

RECEIVED NOV 2.4 2008 DEPARTMENT OF ECOLOGY - CENTRAL REGIONAL OFFICE

Site Characterization Report Former Goodyear Lease Property 601 George Washington Way Richland, Washington

> November 20, 2008 027-30160-01

F1510# 43737443

Presented to Washington Department of Ecology Voluntary Cleanup Program 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902

Prepared for Clack Building Ventures, LLC 325 East Sprague Avenue Spokane, Washington 99202

Prepared by LFR Inc. 2310 North Molter Road, Suite 101 Liberty Lake, Washington 99019

CONTENTS

CERTIFICATIONV
1.0 INTRODUCTION
1.1 Objective of Investigation1
2.0 BACKGROUND
2.1 Site Description2
2.2 Prior Assessments and Regulatory Records2
2.2.1 LFR Assessments and Interim Cleanup Actions
2.3.2 Department of Ecology Records
3.0 ENVIRONMENTAL SETTING
3.1 Climate
3.2 Surface Water Hydrology
3.3 Regional Geology
3.4 Regional Hydrogeology7
3.5 Local Water Wells7
3.6 Terrestrial Ecology Evaluation
4.0 FIELD ACTIVITIES - SITE INVESTIGATION
4.1 Soil Borings
4.2 Monitoring Wells
4.2.1 Monitoring Well Installation
4.2.2 Monitoring Well Development
4.3 Groundwater Monitoring
4.3.1 September 2008
4.3.2 October 2008
4.5 Hydraulic Gradient and Groundwater Flow Direction
4.6 Investigation-Derived Waste

5.0 AN	NALYTICAL RESULTS
5	.1 Selection of Cleanup Standards
5	.2 Soil Boring Sample Results14
	.3 Groundwater Sample Results
20 ₁₁	5.3.1 September 2008 Groundwater Event14
	5.3.2 October 2008 Groundwater Event
. 5	.4 Discussion of the Results
	5.4.1 COCs in Soil
	5.4.2 COCs in Groundwater16
	JMMARY AND CONCLUSIONS17
7.0 LI	MITATIONS
8.0 R	EFERENCES
TABL	ES
1	Groundwater Monitoring Well and Field Data
2	Summary of Soil Analytical Data –Diesel Range Organics, Heavy Oil Range Organics, Polychlorinated Biphenyls
3	Summary of Soil Analytical Data – Polynuclear Aromatic Hydrocarbons
4	Summary of Groundwater Analytical Data – Diesel Range Organics, Heavy Oil Range Organics, Polychlorinated Biphenyls
5	Summary of Groundwater Analytical Data – Polynuclear Aromatic Hydrocarbons
FIGU	RES
1	Site Vicinity Map [please check final figures and update titles here]
2	Site Plan
3	Groundwater Potentiometric Surface - September 4, 2008
4	Estimated Areal Extent of Combined COCs in Soil
5	Groundwater Analytical Results – DRO and HRO

APPENDICES

A LFR Interim Cleanup Action and Reports

B Ecology Records

C Local Well Logs

D TEE Primary Exclusion Form

E Site Photographs – August 2008

F Lithologic Logs

G Water Quality Sampling Forms - September 2008

H Soil Analytical Reports – August 2008

I Groundwater Analytical Reports – September and October 2008

CERTIFICATION

All geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an LFR Geologist licensed in Washington State.

effing to Jappo

November 20, 2008

Date

Jeffrey E. Leppo, L.G. Principal Geologist Washington Licensed Geologist No. 1406

1.0 INTRODUCTION

This Site Characterization (SC) report for the Former Goodyear Tire Lease Property was prepared by LFR Inc. (LFR) on behalf of Clack Building Ventures, LLC ("the Client"). The area of environmental concern is associated with containment releases to a storm-water drywell located in the northern portion of the property. The property is located at 601 George Washington Way in Richland, Washington ("the Site"; Figure 1).

1.1 Objective of Investigation

The objective of this SC report is to summarize the currently known recognized environmental conditions relating to the nature and extent of identified contaminants of concern (COCs) at the Site's northern drywell and to provide a summary of potential threats to human health and the environment.

Findings of prior environmental assessments and interim cleanup actions at the Site indicated that residual soil concentrations of petroleum hydrocarbons, polychlorinated biphenyls (PCBs), and polynuclear aromatic hydrocarbons (PAHs) remained in place beneath the drywell structure and exceeded the Washington State Department of Ecology (Ecology) *Model Toxics Control Act* (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses ("MTCA cleanup standards").

The individual project objectives and tasks for the investigation of the fate and transport of COCs on the Site include the following:

- Completion of five soil borings and collection of soil samples for analysis and assessment of the COCs around the northern drywell.
- Installation of three monitoring wells, consisting of one upgradient and two downgradient locations around the northern drywell, for analysis and assessment of groundwater quality for the indicated COCs. Soil borings and groundwater monitoring wells were completed using drilling methods acceptable to Ecology and in compliance with the regulation *Minimum Standards for the Construction and Maintenance of Wells* (Chapter 173-260 WAC).
- Collection of basic hydrogeologic data, physical setting information, and analytical laboratory data for interpretation of the northern drywell investigative area for compliance with Ecology's MTCA requirements for reporting on the nature and extent of the investigated COCs.
- Preparation of a combined SC report that includes soil and groundwater data analysis and assessment.

2.0 BACKGROUND

2.1 Site Description

The Site is located at 601 George Washington Way in Richland, Washington. The Site is bounded to the east by George Washington Way and to the south by Jadwin Avenue. According to the Benton County Assessor's Office, the Site consists of two tax parcels identified as Parcel Nos. 111983020558015 and 111983020558015 and is reported as approximately 0.735 acre in size. The Site is located within the Southwest Quarter of the Southeast Quarter of Section 11, Township 9 North, Range 28 East (Figure 1).

The site area of investigation is focused on the northern portion of the Site. The area was formerly the location of an asphalt lot, with a storm-water drywell located in the approximate center of the improved surface. The attached Figure 2 presents a Site Plan developed from a topographic survey (Roger's Surveying, Job 1808, September 16, 2008) and shows the site features.

The Site was formerly improved with a commercial building located on the southern portion of the Site, and was primarily used for automotive maintenance and repair operations. The building was reportedly constructed in the late-1960s and occupied by various tenants and subtenants through approximately 2005. The building, asphalt and concrete surfaces, and other aboveground improvements were demolished in April 2008. The Site is currently un-improved and consists of the underlying ground surface.

The building's interior improvements included a showroom and sales desk, offices, two bathrooms, storage rooms and warehouse (northern building section), and a garage area with six service bays (eastern building section). The garage included six underground hydraulic hoists and an oil/water separator or sump. The Site's exterior ground surfaces were covered with asphalt and concrete.

The Site is relatively flat, with the northern drywell formerly serving as the primary impervious surface runoff collection structure for the area north of the site building and the northern parking lot. It was the only drywell located on the Site. Storm-water drainage on the eastern and southern portions of the Site appeared to formerly drain to Jadwin Avenue to the south. Additional information regarding the site features, removal of the hydraulic hoists and sump, the northern drywell interim cleanup action, and post-building-demolition soil assessment are provided in Section 2.2 below.

The Site is located in an area of primarily commercial uses to the north, east, and south. Residential land use is located across Jadwin Avenue to the south.

2.2 Prior Assessments and Regulatory Records

The following is a summary of assessments, interim cleanup actions, and correspondence for prior environmental activities at the Site.

2.2.1 LFR Assessments and Interim Cleanup Actions

LFR completed a series of environmental assessments from 2005 through 2008. The environmental activities included assessment of soil conditions during removal and decommissioning of the interior building garage underground structures, assessment and interim cleanup actions for the northern drywell, and post-building-demolition assessment of underlying soil. Appendix A includes tables with soil sample analytical results, draft figures of the Site's assessment areas, photographs of the field activities, and related documentation.

Interior Building Underground Structures

LFR performed environmental monitoring and documentation of the garage in-ground structures removal on July 18 and 19, 2005. The hydraulic hoists and oil/water separator or sump were removed from the garage interior floor by Rob's Demolition of Spokane, Washington. LFR collected soil samples from the structure excavations following the removal of the concrete floor and the hoists and concrete sump.

LFR's sample matrix included the following COCs and soil laboratory parameters:

- Gasoline range organics (GRO) by NWTPH-Gx;
- Volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B, including benzene, toluene, ethylbenzene, and total xylenes (BTEX);
- Diesel range organics (DRO) and heavy oil range organics (HRO) by NWTPH-Dx;
- Polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270 PAH-SIM;
- Polychlorinated biphenyls (PCBs) by EPA Method 8082;
- Total metals (arsenic, cadmium, chromium, lead, and mercury) by EPA 6010/7000 series.

The sample results of soil collected from the structure excavations for the six hydraulic hoists and oil/water sump indicated the following COCs remained beneath the oil/water sump above the MTCA Method A cleanup standards:

- Residual cadmium was identified in the sump soil sample from the excavation bottom, with a concentration of 5.71 milligrams per kilogram (mg/kg) above the MTCA Method A cleanup standard of 2.0 mg/kg, and
- Concentrations of arsenic, trivalent chromium, lead, mercury, tetrachloroethene, and HRO were also detected in the sump excavation, but were below the respective MTCA Method A cleanup standards.

A second remedial excavation and soil assessment for the interior oil/water sump was conducted on October 4, 2005. The excavation was extended from 6 feet (ft) below ground surface to 8 ft bgs. The subsequent soil sample matrix for cadmium, lead,

GRO, DRO, HRO, BTEX, and VOCs indicated the COC concentrations were either below the laboratory method reporting limits (MRL), and/or below the MTCA Method A cleanup standard

LFR confirmed that the oil/water sump was connected to the City of Richland municipal sewer in 1970. The discharge line from the underground structure exited towards the east, and the main sewer line connected with the bathrooms and a small wash-bay.

Northern Drywell

A prior sample had been collected from the drywell's interior sediments by Leppo Consultants, Inc., on March 20, 1996. The analytical report indicated that GRO, DRO, HRO, ethylbenzene, total xylenes, and carcinogenic PAHs (cPAHs) were detected above the MTCA Method A cleanup standard in effect at that point in time.

The northern drywell remedial excavation was initiated on July 18 and 19, 2005. The drywell remedial excavation was conducted by Rob's Demolition of Spokane, Washington. LFR provided monitoring and documentation of the interim cleanup action.

The first drywell remedial excavation was extended to a depth of 16 ft bgs. The drywell structure and drywell and interior structure remedial excavation soils were removed and temporarily stockpiled on-site over and under plastic sheeting. Soil samples were collected from the stockpile for waste characterization and acceptance processes.

Soil samples were collected from the first remedial excavation sidewalls and bottom. The sample results from the in situ grab samples indicated that residual COC concentrations of HRO, individual and total cPAHs, and mercury remained above the MTCA Method A cleanup standards in the drywell excavation bottom and sidewalls. PCBs were detected in the drywell bottom sample (Drywell- 16 ft) with a concentration of 0.358 mg/kg, which was below the MTCA Method cleanup standard of 1.0 mg/kg.

A second drywell remedial excavation was conducted on October 4, 2005. The excavation was extended to an approximate depth of 26 ft bgs and a lateral dimension of approximately 25 ft in circumference. Soil samples were collected during and following the remedial excavation for confirmation of the cleanup action and for use in waste management processing.

The in situ grab soil sample results from the second remedial excavation limits indicated the residual presence of HRO, cPAHs, and PCBs within the soil underlying the former drywell location at concentrations above the MTCA Method A cleanup standard. The remedial excavation was halted due to potential soil stability concerns and impacts to the adjacent property utilities and structures to the west, north, and east.

The alluvial sediments around and below the drywell structure primarily consisted of inter-bedded or cross-bedded sand and gravel deposits, with varying silt content. The sand and gravel particle sizes and stratigraphy were variable, with individual horizons consisting of poorly and well-graded sands and gravels with silt.

The field observations collected during both remedial excavation events exhibited evidence of irregular seams or stringers of discolored and COC-affected soil present within the various lithologic sequences and depths under the former drywell location. There was no apparent pattern or sequence of contamination that was discernible from visual examination of the excavation sidewalls.

The waste characterization and off-site disposal of the COC-affected soil stockpiles was completed according to Ecology's *Dangerous Waste Regulations* (Chapter 173-303 WAC) and the receiving landfill facility's permit requirements. The waste profile and characterization was primarily based on the presence of total lead, PCBs, HRO, and PAHs within the in situ confirmation and specific waste stockpile samples which were all submitted for acceptance procedures.

Due to the presence of PCBs, the waste stockpiles were profiled and transported to Waste Connections' Finley Buttes Landfill in Boardman, Oregon. The Finley Buttes Landfill is permitted to receive EPA non-Toxic Substances Control Act (TSCA) PCB wastes (less than 50 mg/kg). Approximately 267 tons of COC-affected soil were transported to and managed at this landfill.

The results of the environmental assessments and interim cleanup actions for the interior structures and northern drywell were reported to Ecology's Central Regional Office on February 9, 2006. A site visit was conducted with Ecology personnel on November 16, 2006 to review environmental assessment data and residual contaminant conditions.

Post-Building-Demolition Soil Assessment

LFR was contracted by the Client to conduct an assessment of soils underlying the building's footprint following demolition (April 2008). On May 7, 2008, LFR inspected the soil/ground cover in the former building location. While various relic utility connections (sewer, water, electric) were visible at the surface beneath the building footprint, LFR did not observe any obvious evidence of petroleum and/or chemical contamination in the former building location.

As a result of field observations, five sample locations (HA1, HA2, HA3, HA4, and HA5) were chosen based upon a random area-wide sampling program. Each soil sample was analyzed for the following: GRO with BTEX, DRO and HRO, the total metals arsenic, cadmium, chromium, lead, and mercury, PCBs, and PAHs. The results of the post-building-demolition soil assessment indicated that COC concentrations were either below the MRL and/ or were below the respective MTCA Method A cleanup standards. A copy of the report is provided in Appendix A.

Page 5

2.3.2 Department of Ecology Records

Ecology issued an Early Notice letter (dated April 6, 2006) assigning the Site a facility release identification number (43737443) and ERTS identification number (553349) and an outline of the regulatory administrative criteria required under the MTCA.

Ecology issued a letter (dated August 29, 2007) indicating a site hazard assessment (SHA) would be conducted of the facility by the Benton-Franklin Health District. The letter also indicated the Site had been added to Ecology's Confirmed and Suspected Contaminated Sites List (CSCS list) on April 6, 2006.

Ecology issued a letter (dated February 12, 2008) indicating a SHA had been completed of the Site. The ranking process using the Washington Ranking Method (WARM) resulted in a designation of 2, based on a range of 1 to 5, 1 indicating the highest threat to human health and the environment.

LFR prepared application and documentation forms, which were submitted by the Client along with other records, to enter the Site into the Ecology Voluntary Cleanup Program (VCP). The Site was accepted into the VCP on July 15, 2008, and assigned a VCP Number of CE0292 per a letter dated July 17, 2008.

A copy of the Ecology correspondence is provided in Appendix B.

3.0 ENVIRONMENTAL SETTING

3.1 Climate

The climate of the Richland area is arid. Based on National Oceanic and Atmospheric Administration data for the city of Richland, the average annual precipitation at the Site is approximately 6 inches. The mean annual temperature is approximately 51 degrees Fahrenheit (F), with the winter months of December, January, and February being the coldest (average of 36 degrees F). Temperatures in the summer months routinely exceed 100 degrees F.

3.2 Surface Water Hydrology

The Site is located approximately 1,000 ft west of the Columbia River. The Columbia River is presently dammed by the McNary Dam, which forms Lake Wallula east of the Site. The Yakima River is located approximately 2 miles west of the Site (Figure 1).

3.3 Regional Geology

The area is underlain by two regionally extensive geologic units associated with the Columbia River: 1) Quaternary glacial outburst flood deposits, and 2) lacustrine silt and clay (Reidel and Fecht 1994). The outburst flood deposits consist of sand and

gravel, typically bedded, with grain sizes ranging from medium sand to boulders, range from 25 to 40 feet thick and are identified for the purposes of this report as the Gravelly Sand Unit. The underlying lacustrine silty-clay is reported as at least 40 feet in thickness.

3.4 Regional Hydrogeology

The hydrogeologic setting at the Site consists of interbedded coarse-grained sand and gravel overlying fine-grained silt and clay sediments, representing fluvial and glacial outwash deposits and alluvial stream channel and associated overbank deposits, respectively.

Based on a review of well drillers' logs and environmental reports prepared by others in the vicinity of the Site, groundwater is predominantly encountered throughout the immediate area at 25 to 35 ft bgs. Based on a review of readily available documentation (by others) in the vicinity of the Site, the anticipated groundwater flow direction is reported to be to the east and southeast towards the Columbia River.

3.5 Local Water Wells

LFR completed a review of water well reports obtained from the Ecology web-based public database (<u>http://apps.ecy.wa.gov/welllog/textsearch.asp</u>). The search area criteria included wells reported by Ecology within the Southeast and Southwest Quarters (south half) of the Southeast Quarter of Section 11, Township 9 North, Range 28 East. The water well query for the search area reported 44 wells.

A majority of the reported wells within a downgradient location between the Site and to the east and southeast to the Columbia River are resource protection wells (monitoring wells) or abandoned resource protection associated with petroleum hydrocarbon releases at the former Jackpot Foods (Time Oil Corporation) facility at 500 George Washington Way. This facility is current identified as Park's Edge Food Mart and Gas (Conoco).

There are two reported groundwater supply wells obtained from the Ecology database query for the search area, listed under the owners John Pierce and Rudolph De Vong. The water wells are listed as constructed in October 1980 at the addresses 88 and 90 Van Giesen Street in Richland, Washington. However, upon further examination, the physical location of the two Van Giesen Street wells is greater than 1 mile north of the Site, and not downgradient from the Site.

A copy of the Ecology downgradient well records review summaries and Water Well Reports for the Pierce and De Vong wells are attached in Appendix C.

3.6 Terrestrial Ecology Evaluation

Section 7490 of the MTCA defines the requirements for a terrestrial ecological evaluation (TEE). The TEE is necessary to determine if a release of hazardous substances may harm plants and/or animals, to identify and characterize the existing or potential threats to the plants and/or animals that may be exposed to COCs in soil, and to establish cleanup standards to protect plants, animals, and soil biota.

The first step in the TEE process is determining if the Site has the potential to pose a risk to wildlife, plants or soil biota. Certain site circumstances may provide for an exclusion from any further ecological evaluation if the contaminants have no pathway to harm plants, animals, or soil biota; if there is no habitat for plants or animals to live near the COC-affected soil; or if the COC-affected soil does not occur at concentrations higher than is found naturally occurring in the area. If one of the exclusion criteria is met, then the TEE process may be ended.

The Ecology Interactive User's Guide (http://ecy.wa.gov/programs/tcp/ policies/terrestrial/TEEhome.htm) was used by LFR to process the TEE evaluation and determine if an "exclusion" was applicable to future site conditions under the proposed cleanup action plan with engineering and institutional controls. The contaminant analysis under the TEE exclusion process requires the user to determine the present location of the hazardous substance(s) in the soil and any planned future land uses that may affect the location of these substances.

The first exclusion contaminant analysis criterion indicates that no further TEE is required if all soil contaminated with hazardous substances is, or will be, located below the point-of-compliance (15 ft bgs). Based on the current information available on residual site contaminant characteristics, the nature and extent of the COCs does meet the point-of-compliance exclusion requirements. The residual soil contamination is located between approximately 15 and 26 ft bgs - within the point-of-compliance. No site-specific conditional point-of-compliance is established for the Site under Section 440 of MTCA.

The second exclusion criterion includes an exposure pathway analysis requiring the user to identify physical barriers at the Site that will prevent plants or wildlife from being exposed to soil contaminants. The area of concern is not currently covered with a physical barrier (e.g., asphalt). The storm-water management for the area of concern is currently direct infiltration. However, physical barriers and storm-water management controls placed during future site development will provide rationale for meeting the TEE second exclusion criterion.

An institutional control is required to ensure the long-term maintenance of the physical barriers that prevent terrestrial exposure to soil contamination for the second exclusion criterion. The planned cleanup program will likely include the application of a restrictive covenant on the property deed approved by Ecology as an institutional control. If the demonstration for exclusion is based on a planned future land use, then a completion date for such development that is acceptable to Ecology is also required.

The third exclusion criterion is an exposure pathway analysis for areas of contiguous undeveloped land. For sites with hazardous substances of concern not listed under the third exclusion criterion, there should be less than 1.5 acres of contiguous undeveloped land on the Site, or within 500 ft of any area of the Site affected by hazardous substance not on the TEE list. For sites with TEE hazardous substances of concern (e.g., PCBs) under the third exclusion criteria, there should be less than 0.25 acre of contiguous undeveloped land on the Site, or within 500 ft of any area of the Site. Based on a review of the currently known COC-affected soil area at the northern drywell with these spatial parameters, the Site appears to meet the hazardous substance third exclusion criterion.

The fourth TEE exclusion criterion is based on whether hazardous substances in the site soil are less than or equal to natural background concentrations of those substances at the point-of-compliance. For the residual contaminants at the northern drywell, the COC concentrations are less than or equal to natural background concentrations.

Based on the TEE evaluation process for a primary exclusion, the review indicates that more than one exclusion exists and that no further ecological evaluation is required at the Site. In the professional opinion of LFR, the rationale for the TEE exclusion is valid, because all soil contamination is below the point-of-compliance (15 ft bgs). In addition, the Site will be covered by buildings, asphalt, or concrete pavement as physical barriers as a part of future development and will be protected by an institutional control, and therefore will not likely pose a threat of exposure to plants or wildlife. The TEE Primary Exclusions Documentation Form used for this review is attached in Appendix D.

4.0 FIELD ACTIVITIES - SITE INVESTIGATION

Four tasks were completed during the August through October 2008 site investigation: 1) advancement of five soil borings and collection of soil samples for laboratory analysis; 2) installation of three monitoring wells and well development; 3) groundwater monitoring and sampling of the three wells; and 4) management of investigation-derived wastes (IDW).

The soil borings and sampling and groundwater monitoring well installations were completed from August 27 through 29, 2008. LFR subcontracted Cascade Drilling, Inc. (Cascade) to complete the five soil borings and install the three monitoring wells in accordance with Chapter 173-160 WAC, *Minimum Standards for Construction and Maintenance of Wells*. The subsurface program was conducted using a sonic-type drill rig.

Prior to drilling, private and public utility locations were performed and each soil boring was hand-cleared until refusal, ranging to a depth of 5 ft bgs. LFR personnel provided the monitoring and documentation of the drilling program, performed geologic logging, and conducted soil sampling.

Field and sampling protocols were conducted based on procedures outlined in American Society for Testing and Materials (ASTM) standards D2488-93 *Practice for Description and Identification of Soils (Visual-Manual Procedure)*, D4220-95 *Practices for Preserving and Transporting Soil Samples*, and D4700-91 *Guide for Soil Sampling from the Vadose Zone*.

All LFR sampling equipment was decontaminated between sample points as follows: tap water and Liquinox[™] wash, distilled water rinse, and isopropanol rinse. All Cascade drilling tools were decontaminated using a steam-cleaner. All IDW, including drill cuttings and decontamination and purge wastewaters, were transferred to appropriately labeled 55-gallon drums for disposal.

Photographs documenting the general site conditions and soil boring and monitoring well locations are included in Appendix E.

4.1 Soil Borings

Five soil boring locations were advanced at the Site to assess physical soil conditions and collect samples for analysis of DRO/HRO petroleum hydrocarbons, PCBs, and PAHs. The five soil borings (B1 through B5) were advanced in strategic locations around the former northern drywell location in the northern portion of the Site (Figure 2).

Soil samples were collected at varying intervals dependent on visual observations of suspected contamination (e.g., odor, discoloration) or on changes in the alluvial stratigraphy. The sample designation included a prefix of the soil boring number (e.g., B-1), followed by the depth (e.g., 26 representing 26 ft bgs). Additionally, one duplicate soil sample (designated with a "Dup" suffix) was collected each day. The duplicate samples were collected for quality control purposes. In general, the soil sampling began at 16 ft bgs or greater as predicated on the prior drywell remedial depth completed during the first interim cleanup event on July 18 and 19, 2005.

The collected soil samples were placed in pre-prepared laboratory sampling kits consisting of 8-ounce glass containers with polyethylene-lined lids. The samples were submitted to Test America, Inc., of Spokane Valley for analyses of DRO/HRO by NWTPH-Dx, PCBs by EPA Method 8082, and PAHs by EPA Method 8270C (GC/MS SIM).

4.2 Monitoring Wells

4.2.1 Monitoring Well Installation

When soil sampling was completed, three of the five borings (B3, B4, and B5) were converted into monitoring wells (MW1 through MW3), respectively (Figure 2). The three monitoring wells were advanced and completed to a depth of approximately 45 ft

bgs. The wells were installed by Cascade, a State of Washington licensed drilling contractor.

After the required boring depth was reached, a 2-inch-diameter Schedule 40 polyvinyl chloride (PVC) casing with a 20-ft section of 0.010-inch slotted pipe screen was installed. After the casing was installed in the open borehole, a sand pack consisting of 10/20 silica sand was placed in the annular space around the casing to approximately 2 ft above the top of the screened interval. Bentonite chips were placed above the sand pack to approximately 1.5 ft bgs and hydrated to prevent the entrance of grout into the sand pack. A locking well cap was placed on top of the well casing, and each well was completed using a traffic-rated, flush-mounted well cover. A concrete surface finish was placed around each well head to contact the bentonite fill within the well annulus.

Table 1 provides information on the well construction and groundwater elevation data. The lithologic logs with well construction data for the three monitoring wells are provided Appendix F.

4.2.2 Monitoring Well Development

LFR completed well development of the three newly installed monitoring wells. Well development was completed to remove any sediments left in the wells during installation and to enhance the hydraulic communication between the wells and the surrounding formation. A variable speed submersible pump was used to develop the newly installed wells.

Observations of the quantity and clarity of water withdrawn were recorded, and indicator parameters (pH, temperature, specific conductance, and total dissolved solids) were recorded on Well Development Record forms during development. Well development continued until indicator parameters stabilized to within 10 percent of the prior measurements and/or until approximately six to ten well volumes were removed from each well, as possible. Decontamination procedures were performed to assure quality assurance protocol.

4.3 Groundwater Monitoring

4.3.1 September 2008

On September 4, 2008, LFR personnel conducted a groundwater monitoring event consisting of elevation measurements and groundwater quality sampling from monitoring wells MW1 through MW3 in order to assess the direction of groundwater flow and the distribution of COCs present on-site.

Prior to collection of groundwater samples, depth to water was measured using an electric well probe to the nearest 0.01 ft from a surveyed notch in each well casing. Groundwater elevations for the September 2008 sampling event ranged from 30.18 ft to

31.68 below the top-of-casing (TOC). Table 1 provides information on the well construction and groundwater elevation data.

Water depths were recorded on Water Quality Sampling Forms (Appendix G) and include date, time, and sampling data. After water depths had been recorded, each monitoring well was purged with a peristaltic pump fitted with new polyethylene tubing. Measurements of standard field parameters, including temperature, pH, specific conductance, and total dissolved solids, were collected during well purging using a multi-probe meter. All field instruments were calibrated following the manufacturer's specified procedures prior to collection of field data. Purging was continued until all parameters had stabilized to within approximately 10 percent of the previous reading and/or at least three well volumes had been removed, as possible. IDW purge water was placed in properly labeled 55-gallon drums for temporary on-site storage.

LFR personnel used a peristaltic pump to collect groundwater samples from each well. Additionally, a duplicate water sample (Dup-6W) was collected from well MW3 for quality control purposes. One trip blank sample (Trip) supplied by TestAmerica was also submitted for analysis along with the groundwater samples.

Upon collection, each sample was placed into labeled laboratory-supplied containers for analysis of DRO/ HRO, PCBs, and PAHs. The duplicate and trip blank samples were analyzed for PAHs.

4.3.2 October 2008

Results from the September 4, 2008 groundwater monitoring event were reviewed with the Client and, based on their direction, LFR personnel conducted a second groundwater monitoring event on October 21, 2008. The October 2008 event also consisted of depth-to-groundwater measurement and groundwater sampling from monitoring well MW3 in order to provide another water-quality data set.

4.4 Monitoring Well Elevation Basic Survey

A topographic and elevation survey to TOC for each well was conducted by Roger's Surveying of Richland, Washington (Project No. 18108, September 16, 2008).

4.5 Hydraulic Gradient and Groundwater Flow Direction

Groundwater levels in monitoring wells MW1 through MW3 were measured during the September 3, 2008 event to develop basic hydrogeological data for the Site. Based on the September 2008 data, the average hydraulic gradient for groundwater flow is approximately 0.0075 ft per ft. The interpreted potentiometric surface suggests a relatively flat hydraulic gradient, with an inferred direction of groundwater flow from northwest to southeast across the Site. Table 1 provides a summary of the groundwater monitoring well and field data. Figure 3 provides a plan view of the depth to

groundwater, groundwater elevations, potentiometric surface, and inferred direction of flow for data collected on September 4, 2008.

4.6 Investigation-Derived Waste

Two 55-gallon drums of wastewater (well development, purge, and drilling decontamination wastewaters) and seven 55-gallon drums of solid material (soil cuttings) were generated during the August 2008 soil boring and groundwater monitoring activities. LFR conducted sampling of the soil and wastewaters for designation and characterization purposes according to Ecology's *Dangerous Waste Regulations* (Chapter 173-303 WAC) and the waste vendor's acceptance criteria for management and treatment/disposal. Waste Management will be subcontracted to properly transfer and dispose of the IDW.

5.0 ANALYTICAL RESULTS

5.1 Selection of Cleanup Standards

A necessary part of the site investigation is the selection and establishment of appropriate cleanup standards for potential COC-affected soil and groundwater. As provided in the MTCA cleanup standards, appropriate cleanup standards are to be identified for particular substances at a site and the specific areas or pathways, such as land or water, where humans and the environment can become exposed to these substances. In addition, these standards were established by Ecology to protect human health and the environment for current and potential site and resource use. The SC effort was designed to provide specific information to meet the soil and groundwater cleanup criteria.

The MTCA stipulates that cleanup standards shall be based on estimates of reasonable maximum exposure. The cleanup actions must achieve cleanup standards defined by MTCA and also comply with other applicable state and federal laws. The exposure pathways and locations on the site where cleanup standards must be attained (points of compliance) are also specified. Ecology has determined that residential land use is generally the site use requiring the most protective cleanup standards and that exposure to hazardous substances under residential land use conditions represents the reasonable maximum exposure scenario. The MTCA cleanup standards are those defined in the MTCA as applicable to sites where the cleanup action can be considered routine and/or relatively few contaminants are involved. Of the three allowable cleanup standards are typically conservative and generally based on groundwater protection factors, but are only available for a limited number of contaminants.

As the Site is considered a commercial-use property, the Ecology Method A Soil and Groundwater Cleanup Levels for Unrestricted Land Uses (Tables 740-1 and 720-1,

Chapter 173-340 WAC) were applied to the specific COCs (DRO/HRO, PCBs, and cPAHs).

The universal Method B cleanup standards for soil and groundwater are applied for non-carcinogenic PAHs, as the Method A cleanup standards do not include criteria for these COCs (with the exception of naphthalene). Method B is divided into two tiers – standard and modified. The standard Method B cleanup standards are used within this assessment. The standard Method B cleanup standards use generic default assumptions to calculate cleanup levels. The Ecology Cleanup Levels and Risk Calculations (CLARC) Database Search (web-based) was used as the source for the Method B cleanup standards.

The individual MTCA cleanup standards are provided within the analytical results tables referenced in the report sections below.

5.2 Soil Boring Sample Results

A total of 25 subsurface soil samples was collected from the five boring locations (B1 through B5), and three duplicate soil samples were collected each day for quality control purposes from soil borings B1 at a depth of 45 ft bgs, B2 at a depth of 6 ft bgs, and B4 at a depth of 21 ft bgs.

The laboratory analysis reports for all of the investigated COCs (DRO/HRO, PCBs, and PAHs) were not detected in the soil samples above the respective laboratory method MRL and, as such, are below the MTCA Method A cleanup standards.

Analytical results of the soil sample analyses are summarized in Tables 2 and 3, and the laboratory reports are presented in Appendix H. Figure 4 provides a plan view of the estimated areal extent of the combined COCs, including DRO/HRO, PCBs, and cPAHs.

5.3 Groundwater Sample Results

Groundwater monitoring events were conducted from the three monitoring wells (MW1 through MW3) in September 2008 and from MW3 during the October 2008 event.

5.3.1 September 2008 Groundwater Event

The three groundwater samples collected during the September 4, 2008 groundwater monitoring event were submitted for analyses of DRO/ HRO, PCBs, and PAHs. Analytical results indicated that the groundwater samples collected from monitoring wells MW1, MW2, and MW3 did not have PCB or cPAH constituents detected above laboratory MRLs and, as such, are below the MTCA Method A cleanup standards.

Several non-carcinogenic PAHs were detected in all three monitoring wells, including anthracene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, and

phenanthrene. These non-carcinogenic PAH concentrations are above the laboratory method detection limit (MDL), but below the MRL. All of the non-carcinogenic analytes were below their respective MTCA Method B cleanup standards, as applicable.

The DRO/HRO analysis using NWTPH-Dx reported a DRO concentration of 682.0 micrograms per liter (μ g/L) and HRO concentration of 909.0 μ g/L. Both DRO and HRO concentrations exceeded the MTCA Method A cleanup standard of 500 μ g/L.

Analytical results of the duplicate and trip blank samples indicated that the analyzed PAH constituents were below laboratory MRLs and/or in correlation with their respective primary groundwater sample results.

Analytical results of the September 2008 groundwater sample analyses are summarized in Tables 4 and 5, and the laboratory reports are presented in Appendix I.

5.3.2 October 2008 Groundwater Event

The groundwater sample collected from monitoring well MW3 on October 21, 2008 was submitted for analyses of DRO/HRO and PAHs. Analytical results indicated that the groundwater samples collected from monitoring well MW3 exhibited a DRO concentration of 480 μ g/L, below the MTCA cleanup standard of 500 μ g/L. The HRO result was below the MRL and the MTCA cleanup standard

The re-sample of MW3 on October 21, 2008 did not exhibit cPAH concentrations above the laboratory MRL. The non-carcinogenic PAH constituent fluoranthene was detected at 0.0204 μ g/L, but was below the MTCA Method B cleanup standard. The fluoranthene concentration is above the laboratory method detection limit (MDL), but below the MRL.

Analytical results of the October 21, 2008 groundwater sample analysis are summarized in Tables 4 and 5 and the laboratory report presented in Appendix I.

5.4 Discussion of the Results

The assessment of the distribution of COC concentrations based on the prior 2005 interim cleanup actions and soil and groundwater samples collected in August through October 2008 is summarized below.

5.4.1 COCs in Soil

HRO was reported above the MTCA Method A cleanup standard (2,000 mg/kg) for one of the five in situ samples collected at the final remedial excavation limit in October 2005. The west sidewall (23 ft bgs) exhibited a HRO concentration of 2,170 mg/kg. DRO concentrations were detected in three other in situ samples at the completion of the October 2005 cleanup event, but were below the MTCA Method A cleanup standard.

- PCBs were reported above the MTCA Method A cleanup standard (1.0 mg/kg) for two of the five in situ samples collected at the final remedial excavation limit in October 2005. The PCBs concentrations were 1.9 mg/kg (west sidewall at 23 ft bgs) and 2.2 mg/kg (bottom at 26 ft bgs).
- A total cPAH concentration was summed as 0.174 mg/kg for one of the five in situ samples. The sample was collected from the west sidewall (23 ft bgs) at the final remedial excavation limits in October 2005. This concentration is above the MTCA Method A cleanup standard of 0.1 mg/kg. However, the Toxicity Equivalency Factor (TEF) total cPAH calculated concentration indicates the value of these combined constituents is below the MTCA Method A cleanup standard. The TEF total cPAH value is derived for the seven cPAH compounds using the California Environmental Protection Agency formulas provided under MTCA Chapter 173-340-708(8)(e).
- Based on the five soil borings and 25 soil samples collected by LFR, there were no detectable COC concentrations (DRO/HRO, PCBs, PAHs) above the laboratory MRLs and, as such, were below their respective MTCA Method A cleanup standards.

5.4.2 COCs in Groundwater

- Based on the September 4, 2008 groundwater monitoring event, DRO and HRO were detected above the MTCA Method A cleanup standard in the downgradient monitoring well MW3. DRO or HRO concentrations were not detected in monitoring well MW2 (also downgradient from the northern drywell) or in upgradient monitoring well MW1.
- The subsequent October 21, 2008 groundwater monitoring event for MW3 indicated a decrease in DRO and HRO concentrations to either non-detectable above the laboratory MRL and/or below the MTCA Method A cleanup standards.
- Carcinogenic PAHs and PCBs for both the September and October 2008 groundwater monitoring events were not detected above the laboratory MRLs and, as such, were below their respective MTCA Method A cleanup standards.
- Non-carcinogenic PAHs were detected in all three wells in the September 2008 event and MW3 during the October 2008 re-sample event. These various PAH constituents were also detected in the upgradient well MW1. The laboratory report for these COCs indicates the concentrations were detected between the MDL and MRL (the practical quantification limit) and are flagged with a "J" designation. The MDL is an estimated value resulting from a statistically-derived method limit, and is of limited reliability. The estimated results for these constituents were well below their respective MTCA Method B cleanup standard.

6.0 SUMMARY AND CONCLUSIONS

An independent SC has been conducted to characterize the nature and extent of residual COCs for soil and groundwater contamination encountered beneath the former northern drywell. The SC presented soil and groundwater sample data relating to the presence and location of specific investigated COCs, including DRO/HRO, PCBs, and PAHs.

Ecology issued an Early Notice letter (dated April 6, 2006) assigning the Site a facility release identification number (43737443) and ERTS identification number (553349). Ecology issued a letter (dated August 29, 2007) indicating a SHA would be conducted of the facility by the Benton-Franklin Health District. The letter also indicated the Site had been added to Ecology's CSCS list on April 6, 2006. Ecology issued a letter (dated February 12, 2008) indicating a SHA had been completed of the Site. The ranking process using WARM resulted in a designation of 2. LFR prepared application and documentation forms, which were submitted by the Client along with other records, to enter the Site into the Ecology VCP. The Site was accepted into the VCP on July 15, 2008, and assigned a VCP Number of CE0292 per a letter dated July 17, 2008.

LFR completed five soil borings and collected 25 soil samples for analysis and assessment of the COCs around the northern drywell. LFR provided monitoring and documentation of the installation of three monitoring wells, consisting of one upgradient and two downgradient locations around the northern drywell, for analysis and assessment of groundwater quality for the indicated COCs.

The field observations from the remedial excavation events in 2005 identified irregular seams or stringers of discolored and COC-affected soil present within the various lithologic sequences and depths under the former drywell location. There was no apparent pattern or sequence of contamination that was discernible from visual examination of the excavation sidewalls.

Generally, the presence of residual COCs in soil appears to be restricted to the area immediately below the former northern drywell location. Based on the sample results and observations of the interim cleanup actions in 2005 and the soil boring sample results from August 2008, the estimated areal (lateral) extent of COC-affected soil appears to be approximately 20 to 25 ft in circumference, originating from beneath the former northern drywell. The vertical extent of COC-affected soil appears to be located between the depths of approximately 15 to 30 ft bgs.

The September 4, 2008 groundwater monitoring event indicated the presence of DRO and HRO were detected above the MTCA Method A cleanup standard in the downgradient monitoring well MW3. The subsequent October 21, 2008 groundwater monitoring event for MW3 indicated a decrease in DRO and HRO concentrations to below the MTCA Method A cleanup standards. At the present point in time, it appears that DRO and HRO concentrations are present in the groundwater downgradient (east and southeast) from the northern drywell location. However, additional groundwater monitoring compliance data will be required to assess continuing compliance with MTCA cleanup standards.

7.0 LIMITATIONS

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by LFR and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry.

This report has been prepared for the exclusive use of the Client and the Washington State Department of Ecology. The use of this report, its contents, or any part thereof without expressed or written consent from LFR is herewith disallowed.

All findings and summary conclusions are based on readily available and reasonably ascertainable information on site conditions present at the time of the documentation and for the regulatory framework in effect at that time. The findings and conclusions are based on the best available information known or made available; obvious, visual inspection and observations of the Site at the time of the report; analytical results from an independent laboratory, contacts and discussions knowledgeable parties; reasonable interpretation of applicable environmental regulations; and opinions and judgments of LFR.

Conditions in other parts of the Site or associated property may vary from those at the locations where data were collected. LFR's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities.

To the extent that LFR relied upon other information prepared by other parties not under contract to LFR, LFR makes no representation as to the accuracy or completeness of such information.

8.0 **REFERENCES**

American Society for Testing and Materials (ASTM) Standards. D 2488-93. Practice for Description and Identification of Soils (Visual-Manual Procedure).

------. D 4220-95. Standard Practices for Preserving and Transporting Soil Samples.

_____. D 4700-91. Standard Guide for Soil Sampling from the Vadose Zone.

Reidel and Fecht. 1994. Geologic Map of the Richland 1:100,000 Quadrangle, Washington: Washington Division of Geology and Earth Resources, Open File Report 94-8.

- United States Department of Agriculture (USDA). Natural Resources Conservation Service, National Cooperative Web Soil Survey (http://websoilsurvey.nrcs.usda.gov/app).
- United States Geological Survey (USGS). 1992. Richland, Washington Quadrangle. 7.5-Minute Series Topographic Map.
- Washington State Department of Ecology (Ecology). 2001. Model Toxics Control Act (MTCA). 173-340-700 WAC.

———. "Minimum Standards for Construction and Maintenance of Wells" (Chapter 173-160 WAC).

—. "Dangerous Waste Regulations" (Chapter 173-160 WAC).

TABLES

Table 1

Groundwater Monitoring Well and Field Data North Drywell at Former Goodyear Tire Lease Property 601 George Washington Way, Richland, Washington

Monitoring	R		Top of	Bottom of	Measured	Total Depth of Depth to Water	Depth to Water	Groundwater
Well	Date	TOC	Screen	Screen	Screen Length	Screen Length Well below TOC	from TOC	Elevation
		(ft amsl) ⁽¹⁾	(ft bgs)	(ft bgs)	(ft)	(ft) ⁽²⁾		(ft amsl)
MW1	9/4/2008	371.96	36.0	46	10	46.5	30.18	341.78
MW2	9/4/2008	372.72	22.0	42	. 20	42.5	30.99	341.73
MW3	9/4/2008	372.81	22.0	42	20	42.5	31.09	341.72
¢.	10/21/2008	372.81	22	42	20	42.5	31.68	341.13
57			e X		1971 - 1972 1972 - 1972	ж. қ. б.	·	

Notes:

Referenced from Rogers Surveying, Inc., topographic survey (9/16/08)
 Sump interval (0.5 ft) included in measurement

amsl = Above mean sea level

bgs = Below ground surface

ft = Feet TOC = Top of casing

Table 2

Summary of Soil Analytical Data Diesel Range Organics, Heavy Oil Range Organics, Polychlorinated Biphenyls North Drywell at Former Goodyear Tire Lease Property 601 George Washington Way, Richland, Washington

\$1 \$1		NWTP	'H-Dx	
Sample Name	Date Sampled	Diesel Range Organics	Heavy Oil Range Organics	Total PCBs
B-4 16.5	8/28/08	nd	nd	nd -
B-4 21	8/28/08	nd	nd	nd
B-4 21 Dup	8/28/08	nd	nd	nd
B-4 25	8/28/08	nd	nd	nd
B-4 36	8/28/08	nd	nd	nd
B-4 45	8/28/08	nd	nd	nd
B-5 16	8/28/08	nd	nd	nd
B-5 20	8/28/08	nd	nd	nd
B-5 25	8/28/08	nd	nd	nd
B-5 36	8/28/08	nd	nd	nd
B-5 45	8/28/08	nd -	nd	nd
B-2 16	8/29/08	nd	nd	nd
B-2 16 Dup	8/29/08	nd .	nd	nd
B-2 20	8/29/08	nd	nd	nd
B-2 26	8/29/08	nd	nd	nd
B-2 36	8/29/08	nd	nd	nd
B-2 46	8/29/08	nd	nd	nd
B-1 16	8/27/08	nd	nd	nd
B-1 20	8/27/08	nd	nd	nd
B-1 26	8/27/08	nd	nd	nd
B-1 36	8/27/08	nd	nd	nd
B-1 45	8/27/08	nd	nd	nd
B-1 45 Dup	8/27/08	nd	nd	nd
B-3 15	8/27/08	nd	nd	nd ·
B-3 21	8/27/08	nd	nd	nd
B-3 25	8/27/08	nd	nd	nd
B-3 35	8/27/08	nd	nd	nd
B-3 46	8/27/08	nd	nd	nd
MTCA	Method A	2,000	2,000	1.

Notes:

NWTPH-Dx = Semivolatile Petroleum Products analyzed by Washington Department of Ecology analytical protocols nd = Not detected above laboratory method reporting limit (MRL)

MTCA Method A = Soil Cleanup Levels for Unrestricted Land Uses, Model Toxics Control Act, Chapter 173-340 WAC PCBs = Polychlorinated biphenyls

All concentrations reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Concentrations shown in **Bold** indicate an exceedance of cleanup level

11/14/2008

Table 3 Summary of Soil Analytical Data Polynuclear Aromatic Hydrocarbons North Drywell at Former Goodyear Tire Lease Property 601 George Washington Way, Richland, Washington

									Polynucl	ear Aromatic I	Hydrocarbons	(PAHs) ⁽¹⁾	- 有可靠進	04 - 10							
Sample Name	Date Sampled	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene ⁽²⁾	Benzo(a)pyrene ⁽²⁾	Benzo(b)fluoranthene ⁱ²⁾	Benzo(k)fluoranthene ⁽²⁾	Benzo(ghi)perylene	Chrysene ^{ta)}	Dibenzo(a,h)anthracene ⁽²⁾	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene ⁽²⁾	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Total cPAHs ⁽⁴⁾	TEF Total cPAHs ^{t51}
B-4 16.5	8/28/08	nd ⁽³⁾	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-4 21	8/28/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-4 21 Dup	8/28/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-4 25	8/28/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-4 36	8/28/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0026	0.0007
B-4 45	8/28/08	nd	nd	nd	0.0004	0.0006	0.0004	0.0006	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0030	0.0008
B-5 16	8/28/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	- nd	nd	0.0025	0.0006
B-5 20	8/28/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-5 25	8/28/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-5 36	8/28/08	nd	nd [·]	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0026	0.0007
B-5 45	8/28/08	nd	nd	nd	0.0005	0.0006	0.0005	0.0006	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0031	0.0008
B-2 16	8/29/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0009	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0029	0.0007
B-2 16 Dup	8/29/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0009	nd	0.0003	0.0003	nd	nd	0.0005	nd	nd	nd	nd	nd	0.0031	0.0007
B-2 20	8/29/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-2 26	8/29/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-2 36	8/29/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0025	0.0007
B-2 46	8/29/08	nd	nd	nd	0.0005	0.0006	0.0005	0.0006	nd	0.0032	0.0032	nd	nd	0.0032	nd	nd	nd	nd	nd	0.0117	0.0014
B-1 16	8/27/08	nd	nd	nd	0.0004	0.0009	0.0004	0.0005	nd	0.0003	0.0003	nd	nd .	0.0005	nd	nd	nd	nd	nd	0.0032	0.0011
B-1 20	8/27/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-1 26	8/27/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-1 36	8/27/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0026	0.0007
B-1 45	8/27/08	nd	nd .	nd	0.0004	0.0006	0.0004	0.0006	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0030	0.0008
B-1 45 Dup	8/27/08	nd	nd	nd	0.0004	0.0006	0.0004	0.0006	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0029	0.0008
B-3 15	8/27/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0.0006
B-3 21	8/27/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0024	0,0006
B-3 25	8/27/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0025	0.0007
B-3 35	8/27/08	nd	nd	nd	0.0004	0.0005	0.0004	0.0005	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0025	0.0007
B-3 46	8/27/08	nd	nd	nd	0.0004	0.0006	0.0004	0.0006	nd	0.0003	0.0003	nd	nd	0.0003	nd	nd	nd	nd	nd	0.0029	0.0008
	lethod A ⁽⁶⁾	NS ⁽⁷⁾	NS	NS	0.1	0.1	0.1	0.1	NS	0.1	0.1	NS	NS	0.1	NS	NS	5	NS	NS	0.1	0.1

Notes:

(1) PAHs analyzed with GC/MS-SIM.
(2) cPAHs = Carcinogenic PAHs.
(3) nd = Non cPAHs that are not detected above method reporting limit (MRL).
(4) Total cPAHs = Sum of all cPAHs.
(5) TEF = Total cPAHs using Toxicity Equivalency Factor. Values assigned from MTCA Table 708.2.
(6) MTCA Method A = Soil Cleanup Levels for Unrestricted Land Uses, Model Toxics Control Act, Chapter 173-340 WAC.
(7) NS = No Method A standard established.

(1) NS = NO METHOD A Standard established.
 All concentrations reported in milligrams per kilogram (mg/kg) or parts per million (ppm).
 Concentrations shown in Bold indicate an exceedance of cleanup level.
 Sum of Total cPAHs and TEF Total cPAHs calculated per MTCA Section 707 - Analytical Considerations and related statistical cleanup criteria.
 - Concentrations reported below the Method Detection Limit (MDL) are assigned a value equal to one half of the MDL.
 - Concentrations above the MDL, but below the MRL, are assigned a value equal to the MDL.

11/14/2008

Table 4

Summary of Groundwater Analytical Data Diesel Range Organics, Heavy Oil Range Organics, Polychlorinated Biphenyls North Drywell at Former GoodYear Tire Lease Property 601 George Washington Way, Richland, Washington

	а 1	-	NWT	NWTPH-Dx	
2 1 ⁹²	Sample Name	Date Sampled	Diesel Range Organics	Heavy Oil Range Organics	(PCBs)
	MW-1	9/4/08	pu	pu	pu
	MW-2	9/4/08	. pu	pu	pu
	MW-3	9/4/08	682.0	0.909	рп
#	2	10/21/08	480.0	pu	па
	MTCA N	MTCA Method A	500	500	0.1

Notes:

NWTPH-Dx = Semivolatile Petroleum Products analyzed by Washington Department of Ecology analytical protocols

nd = Not detected above laboratory method reporting limit (MRL)

na = Not analyzed

PCBs = Polychlorinated biphenyls

MTCA Method A = Groundwater Cleanup Levels, Model Toxics Control Act, Chapter 173-340 WAC

All concentrations of groundwater reported in micrograms per liter (mg/l) or parts per billion (ppb)

Concentrations shown in Bold indicate an exceedance of cleanup level

Table 5

Summary of Groundwater Analytical Data Polynuclear Aromatic Hydrocarbons North Drywell at Former Goodyear Tire Lease Property 601 George Washington Way, Richland, Washington

									Polynuclea	r Aromatic Hy	drocarbons (PAHs) ⁽¹⁾									
Sample Name	Date Sampled	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene ⁽²⁾	Benzo(a)pyrene ⁽²⁾	Benzo(b)fluoranthene ⁽²⁾	Benzo(k)fluoranthene ⁽²⁾	Benzo(ghi)perylene	Chrysene ⁽²⁾	Dibenzo(a,h)anthracene ⁽²⁾	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene ⁽²⁾	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Total cPAHs ⁽⁴⁾	TEF Total cPAHs ⁽⁵⁾
MW-1	9/4/2008	nd ⁽³⁾	nd	nd	0.0007	0.0015	0.0010	0.0009	nd	0.0009	0.0012	nd	nd	0.0012	nd	nd	nd	nd	nd	0.0073	0.0020
MW-2	9/4/2008	nd	nd	nd	0.0008	0.0015	0.0010	0.0009	nd	0.0009	0.0012	nd	nd	0.0012	nd	nd	nd	nd	nd	0.0074	0.0020
MW-3	9/4/2008	nd	nd	nd	0.0008	0.0015	0.0010	0.0009	nd	0.0009	0.0012	nd	nd	0.0012	nd	nd	nd	nd	nd	0.0075	0.0020
MTCA M	lethod A ⁽⁶⁾ .	NS ⁽⁷⁾	NS	NS	0.1	0.1	0.1	0.1	NS	0.1	0.1	NS	NS	0.1	NS	NS	5	NS	NS	0.1	0.1
CLARC N	lethod B ⁽⁸⁾	960	NS	4800	-			-	NS	•		640	640	18	NS	32	160	NS	480		

Notes:

(1) PAHs analyzed with HVI (EPA 8270 Mod.).

(2) cPAHs = Carcinogenic PAHs.

(3) nd = Non cPAHs that are not detected above method reporting limit (MRL).

(4) Total cPAHs = Sum of all cPAHs.

(5) TEF = Total cPAHs using Toxicity Equivalency Factor. Values asigned from MTCA Table 708.2.

(6) MTCA Method A = Soil Cleanup Levels for Unrestricted Land Uses, Model Toxics Control Act, Chapter 173-340 WAC.

(7) NS = No Method A standard established.

(8) CLARC Method B = Clean up Levels and Risk Calculations, Groundwater, Method B, non-carcinogen, Standard Formula Value ($\mu g/l$), MTCA chapter 173-340-720 WAC.

All concentrations reported in micrograms per liter ($\mu g/l$) or parts per billion (ppb).

Concentrations shown in Bold indicate an exceedance of cleanup level.

Sum of Total cPAHs and TEF Total cPAHs calculated per MTCA Section 707 - Analytical Considerations and related statistical cleanup criteria.

Concentrations of cPAHs are shown in *italics* IF they have been assigned a value equal to the MDL or one half of the MDL.

