCSD, and results were not qualified.
- For LCS-100808, the recoveries of 1,3-dichlorobenzene, 1,4dichlorobenzene, and 1,2-dichlorobenzene were below the control limits. The recoveries of those analytes were within control in the LCSD, and no results were qualified. The recovery of hexachlorobenzene was below the Marginal Exceedance (ME) limits, but was within the control limits in the LCSD, and results were not qualified.

Matrix Spike (MS) Recovery

The MS were within laboratory control limits with the following exceptions:

Page B-1-4 Hart Crowser

Sample ID	Analyte	Within CL	Within ME Limit	High or Low	Qualifier	Comment	
RGH-SS-01 MSD	Pyrene	N	N	Н	NQ	Within CL in MS	
RGH-SS-01 MSD	Benzo(a)anthracene	N	N	Н	NQ	Within CL in MS	
RGH-SS-01 MSD	Chrysene	N	N	Н	NQ	Within CL in MS	
RGH-SS-01 MSD	Benzo(b)fluoranthene	N	N	Н	NQ	Within CL in MS	
RGH-SS-01 MSD	Benzo(a)pyrene	N	N	Н	NQ	Within CL in MS	
RGH-SS-01 MSD	Benzo(k)fluoranthene	N	Y	Н	NQ	Within CL in MS	
RGH-SC-06-4-6' MS/MSD	Benzoic acid	N	Y	L	NQ	Within ME limits	
RGH-SC-06-4-6' MS	Acenapthylene	N	Y	L	NQ	High levels in source sample, insufficient spike	
RGH-SC-06-4-6' MSD	Acenapthylene	N	N	L	NQ	High levels in source sample, insufficient spike	
RGH-SC-06-4-6' MS/MSD	Fluorene	N	N	L	NQ	High levels in source sample, insufficient spike	
RGH-SC-06-4-6' MS/MSD	Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(a)pyrene, Indeno(123-cd)pyrene, Benzo(ghi)perylene	NA	NA	-	NQ	High levels in source sample, insufficient spike	
RGH-SC-06-4-6' MS	Benzo(k)fluoranthene	NA	NA		NQ	High levels in source sample, insufficient spike	
RGH-SC-06-4-6' MSD	Benzo(k)fluoranthene	N	N	L	NQ	High levels in source sample, insufficient spike	
RGH-SC-06-4-6' MS	Dibenz(ah)anthracene	N	N	L	NQ	High levels in source sample, insufficient spike	
RGH-SC-06-4-6' MSD	Dibenz(ah)anthracene	N	Y	L	NQ	High levels in source sample, insufficient spike	
RGH-SC-07-0-2' MS/MSD	Hexachloroethane, Benzoic acid	N	Y	L	NQ	Within ME limits	
RGH-SC-07-0-2' MS	Naphthalene	N	Y	Н	NQ	High levels in source sample, insufficient spike	
RGH-SC-07-0-2' MSD	Naphthalene	N	N	Н	NQ	High levels in source sample, insufficient spike	

Sample ID	Analyte	Within CL	Within ME Limit	High or Low	Qualifier	Comment
RGH-SC-07-0-2' MSD	Dimethylphthalate, Benzo(a)anthracene	N	Y	L	NQ	Within CL in MS
RGH-SC-07-0-2' MS/MSD	Pyrene	N	Z	L	NQ	High levels in source sample, insufficient spike
RGH-SC-07-0-2' MSD	Bis(2-ethylhexyl) phthalate	N	Y	Н	NQ	Within CL in MS
RGH-SC-07-0-2' MS/MSD	Chrysene	N	N	L	J	Qualified in source sample
RGH-SC-07-0-2' MS	Benzo(a)pyrene	N	N	L	NQ	Within ME limits in MSD
RGH-SC-07-0-2' MSD	Benzo(a)pyrene	N	Y	L	NQ	Within ME limits in MSD

NQ - Not qualified.

ME - Marginal Exceedance limits

CL - Control limits

J - Estimated value

Internal Standards (IS) Recovery

Internal standards were within acceptance criteria with the following exceptions:

- For samples RGH-SC-01-4-6', RGH-SC-03-2-4', and RGH-SC-04-0-2', the internal standard perylene-d12 was outside the acceptance criteria. The samples were reanalyzed at dilution with all IS in control. The IS perylened12 is associated with indeno(123-cd)perylene, dibenz(ah)anthracene, and benzo(ghi)perylene. Those analytes were reported from the diluted analyses with passing IS.
- For samples RGH-SC-08-2-4', RGH-SC-08-4-5.5', RGH-SC-09-2-4', and RGH-SC-09-4-5.5', the IS chrysene-d12 and di-n-octylphthalate-d4 were outside acceptance criteria. The samples were reanalyzed at dilution with all IS in control. The IS chrysene-d12 is associated with chrysene and bis(2ethylhexyl)phthalate. The IS di-n-octylphthalate-d4 is associated with di-noctylphthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. Those analytes were reported from the diluted analyses with passing IS.

Page B-1-6 Hart Crowser

Initial Calibration Curves and Continuing Calibration Verification Checks (CCVs)

The initial calibration curves were within acceptance criteria. The CCVs were within acceptance criteria with the following exceptions:

For the CCV analyzed on September 26, 2008, the analytes fluoranthene, butylbenzylphthalate, benzo(a)anthracene, and bis(2-ethylhexyl)phthalate exceeded the criteria. The results for those analytes in the associated sample, RGH-SC-03-4-6' (re-extract) were qualified as estimated (J).

Total Mercury

Analytical Methods

Sediment samples for mercury were prepared and analyzed following EPA Method 7471A.

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within QC limits of 80 to 120 percent.

Matrix Spike (MS) Recovery

Matrix spike recoveries met QC limits of 75 to 125 percent.

Page B-1-7 Hart Crowser

Laboratory Duplicate Sample Analysis

The RPD between replicate measurements met QC limits with the following exception. The RPD for mercury in sample RGH-SC-06-4-6' exceeded the control limits. The results for mercury in that sample were qualified as estimated (J).

Initial Calibration Curves and Continuing Calibration Verification Checks (CCVs)

The initial calibration curves and CCVs were within acceptance criteria.

Conventional Sediment Parameters

Analytical Methods

Total solids and total preserved solids were determined by modified EPA Method 160.3. Total organic carbon (TOC) was determined following Plumb (1981). Ammonia, as nitrogen, was determined by EPA Method 350.1 modified. Sulfide was determined by EPA Method 376.2.

Sample Holding Times

The samples met holding time limits for total solids, total preserved solids, total organic carbon, ammonia, and sulfide.

Laboratory Detection Limits

Reported detection limits were acceptable. Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks.

Laboratory Control Sample (LCS) Recovery

LCS recoveries for sulfide and TOC were within QC limits.

Matrix Spike (MS) Recovery

MS recoveries for ammonia and TOC were within QC limits.

Page B-1-8 Hart Crowser

MS recovery for sulfide was below QC limits of 75 to 125 percent. There were high concentrations of sulfide in the source sample (RGH-SS-03) compared to the amount spiked into the sample. Therefore, sulfide results in the sample were not qualified.

Laboratory Duplicate Sample Analysis

The RPD between replicate measurements met quality control limits for total solids, total preserved solids, ammonia, sulfide, and TOC.

Standard Reference Material (SRM) Recovery

SRM recoveries for ammonia and TOC were within QC limits.

Dioxins/Furans

Analytical Methods

Sediment samples for dioxins/furans were prepared and analyzed following EPA Method 1613.

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors. The RL for 2,3,4,8-TCDF in sample RGH-SC-06-2-4' was elevated due to matrix interference.

Blank Contamination

The method blank was non-detect with the following exceptions. The analytes 1,2,3,4,6,7,8-HpCDD and OCDD exceeded the detection limit, but fell below the reporting limit. Total HpCDD exceeded the RL. Detections for those analytes in the associated samples were greater than ten times the amount in the method blank, and results were not qualified.

Surrogate Recovery

Surrogate recoveries were within QC limits.

Page B-1-9 Hart Crowser

Laboratory Control Sample (LCS) Recovery

LCS recoveries were within QC limits.

Internal Standard (IS) Recoveries

IS recoveries were within QC limits with the following exceptions:

- For sample RGH-SC-01-2-4', the IS 13C-OCDD had ion abundance ratios outside of acceptance criteria. The theoretical area for the IS was used to quantitate the recoveries and associated target analytes. The results were not qualified.
- For sample RGH-SC-04-0-2′, the IS 13C-OCDD had ion abundance ratios outside of acceptance criteria. The theoretical area for the IS was used to quantitate the recoveries and associated target analytes. The results were not qualified.
- For sample RGH-SC-03-0-2′, the IS 13C-1,2,3,4,6,7,8-HpCDF had ion abundance ratios outside of acceptance criteria. The theoretical area for the IS was used to quantitate the recoveries and associated target analytes. The results were not qualified.

Initial Calibration Curves and Continuing Calibration Verification Checks (CCVs)

The initial calibration curves and CCVs were within acceptance criteria.

Several samples had analytes that exceeded the calibration curve, but did not saturate the detector. Per the laboratory, the samples were not reanalyzed at dilution, as historical data indicated that for the isotope dilution method, dilution and reanalysis would not produce significantly different results. Those analytes were qualified with an "E."

Several samples had ion abundance ratios outside acceptance criteria. The isomers were reported as "estimated maximum possible concentration" (EMPC) and qualified as estimated (J).

J:\Jobs\1733017\Bellingham Bay Investigation Report.doc

Page B-1-10 Hart Crowser

APPENDIX B-2 CHEMICAL DATA QUALITY REVIEW AND **CERTIFICATES OF ANALYSIS**

Chemical Data Quality Review for Bellingham Bay Piling Study Area

Five sediment samples were collected from the Bellingham Bay Piling Study area on August 26 and 27, 2008. The samples were submitted to ARI for analysis. Sample identifications, laboratory job numbers, and analytical tests are summarized in Table 4.

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by the laboratory. Hart Crowser performed the data review, using laboratory quality control results summary sheets and raw data, as required, to ensure they met data quality objectives for the project. Data review followed the format outlined in the National Functional Guidelines for Organic Data Review (EPA 1999) and the National Functional Guidelines for Inorganic Data Review (EPA 2004) modified to include specific criteria of the individual analytical methods. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries;
- Laboratory duplicate relative percent differences (RPDs);
- Internal standard (IS) recoveries (where applicable);
- Calibration criteria (where applicable); and
- Reporting limits.

The data were determined to be acceptable for use, as qualified. Full laboratory results are presented at the end of this appendix. Results of the data reviews, organized by analysis class, follow.

Diesel- and Motor Oil-Range Hydrocarbons

Analytical Methods

The sediment samples were analyzed by gas chromatography with a flame ionization detector (GC/FID) following the NWTPH-Dx method.

Page B-2-1 Hart Crowser

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks.

Surrogate Recovery

Surrogate compound recoveries were within laboratory limits.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample and laboratory control sample duplicate recoveries were within laboratory limits. The RPD between duplicate measurements was within laboratory criteria.

Matrix Spike (MS) Recovery

MS recovery was within laboratory limits.

Laboratory Duplicate Sample Analysis

No laboratory duplicate sample analyses were performed.

Initial Calibration (ICAL) and Continuing Calibration Verifications Checks (CCVs)

The ICAL and CCVs were within acceptance criteria.

Semivolatile Organic Compounds (SVOCs)

Analytical Methods

Samples were analyzed by gas chromatography/mass spectrometry (GC/MS) following EPA Method 8270D.

Page B-2-2 Hart Crowser

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors. Reporting limits for hexachlorobenzene exceeded the SMS criteria in sample BBP-SS-01. Reporting limits for hexachlorobutadiene exceeded the AET criteria in samples BBP-SS-01, BBP-SS-02, BBP-SS-03, BBP-SC-01, and BBP-SC-02.

Blank Contamination

No target analytes were detected in laboratory blanks.

Surrogate Recovery

The surrogate compound recoveries were within laboratory limits.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within laboratory limits with the following exception: benzyl alcohol recoveries fell below the control limits in the LCS and LCSD, but were within the Marginal Exceedance (ME) limits. Benzyl alcohol recoveries were within the control limits in the MS and MSD, and results were not qualified.

Matrix Spike (MS) Recovery

MS and MSD recoveries were within laboratory limits with the following exceptions:

- The recoveries for 2-methylnaphthalene, acenaphthylene, and 1-methylnaphthalene were below the control limits in the MSD, but were within the control limits in the MS and, therefore, were not qualified.
- The recoveries for fluorene, anthracene, and indeno(1,2,3-cd)pyrene were below the ME limits in the MS, and were noted as not applicable in the MSD due to high concentrations of those analytes in the source sample compared to the spiking amount. The results were not qualified.
- The recoveries for phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and benzo(ghi)perylene were noted as not applicable in the MS and MSD due to

Hart Crowser Page B-2-3 17330-17 June 26, 2009

high concentrations of the analytes in the source sample compared to the spiking amount. The results were not qualified.

Initial Calibration (ICAL) and Continuing Calibration Verifications Checks (CCVs)

The ICAL was within acceptance criteria.

The CCVs were within acceptance criteria with the following exceptions:

For the CCV analyzed on September 11, 2008, the recovery for benzo(ghi)perylene was below the 20 percent criteria. The results for benzo(ghi)perylene in the associated samples (BBP-SS-01, BBP-SC-01, and BBP-SC-02) were qualified as estimated (J).

Total Metals

Analytical Methods

Sediment samples for mercury analysis were prepared and analyzed following EPA Method 7471A. Sediment samples for the other metals analyses were analyzed by ICP following EPA Method 6010B.

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

Zinc was detected in the method blank at the reporting limit. Results for zinc in the associated samples were greater than ten times the amount in the method blank, and no results were qualified.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within QC limits of 80 to 120 percent.

Page B-2-4 Hart Crowser

Matrix Spike Analysis

Matrix spike recoveries met QC limits of 75 to 125 percent.

Laboratory Duplicate Sample Analysis

The RPD between replicate measurements met quality control limits.

Continuing Calibration Verifications Checks (CCVs)

The CCVs were within QC limits.

Conventional Sediment Parameters

Analytical Methods

Total solids and total preserved solids were determined by modified EPA Method 160.3. Total organic carbon (TOC) was determined following Plumb (1981). Ammonia, as nitrogen, was determined by EPA Method 350.1 modified. Sulfide was determined by EPA Method 376.2.

Sample Holding Times

The samples met holding time limits for total solids, total preserved solids, total organic carbon, ammonia, and sulfide.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries for TOC and Sulfide were within QC limits.

Hart Crowser Page B-2-5

Matrix Spike (MS) Recovery

Matrix spike recoveries met QC limits for TOC, sulfide, and ammonia. The Standard Reference Material (SRM) for TOC and ammonia were within control limits.

Laboratory Duplicate Sample Analysis

The RPD between replicate measurements met quality control limits for TOC, sulfide, ammonia, total solids, and total preserved solids.

Dioxins/Furans

Analytical Methods

Sediment samples for dioxins/furans were prepared and analyzed following EPA Method 1613.

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

The method blank was non-detect with the following exception. The analyte OCDD exceeded the estimated detection limit, but fell below the reporting limit. Detections for that analyte in the associated samples were greater than ten times the amount in the method blank, and results were not qualified.

Surrogate Recovery

Surrogate recoveries were within QC limits.

Laboratory Control Sample (LCS) Recovery

LCS recoveries were within QC limits.

Page B-2-6 Hart Crowser 17330-17 June 26, 2009

Internal Standard (IS) Recoveries

IS recoveries were within QC limits.

Initial Calibration Curves and Continuing Calibration Verification Checks (CCVs)

The initial calibration curves and CCVs were within acceptance criteria.

J:\Jobs\1733017\Bellingham Bay Investigation Report.doc

Page B-2-7 Hart Crowser

APPENDIX B-3 CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

Chemical Data Quality Review for Bellingham Bay Dioxin Background Investigation

Six surface sediment samples were collected from Bellingham Bay on September 18 and 19, 2008. The samples were submitted for dioxin/furan analysis to Analytical Resources, Inc., (ARI) in Tukwila, WA. ARI assigned the samples the Job No. NQ49, and subcontracted them to TestAmerica-Sacramento, in West Sacramento, CA. The samples were received with temperatures exceeding the method recommended <4°C. Sample results were not qualified due to the chemical stability of dioxins. The laboratory reported results as project number G8I240290 (Table 4).

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by the laboratory. Hart Crowser performed the data review, using laboratory quality control results summary sheets and raw data, as required, to ensure they met data quality objectives for the project. Data review followed the format outlined in the National Functional Guidelines for Organic Data Review (EPA 1999) modified to include specific criteria of the individual analytical methods. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample (LCS) recoveries;
- Internal standard (IS) recoveries, where applicable;
- Initial calibration curves and continuing calibration verifications; and
- Reporting limits (RL).

The data were determined to be acceptable for use, as qualified. Full laboratory results are presented at the end of this appendix. Results of the data review follow.

Dioxins/Furans

Analytical Methods

Sediment samples for dioxins/furans were prepared and analyzed following EPA Method 1613.

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors. The RL for some analytes were elevated due to matrix interference.

Blank Contamination

The method blank was non-detect.

Surrogate Recovery

Surrogate recoveries were within QC limits.

Laboratory Control Sample (LCS) Recovery

LCS recoveries were within QC limits with the following exceptions. The recoveries for 1,2,3,6,7,8-HxCDF and 1,2,3,4,6,7,8-HpCDF exceeded the control limits. Associated samples which were non-detect or below the RL were not qualified. Samples BBDx-SS-02, BBDx-SS-03, BBDx-SS-04, and BBDx-SS-06 had detections for 1,2,3,4,6,7,8-HpCDF above the RL, and were qualified as estimated (J).

Internal Standard (IS) Recoveries

IS recoveries were within QC limits.

Initial Calibration Curves and Continuing Calibration Verification Checks (CCVs)

The initial calibration curves and CCVs were within acceptance criteria.

J:\Jobs\1733017\Bellingham Bay Investigation Report.doc

Page B-3-2 Hart Crowser

APPENDIX B-4 CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

Chemical Data Quality Review for Reference Sample

One surface sediment sample was collected from Samish Bay on August 29, 2008. Two surface sediment samples were collected on September 30, 2008. The samples were submitted to Analytical Resources, Inc., (ARI) in Tukwila, WA for analysis.

Sample Samish Bay Ref1, collected on August 29, 2008, was received at the laboratory with the temperature slightly exceeding the method recommended temperature of 2 to 6°C. Sample results were not qualified. The sample was analyzed for total organic carbon (TOC), sulfides, ammonia, total solids, and grain size. The laboratory reported results as Job No. NN44.

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by the laboratory. Hart Crowser performed the data review, using laboratory quality control results summary sheets and raw data, as required, to ensure they met data quality objectives for the project. Data review followed the format outlined in the National Functional Guidelines for Inorganic Data Review (EPA 2004) modified to include specific criteria of the individual analytical methods. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries;
- Laboratory duplicate relative percent differences (RPDs); and
- Reporting limits (RL).

The data were determined to be acceptable for use without qualification. Full laboratory results are presented at the end of this appendix. Results of the data reviews, organized by analysis class, follow.

Conventional Sediment Analyses

Analytical Methods

Total solids and total preserved solids were determined following EPA Method 160.3 modified. Ammonia was determined following EPA Method 350.1. Total sulfide was determined following EPA Method 376.2. TOC was determined following Plumb (1981).

Sample Holding Times

The samples were prepared and analyzed within holding time limits.

Laboratory Detection Limits

Reported detection limits were acceptable. Reported detection limits and analytical results were adjusted for moisture content and any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks.

Laboratory Control Sample (LCS) Recovery

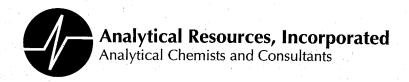
LCS recoveries for sulfide and TOC were within QC limits.

Matrix Spike (MS) Recovery

MS recoveries for ammonia and TOC were within QC limits.

Laboratory Duplicate Sample Analysis

The RPD between replicate measurements met QC limits for total solids, total preserved solids, ammonia, sulfide, and TOC.


Standard Reference Material (SRM) Recovery

SRM recovery for ammonia and TOC were within QC limits.

J:\Jobs\1733017\Bellingham Bay Investigation Report.doc

CERTIFICATES OF ANALYSIS ANALYTICAL RESOURCES, INC. AND TEST AMERICA - SACRAMENTO

(SEE ENCLOSED CD-ROM)

October 30, 2008

Mr. Roger McGinnis Hart Crowser, Inc. 1700 Westlake Avenue North Suite 200 Seattle, WA 98109-3056

RE: Project: Bellingham Bay – 17330-17 ARI Job No: NM66

Dear Mr. McGinnis:

Please find enclosed the original Chain-of-Custody (COC) record, sample receipt documentation, and the final data package for the samples from the project referenced above.

The samples were analyzed for SVOCs, NWTPH-Dx, Total Metals, Dioxin/Furans, Grain Size, and various Conventional Parameters.

Sample receipt and details of these analyses are discussed in the Case Narrative.

An electronic copy of this data package and the supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

206-695-6211

kellyb@arilabs.com

www.arilabs.com

Enclosures

cc: files NM66

Chain of Custody Documentation

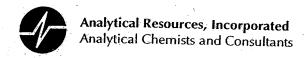
prepared for

HART CROWSER, INC.
Bellingham Bay Piles, 17330-17

ARI JOB NO.: NM66

prepared by

Analytical Resources, Inc.


Sample Custody Record Samples Shipped to:

NM66

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

1733M 17					REQUESTED ANALYSIS D									ष्ट्री					
JOB 17330-17 LAB NUMBER			14	2	45		72		A	3	1	7	3		CONTAINERS				
PROJECT NAME BELLINGHAM BAY FILES HART CROWSER CONTACT R. McGINNIS,			12	22	WEERL		Social	1	Ž Ž	2	7	79	Q		ITAIN	OBSERVATIONS/COMMENTS/			
HART CRO	OWSER CONTAC	т <u>К.</u> Р	1061NL	KS,		12	4	1/2		8	20	3	1	73	3	1/2			COMPOSITING INSTRUCTIONS
4.	CORAD,	<u>C.R</u>	WT_			1	Si	4	K	1/2	12	1 K	Ž	1	16	172		유.	
SAMPLED		, CFR				7 7	3	102	7	15	1	1/2	00	10	Ame	3		NO.	
LAB NO.	SAMPLE ID	DESCRIPTION	ON DATE	TIME	MATRIX														
	BBP-SS-OF		8/26/08	1030	SEO	X	X	X	X	X	X	X	X	×	×	X		5	X-SUS METALS - ACCI
	BBP-JS-02		8/26/08	1	SED		X	X	X	X	×	X	X	X	X	X		5	Cr. Cu, Pb, Hg, Ni, Ag,
·	BBP-JS-03		8/26/08		SED	X	χ	X	X	X	X	X	X					5	7
	BBP-SC-01	***************************************	1 1 1	1920	SEO	X	X	X	×	X	X	X	X					5	
	BBP-5C-02			1900	SED	X	\times	×,	X	X	$\stackrel{\leftarrow}{\times}$	X						3	3001
			0,01,0	,,,,,							,								
			-																HULD EXTRA CONTANOS
- Trimu						- 1,000													HOUS CATTLE COMPANIES
						.													
		******											-	,					
		7400																	
RELINQUI	SHED BY	DATE	RECEIVED BY		DATE	C D	ECIAI	CHI	DNAF	NIT II	AND		0.0					-	TOTAL NUMBER OF CONTAINERS
	msun	8/28/08	70000	72-	1 1	SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS:											SAN	TOTAL NUMBER OF CONTAINERS MPLE RECEIPT INFORMATION	
	Mediani	7 /	SIGNATURE LIMBERY	King	812818	FILL DATA PALKAGE SMS REPORTING LINES										CU	JSTODY SEALS:		
PRINTNAMI	Crowsc	TIME	PRINT HAME	Kigg	TIME	r	The tout						,,	1	, ~	- -C		YES □NO □N/A DOD CONDITION	
COMPANY	Crowse	1610	COMPANY		1610	CHS KERNING LIN						Cie	-	,	S		YES □NO		
DELIMOLU	CHED BY	DATE	DECENTED BY														TEMPERATURE SHIPMENT METHOD: □HAND		
RELINQUI	SHED BY	DATE	RECEIVED BY		DATE	COOLED NO.						TO D A	CE I		Angeling Section	COURIER □OVERNIGHT			
SIGNATURE			SIGNATURE				COOLER NO.: STORAGE LOCATION:						IUKA	iGE L	ION:	1	RNAROUND TIME:		
PRINT NAME		TIME	PRINT NAME		TIME											24 HOURS □ 1 WEEK			
COMPANY	-					See Lab Work Order No.							1	48 HOURS STANDARD					
COMPANY				for Other Contract Requirements							ts				72 HOURS OTHER				

Cooler Receipt Form

ARI Client: Hart Crowser COC No: Assigned ARI Job No:	Delivered by: 10000
Preliminary Examination Phase:	
Were intact, properly signed and dated custo Were custody papers included with the coole Were custody papers properly filled out (ink.	ody seals attached to the outside of to cooler? YES NO signed, etc.) 2.0-6.0 °C for chemistry NO NO NO NO NO NO NO NO NO N
Cooler Accepted by:	KR Date: 828 08 Time: 1610
	orms and attach all shipping documents
Log-In Phase:	
What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic back Did all bottle arrive in good condition (unbroke Were all bottle labels complete and legible? Did all bottle labels and tags agree with custod Were all bottles used correct for the requested Do any of the analyses (bottles) require preser Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each I Samples Logged by: ** Notify Project Markets	
Explain discrepancies or negative responses:	
	By: Date:

Case Narrative

prepared for

HART CROWSER, INC.
Bellingham Bay Piles, 17330-17

ARI JOB NO.: NM66

prepared by

Analytical Resources, Inc.

Case Narrative
Hart Crowser
Bellingham Bay – 17330-17
ARI Job: NM66
October 30, 2008

Sample Receipt

Analytical Resources Inc. (ARI) accepted five sediment samples in good condition on August 28, 2008 under the ARI job referenced above. The cooler temperatures measured by IR thermometer following ARI SOP were -0.2, 0.7, 3.5, and 5.2°C and the samples were well iced. For more details regarding sample receipt, please refer to the Cooer Receipt Form. All samples were frozen to protect holding times. Please note that select sample containers were put on hold pending further client instruction.

Semivolatile Analysis (PSDDA SW8270D):

All samples were originally extracted and analyzed within the method recommended holding times.

Initial calibration (s): All compounds of interest were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Internal Standard(s): The internal standard areas were within the control limit.

Method Blank (s): The method blank was free of contamination.

Surrogate(s): The surrogate percent recoveries were within control limits.

MS/MSD (s): Several matrix spike and matrix spike duplicate percent recoveries were outside the advisory control limits for sample BBP-SS-02. No further corrective action is required for matrix QC as the outliers are indicators of matrix characteristics.

LCS/LCSD (s): The LCS and LCSD percent recoveries of Benzyl Alcohol fell outside the control limits low for LCS-090408. The outliers were allowed as marginal exceedances. No further corrective action was required.

NWTPH-Dx:

All samples were extracted and analyzed within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): The method blanks were free of contamination.

Surrogate(s): All surrogate percent recoveries were within control limits.

Case Narrative NM66 Bellingham Bay – 17330-17

Case Narrative
Hart Crowser
Bellingham Bay – 17330-17
ARI Job: NM66
October 30, 2008

MS/MSD (s): The matrix spike and matrix spike duplicate percent recoveries were within the advisory control limits.

LCS/LCSD (s): The LCS and LCSD percent recoveries were within control limits.

Total Metals (Mercury):

All samples were prepared and analyzed within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): Zinc was present in the method blank at a level that was greater than the reporting limit. All associated samples contained concentrations of zinc that were greater than ten times the concentration found in the method blank. No further corrective action was required.

MS(s): All matrix spike percent recoveries were within control limits.

Duplicate(s): The duplicate RPD were within the control limit.

LCS(s): All LCS percent recoveries were within control limits.

Conventional Parameters:

All samples were prepared and analyzed within the method recommended holding times.

Method Blank (s): All method blanks were free of contamination.

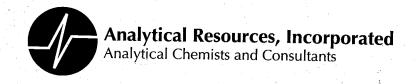
MS(s): The matrix spike percent recoveries were within control limits.

Replicate(s): All replicate RPD/RSDs were within control limits.

LCS(s): All LCS percent recoveries were within control limits.

SRM(s): All SRM percent recoveries were within control limits.

Geotechnical Parameters:


A laboratory-specific Case Narrative follows.

Case Narrative
Hart Crowser
Bellingham Bay – 17330-17
ARI Job: NM66
October 30, 2008

Dioxin/Furans:

The Dioxin/Furans analyses were subcontracted to Test America in Sacramento, CA. The subcontracted data have been included at the end of this data package.

Client: Hart Crowser, Inc. ARI Project No.: NM66

Client Project: Bellingham Bay Piles Client Project No.: 17330-17

Case Narrative

1. Two samples were received on August 28, 2008, and were in good condition.

2. The samples were submitted for grain size analysis, Atterberg limits determination, specific gravity testing and moisture content determination on July 29, 2008.

3. The samples submitted for grain size analysis according to Puget Sound Estuary

Protocol (PSEP) methodology.

- 4. The samples for grains size analysis were run in a single batch and one sample from this another job was chosen for triplicate analysis. The triplicate data is reported on the QA summary.
- 5. Atterberg limits determination was run according to ASTM D4318. Both of the samples were non-plastic.
- 6. Moisture content determination was run according to ASTM D2216.
- 7. Specific gravity determination was run according to ASTM D854.
- 8. The data is provided in summary tables and plots.

9. There were no other noted anomalies in this project.

Approved by:_

Title:

Laboratory Supervisor

Date:

Data Reporting Qualifiers

Effective 12/28/04

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- В Reported value is less than the CRDL but ≥ the Reporting Limit
- Ν Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- Н The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Flagged value is not within established control limits
- В Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- Ε Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NS The flagged analyte was not spiked into the sample

- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis

W Weight of sample in some pipette aliquots was below the level required for accurate weighting

LCS SOLUTIONS

LAE	BEISOLN II	C TEST	CONC. UG/M	ILSOLVENT	EXP.
1	1534-5	PCB	20	MEOH	08/26/09
2	1472-3	BCOC PEST	10	ACETONE	07/20/08
3	1517-1	PEST	02/04/20	ACETONE	05/15/09
4	1515-1	LOW PEST	0.2/0.4/2	ACETONE	
5	1537-1	EPH	1500	MECL2	08/16/09
6*	1456-3	PCP	12.5	ACETONE	
7	1537-3	ABN	100	ACETONE	
8	1487-2	TBT	10	MECL2	12/15/08
9	1493-3	PORE TBT	.25/.5	MECL2	12/15/08
10	1537-2	ABN ACID	100/200	MEOH	04/10/09
11	1526-1	TPHD	15000	ACETONE	06/25/09
12		ABN BASE	200	ACETONE	07/01/09
13*	1427-3	LOW PCB	2	ACETONE	10/11/08
14	1480-2	LOW ABN ACID	10/20	MEOH	10/09/08
15*	1452-1	SIM PNA	15/75	MEOH	04/09/09
16	1502-2	DIOXANE	100	MEOH	02/20/09
17	1516-2	1248 PCB	20	ACETONE	05/07/09
18	1514-4	LOW SIM PNA	1.5/7.5	ACETONE	04/24/09
19	1517-3	AK103	7500	MECL2	12/29/08
20	1490-4	PNA	100	MEOH	01/10/09
21*	1414-4	SKY/BHT	100	MEOH	04/08/09
22	1539-1	HERB	12.5/12500	MEOH	08/31/09
23	1505-1	LOW ABN BASE	20	MEOH	03/20/09
24	1504-4	LOW ABN	10	ACETONE	10/01/08
25	1481-1	DIPHENYL	100	MEOH	07/20/08
26	1522-2	OP-PEST	30	MEOH	11/30/08
27	1495-1	STEROLS	200	MEOH	12/29/08
28	1494-1	ADD. PEST	4	ACETONE	01/23/09
29	1496-3	DECANES	100		02/12/09
30	1497-2	EDB/DBCP	2		02/12/09
31	1510-3	TERPINEOL	100		03/21/09

LCS SOLUTIONS

32	1533-2	GUAIACOL	E0 200	A OFTONE	00/05/00
			50-200	ACETONE	
33	1522-1	RESIN ACID	250	ACETONE	06/11/09
34	1530-2	CONGENERS	250	ACETONE	
50	1523-1	FULL RESIN	250	ACETONE	
*=REV	ERIFIED	SOLUTION			
	~				

SURR SOLUTIONS

LABEL	SOLN ID	TEST	CONC. UG/ML	SOLVENT	EXP.
A	1525-4	ABN	100/150	MEOH	03/13/09
В	1513-1	SIM PNA	15/75	MEOH	04/15/09
C*	1443-1	SIM ABN	10/15	MEOH	04/03/09
D	1516-3	LOW PCB	0.2	ACETONE	
E	1478-1	HERB	62.5	MEOH	09/21/08
F	1520-3	PCP	12.5	ACETONE	04/18/09
G	1502-3	1,4DIOXANE	100	MEOH	02/20/09
Н	1504-2	OP-PEST	25	MEOH	03/20/09
*	1458-1	LOW S. PNA	03/15	MEOH	06/05/09
J	1493-2	TBT-PORE	0.25	MECL2	12/15/08
K	1490-3	MED PCB	20	ACETONE	
L	1486-5	TBT	10	MECL2	12/15/08
M	1518-3	EPH	1500	MECL2	05/10/09
N	1518-4	PCB	2	ACETONE	
0	1521-3	TPH	450	MECL2	12/29/08
Р	1518-2	HCID	2250	MECL2	12/29/08
Q	1497-3	EDB	2	ACETONE	02/12/09
R		RESIN ACID	250	ACETONE	
	*RE-VER	FIED SOLUT	ON		
T					
U					
V					
W					
X					
Υ					
Z					

Data Summary Package

prepared for

HART CROWSER, INC.
Bellingham Bay Piles, 17330-17

ARI JOB NO.: NM66

prepared by

Analytical Resources, Inc.

SEMIVOLATILES

Sample ID: BBP-SS-01 SAMPLE

Lab Sample ID: NM66A LIMS ID: 08-21963 Matrix: Sediment

Data Release Authorized Reported: 09/16/08

Date Extracted: 09/04/08 Date Analyzed: 09/11/08 22:31 Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 26.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 34.5%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	19	48
541-73-1	1,3-Dichlorobenzene	19	< 19 U
106-46-7	1,4-Dichlorobenzene	19	< 19 U
100-51-6	Benzyl Alcohol	19	< 19 U
95-50-1	1,2-Dichlorobenzene	19	< 19 U
95-48-7	2-Methylphenol	19	< 19 U
106-44-5	4-Methylphenol	19	< 19 U
67-72-1	Hexachloroethane	19	< 19 U
105-67-9	2,4-Dimethylphenol	19	< 19 U
65-85-0	Benzoic Acid	190	< 190 U
120-82-1	1,2,4-Trichlorobenzene	19	< 19 U
91-20-3	Naphthalene	19	25
87-68-3	Hexachlorobutadiene	19	< 19 U
91-57-6	2-Methylnaphthalene	19	12 Ј
131-11-3	Dimethylphthalate	19	< 19 U
208-96-8	Acenaphthylene	19	42
83-32-9	Acenaphthene	19	13 J
132-64-9	Dibenzofuran	19	< 19 U
84-66-2	Diethylphthalate	19	< 19 U
86-73-7	Fluorene	19	12 Л
86-30-6	N-Nitrosodiphenylamine	19	< 19 U
118-74-1	Hexachlorobenzene	19	< 19 U
87-86-5	Pentachlorophenol	96	< 96 U
85-01-8	Phenanthrene	19	130
120-12-7	Anthracene	19	53
84-74-2	Di-n-Butylphthalate	19	< 19 U
206-44-0	Fluoranthene	19	350
129-00-0	Pyrene	19	390
85-68-7	Butylbenzylphthalate	19	< 19 U
56-55-3	Benzo(a) anthracene	19	220
117-81-7	bis(2-Ethylhexyl)phthalate	19	220 11 J
218-01-9	Chrysene	19	280
117-84-0	Di-n-Octyl phthalate	19	
205-99-2	Benzo (b) fluoranthene		< 19 U
207-08-9	Benzo (k) fluoranthene	19	180
50-32-8	Benzo (a) pyrene	19	140
193-39-5	Indeno(1,2,3-cd)pyrene	19	190
53-70-3	Dibenz(a,h)anthracene	19	56
191-24-2		19	11 J
	Benzo(g,h,i)perylene	19	52

Page 2 of 2

Sample ID: BBP-SS-01

SAMPLE

Lab Sample ID: NM66A LIMS ID: 08-21963 Matrix: Sediment

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Analyzed: 09/11/08 22:31

CAS Number	Analyte	RL F	Result
90-12-0	1-Methylnaphthalene	19	17 Ј
	Reported in μ	ıg/kg (ppb)	
	Semivolatile Surr	ogate Recovery	
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromopheno	55.6% 63.2% 72.5% ol 73.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	59.6% 53.6% 55.5%

Lab Sample ID: NM66B LIMS ID: 08-21964

Matrix: Sediment Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/04/08 Date Analyzed: 09/11/08 23:06 Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

Sample ID: BBP-SS-02 SAMPLE

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 38.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	15 Ј
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
67-72-1	Hexachloroethane	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	80
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	99
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	170
83-32-9	Acenaphthene	20	110
132-64-9	Dibenzofuran	20	93
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	380
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	2,100 E
120-12-7	Anthracene	20	430
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	2,500 E
129-00-0	Pyrene	20	2,700 E
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo(a) anthracene	20	1,100
117-81-7	bis(2-Ethylhexyl)phthalate	20	35
218-01-9	Chrysene	20	1,200
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	1,100
207-08-9	Benzo(k) fluoranthene	20	1,100
50-32-8	Benzo(a)pyrene	20	1,200
193-39-5	Indeno(1,2,3-cd)pyrene	20	400
53-70-3	Dibenz (a, h) anthracene	20	400 76
191-24-2	Benzo(g,h,i)perylene	20	360

Page 2 of 2

Sample ID: BBP-SS-02

SAMPLE

Lab Sample ID: NM66B LIMS ID: 08-21964 Matrix: Sediment

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Analyzed: 09/11/08 23:06

CAS Number	Analyte		RL	Result
90-12-0	1-Methylnaphthalene		20	140
	Reported in μ g/	kg (ppb)		
	Semivolatile Surrog	ate Recovery	r	
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromopheno	60.8% 72.8% 77.1% ol 82.4%	2-Fluorobin d4-1,2-Dich 2-Fluorophe d4-2-Chloro	lorobenzene enol	65.2% 57.6% 57.9% 65.9%

Sample ID: BBP-SS-02 DILUTION

Lab Sample ID: NM66B LIMS ID: 08-21964 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/04/08 Date Analyzed: 09/15/08 17:58 Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 38.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	< 59 U
541-73-1	1,3-Dichlorobenzene	59	< 59 U
106-46-7	1,4-Dichlorobenzene	59	< 59 U
100-51-6	Benzyl Alcohol	59	< 59 U
95-50-1	1,2-Dichlorobenzene	59	< 59 U
95-48-7	2-Methylphenol	59	< 59 U
106-44-5	4-Methylphenol	59	< 59 U
67-72-1	Hexachloroethane	59	< 59 U
105-67-9	2,4-Dimethylphenol	59	< 59 U
65-85-0	Benzoic Acid	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	59	< 59 U
91-20-3	Naphthalene	59	72
87-68-3	Hexachlorobutadiene	59	< 59 U
91-57-6	2-Methylnaphthalene	59	83
131-11-3	Dimethylphthalate	59	< 59 U
208-96-8	Acenaphthylene	59	140
83-32-9	Acenaphthene	59	98
132-64-9	Dibenzofuran	59	82
84-66-2	Diethylphthalate	59	
86-73-7	Fluorene	59	< 59 U
86-30-6	N-Nitrosodiphenylamine	59	320
118-74-1	Hexachlorobenzene	59	< 59 U
87-86-5	Pentachlorophenol	300	< 59 U < 300 U
85-01-8	Phenanthrene	59	-
120-12-7	Anthracene	59	2,000
84-74-2	Di-n-Butylphthalate	59	380
206-44-0	Fluoranthene	59	< 59 U
129-00-0	Pyrene	59	2,400
85-68-7	Butylbenzylphthalate	59	2,000
56-55-3	Benzo(a) anthracene	5 <i>9</i>	< 59 U
117-81-7	bis(2-Ethylhexyl)phthalate	59	1,200
218-01-9	Chrysene		< 59 U
117-84-0	Di-n-Octyl phthalate	59	1,200
205-99-2	Benzo (b) fluoranthene	59 50	< 59 U
207-08-9	Benzo(k) fluoranthene	59	840
50-32-8	Benzo (a) pyrene	59	850
193-39-5	Indeno(1,2,3-cd)pyrene	59	1,100
53-70-3	Dibenz (a, h) anthracene	59	590
191-24-2	Benzo(g,h,i)perylene	59	120
	compo (g, n, r) perytene	59	640

Sample ID: BBP-SS-02 DILUTION

Lab Sample ID: NM66B LIMS ID: 08-21964

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

Matrix: Sediment

17330-17

Date Analyzed: 09/15/08 17:58

CAS Number	Analyte		RL	.
90-12-0	1-Methylnaphthalene	naphthalene		Result 120
	Reported in μ	g/kg (ppb)		220
_	Semivolatile Surr	ogate Recover	тy	
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromopheno	52.2% 62.8% 56.2% ol 61.8%	2-Fluorobi d4-1,2-Dic 2-Fluoroph d4-2-Chlor	hlorobenzene enol	63.6% 44.3% 50.7% 51.8%

Page 1 of 2

Lab Sample ID: NM66C LIMS ID: 08-21965 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/04/08 Date Analyzed: 09/12/08 00:50 Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

Sample ID: BBP-SS-03 SAMPLE

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 79.4%

108-95-2 Phenol 20 541-73-1 1,3-Dichlorobenzene 20 106-46-7 1,4-Dichlorobenzene 20 100-51-6 Benzyl Alcohol 20 95-50-1 1,2-Dichlorobenzene 20 95-48-7 2-Methylphenol 20 106-44-5 4-Methylphenol 20 67-72-1 Hexachloroethane 20 105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20 131-11-3 Dimethylphthalate 20	23 < 20 U 63 < 20 U < 20 U
106-46-7 1,4-Dichlorobenzene 20 100-51-6 Benzyl Alcohol 20 95-50-1 1,2-Dichlorobenzene 20 95-48-7 2-Methylphenol 20 106-44-5 4-Methylphenol 20 67-72-1 Hexachloroethane 20 105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	< 20 U < 20 U < 20 U < 20 U < 20 U < 3 U < 20 U < 20 U
100-51-6 Benzyl Alcohol 20 95-50-1 1,2-Dichlorobenzene 20 95-48-7 2-Methylphenol 20 106-44-5 4-Methylphenol 20 105-67-9 2,4-Dimethylphenol 20 105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20 20 20 20 20 20 20 2	< 20 U < 20 U < 20 U < 20 U 63 < 20 U < 20 U
95-50-1 1,2-Dichlorobenzene 20 95-48-7 2-Methylphenol 20 106-44-5 4-Methylphenol 20 67-72-1 Hexachloroethane 20 105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	< 20 U < 20 U 63 < 20 U < 20 U
95-48-7 2-Methylphenol 20 106-44-5 4-Methylphenol 20 67-72-1 Hexachloroethane 20 105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	< 20 U 63 < 20 U < 20 U
106-44-5 4-Methylphenol 20 67-72-1 Hexachloroethane 20 105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	63 < 20 U < 20 U
67-72-1 Hexachloroethane 20 105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	< 20 U < 20 U
105-67-9 2,4-Dimethylphenol 20 65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	< 20 U
65-85-0 Benzoic Acid 200 120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	
120-82-1 1,2,4-Trichlorobenzene 20 91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	
91-20-3 Naphthalene 20 87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	< 200 U
87-68-3 Hexachlorobutadiene 20 91-57-6 2-Methylnaphthalene 20	< 20 U
91-57-6 2-Methylnaphthalene 20	170
	< 20 U
131-11-3 Dimethylphthalate 20	44
	< 20 U
208-96-8 Acenaphthylene 20	200
83-32-9 Acenaphthene 20	44
132-64-9 Dibenzofuran 20	48
84-66-2 Diethylphthalate 20	< 20 U
86-73-7 Fluorene 20	50
86-30-6 N-Nitrosodiphenylamine 20	< 20 U
118-74-1 Hexachlorobenzene 20	< 20 U
87-86-5 Pentachlorophenol 99	< 99 U
85-01-8 Phenanthrene 20	860
120-12-7 Anthracene 20	270
84-74-2 Di-n-Butylphthalate 20	< 20 U
206-44-0 Fluoranthene 20	2,500 E
129-00-0 Pyrene 20	2,000 E
85-68-7 Butylbenzylphthalate 20	< 20 U
56-55-3 Benzo(a) anthracene 20	1,000
117-81-7 bis (2-Ethylhexyl) phthalate 20	290
218-01-9 Chrysene 20	1,200
117-84-0 Di-n-Octyl phthalate 20	< 20 U
205-99-2 Benzo (b) fluoranthene 20	1,300
207-08-9 Benzo(k) fluoranthene 20	2,400 E
50-32-8 Benzo(a) pyrene 20	1,400 E
193-39-5 Indeno (1, 2, 3-cd) pyrene 20	340
53-70-3 Dibenz (a,h) anthracene 20	65
191-24-2 Benzo(g,h,i)perylene 20	310

Page 2 of 2

Sample ID: BBP-SS-03

SAMPLE

Lab Sample ID: NM66C LIMS ID: 08-21965

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Matrix: Sediment Date Analyzed: 09/12/08 00:50

CAS Number	Analyte	RL	Result
90-12-0	1-Methylnaphthalene	20	39

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	62.4%	2-Fluorobiphenyl	58.8%
d14-p-Terphenyl	62.0%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	79.2%	2-Fluorophenol	58.4%
2,4,6-Tribromophenol	77.1%	d4-2-Chlorophenol	67.7%
F	11.12	a4-2-Chlorophenol	67.7%

Sample ID: BBP-SS-03
DILUTION

Lab Sample ID: NM66C LIMS ID: 08-21965 Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/04/08
Date Analyzed: 09/15/08 18:33
Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 79.4%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	< 59 U
541-73-1	1,3-Dichlorobenzene	59	< 59 U
106-46-7	1,4-Dichlorobenzene	59	< 59 U
100-51-6	Benzyl Alcohol	59	< 59 U
95-50-1	1,2-Dichlorobenzene	59	< 59 U
95-48-7	2-Methylphenol	59	< 59 U
106-44-5	4-Methylphenol	59	43 J
67-72-1	Hexachloroethane	59	< 59 U
105-67-9	2,4-Dimethylphenol	59	< 59 U
65-85-0	Benzoic Acid	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	59	< 59 U
91-20-3	Naphthalene	59	130
87-68-3	Hexachlorobutadiene	59	< 59 U
91-57-6	2-Methylnaphthalene	59	31 J
131-11-3	Dimethylphthalate	59	< 59 U
208-96-8	Acenaphthylene	59	180
83-32-9	Acenaphthene	59	34 ј
132-64-9	Dibenzofuran	59	33 J
84-66-2	Diethylphthalate	59	< 59 U
86-73-7	Fluorene	59	57 J
86-30-6	N-Nitrosodiphenylamine	59	< 59 U
118-74-1	Hexachlorobenzene	59	< 59 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	59	700
120-12-7	Anthracene	59	220
84-74-2	Di-n-Butylphthalate	59	< 59 U
206-44-0	Fluoranthene	59	1,500
129-00-0	Pyrene	59	1,500
85-68-7	Butylbenzylphthalate	59	-,300 < 59 U
56-55-3	Benzo(a) anthracene	59	940
117-81-7	bis(2-Ethylhexyl)phthalate	59	
218-01-9	Chrysene	59	210
117-84-0	Di-n-Octyl phthalate	59 59	1,100
205-99-2	Benzo (b) fluoranthene	5 <i>9</i>	< 59 U
207-08-9	Benzo(k) fluoranthene	59 59	950
50-32-8	Benzo(a) pyrene	_ -	940
193-39-5	Indeno (1, 2, 3-cd) pyrene	59 50	1,100
53-70-3	Dibenz (a, h) anthracene	59	490
191-24-2	Benzo(g,h,i)perylene	59 50	100
	(3/m/r/ berliene	59	480

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: BBP-SS-03

DILUTION

Lab Sample ID: NM66C LIMS ID: 08-21965 Matrix: Sediment

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Analyzed: 09/15/08 18:33

CAS Number	Analyte	RL	Result
90-12-0	1-Methylnaphthalene	59	< 59 U
	Reported in μ g/kg (pp)	o)	
	Semivolatile Surrogate Rec	covery	
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	52.7% d4-1,2 50.6% 2-Fluo	robiphenyl -Dichlorobenzene rophenol hlorophenol	51.4% 37.4% 45.5% 47.0%

Sample ID: BBP-SC-01 SAMPLE

Lab Sample ID: NM66D LIMS ID: 08-21966 Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/04/08 Date Analyzed: 09/12/08 01:25 Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 38.6%

			50.00	
CAS Number	Analyte	RL	Result	
108-95-2	Phenol	20	16 ј	
541-73-1	1,3-Dichlorobenzene	20	< 20 U	
106-46-7	1,4-Dichlorobenzene	20	< 20 U	
100-51-6	Benzyl Alcohol	20	< 20 U	
95-50-1	1,2-Dichlorobenzene	20	< 20 U	
95-48-7	2-Methylphenol	20	< 20 U	
106-44-5	4-Methylphenol	20	27	
67-72-1	Hexachloroethane	20	< 20 U	
105-67-9	2,4-Dimethylphenol	20	< 20 U	
65-85-0	Benzoic Acid	200	< 200 U	
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U	
91-20-3	Naphthalene	20	37	
87-68-3	Hexachlorobutadiene	20	< 20 U	
91-57-6	2-Methylnaphthalene	20	21	
131-11-3	Dimethylphthalate	20	< 20 U	
208-96-8	Acenaphthylene	20	120	
83-32-9	Acenaphthene	20	14 J	
132-64-9	Dibenzofuran	20	10 J	
84-66-2	Diethylphthalate	20	< 20 U	
86-73-7	Fluorene	20	14 J	
86-30-6	N-Nitrosodiphenylamine	20	< 20 U	
118-74-1	Hexachlorobenzene	20	< 20 U	
87-86-5	Pentachlorophenol	99	< 99 U	
85-01-8	Phenanthrene	20	280	
120-12-7	Anthracene	20	160	
84-74-2	Di-n-Butylphthalate	20	< 20 U	
206-44-0	Fluoranthene	20	960	
129-00-0	Pyrene	20	1,000	
85-68-7	Butylbenzylphthalate	20	< 20 U	
56-5 5- 3	Benzo(a) anthracene	20	720	
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U	
218-01-9	Chrysene	20	820	
L17-84-0	Di-n-Octyl phthalate	20	< 20 U	
205-99-2	Benzo (b) fluoranthene	20	660	
207-08-9	Benzo(k) fluoranthene	20	660	
50-32-8	Benzo(a)pyrene	20		
.93-39-5	Indeno(1,2,3-cd)pyrene	20	740	
3-70-3	Dibenz (a, h) anthracene	20	130	
.91-24-2	Benzo(g,h,i)perylene	20	29	
	- (3) (2) POLY Lette	20	110	

Sample ID: BBP-SC-01

SAMPLE

Lab Sample ID: NM66D LIMS ID: 08-21966

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Matrix: Sediment

Date Analyzed: 09/12/08 01:25

CAS Number	Analyte	RL	Result
90-12-0	1-Methylnaphthalene	20	20
	Reported in ug/kg (nnh)		

n μg/kg (ppb)

Semivolatile Surrogate Recovery

				
d14-p-Terphenyl 67.2% d4-1,2-Dichlorobenzene 58. d5-Phenol 74.1% 2-Fluorophenol 58. 2,4,6-Tribromophenol 78.7% d4-2-Chlorophenol 58.		74.1%	2-Fluorophenol	62.0% 58.4% 58.1% 64.5%

Sample ID: BBP-SC-02 SAMPLE

Lab Sample ID: NM66E LIMS ID: 08-21967 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/04/08 Date Analyzed: 09/12/08 02:00

Instrument/Analyst: NT6/LJR GPC Cleanup: Yes

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 53.1%

CAS Number	Analyte	RL	Result	
108-95-2	Phenol	20	40	
541-73-1	1,3-Dichlorobenzene	20	< 20 U	
106-46-7	1,4-Dichlorobenzene	20	< 20 U	
100-51-6	Benzyl Alcohol	20	< 20 U	
95-50-1	1,2-Dichlorobenzene	20	< 20 U	
95-48-7	2-Methylphenol	20	< 20 U	
106-44-5	4-Methylphenol	20	33	
67-72-1	Hexachloroethane	20	< 20 U	
105-67-9	2,4-Dimethylphenol	20	< 20 U	
65-85-0	Benzoic Acid	200	< 200 U	
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U	
91-20-3	Naphthalene	20	88	
87-68-3	Hexachlorobutadiene	20	< 20 U	
91-57-6	2-Methylnaphthalene	20	40	
131-11-3	Dimethylphthalate	20	< 20 U	
208-96-8	Acenaphthylene	20	53	
83-32-9	Acenaphthene	20	26	
132-64-9	Dibenzofuran	20	26 13 J	
84-66-2	Diethylphthalate	20	< 20 U	
86-73-7	Fluorene	20	< 20 0 22	
86-30-6	N-Nitrosodiphenylamine	20	< 20 U	
118-74-1	Hexachlorobenzene	20	-	
87-86-5	Pentachlorophenol	98	< 20 U < 98 U	
85-01-8	Phenanthrene	20	< 98 U 210	
120-12-7	Anthracene	20		
84-74-2	Di-n-Butylphthalate	20	200	
206-44-0	Fluoranthene	20	< 20 U	
129-00-0	Pyrene		1,100	
85-68-7	Butylbenzylphthalate	20	940	
56-55-3	Benzo(a) anthracene	20	71	
117-81-7	bis(2-Ethylhexyl)phthalate	20	670	
218-01-9	Chrysene	20	< 20 U	
117-84-0	Di-n-Octyl phthalate	20	700	
205-99-2	Benzo (b) fluoranthene	20	< 20 U	
207-08-9	Benzo(k) fluoranthene	20	760	
50-32-8	Benzo(a) pyrene	20	870	
193-39-5	Indeno(1 2 2 -4)	20	840	
53-70-3	Indeno(1,2,3-cd)pyrene	20	160	
191-24-2	Dibenz (a, h) anthracene	20	32	
4T-4	Benzo(g,h,i)perylene	20	140	

Page 2 of 2

Sample ID: BBP-SC-02

SAMPLE

Lab Sample ID: NM66E LIMS ID: 08-21967

Matrix: Sediment

Date Analyzed: 09/12/08 02:00

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

CAS Number	Analyte	RL	Result
90-12-0	1-Methylnaphthalene	20	38

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	61.6%	2-Fluorobiphenyl	64.4%
d14-p-Terphenyl	67.2%	d4-1,2-Dichlorobenzene	60.0%
d5-Phenol	76.3%	2-Fluorophenol	60.3%
2,4,6-Tribromophenol	80.8%	d4-2-Chlorophenol	68.3%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles 17330-17

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
BBP-SS-01 MB-090408 LCS-090408 LCSD-090408 BBP-SS-02 BBP-SS-02 DL BBP-SS-02 MS BBP-SS-03 MS BBP-SS-03 DL BBP-SC-01	55.6% 63.2% 53.6% 56.8% 60.8% 52.2% 59.6% 54.0% 62.4% 48.5%	59.6% 64.0% 59.6% 62.0% 65.2% 63.6% 64.4% 59.2% 58.8% 51.4%	63.2% 70.8% 66.4% 67.2% 72.8% 62.8% 72.8% 67.2% 652.7%	53.6% 65.2% 52.4% 55.6% 57.6% 44.3% 54.8% 48.0% 54.8% 37.4%	72.5% 80.0% 66.7% 69.6% 77.1% 56.2% 78.7% 72.3% 79.2% 50.6%	55.5% 62.1% 52.5% 55.5% 57.9% 50.7% 58.9% 54.1% 58.4% 45.5%	73.6% 63.5% 76.0% 76.8% 82.4% 61.8% 86.1% 83.2% 77.1% 53.8%	61.9% 69.6% 57.1% 60.3% 65.9% 51.8% 65.9% 59.7% 67.7% 47.0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BBP-SC-01 BBP-SC-02	60.0% 61.6%	62.0% 64.4%	67.2% 67.2%	58.4% 60.0%	74.1% 76.3%	58.1% 60.3%	78.7% 80.8%	64.5%	0

			LCS/MB LIMITS	QC LIMITS
		d5-Nitrobenzene	(37-85)	(29-87)
(FBP)	=	2-Fluorobiphenyl	(39-82)	(32-88)
(TPH)	=	d14-p-Terphenyl	(38-105)	(21-97)
(DCB)	=	d4-1,2-Dichlorobenzene	(33-79)	(25-82)
(PHL)	=	d5-Phenol	(40-85)	(29-85)
(2FP)	=	2-Fluorophenol	(20-93)	(10-114)
		2,4,6-Tribromophenol	(40-96)	(25-103)
(2CP)	=	d4-2-Chlorophenol	(41-81)	(30-84)

Prep Method: SW3550B

Log Number Range: 08-21963 to 08-21967

Sample ID: BBP-SS-02 MS/MSD

Lab Sample ID: NM66B LIMS ID: 08-21964 Matrix: Sediment

Data Release Authorized Reported: 09/16/08

Date Extracted MS/MSD: 09/04/08

Date Analyzed MS: 09/11/08 23:40 MSD: 09/12/08 00:15

Instrument/Analyst MS: NT6/LJR MSD: NT6/LJR

GPC Cleanup: YES

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount MS: 25.3 g-dry-wt

MSD: 25.7 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL

Dilution Factor MS: 1.00 MSD: 1.00

Percent Moisture: 38.7 %

			Spike	MS		Spike	MSD	
Analyte	Sample	MS	Added-MS	Recovery	MSD	Added-MSD	Recovery	RPD
Phenol	14.6	317	494	61.2%	281	486	54.8%	12.0%
1,3-Dichlorobenzene	< 19.7	267	494	54.0%	236	486	48.6%	12.0%
1,4-Dichlorobenzene	< 19.7	273	494	55.3%	240	486	49.4%	12.3%
Benzyl Alcohol	< 19.7	421	988	42.6%	420	972	43.2%	0.28
1,2-Dichlorobenzene	< 19.7	283	494	57.3%	252	486	43.28 51.98	11.6%
2-Methylphenol	< 19.7	316	494	64.0%	270	486	55.6%	
4-Methylphenol	< 19.7	629	988	63.7%	573	972	59.0%	15.7%
Hexachloroethane	< 19.7	268	494	54.3%	238	486	49.0%	9.3% 11.9%
2,4-Dimethylphenol	< 19.7	312	494	63.2%	279	486	57.4%	
Benzoic Acid	< 197	493	1480	33.3%	878	1460	57.45 60.1%	11.2%
1,2,4-Trichlorobenzene	< 19.7	297	494	60.1%	267	486	54.9%	56.2%
Naphthalene	79.6	347	494	54.1%	291	486	43.5%	10.6%
Hexachlorobutadiene	< 19.7	285	494	57.7%	257	486	43.55 52.98	17.6%
2-Methylnaphthalene	99.1	350	494	50.8%	305	486	42.48	10.3%
Dimethylphthalate	< 19.7	357	494	72.3%	335	486	68.9%	13.7% 6.4%
Acenaphthylene	169	463	494	59.5%	379	486	43.2%	
Acenaphthene	106	351	494	49.6%	316	486	43.28	20.0%
Dibenzofuran	92.8	380	494	58.1%	345	486	43.25 51.9%	10.5% 9.7%
Diethylphthalate	< 19.7	388	494	78.5%	365	486	75.1%	
Fluorene	383	433	494	10.1%	382	486	NA	6.1%
N-Nitrosodiphenylamine	< 19.7	483	494	97.8%	454	486	NA 93.4%	12.5%
Hexachlorobenzene	< 19.7	352	494	71.3%	325	486		6.2%
Pentachlorophenol	< 98.5	409	494	82.8%	435	486	66.9% 89.5%	8.0%
Phenanthrene	2140	611	494	NA	483	486	89.58 NA	6.2%
Anthracene	426	500	494	15.0%	404	486		23.4%
Di-n-Butylphthalate	< 19.7	429	494	86.8%	404	486	NA	21.2%
Fluoranthene	2530	1310	494	NA	865		82.3%	7.0%
Pyrene	2670	1240	494	NA NA	780	486 486	NA	40.9%
Butylbenzylphthalate	< 19.7	409	494	82.8%	382		NA	45.5%
Benzo(a)anthracene	1140	887	494	NA	643	486	78.6%	6.8%
ois(2-Ethylhexyl)phthalate		324	494	58.5%	306	486	NA	31.9%
Chrysene	1220	894	494	NA		486	55.7%	5.7%
Di-n-Octyl phthalate	< 19.7	261	494	NA 52.8%	666	486	NA	29.2%
Benzo(b) fluoranthene	1090	1000			250	486	51.4%	4.3%
Benzo(k)fluoranthene	1090	1050	494 494	NA	780	486	NA	24.7%
Benzo (a) pyrene	1200	943		NA	669	486	NA	44.3%
Indeno(1,2,3-cd)pyrene	405		494	NA	663	486	NA	34.9%
Dibenz (a, h) anthracene	75.5	414	494	1.8%	318	486	NA	26.2%
Benzo(g,h,i)perylene	75.5 356	323	494	50.1%	264	486		20.1%
L-Methylnaphthalene	356 135	332	494	NA	255	486		26.2%
	132	374	494	48.4%	332	486	40.5%	11.9%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

Sample ID: BBP-SS-02
MATRIX SPIKE

Lab Sample ID: NM66B LIMS ID: 08-21964 Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/04/08
Date Analyzed: 09/11/08 23:40
Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 38.7%

CAS Number	Analyte	RL	Result	
108-95-2	Phenol	20		
541-73-1	1,3-Dichlorobenzene	20		
106-46-7	1,4-Dichlorobenzene	20		
100-51-6	Benzyl Alcohol	20		
95-50-1	1,2-Dichlorobenzene	20		
95-48-7	2-Methylphenol	20		
106-44-5	4-Methylphenol	20		
67-72-1	Hexachloroethane	20		
105-67-9	2,4-Dimethylphenol	20		
65-85-0	Benzoic Acid	200		
120-82-1	1,2,4-Trichlorobenzene	20		
91-20-3	Naphthalene	20		
87-68-3	Hexachlorobutadiene	20		
91-57-6	2-Methylnaphthalene	20		
131-11-3	Dimethylphthalate	20		
208-96-8	Acenaphthylene	20		
83-32-9	Acenaphthene	20		
132-64-9	Dibenzofuran	20		
84-66-2	Diethylphthalate	20		
86-73-7	Fluorene	20		
86-30-6	N-Nitrosodiphenylamine	20		
118-74-1	Hexachlorobenzene	20		
87-86-5	Pentachlorophenol	99		
85-01-8	Phenanthrene	20		
120-12-7	Anthracene	20		
84-74-2	Di-n-Butylphthalate	20		
206-44-0	Fluoranthene	20		
129-00-0	Pyrene	20		
85-68-7	Butylbenzylphthalate	20		
56-55-3	Benzo (a) anthracene	20		
117-81-7	bis(2-Ethylhexyl)phthalate	20		
218-01-9	Chrysene	20		
117-84-0	Di-n-Octyl phthalate	20		
205-99-2	Benzo (b) fluoranthene	20		
207-08-9	Benzo (k) fluoranthene	20		
50-32-8	Benzo (a) pyrene			
193-39-5	Indeno(1,2,3-cd)pyrene	20		
53-70-3	Dibenz (a, h) anthracene	20		
91-24-2	Benzo(g,h,i)perylene	20 20		

ANALYTICAL RESOURCES INCORPORATED

Sample ID: BBP-SS-02

MATRIX SPIKE

Lab Sample ID: NM66B LIMS ID: 08-21964

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Matrix: Sediment

Date Analyzed: 09/11/08 23:40

CAS Number	Analyte	RL	Result
90-12-0	1-Methylnaphthalene	20	

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

	_	-roduce kecovery	
d5-Nitrobenzene	59.6%	2-Fluorobiphenyl	64.4%
d14-p-Terphenyl	72.8%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	78.7%	2-Fluorophenol	58.9%
2,4,6-Tribromophenol	86.1%	d4-2-Chlorophenol	65.9%

Page 1 of 2

Sample ID: BBP-SS-02

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

MATRIX SPIKE DUPLICATE

Lab Sample ID: NM66B LIMS ID: 08-21964 Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Date Extracted: 09/04/08 Date Analyzed: 09/12/08 00:15 Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 38.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	19	
541-73-1	1,3-Dichlorobenzene	19	
106-46-7	1,4-Dichlorobenzene	19	
100-51-6	Benzyl Alcohol	19	
95-50-1	1,2-Dichlorobenzene	19	
95-48-7	2-Methylphenol	19	
106-44-5	4-Methylphenol	19	
67-72-1	Hexachloroethane	19	
105-67-9	2,4-Dimethylphenol	19	
65-85-0	Benzoic Acid	190	
120-82-1	1,2,4-Trichlorobenzene	19	
91-20-3	Naphthalene	19	
87-68-3	Hexachlorobutadiene	19	
91-57-6	2-Methylnaphthalene	19	
131-11-3	Dimethylphthalate	19	
208-96-8	Acenaphthylene	19	
83-32-9	Acenaphthene	19	
132-64-9	Dibenzofuran	19	
84-66-2	Diethylphthalate	19	
86-73-7	Fluorene	19	
86-30-6	N-Nitrosodiphenylamine	19	
118-74-1	Hexachlorobenzene	19	
87-86-5	Pentachlorophenol	97	
85-01-8	Phenanthrene	19	
120-12-7	Anthracene	19	
84-74-2	Di-n-Butylphthalate	19	
206-44-0	Fluoranthene	19	
129-00-0	Pyrene	19	
85-68-7	Butylbenzylphthalate	19	
56-55-3	Benzo(a) anthracene	19	
117-81-7	bis(2-Ethylhexyl)phthalate	19	
218-01-9	Chrysene	19	
117-84-0	Di-n-Octyl phthalate	19	
205-99-2	Benzo(b) fluoranthene		
207-08-9	Benzo(k) fluoranthene	19	-
50-32-8	Benzo(a) pyrene	19	
193-39-5	Indeno(1,2,3-cd)pyrene	19	
53-70-3	Dibenz (a, h) anthracene	19	
191-24-2	Benzo(g,h,i)perylene	19	
	o(3)m/r/berlie	19	

Page 2 of 2

Sample ID: BBP-SS-02

MATRIX SPIKE DUPLICATE

Lab Sample ID: NM66B LIMS ID: 08-21964 Matrix: Sediment

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Analyzed: 09/12/08 00:15

CAS Number	Analyte	RL	Result
90-12-0	1-Methylnaphthalene	19	
	Donost - J. /		

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	54.0%	2-Fluorobiphenyl	59.2%
d14-p-Terphenyl	67.2%	d4-1,2-Dichlorobenzene	48.0%
d5-Phenol	72.3%	2-Fluorophenol	54.1%
2,4,6-Tribromophenol	83.2%	d4-2-Chlorophenol	59.7%

Page 1 of 2

Lab Sample ID: LCS-090408

LIMS ID: 08-21964 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted LCS/LCSD: 09/04/08

Date Analyzed LCS: 09/11/08 19:36

LCSD: 09/11/08 20:11

Instrument/Analyst LCS: NT6/LJR

LCSD: NT6/LJR

GPC Cleanup: YES

Sample ID: LCS-090408 LCS/LCSD

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount LCS: 25.0 g

LCSD: 25.0 g

Final Extract Volume LCS: 0.5 mL LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	266	500	53.2%	200			
1,3-Dichlorobenzene	259	500	51.8%	280	500	56.0%	5.1%
1,4-Dichlorobenzene	256	500	51.2%	272	500	54.4%	4.9%
Benzyl Alcohol	172	1000	17.2%	276	500	55.2%	7.5%
1,2-Dichlorobenzene	263	500	52.6%	158	1000	15.8%	8.5%
2-Methylphenol	262	500	52.4%	281	500	56.2%	6.6%
4-Methylphenol	554	1000	55.4%	310 575	500	62.0%	16.8%
Hexachloroethane	245	500	49.0%		1000	57.5%	3.7%
2,4-Dimethylphenol	221	500	44.2%	266	500	53.2%	8.2%
Benzoic Acid	1060	1500	70.7%	241	500	48.2%	8.7%
1,2,4-Trichlorobenzene	270	500	54.0%	1150	1500	76.7%	8.1%
Naphthalene	275	500	55.0%	286	500	57.2%	5.8%
Hexachlorobutadiene	268	500	53.6%	294	500	58.8%	6.7%
2-Methylnaphthalene	289	500	57.8%	285	500	57.0%	6.1%
Dimethylphthalate	341	500	57.88 68.28	303	500	60.6%	4.7%
Acenaphthylene	296	500	59.2%	351	500	70.2%	2.9%
Acenaphthene	301	500	59.28 60.28	250	500	50.0%	16.8%
Dibenzofuran	340	500		314	500	62.8%	4.2%
Diethylphthalate	369	500	68.0%	353	500	70.6%	3.8%
Fluorene	348	500	73.8%	378	500	75.6%	2.4%
N-Nitrosodiphenylamine	428	500	69.6%	358	500	71.6%	2.8%
Hexachlorobenzene	323	500	85.6%	430	500	86.0%	0.5%
Pentachlorophenol	411	500	64.6%	333	500	66.6%	3.0%
Phenanthrene	352	500	82.2%	427	500	85.4%	3.8%
Anthracene	312	500	70.4%	365	500	73.0%	3.6%
Di-n-Butylphthalate	419		62.4%	267	500	53.4%	15.5%
Fluoranthene	422	500	83.8%	433	500	86.6%	3.3%
Pyrene	308	500	84.4%	430	500	86.0%	1.9%
Butylbenzylphthalate	385	500	61.6%	315	500	63.0%	2.2%
Benzo(a) anthracene	344	500	77.0%	393	500	78.6%	2.1%
bis(2-Ethylhexyl)phthalate	294	500	68.8%	339	500	67.8%	1.5%
Chrysene	294 353	500	58.8%	299	500	59.8%	1.7%
Di-n-Octyl phthalate		500	70.6%	360	500	72.0%	2.0%
Benzo(b) fluoranthene	239	500	47.8%	247	500	49.4%	3.3%
	460	500	92.0%	476	500	95.2%	3.4%

Page 2 of 2

Sample ID: LCSD-090408

LCS/LCSD

Lab Sample ID: LCS-090408

LIMS ID: 08-21964

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Matrix: Sediment Date Analyzed LCS: 09/11/08 19:36

LCSD: 09/11/08 20:11

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene Benzo(g,h,i) perylene 1-Methylnaphthalene	403 296 310 298 290 305	500 500 500 500 500 500	80.6% 59.2% 62.0% 59.6% 58.0%	396 260 314 304 294 327	500 500 500 500 500 500	79.2% 52.0% 62.8% 60.8% 58.8% 65.4%	1.8% 12.9% 1.3% 2.0% 1.4% 7.0%

Semivolatile Surrogate Recovery

de Niemal	LCS	LCSD
d5-Nitrobenzene	53.6%	56.8%
2-Fluorobiphenyl	59.6%	62.0%
d14-p-Terphenyl	66.4%	67.2%
d4-1,2-Dichlorobenzene d5-Phenol	52.4%	55.6%
	66.7%	69.6%
2-Fluorophenol	52.5%	55.5%
2,4,6-Tribromophenol	76.0%	76.8%
d4-2-Chlorophenol	57.1%	60 38

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

SEMIVOLATILE METHOD BLANK SUMMARY

BLANK NO.

NM66MBS1

Lab Name: ANALYTICAL RESOURCES, INC Client: HART CROWSER, INC.

ARI Job No: NM66

Lab File ID: NM66MB

Instrument ID: NT6

Matrix: SOLID

Project: BELLINGHAM BAY PILES

Date Extracted: 09/04/08

Date Analyzed: 09/11/08

Time Analyzed: 1901

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	T	
	SAMPLE NO.		LAB	DATE
		SAMPLE ID	FILE ID	ANALYZED
0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		========	
01	1-11-00TCDDT	NM66LCSS1	NM66SB	
02		NM66LCSDS1	NM66SBD	09/11/08
03	BBP-SS-01	NM66A	MMOOSBD	09/11/08
04		NM66B	NM66A	09/11/08
05	BBP-SS-02 MS		NM66B	09/11/08
06		NM66BMS	NM66BMS	09/11/08
	BBP-SS-02 MSD	NM66BMSD	NM66BMD	09/12/08
07	BBP-SS-03	NM66C	NM66C	09/12/08
- 08	1	NM66D	NM66D	09/12/08
09	BBP-SC-02	NM66E		09/12/08
10		NM66B	NM66E	09/12/08
11	BBP-SS-03		NM66BDL	09/15/08
12	DDF-22-03	NM66C	NM66CDL	09/15/08
				03/13/00
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26		-		
27				
28				
29				
30				
• •				

COMMENTS:	

page 1 of 1

FORM IV SV

Sample ID: MB-090408 METHOD BLANK

Lab Sample ID: MB-090408

LIMS ID: 08-21964

Matrix: Sediment

Data Release Authorized

Reported: 09/16/08

Date Extracted: 09/04/08 Date Analyzed: 09/11/08 19:01 Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	. 20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
67-72-1	Hexachloroethane	20	< 20 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	< 20 U
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	< 20 U
129-00-0	Pyréne	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo(a)anthracene	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
218-01-9	Chrysene	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b)fluoranthene	20	< 20 U
207-08-9	Benzo(k)fluoranthene	20	< 20 U
50-32-8	Benzo(a)pyrene	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U

2 of 2 Page

Sample ID: MB-090408

METHOD BLANK

Lab Sample ID: MB-090408

LIMS ID: 08-21964 Matrix: Sediment

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Analyzed: 09/11/08 19:01

CAS Number	Analyte	RL	Result
90-12-0	1-Methylnaphthalene	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	63.2%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	70.8%	d4-1,2-Dichlorobenzene	65.2%
d5-Phenol	80.0%	2-Fluorophenol	62.1%
2,4,6-Tribromophenol	63.5%	d4-2-Chlorophenol	69.6%

NWTPHDx

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Matrix: Sediment

Page 1 of 1

Data Release Authorized: Reported: 09/16/08

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-090808 08-21963	Method Blank HC ID:	09/08/08	09/12/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 77.8%
NM66A 08-21963	BBP-SS-01 HC ID: DRO/RRO	09/08/08	09/12/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	7.3 15	10 15 81.1%
NM66B 08-21964	BBP-SS-02 HC ID: DRO	09/08/08	09/12/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	8.1 16	15 < 16 U 74.0%
NM66C 08-21965	BBP-SS-03 HC ID: DRO/MOTOR OII	09/08/08	09/12/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	24 48	61 180 73.3%
NM66D 08-21966	BBP-SC-01 HC ID: DRO/RRO	09/08/08	09/12/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	8.0 16	22 20 72.0%
NM66E 08-21967	BBP-SC-02 HC ID: DRO/RRO	09/08/08	09/12/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	10 21	41 36 70.9%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Client ID	OTER	TOT OUT
		-
MB-090808	77.8%	0
LCS-090808	79.8%	0
LCSD-090808	75.8%	0
BBP-SS-01	81.1%	0
BBP-SS-01 MS	73.6%	0
BBP-SS-01 MSD	78.2%	0
BBP-SS-02	74.0%	0
BBP-SS-03	73.3%	0
BBP-SC-01	72.0%	0
BBP-SC-02	70.9%	0

LCS/MB LIMITS

QC LIMITS

(OTER) = o-Terphenyl

(62-118)

(49-125)

Prep Method: SW3546

Log Number Range: 08-21963 to 08-21967

ORGANICS ANALYSIS DATA SHEET

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: BBP-SS-01 MS/MSD

Lab Sample ID: NM66A LIMS ID: 08-21963

Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

3 norized:///

Date Extracted MS/MSD: 09/08/08

Date Analyzed MS: 09/12/08 00:56

MSD: 09/12/08 01:12 Instrument/Analyst MS: FID/MS

MSD: FID/MS

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount MS: 6.77 g-dry-wt

MSD: 6.80 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Percent Moisture: 34.5%

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	10.5	142	222	59.2%	151	221	63.6%	6.1%

TPHD Surrogate Recovery

o-Terphenyl 73.6% 78.2%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: LCS-090808 LCS/LCSD

Lab Sample ID: LCS-090808

LIMS ID: 08-21963 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Date Extracted LCS/LCSD: 09/08/08

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 09/11/08 23:54 LCSD: 09/12/08 00:10

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

Dilution Factor LCS: 1.0

LCSD: 1.0

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	100	150	66.7%	95.8	150	63.9%	4.3%

TPHD Surrogate Recovery

o-Terphenyl

LCS LCSD

79.8% 75.8%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

NM66MBS1

Lab Name: ANALYTICAL RESOURCES, INC

Client: HART CROWSER, INC.

SDG No.: NM66

Project No.: BELLINGHAM BAY PILES

353

Date Extracted: 09/08/08

Matrix: SOLID

Date Analyzed: 09/12/08

Instrument ID : FID3A

Time Analyzed: 0025

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CIT T TO TOT	t	
	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	=========	=========	========
01	NM66LCSS1	NM66LCSS1	09/11/08
	NM66LCSDS1	NM66LCSDS1	09/12/08
03	BBP-SS-01	NM66A	09/12/08
04	BBP-SS-01 MS	NM66AMS	09/12/08
05	BBP-SS-01 MS	NM66AMSD	09/12/08
06	BBP-SS-02	NM66B	09/12/08
07	BBP-SS-03	NM66C	09/12/08
08	BBP-SC-01	NM66D	09/12/08
09	BBP-SC-02	NM66E	09/12/08
10			, ,

page 1 of 1

FORM IV TPH

METALS

Page 1 of 1

Lab Sample ID: NM66A LIMS ID: 08-21963

Matrix: Sediment

Data Release Authorized Reported: 09/29/08

Percent Total Solids: 70.3%

Sample ID: BBP-SS-01

SAMPLE

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	09/12/08	6010B	09/25/08	7440-38-2	Arsenic	7	7	Ū
3050B	09/12/08	6010B	09/25/08	7440-43-9	Cadmium	0.3	0.3	Ŭ
3050B	09/12/08	6010B	09/25/08	7440-47-3	Chromium	0.7	22.9	
3050B	09/12/08	6010B	09/25/08	7440-50-8	Copper	0.3	12.7	
3050B	09/12/08	6010B	09/25/08	7439-92-1	Lead	3	5	
CLP	09/15/08	7471A	09/19/08	7439-97-6	Mercury	0.06	0.08	
3050B	09/12/08	6010B	09/25/08	7440-02-0	Nickel	0.00	26	
3050B	09/12/08	6010B	09/25/08	7440-22-4	Silver	0.4		
3050B	09/12/08	6010B	09/25/08	7440-66-6	Zinc	1	0.4 43	Ü

Page 1 of 1

Lab Sample ID: NM66A

LIMS ID: 08-21963 Matrix: Sediment

Data Release Authorized

Reported: 09/29/08

Sample ID: BBP-SS-01

DUPLICATE

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Arsenic	6010B	7 U	7 U	0.0%	+/~ 7	. L	
Cadmium	6010B	0.3	0.3	0.0%	+/- 0.3	L	
Chromium	6010B	22.9	24.4	6.3%	+/- 20%	ъ	
Copper	6010B	12.7	14.0	9.7%	+/- 20%		
Lead	6010B	5	5	0.0%	+/- 3	L	
Mercury	7471A	0.08	0.08	0.0%	+/- 0.06	L	
Nickel	6010B	26	29	10.9%	+/- 20%	2	
Silver	6010B	0.4 U	0.4 U	0.0%	+/- 0.4	L	
Zinc	6010B	43	47	8.9%	+/- 20%	_	

Reported in mg/kg-dry

L-RPD Invalid, Limit = Detection Limit

^{*-}Control Limit Not Met

Page 1 of 1

Lab Sample ID: NM66A

LIMS ID: 08-21963 Matrix: Sediment

Data Release Authorized Reported: 09/29/08

Sample ID: BBP-SS-01

MATRIX SPIKE

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

MATRIX SPIKE QUALITY CONTROL REPORT

λmplasta	Analysis			Spike	ક્ષ	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	6010B	7 U	299	278	108%	
Cadmium	6010B	0.3	63.7	69.4	91.4%	
Chromium	6010B	22.9	87.7	69.4	93.4%	
Copper	6010B	12.7	79.1	69.4	95.7%	
Lead	6010B	5	264	278	93.2%	
Mercury	7471A	0.08	0.68	0.579	104%	
Nickel	6010B	26	91	69.4	93.7%	
Silver	6010B	0.4 U	68.3	69.4	98.4%	
Zinc	6010B	43	110	69.4	96.5%	

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: NM66B LIMS ID: 08-21964

Matrix: Sediment

Data Release Authorized Reported: 09/29/08

Percent Total Solids: 65.7%

Sample ID: BBP-SS-02

SAMPLE

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
20505	00/10/00							
3050B	09/12/08	6010B	09/25/08	7440-38-2	Arsenic	.8	. 8	IJ
3050B	09/12/08	6010B	09/25/08	7440-43-9	Cadmium	0.3	0.3	Ů
3050B	09/12/08	6010B	09/25/08	7440-47-3	Chromium	0.8	25.2	
3050B	09/12/08	6010B	09/25/08	7440-50-8	Copper	0.3		
3050B	09/12/08	6010B	09/25/08	7439-92-1	Lead	0.5	14.5	
CLP	09/15/08		, ,	-		3	8	
		7471A	09/19/08	7439-97-6	Mercury	0.07	0.11	
3050B	09/12/08	6010B	09/25/08	7440-02-0	Nickel	2	30	
3050B	09/12/08	6010B	09/25/08	7440-22-4	Silver	0.5	0.5	U
3050B	09/12/08	6010B	09/25/08	7440-66-6	Zinc	2	46	U

Page 1 of 1

Lab Sample ID: NM66C

LIMS ID: 08-21965 Matrix: Sediment

Data Release Authorized Reported: 09/29/08

Percent Total Solids: 19.3%

Sample ID: BBP-SS-03

SAMPLE

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	/1- · · · ·	
3050B	09/12/08	6010B	00/05/00			101	mg/kg-dry	Q
3050B	09/12/08	6010B 6010B	09/25/08 09/25/08	7440-38-2 7440-43-9	Arsenic Cadmium	20	20	U
3050B 3050B	09/12/08	6010B	09/25/08	7440-47-3	Chromium	1 2	2 15	
3050B	09/12/08 09/12/08	6010B 6010B	09/25/08 09/25/08	7440-50-8	Copper	1	32	
CLP	09/15/08		09/19/08	7439-92-1 7439 - 97-6	Lead Mercury	10 0.2	30	
3050B 3050B	09/12/08 09/12/08		09/25/08	7440-02-0	Nickel	5	0.2 19	Ü
3050B	09/12/08		09/25/08 09/25/08	7440-22-4 7440-66-6	Silver Zinc	1 5	1 84	U
						•	04	

Page 1 of 1

Lab Sample ID: NM66D LIMS ID: 08-21966

Matrix: Sediment

Data Release Authorized

Reported: 09/29/08

Percent Total Solids: 68.9%

Sample ID: BBP-SC-01

SAMPLE

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	(1 1	_
							mg/kg-dry	Q
3050B	09/12/08	6010B	09/25/08	7440-38-2	Arsenic	7		
3050B	09/12/08	6010B	09/25/08	7440-43-9	Cadmium	0 2	7	
3050B	09/12/08	6010B	09/25/08	-		0.3	0.4	
3050B	09/12/08			7440-47-3	Chromium	0.7	26.5	
		6010B	09/25/08	7440-50-8	Copper	0.3	18.1	
3050B	09/12/08	6010B	09/25/08	7439-92-1	Lead	3	10.1	
CLP	09/15/08	7471A	09/19/08	7439-97-6			7	
3050B	09/12/08	6010B	09/25/08		Mercury	0.06	0.11	
	·			7440-02-0	Nickel	1	36	
3050B	09/12/08	6010B	09/25/08	7440-22-4	Silver	0.4	0.4	
3050B	09/12/08	6010B	09/25/08	7440-66-6	Zinc	0.4		U
			, -3, 00	1440 00-0	ATHC	1	48	

Page 1 of 1

Lab Sample ID: NM66E

LIMS ID: 08-21967 Matrix: Sediment

Data Release Authorized:

Reported: 09/29/08

Percent Total Solids: 46.0%

Sample ID: BBP-SC-02

SAMPLE

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RT.	ma/ka_d~v	•
3050B 3050B 3050B 3050B 3050B CLP 3050B	09/12/08 09/12/08 09/12/08 09/12/08 09/12/08 09/15/08 09/12/08	6010B 6010B 6010B 6010B 6010B 7471A 6010B	09/25/08 09/25/08 09/25/08 09/25/08 09/25/08 09/25/08 09/25/08	7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0	Analyte Arsenic Cadmium Chromium Copper Lead Mercury Nickel	10 0.4 1 0.4 4 0.08	10 0.4 28 18.2 7 0.08	U U
3050B 3050B	09/12/08 09/12/08	_	09/25/08 09/25/08	7440-22-4 7440-66-6	Silver Zinc	2 0.6 2	38 0.6 57	U

Page 1 of 1

Lab Sample ID: NM66MB

LIMS ID: 08-21964 Matrix: Sediment

Data Release Authorized:

Reported: 09/29/08

Sample ID: METHOD BLANK

QC Report No: NM66-Hart Crowser, Inc.

Project: Bellingham Bay Piles

17330-17

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	70.7	,,	
				orro Humber	wiathce	RL	mg/kg-dry	Q
3050B	09/12/08	6010B	09/25/08	7440-38-2	Arsenic	5	E	
3050B	09/12/08	6010B	09/25/08	7440-43-9	Cadmium	0.2	5	Ü
3050B	09/12/08	6010B	09/25/08	7440-47-3	Chromium	–	0.2	U
3050B	09/12/08	6010B	09/25/08	7440-50-8		0.5	0.5	U
3050B	09/12/08	6010B	09/25/08		Copper	0.2	0.2	U
CLP	09/15/08	· -		7439-92-1	Lead	2	2	U
		7471A	09/19/08	7439-97-6	Mercury	0.05	0.05	U
3050B	09/12/08	6010B	09/25/08	7440-02-0	Nickel	1	1	U
3050B	09/12/08	6010B	09/25/08	7440-22-4	Silver	0.3	0 3	-
3050B	09/12/08	6010B	09/25/08	7440-66-6	· ·	0.3	0.3	U
	,,	00102	03/23/00	/440-00-6	Zinc	1	1	

Page 1 of 1

Lab Sample ID: NM66LCS

LIMS ID: 08-21964

Matrix: Sediment Data Release Authorized:

Reported: 09/29/08

Sample ID: LAB CONTROL

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	6010B	215	200		
Cadmium	6010B	48.2	200	108%	
Chromium	6010B	48.6	50.0	96.4%	
Copper	6010B	· · · · · · · · · · · · · · · · · · ·	50.0	97.2%	
Lead	6010B	49.2	50.0	98.4%	
Mercury		207	200	104%	
-	7471A	1.09	1.00	109%	
Nickel	6010B	49	50	98.0%	
Silver	6010B	50.3	50.0	101%	
Zinc	6010B	50	50	100%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

GENERAL CHEMISTRY

Matrix: Sediment

Data Release Authorized:

Reported: 10/17/08

Project: Bellingham Bay Piles Event: 17330-17 Date Sampled: 08/26/08

Date Received: 08/28/08

Client ID: BBP-SS-01 ARI ID: 08-21963 NM66A

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/02/08 090208#2	EPA 160.3	Percent	0.01	65.30
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	69.50
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	0.15	10.4
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	13.3	212
Total Organic Carbon	10/15/08 101508#1	Plumb, 1981	Percent	0.020	2.40

Analytical reporting limit Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 10/17/08

Project: Bellingham Bay Piles

Event: 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: BBP-SS-02 ARI ID: 08-21964 NM66B

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/02/08 090208#2	EPA 160.3	Percent	0.01	62.20
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	50.90
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	0.16	6.93
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	18.6	265
Total Organic Carbon	10/15/08 101508#1	Plumb,1981	Percent	0.182	4.10

RLAnalytical reporting limit Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 10/17/08

Project: Bellingham Bay Piles

Event: 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: BBP-SS-03 ARI ID: 08-21965 NM66C

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/02/08 090208#2	EPA 160.3	Percent	0.01	20.40
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	18.80
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	0.48	2.82
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	26.5	290
Total Organic Carbon	10/15/08 101508#1	Plumb, 1981	Percent	0.198	86.5

RLAnalytical reporting limit Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 10/17/08

Project: Bellingham Bay Piles

Event: 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: BBP-SC-01 ARI ID: 08-21966 NM66D

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/02/08 090208#2	EPA 160.3	Percent	0.01	67.00
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	64.40
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	0.14	2.88
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	14.7	234
Total Organic Carbon	10/15/08 101508#1	Plumb,1981	Percent	0.212	9.49

RL Analytical reporting limit
U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 10/17/08

Project: Bellingham Bay Piles

Event: 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: BBP-SC-02 ARI ID: 08-21967 NM66E

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/02/08 090208#2	EPA 160.3	Percent	0.01	48.10
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	38.40
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	0.20	3.79
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	25.9	393
Total Organic Carbon	10/15/08 101508#1	Plumb, 1981	Percent	0.174	10.1

RLU

Analytical reporting limit Undetected at reported detection limit

METHOD BLANK RESULTS-CONVENTIONALS NM66-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 10/17/08

Project: Bellingham Bay Piles Event: 17330-17 Date Sampled: NA

Date Received: NA

Analyte	Date	Units	Blank
Total Solids	09/02/08 09/02/08	Percent	< 0.01 U < 0.01 U
Preserved Total Solids	09/01/08	Percent	< 0.01 U
N-Ammonia	09/01/08	mg-N/kg	< 0.10 U
Sulfide	09/01/08	mg/kg	< 1.00 U
Total Organic Carbon	10/15/08	Percent	< 0.020 U

LAB CONTROL RESULTS-CONVENTIONALS NM66-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized / N

Reported: 10/17/08

Project: Bellingham Bay Piles Event: 17330-17 Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Sulfide	09/01/08	mg/kg	6.91	7.20	96.0%
Total Organic Carbon	10/15/08	Percent	0.522	0.500	104.4%

STANDARD REFERENCE RESULTS-CONVENTIONALS NM66-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized Reported: 10/17/08

Project: Bellingham Bay Piles Event: 17330-17 Date Sampled: NA

Date Received: NA

SPEX 28-24AS Fotal Organic Carbon	Date	Units	SRM	True Value	Recovery		
N-Ammonia SPEX 28-24AS	09/01/08	mg-N/kg	9.79	10.0	97.9%		
Total Organic Carbon NIST #8704	10/15/08	Percent	3.41	3.35	101.8%		

Matrix: Sediment

Data Release Authorized

Reported: 10/17/08

Project: Bellingham Bay Piles Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Analyte	Date		Sample	Replicate(s)	RPD/RSD
ARI ID: NM66A Client I	D: BBP-SS-01				
Total Solids	09/02/08	Percent	65.30	65.10 63.30	1.7%
Preserved Total Solids	09/01/08	Percent	69.50	69.70 69.30	0.3%
N-Ammonia	09/01/08	mg-N/kg	10.4	9.29	11.3%
Sulfide	09/01/08	mg/kg	212	257	19.2%
Total Organic Carbon	10/15/08	Percent	2.40	2.17 2.25	5.1%

Matrix: Sediment

Data Release Authorized Reported: 10/17/08

Project: Bellingham Bay Piles Event: 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: NM66A Client ID:	BBP-SS-01					
N-Ammonia	09/01/08	mg-N/kg	10.4	153	152	94.0%
Sulfide	09/01/08	mg/kg	212	562	410	85.4%
Total Organic Carbon	10/15/08	Percent	2.40	4.97	2.70	95.2%

GEOTECH

GEOTECHNICAL ANALYSIS DATA SHEET Moisture Content by Method ASTM D2216

Data Release Authorized: #5
Reported: 10/09/08

Date Received: 08/28/08

Page 1 of 1

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	Result
BBP-SS-01 NM66A 08-21963	08/26/08	Sediment	10/08/08 11:11	48.61
BBP-SS-02 NM66B 08-21964	08/26/08	Sediment	10/08/08 11:11	59.92

Reported in Percent

GEOTECHNICAL ANALYSIS DATA SHEET Specific Gravity by Method ASTM D854

Data Release Authorized: 35 Reported: 10/09/08

Date Received: 08/28/08 Page 1 of 1

QC Report No: NM66-Hart Crowser, Inc. Project: Bellingham Bay Piles

17330-17

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	Result
BBP-SS-01 NM66A 08-21963	08/26/08	Sediment	10/08/08 11:11	2.66
BBP-SS-02 NM66B 08-21964	08/26/08	Sediment	10/08/08 11:11	2.65

Reported in Std Units

NM66

Hart Crowser, Inc. Bellingham Bay Piles 17330-17

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

	Т	_			_	_		_	T		Г		
Total		۸ 4		<230 (<62)			54.5	53.5		52.8		+	16.2
		v 10		<1.0			9.5			4.	7	6.1	3.5
Clay		9 to 10		2.0-1.0		,	3.9	4.2		4.0	0	2	7.7
	0 54 0	800		3.9-2.0		,	4.4	4.6		4.O	יני	2	ر: ح
Very Fine Silt	2 45.0	0 01 /		7.8-3.9		0	2	~ .3	10	7:	0.5		<u>ر</u>
Fine Silt	6 to 7	2		15.6-7.8		a 01	2	10.4	10.7	2.0		000	7.0
Medium	5 55 6	2		31.0-15.6		αOt	0.0	10.7	0	?;	0.4	0,0	0.0
Coarse Silt	4 to 5	2		62.5-31.0		8.0		7.7	7.7		4. ن	17	-
Very Fine Sand	3 to 4		120-230	(125-62)		10.3	200	7.01	10.7		12.9	0.0	41,5
Fine Sand	2 to 3		60-120	(250-125)		0.	CCC	3.6	9.6	1	34.7	30.6	
Medium Sand	1 to 2		35-60	(500-250)		12.1	120	0.4	12.4	40.0	10.0	19.7	
Coarse	0 to 1		18-35	(1000-200)		6.2	9 9	2	9.9	, 4	4.0	6.9	
Very Coarse Sand	-1 to 0		10 to 18	(2000-1000)	,	3.7	3.6	2	4.6	2 7	5.5	8.2	
Gravel	> -1		> #10	(2000)		4./	87		4.5	116	2	9.1	
Sample No.	Phi Size		Sieve Size	(microns)	7 L 001 -4	NJZ9 E-T	NJ29 E-2	00114	NJ29 E-3	BBP-SS-01	1000 100	BBP-SS-02	

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Hart Crowser, Inc. Bellingham Bay Piles 17330-17

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

	,		-			_				_		_	_			
ay ye		10		00	:		5		9.2		4.6	١	2)	3 6		
Clay	ľ	6		6		2.00	i		3.5	, ,	13.4	, ,	13.4	6	ρ,ν	7 4
		00		3.90		1,0	∞.	0 0	۵.۵ ا	× 1. ×	4.	cc	ر. د.ن	99		
<u> </u>	1	_		7.80		0 70	Δ4.α	0 30	7.07	310	24.0	٥٥	0.0	ά,		
Silt	9	0		15.60		0 20	0.00	25.7	7.00	25.2	00.0	OF	4.0	107		
	u	,		31.00		181	† - -	18.1	+ 50	45.0	43.5	σ	0,0	14.5		
Very Fine Sand	V	-	#230	(6.9)	(20)	מ/ ע	5	52.5	2	2,5 2,0	5,75	14.1		16.2		
Fine Sand	c	,	#120	(105)	1,50	848	5	63.8		63.5		27.0	,	25.5		
Medium Sand	2		09#	(250)	(500)	73.9	2	73.0		73.2		61.7		56.1		
Coarse	-			(000) 65#		86.0		85.0	1 10	85.5	1	∞.	0 11	75.8		
Very Coarse Sand	0	9,11				92.2		91.6	3	34.	Š	033.1	1 00	82.1		
	-	477		(2000)		95.3	0 00	32.2	מנוט	30.0	V 00	4.00	0	80.8		
Gravel	-2		*	‡	3	2.88	000	100.0	9 00	33.0	0.00	33.3	, 00	43.4		
	-3		3/8"	2	4 6 6	100.0	4000	0.001	1000	0.001	1000	0,001	1000	2.20		
Sample No.	Phi Size	Ciono Ciao	azio avaio	(microns)	4 T OCI 14	1-3 8ZCN	N 120 E 2	14729 E-Z	N 120 F.3	1020 L-0	RRP. SS. 01	ו ט-טט- וטט	BBD.CC.O3	DDL -00-04		

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Bellingham Bay Piles 17330-17		
Bellingham Bay	NM66 -1	1 of 1
Project No.:	Batch No.:	Page:
Hart Crowser, Inc.	NJ29 E	NJ29 E-1
PROJECT:	ARI Triplicate Sample ID:	Client Triplicate Sample ID:

9.5 9.2 9.35 0.18 1.94 13.41 0.04 0.32 13.5 13.4 24.8 25.2 24.6 24.88 0.32 1.29 35.6 35.3 35.3 35.53 0.20 0.56 46.4 46.4 45.2 46.00 0.70 Relative Standard Deviation, By Phi Size 54.5 53.5 52.8 53.62 0.82 64.8 63.8 64.04 0.67 73.9 73.2 73.33 0.47 86.0 85.0 85.51 0.49 0.58 92.2 91.6 92.1 91.98 0.30 95.3 95.5 95.5 95.32 0.14 99.2 100.0 99.6 99.60 -3 100.0 NA NA NA Sample ID NJ29 E-1 NJ29 E-2 NJ29 E-3 AVE STDEV %RSD

	Pipette Portion (5.0-	/B0.07	11./	44.5	<u>- :</u>	11.3	11 6	0.4	0	2
	2A Ratio Data P ₍ 95-105) Qualifiers				1				-	
The Triplicate Applies To The Following Samples	QA Ratio (95-105)	0.50	87.0	2 80	5.00	96.4	101.1		99.5	
	Date Complete	0/05/20/08	3/23/2000	9/25/2008	0/25/2000	3/23/2000	10/1/2008		10/1/2008	
	Date Extracted	9/18/2008	00000	9/18/2008	9/18/2008	00070	9/18/2008		9/18/2008	
	Date Sampled	8/1/2008	00000	8/1/2008	8/1/2008	0000000	8/26/2008	0000000	8/26/2008	
	Client ID	NJ29 E-1	C = OCI 14	7-3 67CN	NJ29 E-3	000000	10-00-Ldd	CV 00 000	70-00-100	

* ARI Internal QA limits = 95-105%

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

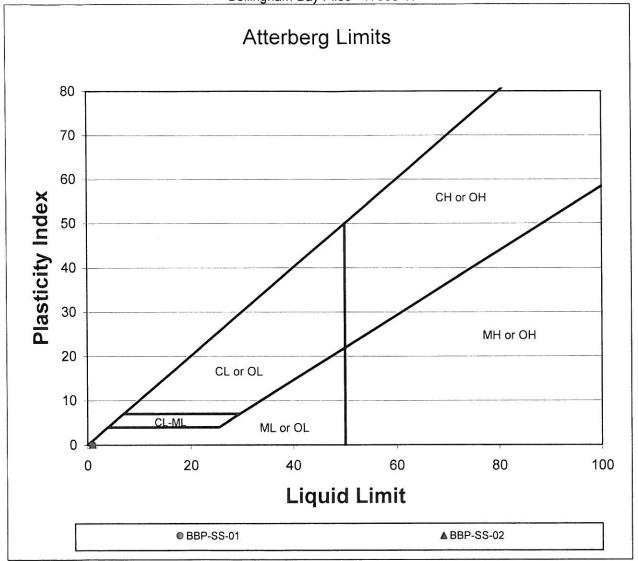
TOTAL SOLIDS

Extractions Total Solids-extts

Data By: Jim Hawk Created: 9/3/08

Worklist: 7185 Analyst: JBH Comments:

_		ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН
	1.	NM66A 08-21963 BBP-SS-01	1.16	14.36	9.80	65.5	NR
	2.	NM66B 08-21964 BBP-SS-02	1.16	14.28	9.20	61.3	NR
	3.	NM66C 08-21965 BBP-SS-03	1.16	12.42	3.48	20.6	NR
	4.	NM66D 08-21966 BBP-SC-01	1.16	11.94	7.78	61.4	NR
	5.	NM66E 08-21967 BBP-SC-02	1.16	11.36	5.94	46.9	NR


Solids Data Entry Report Date: 09/16/08

Checked by: KM Date: 9/16/08
Data Analyst: DM

Solids Determination performed on 09/15/08 by DM

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
NM66 NM66 NM66	A B C	BBP-SS-01 BBP-SS-02 BBP-SS-03	1.022 1.024 1.026	10.318 10.513 10.107	7.553 7.256 2.780	70.26 65.68 19.32
NM66	D	BBP-SC-01	1.030	10.528	7.574	68.90
NM66	E	BBP-SC-02	1.027	10.239	5.262	45.97

Hart Crowser, Inc.
Bellingham Bay Piles 17330-17

Boring Number	As-Received Moisture Content	Plasticity Index	Liquid Limit	Plastic Limit	USCS
BBP-SS-01	48.62	NA	NA	NA	Non-Plastic
BBP-SS-02	59.92	NA	NA	NA	Non-Plastic

NM66

October 25, 2008

Mr. Roger McGinnis Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, WA 98102

RE: Project: R. G. Haley – 17330-17 ARI Job No: NM56

Dear Mr. McGinnis:

Please find enclosed the original Chain-of-Custody record, sample receip documentation, and the final data package for the samples from the project referenced above.

The samples were analyzed for SVOCs, NWTPH-Dx, Total Metals, Dioxin/Furans, Grain Size, and various Conventional Parameters.

Sample receipt and details of these analyses are discussed in the Case Narrative.

An electronic copy of this data package and the supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

ANÁLYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

206-695-6211

kellyb@arilabs.com www.arilabs.com

Enclosures

cc: files NM56

Chain of Custody Documentation

prepared for

HART CROWSER, INC.

Project: R. G. HALEY, 17330-17

ARI JOB NO.: NM56

prepared by

Analytical Resources, Inc.

Sample Custody Record
Samples Shipped to: ART

10F2 NM56

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699

Phone: 206-324-9530 FAX: 206-328-5581

JOB 17330-17 LAB NUMBER	REQUESTED ANTALYSIS	νn l		
PROJECT NAME R. G. HALEY	2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS		
HART, CROWSER CONTACT R. McGINNIS	270-510 1270-510 120-5	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS		
A. CONESO, C. RUST	1270-5 1220-5 124-	ا ا		
SAMPLED BY: AMC, CFR, RM	1240-SVOC 1240-SVOC 1120-SVOC 1244 SOLL 1544 SULTA 1540 SULTA 1260-SITE	ON		
LAB NO. SAMPLE ID DESCRIPTION DATE TIME MATRIX				
RGH-SJ-01 8/26/08 1550 SED	XXXXXXXX	5 HOLD GAMA		
RGH-SS-02 8/26/08 1510 SEP	$\times \times $	5 HOW GAMA 5 CONTANTS		
RGH-SS-03 8/26/08 1425 SED	XXXXXXXX	5		
RGH-SC-01-0-2' 8/26/08 1732 SED	$\times \times \times \times \times$	5		
RGH-SC-01-2-4' 8/26/08 1742	$\times \times \times \times \times \times \times \times \times \times \times \times $	# .		
RGH-SC-01-4-6' 8/26/08/1751	$\times \times \times \times$	3		
RGH-SC-02-0-2' 8/26/08 1830	$\times \times \times \times \times \times \times \times \times \times \times \times$	4		
RGH-SC-02-2-41 8/26/08 1840	$\times \times $	4		
RG4-SC-02-4-61 8/26/18 1850	$\times \times \times \times$	3		
RGH-SC-03-0-2' 8/27/08 1820	$\times \times $	4		
RGH-SC-03-2-41 8/27/02 1830	$\times \times \times \times \times$	3		
Vacil Ca 12-4-1/ 8/22/28 1840 V	$\times \times \times \times \times$	3		
RELINQUISHED BY RECEIVED BY DATE RECEIVED BY DATE RECEIVED BY DATE RECEIVED BY B/28/08 SIGNATURE RECEIVED BY B/28/08 SIGNATURE SIGNATURE FRINT NAME PRINT NAME PRINT NAME COMPANY COMPANY 16.10 COMPANY	SPECIAL SHIPMENT HANDLING OR	TOTAL NUMBER OF CONTAINERS		
SIGNATURE 8/28/08 Kimberly Riggs 8/28/08	STORAGE REQUIREMENTS:	SAMPLE RECEIPT INFORMATION CUSTODY SEALS:		
Regionature Signature Signature / TIME Kimberly King TIME	SMS REPORTING LINES	□YES □NO □N/A		
PRINT NAME HT T C	CM REPORTING LAMIS	GOOD CONDITION □YES □NO		
COMPANY COMPANY 1610		TEMPERATURE		
RELINQUISHED BY DATE RECEIVED BY DATE		□COURIER □OVERNIGHT		
	COOLER NO.: STORAGE LOCATION:	TURNAROUND TIME:		
SIGNATURE SIGNATURE TIME TIME		□ 24 HOURS □ 1 WEEK		
PRINT NAME PRINT NAME	See Lab Work Order No.	☐ 48 HOURS STANDARD		
COMPANY	for Other Contract Requirements	☐ 72 HOURS OTHER		

HARTCROWSER

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699

Phone: 206-324-9530 FAX: 206-328-5581

2012 NM56 Sample Custody Record
Samples Shipped to: ART

JOB 17330-17 LAB NUMBER					REQUESTED ANALYSIS												8		
PROJECT NAME R. G. HALEY HART CROWSER CONTACT R- Mc GINNLS				NWTP14-Ox	SNOC	TECONES	- 1	busi	4	Suction	Frank				CONTAINERS	1	ERVATIONS/COMMENTS/ POSITING INSTRUCTIONS		
					3	0-	200		્ ય	MONI	7	3	\			OF C			
A. CONESD C. RUST SAMPLED BY: AMC, CFR, RM			1	0488	12	700	10	12	0	Š				Š.					
			T	T	7	00	1	7	1	\	1	7				4			
LAB NO. SAMPLE ID	DESCRIPTION		TIME	MATRIX					- •	_						1.1	,,		
		2', 8/27/08		560	X	\times	X	X	X			Χļ		<u> </u>		4	Hoz	ontaines	
RGH-SC	-64 - Ha	sel 8/27/2	1410	1	X	X	×	×	X							3	C	ontaines	
KGH-SC	-04-4-1	61 8/27/08	1420		X	×	×	X	X							3			
RGH-SC	-05-0-	2///	1445		X	X	×	X	X			X				4			
RIOH-SC	-05-2	41	1455		X	X	×	X	\times							3			
	2-05-4		1505		\checkmark	\times	\times	X	X							3			
	06 -0-2		1045		X	X,	X	X	X		`	X				4			
RGH-8	-06-2-4	1' 1	1055		X	X	X	X	X		~	X				4			
	-06-41		1105	J	X	V	V	V	X		1					3			
NO// OC																		Second 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RELINQUISHED BY	DATE	RECEIVED BY		DATE	SP	ECIAL	L SHI	PME	NT H	ANDL	LING	OR					TOTAL	NUMBER OF CONTAINERS	
Pag mani	8/28/09	Think on hi	Diam	8/28/08	ST	ORAG	SE RE	QUI	REME	NTS:)		_	2500000000	MPLE RECEIPT INF	ORMATION	
SIGNATURE ROCE McLisus PRINT NAME) TIME	Himberly SIGNATURE J FIMBERLY PRINT NAME ARI COMPANY	Pico	TIME	1	-N		. 4		7	7	10	ACK GG C	460	6	390000000	USTODY SEALS: YES □N(O □N/A	
PRINT NAME	16:10	PRINT NAME	×180		1	<u> </u>	, (P	10	12.77	رس	66	/ / /7	125		OOD CONDITION YES □NO		
COMPANY		COMPANY		1610	5	5/7	<i>l</i> J	. /								TI	EMPERATURE		
RELINQUISHED BY	DATE	RECEIVED BY		DATE	1											05357886	HIPMENT METHOD COURIER	D: □HAND □OVERNIGHT	
					cc	OOLEF	R NO	.:				ST	ORAGE	LOCA	ATION:	0.836.6896	RNAROUND TIM		
SIGNATURE	TIME	SIGNATURE		TIME	- -										24 HOURS	□ 1 WEEK			
PRINT NAME	THVIE	PRINT NAME		THVIE	See Lab Work Order No.								-	┨╒	48 HOURS	TSTANDARD			
COMPANY	-	COMPANY			1	Sec Las Holk Order Hol								OTHER					
	1				1											ı			

Cooler Receipt Form

ARI Client: Hart Crowser	Project Name: 👍	Be R.G. Haley	1.
COC No:	Delivered by:	hand	
Assigned ARI Job No:	,	7 1000 101	
Preliminary Examination Phase:			
Were intact, properly signed and dated cu Were custody papers included with the co-	oler?		YES NO
Were custody papers properly filled out (in	k, signed, etc.)	***************************************	(YES) NO
Were custody papers properly filled out (in Record cooler temperature (recommended	12.0-6.0 °C for chemistry	102.52	NO S
Cooler Accepted by:		Date: 8/28/08 Tim	
· · · · · · · · · · · · · · · · · · ·	forms and attach all s	hipping documents	e: 161()
Log-In Phase:			
Was a temperature blank included in the co	ooler?		
write Killy of packing material was used?			res No
Was sufficient ice used (if appropriate)?			(CE
Were all bottles sealed in individual plastic t		······································	ES) NO
Did all bottle arrive in good condition (unbrowner all bottle labels complete and legible)	kon)?	······ (Ý	ES NO
Were all bottle labels complete and legible?	Kenjr		ES NO
Were all bottle labels complete and legible? Did all bottle labels and tags agree with quet		······································	ES NO
Did all bottle labels and tags agree with cust Were all bottles used correct for the request.	od spaters?		ES NO
Were all bottles used correct for the requested Do any of the analyses (bottles) require pro-	eu analyses?		ES NO
Do any of the analyses (bottles) require pres	ervation? (attach presen	vation checklist) YI	ES TAG
Were all VOC vials free of air bubbles?		······YI	ES NO
Was sufficient amount of sample sent in each	h bottle?	VI VI	ES) NO
Samples Logged by:	Date:		
	Date:	Time:	
	anager of discrepancie	s or concerns **	
5			
Explain discrepancies or negative responses:		<u> </u>	
	•		
· · · · · · · · · · · · · · · · · · ·			
		•	
		·	
	·		
	Ву:	Date:	

Case Narrative

prepared for

HART CROWSER, INC.

