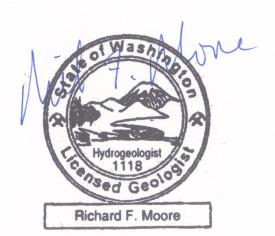


Upland Environmental
Characterization Report
Earley Business Center (EBC)
401 East Alexander Avenue
Port of Tacoma, Washington

Prepared for Anchor Environmental, LLC and Port of Tacoma Port Project No. E5209

December 1, 2009 17490-02

Upland Environmental Characterization Report Earley Business Center (EBC) 401 East Alexander Avenue Port of Tacoma, Washington


Prepared for Anchor Environmental, LLC and Port of Tacoma Port Project No. E5209

December 1, 2009 17490-02

Prepared by Hart Crowser, Inc.

Angu Goodwin

Angie Goodwin Senior Staff Hydrogeologist

Richard F. Moore, LHG Principal

CONTENTS	<u>Page</u>
1.0 INTRODUCTION	1
1.0 INTRODUCTION	1
2.0 SITE LOCATION AND DESCRIPTION	1
3.0 SITE HISTORICAL SUMMARY	2
4.0 PRIOR ENVIRONMENTAL OBSERVATIONS AND INVESTIGATIONS	3
4.1 CB/NT Superfund Site	3
4.2 Pier 23 Upland and OffShore Investigations and Planned Remediation	5
4.3 1998 EBC Utility Trench Soils and Groundwater Characterization	5
4.4 2007 East Blair Dredge Cutback Sediment/Soils Characterization	6
4.5 2008 Blair-Hylebos Soil and Groundwater Characterization	7
4.6 2008 EBC Offshore Sediment Characterization	7
4.7 Underground Storage Tank (USTs)	8
5.0 SCOPE OF WORK	8
6.0 UPLAND SUBSURFACE CONDITIONS	9
6.1 Fill Soils	9
6.2 Shallow Groundwater	10
7.0 LABORATORY ANALYSIS RESULTS	11
7.1 MTCA Screening Level Comparison	12
7.2 Soil Sample Analytical Results	13
7.3 Groundwater Sample Analytical Results	14
8.0 LIMITATIONS	15
9.0 REFERENCES	16

TABLES

- 1 Summarized Analytical Results for Selected Constituents in Soil Samples
- 2 Summarized Analytical Results for Selected Constituents in Groundwater Samples

CONTENTS (Continued)									
FIGURES									
 Vicinity Map Earley Business Center Areas of Interest Upland and Nearshore Exploration Plan Interpreted PCE Distribution in Groundwater Beneath the Earley Business Center Interpreted Shallow Groundwater Contours at North End of Blair-Hylebos Peninsula (After OCC Groundwater Recovery Pumping Shutoff) Interpreted Shallow Groundwater Contours at North End of Blair-Hylebos Peninsula (During OCC Groundwater Pumping) 									
APPENDIX A FIELD EXPLORATION METHODS AND PUSH PROBE LOGS A									
General Field Activities	A-1								
FIGURES									
A-1 Key to Exploration Logs A-2 through A-16 Push Probe Log EBC-1 through EBC-15									
APPENDIX B ANALYTICAL RESULTS FOR SOIL AND GROUNDWATER SAMPLES B-1 Complete Analytical Results for Soil Samples B-2 Complete Analytical Results for Groundwater Samples									
APPENDIX C CHEMICAL DATA QUALITY REVIEW AND LABORATORY CERTIFICATES OF ANALYSIS									
Chemical Data Quality Review	C-1								

UPLAND CHARACTERIZATION REPORT EARLEY BUSINESS CENTER (EBC) 401 EAST ALEXANDER AVENUE PORT OF TACOMA, WASHINGTON

1.0 INTRODUCTION

This report presents the results of soil and groundwater quality sampling and testing to evaluate environmental conditions in a targeted portion of the upland area of the Earley Business Center (EBC) at the Port of Tacoma (Port). The EBC is identified on the Figure 1 Vicinity Map. The work was completed to further assess environmental conditions in the northwestern portion of the EBC, including an area of historical industrial filling (Figure 3). Note that the report figures and text reference "project north" defined as being parallel with the axis of the Blair-Hylebos Peninsula. Information from the work was further evaluated to determine potential effects on adjacent aquatic areas.

Work for this targeted EBC environmental characterization included laboratory testing of push probe soil and groundwater samples obtained by Hart Crowser in July and August 2008. This report documents the field and laboratory methods used, and the results of laboratory analytical testing. Work for the project was completed in general accordance with Hart Crowser's project work plan, dated July 16, 2008.

A separate report summarizes results of sediment quality characterization for the offshore portion of the EBC (Hart Crowser 2009c).

2.0 SITE LOCATION AND DESCRIPTION

The EBC comprises about 80 acres at the northern end of the Blair-Hylebos peninsula, including approximately 50 acres of upland area (Figure 2). The investigation area for the July/August 2008 environmental characterization was in the northwestern portion of the EBC (Figure 2). This area includes the paved upland between the Blair Waterway to the west and the US Army Reserve Lease Area to the east. The pavement surface of the EBC lies at approximately 17 feet elevation mean lower low water (MLLW). The northern, shoreward edge of the investigation area grades downward in elevation toward historical shipways in the intertidal area of Commencement Bay, or terminates in a bulkhead retaining structure at the northwest corner. The approximate shoreline and mean higher high water (MHHW) elevation contour (11.8 feet) are identified on Figure 3.

Hart Crowser Page 1

The EBC is owned by the Port and was previously known as the Port Industrial Yard. The Port leases the upland areas to various commercial clients. Several buildings and work structures are located to the south of the investigation area.

3.0 SITE HISTORICAL SUMMARY

The Blair-Hylebos peninsula was formed using sandy and silty materials that resulted from hydraulic dredging of the adjacent waterways. Todd Shipyards' industrial development of a shipyard at the northern end of the peninsula followed creation of this peninsula in the early 20th century.

The EBC has historically been used for shipyard operations, metal fabrication, and other activities. A City of Tacoma aerial photograph from 1931 identifies a large dock structure at the present location of Pier 25 and several buildings established on the adjacent upland. By 1940, the dock and buildings were no longer present, but new buildings were present in the southeast and southwest portions of the current EBC area. Some of the building footprints generally correspond to "steel shed" and "main office building" structures, and various "storage" areas shown on a 1943 Sanborn fire insurance map. Shipways with large vessels apparently under construction are also visible near the present location of Pier 23 in the City of Tacoma 1940 aerial photograph.

Extensive use of the EBC and adjacent properties as a shipyard commenced during the early 1940s with continued development of work facilities by Todd Shipyards. The prominent shipways at the northern end of the EBC were present at this time, along with Outfitting Piers 1, 2, and 3 at the location of current Piers 23, 24, and 25, respectively. These features are visible on aerial photographs from 1946 and later, and on the 1943 Sanborn map. A notation on the map indicates "Original Yard Completed in 1940." Various other features of interest in the upland portion of the current EBC area are also apparent on the Sanborn map including work lofts, a paint shop, transformers, a blacksmith shop, and materials storage areas. A 1952 archive drawing from the Port of Tacoma also identifies underground storage tanks (USTs) as "oil tanks" at several locations within the EBC.

Post-World War II to approximately 1960, historical activities included construction, maintenance, and retrofitting of military vessels. Ship dismantling and salvage operations were also conducted on the EBC property. Upland work construction platforms are also visible in the 1950 City of Tacoma aerial photographs. The 1950 aerial photograph also shows aircraft carriers moored in berthing areas next to the current Pier 23, 24, and 25 locations. A 1950 Sanborn map identifies "Seattle - Tacoma Shipbuilding Corporation" ship

Page 2 Hart Crowser

building yard in the vicinity of the EBC shipways. To support these shipyard activities, paint shops, carpentry shops, metalworking facilities, gas/oil and chemical storage areas, and a central heating plant were located within the EBC vicinity.

In 1960, the Port of Tacoma acquired title, from the Navy, to the area known as the Industrial Yard Complex, including the present EBC area. The Port subsequently leased the area to various tenants for commercial and industrial purposes including freight hauling and distribution, furniture manufacturing, drilling services, lumber milling, and vessel decommissioning and dismantling. Tenants also included a diesel engine repair operation that continued into the 1980s. The 1965 Sanborn map indicates that the shipways had been dismantled by this time. A 1969 aerial photograph shows that filling included considerable debris fill extending over the area investigated as part of the current study.

Later uses of the Industrial Yard Complex (later known as the Port Industrial Yard) through the 1970s included ship maintenance, dismantling, and other industrial and commercial operations. These operations included barge construction, materials storage, metal fabrication, and rebar shaping in the westcentral portion of the EBC, and Trident Seafoods in the Pier 24 and 25 areas.

The Pier 23 lease area identified on Figure 2 and Figure 3 was operated by the Washington Army National Guard since the mid-1960s, with transfer of operations to the US Army Reserve in 1995. The Army signed a 50-year lease with the Port in 1991 for the use of the Pier 23 aquatic and adjacent upland area shown on Figure 2 and Figure 3. Facility uses have included vessel moorage and maintenance, with additional subleases for ship repair.

4.0 PRIOR ENVIRONMENTAL OBSERVATIONS AND INVESTIGATIONS

Previous environmental assessment efforts included in the EBC include upland source investigations associated with the adjacent Commencement Bay/ Nearshore Tideflats (CB/NT) Superfund Site, Army investigations at Pier 23, and investigations related to the Port's potential redevelopment of the Blair-Hylebos Peninsula. These investigations are summarized below.

4.1 CB/NT Superfund Site

In 1983, the US Environmental Protection Agency (EPA) placed approximately 10 to 12 square miles of shallow water, shoreline, and upland areas located in Commencement Bay on the National Priorities List as the CB/NT Superfund site. The Hylebos Waterway on the east side of the EBC was included within the

Page 3 Hart Crowser

CB/NT Superfund Site boundary. Numerous CERCLA and related source control investigations on or adjacent to the EBC associated with the CB/NT have occurred since that time. These have included:

- Sediment investigations along the embankment beneath Piers 24 and 25 at the east and northeast ends of the EBC;
- Upland soil and groundwater investigations adjacent to Piers 24 and 25 in the northeast portion of the EBC; and
- Sediment, soil and groundwater investigations in the northeastern, southern, and southwestern portions of the EBC to evaluate the extent of contamination associated with the adjacent former Occidental Chemical Corporation (OCC) facility.

CERCLA cleanup actions and related ongoing and future monitoring at Piers 24 and 25 and OCC are not associated with the EBC environmental issues reported in this document.

Piers 24 and 25 Remediation and Investigations

The Port conducted CERCLA sediment remediation at Piers 24 and 25 in 2007 and 2008 pursuant to a 2005 RD/RA Consent Decree for the Mouth of the Hylebos Waterway and Statement of Work appended thereto. The Mouth of the Hylebos Waterway is one of the problem areas identified for cleanup within the much larger Commencement Bay Nearshore/Tideflats (CB/NT) Superfund Site. The Piers 24 and 25 project area is identified on Figure 2. Remedial actions conducted under the Consent Decree were under the direction of EPA with additional review and comment provided by the Washington State Department of Ecology (Ecology), the US Army Corps of Engineers, and NOAA Fisheries.

Cleanup actions at Piers 24 and 25 followed numerous investigations by the Port and other parties for the Hylebos Waterway beginning in the mid-1980s. The Port completed further investigations specific to Piers 24 and 25 in the 1990s, prepared pre-remedial design documents (Hart Crowser 1998 and 1999), and evaluated design alternatives for remediation (Hart Crowser 2000). Final design was completed in 2007 (Port of Tacoma) under the RD/RA Consent Decree. The Piers 24 and 25 cleanup effort involved excavation of contaminated sediments and debris and capping along the embankment beneath Pier 24, Pier 25 and along the intervening shoreline areas (Figure 2). CERCLA actions for the Piers 24 and 25 project also included an upland investigation component intended to evaluate whether potential migratory sources of contamination to

Page 4 Hart Crowser

the aquatic environment are present. The reporting conclusion was that no upland sources were identified, although a very limited area of elevated zinc in groundwater was identified near the upland head of Pier 24 (Figure 2) (Port 2007). Downgradient groundwater quality sampling verified that elevated levels of zinc were not migrating to the shoreline (Hart Crowser, 2009). No additional remedial actions have been required.

Occidental Chemical Corporation Investigations

The OCC contamination investigations have identified a large area of upland soil and groundwater, as well as intertidal and subtidal sediments, on and adjacent to the former OCC property that are contaminated primarily with chlorinated organic chemicals and highly alkaline conditions. The OCC investigations have also identified elevated levels of PCBs, pesticides, and metals. This contamination has been documented to extend onto the EBC property. Most of the OCC contamination on the EBC property is associated with groundwater transport, and the highest contaminant concentrations are found at significant depth, as illustrated by the profile for one of the indicator contaminants, PCE, on a cross-section that is oriented east-west through the central portion of the EBC (Figure 4).

Lateral migration of contaminant plumes north and west of the former OCC facility in the upper aquifer (to about 50 feet below ground surface) is currently being controlled, at least in part, by a groundwater extraction and treatment system that OCC has been operating since 1996. The extraction system extends onto the EBC property. To date, there has been no indication that soil and/or groundwater contamination attributable to historical activities at the EBC that have intermingled with the OCC contamination.

4.2 Pier 23 Upland and OffShore Investigations and Planned Remediation

As noted earlier, the Army leases upland and offshore areas from the Port for their Pier 23 watercraft facility (Figures 2 and 3). Environmental investigations have occurred both upland and offshore at this facility since 1991. Recent Feasibility Studies were completed by Kemron for the Army in December 2008 and February 2009 for the offshore and upland areas (Army 2008 and 2009, respectively). The Army is conducting these cleanup actions pursuant to CERCLA requirements with oversight from Ecology.

4.3 1998 EBC Utility Trench Soils and Groundwater Characterization

During the 1998 stormwater utility installation in the north and northwest portions of the EBC, significant debris was encountered. As a result, Dames &

Page 5 Hart Crowser

Moore conducted a subsurface investigation for the Port to further evaluate environmental conditions through the debris layer and underlying fill soils. Results are summarized in a May 12, 1998, report by Dames & Moore.

Data from the 1998 Dames & Moore assessment indicated that where encountered, debris material extended from the surface to between approximately 1 and 5 feet depth and contained asphalt fragments and former pavement sections, concrete and wood, and other industrial debris such as metal parts and rubber and plastic hoses. An aerial photograph from 1969 shows filling associated with the debris layer over the approximate area shown on Figure 3. This figure also identified locations of test pits completed by Dames & Moore during their 1998 investigation.

Laboratory analytical results from the 1998 debris layer samples contained diesel-, oil-, and gasoline-range petroleum hydrocarbon concentrations exceeding screening criteria for soil established under MTCA. The debris layer also contained leachable concentrations of lead designating the waste material from portions of the utility trench as Dangerous Waste per state Dangerous Waste regulations (Chapter 173-303 WAC). Concentrations of lead and other metals in samples from the soil below the debris layer did not exceed applicable regulatory criteria. Analytical results of a test pit seepage water sample contained elevated concentrations of diesel- and oil-range TPH and polychlorinated biphenyls (PCBs). However, the sample was collected from an open test pit and Dames & Moore noted that it was probably not representative of actual groundwater conditions.

4.4 2007 East Blair Dredge Cutback Sediment/Soils Characterization

As part of the previously planned terminal expansion on the Blair-Hylebos Peninsula, a series of deep borings were advanced along the upland embankment of the Blair Waterway by GeoEngineers under contract to the Port (GeoEngineers 2007). Four of the borings were completed within the EBC. These borings provided deeper subsurface geotechnical information and materials characterization data for soil that were planned for excavation and dredging to widen the Blair Waterway for new berthing facilities. Laboratory test results from a composite sample of soil from the four borings in the EBC indicate that all constituents detected in the upper 4 feet were below applicable MTCA soil criteria for unrestricted land use, except for carcinogenic polycyclic aromatic hydrocarbons (cPAHs). However, cPAH concentrations were below applicable MTCA industrial screening criteria.

Page 6 Hart Crowser

4.5 2008 Blair-Hylebos Soil and Groundwater Characterization

Additional shallow soil and groundwater explorations were completed by Hart Crowser within the EBC boundary in 2008 to provide materials characterization data supporting engineering design for a previously planned expansion of terminal operations on the Blair-Hylebos Peninsula (Hart Crowser 2009a). Potential future expansion and site uses continue to be evaluated by the Port.. Environmental explorations in the EBC area consisted of several push probes advanced along some of the previously planned utility corridors, and for other geotechnical testing.

Consistent with data presented in this report, soil and groundwater characterization results identified localized areas of the presence of chemicals of concern. All concentrations of detected chemical constituents in soil from the 2008 Hart Crowser characterization study were below MTCA Method C industrial screening levels. The only detected constituent in groundwater that was detected above an applicable aquatic surface water screening level was vinyl chloride. Vinyl chloride is an OCC contaminant and the detection occurred in a location previously identified as within the OCC plume. This occurrence is, therefore, not associated with EBC activities or conditions of interest.

In a related 2008 effort, Hart Crowser completed push probe soil and groundwater sampling for materials characterization purposes in a geotechnical test area located immediately south of the industrial fill area. The planned geotechnical work involved test installation of stone column and test pile foundation supports that were previously considered for the planned east Blair pier. The test installations were not completed, but 11 push probe explorations were advanced within the test area to evaluate the chemical quality of soil and groundwater that would have been extracted during testing. With one exception, testing results for soil and groundwater samples indicated that chemical constituents were below applicable MTCA screening levels for unrestricted land use. The lone exception was mercury detected marginally above the ambient surface water quality screening level in one push probe groundwater sample. This concentration may have been biased high because of the inherent greater turbidity associated with push probe sampling in comparison to a developed groundwater monitoring well.

4.6 2008 EBC Offshore Sediment Characterization

The Port completed baseline surface sediment characterization sampling and testing in the northwest portion of the EBC in July 2008, as summarized in a separate report (Hart Crowser 2009c). No exceedances of applicable Ecology

Sediment Management Standard (SMS - Chapter 173-204 WAC) criteria were detected.

4.7 Underground Storage Tank (USTs)

EBC environmental legacy issues include a number of USTs supporting historical Naval and other industrial operations. The Port has compiled available assessment reports and UST removal records completed by others to support the assessment. At the time of this report, nineteen potential historical UST locations have been identified in the EBC by the Port. Of these, five are documented as having been removed, two are documented as having been closed in place, and the status of the other 12 is not known. Port records indicate that of the five USTs documented as removed, soil and groundwater were below MTCA cleanup levels at one location, soil was above but groundwater was below MTCA cleanup levels at three locations, and both soil and groundwater were above MTCA cleanup levels at the fifth location. However, the MTCA cleanup levels referenced were likely those developed to protect potable drinking water; therefore, reported exceedances may not correctly characterize the quality of groundwater in the EBC. The Port is currently developing an environmental investigation program to further evaluate the USTs and the nature and extent of their subsurface impacts.

5.0 SCOPE OF WORK

Results of the 1998 Dames & Moore investigation provided background for further evaluating the nature, extent, and chemical characteristics of the industrial debris fill, underlying fill soils, and site groundwater within the EBC target investigation area. The scope of work in this investigation included the following activities:

- Conducting an historical evaluation to identify EBC areas of environmental interest and concern.
- Completing push probe explorations EBC-1 through EBC-15 at the locations shown on Figure 3 between July 29 and August 1, 2008. Push probes EBC-7 through EBC-15 were completed to depths of about 8 feet below ground surface for soil sampling only. Push probes EBC-1 through EBC-6 were completed for soil and shallow groundwater sampling to depths of about 12 to 16 feet below ground surface.
- Retrieving continuous push probe soil samples for description, classification, and field screening of potential contaminants.

Page 8 Hart Crowser

- Submitting samples representative of the debris fill soils and underlying non-debris fill soils for chemical analysis. The samples were selected based on field screening observations for the presence of suspect environmental contaminants, and to assess areal distribution across the debris fill area.
- Collecting groundwater samples using temporary well screens installed in each of the six push probe locations. Each temporary screen was placed in the push probe bore to provide a representative sampling interval approximately 2 to 5 feet below the water table, depending on conditions and tidal stage at the time of the work. The groundwater samples, including one field duplicate sample, were submitted for chemical analysis.
- Evaluating laboratory chemical analysis results and completing this report.

Push probes for shallow groundwater sampling included EBC-1 through EBC-3 near the Commencement Bay shoreline, and probes EBC-4 through EBC-6 along the Blair Waterway shoreline (Figure 3). These push probes were placed toward the shoreward edges of the EBC investigation area to provide shallow groundwater sample analytical data near the interface with marine surface waters.

Specific details regarding the soil and groundwater sampling and analysis procedures as well as push probe logs are provided in Appendix A. Complete tabulated analytical results for soil and groundwater samples are provided in Appendix B. Chemical data quality review and laboratory certificates of analysis are provided in Appendix C.

As noted above, other environmental issues associated with the EBC USTs, possible future Blair Waterway shoreline cutback, Pier 23 remediation by the Army, and Piers 24 and 25 CERCLA sediment capping are assessed separately and are not part of the current work scope.

6.0 UPLAND SUBSURFACE CONDITIONS

6.1 Fill Soils

Observation of fill materials from the push probe samples confirmed the presence of asphalt, broken concrete, fabric, wood, brick fragments, and glass debris within the area noted on Figure 3. Suspected sandblast grit was noted in push probes EBC-1, EBC-3, and EBC-4. Where present, the industrial fill layer extended to depths of up to about 6 feet below the ground surface. In general, debris in the industrial fill layer was scattered in a sand matrix with varying

Hart Crowser Page 9

amounts of silt and gravel. The industrial fill was thickest (i.e., greater than about 3 feet) in push probes EBC-1, EBC-2, EBC-3, EBC-7, EBC-13, and EBC-14. Push probes EBC-1 through EBC-3 were located in the EBC industrial fill soil area identified on Figure 3. Observation of the soils samples from EBC-4 during probing indicated that this location is also suspected to be within the industrial fill area.

Sand with local silty and gravelly zones was encountered beneath the industrial fill layer and below surface paving where the industrial fill was not present (i.e., EBC-4, EBC-5, EBC-6, EBC-8, EBC-10, EBC-12, and EBC-15). This non-industrial fill material is consistent with the appearance of hydraulically dredged fill placed to create the upland peninsula in the early 1900s. More gravelly material was noted in push probe EBC-6, indicative of a differing fill history at this location along the Blair Waterway (Figure 3). Native tideflat and estuary sands and silts were not conclusively identifiable in the push probe samples. Deeper sandy soils noted on the Appendix A push probe logs may in fact, be composed of non-industrial fill to depths of 8 to 15 feet below grade.

Petroleum hydrocarbon-like odors were noted in push probes EBC-2 (1-1/2 to 4 feet depth below ground surface), EBC-3 (2 to 3 feet depth), EBC-7 (6 to 8 feet depth), EBC-13 (1 to 2 feet depth), and EBC-15 (0 to 1 foot depth). The push probe logs are in Appendix A. These push probes are located within or near the edge (EBC-15) of the industrial fill layer. Push probe EBC-11 was completed near an apparently treated wooden piling with creosote- and petroleum hydrocarbonlike odors noted in the soil samples from 3 to 12 feet. These conditions were limited to the EBC-11 push probe and are not indicative of a more general condition or abundant pilings in the investigation area.

Dark discoloration and slightly elevated photoionization detector (PID) field screening readings were noted in soil samples and cuttings with identified or suspected petroleum hydrocarbon impacts. In addition, sheen was observed in groundwater from a number of these locations, as identified on the Appendix A push probe logs. However, no visual or olfactory indications of potential contaminant migration from the industrial fill layer into adjacent or underlying sandy fill soils were noted.

6.2 Shallow Groundwater

Shallow groundwater was encountered at depths ranging from 8 to 11 feet below ground surface during the push probe explorations. Based on general groundwater flow patterns on the peninsula, net flow from the EBC investigation area will move radially outward toward Commencement Bay or the Blair and

Page 10 Hart Crowser

Hylebos Waterways. Short-term reversals in flow direction are expected to occur at high tide.

The general radial groundwater flow condition on the Blair-Hylebos peninsula, including the general EBC investigation area, is illustrated by the groundwater elevation contours shown on Figures 5 and 6. These figures are excerpted from the March 2008 Conestoga-Rovers & Associates Preliminary Draft Site Characterization Report for the OCC Site. The groundwater elevation contours depicted on the figures are based on freshwater equivalent head elevations that are adjusted for salinity density effects. Contours on Figure 5 represent groundwater table elevations following shutdown of a groundwater extraction system that has been operating since 1996 on the OCC site. The contours represent water table elevations in a non-pumped condition that are somewhat comparable to historical flow condition. However, the groundwater system may also not have fully recovered during this monitoring event, and localized mounding may be a related artifact. Contours on Figure 6 represent groundwater table elevations typical of the flow regime in the pumped condition.

Shallow groundwater is tidally affected and typically becomes brackish or saline toward the edges of the peninsula. Field monitoring of conductivity and salinity during groundwater sampling in push probes EBC-1 through EBC-4 confirmed the presence of saline conditions.

7.0 LABORATORY ANALYSIS RESULTS

Soil and groundwater samples collected during our work were submitted to Analytical Resources, Inc. (ARI) of Tukwila, Washington, for chemical analysis. Samples were delivered to the laboratory following standard chain of custody procedures. A chemical data quality review and laboratory certificates of analysis are provided in Appendix C. Analytical results are summarized in Tables 1 and 2, with additional detail provided in Appendix B Tables B-1 and B-2.

Selected soil samples were submitted for analysis of the following;

- Diesel- and oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx;
- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D;

Page 11 Hart Crowser

- Polychlorinated biphenyls (PCBs) by EPA Method 8082; and
- Total metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc) by EPA Method 6010B/7471.

Samples for NWTPH-Gx and VOC testing were collected in the field using EPA Method 5035.

The push probe groundwater samples were analyzed for the same constituents as the soil samples. Groundwater metals analyses included total and dissolved arsenic, cadmium, chromium, copper, lead, nickel, and zinc by EPA Method 6020. Groundwater samples for dissolved metals analysis were filtered in the field prior to submittal to the laboratory. Total and dissolved mercury were analyzed to obtain low-level detection limits using EPA Method 1631.

An additional reductive precipitation extraction step (EPA Method 1640 Modified) was used for groundwater metals testing through an ARI subcontract to Columbia Analytical Services since field conductivity and salinity readings indicated saline conditions. The reductive precipitation step is used to avoid unrepresentative analytical results from potential high bias of metals concentrations caused by saline conditions.

7.1 MTCA Screening Level Comparison

Table 1 and Table 2 summarize selected analytical results for soil and groundwater samples. Soil and groundwater testing results are compared to applicable MTCA screening criteria. The selected constituents listed in Table 1 and Table 2 are intended to provide an "at a glance" summary of constituents detected above applicable MTCA screening criteria, and other analyte groups of interest including BTEX, PCBs, PAHs, and selected SVOCs. Complete analytical results are presented in Appendix B Tables B-1 and B-2 for soil and groundwater samples, respectively.

Soil Screening Levels

MTCA Method C soil screening levels for direct contact exposure to humans are appropriate for the EBC as an industrial property. For comparative purposes, MTCA Method A soil screening levels applicable to industrial sites are also included for petroleum hydrocarbon constituents. It should be noted that the Method A criteria for petroleum hydrocarbons are based on protection of groundwater as a potential drinking source, which is not applicable to the EBC investigation area. Shallow groundwater beneath the site does not represent a viable source of potable water based on the location, marine water tidal influence, current and planned future use, and zoning of the property.

Page 12 Hart Crowser

Groundwater Screening Levels

As noted above, shallow groundwater beneath the EBC is not a potable source of drinking water, and MTCA criteria for groundwater protection are not applicable to the EBC investigation area. Marine waters of Commencement Bay and the Hylebos Waterway are the receptor of interest with regard to potential groundwater contamination associated with the EBC. Analytical results for the EBC groundwater samples, therefore, are compared with surface water quality criteria per MTCA Method B and Ambient Water Quality Criteria (AWQC) listed in Chapter 173-201A WAC to evaluate potential affects to marine waters. Note that the MTCA Method A cleanup level for arsenic is provided as the most representative screening criterion. This cleanup level is based on the state-wide background concentration. In addition, MTCA Method A cleanup levels are provided for petroleum hydrocarbon constituents for comparative purposes but are not applicable criteria with regard to groundwater protection at the site.

7.2 Soil Sample Analytical Results

Soil sample analytical results are presented in Table 1 for selected constituents, and in Appendix B Table B-1 for all constituents tested. Soil samples collected within the industrial fill layer included EBC-1-S1, EBC-2-S1, EBC-3-S1, EBC-5-S1, EBC-6-S1, EBC-7-S1, EBC-7-S2, EBC-11-S1, EBC-13-S1, and EBC-14-S1. The remainder of the soil samples listed in Table 1 and Table B-1 were either collected beneath the industrial fill layer or from locations outside of the area of industrial filling. Sample depth intervals are presented in Tables 1 and B-1.

Review of the analytical results for the EBC soils samples indicates the following:

- All soil samples, except four, contained constituent concentrations below MTCA Method A and Method C screening levels. The four exceptions, all from within the industrial fill layer, included two samples exceeding MTCA Method A screening levels for TPH and arsenic, but below MTCA Method C screening levels. The other two samples contained arsenic exceeding both Method A and Method C screening levels for arsenic.
- Copper, lead, and zinc were detected at elevated concentrations in some of the industrial fill soil samples, but below applicable MTCA Method C cleanup levels.
- Elevated concentrations of petroleum hydrocarbon constituents were detected in samples from push probes EBC-1, EBC-2, EBC-3, and EBC-7 within the industrial fill layer, consistent with petroleum hydrocarbon-like odors noted in the industrial fill soils at these locations during probing.

Page 13 Hart Crowser

The detected concentrations of petroleum hydrocarbons exceeded comparative MTCA Method A soil screening levels developed for groundwater protection. As noted above, however, shallow groundwater beneath the EBC is not potable, and the results are not indicative of impairment of a potential drinking water source.

■ None of the soils underlying the industrial fill layer contained elevated concentrations of petroleum hydrocarbons or other chemical constituents, indicating little or no migration of contaminants from the overlying industrial fill or other sources. Concentrations of the few detected compounds in soil below the industrial fill layer were generally in the low microgram per kilogram (μg/kg) range, and below applicable MTCA screening levels. Based on detected laboratory method blank contamination, detections of methylene chloride and acetone may be artifacts of common laboratory reagents, and not indicative of site conditions.

7.3 Groundwater Sample Analytical Results

Analytical results for groundwater samples obtained from the shallow groundwater zone beneath the EBC investigation area are presented in Table 2 for selected constituents, and in Appendix B Table B-2 for all constituents tested.

Review of the analytical results for the EBC groundwater samples indicates the following:

- The shallow groundwater sample from push probe EBC-1 contained a dissolved copper concentration of 3.8 microgram per liter (μ g/L). This concentration marginally exceeds the marine chronic AWQC level of 3.1 μg/L. The copper concentration in the EBC-5 push probe groundwater sample was detected at the 3.1 µg/L AWQC. Concentrations of other metals were below applicable MTCA Method B and AWQC levels.
- Gasoline-range petroleum hydrocarbons were detected at a concentration of 1.6 µg/L in the push probe EBC-2 groundwater sample. This concentration is just above the comparative MTCA Method A screening level for groundwater protection of 1.0 μ g/L. However, this result is not indicative of impairment of a potential drinking water source because the shallow groundwater at the site is non-potable. Diesel-range hydrocarbons were also detected in the EBC-2 groundwater sample at a concentration of 0.38 µg/L, below the Method A screening level of 0.5 µg/L. No other petroleum hydrocarbon constituents were detected in the groundwater samples.
- PCBs were not detected at the specified reporting limit.

Page 14 Hart Crowser

- Few VOC and SVOC constituents were detected. Where detected, concentrations were typically in the low µg/L range and below MTCA and AWQC levels.
- Analytical testing results are included in Table 2 and Table B-2 for dissolved and total mercury but are listed as rejected. The mercury data were deemed unusable based on the type of sampling containers that were inadvertently used, sample preservation problems, and exceedances of laboratory holding times. Although data quality issues make the mercury testing results unsuitable for use, it is unlikely that mercury concentrations in EBC groundwater are elevated or exceed regulatory screening criteria based on weight of evidence from the other metals tested.

Further supporting this conclusion is the absence of detected mercury (both total and dissolved) in shallow groundwater during sampling of upland wells in the Army Lease Area by Kemron Environmental in the summer of 2008. Mercury results were reported in the February 2009 FS for Pier 23. The Army Reserve area wells were screened within both shallow and deeper groundwater zones and included well locations near the southeast corner of the Army Lease Area (not shown on Figure 3). These locations are between Hart Crowser push probes EBC-1 and EBC-7 in an area of industrial fill. Based on the information reported from Kemron, it is unlikely that elevated mercury concentrations are present in the adjacent EBC investigation area.

In summary, the 2008 upland investigation further defined the extent of an historical industrial fill zone and identified the nature of elevated chemical constituents associated with the fill. Investigation results indicate that there is limited environmental concern associated with the industrial fill. The industrial fill is spatially limited to the northwestern end of the upland peninsula within the approximate area shown on Figure 3. Groundwater samples indicate that constituents of concern within the industrial fill are not leaching into groundwater at concentrations of concern.

8.0 LIMITATIONS

Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Anchor Environmental, LLC and the Port of Tacoma for specific application to the referenced property. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

Page 15 Hart Crowser

The MTCA and SMS cleanup levels included in this report are used for screening and comparison purposes only and are based on our understanding of cleanup levels required by Ecology for similar projects. This comparison does not represent an interpretation of MTCA and SMS cleanup standards applicable to this site, since such standards are established by Ecology through site-specific evaluation and public approval process.

Any questions regarding our work and this report, the presentation of the information, and the interpretation of the data are welcome.

9.0 REFERENCES

Conestoga-Rovers & Associates 2008. Preliminary Draft Site Characterization Report. Prepared for Occidental Chemical Corporation, March 2008.

Dames & Moore 1998. Subsurface Investigation, Earley Business Center Parcel 1A, 401 Alexander Avenue, Tacoma, Washington. Prepared for the Port of Tacoma, D&M Job No. 03268-061-005, May 21, 1998.

EPA 1999. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review, EPA 540/R-99/008, October 1999.

EPA 2004. USEPA Contract Laboratory Program, National Functional Guidelines for Inorganic Data Review, EPA 540/R-04/004, October 2004.

GeoEngineers 2007. Revised Draft Study Phase Characterization, East Blair Waterway, Port of Tacoma, Washington, August 1, 2007.

Hart Crowser 1998. Pre-Remedial Design Study, Port of Tacoma Industrial Yard, Hylebos Waterway, Commencement Bay, Tacoma, Washington, October 30, 1998.

Hart Crowser 1999. Addendum 1, Pre-Remedial Design Study, Port of Tacoma Industrial Yard, Hylebos Waterway, Commencement Bay, Tacoma, Washington, March 3, 1999.

Hart Crowser 2000. Remedial Alternatives Design, Port of Tacoma Industrial Yard, Hylebos Waterway, Commencement Bay, Tacoma, Washington, January 7, 2000.

Hart Crowser Page 16

Hart Crowser 2008. Soil/Debris, Groundwater, and Sediment Sampling and Analysis Work Plan, East Blair Earley Business Center Project, Port of Tacoma, Tacoma, Washington, July 16, 2008.

Hart Crowser 2009a. Environmental Site Characterization Data Report, Proposed Terminal Development, Port of Tacoma, Washington, February 27, 2009.

Hart Crowser 2009c. Baseline Sediment Characterization Report, Earley Business Center (EBC), 401 East Alexander Avenue, Port of Tacoma, Washington. Prepared for the Port of Tacoma, July 28, 2009. Note: Hart Crowser 2009b, the Upland Characterization Report, is this report.

Plumb, Russell 1981. Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report. EPA/CE-81-1.

Port of Tacoma 2007. Revised Draft Final (100 Percent) Design Submittal (Design Analysis Report, Ancillary Documents, Project Plans and Specifications), April 24, 2007. Prepared by Hart Crowser, Inc. and Berger/ABAM.

Puget Sound Estuary Program 1986 and Updates. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Final Report. Prepared for US Environmental Protection Agency, Seattle, Washington.

US Army Reserve 2008. Final Feasibility Study, Pier 23. Prepared by Kemron Environmental Services for the US Army Reserve, 70th RRC, Tacoma, Washington, Contract # W911SO-04-F0017, December 22, 2008.

US Army Reserve 2009. Final Uplands Investigation Report, Pier 23. Prepared by Kemron Environmental Services for the US Army Reserve, 70th RRC, Tacoma, Washington, Contract # W911SO-04-F0017, February 27, 2009.

J:\Jobs\1749002\Phase 01\EBC Upland Report (12-1-09).doc

Page 17 Hart Crowser

Table 1 - Summarized Analytical Results for Selected Constituents in Soil Samples

Sample ID ^{aa} :	MTCA Screening Criteria		EBC-1-S1	EBC-1-S2	EBC-2-S1	EBC-3-S1	EBC-3-S2	EBC-4-S1	EBC-5-S1
Sampling Date:	Method A	Method C	7/30/2008	7/30/2008	7/31/2008	7/30/2008	7/30/2008	7/30/2008	8/1/2008
Sample Depth in Feet:	Industrial	Direct	1 to 2	5.5 to 6.5	2.5 to 3.5	2.5 to 3.5	10 to 11	7 to 8	1.5 to 2.5
		Contact							
TPH in mg/kg									
Diesel-Range Hydrocarbons	2,000		180	5.8	900	560	5.7 U	7	15
Motor Oil-Range Hydrocarbons	2,000		960	17	1400	950	11 U	12 U	98
Gasoline-Range Hydrocarbons	100/30 ^a		26	7.7 U	160	150	6.9 U	9.2 U	9.6
Arsenic in mg/kg	20	88	240 J	5 U	50	120	6 U	6 U	10 U
Total PCBs in µg/kg	10,000	66,000	610	115.5	1446	572	108.5	115.5	115.5
cPAHs in μg/kg									
Benzo(a)anthracene	2,000	18,000	630	58 U	770	740	64 U	61 U	200 U
Chrysene	2,000	18,000	800	58 U	1000	1100	64 U	61 U	200 U
Benzo(b)fluoranthene	2,000	18,000	860	58 U	430	920	64 U	61 U	200 U
Benzo(k)fluoranthene	2,000	18,000	680	58 U	500	600	64 U	61 U	200 U
Benzo(a)pyrene	2,000	18,000	700	58 U	430	580	64 U	61 U	200 U
Indeno(1,2,3-cd)pyrene	2,000	18,000	330	58 U	220 U	180 U	64 U	61 U	200 U
Dibenz(a,h)anthracene	2,000	18,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Total cPAHs ^b	2,000	18,000	968	44 U	632	835	48 U	46 U	151 U
Other Selected LPAHs in µg/kg									
Naphthalene		70,000,000	420	58 U	840	2400	64 U	61 U	200 U
Acenaphthene		210,000,000	190 U	58 U	2400	1000	64 U	61 U	200 U
Fluorene		140,000,000	300	58 U	1900	790	64 U	61 U	200 U
Anthracene		1,100,000,000	340	58 U	2000	1300	64 U	61 U	200 U
Other Selected HPAHs in µg/kg									
Fluoranthene		140,000,000	2200	58 U	3800	3000	64 U	61 U	200 U
Pyrene		110,000,000	1800	58 U	4600	3400	64 U	61 U	200 U
Other Selected Compounds in µg/kg									
Hexachlorobenzene (SVOC)		82,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Hexachlorobutadiene (SVOC)		700,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Hexachlorobutadiene (VOC)		700,000		6.6 U		270 U	5.8 U		

Table 1 - Summarized Analytical Results for Selected Constituents in Soil Samples

Sample ID ^{aa} :	MTCA Screening Criteria		EBC-6-S1	EBC-7-S1	EBC-7-S2	EBC-8-S1	EBC-9-S1	EBC-10-S1	EBC-11-S1
Sampling Date:	Method A	Method C	8/1/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008
Sample Depth in Feet:	Industrial	Direct	1.5 to 2.5	1 to 2	6 to 7	3.5 to 4.5	3 to 4	3 to 4	10.5 to 11.5
		Contact							
TPH in mg/kg									
Diesel-Range Hydrocarbons	2,000		10	3600	49	5 U	60	5.2 U	18
Motor Oil-Range Hydrocarbons	2,000		58	5100	10	10 U	180	10 U	24
Gasoline-Range Hydrocarbons	100/30 ^a		7.2 U	320	13	7.1 U	6.2 U	7.4 U	7.4 U
Arsenic in mg/kg	20	88	8	50	5 U	5 U	6	5 U	6 U
Total PCBs in µg/kg	10,000	66,000	115.5	9340	112	112	580	112	108.5
cPAHs in μg/kg									
Benzo(a)anthracene	2,000	18,000	58 U	520	64 U	65 U	66 U	64 U	62 U
Chrysene	2,000	18,000	58 U	870	64 U	65 U	66 U	64 U	62 U
Benzo(b)fluoranthene	2,000	18,000	68	490	64 U	65 U	66 U	64 U	62 U
Benzo(k)fluoranthene	2,000	18,000	58 U	390	64 U	65 U	66 U	64 U	62 U
Benzo(a)pyrene	2,000	18,000	58 U	440	64 U	65 U	66 U	64 U	62 U
Indeno(1,2,3-cd)pyrene	2,000	18,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U
Dibenz(a,h)anthracene	2,000	18,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U
Total cPAHs ^b	2,000	18,000	48	612	48 U	49 U	50 U	48 U	47 U
Other Selected LPAHs in µg/kg									
Naphthalene		70,000,000	58 U	440	64 U	65 U	66 U	64 U	260
Acenaphthene		210,000,000	58 U	300	64 U	65 U	66 U	64 U	270
Fluorene		140,000,000	58 U	430	64 U	65 U	66 U	64 U	62 U
Anthracene		1,100,000,000	58 U	390	64 U	65 U	66 U	64 U	62 U
Other Selected HPAHs in µg/kg									
Fluoranthene		140,000,000	58 U	1400	64 U	65 U	66 U	64 U	62 U
Pyrene		110,000,000	92	2400	64 U	65 U	66 U	64 U	62 U
Other Selected Compounds in µg/kg									
Hexachlorobenzene (SVOC)		82,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U
Hexachlorobutadiene (SVOC)		700,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U
Hexachlorobutadiene (VOC)		700,000	6.1 U	4.6 U		6.6 U		6.4 U	6.1 U

Table 1 - Summarized Analytical Results for Selected Constituents in Soil Samples

Sample ID ^{aa} :	MTCA So	reening Criteria	EBC-11-S2	EBC-12-S1	EBC-13-S1	EBC-13-S2	EBC-14-S1
Sampling Date:	Method A	Method C	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/31/2008
Sample Depth in Feet:	Industrial	Direct Contact	15 to 16	3 to 4	3 to 4	7 to 8	6 to 7
TPH in mg/kg							
Diesel-Range Hydrocarbons	2,000		140	5.7 U	160	5.3 U	5.6 U
Motor Oil-Range Hydrocarbons	2,000		300	12 U	350	11 U	11 U
Gasoline-Range Hydrocarbons	100/30 ^a		8.9	6.6 U	6.8 U	11 U	7 U
Arsenic in mg/kg	20	88	5 U	5 U	6	5 U	10 U
Total PCBs in µg/kg	10,000	66,000	112	115.5	2362.5	115.5	115.5
cPAHs in μg/kg							
Benzo(a)anthracene	2,000	18,000	59 U	64 U	290 U	65 U	61 U
Chrysene	2,000	18,000	59 U	64 U	290 U	65 U	61 U
Benzo(b)fluoranthene	2,000	18,000	59 U	64 U	290 U	65 U	61 U
Benzo(k)fluoranthene	2,000	18,000	59 U	64 U	290 U	65 U	61 U
Benzo(a)pyrene	2,000	18,000	59 U	64 U	290 U	65 U	61 U
Indeno(1,2,3-cd)pyrene	2,000	18,000	59 U	64 U	290 U	65 U	61 U
Dibenz(a,h)anthracene	2,000	18,000	59 U	64 U	290 U	65 U	61 U
Total cPAHs ^b	2,000	18,000	45 U	48 U	219 U	49 U	46 U
Other Selected LPAHs in µg/kg							
Naphthalene		70,000,000	94	64 U	290 U	65 U	61 U
Acenaphthene		210,000,000	62	64 U	290 U	65 U	61 U
Fluorene		140,000,000	59 U	64 U	290 U	65 U	61 U
Anthracene		1,100,000,000	59 U	64 U	290 U	65 U	61 U
Other Selected HPAHs in µg/kg							
Fluoranthene		140,000,000	59 U	64 U	290 U	65 U	61 U
Pyrene		110,000,000	59 U	64 U	290 U	65 U	61 U
Other Selected Compounds in µg/kg							
Hexachlorobenzene (SVOC)		82,000	59 U	64 U	290 U	65 U	61 U
Hexachlorobutadiene (SVOC)		700,000	59 U	64 U	290 U	65 U	61 U
Hexachlorobutadiene (VOC)		700,000	5.9 U	5.1 UJ			

Bolded sample numbers indicate sample was collected from industrial fill layer.

Blank entry indicates no applicable MTCA criteria established or sample not analyzed for specific analyte.

Selected LPAHs and HPAHs include constituents for which MTCA Method A and Method C Direct Contact screening criteria are established. Other constituents were not detected or were detected at concentrations below applicable regulatory criteria.

See Table 1a for complete analytical results for soil samples.

U: Not detected at reporting limit indicated.

J: Estimated value

⁹ Bolded, boxed entry indicates detected concentration exceeds MTCA screening criteria.

MTCA Method A Industrial screening levels for cPAHs are provided for comparative purposes only. MTCA Method A cPAH screening levels are based on groundwater protection, which is not applicable at this site.

^{aa} Bolded samples indicate sample collected from the industrial fill layer.

^a 100 mg/kg when no benzene present, 30 mg/kg when benzene present.

^o Total cPAHs calculated using the toxicity equivalency methodology in WAC 173-340-708(8). 1/2 detection limit was used for non-detects.

Table 2 - Summarized Analytical Results for Selected Constituents in Groundwater Samples

Sample ID: MTCA Method B. Water Quality | IEBC-1 | IEBC-2 | IEBC-3 | IEBC-4 | IEBC-4 | IEBC-4 | IEBC-5 | IEBC-6 | IEBC-6

Sheet 1 of 3

Sample ID:	MTCA Method B	5 10			EBC-1	EBC-2	EBC-3	EBC-4	EBC-5	EBC-6	Л
Sampling Date:	Marine Surface			- Marine ^e	7/30/2008	7/31/2008	7/30/2008	7/30/2008	8/1/2008	8/1/2008	
Sampling Date.	Water Criteria ^a		Acute	Chronic	7/30/2008	7/31/2000	7/30/2006	7730/2006	0/1/2000	0/1/2000	
TPH in mg/L											
Diesel-Range Hydrocarbons	0.5	b			0.25 U	0.38 J	0.25 U	0.25 U	0.25 U	0.25 U	
Motor Oil-Range Hydrocarbons	0.5	b			0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	
Gasoline-Range Hydrocarbons	1.0	b			0.25 UJ	1.6	0.25 UJ	0.25 UJ	0.25 U	0.25 U	
Dissolved Metals in µg/L						:					
Arsenic, Dissolved	5	С	69	36	0.5 U	0.5 U	0.5 U	0.5 U	0.71	0.5 U	
Cadmium, Dissolved	20		42	9.3	0.022	0.02 U	0.02 U	0.02 U	0.023	0.02 U	
Chromium, Dissolved	490		1100	50	5.6	1.4	1.9	0.2 U	1.98	0.26	
Copper, Dissolved	2,700		4.8	3.1	3.8	0.2	0.1 U	0.1 U	3.1	0.3	
Lead, Dissolved			210	8.1	1.16	0.133	0.02 U	0.02 U	0.702	0.035	
Mercury, Dissolved ^d			1.8	0.025	0.001 R	0.001 R	0.001 R	0.001 R	0.001 R	0.001 R	
Nickel, Dissolved	1,100		74	8.2	4.7	1.2	1.6	0.3	3.7	0.6	
Zinc, Dissolved	17,000		90	81	8.4	3	1.8	0.5 U	4.7	1	
Total PCBs in ug/L	0.00011		10	0.03	1 U	1 UJ	1 U	1 U	1.2 U	1 U	
cPAHs in ug/L											
Benzo(a)anthracene	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Chrysene	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Benzo(b)fluoranthene	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Benzo(k)fluoranthene	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Benzo(a)pyrene	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Indeno(1,2,3-cd)pyrene	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Dibenz(a,h)anthracene	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Total cPAHs	0.03				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Other Selected LPAHs in µg/L											
Naphthalene	4,900				1 U	1.8 J	1 U	1 U	1 UJ	1 U	
Acenaphthene	640				1 U	120 J	1 U	1 U	1 UJ	1 U	
Fluorene	3,500				1 U	27 J	1 U	1 U	1 UJ	1 U	
Anthracene	26,000				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Other Selected HPAHs in µg/L											
Fluoranthene	90				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Pyrene	2,600				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Other Selected Compounds in µg											
Hexachlorobenzene (SVOC)	0.00047				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Hexachlorobutadiene (SVOC)	3.0				1 U	1 UJ	1 U	1 U	1 UJ	1 U	
Hexachlorobutadiene (VOC)	3.0				0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	
riexacilioropulacierie (VOC)	3.0				0.5 05	0.5 0	0.5 05	0.5 05	0.5 0	0.5 0	

Table 2 - Summarized Analytical Results for Selected Constituents in Groundwater Samples

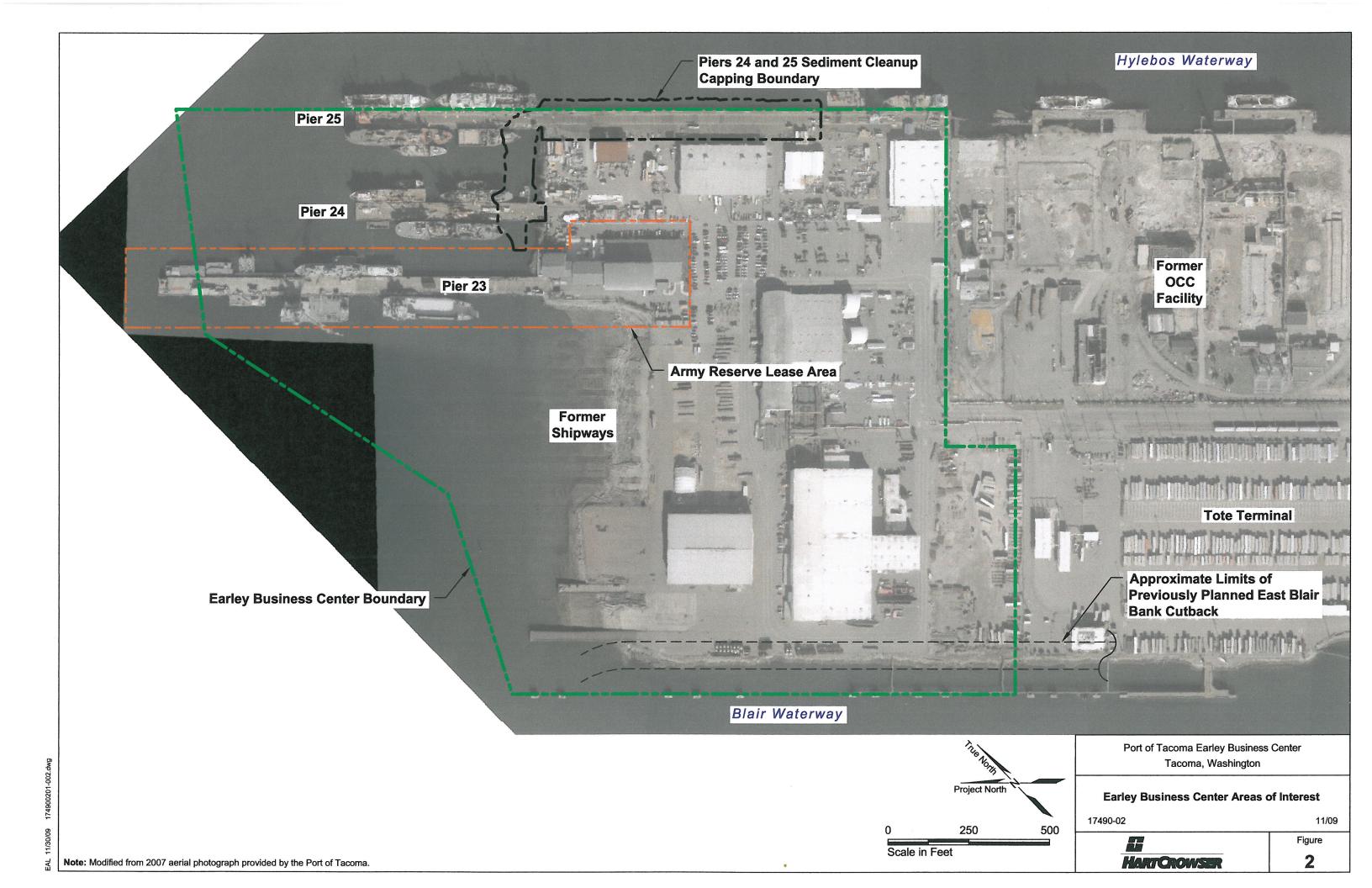
Sample ID:		MTCA Method B			EBC-16	Trip Blank	Trip Blank
Sampling Date:		Marine Surface		- Marine ^e	8/1/2008	7/31/2008	8/6/2008
	Water Criteria	a	Acute	Chronic	Dup of EBC-	6	
TPH in mg/L							
Diesel-Range Hydrocarbons	0.5	b			0.25 U		
Motor Oil-Range Hydrocarbons	0.5	b			0.5 U		
Gasoline-Range Hydrocarbons	1.0	b			0.25 U		
Dissolved Metals in µg/L							
Arsenic, Dissolved	5	С	69	36	0.5 U		
Cadmium, Dissolved	20		42	9.3	0.02 U		
Chromium, Dissolved	490		1100	50	0.25		
Copper, Dissolved	2,700		4.8	3.1	0.1 U		
Lead, Dissolved			210	8.1	0.02 U		
Mercury, Dissolved ^d			1.8	0.025	0.001 R		
Nickel, Dissolved	1,100		74	8.2	0.6		
Zinc, Dissolved	17,000		90	81	0.5 U		
Total PCBs in ug/L	0.00011		10	0.03	1 U		
cPAHs in ug/L							
Benzo(a)anthracene	0.03				1 U		
Chrysene	0.03				1 U		
Benzo(b)fluoranthene	0.03				1 U		
Benzo(k)fluoranthene	0.03				1 U		
Benzo(a)pyrene	0.03				1 U		
Indeno(1,2,3-cd)pyrene	0.03				1 U		
Dibenz(a,h)anthracene	0.03				1 U		
Total cPAHs	0.03				1 U		
Other Selected LPAHs in µg/L							
Naphthalene	4,900				1 U		
Acenaphthene	640				1 U		
Fluorene	3,500				1 U		
Anthracene	26,000				1 U		
Other Selected HPAHs in µg/L							
Fluoranthene	90				1 U		
Pyrene	2,600				1 U		
Other Selected Compounds in µg	/L						
Hexachlorobenzene (SVOC)	0.00047				1 U		
Hexachlorobutadiene (SVOC)	3.0				1 U		
Hexachlorobutadiene (VOC)	3.0				0.5 U	0.5 U	0.5 U
•					•		

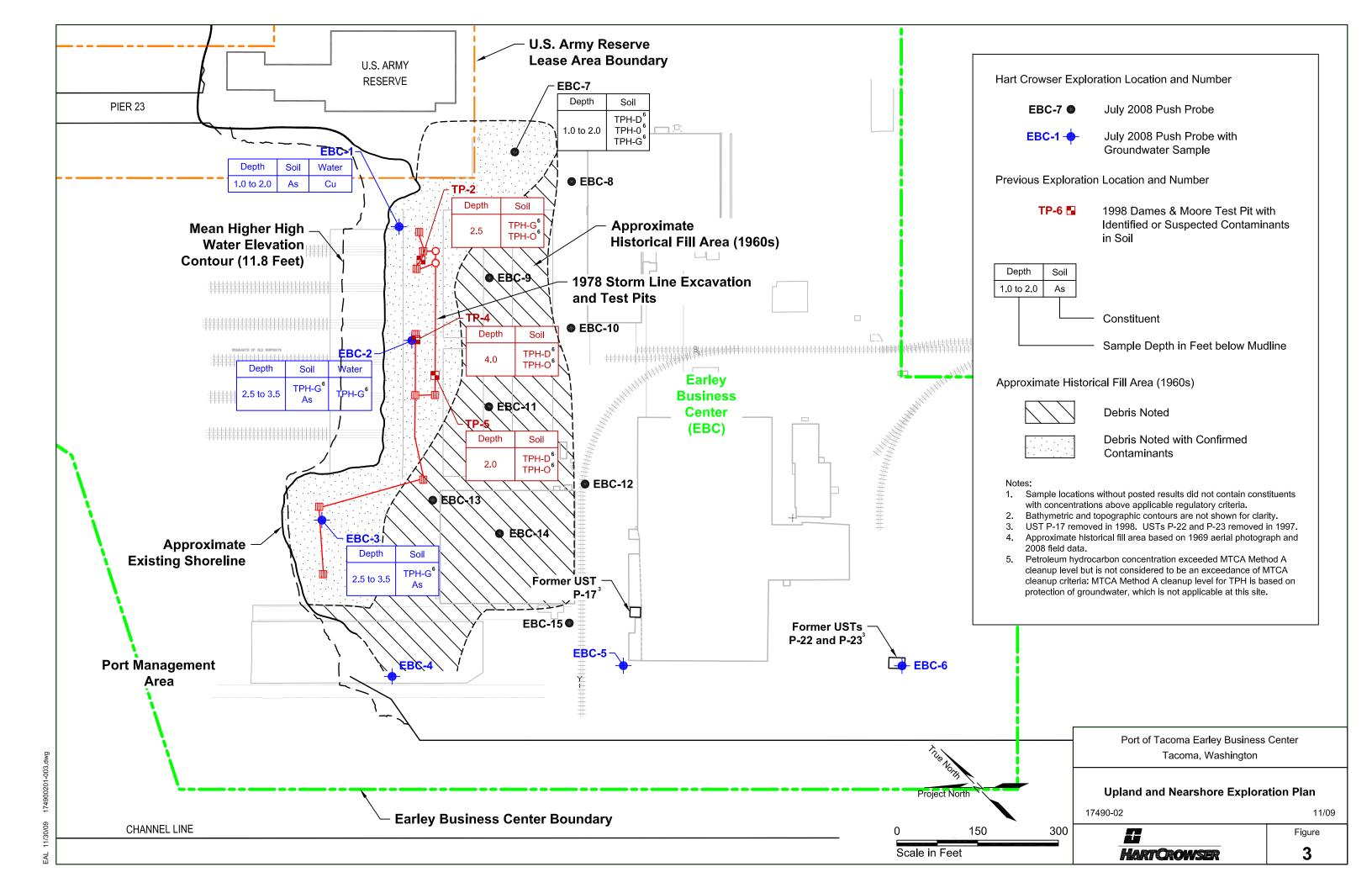
Notes:

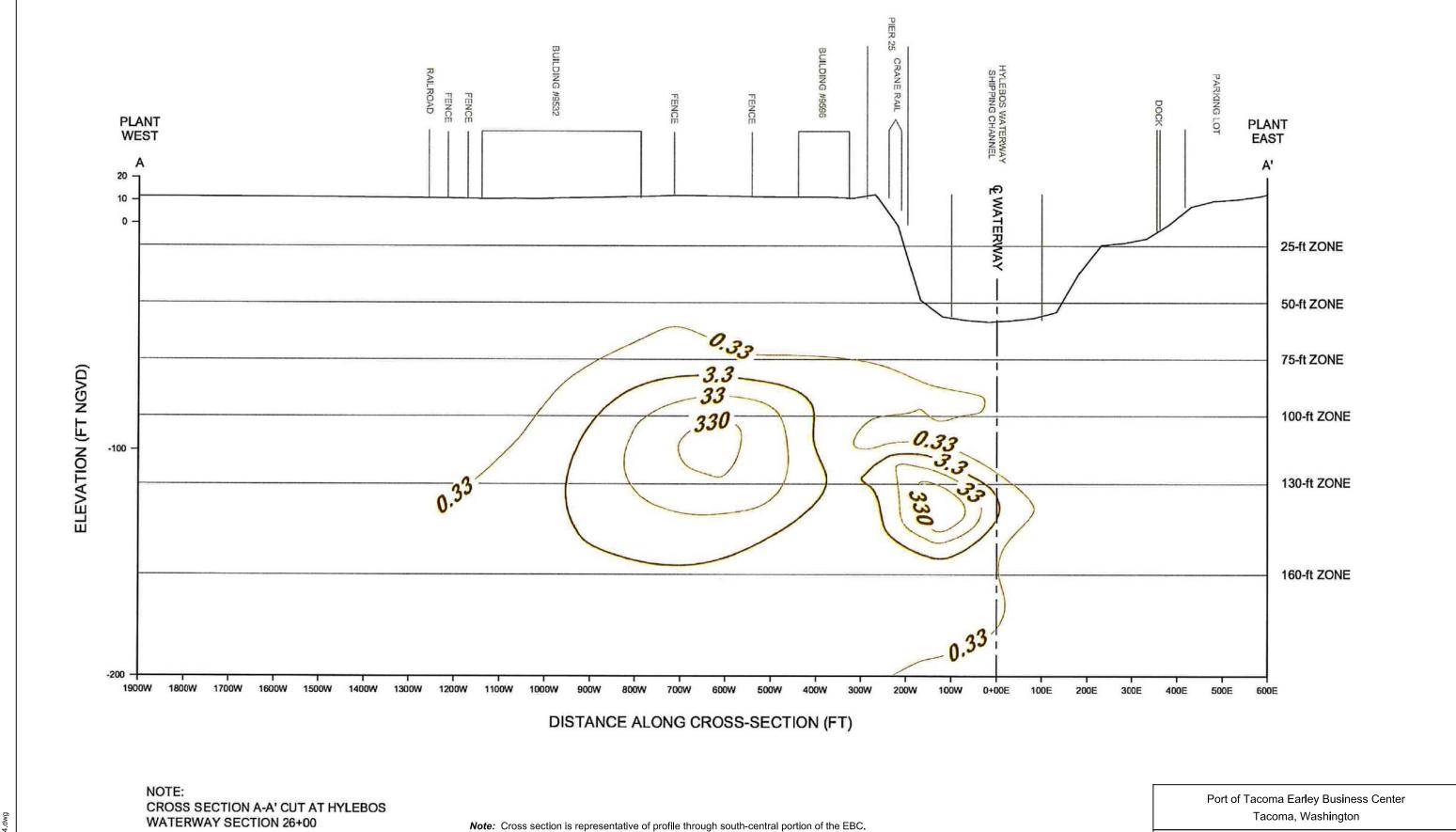
- U: Not detected at reporting limit indicated.
- J: Estimated value
- R: Rejected value
- 3.8 Bolded boxed entry indicates detected concentration exceeds one or more screening criteria.
- 1.6 Dashed boxed entry indicates detected concentration of gasoline-range hydrocarbons is above MTCA Method A screening level but is not considered to be an exceedance of MTCA criteria per Footnote below. Constituents not listed were undetected or were detected at concentrations below applicable regulatory criteria. Blank entry indicates no applicable MTCA criteria established or sample not analyzed for specific analyte. See Table 2a for complete analytical results for groundwater samples.

^a MTCA Method B screening levels for surface water are presented except as noted for TPH and arsenic.

^b MTCA Method A screening levels for TPH are provided for comparative purposes only. MTCA Method A TPH screening levels are based on groundwater protection, which is not applicable at this site.

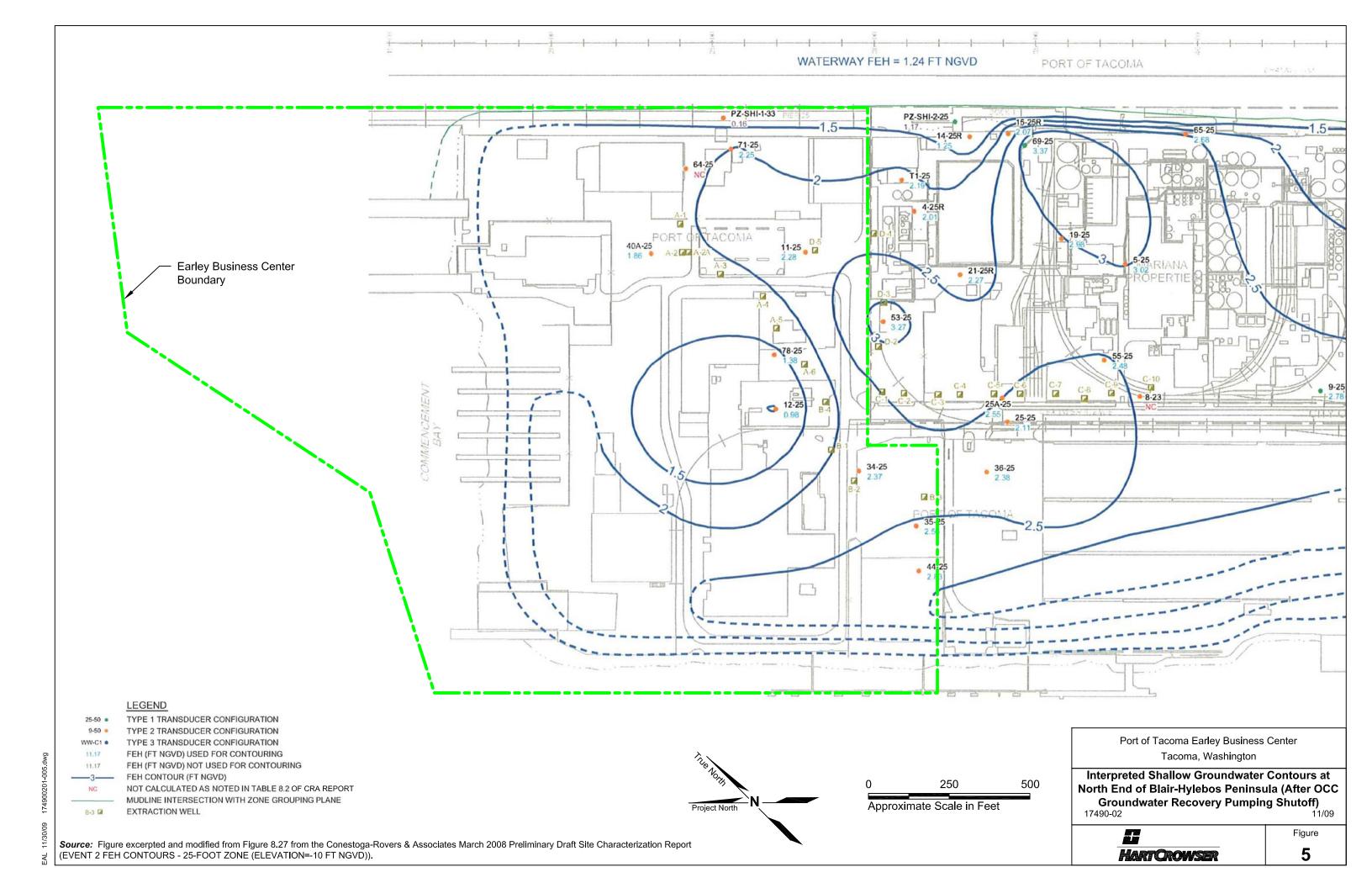

^c MTCA Method A arsenic screening level is listed. The MTCA Method A screening level for arsenic is based on state background concentrations. MTCA Method B does not apply for arsenic at this site.