- Concentrations reported below the Method Detection Limit (MDL) are assigned a value equal to one half of the MDL

- Concentrations above the Method Detection Limit (MDL), but below the Method Reporting Limit (MRL), are assigned a value equal to the MDL

FIGURES

APPENDIX A

LFR Interim Cleanup Action and Reports

Sample No. Drywell-16 ft Drywell-S-13 Drywell-N-10 Drywell-SW-C 2Drywell-SW-C	Commer Goodyear Tire and Tri-Cities 601 George Washingto Richland, Washingto Sample Location Situ Confirmation drywell bottom 16 south sidewall 13 north sidewall 10 sidewall composite random North Drywell (In Situ Confirmation, drywell bottom 26		rty Battery Lease Property) Ion Way (ft.) NWTPH - DRO (ft.) Second Event 7/19/05) 158	NWTPH - HRO 6,280 1,670 ND 624 1,450
2Drywell-B26 2Drywell-ESW22	drywell bottom east sidewall		158 ND	1,450 26
2Drywell-SSW24 2Drywell-WSW23	south sidewall	24 23	ND 184	2.170
2Drywell-NSW18	North	18 18		29.4
Drywell-Pile-C)	random		12,500
	Interior Building - Hoists and Sump (In Situ Confirmation.	Sump (In Situ Confirm)	ation. First Event 7/19/05)	12,200
Hoist-1-B	hoist no. 1, bottom	6.5	10.8	91.1
Hoist-2-S	hoist no. 2, south sidewall	7.5	ND	59.2
Hoist-3-N	hoist no. 3, north sidewall	7.5 °	ND	ND
Hoist-5-B	hoist no. 5, bottom	∞ ∞	ND	59.8
Hoist-6-SW	hoist no. 6, south sidewall	7	ND	ND
Sump-B	sump, bottom	6	ND	30.9
Curry Court	Interior Building - Sump Only (In Situ Confirmation,	y (In Situ Confirmation	1, Second Event 10/4/05)	010
2Sump-SSW6	sump, south sidewall	6	ND	27.2
2Sump-B8	sump, bottom Interior Building -	8 Hoists and Sump	Waste Stockpile)	UD
Indoor-C	stockpile composite MTCA	random Method A Unrestricted	35.3	484
Notes: All results and cleanup levels reported in milligrams per kilo Analytical results shown in bold type indicated concentration NWTPH - analysis for DRO and HRO semi-volatile petroleu DRO - diesel range organics HRO - heavy oil range organics ND - not detected above laboratory method reporting limits MTCA - Model Toxics Control Act, Chapter 173-340 WAC	 Notes: All results and cleanup levels reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Analytical results shown in bold type indicated concentration above respective cleanup level NWTPH - analysis for DRO and HRO semi-volatile petroleum products by NWTPH-DX DRO - diesel range organics HRO - heavy oil range organics ND - not detected above laboratory method reporting limits MTCA - Model Toxics Control Act, Chapter 173-340 WAC 	ng/kg) or parts per milli respective cleanup level ucts by NWTPH-DX		

F

(Spokane) PN 003-09309-00 DRAFT

GRO - cleanup level for gasoline mixture without benzene and total TEX less than 1% or all other gasoline mixtures Method A Soil Cleanup Levels for Unrestricted Land Uses, MTCA Table 740-1 MTCA - Model Toxics Control Act, Chapter 173-340 WAC na - not analyzed ND - not detected above laboratory method reporting limits VOCs - volatile organic compounds by EPA Method 8260B. Contamainants of concern shown where reported above detection limit only GRO - gasoline range organics NWTPH - analysis for GRO and BTEX by NWTPH-GX Notes: Analytical results shown in **bold** type indicate concentration above the respective cleanup level All results and cleanup levels reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Drywell-Pile-C Drywell-SW-C 2Sump-SSW6 Drywell-W-13 Drywell-E-10 Dywell-16 ft Sample No. Sump-South Hoist-2-S Hoist-3-N Hoist-6-SW Hoist-4-B Hoist-5-B Hoist-1-B Indoor-C MTCA Sump-B Method A Unrestructed Sample Depth (ft.) Interior Building - Hoists and Sump (In Situ Confirmation First Event 7/19/05)
 Interior Building - Sump Only (In Situ Confirmation, Second Event 10/4/05)

 6
 na
 ND
 N random random random 1.5 15 5.5 13 0 1 ò 10 16 North Drywell (In Situ Confirmation, First Event 7/19/05)) (Former Goodyear Tire and Tri-Cities Battery Lease Property) Interior Building - Hoists and Sump NWTPH-GRO | Benzene | Toluene North Drywell (Waste Stockpile) <u>30 or 100</u> 601 George Washington Way AA 26.6 A A Ð A A ND IJ J Ba na Richland, Washington 12 Commercial Property 0.03 ND A A Ŋ AAA Ŋ ND A ND B Ŋ A (Waste Stockpile) ND AA ND AA Ŋ ND ND Ŋ ND AD B AN Ethylbenzene AAA ND AA Ŋ ND AN AAAA A 9 Xylenes 0.0539 ND A N N AAAA A ND Ŋ ND A ¢ JU tetrachloroethene 0.0475 tetrachloroethene 0.05 VOCs A ND Ŋ A A J J A Ba na B na Ba Ra

Table 1: Gasoline and Volatile Organic Compound Soil Sample Results

LFR, Inc. (Spokane) PN 003-09309-00 DRAFT

Table 3: Polynuclear Aromatic Hydrocarbons Soil Sample Results

Control time to provide the providence that the propertities the propertities that the propropertities that the propertites that the properti						1998							
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			2		(Former	Goodyear Tire ar 601 Geor Richla	id Tri-Cities B. ge Washington und, Washingto	attery Lease Prop. Way 11	erty)	đ			-
Neuton Neuton<	Sample No.	Sample Depth	31811116FIG.		ALBARIT SCALE	(alloo e fille (e) cellet	(STR STAT (8) OF IT &	(STAR (R) (R) (R) (R) (R) (R) (R) (R) (R) (R	CALCARD (FIR) OF THE	1. BILBERT R. BORTS (A) CERTAG	1 altasetty	College (F. C.	alidi like folig
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						rywell (In Situ C	Confirmation,	First Event 7/19/					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drywell-16 ft	16	0.05	0.05	0.05	0.122	0.122	0.05	0.166	0.05	0.151	0.05	0.259
Arent Drymel (In Sin: Confirmation, Second Event Indice). Arent Drymel (In Sin: Confirmation, Second Event Indice). Num Num<	Drywell-SW-C	random	0.01	0.01	0.01	0.0319	0.0804	0.0849	0.0865	0.0789	0.0455	0.01	0.0303
5 26 ND ND </td <td></td> <td></td> <td></td> <td></td> <td>North Dr</td> <td>ywell (In Situ C</td> <td>onfirmation, S</td> <td>econd Event 10/4</td> <td>1/05)</td> <td></td> <td></td> <td></td> <td></td>					North Dr	ywell (In Situ C	onfirmation, S	econd Event 10/4	1/05)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2Drywell-B26	26	Q	QN	QN	QN	QN	QN	DN	QN	QN	QN	QN
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2Drywell-ESW22	22	QN	QN	QN	0.0144	0.0213	0.0303	0.0344	QN	0.0165	Q	0.031
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2Drwewll-SSW24	24	QN	QN	ND	ND	ND	ND	ND	DN	QN	QN	QN
	2Drywell-WSW23	23	Q	QN	DN	QN	0.0465	0.045	0.28	QN	0.0218	QN	0.0218
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2Drvwell-NSW18	18	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	Q
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						North Dryv	vell (Waste Stu	ockpile)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drywell-Pile-C	random	0.2	0.2	0.2	1.05	1.14	1.55	1.03	1.64	1.26	0.2	2.23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2Drywell-B24C	24 (removed)	0.247	QN	0.0805	0.397	1.57	1.64	1.24	1.2	0.496	0.384	0.332
$ \begin{array}{ $					Interior Build	ling - Sump (In	Situ Confirma	tion, First Event	(30/61/1				
Interior Pluiding - Hoiss and Sump (Waste Stockpile) Interior Pluiding - Hoiss and Sump (Waste Stockpile) Chemmp (precisity at 24000) 0.01	Sump-B	6	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
				V	Interic	pr Building - Hoi	ists and Sump	(Waste Stockpile	(
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Indoor-C	random	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Image: contract of the stand of th	MIICA	Gleanup Levels	4,8003	na	24,000 3	1.0	0.1	0.1	na	TO	1.0	1'0	na
North Drywell (In Situ Confirmation, First Event 7/19/05) I-16 ft 16 0.05 0.05 0.05 0.05 0.356 0.356 SW-C random 0.01 0.01 0.01 0.01 0.01 0.036 0.356 SW-C random 0.01 0.01 0.01 0.01 0.01 0.036 0.3741 SW-C random 0.01 0.01 0.01 0.01 0.035 0.05 0.356 0.3741 SW-C random 0.01 0.0131 ND ND ND ND ND ND ND ND ND SW-C 24 ND ND ND ND ND ND ND ND SW32 23 ND ND ND ND ND ND ND ND SW33 18 ND ND ND ND ND ND ND ND SW33 18 ND ND	Sample No.	Sample Depth	and the sale	SIST ROE EN ORD	Stelling Barrie	SUGGER ST CHERRY AND ST C	all Wellfill dias	ALE RATE ALE	47 <i>8245</i> 47	SHY CO IBIOL	" TING S RAI ATA		
16 0.05 0.05 0.05 0.05 0.555 0.555 random 0.01 0.045 0.01 0.045 0.01 0.01 0.0956 0.555 random 0.01 0.01 0.0455 0.01 0.01 0.0956 0.3741 random 0.01 0.01 0.01 0.01 0.01 0.0956 0.3741 random 0.01 0.01 0.01 0.01 0.01 0.0956 0.3741 random 0.01 0.01 0.01 0.01 0.01 0.0956 0.3741 random 0.02 0.01 0.01 0.01 0.01 0.01 0.0156 random 0.02 0.021 0.01 0.01 0.01 0.0166 0.7744 random 0.02 0.341 0.214 0.265 0.763 0.7644 random 0.1 0.1 0.21 0.21 0.763 0.764 random 0.23 0.241	÷			North Dr	ywell (In Situ (Confirmation, F	irst Event 7/1:	9/05)					
random 0.01 0.0425 0.01 0.01 0.01 0.0986 0.3741 random 0.01 0.0425 0.01 0.01 0.0986 0.3741 26 ND ND ND ND ND ND ND 22 ND 0.0131 ND ND ND ND ND 23 ND 0.0381 ND ND ND ND ND 23 ND 0.0581 ND ND ND ND ND 23 ND 0.0581 ND ND ND ND ND 23 ND 0.0581 ND ND ND ND ND 24 ND ND ND ND ND ND ND 24(removed) 0.19 0.23 0.241 0.216 0.763 0.763 24(removed) 0.19 0.23 0.241 0.216 0.763 0.763 <t< td=""><td>Drywell-16 ft</td><td>16</td><td>0.05</td><td>0.05</td><td>0.05</td><td>0.05</td><td>0.05</td><td>0.05</td><td>0.396</td><td>0.595</td><td>0.104425</td><td></td><td></td></t<>	Drywell-16 ft	16	0.05	0.05	0.05	0.05	0.05	0.05	0.396	0.595	0.104425		
Image Image 0.01 0.0425 0.01 0.01 0.01 0.0286 0.3741 1 26 ND ND <t< td=""><td>Drywell-SW-C</td><td>random</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Drywell-SW-C	random											
North Drywell (in Situ Contirmation, Second Event 10/4/05) 26 ND	Drywell-SW-C	random	0.01	0.0425	0.01	0.01	10.0	0.01	0.0986	0.3741	0.108675		
26 ND ND<				North Dry	well (In Situ C	onfirmation, Se	cond Event 10						
22 ND 0.0131 ND ND ND 0.0933 0.0901 0.0956 1 24 ND	2Drywell-B26	20	ΠN	GN	ΠN	UN	ΠN	UN	UN	ΠN	ſŊ		
a ND ND </td <td>2Drywell-ESW22</td> <td>22</td> <td>Q2 Q2</td> <td>0.0131</td> <td></td> <td></td> <td>QN UN</td> <td>0.0193 ND</td> <td>1060.0</td> <td>0.0956 MD</td> <td>0.027245 ND</td> <td></td> <td></td>	2Drywell-ESW22	22	Q2 Q2	0.0131			QN UN	0.0193 ND	1060.0	0.0956 MD	0.027245 ND		
23 ND ND<	47 M CO-TIMOMTOT	33		10200	en en	a n		CIN	0.169	0 1714	0.057070		
North Drywell (Waste Stockpile) random 0.2 0.791 0.2 0.2 0.703 1.9 7.631 24 (removed) 0.19 1.05 0.273 0.341 0.214 0.305 5.736 5.737 24 (removed) 0.19 1.05 0.273 0.31 0.305 5.65 5.737 Interior Building - Sump (In Situ Confirmation, 7/19/05) 0.005 0.005 0.035 6 0.005 0.005 0.005 0.005 0.035 1 7 andom 0.01 0	2Drvwell-NSW18	c7 81	2 Q	Tocn'n	DN DN	Q	CN CN	QN	ON DN	ATTT-0	OTO ICO.O		
random 0.2 0.791 0.2 0.2 0.703 1.9 7.631 24 (removed) 0.19 1.05 0.213 0.341 0.214 0.305 2.68 6.737 1 6 0.005 0.025 0.341 0.214 0.305 2.68 6.737 1 6 0.005 <td>And a second second second</td> <td></td> <td></td> <td></td> <td>North Dry</td> <td>well (Waste Stoc</td> <td>kpile)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	And a second second second				North Dry	well (Waste Stoc	kpile)						
24 (removed) 0.19 1.05 0.273 0.341 0.214 0.305 2.68 6.737 6 Interior Building - Sump (In Situ Confirmation, 7/19/05) 0.305 0.305 0.01 0.01	Drywell-Pile-C	random	0.2	0.791	0.2	0.2	0.2	0.703	1.9	7.631	1.7357		
6 0.005 0.01 <th< td=""><td>2Drywell-B24C</td><td>24 (removed)</td><td>0.19</td><td>1.05</td><td>0.273</td><td>0.341 Confi</td><td>0.214</td><td>1.00</td><td>2.68</td><td>6.737</td><td>2.15726</td><td></td><td></td></th<>	2Drywell-B24C	24 (removed)	0.19	1.05	0.273	0.341 Confi	0.214	1.00	2.68	6.737	2.15726		
Tandom 0.01 <	Cump B	4	0.005	Intertor	nuc - guinind	D (III SIGU CONI	n nns		0.005	0.035	0 00005		
Tandom 0.01 <	a dumo	>	20010	1000	terior Building	- Sumn (Waste	Stocknile)			2			
Clamme Lawale 2, 2003 0 1 na 1 na 2, 2, 2003 0 1	Indoor-C	random	0.01	1	0.01	0.01	0.01	0.01	0.01	0.07	0.0181		
	N ACULA	A STATE A STATE AND A STATE	0003				*		A 4003	4 V	D - E		

LFR, Inc. (Spokane) PN 003-09309-00 DRAFT

Table 3: Polynuclear Aromatic Hydrocarbons Soil Sample Results

Notes:

All results and cleanup levels reported in milligrams per kilogram (mg/kg) or parts per million (ppm)

Analytical results shown in bold type indicate concentration above respective cleanup level All non-detectable PAH concentrations are listed as one-half ($\frac{1}{2}$) the method detection limit for calculation of Total cPAHs and TEF-Total cPAHs ND - not detected above laboratory method reporting limit (PQL)

na - no Method A or Method B cleanup level is available for assessment MTCA - Model Toxics Control Act, Chapter 173-303 WAC

Carcinogenic Polynuclear Aromatic Hydrocarbon (cPAH)
 TEF - toxicity equivalency factor per California EPA under WAC 173-340-708(8)(e) and CLARC Version 3.1, Part V Background Information

Mercury PCBs 0.358 1.25 AN 1.99 DN R Ð 2.2 R R B E B 14 na na na 0.0104 0.0155 0.914 0.506 0.024 0.53 0.591 0.777 Ð B 1.9 na na na na na Lead 20.3 10.2 68.9 53.2 1.99 3.91 3.93 709 2.82 218 54.1 213 76.1 4.7 na na na Interior Building - Hoists and Sump (In Situ Confirmation, First Event 7/19/05) Interior Building - Sump Only (In Situ Confirmation, Second Event 10/4/05) Chromium 11.6 16.6 North Drywell (In Situ Confirmation, Second Event 10/4/05) (Former Goodyear Tire and Tri-Cities Battery Lease Property) 18.1 13.1 277 1 North Drywell (In Situ Confirmation, First Event 7/19/05) na na na na В na na na na 17 na па Interior Building - Hoists and Sump (Waste Stockpile) Arsenic | Cadmium North Drywell (Waste Stockpile) 0.262 601 George Washington Way R A 5.71 Z B R B na na na na na na na na na Richland, Washington Commercial Property 4.66 R R a A Ð na БД na na na na na na па na na Sample Depth (ft.) drywell bottom north sidewall 24 (removed) south sidewall west sidewall east sidewall random random random 6.5 7.5 9 00 0 1 2Drywell-WSW23 2Drywell-NSW18 2Drywell-ESW22 2Drwewll-SSW24 Drywell-SW-C 2Drywell-B24C Drywell-Pile-C 2Drywell-B26 Dywell-16 ft 2Sump-SSW6 Sump-South Sample No. 2Sump-B8 Hoist-1-B Hoist-3-N Hoist-5-B Indoor-C Sump-B

Table 4: Total Metals (5) and PCBs Soil Sample Results

Notes:

MTCA

All results and cleanup levels reported in milligrams per kilogram (mg/kg) or parts per million (ppm)

250

110-00017 - (IAV1611

3

20

Method A Unrestricted

Analytical results shown in bold type indicate concentration above the respective cleanup level

Total Metals by EPA Method 6010/7000 Series

PCBs - polychlorinated biphenyls by EPA Method 8082

ND - not detected above laboratory method reporting limits

na - not analyzed

VI- hexavalent chromium ion

III - trivalent chromium ion

1) Trivalent chromium identified and distinguished from hexavalent ion by APHA/EPA Method

MTCA - Model Toxics Control Act, Chapter 173-340 WAC

Method A Soil Cleanup Levels for Unrestricted Land Uses, MTCA Table 740-1

LFR, Inc. (Spokane) PN 003-09309-00 DRAFT

Former Goodyear Tire and Tri-Cities Battery Lease Property - Waste Soil Laboratory Profile

DRWELL WASTE SOIL	Sample Type	NWTPH-DRO	NWTPH-HRO	NWTPH-GRO	Benzene	Toluene	Ethylbenzene	Xylenes	VOCs
	stockpile composite	ND	12,500	12	QN	QN	ND	0.0539	Q
		Total Arsenic	Total Cadmium	Total Chromium ¹	Total Lead	Total Mercury	PCBs	Total cPAHs	
		QN			209	0.0549	1.25	7.631	
		TCLP - Barium	TCLP - Barium TCLP - Cadmium	TCLP - Lead					
	2	0.642	0.00436	1.45			5		
				OAD-HOTWIN	Renzene	Toluene	Ethvlhenzene	Xvlenes	VOCs
IN LERIOR BLUG. WAS IE SUIL Indoor-C	stockpile composite		484	ND	ND	DND	DN	QN	QN
		Total Arsenic	Total (Total C	Total Lead	Total Lead Total Mercury		Total cPAHs	
		QN	ND	16.6	53.2	0.53	QN	0.07	
		TCLP - Barium 0.53							
rted in r	Table Notes: All laboratory results reported in milligrams per kilogram (mg/kg) or parts per million (ppm)	ו (mg/kg) or parts	per million (ppm)			21	5.		
laborator 1ge orga	ND - not detected above laboratory memou reporting minus NWTPH-DRO - diesel range organics or total petroleum hydrocarbons	1 hydrocarbons							
range or range or	NWTPH-HRO - heavy oil range organics or total petroleum nydrocarpons NWTPH-GRO - gasoline range organics or total petroleum hydrocarbons	eum hydrocarbon	0 10						
VOCs - volatile organic compounds	ds								
PCBs - polycniorinated piprierryis	PCBs - polycniorinated piprieriyis Totol oBAHc - cum of carcinocenic polymurclear aromatic hydrocarbons	c hvdrocarhons							
ristics Le	TCLP - Toxicity Characteristics Leaching Procedure (EPA Method 1311) with RCRA (8) Metals Analysis	PA Method 1311)	with RCRA (8) Me	etals Analysis					
	The second	inotorodol ind hou							

LFR, Inc. (Spokane 33-09309-00 (8/22/05)

TCLP results presented only when concentration reported by laboratory

1) Chromium reported in trivalent form by separate analysis

Photo 1: Photograph of northern drywell remedial excavation area.

Photo 2: Photograph of removal of soil backfill (overburden) from July 2005 interim cleanup event at beginning of second remedial excavation.

य	LF	R

Photographic Log October 4, 2005 Project No. 003-09309-00 Former Goodyear Tire Lease Property Interim Remedial Cleanup Actions Richland, WA

LFR Inc.

Photo 3: Photograph of obvious discolored (gray) soil removed from remedial excavation.

Photo 4: Photograph of northern drywell excavation progress during second cleanup event.

Photographic Log October 4, 2005 Project No. 003-09309-00 Former Goodyear Tire Lease Property Interim Remedial Cleanup Actions Richland, WA

Photo 5: Photograph of northern drywell excavation progress during second cleanup event.

Photo 6: : Photograph of northern drywell excavation progress during second cleanup event.

2	LF	R
---	----	---

Photographic Log October 4, 2005 Project No. 003-09309-00 Former Goodyear Tire Lease Property Interim Remedial Cleanup Actions Richland, WA

Photo 7: Photograph of northern drywell excavation sidewalls and bottom at final dimensions and limit.

Photo 8: Photograph of northern drywell excavation at final surface dimension and limit.

Photographic Log October 4, 2005 Project No. 003-09309-00	Former Goodyear Tire Lease Property Interim Remedial Cleanup Actions
 F10ject N0. 003-09309-00	Richland, WA

ENVIRONMENTAL MANAGEMENT & CONSULTING ENGINEERING

June 11, 2008

Ms. Joan Peterson Clack Building Ventures, LLC 325 East Sprague Avenue Spokane, WA 99202

RE: Post Building Demolition Soil Assessment for the Former Goodyear Lease Property located at 601 George Washington Way, Richland Washington

Dear Ms. Peterson:

LFR Inc. (LFR) has completed a visual assessment and limited sampling of surface and shallow nearsurface soils located at 601 George Washington Way, in Richland Washington (the "Site") (Figure 1). Soil sampling was conducted beneath the footprint of two contiguous building structures formerly located on-Site, previously occupied by Goodyear Tire and Rubber Company and its sub-tenants through lease and sub-lease arrangements.

It is LFR's understanding that demolition of the building structures occurred in April 2008. The Site consists of 0.735-acres of land and is identified by the Benton County Assessor's Office as tax parcel identification numbers 111983020558015 and 111983020558010. At the time of the visual assessment and soil sampling program the Site consisted of a vacant lot with the exterior ground surface consisting of broken gravel, concrete, and asphalt. A portion of former building's concrete foundation was visible along the western property line.

Visual Observations and Subsurface Soil Assessment

On May 7, 2008, LFR inspected the soil/ground cover in the former building location. While various relic utility connections (sewer, water, electric) were visible at the surface beneath the building footprint, LFR did not observe any obvious evidence of petroleum and/or chemical contamination in the former building location.

As a result of field observations, five sample locations (HA1, HA2, HA3, HA4, and HA5) were chosen based upon a random area-wide sampling program (Figure 2). Soil samples were collected using either a hand auger and/or a post hole digger from depths ranging from 15 to 17 inches below the ground surface. Soils and geologic material encountered in each sample location were described and the occurrence of petroleum or chemical odors and staining was noted, if observed. In addition, a 10.6 eV photoionization detector (PID) was used to qualitatively measure concentrations of volatile organic compounds (VOCs) in the soil samples at the time of collection. The following table summarizes the sample locations, sample depths, and corresponding PID readings.

509.535.7225 m 509.535.7361 f

2310 North Molter Road, Suite 101 Liberty Lake, Washington 99019-8621 Offices Nationwide www.lfr.com

Sample Location	Sample Depth (inches bgs)	PID Reading (ppm)	Sample Location Description
HA1	15	0.3	Southern portion of former easternmost building
HA2	16	0.1	Northern portion of former easternmost building
HA3	16	0.3	Northern portion of former westernmost building
HA4	16	0.3	Center portion of former westernmost building
HA5	17	0.3	Southern portion of former westernmost building

Sample Matrix and Locations

Field observations of the soils observed from the five shallow hand borings provided views of the soil/geologic stratigraphy beneath the Site. The Site subsurface soils appear to include imported fill materials mixed in the upper profile, within two feet of the ground surface beneath the former building footprint. The following field description was obtained utilizing ASTM Standard D2488-93 Standard Practice for Description and Identification of Soils (Visual Manual Procedure):

Lithology of borings HA1 and HA3:

0 to 4.0 inches below ground surface (bgs): Sandy gravel fill material

4.0 inches to 16 inches bgs: Gravelly Sand (SW) – 10YR 4/3, moist, loose consistency, sand fine to medium sized grains with moderate sorting, gravel/cobbles fine to coarse and poorly sorted (\sim 35%).

Lithology of borings HA2, HA4, and HA5:

0 to 4.0 inches bgs: Sandy gravel fill material

4.0 inches to 17 inches bgs: Sandy Silt (ML) – 10YR 4/3, moist, loose consistency, low plasticity, sand fine grained and well sorted ($\sim 20\%$).

Petroleum staining and/or odors were not observed in the five shallow soil borings. Ground water was not encountered during the soil investigation. Photographs illustrating the sample locations are included in the attached Appendix A.

Soil samples collected from the hand auger and post hole digger were placed into laboratoryprovided glass jars with Teflon-lined lids. The soil samples collected for volatile organic compounds (VOCs) were handled in accordance with the Washington Department of Ecology's

(Ecology) guidance regarding implementation of the Environmental Protection Agency (EPA) Method 5035A, "Collecting and Preparing Soil Samples for VOC Analysis," Washington State Department of Ecology, June 2004, Document No. 04-09-087. The soil samples were labeled and placed in an ice-chilled cooler for transportation to Test America of Spokane, Washington under chain-of-custody protocol.

Each soil sample was analyzed for the following: gasoline range organics (GRO) with benzene, toluene, ethylbenzene, and total xylenes (BTEX) by State of Washington and EPA protocols; diesel range organics (DRO) and heavy oil range organics (HRO) by State of Washington protocol; arsenic, cadmium, chromium, lead, and mercury by EPA Method 6010/7000 Series; polychlorinated biphenyls (PCBs) by EPA Method 8082; and polynuclear aromatic hydrocarbons by EPA Method 8270SIM.

RESULTS

Analytical results indicated that DRO and HRO were detected in sample HA4-16" at concentrations of 14.7 milligrams per kilogram (mg/kg) and 61.9 mg/kg, respectively. The detected concentrations of DRO and HRO were below the Ecology Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses for DRO (2,000 mg/kg) and HRO (2,000 mg/kg).

Cadmium was detected in sample HA3-16" at a concentration of 0.226 mg/kg. Mercury was detected from samples HA3-16" and HA4-16" at concentrations of 0.143 mg/kg and 0.0654 mg/kg. Lead was detected in all five samples at concentrations ranging from 7.47 to 98.1 mg/kg. Chromium was detected in all five samples at concentrations ranging from 10.8 to 20.3 mg/kg.

With the exception of one sample (HA2-16"), the detected COC concentrations of cadmium, mercury, lead and chromium were all below their respective MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses. Total chromium was detected in sample HA2-16" at a concentration (20.3 mg/kg) slightly above the MTCA Method A cleanup level for hexavalent chromium. As a result the sample was resubmitted for analysis of hexavalent chromium. Analytical results indicated the concentration of hexavalent chromium in sample HA2-16" was not detected above the laboratory method reporting limit.

Two carcinogenic PAHs (benzo(k)fluoranthene and chrysene) and two non-carcinogenic PAHs (fluoranthene and pyrene) were detected in one sample (HA4-16") at concentrations above the laboratory method reporting limit. The concentrations of the detected carcinogenic PAHs were below the MTCA Method A Soil Cleanup level for Unrestricted Land Uses of 0.1 mg/kg that is designated for carcinogenic PAHs. No cleanup standard has been established for the non-carcinogenic PAHs.

Additional analyzed constituents were either not detected above laboratory method reporting limits and/or were below the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses.

Analytical results are summarized in Tables 1 and 2; and the laboratory report is included in Appendix B.

CONCLUSIONS

LFR completed a visual assessment and limited sampling of surface and shallow near-surface soils in the area of the former building structure located on-Site and previously occupied by Goodyear Tire and Rubber Company and its sub-tenants through lease and sub-lease arrangements. The visual assessment and soil sampling was conducted to identify potential building sub-slab soil contamination associated with operations conducted by previous Site occupants that might pose a material threat to human health and the environment for the specific area and COCs under investigation.

A total of five sample locations (HA1, HA2, HA3, HA4, and HA5) were chosen based upon a random area-wide sampling program. Petroleum staining and/or odors were not observed in the five shallow soil borings. Ground water was not encountered during the soil investigation.

Soil sample analytical results indicated that the constituents of concern were either not detected above laboratory method reporting limits and/or were below the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses. Based on the documented information, it is LFR's professional opinion the visual and soil sampling program *did not* reveal evidence of an existing release to shallow subsurface soil beneath the former building footprint from previous operations conducted on-Site.

LFR appreciates the opportunity to work with Clack Building Ventures, LLC on this important project. Please do not hesitate to contact us if you require additional consultation.

Sincerely,

Medar hung

Meghan Lunney Project Geologist

Jeffing L. Jappor

Jeffrey E. Leppo, L.G. (No. 1406) Principal Geologist

Attachments: Figures 1 and 2 Tables 1 and 2 Appendix A – Photographic Log Appendix B – Laboratory Report

Petroleum Hydrocarbons, VOCs, PCBs, and Total Metals Post Building Demolition Soil Assessment (May 7, 2008) 601 George Washington Way, Richland WA Former Goodyear Lease Property Summary of Soil Analytical Data **TABLE 1**

6	SOU	pu	p	р	pu	pu	CLV ^(1.0)
(0)	rces	pu	P	pu	pu	pu	L
	Mercury	р	pu	0.143	0.0654	р	2
	Lead	7.47	14.1	98.1	26.3	31.0	250
Metals ^{DI}	Chromium	10.8	20.3 ⁽¹¹⁾ / <1.1 ⁽¹²⁾	14.5	17.1	16.6	19 ⁽¹⁶⁾ /2,000 ⁽¹²⁾
	Cadmium	pu	P	0.226	pu	pu	2
	Arsenic	pu	pu	pu	pu	pu	20
	Total Xylenes	pu	p	pu	pu	ри	6
vocs ⁽⁶⁾	Ethylbenzene	pu	pu	pu	pu	pu	9
	Toluene	pu	pu	pu	pu	pu	7
	Benzene	pu	pu	pu	pu	pu	0.03
NWTPH-Dx ³³	HRO ⁽⁵⁾	pu	pu	pu	61.9	pu	2,000
dumn	DRO ⁴⁰	pu	pu	pu	14.7	pu	2,000
NWTPH-Gx	GRO ^{I2}	nd ^{ti aj}	pu	pu ,	pu	pu	100 ⁽¹⁴⁾ /30 ⁽¹⁵⁾
Depth	(inches)	15	16	16	16	17	(13)
Date	Sampled	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	Method A
Sample	Name	HA1-15"	HA2-16"	HA3-16"	HA4-16"	HA5-17"	MTCA

Notes:

NWTPH-Gx - Gasoline Hydrocarbons analyzed by WDCE analytical protocols
 NWTPH-Dx - Semivolatics
 NWTPH-Dx - Semivolatic Petroleum Products analyzed by WDCE analytical protocols
 NWTPH-Dx - Semivolatics
 NWTPH-Dx - Semivolatics
 NWTPH-Dx - Semivolatics
 NTC - Diseal Range Organics
 HRO - Diseal Range Organics
 HRO - Heavy Oil Range Organics
 NCG - Petroleum Hydrocarbon related Volatile Organic Compounds analyzed by EPA Method 5035A/8021B
 VCGs - Petroleum Hydrocarbon related Volatile Organic Compounds analyzed by EPA Method 5035A/8021B
 VCGs - Polatile Organic Compounds analyzed by EPA Method 8082
 VCGs - Volatile Organic Compounds analyzed by EPA Method 8020B
 NCG - Polatile Organic Compounds analyzed by EPA Method 8260B
 NCGs - Volatile Organic Compounds analyzed by EPA Method 820B
 NCG - Intot detected above laboratory method reporting limit
 Intotal chronnium analyzed by EPA Method 6010B
 A - not detected above laboratory method 6010B
 A - not detected above laboratory method 6010B
 NTCA Method A - Soil Cleanup Level for Unmeritred Land Uses, Model Toxics Control Act, Chapter 173-340 WAC
 A Cleanup level for CRO whout benzene gasoline mixtures

(15) Cleanup level for GRO, all other gasoline mixtures

(16) MTCA Method A Cleanup Levels for Chromium VI

(17) MTCA Method A Cleanup Levels for Chromium III (18) CLV = cleanup level varies per analyte All concentrations of soil reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Concentrations shown in **Bold** indicate an exceedance of cleanup level

LFR Inc. (Spokane) 6/3/08

1 of 1

Project # 027-30160-00

Date: 5/30/2008 Date: 6/3/2008

ML EL

Checked By: Prepared By:

Post Building Demolition Soil Assessment (May 7, 2008) 601 George Washington Way, Richland, WA Polynuclear Aromatic Hydrocarbons Summary of Soil Analytical Results Former Goodyear Lease Property TABLE 2

PAHs⁽¹⁾

TEF Total cPAHa ⁽⁴⁾	0.0086	0.0098	0600.0	0.0111	0.0097	0.100
^{to} eHA93 latot	0.0378	0.0431	0.03955	0.0579	0.04235	0.100
Ругеле	<0.0108	<0.0123	< 0.0113	0.0205	< 0.0121	SS
Phenanthrene	<0.0108	<0.0123	<0.0113	<0.0118	<0.0121	SN
Naphthatene	< 0.0108	< 0.0123	< 0.0113	< 0.0118	< 0.0121	17
ərrəlsifiniqisniyritəM-S	< 0.0108	< 0.0123	< 0.0113	< 0.0118	< 0.0121	SN
ənəlarlırlqarılyrləM-t	<0.0108	<0.0123	<0.0113	<0.0118	<0.0121	SN
⁽³⁾ anaiyq(bɔ-£,2,1)onabnl	0.0054	0.00615	0.00565	0.0059	0.00605	0.100
Fluarene	<0.0108	<0.0123	< 0.0113	<0.0118	<0.0121	NS
Fluoranthene	< 0.0108	< 0.0123	< 0.0113	0.0229	< 0.0121	NS
Dibenzo(a,h)anihracene ^(a)	0.0054	0.00615	0.00565	0.0059	0.00605	0.100
Chrysene ^{®)}	0.0054	0.00615	0.00565	0.0150	0.00605	0.100
Benzo(k)tiluoranthen ^(k)	0.0054	0.00615	0.00565	0.0134	0.00605	0.100
Bchzo(ghl)perylene	< 0.0108	< 0.0123	< 0.0113	< 0.0118	< 0.0121	NS
ເລືອກອຸດໄກຄາດນໃງ(cl)ozna8.	0.0054	0.00615	0.00565	0.0059	0.00605	0.100
Benzo(a)pyrene ^{g)}	0.0054	0.00615	0.00565	0.0059	0.00605	0.100
⁽⁰ 9n9581/jn8(s)ozn98	0.0054	0.00615	0.00565	0.0059	0.00605	0.100
Апіліясене	< 0.0108	< 0.0123	< 0.0113	< 0.0118	< 0.0121	NS
อแจโงนี่มีก่องวง	< 0.0108	< 0.0123	< 0.0113	< 0.0118	< 0.0121	NS
ечецинально	< 0.0108 ⁽⁵⁾	<0.0123	<0.0113	<0.0118	<0.0121	NS ⁰²
Date Sampled	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	rCA Method A ⁵⁰
Sample Name	HA1-15"	HA2-16	HA3-16"	HA4-16"	HA5-17"	MTCAM

Notes:

(1) PAHs = polynuclear aromatic hydrocarbons by EPA 8270 Modified

(2) cPAHs = carcinogenic PAHs
(3) Total cPAHs = sum of all cPAHs
(3) Total cPAHs = sum of all cPAHs
(4) TEF = Total cPAHs using Toxicity Equivalency Factor. Non-detectable concentrations assigned a value of one-half the reported method detection limit and shown in italics
(5) < = not detected above laboratory method reporting limit, detection limit shown
(6) MTCA Method A Soil Cleandy Standards for Unrestricted Land Uses, Model Toxics Control Act, Chapter 173-340 WAC
(7) NS = No Method A standard established.

All concentrations reported in milligrams per kilogram (mg/kg) or parts per million (ppm) Concentrations shown in **Bold** indicate an exceedance of cleanup level

LFR Inc. (Spokane) 6/3/08

1 of 1

Project No. 027-30160-00

5/22/2008 6/3/2008

Date: Date:

¥ E

Checked By: Prepared By:

Photo 1: Photograph of Site location (photograph taken from the north/northeast).

Photo 2: Photograph of soil boring locations HA3, HA4, and HA5. Concrete foundation of former building visible along western property boundary (photograph taken from the north).

BLFR	Photographic Log	Former Goodyear Lease Property 601 George Washington Way
	01 0	8 8 9
	Project No. 027-30160-00	Richland, WA

Photo 3: Photograph of soil boring HA1 in the southern portion of the former easternmost building location (photograph taken from the east).

Photo 4: Photograph of soil boring HA2 in the northern portion of the former easternmost building location (photograph taken from the east).

		Former Goodyear Lease Property
DLFR	Photographic Log	601 George Washington Way
	Project No. 027-30160-00	Richland, WA

May 30, 2008

Meghan Lunney LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: Tri Cities Battery

Enclosed are the results of analyses for samples received by the laboratory on 05/08/08 08:35. The following list is a summary of the Work Orders contained in this report, generated on 05/30/08 13:03.

If you have any questions concerning this report, please feel free to contact me.

Work Order SRE0037 Project Tri Cities Battery

ProjectNumber 027-30160-00

TestAmerica Spokane

tand 0 n Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
HA1-15"	SRE0037-01	Soil	05/07/08 12:50	05/08/08 08:35	
HA2-16"	SRE0037-02	Soil	05/07/08 13:21	05/08/08 08:35	
HA3-16"	SRE0037-03	Soil	05/07/08 14:01	05/08/08 08:35	
HA4-16"	SRE0037-04	Soil	05/07/08 14:26	05/08/08 08:35	
HA5-17"	SRE0037-05	Soil	05/07/08 14:51	05/08/08 08:35	

TestAmerica Spokane

tande X<u>ar</u> er

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Project Name: Project Number:	Tri Cities Battery 027-30160-00	Report Created:						
Project Manager:	Meghan Lunney	05/30/08 13:03						
Liberty Lake, WA 99019 Project Manager: Meghan Lunney Gasoline Hydrocarbons by NWTPH-Gx and BTEX by EP. TestAmerica Spokane								
	Project Number: Project Manager: ocarbons by NWTPH-Gx a	Project Number: 027-30160-00 Project Manager: Meghan Lunney rocarbons by NWTPH-Gx and BTEX by EPA Method 8						

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-01 (HA1-15'')	2	Soi	Soil		Sampled: 05/07/08 12:50					
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND	: :	6.48	mg/kg dry	lx	8050058	05/12/08 13:34	05/13/08 02:57	
Benzene		ND		0.0194	•				"	
Toluene		ND		0.259		"	•			
Ethylbenzene		ND		0.259						
Xylenes (total)	*	ND		0.777		"	्म		W	
Surrogate(s): 4-BFB (F1D)			114%		35.6	- 116 %	"		"	
4-BFB (PID)			115%		38.9	- 150 %	"		"	
SRE0037-02 (HA2-16'')		So	il		Samj	pled: 05/	07/08 13:21			

SRE0037-02 (HA2-16'')		Soil			Samp				
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		7.95	mg/kg dry	lx	8050058	05/12/08 13:34	05/13/08 03:23
Benzene		ND		0.0239					
Toluene		ND		0.318	и		"	н	H
Ethylbenzene		ND		0.318			ч		
lenes (total)		ND		0.954	•				
Surrogate(s): 4-BFB (FID)			114%		35.6 -	- 116 %	"		"
4-BFB (PID)			111%		38.9 -	- 150 %	"		"

SRE0037-03 (HA3-16'')		Soil			Sampled: 05/07/08 14:01				
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		6.87	mg/kg dry	1x	8050058	05/12/08 13:34	05/13/08 03:49
Benzene		ND		0.0206	*	н	я		. 1
Toluene		ND		0.275					
Ethylbenzene	.#.:	ND	121222	0.275	n	•			
Xylenes (total)	n	ND		0.825					
Surrogate(s): 4-BFB (FID)			112%		35.6 -	116%	"		"
4-BFB (PID)			116%		38.9 -	150 %	"		n

SRE0037-04 (HA4-16'')		Soil			Sampled: 05/07/08 14:26				
Gasoline Range Hydrocarbons	NWTPH-Gx/802 IB	ND		7.54	mg/kg dry	lx	8050058	05/12/08 13:34	05/13/08 04:15
Benzene	3.8.	ND		0.0226		•			
Toluene		ND		0.301	п				
Ethylbenzene		ND		0.301					
Xylenes (total)		ND		0.904				и	
Surrogate(s): 4-BFB (FID)			107%		35.6 -	- 116 %	"		
4-BFB (PID)			107%		38.9 -	- 150 %	"		"

TestAmerica Spokane

tandi €O Xar

Randee Decker, Project Manager

The results in this report opply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LFR, Inc.Project Name:Tri Cities Battery2310 N. Molter Rd. Suite 101Project Number:027-30160-00Report Created:Liberty Lake, WA 99019Project Manager:Meghan Lunney05/30/08 13:03

Gasoline Hydrocarbons by NWTPH-Gx and BTEX by EPA Method 8021B TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-05 (HA5-17'')	0037-05 (HA5-17'')				Sampled: 05/07/08 14:51					
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		7.89	mg/kg dry	lx	8050058	05/12/08 13:34	05/13/08 04:41	
Benzene		ND		0.0237				н.		
Foluene		ND		0.315		н	۳	п		
Ethylbenzene	π	ND		0.315		•	"		"	
Xylenes (total)	н	ND	1201112	0.946		"				
Surrogate(s): 4-BFB (FID)			113%		35.6 -	- 116 %	"		"	
4-BFB (PID)			117%		38.9 -	- 150 %	n		<i>n</i>	

TestAmerica Spokane

tand 4 01 ST:

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019	0		Project Nar Project Nur Project Ma	mber: nager:	Tri Citie 027-3016 Meghan I	0-00 .unney			Report 0 05/30/0	
	Semi	volatile Pe	TestAmer			VY II.	n-Dx			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-01 (HA1-15'')		Soi	l		Samp	led: 05/0	7/08 12:50			
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	NWTPH-Dx	ND ND		10.8 27.1	mg/kg dry "	1x "	8050045 "	05/09/08 10:42	05/10/08 03:57 "	
Surrogate(s): 2-FBP p-Terphenyl-d14			98.6% 98.6%			150 % . 150 %	n n		n n	
SRE0037-02 (HA2-16'')		Soi	I		Samp	led: 05/0	07/08 13:21			
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		12.3 30.7	mg/kg dry "	lx "	8050045 "	05/09/08 10:42 "	05/10/08 06:16 "	
Surrogate(s): 2-FBP p-Terphenyl-d14			96.7% 104%			150 % 150 %	17 11		"	
SRE0037-03 (HA3-16'')		Soi	I		Samp	led: 05/	07/08 14:01			
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	NWTPH-Dx	ND ND		11.3 28.2	mg/kg dry "	lx "	8050045 "	05/09/08 10.42 "	05/10/08 06:51 "	X
Surrogate(s): 2-FBP p-Terphenyl-d14			96.3% 96.2%			- 150 % - 150 %	11 11		"	
SRE0037-04 (HA4-16'')		Soi	1		Samp	led: 05/	07/08 14:26			4
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	NWTPH-Dx "	14.7 61.9		11.8 29.6	mg/kg dry "	lx "	8050045	05/09/08 10:42 "	ж.	
Surrogate(s): 2-FBP p-Terphenyl-d14			89.1% 94.2%			- 150 % - 150 %	n		n	
SRE0037-05 (HA5-17'')		So	il		Samı	oled: 05/	07/08 14:51			
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	NWTPH-Dx "	ND ND		12.1 30.3	mg/kg dry "	lx "	8050045 "	05/09/08 10:42 "	05/10/08 08:00	

50 - 150 %

50 - 150 %

"

"

Surrogate(s): 2-FBP p-Terphenyl-d14

TestAmerica Spokane

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

"

"

93.9%

96.4%

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290 SPOKANE, WA

	lter Rd. Suite 101 e, WA 99019			Project Na Project Nu Project Ma	imber:	Tri Citie 027-3016 Meghan I	0-00	ry		Report 0 05/30/0	
		Tot	al Metals l	y EPA (TestAme			s Met	hods			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-01	(HA1-15'')		Soi	I		Samp	led: 05/0	7/08 12:50			
Arsenic		EPA 6010B	ND		2.71	mg/kg dry	1x	8050052	05/12/08 09:48	05/13/08 13:27	
Cadmium		n	ND		0.217						
Chromium		5 m	10.8		0.542				•		
Lead			7.47		1.63	•					
Mercury		EPA 7471	ND	•••••	0.0500		×	8050055	05/12/08 09:56	05/13/08 14:31	
SRE0037-02	(HA2-16'')		Soi	1		Samp	led: 05/0)7/08 13:21			
Arsenic		EPA 6010B	ND		3.07	mg/kg dry	lx	8050052	05/12/08 09:48	05/13/08 13:32	2
Cadmium			ND		0.245				. H		
Chromium			20.3		0.613		٠		•		
Lead			14.1		1.84						
Mercury		EPA 7471	ND		0.0500	•		8050055	05/12/08 09:56	05/13/08 14:34	
SRE0037-03	(HA3-16'')	×.	So	il		Samp	led: 05/0	07/08 14:01			
Arsenic		EPA 6010B	ND		2.82	mg/kg dry	lx	8050052	05/12/08 09:48	05/13/08 13:38	
Cadmium			0.226		0.225		. M.			•	(
Chromium			14.5	1000000	0.564						
Lead			98.1		1.69				•	π	
Mercury		EPA 7471	0.143	•••••	0.0500			8050055	05/12/08 09:56	05/13/08 14:36	
SRE0037-04	(HA4-16'')		So	il		Samp	led: 05/	07/08 14:26	21		
Arsenic		EPA 6010B	ND		2.96	mg/kg dry	lx	8050052	05/12/08 09:48	05/13/08 13:43	
Cadmium			ND		0.237						
Chromium			17.1		0.592						
Lead			26.3		1.78		н	и			
Mercury		EPA 7471	0.0654		0.0500			8050055	05/12/08 09:56	05/13/08 14:38	
SRE0037-05	(HA5-17'')		So	il		Samp	oled: 05/	07/08 14:51			
Arsenic		EPA 6010B	ND		3.03	mg/kg dry	lx	8050052	05/12/08 09:48	05/13/08 14:04	
Cadmium			ND	122222	0.243	204 				Ŧ	
Chromium			16.6		0.607		н			•	
Lead		8 m -	31.0		1.82					8	
Mercury		EPA 7471	ND		0.0500			8050055	05/12/08 09:56	05/13/08 14:41	

TestAmerica Spokane

Landie Xar EO

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

 LFR, Inc.
 Project Name:
 Tri Cities Battery

 2310 N. Molter Rd. Suite 101
 Project Number:
 027-30160-00
 Report Created:

 Liberty Lake, WA 99019
 Project Manager:
 Meghan Lunney
 05/30/08 13:03

	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10		TestAme	rica Spo	kane					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Note
SRE0037-01 (HA1-15'')		Soi	l		Samp	oled: 05/(07/08 12:50			
Dichlorodifluoromethane	EPA 8260B	ND		0.108	mg/kg dry	1x	8050060	05/12/08 14:48	05/12/08 20:44	
Chloromethane		ND		0.542	•		H		8	
Vinyl chloride	n	ND		0.108						
Bromomethane	н	ND		0.542						
Chloroethane		ND		0.108		3 0 .5				
Trichlorofluoromethane		ND		0.0325		(m.)		n.	*	
1,1-Dichloroethene		ND		0.108						
Carbon disulfide		ND		0.108	•			n		
Methylene chloride		ND		1.08				•	1	
Acetone		ND		1.08					•	
rans-1,2-Dichloroethene		ND		0.108		(n .)				
Methyl tert-butyl ether		ND		0.108			n		(m.)	
1,1-Dichloroethane		ND		0.108		•				
sis-1,2-Dichloroethene		ND		0.108		•				
2,2-Dichloropropane		ND		0.108		•		n		
omochloromethane		ND		0.108				÷.		
Chloroform		ND	0 00000	0.108						
Carbon tetrachloride		ND		0.108				"	л.:	
1,1,1-Trichloroethane		ND		0.108					n 2	
2-Butanone		ND		1.08						
1,1-Dichloropropene	in .	ND		0.108				н		
Benzene		ND	•••••	0.0217						
1,2-Dichloroethane (EDC)		ND		0.108						
Trichloroethene		ND		0.0325	ж				я.	
Dibromomethane		ND		0.108						
1,2-Dichloropropane		ND		0.108					•	
Bromodichloromethane		ND		0.108				n		
cis-1,3-Dichloropropene		ND		0.108						
Toluene		ND		0.108				,		
4-Methyl-2-pentanone		ND		1.08						
rans-1,3-Dichloropropene		ND		0.108				,		
Fetrachloroethene		ND		0.108				,		
1,1,2-Trichloroethane		ND		0.108						
		ND		0.108		н		,		
Dibromochloromethane		ND		0.108						
1,3-Dichloropropane				0.108		×				
1,2-Dibromoethane		ND								
2-Hexanone	-	ND		1.08		-				
Ethylbenzene		ND		0.108						

TestAmerica Spokane

tande tor en

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tri Cities Battery LFR, Inc. Project Name: Report Created: 027-30160-00 2310 N. Molter Rd. Suite 101 Project Number: 05/30/08 13:03 Project Manager: Meghan Lunney Liberty Lake, WA 99019

		Volatile	e Organic	Compou TestAmer			1ethod	8260B			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-01 (1	HA1-15'')		Soi			Samp	led: 05/0	7/08 12:50			
Chlorobenzene		EPA 8260B	ND		0.108	mg/kg dry	lx	8050060	05/12/08 14:48	05/12/08 20:44	
1,1,1,2-Tetrachloroet	thane	н	ND		0.108					и	
m,p-Xylene			ND	*****	0.433			×			
o-Xylene			ND		0.217						
Styrene		n.	ND		0.108		u.				
Bromoform		•	ND		0.108	-		"			
sopropylbenzene		•	ND		0.108						
n-Propylbenzene			ND		0.108				ំអ		2
,1,2,2-Tetrachloroe	thane	8 0	ND		0.108						
Bromobenzene			ND		0.108	•		•			
,3,5-Trimethylbenz	ene		ND		0,108						
2-Chlorotoluene			ND		0.108			(n .)	3 8 5		
1,2,3-Trichloropropa	ane		ND		0.108			(n)	п		
4-Chlorotoluene			ND		0,108				n	.	
ert-Butylbenzene		1 M.	ND		0.108						
1,2,4-Trimethylbenz	ene		ND		0.108						1
sec-Butylbenzene			ND		0.108						2
p-Isopropyltoluene			ND		0.108						
1,3-Dichlorobenzene	e		ND		0.108					н	
1,4-Dichlorobenzene		i i	ND		0.108						
n-Butylbenzene	-		ND		0.108	π	Ħ				
1,2-Dichlorobenzene	e		ND		0.108						
1,2-Dibromo-3-chlo			ND		0.542						
Hexachlorobutadien		ž.	ND		0.108						
1,2,4-Trichlorobenz			ND		0.108						
Naphthalene	17 A. B. S.		ND		0.217				н		
1,2,3-Trichlorobenz	ene		ND		0.108					π	
Surrogate(s):	Dibromofluoromethane			103%		42.7	- 151 %	"			
Surrogare(s).	Toluene-d8			90.7%			- 132 %	H			
	4-bromofluorobenzene			97.7%		51	- 136 %	"		n	

TestAmerica Spokane

tandi 101 CO

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Randee Decker, Project Manager

LFR, Inc.	Project Name: Tri Citi	ties Battery	
2310 N. Molter Rd. Suite 101	Project Number: 027-3016	160-00 Report Created:	
Liberty Lake, WA 99019	Project Manager: Meghan	n Lunney 05/30/08 13:03	

Volatile Organic Compounds by EPA Method 8260B TestAmerica Spokane										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-02 (HA2-16'')		Soi			Samp	led: 05/0	7/08 13:21			
Dichlorodifluoromethane	EPA 8260B	ND		0.123	mg/kg dry	1x	8050060	05/12/08 14:48	05/12/08 21:15	
Chloromethane		ND		0.613				1 9 1		
Vinyl chloride		ND		0.123		H		2.00		
Bromomethane		ND	<u></u>	0.613			а. С			
Chloroethane		ND		0.123						
Trichlorofluoromethane		ND		0.0368				•		
1,1-Dichloroethene	u	ND		0.123				7.42		
Carbon disulfide		ND		0.123				۰,		
Methylene chloride		ND		1.23			н			£0
Acetone		ND		1.23						
trans-1,2-Dichloroethene		ND		0.123					2 6	
Methyl tert-butyl ether		ND		0.123						
1,1-Dichloroethane		ND		0.123						
cis-1,2-Dichloroethene		ND		0.123					•	
2-Dichloropropane		ND		0.123			*			
omochloromethane		ND		0.123						
Chloroform		ND		0.123						
Carbon tetrachloride		ND	•••••	0.123					5	
1,1,1-Trichloroethane		ND		0.123						
2-Butanone	н	ND		1.23	ж.	я	11		×	
1,1-Dichloropropene	•	ND		0.123			н			
Benzene		ND		0.0245	•				•	
1,2-Dichloroethane (EDC)		ND		0.123					•	
Trichloroethene	1 m.	ND		0.0368					÷	
Dibromomethane		ND		0.123			п	-		
1,2-Dichloropropane		ND		0.123	п	ж				
Bromodichloromethane		ND		0.123				н	,	
cis-1,3-Dichloropropene		ND		0.123						
Toluene		ND	22212	0.123			٠			
4-Methyl-2-pentanone		ND		1.23						
trans-1,3-Dichloropropene		ND		0.123						
Tetrachloroethene		ND		0.123	0 0 3		3 H		8	
1,1,2-Trichloroethane		ND		0.123		,	2 H			
Dibromochloromethane		ND		0.123		н			.	
1,3-Dichloropropane		ND		0.123						
1,2-Dibromoethane		ND		0.123					-	
2-Hexanone		ND		1.23		н				
Ethylbenzene		ND		0.123						

TestAmerica Spokane

tander Yor Jeo

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.

2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

Project Name: Project Number: Project Manager:

Tri Cities Battery 027-30160-00 Meghan Lunney

Report Created: 05/30/08 13:03

		ile Organic	TestAme							
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-02 (HA2-16'')		Soi	1		Samp	led: 05/0	7/08 13:21			
Chlorobenzene	EPA 8260B	ND		0.123	mg/kg dry	lx	8050060	05/12/08 14:48	05/12/08 21:15	
1,1,1,2-Tetrachloroethane		ND		0.123					•	
m,p-Xylene		ND		0.491						
o-Xylene		ND		0.245			2 H 2			
Styrene		ND		0.123			•			
Bromoform		ND		0.123		٠	•			
sopropylbenzene		ND		0.123					*	
n-Propylbenzene		ND		0.123			. .	3 9 (
1,1,2,2-Tetrachloroethane		ND		0.123						
Bromobenzene		ND		0,123				n		
,3,5-Trimethylbenzene		ND		0.123	-		٠			
2-Chlorotoluene		ND	20222	0.123						
,2,3-Trichloropropane		ND		0.123						
l-Chlorotoluene		ND		0.123		B 2				
ert-Butylbenzene		ND		0.123		ж	1987	в	. R (
1,2,4-Trimethylbenzene		ND		0.123		1.00		ж. С		(
sec-Butylbenzene	8	ND		0,123				•		
p-Isopropyltoluene		ND		0.123	-					
1,3-Dichlorobenzene		ND		0.123				•		
1,4-Dichlorobenzene		ND		0.123						
n-Butylbenzene	и	ND		0.123				н	.*	
1,2-Dichlorobenzene		ND		0.123	ंज					
1,2-Dibromo-3-chloropropane		ND		0.613		•	R	•	н.	
Hexachlorobutadiene	*	ND	21010	0.123				•	n	
1,2,4-Trichlorobenzene		ND		0.123						
Naphthalene		ND		0.245						
1,2,3-Trichlorobenzene		ND		0.123	•			н	•	
Surrogate(s): Dibromofluoron	nethane		120%		42.7	- 151 %	11		"	
Toluene-d8			102%		50.8	- 132 %	"		"	
4-bromofluorob	enzene		113%		51	- 136 %	"		"	

TestAmerica Spokane

tande 03 Yor

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Randee Decker, Project Manager

Page 10 of 41

LFR, Inc.Project Name:Tri Cities Battery2310 N. Molter Rd. Suite 101Project Number:027-30160-00Report Created:Liberty Lake, WA 99019Project Manager:Meghan Lunney05/30/08 13:03

Volatile Organic Compounds by EPA Method 8260B TestAmerica Spokane											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
SRE0037-03 (HA3-16'')		Soil	Soil Sampled: 05/07/08 14:01								
Dichlorodifluoromethane	EPA 8260B	ND	0000000	0.101	mg/kg dry	1x	8050060	05/12/08 14:48	05/12/08 21:45		
Chloromethane		ND		0.506		n					
Vinyl chloride	•	ND		0.101							
Bromomethane	•	ND	•••••	0.506		н		н			
Chloroethane		ND		0.101	•				п		
Trichlorofluoromethane	252	ND	()	0.0304					H		
1,1-Dichloroethene		ND	••	0.101		¥.	11		"		
Carbon disulfide		ND		0.101	π			н			
Methylene chloride		ND		1.01							
Acetone		ND		1.01	1 H				"		
trans-1,2-Dichloroethene		ND		0.101	•	я		(m			
Methyl tert-butyl ether		ND		0.101					*		
1,1-Dichloroethane	्म	ND		0,101				•			
cis-1,2-Dichloroethene	п	ND		0.101		3 9 3	u		2000 2000 2000		
2 -Dichloropropane		ND		0.101		н					
omochloromethane		ND		0.101		्मःः		3 H 3			
Chloroform		ND		0.101		240		300	и		
Carbon tetrachloride		ND		0,101	•	•		3 n -	in in		
1,1,1-Trichloroethane	н	ND		0.101	•		n	•			
2-Butanone	•	ND		1.01		n			•		
1,1-Dichloropropene	w	ND		0.101		(M)					
Benzene		ND		0.0202		()		e .:			
1,2-Dichloroethane (EDC)		ND		0.101	*		н				
Trichloroethene		ND		0.0304			н		н		
Dibromomethane		ND	2000	0.101					•		
1,2-Dichloropropane		ND		0.101					•		
Bromodichloromethane		ND		0.101							
cis-1,3-Dichloropropene		ND		0.101					а н .		
Toluene		ND		0.101							
4-Methyl-2-pentanone	,	ND		1.01		1.1. 1.1.					
trans-1,3-Dichloropropene		ND		0.101							
Tetrachloroethene		ND		0.101							
1,1,2-Trichloroethane	π	ND		0.101	۳	11	п	н			
Dibromochloromethane		ND		0,101			ж				
1,3-Dichloropropane	÷.	ND		0.101							
1,2-Dibromoethane	a c	ND		0.101		×	п				
2-Hexanone		ND		1.01							
Ethylbenzene		ND		0.101		н					

TestAmerica Spokane

tande ter CO

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

Page 11 of 41

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290 SPOKANE, WA

LFR, Inc.

2310 N. Molter Rd. Suite 10	1
Liberty Lake, WA 99019	

Project Name: Project Number: Project Manager:

Tri Cities Battery 027-30160-00 Meghan Lunney

Report Created: 05/30/08 13:03

Volatile Organic Compounds by EPA Method 8260B TestAmerica Spokane										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-03 (HA3-	16'')	Soil Sampled: 05/07/08 14:01 ND 0.101 mg/kg dry 1x 8050060 05/12/08 14:48 ND 0.101 " " " " ND 0.405 " " " " ND 0.202 " " " " ND 0.101 " " " "								
Chlorobenzene	EPA 8260B	ND		0.101	mg/kg dry	lx	8050060	05/12/08 14:48	05/12/08 21:45	
1,1,1,2-Tetrachloroethane		ND		0.101	•					
m,p-Xylene		ND		0.405	•	•		•		
o-Xylene	"	ND		0.202			•			
Styrene	*	ND		0.101			u	3 H (
Bromoform		ND		0.101		a 1	ан) 1	2 m 2		
Isopropylbenzene	•	ND		0.101					1 M 2	
n-Propylbenzene		ND		0.101						
1,1,2,2-Tetrachloroethane		ND		0.101		a.				
Bromobenzene	*	ND		0.101					,	
1,3,5-Trimethylbenzene		ND		0.101					10.1	
2-Chlorotoluene		ND		0.101				5 6		
1,2,3-Trichloropropane		ND		0.101						
4-Chlorotoluene		ND		0.101						
tert-Butylbenzene		ND		0.101						
1,2,4-Trimethylbenzene		ND		0.101						1
sec-Butylbenzene	•	ND		0,101	100	2002				. 7
p-Isopropyltoluene	,	ND		0.101						
1,3-Dichlorobenzene		ND		0.101				-	1. 1 0	
1,4-Dichlorobenzene		ND		0.101				1. 1. 1.		
n-Butylbenzene		ND		0.101						
1,2-Dichlorobenzene		ND		0.101						
1,2-Dibromo-3-chloroprop	ane "	ND		0.506				8		
Hexachlorobutadiene		ND		0.101			п	n		
1,2,4-Trichlorobenzene		ND		0.101						
Naphthalene		ND		0.202				•		
1,2,3-Trichlorobenzene		ND		0.101						
Surrogate(s): Dibr	omofluoromethane		124%		42.7	- 151 %	"		"	
	ene-d8		103%		50.8	- 132 %	"		"	
4-br	omofluorobenzene		115%		51	- 136 %	<i>II</i>		п	

TestAmerica Spokane

Candi tor CO Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety:

LFR, Inc.