Project: R. G. HALEY, 17330-17

ARI JOB NO.: NM56

prepared by

Analytical Resources, Inc.

Case Narrative
Hart Crowser
R. G. Haley – 17330-17
ARI Job: NM56
October 25, 2008

Sample Receipt

Analytical Resources Inc. (ARI) accepted twenty-one sediment samples in good condition on August 28, 2008 under the ARI job referenced above. The cooler temperatures measured by IR thermometer following ARI SOP were -0.2, 0.7, 3.5, and 5.2°C and the samples were well iced. For more details regarding sample receipt, please refer to the Cooer Receipt Form. All samples were frozen to protect the holding times. Please note that select sample containers were put on hold pending further client instruction.

Semivolatile Analysis (PSDDA SW8270D):

All samples were originally extracted and analyzed within the method recommended holding times for samples that were frozen.

Initial calibration (s): All compounds of interest were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Internal Standard(s): The internal standard recovery of Perylene-d12 was outside the control limits for samples RGH-SC-01-4-6', RGH-SC-03-2-4', RGH-SC-04-0-2'. The samples were re-analyzed at a dilution and the internal standard percent recoveries were within control limits. No further corrective action was required.

Method Blank (s): Diethylphthalate was present in the method blank MB-090308 at a concentration that was greater than the reporting limit. All associated samples were undetected for this compound. No further corrective action was required.

Surrogate(s): The surrogate percent recovery of d14-p-Terphenyl was outside the control limits high for dilution sample RGH-SC-01-4-6'. All other surrogate percent recoveries for both the dilution and the straight sample were within control limits. Both sets of data have been included in this data package for review. No further corrective action was required.

The surrogate percent recoveries of d14-p-Terphenyl were outside the control limits for sample RGH-SC-03-2-4'and RGH-SC-04-0-2'. The samples were re-analyzed at a dilution and the surrogate percent recoveries were within control limits. Both sets of data have been included in this data package for review. No further corrective action was required.

The surrogate percent recoveries of d5-Nitrobnenzene, 2-Fluorobiphenyl, d4-1,2-Dichlorobenzene, d5-Phenol, and d4-2-Chlorophenol were outside the control limits for sample RGH-SC-03-4-6'. The sample was re-analyzed at a dilution and the surrogate percent recoveries were comparable to the original analysis. The sample was then re-extracted and re-analyzed. The re-extraction surrogate percent recoveries were within control limits. All data sets for this sample have been included in this data package for review. No further corrective action was required.

Case Narrative
Hart Crowser
R. G. Haley – 17330-17
ARI Job: NM56
October 25, 2008

MS/MSD (s): Several matrix spike duplicate percent recoveries were outside the advisory control limits for sample RGH-SS-01. The matrix spike and percent recoveries were within advisory control limits and the LCS and LCSD percent recoveries were within control limits. No further corrective action was required.

Several matrix spike and matrix spike duplicate percent recoveries were outside the advisory control limits for sample RGH-SC-06-4-6' due to lack of sample homogeneity. All LCS and LCSD percent recoveries were within control limits. No further corrective action was required.

LCS/LCSD (s): The LCS percent recovery of 1,2-Dichlorobenzene was outside the control limits for **LCS-090308**. The LCSD percent recovery was within control limits. No further corrective action was required.

NWTPH-Dx:

All samples were extracted and analyzed within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): The method blanks were free of contamination.

Surrogate(s): All surrogate percent recoveries were within control limits.

MS/MSD (s): The matrix spike percent recovery of Diesel was outside the advisory control limits high for sample RGH-SC-06-4-6' due to lack of sample homogeneity. The matrix spike duplicate percent recovery and all LCS and LCSD percent recoveries were within control limits. No further corrective action was required.

LCS/LCSD (s): The LCS and LCSD percent recoveries were within control limits.

Total Metals (Mercury):

All samples were prepared and analyzed within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): All method blanks were free of contamination.

MS(s): All matrix spike percent recoveries were within control limits.

Case Narrative
Hart Crowser
R. G. Haley – 17330-17
ARI Job: NM56
October 25, 2008

Duplicate(s): The duplicate relative percent difference of mercury was outside the control limit for sample RGH-SC-06-4-6'. All other quality control parameters were met for mercury. All appropriate data have been flagged with an "*"qualifier on the appropriate Form V's. No further corrective action was required.

LCS(s): All LCS percent recoveries were within control limits.

Conventional Parameters:

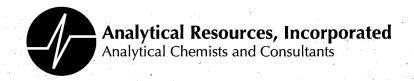
All samples were prepared and analyzed within the method recommended holding times.

Method Blank (s): All method blanks were free of contamination.

MS(s): The matrix spike percent recovery of sulfide fell outside the control limits low for sample **RGH-SS-03**. All other quality control parameters were met for sulfide. No further corrective action was required.

Replicate(s): All replicate RPD/RSDs were within control limits.

LCS(s): All LCS percent recoveries were within control limits.


SRM(s): All SRM percent recoveries were within control limits.

Geotechnical Parameters:

A laboratory-specific Case Narrative follows.

Dioxin/Furans:

The Dioxin/Furans analyses were subcontracted to Test America in Sacramento, CA. The subcontracted data have been included at the end of this data package.

Client: Hart Crowser, Inc. ARI Project No.: NM56

Client Project: R.G. Haley Client Project No.: 17330-17

Case Narrative

1. Three samples were submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology on August 28, 2008.

2. The samples were run in a single batch and one sample from another job was chosen for triplicate analysis. The triplicate data is reported on the QA summary.

- 3. Two samples did not contain the required 5 grams of fines for the pipette portion of the analysis. The analytical balance has a capacity of about 200 g (by 0.0001) and a sample that would yield 5 grams of fines could not be split and stay within the capacity of the balance.
- 4. Sample RGH-SS-01 contained woody or other organic matter, which may have broken down during the sieving process, affecting grain size analysis.
- 5. Sample RGH-SS-01 and RGH-SS-02 contained some shell and glass fragments.
- 6. The data is provided in summary tables and plots.

7. There were no other noted anomalies in this project.

Approved by:

Title:

Lead Technician

Doto

Data Reporting Qualifiers

Effective 12/28/04

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits

- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NS The flagged analyte was not spiked into the sample

- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis

W Weight of sample in some pipette aliquots was below the level required for accurate weighting

LCS SOLUTIONS

LABE	ISOLN I	TEST	CONC. UG/M	LSOLVENT	EXP.
1	1534-5	PCB	20	MEOH	08/26/09
2	1472-3	BCOC PEST	10	ACETONE	07/20/08
3	1517-1	PEST	02/04/20	ACETONE	05/15/09
4	1515-1	LOW PEST	0.2/0.4/2	ACETONE	01/24/09
5	1537-1	EPH	1500	MECL2	08/16/09
6*	1456-3	PCP	12.5	ACETONE	04/18/09
7	1537-3	ABN	100	ACETONE	08/01/09
8	1487-2	TBT	10	MECL2	12/15/08
9	1493-3	PORE TBT	.25/.5	MECL2	12/15/08
10	1537-2	ABN ACID	100/200	MEOH	04/10/09
11	1526-1	TPHD	15000	ACETONE	06/25/09
12	1533-1	ABN BASE	200	ACETONE	07/01/09
13*	1427-3	LOW PCB	2	ACETONE	10/11/08
14	1480-2	LOW ABN ACID	10/20	MEOH	10/09/08
15*	1452-1	SIM PNA	15/75	MEOH	04/09/09
16	1502-2	DIOXANE	100	MEOH	02/20/09
17	1516-2	1248 PCB	20	ACETONE	05/07/09
18	1514-4	LOW SIM PNA	1.5/7.5	ACETONE	04/24/09
19	1517-3	AK103	7500	MECL2	12/29/08
20	1490-4	PNA	100	MEOH	01/10/09
21*	1414-4	SKY/BHT	100	MEOH	04/08/09
22	1539-1	HERB	12.5/12500	MEOH	08/31/09
23	1505-1 l	_OW ABN BASE	20	MEOH	03/20/09
24	1504-4	LOW ABN	10	ACETONE	10/01/08
25	1481-1	DIPHENYL	100	MEOH	07/20/08
26	1522-2	OP-PEST	30	MEOH	11/30/08
27	1495-1	STEROLS	200	MEOH	12/29/08
28	1494-1	ADD. PEST	4	ACETONE	01/23/09
29	1496-3	DECANES	100		02/12/09
30	1497-2	EDB/DBCP	2	<u> </u>	02/12/09
31	1510-3	TERPINEOL	100		03/21/09

LCS SOLUTIONS

9/4/2008

32	1533-2	GUAIACOL	50-200	ACETONE	06/05/09
33	1522-1	RESIN ACID	250	ACETONE	
34	1530-2	CONGENERS	250	ACETONE	
50	1523-1	FULL RESIN	250	ACETONE	
*=RE\	ERIFIED	SOLUTION		10210112	00/10/00
					
L	<u>_</u>		*		

SURR SOLUTIONS

SOLN ID	TEST	CONC. UG/ML	SOLVENT	EXP.
1525-4	ABN	100/150	MEOH	03/13/09
1513-1	SIM PNA	15/75	MEOH	04/15/09
1443-1	SIM ABN	10/15	MEOH	04/03/09
1516-3	LOW PCB	0.2	ACETONE	
1478-1	HERB	62.5		09/21/08
1520-3	PCP	12.5		
1502-3	1,4DIOXANE	100	MEOH	02/20/09
1504-2	OP-PEST	25	MEOH	03/20/09
1458-1	LOW S. PNA	03/15	MEOH	06/05/09
1493-2	TBT-PORE	0.25		12/15/08
1490-3	MED PCB	20	ACETONE	
1486-5	TBT	10	MECL2	12/15/08
1518-3	EPH	1500	MECL2	05/10/09
1518-4	PCB	2	ACETONE	05/29/09
1521-3	TPH	450	MECL2	12/29/08
1518-2	HCID	2250		12/29/08
1497-3	EDB	2		02/12/09
1521-4	RESIN ACID			
RE-VER	FIED SOLUT			
				· ·
	1525-4 1513-1 1443-1 1516-3 1478-1 1520-3 1502-3 1504-2 1458-1 1493-2 1490-3 1486-5 1518-3 1518-4 1521-3 1518-2 1497-3 1521-4	1525-4ABN1513-1SIM PNA1443-1SIM ABN1516-3LOW PCB1478-1HERB1520-3PCP1502-31,4DIOXANE1504-2OP-PEST1458-1LOW S. PNA1493-2TBT-PORE1490-3MED PCB1486-5TBT1518-3EPH1518-4PCB1521-3TPH1518-2HCID1497-3EDB1521-4RESIN ACID	1525-4 ABN 100/150 1513-1 SIM PNA 15/75 1443-1 SIM ABN 10/15 1516-3 LOW PCB 0.2 1478-1 HERB 62.5 1520-3 PCP 12.5 1502-3 1,4DIOXANE 100 1504-2 OP-PEST 25 1458-1 LOW S. PNA 03/15 1493-2 TBT-PORE 0.25 1490-3 MED PCB 20 1486-5 TBT 10 1518-3 EPH 1500 1518-4 PCB 2 1521-3 TPH 450 1518-2 HCID 2250 1497-3 EDB 2	1525-4 ABN 100/150 MEOH 1513-1 SIM PNA 15/75 MEOH 1443-1 SIM ABN 10/15 MEOH 1516-3 LOW PCB 0.2 ACETONE 1478-1 HERB 62.5 MEOH 1520-3 PCP 12.5 ACETONE 1502-3 1,4DIOXANE 100 MEOH 1504-2 OP-PEST 25 MEOH 1458-1 LOW S. PNA 03/15 MEOH 1493-2 TBT-PORE 0.25 MECL2 1490-3 MED PCB 20 ACETONE 1486-5 TBT 10 MECL2 1518-3 EPH 1500 MECL2 1518-4 PCB 2 ACETONE 1521-3 TPH 450 MECL2 1518-2 HCID 2250 MECL2 1497-3 EDB 2 ACETONE 1521-4 RESIN ACID 250 ACETONE

Data Summary Package

prepared for

HART CROWSER, INC.

Project: R. G. HALEY, 17330-17

ARI JOB NO.: NM56

prepared by

Analytical Resources, Inc.

SEMIVOLATILES

Page 1 of 2

Lab Sample ID: NM56A

LIMS ID: 08-21861 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/11/08 16:23 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

Sample ID: RGH-SS-01 SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 23.5%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	19	30
541-73-1	1,3-Dichlorobenzene	7.2	19	< 19 U
106-46-7	1,4-Dichlorobenzene	7.1	19	< 19 U
100-51-6	Benzyl Alcohol	14	19	< 19 U
95-50-1	1,2-Dichlorobenzene	7.6	19	< 19 U
95-48-7	2-Methylphenol	14	19	< 19 U
106-44-5	4-Methylphenol	12	19	< 19 U
67-72-1	Hexachloroethane	7.0	19	< 19 U
105-67-9	2,4-Dimethylphenol	14	19	< 19 U
65-85-0	Benzoic Acid	110	190	< 190 U
120-82-1	1,2,4-Trichlorobenzene	8.8	19	< 19 U
91-20-3	Naphthalene	8.4	19	15 J
87-68-3	Hexachlorobutadiene	7.9	19	< 19 U
91-57-6	2-Methylnaphthalene	8.0	19	15 J
131-11-3	Dimethylphthalate	7.5	19	< 19 U
208-96-8	Acenaphthylene	8.4	19	9.9 J
83-32-9	Acenaphthene	8.0	19	10 J
132-64-9	Dibenzofuran	7.3	19	< 19 U
84-66-2	Diethylphthalate	16	19	< 19 U
86-73-7	Fluorene	8.7	19	< 19 U
86-30-6	N-Nitrosodiphenylamine	8.4	19	< 19 U
118-74-1	Hexachlorobenzene	7.8	19	< 19 U
87-86-5	Pentachlorophenol	46	97	83 J
85-01-8	Phenanthrene	8.1	19	100
120-12-7	Anthracene	7.5	19	23
84-74-2	Di-n-Butylphthalate	12	19	< 19 U
206-44-0	Fluoranthene	7.7	19	180
129-00-0	Pyrene	7.5	19	160
85-68-7	Butylbenzylphthalate	11	19	< 19 U
56-55-3	Benzo(a) anthracene	5.7	19	55 ·
117-81-7	bis(2-Ethylhexyl)phthalate	11	19	140
218-01-9	Chrysene	6.4	19	86
117-84-0	Di-n-Octyl phthalate	8.1	19	< 19 U
205-99-2	Benzo(b) fluoranthene	9.2	19	68
207-08-9	Benzo(k) fluoranthene	9.0	19	62
50-32-8	Benzo(a)pyrene	7.9	19	63
193-39-5	Indeno(1,2,3-cd)pyrene	8.3	19	28
53-70-3	Dibenz (a, h) anthracene	8.3	19	< 19 U
191-24-2	Benzo(g,h,i)perylene	6.6	19	33

Page 2 of 2

Sample ID: RGH-SS-01 SAMPLE

47.7%

Lab Sample ID: NM56A LIMS ID: 08-21861

Matrix: Sediment

Date Analyzed: 09/11/08 16:23

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

d4-2-Chlorophenol

17330-17

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthaler	ne 7.0	19	15 J
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophene	47.6% 53.2% 48.5% ol 63.5%	2-Fluorobiphenyl d4-1,2-Dichlorob 2-Fluorophenol d4-2-Chloropheno	enzene 43 43	. 6% . 2% . 2% . 7%

Sample ID: RGH-SS-02 SAMPLE

Lab Sample ID: NM56B

LIMS ID: 08-21862 Matrix: Sediment

Data Release Authorized

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/11/08 18:03 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

Date Received: 08/28/08

Sample Amount: 25.8 g-dry-wt Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Project: R.G. Haley

Date Sampled: 08/26/08

Percent Moisture: 17.6%

QC Report No: NM56-Hart Crowser, Inc.

17330-17

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	1.3	19	32
541-73-1	1,3-Dichlorobenzene	7.2	19	< 19 U
106-46-7	1,4-Dichlorobenzene	7.1	19	< 19 U
100-51-6	Benzyl Alcohol	14	19	< 19 U
95-50-1	1,2-Dichlorobenzene	7.6	19	< 19 U
95-48-7	2-Methylphenol	14	19	< 19 U
106-44-5	4-Methylphenol	12	19	< 19 U
67-72-1	Hexachloroethane	7.0	19	< 19 U
105-67-9	2,4-Dimethylphenol	14	19	< 19 U
65-85-0	Benzoic Acid	110	190	< 190 U
120-82-1	1,2,4-Trichlorobenzene	8.8	19	< 19 U
91-20-3	Naphthalene	8.4	19	< 19 U
87-68-3	Hexachlorobutadiene	7.9	19	< 19 U
91-57-6	2-Methylnaphthalene	8.0	19	28
131-11-3	Dimethylphthalate	7.5	19	< 19 U
208-96-8	Acenaphthylene	8.4	19	< 19 U
83-32-9	Acenaphthene	8.0	19	10 J
132-64-9	Dibenzofuran	7.3	19	< 19 U
84-66-2	Diethylphthalate	16	19	< 19 U
86-73-7	Fluorene	8.7	19	12 J
86-30-6	N-Nitrosodiphenylamine	8.4	19	< 19 U
118-74-1	Hexachlorobenzene	7.8	19	< 19 U
87-86-5	Pentachlorophenol	46	97	51 J
85-01-8	Phenanthrene	8.2	19	120
120-12-7	Anthracene	7.5	19	22
84-74-2	Di-n-Butylphthalate	12	19	< 19 U
206-44-0	Fluoranthene	7.7	19	150
129-00-0	Pyrene	7.5	19	130
85-68-7	Butylbenzylphthalate	11	19	< 19 U
56-55-3	Benzo(a) anthracene	5.7	19	57
117-81-7	bis(2-Ethylhexyl)phthalate	11	19	25
218-01-9	Chrysene	6.4	19	75
117-84-0	Di-n-Octyl phthalate	8.1	19	< 19 U
205-99-2	Benzo(b) fluoranthene	9.2	19	69
207-08-9	Benzo(k) fluoranthene	9.0	19	67
50-32-8	Benzo(a) pyrene	7.9	19	79
193-39-5	Indeno(1,2,3-cd)pyrene	8.3	19	24
53-70-3	Dibenz (a, h) anthracene	8.3	19	< 19 U
191-24-2	Benzo(g,h,i)perylene	6.6	19	26
	(3/11/1/Porlitone	0.0	19	40

Page 2 of 2

Sample ID: RGH-SS-02 SAMPLE

64.0%

Lab Sample ID: NM56B LIMS ID: 08-21862

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

d4-2-Chlorophenol

Matrix: Sediment

17330-17

Date Analyzed: 09/11/08 18:03

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthaler	7.0	19	26
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophene	61.6% 73.6% 66.1% ol 89.1%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	62.8 62.4 60.0	ે જ

Sample ID: RGH-SS-03
SAMPLE

Lab Sample ID: NM56C

LIMS ID: 08-21863 Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/03/08
Date Analyzed: 09/11/08 18:37
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17 Date Sampled: 08/26/08

Date Received: 08/28/08

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 27.6%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	19	< 19 U
541-73-1	1,3-Dichlorobenzene	7.2	19	< 19 U
106-46-7	1,4-Dichlorobenzene	7.1	19	< 19 U
100-51-6	Benzyl Alcohol	14	19	< 19 U
95-50-1	1,2-Dichlorobenzene	7.6	19	< 19 U
95-48-7	2-Methylphenol	14	19	< 19 U
106-44-5	4-Methylphenol	12	19	29
67-72-1	Hexachloroethane	7.0	19	< 19 U
105-67-9	2,4-Dimethylphenol	14	19	< 19 U
65-85-0	Benzoic Acid	110	190	< 190 U
120-82-1	1,2,4-Trichlorobenzene	8.8	19	< 19 U
91-20-3	Naphthalene	8.4	19	25
87-68-3	Hexachlorobutadiene	7.9	19	< 19 U
91-57-6	2-Methylnaphthalene	7.9	19	25
131-11-3	Dimethylphthalate	7.5	19	< 19 U
208-96-8	Acenaphthylene	8.4	19	21
83-32-9	Acenaphthene	8.0	19	17 J
132-64-9	Dibenzofuran	7.3	19	14 Ј
84-66-2	Diethylphthalate	16	19	< 19 U
86-73-7	Fluorene	8.7	19	23
86-30-6	N-Nitrosodiphenylamine	8.4	19	< 19 U
118-74-1	Hexachlorobenzene	7.8	19	< 19 U
87-86-5	Pentachlorophenol	46	97	180
85-01-8	Phenanthrene	8.1	19	190
120-12-7	Anthracene	7.5	19	47
84-74-2	Di-n-Butylphthalate	12	19	< 19 U
206-44-0	Fluoranthene	7.7	19	350
129-00-0	Pyrene	7.5	19	300
85-68-7	Butylbenzylphthalate	11	19	< 19 U
56-55-3	Benzo(a) anthracene	5.7	19	140
117-81-7	bis(2-Ethylhexyl)phthalate	11	1.9	86
218-01-9	Chrysene	6.4	19	210
117-84-0	Di-n-Octyl phthalate	8.1	19	< 19 U
205-99-2	Benzo (b) fluoranthene	9.2	19	200
207-08-9	Benzo(k) fluoranthene	9.0	19	150
50-32-8	Benzo(a) pyrene	7.9	19	180
193-39-5	Indeno(1,2,3-cd)pyrene	8.3	19	45
53-70-3	Dibenz (a, h) anthracene	8.3	19	10 J
191-24-2	Benzo(g,h,i)perylene	6.5	19	51

Page 2 of 2

Sample ID: RGH-SS-03 SAMPLE

Lab Sample ID: NM56C

LIMS ID: 08-21863 Matrix: Sediment

Date Analyzed: 09/11/08 18:37

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.0	19	25

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene63.6%2-Fluorobiphenyl64.8d14-p-Terphenyl77.2%d4-1,2-Dichlorobenzene59.2d5-Phenol65.9%2-Fluorophenol59.22,4,6-Tribromophenol92.8%d4-2-Chlorophenol63.7	28 28
2,1,6 IIIBIOMOPHENOI 92.86 d4-2-Chlorophenol 63.7	7왕

Sample ID: RGH-SC-01-0-2' SAMPLE

Lab Sample ID: NM56D

LIMS ID: 08-21864

Matrix: Sediment Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08 Date Analyzed: 09/11/08 19:11 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 26.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 30.9%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	19	41
541-73-1	1,3-Dichlorobenzene	7.1	19	< 19 U
106-46-7	1,4-Dichlorobenzene	7.0	19	< 19 U
100-51-6	Benzyl Alcohol	14	19	< 19 U
95-50-1	1,2-Dichlorobenzene	7.5	19	< 19 U
95-48-7	2-Methylphenol	14	19	< 19 U
106-44-5	4-Methylphenol	12	19	< 19 U
67-72-1	Hexachloroethane	6.9	19	< 19 U
105-67-9	2,4-Dimethylphenol	14	19	< 19 U
65-85-0	Benzoic Acid	110	190	< 190 U
120-82-1	1,2,4-Trichlorobenzene	8.7	19	< 19 U
91-20-3	Naphthalene	8.3	19	20
87-68-3	Hexachlorobutadiene	7.8	19	< 19 U
91-57-6	2-Methylnaphthalene	7.8	19	26
131-11-3	Dimethylphthalate	7.4	19	< 19 U
208-96-8	Acenaphthylene	8.3	19	21
83-32-9	Acenaphthene	7.9	19	14 J
132-64-9	Dibenzofuran	7.2	19	16 J
84-66-2	Diethylphthalate	16	19	< 19 U
86-73-7	Fluorene	8.6	19	16 J
86-30-6	N-Nitrosodiphenylamine	8.3	19	< 19 U
118-74-1	Hexachlorobenzene	7.7	19	< 19 U
87-86-5	Pentachlorophenol	45	96	380
85-01-8	Phenanthrene	8.0	19	200
120-12-7	Anthracene	7.4	19	53
84-74-2	Di-n-Butylphthalate	12	19	< 19 U
206-44-0	Fluoranthene	7.6	19	530
129-00-0	Pyrene	7.4	19	510
85-68-7	Butylbenzylphthalate	11	19	< 19 U
56-55-3	Benzo (a) anthracene	5.7	19	150
117-81-7	bis(2-Ethylhexyl)phthalate	11	19	170
218-01-9	Chrysene	6.3	19	270
117-84-0	Di-n-Octyl phthalate	8.0	19	< 19 U
205-99-2	Benzo (b) fluoranthene	9.1	19	200
207-08-9	Benzo(k) fluoranthene	8.8	19	220
50-32-8	Benzo(a)pyrene	7.8	19	210
193-39-5	Indeno(1,2,3-cd)pyrene	8.2	19	49
53-70-3	Dibenz (a, h) anthracene	8.2	19	19 J
191-24-2	Benzo(g,h,i)perylene	6.5	19	45
-/1-44-A	pengo (a) m' r' her liteme	0.5	13	40

Page 2 of 2

Sample ID: RGH-SC-01-0-2'

SAMPLE

Lab Sample ID: NM56D LIMS ID: 08-21864

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

Matrix: Sediment

Date Analyzed: 09/11/08 19:11

•	T	u .	mare.
	17	330	-17

CAS Number	Analyte	\mathtt{MDL}	RL	Result	
90-12-0	1-Methylnaphthalene 6.9			22	
	Reported in	ıg/kg (ppb)			
	Semivolatile Sur	cogate Recovery			
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromopher	60.4% 77.2% 61.6% nol 91.7%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	63.2 58.8 59.2 63.7	6 6	

Sample ID: RGH-SC-01-2-4' SAMPLE

Lab Sample ID: NM56E

LIMS ID: 08-21865 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/11/08 19:44 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17
Date Sampled: 08/26/08
Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 26.1%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	82
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	95
131-11-3	Dimethylphthalate	7.6	20	14 Ј
208-96-8	Acenaphthylene	8.5	20	26
83-32-9	Acenaphthene	8.1	20	110
132-64-9	Dibenzofuran	7.4	20	84
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	160
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	270
85-01-8	Phenanthrene	8.3	20	1,100
120-12-7	Anthracene	7.6	20	310
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	1,600
129-00-0	Pyrene	7.6	20	1,400
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	480
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	130
218-01-9	Chrysene	6.5	20	660
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.4	20	600
207-08-9	Benzo(k) fluoranthene	9.1	20	
50-32-8	Benzo(a) pyrene	8.0		430
193-39-5	Indeno(1,2,3-cd)pyrene		20	610
53-70-3	Dibenz (a, h) anthracene	8.4	20	130
191-24-2		8.4	20	61
T3T-74-7	Benzo(g,h,i)perylene	6.6	20	130

Page 2 of 2

Sample ID: RGH-SC-01-2-4

SAMPLE

56.5%

59.2%

Lab Sample ID: NM56E LIMS ID: 08-21865 Matrix: Sediment

d5-Phenol

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

2-Fluorophenol

d4-2-Chlorophenol

17330-17

Date Analyzed: 09/11/08 19:44

2,4,6-Tribromophenol

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthale	ne 7.1	20	84
	Reported in	μg/kg (ppb)		
	Semivolatile Su	rrogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl	58.8% 80.0%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	62.8° 54.8°	=

60.8%

91.2%

Sample ID: RGH-SC-01-4-6' SAMPLE

Lab Sample ID: NM56F

LIMS ID: 08-21866 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/11/08 20:18 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 22.7%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	11 J
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	16 J
67-72-1	Hexachloroethane	7.0	20	< 20 U
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	37
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	130
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	13 J
83-32-9	Acenaphthene	8.0	20	89
132-64-9	Dibenzofuran	7.4	20	31
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	120
86-30-6	N-Nitrosodiphenylamine	8.5	120	< 120 Y
118-74-1	Hexachlorobenzene	7.8	20	< 20 U
87-86-5	Pentachlorophenol	47	98	530
85-01-8	Phenanthrene	8.2	20	680
120-12-7	Anthracene	7.6	20	290
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.7	20	720
129-00-0	Pyrene	7.6	20	700
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	160
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	190
218-01-9	Chrysene	6.5	20	230
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.3	20	160
207-08-9	Benzo(k) fluoranthene	9.1	20	160
50-32-8	Benzo(a)pyrene	8.0	20	130
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	36
53-70-3	Dibenz (a, h) anthracene	8.4	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.6	20	42

Page 2 of 2 Sample ID: RGH-SC-01-4-6'

SAMPLE

63.5%

Lab Sample ID: NM56F LIMS ID: 08-21866

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

Matrix: Sediment Date Analyzed: 09/11/08 20:18

2,4,6-Tribromophenol

17330-17

d4-2-Chlorophenol

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthale	ne 7.0	20	140
	Reported in	μg/kg (ppb)		
	Semivolatile Su	rrogate Recovery		
d5-Nitrobenzene	60.8%	2-Fluorobiphenyl	67	.6%
d14-p-Terphenyl	94.4%	d4-1,2-Dichlorobenzene	e 61	.6%
d5-Phenol	60.8%	2-Fluorophenol	56	.5%

87.7%

Sample ID: RGH-SC-01-4-6' DILUTION

Lab Sample ID: NM56F

LIMS ID: 08-21866 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/12/08 23:51 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 22.7%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	40	59	< 59 U
541-73-1	1,3-Dichlorobenzene	22	59	< 59 U
106-46-7	1,4-Dichlorobenzene	22	59	< 59 U
100-51-6	Benzyl Alcohol	43	59	< 59 U
95-50-1	1,2-Dichlorobenzene	23	59	< 59 U
95-48-7	2-Methylphenol	42	59	< 59 U
106-44-5	4-Methylphenol	38	59	< 59 U
67-72-1	Hexachloroethane	21	59	< 59 Ŭ
105-67-9	2,4-Dimethylphenol	43	59	< 59 U
65-85-0	Benzoic Acid	340	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	27	59	< 59 U
91-20-3	Naphthalene	25	59	4 0 J
87-68-3	Hexachlorobutadiene	24	59	< 59 U
91-57-6	2-Methylnaphthalene	24	59	140
131-11-3	Dimethylphthalate	23	59	< 59 U
208-96-8	Acenaphthylene	25	59	< 59 U
83-32-9	Acenaphthene	24	59	110
132-64-9	Dibenzofuran	22	59	57 J
84-66-2	Diethylphthalate	48	59	< 59 U
86-73-7	Fluorene	26	59	120
86-30-6	N-Nitrosodiphenylamine	25	160	< 160 Y
118-74-1	Hexachlorobenzene	24	59	< 59 U
87-86-5	Pentachlorophenol	140	290	510
85-01-8	Phenanthrene	25	59	650
120-12-7	Anthracene	23	59	120
84-74-2	Di-n-Butylphthalate	36	59	< 59 U
206-44-0	Fluoranthene	23	59	730
129-00-0	Pyrene	23	59	840
85-68-7	Butylbenzylphthalate	33	59	< 59 Ü
56-55-3	Benzo(a) anthracene	17	59	170
117-81-7	bis(2-Ethylhexyl)phthalate	32	59	160
218-01-9	Chrysene	19	59	260
117-84-0	Di-n-Octyl phthalate	24	59	< 59 U
205-99-2	Benzo (b) fluoranthene	28	59	150
207-08-9	Benzo(k) fluoranthene	27	59	120
50-32-8	Benzo (a) pyrene	24	59	140
193-39-5	Indeno(1,2,3-cd)pyrene	25	59	56 J
53-70-3	Dibenz (a, h) anthracene	25 25	59	< 59 U
191-24-2	Benzo(g,h,i)perylene	20	5 <i>9</i>	71
131-44-4	penzo (g, n, r, peryrene	<i>2</i> .0	33	/ 1

Page 2 of 2

Sample ID: RGH-SC-01-4-6' DILUTION

Lab Sample ID: NM56F

LIMS ID: 08-21866

Matrix: Sediment

Date Analyzed: 09/12/08 23:51

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

_	,	_	J	v	_	1	,		

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthaler	ne 21	59	150
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rogate Recovery		
d5-Nitrobenzene	62.5%	2-Fluorobiphenyl	70.	0%
d14-p-Terphenyl	98.0%	d4-1,2-Dichlorobenzen	e 64.	0%
d5-Phenol	74.6%	2-Fluorophenol	64.	88
2,4,6-Tribromophene	ol 82.4%	d4-2-Chlorophenol	73.	5%

Sample ID: RGH-SC-02-0-2' SAMPLE

Lab Sample ID: NM56G LIMS ID: 08-21867

Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

: //

Date Extracted: 09/03/08
Date Analyzed: 09/11/08 20:52
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 27.8%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.2	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	12	20	< 20 U
67-72-1	Hexachloroethane	7.0	20	< 20 U
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.8	20	< 20 U
91-20-3	Naphthalene	8.5	20	48
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	63
131-11-3	Dimethylphthalate	7.6	20	17 J
208-96-8	Acenaphthylene	8.4	20	< 20 U
83-32-9	Acenaphthene	8.0	20	48
132-64-9	Dibenzofuran	7.4	20	42
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.7	20	68
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.8	20	< 20 U
87-86-5	Pentachlorophenol	46	97	230
85-01-8	Phenanthrene	8.2	20	490
120-12-7	Anthracene	7.5	20	120
84-74-2	Di-n-Butylphthalate	12	20	19 J
206-44-0	Fluoranthene	7.7	20	550
129-00-0	Pyrene	7.6	20	550
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	250
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	390
218-01-9	Chrysene	6.5	20	270
117-84-0	Di-n-Octyl phthalate	8.1	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	280
207-08-9	Benzo(k) fluoranthene	9.0	20	230
50-32-8	Benzo(a)pyrene	8.0	20	270
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	270 56
53-70-3	Dibenz (a, h) anthracene	8.3	20	17 J
191-24-2	Benzo(g,h,i)perylene	6.6	20	56

2 of 2 Page

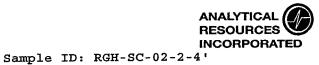
Sample ID: RGH-SC-02-0-2'

SAMPLE

Lab Sample ID: NM56G

LIMS ID: 08-21867

Matrix: Sediment


QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/11/08 20:52

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.0	20	60
•	Reported in μ	g/kg (ppb)		
	Semivolatile Surr	ogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	46.0% 54.4% 48.0% ol 69.3%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	49.29 46.89 44.59 49.69	5

Page 1 of 2

Lab Sample ID: NM56H LIMS ID: 08-21868

Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/11/08 21:26 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 26.1 g-dry-wt

SAMPLE

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 14.6%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	19	< 19 U
541-73-1	1,3-Dichlorobenzene	7.1	19	< 19 U
106-46-7	1,4-Dichlorobenzene	7.1	19	< 19 U
100-51-6	Benzyl Alcohol	14	19	< 19 U
95-50-1	1,2-Dichlorobenzene	7.6	19	< 19 U
95-48-7	2-Methylphenol	14	19	< 19 U
106-44-5	4-Methylphenol	12	19	< 19 U
67-72-1	Hexachloroethane	6.9	19	< 19 U
105-67-9	2,4-Dimethylphenol	14	19	< 19 U
65-85-0	Benzoic Acid	110	190	< 190 U
120-82-1	1,2,4-Trichlorobenzene	8.7	19	< 19 U
91-20-3	Naphthalene	8.3	19	31
87-68-3	Hexachlorobutadiene	7.8	19	< 19 U
91-57-6	2-Methylnaphthalene	7.9	19	< 19 U
131-11-3	Dimethylphthalate	7.4	19	< 19 U
208-96-8	Acenaphthylene	8.3	19	< 19 U
83-32-9	Acenaphthene	7.9	19	< 19 U
132-64-9	Dibenzofuran	7.2	19	< 19 U
84-66-2	Diethylphthalate	16	19	< 19 U
86-73-7	Fluorene	8.6	19	< 19 U
86-30-6	N-Nitrosodiphenylamine	8.3	19	< 19 U
118-74-1	Hexachlorobenzene	7.7	19	< 19 U
87-86-5	Pentachlorophenol	46	96	< 96 U
85-01-8	Phenanthrene	8.1	19	22
120-12-7	Anthracene	7.4	19	< 19 U
84-74-2	Di-n-Butylphthalate	12	19	< 19 Ŭ
206-44-0	Fluoranthene	7.6	19	27
129-00-0	Pyrene	7.4	19	59
85-68-7	Butylbenzylphthalate	11	19	< 19 Ŭ
56-55-3	Benzo(a) anthracene	5.7	19	< 19 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	19	< 19 U
218-01-9	Chrysene	6.4	19	< 19 U
117-84-0	Di-n-Octyl phthalate	8.0	19	< 19 Ŭ
205-99-2	Benzo(b) fluoranthene	9.1	19	< 19 U
207-08-9	Benzo(k)fluoranthene	8.9	19	< 19 Ŭ
50-32-8	Benzo(a)pyrene	7.8	19	< 19 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.2	19	< 19 U
53-70-3	Dibenz(a,h)anthracene	8.2	.19	< 19 U
191-24-2	Benzo(g,h,i)perylene	6.5	19	< 19 U

Page 2 of 2

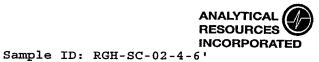
Sample ID: RGH-SC-02-2-4' SAMPLE

Lab Sample ID: NM56H

LIMS ID: 08-21868

Date Analyzed: 09/11/08 21:26

Matrix: Sediment


QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	6.9	19	< 19 U
	Reported in $\mu g/kg$ (ppb)			
	Semivolatile Surrogate Recove	ry		

d5-Nitrobenzene	57.6%	2-Fluorobiphenyl	56.4%
d14-p-Terphenyl	73.2%	d4-1,2-Dichlorobenzene	58.4%
d5-Phenol	52.3%	2-Fluorophenol	53.6%
2,4,6-Tribromophenol	82.1%	d4-2-Chlorophenol	55.5%

Page 1 of 2

Lab Sample ID: NM56I

LIMS ID: 08-21869 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08 Date Analyzed: 09/11/08 21:59

Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 26.2 g-dry-wt

SAMPLE

Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 22.9%

84-74-2 Di-n-Butylphthalate 12 19 < 19 U 206-44-0 Fluoranthene 7.6 19 98 129-00-0 Pyrene 7.4 19 120 85-68-7 Butylbenzylphthalate 11 19 < 19 U 56-55-3 Benzo(a) anthracene 5.7 19 28 117-81-7 bis (2-Ethylhexyl)phthalate 11 19 270 218-01-9 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 < 19 U 205-99-2 Benzo (b) fluoranthene 9.1 19 52 207-08-9 Benzo (k) fluoranthene 8.8 19 52 50-32-8 Benzo (a) pyrene 7.8 19 47 193-39-5 Indeno (1,2,3-cd) pyrene 8.2 19 9.7 J 53-70-3 Dibenz (a, h) anthracene 8.2 19 < 19 U	CAS Number	Analyte	MDL	RL	Result
106-46-7 1,4-Dichlorobenzene 7.0 19 < 19 U	108-95-2		13	19	< 19 U
100-51-6 Benzyl Alcohol 14 19 18 J 95-50-1 1,2-Dichlorobenzene 7.5 19 < 19 U			7.1	19	< 19 U
95-50-1 1,2-Dichlorobenzene 7.5 19 19 U 95-48-7 2-Methylphenol 14 19 < 19 U 106-44-5 4-Methylphenol 12 19 < 19 U 106-44-5 4-Methylphenol 12 19 < 19 U 105-67-9 2,4-Dimethylphenol 14 19 < 19 U 105-67-9 2,4-Dimethylphenol 14 19 < 19 U 105-67-9 2,4-Dimethylphenol 14 19 < 19 U 105-68-0 Benzoic Acid 110 190 250 120-82-1 1,2,4-Trichlorobenzene 8.7 19 < 19 U 91-20-3 Naphthalene 8.3 19 14 J 91-57-6 2-Methylnaphthalene 7.8 19 < 19 U 91-20-3 Naphthalene 7.8 19 < 19 U 91-31-11-3 Dimethylphthalate 7.4 19 590 131-11-3 Dimethylphthalate 7.4 19 590 132-64-9 Dibenzofuran 7.2 19 19 U 132-64-9 Dibenzofuran 7.2 19 < 19 U 132-64-9 Dibenzofuran 7.2 19 < 19 U 18-74-7 Fluorene 8.6 19 < 19 U 18-74-1 Hexachlorobenzene 7.7 19 < 19 U 18-74-1 Hexachlorobenzene 7.7 19 < 19 U 18-74-1 Hexachlorobenzene 7.7 19 < 19 U 18-74-1 Di-n-Butylphthalate 12 19 < 19 U 18-74-1 Di-n-Butylphthalate 12 19 < 19 U 18-65-65-3 Benzo (a) anthracene 7.4 19 10 98 120-12-7 Anthracene 7.4 19 10 98 120-12-7 Butylphthalate 11 19 < 19 U 10 11 19 C 19 U 10 11 19 C 19 U 10 10 10 10 10 10 10 10 10 10 10 10 10	106-46-7	1,4-Dichlorobenzene	7.0	19	< 19 U
95-48-7	100-51-6	Benzyl Alcohol	14	19	18 J
95-48-7	95-50-1	1,2-Dichlorobenzene	7.5	19	< 19 U
106-44-5 4-Methylphenol 12 19 < 19		2-Methylphenol	14	19	
105-67-9	106-44-5	4-Methylphenol	12	19	< 19 U
65-85-0 Benzoic Acid 110 190 250 120-82-1 1,2,4-Trichlorobenzene 8.7 19 < 19	67-72-1		6.9	19	< 19 U
120-82-1 1,2,4-Trichlorobenzene 8.7 19 < 19 U 91-20-3 Naphthalene 8.3 19 14 J 87-68-3 Hexachlorobutadiene 7.8 19 < 19 U 91-91-57-6 2-Methylnaphthalene 7.8 19 16 J 131-11-3 Dimethylphthalate 7.4 19 590 208-96-8 Acenaphthylene 8.3 19 < 19 U 83-32-9 Acenaphthene 7.9 19 < 19 U 83-32-9 Acenaphthene 7.9 19 < 19 U 84-66-2 Diethylphthalate 16 19 < 19 U 86-73-7 Fluorene 8.6 19 < 19 U 86-73-7 Fluorene 8.6 19 < 19 U 87-86-5 Pentachlorobenzene 7.7 19 < 19 U 87-86-5 Pentachlorobenzene 7.7 19 < 19 U 87-86-5 Pentachlorophenol 45 96 170 85-01-8 Phenanthrene 8.0 19 39 120-12-7 Anthracene 7.4 19 11 J 84-74-2 Di-n-Butylphthalate 12 19 < 19 U 82-64-0 Fluoranthene 7.6 19 98 129-00-0 Pyrene 7.4 19 120 85-68-7 Butylbenzylphthalate 11 19 < 19 U 85-65-5 Benzo (a) anthracene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 52 28 117-84-0 Di-n-Octyl phthalate 8.0 19 52 207-08-9 Benzo (b) fluoranthene 8.8 19 52 207-08-9 Benzo (b) fluoranthene 7.8 19 47 19 33-39-5 Indeno (1,2,3-cd) pyrene 8.2 19 9.7 J 53-70-3 Dibenz (a,h) anthracene 8.2 19 9.7 J	105-67-9	2,4-Dimethylphenol	14	19	< 19 U
120-82-1	65-85-0	·	110	190	250
87-68-3 Hexachlorobutadiene 7.8 19 < 19 U 91-57-6 2-Methylnaphthalene 7.8 19 590 131-11-3 Dimethylphthalate 7.4 19 590 208-96-8 Acenaphthylene 8.3 19 < 19 U 33-32-9 Acenaphthene 7.9 19 < 19 U 32-64-9 Dibenzofuran 7.2 19 < 19 U 84-66-2 Diethylphthalate 8.6 19 < 19 U 86-73-7 Fluorene 8.6 19 < 19 U 86-30-6 N-Nitrosodiphenylamine 8.3 19 < 19 U 18-74-1 Hexachlorobenzene 7.7 19 < 19 U 87-86-5 Pentachlorophenol 45 96 170 85-01-8 Phenanthrene 8.0 19 39 120-12-7 Anthracene 7.4 19 11 J 84-74-2 Di-n-Butylphthalate 12 19 < 19 U 206-44-0 Fluoranthene 7.6 19 98 129-00-0 Pyrene 7.4 19 120 85-68-7 Butylbenzylphthalate 11 19 < 19 U 206-568-7 Butylbenzylphthalate 11 19 < 19 U 208-68-1 Butylbenzylphthalate 11 19 < 19 U 208-68-1 Butylbenzylphthalate 11 19 < 19 U 208-68-1 Butylbenzylphthalate 11 19 < 19 U 208-68-7 Butylbenzylphthalate 8.0 19 38 117-81-7 bis (2-Ethylhexyl) phthalate 11 19 < 70 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 52 207-08-9 Benzo (b) fluoranthene 9.1 19 52 207-08-9 Benzo (b) fluoranthene 8.8 19 52 207-08-9 Benzo (c) pyrene 7.8 19 47 193-39-5 Indeno (1, 2, 3-cd) pyrene 8.2 19 9.7 J 53-70-3 Dibenz (a, h) anthracene 8.2 19 9.7 J	120-82-1	1,2,4-Trichlorobenzene	8.7	19	
91-57-6	91-20-3	Naphthalene	8.3	19	14 Ј
131-11-3 Dimethylphthalate 7.4 19 590 208-96-8 Acenaphthylene 8.3 19 < 19 U 83-32-9 Acenaphthene 7.9 19 < 19 U 132-64-9 Dibenzofuran 7.2 19 < 19 U 86-73-7 Fluorene 8.6 19 < 19 U 86-30-6 N-Nitrosodiphenylamine 8.3 19 < 19 U 118-74-1 Hexachlorobenzene 7.7 19 < 19 U 87-86-5 Pentachlorophenol 45 96 170 85-01-8 Phenanthrene 8.0 19 39 120-12-7 Anthracene 7.4 19 11 J 84-74-2 Di-n-Butylphthalate 12 19 < 19 U 206-44-0 Fluoranthene 7.6 19 98 129-00-0 Pyrene 7.4 19 120 85-65-7 Butylbenzylphthalate 11 19 < 19 U 56-55-3 Benzo(a) anthracene 5.7 19 28 117-81-7 bis (2-Ethylhexyl) phthalate 11 19 270 218-01-9 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 52 207-08-9 Benzo(b) fluoranthene 8.8 19 52 207-08-9 Benzo(c) pyrene 8.2 19 9.7 J 193-39-5 Indeno(1,2,3-cd) pyrene 8.2 19 9.7 J 193-39-5 Indeno(1,2,3-cd) pyrene 8.2 19 9.7 J 195-19 U 19 U 19 U 19 U 19 U 19 U 20	87-68-3	Hexachlorobutadiene	7.8	19	< 19 U
131-11-3 Dimethylphthalate 7.4 19 590 208-96-8 Acenaphthylene 8.3 19 < 19	91-57-6	2-Methylnaphthalene	7.8	19	16 Ј
208-96-8 Acenaphthylene 8.3 19 < 19	131-11-3	Dimethylphthalate	7.4	19	590
83-32-9 Acenaphthene 7.9 19 < 19	208-96-8	Acenaphthylene	8.3	19	
132-64-9 Dibenzofuran 7.2 19 < 19	83-32-9	Acenaphthene	7.9		
86-73-7 Fluorene 8.6 19 < 19	132-64-9	Dibenzofuran	7.2	19	
86-30-6 N-Nitrosodiphenylamine 8.3 19 < 19 U		Diethylphthalate	16	19	< 19 U
118-74-1 Hexachlorobenzene 7.7 19 < 19 U	86-73-7		8.6	19	< 19 U
87-86-5 Pentachlorophenol 45 96 170 85-01-8 Phenanthrene 8.0 19 39 120-12-7 Anthracene 7.4 19 11 J 84-74-2 Di-n-Butylphthalate 12 19 < 19 U	86-30-6	N-Nitrosodiphenylamine	8.3	19	< 19 U
85-01-8 Phenanthrene 8.0 19 39 120-12-7 Anthracene 7.4 19 11 J 84-74-2 Di-n-Butylphthalate 12 19 < 19 U			7.7	19	< 19 U
120-12-7 Anthracene 7.4 19 11 J 84-74-2 Di-n-Butylphthalate 12 19 < 19 U	87-86-5	Pentachlorophenol	45	96	170
84-74-2 Di-n-Butylphthalate 12 19 < 19 U 206-44-0 Fluoranthene 7.6 19 98 129-00-0 Pyrene 7.4 19 120 85-68-7 Butylbenzylphthalate 11 19 < 19 U 56-55-3 Benzo(a) anthracene 5.7 19 28 117-81-7 bis(2-Ethylhexyl)phthalate 11 19 270 218-01-9 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 < 19 U 205-99-2 Benzo(b)fluoranthene 9.1 19 52 207-08-9 Benzo(b)fluoranthene 8.8 19 52 207-08-9 Benzo(a)pyrene 7.8 19 47 193-39-5 Indeno(1,2,3-cd)pyrene 8.2 19 9.7 J 53-70-3 Dibenz(a,h)anthracene 8.2 19 < 19 U	85-01-8	Phenanthrene	8.0	19	39
206-44-0 Fluoranthene 7.6 19 98 129-00-0 Pyrene 7.4 19 120 85-68-7 Butylbenzylphthalate 11 19 < 19 U 56-55-3 Benzo(a) anthracene 5.7 19 28 117-81-7 bis(2-Ethylhexyl)phthalate 11 19 270 218-01-9 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 < 19 U 205-99-2 Benzo(b)fluoranthene 9.1 19 52 207-08-9 Benzo(k)fluoranthene 8.8 19 52 207-08-9 Benzo(a)pyrene 7.8 19 47 193-39-5 Indeno(1,2,3-cd)pyrene 8.2 19 9.7 J 53-70-3 Dibenz(a,h)anthracene 8.2 19 < 19 U	120-12-7	Anthracene	7.4	19	11 Ј
206-44-0 Fluoranthene 7.6 19 98 129-00-0 Pyrene 7.4 19 120 85-68-7 Butylbenzylphthalate 11 19 < 19 U	84-74-2	Di-n-Butylphthalate	12	19	< 19 U
129-00-0 Pyrene 7.4 19 120 85-68-7 Butylbenzylphthalate 11 19 < 19 U	206-44-0	Fluoranthene	7.6	19	
85-68-7 Butylbenzylphthalate 11 19 < 19 U	129-00-0	Pyrene	7.4	19	
56-55-3 Benzo(a) anthracene 5.7 19 28 117-81-7 bis(2-Ethylhexyl)phthalate 11 19 270 218-01-9 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 < 19 U	85-68-7	Butylbenzylphthalate	11		
117-81-7 bis(2-Ethylhexyl)phthalate 11 19 270 218-01-9 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 < 19 U	56-55-3	Benzo(a) anthracene	5.7	19	
218-01-9 Chrysene 6.3 19 46 117-84-0 Di-n-Octyl phthalate 8.0 19 < 19 U	117-81-7	bis(2-Ethylhexyl)phthalate	11		
117-84-0 Di-n-Octyl phthalate 8.0 19 < 19 U 205-99-2 Benzo(b) fluoranthene 9.1 19 52 207-08-9 Benzo(k) fluoranthene 8.8 19 52 50-32-8 Benzo(a) pyrene 7.8 19 47 193-39-5 Indeno(1,2,3-cd) pyrene 8.2 19 9.7 J 53-70-3 Dibenz(a,h) anthracene 8.2 19 < 19 U	218-01-9				
205-99-2 Benzo(b) fluoranthene 9.1 19 52 207-08-9 Benzo(k) fluoranthene 8.8 19 52 50-32-8 Benzo(a) pyrene 7.8 19 47 193-39-5 Indeno(1,2,3-cd) pyrene 8.2 19 9.7 J 53-70-3 Dibenz(a,h) anthracene 8.2 19 < 19	117-84-0	_		— -	
207-08-9 Benzo(k) fluoranthene 8.8 19 52 50-32-8 Benzo(a) pyrene 7.8 19 47 193-39-5 Indeno(1,2,3-cd) pyrene 8.2 19 9.7 J 53-70-3 Dibenz(a,h) anthracene 8.2 19 < 19 U	205-99-2				
50-32-8 Benzo(a)pyrene 7.8 19 47 193-39-5 Indeno(1,2,3-cd)pyrene 8.2 19 9.7 J 53-70-3 Dibenz(a,h)anthracene 8.2 19 < 19 U	207-08-9				
193-39-5 Indeno(1,2,3-cd)pyrene 8.2 19 9.7 J 53-70-3 Dibenz(a,h)anthracene 8.2 19 < 19 U	50-32-8				
53-70-3 Dibenz(a,h)anthracene 8.2 19 < 19 U	193-39-5				= *
	53-70-3	Dibenz(a,h)anthracene			
	191-24-2				

Page 2 of 2 Sample ID: RGH-SC-02-4-6'

SAMPLE

55.5%

Lab Sample ID: NM56I LIMS ID: 08-21869

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Matrix: Sediment

Date Analyzed: 09/11/08 21:59

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthaler	ne 6.9	19	12 Ј
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rrogate Recovery		
d5-Nitrobenzene	52.4%	2-Fluorobiphenyl	55.29	.
d14-p-Terphenyl	58.8%	d4-1,2-Dichlorobenzene	52.49	5
d5-Phenol	54.7%	2-Fluorophenol	51.29	វិទ

2,4,6-Tribromophenol 77.6% d4-2-Chlorophenol

Page 1 of 2

Sample ID: RGH-SC-03-0-2' SAMPLE

Lab Sample ID: NM56J LIMS ID: 08-21870 Matrix: Sediment

Data Release Authorized:

Date Extracted: 09/03/08

Date Analyzed: 09/11/08 22:33

Instrument/Analyst: NT4/LJR

Reported: 09/16/08

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17 Date Sampled: 08/27/08

Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 54.7%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.8	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.6	20	23
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	29
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	25
83-32-9	Acenaphthene	8.1	20	24
132-64-9	Dibenzofuran	7.4	20	21
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	31
86-30-6	N-Nitrosodiphenylamine	8.6	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	220
85-01-8	Phenanthrene	8.3	20	350
120-12-7	Anthracene	7.6	20	70
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	520
129-00-0	Pyrene	7.6	20	550
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.8	20	160
117-81-7	bis (2-Ethylhexyl) phthalate	11	20	190
218-01-9	Chrysene	6.5	20	340
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.4	20	210
207-08-9	Benzo(k) fluoranthene	9.1	20	290
50-32-8	Benzo(a) pyrene	8.0	20	220
193-39-5	· — —	8.5	20	48
53-70-3	Indeno(1,2,3-cd)pyrene		20	< 20 U
	Dibenz (a, h) anthracene	8.4		< 20 0 44
191-24-2	Benzo(g,h,i)perylene	6.7	20	44

Page 2 of 2

Sample ID: RGH-SC-03-0-2

SAMPLE

Lab Sample ID: NM56J

LIMS ID: 08-21870 Matrix: Sediment Droject

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/11/08 22:33

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	30

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

55.2%	2-Fluorobiphenyl	59.2%
75.2%	d4-1,2-Dichlorobenzene	51.6%
55.2%	2-Fluorophenol	53.9%
l 77.1%	d4-2-Chlorophenol	58.1%
	75.2% 55.2%	75.2% d4-1,2-Dichlorobenzene 55.2% 2-Fluorophenol

Sample ID: RGH-SC-03-2-4'
SAMPLE

Lab Sample ID: NM56K

LIMS ID: 08-21871 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08
Date Analyzed: 09/11/08 23:07
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 61.2%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	18 J
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	26
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	40
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	33
131-11-3	Dimethylphthalate	7.6	20	19 J
208-96-8	Acenaphthylene	8.5	20	68
83-32-9	Acenaphthene	8.1	20	37
132-64-9	Dibenzofuran	7.4	20	25
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	60
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	720
85-01-8	Phenanthrene	8.2	20	670
120-12-7	Anthracene	7.6	20	260
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	3,500 E
129-00-0	Pyrene	7.6	20	3,500 E
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.8	20	340
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	640
218-01-9	Chrysene	6.5	20	1,500
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	740
207-08-9	Benzo(k) fluoranthene	9.1	20	830
50-32-8	Benzo(a) pyrene	8.0	20	490
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	140
53-70-3	Dibenz (a, h) anthracene	8.4	20	43
191-24-2	Benzo(g,h,i)perylene	6.6	20	150
T71-74-7	penzo (g, n, 1) per y tene	0.0	20	J. J U

Page 2 of 2

Sample ID: RGH-SC-03-2-4'

SAMPLE

Lab Sample ID: NM56K LIMS ID: 08-21871

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Matrix: Sediment Date Analyzed: 09/11/08 23:07

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthaler	e 7.1	20	24
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophene	57.2% 98.4% 61.9% ol 81.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenze 2-Fluorophenol d4-2-Chlorophenol	ne 54 57	.0% .4% .3%

Sample ID: RGH-SC-03-2-4' DILUTION

Lab Sample ID: NM56K LIMS ID: 08-21871

Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/03/08 Date Analyzed: 09/13/08 00:25 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 61.2%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	40	59	< 59 U
541-73-1	1,3-Dichlorobenzene	22	59	< 59 U
106-46-7	1,4-Dichlorobenzene	22	59	< 59 U
100-51-6	Benzyl Alcohol	43	59	< 59 Ū
95-50-1	1,2-Dichlorobenzene	23	59	< 59 U
95-48-7	2-Methylphenol	42	59	< 59 U
106-44-5	4-Methylphenol	38	59	< 59 U
67-72-1	Hexachloroethane	21	59	< 59 U
105-67-9	2,4-Dimethylphenol	44	59	< 59 U
65-85-0	Benzoic Acid	340	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	27	59	< 59 U
91-20-3	Naphthalene	26	59	41 J
87-68-3	Hexachlorobutadiene	24	59	< 59 U
91-57-6	2-Methylnaphthalene	24	59	35 J
131-11-3	Dimethylphthalate	23	59	< 59 Ŭ
208-96-8	Acenaphthylene	26	59	69
83-32-9	Acenaphthene	24	59	36 J
132-64-9	Dibenzofuran	22	59	30 J
84-66-2	Diethylphthalate	48	59	< 59 U
86-73-7	Fluorene	26	59	50 J
86-30-6	N-Nitrosodiphenylamine	26	59	< 59 U
118-74-1	Hexachlorobenzene	24	59	< 59 U
87-86-5	Pentachlorophenol	140	300	600
85-01-8	Phenanthrene	25	59	790
120-12-7	Anthracene	23	59	230
84-74-2	Di-n-Butylphthalate	37	59	< 59 U
206-44-0	Fluoranthene	23	59	4,000
129-00-0	Pyrene	23	59	4,000
85-68-7	Butylbenzylphthalate	33	59	< 59 U
56-55-3	Benzo(a) anthracene	17	59	650
117-81-7	bis(2-Ethylhexyl)phthalate	32	59	600
218-01-9	Chrysene	20	59	1,400
117-84-0	Di-n-Octyl phthalate	25	59	< 59 U
205-99-2	Benzo(b) fluoranthene	28	59	720
207-08-9	Benzo(k) fluoranthene	27	5 <i>9</i>	550
50-32-8	Benzo(a) pyrene	24	59	580
193-39-5	Indeno(1,2,3-cd)pyrene	25	59 59	170
53-70-3	Dibenz (a, h) anthracene	25 25		
191-24-2	Benzo(g,h,i)perylene	25 20	59 59	< 59 U 170

< 59 U

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Analyte

1-Methylnaphthalene

Page 2 of 2

Sample ID: RGH-SC-03-2-4 DILUTION

Lab Sample ID: NM56K LIMS ID: 08-21871

QC Report No: NM56-Hart Crowser, Inc.

Matrix: Sediment

Project: R.G. Haley 17330-17

21

Date Analyzed: 09/13/08 00:25

CAS Number

90-12-0

59

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	58.6%	2-Fluorobiphenyl	66.1%
d14-p-Terphenyl	96.1%	d4-1,2-Dichlorobenzene	54.6%
d5-Phenol	73.0%	2-Fluorophenol	61.3%
2,4,6-Tribromophenol	79.2%	d4-2-Chlorophenol	71.8%
-, -,	13.20	d4-2-chrorophenor	71.8%

Sample ID: RGH-SC-03-4-6' SAMPLE

Lab Sample ID: NM56L

LIMS ID: 08-21872 Matrix: Sediment

Data Release Authorized;

Reported: 09/16/08

Date Extracted: 09/03/08 Date Analyzed: 09/11/08 23:41 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 57.8%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	20
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	14	20	24
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	790
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	490
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	110
83-32-9	Acenaphthene	8.0	20	500
132-64-9	Dibenzofuran	7.4	20	900
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	630
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	210
85-01-8	Phenanthrene	8.2	20	4,300 E
120-12-7	Anthracene	7.6	20	250
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	3,300 E
129-00-0	Pyrene	7.6	20	1,900 E
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	280
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	540
218-01-9	Chrysene	6.5	20	650
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.3	20	390
207-08-9	Benzo(k) fluoranthene	9.1	20	300
50-32-8	Benzo(a)pyrene	8.0	20	180
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	30
53-70-3	Dibenz (a, h) anthracene	8.4	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.6	20	30

Page 2 of 2

Sample ID: RGH-SC-03-4-6' SAMPLE

Lab Sample ID: NM56L LIMS ID: 08-21872 Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/11/08 23:41

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	340
	Reported in μ g	-		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	23.4% 33.8% 24.8% ol 34.9%	2-Fluorobiphenyl d4-1,2-Dichlorober 2-Fluorophenol d4-2-Chlorophenol	nzene 23 23	.0% .0% .0%

Sample ID: RGH-SC-03-4-6'
DILUTION

Lab Sample ID: NM56L LIMS ID: 08-21872

Matrix: Sediment
Data Release Authorized:/

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/03/08
Date Analyzed: 09/13/08 17:46
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 10.0 Percent Moisture: 57.8%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	130	200	< 200 U
541-73-1	1,3-Dichlorobenzene	73	200	< 200 U
106-46-7	1,4-Dichlorobenzene	72	200	< 200 U
100-51-6	Benzyl Alcohol	140	200	< 200 U
95-50-1	1,2-Dichlorobenzene	77	200	< 200 U
95-48-7	2-Methylphenol	140	200	< 200 U
106-44-5	4-Methylphenol	130	200	< 200 U
67-72-1	Hexachloroethane	71	200	< 200 U
105-67-9	2,4-Dimethylphenol	140	200	< 200 U
65-85-0	Benzoic Acid	1100	2,000	< 2,000 U
120-82-1	1,2,4-Trichlorobenzene	89	200	< 200 U
91-20-3	Naphthalene	85	200	950
87-68-3	Hexachlorobutadiene	80	200	< 200 U
91-57-6	2-Methylnaphthalene	80	200	550
131-11-3	Dimethylphthalate	76	200	< 200 U
208-96-8	Acenaphthylene	85	200	140 J
83-32-9	Acenaphthene	80	200	610
132-64-9	Dibenzofuran	74	200	1,100
84-66-2	Diethylphthalate	160	200	< 200 U
86-73-7	Fluorene	88	200	650
86-30-6	N-Nitrosodiphenylamine	85	200	< 200 U
118-74-1	Hexachlorobenzene	79	200	< 200 U
87-86-5	Pentachlorophenol	470	980	< 980 U
85-01-8	Phenanthrene	82	200	6,900
120-12-7	Anthracene	76	200	240
84-74-2	Di-n-Butylphthalate	120	200	< 200 U
206-44-0	Fluoranthene	78	200	4,200
129-00-0	Pyrene	76	200	2,500
85-68-7	Butylbenzylphthalate	110	200	< 200 U
56-55-3	Benzo (a) anthracene	58	200	340
117-81-7	bis(2-Ethylhexyl)phthalate	110	200	540
218-01-9	Chrysene	65	200	750
117-84-0	Di-n-Octyl phthalate	82	200	< 200 U
205-99-2	Benzo (b) fluoranthene	93	200	< 200 0 320
207-08-9	Benzo(k) fluoranthene	91	200	220
50-32-8	Benzo(a) pyrene			
193-39-5	Indeno(1,2,3-cd)pyrene	80	200	160 J
53-70-3	Dibenz (a, h) anthracene	84	200	< 200 U
191-24-2	Benzo(g,h,i)perylene	84	200	< 200 U
ユノエ ¨ムサ¯ム	benzo(g,n,r)peryrene	66	200	< 200 U

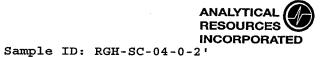
Page 2 of 2

Sample ID: RGH-SC-03-4-6'

DILUTION

Lab Sample ID: NM56L

LIMS ID: 08-21872 Matrix: Sediment


Date Analyzed: 09/13/08 17:46

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	MDL	RL	Result		
90-12-0	1-Methylnaphthalene	71	200	370		
	Reported in $\mu g/kg$ (ppb)					
	Semivolatile Surro	gate Recovery				
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophene	24.0% 34.8% 22.1% ol 26.7%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	27.2 25.6 24.8 24.5	ે જ		

Page 1 of 2

Lab Sample ID: NM56M

LIMS ID: 08-21873 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/12/08 00:15 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

SAMPLE

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 41.3%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	22
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	46
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	130
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	54
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	95
83-32-9	Acenaphthene	8.1	20	110
132-64-9	Dibenzofuran	7.4	20	160
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	180
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	130
85-01-8	Phenanthrene	8.2	20	2,200 E
120-12-7	Anthracene	7.6	20	370
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	2,600 E
129-00-0	Pyrene	7.6	20	2,600 E
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.8	20	140
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	59
218-01-9	Chrysene	6.5	20	1,200
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	750
207-08-9	Benzo(k) fluoranthene	9.1	20	570
50-32-8	Benzo(a) pyrene	8.0	20	550
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	170
53-70-3	Dibenz (a, h) anthracene	8.4	20	33
191-24-2	Benzo(g,h,i)perylene	6.6	20	180

Page 2 of 2

Sample ID: RGH-SC-04-0-2 SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Lab Sample ID: NM56M LIMS ID: 08-21873 Matrix: Sediment

Date Analyzed: 09/12/08 00:15

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	55
	Departed in wall (1)			

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophenol	60.0% 102% 60.8% 85.9%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	66.4% 56.0% 57.6% 62.9%

Page 1 of 2

Lab Sample ID: NM56M LIMS ID: 08-21873

Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08 Date Analyzed: 09/13/08 01:32

Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

DILUTION

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 41.3%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	40	59	< 59 U
541-73-1	1,3-Dichlorobenzene	22	59	< 59 U
106-46-7	1,4-Dichlorobenzene	22	59	< 59 U
100-51-6	Benzyl Alcohol	43	59	< 59 U
95-50-1	1,2-Dichlorobenzene	23	59	< 59 U
95-48-7	2-Methylphenol	42	59	< 59 U
106-44-5	4-Methylphenol	38	59	55 J
67-72-1	Hexachloroethane	21	59	< 59 U
105-67-9	2,4-Dimethylphenol	44	59	< 59 U
65-85-0	Benzoic Acid	340	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	27	59	< 59 U
91-20-3	Naphthalene	26	59	140
87-68-3	Hexachlorobutadiene	24	59	< 59 U
91-57-6	2-Methylnaphthalene	24	59	49 J
131-11-3	Dimethylphthalate	23	59	< 59 U
208-96-8	Acenaphthylene	25	59	100
83-32-9	Acenaphthene	24	59	110
132-64-9	Dibenzofuran	22	59	160
84-66-2	Diethylphthalate	48	59	< 59 U
86-73-7	Fluorene	26	59	180
86-30-6	N-Nitrosodiphenylamine	26	59	< 59 U
118-74-1	Hexachlorobenzene	24	59	< 59 U
87-86-5	Pentachlorophenol	140	290	< 290 U
85-01-8	Phenanthrene	25	59	2,700
120-12-7	Anthracene	23	59	180
84-74-2	Di-n-Butylphthalate	36	59	< 59 U
206-44-0	Fluoranthene	23	59	2,300
129-00-0	Pyrene	23	59	2,500
85-68-7	Butylbenzylphthalate	33	59	< 59 U
56-55-3	Benzo(a) anthracene	17	59	450
117-81-7	bis(2-Ethylhexyl)phthalate	32	59	69
218-01-9	Chrysene	20	59	940
117-84-0	Di-n-Octyl phthalate	25	59	< 59 U
205-99-2	Benzo(b) fluoranthene	28	5 <i>9</i>	< 59 U 570
207-08-9	Benzo(k) fluoranthene	27	59 59	
50-32-8	Benzo(a)pyrene	24		570
193-39-5	Indeno(1,2,3-cd)pyrene	2 4 25	59 50	540
53-70-3	Dibenz (a, h) anthracene	⊿5 25	59 50	190
191-24-2	Benzo(g,h,i)perylene	— -	59	31 J
	(A) w' T' ber A Terre	20	59	190

Page 2 of 2

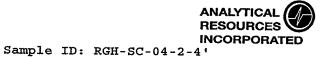
Sample ID: RGH-SC-04-0-2' DILUTION

Lab Sample ID: NM56M LIMS ID: 08-21873 Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17


Date Analyzed: 09/13/08 01:32

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	21	59	58 Ј
	Reported in ug/kg (nnh)			

Reported in μ g/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	59.4%	2-Fluorobiphenyl	65.4%
d14-p-Terphenyl	93.6%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	72.1%	2-Fluorophenol	62.9%
2,4,6-Tribromophenol	79.8%	d4-2-Chlorophenol	71.8%
		ar a entorophenor	11.88

Page 1 of 2

Lab Sample ID: NM56N

LIMS ID: 08-21874 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/12/08 00:49

Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.3 g-dry-wt

SAMPLE

Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 49.9%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.3	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.8	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.0	20	< 20 U
91-20-3	Naphthalene	8.6	20	27
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	< 20 U
131-11-3	Dimethylphthalate	7.7	20	< 20 U
208-96-8	Acenaphthylene	8.6	20	< 20 U
83-32-9	Acenaphthene	8.1	20	< 20 U
132-64-9	Dibenzofuran	7.5	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.9	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.6	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	99	< 99 U
85-01-8	Phenanthrene	8.3	20	34
120-12-7	Anthracene	7.7	20	10 J
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	53
129-00-0	Pyrene	7.7	20	48
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.9	20	13 J
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.6	20	20
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.4	20	< 20 О 18 J
207-08-9	Benzo(k) fluoranthene	9.2	20	
50-32-8	Benzo (a) pyrene	8.1	_	21
193-39-5	Indeno(1,2,3-cd)pyrene	8.5	20	18 J
53-70-3	Dibenz (a, h) anthracene		20	< 20 U
191-24-2	Benzo(g,h,i)perylene	8.5 6.7	20 20	< 20 U < 20 U

Page 2 of 2

Sample ID: RGH-SC-04-2-4 SAMPLE

Lab Sample ID: NM56N

QC Report No: NM56-Hart Crowser, Inc.

LIMS ID: 08-21874 Matrix: Sediment

Project: R.G. Haley

17330-17

Date Analyzed: 09/12/08 00:49

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d14-p-Terphenyl 67.2% d5-Phenol 49.9%	d4-1,2-Dichlorobenzene 2-Fluorophenol	51.2% 50.0% 50.9% 53.3%
--	--	----------------------------------

Sample ID: RGH-SC-04-4-6' SAMPLE

Lab Sample ID: NM560 LIMS ID: 08-21875

Matrix: Sediment
Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08 Date Analyzed: 09/12/08 01:23 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

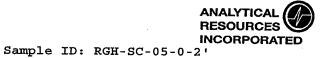
Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 46.7%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48 - 7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	14 J
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	< 20 U
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	< 20 U
83-32-9	Acenaphthene	8.0	20	< 20 U
132-64-9	Dibenzofuran	7.4	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	< 98 U
85-01-8	Phenanthrene	8.2	20	28
120-12-7	Anthracene	7.6	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	31
129-00-0	Pyrene	7.6	20	26
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.5	20	11 Ј
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.3	20	14 J
207-08-9	Benzo(k) fluoranthene	9.1	20	< 20 U
50-32-8	Benzo (a) pyrene	8.0	20	11 J
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.4	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.6	20	< 20 U
	(3/11/1/Porlatoric	0.0	20	< 20 0

Page 2 of 2

Sample ID: RGH-SC-04-4-6' SAMPLE

Lab Sample ID: NM560 LIMS ID: 08-21875 QC Report No: NM56-Hart Crowser, Inc.


Project: R.G. Haley

Matrix: Sediment

Date Analyzed: 09/12/08 01:23

17330-17

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	< 20 U
	Reported in μ	g/kg (ppb)		
	Semivolatile Surr	ogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	54.4% 71.2% 53.1% ol 82.4%	2-Fluorobipheny d4-1,2-Dichlorol 2-Fluorophenol d4-2-Chloropheno	benzene	57.6% 54.4% 54.9% 56.5%

Page 1 of 2

Lab Sample ID: NM56P

LIMS ID: 08-21876 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/12/08 01:57 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.2 g-dry-wt

SAMPLE

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: 58.8%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.3	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.8	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	19 J
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.0	20	< 20 U
91-20-3	Naphthalene	8.6	20	50
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	14 J
131-11-3	Dimethylphthalate	7.7	20	< 20 Ü
208-96-8	Acenaphthylene	8.6	20	37
83-32-9	Acenaphthene	8.2	20	43
132-64-9	Dibenzofuran	7.5	20	21
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.9	20	43
86-30-6	N-Nitrosodiphenylamine	8.6	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	47	99	< 99 U
85-01-8	Phenanthrene	8.3	20	480
120-12-7	Anthracene	7.7	20	150
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	730
129-00-0	Pyrene	7.7	20	640
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	280
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	280 11 J
218-01-9	Chrysene	6.6	20	340
117-84-0	Di-n-Octyl phthalate	8.3	20	-
205-99-2	Benzo (b) fluoranthene	9.5	20 20	< 20 U
207-08-9	Benzo (k) fluoranthene	9.2	20 20	340
50-32-8	Benzo (a) pyrene	8.1		360
193-39-5	Indeno(1,2,3-cd)pyrene		20	380
53-70-3	Dibenz (a, h) anthracene	8.5	20	81
191-24-2	Benzo(g,h,i)perylene	8.5	20	32
	Demao (g, n, r) perytene	6.7	20	80

Page 2 of 2

Sample ID: RGH-SC-05-0-2 SAMPLE

Lab Sample ID: NM56P LIMS ID: 08-21876 Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/12/08 01:57

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.2	20	12 J
	Reported in μ_{2}	g/kg (ppb)		
	Semivolatile Surre	ogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	51.6% 73.2% 50.4% ol 82.1%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	55.68 46.08 49.38 50.18	5

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: RGH-SC-05-2-4' SAMPLE

Lab Sample ID: NM56Q

LIMS ID: 08-21877 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08
Date Analyzed: 09/12/08 21:36
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 56.5%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	< 20 U
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	< 20 U
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	< 20 U
83-32-9	Acenaphthene	8.1	20	< 20 U
132-64-9	Dibenzofuran	7.4	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	< 98 Ü
85-01-8	Phenanthrene	8.3	20	12 J
120-12-7	Anthracene	7.6	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	17 J
129-00-0	Pyrene	7.6	20	19 J
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.5	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.4	20	< 20 U
207-08-9	Benzo(k) fluoranthene	9.1	20	
50-32-8	Benzo (a) pyrene	8.0	20	< 20 U < 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.5	20	< 20 U
53-70-3	Dibenz(a,h)anthracene	8.4	20	
191-24-2	Benzo(g,h,i)perylene	6.6	20	< 20 U < 20 U
	.5	0.0	20	\ 40 U

< 20 U

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Analyte

1-Methylnaphthalene

Page 2 of 2

Sample ID: RGH-SC-05-2-4'
SAMPLE

20

Lab Sample ID: NM56Q LIMS ID: 08-21877

QC Report No: NM56-Hart Crowser, Inc.

Matrix: Sediment

Project: R.G. Haley 17330-17

Date Analyzed: 09/12/08 21:36

CAS Number

90-12-0

\mathtt{MDL}	RL	Result

7.1

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	47.2%	2-Fluorobiphenyl	48.4%
d14-p-Terphenyl	68.8%	d4-1,2-Dichlorobenzene	44.4%
d5-Phenol	53.1%	2-Fluorophenol	49.1%
2,4,6-Tribromophenol	60.3%	d4-2-Chlorophenol	52.3%

Page 1 of 2

Lab Sample ID: NM56R

LIMS ID: 08-21878 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/15/08 14:39 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

Sample ID: RGH-SC-05-4-6' SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 55.5%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	21
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	12	20	23
67-72-1	Hexachloroethane	7.0	20	< 20 U
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	29
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	< 20 U
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	16 J
83-32-9	Acenaphthene	8.0	20	< 20 U
132-64-9	Dibenzofuran	7.4	20	11 Л
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.7	20	20
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.8	20	< 20 U
87-86-5	Pentachlorophenol	46	98	< 98 U
85-01-8	Phenanthrene	8.2	20	470
120-12-7	Anthracene	7.6	20	110
84-74-2	Di-n-Butylphthalate	12	20	< 20 Ü
206-44-0	Fluoranthene	7.7	20	680
129-00-0	Pyrene	7.6	20	610
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	160
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.5	20	250
117-84-0	Di-n-Octyl phthalate	8.1	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.3	20	120
207-08-9	Benzo(k) fluoranthene	9.0	20	150
50-32-8	Benzo(a)pyrene	8.0	20	170
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	— · ·
53-70-3	Dibenz (a, h) anthracene	8.4	20	92
191-24-2	Benzo(g,h,i)perylene	6.6	20	18 J 110

Page 2 of 2

Sample ID: RGH-SC-05-4-6'

SAMPLE

Lab Sample ID: NM56R LIMS ID: 08-21878

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Matrix: Sediment Date Analyzed: 09/15/08 14:39

CAS Number	Analyte		MDL	RL	Result
90-12-0	1-Methylnaphthaler	ıe	7.0	20	< 20 U
Reported in μ g/kg (ppb)					
	Semivolatile Sur	rogate Recover	Y		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophene	57.2% 78.4% 63.5% ol 64.3%	2-Fluorobi d4-1,2-Dic 2-Fluoroph d4-2-Chlor	hlorobenzene enol	÷ 53	. 6% . 2% . 2% . 8%

Page 1 of 2

Lab Sample ID: NM56S

LIMS ID: 08-21879 Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/15/08 15:13

Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

Sample ID: RGH-SC-06-0-2' SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 58.2%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	22
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	38
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	< 20 U
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.5	20	< 20 U
83-32-9	Acenaphthene	8.1	20	< 20 U
132-64-9	Dibenzofuran	7.4	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	. 8.8	20	11 Ј
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	98	< 98 U
85-01-8	Phenanthrene	8.2	20	130
120-12-7	Anthracene	7.6	20	30
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	180
129-00-0	Pyrene	7.6	20	180
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56 - 55-3	Benzo (a) anthracene	5.8	20	52
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.5	20	77
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	40
207-08-9	Benzo(k) fluoranthene	9.1	20	_ -
50-32-8	Benzo(a) pyrene	8.0		58
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	61
53-70-3	Dibenz (a, h) anthracene	8.4 8.4	20	35
191-24-2	Benzo(g,h,i)perylene	8.4 6.6	20	< 20 U
	(A) m/ r / ber A reme	0.0	20	42

Page 2 of 2

Sample ID: RGH-SC-06-0-2'

SAMPLE

53.6%

50.8% 57.6%

60.8%

Lab Sample ID: NM56S

d5-Nitrobenzene

d14-p-Terphenyl

2,4,6-Tribromophenol

d5-Phenol

LIMS ID: 08-21879

Matrix: Sediment

Date Analyzed: 09/15/08 15:13

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

2-Fluorobiphenyl

d4-2-Chlorophenol

2-Fluorophenol

d4-1,2-Dichlorobenzene

17330-17

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	< 20 U
	Reported in μ g/kg (ppb)			
	Semivolatile Surrogate Reco	very		

54.4%

73.6%

62.4%

67.7%

Page 1 of 2

Sample ID: RGH-SC-06-2-4'
SAMPLE

Lab Sample ID: NM56T LIMS ID: 08-21880 Matrix: Sediment

Data Release Authorized:

Date Extracted: 09/03/08

Date Analyzed: 09/15/08 15:47

Instrument/Analyst: NT4/LJR

Reported: 09/16/08

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 52.4%

CAS Number	Analyte	MDL	RL	Result		
108-95-2	Phenol	13	20	15 J		
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U		
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U		
100-51-6	Benzyl Alcohol	14	20	< 20 U		
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U		
95-48-7	2-Methylphenol	14	20	< 20 U		
106-44-5	4-Methylphenol	13	20	89		
67-72-1	Hexachloroethane	7.1	20	< 20 U		
105-67-9	2,4-Dimethylphenol	14	20	15 J		
65-85-0	Benzoic Acid	110	200	< 200 U		
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U		
91-20-3	Naphthalene	8.5	20	120		
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U		
91-57-6	2-Methylnaphthalene	8.0	20	94		
131-11-3	Dimethylphthalate	7.6	20	< 20 U		
208-96-8	Acenaphthylene	8.5	20	16 J		
83-32-9	Acenaphthene	8.0	20	15 J		
132-64-9	Dibenzofuran	7.4	20	32		
84-66-2	Diethylphthalate	16	20	< 20 U		
86-73-7	Fluorene	8.8	20	17 J		
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U		
118-74-1	Hexachlorobenzene	7.9	20	< 20 U		
87-86-5	Pentachlorophenol	47	98	< 98 U		
85-01-8	Phenanthrene	8.2	20	140		
120-12-7	Anthracene	7.6	20	28		
34-74-2	Di-n-Butylphthalate	12	20	< 20 U		
206-44-0	Fluoranthene	7.8	20	120		
L29-00-0	Pyrene	7.6	20	140		
35-68-7	Butylbenzylphthalate	11	20	< 20 U		
56-55-3	Benzo(a) anthracene	5.8	20	54		
L17-81-7	bis(2-Ethylhexyl)phthalate	11	20	14 J		
218-01-9	Chrysene	6.5	20	77		
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U		
205-99-2	Benzo(b) fluoranthene	9.3	20	52		
207-08-9	Benzo(k) fluoranthene	9.1	20	50		
50-32-8	Benzo(a)pyrene	8.0	20	72		
.93-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	38		
3-70-3	Dibenz (a, h) anthracene	8.4	20	< 20 U		
.91-24-2	Benzo(g,h,i)perylene	6.6	20	48		

Page 2 of 2

Sample ID: RGH-SC-06-2-4'

SAMPLE

Lab Sample ID: NM56T

LIMS ID: 08-21880 Matrix: Sediment

Date Analyzed: 09/15/08 15:47

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	\mathtt{MDL}	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	64
	Reported in μ	g/kg (ppb)		
	Semivolatile Surr	ogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	53.2% 66.8% 60.3% ol 59.5%	2-Fluorobiphenyl d4-1,2-Dichlorobenze 2-Fluorophenol d4-2-Chlorophenol	ne 49 56	.6% .2% .0% .6%

Sample ID: RGH-SC-06-4-6' SAMPLE

Lab Sample ID: NM56U LIMS ID: 08-21881

Matrix: Sediment
Data Release Authorized

Date Extracted: 09/03/08

Date Analyzed: 09/12/08 22:09

Instrument/Analyst: NT4/LJR

Reported: 09/16/08

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17 ate Sampled: 08/27/08

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 54.0%

CAS Number	Analyte	MDL	RL	Result		
108-95-2	Phenol	41	59	56 J		
541-73-1	1,3-Dichlorobenzene	22	59	< 59 Ŭ		
106-46-7	1,4-Dichlorobenzene	22	59	< 59 Ŭ		
100-51-6	Benzyl Alcohol	43	59	< 59 U		
95-50-1	1,2-Dichlorobenzene	23	59	< 59 U		
95-48-7	2-Methylphenol	42	59	< 59 U		
106-44-5	4-Methylphenol	38	59	230		
67-72-1	Hexachloroethane	21	59	< 59 U		
105-67-9	2,4-Dimethylphenol	44	59	< 59 U		
65-85-0	Benzoic Acid	340	590	< 590 U		
120-82-1	1,2,4-Trichlorobenzene	27	59	< 59 U		
91-20-3	Naphthalene	26	59	480		
87-68-3	Hexachlorobutadiene	24	59	< 59 U		
91-57-6	2-Methylnaphthalene	24	59	200		
131-11-3	Dimethylphthalate	23	59	< 59 U		
208-96-8	Acenaphthylene	26	59	440		
83-32-9	Acenaphthene	24	59	110		
132-64-9	Dibenzofuran	22	59	180		
84-66-2	Diethylphthalate	49	59	< 59 U		
86-73-7	Fluorene	26	59	440		
86-30-6	N-Nitrosodiphenylamine	26	59	< 59 U		
118-74-1	Hexachlorobenzene	24	59	< 59 Ŭ		
87-86-5	Pentachlorophenol	140	300	< 300 U		
85-01-8	Phenanthrene	25	5.9	3,300		
120-12-7	Anthracene	23	59	1,100		
84-74-2	Di-n-Butylphthalate	37	59	< 59 U		
206-44-0	Fluoranthene	23	59	4,200		
129-00-0	Pyrene	23	59	5,100 E		
85-68-7	Butylbenzylphthalate	33	59	- < 59 U		
56-55-3	Benzo(a) anthracene	18	59	2,100		
117-81-7	bis(2-Ethylhexyl)phthalate	33	59	< 59 U		
218-01-9	Chrysene	20	59	2,300		
117-84-0	Di-n-Octyl phthalate	25	59	< 59 U		
205-99-2	Benzo(b) fluoranthene	28	59	2,100		
207-08-9	Benzo(k) fluoranthene	27	59	1,200		
50-32-8	Benzo(a)pyrene	24	59	2,400		
193-39-5	Indeno(1,2,3-cd)pyrene	25	59	1,300		
53-70-3	Dibenz (a, h) anthracene	25	59	460		
191-24-2	Benzo(g,h,i)perylene	20	59	1,400		

Page 2 of 2

Sample ID: RGH-SC-06-4-6'

SAMPLE

Lab Sample ID: NM56U

LIMS ID: 08-21881 Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/12/08 22:09

CAS Number	Analyte	MDL	RL	Result			
90-12-0	1-Methylnaphthalen	e 21	59	170			
	Reported in μ g/kg (ppb)						
Semivolatile Surrogate Recovery							
d5-Nitrobenzene	65.3%	2-Fluorobipheny	l	67.3%			
d14-p-Terphenyl	102%	d4-1,2-Dichloro	oenzene	59.5%			
d5-Phenol	75.5%	2-Fluorophenol		65.8%			
2,4,6-Tribromophen	ol 85.6%	d4-2-Chloropheno	ol .	71.5%			

Sample ID: RGH-SC-06-4-6'
DILUTION

Lab Sample ID: NM56U

LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized Reported: 09/16/08

orized:

Date Extracted: 09/03/08
Date Analyzed: 09/13/08 17:12
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 10.0 Percent Moisture: 54.0%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	140	200	< 200 U
541-73-1	1,3-Dichlorobenzene	73	200	< 200 U
106-46-7	1,4-Dichlorobenzene	73	200	< 200 U
100-51-6	Benzyl Alcohol	140	200	< 200 U
95-50-1	1,2-Dichlorobenzene	78	200	< 200 U
95-48-7	2-Methylphenol	140	200	< 200 U
106-44-5	4-Methylphenol	130	200	180 Ј
67-72-1	Hexachloroethane	71	200	< 200 U
105-67-9	2,4-Dimethylphenol	150	200	< 200 U
65-85-0	Benzoic Acid	1100	2,000	< 2,000 U
120-82-1	1,2,4-Trichlorobenzene	90	200	< 200 U
91-20-3	Naphthalene	86	200	460
87-68-3	Hexachlorobutadiene	80	200	< 200 U
91-57-6	2-Methylnaphthalene	81	200	190 J
131-11-3	Dimethylphthalate	76	200	< 200 U
208-96-8	Acenaphthylene	85	200	390
83-32-9	Acenaphthene	81	200	110 J
132-64-9	Dibenzofuran	75	200	170 J
84-66-2	Diethylphthalate	160	200	< 200 U
86-73-7	Fluorene	88	200	430
86-30-6	N-Nitrosodiphenylamine	86	200	< 200 U
118-74-1	Hexachlorobenzene	79	200	< 200 U
87-86-5	Pentachlorophenol	470	990	< 990 U
85-01-8	Phenanthrene	83	200	3,500
120-12-7	Anthracene	76	200	1,000
84-74-2	Di-n-Butylphthalate	120	200	< 200 U
206-44-0	Fluoranthene	78	200	4,400
129-00-0	Pyrene	76	200	5,100
85-68-7	Butylbenzylphthalate	110	200	< 200 U
56-55-3	Benzo (a) anthracene	58	200	2,000
117-81-7	bis(2-Ethylhexyl)phthalate	110	200	< 200 U
218-01-9	Chrysene	65	200	2,200
117-84-0	Di-n-Octyl phthalate	82	200	< 200 U
205-99-2	Benzo (b) fluoranthene	94	200	1,800
207-08-9	Benzo(k) fluoranthene	91	200	1,500
50-32-8	Benzo(a) pyrene	80	200	2,300
193-39-5	Indeno(1,2,3-cd)pyrene	85	200	1,200
53-70-3	Dibenz (a, h) anthracene	84	200	200
191-24-2	Benzo(g,h,i)perylene	67	200	1,400
	normo (A) mi ni her l'reme	0 /	200	1,400

Page 2 of 2

Sample ID: RGH-SC-06-4-6' DILUTION

Lab Sample ID: NM56U

LIMS ID: 08-21881

Matrix: Sediment

Date Analyzed: 09/13/08 17:12

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	MDL	RL	Result	
90-12-0	1-Methylnaphthalene	71	200	150 J	
	Reported in μ g/kg (ppb)				

Semivolatile Surrogate Recovery

d5-Nitrobenzene	58.0%	2-Fluorobiphenyl	66.0%
d14-p-Terphenyl	92.4%	d4-1,2-Dichlorobenzene	51.2%
d5-Phenol	60.0%	2-Fluorophenol	57.6%
2,4,6-Tribromophenol	70.7%	d4-2-Chlorophenol	63.5%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Client ID		NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP	TOT OUT
MB-090308		64.8%	63.2%	76.4%	64.4%	62.7%	59.5%	73.3%	61.1%	0
LCS-090308		48.0%	49.2%	54.8%	47.2%	47.5%	45.3%	61.9%	45.6%	0
LCSD-090308		52.4%	54.0%	62.0%	50.0%	52.5%	49.6%	69.1%	50.4%	Ö
RGH-SS-01		47.6%	51.6%	53.2%	43.2%	48.5%	43.2%	63.5%	47.7%	0
RGH-SS-01 MS		55.6%	62.4%	66.4%	53.2%	58.9%	54.1%	85.3%	55.5%	0
RGH-SS-01 MSD		52.8%	54.0%	63.6%	48.0%	55.2%	49.6%	82.1%	53.6%	0
RGH-SS-02		61.6%	62.8%	73.6%	62.4%	66.1%	60.0%	89.1%	64.0%	0
RGH-SS-03		63.6%	64.8%	77.2%	59.2%	65.9%	59.2%	92.8%	63.7%	0
RGH-SC-01-0-2'		60.4%	63.2%	77.2%	58.8%	61.6%	59.2%	91.7%	63.7%	0
RGH-SC-01-2-4'		58.8%	62.8%	80.0%	54.8%	60.8%	56.5%	91.2%	59.2%	0
RGH-SC-01-4-6		60.8%	67.6%	94.4%	61.6%	60.8%	56.5%	87.7%	63.5%	0
RGH-SC-01-4-6'	DL	62.5%	70.0%	98.0%*	64.0%	74.6%	64.8%	82.4%	73.5%	1
RGH-SC-02-0-2'		46.0%	49.2%	54.4%	46.8%	48.0%	44.5%	69.3%	49.6%	0
RGH-SC-02-2-4'		57.6%	56.4%	73.2%	58.4%	52.3%	53.6%	82.1%	55.5%	Ö
RGH-SC-02-4-6'		52.4%	55.2%	58.8%	52.4%	54.7%	51.2%	77.6%	55.5%	Ö
RGH-SC-03-0-2'		55.2%	59.2%	75.2%	51.6%	55.2%	53.9%	77.1%	58.1%	Ö
RGH-SC-03-2-4'		57.2%	62.0%	98.4%*	54.4%	61.9%	57.3%	81.6%	61.3%	1
RGH-SC-03-2-4	\mathtt{DL}	58.6%	66.1%	96.1%	54.6%	73.0%	61.3%	79.2%	71.8%	0
RGH-SC-03-4-6'		23.4%*	26.0%*	33.8%	23.0%*	24.8%*	23.0%	34.9%	25.3%*	
RGH-SC-03-4-6'	${ m DL}$	24.0%*	27.2%*	34.8%	25.6%	22.1%*	24.8%	26.7%	24.5%*	-
RGH-SC-04-0-2'		60.0%	66.4%	102%*	56.0%	60.8%	57.6%	85.9%	62.9%	1
RGH-SC-04-0-2'	DL	59.4%	65.4%	93.6%	54.8%	72.1%	62.9%	79.8%	71.8%	0
RGH-SC-04-2-4		52.4%	51.2%	67.2%	50.0%	49.9%	50.9%	79.2%	53.3%	Ö
RGH-SC-04-4-6'		54.4%	57.6%	71.2%	54.4%	53.1%	54.9%	82,4%	56.5%	Ö
RGH-SC-05-0-2'		51.6%	55.6%	73.2%	46.0%	50.4%	49.3%	82.1%	50.1%	0
RGH-SC-05-2-4'		47.2%	48.4%	68.8%	44.4%	53.1%	49.1%	60.3%	52.3%	0
RGH-SC-05-4-6'		57.2%	59.6%	78.4%	53.2%	63.5%	59.2%	64.3%	60.8%	0
RGH-SC-06-0-2'		54.4%	53.6%	73.6%	50.8%	62.4%	57.6%	67.7%	60.8%	Ō
RGH-SC-06-2-4'		53.2%	55.6%	66.8%	49.2%	60.3%	56.0%	59.5%	57.6%	0
MB-090308		65.6%	64.0%	98.4%	68.0%	73.3%	66.1%	73.9%	72.0%	0
LCS-090308		58.8%	58.8%	87.2%	58.8%	66.9%	61.6%	75.5%	63.2%	Ō
LCSD-090308		57.6%	56.0%	90.4%	53.2%	64.0%	59.7%	76.3%	60.8%	0
RGH-SC-06-4-6'		65.3%	67.3%	102%*	59.5%	75.5%	65.8%	85.6%	71.5%	1
	\mathtt{DL}	58.0%	66.0%	92.4%	51.2%	60.0%	57.6%	70.7%	63.5%	0
RGH-SC-06-4-6	MS	63.8%	71.9%	89.2%	52.6%	73.2%	63.6%	84.0%	66.0%	Ö
RGH-SC-06-4-6'	MSD	56.2%	61.6%	86.2%	53.8%	71.5%	60.0%	74.6%	67.4%	Ö

		LCS/MB LIMITS	OC LIMITS
	= d5-Nitrobenzene	(37-85)	(29-87)
	= 2-Fluorobiphenyl	(39-82)	(32-88)
	= d14-p-Terphenyl	(38-105)	(21-97)
	= d4-1,2-Dichlorobenzene	(33-79)	(25-82)
	= d5-Phenol	(40-85)	(29-85)
	= 2-Fluorophenol	(20-93)	(10-114)
	= 2,4,6-Tribromophenol	(40-96)	(25-103)
(2CP)	= d4-2-Chlorophenol	(41-81)	(30-84)

Prep Method: SW3550B

Log Number Range: 08-21861 to 08-21881

Page 1 of 1

Lab Sample ID: NM56A LIMS ID: 08-21861 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted MS/MSD: 09/03/08

Date Analyzed MS: 09/11/08 16:56

MSD: 09/11/08 17:30

Instrument/Analyst MS: NT4/LJR

MSD: NT4/LJR

GPC Cleanup: YES

Sample ID: RGH-SS-01 MS/MSD

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount MS: 25.7 g-dry-wt

MSD: 25.9 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL

Dilution Factor MS: 1.00

MSD: 1.00

Percent Moisture: 23.5 %

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	r RPD
Phenol	30.3	304	487	56.2%	290	400		
1,3-Dichlorobenzene	< 19.4	230	487	47.2%	290 216	483	53.8%	4.7%
1,4-Dichlorobenzene	< 19.4	224	487	46.0%	216	483	44.7%	6.3%
Benzyl Alcohol	< 19.4	433	973	44.5%		483	44.7%	3.6%
1,2-Dichlorobenzene	< 19.4	220	487	45.2%	409	965	42.4%	5.7%
2-Methylphenol	< 19.4	262	487	53.8%	211	4.83	43.7%	4.2%
4-Methylphenol	< 19.4	649	973	66.7%	264	483	54.7%	0.8%
Hexachloroethane	< 19.4	216	487	44.4%	634	965	65.7%	2.3%
2,4-Dimethylphenol	< 19.4	268	487	55.0%	203	483	42.0%	6.2%
Benzoic Acid	< 194	684	1460	46.8%	267	483	55.3%	0.4%
1,2,4-Trichlorobenzene	< 19.4	274	487	56.3%	772	1450	53.2%	12.1%
Naphthalene	15.3	273	487	52.9%	268	483	55.5%	2.2%
Hexachlorobutadiene	< 19.4	264	487	54.2%	271	483	52.9%	0.7%
2-Methylnaphthalene	14.6	298	487	54.2% 58.2%	245	483	50.7%	7.5%
Dimethylphthalate	< 19.4	288	487		295	483	58.1%	1.0%
Acenaphthylene	9.9	292	487	59.1%	268	483	55.5%	7.2%
Acenaphthene	10.1	302	487	57.9%	295	483	59.0%	1.0%
Dibenzofuran	< 19.4	310	487	59.9%	282	483	56.3%	6.8%
Diethylphthalate	< 19.4	323	487	63.7%	303	483	62.7%	2.3%
Fluorene	< 19.4	333	487 487	66.3%	319	483	66.0%	1.2%
N-Nitrosodiphenylamine	< 19.4	343		68.4%	323	483	66.9%	3.0%
Hexachlorobenzene	< 19.4	343	487	70.4%	345	483	71.4%	0.6%
Pentachlorophenol	83.4	461	487	63.0%	299	483	61.9%	2.6%
Phenanthrene	105	477	487	77.5%	468	483	79.6%	1.5%
Anthracene	23.1	341	487	76.4%	416	483	64.4%	13.7%
Di-n-Butylphthalate	< 19.4	273	487	65.3%	333	483	64.2%	2.4%
Fluoranthene	178	273 607	487	56.1%	233	483	48.2%	15.8%
Pyrene	156		487	88.1%	604	483	88.2%	0.5%
Butylbenzylphthalate	< 19.4	545	487	79.9%	722	483	117%	27.9%
Benzo(a) anthracene	54.7	319	487	65.5%	296	483	61.3%	7.5%
bis(2-Ethylhexyl)phthalate	54.7	410	487	73.0%	591	483		36.2%
Chrysene Chrysene		364	487	45.4%	386	483	50.3%	5.9%
Di-n-Octyl phthalate	85.6	434	487	71.5%	690	483		45.6%
Benzo(b) fluoranthene	< 19.4	252	487	51.7%	271	483	56.1%	7.3%
Benzo(k) fluoranthene	67.7	392	487	66.6%	635	483		47.3%
Benzo(a) pyrene	61.9	517	487	93.4%	596	483		14.2%
Indeno(1,2,3-cd)pyrene	62.9	394	487	68.0%	603	483		41.9%
Dibenz (a,h) anthracene	28.3	260	487	47.6%	270	483	50.0%	3.8%
Benzo(g,h,i)perylene	< 19.4	251	487	51.5%	232	483	48.0%	7.9%
1-Methylnaphthalene	32.6	217	487	37.9%	234	483	41.7%	7.5%
* Meeny maphematene	14.6	307	487	60.0%	303	483	59.7%	1.3%
						- 		1.00

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: NM56A LIMS ID: 08-21861

Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08

Date Analyzed: 09/11/08 16:56 Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

Sample ID: RGH-SS-01 MATRIX SPIKE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17
Date Sampled: 08/26/08
Date Received: 08/28/08

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 23.5%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	
541-73-1	1,3-Dichlorobenzene	7.2	20	
106-46-7	1,4-Dichlorobenzene	7.2	20	
100-51-6	Benzyl Alcohol	14	20	
95-50-1	1,2-Dichlorobenzene	7.7	20	
95-48-7	2-Methylphenol	14	20	
106-44-5	4-Methylphenol	12	20	
67-72-1	Hexachloroethane	7.0	20	
105-67-9	2,4-Dimethylphenol	14	20	
65-85-0	Benzoic Acid	110	200	
120-82-1	1,2,4-Trichlorobenzene	8.8	20	
91-20-3	Naphthalene	8.4	20	
87-68-3	Hexachlorobutadiene	7.9	20	
91-57-6	2-Methylnaphthalene	8.0	20	
131-11-3	Dimethylphthalate	7.6	20	
208-96-8	Acenaphthylene	8.4	20	
83-32-9	Acenaphthene	8.0	20	
132-64-9	Dibenzofuran	7.4	20	
84-66-2	Diethylphthalate	16	20	
86-73-7	Fluorene	8.7	20	
86-30-6	N-Nitrosodiphenylamine	8.4	20	
118-74-1	Hexachlorobenzene	7.8	20	
87-86-5	Pentachlorophenol	46	97	
85-01-8	Phenanthrene	8.2	20	
120-12-7	Anthracene	7.5	20	
84-74-2	Di-n-Butylphthalate	12	20	
206-44-0	Fluoranthene	7.7	20	
129-00-0	Pyrene	7.6	20	
85-68-7	Butylbenzylphthalate	11	20	
56-55-3	Benzo(a)anthracene	5.8	20	
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	
218-01-9	Chrysene	6.5	20	
117-84-0	Di-n-Octyl phthalate	8.1	20	
205-99-2	Benzo(b)fluoranthene	9.3	. 20	
207-08-9	Benzo(k)fluoranthene	9.0	20	
50-32-8	Benzo(a)pyrene	7.9	20	
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	
53-70-3	Dibenz(a,h)anthracene	8.3	20	
191-24-2	Benzo(g,h,i)perylene	6.6	20	

Page 2 of 2

Sample ID: RGH-SS-01 MATRIX SPIKE

Lab Sample ID: NM56A LIMS ID: 08-21861 Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/11/08 16:56

CAS Number	Analyte	MDL	RL	Result				
90-12-0	1-Methylnaphthalene	7.0	20					
	Reported in $\mu g/kg$ (ppb)							
	Semivolatile Surr	ogate Recovery						
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	55.6% 66.4% 58.9% Ol 85.3%	2-Fluorobiphenyl d4-1,2-Dichlorobenzen 2-Fluorophenol d4-2-Chlorophenol	62. e 53. 54. 55.	28 18				

Page 1 of 2

Sample ID: RGH-SS-01

MATRIX SPIKE DUPLICATE

Lab Sample ID: NM56A LIMS ID: 08-21861 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08
Date Analyzed: 09/11/08 17:30
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount: 25.9 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 23.5%

CAS Number	Analyte	MDL	RL	Result		
108-95-2	Phenol	13	19			
541-73-1	1,3-Dichlorobenzene	7.2	19			
106-46-7	1,4-Dichlorobenzene	7.1	19			
100-51-6	Benzyl Alcohol	14				
95-50-1	1,2-Dichlorobenzene	7.6	19			
95-48-7	2-Methylphenol	14	19			
106-44-5	4-Methylphenol	12	19			
67-72-1	Hexachloroethane	6.9	19			
105-67-9	2,4-Dimethylphenol		19			
65-85-0	Benzoic Acid	14	19			
120-82-1	1,2,4-Trichlorobenzene	110	190			
91-20-3	Naphthalene	8.8	19			
87-68-3	Hexachlorobutadiene	8.4	19			
91-57-6	2-Methylnaphthalene	7.8	19			
131-11-3	Dimethylphthalate	7.9	19			
208-96-8	Acenaphthylene	7.5	19			
83-32-9	Acenaphthene	8.4	19			
132-64-9	Dibenzofuran	7.9	19			
34-66-2		7.3	19			
36-73-7	Diethylphthalate Fluorene	16	19			
36-30-6		8.6	19			
L18-74-1	N-Nitrosodiphenylamine	8.4	19			
37-86-5	Hexachlorobenzene	7.7	19			
37-86-3 35-01-8	Pentachlorophenol	46	96			
20-12-7	Phenanthrene	8.1	19			
	Anthracene	7.5	19			
34-74-2	Di-n-Butylphthalate	12	19			
06-44-0	Fluoranthene	7.6	19			
.29-00-0	Pyrene	7.5	19			
5-68-7	Butylbenzylphthalate	11	19			
6-55-3	Benzo(a) anthracene	5.7	19			
17-81-7	bis(2-Ethylhexyl)phthalate	11	19			
18-01-9	Chrysene	6.4	19			
17-84-0	Di-n-Octyl phthalate	8.1				
05-99-2	Benzo(b) fluoranthene	9.2	19			
07-08-9	Benzo(k) fluoranthene		19			
0-32-8	Benzo(a) pyrene	8.9	19			
93-39-5	Indeno(1,2,3-cd)pyrene	7.9	19			
3-70-3	Dibenz(a,h)anthracene	8.3	19			
91-24-2	Benzo(g,h,i)perylene	8.3	19			
	-ome (a) m' 1) bet A felle	6.5	19			

Page 2 of 2

Sample ID: RGH-SS-01

MATRIX SPIKE DUPLICATE

Lab Sample ID: NM56A LIMS ID: 08-21861

Matrix: Sediment

Date Analyzed: 09/11/08 17:30

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	6.9	19	
	Reported in μ g/kg (ppb))		
	Semivolatile Surrogate Reco	overy		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromopher	63.6% d4-1,2- 55.2% 2-Fluor	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol		6 6 6 6

。 1987年 - 1988年 -

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 1

Sample ID: RGH-SC-06-4-6' MS/MSD

Lab Sample ID: NM56U LIMS ID: 08-21881

Matrix: Sediment
Data Release Authorized:

Reported: 09/16/08

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Date Extracted MS/MSD: 09/03/08

Date Analyzed MS: 09/12/08 22:43

MSD: 09/12/08 23:17

Instrument/Analyst MS: NT4/LJR

MSD: NT4/LJR

GPC Cleanup: NO

Sample Amount MS: 25.4 g-dry-wt

MSD: 25.3 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL Dilution Factor MS: 3.00

MSD: 3.00

Percent Moisture: 54.0 %

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	r RPD
Phenol	55.6	380	493	65.8%	365	493	62.8%	4.0%
1,3-Dichlorobenzene	< 59.1	280	493	56.8%	263	493	53.3%	6.3%
1,4-Dichlorobenzene	< 59.1	272	493	55.2%	256	493	51.9%	6.1%
Benzyl Alcohol	< 59.1	675	985	68.5%	668	987	67.7%	1.0%
1,2-Dichlorobenzene	< 59.1	291	493	59.0%	282	493	57.2%	3.1%
2-Methylphenol	< 59.1	388	493	78.7%	368	493	74.6%	5.3%
4-Methylphenol	229	908	985	68.9%	928	987	70.8%	2.2%
Hexachloroethane	< 59.1	267	493	54.2%	271	493	55.0%	1.5%
2,4-Dimethylphenol	< 59.1	385	493	78.1%	361	493	73.2%	6.4%
Benzoic Acid	< 591	379 J	1480	25.6%	353 J	1480	73.28 23.98	6.45 7.18
1,2,4-Trichlorobenzene	< 59.1	310	493	62.9%	288	493	23.95 58.48	7.18 7.48
Naphthalene	480	1030	493	112%	788	493	62.5%	7.48 26.68
Hexachlorobutadiene	< 59.1	320	493	64.9%	291	493	59.0%	
2-Methylnaphthalene	205	576	493	75.3%	530	493	65.9%	9.5%
Dimethylphthalate	< 59.1	368	493	74.6%	337	493	68.4%	8.3%
Acenaphthylene	444	634	493	38.5%	591	493	29.8%	8.8%
Acenaphthene	107	433	493	66.1%	398	493 493		7.0%
Dibenzofuran	179	500	493	65.1%	453	493	59.0%	8.4%
Diethylphthalate	< 59.1	401	493	81.3%	355	493	55.6%	9.9%
Fluorene	439	618	493	36.3%	575	493	72.0%	12.2%
N-Nitrosodiphenylamine	< 59.1	471	493	95.5%	500		27.6%	7.2%
Hexachlorobenzene	< 59.1	374	493	75.9%	342	493	101%	6.0%
Pentachlorophenol	< 296	362	493	73.4%	342	493	69.4%	8.9%
Phenanthrene	3340	1990	493	NA	1950	493	63.9%	13.9%
Anthracene	1120	744	493	NA NA	746	493	NA	2.0%
Di-n-Butylphthalate	< 59.1	403	493	NA 81.7%		493	NA	0.3%
Fluoranthene	4150	2390	493	NA	336	493	68.2%	18.1%
Pyrene	5130	2490	493	NA NA	2370	493	NA	0.8%
Butylbenzylphthalate	< 59.1	414	493	NA 84.0%	3080	493	NA	21.2%
Benzo(a) anthracene	2140	1140	493	84.0* NA	348	493	70.6%	17.3%
bis(2-Ethylhexyl)phthalate	2110 59 1	394	493		1400	493	NA	20.5%
Chrysene	2310	1330	493	79.9% NA	342	493	69.4%	14.1%
Di-n-Octyl phthalate	< 59.1	299	493		1590	493		17.8%
Benzo(b) fluoranthene	2080	1080		60.6%	257	493		15.1%
Benzo(k) fluoranthene	1210	958	493	NA	1210	493		11.4%
Benzo(a) pyrene	2360	958 1260	493	NA	1240	493		25.7%
Indeno(1,2,3-cd)pyrene	1300		493	NA	1530	493		19.4%
Dibenz (a, h) anthracene	463	889	493	NA	998	493		11.6%
Benzo(g,h,i)perylene	463 1420	538	493	15.2%	606	493		11.9%
1-Methylnaphthalene	1420 169	908	493	NA	967	493	NA	6.3%
	103	507	493	68.6%	495	493	66.1%	2.4%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

Page 1 of 2 Sample ID: RGH-SC-06-4-6' MATRIX SPIKE

Lab Sample ID: NM56U LIMS ID: 08-21881

Matrix: Sediment

Data Release Authorized: Reported: 09/16/08

Date Extracted: 09/03/08 Date Analyzed: 09/12/08 22:43

Instrument/Analyst: NT4/LJR GPC Cleanup: No

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 54.0%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	41	59	
541-73-1	1,3-Dichlorobenzene	22	59	
106-46-7	1,4-Dichlorobenzene	22	59	
100-51-6	Benzyl Alcohol	43	59	
95-50-1	1,2-Dichlorobenzene	23	59	
95-48-7	2-Methylphenol	42	59	
106-44-5	4-Methylphenol	38	59	
67-72-1	Hexachloroethane	21	59	
105-67-9	2,4-Dimethylphenol	44	59	
65-85-0	Benzoic Acid	340	590	
120-82-1	1,2,4-Trichlorobenzene	27	59	
91-20-3	Naphthalene	26	59	
87-68-3	Hexachlorobutadiene	24	59	
91-57-6	2-Methylnaphthalene	24	59	
131-11-3	Dimethylphthalate	23	59	
208-96-8	Acenaphthylene	26	59	
83-32-9	Acenaphthene	24	59	
132-64-9	Dibenzofuran	22	59	
84-66-2	Diethylphthalate	48	59	
86-73-7	Fluorene	26	59	
86-30-6	N-Nitrosodiphenylamine	26	59	
118-74-1	Hexachlorobenzene	24	59	
87-86-5	Pentachlorophenol	140	300	
85-01-8	Phenanthrene	25	59	
120-12-7	Anthracene	23	59	
84-74-2	Di-n-Butylphthalate	37	59	
206-44-0	Fluoranthene	23	59	
129-00-0	Pyrene	23	59	
85-68-7	Butylbenzylphthalate	33	59	
56-55-3	Benzo(a) anthracene	18	59	
117-81-7	bis(2-Ethylhexyl)phthalate	33	59	
218-01-9	Chrysene	20	59	
117-84-0	Di-n-Octyl phthalate	25	59	
205-99-2	Benzo (b) fluoranthene	28	5.9	
207-08-9	Benzo(k) fluoranthene	27	59	
50-32-8	Benzo (a) pyrene	24	5 <i>9</i>	
193-39-5	Indeno(1,2,3-cd)pyrene	25	59	
53-70-3	Dibenz (a, h) anthracene	25	59	
191-24-2	Benzo(g,h,i)perylene	20	59	
	(3///	20	ر د	

Page 2 of 2

Sample ID: RGH-SC-06-4-6' MATRIX SPIKE

Lab Sample ID: NM56U LIMS ID: 08-21881

QC Report No: NM56-Hart Crowser, Inc.