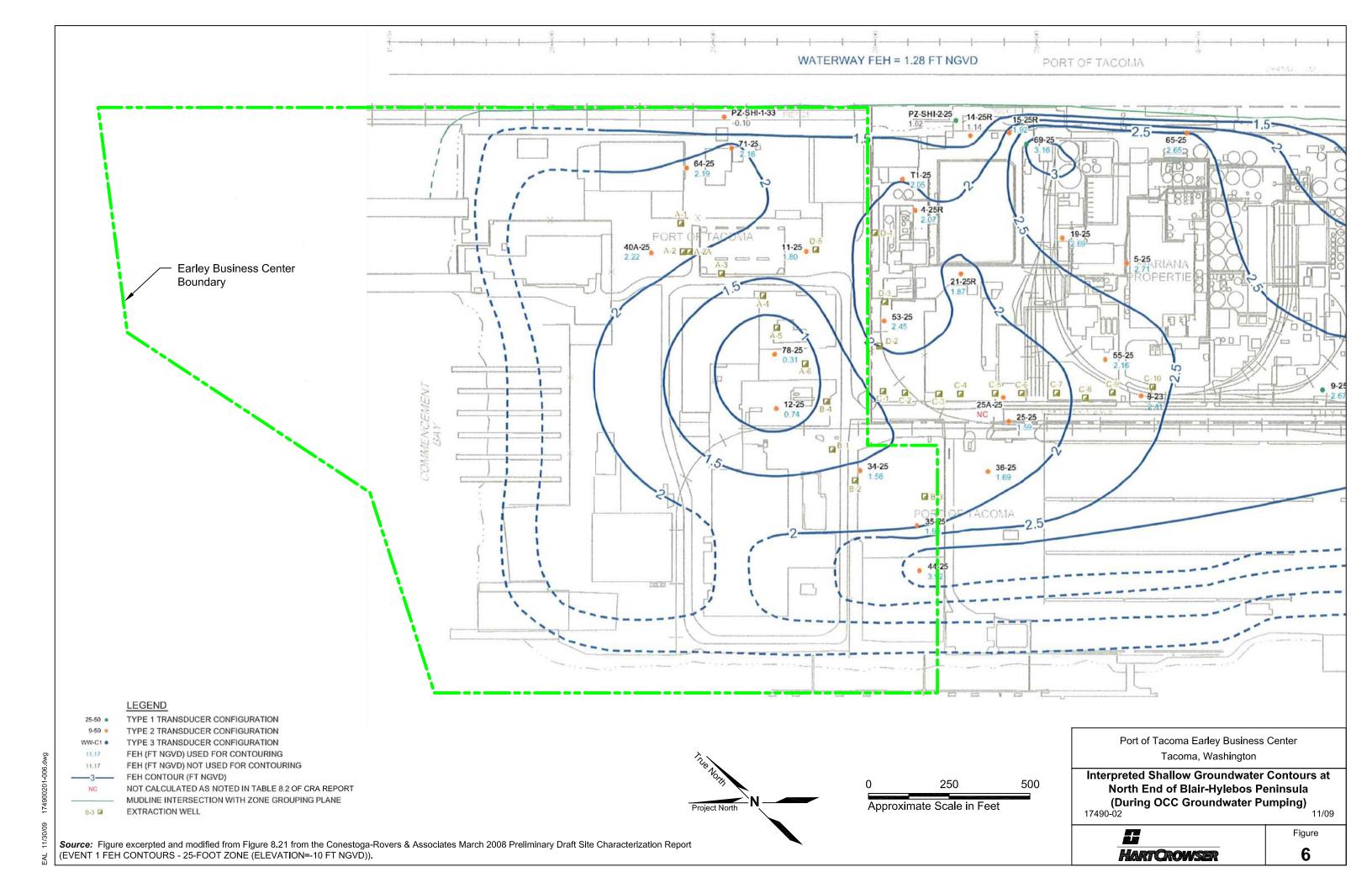

^d Marine chronic water quality cleanup criteria for mercury is based on total metals concentration and is provided for comparative purposes only.


^e Based on Washington State Water Quality Standards (Chapter 173-201A WAC) for protection of marine organisms.

EAL 09/18/09 174900201-001.dwg

GROUNDWATER CLEANUP LEVEL FOR PCE IS 3.3 ug/L


Approximate Horizontal Scale in Feet 200 400 80 40 Approximate Vertical Scale in Feet Vertical Exaggeration x 5


Interpreted PCE Distribution in Groundwater **Beneath the Earley Business Center** 17490-02

HART CROWSER

Figure

Source: Figure excerpted and modified from Figure 7.33 from the Conestoga-Rovers & Associates March 2008 Preliminary Draft Site Characterization Report (PCE CONCENTRATION CONTOURS - CROSS SECTION A-A' SITE CHARACTERIZATION).

APPENDIX A
FIELD EXPLORATION METHODS
AND PUSH PROBE LOGS

APPENDIX A FIELD EXPLORATION METHODS AND PUSH PROBE LOGS

This appendix describes the field exploration methods used to advance explorations, to conduct soil and groundwater sampling, and to field screen the soils for sheen and headspace vapor. We also include the July and August 2008 push probe logs at the end of this appendix.

General Field Activities

Soil Exploration Activities and Characterization. Push probe explorations were completed at 15 locations from July 29 through August 1, 2008. The soil exploration locations are illustrated on Figure 3. Six push probe explorations (EBC-1 through EBC-6) were completed for soil and groundwater sampling near the edge of the peninsula next to Commencement Bay, or inboard from the Blair Waterway. The push probe locations on the Blair Waterway side of the peninsula are located landward of the previous planned bank cutback for the future East Blair 3 (EB3) vessel berth. Nine additional push probe explorations (EBC-7 through EBC-15) were completed to evaluate site soil conditions within and around the estimated area of the industrial fill.

Each probe location was cleared for utilities using existing records and typical utility location methods prior to probing. We used Port-provided as-built records and other utility location information as available. In addition, Hart Crowser contracted a private utility location service, APS, to locate utilities prior to probing. Note that the presence of debris and cobbles required multiple push probe attempts at some locations.

Soil probes were advanced at each exploration location with a truck-mounted push probe rig. The push probe explorations EBC-1 through EBC-6 completed for groundwater sampling were advanced to approximately 12 to 16 feet below ground surface. Each push probe bore was screened from approximately 2 to 5 feet below the water table. The remainder of the push probes for soil and debris sampling in the debris fill area (EBC-7 through EBC-15) were completed to target depths of about 8 feet below ground surface. Two probe locations (EBC-11 and EBC-14) were advanced further due to wood obstructions.

Subsurface soil samples were collected using a 4-foot push probe sleeve sampler pushed by the push probe rig. Samples were classified in general accordance with ASTM Method D 2888, and soil logs were prepared (see Figures A-1 through A-16). Soil and debris samples were obtained in approximate 2-footdepth intervals to approximately 8 feet below ground surface at the probe

Page A-1 Hart Crowser

locations for field screening (0- to 2-foot, 2- to 4-foot, 4- to 6-foot, and 6- to 8-foot sample retention intervals). Deeper samples were obtained at 2-foot-depth intervals in probes EBC-1 through EBC-6 targeted for completion at 12- to 16-foot depths. The soil and debris samples were field screened using headspace vapor measurements and water sheen testing. A Hart Crowser field representative observed probing and sampling activities, performed field screening, and prepared the field logs.

Soil and debris samples were collected to provide representative materials for testing. The samples were selected based on field screening observations for the presence of suspected environmental contaminants, and to provide areal distribution across the debris fill area.

After the samples were collected, the probe locations were abandoned in accordance with the State of Washington Administrative Code on Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 WAC).

Soil Screening and Analysis. Field screening results were used as a general guideline to delineate areas of potential contamination in soils. In addition, screening results were used as a basis for selecting soil samples for chemical analysis.

Soil samples were field screened for evidence of contamination using (1) visual examination, (2) sheen screening, and (3) headspace vapor screening using a photoionization detector (PID). Field screening results were site-specific. The effectiveness of field screening varies with temperature, moisture content, organic content, soil type, and age of the contaminant.

Visual examination consisted of inspecting the soil for stains indicative of contamination.

Water sheen testing involved placing a small volume of soil in a pan of water and observing the water surface for signs of sheen. Sheens were classified as follows:

No Sheen (NS) No visible sheen on water surface.

Slight Sheen (SS) Light colorless film, spotty to globular; spread was

irregular, not rapid, areas of no sheen remain, film

dissipates rapidly.

Moderate Sheen (MS) Light to heavy film, may have some color or iridescence, globular to stringy, spread was irregular

Hart Crowser Page A-2

to flowing; few remaining areas of no sheen on water surface.

Heavy Sheen (HS)

Heavy colorful film with iridescence; stringy, spread was rapid; sheen flows off the sample; most of the water surface might be covered with sheen.

Headspace vapor screening is intended to indicate the presence of volatile organic vapors and involved placing a soil sample in a plastic sample bag. Air was captured in the bag and the bag was shaken to expose the soil to the air trapped in the bag. The probe of the PID was inserted in the bag and the instrument measured the concentration of organic vapors in the air from the sample headspace. The highest vapor reading was recorded for each sample. The PID measures concentrations in ppm (parts per million) and is calibrated to isobutylene. The PID is typically designed to quantify organic vapors concentrations in the range of 0 to 1,000 ppm.

The results of field screening are recorded on the push probe logs and were used to help select the samples to submit for chemical analyses.

Groundwater Sampling. Groundwater samples were obtained from temporary screens installed at the EBC-1 through EBC-6 push probe explorations. The temporary screens were at depths to intercept shallow unconfined groundwater (approximately 12 to 16 feet below ground surface). Each temporary screen was placed to provide a representative sampling interval approximately 2 to 5 feet below the water table. The depth to groundwater level from top of casing in each probe was measured using an electronic water level indicator prior to the collection of the groundwater sample. The time that the depth to groundwater level was taken was documented so that the water levels at the time of drilling could be compared to the tidal stage.

After groundwater elevation data were obtained, sample tubing was lowered to the temporary screen section and a groundwater sample was obtained using a peristaltic pump. The tubing was discarded after each use and the pump was refitted with new tubing at each probe location.

Each temporary screen section was purged until conventional parameters (pH, temperature, and conductivity) varied by less than 10 percent or a minimum of three casing volumes was purged. The sample containers were filled directly from the tubing. One blind field duplicate sample was collected.

Laboratory Analysis and Sample Handling. Soil and groundwater samples were submitted to Analytical Resources, Inc. of Tukwila, Washington, for chemical

Page A-3 Hart Crowser

analysis. Samples were delivered by courier to the laboratory following the chain of custody procedures. Soil samples were analyzed for the following analytes:

- Diesel- and oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx:
- Gasoline-range petroleum hydrocarbons by Ecology Method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Semivolatile organic compounds (SVOCs) by EPA Method 8270D;
- Polychlorinated biphenyls (PCBs) by EPA Method 8082; and
- Total metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc) by EPA Method 6010B/7471.

Groundwater samples were analyzed for the same constituents as noted above, including VOCs, and metals analysis via EPA Method 6020 and 1631. The samples were analyzed for both total and dissolved (field-filtered) metals. The metals analysis included a reductive precipitation extraction step (EPA Method 1640 Modified) through an ARI subcontract to Columbia Analytical Services. Mercury was analyzed using EPA Method 1631 to achieve the low-level detection limit needed for comparison to ambient surface water quality criterion. One field duplicate (EBC-16 for EBC-6) was submitted to the laboratory to assess combined field and laboratory variability.

J:\Jobs\1749002\Phase 01\EBC Upland Report (12-1-09).doc

Hart Crowser Page A-4

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on the

logs. SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance (N) in Blows/Foot	Approximate Shear Strength in TSF
Very loose	0 to 4	Very soft	0 to 2	<0.125
Loose	4 to 10	Soft	2 to 4	0.125 to 0.25
Medium dense	10 to 30	Medium stiff	4 to 8	.0.25 to 0.5
Dense	30 to 50	Stiff	8 to 15	0.5 to 1.0
Very dense	>50	Very stiff	15 to 30	1.0 to 2.0
		Hard	>30	>2.0

Sampling Test Symbols

1.5" I.D. Split Spoon

Grab (Jar)

3.0" I.D. Split Spoon

Shelby Tube (Pushed)

∠ Bag

Cuttings

Core Run

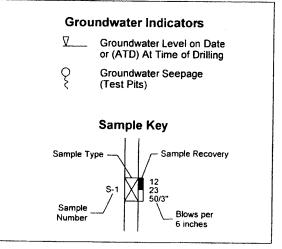
SOIL CLASSIFICATION CHART

M	ONS	SYMI	BOLS	TYPICAL	
	THE PROPERTY OF THE PARTY OF TH		GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS MORE THAN 50% OF COARSE FRACTION		(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
		GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS (I	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY HINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILT CLAYS OF LOW PLASTICITY
FORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
OILL .	SILTS AND CLAYS	EIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
ніс	SHLY ORGANIC S	OILS	ىلى على	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Moisture

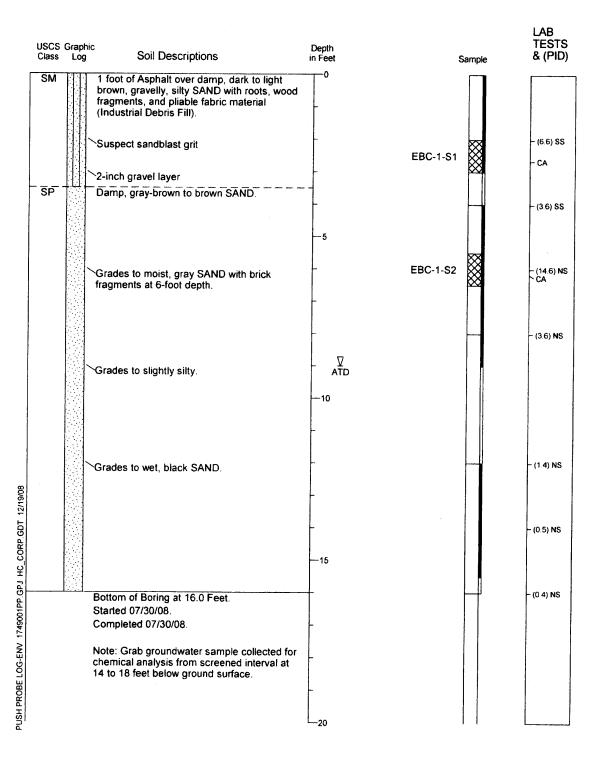
Dry Little perceptible moisture


Damp Some perceptible moisture, likely below optimum

Moist Likely near optimum moisture content

Wet Much perceptible moisture, likely above optimum

Minor Constituents	Estimated Percentage
Trace	<5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

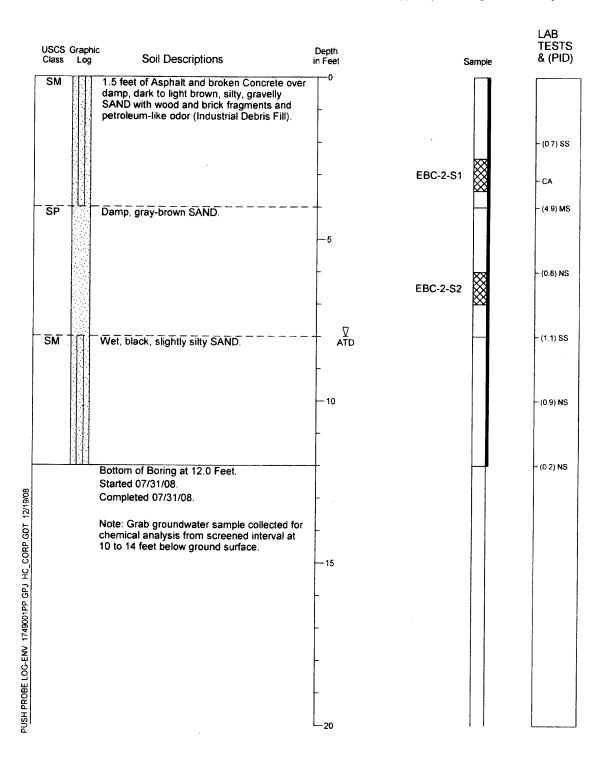

Lab	proton. Tool Combala
Labi	oratory Test Symbols
GS	Grain Size Classification
CN	Consolidation
UU	Unconsolidated Undrained Triaxial
CU	Consolidated Undrained Triaxial
CD	Consolidated Drained Triaxial
Qυ	Unconfined Compression
DS	Direct Shear
K	Permeability
PP	Pocket Penetrometer
	Approximate Compressive Strength in TSF
ΤV	Torvane
	Approximate Shear Strength in TSF
CBR	California Bearing Ratio
MD	Moisture Density Relationship
AL	Atterberg Limits
	Water Content in Percent
	L- Liquid Limit
	Natural
	Plastic Limit
PID	Photoionization Detector Reading
CA	Chemical Analysis
DT	In Situ Density in PCF

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary


5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.

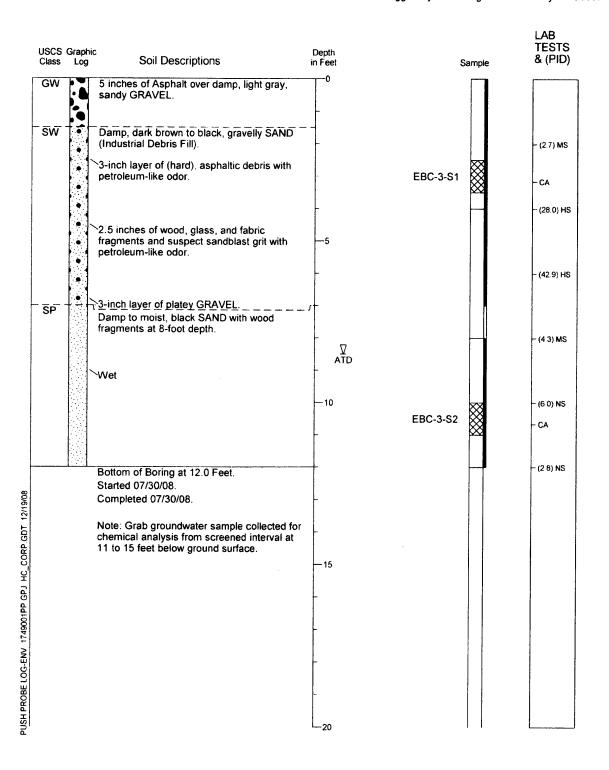
17490-01 7/08 Figure A-2

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary


with time.

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.

17490-01 Figure A-3

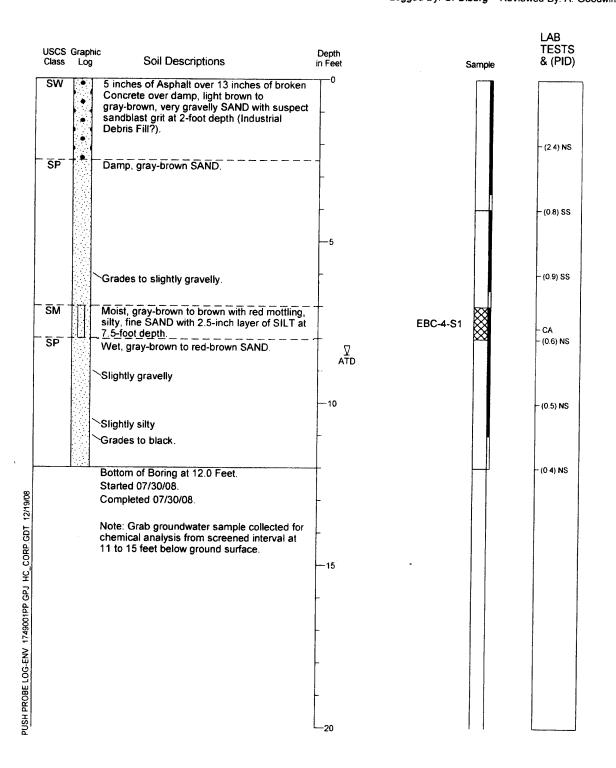
Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum: Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
with time


5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.

17490-01 7/08 Figure A-4

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

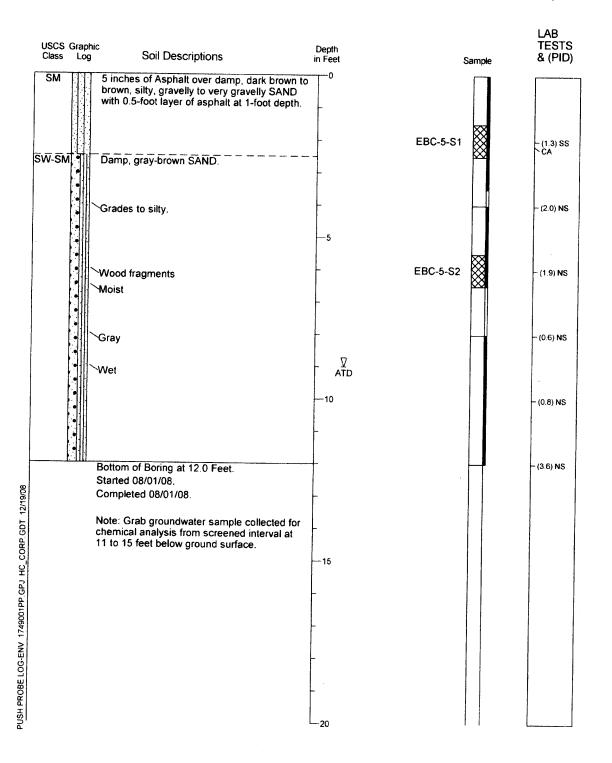
Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.



7/08

17490-01 Figure A-5

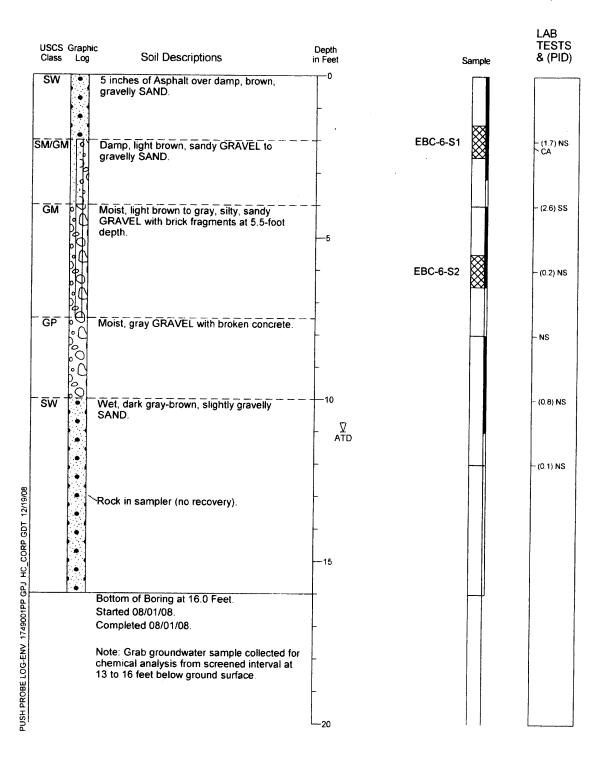
Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

 Soil descriptions and stratum lines are interpretive and actual changes may be gradual
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487)

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.


5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.

17490-01 Figure A-6

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

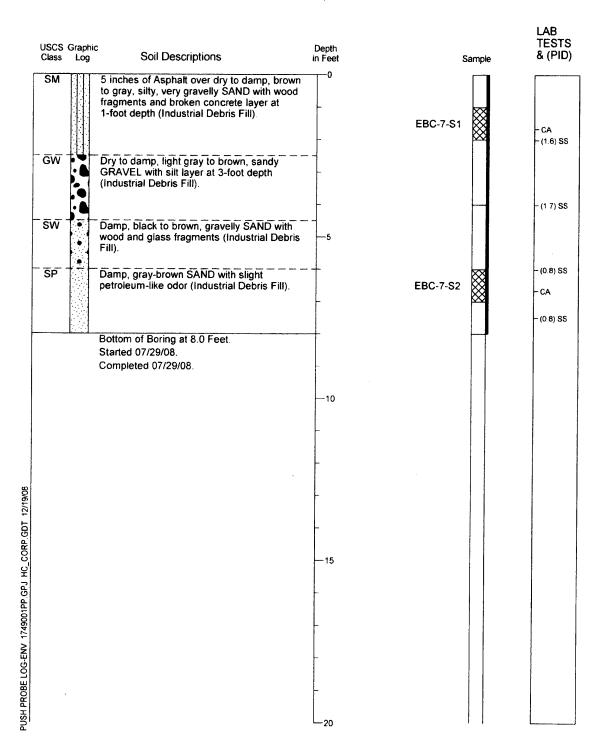
Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches
Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487)

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.


17490-01

8/08

Figure A-7

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

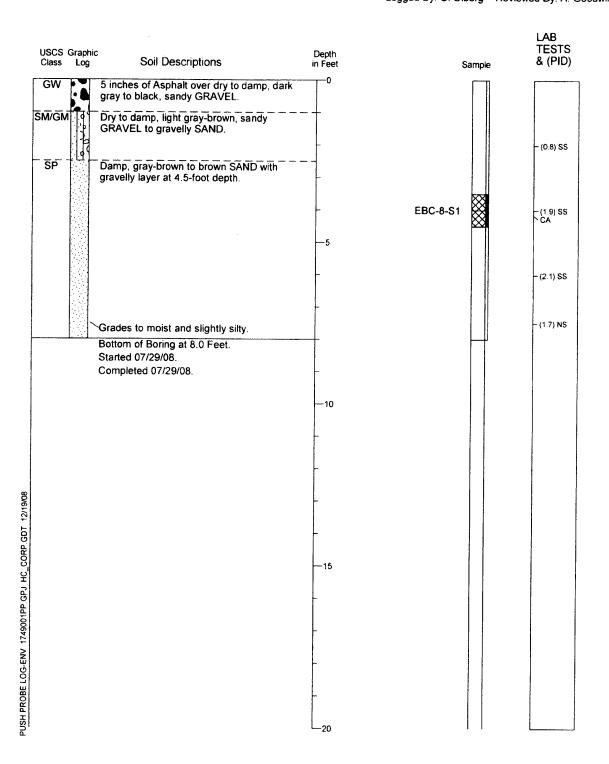
1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.



17490-01 Figure A-8

Location: See Figure 2.
Approximate Ground Surface Elevation: Feet

Horizontal Datum: Vertical Datum:

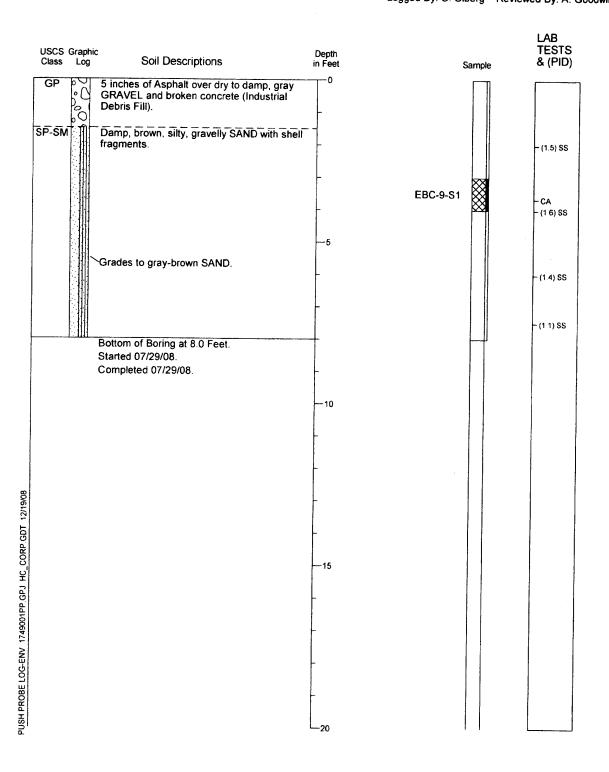
Drill Equipment: Push Probe Sample Type: Acetate Liner
Hole Diameter: 2 inches
Logged By: C. Ulberg Reviewed By: A. Goodwin

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.



17490-01 7/08 Figure A-9

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum:

Vertical Datum:

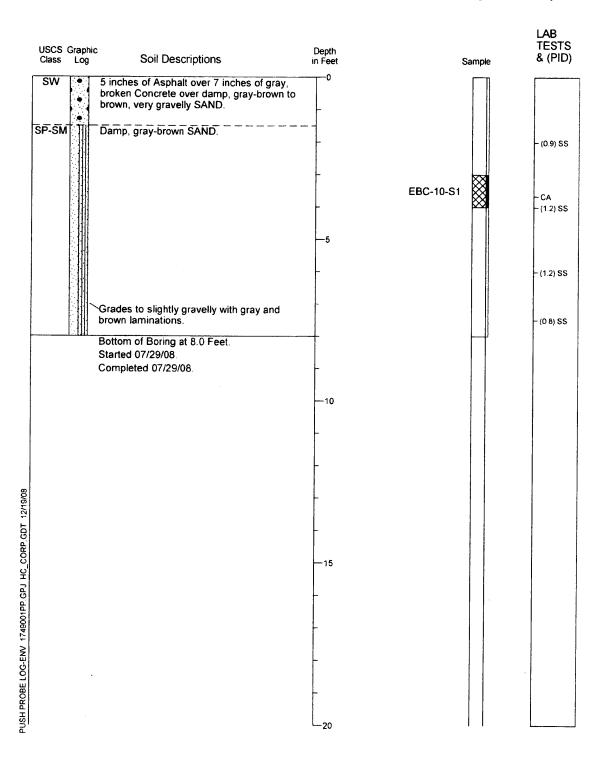
Drill Equipment: Push Probe Sample Type: Acetate Liner
Hole Diameter: 2 inches
Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.


17490-01

7/08

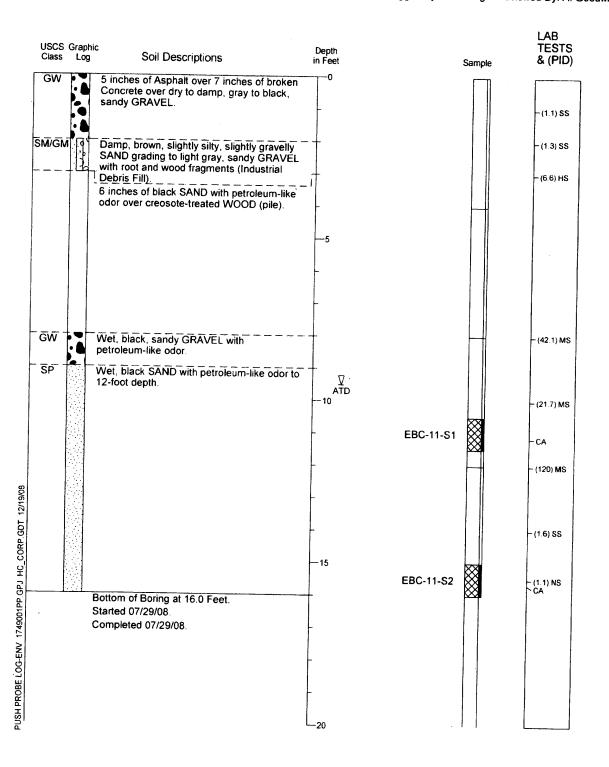
Figure A-10

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner
Hole Diameter: 2 inches
Logged By: C. Ulberg Reviewed By: A. Goodwin

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.



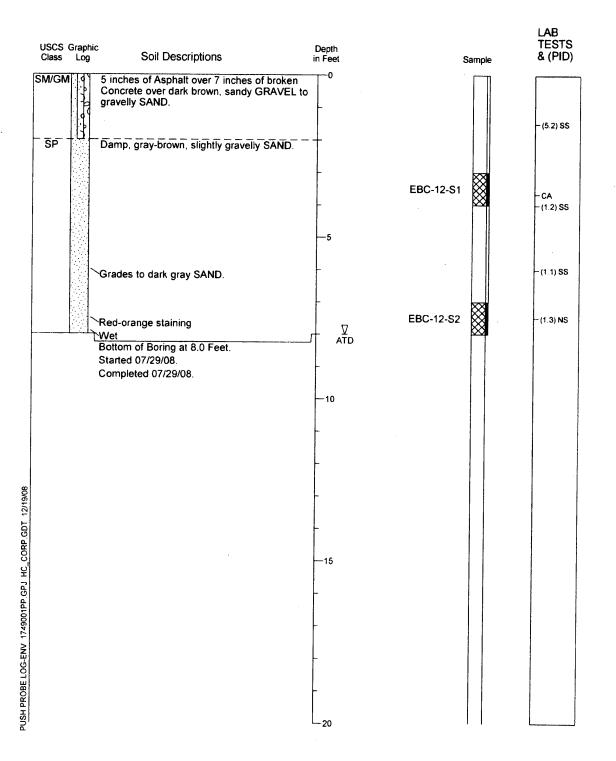
17490-01 Figure A-11

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum:

Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487)
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.



17490-01 Figure A-12

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches

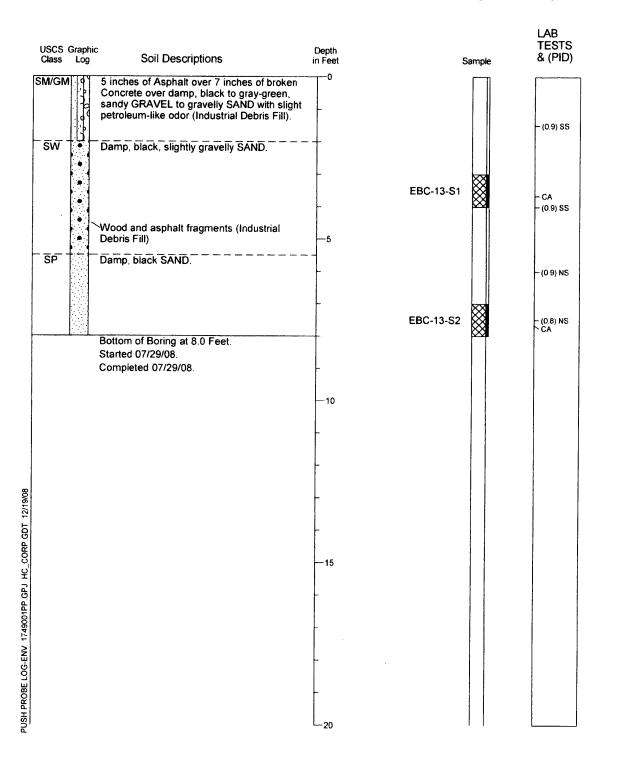
Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.



7/08

17490-01 Figure A-13

Location: See Figure 2.
Approximate Ground Surface Elevation: Feet Horizontal Datum:
Vertical Datum:

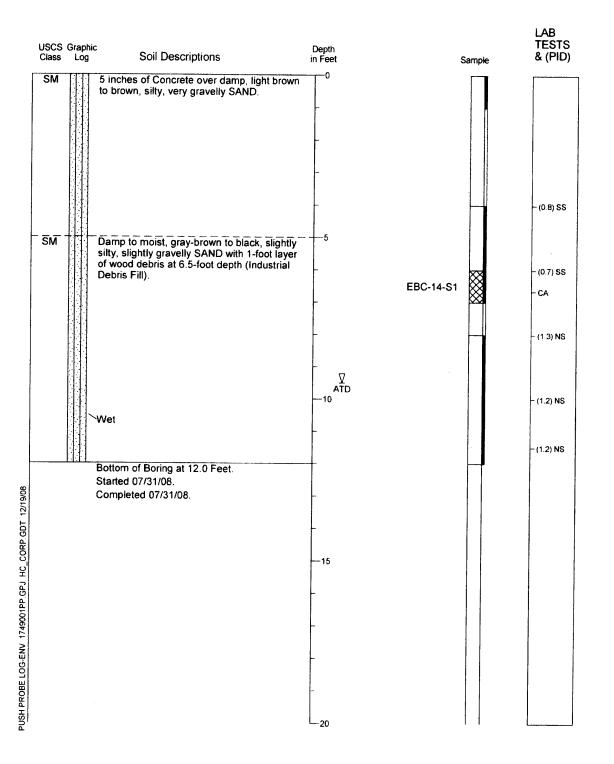
Drill Equipment: Push Probe
Sample Type: Acetate Liner
Hole Diameter: 2 inches
Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.


5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.

17490-01 Figure A-14

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

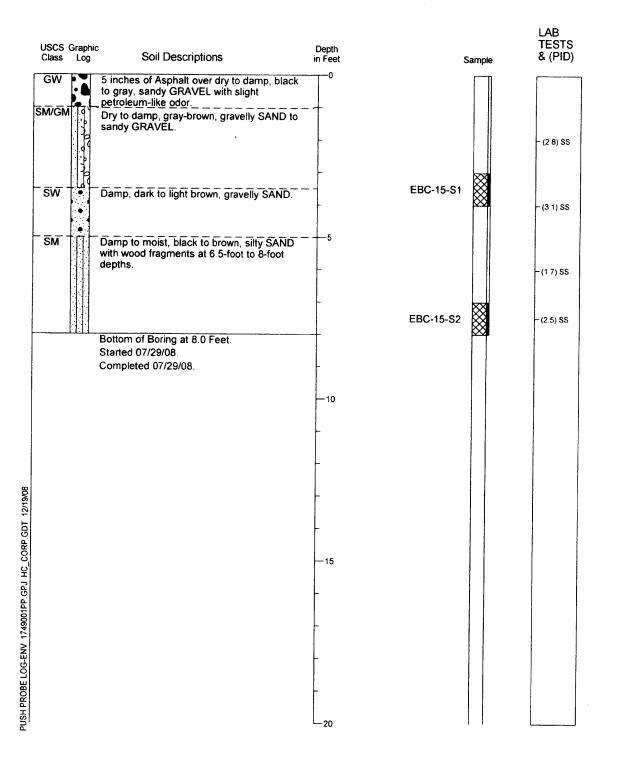
Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.



17490-01 Figure A-15

Location: See Figure 2. Approximate Ground Surface Elevation: Feet Horizontal Datum: Vertical Datum:

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches

Hole Diameter: 2 inches
Logged By: C. Ulberg Reviewed By: A. Goodwin

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
with time

5. SS = Slight Sheen, MS = Moderate Sheen, HS = Heavy Sheen, NS = No Sheen.

17490-01 Figure A-16

APPENDIX B
ANALYTICAL RESULTS FOR
SOIL AND GROUNDWATER SAMPLES

Table B 1 Complete Analy		3103								
Sample ID ^{aa} :	MTCA Scr	eening Criteria	EBC-1-S1	EBC-1-S2	EBC-2-S1	EBC-3-S1	EBC-3-S2	EBC-4-S1	EBC-5-S1	
Sampling Date:	Method A	Method C	7/30/2008	7/30/2008	7/31/2008	7/30/2008	7/30/2008	7/30/2008	8/1/2008	
Sample Depth in Feet:	Industrial	Direct	1 to 2	5.5 to 6.5	2.5 to 3.5	2.5 to 3.5	10 to 11	7 to 8	1.5 to 2.5	
		Contact								
TPH in mg/kg										
Diesel-Range Hydrocarbons	2,000		180	5.8	900	560	5.7 U	7	15	
Motor Oil-Range Hydrocarbons	2,000		960	17	1400	950	11 U	12 U	98	
Gasoline-Range Hydrocarbons	100/30 ^a		26	7.7 U	160	150	6.9 U	9.2 U	9.6	
Metals in mg/kg										
Arsenic	20	88	240 J	5 U	50	120	6 U	6 U	10 U	
Cadmium		3,500	3 J	0.2 U	1.6	3.5	0.2 U	0.2 U	0.5 U	
Chromium			72 J	14.4	58	67	16.1	15.4	21	
Copper		130,000	1630 J	16.9	208	668	13.1	21.4	120	
Lead	1,000		790 J	13	923	724	2 U	3	7	
Mercury		1,100	0.49 J	0.08	0.86	1.3	0.05 U	0.05 U	0.05 U	
Nickel		70,000	50 J	7	51	54	10	8	29	
Zinc		1,100,000	2300	42	789	1690	43	25	52	
BTEX (8021B) in µg/kg										
Benzene		2,400,000	38	19 U	16 U	210	17 U	23 U	22 U	
Ethylbenzene		350,000,000	31 U	19 U	44	56	17 U	23 U	22 U	
m,p-Xylene		7,000,000,000	89	38 U	40	100	35 U	46 U	44 U	
o-Xylene		7,000,000,000	31 U	19 U	74	20 U	17 U	23 U	22 U	
Toluene		280,000,000	110	19 U	28	120	17 U	23 U	22 U	
PCBs in μg/kg										
Aroclor 1016		250,000	32 U	33 U	73 U	31 U	31 U	33 U	33 U	
Aroclor 1221			32 U	33 U	73 U	31 U	31 U	33 U	33 U	
Aroclor 1232			32 U	33 U	73 U	31 U	31 U	33 U	33 U	
Aroclor 1242			32 U	33 U	73 U	31 U	31 U	33 U	33 U	
Aroclor 1248			32 U	33 U	250	130	31 U	33 U	33 U	
Aroclor 1254		70,000	220	33 U	480	280	31 U	33 U	33 U	
Aroclor 1260			310	33 U	570	100	31 U	33 U	33 U	
Total PCBs	10,000	66,000	610	115.5	1446	572	108.5	115.5	115.5	
LPAHs in µg/kg		70 000 000	400	50.11	0.40	0.400	04.11	04.11	000.11	
Naphthalene		70,000,000	420	58 U	840	2400	64 U	61 U	200 U	
2-Methylnaphthalene			190 U	58 U	580	1100	64 U	61 U	200 U	
Acenaphthylene		040 000 000	190 U	58 U	220 U	180 U	64 U	61 U	200 U	
Acenaphthene		210,000,000	190 U	58 U	2400	1000	64 U	61 U	200 U	
Fluorene		140,000,000	300	58 U	1900	790	64 U	61 U	200 U 200 U	
Phenanthrene		1 100 000 000	2100 340	58 U	5200	3100	64 U 64 U	61 U	200 U	
Anthracene Total LPAHs		1,100,000,000	340	58 U 203	2000 13030	1300 9780	224	61 U 213.5	700 700	
I Ulai LPANS			3443	203	13030	9700	224	213.3	700	

Table D-1 - Complete Analy	DIES						011001 2 01			
Sample ID ^{aa} :	MTCA Scre	ening Criteria	EBC-1-S1	EBC-1-S2	EBC-2-S1	EBC-3-S1	EBC-3-S2	EBC-4-S1	EBC-5-S1	
Sampling Date:	Method A	Method C	7/30/2008	7/30/2008	7/31/2008	7/30/2008	7/30/2008	7/30/2008	8/1/2008	
Sample Depth in Feet:	Industrial	Direct	1 to 2	5.5 to 6.5	2.5 to 3.5	2.5 to 3.5	10 to 11	7 to 8	1.5 to 2.5	
		Contact								
HPAHs in μg/kg										
Fluoranthene		140,000,000	2200	58 U	3800	3000	64 U	61 U	200 U	
Pyrene		110,000,000	1800	58 U	4600	3400	64 U	61 U	200 U	
* Benzo(a)anthracene		18,000	630	58 U	770	740	64 U	61 U	200 U	
* Chrysene		18,000	800	58 U	1000	1100	64 U	61 U	200 U	
* Benzo(b)fluoranthene		18,000	860	58 U	430	920	64 U	61 U	200 U	
* Benzo(k)fluoranthene		18,000	680	58 U	500	600	64 U	61 U	200 U	
* Benzo(a)pyrene		18,000	700	58 U	430	580	64 U	61 U	200 U	
* Indeno(1,2,3-cd)pyrene		18,000	330	58 U	220 U	180 U	64 U	61 U	200 U	
Dibenz(a,h)anthracene		18,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U	
Benzo(g,h,i)perylene		18,000	400	58 U	220 U	200	64 U	61 U	200 U	
Total HPAHs			4495	290 U	11860	10720	320 U	305 U	1000 U	
* Total cPAHs b	2,000	18,000	968	44 U	632	835	48 U	46 U	151 U	
Semivolatiles in µg/kg										
1,2,4-Trichlorobenzene		35,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U	
1,2-Dichlorobenzene		320,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U	
1,3-Dichlorobenzene			190 U	58 U	220 U	180 U	64 U	61 U	200 U	
1,4-Dichlorobenzene		5,500,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U	
1-Methylnaphthalene			190 U	58 U	760	670	64 U	61 U	200 U	
2,2'-Oxybis(1-Chloropropane)			190 U	58 U	220 U	180 U	64 U	61 U	200 U	
2,4,5-Trichlorophenol		350,000,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
2,4,6-Trichlorophenol		12,000,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
2,4-Dichlorophenol		11,000,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
2,4-Dimethylphenol		70,000,000	190 U	58 U	220 U	1100	64 U	61 U	200 U	
2,4-Dinitrophenol		7,000,000	1900 U	580 U	2200 U	1800 U	640 U	610 U	2000 U	
2,4-Dinitrotoluene		7,000,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
2,6-Dinitrotoluene		3,500,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
2-Chloronaphthalene			190 U	58 U	220 U	180 U	64 U	61 U	200 U	
2-Chlorophenol		18,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U	
2-Methylphenol			190 U	58 U	220 U	180 U	64 U	61 U	200 U	
2-Nitroaniline			940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
2-Nitrophenol			190 U	58 U	220 U	180 U	64 U	61 U	200 U	
3,3'-Dichlorobenzidine		290,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
3-Nitroaniline			940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
4,6-Dinitro-2-Methylphenol			1900 U	580 U	2200 U	1800 U	640 U	610 U	2000 U	
4-Bromophenyl-phenylether			190 U	58 U	220 U	180 U	64 U	61 U	200 U	
4-Chloro-3-methylphenol			940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
4-Chloroaniline			940 U	290 U	1100 U	920 U	320 U	310 U	990 U	
4-Chlorophenyl-phenylether			190 U	58 U	220 U	180 U	64 U	61 U	200 U	

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Screen	ing Criteria	EBC-1-S1	EBC-1-S2	EBC-2-S1	EBC-3-S1	EBC-3-S2	EBC-4-S1	EBC-5-S1
Sampling Date:	Method A	Method C	7/30/2008	7/30/2008	7/31/2008	7/30/2008	7/30/2008	7/30/2008	8/1/2008
Sample Depth in Feet:	Industrial	Direct	1 to 2	5.5 to 6.5	2.5 to 3.5	2.5 to 3.5	10 to 11	7 to 8	1.5 to 2.5
		Contact							
4-Methylphenol			190 U	58 U	220 U	860	64 U	61 U	200 U
4-Nitroaniline			940 U	290 U	1100 U	920 U	320 U	310 U	990 U
4-Nitrophenol			940 U	290 U	1100 U	920 U	320 U	310 U	990 U
Benzoic Acid	1	4,000,000,000	1900 U	580 U	2200 U	1800 U	640 U	610 U	2000 U
Benzyl Alcohol	•	1,100,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
bis(2-Chloroethoxy) Methane			190 U	58 U	220 U	180 U	64 U	61 U	200 U
Bis-(2-Chloroethyl) Ether		120,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
bis(2-Ethylhexyl)phthalate		9,400,000	1800	58 U	650	220	64 U	61 U	200 U
Butylbenzylphthalate		700,000,000	200	58 U	220 U	180 U	64 U	61 U	200 U
Carbazole		6,600,000	240	58 U	700	320	64 U	61 U	200 U
Dibenzofuran		7,000,000	250	58 U	1200	840	64 U	61 U	200 U
Diethylphthalate	2	2,800,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Dimethylphthalate	;	3,500,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Di-n-Butylphthalate			190 U	58 U	220 U	180 U	64 U	61 U	200 U
Di-n-Octyl phthalate		70,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Hexachlorobenzene		82,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Hexachlorobutadiene		700,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Hexachlorocyclopentadiene		21,000,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U
Hexachloroethane		9,400,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Isophorone		140,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Nitrobenzene		1,800,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
N-Nitroso-Di-N-Propylamine		19,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U
N-Nitrosodiphenylamine		27,000,000	190 U	58 U	290 Y	180 U	64 U	61 U	200 U
Pentachlorophenol		1,100,000	940 U	290 U	1100 U	920 U	320 U	310 U	990 U
Phenol	2	2,100,000,000	190 U	58 U	220 U	180 U	64 U	61 U	200 U
Volatiles in µg/kg									
1,1,1,2-Tetrachloroethane		5,000,000		1.3 U		54 U	1.2 U		
1,1,1-Trichloroethane	;	3,200,000,000		1.3 U		54 U	1.2 U		
1,1,2,2-Tetrachloroethane		660,000		1.3 U		54 U	1.2 U		
1,1,2-Trichloro-1,2,2-trifluoroethane				2.6 U		110 U	2.3 U		
1,1,2-Trichloroethane		2,300,000		1.3 U		54 U	1.2 U		
1,1-Dichloroethane		700,000,000		1.3 U		54 U	1.2 U		
1,1-Dichloroethene				1.3 U		54 U	1.2 U		
1,1-Dichloropropene				1.3 U		54 U	1.2 U		
1,2,3-Trichlorobenzene				6.6 U		270 U	5.8 U		
1,2,3-Trichloropropane		19,000		2.6 U		110 U	2.3 U		
1,2,4-Trichlorobenzene				6.6 U		270 U	5.8 U		
1,2,4-Trimethylbenzene		180,000,000		1.3 U		2400	1.2 U		
1,2-Dibromo-3-chloropropane		94,000		6.6 U		270 U	5.8 U		

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Scree	ening Criteria	EBC-1-S1	EBC-1-S2	EBC-2-S1	EBC-3-S1	EBC-3-S2	EBC-4-S1	EBC-5-S1
Sampling Date:	Method A	Method C	7/30/2008	7/30/2008	7/31/2008	7/30/2008	7/30/2008	7/30/2008	8/1/2008
Sample Depth in Feet:	Industrial	Direct	1 to 2	5.5 to 6.5	2.5 to 3.5	2.5 to 3.5	10 to 11	7 to 8	1.5 to 2.5
		Contact							
1,2-Dichlorobenzene		320,000,000		1.3 U		54 U	1.2 U		
1,2-Dichloroethane		1,400,000		1.3 U		54 U	1.2 U		
1,2-Dichloropropane		1,900,000		1.3 U		54 U	1.2 U		
1,3,5-Trimethylbenzene		180,000,000		1.3 U		1200	1.2 U		
1,3-Dichlorobenzene				1.3 U		54 U	1.2 U		
1,3-Dichloropropane				1.3 U		54 U	1.2 U		
1,4-Dichlorobenzene		5,500,000		1.3 U		54 U	1.2 U		
2,2-Dichloropropane				1.3 U		54 U	1.2 U		
2-Butanone				6.6 U		270 U	5.8 U		
2-Chloroethylvinylether				6.6 U		270 U	5.8 U		
2-Chlorotoluene				1.3 U		54 U	1.2 U		
2-Hexanone				6.6 U		270 U	5.8 U		
4-Chlorotoluene				1.3 U		54 U	1.2 U		
4-Isopropyltoluene				1.3 U		520	1.2 U		
4-Methyl-2-Pentanone (MIBK)				6.6 U		270 U	5.8 U		
Acetone ^c		350,000,000		31		360	27		
Acrolein				66 U		2700 U	58 U		
Acrylonitrile		240,000		6.6 U		270 U	5.8 U		
Benzene		2,400,000		1.3 U		54 U	1.2 U		
Bromobenzene				1.3 U		54 U	1.2 U		
Bromochloromethane				1.3 U		54 U	1.2 U		
Bromodichloromethane		2,100,000		1.3 U		54 U	1.2 U		
Bromoethane				2.6 U		110 U	2.3 U		
Bromoform		17,000,000		1.3 U		54 U	1.2 U		
Bromomethane		4,900,000		1.3 U		54 U	1.2 U		
Carbon Disulfide		350,000,000		1.3 U		54 U	7.6		
Carbon Tetrachloride		1,000,000		1.3 U		54 U	1.2 U		
Chlorobenzene		70,000,000		1.3 U		54 U	1.2 U		
Chloroethane				1.3 U		54 U	1.2 U		
Chloroform		22,000,000		1.3 U		54 U	1.2 U		
Chloromethane		10,000,000		1.3 U		54 U	1.2 U		
cis-1,2-Dichloroethene				1.3 U		54 U	1.2 U		
cis-1,3-Dichloropropene				1.3 U		54 U	1.2 U		

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Screer	ning Criteria	EBC-1-S1	EBC-1-S2	EBC-2-S1	EBC-3-S1	EBC-3-S2	EBC-4-S1	EBC-5-S1
Sampling Date:	Method A	Method C	7/30/2008	7/30/2008	7/31/2008	7/30/2008	7/30/2008	7/30/2008	8/1/2008
Sample Depth in Feet:	Industrial	Direct	1 to 2	5.5 to 6.5	2.5 to 3.5	2.5 to 3.5	10 to 11	7 to 8	1.5 to 2.5
		Contact							
Dibromochloromethane		1,600,000		1.3 U		54 U	1.2 U		
Dibromomethane				1.3 U		54 U	1.2 U		
Ethylbenzene		350,000,000		1.3 U		230	1.2 U		
Ethylene Dibromide				1.3 U		54 U	1.2 U		
Hexachlorobutadiene		700,000		6.6 U		270 U	5.8 U		
Isopropylbenzene				1.3 U		91	1.2 U		
m,p-Xylene		7,000,000,000		1.3 U		880	1.2 U		
Methyl Iodide				1.3 U		54 U	1.2 U		
Methylene Chloride c		18,000,000		62		270	2.3 U		
Naphthalene		70,000,000		6.6 U		1400	5.8 U		
n-Butylbenzene				1.3 U		54 U	1.2 U		
n-Propylbenzene				1.3 U		160	1.2 U		
o-Xylene		7,000,000,000		1.3 U		680	1.2 U		
sec-Butylbenzene				1.3 U		98	1.2 U		
Styrene		4,400,000		1.3 U		54 U	1.2 U		
tert-Butylbenzene				1.3 U		54 U	1.2 U		
Tetrachloroethene				1.3 U		54 U	1.2 U		
Toluene		280,000,000		1.3 U		100	1.2 U		
trans-1,2-Dichloroethene				1.3 U		54 U	1.2 U		
trans-1,3-Dichloropropene				1.3 U		54 U	1.2 U		
trans-1,4-Dichloro-2-butene				6.6 U		270 U	5.8 U		
Trichloroethene				1.3 U		54 U	1.2 U		
Trichlorofluoromethane				32		54 U	1.2 U		
Vinyl Acetate				6.6 U		270 U	5.8 U		
Vinyl Chloride		88,000		1.3 U		54 U	1.2 U		

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Scre	eening Criteria	EBC-6-S1	EBC-7-S1	EBC-7-S2	EBC-8-S1	EBC-9-S1	EBC-10-S1	EBC-11-S1
Sampling Date:	Method A	Method C	8/1/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008
Sample Depth in Feet:	Industrial	Direct	1.5 to 2.5	1 to 2	6 to 7	3.5 to 4.5	3 to 4	3 to 4	10.5 to 11.5
		Contact							
TPH in mg/kg									
Diesel-Range Hydrocarbons	2,000		10	3600	49	5 U	60	5.2 U	18
Motor Oil-Range Hydrocarbons	2,000		58	5100	10	10 U	180	10 U	24
Gasoline-Range Hydrocarbons	100/30 ^a		7.2 U	320	13	7.1 U	6.2 U	7.4 U	7.4 U
Metals in mg/kg									
Arsenic	20	88	8	50	5 U	5 U	6	5 U	6 U
Cadmium		3,500	0.3	4	0.2 U	0.2 U	0.5	0.2 U	0.2 U
Chromium			16.8	162	11.9	11.5	26	11.8	12.2
Copper		130,000	35.4	932	11.1	11.2	80.2	10.4	11.1
Lead	1,000		34	600	2	2 U	83	2 U	2 U
Mercury		1,100	0.05 U	3.31	0.04 U	0.04 U	0.29	0.04 U	0.06 U
Nickel		70,000	15	151	8	8	21	7	8
Zinc		1,100,000	67	2450	22	20	189	20	21
BTEX (8021B) in μg/kg									
Benzene		2,400,000	18 U	19 U	16 U	18 U	16 U	18 U	18 U
Ethylbenzene		350,000,000	18 U	130	16 U	18 U	16 U	18 U	18 U
m,p-Xylene		7,000,000,000	36 U	240	31 U	36 U	31 U	37 U	37 U
o-Xylene		7,000,000,000	18 U	220	16 U	18 U	16 U	18 U	18 U
Toluene		280,000,000	18 U	120	16 U	18 U	16 U	18 U	18 U
PCBs in μg/kg									
Aroclor 1016		250,000	33 U	370 U	32 U	32 U	32 U	32 U	31 U
Aroclor 1221			33 U	370 U	32 U	32 U	32 U	32 U	31 U
Aroclor 1232			33 U	370 U	32 U	32 U	32 U	32 U	31 U
Aroclor 1242			33 U	370 U	32 U	32 U	32 U	32 U	31 U
Aroclor 1248			33 U	2000	32 U	32 U	32 U	32 U	31 U
Aroclor 1254		70,000	33 U	3300	32 U	32 U	190	32 U	31 U
Aroclor 1260			33 U	3300	32 U	32 U	310	32 U	31 U
Total PCBs	10,000	66,000	115.5	9340	112	112	580	112	108.5
LPAHs in µg/kg		70.000.000	50.11	440	04.11	05.11	00.11	04.11	222
Naphthalene		70,000,000	58 U	440	64 U	65 U	66 U	64 U	260
2-Methylnaphthalene			58 U	1700	64 U	65 U	66 U	64 U	62 U
Acenaphthylene		040 000 000	58 U	230 U	64 U	65 U	66 U	64 U	62 U
Acenaphthene		210,000,000	58 U	300	64 U	65 U	66 U	64 U	270
Fluorene		140,000,000	58 U	430	64 U	65 U	66 U	64 U	62 U
Phenanthrene		4 400 000 000	58 U	1800	64 U	65 U	66 U	64 U	62 U
Anthracene		1,100,000,000	58 U	390 5475	64 U	65 U	66 U	64 U	62 U
Total LPAHs			203	5175	224	227.5	231	224	685

Table D-1 - Complete Analy	able D-1 - Complete Analytical Nesults for Son Samp								0110017 01 1	
Sample ID ^{aa} :	MTCA Scre	ening Criteria	EBC-6-S1	EBC-7-S1	EBC-7-S2	EBC-8-S1	EBC-9-S1	EBC-10-S1	EBC-11-S1	
Sampling Date:	Method A	Method C	8/1/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	
Sample Depth in Feet:	Industrial	Direct	1.5 to 2.5	1 to 2	6 to 7	3.5 to 4.5	3 to 4	3 to 4	10.5 to 11.5	
		Contact								
HPAHs in μg/kg										
Fluoranthene		140,000,000	58 U	1400	64 U	65 U	66 U	64 U	62 U	
Pyrene		110,000,000	92	2400	64 U	65 U	66 U	64 U	62 U	
* Benzo(a)anthracene		18,000	58 U	520	64 U	65 U	66 U	64 U	62 U	
* Chrysene		18,000	58 U	870	64 U	65 U	66 U	64 U	62 U	
* Benzo(b)fluoranthene		18,000	68	490	64 U	65 U	66 U	64 U	62 U	
* Benzo(k)fluoranthene		18,000	58 U	390	64 U	65 U	66 U	64 U	62 U	
* Benzo(a)pyrene		18,000	58 U	440	64 U	65 U	66 U	64 U	62 U	
* Indeno(1,2,3-cd)pyrene		18,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Dibenz(a,h)anthracene		18,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Benzo(g,h,i)perylene		18,000	58 U	240	64 U	65 U	66 U	64 U	62 U	
Total HPAHs			392	6980	320 U	325 U	330 U	320 U	310 U	
* Total cPAHs	2,000	18,000	48	612	48 U	49 U	50 U	48 U	47 U	
Semivolatiles in µg/kg										
1,2,4-Trichlorobenzene		35,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
1,2-Dichlorobenzene		320,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
1,3-Dichlorobenzene			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
1,4-Dichlorobenzene		5,500,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
1-Methylnaphthalene			58 U	2000	64 U	65 U	66 U	64 U	62 U	
2,2'-Oxybis(1-Chloropropane)			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
2,4,5-Trichlorophenol		350,000,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
2,4,6-Trichlorophenol		12,000,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
2,4-Dichlorophenol		11,000,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
2,4-Dimethylphenol		70,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
2,4-Dinitrophenol		7,000,000	580 U	2300 U	640 U	650 UJ		640 U	620 U	
2,4-Dinitrotoluene		7,000,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
2,6-Dinitrotoluene		3,500,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
2-Chloronaphthalene			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
2-Chlorophenol		18,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
2-Methylphenol			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
2-Nitroaniline			290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
2-Nitrophenol			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
3,3'-Dichlorobenzidine		290,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
3-Nitroaniline			290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
4,6-Dinitro-2-Methylphenol			580 U	2300 U	640 U	650 UJ		640 U	620 U	
4-Bromophenyl-phenylether			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
4-Chloro-3-methylphenol			290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
4-Chloroaniline			290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
4-Chlorophenyl-phenylether			58 U	230 U	64 U	65 U	66 U	64 U	62 U	

Table B-1 - Complete Analytic	oies						Sileerooi	ıJ		
Sample ID ^{aa} :	MTCA Scree	ening Criteria	EBC-6-S1	EBC-7-S1	EBC-7-S2	EBC-8-S1	EBC-9-S1	EBC-10-S1	EBC-11-S1	
Sampling Date:	Method A	Method C	8/1/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	
Sample Depth in Feet:	Industrial	Direct	1.5 to 2.5	1 to 2	6 to 7	3.5 to 4.5	3 to 4	3 to 4	10.5 to 11.5	
•		Contact								
4-Methylphenol			58 U	670	64 U	65 U	66 U	64 U	62 U	
4-Nitroaniline			290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
4-Nitrophenol			290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
Benzoic Acid		14,000,000,000	580 U	2300 U	640 U	650 U	660 U	640 U	620 U	
Benzyl Alcohol		1,100,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
bis(2-Chloroethoxy) Methane			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Bis-(2-Chloroethyl) Ether		120,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
bis(2-Ethylhexyl)phthalate		9,400,000	58 U	1100	64 U	65 U	66 U	64 U	62 U	
Butylbenzylphthalate		700,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Carbazole		6,600,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Dibenzofuran		7,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Diethylphthalate		2,800,000,000	58 U	230 U	68	65 U	66 U	64 U	62 U	
Dimethylphthalate		3,500,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Di-n-Butylphthalate			58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Di-n-Octyl phthalate		70,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Hexachlorobenzene		82,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Hexachlorobutadiene		700,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Hexachlorocyclopentadiene		21,000,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
Hexachloroethane		9,400,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Isophorone		140,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Nitrobenzene		1,800,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
N-Nitroso-Di-N-Propylamine		19,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
N-Nitrosodiphenylamine		27,000,000	58 U	960 U	64 U	65 U	66 U	64 U	62 U	
Pentachlorophenol		1,100,000	290 U	1200 U	320 U	330 U	330 U	320 U	310 U	
Phenol		2,100,000,000	58 U	230 U	64 U	65 U	66 U	64 U	62 U	
Volatiles in µg/kg										
1,1,1,2-Tetrachloroethane		5,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U	
1,1,1-Trichloroethane		3,200,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U	
1,1,2,2-Tetrachloroethane		660,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U	
1,1,2-Trichloro-1,2,2-trifluoroethane			2.4 U	1.9 U		2.6 U		2.6 U	2.4 U	
1,1,2-Trichloroethane		2,300,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U	
1,1-Dichloroethane		700,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U	
1,1-Dichloroethene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U	
1,1-Dichloropropene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U	
1,2,3-Trichlorobenzene			6.1 U	4.6 U		6.6 U		6.4 U	6.1 U	
1,2,3-Trichloropropane		19,000	2.4 U	1.9 U		2.6 U		2.6 U	2.4 U	
1,2,4-Trichlorobenzene			6.1 U	4.6 U		6.6 U		6.4 U	6.1 U	
1,2,4-Trimethylbenzene		180,000,000	1.2 U	120		1.3 U		1.3 U	1.2 U	
1,2-Dibromo-3-chloropropane		94,000	6.1 U	4.6 U		6.6 U		6.4 U	6.1 U	

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Scree	ening Criteria	EBC-6-S1	EBC-7-S1	EBC-7-S2	EBC-8-S1	EBC-9-S1	EBC-10-S1	EBC-11-S1
Sampling Date:	Method A	Method C	8/1/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008
Sample Depth in Feet:	Industrial	Direct	1.5 to 2.5	1 to 2	6 to 7	3.5 to 4.5	3 to 4	3 to 4	10.5 to 11.5
		Contact							
1,2-Dichlorobenzene		320,000,000	1.2 U	3.9 J		1.3 U		1.3 U	1.2 U
1,2-Dichloroethane		1,400,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
1,2-Dichloropropane		1,900,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
1,3,5-Trimethylbenzene		180,000,000	1.2 U	56		1.3 U		1.3 U	1.2 U
1,3-Dichlorobenzene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
1,3-Dichloropropane			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
1,4-Dichlorobenzene		5,500,000	1.2 U	1.6		1.3 U		1.3 U	1.2 U
2,2-Dichloropropane			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
2-Butanone			6.1 U	28		6.6 U		6.4 U	6.1 U
2-Chloroethylvinylether			6.1 U	4.6 U		6.6 U		6.4 U	6.1 U
2-Chlorotoluene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
2-Hexanone			6.1 U	4.6 U		6.6 U		6.4 U	6.1 U
4-Chlorotoluene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
4-Isopropyltoluene			1.2 U	25		1.3 U		1.3 U	1.2 U
4-Methyl-2-Pentanone (MIBK)			6.1 U	7.8		6.6 U		6.4 U	6.1 U
Acetone ^c		350,000,000	33	190		26		29	28
Acrolein			61 U	46 U		66 U		64 U	61 U
Acrylonitrile		240,000	6.1 U	4.6 U		6.6 U		6.4 U	6.1 U
Benzene		2,400,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Bromobenzene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Bromochloromethane			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Bromodichloromethane		2,100,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Bromoethane			2.4 U	1.9 U		2.6 U		2.6 U	2.4 U
Bromoform		17,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Bromomethane		4,900,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Carbon Disulfide		350,000,000	3.6	6.4		1.3 U		1.3 U	7.8
Carbon Tetrachloride		1,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Chlorobenzene		70,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Chloroethane			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Chloroform		22,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Chloromethane		10,000,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
cis-1,2-Dichloroethene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
cis-1,3-Dichloropropene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U

Table B-1 - Complete Analytical Results for Soil Samples

Sheet 10 of 15

Sample ID ^{aa} :	MTCA Scree	ening Criteria	EBC-6-S1	EBC-7-S1	EBC-7-S2	EBC-8-S1	EBC-9-S1	EBC-10-S1	EBC-11-S1
Sampling Date:	Method A	Method C	8/1/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/29/2008
Sample Depth in Feet:	Industrial	Direct	1.5 to 2.5	1 to 2	6 to 7	3.5 to 4.5	3 to 4	3 to 4	10.5 to 11.5
		Contact							
Dibromochloromethane		1,600,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Dibromomethane			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Ethylbenzene		350,000,000	1.2 U	8.5		1.3 U		1.3 U	1.2 U
Ethylene Dibromide			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Hexachlorobutadiene		700,000	6.1 U	4.6 U		6.6 U		6.4 U	6.1 U
Isopropylbenzene			1.2 U	5.6		1.3 U		1.3 U	1.2 U
m,p-Xylene		7,000,000,000	1.2 U	24		1.3 U		1.3 U	1.2 U
Methyl lodide			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Methylene Chloride ^c		18,000,000	2.4 U	7.2		2.6 U		4.1	5.1
Naphthalene		70,000,000	6.1 U	110		6.6 U		6.4 U	6.1 U
n-Butylbenzene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
n-Propylbenzene			1.2 U	10		1.3 U		1.3 U	1.2 U
o-Xylene		7,000,000,000	1.2 U	19		1.3 U		1.3 U	1.2 U
sec-Butylbenzene			1.2 U	6.5		1.3 U		1.3 U	1.2 U
Styrene		4,400,000	1.2 U	1.2 J		1.3 U		1.3 U	1.2 U
tert-Butylbenzene			1.2 U	1.3		1.3 U		1.3 U	1.2 U
Tetrachloroethene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Toluene		280,000,000	1.2 U	6.2		1.3 U		1.3 U	1.2 U
trans-1,2-Dichloroethene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
trans-1,3-Dichloropropene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
trans-1,4-Dichloro-2-butene			6.1 U	4.6 U		6.6 U		6.4 U	6.1 U
Trichloroethene			1.2 U	0.9 U		1.3 U		1.3 U	1.2 U
Trichlorofluoromethane			1.2 U	0.9 U		1.3 U		1.3 U	1.4
Vinyl Acetate			6.1 U	4.6 U		6.6 U		6.4 U	6.1 U
Vinyl Chloride		88,000	1.2 U	0.9 U		1.3 U		1.3 U	1.2 U

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} : Sampling Date:	Method A	eening Criteria Method C	EBC-11-S2 7/29/2008	EBC-12-S1 7/29/2008	EBC-13-S1 7/29/2008	EBC-13-S2 7/29/2008	EBC-14-S1 7/31/2008
Sample Depth in Feet:	Industrial	Direct Contact	15 to 16	3 to 4	3 to 4	7 to 8	6 to 7
TPH in mg/kg		Contact					
Diesel-Range Hydrocarbons	2,000		140	5.7 U	160	5.3 U	5.6 U
Motor Oil-Range Hydrocarbons	2,000		300	12 U	350	11 U	11 U
Gasoline-Range Hydrocarbons	100/30 a		8.9	6.6 U	6.8 U	11 U	7 U
Metals in mg/kg							
Arsenic	20	88	5 U	5 U	6	5 U	10 U
Cadmium		3,500	0.2 U	0.2 U	1.3	0.2 U	0.5 U
Chromium			13.9	23.7	29.7	12.7	26
Copper		130,000	10.3	12.9	83.5	11.6	29.2
Lead	1,000		2 U	3	140	2 U	48
Mercury		1,100	0.04 U	0.05 U	0.43	0.04 U	0.05
Nickel		70,000	9	30	16	8	18
Zinc		1,100,000	21	30	160	23	100
BTEX (8021B) in μg/kg							
Benzene		2,400,000	18 U	16 U	17 U	27 U	18 U
Ethylbenzene		350,000,000	18 U	16 U	17 U	27 U	18 U
m,p-Xylene		7,000,000,000	36 U	33 U	34 U	55 U	35 U
o-Xylene		7,000,000,000	18 U	16 U	17 U	27 U	18 U
Toluene		280,000,000	18 U	16 U	17 U	27 U	18 U
PCBs in μg/kg							
Aroclor 1016		250,000	32 U	33 U	53 U	33 U	33 U
Aroclor 1221			32 U	33 U	53 U	33 U	33 U
Aroclor 1232			32 U	33 U	53 U	33 U	33 U
Aroclor 1242			32 U	33 U	53 U	33 U	33 U
Aroclor 1248			32 U	33 U	53 U	33 U	33 U
Aroclor 1254		70,000	32 U	33 U	1900	33 U	33 U
Aroclor 1260			32 U	33 U	330	33 U	33 U
Total PCBs	10,000	66,000	112	115.5	2362.5	115.5	115.5
LPAHs in μg/kg							
Naphthalene		70,000,000	94	64 U	290 U	65 U	61 U
2-Methylnaphthalene			59 U	64 U	290 U	65 U	61 U
Acenaphthylene			59 U	64 U	290 U	65 U	61 U
Acenaphthene		210,000,000	62	64 U	290 U	65 U	61 U
Fluorene		140,000,000	59 U	64 U	290 U	65 U	61 U
Phenanthrene			75	64 U	290 U	65 U	61 U
Anthracene		1,100,000,000	59 U	64 U	290 U	65 U	61 U
Total LPAHs			349	224	1015	227.5	213.5