2310 N. Molter Rd.	Suite 101
Liberty Lake WA	9019

Project Name: Project Number: Project Manager:

Tri Cities Battery 027-30160-00 Meghan Lunney

Report Created: 05/30/08 13:03

Volatile Organic Compounds by EPA Method 8260B TestAmerica Spokane										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-04 (HA4-16'')		Soi			Samp	led: 05/(7/08 14:26			
Dichlorodifluoromethane	EPA 8260B	ND		0.118	mg/kg dry	1x	8050060	05/12/08 14:48	05/12/08 22:16	
Chloromethane		ND		0.592					۳	
Vinyl chloride		ND		0.118						
Bromomethane	n	ND		0.592						
Chloroethane		ND		0.118						
Trichlorofluoromethane		ND		0.0355			•			
1,1-Dichloroethene	•	ND	100000	0.118						
Carbon disulfide		ND		0.118	.					
Methylene chloride		ND		1.18	3 H		3 8 .5			
Acetone	n	ND		1.18						
trans-1,2-Dichloroethene		ND		0.118			н			
Methyl tert-butyl ether		ND		0.118	•				ж	
1,1-Dichloroethane		ND		0.118			•			
cis-1,2-Dichloroethene		ND		0.118						
2-Dichloropropane		ND		0.118					-	
omochloromethane		ND		0.118			n.			
Chloroform		ND		0.118		ж		(c m)		
Carbon tetrachloride		ND		0.118				п	(n)	
1,1,1-Trichloroethane		ND		0.118			"			
2-Butanone		ND		1.18		•				
1,1-Dichloropropene		ND		0.118			m			
Benzene		ND		0.0237		-				
1,2-Dichloroethane (EDC)	-	ND		0.118			н	н.	3 B)	
Trichloroethene		ND		0.0355						
Dibromomethane		ND		0.118			٠			
1,2-Dichloropropane		ND		0.118						
Bromodichloromethane		ND	X -0.000	0.118						
cis-1,3-Dichloropropene		ND		0.118						
Toluene		ND		0.118				-		
4-Methyl-2-pentanone		ND		1.18						
trans-1,3-Dichloropropene		ND		0.118		×		:		
Tetrachloroethene	.w.:	ND	·····	0.118		¥.				
1,1,2-Trichloroethane		ND		0.118		я			. ⁹	
Dibromochloromethane		ND		0.118						
1,3-Dichloropropane		ND		0.118						
1,2-Dibromoethane		ND		0.118	в			,		
2-Hexanone	. m.	ND		1.18				¥.		
Ethylbenzene	•	ND		0.118						

TestAmerica Spokane

tandi EC YO1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.Project Name:Tri Cities Battery2310 N. Molter Rd. Suite 101Project Number:027-30160-00Report Created:Liberty Lake, WA 99019Project Manager:Meghan Lunney05/30/08 13:03

	Volati	ile Organic	Compou TestAme			Iethod	8260B			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-04 (HA4-16'')		Soi	1		Samp	led: 05/0	7/08 14:26			
Chlorobenzene	EPA 8260B	ND		0.118	mg/kg dry	lx	8050060	05/12/08 14:48	05/12/08 22:16	
1,1,1,2-Tetrachloroethane		ND		0.118		•		π		
m,p-Xylene		ND		0.474			•			
o-Xylene		ND		0.237	8 8		•	•		
Styrene		ND		0.118		ж.	п			
Bromoform		ND		0.118				н	. N	
Isopropylbenzene		ND		0.118		•				
n-Propylbenzene		ND		0.118	•					
1,1,2,2-Tetrachloroethane		ND		0.118						
Bromobenzene	•	ND		0.118	3 0 . 3	0.80				
1,3,5-Trimethylbenzene		ND		0.118	н			н		
2-Chlorotoluene	•	ND	•••••	0.118				i n	5 m (
1,2,3-Trichloropropane		ND		0.118						
4-Chlorotoluene		ND		0.118						
tert-Butylbenzene		ND		0.118						
1,2,4-Trimethylbenzene		ND		0.118						- (
sec-Butylbenzene	"	ND		0.118	*	00				
p-Isopropyltoluene		ND		0.118		1. e 1.				
1,3-Dichlorobenzene		ND		0.118						
1,4-Dichlorobenzene		ND	100000	0.118						
n-Butylbenzene		ND		0.118				•		
1,2-Dichlorobenzene		ND		0.118					*	
1,2-Dibromo-3-chloropropane		ND		0.592		•				
Hexachlorobutadiene		ND		0.118	*			н	•	
1,2,4-Trichlorobenzene		ND		0.118		5				
Naphthalene		ND		0.237						
1,2,3-Trichlorobenzene		ND		0.118		n	2		*	
Surrogate(s): Dibromofluorome	ethane		118%	-	42.7	- 151 %	n		"	
Toluene-d8			104%			- 132 %	"		"	
4-bromofluorobe	nzene		115%		51	- 136 %	11		"	

TestAmerica Spokane

tande

Randee Decker, Project Manager

101

er

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Page 14 of 41

www.testamericainc.com

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

	Volati	le Organic	Compose TestAme			Iethod	8260B			
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-05 (HA5-17'')		Soi	I		Samp	led: 05/0	7/08 14:51			
Dichlorodifluoromethane	EPA 8260B	ND		0.121	mg/kg dry	1x	8050060	05/12/08 14:48	05/12/08 22:47	
Chloromethane		ND		0.607						
Vinyl chloride		ND		0.121						
Bromomethane		ND		0.607	0.50				•	
Chloroethane		ND	0.555	0.121	н		200			
Frichlorofluoromethane		ND		0.0364		2 0 0	u			
1,1-Dichloroethene		ND		0.121				Sin S		
Carbon disulfide		ND		0.121			п			
Methylene chloride		ND		1.21						
Acetone		ND		1.21	н.					
trans-1,2-Dichloroethene		ND		0.121	а.			(9 .)		
Methyl tert-butyl ether		ND		0.121			н		. H .	
1,1-Dichloroethane		ND		0.121				в		
cis-1,2-Dichloroethene		ND		0.121			n			
2-Dichloropropane		ND		0.121						
omochloromethane		ND		0.121				•	•	
chloroform		ND		0.121				п.		
Carbon tetrachloride		ND		0.121			*	a		
1,1,1-Trichloroethane		ND		0.121	*	¥	w			
2-Butanone		ND		1.21						
1,1-Dichloropropene		ND		0.121						
Benzene		ND		0.0243						
1,2-Dichloroethane (EDC)	.*	ND		0.121		н				
Trichloroethene		ND		0.0364	и					
Dibromomethane		ND		0.121		*				
1,2-Dichloropropane		ND		0.121						
Bromodichloromethane		ND		0.121						
cis-1,3-Dichloropropene		ND		0.121					2-5 10	
Toluene		ND		0.121			(n .)			
4-Methyl-2-pentanone		ND		1.21						
trans-1,3-Dichloropropene		ND		0.121				"		
Tetrachloroethene		ND		0.121	•	•			•	
1,1,2-Trichloroethane		ND		0.121						
Dibromochloromethane		ND		0.121						
1,3-Dichloropropane		ND		0.121					,	
1,2-Dibromoethane		ND		0.121						
2-Hexanone		ND		1.21				л		
Ethylbenzene		ND		0.121					•	

TestAmerica Spokane

Candei Jeo Xar

Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

			TestAme							
Analyte	Method	Result .	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
RE0037-05 (HA5-17")		Soi	I		Samp	oled: 05/0	7/08 14:51		1.1	
Chlorobenzene	EPA 8260B	ND		0.121	mg/kg dry	1x	8050060	05/12/08 14:48	05/12/08 22:47	
,1,1,2-Tetrachloroethane	*	ND		0.121					T.	
n,p-Xylene		ND		0.485		•			n	
-Xylene		ND		0.243					•	
Styrene		ND		0.121	н		"	*	n	
Bromoform		ND		0.121		5(H)				
sopropylbenzene		ND		0.121			"	"	н	
-Propylbenzene		ND		0.121						
,1,2,2-Tetrachloroethane		ND		0.121			•			
Bromobenzene		ND		0.121					•	
,3,5-Trimethylbenzene	н 0	ND		0.121		1.0	"			
-Chlorotoluene	m 253	ND		0.121		10.00			н.	
,2,3-Trichloropropane		ND		0.121						
I-Chlorotoluene		ND		0.121					n	
ert-Butylbenzene	•	ND		0.121						
,2,4-Trimethylbenzene	3 9 .5	ND		0.121	ii.		•		•	(
ec-Butylbenzene	н	ND		0.121	28					1
-Isopropyltoluene	н	ND		0.121		м		0	"	
,3-Dichlorobenzene		ND		0.121	5 0 - 1	"	"		"	
,4-Dichlorobenzene		ND		0.121		н	•		,	
n-Butylbenzene		ND		0.121			•		•	
,2-Dichlorobenzene		ND	1000000	0.121				н	•	
,2-Dibromo-3-chloropropane		ND		0.607			1.853			
Hexachlorobutadiene	Ħ	ND		0.121						
,2,4-Trichlorobenzene		ND		0.121		۳				
Naphthalene		ND		0.243						
1,2,3-Trichlorobenzene	n	ND		0.121			Ħ	5 H		
Surrogate(s): Dibromofluorome	thane		101%		42.7	- 151 %	"		и ,	
Toluene-d8			94.9%			- 132 %	n		^{II}	

TestAmerica Spokane

Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

5.		Poly	chlorinate	d Bipher TestAme			ethod	8082			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-01	(HA1-15'')		Soi	I		Samp	led: 05/0	7/08 12:50			
PCB-1016		EPA 8082	ND		54.2	ug/kg dry	1x	8050050	05/12/08 09:25	05/12/08 20:51	
PCB-1221			ND		54.2				"	05/12/08 20:23	
PCB-1232			ND		54.2						
PCB-1242			ND		54.2						
PCB-1248			ND		54.2						
PCB-1254			ND		54.2						
PCB-1260			ND	- -	54.2	3 8 3	а.	H.		05/12/08 20:51	
Surrogate(s):	TCX Decachlorobiphenyl			85.2% 116%			- 136 % - 125 %	"		05/12/08 20:23 05/12/08 20:51	
SRE0037-02	(HA2-16'')		Soi	I		Samp	oled: 05/0	07/08 13:21			
PCB-1016		EPA 8082	ND		61.3	ug/kg dry	lx	8050050	05/12/08 09:25	05/12/08 21:18	
PCB-1221			ND		61.3					05/12/08 20:51	
PCB-1232			ND		61.3						
'B-1242			ND		61.3						
.B-1248			ND		61.3		н				
PCB-1254			ND		61.3						
PCB-1260			ND		61.3					05/12/08 21:18	
Surrogate(s):	TCX			84.9%			- 136 % - 125 %	" "		05/12/08 20:51 05/12/08 21:18	
	Decachlorobiphenyl			121%		24	- 125 70			05/12/08 21.18	
SRE0037-03	(HA3-16'')		Soi	il		Samp	oled: 05/	07/08 14:01			
PCB-1016		EPA 8082	ND		56.4	ug/kg dry	1x	8050050	05/12/08 09:25	05/12/08 21:45	
PCB-1221			ND		56.4					05/12/08 21:18	
PCB-1232			ND		56.4						
PCB-1242			ND		56.4			n	н	п	
PCB-1248			ND		56.4		•				
PCB-1254			ND		56.4			٠	•	•	
PCB-1260		,	ND		56.4					05/12/08 21:45	
Surrogate(s):	TCX			79.2%		37.3	- 136 %	"		05/12/08 21:18	
6 19	Decachlorobiphenyl			95.9%		24	- 125 %	"		05/12/08 21:45	

TestAmerica Spokane

tandi Xor ED.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

www.testamericainc.com

Tri Cities Battery LFR, Inc. Project Name: Report Created: 027-30160-00 Project Number: 2310 N. Molter Rd. Suite 101 05/30/08 13:03 Project Manager: Meghan Lunney Liberty Lake, WA 99019

		Poly	ychlorinate	d Bipher TestAme			lethod	8082			13
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-04 (HA4-16'')		Soi	l		Samp	led: 05/0	07/08 14:26			
PCB-1016		EPA 8082	ND	•••••	59.2	ug/kg dry	lx	8050050	05/12/08 09:25	05/12/08 23:08	
PCB-1221		и	ND		59.2					05/12/08 22:40	
PCB-1232			ND		59.2						
PCB-1242			ND		59.2						
PCB-1248			ND		59.2		п.				
PCB-1254			ND		59.2		ж				
PCB-1260			ND		59.2			п		05/12/08 23:08	
Surrogate(s):	TCX			82.7%		37.3	- 136 %	"		05/12/08 22:40	
	Decachlorobiphenyl			124%		24	- 125 %	"		05/12/08 23:08	
SRE0037-05 ((HA5-17'')		Soi	1		Samı	pled: 05/0	07/08 14:51			
PCB-1016		EPA 8082	ND		60.7	ug/kg dry	1x	8050050	05/12/08 09:25	05/12/08 23:35	
PCB-1221		•	ND		60.7	ан) (05/12/08 23:08	
PCB-1232			ND		60.7						
PCB-1242			ND		60.7					2 0 .	
PCB-1248			ND		60.7		•		100		
PCB-1254			ND		60.7						
PCB-1260			ND		60.7				n	05/12/08 23:35	
Surrogate(s):	TCX			86.0%		37.3	- 136 %	"		05/12/08 23:08	
	Decachlorobiphenyl			114%		24	- 125 %	"		05/12/08 23:35	

TestAmerica Spokane

tande EV 101

Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-01 (HA1-15")		Soil			Samp	led: 05/0	7/08 12:50			
1-Methylnapthalene	EPA 8270 mod.	ND	•••••	0.0108	mg/kg dry	lx	8050041	05/08/08 09:31	05/19/08 12:23	
2-Methylnaphthalene		ND		0.0108			W		- 1 1	
Acenaphthene		ND		0.0108		•		•		
Acenaphthylene		ND		0.0108			•			
Anthracene		ND		0.0108	п	3 9 3				
Benzo (a) anthracene		ND		0.0108) H	•	3 11	3 11 .)	
Benzo (a) pyrene		ND	•••••	0.0108	•					
Benzo (b) fluoranthene		ND		0.0108						
Benzo (ghi) perylene		ND		0.0108	m					
Benzo (k) fluoranthene		ND		0.0108						
Chrysene		ND		0.0108	н	30				
Dibenzo (a,h) anthracene		ND		0.0108	п	н		а н а		
Fluoranthene		ND		0.0108			۳			
Fluorene		ND	100000	0.0108						
Indeno (1,2,3-cd) pyrene		ND		0.0108				π	н	
phthalene		ND		0.0108						
henanthrene		ND		0.0108	"	9				
Pyrene	н	ND		0.0108						
Surrogate(s): Nitrobenzene-d5		:	77.4%		33 -	- 141 %	"		"	
2-FBP			52.7%			- 148 %	"		n	
p-Terphenyl-d14		2	92.3%		37.8	- 150 %	"		n	
SRE0037-02 (HA2-16'')		Soil			Samp	led: 05/	07/08 13:21			
1-Methylnapthalene	EPA 8270 mod.	ND		0.0123	mg/kg dry	lx	8050041	05/08/08 09:31	05/19/08 12:53	
2-Methylnaphthalene		ND		0.0123		*				
Acenaphthene		ND	•••••	0.0123			•			
Acenaphthylene				10.0000000						
recondplicitylene		ND		0.0123						
Anthracene	n:	ND ND		0.0123 0.0123						
						;	:		8 ¥	
Anthracene	•	ND		0.0123			•		8 8 •	
Anthracene Benzo (a) anthracene Benzo (a) pyrene		ND ND		0.0123 0.0123			× • •		:	
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene		ND ND ND		0.0123 0.0123 0.0123						
Anthracene Benzo (a) anthracene Benzo (a) pyrene		ND ND ND ND		0.0123 0.0123 0.0123 0.0123 0.0123		•				
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene	* * * *	ND ND ND ND	 	0.0123 0.0123 0.0123 0.0123 0.0123						
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Chrysene		ND ND ND ND ND		0.0123 0.0123 0.0123 0.0123 0.0123 0.0123						
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Chrysene Dibenzo (a,h) anthracene		ND ND ND ND ND ND		0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123						
Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Chrysene		ND ND ND ND ND ND ND		0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123						

TestAmerica Spokane

tande Yer CO.

Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

	Ро	lynuclear Aron	natic Comp	ounds b TestAme			Selec	ted Ion M	Ionitoring		
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-02 (I	IA2-16'')		Soi	l		Samp	oled: 05/	07/08 13:21			
Naphthalene		EPA 8270 mod.	ND		0.0123	mg/kg dry	1x	8050041	05/08/08 09:31	05/19/08 12:53	
Phenanthrene			ND		0.0123						
Pyrene			ND		0.0123						
Surrogate(s):	Nitrobenzene-d5			106%		33 -	- 141 %	"		"	
	2-FBP			90.6%		34.5 -	- 148 %	"		"	
1	p-Terphenyl-dl4			90.4%		37.8 -	- 150 %	"		"	
SRE0037-03 (H	HA3-16'')		Soi	l		Samp	oled: 05/	07/08 14:01			
1-Methylnapthalene		EPA 8270 mod.	ND		0.0113	mg/kg dry	lx	8050041	05/08/08 09:31	05/19/08 15:21	
2-Methylnaphthalene			ND		0.0113	20.5	"				
Acenaphthene			ND		0.0113						
Acenaphthylene			ND		0.0113						
Anthracene			ND		0.0113	•					
Benzo (a) anthracene		Ħ	ND		0.0113	•					
Benzo (a) pyrene			ND		0.0113	•					
Benzo (b) fluoranther	ne		ND		0.0113	(R .)					{
Benzo (ghi) perylene		п	ND		0.0113				•		
Benzo (k) fluoranther	ne	(n 2)	ND		0.0113				9 9 -01		
Chrysene			ND		0.0113						
Dibenzo (a,h) anthrac	ene		ND		0.0113					n	
Fluoranthene		H.	ND		0.0113		*				
Fluorene			ND		0.0113						
ndeno (1,2,3-cd) pyr	ene	п	ND	104040.0	0.0113	*	*	3 8 3		•	
Naphthalene		н	ND		0.0113		ж		а. С		
Phenanthrene			ND		0.0113		•			•	
Pyrene			ND		0.0113	-		•	*		
Surrogate(s):	Nitrobenzene-d5			81.8%		33 -	- 141 %	"		"	
	2-FBP			81.1%		34.5	- 148 %	"		"	
	p-Terphenyl-d14			96.2%		37.8	- 150 %	"		"	

TestAmerica Spokane

Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring TestAmerica Spokane

			1 05tr Inter	neu ope	Kuilo					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Note
SRE0037-04 (HA4-16'')		Soil			Samp	led: 05/0	7/08 14:26			
1-Methylnapthalene	EPA 8270 mod.	ND		0.0118	mg/kg dry	1x	8050041	05/08/08 09:31	05/21/08 15:22	
2-Methylnaphthalene		ND		0.0118		۳	н		н	
Acenaphthene		ND		0.0118		(H)		ана) (
Acenaphthylene		ND		0.0118				ः स े		
Anthracene		ND		0.0118			*		2.0	
Benzo (a) anthracene		ND		0.0118					•	
Benzo (a) pyrene	я	ND		0.0118						
Benzo (b) fluoranthene		ND		0.0118		н				
Benzo (ghi) perylene		ND		0.0118			н			
Benzo (k) fluoranthene		0.0134		0.0118		•				
Chrysene		0.0150		0.0118		•	n			
Dibenzo (a,h) anthracene		ND		0.0118					8.0	
Fluoranthene		0.0229		0.0118	*		•	1. H 3.		
Fluorene		ND		0.0118					e :	
Indeno (1,2,3-cd) pyrene		ND		0.0118		•				
phthalene	и.	ND		0.0118						
henanthrene		ND		0.0118		а.				
Pyrene		0.0205		0.0118				н	η.	
Surrogate(s): Nitrobenzene-d5			81.0%		33 -	141 %	"		"	
2-FBP			75.2%		34.5 -	148 %	"		"	
p-Terphenyl-d14		30	81.4%		37.8	- 150 %	и		"	
SRE0037-05 (HA5-17'')		Soi	l	5	Samp	led: 05/	07/08 14:51			
1-Methylnapthalene	EPA 8270 mod.	ND		0.0121	mg/kg dry	1x	8050041	05/08/08 09:31	05/19/08 16:21	
2-Methylnaphthalene		ND		0.0121		"				
Acenaphthene		ND		0.0121			ан. Г			
Acenaphthylene		ND		0.0121						
Anthracene		ND		0.0121						
Benzo (a) anthracene	3 H	ND		0.0121						
Benzo (a) pyrene		ND		0.0121		.9				I
Benzo (b) fluoranthene		ND		0.0121	1					1
Benzo (ghi) perylene		ND		0.0121						I
Benzo (k) fluoranthene		ND		0.0121			•			I
Chrysene		ND		0.0121						
emy eme		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -								

TestAmerica Spokane

Dibenzo (a,h) anthracene

Indeno (1,2,3-cd) pyrene

Fluorene

Fluoranthene

Lande eo 01

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

I

I

.....

ND

ND

ND

ND

0.0121

0.0121

0.0121

0.0121

÷.

.

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

	Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring TestAmerica Spokane													
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes			
SRE0037-05	(HA5-17'')	HA5-17") Soil Sampled: 05/07/08 14:51												
Naphthalene		EPA 8270 mod.	ND		0.0121	mg/kg dry	lx	8050041	05/08/08 09:31	05/19/08 16:21				
Phenanthrene			ND		0.0121									
Pyrene			ND		0.0121		٠			•				
Surrogate(s):	Nitrobenzene-d5			95.4%		33 - 141 % "		"		"				
	2-FBP		81.1%			34.5 - 148 % "		"		"				
	p-Terphenyl-d14			152%		37.8	- 150 %	"		"	ZX			

TestAmerica Spokane

Landi Sector

Randee Decker, Project Manager

LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019			Project Na Project Nu Project Ma	imber:	Tri Citi 027-3010 Meghan		ry			Report Created: 05/30/08 13:03
	Conventio	nal Chemi	stry Para TestAme			HA/EI	PA Metho	ods		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRE0037-01 (HA1-15'')		Soi	il		Samj	pled: 05/0	07/08 12:50			
% Solids	TA SOP	92.3		0.0100	% by Weight	lx	8050046	05/09/08 10:44	05/09/08 1	0:53

SRE0037-02	(HA2-16'')		Soil			Samp	oled: 05/0	7/08 13:21		13
% Solids TA SOP		81.5		0.0100	% by Weight	lx	8050046	05/09/08 10:44	05/09/08 10:53	
SRE0037-03	(HA3-16'')		Soil			Samı	oled: 05/0	7/08 14:01		
% Solids		TA SOP	88.7		0,0100	% by Weight	lx	8050046	05/09/08 10:44	05/09/08 10:53
SRE0037-04	(HA4-16'')		Soil			Samj	oled: 05/0	7/08 14:26		
% Solids		TA SOP	84.4		0.0100	% by Weight	1x	8050046	05/09/08 10:44	05/09/08 10:53
						Com	1.d. 05/0	7/08 14:51		
SRE0037-05	(HA5-17'')		Soil			Samj	pieu: 05/0	//00 14:51		

TestAmerica Spokane

tande tor Jeo

Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

Project Name:	Tri Cities Battery	
Project Number:	027-30160-00	Report Created:
Project Manager:	Meghan Lunney	05/30/08 13:03
	Project Number:	Project Number: 027-30160-00

Conventional Chemistry Parameters by APHA/EPA Methods TestAmerica Seattle											
Analyte	Method	Result	MDL*	MRL Units	Dil	Batch	Prepared	Analyzed	Notes		
SRE0037-02 (HA2-16'')		Soi	1	Sar	npled: 05/	07/08 13:21					
Hexavalent Chromium	EPA 7196A	ND	Vi <u>nalasi k</u> e	1.1 mg/kg dry	lx	8E27019	05/27/08 10:50	05/27/08 14:08			

TestAmerica Spokane

tandi tor CO

Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

	Physical Parameters by APHA/ASTM/EPA Methods TestAmerica Seattle												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes		
SRE0037-02	(HA2-16'')		Soi	Soil Sampled: 05/07/08 13:21									
Dry Weight		BSOPSPL003R0 8	85.2		1.00	%	lx	8E27044	05/27/08 15:37	05/28/08 00:00			

*

TestAmerica Spokane

tandes Jeotor

Randee Decker, Project Manager

LFR, Inc. 2310 N. Molter Rd. Suite 10 Liberty Lake, WA 99019	1		2	Project Na Project Nu Project Ma	mber: (27-301	ies Batter 60-00 Lunney	у					Report Create 05/30/08 13:	
Gasoline	Hydrocarbons b	y NWTPI		NET ALL NOT A	EPA Meth ca Spokane	iod 802	21B - La	borat	ory Q	uality C	ontro	l Resul	ts	
QC Batch: 8050058	Soil Prej	paration M	lethod: GC	Volatiles										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (8050058-BLK1)								Ext	racted:	05/12/08 13	:34	_		
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND	2	5.00	mg/kg wet	lx						'	05/13/08 05:07	
Benzene	8021B	ND		0.0150										
Toluene		ND		0.200		н								
Ethylbenzene	11 1 1	ND		0.200	н					-				
Xylenes (total)		ND		0.600	2.00									
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	107% 109%	Lin	nits: 35.6-116% 38.9-1509								05/13/08 05:07 "	
LCS (8050058-BS1)								Ext	racted:	05/12/08 13	:34			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	49.4		5.00	mg/kg wet	lx	0.225	50.0	98.8%	(74.4-124)			05/13/08 05:33	
Surrogate(s): 4-BFB (FID)	00210	Recovery:	127%	Lin	nits: 35.6-116%	6 "							05/13/08 05:33	2
LCS (8050058-BS2)								Ext	racted:	05/12/08 13	:34			
Benzene	NWTPH-Gx/ 8021B	0.388	<u></u>	0.0150	mg/kg wet	1x		0.500	77.7%	(60.1-124)	÷-	- 22	05/13/08 05:59	E
Toluene		0.500	•••	0.200					100%	(80-123)				
Ethylbenzene	"	0.517		0.200				<u>а</u>	103%	(80-134)	***			
Xylenes (total)	H	1.52	••••	0.600	U.		1049 j	1.50	101%	(80-133)	**	1.5.5		
Surrogate(s): 4-BFB (P1D)		Recovery:	99.8%	Lin	nits: 38.9-150%	6 "							05/13/08 05:59	
Duplicate (8050058-DUP1)				QC Sourc	e: SRE0018-0	01		Ext	racted:	05/12/08 13	:34			
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		5.31	mg/kg dry	1x	ND				5.14%	6 (32.3)	05/12/08 21:21	
Benzene	8021B "	ND		0.0159			ND					(10)		
Toluene	π	ND		0.212		n:	ND				3.68%	6 (16.3)	п	
Ethylbenzene		ND		0.212			ND					(20)		
Xylenes (total)	"	ND		0.637		п.	ND			••	31.1%	6 (26.5)		R
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	107% 124%	Lin	nits: 35.6-1169 38.9-150								05/12/08 21:21 "	
Duplicate (8050058-DUP2)				QC Sourc	e: SRE0031-0)1		Ext	racted:	05/12/08 13	34			
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		6.24	mg/kg dry	1x	ND			••	9.08%	% (32.3)	05/13/08 00:22	
Benzene	8021B "	ND		0.0187			ND					(10)	n	
Toluene		ND		0.250			ND				47.7%	6 (16.3)	С н г)	R
Ethylbenzene		ND		0.250	×	w	ND					(20)	. n :	
Xylenes (total)		ND		0.749		*	ND				NR	(26.5)		
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	106% 117%	Lin	mits: 35.6-1169 38.9-150							<u> </u>	05/13/08 00:22 "	8

TestAmerica Spokane

Lande Xar leo

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

LFR, Inc.				Project Na	me: T	ri Cit	ies Batter	ry						
2310 N. Molter Rd. Suite 101				Project Nu	mber: 02	27-301	60-00						Report Create	d:
Liberty Lake, WA 99019				Project Ma	nager: N	leghan	Lunney						05/30/08 13:	03
Gasoline Hy	drocarbons b	y NWTPI			EPA Metho ca Spokane	od 802	21B - La	borate	ory Q	uality C	ontro	l Resul	ts	
QC Batch: 8050058	Soil Pre	paration M	ethod: GC											
nalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike (8050058-MS1)				QC Source	e: SRE0018-01			Extr	acted:	05/12/08 13	:34			
asoline Range Hydrocarbons	NWTPH-Gx/ 8021B	40.8		4.18	mg/kg dry	1x	1.13	38.7	103%	(50-133)		-	05/12/08 21:47	
Surrogate(s): 4-BFB (FID)		Recovery:	140%	Lin	nits: 35.6-116%	n							05/12/08 21:47	
Matrix Spike (8050058-MS2)	22			QC Sourc	e: SRE0031-01			Extr	acted:	05/12/08 13	:34			
lenzene	NWTPH-Gx/ 8021B	0.465		0.0186	mg/kg dry	lx	ND	0.596	78.0%	(41.9-150)	200		05/13/08 00:48	
oluene	"	0.585		0.248			0.0143	с. В .	95.7%	(47-147)				
thylbenzene		0.613		0.248			ND		103%	(49-150)				
(ylenes (total)	3 9 00	1.82		0.744			ND	1.79	102%	(57.7-145)				
Surrogate(s): 4-BFB (PID)		Recovery:	107%	Lin	nits: 38.9-150%	"							05/13/08 00:48	

TestAmerica Spokane

Lande -0 Yor

Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.				Project Na	me:	fri Cit	ies Batte	ry						1.5
2310 N. Molter Rd. Suite 101				Project Nu	mber: (27-301	60-00						Report Create	d:
Liberty Lake, WA 99019				Project Ma	inager: 1	Meghan	Lunney				¢.		05/30/08 13:	03
	Semivolatile	Petroleur			PH-Dx - ca Spokane	Labor	atory Qu	ality C	ontro	l Resul	ts			
QC Batch: 8050045	Soil Pre	paration N	lethod: EP.											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (8050045-BLK1)								Extr	acted:	05/09/08 10	0:42			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		10.0	mg/kg wet	lx							05/09/08 22:41	
Heavy Oil Range Hydrocarbons		ND		25.0									u.	
Surrogate(s): 2-FBP		Recovery:	94.3%	L	imits: 50-150%	5 "							05/09/08 22:41	
p-Terphenyl-d14			95.4%		50-150	6 "							"	
LCS (8050045-BS1)		8						Extr	acted:	05/09/08 1	0:42	22		
Diesel Range Hydrocarbons	NWTPH-Dx	89.9		10.0	mg/kg wet	lx		83.3	108%	(73-133)			05/09/08 23:17	
Surrogate(s): 2-FBP		Recovery:	95.4%	L	imits: 50-150%	6 "							05/09/08 23:17	
p-Terphenyl-d14			96.7%		50-150	6 "								
Duplicate (8050045-DUP1)				QC Source	e: SRE0023-0	1		Extr	acted:	05/09/08 1	0:42			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	7212	10.1	mg/kg dry	1x	ND			22	26.9%	(40)	05/09/08 23:52	
Heavy Oil Range Hydrocarbons		ND		25.3			ND				NR			
Surrogate(s): 2-FBP		Recovery:	100%	L	imits: 50-150%	6 "							05/09/08 23:52	;
p-Terphenyl-d14			103%		50-150	% "							"	1
Matrix Spike (8050045-MS1)				QC Sourc	e: SRE0023-0	1		Extr	acted:	05/09/08 1	0:42			- f
Diesel Range Hydrocarbons	NWTPH-Dx	101		10.1	mg/kg dry	1x	5.59	84.4	113%	(70.1-139)		05/10/08 00:27	
Surrogate(s): 2-FBP		Recovery:	99.1%	L	imits: 50-1503	6 "							05/10/08 00:27	
p-Terphenyl-d14		-	104%		50-150	6 "							. 11	

TestAmerica Spokane

Cardenster Yor

Randee Decker, Project Manager

LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019			P	roject Na roject Nu roject Ma	mber:	Tri Cit 027-301 Meghan		ry					Report Crea 05/30/08 13	
	Total Metals	s by EPA 60			e thods - ca Spokar		tory Qua	ality Co	ontrol	Results	l			
QC Batch: 8050052	Soil Prej	paration Met	hod: Meta	ls		N.								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8050052-BLK1)								Extr	acted:	05/12/08 09	:48			L.
Chromium	EPA 6010B	ND		0.500	mg/kg wet	1x							05/13/08 13:16	
Lead	٠	ND		1.50								-	"	
Cadmium		ND		0.200										
Arsenic	п	ND		2.50	n		**				••	221	m	
LCS (8050052-BS1)								Extr	acted:	05/12/08 09	9:48			
Chromium	EPA 6010B	54.4		0,500	mg/kg wet	lx	-	50.0	109%	(80-120)			05/13/08 12:37	
Lead		54.8		1.50					110%		**			
Arsenic		51.6		2.50	H.	•		H 2	103%	н				
Cadmium	"	53.6		0.200		н		н	107%					
Duplicate (8050052-DUP1)				QC Sourc	e: SRE003	7-05		Extr	acted:	05/12/08 0	9:48			
Lead	EPA 6010B	25.7	0222	1.82	mg/kg dry	lx	31.0				18.5%	5 (20)	05/13/08 14:10	
Arsenic		ND	2000	3.03			ND				11.1%	; "		
'mium	*	0.245		0.243		-	ND		••		5.80%	. "		
omium		20.0		0.607			16.6				18.4%	. "		
Matrix Spike (8050052-MS1)				QC Sourc	e: SRE003	7-05		Ext	racted:	05/12/08 0	9:48			
Chromium	EPA 6010B	76.3		0.607	mg/kg dry	1x	16.6	60.7	98.4%	(75-125)			05/13/08 14:15	
Lead	"	77.4		1.82	"		31.0		76.5%	"				
Cadmium		60.4		0.243			0.231		99.2%					
Arsenic	n	58.0		3.03			2.29		91.8%		-			
Matrix Spike Dup (8050052-MS	SD1)			QC Sourc	e: SRE003	7-05		Ext	racted:	05/12/08 0	9:48			
Chromium	EPA 6010B	78.9		0.607	mg/kg dry	1x	16.6	60.7	103%	(75-125)	3.31%	6 (20)	05/13/08 14:21	
Cadmium		62.1		0.243			0.231		102%		2.80%	ó "	•	
Lead		90.9		1.82	1 () 11	н	31.0		98.7%		16.0%	6 "	•	

TestAmerica Spokane

Arsenic

Candi Yor ero Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3.01% "

Page 29 of 41

3.03

59.7

2.29

94.7%

.

LFR, Inc.				Project Na	me:	Tri Cit	ies Batter	ry				Ð	- ⁻
2310 N. Molter Rd. Suite 101				Project Nu	mber:	027-301	60-00					Report Crea	ted:
Liberty Lake, WA 99019		20		Project Ma	mager:	Meghan	Lunney					05/30/08 1	3:03
	Total Meta	s by EPA 60			ethods - ca Spokar		itory Qua	lity Contr	ol Result	s			
QC Batch: 8050055	Soil Pre	paration Met											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	C (Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (8050055-BLK1)								Extracted	: 05/12/08 0	9:56			
Mercury	EPA 7471	ND		0.0500	mg/kg wet	lx					••	05/13/08 13:46	
LCS (8050055-BS1)								Extracted	: 05/12/08 0	9:56			
Mercury	EPA 7471	0.109		0.0500	mg/kg wet	lx		0.100 109	% (70.3-130)	-	05/13/08 13:43	
Duplicate (8050055-DUP1)				QC Source	e: SRE0037	-05		Extracted	: 05/12/08 0	9:56			
Мегсигу	. EPA 7471	0.0598	513 -	0.0500	mg/kg dry	1x	ND		-	34.8%	6 (40)	05/13/08 14:52	
Matrix Spike (8050055-MS1)				QC Source	e: SRE0037	-05		Extracted	: 05/12/08 0	9:56			
Mercury	EPA 7471	0.159		0.0500	mg/kg dry	lx	0.0421	0.121 96.3	% (60.2-137)		05/13/08 14:55	
Matrix Spike Dup (8050055-MS	D1)			QC Source	e: SRE0037	-05		Extracted	: 05/12/08 0	9:56			
Mercury	EPA 7471	0.232		0.0500	mg/kg dry	lx	0.0421	0.121 156	% (60.2-137) 37.3%	6 (23)	05/13/08 14:57	M7, R2

TestAmerica Spokane

tandi 101 er

Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

	Volatile Organ	nic Compound			od 8260B ca Spokane		oratory (Quality	Con	trol Resi	ults			
QC Batch: 8050060	Soil Pre	paration Metho	od: GC/	MS Vola	tiles					n.				
Analyte .	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8050060-BLK1)								Extra	acted:	05/12/08 14	1:48			
Dichlorodifluoromethane	EPA 8260B	ND		0.100	mg/kg wet	1x							05/14/08 11:00	
Chloromethane		ND		0.500	•									
Vinyl chloride	n	ND	1	0.100		н					••	~	n	
Bromomethane		ND		0.500		в					••	*		
Chloroethane		ND		0.100							**			
Frichlorofluoromethane	п	ND		0.0300								·		
1,1-Dichloroethene	н	ND		0.100										
Carbon disulfide		ND		0.100										
Methylene chloride		ND		1.00		۳							h	
Acetone	H.	ND	****	1.00									*	
rans-1,2-Dichloroethene		ND		0.100										
Methyl tert-butyl ether		ND		0.100		С н							ж	
,1-Dichloroethane		ND		0.100		3 1 0		:**		10000				
is-1,2-Dichloroethene		ND		0.100										
Dichloropropane		ND		0.100			••		1220	1000			•	
upmochloromethane	"	ND		0.100			227	122	5 5	3 44 3				
Chloroform		ND		0.100			++						и	
Carbon tetrachloride		ND		0.100										
1,1,1-Trichloroethane		ND		0.100										
2-Butanone		ND		1.00										
1,1-Dichloropropene		ND		0,100									(m .)	
Benzene		ND		0.0200										
1,2-Dichloroethane (EDC)		ND		0.100										
Trichloroethene		ND		0.0300						223				
Dibromomethane		ND		0.100			200			223			•	
1,2-Dichloropropane	. 11	ND		0.100										
Bromodichloromethane		ND		. 0.100					-					
cis-1,3-Dichloropropene	•	ND		0.100				(1999)					25 - S H S	
Foluene		ND		0.100										
4-Methyl-2-pentanone		ND		1.00		н	1.						п	
rans-1,3-Dichloropropene		ND		0.100	Ŧ	a								
Fetrachloroethene		ND		0.100										
I etrachioroethene		ND		0.100										
1,1,2-1 richloroethane Dibromochloromethane	. pr	ND		0.100										
		ND		0.100										
1,3-Dichloropropane	200			0.100										
1,2-Dibromoethane	2.00 C	ND									5200	-		
2-Hexanone		ND		1.00					-					
Ethylbenzene		ND		0.100										
Chlorobenzene		ND		0.100									100	

TestAmerica Spokane

Xar Cardista

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

Page 31 of 41

LFR, Inc.	Project Name:	Tri Cities Battery	- T.
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

QC Batch: 8050060	Soil Pre	paration M	ethod: GC/N	AS Volat	tiles									
nalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8050060-BLK1)								Extr	acted:	05/12/08 14	:48			
,1,1,2-Tetrachloroethane	EPA 8260B	ND		0.100	mg/kg wet	lx						•••	05/14/08 11:00	
n,p-Xylene		ND		0.400										
-Xylene		ND		0.200		n i							н	
tyrene		ND		0.100	эн. Э	н				-	••			
romoform	(H)	ND		0.100	(H .)									
opropylbenzene	n	ND		0.100				••						
Propylbenzene	1280	ND		0.100										
1,2,2-Tetrachloroethane		ND		0.100			8 44 0		-				۳	
omobenzene		ND		0.100									n	
3,5-Trimethylbenzene	n	ND		0.100										
Chlorotoluene		ND	0.000	0.100								•••		
2,3-Trichloropropane		ND		0.100			(***)							
Chlorotoluene		ND		0.100							 :			
rt-Butylbenzene	ан. С	ND		0.100	2 0 2			(77)				~	"	
2,4-Trimethylbenzene		ND		0.100										1
c-Butylbenzene		ND		0.100			2. <u></u>)						n	
Isopropyltoluene		ND		0.100						522				
3-Dichlorobenzene		ND	1000	0.100										
4-Dichlorobenzene		ND		0.100							-			
Butylbenzene	•	ND		0.100		•	()===()							
2-Dichlorobenzene	8	ND		0.100									п	
2-Dibromo-3-chloropropane	(C a 1)	ND		0.500	. n			-					н	
exachlorobutadiene	(n .	ND		0.100	. 0								н	
2,4-Trichlorobenzene	្លា	ND	100.005	0.100	1.00	200		155						
aphthalene	3 9	ND	(0.200		. n .			-		••			
2,3-Trichlorobenzene	1\ 1 .	ND	***	0.100			122	222					n	

TestAmerica Spokane

tande ter FY

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

LFR, Inc. 2310 N. Molt Liberty Lake	ter Rd. Suite 101 , WA 99019				Project Na Project Nu Project Ma	mber: (27-301	ies Batter 60-00 Lunney	у		-			Report Created 05/30/08 13:0	
	Vo	olatile Organ	nic Compo			od 8260B · ca Spokane	· Labo	oratory Q	uality	Conti	rol Resu	lts			
QC Batch	: 8050060	Soil Pre	paration M	lethod: GC/	MS Vola	tiles									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
LCS (8050060-	·BS1)								Extr	acted: (05/12/08 14:	48			
1,1-Dichloroethene		EPA 8260B	0.971	<u></u>	0.100	mg/kg wet	1x		1.00	97.1%	(54.2-150)			05/12/08 19:42	
Benzene			0.828		0.0200		•			82.8%	(75.8-122)				
Frichloroethene			0.977		0.0300					97.7%	(78-122)				
Foluene			0.826		0,100					82.6%	(80-124)			я	
Chlorobenzene			0.888		0.100	•	"			88.8%	(80-120)	••			
Surrogate(s):	Dibromofluoromethane		Recovery:	96.5%	Lin	nits: 42.7-1519	; "							05/12/08 19:42	
	Toluene-d8			84.0%		50.8-1325								"	
	4-bromofluorobenzene			94.2%		51-136	6 "							"	
(CO D	00/0 0001)								Extr	acted:	05/12/08 14	48			
LCS Dup (805	0000-BSD1)	EPA 8260B	0.974		0.100	mg/kg wet	1x		1.00		(54.2-150)	AC 624-11	(25)	05/12/08 20:13	
1,1-Dichloroethene		EFA 8200D	0.884		0.0200	"					(75.8-122)			н	
Benzene			1.02		0.0300					102%	(78-122)	4.40%			
Frichloroethene			0.894		0.100				л	89.4%	(80-124)	7.92%			
Toluene 'orobenzene			0.943		0.100					94.3%	(80-120)	6.04%			
-	Diff of a			95.9%		nits: 42.7-1519	. "	0004		A-3557-5773		020902200		05/12/08 20:13	/
Surrogate(s):	Dibromofluoromethane Tohuene-d8		Recovery:	93.97% 88.7%	La	50.8-132								n	
	4-bromofluorobenzene			95.3%		51-136								"	
D 11 / /002					OC Source	e: SRE0037-0	15		Ext	acted:	05/12/08 14	:48			
Duplicate (805 Dichlorodifluorometh		EPA 8260B	ND		0.121	mg/kg dry	1x	ND				NR	(20)	05/12/08 23:18	
Chloromethane	lanc	"	ND		0.607	"		ND				NR			
Vinyl chloride			ND		0.121			ND				NR			
Bromomethane			ND		0.607			ND				NR			
Chloroethane			ND	1999 1997	0.121			ND						÷.	
Trichlorofluorometha	ane		ND		0.0364			ND				NR		'n	
1,1-Dichloroethene	ALL Y				0.121			ND				NR			
			IND.												
0		ii.	ND		0 121			ND				NR			
Carbon disulfide			ND		0.121 1.21	•		ND ND				NR 6.99%			
Carbon disulfide Methylene chloride		÷	ND ND		1.21		п 11 11	ND							
Carbon disulfide Methylene chloride Acetone	hene	+ + + +	ND ND ND		1.21 1.21				-			6.99%			
Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth			ND ND ND ND		1.21 1.21 0.121		н	ND ND				6.99% 16.6%			
Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth Methyl tert-butyl ethy			ND ND ND ND		1.21 1.21 0.121 0.121		N. N	ND ND ND			-	6.99% 16.6% NR			
Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth Methyl tert-butyl ethe 1,1-Dichloroethane	er		ND ND ND ND ND		1.21 1.21 0.121 0.121 0.121		н 11 11	ND ND ND ND			-	6.99% 16.6% NR NR			
Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth Methyl tert-butyl eth 1,1-Dichloroethane cis-1,2-Dichloroethen	er		ND ND ND ND ND ND		1.21 1.21 0.121 0.121 0.121 0.121		н 11 11	ND ND ND ND			-	6.99% 16.6% NR NR NR			
Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth Methyl tert-butyl eth 1,1-Dichloroethane cis-1,2-Dichloroether 2,2-Dichloropropane	er ne		ND ND ND ND ND ND ND		1.21 1.21 0.121 0.121 0.121 0.121 0.121		н н н	ND ND ND ND ND ND	-			6.99% 16.6% NR NR NR NR			
Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth Methyl tert-butyl eth 1,1-Dichloroethane cis-1,2-Dichloroethane 2,2-Dichloropropane Bromochloromethane	er ne		ND ND ND ND ND ND ND		1.21 1.21 0.121 0.121 0.121 0.121 0.121 0.121			ND ND ND ND ND ND ND	-			6.99% 16.6% NR NR NR NR	•		
Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth Methyl tert-butyl eth 1,1-Dichloroethane cis-1,2-Dichloroethane 2,2-Dichloropropane Bromochloromethane Chloroform	er ne e	* * * * *	ND ND ND ND ND ND ND ND		1.21 1.21 0.121 0.121 0.121 0.121 0.121 0.121 0.121			ND ND ND ND ND ND ND ND	-			6.99% 16.6% NR NR NR NR NR NR	•		
1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroeth Methyl tert-butyl eth 1,1-Dichloroethane cis-1,2-Dichloroethen 2,2-Dichloropropane Bromochloromethane Chloroform Carbon tetrachloride 1,1,1-Trichloroethan	er ne e	* * * * *	ND ND ND ND ND ND ND		1.21 1.21 0.121 0.121 0.121 0.121 0.121 0.121			ND ND ND ND ND ND ND				6.99% 16.6% NR NR NR NR NR	•		

TestAmerica Spokane

tande tor

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

	lter Rd. Suite 101 e, WA 99019			:	Pr	oject Na oject Nu oject Ma	mber: (27-301	ies Batte 60-00 Lunney	ry	1		n		Report Create 05/30/08 13:	
		Polychlorin	ated Biph	enyls b	5		d 8082 - 1 ca Spokane	Labora	atory Qu	ality C	ontro	l Result	5			
QC Bate	h: 8050050	Soil Pro	eparation M	lethod:	EPA 3	8580									I	
Analyte		Method	Result	N	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (805005	50-BLK1)									Extr	acted:	05/12/08 09	:25			
PCB-1016		EPA 8082	ND			50.0	ug/kg wet	lx							05/12/08 17:38	
PCB-1221			ND			50.0			10221	122				••	05/12/08 17:11	
PCB-1232			ND			50.0					**					
PCB-1242			ND			50.0			**				-			
PCB-1248			ND			50.0	•								•	
PCB-1254			ND			50.0		•								
PCB-1260			ND	,		50.0		1							05/12/08 17:38	
Surrogate(s):	TCX Decachlorobiphenyl		Recovery:	72.2% 119%		Lim	its: 37.3-136% 24-1259								05/12/08 17:11 05/12/08 17:38	
LCS (8050050)-BS1)		a.							Extr	acted:	05/12/08 09	:25			
PCB-1016		EPA 8082	180			50.0	ug/kg wet	lx		167	108%	(53.7-150)			05/12/08 18:06	
PCB-1260		n	182	,		50.0			0.550		109%	(52-150)				
Surrogate(s):	тсх		Recovery:	80.3%		Lim	its: 37.3-136%	"							05/12/08 17:38	
	Decachlorobiphenyl			121%			24-1259	6 "							05/12/08 18:06	(
Matrix Spike	(8050050-MS1)				¢	QC Source	: SRE0037-0	2		Extr	acted:	05/12/08 09	:25			
PCB-1016		EPA 8082	201			61.3	ug/kg dry	1x	ND	204	98.3%	(43.8-150)		-	05/12/08 18:33	
PCB-1260		i.	190			61.3			ND		93.1%	(49.2-142)				
Surrogate(s):	TCX		Recovery:	82.8%		Lim	its: 37.3-136%	"							05/12/08 18:06	
0 ,7	Decachlorobiphenyl			114%			24-1259								05/12/08 18:33	
Matrix Spike D	Oup (8050050-MS)	D1)			c	C Source	e: SRE0037-0	2		Extr	acted:	05/12/08 09	:25			
PCB-1016		EPA 8082	194			61.3	ug/kg dry	1x	ND	204	95.1%	(43.8-150)	3.32%	6 (40)	05/12/08 19:01	
PCB-1260			214			61.3			ND			(49.2-142)				
Surrogate(s):	TCX Decachlorobiphenyl		Recovery:	76.0% 115%		Lim	nits: 37.3-136% 24-1259								05/12/08 18:33 05/12/08 19:01	

TestAmerica Spokane

tande £0 tor Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

i orynuciear	Aromatic Cor	npounds b			ca Spokane				, «			1	29424	
QC Batch: 8050041	Soil Pre	paration M	ethod: EPA	3550B										
analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8050041-BLK1)								Extr	acted:	05/08/08 09:	31			
I-Methylnapthalene	EPA 8270 mod.	ND		0.0100	mg/kg wet	1x				(: ** *))		1	05/14/08 14:20	
2-Methylnaphthalene		ND		0.0100					553		**			
Cenaphthene		ND		0.0100	1		40 0							
Acenaphthylene		ND	(100)	0.0100						1.4			•	
Anthracene		ND		0.0100				1000						
Benzo (a) anthracene	n	ND		0.0100		11				••				
Senzo (a) pyrene		ND		0.0100										
Benzo (b) fluoranthene		ND	-0-	0.0100									ан: 2	
enzo (ghi) perylene		ND		0.0100					-				п	
enzo (k) fluoranthene		ND		0.0100	8							395		
Chrysene		ND		0,0100						**		**		
Dibenzo (a,h) anthracene		ND		0.0100		н				••	••			
luoranthene		ND		0.0100		н								
luorene		ND		0.0100			122		-		••			
ono (1,2,3-cd) pyrene	н	ND		0.0100							••			
Vaphthalene	и	ND	1222	0.0100		"						-		
Phenanthrene		ND		0.0100								-	н	
Pyrene		ND	***	0.0100		n				-				
Surrogate(s): Nitrobenzene-d5		Recovery:	113%	L	imits: 33-141%	"							05/14/08 14:20)
2-FBP			107%		34.5-148%	"								
p-Terphenyl-d14			104%		37.8-150%	"							"	
LCS (8050041-BS1)								Ext	racted:	05/08/08 09	9:31			
Chrysene	EPA 8270	0.545	·	0.0100	mg/kg wet	lx	S 	0.667	81.7%	(41.1-125)			05/14/08 15:19	
Fluorene	mod.	0.543		0.0100			17 <u>7</u> 0		81.4%	(44.5-120)		221		
indeno (1,2,3-cd) pyrene		0.420		0.0100				3 9 1	63.0%	(30.1-150)			w	
Naphthalene		0.460	577.)	0.0100		.0.			69.0%	(29.3-120)			•	
-		Recovery:	88.5%	1	imits: 33-141%	"							05/14/08 15:1	9
Surrogate(s): Nitrobenzene-d5 2-FBP		Accordy.	78.9%	÷.	34.5-148%	"							"	
p-Terphenyl-d14			73.3%		37.8-150%	"							n	

TestAmerica Spokane

Cande 1a er

Randee Decker, Project Manager

LFR, Inc.	Project Name:	Tri Cities Battery	, , , , , , , , , , , , , , , , , , , ,
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03

	Polynuclear	Aromatic Co	mpounds	by GC/M		ected Ion Mo ica Spokane	onito	oring - L	aborat	ory Q	Quality C	ontro	l Resu	lts	
QC Bate	h: 8050041	Soil Pre	paration N	lethod:	EPA 3550B										
Analyte		Method	Result	MD	DL* MRL	, Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike	(8050041-MS1)				QC Sourc	e: SRE0023-01			Extr	acted:	05/08/08 09	:31			e.
Chrysene		EPA 8270 mod.	0.612		0.0101	mg/kg dry	lx	ND	0.675	90.6%	(45.2-120)			05/14/08 16:18	
Fluorene		•	0.613		0.0101			ND		90.7%	(25.3-128)		22	Π	
ndeno (1,2,3-cd) py	rene	1.4	0.451		0.0101			ND	•	66.8%	(32 2-145)			"	
Naphthalene		(10)	0.505		0.0101			0.00338		74.3%	(28.9-120)				
Surrogate(s):	Nitrobenzene-d5 2-FBP		Recovery:	93.6% 85.1%	I	imits: 33-141% 34.5-148%	"							05/14/08 16:18 "	
	p-Terphenyl-d14			81.4%		37.8-150%	"							п	
Matrix Spike I	Dup (8050041-MS	D1)	1/15/17		QC Sourc	e: SRE0023-01			Extr	acted:	05/08/08 09	:31			
Chrysene		EPA 8270 mod.	0.617		0.0101	mg/kg dry	lx	ND	0.675	91.4%	(45.2-120)	0.879%	% (34.7)	05/14/08 17:18	
luorene		1.99.1	0.585		0.0101	н		ND		86.6%	(25.3-128)	4.62%	(38)		
ndeno (1,2,3-cd) py	rene	1.77.).	0.460		0.0101			ND		68.1%	(32.2-145)	1.93%	6 (31.5)		
Naphthalene			0.498		0.0101	н		0.00338		73.3%	(28.9-120)	1.35%	6 (34.6)	н	
Surrogate(s):	Nitrobenzene-d5 2-FBP		Recovery:	92.2% 85.3%	1	limits: 33-141% 34.5-148%	"							05/14/08 17:18 "	C
	p-Terphenyl-d14			89.0%		37.8-150%	"							"	

TestAmerica Spokane

tandi ť o Randee Decker, Project Manager

LFR, Inc.			2	Project Na	me:	Tri Citi	ies Batter	r y							
2310 N. Molter Rd. Suite 101				Project Number:		027-30160-00					Report Created:				
Liberty Lake, WA 99019				Project Ma	nager:	Meghan Lunney							05/30/08 13		
Conv	entional Chem	istry Param	0.5				Laborato	ory Qu	ality (Control	Resu	lts			
				TestAmer	ica Seattle				_			-			
QC Batch: 8E27019	Soil Prep	aration Meth	od: EPA	3060									1		
nalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Note	
Blank (8E27019-BLK1)								Extr	acted:	05/27/08 10	:50				
exavalent Chromium	EPA 7196A	ND		1.0	mg/kg wet	1x	221		-				05/27/08 14:08		
LCS (8E27019-BS1)								Extr	acted:	05/27/08 10	:50				
lexavalent Chromium	EPA 7196A	25		1.0	mg/kg wet	lx	 :	25.0	101%	(80-120)	***		05/27/08 14:08		
Duplicate (8E27019-DUP1)	20			QC Source	: BRE0319	9-01		Extr	acted:	05/27/08 10	:50				
lexavalent Chromium	EPA 7196A	ND		1.1	mg/kg dry	1x	ND	2000			NR	(30)	05/27/08 14:08		
Matrix Spike (8E27019-MS1)				QC Source	: BRE031	9-01		Exti	acted:	05/27/08 10	0:50				
Hexavalent Chromium	EPA 7196A	22		1.0	mg/kg dry	1x	ND	25.2	88.4%	(75-125)			05/27/08 14:08		

TestAmerica Spokane

Carde tor CO Randee Decker, Project Manager

LFR, Inc.		Project Name:	Tri Cities Battery	
2310 N. Molter Rd. Suite 101		Project Number:	027-30160-00	Report Created:
Liberty Lake, WA 99019		Project Manager:	Meghan Lunney	05/30/08 13:03
Р	hysical Parameters by APHA/A	STM/EPA Method	ls - Laboratory Quality Control Results	
_		TestAmerica Seat		

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed
Blank (8E27044-BLK1)								Ext	racted:	05/27/08 15	:37		
Dry Weight	BSOPSPL00	100		1.00	%	lx	-					••	05/28/08 00:00

3R08

TestAmerica Spokane

Cardin €O 101

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Notes

LFR, Inc.			Project Name:	Tri Cities Battery			
2310 N. M	lolte	r Rd. Suite 101	Project Number:	027-30160-00	Report Created:		
Liberty La	ke, '	WA 99019	Project Manager:	Meghan Lunney	05/30/08 13:03		
,			Notes and Definit	tions			
Report Sr	necit	ic Notes					
I	/cen	Internal Standard recovery was outside of metho	d limits Matrix interfe	rence was confirmed by reanalysis			
M7	-						
R2							
R4	-	Due to the low levels of analyte in the sample, the	ne duplicate RPD calcul	ation does not provide useful information.			
Z1	_	Surrogate recovery was above acceptance limits.		r			
ZX	2	Due to sample matrix effects, the surrogate reco		eptance limits.			
Laborator	y R	eporting Conventions:					
DET	-	Analyte DETECTED at or above the Reporting Li	mit. Qualitative Analys	es only.			
ND	-	Analyte NOT DETECTED at or above the reporting	ng limit (MDL or MRL,	as appropriate).			
NR/NA	-	Not Reported / Not Available					
dry	-	Sample results reported on a Dry Weight Basis. R	esults and Reporting Li	mits have been corrected for Percent Dry Weight.			
wet	117	Sample results and reporting limits reported on a V on a Wet Weight Basis.	Vet Weight Basis (as rec	ceived). Results with neither 'wet' nor 'dry' are reported			
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs ca	dculated using Results, r	not Percent Recoveries).			
MRL	. .	METHOD REPORTING LIMIT. Reporting Leve	l at, or above, the lowes	t level standard of the Calibration Table.			
MDL*	-			ically derived limit based on 40CFR, Part 136, Appendix he MRL. Results between the MDL and MRL are reported			
Dil	-	Dilutions are calculated based on deviations from found on the analytical raw data.	the standard dilution per	formed for an analysis, and may not represent the dilution	1		
Reporting Limits	.=>	Reporting limits (MDLs and MRLs) are adjusted l percent solids, where applicable.	based on variations in sa	mple preparation amounts, analytical dilutions and			

Electronic - Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Spokane

(and ter 3 Randee Decker, Project Manager

APPENDIX B

Ecology Records

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

15 West Yakima Avenue, Suite 200 • Yakima, Washington 98902-3452 • (509) 575-2490

April 6, 2006

CERTIFIED MAIL

7004 1160 0002 6158 3574

Clack Building Ventures 325 E. Sprague Avenue Spokane, WA 99202

Dear Management:

RE: Early Notice Letter Regarding the Release of Hazardous Substances on property located at 601 George Washington Way, Richland, WA, ERTS # 553349, Facility/Site # 43737443

Under Chapter 70.105D Revised Code of Washington (RCW), upon receiving a report of a release or threatened release of a hazardous substance that may pose a threat to human health or the environment, the Department of Ecology (Ecology) is required to conduct an Initial Investigation.