Matrix: Sediment

Project: R.G. Haley

17330-17

Date Analyzed: 09/12/08 22:43

CAS Number	Analyte		MDL	RL	Result
90-12-0	1-Methylnaphthalene	21	59		
	Semivolatile Surrogate Recovery				
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophe	63.8% 89.2% 73.2% nol 84.0%	2-Fluorobip d4-1,2-Dich 2-Fluorophe d4-2-Chloro	lorobenzene nol	71.9 52.6 63.6 66.0	8

Page 1 of 2

Sample ID: RGH-SC-06-4-6

MATRIX SPIKE DUPLICATE

Lab Sample ID: NM56U LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized:

Date Extracted: 09/03/08

Date Analyzed: 09/12/08 23:17

Instrument/Analyst: NT4/LJR

Reported: 09/16/08

GPC Cleanup: No

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 54.0%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	41	59	
541-73-1	1,3-Dichlorobenzene	22	59	
106-46-7	1,4-Dichlorobenzene	22	59 ⁻	
100-51-6	Benzyl Alcohol	43	59	
95-50-1	1,2-Dichlorobenzene	23	59	
95-48-7	2-Methylphenol	42	59	
106-44-5	4-Methylphenol	38	59	
67-72-1	Hexachloroethane	21	59	
105-67-9	2,4-Dimethylphenol	44	59	
65-85-0	Benzoic Acid	340	590	
120-82-1	1,2,4-Trichlorobenzene	27	59	
91-20-3	Naphthalene	26	59	
87-68-3	Hexachlorobutadiene	24	59	
91-57-6	2-Methylnaphthalene	24	59	
131-11-3	Dimethylphthalate	23	59	
208-96-8	Acenaphthylene	26	59	
83-32-9	Acenaphthene	24	59	
132-64-9	Dibenzofuran	22	59	
84-66-2	Diethylphthalate	49	59	
86-73-7	Fluorene	27	59	
86-30-6	N-Nitrosodiphenylamine	26	59	
118-74-1	Hexachlorobenzene	24	59	-
87-86-5	Pentachlorophenol	140	300	
85-01-8	Phenanthrene	25	59	
120-12-7	Anthracene	23	59	
84-74-2	Di-n-Butylphthalate	37	59	
206-44-0	Fluoranthene	23	59	
129-00-0	Pyrene	23	59	
85-68-7	Butylbenzylphthalate	33	59	
56-55-3	Benzo (a) anthracene	18	59	
117-81-7	bis(2-Ethylhexyl)phthalate	33	59	
218-01-9	Chrysene	20	59	
117-84-0	Di-n-Octyl phthalate	25	59	
205-99-2	Benzo(b) fluoranthene	28	59	
207-08-9	Benzo(k) fluoranthene	27	59	
50-32-8	Benzo(a) pyrene	24	59	
193-39-5	Indeno(1,2,3-cd)pyrene	25	59 59	
53-70-3	Dibenz (a, h) anthracene	25 25	59 59	
191-24-2	Benzo(g,h,i)perylene	20	59 59	
	.5,, -, -, -, -, -, -, -, -, -, -, -, -, -,	20	53	

Page 2 of 2

Sample ID: RGH-SC-06-4-6' MATRIX SPIKE DUPLICATE

Lab Sample ID: NM56U

LIMS ID: 08-21881 Matrix: Sediment

Date Analyzed: 09/12/08 23:17

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	21	59	·

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	56.2%	2-Fluorobiphenyl	61.6%
d14-p-Terphenyl	86.2%	d4-1,2-Dichlorobenzene	53.8%
d5-Phenol	71.5%	2-Fluorophenol	60.0%
2,4,6-Tribromophen	ol 74.6%	d4-2-Chlorophenol	67.4%

Page 1 of 2

Lab Sample ID: LCS-090308

LIMS ID: 08-21861 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Sample Amount LCS: 25.0 g

LCSD: 25.0 g

LCS/LCSD

Final Extract Volume LCS: 0.5 $\mbox{m}\bar{\mbox{L}}$

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Sample ID: LCS-090308

Percent Moisture: NA

Date Extracted LCS/LCSD: 09/03/08

Date Analyzed LCS: 09/11/08 15:15

LCSD: 09/11/08 15:49

Instrument/Analyst LCS: NT4/LJR

LCSD: NT4/LJR

GPC Cleanup: YES

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	253	500	50.6%	278	500	55.6%	0.48
1,3-Dichlorobenzene	212	500	42.4%	225	500	45.0%	9.4%
1,4-Dichlorobenzene	210	500	42.0%	227	500		5.9%
Benzyl Alcohol	403	1000	40.3%	445	1000	45.4% 44.5%	7.8%
1,2-Dichlorobenzene	199	500	39.8%	216	500	44.5%	9.9%
2-Methylphenol	219	500	43.8%	258	500	43.28 51.6%	8.2%
4-Methylphenol	497	1000	49.7%	593	1000	59.3%	16.4%
Hexachloroethane	189	500	37.8%	209	500		17.6%
2,4-Dimethylphenol	204	500	40.8%	219	500	41.8%	10.1%
Benzoic Acid	782	1500	52.1%	897	1500	43.8%	7.18
1,2,4-Trichlorobenzene	238	500	47.6%	260	500	59.8%	13.7%
Naphthalene	225	500	45.0%	245	500	52.0%	8.8%
Hexachlorobutadiene	240	500	48.0%	256	500	49.0%	8.5%
2-Methylnaphthalene	233	500	46.6%	263	500	51.2%	6.5%
Dimethylphthalate	259	500	51.8%	293	500	52.6%	12.1%
Acenaphthylene	234	500	46.8%	246	500	58.6%	12.3%
Acenaphthene	231	500	46.2%	256	500	49.2% 51.2%	5.0%
Dibenzofuran	249	500	49.8%	279	500		10.3%
Diethylphthalate	318	500	63.6%	346	500	55.8%	11.4%
Fluorene	257	500	51.4%	290	500	69.2% 58.0%	8.4%
N-Nitrosodiphenylamine	355	500	71.0%	388	500		12.1%
Hexachlorobenzene	264	500	52.8%	299	500	77.6%	8.9%
Pentachlorophenol	308	500	61.6%	356	500	59.8%	12.4%
Phenanthrene	269	500	53.8%	302	500	71.2%	14.5%
Anthracene	256	500	51.2%	279	500	60.4%	11.6%
Di-n-Butylphthalate	300	500	60.0%	351		55.8%	8.6%
Fluoranthene	308	500	61.6%	354	500	70.2%	15.7%
Pyrene	246	500	49.2%	280	500	70.8%	13.9%
Butylbenzylphthalate	266	500	53.2%	280 306	500	56.0%	12.9%
Benzo(a) anthracene	274	500	54.8%		500	61.2%	14.0%
bis(2-Ethylhexyl)phthalate	277	500	55.4%	311	500	62.2%	12.6%
Chrysene	274	500	54.8%	325	500	65.0%	15.9%
Di-n-Octyl phthalate	237	500	54.88 47.48	319	500	63.8%	15.2%
Benzo(b) fluoranthene	298	500		275	500	55.0%	14.8%
,	ی ر یہ	500	59.6%	353	500	70.6%	16.9%

Page 2 of 2

Sample ID: LCSD-090308 LCS/LCSD

Lab Sample ID: LCS-090308

QC Report No: NM56-Hart Crowser, Inc.

LIMS ID: 08-21861

Project: R.G. Haley

Matrix: Sediment

17330-17

Date Analyzed LCS: 09/11/08 15:15 LCSD: 09/11/08 15:49

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(k)fluoranthene	331	500	66.2%	374	500	74.8%	12.2%
Benzo(a)pyrene	243	500	48.6%	258	500	51.6%	6.0%
Indeno(1,2,3-cd)pyrene	268	500	53.6%	346	500	69.2%	25.4%
Dibenz(a,h)anthracene	306	500	61.2%	344	500	68.8%	11.7%
Benzo(g,h,i)perylene	292	500	58.4%	330	500	66.0%	12.2%
1-Methylnaphthalene	244	500	48.8%	269	500	53.8%	9.7%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	48.0%	52.4%
2-Fluorobiphenyl	49.2%	54.0%
d14-p-Terphenyl	54.8%	62.0%
d4-1,2-Dichlorobenzene	47.2%	50.0%
d5-Phenol	47.5%	52.5%
2-Fluorophenol	45.3%	49.6%
2,4,6-Tribromophenol	61.9%	69.1%
d4-2-Chlorophenol	45.6%	50.4%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: LCS-090308

LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Date Extracted LCS/LCSD: 09/03/08 Sample Amount LCS: 25.0 g

LCSD: 25.0 g

LCS/LCSD

Date Analyzed LCS: 09/12/08 20:29 Final Extract Volume LCS: 0.5 mL LCSD: 09/12/08 21:03

LCSD: 0.5 mL

Dilution Factor LCS: 1.00 Instrument/Analyst LCS: NT4/LJR LCSD: NT4/LJR

LCSD: 1.00

Sample ID: LCS-090308

GPC Cleanup: NO Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Phenol	351	500	70.2%	347	500	69.4%	1.1%
1,3-Dichlorobenzene	281	500	56.2%	275	500	55.0%	2.2%
1,4-Dichlorobenzene	285	500	57.0%	277	500	55.4%	2.8%
Benzyl Alcohol	520	1000	52.0%	483	1000	48.3%	7.4%
1,2-Dichlorobenzene	295	500	59.0%	289	500	57.8%	2.1%
2-Methylphenol	309	500	61.8%	327	500	65.4%	5.7%
4-Methylphenol	632	1000	63.2%	650	1000	65.0%	2.8%
Hexachloroethane	275	500	55.0%	268	500	53.6%	2.6%
2,4-Dimethylphenol	275	500	55.0%	288	500	57.6%	4.6%
Benzoic Acid	1120	1500	74.7%	1170	1500	78.0%	4.4%
1,2,4-Trichlorobenzene	284	500	56.8%	286	500	57.2%	0.7%
Naphthalene	295	500	59.0%	300	500	60.0%	1.7%
Hexachlorobutadiene	293	500	58.6%	295	500	59.0%	0.7%
2-Methylnaphthalene	319	500	63.8%	328	500	65.6%	2.8%
Dimethylphthalate	349	500	69.8%	362	500	72.4%	3.7%
Acenaphthylene	304	500	60.8%	303	500	60.6%	0.3%
Acenaphthene	301	500	60.2%	305	500	61.0%	1.3%
Dibenzofuran	326	500	65.2%	331	500	66.2%	1.5%
Diethylphthalate	374	500	74.8%	390	500	78.0%	4.2%
Fluorene	330	500	66.0%	348	500	69.6%	5.3%
N-Nitrosodiphenylamine	399	500	79.8%	442	500	88.4%	10.2%
Hexachlorobenzene	322	500	64.4%	339	500	67.8%	5.1%
Pentachlorophenol	335	500	67.0%	352	500	70.4%	4.9%
Phenanthrene	340	500	68.0%	359	500	71.8%	5.4%
Anthracene	309	500	61.8%	323	500	64.6%	4.4%
Di-n-Butylphthalate	374	500	74.8%	390	500	78.0%	4.2%
Fluoranthene	353	500	70.6%	370	500	74.0%	4.7%
Pyrene	405	500	81.0%	439	500	87.8%	8.1%
Butylbenzylphthalate	410	500	82.0%	426	500	85.2%	3.8%
Benzo(a)anthracene	356	500	71.2%	380	500	76.0%	6.5%
bis(2-Ethylhexyl)phthalate	389	500	77.8%	385	500	77.0%	1.0%
Chrysene	376	500	75.2%	393	500	78.6%	4.4%
Di-n-Octyl phthalate	323	500	64.6%	327	500	65.4%	1.2%
Benzo(b) fluoranthene	424	500	84.8%	424	500	84.8%	0.0%

Page 2 of 2

Sample ID: LCSD-090308

LCS/LCSD

Lab Sample ID: LCS-090308

QC Report No: NM56-Hart Crowser, Inc.

LIMS ID: 08-21881

Project: R.G. Haley

17330-17

Matrix: Sediment

Date Analyzed LCS: 09/12/08 20:29

LCSD: 09/12/08 21:03

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(k) fluoranthene	447	500	89.4%	439	500	87.8%	1.8%
Benzo(a)pyrene	314	500	62.8%	318	500	63.6%	1.3%
Indeno(1,2,3-cd)pyrene	420	500	84.0%	416	500	83.2%	1.0%
Dibenz(a,h)anthracene	410	500	82.0%	400	500	80.0%	2.5%
Benzo(q,h,i)perylene	393	500	78.6%	388	500	77.6%	1.3%
1-Methylnaphthalene	326	500	65.2%	342	500	68.4%	4.8%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	58.8%	57.6%
2-Fluorobiphenyl	58.8%	56.0%
d14-p-Terphenyl	87.2%	90.4%
d4-1,2-Dichlorobenzene	58.8%	53.2%
d5-Phenol	66.9%	64.0%
2-Fluorophenol	61.6%	59.7%
2,4,6-Tribromophenol	75.5%	76.3%
d4-2-Chlorophenol	63.2%	60.8%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

NM56MBS1

Lab Name: ANALYTICAL RESOURCES, INC

Client: HART CROWSER, INC.

ARI Job No: NM56

Project: R.G. HALEY

Lab File ID: NM56MB

Date Extracted: 09/03/08

Instrument ID: NT4

Date Analyzed: 09/11/08

Matrix: SOLID

Time Analyzed: 1442

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	1 735		
		LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
` ^1	====================================	========	=========	========
01		NM56LCSS1	NM56SB	09/11/08
	NM56LCSDS1	NM56LCSDS1	NM56SBD	09/11/08
03	RGH-SS-01	NM56A	NM56A	09/11/08
04	,	NM56AMS	NM56AMS	09/11/08
	RGH-SS-01 MSD	NM56AMSD	NM56AMD	09/11/08
06		NM56B	NM56B	09/11/08
07	RGH-SS-03	NM56C	NM56C	09/11/08
08	RGH-SC-01-0-2'	NM56D	NM56D	09/11/08
09	RGH-SC-01-2-4'	NM56E	NM56E	09/11/08
10	RGH-SC-01-4-6'	NM56F	NM56F	09/11/08
11	RGH-SC-02-0-2'	NM56G	NM56G	09/11/08
12	RGH-SC-02-2-4'	NM56H	NM56H	09/11/08
13	RGH-SC-02-4-6'	NM56I	NM56I	09/11/08
14	RGH-SC-03-0-2'	NM56J	NM56J	09/11/08
15	RGH-SC-03-2-4'	NM56K	NM56K	09/11/08
16	RGH-SC-03-4-6'	NM56L	NM56L	09/11/08
17	RGH-SC-04-0-2'	NM56M	NM56M	09/12/08
18	RGH-SC-04-2-4'	NM56N	NM56N	09/12/08
19	RGH-SC-04-4-6'	NM560	NM560	09/12/08
20	RGH-SC-05-0-2'	NM56P	NM56P	09/12/08
21	RGH-SC-05-2-4'	NM560	NM56Q2	09/12/08
22	RGH-SC-01-4-6'	NM56F	NM56FDL	09/12/08
	RGH-SC-03-2-4'	NM56K	NM56KDL	09/12/08
	RGH-SC-03-4-6'	NM56L	NM56LDL	09/13/08
	RGH-SC-04-0-2		NM56MDL	09/13/08
J	I		TALLOCITIO	09/13/08
•			- 	

	_						
$\overline{}$	\sim	NA.	ľМ	יתו	NTIT	rs.	
ι.		ш	I V	н.	M.	-	۰

SEMIVOLATILE METHOD BLANK SUMMARY

BLANK NO.

NM56MBS1

Lab Name: ANALYTICAL RESOURCES, INC Client: HART CROWSER, INC.

ARI Job No: NM56

Lab File ID: NM56MB

Instrument ID: NT4

Matrix: SOLID

Project: R.G. HALEY

Date Extracted: 09/03/08

Date Analyzed: 09/11/08

Time Analyzed: 1442

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	TAD	1 22
	CAMPLE NO		LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	==============	=========	=========	=======
01	RGH-SC-03-4-6'	NM56L	NM56LDL2	09/13/08
02	RGH-SC-05-4-6'	NM56R	NM56R	1 03/13/00
03	RGH-SC-06-0-2'	MISOR		09/15/08
	RGH-5C-06-0-2	NM56S	NM56S	09/15/08
04	RGH-SC-06-2-4'	NM56T	NM56T	09/15/08
05				100, 20, 00
06				ļ [
07				ll
				l
08				
09				
10				
11				
12				
13				
			97	
14				
15				
16				
17				·
18	· · · · · · · · · · · · · · · · · · ·		-	
19				
20				
21				
22				
23				
24				
24				
25				
26				
27				
28				
29	· · · · · · · · · · · · · · · · · · ·			
47				

COMMENTS:	

Page 1 of 2

Lab Sample ID: MB-090308

LIMS ID: 08-21861 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08
Date Analyzed: 09/11/08 14:42
Instrument/Analyst: NT4/LJR

GPC Cleanup: Yes

Sample ID: MB-090308 METHOD BLANK

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g
Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.4	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	120	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.1	200	< 200 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.8	20	< 20 U
208-96-8	Acenaphthylene	8.7	20	< 20 U
83-32-9	Acenaphthene	8.2	20	
132-64-9	Dibenzofuran	7.6	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	9.0	20	35
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	48		< 20 U
85-01-8	Phenanthrene	8.4	100 20	< 100 U
120-12-7	Anthracene	7.7		< 20 U
84-74-2	Di-n-Butylphthalate	12	20 20	< 20 U
206-44-0	Fluoranthene	7.9	20 20	< 20 U
129-00-0	Pyrene	7.8		< 20 U
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.9	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate		20	< 20 U
218-01-9	Chrysene	11	20	< 20 U
117-84-0	Di-n-Octyl phthalate	6.6 8.3	20	< 20 U
205-99-2	Benzo (b) fluoranthene		20	< 20 U
207-08-9	Benzo(k) fluoranthene	9.5	20	< 20 U
50-32-8	Benzo (a) pyrene	9.3	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.2	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.6	20	< 20 U
191-24-2	Benzo (g, h, i) perylene	8.6	20	< 20 U
	pourso (A'n'r) ber Areme	6.8	20	< 20 U

Page 2 of 2

Sample ID: MB-090308 METHOD BLANK

Lab Sample ID: MB-090308

LIMS ID: 08-21861 Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/11/08 14:42

CAS Number	Analyte		MDL	RL	Result
90-12-0	1-Methylnaphthalene		7.2	20	< 20 U
	Semivolatile Surr	ogate Recovery	<i>r</i>		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	64.8% 76.4% 62.7% ol 73.3%	2-Fluorobir d4-1,2-Dich 2-Fluorophe d4-2-Chloro	lorobenzene nol	63. 64. 59.	48 58

SEMIVOLATILE METHOD BLANK SUMMARY

BLANK NO.

NM56MBS2

Lab Name: ANALYTICAL RESOURCES, INC Client: HART CROWSER, INC.

ARI Job No: NM56

Lab File ID: NM56MB2

Instrument ID: NT4

Matrix: SOLID

Project: R.G. HALEY

Date Extracted: 09/03/08

Date Analyzed: 09/12/08

Time Analyzed: 1955

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	THE CT CCCC	========	=========	=======
02	-11 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	NM56LCSS2	NM56SB2	09/12/08
03		NM56LCSDS2	NM56SBD2	09/12/08 09/12/08
04		NM56U NM56UMS	NM56U	09/12/08
05		NM56UMSD	NM56UMS NM56UMD	09/12/08
06	RGH-SC-06-4-6'	NM56U	NM56UDL	09/12/08 09/13/08
07		1111500	MASCODE	09/13/08
80				
09				
10 11				
12				
13				
14				
15				
16				
17				
18 19				
20				
21				
22				
23				
24		<u></u> -		
25				
26				
27 28				
29				
30				
J 0 1.	 Ì.			

COMMENTS:		

Sample ID: MB-090308 METHOD BLANK

Lab Sample ID: MB-090308

LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized:

Reported: 09/16/08

Date Extracted: 09/03/08
Date Analyzed: 09/12/08 19:55
Instrument/Analyst: NT4/LJR

GPC Cleanup: No

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g
Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.4	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	120	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.8	20	< 20 U
208-96-8	Acenaphthylene	8.7	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.6	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	9.0	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	48	100	< 100 U
85-01-8	Phenanthrene	8.4	20	< 20 U
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	< 20 U
129-00-0	Pyrene	7.8	20	< 20 U
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.6	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo(b)fluoranthene	9.5	20	< 20 U
207-08-9	Benzo(k)fluoranthene	9.3	20	< 20 U
50-32-8	Benzo(a)pyrene	8.2	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.6	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.6	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.8	20	< 20 U

Sample ID: MB-090308 METHOD BLANK

Lab Sample ID: MB-090308

LIMS ID: 08-21881

Matrix: Sediment
Date Analyzed: 09/12/08 19:55

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

CAS Number	Analyte	MDL	RL	Result		
90-12-0	1-Methylnaphthalene	7.2	20	< 20 U		
Semivolatile Surrogate Recovery						
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	65.6% 98.4% 73.3% ol 73.9%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	64.0 68.0 66.1 72.0) 8 . 8		

Sample ID: RGH-SC-03-4-6'
REEXTRACT

Lab Sample ID: NM56L

LIMS ID: 08-21872 Matrix: Sediment

Data Release Authorized:

Reported: 09/29/08

ed:

Date Extracted: 09/17/08
Date Analyzed: 09/27/08 03:25
Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

Sample Amount: 4.22 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 57.8%

Project: R.G. Haley

Date Sampled: 08/27/08

Date Received: 08/28/08

QC Report No: NM56-Hart Crowser, Inc.

17330-17

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	81	120	< 120 U
541-73-1	1,3-Dichlorobenzene	44	120	< 120 U
106-46-7	1,4-Dichlorobenzene	44	120	< 120 U
100-51-6	Benzyl Alcohol	86	120	< 120 U
95-50-1	1,2-Dichlorobenzene	47	120	< 120 U
95-48-7	2-Methylphenol	84	120	< 120 U
106-44-5	4-Methylphenol	76	120	< 120 U
67-72-1	Hexachloroethane	43	120	< 120 U
105-67-9	2,4-Dimethylphenol	88	120	< 120 U
65-85-0	Benzoic Acid	680	1,200	< 1,200 U
120-82-1	1,2,4-Trichlorobenzene	54	120	< 120 U
91-20-3	Naphthalene	51	120	< 120 U
87-68-3	Hexachlorobutadiene	48	120	< 120 U
91-57-6	2-Methylnaphthalene	49	120	< 120 U
131-11-3	Dimethylphthalate	46	120	< 120 U
208-96-8	Acenaphthylene	51	120	< 120 U
83-32-9	Acenaphthene	49	120	< 120 U
132-64-9	Dibenzofuran	45	120	< 120 U
84-66-2	Diethylphthalate	97	120	< 120 U
86-73-7	Fluorene	53	120	< 120 U
86-30-6	N-Nitrosodiphenylamine	51	120	< 120 U
118-74-1	Hexachlorobenzene	48	120	< 120 U
87-86-5	Pentachlorophenol	280	590	< 590 U
85-01-8	Phenanthrene	50	120	230
120-12-7	Anthracene	46	120	79 J
84-74-2	Di-n-Butylphthalate	73	120	< 120 U
206-44-0	Fluoranthene	47	120	550
129-00-0	Pyrene	46	120	630
85-68-7	Butylbenzylphthalate	66	120	69 Ј
56-55-3	Benzo (a) anthracene	35	120	260
117-81-7	bis(2-Ethylhexyl)phthalate	65	120	470
218-01-9	Chrysene	39	120	370
117-84-0	Di-n-Octyl phthalate	49	120	< 120 U
205-99-2	Benzo(b) fluoranthene	56	120	320
207-08-9	Benzo(k) fluoranthene	55	120	210
50-32-8	Benzo (a) pyrene	48	120	230
193-39-5	Indeno(1,2,3-cd)pyrene	51	120	72 J
53-70-3	Dibenz (a, h) anthracene	51	120	< 120 U
191-24-2	Benzo(g,h,i)perylene	40	120 120	86 J
T3T-74-7	benzo (g, n, 1) peryrene	*****	120	60 U

Page 2 of 2

Sample ID: RGH-SC-03-4-6

REEXTRACT

Lab Sample ID: NM56L

LIMS ID: 08-21872 Matrix: Sediment QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Analyzed: 09/27/08 03:25

CAS Number	Analyte	MDL	RL	Result		
90-12-0	1-Methylnaphthalen	e 43	120	< 120 U		
Reported in μ g/kg (ppb)						
Semivolatile Surrogate Recovery						
d5-Nitrobenzene	54.4%	2-Fluorobiphenyl		62.4%		
d14-p-Terphenyl 82.0% d4		d4-1,2-Dichlorobe	nzene	54.4%		
d5-Phenol	60.3%	2-Fluorophenol		53.3%		
2,4,6-Tribromophenol 75.2% d4		d4-2-Chlorophenol		60.5%		

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP TO	TUO T
MB-091708	54.8%	59.2%	70.0%	55.6%	59.7%	52.5%	71.2%	58.9%	0
LCS-091708	54.8%	68.0%	88.88	53.6%	62.1%	54.7%	88.3%	58.9%	0
RGH-SC-03-4-6'	23.4%*	26.0%*	33.8%	23.0%*	24.8%*	23.0%	34.9%	25.3%*	5
RGH-SC-03-4-6' DL	24.0%*	27.2%*	34.8%	25.6%	22.1%*	24.8%	26.7%	24.5%*	4
RGH-SC-03-4-6' RE	54.4%	62.4%	82.0%	54.4%	60.3%	53.3%	75.2%	60.5%	0

	LCS/MB LIMITS	QC LIMITS
= d5-Nitrobenzene	(37-85)	(29-87)
= 2-Fluorobiphenyl	(39-82)	(32-88)
= d14-p-Terphenyl	(38-105)	(21-97)
= d4-1,2-Dichlorobenzene	(33-79)	(25-82)
= d5-Phenol	(40-85)	(29-85)
= 2-Fluorophenol	(20-93)	(10-114)
= 2,4,6-Tribromophenol	(40-96)	(25-103)
= d4-2-Chlorophenol	(41-81)	(30-84)
	<pre>= 2-Fluorobiphenyl = d14-p-Terphenyl = d4-1,2-Dichlorobenzene = d5-Phenol = 2-Fluorophenol = 2,4,6-Tribromophenol</pre>	= d5-Nitrobenzene (37-85) = 2-Fluorobiphenyl (39-82) = d14-p-Terphenyl (38-105) = d4-1,2-Dichlorobenzene (33-79) = d5-Phenol (40-85) = 2-Fluorophenol (20-93) = 2,4,6-Tribromophenol (40-96)

Prep Method: SW3550B

Log Number Range: 08-21872 to 08-21872

Sample ID: LCS-091708 LAB CONTROL

Lab Sample ID: LCS-091708

LIMS ID: 08-21872 Matrix: Sediment

Data Release Authorized:

Reported: 09/29/08

Date Extracted: 09/17/08
Date Analyzed: 09/26/08 18:12
Instrument/Analyst: NT6/LJR

GPC Cleanup: YES

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount: 25.0 g
Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: NA

	Lab	Spike	
Analyte	Control	Added	Recovery
Phenol	281	500	56.2%
1,3-Dichlorobenzene	280	500	56.0%
1,4-Dichlorobenzene	281	500	56.2%
Benzyl Alcohol	287	1000	28.7%
1,2-Dichlorobenzene	278	500	55.6%
2-Methylphenol	276	500	55.2%
4-Methylphenol	582	1000	58.2%
Hexachloroethane	239	500	47.8%
2,4-Dimethylphenol	281	500	56.2%
Benzoic Acid	985	1500	65.7%
1,2,4-Trichlorobenzene	309	500	61.8%
Naphthalene	298	500	59.6%
Hexachlorobutadiene	318	500	63.6%
2-Methylnaphthalene	312	500	62.4%
Dimethylphthalate	372	500	74.4%
Acenaphthylene	364	500	72.8%
Acenaphthene	329	500	65.8%
Dibenzofuran	382	500	76.4%
Diethylphthalate	375	500	75.0%
Fluorene	373	500	74.6%
N-Nitrosodiphenylamine	457	500	91.4%
Hexachlorobenzene	364	500	72.8%
Pentachlorophenol	358	500	71.6%
Phenanthrene	352	500	70.4%
Anthracene	361	500	72.2%
Di-n-Butylphthalate	395	500	79.0%
Fluoranthene	417	500	83.4%
Pyrene	426	500	85.2%
Butylbenzylphthalate	472	500	94.4%
Benzo(a) anthracene	445	500	89.0%
bis(2-Ethylhexyl)phthalate	364	500	72.8%
Chrysene	412	500	82.4%
Di-n-Octyl phthalate	244	500	48.8%
Benzo(b)fluoranthene	384	500	76.8%
Benzo(k)fluoranthene	406	500	81.2%
Benzo(a)pyrene	328	500	65.6%
Indeno(1,2,3-cd)pyrene	361	500	72.2%

Page 2 of 2

Lab Sample ID: LCS-091708

LIMS ID: 08-21872 Matrix: Sediment

Date Analyzed: 09/26/08 18:12

Sample ID: LCS-091708

LAB CONTROL

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Analyte	Lab Control	Spike Added	Recovery
Dibenz(a,h)anthracene	347	500	69.4%
Benzo(g,h,i)perylene	346	500	69.2%
1-Methylnaphthalene	336	500	67.2%

Semivolatile Surrogate Recovery

54.8%
68.0%
88.8%
53.6%
62.1%
54.7%
88.3%
58.9%

Results reported in $\mu g/kg$

4B SEMIVOLATILE METHOD BLANK SUMMARY

BLANK NO.

NM56MBS2

Lab Name: ANALYTICAL RESOURCES, INC

Client: HART CROWSER, INC.

ARI Job No: NM56

Project: R.G. HALEY

Lab File ID: NM56MB2

Date Extracted: 09/17/08

Instrument ID: NT6

Date Analyzed: 09/26/08

Matrix: SOLID

Time Analyzed: 1737

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	TAD	7707
	SAMPLE NO.		LAB	DATE
		SAMPLE ID	FILE ID	ANALYZED
0.1	NATE OF GOOD		========	=======
01	NM56LCSS2	NM56LCSS2	NM56SB2	09/26/08
02	RGH-SC-03-4-6'	NM56LRE	NM56LRE	09/27/08
03			<u> </u>	' '
04				
05				
06				
07				
08				
09				
10				
11				
12				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
23				
24				
25				
26				
27				
28				
29				
30				
- 0		{		

COMMENTS:	
•	

Sample ID: MB-091708
METHOD BLANK

Lab Sample ID: MB-091708

LIMS ID: 08-21872 Matrix: Sediment

Data Release Authorized:

Reported: 09/29/08

Date Extracted: 09/17/08
Date Analyzed: 09/26/08 17:37
Instrument/Analyst: NT6/LJR

GPC Cleanup: Yes

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g
Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.4	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	120	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.8	20	< 20 U
208-96-8	Acenaphthylene	8.7	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.6	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	9.0	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	48	100	< 100 U
85-01-8	Phenanthrene	8.4	20	< 20 U
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	< 20 U
129-00-0	Pyrene	7.8	20	< 20 U
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.6	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.5	20	< 20 U
207-08-9	Benzo(k) fluoranthene	9.3	20	< 20 U
50-32-8	Benzo (a) pyrene	8.2	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.6	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.6	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.8	20	< 20 U

Page 2 of 2

Sample ID: MB-091708 METHOD BLANK

58.9%

Lab Sample ID: MB-091708 LIMS ID: 08-21872 Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

d4-2-Chlorophenol

17330-17

Date Analyzed: 09/26/08 17:37

2,4,6-Tribromophenol

CAS Number	Analyte	\mathtt{MDL}	RL	Result
90-12-0	1-Methylnaphthaler	ne 7.2	20	< 20 U
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rrogate Recovery		
d5-Nitrobenzene	54.8%	2-Fluorobiphenyl	59).2%
d14-p-Terphenyl	70.0%	d4-1,2-Dichlorobenzene	e 55	.68
d5-Phenol	59.7%	2-Fluorophenol		.5%

71.2%

NWTPHDx

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 2 Matrix: Sediment QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley 17330-17

Data Release Authorized: Reported: 09/10/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	MDL	RL	Result
NM56A 08-21861	RGH-SS-01 HC ID: DRO/MO	09/03/08 TOR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.6 4.3	6.5 13	19 69 78.0%
MB-090308 08-21862	Method Blank HC ID:	09/03/08	09/05/08 FID3A	1.00 1.0	Diesel Motor Oil o-Terphenyl	0.5	5.0 10	< 5.0 U < 10 U 79.3%
NM56B 08-21862	RGH-SS-02 HC ID: DRO/MOS	09/03/08 FOR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.6 3.7	5.6 11	12 42 80.9%
NM56C 08-21863	RGH-SS-03 HC ID: DRO/MOT	09/03/08 FOR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.6 4.2	6.5 13	17 63 79.6%
NM56D 08-21864	RGH-SC-01-0-2' HC ID: DRO/MOT	•	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.7 4.7	7.1 14	37 110 76.4%
NM56E 08-21865	RGH-SC-01-2-4' HC ID: DRO/MOT	• •	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.6 4.1	6.3 13	43 120 73.3%
NM56F 08-21866	RGH-SC-01-4-6' HC ID: DRO/MOT	• •	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.6 4.1	6.3 13	220 450 72.0%
NM56G 08-21867	RGH-SC-02-0-2' HC ID: DRO/MOT	• •	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.7 4.3	6.6 13	32 100 75.8%
NM56H 08-21868	RGH-SC-02-2-4' HC ID: DRO/MOT		09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.6	5.8 12	18 100 75.8%
NM56I 08-21869	RGH-SC-02-4-6' HC ID: DRO/MOT	09/03/08 OR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.6 4.2	6.5 13	25 92 86.4%
NM56J 08-21870	RGH-SC-03-0-2' HC ID: DRO/MOTO		09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.0	10 21	46 1 40 76.4%
NM56K 08-21871	RGH-SC-03-2-4' HC ID: DRO/MOTO		09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.2 7.8	12 24	180 510 69.1%
NM56L 08-21872	RGH-SC-03-4-6' HC ID: DRO/MOTO	09/03/08 OR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.1 7.4	11 23	110 240 77.8%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 2 of 2

Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Data Release Authorized: Reported: 09/10/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	MDL	RL	Result
NM56M 08-21873	RGH-SC-04-0-2' HC ID: DRO/MOT		09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.8	7.9 16	28 75 76.7%
NM56N 08-21874	RGH-SC-04-2-4' HC ID: DRO/MOT	09/03/08 OR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.0 6.3	9.6 19	13 28 74.0%
NM560 08-21875	RGH-SC-04-4-6' HC ID:	09/03/08	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.9 5.8	8.8 18	< 8.8 U < 18 U 77.8%
NM56P 08-21876	RGH-SC-05-0-2' HC ID: DRO/MOTO	09/03/08 OR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.1 7.4	11 23	120 200 76.9%
NM56Q 08-21877	RGH-SC-05-2-4' HC ID: DRO	09/03/08	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.1 6.9	11 21	12 < 21 U 75.8%
NM56R 08-21878	RGH-SC-05-4-6' HC ID: DRO/MOT O	09/03/08 PR OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.1 7.0	11 22	41 72 75.8%
NM56S 08-21879	RGH-SC-06-0-2' HC ID: DRO/MOTO	09/03/08 R OIL	09/05/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.2 7.7	12 24	61 99 74.7%
NM56T 08-21880	RGH-SC-06-2-4' HC ID: DRO/MOTO	09/03/08 R OIL	09/06/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.0 6.4	9.8 20	50 64 72.0%
MB-090308 08-21881	Method Blank HC ID:	09/03/08	09/06/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.5	5.0 10	< 5.0 U < 10 U 71.6%
NM56U 08-21881	RGH-SC-06-4-6' HC ID: DRO/MOTO	09/03/08 R OIL	09/06/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1.0 6.7	10 21	110 190 68.9%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

	OTER	TOT OUT
	FO 08	•
		=
		0
		0
		-
		0
		0
		Ö
		_
	69.1%	0
	77.8%	0
	76.7%	0
	74.0%	0
	77.8%	0
	76.9%	0
	75.8%	0
	75.8%	0
	74.7%	0
	72.0%	0
	71.6%	0
	71.8%	0
	74.0%	0
	68.9%	0
	68.4%	0
MSD	73.1%	0
	MS	78.0% 79.3% 76.0% 76.0% 80.9% 80.9% 75.3% 79.6% 76.4% 73.3% 72.0% 75.8% 75.8% 76.4% 76.4% 77.8% 76.7% 74.0% 77.8% 75.8% 75.8% 76.7% 74.0% 71.6% 71.6% 71.6% 71.6% 71.6%

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(62-118)

(49-125)

Prep Method: SW3546

Log Number Range: 08-21861 to 08-21881

ORGANICS ANALYSIS DATA SHEET

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: RGH-SS-02 MS/MSD

Lab Sample ID: NM56B

LIMS ID: 08-21862 Matrix: Sediment

Data Release Authorized:

Reported: 09/10/08

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08

Date Received: 08/28/08

Sample Amount MS: 8.36 g-dry-wt

MSD: 8.78 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Percent Moisture: 17.6%

Date Analyzed MS: 09/05/08 17:43 MSD: 09/05/08 17:58

Date Extracted MS/MSD: 09/03/08

Instrument/Analyst MS: FID/MS

MSD: FID/MS

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	12.5	119	179	59.5%	115	171	59.9%	3.4%

TPHD Surrogate Recovery

MS MSD

o-Terphenyl

75.3% 79.3%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

1 of 1

Sample ID: RGH-SC-06-4-6

MS/MSD

Lab Sample ID: NM56U LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized:

Reported: 09/10/08

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Sample Amount MS: 4.97 g-dry-wt

MSD: 4.63 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Percent Moisture: 54.0%

Date Extracted MS/MSD: 09/03/08

Date Analyzed MS: 09/06/08 02:15 MSD: 09/06/08 02:31

Instrument/Analyst MS: FID/MS

MSD: FID/MS

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	112	535	302	140%	312	324	61.7%	52.7%

TPHD Surrogate Recovery

MS MSD o-Terphenyl 68.4% 73.1%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: LCS-090308

LCS/LCSD

Lab Sample ID: LCS-090308

LIMS ID: 08-21862 Matrix: Sediment

Data Release Authorized:

Reported: 09/10/08

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Date Extracted LCS/LCSD: 09/03/08

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 09/05/08 16:25

Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL

LCSD: 09/05/08 16:40 Instrument/Analyst LCS: FID/MS

LCSD: FID/MS

Dilution Factor LCS: 1.0

LCSD: 1.0

Spike LCS Spike LCSD Range LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD Diesel 105 150 70.0% 106 150 70.7% 0.9%

TPHD Surrogate Recovery

o-Terphenyl

LCS LCSD

76.0% 76.9%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

LCSD: 09/06/08 01:29

Sample ID: LCS-090308

LCS/LCSD

Lab Sample ID: LCS-090308

LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized:

Reported: 09/10/08

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Date Extracted LCS/LCSD: 09/03/08 Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 09/06/08 01:13 Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/MS Dilution Factor LCS: 1.0 LCSD: FID/MS

LCSD: 1.0

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	90.3	150	60.2%	93.2	150	62.1%	3.2%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

71.8% 74.0%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

NM56MBS1

Lab Name: ANALYTICAL RESOURCES, INC

Client: HART CROWSER, INC.

SDG No.: NM56

Project No.: R.G.HALEY

Date Extracted: 09/03/08

Matrix: SOLID

Date Analyzed : 09/05/08

Instrument ID : FID3A

Time Analyzed: 1656

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	===========	SAME ID	ANALIZED
01	NM56LCSS1	NME CT CCC1	_=======
02		NM56LCSS1	09/05/08
03		NM56LCSDS1	09/05/08
	RGH-SS-01	NM56A	09/05/08
04	RGH-SS-02	NM56B	09/05/08
05	RGH-SS-02 MS	NM56BMS	09/05/08
06	RGH-SS-02 MS	NM56BMSD	09/05/08
07	RGH-SS-03	NM56C	09/05/08
80	RGH-SC-01-0-	NM56D	09/05/08
09	RGH-SC-01-2-	NM56E	09/05/08
10	RGH-SC-01-4-	NM56F	09/05/08
11	RGH-SC-02-0-	NM56G	09/05/08
12	RGH-SC-02-2-	NM56H	09/05/08
13	RGH-SC-02-4-	NM56I	09/05/06
14	RGH-SC-03-0-	NM56J	09/05/08
	RGH-SC-03-2-		09/05/08
16	RGH-SC-03-4-	NM56L	09/05/08
	RGH-SC-04-0-		09/05/08
		NM56M	09/05/08
19		377477 4 4 4	09/05/08
1	RGH-SC-04-4-	NM560	09/05/08
20	RGH-SC-05-0-	NM265	09/05/08
21	RGH-SC-05-2-	NM56Q	09/05/08
22	RGH-SC-05-4-	NM56R	09/05/08
23	RGH-SC-06-0-	NM56S	09/05/08
24	RGH-SC-06-2-	NM56T	09/06/08
İ			11, 13, 00
-			

TPH METHOD BLANK SUMMARY

BLANK NO.

NM56MBS1

Lab Name: ANALYTICAL RESOURCES, INC

Client: HART CROWSER, INC.

SDG No.: NM56

Project No.: R.G. HALEY

Date Extracted: 09/03/08

Matrix: SOLID

Date Analyzed: 09/06/08

Instrument ID : FID3A

Time Analyzed : 0144

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

s	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
02 NM 03 RG 04 RG	156LCSS1 156LCSDS1 1H-SC-06-4- 1H-SC-06-4- 1H-SC-06-4-	NM56UMS	09/06/08 09/06/08 09/06/08 09/06/08 09/06/08

page 1 of 1

FORM IV TPH

METALS

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NM56A LIMS ID: 08-21861

Matrix: Sediment

Data Release Authorized: Reported: 09/23/08

Percent Total Solids: 81.2%

Sample ID: RGH-SS-01

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0043	0.04	0.10	

Reported in mg/kg-dry (ppm). U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NM56A

LIMS ID: 08-21861 Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Sample ID: RGH-SS-01

DUPLICATE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q
Mercury	7471A	0.10	0.12	18.2%	+/- 0.04	L

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: NM56A LIMS ID: 08-21861

Matrix: Sediment

Data Release Authorized:

Reported: 09/23/08

Sample ID: RGH-SS-01

MATRIX SPIKE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Mercury	7471A	0.10	0.51	0.430	95.3%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: NM56B LIMS ID: 08-21862

Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Percent Total Solids: 83.1%

Sample ID: RGH-SS-02

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0041	0.04	0.05	

Page 1 of 1

Lab Sample ID: NM56C LIMS ID: 08-21863

Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Sample ID: RGH-SS-03

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Percent Total Solids: 72.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	0
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0048	0.05	0.13	

Page 1 of 1

Lab Sample ID: NM56D

LIMS ID: 08-21864 Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Percent Total Solids: 78.7%

Sample ID: RGH-SC-01-0-2'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0052	0.05	0.13

Page 1 of 1

Lab Sample ID: NM56E LIMS ID: 08-21865

Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Percent Total Solids: 79.1%

Sample ID: RGH-SC-01-2-4'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0050	0.05	0.27	

Page 1 of 1

Lab Sample ID: NM56F LIMS ID: 08-21866

Matrix: Sediment

Data Release Authorized:

Reported: 09/23/08

Percent Total Solids: 77.3%

Sample ID: RGH-SC-01-4-6' SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0049	0.05	0.16	

Page 1 of 1

Lab Sample ID: NM56G

LIMS ID: 08-21867

Matrix: Sediment

Data Release Authorized: Reported: 09/23/08

Percent Total Solids: 75.3%

Sample ID: RGH-SC-02-0-2' SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0048	0.05	0.08	

Page 1 of 1

Lab Sample ID: NM56H

LIMS ID: 08-21868 Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Percent Total Solids: 82.9%

Sample ID: RGH-SC-02-2-4'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result (2
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0051	0.05	0.07	

Page 1 of 1

Lab Sample ID: NM56I

LIMS ID: 08-21869

Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Percent Total Solids: 76.8%

Sample ID: RGH-SC-02-4-6'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0054	0.05	0.08	

Page 1 of 1.

Lab Sample ID: NM56J

LIMS ID: 08-21870 Matrix: Sediment

Data Release Authorized:

Reported: 09/23/08

Percent Total Solids: 46.9%

Sample ID: RGH-SC-03-0-2'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0089	0.09	0.48	

Page 1 of 1

Lab Sample ID: NM56K LIMS ID: 08-21871

Matrix: Sediment

Data Release Authorized:

Reported: 09/23/08

Percent Total Solids: 39.8%

Sample ID: RGH-SC-03-2-4'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.010	0.1	0.7

Page 1 of 1

Lab Sample ID: NM56L LIMS ID: 08-21872

Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Percent Total Solids: 45.2%

Sample ID: RGH-SC-03-4-6'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0080	0.08	1.59	

Page 1 of 1

Lab Sample ID: NM56M

LIMS ID: 08-21873 Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Percent Total Solids: 63.1%

Sample ID: RGH-SC-04-0-2'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0057	0.06	0.23	

Page 1 of 1

Lab Sample ID: NM56N

LIMS ID: 08-21874 Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Percent Total Solids: 52.1%

Sample ID: RGH-SC-04-2-4

SAMPLE

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0091	0.09	0.11	

Page 1 of 1

Lab Sample ID: NM560 LIMS ID: 08-21875

Matrix: Sediment
Data Release Authorized

Reported: 09/23/08

Percent Total Solids: 53.6%

Sample ID: RGH-SC-04-4-6'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0070	0.07	0.09	

Page 1 of 1

Lab Sample ID: NM56P

LIMS ID: 08-21876

Matrix: Sediment
Data Release Authorized:
Reported: 09/23/08

Percent Total Solids: 44.0%

Sample ID: RGH-SC-05-0-2'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0097	0.1	0.3	_

Page 1 of 1

Lab Sample ID: NM56Q

LIMS ID: 08-21877 Matrix: Sediment

Data Release Authorized:

Reported: 09/23/08

Percent Total Solids: 44.9%

Sample ID: RGH-SC-05-2-4'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0094	0.09	0.09	

Page 1 of 1

Lab Sample ID: NM56R

LIMS ID: 08-21878 Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Percent Total Solids: 44.0%

Sample ID: RGH-SC-05-4-6'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result (Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0084	0.08	0.29	

Page 1 of 1

Lab Sample ID: NM56S LIMS ID: 08-21879

Matrix: Sediment

Data Release Authorizedy Reported: 09/23/08

Percent Total Solids: 43.2%

Sample ID: RGH-SC-06-0-2'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result (2
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.010	0.1	0.2	_

Page 1 of 1

Lab Sample ID: NM56T

LIMS ID: 08-21880 Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Percent Total Solids: 47.2%

Sample ID: RGH-SC-06-2-4'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0088	0.09	0.74	

Page 1 of 1

Lab Sample ID: NM56U LIMS ID: 08-21881

Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Percent Total Solids: 43.1%

Sample ID: RGH-SC-06-4-6'

SAMPLE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0084	0.08	0.83	

Page 1 of 1

Lab Sample ID: NM56U LIMS ID: 08-21881

Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Sample ID: RGH-SC-06-4-6'

DUPLICATE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Mercury	7471A	0.83	1.04	22.5%	+/- 20%	*	

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

1 of 1Page

Lab Sample ID: NM56U LIMS ID: 08-21881

Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Sample ID: RGH-SC-06-4-6'

MATRIX SPIKE

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Mercury	7471A	0.83	1.72	0.831	107%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: NM56MB

LIMS ID: 08-21862 Matrix: Sediment

Data Release Authorized:

Reported: 09/23/08

Sample ID: METHOD BLANK

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0050	0.05	0.05	U

Page 1 of 1

Lab Sample ID: NM56LCS

LIMS ID: 08-21862 Matrix: Sediment

Data Release Authorized Reported: 09/23/08

Sample ID: LAB CONTROL

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	1.06	1.00	106%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: NM56MB

LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized

Reported: 09/23/08

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: NM56-Hart Crowser, Inc.

Project: R.G. Haley

17330-17

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/16/08	7471A	09/19/08	7439-97-6	Mercury	0.0050	0.05	0.05	U

Page 1 of 1

Lab Sample ID: NM56LCS

LIMS ID: 08-21881 Matrix: Sediment

Data Release Authorized:

Reported: 09/23/08

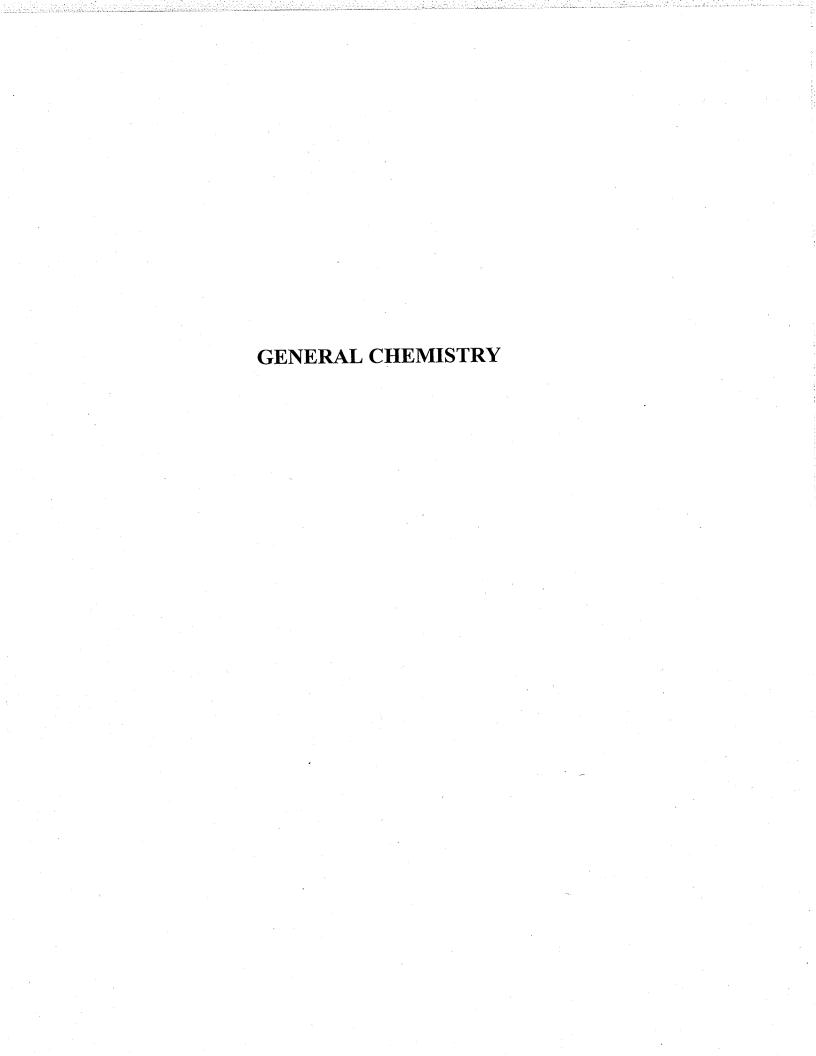
Sample ID: LAB CONTROL

QC Report No: NM56-Hart Crowser, Inc. Project: R.G. Haley

17330-17

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT


Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	1.06	1.00	106%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SS-01 ARI ID: 08-21861 NM56A

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	75.60
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	79.30
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	, 0.13	3.39
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	119	1,420
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	4.13

RLAnalytical reporting limit

Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SS-02 ARI ID: 08-21862 NM56B

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	81.50
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	80.30
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	0.12	5.01
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	60.2	1,190
Total Organic Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	2.38

RL Analytical reporting limit
U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SS-03 ARI ID: 08-21863 NM56C

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	67.40
Preserved Total Solids	09/01/08 090108#1	EPA 160.3	Percent	0.01	64.50
N-Ammonia	09/01/08 090108#1	EPA 350.1M	mg-N/kg	0.14	6.34
Sulfide	09/01/08 090108#1	EPA 376.2	mg/kg	28.9	503
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	2.20

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SC-01-0-2' ARI ID: 08-21864 NM56D

Analyte		Date	Method	Units	RL	Sample
Total So	lids	09/03/08 090308#1	EPA 160.3	Percent	0.01	73.90
Total Or	ganic Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	2.87
RL And U Und	alytical reporting land	imit detection	limit			

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley Event: 17330-17
Date Sampled: 08/26/08
Date Received: 08/28/08

Client ID: RGH-SC-01-2-4' ARI ID: 08-21865 NM56E

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	75.40
Total Organic Carb	10/09/08 100908#1	Plumb, 1981	Percent	0.020	4.24
RL Analytical n U Undetected a	reporting limit at reported detection	limit			

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SC-01-4-6' ARI ID: 08-21866 NM56F

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	74.20
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	8.12
RL Analytical reporti U Undetected at repo		limit			

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SC-02-0-2' ARI ID: 08-21867 NM56G

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	73.20
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	5.01
RL Analytical reporting Undetected at reporting Undetected at reporting Undetected at reporting Undetected at reporting Undetected Analytical Parameters (No. 1971).		ı limit			

SAMPLE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SC-02-2-4' ARI ID: 08-21868 NM56H

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	84.70
Total Organic Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	1.47

RLAnalytical reporting limit U

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 10/13/08

Project: R.G. Haley

Event: 17330-17

Date Sampled: 08/26/08 Date Received: 08/28/08

Client ID: RGH-SC-02-4-6' ARI ID: 08-21869 NM56I

Analyte		Date	Method	Units	RL	Sample
Total Sc	olids	09/03/08 090308#1	EPA 160.3	Percent	0.01	80.00
Total Or	ganic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	6.86
RL An U Un	alytical reporting] detected at reported	imit detection	limi+			

Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-03-0-2' ARI ID: 08-21870 NM56J

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	47.80
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	4.32
RL Analytical reporti U Undetected at repo		ı limit			

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08

Date Received: 08/28/08

Client ID: RGH-SC-03-2-4' ARI ID: 08-21871 NM56K

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	39.80
Total Organic Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	7.94
RL Analytical reporting Undetected at reporting Undetected	ng limit rted detection	limi+			

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-03-4-6' ARI ID: 08-21872 NM56L

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	39.30
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	10.1

Analytical reporting limit RL

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-04-0-2' ARI ID: 08-21873 NM56M

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	59.90
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	10.6
RL Analytical reporting U Undetected at report		limit			·

Matrix: Sediment

U

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-04-2-4' ARI ID: 08-21874 NM56N

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	50.50
Total Organic Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	4.22
RL Analytical reportin	g limit				

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-04-4-6' ARI ID: 08-21875 NM560

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	56.10
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	1.64
RL Analytical reporting U Undetected at reporting	ng limit				

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-05-0-2' ARI ID: 08-21876 NM56P

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/0 090308		3 Percent	0.01	44.70
Total Organic C	arbon 10/09/0 100908		l Percent	0.020	4.80
	l reporting limit d at reported detecti	ion limit			

Matrix: Sediment

Data Release Authorized

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08

Date Received: 08/28/08

Client ID: RGH-SC-05-2-4' ARI ID: 08-21877 NM56Q

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	45.00
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	2.38

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-05-4-6' ARI ID: 08-21878 NM56R

Analyte		Date	Method	Units	RL	Sample
Total Solids		09/03/08 090308#1	EPA 160.3	Percent	0.01	44.10
Total Organic	: Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	6.39
RL Analyti U Undetec	cal reporting ted at report	limit ed detection	limit			

Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-06-0-2' ARI ID: 08-21879 NM56S

Analyte ————————————————————————————————————	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	44.30
Total Organic Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	4.08

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/27/08

Date Received: 08/28/08

Client ID: RGH-SC-06-2-4' ARI ID: 08-21880 NM56T

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#1	EPA 160.3	Percent	0.01	48.40
Total Organic Carbon	10/09/08 100908#1	Plumb, 1981	Percent	0.020	3.89
RL Analytical report U Undetected at rep	ing limit orted detection	limit			

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley

Event: 17330-17

Date Sampled: 08/27/08 Date Received: 08/28/08

Client ID: RGH-SC-06-4-6' ARI ID: 08-21881 NM56U

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/03/08 090308#2	EPA 160.3	Percent	0.01	44.30
Total Organic Carbon	10/09/08 100908#1	Plumb,1981	Percent	0.020	8.08

RLAnalytical reporting limit U

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08 Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: NM56A Client II	D: RGH-SS-01				
Total Solids	09/03/08	Percent	75.60	78.00 80.90	3.4%
Preserved Total Solids	09/01/08	Percent	79.30	74.40 78.40	3.4%
N-Ammonia	09/01/08	mg-N/kg	3.39	3.28	3.3%
Total Organic Carbon	10/09/08	Percent	4.13	3.98 4.06	1.9%
ARI ID: NM56C Client ID	: RGH-SS-03				
Sulfide	09/01/08	mg/kg	503	477	5.3%

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: 08/26/08 Date Received: 08/28/08

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: NM56A Client ID:	RGH-SS-01					
N-Ammonia	09/01/08	mg-N/kg	3.39	117	121	94.0%
Total Organic Carbon	10/09/08	Percent	4.13	10.5	5.79	110.0%
ARI ID: NM56C Client ID:	RGH-SS-03					
Sulfide	09/01/08	mg/kg	503	757	412	61.7%

LAB CONTROL RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: NA

Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Sulfide	09/01/08	mg/kg	6.91	7.20	96.0%
Total Organic Carbon	10/09/08	Percent	0.102	0.100	102.0%

METHOD BLANK RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Project: R.G. Haley Event: 17330-17 Date Sampled: NA

Date Received: NA

Analyte	Date	Units	Blank
Total Solids	09/03/08 09/03/08	Percent	< 0.01 U < 0.01 U
Preserved Total Solids	09/01/08	Percent	< 0.01 U
N-Ammonia	09/01/08	mg-N/kg	< 0.10 U
Sulfide	09/01/08	mg/kg	< 1.00 U
Total Organic Carbon	10/09/08	Percent	< 0.020 U

STANDARD REFERENCE RESULTS-CONVENTIONALS NM56-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Project: R.G. Haley

Event: 17330-17 Date Sampled: NA

Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
N-Ammonia SPEX 28-24AS	09/01/08	mg-N/kg	9.79	10.0	97.9%
Total Organic Carbon NIST #8704	10/09/08	Percent	3.31	3.35	98.8%

GEOTECH

Hart Crowser, Inc. R.G. Haley, 17330-17

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		s	ilt	· · · · · · · · · · · · · · · · · · ·	CI	lay
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7			
Sieve Size	3/8"		#10	#18		#60	#120	#230	5	0	/	8	9	10
(microns)	3/8	#4	(2000)	(1000)	#35 (500)	(250)	(125)	(62)	31.00	15.60	7.80	3.90	2.00	1.00
NJ29 E-1	100.0	99.2	95.3	92.2	86.0	73.9	64.8	54.5	40.4	05.0				
NJ29 E-2	100.0	100.0	95.2	91.6	85.0	73.0			46.4	35.6	24.8	17.8	13.5	9.5
NJ29 E-3	100.0	99.6	95.5	92.1			63.8	53.5	46.4	35.7	25.2	18.0	13.4	9.2
RGH-SS-01	100.0	63.3			85.5	73.2	63.5	52.8	45.2	35.3	24.6	17.4	13.4	9.4
			44.8	33.0	23.5	9.8	2.2	0.2	NA	NA	NA	NA	NA	NA
RGH-SS-02	100.0	56.7	44.0	34.8	23.3	6.8	1.8	1.1	NA	NA	NA	NA		
RGH-SS-03	100.0	87.3	80.5	73.1	63.2	43.7	23.5	11.1	9.8	8.5	6.5	5.2	NA 4.0	NA 2.7

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Hart Crowser, Inc. R.G. Haley, 17330-17

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt	<u> </u>	Clay	***************************************	Total Fines
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	<4 <230 (<62)
NJ29 E-1	4.7	3.1	6.2	12.1	9.1	10.3	8.0	10.8	10.8	7.0				
NJ29 E-2	4.8	3.6	6.6	12.0	9.2	10.2	7,2				4.4	3.9	9.5	54.5
NJ29 E-3	4.5	3.4	6.6	12.4	9.6			10.7	10.4	7.3	4.6	4.2	9.2	53.5
RGH-SS-01	55.2	11.8				10.7	7.7	9.9	10.7	7.2	4.0	4.0	9.4	52.8
			9.5	13.7	7.6	2.0	NA	NA .	NA	NA	NA	NA	NA	0.2
RGH-SS-02	56.0	9.2	11.5	16.5	5.0	8.0	NA	NA	NA	NA	NA	NA NA	NA NA	
RGH-SS-03	19.5	7.3	9.9	19.5	20.2	12.4	1.3	1.3	2.0	1.2	1.3	1.3	2.7	1.1 11.1

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QA SUMMARY

PROJECT:

Hart Crowser, Inc.

Project No.:

R.G. Haley, 17330-17

ARI Triplicate Sample ID:

NJ29 E

Batch No.:

NM56 -1

Client Triplicate Sample ID:

NJ29 E-1

Page:

1 of 1

Relative Standard Deviation, By Phi Size

							and Dorida	on, by i in c	J12, C					
Sample ID	-3	-2	-1	0	1	2	3	4	5	6	7	Ω	0 1	10
NJ29 E-1	100.0	99.2	95.3	92.2	86.0	73.9	64.8	54.5	46.4	35.6	24.8	17.0	125	10
NJ29 E-2	100.0	100.0	95.2	91.6	85.0	73.0	63.8					17.8	13.5	9.5
NUODEO							03.6	53.5	46.4	35.7	25.2	18.0	13.4	9.2
NJ29 E-3	100.0	99.6	95.5	92.1	85.5	73.2	63.5	52.8	45.2	35,3	24.6	17.4	13.4	9.4
AVE	NA	99.60	95.32	91.98	85.51	73,33	64.04	53.62	46.00	35.53	24.88			
STDEV	NA	0.40	0.14	0.20							24.00	17.73	13.41	9.35
			0.14	0.30	0.49	0.47	0.67	0.82	0.70	0.20	0.32	0.31	0.04	0.18
%RSD	NA	0.40	0.14	0.33	0.58	0.64	1.05	1.53	1.52					
				2.00	0.00	L 0.04	1.00	1.00	1.52	0.56	1.29	1.73	0.32	1.94

The Triplicate Applies To The Following Samples

Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0 25.0g)
NJ29 E-1	8/1/2008	9/18/2008	9/25/2008	97.8	 	11.7
NJ29 E-2	8/1/2008	9/18/2008	9/25/2008	98.3	 	
NJ29 E-3	8/1/2008	9/18/2008	9/25/2008	98.4	 	11.3
RGH-SS-01	8/26/2008	9/18/2008	9/25/2008		 	11.3
RGH-SS-02	8/26/2008	9/18/2008		96.7	SS	0.1
RGH-SS-03	8/26/2008	9/18/2008	9/25/2008 9/25/2008	99.5 98.6	SS	1.4 12.1

Notes to the Testing:

^{*} ARI Internal QA limits = 95-105%

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

TOTAL SOLIDS

Extractions Total Solids-extts Data By: Jim Hawk Created: 9/ 1/08

Worklist: 6560 Analyst: MH Comments:

	ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН	
1	. NM56A 08-21861 RGH-SS-01	1.18	12.52	9.86	76.5	NR	
2	. NM56B 08-21862 RGH-SS-02	1.18	14.36	12.04	82.4	NR	
3 .	. NM56C 08-21863 RGH-SS-03	1.18	10.24	7.74	72.4	NR	
4.	NM56D 08-21864 RGH-SC-01-0		12.36	8.90	69.1	NR	
5.	NM56E 08-21865 RGH-SC-01-2	1.16	14.18	10.78	73.9	NR	
6.	NM56F 08-21866 RGH-SC-01-4		10.68	8.52	77.3	NR	
7.	NM56G 08-21867 RGH-SC-02-0	1.18	13.54	10.10	72.2	NR	
8.	NM56H 08-21868 RGH-SC-02-2	1.20	11.36	9.88	85.4	NR	
9.	NM56I 08-21869 RGH-SC-02-4	1.16 -6'	11.82	9.38	77.1	NR	
10.	NM56J 08-21870 RGH-SC-03-0	1.16	11.88	6.02	45.3	NR	
11.	NM56K 08-21871 RGH-SC-03-2-		11.48	5.16	38.8	ŅR	
12.	NM56L 08-21872 RGH-SC-03-4-	1.16	13.28	6.28	42.2	NR	
13.	NM56M 08-21873 RGH-SC-04-0-	1.16	10.80	6.82	58.7	NR	
14.	NM56N 08-21874 RGH-SC-04-2-	1.18	12.76	6.98	50.1	NR	
15.	NM560 08-21875 RGH-SC-04-4-	1.16	10.88	6.34	53.3	NR	

Worklist ID: 6560 Page: 1

Extractions Total Solids-extts Data By: Jim Hawk Created: 9/ 1/08

Worklist: 6560 Analyst: MH Comments:

	ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН
16.	NM56P 08-21876 RGH-SC-05-0		10.60	5.06	41.2	NR
17.	NM56Q 08-21877 RGH-SC-05-2		12.08	5.92	43.5	NR
18.	NM56R 08-21878 RGH-SC-05-4		10.40	5.28	44.5	NR
19.	NM56S 08-21879 RGH-SC-06-0		10.96	5.26	41.8	NR
20.	NM56T 08-21880 RGH-SC-06-2		10.64	5.68	47.6	NR
21.	NM56U 08-21881 RGH-SC-06-4-		10.60	5.50	46.0	NR

Solids Data Entry Report Checked by: <u>FM</u> Date: <u>9/17/08</u> Data Analyst: DM

Solids Determination performed on 09/16/08 by MH

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
NM56 NM56	A B	RGH-SS-01 RGH-SS-02	1.011	10.031	8.678	81.24 83.08
NM56	C	RGH-SS-03	1.003	10.870	8.114	72.07
NM56	D	RGH-SC-01-0-2'	1.013	10.574	8.540	78.73
NM56	E	RGH-SC-01-2-4'	0.999	10.181	8.264	79.12
NM56	F	RGH-SC-01-4-6'	1.002	10.649	8.455	77.26
NM56	G	RGH-SC-02-0-2'	1.044	10.691	8.307	75.29
NM56	H	RGH-SC-02-2-4'	1.025	10.343	8.748	82.88
NM56	I	RGH-SC-02-4-6'	1.005	10.482	8.280	76.76
NM56	J	RGH-SC-03-0-2'	1.038		5.283	46.90
NM56	K	RGH-SC-03-2-4'	1.012	10.204	4.674	39.84
NM56	L	RGH-SC-03-4-6'	1.013	10.630	5.359	45.19
NM56	M	RGH-SC-04-0-2'	1.003	10.329	6.891	63.14
NM56	N	RGH-SC-04-2-4'	1.033	10.262	5.839	52.07
NM56	O	RGH-SC-04-4-6'	1.025	10.428	6.064	53.59
NM56	P	RGH-SC-05-0-2'	1.025	10.687	5.274	43.98
NM56	Q	RGH-SC-05-2-4'	1.025	10.019	5.067	44.94
NM56	R S	RGH-SC-05-4-6' RGH-SC-06-0-2'	1.026	10.572 10.220	5.229 5.009	44.03 43.25
NM56	T	RGH-SC-06-2-4'	1.030	10.957	5.712	47.16
NM56	U	RGH-SC-06-4-6'	1.025	10.564	5.140	43.14

Total Solids Targets-Extractions

Data By: Steve Potter Created: 9/2/08

Worklist: 6876 Analyst: SDP Comments:

	ARI ID	Target Dry Wt (g)	Total Solids	Min Wet Wt (g)
1.	NM56A	25.00	76.5	32.68
2.	NM56B	25.00	82.4	30.34
3.	NM56C	25.00	72.4	34.53
4.	NM56D	25.00	69.1	36.18
5.	NM56E	25.00	73.9	33.83
6.	NM56F	25.00	77.3	32.34
7.	NM56G	25.00	72.2	34.63
8.	NM56H	25.00	85.4	29.27
9.	NM56I	25.00	77.1	32.43
10.	NM56J	25.00	45.3	55.19
11.	NM56K	25.00	38.8	64.43
	NM56L	25.00	42.2	59.24
13.	NM56M	25.00	58.7	42.59
14.	NM56N	25.00	50.1	49.90
	NM560	25.00	53.3	46.90
16.	NM56P	25.00	41.2	60.68
17.	NM56Q	25.00	43.5	57.47
18.	NM56R	25.00	44.5	56.18
	NM56S	25.00	41.8	59.81
20.	NM56T	25.00	47.6	52.52
21.	NM56U	25.00	46.0	54.35

Laboratory Data Package

prepared for

HART CROWSER, INC.

Project: R. G. HALEY, 17330-17

ARI JOB NO.: NM56

prepared by

Analytical Resources, Inc.

November 13, 2008

Mr. Roger McGinnis Hart Crowser, Inc. 1700 Westlake Avenue North Suite 200 Seattle, WA 98109-3056

RE: Project: R. G. Haley – 17330-17 ARI Job No: NR16

Dear Mr. McGinnis:

Please find enclosed the original Chain-of-Custody record, sample receipt documentation, and the final data package for the samples from the project referenced above.

The samples were analyzed for SVOCs, NWTPH-Dx, Total Metals and TOC, as requested.

Sample receipt and details of these analyses are discussed in the Case Narrative.

An electronic copy of this data package and the supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

206-695-6211

kellyb@arilabs.com

www.arilabs.com

Enclosures

cc: files NR16

Chain of Custody Documentation

prepared for

HART CROWSER, INC.

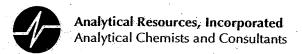
Project: Bellingham Bay-RG Haley

ARI JOB NO: NR16

prepared by

Analytical Resources, Inc.

NR 16 Sample Custody Record Samples Shipped to: ___ART______


ZOFI

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699

Phone: 206-324-9530 FAX: 206-328-5581

100 1722017 LAD MUMADED							REQUESTED ANALYSIS							S		
PROJECT NAME BELLINGHAM BAY ROHALET HART CROWSER CONTACT ROCER MCGINNIS					MERCORY	Ž	74-bx	dos	\$						OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS .	
SAMPLED BY: CFR/AAP/AMC/MH						ME	7	1		N)						2
LAB NO.	SAMPLE ID	DESCRIPTION		TIME	MATRIX								gr.			
RGIT-SC	-07-0-2'		9/24/08	1405	SEDMENT	X	X	×						_		1
RGH-SC-	07-0-2 07-2-4' 07-4-68' 08-0-2' 08-2-4' 09-04-2' 09-2-4' 09-4-55'			1410					-					_		1
RGH-SC-	57-4-68'			1415	<u> </u>			\coprod	1							1
R6H-SC-	08-0-2'			1640					1			_				
R6H-SC-	08-2-4°			1645												
RGH-SC-	08-4-5.5			1650					\perp						-	1
R6H-SC-	09-04-2'			1600					1							
RGH-SL-	9-2-41			1605				\coprod								
RUH-SC.	09-4-55		V	1610		J	V	$ \psi $,							1 -
									_							
														_		
RELINOUISHED BY DATE RECEIVED BY DATE		-ء ا	SPECIAL SHIPMENT HANDLING OR								7 TOTAL NUMBER OF CONTAINERS					
Mil	Flut	9/25/08 -	Janture SIGNATURE Jonathon PRINT NAME COMPANY	Wals	9/25/08	31	STORAGE REQUIREMENTS:			ļ	SAMPLE RECEIPT INFORMATION CUSTODY SEALS:					
SIGNATURA	on Kust	TIME	Jon athon	walter	TIME	1										□YES □NO □N/A GOOD CONDITION
PRINT NAN	14	1730	ART	a	1730											□YES □NO TEMPERATURE
COMPANY						1										SHIPMENT METHOD: □HAND
RELINQUISHED BY DATE RECEIVED BY DATE			+-	COURIER OVERNIGHT												
CICNATURE					COOLER NO.: STORAGE LOCATION: TURNAROUND TIME:											
SIGNATURE SIGNATURE TIME			_								□ 24 HOURS □ 1 WEEK □ 48 HOURS STANDARD					
PRINT NAME PRINT NAME				See Lab Work Order No.							□ 72 HOURS OTHER					
COMPANY				tc	for Other Contract Requirements					.5						

Cooler Receipt Form

ARI Client: Hart Crowser COC No: Assigned ARI Job No: NR 16	Project Name: Belling ham Bay-RG Hala Delivered by: Hand Tracking No:
Preliminary Examination Phase:	
Record cooler temperature (recommended 2.0-6 Cooler Accepted by:	ned, etc.) YES NO
Log-In Phase:	
Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Did all bottle labels and tags agree with custody power all bottles used correct for the requested are Do any of the analyses (bottles) require preservative were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottles.	YES NO YES NO YES NO YES NO YES NO Opapers? YES NO Displayses? YES NO tion? (attach preservation checklist) YES NO NA YES NO
Explain discrepancies or negative responses:	
Explain disorpancies of flegative responses.	
	By: Date:

Case Narrative

prepared for

HART CROWSER, INC.

Project: Bellingham Bay-RG Haley

ARI JOB NO: NR16

prepared by

Analytical Resources, Inc.

Case Narrative
Hart Crowser
R. G. Haley – 17330-17
ARI Job: NR16
November 13, 2008

Sample Receipt

Analytical Resources Inc. (ARI) accepted nine sediment samples in good condition on September 25, 2008 under the ARI job referenced above. The cooler temperature measured by IR thermometer following ARI SOP was 3.4°C and the samples were well iced. For more details regarding sample receipt, please refer to the Cooer Receipt Form. All samples were frozen to protect the holding times.

Semivolatile Analysis (PSDDA SW8270D):

All samples were originally extracted and analyzed within the method recommended holding times for samples that were frozen.

Initial calibration (s): All compounds of interest were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Internal Standard(s): The internal standard recoveries were outside the control limits for samples RGH-SC-08-2-4', RGH-SC-08-5.5', RGH-SC-09-2-4' and RGH-SC-09-5.5. The samples were re-analyzed at a dilution and the internal standard percent recoveries were within control limits. No further corrective action was required.

Method Blank (s): Diethylphthalate was present in the method blank **MB-090308** at a concentration that was greater than the reporting limit. All associated samples were undetected for this compound. No further corrective action was required.

Surrogate(s): Are in control.

MS/MSD (s): Are in control.

LCS/LCSD (s): Are in control.

NWTPH-Dx:

All samples were extracted and analyzed within the method recommended holding times for frozen samples.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): The method blanks were free of contamination.

Case Narrative
Hart Crowser
R. G. Haley – 17330-17
ARI Job: NR16
November 13, 2008

Surrogate(s): All surrogate percent recoveries were within control limits.

MS/MSD (s): The matrix spike percent recovery of Diesel was outside the advisory control limits high for sample RGH-SC-07-0-2' with wide RPDs due to lack of sample homogeneity. The matrix spike duplicate percent recovery and all LCS and LCSD percent recoveries were within control limits. No further corrective action was required.

LCS/LCSD (s): The LCS and LCSD percent recoveries were within control limits.

Total Metals (Mercury):

All samples were prepared and analyzed within the method recommended holding times.

Initial calibration (s): All analytes were within method acceptance criteria.

Continuing calibration (s): All analytes of interest were within method acceptance criteria.

Method Blank (s): All method blanks were free of contamination.

MS(s): All matrix spike percent recoveries were within control limits.

Duplicate(s): Is in control.

LCS(s): All LCS percent recoveries were within control limits.

Conventional Parameters:

All samples were prepared and analyzed within the method recommended holding times.

Method Blank (s): All method blanks were free of contamination.

MS(s): Is in control.

Replicate(s): All replicate RPD/RSDs were within control limits.

LCS(s): All LCS percent recoveries were within control limits.

SRM(s): All SRM percent recoveries were within control limits.

Geotechnical Parameters:

A laboratory-specific Case Narrative follows.

Case Narrative NR16 R. G. Haley – 17330-17

Data Reporting Qualifiers Effective 12/28/04

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits

- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NS The flagged analyte was not spiked into the sample

- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

LCS SOLUTIONS

LABE	SOLN ID	TEST	CONC. UG/ML	SOLVENT	EXP.
1	1534-5	PCB	20	MEOH	08/26/09
2	1472-3	BCOC PEST	10	ACETONE	07/20/08
3	1517-1	PEST	02/04/20	ACETONE	05/15/09
4	1515-1	LOW PEST	0.2/0.4/2	ACETONE	01/24/09
5	1537-1	EPH	1500	MECL2	08/16/09
6*	1456-3	PCP	12.5	ACETONE	04/18/09
7	1537-3	ABN	100	ACETONE	08/01/09
8	1487-2	TBT	10	MECL2	12/15/08
9	1493-3	PORE TBT	.25/.5	MECL2	12/15/08
10	1537-2	ABN ACID	100/200	MEOH	04/10/09
11	1526-1	TPHD	15000	ACETONE	06/25/09
12	1533-1	ABN BASE	200	ACETONE	07/01/09
13*	1427-3	LOW PCB	2	ACETONE	10/11/08
14	1480-2	LOW ABN ACID	10/20	MEOH	10/09/08
15*	1452-1	SIM PNA	15/75	MEOH	04/09/09
16	1502-2	DIOXANE	100	MEOH	02/20/09
17	1516-2	1248 PCB	20	ACETONE	05/07/09
18	1514-4	LOW SIM PNA	1.5/7.5	ACETONE	04/24/09
19	1517-3	AK103	7500	MECL2	12/29/08
20	1490-4	PNA	100	MEOH	01/10/09
21*	1414-4	SKY/BHT	100	MEOH	04/08/09
22	1539-1	HERB	12.5/12500	MEOH	08/31/09
23	1505-1	LOW ABN BASE	20	MEOH	03/20/09
24	1504-4	LOW ABN	10	ACETONE	10/01/08
25	1481-1	DIPHENYL	100	MEOH	07/20/08
26	1522-2	OP-PEST	30	MEOH	11/30/08
27	1495-1	STEROLS	200	MEOH	12/29/08
28	1494-1	ADD. PEST	4	ACETONE	01/23/09
29	1496-3	DECANES	100	MEOH	02/12/09
30	1497-2	EDB/DBCP	2	ACETONE	02/12/09
31	1510-3	TERPINEOL	100	MEOH	03/21/09

LCS SOLUTIONS

9/4/2008

	1				
32	1533-2	GUAIACOL	50-200	ACETONE	06/05/09
33	1522-1	RESIN ACID	250	ACETONE	06/11/09
34	1530-2	CONGENERS	250	ACETONE	07/23/09
50	1523-1	FULL RESIN	250	ACETONE	06/10/09
*=REV	ERIFIED	SOLUTION			
·					
<u></u>					

9/4/2008

SURR SOLUTIONS

SOLN ID	TEST	CONC. UG/ML	SOLVENT	EXP.
1525-4	ABN	100/150	MEOH	03/13/09
1513-1	SIM PNA	15/75	MEOH	04/15/09
1443-1	SIM ABN	10/15	MEOH	04/03/09
1516-3	LOW PCB	0.2	ACETONE	05/09/09
1478-1	HERB	62.5	MEOH	09/21/08
1520-3	PCP	12.5	ACETONE	04/18/09
1502-3	1,4DIOXANE	100	MEOH	02/20/09
1504-2	OP-PEST	25	MEOH	03/20/09
1458-1	LOW S. PNA	03/15	MEOH	06/05/09
1493-2	TBT-PORE	0.25	MECL2	12/15/08
1490-3	MED PCB	20	ACETONE	01/14/09
1486-5	TBT	10	MECL2	12/15/08
1518-3	EPH	1500	MECL2	05/10/09
1518-4	PCB	2	ACETONE	05/29/09
1521-3	TPH	450	MECL2	12/29/08
1518-2	HCID	2250	MECL2	12/29/08
1497-3	EDB	2	ACETONE	02/12/09
		250	ACETONE	06/11/09
*RE-VER	FIED SOLUT	ON		

		· · · · · · · · · · · · · · · · · · ·		
	1525-4 1513-1 1443-1 1516-3 1478-1 1520-3 1502-3 1504-2 1458-1 1493-2 1490-3 1486-5 1518-3 1518-4 1521-3 1518-2 1497-3 1521-4	1525-4ABN1513-1SIM PNA1443-1SIM ABN1516-3LOW PCB1478-1HERB1520-3PCP1502-31,4DIOXANE1504-2OP-PEST1458-1LOW S. PNA1493-2TBT-PORE1490-3MED PCB1486-5TBT1518-3EPH1518-4PCB1521-3TPH1518-2HCID1497-3EDB1521-4RESIN ACID	1525-4 ABN 100/150 1513-1 SIM PNA 15/75 1443-1 SIM ABN 10/15 1516-3 LOW PCB 0.2 1478-1 HERB 62.5 1520-3 PCP 12.5 1502-3 1,4DIOXANE 100 1504-2 OP-PEST 25 1458-1 LOW S. PNA 03/15 1493-2 TBT-PORE 0.25 1490-3 MED PCB 20 1486-5 TBT 10 1518-3 EPH 1500 1518-4 PCB 2 1521-3 TPH 450 1518-2 HCID 2250 1497-3 EDB 2	1525-4 ABN 100/150 MEOH 1513-1 SIM PNA 15/75 MEOH 1443-1 SIM ABN 10/15 MEOH 1516-3 LOW PCB 0.2 ACETONE 1478-1 HERB 62.5 MEOH 1520-3 PCP 12.5 ACETONE 1502-3 1,4DIOXANE 100 MEOH 1504-2 OP-PEST 25 MEOH 1458-1 LOW S. PNA 03/15 MEOH 1493-2 TBT-PORE 0.25 MECL2 1490-3 MED PCB 20 ACETONE 1486-5 TBT 10 MECL2 1518-3 EPH 1500 MECL2 1518-4 PCB 2 ACETONE 1521-3 TPH 450 MECL2 1518-2 HCID 2250 MECL2 1497-3 EDB 2 ACETONE 1521-4 RESIN ACID 250 ACETONE

Data Summary Package

prepared for

HART CROWSER, INC.

Project: Bellingham Bay-RG Haley

ARI JOB NO: NR16

prepared by

Analytical Resources, Inc.

SVOA

Page 1 of 2

Lab Sample ID: NR16A LIMS ID: 08-25458

Matrix: Sediment

Data Release Authorized:

Reported: 10/24/08

Date Extracted: 10/08/08
Date Analyzed: 10/22/08 14:45
Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

Sample ID: RGH-SC-07-0-2' SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 46.6%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	18 J
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	34
67-72-1	Hexachloroethane	7.0	20	< 20 U
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	670
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	38
131-11-3	Dimethylphthalate	7.6	20	180
208-96-8	Acenaphthylene	8.5	20	36
83-32-9	Acenaphthene	8.0	20	47
132-64-9	Dibenzofuran	7.4	20	38
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	63
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.8	20	< 20 U
87-86-5	Pentachlorophenol	47	98	< 98 U
85-01-8	Phenanthrene	8.2	20	580
120-12-7	Anthracene	7.6	20	110
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.7	20	760
129-00-0	Pyrene	7.6	20	600
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.8	20	210
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	100
218-01-9	Chrysene	6.5	20	390
117-84-0	Di-n-Octyl phthalate	8.1	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	220
207-08-9	Benzo(k) fluoranthene	9.0	20	190
50-32-8	Benzo(a)pyrene	8.0	20	310
193-39-5	Indeno (1,2,3-cd) pyrene	8.4	20	95
53-70-3	Dibenz (a, h) anthracene	8.4	20	39
191-24-2	Benzo(g,h,i)perylene	6.6	20	120

Page 2 of 2

Sample ID: RGH-SC-07-0-2'

SAMPLE

Lab Sample ID: NR16A

LIMS ID: 08-25458 Matrix: Sediment

QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

Date Analyzed: 10/22/08 14:45

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.0	20	38

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	40.4%	2-Fluorobiphenyl	62.0%
d14-p-Terphenyl	51.6%	d4-1,2-Dichlorobenzene	36.3%
d5-Phenol	53.9%	2-Fluorophenol	57.6%
2,4,6-Tribromophenol	89.6%	d4-2-Chlorophenol	54.9%

Sample ID: RGH-SC-07-2-4' SAMPLE

Lab Sample ID: NR16B LIMS ID: 08-25459

Matrix: Sediment

Data Release Authorized:

Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 16:27 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 71.2%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	40
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.3	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.8	20	< 20 U
95-48-7	2-Methylphenol	14	20	32
106-44-5	4-Methylphenol	13	20	44
67-72-1	Hexachloroethane	7.1	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	42
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.0	20	< 20 U
91-20-3	Naphthalene	8.6	20	5,500 E
87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
91-57-6	2-Methylnaphthalene	8.1	20	210
131-11-3	Dimethylphthalate	7.7	20	< 20 U
208-96-8	Acenaphthylene	8.6	20	110
83-32-9	Acenaphthene	8.1	20	90
132-64-9	Dibenzofuran	7.5	20	160
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.9	20	170
86-30-6	N-Nitrosodiphenylamine	8.6	20	< 20 U
118-74-1	Hexachlorobenzene	7.9	20	< 20 U
87-86-5	Pentachlorophenol	47	99	< 99 U
85-01-8	Phenanthrene	8.3	20	840
120-12-7	Anthracene	7.7	20	97
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.8	20	490
129-00-0	Pyrene	7.7	20	250
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo(a) anthracene	5.9	20	24
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.6	20	27
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.4	20	35
207-08-9	Benzo(k) fluoranthene	9.2	20	35
50-32-8	Benzo(a)pyrene	8.1	20	42
193-39-5	Indeno(1,2,3-cd)pyrene	8.5	20	19 J
53-70-3	Dibenz (a, h) anthracene	8.5	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.7	20	36

Page 2 of 2

Sample ID: RGH-SC-07-2-4' SAMPLE

Lab Sample ID: NR16B

Date Analyzed: 10/22/08 16:27

LIMS ID: 08-25459 Matrix: Sediment

: 08-25459

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	230
	Reported in μ g/kg (ppb)			
	Semivolatile Surrogate Recov	ery		

d5-Nitrobenzene	35.5%	2-Fluorobiphenyl	49.6%
d14-p-Terphenyl	25.2%	d4-1,2-Dichlorobenzene	39.0%
d5-Phenol	49.1%	2-Fluorophenol	64.0%
2.4.6-Tribromophenol	59.2%	d4-2-Chlorophenol	48.5%

Page 1 of 2

Lab Sample ID: NR16B LIMS ID: 08-25459 Matrix: Sediment

Data Release Authorized:

Reported: 10/24/08

Date Extracted: 10/08/08
Date Analyzed: 10/24/08 00:59
Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

Sample ID: RGH-SC-07-2-4'
DILUTION

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 10.0 Percent Moisture: 71.2%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	140	200	< 200 U
541-73-1	1,3-Dichlorobenzene	74	200	< 200 U
106-46-7	1,4-Dichlorobenzene	73	200	< 200 U
100-51-6	Benzyl Alcohol	140	200	< 200 U
95-50-1	1,2-Dichlorobenzene	78	200	< 200 U
95-48-7	2-Methylphenol	140	200	< 200 U
106-44-5	4-Methylphenol	130	200	< 200 U
67-72-1	Hexachloroethane	71	200	< 200 U
105-67-9	2,4-Dimethylphenol	150	200	< 200 U
65-85-0	Benzoic Acid	1100	2,000	< 2,000 U
120-82-1	1,2,4-Trichlorobenzene	90	200	< 200 U
91-20-3	Naphthalene	86	200	5,900
87-68-3	Hexachlorobutadiene	80	200	< 200 U
91-57-6	2-Methylnaphthalene	81	200	210
131-11-3	Dimethylphthalate	77	200	< 200 U
208-96-8	Acenaphthylene	86	200	< 200 U
83-32-9	Acenaphthene	81	200	< 200 U
132-64-9	Dibenzofuran	75	200	140 J
84-66-2	Diethylphthalate	160	200	< 200 U
86-73-7	Fluorene	89	200	150 J
86-30-6	N-Nitrosodiphenylamine	86	200	< 200 U
118-74-1	Hexachlorobenzene	79	200	< 200 U
87-86-5	Pentachlorophenol	470	990	< 990 U
85-01-8	Phenanthrene	83	200	760
120-12-7	Anthracene	77	200	< 200 U
84-74-2	Di-n-Butylphthalate	120	200	< 200 U
206-44-0	Fluoranthene	78	200	370
129-00-0	Pyrene	77	200	380
85-68-7	Butylbenzylphthalate	110	200	< 200 U
56-55-3	Benzo (a) anthracene	59	200	< 200 U
117-81-7	bis (2-Ethylhexyl) phthalate	110	200	< 200 U
218-01-9	Chrysene	66	200	< 200 U
117-84-0	Di-n-Octyl phthalate	83	200	< 200 U
205-99-2	Benzo (b) fluoranthene	94	200	< 200 U
207-08-9	Benzo(k) fluoranthene	92	200	< 200 U
50-32-8	Benzo(a) pyrene	81	200	< 200 U
193-39-5	Indeno(1,2,3-cd)pyrene	85	200	< 200 U
53-70-3	Dibenz (a, h) anthracene	85	200	< 200 U
191-24-2	Benzo(g,h,i)perylene	67	200	170 J

Page 2 of 2

Sample ID: RGH-SC-07-2-4' DILUTION

Lab Sample ID: NR16B LIMS ID: 08-25459 QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Matrix: Sediment

NA

Date Analyzed: 10/24/08 00:59

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	71	200	220
	Reported in ug/kg (ppb)			

Semivolatile Surrogate Recovery

_			
d5-Nitrobenzene	33.2%	2-Fluorobiphenyl	44.0%
d14-p-Terphenyl	40.0%	d4-1,2-Dichlorobenzene	34.8%
d5-Phenol	44.8%	2-Fluorophenol	53.9%
2,4,6-Tribromopheno	ol 35.7%	d4-2-Chlorophenol	42.7%

Sample ID: RGH-SC-07-4-6.8' SAMPLE

Lab Sample ID: NR16C LIMS ID: 08-25460

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Matrix: Sediment

NA

Data Release Authorized: Reported: 10/24/08

Date Sampled: 09/24/08 Date Received: 09/25/08

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 17:02 Instrument/Analyst: NT4/PK

Sample Amount: 25.7 g-dry-wt Final Extract Volume: 0.5 mL

GPC Cleanup: Yes

Dilution Factor: 1.00 Percent Moisture: 60.5%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	31
541-73-1	1,3-Dichlorobenzene	7.2	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	12	20	13 3
67-72-1	Hexachloroethane	7.0	20	< 20 l
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 T
120-82-1	1,2,4-Trichlorobenzene	8.8	20	< 20 U
91-20-3	Naphthalene	8.5	20	840
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	35
131-11-3	Dimethylphthalate	7.6	20	< 20 U
208-96-8	Acenaphthylene	8.4	20	33
33-32-9	Acenaphthene	8.0	20	17 3
132-64-9	Dibenzofuran	7.4	20	32
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.7	20	32
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.8	20	< 20 U
87-86-5	Pentachlorophenol	46	97	< 97 U
85-01-8	Phenanthrene	8.2	20	180
120-12-7	Anthracene	7.5	20	26
34-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.7	20	130
L29-00-0	Pyrene	7.6	20	89
35-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.8	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.5	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.1	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	22
207-08-9	Benzo(k) fluoranthene	9.0	20	20
50-32-8	Benzo (a) pyrene	8.0	20	27
L93-39-5	Indeno (1,2,3-cd) pyrene	8.4	20	11 3
53-70-3	Dibenz(a,h)anthracene	8.3	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.6	20	< 20 0
L) T - 7 Z - 7	neuro (a' n' T' het à Terre	0.0	20	10 0

Page 2 of 2

Sample ID: RGH-SC-07-4-6.8'

SAMPLE

Lab Sample ID: NR16C

LIMS ID: 08-25460 Matrix: Sediment

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Analyzed: 10/22/08 17:02

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.0	20	34
	Reported in μ_{0}	g/kg (ppb)		
	Semivolatile Surr	ogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl	40.8% 57.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene		&
d5-Phenol 2,4,6-Tribromophen	52.5% ol 90.7%	2-Fluorophenol d4-2-Chlorophenol	65.3 52.3	_

Sample ID: RGH-SC-08-0-2' SAMPLE

Lab Sample ID: NR16D LIMS ID: 08-25461

Matrix: Sediment

Data Release Authorized: Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 17:36 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 61.9%

108-95-2	CAS Number	Analyte	MDL	RL	Result
106-46-7	108-95-2	Phenol	13	20	< 20 U
100-51-6 Benzyl Alcohol 14 20 < 20 U 95-50-1 1,2-Dichlorobenzene 7.7 20 < 20 U 95-48-7 2-Methylphenol 14 20 < 20 U 106-44-5 4-Methylphenol 13 20 18 J 67-72-1 Hexachloroethane 7.1 20 < 20 U 105-67-9 2,4-Dimethylphenol 15 20 < 20 U 105-85-0 Benzoic Acid 110 200 < 200 U 120-82-1 1,2,4-Trichlorobenzene 8.9 20 < 20 U 120-82-1 1,2,4-Trichlorobenzene 8.9 20 < 20 U 120-82-1 1,2,4-Trichlorobenzene 8.0 20 < 20 U 120-82-1 1,2,4-Trichlorobenzene 8.0 20 < 20 U 120-82-3 Naphthalene 8.0 20 < 20 U 13 J 37-68-3 Hexachlorobutadiene 8.0 20 < 20 U 131-11-3 Dimethylphthalate 7.6 20 30 30 30 30 30 30 30	541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
95-50-1 1,2-Dichlorobenzene 7.7 20 < 20	106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
95-48-7 2-Methylphenol 13 20 18 J 106-44-5 4-Methylphenol 13 20 18 J 67-72-1 Hexachloroethane 7.1 20 < 20	100-51-6	Benzyl Alcohol	14	20	< 20 U
106-44-5 4-Methylphenol 13 20 18 J 67-72-1 Hexachloroethame 7.1 20 < 20	95-50-1		7.7	20	< 20 U
67-72-1 Hexachloroethane 7.1 20 < 20	95-48-7		14	20	< 20 U
105-67-9 2,4-Dimethylphenol 15 20 < 20	106-44-5	4-Methylphenol	13	20	18 J
65-85-0 Benzoic Acid 110 200 < 200	67-72-1	Hexachloroethane	7.1	20	< 20 U
120-82-1 1,2,4-Trichlorobenzene 8.9 20 < 20	105-67-9	2,4-Dimethylphenol	15	20	< 20 U
91-20-3 Naphthalene 8.5 20 13 J 87-68-3 Hexachlorobutadiene 8.0 20 < 20	65-85-0	Benzoic Acid	110	200	< 200 U
87-68-3 Hexachlorobutadiene 8.0 20 < 20	120-82-1		8.9	20	< 20 U
91-57-6	91-20-3	Naphthalene	8.5	20	13 Ј
131-11-3 Dimethylphthalate 7.6 20 30 208-96-8 Acenaphthylene 8.5 20 17 J 83-32-9 Acenaphthene 8.1 20 11 J 132-64-9 Dibenzofuran 7.4 20 < 20 U	-			20	< 20 U
208-96-8 Acenaphthylene 8.5 20 17 J 83-32-9 Acenaphthene 8.1 20 11 J 132-64-9 Dibenzofuran 7.4 20 < 20 U	91-57-6		8.0	20	< 20 U
83-32-9 Acenaphthene 8.1 20 11 J 132-64-9 Dibenzofuran 7.4 20 < 20 U	131-11-3				
132-64-9 Dibenzofuran 7.4 20 < 20 U	208-96-8		8.5	20	17 J
84-66-2 Diethylphthalate 16 20 < 20 U	83-32-9	Acenaphthene	8.1	20	11 J
86-73-7 Fluorene 8.8 20 13 J 86-30-6 N-Nitrosodiphenylamine 8.5 20 < 20 U	132-64-9	Dibenzofuran	7.4	20	< 20 U
86-30-6 N-Nitrosodiphenylamine 8.5 20 < 20 U	84-66-2	Diethylphthalate	16	20	
118-74-1 Hexachlorobenzene 7.9 20 < 20 U	86-73-7		8.8	20	13 J
87-86-5 Pentachlorophenol 47 98 150 85-01-8 Phenanthrene 8.2 20 120 120-12-7 Anthracene 7.6 20 34 84-74-2 Di-n-Butylphthalate 12 20 18 J 206-44-0 Fluoranthene 7.8 20 210 129-00-0 Pyrene 7.6 20 150 85-68-7 Butylbenzylphthalate 11 20 110 56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	86-30-6		8.5	20	< 20 U
85-01-8 Phenanthrene 8.2 20 120 120-12-7 Anthracene 7.6 20 34 84-74-2 Di-n-Butylphthalate 12 20 18 J 206-44-0 Fluoranthene 7.8 20 210 129-00-0 Pyrene 7.6 20 150 85-68-7 Butylbenzylphthalate 11 20 110 56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	118-74-1	Hexachlorobenzene	7.9	20	< 20 U
120-12-7 Anthracene 7.6 20 34 84-74-2 Di-n-Butylphthalate 12 20 18 J 206-44-0 Fluoranthene 7.8 20 210 129-00-0 Pyrene 7.6 20 150 85-68-7 Butylbenzylphthalate 11 20 110 56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	87-86-5	Pentachlorophenol	47	98	150
84-74-2 Di-n-Butylphthalate 12 20 18 J 206-44-0 Fluoranthene 7.8 20 210 129-00-0 Pyrene 7.6 20 150 85-68-7 Butylbenzylphthalate 11 20 110 56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	85-01-8	Phenanthrene	8.2	20	120
206-44-0 Fluoranthene 7.8 20 210 129-00-0 Pyrene 7.6 20 150 85-68-7 Butylbenzylphthalate 11 20 110 56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	120-12-7	Anthracene	7.6	20	34
129-00-0 Pyrene 7.6 20 150 85-68-7 Butylbenzylphthalate 11 20 110 56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	84-74-2	Di-n-Butylphthalate	12	20	18 J
85-68-7 Butylbenzylphthalate 11 20 110 56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	206-44-0	Fluoranthene	7.8	20	210
56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	129-00-0	Pyrene	7.6	20	150
56-55-3 Benzo(a) anthracene 5.8 20 110 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	85-68-7	Butylbenzylphthalate	11	20	110
117-81-7 bis(2-Ethylhexyl)phthalate 11 20 84 218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U	56-55-3		5.8	20	110
218-01-9 Chrysene 6.5 20 130 117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U					
117-84-0 Di-n-Octyl phthalate 8.2 20 < 20 U			6.5	20	130
205-99-2 Benzo (b) fluoranthene 9.3 20 110 207-08-9 Benzo (k) fluoranthene 9.1 20 100 50-32-8 Benzo (a) pyrene 8.0 20 120 193-39-5 Indeno (1,2,3-cd) pyrene 8.4 20 34 53-70-3 Dibenz (a,h) anthracene 8.4 20 14 J					
207-08-9 Benzo(k) fluoranthene 9.1 20 100 50-32-8 Benzo(a) pyrene 8.0 20 120 193-39-5 Indeno(1,2,3-cd) pyrene 8.4 20 34 53-70-3 Dibenz(a,h) anthracene 8.4 20 14 J					
50-32-8 Benzo(a) pyrene 8.0 20 120 193-39-5 Indeno(1,2,3-cd) pyrene 8.4 20 34 53-70-3 Dibenz(a,h) anthracene 8.4 20 14 J					
193-39-5 Indeno(1,2,3-cd)pyrene 8.4 20 34 53-70-3 Dibenz(a,h)anthracene 8.4 20 14 J		• •		-	
53-70-3 Dibenz (a,h) anthracene 8.4 20 14 J					
	191-24-2	Benzo(g,h,i)perylene	6.6	20	38

Page 2 of 2

Sample ID: RGH-SC-08-0-2' SAMPLE

Lab Sample ID: NR16D

LIMS ID: 08-25461 Matrix: Sediment QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Analyzed: 10/22/08 17:36

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	< 20 U
	Reported in μ_0	g/kg (ppb)		
	Semivolatile Surr	ogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophen	36.3% 44.8% 45.9% ol 77.3%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	e 30 57	.6% .4% .1%

Sample ID: RGH-SC-08-2-4'
SAMPLE

Lab Sample ID: NR16E LIMS ID: 08-25462

Matrix: Sediment

: **M**

Data Release Authorized: Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 18:10

Instrument/Analyst: NT4/PK
GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 69.5%