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Scre	ening Criteria	EBC-11-S2	EBC-12-S1	EBC-13-S1	EBC-13-S2	EBC-14-S1
Sampling Date:	Method A	Method C	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/31/2008
Sample Depth in Feet:	Industrial	Direct Contact	15 to 16	3 to 4	3 to 4	7 to 8	6 to 7
HPAHs in μg/kg		Contact					
Fluoranthene		140,000,000	59 U	64 U	290 U	65 U	61 U
Pyrene		110,000,000	59 U	64 U	290 U	65 U	61 U
* Benzo(a)anthracene		18,000	59 U	64 U	290 U	65 U	61 U
* Chrysene		18,000	59 U	64 U	290 U	65 U	61 U
* Benzo(b)fluoranthene		18,000	59 U	64 U	290 U	65 U	61 U
* Benzo(k)fluoranthene		18,000	59 U	64 U	290 U	65 U	61 U
* Benzo(a)pyrene		18,000	59 U	64 U	290 U	65 U	61 U
* Indeno(1,2,3-cd)pyrene		18,000	59 U	64 U	290 U	65 U	61 U
* Dibenz(a,h)anthracene		18,000	59 U	64 U	290 U	65 U	61 U
Benzo(g,h,i)perylene		18,000	59 U	64 U	290 U	65 U	61 U
Total HPAHs		.,	295 U	320 U	1450 U	325 U	305 U
* Total cPAHs	2,000	18,000	45 U	48 U	219 U	49 U	46 U
Semivolatiles in µg/kg	2,000	10,000		.00	2.00	.00	.00
1,2,4-Trichlorobenzene		35,000,000	59 U	64 U	290 U	65 U	61 U
1,2-Dichlorobenzene		320,000,000	59 U	64 U	290 U	65 U	61 U
1,3-Dichlorobenzene		5_5,555,555	59 U	64 U	290 U	65 U	61 U
1,4-Dichlorobenzene		5,500,000	59 U	64 U	290 U	65 U	61 U
1-Methylnaphthalene		-,,	59 U	64 U	290 U	65 U	61 U
2,2'-Oxybis(1-Chloropropane)			59 U	64 U	290 U	65 U	61 U
2,4,5-Trichlorophenol		350,000,000	300 U	320 U	1500 U	330 U	310 U
2,4,6-Trichlorophenol		12,000,000	300 U	320 U	1500 U	330 U	310 U
2,4-Dichlorophenol		11,000,000	300 U	320 U	1500 U	330 U	310 U
2,4-Dimethylphenol		70,000,000	59 U	64 U	290 U	65 U	61 U
2,4-Dinitrophenol		7,000,000	590 U	640 U	2900 U	650 U	610 U
2,4-Dinitrotoluene		7,000,000	300 U	320 U	1500 U	330 U	310 U
2,6-Dinitrotoluene		3,500,000	300 U	320 U	1500 U	330 U	310 U
2-Chloronaphthalene			59 U	64 U	290 U	65 U	61 U
2-Chlorophenol		18,000,000	59 U	64 U	290 U	65 U	61 U
2-Methylphenol			59 U	64 U	290 U	65 U	61 U
2-Nitroaniline			300 U	320 U	1500 U	330 U	310 U
2-Nitrophenol			59 U	64 U	290 U	65 U	61 U
3,3'-Dichlorobenzidine		290,000	300 U	320 U	1500 U	330 U	310 U
3-Nitroaniline			300 U	320 U	1500 U	330 U	310 U
4,6-Dinitro-2-Methylphenol			590 U	640 U	2900 U	650 U	610 U
4-Bromophenyl-phenylether			59 U	64 U	290 U	65 U	61 U
4-Chloro-3-methylphenol			300 U	320 U	1500 U	330 U	310 U
4-Chloroaniline			300 U	320 U	1500 U	330 U	310 U
4-Chlorophenyl-phenylether			59 U	64 U	290 U	65 U	61 U

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Scr	eening Criteria	EBC-11-S2	EBC-12-S1	EBC-13-S1	EBC-13-S2	EBC-14-S1
Sampling Date:	Method A	Method C	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/31/2008
Sample Depth in Feet:	Industrial	Direct	15 to 16	3 to 4	3 to 4	7 to 8	6 to 7
		Contact					
4-Methylphenol			59 U	64 U	290 U	65 U	61 U
4-Nitroaniline			300 U	320 U	1500 U	330 U	310 U
4-Nitrophenol			300 U	320 U	1500 U	330 U	310 U
Benzoic Acid		14,000,000,000	590 U	640 U	2900 U	650 U	610 U
Benzyl Alcohol		1,100,000,000	59 U	64 U	290 U	65 U	61 U
bis(2-Chloroethoxy) Methane			59 U	64 U	290 U	65 U	61 U
Bis-(2-Chloroethyl) Ether		120,000	59 U	64 U	290 U	65 U	61 U
bis(2-Ethylhexyl)phthalate		9,400,000	59 U	64 U	290 U	65 U	61 U
Butylbenzylphthalate		700,000,000	59 U	64 U	290 U	65 U	61 U
Carbazole		6,600,000	59 U	64 U	290 U	65 U	61 U
Dibenzofuran		7,000,000	59 U	64 U	290 U	65 U	61 U
Diethylphthalate		2,800,000,000	59 U	64 U	290 U	65 U	61 U
Dimethylphthalate		3,500,000,000	59 U	64 U	290 U	65 U	61 U
Di-n-Butylphthalate			59 U	64 U	290 U	65 U	61 U
Di-n-Octyl phthalate		70,000,000	59 U	64 U	290 U	65 U	61 U
Hexachlorobenzene		82,000	59 U	64 U	290 U	65 U	61 U
Hexachlorobutadiene		700,000	59 U	64 U	290 U	65 U	61 U
Hexachlorocyclopentadiene		21,000,000	300 U	320 U	1500 U	330 U	310 U
Hexachloroethane		9,400,000	59 U	64 U	290 U	65 U	61 U
Isophorone		140,000,000	59 U	64 U	290 U	65 U	61 U
Nitrobenzene		1,800,000	59 U	64 U	290 U	65 U	61 U
N-Nitroso-Di-N-Propylamine		19,000	300 U	320 U	1500 U	330 U	310 U
N-Nitrosodiphenylamine		27,000,000	59 U	64 U	290 U	65 U	61 U
Pentachlorophenol		1,100,000	300 U	320 U	1500 U	330 U	310 U
Phenol		2,100,000,000	59 U	64 U	290 U	65 U	61 U
Volatiles in µg/kg							
1,1,1,2-Tetrachloroethane		5,000,000	1.2 U	1 UJ			
1,1,1-Trichloroethane		3,200,000,000	1.2 U	1 UJ			
1,1,2,2-Tetrachloroethane		660,000	1.2 U	1 UJ			
1,1,2-Trichloro-1,2,2-trifluoroethane			2.4 U	2 UJ			
1,1,2-Trichloroethane		2,300,000	1.2 U	1 UJ			
1,1-Dichloroethane		700,000,000	1.2 U	1 UJ			
1,1-Dichloroethene			1.2 U	1 UJ			
1,1-Dichloropropene			1.2 U	1 UJ			
1,2,3-Trichlorobenzene			5.9 U	5.1 UJ			
1,2,3-Trichloropropane		19,000	2.4 U	2 UJ			
1,2,4-Trichlorobenzene			5.9 U	5.1 UJ			
1,2,4-Trimethylbenzene		180,000,000	1.2 U	1 UJ			
1,2-Dibromo-3-chloropropane		94,000	5.9 U	5.1 UJ			

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Scre	eening Criteria	EBC-11-S2	EBC-12-S1	EBC-13-S1	EBC-13-S2	EBC-14-S1
Sampling Date:	Method A	Method C	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/31/2008
Sample Depth in Feet:	Industrial	Direct	15 to 16	3 to 4	3 to 4	7 to 8	6 to 7
		Contact					
1,2-Dichlorobenzene		320,000,000	1.2 U	1 UJ			
1,2-Dichloroethane		1,400,000	1.2 U	1 UJ			
1,2-Dichloropropane		1,900,000	1.2 U	1 UJ			
1,3,5-Trimethylbenzene		180,000,000	1.2 U	1 UJ			
1,3-Dichlorobenzene			1.2 U	1 UJ			
1,3-Dichloropropane			1.2 U	1 UJ			
1,4-Dichlorobenzene		5,500,000	1.2 U	1 UJ			
2,2-Dichloropropane			1.2 U	1 UJ			
2-Butanone			5.9 U	5.1 UJ			
2-Chloroethylvinylether			5.9 U	5.1 UJ			
2-Chlorotoluene			1.2 U	1 UJ			
2-Hexanone			5.9 U	5.1 UJ			
4-Chlorotoluene			1.2 U	1 UJ			
4-Isopropyltoluene			1.2 U	1 UJ			
4-Methyl-2-Pentanone (MIBK)			5.9 U	5.1 UJ			
Acetone ^c		350,000,000	22	5.1 UJ			
Acrolein			59 U	51 UJ			
Acrylonitrile		240,000	5.9 U	5.1 UJ			
Benzene		2,400,000	1.2 U	1 UJ			
Bromobenzene			1.2 U	1 UJ			
Bromochloromethane			1.2 U	1 UJ			
Bromodichloromethane		2,100,000	1.2 U	1 UJ			
Bromoethane			2.4 U	2 UJ			
Bromoform		17,000,000	1.2 U	1 UJ			
Bromomethane		4,900,000	1.2 U	1 UJ			
Carbon Disulfide		350,000,000	22	1 UJ			
Carbon Tetrachloride		1,000,000	1.2 U	1 UJ			
Chlorobenzene		70,000,000	1.2 U	1 UJ			
Chloroethane		00 000 000	1.2 U	1 UJ			
Chloroform		22,000,000	1.2 U	1 UJ			
Chloromethane		10,000,000	1.2 U	1 UJ			
cis-1,2-Dichloroethene			1.2 U	1 UJ			
cis-1,3-Dichloropropene			1.2 U	1 UJ			

Table B-1 - Complete Analytical Results for Soil Samples

Sample ID ^{aa} :	MTCA Scr	eening Criteria	EBC-11-S2	EBC-12-S1	EBC-13-S1	EBC-13-S2	EBC-14-S1
Sampling Date:	Method A	Method C	7/29/2008	7/29/2008	7/29/2008	7/29/2008	7/31/2008
Sample Depth in Feet:	Industrial	Direct	15 to 16	3 to 4	3 to 4	7 to 8	6 to 7
		Contact					
Dibromochloromethane		1,600,000	1.2 U	1 UJ			
Dibromomethane			1.2 U	1 UJ			
Ethylbenzene		350,000,000	1.2 U	1 UJ			
Ethylene Dibromide			1.2 U	1 UJ			
Hexachlorobutadiene		700,000	5.9 U	5.1 UJ			
Isopropylbenzene			1.2 U	1 UJ			
m,p-Xylene		7,000,000,000	1.2 U	1 UJ			
Methyl lodide			1.2 U	1 UJ			
Methylene Chloride ^c		18,000,000	21	2 UJ			
Naphthalene		70,000,000	14	5.1 UJ			
n-Butylbenzene			1.2 U	1 UJ			
n-Propylbenzene			1.2 U	1 UJ			
o-Xylene		7,000,000,000	1.2 U	1 UJ			
sec-Butylbenzene			1.2 U	1 UJ			
Styrene		4,400,000	1.2 U	1 UJ			
tert-Butylbenzene			1.2 U	1 UJ			
Tetrachloroethene			1.2 U	1 UJ			
Toluene		280,000,000	1.2 U	1 UJ			
trans-1,2-Dichloroethene			1.2 U	1 UJ			
trans-1,3-Dichloropropene			1.2 U	1 UJ			
trans-1,4-Dichloro-2-butene			5.9 U	5.1 UJ			
Trichloroethene			1.2 U	1 UJ			
Trichlorofluoromethane			12	1 UJ			
Vinyl Acetate			5.9 U	5.1 UJ			
Vinyl Chloride		88,000	1.2 U	1 UJ			

Bolded sample numbers indicate sample was collected from industrial fill layer.

Blank entry indicates no applicable MTCA criteria established or sample not analyzed for specific analyte.

9 Bolded, boxed entry indicates concentration exceeds MTCA screening criteria

Other constituents were not detected or were detected at concentrations below applicable regulatory criteria.

Total cPAHs calculated using the toxicity equivalency methodology in WAC 173-340-708(8). 1/2 detection limit was used for non-detects.

U: Not detected at reporting limit indicated.

J: Estimated value

^{*} denotes cPAH

^{aa} Bolded samples indicate sample collected from the industrial fill layer.

^a 100 mg/kg when no benzene present, 30 mg/kg when benzene present.

^b MTCA Method A Industrial screening levels for cPAHs are provided for comparative purposes only. MTCA Method A cPAH screening levels are based on groundwater protection, which is not applicable at this site.

^c Suspected artifact from laboratory testing process.

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 1 of 13

Table B-2 - Complete Analy	tical Result/	s f	or Grou	ındwate	r Samples	3	Sheet 1 of 13
Sample ID:	MTCA		Water	Quality	EBC-1	EBC-2	EBC-3
Sampling Date:	Method B Marine Surface Water Criteria ^a		Criteria Acute	- Marine ^g Chronic	7/30/2008	7/31/2008	7/30/2008
TPH in mg/L							
Diesel-Range Hydrocarbons	0.5	b			0.25 U	0.38 J	0.25 U
Motor Oil-Range Hydrocarbons	0.5	b			0.5 U	0.5 UJ	0.5 U
Gasoline-Range Hydrocarbons	1.0	b			0.25 UJ	1.6	0.25 UJ
Total Metals in µg/L ^e					0.20 00	!	0.20 00
Arsenic					2.55 U	0.51 U	2.56 U
Cadmium					0.102 U	0.028	0.424
Chromium					23.6	5.65	31.6
Copper					20.5	4.4	17.8
Lead					5.89	1.73	7.1
Mercury, Total				0.025	0.041 R	0.0878 R	0.0117 R
Nickel (soluable salts)					15.1	6.2	22.6
Zinc					53.3	9.8	52.5
Dissolved Metals in µg/L	_	С					
Arsenic, Dissolved	5	C	69	36	0.5 U	0.5 U	0.5 U
Cadmium, Dissolved	20		42	9.3	0.022	0.02 U	0.02 U
Chromium, Dissolved	490		1100	50	5.6	1.4 0.2	1.9 0.1 U
Copper, Dissolved Lead, Dissolved	2,700		4.8 210	3.1 8.1	3.8 1.16	0.2	0.1 U 0.02 U
Mercury, Dissolved ^f			1.8	0.025	0.001 R	0.133 0.001 R	0.02 0 0.001 R
Nickel, Dissolved	1,100		74	8.2	4.7	1.2	1.6
Zinc, Dissolved	17,000		90	81	8.4	3	1.8
BTEX in ug/L	17,000		30	01	0.4	3	1.0
Benzene	23				1 UJ	4	1 UJ
Ethylbenzene	6,900				1 UJ	1.4	1 UJ
m,p-Xylene	0,000				1 UJ	1.5	1 UJ
o-Xylene					1 UJ	1 U	1 UJ
Toluene	19,000				1 UJ	1 U	1 UJ
PCBs in ug/L							
Aroclor 1016	0.0058				1 U	1 UJ	1 U
Aroclor 1221					1 U	1 UJ	1 U
Aroclor 1232					1 U	1 UJ	1 U
Aroclor 1242					1 U	1 UJ	1 U
Aroclor 1248	0.0047				1 U	1 UJ	1 U
Aroclor 1254 Aroclor 1260	0.0017				1 U 1 U	1 UJ 1 UJ	1 U 1 U
Total PCBs	0.00011		10	0.02	1 U	1 UJ	1 U
Volatiles in ug/L	0.00011		10	0.03	10	1 03	10
1,1,1,2-Tetrachloroethane					0.2 UJ	0.2 U	0.2 UJ
1,1,1-Trichloroethane	420,000				0.2 UJ	0.2 U	0.2 UJ
1,1,2,2-Tetrachloroethane	6.50				0.2 UJ	0.2 U	0.2 UJ
1,1,2-Trichloro-1,2,2-trifluoroethane					0.2 UJ	0.2 U	0.2 UJ
1,1,2-Trichloroethane	25				0.2 UJ	0.2 U	0.2 UJ
1,1-Dichloroethane					0.2 UJ	0.2	0.2 UJ
1,1-Dichloroethene					0.2 UJ	0.2 U	0.2 UJ
1,1-Dichloropropene					0.2 UJ	0.2 U	0.2 UJ
1,2,3-Trichlorobenzene					0.5 UJ	0.5 U	0.5 UJ
1,2,3-Trichloropropane					0.5 UJ	0.5 U	0.5 UJ
1,2,4-Trichlorobenzene					0.5 UJ	0.5 U	0.5 UJ
1,2,4-Trimethylbenzene					0.2 UJ	0.6	0.2 UJ
1,2-Dibromo-3-chloropropane	4 200				0.5 UJ	0.5 U	0.5 UJ
1,2-Dichlorobenzene	4,200				0.2 UJ	0.2 U	0.2 UJ

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 2 of 13

Sample ID:	MTCA	Water (EBC-1	EBC-2	EBC-3
Sampling Date:	Method B	Criteria -		7/30/2008	7/31/2008	7/30/2008
Sampling Date.	Marine Surface	Acute	Chronic	7/30/2008	7/31/2006	7/30/2006
1,2-Dichloroethane	59	710010	011101110	0.2 UJ	0.2 U	0.2 UJ
1,2-Dichloropropane	230			0.2 UJ	0.2 U	0.2 UJ
1,3,5-Trimethylbenzene	200			0.2 UJ	0.2 U	0.2 UJ
1,3-Dichlorobenzene	2,600 ^d			0.2 UJ	0.2 U	0.2 UJ
1,3-Dichloropropane	_,000			0.2 UJ	0.2 U	0.2 UJ
1,4-Dichlorobenzene	4.9			0.2 UJ	0.2 U	0.2 UJ
2,2-Dichloropropane				0.2 UJ	0.2 U	0.2 UJ
2-Butanone				2.5 UJ	2.5 U	2.5 UJ
2-Chloroethylvinylether				1 UJ	1 U	1 UJ
2-Chlorotoluene				0.2 UJ	0.2 U	0.2 UJ
2-Hexanone				2.5 UJ	2.5 U	2.5 UJ
4-Chlorotoluene				0.2 UJ	0.2 U	0.2 UJ
4-Isopropyltoluene				0.2 UJ	0.2 U	0.2 UJ
4-Methyl-2-Pentanone (MIBK)				2.5 UJ	2.5 U	2.5 UJ
Acetone				3 UJ 5 UJ	3.8	3 UJ
Acrolein	0.40				5 U	5 UJ
Acrylonitrile	0.40			1 UJ	1 U	1 UJ
Benzene	23			0.2 UJ	4.4	0.2 UJ
Bromobenzene				0.2 UJ 0.2 UJ	0.2 U	0.2 UJ
Bromochloromethane	aa d				0.2 U	0.2 UJ
Bromodichloromethane Bromoethane	22			0.2 UJ 0.2 UJ	0.2 U 0.2 U	0.2 UJ 0.2 UJ
Bromoform	220 ^d			0.2 UJ	0.2 U	0.2 UJ
Bromomethane	970			0.5 UJ	0.5 U	0.5 UJ
Carbon Disulfide				0.2 UJ	0.2 U	0.2 UJ
Carbon Tetrachloride	4.40 d			0.2 UJ	0.2 U	0.2 UJ
Chlorobenzene	5,000			0.2 UJ	0.2 U	0.2 UJ
Chloroethane				0.2 UJ	0.2 U	0.2 UJ
Chloroform	280			0.2 UJ	0.2 U	0.2 UJ
Chloromethane	1,300			0.2 UJ	0.2 U	0.2 UJ
cis-1,2-Dichloroethene				0.2 J	0.2 U	0.2 UJ
cis-1,3-Dichloropropene				0.2 UJ	0.2 U	0.2 UJ
Dibromochloromethane	21			0.2 UJ	0.2 U	0.2 UJ
Dibromomethane	0.000			0.2 UJ	0.2 U	0.2 UJ
Ethylbenzene Ethylene Dibromide	6,900			0.2 UJ 0.2 UJ	1 0.2 U	0.2 UJ 0.2 UJ
Hexachlorobutadiene	3			0.2 UJ	0.2 U	0.2 UJ
Isopropylbenzene	3			0.5 UJ	1	0.5 UJ
m,p-Xylene				0.2 UJ	1.3	0.2 UJ
Methyl Iodide				1 UJ	1.0 1 U	1 UJ
Methylene Chloride	960			0.5 UJ	0.5 U	0.5 UJ
Naphthalene	4,900			0.5 UJ	2.7	0.5 UJ
n-Butylbenzene	.,000			0.2 UJ	0.2 U	0.2 UJ
n-Propylbenzene				0.2 UJ	0.2 U	0.2 UJ
o-Xylene				0.2 UJ	0.6	0.2 UJ
sec-Butylbenzene				0.2 UJ	0.2 U	0.2 UJ
Styrene				0.2 UJ	0.2 U	0.2 UJ
tert-Butylbenzene				0.2 UJ	0.2 U	0.2 UJ
Tetrachloroethene				0.2 UJ	0.2 U	0.2 UJ
Toluene	19,000			0.2 UJ	0.3	0.2 UJ
trans-1,2-Dichloroethene				0.2 UJ	0.2 U	0.2 UJ
trans-1,3-Dichloropropene				0.2 UJ	0.2 U	0.2 UJ

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 3 of 13

Table B-2 - Complete Ana	alytical Results	for Groundwate	r Samples	5	Sheet 3 of 13
Sample ID:	MTCA	Water Quality	EBC-1	EBC-2	EBC-3
Sampling Date:	Method B Marine Surface	Criteria - Marine ^g Acute Chronic	7/30/2008	7/31/2008	7/30/2008
trans-1,4-Dichloro-2-butene			1 UJ	1 U	1 UJ
Trichloroethene			0.2 UJ	0.2 U	0.2 UJ
Trichlorofluoromethane			0.2 UJ	0.2 U	0.2 UJ
Vinyl Acetate			1 UJ	1 U	1 UJ
Vinyl Chloride	37		0.2 UJ	0.2 U	0.3 J
Semivolatiles in ug/L					
1,2,4-Trichlorobenzene	2,300		1 U	1 UJ	1 U
1,2-Dichlorobenzene	4,200		1 U	1 UJ	1 U
1,3-Dichlorobenzene			1 U	1 UJ	1 U
1,4-Dichlorobenzene	4.9		1 U	1 UJ	1 U
1-Methylnaphthalene			1 U	33 J	1 U
2,2'-Oxybis(1-Chloropropane)			1 U	1 UJ	1 U
2,4,5-Trichlorophenol			5 U	5 UJ	5 U
2,4,6-Trichlorophenol	3.90		5 U	5 UJ	5 U
2,4-Dichlorophenol	190		5 U	5 UJ	5 U
2,4-Dimethylphenol	550		1 U	3.3 J	1 U
2,4-Dinitrophenol	3,500		10 U	10 UJ	10 U
2,4-Dinitrotoluene	9.10 ^d		5 U	5 UJ	5 U
2,6-Dinitrotoluene			5 U	5 UJ	5 U
2-Chloronaphthalene			1 U	1 UJ	1 U
2-Chlorophenol			1 U	1 UJ	1 U
2-Methylnaphthalene			1 U	18 J	1 U
2-Methylphenol			1 U	1 UJ	1 U
2-Nitroaniline			5 U	5 UJ	5 U
2-Nitrophenol			5 U	5 UJ	5 U
3,3'-Dichlorobenzidine	0.046		5 U	5 UJ	5 U
3-Nitroaniline			5 U	5 UJ	5 U
4,6-Dinitro-2-Methylphenol			10 U	10 UJ	10 U
4-Bromophenyl-phenylether			1 U	1 UJ	1 U
4-Chloro-3-methylphenol 4-Chloroaniline			5 U 5 U	5 UJ 5 UJ	5 U 5 U
4-Chlorophenyl-phenylether			1 U	1 UJ	1 U
4-Methylphenol			1 U	1 UJ	1 U
4-Nitroaniline			5 U	5 UJ	5 U
4-Nitrophenol			5 U	5 UJ	5 U
Acenaphthene	640		1 U	120 J	1 U
Acenaphthylene			1 U	1 UJ	1 U
Anthracene	26,000		1 U	1 UJ	1 U
Benzo(a)anthracene	0.030		1 U	1 UJ	1 U
Benzo(a)pyrene	0.030		1 U	1 UJ	1 U
Benzo(b)fluoranthene	0.030		1 U	1 UJ	1 U
Benzo(g,h,i)perylene	0.000		1 U	1 UJ	1 U
Benzo(k)fluoranthene	0.030		1 U	1 UJ	1 U
Benzoic Acid	0.000		10 U	10 UJ	10 U
Benzyl Alcohol			5 U	5 UJ	5 U
bis(2-Chloroethoxy) Methane			1 U	1 UJ	1 U
Bis-(2-Chloroethyl) Ether	0.85		1 U	1 UJ	1 U
bis(2-Ethylhexyl)phthalate	3.60		1 U	1 UJ	1 U
Butylbenzylphthalate	1,300		1 U	1 UJ	1 U
Carbazole	.,000		1 U	22 J	1 U
Chrysene	0.030		1 U	1 UJ	1 U
Dibenz(a,h)anthracene	0.030		1 U	1 UJ	1 U
Diboniz (a, rijantina dene	0.000		' '	1 00	11

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 4 of 13

Sample ID:	MTCA	Water	Quality	EBC-1	EBC-2	EBC-3
Sampling Date:	Method B	Criteria ·	· Marine ^g	7/30/2008	7/31/2008	7/30/2008
	Marine Surface	Acute	Chronic			
Dibenzofuran				1 U	24 J	1 U
Diethylphthalate				1 U	1 UJ	1 U
Dimethylphthalate	72,000			1 U	1 UJ	1 U
Di-n-Butylphthalate				1 U	1 UJ	1 U
Di-n-Octyl phthalate				1 U	1 UJ	1 U
Fluoranthene	90			1 U	1 UJ	1 U
Fluorene	3,500			1 U	27 J	1 U
Hexachlorobenzene	0.00047			1 U	1 UJ	1 U
Hexachlorobutadiene	3.0			1 U	1 UJ	1 U
Hexachlorocyclopentadiene	3,600			5 U	5 UJ	5 U
Hexachloroethane	5.30			1 U	1 UJ	1 U
Indeno(1,2,3-cd)pyrene	0.030			1 U	1 UJ	1 U
Isophorone	600 ^d			1 U	1 UJ	1 U
Naphthalene	4,900			1 U	1.8 J	1 U
Nitrobenzene	450			1 U	1 UJ	1 U
N-Nitroso-Di-N-Propylamine	8.20			5 U	5 UJ	5 U
N-Nitrosodiphenylamine	10			1 U	1 UJ	1 U
Pentachlorophenol	4.90	13	7.9	5 U	5 UJ	5 U
Phenanthrene				1 U	18 J	1 U
Phenol	1,100,000			1 U	1 UJ	1 U
Pyrene	2,600			1 U	1 UJ	1 U

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 5 of 13

Sampling Date: Method B Marine Surface Water Citeria* Water Cite	Table B-2 - Complete Analy		3 11					011001001
Marine	Sample ID:	MTCA			-	EBC-4	EBC-5	EBC-6
TPH im mg/L Diesel-Range Hydrocarbons 0.5 b	Sampling Date:	Marine Surface				7/30/2008	8/1/2008	8/1/2008
Dissolved Matals in pg/L		Water Criteria ^a						
Motor Oil-Range Hydrocarbons 1.0 0 0.25 0.25 0.25 0.	-							
Mount On-Range Prydrocarbons 1.0 b	Diesel-Range Hydrocarbons	0.5				0.25 U		
Casimiliar Haringer Injunctations 1.0	Motor Oil-Range Hydrocarbons	0.5	b			0.5 U	0.5 U	0.5 U
Arsenic Cadmium Chromium Mercury, Total Nickel (soluable salts) Zinc Dissolved Metals in µyL Arsenic, Dissolved Cadmium, Dissolved Chromium, Dissolved Ch	Gasoline-Range Hydrocarbons	1.0	b			0.25 UJ	0.25 U	0.25 U
Cadmium	Total Metals in µg/L ^e							
Chromium	Arsenic					0.51 U	3.27	0.5 U
Copper	Cadmium					0.04	0.485	0.02 U
Lead Mercury, Total Mercury, Total Mercury, Total Mickel (soluable saits) Zinc Mercury, Dissolved September September Mercury, Dissolved September Mercury, Dissolved 20	Chromium					4.07	41.4	2.46
Mercury, Total Nickel (soluable salts) 0.025 (soluable salts) 0.0029 (soluable salts) 0.0029 (soluable salts) 0.0036 (soluable salts) 2.7 Dissolved Metals in µg/L 4 153 2.7 Arsenic, Dissolved 5 6 9 36 0.5 U 0.023 0.02 U Cadmium, Dissolved 490 1100 50 0.2 U 0.023 0.02 U Copper, Dissolved 2,700 4.8 3.1 0.1 U 3.1 0.3 Lead, Dissolved 2,700 4.8 3.1 0.02 U 0.0702 0.035 Mercury, Dissolved 1,100 74 8.2 0.3 3.7 0.6 Zinc, Dissolved 1,700 90 81 0.5 U 4.7 1 BETEX in ug/L 8 0.025 0.001 R <	Copper					5.2	13.9	3.1
Nickel (soluable salts)	Lead					1.5	2.89	0.747
Zinc Dissolved Metals in µg/L Arsenic, Dissolved 5	Mercury, Total				0.025	0.0029 R	0.0668 R	0.0036 R
Dissolved Metals in µg/L	Nickel (soluable salts)					4	153	2.7
Arsenic, Dissolved 20 42 9.3 0.02 U 0.023 0.02 U Chromium, Dissolved 20 42 9.3 0.02 U 0.023 0.02 U Chromium, Dissolved 490 1100 50 0.2 U 1.98 0.26 Copper, Dissolved 2,700 4.8 3.1 0.1 U 3.1 0.3 Lead, Dissolved 2,700 4.8 3.1 0.1 U 3.1 0.3 Lead, Dissolved 1.100 74 8.2 0.001 R 0.001 R 0.001 R Nickel, Dissolved 17,000 90 81 0.5 U 4.7 1 T STEX in ug/L Senze 2 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Zinc					6.6	201	9.2
Cadmium, Dissolved	Dissolved Metals in µg/L							
Chromium, Dissolved	Arsenic, Dissolved	5	С	69	36	0.5 U	0.71 ^e	0.5 U
Copper, Dissolved	Cadmium, Dissolved	20		42	9.3	0.02 U	0.023	0.02 U
Lead, Dissolved 210	Chromium, Dissolved	490		1100	50	0.2 U	1.98	0.26
Mercury, Dissolved¹ 1.8 0.025 0.001 R 0.001 R 0.001 R Nickel, Dissolved 17,000 90 81 0.5 U 4.7 1 BTEX in ug/L Benzene 23 1 UJ 1 UJ 1 U </td <td>Copper, Dissolved</td> <td>2,700</td> <td></td> <td>4.8</td> <td>3.1</td> <td>0.1 U</td> <td>3.1</td> <td>0.3</td>	Copper, Dissolved	2,700		4.8	3.1	0.1 U	3.1	0.3
Nickel, Dissolved 1,100 74 8.2 0.3 3.7 0.6 2 2 2 0.5 U 4.7 1 2 3 3 3 3 3 3 3 3 3	Lead, Dissolved			210	8.1	0.02 U	0.702	0.035
Zinc, Dissolved 17,000 90 81 0.5 U 4.7 1	Mercury, Dissolved ^f			1.8	0.025	0.001 R	0.001 R	0.001 R
Benzene 23	Nickel, Dissolved	1,100		74	8.2	0.3	3.7	0.6
Benzene 23	Zinc, Dissolved	17,000		90	81	0.5 U	4.7	1
Ethylbenzene 6,900	BTEX in ug/L							
m,p-Xylene o-Xylene 19,000 PCBs in ug/L Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1232 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Total PCBs Volatiles in ug/L 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,4-Triimethylbenzene 1,2,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane	Benzene	23				1 UJ	1 U	1 U
m,p-Xylene o-Xylene 19,000 PCBs in ug/L Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Total PCBs Volatiles in ug/L 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloroethane 1,2,4-Trimethylbenzene 1,2,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane	Ethylbenzene	6,900				1 UJ	1 U	1 U
Toluene						1 UJ	1 U	1 U
PCBs in ug/L	o-Xylene					1 UJ	1 U	1 U
Aroclor 1016 0.0058 1 U 1.2 U 1 U Aroclor 1221 1 U 1.2 U 1.2 U 1.1 U 1.2 U 1 U 1.2 U 1	Toluene	19,000				1 UJ	1 U	1 U
Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Total PCBs 0.00011 10 0.03 1 U 1.2 U 0.2 U 1.2 U 0.2 U 0.2 U 1.3 U 0.2 U 0.2 U 1.4 U 0.2 U 0.2 U 1.4 U 0.2 U 0.2 U 1.5 U 0.5 U 0.5 U 1.5 U 0.5 U 0.5 U 1.5 U 0.5 U	PCBs in ug/L							
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Total PCBs 0.00011 10 0.03 1 U 1.2 U 1 U 1.3 U 1 U 1.4 U 1.4 U 1.2 U 1 U 1.5 U	Aroclor 1016	0.0058				1 U		1 U
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1250 Aroclor 1260 Total PCBs 0.00011 10 0.03 1 U 1.2 U 1 U 1.2 U 1 U 1 U 1.2 U 1 U 1 U 1.2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	Aroclor 1221							1 U
Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Total PCBs 0.00011 10 0.03 1 U 1.2 U 1 U 1.3 U 1 U 1.4 U 1.5 U 1	Aroclor 1232					1 U		1 U
Aroclor 1254 0.0017 1 U 1.2 U 1 U Aroclor 1260 0.00011 10 0.03 1 U 1.2 U 1 U Total PCBs 0.00011 10 0.03 1 U 1.2 U 1 U Volatiles in ug/L 1,1,1,2-Tetrachloroethane 420,000 0.2 U 0.2 U 0.2 U 1,1,1-Trichloroethane 6.50 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloro-1,2,2-trifluoroethane 25 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloroethane 25 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 25 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.5 UJ 0.5 U 0.5 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 0.5 UJ 0.5 U 0.5 U						_		_
Aroclor 1260 Total PCBs 0.00011 10 0.03 1 U 1.2 U 1 U 10 Volatiles in ug/L 1,1,1,2-Tetrachloroethane 420,000 1,1,1-Trichloroethane 6.50 0.2 UJ 0.2 UJ 0.2 U 0.2 UJ 0.2 UJ 0.2 U 0.2 U 0.2 UJ 0.2 U 0.2 UJ 0.2 U 0.2 UJ 0.2 U 0.2 UJ 0.5								
Total PCBs 0.00011 10 0.03 1 U 1.2 U 1 U Volatiles in ug/L 1,1,1,2-Tetrachloroethane 0.2 UJ 0.2 UJ 0.2 U 0.2 U 1,1,1-Trichloroethane 420,000 0.2 UJ 0.2 UJ 0.2 U 0.2 U 1,1,2,2-Tetrachloroethane 6.50 0.2 UJ 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloroethane 25 0.2 UJ 0.2 U 0.2 U 0.2 U 1,1-Dichloroethane 25 0.2 UJ 0.2 U 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.5		0.0017						
Volatiles in ug/L 1,1,1,2-Tetrachloroethane 0.2 UJ 0.2 U 0.2 U 1,1,1-Trichloroethane 420,000 0.2 UJ 0.2 U 0.2 U 1,1,2-Tetrachloroethane 6.50 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloroethane 25 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethene 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U								1 U
1,1,1,2-Tetrachloroethane 0.2 UJ 0.2 U 0.2 U 1,1,1-Trichloroethane 420,000 0.2 UJ 0.2 U 0.2 U 1,1,2-Tetrachloroethane 6.50 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloro-1,2,2-trifluoroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 25 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichloropropene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U		0.00011		10	0.03	1 U	1.2 U	1 U
1,1,1-Trichloroethane 420,000 0.2 UJ 0.2 U 0.2 U 1,1,2-Tetrachloroethane 6.50 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloro-1,2,2-trifluoroethane 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U	•							
1,1,2,2-Tetrachloroethane 6.50 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloro-1,2,2-trifluoroethane 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloroethane 25 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 UJ 0.2 U								
1,1,2-Trichloro-1,2,2-trifluoroethane 0.2 UJ 0.2 U 0.2 U 1,1,2-Trichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U								
1,1,2-Trichloroethane 25 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethene 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U		6.50						
1,1-Dichloroethane 0.2 UJ 0.2 U 0.2 U 1,1-Dichloroethene 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U								
1,1-Dichloroethene 0.2 UJ 0.2 U 0.2 U 1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2-A-Trimethylbenzene 0.2 UJ 0.2 UJ 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 UJ 0.2 U	• •	25						
1,1-Dichloropropene 0.2 UJ 0.2 U 0.2 U 1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 UJ 0.2 U								
1,2,3-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 UJ 0.2 U								
1,2,3-Trichloropropane 0.5 UJ 0.5 U 0.5 U 1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 UJ 0.2 U								
1,2,4-Trichlorobenzene 0.5 UJ 0.5 U 0.5 U 1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U								
1,2,4-Trimethylbenzene 0.2 UJ 0.2 U 0.2 U 1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U								
1,2-Dibromo-3-chloropropane 0.5 UJ 0.5 U 0.5 U 1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U								
1,2-Dichlorobenzene 4,200 0.2 UJ 0.2 U 0.2 U								
\cdot		4.000						
	1,2-Dicniorobenzene	4,200				J 0.2 UJ	0.2 U	0.2 U Hart Crows

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 6 of 13

Table B-2 - Complete Ana	alytical Results	for Groundwate	er Samples	5	Sneet 6 01
Sample ID:	MTCA	Water Quality	EBC-4	EBC-5	EBC-6
Sampling Date:	Method B	Criteria - Marine ^g	7/30/2008	8/1/2008	8/1/2008
	Marine Surface	Acute Chronic			
1,2-Dichloroethane	59		0.2 UJ	0.2 U	0.2 U
1,2-Dichloropropane	230		0.2 UJ	0.2 U	0.2 U
1,3,5-Trimethylbenzene			0.2 UJ	0.2 U	0.2 U
1,3-Dichlorobenzene	2,600 d		0.2 UJ	0.2 U	0.2 U
1,3-Dichloropropane			0.2 UJ	0.2 U	0.2 U
1,4-Dichlorobenzene	4.9		0.2 UJ	0.2 U	0.2 U
2,2-Dichloropropane			0.2 UJ	0.2 U	0.2 U
2-Butanone			2.5 UJ	2.5 U	2.5 U
2-Chloroethylvinylether			1 UJ	1 U	1 U
2-Chlorotoluene			0.2 UJ	0.2 U	0.2 U
2-Hexanone			2.5 UJ	2.5 U	2.5 U
4-Chlorotoluene			0.2 UJ	0.2 U	0.2 U
4-Isopropyltoluene			0.2 UJ	0.2 U	0.2 U
4-Methyl-2-Pentanone (MIBK)			2.5 UJ	2.5 U	2.5 U
Acetone			3 UJ	7.2	2.5 U
Acrolein	0.40		5 UJ	5 U	5 U
Acrylonitrile	0.40		1 UJ	1 U	1 U
Benzene	23		0.2 UJ	0.2 U	0.2 U
Bromobenzene			0.2 UJ	0.2 U	0.2 U
Bromochloromethane	aa d		0.2 UJ	0.2 U	0.2 U
Bromodichloromethane	22 ^d		0.2 UJ	0.2 U 0.2 U	0.2 U
Bromoethane	aan d		0.2 UJ		0.2 U
Bromoform	220 ^d 970		0.2 UJ 0.5 UJ	0.2 U 0.5 U	0.2 U
Bromomethane Carbon Disulfide	970		0.5 UJ	0.5 0	0.5 U 0.2 U
	4.40 d		0.2 UJ	0.4 0.2 U	0.2 U
Carbon Tetrachloride	4.40				
Chlorosthono	5,000		0.2 UJ 0.2 UJ	0.2 U 0.2 U	0.2 U 0.2 U
Chloroethane	000			0.2 U	
Chloroform	280		0.2 UJ		0.2 U
Chloromethane	1,300		0.2 UJ	0.2 U	0.2 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene			0.2 UJ 0.2 UJ	0.2 U 0.2 U	0.2 U 0.2 U
	04				
Dibromochloromethane Dibromomethane	21		0.2 UJ 0.2 UJ	0.2 U 0.2 U	0.2 U 0.2 U
	0.000			0.2 U	
Ethylbenzene Ethylene Dibromide	6,900		0.2 UJ 0.2 UJ	0.2 U 0.2 U	0.2 U 0.2 U
Hexachlorobutadiene	3		0.2 UJ	0.2 U	0.2 U
Isopropylbenzene	3		0.5 UJ	0.5 U 0.2 U	0.5 U 0.2 U
m,p-Xylene			0.2 UJ	0.2 U	0.4 U
Methyl lodide			1 UJ	1 U	1 U
Methylene Chloride	960		0.5 UJ	0.5 U	0.5 U
Naphthalene	4,900		0.5 UJ	0.5 U	0.5 U
n-Butylbenzene	1,000		0.2 UJ	0.2 U	0.2 U
n-Propylbenzene			0.2 UJ	0.2 U	0.2 U
o-Xylene			0.2 UJ	0.2 U	0.2 U
sec-Butylbenzene			0.2 UJ	0.2 U	0.2 U
Styrene			0.2 UJ	0.2 U	0.2 U
tert-Butylbenzene			0.2 UJ	0.2 U	0.2 U
Tetrachloroethene			0.2 UJ	0.2 U	0.2 U
Toluene	19,000		0.2 UJ	0.2 U	0.2 U
trans-1,2-Dichloroethene			0.2 UJ	0.2 U	0.2 U
trans-1,3-Dichloropropene			0.2 UJ	0.2 U	0.2 U

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 7 of 13

Table B-2 - Complete Ana	alytical Results	for Groundwate	r Samples	5	Sheet 7 of 1
Sample ID:	MTCA	Water Quality	EBC-4	EBC-5	EBC-6
Sampling Date:	Method B Marine Surface	Criteria - Marine ⁹ Acute Chronic	7/30/2008	8/1/2008	8/1/2008
trans-1,4-Dichloro-2-butene	Marine Surface	Acute Chronic	1 UJ	1 U	1 U
Trichloroethene			0.2 UJ	0.2 U	0.2 U
Trichlorofluoromethane			0.2 UJ	0.2 U	0.2 U
Vinyl Acetate			1 UJ	1 U	1 U
Vinyl Chloride	37		0.2 UJ	0.2 U	0.2 U
Semivolatiles in ug/L	0,		0.2 00	0.2 0	0.2 0
1,2,4-Trichlorobenzene	2,300		1 U	1 UJ	1 U
1,2-Dichlorobenzene	4,200		1 U	1 UJ	1 U
1,3-Dichlorobenzene	.,=00		1 U	1 UJ	1 U
1,4-Dichlorobenzene	4.9		1 U	1 UJ	1 U
1-Methylnaphthalene	110		1 U	1 UJ	1 U
2,2'-Oxybis(1-Chloropropane)			1 U	1 UJ	1 U
2,4,5-Trichlorophenol			5 U	5 UJ	5 U
2,4,6-Trichlorophenol	3.90		5 U	5 UJ	5 U
2,4-Dichlorophenol	190		5 U	5 UJ	5 U
2,4-Dimethylphenol	550		1 U	1 UJ	1 U
2,4-Dinitrophenol	3,500		10 U	10 UJ	10 U
2,4-Dinitrotoluene	9.10 ^d		5 U	5 UJ	5 U
2,6-Dinitrotoluene	0.10		5 U	5 UJ	5 U
2-Chloronaphthalene			1 U	1 UJ	1 U
2-Chlorophenol			1 U	1 UJ	1 U
2-Methylnaphthalene			1 U	1 UJ	1 U
2-Methylphenol			1 U	1 UJ	1 U
2-Nitroaniline			5 U	5 UJ	5 U
2-Nitrophenol			5 U	5 UJ	5 U
3,3'-Dichlorobenzidine	0.046		5 U	5 UJ	5 U
3-Nitroaniline			5 U	5 UJ	5 U
4,6-Dinitro-2-Methylphenol			10 U	10 UJ	10 U
4-Bromophenyl-phenylether			1 U	1 UJ	1 U
4-Chloro-3-methylphenol			5 U	5 UJ	5 U
4-Chloroaniline 4-Chlorophenyl-phenylether			5 U	5 UJ	5 U
4-Methylphenol			1 U 1 U	1 UJ 1 UJ	1 U 1 U
4-Nitroaniline			5 U	5 UJ	5 U
4-Nitrophenol			5 U	5 UJ	5 U
Acenaphthene	640		1 U	1 UJ	1 U
Acenaphthylene			1 U	1 UJ	1 U
Anthracene	26,000		1 U	1 UJ	1 U
Benzo(a)anthracene	0.030		1 U	1 UJ	1 U
Benzo(a)pyrene	0.030		1 U	1 UJ	1 U
Benzo(b)fluoranthene	0.030		1 U	1 UJ	1 U
Benzo(g,h,i)perylene	0.000		1 U	1 UJ	1 U
Benzo(k)fluoranthene	0.030		1 U	1 UJ	1 U
Benzoic Acid	0.000		10 U	10 UJ	10 U
Benzyl Alcohol			5 U	5 UJ	5 U
bis(2-Chloroethoxy) Methane			1 U	1 UJ	1 U
Bis-(2-Chloroethyl) Ether	0.85		1 U	1 UJ	1 U
bis(2-Ethylhexyl)phthalate	3.60		1	1 UJ	1 U
Butylbenzylphthalate	1,300		1 U	1 UJ	1 U
Carbazole	•		1 U	1 UJ	1 U
Chrysene	0.030		1 U	1 UJ	1 U
Dibenz(a,h)anthracene	0.030		1 U	1 UJ	1 U
· / /	-				Hart Crawas

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 8 of 13

Sample ID:	MTCA	Water	Quality	EBC-4	EBC-5	EBC-6
Sampling Date:	Method B	Criteria	- Marine ^g	7/30/2008	8/1/2008	8/1/2008
	Marine Surface	Acute	Chronic			
Dibenzofuran				1 U	1 UJ	1 U
Diethylphthalate				1 U	1 UJ	1 U
Dimethylphthalate	72,000			1 U	1 UJ	1 U
Di-n-Butylphthalate				1 U	1 UJ	1 U
Di-n-Octyl phthalate				1 U	1 UJ	1 U
Fluoranthene	90			1 U	1 UJ	1 U
Fluorene	3,500			1 U	1 UJ	1 U
Hexachlorobenzene	0.00047			1 U	1 UJ	1 U
Hexachlorobutadiene	3.0			1 U	1 UJ	1 U
Hexachlorocyclopentadiene	3,600			5 U	5 UJ	5 U
Hexachloroethane	5.30			1 U	1 UJ	1 U
Indeno(1,2,3-cd)pyrene	0.030			1 U	1 UJ	1 U
Isophorone	600 ^d			1 U	1 UJ	1 U
Naphthalene	4,900			1 U	1 UJ	1 U
Nitrobenzene	450			1 U	1 UJ	1 U
N-Nitroso-Di-N-Propylamine	8.20			5 U	5 UJ	5 U
N-Nitrosodiphenylamine	10			1 U	1 UJ	1 U
Pentachlorophenol	4.90	13	7.9	5 U	5 UJ	5 U
Phenanthrene				1 U	1 UJ	1 U
Phenol	1,100,000			1 U	1 UJ	1 U
Pyrene	2,600			1 U	1 UJ	1 U

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 9 of 13

Sample ID:	MTCA	3 II	Water (EBC-16	Trip Blank	Trip Blank
Sampling Date:	Method B			· Marine ^g	8/1/2008	7/31/2008	8/6/2008
Camping Date.	Marine Surface		Acute	Chronic	Dup of EBC		0/0/2000
	Water Criteria ^a						
TPH in mg/L							
Diesel-Range Hydrocarbons	0.5	b			0.25 U		
Motor Oil-Range Hydrocarbons	0.5	b			0.5 U		
Gasoline-Range Hydrocarbons	1.0	b			0.25 U		
Total Metals in µg/L ^e							
Arsenic					0.5 U		
Cadmium					0.02 U		
Chromium					1.97		
Copper					2.8		
Lead Margury Total				0.025	0.656		
Mercury, Total Nickel (soluable salts)				0.025	0.0036 R 2.4		
Zinc					5.6		
Dissolved Metals in µg/L					3.0		
Arsenic, Dissolved	5	С	69	36	0.5 U		
Cadmium, Dissolved	20		42	9.3	0.02 U		
Chromium, Dissolved	490		1100	50	0.25		
Copper, Dissolved	2,700		4.8	3.1	0.1 U		
Lead, Dissolved			210	8.1	0.02 U		
Mercury, Dissolved ^f			1.8	0.025	0.001 R		
Nickel, Dissolved	1,100		74	8.2	0.6		
Zinc, Dissolved	17,000		90	81	0.5 U		
BTEX in ug/L							
Benzene	23				1 U		
Ethylbenzene	6,900				1 U		
m,p-Xylene					1 U		
o-Xylene	40.000				1 U		
Toluene PCBs in ug/L	19,000				1 U		
Aroclor 1016	0.0058				1 U		
Aroclor 1221	0.0030				1 U		
Aroclor 1232					1 U		
Aroclor 1242					1 U		
Aroclor 1248					1 U		
Aroclor 1254	0.0017				1 U		
Aroclor 1260					1 U		
Total PCBs	0.00011		10	0.03	1 U		
Volatiles in ug/L							
1,1,1,2-Tetrachloroethane	400.000				0.2 U	0.2 U	0.2 U
1,1,1-Trichloroethane	420,000				0.2 U	0.2 U	0.2 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	6.50				0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U
1,1,2-Trichloroethane					0.2 U	0.2 U	0.2 U
1,1,2-111chloroethane	25				0.2 U	0.2 U 0.2 U	0.2 U
1,1-Dichloroethene					0.2 U	0.2 U	0.2 U
1,1-Dichloropropene					0.2 U	0.2 U	0.2 U
1,2,3-Trichlorobenzene					0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane					0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene					0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene					0.2 U	0.2 U	0.2 U
1,2-Dibromo-3-chloropropane					0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	4,200				0.2 U	0.2 U	0.2 U
							Hart Crowser

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 10 of 13

March Method Marine Surface Method Marine Surface Method Marine Surface Mar	Table B-2 - Complete Ana	llytical Results	s to	or Grou	indwate	r Sample	S	Sheet 10 C
Marine Surface	Sample ID:	MTCA		Water	Quality	EBC-16	Trip Blank	Trip Blank
1,2-Dichloroethane 59	Sampling Date:							8/6/2008
1,2-Dichloropropane 230		Marine Surface		Acute	Chronic	Dup of EBC		
1.35-Trimethylbenzene								
1,3-Dichlorobenzene		230						
1.3-Dichloropropane								
1.4 Dichlorobenzene		2,600	a					
2.2-Dichloropropane 2.3-Butanone 2.5-U	• •							
2-Butanone		4.9						
2-Chlorosthylvinylether								
2-Chlorotoluene								
2-Hexanone								
4-Isopropyltoluene								
4-Methyl-2-Pentanone (MIBK)								
Acetone								
Acrolein	4-Methyl-2-Pentanone (MIBK)					2.5 U	2.5 U	2.5 U
Acrylonitrile	Acetone							
Benzene 23	Acrolein					5 U	5.0 U	5.0 U
Bromobenzene	Acrylonitrile	0.40				1 U	1.0 U	1.0 U
Bromochloromethane 22 d	Benzene	23						
Bromodichloromethane 22 d								
Stromoethane 22								
Bromoform 220 d		22	u					
Stromomethane 970 0.5 U 0.2 U			d					
Carbon Disulfide 4.40 d 0.2 U			u					
Carbon Tetrachloride 4.40 d 0.2 U		970						
Chlorobenzene 5,000		4.40	d					
Chloroethane 0.2 U								
Chloroform 280 0.2 U 0.2 U 0.2 U Chloromethane 1,300 0.2 U 0.2 U 0.2 U cis-1,2-Dichloropropene 0.2 U 0.2 U 0.2 U 0.2 U Dibromochloromethane 21 0.2 U 0.2 U 0.2 U 0.2 U Dibromomethane 6,900 0.2 U		5,000						
Chloromethane 1,300 0.2 U		200						
cis-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U								
cis-1,3-Dichloropropene 0.2 U 0.		1,300						
Dibromochloromethane 21 0.2 U 0.2 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Dibromomethane 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U Ethylbenzene 6,900 Ethylene Dibromide 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U Hexachlorobutadiene 3 Isopropylbenzene 0.5 U 0.5 U 0.2 U 0.2 U 0.2 U m,p-Xylene 0.4 U 0.4 U 0.4 U 0.4 U 0.4 U Methyl lodide 1 U 1.0 U 1.0 U 1.0 U Methylene Chloride 960 Naphthalene 4,900 n-Butylbenzene 0.5 U 0.2 U 0.		21						
Ethylbenzene 6,900 0.2 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.2 U 0.4 U 0.5 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U		21						
Ethylene Dibromide 0.2 U 0.2 U 0.2 U 0.2 U Hexachlorobutadiene 3 0.5 U 0.5 U 0.5 U Isopropylbenzene 0.2 U 0.2 U 0.2 U 0.2 U m,p-Xylene 0.4 U 0.4 U 0.4 U 0.4 U Methyl lodide 1 U 1.0 U 1.0 U Methylene Chloride 960 0.5 U 0.5 U 0.5 U Naphthalene 4,900 0.5 U 0.5 U 0.5 U n-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U n-Propylbenzene 0.2 U 0.2 U 0.2 U 0.2 U o-Xylene 0.2 U 0.2 U 0.2 U 0.2 U sec-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U Styrene 0.2 U 0.2 U 0.2 U 0.2 U Tetrachloroethene 0.2 U 0.2 U 0.2 U 0.2 U Toluene 19,000 0.2 U 0.2 U 0.2 U 0.2 U trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U 0.2 U		6.900						
Hexachlorobutadiene 3 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.2 U 0.4 U 0.5 U 0.6 B Naphthalene Chloride 0.5 U 0.2 U	•	2,222						
Sopropylbenzene 0.2 U 0.2 U 0.2 U 0.2 U 0.4 U 0.5 U 0.2		3						
Methyl lodide 1 U 1.0 U 1.0 U Methylene Chloride 960 Naphthalene 4,900 n-Butylbenzene 0.5 U 0.2								
Methylene Chloride 960 0.5 U 0.5 U 0.5 U Naphthalene 4,900 0.5 U 0.5 U 0.5 U n-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U n-Propylbenzene 0.2 U 0.2 U 0.2 U 0.2 U o-Xylene 0.2 U 0.2 U 0.2 U 0.2 U sec-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U Styrene 0.2 U 0.2 U 0.2 U 0.2 U tert-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U Tetrachloroethene 0.2 U 0.2 U 0.2 U 0.2 U Toluene 19,000 0.2 U 0.2 U 0.2 U 0.2 U trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U	m,p-Xylene					0.4 U	0.4 U	0.4 U
Naphthalene 4,900 0.5 U 0.5 U 0.5 U n-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U n-Propylbenzene 0.2 U 0.2 U 0.2 U 0.2 U o-Xylene 0.2 U 0.2 U 0.2 U 0.2 U sec-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U Styrene 0.2 U 0.2 U 0.2 U 0.2 U tert-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U Tetrachloroethene 0.2 U 0.2 U 0.2 U 0.2 U Toluene 19,000 0.2 U 0.2 U 0.2 U 0.2 U trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U	Methyl Iodide					1 U	1.0 U	1.0 U
n-Butylbenzene 0.2 U								
n-Propylbenzene 0.2 U 0.2 U 0.2 U 0.2 U o-Xylene 0.2 U 0.2 U 0.2 U 0.2 U sec-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U Styrene 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U tert-Butylbenzene 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U Tetrachloroethene 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U Toluene 19,000 0.2 U 0.2 U 0.2 U 0.2 U trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U	•	4,900						
o-Xylene 0.2 U 0.2 U 0.2 U sec-Butylbenzene 0.2 U 0.2 U 0.2 U Styrene 0.2 U 0.2 U 0.2 U tert-Butylbenzene 0.2 U 0.2 U 0.2 U Tetrachloroethene 0.2 U 0.2 U 0.2 U Toluene 19,000 trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U	-							
sec-Butylbenzene 0.2 U 0.2 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Styrene 0.2 U <	=							
tert-Butylbenzene 0.2 U 0.2 U 0.2 U Tetrachloroethene 0.2 U 0.2 U 0.2 U Toluene 19,000 0.2 U 0.2 U 0.2 U trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U 0.2 U								
Tetrachloroethene 0.2 U 0.2 U 0.2 U Toluene 19,000 0.2 U 0.2 U 0.2 U trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U	=							
Toluene 19,000 0.2 U 0.2 U 0.2 U trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U								
trans-1,2-Dichloroethene 0.2 U 0.2 U 0.2 U		19.000						
		,						
						0.2 U		

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 11 of 13

Table B-2 - Complete Ana	alytical Results	for Groundwa	ater Sample	S	Sheet 11 of
Sample ID:	MTCA	Water Quality	EBC-16	Trip Blank	Trip Blank
Sampling Date:	Method B	Criteria - Marin	e ^g 8/1/2008	7/31/2008	8/6/2008
	Marine Surface	Acute Chro			
trans-1,4-Dichloro-2-butene			1 U	1.0 U	1.0 U
Trichloroethene			0.2 U	0.2 U	0.2 U
Trichlorofluoromethane			0.2 U	0.2 U	0.2 U
Vinyl Acetate	07		1 U	1.0 U	1.0 U
Vinyl Chloride	37		0.2 U	0.2 U	0.2 U
Semivolatiles in ug/L	2 200		1 U		
1,2,4-Trichlorobenzene	2,300				
1,2-Dichlorobenzene 1,3-Dichlorobenzene	4,200		1 U 1 U		
1,4-Dichlorobenzene	4.9		1 U		
1-Methylnaphthalene	4.9		1 U		
2,2'-Oxybis(1-Chloropropane)			1 U		
2,4,5-Trichlorophenol			5 U		
2,4,6-Trichlorophenol	3.90		5 U		
2,4-Dichlorophenol	190		5 U		
2,4-Dimethylphenol	550		1 U		
2,4-Dinitrophenol	3,500		10 U		
2,4-Dinitrotoluene	9.10		5 U		
2,6-Dinitrotoluene	0.10		5 U		
2-Chloronaphthalene			1 U		
2-Chlorophenol			1 U		
2-Methylnaphthalene			1 U		
2-Methylphenol			1 U		
2-Nitroaniline			5 U		
2-Nitrophenol			5 U		
3,3'-Dichlorobenzidine	0.046		5 U		
3-Nitroaniline			5 U		
4,6-Dinitro-2-Methylphenol			10 U		
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol			1 U 5 U		
4-Chloroaniline			5 U		
4-Chlorophenyl-phenylether			1 U		
4-Methylphenol			1 U		
4-Nitroaniline			5 U		
4-Nitrophenol			5 U		
Acenaphthene	640		1 U		
Acenaphthylene			1 U		
Anthracene	26,000		1 U		
Benzo(a)anthracene	0.030		1 U		
Benzo(a)pyrene	0.030		1 U		
Benzo(b)fluoranthene	0.030		1 U		
Benzo(g,h,i)perylene			1 U		
Benzo(k)fluoranthene	0.030		1 U		
Benzoic Acid			10 U		
Benzyl Alcohol			5 U		
bis(2-Chloroethoxy) Methane			1 U		
Bis-(2-Chloroethyl) Ether	0.85		1 U		
bis(2-Ethylhexyl)phthalate	3.60		1 U		
Butylbenzylphthalate	1,300		1 U		
Carbazole	0.000		1 U		
Chrysene	0.030		1 U		
Dibenz(a,h)anthracene	0.030		1 U		Hart Crou

Table B-2 - Complete Analytical Results for Groundwater Samples

Sheet 12 of 13

Sample ID:	MTCA	Wate	r Quality	EBC-16	Trip Blank	Trip Blank
Sampling Date:	Method B	Criteria	a - Marine ^g	8/1/2008	7/31/2008	8/6/2008
	Marine Surface	Acute	Chronic	Dup of EBC	-6	
Dibenzofuran				1 U		
Diethylphthalate				1 U		
Dimethylphthalate	72,000			1 U		
Di-n-Butylphthalate				1 U		
Di-n-Octyl phthalate				1 U		
Fluoranthene	90			1 U		
Fluorene	3,500			1 U		
Hexachlorobenzene	0.00047			1 U		
Hexachlorobutadiene	3.0			1 U		
Hexachlorocyclopentadiene	3,600			5 U		
Hexachloroethane	5.30			1 U		
Indeno(1,2,3-cd)pyrene	0.030			1 U		
Isophorone	600	I		1 U		
Naphthalene	4,900			1 U		
Nitrobenzene	450			1 U		
N-Nitroso-Di-N-Propylamine	8.20			5 U		
N-Nitrosodiphenylamine	10			1 U		
Pentachlorophenol	4.90	13	7.9	5 U		
Phenanthrene				1 U		
Phenol	1,100,000			1 U		
Pyrene	2,600			1 U		

Table B-2 - Complete Analytical Results for Groundwater Samples

Notes:

Blank entry indicates no applicable MTCA criteria established or sample not analyzed for specific analyte.

- U: Not detected at reporting limit indicated.
- J: Estimated value
- R: Rejected value
- 3.8 Bolded boxed entry indicates detected concentration exceeds one or more screening criteria.
- Dashed boxed entry indicates detected concentration of gasoline-range hydrocarbons is above MTCA Method A screening level but is not considered to be an exceedance of MTCA criteria per Footnote below.
- ^a MTCA Method B screening levels for surface water are presented except as noted for TPH and arsenic.
- ^b MTCA Method A screening levels for TPH are provided for comparative purposes only. MTCA Method A TPH screening levels are based on groundwater protection, which is not applicable at this site.
- ^c MTCA Method A arsenic screening level is listed. The MTCA Method A screening level for arsenic is based on state background concentrations. MTCA Method B does not apply for arsenic at this site.
- ^d MTCA Method B screening level based on National Toxics Rule (NTR 40 CFR 131) for consumption of marine organisms as the most stringent criteria.
- ^e Total metals data were collected for informational purposes only and are not comparable to regulatory screening criteria. Total mercury results are affected by elevated turbidity and are not considered representative of actual groundwater conditions.
- ^f Marine chronic water quality screening criteria for mercury is based on total metals concentration and is provided for comparative purposes only.
- ⁹ Based on Washington State Water Quality Standards (Chapter 173-201A WAC) for protection of marine organisms.

APPENDIX C CHEMICAL DATA QUALITY REVIEW AND LABORATORY CERTIFICATES OF ANALYSIS

APPENDIX C CHEMICAL DATA QUALITY REVIEW AND LABORATORY CERTIFICATES OF ANALYSIS

Chemical Data Quality Review

Three groundwater samples and one trip blank were collected on July 30, 2008. The samples were submitted to Analytical Resources, Inc. (ARI), for analysis. The cooler temperatures of the samples ranged from 6.6 to 10.4°C, outside the method recommended temperature range of 2 to 6°C. Results for volatile analyses were qualified as estimated (J). The samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), gasoline-range hydrocarbons and BTEX compounds, and diesel- and motor oil-range hydrocarbons. The laboratory reported results as ARI Job No. NI87. The laboratory subcontracted samples to Columbia Analytical Services (CAS) for analysis of total and dissolved metals. CAS reported results as Service Request No. K0807445.

Three groundwater samples, one field duplicate, and one trip blank were collected on July 31, 2008, and August 1, 2008. The samples were submitted to ARI for analysis. The cooler temperatures of the samples were 1.2 and 7.0°C, outside the method recommended temperature range of 2 to 6°C. Results for volatile or semivolatile analytes would not be affected by the colder temperatures. The slight temperature exceedance would not significantly affect volatile or semi-volatile analytes, and results were not qualified. The samples were analyzed for VOCs, SVOCs, PCBs, gasoline-range hydrocarbons and BTEX compounds, and diesel- and motor oil-range hydrocarbons. The laboratory reported results as ARI Job No. NJ87. The laboratory subcontracted samples to CAS for analysis of total and dissolved metals. CAS reported results as Service Request No. K0807486.

Twenty-five soil samples were collected on July 29, 30, and 31, 2008, and August 1, 2008. The samples were submitted to ARI for analysis. The cooler temperatures of the samples ranged from 1.2 to 7.0°C, with two coolers outside the method recommended temperature range of 2 to 6°C. Results for volatile or semivolatile analytes would not be affected by the colder temperatures. The slight temperature exceedance would not significantly affect volatile or semivolatile analytes, and results were not qualified. The samples were analyzed for VOCs, SVOCs, PCBs, gasoline-range hydrocarbons and BTEX compounds, diesel- and motor oil-range hydrocarbons, and total metals. Soil samples EBC-2-S2, EBC-5-S2, EBC-6-S2, EBC-12-S2, EBC-15-S1, and EBC-15-S2 were archived. The laboratory reported results as ARI Job No. NJ45.

Page C-1 Hart Crowser

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by the laboratory. Hart Crowser performed the data review, using laboratory quality control results summary sheets and raw data, as required, to ensure they met data quality objectives for the project. Data review followed the format outlined in the National Functional Guidelines for Inorganic Data Review (EPA 2004) and the National Functional Guidelines for Organic Data Review (EPA 1999) modified to include specific criteria of the individual analytical methods. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Laboratory control sample (LCS) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries;
- Laboratory duplicate relative percent differences (RPDs);
- Initial calibration curves and continuing calibration verifications (CCVs); and
- Reporting limits.

Most of the data were determined to be acceptable for use, with certain qualifiers. Results for low level total mercury and low level dissolved mercury were rejected. Full laboratory results are presented at the end of this appendix. Results of the data reviews, organized by analysis class, follow.

Volatile Organic Compounds (VOCs)

Analytical Methods

The samples were analyzed by a Gas Chromatograph fitted with a Mass Spectrometer (GC/MS) following EPA Method 8260B.

Sample Holding Times

The samples were analyzed within the method recommended holding time with the following exception. Soil sample EBC-12-S1 had only methanol preserved jars submitted. To achieve low detection limits, sample volume was taken from the unpreserved total solids jar, past the 48-hour method holding time for unpreserved samples.

Laboratory Detection Limits

The laboratory achieved specified detection limits with the following exception. The detection limit for acrylonitrile exceeded the criteria for all groundwater

Page C-2 Hart Crowser

samples. Reported detection limits and analytical results were adjusted for any required dilution factors.

Blank Contamination

The method blanks were non-detect with the following exception. The method blank analyzed on August 12, 2008, had a detection for methylene chloride above the reporting limit. The associated samples were non-detect for methylene chloride, and no results were qualified. The associated trip blank had a detection above the reporting limit for methylene chloride and was qualified with a "B."

The trip blank accompanying groundwater samples EBC-1, EBC-3, and EBC-4 had a detection for methylene chloride at the reporting limit. The associated samples were non-detect for methylene chloride.

The trip blank accompanying groundwater samples EBC-2, EBC-5, EBC-6, and EBC-16 had a detection for methylene chloride above the reporting limit. The associated samples were non-detect for methylene chloride.

Surrogate Recovery

Surrogate recoveries were within laboratory control limits with the following exceptions:

- For soil sample EBC-3-S1, the recoveries for the surrogates d4-1,2dichloroethane, bromofluorobenzene, and d4-1,2-dichlorobenzene were outside the control limits. The sample was reanalyzed at dilution, and all surrogates were within control. The dilution reanalysis was reported.
- For soil sample EBC-7-S1, the recoveries for the surrogates d4-1,2dichloroethane and d8-toluene were outside the control limits. The sample was reanalyzed with all surrogates within control. The reanalysis was reported.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within laboratory control limits.

Matrix Spike (MS) Recoveries

Matrix spike recoveries were within laboratory control limits with the following exceptions:

Page C-3 Hart Crowser

- For groundwater sample EBC-4 MS/MSD, the recoveries for 4-methyl-2pentanone and 2-hexanone exceeded the control limits and the marginal exceedance (ME) limits. The compounds were within control in the LCS and LCSD. As there were no detections for those compounds in the associated samples, the results were not qualified.
- For groundwater sample EBC-4 MS/MSD, 2-chloroethyl vinyl ether did not recover. The results for 2-chloroethyl vinyl ether were within control in the LCS and LCSD, indicating a matrix effect. Results for 2-chloroethyl vinyl ether in EBC-4 were qualified as estimated (J).
- For groundwater sample EBC-4 MSD, the recoveries for acrolein and 1,2dibromo-3-chloropropane exceeded the control limits. The compounds were within control limits in the MS, LCS, and LCSD. Results were not qualified.

Internal Standard (IS) Recovery

Internal standards were within acceptance criteria with the following exceptions:

- Per the case narrative, all internal standards were outside acceptance criteria for soil sample EBC-3-S1. The sample was reanalyzed at dilution with all IS within acceptance criteria. The diluted sample results were reported.
- Per the case narrative, the IS for d4-1,4-dichlorobenzene were outside acceptance criteria for soil sample EBC-7-S1. The sample was reanalyzed with all IS within acceptance criteria. The reanalyzed sample results were reported.