On February 9, 2006, Ecology received an Environmental Report Tracking System (ERTS) report from LFR Inc., an environmental consulting firm doing excavation at the site. The ERTS report identified a release of petroleum product in a drywell at the site. Data submitted by LFR Inc: indicates that heavy oil, lead, PCBs, and other contaminants in excess of MTCA Method A cleanup levels are present in soils at the site. Heavy oil was reported at a maximum concentration of 12,500 mg/kg. The MTCA cleanup level for heavy oil is 2,000 mg/kg. Lead was reported at a maximum concentration of 709 mg/kg. The MTCA cleanup level for lead is 250 mg/kg. PCBs were reported at a maximum concentration of 14 mg/kg. The MTCA cleanup level for PCBs is 1.0 mg/kg. This data indicates that a release of hazardous substances has occurred at the site and remedial action is required to achieve cleanup.

Under the Model Toxics Control Act (MTCA), Ecology maintains a listing of known or suspected contaminated sites. It is Ecology's decision that the above-referenced property will be added to this information system. Ecology has also determined that a Site Hazard Assessment described in Washington Administrative Code (WAC) 173-340-320 will be required at this site. It is the policy of the Department of Ecology to work cooperatively with persons to accomplish prompt and effective site cleanups. Ecology prefers to achieve site cleanup cooperatively through independent cleanup actions (WAC 173-340-510). Cooperating with Ecology in planning or conducting remedial actions is not an admission of guilt or liability. Please note if you submit a report to Ecology within 90 days indicating that contamination on your property is below the cleanup standards, your property will be automatically removed from the list of known or suspected contaminated sites.

In proceeding with an independent cleanup, please be aware that there are requirements in state law which must be adhered to. In particular, WAC 173-340-300(4) which requires a report of independent actions. To the extent known, the report shall include: The identification and location

Clack Building Ventures April 6, 2006 Page 2

of the hazardous substance; circumstances of the release; the discovery and remedial actions planned, completed, or underway. More requirements of independent cleanup actions are discussed in WAC 173-340-120(8)(b). Ecology will use the appropriate requirements contained throughout this chapter in its evaluation of the adequacy of any independent remedial actions performed. In the future, Ecology may still need to conduct a more detailed inspection of this property, including testing for possible contamination. At that time we may assess the need for further action.

You are encouraged to contact Ecology for limited informal advice and assistance. For technical assistance you are advised to hire an environmental consultant with the appropriate expertise. A copy of Chapter 70.105D RCW, the Model Toxics Control Act, and the implementing regulation Chapter 173-340 WAC, which details the requirements of the Act, is enclosed.

If you have any questions regarding this letter or the requirements under the Model Toxics Control Act, please call me. My phone number is (509) 454-7836.

Sincerely,

Mark Dunbar Site Manager/Initial Investigations Toxics Cleanup Program

Enc: Chapter 173-340 WAC Chapter 70.105D RCW

cc: Jeff Leppo, LFR Inc., Spokane, WA Frosti Smith, TCP-CRO Michael Spencer, TCP-HQ

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box.47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

August 29, 2007

Clack Building Ventures 325 E. Sprague Avenue Spokane, WA 99202

> Subject: Site Hazard Assessment – Tri City Battery Goodyear Ecology Facility Site ID: 43737443

To Whom It May Concern:

The Department of Ecology (Ecology) will conduct a site hazard assessment (SHA) of Tri City Battery Goodyear, 601 George Washington Way, Richland, WA 99352, under the Model Toxics Control Act (MTCA), Chapter 173-340-320 WAC. This site has been on Ecology's Confirmed and Suspected Contaminated Sites (CSCS) List, with a site status of awaiting assessment, since April 6, 2006. This assessment will be performed by Kay Rottell, Benton-Franklin Health District. She will contact you in the near future to arrange a suitable time for a site visit, as appropriate.

The purpose of an SHA is to gather information on past/present waste management activities, along with other basic site-specific environmental data, in order to score the site following the Washington Ranking Method (WARM) Scoring Manual guidelines. Potential/actual threats to human health and the environment are evaluated for each applicable migration route, with a resultant "hazard ranking" for the site determined.

Sites are ranked on a scale of one (1) to five (5), with 1 representing the highest level of concern, and 5 the lowest, relative to all other assessed/ranked sites in the state. The level of relative concern may be such that a recommendation of "No Further Action" (NFA) can be made, and your site will then be removed from Ecology's CSCS list.

For your information, Ecology will publish a notice in an upcoming issue of the *Site Register* that an SHA is scheduled for this site. This notice may evoke media inquiries. Likewise, the SHA outcome, either as a ranked site or a determination as NFA, will be published in the *Site Register*.

In addition to any required fieldwork, the following information will be considered in scoring this site:

Ecology Central Regional Office Site Files

Benton-Franklin Health District Site Files

Clack Building Ventures August 29, 2007 Page 2

You are requested to submit any additional environmental information regarding this site to:

Ms. Kay Rottell Public Health Benton-Franklin Health District 800 W. Canal Drive Kennewick, WA 99336

Additional data could include any environmental assessments or laboratory analyses which have been conducted regarding this site and which have not previously been submitted to Ecology. Every attempt will be made to obtain the most recent and accurate data for scoring your site. If you have better information or comments on the adequacy of the data we already have, please let us know as soon as possible. The final site rank and eventual site priority will be based primarily on the information used in the scoring. Your active participation in the assessment and scoring process is important to insure that only the best data available is used.

Fact sheets describing Site Hazard Assessments, the Washington Ranking Method and the Hazardous Sites List are enclosed for your information, as well as a copy of the Integrated Site Information System (ISIS) Site Data Summary Sheet for this site. If you have any questions please call me at (360) 407-7195 (or by e-mail at <u>mspe461@ecy.wa.gov</u>) or Kay Rottell at (509) 582-7761, ext. 250 (or by e-mail at <u>katheriner@bfhd.wa.gov</u>).

Sincerely,

Michael J. Spencer Site Hazard Assessments Toxics Cleanup Program

MJS:ms Enclosures(4)

cc: Kay Rottell, Benton-Franklin Health District Valerie Bound, Ecology Toxics Cleanup Program, CRO

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

15 W Yakima Ave, Ste 200. • Yakima, WA 98902-3452 • (509) 575-2490

......

February 12, 2008

Clack Building Ventures 325 E. Sprague Avenue Spokane, WA 99202

Dear Management:

RE: Site Hazard Assessment – Tri City Battery, 601 George Washington Way, Richland Facility/Site # 43737443

The Washington State Department of Ecology (Ecology) Toxics Cleanup Program has completed the Site Hazard Assessment (SHA) for Tri City Battery, located at 601 George Washington Way, Richland, as required under the Model Toxics Control Act. The site's hazard ranking, an estimation of the potential threat to human health and/or the environment relative to all other Washington State sites assessed at this time, has been determined to be a 2, where 1 represents the highest relative risk and 5 the lowest.

For your information, Ecology will be publishing the ranking of this and other recently assessed sites in the February 20, 2008 Special Issue of the Site Register. The site hazard ranking will be used in conjunction with other site-specific considerations in determining Ecology's priority for future actions.

Ecology reserves the right to initiate further investigation at this site where new information is received indicating a potential/actual threat to human health and/or the environment through the release of hazardous substance(s).

Please contact Rick Dawson with the Benton Franklin Health District at (509) 582-7761 if you have any questions relating to the SHA determination of your site.

Sincerely,

,) MM.a

Donald W. Abbott Section Manager Toxics Cleanup Program Central Regional Office

cc: Rick Dawson, Benton Franklin Health District Jeff Leppo, LFR, Inc. Michael Spencer, TCP-HQ

STATE OF WASHINGTON DEPAREMENT OF ECOLOGY 17 W Yakima Are, Sic 200 * Yakima WA 9899-2-3472 * (399-377-2499)

July 17, 2008

Mr. Dave Clack Clack Building Ventures LLC 325 E Sprague Avenue Spokane WA 99202

Dear Mr. Clack:

Your application for the Voluntary Cleanup Program was received in the Department of Ecology's Central Regional Office on July 15, 2008. The purpose of this letter is to acknowledge receipt of your application and to provide you with the name of the Site Manager assigned your file.

Site Name:Tri City Battery GoodyearSite Manager:Mark DunbarFacility Site Number:43737443VCP ID Number:CE0292

Our database has been updated to reflect your participation in the Voluntary Cleanup Program. If you have any questions Mr. Dunbar can be reached at (509) 454-7836.

Thank you for your commitment to the environment and the Voluntary Cleanup Program.

Sincerely,

Frosti Smith Voluntary Cleanup Program Data Coordinator Central Regional Office Toxics Cleanup Program

Enclosure

0

RECEIVED

5.2000

JUL 11 2008

C 35

VCP AGREEMENT

OCHANIMENT OF COLOGY - CRATINAL REDURAL UNIXE

Facility/Site Namel <u>TRI CITY BATTERY GOODYEAR</u>

 Facility/Site No.: 43737443

• VCH Project No: CEDZAZ

This document constitutes an Agreement between the State of Washington Department of Ecology (Ecology) and Clack Building Ventures, LLC

(Client) to provide informal site-specific technical consultations under the Voluntary Cleanup Program (VCP) for the Site Identified above and associated with the following address: 601 George Washington Way, Richland Washington

The purpose of this Agreement is to facilitate independent remedial action at the Site. Ecology is entering into this Agreement under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC. If a term in this Agreement is defined in MTCA or Chapter 173-340 WAC, then that definition shall govern.

Services Provided by Ecology

Upon request, Ecology agrees to provide the Client informal site-specific technical consultations on the independent remedial actions proposed for or performed at the Site consistent with WAC 173-340-515(5). Those consultations may include assistance in Identifying applicable regulatory requirements and opinions on whether the remedial actions proposed for or conducted at the Site meet those requirements.

Ecology may use any appropriate resource to provide the Client with the requested consultative services. Those resources may include, but shall not be limited to, those of Ecology and the Office of the Attorney General. However, Ecology shall not use independent contractors unless the Client provides Ecology with prior written authorization.

In accordance with RCW 70.105D.030(1)(i), any opinions provided by Ecology under this Agreement are advisory only and not binding on Ecology. Ecology, the state, and officers and employees of the state are immune from all liability. Furthermore, no cause of action of any nature may arise from any act or omission in providing, or failing to provide, informal advice and assistance under the VCP.

Payment for Services by Client

The Client agrees to pay all costs incurred by Ecology in providing the informal site-specific technical consultations requested by the Client consistent with WAC 173-340-515(6) and 173-340-515(6). Those costs may include the costs incurred by attorneys or independent contractors used by Ecology to provide the requested consultative services. Ecology's hourly costs shall be determined based on the method in WAC 173-340-550(2).

Ecology shall mail the Client a monthly itemized statement of costs (invoice) by the tenth day of each month (invoice date) that there is a balance on the account. The invoice shall include a summary of the costs incurred, payments received, identity of staff involved, and amount of time staff spent on the project.

The Client shall pay the required amount by the due date, which shall be thirty (30) calendar days after the invoice date. If payment has not been received by the due date, then Ecology shall withhold any requested opinions and notify the Client by certified mail that the debt is past due. If payment has not been received within sixty (60) calendar days of the invoice date, then Ecology shall stop all work under the Agreement and may, as appropriate, assign the debt to a collection agency under Chapter 19.16 RCW. The Client agrees to pay the collection agency fee incurred by Ecology in the course of debt collection.
Reservation of Rights / No Settlement

This Agreement does not constitute a settlement of liability to the state under MTCA. This Agreement also does not protect a liable person from contribution claims by third parties for matters addressed by the Agreement. The state does not have the authority to settle with any person potentially liable under MTCA except in accordance with RCW 70.105D.040(4). Ecology's signature on this Agreement in no way constitutes a covenant not to sue or a compromise of any Ecology rights or authority.

Ecology reserves all rights under MTCA, including the right to require additional or different remedial actions at the Site should it deem such actions necessary to protect human health and the environment, and to issue orders requiring such remedial actions. Ecology also reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the release or threatened release of hazardous substances at the Site.

Effective Date, Modifications, and Severability

The effective date of this Agreement shall be the date on which this Agreement is signed by the Toxics Cleanup Program's Section Manager or delegated representative. This Agreement may be amended by mutual agreement of Ecology and the Client. Amendments shall be in writing and shall be effective when signed by the Toxics Cleanup Program's Section Manager or delegated representative. If any provision of this Agreement proves to be void, it shall in no way invalidate any other provision of this Agreement.

Termination of Agreement

Either party may terminate this Agreement without cause by sending written notice to the other party by certified mail, return receipt requested. The effective date of termination shall be the date Ecology sends notice to the Client or the date Ecology receives notice from the Client, whichever occurs first.

Under this Agreement, the Client is only responsible for costs incurred by Ecology before the effective date of termination. However, termination of this Agreement shall not affect any right Ecology may have to recover its costs under MTCA or any other provision of law.

Representations and Signatures

The undersigned representative of the Client hereby certifies that he or she is fully authorized to enter into this Agreement and to execute and legally bind the Client to comply with the Agreement.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY	Clack Building Ventures, LLC Name of Client
Milerie Bound for Donald aldret	+ Daclack
Signature U	Signature of Client or Client Representative
Valerie Bound for Don Abbott	
Printed Name	Printed Name of Signatory
Section Manager, Donald Abboth, CRD	
Toxics Cleanup Program Section	Title of Signatory
Date: <u>7-17-08</u>	Date:7-/-08

Instructions: Please submit this Agreement to Ecology as part of the VCP application. Before submitting the Agreement please provide the Client's name and the Site's address on the first page and complete the Client's portion of the signature block on the second page. If the application is accepted, Ecology will sign the Agreement and send the Client an acceptance letter that will include the complete Agreement as an enclosure.

APPENDIX C

Local Well Logs

Water Well Search Southeast Quarter of the Southeast Quarter of Section 11 Township 9 North, Range 28 East November 8, 2008

це Х

(

Wall I co	Well Type, Received	2012/2016	2/17/2005	2/17/2005	2/17/2005	3/16/2006	3/16/2006	3/16/2006		11/27/2000	11/27/2000	11/2/12/10	11/2/1/2000	0002/12/11	1/2//2/00	11/2/12/100	11/27/2000			
	We	û	: œ	œ	α	: @	C C C	C	: @	: 0:	: a	<u> </u>	< 0	۵ ک	< 0	4	¢	N	3	
Well Campletion	Date County	ιμ	1/20/2005 BENTON	1/20/2005 BENTON	1/20/2005 BENTON	12/14/2005 BENTON	12/14/2005 BENTON	12/14/2005 BENTON	4/6/1993 BENTON	10/25/2000 BENTON	10/25/2000 RENTON	10/05/0000 BENTON					10/25/2000 BENTON	BENTON	BENTON	
Otr/Otr	Section	SE	л Ш	S E S	SE				SE	SE	SE ES	i u	ц	ц	ЧЧ	3	ЯS	ŝ	SE	
otr	Section Section	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	1 S F	10.11	13 ST 13 ST			11 SE	11 SE	11 SE	
Range	Direction	28 E	28 E	28 E	28 E	28 E	28 E	28 E		28 E										
	Township Range	თ	6	თ	6	თ	Б С	6	0	თ	o	თ	07		0		5	თ	o	
	Diameter Well Owner	I CBC/WSU TRI CITIES	: CBC/WSU TRI CITIES	I CBC/WSU TRI CITIES	: CBC/WSU TRI CITIES	6 CITY OF RICHLAND	CITY OF RICHLAND	CITY OF RICHLAND	GRANT CONSTRUCTION	JACKPOT FOODS TIME OIL CORP	JACKPOT FOODS I TIME OIL CORP	JACKPOT FOODS TIME OIL CORP		2	JOHN PIERCE	RUDOLPH DE VONG				
Well	Diameter					40 6								ឧ	7			6	9 9	
Well	Depth		UN.	.4	CN.	4	4	4		IN .	"	2	N	N	2	¢	N	e	m	
		S012881	S012881	S012881	S012881	S013073	S013073	S013073	81895	R049607	R049607	R049607	R049607	R049607	R049607	200000	1005402			
Well Tag	Well Log No.	402798	402799	402800	402801	432809	432810	432811	140444	301889 AFT739	301890 AFT740	301904 AFT741	301905 AFT742	301906 AFT736	301907 AFT737	304000 A E 730	201300 AF1/30	141906	145160	Notes;

Notes: R = Resource Protection Well / Monitoring Well A = Abandoned Well W = Water Well

ï

~ را را

(

Water Well Search Southwest Quarter of the Southeast Quarter of Section 11 Township 9 North, Range 28 East November 8, 2008

Well Log	Well Type Received	7/24/1995	3/16/2006	3/16/2006	3/16/2006	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	1/31/2000	6/30/2004	6/30/2004	6/30/2004	6/30/2004	12/11/2006	12/11/2006	12/11/2006	
Well Completion	Date County Well Ty	7/18/1995 BENTON R	12/14/2005 BENTON R	12/14/2005 BENTON R	12/14/2005 BENTON R	5/31/2006 BENTON A		5/31/2006 BENTON A	1/11/2000 BENTON R		6/17/2004 BENTON R	6/17/2004 BENTON R	6/18/2004 BENTON R	11/21/2006 BENTON R	11/21/2006 BENTON R	11/21/2006 BENTON R													
-	Qtr/Qtr Section	SW				SW	SW	SW	SW	SW	SW	SW	SW																
ą	Section Section	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	11 SE	
Range		28 E	28 E	28 E	28 E	28 E	28 E		28 E			28 E					28 E					28 E		28 E	28 E	28 E	28 E	28 E	
	Township Range	റ	თ	6	б	თ	თ	თ	б	თ	თ	თ	თ	თ	თ	თ	თ	σ	თ	თ	თ	თ	თ	ი	თ	თ	ດ	თ	
	Well Owner	CITY OF RICHLAND	6 CITY OF RICHLAND	6 CITY OF RICHLAND	6 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	2 CITY OF RICHLAND	RICHLAND COM. CTR.	2 TIME OIL CO	2 TIME OIL CO	2 TIME OIL CO	2 TIME OIL CO	8 TIME OIL CO	8 TIME OIL CO	8 TIME OIL CO	
	Well Depth Well Diameter	15	40	40	40	18.5	43	18.2	14.3	18.8	54.5	19.9	33.3	25,1	23.3	29	25,6	27.4	28.6	28.5		25	25	25	45	52	52	55	
	NIT Id	R017800	S013073	S013073	S013073	A094853	S001389	R053567	R053567	R053567	R053567	R053615	R053615	R053615															
	Well Log Well Tag No.		432809	432810	432811	515920	515923	515924	515925	515926	515927	515928	515929	515930	515931	515932	515933	515934	515935	515936	255744	384106 AFS850	384107 AHT998	384108 AHT997	384109 AFF600	473955 APA398	473956 APA399	473957 APA400	

Notes: R = Resource Protection Well / Monitoring Well A = Abandoned Well

Former Goodyear Tire Lease Property

LFR Inc.

File Original and First Copy with Department of Ecology	
Second Copy - Owner's Copy	
Third Copy Driller's Copy	

File Original and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy		LL REPORT	Application No Permit No /	
(1) OWNER: Name RuleLph		ASSAN 90 VAN Grese		
(2) LOCATION OF WELL: County		- SE & SE	time and the second	28Fiv
Bearing and distance from section or subdivision		nan an	hay Secondaria Arrayande	
PROPOSED USE: Domestic I Int		(10) WELL LOG:		1-
Irrigation [] Te		Formation: Describe by color, chara	icter, size of material and	structure, and
(A) TYPE OF WORK. Owner's aumber		show thickness of aguifers and the stratum penetrated, with at least a	kind and nature of the mine entry for each change	of formation.
(1) I I I I OF WORK. (if more than on	C)	MATERIAL	I'R(то
New well 🗗 Metho Despened 🔲 Reconditioned 🗆	Cable (P Drives () Rotary () Jetted ()	Silty Five Bea	w smit C	2 /0
(5) DIMENSIONS.		Very thad Come	ted gatvel 11	2 22
(5) DIMENSIONS: Diameter of y Drilled	well		1	2 30
(6) CONSTRUCTION DETAILS: Casing installed: Diam. from	+1/2 n w 3/ 11	Covere Sand m	al Carmel 3	0 36
		Five Sand		6 40
Perforations: yes O No B		· · · · · · · · · · · · · · · · · · ·		
Type of perforator used				
SIZE of perforations and perforations from	•			<u> </u>
perforations from		·		
perforations from	π. ιο			
Screens: Yes No D	al ·			
	Model No. 309			
Diam		<u> </u>		
Diam Siot aize				
Gravel packed: Yes 🛛 No 🗗 Size	of gravel;			
Gravel placed from	ft. to ft.			
Surface seal: Yes & No 22 79 wh	ar depth 18 tt.			
Material used in seal	7.2			
Did any strate contain unusable wa Type of water?				
Method of sealing strate off		•		
(7) PUMP: Manufacturar's Name				
Type:	and and the state of the state	MEGEIWE	· · · · · · · · · · · · · · · · · · ·	
(B) WATER LEVELS: Land-surface e above mean se	devation in mehr	1 11 11 11 11	· · · · · · · · · · · · · · · · · · ·	
	well Date Card and		- E !	
A rischen presiden The per soliere	Inch Date			
Ariesian water is controlled by	(Cep, valve, etc.)	DEPARIME .		
	nount water level is	L_CEUIRAL		<u> </u>
(c) Winds I and I di lowered belew e	itatic leve) by whom?	Work started	Q. Completed	
	down after hrs.	WELL DRILLER'S STAT	EMIONT:	
n u	··· · ··	This well was drilled unde	r my jurisdiction and	this report is
<u> </u>	<u>и</u> и	True to the best of my knowl	edge and belief.	
Recovery data (lime taken as zero when pump measured from well top to water level) Time Water Level Time Water Level		NAME HATCH DA	corporation) (Type	e.
		Address 6417 W.	COVET-ST	PASCO
		Address 977 40.		
Date of test	•• #***********************************	[Signed]	Return	
			and the state of the second state of the secon	
r test 5 gal/min. with 5 ft. dr.		[Stineu]	(Well Driller)	

(USE ADDITIONAL SHEETS IF NECESSARY)

٠

@> 3

	WASHINGTON Permit No.	1	<u> </u>
	Addres 88 VAU Gresed Rich		
(2) LOCATION OF WELL: County Benton	-5K 1 SE4 Sec. 11 T. 9	Ž	SE.
Paring and distance from section or subdivision corner			
PROPOSED USE: Domentic Mindustrial [] Municipal []	(10) WELL LOG:	<u>-</u>	
irrigation 🗍 Test Well 🗌 Other 🔲	Formation: Describe by color, character, size of material show thickness of aquifers and the kind and nature of i sitatum penetraied, with at least one entry for each c.	the mater	ial In
(4) TYPE OF WORK: Owner's number of well			Y
(1) New well Method; Dug D Bored []	MATERIAL	FROM	
Deepened D Cable B Driven D	الأنصاص المنتخب والأكر المعتمان	0	10
Reconditioned 🔲 Rotary 🗋 Jetted 🗖		<u> </u>	
(5) DIMENSIONS: Diameter of well 6 inches	HARd Comental SRAVE	10	2
			L
Drilled	Fier Sand & Beauel	22	Łð
(6) CONSTRUCTION DETAILS:			<u> </u>
Casing installed: 6 " Diam from + 1% t. to 3/ t.	Course Sand + Gaavel	30	34
		-	L
Threaded D "Diam, from sectors ft. to sector	Farst a State W	36	4
Perforations: Yes 🗋 No 🖸			
Type of perforator used			
SIZE of perforations in, by many in, by			<u> </u>
tt. to		r	
the to an analyze the second s		· · ·	<u>†"-</u>
			<u> </u>
Screens: Yes 🗌 No 🗹	······································		<u> </u>
Manufacturer's Name		t	<u>├</u>
Type		<u> </u>	<u> </u>
Diam		<u> </u>	ł
Diam Slot alzo from ft, to ft.		<u>├</u>	╂
Gravel packed: Yes D No [Size of gravel;		 	╂───
Gravel placed from		 	├──
	·]	<u> </u>	
Surface seal: Yes B North Toy when deputy the		╂────	<u> </u>
Material used in yes)		╂────	┟╾╍╼
Did any strata contain unusable water? Yes D No D Type of water?		{	╂
Method of scaling strate off		<u> </u>	1
			┼ ╌╸──
(7) PUMP: Manufacturer's Name		<u> </u>	┟╼╍┕
Type:		<u> </u>	╂
(8) WATER LEVELS: Land-surface elevation		 	┣—
above mean sea level		 	┣
Static level			┣
Artesian pressure		┢────	<u> </u>
(Cap, valve, etc.)	DEPARTMEN CENTRAL	ļ	↓
(9) WELL TESTS; Drawdown is amount water level is		1	<u> </u>
movered before scale level	Work started DCT-, 19 50 Completed C		
Was a pump test made? Yes [] No [2] If yes, by whom?	THEFT I TABLE I STOLD CAR A DEPARTMENT		
Yield: gal./min. with rt. drawdown after hrs.			
	This well was drilled under my jurisdiction true to the best of my knowledge and belief,	end this	repor
Renvery data (fime taken as your when news downed all fundam taken			
Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level)	HAYele Daillie C. 4	1 C-	
Time Water Level Time Water Level Time Water Level	(Person, firm, or corporation) ()	Type or p	rint)
	سجمانا وباستفاحا		مدم
	Address 6417 W COVRT 87	1-1	700
	. the onthe	\frown	
Date of test	[Signed]		
r test 1.2 gal/min. with 7 test drawdown after hrs.			

(USE ADDITIONAL SHEETS IF NECESSARY)

Washington State Department of Ecology Toxics Cleanup Program

Terrestrial Ecological Evaluation Process - Primary Exclusions

- ′

Documentation Form

í

Exclusion #	Exclusion Detail	Yes or No?	Are Institutional Controls Required If The Exclusion Applies?
	Will soil contamination located at least 6 feet beneath the ground surface and less than 15 feet?	Yes / No	Yes
1	Will soil contamination located at least 15 feet beneath the ground surface?	Yes) No	No
	Will soil contamination located below the conditional point of compliance?	Yes / No	Yes
2	Will soil contamination be covered by buildings, paved roads, pavement, or other physical barriers that will prevent plants or wildlife from being exposed?	Yes)/No	Yes
	Is there less than 1.5 acres of <u>contiguous undeveloped land</u> on the site, or within 500 feet of any area of the site affected by hazardous substances other than those listed in the table of <u>Hazardous Substances of</u> <u>Concern</u> ?	Yes) No	
3	And Is there less than 0.25 acres of <u>contiguous undeveloped land</u> on or within 500 feet of any area of the site affected by hazardous substances listed in the table of <u>Hazardous</u> <u>Substances of Concern</u> ?	Yes) No	Other factors determine
4	Are concentrations of hazardous substances in the soil less than or equal to natural background concentrations of those substances at the point of compliance	Yes)/ No	No

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]

APPENDIX E

Site Photographs

Photo 1: Photograph of northern portion of Site during drilling mobilization.

Photo 2: Photograph of drill rig setup.

Photographic Log August 27 through 29, 2008 Project No. 027-30160-01

Photo 3: Photograph of drill equipment decontamination process over containment area.

Photo 4: Photograph of typical monitoring well surface construction.

12	FR	2.2
ALC: NO.		1

Photographic Log August 27 through 29, 2008 Project No. 027-30160-01

Photo 5: Photograph of investigation-derived waste containment.

Photo 6: : Photograph of inorganic clay/sandy clay horizon identified at 40 to 45 ft below ground surface.

Photographic Log	Former Goodyear Tire Lease Property
August 27 through 29, 2008	Site Characterization
Project No. 027-30160-01	Richland, WA

APPENDIX F

Lithologic Logs

•	CT NAME <u>F</u>				e Leas	e Property		WELL N	UMBER N PAGE 1
PROJE		DN <u>60</u>	1 <u>Geo</u>	rge Wa	shingt	on Way, Richland, WA DRILLING CONTRACT	OR Case	cade Drilling, In	
PROJE	CT NUMBER	027-	30160	0-01			Roto Sonic	>	
LOCAT	ION <u>North I</u>	Drywell				STAMP (IF APPLICAB	LE) AND/0	OR NOTES	
OVA E	QUIPMENT _	NA							
TOP O I⊈.FIRS I⊈ STA	F CASING EL ST ENCOUNT ABILIZED WA	.evat Tered Ter _	ION <u>:</u> WAT 30.0 fe	<u>371.96</u> ER <u>36</u>	<u>ft</u>).0 fee ev 342				
LOGGI	ED BY <u>Ingric</u>	d Claus	ien		DA	TE <u>8/27/08</u>		1	
DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS	LITHOLOGIC DESCRIPTION	ELEVATIONS	WELL	. DIAGRAM
		1	ŀ			Fill, angular sand and gravel.			
					2.0	SANDY GRAVEL with fines (GM), grayish brown (10YR 5/2), damp, loose, fine to cobble gravel, rounded to subangular, line to coarse sand, subrounded to subangular	<u>370.1</u>		← Cement grout
 <u>10</u>			GM						—2-inch dia. Sc 40 PVC blank casing
F +					13.0	GRAVELLY SAND with trace fines (SW), gravish brown	359.1		
 15	B-3-15	ЦŇ	sw			(10YR 5/2), dry, loose, fine to cobble gravel, rounded to subangular, fine to coarse sand, subrounded to subangular			
			GМ		<u>15.5</u> 17.0	GRAVELLY SAND with fines (GM), gravish brown (10YR 5/2), dry, loose, fine to coarse gravel, subrounded to subangular, fine to coarse sand, subrounded to subangular	<u>356.6</u> 355.1		
$\lfloor 1$			SM		18.0	SILTY SAND with gravel (SM), gray (10YR 6/1), dry, loose fine to cobble gravel, subrounded to subangular, fine to			
20	B-3-21		GМ		21.0	coarse sand, subrounded to subangular, poorly graded. SANDY GRAVEL (GM), gray (10YR 6/1), damp, loose, fine to cobble gravel, subrounded to subangular, fine to coarse sand, subrounded to subangular.	351.1		
 20 			SM			GRAVELLY SAND with fines (SM), gray (10YR 6/1), damp loose, fine to cobble gravel, subrounded to subangular, fine to coarse sand, subrounded to subangular.			
	B-3-25		1	1	<u>24.0</u>		. 348.1		
25 APPR		~	×	.	L	(Continued Next Page)		<u> </u>	۵LF
1		(Λ)	. /	1	~ <	DATE: 11/7/08			

		CT NAME <u>Fo</u> Clack Buildi				e Leas	e Property		WELL	NUMBER	1 OF 2
P	ROJE		N 601	I Geor	rge Wa	shingt	on Way, Richland, WA DRILLING CONTRACT	OR Case	ade <u>Drilling</u>	, inc.	
P	ROJE		027-3	30160	-01	-	DRILLING METHOD	Rolo Sonic			
		FION North D	rywell				STAMP (IF APPLICABI	LE) AND/O	R NOTES		
	VA E		IA								
6	ROU	ND ELEVATIO	N <u>37</u>	2.9 fe	et msl		HOLE DIAMETER 2 inches				
T	OP O	F CASING ELI	EVATI	ON _3	72.72	<u>ft _</u>	HOLE DEPTH _45.0 feet				
Ż	Z FIR	ST ENCOUNTI	ERED	WATI	ER <u>36</u>	i.0 feel	/ Elev 336.9 feet				
ļ	L ST/	ABILIZED WAT	rer _	<u>30.0 fe</u>	et / El	ev 342	,9 feet				
l	OGG	ED BY Ingrid	Claus	en		DA	TE <u>8/28/08</u>				
	DEPTH (feet)	SAMPLE TYPE NUMBER	SAMPLE RECOVERY	U.S.C.S.	GRAPHIC LOG	DEPTHS	LITHOLOGIC DESCRIPTION	ELEVATIONS	W	/ELL DIAGRAM	DEPTH (feet)
				SM			SILTY SAND with gravel (SM), dark yellowish brown (10YR 4/4), moist, soft, fine to cobble gravel, subrounded to subangular, fine to coarse sand, subrounded to subangular, poorly graded, clumps.			Coment grou	t -
	5			GM		5.0	SANDY GRAVEL with fines (GM), dark yellowish brown (10YR 4/4), damp, loose, fine to cobble gravel, rounded to subangular, fine to coarse sand, subrounded to subangular.	<u>367.9</u>			
	10			GW		<u>10.0</u>	SANDY GRAVEL with trace fines (GW), grayish brown (10YR 5/2), damp, loose, fine to cobble gravel, rounded to subangular, fine to coarse, subrounded to subangular.	<u>362.9</u> <u>360.9</u>		-2-Inch dia. S 40 PVC blan	 ch k
GDT 10/30/08	15			SM			No recovery. GRAVELLY SAND with fines (SM), gray (10YR 6/1), dry, loose, fine to cobble gravel, rounded to subangular, fine to			casing	- - - -
2.GPJ LFR SEPT 2006.		B-4-16.5	// 	GM		18.0	coarse sand, subrounded to subangular. SANDY GRAVEL with fines (GM), grayish brown (10YR 5/ to brown (10YR 4/3), damp to moist at depth, loose, fine to cobble, rounded to subangular, fine to coarse, subrounded subangular.			—10/20 Silica	
BORING+WELL 2006 30160-01 MW2.GPJ LFR SEPT 2006.GDT 10/30/08		B-4-25				25.0	SANDY GRAVEL with fines (GM), brown (10YR 4/3), mois loose, fine to cobble gravel, rounded to subangular, fine to coarse sand, subrounded to subangular.	st, 347.9		sand 2-inch dia. perforated P screen (0.010-inch screen slots)	25
BORING+V	APPI	ROVED BY:		<u>}</u>	A	\mathbf{k}	DATE: 11 7 08				FR

PROJECT LOCATION _601 George Washington Way, Richland, WA DRILLING CONTRACTOR _Cascade Drive PROJECT NUMBER _027-30160-01 DRILLING METHOD _Roto Sonic LOCATION _North Drywell STAMP (IF APPLICABLE) AND/OR NOT OVA EQUIPMENT _NA HOLE DIAMETER _2 inches	
LOCATION North Drywell STAMP (IF APPLICABLE) AND/OR NOT OVA EQUIPMENT NA	ËS
LOCATION North Drywell STAMP (IF APPLICABLE) AND/OR NOT OVA EQUIPMENT NA	ES
TOP OF CASING ELEVATION <u>372.81 ft</u> HOLE DEPTH <u>45.0 feet</u>	
STABILIZED WATER	
LOGGED BY Ingrid Clausen DATE $8/28/08$ \widehat{x} \underbrace{W} \succ \checkmark	
DEPTH (feet) DEPTH (feet) C.S. C.S. U.UMBER NUUMBER SAMPLE C.S.C.S. U.S.C.S. U.S.C.S. DEPTHS DE	WELL DIAGRAM
Fill.	
	Cement grout
2.0 371.1 SANDY GRAVEL with trace fines (GW), gray (10YR 5/1),	
dry, loose, fine to cobble gravel, rounded to subangular, fine to coarse sand, subrounded to subangular.	
GW	
	2-inch Sch. 40
<u>- 6.0</u> <u>- 367.1</u>	casing -
SANDY GRAVEL with fines (GM), gray (10YR 6/1), dry,	-
L loose, fine to cobble gravel, rounded to subangular, fine to coarse sand, subrounded to subangular, poorly graded.	
GM	
	10
B-5-16 GW SANDY GRAVEL with trace lines (GW), brown (10YR 4/3)	
to gray (10YR 6/1), damp, loose, fines to coarse gravel, rounded to subangular, fine to coarse sand, subrounded to	
subangular, well graded.	
20 353.1 SANDY GRAVEL with fines (GM), gray (10YR 6/1), dry,	
GM GM loose, line to cobble gravel, rounded to subangular, fine to medium sand, subrounded to subangular.	
SANDY GRAVEL with trace fines (GW), dark grayish brown	2-inch dia.
(10YR 4/2), damp, loose, line to cobble gravel, rounded to subangular, well graded.	screen - (0.010-inch
	screen slots)
B-5-16 B-5-16 B-5-16 C B-5-16 C B-5-16 C B-5-16 C C C C C C C C C C C C C	
APPROVED BY: A A A A A A A A A A A A A A A A A A A	@LFR
APPROVED BY: DATE: 1117 08	

Ĺ

APPENDIX G

Water Quality Sampling Forms

OLFR

1

WATER QUALITY SAMPLING INFORMATION

Project No		7-30160-4					ample No.1	MWI
	mei <u>bo</u>	white as		. · .				
		mul					DUP;	
		<u>N</u> IL			5	-	÷ .	· · · · · · · · · · · · · · · · · · ·
Sampling I	lan Preparet	d by: <u>IEL</u>	i Andreas and a state of the state Andreas and a state of the state of	t t		. Jacobia	<u></u>	<u> Aleksin ander ander ander ander</u>
	et <u>i se s</u>ere	<u></u>	<u></u>		Annes Annes	NOT	es:	en e
	Purging	Method	ъ.	Sámpliu	g Method			
 E 	orlstaltic Pum	Ý.	📋 Dis	posal Bailer	·····	s		.:
X	ubmersible Pr	unp	🗖 Tel	lon Bailer	Å	-2.	•	· ·
ં 🔄 પ	land Bail	i	X L	WHOWC	thalval is	Spano	r	÷
-	Analyses Reg	juested	we can see Non	iber & Typ	of Bottles Uso	i sere la sol de la s La sol de la		fear an grant an a
lo	w level	Patts	16.14	- N	ars (unpre			-
<u>-</u> - <u>-</u>	cb:		11		er opre			Ĵ
1) <u>x</u>	8. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	. A) 1mb	r (ncc)		Ser in a	gallas
	n na serie de la companya de la comp	of Shipmont	an a	<u> </u>	, ang ang ang ang ang ang ang ang ang ang	nej z ne te i	8	
Lab Name	method o	Aneila		Courler Hand Del	iver:			
	<u>، ارکیکی در ب</u>	<u>- 1118-1 1 - 44</u>		Land in a second				an a
Well Numb		<u>1w1</u>	¥	cli Diamete	r: 2 ⁴	Water	Level Measu	rement: Date: 2/4/08
Depth to W	iteri <u>3</u>	0.18	<u> </u>] 1" (0,04	gallon/foot)		,	Time: 0340
Well Depth:	ator Colume	<u>5.4</u> 15.32			gallon/foot)	· · · · ·	virged:	Date: 9/4/6
Volume in V	Volt: <u>2, 9</u>	્ડિટ્સ્ટ્રિટ્	ieren li		gallon/foot) gallon/foot)	Sampi	e Collection:	Date: 9/4/
	<u> </u>	مىدىيەتىسەر مەرىپى بايە ۋاردىچ <u>ىرەن قاقى بوقا مۇتۇر قار</u>	<u> </u>	Celence	<u> Parominonis</u>	مەربىلىنى بەربەر بەربىيە	2013701 Studie Land	ATIMe: 0910
	Volume Porged	Dissofved Oxygon	· • •	20 9 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	General Viela	a stranger	The (RM)	
Time	(gal)	(Ng(l)	Temperature (*C)	pH (SU)	Sp. Cond. (µmhos/cm)	Visial Turbidity	(mV)	Remarks
08.5 9	4		18.7	- 8:43	11	-Ward group	366	Activation .
0701	5		18.3	7.95	606		309	
0901 0902	6 4 .5	\mathbf{N}	18.3	7.82	561		285	
0903	8	<u>estres esté des</u>	13.2	7.67 7.62	606	Mary	<u>309</u> 314	
6903	9.5	<u>n <u>an an a</u></u>	18.1	1.62		Vaylow		
Inlet Dept	li: <u>4)'</u> 1	295				L. Comm		
Comment	ś; _{czie obiewą}	indi. Electric constantion	great	Product	La Contraction	o pot	Ars c	let ected
<u>ىيە بېلىك بىل</u>	<u></u>		<u></u>	e z			,	شىرى دان ۋىلىمەت بېرىمىز دېرىكى ۋ
·· ···;- · ··;-		<u></u>	Collectic	isse 🦉	<u>9',10</u>	o de la construcción de la const	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>
-			, X		÷ ž		3	
	Skut	C857			in a serve -	. A / s	.*	
	Stopped	0904	Porc	Xa ca	2 1.35q	al/Nin	76	2
	-tour dis.		~ , i			4 N	-	
			:				`	
· · ·		in in	•	2	•	«.		
			į.			¥	x X	:
6			*		`	¥	:	: . ,

se¥ Nier¥1≰

OLFR

WATER QUALITY SAMPLING INFORMATION

4

÷.

安 老 戒

2⁵⁰ *

Project No: 027-30168-01	Sample Non MW-2
Project Name: Good y coult	[] (BB)
Sample Location: MWSL	
Sampling Reisonneli	and the second se
Sampling Plan Propared by	
	Nortesi
Purging Method Sampling Method	
Poristaltic Pump [7] Disposa Baller	
Submersible Pomp	
Hand Bail XI Low Flore Callys - / Chop	
- Analyses Requested - Number & Type of Boilter Used	
low level PATE 4/11) Trybers ones	Rige no 5.3 gallors
RPS ICO Anthe	J J
n an	
Method of Shipmont	
Lab Name: TRASE final COL	
Well Number: MWQ Well Diametor: 2"	Water Lovol Measurement: Date: 9/4/08
Depth to Water: 30.99	Time: 0742
Well Depth: 42.05 2" (0.16 gallon/foot)	Well Purged: Date: 4468
Height of Water Column: (1. Clo [] 4" (0.65. gallon/foot)	Sample Collection: Date: <u>9/4/08</u>
Volunte in Well: 1.76	Timo: <u>1005</u>
Yolume Rissolved	Tos Gen
	ival ORN rbidity (mV) Remarks
0951 4 12 9 7 66 690 mol	/ and 360- / al. (_35)
0952 5 1 7 9 7 6 688 9	V 49 35a
0953 6286 7.8 7.53 692 Very 0154 61 7.7 7.50 692	Jahry 352
0151 01 7.7 7.50 692	
Inlet Depth: 381 bes	in de la companya de La companya de la comp
Comments: Miss produces no for war	dotartized Juning Ringing
	21.00
A MW2 Colleded @ long	سيسمم. ميليون مشارك والمستنصب مدينة شيون مي مرد مرد شارك ومر محكمية ، و ويترد المرابع المحكمة الم المحكمة الم
	*
an in the second se	4
1950 Stattid Ringe	A F St.
a water in the second state of the second stat	MACH FACIN
0954 stopped Ring projed of 1.75	gal (min.
0154 stopped Parp larged of 1.75	yees that to
0154 stopped Parp forged of 1.75	Jaco (man).
0154 stopped Purp project 1.75	Yeex Instra.

1: 5

ØLFR

WATER QUALITY SAMPLING INFORMATION

Project Not A27, 2016 a at	Formula Na A A A A 7
Project No: 027-30160-01	Sample No.1 $\underline{MW3}$
Project Name: <u>Good years</u> Sample Location: NW_3	
Sample Location: <u>NW3</u> Sampling Personnel: ML	& DUP: pup- GW
Sampling Plan Prepared by: TEL	
	NOTES:
Purging Method Sampling Method Peristaltic Pump Disposal Bailer	
Hand Bail 20 Support without value	
Analyses Requested Number & Type of Bottles Used	Prov. 449 adlas
low level PAths 4(11) Ambers (upres)	Purge n 4.49 gallors
<u>PCBs</u> <u>1(11)</u> Anber (inpres)	Ĩ
Dx (11) Anber (HCL)	
Method of Shipmont Courier	· · · · ·
Lab Name: Tast America. A Hand Deliver:	
Well Number: $M \sqrt{3}$ Well Diameter: 3 Depth to Water: 31.09 1° (0.04 gallon/foot)Well Depth: $40.4C$ 2° (0.16 gallon/foot)Height of Water Column: 9.37 4° (0.65 gallon/foot)Volume in Well: 1.49 5° (1.02 gallon/foot)	Water Level Measurement:Date: $9/4/08$ Time: 10.27 Well Purged:Date: $9/4/08$ Sample Collection:Date: $9/4/08$ Time: $1/50$
	sval TDS(ppm) -ORD- bidity -(mV) Remarks
1044 8. (85 771 615 61	Jaren 316
	1^{-3} 0^{271}
	1. 277 J. 283
104 4.65 $20.9 7.45 55.3$ Atom	<i>d</i> . 040,5
Inder Depth: Comments:purged dry @ 357allows, let rech	<u> </u>
<u> </u>	MW3 collected @ 1150.
motellar and dry.	Dp-Gw collected @ 1210
struted purp 1043 1 pulaing 3	
stopped puppiple times well purging dry. Stopped puppiple times do well purging dry.	

BAL078

APPENDIX H

Soil Analytical Reports – August 2008

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

October 29, 2008

Jeff Leppo LFR, Inc. - Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

RE: Tri-Cities Goodyear

Enclosed are the results of analyses for samples received by the laboratory on 08/29/08 16:35. The following list is a summary of the Work Orders contained in this report, generated on 10/29/08 10:48.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRI0014

Project **Tri-Cities Goodyear**

ProjectNumber 027-30160-01

TestAmerica Seattle

¢ - 7

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 24

Tes Americ THE LEADER IN ENVIRONMENTAL TESTING

200 W 20 4 4

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420,9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake Project Name: Tri-Cities Goodyear 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Report Created: Liberty Lake, WA 99019 Project Manager: Jeff Leppo 10/29/08 10:48

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-1-16	BRI0014-01	Soil	08/27/08 08:30	08/29/08 16:35
3-1-20	BRI0014-02	Soil	08/27/08 09:20	08/29/08 16:35
3-1-26	BRI0014-03	Soil	08/27/08 10:00	08/29/08 16:35
3-1-36	BRI0014-04	Soil	08/27/08 10:45	08/29/08 16:35
3-1-45	BR10014-05	Soil	08/27/08 11:15	08/29/08 16:35
8-1-45-DUP	BR10014-06	Soil	08/27/08 11:15	08/29/08 16:35
3-3-15	BR10014-07	Soil	08/27/08 13:25	08/29/08 16:35
3-3-21	BRI0014-08	Soil	08/27/08 14:05	08/29/08 16:35
3-3-25	BR10014-09	Soil	08/27/08 14:45	08/29/08 16:35
3-3-35	BR10014-10	Soit	08/27/08 15:00	08/29/08 16:35
3-3-46	BRI0014-11	Soil	08/27/08 16:25	08/29/08 16:35

TestAmerica Seattle

÷ 6 ين ا

The results in this report apply to the samples analyzed in accordance with the choin of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEX PKWY N, SUITE 400 BOTHELL, WA 98011-9244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019			Project Na Project Nu Project Mi	mber:	Tri-Citio 027-3016 Jeff Lepp	10-0	lyear		-	l Crealed: /08 10:48
Sem	ivolatile Petrole	eum Produ	cts by N TestAme			Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Unita	Dil	Batch	Prepared	Analyzed	Notes
BRI0014-01 (B-1-16)		So	<u>ا</u>		Sampl	led: 08/2	7/08 08:30			
Diesel Range Hydrocarbons Lube Oll Range Hydrocarbons	NWTPH-Dx	ND 4.13	1.66 3.31	10.4 25.9	mg/kg dry	íx ″	8104017	09/04/08 11:25 #	09/05/08 00:35	<u> </u>
Surrogate(s): 2-FBP Octacosane			86.8% 103%		54 - 148 % 62 - 142 %				T	
BRI0014-02 (B-1-20)		Soi	l		Sampi	ed: 08/2	7/08 09:20			
Diesel Range Hydrocarbons Lube Oll Range Hydrocarbons	NWTPH-Dx	ND 3,39	1.63 3.24	10.2 25.4	mg/kg dry	lx •	8104017 *	09/04/08 11:25	09/05/08 01:01	<u> </u>
Surrogate(s): 2-FBP Octacosane		<u>_</u>	71.3% 94.\$%		54 - 148 % 62 - 142 %	*			F Ø	
BR10014-03 (B-1-26)		Sol	1		Sampl	ed: 08/2	7/08 10:00			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx	ND ND	1.66 3.30	10.4 25.9	mg/kg dry	lx r	8104017	09/04/08 11:25	09/05/08 01:27	
Surrogale(s): 2-FBP Octacosane			74.0% 97.8%		54 - 148 % 62 - 142 %	*			•	
BRI0014-04 (B-1-36)		Soi	I		Sample	ed: 08/2	7/08 10:45			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx	ND ND	1.75 3.49	10.9 27.3	rng/kg dry	lx •	8104017	09/04/08 11:25 "	09/05/08 01:53	
Surrogate(s): 2-FBP Octacosane			87.3% 102%		54 - 148 % 62 - 142 %		<u> </u>		 # #	· · · · · · · · · · · · · · · · · · ·
BRI0014-05 (D-1-45)		Soi	l		Sample	ed: 08/2	7/08 11:15			

Diesel Range Hydrocarbons ube Oil Range Hydrocarbons	NWIPH-Dx	ND ND	2.06 4.10	12.9 32.1	mg/kg dry	lx •	8104017	09/04/08 11:25	09/05/08 02:19
Surrogate(s): 2-FBP			91.0%		S4 · 148 %	•			
Octacosane			103%		62 - 142 %	•			

BRI0014-06 (B-1-45-DUP)	Soil		San	pled: 08/					
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH Dx	ND ND	2.00 3.98	12.5 mg/kg day 31.2 "	lx •	8104017	09/04/08 11:25	09/05/08 02:45	
Surrogale(s): 2-FBP Octacosane			82.4% 101%	54 - 148 5 62 - 142 5				*	

TestAmerica Seattle

Z € State and the state of the stat والافتحر ہے۔

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

~

TestAmer

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 99011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Project Name: Project Number: Project Manager:	Tri-Cities Goodycar 027-30160-01 Jeff Leppo	Report Created: 10/29/08 10:48
	Project Number: Project Manager:	Project Number: 027-30160-01

			TestAm	erica Se	attle					
Analyte	Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
DRI0014-07 (B-3-15)		So	на н		Sampl	ed: 08/2	7/08 13:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.62	10.1	mg/kg dry	1 x	8104017	09/04/08 11:25	09/05/08 03:11	
Lube Oil Range Hydrocarbons		ND	3.23	25.3	•	•	~	•	•	
Surrogate(s): 2-FBP			85.3%	_	54 - 148 %					
Octacosane			102%		62 - 142 %	-			•	
BR10014-08 (B-3-21)	<u> </u>	So	<u>I</u>		Sampl	ed: 08/2	7/08 14:05			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.65	10.3	mg/kg dry	Ix	8104017	09/04/08 11:25	09/05/08 03:37	
Lube Oil Range Hydrocarbons	π	ND	3.29	25.8	-	•		•	•	
Surrogate(s): 2.FBP			82.6%		54 - 148 %	,				
Octacosane			99.7%		62 - 142 %	-			"	
BRI0014-09 (B-3-25)		Sol	1		Sampl	ed; 08/2	7/08 14:45			
Diesel Range Hydrocarbons	NWTPH Dx	ND	1.70	10.7	mg/kg dry	İx	8104017	09/04/08 11:25	09/05/08 04:03	
Lube Oil Range Hydrocarbons		ND	3.40	26.6	•	•	×	-		
Surrogale(s): 2-FBP			81.5%		54 - 148 %					
Octacosane			112%		62 - 142 %	•			s	
BRI0014-10 (B-3-35)		Sol	1	_	Sample	ed: 08/2	7/08 15:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.66	10.4	mg/kg dry	Jx	8104017	09/04/08 11:25	09/05/08 05:47	-
ube Oil Range Hydrocarbons		ND	3.30	25.9	R	•	•			
Surrogate(s): 2-FBP			71.2%		54 - 148 %					
Octacosane			97. 4%		62 - 142 %	•				
RI0014-11 (B-3-46)		Soi	L		Sample	ed: 08/2	7/08 16:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	2.00	12.5	mg/kg day	Ix	8104017	09/04/08 11:25	09/05/08 06:13	
ube Oil Range Hydrocarbons		ND	3.98	31.2	,e	٠	n	n		
Surrogate(s): 2-FBP		-	70.5%		54 - 148 %					-
Octacosane			87.4%		62 - 142 %	•			*	

TestAmerica Seattle

Care and

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake Project Name: **Tri-Cities Goodyear** 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Report Created: Liberty Lake, WA 99019 Project Manager: Jeff Leppo 10/29/08 10:48

Polychlorinated Biphenyls by EPA Method 8082 TestAmerica Seattle											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0014-01	(B-1-16)		Soi	il	_	Sampl	led: 08/2	27/08 08;30			
Aroclor 1016 [2C]		EPA 8082	ND	2.45	26,1	ug/kg dry	1x	8103032	09/03/08 12:06	09/04/08 13:41	·····,
Aroclor 1221 [2C]			ND	6.25	52.2	•	•				
Aroclor 1232 [2C]		-	ND	2.75	26.1	•	•		-	ж	
Aroclor 1242 [2C]		-	ND	3.40	26.1				-		
Aroclor 1248 [2C]			ND	2.91	26.1		я				
Aroclor 1254 [2C]			ND	2.34	26.1		-	•			
Aroclor 1260 [2C]			ND	1.20	26.1		-				
Aroclor 1262 [2C]			ND	1.74	26.	,			P	*	
Aroclor 1268 [2C]		•	ND	1.10	2 6 1	•	•	•	•	-	
Surrogate(s):	TCX [2C]			90.3H		65 - 125 %	-,			*	
	Decachlorobiphenyl [2C]	1		107%		40 - 150 %	•			-	
BRI0014-02 ((B-1-20)		Sol	1		Sampl	ed: 08/2	7/08 09:20			
Aroclor 1016 [2C]		EPA 8082	ND	2.41	25.7	ug/kg dry	İx	BI03032	09/03/08 12:06	09/04/08 13:59	
Aroclor 1221 [2C]		•	ND	6.15	51.4	•	•	•	•	F	
Aroclor 1232 [2C]		a	ND	2.71	25.7	•		•	*	•	
Aroclor 1242 [2C]		•	ND	3.35	25.7	۹.		•	•		
Aroclor 1248 [2C]		•	ND	2.87	25.7			•			
Aroclor 1254 [2C]		•	ND	2.30	25.7	•	•		•	*	
Aroclor 1260 [2C]		-	ND	1.18	25.7		•				
Aroclor 1262 [2C]			ND	1.72	25.7	π			-		

Surrogate(s): TCX [2C] Decachlorobiphenyl [2C]

1.08

89.3%

85.2%

ND

65 - 125 % 40 - 150 %

25.7

а

.

*

r.

BRI0014-03	(B-1-26)		So	il		Sampl	cd; 08/2	7/08 10:00			
Aroclor 1016 [2C]]	EPA 8082	ND	2.46	26.2	ug/kg dry	ix	8103032	09/03/08 12:06	09/04/08 14:17	
Aroclor 1221 [2C]		-	ND	6.27	52.3	4	т	-			
Aroclor [232 [2C]		•	ND	2.76	26.2	π		•	п	,	
Aroclor 1242 [2C]		٠	ND	3.41	26.2		•		π	π	
Aroclor 1248 [2C]			ND	2.92	26.2	•				-	
Aroclor 1254 [2C]		-	ND	2.34	26.2	•		P		đ	
Aroclor 1260 [2C]		•	ND	1.20	26.2	•	•		π		
Aroclor 1262 [2C]			ND	1.75	26.2	•	•		-		
Aroclor 1268 [2C]		•	ND	1.10	26.2					π	
Surrogate(s):	TCX [2C]			88.8%		65 - 125 %				"	
	Decachlorobiphenyl [2C]			98.2%		40 - 150 %				-	

TestAmerica Seattle

Aroclor 1268 [2C]

- 6 ÷ . Ċ The result in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

.