541-73-1 1,3-Dichlorobenzene 7.4 20 < 20 To 106-46-7 1,4-Dichlorobenzene 7.4 20 < 20 To 20 To 100-51-6 Benzyl Alcohol 14 20 < 20 To	CAS Number	Analyte	MDL	RL	Result
106-46-7	108-95-2	Phenol	14	20	15 J
100-51-6 Benzyl Alcohol 14 20 < 20 0 95-50-1 1,2-Dichlorobenzene 7.9 20 < 20 0 0 0 0 0 0 0 0 0			7.4	20	< 20 U
95-50-1 1,2-Dichlorobenzene 7.9 20 < 20 C	106-46-7		7.4	20	< 20 U
95-48-7 2-Methylphenol 14 20 < 20	100-51-6		14	20	< 20 U
106-44-5 4-Methylphenol 13 20 21 67-72-1 Hexachloroethane 7.2 20 < 20			7.9	20	< 20 U
67-72-1 Hexachloroethane 7.2 20 < 20 U	95-48-7		14	20	< 20 U
105-67-9 2,4-Dimethylphenol 15 20 < 20 U	106-44-5		13	20	21
65-85-0 Benzoic Acid 110 200 < 200 U	67-72-1		7.2	20	< 20 U
120-82-1 1,2,4-Trichlorobenzene 9.1 20 < 20 U		2,4-Dimethylphenol	15	20	< 20 U
91-20-3 Naphthalene 8.7 20 27 87-68-3 Hexachlorobutadiene 8.1 20 < 20 U	65-85-0	Benzoic Acid	110	200	< 200 U
87-68-3 Hexachlorobutadiene 8.1 20 < 20 U	120-82-1			20	< 20 U
91-57-6 2-Methylnaphthalene 8.2 20 32 131-11-3 Dimethylphthalate 7.8 20 < 20 U		-		20	27
131-11-3 Dimethylphthalate 7.8 20 < 20 U				20	< 20 U
208-96-8 Acenaphthylene 8.7 20 26 83-32-9 Acenaphthene 8.2 20 17 J 132-64-9 Dibenzofuran 7.6 20 < 20 U			8.2	20	32
83-32-9 Acenaphthene 8.2 20 17 J 132-64-9 Dibenzofuran 7.6 20 < 20 U		Dimethylphthalate		20	< 20 U
132-64-9 Dibenzofuran 7.6 20 < 20 U				20	26
84-66-2 Diethylphthalate 16 20 < 20 U	83-32-9	_	8.2	20	17 Ј
86-73-7 Fluorene 9.0 20 19 J 86-30-6 N-Nitrosodiphenylamine 8.7 20 < 20 U	132-64-9		7.6	20	< 20 U
86-30-6 N-Nitrosodiphenylamine 8.7 20 < 20 U	84-66-2		16	20	< 20 U
118-74-1 Hexachlorobenzene 8.0 20 < 20 U			9.0	20	19 J
87-86-5 Pentachlorophenol 48 100 450 85-01-8 Phenanthrene 8.4 20 180 120-12-7 Anthracene 7.7 20 41 84-74-2 Di-n-Butylphthalate 12 20 < 20 U	86-30-6		8.7	20	< 20 U
85-01-8 Phenanthrene 8.4 20 180 120-12-7 Anthracene 7.7 20 41 84-74-2 Di-n-Butylphthalate 12 20 < 20 U	118-74-1		8.0	20	< 20 U
120-12-7 Anthracene 7.7 20 41 84-74-2 Di-n-Butylphthalate 12 20 < 20 U	87-86-5	Pentachlorophenol	48	100	450
84-74-2 Di-n-Butylphthalate 12 20 < 20 U	85-01-8	Phenanthrene	8.4	20	180
206-44-0 Fluoranthene 7.9 20 330 129-00-0 Pyrene 7.8 20 250 85-68-7 Butylbenzylphthalate 11 20 < 20 U	120-12-7	Anthracene	7.7	20	41
129-00-0 Pyrene 7.8 20 250 85-68-7 Butylbenzylphthalate 11 20 < 20 U	84-74-2	Di-n-Butylphthalate	12	20	< 20 U
85-68-7 Butylbenzylphthalate 11 20 < 20 U	206-44-0	Fluoranthene	7.9	20	330
56-55-3 Benzo(a) anthracene 5.9 20 190 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 230	129-00-0	Pyrene	7.8	20	250
117-81-7 bis(2-Ethylhexyl)phthalate 11 20 230	85-68-7	Butylbenzylphthalate	11	20	< 20 U
	56-55-3	Benzo (a) anthracene	5.9	20	190
	117-81-7	bis(2-Ethylhexyl)phthalate	11	20	230
218-01-9 Chrysene 6.6 20 240	218-01-9		6.6	20	240
_	117-84-0		8.3	20	< 20 U
205-99-2 Benzo (b) fluoranthene 9.5 20 220	205-99-2		9.5	20	220
207-08-9 Benzo(k) fluoranthene 9.3 20 190	207-08-9			20	
50-32-8 Benzo(a)pyrene 8.2 20 260					
193-39-5 Indeno(1,2,3-cd)pyrene 8.6 20 70					
53-70-3 Dibenz (a, h) anthracene 8.6 20 < 20 U					
191-24-2 Benzo(g,h,i)perylene 6.8 20 68					

Page 2 of 2

Sample ID: RGH-SC-08-2-4'

SAMPLE

Lab Sample ID: NR16E

LIMS ID: 08-25462 Matrix: Sediment QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

NA

Date Analyzed: 10/22/08 18:10

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalen	e 7.2	20	27
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rogate Recovery		
d5-Nitrobenzene	33.3%	2-Fluorobiphenyl	54	.0%
d14-p-Terphenyl	53.2%	d4-1,2-Dichlorobenze	ne 31	.1%
d5-Phenol	37.9%	2-Fluorophenol	46	.1%
2,4,6-Tribromophen	ol 75.5%	d4-2-Chlorophenol	40	.3%

Sample ID: RGH-SC-08-2-4' DILUTION

Lab Sample ID: NR16E LIMS ID: 08-25462

Matrix: Sediment

Data Release Authorized:

Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/24/08 01:32 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 69.5%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	41	60	< 60 U
541-73-1	1,3-Dichlorobenzene	22	60	< 60 U
106-46-7	1,4-Dichlorobenzene	22	60	< 60 U
100-51-6	Benzyl Alcohol	43	60	< 60 U
95-50-1	1,2-Dichlorobenzene	24	60	< 60 U
95-48-7	2-Methylphenol	43	60	< 60 U
106-44-5	4-Methylphenol	38	60	< 60 U
67-72-1	Hexachloroethane	22	60	< 60 U
105-67-9	2,4-Dimethylphenol	44	60	< 60 U
65-85-0	Benzoic Acid	340	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	27	60	< 60 Ŭ
91-20-3	Naphthalene	26	60	< 60 U
87-68-3	Hexachlorobutadiene	24	60	< 60 U
91-57-6	2-Methylnaphthalene	25	60	35 J
131-11-3	Dimethylphthalate	23	60	< 60 U
208-96-8	Acenaphthylene	26	60	< 60 U
83-32-9	Acenaphthene	25	60	< 60 U
132-64-9	Dibenzofuran	23	60	< 60 U
84-66-2	Diethylphthalate	49	60	< 60 U
86-73-7	Fluorene	27	60	< 60 U
86-30-6	N-Nitrosodiphenylamine	26	60	< 60 U
118-74-1	Hexachlorobenzene	24	60	< 60 U
87-86-5	Pentachlorophenol	140	300	390
85-01-8	Phenanthrene	25	60	180
120-12-7	Anthracene	23	60	42 J
84-74-2	Di-n-Butylphthalate	37	60	< 60 U
206-44-0	Fluoranthene	24	60	290
129-00-0	Pyrene	23	60	270
85-68-7	Butylbenzylphthalate	34	60	< 60 U
56-55-3	Benzo(a) anthracene	18	60	190
117-81-7	bis(2-Ethylhexyl)phthalate	33	60	250
218-01-9	Chrysene	20	60	220
117-84-0	Di-n-Octyl phthalate	25	60	< 60 U
205-99-2	Benzo (b) fluoranthene	29	60	220
207-08-9	Benzo(k) fluoranthene	28	60	170
50-32-8	Benzo(a)pyrene	24	60	240
193-39-5	Indeno(1,2,3-cd)pyrene	26	60	120
53-70-3	Dibenz (a, h) anthracene	26	60	40 J
191-24-2	Benzo(g,h,i)perylene	20	60	150

Page 2 of 2

Sample ID: RGH-SC-08-2-4' DILUTION

Lab Sample ID: NR16E

LIMS ID: 08-25462 Matrix: Sediment

Date Analyzed: 10/24/08 01:32

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	22	60	32 Ј

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	34.9%	2-Fluorobiphenyl	48.6%
d14-p-Terphenyl	54.1%	d4-1,2-Dichlorobenzene	32.5%
d5-Phenol	41.2%	2-Fluorophenol	44.3%
2,4,6-Tribromophenol	66.0%	d4-2-Chlorophenol	41.78

Sample ID: RGH-SC-08-4-5.5' SAMPLE

Lab Sample ID: NR16F LIMS ID: 08-25463

Matrix: Sediment

Data Release Authorized: 16

Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 20:27 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 70.4%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	41	60	< 60 U
541-73-1	1,3-Dichlorobenzene	22	60	< 60 U
106-46-7	1,4-Dichlorobenzene	22	60	< 60 U
100-51-6	Benzyl Alcohol	43	60	< 60 U
95-50-1	1,2-Dichlorobenzene	23	60	< 60 U
95-48-7	2-Methylphenol	42	60	< 60 U
106-44-5	4-Methylphenol	38	60	48 J
67-72-1	Hexachloroethane	21	60	< 60 U
105-67-9	2,4-Dimethylphenol	44	60	< 60 U
65-85-0	Benzoic Acid	340	600	< 600 U
120-82-1	1,2,4-Trichlorobenzene	27	60	< 60 U
91-20-3	Naphthalene	26	60	84
87-68-3	Hexachlorobutadiene	24	60	< 60 U
91-57-6	2-Methylnaphthalene	24	60	180
131-11-3	Dimethylphthalate	23	60	110
208-96-8	Acenaphthylene	26	60	37 J
83-32-9	Acenaphthene	24	60	140
132-64-9	Dibenzofuran	22	60	110
84-66-2	Diethylphthalate	49	60	< 60 U
86-73-7	Fluorene	27	60	110
86-30-6	N-Nitrosodiphenylamine	26	60	< 60 U
118-74-1	Hexachlorobenzene	24	60	< 60 U
87-86-5	Pentachlorophenol	140	300	4,100
85-01-8	Phenanthrene	25	60	780
120-12-7	Anthracene	23	60	450
84-74-2	Di-n-Butylphthalate	37	6 O	190
206-44-0	Fluoranthene	24	60	2,000
129-00-0	Pyrene	23	60	1,100
85-68-7	Butylbenzylphthalate	33	60	< 60 U
56-55-3	Benzo (a) anthracene	1.8	60	490
117-81-7	bis(2-Ethylhexyl)phthalate	33	60	980
218-01-9	Chrysene	20	60	650
117-84-0	Di-n-Octyl phthalate	25	60	< 60 U
205-99-2	Benzo (b) fluoranthene	28	60	400
207-08-9	Benzo(k) fluoranthene	28	60	400
50-32-8	Benzo (a) pyrene	24	60	370
193-39-5	Indeno(1,2,3-cd)pyrene	26	60	66
53-70-3	Dibenz (a, h) anthracene	25	60	< 60 U
191-24-2	Benzo(g,h,i)perylene	20	60	100

Page 2 of 2

Sample ID: RGH-SC-08-4-5.5'

SAMPLE

Lab Sample ID: NR16F

LIMS ID: 08-25463 Matrix: Sediment

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Analyzed: 10/22/08 20:27

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthale	ne 21	60	120
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rogate Recovery		
d5-Nitrobenzene	40.9%	2-Fluorobiphenyl	59.	9%
d14-p-Terphenyl	64.1%	d4-1,2-Dichlorobenzene	39.	48
d5-Phenol	48.7%	2-Fluorophenol	59.	1%
2,4,6-Tribromophen	ol 92.0%	d4-2-Chlorophenol	46.	3%

Sample ID: RGH-SC-08-4-5.5'
DILUTION

Lab Sample ID: NR16F LIMS ID: 08-25463

Matrix: Sediment

Data Release Authorized: Reported: 10/24/08

Date Extracted: 10/08/08
Date Analyzed: 10/24/08 03:12
Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 10.0 Percent Moisture: 70.4%

*	·			
CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	140	200	< 200 U
541-73-1	1,3-Dichlorobenzene	74	200	< 200 U
106-46-7	1,4-Dichlorobenzene	73	200	< 200 U
100-51-6	Benzyl Alcohol	140	200	< 200 U
95-50-1	1,2-Dichlorobenzene	78	200	< 200 U
95-48-7	2-Methylphenol	140	200	< 200 U
106-44-5	4-Methylphenol	130	200	< 200 U
67-72-1	Hexachloroethane	71	200	< 200 U
105-67-9	2,4-Dimethylphenol	150	200	< 200 U
65-85-0	Benzoic Acid	1100	2,000	< 2,000 U
120-82-1	1,2,4-Trichlorobenzene	90	200	< 200 U
91-20-3	Naphthalene	86	200	< 200 U
87-68-3	Hexachlorobutadiene	80	200	< 200 U
91-57-6	2-Methylnaphthalene	81	200	170 J
131-11-3	Dimethylphthalate	77	200	120 J
208-96-8	Acenaphthylene	86	200	< 200 U
83-32-9	Acenaphthene	81	200	140 J
132-64-9	Dibenzofuran	75	200	130 J
84-66-2	Diethylphthalate	160	200	< 200 U
86-73-7	Fluorene	89	200	120 J
86-30-6	N-Nitrosodiphenylamine	86	200	< 200 U
118-74-1	Hexachlorobenzene	79	200	< 200 U
87-86-5	Pentachlorophenol	470	990	3,400
85-01-8	Phenanthrene	83	200	910
120-12-7	Anthracene	77	200	220
84-74-2	Di-n-Butylphthalate	120	200	360
206-44-0	Fluoranthene	78	200	1,800
129-00-0	Pyrene	77	200	1,100
85-68-7	Butylbenzylphthalate	110	200	< 200 U
56-55-3	Benzo (a) anthracene	59	200	540
117-81-7	bis(2-Ethylhexyl)phthalate	110	200	940
218-01-9	Chrysene	66	200	620
117-84-0	Di-n-Octyl phthalate	83	200	< 200 U
205-99-2	Benzo (b) fluoranthene	94	200	330
207-08-9	Benzo(k) fluoranthene	92	200	270
50-32-8	Benzo (a) pyrene	81	200	340
193-39-5	Indeno(1,2,3-cd)pyrene	8 5	200	< 200 U
193-39-5 53-70-3	Dibenz (a, h) anthracene	85	200	< 200 U
191-24-2		6 7	200	120 J
171-44-4	Benzo(g,h,i)perylene	67	200	120 0

Page 2 of 2

Sample ID: RGH-SC-08-4-5.5'

DILUTION

46.4%

Lab Sample ID: NR16F

LIMS ID: 08-25463 Matrix: Sediment

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

d4-2-Chlorophenol

Date Analyzed: 10/24/08 03:12

2,4,6-Tribromophenol

CAS Number	Analyte	\mathtt{MDL}	RL	Result
90-12-0	1-Methylnaphthalen	e 71	200	130 Ј
	Reported in	μg/kg (ppb)		
d5-Nitrobenzene	41.6%	2-Fluorobiphenyl	59.68	វ
d14-p-Terphenyl	64.0%	d4-1,2-Dichlorobenzene	34.48	វ
d5-Phenol	45.3%	2-Fluorophenol	56.3%	5

81.9%

Sample ID: RGH-SC-09-0-2' SAMPLE

Lab Sample ID: NR16G LIMS ID: 08-25464

Reported: 10/24/08

Matrix: Sediment
Data Release Authorized:

ed:

Date Extracted: 10/08/08
Date Analyzed: 10/22/08 18:45
Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.1 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 56.0%

108-95-2	CAS Number	Analyte	MDL	RL	Result
1,6	108-95-2	Phenol	14	20	
100-51-6 Benzyl Alcohol 14 20 < 20 U 95-50-1 1,2-Dichlorobenzene 7.8 20 < 20 U 95-48-7 2-Methylphenol 14 20 < 20 U 106-44-5 4-Methylphenol 13 20 < 20 U 106-44-5 4-Methylphenol 13 20 < 20 U 105-67-9 2,4-Dimethylphenol 15 20 < 20 U 105-85-0 Benzoic Acid 110 200 < 200 U 120-82-1 1,2,4-Trichlorobenzene 9.0 20 < 20 U 120-82-1 1,2,4-Trichlorobenzene 8.6 20 15 J 87-68-3 Hexachlorobutadiene 8.1 20 < 20 U 91-57-6 2-Methylnaphthalane 8.2 20 12 J 131-11-3 Dimethylphthalate 7.7 20 < 20 U 208-96-8 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthene 8.2 20 < 20 U 84-66-2 Diethylphthalate 16 20 < 20 U 86-73-7 Fluorene 8.9 20 12 J 86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U 87-86-5 Pentachlorobenzene 8.0 20 < 20 U 87-86-5 Pentachlorobenzene 8.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 87-86-7 Butylbenzylphthalate 11 20 < 20 U 85-68-7 Butylbenzylphthalate 11 20 < 20 U 206-44-0 Pyrene 7.7 20 33 85-68-7 Butylbenzylphthalate 11 20 < 20 U 206-88-7 Butylbenzylphthalate 11 20 < 20 U 207-08-9 Benzo(a) anthracene 5.9 20 97 207-08-9 Benzo(b) fluoranthene 9.2 20 77 80-22-8 Benzo(b) fluoranthene 9.2 20 77 80-22-8 Benzo(b) fluoranthene 9.2 20 77 80-22-8 Benzo(b) fluoranthene 9.2 20 77 80-23-8 Benzo(a) pyrene 8.1 20 78 80-33-70-3 Dibenz(a,h) anthracene 8.5 20 0 0	541-73-1	1,3-Dichlorobenzene			
100-31-0 100-31-0	106-46-7	1,4-Dichlorobenzene	7.3		
95-48-7 2-Methylphenol 14 20 <20 U 106-44-5 4-Methylphenol 13 20 <20 U 67-72-1 Hexachloroethane 7.2 20 <20 U 65-85-0 Benzoic Acid 110 200 <200 U 120-82-1 1,2,4-Trichlorobenzene 9.0 20 <20 U 91-20-3 Maphthalene 8.6 20 15 J 87-68-3 Hexachlorobutadiene 8.1 20 <20 U 91-57-6 2-Methylphthalate 7.7 20 <20 U 91-57-6 2-Methylphthalate 7.7 20 <20 U 208-96-8 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthylene 8.6 20 14 J 84-66-2 Diethylphthalate 16 20 <20 U 86-73-7 Fluorene 8.9 20 <20 U 86-73-7 Fluorene 8.9 20 <20 U 87-86-5 Pentachlorobenzene 8.0 20 <20 U 87-86-5 Pentachlorophenol 47 100 91 J 85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 <20 U 85-68-7 Butylphenol 12 20 <20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Benzo (a) anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 (20 U 205-99-2 Benzo (b) fluoranthene 9.2 20 T 205-90-2 Benzo (b) fluoranthene 9.2 20 T 806-30-9 Dibenz (a, h) anthracene 8.1 20 78 83-30-5 Tindeno (1,2,3-cd) pyrene 8.1 20 78 83-30-5 Dibenz (a, h) anthracene 8.6 20 23 80 20 31 80 20 20 32 80 20 32 80 32-70-3 Dibenz (a, h) anthracene 8.6 20 23 80 32-70-3 Dibenz (a, h) anthracene 8.6 20 23 80 20 30 30 80 20 30 30 80 20 30 30 80 30 30 30 30 30 80 30 30 30 30 80 30 30 30 30 80 30 30 30 30 80 30 30 30 30 30 80 30 30 30 30 30 80 30 30 30 30 30 80 30 30 30 30 30 80 30 30 30 30 30 80 30 30 30 30 30 80 30 30 30 30 30 80 30 30 30 30 30 30 80 30 30 30 30 30 30 80 30	100-51-6	Benzyl Alcohol			
106-44-5	95-50-1	1,2-Dichlorobenzene	7.8	20	
	95-48-7				
105-67-9 2,4-Dimethylphenol 15 20 < 20 U 120-82-1 1,2,4-Trichlorobenzene 9.0 20 < 20 U 120-82-1 1,2,4-Trichlorobenzene 9.0 20 < 20 U 120-82-1 1,2,4-Trichlorobenzene 8.6 20 15 J S S S S S S S S S	106-44-5	4-Methylphenol			
State	67-72-1	Hexachloroethane	—		
120-82-1 1,2,4-Trichlorobenzene 9.0 20 < 20 U 91-20-3 Naphthalene 8.6 20 15 J 87-68-3 Hexachlorobutadiene 8.1 20 < 20 U 91-57-6 2-Methylnaphthalene 8.2 20 12 J 31-11-3 Dimethylphthalate 7.7 20 < 20 U 208-96-8 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthene 8.2 20 < 20 U 132-64-9 Dibenzofuran 7.5 20 < 20 U 86-73-7 Fluorene 8.9 20 12 J 86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U 118-74-1 Hexachlorobenzene 8.0 20 < 20 U 18-74-1 Hexachlorobenzene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 206-44-0 Fluoranthene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 208-96-8 Acenaphthylene 8.3 20 < 20 U 208-96-8 Acenaphthylene 8.4 20 96 209-04-0 Pyrene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 217-84-0 Di-n-Octyl phthalate 11 20 < 20 U 208-99-2 Benzo(a) anthracene 8.3 20 < 20 U 205-99-2 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(k) fluoranthene 9.5 20 80 207-08-9 Benzo(k) fluoranthene 9.2 20 77 50-32-8 Benzo(a) pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20 U	105-67-9	2,4-Dimethylphenol	— -		
91-20-3 Naphthalene 8.6 20 15 J 87-68-3 Hexachlorobutadiene 8.1 20 < 20 U 91-57-6 2-Methylnaphthalene 8.2 20 12 J 31-11-3 Dimethylphthalate 7.7 20 < 20 U 208-96-8 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthene 8.2 20 < 20 U 132-64-9 Dibenzofuran 7.5 20 < 20 U 84-66-2 Diethylphthalate 16 20 < 20 U 86-73-7 Fluorene 8.9 20 12 J 86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U 118-74-1 Hexachlorobenzene 8.0 20 < 20 U 87-86-5 Pentachlorobenzene 8.0 20 < 20 U 87-86-5 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 96-55-3 Benzo(a)anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl)phthalate 11 20 120 120 130 17-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo(b) fluoranthene 9.5 20 80 170 170 170 170 170 170 170 170 170 17	65-85-0				
87-68-3 Hexachlorobutadiene 8.1 20 < 20 U 91-57-6 2-Methylnaphthalene 8.2 20 12 J 131-11-3 Dimethylphthalate 7.7 20 < 20 U 208-96-8 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthene 8.2 20 < 20 U 132-64-9 Dibenzofuran 7.5 20 < 20 U 84-66-2 Diethylphthalate 16 20 < 20 U 86-73-7 Fluorene 8.9 20 12 J 86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U 118-74-1 Hexachlorobenzene 8.0 20 < 20 U 87-86-5 Pentachlorophenol 47 100 91 J 85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 176-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 120 128-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo (b) fluoranthene 9.5 20 80 207-08-9 Benzo (c) fluoranthene 9.5 20 77 80-32-8 Benzo (a) pyrene 8.1 20 78 133-70-3 Dibenz (a,h) anthracene 8.5 20 < 20 U	120-82-1	1,2,4-Trichlorobenzene			
91-57-6 2-Methylnaphthalene 8.2 20 12 J 131-11-3 Dimethylphthalate 7.7 20 < 20 U 208-96-8 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthene 8.2 20 < 20 U 132-64-9 Dibenzofuran 7.5 20 < 20 U 84-66-2 Diethylphthalate 16 20 < 20 U 86-73-7 Fluorene 8.9 20 12 J 86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U 118-74-1 Hexachlorobenzene 8.0 20 < 20 U 87-86-5 Pentachlorophenol 47 100 91 J 85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 205-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 120 120 120 120 120 120 120 120 1	91-20-3	Naphthalene			
131-11-3	87-68-3	Hexachlorobutadiene			
208-96-8 Acenaphthylene 8.6 20 14 J 83-32-9 Acenaphthene 8.2 20 < 20 U 132-64-9 Dibenzofuran 7.5 20 < 20 U 84-66-2 Diethylphthalate 16 20 < 20 U 86-73-7 Fluorene 8.9 20 12 J 86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U 87-86-5 Pentachlorobenzene 8.0 20 < 20 U 87-86-5 Pentachlorophenol 47 100 91 J 85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 85-68-7 Butylbenzylphthalate 11 20 < 20 U 56-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 120 120 120 120 120 17-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(a) pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20 U	91-57-6	2-Methylnaphthalene			
Sarage Acenaphthene Sarage Sara	131-11-3	Dimethylphthalate			
132-64-9 Dibenzofuran 7.5 20 < 20 U 84-66-2 Diethylphthalate 16 20 < 20 U 86-73-7 Fluorene 8.9 20 12 J 86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U 118-74-1 Hexachlorobenzene 8.0 20 < 20 U 87-86-5 Pentachlorophenol 47 100 91 J 85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 56-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl)phthalate 11 20 20 20 U 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(b) fluoranthene 9.2 20 77 78 193-39-5 Indeno(1,2,3-cd)pyrene 8.6 20 23 23 25 20 U 25 20 25 20 25 25 20 25 25	208-96-8	Acenaphthylene	8.6	20	
84-66-2 Diethylphthalate 16 20 < 20 U	83-32-9	Acenaphthene	8.2	20	
86-73-7 Fluorene 8.9 20 12 J 86-73-7 Fluorene 8.6 20 < 20 U	132-64-9	Dibenzofuran			
86-30-6 N-Nitrosodiphenylamine 8.6 20 < 20 U	84-66-2	Diethylphthalate			
118-74-1 Hexachlorobenzene 8.0 20 < 20 U 87-86-5 Pentachlorophenol 47 100 91 J 85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 56-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 120 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(a) pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20 U	86-73-7	Fluorene	8.9	20	
87-86-5 Pentachlorophenol 47 100 91 J 85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U 206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 56-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 120 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(k) fluoranthene 9.2 20 77 50-32-8 Benzo(a) pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20 U	86-30-6	N-Nitrosodiphenylamine	8.6		
85-01-8 Phenanthrene 8.4 20 96 120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U	118-74-1	Hexachlorobenzene	- · ·	20	
120-12-7 Anthracene 7.7 20 33 84-74-2 Di-n-Butylphthalate 12 20 < 20 U	87-86-5	Pentachlorophenol	47	100	
84-74-2 Di-n-Butylphthalate 12 20 < 20	85-01-8	Phenanthrene	8.4	20	- -
206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U 56-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 120 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo(b) fluoranthene 9.5 20 80 207-08-9 Benzo(b) fluoranthene 9.2 20 77 50-32-8 Benzo(a) pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20 U	120-12-7	Anthracene	7.7	20	33
206-44-0 Fluoranthene 7.9 20 170 129-00-0 Pyrene 7.7 20 130 85-68-7 Butylbenzylphthalate 11 20 < 20 U	84-74-2	Di-n-Butylphthalate	12	20	< 20 U
85-68-7 Butylbenzylphthalate 11 20 < 20 U 56-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis(2-Ethylhexyl)phthalate 11 20 120 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U 205-99-2 Benzo(b)fluoranthene 9.5 20 80 207-08-9 Benzo(k)fluoranthene 9.2 20 77 50-32-8 Benzo(a)pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd)pyrene 8.6 20 23 53-70-3 Dibenz(a,h)anthracene 8.5 20 < 20 U	206-44-0		7.9	20	170
56-55-3 Benzo(a) anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 120 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U	129-00-0	Pyrene	7.7	20	130
56-55-3 Benzo (a) anthracene 5.9 20 97 117-81-7 bis (2-Ethylhexyl) phthalate 11 20 120 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U	85-68-7	Butylbenzylphthalate	11	20	< 20 U
117-81-7 bis(2-Ethylhexyl)phthalate 11 20 120 218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U	56-55-3		5.9	20	97
218-01-9 Chrysene 6.6 20 160 117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U			11	20	120
117-84-0 Di-n-Octyl phthalate 8.3 20 < 20 U			6.6	20	160
205-99-2 Benzo (b) fluoranthene 9.5 20 80 207-08-9 Benzo (k) fluoranthene 9.2 20 77 50-32-8 Benzo (a) pyrene 8.1 20 78 193-39-5 Indeno (1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz (a,h) anthracene 8.5 20 < 20			8.3	20	< 20 U
207-08-9 Benzo(k) fluoranthene 9.2 20 77 50-32-8 Benzo(a) pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20			9.5	20	80
50-32-8 Benzo(a) pyrene 8.1 20 78 193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20 U			9.2	20	77
193-39-5 Indeno(1,2,3-cd) pyrene 8.6 20 23 53-70-3 Dibenz(a,h) anthracene 8.5 20 < 20 U		* *		20	78
53-70-3 Dibenz (a, h) anthracene 8.5 20 < 20 U		· · · · · · · · · · · · · · · · · · ·		20	23
55-70-5 Diponz (d/n/dichiacone					
	191-24-2	Benzo (g, h, i) perylene	6.7	20	25

Page 2 of 2

Sample ID: RGH-SC-09-0-2'

SAMPLE

Lab Sample ID: NR16G

LIMS ID: 08-25464 Matrix: Sediment

Date Analyzed: 10/22/08 18:45

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.2	20	10 Ј

Reported in $\mu g/kg$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	34.2%	2-Fluorobiphenyl	52.0%
d14-p-Terphenyl	52.8%	d4-1,2-Dichlorobenzene	30.8%
d5-Phenol	42.1%	2-Fluorophenol	49.6%
2,4,6-Tribromophenol	77.3%	d4-2-Chlorophenol	43.2%

Sample ID: RGH-SC-09-2-4'
SAMPLE

Lab Sample ID: NR16H LIMS ID: 08-25465 Matrix: Sediment

Data Release Authorized:

Date Extracted: 10/08/08

Instrument/Analyst: NT4/PK

Date Analyzed: 10/22/08 19:19

Reported: 10/24/08

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 56.4%

GPC Cleanup: Yes			Percent Moisture: 56.4%		
	CAS Number	Analyte	MDL	RL	Result
	108-95-2	Phenol	13	20	260
	541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
	106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
	100-51-6	Benzyl Alcohol	14	20	< 20 U
	95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
	95-48-7	2-Methylphenol	14	20	< 20 U
	106-44-5	4-Methylphenol	13	20	76
	67-72-1	Hexachloroethane	7.1	20	< 20 U
	105-67-9	2,4-Dimethylphenol	15	20	< 20 U
	65-85-0	Benzoic Acid	110	200	< 200 U
	120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
	91-20-3	Naphthalene	8.5	20	32
	87-68-3	Hexachlorobutadiene	8.0	20	< 20 U
	91-57-6	2-Methylnaphthalene	8.1	20	26
	131-11-3	Dimethylphthalate	7.6	20	< 20 U
	208-96-8	Acenaphthylene	8.5	20	19 J
	83-32-9	Acenaphthene	8.1	20	14 Ј
	132-64-9	Dibenzofuran	7.4	20	15 J
	84-66-2	Diethylphthalate	16	20	18 J
	86-73-7	Fluorene	8.8	20	24
	86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
	118-74-1	Hexachlorobenzene	7.9	20	< 20 U
	87-86-5	Pentachlorophenol	47	98	260
	85-01-8	Phenanthrene	8.3	20	120
	120-12-7	Anthracene	7.6	20	83
	84-74-2	Di-n-Butylphthalate	12	20	< 20 U
	206-44-0	Fluoranthene	7.8	20	400
	129-00-0	Pyrene	7.6	20	250
	85-68-7	Butylbenzylphthalate	11	20	< 20 U
	56-55-3	Benzo (a) anthracene	5.8	20	190
	117-81-7	bis(2-Ethylhexyl)phthalate	11	20	160
	218-01-9	Chrysene	6.5	20	170
	117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
	205-99-2	Benzo (b) fluoranthene	9.4	20	120
	207-08-9	Benzo(k) fluoranthene	9.1	20	130
	50-32-8	Benzo(a) pyrene	8.0	20	130
	193-39-5	Indeno(1,2,3-cd)pyrene	8.5	20	34
	53-70-3	Dibenz (a, h) anthracene	8.4	20	< 20 U
	191-24-2	Benzo(g,h,i)perylene	6.6	20	34
		nommo (A'm'r) her Arene	U • O	40	24

Page 2 of 2

Sample ID: RGH-SC-09-2-4' SAMPLE

Lab Sample ID: NR16H

LIMS ID: 08-25465 Matrix: Sediment

Date Analyzed: 10/22/08 19:19

QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.1	20	25
	Reported in μ	g/kg (ppb)		
	Semivolatile Surr	ogate Recovery		
d5-Nitrobenzene d14-p-Terphenyl	37.1% 52.0%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	55.2 e 32.4	-
d5-Phenol 2,4,6-Tribromophe	46.7%	2-Fluorophenol d4-2-Chlorophenol	54.4 46.4	ક

Sample ID: RGH-SC-09-2-4' DILUTION

Lab Sample ID: NR16H LIMS ID: 08-25465

Matrix: Sediment

Data Release Authorized:

Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/24/08 02:06 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 56.4%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	40	59	260
541-73-1	1,3-Dichlorobenzene	22	59	< 59 U
106-46-7	1,4-Dichlorobenzene	22	59	< 59 U
100-51-6	Benzyl Alcohol	43	59	< 59 U
95-50-1	1,2-Dichlorobenzene	23	59	< 59 U
95-48-7	2-Methylphenol	42	59	< 59 U
106-44-5	4-Methylphenol	38	59	79
67-72-1	Hexachloroethane	21	59	< 59 U
105-67-9	2,4-Dimethylphenol	44	59	< 59 U
65-85-0	Benzoic Acid	340	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	27	59	< 59 U
91-20-3	Naphthalene	26	59	31 J
87-68-3	Hexachlorobutadiene	24	59	< 59 U
91-57-6	2-Methylnaphthalene	24	59	< 59 U
131-11-3	Dimethylphthalate	23	59	< 59 U
208-96-8	Acenaphthylene	26	59	< 59 U
83-32-9	Acenaphthene	24	59	< 59 U
132-64-9	Dibenzofuran	22	59	< 59 U
84-66-2	Diethylphthalate	48	59	< 59 U
86-73-7	Fluorene	26	59	< 59 U
86-30-6	N-Nitrosodiphenylamine	26	59	< 59 U
118-74-1	Hexachlorobenzene	24	59	< 59 U
87-86-5	Pentachlorophenol	140	300	200 Ј
85-01-8	Phenanthrene	25	59	130
120-12-7	Anthracene	23	59	72
84-74-2	Di-n-Butylphthalate	37	59	< 59 U
206-44-0	Fluoranthene	23	59	400
129-00-0	Pyrene	23	59	270
85-68-7	Butylbenzylphthalate	33	59	67
56-55-3	Benzo (a) anthracene	17	59	160
117-81-7	bis(2-Ethylhexyl)phthalate	32	59	180
218-01-9	Chrysene	20	59	230
117-84-0	Di-n-Octyl phthalate	25	59	< 59 U
205-99-2	Benzo (b) fluoranthene	28	59	120
207-08-9	Benzo(k) fluoranthene	27	59	110
50-32-8	Benzo (a) pyrene	24	59	110
193-39-5	Indeno(1,2,3-cd)pyrene	25	59 59	110 40 J
53-70-3	Dibenz (a, h) anthracene	25 25		
191-24-2		25 20	59 50	< 59 U
1)1-41-4	Benzo(g,h,i)perylene	20	59	54 J

Page 2 of 2

Sample ID: RGH-SC-09-2-4' DILUTION

Lab Sample ID: NR16H LIMS ID: 08-25465

Matrix: Sediment Date Analyzed: 10/24/08 02:06 QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalen	e 21	59	< 59 U
Reported in $\mu g/kg$ (ppb)				
Semivolatile Surrogate Recovery				
d5-Nitrobenzene	37.4%	2-Fluorobiphenyl	55	5.1%
d14-p-Terphenyl	53.3%	d4-1,2-Dichlorobenzer	ne 31	9%
d5-Phenol	47.0%	2-Fluorophenol	50	1.6%
2,4,6-Tribromophen	ol 77.2%	d4-2-Chlorophenol	46	.48

Sample ID: RGH-SC-09-4-5.5' SAMPLE

Lab Sample ID: NR16I LIMS ID: 08-25466

Matrix: Sediment

Data Release Authorized: Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 19:53 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 56.4%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	13	20	22
541-73-1	1,3-Dichlorobenzene	7.3	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.2	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.7	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	27
67-72-1	Hexachloroethane	7.0	20	< 2.0 U
105-67-9	2,4-Dimethylphenol	14	20	< 20 U
65-85-0	Benzoic Acid	110	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	8.9	20	< 20 U
91-20-3	Naphthalene	8.5	20	68
87-68-3	Hexachlorobutadiene	7.9	20	< 20 U
91-57-6	2-Methylnaphthalene	8.0	20	70
131-11-3	Dimethylphthalate	7.6	20	12 J
208-96-8	Acenaphthylene	8.5	20	88
83-32-9	Acenaphthene	8.0	20	59
132-64-9	Dibenzofuran	7.4	20	42
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	8.8	20	71
86-30-6	N-Nitrosodiphenylamine	8.5	20	< 20 U
118-74-1	Hexachlorobenzene	7.8	20	< 20 U
87-86-5	Pentachlorophenol	47	98	420
85-01-8	Phenanthrene	8.2	20	680
120-12-7	Anthracene	7.6	20	200
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.7	20	1,200
129-00-0	Pyrene	7.6	20	710
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.8	20	310
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	170
218-01-9	Chrysene	6.5	20	630
117-84-0	Di-n-Octyl phthalate	8.2	20	< 20 U
205-99-2	Benzo (b) fluoranthene	9.3	20	470
	Benzo(k) fluoranthene	9.1	20	440
207-08-9	Benzo(k) Huoranthene Benzo(a) pyrene	8.0	20	540
50-32-8		8.4	20	140
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	20	47
53-70-3	Dibenz(a,h)anthracene	6.6	20	150
191-24-2	Benzo(g,h,i)perylene	0.0	20	1 29

Page 2 of 2

Sample ID: RGH-SC-09-4-5.5' SAMPLE

Lab Sample ID: NR16I LIMS ID: 08-25466

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Matrix: Sediment

NA

Date Analyzed: 10/22/08 19:53

CAS Number	Analyte	MDL	RL	Result
90-12-0	1-Methylnaphthalene	7.0	20	58
	Reported in μ	g/kg (ppb)		
Semivolatile Surrogate Recovery				
d5-Nitrobenzene	38.8%	2-Fluorobiphenyl	55.6	ક
d14-p-Terphenyl	52.8%	d4-1,2-Dichlorobenzene	33.3	ક
d5-Phenol	46.1%	2-Fluorophenol	57.9	ક
2,4,6-Tribromophen	ol 84.8%	d4-2-Chlorophenol	48.3	8

Page 1 of 2

Lab Sample ID: NR16I LIMS ID: 08-25466

Matrix: Sediment

Data Release Authorized: Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/24/08 02:39 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

Sample ID: RGH-SC-09-4-5.5' DILUTION

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 56.4%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	40	59	< 59 U
541-73-1	1,3-Dichlorobenzene	22	59	< 59 U
106-46-7	1,4-Dichlorobenzene	22	59	< 59 U
100-51-6	Benzyl Alcohol	43	59	< 59 U
95-50-1	1,2-Dichlorobenzene	23	59	< 59 U
95-48-7	2-Methylphenol	42	59	< 59 U
106-44-5	4-Methylphenol	38	59	< 59 U
67-72-1	Hexachloroethane	21	59	< 59 U
105-67-9	2,4-Dimethylphenol	43	59	< 59 U
65-85-0	Benzoic Acid	340	590	< 590 U
120-82-1	1,2,4-Trichlorobenzene	27	59	< 59 U
91-20-3	Naphthalene	25	59	70
87-68-3	Hexachlorobutadiene	24	59	< 59 U
91-57-6	2-Methylnaphthalene	24	59	73
131-11-3	Dimethylphthalate	23	59	< 59 U
208-96-8	Acenaphthylene	25	59	76
83-32-9	Acenaphthene	24	59	59
132-64-9	Dibenzofuran	22	59	46 J
84-66-2	Diethylphthalate	48	59	< 59 U
86-73-7	Fluorene	26	59	76
86-30-6	N-Nitrosodiphenylamine	25	59	< 59 U
118-74-1	Hexachlorobenzene	24	59	< 59 U
87-86-5	Pentachlorophenol	140	290	370
85-01-8	Phenanthrene	25	59	750
120-12-7	Anthracene	23	59	160
84-74-2	Di-n-Butylphthalate	36	59	< 59 U
206-44-0	Fluoranthene	23	59	1,200
129-00-0	Pyrene	23	59	780
85-68-7	Butylbenzylphthalate	33	59	< 59 U
56-55-3	Benzo (a) anthracene	17	59	440
117-81-7	bis(2-Ethylhexyl)phthalate	32	59	200
218-01-9	Chrysene	19	59	520
	Di-n-Octyl phthalate	24	59	< 59 U
117-84-0	Benzo (b) fluoranthene	28	59	440
205-99-2		27	59	410
207-08-9	Benzo(k) fluoranthene	24	59	480
50-32-8	Benzo(a)pyrene	25	59	190
193-39-5	Indeno(1,2,3-cd)pyrene		59 59	70
53-70-3	Dibenz(a,h)anthracene	25	59 59	200
191-24-2	Benzo(g,h,i)perylene	20	צכ	200

Sample ID: RGH-SC-09-4-5.5' DILUTION

Lab Sample ID: NR16I

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

LIMS ID: 08-25466

Matrix: Sediment

Date Analyzed: 10/24/08 02:39

CAS Number	Analyte	MDL	RL	Result	
90-12-0	1-Methylnaphthalene	21	59	58 J	
Reported in μ g/kg (ppb)					
Semivolatile Surrogate Recovery					
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromophene	37.9% 55.7% 48.0% ol 76.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	56.89 33.89 55.39 44.99	t t	

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-100808	44.0%	60.8%	88.8%	46.0%	51.5%	60.8%	79.7%	52.0%	0
LCS-100808	37.1%	55.6%	77.2%	32.28*	48.0%	50.9%	83.7%	44.3%	1
LCSD-100808	47.2%	66.0%	82.0%	44.0%	54.4%	60.0%	86.7%	52.5%	0
RGH-SC-07-0-2'	40.4%	62.0%	51.6%	36.3%	53.9%	57.6%	89.6%	54.9%	0
RGH-SC-07-0-2' MS	40.0%	65.6%	52.0%	38.1%	46.9%	54.1%	87.5%	49.1%	0
RGH-SC-07-0-2' MSD	42.0%	68.4%	52.4%	39.2%	50.9%	61.9%	97.6%	52.3%	0
RGH-SC-07-2-4'	35.5%	49.6%	25.2%	39.0%	49.1%	64.0%	59.2%	48.5%	0
RGH-SC-07-2-4' DL	33.2%	44.0%	40.0%	34.8%	44.8%	53.9%	35.7%	42.7%	0
RGH-SC-07-4-6.8	40.8%	62.8%	57.6%	40.8%	52.5%	65.3%	90.7%	52.3%	0
RGH-SC-08-0-2'	36.3%	53.6%	44.8%	30.4%	45.9%	57.1%	77.3%	45.3%	0
RGH-SC-08-2-4 '	33.3%	54.0%	53.2%	31.1%	37.9%	46.1%	75.5%	40.3%	0
RGH-SC-08-2-4' DL	34.9%	48.6%	54.1%	32.5%	41.2%	44.3%	66.0%	41.7%	0
RGH-SC-08-4-5.5'	40.9%	59.9%	64.1%	39.4%	48.7%	59.1%	92.0%	46.3%	0
RGH-SC-08-4-5.5' DL	41.6%	59.6%	64.0%	34.4%	45.3%	56.3%	81.9%	46.4%	0
RGH-SC-09-0-2'	34.2%	52.0%	52.8%	30.8%	42.1%	49.6%	77.3%	43.2%	0
RGH-SC-09-2-4'	37.1%	55.2%	52.0%	32.4%	46.7%	54.4%	85.3%	46.4%	0
RGH-SC-09-2-4' DL	37.4%	55.1%	53.3%	31.9%	47.0%	50.6%	77.2%	46.4%	0
RGH-SC-09-4-5.5'	38.8%	55.6%	52.8%	33.3%	46.1%	57.9%	84.8%	48.3%	0
RGH-SC-09-4-5.5' DL	37.9%	56.8%	55.7%	33.8%	48.0%	55.3%	76.6%	44.9%	0

		LCS/MB LIMITS	QC LIMITS
=	d5-Nitrobenzene	(37-85)	(29-87)
=	2-Fluorobiphenyl	(39-82)	(32 -88)
=	d14-p-Terphenyl	(38-105)	(21-97)
=	d4-1,2-Dichlorobenzene	(33-79)	(25 -82)
=	d5-Phenol	(40-85)	(29 -85)
=	2-Fluorophenol	(20-93)	(10-114)
=	2,4,6-Tribromophenol	(40-96)	(25 -103)
=	d4-2-Chlorophenol	(41-81)	(30 -84)
	11 11 11 11	<pre>= d5-Nitrobenzene = 2-Fluorobiphenyl = d14-p-Terphenyl = d4-1,2-Dichlorobenzene = d5-Phenol = 2-Fluorophenol = 2,4,6-Tribromophenol = d4-2-Chlorophenol</pre>	= d5-Nitrobenzene (37-85) = 2-Fluorobiphenyl (39-82) = d14-p-Terphenyl (38-105) = d4-1,2-Dichlorobenzene (33-79) = d5-Phenol (40-85) = 2-Fluorophenol (20-93) = 2,4,6-Tribromophenol (40-96)

Prep Method: SW3550B

Log Number Range: 08-25458 to 08-25466

Sample ID: RGH-SC-07-0-2' MS/MSD

Lab Sample ID: NR16A LIMS ID: 08-25458

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Matrix: Sediment Data Release Authorized:

Date Sampled: 09/24/08 Date Received: 09/25/08

Reported: 10/24/08

Date Extracted MS/MSD: 10/08/08

Sample Amount MS: 25.3 g-dry-wt MSD: 25.2 g-dry-wt

Date Analyzed MS: 10/22/08 15:19

Final Extract Volume MS: 0.5 mL

MSD: 10/22/08 15:53 Instrument/Analyst MS: NT4/PK

MSD: 0.5 mL Dilution Factor MS: 1.00

MSD: 1.00

MSD: NT4/PK

Percent Moisture: 46.6 %

GPC Cleanup: YES

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	18.4	256	494	48.1%	264	497	49.4%	3.1%
1,3-Dichlorobenzene	< 19.5	216	494	43.7%	218	497	43.9%	0.9%
1,4-Dichlorobenzene	< 19.5	216	494	43.7%	223	497	44.9%	3.2%
Benzyl Alcohol	< 19.5	356	989	36.0%	366	994	36.8%	2.8%
1,2-Dichlorobenzene	< 19.5	209	494	42.3%	209	497	42.1%	0.0%
2-Methylphenol	< 19.5	254	494	51.4%	267	497	53.7%	5.0%
4-Methylphenol	33.8	541	989	51.3%	583	994	55.3%	7.5%
Hexachloroethane	< 19.5	165	494	33.4%	172	497	34.6%	4.2%
2,4-Dimethylphenol	< 19.5	205	494	41.5%	223	497	44.9%	8.4%
Benzoic Acid	< 195	382	1480	25.8%	375	1490	25.2%	1.8%
1,2,4-Trichlorobenzene	< 19.5	255	494	51.6%	261	497	52.5%	2.3%
Naphthalene	668	1090	494	85.4%	1330	497	133%	19.8%
Hexachlorobutadiene	< 19.5	225	494	45.5%	228	497	45.9%	1.3%
2-Methylnaphthalene	38.3	331	494	59.3%	361	497	64.9%	8.7%
Dimethylphthalate	177	447	494	54.7%	385	497	41.9%	14.9%
Acenaphthylene	36.3	416	494	76.9%	437	497	80.6%	4.9%
Acenaphthene	46.9	394	494	70.3%	393	497	69.6%	0.3%
Dibenzofuran	37.7	396	494	72.5%	413	497	75.5%	4.2%
Diethylphthalate	< 19.5	346	494	70.0%	351	497	70.6%	1.4%
Fluorene	63.3	412	494	70.6%	408	497	69.4%	1.0%
N-Nitrosodiphenylamine	< 19.5	388	494	78.5%	410	497	82.5%	5.5%
Hexachlorobenzene	< 19.5	355	494	71.9%	353	497	71.0%	0.6%
Pentachlorophenol	< 97.7	398	494	80.6%	406	497	81.7%	2.0%
Phenanthrene	579	884	494	61.7%	907	497	66.0%	2.6%
Anthracene	114	426	494	63.2%	431	497	63.8%	1.2%
Di-n-Butylphthalate	< 19.5	418	494	84.6%	393	497	79.1%	6.2%
Fluoranthene	756	991	494	47.6%	1050	497	59.2%	5.8%
Pyrene	596	674	494	15.8%	702	497	21.3%	4.1%
Butylbenzylphthalate	< 19.5	287	494	58.1%	288	497	57.9%	0.3%
Benzo(a)anthracene	213	485	494	55.1%	402	497	38.0%	18.7%
bis(2-Ethylhexyl)phthalate	101	451	494	70.9%	711	497	123%	44.8%
Chrysene	390	531	494	28.5%	566	497	35.4%	6.4%
Di-n-Octyl phthalate	< 19.5	337	494	68.2%	327	497	65.8%	3.0%
Benzo(b)fluoranthene	215	580	4 94	73.9%	573	497	72.0%	1.2%
Benzo(k) fluoranthene	194	493	494	60.5%	483	497	58.1%	2.0%
Benzo(a)pyrene	313	466	494	31.0%	528	497	43.3%	12.5%
Indeno(1,2,3-cd)pyrene	94.8	293	494	40.1%	271	497	35.5%	7.8%
Dibenz (a, h) anthracene	39.3	250	494	42.7%	224	497	37.2%	11.0%
Benzo(g,h,i)perylene	116	287	494	34.6%	262	497	29.4%	9.1%
1-Methylnaphthalene	37.9	323	494	57.7%	337	497	60.2%	4.2%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: RGH-SC-07-0-2' MATRIX SPIKE

Lab Sample ID: NR16A LIMS ID: 08-25458

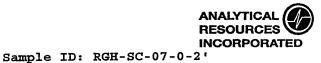
Matrix: Sediment

Data Release Authorized: Reported: 10/24/08

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 15:19 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY


NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 46.6%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	
541-73-1	1,3-Dichlorobenzene	7.4	20	
106-46-7	1,4-Dichlorobenzene	7.3	20	
100-51-6	Benzyl Alcohol	14	20	
95-50-1	1,2-Dichlorobenzene	7.8	20	
95-48-7	2-Methylphenol	14	20	
106-44-5	4-Methylphenol	13	20	
67-72-1	Hexachloroethane	7.1	20	
105-67-9	2,4-Dimethylphenol	15	20	
65-85-0	Benzoic Acid	110	200	
120-82-1	1,2,4-Trichlorobenzene	9.0	20	
91-20-3	Naphthalene	8.6	20	
87-68-3	Hexachlorobutadiene	8.0	20	
91-57-6	2-Methylnaphthalene	8.1	20	
131-11-3	Dimethylphthalate	7.7	20	
208-96-8	Acenaphthylene	8.6	20	
83-32-9	Acenaphthene	8.1	20	
132-64-9	Dibenzofuran	7.5	20	
84-66-2	Diethylphthalate	16	20	
86-73-7	Fluorene	8.9	20	
86-30-6	N-Nitrosodiphenylamine	8.6	20	
118-74-1	Hexachlorobenzene	7.9	20	
87-86-5	Pentachlorophenol	47	99	
85-01-8	Phenanthrene	8.3	20	
120-12-7	Anthracene	7.7	20	
84-74-2	Di-n-Butylphthalate	12	20	
206-44-0	Fluoranthene	7.8	20	
129-00-0	Pyrene	7.7	20	
85-68-7	Butylbenzylphthalate	11	20	
56-55-3	Benzo(a) anthracene	5.9	20	
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	
218-01-9	Chrysene	6.6	20	
117-84-0	Di-n-Octyl phthalate	8.2	20	
205-99-2	Benzo (b) fluoranthene	9.4	20	
207-08-9	Benzo (k) fluoranthene	9.2	20	
50-32-8	Benzo(a) pyrene	8.1	20	
193-39-5	Indeno(1,2,3-cd)pyrene	8.5	20	
53-70-3	Dibenz (a, h) anthracene	8.5	20	
191-24-2	Benzo(g,h,i)perylene	6.7	20	
. ,				

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 2 of 2

QC Report No: NR16-Hart Crowser, Inc.

Lab Sample ID: NR16A LIMS ID: 08-25458 Matrix: Sediment

Project: BELLINGHAM BAY-RG HALEY

MATRIX SPIKE

Date Analyzed: 10/22/08 15:19

CAS Number	Analyte	MDL	RL	Result
90-12-0	90-12-0 1-Methylnaphthalene		20	
	Reported in	μg/kg (ppb)		
	Semivolatile Sur	rogate Recovery		
d5-Nitrobenzene	40.0%	2-Fluorobiphenyl	65.6	ે ક
d14-p-Terphenyl	52.0%	d4-1,2-Dichlorobenzen	e 38.1	. ક
d5-Phenol	46.9%	2-Fluorophenol	54.1	.8
2 4 6-Tribromophen	0] 87.5%	d4-2-Chlorophenol	49.1	. ક

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: RGH-SC-07-0-2'
MATRIX SPIKE DUPLICATE

Lab Sample ID: NR16A LIMS ID: 08-25458

Matrix: Sediment

Data Release Authorized:

Date Extracted: 10/08/08 Date Analyzed: 10/22/08 15:53 Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 46.6%

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	
541-73-1	1,3-Dichlorobenzene	7.4	20	
106-46-7	1,4-Dichlorobenzene	7.3	20	
100-51-6	Benzyl Alcohol	14	20	
95-50-1	1,2-Dichlorobenzene	7.8	20	
95-48-7	2-Methylphenol	14	. 20	
106-44-5	4-Methylphenol	13	20	
67-72-1	Hexachloroethane	7.2	20	
105-67-9	2,4-Dimethylphenol	15	20	
65-85-0	Benzoic Acid	110	200	
120-82-1	1,2,4-Trichlorobenzene	9.0	20	
91-20-3	Naphthalene	8.6	20	
87-68-3	Hexachlorobutadiene	8.1	20	
91-57-6	2-Methylnaphthalene	8.1	20	
131-11-3	Dimethylphthalate	7.7	20	
208-96-8	Acenaphthylene	8.6	20	
83-32-9	Acenaphthene	8.2	20	
132-64-9	Dibenzofuran	7.5	20	
84-66-2	Diethylphthalate	16	20	
86-73-7	Fluorene	8.9	20	
86-30-6	N-Nitrosodiphenylamine	8.6	20	
118-74-1	Hexachlorobenzene	8.0	20	
87-86-5	Pentachlorophenol	47	99	
85-01-8	Phenanthrene	8.3	20	
120-12-7	Anthracene	7.7	20	
84-74-2	Di-n-Butylphthalate	12	20	
206-44-0	Fluoranthene	7.9	20	
129-00-0	Pyrene	7.7	20	
85-68-7	Butylbenzylphthalate	11	20	
56-55-3	Benzo(a) anthracene	5.9	20	
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	
218-01-9	Chrysene	6.6	20	
117-84-0	Di-n-Octyl phthalate	8.3	20	
205-99-2	Benzo(b) fluoranthene	9.5	20	
207-08-9	Benzo(k) fluoranthene	9.2	20	
50-32-8	Benzo(a)pyrene	8.1	20	
193-39-5	Indeno(1,2,3-cd)pyrene	8.5	20	
53-70-3	Dibenz (a, h) anthracene	8.5	20	
191-24-2	Benzo(g,h,i)perylene	6.7	20	

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: RGH-SC-07-0-2'
MATRIX SPIKE DUPLICATE

Lab Sample ID: NR16A

Date Analyzed: 10/22/08 15:53

LIMS ID: 08-25458 Matrix: Sediment

3-25458 liment QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

NA

CAS Number A	nalyte	\mathtt{MDL}	RL	Result		
90-12-0 1	-Methylnaphthalene	7.2	20			
Reported in μ g/kg (ppb)						
	Semivolatile Surrogate Recovery					
d5-Nitrobenzene d14-p-Terphenyl d5-Phenol 2,4,6-Tribromopheno	42.0% 52.4% 50.9% 1 97.6%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol d4-2-Chlorophenol	68.4 ⁹ 39.2 ⁹ 61.9 ⁹ 52.3 ⁹	8 8		

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: LCS-100808 LCS/LCSD

Lab Sample ID: LCS-100808

LIMS ID: 08-25458 Matrix: Sediment

Data Release Authorized:

Reported: 10/24/08

Date Extracted LCS/LCSD: 10/08/08

Date Analyzed LCS: 10/22/08 13:38

LCSD: 10/22/08 14:11

Instrument/Analyst LCS: NT4/PK

LCSD: NT4/PK

GPC Cleanup: YES

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount LCS: 25.0 g

LCSD: 25.0 g

Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
	293	500	58.6%	210		-	0. 20.
Phenol				318	500	63.6%	8.2%
1,3-Dichlorobenzene	185	500	37.0%	242	500	48.4%	26.7%
1,4-Dichlorobenzene	188	500	37.6%	243	500	48.6%	25.5%
Benzyl Alcohol	327	1000	32.7%	316	1000	31.6%	3.4%
1,2-Dichlorobenzene	188	500	37.6%	235	500	47.0%	22.2%
2-Methylphenol	221	500	44.2%	241	500	48.2%	8.7%
4-Methylphenol	494	1000	49.4%	521	1000	52.1%	5.3%
Hexachloroethane	147	500	29.4%	191	500	38.2%	26.0%
2,4-Dimethylphenol	126	500	25.2%	149	500	29.8%	16.7%
Benzoic Acid	1030	1500	68.7%	1050	1500	70.0%	1.9%
1,2,4-Trichlorobenzene	238	500	47.6%	283	500	56.6%	17.3%
Naphthalene	232	500	46.4%	267	500	53.4%	14.0%
Hexachlorobutadiene	204	500	40.8%	242	500	48.4%	17.0%
2-Methylnaphthalene	279	500	55.8%	302	500	60.4%	7.9%
Dimethylphthalate	371	500	74.2%	391	500	78.2%	5.2%
Acenaphthylene	3 4 4	500	68.8%	380	500	76.0%	9.9%
Acenaphthene	337	500	67.4%	372	500	74.4%	9.9%
Dibenzofuran	342	500	68.4%	363	500	72.6%	6.0%
Diethylphthalate	359	500	71.8%	371	500	74.2%	3.3%
Fluorene	309	500	61.8%	330	500	66.0%	6.6%
N-Nitrosodiphenylamine	452	500	90.4%	471	500	94.2%	4.1%
Hexachlorobenzene	388	500	77.6%	386	500	77.2%	0.5%
Pentachlorophenol	371	50 0	74.2%	348	500	69.6%	6.4%
Phenanthrene	359	50 0	71.8%	365	500	73.0%	1.7%
Anthracene	334	500	66.8%	349	500	69.8%	4.4%
Di-n-Butylphthalate	388	500	77.6%	394	500	78.8%	1.5%
Fluoranthene	369	50 0	73.8%	367	500	73.4%	0.5%
Pyrene	358	50 0	71.6%	375	500	75.0%	4.6%
Butylbenzylphthalate	365	500	73.0%	376	500	75.2%	3.0%
Benzo(a)anthracene	372	500	74.4%	382	500	76.4%	2.7%
bis(2-Ethylhexyl)phthalate	405	500	81.0%	422	500	84.4%	4.1%
Chrysene	388	500	77.6%	398	500	79.6%	2.5%
Di-n-Octyl phthalate	362	500	72.4%	372	500	74.4%	2.7%
Benzo(b) fluoranthene	421	500	84.2%	423	500	84.6%	0.5%

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 2 of 2

Lab Sample ID: LCS-100808

LIMS ID: 08-25458

Matrix: Sediment Date Analyzed LCS: 10/22/08 13:38 LCSD: 10/22/08 14:11

Sample ID: LCSD-100808 LCS/LCSD

QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzo(k) fluoranthene	341	500	68.2%	340	500	68.0%	0.3%
Benzo(a) pyrene	272	500	54.4%	291	500	58.2%	6.7%
Indeno(1,2,3-cd)pyrene	331	500	66.2%	347	500	69.4%	4.7%
Dibenz(a,h)anthracene	403	500	80.6%	416	500	83.2%	3.2%
Benzo(q,h,i)perylene	410	500	82.0%	423	500	84.6%	3.1%
1-Methylnaphthalene	273	500	54.6%	294	500	58.8%	7.4%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	37.1%	47.2%
2-Fluorobiphenyl	55.6%	66.0%
d14-p-Terphenyl	77.2%	82.0%
d4-1,2-Dichlorobenzene	32.2%	44.0%
d5- Pheno l	48.0%	54.4%
2-Fluorophenol	50.9%	60.0%
2,4,6-Tribromophenol	83.7%	86.7%
d4-2-Chlorophenol	44.3%	52.5%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

NR16MBS1

Lab Name: ANALYTICAL RESOURCES, INC

The state of the s

Lab File ID: 102203

ARI Job No: NR16

Instrument ID: NT4

Matrix: SOLID

Client: HART CROWSER, INC.

Project: BELLINGHAM BAY-RG HA

Date Extracted: 10/08/08

Date Analyzed: 10/22/08

Time Analyzed: 1304

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
~ ~	=========	=========	========	=======
01		NR16LCSS1	102204	10/22/08
02		NR16LCSDS1	102205	10/22/08
03		NR16A	102206	10/22/08
04		NR16AMS	102207	10/22/08
06	RGH-SC-07-0-2' M RGH-SC-07-2-4'	NR16AMSD	102208	10/22/08
07	RGH-SC-07-2-4	NR16B	102209	10/22/08
:	RGH-SC-08-0-2'	NR16C NR16D	102210	10/22/08
09	RGH-SC-08-2-4'	NR16E	102211	10/22/08
	RGH-SC-09-0-2'	NR16G	102212 102213	10/22/08
11	RGH-SC-09-2-4'	NR16H	102213	10/22/08
	RGH-SC-09-4-5.5'	NR16I	102214	10/22/08 10/22/08
13	RGH-SC-08-4-5.5'	NR16F	102216	10/22/08
14	RGH-SC-07-2-4'	NR16B	102322	10/24/08
	RGH-SC-08-2-4'	NR16E	102323	10/24/08
16	RGH-SC-09-2-4'	NR16H	102324	10/24/08
17	RGH-SC-09-4-5.5'	NR16I	102325	10/24/08
18	RGH-SC-08-4-5.5'	NR16F	102326	10/24/08
19				
20				
21				
22				
23				
24				
25 26				
27				
28				
29				
30				
901				

COMMENTS:		
	A	

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 1 of 2

Sample ID: MB-100808
METHOD BLANK

Lab Sample ID: MB-100808

LIMS ID: 08-25458 Matrix: Sediment

Data Release Authorized:

Reported: 10/24/08

Date Extracted: 10/08/08
Date Analyzed: 10/22/08 13:04
Instrument/Analyst: NT4/PK

GPC Cleanup: Yes

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY NA

NA

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g
Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: NA

CAS Number	Analyte	MDL	RL	Result
108-95-2	Phenol	14	20	< 20 U
541-73-1	1,3-Dichlorobenzene	7.4	20	< 20 U
106-46-7	1,4-Dichlorobenzene	7.4	20	< 20 U
100-51-6	Benzyl Alcohol	14	20	< 20 U
95-50-1	1,2-Dichlorobenzene	7.9	20	< 20 U
95-48-7	2-Methylphenol	14	20	< 20 U
106-44-5	4-Methylphenol	13	20	< 20 U
67-72-1	Hexachloroethane	7.2	20	< 20 U
105-67-9	2,4-Dimethylphenol	15	20	< 20 U
65-85-0	Benzoic Acid	120	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	9.1	20	< 20 U
91-20-3	Naphthalene	8.7	20	< 20 U
87-68-3	Hexachlorobutadiene	8.1	20	< 20 U
91-57-6	2-Methylnaphthalene	8.2	20	< 20 U
131-11-3	Dimethylphthalate	7.8	20	< 20 U
208-96-8	Acenaphthylene	8.7	20	< 20 U
83-32-9	Acenaphthene	8.2	20	< 20 U
132-64-9	Dibenzofuran	7.6	20	< 20 U
84-66-2	Diethylphthalate	16	20	< 20 U
86-73-7	Fluorene	9.0	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	8.7	20	< 20 U
118-74-1	Hexachlorobenzene	8.0	20	< 20 U
87-86-5	Pentachlorophenol	48	100	< 100 U
85-01-8	Phenanthrene	8.4	20	< 20 U
120-12-7	Anthracene	7.7	20	< 20 U
84-74-2	Di-n-Butylphthalate	12	20	< 20 U
206-44-0	Fluoranthene	7.9	20	< 20 U
129-00-0	Pyrene	7.8	20	< 20 U
85-68-7	Butylbenzylphthalate	11	20	< 20 U
56-55-3	Benzo (a) anthracene	5.9	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	11	20	< 20 U
218-01-9	Chrysene	6.6	20	< 20 U
117-84-0	Di-n-Octyl phthalate	8.3	20	< 20 U
205-99-2	Benzo(b) fluoranthene	9.5	20	< 20 U
207-08-9	Benzo(k) fluoranthene	9.3	20	< 20 U
50-32-8	Benzo(a)pyrene	8.2	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	8.6	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	8.6	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	6.8	20	< 20 U

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 2 of 2

Sample ID: MB-100808 METHOD BLANK

52.0%

Lab Sample ID: MB-100808

LIMS ID: 08-25458 Matrix: Sediment QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

NΑ

d4-2-Chlorophenol

Date Analyzed: 10/22/08 13:04

2,4,6-Tribromophenol

CAS Number	Analyte	MDL	RL	Result		
90-12-0	1-Methylnaphthalene	7.2	20	< 20 U		
	Reported in μ	g/kg (ppb)				
Semivolatile Surrogate Recovery						
d5-Nitrobenzene	44.0%	2-Fluorobiphenyl	60.	. 8%		
d14-p-Terphenyl	88.8%	d4-1,2-Dichlorobenzene	e 46.	. 0%		
d5-Phenol	51.5%	2-Fluorophenol	60.	. 8%		

79.7%

NWTPH-Dx

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 1 Matrix: Sediment

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Received: 09/25/08

Data Release Authorized:

Reported: 10/13/08

ARI ID	Sample ID	Analysis Date	DL	Range	Result	RL	MDL
MB-100708 08-25458	Method Blank	10/08/08 FID3A	1.0	Diesel Motor Oil HC ID o-Terphenyl	< 5.0 U < 10 U 81.3%	5.0	5.0 10
NR16A 08-25458	RGH-SC-07-0-2'	10/08/08 FID3A	1.0	Diesel Motor Oil HC ID o-Terphenyl	63 170 DRO/MOTOR C	9.3 18 PIL	9.3 18
NR16B 08-25459	RGH-SC-07-2-4'	10/08/08 FID3A	1.0	Diesel Motor Oil HC ID o-Terphenyl	210 190 DRO/RRO 89.8%	16 33	16 33
NR16C 08-25460	RGH-SC-07-4-6.8'	10/08/08 FID3A	1.0	Diesel Motor Oil HC ID o-Terphenyl	330 650 DRO/MOTOR O 88.0%	12 25 IL	12 25
NR16D 08-25461	RGH-SC-08-0-2'	10/08/08 FID3A	2.0	Diesel Motor Oil HC ID o-Terphenyl	210 670 DRO/MOTOR O 79.1%	25 50 IL	25 50
NR16E 08-25462	RGH-SC-08-2-4'	10/08/08 FID3A	2.0	Diesel Motor Oil HC ID o-Terphenyl	320 800 DRO/MOTOR O 78.7%	31 62 IL	31 62
NR16F 08-25463	RGH-SC-08-4-5.5'	10/08/08 FID3A	1.0	Diesel Motor Oil HC ID o-Terphenyl	670 690 DRO/MOTOR O	16 32 IL	16 32
NR16G 08-25464	RGH-SC-09-0-2'	10/08/08 FID3A	5.0	Diesel Motor Oil HC ID o-Terphenyl	300 500 DRO/MOTOR O	56 110 IL	56 110
NR16H 08-25465	RGH-SC-09-2-4'	10/08/08 FID3A	5.0	Diesel Motor Oil HC ID o-Terphenyl	130 300 DRO/MOTOR OF 77.7%	55 110 IL	55 110
NR16I 08-25466	RGH-SC-09-4-5.5'	10/08/08 FID3A	2.0	Diesel Motor Oil HC ID o-Terphenyl	360 950 DRO/MOTOR OI 81.3%	22 44 IL	22 44

Reported in mg/kg (ppm)

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Client ID	OTER	TOT OUT
100708MBS	81.3%	0
100708LCS	86.7%	0
100708LCSD	83.6%	0
RGH-SC-07-0-2'	79.6%	0
RGH-SC-07-0-2' MS	82.7%	0
RGH-SC-07-0-2' MSD	89.8%	0
RGH-SC-07-2-4'	89.8%	0
RGH-SC-07-4-6.8'	88.0%	0
RGH-SC-08-0-2'	79.1%	0
RGH-SC-08-2-4'	78.7%	0
RGH-SC-08-4-5.5'	91.1%	0
RGH-SC-09-0-2'	77.8%	0
RGH-SC-09-2-4'	77.7%	0
RGH-SC-09-4-5.5'	81.3%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(52-121)

(48-119)

Prep Method: SW3546 Log Number Range: 08-25458 to 08-25466

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

1 of 1 Page

Sample ID: RGH-SC-07-0-2' MS/MSD

Lab Sample ID: NR16A LIMS ID: 08-25458

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Date Extracted MS/MSD: 10/07/08

Date Analyzed MS: 10/08/08 16:02 MSD: 10/08/08 16:33

Instrument/Analyst MS: FID3A/MS

MSD: FID3A/MS

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Sample Amount MS: 5.48 g-dry-wt

MSD: 5.67 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Percent Moisture: 46.6%

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	62.8	421	274	131%	282	265	82.7%	39.5%

TPHD Surrogate Recovery

o-Terphenyl

MS MSD

82.7% 89.8%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1 Sample ID: LCS-100708

LCS/LCSD

Lab Sample ID: LCS-100708

LIMS ID: 08-25458

Matrix: Sediment

Data Release Authorized:

Date Extracted LCS/LCSD: 10/07/08

Date Analyzed LCS: 10/08/08 15:00

Instrument/Analyst LCS: FID3A/MS

LCSD: 10/08/08 15:15

LCSD: FID3A/MS

Reported: 10/13/08

QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	120	150	80.0%	117	150	78.0%	2.5%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

86.7% 83.6%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

4 TPH METHOD BLANK SUMMARY

BLANK NO.

NR16MBS1

Lab Name: ANALYTICAL RESOURCES, INC Client: H

Client: HART CROWSER, INC.

SDG No.: NR16

Project No.: BELLINGHAM BAY

Date Extracted: 10/07/08

3

Date Analyzed: 10/08/08

Instrument ID : FID3A

Matrix: SOLID

Time Analyzed: 1444

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

ANALYZED 10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08
10/08/08

page 1 of 1

FORM IV TPH

METALS

Page 1 of 1

Lab Sample ID: NR16A LIMS ID: 08-25458 Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Percent Total Solids: 50.8%

Sample ID: RGH-SC-07-0-2'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	10/08/08	7471A	10/10/08	7439-97-6	Mercury	0.0094	0.09	0.20	

Page 1 of 1

Lab Sample ID: NR16A LIMS ID: 08-25458 Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Sample ID: RGH-SC-07-0-2'

DUPLICATE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q	
Mercury	7471A	0.20	0.21	4.9%	+/- 0.09	L	

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: NR16A LIMS ID: 08-25458

Matrix: Sediment

Data Release Authorized Reported: 10/13/08 Sample ID: RGH-SC-07-0-2'

MATRIX SPIKE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Mercury	7471A	0.20	1.13	0.920	101%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Lab Sample ID: NR16B LIMS ID: 08-25459

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Percent Total Solids: 28.9%

Sample ID: RGH-SC-07-2-4'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.015	0.2	0.2	U

Page 1 of 1

Lab Sample ID: NR16C LIMS ID: 08-25460

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Reported: 10/15/00

Percent Total Solids: 41.9%

Sample ID: RGH-SC-07-4-6.8'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.0088	0.09	0.09	U

Page 1 of 1

Lab Sample ID: NR16D LIMS ID: 08-25461

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Percent Total Solids: 36.8%

Sample ID: RGH-SC-08-0-2'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.011	0.1	1.0	

Page 1 of 1

Lab Sample ID: NR16E LIMS ID: 08-25462

Matrix: Sediment

Data Release Authorized: Reported: 10/13/08

Percent Total Solids: 33.1%

Sample ID: RGH-SC-08-2-4'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.013	0.1	0.9

Page 1 of 1

Lab Sample ID: NR16F LIMS ID: 08-25463

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Percent Total Solids: 30.6%

Sample ID: RGH-SC-08-4-5.5'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.015	0.2	11.3

Page 1 of 1

Lab Sample ID: NR16G LIMS ID: 08-25464 Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Percent Total Solids: 42.6%

Sample ID: RGH-SC-09-0-2'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.0092	0.09	0.56

Page 1 of 1

Lab Sample ID: NR16H LIMS ID: 08-25465

Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Percent Total Solids: 40.7%

Sample ID: RGH-SC-09-2-4'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result (Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.010	0.1	1.5	_

Page 1 of 1

Lab Sample ID: NR16I LIMS ID: 08-25466 Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Percent Total Solids: 42.4%

Sample ID: RGH-SC-09-4-5.5'

SAMPLE

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: 09/24/08 Date Received: 09/25/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.010	0.1	1.9	

Page 1 of 1

Lab Sample ID: NR16MB

LIMS ID: 08-25458 Matrix: Sediment

Data Release Authorized

Reported: 10/13/08

/

Sample ID: METHOD BLANK

QC Report No: NR16-Hart Crowser, Inc. Project: BELLINGHAM BAY-RG HALEY

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	10/08/08	7471A	10/10/08	7439-97-6	Mercury	0.0050	0.05	0.05	U

Page 1 of 1

Lab Sample ID: NR16LCS

LIMS ID: 08-25458 Matrix: Sediment

Data Release Authorized Reported: 10/13/08

Sample ID: LAB CONTROL

QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	1.05	1.00	105%	

Reported in mg/kg-dry

N-Control limit not met
NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: NR16MB

LIMS ID: 08-25459

Matrix: Sediment
Data Release Authorized;

Reported: 10/13/08

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	MDL	RL	Result	Q
CLP	09/30/08	7471A	10/06/08	7439-97-6	Mercury	0.0050	0.05	0.05	U

Page 1 of 1

Lab Sample ID: NR16LCS

LIMS ID: 08-25459 Matrix: Sediment

Data Release Authorized:

Reported: 10/13/08

Sample ID: LAB CONTROL

QC Report No: NR16-Hart Crowser, Inc.

Project: BELLINGHAM BAY-RG HALEY

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	1.12	1.00	112%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

GENERAL CHEMISTRY

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-07-0-2' ARI ID: 08-25458 NR16A

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	53.80
Total Organic Carbon	10/29/08 102908#1	Plumb, 1981	Percent	0.020	11.3

RL Analytical reporting limit

· Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-07-2-4' ARI ID: 08-25459 NR16B

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	29.70
Total Organic Carbon	11/06/08 110608#1	Plumb,1981	Percent	0.210	38.6

RL Analytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-07-4-6.8'
ARI ID: 08-25460 NR16C

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	35.60
Total Organic Carbon	10/29/08 102908#1	Plumb,1981	Percent	0.020	22.6

RL Analytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-08-0-2' ARI ID: 08-25461 NR16D

Analy	rte	Date	Method	Units	RL	Sample
Total	Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	38.40
Total	Organic Carbon	10/29/08 102908#1	Plumb,1981	Percent	0.020	14.9
RL U	Analytical reporting Undetected at reporte		limit			

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-08-2-4' ARI ID: 08-25462 NR16E

Analy	rte	Date	Method	Units	RL	Sample
Total	Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	33.80
Total	Organic Carbon	10/29/08	Plumb,1981	Percent	0.020	27.3
RL U	Analytical reporting l Undetected at reported		limit			

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized:

Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-08-4-5.5'
ARI ID: 08-25463 NR16F

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	29.30
Total Organic Carbon	10/29/08 102908#1	Plumb,1981	Percent	0.020	18.9

RL Analytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized: Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-09-0-2' ARI ID: 08-25464 NR16G

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	43.40
Total Organic Carbon	10/29/08 102908#1	Plumb, 1981	Percent	0.020	3.69

Analytical reporting limit RL

Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized

Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-09-2-4' ARI ID: 08-25465 NR16H

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	42.10
Total Organic Carbon	10/29/08 102908#1	Plumb, 1981	Percent	0.020	7.41
RL Analytical reportin U Undetected at repor		limit			

SAMPLE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized: Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08 Date Received: 09/25/08

Client ID: RGH-SC-09-4-5.5' ARI ID: 08-25466 NR16I

Analyte	Date	Method	Units	RL	Sample
Total Solids	09/29/08 092908#2	EPA 160.3	Percent	0.01	41.30
Total Organic Carbon	10/29/08 102908#1	Plumb,1981	Percent	0.020	5.32
RL Analytical report U Undetected at rep		limit			

METHOD BLANK RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA
Date Sampled: NA
Date Received: NA

Analyte	Date	Units	Blank
Total Solids	09/29/08 09/29/08 09/29/08	Percent	< 0.01 U < 0.01 U < 0.01 U
Total Organic Carbon	10/29/08 11/06/08	Percent	< 0.020 U < 0.020 U

LAB CONTROL RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized: Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Total Organic Carbon	10/29/08 11/06/08	Percent	0.486 0.520	0.500 0.500	97.2% 104.0%

STANDARD REFERENCE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized: Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon	10/29/08	Percent	3.59	3.35	107.2%
NIST #8704	11/06/08		3.46	3.35	103.3%

REPLICATE RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized: Reported: 11/10/08

Project: BELLINGHAM BAY-RG HALEY

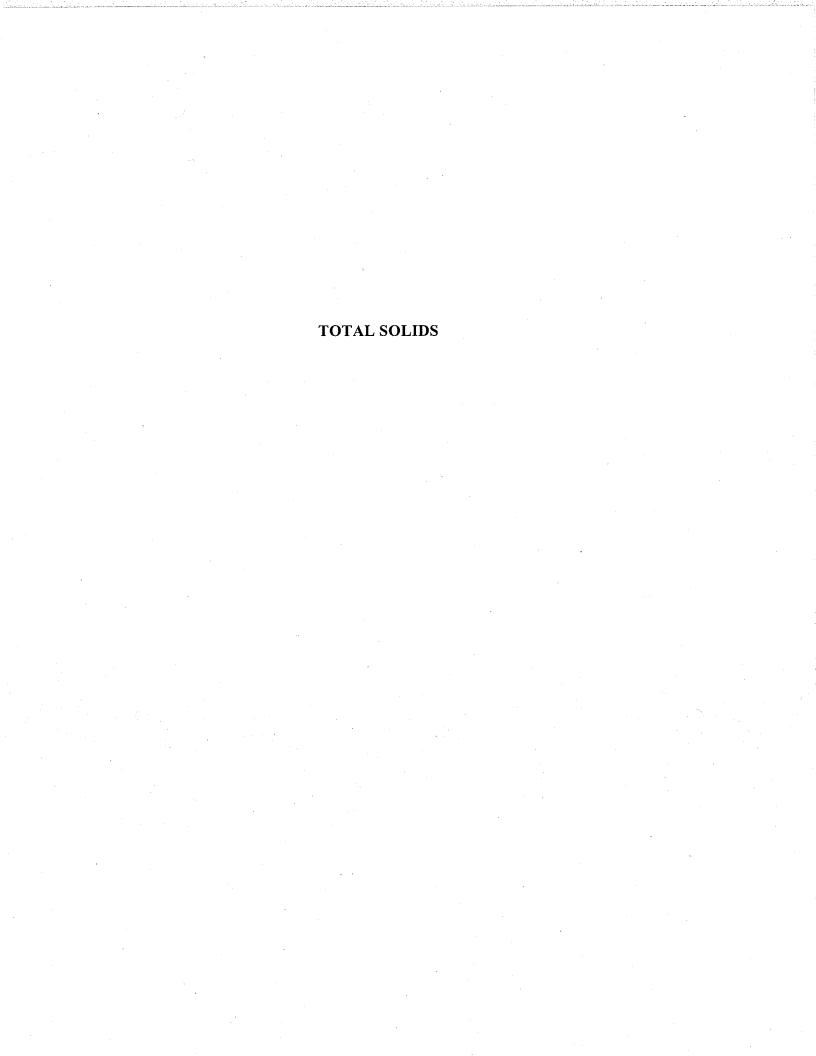
Event: NA
Date Sampled: 09/24/08
Date Received: 09/25/08

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: NR16A Client ID:	RGH-SC-07-0-2'				
Total Solids	09/29/08	Percent	53.80	50.20 54.70	4.5%
Total Organic Carbon	10/29/08	Percent	11.3	11.2 11.5	1.3%

MS/MSD RESULTS-CONVENTIONALS NR16-Hart Crowser, Inc.

Matrix: Sediment

Data Release Authorized Reported: 11/10/08


Project: BELLINGHAM BAY-RG HALEY

Event: NA

Date Sampled: 09/24/08

Date Received: 09/25/08

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: NR16A Client ID:	RGH-SC-07-0	0-2'				
Total Organic Carbon	10/29/08	Percent	11.3	25.6	16.1	89.0%

Extractions Total Solids-extts

Data By: Alex Choeng Created: 10/ 7/08

Worklist: 1809 Analyst: NTC Comments:

		ARI ID CLIENT ID	Tare Wt (g)	Wet Wt (g)	Dry Wt (g)	% Solids	рН
	1.	NR16A 08-25458 RGH-SC-07-0		13.26	7.62	53.4	NR
	2.	NR16B 08-25459 RGH-SC-07-2		11.98	4.29	28.8	NR
	3.	NR16C 08-25460 RGH-SC-07-4		14.92	6.59	39.5	NR
	4.	NR16D 08-25461 RGH-SC-08-0		13.08	5.70	38.1	NR
	5.	NR16E 08-25462 RGH-SC-08-2-		11.62	4.35	30.5	NR
		NR16F 08-25463 RGH-SC-08-4-		11.74	4.29	29.6	NR
a •		NR16G 08-25464 RGH-SC-09-0-		12.52	6.16	44.0	NR .
	8.	NR16H 08-25465 RGH-SC-09-2-		11.34	5.61	43.6	NR
	9.	NR16I 08-25466 RGH-SC-09-4-		12.20	5.97	43.6	NR

Solids Data Entry Report Date: 10/01/08

Checked by: MM Date: 10/01/08
Data Analyst: DM

Solids Determination performed on 09/30/08 by MH

JOB	SAMPLE	CLIENTID	TAREWEIGHT	SAMPDISH	DRYWEIGHT	SOLIDS
NR16 NR16 NR16 NR16 NR16 NR16 NR16	A B C D E F G	RGH-SC-07-0-2' RGH-SC-07-2-4' RGH-SC-07-4-6.8' RGH-SC-08-0-2' RGH-SC-08-2-4' RGH-SC-08-4-5.5' RGH-SC-09-0-2' RGH-SC-09-2-4' RGH-SC-09-2-4'	1.053 1.028 1.019 1.022 1.006 1.009 1.045 1.034 1.017	10.281 10.429 10.650 10.339 10.708 10.243 10.212 10.191 10.951	5.740 3.747 5.057 4.449 4.216 3.834 4.949 4.758 5.234	50.79 28.92 41.93 36.78 33.09 30.59 42.59 40.67 42.45
NR16	T	C.C-P-CU-JG-DDA	1.017	10.001	3.231	

October 30, 2008

Mr. Roger McGinnis Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Project: Bellingham Bay - 17330-17

ARI Job No: NQ49

Dear Mr. McGinnis:

Please find enclosed the original Chain-of-Custody record, sample receipt documentation, and the final data package for the samples from the project referenced above. Select samples were placed on hold pending further instructions.

The samples were subcontracted to TestAmerica, West Sacramento and analyzed for Dioxin/Furans, as requested on the COC.

The data for the Dioxin and Furans analysis has been included in this package.

An electronic copy of this data package and the supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

206-695-6211

kellyb@arilabs.com

www.arilabs.com

Enclosures

cc: files NQ49

October 13, 2008

TestAmerica Project Number: G8I240290

Kelly Bottem Analytical Resources Inc 4611 S 134th Place Suite 100 Tukwila, WA 98168

Dear Ms. Bottem,

This report contains the analytical results for the samples received under chain of custody by TestAmerica on September 24, 2008. These samples are associated with your Bellingham Bay project.

The test results in this report meet all NELAC requirements for parameters that accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The case narrative is an integral part of this report.

If you have any questions, please feel free to call me at (916) 374-4402.

Sincerely,

Jill Kellmann

Project Manager

Gu Kelmam

Case Narrative

TestAmerica West Sacramento Project Number G8I240290

General comments

The samples were received at 11 degrees Celsius. The laboratory was instructed to proceed with the analysis on September 26, 2008.

Sample BBDX-SS-04 was received in a Ziploc bag with a cracked lid. The lid was taped in sample receiving.

SOLID, 1613B, Dioxins/Furans

Sample(s): 1, 2, 3, 4, 5, 6

The samples required a confirmation analysis (CON) for 2,3,7,8-TCDF which was performed on October 10, and 11, 2008.

The laboratory control sample (LCS) associated with the samples has recoveries for 1,2,3,6,7,8-HxcDF and 1,2,3,4,6,7,8-HpCDF above the established limits indicating a high bias. The LCS was re-injected and confirmed the elevated results. Following consultation with the client, the laboratory was instructed to report this data set.

Sample(s): 2

The above sample exhibited elevated noise or matrix interferences for 2,3,7,8-TCDF requiring the detection limit to be raised appropriately. This analyte is flagged with a "G" qualifier.

Sample(s): 3

The analyte 2,3,7,8-TCDF has been qualified with a "JA" flag as the ion abundance ratio is outside of criteria. The analyte has been reported as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ration for this analyte.

There are no other anomalies associated with this project.

TestAmerica Laboratories West Sacramento Certifications/Accreditations

Certifying State	Certifying State Certificate #		Certificate #
Alaska	Alaska UST-055		11666
Arizona	AZ0616	Oregon*	CA 200005
Arkansas	04-067-0	Pennsylvania	68-1272
California*	01119CA	South Carolina	87014002
Colorado	NA	Texas	TX 270-2004A
Connecticut	PH-0691	Utah*	QUAN1
Florida*	E87570	Virginia	00178
Georgia	960	Washington	C087
Hawaii	NA	West Virginia	9930C, 334
Kansas*	E10375	Wisconsin	998204680
Louisiana*	01944	NFESC	NA
Michigan	9947	USACE	NA
Nevada	Nevada CA44		37-82605
New Jersey*	CA005	USDA Foreign Soil	S-46613

^{*}NELAP accredited. A more detailed parameter list is available upon request. Updated 9/21/07

QC Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also be used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

Surrogates: Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

Isotope Dilution: For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

Sample Summary

TestAmerica West Sacramento Project Number G8I240290

WO#	Sample #	Client Sample ID	Sampling Date	Received Date
KXH9D	1	BBDX-SS-01	9/19/2008	9/24/2008 09:20 AM
KXH9W	2	BBDX-SS-02	9/19/2008	9/24/2008 09:20 AM
KXH9X	3	BBDX-SS-03	9/19/2008	9/24/2008 09:20 AM
KXH90	4	BBDX-SS-04	9/19/2008	9/24/2008 09:20 AM
KXH91	5	BBDX-SS-05	9/18/2008	9/24/2008 09:20 AM
KXH93	6	BBDX-SS-06	9/18/2008	9/24/2008 09:20 AM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 09/23/08

ARI Project: NQ49

Laboratory: Test America Lab Contact: Karen Dahl

Lab Address: 880 RIVERSIDE PARKWAY

WEST SACRAMENTO, CA 95605

Phone: 916-373-5600

Fax:

Analytical Protocol: In-house

Special Instructions:

ARI Client: Hart Crowser, Inc. Project ID: BELLINGHAM BAY

ARI PM: Kelly Bottem Phone: 206-695-6211 Fax: 206-695-6201

Requested Turn Around: 10/07/08

Fax Results (Y/N): Yes

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

	ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses		
	08-25130-NQ49A	BBDx-SS-01	09/19/08	Soil	1	Dioxins/Furans	8290	(Su
	Special Instruct	tions: None						
	08-25131-NQ49B	BBDx-SS-02	09/19/03	Soil	1	Dioxins/Furans	8290	(Su
	Special Instruct	tions: None						
	08-25132-NQ49C	BBDx-SS-03	09/19/08	Soil	1	Dioxins/Furans	8290	(Su
	Special Instruct	tions: None						
-	08-25133-NQ49D	BBDx-SS-04	09/19/08	Soil	1	Dioxins/Furans	8290	(Su
	Special Instruct	tions: None						
	08-25134-NQ49E	BBDx-SS-05	09/18/08	Soil	1	Dioxins/Furans	8290	(Su
	Special Instruct	tions: None						
	08-25135-NQ49F	BBDx-SS-06	09/18/08	Soil	1	Dioxins/Furans	8290	(Su
	Special Instruct	tions: None						

- Ruis of a cracked lis. - cv9/24/08

Carrier	Airbill	Date
Relinguismos by	Company ARI	Date 9/23/08 Time ///S
Received by	Company	Pate 9/24/08 Time 1145

Subcontractor Custody Form - NQ49
Page 1 of 1

LOT RECEIPT CHECKLIST TestAmerica West Sacramento

CLIENT	pet		PM Vx	LOG# 5 4	1373
LOT# (QUANTIMS I	O) 68124	0290 QUO	TE# 80669	LOCATION_	WF/
				Initials	Date
DATE RECEIVED	9/2464	TIME RECEIVED	0920		9/24/08
DELIVERED BY	FEDEX	CA OVERNIGHT	□ CLIENT	}	1
	-	GOLDENSTATE		}	1
		☐ BAX GLOBAL			
	_	☐ VALLEY LOGISTICS			
	OTHER				
CUSTODY SEAL ST	ATUS 🗌 INTACT	BROKEN DAW	Ą		
CUSTODY SEAL #(S	S)				
SHIPPPING CONTA	INER(S) 🔲 TAI	L GCLIENT	□ N/A		
TEMPERTURE REC	ORD (IN °C) IR	4 0 5 0 0 0	THER		
COC #(S)		J.			
TEMPERATURE BLA	ANK Obser	ved: Correc	cted:		
SAMPLE TEMPERA	TURE				
Observed: 10	9 10 Avera	ge: to Correcte	d Averagel /	_	
COLLECTOR'S NAM	IE:	ified from COC Mo	t on COC		
pH MEASURED	☐ YE	S ANOMALY	Z∕N/A		
LABELED BY				j	
LABELS CHECKED	BY	.,,.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******		
PEER REVIEW		Øna			
SHORT HOLD TEST	NOTIFICATION	SAMP	LE RECEIVING		
		WETO	CHEM N/A		No. of Advanta American Control of Control o
		VOA-I	ENCORES N/A		
☐ METALS NOTIFIE	ED OF FILTER/PRESE	ERVE VIA VERBAL & EN	MAIL ZNA		
		GOOD CONDITION WI			
CLOUSEAU	TEMPERA	TURE EXCEEDED (2 °C	-6°C) ^{*1} N/A	<u> </u>	
☐ WET ICE	X >	GEL PACK NO	COOLING AGENTS	S USED ØF	M NOTIFIED

^{*1} Acceptable temperature range for State of Wisconsin samples is≤4°C. LEAVE NO SPACES BLANK. USE "N/A" IF NOT APPLICABLE.

TestAmerica West Sacramento TestAmerica The LEAGER IN ENVIRONMENTAL TESTINS

Bottle Lot Inventory

Lot

D: 981240290

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2
VOA*	/																			
VOAh*	/																			
AGB									· .							<u> </u>				
AGBs											<u> </u>			<u> </u>			}		Ĺ	
250AGB				<u> </u>																
250AGBs		ļ																		
250AGBn																				
500AGB																				
AGJ						1											,			
500AGJ													,		-		_			
250AGJ																				T
125AGJ			-	 																
CGJ																				
500CGJ	1	1	1	1	1	1			 -	†										\vdash
250CGJ		,			 	- '		<u>`</u>		<u> </u>										+
125CGJ			-					-												-
PJ										1										\vdash
PJn				1	ļ															
500PJ				ļ																-
500PJn													~							
500PJna																				
500PJzn/na																				
250PJ				ļ																
250PJn									-											_
250PJna																				
250PJzn/na					ļ															-
Acetate Tube																				\vdash
"CT																				-
ncore																				-
Folder/filter																				
PUF																				
Petri/Filter																				-
XAD Trap								i												
Ziploc			-																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2

Number of VOAs with air bubbles present / total number of VOA's

QA-185 5/05 EM

Page 3

Client Sample ID: BBDX-SS-01

Trace Level Organic Compounds

Lot-Sample #...: G81240290-001 Work Order #...: KXH9D2AC Matrix.....: SOLID

 Date Sampled...: 09/19/08
 Date Received..: 09/24/08

 Prep Date....: 10/07/08
 Analysis Date..: 10/10/08

Prep Batch #...: 8281488

Dilution Factor: 1
% Moisture....: 59

		DETECTIO	N	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.32	pg/g	EPA-5 1613B
Total TCDD	4.7		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.61	pg/g	EPA-5 1613B
Total PeCDD	6.3		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	2.1	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	ND	1.5	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	1.2 J		pg/g	BPA-5 1613B
Total HxCDD	19		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	33		pg/g	EPA-5 1613B
Total HpCDD	68		pg/g	EPA-5 1613B
OCDD	280		pg/g	EPA-5 1613B
2,3,7,8-TCDF	0.98 J		pg/g	BPA-5 1613B
Total TCDF	0.98		pg/g	BPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.34	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.37	pg/g	EPA-5 1613B
Total PeCDF	0.76		pg/g	RPA-5 1613B
1,2,3,4,7,8-HxCDF	0.59 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.34	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.32	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.24	pg/g	EPA-5 1613B
Total HxCDF	3.8		pg/g	BPA-5 1613B
1,2,3,4,6,7,8-HpCDF	4.7 J		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.39	pg/g	EPA-5 1613B
Total HpCDF	17		pg/g	EPA-5 1613B
OCDF	16 J		pg/g	EPA-5 1613B

Client Sample ID: BBDX-SS-01

Trace Level Organic Compounds

Lot-Sample #...: G81240290-001 Work Order #...: KXH9D2AC Matrix....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(25 - 164)
13C-1,2,3,7,8-PeCDD	77	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	86	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	99	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	90	(23 - 140)
13C-OCDD	88	(17 - 157)
13C-2,3,7,8-TCDF	80	(24 - 169)
13C-1,2,3,7,8-PeCDF	76	(24 - 185)
13C-2,3,4,7,8-PeCDF	75	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	95	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	95	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	91	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	94	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	92	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	92	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	83	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: BBDX-SS-02

Trace Level Organic Compounds

Lot-Sample #...: G81240290-002 Work Order #...: KXH9W2AC Matrix....: SOLID

 Date Sampled...: 09/19/08
 Date Received..: 09/24/08

 Prep Date.....: 10/07/08
 Analysis Date..: 10/10/08

Prep Batch #...: 8281488

Dilution Factor: 1 % Moisture....: 49

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.31	pg/g	EPA-5 1613B
Total TCDD	56		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.92	pg/g	EPA-5 1613B
Total PeCDD	64		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDD	2.3 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	4.8 J		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	ND	3.0	pg/g	EPA-5 1613B
Total HxCDD	120		pg/g	RPA-5 1613B
1,2,3,4,6,7,8-HpCDD	90		pg/g	EPA-5 1613B
Total HpCDD	190		pg/g	EPA-5 1613B
OCDD	630		pg/g	EPA-5 1613B
2,3,7,8-TCDF	ND CON, G	2.6	pg/g	EPA-5 1613B
Total TCDF	4.2		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.35	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	0.57 J		pg/g	EPA-5 1613B
Total PeCDF	2.1		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDF	1.4 J		pg/g	BPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.45	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.37	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	0.35 J		pg/g	EPA-5 1613B
Total HxCDF	18		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	11		pg/g	KPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.69	pg/g	EPA-5 1613B
Total HpCDF	50		pg/g	EPA~5 1613B
OCDF	41		pg/g	EPA-5 1613B

Client Sample ID: BBDX-SS-02

Trace Level Organic Compounds

Lot-Sample #...: G81240290-002 Work Order #...: KXH9W2AC Matrix.....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(25 - 164)
13C-1,2,3,7,8-PeCDD	79	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	84	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	97	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	88	(23 - 140)
13C-OCDD	82	(17 - 157)
13C-2,3,7,8-TCDF	81	(24 - 169)
13C-1,2,3,7,8-PeCDF	78	(24 - 185)
13C-2,3,4,7,8-PeCDF	77	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	91	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	90	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	91	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	89	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	90	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	90	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37Cl4-2,3,7,8-TCDD	90	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Client Sample ID: BBDX-SS-03

Trace Level Organic Compounds

Lot-Sample #...: G8I240290-003 Work Order #...: KXH9X2AC Matrix.....: SOLID

Date Sampled...: 09/19/08 Date Received..: 09/24/08
Prep Date....: 10/07/08 Analysis Date..: 10/10/08

Prep Batch #...: 8281488

Dilution Factor: 1
\$ Moisture....: 61

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.62	pg/g	EPA-5 1613B
Total TCDD	640		pg/g	BPA-5 1613B
1,2,3,7,8-PeCDD	ND	3.2	pg/g	EPA-5 1613B
Total PeCDD	780		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	16		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	22		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	16		pg/g	EPA-5 1613B
Total HxCDD	1200		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	290		pg/g	EPA-5 1613B
Total HpCDD	540		pg/g	EPA-5 1613B
OCDD	1300		pg/g	EPA-5 1613B
2,3,7,8-TCDF	23 JA, CON		pg/g	EPA-5 1613B
Total TCDF	74		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	1.2	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	1.9	pg/g	EPA-5 1613B
Total PeCDF	11		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDF	4.2 Ј		pg/g	RPA-5 1613B
1,2,3,6,7,8-HxCDF	1.7 J		pg/g	KPA-5 1613B
2,3,4,6,7,8-HxCDF	1.1 J		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.67	pg/g	EPA-5 1613B
Total HxCDF	30		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	27		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	2.7 J		pg/g	KPA-5 1613B
Total HpCDF	130		pg/g	EPA-5 1613B
OCDF	110		pg/g	EPA-5 1613B

Client Sample ID: BBDX-SS-03

Trace Level Organic Compounds

Lot-Sample #: G8	8T240290-003	Work Order #	* KXH9X2AC	Matrix:	SOLID
------------------	--------------	--------------	------------	---------	-------

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(25 - 164)
13C-1,2,3,7,8-PeCDD	78	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	82	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	95	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	85	(23 - 140)
13C-OCDD	84	(17 - 157)
13C-2,3,7,8-TCDF	80	(24 - 169)
13C-1,2,3,7,8-PeCDF	78	(24 - 185)
13C-2,3,4,7,8-PeCDF	76	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	89	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	93	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	85	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	88	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	89	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	89	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	91	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

JA The analyte was positively identified, but the quantitation is an estimate.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: BBDX-SS-04

Trace Level Organic Compounds

Lot-Sample #...: G8I240290-004 Work Order #...: KXH902AC Matrix.....: SOLID

Prep Batch #...: 8281488

Dilution Factor: 1
% Moisture....: 62

		DETECTION	ſ	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	1.5	pg/g	EPA-5 1613B
Total TCDD	490		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	3.4	pg/g	EPA-5 1613B
Total PeCDD	660		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	14		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	18		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	13 J		pg/g	EPA-5 1613B
Total HxCDD	1200		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	220		pg/g	RPA-5 1613B
Total HpCDD	390		pg/g	EPA-5 1613B
OCDD	630		pg/g	RPA-5 1613B
2,3,7,8-TCDF	26 CON		pg/g	EPA-5 1613B
Total TCDF	70		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	1.8 J		pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	N D	1.8	pg/g	EPA-5 1613B
Total PeCDF	8.1		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	2.6	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.53	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.85	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.40	pg/g	EPA-5 1613B
Total HxCDF	9.8		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	16		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	1.3 J		pg/g	RPA-5 1613B
Total HpCDF	62		pg/g	EPA-5 1613B
OCDF	47		pg/g	EPA-5 1613B
			-	

Client Sample ID: BBDX-SS-04

Trace Level Organic Compounds

Lot-Sample #:	G8I240290-004	Work Order	# : KXH902AC	Matrix	: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(25 - 164)
13C-1,2,3,7,8-PeCDD	79	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	85	(32 ~ 141)
13C-1,2,3,6,7,8-HxCDD	93	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	84	(23 - 140)
13C-OCDD	7 7	(17 - 157)
13C-2,3,7,8-TCDF	81	(24 - 169)
13C-1,2,3,7,8-PeCDF	79	(24 - 185)
13C-2,3,4,7,8-PeCDF	76	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	92	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	91	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	88	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	88	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	84	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	85	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	86	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

I Estimated result. Result is less than the reporting limit.

Client Sample ID: BBDX-SS-05

Trace Level Organic Compounds

Lot-Sample #...: G8I240290-005 Work Order #...: KXH912AC Matrix...... SOLID

Dilution Factor: 1 % Moisture....: 70

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	2.5 J		pg/g	KPA-5 1613B
Total TCDD	350		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	3.0 J		pg/g	EPA-5 1613B
Total PeCDD	430		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	8.0 J		pg/g	RPA-5 1613B
1,2,3,6,7,8-HxCDD	ND	1 1	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	8.8 Ј		pg/g	EPA-5 1613B
Total HxCDD	610		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	140		pg/g	EPA-5 1613B
Total HpCDD	260		pg/g	EPA-5 1613B
OCDD	540		pg/g	BPA-5 1613B
2,3,7,8-TCDF	18 CON		pg/g	EPA-5 1613B
Total TCDF	49		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.85	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	1.6 Ј		pg/g	EPA-5 1613B
Total PeCDF	7.0		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDF	2.2 J		pg/g	RPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.88	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.74	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.44	pg/g	EPA-5 1613B
Total HxCDF	20		pg/g	BPA-5 1613B
1,2,3,4,6,7,8-HpCDF	ND	10	pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.74	pg/g	EPA-5 1613B
Total HpCDF	32		pg/g	BPA-5 1613B
OCDF	31 J		pg/g	EPA-5 1613B

Client Sample ID: BBDX-SS-05

Trace Level Organic Compounds

Lot-Sample #: G8I240290-005 Work Order #:	KXH912AC	Matrix:	SOLID
---	----------	---------	-------

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	77	(25 - 164)
13C-1,2,3,7,8-PeCDD	72	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	81	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	96	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	82	(23 - 140)
13C-OCDD	80	(17 - 157)
13C-2,3,7,8-TCDF	76	(24 - 169)
13C-1,2,3,7,8-PeCDF	74	(24 - 185)
13C-2,3,4,7,8-PeCDF	73	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	90	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	89	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	83	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	86	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	84	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	87	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37Cl4-2,3,7,8-TCDD	81	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: BBDX-SS-06

Trace Level Organic Compounds

Lot-Sample #...: G81240290-006 Work Order #...: KXH932AC Matrix....: SOLID

 Date Sampled...: 09/18/08
 Date Received..: 09/24/08

 Prep Date.....: 10/07/08
 Analysis Date..: 10/10/08

Prep Batch #...: 8281488

Dilution Factor: 1
% Moisture....: 52

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	1.5 J		pg/g	EPA-5 1613B
Total TCDD	220		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	1.6	pg/g	EPA-5 1613B
Total PeCDD	280		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	5.1	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	8.6 J		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	8.0 J		pg/g	EPA-5 1613B
Total HxCDD	430		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	120		pg/g	EPA-5 1613B
Total HpCDD	260		pg/g	KPA-5 1613B
OCDD	590		pg/g	EPA-5 1613B
2,3,7,8-TCDF	12 CON		pg/g	EPA-5 1613B
Total TCDF	24		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.85	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	1.2	pg/g	EPA-5 1613B
Total PeCDF	ND	1.2	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	1.7	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	1.1 Ј		pg/g	RPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.56	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.43	pg/g	EPA-5 1613B
Total HxCDF	14		pg/g	BPA-5 1613B
1,2,3,4,6,7,8-HpCDF	14		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.87	pg/g	EPA-5 1613B
Total HpCDF	55		pg/g	BPA-5 1613B
OCDF	42		pg/g	EPA-5 1613B

Client Sample ID: BBDX-SS-06

Trace Level Organic Compounds

Lot-Sample #...: G8I240290-006 Work Order #...: KXH932AC Matrix.....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	68	(25 - 164)
13C-1,2,3,7,8-PeCDD	62	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	68	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	80	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	72	(23 - 140)
13C-OCDD	69	(17 - 157)
13C-2,3,7,8-TCDF	66	(24 - 169)
13C-1,2,3,7,8-PeCDF	63	(24 - 185)
13C-2,3,4,7,8-PeCDF	62	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	76	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	77	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	73	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	74	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	72	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	73	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37Cl4-2,3,7,8-TCDD	69	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

QC DATA ASSOCIATION SUMMARY

G8I240290

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	SOLID	EPA-5 1613B		8281488	
	SOLID	ASTM D 2216-90		8270241	8270155
002	SOLID	EPA-5 1613B		8281488	
	SOLID	ASTM D 2216-90		8270241	8270155
003	SOLID	EPA-5 1613B		8281488	
	SOLID	ASTM D 2216-90		8270241	8270155
004	SOLID	EPA-5 1613B		8281488	
	SOLID	ASTM D 2216-90		8270241	8270155
005	SOLID	EPA-5 1613B		8281488	
	SOLID	ASTM D 2216-90		8270241	8270155
006	SOLID	EPA-5 1613B		8281488	
	SOLID	ASTM D 2216-90		8270241	8270155

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #...: G8I240290 Work Order #...: K0CPW1AA Matrix.....: SOLID
MB Lot-Sample #: G8J070000-488

Prep Date....: 10/07/08

Analysis Date..: 10/10/08 Prep Batch #...: 8281488

Dilution Factor: 1

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.11	pg/g	EPA-5 1613B
Total TCDD	ND	0.11	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.22	pg/g	EPA-5 1613B
Total PeCDD	ND	0.22	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	0.078	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	ND	0.070	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	ND	0.064	pg/g	EPA-5 1613B
Total HxCDD	ND	0.078	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	ND	0.15	pg/g	EPA-5 1613B
Total HpCDD	ND	0.15	pg/g	EPA-5 1613B
OCDD	ND	1.6	pg/g	EPA-5 1613B
2,3,7,8-TCDF	ND	0.26	pg/g	EPA-5 1613B
Total TCDF	ND	0.26	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.12	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.13	pg/g	EPA-5 1613B
Total PeCDF	ND	0.19	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	0.090	pa/a	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.081	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.064	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.079	pg/g	EPA-5 1613B
Total HxCDF	ND	0.090	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	ND	0.063	pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.087	pg/g	EPA-5 1613B
Total HpCDF	ND	0.087	pg/g	EPA-5 1613B
OCDF	ND	0.27	pg/g	EPA-5 1613B

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #: G81240290	Work Order #: KOCPW1AA	Matrix: SOLID

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
		-		
	PERCENT	RECOVERY		
INTERNAL STANDARDS	RECOVERY	LIMITS		
13C-2,3,7,8-TCDD	84	(25 - 164)	
13C-1,2,3,7,8-PeCDD	79	(25 - 181))	
13C-1,2,3,4,7,8-HxCDD	91	(32 - 141))	
13C-1,2,3,6,7,8-HxCDD	108	(28 - 130))	
13C-1,2,3,4,6,7,8-HpCDD	98	(23 - 140))	
13C-OCDD	94	(17 - 157))	
13C-2,3,7,8-TCDF	82	(24 - 169))	
13C-1,2,3,7,8-PeCDF	78	(24 - 185))	
13C-2,3,4,7,8-PeCDF	79	(21 - 178))	
13C-1,2,3,6,7,8-HxCDF	99	(26 - 123))	
13C-2,3,4,6,7,8-HxCDF	101	(28 - 136))	
13C-1,2,3,7,8,9-HxCDF	98	(29 - 147))	
13C-1,2,3,4,6,7,8-HpCDF	101	(28 - 143))	
13C-1,2,3,4,7,8,9-HpCDF	100	(26 - 138))	
13C-1,2,3,4,7,8-HxCDF	101	(26 - 152))	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
37C14-2,3,7,8-TCDD	86	(35 - 197)	_ }	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

Trace Level Organic Compounds

Client Lot #...: G8I240290 Work Order #...: KOCPW1AD Matrix.....: SOLID

LCS Lot-Sample#: G8J070000-488

Prep Date....: 10/07/08 Analysis Date..: 10/15/08

Prep Batch #...: 8281488

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
2,3,7,8-TCDD	123	(67 - 158)	RPA-5 1613B
1,2,3,7,8-PeCDD	130	(70 ~ 142)	EPA-5 1613B
1,2,3,4,7,8-HxCDD	131	(70 - 164)	EPA-5 1613B
1,2,3,6,7,8-HxCDD	131	(76 ~ 134)	BPA-5 1613B
1,2,3,7,8,9-HxCDD	130	(64 - 162)	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	131	(70 - 140)	EPA-5 1613B
OCDD	136	(78 - 144)	EPA-5 1613B
2,3,7,8-TCDF	128	(75 - 158)	RPA-5 1613B
1,2,3,7,8-PeCDF	132	(80 - 134)	EPA-5 1613B
2,3,4,7,8-PeCDF	127	(68 - 160)	EPA-5 1613B
1,2,3,4,7,8-HxCDF	133	(72 - 134)	EPA-5 1613B
1,2,3,6,7,8-HxCDF	131 a	(84 - 130)	EPA-5 1613B
2,3,4,6,7,8-HxCDF	130	(70 - 156)	EPA-5 1613B
1,2,3,7,8,9-HxCDF	129	(78 - 130)	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	129 a	(82 - 122)	RPA-5 1613B
1,2,3,4,7,8,9-HpCDF	131	(78 - 138)	EPA-5 1613B
OCDF	130	(63 - 170)	EPA-5 1613B

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

Trace Level Organic Compounds

Client Lot #...: G8I240290 Work Order #...: KOCPW1AD Matrix.....: SOLID

LCS Lot-Sample#: G8J070000-488

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	63	(25 - 164)
13C-1,2,3,7,8-PeCDD	61	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	65	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	73	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	67	(23 - 140)
13C-OCDD	60	(17 - 157)
13C-2,3,7,8-TCDF	62	(24 - 169)
13C-1,2,3,7,8-PeCDF	57	(24 - 185)
13C-2,3,4,7,8-PeCDF	63	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	75	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	74	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	65	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	67	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	63	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	68	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37Cl4-2,3,7,8-TCDD	94	(35 - 197)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results are from a re-injection confirming the elevated results for 1,2,3,6,7,8-HxCDF and 1,2,3,4,6,7,8-HpCDF.

a Spiked analyte recovery is outside stated control limits.