Field Duplicate Sample Analysis

The results for the sample and field duplicate were non-detect, so the RPD was not applicable.

Initial Calibration Curve and CCVs

The initial calibration curves were within acceptance criteria. The CCV recoveries were within acceptance criteria with the following exception.

■ Per the laboratory case narrative, the recoveries of some compounds in the CCV analyzed on August 12, 2008, were outside the acceptance criteria, but were within the laboratory Standard Operating Procedure (SOP) criteria for outliers. The compounds were not specified, and no results were qualified.

Page C-4 Hart Crowser

Semivolatile Organic Compounds (SVOCs)

Analytical Methods

The samples were analyzed by a GC/MS following EPA Method 8270D.

Sample Holding Times

The samples were extracted and analyzed within the method recommended holding time with the following exception. Groundwater sample EBC-2 was extracted one day past the method recommended holding time. Sample results were qualified as estimated (J).

Laboratory Detection Limits

The laboratory achieved specified detection limits, with the following exceptions. The detection limits for 2,4,6-trichlorophenol, 3,3'-dichlorobenzidine, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-chloroethyl) ether, chrysene, dibenz(a,h)anthracene, hexachlorobenzene, indeno(123-cd)pyrene, and pentachlorophenol exceeded the MTCA Method B Marine Surface Water Criteria for all groundwater samples. Reported detection limits and analytical results were adjusted for any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks associated with the samples.

Surrogate Recovery

Surrogate recoveries were within laboratory control limits with the following exceptions:

- For groundwater sample EBC-5, the recoveries for all surrogates were below the control limits. The sample was re-extracted outside of the method recommended holding time, with all surrogates within control. The reextracted results were reported as estimated (J).
- For groundwater sample EBC-6, the recovery of the surrogate 2fluorobiphenyl were below the control limits. As all other surrogates were within control, the sample results were not qualified.

Page C-5 Hart Crowser

■ For soil sample EBC-7-S1, the recoveries of the surrogates 2-fluorobiphenyl and 2,4,6-tribromophenol were below the control limits due to sample matrix effects. The recovery for 2,4,6-tribromophenol were below ten percent. As all other surrogates were within control, the sample results were not qualified.

Laboratory Control Sample (LCS) Recovery

LCS recoveries were within laboratory control limits with the following exceptions:

- For LCSD-080808, the recoveries for bis(2-chloroethyl)vinyl ether, 4nitrophenol, and benzo(a)pyrene were below the control limits. The recoveries were within control in the LCS, and results were not qualified.
- For LCS-082208, the recoveries for phenol and diethylphthalate fell below the control limits. The recoveries for 4-chloroaniline and 4-nitrophenol were below the ME limits. No LCSD was reported. The associated sample, EBC-5, was already qualified as estimated due to hold time issues.

Matrix Spike/Matrix Spike Duplicate Recoveries

Matrix spike recoveries were within laboratory control limits with the following exception. For soil sample EBC-8-S1 MS/MSD, the target analytes 2,4dinitrophenol and 4,6-dinitro-2-methylphenol did not recover above the reporting limit. The analytes were within control limits in the LCS and LCSD, indicating a matrix effect. The results for those analytes were qualified as estimated (J) in EBC-8-S1.

Field Duplicate Sample Analysis

The results for the sample and field duplicate were non-detect, so the RPD was not applicable.

Initial Calibration Curve and CCVs

The initial calibration curve and CCV recoveries were within acceptance criteria.

Page C-6 Hart Crowser

Polychlorinated Biphenyls (PCBs)

Analytical Methods

The samples were analyzed by Gas Chromatograph fitted with an Electron Capture Detector (GC/ECD) following EPA Method 8082.

Sample Holding Times

The samples were extracted and analyzed within holding time limits with the following exception. Groundwater sample EBC-2 was extracted one day past the holding time. Sample results were qualified as estimated (J).

Laboratory Detection Limits

Reporting limits did not meet MTCA Method B Marine Surface Water Criteria for water samples. Reported detection limits and analytical results were adjusted for any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks associated with the samples.

Surrogate Recovery

Surrogate recoveries were within laboratory control limits with the following exceptions:

- For groundwater sample EBC-1, the recovery for tetrachlorometaxylene (TCMX) was slightly below the control limits. The recovery for decachlorobiphenyl (DCBP) was within the control limits, and results were not qualified.
- For soil samples EBC-1-S1, EBC-7-S1, and EBC-9-S1, the surrogate DCBP was not recovered due to chromatographic interferences. As the recoveries for TCMX were within control, no results were qualified.

Laboratory Control Sample Recovery

Laboratory control sample recoveries were within laboratory control limits with the following exception. For LCS/LCSD-080808, the recoveries for Aroclor 1016

Page C-7 Hart Crowser

exceeded the control limits. The associated samples were non-detect for that analyte, and no results were qualified.

Matrix Spike/Matrix Spike Duplicate Recovery

Matrix spike recoveries were within laboratory control limits with the following exception. For groundwater sample EBC-4 MS/MSD, the recoveries for Aroclor 1016 exceeded the control limits. The associated samples were non-detect for that analyte, and no results were qualified.

Field Duplicate Sample Analysis

The results for the sample and field duplicate were non-detect, so the RPD was not applicable.

Initial Calibration Curve and CCV Recoveries

The initial calibration curve was within acceptance criteria. The CCV recoveries were within control limits with the following exceptions. Per the laboratory case narrative, the CCVs were outside the control limits, but within the laboratory SOP criteria for outliers. The associated samples were non-detect, and no results were qualified.

Gasoline-Range Hydrocarbons and BTEX Compounds

Analytical Methods

The samples were analyzed by Gas Chromatograph (GC) fitted with a Flame Ionization Detector (FID) and a Photoionization Detector (PID) following Method NWTPH-Gx and EPA Method 8021B.

Sample Holding Times

The samples were prepared and analyzed within the method recommended holding time.

Laboratory Detection Limits

The laboratory achieved specified detection limits. Reported detection limits and analytical results were adjusted for any required dilution factors.

Page C-8 Hart Crowser

Blank Contamination

No target analytes were detected in laboratory blanks associated with the samples.

Surrogate Recovery

Surrogate recoveries were within laboratory control limits.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within laboratory control limits.

Matrix Spike/Matrix Spike Duplicate Recoveries

Matrix spike recoveries were within laboratory control limits.

Field Duplicate Sample Analysis

The results for the sample and field duplicate were non-detect, so the RPD was not applicable.

Initial Calibration Curve and CCVs

The initial calibration curve and CCV recoveries were within acceptance criteria.

Diesel- and Motor Oil-Range Hydrocarbons

Analytical Methods

The samples were analyzed by GC/FID following Method NWTPH-Dx.

Sample Holding Times

The samples were extracted and analyzed within the method recommended holding time with the following exception. Groundwater sample EBC-2 was extracted one day past the method recommended holding time. Sample results were qualified as estimated (J).

Laboratory Detection Limits

The laboratory achieved specified detection limits. Reported detection limits and analytical results were adjusted for any required dilution factors.

Page C-9 Hart Crowser

Blank Contamination

No target analytes were detected in laboratory blanks associated with the samples.

Surrogate Recovery

Surrogate recoveries were within laboratory control limits with the following exception. Soil sample EBC-7-S1 had no surrogate recovery due to the high sample dilution required by high levels of target analyte in the sample. Sample results were not qualified.

Laboratory Control Sample (LCS) Recovery

Laboratory control sample recoveries were within laboratory control limits.

Matrix Spike/Matrix Spike Duplicate Recoveries

Matrix spike recoveries were within laboratory control limits with the following exception. For soil sample EBC-1-S2 MS, the recovery of diesel were below the control limits. The recovery was within control limits for the LCS, LCSD, and MSD, and sample results were not qualified.

Field Duplicate Sample Analysis

The results for the sample and field duplicate were non-detect, so the RPD was not applicable.

Initial Calibration Curve and CCVs

The initial calibration curve and CCV recoveries were within acceptance criteria.

Total Metals

Analytical Methods

Analyses for arsenic, cadmium, chromium, copper, lead, nickel, and zinc in groundwater samples were conducted by ICP following EPA Method 200.8. Analysis for mercury in water samples was conducted by CVAA following EPA Method 1631E.

Page C-10 Hart Crowser

Analyses for arsenic, cadmium, chromium, copper, lead, nickel, and zinc in soil samples were conducted by ICP following EPA Method 6010B. Analysis for mercury in soil samples was conducted by CVAA following EPA Method 7471A.

Sample Holding Times

The samples were prepared and analyzed within holding time limits with the following exceptions:

■ For groundwater samples EBC-1, EBC-2, EBC-3, EBC-4, EBC-5, EBC-6, and EBC-16, the samples were received at the laboratory past the 48-hour holding time for unpreserved samples for the low level mercury test. The samples were submitted in the incorrect containers. Sample results were rejected (R).

Laboratory Detection Limits

The laboratory achieved specified detection limits. Reported detection limits and analytical results were adjusted for any required dilution factors.

Blank Contamination

No target analytes were detected in laboratory blanks associated with the samples.

Laboratory Control Sample Recovery

Laboratory control sample recoveries were within QC limits of 80 to 120 percent for all analytes.

Matrix Spike/Matrix Spike Duplicate Recovery

Matrix spike recoveries met QC limits of 75 to 125 percent with the following exceptions:

- For soil sample EBC-1-S1 MS, the recoveries for copper, lead, and zinc were outside the control limits due to high target analytes in the source sample and insufficient spiking amounts. The results were not qualified.
- For soil sample EBC-1-S1 MS, the recoveries for chromium and mercury were outside the control limits. The results for those analytes in soil sample EBC-1-S1 were qualified as estimated (J).

Page C-11 Hart Crowser

Laboratory Duplicate Sample Analysis

The RPD between replicate measurements was within QC limits with the following exceptions. For soil sample EBC-1-S1, the RPD for arsenic, cadmium, copper, nickel, and lead exceeded the control limits due to sample heterogeneity. Results for those analytes were qualified as estimated ().

Field Duplicate Sample Analysis

The RPD between replicate measurements was within 50 percent for all analytes.

Dissolved Metals

Analytical Methods

Analysis for arsenic, cadmium, chromium, copper, lead, nickel, and zinc were conducted by ICP following EPA Method 200.8. Analysis for mercury was conducted by CVAA following EPA Method 1631E.

Sample Holding Times

The samples were prepared and analyzed within holding time limits with the following exceptions:

■ For groundwater samples EBC-1, EBC-2, EBC-3, EBC-4, EBC-5, EBC-6, and EBC-16, the samples were received at the laboratory past the 24-hour limit for sample filtration for the low level mercury test. The samples were submitted in the incorrect containers. Sample results were rejected (R).

Blank Contamination

No target analytes were detected in laboratory blanks associated with the samples.

Laboratory Control Sample Recovery

Laboratory control sample recoveries were within QC limits.

Matrix Spike/Matrix Spike Duplicate Recovery

Matrix spike recoveries were within QC limits.

Page C-12 Hart Crowser

Laboratory Duplicate Sample Analysis

The RPD between replicate measurements was within QC limits.

Field Duplicate Sample Analysis

The RPD between replicate measurements was within 50 percent limits for chromium and nickel. The RPD was not applicable for the other metals.

J:\Jobs\1749002\Phase 01\EBC Upland Report (12-1-09).doc

Hart Crowser Page C-13

CERTIFICATES OF ANALYSIS ANALYTICAL RESOURCES, INC JOB NOS. NI87, NJ87, NJ45

September 11, 2008

Rick Moore Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

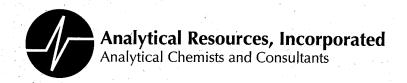
RE: Client Project: Pier 23-EBC ARI Job No. NI87

Dear Rick;

Please find enclosed the original chain of custody (COC) records, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received six water samples and a trip blank on August 4, 2008. The samples were received with a cooler temperature range of 6.6 to 10.4°C. Please review the Cooler Receipt Form for any sample discrepancies.

The samples were analyzed for VOCs, SVOCs, PCBs, NWTPH-Gx/BETX, NWTPH-Dx, and Total and Dissolved Metals/Mercury, as requested on the COC. The Total and Dissovled Metals/Mercury analyses were subcontracted to Columbia Analytical Services in Kelso, WA.

For the Volatiles analysis: Continuing Calibrations had compounds outside of the 20% control limit, but were accepted outliers under ARI SOPs. No further corrective action was required.


There were no matrix spike and matrix spike duplicate percent recoveries for 2-Chloroethylvinylether for sample **EBC-4**. Since the LCS and LCSD percent recoveries were within control limits, no further corrective action was required.

Several matrix spike and matrix spike duplicate percent recoveries were outside control limits high for sample **EBC-4**. Since all of the LCS and LCSD percent recoveries were within control limits, no further corrective action was required.

There were no anomalies associated with the Semi-volatiles analysis.

For the PCBs analysis: Continuing Calibrations had compounds outside of the 20% control limit, but were accepted outliers under ARI SOPs. No further corrective action was required.

The surrogate percent recovery for Tetrachlorometaxylene was outside control limits for sample **EBC-1**. All other surrogate recoveries were within control limits. No further corrective action was required.

There were no anomalies associated with the NWTPH-Gx/BETX analysis.

There were no anomalies associated with the NWTPH-Dx analysis.

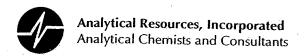
Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

kellyb@arilabs.com


206/695-6211 Enclosures

cc: eFile NI87

KFB/co

1910 Fairview Avenue East Seattle, Washington 98102-3699 Hart Crowser, Inc. Phone: 206-324-9530 FAX: 206-328-5581 COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ **TOTAL NUMBER OF CONTAINERS** □N/A □0VERNIGHT TANDARD SAMPLE RECEIPT INFORMATION SHIPMENT METHOD: CHAND □ 1 WEEK MSIMSD OTHER TURNAROUND TIME: GOOD CONDITION CUSTODY SEALS: TEMPERATURE ☐ 24 HOURS ☐ 48 HOURS ☐ 72 HOURS COURIER NO. OF CONTAINERS **ARTCROWSER** Added extra bottles for reductive Precipitation extraction step(1640) STORAGE LOCATION: 07/31/68 + PB, Cd, Cr, Cu, Pb, Ni, & Zn. SPECIAL SHIPMENT HANDLING OR for Other Contract Requirements Gold to Sample Custodian STORAGE REQUIREMENTS: See Lab Work Order No. COOLER NO.: Lab to Return White Copy to Hart Crowser 子の MATRIX 왕 근 DATE DATE TIME HART CROWSER CONTACT PROJEC (SOOGWIN) 240 400 7/30/08/1030 TIME Hoore DATE Sample Custody Record
Samples Shipped to: RECEIVED BY RECEIVED BY _ LAB NUMBER PROJECT NAME Pier 23 - F.B. PRINT NAME SIGNATURE COMPAN COMPANY 1/3/886.1 Pink to Project Manager SAMPLED BY: Carl Ulberry る中の DESCRIPTION EBC-1 Various DATE · J DATE 1ME 10-0197 BOL Nie Blank SAMPLE ID EBC-3 EBC-4 White and Yellow Copies to Lab RILLINQUISHERABY RELINQUISHED BY LAB NO. PRINT NAME SIGNATURE COMPANY

200

Cooler Receipt Form

ARI Client: HART Crowser	Project Name: Pier 23 EBC
COC No:	Delivered by: ARI Courier
Assigned ARI Job No: NIST	Tracking No:
Preliminary Examination Phase:	
	ed, etc.) YES NO YES NO O°C for chemistry 1 7.0 52 (2. 2 3) 6 766 10 4 C
Cooler Accepted by: Erill KASA/2DA	Date: 07/31/08 Time: 11:00
Complete custody forms	s and attach all shipping documents
Log-In Phase:	
Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Did all bottle labels and tags agree with custody paywere all bottles used correct for the requested and Do any of the analyses (bottles) require preservation. Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottles.	Restriction Restriction
Samples Logged by:	Date: 8 4 68 Time: \\ \(\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
** Notify Project Manage	er of discrepancies or concerns **
Explain discrepancies or negative responses: Some Small aububli all Samples	les in some vials in
	By: 2 Date: 8 4 78

-- 100 -- 100 -- 100

755% 75% 24%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: NI87A LIMS ID: 08-18787

Matrix: Water

Data Release Authorized: Reported: 08/08/08

Instrument/Analyst: FINN3/JZ Date Analyzed: 08/07/08 13:06 Sample ID: EBC-1 SAMPLE

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5		Ū
75-01-4	Vinyl Chloride	0.2		U
75-00-3	Chloroethane	0.2		U
75-09-2	Methylene Chloride	0.5		U
67-64-1	Acetone	3.0		บ
75-15-0	Carbon Disulfide	0.2		U
75-35-4	1,1-Dichloroethene	0.2		Ü
75-34-3	1,1-Dichloroethane	0.2		Ü
156-60-5	trans-1,2-Dichloroethene	0.2		U
156-59-2	cis-1,2-Dichloroethene	0.2	0.2	•
67-66-3	Chloroform	0.2		Ü
107-06-2	1,2-Dichloroethane	0.2		IJ
78-93-3	2-Butanone	2.5		J
71-55-6	1,1,1-Trichloroethane	0.2		J
56-23-5	Carbon Tetrachloride	0.2		J
108-05-4	Vinyl Acetate	1.0		J
75-27-4	Bromodichloromethane	0.2	< 0.2 T	
78-87-5	1,2-Dichloropropane	0.2	< 0.2 U	
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2 0	
79-01-6	Trichloroethene	0.2	< 0.2 0	
124-48-1	Dibromochloromethane	0.2	< 0.2 0	
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2 U	
71-43-2	Benzene	0.2	< 0.2 U	
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2 U	
110-75-8	2-Chloroethylvinylether	1.0	< 1.0 U	
75-25-2	Bromoform	0.2	< 0.2 U	
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5 U	
591-78-6	2-Hexanone	2.5	< 2.5 U	
127-18-4	Tetrachloroethene	0.2	< 0.2 U	
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2 U	
108-88-3	Toluene	0.2	< 0.2 U	
108-90-7	Chlorobenzene	0.2	< 0.2 U	
100-41-4	Ethylbenzene	0.2	< 0.2 U	
100-42-5	Styrene	0.2	< 0.2 U	
75-69-4	Trichlorofluoromethane	0.2	< 0.2 U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2 U	
1330-20-7	m,p-Xylene	0.4	< 0.4 U	
95-47-6	o-Xylene	0.2	< 0.1 U	
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2 U	
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2 U	
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2 U	
107-02-8	Acrolein	5.0	< 5.0 U	
74-88-4	Methyl Iodide	1.0	< 1.0 U	
74-96-4	Bromoethane	0.2	< 0.2 U	
107-13-1	Acrylonitrile	1.0	< 1.0 U	
563-58-6	1,1-Dichloropropene	0.2	< 0.2 U	
74-95-3	Dibromomethane	0.2	< 0.2 U	
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 U	
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5 U	
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5 U	
	-			

ORGANICS ANALYSIS DATA SHEET
Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: EBC-1 SAMPLE

Lab Sample ID: NI87A LIMS ID: 08-18787

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/07/08 13:06

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	Ū
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ü
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	Ū
108-86-1	Bromobenzene	0.2	< 0.2	Ū
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	Ū
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	Ū
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	υ
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U
	·	0.5	~ 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	112%
d8-Toluene	100%
Bromofluorobenzene	92.2%
d4-1,2-Dichlorobenzene	109%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: NI87B LIMS ID: 08-18788

Matrix: Water

Data Release Authorized: Reported: 08/08/08

Instrument/Analyst: FINN3/JZ Date Analyzed: 08/07/08 13:33 QC Report No: NI87-HART CROWSER, INC.

Sample ID: EBC-3

SAMPLE

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	υ
74-83-9	Bromomethane	0.5	< 0.5	Ū
75-01-4	Vinyl Chloride	0.2	0.3	
75-00-3	Chloroethane	0.2		
75-09-2	Methylene Chloride	0.5	< 0.5	Ū
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	Ū
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	Ū
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	Ū
67-66-3	Chloroform	0.2	< 0.2	Ū
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ū
78-93-3	2-Butanone	2.5	< 2.5	Ū
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ū
56-23-5	Carbon Tetrachloride	0.2	< 0.2	Ū
108-05-4	Vinyl Acetate	1.0	< 1.0	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	Ū
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ū
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	Ū
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	Ū
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ü
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	Ü
75-25-2	Bromoform	0.2	< 0.2	Ü
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ü
591-78-6	2-Hexanone	2.5	< 2.5	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ū
108-88-3	Toluene	0.2	< 0.2	Ū
108-90-7	Chlorobenzene	0.2	< 0.2	Ū
100-41-4	Ethylbenzene	0.2	< 0.2	Ū
100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	Ŭ
1330-20-7	m,p-Xylene	0.4	< 0.4	บ
95-47-6	o-Xylene	0.2	< 0.2	Ū
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	ŭ
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ū
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	Ü
107-02-8	Acrolein	5.0	< 5.0	ŭ
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	0.2	< 0.2	ŭ
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	Ū
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ū
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.2	U
96-18-4	1,2,3-Trichloropropane	0.5		
·	-,-,o illonioropropane	0.5	< 0.5	Ū

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: EBC-3
SAMPLE

Lab Sample ID: NI87B LIMS ID: 08-18788

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/07/08 13:33

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	106%
d8-Toluene	101%
Bromofluorobenzene	97.2%
d4-1,2-Dichlorobenzene	106%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Lab Sample ID: NI87C

LIMS ID: 08-18789

QC Report No: NI87-HART CROWSER, INC.

Sample ID: EBC-4

SAMPLE

Project: PIER 23-EBC

Matrix: Water Data Release Authorized: Reported: 08/08/08

Date Sampled: 07/30/08 Date Received: 08/04/08

Instrument/Analyst: FINN3/JZ Date Analyzed: 08/07/08 14:00 Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	υ
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	Ü
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	υ
563-58-6	1,1-Dichloropropene	0.2	< 0.2	υ
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: EBC-4
SAMPLE

Lab Sample ID: NI87C

QC Report No: N187-HART CROWSER, INC.

LIMS ID: 08-18789

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/07/08 14:00

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	Ū
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	Ū

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	111%
d8-Toluene	100%
Bromofluorobenzene	91.5%
d4-1.2-Dichlorobenzene	104%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

QC Report No: NI87-HART CROWSER, INC.

Sample ID: TRIP BLANK

SAMPLE

Project: PIER 23-EBC

LIMS ID: 08-18790
Matrix: Water
Data Pelease Authorized:

Lab Sample ID: NI87D

Data Release Authorized: Reported: 08/08/08

Date Sampled: 07/30/08
Date Received: 08/04/08

Instrument/Analyst: FINN3/JZ Sample Amount: 20.0 mL Date Analyzed: 08/07/08 12:46 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	0.5	
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	Ū
75-35-4	1,1-Dichloroethene	0.2	< 0.2	υ
75-34-3	1,1-Dichloroethane	0.2	< 0.2	Ū
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ū
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	Ū
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ū
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	Ū
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	Ū
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	Ū
75-25-2	Bromoform	0.2	< 0.2	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ū
591-78-6	2-Hexanone	2.5	< 2.5	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ū
108-88-3	Toluene	0.2	< 0.2	Ū
108-90-7	Chlorobenzene	0.2	< 0.2	Ū
100-41-4	Ethylbenzene	0.2	< 0.2	υ
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ū
1330-20-7	m,p-Xylene	0.4	< 0.4	Ū
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ū
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	Ū
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ū
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	Ū
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: TRIP BLANK SAMPLE

Lab Sample ID: NI87D LIMS ID: 08-18790 QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/07/08 12:46

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ū
142-28-9	1,3-Dichloropropane	0.2	< 0.2	υ
98-82-8	Isopropylbenzene	0.2	< 0.2	υ
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	99.0%
Bromofluorobenzene	91.5%
d4-1.2-Dichlorobenzene	103%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
NI87A	EBC-1	20	112%	100%	92.2%	109%	0
NI87B	EBC-3	20	106%	101%	97.2%		0
						106%	0
MB-080708	Method Blank	20	103%	97.2%	89.0%	96.0%	0
LCS-080708	Lab Control	20	100%	99.5%	99.5%	95.0%	0
LCSD-080708	Lab Control Dup	20	101%	97.2%	97.8%	98.8%	0
NI87C	EBC-4	20	111%	100%	91.5%	104%	0
NI87CMS	EBC-4	20	105%	100%	100%	95.5%	0
NI87CMSD	EBC-4	20	105%	100%	101%	102%	0
NI87D	TRIP BLANK	20	105%	99.0%	91.5%	103%	0
		LCS	MB LIM	ITS		QC LIMIT	rs
SW8260B							
(DCE) = d4-1,	,2-Dichloroethane		70-131			64-146	5
(TOL) = d8-Toluene			80-120			78-125	5
(BFB) = Bromofluorobenzene		74-121		71-120			
(DCB) = d4-1,	2-Dichlorobenzene		80-120			80-121	

Prep Method: SW5030B Log Number Range: 08-18787 to 08-18790

Sample ID: EBC-4 MATRIX SPIKE

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Reported: 08/08/08

Instrument/Analyst MS: FINN3/JZ

MSD: FINN3/JZ

Date Analyzed MS: 08/07/08 14:27

MSD: 08/07/08 14:54

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount MS: 20.0 mL

MSD: 20.0 mL

Purge Volume MS: 20.0 mL

MSD: 20.0 mL

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Chloromethane	< 0.2 U	4.2	4.0	105%	4.5	4.0	1100	6.00
Bromomethane	< 0.5 Ū	4.6	4.0	115%	5.1	4.0	112%	6.9%
Vinyl Chloride	< 0.2 U	4.5	4.0	112%	4.7	4.0	128%	10.3%
Chloroethane	< 0.2 U	4.0	4.0	100%	4.2	4.0	118%	4.3%
Methylene Chloride	< 0.5 U	3.7	4.0	92.5%	3.8		105%	4.9%
Acetone	< 3.0 U	25.0	20.0	125%	27.3	4.0	95.0%	2.7%
Carbon Disulfide	< 0.2 U	4.5	4.0	112%	4.9	20.0	136%	8.8%
1,1-Dichloroethene	< 0.2 U	4.0	4.0	100%	4.1	4.0	122%	8.5%
1,1-Dichloroethane	< 0.2 U	4.0	4.0	100%	4.2	4.0	102%	2.5%
trans-1,2-Dichloroethene	< 0.2 U	4.0	4.0	100%	4.2	4.0	105%	4.9%
cis-1,2-Dichloroethene	< 0.2 U	4.2	4.0	105%	4.1	4.0	102%	2.5%
Chloroform	< 0.2 U	4.0	4.0	100%		4.0	112%	6.9%
1,2-Dichloroethane	< 0.2 U	4.0	4.0	100%	4.2	4.0	105%	4.9%
2-Butanone	< 2.5 U	23.4	20.0	117%	4.3	4.0	108%	7.2%
1,1,1-Trichloroethane	< 0.2 U	4.0	4.0	100%	25.7	20.0	128%	9.4%
Carbon Tetrachloride	< 0.2 U	3.8	4.0		4.1	4.0	102%	2.5%
Vinyl Acetate	< 1.0 U	4.0	4.0	95.0%	4.0	4.0	100%	5.1%
Bromodichloromethane	< 0.2 U	4.0	4.0	100%	4.2	4.0	105%	4.9%
1,2-Dichloropropane	< 0.2 U	4.1	4.0	100%	4.2	4.0	105%	4.9%
cis-1,3-Dichloropropene	< 0.2 U	4.2		102%	4.4	4.0	110%	7.1%
Trichloroethene	< 0.2 U	3.9	4.0 4.0	105%	4.4	4.0	110%	4.7%
Dibromochloromethane	< 0.2 U	4.1		97.5%	4.1	4.0	102%	5.0%
1,1,2-Trichloroethane	< 0.2 U	4.1	4.0	102%	4.4	4.0	110%	7.1%
Benzene	< 0.2 U	4.2	4.0 4.0	105%	4.6	4.0	115%	9.1%
trans-1,3-Dichloropropene	< 0.2 U	4.2	-	102%	4.3	4.0	108%	4.8%
2-Chloroethylvinylether	< 1.0 U	< 1.0 U	4.0	105%	4.5	4.0	112%	6.9%
Bromoform	< 0.2 U	3.6	4.0	NA	< 1.0 U	4.0	NA	NA
4-Methyl-2-Pentanone (MIBK)	< 2.5 U	28.8	4.0 20.0	90.0%	4.1	4.0	102%	13.0%
2-Hexanone	< 2.5 U	29.7	20.0	144%	32.4	20.0	162%	11.8%
Tetrachloroethene	< 0.2 U	3.7	4.0	148%	31.9	20.0	160%	7.1%
1,1,2,2-Tetrachloroethane	< 0.2 U	3.7	4.0	92.5%	3.9	4.0	97.5%	5.3%
Toluene	< 0.2 U	3.7	4.0	97.5%	4.4	4.0	110%	12.0%
Chlorobenzene	< 0.2 U	3.8		92.5%	3.8	4.0	95.0%	2.7%
Ethylbenzene	< 0.2 U	3.9	4.0	95.0%	4.2	4.0		10.0%
Styrene	< 0.2 U	4.2	4.0	97.5%	4.2	4.0	105%	7.4%
Trichlorofluoromethane	< 0.2 U	4.1	4.0	105%	4.5	4.0	112%	6.9%
1,1,2-Trichloro-1,2,2-trifl	< 0.2 U	4.1	4.0	102%	4.2	4.0	105%	2.4%
m,p-Xylene	< 0.4 U	8.0	4.0	102%	4.4	4.0	110%	7.1%
o-Xylene	< 0.4 U	3.9	8.0	100%	8.6	8.0	108%	7.2%
1,2-Dichlorobenzene	< 0.2 U	3.9	4.0	97.5%	4.2	4.0	105%	7.4%
1,3-Dichlorobenzene	< 0.2 U	3.7	4.0	90.0%	4.2	4.0		15.4%
1,4-Dichlorobenzene			4.0	92.5%	4.1	4.0		10.3%
Acrolein	< 0.2 U < 5.0 U	3.7	4.0	92.5%	4.1	4.0		10.3%
Methyl Iodide		24.6	20.0	123%	26.4	20.0	132%	7.1%
Bromoethane	< 1.0 U	5.1	4.0	128%	5.7	4.0		11.1%
Acrylonitrile	< 0.2 U	4.2	4.0	105%	4.6	4.0	115%	9.1%
1,1-Dichloropropene	< 1.0 U	4.3	4.0	108%	4.8	4.0		11.0%
-,- Dremtorobrobene	< 0.2 U	3.9	4.0	97.5%	4.2	4.0	105%	7.4%

Page 2 of 2

Sample ID: EBC-4
MATRIX SPIKE

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Lab Sample ID: NI87C LIMS ID: 08-18789 Matrix: Water

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
				-				
Dibromomethane	< 0.2 U	4.2	4.0	105%	4.4	4.0	110%	4.7%
1,1,1,2-Tetrachloroethane	< 0.2 U	3.9	4.0	97.5%	4.0	4.0	100%	2.5%
1,2-Dibromo-3-chloropropane	< 0.5 Ŭ	4.3	4.0	108%	4.9	4.0	122%	13.0%
1,2,3-Trichloropropane	< 0.5 U	3.9	4.0	97.5%	4.4	4.0	110%	12.0%
trans-1,4-Dichloro-2-butene	< 1.0 U	4.2	4.0	105%	4.9	4.0	122%	15.4%
1,3,5-Trimethylbenzene	< 0.2 U	3.6	4.0	90.0%	4.1	4.0	102%	13.0%
1,2,4-Trimethylbenzene	< 0.2 U	3.8	4.0	95.0%	4.3	4.0	108%	12.3%
Hexachlorobutadiene	< 0.5 U	3.6	4.0	90.0%	3.9	4.0	97.5%	8.0%
Ethylene Dibromide	< 0.2 U	4.2	4.0	105%	4.4	4.0	110%	4.7%
Bromochloromethane	< 0.2 U	4.1	4.0	102%	4.4	4.0	110%	7.1%
2,2-Dichloropropane	< 0.2 U	3.9	4.0	97.5%	3.9	4.0	97.5%	0.0%
1,3-Dichloropropane	< 0.2 U	4.1	4.0	102%	4.3	4.0	108%	4.8%
Isopropylbenzene	< 0.2 U	3.6	4.0	90.0%	4.0	4.0	100%	10.5%
n-Propylbenzene	< 0.2 U	3.7	4.0	92.5%	4.1	4.0	102%	10.3%
Bromobenzene	< 0.2 U	3.7	4.0	92.5%	4.2	4.0	105%	12.7%
2-Chlorotoluene	< 0.2 U	3.6	4.0	90.0%	4.0	4.0	100%	10.5%
4-Chlorotoluene	< 0.2 U	3.9	4.0	97.5%	4.3	4.0	108%	9.8%
tert-Butylbenzene	< 0.2 U	3.6	4.0	90.0%	3.9	4.0	97.5%	8.0%
sec-Butylbenzene	< 0.2 U	3.8	4.0	95.0%	4.2	4.0	105%	10.0%
4-Isopropyltoluene	< 0.2 U	3.8	4.0	95.0%	4.1	4.0	102%	7.6%
n-Butylbenzene	< 0.2 U	3.6	4.0	90.0%	3.8	4.0	95.0%	5.4%
1,2,4-Trichlorobenzene	< 0.5 U	3.7	4.0	92.5%	3.8	4.0	95.0%	2.7%
Naphthalene	< 0.5 U	3.9	4.0	97.5%	3.4	4.0	85.0%	13.7%
1,2,3-Trichlorobenzene	< 0.5 U	3.8	4.0	95.0%	3.9	4.0	97.5%	2.6%

Reported in μ g/L (ppb)

NA-No recovery due to high concentration of analyte in original sample, calculated negative recovery, or undetected spike.

RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: EBC-4 Page 1 of 2 MATRIX SPIKE

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Instrument/Analyst: FINN3/JZ

Date Analyzed: 08/07/08 14:27

Reported: 08/08/08

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2		
74-83-9	Bromomethane	0.5		
75-01-4	Vinyl Chloride	0.2		
75-00-3	Chloroethane	0.2		
75-09-2	Methylene Chloride	0.5		
67-64-1	Acetone	3.0		
75-15-0	Carbon Disulfide	0.2		
75-35-4	1,1-Dichloroethene	0.2		
75-34-3	1,1-Dichloroethane	0.2	and the tree	
156-60-5	trans-1,2-Dichloroethene	0.2		
156-59-2	cis-1,2-Dichloroethene	0.2		
67-66-3	Chloroform	0.2		
107-06-2	1,2-Dichloroethane	0.2		
78-93-3	2-Butanone	2.5		
71-55-6	1,1,1-Trichloroethane	0.2		
56-23-5	Carbon Tetrachloride	0.2		
108-05-4	Vinyl Acetate	1.0		
75-27-4	Bromodichloromethane	0.2		
78-87-5	1,2-Dichloropropane	0.2		
10061-01-5	cis-1,3-Dichloropropene	0.2		
79-01-6	Trichloroethene	0.2		
124-48-1	Dibromochloromethane	0.2		
79-00-5	1,1,2-Trichloroethane	0.2		
71-43-2	Benzene	0.2		
10061-02-6	trans-1,3-Dichloropropene	0.2		
110-75-8	2-Chloroethylvinylether	1.0		
75-25-2	Bromoform	0.2		
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5		
591-78-6	2-Hexanone	2.5		
127-18-4	Tetrachloroethene	0.2		
79-34-5	1,1,2,2-Tetrachloroethane	0.2		
108-88-3	Toluene	0.2		
108-90-7	Chlorobenzene	0.2		
100-41-4	Ethylbenzene	0.2		
100-42-5 75-69-4	Styrene Trichlorofluoromethane	0.2		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2		
1330-20-7	m,p-Xylene	0.4		
95-47-6	o-Xylene	0.2		
95-50-1	1,2-Dichlorobenzene	0.2		
541-73-1	1,3-Dichlorobenzene	0.2		
106-46-7	1,4-Dichlorobenzene	0.2		
107-02-8	Acrolein	5.0		
74-88-4	Methyl Iodide	1.0		
74-96-4	Bromoethane	0.2		
107-13-1	Acrylonitrile	1.0		
563-58-6	1,1-Dichloropropene	0.2		
74-95-3	Dibromomethane	0.2		
630-20-6	1,1,1,2-Tetrachloroethane	0.2		
96-12-8	1,2-Dibromo-3-chloropropane	0.5		
96-18-4	1,2,3-Trichloropropane	0.5		

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: EBC-4

MATRIX SPIKE

Lab Sample ID: NI87C

QC Report No: N187-HART CROWSER, INC.

LIMS ID: 08-18789

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/07/08 14:27

CAS Number	Analyte	RL	Result Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	
108-67-8	1,3,5-Trimethylbenzene	0.2	
95-63-6	1,2,4-Trimethylbenzene	0.2	
87-68-3	Hexachlorobutadiene	0.5	
106-93-4	Ethylene Dibromide	0.2	
74-97-5	Bromochloromethane	0.2	
594-20-7	2,2-Dichloropropane	0.2	
142-28-9	1,3-Dichloropropane	0.2	
98-82-8	Isopropylbenzene	0.2	
103-65-1	n-Propylbenzene	0.2	
108-86-1	Bromobenzene	0.2	
95-49-8	2-Chlorotoluene	0.2	
106-43-4	4-Chlorotoluene	0.2	-
98-06-6	tert-Butylbenzene	0.2	
135-98-8	sec-Butylbenzene	0.2	
99-87-6	4-Isopropyltoluene	0.2	
104-51-8	n-Butylbenzene	0.2	
120-82-1	1,2,4-Trichlorobenzene	0.5	
91-20-3	Naphthalene	0.5	
87-61-6	1,2,3-Trichlorobenzene	0.5	

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	100%
Bromofluorobenzene	100%
d4-1 2-Dichlorobenzene	ዓ5 5%

Page 1 of 2

MATRIX SPIKE DUP

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized: Reported: 08/08/08

Instrument/Analyst: FINN3/JZ Date Analyzed: 08/07/08 14:54

Project: PIER 23-EBC Date Sampled: 07/30/08 Date Received: 08/04/08

QC Report No: N187-HART CROWSER, INC.

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	
74-83-9	Bromomethane	0.5	
75-01-4	Vinyl Chloride	0.2	
75-00-3	Chloroethane	0.2	
75-09-2	Methylene Chloride	0.5	
67-64-1	Acetone	3.0	
75-15-0	Carbon Disulfide	0.2	
75-35-4	1,1-Dichloroethene	0.2	
75-34-3	1,1-Dichloroethane	0.2	
156-60-5	trans-1,2-Dichloroethene	0.2	
156-59-2	cis-1,2-Dichloroethene	0.2	
67-66-3	Chloroform	0.2	
107-06-2	1,2-Dichloroethane	0.2	
78-93-3	2-Butanone	2.5	
71-55-6	1,1,1-Trichloroethane	0.2	
56-23-5	Carbon Tetrachloride	0.2	
108-05-4	Vinyl Acetate	1.0	man har rate
75-27-4	Bromodichloromethane	0.2	~
78-87-5	1,2-Dichloropropane	0.2	
10061-01-5	cis-1,3-Dichloropropene	0.2	
79-01-6	Trichloroethene	0.2	
124-48-1	Dibromochloromethane	0.2	
79-00-5	1,1,2-Trichloroethane	0.2	
71-43-2	Benzene	0.2	
10061-02-6	trans-1,3-Dichloropropene	0.2	
110-75-8	2-Chloroethylvinylether	1.0	
75-25-2	Bromoform	0.2	
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	
591-78-6	2-Hexanone	2.5	
127-18-4	Tetrachloroethene	0.2	
79-34-5	1,1,2,2-Tetrachloroethane	0.2	
108-88-3	Toluene		
108-90-7	Chlorobenzene	0.2	
100-41-4	Ethylbenzene	0.2	
100-41-4	-	0.2	
	Styrene Trichlorofluoromethane	0.2	
75-69-4		0.2	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		
1330-20-7	m,p-Xylene	0.4	
95-47-6	o-Xylene	0.2	
95-50-1	1,2-Dichlorobenzene	0.2	
541-73-1	1,3-Dichlorobenzene	0.2	
106-46-7	1,4-Dichlorobenzene	0.2	
107-02-8	Acrolein	5.0	
74-88-4	Methyl Iodide	1.0	
74-96-4	Bromoethane	0.2	
107-13-1	Acrylonitrile	1.0	
563-58-6	1,1-Dichloropropene	0.2	
74-95-3	Dibromomethane	0.2	
630-20-6	1,1,1,2-Tetrachloroethane	0.2	
96-12-8	1,2-Dibromo-3-chloropropane	0.5	
96-18-4	1,2,3-Trichloropropane	0.5	

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-4 Page 2 of 2

MATRIX SPIKE DUP

Lab Sample ID: NI87C LIMS ID: 08-18789

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/07/08 14:54

CAS Number	Analyte	RL	Result Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	
108-67-8	1,3,5-Trimethylbenzene	0.2	
95-63-6	1,2,4-Trimethylbenzene	0.2	
87-68-3	Hexachlorobutadiene	0.5	
106-93-4	Ethylene Dibromide	0.2	
74-97-5	Bromochloromethane	0.2	
594-20-7	2,2-Dichloropropane	0.2	
142-28-9	1,3-Dichloropropane	0.2	
98-82-8	Isopropylbenzene	0.2	
103-65-1	n-Propylbenzene	0.2	
108-86-1	Bromobenzene	0.2	
95-49-8	2-Chlorotoluene	0.2	
106-43-4	4-Chlorotoluene	0.2	
98-06-6	tert-Butylbenzene	0.2	
135-98-8	sec-Butylbenzene	0.2	
99-87-6	4-Isopropyltoluene	0.2	
104-51-8	n-Butylbenzene	0.2	
120-82-1	1,2,4-Trichlorobenzene	0.5	
91-20-3	Naphthalene	0.5	
87-61-6	1,2,3-Trichlorobenzene	0.5	

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	100%
Bromofluorobenzene	101%
d4-1,2-Dichlorobenzene	102%

Page 1 of 2

Sample ID: LCS-080708 LAB CONTROL SAMPLE

Lab Sample ID: LCS-080708

LIMS ID: 08-18789 Matrix: Water

Data Release Authorized:

Reported: 08/08/08

Project: PIER 23-EBC

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: FINN3/JZ Date Analyzed LCS: 08/07/08 10:09

Sample Amount LCS: 20.0 mL Purge Volume LCS: 20.0 mL

QC Report No: N187-HART CROWSER, INC.

Analyte	LCS	Spike Added	Recovery
Chloromethane	4.5	4.0	112%
Bromomethane	4.8	4.0	120%
Vinyl Chloride	4.9	4.0	122%
Chloroethane	4.5	4.0	112%
Methylene Chloride	4.0	4.0	100%
Acetone	20.6	20.0	103%
Carbon Disulfide	4.5	4.0	112%
1,1-Dichloroethene	4.3	4.0	108%
1,1-Dichloroethane	4.2	4.0	105%
trans-1,2-Dichloroethene	4.3	4.0	108%
cis-1,2-Dichloroethene	4.2	4.0	105%
Chloroform	4.2	4.0	105%
1,2-Dichloroethane	4.0	4.0	100%
2-Butanone	19.4	20.0	97.0%
1,1,1-Trichloroethane	4.2	4.0	105%
Carbon Tetrachloride	4.1	4.0	102%
Vinyl Acetate	4.0	4.0	100%
Bromodichloromethane	3.9	4.0	97.5%
1,2-Dichloropropane	4.2	4.0	105%
cis-1,3-Dichloropropene	4.1	4.0	102%
Trichloroethene	4.2	4.0	105%
Dibromochloromethane	3.9	4.0	97.5%
1,1,2-Trichloroethane	4.0	4.0	100%
Benzene	4.3	4.0	108%
trans-1,3-Dichloropropene	4.0	4.0	100%
2-Chloroethylvinylether	3.5	4.0	87.5%
Bromoform	3.6	4.0	90.0%
4-Methyl-2-Pentanone (MIBK)	19.5	20.0	97.5%
2-Hexanone	19.1	20.0	95.5%
Tetrachloroethene	4.1	4.0	102%
1,1,2,2-Tetrachloroethane	3.8	4.0	95.0%
Toluene	3.9	4.0	97.5%
Chlorobenzene	4.1	4.0	102%
Ethylbenzene	4.4	4.0	110%
Styrene	4.4	4.0	110%
Trichlorofluoromethane	4.2	4.0	105%
1,1,2-Trichloro-1,2,2-trifluoroetha	4.0	4.0	100%
m,p-Xylene	8.9	8.0	111%
o-Xylene	4.2	4.0	105%
1,2-Dichlorobenzene	3.9	4.0	97.5%
1,3-Dichlorobenzene	4.0	4.0	100%
1,4-Dichlorobenzene	4.1	4.0	102%
Acrolein	21.6	20.0	108%
Methyl Iodide	5.3	4.0	132%
Bromoethane	4.2	4.0	105%
Acrylonitrile	4.1	4.0	102%
1,1-Dichloropropene	4.3	4.0	108%

Sample ID: LCS-080708

LAB CONTROL SAMPLE

Lab Sample ID: LCS-080708

QC Report No: N187-HART CROWSER, INC.

LIMS ID: 08-18789 Matrix: Water Project: PIER 23-EBC

Analyte	LCS	Spike Added	Recovery
Dibromomethane	4.0	4.0	100%
1,1,1,2-Tetrachloroethane	4.0	4.0	100%
1,2-Dibromo-3-chloropropane	3.8	4.0	95.0%
1,2,3-Trichloropropane	3.7	4.0	92.5%
trans-1,4-Dichloro-2-butene	4.0	4.0	100%
1,3,5-Trimethylbenzene	4.3	4.0	108%
1,2,4-Trimethylbenzene	4.4	4.0	110%
Hexachlorobutadiene	4.3	4.0	108%
Ethylene Dibromide	3.9	4.0	97.5%
Bromochloromethane	4.0	4.0	100%
2,2-Dichloropropane	4.3	4.0	108%
1,3-Dichloropropane	4.0	4.0	100%
Isopropylbenzene	4.3	4.0	108%
n-Propylbenzene	4.3	4.0	108%
Bromobenzene	4.0	4.0	100%
2-Chlorotoluene	4.1	4.0	102%
4-Chlorotoluene	4.4	4.0	110%
tert-Butylbenzene	4.2	4.0	105%
sec-Butylbenzene	4.4	4.0	110%
4-Isopropyltoluene	4.4	4.0	110%
n-Butylbenzene	4.4	4.0	110%
1,2,4-Trichlorobenzene	4.0	4.0	100%
Naphthalene	3.6	4.0	90.0%
1,2,3-Trichlorobenzene	3.9	4.0	97.5%

Reported in μ g/L (ppb)

NA-No recovery due to high concentration of analyte in original sample, calculated negative recovery, or undetected spike.

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	100%
d8-Toluene	99.5%
Bromofluorobenzene	99.5%
d4-1,2-Dichlorobenzene	95.0%

Sample ID: LCS-080708

LAB CONTROL SAMPLE

Lab Sample ID: LCS-080708

LIMS ID: 08-18789 Matrix: Water

Page 1 of 2

Data Release Authorized: Reported: 08/08/08

Date Analyzed LCS: 08/07/08 10:09

LCSD: 08/07/08 10:45

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: NA Date Received: NA

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL

Purge Volume LCS: 20.0 mL

LCSD: 20.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	4.5	4.0	112%	4.3	4.0	108%	4.5%
Bromomethane	4.8	4.0	120%	4.6	4.0	115%	4.3%
Vinyl Chloride	4.9	4.0	122%	4.7	4.0	118%	4.2%
Chloroethane	4.5	4.0	112%	4.2	4.0	105%	6.9%
Methylene Chloride	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Acetone	20.6	20.0	103%	19.4	20.0	97.0%	6.0%
Carbon Disulfide	4.5	4.0	112%	4.3	4.0	108%	4.5%
1,1-Dichloroethene	4.3	4.0	108%	4.2	4.0	105%	2.4%
1,1-Dichloroethane	4.2	4.0	105%	4.1	4.0	102%	2.4%
trans-1,2-Dichloroethene	4.3	4.0	108%	4.1	4.0	102%	4.8%
cis-1,2-Dichloroethene	4.2	4.0	105%	4.2	4.0	105%	0.0%
Chloroform	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,2-Dichloroethane	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
2-Butanone	19.4	20.0	97.0%	19.0	20.0	95.0%	2.1%
1,1,1-Trichloroethane	4.2	4.0	105%	4.1	4.0	102%	2.4%
Carbon Tetrachloride	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Vinyl Acetate	4.0	4.0	100%	3.7	4.0	92.5%	7.8%
Bromodichloromethane	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
1,2-Dichloropropane	4.2	4.0	105%	4.0	4.0	100%	4.9%
cis-1,3-Dichloropropene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Trichloroethene	4.2	4.0	105%	4.0	4.0	100%	4.9%
Dibromochloromethane	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
1,1,2-Trichloroethane	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Benzene	4.3	4.0	108%	4.0	4.0	100%	7.2%
trans-1,3-Dichloropropene	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
2-Chloroethylvinylether	3.5	4.0	87.5%	3.4	4.0	85.0%	2.9%
Bromoform	3.6	4.0	90.0%	3.6	4.0	90.0%	0.0%
4-Methyl-2-Pentanone (MIBK)	19.5	20.0	97.5%	19.4	20.0	97.0%	0.5%
2-Hexanone	19.1	20.0	95.5%	18.6	20.0	93.0%	2.7%
Tetrachloroethene	4.1	4.0	102%	4.0	4.0	100%	2.5%
1,1,2,2-Tetrachloroethane	3.8	4.0	95.0%	3.7	4.0	92.5%	2.7%
Toluene	3.9	4.0	97.5%	3.7	4.0	92.5%	5.3%
Chlorobenzene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Ethylbenzene	4.4	4.0	110%	4.2	4.0	105%	4.7%
Styrene	4.4	4.0	110%	4.1	4.0	102%	7.1%
Trichlorofluoromethane	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,1,2-Trichloro-1,2,2-trifluoroetha	4.0	4.0	100%	3.7	4.0	92.5%	7.8%
m,p-Xylene	8.9	8.0	111%	8.5	8.0	106%	4.6%
o-Xylene	4.2	4.0	105%	4.1	4.0	102%	2.4%
1,2-Dichlorobenzene	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
1,3-Dichlorobenzene	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
1,4-Dichlorobenzene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Acrolein	21.6	20.0	108%	21.1	20.0	106%	2.3%
Methyl Iodide	5.3	4.0	132%	5.1	4.0	128%	3.8%
Bromoethane	4.2	4.0	105%	4.1	4.0	102%	2.4%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-080708 Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-080708

LIMS ID: 08-18789

Matrix: Water

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Acrylonitrile	4.1	4.0	102%	4.1	4.0	102%	0.0%
1,1-Dichloropropene	4.3	4.0	108%	4.1	4.0	102%	4.8%
Dibromomethane	4.0	4.0	100%	4.0	4.0	100%	0.0%
1,1,1,2-Tetrachloroethane	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
1,2-Dibromo-3-chloropropane	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
1,2,3-Trichloropropane	3.7	4.0	92.5%	3.8	4.0	95.0%	2.7%
trans-1,4-Dichloro-2-butene	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
1,3,5-Trimethylbenzene	4.3	4.0	108%	4.2	4.0	105%	2.4%
1,2,4-Trimethylbenzene	4.4	4.0	110%	4.3	4.0	108%	2.3%
Hexachlorobutadiene	4.3	4.0	108%	4.0	4.0	100%	7.2%
Ethylene Dibromide	3.9	4.0	97.5%	3.7	4.0	92.5%	5.3%
Bromochloromethane	4.0	4.0	100%	4.0	4.0	100%	0.0%
2,2-Dichloropropane	4.3	4.0	108%	4.3	4.0	108%	0.0%
1,3-Dichloropropane	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Isopropylbenzene	4.3	4.0	108%	4.1	4.0	102%	4.8%
n-Propylbenzene	4.3	4.0	108%	4.2	4.0	105%	2.4%
Bromobenzene	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
2-Chlorotoluene	4.1	4.0	102%	4.0	4.0	100%	2.5%
4-Chlorotoluene	4.4	4.0	110%	4.4	4.0	110%	0.0%
tert-Butylbenzene	4.2	4.0	105%	4.1	4.0	102%	2.4%
sec-Butylbenzene	4.4	4.0	110%	4.3	4.0	108%	2.3%
4-Isopropyltoluene	4.4	4.0	110%	4.4	4.0	110%	0.0%
n-Butylbenzene	4.4	4.0	110%	4.3	4.0	108%	2.3%
1,2,4-Trichlorobenzene	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Naphthalene	3.6	4.0	90.0%	3.4	4.0	85.0%	5.7%
1,2,3-Trichlorobenzene	3.9	4.0	97.5%	3.6	4.0	90.0%	8.0%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	100%	101%
d8-Toluene	99.5%	97.2%
Bromofluorobenzene	99.5%	97.8%
d4-1.2-Dichlorobenzene	95.0%	98.8%

Sample ID: MB-080708 Page 1 of 2 METHOD BLANK

Lab Sample ID: MB-080708

LIMS ID: 08-19319

Matrix: Soil Data Release Authorized:

Instrument/Analyst: NT3/PAB

Date Analyzed: 08/07/08 11:25

Reported: 08/08/08

QC Report No: NJ40-Pacific Groundwater Group

Project: EPHRATA LANDFILL

JE0714

Date Sampled: NA Date Received: NA

Sample Amount: 100 mg-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	50	< 50	U
74-83-9	Bromomethane	50	< 50	U
75-01-4	Vinyl Chloride	50	< 50	U
75-00-3	Chloroethane	50	< 50	U
75-09-2	Methylene Chloride	100	< 100	U
67-64-1	Acetone	250	< 250	U
75-15-0	Carbon Disulfide	50	< 50	U
75-35-4	1,1-Dichloroethene	50	< 50	U
75-34-3	1,1-Dichloroethane	50	< 50	U
156-60-5	trans-1,2-Dichloroethene	50	< 50	Ŭ
156-59-2	cis-1,2-Dichloroethene	50	< 50	U
67-66-3	Chloroform	50	< 50	U
107-06-2	1,2-Dichloroethane	50	< 50	U
78-93-3	2-Butanone	250	< 250	U
71-55-6	1,1,1-Trichloroethane	50	< 50	U
56-23-5	Carbon Tetrachloride	50	< 50	U
108-05-4	Vinyl Acetate	250	< 250	U
75-27-4	Bromodichloromethane	50	< 50	U
78-87-5	1,2-Dichloropropane	50	< 50	U
10061-01-5	cis-1,3-Dichloropropene	50	< 50	U
79-01-6	Trichloroethene	50	< 50	U
124-48-1	Dibromochloromethane	50	< 50	U
79-00-5	1,1,2-Trichloroethane	50	< 50	U
71-43-2	Benzene	50	< 50	U
10061-02-6	trans-1,3-Dichloropropene	50	< 50	U
110-75-8	2-Chloroethylvinylether	250	< 250	U
75-25-2	Bromoform	50	< 50	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	250	< 250	U
591-78-6	2-Hexanone	250	< 250	U
127-18-4	Tetrachloroethene	50	< 50	U
79-34-5	1,1,2,2-Tetrachloroethane	50	< 50	U
108-88-3	Toluene	50	< 50	U
108-90-7	Chlorobenzene	50	< 50	U
100-41-4	Ethylbenzene	50	< 50	U
100-42-5	Styrene	50	< 50	U
75-69-4	Trichlorofluoromethane	50	< 50	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluo	roe 100	< 100	U
1330-20-7	m,p-Xylene	50	< 50	U
95-47-6	o-Xylene	50	< 50	U
95-50-1	1,2-Dichlorobenzene	50	< 50	U
541-73-1	1,3-Dichlorobenzene	50	< 50	U
106-46-7	1,4-Dichlorobenzene	50	< 50	U
107-02-8	Acrolein	2,500	< 2,500	U
74-88-4	Methyl Iodide	50	, < 50	U
74-96-4	Bromoethane	100	< 100	U
107-13-1	Acrylonitrile	250	< 250	U

Sample ID: MB-080708 METHOD BLANK Page 2 of 2

QC Report No: NJ40-Pacific Groundwater Group Lab Sample ID: MB-080708

LIMS ID: 08-19319 Project: EPHRATA LANDFILL Matrix: Soil

JE0714

Date Analyzed: 08/07/08 11:25

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	50	< 50	U
74-95-3	Dibromomethane	50	< 50	U
630-20-6	1,1,1,2-Tetrachloroethane	50	< 50	U
96-12-8	1,2-Dibromo-3-chloropropane	250	< 250	U
96-18-4	1,2,3-Trichloropropane	100	< 100	U
110-57-6	trans-1,4-Dichloro-2-butene	250	< 250	U
108-67-8	1,3,5-Trimethylbenzene	50	< 50	U
95-63-6	1,2,4-Trimethylbenzene	50	< 50	U
87-68-3	Hexachlorobutadiene	250	< 250	U
106-93-4	Ethylene Dibromide	50	< 50	U
74-97-5	Bromochloromethane	50	< 50	U
594-20-7	2,2-Dichloropropane	50	< 50	Ü
142-28-9	1,3-Dichloropropane	50	< 50	U
98-82-8	Isopropylbenzene	50	< 50	U
103-65-1	n-Propylbenzene	50	< 50	Ŭ
108-86-1	Bromobenzene	50	< 50	Ŭ
95-49-8	2-Chlorotoluene	50	< 50	U
106-43-4	4-Chlorotoluene	50	< 50	U
98-06 - 6	tert-Butylbenzene	50	< 50	U
135-98-8	sec-Butylbenzene	50	< 50	U
99-87-6	4-Isopropyltoluene	50	< 50	U
104-51-8	n-Butylbenzene	50	< 50	U
120-82-1	1,2,4-Trichlorobenzene	250	< 250	U
91-20-3	Naphthalene	250	< 250	υ
87-61-6	1,2,3-Trichlorobenzene	250	< 250	U
1634-04-4	Methyl tert-Butyl Ether	50	< 50	U
110-54-3	Hexane	250	< 250	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	100%
d8-Toluene	98.1%
Bromofluorobenzene	94.7%
d4_1 2_Dichlorobenzene	1028

Sample ID: MB-080708 Page 1 of 2 METHOD BLANK

Lab Sample ID: MB-080708

LIMS ID: 08-18789

Matrix: Water Data Release Authorized:

Reported: 08/08/08

Instrument/Analyst: FINN3/JZ Date Analyzed: 08/07/08 11:07 QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: NA Date Received: NA

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25 -2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	Ŭ
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ŭ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	Ŭ
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	Ŭ
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ū
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Page 2 of 2

Sample ID: MB-080708 METHOD BLANK

Lab Sample ID: MB-080708 LIMS ID: 08-18789

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/07/08 11:07

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	Ū
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	Ū
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	103%
d8-Toluene	97.2%
Bromofluorobenzene	89.0%
d4-1 2-Dichlorobenzene	96 0%

Sample ID: EBC-1 SAMPLE

Lab Sample ID: NI87A LIMS ID: 08-18787

Matrix: Water

Data Release Authorized:

Reported: 08/13/08

Date Extracted: 08/06/08 Date Analyzed: 08/13/08 06:35 Instrument/Analyst: NT6/LJR

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

NA

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: EBC-1 SAMPLE

Lab Sample ID: NI87A LIMS ID: 08-18787

QC Report No: N187-HART CROWSER, INC.

Matrix: Water

Project: PIER 23-EBC

NA

Date Analyzed: 08/13/08 06:35

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz (a, h) anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl	68.4% 78.8%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	63.2%
		d4-1,2-Dichioropenzene	55.2%
d5-Phenol	75.7%	2-Fluorophenol	68.5%
2,4,6-Tribromophenol	69.9%	d4-2-Chlorophenol	71.7%

Page 1 of 2

Sample ID: EBC-3 SAMPLE

Lab Sample ID: NI87B LIMS ID: 08-18788

Matrix: Water

Data Release Authorized MW Reported: 08/13/08

Date Extracted: 08/06/08 Date Analyzed: 08/13/08 07:09 Instrument/Analyst: NT6/LJR

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

NA

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U
	- •	-	0

Sample ID: EBC-3 SAMPLE

Lab Sample ID: NI87B LIMS ID: 08-18788

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Matrix: Water

NA

Date Analyzed: 08/13/08 07:09

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 Ū
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	68.8%	2-Fluorobiphenyl	58.8%
d14-p-Terphenyl	74.8%	d4-1,2-Dichlorobenzene	
d5-Phenol			49.6%
	57.1%	2-Fluorophenol	60.5%
2,4,6-Tribromophenol	76.0%	d4-2-Chlorophenol	60.38
		ar z chrorophenor	69.3%

delice.

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Page 1 of 2

Sample ID: EBC-4
SAMPLE

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized!

Reported: 08/13/08

NA
Date Sampled:

Date Sampled: 07/30/08 Date Received: 08/04/08

Project: PIER 23-EBC

Date Extracted: 08/06/08
Date Analyzed: 08/13/08 07:43
Instrument/Analyst: NT6/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

QC Report No: N187-HART CROWSER, INC.

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	
51-28-5	2,4-Dinitrophenol	1.0	< 1.0 U
100-02-7	4-Nitrophenol	5.0	< 10 U
132-64-9	Dibenzofuran	1.0	< 5.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 1.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate		< 5.0 U
		1.0	< 1.0 U

Page 2 of 2 Sample ID: EBC-4 SAMPLE

Lab Sample ID: NI87C

QC Report No: NI87-HART CROWSER, INC.

LIMS ID: 08-18789

Project: PIER 23-EBC

Matrix: Water

NA

Date Analyzed: 08/13/08 07:43

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	1.0
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	62.4%	2-Fluorobiphenyl	57.6%
d14-p-Terphenyl	92.4%	d4-1,2-Dichlorobenzene	48.8%
d5-Phenol	68.3%	2-Fluorophenol	63.2%
2,4,6-Tribromophenol	70.7%	d4-2-Chlorophenol	66.4%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
EBC-1 EBC-3 MB-080608 LCS-080608 LCSD-080608 EBC-4 EBC-4 MS	68.4% 68.8% 72.4% 77.6% 78.4% 62.4% 78.4%	63.2% 58.8% 66.4% 78.4% 79.6% 57.6% 83.2% 76.8%	78.8% 74.8% 88.0% 100% 107% 92.4% 76.8% 87.6%	55.2% 49.6% 56.8% 61.2% 62.4% 48.8% 62.8% 60.8%	75.7% 57.1% 76.0% 85.6% 85.6% 68.3% 86.1% 82.1%	68.5% 60.5% 70.4% 76.5% 77.6% 63.2% 76.0% 73.3%	69.9% 76.0% 68.3% 85.1% 90.7% 70.7% 91.7% 86.1%	71.7% 69.3% 73.3% 79.5% 80.8% 66.4% 80.3% 76.5%	0 0 0 0 0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(54-102)	(40-103)
		2-Fluorobiphenyl	(47-99)	(35-98)
		d14-p-Terphenyl	(50-119)	(21-122)
(DCB)	=	d4-1,2-Dichlorobenzene	(39-86)	(28-85)
(PHL)	=	d5-Phenol	(45-100)	(32-99)
(2FP)	=	2-Fluorophenol	(49-94)	(36-93)
		2,4,6-Tribromophenol	(49-117)	(37-120)
		d4-2-Chlorophenol	(54-99)	(40-98)

Prep Method: SW3520C Log Number Range: 08-18787 to 08-18789

Sample ID: EBC-4 MS/MSD

Lab Sample ID: NI87C LIMS ID: 08-18789

QC Report No: NI87-HART CROWSER, INC.

Matrix: Water

Project: PIER 23-EBC

Data Release Authorized:

Date Sampled: 07/30/08

Reported: 08/13/08

Date Received: 08/04/08

Date Extracted MS/MSD: 08/06/08

Sample Amount MS: 500 mL

Date Analyzed MS: 08/13/08 08:18

MSD: 500 mL Final Extract Volume MS: 0.5 mL

MSD: 08/13/08 08:52

MSD: 0.5 mL

Instrument/Analyst MS: NT6/LJR

Dilution Factor MS: 1.00

MSD: NT6/LJR

MSD: 1.00

GPC Cleanup: NO

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 1.0 U	18.0	25.0	72.0%	17.5	25.0	70.0%	2.8%
Bis-(2-Chloroethyl) Ether	< 1.0 U	18.9	25.0	75.6%	18.2	25.0	72.8%	3.8%
2-Chlorophenol	< 1.0 U	18.8	25.0	75.2%	17.9	25.0	71.6%	4.9%
1,3-Dichlorobenzene	< 1.0 U	10.1	25.0	40.4%	10.5	25.0	42.0%	3.9%
1,4-Dichlorobenzene	< 1.0 U	10.5	25.0	42.0%	11.0	25.0	44.0%	4.7%
Benzyl Alcohol	< 5.0 U	31.1	50.0	62.2%	28.7	50.0	57.4%	8.0%
1,2-Dichlorobenzene	< 1.0 U	11.1	25.0	44.4%	11.6	25.0	46.4%	4.4%
2-Methylphenol	< 1.0 U	19.5	25.0	78.0%	18.5	25.0	74.0%	5.3%
2,2'-Oxybis(1-Chloropropane	e)< 1.0 U	17.7	25.0	70.8%	16.8	25.0	67.2%	5.2%
4-Methylphenol	< 1.0 U	40.5	50.0	81.0%	37.5	50.0	75.0%	7.7%
N-Nitroso-Di-N-Propylamine	< 5.0 U	16.8	25.0	67.2%	15.7	25.0	62.8%	6.8%
Hexachloroethane	< 1.0 U	8.4	25.0	33.6%	9.2	25.0	36.8%	9.1%
Nitrobenzene	< 1.0 U	18.9	25.0	75.6%	18.1	25.0	72.4%	4.3%
Isophorone	< 1.0 U	21.7	25.0	86.8%	19.8	25.0	79.2%	9.2%
2-Nitrophenol	< 5.0 U	19.1	25.0	76.4%	18.0	25.0	72.0%	5.9%
2,4-Dimethylphenol	< 1.0 U	16.9	25.0	67.6%	15.7	25.0	62.8%	7.4%
Benzoic Acid	< 10.0 U	58.2	75.0	77.6%	57.6	75.0	76.8%	1.0%
bis(2-Chloroethoxy) Methane	e < 1.0 U	19.7	25.0	78.8%	18.1	25.0	72.4%	8.5%
2,4-Dichlorophenol	< 5.0 U	19.6	25.0	78.4%	18.3	25.0	73.2%	6.9%
1,2,4-Trichlorobenzene	< 1.0 U	11.1	25.0	44.4%	11.4	25.0	45.6%	2.7%
Naphthalene	< 1.0 U	15.4	25.0	61.6%	14.9	25.0	59.6%	3.3%
4-Chloroaniline	< 5.0 U	38.2	60.0	63.7%	28.9	60.0	48.2%	27.7%
Hexachlorobutadiene	< 1.0 U	8.5	25.0	34.0%	9.1	25.0	36.4%	6.8%
4-Chloro-3-methylphenol	< 5.0 U	20.9	25.0	83.6%	19.5	25.0	78.0%	6.9%
2-Methylnaphthalene	< 1.0 U	15.4	25.0	61.6%	14.5	25.0	58.0%	6.0%
Hexachlorocyclopentadiene	< 5.0 U	26.3	75.0	35.1%	24.0	75.0	32.0%	9.1%
2,4,6-Trichlorophenol	< 5.0 Ų	20.7	25.0	82.8%	19.3	25.0	77.2%	7.0%
2,4,5-Trichlorophenol	< 5.0 U	21.7	25.0	86.8%	20.5	25.0	82.0%	5.7%
2-Chloronaphthalene	< 1.0 U	17.3	25.0	69.2%	16.1	25.0	64.4%	7.2%
2-Nitroaniline	< 5.0 U	20.4	25.0	81.6%	19.2	25.0	76.8%	6.1%
Dimethylphthalate	< 1.0 U	20.2	25.0	80.8%	18.8	25.0	75.2%	7.2%
Acenaphthylene	< 1.0 U	18.9	25.0	75.6%	17.4	25.0	69.6%	8.3%
3-Nitroaniline	< 5.0 U	53.8	64.0	84.1%	51.5	64.0	80.5%	4.4%
Acenaphthene	< 1.0 U	18.6	25.0	74.4%	17.1	25.0	68.4%	8.4%
2,4-Dinitrophenol	< 10.0 U	70.4	75.0	93.9%	67.8	75.0	90.4%	3.8%
4-Nitrophenol	< 5.0 U	18.1	25.0	72.4%	17.4	25.0	69.6%	3.9%
Dibenzofuran	< 1.0 U	19.5	25.0	78.0%	18.2	25.0	72.8%	6.9%
2,6-Dinitrotoluene	< 5.0 U	20.9	25.0	83.6%	19.6	25.0	78.4%	6.4%
2,4-Dinitrotoluene	< 5.0 U	21.1	25.0	84.4%	19.9	25.0	79.6%	5.9%
Diethylphthalate	< 1.0 U	19.0	25.0	76.0%	17.9	25.0	71.6%	6.0%
4-Chlorophenyl-phenylether	< 1.0 U	19.6	25.0	78.4%	18.0	25.0	72.0%	8.5%
Fluorene	< 1.0 U	20.2	25.0	80.8%	18.8	25.0	75.2%	7.2%
4-Nitroaniline	< 5.0 U	17.2	25.0	68.8%	16.6	25.0	66.4%	3.6%
4,6-Dinitro-2-Methylphenol		61.4	75.0	81.9%	58.9	75.0	78.5%	4.2%
N-Nitrosodiphenylamine	< 1.0 U	25.2	25.0	101%	23.9	25.0	95.6%	5.3%

Sample ID: EBC-4 MS/MSD

Lab Sample ID: NI87C

QC Report No: N187-HART CROWSER, INC.