.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH; (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	⁽ 10/29/08 10:48
			·

	Polychlorinated Biphenyls by EPA Method 8082 TestAmerica Seattle												
Analyte		Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes		
BR10014-04 (J	B-1-36)		Sol		Sampl	led: 08/2	27/08 10:45						
Aroclor 1016 [2C]		EPA 8082	ND	2.64	28.1	ug/kg dry	1x	8103032	09/03/08 12:06	09/04/08 14:35	-		
Aroclor 1221 [2C]		•	ND	6.72	56,1		-	я		•			
Aroclor [232 [2C]		•	ND	2.96	28,1			-	•	•			
Aroclor 1242 [2C]		*	ND	3.66	28.1					ж			
Aroclor 1248 [2C]			ND	3.13	28.1	•	-	•	-	T			
Aroclor 1254 [2C]			ND	2.51	28.1		•			-			
Aroelor 1260 [2C]			ND	1.29	28.1	•			-				
Aroclor 1262 [2C]		-	ND	1.87	28.1	π							
Aroclor 1268 [2C]		•	ND	1.18	28.1	•	•	*	٠	-			
Surrogate(s):	TCX [2C]			87.7%		65 - 125 %							
	Decachlorobiphenyl [2C]	1		103%		40 - 150 %	•			•			
BRI0014-05 (I	8-1-45)		Sol	1 ·		Sampl	ed: 08/2	7/08 11:15			·		
Aroclor 1016 [2C]		EPA 8082	ND	2.95	31.4	ug/kg dry	İx	8103032	09/03/08 12:06	09/04/08 14:53			
Aroclor 1221 [2C]		-	ND	7.52	62.8								

Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]			85.6% 103%		65 - 125 % 40 - 150 %	•			# #	
Aroclor 1268 [2C]		*	ND	I.32	31.4	e	•	•	•	1	
Aroclor 1262 [2C]		7	ND	2.10	31.4	त		•	•	7	
Aroclor 1260 [2C]			ND	1.44	31.4	-	đ	•	-		
Aroclor 1254 [2C]		μ.	ND	2.81	31.4			•		Ŧ	
Aroclor 1248 [2C]		п	ND	3.50	31.4		•	•	-	•	
Aroclor 1242 [2C]		•	ND	4.09	31.4	-	•	4	-	•	
Aroclor 1232 [2C]		•	ND	3.32	31.4		•			•	Ĵ.
Aroclor 1221 [2C]		•	ND	7.52	62.8	-		*	*		1

BRI0014-06 (B	-1-45-DUP)	Sol	Soll			Sampled: 08/27/08 11:15					
Aroclor 1016 [2C]	EPA 8082	ND	2.92	31.1	ug/kg dry	lx	8103032	09/03/08 12:06	09/04/08 15:11		
Aroclor 1221 [2C]	-	ND	7.45	62.2	•				A		
Aroclor 1232 [2C]	•	ND	3.28	31.1	H	-	-	h			
Aroclor 1242 [2C]	•	ND	4.05	31.1	π		•		π		
Aroclor 1248 [2C]	"	ND	3.47	31.1				π			
Aroclor 1254 [2C]	-	ND	2.79	31.1		-		•	л		
Areclor [260 [2C]	•	ND	1.43	31.1	-			7			
Aroclor 1262 [2C]	•	ND	2.08	31.1	7			*			
Aroclor 1268 [2C]	•	ND	1.31	31.1	•	•		7	•		
Surrogate(s):	TCX [2C]	·	101%		65 - 125 %	-					
	Decachlorobiphenyl [2C]		111%		40 - 150 %	•					

TestAmerica Seattle

С

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Same and the second Curtis D. Armstrong For Sandra Yakamavich, Project Manager

لخيز

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake **Tri-Cities Goodyear** Project Name: 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Report Created: Liberty Lake, WA 99019 Project Manager: Jeff Leppo 10/29/08 10:48

•	Polychlorinated Biphenyls by EPA Method 8082 TestAmerica Seattle												
Analyte		Method	Result	MDL.	MRL	Units	Dil	Batch	Prepared	Analyzed	 Note		
BRI0014-07	(B-3-15)		So	1		Sampl	ed: 08/2	7/08 13:25	- ,, <u> </u>				
Aroclor 1016 [2C]		EPA 8082	ND	2,39	25.5	ug/kg dry	lx	8103032	09/03/08 12:05	09/04/08 15:28			
Aroclor 1221 [2C]			ND	6.10	50.9				π				
Aroclor 1232 [2C]		,	ND	2.69	25.5				-				
Aroclor 1242 [2C]		•	ND	3.32	25.5		٩	n					
Aroclor 1248 [2C]			ND	2.84	25.5	-							
Aroclor 1254 [2C]		"	ND	2.28	25.5				,				
Aroclor 1260 [2C]			ND	1.17	25.5	*	1			n			
Aroclor 1262 [2C]		•	ND	1.70	25.5			3	-				
Aroclor 1268 [2C]			ND	1.07	25.5		۹	· .	•	-			
Surrogate(s):	TCY [2C]				· · ·								
our ogale(s):	TCX [2C]			82.6%		65 - 125 K				*			
	Decachlorobipher	lyl [2C]		103%		40 - 150 %	•			•			
BR10014-08 (B-3-21) Soli Sampled: 08/27/08 14:05													
Aroclor 1016 [2C]		EPA 8082	ND	2.41	25.7	ug/kg dry	1x	8103032	09/03/08 12:06	09/04/08 15:46			
Aroclor 1221 [2C]			ND	6.15	51.4	•			•				
Aroclor 1232 [2C]		•	ND	2.71	25,7		π						
Aroclor 1242 [2C]			ND	3.35	25.7			,		×			
Aroclor 1248 [2C]		•	ND	2.87	25.7	•				,			
Aroclor 1254 [2C]		-	ND	2.30	25.7	π				π			
Aroclor 1260 [2C]		π.	ND	1.18	25.7			-	н	*			
Aroclor 1262 [2C]			ND	1.72	25.7								
Aroclor 1268 [2C]		•	ND	1.08	25.7			٠					
Surrogate(s):	TCX [2C]			87.6%		65 - 125 %			- <u></u>	,			
	Decachlorobiphen	yl [2C]		99.3%		40 - 150 %	•			*			
BR10014-09 ((B-3-25)		Soi	t		Sample	ed: 08/2	7/08 14:45					
Aroclor 1016 [2C]		EPA 8082	ND	2.47	26.3	ug/kg dry	1 x	8103032	09/03/08 12:06	09/04/08 16:04			
Aroclor 1221 [2C]		•	ND	6.30	52.5	•		•		•			
Aroclor 1232 [2C]			ND	2.77	26.3	×							
Aroclor 1242 [2C]		•	ND	3, 43	26.3			•.	٠				
Aroclor 1248 [2C]		Ē	ND	2.93	26.3	•	•						
\rocfor 1254 [2C]			ND	2.35	26.3	π		•					
aroclor 1260 [2C]			ND	1.21	26.3								
aroclor 1262 [2C]			ND	1.76	26.3	•			π				
Aroclor 1268 [2C]		•	ND	1.10	26.3		-	•		π			
Surrogate(s):	TCX [2C]			105%		65 - 125 %							
	Decachlorobiphen	144.01		120%		40 - 150 %							

TestAmerica Seattle

Acres 64 ÷.,

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:48

	Polychlorinated Biphenyls by EPA Method 8082 TestAmerica Seattle												
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes			
BRI0014-10 (B-3-3	35)	Sol	u		Sampi	- ied: 08/2	7/08 15:00						
Aroclor 1016 [2C]	EPA 8082	ND	2.44	26.0	ug/kg dry	Ix	8103032	09/03/08 12:06	09/04/08 16:22				
Aroclor 1221 [2C]		ND	6.22	51.9			•	•					
Aroclor 1232 [2C]	•	ND	2.74	26.0	•.	-		*	•				
Aroclor 1242 [2C]	•	ND	3.39	26.0	•			-	۳				
Aroclor 1248 [2C]		ND	2.90	26.0	N	•	-						
Aroclor 1254 [2C]	•	ND	2.33	26,0		•	-		•				
Aroclor 1260 [2C]	•	ND	1.19	26.0	• .				*				
Aroclor 1262 [2C]	•	ND	1.74	26.0	π			-	r				
Aroclor 1268 [2C]		ND	1.09	26.0	•	۳	•		•				
Surrogate(s): TCX	[[2C]		89.2%		65 - 125 %	*	· .						
Dec	achlorobiphenyl [2C]		104%		40 - 150 %	-			٠				
BRI0014-11 (B-3-4	6	Sol	J		Sampl	ed: 08/2	7/08 16:25						
Aroclor 1016 [2C]	EPA 8082	ND	2.94	31.3	vg/kg dry	lx	8103032	09/03/08 12:06		- <u>-</u>			
voclor 1221 [2C]		ND	7.50	62.6		. •		•	-				
Aroclor 1232 [2C]	a.	ND	3.31	31.3	•		-						
toclor 1242 [2C]	-	ND	4.08	31.3		-	-		-				
aroclor 1248 [2C]		ND	3.49	31.3	-	۲	•	-	-				
roclor 1254 [2C]	R	ND	2.81	31.3	•	-	-	-	•				
roclor 1260 [2C]	π	ND	1.44	31.3		•		-					
Aroclor [262 [2C]	•	ND	2.09	31.3									

Aroclor 1268 [2C]			1.32	31.3		•	•	*	-
Surrogate(s):	TCX [2C]	85.15	ж		55 - 125 %				
	Decachlorobiphenyl [2C]	103	к		10 • 150 %	•			•

TestAmerica Seattle Contraction of the second - eng

The resulu in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

.....

ſ

11720 NORTH CREEK PXWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake **Tri-Cities Goodyear** Project Name: 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Report Created: Liberty Lake, WA 99019 Project Manager: Jeff Leppo 10/29/08 10:48

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM TestAmerica Seattle												
Analyte	Method	Result	MDL*	MRL	Unita	Dil	Datch	Prepared	Analyzed	Notes		
BRI0014-01 (B-1-16)		Su	oil -		Samp	led: 08/2	27/08 08:30			-		
Acenaphthene	EPA 8270C-SIM	ND	0.00207	0.0104	mg/kg dry	1x	8103030	09/03/08 12:05	09/04/08 21:12	·····		
Acenaphthylene		ND	0.000622	0.0104				*	•			
Anthracene	•	ND	0.000933	0.0104	٠	-	•	-	•			
Benzo (a) anthracene	7	ND	0.000725	0.0104	•			٩				
Benzo (a) pyrene		0.00981	0.000933	0.0104	٩	•		•	•			
Benzo (b) fluoranthene		ND	0.000725	0.0104				,	×			
Benzo (k) fluoranthene	π	ND	0.000933	0.0104				•				
Benzo (ghi) perylene	-	0.00539	0.000725	0.0104		•		-				
Chrysene	π	ND	0.000518	0.0104								
Dibenz (a,h) anthracene		ND	0.000518	0.0104	•	•		-	*			
Huoranthene	з <u>т</u>	0.00290	0.000725	0.0104	•	-						
Fluorene		ND	0.000414	0.0104				F	a			
Indeno (1,2,3 cd) pyrene	π	0.00262	0.000518	0.0104	٩		۳					
1-Methylnaphthalene	۲	ND	0.000933	0.0104			•					
2-Methylnaphthalene	•	ND	0.000414	0.0104								
Naphthalene		ND	0.000329	0.0104		-		-				
Phenanthrene		ND	0,000622	0.0104	-							
Pyrene		0.00338	0.000829	0.0104	•		-	•	7			
Surrogate(s): p-Terphenyl-d14			122%		50 - 147 %							

surrogate(s):	p-i erpnenyi-ai4

BRI0014-02 (B-1-20)		Se	11		Sampl	ed: 08/2	7/08 09:20	·		
Acenaphthene	EPA 8270C-SIM	ND	0.00205	0.0102	mg/kg dry	ix	8103030	09/03/08 12:05	09/04/08 21:37	
Acenaphthylene	•	ND	0.000614	0.0102			•	-	•	
Anthracene	-	ND	0.000921	0.0102		-				
Benzo (a) anthracene		ND	0.000717	0.0102	•					
Benzo (a) pyrene		ND	0.000921	0.0102		π			r.	
Benzo (b) fluoranthene		ND	0.000717	0.0102				n		
Benzo (k) fluoranthene		ND	0,000921	0.0102		*			*	
Benzo (ghi) perylene		ND	0.000717	0.0102	"	*		-		
Chrysene		ND	0.000512	0.0102				-		
Dibenz (a,h) anthracene		ND	0.000512	0.0102			*			
Fluoranthene	n	ND	0.000717	0.0102					n	
Fluorene		ND	0.000410	0.0102	•				π	
Indeno (1,2,3-cd) pyrene	n .	ND	0.000512	0.0102						
1-Methylnaphthalene		ND	0.000921	0.0102	· •	-		-	м	
2-MethyInaphthalene	π	ND	0.000410	0.0102					Π	
Naphthalene		ND	0.000819	0.0102		•				
Phenanthrene	•	ND	0.000614	0.0102	•	-	•			L
Pyrene	•	ND	0.000819	0.0102		•	*	-		Ľ
Surrogate(s): p-Terphenyl-d14			119%		50 - 147 %				π	

TestAmerica Seattle

and the second second

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Curtis D. Amstrong For Sandra Yakamavich, Project Manager

Ċ

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake 2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

Analyte

Tri-Cities Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report Created: 10/29/08 10:48

Notes

Analyzed

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM **TestAmerica** Seattle Method Result MDL* MRL Units Dil Batch Prepared

BRI0014-03 (B-1-26)		So	olt		Sampl	ed: 08/2	7/08 10:00			
Acenaphthene	EPA 8270C-SIM	ND	0.00207	0.0104	mg/kg dry	1x	8103030	09/03/08 12:05	09/04/08 22:02	
Acensphihylene		ND	0.000621	0.0104		•				
Anthracene	•	ND	0.000932	0.0104			1			
Benzo (a) anthracene	•	ND	0.000725	0.0104	•				н	
Benzo (a) pyrene	•	ND	0.000932	0.0104					B	
Benzo (b) fluoranthene	•	ND	0.000725	0.0104		•		•		
Benzo (k) (luoranthene	٠	ND	0.000932	0.0104		•	۳			
Benzo (ghi) perylene	•	ND	0.000725	0.0104	*	•		•	R	
Chrysene	-	ND	0.000518	0.0104		*	•	•		
Dibenz (a,h) anthracene		ND	0.000518	0.0104	τ '		•	•	π	
luoranthene	π	ND	0.000725	0.0104		•	•	-		
luorene	B	ND	0.000414	0.0104	•	•		•	π	
ndeno (1,2,3-cd) pyrene		ND	0.000518	0.0104				•		
-MethyInaphthalene		ND	0.000932	0.0104			•	•	E.	
2-Methylnaphthalene	•	ND	0.000414	0.0104				٠	π	
Vaphthalene	-	ND	0.000828	0.0104			•	•	,	
Phenanthrene		ND	0.000621	0.0104		•	•	-		
Pyrene	•	ND	0.000828	0.0104	•	•	•		•	
Surrogate(s): p-Terphenyl-d14		,	120%							

50 - 147 %

BRI0014-04 (B-1-36)		Soil			Sampl	ed: 08/2	7/08 10:45			
Acenaphthene	EPA 8270C-SIM	ND	0.00223	0.0111	mg/kg dry	1x	8103030	09/03/08 12:05	09/04/08 22:27	
Acenaphthylene	,	ND	0.000669	0.0111	N	۳	•	•	*	
Anthracene	•	ND	0.00100	0.0111	•	-		R	π	
Benzo (a) anthracene	•	ND	0.000780	0.0111	•	•			۳	
Benzo (a) pyrene	•	ND	0.00100	0.0111	-				π	
Benzo (b) fluoranthene	•	ND	0.000780	0.0111		-		P		
Benzo (k) fluoranthene		ND	0.00100	0.0111	•	•	4		π	
Benzo (ghi) perylene	•	ND	0.000780	0.0111	•	•	*		п	
Chrysene	. .	ND	0.000557	0.0111	r					
Dibenz (a,h) anthracene	T	ND	0.000357	0.0111	D		-	-		
Fluoranthene	R	ND	0.000780	0.0111	•			•		
Fluorene		ND	0.000446	0.0111	•	-			-	
Indeno (1,2,3-cd) pyrene	•	ND	0.000557	0.0111		•			n	
1-Methylnaphthalene	н	ND	0.00100	0.0111	•	•	π			
2-Methylnaphthalene	•	ND	0.000446	0.0111	•	•	E	Ħ	π	
Naphthalene	3	ND	0.000892	0.0111		•			Π	
Phenanthrene	•	ND	0.000669	0.0111	•	-		-	π	L
Pyrene	ħ	ND	0.000892	0.0111	-	•		•		
Surrogate(s): p-Terphenyl-dl	4		122%			,		·		

TestAmerica Seattle

The state Ċ

The results in this report apply to the samples analyzed in accordance with the chain of cutlody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 10 of 24

11720 NORTH CREEK PKWY N, SUTTE 400 BOTHELL, WA 98011-8244 PH: (425) 420,9200 FAX: (425) 420,9210 SEATTLE, WA

LFR, Inc. - Liberty Lake 2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

Tri-Cities Goodycar Project Name; Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report Created: 10/29/08 10:48

	Polynuclear Aromatic Hydrocarbons by GC/MS-SIM TestAmerica Scattle									
Analyte	Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Noles
BRI0014-05 (B-1-45)		Soil			Samp	led: 08/2	7/08 11:15		<u> </u>	
Acenaphthene	EPA 8270C-SIM	ND	0.00255	0.0128	ng/kg dry	lx	8103030	09/03/08 12:05	09/04/08 22:53	
Acenaphthylene	•	ND	0.000766	0.0128		-			N .	
Anthracene	я	ND	0.00115	0.0128		-				
Benzo (a) anthracene	*	ND	0.000894	0.0128			,			
Benzo (a) pyrene	-	ND	0.00115	0.0128	•			۳		
Benzo (b) fluoranthene	•	ND	0.000894	0.0128	•		F	ø		
Benzo (k) fluoranthene	•	ND	0.00115	0.0128				π	Ξ	
Benzo (ghi) perylene	•	ND	0,000894	0.0128	π	M	R	-	π	
Chrysene	a	ND	0.000638	0.0128			,			
Dibenz (a,h) anthracene		ND	0.000638	0.0128	F			-	. *	
Fluoranthene		ND	0.000894	0.0128	•	-		н		
Fluorene		ND	0.000511	0.0128		-				
Indeno (1,2,3-cd) pyrene	,	ND	0.000638	0.0128	•	•				
1-Methylnaphthalene	*	ND	0.00115	0.0128		-		-		
2-Methylnaphthalene		ND ·	0.000511	0.0128			٠			
Naphthalene	n	ND	0.00102	0.0128	π	•			n	
Phenanthrene		ND	0.000766	0.0128	•			-		
Pyrene	•	ND	0.00102	0.0128		•	•	•		
Surrogate(s): p-Terphenyl-dl	4		124%							· · · · · ·

BRI0014-06 (B-1-45-DUP)		Soll			Sampl	led: 08/2	7/08 11:15			
Acenaphthene	EPA 8270C-SIM	ND	0.00250	0,0125	mg/kg dry	١x	8103030	09/03/08 12:05	09/04/08 23:18	
Acenaphthylene	•	ND	0.000751	0.0125		8			•	
Anthracene		ND	0.00113	0.0125	,	-		π	-	
Benzo (a) anthracene	•	ND	0,000876	0.0125	•	•		-		
Benzo (a) pyrene		ND	0.00113	0.0125		•		-		
Benzo (b) fluoranthene		ND	0.000876	0.0125				•		
Benzo (k) fluoranthene	π	ND	0.00113	0.0125						
Benzo (ghi) perylene	•	ND	0.000876	0.0125	E.					
Chrysene	T	ND	0.000626	0.0125		π		٩	D	
Dibenz (a,h) anthracene		ND	0.000626	0.0125		π		π		
Fluoranthene	•	ND	0.000876	0.0125	•			-	π	
Fluorene	π	ND	0.000501	0.0125	m		*		л	
Indeno (1,2,3-cd) pyrene		ND	0.000626	0.0125						
1-Methylnaphthalene		ND	0.00113	0.0125	π	•	*		π	
2-Methylnaphthalene		ND	0.000501	0.0125					ø	
Naphthalene		ND	0.00100	0.0125	F					
Phenanthrene		ND	0.000751	0.0125				*	н	L
Pyrene	,	ND	0.00100	0.0125			•	"		
Surrogate(s): p-Terphenyl-d14			134%		50 - 147 %					

TestAmerica Seattle

-----1000 C - 15 Ś

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

Tri-Cities Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report Created: 10/29/08 10:48

				erica Se						<u> </u>
Analyte	Method	Result	MDL•	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0014-07 (B-3-15)		Sc	Ш		Sampled: 08/27/08 13:25					
Acenaphthene	EPA 8270C-SIM	ND	0.00206	0.0103	mg/kg dry	lx	8103030	09/03/08 12:05	09/04/08 23:43	
Acenaphthylene	T	ND	0.000619	0.0103	•	đ	•	•	-	
Anthracene	,	ND	0.000929	0.0103		•	•	7		
Benzo (a) anthracene		ND	0.000722	0.0103	•	•	•	٠		
Benzo (a) pyrene	•	ND	0.000929	0.0103		•	•	-	r!	
Benzo (b) fluoranthene		ND	0.000722	0.0103	•	•	· •		•	
Benzo (k) fluoranthene	8	ND	0.000929	0.0103	•	•	-	۹		
Benzo (ghi) perylene		ND	0.000722	0.0103		π				
Chrysene		ND	0.000516	0.0103	•	•	-			
Dibenz (a,h) anthracene	•	ND	0.000516	0.0103	۲	•	•	-		
Fluoranthene	*	ND	0.000722	0.0103	•	•		•		
Fluorene	•	ND	0.000413	0.0103	π		•	•	π	
Indeno (1,2,3-cd) pyrene	,	ND	0.000516	0.0103	*	,	٠			
1-Methyluaphthalene		ND	0.000929	0.0103		٠		-		
2-Methylnaphthalene	•	ND	0.000413	0.0103	. •			۳	•	
Naphthalene		ND	0.000825	0.0103	•	•		•		
Phenanthrene	•	ND	0.000619	0.0103	•	•		•		
Pyrene		ND	0.000825	0.0103	. •	. .				

BRI0014-08 (B-3-21)		Soll			Sampl	ed: 08/2	7/08 14:05			
Acenaphthene	EPA 8270C-SIM	ND	0.00204	0.0102	mg/kg dry	lx	8103030	09/03/08 12:05		
Acenaphthylene	•	ND	0.000612	0.0102	•	•	π			
Anthracene		ND	0.000918	0.0102		•		-		
Benzo (a) anthracene	•	ND	0.000714	0.0102	•					
Benzo (a) pyrene		ND	0.000918	0.0102	٠	•			•	
Benzo (b) fluoranthene		ND	0.000714	0.0102	٠	•	P			
Benzo (k) fluoranthene	,	ND	0.000918	0.0102		•				
Benzo (ghi) perylene	*	ND	0.000714	0.0102	,	•	P		-	
Chrysene	•	ND	0.000510	0.0102	π		,	-	•	
Dibenz (a,h) anthracene		ND	0.000510	0.0102		•		-		
Fluoranthene		ND	0.000714	0.0102				-	•	
Fluorenc	•	ND	0.000408	0.0102					•	
Indeno (1,2,3-cd) pyrene	•	ND	0.000510	0.0102		•	,			
I-Methylnaphthalene		ND	0.000918	0.0102	•	•	-		π	
2-Methylnaphthalene	•	ND	0.000408	0.0102			۲		7	
Naphthalene		ND	0.000816	0.0102	•				•	
Phenanthrene	•	ND	0.000612	0.0102	п	•		R		L
Pyrene	•	ND	0.000816	0.0102		•			•	
Surrogate(s): p-Terphenyl-d14			140%	-	50 - 147 %	•			r	

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-9244 PH: (425) 420.9200 FAX: (425) 420.9210

 LFR, Inc. - Liberty Lake
 Project Name:
 Tri-Cities Goodyear

 2310 N. Molter Rd., Suite 101
 Project Number:
 027-30160-01
 Report Created:

 Liberty Lake, WA 99019
 Project Manager:
 Jeff Leppo
 10/29/08 10:48

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM TestAmerica Seattle										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0014-09 (B-3-25)		Soil		-	Samp	led: 08/2	7/08 14:45			
Acenaphthene	EPA 8270C-SIM	ND	0.00213	0.0107	mg/kg dry	1x	8103030	09/03/08 12:05	09/05/08 00:34	
Acenaphthylene		ND	0.000639	0.0107			•	-	•	
Anthracene	•	ND	0.000959	0.0107	۲		•		•	
Benzo (a) anthracene	п	ND	0.000746	0.0107			-		•	
Benzo (a) pyrene		ND	0.000959	0.0107			•	-	•	
Benzo (b) fluoranthene	n	ND	0.000746	0.0107			· •	P	•	
Benzo (k) fluoranthene		ND	0.000959	0.0107	٠	-		р	•	
Benzo (ghi) perylene	•	ND	0.000746	0.0107		•		•	π	
Chrysene		ND	0.000533	0.0107					•	
Dibenz (a,h) enthracene		ND	0.000533	0.0107		-	٠		n	
Fluoranthene	п	ND	0.000746	0.0107		•	•		•	
Fluorene	•	ND	0.000426	0.0107		٠				
Indeno (1,2,3-cd) pyrene	u	ND	0.000533	0.0107		•	۳			
1-Methylnaphthalene	•	ND	0.000959	0.0107		•				
2-Methylnaphthalene	•	ND	0.000426	0.0107	•	F				
Naphthalene	-	ND	0.000852	0.0107		•	,		-	
Phenanthrene	•	ND	0.000639	0.0107		-		•		
Pyrene		ND	0.000852	0.0107	•	•	-	•		
Surrogate(s): p-Terphenyl-d14			129%		50 - 147 %	*			π	

BRI0014-10 Soil (B-3-35) Sampled: 08/27/08 15:00 Acenaphthene EPA 8270C-SIM ND 0.00213 0.0106 09/03/08 12:05 mg/kg dry 1x 8103030 09/05/08 00:59 Acenaphthylene 0.000638 ND 0.0106 h Anthracene ND 0.000957 0.0106 F Benzo (a) anthracene 0.000745 ND 0.0106 77 Benzo (a) pyrene ND 0.000957 0.0106 . . Benzo (b) fluoranthene ND 0.000745 0.0106 . Benzo (k) fluoranthene NÐ 0.000957 0.0106 Benzo (ghi) perylene 0.000745 ND 0.0106 Chrysene ND 0.000532 0.0106 Dibenz (a,h) anthracene 0.000532 ND 0.0106 Fluoranthene 0.000745 ND 0.0106 Fluorene 0.000425 0.0106 ND Indeno (1,2,3-cd) pyrene ND 0.000532 0.0106 1-MethyInaphthalene ND 0.000957 0.0106 2-Methylnaphthalene ND 0.000425 0.0106 Naphthalene ND 0.000851 0.0106 Phenanthrene ND 0.000638 0.0106 \mathbf{L} Pyrene ND 0.000851 0.0106 . , Surrogate(s): p-Terphenyl-d14 125% . 50 - 147 %

TestAmerica Seattle

The results in this report apply to the samples analysed is accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

Tri-Citics Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report Created: 10/29/08 10:48

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM **TestAmerica Seattle**

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BR10014-11 (B-3-46)		Se	bil		Samp	led: 08/2	27/08 16:25			
Acenaphthene	EPA 8270C-SIM	ND	0.00249	0.0124	mg/kg day	lx	8103030	09/03/08 12:05	09/05/08 01:24	-
Acenaphthylene	•	ND	0.000747	0.0124	•		•	-	7	
Anthracene	•	ND	0.00112	0.0124	•	•	,	•	•	
Benzo (a) anthracene		ND	0.000871	0.0124		٠		•	•	
Benzo (a) pyrene	•	ND	0.00112	0.0124	•		3	•	н	
Benzo (b) fluoranthene	•	ND	0.000871	0.0124	-	٩	'n	•	•	
Benzo (k) fluoranthene	л	ND	0.00112	0.0[24	-	•				
Benzo (ghi) perylene		ND	0.000871	0.0124		•	e	•	• •	
Chrysene		ND	0.000622	0.0124	-				•	
Dibenz (a,h) anthracene	•	ND	0.000622	0.0124	•	•			r r	
Fluoranthene	•	ND	0.000871	0.0124	•		•	•	-	
Fluorene	•	ND	0.000498	0.0124		-	•	•	-	
Indeno (1,2,3-cd) pyrene	n	NÐ	0.000622	0.0124	•	•	•	-	-	
1-Methylnaphthalene		ND	0.00112	0.0124	•	•	•	•	•	
2-Methylnaphthalene	•	ND	0.000498	0.0124	• .	۲	*	•		
Naphthalene		ND	0.000995	0.0124				•	Б	
Phenanthrene	•	ND	0.000747	0.0124	•	•	•	-	•	
Pyrene	•	ND	0.000995	0.0124	•	· •	-	•		
Surrogate(s): p-Terphenyl-dl	4				50 - 147 %				•	

Surrogate(s): p-Terphenyl-d14

50 - 147 %

TestAmerica Seattle

61

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 24

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

les Americ

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc. - Liberty LakeProject Name:Tri-Cities Goodyear2310 N. Molter Rd., Suite 101Project Number:027-30160-01Report Created:Liberty Lake, WA 99019Project Manager:Jeff Leppo10/29/08 10:48

Analyte		Method	Result	MDL.	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0014-01	 (B-1-16)		Soi	1		Sam	pled: 08/2	7/08 08:30			
)ry Weight		BSOPSPL003R0 8	95.9	1.00	1.00	%	XI	8104043	09/04/08 14:35	09/05/08 00:00	
BRI0014-02	(B-1-20) _		Sol	I		Sam	pled: 08/2	7/08 09:20			
Dry Welght		BSOPSPL003R0 8	96.7	1.00	1.00	%	lx	8104043	09/04/08 14:35	09/05/08 00:00	
BR10014-03	(B-1-26)		Sol	ι		Sam	pled; 08/2	:7/08 10:0 0			
Dry Welght		BSOPSPL003R0 8	96.6	1.00	1.00	%	1 x `	8104043	09/04/08 14:35	09/05/08 00:00	
BRI0014-04	(D-1-36)		Soi	l		Sam	pled: 08/2	7/08 10:45			
)ry Weight		BSOPSPL003R0 8	90.0	1.00	1.00	%	1x	8104043	09/04/08 14:35	09/05/08 00:00	
BR10014-05	(B-1-45)		Sol	1		Sam	pled: 08/2	7/08 11:15			
Dry Weight		BSOPSPL003R0 8	78.3	1.00	1.00	%	İx	8104043	09/04/08 14:35	09/05/08 00:00	
3RI0014-06	(B-1-45-DUP)		Sol	I		Sam	pled; 08/2	7/08 11:15			
Dry Weight		BSOPSPL003R0 8	79.1	1.00	1.00	%	İx	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0014-07	(B-3-15)		Soi	ł		Sam	pled: 08/2	7/08 13:25			
ory Welght		BSOPSPL003R0 8	98.6	1.00	1.00	%	lx	8104044	09/04/08 [4:36	09/05/08 00:00	
BRI0014-08	(B-3-21)	·	Sol	L.		Sam	pled: 08/2	7/08 14:05			
Dry Weight		BSOPSPL003R0 8	98.0	1.00	1.00	%	İx	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0014-09	(B- 3-25)		Soi	E		Sam	pled: 08/2	7/08 14:45			
)ry Weight	· · · · · · · · · · · · · · · · · · ·	BSOPSPL003R0 8	93.9	1.00	1.00	%	lx.	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0014-10	(B-3-35)		Soi	ſ		Sam	pled: 08/2	7/08 15:00			
Dry Welght		BSOPSPL003R0 8	95.6	1.00	1.00	%	Ix	8104044	09/04/08 14:36	09/05/08 00:00	
	(B-3-46)		Soi	[Sam	pled: 08/2	7/08 16:25			

Curtis D. Amistrong For Sandra Yakamavich, Project Manager

Page 15 of 24

SEATTLE, WA 11720 NORTH CREEK PKWY N, 5UITE 400 BOTHELL, WA 98011-9244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty LakeProject Name:Tri-Cities Goodyear2310 N. Molter Rd., Suite 101Project Number:027-30160-01Liberty Lake, WA 99019Project Manager:Jeff Leppo

Report Created:

10/29/08 10:48

Physical Parameters by APHA/ASTM/EPA Methods TestAmerica Seattle											
Analyte	Method	Result	MDL ⁴	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
BRI0014-11 (B-3-46)		So	Ð		Sam	pled: 08/2	7/08 16:25				
Dry Welght	BSOPSPL003R0	79.0	1.00	1.00	%	lx	8104044	09/04/08 14:36	09/05/08 00:00		

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shalt not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

Page 16 of 24

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake				Project Na			ics Good	lyear						
2310 N. Molter Rd., Suite 101				Project N	unber: (27-301	60-01						Report Create	
Liberty Lake, WA 99019	_			Project M	anager:	leff Lep	ро						10/29/08 10:	:48
Semivolatice	irolcun Pro	hotsby A	12 AST 1 1895 LAND A	1. A. P. S. S. M. C. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M. S. M	til %Silitera(e nemskalider		14/14 Ale 14 14	I albor	atory	Quality	Con	roluRe	nults (%)	
QC Batch: 8104017	Soll Pre	paration M	lethod: El	PA 3550B				_	_		-		<u></u>	
Analyte	Method	Result	MDL	• MRI	, Units	DII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8104017-BLK1)								Extr	acted:	09/04/08 11	:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.60	10.0	mg/kg wet	Ix							09/04/08 18:30	
Lube Oil Range Hydrocarbons	•	ND	3.19	25.0	. •	•	••						•	
Surrogate(s): 2·FBP Octacosane		Recovery:	88.9% 98.8%	 I	imits: 54-1489 62-142								09/04/08 18:30	
LCS (8104017-BS1)								Extr	acted:	09/04/08 11	1:25			
Diesel Range Hydrocarbons	NWTPH-Dx	67.3	1.60	10.0	mg/kg wet	lx.		66.7	101%	(78-129)	••		09/04/08 18:56	
Surrogate(s): 2-FBP		Recovery	91.8%			<u>-</u> ،							09/04/08 18:56	
Ociacosane		-	97.8%		62-142	к -							•	
Duplicate (8104017-DUP1)				QC Source	ee: BRI0013-0	1		Extr	acted:	09/04/08 13	;25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	I.64	10.2	mg∕kg day	lx	ND		~		NR	(40)	09/04/08 19:23	
Lube Oil Range Hydrocarbons		ND	3.26	25.6	•	•	ND		•-		NR	π.	*	
Surrogate(s): 2-FBP Octacosane		Recovery:	82.6% 101%		Limits: 54-148 62-142								09/04/08 19:23	
Duplicate (8104017-DUP2)				QC Sour	ce: BR10014-0	1		Extr	acted:	09/04/08 1:	1:25			
Dresel Range Hydrocarbons	NWTPH-Dx	ND	1.66	10.4	mg/kg dry	lx	ND	-		•	NR.	(40)	09/04/08 19:48	-
Lube Oil Range Hydrocarbons		ND	3.32	26.0		•	4.13					•	۹	
Surrogate(s): 2-FBP Octacosane		Recovery:	82.2% 100%	Ĺ	Limits: 54-148 62-142								09/04/08 19:48 "	
Matrix Spike (8104017-MS1)				QC Sour	ce; BR10013-1	1	<u> </u>	Extr	acted:	09/04/08 1	1:25			
Diesel Range Hydrocarbons	NWTPH-Dx	59.7	1.64	10.2	- mg/kg dry	1x	ND	68.2	87.5%	(46-155)			09/04/08 20:14	
Surrogate(s): 2-PBP Octacosane		Recovery:	77.0% 90.2%		Limits: 54-148 62-142					-			09/04/08 20:14 •	!

TestAmerica Seattle

Current

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

2310 N. Mo	Liberty Lake olter Rd., Suite 101 e, WA 99019				Project Na Project Na Project M	umber:	Tri-Ci 027-301 Jeff Leg		lyear					Report Create 10/29/08 10:	
		Polychiorin	uted Binh	ənyi diy tal	Sugar Sugar	11830822	Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	tow@r	illty (onno	JIRe soft	s. Stati		rol Courter War and Aros	
QC Bate	h; 8103032	Soil Pr	eparation N	fethod: EP	A 3550B	•		-		-					
Analyte -		Method	Result	MDL*	MRL	. Units	DII	Source Result	Spike Amt	% REC	(Limits)	RPD	(Linits)	Analyzed	Notes
Djank (810303	2-BLK1)							•	Estr	acted:	09/03/08 12	::06			
Aroclor 1016 [2C]		EPA 8082	ND	2.35	25.0	ug/kg wet	lх	-	-					09/04/08 10:06	
Aroclor 1221 [2C]		•	ND	5.99	50.0		•							•	
Aroclor 1232 [2C]		•	ND	2.64	25.0		,		••					P	
Aroclor 1242 [2C]			ND	3.26	25.0	Ŧ	٠							-	
Aroclor 1248 [2C]		•	ND	2.79	25.0	•								•	
Arcelor 1254 [2C]		•	ND	2.24	25.0	۳		-					-	-	
Aroclor [260 [2C]			ND	1.15	25.0	•	•							•	
Aroclor 1262 [2C]			ND	1.67	25.0	•	•						••	-	
Arcelor 1268 [2C]			ND	1.05	25.0									•	
Surrogale(s);	TCX [2C] Decachlorobiphenyl [2C]	·	Recovery:	87.8% 103%		imils: 65-125: 40-150				-				09/04/08 10:06 "	
LCS (8103032	-BS1)								Extr	acted:	09/03/08 12	2:06			
Aroclor 1016 [2C]		EPA 8082	78.2	2.35	25.0	ug/kg wet	١x		83.3	93.8%	(80-120)		•	09/04/08 10:24	(
Atoclor 1260 [2C]		•	80.0	1.15	25.0		•	-	•	96.0%	(70-124)			•	ų
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	84.0% 93.3%	L	imits: 65-125 40-150								09/04/08 10:24 •	
Matrix Spike	(8103032-MS1)			.	QC Sourc	* BRI0014-()1		Extr	acted:	09/03/08 12	:06			
Aroclor 1016 [2C]		EPA 8082	85.7	2.41	25.6	ug/kg dry	Ix	ND	85.5	100%	(68-132)	Ŀ		09/04/08 10:42	
Aroclor [260 [2C]		-	90.7	1.18	25.6	٠		ND		106%	(59-131)	-	••	•	
Surrogate(s).	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	91.3% 100%	L	imits: 65-125 40-150								09/04/08 10:42	
<u>Matrix Spike</u> D	up (8103032-MSD1)			QC Sourc	æ DRI0014-6	11		Extr	acted:	09/03/08 12	:06			
Aroclor 1016 [2C]		EPA 8082	84.0	2,45	26.1	ug/kg dry	1x	ND	86.9	96.6%	(68-132)	1.98%	6 (20)	09/04/08 11:00	
Aroclor 1260 [2C]			90.2	1.20	26.1			ND	•	104%	(59-131)		* (35) % (35)		
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery	84.8% 94.6%	L	lmits: 65-125: 40-150			•		. ,			09/04/08 11:00 "	

TestAmerica Seattle

-Y-C

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory. {

Page 18 of 24

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 96011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake **Tri-Cities** Goodyear Project Name: 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Report Created: Liberty Lake, WA 99019 10/29/08 10:48 Project Manager: Jeff Leppo

Polynuclear Aromatic Hydrocathons by GG/MESIM - Dationatory Quality Control Results -Relfanterienstealije

QC Batch: 8103030 Soil Preparation Method: EPA 3550B

0.776

0.782

0.785

0,755

0,839

0,778

0.809

0.762

0.737

0.561

0.523

0.571

0.849

0.000900

0.000700

0.000900

0.000700

0.000500

0.000500

0.000700

0.000400

0.000500

0.000900

0.000400

0.000800

0.000600

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

Analyte	Method	Result	MDL ⁴	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Linits)	Analyzed	Notes
Blank (8103030-BLK1)								Extr	acted:	09/03/08 12	2:05			
Acenaplathene	EPA 8270C-SIM	ND	0.00200	0.0100	mg/kg wet	İx	-			•-			09/04/08 15:18	
Acenaphthylene		ND	0.000600	0.0100					••	••			-	
Anthracene	•	ND	0.000900	0.0100	н		•-	••		•			•	
Benzo (a) anthracene	•	ND	0.000700	0.0100								-	•	
Benzo (a) pyrene	•	ŅD	0.000900	0.0100	۲	•								
Benzo (b) fluoranthene	•	ND	0.000700	0.0100	F	F			••					
Benzo (k) fluoranihene		ND	0.000900	0.0100	Ħ	-				-			-	
Benzo (ghi) perviene	•	ND	0.000700	0.0100	-	•					•-		•	
Chrysene	•	ND	0.000500	0.0100	•	٠			~			**	•	
Dibenz (a,h) anthracene		ND	0.000500	0.0100	×	-				_			•	
Fluoranthene	•	ND	0.000700	0.0100	• .		-						•	
Fluorene	•	ND	0.000400	0.0100		۲						•-	π	
Indeno (1,2,3-cd) pyrene	•	ND	0.000500	0.0100		,		••					*	
1-Methylnephthalene	•	ND	0,000900	0.0100	i.		-						-	
2-Melhylnaphthalene	•	ND	0.000400	0.0100	•	•							7	
Naphthalene	•	ND	0.000800	0.0100		,				••	-	••	*	
Phenanthrene	•	ND	0.000600	0.0100	,	٠				•-	••		•	
Рутепе	•	ND	0.000800	0.0100	,	Ŧ							4	
Surrogate(s): p-Terphenyl-d14		Recovery:	109%	L	imits: 50-147%	•							09/04/08 15:18	
LCS (8103030-BS1)								Extr	acted:	09/03/08 12	1:05			
Acenaphthene	EPA 8270C-SIM	0.666	0.00200	0.0100	mg/kg wet	lx		0.667	100%	(70-125)			09/04/08 17:24	
Acenaphthylene	,	0.804	0.000600	0.0100	•	٠	••		121%	(70-133)		•-	π	
Anthracene		0.859	0.000900	0.0100	*	•			129%	(70-152)			п	
Benzo (a) anthracene		0.762	0.000700	0.0100	٠				114%	(60-125)	••	••	R.	

TestAmerica Seattle

Benzo (a) pyrene

Benzo (b) fluoranthene

Benzo (k) fluoranthene

Benzo (ghi) perylene

Dibenz (a,h) anthracene

Indeno (1,2,3-cd) pyrene

I-Methylnaphthalene

2-Methylnaphthalene

Chrysene

Fluorene

Fluoranthene

Naphthalene

Phonanthrene

-23 100 کر ک

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

--

116%

117%

118%

113%

126%

117%

121%

114%

111%

84.1%

78.4%

85.6%

|27%

--

-

••

--

--

--

-

(64-134)

(62-147)

(60-144)

(57-137)

(70-139)

(56-140)

(70-141)

(76-132)

(55-138)

(46-128)

(41-125)

(43-125)

(73-125)

without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

ы

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019				Project Na Project Nu Project Ma	umber:	Tri-Ci 027-301 Jeff Lep		year					Report Creat 10/29/08 10	
	olynuclear Ai	omettie HL	THE MAY PROPERTY AND AND AND AND AND AND AND AND AND AND	Sand Barrier Same	/MS SIMI	- Lab	ovatory (Quality	Con	troliRes	iits A			
QC Batch: 8103030	Soll Pre	paration M	ethod: EP/	A 3550B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
LCS (8103030-BS1)								Extr	acted:	09/03/08 12	:05			
Рутепе	EPA 8270C-SIM	0.710	0.000800	0.0100	mg/kg wet	lx		0.667	106%	(68-140)		1	09/04/08 17:24	
Surrogate(s): p-Terphenyl-d14		Recovery:	100%	L	.imits: 50-1475	К. Т.							09/04/08 17:24	
Matrix Spike (8103030-MS1)				QC Sourc	e: BRI0013-0	01		Extr	acted:	09/03/08 12	:05			
Acenaphthene	EPA	0.682	0.00202	0.0101	mg/kg dry	1 x	ND	0.673	101%	(67-132)			09/04/08 17:49	
Acenaphthylene	8270C-SIM	0.816	0.000606	0.0101			ND		121%	(65-142)		-		
Anthracene		0.884	0.000909	0.0101			ND		131%	(66-158)				
Benzo (a) anthracene		0.786	0.000707	0.0101			ND		117%	(41-156)				
Вепzo (а) ругепе	*	0.798	0.000909	0.0101			ND		119%	(52-148)				
Berrzo (b) fluoranihene		0.798	0.000707	0.0101			ND		119%	(53-151)				
Benzo (k) fluoranthene		0.800	0.000909	0.0101			0.00352	-	118%	(46-161)				
Benzo (ghi) perylene	-	0.787	0.000707	0.0101			ND		117%	(26-154)				
Chrysene	-	0.866	0.000505	0.0101	٩		ND		129%	(55-155)				
Dibenz (a,h) anthracene		0.805	0.000505	0.0101			ND		120%	(27-157)				1
Fluoranthene		0.824	0.000707	0.0101			0.00124	π	122%	(46-172)			۰.	
Fluorene	•	0.770	0.000404	0.0101			ND	'n	114%	(66-143)				
Indeno (1,2,3-od) pyrene		0.764	0.000505	0.0101	. •		ND		114%	(24-159)				
1-Methylnaphthalene		0.548	0.000909	0.0101			ND		81.4%		_			
2.Methyluaphthalene		0.515	0.000404	0.0101		۳	ND		76.6%					
Naphthalenc		0.569	0.000808	0.0101			ND	,	84.5%	. ,				
Phenanthrene		0,874	0.000606	0.0101		,	ND		130%	(63-139)				
Pyrene	-	0.765	0.000808	0.0101			ND	-	114%					
Surrogale(s): p-Terphenyl-d14		Recovery:	109%		imits: 50-147:	% *							09/04/08 17:45	,
Matrix Spike Dup (8103030-MS	904)			OC Source	æ BRI0013-(11		Estr	acted	09/03/08 12	-65	•		
Acenaphthene	EPA	0.683	0.00207	0.0103	mg/kg dry	lx	ND	0.689	99.1%			····· ·% (50)	09/04/08 18:15	
-	8270C-SIM													
Acenaphthylene	-	0.825	0.000620	0.0103	-	-	ND	-	120%	. ,	1.119			
Anthracene Roome (a) anthracene	-	0.906	0.000930	0.0103	•	-	ND	-	132%		2.559			
Benzo (a) anthracene Banza (a) autorac	-	0.785	0.000723	0.0103	a =	-	D ND	. [114%					
Benzo (a) pyrene Benzo (b) (horsethere	-	0.802	0.000930	0.0103	,		ND		116%	• •	0.526			
Benzo (b) Auoranthene Benzo (c) Auoranthene		0.800	0.000723	0.0103	-		ND	-	116%	• •	0.242			
Benzo (k) fluoranthene Benzo (abi) per dere		0.794	0.000930	0.0103			0.00352		115%	• •				
Benzo (ghi) perylene	-	0.793	0.000723	0.0103	-	-	ND	-	115%					
Chrysene Dibauz (e. b.) anthenann		0.868	0.000517	0.0103	-		ND	-	126%	• •				
Dibenz (a,h) anthracene		0.822	0.000517	0.0103	-	-	ND		119%			% (50)		
Fluoranthene		0.837	0.000723	0.0103		-	0.00124		121%		1.579			
Fluorene	-	0.769	0.000413	0.0103	*	-	ND		112%			% (52)		
Indeno (1,2,3-cd) pyrena	-	0.776	0.000517	0.0103	π		ND		113%	(24-159)	1.48	% (43)	-	

TestAmerica Seattle

Car Francis

The results in this report apply to the samples analyzed in accordance with the chain of eutody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 99011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:48
—,—,-	· · ·		

Polynuclear Acomatic Hydrocarbon by GC/MSSMMC Dabor tory Outlify Control Results

QC Batch: 8103030 Soll Preparation Method: EPA 3550B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limii	is) Analyzed	Notes
Matrix Spike Dup (8103030	-MSD1)			QC Sourc	e: BR10013-01			Ext	acted:	09/03/08 12	:05			
I-Methyinaphthalene	EPA 8270C-SIM	0.573	0.000930	0.0103	mg/kg dry	İx	ND	0.689	83.2%	(39-140)	4.48%	(50)	09/04/08 18:15	
2-Methylnaphthalene	•	0.536	0.000413	0.0103	•	•	ND	۳	77.8%	(32-139)	3.99%	•	r!	
Naphihalene		0.585	0.000827	0.0103	۳	•	ND	•	84.9%	(38-134)	2.75%	r	ø	
Phenanthrene	•	0,885	0.000620	0.0103	*	•	ND		128%	(63-139)	1.25%	•	•	
Ругепе	•	0.731	0.000827	0.0103	*	•	ND	•	106%	(51-172)	4.56%	•	-	
Surrogate(s): p-Terphenyl-d14		Recovery:	99.7%		imits: 50-147%								09/04/08 18:15	

TestAmerica Seattle

Sector States C 0

Curtis D. Arnistrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 96011-8244

PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake **Tri-Citics** Goodyear Project Name: Report Created: Project Number: 027-30160-01 2310 N. Molter Rd., Suite 101 10/29/08 10:48 Project Manager: Jeff Leppo Liberty Lake, WA 99019 Physical Parameters by AVEITAVASTEMEDACMethodise Teabhratory Quality Control Results Heiramorieuscalile QC Batch: 8104043 Soll Preparation Method: Dry Weight Spike ⁹⁴ (Limits) Amt REC event and a second seco Source (Limits) Analyzed MDL* MRL Units DII Notes Analyte Method Result Result Extracted: 09/04/08 14:35 Blank (8104043-BLK1) 1x 09/05/08 00:00 Dry Weight BSOPSPL00 99.8 1.00 1.00 % •--3R08 QC Batch: 8104044 Soll Preparation Method: Dry Weight REC (Limits) Spike % (Limits) Analyzed Source Notes Analyte Method Result MDL* MRL Units Dil Amt Result Extracted: 09/04/08 14:36 Blank (8104044-BLK1) BSOPSPL00 % ١x --09/05/08 00:00 Dry Weight 100 1.00 1.00 3R08

TestAmerica Seattle

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear		
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	•	Report Created:
Liberty Lake, WA 99019	Project Manager.	Jeff Leppo		10/29/08 10:48

CERTIFICATION SUMMARY

TestAmerica Seattle

Method	Matrix	Nelao	Washington
BSOPSPL003R08	Soil		
EPA 8082	Soil	Х	х
EPA 8270C-SIM	Soil	х	X .
NWTPH-Dx	Soil		Х

Any abnormalities or departures from sample acceptance policy shall be documented on the 'Sample Receipt and Temperature Log Form' and 'Sample Non-conformance Form' (if applicable) included with this report.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Samples collected by TestAmerica Field Services personnel are noted on the Chain of Custody (COC).

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 23 of 24

SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc I 2310 N. Molt	er R	d., Suite 101	Project Name: Project Number: Project Manager:	Tri-Cities Goodyear 027-30160-01	Report Created: 10/29/08 10:48
Liberty Lake,	WF	4 99019	Project Manager.	Jeff Leppo	10/29/08 10:46
			Notes and Definit	l001v2	
Report Spec	ific	Notes:			
A-01	-	Not included in average calculation			
J .	-	Estimated value. Analyte detected at a level (MDL). The user of this data should be awar	• •		Method Detection Limit
L	-	Laboratory Control Sample and/or Laborator deteoted, data not impacted.	ry Control Sample Duplicate	e recovery was above the acceptance lim	its. Analyte not
L1 -	-	Laboratory Control Sample and/or Laborator	ry Control Sample Duplicate	e recovery was above acceptance limits.	

Q3 - The chromatographic pattern is not consistent with diesel fuel.

Laboratory Reporting Conventions:

wei	-	Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
đry	-	Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
NR/NA	-	Not Reported / Not Available
ND	-	Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
DET	-	Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

- RPD RELATIVE PERCENT DIFFERENCE (RPDs colculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced escept in full, without the written approval of the laboratory.

www.testamericainc.com

509-924-9200 FAX 924-9200 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 DATE: 6/24/08 TA WO ID , 9 9 OTHER Specify: Turnurnund Requests less than sumdered now incore Rush Charges 2+ 5 3+ 201 90-5 108 5 5 9 425-420-9200 FAX 420-9210 Ē Work Order #: BRIDD14 5 [-[~] EAOIS (,) S TURNAROUND REQUEST DA He 1 ME LOCATION / ha Busheets Days * ALV. FIRM TA-SEA # OF CONT. 4 4 4 4 Ц Ч H 4 |2000 W International Airport Rd Stc A10, Anchorage, AK 99502-1119 11922 E. First Ave. Spokane, WA 99206-5302 9405 SW Nimbus Ave. Beaverton, OR 97008-7145 11720 North Creck Pkwy N Suite 400, Bothell, WA 9K011-R244 MATRIX (W.S.O) HRM: _____ [=]f レ \sim Ś 5 ς 5 \checkmark ŝ S F. PRINT NAME: Francisco Lung KECTUVED BY: 🗾 אקטקואקס אין PRINT NAME: REQUESTED ANALYSES PRESERVATIVE क्ष/म्र/वि INVOICE TO: Jeff CHAIN OF CUSTODY REPORT 1435 P.O. NUMBER: DATE TIME DATE TIME HYJ 8 1 878 H-r Rd, 4 101 THA \mathcal{R} Test ANALITICAL TESTING CORPORATION Ŷ. 1500 0320 1000/ 104S Still 0830 1405 1325 FIRM: 1115 FIRM: 11/5 SAMPLING DATE/TIME <u>--3₀₩€°-0</u>1 8/24/08 Drarid Clauser R-1-45-DUP 2 PROJECT NUMBER: 027 SAMPLED BY: FYC CLIENT SAMPLE IDENTIFICATION B-1-45 8-1-36 18-3- 2S B-1-20 VB-3-15 12-3-21 B-1-26 うら 1B-1-16 B-3-35 B IDDITTONAL REMARKS: CLIENT: LFR PHONE SD1-PROJECT NAME: REPORT TO: ADDRESS: SELEASED BY: RINT NAME: PRINT NAME: COURSE VER 05 1000 > 2

Note: By relinquishing samples to TestAmerica, client agrees to pay for the services requested on this chain of custody form and for any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice unless otherwise contracted. Sample(s) will be disposed of after 30 days unless otherwise contracted.

AIN OF CUSTODY REPORT Work Order #: Ext_DOM / INNOTE TO: IL-PPO	Test/	Test/merica	™ ₹	-		· ·	200	 11720 North Creek Pkwy, N Suite 400. Bathell, WA 98011-8244 11922 E. First Ave. Spokenc, WA 99206-5302 9405 SW Nimbus Ave, Besverton. OR 97008-7145 2000 W International Airport Rd Ste AI.0, Anchorage, AK 99502-1119 	11720 North Creek Pkwy N Suite 400, Bethell, WA 98611-8244 11922 E. First Ave. Spokene, WA 99266-5302 9405 SW Nimbus Ave. Beaverton. OR 97008-7145 W International Airport Rd Sto A10, Anchorage, AK 99502-1119	400. Bathell, Ive. Spokene, ve, Beaverton 0, Anchorage	k. Pkwy. N Suite 400. Bethell, W.A. 98011-k244 11922 E. First Ave. Spokenec, W.A. 99206-5302 5 SW Nimbus Ave. Beaverton. OR 97008-7145 irport Rd Ste A10. Anchorage. AK 99502-1119	425-420-9200 509-924-9200 503-906-9200 907-563-9200	FAX 420-9210 FAX 924-9290 FAX 904-9210 FAX 563-9210
M. Molture R.d. is Ser 101 Devotes To. C.M. Letter M. Molture R.d. is Ser 101 March R.G. I. March R.G. I. M. Molture R.d. is Ser 101 March R.G. I. March R.G. I. M. Molture R.d. is Ser 101 March R.G. I. March R.G. I. M. Molture R.d. is Ser 101 March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. March R.G. I. Marc. I. <td< th=""><th></th><th></th><th>CHAIN C</th><th>-</th><th>TODY</th><th>REPORT</th><th></th><th></th><th></th><th></th><th>Work Order</th><th># BRT</th><th>2014</th></td<>			CHAIN C	-	TODY	REPORT					Work Order	# BRT	2014
12. Image: March 1 Sec: (St1) 555 - 756 Rownows Rownows Rownows 72. Fusc (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Sec: (St1) 555 - 756 Rownows Rownows Rownows Rownows 22.3 Rownows Rownows Rownows Rownows Rownows Rownows 22.3 Rownows Rownows Rownows Rownows Rownows Rownows 23.3 Rownows Rownow	CLIENT: LFR				INVOICE	14	Leppe				TUR	NAROUND RE	QUEST
S35- 742d/ Internet Exame Information contract measure internet and measure internet measure in	×1 723	olter Rd , St [0]	21				~				~	In Bustacts Days satic & Inoganic Ani S	
PRESERVATIVE PRESERVATIVE REPLIC REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE REQUESTED AVALYESS TETTINE RECUESTED AVALYESS TETTINE RECUESTED AVALYESS TETINE RECUESTED AVALYESS TE	PHONE (SDP) 535-7225	FAX: (501) 535- 736			P.O. NUN						J	Hydrocartion	ן ן (
REQUESTED ANALYSES COTTAR Section RETINE R.A. TOLENTED ANALYSES - Transmithane term take in an induction of the section	PROJECT NAME: Clark	leris		-		PRESI				-			<u>5</u> -
Sampling Barrentin Barrentin B/271/081 1623 X X R T X Some market X Some	PROJECT NUMBER: 027-	30160-01				REQUESTI	ED ANALYSES		_		OTHER	R Specify	
Swartung burtimes BC21/08 EC EC EC EC EC 9/21/08 1625 X X X 1 - 9/21/08 1625 X X X 1 - 9/21/08 1625 X X X 1 - 9/21/08 1625 X X X 1 - 9/21/08 1625 X X X 1 - 1 1 1 1 1 - - 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAMPLED BY: TTC			 						 	- Turnumul Reque	ses less than standard a	nay incur Rush Churles
46 8/21/08 625 X X X 10 10 10 10 10 10 10 10 10 10 10 10 10 1	CLIENT SAMPLE	SAMPLING DATE/TIME			<u> </u>								ION TA
Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All Market All	\$-3-4C		メス	X				 			Ś		- 11
The second se		1											
Normalization Normalization Normalization Normalization Normalization Normalization Normalization Normalization Normalization Normalization	-					· · ·							
Mathematical Contraction Mathematical Co													
Description Description Description Description Arriel Courter State Description Description Arriel Courter State Description Description Arriel Courter State Description Description Arriel Courter State Description Description Arriel Courter State Description Description Based State Description Description More Description True: True: Description More Description True: True: Description	4												
Dotte B/L21/08 Received on this chain of custody form and for any additional analyses performed on this project.	5												
Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date B/L2Y/08 RECEVENDENT MILE Date MILE MILE MILE Date MILE RECEVENDENT MILE Date MILE MILE MILE Date MILE RECEVENDENT MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE MILE													
Mathematical M													
The part of the pa				_					· 				
DATE BATE BATE BATE BATE DATE BATE DATE													
DATE DATE DATE DATE FIRM: TMME FIRM: TMME FIRM: TMME FIRM: TMME REMARKS: FIRM: FIRM: FIRM: REMARKS: Mate: FIRM: FIRM: REMARKS: Mate: FIRM: FIRM:			LFR		DATE TIME	8/25	REC'EIVED RENT NAN	Eran G	sco Luna	, Tc	FIRM: TA		DATE 8/24/08
REMARKS: Remarks: Mares Bu reliminishing samples to Test America. client arress to pay for the services requested on this chain of custody form and for any additional analyses performed on this project.					DATE		אוגרצועינים אוגרד אאא				, FIRM:		
Note: By relificative sumpley to Test America, elient agrees to pay for the services requested on this chain of custody form and for any additional analyses performed on this project.	ADDITIONAL REMARKS:									-		LEWE.	
		Note: By relinquishing samples to Te	stAmerica, cli	int agrees to	pay for the	services requested or	n this chain of cu	stody form and (or any additiona	d analyses pe	formed on this pr	roject.	

2 \$ 2

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

October 29, 2008

Jeff Leppo LFR, Inc. - Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

RE: Tri-Cities Goodyear

Enclosed are the results of analyses for samples received by the laboratory on 08/29/08 16:35. The following list is a summary of the Work Orders contained in this report, generated on 10/29/08 10:41.

If you have any questions concerning this report, please feel free to contact me.