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #...: G8I240290 Work Order #...: K0CPW1AD Matrix.....: SOLID

LCS Lot-Sample#: G8J070000-488

Prep Date....: 10/07/08 Analysis Date..: 10/15/08

Prep Batch #...: 8281488

Dilution Factor: 1

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
2,3,7,8-TCDD	20.0	24.6	pg/g	123	EPA-5 1613B
1,2,3,7,8-PeCDD	100	130	pg/g	130	EPA-5 1613B
1,2,3,4,7,8-HxCDD	100	131	pg/g	131	EPA-5 1613B
1,2,3,6,7,8-HxCDD	100	131	pg/g	131	EPA-5 1613B
1,2,3,7,8,9-HxCDD	100	130	pg/g	130	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	100	131	pg/g	131	EPA-5 1613B
OCDD	200	272	pg/g	136	BPA-5 1613B
2,3,7,8-TCDF	20.0	25.6	pg/g	128	EPA-5 1613B
1,2,3,7,8-PeCDF	100	132	pg/g	132	EPA-5 1613B
2,3,4,7,8-PeCDF	100	127	pg/g	127	BPA-5 1613B
1,2,3,4,7,8-HxCDF	100	133	pg/g	133	BPA-5 1613B
1,2,3,6,7,8-HxCDF	100	131 a	pg/g	131	EPA-5 1613B
2,3,4,6,7,8-HxCDF	100	130	pg/g	130	EPA-5 1613B
1,2,3,7,8,9-HxCDF	100	129	pg/g	129	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	100	129 a	pg/g	129	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	100	131	pg/g	131	EPA-5 1613B
OCDF	200	261	pg/g	130	BPA-5 1613B

(Continued on next page)

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #...: G8I240290 Work Order #...: KOCPW1AD Matrix.....: SOLID

LCS Lot-Sample#: G8J070000-488

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	63	(25 - 164)
13C-1,2,3,7,8-PeCDD	61	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	65	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	73	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	67	(23 - 140)
13C-OCDD	60	(17 - 157)
13C-2,3,7,8-TCDF	62	(24 - 169)
13C-1,2,3,7,8-PeCDF	57	(24 - 185)
13C-2,3,4,7,8-PeCDF	63	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	75	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	74	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	65	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	67	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	63	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	68	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	94	(35 - 197)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results are from a re-injection confirming the elevated results for 1,2,3,6,7,8-HxCDF and 1,2,3,4,6,7,8-HpCDF.

a Spiked analyte recovery is outside stated control limits.

SOLID, D 2216-90, Percent Moisture

Client Sample ID: BBDX-SS-01

General Chemistry

Lot-Sample #...: G81240290-001 Work Order #...: KXH9D Matrix.....: SOLID

Date Sampled...: 09/19/08 Date Received..: 09/24/08

% Moisture....: 59

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Moisture
 59.1
 0.10
 %
 ASTM D 2216-90
 09/26-09/27/08
 8270241

Client Sample ID: BBDX-SS-02

General Chemistry

Lot-Sample #...: G8I240290-002 F

Work Order #...: KXH9W
Date Received..: 09/24/08

Matrix....: SOLID

Date Sampled...: 09/19/08

% Moisture....: 49

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Moisture
 49.0
 0.10
 %
 ASTM D 2216-90
 09/26-09/27/08
 8270241

Client Sample ID: BBDX-SS-03

General Chemistry

Matrix....: SOLID

Lot-Sample #...: G81240290-003 Work Order #...: KXH9X

% Moisture....: 61

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Moisture
 61.4
 0.10
 %
 ASTM D 2216-90
 09/26-09/27/08
 8270241

Client Sample ID: BBDX-SS-04

General Chemistry

Lot-Sample #...: G81240290-004 Work Order #...: KXH90 Matrix.....: SOLID

% Moisture....: 62

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Moisture
 62.4
 0.10
 %
 ASTM D 2216-90
 09/26-09/27/08
 8270241

Client Sample ID: BBDX-SS-05

General Chemistry

Lot-Sample #...: G8I240290-005 Work Order #...: KXH91 Matrix.....: SOLID

% Moisture....: 70

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Moisture
 70.4
 0.10
 %
 ASTM 0 2216-90
 09/26-09/27/08
 8270241

Client Sample ID: BBDX-SS-06

General Chemistry

Lot-Sample #...: G8I240290-006 Work Order #...: KXH93 Matrix.....: SOLID

% Moisture....: 52

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Moisture
 51.6
 0.10
 %
 ASTM D 2216-90
 09/26-09/27/08
 8270241

QC DATA ASSOCIATION SUMMARY

G81240290

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	SOLID	ASTM D 2216-90		8270241	8270155
002	SOLID	ASTM D 2216-90		8270241	8270155
003	SOLID	ASTM D 2216-90		8270241	8270155
004	SOLID	ASTM D 2216-90		8270241	8270155
005	SOLID	ASTM D 2216-90		8270241	8270155
006	SOLID	ASTM D 2216-90		8270241	8270155

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: G81240290 Work Order #...: KWLQP-SMP Matrix.....: SOLID

KWLQP-DUP

% Moisture....: 2.2

September 18, 2008

TestAmerica Project Number: G8I030194

PO/Contract:

Kelly Bottem Analytical Resources Inc 4611 S 134th Place Suite 100 Tukwila, WA 98168

Dear Ms. Bottem,

This report contains the analytical results for the samples received under chain of custody by TestAmerica on September 3, 2008. These samples are associated with your R.G. HALEY project.

The test results in this report meet all NELAC requirements for parameters that accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The case narrative is an integral part of this report.

If you have any questions, please feel free to call me at (916) 374-4402.

Sincerely,

Laura Nelson

for

Jill Kellmann

Project Manager

Table of Contents

TestAmerica West Sacramento Project Number G8I030194

Case Narrative

Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

SOLID, 1613B, Dioxins/Furans
Samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Sample Data Sheets
Method Blank Report
Laboratory QC Reports

SOLID, D 2216-90, Percent Moisture Samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Sample Data Sheets Laboratory QC Reports

Raw Data Package

Case Narrative

TestAmerica West Sacramento Project Number G8I030194

SOLID, 1613B, Dioxins/Furans

Samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Samples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 required Confirmation (CON) analyses, which were performed September 9, 2008. Samples 4, 5, 6, 8, and 9 also required Dilution (D) analysis because of saturated compounds. The D runs were completed September 9 (sample 4), September 10 (samples 5, 6, and 9), and September 17 (sample 8).

Samples: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

The concentrations of 1,2,3,4,6,7,8-HpCDD, OCDF and OCDD in samples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 exceeded the upper quantitation level of the initial calibration curve, but the peaks did not saturate the instrument detector. Historical data indicates that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported with the 'E" qualifier.

Samples: 4, 7, 8

The isomers 2,3,7,8-TCDF (in samples 4 and 7) and 1,2,3,4,7,8,9-HpCDF (in sample 8) have been qualified with the "JA" flag due to the ion abundance ratios being outside of criteria. The isomers have been reported as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratios for these analytes.

Samples: 5, 8, 9

The internal standard compounds 13C-OCDD (in samples 5 and 9) and 13C-1,2,3,4,6,7,8-HpCDF (in sample 8) have ion abundance ratios outside of acceptance criteria. The theoretical areas for the internal standards were used to quantitate the recoveries and to quantitate related target analytes. There is no impact on the data quality as a result of this anomaly.

Sample: 12

Sample 12 exhibited elevated noise or matrix interference for 2,3,7,8-TCDF in the confirmation run requiring the detection limit to be raised appropriately. This analyte was flagged with the "G" qualifier.

There are no other anomalies associated with this project.

TestAmerica Laboratories West Sacramento Certifications/Accreditations

Certifying State	Certificate #	Certifying State	Certificate #
Alaska	UST-055	New York*	11666
Arizona	AZ0616	Oregon*	CA 200005
Arkansas	04-067-0	Pennsylvania	68-1272
California*	01119CA	South Carolina	87014002
Colorado	NA	Texas	TX 270-2004A
Connecticut	PH-0691	Utah*	QUANI
Florida*	E87570	Virginia	00178
Georgia	960	Washington	C087
Hawaii	NA	West Virginia	9930C, 334
Kansas*	E10375	Wisconsin	998204680
Louisiana*	01944	NFESC	NA
Michigan	9947	USACE	NA
Nevada	CA44	USDA Foreign Plant	37-82605
New Jersey*	CA005	USDA Foreign Soil	S-46613

^{*}NELAP accredited. A more detailed parameter list is available upon request. Updated 9/21/07

QC Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD

as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also be used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

Surrogates: Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

Isotope Dilution: For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

Sample Summary

TestAmerica West Sacramento Project Number G8I030194

<u>WO#</u>	Sample #	Client Sample ID	Sampling Date	Received Date
KV67W	1	08-21861-NM56A	8/26/2008	9/3/2008 09:20 AM
KV671	2	08-21862-NM56B	8/26/2008	9/3/2008 09:20 AM
KV672	3	08-21863-NM56C	8/26/2008	9/3/2008 09:20 AM
KV675	4	08-21864-NM56D	8/26/2008	9/3/2008 09:20 AM
KV676	5	08-21865-NM56E	8/26/2008	9/3/2008 09:20 AM
KV677	6	08-21867-NM56G	8/26/2008	9/3/2008 09:20 AM
KV678	7	08-21868-NM56H	8/26/2008	9/3/2008 09:20 AM
KV679	8	08-21870-NM56J	8/27/2008	9/3/2008 09:20 AM
KV68J	9	08-21873-NM56M	8/27/2008	9/3/2008 09:20 AM
KV68L	10	08-21876-NM56P	8/27/2008	9/3/2008 09:20 AM
KV68N	11	08-21879-NM56S	8/27/2008	9/3/2008 09:20 AM
KV68P	12	08-21880-NM56T	8/27/2008	9/3/2008 09:20 AM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

CUSTODY TRANSFER 09/02/08

ARI Project: NM56

Laboratory: SEVERN TRENT LABORATORY-SACRAMENTOARI Client: Hart Crowser, Inc.

Lab Contact: JILL KELLMAN Project ID: R.G. Haley
Lab Address: 880 RIVERSIDE PARKWAY ARI PM: Kelly Bottem
WEST SACRAMENTO, CA 95605 Phone: 206-695-6211
Phone: 916-373-5600 Fax: 206-695-6201

Fax:

Analytical Protocol: PSDDA Special Instructions:

Requested Turn Around: 09/11/08
Fax Results (Y/N): Yes

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
08-21861-NM56A	RGH-SS-01	08/26/08	Sediment		Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				
08-21862-NM56B	RGH-SS-02	08/26/08	Sediment	1	Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				
08-21863-NM56C	RGH-SS-03	08/26/08	Sediment	1	Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				
08-21864-NM56D	RGH-SC-01-0-2'	08/26/08	Sediment	1	Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				
08-21865-NM56E	RGH-SC-01-2-4'	08/26/08	Sediment	1	Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				
08-21867-NM56G	RGH-SC-02-0-2'	08/26/08	Sediment	1	Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				
08-21868-NM56H	RGH-SC-02-2-4'	08/26/08	Sediment	1	Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				
08-21870-NM56J	RGH-SC-03-0-2'	08/27/08	Sediment	1	Dioxin/Furans 1613(Sub)
Special Instruc	tions: None				

CarrierUPS	Airbill ./Z >7269	50145207289	Date 9/2/02	
Te inadished by	Company	1/2/02	Time 1600	
Received by lb	Company TAC- W.S.	Date 1	Time /0//0	

Subcontractor Custody Form - NM56
Page 1 of 2

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 09/02/08

ARI Project: NM56

Laboratory: SEVERN TRENT LABORATORY-SACRAMENTOARI Client: Hart Crowser, Inc. Lab Contact: JILL KELLMAN Project ID: 17330-17

ARI Sample ID	Client Sample ID/ Add'l Sample ID	Sampled	Matrix	Bottles	· ·· J	
08-21873-NM56M	RGH-SC-04-0-2'	08/27/08	Sediment	1	Dioxin/Furans	1613 (Sub)
Special Instruc	tions: None					
08-21876-NM56P	RGH-SC-05-0-2'		Sediment	1	Dioxin/Furans	
Special Instruc	tions: None					
08-21879-NM56S	RGH-SC-06-0-2'	08/27/08	Sediment	1	Dioxin/Furans	
Special Instruc		*				
08-21880-NM56T		08/27/08	Sediment		Dioxin/Furans	
Special Instruc	tions: None					

Carrier	Airbill		Date	
Relinquished by	Company	Pata/ox	Time	
Received by	company	Pate 9/2/8	Time (P/1)	

Subcontractor Custody Form - **NM56**Page 2 of 2

LOT RECEIPT CHECKLIST TestAmerica West Sacramento

CLIENT An	elypical Res	ourses inc	PM VK	LOG# 539 .	34
LOT# (QUANTIMS II	D) <u> </u>	DAY QUO	те#_ 80669	LOCATION	WF/
		_ TIME RECEIVED _ 0		Initials	Date 9/3/68
DELIVERED BY	☐ FEDEX ☐ AIRBORNE ☐ UPS ☐ TAL COURIER ☐ OTHER	☐ CA OVERNIGHT ☐ GOLDENSTATE ☐ BAX GLOBAL ☐ VALLEY LOGISTICS		COURIER	
CUSTODY SEAL #(S SHIPPPING CONTAI	ATUS INTACT 5) INER(S) TAI	L ØCLIENT	□ N/A	_	
COC #(S)	ORD (IN °C) IR				
SAMPLE TEMPERAT	TURE	ge:/Corrected			
		ified from COC Not o			
pH MEASURED LABELED BY	☐ YES	S ANOMALY			
LABELS CHECKED E		***************************************			
SHORT HOLD TEST	NOTIFICATION	WETCH	E RECEIVING IEM ØN/A ICORESØN/A		
☐ METALS NOTIFIE	D OF FILTER/PRESE	RVE VIA VERBAL & EMA	AL N/A		
APPROPRIATE TE	MENT RECEIVED IN (EMPERATURES, CON	GOOD CONDITION WITH ITAINERS, PRESERVATI	H N/A		
☑ CLOUSEAU	☐ TEMPERAT	URE EXCEEDED (2 °C –	6 °C)	V	V_{\perp}
WET ICE Notes:	08-21867 -	GEL PACK NO C	4H .SC-02		NOTIFIED
ω/	a epack.	ed lid (7	kped)		

^{*1} Acceptable temperature range for State of Wisconsin samples is≤4°C. LEAVE NO SPACES BLANK. USE "N/A" IF NOT APPLICABLE.

TestAmerica West Sacramento TestAmerica The LEADER IN ENVIRONMENTAL TESTING

Bottle Lot Inventory

Lot ID: 48±030/94

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	:
VOA*																				1
VOAh*									/									1		1
AGB																				+
AGBs																		 		+
250AGB										<u> </u>							1	 	<u> </u>	+
250AGBs							1									<u> </u>		<u> </u>	ļ	+
250AGBn																 			ł	+
500AGB									-		··-					 		 	 	+
AGJ																			-	+
500AGJ																-	 	1	 	+
250AGJ																<u> </u>			-	+
125AGJ				-	1												-			+
CGJ																	ļ			+
500CGJ	1	1	,	,	,	1	,	1	,		1	,								+
250CGJ			· · · ·					/	-	_/_		-/-								+
125CGJ				<u> </u>	+															\vdash
PJ																				ł
PJn	-																			-
500PJ									}											L
500PJn		-																		F
500PJna							_													L
500PJzn/na																				-
250PJ					 															-
250PJn																				_
250PJna		-																		
250PJzn/na																				
cetate Tube																				
"CT																				
ncore																				
older/filter																				
PUF		-																		_
etri/Filter															-+					_
(AD Trap				•									-							
Cipłoc		-																		
•						-	- +													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	10	10	
= hydrochlorid						- 00	ا سامسىدال	0	^و	n = ni		,	1	14 = zinc		,	17	18	19	2

Number of VOAs with air bubbles present / total number of VOA's

QA-185 5/05 EM

Page 3

SOLID, 1613B, Dioxins/Furans

Client Sample ID: 08-21861-NM56A

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-001 Work Order #...: KV67W1AC Matrix....: SOLID

Date Sampled...: 08/26/08 Date Received - 09/03/08

 Date Sampled...:
 08/26/08
 Date Received...:
 09/03/08

 Prep Date....:
 09/04/08
 Analysis Date...:
 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 % Moisture....: 21

		hama amerata		
PARAMETER	RESULT	DETECTION	TD: To a	
2,3,7,8-TCDD	1.9	LIMIT	UNITS	METHOD
Total TCDD	41		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	8.5		pg/g	EPA-5 1613B
Total PeCDD	73		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	73 17		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	120		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD			pg/g	EPA-5 1613B
Total HxCDD	46		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	520		pg/g	EPA-5 1613B
Total HpCDD	2900 B,B		pg/g	EPA-5 1613B
OCDD	5100		pg/g	EPA-5 1613B
2,3,7,8-TCDF	24000 E,B		pg/g	EPA-5 1613B
Total TCDF	3.2 CON		pg/g	BPA-5 1613B
1,2,3,7,8-PeCDF	22		pg/g	EPA~5 1613B
2,3,4,7,8-PeCDF	6-8		pg/g	EPA-5 1613B
Total PecDF	7.1		pg/g	EPA-5 1613B
	83		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	41		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	11		pg/g	BPA-5 1613B
2,3,4,6,7,8-HxCDF	6.6		pq/q	BPA-5 1613B
1,2,3,7,8,9-HxCDF	1.5		pg/g	BPA-5 1613B
Total HxCDF	780		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	590		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	33		pg/g	EPA-5 1613B
Total HpCDF	2800		pg/g	EPA-5 1613B
OCDF	2300		pg/g	EPA-5 1613B
			ב יבא	PEW-2 TOT3R

(Continued on next page)

Client Sample ID: 08-21861-NM56A

Trace Level Organic Compounds

Lot-Sample #	:	G8I030194-001	Work Order	#:	KV67W1AC	Matrix:	SOLID
--------------	---	---------------	------------	----	----------	---------	-------

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	80	(25 - 164)
13C-1,2,3,7,8-PeCDD	80	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	93	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	73	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	93	(23 - 140)
13C-OCDD	119	(17 - 157)
13C-2,3,7,8-TCDF	81	(24 - 169)
13C-1,2,3,7,8-PeCDF	87	(24 - 185)
13C-2,3,4,7,8-PeCDF	88	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	75	(26 ~ 123)
13C-2,3,4,6,7,8-HxCDF	84	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	88	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	89	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	95	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	87	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	83	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level. CON Confirmation analysis.

Dioxins/Furans, HRGC/HRMS (1613B)

			Client Sample l	ID: 08-21861-NM	56A		
Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	G81030194 - 001 08/26/08 09/04/08 8249232		Work Order #: Date Received: Analysis Date: Dilution Factor:	KV67W1AC 09/03/08 09/09/08		Matrix: Instrument Units: % Moistur	pg/g
PARAMETER		RESULT		DETECTION	TEF FACTOR		TEQ CONCENTRATION
2,3,7,8-TCDD		1.9			1		1.900
Total TCDD 1,2,3,7,8-PeCDD		41 8.5			1		0.500
Total PeCDD		73			1		8.500
1,2,3,4,7,8-HxCDD		17			0.1		1.700
1,2,3,6,7,8-HxCDD		120			0.1		12.000
1,2,3,7,8,9-HxCDD)	46			0.1		4.600
Total HxCDD		520					
1,2,3,4,6,7,8-HpCE	DD	2900	E B		0.01		29.000
Total HpCDD		5100					
OCDD		24000	E B		0.0003		7.200
2,3,7,8-TCDF		3.2	CON		0.1		0.320
Total TCDF		22					

		0.0003	/.200
2,3,7,8-TCDF	3.2 CON	0.1	0.320
Total TCDF	22	41.2	0.520
1,2,3,7,8-PeCDF	6.8	0.03	0.200
2,3,4,7,8-PeCDF	7.1	0.3	2,100
Total PeCDF	83	0.0	2.100
1,2,3,4,7,8-HxCDF	41	0.1	4.100
1,2,3,6,7,8-HxCDF	11	0.1	1,100
2,3,4,6,7,8-HxCDF	6.6	0.1	0.660
1,2,3,7,8,9-HxCDF	1.5	0.1	0.150
Total HxCDF	780	•••	0.150
1,2,3,4,6,7,8-HpCDF	590	0.01	5,900
 		0101	J. 700

OCDF	2300	0.0003	0.690
Total TEQ Concentration			90 <i>45</i> 0

33

2800

2300

		80.450
INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	80	25 - 164
13C-1,2,3,7,8-PeCDD	80	25 - 181
13C-1,2,3,4,7,8-HxCDD	93	32 - 141
13C-1.2,3,6,7,8-HxCDD	73	28 - 130
13C-1,2,3,4.6,7,8-HpCDD	93	23 - 140
13C-OCDD	119	17 - 157
13C-2,3,7,8-TCDF	81	24 - 169
13C-1,2,3,7,8-PeCDF	87	24 - 185
13C-2,3,4,7,8-PeCDF	88	21 - 178
13C-1,2,3,6,7,8-HxCDF	75	26 - 123
13C-2,3,4,6,7,8-HxCDF	84	28 - 136
13C-1,2,3,7,8,9-HxCDF	88	29 - 147
13C-1,2,3,4,6,7,8-HpCDF	89	28 - 143
13C-1,2,3,4,7,8,9-HpCDF	95	26 - 138
13C-1.2,3,4.7,8-HxCDF	87	26 - 152

0.330

0.01

1,2,3,4,7,8,9-HpCDF

Total HpCDF

OCDF

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21861-NM56A

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	83	35 - 197

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

E Estimated result. Result concentration exceeds the calibration range.

Client Sample ID: 08-21862-NM56B

Trace Level Organic Compounds

Lot-Sample #...: G81030194-002 Work Order #...: KV6711AC Matrix.....: SOLID

 Date Sampled...:
 08/26/08
 Date Received...:
 09/03/08

 Prep Date....:
 09/04/08
 Analysis Date...:
 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1

* Moisture....: 20

DATAMETERS	
PARAMETER RESULT LIMIT UNITS METHOD	
2,3,7,8-TCDD 28 pg/g EPA-5 16	C1 2D
TOLAL TCDD	
1,2,3,7,8-PeCDD	
TOTAL Pecon	
1,2,3,4,7,8-HxCDD 230 pg/g RPA-5 16	
1,2,3,6,7,8-HxCDD 85 pg/g EPA-5 16	
1,2,3,7,8,9-HxCDD 190	
Total HxCDD P979 EPA-5 16	
1.2.3.4.6 7 8-HDCDD 3000 P 7	
Total Horon	
OCDD Pg/g EPA-5 16	
2,3,7,8-TCDF	
Total TCDF Pg/g EPA-5 16	
1,2,3,7,8-PeCDF 9,5	
2,3,4,7,8-PeCDF F P9/9 RPA-5 16	
Total Pecps pg/g EPA-5 16	
1,2,3,4,7,8-Hx(T)F 25	
1.2.3.6.7 8-HYCDE P9/9 RPA-5 16	13B
2.3.4.6.7.8-HXCDR P9/9 RPA-5 16	
1.2.3.7.8.9-HyCDF	13B
Pot al N-GDP EPA-5 16	13B
Pg/g EPA-5 16:	13B
1 2 2 4 7 0 0 7 P9/9 BPA-5 16.	13B
1,2,3,4,7,8,9-HpCDF 23 pg/g RPA-5 163	13B
Pg/g EPA-5 16:	13B
1400 pg/g BPA-5 163	13B

(Continued on next page)

Client Sample ID: 08-21862-NM56B

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-002 Work Order #...: KV6711AC Matrix...... SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	76	(25 - 164)
13C-1,2,3,7,8-PeCDD	78	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	87	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	75	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	92	(23 - 140)
13C-OCDD	115	(17 - 157)
13C-2,3,7,8-TCDF	76	(24 - 169)
13C-1,2,3,7,8-PeCDF	83	(24 - 185)
13C-2,3,4,7,8-PeCDF	84	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	73	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	83	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	87	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	86	(28 ~ 143)
13C-1,2,3,4,7,8,9-HpCDF	94	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	83	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	76	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level. CON Confirmation analysis.

I Estimated result. Result is less than the reporting limit.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21862-NM56B

Lot-Sample #:	
Date Sampled:	
Prep Date:	

Prep Batch #...:

G8I030194 - 002

08/26/08 09/04/08 8249232 Work Order #...:
Date Received..:
Analysis Date..:

Dilution Factor:

KV6711AC 09/03/08 09/09/08 Matrix...: SOLID Instrument: 9D5 Units....: pg/g

Units....: pg/g
% Moisture: 20

PARAMETER	DCQ.U.T.	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
PARAMETER	RESULT		- FACTOR	CONCENTRATION
2,3,7,8-TCDD	28		1	28.000
Total TCDD	200		1	20.000
1,2,3,7,8-PeCDD	42		1	42.000
Total PeCDD	210		•	42.000
1,2,3,4,7,8-HxCDD	230		0.1	23.000
1,2,3,6,7,8-HxCDD	85		0.1	8.500
1,2,3,7,8,9-HxCDD	190		0.1	19.000
Total HxCDD	990			
1,2,3,4,6,7,8-HpCDD	3000 E B		0.01	30.000
Total HpCDD	5000			
OCDD	21000 E B		0.0003	6.300
2,3,7,8-TCDF	3.3 CON		0.1	0.330
Total TCDF	24			
1,2,3,7,8-PeCDF	8.5		0.03	0.250
2,3,4,7,8-PeCDF	5.8		0.3	1.700
Total PeCDF	51			
1,2,3,4,7,8-HxCDF	35		0.1	3.500
1,2,3,6,7,8-HxCDF	9.1		0.1	0.910
2,3,4,6,7,8-HxCDF	5.0		0.1	0.500
1,2,3,7,8,9-HxCDF	2.3 J		0.1	0.230
Total HxCDF	540			
1,2,3,4,6,7,8-HpCDF	390		0.01	3.900
1,2,3,4,7,8,9-HpCDF	23		0.01	0.230
Total HpCDF	1800			
OCDF	1400		0.0003	0.420
Total TEQ Concentration				168.770
	PERCEN	ıΤ	RECOVERY	
INTERNAL STANDARDS	RECOVE	ERY	LIMITS	
	<u></u>			
13C-2,3,7,8-TCDD		76	25 - 164	
13C-1,2,3,7,8-PeCDD		78	25 - 181	
13C-1.2.3.4,7,8-HxCDD		87	32 - 141	
13C-1,2,3,6,7,8-HxCDD		75	28 - 130	
13C-1,2,3,4,6,7,8-HpCDD		92	23 - 140	
13C-OCDD		15	17 - 157	
13C-2,3.7,8-TCDF		76	24 - 169	
13C-1.2.3,7,8-PeCDF		83	24 - 185	
13C-2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF		84	21 - 178	
13C-2,3,4,6,7,8-HxCDF		73 83	26 - 123 28 - 136	
13C-1,2,3.7,8,9-HxCDF		87	28 - 136 29 - 147	
13C-1,2,3,4,6,7,8-HpCDF		86	29 - 147 28 - 143	
13C-1,2,3,4,7.8,9-HpCDF		94	26 - 138	
13C-1,2,3,4,7,8-HxCDF		83	26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21862-NM56B

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	76	35 - 197

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
CON Confirmation analysis.
E Estimated result. Result concentration exceeds the calibration range.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: 08-21863-NM56C

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-003 Work Order #...: KV6721AC Matrix..... SOLID Date Sampled...: 08/26/08

Date Received..: 09/03/08 **Prep Date....:** 09/04/08 **Analysis Date..:** 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 * Moisture....: 32

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

Total HpCDF

OCDF

DETECTION PARAMETER RESULT LIMIT UNITS METHOD 2,3,7,8-TCDD 6.0 pg/g BPA-5 1613B Total TCDD 72 pg/g **EPA-5 1613B** 1,2,3,7,8-PeCDD 22 pg/g **EPA-5 1613B** Total PeCDD 170 pg/g **EPA-5 1613B** 1,2,3,4,7,8-HxCDD 74 pg/g BPA-5 1613B 1,2,3,6,7,8-HxCDD 170 pg/g **EPA-5 1613B** 1,2,3,7,8,9-HxCDD 66 pq/q EPA-5 1613B Total HxCDD 1100 pg/g **EPA-5 1613B** 1,2,3,4,6,7,8-HpCDD 4500 R,B pq/q **EPA-5 1613B** Total HpCDD 8800 pg/g **EPA-5 1613B** OCDD 39000 E,B pg/g **BPA-5 1613B** 2,3,7,8-TCDF 3.7 CON pg/g **BPA-5 1613B** Total TCDF 25 pg/g EPA-5 1613B 1,2,3,7,8-PeCDF 8.9 **EPA-5 1613B** pg/g 2,3,4,7,8-PeCDF 10 pg/g **BPA-5 1613B** Total PecDF 110 pg/g EPA-5 1613B 1,2,3,4,7,8-HxCDF 60 pg/q **BPA-5 1613B** 1,2,3,6,7,8-HxCDF 16 pg/g EPA-5 1613B 2,3,4,6,7,8-HxCDF 11 pg/g BPA-5 1613B 1,2,3,7,8,9-HxCDF 1.7 J pg/g **BPA-5 1613B** Total HxCDF 1100

(Continued on next page)

730

3600

3100 B

42

EPA-5 1613B

EPA-5 1613B

EPA-5 1613B

BPA-5 1613B

EPA-5 1613B

pg/g

pg/g

pq/q

pg/g

pg/g

Client Sample ID: 08-21863-NM56C

Trace Level Organic Compounds

Lot-Sample #...: G81030194-003 Work Order #...: KV6721AC Matrix.....: SOLID

INTERNAL STANDARDS 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	PERCENT RECOVERY 76 75 77 69 83 106 76 80 82 68 76 82 77	RECOVERY LIMITS (25 - 164) (25 - 181) (32 - 141) (28 - 130) (23 - 140) (17 - 157) (24 - 169) (24 - 185) (21 - 178) (26 - 123) (28 - 136) (29 - 147) (28 - 143)
13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8-HxCDF	77 84 76	(28 - 143) (26 - 138) (26 - 152)
SURROGATE 37C14-2,3,7,8-TCDD	PERCENT RECOVERY 77	RECOVERY LIMITS (35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level. CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21863-NM56C

1

Lot-Sample #:
Date Sampled:

G81030194 - 003

08/26/08 Prep Date: 09/04/08 Prep Batch #...: 8249232 Work Order #...: Date Received ..: Analysis Date ..:

Dilution Factor:

KV6721AC 09/03/08 09/09/08

Matrix....: Instrument; Units....:

SOLID 9D5 pg/g % Moisture: 32

		*	www.state, 52	
PARAMETER	RESULT	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	6.0		1	(000
Total TCDD	72		1	6.000
1,2,3,7,8-PeCDD	22		_	
Total PeCDD	170		1	22.000
1,2,3,4,7,8-HxCDD	74			
1,2,3,6,7,8-HxCDD	170		0.1	7.400
1,2,3,7,8,9-HxCDD			0.1	17.000
Total HxCDD	66		0.1	6.600
	1100			
1,2,3,4,6,7,8-HpCDD	4500 E B		0.01	45.000
Total HpCDD OCDD	8800			
	39000 EB		0.0003	12.000
2,3,7,8-TCDF	3.7 CON		0.1	0.370
Total TCDF	25			
1,2,3,7,8-PeCDF	8.9		0.03	0.270
2,3,4,7,8-PeCDF	10		0.3	3.000
Total PeCDF	110			5.000
1,2,3,4,7,8-HxCDF	60		0.1	6.000
1,2,3,6,7,8-HxCDF	16		0.1	1.600
2,3,4,6,7,8-HxCDF	11		0.1	
1,2,3,7,8,9-HxCDF	1.7 J		0.1	1.100
Total HxCDF	1100		0.1	0.170
1,2,3,4,6,7,8-HpCDF	730		0.01	7 2 0 0
1,2,3,4,7,8,9-HpCDF	42		0.01	7.300
Total HpCDF	3600		0.01	0.420
OCDF	3100 E		0.0003	0.020
Total TEQ Concentration			0.0003	0.930
	BEBOONE			137.160
INTERNAL STANDARDS	PERCENT RECOVERY	************************	RECOVERY LIMITS	
13C-2.3,7,8-TCDD	76		25 - 164	
13C-1,2,3,7,8-PeCDD	75		25 - 181	
13C-1,2,3,4,7,8-HxCDD	77		32 - 141	
13C-1,2,3,6,7,8-HxCDD	69		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD	83		23 - 140	
13C-0CDD	106		17 - 157	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	76		24 - 169	
13C-2,3,4.7,8-PeCDF	80		24 - 185	
13C-1,2,3,6,7,8-HxCDF	82		21 - 178	
13C-2,3,4,6,7,8-HxCDF	68		26 - 123	
13C-1,2,3,7,8,9-HxCDF	76		28 - 136	
13C-1,2,3,4,6,7,8-HpCDF	82		29 - 147	
13C-1.2,3,4,7,8,9-HpCDF	77 84		28 - 143	
13C-1 2 3 4 7 8 HyCDE	84		26 - 138	

11 24 24/1402

26 - 152

13C-1,2,3,4,7,8-HxCDF

76

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21863-NM56C

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	77	35 - 197

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

E Estimated result. Result concentration exceeds the calibration range.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: 08-21864-NM56D

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-004 Work Order #...: KV6751AC Matrix..... SOLID Date Sampled...: 08/26/08

Date Received..: 09/03/08 **Prep Date....:** 09/04/08 Analysis Date..: 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 *** Moisture....:** 33

D		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	4.0		pg/g	RPA-5 1613B
Total TCDD	68		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	17		pg/g	
Total PeCDD	130		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDD	68			BPA-5 1613B
1,2,3,6,7,8-HxCDD	160		pg/g pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	57			EPA-5 1613B
Total HxCDD	900		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	4500 D,B		pg/g	RPA-5 1613B
Total HpCDD	8000		pg/g	EPA-5 1613B
OCDD	40000 D,E,B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	3.1 CON, JA		pg/ g	BPA-5 1613B
Total TCDF	33		pa\a	EPA-5 1613B
1,2,3,7,8-PeCDF	10		pg/g	BPA-5 1613B
2,3,4,7,8-PeCDF	10		pg/g	BPA-5 1613B
Total PeCDF			pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDF	130		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	62		pg/g	BPA-5 1613B
2,3,4,6,7,8-HXCDF	17		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	10		pg/g	EPA-5 1613B
Total HxCDF	4.7		pg/g	EPA-5 1613B
	1200		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	860		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	47		pg/g	BPA-5 1613B
Total HpCDF	3800		pg/g	EPA-5 1613B
OCDF	3200 D		pg/g	EPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21864-NM56D

Trace Level Organic Compounds

Lot-Sample #...: G81030194-004 Work Order #...: KV6751AC Matrix......: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	80	(25 - 164)
13C-1,2,3,7,8-PeCDD	81	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	96	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	72	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	83	(23 - 140)
13C-OCDD	92	(17 - 157)
13C-2,3,7,8-TCDF	80	(24 - 169)
13C-1,2,3,7,8-PeCDF	87	(24 - 185)
13C-2,3,4,7,8-PeCDF	89	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	68	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	86	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	88	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	81	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	86	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	98	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37Cl4-2,3,7,8-TCDD	81	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

- D Result was obtained from the analysis of a dilution.
- B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- E Estimated result. Result concentration exceeds the calibration range.

CON Confirmation analysis.

JA The analyte was positively identified, but the quantitation is an estimate.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21864-NM56D

Lot-Sample #...:
Date Sampled...:
Prep Date.....:

Prep Batch #...:

G8I030194 - 004

08/26/08 09/04/08 8249232 Work Order #...:
Date Received..:

KV6751AC 09/03/08 09/09/08

Matrix....; Instrument: Units.....: SOLID 9D5

Analysis Date..: Dilution Factor:

1

Whits....: pg/g
% Moisture: 33

			[/6 [v	ioisture: 33
PARAMETER	RESULT	DETEC LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	4.0		1	4.000
Total TCDD	68			
1,2,3,7,8-PeCDD	17		1	17.000
Total PeCDD	130		-	17.000
1,2,3,4,7,8-HxCDD	68		0.1	6.800
1,2,3,6,7,8-HxCDD	160		0.1	16.000
1,2,3,7,8,9-HxCDD	57		0.1	5.700
Total HxCDD	900		0,1	3.700
1,2,3,4,6,7,8-HpCDD		В	0.01	45.000
Total HpCDD	8000	, B	U.U <u>1</u>	45.000
OCDD		EB	0.0002	13.000
2,3,7,8-TCDF		CON JA	0.0003	12.000
Total TCDF	33	UNJA	0.1	0.310
1,2,3,7,8-PeCDF	10			
2,3,4,7,8-PeCDF	10		0.03	0.300
Total PeCDF			0.3	3.000
1,2,3,4,7,8-HxCDF	130			
1,2,3,6,7,8-HxCDF	62		0.1	6.200
2,3,4,6,7,8-HxCDF	17		0.1	1.700
	10		0.1	1.000
1,2,3,7,8,9-HxCDF	4.7		0.1	0.470
Total HxCDF	1200			
1,2,3,4,6,7,8-HpCDF	860		0.01	8.600
1,2,3,4,7,8,9-HpCDF	47		0.01	0.470
Total HpCDF	3800			
OCDF	3200 D		0.0003	0.960
Total TEQ Concentration				129.510
INTERNIAL CTANDARDS		COVERY	RECOVERY	
INTERNAL STANDARDS	KE	COVERY	LIMITS	William Adversaria
13C-2,3,7,8-TCDD		80	25 - 164	
13C-1,2,3,7,8-PeCDD		81	25 - 181	
13C-1,2,3,4,7,8-HxCDD		96	32 - 141	
13C-1,2,3,6,7,8-HxCDD		72	28 - 130	
13C-1,2,3,4,6,7,8-HpCDD		83	23 - 140	
13C-OCDD 13C-2,3,7,8-TCDF		92	17 - 157	
13C-1,2,3,7,8-PeCDF		80	24 - 169	
13C-2,3,4,7,8-PeCDF		87	24 - 185	
120:100:400		89	21 - 178	
13C-1,2,3,6,7,8-HxCDF				
13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF		68 86	26 - 123	
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF		86	28 - 136	
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF			28 - 136 29 - 147	
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF		86 88	28 - 136	

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21864-NM56D

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37C14-2,3,7,8-TCDD	81	35 - 197
Notes:		
WHO TEFs for human risk assessment based on th	e conclusions of the World Health Organization meeting in Ger	neva, Switzerland, June 2005.

В	Method blank contamination. The associated method blank contains the target analyte at a reportable level.
CON	Confirmation analysis.
D	Result was obtained from the analysis of a dilution.
E	Estimated result. Result concentration exceeds the calibration range.
JA	The analyte was positively identified, but the quantitation is an estimate.

Client Sample ID: 08-21865-NM56E

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-005 Work Order #...: KV6761AC Matrix...: SOLID

 Date Sampled...:
 08/26/08
 Date Received...:
 09/03/08

 Prep Date....:
 09/04/08
 Analysis Date...:
 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1
% Moisture....: 27

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	MITMILLOD
2,3,7,8-TCDD	3.1	AJIMI I		METHOD
Total TCDD	68		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	25		pg/g	EPA-5 1613B
Total PeCDD	200		pg/g pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	66			EPA-5 1613B
1,2,3,6,7,8-HxCDD	310		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	100		pg/g	EPA-5 1613B
Total HxCDD	1500		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	7900 D,E,B		pg/g	EPA-5 1613B
Total HpCDD	13000		pg/g	RPA-5 1613B
OCDD	63000 D,E,B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	9.5 CON		pg/g	RPA-5 1613B
Total TCDF	61		pg/g	RPA-5 1613B
1,2,3,7,8-PeCDF	20		pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	19		pg/g	BPA-5 1613B
Total PeCDF	270		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	130		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	42		pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	22		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	8.2		pg/g	EPA-5 1613B
Total HxCDF	2200		pg/g	RPA-5 1613B
1,2,3,4,6,7,8-HpCDF	1500 D		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	85 D		pg/g	KPA-5 1613B
Total HpCDF	6100		pg/g	RPA-5 1613B
OCDF	5300 D		pg/g	EPA-5 1613B
	3300 D		pg/g	BPA-5 1613B

(Continued on next page)

Client Sample ID: 08~21865-NM56E

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-005 Work Order #...: KV6761AC

Matrix....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	77	(25 - 164)
13C-1,2,3,7,8-PeCDD	78	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	83	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	76	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	82	(23 - 140)
13C-OCDD	88	(17 - 157)
13C-2,3,7,8-TCDF	78	(24 - 169)
13C-1,2,3,7,8-PeCDF	84	(24 - 185)
13C-2,3,4,7,8-PeCDF	86	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	73	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	82	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	85	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	78	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	79	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	84	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	77	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

E Estimated result. Result concentration exceeds the calibration range.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21865-NM56E

1

Lot-Sample #...: Date Sampled...; Prep Date:

Prep Batch #...:

G8I030194 - 005

08/26/08 09/04/08 8249232

Work Order # ...: Date Received..: Analysis Date..:

Dilution Factor:

KV6761AC 09/03/08 09/09/08

Matrix....: Instrument: Units....:

SOLID 9D5 pg/g

% Moisture: 27

		1	70 (**	VISITI'E. 27
PARAMETER	RESULT	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	3.1		1	3.100
Total TCDD	68		•	5.100
1,2,3,7,8-PeCDD	25		1	35.000
Total PeCDD	200			25.000
1,2,3,4,7,8-HxCDD	66		0.1	6.600
,2,3,6,7,8-HxCDD	310		0.1	6.600
1,2,3,7,8,9-HxCDD	100		0.1	31.000
Total HxCDD	1500		0.1	10.000
,2,3,4,6,7,8-HpCDD	7900 DE	R	0.01	70.000
Cotal HpCDD	13000	• •	0.01	79.000
OCDD	63000 D E	R	0.0002	10.000
2,3,7,8-TCDF	9.5 CO		0.0003	19.000
Total TCDF	61		0.1	0.950
,2,3,7,8-PeCDF	20		0.05	
2,3,4,7,8-PeCDF	19		0.03	0.600
Total PeCDF	270		0.3	5.700
,2,3,4,7,8-HxCDF				
,2,3,6,7,8-HxCDF	130		0.1	13.000
,3,4,6,7,8-HxCDF	42		0.1	4.200
,2,3,7,8,9-HxCDF	22		0.1	2.200
Cotal HxCDF	8.2		0.1	0.820
,2,3,4,6,7,8-HpCDF	2200			
-	1500 D		0.01	15.000
,2,3,4,7,8,9-HpCDF otal HpCDF	85 D		0.01	0.850
OCDF	6100			
CDF	5300 D		0.0003	1.600
otal TEQ Concentration				218.620
	PERCE	ENT	RECOVERY	
NTERNAL STANDARDS	RECO	VERY	LIMITS	
3C-2,3,7,8-TCDD		77	25 - 164	
3C-1,2,3,7,8-PeCDD		78	25 - 181	
3C-1,2,3,4,7,8-HxCDD		83	32 - 141	
3C-1,2,3,6,7,8-HxCDD		76	28 - 130	
3C-1,2,3,4,6,7,8-HpCDD		82	23 - 140	
3C-OCDD 3C-2,3,7,8-TCDF		88	17 - 157	
3C-1,2,3,7,8-PeCDF		78	24 - 169	
3C-2,3,4,7,8-PeCDF		84	24 - 185	
3C-1,2,3,6,7.8-HxCDF		86 73	21 - 178	
3C-2,3,4,6,7,8-HxCDF		82	26 - 123 28 - 136	
3C-1,2,3,7,8,9-HxCDF		85	29 - 147	
3C-1,2,3,4,6,7,8-HpCDF		78	28 - 143	
3C-1,2,3,4,7,8,9-HpCDF				
3C-1,2,3,4,7,8-HxCDF		79	26 - 138	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21865-NM56E

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	77	35 - 197

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

E Estimated result. Result concentration exceeds the calibration range.

Client Sample ID: 08-21867-NM56G

Trace Level Organic Compounds

Lot-Sample #...: G81030194-006 Work Order #...: KV6771AC Date Sampled...: 08/26/08 Date Received...: 09/03/08

 Date Sampled...:
 08/26/08
 Date Received...:
 09/03/08

 Prep Date.....:
 09/04/08
 Analysis Date...:
 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1

* Moisture....: 32

DETECTION

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	39		pg/g	EPA-5 1613B
Total TCDD	250		pg/g	BPA-5 1613B
1,2,3,7,8-PeCDD	34		pg/g	EPA-5 1613B
Total PeCDD	240		pg/g	RPA-5 1613B
1,2,3,4,7,8~HxCDD	250		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	160		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	110		pg/g	BPA-5 1613B
Total HxCDD	1500		pg/g	RPA~5 1613B
1,2,3,4,6,7,8-HpCDD	4400 D.B		pg/g	EPA-5 1613B
Total HpCDD	7800		pg/g	EPA-5 1613B
OCDD	36000 D, B, B			
2,3,7,8-TCDF	5.5 CON		pg/g	EPA-5 1613B
Total TCDF	81		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	13		pg/g	BPA-5 1613B
2,3,4,7,8-PeCDF	8.6		pg/g	EPA-5 1613B
Total PeCDF	110		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	48		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	12		pg/g	RPA-5 1613B
2,3,4,6,7,8-HxCDF	7.5		pg/ g	BPA-5 1613B
1,2,3,7,8,9-HxCDF			pg/g	EPA-5 1613B
Total HxCDF	5.6		pg/g	BPA-5 1613B
1,2,3,4,6,7,8-HpCDF	990		ba\a	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	710		pg/g	EPA~5 1613B
Total HpCDF	40		pg/g	EPA-5 1613B
OCDF	3300		pg/g	EPA-5 1613B
CLIFE	3200 D		pg/g	EPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21867-NM56G

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-006 Work Order #...: KV6771AC Matrix.....: SOLID

INTERNAL STANDARDS 13C-2,3,7,8-TCDD	PERCENT RECOVERY	RECOVERY LIMITS
	75	(25 - 164)
13C-1,2,3,7,8-PeCDD	78	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	100	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	62	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	78	(23 - 140)
13C-OCDD	80	(17 - 157)
13C-2,3,7,8-TCDF	77	(24 - 169)
13C-1,2,3,7,8-PeCDF	85	(24 - 185)
13C-2,3,4,7,8-PeCDF	86	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	66	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	84	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	86	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	86	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	90	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	98	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	82	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

E Estimated result. Result concentration exceeds the calibration range.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21867-NM56G

Lot-Sample #:	
Date Sampled:	

G81030194 - 006

08/26/08 09/04/08 Work Order #...; Date Received ..:

KV6771AC 09/03/08 09/09/08

Matrix....; Instrument: Units....:

SOLID 9D5

Prep Date.....: Prep Batch #...;

8249232

Analysis Date ..: Dilution Factor:

1

pg/g % Moisture: 32

PARAMETER	RESULT	and the state of t	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	39			1	20.000
Total TCDD	250			1	39.000
1,2,3,7,8-PeCDD	34			1	34.000
Total PeCDD	240			•	34.000
1,2,3,4,7,8-HxCDD	250			0.1	25.000
1,2,3,6,7,8-HxCDD	160			0.1	16.000
1,2,3,7,8,9-HxCDD	110			0.1	11.000
Total HxCDD	1500			V * *	11.000
1,2,3,4,6,7,8-HpCDD	4400	DВ		0.01	44.000
Total HpCDD	7800			0.0 .	44.000
OCDD	36000	DEB		0.0003	11.000
2,3,7,8-TCDF	5.5	CON		0.1	0.550
Total TCDF	81				01.50
1,2,3,7,8-PeCDF	13			0.03	0.390
2,3,4,7,8-PeCDF	8.6			0.3	2.600
Total PeCDF	110				***************************************
1,2,3,4,7,8-HxCDF	48			0.1	4.800
1,2,3,6,7,8-HxCDF	12			0.1	1.200
2,3,4,6,7,8-HxCDF	7.5			0.1	0.750
1,2,3,7,8,9-HxCDF	5.6			0.1	0.560
Total HxCDF	990				
1,2,3,4,6,7,8-HpCDF	710			0.01	7.100
1,2,3,4,7,8,9-HpCDF	40			0.01	0.400
Total HpCDF	3300				
OCDF	3200	D		0.0003	0.960
Total TEQ Concentration					199.310
		PERCENT		RECOVERY	***************************************
INTERNAL STANDARDS		RECOVERY		LIMITS	
13C-2,3,7,8-TCDD		75		25 - 164	
13C-1,2,3,7,8-PeCDD		78		25 - 181	
13C-1,2,3,4,7,8-HxCDD		100		32 - 141	
13C-1,2,3,6,7,8-HxCDD		62		28 - 130	
13C-1.2,3,4,6,7,8-HpCDD		78		23 - 140	
13C-OCDD 13C-2,3,7,8-TCDF		80		17 - 157	
13C-1,2,3,7,8-PeCDF		77		24 - 169	
13C-2,3,4,7,8-PeCDF		85 86		24 - 185	
13C-1,2,3,6,7,8-HxCDF		66		21 - 178 26 - 123	
13C-2,3,4,6,7,8-HxCDF		84		28 - 125 28 - 136	
13C-1,2,3,7,8,9-HxCDF		86		29 - 147	
13C-1,2,3,4,6,7,8-HpCDF		86		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF		90		26 - 138	
13C-1,2,3,4,7,8-HxCDF		98		26 - 152	

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21867-NM56G

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37C14-2,3,7,8-TCDD	82	35 - 197

Notes:

E

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

В	Method blank contamination. The associated method blank contains the target analyte at a reportable level.
CON	Confirmation analysis.
D	Result was obtained from the analysis of a dilution.

Estimated result. Result concentration exceeds the calibration range.

Client Sample ID: 08-21868-NM56H

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-007 Work Order #...: KV6781AC Matrix..... SOLID Date Sampled...: 08/26/08

Date Received..: 09/03/08 Prep Date....: 09/04/08 Analysis Date..: 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 *** Moisture....:** 13

PARAMETER 2,3,7,8-TCDD Total TCDD 1,2,3,7,8-PeCDD Total PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD 1,2,3,4,6,7,8-HpCDD Total HpCDD OCDD	RESULT 3.3 62 14 160 24 99 44 730 2700 E,B 5000	DETECTION LIMIT	pa/a pa/a pa/a pa/a pa/a pa/a pa/a pa/a	METHOD RPA-5 1613B EPA-5 1613B
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD 1,2,3,4,6,7,8-HpCDD	160 24 99 44 730 2700 E,B		ba\a ba\a ba\a ba\a ba\a ba\a ba\a ba\a	EPA-5 1613B
			pg/g	EPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21868-NM56H

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-007 Work Order #...: KV6781AC

Matrix..... SOLID

INTERNAL STANDARDS 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0CDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	PERCENT RECOVERY 41 42 46 46 54 68 41 47 47 45 49 52 52	RECOVERY LIMITS (25 - 164) (25 - 181) (32 - 141) (28 - 130) (23 - 140) (17 - 157) (24 - 169) (24 - 185) (21 - 178) (26 - 123) (28 - 136) (29 - 147) (28 - 143) (26 - 138)
13C-1,2,3,4,7,8-HxCDF	48	(26 - 138) (26 - 152)
SURROGATE 37C14-2,3,7,8-TCDD	PERCENT RECOVERY 73	RECOVERY LIMITS (35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

E Estimated result. Result concentration exceeds the calibration range.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

JA The analyte was positively identified, but the quantitation is an estimate.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21868-NM56H

Lot-Sample #...:
Date Sampled...:

G81030194 - 007

08/26/08 09/04/08 Work Order #...;
Date Received..:

KV6781AC 09/03/08 09/09/08 Matrix...: §
Instrument: §
Units....:

SOLID 9D5

Prep Date.....:
Prep Batch #...:

8249232

Analysis Date..:
Dilution Factor:

1

Units....: pg/g % Moisture: 13

PARAMETER	RESULT	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	3.3		1	3.300
Total TCDD	62		•	3.300
1,2,3,7,8-PeCDD	14		1	14.000
Total PeCDD	160		•	14.000
1,2,3,4,7,8-HxCDD	24		0.1	2.400
1,2,3,6,7,8-HxCDD	99		0.1	9.900
1,2,3,7,8,9-HxCDD	44		0.1	4.400
Total HxCDD	730		•••	4,400
1,2,3,4,6,7,8-HpCDD	2700 E B		0.01	27.000
Total HpCDD	5000		0.01	27.000
OCDD	23000 EB		0.0003	6.900
2,3,7,8-TCDF	1.2 CON JA		0.1	0.120
Total TCDF	20		***	0.120
1,2,3,7,8-PeCDF	5,3		0.03	0.160
2,3,4,7,8-PeCDF	5.8		0.3	1.700
Total PeCDF	74		0.5	1.700
1,2,3,4,7,8-HxCDF	38		0.1	3.800
1,2,3,6,7,8-HxCDF	9.3		0.1	0.930
2,3,4,6,7,8-HxCDF	5.7		0.1	0.570
1,2,3,7,8,9-HxCDF	2.9		0.1	0.290
Total HxCDF	670			0,270
1,2,3,4,6,7,8-HpCDF	480		0.01	4.800
1,2,3,4,7,8,9-HpCDF	26		0.01	0.260
Total HpCDF	2300			0.200
OCDF	2200		0.0003	0.660
Total TEQ Concentration				81.190
INTERNAL STANDARDS	PERCENT RECOVERY		RECOVERY LIMITS	
13C-2,3,7.8-TCDD	41		25 - 164	
13C-1,2,3,7,8-PeCDD	42		25 - 181	
13C-1,2,3,4,7,8-HxCDD	46		32 - 141	
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	46		28 - 130	
13C-OCDD	54		23 - 140	
13C-2,3.7,8-TCDF	68 41		17 - 157	
13C-1,2,3,7,8-PeCDF	47		24 - 169	
13C-2,3,4,7,8-PeCDF	47		24 - 185 21 - 178	
13C-1,2.3,6,7,8-HxCDF	45		26 - 123	
13C-2,3,4,6,7,8-HxCDF	49		28 - 136	
13C-1,2,3,7,8,9-HxCDF	52		29 - 147	
13C-1,2,3,4,6,7,8-HpCDF	52		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8-HxCDF	55		26 - 138	
NEW TING TINGDI	48		26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21868-NM56H

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	73	35 - 197

Notes:	
--------	--

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

E Estimated result. Result concentration exceeds the calibration range.

JA The analyte was positively identified, but the quantitation is an estimate.

Client Sample ID: 08-21870-NM56J

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-008 Work Order #...: KV6791AC Matrix..... SOLID Date Sampled...: 08/27/08

Date Received..: 09/03/08 **Prep Date....:** 09/04/08 Analysis Date..: 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 **† Moisture....:** 59

PARAMETER RESULT LIMIT UNITS METHOD 2,3,7,8-TCDD 58 pg/g RPA-5 1613B Total TCDD 730 pg/g RPA-5 1613B 1,2,3,7,8-PeCDD 110 pg/g RPA-5 1613B Total PeCDD 1000 pg/g RPA-5 1613B 1,2,3,4,7,8-HxCDD 260 pg/g RPA-5 1613B 1,2,3,6,7,8-HxCDD 580 pg/g RPA-5 1613B 1,2,3,7,8,9-HxCDD 150 pg/g RPA-5 1613B Total HxCDD 4100 pg/g RPA-5 1613B 1,2,3,4,6,7,8-HpCDD 15000 D,B pg/g RPA-5 1613B Total HpCDD 29000 pg/g RPA-5 1613B OCDD 29000 pg/g RPA-5 1613B
73,7,8-TCDD 730 730 730 730 730 730 730 730 730 730
730 pg/g RPA-5 1613B 1,2,3,7,8-PeCDD 110 pg/g RPA-5 1613B 1,2,3,4,7,8-HxCDD 1000 pg/g RPA-5 1613B 1,2,3,4,7,8-HxCDD 580 pg/g RPA-5 1613B 1,2,3,7,8,9-HxCDD 150 pg/g RPA-5 1613B 1,2,3,7,8,9-HxCDD 150 pg/g RPA-5 1613B 1,2,3,4,6,7,8-HpCDD 15000 D,B pg/g RPA-5 1613B 1,2,3,4,6,7,8-HpCDD 15000 D,B pg/g RPA-5 1613B Total HpCDD 29000 pg/g RPA-5 1613B OCCDD
110 pg/g EPA-5 1613B 1,2,3,4,7,8-HxCDD 260 pg/g EPA-5 1613B 1,2,3,6,7,8-HxCDD 580 pg/g EPA-5 1613B 1,2,3,7,8,9-HxCDD 150 pg/g EPA-5 1613B 1,2,3,7,8,9-HxCDD 150 pg/g EPA-5 1613B 1,2,3,4,6,7,8-HpCDD 15000 p,B pg/g EPA-5 1613B 1,2,3,4,6,7,8-HpCDD 29000 pg/g EPA-5 1613B Total HpCDD 29000 pg/g EPA-5 1613B OCCDD
1000 pg/g RPA-5 1613B 1,2,3,4,7,8-HxCDD 260 pg/g RPA-5 1613B 1,2,3,6,7,8-HxCDD 580 pg/g RPA-5 1613B 1,2,3,7,8,9-HxCDD 150 pg/g RPA-5 1613B Total HxCDD 4100 pg/g RPA-5 1613B 1,2,3,4,6,7,8-HpCDD 15000 D,B pg/g RPA-5 1613B Total HpCDD 29000 pg/g RPA-5 1613B OCCDD
1,2,3,4,7,8-HXCDD 260 pg/g EPA-5 1613B 1,2,3,6,7,8-HXCDD 580 pg/g EPA-5 1613B pg/g EPA-5 1613B 1,2,3,7,8,9-HXCDD 150 pg/g EPA-5 1613B 1,2,3,4,6,7,8-HpCDD 15000 D,B pg/g EPA-5 1613B pg/g EPA-5 1
1,2,3,7,8,9-HxCDD 150 pg/g EPA-5 1613B 1,2,3,7,8,9-HxCDD 4100 pg/g EPA-5 1613B 1,2,3,4,6,7,8-HpCDD 15000 D,B pg/g EPA-5 1613B Total HpCDD 29000 pg/g EPA-5 1613B OCDD
Total HxCDD
1,2,3,4,6,7,8-HpCDD 15000 D,B pg/g EPA-5 1613B Total HpCDD 29000 pg/g EPA-5 1613B OCDD 29000 pg/g EPA-5 1613B
Total HpCDD 29000 pg/g EPA-5 1613B OCDD 29000 pg/g EPA-5 1613B
Total HpCDD 29000 pg/g EPA-5 1613B
OCDD P979 RPA-5 1613B
2,3,7,8-TCDF
Total TCDF
1,2,3,7,8-PeCDF 32 P9/9 EPA-5 1613B
2,3,4,7,8-Pecnr P9/9 RPA-5 1613B
Total Pecps P9/9 EPA-5 1613B
1.2.3.4.7 8-HyCDR 216
1.2.3.6.7 8-HyCDR P9/9 BPA-5 1613B
2.3.4.6.7 8-HYCDR P9/9 RPA-5 1613B
1.2.3.7 8 9-H*CDF PG/G EPA-5 1613B
Total HxCDF Pg/g EPA-5 1613B
1.2.3.4 6 7 8-HDCDE PG/9 EPA-5 1613B
1.2.3.4.7 8 9-HOCDE P9/9 RPA-5 1613B
Total Horne P9/9 EPA-5 1613B
OCDF Pg/g RPA-5 1613B
13000 D pg/g RPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21870-NM56J

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-008 Work Order #...: KV6791AC Matrix.....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(25 - 164)
13C-1,2,3,7,8-PeCDD	79	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	94	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	77	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	120	(23 - 140)
13C-OCDD	115	(17 - 157)
13C-2,3,7,8-TCDF	81	(24 - 169)
13C-1,2,3,7,8-PeCDF	88	(24 - 185)
13C-2,3,4,7,8-PeCDF	88	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	80	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	88	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	94	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	85	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	96	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	93	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	84	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

E Estimated result. Result concentration exceeds the calibration range.

JA The analyte was positively identified, but the quantitation is an estimate.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21870-NM56J

Lot-Sample #...: Date Sampled ...: Prep Date:

Prep Batch #...:

G8I030194 - 008

08/27/08

09/04/08 8249232 Work Order #...: Date Received ..: Analysis Date..:

KV6791AC

09/03/08 09/09/08

Matrix....: Instrument: Units:

SOLID 9D5

Dilution Factor:

1

pg/g % Moisture: 59

PARAMETER	RESULT		DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	58			1	58.000
Total TCDD	730				
1,2,3,7,8-PeCDD	110			1	110.000
Total PeCDD	1000				
1,2,3,4,7,8-HxCDD	260			0.1	26.000
1,2,3,6,7,8-HxCDD	580			0.1	58.000
1,2,3,7,8,9-HxCDD	150			0.1	15.000
Total HxCDD	4100				
1,2,3,4,6,7,8-HpCDD	15000	DВ		0.01	150.000
Total HpCDD	29000				
OCDD	220000	DEB		0.0003	66.000
2,3,7,8-TCDF	22	CON		0.1	2.200
Total TCDF	150				
1,2,3,7,8-PeCDF	32			0.03	0.960
2,3,4,7,8-PeCDF	32			0.3	9.600
Total PeCDF	340				
1,2,3,4,7,8-HxCDF	210			0.1	21.000
1,2,3,6,7,8-HxCDF	51			0.1	5.100
2,3,4,6,7,8-HxCDF	31			0.1	3.100
1,2,3,7,8,9-HxCDF	7.2			0.1	0.720
Total HxCDF	3900				
1,2,3,4,6,7,8-HpCDF	2600	Ð		0.01	26.000
1,2,3,4,7,8,9-HpCDF	140	D JA		0.01	1.400
Total HpCDF	13000				
OCDF	13000	D		0.0003	3,900
Total TEQ Concentration					556.980
		PERCENT		BECO. IV	550.760
INTERNAL STANDARDS		RECOVERY		RECOVERY LIMITS	
13C-2,3,7,8-TCDD		82		25 - 164	
13C-1.2,3,7,8-PeCDD		79		25 - 181	
13C-1,2,3,4,7,8-HxCDD		94		32 - 141	
13C-1,2,3,6,7,8-HxCDD		77		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD		120		23 - 140	
13C-OCDD 13C-2,3,7,8-TCDF		115		17 - 157	
13C-1,2,3,7,8-PeCDF		81		24 - 169	
13C-2,3,4,7,8-PeCDF		88 88		24 - 185	
13C-1,2,3.6,7,8-HxCDF		80		21 - 178 26 - 123	
13C-2,3,4,6,7,8-HxCDF		88		28 - 136	
13C-1,2,3,7,8.9-HxCDF		94		29 - 147	
13C-1.2,3,4,6,7,8-HpCDF		85		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF		96		26 - 138	
13C-1,2,3,4,7,8-HxCDF		93		26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21870-NM56J

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	84	35 - 197

3/C14-2,3,7,1	8-TCDD	84	35 - 197
Notes:			
WHO TEFs for h	auman risk assessment based on the conclusions of the	World Health Organization meeting in (Geneva, Switzerland. June 2005.
В	Method blank contamination. The	associated method blank conta	ins the target analyte at a reportable level.
CON	Confirmation analysis.		,
D	Result was obtained from the analy	sis of a dilution,	
E	Estimated result. Result concentrate	ion exceeds the calibration ran	ge.
JA	The analyte was positively identifi-		

Client Sample ID: 08-21873-NM56M

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-009 Work Order #...: KV68J1AC Matrix.....: SOLID

 Date Sampled...:
 08/27/08
 Date Received...:
 09/03/08

 Prep Date.....:
 09/04/08
 Analysis Date...:
 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 % Moisture....: 42

DETECTION

		DETECTION	.7	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	19		pg/g	EPA-5 1613B
Total TCDD	260		pg/g	BPA-5 1613B
1,2,3,7,8-PeCDD	39		pg/g	EPA-5 1613B
Total PeCDD	330		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDD	68		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	230		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	72		pg/g	RPA-5 1613B
Total HxCDD	1300		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	5500 D,B		pg/g	EPA-5 1613B
Total HpCDD	10000		pg/g	EPA-5 1613B
OCDD	49000 D,E,B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	8.4 CON		pg/g	EPA-5 1613B
Total TCDF	7 9		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	14		pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	14		pg/g	EPA-5 1613B
Total PeCDF	180		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	72		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	24		pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	13		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	6.4		pg/g	EPA-5 1613B
Total HxCDF	1300		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	910		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	51		pg/g	EPA-5 1613B
Total HpCDF	3700		pg/g	EPA-5 1613B
OCDF	3400 D		pg/g	EPA-5 1613B
			x	

(Continued on next page)

Client Sample ID: 08-21873-NM56M

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-009 Work Order #...: KV68J1AC

Matrix..... SOLID

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	73	(25 - 164)
13C-1,2,3,7,8-PeCDD	73	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	85	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	68	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	73	(23 - 140)
13C~OCDD	74	(17 - 157)
13C-2,3,7,8-TCDF	74	(24 - 169)
13C-1,2,3,7,8-PeCDF	82	(24 - 185)
13C-2,3,4,7,8-PeCDF	83	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	70	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	80	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	84	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	85	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	91	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	83	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	75	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

E Estimated result. Result concentration exceeds the calibration range.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21873-NM56M

1

Lot-Sample #...:
Date Sampled...:
Prep Date.....:

Prep Batch # ...:

G8I030194 - 009

08/27/08 09/04/08 8249232 Work Order #...;
Date Received..:
Analysis Date..;

Dilution Factor:

KV68JIAC 09/03/08 09/09/08 Matrix....:
Instrument:

SOLID 9D5

Units....:
% Moisture:

pg/g 42

				44	
PARAMETER	RESULT		DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	19				
Total TCDD	260			1	19.000
1,2,3,7,8-PeCDD	39			•	**
Total PeCDD	330			1	39.000
1,2,3,4,7,8-HxCDD	68			0.1	
1,2,3,6,7,8-HxCDD	230			0.1	6.800
1,2,3,7,8,9-HxCDD	72			0.1	23.000
Total HxCDD	1300			0.1	7.200
1,2,3,4,6,7,8-HpCDD	5500	DВ		0.01	55 000
Total HpCDD	10000	15 15		0.01	55.000
OCDD	49000	DEB		0.0003	17 000
2,3,7,8-TCDF	8.4	CON		0.1	15.000
Total TCDF	79	CON		0.1	0.840
1,2,3,7,8-PeCDF	14			0.01	0.420
2,3,4,7,8-PeCDF	14			0.03	0.420
Total PeCDF	180			0.3	4.200
1,2,3,4,7,8-HxCDF	72			6.1	
1,2,3,6,7,8-HxCDF	24			0.1	7.200
2,3,4,6,7,8-HxCDF	13			0.1	2.400
1,2,3,7,8,9-HxCDF	6.4			0.1	1.300
Total HxCDF	1300			0.1	0.640
1,2,3,4,6,7,8-HpCDF	910			0.04	
1,2,3,4,7,8,9-HpCDF	51			0.01	9.100
Total HpCDF	3700			0.01	0.510
OCDF	3400	D		0.000	
	3400	D		0.0003	1.000
Total TEQ Concentration					192.610
		PERCENT		RECOVERY	
INTERNAL STANDARDS		RECOVERY		LIMITS	
13C-2,3,7,8-TCDD		73		25 164	
13C-1,2,3,7,8-PeCDD		73		25 - 164 25 - 181	
13C-1,2,3,4,7,8-HxCDD		85		32 - 141	
13C-1,2,3,6,7,8-HxCDD		68		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD		73		23 - 140	
13C-OCDD		74		17 - 157	
13C-2,3,7,8-TCDF		74		24 - 169	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		82		24 - 185	
13C-1,2,3,6,7,8-HxCDF		83 70		21 - 178	
13C-2,3,4,6,7,8-HxCDF		70 80		26 - 123	
13C-1,2,3,7,8,9-HxCDF		84		28 - 136 29 - 147	
13C-1.2,3,4,6,7,8-HpCDF		85		29 - 147 28 - 143	
13C-1,2,3,4,7,8,9-HpCDF		91		26 - 138	
13C-1,2,3,4,7,8-HxCDF		83		26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21873-NM56M

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	75	35 - 197

Notes:	
--------	--

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
CON Confirmation analysis.

D Result was obtained from the analysis of a dilution.

F Estimated result. Result concentration exceeds the calibration range.

Client Sample ID: 08-21876-NM56P

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-010 Work Order #...: KV68L1AC Matrix..... SOLID

Date Sampled...: 08/27/08 Date Received..: 09/03/08 Prep Date....: 09/04/08 Analysis Date..: 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 % Moisture....: 58

DETECTION PARAMETER RESULT LIMIT UNITS METHOD 2,3,7,8-TCDD 1.4 **EPA-5 1613B** pg/g Total TCDD 150 pg/g **BPA-5 1613B** 1,2,3,7,8-PeCDD 5.1 J pg/g BPA-5 1613B Total PeCDD 180 pg/g EPA-5 1613B 1,2,3,4,7,8-HxCDD 11 pg/g EPA-5 1613B 1,2,3,6,7,8-HxCDD 45 pg/g **EPA-5 1613B** 1,2,3,7,8,9-HxCDD 13 pg/gBPA-5 1613B Total HxCDD 1000 pg/g **EPA-5 1613B** 1,2,3,4,6,7,8-HpCDD 1500 B pg/g **BPA-5 1613B** Total HpCDD 6700 pg/g **EPA-5 1613B** OCDD 10000 E,B pg/g **EPA-5 1613B** 2,3,7,8-TCDF 6.4 CON pg/g **EPA-5 1613B** Total TCDF 71 pg/g BPA-5 1613B 1,2,3,7,8-PeCDF 3.9 Ј pg/g EPA-5 1613B 2,3,4,7,8-PeCDF 4.1 J pg/g BPA-5 1613B Total PecDF 39 pg/g **EPA-5 1613B** 1,2,3,4,7,8-HxCDF 12 **EPA-5 1613B** pg/g 1,2,3,6,7,8-HxCDF 4.2 J pg/g BPA-5 1613B 2,3,4,6,7,8-HxCDF 2.6 J pg/g **BPA-5 1613B** 1,2,3,7,8,9-HxCDP 1.3 J pg/g BPA-5 1613B Total HxCDF 230 pg/g BPA-5 1613B 1,2,3,4,6,7,8-HpCDF 130 pq/q EPA-5 1613B 1,2,3,4,7,8,9-HpCDF 7.4 pg/g **BPA-5 1613B** Total HpCDF 610 pg/g EPA-5 1613B

(Continued on next page)

pg/g

BPA-5 1613B

570

OCDF

Client Sample ID: 08-21876-NM56P

Trace Level Organic Compounds

Lot-Sample #...: G81030194-010 Work Order #...: KV68L1AC Matrix....: SOLID

INTERNAL STANDARDS 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	PERCENT RECOVERY 67 67 77 63 80 88 68 75 77 63 71 77 75 83	RECOVERY LIMITS (25 - 164) (25 - 181) (32 - 141) (28 - 130) (23 - 140) (17 - 157) (24 - 169) (24 - 185) (21 - 178) (26 - 123) (28 - 136) (29 - 147) (28 - 143) (26 - 138)
13C-1,2,3,4,7,8-HxCDF	78	(26 - 152)
SURROGATE 37C14-2,3,7,8-TCDD	PERCENT RECOVERY 68	RECOVERY LIMITS (35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

E Estimated result. Result concentration exceeds the calibration range.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21876-NM56P

1

Matrix....:

Units:

Instrument:

% Moisture: 58

SOLID

9D5

pg/g

Lot-Sample #:	G8I030194 - 010	Work Order #:	KV68L1AC
Date Sampled:	08/27/08	Date Received:	09/03/08
Prep Date:	09/04/08	Analysis Date:	09/09/08
Prep Batch #:	8249232	Dilution Factor:	1

PARAMETER	RESULT	MACCOMPAGNICATION OF THE STREET OF THE STREE	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	1.4			1	1,400
Total TCDD	150				
1,2,3,7,8-PeCDD	5.1	J		1	5.100
Total PeCDD	180				
1,2,3,4,7,8-HxCDD	11			0.1	1.100
1,2,3,6,7,8-HxCDD	45			0.1	4.500
1,2,3,7,8,9-HxCDD	13			0.1	1.300
Total HxCDD	1000				
1,2,3,4,6,7,8-HpCDD	1500	В		0.01	15.000
Total HpCDD	6700				
OCDD	10000	EΒ		0.0003	3.000
2,3,7,8-TCDF	6.4	CON		0.1	0.640
Total TCDF	71				
1,2,3,7,8-PeCDF	3.9	J		0.03	0.120
2,3,4,7,8-PeCDF	4.1	J		0.3	1.200
Total PeCDF	39				
1,2,3,4,7,8-HxCDF	12			0.1	1.200
1,2,3,6,7,8-HxCDF	4.2	J		0.1	0.420
2,3,4,6,7,8-HxCDF	2.6	J		0.1	0.260
1,2,3,7,8,9-HxCDF	1.3	J		0.1	0.130
Total HxCDF	230				
1,2,3,4,6,7,8-HpCDF	130			0.01	1.300
1,2,3,4,7,8,9-HpCDF	7.4			0.01	0.074
Total HpCDF	610				
OCDF	570			0.0003	0.170
Total TEQ Concentration					36.914
		PERCENT		RECOVERY	•
INTERNAL STANDARDS		RECOVERY		LIMITS	
13C-2,3,7,8-TCDD		67		25 - 164	
13C-1,2,3,7,8-PeCDD		67		25 - 181	
13C-1,2,3,4,7,8-HxCDD		77		32 - 141	
13C-1,2,3,6,7,8-HxCDD		63		28 - 130	
13C-1,2,3,4,6.7,8-HpCDD		80		23 - 140	
13C-OCDD		88		17 - 157	
13C-2,3,7,8-TCDF		68		24 - 169	

24 - 185

21 - 178

26 - 123

28 - 136

29 - 147

28 - 143

26 - 138

26 - 152

75

77

63

71

77

75

83

78

13C-1,2,3,7,8-PeCDF

13C-2,3,4,7,8-PeCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

13C-1,2,3,4,7,8-HxCDF

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21876-NM56P

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
37C14-2,3,7,8-TCDD	68	35 - 197	

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

E Estimated result. Result concentration exceeds the calibration range.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: 08-21879-NM56S

Trace Level Organic Compounds

Lot-Sample #...: G81030194-011 Work Order #...: KV68N1AC Matrix.....: SOLID

 Date Sampled...:
 08/27/08
 Date Received..:
 09/03/08

 Prep Date.....:
 09/04/08
 Analysis Date..:
 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1
* Moisture....: 55

DETECTION PARAMETER RESULT LIMIT UNITS METHOD 2,3,7,8-TCDD 0.78 J pg/g BPA-5 1613B Total TCDD 67 pg/g **EPA-5 1613B** 1,2,3,7,8-PeCDD 2.7 J pg/g **EPA-5 1613B** Total PeCDD 110 pg/g **BPA-5 1613B** 1,2,3,4,7,8-HxCDD 6.5 EPA-5 1613B pg/g 1,2,3,6,7,8-HxCDD 28 pg/g **BPA-5 1613B** 1,2,3,7,8,9-HxCDD 9.3 pq/q **BPA-5 1613B** Total HxCDD 600 pg/g RPA-5 1613B 1,2,3,4,6,7,8-HpCDD 990 B pq/q EPA-5 1613B Total HpCDD 3400 pg/g **BPA-5 1613B** OCDD 7500 E,B pg/g BPA-5 1613B 2,3,7,8-TCDF 5.1 CON pg/q EPA-5 1613B Total TCDF 35 pg/g EPA-5 1613B 1,2,3,7,8-PeCDF 2.2 J pg/g BPA-5 1613B 2,3,4,7,8-PeCDF 2.4 J pg/g **EPA-5 1613B** Total PecDF 21 pg/g EPA-5 1613B 1,2,3,4,7,8-HxCDF 8.0 pg/g **EPA-5 1613B** 1,2,3,6,7,8-HxCDF ND 2.5 pg/g EPA-5 1613B 2,3,4,6,7,8-HxCDF 1.9 J pg/g **BPA-5** 1613B 1,2,3,7,8,9-HxCDF 2.3 J pg/g **EPA-5 1613B** Total HxCDF 140 pg/g **EPA-5 1613B** 1,2,3,4,6,7,8-HpCDF 89 pg/g EPA-5 1613B 1,2,3,4,7,8,9-HDCDF 5.4 J pg/q **EPA-5** 1613B Total HpCDF 410 **EPA-5 1613B** pg/g OCDF 420

(Continued on next page)

pg/g

EPA-5 1613B

Client Sample ID: 08-21879-NM56S

Trace Level Organic Compounds

Lot-Sample #...: G81030194-011 Work Order #...: KV68N1AC Matrix.....: SOLID

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	61	(25 - 164)
13C-1,2,3,7,8-PeCDD	62	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	70	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	62	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	78	(23 - 140)
13C-OCDD	84	(17 - 157)
13C-2,3,7,8-TCDF	62	(24 - 169)
13C-1,2,3,7,8-PeCDF	68	(24 - 185)
13C-2,3,4,7,8-PeCDF	69	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	62	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	70	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	72	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	74	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	81	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	73	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	63	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

E Estimated result. Result concentration exceeds the calibration range.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21879-NM56S

Lot-Sample #...: Date Sampled ...: Prep Date:

G81030194 - 011

08/27/08 09/04/08

Work Order # ...: Date Received ..: Analysis Date..:

KV68N1AC 09/03/08 09/09/08

Matrix....: Instrument: Units....:

SOLID 9D5 pg/g

Prep Batch # ...: 8249232

Dilution Factor:

1

% Moisture: 55

PARAMETER	RESULT	Γ	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	0.78	J		1	n m nn
Total TCDD	67	0		1	0.780
1,2,3,7,8-PeCDD	2.7	J		1	3 700
Total PeCDD	110	-		1	2.700
1,2,3,4,7,8-HxCDD	6.5			0.1	0.650
1,2,3,6,7,8-HxCDD	28			0.1	2.800
1,2,3,7,8,9-HxCDD	9.3			0.1	0.930
Total HxCDD	600			0.1	0.750
1,2,3,4,6,7,8-HpCDD	990	В		0.01	9,900
Total HpCDD	3400			V.V.	7.700
OCDD	7500	EΒ		0.0003	2.200
2,3,7,8-TCDF	5.1	CON		0.1	0.510
Total TCDF	35			•••	0.510
1,2,3,7,8-PeCDF	2.2	J		0.03	0.066
2,3,4,7,8-PeCDF	2.4	J		0.3	0.720
Total PeCDF	21				0.720
1,2,3,4,7,8-HxCDF	8.0			0.1	0.800
1,2.3,6,7,8-HxCDF	ND		2.5	0.1	0
2,3,4,6,7,8-HxCDF	1.9	J		0.1	0.190
1,2,3,7,8,9-HxCDF	2.3	J		0.1	0.230
Total HxCDF	140			***	0.20
1,2,3,4,6,7,8-HpCDF	89			0.01	0.890
1,2,3,4,7,8,9-HpCDF	5.4	J		0.01	0.054
Total HpCDF	410				0700
OCDF	420			0.0003	0.130
Total TEQ Concentration					23.550
		PERCENT		RECOVERY	
INTERNAL STANDARDS		RECOVERY		LIMITS	
13C-2,3,7,8-TCDD		61		25 - 164	
13C-1,2,3,7,8-PeCDD		62		25 - 181	
13C-1,2,3,4,7,8-HxCDD		70		32 - 141	
13C-1,2,3,6,7,8-HxCDD		62		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD		78		23 - 140	
13C-2,3,7,8-TCDF		84		17 - 157	
13C-1.2,3.7,8-PeCDF		62 68		24 - 169	
13C-2,3,4,7,8-PeCDF		69		24 - 185	
13C-1,2,3,6,7,8-HxCDF		62		21 - 178 26 - 123	
13C-2,3,4.6,7,8-HxCDF		70		28 - 136	
13C-1,2,3,7,8,9-HxCDF		72		29 - 147	
13C-1,2,3,4,6,7,8-HpCDF		74		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF		18		26 - 138	
13C-1,2,3,4,7,8-HxCDF		73		26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21879-NM56S

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
37Cl4-2,3,7,8-TCDD	63	35 - 197	

		33 - 197
Notes:		
WHO TEFs for human risk assessment based on the conclusions of the V	World Health Organization meeting in Gene	eva, Switzerland, June 2005

Method blank contamination. The associated method blank contains the target analyte at a reportable level. CON Confirmation analysis.

В

Estimated result. Result concentration exceeds the calibration range. E

Estimated result. Result is less than the reporting limit.

Client Sample ID: 08-21880-NM56T

Trace Level Organic Compounds

Lot-Sample #...: G81030194-012 Work Order #...: KV68P1AC Matrix.....: SOLID

 Date Sampled...: 08/27/08
 Date Received..: 09/03/08

 Prep Date.....: 09/04/08
 Analysis Date..: 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1 % Moisture....: 51

		DETECTIO	VI	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.23	pg/g	EPA-5 1613B
Total TCDD	15		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.49	pg/g	EPA-5 1613B
Total PeCDD	14		pq/q	EPA-5 1613B
1,2,3,4,7,8~HxCDD	ND	0.35	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	1.2 Ј		pg/g	BPA-5 1613B
1,2,3,7,8,9-HxCDD	1.1 J		pg/g	EPA-5 1613B
Total HxCDD	28		pg/g	KPA-5 1613B
1,2,3,4,6,7,8-HpCDD	26 B		pg/g	EPA-5 1613B
Total HpCDD	73		pg/g	EPA-5 1613B
OCDD	250 B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	ND CON, G	1.4	pg/g	EPA-5 1613B
Total TCDF	15		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	0.70 J		pg/g	BPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.72	pg/g	EPA-5 1613B
Total PeCDF	2.2		pq/q	RPA-5 1613B
1,2,3,4,7,8-HxCDF	1.7 J		pg/g	BPA-5 1613B
1,2,3,6,7,8-HxCDF	0.64 J		pg/g	BPA-5 1613B
2,3,4,6,7,8-HxCDF	0.74 J		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	0.25 J		pg/g	EPA-5 1613B
Total HxCDF	8.7		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	6.5		pg/g	BPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.43	pg/g	EPA-5 1613B
Total HpCDF	16		pg/g	BPA~5 1613B
OCDF	12		pg/g	EPA-5 1613B
			E3/3	TITA O TOTOD

(Continued on next page)

Client Sample ID: 08-21880-NM56T

Trace Level Organic Compounds

Lot-Sample #...: G8I030194-012 Work Order #...: KV68P1AC Matri

Matrix..... SOLID

PERCENT	NT RECOVERY	
RECOVERY	LIMITS	
86	(25 - 164)	
86	(25 ~ 181)	
97	(32 - 141)	
87	(28 - 130)	
104	(23 - 140)	
104	(17 - 157)	
88	(24 - 169)	
94	(24 - 185)	
97	(21 - 178)	
86	(26 - 123)	
96	(28 - 136)	
102	(29 - 147)	
99	(28 - 143)	
110	(26 - 138)	
99	(26 - 152)	
PERCENT	RECOVERY	
RECOVERY	LIMITS	
90	(35 - 197)	
	RECOVERY 86 86 97 87 104 104 88 94 97 86 96 102 99 110 99 PERCENT RECOVERY	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level. CON Confirmation analysis.

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21880-NM56T

Lot-Sample #...: G8I030194 - 012 Work Order #...: KV68P1AC Matrix....: SOLID Date Sampled ...: Date Received ..: 08/27/08 09/03/08 Instrument; 9D5 Prep Date: Analysis Date..: Units....: 09/04/08 09/09/08 pg/g% Moisture: Prep Batch #...: 8249232 Dilution Factor: 1 51

PARAMETER	RESULT		DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	ND		0.23	1	0
Total TCDD	15				
1,2,3,7,8-PeCDD	ND		0.49	1	0
Total PeCDD	14				
1,2.3,4,7,8-HxCDD	ND		0.35	0.1	0
1,2,3,6,7,8-HxCDD	1.2	J		0.1	0.120
1,2,3,7,8,9-HxCDD	1.1	J		0.1	0.110
Total HxCDD	28				
1,2,3,4,6,7,8-HpCDD	26	В		0.01	0.260
Total HpCDD	73				
OCDD	250	В		0.0003	0.075
2,3,7,8-TCDF	ND	CON G	1.4	0.1	0
Total TCDF	15				
1,2,3,7,8-PeCDF	0.70	J		0.03	0.021
2,3,4,7,8-PeCDF	ND		0.72	0.3	0
Total PeCDF	2.2				
1,2,3,4,7,8-HxCDF	1.7	J		0.1	0.170
1,2,3,6,7,8-HxCDF	0.64	J		0.1	0.064
2,3,4,6,7,8-HxCDF	0.74	J		0.1	0.074
1,2,3,7,8,9-HxCDF	0.25	J		0.1	0.025
Total HxCDF	8.7				
1,2,3,4,6,7,8-HpCDF	6.5			0.01	0.065
1,2,3,4,7,8,9-HpCDF	ND		0.43	0.01	0
Total HpCDF	16				
OCDF	12			0.0003	0.004
Total TEQ Concentration					0.988
INTERNAL STANDARDS		PERCENT RECOVERY		RECOVERY LIMITS	***************************************
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD		86 86		25 - 164 25 - 181	
13C-1,2,3,4,7,8-HxCDD		97		32 - 141	
13C-1,2,3,6,7,8-HxCDD		87		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD		104		23 - 140	
13C-OCDD		104		17 - 157	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF		88 94		24 - 169 24 - 185	
13C-2,3,4,7,8-PeCDF		94 97		21 - 178	
13C-1,2,3,6,7,8-HxCDF		86		26 - 123	
13C-2,3.4,6,7,8-HxCDF		96		28 - 136	
13C-1,2,3,7,8,9-HxCDF		102		29 - 147	
13C-1,2,3,4,6,7,8-HpCDF		99		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF		110		26 - 138	
13C-1,2,3,4,7,8-HxCDF		99		26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21880-NM56T

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37Cl4-2,3,7,8-TCDD	90	35 - 197
Notes:		
WHO TEFs for human risk assessment based on the	e conclusions of the World Health Organization meeting in G	eneva. Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.
CON Confirmation analysis.
G Elevated reporting limit. The reporting limit is elevated due to matrix interference.
J Estimated result. Result is less than the reporting limit.

QC DATA ASSOCIATION SUMMARY

G8I030194

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
• • •					
001	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
002	COLTD				
002	SOLID SOLID	EPA-5 1613B		8249232	
	SOLITO	ASTM D 2216-90		8253485	8253304
003	SOLID	EPA-5 1613B		201000	
	SOLID	ASTM D 2216-90		8249232	
	BOLLED	ASIM D 2216-90		8253485	8253304
004	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	0053304
				0233403	8253304
005	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
006	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
007	001.75				
007	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
008	SOLID	EDA E 1612B			
000	SOLID	EPA-5 1613B ASTM D 2216-90		8249232	
	DOLLED	ASIM D 2216-90		8253485	8253304
009	SOLID	EPA-5 1613B		9246222	
	SOLID	ASTM D 2216-90		8249232 8253485	0052204
	-	1211 2 2210 30		6233485	8253304
010	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
				0253105	0233304
011	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
012	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #...: G8I030194 Work Order #...: KWCK01AA Matrix.....: SOLID

MB Lot-Sample #: G8I050000-232

Prep Date...: 09/04/08
Analysis Date..: 09/09/08
Prep Batch #...: 8249232

Dilution Factor: 1

		DEMPGRICA		
PARAMETER	RESULT	DETECTION LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.082	pq/q	EPA-5 1613B
Total TCDD	ND	0.082	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.16	pg/g	EPA-5 1613B
Total PeCDD	ND	0.16	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	0.10	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	ND	0.093	ba\a ba\a	EPA-5 1613B
1,2,3,7,8,9-HxCDD	ND	0.090	pa/a	EPA-5 1613B
Total HxCDD	ND	0.10	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	0.19 J	0.10	pg/g	EPA-5 1613B
Total HpCDD	0.19		pg/g	EPA-5 1613B
OCDD	1.8 J		pg/g	EPA-5 1613B
2,3,7,8-TCDF	ND	0.16	pg/g	EPA-5 1613B
Total TCDF	ND	0.16	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.080	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.091	pg/g	EPA-5 1613B
Total PeCDF	ND	0.13	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	0.064	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.060	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.057	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.063	pg/g	EPA-5 1613B
Total HxCDF	ND	0.064	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	ND	0.091	pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.078	pg/g	EPA-5 1613B
Total HpCDF	ND	0.091	pg/g	EPA-5 1613B
OCDF	ND	0.17	pg/g	EPA-5 1613B
			E 31 3	

(Continued on next page)

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #: G8I030194	Work Order #	.: KWCK01AA	Matrix: SOLID
		DETECTION	
PARAMETER	RESULT	LIMIT UNITS	METHOD
	PERCENT	RECOVERY	
INTERNAL STANDARDS	RECOVERY	LIMITS	
13C-2,3,7,8-TCDD	52	(25 - 164)	-
13C-1,2,3,7,8-PeCDD	48	(25 - 181)	
13C-1,2,3,4,7,8-HxCDD	57	(32 - 141)	
13C-1,2,3,6,7,8-HxCDD	52	(28 - 130)	
13C-1,2,3,4,6,7,8-HpCDD	62	(23 - 140)	
13C-OCDD	62	(17 - 157)	
13C-2,3,7,8-TCDF	52	(24 - 169)	
13C-1,2,3,7,8-PeCDF	54	(24 - 185)	
13C-2,3,4,7,8-PeCDF	55	(21 - 178)	
13C-1,2,3,6,7,8-HxCDF	54	(26 - 123)	
13C-2,3,4,6,7,8-HxCDF	56	(28 - 136)	
13C-1,2,3,7,8,9-HxCDF	61	(29 - 147)	
13C-1,2,3,4,6,7,8-HpCDF	61	(28 - 143)	
13C-1,2,3,4,7,8,9-HpCDF	64	(26 - 138)	
13C-1,2,3,4,7,8-HxCDF	54	(26 - 152)	
SURROGATE 37C14-2,3,7,8-TCDD	PERCENT RECOVERY 84	RECOVERY LIMITS (35 - 197)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than the reporting limit.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

Trace Level Organic Compounds

Client Lot #...: G8I030194 Work Order #...: KWCK01AC Matrix.....: SOLID

LCS Lot-Sample#: G8I050000-232

Prep Date....: 09/04/08 **Analysis Date..:** 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
2,3,7,8-TCDD	106	(67 - 158)	EPA-5 1613B
1,2,3,7,8-PeCDD	115	(70 - 142)	EPA-5 1613B
1,2,3,4,7,8-HxCDD	111	(70 - 164)	BPA-5 1613B
1,2,3,6,7,8-HxCDD	109	(76 - 134)	RPA-5 1613B
1,2,3,7,8,9-HxCDD	115	(64 - 162)	RPA-5 1613B
1,2,3,4,6,7,8-HpCDD	109	(70 - 140)	RPA-5 1613B
OCDD	112	(78 - 144)	RPA-5 1613B
2,3,7,8-TCDF	103	(75 - 158)	EPA-5 1613B
1,2,3,7,8-PeCDF	104	(80 - 134)	BPA-5 1613B
2,3,4,7,8-PeCDF	102	(68 - 160)	EPA-5 1613B
1,2,3,4,7,8-HxCDF	107	(72 - 134)	EPA-5 1613B
1,2,3,6,7,8-HxCDF	107	(84 - 130)	EPA-5 1613B
2,3,4,6,7,8-HxCDF	108	(70 - 156)	RPA-5 1613B
1,2,3,7,8,9-HxCDF	108	(78 - 130)	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	104	(82 - 122)	BPA-5 1613B
1,2,3,4,7,8,9-HpCDF	106	(78 - 138)	RPA-5 1613B
OCDF	114	(63 - 170)	EPA-5 1613B

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

Trace Level Organic Compounds

Client Lot #...: G81030194 Work Order #...: KWCK01AC Matrix.....: SOLID

LCS Lot-Sample#: G8I050000-232

INTERNAL STANDARD 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	PERCENT RECOVERY 76 76 83 80 91 93 77 82 85 78 85 90 90 94	RECOVERY LIMITS (25 - 164) (25 - 181) (32 - 141) (28 - 130) (23 - 140) (17 - 157) (24 - 169) (24 - 185) (21 - 178) (26 - 123) (28 - 136) (29 - 147) (28 - 143) (26 - 138)
13C-1,2,3,4,7,8-HxCDF	9 4 83	(26 - 138) (26 - 152)
SURROGATE 37C14-2,3,7,8-TCDD	PERCENT RECOVERY 78	RECOVERY LIMITS (35 - 197)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #...: G81030194 Work Order #...: KWCK01AC Matrix.....: SOLID

LCS Lot-Sample#: G81050000-232

Prep Date....: 09/04/08 **Analysis Date..:** 09/09/08

Prep Batch #...: 8249232

Dilution Factor: 1

PARAMETER 2,3,7,8-TCDD 1,2,3,7,8-PCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PCDF 1,2,3,4,7,8-PCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	SPIKE AMOUNT 20.0 100 100 100 100 200 20.0 100 100 100 100 100 100 100 100	MEASURED AMOUNT 21.3 115 111 109 115 109 223 20.5 104 102 107 107 108 108 108 104 106	DA/G	PERCENT RECOVERY 106 115 111 109 115 109 112 103 104 102 107 107 108 108 108	METHOD RPA-5 1613B EPA-5 1613B
-	· ·	104 106 227	pg/g pg/g pg/g	104 106 114	EPA-5 1613B EPA-5 1613B EPA-5 1613B

(Continued on next page)

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #...: G81030194 Work Order #...: KWCK01AC Matrix.....: SOLID

LCS Lot-Sample#: G8I050000-232

INTERNAL STANDARD	PERCENT RECOVERY	RECOVERY
13C-2,3,7,8-TCDD	76	LIMITS
13C-1,2,3,7,8-PeCDD	76 76	(25 - 164)
13C-1,2,3,4,7,8-HxCDD	83	(25 - 181)
13C-1,2,3,6,7,8-HxCDD		(32 - 141)
13C-1,2,3,4,6,7,8-HpCDD	80	(28 - 130)
13C-OCDD	91	(23 - 140)
	93	(17 - 157)
13C-2,3,7,8-TCDF	77	(24 - 169)
13C-1,2,3,7,8-PeCDF	82	(24 - 185)
13C-2,3,4,7,8-PeCDF	85	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	78	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	85	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	90	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	90	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	94	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	83	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	78	
MISTITO TODD	10	(35 - 197)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

SOLID, D 2216-90, Percent Moisture

Client Sample ID: 08-21861-NM56A

General Chemistry

Lot-Sample #...: G8I030194-001 Work Order #...: KV67W Date Sampled...: 08/26/08 Date Received..: 09/03/08

Matrix....: SOLID

% Moisture....: 21

PREPARATION-PREP PARAMETER RESULT RL UNITS METHOD
21.4 0.10 % ASTM D 2216-90
 METHOD
 ANALYSIS DATE
 BATCH #

 ASTM D 2216-90
 09/09-09/10/08
 8253485
 Percent Moisture

Client Sample ID: 08-21862-NM56B

General Chemistry

Lot-Sample #...: G8I030194-002 Work Order #...: KV671

Matrix..... SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08

₹ Moisture....: 20

PREPARATION-PREP METHOD RESULT RL UNITS ANALYSIS DATE BATCH # PARAMETER 20.2 0.10 % Percent Moisture ASTM D 2216-90 09/09-09/10/08 8253485

Client Sample ID: 08-21863-NM56C

General Chemistry

Lot-Sample #...: G8I030194-003 Work Order #...: KV672 Matrix.....: SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08

% Moisture....: 32

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Moisture
 32.0
 0.10
 %
 ASTM D 2216-90
 09/09-09/10/08
 8253485

Client Sample ID: 08-21864-NM56D

General Chemistry

Lot-Sample #...: G8I030194-004 Work Order #...: KV675 Matrix.....: SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08

% Moisture....: 33

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Moisture
 33.4
 0.10
 %
 ASTM D 2216-90
 09/09-09/10/08
 8253485

Dilut:on Factor: !

Client Sample ID: 08-21865-NM56E

General Chemistry

Lot-Sample #...: G8I030194-005 Work Order #...: KV676

Matrix..... SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08

% Moisture....: 27

PREPARATION~ PREP METHOD METHOD ANALYSIS DATE BATCH # 09/09-09/10/08 8253485 RL UNITS RESULT PARAMETER 0.10 % Percent Moisture 26.5

Client Sample ID: 08-21867-NM56G

General Chemistry

Lot-Sample #...: G81030194-006 Work Order #...: KV677 Matrix.....: SOLID Date Sampled...: 08/26/08 Date Received..: 09/03/08

8 Moisture....: 32

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION </t

Client Sample ID: 08-21868-NM56H

General Chemistry

Lot-Sample #...: G8I030194-007 **Work Order #...:** KV678

Matrix..... SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08

% Moisture....: 13

PREPARATION- PREP RESULT RL UNITS METHOD PARAMETER ANALYSIS DATE BATCH # ASTM D 2216-90 ANALYSIS DATE BATCH # 8253485 Percent Moisture 12.8 0.10 %

Client Sample ID: 08-21870-NM56J

General Chemistry

Lot-Sample #...: G8I030194-008 Work Order #...: KV679

58.9

Matrix..... SOLID

Date Sampled...: 08/27/08 Date Received..: 09/03/08

% Moisture....: 59

PREPARATION- PREP PARAMETER RL UNITS & METHOD RESULT
 METHOD
 ANALYSIS DATE
 BATCH #

 ASTM D 2216-90
 09/09-09/10/08
 8253485
 Percent Moisture

Client Sample ID: 08-21873-NM56M

General Chemistry

Lot-Sample #...: G8I030194-009 Work Order #...: KV68J Matrix.....: SOLID

Date Sampled...: 08/27/08 Date Received..: 09/03/08

₹ Moisture....: 42

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION PREPARATION PREPARATION PREPARATION PREPARAMETER

 Percent Moisture
 41.9
 0.10
 %
 ASTM D 2216-90
 09/09-09/10/08
 8253485

Client Sample ID: 08-21876-NM56P

General Chemistry

Lot-Sample #...: G8I030194-010 Work Order #...: KV68L Matrix.....: SOLID

Date Sampled...: 08/27/08 Date Received..: 09/03/08

% Moisture....: 58

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Moisture
 58.4
 0.10
 %
 ASTM D 2216-90
 09/09-09/10/08
 8253485

Client Sample ID: 08-21879-NM56S

General Chemistry

Lot-Sample #...: G8I030194-011 Work Order #...: KV68N Matrix....: SOLID

Date Sampled...: 08/27/08 Date Received..: 09/03/08

% Moisture....: 55

ASTM D 2216-90 09/09-09/10/00 """ PREP PREPARATION- PREP RESULT RL UNITS PARAMETER METHOD 55.1 0.10 % Percent Moisture

Client Sample ID: 08-21880-NM56T

General Chemistry

Lot-Sample #...: G81030194-012 Work Order #...: KV68P

Matrix..... SOLID

Date Sampled...: 08/27/08 Date Received..: 09/03/08 % Moisture....: 51

PARAMETER RESULT

51.4

Percent Moisture

 RL
 UNITS
 METHOD
 PREPARATION—

QC DATA ASSOCIATION SUMMARY

G81030194

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
SAME LET	DATUTA	METHOD	BAICH #	DATCH #	PIS NON#
001	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
002	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
003	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
004	SOLID	EPA-5 1613B		8249232	
001	SOLID	ASTM D 2216-90		8253485	8253304
	001111	110111 10 2210 90		0233103	02.33301
005	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
006	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
007	SOLID	EPA-5 1613B		8249232	
007	SOLID	ASTM D 2216-90		8253485	8253304
	SOLID	ASIN B ZZIO 90		02.55165	0233301
800	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
009	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
010	001.10	DDA 5 1/212D		00/000	
010	SOLID	EPA-5 1613B		8249232	0053304
	SOLID	ASTM D 2216-90		8253485	8253304
011	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304
012	SOLID	EPA-5 1613B		8249232	
	SOLID	ASTM D 2216-90		8253485	8253304

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: G8I030194 Work Order #...: KV781-SMP Matrix.....: SCLID

KV781-DUP

% Moisture....: 30

| DUPLICATE | RPD | PREPARATION- | P

September 18, 2008

TestAmerica Project Number: G8I030305 PO/Contract:

Kelly Bottem Analytical Resources Inc 4611 S 134th Place Suite 100 Tukwila, WA 98168

Dear Ms. Bottem,

This report contains the analytical results for the samples received under chain of custody by TestAmerica on September 3, 2008. These samples are associated with your NM66 project.

The test results in this report meet all NELAC requirements for parameters that accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The case narrative is an integral part of this report.

If you have any questions, please feel free to call me at (916) 374-4402.

Sincerely,

Laura Nelson

for

Jill Kellmann

Project Manager

Table of Contents

TestAmerica West Sacramento Project Number G8I030305

Case Narrative

Quality Assurance Program

Sample Description Information

Chain of Custody Documentation

SOLID, 1613B, Dioxins/Furans

Samples: 1, 2, 3, 4

Sample Data Sheets
Method Blank Report
Laboratory QC Reports

SOLID, D 2216-90, Percent Moisture Samples: 1, 2, 3, 4 Sample Data Sheets Laboratory QC Reports

Raw Data Package

Case Narrative

TestAmerica West Sacramento Project Number G8I030305

General Comments

Please note that the chain of custody (COC) was not relinquished to the lab with the samples by the appropriate agent.

SOLID, 1613B, Dioxins/Furans

Sample: 1, 2, 3, 4

Samples 1, 2, 3, and 4 required a Confirmation (CON) analysis, which was performed on September 10, 2008

The method blank associated with this extraction batch has OCDD detected with a concentration below the Reporting Limit (RL) but above the Estimated Detection Limit (EDL). OCDD is a common laboratory contaminant. Any field sample within this batch demonstrating a concentration for OCDD is assigned the "B" qualifier.

There are no other anomalies associated with this project.

TestAmerica Laboratories West Sacramento Certifications/Accreditations

Certifying State	Certificate #	Certifying State	Certificate #
Alaska	UST-055	New York*	11666
Arizona	AZ0616	Oregon*	CA 200005
Arkansas	04-067-0	Pennsylvania	68-1272
California*	01119CA	South Carolina	87014002
Colorado	NA	Texas	TX 270-2004A
Connecticut	PH-0691	Utah*	QUAN1
Florida*	E87570	Virginia	00178
Georgia	960	Washington	C087
Hawaii	NA	West Virginia	9930C, 334
Kansas*	E10375	Wisconsin	998204680
Louisiana*	01944	NFESC	NA
Michigan	9947	USACE	NA
Nevada	CA44	USDA Foreign Plant	37-82605
New Jersey*	CA005	USDA Foreign Soil S-46613	

^{*}NELAP accredited. A more detailed parameter list is available upon request. Updated 9/21/07

QC Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also be used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

Surrogates: Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

Isotope Dilution: For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

Sample Summary

TestAmerica West Sacramento Project Number G8I030305

<u>WO#</u>	Sample #	Client Sample ID	Sampling Date	Received Date
KV781	1	08-21963-NM66A	8/26/2008 10:30 AM	9/3/2008 09:25 AM
KV785	2	08-21964-NM66B	8/26/2008 11:42 AM	9/3/2008 09:25 AM
KV789	3	08-21965-NM66C	8/26/2008 01:29 PM	9/3/2008 09:25 AM
KV79A	4	08-21966-NM66D	8/26/2008 07:20 PM	9/3/2008 09:25 AM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 09/02/08

ARI Project: NM66

Laboratory: SEVERN TRENT LABORATORY-SACRAMENTOARI Client: Hart Crowser, Inc. Lab Contact: JILL KELLMAN Lab Contact: JILL KELLMAN Project ID: Bellingham Bay Piles
Lab Address: 880 RIVERSIDE PARKWAY ARI PM: Kelly Bottem

ARI PM: Kelly Bottem WEST SACRAMENTO, CA 95605 Phone: 206-695-6211 Phone: 916-373-5600 Fax: 206-695-6201

Fax:

Analytical Protocol: PSDDA

Special Instructions:

Requested Turn Around:

Fax Results (Y/N): Yes

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses		
08-21963-NM66A	BBP-SS-01	08/26/08	8 Sediment 1 Dioxins/Furans 8290 (Su 16/3	1	Dioxins/Furans	8290	(Su
Special Instruc	tions: None	1030					
08-21964-NM66B	1142	Sediment	t 1	Dioxins/Furans	8290	(Su	
Special Instruct				10/5			
08-21965-NM66C	3-21965-NM66C BBP-SS-03 08/26/08 Sed	Sediment	1	Dioxins/Furans	8290 ((Su	
Special Instruct	tions: None	1329				1613	
08-21966-NM66D Special Instruct	BBP-SC-01	08/27/08	Sediment	1	Dioxins/Furans	8290	(Su
	tions: None	1920				10/3	

Carrier	Airbill	And Andrews	Date
Relinquished by	Company	Date	Time
Received W	Company +	Date 9-3-68	Time /3/5

Subcontractor Custody Form - NM66 Fage 1 of 1

LOT RECEIPT CHECKLIST TestAmerica West Sacramento

CLIENT Auglyfical Resources PM JK LOG# 53957
CLIENT AURIGIACION PROPERTO LOGI 53957 LOT# (QUANTIMS ID) 687030305 QUOTE# 80669 LOCATION WHOSE)
०५२-५ १ व
DATE RECEIVED 9-3-08 TIME RECEIVED 925 Initials Date 4 93-08
DELIVERED BY GEDEX CA OVERNIGHT CLIENT AIRBORNE GOLDENSTATE DHL UPS BAX GLOBAL GO-GETTERS TAL COURIER VALLEY LOGISTICS MORGAN HILL COURIER
☐ TAL COURIER ☐ VALLEY LOGISTICS ☐ MORGAN HILL COURIER ☐ OTHER
CUSTODY SEAL STATUS INTACT BROKEN NA CUSTODY SEAL #(S)
SHIPPPING CONTAINER(S) TAL CLIENT N/A
TEMPERTURE RECORD (IN °C) IR 4 5 OTHER
COC #(S)
TEMPERATURE BLANK Observed: Corrected:
SAMPLE TEMPERATURE Observed: 7 5 4 Average: 5 Corrected Average: 4
COLLECTOR'S NAME:
pH MEASURED YES ANOMALY N/A
LABELED BY
LABELS CHECKED BY
SHORT HOLD TEST NOTIFICATION SAMPLE RECEIVING
WETCHEM N/A
VOA-ENCORES N/A
☐ METALS NOTIFIED OF FILTER/PRESERVE VIA VERBAL & EMAIL
COMPLETE SHIPMENT RECEIVED IN GOOD CONDITION WITH APPROPRIATE TEMPERATURES, CONTAINERS, PRESERVATIVES
CLOUSEAU TEMPERATURE EXCEEDED (2 °C – 6 °C) 1 N/A
□ WET ICE □ BLUE ICE □ GEL PACK □ NO COOLING AGENTS USED □ PM NOTIFIED Notes:
Coc not relinguished

^{*1} Acceptable temperature range for State of Wisconsin samples is≤4°C. LEAVE NO SPACES BLANK. USE "N/A" IF NOT APPLICABLE.