LIMS ID: 08-18789 Matrix: Water

Project: PIER 23-EBC

Date Analyzed: 08/13/08 08:18

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
4-Bromophenyl-phenylether	< 1.0 U	20.0	25.0	80.0%	19.1	25.0	76.4%	4.6%
Hexachlorobenzene	< 1.0 U	20.0	25.0	80.0%	19.2	25.0	76.8%	4.1%
Pentachlorophenol	< 5.0 U	18.4	25.0	73.6%	17.5	25.0	70.0%	5.0%
Phenanthrene	< 1.0 U	19.8	25.0	79.2%	18.8	25.0	75.2%	5.2%
Carbazole	< 1.0 U	20.4	25.0	81.6%	19.6	25.0	78.4%	4.0%
Anthracene	< 1.0 U	18.6	25.0	74.4%	18.1	25.0	72.4%	2.7%
Di-n-Butylphthalate	< 1.0 U	20.0	25.0	80.0%	19.1	25.0	76.4%	4.6%
Fluoranthene	< 1.0 U	19.0	25.0	76.0%	18.0	25.0	72.0%	5.4%
Pyrene	< 1.0 U	22.1	25.0	88.4%	21.6	25.0	86.4%	2.3%
Butylbenzylphthalate	< 1.0 U	21.1	25.0	84.4%	20.6	25.0	82.4%	2.4%
3,3'-Dichlorobenzidine	< 5.0 U	22.6	64.0	35.3%	33.8	64.0	52.8%	39.7%
Benzo(a) anthracene	< 1.0 U	20.0	25.0	80.0%	19.6	25.0	78.4%	2.0%
bis(2-Ethylhexyl)phthalate	1.0	20.0	25.0	76.0%	18.8	25.0	71.2%	6.2%
Chrysene	< 1.0 U	19.6	25.0	78.4%	19.0	25.0	76.0%	3.1%
Di-n-Octyl phthalate	< 1.0 U	20.4	25.0	81.6%	19.8	25.0	79.2%	3.0%
Benzo(b) fluoranthene	< 1.0 U	19.6	25.0	78.4%	17.9	25.0	71.6%	9.1%
Benzo(k) fluoranthene	< 1.0 U	19.0	25.0	76.0%	18.9	25.0	75.6%	0.5%
Benzo(a)pyrene	< 1.0 U	17.3	25.0	69.2%	17.4	25.0	69.6%	0.6%
Indeno(1,2,3-cd)pyrene	< 1.0 U	23.6	25.0	94.4%	22.6	25.0	90.4%	4.3%
Dibenz(a,h)anthracene	< 1.0 U	24.2	25.0	96.8%	23.2	25.0	92.8%	4.2%
Benzo(g,h,i)perylene	< 1.0 U	24.8	25.0	99.2%	23.7	25.0	94.8%	4.5%
1-Methylnaphthalene	< 1.0 U	16.1	25.0	64.4%	15.3	25.0	61.2%	5.1%

Results reported in $\mu g/L$

RPD calculated using sample concentrations per SW846.

Sample ID: EBC-4 MATRIX SPIKE

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Reported: 08/13/08

Date Extracted: 08/06/08 Date Analyzed: 08/13/08 08:18 Instrument/Analyst: NT6/LJR

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

NA

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	
95-57-8	2-Chlorophenol	1.0	
541-73-1	1,3-Dichlorobenzene	1.0	
106-46-7	1,4-Dichlorobenzene	1.0	
100-51-6	Benzyl Alcohol	5.0	
95-50-1	1,2-Dichlorobenzene	1.0	
95-48-7	2-Methylphenol	1.0	
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	
106-44-5	4-Methylphenol	1.0	
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	
67-72-1	Hexachloroethane	1.0	
98-95-3	Nitrobenzene	1.0	
78-59-1	Isophorone	1.0	
88-75-5	2-Nitrophenol	5.0	
105-67-9	2,4-Dimethylphenol	1.0	
65-85-0	Benzoic Acid	10	
111-91-1	bis(2-Chloroethoxy) Methane	1.0	
120-83-2	2,4-Dichlorophenol	5.0	
120-82-1	1,2,4-Trichlorobenzene	1.0	
91-20-3	Naphthalene	1.0	
106-47-8	4-Chloroaniline	5.0	
87-68-3	Hexachlorobutadiene	1.0	
59-50-7	4-Chloro-3-methylphenol	5.0	
91-57-6	2-Methylnaphthalene	1.0	
77-47-4	Hexachlorocyclopentadiene	5.0	
88-06-2	2,4,6-Trichlorophenol	5.0	
95-95-4	2,4,5-Trichlorophenol	5.0	
91-58-7	2-Chloronaphthalene	1.0	
88-74-4	2-Nitroaniline	5.0	
131-11-3	Dimethylphthalate	1.0	
208-96-8	Acenaphthylene	1.0	
99-09-2	3-Nitroaniline	5.0	
83-32-9	Acenaphthene	1.0	
51-28-5	2,4-Dinitrophenol	10	
100-02-7	4-Nitrophenol	5.0	
132-64-9	Dibenzofuran	1.0	
606-20-2	2,6-Dinitrotoluene	5.0	
121-14-2	2,4-Dinitrotoluene	5.0	
84-66-2	Diethylphthalate	1.0	
01 00 2	Dictily ipitchatace	1.0	

Sample ID: EBC-4

MATRIX SPIKE

Lab Sample ID: NI87C

QC Report No: NI87-HART CROWSER, INC.

LIMS ID: 08-18789

Project: PIER 23-EBC

Matrix: Water

NA

Date Analyzed: 08/13/08 08:18

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	
86-73-7	Fluorene	1.0	
100-01-6	4-Nitroaniline	5.0	
534-52-1	4,6-Dinitro-2-Methylphenol	10	
86-30-6	N-Nitrosodiphenylamine	1.0	
101-55-3	4-Bromophenyl-phenylether	1.0	
118-74-1	Hexachlorobenzene	1.0	
37-86-5	Pentachlorophenol	5.0	
35-01-8	Phenanthrene	1.0	
36-74-8	Carbazole	1.0	
120-12-7	Anthracene	1.0	
34-74-2	Di-n-Butylphthalate	1.0	
206-44-0	Fluoranthene	1.0	
L29-00-0	Pyrene	1.0	
35-68-7	Butylbenzylphthalate	1.0	
91-94-1	3,3'-Dichlorobenzidine	5.0	
6-55-3	Benzo(a) anthracene	1.0	
L17-81-7	bis(2-Ethylhexyl)phthalate	1.0	
218-01-9	Chrysene	1.0	
L17-84-0	Di-n-Octyl phthalate	1.0	
205-99-2	Benzo(b) fluoranthene	1.0	
207-08-9	Benzo(k) fluoranthene	1.0	
50-32-8	Benzo(a)pyrene	1.0	
.93-39-5	Indeno(1,2,3-cd)pyrene	1.0	
3-70-3	Dibenz (a, h) anthracene	1.0	
.91-24-2	Benzo(g,h,i)perylene	1.0	-
0-12-0	1-Methylnaphthalene	1.0	

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	78.4%	2-Fluorobiphenyl	83.2%
d14-p-Terphenyl	76.8%	d4-1,2-Dichlorobenzene	62.8%
d5-Phenol	86.1%	2-Fluorophenol	76.0%
2,4,6-Tribromophenol	91.7%	d4-2-Chlorophenol	80.3%

Sample ID: EBC-4

MATRIX SPIKE DUP

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Reported: 08/13/08

Date Extracted: 08/06/08 Date Analyzed: 08/13/08 08:52 Instrument/Analyst: NT6/LJR

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

NA

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	
95-57-8	2-Chlorophenol	1.0	
541-73-1	1,3-Dichlorobenzene	1.0	
106-46-7	1,4-Dichlorobenzene	1.0	~
100-51-6	Benzyl Alcohol	5.0	
95-50-1	1,2-Dichlorobenzene	1.0	
95-48-7	2-Methylphenol	1.0	
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	
106-44-5	4-Methylphenol	1.0	
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	
67-72-1	Hexachloroethane	1.0	
98-95-3	Nitrobenzene	1.0	
78-59-1	Isophorone	1.0	
88-75-5	2-Nitrophenol	5.0	
105-67-9	2,4-Dimethylphenol	1.0	
65-85-0	Benzoic Acid	1.0	
111-91-1	bis(2-Chloroethoxy) Methane	1.0	
120-83-2	2,4-Dichlorophenol	5.0	
120-82-1	1,2,4-Trichlorobenzene	1.0	
91-20-3	Naphthalene	1.0	
106-47-8	4-Chloroaniline	5.0	
87-68-3	Hexachlorobutadiene	1.0	
59-50-7	4-Chloro-3-methylphenol	5.0	
91-57-6	2-Methylnaphthalene		
77-47-4	Hexachlorocyclopentadiene	1.0	
88-06-2	2,4,6-Trichlorophenol	5.0	
95-95-4	2,4,5-Trichlorophenol	5.0	
91-58-7	2-Chloronaphthalene	5.0	
88-74-4	2-Nitroaniline	1.0	
131-11-3	Dimethylphthalate	5.0	
208-96-8	Acenaphthylene	1.0	
99-09-2	3-Nitroaniline	1.0	~
83-32-9	Acenaphthene	5.0	
51-28-5	2,4-Dinitrophenol	1.0	
100-02-7	4-Nitrophenol	10	
132-64-9	Dibenzofuran	5.0	
606-20-2	2,6-Dinitrotoluene	1.0	
121-14-2	2,4-Dinitrotoluene	5.0	
84-66-2		5.0	
01 00 2	Diethylphthalate	1.0	

Page 2 of 2

Sample ID: EBC-4

MATRIX SPIKE DUP

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Date Analyzed: 08/13/08 08:52

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	
86-73-7	Fluorene	1.0	
100-01-6	4-Nitroaniline	5.0	
534-52-1	4,6-Dinitro-2-Methylphenol	10	
86~30-6	N-Nitrosodiphenylamine	1.0	
101-55-3	4-Bromophenyl-phenylether	1.0	
118-74-1	Hexachlorobenzene	1.0	
87-86-5	Pentachlorophenol	5.0	
85-01-8	Phenanthrene	1.0	
86-74-8	Carbazole	1.0	
120-12-7	Anthracene	1.0	
84-74-2	Di-n-Butylphthalate	1.0	
206-44-0	Fluoranthene	1.0	~
129-00-0	Pyrene	1.0	
85-68-7 91-94-1	Butylbenzylphthalate	1.0	
56-55-3	3,3'-Dichlorobenzidine	5.0	
117-81-7	Benzo(a)anthracene	1.0	
218-01-9	bis(2-Ethylhexyl)phthalate	1.0	
218-01-9 117-84-0	Chrysene	1.0	
205-99-2	Di-n-Octyl phthalate	1.0	
205-99-2 207-08-9	Benzo(b)fluoranthene	1.0	
50-32-8	Benzo(k)fluoranthene	1.0	
193-39-5	Benzo(a)pyrene	1.0	
53-70-3	Indeno(1,2,3-cd)pyrene	1.0	
191-24-2	Dibenz (a, h) anthracene	1.0	
90-12-0	Benzo(g,h,i)perylene	1.0	
>0 IZ-U	1-Methylnaphthalene	1.0	

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene d14-p-Terphenyl d5-Phenol	73.2% 87.6% 82.1%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene 2-Fluorophenol	76.8% 60.8% 73.3%
2,4,6-Tribromophenol	86.1%	d4-2-Chlorophenol	75.5%

Page 1 of 2

Sample ID: LCS-080608 LCS/LCSD

Lab Sample ID: LCS-080608

LIMS ID: 08-18789 Matrix: Water

Data Release Authorized:

Reported: 08/13/08

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Date Extracted LCS/LCSD: 08/06/08

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 08/13/08 05:27

Final Extract Volume LCS: 0.50 mL

LCSD: 08/13/08 06:01

LCSD: 0.50 mL Dilution Factor LCS: 1.00

Instrument/Analyst LCS: NT6/LJR

LCSD: 1.00

LCSD: NT6/LJR

GPC Cleanup: NO

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
						-	RPD
Phenol	17.4	25.0	69.6%	17.3	25.0	69.2%	0.6%
Bis-(2-Chloroethyl) Ether 2-Chlorophenol	18.6	25.0	74.4%	18.7	25.0	74.8%	0.5%
1,3-Dichlorobenzene	18.3	25.0	73.2%	18.6	25.0	74.4%	1.6%
1,4-Dichlorobenzene	10.0	25.0	40.0%	10.4	25.0	41.6%	4.0%
Benzyl Alcohol	10.4	25.0	41.6%	10.7	25.0	42.8%	2.8%
1,2-Dichlorobenzene	27.4	50.0	54.8%	27.8	50.0	55.6%	1.4%
2-Methylphenol	11.0	25.0	44.0%	11.3	25.0	45.2%	2.7%
2,2'-Oxybis(1-Chloropropane	18.1	25.0	72.4%	18.1	25.0	72.4%	0.0%
		25.0	69.6%	17.6	25.0	70.4%	1.1%
4-Methylphenol	37.6	50.0	75.2%	38.3	50.0	76.6%	1.8%
N-Nitroso-Di-N-Propylamine	15.7	25.0	62.8%	16.3	25.0	65.2%	3.8%
Hexachloroethane	8.6	25.0	34.4%	9.4	25.0	37.6%	8.6%
Nitrobenzene	18.4	25.0	73.6%	18.1	25.0	72.4%	1.6%
Isophorone	20.3	25.0	81.2%	21.0	25.0	84.0%	3.4%
2-Nitrophenol	18.3	25.0	73.2%	18.5	25.0	74.0%	1.1%
2,4-Dimethylphenol	11.3	25.0	45.2%	11.6	25.0	46.4%	2.6%
Benzoic Acid	53.9	75.0	71.9%	54.9	75.0	73.2%	1.8%
bis(2-Chloroethoxy) Methane		25.0	74.8%	18.9	25.0	75.6%	1.1%
2,4-Dichlorophenol	18.6	25.0	74.4%	18.6	25.0	74.4%	0.0%
1,2,4-Trichlorobenzene	10.9	25.0	43.6%	11.3	25.0	45.2%	3.6%
Naphthalene	15.2	25.0	60.8%	15.2	25.0	60.8%	0.0%
4-Chloroaniline	44.0	60.0	73.3%	44.4	60.0	74.0%	0.9%
Hexachlorobutadiene	8.2	25.0	32.8%	9.1	25.0	36.4%	9.6%
4-Chloro-3-methylphenol	18.6	25.0	74.4%	20.0	25.0	80.0%	7.3%
2-Methylnaphthalene	14.6	25.0	58.4%	15.0	25.0	60.0%	2.7%
Hexachlorocyclopentadiene	18.8	75.0	25.1%	22.8	75.0	30.4%	19.2%
2,4,6-Trichlorophenol	18.8	25.0	75.2%	19.5	25.0	78.0%	3.7%
2,4,5-Trichlorophenol	18.7	25.0	74.8%	19.5	25.0	78.0%	4.2%
2-Chloronaphthalene	16.0	25.0	64.0%	16.4	25.0	65.6%	2.5%
2-Nitroaniline	19.5	25.0	78.0%	20.7	25.0	82.8%	6.0%
Dimethylphthalate	18.8	25.0	75.2%	19.8	25.0	79.2%	5.2%
Acenaphthylene	18.4	25.0	73.6%	19.6	25.0	78.4%	6.3%
3-Nitroaniline	55.7	64.0	87.0%	56.9	64.0	88.9%	2.1%
Acenaphthene	17.2	25.0	68.8%	18.1	25.0	72.4%	5.1%
2,4-Dinitrophenol	64.6	75.0	86.1%	70.1	75.0	93.5%	8.2%
4-Nitrophenol	16.0	25.0	64.0%	16.9	25.0	67.6%	5.5%
Dibenzofuran	17.9	25.0	71.6%	19.2	25.0	76.8%	7.0%
2,6-Dinitrotoluene	19.5	25.0	78.0%	21.0	25.0	84.0%	7.4%
2,4-Dinitrotoluene	19.9	25.0	79.6%	21.3	25.0	85.2%	6.8%
Diethylphthalate	17.7	25.0	70.8%	18.6	25.0	74.4%	5.0%
4-Chlorophenyl-phenylether	17.5	25.0	70.0%	18.5	25.0	74.0%	5.6%
Fluorene	18.7	25.0	74.8%	20.0	25.0	80.0%	6.7%
4-Nitroaniline	17.9	25.0	71.6%	18.6	25.0	74.4%	3.8%
4,6-Dinitro-2-Methylphenol	57.2	75.0	76.3%	61.2	75.0	81.6%	6.8%
N-Nitrosodiphenylamine	24.1	25.0	96.4%	26.0	25.0	104%	7.6%

Page 2 of 2

Sample ID: LCS-080608 LCS/LCSD

Lab Sample ID: LCS-080608

QC Report No: NI87-HART CROWSER, INC.

LIMS ID: 08-18789

Project: PIER 23-EBC

Matrix: Water

Date Analyzed: 08/13/08 05:27

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	18.0	25.0	72.0%	19.3	25.0	77.2%	7.0%
Hexachlorobenzene	18.5	25.0	74.0%	19.5	25.0	78.0%	5.3%
Pentachlorophenol	16.0	25.0	64.0%	16.8	25.0	67.2%	4.9%
Phenanthrene	18.4	25.0	73.6%	19.6	25.0	78.4%	6.3%
Carbazole	19.5	25.0	78.0%	20.4	25.0	81.6%	4.5%
Anthracene	17.9	25.0	71.6%	18.9	25.0	75.6%	5.4%
Di-n-Butylphthalate	18.7	25.0	74.8%	19.8	25.0	79.2%	5.48
Fluoranthene	17.9	25.0	71.6%	18.9	25.0	75.6%	5.4%
Pyrene	21.7	25.0	86.8%	23.4	25.0	93.6%	
Butylbenzylphthalate	20.6	25.0	82.4%	21.5	25.0	86.0%	7.5%
3,3'-Dichlorobenzidine	40.2	64.0	62.8%	41.4	64.0	64.7%	4.3%
Benzo(a)anthracene	18.9	25.0	75.6%	19.4	25.0		2.9%
bis(2-Ethylhexyl)phthalate	20.4	25.0	81.6%	19.5	25.0	77.6%	2.6%
Chrysene	18.6	25.0	74.4%	19.5	25.0	78.0%	4.5%
Di-n-Octyl phthalate	19.4	25.0	77.6%	19.7		78.0%	4.7%
Benzo(b) fluoranthene	18.0	25.0	77.0%	19.7	25.0	78.8%	1.5%
Benzo(k)fluoranthene	17.7	25.0	70.8%	17.5	25.0	78.0%	8.0%
Benzo(a)pyrene	17.0	25.0	68.0%		25.0	70.0%	1.1%
Indeno(1,2,3-cd)pyrene	22.2	25.0	88.8%	17.5	25.0	70.0%	2.9%
Dibenz (a, h) anthracene	22.4	25.0		23.4	25.0	93.6%	5.3%
Benzo(g,h,i)perylene	23.9	25.0	89.6%	23.8	25.0	95.2%	6.1%
1-Methylnaphthalene	15.5		95.6%	24.8	25.0	99.2%	3.7%
	13.5	25.0	62.0%	15.8	25.0	63.2%	1.9%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	77.6%	78.4%
2-Fluorobiphenyl	78.4%	79.6%
d14-p-Terphenyl	100%	107%
d4-1,2-Dichlorobenzene	61.2%	62.4%
d5-Phenol	85.6%	85.6%
2-Fluorophenol	76.5%	77.6%
2,4,6-Tribromophenol	85.1%	90.7%
d4-2-Chlorophenol	79.5%	80.8%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Sample ID: MB-080608 METHOD BLANK

Lab Sample ID: MB-080608

LIMS ID: 08-18789

Matrix: Water

Matrix: Water
Data Release Authorized: Reported: 08/13/08

Date Extracted: 08/06/08 Date Analyzed: 08/13/08 04:52 Instrument/Analyst: NT6/LJR

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

NA

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-080608 METHOD BLANK

Lab Sample ID: MB-080608

LIMS ID: 08-18789

Matrix: Water

Date Analyzed: 08/13/08 04:52

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

NA

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 T
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 Ū
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0 129-00-0	Fluoranthene	1.0	< 1.0 U
85-68-7	Pyrene	1.0	< 1.0 U
91-94-1	Butylbenzylphthalate	1.0	< 1.0 U
56-55-3	3,3'-Dichlorobenzidine	5.0	< 5.0 U
117-81-7	Benzo(a) anthracene	1.0	< 1.0 U
218-01-9	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
117-84-0	Chrysene	1.0	< 1.0 U
205-99-2	Di-n-Octyl phthalate	1.0	< 1.0 U
207-08-9	Benzo(b) fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(k) fluoranthene	1.0	< 1.0 U
193-39-5	Benzo(a) pyrene	1.0	< 1.0 U
53-70-3	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
191-24-2	Dibenz (a, h) anthracene	1.0	< 1.0 U
90-12-0	Benzo(g,h,i)perylene	1.0	< 1.0 U
20 12 0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	72.4%	2-Fluorobiphenyl	CC 10
d14-p-Terphenyl	88.0%	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	76.0%		56.8%
2,4,6-Tribromophenol		2-Fluorophenol	70.4%
2,4,0 IIIDIOMOPHEMOI	68.3%	d4-2-Chlorophenol	73.3%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NI87A LIMS ID: 08-18787

Matrix: Water

Data Release Authorized: Reported: 08/21/08

Date Extracted: 08/06/08 Date Analyzed: 08/09/08 06:29 Instrument/Analyst: ECD5/VTS

GPC Cleanup: No Sulfur Cleanup: No Sample ID: EBC-1 SAMPLE

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	45.5%
Tetrachlorometaxylene	54.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: NI87B LIMS ID: 08-18788

Matrix: Water

Data Release Authorized:

Reported: 08/21/08

Date Extracted: 08/06/08 Date Analyzed: 08/09/08 06:47 Instrument/Analyst: ECD5/VTS

GPC Cleanup: No Sulfur Cleanup: No Sample ID: EBC-3 SAMPLE

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254	1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U
11096-82-5 11104-28-2 11141-16-5	Aroclor 1260 Aroclor 1221 Aroclor 1232	1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U

Reported in $\mu g/L$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	47.0%
Tetrachlorometaxylene	61.5%

Page 1 of 1

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized: Reported: 08/21/08

Date Extracted: 08/06/08 Date Analyzed: 08/09/08 07:05 Instrument/Analyst: ECD5/VTS

GPC Cleanup: No Sulfur Cleanup: No Sample ID: EBC-4 SAMPLE

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	68.2%
Tetrachlorometaxylene	92.0%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NI87-HART CROWSER, INC. Project: PIER 23-EBC

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
EBC-1	45.5%	42-120	5 <i>1</i> 09*	55-102	1
EBC-3	47.0%	42-120	61.5%	55-102	0
MB-080608	51.5%	47-101	72.0%	61-104	Ō
LCS-080608	54.5%	47-101	86.2%	61-104	0
LCSD-080608	53.5%	47-101	72.8%	61-104	0
EBC-4	68.2%	42-120	92.0%	55-102	0
EBC-4 MS	74.2%	42-120	83.5%	55-102	0
EBC-4 MSD	77.8%	42-120	84.8%	55-102	0

Prep Method: SW3510C Log Number Range: 08-18787 to 08-18789

Page 1 of 1

Sample ID: EBC-4 MS/MSD

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Date Extracted MS/MSD: 08/06/08

Date Analyzed MS: 08/09/08 07:22

Instrument/Analyst MS: ECD5/VTS

Reported: 08/21/08

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount MS: 500 mL

MSD: 500 mL

Final Extract Volume MS: 5.0 mL

MSD: 5.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Silica Gel: No

MSD: ECD5/VTS GPC Cleanup: No Sulfur Cleanup: No

Acid Cleanup: No

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 1.00	4.86	5.00	97.2%	4.86	5.00	97.2%	0.0%
Aroclor 1260	< 1.00	4.09	5.00	81.8%	4.09	5.00	81.8%	0.0%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

MSD: 08/09/08 07:40

Page 1 of 1

Sample ID: EBC-4 MATRIX SPIKE

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Reported: 08/21/08 Date Extracted: 08/06/08

Date Analyzed: 08/09/08 07:22 Instrument/Analyst: ECD5/VTS GPC Cleanup: No

Sulfur Cleanup: No

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	74.2%
* -	74.26
Tetrachlorometaxylene	83.5%

Page 1 of 1

Sample ID: EBC-4

MATRIX SPIKE DUP

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Reported: 08/21/08

:d:

Date Sampled: 07/30/08 Date Received: 08/04/08

Date Extracted: 08/06/08
Date Analyzed: 08/09/08 07:40
Instrument/Analyst: ECD5/VTS

GPC Cleanup: No Sulfur Cleanup: No Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Project: PIER 23-EBC

Silica Gel: No Acid Cleanup: No

QC Report No: NI87-HART CROWSER, INC.

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	77.8%
Tetrachlorometaxylene	84.8%

Page 1 of 1

Lab Sample ID: LCS-080608

LIMS ID: 08-18789 Matrix: Water

Data Release Authorized:

Reported: 08/21/08

Date Extracted LCS/LCSD: 08/06/08

Date Analyzed LCS: 08/09/08 05:54

LCSD: 08/09/08 06:12

Instrument/Analyst LCS: ECD5/VTS

LCSD: ECD5/VTS

GPC Cleanup: No Sulfur Cleanup: No Sample ID: LCS-080608

LCS/LCSD

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 5.0 mL

LCSD: 5.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	4.53	5.00	90.6%	4.66	5.00	93.2%	2.8%
Aroclor 1260	3.66	5.00	73.2%	3.42	5.00	68.4%	6.8%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	54.5%	53.5%
Tetrachlorometaxylene	86.2%	72.8%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: MB-080608

LIMS ID: 08-18789 Matrix: Water

Data Release Authorized:

Reported: 08/21/08

Date Extracted: 08/06/08
Date Analyzed: 08/09/08 05:37
Instrument/Analyst: ECD5/VTS

GPC Cleanup: No Sulfur Cleanup: No Sample ID: MB-080608
METHOD BLANK

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	51.5%
Tetrachlorometaxylene	72.0%

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-1 SAMPLE

Lab Sample ID: NI87A LIMS ID: 08-18787

Matrix: Water

Data Release Authorized:

Reported: 08/07/08

Date Analyzed: 08/06/08 17:43 Instrument/Analyst: PID3/PKC

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Event: NA

Date Sampled: 07/30/08 Date Received: 08/04/08

> Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
o= 1= =	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U
	Gasoline Range Hydrocarbons	0.25	GAS < 0.25 U -
	BETX Surrogate Recove	ry	
	Trifluorotoluene	97.5%	
	Bromobenzene	94.7%	
	Gasoline Surrogate Reco	very	
	Trifluorotoluene	95.0%	
	Bromobenzene	92.2%	

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/7/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a021.d Data file 2: /chem3/pid3.i/20080806-1.b/0806a021.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NI87A Client ID: EBC-1

Injection Date: 06-AUG-2008 17:43

Matrix: WATER

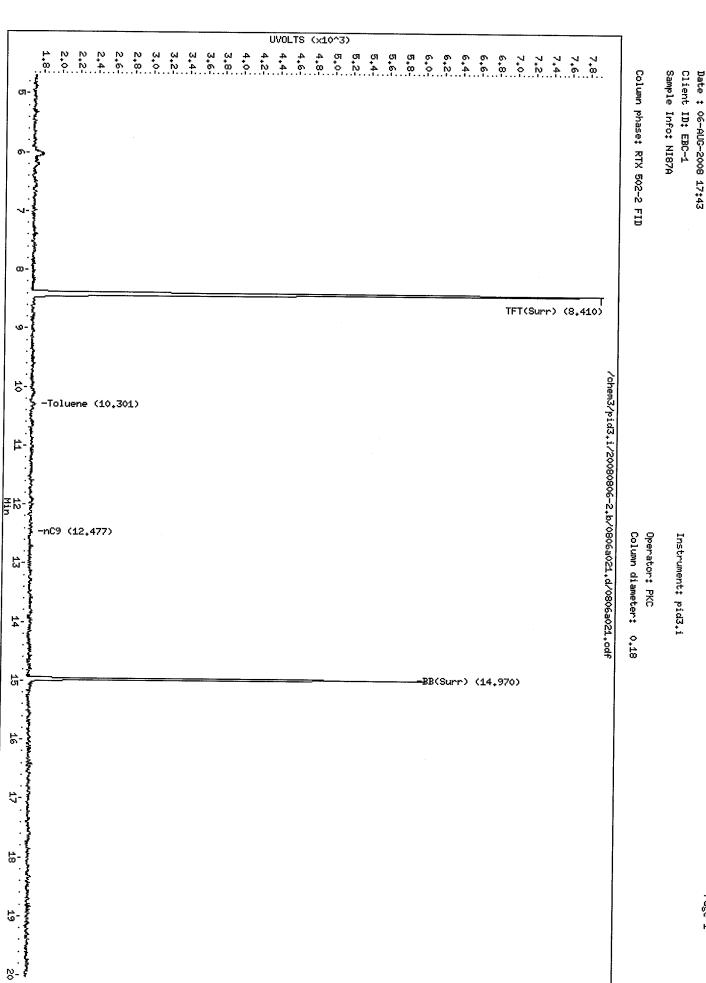
Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.410	0.000	6283	81812	95.0	TFT (Surr)
14.970	0.000	4380	36009	92.2	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
			~
	(Tol-C12)	4629	0.006
8015B	(2MP-TMB)	9976	0.007
	(nC6-nC10)	9975	0.009
NWGas	(Tol-Nap)	5704	0.007


Surrogate areas are subtracted from Total Area

		PID Surrogates		
RT	Shift	Response	%Rec	Compound
8.409	0.000	23678	97.5	TFT (Surr)
14.968	0.000	57397	94.7	BR (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				0-Xylene
ND				MTBE

Indicates Peak Area was used for quantitation instead of Height Indicates peak peak was manually integrated

Page 1

Program:

Data File: /chem3/pid3.i/20080806-2.b/0806a021.d

UVOLTS (x10^4) 0 0 4 4 4 6 6 6 6 5,61 N 0 3.0-₩ 2 ν φ... ν. Ν. 2.4. 3 3 4 4 4 4 5 5 2 4 6 8 0 2 4 6 8 ای 4. ហφ. ω--TFT(Surr) (8.409) /chem3/pid3.i/20080806~1.b/0806a021.d/0806a021.cdf 6 5 Д. # 녌. BB(Surr) (14,968) 8 7,-8-19-%- i

Data File: /chem3/pid3.i/20080806-1.b/0806a021.d Date : 06-AUG-2008 17:43

Client ID: EBC-1

Sample Info; NI87A

Column phase: RTX 502-2 PID

Instrument: pid3.i

Operator: PKC

Column diameter: 0.18

Page 1

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-3 SAMPLE

Lab Sample ID: NI87B LIMS ID: 08-18788

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 08/06/08 18:08

Instrument/Analyst: PID3/PKC

Reported: 08/07/08

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: NA

Date Sampled: 07/30/08 Date Received: 08/04/08

> Purge Volume: 5.0 mL Dilution Factor: 1.00

CAC Armi			
CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	- 1 0 11
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene		< 1.0 U
	m,p-Xylene	1.0	< 1.0 U
95-47-6		1.0	< 1.0 U
)3 ±1-0	o-Xylene	1.0	< 1.0 U
	Cogolina David V. J.		GAS II
	Gasoline Range Hydrocarbons	0.25	< 0.25 U
	BETX Surrogate Recove	ry	
	Trifluorotoluene	99.5%	
	Bromobenzene	95.7%	
	Gasoline Surrogate Reco	very	
	Trifluorotoluene	96.9%	
	Bromobenzene	92.6%	
	5.25	J2.00	

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/7/68

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a022.d Data file 2: /chem3/pid3.i/20080806-1.b/0806a022.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NI87B Client ID: EBC-3

Injection Date: 06-AUG-2008 18:08

Matrix: WATER

Dilution Factor: 1.000

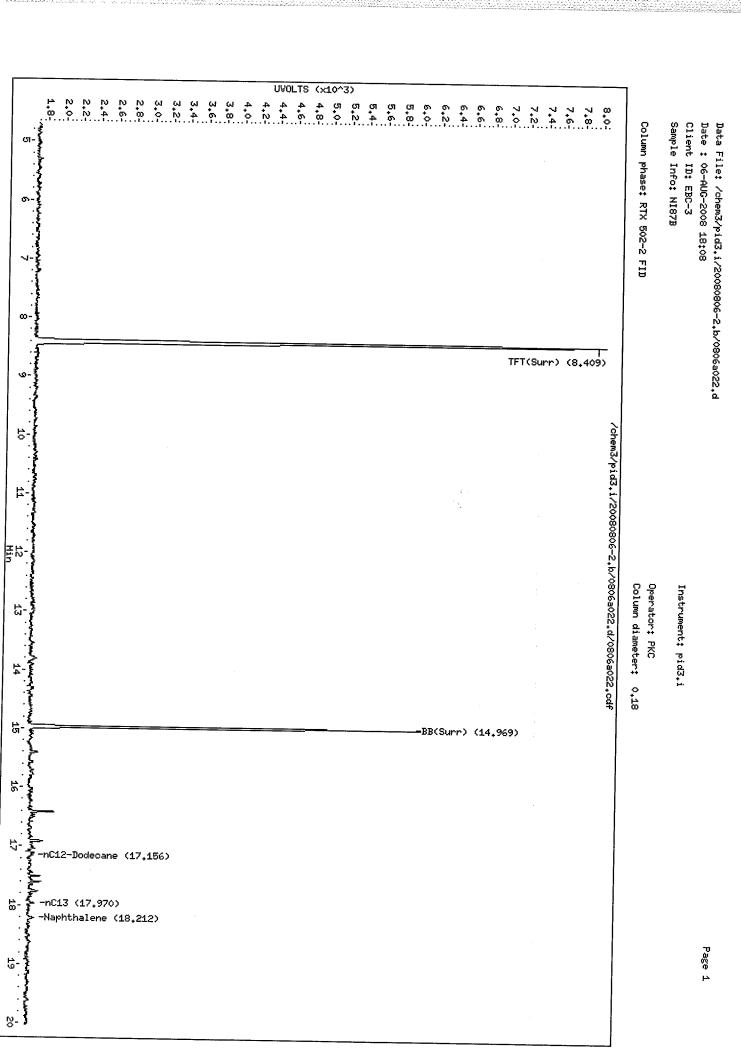
FID Surrogates

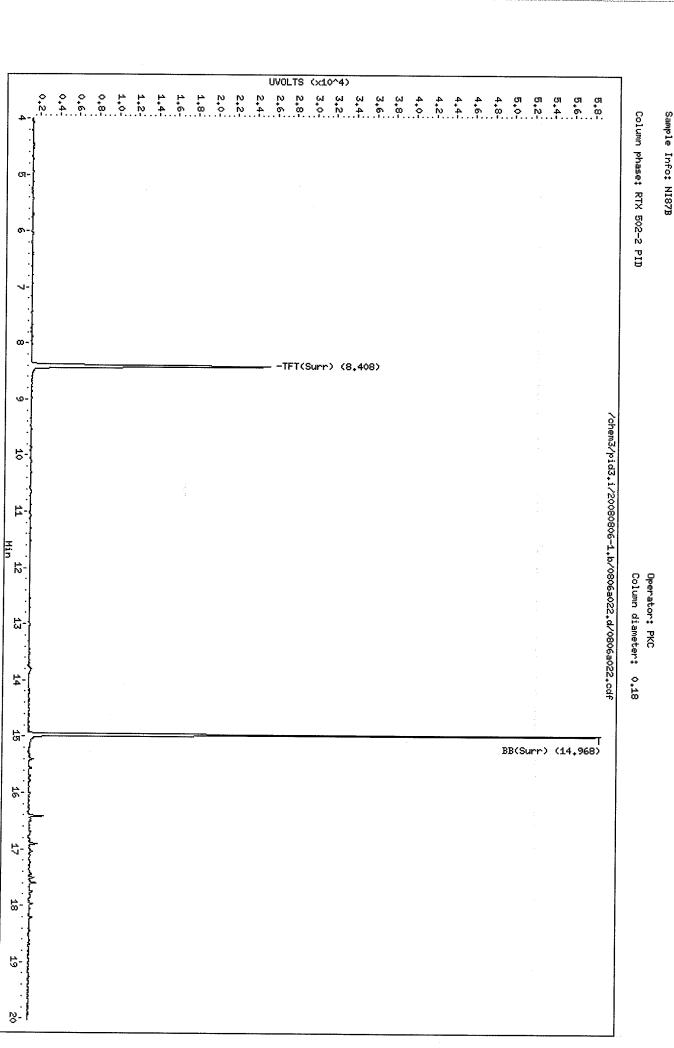
RT	Shift	Height	Area	%Rec	Compound
8.409	-0.001	6403	83664	96.9	TFT (Surr)
14.969	0.000	4402	36259	92.6	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
	(Tol-C12)	13699	0.019
8015B	(2MP-TMB)	4982	0.003
	(nC6-nC10)	3668	0.003
NWGas	(Tol-Nap)	24242	0.031

* Surrogate areas are subtracted from Total Area


		PID Surrogates		
RT	Shift	Response	%Rec	Compound
8.408	-0.001	24162	99.5	TFT (Surr)
14.968	0.000	57972	95.7	BB (Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND		~		Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

Indicates Peak Area was used for quantitation instead of Height Indicates peak peak was manually integrated

Page 1

Instrument: pid3.i

Data File: /chem3/pid3.i/20080806-1.b/0806a022.d

Client ID: EBC-3

Date : 06-AUG-2008 18:08

ORGANICS ANALYSIS DATA SHEET
BETX by Method SW8021BMod
TPHG by Method NWTPHG
Page 1 of 1

Sample ID: EBC-4
SAMPLE

Lab Sample ID: NI87C LIMS ID: 08-18789

LIMS ID: 08-18789 Matrix: Water

Data Release Authorized:

Reported: 08/07/08

Date Analyzed: 08/06/08 18:33 Instrument/Analyst: PID3/PKC QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: NA

Date Sampled: 07/30/08 Date Received: 08/04/08

Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2 108-88-3 100-41-4 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	1.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U
	Gasoline Range Hydrocarbons	0.25	GAS ID
	BETX Surrogate Recove	ry	
	Trifluorotoluene Bromobenzene	99.5% 97.4%	
	Gasoline Surrogate Reco	very	
	Trifluorotoluene Bromobenzene	97.3% 94.4%	

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/7/18

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a023.d Data file 2: /chem3/pid3.i/20080806-1.b/0806a023.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NI87C Client ID: EBC-4

Injection Date: 06-AUG-2008 18:33

Matrix: WATER

Dilution Factor: 1.000

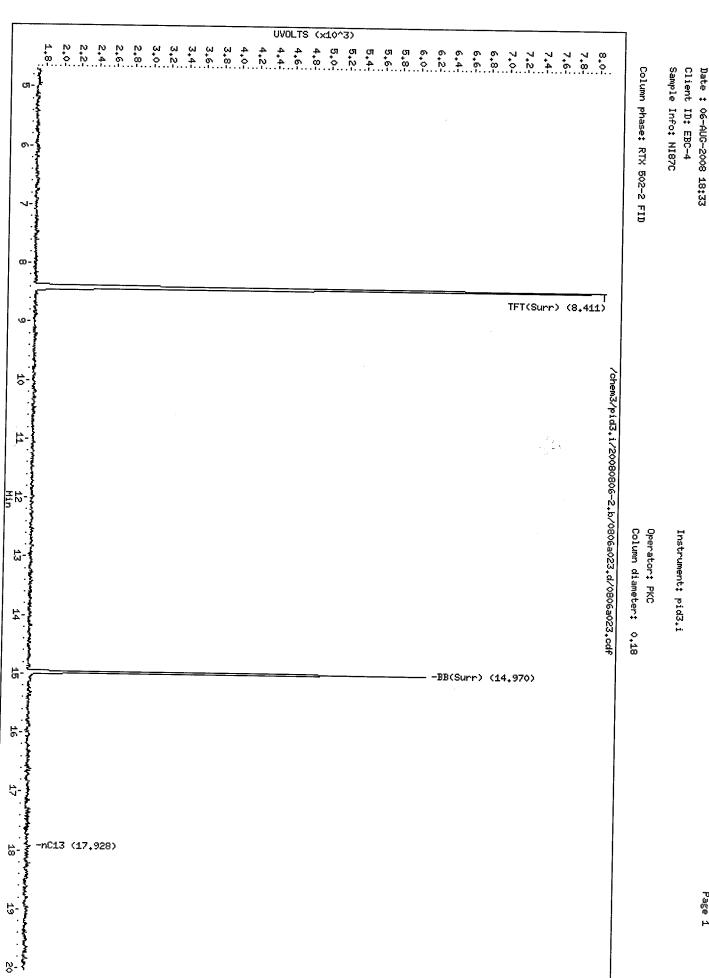
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.411	0.001	6433	82973	97.3	TFT (Surr)
14.970	0.000	4484	37181	94.4	BB(Surr)

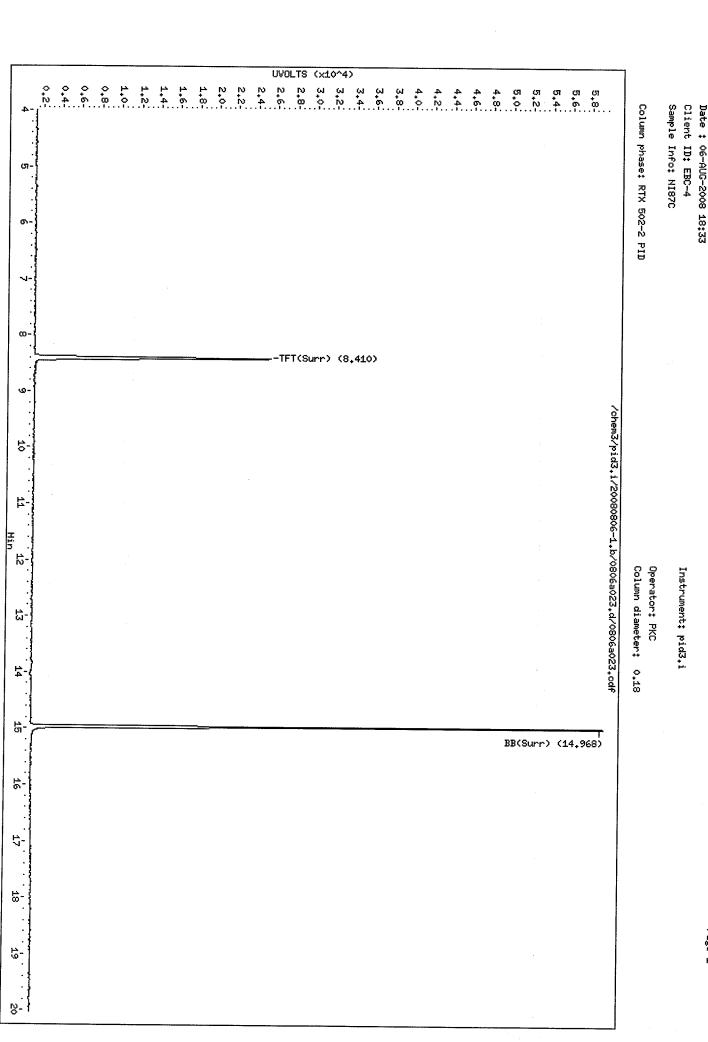
PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	0	0.000
8015B (2MP-TMB)	1	0.000
AKGas (nC6-nC10)	1	0.000
NWGas (Tol-Nap)	2304	0.003

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.410	0.001	24170	99.5	TFT (Surr)
14.968	0.000	59037	97.4	BB(Surr)

AROMATICS (PID)


RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

Indicates Peak Area was used for quantitation instead of Height Indicates peak peak was manually integrated

Page 1

Data File: /chem3/pid3.i/20080806-2.b/0806a023.d

Page 1

Data File: /chem3/pid3.i/20080806-1.b/0806a023.d

BETY WATER SURROGATE RECOVERY SUMMARY

ARI Job: NI87 Matrix: Water

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC Event: NA

Client ID	TFT	BBZ	TOT OUT
MB-080608	96.8%	94.3%	
LCS-080608	102%		0
LCSD-080608		97.0%	0
EBC-1	101%	96.3%	0
	97.5%	94.7%	0
EBC-3	99.5%	95.7%	0
EBC-4	99.5%	97.4%	Ö
EBC-4 MS	100%		-
EBC-4 MSD		98.6%	0
720 1 110D	96.7%	96.2%	0

(TFT) (BBZ)	<pre>= Trifluorotoluene = Bromobenzene</pre>	LCS/MB LIMITS (80-120) (80-120)	QC LIMITS (80-120) (80-120)
			(00-120)

Log Number Range: 08-18787 to 08-18789

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: NI87 Matrix: Water QC Report No: NI87-HART CROWSER, INC. Project: PIER 23-EBC Event: NA

Client ID	TFT	BBZ	TOT OUT
MB-080608	94.4%	92.2%	0
LCS-080608	99.7%	93.8%	0
LCSD-080608	98.3%	92.7%	0
EBC-1	95.0%	92.2%	0
EBC-3	96.9%	92.6%	0
EBC-4	97.3%	94.4%	0
EBC-4 MS	98.8%	94.4%	0
EBC-4 MSD	94.8%	92.9%	0

			LCS/MB LIMITS	QC LIMITS
(TFT)	=	Trifluorotoluene	(80-120)	(80-120)
(BBZ)	=	Bromobenzene	(80-120)	(80-120)

Log Number Range: 08-18787 to 08-18789

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Sample ID: EBC-4

QC Report No: N187-HART CROWSER, INC.

MATRIX SPIKE

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized: WW

Reported: 08/07/08

Project: PIER 23-EBC Event: NA

Date Sampled: 07/30/08 Date Received: 08/04/08

Purge Volume: 5.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Date Analyzed MS: 08/06/08 18:57

MSD: 08/06/08 19:22 Instrument/Analyst MS: PID3/PKC

MSD: PID3/PKC

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Gasoline Range Hydrocarbons	< 0.25 U	0.97	1.00	97.0%	0.95	1.00	95.0%	2.1%

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	MS	MSD
Trifluorotoluene	98.8%	94.8%
Bromobenzene	94 4%	92 92

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod

Page 1 of 1

Sample ID: EBC-4 MATRIX SPIKE

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized: WWW

Reported: 08/07/08

Date Analyzed MS: 08/06/08 18:57

MSD: 08/06/08 19:22 Instrument/Analyst MS: PID3/PKC

MSD: PID3/PKC

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Event: NA

Date Sampled: 07/30/08 Date Received: 08/04/08

Purge Volume: 5.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Benzene	< 1.00 U	4.93	5.30	93.0%	5.00	5.30	94.3%	1.4%
Toluene	< 1.00 U	38.3	41.2	93.0%	38.3	41.2	93.0%	0.0%
Ethylbenzene	< 1.00 U	9.44	10.0	94.4%	9.51	10.0	95.1%	0.7%
m,p-Xylene	< 1.00 U	39.3	42.3	92.9%	39.3	42.3	92.9%	0.0%
o-Xylene	< 1.00 U	13.9	14.9	93.3%	13.9	14.9	93.3%	0.0%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	MS	MSD
Trifluorotoluene	100%	96.7%
Bromobenzene	98.6%	96.2%

PC 817108

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a024.d

Data file 2: /chem3/pid3.i/20080806-1.b/0806a024.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NI87CMS Client ID: EBC-4 MS

Injection Date: 06-AUG-2008 18:57

Matrix: WATER

Dilution Factor: 1.000

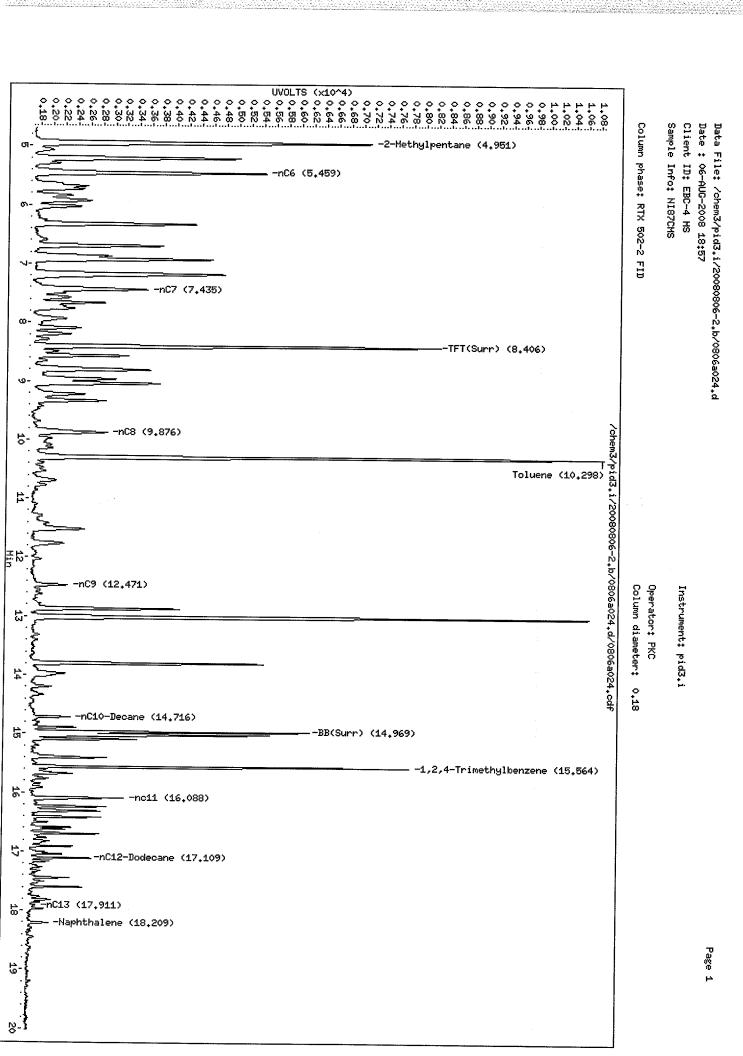
FID Surrogates

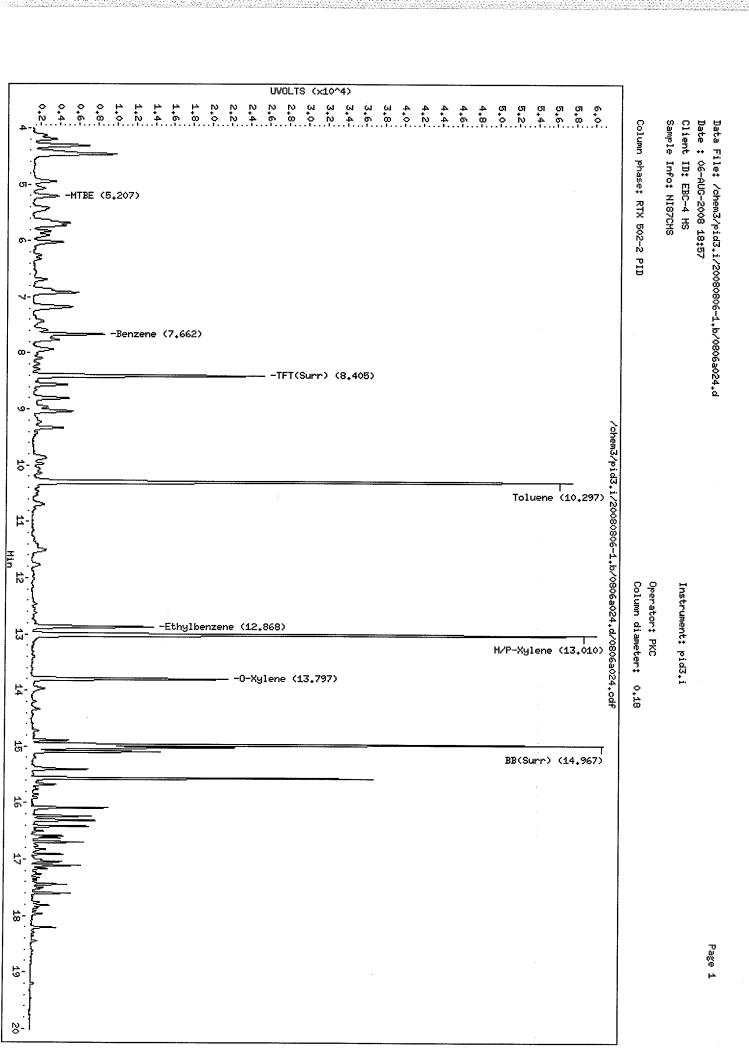
RT	Shift	Height	Area	%Rec	Compound
8.406	-0.004	6532	85343	98.8	TFT(Surr)
14.969	-0.001	4486	38199	94.4	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	716324	0.968
8015B (2MP-TMB)	1392993	0.970
AKGas (nC6-nC10)	1109002	0.970
NWGas (Tol-Nap)	763128	0.968

* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
, 				
8.405	-0.004	24330	100.2	TFT (Surr)
14.967	-0.001	59758	98.6	BB(Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.662	-0.002	7514	4.93	Benzene
10.297	-0.003	56378	38.32	Toluene
12.868	-0.002	12728	9.44	Ethylbenzene
13.010	0.000	58913	39.30	M/P-Xylene
13.797	-0.002	20628	13.92	O-Xylene
5.207	-0.015	2681	4.91	MTBE

Indicates Peak Area was used for quantitation instead of Height Indicates peak peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a025.d Data file 2: /chem3/pid3.i/20080806-1.b/0806a025.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NI87CMSD Client ID: EBC-4 MSD

Injection Date: 06-AUG-2008 19:22

Matrix: WATER

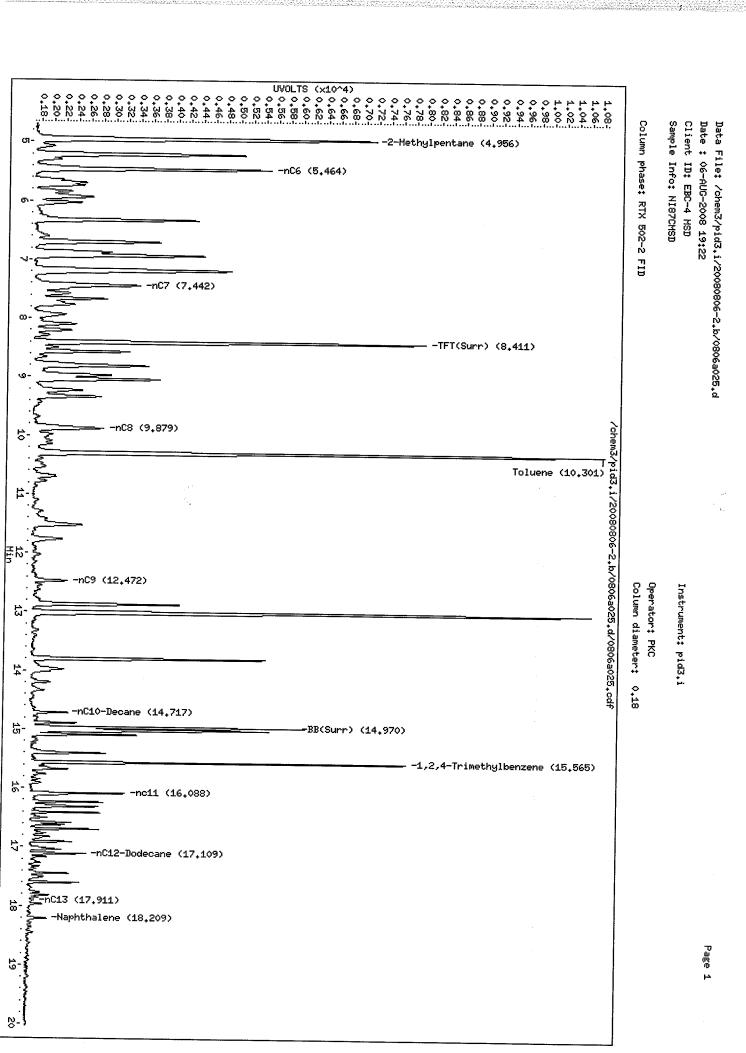
Dilution Factor: 1.000

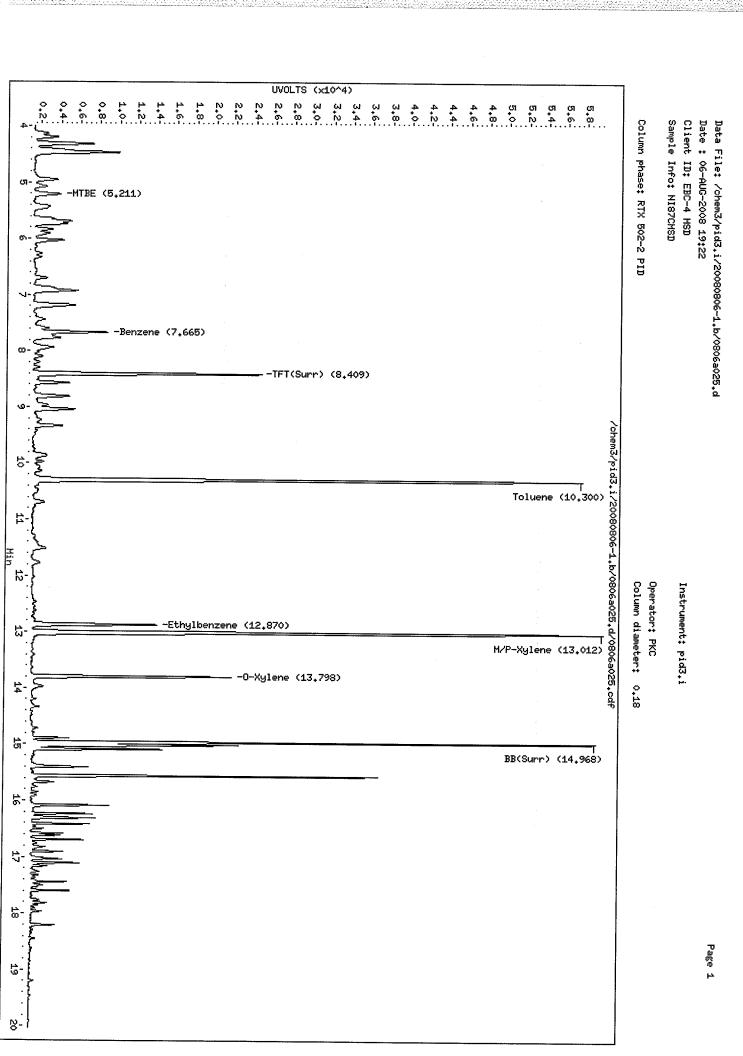
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.411	0.001	6265	83492	94.8	TFT (Surr)
14.970	0.000	4415	37351	92.9	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total Area*	Amount
WAGas	(Tol-C12)	707790	0.956
8015B	(2MP-TMB)	1389519	0.967
AKGas	(nC6-nC10)	1103036	0.965
NWGas	(Tol-Nap)	750674	0.952


Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.409	0.001	23493	96.7	TFT (Surr)
14.968	.0.00	58277	96.2	BB (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.665	0.000	7624	5.00	Benzene
10.300	0.000	56381	38.32	Toluene
12.870	0.000	12830	9.51	Ethylbenzene
13.012	0.001	58892	39.28	M/P-Xylene
13.798	-0.001	20638	13.93	O-Xylene
5.211	-0.011	2686	4.92	MTBE

Indicates Peak Area was used for quantitation instead of Height Indicates peak peak was manually integrated

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod Page 1 of 1

ANALYTICAL **RESOURCES** INCORPORATED

Sample ID: LCS-080608

LAB CONTROL SAMPLE

Lab Sample ID: LCS-080608

LIMS ID: 08-18787

Matrix: Water

Data Release Authorized: WW Reported: 08/07/08

Date Analyzed LCS: 08/06/08 10:43

LCSD: 08/06/08 11:08 Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Purge Volume: 5.0 mL

QC Report No: N187-HART CROWSER, INC.