Work Order **ProjectNumber** Project BRI0013 Tri-Cities Goodyear 027-30160-01

TestAmerica Seattle

13

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

Page 1 of 17

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc Liberty Lake	Project Neme:	Tri-Citics Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:41

A ANNAL MARTENAL RADIAL ROTATION CONTRACTION Sample ID Laboratory ID Matrix Date Sampled **Date Received** BRI0013-01 Soil 08/29/08 16:35 B-2-16 08/29/08 09:00 B-2-16-DUP BRI0013-02 Soil 08/29/08 09:00 08/29/08 16:35 BRI0013-03 08/29/08 16:35 B-2-20 Soil 08/29/08 09:40 BRI0013-04 08/29/08 16:35 B-2-26 Soil 08/29/08 10:20 BRI0013-05 Soil 08/29/08 16:35 B-2-36 08/29/08 10:35 BRI0013-06 08/29/08 16:35 B-2-46 Soil 08/29/08 11:10

TestAmerica Seattle

Curtis D. Amistrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

ſ

THE LEADER IN ENVIRONMENTAL TESTING

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake			Project Na	me:	Tri-Citie	s Good	lyear			
2310 N. Molter Rd., Suite 101			Project Nu	mber.	027-30160)-01			Report	Crested:
Liberty Lake, WA 99019			Project Me	nager:	Jeff Leppe)			10/29/0	8 10:41
Sem	ivolatile Petrol	eum Produ	cts by N TestAme			Acid	/Silica G	el Clean-up)	
Anølyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0013-01 (B-2-16)		Soi	1		Sampl	ed: 08/2	9/08 09:00			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx "	ND ND	1,62 3.22	10.1 25.2	mg/kg dry	lx "	8104017	09/04/08 11:25 #	09/04/08 20:40 "	
Surrogate(s): 2-FBP Octacosane			85.2% 112%		54 - 148 % 62 - 142 %				r a	
BRI0013-02 (B-2-16-DUP)		Soi	I		Sampl	ed: 08/2	9/08 09:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.63	10.2	mg/kg dry	łx	8104017	09/04/08 11:25	09/04/08 21:06	
Lube Oil Range Hydrocarbons	*	ND	3.26	25.5	N	•	• 	7	π	
Surrogate(s): 2-FBP Octacosane			82.7% 117%		34 - 148 % 62 - 142 %	•			*	
BRI0013-03 (B-2-20)		Soi	Į.		Sampl	ed: 08/2	9/08 09:40			
Diesel Renge Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx	ND ND	1.62 3.23	10.1 25.3	mg/kg dry	. lx	8104017	09/04/0811:25 "	09/04/08 21:32 "	
Surrogate(s): 2-FBP	· ·		86,3%		54 - 148 %	•				
Octacosane			103%		62 - 142 %	-			•	
BRI0013-04 (B-2-26)		Sol	I		Sampl	ed: 08/2	9/08 10:20			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWIPH-Dx.	ND ND	1.66 3.31	10.4 25.9	mg/kg dry	lx "	8104017	09/04/08 11:25 "	09/04/08 21:58 P	
Surrogate(s): 2-FBP Octacosane			86.8% 112%		54 - 148 % 62 - 142 %	•				
BRI0013-05 (B-2-36)		Soi	I		Sampl	ed: 08/2	9/08 10:35			
Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	NWTPH-Dx	ND ND	1.68 3.35	10.5 26.2	mg/kg dry	lx "	8104017	09/04/08 11:25 "	09/04/08 22:25	
Surrogate(s): 2-FBP Octacosane			84.9% 107%		54 - 148 % 62 - 142 %					
B1110013-06 (B-2-46)		Sol	ſ		Samul	ed: 08/2	9/08 11:10			
Diesel Range Hydrocarbons	NWTPH-Dx	3.59	2.07	12.9	mg/kg dry	1x .	8104017	09/04/08 11:25	09/05/08 00:09	
Lube Oil Range Hydrocarbons		10.2	4.12	32.3	π	•	•	•	•	
Surrogate(s): 2-FBP Octacosane			90.5% 104%		54 - 148 % 62 - 142 %	•			*	

TestAmerica Seattle

- 60 _ The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

Report Created:

10/29/08 10:41

Tri-Cities Goodyear

027-30160-01

Jeff Leppo

THE LEADER IN ENVIRONMENTAL TESTING

LFR,	Inc.	-	Liberty	Lake
------	------	---	---------	------

2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

				TestAm	erica Se	attle				<u> </u>	
Analyte		Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
BR10013-01 ((B-2-16)		Sol	l		Sampl	ed: 08/2	9/08 09:00			
Aroclor 1016 [2C]		EPA 8082	ND	2.43	25.8	ug/kg dry	1 x	8103032	09/03/08 12:06	09/04/08 11:18	
Aroclor 1221 [2C]		•	ND	6.19	51.7	•	•	•	٠	•	
Aroclor 1232 [2C]		n	ND	2.73	25.8		m	•	•	•	
Aroclor 1242 [2C]			ND	3.37	25.8	*	•	•	×	•	
Aroclor 1248 [2C]		•	ND	2.88	25.8	•		•	•	-	
Aroclor 1254 [2C]			ND	2.31	25.8		-	,		•	
Aroclor 1260 [2C]		π	ND	1.19	25.8	-		•	-	•	
Aroclor 1262 [2C]		'n	ND	1.73	25.8	-	•		*	-	
Aroclor 1268 [2C]		"	ND	1,08	25.8	•		•	*	•	
Surrogate(s):	TCX [2C]			86.6%		65 - 125 %					
	Decachlorobiphenyl [2	C]		91.9%		40 - 150 %	•			•	
BRI0013-02 (B-2-16-DUP)		Soi	1		Sampl	ed: 08/2	9/08 09:00			
Aroclor 1016 [2C]		EPA 8082	ND	2.38	25.3	ug/kg dry	lx	8103032	09/03/08 12:06	09/04/08 11:35	
Aroclor 1221 [2C]			ND	6.07	50.7		•	•	-	×	
Aroclor 1232 [2C]		•	ND	2.68	25.3	•	•		•	•	
Aroclor 1242 [2C]		•	ND	3.31	25.3		•			Ŧ	
Aroclor 1248 [2C]		•	ND	2.83	25.3	•	•	•	•	n	
Aroclor 1254 [2C]		3	ND	2.27	25.3	P	•	•		л	
Aroclor 1260 [2C]		r.	ND	1.17	25.3	•	•	"		T	
Aroclor 1262 [2C]		•	ND	1.69	25.3	•					
Aroclor 1268 [2C]		2	ND	1.05	25.3	•	•	•	•	P	
Surrogate(s):	TCX [2C]			88.5%		65 - 125 %					
	Decachlorobiphenyl [2	C]		93.8%		40 - 150 %					
	B-2-20)		Sol	1		Sampl	ed: 08/2	9/08 09:40			
Aroclor 1016 [2C]		EPA 8082	ND	2.41	25.6	ug/kg dry	1x	8103032	09/03/08 12:06	09/04/08 11:53	
Aroclor 1221 [2C]		•	ND	6.14	51.2	π	•	•	•	•	
Aroclor 1232 [2C]		•	ND	2.71	25.6	F	۳	•		•	
Aroclor 1242 [2C]		•	ND	3.34	25.6		•	•	•	•	
Aroclor 1248 [2C]		-	ND	2.86	25.6		4	•	•	•	
Aroclor 1254 [2C]			ND	2.30	25.6	•		•	•	•	
Aroclor 1260 [2C]	· .	-	ND	1.18	25.6		л		-	•	
Aroclor 1262 [2C]			ND	1.71	25.6		•	-	-	•	
Aroclor 1268 [2C]			ND	1.08	25.6			R	,	•	
Surrogate(s):	TCX [2C]			93,2%		65 - 125 %	•			*	
	Decachlorobiphenyl [2	C7		99. 0%		40 - 150 %	,			•	

Project Name:

Project Number:

Project Manager:

TestAmerica Seattle

С 0

Curtis D. Amstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUTTE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:41

		Pol	ychlorinate	d Bipher TestAm			ethod	8082			
Analyte		Method	Result	MDL•	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0013-04 (B-2-26)		Sol			Sampl	ed: 08/2	29/08 10:20			
Aroclor 1016 [2C]		EPA 8082	ND	2.42	25.8	ug/kg dry	١x	8103032	09/03/08 12:06	09/04/08 12:11	
Aroclor 1221 [2C]		•	ND	6.17	51.5	•			-	*	
Aroclor 1232 [2C]		•	ND	2,72	25.8	•	-	•		,	
Aroclor 1242 [2C]		-	ND	3.36	25.8	•	•	•		٠	
Aroclor 1248 [2C]		•	ND	2.87	25.8	•	•	-	•	•	
Aroclor 1254 [2C]		•	ND	2.31	25.8	•		٠	•		
Aroclor 1260 [2C]			ND	1.18	25.8			· •	स	•	
Aroclor 1262 [2C]		•	ND	1.72	25.8			•		R	
Aroclor 1268 [2C]		4	ND	1.08	25.8	•	•	•	π	•	
Surrogate(s):	TCX [2C]			90.2%		65 - 125 %					
	Decachlorobiphenyl [2C]			103%		40 - 130 %				•	

BRI0013-05 (B-2-36)		Sol	1		Sampl	ed: 08/2	9/08 10:35			
Aroclor 1016 [2C]]	EPA 8082	ND	2.47	26.2	ug/kg dry	· Ix	8103032	09/03/08 12:06	09/04/08 12:29	
Aroclor [22] [2C]		•	ND	6.29	52.5	•			•	*	
Aroclor 1232 [2C]			ND	2.77	26.2			•		•	
Aroclor 1242 [2C]		•	ND	3.42	26.2	•	."		•		
Aroclor 1248 [2C]			ND	2.93	26.2	•			•	. •	
Aroclor 1254 [2C]		•	ND	2.35	26.2	· •	-	,	•	•	
Aroclor 1260 [2C]		•	ND	1.21	26.2	٠				•	
Aroclor 1262 [2C]		•	ND	1.75	26,2				r -	•	
Aroclor 1268 [2C]		•	ND	1.10	26.2	•		•	F	R	
Surrogate(s):	TCX [2C]		-	88.3%		65 · 125 %				,	
	Decachlorobiphenyl [2C]			97.3%		40 - 150 %				4	

BRI0013-06 (B-2-46)		Soll		÷	Sampl	ed: 08/2	9/08 11:10			
Aroclor 1016 [2C]	EP	A 8082	ND	2.97	31.6	ug/kg dry	ix	8103032	09/03/08 12:06	09/04/08 12:47	
Aroclor 1221 [2C]	•	I	ND	7.58	63.3	•	•	Ŧ	•	•	
Aroclor 1232 [2C]	-	r	ND	3,34	31.6	. *		×	в	•	
Aroclor 1242 [2C]	-	r	ND	4.12	31.6	R	•	•	π	*	
Aroclor 1248 [2C]		,	ND	3.53	31.6	•	-		π		
Aroclor 1254 [2C]		I	ND	2.83	31.6	•		-		•	
Aroclor 1260 [2C]	п	ı	ND	1.46	31.6	•		•		•	
Aroclor 1262 [2C]	-	,	ND	2.11	31.6	•	-		*	۳	
Aroclor 1268 [2C]	•	,	ND	1.33	31.6	Ł	٠	•		π	
Surrogate(s):	TCX [2C]			89.2%		65 - 125 %	•				
• .,	Decachlorobiphenyl [2C]			99.7%		40 - 150 %	-			*	

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEX PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:41

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM	
TestAmerica Seattle	

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0013-01 (D-2-16)		So	il		Sampl	ed: 08/2	9/08 09:00			
Acenaphthene	EPA 8270C-SIM	ND	0.00207	0.0104	mg/kg dry	łx	8103030	09/03/08 12:05	09/04/08 18:40	
Acenaphthylene		ND	0.000622	0.0104			•		•	
Anthracene	•	ND	0.000933	0.0104		•		•	•	
Benzo (a) anthracene	π	ND	0.000726	0.0104		•		•	"	
Benzo (a) pyrene	-	ND	0.000933	0.0104	•	٠	•		۳	
Benzo (b) fluoranthene		ND	0.000726	0.0104		•	•	e	•	
Benzo (k) fluoranthene	π	0.00352	0.000933	0.0104	*	•	•			
Benzo (ghi) perylene	•	ND	0.000726	0.0104		•	π	•		
Chrysene	•	ND	0.000518	0.0104	•		•		•	
Dibenz (a,h) anthracene	•	ND	0.000518	0.0104						
Fluoranthene	•	0.00124	0.000726	0.0104		•		•	•	
Fluorene	٩	ND	0.000415	0.0104	•	•	•	•		
Indeno (1,2,3-cd) pyrene	•	ND	0.000518	0.0104			•			
1-Methylnaphthalene		ND	0.000933	0.0104	E	4	•	•		
2-MethyInaphthalene	•	ND	0.000415	0.0104		•	•	٩		
Naphthalene		ND	0.000829	0.0104	F	T	,	•		,
Pitenanthrene	•	ND	0.000622	0.0104		٠	•	•	,	ſ.
Pyrene	"	ND	0.000829	0,0104	•		•			
Surrogate(s): p-Terphenyl-d14			121%		50 - 147 %				*	

Surrogate(s): p-Terphenyl-d14

121%

50 - 147 %

BR10013-02 (B-2-16-DUP)		So	H		Sample	ed: 08/2	9/08 09:00			
Acenaphthene	EPA 8270C-SIM	ND	0.00203	0.0101	mg/kg day	İx	BI03030	09/03/08 12:05	09/04/08 19:05	
Acenaphthylene	đ	ND	0.000608	0.0101	•	-	•		,	
Anthracene	,	ND	0.000912	0.0101			•		,	
Benzo (a) anthracene	•	ND	0,000710	0.0101	•	•	π	•	•	
Benzo (a) pyrene		ND	0.000912	0.0101	π	=	•		•	
Benzo (b) Auoranthene	-	ND	0.000710	0.0101	۳	-		n	•	
Benzo (k) fluoranthene	· •	0.00203	0.000912	0.0101				п	R	J
Benzo (ghi) perylene	-	ND	0.000710	0.0101	•		۳		E	
Chrysene	-	ND	0.000507	0.0101	-	۳	٠	,		
Dibenz (a,h) anthracene	-	ND	0,000507	0.0101		•	-	•	-	
Fluoranthene		ND	0.000710	0.0101		•	•	•	-	
Fluorene	•	ND	0.000406	0.0101			•	•	*	
Indeno (1,2,3-cd) pyrene	*	0.000811	0.000507	0.0101				•		J
1-Methylnaphthalene	4	ND	0.000912	0.0101				•	•	
2-Methylnaphthalene	a	ND	0.000406	0.0101		•	,		π	
Naphthalene	π	ND	0.000811	0.0101	•	•	. •	•	-	
Phenanthrene	•	ND	0.000608	0.0101		۳	•	۳.,	•	L
Pyrene	•	ND	0.000811	0.0101		*	•	•	n	
Surrogate(s): p-Terphenyl-d14			109%		50 - 147 %				-	

Surrogate(s): p-Terphenyl-d14

TestAmerica Seattle

the second second second second second second second second second second second second second second second s

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-9244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake **Tri-Cities Goodyear** Project Name: Report Created: 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Liberty Lake, WA 99019 Project Manager: Jeff Leppo 10/29/08 10:41

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM TestAmerica Seattle												
Analyte	Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes		
BRI0013-03 (B-2-20)		So	41		Sampl	led: 08/2	9/08 09:40					
Acenaphthene	EPA 8270C-SIM	ND	0.00204	0.0102	mg/kg dry	lx.	8103030	09/03/08 12:05	09/04/08 19:31			
Acenaphthylene	•	ND	0.000613	0.0102	•		•	•				
Anthracene	•	ND	0.000919	0.0102	•		•	•	•			
Benzo (a) anthracene	•	ND	0.000715	0.0102	•	•	•	-				
Benzo (a) pyrene	•	ND	0.000919	0.0102	•	-	•	-	•			
Benzo (b) fluoranthene		ND	0.000715	0.0102	•	a	•	•				
Benzo (k) fluoranthene	×	ND	0.000919	0.0102	۳	•	•	•				
Benzo (ghi) perylene	*	ND	0.000715	0.0102	•		,	•	•			
Chrysene	μ	ND	0.000511	0.0102	π	•	-	٩				
Dibenz (a,h) anthracene	•	ND	0.000511	0.0102		•	•	•	n			
Fluoranthene	•	ND	0.000715	0.0102	•			-				
Fluorene	•	ND	0.000409	0.0102	•		•	•				
Indeno (1,2,3-cd) pyrene		ND	0.000511	0.0102	F	-	•	•				
1-Methy Inaphthalene	•	ND	0.000919	0.0102	H	-	. •	•				
2-Methylnaphthalene	•	ND	0.000409	0.0102	. •	٠						
Naphthalene		ND	0,000817	0.0102	π		•	•	*			
Phenanthrene		ND	0.000613	0.0102			•	•				
Pyrene	*	ND	0.000817	0.0102	•	•	•	•	٠			
Surrogate(s): p-Terphenyl-dl	4		118%		50 - 147 %	,						

BRI0013-04 (B-2-26)		Sc	911		Sampl	ed: 08/2	9/08 10:20			
Acenaphthene	EPA 8270C-SIM	ND	0.00203	0.0101	mg/kg dry	lx	8103030	09/03/08 12:05	09/04/08 19:56	,
Acenaphthylene	π	ND	0,000608	0.0101	7				•	
Anthracene		ND	0.000912	0.0101	٠	. •	F		•	
Benzo (a) anthracene		ND	0.000709	0.0103	•	•	4			
Benzo (a) pyrene		ND	0.000912	0.0101			۳	-		
Benzo (b) fluoranthene		ND	0.000709	0.0101		•	•	•	•	
Benzo (k) fluoranthene		ND	0.000912	0.0101		-	*	•		
Benzo (ghi) perylene	T	ND	0.000709	0.0101		•	•	R	r -	
Chrysene		ND	0.000507	0.0101		-	٠	,	*	
Dibenz (a,h) anthracene		ND	0.000507	0.0101					•	
Fluoranthene		ND	0.000709	0.0101	,	•	•	•		
Fluorene		ND	0.000405	0.0101	•	-	•	•	•	
Indeno (1,2,3-cd) pyrene		ND	0.000507	0.0101	•		•	•	•	
1-MethyInaphthalene		ND	0.000912	1010,0	•	•	•	•	•	
2-Methylnaphthalenc	r.	ND	0.000405	0.0101	•			π	4	
Naphthalene	Π	ND	0.000811	0.0101			۲	•		
Phenanthrene	п	ND	0.000608	0.0101				•	-	L
Pyrenc		ND	0.000811	0.0101		-	-	•		
Surrogate(s): p-Terphenyl-d14			122%		50 - 147 %					

TestAmerica Seattle

୍

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

Tri-Cities Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report (Cr	eated:
10/29/0	8	10:41

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM TestAmerica Scattle

Analyte	Method	Result	MDL*	MRL	Units	Dii	Batch	Prepared	Analyzed	Notes
BRI0013-05 (B-2-36)		Sc	ជា		Sampl	ed: 08/2	29/08 10:35			
Acenaphthene	EPA 8270C-SIM	ND	0.00212	0.0106	mg/kg dry	İx	8103030	09/03/08 12:05	09/04/08 20:21	
Acenaphthylene	•	ND	0.000636	0.0106	•	•		•		•
Anthracene		ND	0.000954	0.0106	•	•	•	-	*	
Benzo (a) anthracene	•	ND	0.000742	0.0106	π	-	•	-	*	
Benzo (a) pyrene	4	ND	0.000954	0.0106	•	-	•			
Benzo (b) fluoranthene	π	ND	0.000742	0.0106	F	-				
Benzo (k) fluorenthene		ND	0.000954	0.0106	•	-	•	Ŧ		
Benzo (ghi) perylene	π.	ND	0.000742	0.0106	۳	•	•		•	
Chrysene	•	ND	0,000530	0.0106	•		-	•	*	
Dibenz (a,h) anthracene	•	ND	0.000530	0.0106	•		•	•	-	
Fluoranthene	-	ND	0.000742	0.0106	*	-	*	•	*	
Fluorene		ND	0.000424	0.0106		-	,	-		
Indeno (1,2,3-cd) pyrene		ND	0.000530	0.0106	٠	•	,		•	
1-Methylnaphthalene		ND	0.000954	0.0106	•	-			•	
2-Methylnaphthalene	•	ND	0.000424	0.0106			.*			
Naphthalene		ND	0.000848	0.0106	•					
Phenanthrene		ND	0.000636	0.0106		•	,		•	
Pyrene	*	ND	0.000848	0.0106	•	-	•	•	•	
Surrogate(s): p-Terphenyl-dI4			134%		50 - 147 %	,				

Surrogate(s): p-Terphenyl-d14

50 - 147 %

BR10013-06 (B-2-46)		Sc	11		Sample	ed: 08/2	9/08 11:10			
Acenaphthene	EPA 8270C-SIM	ND	0.00257	0.0129	mg/kg dry	lx	8103030	09/03/08 12:05	09/04/08 20:46	
Acenaphthylene		ND	0.000772	0.0129	-			•		
Anthracene		ND	0.00116	0.0129	π		•	•		
Benzo (a) anthracene	•	ND	0.000900	0.0129			•	•		
Benzo (a) pyrene		ND	0.00116	0.0129	-	•	•		•	
Benzo (b) fluoranthene	-	ND	0.000900	0.0129	•	•	•			
Benzo (k) fluoranthene	и	ND	0.00116	0.0129	•	-	R	r .	•	
Benzo (ghi) perylene	त	ND	0.000900	0.0129	•		P	π		
Chrysene	π	ND	0.000643	0.0129		-		,		
Dibenz (a,h) anthracene		.ND	0.000643	0.0129	۳	-				
Fluoranthene		ND	0.000900	0.0129	•	-	•	•	٣	
Fluorene	•	ND	0.000\$15	0.0129		-		-	•	
Indeno (1,2,3-cd) pyrene	ir	ND	0.000643	0.0129	•	-	-	-	•	
1-Methylnaphthalene	п	ND	0.00116	0.0129	•			•	•	
2-Methylnaphthalene	π	ND	0.000515	0.0129	•	-	•	×	•	
Naphthalene	π	ND	0.00103	0.0129		-		•		
Phenanthrene		ND	0.000772	0.0129	"	•		•		I
Pyrene	•	ND	0.00103	0.0129	۳	*	•	•	•	
Surrogate(s): p-Terphenyl-di-	4		114%		50 - 147 %					-

TestAmerica Seattle

<u>م م</u> 2 ~~<u>7</u>___ 0

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 8 of 17

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-9244 PH; (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc. - Liberty LakeProject Namo:Tri-Cities Goodyear2310 N. Molter Rd., Suite 101Project Number:027-30160-01Report Created:Liberty Lake, WA 99019Project Manager:Jeff Leppo10/29/08 10:41

<u></u>		Physic	al Parame	ters by A TestAm			EPA M	lethods			
Analyte		Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
BRI0013-01	(B- 2 -16)		Soi	1	-	Sam	pled: 08/2	9/08 09:00			_
Dry Weight		BSOPSPL003R0 8	97.4	1.00	1.00	%	lx	8104043	09/04/08 14:35	09/05/08 00:00	
BRI0013-02	(B-2-16-DUP)		Soi	Í		Sam	pled: 08/2	9/08 09:00			
Dry Weight		BSOPSPL003R0 8	97.7	1.00	1.00	%	łx	8104043	09/04/08 14:35	09/05/08 00:00	
BR10013-03	(B-2-20)		Sol	J		Sam	pled: 08/2	9/08 09:40			
Dry Welght	·	BSOPSPL003R0 8	97.9	1.00	1.00	%	Ix	8104043	09/04/08 14:35	09/05/08 00:00	
BRI0013-04	(B-2-26)		Soi	il		Sam	pled: 08/2	9/08 10:20			
Dry Welght		BSOPSPL003R0 8	97.1	1.00	1.00	%	Ix	8104043	09/04/08 14:35	09/05/08 00:00	
BRI0013-05	(B-2-36)	_	Sol	Ľ		Sam	pled: 08/2	9/08 10:35			
Dry Weight		BSOPSPL003R0 8	94.0	1.00	1.00	%	lx	8104043	09/04/08 14:35	09/05/08 00:00	
BRI0013-06	(B- 2 -46)		Soi	il		Sam	pled: 08/2	9/08 11:10			
Dry Weight		BSOPSPL003R0 8	77,7	1.00	1.00	%	lх	8104043	09/04/08 14:35	09/05/08 00:00	

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the wrijten approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019				Project Na Project No Project M	umber: enager:	027-301 Jeff Lep	ро						Report Creste 10/29/08 10:	
Senijvolatile Po	troleum Pro	duots by N	a second s	Are Section . Gate	til/Silien(e -enistellite	10.11. 1.98	((+UE)) 	Labor	itory	Quality	Con	rol Re	ulfs .	
QC Batch: 8104017	Soll Pre	paration M	lethod: El	A 3550B				-						
Analyte	Method	Result	MDL	• MRL	, Units	DII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Límits)	Analyzed	Notes
Blank (8104017-BLK1)					-			Extra	acted:	09/04/08 11	:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	I,60	10.0	mg/kg wet	lx	-			••			09/04/08 18:30	
Lube Oil Range Hydrocarbons		ND	3,19	25.0		•			••	••			•	
Surrogate(s) 2-FBP Octacosane		Recovery:	88.9% 98.8%	I	.tmits: 54-148 62-142								09/04/08 18:30	
LCS (8104017-BS1)			•					Extra	acted:	09/04/08 11	:25			
Diesel Range Hydrocarbons	NWTPH-Dx	67.3	1.60	10.0	mg/kg wet	lx	•-	66.7	101%	(78-129)			09/04/08 18:56	
Surrogate(s): 2-FBP Octacosane		Recovery:	91.8H 97.8%	1	dmits: 54-148 62-142								09/04/08 18:56 *	
Duplicate (8104017-DUP1)				QC Source	æ BRI0013-0	01		Extra	acted:	09/04/08 11	:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.64	10.2	mg/kg dry	Ix	ND				NR	(40)	09/04/08 19:23	
Lube Oil Range Hydrocarbons		ND	3.26	25.6	•	•	ND				NR			
Surrogate(s): 2-FBP Octacosane		Recovery	82.6% 101%	 I	imilis: 54-148 62-142								09/04/08 19:23 •	
Duplicate (8104017-DUP2)				QC Source	æ BRI0014-)1		Extr	acted:	09/04/08 11	:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.66	10.4	mg/kg dry	lx .	ND				NR	(40)	09/04/08 19:48	
Lube Oil Range Hydrocarbons	-	ND	3.32	26.0		•	4.13	~	••	•-		•	•	
Surrogale(s): 2·FBP Octacosane		Recovery:	82.2% 100%	. 1	imits: 54-148 62-142								09/04/08 19:48	
Matrix Spike (8104017-MS1)				QC Sour	e: BR10013-	D1		Extr	acted:	09/04/08 11	:25			
Diesel Range Hydrocarbons	NWTPH-Dx	59.7	1.64	10.2	mg/kg dry	lx	ND	68.2	87.5%	(46-155)			09/04/08 20:14	
Surrogate(s): 2-FBP Octacosane	-	Recovery:	77.0% 90.2%	1	Limits: 54-148 62-142								09/04/08 20:14 "	

TestAmerica Seattle

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

Page 10 of 17

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

2310 N. Mo	Liberty Lake lter Rd., Suite 101 e, WA 99019				Project Ne Project Nu Project M	imber:	Tri-Ci 027-301 Jeff Lep		lyear					Report Crea 10/29/08 14	
	i na zavraje svoj Na slavenje svoj Na slavenje svoj	olychlorin?	ated/Biph	enyls by MI	and the second se	408082. 	243 (C C C C C C C C C C C C C C C C C C	u <u>my</u> Qu	а <u>ш</u> бу С	ontro	l Result				
QC Bate	h: 8103032	Soil Pre	eparation N	lethod: EP	A 3550B		-								
Analyte		Method	Result	MDL	MRL	Units	DII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Linits)) Analyzed	Notes
Blank (810303	2-BLK1)								Exte	racted:	09/03/08 12	:06			
Arcelor 1016 [2C]		EPA 8082	ND	2.35	25.0	ug/kg wet	Ix	•-					••	09/04/08 10:06	
Aroclor 22 [2C]		•	ND	5.99	.50.0	•	•		-					•	
Aroclor 1232 [2C]		-	ND	2.64	25.0	4								•	
\roclor 1242 [2C]		•	ND	3.26	25.0	Π	T	-						π.	
loclor 1248 [2C]		4	ND	2.79	25.0				-		-		• ••	π	
troclor 1254 [2C]		4	ND	2.24	25.0	٩	•					•-		π .	
arcelor 1260 [2C]		π	ND	1.15	25.0		•	••				••	••		
Aroclor 1262 [2C]		•	ND	1.67	25.0		•			••	•-			•	
toclor 1268 [2C]		×	ND	1.05	25.0	4	•	••					-		
Surrogale(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	87.8% 103%	L	.imits: 65-1259 40-150								09/04/08 10:0	6
LCS (8103032	<u>-BS1)</u>							<u>.</u>	Елі	racted:	09/03/08 12	:06			
Aroclor 1016 [2C]		EPA 8082	78.2	2.35	25.0	ug/kg wet	lx		83.3	93.8%	(80-120)			09/04/08 10:24	
Aroclor 1260 [2C]		•	80.0	1.15	25.0	•			•	96.0%	(70-124)			P	
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	84.0% 93.3%	I	imits: 65-1259 40-150			-			-		09/04/08 10:2- •	4
Matrix Spike	(8103032-MS1)				QC Sourc	æ: BRI0014-0	91		Ext	racied:	09/03/08 12	:06			
Aroclor [016 2C]		EPA 8082	85.7	2.41	25.6	ug/kg dry	lx	ND	85.5	100%	(68-132)			09/04/08 10:42	
Aroclor 1260 [2C]			90,7	1.18	25.6			ND		106%	(59-131)			n	
Surrogate(s):	TCX [2C]		Recovery:	91.3%	L	imits: 65-1259	•							09/04/08 10:4	2
	Decachlorobiphenyl [2C]			100%		40-150	70 -								
Matrix Spike D	up (8103032-MSD1)			QC Sourc	x: BR10014-0)1		Ext	racted:	09/03/08 12	2:06			
Aroclor 1016 [2C]		EPA 8082	84.0	2.45	26.1	ug/kg dry	lx	ND	86.9	96.6%	(68-132)	1.989	% (20)	09/04/08 11:00	
Aroclor 260 [2C]		•	90.2	1.20	26.1	٦	•	ND	•	104%	(59-131)	0.545	% (35)		
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	84.8% 94.6%	Ī	imits: 65-1259 40-150								09/04/08 11:0 "	0

TestAmerica Seattle

Canera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written appraval of the laboratory.

Page 11 of 17

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:41
			· · · · · · · · · · · · · · · · · · ·

Polynuclean Aromanic Hydrocanbone iv GG/MS/SIMC - Hallonatory Quality Control Dealls -restAndages/Julio - 114

QC Batch: 8103030 Soll Preparation Method: EPA 3550B

Analyte	Method	Result	MDL•	MRL	Units	Dil	Source Result	Spike Amt	KEC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8103030-BLK1)								Extr	acted:	09/03/08 12	:05			
Acenaphthene	EPA 8270C-SIM	ND	0.00200	0.0100	mg/kg wet	İx		••		-	••	••	09/04/08 15:18	
Acenaphthylene	*	ND	0.000600	0.0100	π	•							-	
Anthracene	•	ND	0.000900	0.0100		•				••			π	
Benzo (a) anthracene	•	ND	0.000700	0.0100	-				•-				R	
Benzo (a) pyrene	•	ND	0.000900	0.0100	•	•	••							
Benzo (b) fluoranthene	•	ND	0.000700	0.0100		۲			••	-				
Benzo (k) fluoranthene	•	ND	0.000900	0.0100									•	
Benzo (ghi) perylene	-	ND	0.000700	0.0100	•	٠	-	+-						
Chrysene	•	ND	0.000500	0.0100	•	•	••				••			
Dibenz (a,h) anthracene	σ	ND	0.000500	0.0100	-	•		-			-		۰.	
Fluoranthene	*	ND	0.000700	0.0100		•								
Fluorene		ND	0.000400	0.0100	π	•				•-	-		d	
Indeno (1,2,3-cd) pyrene	•	ND	0.000500	0.0100			-		••				π	
1-Methylnaphthalene	•	ND	0.000900	0.0100		•	-						•	ſ
2-MethyInaphthalene	•	ND	0.000400	0.0100	v	-	-						-	
Naphihelene	•	ND	0.000800	0.0100	h	•							•	
Phenanthrene	•	ND	0.000600	0.0100	4	•		-		•-				
Рутепе		ND	0.000800	0.0100	π	•				-			6	
Surrogate(s): p-Terphenyl-d14		Recovery:	109%	L	imits: 50-147%								09/04/08 15:18	3
LCS (8103030-BS1)						<u>.</u>		Ext	racted:	09/03/08 12	2:05			
Aceraphthene	EPA 8270C-SIM	0.666	0.00200	0.0100	mg/kg wet	łx		0.667	100%	(70-125)			09/04/08 17:24	
								-		(70.100)			-	

Accupation	8270C-SIM	0.000	0.00200	0.0100	Ing/kg wet	IX.		0.007	10074	(10-125)			07104000 11.24	
Acenaphthylene	•	0,804	0.000600	0.0100		•		•	121%	(70-133)			л	
Anthracene	•	0.859	0.000900	0.0100		•			129%	(70-152)			Π	
Berrzo (a) anthracene	•	0.762	0.000700	0.0100		•			114%	(60-125)			π	
Вепло (а) рутепе	•	0.776	0.000900	0.0100	-	•		•	116%	(64-134)			π	
Benzo (b) fluoranthene	•	0.782	0.000700	0.0100		•		•	117%	(62-147)		•-	π	
Benzo (k) fluoranthene	•	0.785	0.000900	0.0100	-	•		-	118%	(60-144)		•-	•	
Benzo (ghi) perylene	•	0.755	0.000700	0.0100		•	•-		113%	(57-137)		-+		
Chrysene	•	0.839	0.000500	0.0100	P	•	••	٠	126%	(70-139)	••			
Dibenz (a,h) anthracene	•	0.778	0.000500	0.0100		•		٣	117%	(56-140)	-•	••	•	
Fluoranthene	•	0.809	0.000700	0.0100	-	•			121%	(70-141)			"	
Fluorene		0.762	0.000400	0.0100	•	•		π	114%	(76-132)			•	
Indeno (1,2,3-cd) pyrene		0.737	0.000500	0.0100	n	•	-	• .	111%	(55-138)			•	
I-MethyInaphthalene	•	0.561	0.000900	0.0100	•	٠			84.1%	(46-128)			Π	
2-Methylnaphthalene		0.523	0.000400	0.0100		•			78.4%	(41-125)			3	
Naphihalene		0.571	0.000800	0.0100	-	-			85.6%	(43-125)				
Phenanthrene		0.849	0,000600	0.0100		*		•	127%	(73-125)				L1

TestAmerica Seattle

La contrage C

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analysical report shall not be reproduced except in full.

without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH; (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101				Project Na Project Nu		Tri-Ci 027-301	ties Good	lyear					Report Create	ed:
				-									•	
Liberty Lake, WA 99019				Project M	nager:	Jeff Lep				<u>.</u>			10/29/08 10	41
	Polynuclear A	omalicHt		15 × 20 5 × 20	WS:SIM constantite	s Dab	oratory:	50.40	Con	trol Res	ulfs	en for el contra		
QC Batch: 8103030	Soll Pre	paration M	ethod: EPA	3550B										6790-824X5-4
nalyle	Method	Result	MDL*	MRL	Units	DII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Not
.CS (8103030-BSI)								Extra	ncled:	09/03/08 12	:05			
Yrene	EPA. 8270C-SIM	0.710	0.000800	0.0100	mg/kg wet	İx	••	0.667	106%	(68-140)		~	09/04/08 17:24	
Surrogate(s): p-Terphenyl-d14		Recovery:	100%	L	imits: 50-1479	* *							09/04/08 17:24	
fatrlx Spike (8103030-MS1)				QC Sourc	e: BR10013-0	1		Extr	acted:	09/03/08 12	:05	-		
Acenaphthene	EPA	0.682	0.00202	0.0101	mg/kg dry	lx	ND	0.673	101%	(67-132)			09/04/08 17:49	
cenaphthylene	8270C-SIM	0.816	0.000606	0.0101	н		ND		121%	(65-142)	••		п	
nthracene	-	0.810	0.000909	0.0101	-		ND		131%	(66-158)				
enzo (a) anthracene		0.884	0.000707	0.0101	π		ND		117%	(41-156)			-	
enzo (a) pyrene		0.798	0.000909	0.0101	-		ND		119%	(52-148)				
enzo (b) fluoranthene		0.798	0.000707	0.0101			ND		119%	(53-151)		-	*	
enzo (k) fluoranthene		0.800	0.000909	0.0101			0.00352		118%	(46-161)	~	- ·	×	
enzo (ghi) perylene		0.787	0.000707	0.0101			ND		117%	(26-154)			-	
hysene		0.866	0.000505	0.0101			ND		129%	(55-155)			-	
ibenz (a,h) anthracene		0.805	0.000505	0.0101			ND		120%	(27-157)			n	
woranthene	न	0.824	0.000707	0.0101			0.00124	4	122%	(46-172)	-		n	
üorene	я	0.770	0.000404	1010.0			ND	π	114%	(66-143)	-		Π	
deno (1,2,3 cd) pyrene		0.764	0.000505	0.0101	ħ	*	ND	•	114%	(24-159)				
Methylnaphthalene		0.548	0.000909	0.0101			ND		81.4%	(39-140)			-	
Methylnaphthalene		0.515	0.000404	0.0101			ND		76.6%	(32-139)				
aphthalene		0.569	0.000808	0.0101			ND		84.5%	(38-134)				
henanthrene		0.874	0.000606	0.0101	P		ND		130%	(63-139)			π	
утепе		0.765	0.000808	0.0101	-		ND	,	114%	(51-172)				
Surrogate(s): p-Terphenyl-d14		Recovery	109%		imits: 50-1479	к "					•••		09/04/08 17:49	
fatula Salla Dana (8102020 MC	(D) ()	-		00 5-00-0	e BRI0013-0			Prin	مامعام	09/03/08 12				
<u>fatrix Spike Dup (8103030-MS</u> cemphthene	EPA	0.683	0.00207	0.0103	mg/kg dry	lx	ND		99.1%	(67- 32)		i% (50)	09/04/08 18:15	
	8270C-SIM											• •		
cenaphthylene		0.825	0.000620	0.0103		:	ND	:	120%	(65-142)	1.119			
nthracene	-	0.906	0.000930	0.0103	-		ND	:	132%	(66-158)	2.55%			
enzo (a) anthracene	2	0.785	0.000723	0.0103	-	-	ND		114%	(41-156)	0.0622			
enzo (a) pyrene enzo (b) fluoranthene		0.802	0.000930	0.0103			ND		116%	(52-148)	0.526			
	-	0.800	0.000723	0.0103		-	ND		116%	(53-151) (46-161)				
enzo (k) fluoranthene	-	0.794	0.000930	0.0103		-	0.00352		115%	(46-161)				
enzo (ghi) perylene barrare		0.793	0.000723	0.0103		;	ND ND		115%	(26-154)				
hrysene	-	0.868	0.000517	0.0103			ND	-	126%	(55-155)		% (44)		
ibenz (a,h) anthracene	-	0.822	0.000517	0.0103	.,	÷	ND		119%	(27-157)		% (50)		
luoranthene		0.837	0.000723	0,0103			0.00124		121%		1.579			
luorene	-	0.769	0.000413	0.0103	•		ND		112%	(66-143)		% (52)		
Indeno (1,2,3-cd) pyrene		0.776	0.000517	0.0103			ND		113%	(24-159)	1.489	% (43)	π	

TestAmerica Seattle

Ś

يورغ

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shalf not be reproduced except in full, without the written approval of the laboratory.

- the second مر المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH; (425) 420,9200 FAX: (425) 420,9210

LFR, Inc. - Liberty LakeProject Name:Tri-Cities Goodyear2310 N. Molter Rd., Suite 101Project Number:027-30160-01Report Created:Liberty Lake, WA 99019Project Manager:Jeff Leppo10/29/08 10:41

Polynholean Aromanic Hydrocarbon aby, CC/MSSSIMD, a Dalbor Aby, Control Results A 2007 Reference Schule

QC Batch: 8103030 Soli Preparation Method: EPA 3550B

Anaiyte	Method	Result	MDL*	MRL	Units	ÐII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike Dup (8103030	-MSD1)			QC Source	: BR10013-01			Ext	acted:	09/03/08 12	:05			
i-Methylnaphthalene	EPA 8270C-SIM	0.573	0.000930	0.0103	mg/kg dry	Ix	ND	0.689	83.2%	(39-140)	4.48%	(50)	09/04/08 18:15	
2-Methylnaphthalene	•	0.536	0.000413	0.0103		•	ND	•	17.8%	(32-139)	3.99%		-	
Naphthalene	•	0.585	0.000827	0.0103	•	•	ND	•	84.9%	(38-134)	2.75%		•	
Phenanthrene	,	0.885	0.000620	0.0103	•		ND	•	128%	(63-139)	1.25%	•	-	
Pyrene		0.731	0.000827	0.0103	•	•	ND	•	106%	(51-172)	4.56%	•		
Surrogate(s): p-Terphenyl-d14	· ·	Recovery:	99.7%	L	imits: 50-147%								09/04/08 18:15	

TestAmerica Seattle

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 14 of 17

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Extracted: 09/04/08 14:35

09/05/08 00:00

LFR, Inc. - Liberty Lake **Tri-Cities Goodycar** Project Name: Report Created: Project Number: 027-30160-01 2310 N. Molter Rd., Suite 101 10/29/08 10:41 Project Manager: Liberty Lake, WA 99019 Jeff Leppo Physical Parameters by APHA/ASTM/BPA/Methods - Laboratory Quality Control Results estAmerica Se QC Batch: 8104043 Soil Preparation Method: Dry Weight Spike % (Limits) Amt REC Source Analyte Method Result MDL* MRL Units Dil RPD (Limits) Analyzed Notes

%

١x

Result

--

Blank (8104043-BLK1)

Dry Weight

BSOPSPL00 3R08

99.8

1.00 1.00

TestAmerica Seattle

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 15 of 17

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:41

CERTIFICATION SUMMARY

TestAmerica Seattle

Method	Matrix	Nelao	Washington
BSOPSPL003R08	Soil		
EPA 8082	Soil	х	х
EPA 8270C-SIM	Soil	x	х
NWTPH-Dx	Soil		х

Any abnormalities or departures from sample acceptance policy shall be documented on the 'Sample Receipt and Temperature Log Form' and 'Sample Non-conformance Form' (if applicable) included with this report.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Samples collected by TestAmerica Field Services personnel are noted on the Chain of Custody (COC).

TestAmerica Scattle

8

-77 ÷ 2

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 16 of 17

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:41

សល់ចុះគ្នាល់Dbindloop

Report Specific Notes: A-01 Not included in average calculation J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Deteotion Limit (MDL). The user of this data should be aware that this data is of limited reliability. L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted. L1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits. Q3 The chromatographic pattern is not consistent with diesel fuel. Laboratory Reporting Conventions: DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA Not Reported / Not Available dгy Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dif Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic - Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

Concernation of the second

The results in this report apply to the samples analyzed in accordance with the chain of cuilody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 17 of 17

[estAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Fkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokrae, WA 99206-5302 9405 SW Nimbus Ave,Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 966-9210 907-563-9200 FAX 563-9210

1 & 1

								n I		i		1	_				T	T	1	1			· · · · · ·
5	r .,	-	5		G	7		turk Charge	AL OM TOM										ļ	PATE: 8/24/08	53 5		1
BRI0013	TURNAROUND REQUEST	in Businees Days *	Organic & Inorganic Analyses	Peroleum Hydrocarbon Analyses	3 2 1 <1]	Specify:	* Turnuround Requests less than standard may incur Rush Charges	LOCATION/ COMMENTS													DATE:	TEMP-
der #:	URNAR	A 月	12anic & L					quests less t	# OF CONT:			-	-	_							FIRM: 14-56H		ļ
Work Order #:	F.	·] ⁴]e:]e:	•	and	OTHER	• Turnaround Rev	MATRIX (W, S, O)	S	ζ	5	5	\$	S	;					FIRM:	PIKM:	
												_								6	2		
				Ì											•						Francisco Luna, Jo	•	
																					sco		
_								_ .													ran (1		
ORT				ĺ																			
(REI	800			·	IVE	 	VALYSES												ļ	XECEN	PRINT NAME	RECEIVED BY: POINT NAME	
rody		2			PRESERVATIVE		REQUESTED ANALYSES												<u> </u>			-	
CHAIN OF CUSTODY REPORT	INVOICE TO: TAP LEADS	Ρ			PB		reou	-								 			<u> </u>	8/29/03	Ž		
N OF	ICE TO			P.O. NUMBER:														}		DATE: 8/	E 143	த்ப் த்	
HAI								61										 	-	IVQ	TIME	E SATE	
Ŭ		لمحمطا						भ -												1			
		A. M.				 			ราโ											.	K		
1								r	HJ7					 						 . •	L L L L		
		9 12	More- Bes	35-7461					SAMPLING	8/27/08 0905	0700	0440	1020	1035	0111						FIRME	Nava	
		5	₽ ₽	P (1) 5.		•	0 ~		SAM	8											Zer		
		2		EAX:		5010	<u>8</u> 2 6			8/27					>						Lait		
	LFR _	TO- (IL> OT	ADDRESS: 2010 11 LAL LAL KA 34 TOT 2010 101	There are	I NAME: N. L.		PROJECT NUMBER: 017-30160~0	DBY INC	CLIENT SAMPLE IDENTIFICATION	8-2-16	B-2-16-DUP	6-2-20	.8-2-36	8-2-36	8-2-46					RELEASED BY: NO	A Devid Clark		ADDITTONAL REMARKS:
	CLIENT	REPORT	ADDRE	FENOHer	PROJEC		PROJEC	SAMPLED BY:		6		6	9	0	8	1		"	<u>, </u> ,	RELEASE	PRINT NAME:	RELEASED BY:	TAUNT NAME

TAL-1000(0408)

ţ

October 29, 2008

Jeff Leppo LFR, Inc. - Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

RE: Tri-Cities Goodyear

Enclosed are the results of analyses for samples received by the laboratory on 08/29/08 16:35. The following list is a summary of the Work Orders contained in this report, generated on 10/29/08 10:51.

If you have any questions concerning this report, please feel free to contact me.

<u>Work Order</u> BRI0015 <u>Project</u> Tri-Cities Goodyear

ProjectNumber 027-30160-01

TestAmerica Seattle

Come-may-

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty LakeProject Name:Trl-Cities Goodyear2310 N. Molter Rd., Suite 101Project Number:027-30160-01Report Created:Liberty Lake, WA 99019Project Manager:Jeff Leppo10/29/08 10:51

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-4-16.5	BRI0015-01	Soil	08/28/08 09:10	08/29/08 16:35
B-4-21	BRI0015-02	Soil	08/28/08 09:20	08/29/08 16:35
B-4-21-DUP	BRI0015-03	Soil	08/28/08 09:20	08/29/08 16:35
B-4-25	BRI0015-04	Soil	08/28/08 09:45	08/29/08 16:35
B-4-36	BRI0015-05	Soil	08/28/08 10:56	08/29/08 16:35
B-4-45	BRI0015-06	Soil	08/28/08 11:17	08/29/08 16:35
B-5-16	BRI0015-07	Soil	08/28/08 14:10	08/29/08 16:35
B-5-20	BRI0015-08	Soil	08/28/08 14:30	08/29/08 16:35
B-5-25	BRI0015-09	Soil	08/28/08 15:15	08/29/08 16:35
B-5-36	BRI0015-10	Soil	08/28/08 17:55	08/29/08 16:35
B-4-45	BRI0015-11	Soil	08/28/08 18:25	08/29/08 16:35

TestAmerica Seattle

€ Ì

The results in this report apply to the samples analyzed in accordance with the chain of eastedy document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Annstrong For Sandra Yakamavich, Project Manager

Page 2 of 27

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019			Project Na Project Nu Project Ma	mber:	Tri-Citie 027-3016 Jeff Leppe	D-01	year		Report (10/29/0	
Sem	ivolatile Petrol	eum Produ	cts by NV TestAme			Acid	/Silica G	el Clean-up)	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0015-01 (B-4-16,5)		Sol	1		Sampl	led: 08/2	8/08 09:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.60	10.0	mg/kg dry	ix	8104017	09/04/08 11:25	09/05/08 06:39	
Lube Oil Range Hydrocarbons		ND	3.19	25.0	π	•		۳	*	
Surrogate(s): 2-FBP			88.7%		54 - 148 %	•			•	
Octacosane			120%		62 - 142 %	•				
BRI0015-02 (B-4-21)		Soi	1		Sampl	ed: 08/2	8/08 09:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.66	10.4	mg/kg dry	lx	8104017	09/04/08 11:25	09/05/08 07:05	•
Lube Oil Range Hydrocarbons		ND	3.32	26.0	đ		•	•		
Surrogate(s): 2-FBP	-		87.6%		54 - 148 M				•	
Octacosane			103%		62 · 142 %	•			-	
BRI0015-03 (B-4-21-DUP)		Sol	I		Samp	led: 08/2	8/08 09:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.69	10.5	mg/kg dry	lx	8104017	09/04/08 11:25	09/05/08 07:31	
Lube Oil Range Hydrocarbons	E	ND	3.37	26.4			•	•	Л	
Surrogate(s): 2-FBP			91.0%		34 - 148 %	•			٣	
Octacosane			109%		62 - 142 %	•			~	
BRI0015-04 (B-4-25)		Sol	I		Samp	led: 08/2	8/08 09:45			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.64	10.2	mg/kg dry	ĺx	8104018	09/04/08 11:26	09/04/08 20:40	
Lube Oil Range Hydrocarbons	-	4.50	3.26	25.6	•	•	•	•	R	
Surrogate(s): 2-FBP			88.3%		54 - 148 %	•			•	
Octacosane			109%		62 - 142 %	-			-	
BRI0015-05 (B-4-36)		Sol	1		Samp	led: 08/2	8/08 10:56			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.82	11.4	mg/kg dry	İx	8104018	09/04/08 11:26	09/04/08 21:06	
Lube Oil Range Hydrocarbons		ND	3.63	28.5	•	•		я	R	
Surrogate(s): 2-FBP			88.7%		54 - 148 %	•			•	
Octacosane			104%		62 - 142 %	•			•	
BR10015-06 (B-4-45)		Soi	l	. <u></u>	Samp	led: 08/2	8/08 11:17			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	2.04	12.8	mg/kg dry	Ix	BI04018	09/04/08 11:26	09/04/08 21:32	
Lube Oil Range Hydrocarbons	*	ND	4.07	31.9	b	•	h		•	
Surrogate(s): 2-FBP			85.7%		54 - 148 %	•		. –	•	
Octacosane			103%		62 · 142 %	•			*	

TestAmerica Seattle

Carrier 2

The results in this report apply to the samples analyzed in accordance with the chain of eutody document. This analytical report shall not be reproduced escept in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc Liberty Lake	Project Name:	Tri-Citics Goodycar	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:51

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) **TestAmerica** Seattle

Analyte	Method	Result	MDL*	MRL	Units	ÐIL	Batch	Prepared	Analyzed	Notes
DRI0015-07 (B-5-16)		Soil			Sampl	ed: 08/2	28/08 14:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.68	10.5	mg/kg dry	Ix	8104018	09/04/08 11:26	09/04/08 21:58	
Lube Oil Range Hydrocarbons	7	ND	3.34	26.2	-		·	•	•	
Surrogate(s): 2.FBP			89.3%		54 - 148 K	•			•	
Octacosane			106%		62 - 142 %	•			•	
BRI0015-08 (B-5-20)		Soll			Sampl	ed: 08/2	28/08 14:30			
Diesel Range Hydrocarbons	NWTPH-Dx	- DM	1.66	10.4	mg/kg day	Ìx	8104018	09/04/08 11:26	09/04/08 22:25	
Lube Oil Range Hydrocarbons	•	ND	3.30	25.9			•		F	
Surrogate(s): 2-FBP			89.2%		54 - 148 %	•			•	
Octacosane			111%		62 - 142 %	•			٣	
BRI0015-09 (B-5-25)		Soil	l _		Sampl	led: 08/2	28/08 15:15			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.65	10.3	mg/kg dry	1x	8104018	09/04/08 11:26	09/05/08 00:09	
Lube Oil Range Hydrocarbons	•	ND	3.29	25.8	п	•	•	•		
Surrogate(s): 2-FBP			90.3%		54 - 148 %	•			•	
Octacosane			110%		62 - 142 %	•			*	
BRI0015-10 (B-5-36)		Soil	[Sampl	led: 08/2	28/08 17:55		:	
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.79	11.2	mg/kg dry	lx	8104018	09/04/08 11:26	09/05/08 00:35	
Lube Oil Range Hydrocarbons	π'	ND	3.56	27.9		*	*	•	H	
Surrogate(s): 2-FBP			90.0%		54 - 148 %	•				
Octacosane			105%		62 - 142 %	•			•	
BRI0015-11 (B-4-45)		Soil	l		Samp	led: 08/2	28/08 18:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	2.10		mg/kg dry	١x	8104018	- 09/04/08 11:26		
Lube Oil Range Hydrocarbons	•	ND	4.20	32.9		•	•			
Surrogate(s): 2-FBP			86.3%		54 - 148 %	-				
Octacosane			103%		62 - 142 %				-	

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 99011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake Project Name: Tri-Cities Goodyear 2310 N. Moller Rd., Suite 101 Project Number: 027-30160-01 Report Created: Liberty Lake, WA 99019 Project Manager: Jeff Leppo 10/29/08 10:51

Polychlorinated Biphenyls by EPA Method 8082 TostAmerica Scattle												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
BRI0015-01 (B-4-16.5)		Soll			Sampl	ed: 08/2	28/08 09:10				
Aroclor 1016 [2C]		EPA 8082	ND	2.38	25.4	ug/kg dry	١x	8103032	09/03/08 12:06	09/04/08 17:34		
Aroclor 1221 [2C]		•	ND	6.08	50.7	•	•	,	-	я		
Aroclor 1232 [2C]		•	ND	2.68	25.4	•	•			•		
Aroclor 1242 [2C]		•	ND	3.31	25.4		-	•		•		
Aroclor 1248 [2C]		•	ND	2.83	25.4		-	•	•	•		
Aroclor 1254 [2C]		٠	ND	2.27	25,4		-		٠	•		
Aroclor 1260 [2C]			ND	1.17	25.4	٠	4	,	P			
Aroclor 1262 [2C]		-	ND	1.69	25,4	•	-	•				
Aroclor 1268 [2C]		•	ND	1.07	25.4	•	*	•	•	•		
Surrogate(s):	TCX [2C]			85.3%		65 - 125 %						
	Decachlorobiphenyl [2C]			92.7%		40 - 150 %	-			•		

BRI0015-02 (B-4-21)			Soil			Sampl	ed: 08/2	8/08 09:20			
Aroclor 1016 [2C]	E	PA 8082	ND	2.38	25.3	ug/kg dry	łx	8103032	09/03/08 12:06	09/04/08 17:52	
Aroclor 1221 [2C]		•	ND	6.06	50.6		•		•	2	
Aroclor 1232 [2C]		•	ND	2.67	25.3	۳	•		=		
Aroclor 1242 [2C]		•	ND	3.30	25.3	4	٠		•	-	
Arocior 1248 [2C]		-	ND	2.82	25.3	•	•	π	-	•	
Aroclor 1254 [2C]			ND	2.27	25.3		•	•	•	=	
Aroctor 1260 [2C]			ND	1.16	25.3	۳	-	•	•	*	
Aroclor 1262 [2C]			ND	1.69	25.3		-	•	π		
Aroclor 1268 [2C]		7	ND	1.06	25.3		•		ĸ	•	
Surrogate(s):	TCX [2C]			85.2%		65 - 125 %				•	
	Decachlorobiphenyl [2C]			96.6%		40 - 150 %				•	

BRI0015-03 (D	1-4-21-DUP)		Soll		Sampled: 08/28/08 09:20					
Aroclor 1016 [2C]	EP	A 8082	ND	2.45	26.0	ug/kg dry	Ix	8103032	09/03/08 12:06	09/04/08 18:10
Aroclor 1221 [2C]		-	ND	6.23	52.0			я	-	
Aroclor 1232 [2C]	,	*	ND	2.75	26.0	•		×	ж	×
Aroclor 1242 [2C]	,	•	ND	3.39	26.0			۲	-	
Aroclor 1248 [2C]		•	ND	2.90	26.0	•			•	•
Aroclor 1254 [2C]		n	ND	2.33	26.0	а (-	•	-	•
Aroclor 1260 [2C]	· · ·	•	ND	1.20	26.0	•	•			
Aroclor 1262 [2C]		-	ND	1.74	26.0	•	-	-	-	•
Aroclor 1268 [2C]			ND	1.09	26.0	•	۳		-	đ
Surrogate(s):	TCX [2C]			88.8%		65 · 125 %	•			
	Decachlorobiphenyl [2C]			102%		40 - 150 %	-			•

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 27

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

Tri-Cities Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report	Cre	ated
10/29/	08 1	10:51

Polychlorinated Biphenyls by EPA Method 8082 TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
BRI0015-04 (B-4-25))	Soi	1		Sampl	led: 08/2	28/08 09:45			
Aroclor 1016 [2C]	EPA 8082	ND	2.46	26.2	ug/kg dry	1x	8103033	09/03/08 12:07	09/04/08 18:28	
Aroclor 1221 [2C]		ND	6.27	52.4	• .	•	•	•	•	
Aroclor 1232 [2C]	π	ND	2.76	26.2	•		,	-	•	
Aroclor 1242 [2C]	• -	ND	3.41	26.2	•	٠	•		•	
Aroclor 1248 [2C]	•	ND	2.92	26.2		•	•	•		
Aroclor 1254 [2C]		ND	2.35	26.2	F	•		•	я	
Aroclor 1260 [2C]	•	ND	1.20	26.2	F	•		•	۳	
Aroclor 1262 [2C]	-	ND	1,75	26.2		•	•	π	•	
Aroclor 1268 [2C]	•	ND	1.10	26.2	•	•	•	•	•	
Surrogate(s): TCX [.	2C]		87.8%		65 - 125 %	•			•	
	hlorobiphenyl [2C]		111%		40 - 150 %				•	

Sampled: 08/28/08 10:56 Soil BRI0015-05 (B-4-36) Aroclor 1016 [2C] EPA 8082 2.59 27.5 ug/kg dry 8103033 09/03/08 12:07 09/04/08 18:46 ND 1x Aroclor 1221 [2C] ND 6.60 55.1 Aroclor 1232 [2C] ND 2.91 27.5 Aroclor 1242 [2C] ND 3.59 27.5 Aroclor 1248 [2C] ND 3.07 27.5 Aroclor 1254 [2C] ND 2.47 27.5 1.27 27.5 Aroclor 1260 [2C] ND 27.5 . Aroclor 1262 [2C] 1.84 ND Aroclor 1268 [2C] -ND 1.16 27.5 Surrogate(s): TCX [2C] 89.9% 65 - 125 % , 40 - 150 % Decachlorobiphenyl [2C] 107%

Sampled: 08/28/08 11:17 BRI0015-06 (B-4-45) Soll 09/03/08 12:07 09/04/08 19:04 EPA 8082 3.04 32.3 8103033 Aroclor 1016 [2C] ND ue/kg dry lx Aroclor 1221 [2C] 7.75 64.7 π ND 32.3 Aroclor 1232 [2C] ND 3.42 4.22 32.3 Aroclor 1242 [2C] ND Aroclor 1248 [2C] 3.61 32.3 ND Aroclor 1254 [2C] ND 2.90 32.3 Aroclor 1260 [2C] ND 1.49 32,3 Aroclor 1262 [2C] ND 2.16 32.3 . 32.3 Aroclor 1268 [2C] ND 1.36 TCX [2C] . 90.3% 65 - 125 % . Surrogate(s): 106% 40 - 150 % .