TestAmerica West Sacramento THE LEADER IN ENVIRONMENTAL TESTING

GST030305 Lot ID:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2
VOA*	/_,																			
VOAh*																				
AGB																				
AGBs																				
250AGB																				
250AGBs																				T
250AGBn																				T
500AGB																				
AGJ													· · · · · · · · · · · · · · · · · · ·							
500AGJ																				
250AGJ																				1
125AGJ										1				:						-
CGJ																				T
500CGJ	t	1	(1												- ,,,,		· · · · · · · · · · · · · · · · · · ·		T
250CGJ				+-																_
125CGJ																				
 PJ						······································														
PJn																				
500PJ																				<u> </u>
500PJn																				\vdash
500PJna																				\vdash
500PJzn/na														~ ~ ~ ~ ~ ~ ~						
250PJ																				
250PJn																		ļ,		-
250PJna					-															H
250PJzn/na																				-
Acetate Tube																				\vdash
"CT																				
Encore																				
Folder/filter																				
PUF																				
Petri/Filter																				
XAD Trap																				
Ziploc																				
	1	2	3	4	5	6	7	8	9	10	11	12	12	14	15	16	17	10	10	2

Number of VOAs with air bubbles present / total number of VOA's

QA-185 5/05 EM

Page 3

LEAVE NO SPACES BLANK. USE "NA" IF NOT APPLICABLE.

SOLID, 1613B, Dioxins/Furans

Client Sample ID: 08-21963-NM66A

Trace Level Organic Compounds

Lot-Sample #...: G8I030305-001 Work Order #...: KV7811AC Matrix.....: SOLID

Prep Batch #...: 8252477

Dilution Factor: 1 % Moisture....: 30

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.093	pg/g	EPA-5 1613B
Total TCDD	6.3		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.19	pg/g	EPA-5 1613B
Total PeCDD	10		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	0.53 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	1.5 J		pg/g	RPA-5 1613B
1,2,3,7,8,9-HxCDD	1.1 J		pg/g	EPA-5 1613B
Total HxCDD	23		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	32		pg/g	EPA-5 1613B
Total HpCDD	76		pg/g	EPA-5 1613B
OCDD	350 B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	0.78 CON		pg/g	EPA-5 1613B
Total TCDF	2.3		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.14	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.14	pg/g	EPA-5 1613B
Total PeCDF	1.7		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	0.43 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.19	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.23	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.079	pg/g	EPA-5 1613B
Total HxCDF	6.2		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	5.1		pg/g	BPA-5 1613B
1,2,3,4,7,8,9-HpCDF	0.34 J		pg/g	BPA-5 1613B
Total HpCDF	18		pg/g	BPA-5 1613B
OCDF	19		pg/g	EPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21963-NM66A

Trace Level Organic Compounds

Lot-Sample #...: G81030305-001 Work Order #...: KV7811AC Matrix.....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	87	(25 - 164)
13C-1,2,3,7,8-PeCDD	70	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	80	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	90	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	84	(23 - 140)
13C-OCDD	62	(17 - 157)
13C-2,3,7,8-TCDF	70	(24 - 169)
13C-1,2,3,7,8-PeCDF	74	(24 - 185)
13C-2,3,4,7,8-PeCDF	75	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	86	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	89	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	94	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	83	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	85	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	86	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	85	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21963-NM66A

Lot-Sample #: Date Sampled:	G81030305 - 001 08/26/08	Work Order #; Date Received:	KV7811AC 09/03/08	Matrix; Instrument:	SOLID 9D5
Prep Date:	09/08/08	Analysis Date:	09/10/08	Units:	pg/g
Prep Batch #:	8252477	Dilution Factor:	1	% Moisture:	30

PARAMETER	RESULT	r	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	ND		0.093	1	0
Total TCDD	6.3				-
1,2,3,7,8-PeCDD	ND		0.19	1	0 .
Total PeCDD	10				•
1,2,3,4,7,8-HxCDD	0.53	J		0.1	0.053
1,2,3,6,7,8-HxCDD	1.5	J		0.1	0.150
1,2,3,7,8,9-HxCDD	1.1	J		0.1	0.110
Total HxCDD	23				
1,2,3,4,6,7,8-HpCDD	32			0.01	0.320
Total HpCDD	76				3.0-2.
OCDD	350	В		0.0003	0.100
2,3,7,8-TCDF	0.78	CON		0.1	0.078
Total TCDF	2.3				V.V.
1,2,3,7,8-PeCDF	ND		0.14	0.03	0
2,3,4,7,8-PeCDF	ND		0.14	0.3	0
Total PeCDF	1.7				
1,2,3,4,7,8-HxCDF	0.43	J		0.1	0.043
1,2,3,6,7,8-HxCDF	ND		0.19	0.1	0
2,3,4,6,7,8-HxCDF	ND		0.23	0.1	0
1,2,3,7,8,9-HxCDF	ND		0.079	0.1	0
Total HxCDF	6.2				
1,2,3,4,6,7,8-HpCDF	5.1			0.01	0.051
1,2,3,4,7,8,9-HpCDF	0.34	J		0.01	0.003
Total HpCDF	18				
OCDF	19			0.0003	0.006
Total TEQ Concentration					0.914
		PERCENT		RECOVERY	
INTERNAL STANDARDS		RECOVERY		LIMITS	
13C-2,3,7,8-TCDD		87		25 - 164	
13C-1,2,3,7,8-PeCDD		70		25 - 1 81	
13C-1,2,3,4,7,8-HxCDD		80		32 - 141	
13C-1,2,3,6,7,8-HxCDD		90		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD		84		23 - 140	
13C-2.3,7,8-TCDF		62 70		17 - 157	
13C-1,2,3,7,8-PeCDF		70 74		24 - 169 24 - 185	
13C-2,3,4,7,8-PeCDF		75		21 - 178	
13C-1,2,3,6,7,8-HxCDF		86		26 - 123	
13C-2,3,4,6,7,8-HxCDF		89		28 - 136	
13C-1,2,3,7,8,9-HxCDF		94		29 - 147	
13C-1,2,3,4,6,7,8-HpCDF		83		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8-HxCDF		85 86		26 - 138	
100 11,2,5,1,7,0-HACDI		86		26 - 152	

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21963-NM66A

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS

37Cl4-2,3,7,8-TCDD	85	35 - 197

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland. June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: 08-21964-NM66B

Trace Level Organic Compounds

Lot-Sample #...: G8I030305-002 Work Order #...: KV7851AC Matrix.....: SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08
Prep Date....: 09/08/08 Analysis Date..: 09/10/08

Prep Batch #...: 8252477

Dilution Factor: 1 % Moisture....: 37

DETECTION

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.17	pg/g	EPA-5 1613B
Total TCDD	20		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	0.66 J		pg/g	BPA-5 1613B
Total PeCDD	33		pg/g	BPA-5 1613B
1,2,3,4,7,8-HxCDD	1.3 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	3.1 J		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	2.2 J		pg/g	EPA-5 1613B
Total HxCDD	61		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	59		pg/g	EPA-5 1613B
Total HpCDD	140		pg/g	BPA-5 1613B
OCDD	540 B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	1.8 CON		pg/g	EPA-5 1613B
Total TCDF	9.0		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	0.32 J		pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	0.38 J		pg/g	EPA-5 1613B
Total PeCDF	4.4		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	1.0 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	0.51 J		pg/g	BPA-5 1613B
2,3,4,6,7,8-HxCDF	0.73 J		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	0.30 J		pg/g	EPA-5 1613B
Total HxCDF	15		pg/g	BPA-5 1613B
1,2,3,4,6,7,8-HpCDF	9.5		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.54	pg/g	EPA-5 1613B
Total HpCDF	33		pg/g	EPA-5 1613B
OCDF	31		pg/g	BPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21964-NM66B

Trace Level Organic Compounds

Lot-Sample #...: G8I030305-002 Work Order #...: KV7851AC Matrix......: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	88	(25 - 164)
13C-1,2,3,7,8-PeCDD	72	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	87	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	82	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	83	(23 - 140)
13C-OCDD	68	(17 - 157)
13C-2,3,7,8-TCDF	72	(24 - 169)
13C-1,2,3,7,8-PeCDF	76	(24 - 185)
13C-2,3,4,7,8-PeCDF	78	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	81	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	87	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	90	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	79	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	85	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	88	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37Cl4-2,3,7,8-TCDD	85	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level, CON Confirmation analysis.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21964-NM66B

Lot-Sample #...:
Date Sampled...:

G81030305 - 002

08/26/08 09/08/08 Work Order #...:
Date Received..:

KV7851AC 09/03/08 09/10/08 Matrix...: S Instrument: S Units....:

SOLID 9D5

Prep Date.....:
Prep Batch #...:

8252477

Analysis Date..: Dilution Factor:

1

% Moisture:

pg/g : 37

PARAMETER	RESULT	Γ	DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	ND		0.17	1	0
Total TCDD	20		0,	•	V
1,2,3,7,8-PeCDD	0.66	J		1	0.660
Total PeCDD	33	•		•	0.000
1,2,3,4,7,8-HxCDD	1.3	J		0.1	0.130
1,2,3,6,7,8-HxCDD	3.1	J		0.1	0.310
1,2,3,7,8,9-HxCDD	2.2	Ĵ		0.1	0.220
Total HxCDD	61	•		0.1	0.220
1,2,3,4,6,7,8-HpCDD	59			0.01	0.590
Total HpCDD	140			0.01	0.370
OCDD	540	В		0.0003	0.160
2,3,7,8-TCDF	1.8	CON		0.1	0.180
Total TCDF	9.0			***	0.100
1,2,3,7,8-PeCDF	0.32	J		0.03	0.010
2,3,4,7,8-PeCDF	0.38	J		0.3	0.110
Total PeCDF	4.4	Ū		0.0	0.110
1,2,3,4,7,8-HxCDF	1.0	J		0.1	0.100
1,2,3,6,7,8-HxCDF	0.51	J		0.1	0.051
2,3,4,6,7,8-HxCDF	0.73	J		0.1	0.073
1,2,3,7,8,9-HxCDF	0.30	J		0.1	0.030
Total HxCDF	15			0.1	0.030
1,2,3,4,6,7,8-HpCDF	9.5			0.01	0.095
1,2,3,4,7,8,9-HpCDF	ND		0.54	0.01	0.075
Total HpCDF	33			0.01	V
OCDF	31			0.0003	0.009
Total TEQ Concentration					2.728
		PERCENT		RECOVERY	
INTERNAL STANDARDS		RECOVERY		LIMITS	
13C-2,3,7,8-TCDD					
13C-1,2,3,7,8-PeCDD		88 72		25 - 164 25 - 181	
13C-1,2,3,4,7,8-HxCDD		87		32 - 141	
13C-1,2,3,6,7,8-HxCDD		82		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD		83		23 - 140	
13C-OCDD		68		17 - 157	
13C-2,3,7,8-TCDF		72		24 - 169	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF		76 78		24 - 185	
13C-1,2.3,6,7,8-HxCDF		81		21 - 178	
13C-2,3,4,6,7,8-HxCDF		87		26 - 123 28 - 136	
13C-1,2,3,7,8,9-HxCDF		90		29 - 147	
13C-1,2,3,4,6,7,8-HpCDF		79		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF		85		26 - 138	
13C-1,2,3,4,7,8-HxCDF		88		26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21964-NM66B

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
37Cl4-2,3,7,8-TCDD	85	35 - 197	

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland, June 2005.

Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: 08-21965-NM66C

Trace Level Organic Compounds

Lot-Sample #...: G81030305-003 Work Order #...: KV7891AC Matrix.....: SOLID

Prep Batch #...: 8252477

Dilution Factor: 1 % Moisture....: 80

DETECTION

		DETECTIO	IN	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	1.6 J		pg/g	EPA-5 1613B
Total TCDD	93		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	4.6	pg/g	EPA-5 1613B
Total PeCDD	95		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	4.6 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	19		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	12 Ј		pg/g	EPA-5 1613B
Total HxCDD	190		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	410		pg/g	BPA-5 1613B
Total HpCDD	740		pg/g	EPA-5 1613B
OCDD	5800 B		pg/g	BPA-5 1613B
2,3,7,8-TCDF	7.0 CON		pg/g	EPA-5 1613B
Total TCDF	56		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	2.2	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	2.2 J		pg/g	EPA-5 1613B
Total PeCDF	2 5		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	5.1 J		pg/g	BPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	2.0	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	2.3 J		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.81	pg/g	EPA-5 1613B
Total HxCDF	73		pg/g	BPA-5 1613B
1,2,3,4,6,7,8-HpCDF	46		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	3.3	pg/g	EPA-5 1613B
Total HpCDF	180		pg/g	EPA-5 1613B
OCDF	220		pg/g	EPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21965-NM66C

Trace Level Organic Compounds

Lot-Sample #...: G8I030305-003 Work Order #...: KV7891AC Matrix.....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	90	(25 - 164)
13C-1,2,3,7,8-PeCDD	74	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	94	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	84	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	84	(23 - 140)
13C-OCDD	64	(17 - 157)
13C-2,3,7,8-TCDF	72	(24 - 169)
13C-1,2,3,7,8-PeCDF	79	(24 - 185)
13C-2,3,4,7,8-PeCDF	82	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	84	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	91	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	92	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	81	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	83	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	95	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	87	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21965-NM66C

Lot-Sample #:					
Date Sampled:					
Prep Date:					

G81030305 - 003 08/26/08

09/08/08

Work Order #...: Date Received..:

Analysis Date ..:

KV7891AC 09/03/08 09/10/08

Matrix....: Instrument: Units....:

SOLID 9D5

pg/g

Prep Date: 09/08		Analysis Date.		Omts.	166
Prep Batch #: 825	52477	Dilution Facto	r:]	% Mo	oisture: 80
PARAMETER	RESULT		DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	1.6	J		1	1.600
Total TCDD	93				
1,2,3,7,8-PeCDD	ND		4.6	1	0
Total PeCDD	95				
1,2,3,4,7,8-HxCDD	4.6	J		0.1	0.460
1,2,3,6,7,8-HxCDD	19			0.1	1,900
1,2,3,7,8,9-IIxCDD	12	J		0.1	1.200
Total HxCDD	190				
1,2,3,4,6,7,8-HpCDD	410			0.01	4.100
Total HpCDD	740				
OCDD	5800	В		0.0003	1.700
2,3,7,8-TCDF	7.0	CON		0.1	0.700
Total TCDF	56				
1,2,3,7,8-PeCDF	ND		2.2	0.03	0
2,3,4,7,8-PeCDF	2.2	J		0.3	0,660
Total PeCDF	25				
1,2,3,4,7,8-HxCDF	5.1	J		0.1	0.510
1,2,3,6,7.8-HxCDF	ND		2.0	0.1	0
2,3,4,6,7,8-HxCDF	2.3	j		0.1	0.230
1,2,3,7,8,9-HxCDF	ND		0.81	0.1	0
Total HxCDF	73				
1,2,3,4,6,7,8-HpCDF	46			0.01	0.460
1,2,3,4,7,8,9-HpCDF	ND		3.3	0.01	0
Total HpCDF	180				
OCDF	220			0.0003	0.066
Total TEQ Concentration					13.586
INTERNAL STANDARDS		PERCENT RECOVERY	Address - Actor and construence	RECOVERY LIMITS	
13C-2,3,7,8-TCDD		90		25 - 164	
13C-1,2,3,7,8-PeCDD		74		25 - 181	
13C-1,2,3,4,7,8-HxCDD		94		32 - 141	
13C-1,2,3,6,7,8-HxCDD		84		28 - 130	
13C-1,2,3,4,6,7,8-HpCDD)	84		23 - 140	
13C-OCDD 13C-2,3,7,8-TCDF		64 72		17 - 157 24 - 169	
13C-1,2,3,7,8-PeCDF		79		24 - 185	
13C-2,3,4,7,8-PeCDF		82		21 - 178	
13C-1,2,3,6,7,8-HxCDF		84		26 - 123	
13C-2,3,4,6,7,8-HxCDF		91		28 - 136	
13C-1,2,3,7,8,9-HxCDF		92		29 - 147	
13C-1,2,3,4,6,7,8-HpCDF		81		28 - 143	
13C-1,2,3,4,7,8,9-HpCDF		83 95		26 - 138 26 - 152	
13C-1,2,3,4,7,8-HxCDF		93		26 - 152	

Analytical Resources Inc Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21965-NM66C

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
37Cl4-2,3,7,8-TCDD	87	35 - 197	

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland, June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

Client Sample ID: 08-21966-NM66D

Trace Level Organic Compounds

Lot-Sample #...: G81030305-004 Work Order #...: KV79A1AC Matrix.....: SOLID

 Date Sampled...:
 08/26/08
 Date Received...:
 09/03/08

 Prep Date.....:
 09/08/08
 Analysis Date...:
 09/10/08

Prep Batch #...: 8252477

Dilution Factor: 1 % Moisture....: 32

DETECTION

		DETECTIO.	N	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	1.6		pg/g	EPA-5 1613B
Total TCDD	27		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	0.54 J		pg/g	EPA-5 1613B
Total PeCDD	35		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	0.88 J		pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	2.1 Ј		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	1.4 J		pg/g	EPA-5 1613B
Total HxCDD	45		pg/g	RPA-5 1613B
1,2,3,4,6,7,8-HpCDD	31		pg/g	EPA-5 1613B
Total HpCDD	65		pg/g	KPA-5 1613B
OCDD	250 B		pg/g	EPA-5 1613B
2,3,7,8-TCDF	1.6 CON		pg/g	EPA-5 1613B
Total TCDF	14		pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	0.35 J		pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	0.38 ປັ		pg/g	EPA-5 1613B
Total PeCDF	4.4		pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	0.53	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	0.28 Ј		pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	0.18 Ј		pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.12	pg/g	EPA-5 1613B
Total HxCDF	7.5		pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	5.4		pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	0.29 J		pg/g	BPA-5 1613B
Total HpCDF	18		pg/g	EPA-5 1613B
OCDF	16		pg/g	EPA-5 1613B

(Continued on next page)

Client Sample ID: 08-21966-NM66D

Trace Level Organic Compounds

Lot-Sample #...: G8I030305-004 Work Order #...: KV79A1AC Matrix.....: SOLID

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	86	(25 - 164)
13C-1,2,3,7,8-PeCDD	76	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	97	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	86	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	90	(23 - 140)
13C-OCDD	76	(17 - 157)
13C-2,3,7,8-TCDF	69	(24 - 169)
13C-1,2,3,7,8-PeCDF	80	(24 - 185)
13C-2,3,4,7,8-PeCDF	82	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	87	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	91	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	94	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	85	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	89	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	93	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	85	(35 - 197)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level. CON Confirmation analysis.

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21966-NM66D

Lot-Sample #...: Date Sampled ...: G8I030305 - 004 08/26/08

Prep Date: 09/08/08 Prep Batch #...: 8252477 Work Order #...: Date Received ..: Analysis Date ..:

KV79A1AC 09/03/08

09/10/08

Matrix....: Instrument: Units....:

SOLID 9D5

Dilution Factor:

1

pg/g % Moisture: 32

0232477	batch #: 8232477 Dilution Factor;		or: 1 % Moisture: 32		oisture: 32
PARAMETER	RESULT		DETECTION LIMIT	TEF FACTOR	TEQ CONCENTRATION
2,3,7,8-TCDD	1.6			1	1.600
Total TCDD	27				
1,2,3,7,8-PeCDD	0.54	J		1	0.540
Total PeCDD	35				
1,2,3,4,7,8-HxCDD	0.88	J		0.1	0.088
1,2,3,6,7,8-HxCDD	2.1	J		0.1	0.210
1,2,3,7,8,9-HxCDD	1.4	J		0.1	0.140
Total HxCDD	45				
1,2,3,4,6,7,8-HpCDD	31			0.01	0.310
Total HpCDD	65				
OCDÐ	250	В		0.0003	0.075
2,3,7,8-TCDF	1.6	CON		0.1	0.160
Total TCDF	14				
1,2,3,7,8-PeCDF	0.35	J		0.03	0.011
2,3,4,7,8-PeCDF	0.38	J		0.3	0.110
Total PeCDF	4.4				
1,2,3,4,7,8-HxCDF	ND		0.53	0.1	0
1,2,3,6,7,8-HxCDF	0.28	J		0.1	0.028
2,3,4,6,7,8-HxCDF	0.18	J		0.1	0.018
1,2,3,7,8,9-HxCDF	ND		0.12	0.1	0
Total HxCDF	7.5				
1,2,3,4,6,7,8-HpCDF	5.4			0.01	0.054
1,2,3,4,7,8,9-HpCDF	0.29	J		0.01	0.003
Total HpCDF	18				
OCDF	16			0.0003	0.005
Total TEQ Concentration					3.352
INTERNAL STANDARDS		PERCENT RECOVERY		RECOVERY LIMITS	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF		86 76 97 86 90 76 69 80 82 87 91 94 85 89		25 - 164 25 - 181 32 - 141 28 - 130 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 123 28 - 136 29 - 147 28 - 143 26 - 138 26 - 152	

Dioxins/Furans, HRGC/HRMS (1613B)

Client Sample ID: 08-21966-NM66D

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
37C14-2,3,7,8-TCDD	85	35 - 197

Notes:

WHO TEFs for human risk assessment based on the conclusions of the World Health Organization meeting in Geneva, Switzerland, June 2005.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

CON Confirmation analysis.

J Estimated result. Result is less than the reporting limit.

QC DATA ASSOCIATION SUMMARY

G8I030305

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	SOLID	EPA-5 1613B		8252477	
002	SOLID	EPA-5 1613B		8252477	
003	SOLID	EPA-5 1613B		8252477	
004	SOLID	EPA-5 1613B		8252477	

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #...: G8I030305 Work Order #...: KWGL91AE Matrix.....: SOLID

MB Lot-Sample #: G8I080000-477

Prep Date....: 09/08/08 Prep Batch #...: 8252477

Analysis Date..: 09/10/08

Dilution Factor: 1

DETECTION

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,3,7,8-TCDD	ND	0.059	pg/g	EPA-5 1613B
Total TCDD	ND	0.059	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDD	ND	0.16	pg/g	EPA-5 1613B
Total PeCDD	ND	0.16	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDD	ND	0.12	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDD	ND	0.11	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDD	ND	0.10	pg/g	EPA-5 1613B
Total HxCDD	ND	0.15	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDD	ND	0.39	pg/g	EPA-5 1613B
Total HpCDD	ND	0.39	pg/g	EPA-5 1613B
OCDD	0.80 J		pg/g	EPA-5 1613B
2,3,7,8-TCDF	ND	0.081	pg/g	EPA-5 1613B
Total TCDF	ND	0.081	pg/g	EPA-5 1613B
1,2,3,7,8-PeCDF	ND	0.066	pg/g	EPA-5 1613B
2,3,4,7,8-PeCDF	ND	0.074	pg/g	EPA-5 1613B
Total PeCDF	ND	0.095	pg/g	EPA-5 1613B
1,2,3,4,7,8-HxCDF	ND	0.061	pg/g	EPA-5 1613B
1,2,3,6,7,8-HxCDF	ND	0.056	pg/g	EPA-5 1613B
2,3,4,6,7,8-HxCDF	ND	0.055	pg/g	EPA-5 1613B
1,2,3,7,8,9-HxCDF	ND	0.069	pg/g	EPA-5 1613B
Total HxCDF	ND	0.069	pg/g	EPA-5 1613B
1,2,3,4,6,7,8-HpCDF	ND	0.19	pg/g	EPA-5 1613B
1,2,3,4,7,8,9-HpCDF	ND	0.31	pg/g	EPA-5 1613B
Total HpCDF	ND	0.31	pg/g	EPA-5 1613B
OCDF	ND	0.37	pg/g	EPA-5 1613B

(Continued on next page)

METHOD BLANK REPORT

Trace Level Organic Compounds

Client Lot #: G8I030305	Work Order #: KWGL91AE	Matrix: SOLID

PARAMETER	RESULT	DETECTION LIMIT UNITS METHOD
INTERNAL STANDARDS 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0CDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	PERCENT RECOVERY 87 68 82 91 90 63 70 73 75 92 95 95 87	RECOVERY LIMITS (25 - 164) (25 - 181) (32 - 141) (28 - 130) (23 - 140) (17 - 157) (24 - 169) (24 - 185) (21 - 178) (26 - 123) (28 - 136) (29 - 147) (28 - 143) (26 - 138)
37C14-2,3,7,8-TCDD	89 PERCENT RECOVERY 84	(26 - 152) RECOVERY LIMITS (35 - 197)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

J Estimated result. Result is less than the reporting limit.

LABORATORY CONTROL SAMPLE DATA REPORT

Trace Level Organic Compounds

Client Lot #...: G81030305 Work Order #...: KWGL91AC Matrix.....: SOLID

LCS Lot-Sample#: G8I080000-477

	PERCENT	RECOVERY
INTERNAL STANDARD	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	89	(25 - 164)
13C-1,2,3,7,8-PeCDD	71	(25 - 181)
13C-1,2,3,4,7,8-HxCDD	84	(32 - 141)
13C-1,2,3,6,7,8-HxCDD	90	(28 - 130)
13C-1,2,3,4,6,7,8-HpCDD	90	(23 - 140)
13C-OCDD	69	(17 - 157)
13C-2,3,7,8-TCDF	72	(24 - 169)
13C-1,2,3,7,8-PeCDF	77	(24 - 185)
13C-2,3,4,7,8-PeCDF	81	(21 - 178)
13C-1,2,3,6,7,8-HxCDF	87	(26 - 123)
13C-2,3,4,6,7,8-HxCDF	90	(28 - 136)
13C-1,2,3,7,8,9-HxCDF	95	(29 - 147)
13C-1,2,3,4,6,7,8-HpCDF	88	(28 - 143)
13C-1,2,3,4,7,8,9-HpCDF	91	(26 - 138)
13C-1,2,3,4,7,8-HxCDF	89	(26 - 152)
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
37C14-2,3,7,8-TCDD	86	(35 - 197)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

SOLID, D 2216-90, Percent Moisture

Client Sample ID: 08-21963-NM66A

General Chemistry

Lot-Sample #...: G8I030305-001 Work Order #...: KV781

Matrix..... SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08

% Moisture....: 30

PREPARATION-PREP PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH # 30.3 Percent Moisture 0.10 8 ASTM D 2216-90 09/09-09/10/08 8253485

Dilution Factor: 1

Client Sample ID: 08-21964-NM66B

General Chemistry

Matrix....: SOLID

Lot-Sample #...: G8I030305-002 Work Order #...: KV785

Date Sampled...: 08/26/08 Date Received..: 09/03/08

% Moisture....: 37

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Moisture
 36.8
 0.10
 %
 ASTM D 2216-90
 09/09-09/10/08
 8253485

Dilution Factor: 1

Client Sample ID: 08-21965-NM66C

General Chemistry

Lot-Sample #...: G8I030305-003 Work Order #...: KV789

Matrix..... SOLID

% Moisture....: 80

PREPARATION- PREP RESULT RL UNITS METHOD ANALYSIS DATE BATCH # PARAMETER 09/09-09/10/08 8253485 0.10 % ASTM D 2216-90 80.1 Percent Moisture

Dilution Factor: I

Client Sample ID: 08-21966-NM66D

General Chemistry

Lot-Sample #...: G8I030305-004 Work Order #...: KV79A Matrix.....: SOLID

Date Sampled...: 08/26/08 Date Received..: 09/03/08

% Moisture....: 32

PREPARATION- PREP
 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Moisture
 31.7
 0.10
 %
 ASTM D 2216-90
 09/09-09/10/08
 8253485

Dilution Factor: 1

QC DATA ASSOCIATION SUMMARY

G81030305

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS_RUN#
001	SOLID SOLID	EPA-5 1613B ASTM D 2216-90		8252477 8253485	8253304
002	SOLID SOLID	EPA-5 1613B ASTM D 2216-90		8252477 8253485	8253304
003	SOLID SOLID	EPA-5 1613B ASTM D 2216-90		8252477 8253485	8253304
004	SOLID SOLID	EPA-5 1613B ASTM D 2216-90		8252477 8253485	8253304

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: G8I030305 Work Order #...: KV781-SMP Matrix.....: SCLID

KV781-DUP

% Moisture....: 30

 PARAM RESULT
 RESULT
 UNITS
 RPD
 PREPARATION PREPA

Dilution Factor: 1

APPENDIX C
SEDIMENT TOXICITY TESTING DATA QUALITY REVIEW
AND LABORATORY REPORTS
NORTHWESTERN AQUATIC SCIENCES

APPENDIX C SEDIMENT TOXICITY TESTING DATA QUALITY REVIEW AND LABORATORY REPORTS NORTHWESTERN AQUATIC SCIENCES

Sediments were evaluated based on Sediment Management Standards (SMS) biological criteria. These criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from Chapter 173-204 WAC and the Ecology SAPA (Ecology 2003). Two numerical comparisons are made under SMS, the Sediment Quality Standards (SQS) and the Cleanup Screening Level (CSL). The SQS is more stringent than the CSL, allowing for a smaller biological response in the test treatments.

Suitability determinations are based on a comparison of responses observed in the test treatments versus those in the reference treatment. Reference site selection is based on sediment grain size. Based on similarity in grain size, reference sample Samish Bay Ref1 was used for comparison to test treatments.

Amphipod (Eohaustorius estuarius) 10-Day Toxicity Test

Under the SMS program, a test treatment fails SQS if mean mortality is statistically significantly higher than that of the reference treatment, and mean mortality in the test sediment is greater than 25 percent. Treatments fail the CSL if the test treatment mortality is both statistically significantly different and 30 percent greater than the reference sediment. Percent mortality for all samples was not significantly greater than in the associated reference samples and mean mortality for test sediment samples was less than the 25 and 30 percent criteria. Therefore, all test sediments passed both SQS and the one-test criterion for CSL.

The test quality control parameters described below were within acceptance criteria, and data are acceptable for use in making decisions under SMS.

Controls

The test met acceptance criteria of less than 10 percent for mean control mortality; average mortality for the five replicates was 1.0 percent. Replicate control acceptability criteria (less than 20 percent mortality in any one replicate) were also met with individual mortalities of 0.0, 5.0, 0.0, 5.0, and 0.0 percent in the replicate samples.

Page C-1 Hart Crowser

Reference Sediment

The response in reference sediment samples met SMS criteria of less than 25 percent mean mortality. The mean mortality was 6.0 percent for sample Samish Bay Ref1.

Reference Toxicant

The reference toxicant (ammonia) test result was within laboratory control chart warning limits.

Juvenile Polychaete (Neanthes arenaceodentata) 20-Day Toxicity Test

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG) rates. A test treatment will fail SQS if MIG is statistically lower in the test treatment, relative to the reference, and MIG in the test treatment is 70 percent less than the reference treatment. The treatments will fail CSL if MIG is significantly lower than the reference treatment and is 50 percent less than the reference treatment.

The MIG for the samples was not significantly lower (and not less than 70 or 50 percent lower) than the corresponding reference sediment. The test sediments passed both SQS and the one-test criterion for CSL.

The test quality control parameters described below were within acceptance criteria, and data are acceptable for use in making decisions under SMS.

Controls

The test met acceptance criteria of greater than 90 percent for mean control survival; average survival for the five replicates was 100 percent.

The individual growth rate for the controls was 1.09 mg/day/worm, above the SMS minimum of 0.72 mg/day/worm for *Neanthes*.

Reference Sediment

The response in the reference sediment sample met SMS of less than 20 percent mean mortality. The mean mortality was 0.0 percent for reference sample Samish Bay Ref1.

Page C-2 Hart Crowser

The growth rate criterion for reference sediments (greater than 80 percent of the control growth weight) was also met. The growth rate for Samish Bay Ref1 was 83.5 percent of the control.

Reference Toxicant

The reference toxicant (ammonia) test result was within laboratory control chart warning limits.

Larval (Mytilus galloprovincialis) 10-Day Toxicity Test

For the larval test, treatments fail SQS if the mean number of normal larvae in the test treatment is significantly less than that of the reference and the combined mortality and abnormality (CMA) in the test treatment is greater than 15 percent of the CMA in the reference. Treatments fail CSL criteria if the CMA is greater than 30 percent of the response observed in the reference.

The number of normal larvae in test sediments BBP-SS-01 and BBP-SS-02 was not significantly lower than the reference sediment so these samples met the numeric threshold for both SQS and CSL, thus passing overall.

Statistically significant decreases in normal development were observed in test sediment samples RGH-SS-01 and RGH-SS-03 relative to reference sample Samish Bay Ref1 (68.9 and 77.6 percent, respectively). Therefore, both of these sediment samples failed the SQS. In addition, since sample RGH-SS-01 normal development was less than 70 percent of reference, this sample failed the one-test criteria for CSL as defined by the SMS guidelines.

The test quality control parameters described below were within acceptance criteria, and data are acceptable for use in making decisions under SMS.

Controls

The test met acceptance criteria of greater than 70 percent normality in the seawater control; control percent normality was 91.6 percent.

Reference Toxicant

The reference toxicant (copper sulfate) test result was within laboratory control chart warning limits.

J:\Jobs\1733017\Bellingham Bay Investigation Report.doc

Hart Crowser Page C-3 17330-17 June 26, 2009

SUMMARY REPORT

of Tests 774-1, -2, and -3

Submitted to

Hart Crowser, Inc. 1700 Westlake Ave. N, Suite 200 Seattle, WA 98109-3056

Submitted by

Northwestern Aquatic Sciences 3814 Yaquina Bay Road P.O. Box 1437 Newport, OR 97365

October 29, 2008

SUMMARY OF SEDIMENT BIOASSAYS

INTRODUCTION

Northwestern Aquatic Sciences (NAS) conducted toxicity tests on five sediment samples (4 samples from Bellingham Bay, Washington, and 1 reference sediment) for Hart Crowser, Inc. Testing was performed in accordance with the standard test methods described in Ecology's Sediment Management Standards (Ch. 173-204 WAC, 1995) and Sampling and Analysis Plan Appendix (2008), Puget Sound Estuary Program (PSEP) Protocols and Guidelines (1995) and minor clarifications to the latter from Sediment Management Annual Review Meetings. The tests conducted were the 10-day amphipod survival test using Eohaustorius estuarius (test no.774-1); the 20-day polychaete survival and growth test using Neanthes arenaceodentata (test no. 774-2); and the larval sediment test using Mytilus galloprovincialis (test no. 774-3).

Biological endpoint data for each test were compared against those in the control and in the reference sediment. Data interpretation was conducted based on guidelines from the "Sediment Sampling and Analysis Plan Appendix," February 2008 (Washington Department of Ecology).

RESULTS SUMMARY

Primary biological endpoint data, those used in statistical comparisons, are summarized in Table 1; results of statistical comparisons to the reference sediment are included.

SMS INTERPRETATION

Tables 2-4 present an interpretation of the amphipod, polychaete, and larval test data (NAS test numbers 774-1, -2, and -3), for single test failures of the Sediment Quality Standards (SQS) and the Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), and Minimum Cleanup Levels (MCL). There were no single test failures in the amphipod or polychaete tests. In the sediment larval test, test sediment RGH-SS-01 failed under both SQS and SIZML/CSL/MCL; RGH-SS-03 failed under the SQS but not under SIZML/CSL/MCL.

Because there were no single test failures under SQS for the amphipod or polychaete tests, there were no failures under SIZML, CSL, and MCL based on the criterion of multiple test failures of SQS.

STUDY APPROVAL

Michile S. Redmond 10-30-08 Project Manager

Table 1. Summary of biological endpoint data from toxicity tests with marine sediments from Bellingham Bay. Means and standard deviations (n=5) of endpoints summarized are percent mortality for the *Eohaustorius estuarius* 10-day survival test, average individual growth rate for the *Neanthes arenaceodentata* 20-day survival and growth test, and number normal larvae for the *Mytilus galloprovincialis* larval test.

Sample description	Eohaustorius Percent mortality	Neanthes Individual growth rate (mg/day/worm)	<i>Mytilus</i> Number normal larvae
Sediment Control (NAS #2046G)	2.0 ± 2.7	1.09 ± 0.09	
Seawater Control			231 ± 12
Samish Bay Ref (NAS #2041G)	6.0 ± 6.5	0.91± 0.16	196 ± 32
BBP-SS-01 (NAS #2042G)	5.0 ± 3.5	0.88 ± 0.23	185 ± 25
BBP-SS-02 (NAS #2043G)	11.0 ± 8.2	0.83 ± 0.26	173 ± 20
RGH-SS-01 (NAS #2044G)	4.0 ± 6.5	0.81 ± 0.20	$135 \pm 42 a$
RGH-SS-03 (NAS #2045G)	6.0 ± 4.2	0.86 ± 0.03	$152 \pm 39 \mathbf{a}$

a Test sediment result was significantly different from that in the reference sediment (p<0.05, except p<0.10 for the Mytilus test).

Table 2. Interpretation of *Eohaustorius* test data from exposure to marine sediments from Bellingham Bay, based on SMS (WDOE 2008) guidelines.

Sample description	Percent mortality (Mean ± SD)	Significantly higher than reference sediment at α=0.05?	Percent higher (absolute) than reference sediment	Failure under SQS? 1	Failure under SIZML, CSL, or MCL? ²
Control (NAS #2046G)	2.0 ± 2.7				97 Sa 30
Samish Bay Ref (NAS #2041G)	6.0 ± 6.5		***		
BBP-SS-01 (NAS #2042G)	5.0 ± 3.5	NO	-1.0	NO	NO
BBP-SS-02 (NAS #2043G)	11.0 ± 8.2	NO	5.0	NO	NO
RGH-SS-01 (NAS #2044G)	4.0 ± 6.5	NO	-2.0	NO	NO
RGH-SS-03 (NAS #2045G)	6.0 ± 4.2	NO	0.0	NO	NO

¹ <u>Sediment Quality Standards (SQS) failure</u> if the test sediment mean amphipod mortality is significantly higher (1-tailed t-test at P≤0.05) than the reference sediment mean amphipod mortality and the absolute difference is >25%.

² Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) failure (one-test criteria) if the test sediment mean amphipod mortality is significantly higher (1-tailed t-test at $P \le 0.05$) than the reference sediment mean amphipod mortality and the absolute difference is >30%.

Table 3. Interpretation of *Neanthes* test data from exposure to marine sediments based on SMS (WDOE 2008) guidelines.

	Individual	Significantly lower than			
Sample description	growth rate $(mg/day, mean \pm SD)$	reference sediment at α=0.05?	Percent of reference sediment	Failure under SQS? 1	Failure under SIZML, CSL, or MCL? ²
Control (NAS #2046G)	1.09 ± 0.09				-
Samish Bay Ref (NAS #2041G)	0.91 ± 0.16			****	
BBP-SS-01 (NAS #2042G)	0.88 ± 0.23	NO	96.7	NO	NO
BBP-SS-02 (NAS #2043G)	0.83 ± 0.26	NO	91.2	NO	NO
RGH-SS-01 (NAS #2044G)	0.81 ± 0.20	NO	89.0	NO	NO
RGH-SS-03 (NAS #2045G)	0.86 ± 0.03	NO	94.5	NO	NO

¹ Sediment Quality Standards (SQS) failure if the mean growth rate in the test sediment is significantly lower (1-tailed t-test at P≤0.05) than that in the reference sediment, and <70% of the mean reference sediment response.

² Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) failure (one-test criteria) if the mean individual growth rate in the test sediment is significantly lower (1-tailed t-test at P≤0.05) than that in the reference sediment, and <50% of the mean reference sediment response.

Table 4. Interpretation of *Mytilus galloprovincialis* test data from exposure to marine sediments, based on SMS (WDOE 2008) guidelines.

Sample description	Number normal (mean ± SD)	Significantly less than reference sediment at $\alpha = 0.10$?	Percent of reference sediment	Failure under SQS? ¹	Failure under SIZML, CSL, or MCL? ²
Seawater control	231 ± 12			De de las	
Samish Bay Ref (NAS #2041G)	196 ± 32				****
BBP-SS-01 (NAS #2042G)	185 ± 25	NO	94.4	NO	NO
BBP-SS-02 (NAS #2043G)	173 ± 20	NO	88.3	NO	NO
RGH-SS-01 (NAS #2044G)	135 ± 42	YES	68.9	YES	YES
RGH-SS-03 (NAS #2045G)	152 ± 39	YES	77.6	YES	NO

¹ Sediment Quality Standards (SQS) failure if the mean number of normal survivors in the test sediment is significantly less (1-tailed t-test at P≤0.10) than the mean number of normal survivors in the reference sediment, and <85% of the mean number of normal survivors in the reference sediment.

² <u>Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) failure</u> (one-test criteria) if the mean number of normal survivors in the test sediment is significantly less (1-tailed t-test at P≤0.10) than the mean number of normal survivors in the reference sediment and <70% of the mean number of normal survivors in the reference sediment.

Report

of

Test No. 774-1

Echaustorius estuarius 10-Day Toxicity Test of Marine Sediments

Submitted to

Hart Crowser, Inc. 1700 Westlake Ave. N, Suite 200 Seattle, WA 98109-3056

Submitted by

Northwestern Aquatic Sciences 3814 Yaquina Bay Road P.O. Box 1437 Newport, OR 97365

October 29, 2008

TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 774-1

Title: Eohaustorius estuarius 10-day sediment toxicity test of marine sediments

<u>Protocol</u>: NAS-XXX-EE4, February 20, 1992. Rev.3 (March 1, 2005). Based on: Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments (PSEP 1995), with modifications as specified by the Dredged Material Management Program (DMMP, formerly Puget Sound Dredged Disposal Analysis Program or PSDDA) and Washington State Sediment Management Standards (SMS).

STUDY MANAGEMENT

Study Sponsor: Hart Crowser, Inc., 1700 Westlake Ave. N, Suite 200, Seattle, WA 98109-3056

Sponsor's Study Monitor: Mr. Roger McGinnis

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, Oregon 97365.

Test Location: Newport Laboratory.

<u>Laboratory's Study Personnel</u>: M.S. Redmond, M.S., Proj. Mngr./ Study Dir.; L.K. Nemeth, B.A., M.B.A., QA Officer; G.J. Irissarri, B.S., Aq. Toxicol.; G.A. Buhler, B.S., Aq. Toxicol.; S. J. Gage, B.A., Sr. Tech.; L.P. Sandoval, B.S., Tech.

Study Schedule:

Test Beginning: 9-9-08, 1100 hrs. Test Ending: 9-19-08, 1030 hrs.

<u>Disposition of Study Records</u>: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

Good Laboratory Practices: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792).

Statement of Quality Assurance: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Control Sediment: Control sediment (NAS Sample #2046G) was collected from the *Eohaustorius estuarius* amphipod collection site, Yaquina Bay, Oregon, on 9-4-08. Interstitial salinity was 33.5 ‰. The sediment was sieved through a 0.5-mm stainless steel screen and stored at 4°C in the dark.

Test Sediments: Four test sediments and one reference sediment were tested. Details follow:

NAS Sample No.	2041G	2042G	2043G	2044G
Sample Description	Samish Bay Ref	BBP-SS-01	BBP-SS-02	RGH-SS-01
Collection Date	8-29-08	8-26-08	8-26-08	8-26-08
Receipt Date	9-4-08	9-4-08	9-4-08	9-4-08
Interstitial Salinity (‰)	30.5	24.5	25.0	23.5
NAS Sample No.	2045G			
Sample Description	RGH-SS-03			

NAS Sample No.	2045G
Sample Description	RGH-SS-0
Collection Date	8-26-08
Receipt Date	9-4-08
Interstitial Salinity (‰)	25.0

Storage: Storage: Upon receipt, headspace in sample containers was flushed with nitrogen, and samples were stored at 4°C in the dark.

<u>Treatments</u>: The samples were minimally homogenized by mixing with stainless steel implements.

TEST WATER

Source: Yaquina Bay, Oregon Date of Collection: 9-8-08

Water Quality: Salinity 27.5 ‰, pH 8.1

Pretreatment: Filtered to ≤0.40 μm, salinity adjusted with MilliQ® deionized water, aerated.

TEST ORGANISMS

Species: Eohaustorius estuarius, amphipod

Age: adult

Source: Yaquina Bay, Oregon

<u>Acclimation</u>: Amphipods were collected on 9-4-08 at interstitial water conditions of 15.0 °C and 33.0 %. They were acclimated to test temperature and salinity over the five days before addition to the test. Average holding conditions during this time were: temperature, 15.3 ± 0.2 °C; pH, 8.1 ± 0.1 ; salinity, 28.7 ± 0.7 %; and dissolved oxygen 8.5 ± 0.2 mg/L. The photoperiod was constant light.

TEST PROCEDURES AND CONDITIONS

The following is an abbreviated statement of the test procedures and a statement of the test conditions actually employed. See the test protocol (Appendix I) for a more detailed description of the test procedures used in this study.

Test Chambers: 1 L covered borosilicate glass beakers

Test Volumes: 175 ml of test, reference, or control sediment; 950 ml total volume.

Replicates/Treatment: 5 (plus one water quality replicate, also used to measure interstitial water ammonia-N on

day 10)

Salinity adjustment: none

Organisms/Treatment: 100 (20/replicate) Water Volume Changes per 24 hr: None.

Aeration: Provided through a 1-mL glass pipette placed not closer than 2 cm from sediment, bubbled at a minimal rate (about 100 bubbles/minute) that did not disturb the sediment surface.

Feeding: None.

Acceptance Criteria: Results are valid if mean control mortality does not exceed 10%, and does not exceed 20% in any one control replicate.

<u>Performance Criteria</u>: For SMS testing, mean percent mortality in the reference sediment should be <25%. <u>Effects Criteria</u>: 1) mortality after 10 days, 2) daily emergence of amphipods from the test sediments, and 3) failure of surviving amphipods to rebury at the end of the exposure period. Death is defined as no visible appendage movement or response to tactile stimulation. Unrecovered animals at the end of the exposure period were considered dead.

Water Quality and Other Test Conditions: The temperature, pH, salinity, and dissolved oxygen were measured in the water quality replicate test chamber daily. Total soluble sulfide and total ammonia-N were measured in the overlying water of the water quality replicate test chamber on days 0 and 10. Interstitial total ammonia-N, pH, and salinity were measured in bulk sediments and from the water quality beaker on test day 10. Interstitial water samples were obtained by centrifugation or by settling. Total soluble sulfide and total ammonia-N were measured using Hach reagents based on the methylene blue (EPA Method 376.2) and salicylate (Clin. Chim. Acta 14:403, 1996) colorimetric methods, respectively; samples were not distilled prior to analysis. Unionized ammonia-N was computed using "Un-ionized Ammonia Calculator", v1.0 (Dr. Landon Ross, Florida Department of Environmental Protection). The photoperiod was constant light.

DATA ANALYSIS METHODS

The percent amphipod mortality, percent of surviving amphipods failing to rebury at the end of the test, and percent total effective mortality were determined from the final observations according to the formulas:

Percent Mortality = 100 x ([initial amphipods - surviving amphipods]/initial amphipods)

Percent Survivors not Reburied = 100 x ([surviving amphipods - number survivors reburied]/surviving amphipods)

Percent Total Effective Mortality = 100 x ([initial amphipods - surviving amphipods]+ [surviving amphipods - number survivors reburied])/initial amphipods

Another endpoint was the sum of observed daily sediment emergence events in a test beaker throughout the test. Control and treatment means and standard deviations for the biological endpoints described above and for water quality data were computed using Microsoft EXCEL 2000. Percent mortality in each test sediment was compared against that in the control and in the reference sediment. Generally, an arcsine square root transformation was performed on percentage data before analysis. In some cases, a rank order transformation was necessary. The software used for statistical comparisons was BioStat (Beta v.4.1 (EXCEL)) bioassay software developed by the U.S. Army Corps of Engineers, Seattle District. Following determination of normality and homogeneity of variances, a one-tailed Student T-test, Approximate T-test, One-sample T-test, Mann Whitney test, or Rankit Analysis was conducted at the 0.05 level of significance.

PROTOCOL DEVIATIONS

1. Three overlying water salinity measurements, at 29.5 ‰, were slightly above the protocol-specified range of $28.0 \pm 1.0\%$.

REFERENCE TOXICANT TEST

The reference toxicant test is a standard multi-concentration toxicity test using ammonia expressed as NH_3 -N and administered as NH_3 -Cl, to evaluate the performance of the test organisms used in the sediment toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix II.

Test No.: 999-2471

Reference Toxicant and Source: Ammonia as ammonium chloride, 7.12 mg/ml stock prepared 7-25-06

<u>Test Date</u>: 9-9-08

<u>Dilution Water Used</u>: Yaquina Bay, Oregon, seawater; 27.5 %

Result: The 96-hr LC50 was 202 mg NH₃-N/L. This result is within the laboratory's control chart warning

limits $(7.68-310 \text{ mg NH}_3-N/L)$.

RESULTS AND DISCUSSION

Observations of overlying water quality parameters during the test are summarized in Table 1. Interstitial water quality measurements during the test are summarized in Table 2. Individual water quality measurements are located in the raw data (Appendix II).

Except as noted above, all measurements of standard water quality parameters were within protocol-specified ranges. Dissolved sulfide was not detected in the overlying water (detection limit 0.02 mg/L). Total ammonia-N concentrations in the overlying water ranged from 0.1 mg/L to 6.1 mg/L (maximum 0.591 mg/L un-ionized ammonia).

In the bulk sediment samples, interstitial total ammonia-N concentrations ranged from 0.8 to 13.0 mg/L (maximum 0.310 mg/L un-ionized ammonia). In samples taken on day 10 of the bioassay, interstitial total ammonia-N concentrations ranged from 0.9 mg/L to 12.0 mg/L, with a maximum un-ionized ammonia concentration of 0.082 mg/L (Table 2).

Table 3 shows the effects of test sediment exposures on emergence, mortality, and reburial. The test met the acceptability criterion ($\leq 10\%$) for mean control mortality; mean mortality in the control was 2.0%. In addition, replicate control mortality was 0.0, 5.0, 0.0, 5.0, and 0.0%; therefore, the control replicate acceptability criterion was met ($\leq 20\%$ in any one replicate). The response in the reference sediment met SMS criteria; mean mortality in reference sediment "Samish Bay Ref" (6.0%) was <25%. The reference toxicant test result (202 mg NH₃-N/L) was within the laboratory's control chart warning limits. It is concluded, therefore, that the test has developed fully acceptable data for use in making management decisions.

Data interpretation was conducted based on guidelines from the "Sediment Sampling and Analysis Plan Appendix," February 2008 (Washington Department of Ecology). For a test sediment from the amphipod test to fail the Sediment Quality Standards under these guidelines, the mean test mortality must be >25% absolute higher than the mean reference sediment response, and statistically higher than ($\alpha = 0.05$) the reference sediment. For a test sediment from the amphipod test to fail the Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) under the one-test criteria in these guidelines, the mean test mortality must be >30% absolute over the mean reference sediment response, and statistically higher than ($\alpha = 0.05$) the reference sediment.

In no case was the percent mortality in a test sediment significantly higher than that in reference sediment "Samish Bay Ref," and in no test sediment was mean percent mortality 25% or 30% higher than that in the reference sediment (Table 4). Therefore, both test sediments passed both Sediment Quality Standards and one-test criteria for SIZML/CSL/MCL as defined by the SMS guidelines. Percent mortality in BBP-SS-02 was significantly higher than that in the control (Table 3).

STUDY APPROVAL

Table 1. Summary of overlying water quality conditions during exposure of amphipods, *Eohaustorius estuarius*, to marine sediments.

Mean \pm SD	Minimum	Maximum	N
15.1 + 0.2			
			66
28.2 ± 0.2			66 66
7.6 ± 0.5	5.9	8.5	69
	< 0.02	< 0.02	12
	0.1	6.1	12
	0.005	0.591	12
	15.1 ± 0.3 8.2 ± 0.2 28.2 ± 0.7	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	15.1 \pm 0.3 14.7 15.8 8.2 \pm 0.2 7.6 8.8 28.2 \pm 0.7 27.0 29.5 7.6 \pm 0.5 5.9 8.5 <0.02

Table 2. Summary of interstitial water quality conditions on day 10 of exposure of amphipods, *Eohaustorius estuarius*, to marine sediments.

Parameter	Mean ± SD	Minimum	Maximum	N
Salinity (‰) pH	28.5 ± 0.8 7.5 ± 0.2	27.5 7.2	29.5 7.7	
Total ammonia-N (mg/L) Un-ionized ammonia (mg/L)		0.9 0.010	12.0 0.082	6 6

Table 3. Means and standard deviations (n=5) of sediment emergence, percent mortality, percent of survivors failing to rebury, and percent total effective mortality of *Eohaustorius estuarius* exposed to marine sediments.

Sample description	Emergence ¹ (no./replicate)	Percent mortality	Percent Survivors Failing to Rebury	Percent Total Effective Mortality
Control (NAS #2046G)	2.0 ± 2.5	2.0 ± 2.7	0.0 ± 0.0	2.0 ± 2.7
Samish Bay Ref (NAS #2041G)	0.6 ± 0.9	6.0 ± 6.5	0.0 ± 0.0	6.0 ± 6.5
BBP-SS-01 (NAS #2042G) BBP-SS-02 (NAS #2043G) RGH-SS-01 (NAS #2044G) RGH-SS-03 (NAS #2045G)	3.2 ± 3.3 4.4 ± 4.0 0.8 ± 1.1 4.6 ± 4.4	5.0 ± 3.5 11.0 ± 8.2 b 4.0 ± 6.5 6.0 ± 4.2	$\begin{array}{c} 0.0 \pm 0.0 \\ 0.0 \pm 0.0 \\ 0.0 \pm 0.0 \\ 0.0 \pm 0.0 \end{array}$	5.0 ± 3.5 11.0 ± 8.2 4.0 ± 6.5 6.0 ± 4.2

¹ Daily emergence counts include all amphipods observed on or above the sediment surface, whether living or dead. a Percent mortality significantly higher than that in reference sediment "Samish Bay Ref" (p<0.05)

b Percent mortality significantly higher than that in the control sediment (p<0.05)

Table 4. Interpretation of *Eohaustorius* test data from exposure to marine sediments, based on SMS (WDOE 2008) guidelines.

Sample description	Percent mortality (Mean ± SD)	Significantly higher than reference sediment at α =0.05?	Percent higher (absolute) than reference sediment	Failure under SQS? ¹	Failure under SIZML, CSL, or MCL? ²
Control (NAS #2046G)	2.0 ± 2.7	-			***
Samish Bay Ref (NAS #2041G)	6.0 ± 6.5				
BBP-SS-01 (NAS #2042G)	5.0 ± 3.5	NO	-1.0	NO	NO
BBP-SS-02 (NAS #2043G)	11.0 ± 8.2	NO	5.0	NO	NO
RGH-SS-01 (NAS #2044G)	4.0 ± 6.5	NO	-2.0	NO	NO
RGH-SS-03 (NAS #2045G)	6.0 ± 4.2	NO	0.0	NO	NO

¹ Sediment Quality Standards (SQS) failure if the test sediment mean amphipod mortality is significantly higher (1-tailed t-test at P≤0.05) than the reference sediment mean amphipod mortality and the absolute difference is >25%.
² Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) failure (one-test criteria) if the test sediment mean amphipod mortality is significantly higher (1-tailed t-test at P≤0.05) than the reference sediment mean amphipod mortality and the absolute difference is >30%.

Report

of

Test No. 774-2

Juvenile Neanthes 20-Day Sediment Toxicity Test of Marine Sediments

Submitted to

Hart Crowser, Inc. 1700 Westlake Ave. N, Suite 200 Seattle, WA 98109-3056

Submitted by

Northwestern Aquatic Sciences 3814 Yaquina Bay Road P.O. Box 1437 Newport, OR 97365

October 29, 2008

TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 774-2

Title: Juvenile Neanthes 20-day sediment toxicity test of marine sediments.

Protocol: NAS-XXX-NA4, June 20, 1990. Rev.4 (3-1-05). Based on: Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments (PSEP 1995), with modifications as specified by the Dredged Material Management Program (DMMP, formerly Puget Sound Dredged Disposal Analysis Program or PSDDA) and Washington State Sediment Management Standards (SMS).

STUDY MANAGEMENT

Study Sponsor: Hart Crowser, Inc., 1700 Westlake Ave. N, Suite 200, Seattle, WA 98109-3056

Sponsor's Study Monitor: Mr. Roger McGinnis

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, Oregon 97365.

Test Location: Newport Laboratory.

Laboratory's Study Personnel: M.S. Redmond, M.S., Proj. Mngr./ Study Dir.; L.K. Nemeth, B.A., M.B.A., QA Officer; G.J. Irissarri, B.S., Aq. Toxicol.; G.A. Buhler, B.S., Aq. Toxicol.; S J. Gage, B.A., Sr.Tech.; L.P. Sandoval, B.S., Tech.

Study Schedule:

Test Beginning: 9-10-08, 1115 hrs.

Test Ending: 9-30-08, 1030 hrs.

<u>Disposition of Study Records</u>: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

Good Laboratory Practices: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792). Statement of Quality Assurance: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

Control Sediment: Control sediment (NAS Sample #2046G) was collected from the *Eohaustorius estuarius* amphipod collection site, Yaquina Bay, Oregon, on 9-4-08. Interstitial salinity was 33.5 ‰. The sediment was sieved through a 0.5-mm stainless steel screen and stored at 4°C in the dark.

<u>Test Sediments</u>: Four test sediments and one reference sediment were tested. Details follow:

NAS Sample No. Sample Description Collection Date Receipt Date Interstitial Salinity (‰)	2041G	2042G	2043G	2044G
	Samish Bay Ref	BBP-SS-01	BBP-SS-02	RGH-SS-01
	8-29-08	8-26-08	8-26-08	8-26-08
	9-4-08	9-4-08	9-4-08	9-4-08
	30.5	24.5	25.0	23.5
NAS Sample No. Sample Description Collection Date Receipt Date Interstitial Salinity (‰)	2045G RGH-SS-03 8-26-08 9-4-08 25.0			

Storage: Storage: Upon receipt, headspace in sample containers was flushed with nitrogen, and samples were stored at 4°C in the dark.

<u>Treatments</u>: The samples were minimally homogenized by mixing with stainless steel implements.

TEST WATER

Source: Yaquina Bay, Oregon Date(s) of Collection: 9-9-08

Water Quality: Salinity 27.0%, pH 8.1

Pretreatment: Filtered to ≤0.40 µm, salinity-adjusted with MilliQ® deionized water, aerated.

TEST ORGANISMS

Species: Neanthes arenaceodentata, marine polychaete worm

Age: 2-3 week post-emergence juveniles

Initial wt.: 0.56 mg

Source: Laboratory cultures at the Department of Biology, California State University, Long Beach, California.

Worms were received on 9-9-08.

Acclimation: Average conditions during the day prior to testing were: temperature, 19.6 °C; pH, 7.8; salinity,

28.3 %; dissolved oxygen, 7.0 mg/L. Photoperiod was constant light.

TEST PROCEDURES AND CONDITIONS

The following is an abbreviated statement of the test procedures and a statement of the test conditions actually employed. See the test protocol (Appendix I) for a more detailed description of the test procedures used in this study.

<u>Test Chambers</u>: 1 L covered borosilicate glass beakers.

Test Volumes: 175 ml of test, reference, or control sediment; 950 ml total volume.

Replicates/Treatment: 5 (plus one water-quality replicate)

<u>Sediment Salinity Adjustment</u>: None <u>Organisms/Treatment</u>: 25 (5/replicate)

Water Volume Changes: One third of the seawater in each beaker was replaced every third day.

Aeration: Provided through a 1-mL glass pipette placed not closer than 2 cm from sediment, bubbled at a minimal rate (about 100 bubbles/minute) that did not disturb the sediment surface.

Feeding: Animals were fed 40 mg TetraMarine® per beaker every other day.

Acceptance Criteria: Results are valid if mean control survival is at least 90%. DMMP and SMS require control sediment mortality of ≤10% and a growth rate of >0.38 mg/individual/day.

<u>Performance Criteria</u>: For DMMP and SMS testing, the reference sediment mortality should be $\leq 20\%$ with a growth rate of $\geq 80\%$ that of the negative control sediment.

Effects Criteria: 1) survival after 20 days, 2) average individual biomass, and 3) average individual growth rate. Death is defined as no visible appendage movement or response to tactile stimulation. Missing worms are considered dead.

Water Quality and Other Test Conditions: The temperature, pH, salinity, and dissolved oxygen were measured in the overlying water of one replicate water quality beaker on test days 0 and 20, and on test days 3, 6, 9, 12, 15, and 18 prior to test solution renewal. Total dissolved sulfide and total ammonia-N were measured in the overlying water of the water quality replicate test chamber on days 0 and 20. Total ammonia-N was also measured in the overlying water of the water quality replicate test chamber on day 3 prior to water renewal. Total soluble sulfide and total ammonia-N were measured using Hach reagents based on the methylene blue (EPA Method 376.2) and salicylate (Clin. Chim. Acta 14:403, 1996) colorimetric methods, respectively; samples were not distilled prior to analysis. Un-ionized ammonia-N was computed using "Un-ionized Ammonia Calculator", v1.0 (Dr. Landon Ross, Florida Department of Environmental Protection). The photoperiod was constant light.

DATA ANALYSIS METHODS

Percent survival, individual biomass, and individual growth rate at the end of the test were determined from the final observations according to the formulas:

Percent survival = 100 x (no. of surviving worms/initial number of worms)
Individual biomass = total dry wt. of worms/number of surviving worms weighed
Individual growth rate = (individual biomass - the initial dry wt.)/the number of test days

The means and standard deviations were then calculated for each treatment level. The statistical software employed for these calculations was Microsoft Excel 2000. Individual growth rate in each test sediment was compared against that in the control and in the reference sediment. The software used for statistical comparisons was BioStat (Beta v.4.1 (EXCEL)) bioassay software developed by the U.S. Army Corps of Engineers, Seattle District. Following determination of normality and homogeneity of variances, a one-tailed Student T-test, Approximate T-test, One-sample T-test, Mann Whitney test, or Rankit Analysis was conducted at the 0.05 level of significance.

PROTOCOL DEVIATIONS

- 1. Several overlying water salinity measurements exceeded the protocol-specified $28.0 \pm 2.0\%$ (maximum 30.5%).
- 2. On test day 5, air delivery was interrupted to one water quality beaker, and dissolved oxygen dropped to 1.8 mg/L. Aeration was restarted. This beaker was not used for biological endpoint measurements.

REFERENCE TOXICANT TEST

The reference toxicant test is a standard multi-concentration toxicity test using ammonia expressed as NH_3 -N and administered as NH_3 -Cl, to evaluate the performance of the test organisms used in the sediment toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix II.

Test No.: 999-2473

Reference Toxicant and Source: Ammonia as ammonium chloride, 7.12 mg/ml stock prepared 7-25-06

Test Date: 9-10-08

Dilution Water Used: Yaquina Bay, Oregon, seawater; 27.0 ‰

Result: The 96-hr LC50 was 145 mg NH₃-N/L. This result is within the laboratory's control chart warning

limits (135–335 mg NH_3 -N/L).

RESULTS AND DISCUSSION

Observations of water quality parameters during the test are summarized in Table 1. Individual water quality measurements are located in the raw data (Appendix II).

Except as noted above, all measurements of standard water quality parameters were within protocol-specified ranges. Dissolved sulfide was not detected in the overlying water (detection limit 0.02 mg/L). Total ammonia-N concentrations in the overlying water ranged from 0.2 mg/L to 6.9 mg/L (maximum 0.302 mg/L un-ionized ammonia).

Table 2 shows the effects of test sediment exposures on survival and growth of *Neanthes*. The test met the acceptability criterion (\geq 90%) for control survival; mean survival in the control was 100.0%. The individual growth rate in the controls averaged 1.09 mg/day/worm. This meets the SMS recommendation for a minimum growth rate of 0.72 mg/day/worm for *Neanthes*. The average initial weight of worms was 0.56 mg, within the recommended range of 0.5 - 1.0 mg. The reference sediment included in the study met the performance standard requirement that mortality in the reference sediment should be \leq 20% (mortality was 0.0% in Samish Bay Ref). The growth rate criterion was also met. According to SMS criteria, the mean individual growth rate in the reference sediment should be \geq 80% of the mean individual growth rate in the control sediment. Control growth rate was 1.09 mg/day/worm, and that in reference sediment "Samish Bay Ref" was 0.91 mg/day/worm, corresponding to 83.5% of the control growth rate.

The test control acceptance criteria and reference sediment performance criteria for survival and growth were met. Positive control performance was within the laboratory's acceptance limits. It is concluded, therefore, that the test has developed fully acceptable data for use in making management decisions.

Data interpretation was conducted based on guidelines from the "Sediment Sampling and Analysis Plan Appendix," February 2008 (Washington Department of Ecology). For a test sediment from the polychaete test to

fail the Sediment Quality Standards under these guidelines, the mean individual growth rate in the test sediment must be statistically lower ($\alpha=0.05$) than the mean individual growth rate in the reference sediment, and <70% of the mean reference sediment response. For a test sediment from the polychaete test to fail the Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) under the one-test criteria in these guidelines, the mean individual growth rate in the test sediment must be significantly lower ($\alpha=0.05$) than that in the reference sediment, and <50% of the mean reference sediment response.

In no test sediment was mean individual growth rate significantly lower, or 70% or 50% lower, than that in reference sediment "Samish Bay Ref" (Tables 2 and 3). Therefore, all test sediments passed both Sediment Quality Standards and one-test criteria for SIZML/CSL/MCL as defined by the SMS guidelines (Table 3).

STUDY APPROVAL

Project Manager/ Study Director

Quality Assurance Un

Date

Date

Table 1. Summary of overlying water quality conditions during tests of the polychaete, *Neanthes arenaceodentata*, exposed to marine sediments.

Parameter	Mean ± SD	Minimum	Maximum	N
_				
Temperature (°C)	20.5 ± 0.2	20.1	20.9	48
pH	8.1 ± 0.2	7.8	8.5	48
Salinity (‰)	29.2 ± 1.2	27.0	30.5	48
Dissolved Oxygen (mg/L)	6.0 ± 0.8	1.8	7.3	50
Total soluble sulfide (mg/L)		< 0.02	< 0.02	12
Total Ammonia-N (mg/L)		0.2	6.9	18
Un-ionized Ammonia (mg/L)		0.008	0.302	18

Table 2. Means and standard deviations (n=5) of percent survival, individual dry weight, and individual growth rate of *Neanthes arenaceodentata* exposed for 20 days to marine sediments.

Sample description	Percent Survival (20-days)	Individual dry wt. (mg)	Individual growth rate (mg/day/worm)	
Control (NAS #2046G)	100.0 ± 0.0	22.4 ± 1.9	1.09 ± 0.09	
Samish Bay Ref (NAS #2041G)	100.0 ± 0.0	18.8 ± 3.1	0.91± 0.16	b
BBP-SS-01 (NAS #2042G) BBP-SS-02 (NAS #2043G) RGH-SS-01 (NAS #2044G) RGH-SS-03 (NAS #2045G)	100.0 ± 0.0 100.0 ± 0.0 96.0 ± 8.9 92.0 ± 17.9	18.3 ± 4.7 17.2 ± 5.1 16.7 ± 4.1 17.7 ± 0.6	0.88 ± 0.23 0.83 ± 0.26 0.81 ± 0.20 0.86 ± 0.03	b b b

a Growth rate significantly lower than in reference sediment "Samish Bay Ref" (p<0.05)

b Growth rate significantly lower than in the control sediment (p<0.05)

Table 3. Interpretation of *Neanthes* test data from exposure to marine sediments based on SMS (WDOE 2008) guidelines.

Sample description	Individual growth rate (mg/day, mean ± SD)	Significantly lower than reference sediment at α=0.05?	Percent of reference sediment	Failure under SQS? ¹	Failure under SIZML, CSL, or MCL? ²
Control (NAS #2046G)	1.09 ± 0.09				
Samish Bay Ref (NAS #2041G)	0.91 ± 0.16	er to up.			~~-
BBP-SS-01 (NAS #2042G) BBP-SS-02 (NAS #2043G) RGH-SS-01 (NAS #2044G) RGH-SS-03 (NAS #2045G)	0.88 ± 0.23 0.83 ± 0.26 0.81 ± 0.20 0.86 ± 0.03	NO NO NO	96.7 91.2 89.0 94.5	NO NO NO	NO NO NO NO

¹ Sediment Quality Standards (SQS) failure if the mean growth rate in the test sediment is significantly lower (1-tailed t-test at $P \le 0.05$) than that in the reference sediment, and <70% of the mean reference sediment response.

² Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) failure (one-test criteria) if the mean individual growth rate in the test sediment is significantly lower (1-tailed t-test at $P \le 0.05$) than that in the reference sediment, and <50% of the mean reference sediment response.

Report

of

Test No. 774-3

Larval Sediment Toxicity Test with Mytilus galloprovincialis

Submitted to

Hart Crowser, Inc. 1700 Westlake Ave. N, Suite 200 Seattle, WA 98109-3056

Submitted by

Northwestern Aquatic Sciences 3814 Yaquina Bay Road P.O. Box 1437 Newport, OR 97365

October 29, 2008

TOXICITY TEST REPORT

TEST IDENTIFICATION

Test No.: 774-3

<u>Title</u>: Mytilus galloprovincialis larval sediment toxicity test of marine sediments.

Protocol: NAS-XXX-CG4/MG4, June 20, 1990. Rev. 2, Feb.10, 1997. Based on: Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments (PSEP 1995), with modifications as specified by the Dredged Material Management Program (DMMP, formerly Puget Sound Dredged Disposal Analysis Program or PSDDA) and Washington State Sediment Management Standards (SMS).

STUDY MANAGEMENT

Study Sponsor: Hart Crowser, Inc., 1700 Westlake Ave. N, Suite 200, Seattle, WA 98109-3056

Sponsor's Study Monitor: Mr. Roger McGinnis

Testing Laboratory: Northwestern Aquatic Sciences, P.O. Box 1437, Newport, Oregon 97365.

Test Location: Newport Laboratory.

Laboratory's Study Personnel: M.S. Redmond, M.S., Proj. Mngr.; G.J. Irissarri, B.S., Study Dir.; L.K. Nemeth, B.A., M.B.A., QA Officer; R.S. Caldwell, Ph.D., Sr. Aq. Toxicol.; S. J. Gage, B.A., Sr. Tech.

Study Schedule:

Test Beginning: 9-9-08, 1400 hrs. Test Ending: 9-11-08, 1530 hrs.

<u>Disposition of Study Records</u>: All specimens, raw data, reports and other study records are stored according to Good Laboratory Practice regulations at Northwestern Aquatic Sciences, 3814 Yaquina Bay Rd., Newport, OR 97365.

Good Laboratory Practices: The test was conducted following the principles of Good Laboratory Practices (GLP) as defined in the EPA/TSCA Good Laboratory Practice regulations revised August 17, 1989 (40 CFR Part 792). Statement of Quality Assurance: The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

TEST MATERIAL

<u>Test Sediments</u>: Four test sediments and one reference sediment were tested. Details follow:

NAS Sample No. Sample Description Collection Date Receipt Date Interstitial Salinity (‰)	2041G	2042G	2043G	2044G
	Samish Bay Ref	BBP-SS-01	BBP-SS-02	RGH-SS-01
	8-29-08	8-26-08	8-26-08	8-26-08
	9-4-08	9-4-08	9-4-08	9-4-08
	30.5	24.5	25.0	23.5
NAS Sample No. Sample Description Collection Date Receipt Date Interstitial Salinity (‰)	2045G RGH-SS-03 8-26-08 9-4-08 25.0			

Storage: Upon receipt, headspace in sample containers was flushed with nitrogen, and samples were stored at 4° C in the dark.

<u>Treatments</u>: The samples were minimally homogenized by mixing with stainless steel implements.

TEST WATER

Source: Yaquina Bay, Oregon Date of Collection: 9-8-08

Water Quality: Salinity 27.5 ‰, pH 8.1

Pretreatment: Filtered to ≤0.40 μm, salinity-adjusted with MilliQ® deionized water, aerated.

TEST ORGANISMS

Species: Mytilus galloprovincialis Age: 1.9 hrs post-fertilization

Source: Mussels were purchased from Carlsbad Aquafarms, Carlsbad, CA, and received on 8-13-08.

Acclimation: Upon receipt, adult animals were placed in trays of flowing seawater and held under outside ambient conditions. Average conditions during the eleven days prior to testing were: temperature, 16.7 ± 1.4°C; pH, 8.0 ± 0.1, salinity, 33.8 \pm 0.5 ‰, and dissolved oxygen 8.7 \pm 0.6 mg/L.

Source of Gametes: 6 females, 4 males

TEST PROCEDURES AND CONDITIONS

The following is an abbreviated statement of the test procedures and a statement of the test conditions actually employed. See the test protocol (Appendix I) for a more detailed description of the test procedures used in this study.

Test Chambers: 1 L covered borosilicate glass beakers

Test Volumes: 18 g of test or reference sediment with 900 ml of test water added. Sediment was allowed to settle

for the normal period of 4 hours as specified in the protocol.

Replicates/Treatment: 5 (plus a 6th water quality replicate).

Sediment Salinity Adjustment: None required. Initial Concentration of Test Organisms: 25.2/ml Water volume changes per 24 hours: None Volume of Subsamples Taken for Counting: 10 ml

Aeration: Provided through a 1-mL glass pipette placed not closer than 2 cm from sediment, bubbled at a minimal rate (about 100 bubbles/minute) that did not disturb the sediment.

Feeding: None

Acceptance Criteria: The percent normal larvae in the seawater control must be ≥70% at the end of the test. Performance Criteria: For DMMP projects, the combined mortality and abnormality in the reference sediments must be ≤35% of the seawater control value. SMS projects do not have a specified reference performance criterion.

Effects Criteria: The effects criteria used were: 1) mortality; 2) abnormal development to the fully-shelled stage; and 3) the combined mortality/abnormality endpoint. Normal development is defined as transformation to the fully shelled, straight-hinged, D-shaped prodissoconch I stage. Data collected were: 1) the initial embryo density; 2) the number of abnormal larvae observed, and 3) the number of normal larvae observed. The results were expressed as: 1) percent abnormality; 2) percent mortality; 3) combined percent mortality and abnormality; and 4) normalized (to the seawater control) a) percent mortality and b) combined percent mortality and abnormality. Water Quality and Other Test Conditions: The temperature, pH, salinity, and dissolved oxygen were measured in the water quality replicate test chamber daily. Total soluble sulfide and total ammonia-N were measured in the overlying water of the water quality replicate test chamber on days 0 and 2. Total soluble sulfide and total ammonia-N were measured using Hach reagents based on the methylene blue (EPA Method 376.2) and salicylate (Clin. Chim. Acta 14:403, 1996) colorimetric methods, respectively; samples were not distilled prior to analysis. The photoperiod was 14:10, L:D.

DATA ANALYSIS METHODS

All three standard endpoints, percent abnormal, percent combined mortality/abnormality, and percent mortality have occasionally been computed both with, and without, normalization for the seawater control. Endpoints in this report have been computed according to the following formulas:

PABN (Percent Abnormality) = 100*(A/T)

PABND (Combined Percent Mortality/Abnormality) = 100*((I-N)/I)

PMORT (Percent Mortality) = 100*((I-T)/I)

NPM (Normalized Percent Mortality) = 100*(1-(T/TS))

NCMA (Normalized Combined Percent Mortality/Abnormality) = 100*(1-(N/NS))

where the following are counts per 10 ml subsample:

N = normal larvae counted

A = abnormal larvae counted

T = N + A (total larvae counted)

I = number of inoculated embryos (from average of zero time counts)

TS = average of total larvae counted in seawater controls

NS = average of normal larvae counted in seawater controls

The means and standard deviations were then calculated for each treatment level. The statistical software employed for these calculations was Microsoft Excel 2000. The number normal in each test sediment was compared against that in the control and in the reference sediment. The software used for statistical comparisons was BioStat (Beta v.4.1 (EXCEL)) bioassay software developed by the U.S. Army Corps of Engineers, Seattle District. Following determination of normality and homogeneity of variances, a one-tailed Student T-test, Approximate T-test, One-sample T-test, Mann Whitney test, or Rankit Analysis was conducted at the 0.10 level of significance.

PROTOCOL DEVIATIONS

None.

REFERENCE TOXICANT TEST

The routine reference toxicant test is a standard multi-concentration toxicity test using copper as CuSO₄•5H₂O to evaluate the performance of the test organisms used in the sediment toxicity test. The performance is evaluated by comparing the results of this test with historical results obtained at the laboratory. A summary of the reference toxicant test result is given below. The reference toxicant test raw data are found in Appendix II. The reference toxicant test is conducted following EPA/600/R-95/136 (Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, August 1995).

Test No.: 999-2472

Reference Toxicant and Source: Copper as copper sulfate, CuSO₄•5H₂O, Argent Lot #0195, 1.0 mg/ml stock prepared 8-3-07.

Test Date: 9-9-08

Dilution Water Used: Yaquina Bay, Oregon, seawater at 30.0%

Result: 48-hr EC50, 10.4 μ g/L Cu. This result is within the laboratory's control chart warning limits (7.52 to 12.3 μ g/L Cu).

RESULTS AND DISCUSSION

Observations of water quality parameters during the test are summarized in Table 1. Individual water quality measurements are located in the raw data (Appendix II).

All measurements of standard water quality parameters were all within protocol specified ranges (Table 1). Sulfides were not detected in the overlying bioassay water (detection limit 0.02 mg/L). Total ammonia-N ranged from 0.1 mg/L to 0.5 mg/L.

Means and standard deviations of the number normal and the normalized combined percent mortality and abnormality (NCMA) endpoint for sediments are summarized in Table 2. Detailed data organized by sample and replicate, including the larval counts, for all calculated endpoints are given in Appendix II. Five replicate subsamples were recounted (QC counts) as a check on the acceptability of the initial counts (Appendix II). In all instances the QC counts were close (coefficients of variation from 1 to 7 for counts of normal larvae) to the initial counts and were considered acceptable.

The test met the control acceptance criterion of \geq 70% normal in the seawater control; the control percent normality was 91.6%. Since the control acceptance criterion was met, and the positive control result was within limits, it is concluded that the test has developed fully acceptable data for use in making management decisions.

Data analysis and interpretation (Tables 2 and 3) were conducted based on guidelines from the "Sediment Sampling and Analysis Plan Appendix," February 2008 (Washington Department of Ecology). For a test sediment from the larval test to fail the Sediment Quality Standards under these guidelines, the test sediment mean number normal must be <85% of the reference sediment response, and significantly lower (α = 0.10) than the reference sediment mean number normal. For a test sediment from the larval test to fail the Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) under the one-test criteria in these guidelines, the test sediment mean number normal must be <70% of the reference sediment response, and significantly lower (α = 0.10) than the reference sediment mean number normal.

The number normal larvae in test sediments BBP-SS-01 and BBP-SS-02 was not significantly lower than that in the reference sediment "Samish Bay Ref" (Table 2), so these sediments passed both Sediment Quality Standards and one-test criteria for SIZML/CSL/MCL as defined by the SMS guidelines. The number normal larvae in test sediment RGH-SS-01 and in RGH-SS-03 was significantly lower than that in the reference sediment (Table 2), and less than 85% of the reference sediment value (68.9% and 77.6%, respectively; Table 3); therefore both of these test sediments failed the Sediment Quality Standards. Additionally, the number normal larvae in test sediment RGH-SS-01 was <70% of the reference sediment value (68.9%; Table 3), and therefore this sediment failed the one-test criteria for SIZML/CSL/MCL as defined by the SMS guidelines. The mean number normal in all test sediments and in the reference sediment was significantly lower than that in the seawater control.

STUDY APPROVAL

Table 1. Summary of water quality conditions during the tests of mussel, *Mytilus galloprovincialis*, larvae exposed to marine sediments.

Parameter	Mean ± SD	Minimum	Maximum	N
Temperature (°C) pH Salinity (‰) Dissolved Oxygen (mg/L) Total soluble sulfide (mg/L) Total Ammonia-N (mg/L)	15.5 ± 0.3 8.0 ± 0.0 27.6 ± 0.3 7.5 ± 0.3	15.0 7.9 27.0 7.0 <0.02 0.1	15.8 8.1 28.0 8.0 <0.02 0.5	18 18 18 18 12

Table 2. Means and standard deviations (n=5) of number normal larvae and percent NCMA (combined mortality and abnormality, normalized to the seawater control) of mussel, *Mytilus galloprovincialis*, larvae exposed to marine sediments.

Sample Description	Number normal		Normalized combined percent mortality & abnormality (NCMA)
Seawater control	231 ± 12		0.0 ± 5.1
Samish Bay Ref (NAS #2041G)	196 ± 32	b	15.3 ± 13.7
BBP-SS-01 (NAS #2042G) BBP-SS-02 (NAS #2043G) RGH-SS-01 (NAS #2044G) RGH-SS-03 (NAS #2045G)	185 ± 25 173 ± 20 135 ± 42 152 ± 39	b b ab ab	20.2 ± 10.7 25.3 ± 8.8 41.6 ± 18.0 34.4 ± 16.9

a Significantly lower than in reference sediment "Samish Bay Ref" (p<0.10)

b Significantly lower than in the seawater control (p<0.10)

Table 3. Interpretation of *Mytilus galloprovincialis* test data from exposure to marine sediments, based on SMS (WDOE 2008) guidelines.

Sample description	Number normal (mean ± SD)	Significantly less than reference sediment at $\alpha = 0.10$?	Percent of reference sediment value	Failure under SQS?	Failure under SIZML, CSL, or MCL? ²
Seawater control	231 ± 12		Not soon man		
Samish Bay Ref (NAS #2041G)	196 ± 32	***			
BBP-SS-01 (NAS #2042G)	185 ± 25	NO	94.4	NO	NO
BBP-SS-02 (NAS #2043G)	173 ± 20	NO	88.3	NO	NO
RGH-SS-01 (NAS #2044G)	135 ± 42	YES	68.9	YES	YES
RGH-SS-03 (NAS #2045G)	152 ± 39	YES	77.6	YES	NO

Sediment Quality Standards (SQS) failure if the mean number of normal survivors in the test sediment is significantly less (1-tailed t-test at $P \le 0.10$) than the mean number of normal survivors in the reference sediment, and <85% of the mean number of normal survivors in the reference sediment.

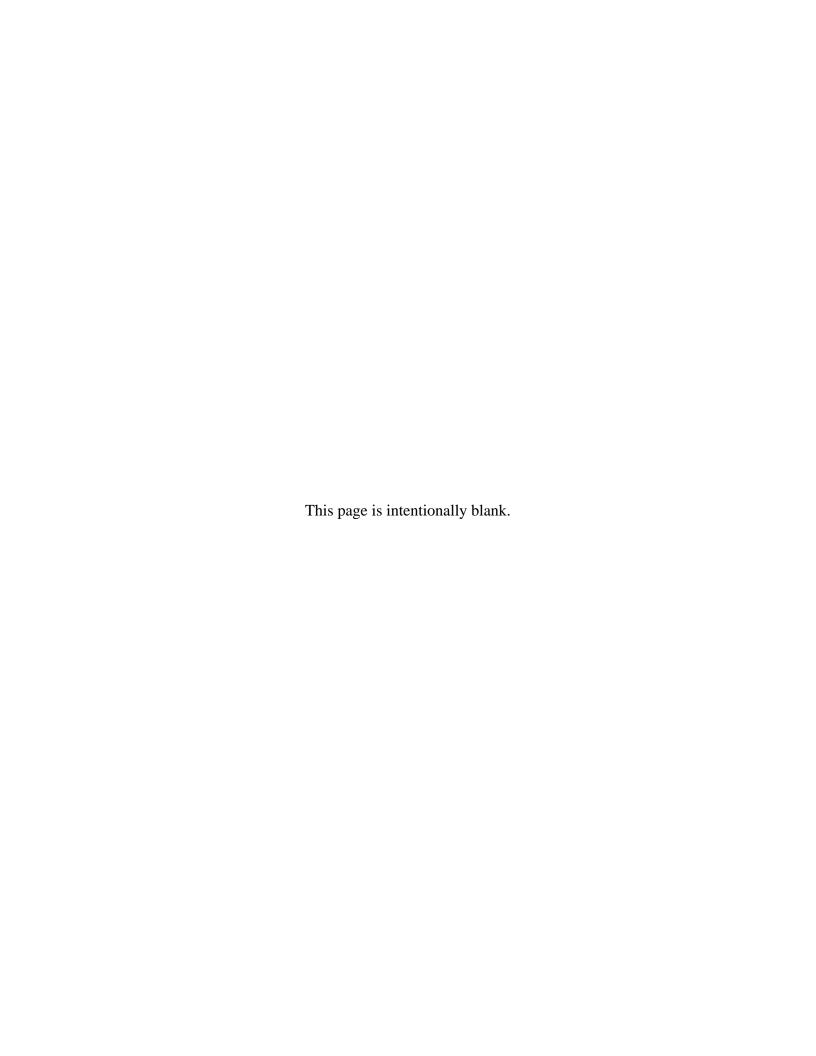
² <u>Sediment Impact Zone Maximum Levels (SIZML), Cleanup Screening Levels (CSL), or Minimum Cleanup Levels (MCL) failure</u> (one-test criteria) if the mean number of normal survivors in the test sediment is significantly less (1-tailed t-test at P≤0.10) than the mean number of normal survivors in the reference sediment and <70% of the mean number of normal survivors in the reference sediment.

APPENDIX D CORNWALL AVENUE LANDFILL SEDIMENT PROFILE IMAGE (SPI) REPORT

Sediment Profile Imaging and Plan View Photography Survey Cornwall Avenue Landfill Bellingham, WA

Data Report

Prepared for


Hart Crowser, Inc. 1700 Westlake Avenue N, Suite 200 Seattle, WA 98109-3056

Prepared by

Science Applications International Corporation 18912 North Creek Parkway, Suite 101 Bothell, WA 98011

October 2008

Table of Contents

			Page
1.0	Intro	duction	1
2.0	Surve	ey Methods	3
2.		ssel and Navigation	
2.		liment Profile Imaging	
2.		n View Photography	
2.4		age Analysis Methods	
3.0	Resul	ts	9
3.		liment Profile Imaging	
	3.1.1	Wood Debris Distribution	
	3.1.2	Municipal Waste Distribution	9
	3.1.3	Duplicate Analysis Summary	9
3.	2 Pla	n View Photography	17
	3.2.1	Wood Debris Distribution	17
	3.2.2	Municipal Waste Distribution	17
	3.2.3	Duplicate Analysis Summary	18
4.0	Sumr	nary	27
5.0	Refer	ences	29
App	endix A	Geographic Coordinates	
1 22	andiv D	CDI and Dian View Analysis Desults	

Appendix B SP	l and Plan View	Analysis Results
---------------	-----------------	------------------

Appendix C SPI and Plan View Images (DVD Insert)

Figures

Table 2. Comparison of Wood Debris and Municipal Waste for Duplicate Plan View Images . 26

List of Acronyms

DGPS Differential Global Positioning System

R/V research vessel

SAIC Science Applications International Corporation

SPI sediment profile imaging

Page ii October 29, 2008

1.0 Introduction

Science Applications International Corporation (SAIC), under contract to Hart Crowser, Inc., and in consultation with Herrenkohl Consulting LLC, conducted a sediment profile imaging (SPI) and plan view photography survey at the Cornwall Avenue Landfill site, Bellingham, Washington. The survey was conducted to evaluate the presence of municipal refuse and wood debris in the intertidal and subtidal sediments surrounding the site.

The Cornwall Avenue Landfill site is approximately 8 acres in size and is located at the south end of Cornwall Avenue, along the eastern shoreline of Bellingham Bay (Figure 1). The site is currently owned by Georgia Pacific West and the State of Washington. Most of the site was originally tide flats and subtidal areas of Bellingham Bay. From 1888 to 1946, the site was used for sawmill operations, including log storage and wood waste disposal. The site was used for municipal waste disposal from 1953 to 1965 (Ecology 2004). Over time, shoreline erosion has occurred resulting in the exposure of landfill materials. The beach area is now largely composed of exposed and reworked landfill material, and the toe of the municipal waste fill slope extends out into Bellingham Bay some distance beyond the shoreline (Ecology 2004).

October 29, 2008 Page 1

This page is intentionally blank.

Page 2 October 29, 2008

2.0 Survey Methods

This section describes the methodology for vessel positioning and collection of photographic images of sediments using SPI and plan view photography. The results of the survey are summarized in Section 3.0.

2.1 Vessel and Navigation

The SPI and plan view camera survey were conducted aboard the research vessel (R/V) *Kittiwake* owned and operated by BioMarine Enterprises, Seattle, Washington. The Cornwall Landfill survey was conducted September 16 through 18, 2008. Vessel positioning and navigation was accomplished using a Trimble NT300D differential global positioning system (DGPS) with a minimum positional accuracy of ± 2 meters. Geographic coordinates for sampling locations are provided in Appendix A. A total of 138 locations were occupied during the 3-day survey (Figure 2).

2.2 Sediment Profile Imaging

SPI provides a cross-sectional photograph of the sediment/water interface and near-surface sediment (15 by 20 cm area). Images were collected using a Benthos model 3731 SPI camera equipped with an Ocean Imaging System digital system. The SPI camera consists of a wedge-shaped prism with a Plexiglas faceplate and a back mirror mounted at a 45° angle. Light is provided by an internal strobe. The mirror reflected the image of the profile of the sediment/water interface to a digital camera mounted horizontally on top of the prism (Figure 3). Three replicate images were collected from each SPI sampling location. One representative image was selected from each location and evaluated for the presence of wood debris and municipal waste. In addition, a second image from 10 percent of the locations was evaluated to characterize small-scale (i.e., within-station) spatial variability in the measured parameters.

2.3 Plan View Photography

Plan view underwater still photography was conducted simultaneously with the SPI photography. Plan view images were taken using a downward looking PhotoSea underwater 35 millimeter camera and strobe that were mounted on the SPI camera frame. The plan view camera provided a photograph of the sediment surface (20 by 30 cm area) near the front of the SPI camera faceplate. The 35 millimeter slide film was digitized following completion of the survey and one representative image from each location was evaluated for the presence of wood debris and municipal waste. In addition, a second image from 10 percent of the stations was evaluated to characterize within-station spatial variability.

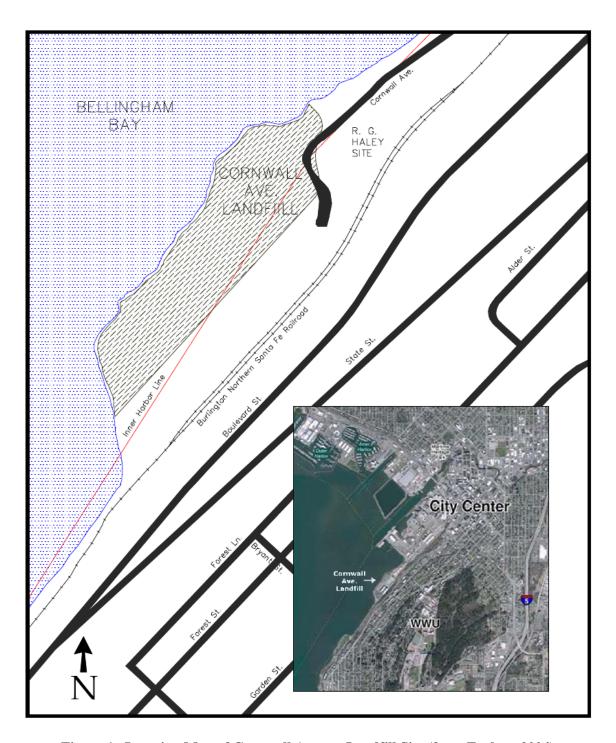
October 29, 2008 Page 3

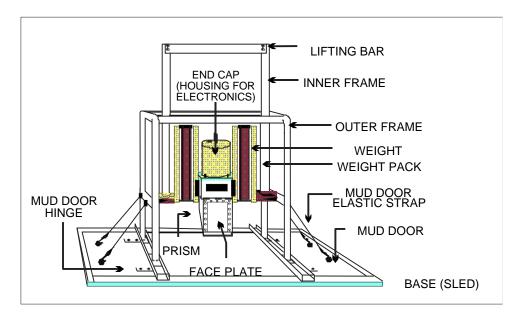
During the survey, deployment and retrieval of the SPI camera on the seafloor resulted in sediment resuspension and turbidity in the water column at some locations where fine-grained surface sediments were present. At 49 of 138 stations (36 percent), only cloudy plan view images were collected and the presence or absence of woody debris and municipal waste could not be determined. At four of 138 stations (3 percent), plan view images were not collected due to a camera malfunction. However, high-quality SPI images were obtained at all locations where turbid plan view images were collected, or where plan view images were not collected due to the camera malfunction.

2.4 Image Analysis Methods

Image analysis of the SPI and plan view images consisted solely of the determination of wood debris and municipal waste in surface sediments. A proportional estimate of wood debris and municipal waste (percent by area) was visually determined from the representative digital SPI image (profile to a maximum depth of 20 cm) and plan view image (20 by 30 cm surface area) at each location (Munsell 2000). Wood debris observed during the survey consisted of bark pieces, weathered log and branch pieces, and small particles. Municipal waste observed consisted of plastic, metal, glass bottle pieces, and brick (construction debris).

Page 4 October 29, 2008




Figure 1. Location Map of Cornwall Avenue Landfill Site (from Ecology 2004)

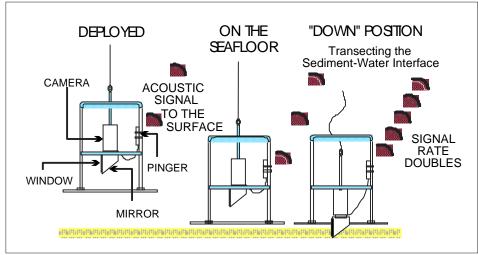

October 29, 2008 Page 5

Figure 2. SPI and Plan View Sampling Locations

Page 6 October 29, 2008

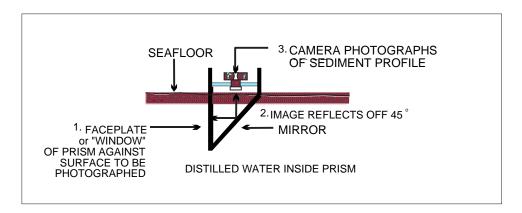


Figure 3. Schematic Diagram of Sediment-Profile Camera and Sequence of Operation on Deployment

October 29, 2008 Page 7

This page is intentionally blank.

Page 8 October 29, 2008

3.0 Results

A total of 138 locations were photographed using SPI and plan view photography to determine the distribution of wood debris and municipal waste in intertidal and subtidal surface sediments near the Cornwall Avenue Landfill site (Figure 2). SPI and plan view image analysis results for wood debris and municipal waste are summarized in Appendix B. The SPI and plan view images selected for analysis are provided on a DVD in Appendix C.

3.1 Sediment Profile Imaging

3.1.1 Wood Debris Distribution

The SPI survey identified a total of 43 of 138 locations (31 percent) showing the presence of woody debris in the profile of surface sediments (Figure 4). Woody debris was observed in all parts of the survey area and a particular trend in wood debris distribution was not observed. Of those locations showing woody debris, the majority (74 percent) showed very low accumulation (5 percent or less by area) in surface sediments. The wood debris consisted mostly of small wood chips/pieces or fine particles, and was confined to the upper portions of the sediment column (8 cm or less) (Figures 5 and 6). One exception to this trend was station CW-5, where wood debris was observed to a depth of 13 cm. Fine wood particles were observed at 25 percent by area in the upper 4 cm, and 5 percent by area from 4 to 13 cm in the sediment column (Figure 6). Higher accumulations of woody debris (10 to 25 percent by area) were only observed at 11 of 138 locations (8 percent). In most cases, the wood debris at these locations consisted of larger wood pieces (weathered log or branch pieces) observed on the sediment surface (Figure 7).

3.1.2 Municipal Waste Distribution

Municipal waste, consisting of broken glass pieces and brick, was sparse in the survey area and identified at only six of 138 locations (4 percent) during the SPI survey (Figure 8). A trend in the distribution of municipal waste was not observed, similar to the wood debris. The highest accumulation of municipal waste (15 percent by area) was observed at stations CW-86 and CW-110, consisting of broken glass and brick, respectively (Figure 9). Additional locations showing glass debris in SPI images included stations CW-69 and CW-84 (Figure 10).

3.1.3 Duplicate Analysis Summary

Duplicate images were analyzed at 10 percent of the locations to characterize small-scale spatial variability in the presence of wood debris and municipal waste. For this survey, the selection of duplicate images was targeted at locations where wood debris and/or municipal waste were observed in multiple images, to assess variability in the amount of wood debris and municipal waste at each location. A comparison of duplicate SPI images is summarized in Table 1.

Five of 14 comparisons (36 percent) between primary and duplicate SPI images showed the same amount of wood debris. Presence of wood debris in primary and duplicate images, but at differing amounts occurred for five comparisons (36 percent). Four of 14 comparisons (28 percent) showed the presence of wood debris in one image, but the absence of wood debris in the other. Municipal waste was observed in two primary SPI images, but was absent in the duplicate images.

October 29, 2008 Page 9

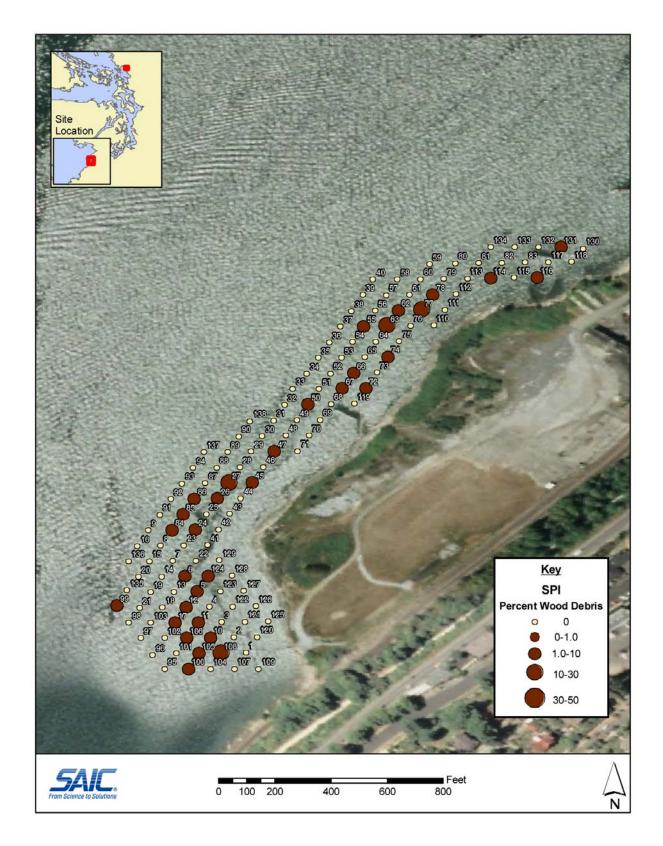
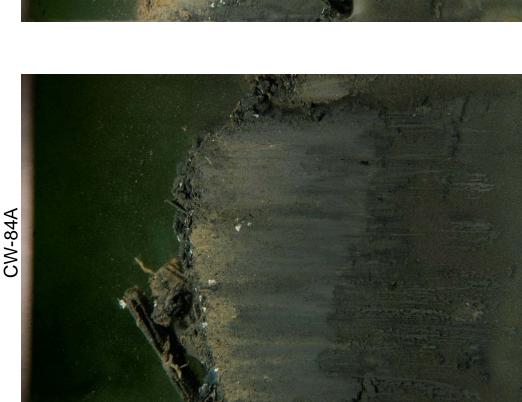



Figure 4. Distribution of Wood Debris Based on SPI Analysis

Page 10 October 29, 2008

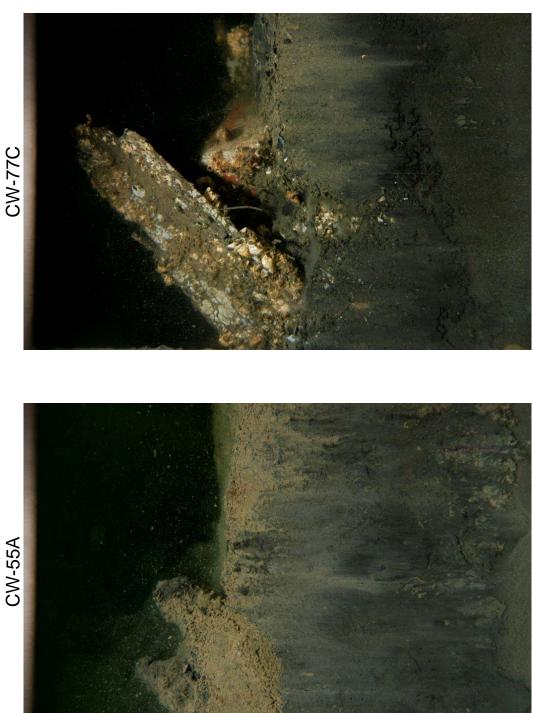
CW-100A



These images show the presence of fine wood debris on the sediment surface. Station CW-84A shows an accumulation of small wood particles that represent approximately 7 percent by area. Station CW-100A shows a small accumulation of fine wood particles (approximately 5 percent by area) on the sediment surface. Methane bubbles (arrows) are visible in the sediment column.

Figure 5. SPI Images from Stations CW-84 (Replicate A) and CW-100 (Replicate A)

Page 11 October 29, 2008



Images showing the presence of fine wood debris within surface sediments. Station CW-6B shows fine wood debris in the upper 6 cm of the sediment column (approximately 5 percent by area). Station CW-5C shows a higher accumulation of fine wood debris (25 percent by area) in the upper 4 cm of the sediment column. Fine wood debris from 4 to 13 cm in the sediment column is approximately 5 percent by area.

Figure 6. SPI Images from Stations CW-6B and CW-5C

October 29, 2008 Page 12

Both images show the presence of large wood debris on the sediment surface. Station CW-55A shows a piece of wood on the upper left (approximately 10 percent by area) draped with silt and fine organic particles. Station CW-77C shows a large piece of wood (approximately 20 percent by area) encrusted with barnacles and fine organic particles.

Figure 7. SPI Images from Stations CW-55A and CW-77C

Page 13 October 29, 2008

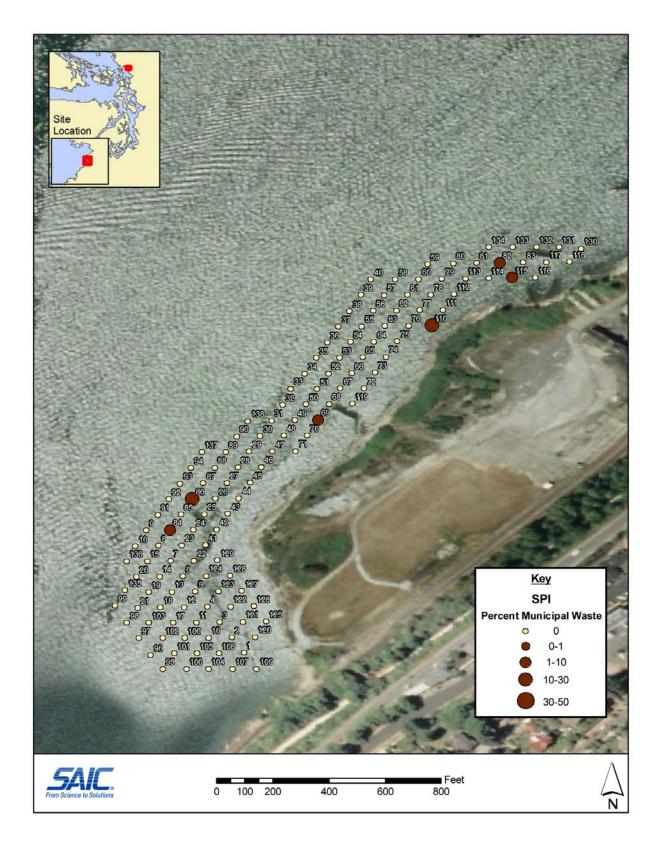
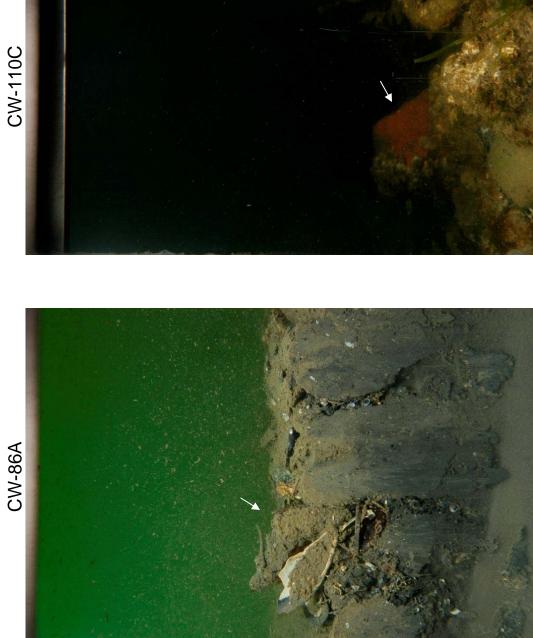
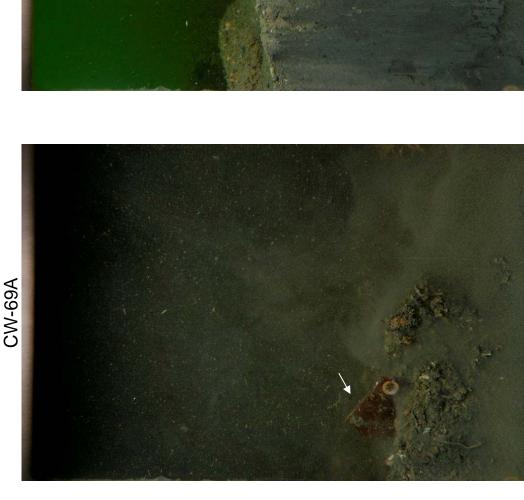



Figure 8. Distribution of Municipal Waste Based on SPI Analysis


Page 14 October 29, 2008

SPI images showing the presence of municipal waste. Station CW-86A shows a piece of brown glass (approximately 15 percent by area) near the sediment surface (arrow). The glass is obscured by sediment and shell debris. Station CW-110C shows a piece of brick (approximately 15 percent by area) that has been classified as municipal waste (construction debris).

Figure 9. SPI Images from Stations CW-86A and CW-110C

Page 15 October 29, 2008 CW-84B

SPI images showing the presence of municipal waste (glass pieces). Station CW-69A shows a piece of brown glass (arrow) on the sediment surface (approximately 7 percent by area). Station CW-84B shows the neck of a glass bottle draped by a sea star (arrow) on the sediment surface (approximately 15 percent by area).

Figure 10. SPI Images from Stations CW-69A and CW-84B

October 29, 2008 Page 16

Table 1. Comparison of Wood Debris and Municipal Waste for Duplicate SPI Images

	Wood D	ebris (%)	Municipal Waste (%	
Station	Primary	Duplicate	Primary	Duplicate
CW-5	10	10	0	0
CW-6	3	5	0	0
CW-10	3	3	0	0
CW-45	2	0	0	0
CW-62	3	3	0	0
CW-72	5	5	0	0
CW-77	20	3	0	0
CW-78	2	0	0	0
CW-84	0	7	10	0
CW-85	10	10	0	0
CW-86	3	5	15	0
CW-100	5	3	0	0
CW-105	5	0	0	0
CW-131	3	2	0	0

3.2 Plan View Photography

3.2.1 Wood Debris Distribution

Due to turbidity in the water column during the plan view photography survey (see Section 2.3), useable plan view images were collected at 85 of 138 locations (62 percent). Forty-six percent of those locations (39 of 85 locations) showed the presence of wood debris (Figure 11). The plan view photography showed a greater number of locations with higher accumulations of wood debris, compared to the SPI survey. Wood debris accumulation of 7 to 40 percent by area was identified at 44 percent of the locations (17 of 39 locations with wood debris). The majority of these locations showed the presence of small to large wood pieces/logs on the sediment surface (Figure 12). The highest coverage of wood debris was measured at station CW-68, due to the presence of a log piece on the sediment surface (Figure 13). Station CW-5 showed relatively high accumulations of wood debris (25 percent by area) due to the presence of small wood particles on the sediment surface (Figure 13). For the 22 of 39 stations (56 percent) showing lower amounts of wood debris (5 percent or less by area), the wood debris consisted of small wood pieces or particles visible on the sediment surface (Figure 14).