Project: PIER 23-EBC

Dilution Factor LCS: 1.0

Event: NA

Date Sampled: NA

Date Received: NA

LCSD: 1.0

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	4.99	5.30	94.2%	4.94	5.30	93.2%	1.0%
Toluene	38.6	41.2	93.7%	37.6	41.2	91.3%	2.6%
Ethylbenzene	9.62	10.0	96.2%	9.36	10.0	93.6%	2.7%
m,p-Xylene	39.9	42.3	94.3%	38.5	42.3	91.0%	3.6%
o-Xylene	14.2	14.9	95.3%	13.7	14.9	91.9%	3.6%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	102%	101%
Bromobenzene	97.0%	96.3%

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Sample ID: LCS-080608

LAB CONTROL SAMPLE

Lab Sample ID: LCS-080608

LIMS ID: 08-18787 Matrix: Water

Data Release Authorized: WW

Date Analyzed LCS: 08/06/08 10:43

Instrument/Analyst LCS: PID3/PKC

LCSD: 08/06/08 11:08

LCSD: PID3/PKC

Reported: 08/07/08

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: NA Date Sampled: NA

Date Received: NA

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

Spike LCS Spike LCSD Analyte LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD Gasoline Range Hydrocarbons 0.98 1.00 98.0% 0.92 1.00 92.0% 6.3%

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

LCS LCSD Trifluorotoluene 99.7% 98.3% Bromobenzene 93.8% 92.7%

PC 8/7/18

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a004.d

Data file 2: /chem3/pid3.i/20080806-1.b/0806a004.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: LCS080608W1

Client ID:

Injection Date: 06-AUG-2008 10:43

Matrix: WATER

Dilution Factor: 1.000

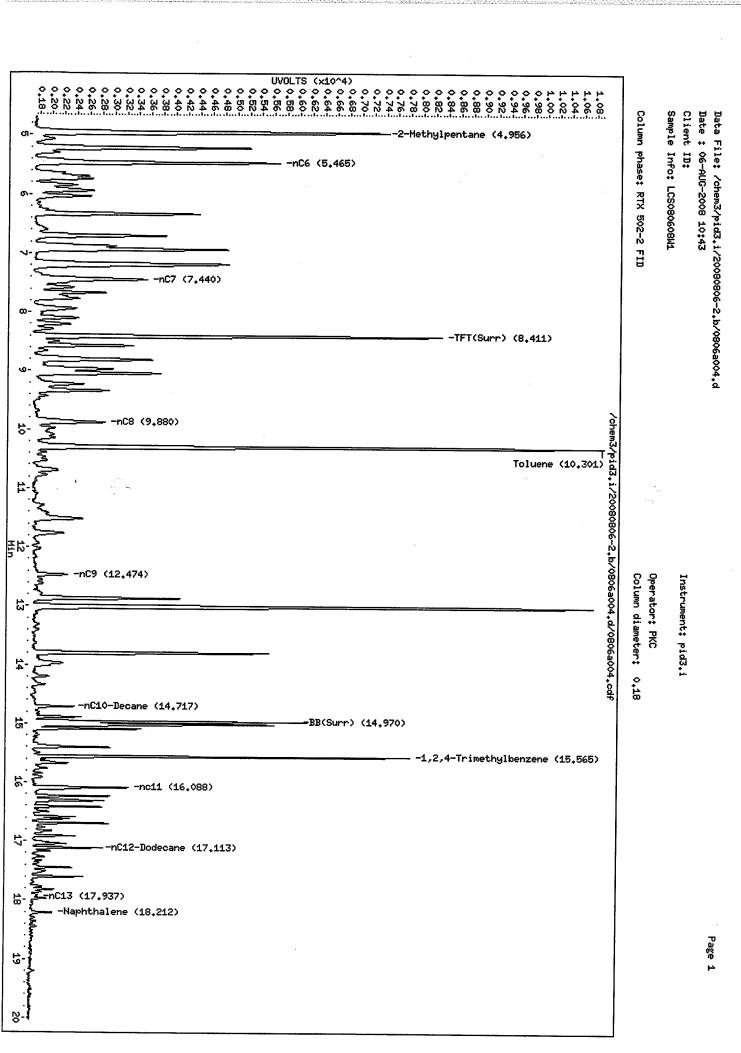
FID Surrogates

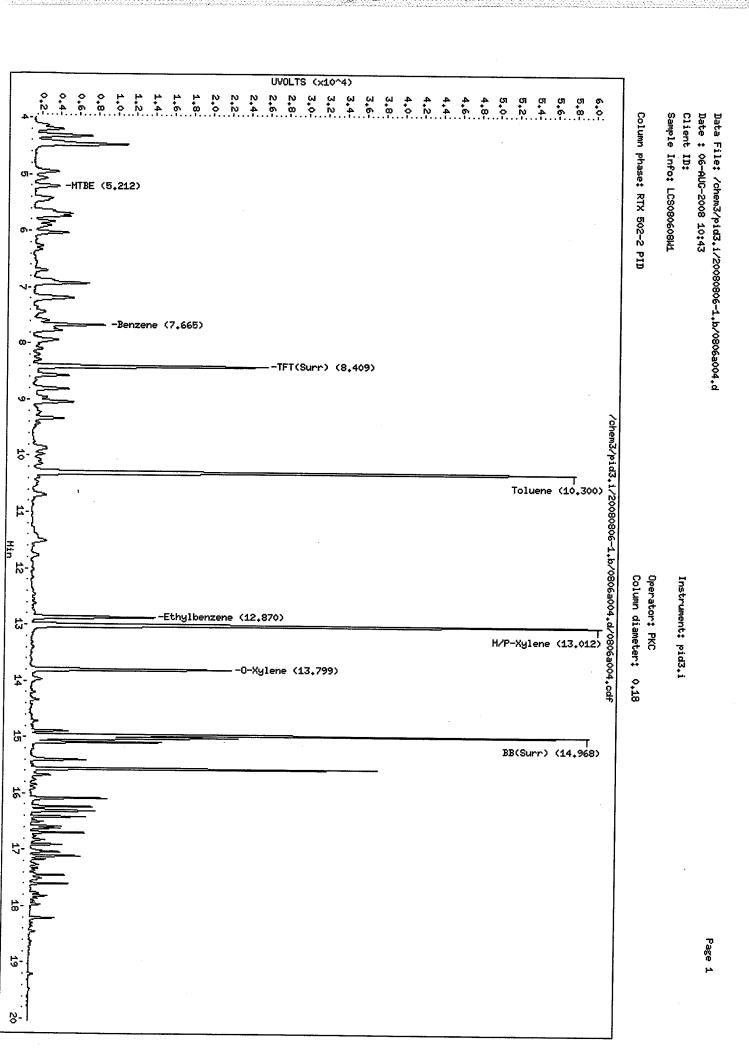
RT	Shift	Height	Area	%Rec	Compound
8.411	0.001	6593	86680	99.7	TFT(Surr)
14.970	0.000	4459	37449	93.8	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range Total Area* Amount
WAGas (Tol-C12) 722370 0.976
8015B (2MP-TMB) 1434512 0.999
AKGas (nC6-nC10) 1141176 0.998
NWGas (Tol-Nap) 768784 0.975

* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.409	0.001	24680	101.6	TFT(Surr)
14.968	0.000	58808	97.0	BB(Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.665	0.001	7604	4.99	Benzene
10.300	0.000	56829	38.63	Toluene
12.870	-0.001	12969	9.62	Ethylbenzene
13.012	0.002	59854	39.93	M/P-Xylene
13.799	-0.001	21062	14.21	O-Xylene
5.212	-0.010	2648	4.85	MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

PC 87168

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a005.d

Data file 2: /chem3/pid3.i/20080806-1.b/0806a005.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: LCSD080608W1

Client ID:

Injection Date: 06-AUG-2008 11:08

Matrix: WATER

Dilution Factor: 1.000

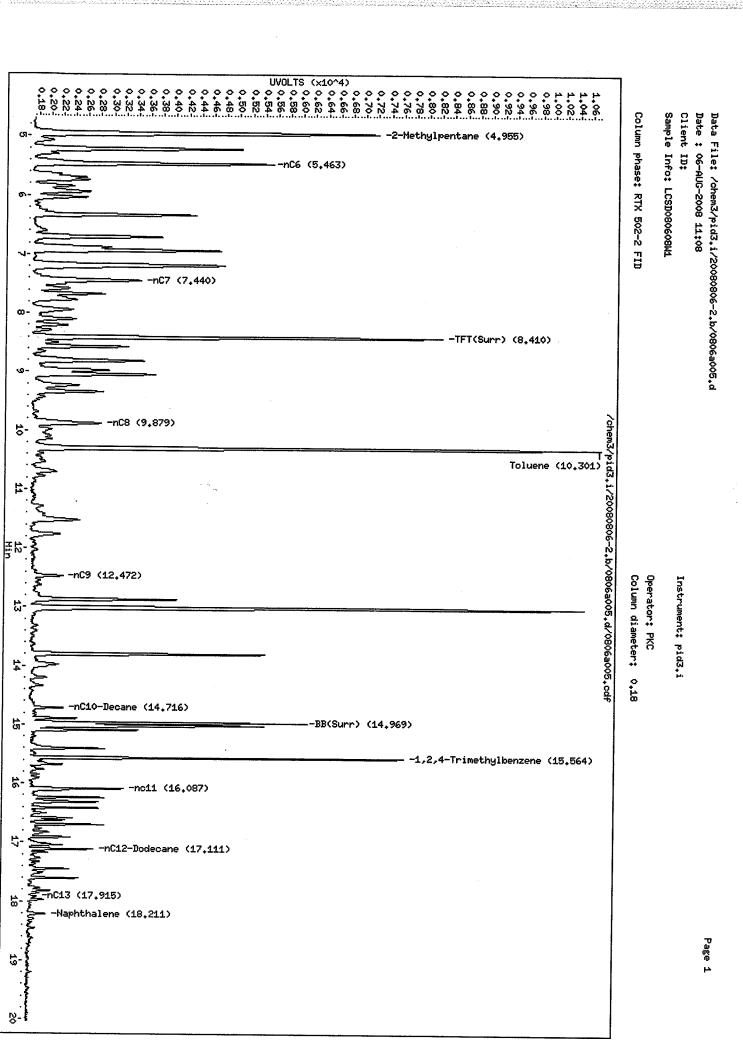
FID Surrogates

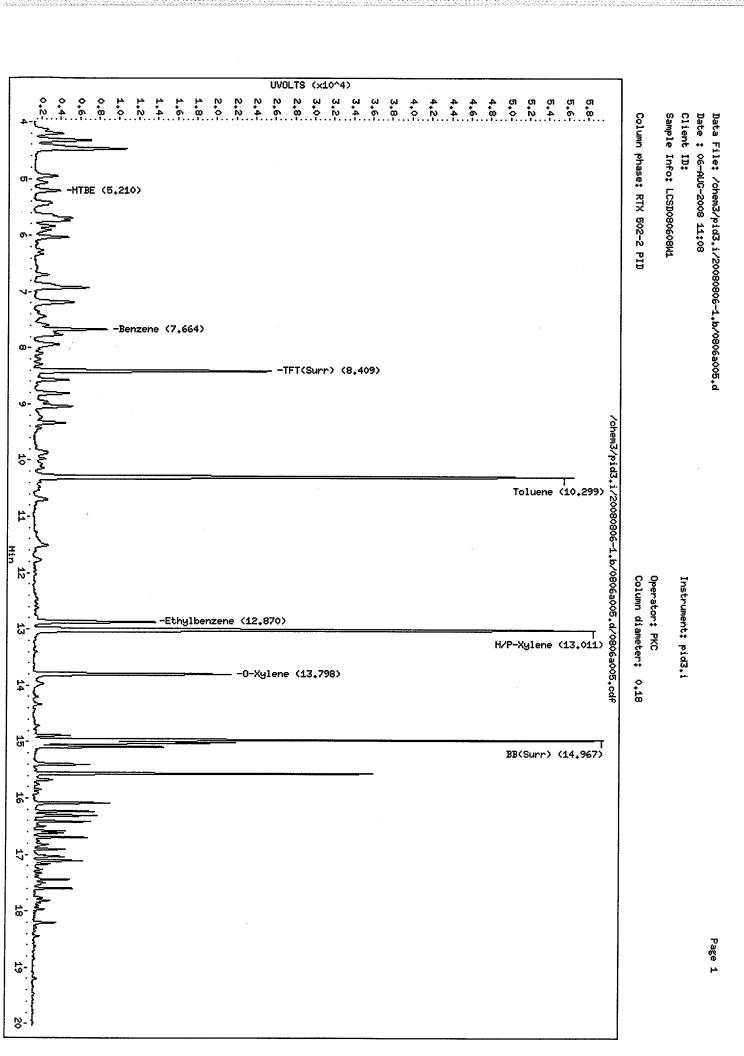
RT	Shift	Height	Area	%Rec	Compound
8.410	0.000	6498	85523	98.3	TFT (Surr)
14.969	-0.001	4405	37463	92.7	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total Area*	Amount
	-		
WAGas (Tol-C	12)	681522	0.921
8015B (2MP-T	MB)	1378090	0.959
AKGas (nC6-n	(C10)	1097964	0.960
NWGas (Tol-N	(ap	722814	0.917

* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.409	0.000	24419	100.6	TFT (Surr)
14.967	-0.001	58383	96.3	BB (Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.664	0.000	7531	4.94	Benzene
10.299	0.000	55367	37.64	Toluene
12.870	-0.001	12620	9.36	Ethylbenzene
13.011	0.001	57734	38.51	M/P-Xylene
13.798	-0.001	20364	13.74	O-Xylene
5.210	-0.012	2705	4.96	MTBE

A Indicates Peak Area was used for quantitation instead of Height I Indicates peak peak was manually integrated

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: MB-080608 METHOD BLANK

Lab Sample ID: MB-080608

LIMS ID: 08-18787

Matrix: Water Data Release Authorized:

Date Analyzed: 08/06/08 11:33

Instrument/Analyst: PID3/PKC

Reported: 08/07/08

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: NA Date Sampled: NA Date Received: NA

> Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
05 45 6	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U
	Conciling Design		GAS II
	Gasoline Range Hydrocarbons	0.25	< 0.25 U
	BETX Surrogate Recove	ry	
	Trifluorotoluene	96.8%	
	Bromobenzene	94.3%	
	Gasoline Surrogate Reco	very	
	Trifluorotoluene	94.4%	
	Bromobenzene	92.2%	

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/7/08

lason.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080806-2.b/0806a006.d Data file 2: /chem3/pid3.i/20080806-1.b/0806a006.d

Method: /chem3/pid3.i/20080806-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: MB080608W1

Client ID:

Injection Date: 06-AUG-2008 11:33

Matrix: WATER

Dilution Factor: 1.000

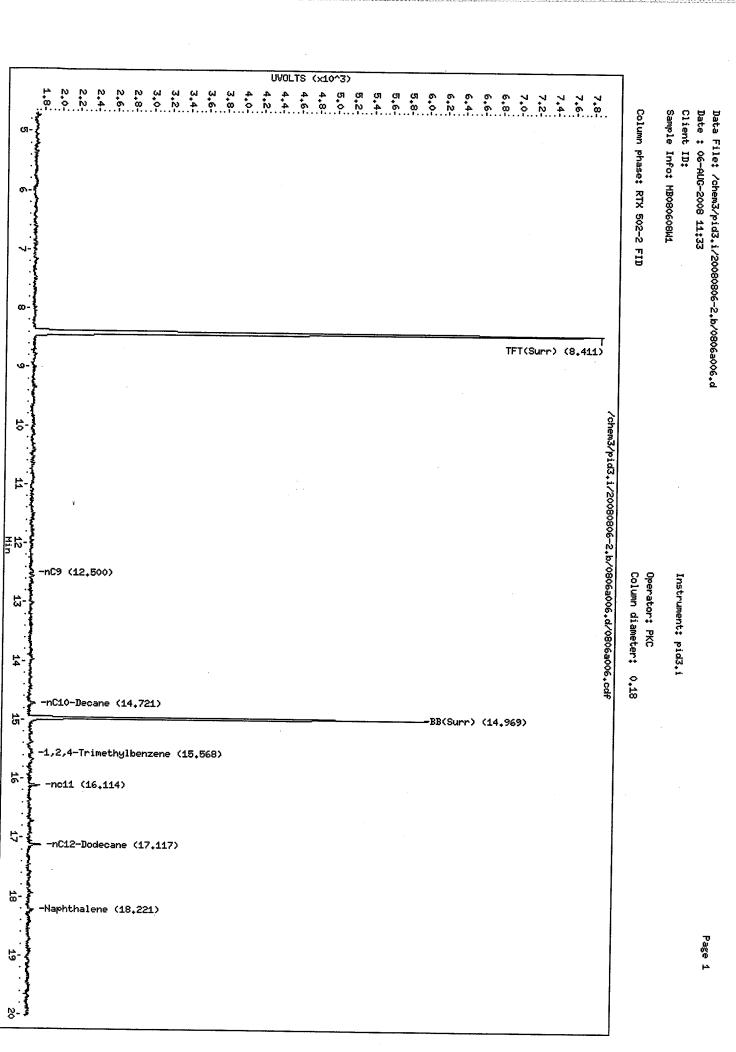
FID Surrogates

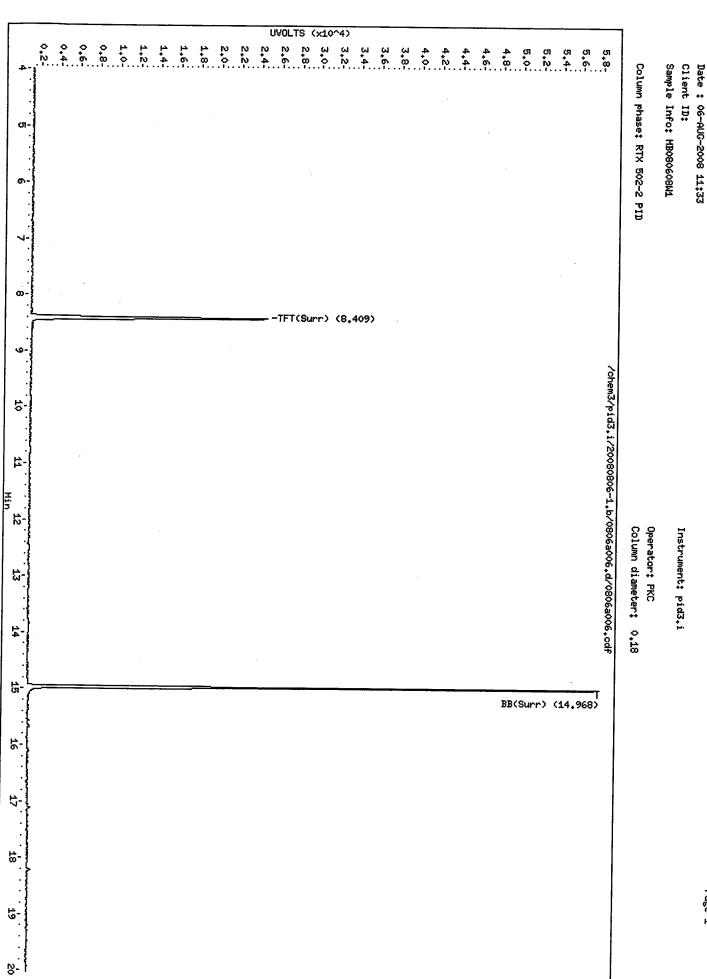
RT	Shift	Height	Area	%Rec	Compound
8.411	0.001	6244	82934	94.4	TFT (Surr)
14.969	0.000	4383	36625	92.2	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	8529	0.012
8015B (2MP-TMB)	4868	0.003
AKGas (nC6-nC10)	3373	0.003
NWGas (Tol-Nap)	10023	0.013

* Surrogate areas are subtracted from Total Area


		PID Surrogates	S	
RT	Shift	Response	%Rec	Compound
8.409	0.001	23517	96.8	TFT (Surr)
14.968	0.000	57148	94.3	BB (Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND		÷ = =		Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height N Indicates peak peak was manually integrated

Page 1

Data File: /chem3/pid3.i/20080806-1.b/0806a006.d

Listoria Isobati

N. Ass

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1 Matrix: Water

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Data Release Authorized:

Reported: 08/14/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
NI87A 08-18787	EBC-1 HC ID:	08/06/08	08/08/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25	< 0.25 U < 0.50 U 90.4%
NI87B 08-18788	EBC-3 HC ID:	08/06/08	08/08/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 94.7%
MB-080608 08-18789	Method Blank HC ID:	08/06/08	08/08/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 84.4%
NI87C 08-18789	EBC-4 HC ID:	08/06/08	08/08/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 95.6%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a028.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/12/2008 Macro: FID:3A080808 ARI ID: NI87MBW1

Client ID:

Injection: 08-AUG-2008 15:51 ~

Dilution Factor: 1

FID:	3 A	RES	JT:TS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.741	0.009	7082	:======== 12212	======== GAS	======================================	172250	====== 7
C8	1.864	0.007		3160	DIESEL	(C12-C24)	56238	5
C10	2.440	-0.009		3411	M.OIL	(C24-C38)	241284	25 1
C12	2.929	-0.007	1317	992	AK-102	(C10-C25)	109164	∠5 8
C14	3.358	0.009	803	540	AK-103	(C25-C36)	178393	25
C16	3.706	-0.004	474	213	OR.DIES	(C10-C28)	129531	9
C18	4.083	0.000	110	55	OR.MOIL	(C28-C40)	300735	33
C20	4.508	0.000	179	89	JET-A		95479	6
C22	4.867	-0.003	109	96	MIN.OIL	•	241284	19
C24	5.179	0.003	389	334	MSPIRIT	•	172250	11
C25	5.310	0.000	401	396	İ	,	1,1100	
C26	5.436	0.003	574	192	İ			
C28	5.659	0.001	1142	338	İ			
C32	6.095	0.009	4111	5308	İ			
C34	6.342	0.004	2971	2422	İ	कर्न्य है। इ. १		3 * t
Filter Peak	6.997	0.004	2742	437	JP-4	(Tol-C14)	196682	1.7
C36	6.640	-0.011	2904	1329	CREOSOT	(C8-C22)	186962	30
C38	2 7.058	0.003	2751	1146	•	•		:
C40	7.592	-0.003	2901	3851	BUNKERC	(C10-C38)	349674	44
	C10-C22) C22-C32)	.4%	90427 84115	6 13	=======	=======================================	=======================================	==='==

AZMOIL (C22-C32) 84115 13

Range Times: NW Diesel (2.986 - 5.226) NW Gas (1.682 - 2.986) NW M.Oil (5.226 - 7.106) AK102 (2.399 - 5.259) AK103 (5.259 - 6.701) Jet A(2.399 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl	598821	38.0	84.5
Triacontane	523590	42.7	94.8

ms 8/14/00

31h 43

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

1.8	,· · · · · · · · · · · · · · · · · · ·	o N	0	_										
1	1		ф 		္ ဖုံ	, 6,	0,7.	φ • ω	۰		4 4 4 		m	H P
.	-Toluene (1. -C8 (1.864)	741)										Column phase: RTX-1	Client ID: Sample Info: NI87MBW1	Data Fi Date :
2,1												phase:	ID: Info:	File: /chem3/fid3a. : 08-AUG-2008 15:51
22	-C10 (2,440)											RTX-3	NI87MI	S-2008
2.7	·												14 14 14 14 14 14 14 14 14 14 14 14 14 1	15;51
1	-C12 (2,929)													File: /chem3/fid3a.i/20080808.b/0808a028.d : 08-AUG-2008 15:51
3.3	-C14 (3,358)													8.b/0808a
.1	-C16 (3,706)													±028₊d
3,9 4,2	-C18 (4,083)			0.5										
1	-C20 (4,508)		,480 							⊤ o-terph	\ohem3\f;	wige.		, e
4 -	-C22 (4 ₊ 867)										%hem3/fid3a,1/20080808,b/0808a028			
. _	-C24 (5,179) -C25 (5,310)	A.		weeks	ester Total				·		** 808080	Oper Colu	Inst	
	·C26 (5,436)			<u>ĝ</u> é.	;	la A),/0808 ₌	Operator: ms Column diamet	Instrument: fid3a.i	
57	-C28 (5,659)				- [i i	-	5/1			0 0 0 0 0 0 0	meter:	‡ fid3	
° -{ -	-C32 (6,095)								Triad	on Surr	(5,873)	0.25	ù + ₽.	
6	-C34 (6,342)													
e -	·C36 (6,640)										ı			
φ.] -	Filter Peak (C38 (7.058)	6,997)												
7.2														
	EMOR desels67v C40 (7,592) OR Diesel (7,6		>											
;;;-]														
	K Dies 102 (7 18686616319 W Motor 011 (8 1868761614658 RANF 011 (8.2	(8,062) (8,062) (4,634) (34)									į			Page 1
. 4 4														

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a031.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/12/2008 Macro: FID:3A080808 ARI ID: NI87A Client ID:

Injection: 08-AUG-2008 16:38_

Dilution Factor: 1

· CTT	3 D	RESUI	T'C

Compound	RT	Shift	Height	A	rea	Ra	ange	Tot	al Area	Conc
===========	======	========		=====	=====	========	========		=======	======
Toluene	1.740	0.008	8720		12570	GAS	(Tol-C12)		212671	8
C8	1.862	0.005	3718		4400	DIESEL	(C12-C24)		111614	9
C10	2.439	-0.010	3550		3052	M.OIL	(C24-C38)		249420	26 /
C12	2.935	0.000	1726		240	AK-102	(C10-C25)		183771	13
C14	3.351	0.002	1334		185	AK-103	(C25-C36)		187600	27
C16	3.712	0.002	1363		1023	OR.DIES	(C10-C28)		211737	14
C18	4.090	0.008	1704		2030	OR.MOIL	(C28-C40)		298744	33
C20	4.501	-0.007	474		298	JET-A	(C10-C18)		157648	11
C22	4.870	0.000	303		95	MIN.OIL	(C24-C38)		249420	19
C24	5.176	0.000	499		68	MSPIRIT	(Tol-C12)		212671	13
C25	5.308	-0.001	569		156		,			
C26	5.434	0.001	783		240	i				
C28	5.664	0.006	2284		3288	i				
:C32	6.093	0.007	3738		3290			3		
C34	6.342	0.003	3117		1361			-4"		
Filter Peak	6.991	-0.002	2713		1883	JP-4	(Tol-C14)	٠.	251156	22
C36	6.648	-0.003	2929		581	CREOSOT	(C8-C22)		274767	44
C38	7.056	0.000	2677		798		(00 022)		2,1,0,	
C40	7.593	-0.001	2765		3975	BUNKERC	(C10-C38)		432290	54
===========	======	=======		=====	======		=======			
AZDIESEL (C1	0-C22)	19	59003	10						
	2-C32)		96114	15						
	/	•								

Range Times: NW Diesel(2.986 - 5.226) NW Gas(1.682 - 2.986) NW M.Oil(5.226 - 7.106)

RANGE AK102(2.399 - 5.259) AK103(5.259 - 6.701) Jet A(2.399 - 4.132)

Surrogate Area Amount %Rec

o-Terphenyl 640235 40.7 90.4

Triacontane 563342 45.9 102.0

mo 8/14/0S

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005 01-APR-2008 08-AUG-2008

							(×10^6)					- ,]	
	, .	, , , , , , , , , , , , , , , , , , ,	٠ ^٥	1	> •	. <mark>Ф</mark> . <mark>9</mark>	· · 6 · · ·	0.7-				 	1.1-		0	w c =
14	$ \int_{-C8}^{-Toluene} (1.862) $														olumn	Date : Client Sample
2,1															Column phase: RTX-1	
22.4															RTX	G-2008 NI87A
	-C10 (2,43	9)													 -	08-AUG-2008 16:38 ID: Info: NI87A
2,7	-C12 (2.935	51														
3.0	-012 (2,938	,,														
3,3	-C14 (3,351	.>														
3.6	-C16 (3.712				•											
نو	010 (3,712	.,														
4 2	-C18 (4.090	·>														
	200. 44 504			- "4,							1.0	o-ter	ph (4	T 숙		
4 51	-C20 (4,501	,					2.5			W.			•	chem3/fid3a,i/20080808,b/0808a031		
4.8 Mi	-C22 (4,870	>						No. 141				: -		a, 1/20		
H;5.1							عة ال ^{غي} ر		**			gir V		080808	² - 8	Ħ
تا 4	-C25 (5,308 -C26 (5,434							ar ar	5 5%.	•		1.7].	. b/\08	Operator: ms Column diamet	ıstrume
5.7	-C28 (5,664) };	11		T _S -							-	(h)8a031	Operator: ms Column diameter:	Instrument: fid3a.i
6.0											Triad	on Sur	r (5,	.870)	٠ •	ld3a₊i
6.3	-C32 (6.093														N G	
	-C34 (6₊342))														
e	,-C36 (6,648))														
6.9	-Filter Peak -C38 (7.056)	(6,99	1>													
7,2																
7,5	-840 ³ 49°5156	T-628)	(7,544)													
7.8	-OR Diesel (7,684)														
ω.	-AK Dies 102 = 1	(7,921 19 82)99 1 (8,05	L) 30) 55)													7 0 6
	-1985H4460193 -110 ANN - 110 (58 \$143 9 8.238)	17													ř H
δ- - 4*																
•																

Page 1

Data File: /chem3/fid3a.i/20080808.b/0808a031.d

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a032.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/12/2008 Macro: FID:3A080808 ARI ID: NI87B Client ID:

Injection: 08-AUG-2008 16:54

Dilution Factor: 1

₽.	T	٠	7.	RESILTS
н.			5 🕰	RESIDERS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.740	0.009	 8560	9181	GAS (Tol-C12)	231950	9
C8	1.861	0.004	3363	3747	DIESEL (C12-C24)	122738	10/
C10	2.440	-0.010	3637	3857	M.OIL (C24-C38)	242197	25 /
C12	2.926	-0.010	2306	2661	AK-102 (C10-C25)	207465	14
C14	3.329	-0.020	1867	2235	AK-103 (C25-C36)	179465	26
C16	3.716	0.006	1683	1532	OR.DIES (C10-C28)	236916	16
C18	4.074	-0.008	721	606	OR.MOIL (C28-C40)	288108	32
C20	4.513	0.005	607	249	JET-A (C10-C18)	172832	12
C22	4.872	0.003	571	298	MIN.OIL (C24-C38)	242197	19
C24	5.175	-0.001	700	329	MSPIRIT (Tol-C12)	231950	15
C25	5.302	-0.008	751	631			
C26	5.433	0.000	907	304			
C28	5.654	-0.004	1366	488	İ		
C32	6.077	-0.009	2841	1182			
C34	6.344	0.005	2988	1546		n°≇	
Filter Peak	6.994	0.001	2664	1960	JP-4 (Tol-C14)	274984	24
C36 🐃	6.646	-0.005	2833	508	CREOSOT (C8-C22)	298763	48
C38	7.053	-0.003	2644	633	3.		
C40	7.595	0.000	2756	5143	BUNKERC (C10-C38)	448349	56
	10-C22) 22-C32)		30486 3233	11 14	=======================================	=======================================	===== *}.

Range Times: NW Diesel (2.986 - 5.226) NW Gas (1.682 - 2.986) NW M.Oil (5.226 - 7.106) AK102 (2.399 - 5.259) AK103 (5.259 - 6.701) Jet A(2.399 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl	670831	42.6	94.7
Triacontane	580947	47.4	105.2

ms 8/14/0d

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

						Y (x10^6)	····					٦		
	, , , , , , , , , , , , , , , , , , ,	, ²²	φ		٠ نا ٠	.	0.7-	,	0.0	1.0-	4 4 4				
1. 8	-Toluene (1 .		Column phase: RTX-1	Client ID: Sample Info: NI87B	Date :
2.1													phase:	ID: Info: }	-908-80 -51 / ct
2 4	-C10 (2.44	٥>											RTX-L	4187B	08-AUG-2008 16:54
2.7															03a,1/2 6:54
3. 0.	-C12 (2,920	6)													0808080
3,3	-C14 (3,329	9)													<pre>rile: /cnem3/+1d3a,1/20080808,b/0808a032,d : 08-AUG-2008 16:54</pre>
3,6	-C16 (3.710	:)													3a032,d
3.9.	010 (31716	,,													
	-C18 (4,074	•)										- 10° ∂			
4.5	-C20 (4.513)							e de la companya de l		o-terph	0hem3/f	<u>.</u>		
4.8 5.1	-C22 (4.872	>						É.	27 . Sant			'ohem3/fid3a,i/20080808,b/0808a032,d 99 90 40 41			
]	-C24 (5,175 -C25 (5,302					e. L _{ob}		azêr 				>80808 	.01 .00 .00 .00	Ins	
5-4	-C26 (5‡433		4. i.						-202 19-7	Kee """		o/0808;	Operator: ms Column diamet	crument	
5.7	-C28 (5,654) , 3,	- 57:-	18 Aug. 189								₃032₊d	Operator: ms Column diameter:	Instrument: fid3a.i	A.,
6 - 0 -	-C32 (6.077)								Triad	on Surr	(5,873)	0,25	₩ + ₽.	
S -	-C34 (6.344)													
20-	-C36 (6.646	>													
٥-	-Filter Peal -C38 (7.053)	< (6.994)	•												
7															
	-BNORMAPELS -C40 (7,595)		' . 548)												
- -	-AK Dies 102 ≡##N9ERoGo#														
a I	= NG NO CO CO CO CO CO CO CO CO CO CO CO CO CO	(† (8,051 (\$9 14 89) (8,237)	3												Page 1
-															
٠ ا															

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a033.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/12/2008 Macro: FID:3A080808

ARI ID: NI87C Client ID:

Injection: 08-AUG-2008 17:09 ~

Dilution Factor: 1

T1 T T2	~ ~	D D C T T
H.	: 3A	RESULTS

Compound	RT	Shift	Height		Area	Range		Tota	l Area	Conc
Toluene	1.740	0.008	8727	====	====== 11962	GAS	======= (Tol-C12)	=======	======: 191893	====== 8
C8	1.861	0.004	3115		3756	DIESEL			54409	° 5/
C10	2.440	-0.010	3201		2941	M.OIL	, ,		254289	26
C12	2.937	0.001	1417		1065	AK-102			112205	8
C14	3.351	0.002	911		622	AK-103	(C25-C36)		193482	27
C16	3.709	-0.001	563		132	OR.DIES			133102	9
C18	4.076	-0.006	236		146	OR MOIL	•		307498	34
C20	4.511	0.003	124		57	JET-A			102254	7
C22	4.867	-0.003	63		15	MIN.OIL			254289	20
C24	5.176	0.000	350		274	MSPIRIT			191893	12
C25	5.310	0.001	358		217		, ,	•	2020	12
C26	5.432	-0.001	572		112	j				
C28	5.654	-0.004	1106		306	İ				
C32	6.089	0.004	9155		8052	j				
C34	6.331	-0.008	3070		3442	199345-				
Filter Peak	6, 990	-0.003	2622		1407	JP-4	(Tol-C14)	و آسوا	218192	.19
C36	6.658	0.007	9237		14452	CREOSOT	(C8-C22)		196686	19 32
C38	7.051	-0.004	2658		738	j	•	- :		J.
C40	7.586	-0.009	3118		5365	BUNKERC	(C10-C38)	v., 3	366042	46
	L0-C22) 22-C32)		94756 80585	6 13	22====		- # 6	=======	:====== : ::	

Range Times: NW Diesel(2.986 - 5.226) NW Gas(1.682 - 2.986) NW M.Oil(5.226 2.7.106) AK102(2.399 - 5.259) AK103(5.259 - 6.701) Jet A(2.399 - 4.132)

		+1.99	· ·
Surrogate	Area	Amount	%Rec
o-Terphenyl	676483	43.0	95.5
Triacontane	602819	49.1	109.2

mo 8/14/08

er Halter

:

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
		22 222 2000

				Y	(×10^6)						7			
	0 4 	φ φ .N	.	٥ نا نا	o. 6	0,7	. .		1		٥	· ¢	၈၄ ၂	Þ
1.8	-Toluene (1, -C8 (1,861)	,740)									olumn	, a	ō # 4	Date : :
2,1											Column phase: RTX-1		Client ID:	SH-AUG
2+4	-C10 (2,440)										RTX-1	1076	71870	08-AUG-2008 17:09
2.7														7:09
3.0	-C12 (2.937)													
۵	-C14 (3,351)													
3,6 3	-C16 (3,709)													
3,9 4,2	-C18 (4.076)	÷												
4 • •	-C20 (4,511)								o-terpl	1 (4,269)	Chem3/6:		79,7	
4.8 Hi	-C22 (4,867)							ξ :			1/2000			
5.1 5.4	-C24 (5,176) -C25 (5,310) -C26 (5,432)					: "ग्राम्		52.5	er Villa	135 1965 - 1987 1	Column diamete	Operator: ms	Instrument: fi	
5,7	-C28 (5,654)	**** ****			• *				,		Column diameter:	** Bu	ent: fida	
6.0	-C32 (6,089)				-			Tria	con Surr	(5,871)	0,25		d3a•i	
6,3	-C34 (6,331)													
6.	-C36 (6,658)													
6,9 7,2	-Filter Peak -C38 (7.051)	(6,990)												
2 7,5	_848B449581561	' √ ₽%8>(7.546)												
7,8	-OR Diesel (7	′ ₊ 683)												
	- AK Dies 102 = 9 8 9 8 9 6 1 9 3 1 - NW Motor 0 1 = 1 8 1 1 9 1 0 1 4 9 5 - TRANF 0 1 1 (8	(7,924) 977,989) 1681,073) 1891,63)												
8. 4.	-IKHMP UIL (8	·4433)												•
.														

Page 1

\$9

Data File: /chem3/fid3a.i/20080808.b/0808a033.d

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NI87-HART CROWSER, INC. Project: PIER 23-EBC

Client ID	OTER	TOT OUT
EBC-1	90.4%	0
EBC-3	94.7%	0
MB-080608	84.4%	0
LCS-080608	97.3%	0
LCSD-080608	94.9%	0
EBC-4	95.6%	0
EBC-4 MS	97.1%	0
EBC-4 MSD	92.9%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(49-118)

(45-112)

Prep Method: SW3510C

Log Number Range: 08-18787 to 08-18789

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: EBC-4 MS/MSD

Lab Sample ID: NI87C LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Reported: 08/14/08

Date Sampled: 07/30/08

Date Extracted MS/MSD: 08/06/08

Date Analyzed MS: 08/08/08 17:25

MSD: 08/08/08 17:40

Instrument/Analyst MS: FID/MS

MSD: FID/MS

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Received: 08/04/08

Sample Amount MS: 500 mL

MSD: 500 mL Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	< 0.25	2.23	3.00	74.3%	2.22	3.00	74.0%	0.4%

TPHD Surrogate Recovery

MS

o-Terphenyl

MSD 97.1% 92.9%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a034.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/12/2008 Macro: FID:3A080808 ARI ID: NI87CMS

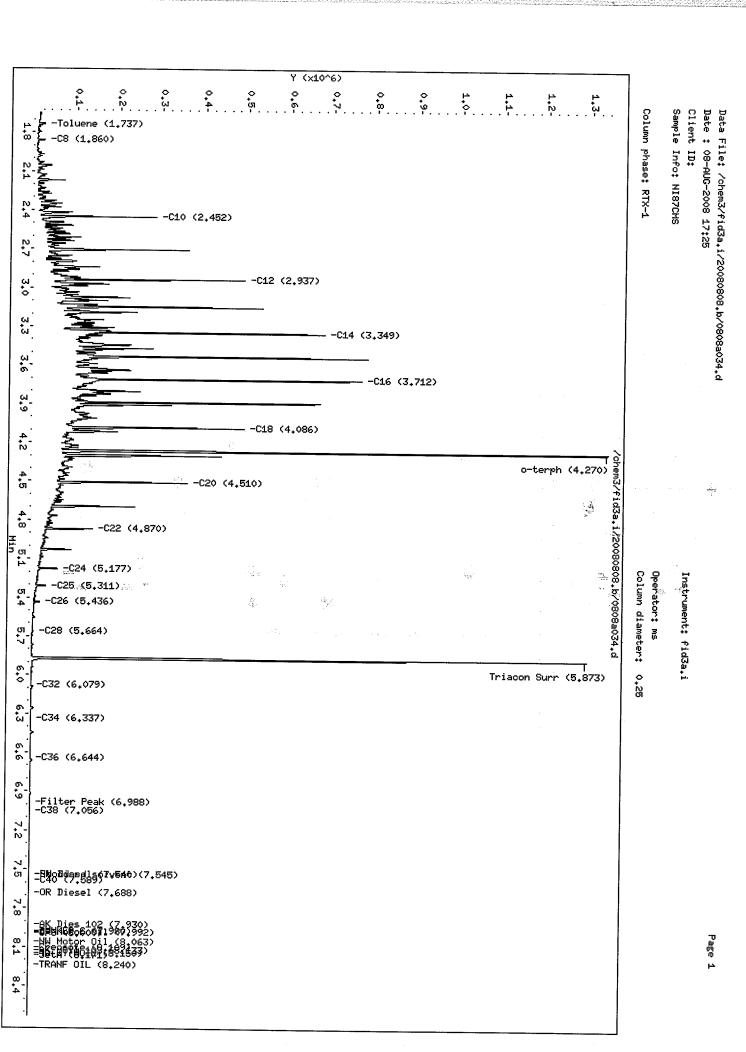
Client ID:

Injection: 08-AUG-2008 17:25

Dilution Factor: 1

TrT:	ת כים	ਸਾਹਸ਼ਤ	ma

Compound	RT ======	Shift	Height	Area	R	ange	Total Area	Conc
Toluene C8 C10 C12 C14 C16 C18 C20	1.737 1.860 2.452 2.937 3.349 3.712 4.086 4.510	0.005 0.003 0.002 0.002 0.002 0.000 0.001 0.004 0.002	21420 20505 283599 488882 678085 764849 493016 361655	17229 13110 118197 237317	GAS DIESEL M.OIL AK-102 AK-103 OR.DIES OR.MOIL JET-A	(Tol-C12) (C12-C24) (C24-C38) (C10-C25) (C25-C36) (C10-C28) (C28-C40)	10tal Area ====================================	111 1114 50 1080 58 1061 35
C22 C24 C25 C26 C28 C32	4.870 5.177 5.311 5.436 5.664 6.079 6.337	0.000 0.001 0.002 0.003 0.005 -0.007	140748 59909 34900 19816 6225 3171 3261	97011 36719 36067 21846 8463 631 1101	MIN.OIL MSPIRIT	(C24-C38) (Tol-C12)	490898 490898 2798475	781 38 177
Filter Peak C36 C38 C40	6.988 6.644 7.056 7.589	-0.005 -0.007 0.001 -0.005	2696 2985 2729 3037	698 475 1027 4590	JP-4 CREOSOT BUNKERC	(Tol-C14) (C8-C22) (C10-C38)	5779497 15477218 15940258	2509 2483 2005
AZMOIL (C2	L0-C22) 22-C32)		4903 2648	916 122				=


Range Times: NW Diesel (2.986 - 5.226) NW Gas (1.682 - 2.986) NW M.Oil (5.226 - 7.106)

**AK102 (2.399 - 5.259) AK103 (5.259 - 6.701) Jet A(2.399 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl	687385	43.7	97.0 /
Triacontane	614815	50.1	111.4

ms 8/14/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a035.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

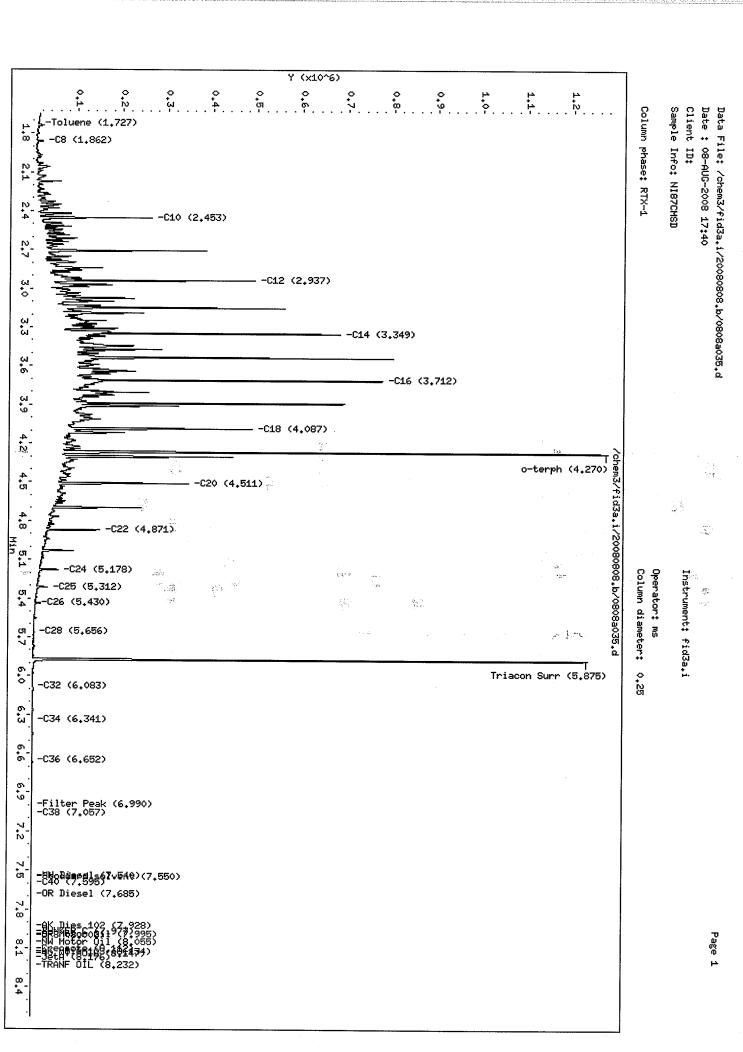
Report Date: 08/12/2008 Macro: FID:3A080808 ARI ID: NI87CMSD

Client ID:

Injection: 08-AUG-2008 17:40

 $\mathcal{G}_{\mathbb{C}}$

Dilution Factor: 1


_				FID:	3A RESUI	LTS			
Compound	RT ======	Shift	Height		Area	R	ange	Total Area	Conc
Toluene	1.727	-0.005	7886	====	3286	======= GAS	======== (Tol-C12)	======================================	100
C8	1.862	0.004	17964		13010	DIESEL	(C12-C24)	13147191	108
C10	2.453	0.003	261936		116437	M.OIL	(C24-C38)	473580	1108
C12	2.937	0.001	492295		235434	AK-102	(C10-C25)	15357460	49
C14	3.349	0.000	680460		309553	AK-103	(C25-C36)	386504	1072 55
C16	3.712	0.002	774548		437646	OR.DIES	(C10-C28)	15575748	1053
C18	4.087	0.005	487383		327004	OR.MOIL	(C28-C40)	308481	34
C20	4.511	0.003	346815		228452	JET-A		11483981	774
C22	4.871	0.001	149059		103054	MIN.OIL	(C24-C38)	473580	37
C24	5.178	0.002	58011		41105	MSPIRIT	(Tol-C12)	2728648	172
C25	5.312	0.003	34344		35947	İ	,===,	2720040	1/2
C26	5.430	-0.003	7856		2030	į			
C28	5.656	-0.003	3958		1014	İ			
C32	6.083	-0.003	3161		882	ĺ			
C34	6.341	0.002	3208		3174	·		endita.	
Filter Peak	6.990	-0.003	2695	,	1776	JP-4	(Tol-C14)	5694908	501
C36	6.652	0.001	2973	~£1	830	CREOSOT	(C8-C22)	15356484	2463
C38	7.057	0.001	2677		480	į	, ,	20000101	2405
C40	7.595	0.000	2723		2106	BUNKERC	(C10-C38)	15806949	1988
	0-C22) 2-C32)		======= 2806 3739	910 119	======	===== ==	========	=======================================	=====

Range Times: NW Diesel (2.986 - 5.226) NW Gas (1.682 - 2.986) NW M.Oil (5.226 - 7.106) AK102 (2.399 - 5.259) AK103 (5.259 - 6.701) Jet A (2.399 - 4.132)

_	Surrogate	Area	Amount	%Rec	
	o-Terphenyl Triacontane	657948 576789	41.8 47.0	92.9	سسببى

ms 8/14/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Lab Sample ID: LCS-080608

Date Extracted LCS/LCSD: 08/06/08

Date Analyzed LCS: 08/08/08 16:07

Instrument/Analyst LCS: FID/MS

LCSD: 08/08/08 16:23

LCSD: FID/MS

LIMS ID: 08-18789

Matrix: Water

Data Release Authorized:

Reported: 08/14/08

QC Report No: NI87-HART CROWSER, INC.

Project: PIER 23-EBC

Date Sampled: 07/30/08 Date Received: 08/04/08

Sample Amount LCS: 500 mL

LCSD: 500 mL

LCS/LCSD

Sample ID: LCS-080608

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.20	3.00	73.3%	2.17	3 00	72 3%	1 4%

TPHD Surrogate Recovery

LCS LCSD 97.3% 94.9% o-Terphenyl

Results reported in mg/L RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a029.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

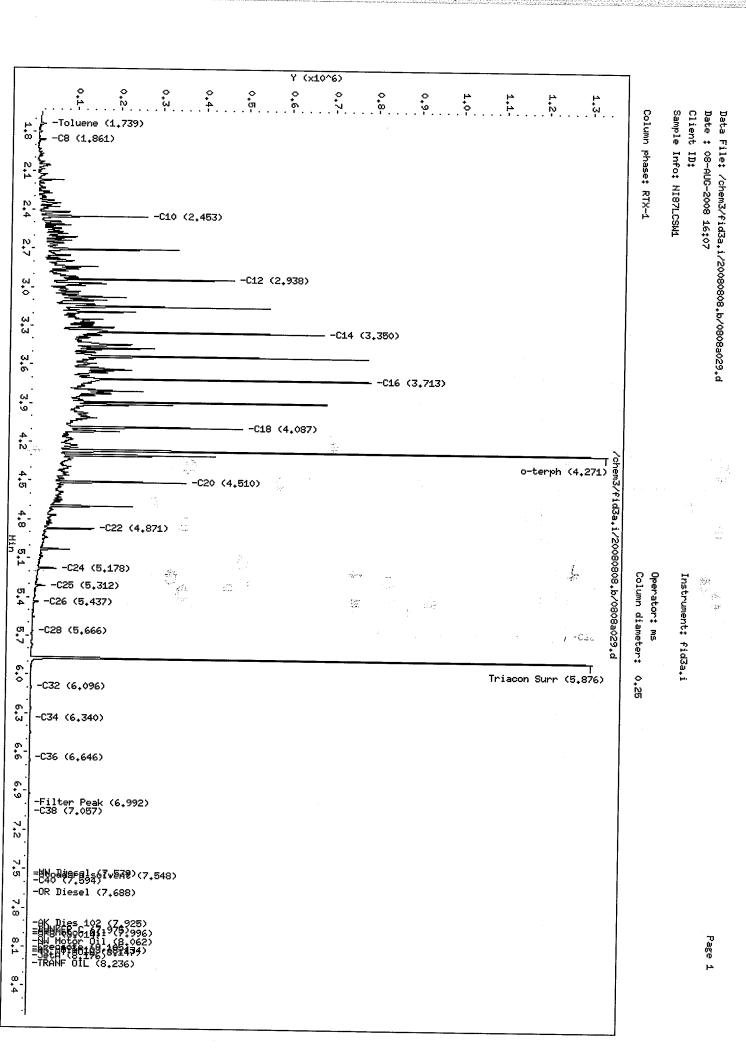
Report Date: 08/12/2008 Macro: FID:3A080808 ARI ID: NI87LCSW1

Client ID:

Injection: 08-AUG-2008 16:07

Dilution Factor: 1

PTD.	27	DECIII	TС


Compound	RT	Shift	Height		Area	Ra	ange	Tota	l Area	Conc
Toluene	 1.739	0.007	====== 20405	=====	====== 16145	======================================	======================================	======	======	100
C8	1.861	0.004	19819		13084	DIESEL	•		574931 037292	102 1099
C10	2.453	0.003	261488		110949	M.OIL	,,		489142	50
C12	2.938	0.002	465909		229961	AK-102			095467	1054
C14	3.350	0.000	675593		305752	AK-103	•		400041	57
C16	3.713	0.002	786221	4	133283	OR.DIES	(C10-C28)		314980	1036
C18	4.087	0.004	490276	:	315440	OR.MOIL	(C28-C40)		322530	35
C20	4.510	0.002	358542	2	231622	JET-A	(C10-C18)	11	259773	758
C22	4.871	0.001	145531		91082	MIN.OIL	(C24-C38)		489142	38
C24	5.178	0.002	59309		37009	MSPIRIT	(Tol-C12)	2	574931	163
C25	5.312	0.003	34040		37260	İ				
C26	5.437	0.004	19009		22679	İ				
C28	5.666	0.007	6396		8557					
C32	6.096	0.011	4571		14422	İ				
C34	6.340	0.001	3231		2183	j			/ margy	
Filter Peak	6.992	-0.001	2800		1665	JP-4	(Tol-C14)	5.	560598	489
C36	6.646	-0.005	3034	. 14	846	CREOSOT	(C8-C22)	15	085234	2420
C38	7.057	0.001	2796		942					
C40	7.594	-0.001	2975		3100	BUNKERC	(C10-C38)	15	556249	1956
AZDIESEL (C1	====== L0-C22)	14362	====== 2660	===== 894	=====		========	======	======	=====
AZMOIL (C2	22-C32)	775	5693	120						

Range Times: NW Diesel(2.986 - 5.226) NW Gas(1.682 - 2.986) NW M.Oil(5.226 - 7.106) AK102(2.399 - 5.259) AK103(5.259 - 6.701) Jet A(2.399 - 4.132)

· 	Surrogate	Area	Amount	%Rec
	o-Terphenyl	689521	43.8	97.3
	Triacontane	605491	49.4	109.7

ms 8/14/0}

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080808.b/0808a030.d Method: /chem3/fid3a.i/20080808.b/ftphfid3a.m

Instrument: fid3a.i

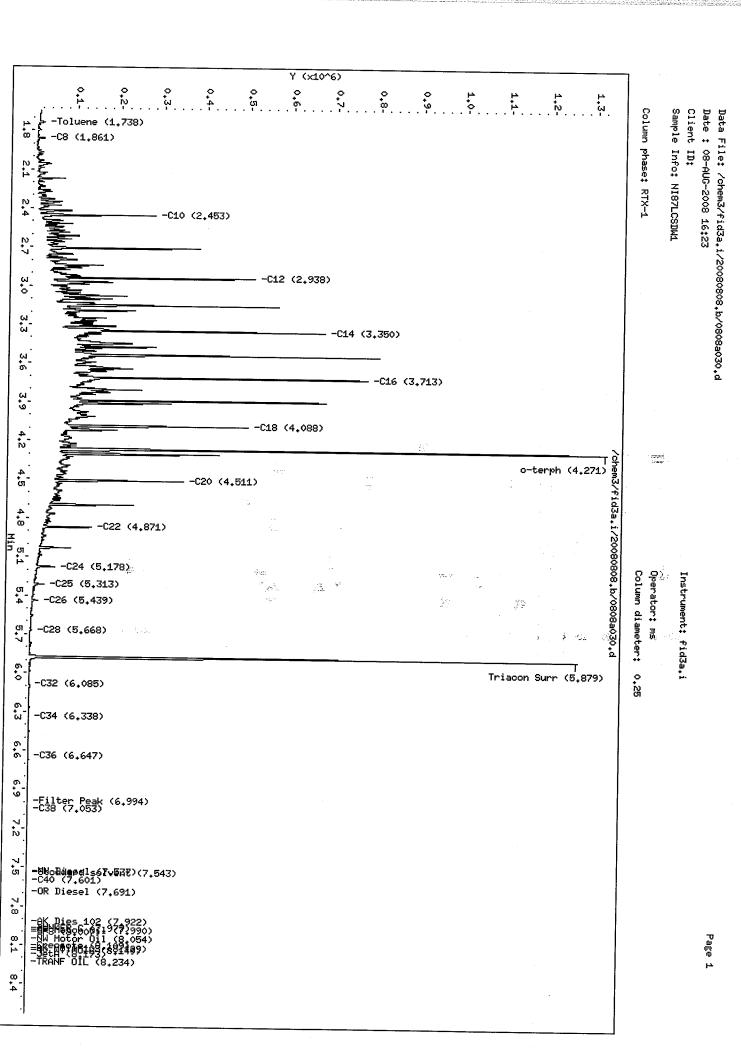
Operator: ms

Report Date: 08/12/2008 Macro: FID:3A080808 ARI ID: NI87LCSDW1

Client ID:

Injection: 08-AUG-2008 16:23

Dilution Factor: 1


				FID:3A RESUI	LTS			
Compound	RT	Shift 	Height	Area	R	ange	Total Area	Conc
Toluene	1.738	0.007	======: 21389	======================================	====== GAS	========= (Tol-C12)		======
C8	1.861	0.004	20888	13680	DIESEL		2900008	115
C10	2.453	0.004	277954	125530	M.OIL	·,	12845259	1083
C12	2.938	0.002	510200	248788	AK-102		476234	49
C14	3.350	0.001	673050	309412	AK-103	/	15191960	1060
C16	3.713	0.002	772408	502455	OR DIES		387452	55
C18	4.088	0.005	499817	319526	OR.MOIL		15408612	1042
C20	4.511	0.002	351527	234786	JET-A		308265	34
C22	4.871	0.001	140842	100168	MIN.OIL	(C24-C38)	11554392	778
C24	5.178	0.003	57308	36182	MSPIRIT	(Tol-C12)	476234	37
C25	5.313	0.004	33968	34044	Indiana	(101-012)	2900008	183
C26	5.439	0.006	19353	18650				
C28	5.668	0.010	6016	8340				
C32	6.085	0.000	3096	493	-			
C34	6.338	2.	3215	768		See See		aceins mon
Filter Peak	6.994	0.002	2759	933	JP-4	(Tal (14)	5060546	
C36	6.647	-0.005	2968	1596	CREOSOT	(Tol-C14)	5868546	517
C38		-0.002	2736	1088	CKEOSOI	(C8-C22)	15226404	2442
C40	7.601	0.007	2912	3755	BUNKERC	(010 000)		
=======================================	=======	=======	2712		POMVEKC	(C10-C38)	15642120	1967
AZDIESEL (C	10-C22)	1443	4441	899			=============	=====
AZMOIL (C2	22-C32)			118				

Range Times: NW Diesel(2.986 - 5.226) NW Gas(1.682 - 2.986) NW M.Oil(5.226 - 7.106)
AK102(2.399 - 5.259) AK103(5.259 - 6.701) Jet A(2.399 + 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl	672501	42.7	94.9 /
Triacontane	597381	48.7	108.2

Nus 8/14/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 25240.2 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 07-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Professor Levels

102.03

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NI87

Matrix: Water

Project: PIER 23-EBC

Date Received: 08/04/08

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
08-18787-NI87A 08-18788-NI87B 08-18789-080608MB1 08-18789-080608LCS1 08-18789-080608LCSD1 08-18789-NI87C 08-18789-NI87CMS 08-18789-NI87CMSD	EBC-1 EBC-3 Method Blank Lab Control Lab Control Dup EBC-4 EBC-4 EBC-4	500 mL 500 mL 500 mL 500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL	08/06/08 08/06/08 08/06/08 08/06/08 08/06/08 08/06/08 08/06/08

September 9, 2008

Analytical Report for Service Request No: K0807445

Kelly Bottem Analytical Resources, Incorporated 4611 So. 134th Place Suite 100 Tukwila, WA 98168

RE: Pier 23-EBC

Dear Kelly:

Enclosed are the results of the samples submitted to our laboratory on August 07, 2008. For your reference, these analyses have been assigned our service request number K0807445.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela Project Chemist

PD/II

Page 1 of <u>35</u>

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A . A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number	
Alaska DEC UST	UST-040	
Arizona DHS	AZ0339	······································
Arkansas - DEQ	88-0637	
California DHS	2286	
Colorado DPHE	-	
Florida DOH	E87412	
Hawaii DOH	-	
Idaho DHW	-	
Indiana DOH	C-WA-01	
Louisiana DEQ	3016	
Louisiana DHH	LA050010	
Maine DHS	WA0035	
Michigan DEQ	9949	
Minnesota DOH	053-999-368	
Montana DPHHS	CERT0047	****
Nevada DEP	WA35	
New Jersey DEP	WA005	
New Mexico ED	-	
North Carolina DWQ	605	
Oklahoma DEQ	9801	
Oregon - DHS	WA200001	
South Carolina DHEC	61002	
Utah DOH	COLU	
Washington DOE	C1203	
Wisconsin DNR	998386840	
Wyoming (EPA Region 8)	-	

Case Narrative

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Analytical Resources, Incorporated

Service Request No.:

K0807445

Project:

Pier 23-EBC

Date Received:

08/17/2008

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three water samples were received for analysis at Columbia Analytical Services on 08/07/2008. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Approved by

Holding Time Exceptions:

Samples EBC-1, EBC-3, and EBC-4 were received past the recommended holding time for filtration prior to analysis of Mercury via method 1631. The filtration was performed as soon as possible after receipt by the laboratory.

No other anomalies associated with the analysis of these samples were observed

Date Date

Chain of Custody Documentation

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 08/12/08

ARI Project: NI87

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street

Kelso, WA 98626 Phone: 360-577-7222 Fax: 360-636-1068

Project ID: PIER 23-EBC ARI PM: KELLY BOTTEM Phone: 206-695-6211

Fax: 206-695-6201

Analytical Protocol: In-house

Special Instructions:

Requested Turn Around: 05/30/08 Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Clien Add'l	it ID/	Sampled	Matrix	Bottles	Analyses	
08-18787	-NI87A EBC-1		07/30/08	Water	4	Metals (Sub)	/0.11
Special	Instructions:	T-LL HG, T-AS CD	CR CU PB	NI ZN		Low Level Hg	(Sub)
08-18788	-NI87B EBC-3		07/30/08	Water	4	Metals (Sub)	/0.1.
Special	Instructions:	T-LL HG, T-AS CD	CR CU PB	ZN		Low Level Hg	f (Sub)
08-18789	-NI87C EBC-4		07/30/08	Water	10	Metals (Sub)	40.11
Special	Instructions: 1	MS/MSD T-AS CD C	R CU PB NI	ZN&LL HG		Low Level Hg	(Sub)
08-18791	-NI87E EBC-1		07/30/08	Water	2	Metals (Sub)	er andred der der er er er er er er er er er er er er e
Special	Instructions: I	D-AS CD CR CU PB	NI ZN&LL	HG		Low Level Hg	(Sub)
08-18792	-NI87F EBC-3		07/30/08	Water	2	Metals (Sub)	
Special :	Instructions: I	D-AS CD CR CU PB	NI ZN&LL	HG		Low Level Hg	(Sub)
08-18793-	-NI87G EBC-4		07/30/08	Water	6	Metals (Sub)	
Special 1	Instructions: M	MS/MSD D-AS CD CE	R CU PB NI	ZN&LL HG		Low Level Hg	(Sub)

	Carrier	Airbill 17832	695-03 4432 1220	Date 8/12/ca>
٦_	Received by	Company	Pate 8/2/08	Time /602
	afull	Company (AS	Dat 9/13/08	Time 1030

Subcontractor Custody Form - N187 Page 1 of 1

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 08/05/08

ARI Project: NI87

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street

Client ID/

Kelso, WA 98626 Phone: 360-577-7222 Fax: 360-636-1068

Project ID: PIER 23-EBC ARI PM: KELLY BOTTEM Phone: 206-695-6211 Fax: 206-695-6201

10807445

Analytical Protocol: In-house

Special Instructions:

Requested Turn Around: 05/30/08 Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Add'l ID	Sampled	Matrix	Bottles	Analyses
08-18787-NI87A	E3C-1	07/30/08	Water	4	Metals (Sub)
Special Instruc	tions: T-LL HG, T-AS CD	CR CU PB	NI ZN		Low Level Hg (Sub)
08-18788-NI87B	E 3C-3	07/30/08	Water	4	Metals (Sub)
Special Instruc	tions: T-LL HG, T-AS CD	CR CU PB	ZN		Low Level Hg (Sub)
08-18789-NI87C	E3C-4	07/30/08	Water	10	Metals (Sub)
Special Instruct	tions: MS/MSD T-AS CO C	R CU PB NI	ZN&LL HG		Low Level Hg (Sub)
08-18791-NI87E	E3C-1	07/30/08	Water	2	Metals (Sub)
Special Instruct	cions: D-AS CD CR CU PB	NI ZN&LL	HG .		Low Level Hg (Sub)
08-18792-NI87F	E3C-3	07/30/08	Water	2	Metals (Sub)
Special Instruct	cions: D-AS CD CR CU PB	NI ZN&LL	HG		Low Level Hg (Sub)
08-18793-NI87F	E3C-14	07/30/08	Water	 6	Metals (Sub)
Special Instruct	ions: MS/MSD D-AS CO CR	CU PB NI	ZN&LL HG		Low Level Hg (Sub)

only recid 6 bottles	for EBC-3		
Red ac for EBC-4	1. 16 bottles total		
Relinquished by	Airbill 1Z 832 695-034458	The second section of the second seco	Date /02
Received by	14601	8/6/02	Time 1600
hou flour	66	8/7/08	Time (030)

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form Client / Project: Lespace Service Request K08									PC				
Re 1. 2. 3.	Samples were received via? US Mail Fed Ex UPS DHL GH GS PDX Courie. Samples were received in: (circle) Cottler Box Envelope Other Were custody seals on coolers? NA Y N If yes, how many and where?										N.4		
4.	If present, were custody seals intact? Y N If present, were they signed and dated? Is shipper's air-bill filed? If not, record air-bill number: 1Z8326950344321230 **CHOSAP MARKETOS AND 13 07 46:31 2008												
5.6.7.8.	Temperature of cooler(s) upo Temperature Blank (°C): If applicable, list Chain of Custo Packing material used. <i>Insert</i> Were custody papers properly fi	ody Numbe s Baggies	rs: Bubble W			cks W	Ŋ Ice	Sleeves Oth	er_		Δ		
 Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels complete (i.e analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate in the table below Were appropriate bottles/containers and volumes received for the tests indicated? 										NA NA NA NA	8 P D D D D D D D D D D D D D D D D D D	N N N	
13. 14. 15.	Were the pH-preserved bottles to Were VOA vials and 1631 Mero Are CWA Microbiology samp Was C12/Res negative?	ested* rece	ived at the ap	propria	ate pH? adspac	Indicate e? Indic	e in the ate in t	table below he table below.		NA NA NA NA	Y Y Y Y	N N N	
	Sample ID on Bottle	Samp	Sample ID on COC			Sampl	e ID on	Bottle	Sample ID on COC				
	Sample ID	Bottle Count	Bottle Type		Head- space	Broken	pН	Reagent	Volume added	Reagent Numbe		Initials	
												11 de la companya de	
Does n	on include all pH preserved sample aliq onal Notes, Discrepancies, &	uois received.	See sample rec O118:	reiving So	OP (SMC	D-GEN).							

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC_

Client / Project: A. 2.1			1/		Serv		quest <i>K0</i>	8	0	71/1/		
Received: \$17108	Opened	1: 8/7/0	E		 Ву:		94.000 110	<u> </u>	\	144)	
 Samples were received via? Samples were received in: (circ Were <u>custody seals</u> on coolers? If present, were custody seals in 	US Mail cle)	Fed Ex	<i>UI</i> Box N	Enve	DHL elope f yes, hov	GH Oth w many	and whe	•	Fa	7U+	land E NA	elivered
4. Is shipper's air-bill filed? If no		(Y) r-bill number	N IZ	83.			re they sig コープ ロー				8) N
5. Temperature of cooler(s) upo Temperature Blank (°C):			5.	9						-		
6. If applicable, list Chain of Custo												
7. Packing material used. <i>Insert</i>				Gel Pa	cks W	et Ice	Sleeves	Other				
8. Were custody papers properly fi										NA	R) N
 Did all bottles arrive in good of Were all sample labels complete 	condition (unbroken)?	Indica	te in th	e table b	elow.				NA	M	N
The same of the sa										NA	Ø	Ν
and tags a	gree with c	ustody papers	? Indi	cate in	the table	e below				NA	(D)	N
Pp- op- mee sources/com	ested* roce	ived at the	eived	for the	tests inc	licated	?			NA	\odot	Ν
property of collies t	care bottlee	roccius de sid	propri	ate pH?	Indicat	e in the	table bel	OW!		NA	O	N
	les receive	d with > 1/2 4	nout ne	adspac	e? Indic	ate in t	he table b	elow.		(NA)	Υ	N
15. Are CWA Microbiology samp16. Was C12/Res negative?	ies received	u with >1/2 t	ne 24n	r. hold	time rei	mainin	g from co	ollection	1?	(NA)	Y	N
5											Y	N ·
Sample ID on Bottle	Samp	ole ID on COC	<u>, , , , , , , , , , , , , , , , , , , </u>		Sampl	e ID on	Bottle		Sa	ample ID on	coc	
,												
Sample ID	Bottle Count	Bottle Type	Out of Temp	Head- space	Broken	рН	Reage	ent	Volume added	Reagent Numbe		Initials
												
]									
Dava nee in de de la la la												
Does not include all pH preserved sample align Aditional Notes, Discrepancies, &	iots received. Resolutio	See sample rece Ons:	eiving SC	OP (SMO	P-GEN).							
	~ ~ ~ ~ *****											· · · · · · · · · · · · · · · · · · ·

1

and Alexander, Maria, de maria de l'argine Meria, de la figuration de la contrabação de l'agressió de la compa Maria de la Carlo de la compacta de la compacta de la compacta de la compacta de la compacta de la compacta de

lander of the control of the control of the control of the control of the control of the control of the control Control of the control of the

tagregas transfer, petropological and rose to a series and rose, from himself of the person of the continuous deci-

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water

Date Collected: 07/30/08

Date Received: 08/07/08

Service Request: K0807445

Mercury, Dissolved

Prep Method:

METHOD

Analysis Method: 1631E

Units: ng/L

Basis: NA

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-1	K0807445-001 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-3	K0807445-002 DISS	1.0	I	08/18/08	08/22/08	ND	
EBC-4	K0807445-003 DISS	1.0	1	08/18/08	08/22/08	ND	
Method Blank 1	K0807445-MB1	1.0	1	08/18/08	08/22/08	ND	
Method Blank 2	K0807445-MB2	1.0	1	08/18/08	08/22/08	ND	
Method Blank 3	K0807445-MB3	1.0	1	08/18/08	08/22/08	ND	

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix:

Water

Service Request: K0807445

Date Collected: NA

Date Received: NA

Date Extracted: 08/18/08

Date Analyzed: 08/22/08

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code: Test Notes: K0807759-001S,

K0807759-001SD

Units: ng/L

Basis: NA

Percent Recovery

CAS Relative Prep Analysis Spike Level Sample Spike Result Acceptance Percent Result Analyte Method Method MS DMS MRL Result MS DMS MS DMS Limits Difference Notes Mercury METHOD. 1631E 1.0 25 25 ND 29.3 28.3 117 113 71-125 3

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

LCS Matrix:

Water

Service Request: K0807445 Date Collected: NA Date Received: NA

Date Extracted: NA Date Analyzed: 08/22/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

Test Notes:

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.28	106	77-123	

QA/QC Report

Client: Project:

Analytical Resources, Incorporated

Pier 23-EBC

LCS Matrix:

Water

~

Service Request: K0807445

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 08/22/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

Test Notes:

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.34	87	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

LCS Matrix:

Pier 23-EBC

Water

Service Request: K0807445

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 08/22/08

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/L Basis: NA

Test Notes:

CAS Percent Recovery Prep Analysis True Percent Acceptance Result Analyte Method Method Value Recovery Limits Result Notes Mercury METHOD 1631E 5.00 5.72 114 77-123

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water Service Request: K0807445 Date Collected: 07/30/08

Date Received: 08/07/08

Mercury, Total

Prep Method:

METHOD

Analysis Method:

1631E

Test Notes:

Units: ng/L Basis: NA

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
EBC-1	K0807445-001	5.0	5	08/13/08	08/15/08	41.0	
EBC-3	K0807445-002	1.0	1	08/13/08	08/15/08	11.7	
EBC-4	K0807445-003	1.0	1	08/13/08	08/15/08	2.9	
Method Blank 1	K0807445-MB1	1.0	1	08/13/08	08/15/08	ND	
Method Blank 2	K0807445-MB2	1.0	1	08/13/08	08/15/08	ND	
Method Blank 3	K0807445-MB3	1.0	1	08/13/08	08/15/08	ND	

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix:

Water

Service Request: K0807445

Date Collected: 07/30/08

Date Received: 08/07/08

Date Extracted: 08/13/08

Date Analyzed: 08/15/08

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

EBC-4

Lab Code:

K0807445-003S,

K0807445-003SD

Units: ng/L

Basis: NA

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike	Result			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	1.0	25	25	2.9	29.1	29.5	105	106	71-125	1	

QA/QC Report

Client: Project:

Analytical Resources, Incorporated

Pier 23-EBC

LCS Matrix: Water

Service Request: K0807445

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: 08/15/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

Test Notes:

 \mathbf{CAS} Percent Recovery Prep Analysis True Percent Acceptance Result Analyte Method Method Value Recovery Limits Notes Result 77-123 Mercury METHOD 1631E 5.00 4.94 99

QA/QC Report

Client: Project:

Analytical Resources, Incorporated

Pier 23-EBC

LCS Matrix:

Water

Service Request: K0807445

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 08/15/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

Test Notes:

CAS Percent Recovery Percent Acceptance Result Prep Analysis True Limits Notes Method Method Value Result Recovery Analyte 77-123 93 **METHOD** 1631E 5.00 4.64 Mercury

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

LCS Matrix:

Water

Service Request: K0807445 Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 08/15/08

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/L Basis: NA

Test Notes:

CAS Percent Recovery

Prep Analysis True Percent Acceptance Result Analyte Method Method Value Recovery Limits Result Notes

5.00

Mercury

METHOD

1631E

5.24

105

77-123

Columbia Analytical Services

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporated Pier 23-EBC

Project Name: Project No.:

Service Request: K0807445

Sample Name:	Lab Code:
EBC-1	K0807445-001
EBC-1	K0807445-001 DISS
EBC-3	K0807445-002
EBC-3	K0807445-002 DISS
EBC-4	K0807445-003
EBC-4	K0807445-003 DISS
EBC-4D	K0807445-003D
EBC-4D	K0807445-003D DISS
EBC-4S	K0807445-003S
EBC-4S	K0807445-003S DISS
Method Blank	K0807445-MB

Comments:

Approved By:

Date:

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

Date Collected:

7/30/2008

Date Received:

8/7/2008

Project Name: Pier 23-EBC

Units:

ug/L

Matrix:

WATER

Basis: N/A

Sample Name:

EBC-1

Lab Code:

K0807445-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.55	5.0	08/27/08	09/03/08	2.55	Ū	
Cadmium	200.8	0.102	5.0	08/27/08	09/03/08	0.102	Ū	
Chromium	200.8	1.02	5.0	08/27/08	09/03/08	23.6		
Copper	200.8	0.5	5.0	08/27/08	09/03/08	20.5		
Lead	200.8	0.102	5.0	08/27/08	09/03/08	5.890		
Nickel	200.8	1.0	5.0	08/27/08	09/03/08	15.1		
Zinc	200.8	2.6	5.0	08/27/08	09/03/08	53.3		

% Solids:

0.0

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request:

K0807445

Project No.:

NA

Date Collected:

7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units:

ug/L

Basis: N/A

Sample Name:

EBC-1

Lab Code:

K0807445-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ü	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.022		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	5.60		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.8		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	1.160		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	4.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	8.4		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request:

K0807445

Project No.:

Date Collected:

7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units:

ug/L

Basis: N/A

Sample Name:

EBC-3

Lab Code:

K0807445-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.56	5.0	08/27/08	09/03/08	· 2.56	Ū	
Cadmium	200.8	0.103	5.0	08/27/08	09/03/08	0.424		
Chromium	200.8	1.03	5.0	08/27/08	09/03/08	31.6		
Copper	200.8	0.5	5.0	08/27/08	09/03/08	17.8		
Lead	200.8	0.103	5.0	08/27/08	09/03/08	7.100		
Nickel	200.8	1.0	5.0	08/27/08	09/03/08	22.6		
Zinc	200.8	2.6	5.0	08/27/08	09/03/08	52.5		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.: NA Date Collected:

7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-3

Lab Code:

K0807445-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ω	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.90		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	Ü	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	1.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	1.8		

% Solids:

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request:

K0807445

Project No.:

Date Collected:

7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-4

Lab Code:

K0807445-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.51	1.0	08/27/08	09/02/08	0.51	Ü	
Cadmium	. 200.8	0.020	1.0	08/27/08	09/02/08	0.040		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	4.07		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	5.2		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	1.500		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	4.0		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	6.6		

% Solids:

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K

K0807445

Project No.:

NA

Date Collected:

7/30/2008

Project Name: Pier 23-EBC

INA

oute corrected

Date Received: 8/7/2008

Matrix:

WATER

Units:

: ug/L

Basis:

: N/A

Sample Name:

EBC-4

Lab Code:

K0807445-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	Ū	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	Ü	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.3		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	Ü	

% Solids:

0.0

Columbia Analytical Services

Metals

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.: NA

Date Collected:

Project Name: Pier 23-EBC

Date Received:

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

Method Blank

Lab Code:

K0807445-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ü	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	U	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.2	Ū	
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	U	

[%] Solids:

⁻ Comments:

- 5A -

SPIKE SAMPLE RECOVERY

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids:

0.0

Sample Name:

EBC-4S

Lab Code: K0807445-003S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	50 - 147	1.58	0.51 ป	2.04	77.5		200.8
Cadmium	65 - 114	1.940	0.040	2.04	93.1		200.8
Chromium	50 - 130	6.18	4.07	2.04	103.4		200.8
Copper	50 - 120	6.7	5.2	2.04	73.5		200.8
Lead	55 - 118	3.450	1.500	2.04	95.6		200.8
Nickel	60 - 126	5.9	4.0	2.04	93.1		200.8
Zinc	50 - 133	8.1	6.6	2.04	73.5		200.8

- 5A -

SPIKE SAMPLE RECOVERY

Client:

Analytical Resources, Incorporat

Service Request:

Project No.:

Units:

K0807445 UG/L

Project Name: Pier 23-EBC

Basis: N/A.