Decachlorobiphenyl [2C]

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUFTE 400 BOTHELL, WA 98011-8244 PH; (425) 420.9200 FAX; (425) 420.9210

LFR, Inc. - Liberty LakeProject Name:Tri-Cities Goodyear2310 N. Molter Rd., Suite 101Project Number:027-30160-01Report Created.Liberty Lake, WA 99019Project Manager:Jeff Leppo10/29/08 10:51

	Polychlorinated Biphenyls by EPA Method 8082 TestAmerica Seattlo												
Analyte		Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes		
BRI0015-07 (B-5-16)		Sol	1		Sampl	led: 08/2	8/08 14:10					
Aroclor 1016 [2C]		EPA 8082	ND	2.43	25.8	ug/kg đry	Iх	8103033	09/03/08 12:07	09/04/08 19:22			
Aroclor 1221 [2C]		•	ND	6.19	51.7	•	•	•		F			
Arocior 1232 [2C]		-	ND	2.73	25.8	•	•	•	٩	•			
Aroclor 1242 [2C]		-	ND	3.37	25.8	•	•	•	•	•			
Aroclor 1248 [2C]		•	ND	2.88	25.8	۳		•	•	•			
Arcelor 1254 [2C]		-	ND	2.31	25.8	ĸ	-		π	•			
Aroclor 1260 [2C]		P	ND	1.19	25.8		•	•	2	•			
Aroclor 1262 [2C]		-	ND	1.73	25.8			3	R	•			
Aroclor 1268 [2C]		•	ND	1.09	25.8	•			•	•			
Surrogate(s):	TCX [2C]			93.0%		65 - 125 %	•						
	Decachlorobiphenyl [2C]	Ţ		111%		40 - 150 %	-			•			

BRI0015-08 (Soil			Sampl	ed: 08/2	8/08 14:30	<u></u>			
Aroclor 1016 [2C]	Е	PA 8082	ND	2.45	26.1	ug/kg dry	İx	8103033	09/03/08 12:07	09/04/08 19:39	
Aroclor 1221 [2C]			ND	6.24	52.1	۳	•	•	~		
Aroclor 1232 [2C]		•	ND	2.75	26.1		-	•		•	
Aroclor 1242 [2C]			ND	3.40	26.1	-	•	•	•	•	
Aroclor 1248 [2C]		•	ND	2.91	26.1	•	•		•	•	
Aroclor [254 [2C]		•	ND	2.33	26.1	π			л		
Aroclor 1260 [2C]		P	ND	1.20	26.1		•	۳	•	P	
Aroclor 1262 [2C]		•	ND	1.74	26.1	•		•	•	*	
Aroclor 1268 [2C]		•	ND	1.09	26.1	•	•	×	в.		
Surrogate(s):	TCX [2C]			84.0%		65 - 125 %	•			,	
	Decachlorobiphenyl [2C]			105%		40 - 150 %	•			•	

BR10015-09 (B-5-25)			Soil			Sample	ed: 08/2	8/08 15:15		
Aroclor 1016 [2C]	EI	A 8082	ND	2.39	25.5	ug/kg dry	lx	8103033	09/03/08 12:07	09/04/08 19:57
Aroclor 1221 [2C]		-	ND	6.10	50.9	•			•	•
Aroclor 1232 [2C]		*	ND	2.69	25.5	-			1	
Aroclor 1242 [2C]		•	ND	3.32	25.5	R	x	•	•	
Aroclor 1248 [2C]		P	ND	2.84	25.5		•	•	R	•
Aroclor 1254 [2C]			ND	2.28	25.5	-	-		π	*
Aroclor 1260 [2C]		-	ND	1.17	25.5		-			•
Aroclor 1262 [2C]		•	ND	1.70	25.5			•	•	n
Aroclor 1268 [2C]		*	ND	1.07	25.5		•		h	п
Surrogate(s):	TCX [2C]			85.5%		65 - 125 %	*			
0	Decachlorobiphenyl [2C]			110%		40 - 150 %	•			•

TestAmerica Seattle

Care ang

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 99011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

Project Name:Tri-Cities GoodyearProject Number:027-30160-01Project Manager:Jeff Leppo

Report Created: 10/29/08 10:51

Polychlorinated Biphenyls by EPA Method 8082 TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	ווע	Batch	Prepared	Analyzed	Notes
BR10015-10 (J	B-5-36)		Soi	Soll		Sampl	ed: 08/2	8/08 17:55			
Aroclor 1016 [2C]	F	SPA 8082	ND	2.61	27.7	ug/kg dry	ix	8103033	09/03/08 12:07	09/04/08 20:15	
Aroclor 1221 [2C]		•	ND	6.65	55.5		٠		•	•	
Aroclor 1232 [2C]		-	ND	2.93	27.7		•	•		•	
Aroclor 1242 [2C]		•	ND	3.62	27.7		•	•		••	
Aroclor 1248 [2C]		•	ND	3.10	27.7	-	• .	. 4	•	•	
Aroclor 1254 [2C]			ND	2.49	27.7	π	•				
Aroclor 1260 [2C]		•	ND	1.28	27.7			8			
Aroclor 1262 [2C]		-	ND	1.85	27.7		•	-	•	T	
Aroclor 1268 [2C]		π	ND	1.17	27.7	•		•	в	*	
Surrogate(s):	TCX [2C]		·	87.4%		65 - 125 %	٠				
5 11	Decachlorobiphenyl [2C]			105%		40 - 150 %	•			•	

BRI0015-11 (B-4-45)		Soi	1		Sampl	ed: 08/2	8/08 18:25			
Aroclor 1016 [2C]	EPA	8082	ND	3.12	33.2	ug/kg dry	lx	8103033	09/03/08 12:07	09/04/08 20:33	
Aroclor 1221 [2C]	•		ND	7.96	66.4					π	,
Aroclor 1232 [2C]	•		ND	3.51	33.2		-		*	•	(
Aroclor 1242 [2C]			ND	4.33	33.2	•			•	•	λ,
Aroclor 1248 [2C]	b		ND	3.71	33.2	•	-		-	π	
Aroclor 1254 [2C]			ND	2.98	33.2	•		•		•	
Aroclor 1260 [2C]			ND	1.53	33.2			•		•	
Aroclor 1262 [2C]	π		ND	2.22	33.2	•	۳			•	
Aroclor 1268 [2C]	1		ND	1.40	33.2			٠	P	•	
Surrogate(s):	TCX [2C]			84.9%		65 - 125 K				۳	
-	Decachlorobiphenyl [2C]			105%		40 - 150 %				•	

TestAmerica Seattle

Conteny

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 8 of 27

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake **Tri-Cities Goodyear** Project Name: Report Created: 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Liberty Lake, WA 99019 Project Manager: Jeff Leppo 10/29/08 10:51

A-state MOI Devote MOI Light Dis Patel Devoted Analyzed												
Analyte	Method	Result	MDL*	MRL	Units	Dił	Batch	Prepared	Analyzed	Notes		
BRI0015-01 (B-4-16.5)		So	4		Samp	led: 08/2	8/08 09:10					
Acenaphthene	EPA 8270C-SIM	ND	0,00202	0.0101	mg/kg dry	lх	8103030	09/03/08 12:05	09/05/08 01:49			
Acenaphthylene	•	ND	0.000605	0.0101	•		*	•	•			
Anthracene		ND	0.000907	0.0101	•	•		,	•			
Benzo (a) anthracene	•	ND	0.000705	0.0101	•		-		•			
Benzo (a) pyrene	п	ND	0.000907	0.0101		-	-	•	•			
Benzo (b) fluoranthene		ND	0.000705	0.0101	3			•	•			
Benzo (k) fluoranthene	a	ND	0.000907	0.010ł			•	в	л			
Benzo (ghi) perylene	*	ND	0.000705	0,0101	•		R	в	ж			
Chrysene	*	ND	0.000504	0.0101			п					
Dibenz (a,h) anthracene	*	ND	0.000504	0.0101	•				•			
Fluoranthene		ND	0.000705	0.0101	•	-	-		•			
Fluorene		ND	0.000403	0.0101			-	•				
Indeno (1,2,3-cd) pyrene		ND	0.000504	0.0101	h	۹	π	•	•			
1-Methylnaphthalene		ND	0.000907	0.0101	п	a		•				
2-Methylnaphthalene		ND	0.000403	0.0101				•	٩			
Naphthalene	н.	ND	0.000806	0.0101	π	-	•	•		,		
Phenanthrene	,	ND	0.000605	0.0101	•	-		•	•			
Pyrene	•	ND	0,000806	0.0101	•	•			*			

BRI0015-02 (B-4-21)		So	I		Sample	ed: 08/2	8/08 09:20			
Acenaphthene	EPA 8270C-SIM	ND	0.00207	0.0104	mg/kg dry	1x	8103030	09/03/08 12:05	09/05/08 02:15	
Acenaphthylene	N	ND	0.000622	0.0104	F		*		•	
Anthracene		ND	0.000932	0.0104				•	7	
Benzo (a) anthracene		ND	0.000725	0.0104	۹	-	-	-	-	
Benzo (a) pyrene		ND	0.000932	0.0104			-		*	
Benzo (b) fluoranthene		ND	0.000725	0.0104	•	-			•	
Benzo (k) fluoranthene		ND	0.000932	0.0104	•	-		•	•	
Benzo (ghi) perylene	π	ND	0.000725	0.0104			-	•		
Chrysene	•	ND	0.000518	0.0104				•	•	
Dibenz (a,h) anthracene	π	ND	0.000518	0.0104		•		-		
Fluoranthene		ND	0.000725	0.0104			"	Þ	F	
Fluorene	•	ND	0.000414	0.0104	٠			•	•	
Indeno (1,2,3-cd) pyrene		ND	0.000518	0.0104	•	-	۳	π	-	
1-Methylnaphthalene	n	ND	0.000932	0.0104	•				•	
2-Methylnaphthalene	đ	ND	0.000414	0.0104		•		•	•	
Naphihatene	N	ND	0.000829	0.0104	π	•	•	•	•	
Phenanthrene	•	ND	0.000622	0.0104	•	٠	•	π	,	L
Pyrene	٠	ND	0,000829	0.0104	•	•				
Surrogate(s): p-Terphenyl-dl4	·····		129%		50 - 147 %					

The results in this report apply to the samples analyzed in accordance with the chain of custody doesenent. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR,	Inc	Liberty	Lake		
------	-----	---------	------	--	--

2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

Tri-Cities Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report Cr	ested:
10/29/08	10:51

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM TestAmerica Seattle

Analyte	Method	Result	MDL-	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRI0015-03 (D-4-21-DUP)		So	11		Sampl	ed: 08/2	8/08 09:20			
Acenaphthene	EPA 8270C-SIM	ND	0.00208	0.0104	mg/kg dry	1x	8/03030	09/03/08 12:05	09/05/08 20:06	
Acenaphthylene	π	ND	0.000625	0.0104	•		۲	-	•	
Anthracene	л	ND	0.000937	0.0104	•	•	•	•	•	
Benzo (a) anthracene	×	ND	0.000729	0.0104	•	•	•	•	•	
Benzo (a) pyrene		ND	0.000937	0.0104	•	•	•	•	•	
Benzo (b) fluoranthene		ND	0.000729	0.0104	F		•		•	
Benzo (k) fluoranthene	•	ND	0.000937	0.0104		•	•			
Benzo (ghi) perylene	•	ND	0.000729	0.0104	•		•	•	۳	
Chrysene	•	ND	0.000520	0.0104		•	•		•	
Dibenz (a,h) anthracene	•	ND	0.000520	0.0104	•	•	•		•	
Fluoranthene	•	ND	0.000729	0.0104	•	-		•		
Fluorene		ND	0,000416	0.0104	•		•		r	
Indeno (1,2,3-cd) pyrene		ND	0.000520	0.0104	•		•	π	•	
1-Methylnaphthalene		ND	0.000937	0.0104		5			,	
2-Methylnaphthalene	•	ND	0,000416	0.0104	•	-			•	
Naphthalene		ND	0.000833	0.0104	•		•	,	-	
Phenanthrene		ND	0.000625	0.0104	•	•	•		•	
Pyrene	-	ND	0.000833	0.0104	•	-	•			
Surrogate(s): p-Terphenyl-d14			124%		50 - 147 %				»	

)gale(s)

BRI0015-04 (D-4-25)		So	il		Sample	ed: 08/2	8/08 09:45			
Acenaphthene	EPA 8270C-SIM	ND	0.00208	0.0104	rng/kg dry	1x	8[0303]	09/03/08 12:06	09/03/08 21:17	
Acenaphthylene	N	ND	0.000624	0.0104	•	-	•	-		
Anthracene	•	ND	0.000936	0.0104			•	π		
Benzo (a) anthracene	•	ND	0.000728	0.0104	•		٩	•		
Benzo (a) pyrene		ND	0.000936	0.0104		-	•	•		
Benzo (b) fluoranthene	•	ND	0.000728	0.0104			۹		P	
Benzo (k) fluoranthene		ND	0.000936	0.0104	•	đ	•	•	π	
Benzo (ghi) perylene	•	ND	0.000728	0.0104	•					
Chrysene	π	ND	0.000520	0.0104	"		•	•	•	
Dibenz (a,h) anthracene	*	ND	0.000320	0.0104	•	•	•	7	•	
Fluoranthene	×	ND	0.000728	0.0104	•	-	•	•		
Fluorene		ND	0.000416	0.0104		•			R	
Indeno (1,2,3-cd) pyrene	•	ND	0.000520	0.0104			۳	•	•	
I-Methylnaphthalene		ND	0.000936	0.0104	٠		•	•	•	
2-Methylnaphthalene	a d	ND	0.000416	0.0104			•	•	•	
Naphthalene	r	ND	0.000832	0.0104	P		•	•	8	
Phenanthrene	л	ND	0.000624	0.0104			•	•	*	
Pyrene		ND	0.000832	0.0104		-	•	-	•	
Surrogate(s): p-Terphenyl-d14			102%	•	50 - 147 %					

TestAmerica Seattle

أنهن -

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

Tri-Cities Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

Report	Created:
10/29/	08 10:51

	Polynuclear Aromatic Hydrocarbons by GC/MS-SIM TestAmerica Scattle											
Analyte	Method	Result	MDL•	MRL	Units	DI	Batch	Prepared	Analyzed	Notes		
BR10015-05 (B-4-36)		So	al and a second s		Sampl	led: 08/2	28/08 10:56					
Acenaphthene	EPA 8270C-SIM	ND	0.00220	0.0110	mg/kg dry	Ix	8103031	09/03/08 12:06	09/03/08 21:43			
Acenaphthylene		ND	0.000661	0.0110	•	•	•	п	•			
Anthracene		ND	0.000991	0.0110	•	•		•	•			
Benzo (a) anthracene		ND	0.000771	0.0110	•	•		•	•			
Benzo (a) pyrene	π	ND	0.000991	0.0110	•	-		R	•			
Benzo (b) fluoranthene	π	ND	0.000771	0.0110			•					
Benzo (k) fluoranthene	π	ND	0.000991	0.0110	•			2				
Benzo (ghi) perylene	•	ND	0.000771	0.0110			-		π			
Chrysene		ND	0.000551	0.0110	•		-	•	π			
Dibenz (a,h) anthracene		ND	0.000551	0.0110	•		•	-	۳			
Fluoranthene	•	ND	0.000771	0.0110		-	-	-	•			
Fluorene		ND	0.000440	0.0110			•	•	π			
Indeno (1,2,3-cd) pyrene	Ŧ	ND	0.000551	0.0110	π	•	•	•	π			
1-Methylnaphthalene		ND	0.000991	0.0110		ĸ	*	•	r			
2-Methylnaphthalene	π	ND	0.000440	0110.0		۳	٣		я			
Naphthalene	π	ND	0.000881	0.0110	π				×			
Phenanthrene	•	ND	0.000661	0.0110	. •		•	•	۲			
Pyrene	•	ND	0.000881	0.0110			ĸ	-	٠			
Surrogate(s): n-Tarnhanul-di			110%		50 . 147 %	•	· · ·					

Surrogate(s): p-Terphenyl-d14

119%

50 - 147 %

BR10015-06 (B-4-45)		So	il		Sanıpl	ed: 08/2	8/08 11:17		
Acensphihene	EPA 8270C-SIM	ND	0.00255	0.0128	mg/kg dry	lx	8103031	09/03/08 12:06	09/03/08 22:08
Acenaphthylene	• .	ND	0.000766	0.0128		•	•	-	۲
Anthracene	•	ND	0.00115	0.0128	H	. •	-	-	
Benzo (a) anthracene	•	ND	0.000894	0.0128	•	•	•	-	
Benzo (a) pyrene	•	ND	0.00115	0.0128		-	,	ъ	•
Benzo (b) fluoranthene	•	ND	0.000894	0.0128		۳			
Benzo (k) fluoranthene		ND	0.00115	0.0128					
Benzo (glu) perylene	π	ND	0.000894	0.0128				п	π
Chrysene	a	ND	0.000638	0.0128	•	•	۲	•	,
Dibenz (a,h) anthracene	đ	ND	0.000638	0.0128	۲	•	•	-	
Fluoranthene	•	ND	0.000894	0.0128	•	-	•	-	•
Fluorene	-	ND	0.000511	0.0128		-	•	-	•
Indeno (1,2,3-cd) pyrene	•	ND	0.000638	0.0128			•	-	•
1-Methylnaphthalene	T	ND	0.00115	0.0128	•	-	-	-	
2-Methylnaphthalene		ND	0.000511	0.0128		-		**	•
Naphthalene	•	ND	0.00102	0.0128		٩	4		
Phenanthrene	•	ND	0.000766	0.0128	•	۳	*		1
Pyrene	•	ND	0.00102	0.0128		•	•		•
Surrogate(s): p-Terphenyl-d14	· · <u>·</u> · · · · · · · · · · · · · · · ·		109%		50 - 147 %				•

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210 SEATTLE, WA

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101

Liberty Lake, WA 99019

Tri-Cities Goodyear Project Name: Project Number: 027-30160-01 Project Manager: Jeff Leppo

	Report Cr	eated:
]	0/29/08	10:51

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM **TestAmerica** Seattle

Analyte	Method	Result	MDL.	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
BRI0015-07 (B-5-16)		Soll			Sampled: 08/28/08 14:10					
Acenaphthene	EPA 8270C-SIM	ND	0.00210	0.0105	mg/kg dry	lx	8103031	09/03/08 12:06	09/03/08 22:33	
Acenaphthylene		ND	0.000631	0.0105		-		,	•	
Anthracene		ND	0.000946	0.0105	-	-	•			
Benzo (a) anthracene	•	ND	0.000736	0.0105	•	•	-	•	•	
Benzo (a) pyrene		ND	0.000946	0.0105	•	•	•	•		
Benzo (b) fluoranthene	•	ND	0.000736	0.0105	•		•		n	
Benzo (k) fluoranthene		ND	0.000946	0.0105	•	,			۳	
Benzo (ghi) perylene		ND	0.000736	0.0105	•		•			
Chrysene	-	ND	0.000525	0.0105					•	
Dibenz (a,h) enthracene	•	ND	0.000525	0.0105	•	•	•	•	•	
Fluoranthene	-	ND	0.000736	0.0105		•	•		H	
Fluorene	•	ND	0.000420	0.0105	•	-	•	•	•	
Indeno (1,2,3-cd) pyrene		ND	0.000525	0.0105	•	•		•		
I-Methylnaphthalene		ND	0.000946	0.0105	•					
2-Methylnaphthalene		ND	0.000420	0.0105	۲	•	7	•	•	
Naphthalene	•	ND	0.000841	0.0105	•	-	я	•	π	
Phenanlhrene	π	ND	0.000631	0.0105	•	•	•	•	۲	
Ругепе	•	ND	0.000841	0.0105	•		,	•	•	
Surrogate(s): p-Terphenyl-dl4			107%		50 - 147 %				π	

Surrogate(s): p-Terphenyl-d14

BRI0015-08 (B-5-20)	· · · · · · · · · · · · · · · · · · ·	Sa	<u>ц</u>		Sampl				
Acenaphthene	EPA 8270C-SIM	ND	0.00203	0.0101	tng/kg dry	1x	8103031	09/03/08 12:06	09/03/08 22:58
Acenaphthylene		ND	0.000609	0.0101					•
Anthracene	•	ND	0.000913	0.0101		•	π		
Benzo (a) anthracene	•	ND	0.000710	0.0101	•	•		•	R
Benzo (a) pyrene		ND	0.000913	0.0101		•	,	•	×
Benzo (b) fluoranthene	•	ND	0.000710	0.0101	•	•		•	
Benzo (k) fluoranthene		ND	0.000913	0.0101		т		×	
Benzo (ghi) perylene		ND	0.000710	0.0101			•	•	•
hrysene		ND	0.000507	0.0101		•			•
Dibenz (a,h) anthracene		ND	0.000507	0.0101		•	٦	•	
luoranthene	7	ND	0.000710	0.0101	•	•	· #		•
luorene	*	ND	0.000406	0.0101	•	-		•	•
ndeno (1,2,3-cd) pyrene		ND	0.000507	0.0101	•		•		
-Methylnaphthalene		ND	0.000913	0.0101				•	•
-Methylnaphthalene	π	ND	0.000406	0.0101	ĸ	•	•	•	
Naphthalene	π	ND	0.000812	0.0101		•	•	•	*
henanthrene	π	ND	0.000609	0.0101		•	•	•	,
yrene	π	ND	0.000812	0.0101			•	-	"
Surrogate(s): p-Terphenyl-d14			119%		50 - 147 %				

TestAmerica Seattle

e de la compañía de C Sector Sector

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-9244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

Project Name:	Tri-Cities Goodyear	
Project Number.	027-30160-01	Report Created:
Project Manager:	Jeff Leppo	10/29/08 10:51
Polynuclear Aromatic Hydrocan TestAmerica Ser	-	

Analyzed	Note
:06 09/03/08 23:24	
•	
•	
•	
n	
•	
•	
×	
π	
п	
Ŧ	
,	
	n

Surrogate(s): p-Terphenyl-d14

BRI0015-10 (B-5-36)		So	11		Sample	ed: 08/2	8/08 17:55		
Acenaphlhene	EPA 8270C-SIM	ND	0.00224	0.0112	mg/kg dry	Ix	8103031	09/03/08 12:06	09/03/08 23:49
Acenaphthylene	R	ND	0.000672	0.0112			đ		
Anthrácene	•	ND	0.00101	0.0112			۳	-	π
Benzo (a) anthracene	-	ND	0.000785	0.0112		-	•	•	•
Benzo (a) pyrene	•	ND	0.00101	0.0112	•	*	•	,	•
Benzo (b) Auoranthene	•	ND	0.000785	0.0112	•	•	-	-	
Benzo (k) fluoranthene	r -	ND	0,00101	0.0112		٠	R	•	h
Benzo (ghi) perylene		ND	0.000785	0.0112	•	۳.			n
Chrysene	Ξ	ND	0.000560	0.0112			π	4	R
Dibenz (a,h) anthracene		ND	0.000560	0.0112	-	π		4	•
Fluoranthene	•	ND	0.000785	0.0112	π	۳		•	n
Fluorene		ND	0.000448	0.0112				•	•
Indeno (1,2,3-cd) pyrene		ND	0.000560	0.0112	•	-	-	•	•
1-Methylnaphthalene		ND	0.00101	0.0112		-			•
2-Methylnaphthalene		ND	0.000448	0.0112	F		•		
Naphthalene	•	ND	0.000897	0.0112		٠		Ŧ	P
Phenanthrene		ND	0.000572	0.0112	•		π	F	
Pyrene	н	ND	0.000897	0.0112	•	•		-	
Surrogate(s): p-Terphenyl-d14			120%		50 - 147 %	•			

TestAmerica Seattle

the second second C 65

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc. - Liberty Lake

2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

Project Name: Project Number: Project Manager:

Tri-Cities Goodyear 027-30160-01 Jeff Leppo

Report Created: 10/29/08 10:51

TestAmerica Scattle												
Analyte	Method	Result	MDL•	MRL	Units	DII	Batch	Prepared	Analyzed	Notes		
BRI0015-11 (B-4-45)		So	ગા		Sampl	ed: 08/2	8/08 18:25					
Acenaphthene	EPA 8270C-SIM	ND	0.00262	0.0131	mg/kg day	Ix	8103031	09/03/08 12:06	09/04/08 00:14			
Acenaphthylene	•	ND	0.000787	0.0131	•	π		•	•			
Anthracene	•	ND	0.00118	0.0131		-		•	π			
Benzo (a) anthrecene	•	ND	0.000918	0.0131	•	•			•			
Benzo (a) pyrene	•	ND	0.00118	0.0131	n	π						
Benzo (b) fluoranthene		ND	0.000918	0.0131	F	*	•	•	7			
Benzo (k) fluoranthene	•	ND	0.00118	0.0131		•	•	*	•			
Benzo (ghi) perylene	•	ND	0.000918	0.0131	٣	-	*	•				
Chrysene	•	ND	0.000655	0.0131		•		•	R			
Dibenz (a,h) anthracene	•	ND	0.000655	0.0131	۳	-	•	•	•			
Fluoranthene		ND	0.000918	0.0131	π .	*	-	-	•			
Fluorene	p	ND	0.000524	0.0131	•	-	•		•			
Indeno (1,2,3-cd) pyrene		ND	0.000655	0.0131		۲	*	•	•			
I-Methylnaphthalene		ND	0.00118	0.0131		-	•	F	•			
2-Methylnaphthalene	π	ND	0.000524	0.0131	π		•	•	•			
Naphthalene		ND	0.00105	0.0131	•	•	•	-	•			
Phenanthrene		ND	0.000787	0.0131		•	-	4	•			
Ругеле	-	ND	0.00105	0.0131	•	•		*	•			

TestAmerica Seattle

and the second second -0

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 14 of 27

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

Tri-Cities Goodyear LFR, Inc. - Liberty Lake Project Name: Report Created: 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 10/29/08 10:51 Liberty Lake, WA 99019 Project Manager: Jeff Leppo Physical Parameters by APHA/ASTM/EPA Methods TestAmerica Seattle MRL Units Notes Analyte Method Result MDL* DII Batch Prepared Analyzed

Analyte		Method	Result	MDL*	MKL	Units	DII	Batch	Prepared	Analyzea	INOLES
BRI0015-01	(B-4-16.5)		Soil			Sam	pled: 08/2	8/08 09:10			
Dry Weight		BSOPSPL003R0 8	98.6	1.00	1.00	%	1x	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0015-02	(B-4-21)		Soil			Sampled: 08/28/08 09:20					
Dry Weight	·	BSOPSPL003R0 8	97.5	1.00	1.00	%	Ix	8]04044	09/04/08 14:36	09/05/08 00:00	
BR10015-03	(B-4-21-DUP)		Soli			Sam	pled: 08/2	8/08 09:20			
Dry Weight		BSOPSPL003R0 8	95.8	1.00	1.00	%	lx	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0015-04	(B-4-25)		Soft			Sam	pled: 08/2	8/08 09:45			
Dry Welght		BSOPSPL003R0 8	96.8	1.00	1.00	%	lx	8104044	09/04/08 14:36	09/05/08 00:00	
BR10015-05	(B-4-36)		Soli			Sam	pled: 08/2	8/08 10:56			
Dry Weight		BSOPSPL003R0 8	89.3	1.00	1.00	%	lx	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0015-06	(B-4-45)		Soil			Sani	pled: 08/2	8/08 11:17			
Dry Weight		BSOPSPL003R0 8	77.0	1.00	1.00	%	lx	8104044	09/04/08 14:36	09/05/08 00:00	
BR10015-07	(B-5-16)		Soll			Sam	pled: 08/2	8/08 14:10			
Dry Welght		BSOPSPL003R0 8	96.4	1.00	1.00	%	lx	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0015-08	(B-5-20)		Soil			Sam	pled: 08/2	8/08 14:30			
Dry Weight		BSOPSPL003R0 8	97.3	1.00	1.00	%	ix	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0015-09	(B-5-25)		Soil			Sam	pled: 08/2	8/08 15:15			
Dry Welght		B SOPSPL003R0 8	97.2	1.00	1.00	%	lx	8104044	09/04/08 14:36	09/05/08 00:00	
BRI0015-10	(B-5-36)		Soil			San	pled: 08/2	8/08 17:55			
Dry Weight		BSOPSPL003R0 8	88.6	1.00	1.00	%	1x	8104044	09/04/08 14:36	09/05/08 00:00	
BR10015-11	(B-4-45)		Sofi			San	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	28/08 18:25			

Congene and and and

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

THE LEADER IN ENVIRONMENTAL TESTING

LFR	,	In	c.	-	Li	be	rty	1 V	.∕ak	e

2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019

Tri-Cities Goodyear Project Name: Report Created: Project Number: 027-30160-01 Jeff Leppo 10/29/08 10:51 Project Manager:

Physical Parameters by APHA/ASTM/EPA Methods TestAmerica Seattle											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
BRI0015-11 (B-4-45)		Sol	U		Sam	 pled: 08/2	28/08 18:25				
Dry Weight	BSOPSPL003R0 8	76.3	1.00	1.00	%	ix	8104044	09/04/08 14:36	09/05/08 00:00		

TestAmerica Seattle

14. Company -

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analysed in accordance with the chain of ewoody document. This analysical report shall not be reproduced except in full, without the written approval of the laboratory.

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101				Project No Project No		Tri-Cit 027-301	ies Good 60-01	lyear					Report Create	d:
Liberty Lake, WA 99019				Project M		Jeff Lep							10/29/08 10:	
							F						10.25100 101	· · · · ·
Semivolațile P	etroleum Reo	ducts by A	AWAUPA 1	Dxi(gy/o:Ay	C. La Contra Series	All the second	ուսը)։	Labor	atory	Quality	Con	trol Res	nol ts	
QC Batch: 8104017	Soll Pre	paration M	lethod:	EPA 3550B			_						-	
Analyte	Method	Result	М	DL* MRI	. Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD	(Limits)	Analyzed	Notes
Blank (8104017-DLK1)								Extra	acted:	09/04/08 11	1:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.6	60 10.0	mg/kg wet	lx.							09/04/08 18:30	
Lube Oil Range Hydrocarbons	в	ND	3.1	19 25.0		•	-		-					
Surrogate(s): 2-FBP Octaeosane		Recovery	88.9% 98.8%	1	imits: 54-148 62-142								09/04/08 18:30	
LCS (8104017-BS1)								Extra	acted:	09/04/08 11	1:25			
Diesel Range Hydrocarbons	NWTPH Dx	67.3	1.	60 10.0	mg/kg wet	İx		66,7	101%	(78-129)			09/04/08 18:56	
Surrogate(s): 2-FBP		Recovery:	91.8%		imits: 54-148	* *			_		•		09/04/08 18:56	
Octocosane			97.8%		62-142	%							•	
Duplicate (8104017-DUP1)				QC Source	æ BRI0013-0)1		Extra	acted:	09/04/08 11	:25	_		
Diesel Range Hydrocarbons	NWTPH-Dx	ND	L	64 10.2	mg/kg dry	lx	ND				NR	(40)	09/04/08 19:23	
Lube Oil Range Hydrocarbons	E	ND	3.3	26 25.6	•		ND				NR		•	
Surrogate(s): 2-I'BP Octaeoscane		Recovery:	82.6% 101%	1	.imits: 54-148 62-142							-	09/04/08 19:23 "	
Duplicate (8104017-DUP2)				QC Source	* BR10014-0)1		Extra	acted:	09/04/08 11	l:25			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	1.	66 10.4	mg/kg dry	İx	ND	•-			NR	(40)	09/04/08 19:48	
Lube Oil Range Hydrocarbons		ND	3.3	32 26.0		•	4.13	••		•-	••	-	•	
Surrogate(s): 2-PBP Octacosane		Recovery:	82.2% 100%	1	Amits: 54-148 62-142							· · ·	09/04/03 19:48 •	
Matrix Spike (8104017-MS1)				QC Sour	* BR10013-0	01		Extra	acted;	09/04/08 1 1	1;25			
Diesel Range Hydrocarbons	NWTPH-Dx	59.7	Ŀ	-	mg/kg dry	1x	ND	68.2	87.5%	(46-155)			09/04/08 20:14	
Surrogate(s): 2-FBP Octacosane		Recovery:	77. <i>0</i> % 90.2%		imits: 54-148 62-142								09/04/08 20:14 "	

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

Page 17 of 27

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 99011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019				Project Na Project Na Project M	umber: ()	ri-Ci 27-301 off Lep		lyear					Report Create 10/29/08 10:	
Semivolatile P	etroleum Pro	duotsibyil		s(0//0/A0			-	Helbor	itony	Quality	2Cont	rol.Re		
QC Batch: 8104018	Soll Pre	paration N	lethod: Ef			240.64		<u>Ka Se</u> r	948¥	4	100 0000			int (
Anslyte	Method	Result	MDL	' MRI	, Units	DII	Source Result	Spike Amt	% REC	(Limits)	*A RPD	Limity)) Analyzed	Notes
Blank (8104018-BLK1)								Entra	icted:	09/04/08 11	:26			
Dieset Range Hydrocarbons	NWTPH-Dx	ND	1.60	0.0	mg/kg wet	İx			••	1		••	09/04/08 18:31	
Lube Oil Range Hydrocarbons	•	ND	3.19	25.0	•		-						B	
Surrogate(s): 2-FBP Octacosane		Recovery:	91.8% 98.8%	I	imits: 54-148% 62-1429					_			09/04/08 18:31	
LCS (8104018-BS1)								Extra	ncled:	09/04/08 11	:26			
Diesel Range Hydrocarbons	NWTPH-Dx	71.2	1.60	10.0	mg/kg wet	Iх		66.7	107%	(78-129)			09/04/08 18:56	
Surrogate(3): 2-FBP Octacosane		Recovery	97.6% 101%	1	Limits: 54-148% 62-142%								09/04/08 18:56 •	
Duplicate (8104018-DUP1)	4			QC Source	ce: DRI0028-06			Extra	acted:	09/04/08 11	:26			
Diesel Range Hydrocarbons	NWTPH-Dx	568	18.2	114	mg/kg dry	10x	650			ы	13.5%	(40)	09/04/08 19:23	
Lube Oil Range Hydrocarbons	•	2080	36.2	284	. •	•	2350	•-	••		12.2%		-	
Surrogake(s): 2-PBP Octacosane		Recovery	97.7% 111%	1	Limits: 54-148% 62-1429								09/04/08 19:23 "	(
Duplicate (8104018-DUP2)				QC Sourv	e: BR10015-00	1		Extra	eted:	09/04/08 11	:26			
Diesel Range Hydrocarbons	NWTPH-Dx	ND	2.07	12.9	mg/kg dry	İx	ND		*1		NR	(40)	09/04/08 19:48	
Lube Oil Range Hydrocarbons	•	5.92	4.13	32.3	A		ND						π	
Surrogate(s): 2-FBP Octacosane		Recovery:	89.1% 97.8%	I	imits: 54-148% 62-1429								09/04/08 19:48 "	
Matrix Spike (8104018-MS1)				QC Source	re; BR10028-00			Extra	acted:	09/04/08 11	:26			
Diesel Range Hydrocarbons	NWTPH-Dx	600	18.0	113	mg/kg dry	10x	650	75.2	66.5%	(46-155)			09/04/08 20:14	ħ
Surrogate(s): 2-FBP Octacosane		Recovery:	95.2% 110%	1	Limits: 54-148% 62-1429								09/04/08 20:14	

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of sustedy document. This analytical report shall not be reproduced ercept in full, without the writien approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

Page 18 of 27

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITÉ 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

2310 N. Mol	Liberty Lake Iter Rd., Suite 101 e, WA 99019				Project Na Project Nu Project Mr	mber:	Tri-Cit 027-301 Jeff Lep		year					Report Create 10/29/08 10:	
	ad al la constant de Col Additional de Col Additional de Coloradore	Rolychlorin	ated)Bipho	nyls by 191	A Mollio dettAme	Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Habor	tory Qu	ЩyĊ	ontro	lRésult	si ti		e de la contra Contra contra Contra contra	
QC Batel	n: 8103032	Soil Pre	paration M	ethod: EP	A 3550B										
Inalyte		Method	Result	MDL*	MRL	Units	DII	Source Result	Spike Amt	% REC	(Llmits)	₩ RPD	(Linits)	Analyzed	Notes
Blank (810303)	2-BLK1)			_					Extra	acted:	0%03/08 12	:06			
Aroclor 1016 [2C]		EPA 8082	ND	2.35	25.0	ug/kg wet	lx							09/04/08 10:06	
Aroclor 1221 [2C]		•	ND	5.99	50.0	-	•								
Aroclor 1232 [2C]			ND	2.64	25.0	•	•			-					
Arcelor [242 [2C]			ND	3.26	25.0	•		•	-					×	
Aroclor 1248 [2C]		•	ND	2.79	25.0		•								
Aroclor 1254 [2C]		P	ND	2.24	25.0	. •	-						•-		
Aroclor 1260 [2C]			ND	1.15	25.0	۳	•				-	•-			
Aroclor 1262 [2C]		۳	ND	1,67	2,5.0	π	•		•• ,				-	•	
Aroclor 1268 [2C]			ND	1.05	25.0	ন								•	
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	87.8% 103%	L	imits: 65-12. 40-15						-		09/04/08 10:06 "	
LCS (8103032-	-BS1)								Extra	acted:	09/03/08 12	1:06			
Atoclor 1016 [2C]		EPA 8082	78.2	2.35	25.0	ug/kg wet	lx		83.3	93.8%	(80-i20)		•-	09/04/08 10:24	
Aroclor 1260 [2C]			80.0	1.15	25.0		•		•	96.0%	(70-124)			π	
Surrogale(s):	TCX [2C] Decachiorobiphenyl [2C]		Recovery:	84.0% 93.3%	L	imits: 65-12 40-15				••				09/04/08 10:24 "	
Matrix Spike ((8103032-MS1)				QC Sourc	e: BRI0014	-01		Extr	acted:	09/03/08 12	2:06			
Arcelor 1016 [2C]		EPA 8082	85.7	2.41	25.6	ug/kg dry	lx	ND	85.5	100%	(68-132)	••		09/04/08 10:42	
Aroclor 1260 [2C]		•	90.7	1.18	25.6		•	ND	3	106%	(59-131)				
Surogate(s):	TCX [2C] Decachlarabiphenyl [2C]		Recovery:	91,3% 100%	1	imits: 65-12 40-13								09/04/03 10:42 "	
<u>Matrix Spik</u> e D	up (8103032-MSD1)			QC Sourc	e: BR10014	-01		Extr	acted:	09/03/08 17	2:06			
Aroclor 1016 [2C]		EPA 8082	84.0	2.45	26.1	ug/kg dry	ix	ND	86.9	96.6%	(68-132)	1.98	% (20)	09/04/08 11:00	
Aroclor 1260 [2C]			90.2	1.20	26.1	•	•	ND	ĸ	104%	(59-131)	0.545	% (35)	•	
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	84.8% 94.6%	1	.tmits; 65-12 40-13								09/04/08 11:00 *	

TestAmerica Seattle

Ĺ

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report opply to the samples analyzed in accordance with the chain of custody document. This analytical report shalt not be reproduced except in full, without the written approval of the laboratory.

Page 19 of 27

١

2310 N. Mo	Liberty Lake Iter Rd., Suite 101 e, WA 99019	<u>.</u> .			Project Na Project Nu Project Ma	mber:	Tri-Ci 027-301 Jeff Lep		year					Report Create 10/29/08 10:	
	alas az elas di	olychlorin	nted Biph	enyls by ER	Sec. 12.	an8082.5 Toti Sentie	100 Constant	105700	аЦ(tý-C	ionno i de la	l Reall			internet for t	
QC Batel	h: 8103033	Soll Pre	paration N	lethod: EP	A 3550B							_			
Auslyte		Method	Result	MDL	MRL	Units	DI	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
<u>Blank</u> (810303	3-BLK1)								Extr	acted:	09/03/08 12	:07			
Aroclor 1016 [2C]	-	EPA 8082	ND	2.35	25.0	ug/kg wet	lx		· _		-			09/04/08 21:45	
Arcelor 1221 [2C]	-		ND	5.99	50.0		-				~	-		U	
Aroclor 1232 [2C]		,	סא	2.64	25.0	π	•			••				•	
Aroclor 1242 [2C]			ND	3.26	25.0		•	- '						п	
Arcelor 1248 [2C]		٠	ND	2.79	25.0		•		••					•	
Aroclor 1254 [2C]		•	ND	2.24	25.0	٠	•		•-					π	
Aroclor 1260 [2C]			ND	1.15	25.0		•							•	
Atoclor 1262 [2C]			ND	1.67	25.0	•	•			••	-		•-	π	
Atoclor 1268 [2C]		•	NÐ	1.05	25.0	•	-				~	••	~		
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	81.9% 108%	L	imits: 65-125 40-15								09/04/08 21:45 *	
LCS (8103033	-BS1)								Ext	racied:	09/03/08 12	:07			
Aroclor 1016 [2C]		EPA 8082	72.0	2,35	25.0	ug/kg wet	lx	•-	83.3	86.4%	(80-120)			09/04/08 22:03	
Aroclor 1260 [2C]			81.1	1.15	25.0		•		•	97.4%	(70-124)				
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	82.2% I01%	I	imits: 65-125 40-15								09/04/08 22:03	
Matrix Spike	(8103033-MS1)				QC Sourc	e BR10015-	04		Exte	racted:	09/03/08 12	:07			
Aroclor 1016 [2C]	·	EPA 8082	81.2	2.40	25.5	ug/kg dry	lx	ND	85.0	95.5%	(68-132)			09/04/08 22:21	
Arcelor 1260 [2C]		•	89.4	1.17	25.5	•		ND		105%	(59-131)			. .	
Surrogale(s):	TCX [2C] Decachlorobtphenyl [2C]		Recovery:	84.9% 103%	Ī	imits: 65-125 40-15								09/04/08 22:21	
Matrix Salke D)up (8103033-MSD1	<u>،</u>			OC Source	e: BRI0015	04		Ext	racted:	09/03/08 12	::07			
Aroclor 1016 [2C]		EPA 8082	86.0	2.42	25.7	ug/kg dry	lx	ND	85.8	100%			(20)	09/04/08 22:39	
Aroclor 1260 [2C]		•	96.7	1.18	25.7	·	•	ND		113%			5 (35)		
Surrogate(s):	TCX [2C] Decachlorobiphenyl [2C]		Recovery:	89.8% 110%		ámiis: 65-12: 40-15					. ,			09/04/08 22:39	

TestAmerica Seattle

Contrang.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 20 of 27

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:51

Rolynuclear/Aromatic Hydrocarbon, by ACC/MIS-SIM = It drocator & Quality Control Result sentile

QC Batch: 8103030 Soll Preparation Method: EPA 3550B

Analyte	Method	Result	MDL*	MRL	Units	Dii	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Anølyzed	Notes
Blank (8103030-BLK1)								Extr	acted:	09/03/08 12	::05			
Acenaphthene	EPA 8270C-SIM	ND	0.00200	0.0100	mg/kg wet	łx			••	•-			09/04/08 15:18	
Acenaphthylene	•	ND	0.000600	0.0100	•	•	-							
Anthraœne	ਰ	ND	0.000900	0.0100		٠	-							
Benzo (a) aniluacene	π	ND	0.000700	0.0100	-	•					••		-	
Велго (а) рутепе	•	ND	0.000900	0.0100	•	•								
Benzo (b) fluoranthene	7	ND	0.000700	0.0100		•								
Велzo (k) fluoranthene	π	ND	0.000900	0.0100		۲								
Benzo (ghi) perylene	7	ND	0.060700	0.0100	•	•								
Chrysene	π	ND	0.000500	0.0100	• `	•	~							
Dibenz (a,h) anthracene	-	ND	0.000500	0.0100									,	
Fluoranthene	•	ND	0.000700	0.0100	•	•	-					••		
Fluorene	π	ND	0.000400	0.0100	•	•	-						•	
Indeno (1,2,3-od) pyrene	π	ND	0.000500	0.0100	à	•	-	•-	••				•	
1-Methylnaphthalene	a	ND	0.000900	0.0100		•								
2 Methylnaphthalene		ND	0.000400	0.0100		•							•	
Naphihatene	n	ND	0.000800	0.0100	-	•	-							
Phenanthrene		ND	0.000600	0.0100		•	-							
Рутепе	7	ND	0.000800	0.0100	,									
Surrogate(s): p-Terphenyl-d14		Recovery:	109%	I	Amits: 50-147%	•			• •				09/04/08 15:18	3
LCS (8103030-BS1)	,							Ext	actod:	09/03/08 12	2:05			
Acenaphthene	EPA 8270C-SIM	0.666	0.00200	0.0100	mg/kg wet	1x		0.667	100%	(70-125)		-•	09/04/08 17:24	
Acenaphthylene		0.804	0.000600	0.0100		•		4	121%	(70-133)	_		•	
Anihracene	•	0.859	0.000900	0.0100	•	•		•	129%	(70-152)				
Benzo (a) anihracene	•	0.762	0.000700	0.0100		•		۳	114%	(60-125)			*	
Benzo (a) pyrene		0.776	0.000900	0.0100		•		π	116%	(64-134)			×	
Benzo (b) fluoranthene		0.782	0.000700	0.0100	,	•			117%	(62-147)			•	
Benzo (k) fluoranthene		0.785	0.000900	0.0100					118%	(60-144)				

TestAmerica Seattle

Benzo (ghi) perylene

Dibenz (a,h) anthracene

Indeno (1,2,3-cd) pyrene

I-Methylnaphthalene

2-Methylnaphthalene

Chrysene

Fluorene

Fluoranthene

Naphihalene

Phenanthrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

... ...

... ---

113%

126%

117%

121%

114%

111%

84.1%

78.4%

85.6%

127%

.

.

π

.

π

.

...

•••

--

--

--

.

.

.

(57-137)

(70-139)

(56-140)

(70-141)

(76-132)

(55-138)

(46-128)

(41-125)

(43-125)

(73-125)

without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

L1

0.755

0.839

0.778

0.809

0.762

0.737

0.561

0.523

0.571

0.849

.

.

0.000700

0.000500

0.000500

0.000700

0.000400

0.000500

0.000900

0.000400

0.000800

0.000600

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH; (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake 2310 N. Molter Rd., Suite 101 Liberty Lake, WA 99019				Project Na Project Nu Project Ma	mber:	Tri-Cit 027-301 Jeff Lep		year					Report Crest(10/29/08 10)	
r An an an an an an an an an an an an an an	alynuelear Ar	omatic Hi	C. M. M. M. M. M. M. M. M. M. M. M. M. M.	1.	umis-situm ng isla into	100 Gar K	o erainy(Diality	Con	rolRea	ilts 			
QC Batch: 8103030	Soil Prej	paration M	ethod: EP/	4 3550 B										
nalyte	Method	Result	MDL.	MRL	Units	DII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
.CS (8103030-BS1)								Extra	acted:	0%03/08 12	:05			
yrene	EPA 8270C-SIM	0.710	0.000800	0.0100	mg/kg wet	lx		0.667	106%	(68-140)		••	09/04/08 17:24	
Surrogate(s): p-Terphenyl-d14	Carto Dini	Recovery:	100%	L	.imits: 50-1479	6 -					• ;		09/04/08 17:24	
Matrix Spike (8103030-MS1)				QC Sourc	* BR10013-0	1		Extr	acted:	09/03/08 12	:05			
icenaphthene	EPA	0.682	0.00202	0.0101	mg/kg dry	lx	ND	0.673	101%	(67-132)		~	09/04/08 17:49	
cenaphthylene	8270C-SIM	0.816	0.000606	0.0101	•		ND		121%	(65-142)				
nthracene		0.884	0.000909	0.0101		-	ND		131%	(66-158)	•-		,	
enzo (a) anthracene		0.786	0,000707	0.0101			ND		117%	(41-156)			•	
enzo (a) pyrene		0,798	0.000909	0.0101		•	ND		119%	(52-148)				
enzo (b) fluorantheno		0.798	0.000707	0.0101		,	ND		119%	(53-151)				
enzo (k) fluoranthene		0.800	0.000909	0.0101			0.00352		1[8%	(46-161)				
enzo (ghi) perylene		0.787	0.000707	0.0101			ND		117%	(26-154)				
hrysene		0.866	0.000505	0.0101			ND		129%	(55-155)		_		
ibenz (a,h) anthracene	в	0.805	0.000505	0.0[01		-	ND		120%	(27-157)				
luoranthene		0.824	0,000707	0.0101		-	0.00124		122%	(46-172)			•	
uorene		0.770	0.000404	0.0101			ND		114%	(66-143)				
deno (1,2,3-cd) pyrene		0.764	0.000505	0.0101		-	ND	,	114%	(24-159)				
-Methylnaphthalene	-	0.548	0.000909	0.0101		,	ND		81.4%		_			
Methylnaphthalene		0.515	0.000404	0.0101			ND	-	76.6%				π	
aphthalene		0.569	0.000808	0.0101	*		ND		84.5%					
•									130%	(63-139)		.,		
henanthrene		0.874	0.000606	0.0101	-		ND			. ,	••		-	
утепе	•	0.765	0.000808	0.0101			ND		114%	(51-172)				<u> </u>
Surrogate(s): p-Terphenyl-d14		Recovery:	109%	I	Limits: 50-147;	% "							09/04/08 17:49	
datrix Spike Dup (8103030-MS					ce: BRI0013-0					09/03/08 12				
lcenaphthene	EPA 8270C-SIM	0.683	0.00207	0.0103	mg/kg dry	lx	ND	0.689	99.1%	(67-132)	0.096:	5% (50)	09/04/08 18:15	
cenaphthylene		0,825	0.000620	0.0103	•	•	ND		120%	(65-142)	1.119	% "	-	
nthracene		0,906	0.000930	0.0103	4	•	ND	۳	132%	(66-158)	2.55	% •	•	
ienzo (a) anthracene	•	0.785	0.000723	0.0103	ĸ	•	ND	٠	114%	(41-156)	0.062	2% "		
enzo (a) pyrene	•	0.802	0.000930	0.0103			ND		116%	(52-148)	0.526	% "	*	
enzo (b) fluoranthene	•	0.800	0.000723	0.0103	•		ND	-	116%	(53-151)	0.242	% "	n	
tenzo (k) fluoranthene	•	0.794	0.000930	0.0103		•	0.00352		115%	(46-161)	0.805	% "		
ienzo (ghi) perylene		0.793	0.000723	0.0103			ND	•	115%	(26-154)	0.746	% "	٠	
laysene		0.868	0.000517	0.0103	•		ND		126%	(55-155)	0.194	% (44)		
Dibenz (a,h) anthracene	•	0.B22	0.000517	0.0103	•	,	ND	4	119%	(27-157)	2.16	% (50)		
luoranthene	•	0.837	0.000723	0.0103	-	٠	0.00124		121%	(46-172)	1.57	% "	π	
luorene	٠	0.769	0.000413	0.0103		п	ND	,	112%	(66-143)	0.15	% (52)		
ndeno (1,2,3-cd) рутепе	, n	0.776	0.000517	0.0103						(24-159)		% (43)		

TestAmerica Seattle

Serest of ٤

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduce d except in full,

al report shall not be reproved of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 22 of 27

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-9244 PH: (425) 420.9200 FAX: (425) 420.9210

Liberty Lake, WA 99019				Project Nu Project Ma		027-301 Jeff Lep							Report Create 10/29/08 10;	
e e service de la B	olynuclear A	omatic)))			MS- <mark>SIM</mark> Iolise IIIo		07410037X	onellity	Con	lt all Res	n(tê			
QC Batch: 8103030	Soil Pre	paration M	lethod: EPA	A 3550B										
Inalyte	Method	Result	MDL*	MRL	Units	DII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Matrix Spike Dup (8103030-MS	D1)			QC Source	# BRI0013-0	1		Extr	acted:	09/03/08 12	:05			
-Methylnaphthalene	EPA 8270C-SIM	0.573	0.000930	0.0103	mg/kg dry	1 x	ND	0.689	83.2%	(39-140)	4.48%	50)	09/04/08 18:15	
2-Methylnaphthalene	82/10-11/1	0.536	0.000413	0.0103		*	ND	•	77.8%	(32-139)	3.99%	. "	•	
Naphthalene		0.585	0.000827	0,0103	F	•	ND	•	84.9%	(38-134)	2.75%	, "		
Phenanthrene	-	0.885	0.000620	0.0103	•	٠	ND	•	128%	(63-139)	I.25%	. *	•	
Pyrene	•	0.731	0.000827	0.0103	•	•	ND		106%	(51-172)	4.56%	. •		
Surrogate(s): p-Terphenyl-d14		Recovery:	99.7%	L	imits: 50-147)	6 *							09/04/08 18:15	.
QC Batch: 8103031	Soil Pre	naration N	lethod: EPA						<u> </u>					
		•					Source	Spike	•%	(T) (L.)	~	(1.1.16.)		Nata
inalyte	Method	Result	MDL*	MRL	Units	Dil	Result	Amt	REC	(Llmlts)	RPD		Analyzed	Note
Blank (8103031-BLK1)				•				Extr	acted:	09/03/08 12	:06			
Benzo (a) anthracene	EPA	ND	0.000700	0.0100	mg/kg wet	łx	••	••	••				09/03/08 17:55	
Carron (a) marana	8270C-SIM	ND	0.000900	0.0100	-									
Benzo (a) pyrene Benzo (b) fluoranthene	-	ND ND	0.000700	0.0100									,	
Benzo (k) fluoranthene		ND	0.000900	0.0100								.,		
Chrysena		ND	0.000500	0.0100		я								
Dibenz (a,h) anthracene	π	ND	0.000500	0.0100										
Indeno (1,2,3-cd) pyrene		אס סא	0.000500	0.0100										
Surrogate(s): p-Terphenyl-d14		Recovery:	111%		Imits: 50-147	K .							09/03/08 17:55	
		necorcij.	111.0	1	pin <u>b</u> . 30 277									
LCS (8103031-BS1)										09/03/08 12				
Benzo (a) anthracene	EPA 8270C-SIM	0.729	0.000700	0.0100	mg/kg wet	İx		0.667	109%	(60-125)			09/03/08 18:20	
Benzo (a) pyrene	8270C-DIM	0.739	0.000900	0.0100		•		. •	111%	(64-134)			•	
Benzo (b) Duoranthene		0.744	0.000700	0.0100	•				112%	(62-147)			-	
Benzo (k) fluoranthene	=	0.728	0.000900	0.0100			•-		109%	(60-144)			р. ¹	
Chrysene	#	0.799	0.000500	0.0100		٠		•	120%	(70-139)			н	
Dibenz (a,h) anthracene	-	0.739	0.000500	0.0100		,	••		111%	(56-140)			•	
Indeno (1,2,3-cd) pyrene	-	0.698	0.000500	0.0100	•			۳	105%	(55-138)				
Surrogate(s): p-Terphenyl-d14		Recovery:	92.0%	L	imits: 50-147	% *							09/03/08 18:20	
Matrix Spike (8103031-MSL)				QC Sourc	æ BRI0015-	09		Ext	acted:	09/03/08 12	1:06			
Benzo (a) anthracene	EPA	0,780	0.000725	-	mg/kg dry	lx	ND	0.691	113%	(41-156)			09/03/08 18:46	
Вепzo (а) рутеле	8270C-SIM	0,791	0.000932	0.0104		,	ND		115%	(52-148)				
Benzo (b) fluoranthene		0.779	0.000725	0.0104			ND		113%				,	
Benzo (k) fluoranthene		0.760	0.000932	0.0104			ND	-	110%				,	
Chrysene		0.856	0.000518	0.0104	•		ND	•	124%					

Contraction of the

without the written approval of the laboratory.