3.2.2 Municipal Waste Distribution

Municipal waste, consisting of broken glass pieces, plastic, and brick, was identified at eight locations off the southwest point of the Cornwall Avenue Landfill (Figure 15). The highest accumulation of municipal waste (20 percent by area) was observed at station CW-126 due to the presence of a metal or plastic sign piece on the seafloor (Figure 16). An intact glass bottle and a broken bottle top were visible at stations CW-84 and CW-41, respectively (Figure 17). A brick piece was visible on a rocky bottom at station CW-42 (Figure 16).

October 29, 2008 Page 17

3.2.3 Duplicate Analysis Summary

Duplicate images were analyzed at 10 percent of the locations to characterize small-scale spatial variability in the presence of wood debris and municipal waste. For this survey, the selection of duplicate images was targeted at locations where wood debris and/or municipal waste were observed in multiple images, to assess variability in the amount of wood debris and municipal waste at each location. A comparison of duplicate plan view images is summarized in Table 2.

Seven of 14 comparisons (50 percent) between primary and duplicate plan view images showed the same amount of wood debris. Presence of wood debris in primary and duplicate images, but at differing amounts, occurred for two comparisons (14 percent). Five of 14 comparisons (36 percent) showed the presence of wood debris in one image, but the absence of wood debris in the other. Only one of 14 comparisons (7 percent) showed the same amount of municipal waste between primary and duplicate plan view images. Nine of 14 comparisons (64 percent) did not show municipal waste in either the primary or duplicate plan view images. Presence of municipal waste in primary and duplicate images, but at differing amounts, occurred for one comparison (7 percent). Three of 14 comparisons (22 percent) showed the presence of wood debris in one image, but the absence of wood debris in the other.

Page 18 October 29, 2008

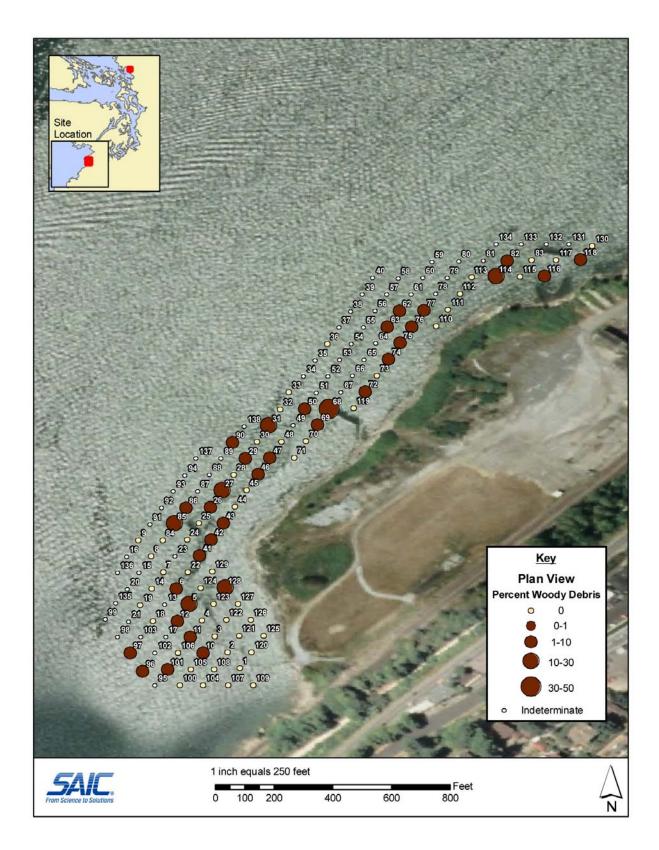
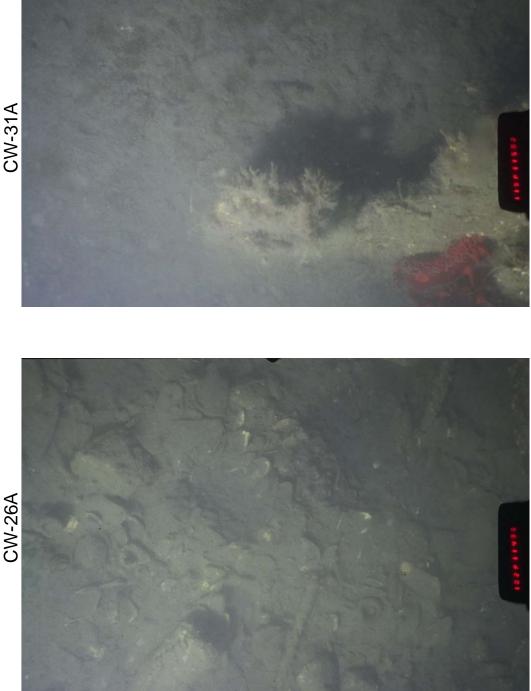
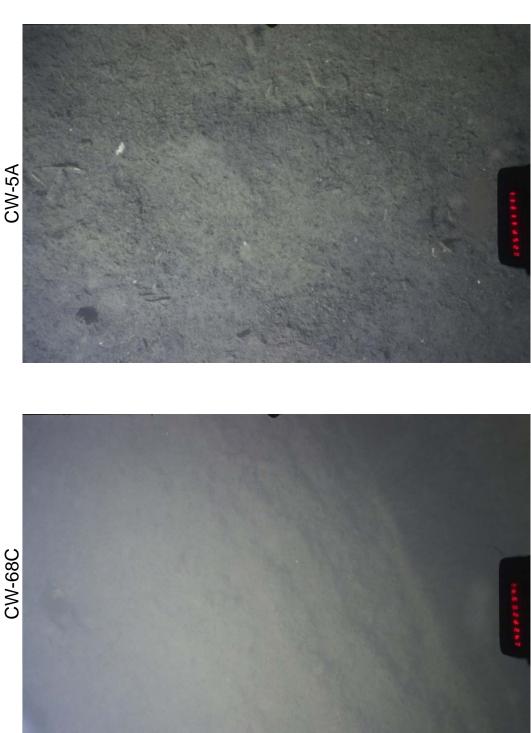
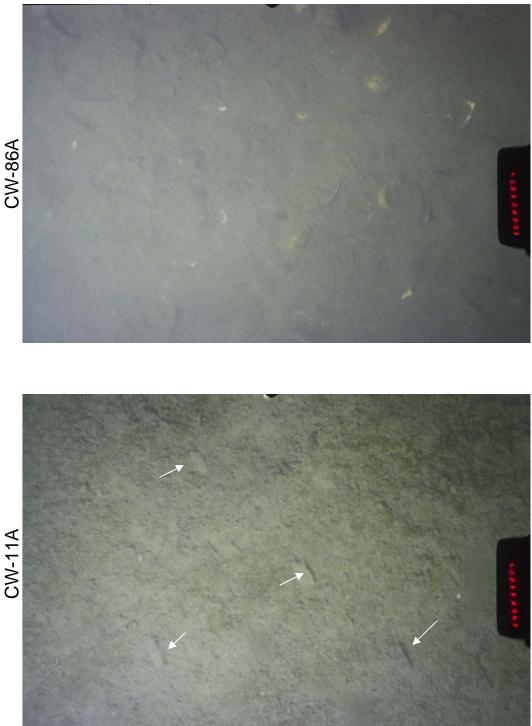



Figure 11. Distribution of Wood Debris Based on Plan View Image Analysis


October 29, 2008 Page 19

Plan view images showing the presence of large wood debris. Station CW-26A shows pieces of wood debris and shells on the sediment surface (approximately 10 percent by area). The wood debris and shells are draped by a layer of silt. Station CW-31A shows a large piece of wood encrusted with algae and bryozoans (approximately 25 percent by area). A sea cucumber is visible at the lower left of the image.

Figure 12. Plan View Images from Stations CW-26A and CW-31A


October 29, 2008 Page 20

Plan view images showing the presence of wood debris on the sediment surface. Station CW-68C shows a large piece of wood/log on the sediment surface (approximately 40 percent by area). Station CW-5A shows accumulations of fine wood particles on the sediment surface (approximately 25 percent by area).

Figure 13. Plan View Images from Stations CW-68C and CW-5A

Page 21 October 29, 2008

Plan images showing the presence of fine wood debris on the sediment surface. Station CW-11A shows small wood particles (arrows) lying on fine grained surface sediments (approximately 3 percent by area). Station CW-86A shows small wood pieces and particles with shells on the sediment surface (approximately 5 percent by area).

Figure 14. Plan View Images from Stations CW-11A and CW-86A

October 29, 2008 Page 22

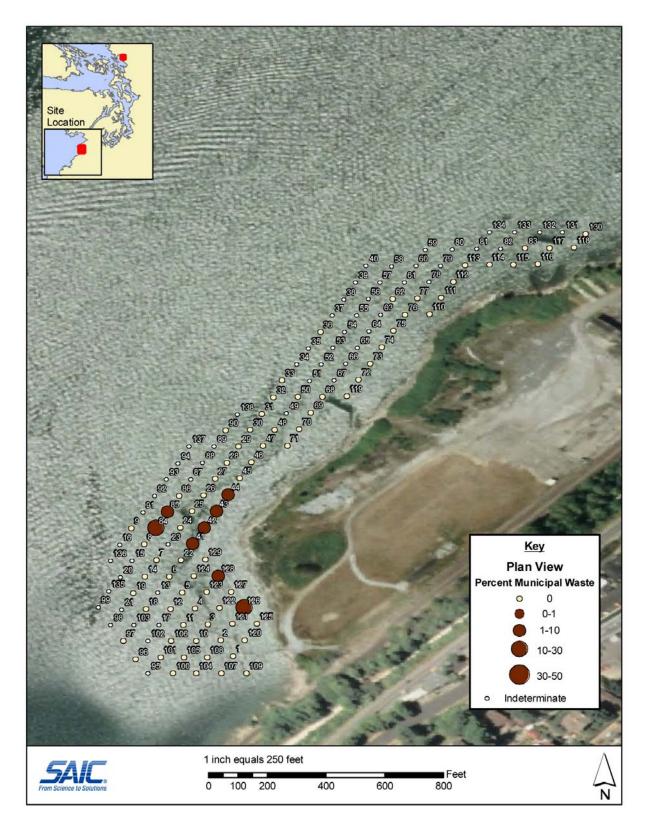
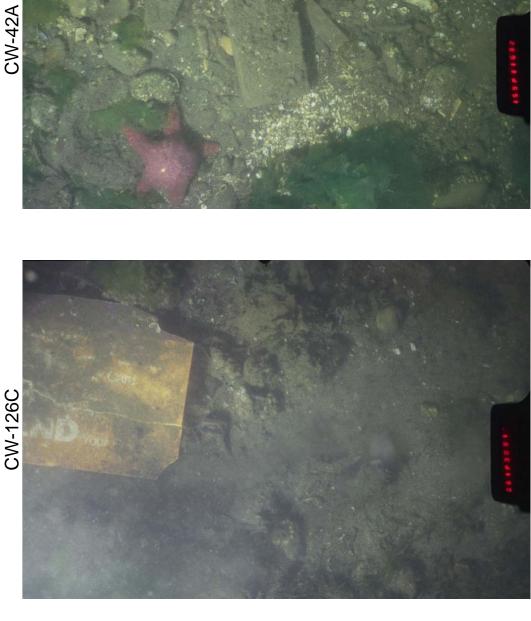
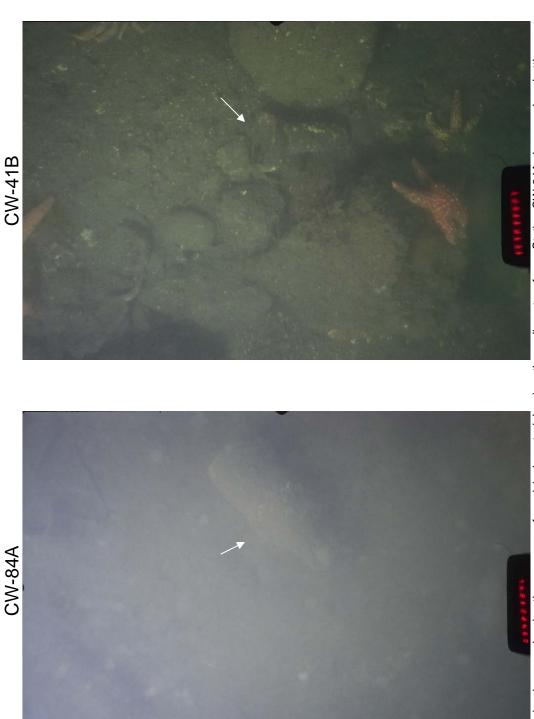



Figure 15. Distribution of Municipal Waste Based on Plan View Image Analysis


October 29, 2008 Page 23

Plan view images showing municipal waste on the sediment surface. Station CW-126C shows a metal or plastic sign piece on the sediment surface (approximately 20 percent by area). Station CW-42A shows a piece of brick (approximately 10 percent by area) along the right side of the image (arrow) and wood pieces on the sediment surface.

Figure 16. Plan View Images from Stations CW-126C and CW-42A

October 29, 2008 Page 24

Plan view images showing the presence of municipal waste (glass) on the sediment surface. Station CW-84A shows a glass bottle (arrow) resting on the sediment surface (approximately 15 percent by area). Station CW-41B shows the presence of a broken glass bottle neck (arrow) on a rocky and sandy bottom (approximately 3 percent by area).

Figure 17. Plan View Images from Stations CW-84A and CW-41B

Page 25 October 29, 2008

Table 2. Comparison of Wood Debris and Municipal Waste for Duplicate Plan View Images

	Wood D	ebris (%)	Municipa	al Waste (%)
Station	Primary	Duplicate	Primary	Duplicate
CW-24	0	0	0	0
CW-27	15	0	0	0
CW-30	0	0	0	0
CW-31	20	0	0	0
CW-41	0	3	3	0
CW-42	10	10	10	5
CW-43	5	0	3	0
CW-44	0	0	0	5
CW-46	5	5	0	0
CW-68	40	3	0	0
CW-75	7	5	0	0
CW-111	0	0	0	0
CW-119	0	0	0	0
CW-128	20	0	7	7

Page 26 October 29, 2008

4.0 Summary

- The SPI survey identified wood debris at 43 of 138 locations (31 percent) and the majority of locations showed very low accumulations of wood debris (5 percent or less by area). The wood debris consisted mostly of small wood chips/pieces or fine particles, and was generally confined to the upper portions of the sediment column (8 cm or less).
- The plan view photography identified wood debris at 39 of 85 locations (46 percent) on the sediment surface. Of those locations with wood debris, 44 percent were identified with wood debris accumulations of 7 to 40 percent by area. The wood debris in these higher accumulation locations consisted of small to large wood pieces or logs. Fifty-six percent of the stations had wood debris accumulations of 5 percent or less by area.
- Small amounts of wood debris were observed in all parts of the survey area, and a general trend in wood debris distribution was not observed.
- Municipal waste consisted of broken glass pieces, plastic, and brick, and was not observed in great abundance in SPI and plan view images. The greatest accumulation of municipal waste was observed at eight locations off the southwest point of the Cornwall Avenue Landfill (Figure 15).
- Although turbidity in the water column reduced the number of useable plan view images collected during the survey, plan view photography appeared to be effective in the identification of woody debris and municipal waste on surface sediments, particularly larger particles (e.g., logs, bricks, bottles, etc.). SPI photography was effective in the identification of small wood pieces and fine particles in surface sediments.

October 29, 2008 Page 27

This page is intentionally blank.

Page 28 October 29, 2008

5.0 References

Ecology. 2004. Cornwall Avenue Landfill Site. Fact Sheet. September 2004. Washington State Department of Ecology. Publication Number 04-09-112. http://www.ecy.wa.gov/biblio/0409112.html

Munsell. 2000. Charts for estimating proportions of mottles and coarse fragments. Munsell soil color charts. Year 2000. GretagMacBeth, New Windsor, NY.

October 29, 2008 Page 29

This page is intentionally blank.

Page 30 October 29, 2008

Appendix A Geographic Coordinates

Hart Crowser

3

2

3

2

CW-12

CW-13

1104

1107

1108

1109

1111

1112

16-Sep

16-Sep

3.4

4.9

4.9

4.9

5.8

5.7

11.2

16.1

16.1

16.1

19.0

18.7

2.6

2.5

2.5

2.5

2.4

2.4

-8.6

-13.6

-13.6

-13.6

-16.6

-16.3

Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Meter Meter Predicted Predicted Sample Target Sample Location Sample Location Distance **GPS GPS** Wheel Wheel Nearest Mudline DGPS Trimble NT300D DGPS Trimble NT300D tο Status Comments Station Sample Date Target Time Depth Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, SPCS, Wa. N. NAD 1983, Decimal Min. **HDOP** No. Rep. m. ft. ft. (MLLW) Latitude Longitude Easting (x) Northing (y) Latitude Longitude (m.)good < 2 48 44.2445 122 29.7724 CW-01 16-Sep 0940 2.2 7.2 4.2 1239156.8 638113.0 48 44.2441 122 29.7723 -3.0 0.8 2 0941 2.2 7.2 4.2 -3.0 1239155.0 638120.9 48 44.2454 122 29.7728 1.7 1.2 3 0942 2.2 7.2 4.2 638119.1 48 44.2451 122 29.7732 1.5 -3.0 1239153.3 CW-02 16-Sep 0952 2.7 8.9 3.9 -5.0 48 44.2534 122 29.7795 1239127.5 638169.6 48 44.2533 122 29.7799 0.5 2 48 44.2536 122 29.7809 1.2 0953 2.7 8.9 3.9 -5.0 1239123.5 638171.5 1.7 3 0955 2.7 8.9 3.9 -5.0 1239118.6 638171.0 48 44.2535 122 29.7821 3.1 CW-03 16-Sep 0959 3.0 9.8 3.8 -6.0 48 44.2624 122 29.7867 1239100.4 638221.3 48 44.2617 122 29.7869 1.3 2 1000 3.0 9.8 3.8 -6.0 1239099.2 638221.3 48 44.2617 | 122 29.7872 1.4 1.3 3 1001 3.0 9.8 3.7 -6.1 1239098.8 638221.3 48 44.2617 122 29.7873 1.5 CW-04 16-Sep 1005 3.5 11.5 3.7 -7.8 48 44.2713 122 29.7938 1239069.4 638277.3 48 44.2708 | 122 29.7949 1.7 2 638277.3 1005 3.6 11.8 3.6 -8.2 1239067.0 48 44.2708 | 122 29.7955 2.3 1.2 3 1006 3.6 11.8 3.6 -8.2 1239069.5 638278.5 48 44.2710 | 122 29.7949 1.5 CW-05 1 16-Sep 1010 4.2 13.8 3.5 -10.3 48 44.2803 122 29.8009 1239047.2 638344.7 48 44.2818 | 122 29.8008 2.8 2 48 44.2817 122 29.7994 1011 4.2 13.8 3.5 -10.3 1239052.8 638343.9 3.2 1.2 3 4.2 13.8 3.5 -10.3 638337.3 48 44.2806 122 29.8003 1012 1239049.0 1.0 CW-06 16-Sep 1016 5.9 19.4 3.4 -16.0 48 44.2892 122 29.8081 1239015.3 638394.6 48 44.2899 | 122 29.8090 1.7 2 19.4 3.4 -16.0 48 44.2893 122 29.8079 1.2 1016 5.9 1239019.6 638390.9 0.3 5.9 19.4 3.4 -16.0 638392.2 48 44.2895 122 29.8089 3 1017 1239015.6 1.1 CW-07 1 16-Sep 1021 6.8 22.3 3.3 -19.0 48 44.2982 122 29.8152 1238999.4 638443.0 48 44.2978 | 122 29.8132 2.5 2 22.3 3.3 -19.0 638444.2 48 44.2980 122 29.8133 2.4 1.3 1021 6.8 1238999.0 3 1022 6.9 22.6 3.3 -19.3 1238992.6 638446.2 48 44.2983 122 29.8149 0.4 CW-08 16-Sep 1026 7.3 24.0 3.2 -20.8 48 44.3071 122 29.8223 1238959.2 638499.8 48 44.3070 | 122 29.8235 1.4 First three 2 1027 7.3 24.0 3.2 -20.8 1238959.2 638500.4 48 44.3071 122 29.8235 1.4 1.3 samples, OP 3 1028 7.3 24.0 3.2 -20.8 1238959.5 638496.8 48 44.3065 | 122 29.8234 1.7 4 1133 7.0 23.0 2.2 -20.8 1238966.7 638495.4 48 44.3063 122 29.8216 1.8 5 7.0 23.0 2.2 -20.8 1238967.5 638494.2 48 44.3061 122 29.8214 2.2 1.1 1134 6 1134 7.0 23.0 2.2 -20.8 1238967.5 638494.2 48 44.3061 122 29.8214 2.2 48 44.3159 122 29.8296 CW-09 16-Sep 1033 7.7 25.3 3.1 -22.2 48 44.3161 122 29.8295 1238935.8 638554.5 0.3 2 7.7 25.3 3.1 -22.2 1238936.3 638555.7 48 44.3161 122 29.8295 0.1 1.3 1033 3 1034 7.7 25.3 3.1 -22.2 1238935.9 638555.7 48 44.3161 122 29.8296 0.2 CW-10 48 44.2532 122 29.7932 16-Sep 1059 3.0 9.8 2.6 -7.2 1239076.4 638171.3 48 44.2534 | 122 29.7926 8.0 2 1059 3.0 9.8 2.6 -7.2 1239073.6 638172.6 48 44.2536 122 29.7933 0.7 1.1 3 1100 3.0 9.8 2.6 -7.2 1239073.6 638171.3 48 44.2534 122 29.7933 0.3 CW-11 11.2 2.6 -8.6 48 44.2626 122 29.8012 1.3 1 16-Sep 1103 3.4 48 44.2622 122 29.8003 1239043.0 638228.0 2 1104 11.2 2.6 -8.6 1239043.8 638224.3 48 44.2620 122 29.8010 0.9 1.1 3.4

48 44.2711 122 29.8075 1239014.7

48 44.2801 122 29.8146 1238985.4

1239048.7

1239013.2

1239015.1

1238986.2

638230.3

638276.6

638279.7

638277.2

638336.3

638333.2

48 44.2630 | 122 29.7998

48 44.2705 122 29.8085

48 44.2710 | 122 29.8089

48 44.2706 | 122 29.8084

48 44.2802 122 29.8161

48 44.2797 | 122 29.8159

1.6

1.7

1.8

1.5

1.8

1.7

1.1

1.1

Hart Crowser

Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Meter Meter Predicted Predicted Sample Target Sample Location Sample Location Distance **GPS GPS** Wheel Wheel Nearest Mudline DGPS Trimble NT300D DGPS Trimble NT300D tο Status Comments Station Sample Date Time Depth Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, SPCS, Wa. N. NAD 1983, Decimal Min. Target **HDOP** No. Rep. m. ft. ft. (MLLW) Latitude Longitude Easting (x) Northing (y) Latitude Longitude (m.)good < 2 1113 5.9 19.4 2.4 -17.0 1238986.2 638333.8 48 44.2798 122 29.8159 3 1.7 CW-14 16-Sep 1117 6.4 21.0 2.4 -18.6 48 44.2890 122 29.8217 1238969.6 638383.4 48 44.2879 | 122 29.8203 2.7 2 21.0 2.4 -18.6 1238968.5 638388.9 48 44.2888 122 29.8206 1.5 1117 6.4 1.1 3 1118 6.4 21.0 2.4 -18.6 1238963.4 638395.1 48 44.2898 | 122 29.8219 1.4 CW-15 48 44.2980 122 29.8289 48 44.2983 122 29.8299 16-Sep 1122 7.0 23.0 2.3 -20.7 1238932.3 638447.5 1.4 2 1122 7.0 23.0 2.3 -20.7 1238931.1 638446.9 48 44.2982 122 29.8302 1.7 1.1 3 1123 7.0 23.0 2.3 -20.7 1238930.7 638445.7 48 44.2980 122 29.8303 1.8 CW-16 16-Sep 1129 7.4 24.3 2.3 -22.0 48 44.3069 122 29.8360 1238912.9 638497.8 48 44.3065 | 122 29.8350 1.5 2 7.4 24.3 2.3 -22.0 638497.2 48 44.3064 122 29.8348 1.8 1.0 1129 1238913.7 3 1130 7.4 24.3 2.3 -22.0 1238913.3 638500.2 48 44.3069 122 29.8349 1.4 CW-17 16-Sep 1141 5.2 17.1 2.2 -14.9 48 44.2620 122 29.8140 1238993.0 638223.6 48 44.2617 | 122 29.8136 8.0 -14.9 2 1142 5.2 17.1 2.2 1238995.4 638221.7 48 44.2614 | 122 29.8130 1.7 1.0 3 1143 5.2 17.1 2.2 -14.9 1238991.9 638224.2 48 44.2618 | 122 29.8139 0.4 2.2 CW-18 16-Sep 1146 6.0 19.7 2.1 -17.6 48 44.2709 122 29.8212 1238961.9 638273.5 48 44.2698 | 122 29.8216 2 19.7 48 44.2704 122 29.8195 1146 6.0 2.1 -17.6 1238970.5 638277.0 2.3 1.0 3 1147 19.7 2.1 -17.6 1238964.4 638274.1 48 44.2699 | 122 29.8210 1.9 6.0 48 44.2799 122 29.8283 CW-19 16-Sep 1151 23.0 2.1 -20.9 48 44.2800 122 29.8278 0.6 7.0 1238938.4 638336.1 2 22.6 2.1 -20.5 638331.8 48 44.2793 122 29.8277 1.3 1.0 1152 6.9 1238938.7 3 1152 6.9 22.6 2.1 -20.5 1238938.7 638332.4 48 44.2794 | 122 29.8277 1.2 CW-20 16-Sep 1155 7.1 23.3 2.1 48 44.2888 122 29.8354 1238910.6 638391.4 48 44.2890 122 29.8350 1 -21.2 0.6 2 1156 7.1 23.3 2.1 -21.2 1238908.6 638390.8 48 44.2889 122 29.8355 0.2 1.0 3 1157 7.1 23.3 2.1 -21.2 1238905.0 638395.8 48 44.2897 | 122 29.8364 2.0 CW-21 16-Sep 1201 7.0 23.0 2.1 -20.9 48 44.2707 122 29.8348 1238909.9 638283.2 48 44.2712 122 29.8346 0.9 2 1201 7.0 23.0 2.1 -20.9 1238915.1 638282.4 48 44.2711 122 29.8333 2.0 1.1 3 1203 7.0 23.0 2.1 -20.9 1238913.2 638287.3 48 44.2719 | 122 29.8338 2.5 CW-22 1 16-Sep 1314 5.6 18.4 2.5 -15.9 48 44.2984 122 29.8015 1239039.4 638449.4 48 44.2990 122 29.8033 2.5 2 1314 5.6 18.4 2.5 -15.9 1239036.6 638450.7 48 44.2992 | 122 29.8040 3.4 1.0 3 1315 5.6 18.4 2.5 -15.9 1239037.4 638451.3 48 44.2993 122 29.8038 3.3 CW-23 16-Sep 1320 6.3 20.7 2.6 -18.1 48 44.3073 122 29.8087 1239011.0 638496.3 48 44.3066 122 29.8106 2.7 2 1320 6.2 20.3 2.6 -17.7 1239014.1 638490.7 48 44.3057 | 122 29.8098 3.3 1.4 -18.1 3 1321 6.3 20.7 2.6 1239010.6 638495.1 48 44.3064 | 122 29.8107 3.0 CW-24 1 16-Sep 1324 4.0 13.1 2.6 -10.5 48 44.3164 122 29.8021 1239043.1 638546.7 48 44.3150 122 29.8029 2.9 2 1325 4.0 13.1 2.6 -10.5 1239042.4 638550.9 48 44.3157 122 29.8031 1.8 1.3 3 13.1 2.7 -10.4 48 44.3167 122 29.8034 1.6 1326 4.0 1239041.3 638557.0 CW-25 48 44.3256 122 29.7956 1239071.1 16-Sep 1329 3.0 9.8 2.7 -7.1 638616.0 48 44.3265 | 122 29.7963 1.9 2 1330 3.0 9.8 2.7 -7.1 1239073.1 638613.5 48 44.3261 122 29.7958 1.0 1.3 2.8 -7.0 48 44.3272 122 29.7956 3 1331 3.0 9.8 1239074.0 638620.2 3.0 CW-26 48 44.3347 122 29.7890 16-Sep 1337 1.5 4.9 2.8 -2.1 1239098.0 638670.2 48 44.3355 122 29.7899 1.8 2 1338 1.5 4.9 2.9 -2.0 1239099.2 638667.1 48 44.3350 122 29.7896 8.0 1.3 3 1338 1.5 4.9 2.9 -2.0 1239094.4 638669.0 48 44.3353 122 29.7908 2.4 CW-27 48 44.3439 122 29.7825 1239125.8 16-Sep 1344 5.6 18.4 3.0 -15.4 638723.7 48 44.3444 | 122 29.7833 1.4

Hart Crowser

Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Meter Meter Predicted Predicted Sample Target Sample Location Sample Location Distance **GPS GPS** Wheel Wheel Nearest Mudline DGPS Trimble NT300D DGPS Trimble NT300D tο Status Comments HDOP Station Sample Date Target Time Depth Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, SPCS, Wa. N. NAD 1983, Decimal Min. No. Rep. m. ft. ft. (MLLW) Latitude Longitude Easting (x) Northing (y) Latitude Longitude (m.)good < 2 2 1345 5.6 18.4 3.0 -15.4 1239127.0 638727.3 48 44.3450 122 29.7830 2.2 1.3 48 44.3447 3 1345 5.6 18.4 3.0 -15.4 1239128.6 638725.5 122 29.7826 1.5 CW-28 1348 6.1 20.0 3.1 -16.9 48 44.3530 122 29.7760 1239150.7 638781.5 48 44.3540 122 29.7774 2.5 1 16-Sep 2 1349 6.0 19.7 3.1 -16.6 1239150.8 638783.4 48 44.3543 122 29.7774 3.0 1.3 48 44.3540 122 29.7776 3 1349 6.1 20.0 3.1 -16.9 1239149.9 638781.6 2.7 CW-29 16-Sep 1352 5.9 19.4 3.1 -16.3 48 44.3622 122 29.7694 1239184.2 638821.6 48 44.3607 122 29.7693 2.7 2 1353 5.9 19.4 3.1 -16.3 1239188.3 638825.1 48 44.3613 122 29.7683 2.1 1.3 3 1353 5.9 19.4 3.2 -16.2 1239193.7 638831.7 48 44.3624 | 122 29.7670 3.0 CW-30 16-Sep 1356 6.1 20.0 3.2 -16.8 48 44.3713 122 29.7629 1239209.6 638882.5 48 44.3708 122 29.7633 1.1 1 2 1356 6.1 20.0 3.2 -16.8 1239212.0 638879.4 48 44.3703 | 122 29.7627 1.9 1.3 3 1357 6.2 20.3 3.2 -17.1 1239212.9 638886.0 48 44.3714 | 122 29.7625 0.5 CW-31 16-Sep 48 44.3804 122 29.7563 1401 6.6 21.7 3.3 -18.4 1239235.8 638940.3 48 44.3804 | 122 29.7571 0.9 2 1401 6.6 21.7 3.3 -18.4 1239232.3 638946.4 48 44.3814 | 122 29.7580 2.7 1.2 3 1402 6.7 22.0 3.3 -18.7 1239237.5 638942.7 48 44.3808 | 122 29.7567 8.0 CW-32 1406 48 44.3896 122 29.7498 1239269.7 48 44.3900 122 29.7490 16-Sep 6.4 21.0 3.4 -17.6 638997.9 1.3 2 1406 20.7 3.4 -17.3 1239273.4 639002.1 48 44.3907 | 122 29.7481 2.9 1.2 6.3 3 20.7 3.4 -17.3 48 44.3899 122 29.7498 1407 6.3 1239266.4 638997.4 0.6 CW-33 16-Sep 1434 6.1 20.0 4.0 -16.0 48 44.3990 122 29.7450 1239286.6 48 44.3993 | 122 29.7451 0.6 639054.1 2 1435 6.0 19.7 4.1 -15.6 1239287.4 639054.1 48 44.3993 | 122 29.7449 0.6 1.0 3 6.1 20.0 4.1 -15.9 1239289.0 639052.9 48 44.3991 122 29.7445 1436 0.6 CW-34 16-Sep 1439 6.0 19.7 4.1 -15.6 48 44.4079 122 29.7367 1239322.2 639101.4 48 44.4072 122 29.7365 1.2 2 1439 6.0 19.7 4.1 -15.6 1239316.1 639099.7 48 44.4069 122 29.7380 2.4 1.0 3 1440 6.0 19.7 4.2 -15.5 1239321.0 639100.2 48 44.4070 122 29.7368 1.6 CW-35 16-Sep 48 44.4170 122 29.7302 1239347.5 48 44.4160 122 29.7305 1443 5.9 19.4 4.2 -15.2 639154.4 1.9 2 1444 6.0 19.7 4.2 -15.5 1239350.3 639154.9 48 44.4161 | 122 29.7298 1.7 1.0 3 1445 5.9 19.4 4.3 -15.1 1239353.1 639154.3 48 44.4160 122 29.7291 2.3 CW-36 16-Sep 1448 6.3 20.7 4.4 -16.3 48 44.4261 122 29.7236 1239377.4 639217.6 48 44.4265 | 122 29.7234 0.7 48 44.4269 122 29.7244 2 6.4 21.0 4.4 -16.6 1239373.4 639220.1 1.7 0.9 1449 3 1449 6.4 21.0 4.4 -16.6 1239374.6 639219.5 48 44.4268 122 29.7241 1.4 CW-37 16-Sep 1454 7.0 23.0 4.5 -18.5 48 44.4353 | 122 29.7171 | 1239407.4 639267.4 48 44.4348 122 29.7162 1.4 2 1455 7.0 23.0 4.5 -18.5 1239409.9 639269.2 48 44.4351 | 122 29.7156 1.9 0.9 3 1456 6.9 22.6 4.5 -18.1 1239404.2 639266.3 48 44.4346 122 29.7170 1.3 CW-38 16-Sep 1459 8.0 26.2 4.6 -21.6 48 44.4444 122 29.7106 1239431.4 639313.8 48 44.4425 122 29.7105 3.6 2 7.9 25.9 4.6 48 44.4423 122 29.7096 1459 -21.3 1239435.0 639312.5 4.1 1.0 3 1500 7.9 25.9 4.6 -21.3 1239442.0 639321.4 48 44.4438 122 29.7079 3.4 48 44.4540 122 29.7040 1239456.8 CW-39 16-Sep 1506 8.1 26.6 4.8 -21.8 639393.5 48 44.4557 122 29.7046 3.2 2 4.8 -21.8 48 44.4547 122 29.7053 2.1 1506 8.1 26.6 1239453.9 639387.5 0.9 3 1507 8.1 26.6 4.8 -21.8 1239452.6 639385.1 48 44.4543 | 122 29.7056 2.0 CW-40 1511 26.2 4.9 -21.3 48 44.4630 122 29.6980 1239485.9 639437.9 48 44.4631 122 29.6976 0.5 16-Sep 8.0 2 1512 8.0 26.2 4.9 -21.3 1239482.8 639443.4 48 44.4640 122 29.6984 1.9 1.0 3 1513 8.0 26.2 4.9 -21.3 1239484.1 639445.2 48 44.4643 | 122 29.6981 2.4

Hart Crowser

Cornwall Avenue Landfill, Bellingham

SPI Mapping Survey

September 2008 Meter Meter Predicted Predicted Sample Target Sample Location Sample Location Distance **GPS GPS** Wheel Wheel Nearest Mudline DGPS Trimble NT300D DGPS Trimble NT300D tο Status Comments Station Sample Date Target Time Depth Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, SPCS, Wa. N. NAD 1983, Decimal Min. **HDOP** No. Rep. m. ft. ft. (MLLW) Latitude Longitude Easting (x) Northing (y) Latitude Longitude (m.) good < 2 CW-41 16-Sep 1525 4.0 13.1 5.2 48 44.3075 122 29.7950 1239073.2 638505.9 48 44.3084 122 29.7952 -7.9 1.7 2 1526 4.0 13.1 5.2 -7.9 1239068.8 638508.4 48 44.3088 | 122 29.7963 2.9 1.0 3 4.0 13.1 5.3 -7.8 1239072.4 638506.5 48 44.3085 122 29.7954 1.9 1527 CW-42 16-Sep 1531 3.0 9.8 5.4 -4.4 48 44.3166 122 29.7885 1239103.3 638558.7 48 44.3172 122 29.7880 1.2 2 1531 3.0 9.8 5.4 -4.4 1239104.2 638561.8 48 44.3177 | 122 29.7878 2.1 1.1 3 1532 3.0 9.8 5.4 -4.4 1239103.3 638557.5 48 44.3170 122 29.7880 0.9 CW-43 16-Sep 1537 3.0 9.8 5.5 -4.3 48 44.3258 122 29.7819 1239122.5 638608.8 48 44.3255 122 29.7835 2.0 2 1537 3.1 10.2 5.5 -4.7 1239124.6 638614.9 48 44.3265 | 122 29.7830 1.9 1.2 3 1538 3.0 9.8 5.5 -4.3 1239127.8 638613.0 48 44.3262 122 29.7822 0.8 CW-44 16-Sep 1542 3.2 10.5 5.6 -4.9 48 44.3349 122 29.7754 1239159.4 638662.8 48 44.3345 | 122 29.7746 1.2 2 1542 3.2 10.5 5.6 -4.9 1239161.5 638665.8 48 44.3350 | 122 29.7741 1.6 1.2 3 1543 3.3 10.8 5.6 -5.2 1239161.5 638667.0 48 44.3352 | 122 29.7741 1.6 CW-45 1 16-Sep 1546 4.8 15.7 5.7 -10.0 48 44.3441 122 29.7688 1239181.6 638721.3 48 44.3442 122 29.7694 0.7 2 1547 4.8 15.7 5.7 -10.0 1239183.7 638726.1 48 44.3450 122 29.7689 1.7 1.2 3 4.9 -10.4 638729.2 48 44.3455 122 29.7694 2.7 1547 16.1 5.7 1239181.8 CW-46 16-Sep 1549 5.0 16.4 5.8 -10.6 48 44.3532 122 29.7623 1239207.6 638767.5 48 44.3519 122 29.7632 2.7 2 16.4 5.8 -10.6 638775.9 48 44.3533 122 29.7614 1.2 1550 5.0 1239215.0 1.1 5.0 16.4 5.8 -10.6 1239208.1 638772.4 48 44.3527 122 29.7631 3 1550 1.4 CW-47 1 16-Sep 1557 6.1 20.0 6.0 -14.0 48 44.3623 122 29.7557 1239237.0 638827.7 48 44.3619 122 29.7562 1.0 1.2 2 20.3 6.0 -14.3 1239233.9 638830.8 48 44.3624 122 29.7570 1.5 1558 6.2 3 1558 6.2 20.3 6.0 -14.3 1239234.7 638829.6 48 44.3622 122 29.7568 1.3 CW-48 16-Sep 1601 6.8 22.3 6.1 -16.2 48 44.3715 122 29.7492 1239262.2 638877.1 48 44.3701 122 29.7502 2.8 1 2 1602 6.8 22.3 6.1 -16.2 1239274.3 638878.0 48 44.3703 122 29.7472 3.3 1.2 22.3 3 1602 6.8 6.1 -16.2 1239271.9 638879.9 48 44.3706 | 122 29.7478 2.4 CW-49 16-Sep 1608 7.3 24.0 6.2 -17.8 48 44.3806 122 29.7427 1239293.9 638945.7 48 44.3815 122 29.7427 1.6 1 2 7.3 24.0 6.2 -17.8 1239293.0 638943.3 48 44.3811 122 29.7429 0.9 1.2 1608 3 1609 7.4 24.3 6.3 -18.0 1239291.5 638945.2 48 44.3814 122 29.7433 1.6 CW-50 16-Sep 1613 6.9 22.6 6.3 -16.3 48 44.3898 122 29.7361 1239321.1 638997.4 48 44.3901 122 29.7362 0.6 2 22.6 6.3 -16.3 1239321.9 638996.8 48 44.3900 122 29.7360 0.5 1.2 1613 6.9 3 1614 6.9 22.6 6.4 -16.2 1239326.0 638999.8 48 44.3905 | 122 29.7350 1.9 CW-51 48 44.3989 122 29.7296 16-Sep 1617 6.5 21.3 6.4 -14.9 1239350.5 639053.4 48 44.3994 | 122 29.7292 1.0 2 1618 6.5 21.3 6.5 -14.8 1239352.4 639046.0 48 44.3982 122 29.7287 1.7 1.2 3 1619 6.6 21.7 6.5 -15.2 1239350.1 639054.0 48 44.3995 122 29.7293 1.1 CW-52 22.0 6.6 -15.4 48 44.4079 122 29.7232 0.3 1 16-Sep 1622 6.7 48 44.4080 122 29.7230 1239375.8 639104.5 2 22.0 6.6 -15.4 1239380.2 639107.5 48 44.4084 | 122 29.7221 1.3 1.2 1622 6.7 3 1623 6.7 22.0 6.6 -15.4 1239379.9 639108.7 48 44.4086 | 122 29.7222 1.5 CW-53 22.3 48 44.4172 122 29.7165 1239397.1 48 44.4172 122 29.7182 2.1 16-Sep 1636 6.8 6.9 -15.4 639160.6 2 1637 6.7 22.0 6.9 -15.1 1239395.8 639158.8 48 44.4169 122 29.7185 2.5 1.1 3 1638 6.7 22.0 6.9 -15.1 1239396.2 639157.6 48 44.4167 122 29.7184 2.5 CW-54 16-Sep 1640 6.7 22.0 7.0 -15.0 48 44.4263 122 29.7100 1239424.5 639219.6 48 44.4270 122 29.7117 2.5 2 1641 6.7 22.0 7.0 -15.0 1239425.8 639223.3 48 44.4276 | 122 29.7114 2.9 1.2

Hart Crowser Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Predicted Sample Target Sample Location Distance GPS Meter Meter Predicted Sample Location GPS Wheel DGPS Trimble NT300D Wheel Nearest Mudline DGPS Trimble NT300D Status to Comments NAD 1983, SPCS, Wa. N. Station Sample Date Time Depth Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, Decimal Min. Target HDOP No. Rep. (MLLW) Easting (x) Northing (y) Latitude Longitude Latitude Longitude (m.) good < 2 1642 6.6 21.7 7.0 -14.7 1239438.5 639213.9 48 44.4261 122 29.7082 2.2 3

SOFTWARE: Corpscon 5.11.08

Hart Crowser

Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Sample Target Meter Meter Predicted Predicted Sample Location Sample Location Distance **GPS** Wheel Wheel **GPS** Nearest Mudline DGPS Trimble NT300D DGPS Trimble NT300D Status Comments Station Sample Date Time Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, SPCS, Wa. N. NAD 1983, Decimal Min. **HDOP** Depth Target Rep. Latitude Easting (x) Northing (y) No. ft. ft. (MLLW) Longitude Latitude Longitude (m.) m. good < 2 CW-55 16-Sep 1646 48 44.4355 122 29.7034 122 29.7029 6.6 21.7 7.1 -14.6 1239460.9 639264.5 48 44.4345 1.9 2 6.3 20.7 7.1 1239468.1 639264.3 48 44.4345 122 29.7011 3.4 1..2 1647 -13.6 3 1647 6.3 20.7 7.1 -13.6 1239468.6 639267.9 48 44.4351 122 29,7010 3.0 CW-56 23.3 1239493.6 639328.8 48 44.4452 122 29.6951 17-Sep 0828 7.1 7.1 -16.2 48 44.4446 122 29.6969 2.4 2 7.0 23.0 7.0 -16.0 1239483.9 639323.0 48 44.4442 122 29.6975 1.1 1.0 0830 3 0831 7.0 23.0 7.0 -16.0 1239485.1 639322.9 48 44.4442 122 29.6972 0.9 -17.8 CW-57 17-Sep 0837 7.8 25.6 7.8 48 44.4538 122 29.6903 1239518.5 639383.0 48 44.4542 122 29.6892 1.6 2 0837 7.8 25.6 7.8 -17.8 1239514.6 639387.4 48 44.4549 122 29.6902 2.1 1.0 3 0838 7.8 25.6 7.8 -17.8 1239513.7 639384.4 48 44.4544 | 122 29.6904 1.2 CW-58 0843 7.8 25.6 7.8 -17.8 48 44.4629 122 29.6838 1239538.2 639438.0 48 44.4633 122 29.6846 1.2 17-Sep 2 0844 7.7 25.3 7.7 -17.6 1239542.3 639441.5 48 44.4639 122 29.6836 1.9 1.2 3 0844 7.7 25.3 7.7 -17.6 1239541.5 639442.1 48 44.4640 | 122 29.6838 2.0 CW-59 17-Sep 0848 7.2 23.6 7.2 -16.4 48 44.4720 122 29.6650 1239622.4 639495.7 48 44.4731 122 29.6640 2.4 2 0848 7.2 23.6 7.2 -16.4 1239619.5 639496.4 48 44.4732 122 29.6647 2.3 1.2 3 0849 7.2 23.6 7.2 -16.4 1239619.9 639495.8 48 44.4731 122 29.6646 2.1 7.2 CW-60 0854 7.2 23.6 -16.4 48 44.4631 122 29.6701 1239593.8 639439.8 48 44.4638 122 29.6708 1.6 17-Sep 2 0854 7.2 23.6 7.2 -16.4 1239589.7 639437.5 48 44.4634 122 29.6718 2.1 1.2 3 48 44.4640 122 29.6697 0855 7.2 23.6 7.2 -16.4 1239598.2 639440.9 1.8 CW-61 17-Sep 0901 6.9 22.6 6.9 -15.7 48 44.4539 122 29.6767 1239566.3 639379.6 48 44.4538 122 29.6773 8.0 48 44.4535 122 29.6777 1.5 2 0901 6.9 22.6 6.9 -15.7 1239564.7 639377.8 1.5 22.6 48 44.4535 3 0902 6.9 6.9 -15.7 1239564.3 639377.8 122 29.6778 1.6 CW-62 0905 5.9 19.4 5.9 -13.5 48 44.4448 122 29.6832 1239542.4 639333.3 48 44.4461 122 29.6830 2.4 17-Sep 2 0906 5.9 19.4 5.9 -13.5 1239544.4 639330.2 48 44.4456 122 29.6825 1.7 1.5 3 18.4 5.6 -12.8 1239545.8 639323.4 48 44.4445 122 29.6821 1.5 0906 5.6 CW-63 17-Sep 0911 5.6 18.4 6.3 -12.1 48 44.4357 122 29.6898 1239506.5 639274.4 48 44.4363 122 29.6916 2.6 2 0911 5.5 18.0 6.3 -11.7 1239511.7 639271.9 48 44.4359 122 29.6903 8.0 1.5 3 0912 5.5 18.0 6.3 -11.7 1239511.0 639274.3 48 44.4363 | 122 29.6905 1.5 CW-64 17-Sep 0916 5.2 17.1 6.2 -10.9 48 44.4265 122 29.6963 1239488.9 639218.8 48 44.4271 122 29.6957 1.3 2 0917 5.2 17.1 6.2 -10.9 1239487.2 639217.1 48 44.4268 122 29.6961 0.6 1.5 639213.5 3 0917 5.2 17.1 6.2 -10.9 1239485.1 48 44.4262 122 29.6966 0.7 48 44.4174 122 29.7028 1239451.3 CW-65 17-Sep 0923 5.1 16.7 6.1 -10.6 639157.6 48 44.4169 122 29.7047 2.5 2 0924 5.2 17.1 6.1 -11.0 1239450.9 639154.6 48 44.4164 122 29.7048 3.0 1.4 3 5.2 17.1 6.1 -11.0 1239451.4 48 44.4171 122 29.7047 2.4 0925 639158.8 CW-66 17-Sep 0929 5.7 18.7 6.0 -12.7 48 44.4082 122 29.7094 1239435.2 639102.0 48 44.4077 122 29.7084 1.6 2 0929 5.6 18.4 6.0 -12.41239435.1 639097.8 48 44.4070 | 122 29.7084 2.6 1.4 3 5.6 18.4 6.0 -12.4 1239431.9 639097.8 48 44.4070 122 29.7092 2.3 0930

Hart Crowser Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Sample Target Sample Location Sample Location Meter Meter Predicted Predicted Distance **GPS GPS** Wheel Wheel Nearest Mudline DGPS Trimble NT300D DGPS Trimble NT300D to Status Comments Sample NAD 1983, Decimal Min. HDOP Station Date Time Depth Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, SPCS, Wa. N. Target (MLLW) Easting (x) Northing (y) No. Rep. m. ft. ft. Latitude Longitude Latitude Longitude (m.) good < 2 CW-67 17-Sep 0935 5.8 19.0 5.9 -13.1 48 44.3991 122 29.7159 1239397.5 639050.5 48 44.3991 122 29.7175 1.9 2 0936 5.8 19.0 5.8 -13.2 1239398.2 639043.2 48 44.3979 122 29.7173 2.8 1.4 3 0937 5.8 19.0 5.8 -13.2 1239397.8 639046.3 48 44.3984 | 122 29.7174 2.2 CW-68 17-Sep 0940 4.9 16.1 5.8 -10.3 48 44.3900 122 29.7225 1239380.1 638987.0 48 44.3886 122 29.7215 2.8 1.3 1 2 0941 5.3 17.4 5.7 -11.7 1239377.3 638990.7 48 44.3892 122 29.7222 1.5 CW-69 48 44.3809 122 29.7285 17-Sep 0948 5.1 16.7 5.6 -11.1 48 44.3808 122 29.7290 1239350.9 638940.8 0.6 1.3 2 16.4 5.6 -10.8 1239347.6 638937.3 48 44.3803 122 29.7293 1.0 0949 5.0 48 44.3804 122 29.7302 3 0949 5.0 16.4 5.6 -10.8 1239344.0 638937.9 1.7 CW-70 17-Sep 0953 4.6 15.1 5.5 -9.6 48 44.3717 122 29.7355 1239319.7 638891.6 48 44.3727 | 122 29.7360 2.0 2 0954 4.5 14.8 5.5 -9.3 1239320.9 638891.6 48 44.3727 122 29.7357 1.9 1.3 3 0955 4.8 15.7 5.5 -10.2 1239316.1 638894.1 48 44.3731 122 29.7369 3.1 CW-71 48 44.3625 122 29.7421 638835.6 48 44.3634 122 29.7413 1.8 17-Sep 1000 3.0 9.8 5.4 -4.4 1239297.1 2 1001 3.0 9.8 5.3 -4.5 1239291.9 638833.2 48 44.3630 122 29.7426 1.1 1.2 3 1002 3.0 9.8 5.3 -4.5 1239290.3 638836.9 48 44.3636 122 29.7430 2.3 CW-72 17-Sep 1037 3.9 12.8 4.6 -8.2 48 44.3993 122 29.7022 1239459.4 639046.1 48 44.3986 122 29.7021 1.3 2 1037 4.0 13.1 4.6 1239461.1 639052.8 48 44.3997 122 29.7017 1.0 1.3 -8.5 3 1038 4.0 13.1 4.6 1239460.8 639056.5 48 44.4003 | 122 29.7018 1.9 -8.5 CW-73 4.1 13.5 4.5 -9.0 48 44.4084 122 29.6957 1239487.6 639104.5 48 44.4083 122 29.6954 0.5 17-Sep 1042 2 1042 4.1 13.5 4.5 -9.0 1239486.8 639105.8 48 44.4085 | 122 29.6956 0.2 1.4 3 1043 4.1 13.5 4.5 -9.0 1239485.9 639099.1 48 44.4074 122 29.6958 1.9 CW-74 17-Sep 13.5 4.4 -9.1 48 44.4176 122 29.6892 1239513.9 48 44.4189 122 29.6892 2.4 1047 4.1 639168.4 1.1 48 44.4185 122 29.6895 2 1047 4.1 13.5 4.4 -9.1 1239512.7 639166.0 1.8 CW-75 48 44.4268 122 29.6820 17-Sep 1053 3.9 12.8 4.3 -8.5 48 44.4267 122 29.6826 1239543.9 639215.8 8.0 1.1 2 3.9 12.8 4.3 -8.5 639216.5 48 44.4269 122 29.6826 0.3 1053 1239541.5 3 1054 3.9 12.8 4.3 -8.5 1239539.2 639222.6 48 44.4279 | 122 29.6832 2.3 CW-76 17-Sep 1058 12.5 4.2 -8.3 48 44.4359 122 29.6761 639273.7 48 44.4364 122 29.6763 1.1 3.8 1239568.1 1.0 2 3.8 12.5 4.2 -8.3 639275.0 48 44.4366 122 29.6767 1.6 1059 1239566.5 3 1059 3.8 12.5 4.2 -8.3 1239571.7 639276.1 48 44.4368 122 29.6754 1.9 CW-77 48 44.4445 122 29.6702 1 17-Sep 1103 4.0 13.1 4.1 -9.0 48 44.4450 122 29.6695 1239593.7 639322.4 1.2 2 1104 4.1 13.5 4.1 -9.4 1239590.5 639324.3 48 44.4448 122 29.6710 1.8 1.1 3 1104 4.1 13.5 4.1 -9.4 1239597.3 639322.9 48 44.4446 | 122 29.6693 8.0 CW-78 17-Sep 1110 5.1 16.7 4.0 -12.7 48 44.4541 122 29.6630 1239622.8 639387.5 48 44.4553 122 29.6633 2.2 2 16.7 4.0 -12.7 639385.1 48 44.4549 122 29.6644 2.2 1110 5.1 1239618.4 1.1 3 1111 5.0 16.4 4.0 -12.41239622.0 639386.9 48 44.4552 122 29.6635 2.1 CW-79 3.9 -15.5 48 44.4633 122 29.6565 48 44.4627 122 29.6558 1.3 1 17-Sep 1117 5.9 19.4 1239654.0 639431.8 2 5.9 19.4 3.9 -15.5 1239653.3 639437.3 48 44.4636 122 29.6560 8.0 1.1 1118 3 1118 5.9 19.4 3.9 -15.5 1239654.4 639434.8 48 44.4632 122 29.6557 0.9 CW-80 17-Sep 1121 19.7 3.8 -15.9 48 44.4724 122 29.6499 48 44.4729 122 29.6496 1.0 6.0 1239680.2 639493.3 2 6.0 19.7 3.8 -15.9 639493.3 48 44.4729 | 122 29.6497 0.9 1.0 1122 1239679.8 48 44.4732 | 122 29.6501 1123 6.0 19.7 3.8 -15.9 1239678.3 639495.1 1.5

Hart Crowser Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Copton	Deptember 2000			Meter	Meter	Predicted	Predicted	Sample Target		Sample	Location	Sample	Location	Distance	GPS	
			GPS	Wheel	Wheel	Nearest	Mudline	Sample	e raigei		ble NT300D		ble NT300D	to	Status	Comments
Station	Sample	Date	Time	Depth	Depth	Tide	Depth, ft.	NAD 1002	Decimal Min.	NAD 1983, SPCS, Wa. N.		NAD 1983, Decimal Min.		Target	HDOP	Comments
No.	Rep.	Date	Tille	m.	ft.	ft.	(MLLW)	Latitude	Longitude		Northing (y)	Latitude	Longitude	(m.)	good < 2	
CW-81	1 1	17-Sep	1126	5.9	19.4	3.7	-15.7		122 29.6362		639495.7	48 44.4735	122 29.6350	2.2	900u < 2	
000-01	2	17-оср	1127	5.9	19.4	3.7	-15.7	70 77.7720	122 23.0002	1239737.1	639498.1	48 44.4739	122 29.6355	2.5	1.0	
	3		1127	5.9	19.4	3.7	-15.7			1239743.9	639498.0	48 44.4739	122 29.6338	3.8	1.0	
CW-82	1	17-Sep	1130		16.1	3.7	-12.4	18 11 1728	122 29.6226		639493.5	48 44.4733	122 29.6236	1.6		
011-02	2	17-оер	1130		16.4	3.6	-12.8	70 77.7720	122 23.0220	1239787.3	639497.0	48 44.4739	122 29.6230	2.1	1.0	
	3		1131		16.4	3.6	-12.8			1239787.3	639496.4	48 44.4738	122 29.6230	1.9	1.0	
CW-83	1	17-Sep	1134		8.2	3.6	-4.6	18 11 1730	122 29.6089		639485.0	48 44.4721	122 29.6100	2.2		
CVV-03	2	17-оер	1135		7.9	3.6	-4.3	40 44.47 30	122 29.0009	1239842.6	639487.9	48 44.4726	122 29.6092	0.8	1.0	
	3		1135		7.5	3.6	-3.9			1239842.7	639490.4	48 44.4730	122 29.6092	0.4	1.0	
CW-84	1	17-Sep	1249		19.7	3.0	-16.7	18 11 3163	122 29.8158		638549.6	48 44.3153	122 29.8153	1.9		
CVV-04	2	17-оер	1250		20.7	3.0	-17.7	40 44.3103	122 29.0130	1238987.4	638557.0	48 44.3165	122 29.8168	1.3	1.0	
	3		1250		20.7	3.0	-17.7			1238993.7	638552.0	48 44.3157	122 29.8152	1.3	1.0	
CW-85	1	17-Sep	1254		16.1	3.0	-13.1	18 11 3251	122 29.8093		638604.9	48 44.3245	122 29.8086	1.8		
CVV-03	2	17-оер	1254	4.9	16.1	3.0	-13.1	40 44.3234	122 29.0093	1239021.4	638601.8	48 44.3240	122 29.8078	3.1	1.0	
	3		1255		16.4	3.0	-13.1			1239024.0	638605.5	48 44.3246	122 29.8081	2.0	1.0	
CW-86	1	17-Sep	1300	5.4	17.7	3.0	-14.7	18 11 3315	122 29.8027	1239023.4	638667.7	48 44.3349	122 29.8032	0.9		
O V V - 0 0	2	17-оср	1301	5.4	17.7	3.0	-14.7	70 77.0070	122 23.0021	1239045.4	638671.3	48 44.3355	122 29.8030	1.8	1.0	
	3		1301	5.3	17.4	3.0	-14.4			1239043.4	638671.8	48 44.3356	122 29.8013	2.6	1.0	
CW-87	1	17-Sep	1304		19.7	3.0	-16.7	18 11 3137	122 29.7962	1239078.2	638718.0	48 44.3433	122 29.7951	1.5		
011-01	2	17-оср	1305		19.7	3.0	-16.7	70 77.0707	122 23.7 302	1239070.2	638717.6	48 44.3432	122 29.7969	1.3	1.0	
	3		1306		20.0	3.0	-17.0			1239070.5	638717.6	48 44.3432	122 29.7970	1.3	1.0	
CW-88	1	17-Sep	1308		20.3	3.0	-17.3	18 11 3528	122 29.7896		638780.0	48 44.3536	122 29.7875	3.0		
O V V - 0 0	2	17-оср	1309		21.0	3.0	-18.0	40 44.0020	122 23.7030	1239102.0	638778.3	48 44.3533	122 29.7895	0.9	1.0	
	3		1310		20.7	3.0	-17.7			1239103.5	638772.8	48 44.3524	122 29.7891	1.0	1.0	
CW-89	1	17-Sep	1314		20.7	3.1	-17.6	48 44 3620	122 29.7831		638828.8	48 44.3617	122 29.7829	0.5		
OVV-03	2	17-оер	1314		20.7	3.1	-17.6	40 44.3020	122 23.7031	1239129.3	638831.9	48 44.3622	122 29.7830	0.5	1.4	
	3		1315		20.7	3.1	-17.6			1239130.2	638836.1	48 44.3629	122 29.7828	1.8	17	
CW-90	1	17-Sep	1320	6.0	19.7	3.1	-16.6	48 44 3711	122 29.7766		638888.6	48 44.3716	122 29.7782	2.2		
011 30	2	17 ОСР	1321	6.3	20.7	3.1	-17.6	40 44.07 11	122 25.7700	1239157.8	638886.6	48 44.3713	122 29.7762	0.6	1.3	
	3		1322	6.3	20.7	3.1	-17.6			1239155.4	638884.2	48 44.3709	122 29.7768	0.5	1.0	
CW-91	1	17-Sep	1330		23.3	3.2	-20.1	48 44 3252	122 29.8229		638606.1	48 44.3245	122 29.8225	1.4		
3,, 31	2	., оср	1331	7.1	23.3	3.2	-20.1	10 44.0202	122 20.0220	1238961.3	638613.5	48 44.3257	122 29.8236	1.2	1.4	
	3		1331	7.1	23.3	3.2	-20.1			1238961.2	638611.7	48 44.3254	122 29.8236	0.9	1.7	
CW-92	1	17-Sep	1335		23.0	3.2	-19.8	48 44 3343	122 29.8164		638664.7	48 44.3342	122 29.8174	1.3		
3 32	2	., сор	1336		23.0	3.2	-19.8	.5 11.0040		1238987.9	638673.2	48 44.3356	122 29.8173	2.6	1.3	
	3		1337	7.0	23.0	3.2	-19.8			1238990.3	638673.1	48 44.3356	122 29.8167	2.4	1.0	
CW-93	1	17-Sep	1340		21.7	3.3	-18.4	48 44 3435	122 29.8098		638715.6	48 44.3427	122 29.8085	2.2		
311 33	2	., оср	1340		21.7	3.3	-18.4	15 44.0400	122 20.0000	1239018.1	638710.8	48 44.3419	122 29.8100	2.9	1.3	
	3		1341	6.6	21.7	3.3	-18.4			1239018.1	638715.6	48 44.3427	122 29.8086	2.3	1.0	
	J J		10-1	0.0	21.1	0.0	-10.7	1		1200020.0	000710.0	70 77.0721	122 23.0000	۲.۱	l	I

Hart Crowser

Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Septen				Meter	Meter	Predicted	Predicted	Sampl	e Target	Sample Location		Sample	Location	Distance	GPS	
			GPS	Wheel	Wheel	Nearest	Mudline	Gampi	<u>c rarger</u>		ble NT300D		nble NT300D	to	Status	Comments
Station	Sample	Date	Time	Depth	Depth	Tide	Depth, ft.	NAD 1983.	Decimal Min.		SPCS, Wa. N.		Decimal Min.	Target	HDOP	Commonto
No.	Rep.			m.	ft.	ft.	(MLLW)	Latitude	Longitude	Easting (x)	Northing (y)	Latitude	Longitude	(m.)	good < 2	
CW-94	1	17-Sep	1344	6.9	22.6	3.3	-19.3	48 44.3526	122 29.8033	1239048.5	638778.9	48 44.3532	122 29.8028	1.2		
	2		1344	6.8	22.3	3.3	-19.0			1239047.4	638782.0	48 44.3537	122 29.8031	2.0	1.3	
	3		1345	6.8	22.3	3.4	-18.9			1239048.8	638774.0	48 44.3524	122 29.8027	0.8		
CW-95	1	17-Sep	1419	6.0	19.7	3.9	-15.8	48 44.2350	122 29.8200	1238968.4	638052.6	48 44.2335	122 29.8188	3.1		
	2	•	1420	6.0	19.7	3.9	-15.8			1238961.7	638058.2	48 44.2344	122 29.8205	1.3	1.1	
	3		1421	6.0	19.7	3.9	-15.8			1238963.3	638058.2	48 44.2344	122 29.8201	1.1		
CW-96	1	17-Sep	1423	6.7	22.0	3.9	-18.1	48 44.2430	122 29.8270	1238931.5	638113.6	48 44.2434	122 29.8283	1.8		
	2		1424	6.7	22.0	3.9	-18.1			1238931.9	638113.6	48 44.2434	122 29.8282	1.6	1.0	
	3		1425	6.7	22.0	3.9	-18.1			1238932.7	638112.4	48 44.2432	122 29.8280	1.3		
CW-97	1	17-Sep	1429	7.1	23.3	4.0	-19.3	48 44.2530	122 29.8340	1238904.3	638173.2	48 44.2531	122 29.8354	1.7		
	2		1429	7.1	23.3	4.0	-19.3			1238905.3	638167.7	48 44.2522	122 29.8351	2.0	1.0	
	3		1430	7.1	23.3	4.0	-19.3			1238907.9	638171.9	48 44.2529	122 29.8345	0.6		
CW-98	1	17-Sep	1435	7.7	25.3	4.1	-21.2	48 44.2620	122 29.8410	1238884.0	638224.1	48 44.2614	122 29.8407	1.2		
	2		1435	7.7	25.3	4.1	-21.2			1238887.1	638217.3	48 44.2603	122 29.8399	3.4	1.0	
	3		1436	7.7	25.3	4.2	-21.1			1238884.5	638227.7	48 44.2620	122 29.8406	0.5		
CW-99	1	17-Sep	1439	7.8	25.6	4.2	-21.4	48 44.2720	122 29.8480	1238857.3	638287.9	48 44.2718	122 29.8477	0.5		
	2		1439	7.8	25.6	4.2	-21.4			1238858.4	638284.9	48 44.2713		1.5	1.0	
	3		1441	7.8	25.6	4.2	-21.4			1238864.0	638285.4	48 44.2714	122 29.8460	2.7		
CW-100	1	17-Sep	1446	4.8	15.7	4.4	-11.3	48 44.2350	122 29.8060	1239018.9	638058.8	48 44.2347	122 29.8063	0.7		
	2		1447	4.8	15.7	4.4	-11.3			1239021.6	638056.9	48 44.2344	122 29.8056	1.2	1.0	
	3		1447	4.8	15.7	4.4	-11.3			1239018.5	638059.4	48 44.2348	122 29.8064	0.6		
CW-101	1	17-Sep	1450	5.5	18.0	4.4	-13.6	48 44.2440	122 29.8130	1238989.9	638116.0	48 44.2440	122 29.8138	1.0		
	2		1451	5.5	18.0	4.4	-13.6			1238993.1	638114.7	48 44.2438		0.4	1.0	
	3		1452	5.5	18.0	4.5	-13.5			1238991.6	638120.2	48 44.2447	122 29.8134	1.4		
CW-102	1	17-Sep	1500	6.1	20.0	4.6	-15.4	48 44.2530	122 29.8200	1238967.9	638174.9	48 44.2536	122 29.8196	1.2		
	2		1500	6.1	20.0	4.6	-15.4			1238967.0	638173.0	48 44.2533	122 29.8198	0.6	1.0	
	3		1501	6.1	20.0	4.6	-15.4			1238970.2	638173.6	48 44.2534	122 29.8190	1.4		
CW-103	1	17-Sep	1504	7.0	23.0	4.7	-18.3	48 44.2620	122 29.8280	1238935.2	638227.9	48 44.2622	122 29.8280	0.4		
	2		1505	7.0	23.0	4.7	-18.3			1238940.7	638222.9	48 44.2614	122 29.8266	2.0	1.0	
	3		1506	7.0	23.0	4.7	-18.3			1238938.4	638227.2	48 44.2621	122 29.8272	1.0		
CW-104	1	17-Sep	1510	3.5	11.5	4.9	-6.6	48 44.2350	122 29.7930	1239074.9	638065.5	48 44.2360	122 29.7924	2.0		
	2		1511	3.5	11.5	4.9	-6.6			1239069.4	638068.7	48 44.2365	122 29.7938	2.9	1.0	
	3		1512	3.5	11.5	4.9	-6.6			1239067.6	638062.6	48 44.2355	122 29.7942	1.7		<u> </u>

Hart Crowser Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Septem	DC1 200		1	N4-4	14-1	Donali stand	Describeration	Commi	. Tarret	Cample	Lagation	Commis	Laastian	Distance	0.00	1
			000	Meter	Meter	Predicted	Predicted	Sampi	<u>e Target</u>		Location		Location	Distance	GPS	
Q		ъ.	GPS	Wheel	Wheel	Nearest	Mudline			DGPS Trimble NT300D NAD 1983, SPCS, Wa. N.		DGPS Trimble NT300D		to	Status	Comments
Station	Sample	Date	Time	Depth	Depth	Tide	Depth, ft.	· · · · · · · · · · · · · · · · · · ·	Decimal Min.	,			Decimal Min.	Target	HDOP	
No.	Rep.			m.	ft.	ft.	(MLLW)	Latitude	Longitude	Easting (x)	Northing (y)	Latitude	Longitude	(m.)	good < 2	
CW-105	1	17-Sep	1517	3.9	12.8	5.0	-7.8	48 44.2440	122 29.8000	1239049.8		48 44.2441	122 29.7989	1.4	4.0	
	2		1517	3.9	12.8	5.0	-7.8			1239047.1	638119.0	48 44.2447	122 29.7996	1.4	1.0	
	3		1518	3.9	12.8	5.0	-7.8			1239050.7	638115.9	48 44.2442	122 29.7987	1.6		
CW-106	1	17-Sep	1523	4.3	14.1	5.1	-9.0	48 44.2530	122 29.8070	1239020.0	638167.0	48 44.2525	122 29.8066	1.0		
	2		1524	4.3	14.1	5.1	-9.0			1239021.5		48 44.2520	122 29.8062	2.1	1.0	
	3		1525	4.3	14.1	5.1	-9.0			1239020.8	638165.2	48 44.2522	122 29.8064	1.7		
CW-107	1	17-Sep	1530	3.1	10.2	5.2	-5.0	48 44.2350	122 29.7790	1239127.5	638061.9	48 44.2356	122 29.7793	1.2		
	2		1530	3.1	10.2	5.2	-5.0			1239128.6	638057.0	48 44.2348	122 29.7790	0.4	1.4	
	3		1531	3.1	10.2	5.3	-4.9			1239127.5	638058.3	48 44.2350	122 29.7793	0.4		
CW-108	1	17-Sep	1535	3.7	12.1	5.4	-6.7	48 44.2440	122 29.7870	1239100.8	638110.5	48 44.2435	122 29.7862	1.3		
	2		1536	3.7	12.1	5.4	-6.7			1239097.6	638110.0	48 44.2434	122 29.7870	1.1	1.4	
	3		1536	3.7	12.1	5.4	-6.7			1239099.6	638106.9	48 44.2429	122 29.7865	2.1		
CW-109	1	17-Sep	1540	2.2	7.2	5.5	-1.7	48 44.2350	122 29.7650	1239185.7	638054.0	48 44.2345	122 29.7648	1.0		
	2		1540	2.2	7.2	5.5	-1.7			1239187.7	638053.3	48 44.2344	122 29.7643	1.4	1.2	
	3		1541	2.2	7.2	5.5	-1.7			1239186.0	638050.3	48 44.2339	122 29.7647	2.1		
CW-110	1	18-Sep	0730	2.7	8.9	7.3	-1.6	48 44.4361	122 29.6624	1239626.0	639273.7	48 44.4366	122 29.6619	1.2		
	2		0731	2.7	8.9	7.3	-1.6			1239624.4	639274.9	48 44.4368	122 29.6623	1.4	0.9	
	3		0732	2.7	8.9	7.3	-1.6			1239626.8	639274.9	48 44.4368	122 29.6617	1.6		
CW-111	1	18-Sep	0736	3.1	10.2	7.4	-2.8	48 44.4452	122 29.6559	1239648.5	639328.5	48 44.4457	122 29.6566	1.3		
	2		0737	3.1	10.2	7.4	-2.8			1239650.8	639322.4	48 44.4447	122 29.6560	0.9	0.9	
	3		0737	3.1	10.2	7.4	-2.8			1239647.7	639327.9	48 44.4456	122 29.6568	1.4		
CW-112	1	18-Sep	0740	3.8	12.5	7.4	-5.1	48 44.4543	122 29.6493	1239679.7	639374.7	48 44.4534	122 29.6491	1.8		
	2		0741	3.8	12.5	7.4	-5.1			1239678.0	639373.5	48 44.4532	122 29.6495	2.1	0.9	
	3		0742	3.8	12.5	7.4	-5.1			1239679.7	639375.3	48 44.4535	122 29.6491	1.6		
CW-113	1	18-Sep	0744	5.9	19.4	7.4	-12.0	48 44.4635	122 29.6428	1239706.4	639438.0	48 44.4639	122 29.6428	0.8		
	2		0745	5.9	19.4	7.4	-12.0			1239702.2	639431.4	48 44.4628	122 29.6438	1.8	1.1	
	3		0746	5.9	19.4	7.4	-12.0			1239701.0	639432.0	48 44.4629	122 29.6441	1.9		
CW-114	1	18-Sep	0752	4.0	13.1	7.5	-5.6	48 44.4637	122 29.6291	1239760.3	639438.0	48 44.4641	122 29.6294	0.9		
	2		0752	4.0	13.1	7.5	-5.6			1239757.9	639438.7	48 44.4642	122 29.6300	1.5	1.1	
	3		0753	4.0	13.1	7.5	-5.6			1239758.6	639434.4	48 44.4635	122 29.6298	0.9		
CW-115	1	18-Sep	0756	2.8	9.2	7.5	-1.7	48 44.4639	122 29.6154	1239823.1	639439.7	48 44.4646	122 29.6138	2.4		
2	2	. с оср	0757	2.8	9.2	7.5	-1.7			1239822.6	639435.5	48 44.4639	122 29.6139	1.9	1.1	
	3		0757	2.8	9.2	7.5	-1.7			1239821.4	639436.1	48 44.4640	122 29.6142	1.5		
CW-116	1	18-Sep	0805	2.8	9.2	7.5	-1.7	48 44 4641	122 29.6018		639441.8	48 44.4651	122 29.6027	2.2		
200 170	2	.о оср	0805	2.8	9.2	7.5	-1.7	15 44.4041	122 20.0010	1239868.2	639440.6	48 44.4649	122 29.6026	1.9	1.1	
	3		0806	2.8	9.2	7.5	-1.7			1239867.8	639443.0	48 44.4653	122 29.6027	2.6	1.1	
CW-117	1	18-Sep	0811	2.8	9.2	7.6	-1.7	18 11 1722	122 29.5952	1239899.3	639484.9	48 44.4723	122 29.6027	1.7		
CVV-117		10-Sep			9.2	7.6	-1.6	+0 44.4/32	122 23.0302					0.9	1.1	
	2		0812	2.8						1239901.8	639489.7	48 44.4731	122 29.5945		1.1	
	3		0813	2.8	9.2	7.6	-1.6			1239899.8	639488.5	48 44.4729	122 29.5950	0.6		

Hart Crowser

Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Predicted Sample Target Meter Meter Predicted Sample Location Sample Location Distance **GPS** GPS Wheel Wheel Nearest Mudline DGPS Trimble NT300D DGPS Trimble NT300D to Status Comments Station Sample Date Time Depth Tide Depth, ft. NAD 1983, Decimal Min. NAD 1983, SPCS, Wa. N. NAD 1983, Decimal Min. **HDOP** Depth Target Rep. Latitude Easting (x) Northing (y) No. ft. ft. (MLLW) Longitude Latitude Longitude (m.) good < 2 m. CW-118 18-Sep 0816 2.4 7.9 48 44.4734 122 29.5816 1239947.9 639483.2 122 29.5830 7.6 -0.3 48 44.4722 2.8 2 0816 2.4 7.9 7.6 1239946.4 639487.5 48 44.4729 122 29.5834 2.4 1.0 -0.3 3 0817 2.4 7.9 7.6 -0.3 1239943.6 639490.0 48 44.4733 122 29.5841 3.1 CW-119 0830 3.7 12.1 48 44.3902 122 29.7088 1239426.1 638995.8 48 44.3902 122 29.7101 18-Sep 7.5 -4.6 1.6 2 0831 3.7 12.1 7.5 -4.6 1239429.4 639000.0 48 44.3909 122 29.7093 1.5 1.0 3 0831 3.7 12.1 7.5 -4.6 1239424.5 638995.2 48 44.3901 122 29.7105 2.1 CW-120 18-Sep 0843 3.0 9.8 7.5 -2.3 48 44.2536 122 29.7659 1239189.5 638173.7 48 44.2542 122 29.7645 2.0 2 0844 3.0 9.8 7.5 -2.3 1239186.7 638173.8 48 44.2542 122 29.7652 1.3 1.3 3 0845 3.0 9.8 7.5 -2.3 1239185.4 638168.3 48 44.2533 | 122 29.7655 8.0 CW-121 0849 3.0 9.8 7.5 -2.3 48 44.2626 122 29.7730 1239153.7 638228.6 48 44.2631 122 29.7737 1.3 18-Sep 2 0850 3.0 9.8 7.4 -2.4 1239151.9 638223.2 48 44.2622 122 29.7741 1.5 1.2 3 0850 3.0 9.8 7.4 -2.4 1239148.5 638229.3 48 44.2632 | 122 29.7750 2.7 CW-122 18-Sep 0853 3.0 9.8 7.4 -2.4 48 44.2715 122 29.7801 1239128.3 638281.5 48 44.2717 122 29.7803 0.4 2 0854 3.0 9.8 7.4 -2.4 1239126.0 638286.4 48 44.2725 122 29.7809 2.0 1.5 3 0855 3.0 9.8 7.4 -2.4 1239124.7 638283.4 48 44.2720 122 29.7812 1.6 12.5 7.4 CW-123 3.8 -5.1 48 44.2805 122 29.7873 1239096.9 638336.3 48 44.2806 122 29.7884 1.4 18-Sep 0857 2 0858 3.8 12.5 7.4 -5.1 1239095.2 638333.9 48 44.2802 122 29.7888 1.9 1.5 3 12.5 48 44.2804 122 29.7872 0858 3.8 7.4 -5.1 1239101.7 638335.0 0.2 CW-124 18-Sep 0903 4.2 13.8 7.4 48 44.2894 122 29.7944 1239076.7 638388.4 48 44.2891 122 29.7937 1.0 -6.4 48 44.2895 1.5 2 0903 4.2 13.8 7.3 -6.5 1239079.1 638390.8 122 29.7931 1.6 48 44.2894 3 0904 4.2 13.8 7.3 -6.5 1239077.1 638390.2 122 29.7936 1.0 CW-125 0911 2.1 6.9 7.3 0.4 48 44.2628 122 29.7593 1239205.4 638221.4 48 44.2621 122 29.7608 2.2 18-Sep 2 0911 2.1 6.9 7.3 0.4 1239206.6 638221.4 48 44.2621 122 29.7605 1.9 1.5 3 2.1 6.9 7.3 0.4 1239207.5 638226.2 48 44.2629 122 29.7603 1.2 0912 CW-126 18-Sep 0917 2.5 8.2 7.2 -1.0 48 44.2717 122 29.7665 1239186.3 638285.7 48 44.2726 122 29.7659 1.8 2 0917 2.5 8.2 7.2 -1.0 1239183.2 638271.8 48 44.2703 122 29.7666 2.6 1.5 2.5 7.2 48 44.2714 122 29.7666 3 0918 8.2 -1.0 1239183.3 638278.5 0.6 48 44.2807 122 29.7736 1239150.4 CW-127 18-Sep 0924 2.9 9.5 7.1 -2.4 638337.6 48 44.2810 122 29.7751 1.9 2 0925 2.9 9.5 7.1 -2.4 1239144.3 638334.0 48 44.2804 122 29.7766 3.7 1.4 3 0926 2.9 9.5 7.1 -2.4 1239149.2 638340.0 48 44.2814 122 29.7754 2.6 48 44.2896 122 29.7807 1239129.0 CW-128 18-Sep 0929 2.9 9.5 7.1 -2.4 638389.1 48 44.2894 122 29.7807 0.4 2 0930 2.9 9.5 7.1 -2.4 1239132.1 638386.0 48 44.2889 122 29.7799 1.7 1.4 3 2.9 9.5 7.1 -2.4 1239127.8 638390.4 48 44.2896 122 29.7810 0930 0.3 CW-129 18-Sep 0937 3.9 12.8 7.0 -5.8 48 44.2986 122 29.7879 1239085.6 638446.0 48 44.2986 122 29.7918 4.8 Boom sticks 2 12.8 48 44.2992 | 122 29.7913 0937 3.9 7.0 -5.8 1239087.6 638449.6 4.4 1.3 on target 3 0938 3.9 12.8 7.0 -5.8 1239090.9 638449.5 48 44.2992 122 29.7905 3.4

Hart Crowser

Cornwall Avenue Landfill, Bellingham September 2008

SPI Mapping Survey

Predicted Sample Target Sample Location Sample Location Distance GPS Meter Meter Predicted GPS Wheel Wheel DGPS Trimble NT300D DGPS Trimble NT300D Nearest Mudline to Status Comments Sample Station Date Time Depth Depth Tide Depth, ft. NAD 1983. Decimal Min. NAD 1983, SPCS, Wa. N. NAD 1983. Decimal Min. **HDOP** Target No. Rep. (MLLW) Latitude Longitude Easting (x) Northing (y) ft. ft. Latitude Longitude (m.) good < 2 CW-130 18-Sep 0956 3.2 10.5 6.8 -3.7 48 44.4810 122 29.5750 1239978.1 639537.3 48 44.4812 122 29.5758 1.0 2 3.2 10.5 6.7 -3.8 639533.1 48 44.4805 122 29.5756 1.2 1.2 0957 1239978.8 3 0957 3.2 10.5 6.7 -3.8 1239979.2 639533.7 48 44.4806 122 29.5755 1.0 CW-131 18-Sep | 1008 4.1 13.5 6.6 -6.9 48 44.4820 122 29.5880 1239925.3 639536.6 48 44.4809 | 122 29.5889 2.3 2 48 44.4812 122 29.5886 1.2 1009 4.1 13.5 6.6 -6.9 1239926.6 639538.4 1.7 3 1009 4.1 13.5 6.5 -7.0 1239935.1 639543.7 48 44.4821 122 29.5865 1.8 CW-132 18-Sep 1013 5.8 19.0 6.5 -12.5 48 44.4820 122 29.6010 1239873.6 639543.2 48 44.4818 | 122 29.6018 1.0 2 19.0 -12.5 639548.7 48 44.4827 122 29.6012 1.3 1013 5.8 6.5 1239876.1 1.3 3 1014 5.9 19.4 6.5 -12.9 1239874.9 639548.1 48 44.4826 | 122 29.6015 1.3 CW-133 48 44.4820 122 29.6150 1239816.9 7.0 23.0 6.4 -16.6 48 44.4820 122 29.6159 1.1 18-Sep 1017 639545.7 2 7.0 23.0 6.4 -16.6 48 44.4820 122 29.6141 1.3 1018 1239824.2 639545.5 1.1 1019 7.0 23.0 6.4 -16.6 1239829.5 639551.5 48 44.4830 | 122 29.6128 3.3 CW-134 18-Sep 7.0 23.0 6.4 -16.6 48 44.4820 122 29.6290 1239762.0 48 44.4833 122 29.6296 2.5 1 1022 639554.8 2 1022 7.0 23.0 6.4 -16.6 1239766.0 639551.6 48 44.4828 | 122 29.6286 1.6 1.3 3 1023 7.0 23.0 6.3 -16.7 1239762.0 639554.8 48 44.4833 | 122 29.6296 2.5 CW-135 18-Sep 1033 8.8 28.9 6.2 -22.7 48 44.2810 122 29.8420 1238877.2 638336.8 48 44.2799 122 29.8430 2.4 1033 8.8 28.9 6.2 -22.7 1238878.5 638338.6 48 44.2802 | 122 29.8427 1.7 1.3 3 1034 8.8 28.9 6.2 -22.7 1238877.8 638342.8 48 44.2809 122 29.8429 1.1 CW-136 1 18-Sep 1037 28.9 6.1 -22.8 48 44.2980 122 29.8410 1238879.2 638446.2 48 44.2979 122 29.8431 2.6 8.8 2 1038 8.8 28.9 6.1 -22.8 1238880.8 638447.4 48 44.2981 122 29.8427 2.1 1.2 3 1039 8.8 28.9 6.1 -22.8 1238881.2 638448.0 48 44.2982 122 29.8426 2.0 CW-137 18-Sep 1044 7.8 25.6 6.0 -19.6 48 44.3620 122 29.7970 1239070.4 638825.2 48 44.3609 122 29.7976 2.2 2 1045 7.8 25.6 6.0 -19.6 1239074.9 638828.8 48 44.3615 122 29.7965 1.1 1.2 3 1045 7.8 25.6 6.0 -19.6 1239077.8 638829.3 48 44.3616 | 122 29.7958 1.6 CW-138 1 18-Sep 1049 7.6 24.9 5.9 -19.0 48 44.3800 122 29.7700 1239186.3 638937.1 48 44.3797 122 29.7694 0.9 2 1050 7.6 24.9 5.9 -19.0 1239185.9 638937.7 48 44.3798 | 122 29.7695 0.7 1.2 3 7.6 24.9 48 44.3800 122 29.7693 1050 5.9 -19.0 1239186.7 638938.9 0.9

Appendix B SPI and Plan View Analysis Results

Station (CW)	Date	Time	Muni Waste	Wood Debris	Comments
1B	9/16/2008	9:42	No	No	Eelgrass, no obvious debris
2C	9/16/2008	9:55	No	No	Eelgrass, no obvious debris
3A	9/16/2008	10:00	No	No	Eelgrass, no obvious debris
4A	9/16/2008	10:05	No	No	Sparse eelgrass, no obvious debris
5A	9/16/2008	10:11	No	10%	Small wood particles and fibers in upper 2 cm, scattered below
5C	9/16/2008	10:12	No	10%	25% wood particles in upper 4 cm, 5 % wood particles below
6A	9/16/2008	10:16	No	3%	fine organic/wood particles in upper 5 cm
6B	9/16/2008	10:17	No	5%	fine wood/organic particles in upper 6 cm
7A	9/16/2008	10:21	No	No	fine organics, no obvious debris
8A	9/16/2008	10:27	No	No	partial overpenetration, no obvious debris
9A	9/16/2008	10:33	No	No	no obvious debris, fine organic particles in upper 3 cm
10A	9/16/2008	10:59	No	3%	small wood pieces on surface
10B	9/16/2008	11:00	No	3%	small woody debris on surface
11A	9/16/2008	11:04	No	2%	small wood chips on surface
12B	9/16/2008	11:08	No	3%	wood pieces upper 2 cm
13A	9/16/2008	11:12	No	No	no obvious debris, possible small wood particles on surface
14A	9/16/2008	11:17	No	No	no obvious debris
15B	9/16/2008	11:23	No	No	no obvious debris, polychaetes at depth
16A	9/16/2008	11:29	No	No	no obvious debris
17B	9/16/2008	11:42	No	2%	fine wood particles in upper 6 cm, brittle star
18B	9/16/2008	11:47	No	No	no obvious debris
19C	9/16/2008	11:53	No	No	no obvious debris, void
20C	9/16/2008	11:57	No	No	no obvious debris, spionid polychaetes
21A	9/16/2008	12:01	No	No	no obvious debris
22B	9/16/2008	13:15	No	No	no obvious debris
23A	9/16/2008	13:20	No	No	no obvious debris
24A	9/16/2008	13:25	No	5%	wood piece on surface
25A	9/16/2008	13:30	No	No	sculpin, rocky/shell bottom, no obvious debris
26C	9/16/2008	13:39	No	3%	wood piece in rocks, shells silt
27B	9/16/2008	13:45	No	25%	large wood piece on surface
28B	9/16/2008	13:49	No	No	no obvious debris
29B	9/16/2008	13:53	No	No	no obvious debris
30A	9/16/2008	13:56	No	No	possible buried wood piece on surface, indeterminate
31B	9/16/2008	14:02	No	No	no obvious debris
32A	9/16/2008	14:06	No	No	no obvious debris

Station (CW)	Date	Time	Muni Waste	Wood Debris	Comments
33A	9/16/2008	14:34	No	No	no obvious debris, void
34A	9/16/2008	14:39	No	No	no obvious debris
35A	9/16/2008	14:44	No	No	no obvious debris, sed layering
36C	9/16/2008	14:50	No	No	no obvious debris
37A	9/16/2008	14:55	No	No	no obvious debris
38C	9/16/2008	15:01	No	No	no obvious debris, methane bubbles
39C	9/16/2008	15:07	No	No	no obvious debris
40C	9/16/2008	15:13	No	No	no obvious debris, polychaete
41A	9/16/2008	15:26	No	No	rocky, no obvious debris
42B	9/16/2008	15:32	No	No	rocky, no obvious debris, sea star
43B	9/16/2008	15:38	No	No	rocky, no obvious debris
44A	9/16/2008	15:42	No	No	rocky, no obvious debris
45A	9/16/2008	15:46	No	No	shells and rock on silt, methane bubbles
45C	9/16/2008	15:47	No	2%	possible small wood piece in upper sed column
46A	9/16/2008	15:49	No	No	shells, rock, and silt, no obvious debris
47B	9/16/2008	15:58	No	2%	wood piece on surface
48C	9/16/2008	16:03	No	No	no obvious debris
49B	9/16/2008	16:09	No	No	no obvious debris, methane bubble
50A	9/16/2008	16:13	No	5%	wood piece on surface
51B	9/16/2008	16:18	No	No	no obvious debris
52B	9/16/2008	16:23	No	No	no obvious debris, polychaetes at depth
53A	9/16/2008	16:36	No	No	no obvious debris
54C	9/16/2008	16:42	No	No	no obvious debris
55A	9/16/2008	16:46	No	10%	wood piece on surface
56C	9/17/2008	8:31	No	No	no obvious debris
57B	9/17/2008	8:38	No	No	no obvious debris, void
58C	9/17/2008	8:45	No	No	no obvious debris
59C	9/17/2008	8:49	No	No	no obvious debris
60A	9/17/2008	8:54	No	No	no obvious debris
61A	9/17/2008	9:01	No	No	no obvious debris
62A	9/17/2008	9:05	No	3%	wood particles on surface
62C	9/17/2008	9:07	No	3%	wood particles on surface
63A	9/17/2008	9:11	No	15%	wood pieces in surface sediment
64B	9/17/2008	9:17	No	No	no obvious debris
65C	9/17/2008	9:25	No	No	no obvious debris

Station (CW)	Date	Time	Muni Waste	Wood Debris	Comments
66C	9/17/2008	9:31	No	5%	wood piece on surface
67C	9/17/2008	9:37	No	3%	wood piece on surface
68A	9/17/2008	9:41	No	No	no obvious debris, compact bottom & no pen
69A	9/17/2008	9:48	7%	No	piece of glass
70A	9/17/2008	9:54	No	No	rocks and shells in sand/silt, no obvious debris
71C	9/17/2008	10:02	No	No	rocks and shell hash, low pen, no obvious debris
72A	9/17/2008	10:37	No	5%	fine wood particles upper 5 cm
72B	9/17/2008	10:38	No	5%	fine wood particles upper 5 cm
73A	9/17/2008	10:42	No	No	no obvious debris
74C	9/17/2008	10:48	No	3%	fine wood particles upper 3 cm
75A	9/17/2008	10:53	No	No	rocks and shells on silt, no obvious debris
76A	9/17/2008	10:59	No	No	rocks and shells on silt, no obvious debris
77A	9/17/2008	11:03	No	3%	small wood pieces on surface
77C	9/17/2008	11:05	No	20%	wood pieces on surface
78A	9/17/2008	11:10	No	2%	small wood pieces on surface
78C	9/17/2008	11:11	No	No	no obvious debris, brittle star
79B	9/17/2008	11:18	No	No	no obvious debris
80C	9/17/2008	11:23	No	No	no obvious debris, polychaete
81C	9/17/2008	11:28	No	No	no obvious debris
82A	9/17/2008	11:30	5%	No	neck of glass bottle
83B	9/17/2008	11:35	No	No	Eelgrass, no obvious debris
84A	9/17/2008	12:49	No	7%	wood pieces on surface
84B	9/17/2008	12:50	10%	No	seastar on neck of bottle
85A	9/17/2008	12:54	No	10%	very low pen, wood pieces on surface
85B	9/17/2008	12:55	No	10%	wood pieces, also in farfield?, low pen
86A	9/17/2008	13:00	15%	3%	bottle glass piece, small wood pieces on surface
86C	9/17/2008	13:02	No	5%	stick
87A	9/17/2008	13:05	No	No	no obvious debris
88A	9/17/2008	13:09	No	No	no obvious debris
89A	9/17/2008	13:14	No	No	no obvious debris
90B	9/17/2008	13:21	No	No	low pen
91B	9/17/2008	13:31	No	No	no obvious debris
92A	9/17/2008	13:36	No	No	possible wood in farfield, no obvious debris
93B	9/17/2008	13:41	No	No	hard bottom, no pen
94A	9/17/2008	13:44	No	No	no obvious debris, polychaete

Station (CW)	Date	Time	Muni Waste	Wood Debris	Comments
95A (9/17/2008	14:20	No	No	no obvious debris
96A	9/17/2008	14:24	No	No	no obvious debris
97A	9/17/2008	14:29	No	No	no obvious debris
98C	9/17/2008	14:36	No	No	no obvious debris, polychaete
99C	9/17/2008	14:41	No	2%	wood piece on surface
100A	9/17/2008	14:46	No	5%	small wood pieces on surface, methane bubble
100B	9/17/2008	14:47	No	3%	small wood pieces on surface, methane bubble
101B	9/17/2008	14:52	No	No	no obvious debris, methane bubbles
102A	9/17/2008	15:00	No	No	no obvious debris
103B	9/17/2008	15:06	No	No	no obvious debris, void, polychaete
104B	9/17/2008	15:12	No	No	eelgrass strands on surface
105A	9/17/2008	15:17	No	No	organic aggregates on surface, no obvious wood debris
105B	9/17/2008	15:18	No	5%	wood piece and organic aggregates in upper 3 cm
106A	9/17/2008	15:23	No	5%	fine wood particles in upper 8 cm
107A	9/17/2008	15:30	No	No	Eelgrass, no obvious debris
108C	9/17/2008	15:37	No	15%	fine wood particles in upper 8 cm, eelgrass
109A	9/17/2008	15:40	No	No	Eelgrass, no obvious debris
110C	9/18/2008	7:32	15%	No	low pen, brick piece, rocks
111C	9/18/2008	7:38	No	No	no pen, rocks
112C	9/18/2008	7:42	No	No	shell hash in sand, no obvious debris
113C	9/18/2008	7:46	No	No	no obvious debris
114B	9/18/2008	7:53	No	10%	wood debris upper right surface
115B	9/18/2008	7:57	2%	No	hard sand bottom, small shell particles, algae, brick piece
116A	9/18/2008	8:05	No	5%	stick in farfield
117C	9/18/2008	8:13	No	No	sandy hard bottom, low pen
118C	9/18/2008	8:18	No	No	sandy hard bottom, eelgrass fronds in farfield?
119B	9/18/2008	8:31	No	No	rocky & sandy bottom, no pen
120A	9/18/2008	8:44	No	No	sparse eelgrass on sandy bottom, no obvious debris
121C	9/18/2008	8:51	No	No	eelgrass on sandy bottom, crab
122C	9/18/2008	8:55	No	No	Eelgrass, no obvious debris
123B	9/18/2008	8:58	No	No	Eelgrass, no obvious debris
124C	9/18/2008	9:04	No	3%	fine wood particles in upper 2 cm
125A	9/18/2008	9:11	No	No	rocky bottom, no pen
126B	9/18/2008	9:18	No	No	rocky bottom, no pen
127B	9/18/2008	9:25	No	No	eelgrass, low pen, deceased shiner perch?