Matrix:

WATER

% Solids:

0.0

Sample Name:

EBC-4S

Lab Code: K0807445-003S DISS

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	50 - 147	1.75	0.50 ป	2.00	87.5		200.8
Cadmium	65 - 114	1.910	0.020 0	2.00	95.5	寸	200.8
Chromium	50 - 130	2.18	0.20 บ	2.00	109.0		200.8
Copper	50 - 120	1.9	0.1 0	2.00	95.0		200.8
Lead	55 - 118	1.970	0.020 บ	2.00	98.5		200.8
Nickel	60 - 126	2.3	0.3	2.00	100.0		200.8
Zinc	50 - 133	2.2	0.5 ປ	2.00	110.0	一十	200.8

-6-

DUPLICATES

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids:

0.0

Sample Name:

EBC-4D

Lab Code:

K0807445-003D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.51	U	0.51	Ū			200.8
Cadmium		···· 0·.040		0.030		28.6	Ī	200.8
Chromium	20	4.07		4.22		3.6		200.8
Copper	20	5.2		5.2		0.0	i	200.8
Lead	20	1.500		1.520		1.3		200.8
Nickel	20	4.0		4.0		0.0		200.8
Zinc	20	6.6		6.7		1.5	i	200.8

- 6 -

DUPLICATES

Client:

Analytical Resources, Incorporat

K0807445 Service Request:

Project No.:

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids:

0.0

Sample Name:

EBC-4D

Lab Code:

K0807445-003D DISS

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.50	ט	0.50	Ū		<u> </u>	200.8
Cadmium		0.020	Ū	- 0.020	Ū			200.8
Chromium		0.20	Ū	0.20	υ	***	•	200.8
Copper		0.1	Ū	0.1	Ū			200.8
Lead		0.020	Ü	0.020	υ			200.8
Nickel		0.3		0.3		0.0		200.8
Zinc		0.5	Ū	0.5	Ū			200.8

Columbia Analytical Services

Metals

-7-

LABORATORY CONTROL SAMPLE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

Project Name: Pier 23-EBC

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueous (ug/L)			Solid (mg/kg)				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Arsenic	2	1.84	92.0			TII	<u> </u>	Ī
Cadmium	2	1.950	97.5		İ		1	
Chromium	2	2.03	101.5		ĺ			
Copper	2	2.0	100.0		1	11	1	
Lead	2	2.040	102.0		l		Ì	
Nickel	2	2.1	105.0		İ	1		
Zinc	2	2.0	100.0		1	<u> </u>		

September 9, 2008

Analytical Report for Service Request No: K0807445

Kelly Bottem Analytical Resources, Incorporated 4611 So. 134th Place Suite 100 Tukwila, WA 98168

Pier 23-EBC RE:

Dear Kelly:

Enclosed are the results of the samples submitted to our laboratory on August 07, 2008. For your reference, these analyses have been assigned our service request number K0807445.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela **Project Chemist**

PD/II

Page 1 of 35

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	_

Case Narrative

Client:

Analytical Resources, Incorporated

Service Request No.:

K0807445

Project:

Pier 23-EBC

Date Received:

08/17/2008

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three water samples were received for analysis at Columbia Analytical Services on 08/07/2008. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Holding Time Exceptions:

Samples EBC-1, EBC-3, and EBC-4 were received past the recommended holding time for filtration prior to analysis of Mercury via method 1631. The filtration was performed as soon as possible after receipt by the laboratory.

No other anomalies associated with the analysis of these samples were observed

N

00/10/03

Chain of Custody Documentation

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 08/12/08

ARI Project: NI87

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street ARI PM: KELLY BOTTEM

Kelso, WA 98626 Phone: 360-577-7222 Phone: 206-695-6211 Fax: 206-695-6201

Project ID: PIER 23-EBC

Fax: 360-636-1068

Analytical Protocol: In-house Requested Turn A

Special Instructions:

Requested Turn Around: 05/30/08
Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses	
08-18787-NI87A		, ,	Water	4	Metals (Sub) Low Level Hg	(Sub)
08-18788-NI87B	tions: T-LL HG, T-AS CD		NI ZN 	4	Metals (Sub)	
	tions: T-LL HG, T-AS CD			'1	Low Level Hg	(Sub)
	EBC-4	. , ,	Water ZN&LL HG	10	Metals (Sub) Low Level Hg	(Sub)
08-18791-NI87E Special Instruct	EBC-1 zions: D-AS CD CR CU PB	. , ,	Water HG	2	Metals (Sub) Low Level Hg	(Sub)
08-18792-NI87F		07/30/08	Water	2	Metals (Sub) Low Level Hg	(Sub)
08-18793-NI87G	EBC-4 ions: MS/MSD D-AS CD C	07/30/08	Water	6	Metals (Sub) Low Level Hg	(Sub)

	Carrier	Airbill 12832	69503 4432 1230	Date 8/12/02
5	Relinquished by	Company	Pate 8/12/08	Time 1602
	Received by	Company Cas	Date/13/08	Time 1030

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 08/05/08

ARI Project: NI87

10807445

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street

Kelso, WA 98626 Phone: 360-577-7222 Fax: 360-636-1068

Project ID: PIER 23-EBC ARI PM: KELLY BOTTEM Phone: 206-695-6211

Fax: 206-695-6201

Analytical Protocol: In-house Requested Turn Around: 05/30/08 Special Instructions: Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses	
08-18787-NI87A	A E3C-1	07/30/08	Water	4	Metals (Sub) Low Level Hg	(Sub)
Special Instru	actions: T-LL HG, T-AS C	D CR CU PB	NI ZN		now never my	(Dub)
08-18788-NI87E	B E3C-3	07/30/08	Water	4	Metals (Sub) Low Level Hg	(Cub)
Special Instru	ections: T-LL HG, T-AS C	O CR CU PB	ZN		now hever mg	(Sub)
08-18789-NI870	E3C-4	07/30/08	Water	10	Metals (Sub)	(Cub)
Special Instru	ctions: MS/MSD T-AS CO	CR CU PB NI	I ZN&LL HG		Low Level Hg	(Sub)
08-18791-NI87E	E3C-1	07/30/08	Water	2	Metals (Sub)	/ C1- \
Special Instru	ctions: D-AS CD CR CU PE	3 NI ZN&LL	HG		Low Level Hg	(Sup)
08-18792-NI87F	E3C-3	07/30/08	Water	2	Metals (Sub)	/ C - 1- \
Special Instru	ctions: D-AS CD CR CU PE	3 NI ZN&LL	HG		Low Level Hg	(Sub)
08-18793-NI87F	E3C-14	07/30/08	Water	6	Metals (Sub)	(0.1.)
Special Instru	ctions: MS/MSD D-AS CO (CR CU PB NI	ZN&LL HG		Low Level Hg	(Sup)

only Rec'd 6 bottles	for EBC-3		
Reed ac for EBC-	4. 16 bottles total	l	
CarrierUPS	Airbill 1Z832695-03	4458 1978	Date /02
Relinquished by	PAN	Dat# /6/02	Time 1600
Received by flair	Comp. any	Da'te/7/08	Time (030)

Subcentractor Custody Form - N187 Page 1 of 1

Cooler Receipt and Preservation Form 2500005 Service Request K08Client / Project: Opened: Received: Fed Ex UPS DHL. GHGSPDXCourier Hand Delivered Samples were received via? US Mail Samples were received in: (circle) Cooper BoxEnvelope Other N If yes, how many and where? NA 3. Were custody seals on coolers? If present, were they signed and dated? Ϋ. If present, were custody seals intact? N Is shipper's air-bill filed? If not, record air-bill number: NA 1Z832695034432 1230 -XCV5SAP WAKEL105 Aug 13 07 45:31 200 ть эрал шэр 7 л а тытииро -7.4 Temperature of cooler(s) upon receipt (°C): Temperature Blank (°C): If applicable, list Chain of Custody Numbers: Bubble Wrap Gel Packs Well Ice Sleeves Other Packing material used. Inserts Baggies 0 Were custody papers properly filled out (ink, signed, etc.)? NA N 8. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? NA Y) Ν 10. Y) Did all sample labels and tags agree with custody papers? Indicate in the table below NA N Were appropriate bottles/containers and volumes received for the tests indicated? NA N Were the pH-preserved bottles tested* received at the appropriate pH? Indicate in the table below NA Υ N Were VOA vials and 1631 Mercury bottles received without headspace? Indicate in the table below. NA Υ N Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? ŃΆ Y N N 16. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Out of Head-Volume Reagent Lot Bottle Number Initials рΗ Reagent added Bottle Type | Temp | space | Broken Sample ID Count *Does not include all pH preserved sample aliquots received. See sample receiving SOP (SMO-GEN) Additional Notes, Discrepancies, & Resolutions:

Columbia Analytical Services, Inc.

2

PC

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC /

Cli	ient / Project: A 21			X.		_Service	e Requ	est <i>K08</i> _		02	445	/		
Re	ceived: \$17108	Opened:	8/7/08	<u>.</u>	В	y:_ 5 .1			`					
1. 2. 3.	Samples were received via? US Mail Fed Ex UPS DHL GH GS PDX Courier Samples were received in: (circle) Cooler Box Envelope Other Were custody seals on coolers? NA Y N If yes, how many and where?											NA		
	If present, were custody seals int	act?	\odot	N				they signe		9 9 *****		(Y)	N	
4.	Is shipper's air-bill filed? If not, record air-bill number: 12 832 695 03 4458 1978									NA	Ø	N		
5.	Temperature of cooler(s) upon	receipt (°C	C):	5.0	No obligation									
	Temperature Blank (°C):		No.							***************************************	National Control of Co			
6.														
7.	So Sierra Maria Ma													
8.	Were custody papers properly filled out (ink, signed, etc.)? NA Did all battles arrives in good condition (substates)?												Ν	
9. 10.	Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA NA NA NA NA NA NA NA NA N													
10.													N	
12.	Did all sample labels and tags agree with custody papers? <i>Indicate in the table below</i> Were appropriate bottles/containers and volumes received for the tests indicated? NA												N N	
13.	Were the pH-preserved bottles tested* received at the appropriate pH? <i>Indicate in the table below</i> NA NA NA NA NA NA NA NA NA N												N	
14.											(NA)	Y	N	
15.	And CWA Missabials are analysis of the 1/2 of 200 to 1100 and 1100												N	
16.	Was C12/Res negative?												Ν	
	Sample ID on Bottle	Sample ID on COC				Sample ID on Bottle				Sample ID on COC				
-														
	Sample ID	Bottle Count	Bottle Type	1	Head- space	Broken	рН	Reage		/olume added	Reagent Numb		Initials	
					The state of the s						·			
	s not include all pH preserved sample aliq litional Notes, Discrepancies, &			reiving S	OP (SM	O-GEN).								
	,													

2

Analytical Report

Client: Analytical Resources, Incorporated

Service Request: K0807445 Date Collected: 07/30/08 Project: Pier 23-EBC Sample Matrix: Date Received: 08/07/08 Water

Mercury, Dissolved

Prep Method: Units: ng/L METHOD Analysis Method: Basis: NA 1631E

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-1	K0807445-001 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-3	K0807445-002 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-4	K0807445-003 DISS	1.0	1	08/18/08	08/22/08	ND	
Method Blank 1	K0807445-MB1	1.0	1	08/18/08	08/22/08	ND	
Method Blank 2	K0807445-MB2	1.0	1	08/18/08	08/22/08	ND	
Method Blank 3	K0807445-MB3	1.0	1	08/18/08	08/22/08	ND	

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix:

Water

Service Request: K0807445

Date Collected: NA

Date Received: NA

Date Extracted: 08/18/08 Date Analyzed: 08/22/08

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code:

K0807759-001S,

K0807759-001SD

Units: ng/L

Basis: NA

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike I	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	1.0	25	25	ND	29.3		117	113	71-125	3	riotes

QA/QC Report

Client: Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA

LCS Matrix:

Water

Date Received: NA **Date Extracted:** NA

Date Extracted: NA
Date Analyzed: 08/22/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.28	106	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA

LCS Matrix:

Water

Date Received: NA
Date Extracted: NA

Date Analyzed: 08/22/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.34	87	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA

LCS Matrix:

Water

Date Received: NA Date Extracted: NA

Date Analyzed: 08/22/08

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/L Basis: NA

Test Notes:

CAS Percent

Recovery Prep Analysis True Percent Acceptance Result Method Analyte Method Value Result Recovery Limits Notes METHOD 1631E 77-123 Mercury 5.00 5.72 114

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water

Service Request: K0807445 Date Collected: 07/30/08 Date Received: 08/07/08

Mercury, Total

Prep Method:

METHOD

Analysis Method: 1631E

Units: ng/L Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-1	K0807445-001	5.0	5	08/13/08	08/15/08	41.0	
EBC-3	K0807445-002	1.0	1	08/13/08	08/15/08	11.7	
EBC-4	K0807445-003	1.0	1	08/13/08	08/15/08	2.9	**
Method Blank 1	K0807445-MB1	1.0	1	08/13/08	08/15/08	ND	
Method Blank 2	K0807445-MB2	1.0	1	08/13/08	08/15/08	ND	
Method Blank 3	K0807445-MB3	1.0	1	08/13/08	08/15/08	ND	

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Sample Matrix:

Pier 23-EBC

Water

Service Request: K0807445

Date Collected: 07/30/08 Date Received: 08/07/08

Date Extracted: 08/13/08

Date Analyzed: 08/15/08

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

EBC-4

K0807445-003S,

K0807445-003SD

Units: ng/L

Basis: NA

Lab Code: Test Notes:

Percent Recovery

	Prep	Analysis		•		Sample	_				CAS Acceptance		Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	1.0	25	25	2.9	29.1	29.5	105	106	71-125	1	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA

LCS Matrix:

Water

Date Received: NA
Date Extracted: NA

Date Analyzed: 08/15/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.94	99	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA Date Received: NA

LCS Matrix: Water

Date Extracted: NA

Date Analyzed: 08/15/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.64	93	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA
Date Received: NA

LCS Matrix:

Water

Date Extracted: NA
Date Analyzed: 08/15/08

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/L

Basis: NA

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.24	105	77-123	

Columbia Analytical Services

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporated

Project Name:

Pier 23-EBC

Project No.:

Service Request: K0807445

Sample Name:	Lab Code:
EBC-1	K0807445-001
EBC-1	K0807445-001 DISS
EBC-3	K0807445-002
EBC-3	K0807445-002 DISS
EBC-4	K0807445-003
EBC-4	K0807445-003 DISS
EBC-4D	K0807445-003D
EBC-4D	K0807445-003D DISS
EBC-4S	K0807445-003S
EBC-4S	K0807445-003S DISS
Method Blank	K0807445-MB

_				
Com	m	en	its	•

Approved By:

Jul Ca

Date:

9/9/08

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

Date Collected:

7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

EBC-1

Lab Code:

K0807445-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.55	5.0	08/27/08	09/03/08	2.55	U	
Cadmium	200.8	0.102	5.0	08/27/08	09/03/08	0.102	U	
Chromium	200.8	1.02	5.0	08/27/08	09/03/08	23.6		
Copper	200.8	0.5	5.0	08/27/08	09/03/08	20.5		
Lead	200.8	0.102	5.0	08/27/08	09/03/08	5.890		
Nickel	200.8	1.0	5.0	08/27/08	09/03/08	15.1		
Zinc	200.8	2.6	5.0	08/27/08	09/03/08	53.3		

% Solids:

0.0

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807445

Project No.: NA Date Collected: 7/30/2008

Project Name: Pier 23-EBC Date Received: 8/7/2008

Matrix: WATER Units: ug/L

Basis: N/A

Sample Name: EBC-1 Lab Code: K0807445-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.022		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	5.60		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.8		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	1.160		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	4.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	8.4		

% Solids: 0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

Date Collected: 7/30/2008

Project Name: Pier 23-EBC

Date Received: 8/7/2008

Matrix:

WATER

Units: ug/L

N/A

Basis:

Sample Name:

EBC-3

Lab Code: K0807445-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.56	5.0	08/27/08	09/03/08	2.56	U	
Cadmium	200.8	0.103	5.0	08/27/08	09/03/08	0.424	•	
Chromium	200.8	1.03	5.0	08/27/08	09/03/08	31.6		
Copper	200.8	0.5	5.0	08/27/08	09/03/08	17.8		
Lead	200.8	0.103	5.0	08/27/08	09/03/08	7,100		
Nickel	200.8	1.0	5.0	08/27/08	09/03/08	22.6		
Zinc	200.8	2.6	5.0	08/27/08	09/03/08	52.5		

% Solids:

0.0

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807445

Project No.: NA Date Collected: 7/30/2008

Project Name: Pier 23-EBC Date Received: 8/7/2008

Matrix: WATER Units: ug/L

Basis: N/A

Sample Name: EBC-3 Lab Code: K0807445-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.90		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	1.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	1.8		

% Solids: 0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request:

K0807445

Project No.:

Date Collected: 7/30/2008

Project Name: Pier 23-EBC

NA

Date Received: 8/7/2008

Matrix:

WATER

Units:

ug/L

N/A

Basis:

Sample Name:

EBC-4

Lab Code:

K0807445-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.51	1.0	08/27/08	09/02/08	0.51	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.040		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	4.07		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	5.2		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	1.500		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	4.0		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	6.6		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

Date Collected: 7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units:

ug/L

Basis: N/A

Sample Name:

EBC-4

Lab Code:

K0807445-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	U	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.3		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	U	

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.: NA

Date Collected:

Project Name: Pier 23-EBC

Date Received:

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

Method Blank

Lab Code:

K0807445-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	U	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.2	U	
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	U	

% Solids:

0.0

- 5A -

SPIKE SAMPLE RECOVERY

Analytical Resources, Incorporat Client:

Service Request: K0807445

Units:

Project No.:

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids:

0.0

UG/L

Sample Name:

EBC-4S

Lab Code: K0807445-003S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	50 - 147	1.58	0.51 บ	2.04	77.5		200.8
Cadmium	65 - 114	1.940	0.040	2.04	93.1		200.8
Chromium	50 - 130	6.18	4.07	2.04	103.4		200.8
Copper	50 - 120	6.7	5.2	2.04	73.5		200.8
Lead	55 - 118	3.450	1.500	2.04	95.6		200.8
Nickel	60 - 126	5.9	4.0	2.04	93.1		200.8
Zinc	50 - 133	8.1	6.6	2.04	73.5		200.8

- 5A -

SPIKE SAMPLE RECOVERY

Client: Analytical Resources, Incorporat

Service Request: K0807445

Project No.: NA

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids: 0.0

Sample Name: EBC-4S

Lab Code: K0807445-003S DISS

Analyte	Control Limit %R	Spike Result C	Sample Result	C Spike Added	%R	Q	Method
Arsenic	50 - 147	1.75	0.50	2.00	87.5		200.8
Cadmium	65 - 114	1.910	0.020	2.00	95.5		200.8
Chromium	50 - 130	2.18	0.20	2.00	109.0		200.8
Copper	50 - 120	1.9	0.1	2.00	95.0		200.8
Lead	55 - 118	1.970	0.020	2.00	98.5		200.8
Nickel	60 - 126	2.3	0.3	2.00	100.0		200.8
Zinc	50 - 133	2.2	0.5	2.00	110.0		200.8

- 6 -

DUPLICATES

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

WATER

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

TICE 25 DD

% Solids: 0.0

Sample Name:

EBC-4D

Lab Code:

K0807445-003D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.51	U	0.51	U			200.8
Cadmium		0.040		0.030		28.6		200.8
Chromium	20	4.07		4.22		3.6		200.8
Copper	20	5.2		5.2		0.0		200.8
Lead	20	1.500		1.520		1.3		200.8
Nickel	20	4.0		4.0		0.0		200.8
Zinc	20	6.6		6.7		1.5		200.8

- 6 -

DUPLICATES

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids: 0.0

Sample Name:

EBC-4D

Lab Code:

K0807445-003D DISS

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.50	U	0.50	Ū		***************************************	200.8
Cadmium		0.020	υ	- 0.020	U			200.8
Chromium		0.20	U	0.20	Ū			200.8
Copper		0.1	U	0.1	Ū			200.8
Lead		0.020	U	0.020	Ū			200.8
Nickel		0.3		0.3		0.0		200.8
Zinc		0.5	υ	0.5	U			200.8

-7-

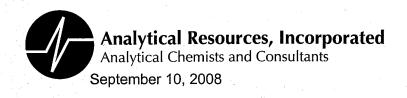
LABORATORY CONTROL SAMPLE

Client:

Analytical Resources, Incorporat Service Request: K0807445

Project No.:

NA


Project Name: Pier 23-EBC

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueou	s (ug/L)			Soli	d (mg/	kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Arsenic	<u> </u>	1.84	92.0					
Cadmium	1 2	1.950	97.5					
Chromium	2	2.03	101.5					
Copper	2	2.0	100.0		1			
Lead	2	2.040	102.0					
Nickel	2	2.1	105.0					
Zinc	2	2.0	100.0					

Rick Moore Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Client Project: Pier 23-EBC

ARI Job No. NJ87

Dear Rick;

Please find enclosed the original chain of custody (COC) records, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received four water samples and a trip blank on August 7, 2008. The samples were received in good condition with a cooler temperature range of 1.2 to 7.0°C. *Please note that sample EBC-2 was received on the last day of the recommended holding time for SVOCs, PCBs, and NWTPH-Dx analyses. Please reference the comments below for the analyses that were extracted and/or analyzed outside of the recommended holding times.

The samples were analyzed for VOCs, SVOCs, PCBs, NWTPH-Gx/BETX, NWTPH-Dx, and Total and Dissolved Metals/Mercury, as requested on the COC. The Total and Dissovled Metals/Mercury analyses were subcontracted to Columbia Analytical Services in Kelso, WA.

For the Volatiles analysis: Continuing Calibrations had compounds outside of the 20% control limit, but were accepted outliers under ARI SOPs. No further corrective action was required.

Methylene chloride was present in the method blank at a level greater than the reporting limit. All samples contained concentrations of methylene chloride that were less than the reporting limit, except for sample **Trip Blank**. Sample **Trip Blank** was flagged with a "B" qualifier on the Form I. No further corrective action was required.

For the Semi-volatiles analysis: Please note that sample EBC-2 was extracted one day outside the recommended holding time. Data have been reported as is for this sample and have been included in this report for your review.

Multiple surrogate percent recoveries were outside the control limits low for sample **EBC-5**. Sample **EBC-5** was re-extracted outside the recommended holding time and reanalyzed and all surrogate recoveries were within control limits. Both sets of data have been included in this report for your review.

The surrogate percent recovery for 2-Fluorobiphenyl fell outside the control limits low for sample **EBC-6**. All other surrogate recoveries for this sample were within the control limits, therefore no further corrective action was required.

The LCSD percent recovery of 4-Nitrophenol was outside the control limits low but within the marginal exceedance control limits for **LCS-080808**. Since the LCS percent recovery was within both sets of control limits, no further corrective action was required.

The LCS percent recovery of Phenol was outside the control limits low for **LCS-082208**. Since **LCS-082208** was within the marginal exceedance control limits, no further corrective action was required.

The LCS percent recoveries for 4-Chloroaniline and 4-Nitrophenol fell outside the ARI recommended control limits low for LCS-082208. These analytes are considered "Poor Performing Analytes" by the DoD-QSM and have no recommended control limits. Data have been reported as is. No further corrective action was required.

For the PCBs analysis: Please note that sample EBC-2 was extracted one day outside the recommended holding time. Data have been reported as is for this sample and have been included in this report for your review.

The LCS and LCSD percent recoveries for Aroclor 1260 were outside the control limits high for **LCS-080808**. All samples contained concentrations of Aroclor that were less than the reporting limit. No further corrective action was required.

There were no anomalies associated with the NWTPH-Gx/BETX analysis.

For the NWTPH-Dx analysis: Please note that sample **EBC-2** was extracted one day outside of the recommended holding time. Data have been reported as is for this sample and have been included in this report for your review.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Boxtem

Client Services Manager

kellyb@arilabs.com 206/695-6211

Enclosures

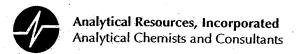
cc: eFile NJ87

KFB/co

Sample Custody Record

*HART CROWSER

Seattle, Washington 98102-3699 1910 Fairview Avenue East Hart Crowser, Inc. Phone: 206-324-9530 FAX: 206-328-5581


TOTAL NUMBER OF CONTAINERS **COMPOSITING INSTRUCTIONS** OBSERVATIONS/COMMENTS/ XSTANDARD □ 1 WEEK SAMPLE RECEIPT INFORMATION SHIPMENT METHOD:

—HAND OTHER TURNAROUND TIME: COOD CONDITION **CUSTODY SEALS:** TEMPERATURE □ 24 HOURS ☐ 48 HOURS □COURIER 3 NO. OF CONTAINERS * B, Cd, Cr, Cu, Pb, Ni, ? Zn. Extra bottles for reductive ppt. (Unto) Total is dissolved Metals and total and dissolved Hg to CAS STORAGE LOCATION: SPECIAL SHIPMENT HANDLING OR for Other Contract Requirements STORAGE REQUIREMENTS: See Lab Work Order No. COOLER NO .: 08/04/0K MATRIX DATE TIME RO 9) Various 7/31/06 1350 bottles 8/1/08 09/15 1245 **25** TIME HART CROWSER CONTACT Brog DOODWY DATE RECEIVED BY RECEIVED BY PRINT NAME SIGNATURE COMPANY PROJECT NAME PIER 23-EBC LAB NUMBER 8/6/08/5. SAMPLED BY: (and Ulbery DESCRIPTION DROD JOOJWIN TIME DATE TIME Irto blank 10-09PT BOL SAMPLE ID EBC-10 FBC-16 EBC-5 **EBC-7** White and Yellow Copies to Lab RELINQUISHED BY RELINQUISHED BY PRINT NAME LAB NO. SIGNATURE COMPANY

Gold to Sample Custodian

Lab to Return White Copy to Hart Crowser

Pink to Project Manager

Cooler Receipt Form

	By: Date	:	-1
Explain discrepancies or negative responses:			
Notity Project Manager o	of discrepancies or concerns **		
	• • • • • • • • • • • • • • • • • • • •	1010	-
Samples Logged by: ICR	Poto: 0/2/02 -	1236	
Was sufficient amount of sample sent in each bottle?			NO
Were all VOC vials free of air bubbles?		XES)	NO
Do any of the analyses (bottles) require preservation?		FES	NO
Were all bottles used correct for the requested analyst	•		NO
Did all bottle labels and tags agree with custody paper	ers?	YES)	NO
Were all bottle labels complete and legible?			NO
Did all bottle arrive in good condition (unbroken)?		. AES	NO
Were all bottles sealed in individual plastic bags?	•••••	. ES	NO
Was sufficient ice used (if appropriate)?		. XES	NO
What kind of packing material was used?	• • • • • • • • • • • • • • • • • • • •	. 513/1	BW
Was a temperature blank included in the cooler?	·	. YES	(10)
Log-In Phase:			
l on In Dh			
Complete custody forms ar	м акаси ан энцрину documents		
	nd attach all shipping documents	18He. 10	
Cooler Accepted by: <u>E/</u>	Date: <u>2/7/</u> 02	Time: 1/2	(0)
Record cooler temperature (recommended 2.0-6.0 °C	C for chemistry	. 1,2,3	<u>.೧</u> .୯
Were custody papers properly filled out (ink, signed,	etc.)	TES	NO
Were custody papers included with the cooler?			NO
Were intact, properly signed and dated custody seal	s attached to the outside of to cooler	YES	100
Preliminary Examination Phase:			
Assigned ARI Job No: Tra	acking No:		
	Aivered by. 11101		
COC No:	oject Name: Picr 23-EDC elivered by: ACI		•

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-2 Page 1 of 2

SAMPLE

Lab Sample ID: NJ87A LIMS ID: 08-19934

Matrix: Water

Data Release Authorized: Reported: 08/13/08

Instrument/Analyst: NT5/JZ Date Analyzed: 08/12/08 17:57 QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	Ü
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	Ū
67-64-1	Acetone	2.5	3.8	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3	1,1-Dichloroethane	0.2	0.2	-
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	υ
156-59-2	cis-1,2~Dichloroethene	0.2	< 0.2	Ü
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ü
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	Ü
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ū
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	4.4	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	T.T.
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2		Ŭ
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 0.2 < 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U U
127-18-4	Tetrachloroethene	0.2	< 0.2	Ü
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	0.3	U
108-90-7	Chlorobenzene	0.2		тт
100-41-4	Ethylbenzene	0.2	< 0.2	Ū
100-42-5	Styrene	0.2	1.0	
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2 < 0.2	U
1330-20-7	m,p-Xylene	0.4		U
95-47-6	o-Xylene		1.3	
95-50-1	1,2-Dichlorobenzene	0.2	0.6	
541-73-1	1,3-Dichlorobenzene	0.2		U
106-46-7		0.2		U
107-02-8	1,4-Dichlorobenzene Acrolein	0.2		U
74-88-4		5.0		U
74-86-4 74-96-4	Methyl Iodide	1.0		U
	Bromoethane	0.2		U
107-13-1	Acrylonitrile	1.0		U
563-58-6	1,1-Dichloropropene	0.2		U
74-95-3	Dibromomethane	0.2		U
630-20-6 96-12 9	1,1,1,2-Tetrachloroethane	0.2		U
96-12-8 96-18-4	1,2-Dibromo-3-chloropropane	0.5		Ŭ
J0-10-4	1,2,3-Trichloropropane	0.5	< 0.5	U

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-2

Page 2 of 2

QC Report No: NJ87-HART CROWSER, INC.

SAMPLE

Project: PIER 23-EBC

17490-01

Lab Sample ID: NJ87A LIMS ID: 08-19934 Matrix: Water

Date Analyzed: 08/12/08 17:57

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	0.6	
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	1.0	
103-65-1	n-Propylbenzene	0.2	< 0.2	υ
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	2.7	
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	109%
d8-Toluene	103%
Bromofluorobenzene	105%
d4-1,2-Dichlorobenzene	116%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: EBC-5 Page 1 of 2 SAMPLE

Lab Sample ID: NJ87B

LIMS ID: 08-19935 Matrix: Water

Data Release Authorized:

Reported: 08/13/08

Instrument/Analyst: NT5/JZ Date Analyzed: 08/12/08 18:22 QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	υ
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	7.2	
75-15-0	Carbon Disulfide	0.2	0.4	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	Ü
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	Ū
591-78-6	2-Hexanone	2.5	< 2.5	Ŭ
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	Ŭ
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ü
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-5

Page 2 of 2

Sample ID: EBC-5
SAMPLE

Lab Sample ID: NJ87B QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19935 Project: PIER 23-EBC Matrix: Water 17490-01

Date Analyzed: 08/12/08 18:22

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	Ü
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	Ų
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	114%
d8-Toluene	103%
Bromofluorobenzene	97.7%
d4-1.2-Dichlorobenzene	110%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-6 Page 1 of 2

SAMPLE

Lab Sample ID: NJ87C

LIMS ID: 08-19936 Matrix: Water

Data Release Authorized:

Reported: 08/13/08

Date Analyzed: 08/12/08 18:47

Instrument/Analyst: NT5/JZ

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ω
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8 75-25-2	2-Chloroethylvinylether	1.0	< 1.0	U
108-10-1	Bromoform 4 Mothyl 2 Portoners (MIRK)	0.2	< 0.2	Ŭ
591-78-6	4-Methyl-2-Pentanone (MIBK) 2-Hexanone	2.5 2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 2.5	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2 < 0.2	U U
108-88-3	Toluene	0.2	< 0.2	Ū
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	Ū
100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	Ū
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	Ū
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ū
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	Ū
107-02-8	Acrolein	5.0	< 5.0	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	0.2	< 0.2	Ū
107-13-1	Acrylonitrile	1.0	< 1.0	Ū
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	ΰ
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ū
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	Ū
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ū

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-6

Page 2 of 2

Lab Sample ID: NJ87C

LIMS ID: 08-19936

QC Report No: NJ87-HART CROWSER, INC.

SAMPLE

Project: PIER 23-EBC 17490-01

Matrix: Water Date Analyzed: 08/12/08 18:47

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	υ
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ū
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	Ü
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	111%
d8-Toluene	103%
Bromofluorobenzene	96.3%
d4-1.2-Dichlorobenzene	108%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-16
Page 1 of 2 SAMPLE

Lab Sample ID: NJ87D

LIMS ID: 08-19937 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 08/12/08 19:37

Reported: 08/13/08

: *[*]

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	υ
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	Ŭ
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	Ū
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	Ü
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	Ū
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ŭ
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	Ŭ
75-25-2	Bromoform (MTDV)	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	U
127-18-4	Tetrachloroethene	0.2	< 0.2 < 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane		< 0.2	
108-88-3	Toluene Chlorobenzene	0.2	< 0.2	U
108-90-7	Ethylbenzene	0.2	< 0.2	U
100-41-4 100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	Ū
95-47-6	o-Xylene	0.2	< 0.4	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	Ü
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ü
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	ΰ
107-02-8	Acrolein	5.0	< 5.0	Ŭ
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	0.2	< 0.2	Ū
107-13-1	Acrylonitrile	1.0	< 1.0	Ū
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	Ü
	 			

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-16

Page 2 of 2

Sample ID: EBC-16
SAMPLE

Lab Sample ID: NJ87D QC Report No: NJ87-HART CROWSER, INC. LIMS ID: 08-19937 Project: PIER 23-EBC

Project: PIER 23-EBC 17490-01

Matrix: Water
Date Analyzed: 08/12/08 19:37

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	115%
d8-Toluene	102%
Bromofluorobenzene	96.9%
d4-1.2-Dichlorobenzene	104%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: TRIP BLANK Page 1 of 2

SAMPLE

Lab Sample ID: NJ87E

LIMS ID: 08-19938 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 08/12/08 17:32

Reported: 08/13/08

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 07/23/08 Date Received: 08/06/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	Ū
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	0.6	В
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	Ū
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	Ū
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5 < 0.2	U U
127-18-4	Tetrachloroethene	0.2	< 0.2	
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U U
108-88-3	Toluene	0.2	< 0.2	Ū
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene		< 0.2	U
100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane		< 0.2	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.4	< 0.2	Ü
1330-20-7	m,p-Xylene	0.4	< 0.4	Ū
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	Ū
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ŭ
106-46-7 107-02-8	1,4-Dichlorobenzene Acrolein	5.0	< 5.0	U
	Methyl Iodide	1.0	< 1.0	U
74-88-4	Bromoethane	0.2	< 0.2	U
74-96-4	Acrylonitrile	1.0	< 1.0	U
107-13-1	1,1-Dichloropropene	0.2	< 0.2	U
563-58-6	Dibromomethane	0.2	< 0.2	Ü
74-95-3 630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-12-8	1,2,3-Trichloropropane	0.5	< 0.5	Ū
96-18-4	T, Z, 3-IIICHITOTOPIOPane	y.J	` 0.5	5

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: TRIP BLANK

Page 2 of 2

SAMPLE

Lab Sample ID: NJ87E

QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19938

Project: PIER 23-EBC

Matrix: Water

17490-01

Date Analyzed: 08/12/08 17:32

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	υ
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	υ
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	113%
d8-Toluene	103%
Bromofluorobenzene	95.0%
d4-1.2-Dichlorobenzene	106%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NJ87-HART CROWSER, INC. Project: PIER 23-EBC 17490-01

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-081208 LCS-081208 LCSD-081208 NJ87A NJ87B NJ87C NJ87D	Method Blank Lab Control Lab Control Dup EBC-2 EBC-5 EBC-6 EBC-16	10 10 10 10 10 10	110% 110% 114% 109% 114% 111%	102% 102% 102% 103% 103% 103%	98.1% 106% 106% 105% 97.7% 96.3%	106% 97.4% 97.6% 116% 110% 108%	0 0 0 0 0
NJ87E	TRIP BLANK	10	113%	103%	95.0%	106%	0
LCS/MB LIMITS			TS		QC LIMI	rs	
<pre>SW8260B (DCE) = d4-1,2-Dichloroethane (TOL) = d8-Toluene (BFB) = Bromofluorobenzene (DCB) = d4-1,2-Dichlorobenzene</pre>			70-130 70-130 70-130 70-130			70-130 70-130 70-130 70-130	0

Prep Method: SW5030B Log Number Range: 08-19934 to 08-19938

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: LCS-081208 Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-081208

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized:

Reported: 08/13/08

Instrument/Analyst LCS: NT5/JZ

LCSD: NT5/JZ

Date Analyzed LCS: 08/12/08 16:17

LCSD: 08/12/08 19:12

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	9.3	10.0	93.0%	7.7	10.0	77.0%	18.8%
Bromomethane	10.5	10.0	105%	7.2	10.0	72.0%	37.3%
Vinyl Chloride	8.4	10.0	84.0%	7.5	10.0	75.0%	11.3%
Chloroethane	9.2	10.0	92.0%	8.5	10.0	85.0%	7.9%
Methylene Chloride	10.4	10.0	104%	10.0	10.0	100%	3.9%
Acetone	51.7	50.0	103%	51.7	50.0	103%	0.0%
Carbon Disulfide	9.0	10.0	90.0%	9.0	10.0	90.0%	0.0%
1,1-Dichloroethene	9.5	10.0	95.0%	9.0	10.0	90.0%	5.4%
1,1-Dichloroethane	10.6	10.0	106%	10.0	10.0	100%	5.8%
trans-1,2-Dichloroethene	9.6	10.0	96.0%	9.3	10.0	93.0%	3.2%
cis-1,2-Dichloroethene	10.4	10.0	104%	9.6	10.0	96.0%	8.0%
Chloroform	10.6	10.0	106%	10.2	10.0	102%	3.8%
1,2-Dichloroethane	11.0	10.0	110%	10.2	10.0	102%	7.5%
2-Butanone	52.2	50.0	104%	53.1	50.0	106%	1.7%
1,1,1-Trichloroethane	10.5	10.0	105%	10.2	10.0	102%	2.9%
Carbon Tetrachloride	10.6	10.0	106%	11.9	10.0	119%	11.6%
Vinyl Acetate	8.5	10.0	85.0%	8.7	10.0	87.0%	2.3%
Bromodichloromethane	11.5	10.0	115%	10.9	10.0	109%	5.4%
1,2-Dichloropropane	9.8	10.0	98.0%	9.1	10.0	91.0%	7.4%
cis-1,3-Dichloropropene	10.7	10.0	107%	9.7	10.0	97.0%	9.8%
Trichloroethene	10.3	10.0	103%	9.8	10.0	98.0%	5.0%
Dibromochloromethane	11.4	10.0	114%	10.8	10.0	108%	5.4%
1,1,2-Trichloroethane	10.6	10.0	106%	10.0	10.0	100%	5.8%
Benzene	10.2	10.0	102%	9.4	10.0	94.0%	8.2%
trans-1,3-Dichloropropene	11.0	10.0	110%	10.2	10.0	102%	7.5%
2-Chloroethylvinylether	9.7	10.0	97.0%	9.6	10.0	96.0%	1.0%
2-Chioroethyivinyiethei Bromoform	10.8	10.0	108%	10.3	10.0	103%	4.7%
4-Methyl-2-Pentanone (MIBK)	51.8	50.0	104%	52.2	50.0	104%	0.8%
2-Hexanone	52.8	50.0	106%	54.1	50.0	108%	2.4%
Z-Hexanone Tetrachloroethene	10.9	10.0	109%	10.7	10.0	107%	1.9%
1,1,2,2-Tetrachloroethane	10.5	10.0	105%	10.0	10.0	100%	4.9%
	10.3	10.0	103%	9.7	10.0	97.0%	6.0%
Toluene	10.0	10.0	100%	9.5	10.0	95.0%	5.1%
Chlorobenzene	11.0	10.0	110%	10.5	10.0	105%	4.7%
Ethylbenzene	9.9	10.0	99.0%	9.1	10.0	91.0%	8.4%
Styrene Trichlorofluoromethane	10.2	10.0	102%	9.7	10.0	97.0%	5.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	9.8	10.0	98.0%	10.3	10.0	103%	5.0%
·	22.5	20.0	112%	21.3	20.0	106%	5.5%
m,p-Xylene	11.0	10.0	110%	10.5	10.0	105%	4.7%
o-Xylene	11.0	10.0	112%	10.6	10.0	106%	5.5%
1,2-Dichlorobenzene	11.0	10.0	110%	10.4	10.0	104%	5.6%
1,3-Dichlorobenzene	10.9	10.0	109%	10.4	10.0	104%	4.7%
1,4-Dichlorobenzene	40.4	50.0	80.8%	39.2	50.0	78.4%	3.0%
Acrolein	10.5	10.0	105%	9.9	10.0	99.0%	5.9%
Methyl Iodide Bromoethane	10.5	10.0	100%	10.2	10.0	102%	2.0%
Bromoethane	10.0	_0.0					

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-081208

Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-081208

QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19934 Matrix: Water

Project: PIER 23-EBC

17490-01

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Acrylonitrile	9.9	10.0	99.0%	10.3	10.0	103%	4.0%
1,1-Dichloropropene	11.1	10.0	111%	10.3	10.0	103%	7.5%
Dibromomethane	11.5	10.0	115%	10.4	10.0	104%	10.0%
1,1,1,2-Tetrachloroethane	11.5	10.0	115%	10.8	10.0	108%	6.3%
1,2-Dibromo-3-chloropropane	11.6	10.0	116%	10.6	10.0	106%	9.0%
1,2,3-Trichloropropane	11.3	10.0	113%	10.5	10.0	105%	7.3%
trans-1,4-Dichloro-2-butene	10.0	10.0	100%	10.3	10.0	103%	3.0%
1,3,5-Trimethylbenzene	11.4	10.0	114%	10.9	10.0	109%	4.5%
1,2,4-Trimethylbenzene	11.5	10.0	115%	11.1	10.0	111%	3.5%
Hexachlorobutadiene	10.3	10.0	103%	9.9	10.0	99.0%	4.0%
Ethylene Dibromide	10.1	10.0	101%	9.6	10.0	96.0%	5.1%
Bromochloromethane	10.9	10.0	109%	10.6	10.0	106%	2.8%
2,2-Dichloropropane	10.7	10.0	107%	10.2	10.0	102%	4.8%
1,3-Dichloropropane	10.3	10.0	103%	9.5	10.0	95.0%	8.1%
Isopropylbenzene	10.9	10.0	109%	10.4	10.0	104%	4.7%
n-Propylbenzene	10.6	10.0	106%	10.1	10.0	101%	4.8%
Bromobenzene	10.5	10.0	105%	10.3	10.0	103%	1.9%
2-Chlorotoluene	10.3	10.0	103%	9.7	10.0	97.0%	6.0%
4-Chlorotoluene	10.7	10.0	107%	10.2	10.0	102%	4.8%
tert-Butylbenzene	11.2	10.0	112%	10.8	10.0	108%	3.6%
sec-Butylbenzene	11.2	10.0	112%	10.8	10.0	108%	3.6%
4-Isopropyltoluene	10.5	10.0	105%	10.1	10.0	101%	3.9%
n-Butylbenzene	11.1	10.0	111%	10.5	10.0	105%	5.6%
1,2,4-Trichlorobenzene	10.0	10.0	100%	9.2	10.0	92.0%	8.3%
Naphthalene	10.2	10.0	102%	9.2	10.0	92.0%	10.3%
1,2,3-Trichlorobenzene	9.8	10.0	98.0%	8.8	10.0	88.0%	10.8%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	110%	114%
d8-Toluene	102%	102%
Bromofluorobenzene	106%	106%
d4-1 2-Dichlorobenzene	97.4%	97.6%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-081208

1 of 2 Page

Lab Sample ID: MB-081208

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 08/12/08 17:07

Reported: 08/13/08

QC Report No: NJ87-HART CROWSER, INC.

METHOD BLANK

Project: PIER 23-EBC 17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	υ
74-83-9	Bromomethane	0.5	< 0.5	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	0.6	
67-64-1	Acetone	2.5	< 2.5	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	2.5	< 2.5	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	2.5	< 2.5	U
591-78-6	2-Hexanone	2.5	< 2.5	Ω
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	Ŭ
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-081208

Page 2 of 2

METHOD BLANK

Lab Sample ID: MB-081208

QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19934

Project: PIER 23-EBC

Matrix: Water

17490-01

Date Analyzed: 08/12/08 17:07

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	110%
d8-Toluene	102%
Bromofluorobenzene	98.1%
d4-1,2-Dichlorobenzene	106%

Lab Sample ID: NJ87A LIMS ID: 08-19934

Matrix: Water Data Release Authorized:

Reported: 08/18/08

Date Extracted: 08/08/08 Date Analyzed: 08/14/08 13:51 Instrument/Analyst: NT4/LJR Sample ID: EBC-2
SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	3.3
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	1.8
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	18
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	130 E
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	24
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: EBC-2 SAMPLE

Lab Sample ID: NJ87A QC Report No: NJ87-HART CROWSER, INC. LIMS ID: 08-19934

Project: PIER 23-EBC 17490-01

Matrix: Water Date Analyzed: 08/14/08 13:51

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	27
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	18
86-74-8	Carbazole	1.0	22
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	33

Reported in μ g/L (ppb)

d5-Nitrobenzene	64.4%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	64.0%	d4-1,2-Dichlorobenzene	54.0%
d5-Phenol	33.6%	2-Fluorophenol	44.8%
2,4,6-Tribromophenol	78.1%	d4-2-Chlorophenol	60.0%

Sample ID: EBC-2 DILUTION

Lab Sample ID: NJ87A LIMS ID: 08-19934

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized: Reported: 08/18/08

Date Extracted: 08/08/08 Date Analyzed: 08/15/08 21:46 Instrument/Analyst: NT4/LJR QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 3.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	3.0	< 3.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	3.0	< 3.0 U
95-57-8	2-Chlorophenol	3.0	< 3.0 U
541-73-1	1,3-Dichlorobenzene	3.0	< 3.0 U
106-46-7	1,4-Dichlorobenzene	3.0	< 3.0 U
100-51-6	Benzyl Alcohol	15	< 15 U
95-50-1	1,2-Dichlorobenzene	3.0	< 3.0 U
95-48-7	2-Methylphenol	3.0	< 3.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	3.0	< 3.0 U
106-44-5	4-Methylphenol	3.0	< 3.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	15	< 15 U
67-72-1	Hexachloroethane	3.0	< 3.0 U
98-95-3	Nitrobenzene	3.0	< 3.0 U
78-59-1	Isophorone	3.0	< 3.0 U
88-75-5	2-Nitrophenol	15	< 15 U
105-67-9	2,4-Dimethylphenol	3.0	< 3.0 U
65-85-0	Benzoic Acid	30	< 30 U
111-91-1	bis(2-Chloroethoxy) Methane	3.0	< 3.0 U
120-83-2	2,4-Dichlorophenol	15	< 15 U
120-82-1	1,2,4-Trichlorobenzene	3.0	< 3.0 U
91-20-3	Naphthalene	3.0	< 3.0 U
106-47-8	4-Chloroaniline	15	< 15 U
87-68-3	Hexachlorobutadiene	3.0	< 3.0 U
59-50-7	4-Chloro-3-methylphenol	15	< 15 U
91-57-6	2-Methylnaphthalene	3.0	20
77-47-4	Hexachlorocyclopentadiene	15	< 15 U
88-06-2	2,4,6-Trichlorophenol	15	< 15 U
95-95-4	2,4,5-Trichlorophenol	15	< 15 U
91-58-7	2-Chloronaphthalene	3.0	< 3.0 U
88-74-4	2-Nitroaniline	15	< 15 U
131-11-3	Dimethylphthalate	3.0	< 3.0 U
208-96-8	Acenaphthylene	3.0	< 3.0 U
99-09-2	3-Nitroaniline	15	< 15 U
83-32-9	Acenaphthene	3.0	120
51-28-5	2,4-Dinitrophenol	30	< 30 U
100-02-7	4-Nitrophenol	15	< 15 U
132-64-9	Dibenzofuran	3.0	24
606-20-2	2,6-Dinitrotoluene	15	< 15 U
121-14-2	2,4-Dinitrotoluene	15	< 15 U
84-66-2	Diethylphthalate	3.0	< 3.0 U

Page 2 of 2

Matrix: Water

Sample ID: EBC-2 DILUTION

Lab Sample ID: NJ87A QC Report No: NJ87-HART CROWSER, INC. LIMS ID: 08-19934

Project: PIER 23-EBC 17490-01

Date Analyzed: 08/15/08 21:46

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	3.0	< 3.0 U
86-73-7	Fluorene	3.0	28
100-01-6	4-Nitroaniline	15	< 15 U
534-52-1	4,6-Dinitro-2-Methylphenol	30	< 30 U
86-30-6	N-Nitrosodiphenylamine	3.0	< 3.0 U
101-55-3	4-Bromophenyl-phenylether	3.0	< 3.0 U
118-74-1	Hexachlorobenzene	3.0	< 3.0 U
87-86-5	Pentachlorophenol	15	< 15 U
85-01-8	Phenanthrene	3.0	19
86-74-8	Carbazole	3.0	26
120-12-7	Anthracene	3.0	< 3.0 U
84-74-2	Di-n-Butylphthalate	3.0	< 3.0 U
206-44-0	Fluoranthene	3.0	< 3.0 U
129-00-0	Pyrene	3.0	< 3.0 U
85-68-7	Butylbenzylphthalate	3.0	< 3.0 U
91-94-1	3,3'-Dichlorobenzidine	15	< 15 U
56-55-3	Benzo (a) anthracene	3.0	< 3.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	3.0	< 3.0 U
218-01-9	Chrysene	3.0	< 3.0 U
117-84-0	Di-n-Octyl phthalate	3.0	< 3.0 U
205-99-2	Benzo(b)fluoranthene	3.0	< 3.0 U
207-08-9	Benzo(k)fluoranthene	3.0	< 3.0 U
50-32-8	Benzo(a)pyrene	3.0	< 3.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	3.0	< 3.0 U
53-70-3	Dibenz(a,h)anthracene	3.0	< 3.0 U
191-24-2	Benzo(g,h,i)perylene	3.0	< 3.0 U
90-12-0	1-Methylnaphthalene	3.0	34

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	73.6%	2-Fluorobiphenyl	67.3%
d14-p-Terphenyl	60.6%	d4-1,2-Dichlorobenzene	58.7%
d5-Phenol	34.4%	2-Fluorophenol	47.4%
2,4,6-Tribromophenol	66.9%	d4-2-Chlorophenol	59.9%

Page 1 of 2

Lab Sample ID: NJ87B LIMS ID: 08-19935

Matrix: Water

Data Release Authorized:

Reported: 08/18/08

Date Extracted: 08/08/08 Date Analyzed: 08/14/08 14:26 Instrument/Analyst: NT4/LJR

Sample ID: EBC-5 SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 350 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.4	< 1.4 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.4	< 1.4 U
95-57-8	2-Chlorophenol	1.4	< 1.4 U
541-73-1	1,3-Dichlorobenzene	1.4	< 1.4 U
106-46-7	1,4-Dichlorobenzene	1.4	< 1.4 U
100-51-6	Benzyl Alcohol	7.1	< 7.1 U
95-50-1	1,2-Dichlorobenzene	1.4	< 1.4 U
95-48-7	2-Methylphenol	1.4	< 1.4 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.4	< 1.4 U
106-44-5	4-Methylphenol	1.4	< 1.4 U
621-64-7	N-Nitroso-Di-N-Propylamine	7.1	< 7.1 U
67-72-1	Hexachloroethane	1.4	< 1.4 U
98-95-3	Nitrobenzene	1.4	< 1.4 U
78-59-1	Isophorone	1.4	< 1.4 U
88-75-5	2-Nitrophenol	7.1	< 7.1 U
105-67-9	2,4-Dimethylphenol	1.4	< 1.4 U
65-85-0	Benzoic Acid	14	< 14 U
111-91-1	bis(2-Chloroethoxy) Methane	1.4	< 1.4 U
120-83-2	2,4-Dichlorophenol	7.1	< 7.1 U
120-82-1	1,2,4-Trichlorobenzene	1.4	< 1.4 U
91-20-3	Naphthalene	1.4	< 1.4 U
106-47-8	4-Chloroaniline	7.1	< 7.1 U
87-68-3	Hexachlorobutadiene	1.4	< 1.4 U
59-50-7	4-Chloro-3-methylphenol	7.1	< 7.1 U
91-57-6	2-Methylnaphthalene	1.4	< 1.4 U
77-47-4	Hexachlorocyclopentadiene	7.1	< 7.1 U
88-06-2	2,4,6-Trichlorophenol	7.1	< 7.1 U
95-95-4	2,4,5-Trichlorophenol	7.1	< 7.1 U
91-58-7	2-Chloronaphthalene	1.4	< 1.4 U
88-74-4	2-Nitroaniline	7.1	< 7.1 U
131-11-3	Dimethylphthalate	1.4	< 1.4 U
208-96-8	Acenaphthylene	1.4	< 1.4 U
99-09-2	3-Nitroaniline	7.1	< 7.1 U
83-32-9	Acenaphthene	1.4	< 1.4 U
51-28-5	2,4-Dinitrophenol	14	< 14 U
100-02-7	4-Nitrophenol	7.1	< 7.1 U
132-64-9	Dibenzofuran	1.4	< 1.4 U
606-20-2	2,6-Dinitrotoluene	7.1	< 7.1 U
121-14-2	2,4-Dinitrotoluene	7.1	< 7.1 U
84-66-2	Diethylphthalate	1.4	< 1.4 U

Page 2 of 2

Sample ID: EBC-5 SAMPLE

Lab Sample ID: NJ87B LIMS ID: 08-19935

QC Report No: NJ87-HART CROWSER, INC.

Matrix: Water

Project: PIER 23-EBC 17490-01

Date Analyzed: 08/14/08 14:26

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.4	< 1.4 U
86-73-7	Fluorene	1.4	< 1.4 U
100-01-6	4-Nitroaniline	7.1	< 7.1 U
534-52-1	4,6-Dinitro-2-Methylphenol	14	< 14 U
86-30-6	N-Nitrosodiphenylamine	1.4	< 1.4 U
101-55-3	4-Bromophenyl-phenylether	1.4	< 1.4 U
118-74-1	Hexachlorobenzene	1.4	< 1.4 U
87-86-5	Pentachlorophenol	7.1	< 7.1 U
85-01-8	Phenanthrene	1.4	< 1.4 U
86-74-8	Carbazole	1.4	< 1.4 U
120-12-7	Anthracene	1.4	< 1.4 U
84-74-2	Di-n-Butylphthalate	1.4	< 1.4 U
206-44-0	Fluoranthene	1.4	< 1.4 U
129-00-0	Pyrene	1.4	< 1.4 U
85-68-7	Butylbenzylphthalate	1.4	< 1.4 U
91-94-1	3,3'-Dichlorobenzidine	7.1	< 7.1 U
56-55-3	Benzo(a) anthracene	1.4	< 1.4 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.4	< 1.4 U
218-01-9	Chrysene	1.4	< 1.4 U
117-84-0	Di-n-Octyl phthalate	1.4	< 1.4 U
205-99-2	Benzo(b)fluoranthene	1.4	< 1.4 U
207-08-9	Benzo(k)fluoranthene	1.4	< 1.4 U
50-32-8	Benzo(a)pyrene	1.4	< 1.4 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.4	< 1.4 U
53-70-3	Dibenz(a,h)anthracene	1.4	< 1.4 U
191-24-2	Benzo(g,h,i)perylene	1.4	< 1.4 U
90-12-0	1-Methylnaphthalene	1.4	< 1.4 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	43.6%	2-Fluorobiphenyl	35.2%
d14-p-Terphenyl	40.0%	d4-1,2-Dichlorobenzene	33.8%
d5-Phenol	28.3%	2-Fluorophenol	36.0%
2,4,6-Tribromophenol	39.2%	d4-2-Chlorophenol	39.2%

Page 1 of 2

Lab Sample ID: NJ87B LIMS ID: 08-19935

Matrix: Water

Data Release Authorized:

Reported: 09/04/08

Date Extracted: 08/22/08 Date Analyzed: 08/30/08 23:39 Instrument/Analyst: NT6/LJR

Sample ID: EBC-5 REEXTRACT

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: EBC-5 REEXTRACT

Lab Sample ID: NJ87B QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19935 Project: PIER 23-EBC Matrix: Water 17490-01

Date Analyzed: 08/30/08 23:39

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	53.2%	2-Fluorobiphenyl	54.0%
d14-p-Terphenyl	63.6%	d4-1,2-Dichlorobenzene	54.8%
d5-Phenol	39.5%	2-Fluorophenol	45.1%
2,4,6-Tribromophenol	59.2%	d4-2-Chlorophenol	56.0%

Page 1 of 2

Lab Sample ID: NJ87C LIMS ID: 08-19936

Matrix: Water

Data Release Authorized:

Reported: 08/18/08

Date Extracted: 08/08/08 Date Analyzed: 08/14/08 15:01 Instrument/Analyst: NT4/LJR

Sample ID: EBC-6 SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 Ŭ
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2 84-66-2	2,4-Dinitrotoluene	5.0	< 5.0 U
04-00-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Matrix: Water

Sample ID: EBC-6
SAMPLE

Lab Sample ID: NJ87C QC Report No: NJ87-HART CROWSER, INC. LIMS ID: 08-19936 Project: PIER 23-EBC

17490-01

Date Analyzed: 08/14/08 15:01

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	55.2%	2-Fluorobiphenyl	43.6%
d14-p-Terphenyl	62.0%	d4-1,2-Dichlorobenzene	44.4%
d5-Phenol	22.8%	2-Fluorophenol	36.0%
2,4,6-Tribromophenol	60.3%	d4-2-Chlorophenol	49.1%

Page 1 of 2

Lab Sample ID: NJ87D LIMS ID: 08-19937

Matrix: Water

Data Release Authorized: Reported: 08/18/08

Date Extracted: 08/08/08 Date Analyzed: 08/14/08 15:35 Instrument/Analyst: NT4/LJR

Sample ID: EBC-16 SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01 Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 Ŭ
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: EBC-16 SAMPLE

Lab Sample ID: NJ87D

QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19937 Matrix: Water Project: PIER 23-EBC 17490-01

Date Analyzed: 08/14/08 15:35

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo (a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	66.4%	2-Fluorobiphenyl	59.6%
d14-p-Terphenyl	65.6%	d4-1,2-Dichlorobenzene	51.6%
d5-Phenol	27.7%	2-Fluorophenol	42.1%
2,4,6-Tribromophenol	64.8%	d4-2-Chlorophenol	58.7%

SW8270 SEMIVOLATILES WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NJ87-HART CROWSER, INC. Project: PIER 23-EBC 17490-01

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP TO	T OUT
MB-080808	68.4%	56.8%	74.0%	55.2%	31.5%	46.4%	66.9%	64.5%	0
LCS-080808	75.2%	68.4%	71.2%	62.4%	38.4%	52.3%	82.9%	71.5%	0
LCSD-080808	64.4%	62.0%	65.6%	51.6%	32.8%	44.5%	73.3%	59.5%	0
EBC-2	64.4%	64.0%	64.0%	54.0%	33.6%	44.8%	78.1%	60.0%	0
EBC-2 DL	73.6%	67.3%	60.6%	58.7%.	34.4%	47.4%	66.9%	59.9%	0
MB-082208	65.6%	69.6%	82.0%	66.0%	38.9%	50.1%	81.1%	68.8%	0
LCS-082208	64.8%	70.0%	80.0%	65.6%	42.9%	52.0%	78.9%	67.5%	0
EBC-5	43.6%*	35.2%*	40.0%*	33.8%*	28.3%	36.0%	39.2%*	39.2%*	6
EBC-5 RE	53.2%	54.0%	63.6%	54.8%	39.5%	45.1%	59.2%	56.0%	0
EBC-6	55.2%	43.6%*	62.0%	44.4%	22.8%	36.0%	60.3%	49.1%	1.
EBC-16	66.4%	59.6%	65.6%	51.6%	27.7%	42.1%	64.8%	58.7%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(50-104)	(45-98)
(FBP)	=	2-Fluorobiphenyl	(49-98)	(53-89)
(TPH)	=	d14-p-Terphenyl	(48-120)	(46-119)
(DCB)	=	d4-1,2-Dichlorobenzene	(40-92)	(41-87)
(PHL)	=	d5-Phenol	(20-62)	(10-66)
(2FP)	=	2-Fluorophenol	(17-98)	(23-74)
(TBP)	=	2,4,6-Tribromophenol	(56-110)	(51-105)
(2CP)	=	d4-2-Chlorophenol	(51-97)	(42-93)

Prep Method: SW3510C Log Number Range: 08-19934 to 08-19937

Page 1 of 2

Lab Sample ID: LCS-080808 QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized: Reported: 08/18/08

17490-01 Date Sampled: 07/31/08 Date Received: 08/06/08

Project: PIER 23-EBC

Date Extracted LCS/LCSD: 08/08/08 Sample Amount LCS: 500 mL

LCSD: 500 mL

Conileo

Sample ID: LCS-080808

LCS/LCSD

TOOD

Date Analyzed LCS: 08/13/08 16:50 Final Extract Volume LCS: 0.50 mL LCSD: 08/13/08 17:25

Snike

LCSD: 0.50 mL

Instrument/Analyst LCS: NT4/LJR Dilution Factor LCS: 1.00 LCSD: NT4/LJR

LCSD: 1.00

TOO

GPC Cleanup: NO

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Phenol	14.0	25.0	56.0%	11.7	25.0	46.8%	17.9%
Bis-(2-Chloroethyl) Ether	18.0	25.0	72.0%	14.9	25.0	59.6%	18.8%
2-Chlorophenol	17.2	25.0	68.8%	14.4	25.0	57.6%	17.7%
1,3-Dichlorobenzene	13.4	25.0	53.6%	11.4	25.0	45.6%	16.1%
1,4-Dichlorobenzene	13.4	25.0	53.6%	11.5	25.0	46.0%	15.3%
Benzyl Alcohol	27.3	50.0	54.6%	23.1	50.0	46.2%	16.7%
1,2-Dichlorobenzene	13.7	25.0	54.8%	11.8	25.0	47.2%	14.9%
2-Methylphenol	16.6	25.0	66.4%	14.2	25.0	56.8%	15.6%
2,2'-Oxybis(1-Chloropropane)16.1	25.0	64.4%	13.2	25.0	52.8%	19.8%
4-Methylphenol	33.3	50.0	66.6%	29.1	50.0	58.2%	13.5%
N-Nitroso-Di-N-Propylamine	18.6	25.0	74.4%	16.6	25.0	66.4%	11.4%
Hexachloroethane	13.9	25.0	55.6%	12.1	25.0	48.4%	13.8%
Nitrobenzene	18.7	25.0	74.8%	16.1	25.0	64.4%	14.9%
Isophorone	21.6	25.0	86.4%	19.8	25.0	79.2%	8.7%
2-Nitrophenol	16.7	25.0	66.8%	14.7	25.0	58.8%	12.7%
2,4-Dimethylphenol	13.9	25.0	55.6%	13.6	25.0	54.4%	2.2%
Benzoic Acid	27.9	75.0	37.2%	27.2	75.0	36.3%	2.5%
bis(2-Chloroethoxy) Methane		25.0	72.8%	16.2	25.0	64.8%	11.6%
2,4-Dichlorophenol	16.7	25.0	66.8%	14.6	25.0	58.4%	13.4%
1,2,4-Trichlorobenzene	14.4	25.0	57.6%	12.2	25.0	48.8%	16.5%
Naphthalene	15.5	25.0	62.0%	13.5	25.0	54.0%	13.8%
4-Chloroaniline	57.3	60.0	95.5%	49.9	60.0	83.2%	13.8%
Hexachlorobutadiene	14.5	25.0	58.0%	12.2	25.0	48.8%	17.2%
4-Chloro-3-methylphenol	18.1	25.0	72.4%	16.7	25.0	66.8%	8.0%
2-Methylnaphthalene	15.5	25.0	62.0%	14.0	25.0	56.0%	10.2%
Hexachlorocyclopentadiene	45.6	75.0	60.8%	39.5	75.0	52.7%	14.3%
2,4,6-Trichlorophenol	16.7	25.0	66.8%	15.5	25.0	62.0%	7.5%
2,4,5-Trichlorophenol	16.9	25.0	67.6%	15.7	25.0	62.8%	7.4%
2-Chloronaphthalene	15.8	25.0	63.2%	14.7	25.0	58.8%	7.2%
2-Nitroaniline	19.2	25.0	76.8%	17.9	25.0	71.6%	7.0%
Dimethylphthalate	19.6	25.0	78.4%	18.0	25.0	72.0%	8.5%
Acenaphthylene	18.4	25.0	73.6%	16.9	25.0	67.6%	8.5%
3-Nitroaniline	62.9	64.0	98.3%	57.8	64.0	90.3%	8.5%
Acenaphthene	16.7	25.0	66.8%	15.4	25.0	61.6%	8.1%
2,4-Dinitrophenol	53.0	75.0	70.7%	49.6	75.0	66.1%	6.6%
4-Nitrophenol	11.0	25.0	44.0%	10.4	25.0	41.6%	5.6%
Dibenzofuran	17.8	25.0	71.2%	16.3	25.0	65.2%	8.8%
2,6-Dinitrotoluene	18.8	25.0	75.2%	17.4	25.0	69.6%	7.7%
2,4-Dinitrotoluene	19.0	25.0	76.0%	17.4	25.0	69.6%	8.8%
Diethylphthalate	17.8	25.0	71.2%	16.1	25.0	64.4%	10.0%
4-Chlorophenyl-phenylether	18.2	25.0	72.8%	16.8	25.0	67.2%	8.0%
Fluorene	18.4	25.0	73.6%	16.8	25.0	67.2%	9.1%
4-Nitroaniline	19.0	25.0	76.0%	17.1	25.0	68.4%	10.5%
4,6-Dinitro-2-Methylphenol	56.1	75.0	74.8%	53.5	75.0	71.3%	4.7%
N-Nitrosodiphenylamine	24.7	25.0	98.8%	22.8	25.0	91.2%	8.0%

Page 2 of 2

Sample ID: LCS-080808

LCS/LCSD

Lab Sample ID: LCS-080808

QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19934 Matrix: Water Project: PIER 23-EBC 17490-01

Date Analyzed: 08/13/08 16:50

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
4-Bromophenyl-phenylether	17.2	25.0	68.8%	15.7	25.0	62.8%	9.1%
Hexachlorobenzene	17.3	25.0	69.2%	16.0	25.0	64.0%	7.8%
Pentachlorophenol	17.0	25.0	68.0%	16.5	25.0	66.0%	3.0%
Phenanthrene	17.9	25.0	71.6%	16.4	25.0	65.6%	8.7%
Carbazole	19.4	25.0	77.6%	17.5	25.0	70.0%	10.3%
Anthracene	18.1	25.0	72.4%	16.6	25.0	66.4%	8.6%
Di-n-Butylphthalate	19.2	25.0	76.8%	17.7	25.0	70.8%	8.1%
Fluoranthene	19.5	25.0	78.0%	17.4	25.0	69.6%	11.4%
Pyrene	16.8	25.0	67.2%	16.0	25.0	64.0%	4.9%
Butylbenzylphthalate	17.3	25.0	69.2%	16.3	25.0	65.2%	6.0%
3,3'-Dichlorobenzidine	54.3	64.0	84.8%	46.9	64.0	73.3%	14.6%
Benzo(a)anthracene	20.7	25.0	82.8%	18.9	25.0	75.6%	9.1%
bis(2-Ethylhexyl)phthalate	19.3	25.0	77.2%	18.3	25.0	73.2%	5.3%
Chrysene	17.4	25.0	69.6%	15.9	25.0	63.6%	9.0%
Di-n-Octyl phthalate	19.3	25.0	77.2%	17.6	25.0	70.4%	9.2%
Benzo(b) fluoranthene	16.9	25.0	67.6%	16.7	25.0	66.8%	1.2%
Benzo(k)fluoranthene	19.1	25.0	76.4%	16.2	25.0	64.8%	16.4%
Benzo(a)pyrene	16.7	25.0	66.8%	14.8	25.0	59.2%	12.1%
Indeno(1,2,3-cd)pyrene	16.2	25.0	64.8%	14.9	25.0	59.6%	8.4%
Dibenz(a,h)anthracene	15.6	25.0	62.4%	14.3	25.0	57.2%	8.7%
Benzo(g,h,i)perylene	17.4	25.0	69.6%	16.1	25.0	64.4%	7.8%
1-Methylnaphthalene	16.3	25.0	65.2%	14.8	25.0	59.2%	9.6%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	75.2%	64.4%
2-Fluorobiphenyl	68.4%	62.0%
d14-p-Terphenyl	71.2%	65.6%
d4-1,2-Dichlorobenzene	62.4%	51.6%
d5-Phenol	38.4%	32.8%
2-Fluorophenol	52.3%	44.5%
2,4,6-Tribromophenol	82.9%	73.3%
d4-2-Chlorophenol	71.5%	59.5%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: LCS-082208 LAB CONTROL

Lab Sample ID: LCS-082208

QC Report No: NJ87-HART CROWSER, INC.