Page 23 of 27

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUTTE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc. - Liberty Lake **Tri-Cities Goodyear** Project Name: 2310 N. Molter Rd., Suite 101 Project Number: 027-30160-01 Report Created: Liberty Lake, WA 99019 Project Manager: 10/29/08 10:51 Jeff Leppo Polynuclear Aromatic Hydrocarbons by GC/MS/SIM > Reboratory Quality Control Results. Westerne des Schille QC Batch: 8103031 EPA 3550B Soil Preparation Method: Source Spike ٩/. % RPD Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed Notes (Limits) REC Result Ant QC Source: BR10015-09 Matrix Spike (8103031-MS1) Extracted: 09/03/08 12:06 Dicenz (a,h) anthracene EPA 0,845 0.000518 0.0104 mg/kg dry ND 0.691 122% (27-157) 09/03/08 18:46 lx --8270C-SIM Indeno (1,2,3-cd) pyrene 0.795 0.000518 0.0104 . ND P 115% (24-159) _ 09/03/08 18:46 Surrogate(s): p-Terphenyl-d14 Recovery: 97.5% Limits: 50-147% . Matrix Spike Dup (8103031-MSD1) QC Source: BRI0015-09 Extracted: 09/03/08 12:06 Benzo (a) anthracene EPA 0.759 0.000720 0.0103 mg/kg day 111% 2,70% (50) 09/03/08 19:11 ND 0.686 (41-156) 1x 8270C-SIM Benzo (a) pyrene 0.773 0.000926 0.0103 ND 113% (52-148) 2.26% Benzo (b) fluoranthene 0.000720 0.759 0.0103 ND 111% (53-151) 2.60% Berrzo (k) fluoranthene 0.736 0.000926 0.0103 ND 107% (46-161) 3.16% Chrysene 0.826 0.000515 0.0103

0.826

0.775

Recovery:

0.000515

0.000515

93,9%

0.0103

0.0103

Limits: 30-147%

ND

ND

ND

120%

120%

113%

(55-155)

(27-157)

(24-159)

3.66% (44)

2.28% (50)

2.47% (43)

09/03/08 19:11

Surrogate(s): p-Terphenyl-d14

Dibenz (a,h) anthracene

Indeno (1,2,3-cd) pyrene

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 24 of 27

SEATTLE, WA 11720 NORTH CREEX PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:51

QC Batch: 8104044	Soil Prej	paration Met	hod: Dry \	Weight										
Analyte	Method	Result	MDL*	MRL	Units	DII	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Not
Blank (8104044-DLK1)								Extr	acted:	09/04/08 1	4:36			
Dry Weight	BSOPSPL00 3R08	100	1.00	1.00	%	lx						(39/05/08 00:00	

TestAmerica Seattle

Service and the service of the servi J

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

Page 25 of 27

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

www.testamericainc.com

.

LFR, Inc Liberty Lake	Project Name:	Tri-Cities Goodyear	
2310 N. Molter Rd., Suite 101	Project Number:	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:51

CERTIFICATION SUMMARY

TestAmerica Seattle

Method	Matrix	Nelao	Washington		
BSOPSPL003R08	Soil				
EPA 8082	Soil	х	Х		
EPA 8270C-SIM	Soil	х	х		
NWTPH-Dx	Soil		х		

Any abnormalities or departures from sample acceptance policy shall be documented on the 'Sample Receipt and Temperature Log Form' and 'Sample Non-conformance Form' (if applicable) included with this report.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Samples collected by TestAmerica Field Services personnel are noted on the Chain of Custody (COC) .

TestAmerica Seattle

attle

The results in this report apply to the samples analyzed in accordance with the chain of euclody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-9244 PH: (425) 420.9200 FAX: (425) 420.9210

IFP Inc	- T (iberty Lake	Dist she is	Tri-Cities Goodycar	
		r Rd., Suite 101	Project Name: Project Number:	027-30160-01	Report Created:
		WA 99019	Project Manager:	Jeff Leppo	10/29/08 10:51
	St		mes and Donial	1000 1	
Dana de Su	<u></u>			na ny anana amin' na kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaomin I amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' am	
Report Sp	<u>ieci</u>				
A-01	-	Not included in average calculation	······································		
E J	-	Concentration exceeds the calibration range and ther		•	at 1.
3	-	Estimated value. Analyte detected at a level less tha (MDL). The user of this data should be aware that th		it (RL) and greater than or equal to the Method Detection reliability.	n Limit
L	-	Laboratory Control Sample and/or Laboratory Contr detected, data not impacted.	ol Sample Duplicate	recovery was above the acceptance limits. Analyte not	
Ll	-	Laboratory Control Sample and/or Laboratory Contr	ol Sample Duplicate	recovery was above acceptance limits.	
M2	-	The MS and/or MSD were below the acceptance lim	its due to sample ma	atrix interference. See Blank Spike (LCS).	
Q3	-	The chromatographic pattern is not consistent with d	liesel fuel.		
Q4	-	The hydrocarbons present are a complex mixture of	diesel range and hea	vy oil range organics.	
Q6	-	Results in the diesel organics range are primarily due	e to overlap from a h	eavy oil range product.	
Z3	-	The sample required a dilution due to the nature of the sample was reduced to a level where the recovery ca		coause of this dilution, the surrogate spike concentration rovide useful information.	in the
ZX	-	Due to sample malrix effects, the surrogate recovery	-		
Laborator	<u>y R</u>	eporting Conventions:			
DET	-	Analyte DETECTED at or above the Reporting Limit.	Qualitative Analyse	es only.	
ND	-	Analyte NOT DETECTED at or above the reporting li	mit (MDL or MRL,	as appropriate).	
NR/NA	-	Not Reported / Not Available		· · · · · · · · · · · · · · · · · · ·	
dry	-	Sample results reported on a Dry Weight Basis. Resul	ts and Reporting Lin	nits have been corrected for Percent Dry Weight.	
wel	-	Sample results and reporting limits reported on a Wet on a Wet on a Wet Weight Basis.	Weight Basis (as rec	eived). Results with neither 'wet' nor 'dry' are reported	
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calcul	ated using Results, n	ot Percent Recoveries).	
MRL	-	METHOD REPORTING LIMIT. Reporting Level at,	or above, the lowest	level standard of the Calibration Table.	
MDL*	-			ioally derived limit based on 40CFR, Part 136, Appendix ne MRL. Results between the MDL and MRL are report	
Dil	-	Dilutions are calculated based on deviations from the s found on the analytical raw data.	standard dilution per	formed for an analysis, and may not represent the dilutio	n
Reporting Limits	-	Reporting limits (MDLs and MRLs) are adjusted base percent solids, where applicable.	d on variations in sa	mple preparation amounts, analytical dilutions and	
Eleotronio Signature	-	Electronic Signature added in accordance with TestAn Application of electronic signature indicates that the re Electronic signature is intended to be the legally bindi	eport has been review	wed and approved for release by the laboratory.	

TestAmerica Seattle 1. and the and the second - ÷ C 0

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Page 27 of 27

Testing corporation			T a	Ę	C day				1 2000 W	1720 North Internation	ı Creek Pkw 11922 9405 SW N ai Airport F	y N Suite 4 E. First Av limbus Ave td Ste A10,	00, Bothell, e, Spokane, , Berverton Anchorage,	 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Berveton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 	244 45 3302 56 1145 56	425-420-9200 F 509-924-9200 F 503-906-9200 F 907-563-9200 F	FAX 420-9210 FAX 924-9290 FAX 96-9210 FAX 563-9210	
CLENT: LFR		3	AIN			INVOICE TO	CHAIN OF CUSTODY REPORT							Work (Drder #: TURNAE	Work Order #: OVEL CO TURNAROUND REQUEST	S a	¢-
REPORT TO: JEAF Lappo/ M. LUMUL) STE 101/LL, WE 9901	/ M. LINNEL) STE IOI/	رد, ب الد	с Ş	9019		~	ER EC.	IJС.						in] Organic &	in Businces Days * Organic & Inorganic Analyses 5 4 5 3 2	[-	
PHONE: 29 - 535 - 725 FAX: 509 - 535 - 736	FAX: 509-5	35-736)	~		_1 6 ;	P.O. NUMBER	ER:							, r }€] <u></u> []
PROJECT NAME: Goody car	7		1	-	11-1	F	-	PRESERVATIVE	LIVE						- - -	3 2 1	2	
PROJECT NUMBER 037- 30160 - 01	30 60 - 0]		\mathbf{b}		17-11-		REQ	REQUESTED ANALYSES	NALYSES			-			OTHER	Specify:		
SAMPLED BY: Meghon Lunney	ليممع		ج اعر	Ş								_		Turnaroum	l Requests les	Turnaround Requests less than standard may incur Rush Charges.	incur Rush (Changes.
CLIENT SAMILE IDENTIFICATION	SAMPLING		HHJ mot	ંજઝ	PX									MATRIX (W, S, O)	# OF CONT:	LOCATION / COMMENTS	··	TA WOID
Mwl	9/4/08	01:60	>											7	e		7	20
C.WM 2		20:01	7	\mathbf{Y}	7								-	3	3		Ť	20
MW3	-	1150	7	7	7								<u> </u>	3	ى 1		- ' Y	R
DD-6W	\rightarrow	ماحا	Ż									-		3	m.			3
"TREP	I	1	7															•
												- - -						
6	•											· · · · ·						
							<u> </u>	 										
10											1/ 12/	<u> </u>						
PREMIXAME: MEEHAN 1	- OK P	Wara-	LFR			DATE: 9	DATE: 9 15/08		RECEIVED BY: FRINT NAME:	ure: C	In the west	liber.		FIRM	FIRME TH-Sankare		DATE 9/5/45 TIME 0745	J.
RET EASED BY: PRINT NAME:		EIRM:				interest of the second			RECEIVED BY: PRINT NAME:	NE: VE:	•			FIRME	- #		DATE: TIME:	
ADDITTONAL REMARKS: TAL 100 0007																7EMP: 2,3 U	Z.3 C PAGE OF	- To

ţ

APPENDIX I

Groundwater Analytical Reports – September and October 2008

)

·

.

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206 ph: (509) 924.9200 fax: (509) 924.9290

October 29, 2008

Meghan Lunney LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: Goodyear

TestAmerica

Randee Decker, Project Manager

Enclosed are the results of analyses for samples received by the laboratory on 09/05/08 07:45. The following list is a summary of the Work Orders contained in this report, generated on 10/29/08 16:34.

If you have any questions concerning this report, please feel free to contact me.

	<u>Work Order</u> SRI0032	<u>Project</u> Goodyear	ProjectNumber 027-30160-01	•
<u> </u>	•			
. •				
• •	· · · · ·			
	· ·			
		•		
merica Spokan	.		The results in this report apply to the samples analyzed in accordance of custody document. This analytical report must be reproduce	e with the chain ed in its entirety
tand	wheeter			

SPOKANE, WA

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.	Project Name:	Goodyear		<u> </u>
2310 N. Molter Rd. Suite 101	Project Number:	027-30160-01	· ·	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	•	10/29/08 16:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW1	SRI0032-01	Water	09/04/08 09:10	09/05/08 07:45
MW2	SR10032-02	Water	09/04/08 10:05	09/05/08 07:45
MW3	SRI0032-03	Water	09/04/08 11:50	09/05/08 07:45
Dup-6W	SR10032-04	Water	09/04/08 12:10	09/05/08 07:45
Trip	SR10032-05	Water	09/04/08 00:00	09/05/08 07:45
				•

TestAmerica Spokane

Canai ϵc ľο

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entire

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 (ax: (509) 924.9290

Page 3 of 12

LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019			Project Nar Project Nur Project Ma	nber:	Goodye 027-3010 Meghan	60-01				eport Created:)/29/08 16:34	-
	Semiv	olatile P	etroleum TestAmer		•	WTP	H-Dx		<u>.</u> .	. <u></u> .	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	s
SRI0032-01 (MW1)		. W	ater		Samj	pled: 09/0	04/08 09:10				
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	NWTPH-Dx	ND ND	0.0648 0.0995	0.238 0.476	mg/l	`lx ≖	8090051 "	09/08/08 09;15	09/09/08 12: "	36	
Surrogate(s): 2-FBP p-Terphenyl-d14			96.7% 101%			- 150 % - 150 %	17 11		. н н		
SR10032-02 (MW2)	·	Ŵ	ater		Samj	pled: 09/(04/08 10:05	·		·	
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	NWTPH-Dx	0,0751 0.105	0.0648 0.0995	0.238 0.476	mg/l	lx •	8090051	09/08/08 09:15	09/09/08 13: "	10	
Surrogate(s): 2-FBP p-Terphenyl-d14		•	96.0%· 101%			- 150 % - 150 %	"		σ		
SRI0032-03 (MW3)		w	ater		Sam	pled: 09/	04/08 11:50				
Diesel Range Hydrocarbons Heavy Oll Range Hydrocarbons	NWTPH-Dx	0.682 0.909	0.0612 0.0986	0.236 0.472	mg/l	. Ix	8090051	09/08/08 09:15 "	09/09/08 13: "	46	
Surrogate(s): 2-FBP p-Terphenyl-d14	1	-	88.9% 92.1%			- 150 % - 150 %	17		17 17		
			_								
. ·							* 		·		
. -								•			
					-		-				
۰ ۲۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	· · · · ·			•					•		
											·
<u> </u>											—

larai ecto Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA

11922 E. IST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.	Project Name:	Goodyear	· · · · · · · · · · · · · · · · · · ·
2310 N. Molter Rd. Suite 101	Project Number	027-30160-01	Report Created:
Liberty Lake, WA 99019	Project Manager:	Meghan Lunney	10/29/08 16:34

		Poly	vehlorinate	ed Bipher TestAme			1ethod	8082	T		• •
Analyte		Method	Result	MDL*	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
SR10032-01 (1	MWI)		w	ater		Sam	pled: 09/	04/08 09:10		·	
PCB-1016		EPA 8082	ND	0.0505	0.0952	ug/í	lx	8090053	09/08/08 12:55	09/10/08 18:35	
PCB-1221		• `	ND	0.0372	0,0952	•	•			п	
PCB-1232		•	ND	0.0101	0.0952	•	•	•		*	
PCB-1242			ND	0,0/27	0.0952		н	•	•	•	
PCB-1248		•	. ND	0.00781	0.0952		• :		. •	•	
PCB-1254		•	ND	0.0667	0.0952				. •	•	
CB-1260		•	ND	0.0133	0.0952	•		۰.		n	
Surrogate(s):	TCX			72.1%		40	- 137 %	"		·	
	Decachlorobiphenyl			85.0%		-10	- 124 %	0		"	
RI0032-02 (MW2)		W	ater		Sani	pled: 09/	04/08 10:05			
PCB-1016		EPA 8082	ND	0,0500	0.0943	ug/l	lx	8090053	09/08/08 12:55	09/10/08 19:03	-
CB-1221			ND	0.0369	0.0943		· .	•	•	•	· •
CB-1232		•	ND	0.0100	0.0943		· =	•	•	•	
CB-1242		•	ND	0.0123	0.0943	Ŧ				•	1
PCB-1248		•	ND	0.00774	0,0943					` .	(
PCB-1254		•	ND	0.0660	0.0943	•		• *	•		
PCB-1260			ND	0.0132	0.0943	•	•	•	•	*	
Surrogate(s):	тсх		•	74.8%		40	- 137 %	W	••••	и	
	Decachlorobiphenyl			182%		40	- 124 %	17		u	Z2
R10032-03 (MW3)		w	ater		Sam	pled: 09/	04/08 11:50			
CB-1016		EPA 8082	ND	0.0500	0.0943	ug/l	١x	8090053	09/08/08 12:55	09/10/08 19:30	
PCB-1221		•	ND	0.0369	0,0943	•			•		
PCB-1232		•	ND	0.0100	0.0943			•	•	*	
PCB-1242		•	ND	0.0125	0.0943	•	*	•		•	
PCB-1248		•	ND	0.00774	0,0943	ж	` P	*		• .	
PCB-1254		•	ND	0.0660	0.0943	*	P	• `	.•		
PCB-1260		•	. ND	0.0132	0.0943	•	•				
Surrogate(s):	TCX		•	74.5%		40	- 137 %	n		' л -	
	Decachlorobiphenyl			152%		40	- 121%			ri -	Z2

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entire?

tandi €°C3 Randee Decker, Project Manager

andee Decker, Frojeer Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA

SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

· · ·

LFR, Inc.		Project Name:	Goodyear	· ·	
2310 N. Molter Rd. Suite 101		Project Number.	027-30160-01		Report Created:
Liberty Lake, WA 99019		Project Manager:	Meghan Lunney	•	10/29/08 16:34

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection TestAmerica Seattle

Analyte	· Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRI0032-01 (MW1)		W	ater		Sam	pled: 09/0	04/08 09:10	_		<u> </u>
Acenaphthene	EPA . 8270C-HVI	ND	0.00256	0.0943	ug/l	lx	8110008	09/10/08 09:02	09/15/08 15:33	
Acenaphthylene		, ND	0.00238	0.0943	•	•		•	•	
Anthracene	*	0.0109	0.00268	0.0943	•	•		•	۳.,	
Benzo (a) anthracene		ND	0.00149	0.00943			"	•	э.	
Benzo (a) pyrene	n .	ND	0.00297	0.00943	•	•	. "	•	•	•
Benzo (b) fluoranthene	•	ND	0.00194	0.00943		•	*	-	. •	
Benzo (k) fluoranthene	• · ·	ND	0.00175	0,00943				•	_ e	-
Benzo (ghi) perylene	*	ND	0.00279	0.0943	•	*	. •	•	•	
Chrysene		ND	0.00177	0.00943	.•	•		- <i>x</i>		· ·
Dibenz (a,h) anthracene		ND	0.00236	0.00943	•	. •	n [.]	•	-	
Fluoranthene		ND	0.00185	0.0943	•	•		-	•	
Fluorene		ND	0.00337	0.0943		۹.	-	•	•	
Indeno (1,2,3-cd) pyrene	Ξ.	ND	0.00232	0.00943		r	5	•		
1-Methylnaphthalene	•	0,0208	0.00210	0.0943	•`	•			•	
Methylnaphthalene	•	0.0237	0.00215	0.0943	-	•		•	•	
aphthalene		0.0295	0.00395	0.0943	. *	•	٠		•	
Phenanthrenc		0,0106	0.00244	0.0943	۰.	•	π	•	•	
Pyrene	•	ND	0.00230	0.0943	•	. •	'n			
Surrogate(s): Benzo (a) pyrene-a	d12		76.5%		20	0 - 125 %	"		"	·
1-Methylnaphthal			59.5%		39	9 - 125 %				. • .
SRI0032-02 (MW2)	-	· W	ater .		Sam	pled: 09/	04/08 10:05			
Acenaphthene	EPA 8270C-HVI	ND	0.00258	0,0952	ug/l	Ix	8110008	09/10/08 09:02	09/15/08 16:07	
Acenaphthylene	•	ND	0.00240	0.0952	•	•		•		· ·
Anthracene	•	0.0169	0.00270	0.0952	٠	•	•		P	
Benzo (a) anthracene		ND	0.00150	0,00952	•	· •	•	P	•	
Benzo (a) pyrene	•	ND	0.00300	0.00952	•	•	n	-	• `	
Benzo (b) fluoranthene	•	ND	0.00196	0.00952	٠	•		*	*	
Benzo (k) fluoranthene	•	ND	0.00177	. 0.00952		n	,	•		
Benzo (ghi) perylene	۰.	ND	0.00282	0.0952	• *	-	•	R		
Chrysene		ND	0.00179	0.00952		•	n	-	-	
Dibenz (a,h) anthracene	· · ·	ND	0.00238	0.00952				. •		
Fluoranthene		ND	0.00187	0,0952			•		•	
Fluorene	•	ND	0.00340	0.0952			•		•	
		III.				_	-			

2-Methylnaphthalene TestAmerica Spokane

Indeno (1,2,3-cd) pyrene

1-Methylnaphthalene

tandi

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 12

J

0,00234

0.00212

0.00217

0,00952

0.0952

0.0952

ND.

ND

0.00670

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.Project Name:Goodyear2310 N. Molter Rd. Suite 101Project Number:027-30160-01Report Created:Liberty Lake, WA 99019Project Manager:Meghan Lunney10/29/08 16:34

Analyte	Method	Result	MDL*_	MRL	Units	DII	Batch	Prepared	Analyzed	Notes
SR10032-02 (MW2)		W	ater	1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Sanı	pled: 09/(04/08 10:05		·	· ·
Vaphthalene	EPA 8270C-HVI	0.0246	0.00399	0.0952	ug/l	lx	8110008	09/10/08 09:02	09/15/08 16:07	
Phenanthrene	۰.	ND	0.00247	0.0952	ĸ		•	•	•.	
Pyrene	•	ND	0.00232	0.0952		-	• •	· •	•-	-
Surrogate(s): Benzo (a) pyrene	-di2		75.6%		20	- 125 %			н .	
I-Methylnaphtha	lene-d10		56.4%		39	- 125 %	11		"	
RI0032-03 (MW3)		W	ater		Sam	pled: 09/(04/08 11:50			
Acenaphthene	EPA 8270C-HVI	ND	0.00261	0.0962	ug/l	İx	8110008	09/10/08 09:02	09/15/08 16:40.	-
cenaphthylene	•	ND	0.002-12	0.0962			· •	• ·		÷ .
nthracene		0.0444	0.00273	0.0962		ri		•	n	
enzo (a) anthracene		ND	0.00152	0.00962			•	•	•	
enzo (a) pyrene	•	ND	0.00303	0.00962		•	•	-	•	
enzo (b) fluoranthene	-	ND	0.00198	0:00962		-	н.	•	-	
enzo (k) fluoranthene	•	ND	0.00179	0.00962					•	
enzo (ghi) perylene	•	ND	0.00285	0.0962	. •	•	•	-		(
hrysene	4 ·	ND	0.00181	0.00962	н			×	8	``
ibenz (a,h) anthracene	•	ND	0.00240	0.00962	п	٠	•	• .	•	
luoranthene	•	ND	0.00188	0.0962		-		-	•	
luorene	•	ND	0.00343	0.0962	. n	•		-	. ".	
ndeno (1,2,3-cd) pyrene		ND	0.00237	0.00962	•	•	•	-		
-Methylnaphthalene		ND	0.00214	0,0962	• `	•			•	
-Methylnaphthalene	•	ND	0.00219	0.0962	•	•	-	•	•	
aphthalene	• • • •	0.0484	0.00403	0.0962	в	•	•	•	· •	
henanthrene	×	0.0272	0.00249	0.0962	. •	'n	×		•	
yrene	•	ND	0.00235	0,0962			•	•		

SRI0032-04 (Dup-6\)		Wa	ater		Sam	pled: 09/0	4/08 12:10			
Acenaphthene	EPA 8270C-HVI	ND	0.00256	0.0943	ug/l	lx	8110008	09/10/08 09:02	09/15/08 17:14	
Acenaphthylene	•	ND	0.00238	0.0943	•		•	•	•	
Anthracene	•	0.0275	0.00268	0.0943	Π	•	•	•	•	· J
Benzo (a) anthracene	•	ND	0.00149	0.00943			•	. "	۲ - ۲	
Benzo (a) pyrene		· ND	0.00297	0.00943	-	-	•	•		
Benzo (b) fluoranthene		ND	0.00194	0.00943	· . n	4	•			
Benzo (k) fluoranthene	đ	ND	0.00175	0.00943	•	٩	•	•	•	• • •
Benzo (ghi) perylene		ND	0.00279	0.0943	•		. •	•	•	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entire!

Cardu ϵ 'n

Randee Decker, Project Manager

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

,					·	•
LFR, Inc.	· · ·	- •	Project Name:	Goodyear		
2310 N. Molter Rd. Suite 101			Project Number:	027-30160-01		Report Created:
Liberty Lake, WA 99019			Project Manager:	Meghan Lunney	· .	10/29/08 16:34

Polynuclear Aromatic Compounds by GC/MS with High Volume Injection TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRI0032-04 (Dup-6W)		w	ațer		Sam	pled: 09/(04/08 12:10			
Chrysene		ND	0.00177	0.00943	•		•	•	×	
Dibenz (a,h) anthracene	•	ND	0.00236	0.00943		• .			•	
Fluoranthene	,	ND	0.00185	0.0943	•	· •	•		۰.	•
Fluorene	•	ND	0.00337	0.0943			•	. · · ·	۳	
Indeno (1,2,3-cd) pyrene	•	ND	0.00232	0,00943		• .	•	•	×	
I-Methylnaphthalene	•	ND	0.00210	0.0943	-	-	•			
2-Methylnaphthalene	н	ND	0.00215	-0,0943	•	-	•.		-	
Naphthalene	•	0.0351	0,00395	0.0943	• .	•	` n	•		
Phenanthrene	•	0,0170	0.00244	0.0943	•	E	•	4	· π	
Pyrene		ND	0.00230	0.0943	×	•	л	•	-	
Surrogate(s): Benzo (a) pyrene-d12			71.5%		20	- 125 %	<i>"</i>	•	"	
I-Methylnaphthalene		-	55.3%			- 125 %	w.		п	

Sampled: 09/04/08 00:00 SRI0032-05 Water (Trip) 09/10/08 09:02 09/15/08 17:47 0.00258 0.0952 8110008 \cenaphthene ÉPA ND ug/l 1x, 8270C-HVI 0.00240 ND 0.0952 Acenaphthylene 0.00270 0.0952 ND Anthracene 0.00150 Benzo (a) anthracene ND 0.00952 ND 0.00300 0.00952 Benzo (a) pyrene ND 0.00196 0.00952 Benzo (b) fluoranthene 0.00177 0.00952 ND Benzo (k) fluoranthene 0.00282 0.0952 ND Benzo (ghi) perylene 0.00179 0.00952 Chrysene ND ND 0.00238 0.00952 Dibenz (a,h) anthracene . 0.00187 0.0952 Fluoranthene ND 0.00340 ND 0.0952 Fluorene 0.00234 0.00952 ND Indeno (1,2,3-cd) pyrene 0.00212 0.0952 ND I-Methylnaphthalene ND 0.00217 0.0952 2-Methylnaphthalene 0.0952 0.00399 ND Naphthalene 0.00247 0.0952 Phenanthrene ND 0.00232 0.0952 Pyrene ND 78.0% 20 - 125 % " Benzo (a) pyrene-dl 2 Surrogate(s): 58.4% 39 - 125 %

1-Methylnaphthalene-d10

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain

Cardi

Randee Decker, Project Manager

of custody document. This analytical report must be reproduced in its entirery.

Goodyear LFR, Inc. Project Name: Report Created. 2310 N. Molter Rd. Suite 101 Project Number: 027-30160-01 Project Manager: 10/29/08 16:34 Liberty Lake, WA 99019 Meghan Lunney Semivolatile Petroleum Products by NWTPH-Dx - Laboratory Quality Control Results **TestAmerica Spokane** Water Preparation Method: EPA 3510/600 Series QC Batch: 8090051 Source Result Spike Amt % REC (Limits) % MDL* MRL Units Dil (Limits) Analyzed Notes Analyte Method Result Blank (8090051-BLK1) Extracted: 09/08/08 09:15 Diesel Range Hydrocarbons NWTPH-Dx ND 0.0680 0.250 lх 09/09/08 05:41 mg/l -------Heavy Oil Range Hydrocarbons . ND 0.104 0,500 -. ••• ---Surrogate(s): 2-FBP 99.8% Limits: 50-150% . 09/09/08 05:41 Recovery: p-Terphenyl-d14 105% 30-150% B Extracted: 09/08/08 09:15 LCS (8090051-BS1) Diesel Range Hydrocarbons NWIPH-Dx 2.61 0.0680 0.250 mg/l 1x --2.50 105% (54.5-136) ---- . ---09/09/08 06:16 ,1 09/09/08 06:16 91.1% Limits: 50-150% Surrogate(s): 2-FBP Recovery: p-Terphenyl-dl-I 98.8% 50-150% Extracted: 09/08/08 09:15 LCS Dup (8090051-BSD1) 0.0680 0.250 2.50 102% (54.5-136) 2.55% (32.5) 09/09/08 06:49 Diesel Range Hydrocarbons NWTPH-Dx 2 5 5 1x mø/l ---92,I% Limits: 50-150% 09/09/08 06:49 Surrogate(s): 2-FBP Recovery: 94.7% 50-150% . " p-Terphenyl-dl+

TestAmerica Spokane

land eΥ

Randee Decker, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

	lter Rd. Suite 101 e, WA 99019				Project Nan Project Nun Project Mar	nber: (Goody 027-301 Meghan			. `			•	Report Create 10/29/08 16:	
•	· · · · ·	Polychlorina	ted Biph		A Method TestAmeric			atory Qu	ality C	ontro	I Results	i			
QC Bate	1: 8090053	Water P	reparation	Method: I	EPA 3510/6	i00 Series					· -				
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Llmits)	% RPD	(Limits)	Analyzed	Notes
Blank (809005	3-BLK1)							-	Extr	actedi	09/08/08 12:	:55			
PCB-1016		EPA 8082	. ND	0.0530	0.100	ug/l	lx							09/10/08 16:45	
PCB-1221	· ·		ND	0,0391	0,100	A .						·		đ	
PCB-1232		n -	· ND	0,0106	0.100	÷.								•	
PCB-1242	·	•	ND	0.0133	0.100	*	•	· 、						۳	
PCB-1248		•	ND	0.00820	0.100	•	•	•-						• •	
PCB-1254			ND	0.0700	0,100	•			-					•	
PCB-1260	· .	•	ND	0.0140	0.100	•	п	•							
Surrogate(s):	TCX Decachlorobiphenyl	. •	Recovery:	75.6% 125%	Lin	nius: -10-1379 -10-12-1								09/10/08 16:45 "	1
LCS (8090053	DS1)								Fyle	aciad.	09/08/08 12	.55			
PCB-1016	-031)	EPA 8082	1.23	0.0530	0.100	ug/l	lx		2.50		(42.6-134)			09/10/08 17:13	<u> </u>
PCB-1260			1.36	0.0140	0.100	ug/i	,		2.50		(43.1-130)				
Surrogate(s):	тсх		Recovery:	55.0%	· _	nits: 40-1379		·		5	(12.1 120)			09/10/08 17:13	
	Decachlorobiphenyl		Recovery.	91.7% ···		40-124								# #	
L <u>CS</u> Dup (809	0053-BSD1)	•							Extr	acted:	09/08/08 12	:55			
PCB-1016		EPA 8082	2.05	0,0530	0,100	ug/I .	١x		2.50	81.8%	(42.6-134)	50.0%	(35)	09/10/08 17:41	
PCB-1260			2,06	0.0140	0.100	-	•		•	82.4%	(43.1-130)	40.8%	*	•	
Surrogate(s):	TCX Decachlorobiphenyl		Recovery:	101% 135% ·	Lin.	nils: 40-1379 40-124					<u> </u>			09/10/08 17:41 "	i
							د								
				1 A.	-						• -				•.
							-	-			_			-	
	4														
			`-								÷				
						. •									
	·							-	-						
									÷				•		
	÷ .													•	· · · ·
					-			•		-					
							•								

Carden deo. ťο

Randee Decker, Project Manager

of custody document. This analytical report must be reproduced in its entirety.

Page 9 of 12

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

•

					· · · · · · · · · · · · · · · · · · ·	
LFR, Inc.			Project Name:	Goodycar		•
2310 N. Molter Rd. Suite 101			Project Number:	027-30160-01		Report Created:
Liberty Lake, WA 99019	• •	•	Project Manager:	Meghan Lunney	•.	10/29/08 16:34

r orynucieal	r Aromatic Co	mpounds		TestAmeric		inject	1011 - Di					- ACJUIK	3	-
QC Batch: 8110008	Water I	reparation	Method: E	PA 3520C	•									
inalyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	•% REC	(Limits)	% RPD	(Llmits)	Analyzed	Note
Blank (8110008-BLK1)								Extr	acted:	09/10/08 09	:02			
Acenaphihene	EPA 8270C-HVI	ND	0.00271	0.100	ug/l	lx				·		(09/15/08 13:52	
Acenaphthylene		ND	0,00252	0.100	•				•				• `	
Anthracene	•	ND	0,00284	0.100	-	۲					••••		•	
Benzo (a) anthracenie	. • .	ND	0.00158	0.0100		Ŧ		••	•	•-			•	
Senzo (a) pyrene	-	ND	0.00315	0.0100		E							•	
Senzo (b) fluoranthene	-	ND	0.00206	0.0100	•	•			'				•	
Benzo (k) Auoranthene		ND	0.00186	0.0100		•						•-		
Benzo (ghi) perylene	1	ND	0,00296	0.100	•					· '		·	đ	
Chrysene	•	NĎ	0.00188	0.0100	•	۳						••	•	
Dibenz (a.h) anthracene		ND	0.00250	0.0100	•	•	·		••				•	
luoranthene	•	ND	0.00196	0.100	•	•		·					•	
luorene	••	ND	0.00357	0.100	•	٠								
ndeno (1,2,3-cd) pyrene		ND	0.00246	0.0100		•							•	
I-Methy Inaphthalene	-	ND	0.00223	0,100									•	r
2-Methylnaphthalene	-	0.00864	0.00228	0.100		•							-	- (
Naphthalene		ND	0.00419	0.100	ri i	•		[·]				·		
Phenanthrene		ND	0,00259	0.100	•	я	••							
Pyrene		ND	0.00244	0,100	-	π			-				r	
Surrogate(s): Benzo (a) pyrene-d12	· · · ·	Recovery:	77.1%		nits; 20-1259	. "							09/15/08 13:52	
I-Methylnaphthalene-	d10	Accurety.	63.6%	Lin	39-125								n	
1						-								
LCS (8110008-BS1)								Ext	racted:	09/10/08 0	9:02			
Acenaphthene	EPA 8270C-HVI	15.2	0.0271	1.00	ug/l	10 x		20.0	76.2%	(44-125)			09/15/08 14:26	
Acenaphthylene	-	. 17.0	0.0252	1.00	•	τ	**	•	84.9%	(51-125)			•	
Anthracene	•	16.6	0.0284	1.00		- 4	<u></u>		83.1%	(50-125)			•	
Benzo (a) anthracene	•	17.7	0.0158	0,100	۰.				88.5%	•			-	
Велго (а) ругеле	•	16.8	0.0315	0.100	•	•	••	•	83.9%	(47-125)			•	
Benzo (b) fluoranthene	•	16.2	0,0206	0.100	•				81.1%	(50-125)			•	
Benzo (k) fluoranthene	•	19,8	0.0186	0.100	•				99.0%	(46-125)				
Benzo (ghi) perylene	•	15.0	0.0296	1.00	•	•		a	74.8%	(49-125)	.:		-	
Chrysene	•	18.1	8810.0	0.100		•		•	90,6%	(53-125)			•	
Dibenz (a,h) anthracene	*	13.3	0,0250	0,100	. •				66.6%	(47-125)		••		
Fluoranthene		21.3	0.0196	1.00	•		••	,	106%	(55-125)			•	
Fluorene		13,4	0.0357	1.00	•			•	67.1%					
Indeno (1,2,3-cd) pyrene	_	15.3	0.0246	0.100					76.7%	, ,				

TestAmerica Spokane

I-MethyInaphthalene

2-Methylnaphthalene

Naphthalene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entiret

(37-125)

(40-125)

(42-125)

60.9%

60,1%

61.6%

(andi C

Randee Decker, Project Manager

1.00

1.00

1.00

12.2

12.0

12.3

0.0223

0.0228

0.0419

LFR, Inc. Goodyear Project Name: Report Created: Project Number: 027-30160-01 2310 N. Molter Rd. Suite 101 10/29/08 16:34 Project Manager? Liberty Lake, WA 99019 Meghan Lunney Polynuclear Aromatic Compounds by GC/MS with High Volume Injection - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 8I10008 Water Preparation Method: EPA 3520C Source Result Splke % Method Result MDL* MRL Units Dil (Limlts) RPD (Limits) Analyzed Notes Analyte REC Ant Extracted: 09/10/08 09:02 LCS (8I10008-BS1) 09/15/08 14:26 Phenanthrene EPA 15,8 0.0259 1.00 ug/l 10x 20,0 78.9% (47-125) 8270C-HVI ĥ . . 78.5% 15.7 0.0244 1.00 ---Ругепе Limits: 20-125% 09/15/08 14:26 w Benzo (a) pyrene-d12 Recovery: 80.2% Surrogate(s): 59.1% 39-125% I-Methylnaphthalene-d10 LCS Dup (8110008-BSD1) Extracted: 09/10/08 09:02 09/15/08 14:59 (44-125) 3.53% (35) 20.0 73.6% Acenaphthene EPA 14.7 0.0271 1.00 ug/l 10x---8270C-HVI 16.2 0.0252 1.00 80.8% (5)-125) 4.88% Acenaphthylene ---15.6 0.0284 1,00 78.1% (50-125) 6.13% Anthracene 86.3% 2.52% 17.3 0.0158 0.100 Benzo (a) anthracene B1.5% (47-125) 2,90% Benzo (a) pyrene 16.3 0.0315 0.100 Benzo (b) fluoranthene 16.0 0.0206 0.100 --80.2% (50-125) 1.10% Benzo (k) fluoranthene 18.9 0.0186 0,100 ---94.3% (46-125) 4.86% 72.4% (49-125) 14.5 0.0296 1.00 3.30% Penzo (ghi) perylene 89.5% (53-125) .**wyse**ne 17.9 0.0188 0.100 1.20% (47-125) 0.949% Dibenz (a,h) anthracene 13.2 0.0250 0.100 66.0% 19.7 0.0196 1.00 98 5% (55 - 125)7.68% Fluoranthene 12.6 0.0357 1.00 63.1% (52-125) 6.11% Fluorene 0.0246 0.100 74,5% (49-125) 2.95% Indeno (1,2,3-cd) pyrene 14.9 (37-125) 5.08% 0.0223 1.00 57.9% 1-Methylnaphthalene 11.6 (40-125) 4 67% 11.5 0.0228 1.00 \$7.3% 2-Methylnaphthalene ... 0,0419 1.00 58.3% (42-125) 5.42% 11.7 Naphthalene (47-125) 0.493% 0.0259 1.00 78.5% R Phenanthrene 15.7 2.43% 80.4% 16.1 0.0244 1.00 ---Pyrene 09/15/08 14:59 Benzo (a) pyrene-d12 Recovery: 86.3% Limits: 20-125% Surrogate(s):

I-Methylnaphthalene-d10

39-125%

54.6%

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 11 of 12

Randee Decker, Project Manager

SPOKANE, WA

THE LEADER IN ENVIRONMENTAL TESTING

		Rd. Suite 101	Project Name: Project Number: Project Manager.	Goodycar 027-30160-01 Markar Lunnou	•	ort Created: 9/08 16:34
Liberty Lak	ie, W	/A 99019	Project Manager.	Meghan Lunney		
			Notes and Definit	ions		· · ·
	• • •					
<u>Report Sp</u> J	-	<u>c Notes:</u> Estimated value. Analyte detected at a level les (MDL). The user of this data should be aware th	ss than the Reporting Lim hat this data is of limited	it (RL) and greater than or equal to reliability.	the Method Detection Limit	
R	-	The RPD exceeded the method control limit du within acceptance limits.			coveries, however, were	•
Z2	-	Surrogate recovery was above the acceptance li	mits. Data not impacted	· · ·	· ·	
Laborator	<u>y Re</u>	porting Conventions:	· · · ·			
DET	-	Analyte DETECTED at or above the Reporting L	imit. Qualitative Analys	es only.		
ND	-	Analyte NOT DETECTED at or above the report	ing limit (MDL or MRL,	as appropriate).	•	
NR/NA	-	Not Reported / Not Available				
dry	_`	Sample results reported on a Dry Weight Basis.	Results and Reporting Li	mits have been corrected for Percent	Dry Weight.	
wet	-	Sample results and reporting limits reported on a on a Wet Weight Basis.	Wet Weight Basis (as rea	ceived). Results with neither 'wet' n	or 'dry' are reported	-
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs c	calculated using Results, i	not Percent Recoveries).	. *	
MRL	-	METHOD REPORTING LIMIT. Reporting Lev	el at, or above, the lowes	t level standard of the Calibration T	able.	
MDL*	-	METHOD DETECTION LIMIT. Reporting Lew *MDLs are listed on the report only if the data has as Estimated Results.	rel at, or above, the statist as been evaluated below t	ically derived limit based on 40CFF he MRL. Results between the MDI	t, Part 136, Appendix B. , and MRL are reported	
Dil	-	Dilutions are calculated based on deviations from found on the analytical raw data.	n the standard dilution pe	rformed for an analysis, and may no	t represent the dilution	
Reporting Limits	-	Reporting limits (MDLs and MRLs) are adjusted percent solids, where applicable.	l based on variations in sa	mple preparation amounts, analytic	al dilutions and	
Electronic Signature	·-	Electronic Signature added in accordance with T Application of electronic signature indicates that Electronic signature is intended to be the legally	the report has been revie	wed and approved for release by the	<i>Policy.</i> Iaboratory.	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its enliren

Page 12 of 12

(andi (Erra Randee Decker, Project Manager

FIRME TH-Spake DATE 7/5765 DATE 7/5765 DATE DATE FIRME TIME Z, 3 C PAGE 1 OF 1	BY: Unit Still	DATE: 9/5/08 RECEIVED BY: TIME: 07445 PRINT NAME: DATE: 07445 RECEIVED BY: TIDME: PRINT NAME:		10 RELEASED BY MEE HAN I VALATE STON: RELEASED BY: RELEASED BY: PRINT NAME FIRM:
X 3				
200000000000000000000000000000000000000				MW2 9/4/08 09:10 MW2 10:05
* Turnaround Requests less than standard may incur Rush Charges. MATRIX # OF LOCATION / TA (W, S, O) CONT. COMMENTS WO ID			Low Lev PAHs PCBs DX	SAMPLED BY: Meghon Lenne
Petroleum Hydrozarbon Analyses		P.O. NUMBER: PRESERVATIVE REQUESTED ANALYSES	HcL	PROJECT NUMBER: 027-30160 - 01
in Business Days*		IFR Inc.		REPORT TO: JEF Loppo/ M. Lunus STE 101/LL, WA 99019 ADDRESS: J310 W Mouter RDS STE 101/LL, WA 99019
DR 97008-7145 503-906-9200 FAX 906-9210 AK 99502-1119 907-563-9200 FAX 563-9210 Work Order #: OPTCOP TURNAROUND REQUEST	9405 SW Nimbus Ave, Beaverton, OR 97008-7145 International Airport Rd Ste A10, Anchorage, AK 99502-1119 Work Ord TU	2000 W	IN OF CUSTO	ANALYTICAL TESTING CORPOR

-

١

(

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. 1ST AVENUE SPOKANE, WA SPOKANE VALLEY, WA 99206 ph: (509) 924.9200 fax: (509) 924.9290

October 24, 2008

Jeff Leppo LFR, Inc. 2310 N. Molter Rd. Suite 101 Liberty Lake, WA 99019

RE: Goodyear

Enclosed are the results of analyses for samples received by the laboratory on 10/21/08 17:00. The following list is a summary of the Work Orders contained in this report, generated on 10/24/08 13:35.

If you have any questions concerning this report, please feel free to contact me.

	<u>ork Order</u> SRJ0127	<u>Project</u> Goodyear	ProjectNumber [none]	÷ .	(
. —	· · ·		-		
	•				
-			· · ·		
• •					
	•				
	· · · · ·				- -
•	•.				
. · ·	•		· · ·		
TestAmerica Spokane			The results in this of custody	s report apply to the samples analyzed e document. This analytical report must	in accordance with the chain be reproduced in its entirely
Randee Decker, Project M	Anager	·			

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Spokane

tandi

Randee Decker, Project Manager

€≓Υ″

LFR, Inc.	•	Project Name;	Goodyear		· · · · ·
2310 N. Molter Rd. Suite 101		Project Number:	[none]	•	Report Created:
Liberty Lake, WA 99019	. '	Project Manager.	Jeff Leppo		10/24/08 13:35

	ANALYTICAL REPO	ORT FOR SAMPL	ES	-
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-3	SRJ0127-01	Water	10/21/08 14:10	10/21/08 17:00
•				
	· · · ·			· ·
			•	-

www.testamericainc.com

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

LFR, Inc.Project Name:Goodycar2310 N. Molter Rd. Suite 101Project Number:[none]Report Created:Liberty Lake, WA 99019Project Manager:Jeff Leppo10/24/08 13:35

Analyte Method Result MDL* MRL Units Dil Batch Prepared Analyzed Not RJ0127-01 (MW-3) Water Sampled: 10/21/08 14:10 Not					etroleum TestAme	rica Spol	kane	14 ¥¥ 1 B	n-D x			
NwTPH-Dx 0.480 0.236 mg/l 1x 8100178 10/22/08 11:21 10/23/08 01:55 Ieavy Oil Range Hydrocarbons ND 0.472 0.472	Analyte	Method		Result				, Dil	Batch	Prepared	Analyzed	Noles
Iteavy Oil Range Hydrocarbons ND 0.472 " Surrogate(s): 2-FBP 91.5% 50 - 150 % "	RJ0127-01 (MW-3)			. W	ater	·	San	1pled: 10/	21/08 14:10	-		
51176 57 157 57 157 57 157 57 157 57 157 57 157 57 157 57 157 57 157 57 157 57 157 57 157 57 157 57 157 1	Hesel Range Hydrocarbons Heavy Oil Range Hydrocarbons								8100178	10/22/08 11:21		
		· .	•									
			. ·					<i>*</i> .				
	·	· · ·							•		•	
							-					
				-								
									•		•	
	· · · ·	· ·		•					· ·	x		
			-	۰ ۲	· .				-			

TestAmerica

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.	Project Name:	Goodyear	-	
2310 N. Molter Rd. Suite 101	Project Number:	[none]		Report Created:
Liberty Lake, WA 99019	Project Manager.	Jeff Leppo		10/24/08 13:35

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring TestAmerica Spokane

Analyle	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
SRJ0127-01 (MW-3)	. ,	· Wa	ater		Sam	pled: 10/2	21/08 14:10			
1-Methylnapthalene	EPA 8270 mod.		0.0102	0,100	ug/l	İx	8100172	10/22/08 09:59	10/22/08 23:18	
2-MethyInaphthalene		ND	0.0112	0.100	•	•	•	-	•	
Acenaphthene	•	ND	0.00612	0,100	•	•			. •	
Acenaphthylene	• .	ND	0.00612	0.100	, *	•	•	я.		
Anthracene	•	ND	0.00510	0,100	•	•		-	.• .	
Benzo (a) anthracene		ND	0.00102	0.100	•.	•	•	•	*	
Benzo (a) pyrene	•	ND	0.00816	0.100	•	٩		•	•	
Benzo (b) fluoranthene		ND	0.00714	0.100	-	•	•	. •		
Benzo (ghi) perylene	π	ND	0.0112	0.100	•			-	•	
Benzo (k) fluoranthene	a	ND	0.0112	0.100	•	• '	•	-	4	•
Chrysene		ND	0.00612	0.100		•	•	•	۳	• · · · · ·
Dibenzo (a,h) anthracene	-	ND	0.0235	0,100		•	а,	•	•	
Fluoranthene	• .	0.0204	0.00510	0.100		•			.*	J
Fluorene		ND	0.006/2	0.100		•	•	•	•	
Indeno (1,2,3-cd) pyrene	•	DN	0.01-13	0.100	•	•	•	•	•	
aphthalene	•	ND	0.0102	0.100	•	•	•	• ·	•	
Phenanthrene	•	ND	0.00510	0,100	n	•	•		н.	
Pyrene	•	ND	0.00714	0.100	• .		•	•		
			84.4%		29	- 150 %	n ¹		"	
2-FBP			82.3%		20.9	- 122 %	"		."	
p-Terphenyl-d14			84.2%		35.2	- 150 %	н. Г		"	

TestAmerica Spokane

The results in this report opply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(andu) Randee Decker, Project Manager

.

TestAmerica

SPOKANE, WA 11922 E. 15T AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc. 2310 N. Molte Liberty Lake,	er Rd. Suite 101 WA 99019				Project Nar Project Nur Project Ma	mber: [r	loody Ione] eff Lep					-		Report Create 10/24/08 13	
	 	Semivolatile]	Petrolcun	n Product:	s by NWTI TestAmeric		abor	atory Qu	ality C	ontro	l Result	\$		1	
QC Batch:	8100178	Water Pi	eparation	Method:	EPA 3510/	600 Series		-	-					•	
Inalyte		Method	Result	MDL	• MRL	Units	Dil	Source Result	Spike Amt	% RÉC	(Llmits)	% RPD	(Limits)	Analyzed	Notes
Blank (8100178	-BLK1)							_	Extra	acted:	10/22/08 11	;21		·	
Diesel Range Hydroca Heavy Oil Range Hydr	bons	NWTPH-Dx	ND	·	0.250	mg/l	lx	· · · · ·			•• ••			10/23/08 00:11 *	
Surrogate(s):			Recovery:			mils: 50-150% 50-150%		•				•••		10/23/08 00:11	
LCS (8100178-)	•		,						Extr	acted:	10/22/08 11	:21		•	•
Diesel Range Hydroca		NWTPH-Dx	3.11	*1+	0.250	mg/l	İx		2.50	124%	(54.5-136)		·	10/23/08 00:46	
Surrogate(s):	P-FBP P-Terphenyl-d1-l		Recovery:	91.8% 101%	IJ	mits: 50-150% 50-150%								10/23/08 00:46	
									P -4-		10500011				
LCS Dup (8100 Diesel Range Hydroca		NWTPH-Dx	3.13		0.250	mg/l	l× .		2,50	_	(54.5-136)		(325)	10/23/08 01:20	
Surrogate(s):	· ·		Recovery:	-	·	mits: 50-150%			2,50	12374		0.0077		10/23/08 01.20	
	p-Terphenyl-d1-		Inclosed y.	103%	-	50-150%								n	
•		•		-								I			Ć
•			•			•					·				``
-															
									•						
•								-							
	-	•		14	н. Н										
-	-														•
								-							
	· · · ·										1				
-	· · ·								7	•					
÷			2			•				•					
												· .			
•															
													·		
-															
		·		. *											
						•									
			-		· · · · · ·										_

tardi deo] lo/ Randee Decker, Project Manager

<u>TestAmerica</u>

SPOKANE, WA 11922 E. IST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.	Project Name:	Goodyear	
2310 N. Molter Rd. Suite 101	Project Number:	[none]	Report Created:
Liberty Lake, WA 99019	Project Manager:	Jeff Leppo	10/24/08 13:35

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Laboratory Quality Control Results TestAmerica Spokane QC Batch: 8100172 Water Preparation Method: EPA 3510/600 Series Source Spike % (Limits) % Method MDL* Result MRL Units Dil (Limits) Analyzed Notes

Analyte /	Method	Result	. MDL⁴	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8100172-BLK1)	•							Extr	acted:	10/22/08 09	.59			
I-Methylnapihalene	EPA 8270 mod	ND	0.0100	0.100	ug/l.	1x	_				·		10/22/08 20:50	
2-Methylnaphthalene	я .	ND	0.0110	0,100	•	٠				••				
Аселарhihene	· • · · ·	ND	0.00600 .	0.100				•-						
Acenaphthylene		ND	0.00600	0.100	•	-		·				·		
Anthracene	-	ND	0,00500	0.100	•	•								
Benzo (a) anthracene		ND	0.00100	0.100		• .	·		••	••			₹.	
Benzo (a) pyrene		ND	0.00800	0,100	•						•-		π	
Denzo (b) fluoranthene	•	ND	0.00700	0.100				••				••	•	
Benzo (ghi) perylene	•	0.0300	0.0110	0,100	•	•								
Benzo (k) Nuoranthene	л	ND	0.0110	0.100	-	π		·						
Chrysene		ND	0.00600	0.100	-								•	
Dibenzo (a,h) anthracene	•	0.0300	0.0230	0.100	•	-	·						•	
Fluoranthene	•	ND	0.00500	0.100	۹	-							· .	
Pluorene	•	ND	0.00600	0.100	•					·			R	
Jeno (1,2,3-cd) pyrene		0.0300	0.0140	0.100	-	-							•	
Naphthalene		ND	0.0100	0.100	•	•	·						н Т	
Phenanihrene		ND	0.00500	0.100	•	-							•	
Pyrene ·	•	ND	0.00700	0.100	•	-							b	
Surrogate(s): Nitrobenzene-d5		Recovery:	86.3%	Lin	nits: 29-150%	"							10/22/08 20:50	
2-FBP			81.4%		20.9-122%								· #	
p-Terphenyl-dl-l			92.7%		35.2-150%	h							. 17	
LCS (8100172-BS1)								Ext	racted:	10/22/08 09	9:59			
Chrysene	EPA 8270 mod.	4.80	0,00600	0.100	ug/l	1x		5.00	95 <u>.</u> 9%	(24.8-120)) (10/22/08 21:19	
Fluorene		4.92	0.00600	0.100	•	۹.	••	•	98.5%	(35.4-120)				
Indeno (1,2,3-cd) pyrene	•	5.17	0.0140	0.100	n	•			103%	(31.1-134))		4	
Naphthalene	· •	4.34	0.0100	0.100		•			86.8%	(21.8-120)	1	••	, •	
Surrogate(s): Nitrobenzene-d5	<u> </u>	Recovery:	122%	Lin	nits: 29-150%	"							10/22/08 21:19	
2-FBP		-	114%		20.9-122%	"							P	
p-Terphenyl-d14	1 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 1997 S. 19		123%		35.2-150%								*	

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(<u>a</u>rdu)

Randee Decker, Project Manager

Page 6 of 8

<u>TestAmerica</u>

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290 .

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.		Project Name:	Goodyear	 	······
2310 N. Molter Rd. Suite 101		Project Number:	[none]	•	Report Created:
Liberty Lake, WA 99019	-	Project Manager:	Jeff Leppo		10/24/08 13:35

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Laboratory Quality Control Results TestAmerica Spokane

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Anniyzed	Notes
LCS Dup (8100172-BSD1)								Extr	acted:	10/22/08 09	:59			
Chrysene	EPA 8270	3.48	0.00600	0.100	ug/l	1x		5,00	69,5%	(24 8-120)	31.9%	(31,7)	10/22/08 22:49	. F
Fluorene	mod.	3.62	0,00600	0.100	w.	•	<u></u>	•	72.3%	(35,4-120)	3,0.7%	(28.9)	•	P
Indeno (1,2,3-cd) pyrene	* .	3.96	0.0140	0.100	•	•		•	79.3%	(31.1-134)	26.4%	(35)		
Naphihalene	•	3.24	0.0100	0.100	•	•		•	64.7%	(21.8-120)	29.2%	•	ч	
Surrogate(s): Nitrobenzene-J5 2-FBP p-Terphenyl-d14		Recovery:	92,0% 84,2% 86,9%	Linits	29-150% 20.9-122% 35.2-150%	" "		•					10/22/08 22:49 " "	
· · · · ·	·		-											
	· .					:						÷		
								·						(
•						÷	•						· ·	
	• •		• •					- - -					. -	-
	. e - 44			•••	· _		•					•		

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its endreg

Cardi Randee Decker, Project Manager

SPOKANE, WA

11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924.9200 fax: (509) 924.9290

THE LEADER IN ENVIRONMENTAL TESTING

LFR, Inc.	•		Project Name:	Goodyear	
2310 N. N	/olte	ter Rd. Suite 101	Project Number.	[none]	Report Created:
Liberty La	ake,	, WA 99019	Project Manager:	Jeff Leppo	10/24/08 13:35
_			Notes and Defini	tions	
Report Sp	<u>peci</u>	ific Notes:			
J	-	 Estimated value. Analyte detected at a level l (MDL). The user of this data should be aware 			al to the Method Detection Limit
R	-	 The RPD exceeded the method control limit of within acceptance limits. 	lue to sample matrix effect	s. The individual analyte QA/0	QC recoveries, however, were
<u>Laborato</u>	ry R	Reporting Conventions:			
DET	-	Analyte DETECTED at or above the Reporting	Limit. Qualitative Analys	es only.	
ND		Analyte NOT DETECTED at or above the repo	rting limit (MDL or MRL,	as appropriate).	•
NR/NA	-	Not Reported / Not Available			
dry	-	Sample results reported on a Dry Weight Basis.	Results and Reporting Li	mits have been corrected for Pe	crcent Dry Weight.
wet	-	Sample results and reporting limits reported on on a Wet Weight Basis.	a Wet Weight Basis (as rea	ceived). Results with neither 'v	vet' nor 'dry' are reported
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs	calculated using Results, 1	ot Percent Recoveries).	•
MRL		METHOD REPORTING LIMIT. Reporting Le	wel at, or above, the lowes	t level standard of the Calibrati	on Table.
MDL*	-	METHOD DETECTION LIMIT. Reporting Le *MDLs are listed on the report only if the data h as Estimated Results.	wel at, or above, the statist has been evaluated below t	ically derived limit based on 40 he MRL. Results between the	OCFR, Part 136, Appendix B. MDL and MRL are reported
.Dil	•	Dilutions are calculated based on deviations from found on the analytical raw data.	m the standard dilution per	formed for an analysis, and ma	y not represent the dilution
Reporting Limits	-	Reporting limits (MDLs and MRLs) are adjuste percent solids, where applicable.	d based on variations in sa	mple preparation amounts, ana	lytical dilutions and
Electronic Signature	-	 Electronic Signature added in accordance with 1 Application of electronic signature indicates tha Electronic signature is intended to be the legally 	t the report has been review	wed and approved for release b	v the laboratory

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(andu €°C Randee Decker, Project Manager

•	
<i>lest</i> America	ANALYTICAL TESTING CORPORATION
	

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-420-9200 FAX 420-9210
 11922 E. First Ave, Spokane, WA 99206-5302
 509-924-9200 FAX 924-9290
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 503-906-9200 FAX 906-9210
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563-9200 FAX 563-9210

•

	CHA	IN OF CUST	CHAIN OF CUSTODY REPORT			Work Order #:	Work Order #: 500 O/27	
CLIENT: L FVZ			INVOICE TO:		-	TURNAB	TURNAROUND REQUEST	[
1	2000		CFR	LFR / 10 PH LOOD		<u> </u>	in Business Days *	
ADDRESS: 2210 ALA IL	alouts matter Rad					Organic &	Organic & Inorganic Analyses	<u>.</u> ۱
A Cherry C.	100 LAA 99019		-			1 2 2 0I	7 5 4 3 X 1 <1	-
PHONE: CAS S.S 79.5	FAX: 5729 53< - 73161	·	P.O. NUMBER				lydrocarbon Analyses	
Ś	PROJECT NAME: 600 de gar / 0.2 L' 10 A 12 M		PR	PRESERVATIVE		5 4	3 2 1 2	
		War 72tl				STD.		
PROJECT NUMBER:			REQUE	REQUESTED ANALYSES		OTHER	Specify:	
SAMPLED BY: JAN Finlan	i	S X(•	* Turnoround Requests les	* Turnaround Requests less than standard may incur Rush Charges.	arges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	N#5 HVA 1 LMN		· · · · · · · · · · · · · · · · · · ·		MATRLY # OF (W, S, O) CONT.	LOCATION / T COMMENTS WC	TA WO ID
M 1x - 3	10-21008 1410	XX					21	
) 								. <u> </u>
						,		
3								Т
								,
								<u> </u>
2		-						<u> </u>
			· · · ·					
RELEASED BY: Hin - Miley			DATE 10-21-19		3110072	1	DATE 10.21-0	2-2
PRINT NAME: "J.M. F.M. Lay	FIRM: LFR	K	тіме: <i>1700</i>	PRINT NAME: " W	1000	FIEM: LOCH	7	(g)
RELEASED BY:			DATE	RECEIVED BY:	l , :		DATE	
PRINT NAME:	FIRME		TTME:	PRINT NAME:		FIRM:	TIME	Ť
ADDITIONAL REMARKS:						-		
TA1_1000 0007					-		DIC PAGE OF	