Station (CW)	Date	Time	Muni Waste	Wood Debris	Comments
128C	9/18/2008	9:31	No	No	sandy/rocky bottom with fine shell
129C	9/18/2008	9:38	No	No	rocks on sandy bottom
130B	9/18/2008	9:57	No	No	Eelgrass, no obvious debris
131A	9/18/2008	10:09	No	3%	fine wood particles in surface
131B	9/18/2008	10:09	No	2%	fine wood particles in surface
132A	9/18/2008	10:13	No	No	no obvious debris
133B	9/18/2008	10:18	No	No	no obvious debris, polychaete
134A	9/18/2008	10:22	No	No	no obvious debris
135C	9/18/2008	10:34	No	No	no obvious debris, spionid polychaete?
136A	9/18/2008	10:38	No	No	no obvious debris
137A	9/18/2008	10:44	No	No	no obvious debris, methane bubbles
138A	9/18/2008	10:49	No	No	no obvious debris

Duplicate image for final analysis Image for final analysis

			alysis - Final R						
Station (CW)	Date	Time	Time Stamp	Strip #		Slide #	Muni Waste	Wood Debris	Comments
1A	9/16/2008	9:41	10:41	1	9	mounted	No	No	dense eelgrass
2C	9/16/2008	9:55	10:56	1	16	mounted	No	No	dense eelgrass
3A	9/16/2008	10:00	11:00	1	17	mounted	No	No	dense eelgrass
4A	9/16/2008	10:05	11:06	1	21	mounted	No	No	mod to sparse eelgrass
5A	9/16/2008	10:11	11:11	2	25	5	No	25%	very fine woody debris on surface
6A	9/16/2008	10:16	11:17	2	29	9	No	3%	fine wood debris on silty surface
7A	9/16/2008	10:21	11:21	2	32	12	No	No	slightly cloudy, no obvious debris
8A	9/16/2008	10:27	11:27	2	35	15	No	No	cloudy image, no obvious debris
9A	9/16/2008	10:33	11:34	2	39	19	No	No	cloudy image, no obvious debris
10A	9/16/2008	10:59	11:59	2	42	22	No	3%	one wood chunk, eelgrass and silty surface
11A	9/16/2008	11:04	12:04	2	46	26	No	3%	trace woody debris, clear image
12A	9/16/2008	11:08	12:08	2	49	29	No	3%	slight cloudy, trace woody debris
13A	9/16/2008	11:12	12:12	2	52	32			cloudy
14B	9/16/2008	11:18	12:18	2	57	37	No	No	cloudy, image overexposed
15B	9/16/2008	11:23	12:24	3	60	mounted			black slide (slide was mounted)
16A	9/16/2008	11:29	12:30	3	62	mounted			cloudy (slide was mounted)
17C	9/16/2008	11:43	12:43	3	70	6			cloudy
18A	9/16/2008	11:46	12:47	3	71	7	No	No	mostly cloudy, possible wood debris
19A	9/16/2008	11:51	12:52	3	74	10	No	No	cloudy, possible wood debris
20A	9/16/2008	11:56	12:56	3	77	13			cloudy
21A	9/16/2008	12:01	13:02	3	80	16			cloudy
22A	9/16/2008	13:14	14:15	3	88	22	No	No	No obvious debris
23A	9/16/2008	13:20	14:21	3	91	25			cloudy
24A	9/16/2008	13:25	14:25	3	95	29	No	No	shells and rock, algae growth or sands?
24B	9/16/2008	13:25	14:26	3	96	30	No	No	shells and rocks
25A	9/16/2008	13:30	14:31	3	99	33	No	No	sandy and shells, algae, seastar
26A	9/16/2008	13:37	14:39	4	102	36A	No	10%	Wood chunks and shells
27A	9/16/2008	13:45	14:45	4	106	40A	No	No	No obvious debris
27C	9/16/2008	13:46	14:46	4	108	42A	No	15%	large wood debris pieces
28A	9/16/2008	13:48	14:49	4	110	44A	No	No	Kelp piece on surface
29A	9/16/2008	13:52	14:53	4	113	3A	No	3%	piece of wood on side
30A	9/16/2008	13:56	14:57	4	116	6A	No	No	crab on surface, no obvious debris
30B	9/16/2008	13:57	14:57	4	117	7A	No	No	No obvious debris
31A	9/16/2008	14:01	15:02	4	119	9A	No	20%	sea cucumber, wood piece encrusted w/ algae, bryozoa
31B	9/16/2008	14:02	15:03	4	120	10A	No	No	No obvious debris
32A	9/16/2008	14:06	15:07	4	123	13A	No	No	No obvious debris
33A	9/16/2008	14:34	15:35	4	128	16A	No	No	No obvious debris
34A	9/16/2008	14:39	15:40	4	131	19A			cloudy
35C	9/16/2008	14:45	15:46	5	137	25A			cloudy
36A	9/16/2008	14:48	15:49	5	138	26A	No	No	No obvious debris
37A	9/16/2008	14:55	15:56	5	142	30A			cloudy

	Cornwall Landfill Plan View Image Analysis - Final Results (10/21/08)										
Station (CW)	Date	Time	Time Stamp			Slide #	Muni Waste	Wood Debris	Comments		
38A	9/16/2008	14:59	16:00	5	145	33A			cloudy, possible shell particles		
39A	9/16/2008	15:06	16:07	5	148	36A			cloudy, possible shell particles		
40A	9/16/2008	15:12	16:12	5	151	39A			cloudy		
41B	9/16/2008	15:26	16:27	5	157	1A	3%	No	seastar, bottle neck		
41C	9/16/2008	15:27	16:28	5	158	2A	No	3%	sandy bottom, piece of wood		
42A	9/16/2008	15:31	16:32	5	159	3A	10%	10%	wood pieces, brick piece, sea star, rocky		
42C	9/16/2008	15:32	16:33	5	161	5A	5%	10%	plastic bag, wood pieces		
43A	9/16/2008	15:37	16:38	5	162	6A	No	No	eelgrass, no obvious debris		
43C	9/16/2008	15:38	16:39	5	164	8A	3%	5%	plastic pieces (likely), buried wood debris, rocky/sandy		
44A	9/16/2008	15:42	16:43	5	165	9A	No	No	rocky/sandy, no obvious debris, seastar		
44B	9/16/2008	15:43	16:43	5	166	10A	5%	No	rocky/sandy, plastic/brick? pieces, seastar		
45A	9/16/2008	15:46	16:47	6	168	12A	No	No	No obvious debris		
46A	9/16/2008	15:49	16:50	6	171	15A	No	5%	kelp piece (likely), shell with wood pieces		
46B	9/16/2008	15:50	16:51	6	172	16A	No	5%	shell and wood pieces		
47A	9/16/2008	15:57	16:58	6	174	18A	No	7%	cloudy, likely wood debris		
48A	9/16/2008	16:01	17:02	6	177	21A	No	No	cloudy, possible wood debris		
49A	9/16/2008	16:08	17:09	6	180	24A			cloudy		
50A	9/16/2008	16:13	17:14	6	183	27A	No	5%	wood pieces, cloudy image		
51A	9/16/2008	16:18	17:18	6	186	30A			cloudy		
52A	9/16/2008	16:22	17:23	6	190	34A			cloudy, dark		
53A	9/16/2008	16:36	17:37	6	194	38A			cloudy, dark		
54A	9/16/2008	16:41	17:41	6	197	41A			very dark/black image		
55A	9/16/2008	16:46							No plan view obtained at this station		
56B	9/17/2008	8:30	8:30	7	7	6			cloudy		
57A	9/17/2008	8:37							No plan view obtained at this station		
58A	9/17/2008	8:43	8:43	7	10	9			cloudy		
59A	9/17/2008	8:48	8:48	7	13	12			cloudy		
60A	9/17/2008	8:54	8:54	7	16	15			cloudy		
61A	9/17/2008	9:01	9:01	7	19	18			cloudy		
62A	9/17/2008	9:05	9:05	7	22	21	no	10%	wood debris, cloudy image		
63B	9/17/2008	9:12	9:12	7	26	25		3%	cloudy, wood piece		
64B	9/17/2008	9:17	9:17	7	29	28			cloudy		
65A	9/17/2008	9:23	9:23	7	31	30			cloudy		
66B	9/17/2008	9:30	9:30	8	35	34			cloudy		
67A	9/17/2008	9:36	9:36	8	37	36			cloudy		
68A	9/17/2008	9:41	9:41	8	40	39	No	3%	small woody pieces, circular shell?		
68C	9/17/2008	9:42	9:42	8	42	41	No	40%	large wood piece		
69C	9/17/2008	9:50	9:49	8	45	44	No	5%	crabs, scattered wood debris		
70A	9/17/2008	9:54	9:54	8	48	3	No	No	rocks/shells on silty surface		
71A	9/17/2008	10:01	10:01	8	51	6	No	No	rocks/sandy, algae, shell pieces		
72A	9/17/2008	10:37	10:37	8	55	9	No	5%	small wood particles		
IZI	5/11/2000	10.07	10.07	U	55	5	110	J /0	Johnan Wood partiolog		

Station (CW) Date Time Time Statip Strip # Image # Silide # Muni Waste Wood Debris Comments	Cornwall Landfill Plan View Image Analysis - Final Results (10/21/08)											
74A 9/17/2008 10-47 10-47 8 61 15 No 10% wood pleces on surface 75B 9/17/2008 10:53 10:54 9 65 19 No 7% scattered wood debris on rocky bottom 76B 9/17/2008 10:54 10:54 9 66 20 No 5% successful wood debris on rocky bottom 76A 9/17/2008 11:03 9 71 25 No 5% slif drap on wood pleces, rocky be wood debris on rocky bottom 78A 9/17/2008 11:10 11:10 9 74 28	ents											
75A 9/17/2008 10:53 10:53 9 65 19 No 7% scattered wood debris on rocky bo 75B 9/17/2008 10:54 10:54 9 66 20 No 5% wood debris on rocky bot 76A 9/17/2008 10:59 10:59 9 68 22 No 5% slit drape on wood pieces, rocky brothom 77A 9/17/2008 11:03 11:03 9 71 25 No 10% wood debris, shell debris 78A 9/17/2008 11:10 11:10 9 74 28 cloudy 79A 9/17/2008 11:10 11:10 9 74 28 cloudy 79A 9/17/2008 11:10 11:10 9 78 32 cloudy 80A 9/17/2008 11:12 11:22 9 81 35 cloudy 81B 9/17/2008 11:22 11:22 9 81 35 cloudy 81B 9/17/2008 11:27 11:27 9 85 39 cloudy 83A 9/17/2008 11:30 11:30 9 87 41 3% wood piece, cloudy 83A 9/17/2008 11:30 11:30 9 87 41 3% wood piece, cloudy 83A 9/17/2008 11:34 11:34 9 90 44 No No eelgrass, no obvious debris 84A 9/17/2008 12:54 10:54 10:99 9 3 3% 15% No bottle present 85A 9/17/2008 12:54 10:54 10:99 9 3 3% 15% partial image, wood debris, circulat 86A 9/17/2008 13:00 13:01 10:102 12 No 5% small wood pieces and particles w 87A 9/17/2008 13:05 13:05 10:107 17 cloudy 88A 9/17/2008 13:05 13:05 10:107 17 cloudy 89C 9/17/2008 13:05 13:05 10:107 17 cloudy 89C 9/17/2008 13:05 13:05 10:107 17 cloudy 90C 9/17/2008 13:05 10:107 17 cloudy 90C 9/17/2008 13:05 13:05 10:107 17 cloudy 90C 9/17/2008 13:36 10:136 10:125 35 cloudy 90C 9/17/2008 13:30 13:30 10:122 32 cloudy 90C 9/17/2008 13:30 13:30 10:122 32 cloudy 90C 9/17/2008 13:44 13:44 11 13:4 11 13:4 11 cloudy 90C 9/17/2008 13:44 13:44 11 13:4 11 13:4 11 cloudy 90C 9/17/2008 13:44 13:44 11 13:4 11 13:4 11 13:4 11 cloudy 90C 9/17/2008 13:44 13:4												
75B 9/17/2008 10:54 10:54 9 66 20 No 5% wood debris on rocky bottom 76A 9/17/2008 10:59 9 68 22 No 5% silt drape on wood pieces, rocky be 77A 9/17/2008 11:10 11:03 11:03 9 71 25 No 10% wood debris, shell debris 78A 9/17/2008 11:11 11:10 9 74 28												
76A 9/17/2008 10:59 9 68 22 No 5% silt drape on wood pieces, rocky be 77A 9/17/2008 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 11:03 9 71 25 No 10% wood debris, shell debris 79A 9/17/2008 11:17 11:18 9 78 32	ky bottom											
77A 9/17/2008 11:03 9 71 25 No 10% wood debris, shell debris 78A 9/17/2008 11:10 11:10 9 74 28												
78A 9/17/2008 11:10 11:10 9 74 28	ky bottom											
79A 9/17/2008 11:17 11:18 9 78 32 cloudy 80A 9/17/2008 11:27 11:27 9 81 35 cloudy 81B 9/17/2008 11:27 11:27 9 85 39 cloudy 82A 9/17/2008 11:30 11:30 9 87 41 3% wood piece, cloudy 83A 9/17/2008 11:34 11:34 9 90 44 No No No eelgrass, no obvious debris 84A 9/17/2008 12:49 12:48 9 94 4 15% No bottle present 85A 9/17/2008 12:54 12:54 10 99 9 3% 15% partial image, wood debris, circulal 86A 9/17/2008 13:05 13:05 10 102 12 No 5% small wood pieces and particles w. 87A 9/17/2008 13:05 13:05 10 107 17 cloudy 60/18/2008 13:09 13:09 10 111 21 cloudy 89C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 91A 9/17/2008 13:30 13:30 10 122 32 cloudy 917/2008 13:30 13:30 10 122 32 cloudy 917/2008 13:40 13:40 10 125 35 cloudy 93A 9/17/2008 13:40 13:40 10 125 35 cloudy 94A 9/17/2008 13:40 13:40 10 125 35 cloudy 95A 9/17/2008 13:40 13:40 10 128 38 cloudy 95A 9/17/2008 14:29 14:29 11 136 2 cloudy 95A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:36 14:35 11 146 12 cloudy 99A 9/17/2008 14:46 14:47 11 153 19 No No No hazy, no obvious debris 105A 9/17/2008 14:46 14:47 11 156 22 No 2% stick 1004 9/17/2008 15:05 15:05 12 162 28 cloudy 104A 9/17/2008 15:05 15:05 12 162 28 cloudy 104A 9/17/2008 15:05 15:05 12 162 28 cloudy 104A												
80A 9/17/2008 11:22 11:22 9 81 35												
81B 9/17/2008 11:27 11:27 9 85 39												
82A 9/17/2008 11:30 11:30 9 87 41 3% wood piece, cloudy 83A 9/17/2008 11:34 11:34 9 90 44 No No elegrass, no obvious debris 84A 9/17/2008 12:49 12:48 9 9 4 15% No bottle present 85A 9/17/2008 12:54 12:54 10 99 9 3% 15% partial image, wood debris, circulal 86A 9/17/2008 13:00 13:01 10 102 12 No 5% small wood pieces and particles w. 87A 9/17/2008 13:05 10 107 17 cloudy 88A 9/17/2008 13:09 13:09 10 111 21 cloudy 90C 9/17/2008 13:30 13:30 10 121 31 No 10% likely wood debris 914 9/17/2008 13:33 </td <td></td>												
83A 9/17/2008 11:34 11:34 9 90 44 No No eelgrass, no obvious debris 84A 9/17/2008 12:49 12:48 9 94 4 15% No bottle present 85A 9/17/2008 12:54 10 99 9 3% 15% partial image, wood debris, circulai 86A 9/17/2008 13:00 13:01 10 102 12 No 5% small wood pieces and particles w. 87A 9/17/2008 13:09 13:09 10 111 21 cloudy 88A 9/17/2008 13:09 13:09 10 111 21 cloudy 89C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 90C 9/17/2008 13:36 10 125 35 cloudy 91 90 13:40 1												
84A 9/17/2008 12:49 12:48 9 94 4 15% No bottle present 85A 9/17/2008 12:54 12:54 10 99 9 3% 15% partial image, wood debris, circulal image, wood debris, circulal image, wood pieces and particles were all wood pi												
85A 9/17/2008 12:54 12:54 10 99 9 3% 15% partial image, wood debris, circular 86A 9/17/2008 13:00 13:01 10 102 12 No 5% small wood pieces and particles w 87A 9/17/2008 13:05 10 107 17 cloudy 88A 9/17/2008 13:09 10 111 21 cloudy 89C 9/17/2008 13:15 13:16 10 117 27 cloudy 90C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 91A 9/17/2008 13:36 13:30 10 122 32 cloudy 93A 9/17/2008 13:34 13:40 10 128 38 cloudy 95A 9/17/2008 14:20 11 136 </td <td></td>												
86A 9/17/2008 13:00 13:01 10 102 12 No 5% small wood pieces and particles w. 87A 9/17/2008 13:05 13:05 10 107 17 cloudy 88A 9/17/2008 13:09 13:09 10 111 21 cloudy 89C 9/17/2008 13:15 13:16 10 117 27 cloudy 90C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 91A 9/17/2008 13:30 13:30 10 122 32 cloudy 92A 9/17/2008 13:36 13:36 10 125 35 cloudy 93A 9/17/2008 13:36 13:36 10 125 35 cloudy 93A 9/17/2008 13:40 13:40 10 128 38 cloudy 94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:20 14:20 11 136 2 cloudy 95A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 14:39 11 149 15 cloudy 99A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 15:05 15:05 12 162 28 cloudy 100A 9/17/2008 15:05 15:05 12 162 28 cloudy 100A 9/17/2008 15:03 15:04 12 165 31 No No Ro No No obvious debris 106A 9/17/2008 15:03 15:04 12 165 31 No No Ro No No obvious debris 106A 9/17/2008 15:03 15:04 12 165 31 No No Ro elegrass, no obvious debris 106A 9/17/2008 15:03 15:05 15:05 12 162 28 cloudy 100A 9/17/2008 15:05 15:05 12 162 28 cloudy 100A 9/17/2008 15:05 15:05 12 162 No No Ro No												
87A 9/17/2008 13:05 13:05 10 107 17 cloudy 88A 9/17/2008 13:09 10 111 21 cloudy 89C 9/17/2008 13:15 13:16 10 117 27 cloudy 90C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 91A 9/17/2008 13:30 13:30 10 122 32 cloudy 92A 9/17/2008 13:36 10 125 35 cloudy 93A 9/17/2008 13:40 13:40 10 128 38 cloudy 94A 9/17/2008 14:20 11 136 2 cloudy 96A 9/17/2008 14:21 11 139 5 No 7% possi	cular object (bottle?)											
88A 9/17/2008 13:09 13:09 10 111 21 cloudy 89C 9/17/2008 13:15 13:16 10 117 27 cloudy 90C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 91A 9/17/2008 13:30 13:30 10 122 32 cloudy 92A 9/17/2008 13:36 13:36 10 125 35 cloudy 93A 9/17/2008 13:40 10 128 38 cloudy 94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:20 11 136 2 cloudy 96A 9/17/2008 14:29 14 14 14 139 9	es w/ shells											
89C 9/17/2008 13:15 13:16 10 117 27 cloudy 90C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 91A 9/17/2008 13:30 13:30 10 122 32 cloudy 92A 9/17/2008 13:36 13:36 10 122 32 cloudy 93A 9/17/2008 13:40 10 128 38 cloudy 94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:35 14:35 11 146 12 <td< td=""><td></td></td<>												
90C 9/17/2008 13:22 13:23 10 121 31 No 10% likely wood debris 91A 9/17/2008 13:30 13:30 10 122 32 cloudy 92A 9/17/2008 13:36 13:36 10 125 35 cloudy 93A 9/17/2008 13:40 13:40 10 128 38 cloudy 94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 14:39 11 149 15 cloudy 99A 9/17/2008 14:44 14:47 11 153 19 No No hazy, no obvious debris 100A 9/17/2008 14:46 14:47 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:11 15:11 12 165 31 No No No eelgrass, no obvious debris 105A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris												
91A 9/17/2008 13:30 13:30 10 122 32 cloudy 92A 9/17/2008 13:36 13:36 10 125 35 cloudy 93A 9/17/2008 13:40 13:40 10 128 38 cloudy 94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:24 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 14:39 11 149 15 cloudy 99A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:11 15:11 12 165 31 No No elgrass, no obvious debris 105A 9/17/2008 15:35 15:35 15:35 12 179 1 No No look obvious debris												
91A 9/17/2008 13:30 13:30 10 122 32 cloudy 92A 9/17/2008 13:36 13:36 10 125 35 cloudy 93A 9/17/2008 13:40 13:40 10 128 38 cloudy 94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:20 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 14:39 11 149 15 cloudy 99A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:11 15:11 12 165 31 No No elgrass, no obvious debris 105A 9/17/2008 15:17 15:17 12 168 34 No No elgrass, no obvious debris 106A 9/17/2008 15:30 15:30 12 176 42 No No elgrass, no obvious debris												
92A 9/17/2008 13:36 13:36 10 125 35 cloudy 93A 9/17/2008 13:40 13:40 10 128 38 cloudy 94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:20 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 14:39 11 149 15 cloudy 100A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:11 15:11 12 165 31 No No eelgrass, no obvious debris 105A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 107A 9/17/2008 15:30 15:35 12 179 1 No No eelgrass, no obvious debris												
94A 9/17/2008 13:44 13:44 11 131 41 cloudy 95A 9/17/2008 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 11 149 15 cloudy 100A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 103A 9/17/2008 15:05 15:05 12 162 28												
95A 9/17/2008 14:20 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 11 149 15 cloudy 100A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:05 15:05 12 162 28 cloudy 103A 9/17/2008 15:11 15:11 12 165 <td></td>												
95A 9/17/2008 14:20 11 136 2 cloudy 96A 9/17/2008 14:24 14:24 11 139 5 No 7% possible wood debris, seastar 97A 9/17/2008 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 11 149 15 cloudy 100A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:05 15:05 12 162 28 cloudy 103A 9/17/2008 15:11 15:11 12 165 31												
97A 9/17/2008 14:29 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 11 149 15 cloudy 100A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:05 15:05 12 162 28 cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No No elgrass, no obvious debris 105A 9/17/2008 15:23 15:24												
97A 9/17/2008 14:29 14:29 11 143 9 No 5% wood piece 98A 9/17/2008 14:35 14:35 11 146 12 cloudy 99A 9/17/2008 14:39 11 149 15 cloudy 100A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:05 12 162 28 cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No No elgrass, no obvious debris 105A 9/17/2008 15:23 15:24 12 173												
99A 9/17/2008 14:39 14:39 11 149 15 Cloudy 100A 9/17/2008 14:46 14:47 11 153 19 No No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 Cloudy 103A 9/17/2008 15:05 15:05 12 162 28 Cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No eelgrass, no obvious debris 105A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
100A 9/17/2008 14:46 14:47 11 153 19 No No hazy, no obvious debris 101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:05 12 162 28 cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No No eelgrass, no obvious debris 105A 9/17/2008 15:17 15:17 12 168 34 No No No obvious debris 106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No No eelgrass, no obvious debris 108A												
101A 9/17/2008 14:51 14:51 11 156 22 No 2% stick 102A 9/17/2008 15:00 15:00 11 159 25 cloudy 103A 9/17/2008 15:05 12 162 28 cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No No eelgrass, no obvious debris 105A 9/17/2008 15:17 15:17 12 168 34 No No No obvious debris 106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
102A 9/17/2008 15:00 11 159 25 cloudy 103A 9/17/2008 15:05 12 162 28 cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No No eelgrass, no obvious debris 105A 9/17/2008 15:17 15:17 12 168 34 No No No obvious debris 106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
102A 9/17/2008 15:00 11 159 25 cloudy 103A 9/17/2008 15:05 12 162 28 cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No No eelgrass, no obvious debris 105A 9/17/2008 15:17 15:17 12 168 34 No No No obvious debris 106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
103A 9/17/2008 15:05 12 162 28 cloudy 104A 9/17/2008 15:11 15:11 12 165 31 No No No eelgrass, no obvious debris 105A 9/17/2008 15:17 15:17 12 168 34 No No No obvious debris 106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
104A 9/17/2008 15:11 12 165 31 No No eelgrass, no obvious debris 105A 9/17/2008 15:17 15:17 12 168 34 No No No obvious debris 106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
105A 9/17/2008 15:17 12 168 34 No No No obvious debris 106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
106A 9/17/2008 15:23 15:24 12 173 39 No No No obvious debris 107A 9/17/2008 15:30 15:30 12 176 42 No No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
107A 9/17/2008 15:30 15:30 12 176 42 No No eelgrass, no obvious debris 108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
108A 9/17/2008 15:35 15:35 12 179 1 No No eelgrass, no obvious debris												
109A 9/17/2008 15:40 15:40 12 182 4 No No eelgrass, no obvious debris												
110A 9/18/2008 7:31 7:31 13 5 40 No No rocky, no obvious debris												
111A 9/18/2008 7:36 7:36 13 8 43 No No rocky, fine shell, no obvious debris	ebris											
111B 9/18/2008 7:37 7:37 13 9 44 No No rocky, fine shell, no obvious debris												

Cornwall Landfill Plan View Image Analysis - Final Results (10/21/08)									
Station (CW)	Date	Time	Time Stamp	Strip #	Image #	Slide #	Muni Waste	Wood Debris	Comments
112A	9/18/2008	7:41	7:41	13	12	3	No	No	sandy, fine shells, no obvious debris
113A	9/18/2008	7:45	7:45	13	15	6	No	No	sandy, fine shells, no obvious debris
114B	9/18/2008	7:53	7:53	13	20	11	No	25%	decayed log/branch
115A	9/18/2008	7:56	7:56	13	23	14	No	No	sandy, shells, no obvious debris
116A	9/18/2008	8:05	8:05	13	26	17	No	5%	small woody pieces, branch
117A	9/18/2008	8:12	8:12	13	30	21	No	No	cut slide, no obvious debris
118B	9/18/2008	8:17	8:17	13	34	25	No	5%	weathered wood piece
119A	9/18/2008	8:31	8:31	13	36	27	No	No	rocky, fine shell, no obvious debris
119B	9/18/2008	8:31	8:31	13	37	28	No	No	rocky, fine shell, no obvious debris
120A	9/18/2008	8:44	8:44	13	39	30	No	No	eelgrass, no obvious debris
121A	9/18/2008	8:49	8:49	13	43	34	No	No	eelgrass, no obvious debris
122A	9/18/2008	8:54	8:54	13	46	37	No	No	eelgrass, no obvious debris
123A	9/18/2008	8:58	8:58	13	49	40	No	No	eelgrass, no obvious debris
124A	9/18/2008	9:03	9:03	13	52	43	No	No	eelgrass, no obvious debris
125A	9/18/2008	9:11	9:11	13	56	3	No	No	rocky, no obvious debris
126C	9/18/2008	9:19	9:19	13	61	8	20%	No	metal or plastic sign piece
127A	9/18/2008	9:25	9:25	14	64	11	No	No	eelgrass, no obvious debris
128B	9/18/2008	9:31	9:31	14	68	15	7%	No	clear glass and possible plastic
128C	9/18/2008	9:31	9:31	14	69	16	7%	20%	decomposing wood piece, glass and poss plastic
129A	9/18/2008	9:37	9:37	14	71	18	No	No	rocks and shell debris, sea stars
130A	9/18/2008	9:56	9:56	14	74	21	No	No	eelgrass, no obvious debris
131A	9/18/2008	10:09	10:09	14	77	24			cloudy
132A	9/18/2008	10:13	10:13	14	80	27			cloudy
133A	9/18/2008	10:18	10:18	14	83	30			cloudy
134A	9/18/2008	10:22	10:22	14	86	33			cloudy
135A	9/18/2008	10:33	10:33	14	89	36			cloudy
136A	9/18/2008	10:38	10:38	14	92	39			cloudy

Appendix C SPI and Plan View Images (DVD Insert)

APPENDIX E
CORNWALL AVENUE LANDFILL
SEDIMENT VIBRACORE LOCATIONS, DESCRIPTIONS, AND LOGS

Table E-1 - Cornwall Avenue Landfill Vibracore Location Data

						Predicted							
					Predicted	Mudline	Sampl	e Target	Sample	Location	Distance	GPS	1
			GPS	Measured	Nearest	Elevation				nble NT300D	to	Status	Comments
Location	Sample	Date	Time	Depth	Tide	in Feet	NAD 1983,	Decimal Min.	NAD 1983,	Decimal Min.	Target	HDOP	p=penetration
No.	Rep.			in Feet	in Feet	(MLLW)	Latitude	Longitude	Latitude	Longitude	in Feet	good < 2	r=recovery
CW-12	1	25-Sep	1031	13.8	1.1	-12.7	48 44.2711	122 29.8075	48 44.2696	122 29.8057	11.8	1.1	8.5' p, 5.5' r
CW-14	1	25-Sep	1116	21.0	2.1	-18.9	48 44.2890	122 29.8217	48 44.2884	122 29.8214	4.1	1.1	7.5' p, 7.5' r
CW-08	1	25-Sep	1150	23.0	3.1	-19.9	48 44.3071	122 29.8223	48 44.3054	122 29.8207	12.3	1.0	7.0' p, 6.3' r
CW-91	1	25-Sep	1313	25.9	5.5	-20.4	48 44.3252	122 29.8229	48 44.3242	122 29.8215	8.4	1.3	7.5' p, 5.9' r
CW-87	1	25-Sep	1343	23.6	6.2	-17.4	48 44.3437	122 29.7962	48 44.3433	122 29.7963	2.3	1.1	4.5' p, 2.3' r
CW-29	1	25-Sep	1409	22.5	6.8	-15.7	48 44.3622	122 29.7694	48 44.3623	122 29.7693	1.0	1.0	7.0' p, 6.0' r
CW-49	1	25-Sep	1552	25.6	8.3	-17.3	48 44.3806	122 29.7427	48 44.3813	122 29.7429	4.2	1.1	7.5' p, 4.8' r
CW-02	1	25-Sep	1615	13.5	8.3	-5.2	48 44.2534	122 29.7795	48 44.2524	122 29.7803	7.0	1.2	5.7' p, 2.2' r
CW-67	1	25-Sep	1634	21.0	8.2	-12.8	48 44.3991	122 29.7159	48 44.3982	122 29.7165	6.0	1.2	7.9' p, 4.8' r
CW-53	1	25-Sep	1708	21.7	7.9	-13.8	48 44.4172	122 29.7165	48 44.4162	122 29.7172	6.6	1.2	6.3' p, na' r
CW-63	1	25-Sep	1729	20.3	7.7	-12.6	48 44.4357	122 29.6898	48 44.4362	122 29.6904	4.2	1.3	6.5' p, na' r
CW-61	1	25-Sep	1800	23.6	7.2	-16.4	48 44.4539		48 44.4540	122 29.6771	1.8	1.1	7.7' p, 5.7' r
CW-80	1	26-Sep	0851	17.0	0.6	-16.4	48 44.4724	122 29.6499	48 44.4713	122 29.6494	7.1	1.4	8.5' p, 7.2' r
CW-82	1	26-Sep	1037	13.5	0.9	-12.6	48 44.4728	122 29.6226	48 44.4725	122 29.6218	3.6	1.1	5.9' p, 2.9' r
CW-07	1	26-Sep	1109	20.3	1.3	-19.0	48 44.2982	122 29.8152	48 44.2980	122 29.8152	1.0	1.0	7.0' p, 3.3' r
CW-84	1	26-Sep	1128	18.7	1.7	-17.0	48 44.3163	122 29.8158	48 44.3151	122 29.8162	7.2	1.1	7.0' p, 4.2' r
CW-26	1	26-Sep	1206	14.8	2.3	-12.5	48 44.3347	122 29.7890	48 44.3357	122 29.7888	6.0	1.0	6.0' p, 1.7' r
CW-28	1	26-Sep	1303	20.5	4.0	-16.5	48 44.3530			122 29.7754	2.4	1.3	7.0' p, 3.7' r
CW-48	1	26-Sep	1319	22.3	6.3	-16.1	48 44.3715	122 29.7492	48 44.3706	122 29.7481	7.0	1.3	6.0' p, 3.9' r
CW-68	1	26-Sep	1339	16.1	5.6	-10.5	48 44.3900	122 29.7225	48 44.3896	122 29.7216	4.1	1.1	8.2' p, 2.6' r
CW-66	1	26-Sep	1354	18.4	5.5	-12.9	48 44.4082	122 29.7094		122 29.7083	4.6	1.0	7.1' p, 2.0' r
CW-64	1	26-Sep	1414	18.4	6.1	-12.3	48 44.4265		48 44.4269	122 29.6957	3.3	0.9	7.6' p, 5.0' r
CW-77	1	26-Sep	1430	16.7	6.5	-10.2	48 44.4450			122 29.6697	2.0	0.9	7.2' p, 3.0' r
CW-113	1	26-Sep	1501	19.4	7.3	-12.1	48 44.4635	122 29.6428	48 44.4631	122 29.6418	4.6	1.2	6.0' p, 3.6' r
CW-75	1	26-Sep	1521	16.1	7.6	-8.5	48 44.4267	122 29.6826		122 29.6836	4.3	1.2	4.8' p, 2.3' r
CW-120	1	26-Sep	1539	10.2	7.9	-2.3	48 44.2536			122 29.7631	13.9	1.2	na' p, 1.3' r
CW-03	1	26-Sep	1551	14.1	8.1	-6.0	48 44.2624	122 29.7867	48 44.2623	122 29.7873	2.6	1.1	6.0' p, 2.7' r
CW-17	1	29-Sep	1010	17.7	3.3	-14.4	48 44.2620	122 29.8140	48 44.2619	122 29.8134	2.6	1.1	8.0' p, 3.5' r
CW-19	1	29-Sep	1030	21.0	3.0	-18.0	48 44.2799		48 44.2809	122 29.8274	7.1	1.1	8.0' p, 4.0' r
CW-136	1	29-Sep	1046	23.6	2.8	-20.8	48 44.2980	122 29.8410	48 44.2979	122 29.8401	3.7	1.0	7.5' p, 5.7' r
CW-139	1	29-Sep	1107	23.6	2.7	-20.9	48 44.3230	122 29.8360		122 29.8371	5.4	1.1	7.5' p, 5.6' r
CW-93	1	29-Sep	1125	21.7	2.6	-19.1	48 44.3435			122 29.8099	7.2	1.1	7.5' p, 5.4' r
CW-89	1	29-Sep	1146	20.0	2.6	-17.4	48 44.3620	122 29.7831	48 44.3620	122 29.7830	0.4	1.1	6.1' p, 2.5' r
CW-31	1	29-Sep	1236	20.7	3.0	-17.7	48 44.3804	122 29.7563	48 44.3800	122 29.7554	4.6	1.3	6.7' p, 3.5' r
CW-51	1	29-Sep	1251	17.2	3.2	-14.0	48 44.3989	122 29.7296	48 44.3994	122 29.7308	5.7	1.3	8.0' p, 6.8' r

Table E-1 - Cornwall Avenue Landfill Vibracore Location Data

						Predicted							
				·	Predicted	Mudline	Sampl	<u>e Target</u>	Sample	Location	Distance	GPS	
			GPS	Measured	Nearest	Elevation			DGPS Trin	nble NT300D	to	Status	Comments
Location	Sample	Date	Time	Depth	Tide	in Feet	NAD 1983,	Decimal Min.	NAD 1983,	Decimal Min.	Target	HDOP	p=penetration
No.	Rep.			in Feet	in Feet	(MLLW)	Latitude	Longitude	Latitude	Longitude	in Feet	good < 2	r=recovery
CW-36	1	29-Sep	1307	19.0	3.4	-15.6	48 44.4261	122 29.7236	48 44.4262	122 29.7242	2.3	1.1	7.7' p, 5.5' r
CW-57	1	29-Sep	1324	22.5	3.7	-18.8	48 44.4538	122 29.6903	48 44.4539	122 29.6900	1.6	1.1	6.5' p, 3.7' r
CW-134	1	29-Sep	1339	20.0	4.0	-16.0	48 44.4820	122 29.6290	48 44.4812	122 29.6288	4.9	1.0	8.0' p, 6.5' r
CW-132	1	29-Sep	1354	16.4	4.3	-12.1	48 44.4820	122 29.6010	48 44.4813	122 29.6008	4.3	1.0	8.0' p, 2.5' r
	2	29-Sep	1404	17.1	4.5	-12.6	48 44.4820	122 29.6010	48 44.4810	122 29.6010	6.1	1.3	7.5' p, 2.5' r
CW-108	1	29-Sep	1434	11.2	5.2	-6.0	48 44.2440	122 29.7870	48 44.2437	122 29.7868	2.0	1.1	6.8' p, 2.0' r
CW-05	1	29-Sep	1448	15.4	5.4	-10.0	48 44.2803	122 29.8009	48 44.2796	122 29.8011	4.2	1.2	7.1' p, 1.8' r
CW-124	1	29-Sep	1503	13.8	5.8	-8.0	48 44.2894	122 29.7944	48 44.2893	122 29.7944	0.7	1.7	6.2' p, 3.8' r
CW-25	1	29-Sep	1519	12.5	6.1	-6.4	48 44.3256	122 29.7956	48 44.3261	122 29.7961	3.7	1.2	no recovery
CW-117	1	29-Sep	1538	9.5	6.6	-2.9	48 44.4732	122 29.5952	48 44.4725	122 29.5949	4.5	1.1	4.0 p, na' r

Note:

*Data provided by Bio-Marine Enterprises

NA: Not Available

												Relative		
Core			Total Penetration in	Total Recovery		Refuse Thickness in		Percent by	Wood	Wood	Percent by	Percent ^c (Bark vs.		Recent Overlying Sediment Layer
Number	Date	Time	Feet	in Feet	Refuse?	Feet	Description	Volume ^b	Debris?	in Feet	Volume ^c	Chips/Sawdust)	Bore Log Notes	in Feet ^d
BLVD-SC-01	9/23/2008	1530	6.0 (refusal)	6.0	No		refusal likely due to wood debris refusal due to wood debris, also		Yes	5	25 to 50			1.0
BLVD-SC-02	9/23/2008	1438	9.1 (refusal)	5.4	No		caused compaction compaction likely due to wood		Yes	5.4	25 to 50			0.4
BLVD-SC-03	9/23/2008	1126	11.3	6.6	No		debris		Yes	6.6	>50			0.0
BLVD-SC-04	9/23/2008	1014	11.5	10.2	No		no native sediment observed "native" sediments encountered at		Yes	9.7	>50			0.5
BLVD-SC-05	9/22/2008	1630		14.0	No		~9.5 ft. "native" sediments encountered at		Yes	9.5	>50			0.0
BLVD-SC-06	9/22/2008	1530		7.8	No		~6 ft.		Yes	4.5	25 to 50			1.5
BLVD-SC-07	9/24/2008	902	,	3.3	No		refusal due to wood debris "native" sediments encountered at		Yes	3.3	25 to 50			0.0
BLVD-SC-08	9/23/2008	1656		15.0	No		~7 ft. milk container fragment observed		Yes	4.5	25 to 50			2.5
BLVD-SC-09	9/23/2008	1818	,	8.1	Yes	0*	from 1.7-2.5 ft	<5	Yes	3.5	25 to 50	Both	bark, wood chips, sawdust	0.5
CW-002	9/25/2008	1615	,	2.2	No		refusal caused by wood debris refusal and pile driving due to		Yes	2.2	>50	>Chips/Dust	bark and wood chips/sawdust	~ 0.5 + eelgrass
CW-003	9/26/2008	1551	,	2.7	No		wood debris single piece of plastic at 1 ft, pile		Yes	2.7	>50	>Chips/Dust	sawdust	~ 0.5 + eelgrass
CW-005	9/29/2008	1455		1.8	Yes	0*	drive due to wood debris plastic fragments, rubber band,	<5	Yes	1.8	25 to 50	>Chips/Dust	wood chips, fibers	~ 1
CW-007	9/26/2008	1109		3.3	Yes	0.4	blue rubber, aluminum foil plastic, tongue depressor, tin foil,	<5	Yes	2.3	25 to 50	>Bark	piece of wood and bark wood chips/sawdust and bark	2.9
CW-008	9/25/2008	1150		6.3	Yes	1	sock single piece of aluminum foil in	<5	Yes	4.3	25 to 50	>Chips/Dust	(3 inch)	2.0
CW-012	9/25/2008	1031	8.5	6.5	Yes	0*	upper 0.5 ft	<5	Yes	6	>50	Both	wood chips and bark	0.5
CW-014	9/25/2008	1116		7.5	Yes	3.5	plastic pieces, bags one shoe lace at 2.5 ft, pile drive	<5	Yes	4.5	25 to 50	Both	bark and wood chips	1.5
CW-017	9/29/2008	1010		3.5	Yes	0*	due to wood debris	<5	Yes	2	25 to 50	Both	bark, wood chips/sawdust	1.5
CW-019	9/29/2008	1030	8.0	4.0	No		pile drive due to wood debris glass and fine gravel at bottom		Yes	1.5	25 to 50	Both	bark, wood chips, sawdust	2.5
CW-025	9/29/2008	1519	refusal	refusal			may have caused refusal glass and plastic fragments,							0.0
CW-026	9/26/2008	1206	6.0 (refusal)	1.7	Yes	1.7	refusal due to gravel and refuse	<5	Yes	1.7	25 to 50	>Bark	bark	0.0
CW-028	9/26/2008	1303	7.0	3.7	Yes	0*	one piece of plastic at 1.5 ft	<5	Yes	2.2	25 to 50	>Bark	large (3-4 inch) piece of bark moderate to abundant wood	1.5
CW-029	9/25/2008	1409	7.0	6.0	Yes	0.5	plastic fragments	<5	Yes	5	25 to 50	>Chips/Dust	chips/sawdust	3.0
CW-031	9/29/2008	1236		3.5	No				Yes	2	25 to 50	>Bark	bark, wood sticks	1.0
							single piece of plastic (candy							
CW-036	9/29/2008	1307	7.7	5.5	Yes	0*	wrapper) at 1.8 ft	<5	No					1.8
							plastic bag/fragments, christmas tinsel, detergent bottle cap, refusal							
CW-048	9/26/2008	1319	6.0 (refusal)	3.9	Yes	0.4	due to refuse?	10	Yes	3.5	25 to 50	>Bark	bark	3.5

Number Post													Relative		
Post Prince Pri				Total	Total		Refuse				Wood		Percent ^c (Bark		Recent Overlying
Number Pate Time Feet In Feet Refuex Feet Description Volume Vol	Core								Percent by	Wood		Percent by	•		Sediment Layer
2.0		Date	Time		•	Refuse?			-			Volume ^c		Rore Log Notes	
200-061 3232/2018 1251 7.8 6.8 No														<u> </u>	
Second Column Second Colum								plactic bage, plactic jai bettern	0.10					fibers, wood chips, sawdust,	
2000 1786 6.3 2.8 2.	CW-051	9/29/2008	1251	7.8	6.8	No		single plastic sheet at 0.8 ft. pile		Yes	1.4	25 to 50	>Chips/Dust	•	1.5
2000 2000	CW-053	9/25/2008	1708	6.3	2.8	Yes	0*	• .	<5	Yes	2	>50	>Chips/Dust		0.8
December 1926/2008 1800 7.7 5.7 7.5							_							•	
1.5 1.5	CW-061						2	plastic sheet, blue plastic	<5						
200-066 9/26/2008 1414 7.6 5.0 No Ves 5 25 to 50	CW-063							·					•	wood sawdust	
2000-066 9/26/2008 1344 7.1 2.0 Yes 1 wood at bottom caused pile drive 5 Yes 2 55 50 SBark large piece of wood (f-3in-ch) 1.0	CW-064	9/26/2008	1414	7.6	5.0	No				Yes	5	25 to 50	>Chips/Dust	• • •	3.0
20															
December Process Pro							1				1				
2.5 2.5	CW-067	9/25/2008	1634	7.9	4.8	Yes	1		<5	Yes	2	>50	>Chips/Dust	bark and wood chips/sawdust	2.0
2.3 Ves 0.7 Single plastic sheet at 0.7 1 45 Ves 2.3 25 to 50 Both wood debris 0.0	CW-068	9/26/2008	1339	8.2	2.6	Yes	0*		<5	Yes	2.6	25 to 50	>Bark		
Ves 1.5 piece, pile drive due to debris 5.10 Ves 3 25 to 50 8oth wood debris 0.0 Ves 3.0 Ves 3.0 25 to 50 Soth wood debris 0.0 Ves 0.0	CW-075	9/26/2008	1521	4.8 (refusal)	2.3	Yes	0*		<5	Yes	2.3	25 to 50	Both		
No	CW-077	9/26/2008	1430	72	3.0	Yes	1.5		5-10	Yes	3	25 to 50	Both	wood debris	0.0
Plastic bags, aluminum foil, refusal Caused by wood debris Caused by refuse, glass Caused by wood debris Caused by refuse, glass Caused by refuse, glass Caused by refuse, glass Caused by refuse, glass Caused by wood debris Caused by refuse, glass Caused											_				
2.000 2.00	011 000	0,20,2000		0.0	· ·-			plastic bags, aluminum foil, refusal		. 55	•	20 10 00	J 5ps, 2 dist	bank and mood ompo, can duct	
CW-084 9/26/2008 1128 7.0 4.2 Yes 1.2 fragments <5 Yes 3.7 25 to 50 Chips/Dust wood chips/sawdust, small bark moderate to abundant wood debris cow-089 9/25/2008 1146 6.1 2.5 No pile drived due to wood debris Yes 2 25 to 50 CW-091 9/25/2008 1313 7.5 5.9 Yes 2 cigarette pack, paper, plastic small piece of leather, glass cow-089 9/29/2008 1125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-091 9/29/2008 125 7.5 5.4 Yes 0.5 fragment <5 Yes 2 25 to 50 CW-124 9/29/2008 125 7.5 5.4 Yes 0.5 fragment SW-04 CW-124 9/29/2008 125 7.5 5.4 Yes 0.5 fragment SW-04 CW-124 9/29/2008 125 7.5 5.6 Yes 0.5 fragment SW-04 CW-124 9/29/2008 125 7.5 5.6 Yes 0.5 Fragment SW-04 CW-124 9/29/2008 125 7.5 5.6 Yes 0.5 SW-124 9/29/2008 125 7.5 5.6 Yes 0.5 Fragment SW-04 CW-125 9/29/2008 125 7.5 5.6 Yes 0.5 Sw-04 CW-126 Provided to wood debris SW-04 CW-126 Provided to wood tebris SW-04 CW-126 Provided to wood tebris SW-04 CW-126 Provided to wood tebris SW-0	CW-082	9/26/2008	1037	5.9 (refusal)	2.9	Yes	1.4	caused by wood debris	<5	Yes	1.4	25 to 50	>Chips/Dust	wood chips	1.5
CW-087 9/25/2008 1343 4.5 (refusal) 2.3 Ves 0* and porcelein frags, plastic <5 Ves 2.3 <25 Both debris <0.5 CW-089 9/29/2008 1146 6.1 2.5 No pile drive due to wood debris Ves 2.5 to 50 Both wood chips, fibers, sawdust considerable of plastic at 3 ft considerable of plastic at 3 ft considerable of plastic at 3.8 ft, pile cw-124 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 3.8 ft, pile cw-134 9/29/2008 1503 6.2 3.8 Ves 0* drive due to wood debris considerable of plastic at 4.5 Ves 0.5 Ves 0.7 Ves	CW-084	9/26/2008	1128	7.0	4.2	Yes	1.2	fragments	<5	Yes	3.7	25 to 50	>Chips/Dust		0.5
CW-089 9/29/2008 1146 6.1 2.5 No pile drive due to wood debris Yes 2 25 to 50 Sohi wood chips, fibers, sawdust 0.5	CW 097	0/25/2009	12/2	4.5 (refueal)	2.2	Voc	0*		-5	Voc	2.2	-25	Roth		2.2
CW-091 9/25/2008 1313 7.5 5.9 Yes 2 cigarette pack, paper, plastic small piece of leather, glass				- (/			_								
Small piece of leather, glass Small piece of plastic at 3 ft Small piece of plastic piece of plastic sheet, pile Small piece of plastic at 4 ft Small piece of plastic piece of plastic piece of plastic at 4 ft Small piece of plastic piece piece of plastic piece of plastic piece piece of plastic piece piece of plastic piece piece of plastic piece piece of plastic								•					•	• •	
CW-108 9/29/2008 1434 6.8 2.0 No pile drive due to wood debris Yes 2 >50	CVV-091	9/23/2000	1313	7.5	5.9	162	2	•	<υ	168	2.5	25 10 50	Botti	wood chips and bark	
CW-108 9/29/2008 1434 6.8 2.0 No pile drive due to wood debris Yes 2 >50	CW-093	9/29/2008	1125	7.5	5.4	Yes	0.5	fragment	<5	Yes	2	25 to 50	Both		2.5
CW-113 9/26/2008 1501 6.0 3.6 Yes 0* one small piece of plastic at 3 ft	CW-108	9/29/2008	1434	6.8	2.0	No		pile drive due to wood debris		Yes	2	>50	>Chips/Dust	inch wood piece	~ 0.5 + eelgrass
No refusal due to wood debris Yes 1.3 >50 >50 > Chips/Dust wood chips and sawdust 0.5 + eelgrass Yes 1.3 >50 > 50 > Chips/Dust wood chips and sawdust 0.5 + eelgrass Yes	CW-113	9/26/2008	1501	6.0	3.6	Yes	0*	one small piece of plastic at 3 ft	<5	Yes		25 to 50	>Bark	bark (3-inch)	
Piece of fabric/textile at 3.8 ft, pile Piece of fabric/textile at 3.8 ft, pile	CW-117	9/29/2008	1538	4.0	4.0	No				Yes	2.5	>50	>Chips/Dust	wood chips and sawdust	< 0.5
CW-124 9/29/2008 1503 6.2 3.8 Yes 0* drive due to wood debris <5 Yes 3.8 25 to 50 Both 2.0 cw-132 9/29/2008 1404 6.5 2.5 Yes 0* drive due to wood debris <5 Yes 2.5 25 to 50 Schips/Dust wood chips, sawdust, fibers in the company of the company	CW-120	9/26/2008	1539	2.0 (refusal)	1.3	No				Yes	1.3	>50	>Chips/Dust	wood chips and sawdust	~ 0.5 + eelgrass
CW-132 9/29/2008 1404 6.5 2.5 Yes 0* drive due to wood debris <5 Yes 0.7 25 to 50 SCW-134 9/29/2008 1339 8.5 6.5 No Yes 0.7 25 to 50 SCW-136 9/29/2008 1046 7.5 5.7 Yes 0* small piece of plastic at 4 ft <5 Yes 4 25 to 50 SCW-139 9/29/2008 1107 7.5 5.6 Yes 2 plastic frags, aluminum foil glass fragments on surface, brick SCW-139 9/29/2008 1107 7.5 5.6 Yes 2.5 25 to 50 SCHips/Dust wood chips, sawdust, fibers yes 0.7 25 to 50 SCHips/Dust wood chips, sawdust, fibers yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers, wood chips yes 0.7 25 to 50 SCHips/Dust fibers yes	CW-124	9/29/2008	1503	6.2	3.8	Yes	0*	drive due to wood debris	<5	Yes	3.8	25 to 50	Both		2.0
CW-134 9/29/2008 1339 8.5 6.5 No Yes 0.7 25 to 50 Schips/Dust fibers, wood chips yes 0.7 25 to 50 Search primarily bark fibers, wood chips sawdust, fibers, wood chips 1.7 Yes 0.7 25 to 50 Search primarily bark fibers, wood chips, sawdust, fibers, wood chips sawdust, fibers, wood chips, sawdust, fibers, wood chips, sawdust, fibers, wood chips 2.7 Yes 0.7 25 to 50 Search primarily bark fibers, wood chips, sawdust, fibers, wood chips yes 0.7 25 to 50 Search primarily bark fibers, wood chips, sawdust, fibers, wood chips, fib	CW-132	9/29/2008	1404	6.5	25	Yes	Λ*		~ 5	Yes	2.5	25 to 50	>Chine/Dust	wood chips sawdust fibers	1.5
CW-136 9/29/2008 1046 7.5 5.7 Yes 0* small piece of plastic at 4 ft <5 Yes 4 25 to 50 SBark primarily bark fibers, wood chips, sawdust, sa													•	• •	
CW-139 9/29/2008 1107 7.5 5.6 Yes 2 plastic frags, aluminum foil <5 Yes 3.6 25 to 50 >Chips/Dust large piece of bark (3-inches) chips, sawdust, 2-inch wood 2.0	CW-134							small piece of plastic at 4 ft						primarily bark	
	CW-139	9/29/2008	1107	7.5	5.6	Yes	2		<5	Yes	3.6	25 to 50	>Chips/Dust	large piece of bark (3-inches)	2.0
	RGH-SC-01	8/26/2008	1654	6.0	4.5	Yes	0.5	debris at 2.5 ft	<5	Yes	<1	<25	>Chips/Dust	chip	<0.5

												Relative		
			Total	Total		Refuse				Wood		Percent ^c (Bark		Recent Overlying
Core			Penetration in			Thickness in		Percent by	Wood	Thickness	Percent by			Sediment Layer
Number	Date	Time	Feet	in Feet	Refuse?		Description	Volume ^b	Debris?	in Feet	Volume ^c	Chips/Sawdust)	Bore Log Notes	in Feet ^d
							brick, glass, wire fragments on					,	scattered wood fiber on surface,	
							surface, brick and glass fragments						3-inch wood chips from 3 to	
RGH-SC-02	8/26/2008	1802	6.0	5.2	Yes	3	at 2.25 ft to 5.2 ft	10	Yes	2.25	25 to 50	>Chips/Dust	5.25 ft	0.5
													abundant wood sticks (0.5 to 4	
													inch long) at surface, wood	
RGH-SC-03	8/27/2008	1212	6.2	5.5	No		brick fragments on surface		Yes	3	>50	>Chips/Dust	chips from 2.8 ft to 5.5 ft	1.8
													wood pieces (0.5 to 2 inch) from	
													0.7 to 2.2 ft, wood chip layers at	
													2.5 ft and 5.1 ft, abundant wood	
RGH-SC-04	8/27/2008	1149	6.0	5.7	No				Yes	5	>50	>Chips/Dust	pieces to 5.7 ft	0.7
													wood fragments 0.5 to 1.5 ft,	
													abundant wood chips from 3 to	
RGH-SC-05	8/27/2008	1127	6.0	4.5	No				Yes	4	>50	>Chips/Dust	4.5 ft	0.5
													root/wood fragments from	
													surface to 2.75 ft, wood chip	
													layers (1 to 3 cm thick) at 2.75	
													and 3.25 ft, wood chip layers	
RGH-SC-06	8/27/2008	1017		5.3	No				Yes	3.5	>50	>Chips/Dust	increase to 5.25 ft	0.9
RGH-SC-07	9/24/2008	1403	6.8	4.9	Yes	0*	5 inch piece black plastic at 6.8'	<5	Yes	6.5	25 to 50	>Chips/Dust	wood chips, sawdust	0.5
RGH-SC-08	9/24/2008	1639	5.5	4.8	Yes	0*	plastic syringe at 5.5 ft	<5	Yes	3.5	>50	>Chips/Dust	wood chips, sawdust, fibers	2.0
													wood pieces (0.5 to 4 inch),	
RGH-SC-09	9/24/2008	1601	5.5	4.3	No				Yes	3.5	25 to 50	>Chips/Dust	increasing amounts with depth	2.0
					•								nickness of Recent Sediment =	

Notes:

Municipal refuse present with < 1.0 foot of recent overlying sediment

Greater than 1.0 foot accumulated wood containing > 50% sawdust/wood chips with < 1.0 foot of recent overlying sediment

^{0* -} single piece or fragment of refuse observed in core

^a Observations are based on recovered sediment depth (not penetration depth)

^b Percent by volume - visual estimate of refuse volume in sediment thickness (<5% is limit of observation)

^c Percent volume is an estimate based on field observations. Highly organic sediments (PT) contain >50% wood debris.

Bold (>50%) indicates primarily wood debris, with little sediment. Organic silts and clays (OL) contain 25 to 50% wood debris.

^d Recent sediments at some locations contain organic material including wood debris but generally less than observed with increasing sediment depth.

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-012
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/25/08 1031

(360) 319-07	'21 FAX (360) 6	647-69	80				Page 1 of 1	
	IPLE INFO							DESCRIPTION	
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	organics, biology DEBRIS PRESE OL Organic clayey		USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)	
8.5	6.5	77	N	-	-		OL	Organic clayey SILT, dark brown in color.	
						1		Upper 0.5 ft observed small piece of aluminum foil, no other refuse	
						1	[observed.	
			Υ	<5	>50	1	PT		
								Highly organic material including wood chips and bark of various size	
								in fine-grained matrix (clayey SILT with fine sand)	
								with strong sulfide odor	
		Ī				2			
				<u> </u>]			
						. 3			
	<u> </u>			<u> </u>			ļ		
		ļ							
		ļ		<u> </u>					
	<u> </u>			ļ		4			
		ļ		ļ			1		
		ļ	 	<u> </u>					
	<u> </u>	ļ							
		ļ	ļ			5			
		ļ	ļ						
	ļ	ļ	<u> </u>	ļ					
		ļ	ļ						
	ļ	ļ		ļ		6			
	_	ļ	ļ	ļ					
		ļ		 			<u> </u>	Base of Core @ 6.5 ft	
		ļ	 	 		-			
	-	ļ	ļ			7			
	<u> </u>		<u> </u>	1	<u> </u>		<u> </u>	LOCATION SKETCH	
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEET Bio-Marine Vibracoring E-inch-diar Bio-Marine Bio-Marine E-inch-diar Bio-Marine Bio-Ma			oring diam 9025.	eter L .85469	exan core Refer to characterization report				
WATER LEVEL (TIDE) IN FEET 1.1 ft				1.	.1 ft				
SEDIMENT ELEVATION (MLLW) -12.7 1					-12	7 ft		l l	

Sunny, 60's F

WEATHER

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-014 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/25/08 1116

Bellingnam, WA 98229		-	0/20/00 TT0			
(360) 319-0721 FAX (360) 647-6980		-	Page 1 of 1			
SAMPLE INFORMATION			DESCRIPTION			
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse?	% Refuse % Wood Debris	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
	<5 <25		Organic clayey SILT with fine sand and glass shards on surface			
			Dark brown to gray in color.			
		1				
	1_	OL	Refuse observed from 1.5 to 5 ft below surface including plastic			
			pieces (bags) scattered throughout within wood debris (bark, chips)			
		L	in clayey SILT matrix with strong sulfide odor			
		[
Y	<5 25-50 2					
		-				
		OL.				
	3-					
	3-					
	4-	-				
<u> </u>						
						
	5-					
N	<25	OL/ML				
			Wood debris decreasing with depth.			
	6-	-				
!	7-		Base of Core @ 7.5 ft			
	····· /-	-				
		-	LOCATION SKETCH			
SAMPLING CONTRACTOR	Bio-Marine		rises, Inc.			
SAMPLING METHOD SAMPLING EQUIPMENT	Vibracoring 4-inch-diar	g meter Le	evan core			
POSITIONING METHOD	DGPS	neter LC	Refer to characterization report			
COORDINATES (E,N)	E 123896	5.19468	N 638386.56723 ↑			
WATER DEPTILIN EECT	21.0 f	+	Not to scale			
WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET		2.1 ft				
SEDIMENT ELEVATION (MLLW)	-18.9 f	-18.9 ft				
WEATHER	Sunny, 60'	's F				

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY

CW-008 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG

	Bellingham,	WA 9	8229					DATE 9/25/08 1150
(360) 319-0			647-69	80				Page 1 of 1
	MPLE INFO							DESCRIPTION
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	l E	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.0	6.3	90	N		<25			
							OL/ML	
	<u> </u>							Organic clayey SILT with fine sand
						1		Dark brown to gray in color.
		<u> </u>] `		
		<u> </u>				1		
								
		ļ	Y	<5	25-50	-	OL	Refuse observed from 2 to 3 ft below surface including plastic fragments,
	. _	. 		 		-		popsicle stick (or tongue depressor), tin foil, and sock/rag hanging from
		· 				3		core catcher. Refuse in wood debris and strong sulfide odor.
	<u> </u>					-		
		·	N	 -	25-50		OL/PT	Wood debris increasing at 3 ft including wood chips, bark (3-inch), and
}					to	-		dust in fine-grained matrix with strong sulfide odor.
	+	 			50	4		dust in integralized matrix with strong same odor.
	· 	· -	 -	†		1		
		· 		 		1		
	+	·				1		
						5		
	T	·				1		
						6		
		ļ		ļ				Base of core @ 6.3 ft.
ļ		ļ	ļ .	ļ				
					<u></u>	l	<u>.</u>	LOCATION CVETCH
SAMPLING CO SAMPLING ME SAMPLING EC POSITIONING COORDINATE	ETHOD QUIPMENT METHOD				Vibraco	oring diam	eter Le	LOCATION SKETCH rises, Inc. exan core Refer to characterization report
WATER DEPT WATER LEVE SEDIMENT EL	(TIDE) IN	IFEE) ft l ft) ft		Not to scale
WEATHER	LVATION	/IVILL	. * * j		Sunny,		F	

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY

CW-091 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG

	Bellingham,							DATE 9/25/08 1313
(360) 319-07	21 FAX ((360)	347-69	80				Page 1 of 1
SAM	IPLE INFO							DESCRIPTION
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.5	5.9	79	N		<25			Organic clayey SILT with fine sand
							OL.	Dark brown to gray in color.
								Refuse observed from 0.5 to 2.5 ft below surface including paper,
		ļ	Υ	<5	25-50	1		plastic fragments, and cigarette pack in organic clayey SILT with sand matrix
							OL	
		†				1		
						2		
							:	
		!						
]		Organic clayey SILT with wood chips and bark grading to clayey SILT with
						3		moderate organics.
	T	1	N		25-50	1	OL/ML	
						1		
						1		Less wood debris with increasing depth.
	T					4		
	T							
			}			1		
]]	5		
	T	Ī]]] "-		
]		
						6		Base of Core @ 5.9 ft.
]		
						7		
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER Bio-Marine E Vibracoring 4-inch-diame DGPS E 1238969.4 25.9 ft 5.5 ft Sunny, 60's I						oring diam 969.	eter Le	

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-087
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/25/08 1343

(360) 319-0721 FAX (360) 647-				Page 1 of 1
SAMPLE INFORMATIO		T 1		DESCRIPTION
ا ح ا	% Refuse % Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
	Y <5 <25			Organic clayey SILT with fine sand and moderate to abundant wood debris
		1		and strong sulfide odor. Dark brown color.
		1		
		1	ML/OL	Refuse at bottom of core including glass fragments, porcelein, and plastic
				Glass may have caused refusal of core.
L				
		2		
<u></u>				Base of core @ 2.3 ft (refusal)
 				Dase of core @ 2.5 it (refusar)
 				
		3		
		1		
		4		
				
				
		5		
		-		
l		-		
		-		
		6		
		_		
		7		
			<u> </u>	LOCATION SKETCH
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEET	Vibraci 4-inch- DGPS E 1239	oring diam 9073.	eter Le	exan core Refer to characterization report
WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW		2 ft 4 ft		

Sunny, 60's F

WEATHER

Bellingham, WA 98229

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-029 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/25/08 1409

Page 1 of 1

(360) 31	19-0721	FAX (360) 6	47-698	30				rage For it
	SAMPL	E INFOR	RMAT	ION					DESCRIPTION
Penetration Depth (ff)		Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7		6	86	Υ		25-50			Organic clayey SILT with moderate to abundant wood chips/dust, brown in
									in color, strong sulfide odor, and small piece of plastic observed at 1 ft.
								OL	
							1		
							2	į	
								ŀ	
							3		
				Υ	<5	25-50		OL	Refuse layer observed from 3 to 3.5 ft below surface including plastic
									fragments.
							-		
							4		
				N		25-50	1	OL	
							-		
							5		OUT III Let a veries alle te brouge polor
						<25	-	OL/ML	Lithology change to clayey SILT with moderate organics, olive to brown color.
				N			1	OLIVIL	
							-		Base of core @ 6.0 ft.
}							6	-	base of core & 0.0 ft.
 	+-		 				1		
 			ļ				1		
 			 		 	{	1		
			ļ		ļ		7		
				<u></u>		I	<u> </u>	<u> </u>	LOCATION SKETCH
SAMPLING			R					Enterp	rises, Inc.
SAMPLING SAMPLING						Vibraco		eter I e	exan core
POSITIONIN						DGPS			Refer to characterization report
COORDINA	TES (I	E,N)				E 1239	184.	.40132	
WATER DE						22.5			N Not to scale
WATER LEV	VEL (T	IDE) IN	FEE MUL	:T W/\		-15.7	ft ft		
SEDIMENT ELEVATION (MLLW) -15.7 f WEATHER Sunny, 60						F			
WEATTER . <u>Jany, s</u>									"

321 Summerland Road Bellingham, WA 98229

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-049 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/25/08 1552

Page 1 of 1

(360) 319	-0721 FAX	(360)	647-69	80				rayeron		
	AMPLE INFO	RMA	TION		·			DESCRIPTION		
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)		
7.5	4.8	64	N		<25		ML/OL	Organic clayey SILT with some small pieces of bark, dark brown in color.		
		<u> </u>								
		ļ	<u></u>							
		ļ		ļ		. 1				
 		ļ		ļ						
 		 		 -		2				
			Υ	5-10	25-50			Refuse observed from 2 to 4.5 ft below surface including plastic bags,		
		 					OL	jar fragments, in organic clayey SILT matrix with wood debris, and		
		†		 		1		strong sulfide odor.		
						3				
		ļ				4				
		ļ		ļ						
		ļ		ļ						
		ļ	N		>50		JOL/PT	Wood chips from 4.5 to 4.8 ft.		
ļ	+	ļ		 		5		Base of core @ 4.8 ft.		
		 -		 -						
		ļ		 		-				
				 						
		ļ		 		6				
				ļ						
		ļ	ļ	ļ		7				
SAMPLING C	ONTRACTO)R			Bio-Mai	rine f	=nterni	LOCATION SKETCH rises, Inc.		
SAMPLING M	ETHOD				Vibraco	ring	·			
SAMPLING E POSITIONING					4-inch-c	diam	eter Le	exan core Refer to characterization report		
COORDINATI					E 1239	293.	05058	N 638944.51381 ↑		
					05.0			N Not to scale		
WATER DEPTH IN FEET 25.6 ft WATER LEVEL (TIDE) IN FEET 8.3 ft										
SEDIMENT ELEVATION (MLLW) -17.3										

Sunny, 60's F

WEATHER

321 Summerland Road Bellingham, WA 98229

WATER DEPTH IN FEET

WEATHER

WATER LEVEL (TIDE) IN FEET

SEDIMENT ELEVATION (MLLW)

CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-002
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/25/08 1615

(360) 319-0721 FAX	(360) 6	647-69	80				Page 1 of 1			
SAMPLE INFO							DESCRIPTION			
Penetration Depth (ft) Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
5.7 2.2	39	N		>50						
	1		1			PT	Bark and wood chips from surface to 0.8 ft.			
	1									
	1				1					
	1] '	PT	Saw dust from 0.8 to 2.2 ft.			
		N		>50]		Strong sulfide odor.			
	!	ļ	ļ		2					
			ļ <u>.</u> .				Base of core @ 2.2 ft (refusal)			
			ļ							
		ļ	ļ		_					
<u> </u>	-		ļ		3					
ļ			ļ							
l			ļ							
 	· 	<u></u> -								
 					4					
 	· 				-					
	· 				1					
	 		 -		1					
	· 		 -	 	5					
	†		 -		1					
l	·†				1					
I	1									
	1		ļ		6					
	1]					
					7					
SAMPLING CONTRACTO SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N)				Vibraco	oring diame	eter Le	LOCATION SKETCH rises, Inc. exan core Refer to characterization report			

13.5 ft

8.3 ft

-5.2 ft

Sunny, 60's F

Ν

Not to scale

321 Summerland Road Bellingham, WA 98229

Bellingham, WA 90229

CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-067
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/25/08 1634

Page 1 of 1

(360) 319-0721 FAX (360) 647-6980								rage i ui i		
	IPLE INFO	RMA	TION			$\left[\begin{array}{c} 1 \end{array}\right]$		DESCRIPTION		
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)		
7.9	4.8	61	Ν		<25		OL	Organic clayey SILT with sand, dark brown in color.		
]				
						1				
						`				
				ļ						
		ļ								
	<u> </u>	ļ!				2				
		 				-	<u> </u>			
 			Υ	<5	25-50	-	OL	Refuse observed from 2 to 3 ft. below surface including plastic sheet and		
						ł		fragments within wood debris (bark, chips)		
		ļ		 -		3	-			
	 					1	PT	Was a shipe and appropriate		
	 		<u>N</u>		>50	-	' '	Wood chips and saw dust.		
	 					1				
	 					4	} — —			
	 		 N		<25		ML	Clayey SILT with moderate organics, olive color.		
	 					1		Base of core @ 4.8 ft.		
	†					1_				
		ļ	ļ			5				
						6				
		<u> </u>] "				
		ļ		ļ		7				
			<u></u>							
SAMPLING COI SAMPLING ME' SAMPLING EQI POSITIONING M COORDINATES	THOD UIPMENT METHOD)R			Vibraco	ring diam	eter Le	LOCATION SKETCH rises, Inc. exan core Refer to characterization report		
WATER DEPTH WATER LEVEL SEDIMENT ELE WEATHER	(TIDE) IN				21.0 8.2 -12.8 Sunny,	ft ft	F	N Not to scale		

321 Summerland Road Bellingham, WA 98229

WATER LEVEL (TIDE) IN FEET

WEATHER

SEDIMENT ELEVATION (MLLW)

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-053 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG

١			Bellingham,	WA 9	98229					DATE 9/2	5/08 1708	
I	(360)	319-07			647-69	80				Page 1 of 1		
İ		SAM	PLE INFO								DESCRIPTION	
	Penetration Depth (ft)		Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moistu organics, biology, weathering, cem DEBRIS PRESENT)	ure, color, minor, MAJOR constituents, odor, sheen, entation, geologic interpretation, etc. (REFUSE OR WOOD	
ľ	6.3		2.8	44	N		<25		OL	Organic clayey SILT, dark brow	vn in color	
İ					1							
Ì									L	Refuse observed at 0.8 ft belov	w surfarce - one piece of plastic sheet	
ľ								1	[
ľ					Υ		>50	_	OL/PT	Highly organic material (wood o	chips, bark) in clayey SILT matrix. Large wood	
								_		chip in core catcher likely block	ked recovery (pile-drive).	
					<u> </u>	<u> </u>				Strong sulfide odor.		
					<u> </u>			. 2				
				ļ	<u> </u>							
				ļ		ļ						
l					ļ	ļ				Base of core @ 2.8 ft.		
ļ				ļ	ļ	<u> </u>		3				
ļ					ļ	ļ						
l				ļ <u>.</u>	ļ	ļ						
ļ					ļ	ļ						
ļ				ļ	ļ			. 4				
ļ				ļ	ļ			-				
ŀ		ļ 			ļ	ļ						
					ļ		ļ					
ŀ								5				
ŀ		ļ		· 		 		-				
ŀ		 	<u> </u>	ļ		 		-				
ŀ		 		·	 	 	 					
ł		ļ				 	 -	6				
ŀ		 	 			 		-	1			
ŀ		 	 	- 		 		-				
ŀ		 -	 -		 	 		-				
ł		<u> </u>		· 	-			7				
ł			<u></u>	<u> </u>		<u>.</u>		<u> </u>	1	<u> </u>	LOCATION SKETCH	
	SAMPLIN SAMPLIN SAMPLIN POSITION COORDIN	G ME ⁻ G EQU NING M NATES	THOD JIPMENT METHOD 5 (E,N)				Vibraco 4-inch- DGPS E 123	oring diam	eter Le	rises, Inc. exan core N 639154.4499	Refer to characterization report	
- 1	WATER D	ノヒピリH					41.1	11		14	1,0,0,0,0,0	

7.9 ft

-13.8 ft

Sunny, 50's F

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY

CW-063
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG

Bellingham, WA 98229			DATE 9/25/08 1/29
(360) 319-0721 FAX (360) 647-698	30		Page 1 of 1
SAMPLE INFORMATION		1	DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft) Recovery Recovery	% Refuse % Wood Debris	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
6.5 5.0 77 N	<25	OL	Organic clayey SILT with sand and shell hash, dark brown in color.
	í		
 	ı		
 	1		ļ
	,		
	,		
	,		
F	2	. 	Fig. 1. 1. Out 10. 1. out the death
N	>50	OL/ 1	Organic clayey SILT with layers of wood saw dust.
	;		ļ
 	,		ļ
 	3		
 			
 	,		
<u> </u>	,	1	
	4	1	,
		'	
N	<25	ML.	Clayey SILT with trace shell fragments, olive in color, (native?).
	5		
			Base of core @ 5.0 ft.
		,	
			
	6	. '	
	l '	'	
		'	
		'	
	7	.] '	
		'	LOCATION OVETON
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N)	Bio-Marine E Vibracoring 4-inch-diame DGPS E 1239511.3	neter Le: .35743	exan core Refer to characterization report N 639273.70919
WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER	20.3 ft 7.7 ft -12.6 ft Sunny, 50's		N Not to scale

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY

CW-061 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG

	Bellingham,	WA 9	8229					DATE 9/25/08 1800			
(360) 319-07	721 FAX (360) 6	647-69	30				Page 1 of 1			
	APLE INFO	RMA	TION					DESCRIPTION			
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
7.7	5.7	74	N		<25		OL	Organic clayey SILT with mud clam on surface, dark brown in color.			
						1					
	ļ					-					
			 - -			-					
	 					2					
	 	 	Υ	<5	>50	1	OL/PT	Refuse observed from 2 to 4 ft below surface including plastic sheets and			
	 	 -				1		blue plastic fragments mixed with wood debris in a fine-grained matrix.			
		ļ									
	 					3					
			1								
	T]					
						4	<u> </u>				
]					
	<u> </u>	ļ	N		25-50		OL	Organic clayey SILT with layer of wood chips at bottom of core.			
		ļ		ļ		-					
		ļ		 		5					
	+	ļ				-					
	+	 -			>50	-	PT	Base of core @ 5.7 ft.			
 	+	· 				1		Dase of core & 3.7 ft.			
	+	· -				6					
 	 	†									
	+	·	1								
						7					
						Ĺ	<u> </u>				
CAMBUNG	NITO A OTO	י			Dio Ma	rino	Entern	LOCATION SKETCH			
SAMPLING CO SAMPLING ME		λK			Vibraco		спеιρ	rises, Inc.			
SAMPLING EQ	UIPMENT				4-inch-		eter Le	exan core			
POSITIONING COORDINATES					DGPS E 1239	567	17148	Refer to characterization report N 639380.76652			
	○ (⊏,I¥)										
WATER LEVEL			· T		23.6	ft ft		N Not to scale			
WATER LEVEL SEDIMENT ELI					-16.4	ft					
WEATHER			•		Sunny,	50's	F				

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY

CW-080 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG

	Bellingham,	WA S	8229					DATE 9/26/08 0851			
(360) 319-07	21 FAX ((360) 6	647-698	30				Page 1 of 1			
	IPLE INFO							DESCRIPTION			
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	Ë	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
8.5	7.2	85	N		<25		OL	Organic clayey SILT with fine sand and scattered to moderate wood debris			
					to			(bark), dark brown in color.			
					25-50						
						1					
						'					
		ļ									
]					
						2					
]					
	T	Ī				}					
]			3	l				
]]					
			N		>50		PT	Wood debris (chips and dust)			
]			4	L				
] '					
			N		<25		ML	Clayey SILT with find sand and scattered shell fragments, olive in color,			
								(native?).			
			ļ			5					
		ļ	ļ								
				ļ							
		.	ļ	ļ							
		<u>.</u>	<u> </u>	ļ		6					
		. 		ļ							
		.		ļ	 						
	<u></u>	<u>.</u>	ļ		ļ						
			ļ			. 7		Base of core @ 7.2 ft.			
				<u> </u>				LOCATION CVETCH			
SAMPLING CO SAMPLING ME SAMPLING EQ POSITIONING COORDINATES	THOD UIPMENT METHOD				Vibraco 4-inch- DGPS	oring diam		LOCATION SKETCH rises, Inc. exan core Refer to characterization report			
WATER DEPTH WATER LEVEL SEDIMENT ELI WEATHER	(TIDE) IN	IFEE					F	N Not to scale			

321 Summerland Road

WATER LEVEL (TIDE) IN FEET

WEATHER

SEDIMENT ELEVATION (MLLW)

Bellingham, WA 98229

CORE NUMBER PROJECT LOCATION PROJECT NUMBER-LOGGED BY DATE

CW-082 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/26/08 1037

(360) 319-0	721 FAX	(360) (647-69	80		P				
	MPLE INFO							DESCRIPTION		
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)		
5.9	2.9	49	N		<25		OL.	Organic clayey SILT, dark brown in color.		
]				
						1				
			ļ	ļ 		-				
			ļ			-	<u> </u>			
		ļ				-	OL/DT	45 000 including plants from one		
			Y	<5	25-50	2	OLIFT	Refuse observed from 1.5 to 2.9 ft. including plastic fragments, bags, and aluminum foil mixed with wood debris (chips).		
	+			 		1		auminum for mixed with wood debris (Grips).		
	+					1		Wood chips increase at bottom of core.		
		+	 	†·		3				
] 3		Base of core @ 2.9 ft., wood chips may have blocked recovery (pile drive)		
		ļ	ļ	ļ						
		.		ļ	 	4				
				ļ	 					
	-4			 -						
L				 		-				
			 	 		5				
	-†		 	 		1				
			 	1		1				
			1	†		6				
				ļ	ļ					
										
						7				
					<u>i</u>	<u> </u>	1	LOCATION SKETCH		
SAMPLING CO SAMPLING ME SAMPLING EC POSITIONING COORDINATE	ETHOD QUIPMENT METHOD S (E,N)	-			Vibraco 4-inch- DGPS E 1239	oring diam 9791	eter Le	exan core Refer to characterization report N 639488.43469		
WATER DEPT	H IN FEET	-			13.5	5 ft		Not to scale		

0.9 ft

-12.6 ft Sunny, 50's F

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY

CW-007
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG

(360) 319-0721 FAX (360) 647-6980 SAMPLE INFORMATION DESCRIPTION	Page 1 of 1
Debrth (ff) Note: The property of the propert	, odor, sheen, REFUSE OR WOOD
7.0 3.3 47 N <25 OL Organic clayey SILT, dark brown in color.	
Large (3-inch) worm-hole piece of wood and bark fragments at 1	ft.
 	
N 25-50 OL	
2- Wood debris increases with depth.	
	
	
Y <5 >50 3 OL/PT Refuse observed from 2.9 to 3.3 ft below surface including plastic	c fragments,
aluminum foil, rubber band, and blue rubber fragment within wood	
Wood debris/refuse likely blocked recovery (pile-drive).	
Base of core @ 3.3 ft.	
4	
 	
 	
<u></u>	
 5	
	
	
6	
7	
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING Equipment SAMPLING EQUIPMENT POSITIONING METHOD Bio-Marine Enterprises, Inc. Vibracoring 4-inch-diameter Lexan core DGPS Refer to characterization	
POSITIONING METHOD DGPS Refer to characterization COORDINATES (E,N) E 1238991.38712 N 638444.38965 ↑	πτορυπ
WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER U 20.3 ft 1.3 ft -19.0 ft Sunny, 50's F	Not to scale

321 Summerland Road

WEATHER

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-084 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG

l		Bellingham,	WA 9	98229					DATE 9/26/08 1128
	(360) 319-0	-		647-69	80				Page 1 of 1
Ì	SAMPLE INFORMATION								DESCRIPTION
	Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOLDEBRIS PRESENT)
ŀ	7.0	4.2	60	N		<25		OL	Organic clayey SILT with fine sand, dark brown to black in color.
ŀ		+							
ł		 		Υ	<5	25-50	-	OL	Refuse observed from 0.5 to 1.7 ft below surface including plastic bread
Ì		 	t	 	<u>×</u>		1		clip, newspaper, and glass fragments within wood debris (chips/bark)
ľ		 	ļ						
ĺ									
			ļ <u>.</u>	ļ			2		
۱			ļ	N		25-50		OL/PT	Organic clayey SILT with fine sand and pockets of wood chips, saw dust,
ŀ			ļ	ļ	ļ	· 			and small bark, dark brown in color.
ŀ			ļ				-		
l		+	 -				3		
ł		+					-		
ł		 	ļ				1		
l			ļ				4		
I] 4		Base of core @ 4.2 ft.
Ī							_		
			ļ				.]		
						ļ	5		
				ļ	 	 			
ı		+		 	 		-		
		+		 	 		-		
			· 	 	†		6		
l		·	·		1				
]				
			ļ				7		
						<u> </u>			LOCATION OVETON
	SAMPLING CO SAMPLING ME SAMPLING EQ POSITIONING COORDINATE WATER DEPTI	THOD UIPMENT METHOD S (E,N)				Vibraco 4-inch- DGPS E 1238	oring diam	eter Le	Exan core Refer to characterization report Not to scale
	WATER LEVEL SEDIMENT EL	(TIDE) IN	IFEE				7 ft		

Sunny, 50's F

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY

CW-026 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/26/08 1206

Bellingham, WA 98229		1	DATE 9/26/08 1206			
(360) 319-0721 FAX (360) 647-698	80		Page 1 of 1			
SAMPLE INFORMATION			DESCRIPTION			
Penetration Depth (ft) Recovery Depth (ft) Recovery Recovery	% Refuse % Wood Debris	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
6.0 1.7 28 Y	<5 25-50	OL	Organic SILT with clay, black in color.			
	11	-	Refuse observed from surface to 1.7 ft including glass and plastic fragments within wood debris (bark).			
			Fine gravel observed at bottom of core. Base of core @ 1.7 ft. Refuse/bark may have blocked recovery (pile-drive).			
	2		Refusal at 6.0 ft penetration depth.			
L						
 						
}						
	3	-				
	 4	-				
 						
h	 					
l	 					
<u> </u>	5	-				
	ļ					
 	6	-				
						
l						
 	+					
	7	-				
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N)	Bio-Marine Vibracoring 4-inch-dian DGPS E 1239102	neter Le 2.49699	exan core Refer to characterization report			
WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER	14.8 ft 2.3 ft -12.5 ft Sunny, 60'	t	IN NOT to scale			

321 Summerland Road Bellingham, WA 98229 CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY

CW-028 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/26/08 1303

	Bellingham,	WA 9	8229					DATE 9/26/08 1303		
(360) 319-07	721 FAX	(360) 6	647-69	80				Page 1 of 1		
SAN	IPLE INFO	RMA	TION					DESCRIPTION		
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)		
7.0	3.7	53	N		<25		OL	Organic clayey SILT with mud clam observed near surface, dark brown		
						1		in color.		
]				
] ,				
		1				1				
]	<u> </u>			
							[A single piece of plastic observed at 1.5 ft below surface.		
						2				
			Υ		25-50		OL/PT			
		ļ						Large (3-4 inch) piece of bark at 2.5 ft below surface.		
		ļ						Wood increasing with depth.		
		ļ	 			3				
	ļ	ļ								
	ļ 	ļ								
	<u> </u>	ļ						Base of core @ 3.7 ft.		
 	ļ	ļ				4				
 		ļ				ļ				
	ļ	ļ								
	ļ	ļ			 					
		ļ	 			5				
		ļ	 			-				
 	 	ļ								
		ļ				-				
	 	ļ				6				
	 	ļ				-				
		ļ				-				
		ļ				-				
		ļ	ļ			. 7				
		l	l	<u></u>		l	<u> </u>	LOCATION SKETCH		
SAMPLING CO	NTRACTO	R			Bio-Mai	rine E	Enterpr	rises, Inc.		
SAMPLING ME					Vibraco	ring				
SAMPLING EQUIPOSITIONING N					4-inch-o	diame	eter Le	exan core Refer to characterization report		
COORDINATES					E 1239	158.	63835			
MATER REST.						-		N Not to scale		
WATER DEPTH WATER LEVEL		FEF	Т		20.5	ft		Not to scale		
SEDIMENT ELE					-16.5	ft				
WEATHER					Sunny,	60's	F			

321 Summerland Road Bellingham, WA 98229

WEATHER

CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-048
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/26/08 1319

(360) 319-07	721 FAX ((360) 6	647-69	80			Page 1 of				
SAN	IPLE INFO							DESCRIPTION			
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
6.0	3.9	65	N		25-50		OL	Organic clayey SILT with mussel shells in surface and wood debris (bark)			
		†				1	:	throughout upper 3.5 ft., gray to black in color.			
						1					
											
		<u> </u>]					
						2					
			<u> </u>	<u></u>							
	<u> </u>	ļ		ļ							
	ļ	ļ		ļ		3					
	ļ	ļ		ļ							
	ļ	ļ		ļ							
		ļ	Υ	10	25-50		OL	Refuse observed from 3.5 to 3.9 ft below surface including christmas gold			
	ļ	ļ		ļ		4		tinsel, plastic bags, detergent cap, and small plastic fragments.			
	 			ļ	ļ			Base of core @ 3.9 ft. Refusal may have been caused by refuse.			
				ļ	 -						
	 		 -								
	 		 -			5					
	+		 -	 	 	-					
	 		 	 -		-					
	+	· 	 	 		-					
	+	 	 	 		6	ı.				
	 	· 		 	 -	-					
	 		 	†		1					
	†	†	 	 		1_					
		1	1			7					
	.1					•	<u> </u>	LOCATION SKETCH			
SAMPLING CO		OR			Bio-Ma Vibraco		Enterp	rises, Inc.			
SAMPLING ME SAMPLING EQ							eter L	exan core			
POSITIONING	METHOD				DGPS			Refer to characterization report			
COORDINATES	S (E,N)				E 1239	9270.	73619	9 N 638879.91681 			
WATER DEPTH	H IN FEET				22.3	3 ft		N Not to scale			
WATER LEVEL	. (TIDE) IN	FEE			6.3	3 ft					
SEDIMENTEL	-VATION	(NAL	WVI		-16 1	ı tt		I .			

Sunny, 60's F

321 Summerland Road Bellingham, WA 98229 CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-068 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/26/08 1339

(360) 319-0721 FAX (360) 647-6980			Page 1 of 1
SAMPLE INFORMATION			DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft) Recovery Refuse?	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
8.2 2.6 32 N	25-50	OL	Organic clayey SILT with abundant wood debris (bark), dark brown in color.
	1		
	[
	2		
		1	
Y ?	25-50		Refuse observed at bottom of core including linoleum flooring piece, plastic
			fragments.
<u> </u>	3		Base of core @ 2.6 ft. Refuse likely blocked recovery (pile-drive).
			
 	 		
	 		
I	 4		
			
 	 		
 	 		
 	 5		
			
	1		
	 6		
	7		
SAMPLING CONTRACTOR	Bio-Marine	Enterp	rises, Inc.
SAMPLING METHOD	Vibracoring		
SAMPLING EQUIPMENT POSITIONING METHOD	4-inch-diam	eter Le	exan core Refer to characterization report
COORDINATES (E,N)	E 1239379	.78673	
WATER DEPTH IN FEET	16.1 ft		N Not to scale
WATER LEVEL (TIDE) IN FEET	5.6 ft		
SEDIMENT ELEVATION (MLLW)	-10.5 ft		

-10.5 ft Sunny, 60's F

WEATHER

321 Summerland Road Bellingham, WA 98229 **CORE NUMBER PROJECT** LOCATION PROJECT NUMBER LOGGED BY DATE

CW-066 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG

9/26/08 1354 Page 1 of 1 (360) 319-0721 FAX (360) 647-6980 DESCRIPTION SAMPLE INFORMATION Depth (ft) Penetration Depth (ft) Recovery Depth (ft) USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, "Recovery Refuse % Wood Debris Refuse? organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT) % <25 Organic clayey SILT with fine sand and mud clam in surface, dark brown 2.0 28 Ν 7.1 in color. Refuse observed from 1 to 2 ft below surface including rubber gasket. <5 25-50 OL/PT plastic fragments within wood debris. Large piece of wood (3-inch) in core catcher likely caused poor recovery (pile-drive) 2--Base of core @ 2 ft. 3--5--6--LOCATION SKETCH Bio-Marine Enterprises, Inc. SAMPLING CONTRACTOR Vibracoring SAMPLING METHOD SAMPLING EQUIPMENT 4-inch-diameter Lexan core Refer to characterization report **DGPS** POSITIONING METHOD COORDINATES (E,N)

WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER

E 1239435.68111 N 639103.82652 Ν 18.4 ft 5.5 ft -12.9 ft Sunny, 60's F

Not to scale

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-064
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/26/08 1414

Beilingnar	n, wa s	0229					DATE 3/20/00 1111
(360) 319-0721 FAX	X (360) 6	847-69	80				Page 1 of 1
SAMPLE INF	ORMA	ΓΙΟΝ					DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.6 5.0	66	N		25-50		OL	Organic clayey SILT with fine sand and moderate to abundant wood debris,
							shell fragments near bottom of core, dark brown in color.
			<u></u>		1		
					-		
					-		
					2		
					-		
		- -			1		
					1		Thin layer (~2 inches) of fibrous wood at 3 ft.
					3		Wood debris increases with depth.
]		
					4	1	
		ļ					
			ļ		-		
			ļ		-		
					5	<u> </u>	Base of core @ 5 ft.
l					}		
L							
ļ					1		
			 -		6	ļ	}
			 		1		
]		
					7		
SAMPLING CONTRACT SAMPLING METHOD SAMPLING EQUIPMEN POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEE	T O			Vibraco	diami	eter Le	LOCATION SKETCH exan core Refer to characterization report N Not to scale
WATER LEVEL (TIDE) !	NFEE			6.1	ft		
SEDIMENT ELEVATION WEATHER	۱ (MLL	.W)		-12.3 Sunny,		F	
WEATHER				Juriny,	003	<u>'</u>	

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-077
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/26/08 1430

(360) 319-07	721 FAX (3	(360)	647-69	980				Page 1 of 1
SAN	SAMPLE INFORMATION							DESCRIPTION
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.2	3.0	42	Υ	5-10	25-50	\vdash	OL/PT	Organic clayey SILT with fine sand and abundant wood debris.
		[1		Refuse observed from surface to 1.5 ft including brick and glass fragments,
		[and piece of plywood.
	<u> </u>	ļ!]		1		
	<u> </u>	ļ!	ļ . .	<u> </u>	ļ			
 	<u> </u>	ļ!	ļ	ļJ				}
		ļJ	 N		25-50		OL.	Organic clayey SILT with fine wood debris throughout sediment.
<u> </u>	 	<u> </u>		 -	2000	2		Organic dayey on 1 with the wood door to throughout organic
				1				
		['] '		
	ļ	ļ!	ļ	<u> </u>		3		Base of core @ 3 ft.
	<u> </u>	ļ!		<u> </u>				ļ
 	 	ļ!	ļ	ļJ				ļ
 	 	 		 				
{	 	 		 -		4		}
}	+	ļJ		 -				
 	 	ļ				-		
 	tt	<u> </u>				1		<u></u>
	† †	ļ1		 1		5		<u></u>
	† <u>-</u>	[-		† <u>1</u>		1		
	<u> </u>] '		
	I	Ĺ'				6		
L	<u> </u>	ļ!	ļ	<u> </u>				
 	 	ļ!	ļ	<u> </u>				ļ
 	 		ļ	ļJ	 			ļ
ļ	-	ļ	ļ			7		
 				لــــــــــــــــــــــــــــــــــــــ			<u>. </u>	LOCATION SKETCH
SAMPLING CON SAMPLING MET SAMPLING EQU POSITIONING IN COORDINATES	THOD UIPMENT METHOD S (E,N)				Vibraco 4-inch-o DGPS E 1239	oring diame 9595.	eter Le	exan core Refer to characterization report
WATER LEVEL SEDIMENT ELE					-10.2	ft ft		
WEATHER	.VATION (I	,VILL	VV j	•	Sunny,		F	

321 Summerland Road

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/26/08 1501

Beilingham, WA 96229			Page 1 of 1			
(360) 319-0721 FAX (360) 647-6980		 				
SAMPLE INFORMATION			DESCRIPTION			
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse?	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
6.0 3.6 60 Y	25-50	OL	Organic clayey SILT with sand and fine gravels and wood debris (bark),			
L			3-inch piece observed at 2.7 ft below surface, dark brown in color.			
<u> </u>						
	2					
	3		Observed one small piece of plastic at 3 ft below surface.			
		OL				
			Shell fragments observed at bottom of core.			
			Base of core @ 3.6 ft.			
	44					
						
 	 					
 	5					
 	 					
 						
 	 					
 	6	-				
 						
 						
 	 					
	7	-				
	<u> </u>	<u> </u>	LOCATION SKETCH			
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEET	Bio-Marine Vibracoring 4-inch-diam DGPS E 1239710) neter Le	exan core Refer to characterization report			
WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW)	7.3 ft		IV Not to scale			

Sunny, 60's F

WEATHER

321 Summerland Road Bellingham, WA 98229 CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-075 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/26/08 1521

(360) 319-07	21 FAX ((360) 6	347-69	80		Pa			
SAMPLE INFORMATION								DESCRIPTION	
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)	
4.8	2.3	48	Υ		25-50		OL.	Chunk of wood at surface.	
							l	A single piece of plastic at 0.7 ft below surface.	
		ļ				1		Organic clayey SILT with sand and fine gravel and abundant wood debris	
		ļ	ļ				OL	(bark, chips), dark brown in color.	
		ļ							
		ļ				-			
	 			ļ		2		COOK D. C. L. L. C. Joseph at 4.0 ft Week according	
		 				-		Base of core @ 2.3 ft. Refusal at penetration depth of 4.8 ft. likely caused	
		. 				-		by large piece of wood observed at bottom of core.	
		. 		 -		1			
						3			
		. - -				1			
		· 	 -			1			
		·	 -						
			 			4			
	T								
		·				1	,		
		1				5			
]	1		
		<u> </u>							
		ļ	ļ	ļ		6			
		ļ <u>.</u>							
	ļ	.ļ	ļ						
		. 	ļ						
	ļ			ļ		7			
		<u> </u>		<u></u>	}			LOCATION SKETCH	
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEET Bio-Marine E Vibracoring 4-inch-diame E 1239537.4								exan core Refer to characterization report	

7.6 ft

-8.5 ft

Sunny, 60's F

WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW)

WEATHER

321 Summerland Road Bellingham, WA 98229

WEATHER

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-120 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/26/08 1539

Page 1 of 1

(360) 319-0721 FAX (360) 647-6980			rage For		
SAMPLE INFORMATION		1.	DESCRIPTION		
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse?	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)		
2.0 1.3 65 N	>50	PT	Wood chips and saw dust.		
	1				
			Base of core @ 1.3 ft. Refusal due to wood debris.		
	2				
	3				
	4	_			
	5				
		į			
	6	_			
	7				
	,				
	-		LOCATION SKETCH		
SAMPLING CONTRACTOR	Bio-Marine		rises, Inc.		
SAMPLING METHOD SAMPLING EQUIPMENT	Vibracoring 4-inch-diam		exan core		
POSITIONING METHOD	DGPS		Refer to characterization report		
COORDINATES (E,N)	E 1239195	5.2354	N 638178.45069 ↑		
WATER DEPTH IN FEET	10.2 ft		Not to scale		
WATER LEVEL (TIDE) IN FEET	7.9 ft				
SEDIMENT ELEVATION (MLLW)	-2.3 ft				

Sunny, 60's F

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-003
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG

Bellingham, WA 98229			DATE 9/26/08 1551
(360) 319-0721 FAX (360) 647-6980		<u> </u>	Page 1 of 1
SAMPLE INFORMATION			DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse? % Refuse	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
6.0 2.7 45 N >5	0	PT	Wood debris (saw dust).
	1		
	2		
<u> </u>			
	1		Base of core @ 2.7 ft. Core may have penetrated at an angle.
<u> </u>	3		
	3		
<u> </u>	4		
<u> </u>			
<u> </u>			
	5	1	
	6		
	······ / -·		
			LOCATION SKETCH
			orises, Inc.
SAMPLING METHOD SAMPLING EQUIPMENT Vibrian 4-in	acoring ch-dian	neter I	exan core
POSITIONING METHOD DGI	PS .		Refer to characterization report
	239098	.88363	3 N 638224.93278 ↑
WATER DEPTH IN FEET	4.1 ft		Not to scale
WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET	8.1 ft		
SEDIMENT ELEVATION (MLLW)	-6.0 ft		
WEATHER Sur	ny, 60'	s F	

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-017
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1010

Page 1 of 1

(360) 319-072				0		<u> </u>		DESCRIPTION
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	<u>۴</u>	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
8.0	3.5	44	Ν		<25		OL	Organic clayey SILT with fine sand, dark brown in color.
		 -	 					
						1		
		ļ	 	 			OL/PT	Wood debris (bark, chips, dust) increasing with depth.
		ļ <u></u> .	Y		25-50	2	IOL/P1	
								Observed one shoe lace at 2.5 ft below surface.
		ļ						
			N		25-50	3	OL/PT	
	 			 		-		Base of core @ 3.5 ft.
			 	 -	 	-		Dado 3, 0010 @ 010 1
		· 		 		 4		
						_		
	 							
	 					-		
	 					5		
	 							
						6		
						7-	- \	
			<u> </u>					LOCATION SKETCH
								prises, Inc.
SAMPLING METHOD Vibracorin					Vibrac 4-inch	coring n-diar	neter l	_exan core
POSITIONING METHOD DGPS				DGPS	3		Refer to characterization report	
COORDINATE	S (E,N)							
WATER DEPT	H IN FEE	T N E E	ET			.7 f		Not to scale
WATER LEVE SEDIMENT EL	L (TIDE) I EVATION	1 (WF 14 EE	LW)		-14	.4 f	t	
WEATHER					P. Su	inny,	50's F	

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-019
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1030

Bellingham, WA	98229
----------------	-------

(360) 319-0721 FAX (360) 647-6980									Page 1 of 1			
SAMPLE INFORMATION										DESCRIPTION		
	Penetration Depth (ft)		Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	<u> </u>	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)		
	8.0		4.0	50	N		<25		OL	Organic clayey SILT with sand, dark brown in color.		
								1				
					 	- 	 					
				ļ	 -	 -						
				ļ :		 -		2				
								1				
				ļ				1	<u> </u>			
ļ.				 			25-50	1	OL/PT	Wood debris increases at 2.5 ft below surface (bark, chips, dust).		
١.		+-		 		 		3		Strong sulfide odor.		
ŀ		+-		t	†	† -		1				
ŀ				t]				
ŀ								4		Base of core @ 4.0 ft.		
ľ		<u>-</u>]			1				
Ī												
				ļ		ļ			1			
				·	ļ 	ļ		. 5				
-						 -						
F												
ŀ								-				
ŀ								6				
ŀ		+				+		-				
ŀ		+				+		-				
1		†				+		- _				
l				1				7	<u></u> .			
ł										LOCATION SKETCH		
SAMPLING METHOD SAMPLING EQUIPMENT Vibracoring 4-inch-diar								Enterprises, Inc.				
						4-inch-	-dian	neter L	exan core			
	POSITIONING METHOD DGPS						0822	Refer to characterization report N 638341.49403				
	COORDIN	ATES	(E,N)				E 123	0940	1.00234			
	WATER D							0 ft		Not to scale		
	WATER LI SEDIMEN							0 ft 0 ft				
	WEATHER		AHON	LIVIL	~ v v <i>j</i>		P. Sur					

321 Summerland Road Bellingham, WA 98229

CORE NUMBER PROJECT · LOCATION PROJECT NUMBER LOGGED BY DATE

CW-136 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/29/08 1046

(360) 319-0721 FAX (360) 647-6980							Page 1 of				
SAMPLE INF							DESCRIPTION				
Penetration Depth (ft) Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)				
7.5 5.7	76	N		<25		OL	Organic clayey SILT with sand and scattered worms in upper 0.2 ft.				
			<u> </u>]		Dark brown in color.				
]						
]						
]						
]						
					2		Wood debris increases at 1.7 ft (primarily bark)				
		Υ		25-50		OL					
			ļ			to					
		<u> </u>	ļ			OL/PT					
		 		<u> </u>	. 3						
					4						
			<u></u>								
			ļ								
			ļ				Observed one piece of plastic at 4 ft below surface.				
		ļ 	ļ	 	-						
		<u> </u>	<u> </u>		-						
		ļ			5						
		ļ									
		ļ			-	Ì					
		 			-		Base of core @ 5.7 ft.				
 		 	 		6						
 		 	 		-						
 				 	-						
ļ		 									
				-	7						
		<u> </u>					LOCATION SKETCH				
SAMPLING CONTRAC	TOR						orises, Inc.				
SAMPLING METHOD Vibracoring											
SAMPLING EQUIPMENT 4-inch-dian POSITIONING METHOD DGPS						ieter Li	exan core Refer to characterization report				
COORDINATES (E,N) E 1238891						.24963					
					S £1		Not to scale				
WATER LEVEL (TIDE)	WATER DEPTH IN FEET 23.6 ft WATER LEVEL (TIDE) IN FEET 2.8 ft										
SEDIMENT ELEVATIO				-20.	8 ft						
WEATHER P. Sunny, 5											

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY

CW-139
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1107

Bellingham, WA 98229)			DATE 9/29/00 1107
(360) 319-0721 FAX (360) 647-6	980			Page 1 of 1
SAMPLE INFORMATION				DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft) Recovery Recovery	% Refuse % Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.5 5.6 75 N	<25		OL	Organic clayey SILT with mud clam and worms in upper 1 ft.
<u> </u>				Dark brown in color.
		1	L	
		1		Refuse observed at 1 ft below surface including plastic and aluminum
Y	<5 25-50		OL	foil fragments.
		2	ļ	
<u> </u>	25-50		OL/PT	Wood debris increases at ~2 ft (fibers, chips, dust)
		3	<u> </u>	
				
 			OL	Organic clayey SILT with sand, olive to dark brown in color.
\	25-50		to OL/PT	
 		4	OLIFI	
 				Large piece of bark (3-inches) at ~4.5 ft.
			E	Large piece of bark (3-inclies) at ~4.5 it.
 				
h		5		
l				Base of core @ 5.6 ft.
 				
		1		
		6		
]		
			1	
		7		
		Ė		
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER	Vibraco 4-inch-c DGPS E 1238	ring diam 906. ft ft	eter Le	LOCATION SKETCH Refer to characterization report Not to scale

321 Summerland Road Bellingham, WA 98229

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

CW-093 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/29/08 1125

Page 1 of 1

(360) 319-07	21 FAX (360) 6	47-698	30				1 390 1 01 1
	IPLE INFO	RMA1	ION					DESCRIPTION
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.5	5.4	72	N		<25		OL	Organic clayey SILT with sand, dark brown to olive in color.
	T]		
	T					1		
	T] '		
	T	 		-				
<u> </u>	T							
	T	ļ				2		
		ļ]		
]	L	
			N		25-50		OL	Wood debris increases at ~2.5 ft.
						3	L	
		1	Υ	<5	25-50]	OL	Refuse observed from 3 to 3.5 ft below surface including small piece of
							L	leather and glass fragment.
]]	[
			N		25-50	4	OL	Moderate sulfide odor.
			<u> </u>]		
	T							
	I]		
	I					5		
	I		N		25-50		OL/PT	Wood debris increases.
	I							Base of core @ 5.4 ft.
						6		
						.]		
	<u> </u>							
						7		
								LOCATION SKETCH
SAMPLING CONTRACTOR SAMPLING METHOD Bio-Marine Vibracorin								rises, Inc.
SAMPLING METHOD VIDIACOIII SAMPLING EQUIPMENT 4-inch-dial								exan core
POSITIONING METHOD DGPS								Refer to characterization report
COORDINATES (E,N) E 1239018						018	.52114	N 638713.24271 ↑
WATER DEPTH	HIN FEET				21.7	7 ft		Not to scale
WATER LEVEL (TIDE) IN FEET 2.6 f								
SEDIMENT ELE	EVATION	(MLL	-W)		-19.1			
WEATHER Sunny, 50's							3 F	<u> </u>

321 Summerland Road Bellingham, WA 98229

WATER LEVEL (TIDE) IN FEET

WEATHER

SEDIMENT ELEVATION (MLLW)

CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-089
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1146

(360) 319-0721 FA	, X (360) (347-698	30				Page 1 of 1
SAMPLE INFORMATION							DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft)	"Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	H.	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
6.1 2.5	41	N		<25		OL	Organic clayey SILT with fine sand and worms observed in surface sediment,
							dark brown in color.
		N		25-50	1	OL/PT	Wood debris (chips, fibers, dust) increasing at 0.5 ft.
					ļ		moderate sulfide odor.
		ļ					
		ļ	 				
		ļ			2		
				 	-		Base of core @ 2.5 ft.
					1		base of core @ 2.5 ft.
			 -		1		
					3	İ	
					1		
		1			1		
					4		
					_ `		
			<u> </u>				
			ļ		_		
					5		
			}		-		
 			 		-		
 					-		
 					6		
 					-	ļ	
			1		7		
					-]] ₇		
SAMPLING CONTRAC SAMPLING METHOD SAMPLING EQUIPMEI POSITIONING METHO COORDINATES (E,N) WATER DEPTH IN FE	NT D			Vibrace 4-inch- DGPS E 1239	oring dian	neter L .2745	exan core Refer to characterization report N Not to scale

2.6 ft -17.4 ft

P. Sunny, 60's F

321 Summerland Road

WEATHER

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY

CW-031 Cornwall Avenue Landfill Refuse Mapping Bellingham Bay 1733017 Mark Herrenkohl, LG, LEG 9/29/08 1236

Bellingham, WA 98229			DATE 9/29/06 1230
(360) 319-0721 FAX (360) 647-6980			Page 1 of 1
SAMPLE INFORMATION	T	+	DESCRIPTION
		.∢	
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse?	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
6.7 3.5 52 N	<25	OL	Organic clayey SILT with fine sand and a few worms in surface sediment.
			Dark brown to olive color.
			
	1	\ <u>-</u> -	Wood debris (bark, sticks) increases at 1 ft.
	05.50	OL	WOOD DEDIS (Dark, Sticks) Increases at 1 to
N	25-50	OL	
	ļ		
L	2		
			Clam shells observed at 2.5 ft.
	3		
N	<25	OL	Shell hash observed from 3 to 3.5 ft.
			Base of core @ 3.5 ft.
		-	
	1		
			
	 		
	5-	-	
 			
h			
}			
}	6-	-	
}			
L	.+		
			
	7-		
			LOCATION SKETCH
SAMPLING CONTRACTOR	Bio-Marine	e Entern	
SAMPLING METHOD	Vibracoring	g	
SAMPLING EQUIPMENT	4-inch-diar	neter L	exan core Refer to characterization report
POSITIONING METHOD	DGPS E 1239242	2 6170/	
COORDINATES (E,N)	L 1238242	2.01136	
WATER DEPTH IN FEET	20.7 f		N Not to scale
WATER LEVEL (TIDE) IN FEET	3.0 f		
SEDIMENT ELEVATION (MLLW)	-17.7 f		
WEATHER	r . Guilly,	<u> </u>	

321 Summerland Road Bellingham, WA 98229

(360) 319-0721 FAX (360) 647-6980

CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-051
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1251

Page 1 of 1

SAMPLE INFORMATION									DESCRIPTION
Penetration Depth (ft)		Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	Ä	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.8		6.8	87	N		<25		OL	Organic clayey SILT with sand and piece of bark at surface, dark brown
									in color.
] ,		
] '		
]		
]	[Wood debris (fibers, chips, dust) increase at 1.5 ft from surface.
				N		25-50	2	OL	
							2		
							3		
]			1 3	[
							1		Shell hash layer from 2.9 to 3.9 ft below surface.
			ļ				1		
					ļ] ,		
							1 4		
				N		<25	1	ML	Clayey SILT with fine sand and some organics, olive color
			ļ				1		
			†				1_		
			†				5		
			†				1		
			ļ				1		Shell hash and organics increase at 5.4 ft.
				N		<25	6	ML/OL	
			1				10		
							1		
			†				1		Base of core @ 6.8 ft.
			·	1					
			İ				7		
SAMPLING SAMPLING SAMPLING POSITIONI COORDINA	MET EQU ING N ATES	THOD JIPMENT METHOD (E,N)		•		Vibraco	oring diam 9344	eter Le	ises, Inc. Exan core Refer to characterization report N 639053.49848 N Not to scale

3.2 ft

P. Sunny, 60's F

-14.0 ft

WATER LEVEL (TIDE) IN FEET

WEATHER

SEDIMENT ELEVATION (MLLW)

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-036
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08, 1307

Bellingham, WA 98229			DATE 9/29/08 1307
(360) 319-0721 FAX (360) 647-6980		ļ	Page 1 of 1
SAMPLE INFORMATION			DESCRIPTION
Recovery Depth (ft) MRecovery MRecovery Refuse? MRefuse	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
7.7 5.5 71 N	<25	OL	Organic clayey SILT with sand, dark brown in color.
			Corgania diayoy di Erimino di Ari
├			
			1
├	1 1		
 			
			Observed single piece of plastic (candy wrapper) at 1.8 ft below surface.
	2		
N	<25	ML	Clayey SILT with sand and scattered organics, olive to dark brown in color.
	† <u> </u>		
	3		
<u> </u>			
<u> </u>			
	1 4		
		-	
		L	
			Shell hash and mussel shell fragments increase at 4.5 ft.
N	<25 5-	ML.	
			Base of core @ 5.5 ft.
	6-	_	
	.		
	7-		
		<u> </u>	LOCATION SKETCH
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N)	Bio-Marine Vibracoring 4-inch-diar DGPS E 1239374	g neter L	exan core Refer to characterization report
WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER	19.0 ft 3.4 ft -15.6 ft P. Sunny,	t t	N Not to scale

321 Summerland Road Bellingham, WA 98229

Beilingham, WA 90229

CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-057
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1324

Page 1 of 1

(360) 319-0721 FAX (360) 647-6980							<u> </u>	r age r or r	
	IPLE INFO	RMA ⁻	TION					DESCRIPTION	
Penetration Depth (ft)	Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)	
6.5	3.7	57	N		<25		OL	Organic clayey SILT with fine sand and mud clams in surface sediments.	
		İ						Dark brown in color.	
	†								
	 	t	1			1			
		†				1		Wood debris (bark) increases at 1 ft.	
		ļ	N		25-50	-	OL	Moderate sulfide odor.	
	 	†				1			
	†					1			
	 	+				2			
	 	†- -				1			
	 					1			
	 	† 				1			
	†	t		 		3			
	 	† -				1			
	†		 					Base of core @ 3.7 ft.	
	†	†							
	†	t	†·	 		4			
	†	ļ	 -			1			
}	†	†	 	† -		1			
	†	·†	†·	†		1_			
	†	†	 			5			
	†	†	1	 	<u> </u>	1			
	-	†	1			1			
 	†	†	†	ļ		1_			
<u></u>	†	†		†		6			
 	+	·	†						
 	†	†	1			1			
	†	t	†	- -		_		ļ	
l	·	†	·	· 		. 7			
	.L.						1	LOCATION SKETCH	
SAMPLING CO	NTRACTO)R					Enterp	rises, Inc.	
SAMPLING METHOD Vibracoring							oto 1	DVOD COMO	
	SAMPLING EQUIPMENT 4-inch-diar POSITIONING METHOD DGPS					ulam	eter Le	exan core Refer to characterization report	
COORDINATES (E,N) DGPS E 1239515						9515	28932		
								Not to each	
WATER DEPTH			: T		22.5			Not to scale	
WATER LEVEL					-18.8				
SEDIMENT ELEVATION (MLLW) -18.8 WEATHER P. Sunn							0's F		

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-134
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1339

Bellingham, WA 98229			DATE 9/23/00 1000
(360) 319-0721 FAX (360) 647-6980			Page 1 of 1
SAMPLE INFORMATION			DESCRIPTION
	┌──┤€	₹	
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse?	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
8.5 6.5 76 N	<25	OL	Organic clayey SILT with sand, dark brown to gray in color.
<u></u>			Bark fragments at 0.5 ft below surface.
		OL	land the state of
	 1-		
			
<u> </u>			
			
	2-	-	
 			
<u> </u>			
			07.040
<u> </u>	3-		Wood debris (fibers, chips) increase from 2.7 to 3.4 ft.
N	25-50	OL/PT	
N	<25 4	ML	Clayey SILT with fine sand, olive to dark brown in color.
		}	
	5		
		-	
	6		
]		
			Base of core @ 6.5 ft.
 	-		
	/		
			LOCATION SKETCH
SAMPLING CONTRACTOR	Bio-Marine		orises, Inc.
SAMPLING METHOD	Vibracorin 4-inch-dia		ovan coro
SAMPLING EQUIPMENT POSITIONING METHOD	DGPS	meter L	Refer to characterization report
COORDINATES (E,N)	E 123976	4.94728	
			N Not to scale
WATER DEPTH IN FEET	<u>20.0</u> 4.0		N Not to scale
WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW)	-16.0		
WEATHER	P. Sunny,		

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-132
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1404

(360) 319-0721 FAX (360) 647-6980							Page 1 of 1			
SAMPLE INFORMATION							DESCRIPTION			
Penetration Depth (ft) Recovery Depth (ft)	%Recovery	Refuse?	% Refuse	% Wood Debris	Depth (ft)	T.	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
6.5 2.5	38	N		25-50		OL	Organic clayey SILT with sand and wood debris, dark brown in color.			
	- 									
					1					
						L	One piece of plastic sheet observed at 1.5 ft below surface.			
		Υ		25-50			Wood debris (chips, dust, fibers) increase at 1.5 ft.			
					2	OL/PT				
		ļ					Base of core @ 2.5 ft.			
			ļ		3					
			ļ		-					
				ļ	}					
					1					
					4					
l					-					
		 	 							
					1					
		 	 		5					
l			 		1					
		† <i>-</i>	†	ļ						
		1	Ī							
		1	1		6					
		1								
			<u> </u>			ł				
			Ţ		7					
SAMPLING CONTRACT SAMPLING METHOD SAMPLING EQUIPMEN POSITIONING METHOD COORDINATES (E,N)	Т			Vibraco	oring diam	neter L	exan core Refer to characterization report			
WATER DEPTH IN FEE WATER LEVEL (TIDE) I SEDIMENT ELEVATION	N FE				1 ft 5 ft		N Not to scale			

Sunny, 60's F

WEATHER

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-108
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1424

Not to scale

(360) 319-0721 FAX (360) 647-6980			Page 1 of 1			
SAMPLE INFORMATION			DESCRIPTION			
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse?	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
6.8 2.0 29 N	>50	PT	Wood debris (saw dust, chips) with large 3-4 inch wood chip at bottom			
1			of core which likely reduced recovery (pile-drive).			
	1					
	2		Base of core @ 2.0 ft.			
	3					
		Ì				
<u> </u>						
	5					
 						
						
<u></u>						
 		-				
 						
k						
 						
	7-	-				
	<u>. </u>		LOCATION SKETCH			
SAMPLING CONTRACTOR	Bio-Marine					
SAMPLING METHOD	Vibracoring 4-inch-diar	neter!	evan core			
SAMPLING EQUIPMENT POSITIONING METHOD	DGPS	HEIGI L	Refer to characterization report			
COORDINATES (E,N)	E 1239098	3.45012	2 N 638111.81402			

11.2 ft

5.2 ft -6.0 ft

Sunny, 60's F

WATER DEPTH IN FEET WATER LEVEL (TIDE) IN FEET

WEATHER

SEDIMENT ELEVATION (MLLW)

Ν

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-005
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1455

Page 1 of 1

Not to scale

(360) 319-0721 FAX (360) 647-6980		T C				
SAMPLE INFORMATION	ू		DESCRIPTION			
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse? % Refuse	Debris Depth (ft)	E.	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)			
	5-50	OL	Organic clayey SILT with wood debris (chips, fibers).			
						
h						
<u> </u>			One piece of plastic observed at 1 ft below surface.			
<u> </u>						
N 25	5-50		Wood debris (chips, fibers) increasing at 1 ft.			
			Base of core @ 1.8 ft. Poor recovery likely a result of wood debris (pile-drive).			
	2					
		İ				
	3					
	4					
	- 5					
<u></u>						
						
 	6	.				
<u> </u>						
<u> </u>						
<u> </u>						
	7	-				
			LOCATION SKETCH			
SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD VI	ibracoring -inch-dian IGPS	neter L	exan core Refer to characterization report			
COORDINATES (E,N)	1239045	.66593 N 638331.30447 ↑				

15.4 ft

5.4 ft

Sunny, 60-70's F

-10.0 ft

WATER DEPTH IN FEET

WEATHER

WATER LEVEL (TIDE) IN FEET

SEDIMENT ELEVATION (MLLW)

Ν

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-124
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1503

Bellingham, WA 98229			DATE 9/29/08 1003
(360) 319-0721 FAX (360) 647-6980			Page 1 of 1
SAMPLE INFORMATION			DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft) %Recovery	% Wood Debris Depth (ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
6.2 3.8 61 N -	- <25	OL.	Organic clayey SILT with sand, strong sulfide odor, dark brown to gray
	to		in color.
	25-50		
 			
	- 25-50	OL/PT	
	- 25-50		
 -		•	
 -			A single piece of fabric or textile at bottom of core.
 			Base of core @ 3.8 ft.
 -			base of core & o.o ii.
 -			
			
 			
 -	5	-	
 			
			
 		-	
 			
 			
 -			
	7	•	
			LOCATION SKETCH
SAMPLING CONTRACTOR	Bio-Marine		
SAMPLING METHOD Vibracoring			
SAMPLING EQUIPMENT 4-inch-diame POSITIONING METHOD DGPS			Refer to characterization report
COORDINATES (E,N) DGPS E 1239073.		.88187	
WATER DEPTH IN FEET 13.8 ft			Not to scale
WATER LEVEL (TIDE) IN FEET 5.8 ft SEDIMENT ELEVATION (MLLW) -8.0 ft			
WEATHER Sunny, 60-7			

CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-025
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG

321 Summerland Road Bellingham, WA 98229			DATE Mark Herrenkohl, LG, LEG 9/29/08 1519
(360) 319-0721 FAX (360) 647-6980			Page 1 of 1
SAMPLE INFORMATION		—	DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft) Recovery %Recovery	% Wood Debris Depth (ff)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
			NO RECOVERY. Unable to penetrate bottom. There was glass fragments
			and fine gravel in core catcher.
	1	-	
 			
 			
 			
 	2	-	
 			
l			
			
	3	-	
	4		
L			
L			
 	5		
 			
 			
k			
I			
<u> </u>			
	7-		
SAMPLING CONTRACTOR SAMPLING METHOD SAMPLING EQUIPMENT POSITIONING METHOD COORDINATES (E,N) WATER DEPTH IN FEET	Bio-Marine Vibracoring 4-inch-dian DGPS E 1239071	g meter Le 1.88205 t	exan core Refer to characterization report
WATER LEVEL (TIDE) IN FEET SEDIMENT ELEVATION (MLLW) WEATHER	6.1 ft -6.4 ft Sunny, 60-	t	

321 Summerland Road Bellingham, WA 98229 CORE NUMBER
PROJECT
LOCATION
PROJECT NUMBER
LOGGED BY
DATE

CW-117
Cornwall Avenue Landfill Refuse Mapping
Bellingham Bay
1733017
Mark Herrenkohl, LG, LEG
9/29/08 1538

Bellingham, WA 98229	1		DATE 9/29/08 1538
(360) 319-0721 FAX (360) 647-6980			Page 1 of 1
SAMPLE INFORMATION			DESCRIPTION
Penetration Depth (ft) Recovery Depth (ft) %Recovery Refuse? % Refuse	Depth (ft)	T	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. (REFUSE OR WOOD DEBRIS PRESENT)
4.0 4.0 100 N >50		PT	Wood debris (chips and saw dust).
	1		
	2	<u>.</u>	
N	3	SM	Silty fine-medium SAND with fine shell fragments, gray in color.
	4		Base of core @ 4.0 ft.
	5		
	6		
	-		
	7	<u> </u>	LOCATION CUSTOLI
SAMPLING METHOD Vibraco	oring diam 9900	eter Le	exan core Refer to characterization report Not to scale
	6 ft		

Sunny, 60-70's F

WEATHER

APPENDIX F PHOTOGRAPHS BELLINGHAM, WASHINGTON

Photograph 1 - Surface sediment grab sample RGH-SS-02. Silty, sandy GRAVEL (GM) with moderate cobbles.

Photograph 2 - Sediment core sample RGH-SC-06, 0 to 2 feet. Sandy SILT to clayey SILT (ML).

Photograph 3 - Sediment core sample RGH-SC-06, 2 to 4 feet. Layers of wood chips/fragments (1- to 3-cm thick) with shell hash.

Photograph 4 - Sediment core sample RGH-SC-06, 4 to 6 feet. Layers of wood chips/fragments (1- to 3-cm thick) with shell hash.

Photograph 5 - Sediment core sample RGH-SC-08, 0 to 2 feet. Sandy SILT (ML) with some wood chips.

Photograph 6 - Sediment core sample RGH-SC-08, 2 to 4 feet. Sandy SILT (OL) with increased wood chips/sawdust with depth.

Photograph 7 - Sediment core sample RGH-SC-08, 4 to 5.5 feet. Silty PEAT (PT) with wood pieces (0.5- to 2-inch), with a plastic syringe in shoe (lower left corner of photograph).

Photograph 8 - Sediment surface grab sample BBP-SS-02. Silty SAND (SM) with scattered gravel and cobbles, moderate shell fragments, and abundant eel grass.

Photograph 9 - Sediment surface grab sample BBP-SS-03. Fine organic PEAT (PT) with sand and scattered gravels and shell fragments.

Photograph 10 - Sediment core sample BBP-SC-02, 0 to 3 feet. Slightly gravelly, silty SAND (SM) with abundant wood debris (wood chips, sticks, and bark).

Photograph 11 - Sediment surface grab sample BBDx-SS-03. Clayey SILT (CL) with sand.

Photograph 12 - Sediment surface grab sample BBDx-SS-04. Clayey SILT (CL) with sand.