LIMS ID: 08-19935 Matrix: Water

Project: PIER 23-EBC 17490-01

Data Release Authorized: Reported: 09/04/08

Date Sampled: 08/01/08 Date Received: 08/06/08

Date Extracted: 08/22/08 Date Analyzed: 08/30/08 23:05 Instrument/Analyst: NT6/LJR

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

GPC Cleanup: NO

no al como	Lab	Spike Added	D
Analyte	Control	Added	Recovery
Phenol	9.5	25.0	38.0%
Bis-(2-Chloroethyl) Ether	16.7	25.0	66.8%
2-Chlorophenol	16.2	25.0	64.8%
1,3-Dichlorobenzene	14.1	25.0	56.4%
1,4-Dichlorobenzene	14.2	25.0	56.8%
Benzyl Alcohol	24.8	50.0	49.6%
1,2-Dichlorobenzene	14.6	25.0	58.4%
2-Methylphenol	15.9	25.0	63.6%
2,2'-Oxybis(1-Chloropropane)	17.6	25.0	70.4%
4-Methylphenol	33.0	50.0	66.0%
N-Nitroso-Di-N-Propylamine	17.2	25.0	68.8%
Hexachloroethane	13.1	25.0	52.4%
Nitrobenzene	16.1	25.0	64.4%
Isophorone	19.5	25.0	78.0%
2-Nitrophenol	17.0	25.0	68.0%
2,4-Dimethylphenol	15.7	25.0	62.8%
Benzoic Acid	29.7	75.0	39.6%
bis(2-Chloroethoxy) Methane	17.6	25.0	70.4%
2,4-Dichlorophenol	17.9	25.0	71.6%
1,2,4-Trichlorobenzene	13.8	25.0	55.2%
Naphthalene	15.8	25.0	63.2%
4-Chloroaniline	5.2	60.0	8.7%
Hexachlorobutadiene	12.4	25.0	49.6%
4-Chloro-3-methylphenol	18.0	25.0	72.0%
2-Methylnaphthalene	16.2	25.0	64.8%
Hexachlorocyclopentadiene	42.5	75.0	56.7%
2,4,6-Trichlorophenol	16.9	25.0	67.6%
2,4,5-Trichlorophenol	18.2	25.0	72.8%
2-Chloronaphthalene	16.3	25.0	65.2%
2-Nitroaniline	17.3	25.0	69.2%
Dimethylphthalate	16.8	25.0	67.2%
Acenaphthylene	18.1	25.0	72.4%
3-Nitroaniline	51.8	64.0	80.9%
Acenaphthene	16.0	25.0	64.0%
2,4-Dinitrophenol	61.0	75.0	81.3%
4-Nitrophenol	7.0	25.0	28.0%
Dibenzofuran	17.5	25.0	70.0%

Page 2 of 2

Sample ID: LCS-082208 LAB CONTROL

Lab Sample ID: LCS-082208 LIMS ID: 08-19935 QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Matrix: Water Date Analyzed: 08/30/08 23:05

Analyte	Lab Control	Spike Added	Recovery
2,6-Dinitrotoluene	18.4	25.0	73.6%
2,4-Dinitrotoluene	18.0	25.0	72.0%
Diethylphthalate	15.4	25.0	61.6%
4-Chlorophenyl-phenylether	16.2	25.0	64.8%
Fluorene	17.9	25.0	71.6%
4-Nitroaniline	18.5	25.0	74.0%
4,6-Dinitro-2-Methylphenol	54.5	75.0	72.7%
N-Nitrosodiphenylamine	25.6	25.0	102%
4-Bromophenyl-phenylether	17.5	25.0	70.0%
Hexachlorobenzene	18.2	25.0	72.8%
Pentachlorophenol	15.5	25.0	62.0%
Phenanthrene	17.8	25.0	71.2%
Carbazole	19.7	25.0	78.8%
Anthracene	18.5	25.0	74.0%
Di-n-Butylphthalate	18.1	25.0	72.4%
Fluoranthene	18.6	25.0	74.4%
Pyrene	19.4	25.0	77.6%
Butylbenzylphthalate	18.0	25.0	72.0%
3,3'-Dichlorobenzidine	46.6	64.0	72.8%
Benzo(a) anthracene	17.8	25.0	71.2%
bis(2-Ethylhexyl)phthalate	18.7	25.0	74.8%
Chrysene	17.0	25.0	68.0%
Di-n-Octyl phthalate	18.4	25.0	73.6%
Benzo(b) fluoranthene	16.6	25.0	66.4%
Benzo(k) fluoranthene	19.1	25.0	76.4%
Benzo(a) pyrene	18.3	25.0	73.2%
Indeno(1,2,3-cd)pyrene	21.8	25.0	87.2%
Dibenz(a,h)anthracene	21.8	25.0	87.2%
Benzo(g,h,i)perylene	22.6	25.0	90.4%
1-Methylnaphthalene	16.5	25.0	66.0%

Semivolatile Surrogate Recovery

d5-Nitrobenzene	64.8%
2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	80.0%
d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	42.9%
2-Fluorophenol	52.0%
2,4,6-Tribromophenol	78.9%
d4-2-Chlorophenol	67.5%

Results reported in $\mu g/L$

Page 1 of 2

Lab Sample ID: MB-080808

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized:

Reported: 08/18/08

Date Extracted: 08/08/08 Date Analyzed: 08/13/08 16:15 Instrument/Analyst: NT4/LJR

Sample ID: MB-080808 METHOD BLANK

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 Ŭ
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

Sample ID: MB-080808 METHOD BLANK

QC Report No: NJ87-HART CROWSER, INC. Lab Sample ID: MB-080808 LIMS ID: 08-19934

Project: PIER 23-EBC 17490-01

Matrix: Water Date Analyzed: 08/13/08 16:15

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	68.4%	2-Fluorobiphenyl	56.8%
d14-p-Terphenyl	74.0%	d4-1,2-Dichlorobenzene	55.2%
d5-Phenol	31.5%	2-Fluorophenol	46.4%
2.4.6-Tribromophenol	66.9%	d4-2-Chlorophenol	64.5%

Page 1 of 2

Sample ID: MB-082208 METHOD BLANK

Lab Sample ID: MB-082208

LIMS ID: 08-19935 Matrix: Water

Data Release Authorized:

Date Extracted: 08/22/08

Date Analyzed: 08/30/08 22:31

Instrument/Analyst: NT6/LJR

Reported: 09/04/08

QC Report No: NJ87-HART CROWSER, INC. Project: PIER 23-EBC

ct: PIER 23-EBC 17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.50 mL Dilution Factor: 1.00

Result RT. CAS Number Analyte < 1.0 U 1.0 108-95-2 Phenol < 1.0 U Bis-(2-Chloroethyl) Ether 1.0 111-44-4 < 1.0 U1.0 2-Chlorophenol 95-57-8 1.0 < 1.0 U 1,3-Dichlorobenzene 541-73-1 < 1.0 U 1,4-Dichlorobenzene 1.0 106-46-7 5.0 < 5.0 U 100-51-6 Benzyl Alcohol < 1.0 U 1.0 95-50-1 1,2-Dichlorobenzene < 1.0 U 1.0 2-Methylphenol 95-48-7 < 1.0 U 2,2'-Oxybis(1-Chloropropane) 1.0 108-60-1 < 1.0 U 1.0 4-Methylphenol 106-44-5 < 5.0 U 5.0 N-Nitroso-Di-N-Propylamine 621-64-7 < 1.0 U 1.0 67-72-1 Hexachloroethane < 1.0 U 1.0 Nitrobenzene 98-95-3 1.0 < 1.0 U Isophorone 78-59-1 5.0 < 5.0 U 2-Nitrophenol 88-75-5 2,4-Dimethylphenol 1.0 < 1.0 U105-67-9 < 10 U 10 65-85-0 Benzoic Acid bis(2-Chloroethoxy) Methane 1.0 < 1.0 U 111-91-1 < 5.0 U 5.0 2,4-Dichlorophenol 120-83-2 1.0 < 1.0 U 120-82-1 1,2,4-Trichlorobenzene < 1.0 U 1.0 Naphthalene 91-20-3 < 5.0 U 5.0 4-Chloroaniline 106-47-8 < 1.0 U 1.0 87-68-3 Hexachlorobutadiene < 5.0 U 5.0 4-Chloro-3-methylphenol 59-50-7 1.0 < 1.0 U 2-Methylnaphthalene 91-57-6 < 5.0 U 5.0 Hexachlorocyclopentadiene 77-47-4 5.0 < 5.0 U 2,4,6-Trichlorophenol 88-06-2 5.0 < 5.0 U 95-95-4 2,4,5-Trichlorophenol 1.0 < 1.0 U 2-Chloronaphthalene 91-58-7 < 5.0 U 5.0 2-Nitroaniline 88-74-4 1.0 < 1.0 U 131-11-3 Dimethylphthalate < 1.0 U 1.0 208-96-8 Acenaphthylene < 5.0 U 5.0 99-09-2 3-Nitroaniline < 1.0 U 1.0 83-32-9 Acenaphthene < 10 U 10 51-28-5 2,4-Dinitrophenol < 5.0 U 5.0 100-02-7 4-Nitrophenol < 1.0 U 1.0 Dibenzofuran 132-64-9 5.0 < 5.0 U 606-20-2 2,6-Dinitrotoluene 5.0 < 5.0 U 121-14-2 2,4-Dinitrotoluene 1.0 < 1.0 U Diethylphthalate 84-66-2

Page 2 of 2

LIMS ID: 08-19935

Sample ID: MB-082208 METHOD BLANK

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Matrix: Water
Date Analyzed: 08/30/08 22:31

Lab Sample ID: MB-082208

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 Ŭ
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a) anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U
90-12-0	1-Methylnaphthalene	1.0	< 1.0 U

Reported in μ g/L (ppb)

d5-Nitrobenzene	65.6%	2-Fluorobiphenyl	69.6%
d14-p-Terphenyl	82.0%	d4-1,2-Dichlorobenzene	66.0%
d5-Phenol	38.9%	2-Fluorophenol	50.1%
2.4.6-Tribromophenol	81.1%	d4-2-Chlorophenol	68.8%

Page 1 of 1

Lab Sample ID: NJ87A LIMS ID: 08-19934

Matrix: Water

Date Extracted: 08/08/08 Date Analyzed: 08/11/08 18:17 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No Sulfur Cleanup: No Sample ID: EBC-2 SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	42.5%
Tetrachlorometaxylene	73.8%

Page 1 of 1

Lab Sample ID: NJ87B LIMS ID: 08-19935

Matrix: Water

Data Release Authorized: Reported: 08/20/08

Date Extracted: 08/08/08 Date Analyzed: 08/11/08 18:35 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No Sulfur Cleanup: No Sample ID: EBC-5 SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 400 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.2	< 1.2 U
53469-21-9	Aroclor 1242	1.2	< 1.2 U
12672-29-6	Aroclor 1248	1.2	< 1.2 U
11097-69-1	Aroclor 1254	1.2	< 1.2 U
11096-82-5	Aroclor 1260	1.2	< 1.2 U
11104-28-2	Aroclor 1221	1.2	< 1.2 U
11141-16-5	Aroclor 1232	1.2	< 1.2 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	76.2%
Tetrachlorometaxylene	75.5%

Page 1 of 1

Lab Sample ID: NJ87C LIMS ID: 08-19936

Matrix: Water

Data Release Authorized:

Reported: 08/20/08

d: //

Date Extracted: 08/08/08
Date Analyzed: 08/11/08 18:53
Instrument/Analyst: ECD5/PKC

GPC Cleanup: No Sulfur Cleanup: No Sample ID: EBC-6 SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: 08/01/08
Date Received: 08/06/08

Sample Amount: 500 mL Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	70.2%
Tetrachlorometaxylene	75.5%

Page 1 of 1

Matrix: Water

QC Report No: NJ87-HART CROWSER, INC. Lab Sample ID: NJ87D LIMS ID: 08-19937

Project: PIER 23-EBC 17490-01

Sample ID: EBC-16

SAMPLE

Date Sampled: 08/01/08 Date Received: 08/06/08

Data Release Authorized: Reported: 08/20/08

Sample Amount: 500 mL Date Extracted: 08/08/08 Final Extract Volume: 5.0 mL Date Analyzed: 08/11/08 19:11 Dilution Factor: 1.00 Instrument/Analyst: ECD5/PKC Silica Gel: No Acid Cleanup: No

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	1.0 1.0 1.0 1.0	< 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U
11104-28-2 11141-16-5	Aroclor 1221 Aroclor 1232	1.0 1.0	< 1.0 U < 1.0 U

Reported in $\mu g/L$ (ppb)

Decachlorobiphenyl	68.8%
Tetrachlorometaxylene	74.8%

SW8082/PCB WATER SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-080808	81.5%	47-101	92.5%	61-104	0
LCS-080808	81.5%	47-101	97.2%	61-104	0
LCSD-080808	83.5%	47-101	101%	61-104	0
EBC-2	42.5%	42-120	73.8%	55-102	0
EBC-5	76.2%	42-120	75.5%	55-102	0
EBC-6	70.2%	42-120	75.5%	55-102	0
EBC-16	68.8%	42-120	74.8%	55-102	0

Prep Method: SW3510C

Log Number Range: 08-19934 to 08-19937

Page 1 of 1

Lab Sample ID: LCS-080808

LIMS ID: 08-19934

Matrix: Water

Data Release Authorized:

Reported: 08/20/08

Date Extracted LCS/LCSD: 08/08/08

Date Analyzed LCS: 08/11/08 17:42

LCSD: 08/11/08 18:00

Instrument/Analyst LCS: ECD5/PKC

LCSD: ECD5/PKC

GPC Cleanup: No Sulfur Cleanup: No Sample ID: LCS-080808

LCS/LCSD

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 5.0 mL

LCSD: 5.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00 Silica Gel: No

Acid Cleanup: No

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	5.58	5.00	112%	5.74	5.00	115%	2.8%
Aroclor 1260	5.21	5.00	104%	5.48	5.00	110%	5.1%

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	81.5%	83.5%
Tetrachlorometaxylene	97.2%	101%

Results reported in $\mu g/L$ RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: MB-080808

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized:

Reported: 08/20/08

Date Extracted: 08/08/08 Date Analyzed: 08/11/08 17:25 Instrument/Analyst: ECD5/PKC

GPC Cleanup: No Sulfur Cleanup: No Sample ID: MB-080808 METHOD BLANK

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	81.5%
Tetrachlorometaxylene	92.5%

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-2
SAMPLE

Lab Sample ID: NJ87A LIMS ID: 08-19934

Matrix: Water

Data Release Authorized: Reported: 08/12/08

Date Analyzed: 08/11/08 13:52

Instrument/Analyst: PID3/PKC

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: 17490-01
Date Sampled: 07/31/08
Date Received: 08/06/08

Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	4.0
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	1.4
	m,p-Xylene	1.0	1.5
95-47-6	o-Xylene	1.0	< 1.0 U

GAS ID Gasoline Range Hydrocarbons 0.25 1.6 GRO

BETX Surrogate Recovery

Trifluorotoluene	105%
Bromobenzene	99.2%

Gasoline Surrogate Recovery

Trifluorotoluene	103%
Bromobenzene	97.2%

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8 ln/18

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080811-2.b/0811a008.d Data file 2: /chem3/pid3.i/20080811-1.b/0811a008.d

Method: /chem3/pid3.i/20080811-1.b/PIDB.m

Range

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ87A Client ID: EBC-2

Injection Date: 11-AUG-2008 13:52

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.408	-0.001	6801	86552	102.9	TFT (Surr)
14.968	-0.001	4619	37289	97.2	BB(Surr)

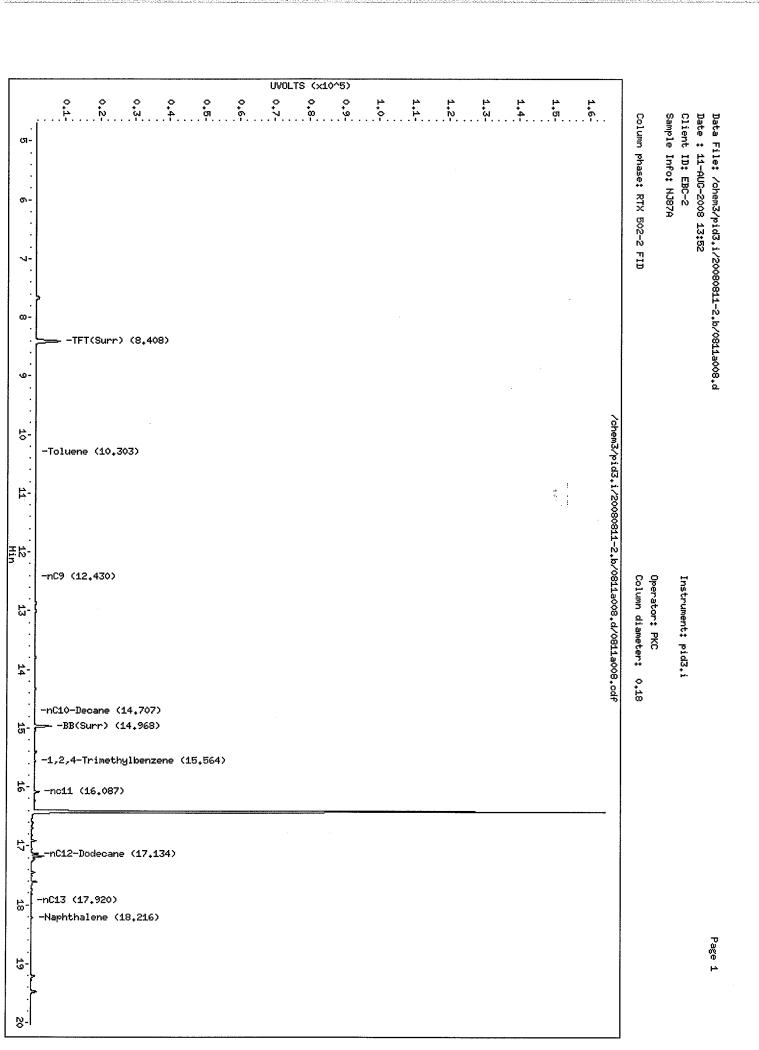
PETROLEUM HYDROCARBONS (FID)

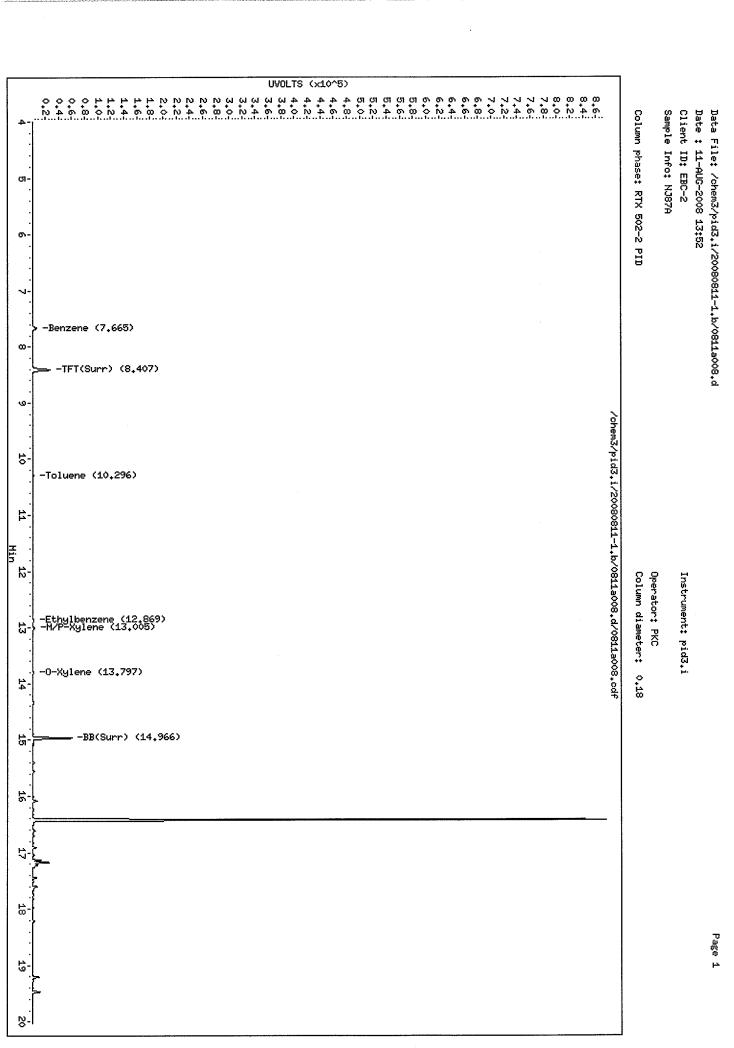
Total Area*

WAGas	(Tol-C12)	1248526	1.687	
_ 8015E	(2MP-TMB)	61692	0.043	2.
AKGas	(nC6-nC10)	48895	0.043	
NWGas	(Tol-Nap)	1297523	1.645 -879	avon from one peak
			110	aron was poor

Amount

* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.407	-0.001	25417	104.7	TFT(Surr)
14.966	0.000	60115	99.2	BB (Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.665	-0.001	6102	4.00	Benzene
10.296	-0.002	440	0.30	Toluene
12.869	0.000	1836	1.36	Ethylbenzene
13.005	-0.004	2256	1.50	M/P-Xylene
13.797	0.000	1206	0.81	O-Xylene
ND				MTBE

Indicates Peak Area was used for quantitation instead of Height

NAC:

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-5
SAMPLE

Lab Sample ID: NJ87B LIMS ID: 08-19935

Matrix: Water

Data Release Authorized: Reported: 08/12/08

Date Analyzed: 08/11/08 14:17

Instrument/Analyst: PID3/PKC

ed:

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: 17490-01 Date Sampled: 08/01/08 Date Received: 08/06/08

> Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U
			GAS ID
	Gasoline Range Hydrocarbons	0.25	< 0.25 U

BETX Surrogate Recovery

Trifluorotoluene	108%
Bromobenzene	102%

Gasoline Surrogate Recovery

Trifluorotoluene	107%
Bromobenzene	100%

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080811-2.b/0811a009.d

Data file 2: /chem3/pid3.i/20080811-1.b/0811a009.d

Method: /chem3/pid3.i/20080811-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ87B Client ID: EBC-5

Injection Date: 11-AUG-2008 14:17

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

\mathtt{RT}	Shift	Height	Area	%Rec	Compound
8.409	-0.001	7047	89587	106.6	TFT (Surr)
14.968	0.000	4758	38982	100.1	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

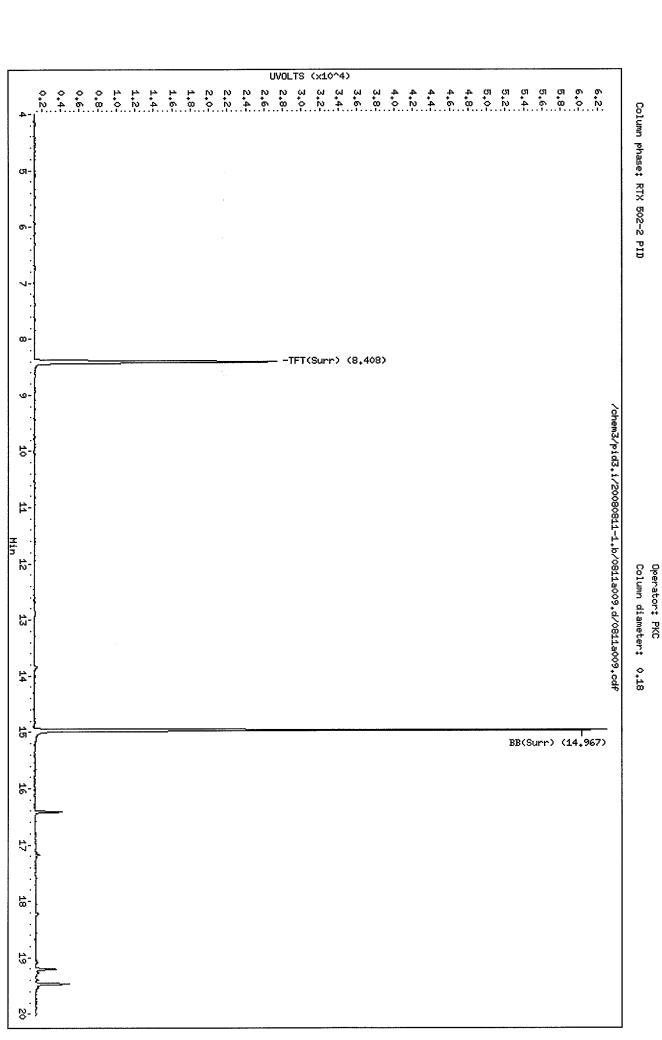
_____,

Range	Total Area*	Amount
	-	
WAGas (Tol-C12)	6779	0.009
8015B (2MP-TMB)	2426	0.002
AKGas (nC6-nC10)	2426	0.002
NWGas (Tol-Nap)	6779	0.009

* Surrogate areas are subtracted from Total Area

		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.408	-0.001	26237	108.0	TFT (Surr)
14.967	0.000	61529	101.5	BB(Surr)

AROMATICS (PID)



RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

Indicates Peak Area was used for quantitation instead of Height

CHES

Page 1

Client ID; EBC-5

Instrument: pid3.i

Sample Info: NJ87B

Date : 11-AUG-2008 14:17

Data File: /chem3/pid3.i/20080811-1.b/0811a009.d

ORGANICS ANALYSIS DATA SHEET
BETX by Method SW8021BMod
TPHG by Method NWTPHG
Page 1 of 1

Sample ID: EBC-6
SAMPLE

Lab Sample ID: NJ87C LIMS ID: 08-19936

Matrix: Water

Data Release Authorized:

Date Analyzed: 08/11/08 14:41 Instrument/Analyst: PID3/PKC

Reported: 08/12/08

: **//**

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

> Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U
			GAS ID
	Gasoline Range Hydrocarbons	0.25	< 0.25 U

BETX Surrogate Recovery

Trifluorotoluene	103%
Bromobenzene	97.6%

Gasoline Surrogate Recovery

Trifluorotoluene	102%
Bromobenzene	95.6%

 \cdot BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/12/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080811-2.b/0811a010.d

Data file 2: /chem3/pid3.i/20080811-1.b/0811a010.d

Method: /chem3/pid3.i/20080811-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ87C Client ID: EBC-6

Injection Date: 11-AUG-2008 14:41

Matrix: WATER

Dilution Factor: 1.000

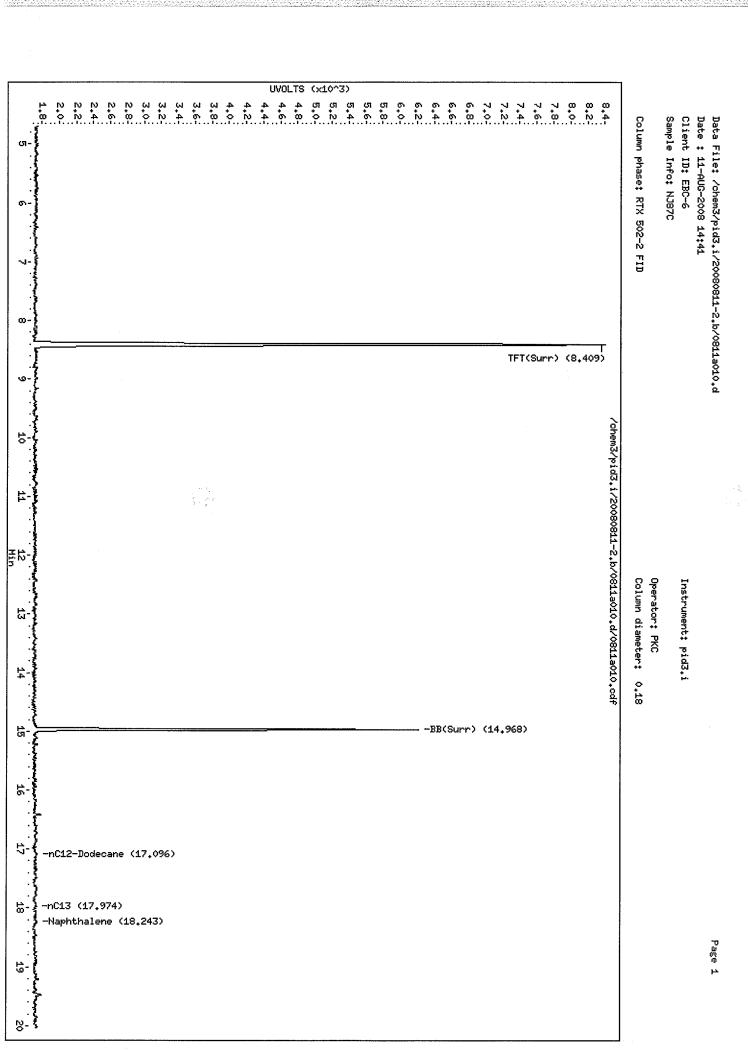
FID Surrogates

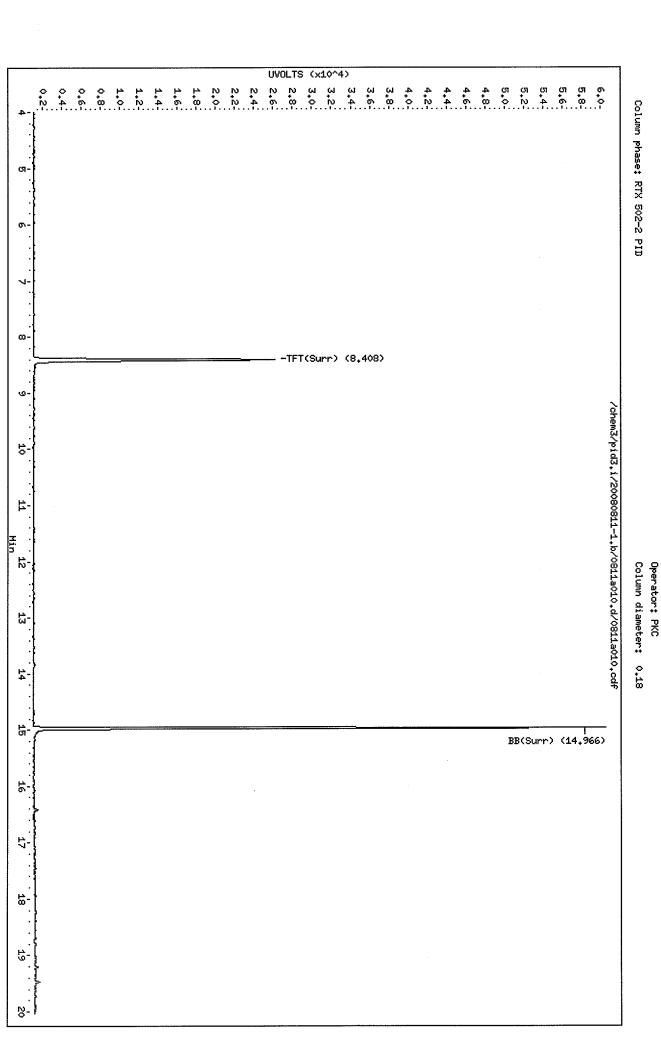
RT	Shift	Height	Area	%Rec	Compound
8.409	-0.001	6722	84977	101.7	TFT (Surr)
14.968	0.000	4543	37773	95.6	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	14305	0.019
8015B (2MP-TMB)	13826	0.010
AKGas (nC6-nC10)	13825	0.012
NWGas (Tol-Nap)	20141	0.026

* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.408	-0.001	25044	103.1	TFT (Surr)
14.966	-0.001	59136	97.6	BB(Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height

Page 1

Client ID: EBC-6

Instrument: pid3.i

Date : 11-AUG-2008 14:41

Data File: /chem3/pid3.i/20080811-1.b/0811a010.d

Sample Info; NJ87C

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-16 SAMPLE

Lab Sample ID: NJ87D LIMS ID: 08-19937

Matrix: Water

Data Release Authorized: Reported: 08/12/08

Date Analyzed: 08/11/08 15:06

Instrument/Analyst: PID3/PKC

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: 17490-01 Date Sampled: 08/01/08 Date Received: 08/06/08

Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U
			GAS ID
	Gasoline Range Hydrocarbons	0.25	< 0.25 U

BETX Surrogate Recovery

Trifluorotoluene	105%
Bromobenzene	95.2%

Gasoline Surrogate Recovery

Trifluorotoluene	104%
Bromobenzene	94.7%

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080811-2.b/0811a011.d

Data file 2: /chem3/pid3.i/20080811-1.b/0811a011.d

Method: /chem3/pid3.i/20080811-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ87D Client ID: EBC-16

Injection Date: 11-AUG-2008 15:06

Matrix: WATER

Dilution Factor: 1.000

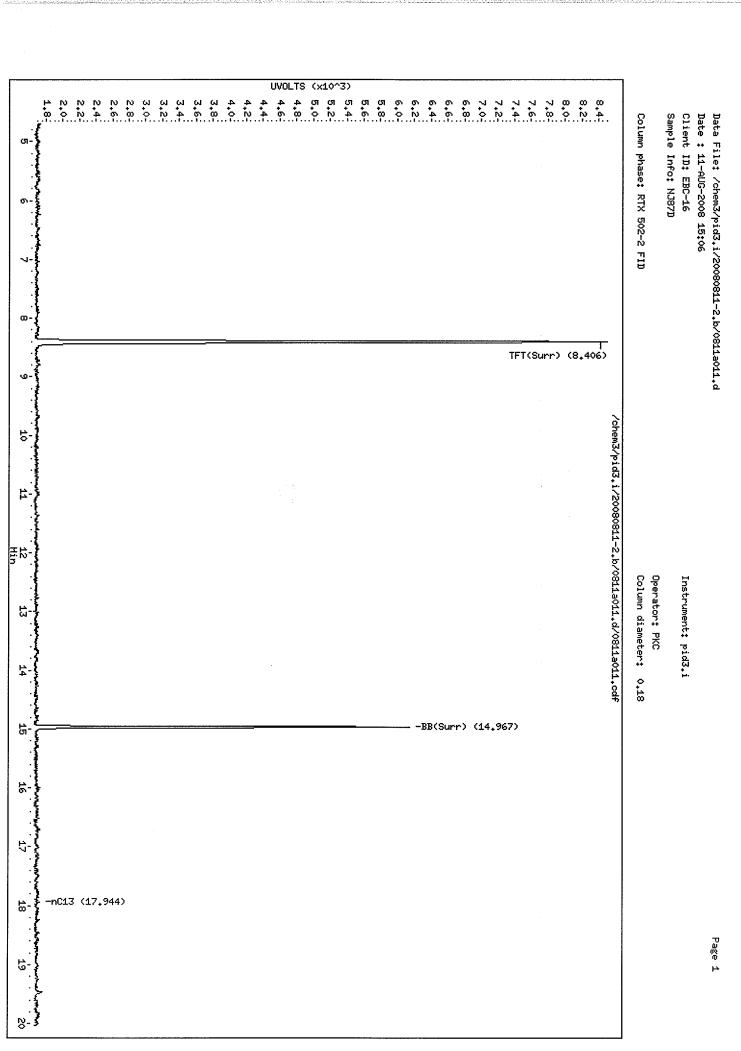
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.406	-0.004	6862	85496	103.8	TFT(Surr)
14.967	-0.001	4500	36500	94.7	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	2238	0.003
8015B (2MP-TMB)	2238	0.002
AKGas (nC6-nC10)	2237	0.002
NWGas (Tol-Nap)	4498	0.006

* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.404	-0.004	25470	104.9	TFT(Surr)
14.966	-0.001	57696	95.2	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

გ-∤

Data File: /chem3/pid3.i/20080811-1.b/0811a011.d

Date : 11-AUG-2008 15:06

Sample Info: NJ87D Client ID: EBC-16

Column phase: RTX 502-2 PID

Instrument: pid3.i

Operator: PKC Column diameter: 0.18

Page 1

BETX WATER SURROGATE RECOVERY SUMMARY

ARI Job: NJ87 Matrix: Water QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC Event: 17490-01

Client ID	TFT	BBZ	TOT OUT
MB-081108	100%	93.5%	0
LCS-081108	96.8%	89.9%	0
LCSD-081108	96.9%	90.4%	0
EBC-2	105%	99.2%	0
EBC-5	108%	102%	0
EBC-6	103%	97.6%	0
EBC-16	105%	95.2%	0

			LCS/MB LIMITS	QC LIMITS
(TFT)	=	Trifluorotoluene	(80-120)	(80-120)
(BBZ)	=	Bromobenzene	(80-120)	(80-120)

Log Number Range: 08-19934 to 08-19937

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: NJ87 Matrix: Water

QC Report No: NJ87-HART CROWSER, INC. Project: PIER 23-EBC Event: 17490-01

Client ID	TFT	BBZ	TOT OUT
MB-081108	99.0%	93.5%	0
LCS-081108	96.1%	88.7%	0
LCSD-081108	95.3%	89.4%	0
EBC-2	103%	97.2%	0
EBC-5	107%	100%	0
EBC-6	102%	95.6%	0
EBC-16	104%	94.7%	0

		LCS/MB LIMITS	QC LIMITS
(TFT)	= Trifluorotoluene	(80-120)	(80-120)
(BBZ)	= Bromobenzene	(80-120)	(80-120)

Log Number Range: 08-19934 to 08-19937

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Sample ID: LCS-081108
LAB CONTROL SAMPLE

Lab Sample ID: LCS-081108

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized: Reported: 08/12/08

Date Analyzed LCS: 08/11/08 11:27

LCSD: 08/11/08 11:52

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: 17490-01

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	0.95	1.00	95.0%	0.89	1.00	89.0%	6.5%

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	96.1%	95.3%
Bromobenzene	88.7%	89.4%

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod

Page 1 of 1

Lab Sample ID: LCS-081108

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized:

Reported: 08/12/08

Date Analyzed LCS: 08/11/08 11:27

LCSD: 08/11/08 11:52

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-081108

LAB CONTROL SAMPLE

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: 17490-01

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0

LCSD: 1.0

Analyte	LCS	Spike Added-LC	LCS S Recovery	LCSD	Spike Added-LCSI	LCSD Recovery	RPD
Benzene	4.63	5.30	87.4%	4.59	5.30	86.6% 85.9%	0.9% 1.1%
Toluene	35.8	41.2 10.0	86.9% 88.1%	35.4 8.66	41.2 10.0	85.9° 86.6°	1.7%
Ethylbenzene m,p-Xylene	8.81 36.6	42.3	86.5%	36.0	42.3	85.1% 85.2%	1.7% 1.7%
o-Xylene	12.9	14.9	86.6%	12.7	14.9	03.25	T.0.0

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	96.8%	96.9%
Bromobenzene	89.9%	90.4%

PC 8/12/08

1000

leins last

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080811-2.b/0811a004.d

Data file 2: /chem3/pid3.i/20080811-1.b/0811a004.d

Method: /chem3/pid3.i/20080811-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: LCS081108S1

Client ID:

Injection Date: 11-AUG-2008 11:27

Matrix: WATER

Dilution Factor: 1.000

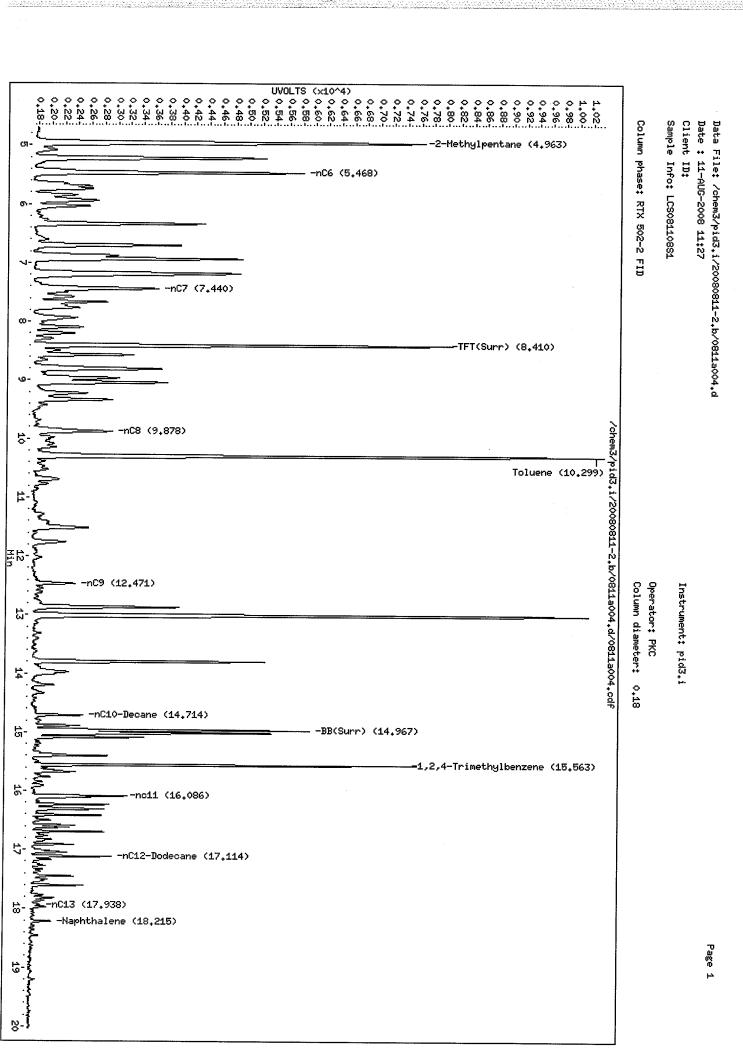
FID Surrogates

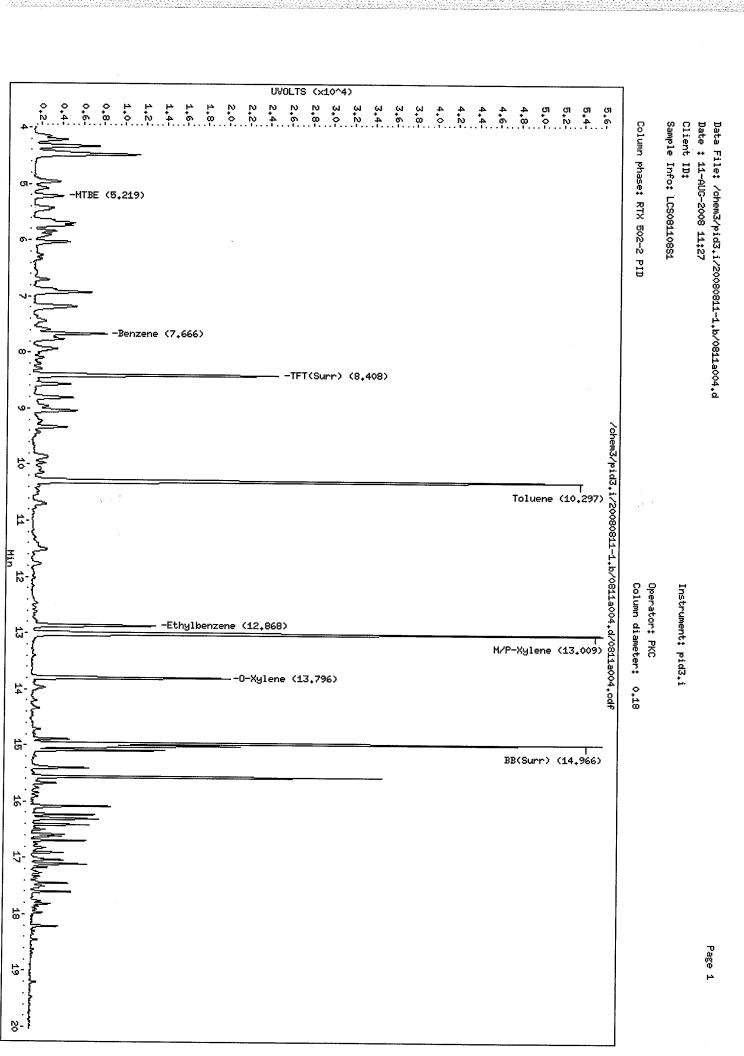
RT	Shift	Height	Area	%Rec	Compound
8.410	0.000	6350	81208	96.1	TFT (Surr)
14.967	-0.001	4213	35284	88.7	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total Area*	Amount
WAGas	(Tol-C12)	701128	0.947
8015B	(2MP-TMB)	1405433	0.978
AKGas	(nC6-nC10)	1116805	0.977
NWGas	(Tol-Nap)	748036	0.948

* Surrogate areas are subtracted from Total Area


		PID Surrogate	S	
RT	Shift	Response	%Rec	Compound
			-	
8.408	0.000	23514	96.8	TFT (Surr)
14.966	-0.001	54510	89.9	BB (Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.666	0.000	7060	4.63	Benzene
10.297	-0.001	52698	35.82	Toluene
12.868	-0.001	11880	8.81	Ethylbenzene
13.009	0.000	54862	36.60	M/P-Xylene
13.796	-0.001	19096	12.89	O-Xylene
5.219	-0.012	2829	5.18	MTBE

Indicates Peak Area was used for quantitation instead of Height

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080811-2.b/0811a005.d

Data file 2: /chem3/pid3.i/20080811-1.b/0811a005.d

Method: /chem3/pid3.i/20080811-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: LCSD081108S1

Client ID:

Injection Date: 11-AUG-2008 11:52

Matrix: WATER

Dilution Factor: 1.000

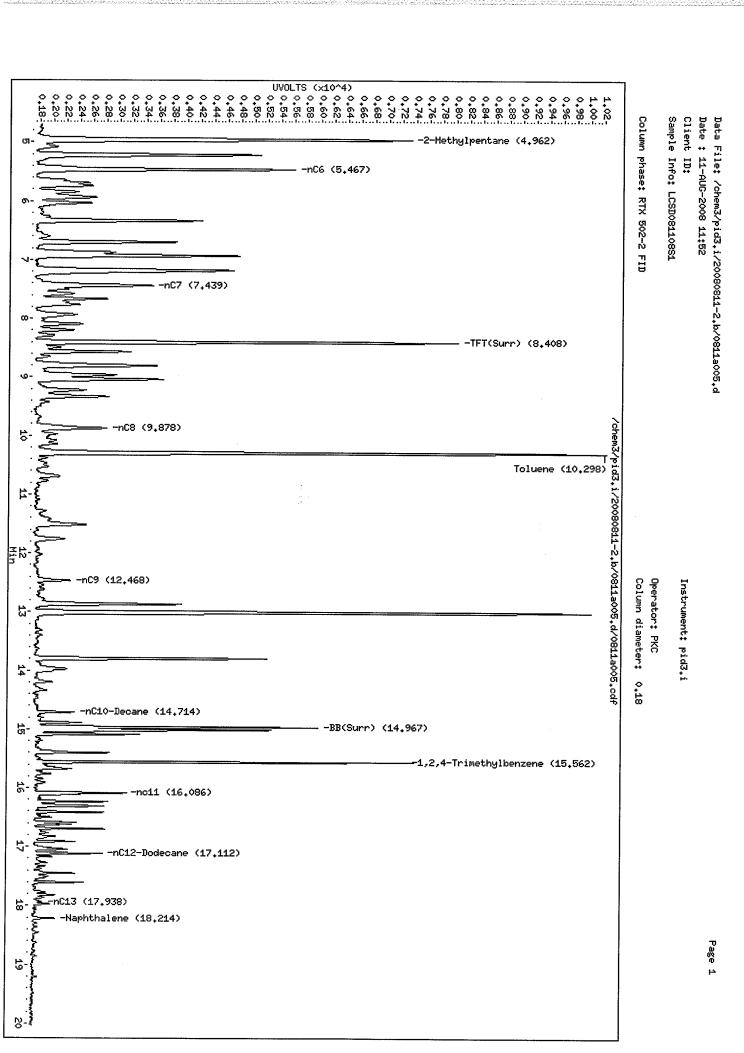
FID Surrogates

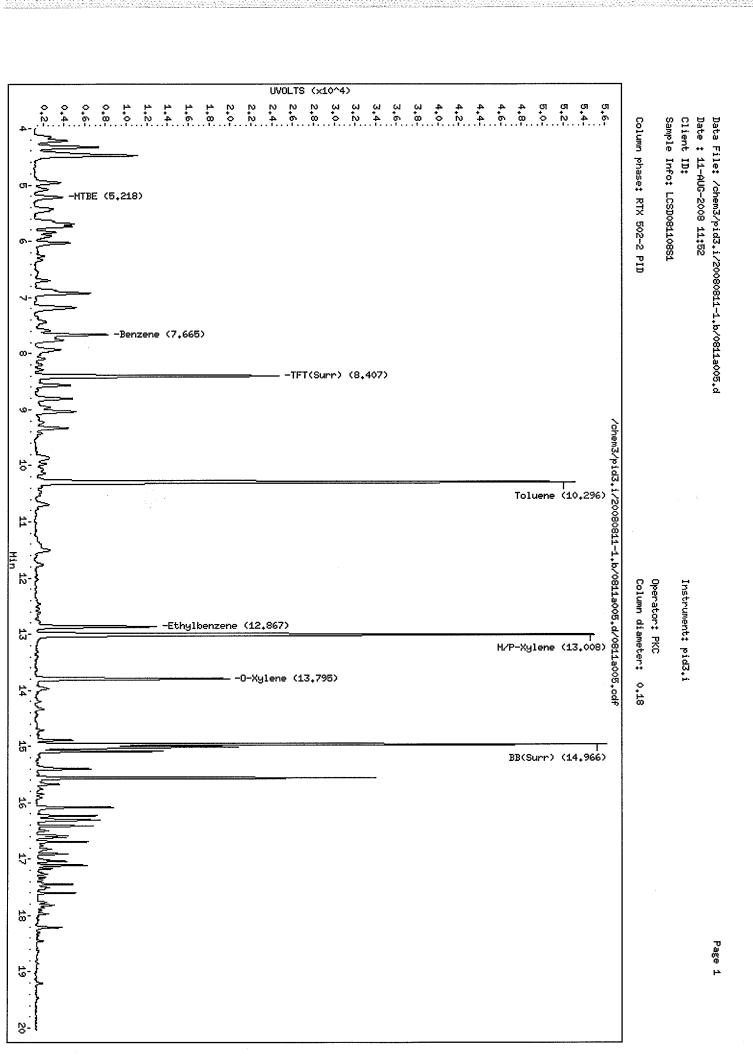
RT	Shift	Height	Area	%Rec	Compound
8.408	-0.001	6302	80708	95.3	TFT(Surr)
14.967	-0.001	4250	35176	89.4	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*		Amount
WAGas	(Tol-C12)	657778		0.889
8015B	(2MP-TMB)	1329354	S	0.925
AKGas	(nC6-nC10)	1054718	* *	0.923
NWGas	(Tol-Nap)	700790		0.889

* Surrogate areas are subtracted from Total Area


		PID Surrogates		
RT	Shift	Response	%Rec	Compound
. — —				
8.407	-0.001	23527	96.9	TFT (Surr)
14.966	-0.001	54798	90.4	BB (Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.665	-0.001	6997	4.59	Benzene
10.296	-0.002	52008	35.35	Toluene
12.867	-0.002	11682	8.66	Ethylbenzene
13.008	0.000	54005	36.02	M/P-Xylene
13.795	-0.002	18799	12.68	O-Xylene
5.218	-0.013	2727	5.00	MTBE

A Indicates Peak Area was used for quantitation instead of Height

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: MB-081108 METHOD BLANK

Lab Sample ID: MB-081108

LIMS ID: 08-19934 Matrix: Water

Data Release Authorized: Reported: 08/12/08

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

Event: 17490-01

Date Sampled: NA Date Received: NA

Date Analyzed: 08/11/08 12:16 Purge Volume: 5.0 mL Instrument/Analyst: PID3/PKC Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
100-41-4	Ethylbenzene	1.0	< 1.0 U
	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U
			GAS ID
	Gasoline Range Hydrocarbons	0.25	< 0.25 U

BETX Surrogate Recovery

Trifluorotoluene	100%
Bromobenzene	93.5%

Gasoline Surrogate Recovery

Trifluorotoluene	99.0%
Bromobenzene	93.5%

BETX values reported in $\mu g/L$ (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/11/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080811-2.b/0811a006.d Data file 2: /chem3/pid3.i/20080811-1.b/0811a006.d

Method: /chem3/pid3.i/20080811-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: MB081108S1

Client ID:

Injection Date: 11-AUG-2008 12:16

Matrix: WATER

Dilution Factor: 1.000

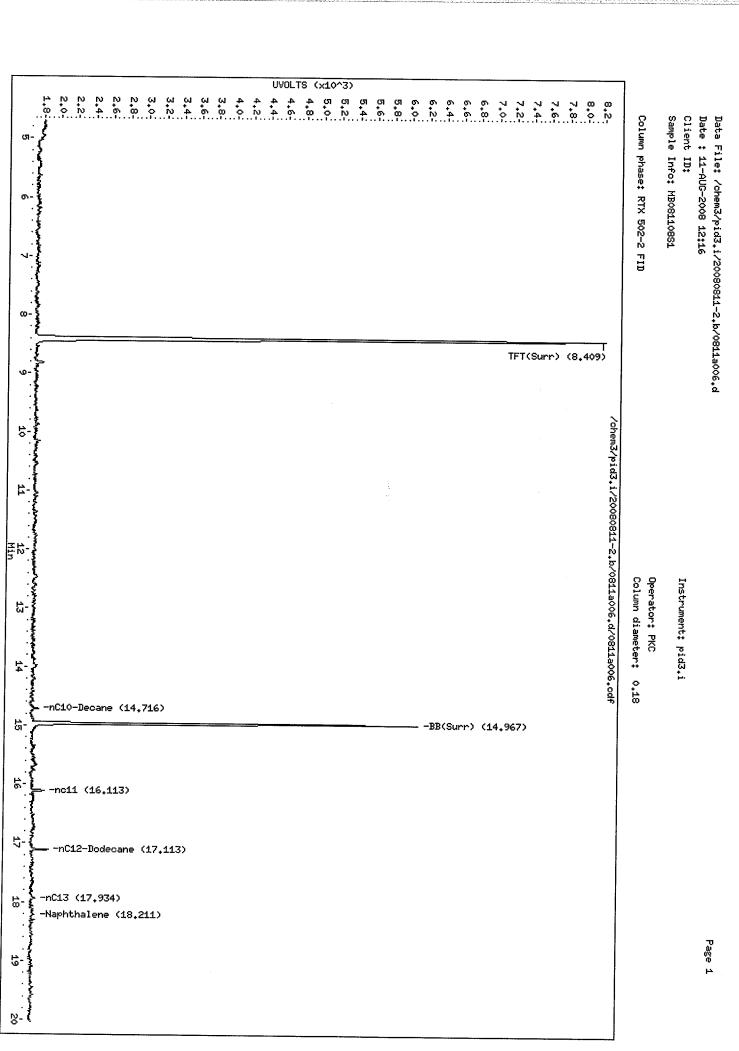
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.409	-0.001	6546	83788	99.0	TFT (Surr)
14.967	-0.001	4442	39512	93.5	BB (Surr)

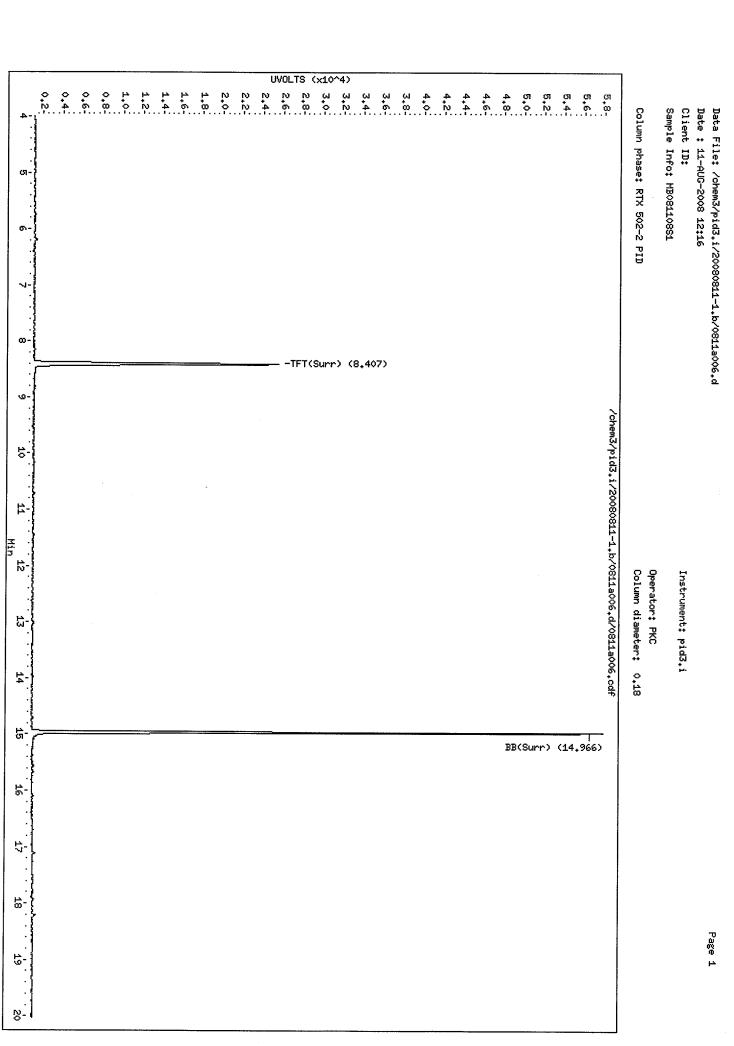
PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
WAGas	(Tol-C12)	27149	0.037
8015B	(2MP-TMB)	12519	0.009
AKGas	(nC6-nC10)	8658	0.008
NWGas	(Tol-Nap)	34946	0.044

* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
·				
8.407	-0.001	24369	100.4	TFT (Surr)
14.966	-0.001	56671	93.5	BB (Surr)

AROMATICS (PID)



RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

Indicates Peak Area was used for quantitation instead of Height

anna,

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1 Matrix: Water

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

Data Release Authorized:

Reported: 08/19/08

ARI ID	Sample I	ĽD	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-080808 08-19934	Method B HC ID: -	3lank 	08/08/08	08/13/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 95.8%
NJ87A 08-19934	EBC-2 HC ID: D	DRO	08/08/08	08/13/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	0.38 < 0.50 U 91.1%
NJ87B 08-19935	EBC-5 HC ID: -		08/08/08	08/13/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 53.1%
NJ87C 08-19936	EBC-6 HC ID: -		08/08/08	08/13/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 96.2%
NJ87D 08-19937	EBC-16 HC ID: -		08/08/08	08/13/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 91.8%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080813.b/0813a011.d Method: /chem3/fid3a.i/20080813.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ87MBW1

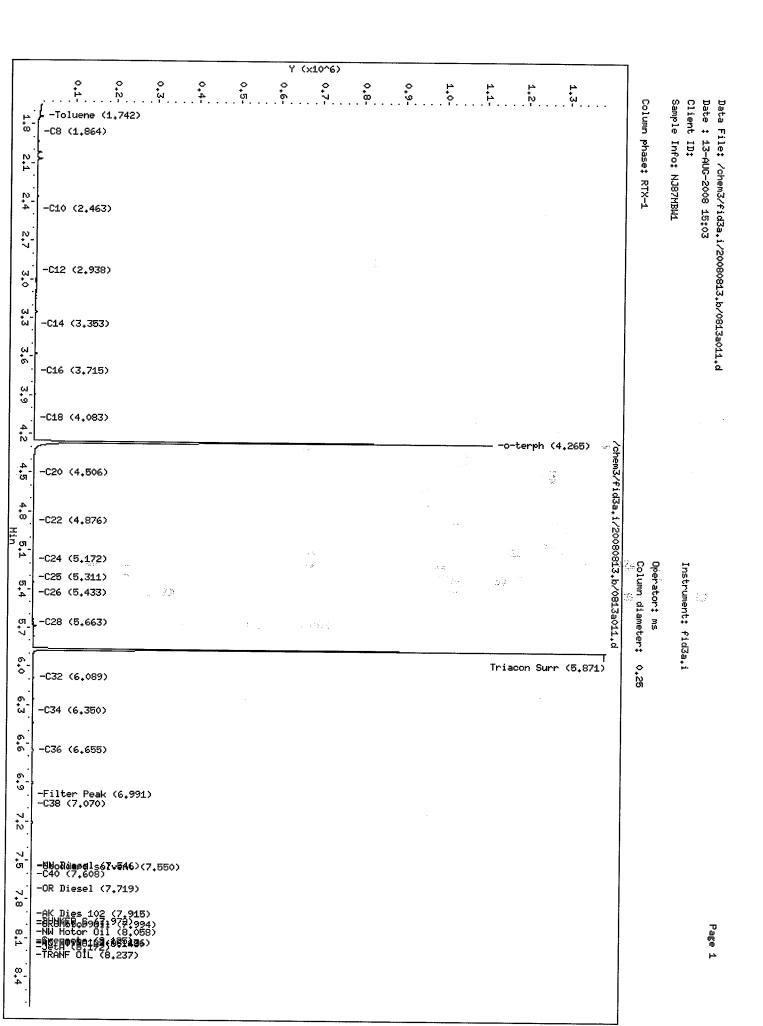
Client ID:

Injection: 13-AUG-2008 15:03

Dilution Factor: 1

FID:3A RESULTS

Compound	RT	Shift	Height	1	Area	Ra	ange	Tot	al Area	C	onc
Toluene	1.742	0.004	======= 15333	====	== == == 18819	GAS	Tol-C12)	=====	======= 206148	===:	==== 12
C8	1.864	0.001	2937		2458	DIESEL	(C12-C24)		107411		9 /
C10	2.463	0.011	3056		2835	M.OIL	(C24-C38)		227456		23 -
C12	2.938	0.001	1636		747	AK-102	(C10-C25)		174628		12
C14	3.353	0.003	1254		631	AK-103	(C25-C36)		170906		24
C16	3.715	0.004	1145		885	OR.DIES	(C10-C28)		207329		14
C18	4.083	0.001	469		148	OR.MOIL	(C28-C40)		262705		29
C20	4.506	-0.001	583		144	JET-A	(C10-C18)		138939		9
C22	4.876	0.007	790		278	MIN.OIL	(C24-C38)		227456		18
C24	5.172	-0.003	705		400	MSPIRIT	(Tol-C12)		206148		13
C25	5.311	0.000	755		194	İ					
C26	5.433	-0.003	859		152	İ					
C28	5.663	0.000	1847		2034	İ					
C32	6.089	-0.006	4593		8091	j					
C34	6.350	0.000	2660		793	1				-01-	
Filter, Peak	6.991	-0.001	2146		1064	JP-4	(Tol-C14)		241508		21
C36	6.655	-0.008	5933		8972	CREOSOT	(C8-C22)		261972		42
C38	7.070	0.003	2110		336	İ	F.,				
C40	7.608	0.002	2002		755	BUNKERC	(C10-C38)		400498		50
AZDIESEL (C	 10-C22)	 14	8831	9	=====	======	=======================================	=====	=====	====	==
AZMOIL (C	22-C32)	9	4423	15	. 9			, M		ų.	··,


Range Times: NW Diesel(2.987 - 5.225) NW Gas(1.689 - 2.987) NW M.Oil(5.225 - 7.117)

AK102(2.402 - 5.261) AK103(5.261 - 6.713) Jet A(2.402 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl	678375	43.1	95.7
Triacontane	668931	54.5	121.2

ms 8/19/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080813.b/0813a014.d Method: /chem3/fid3a.i/20080813.b/ftphfid3a.m

Instrument: fid3a.i

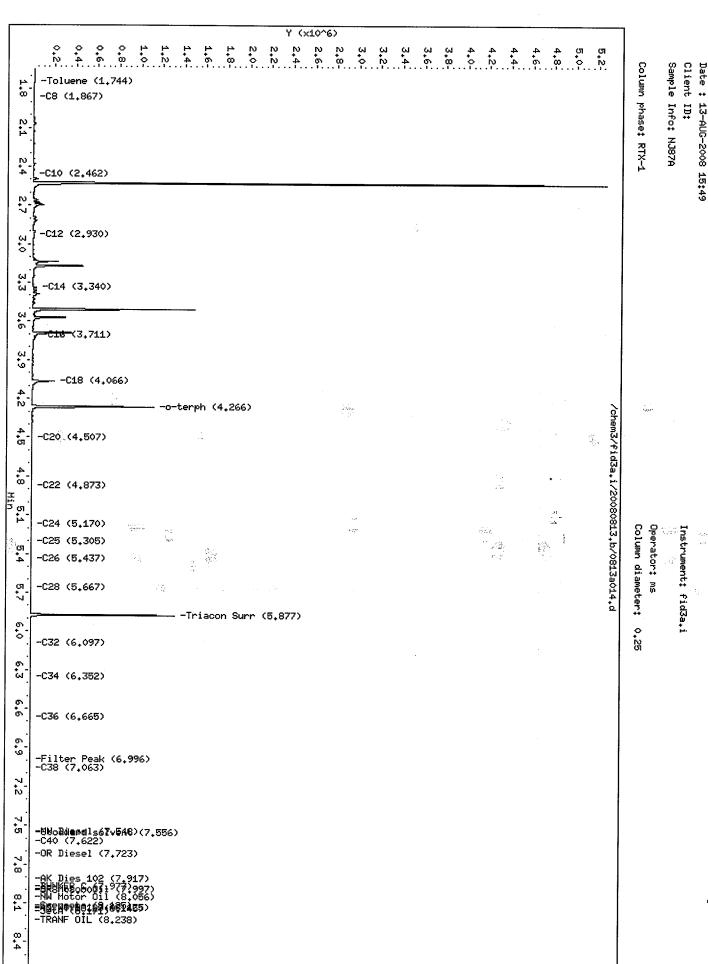
Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ87A Client ID:

Injection: 13-AUG-2008 15:49

Dilution Factor:

CIR	· 2 2	RESU	PT.TI


Compound	RT	Shift	Height	Area		ange	Total Area	Conc
Toluene	1.744	0.006	11526	15304	GAS	(Tol-C12)	3267887	 183/
C8	1.867	0.003	2959	3455	DIESEL	(C12-C24)	2282336	192,
C10	2.462	0.010	4031	5511	M.OIL	(C24-C38)	281324	29,
C12	2.930	-0.007	12923	19424	AK-102	(C10-C25)	5364720	374
C14	3.340	-0.010	36027	28253	AK-103	(C25-C36)	219854	31
C16	3.711	0.000	37572	22256	OR.DIES	(C10-C28)	5424121	367
C18	4.066	-0.016	204326	170849	OR.MOIL	(C28-C40)	277055	30
C20	4.507	0.000	2896	2251	JET-A	(C10-C18)	5208548	351
C22	4.873	0.004	1911	376	MIN.OIL	(C24-C38)	281324	22
C24	5.170	-0.005	1866	1017	MSPIRIT	(Tol-C12)	3267887	206
C25	5.305	-0.006	1883	261				
C26	5.437	0.001	2014	358				
C28	5.667	0.003	2958	3916				
C32	6.097	0.002	4501	8417				. ∱a 13,22
C34	6.352	0.002	3536	1047				
Filter Peak	6.996	0.004	2483	643	JP-4	(Tol-C14)	3886806	342
C36	6.665	0.003	4578	9206	CREOSOT	(C8-C22)	5477285	879
C38	7.063	-0.004	2575	1541	ĺ			
C40	7.622	0.016	1798	571	BUNKERC	(C10-C38)	5642312	710
AZDIESEL (C1	LO-C22)	===== 528	6580	329	======		:===============	=====
AZMOIL (C2	22-C32)		5936	24 ,			2	***

Range Times: NW Diesel (2.987 - 5.225) NW Gas (1.689 - 2.987) NW M.Oil (5.225 - 7.117)
AK102 (2.402 - 5.261) AK103 (5.261 - 6.713) Jet A(2.402 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	645593 622046	41.0	91.1

Nus 8/17/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Page 1

17.

Data File: /chem3/fid3a.i/20080813.b/0813a014.d

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080813.b/0813a015.d Method: /chem3/fid3a.i/20080813.b/ftphfid3a.m

Instrument: fid3a.i

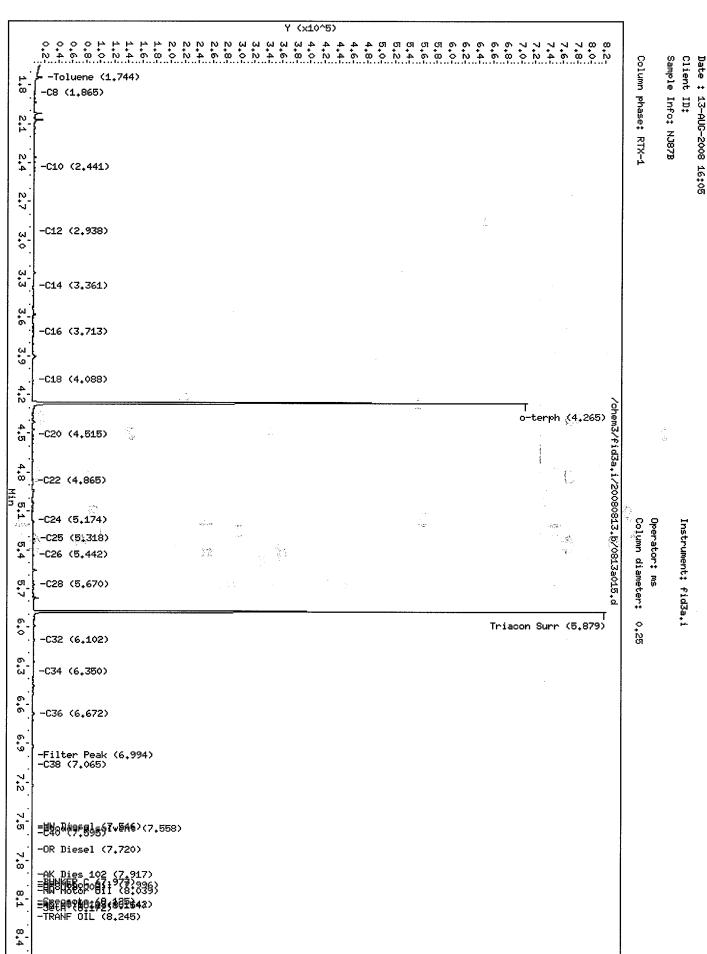
Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ87B Client ID:

Injection: 13-AUG-2008 16:05

Dilution Factor: 1

FID	• 3 A	RESULT	q


Compound	RT	Shift	Height	Area	Ran	.ge	Total Area	Conc
Toluene	1.744	0.005	13241	 17657	======================================	Tol-C12)	======================================	===== 11
C8	1.865	0.001	2914	3471		C12-C24)	181381	15
C10	2.441	-0.012	3360	4026	:	C24-C38)	293590	30
C12	2.938	0.000	1698	637	•	C10-C25)	250657	17
C14	3.361	0.011	1423	1137		C25-C36)	236330	34
C16	3.713	0.001	1424	840		C10-C28)	313564	21
C18	4.088	0.006	1885	1716	:	C28-C40)	288939	32
C20	4.515	0.007	1704	1827	JET-A (C10-C18)	164773	11
C22	4.865	-0.004	1370	271	MIN.OIL (C24-C38)	293590	23
C24	5.174	-0.002	1454	1157	MSPIRIT (Tol-C12)	202439	13
C25	5.318	0.007	5281	4414				
C26	5.442	0.007	3677	4576				
C28	5.670	0.006	4530	5290				
C32	6.102	0.006	5105	7849	1.5	Sac .		
C34	6.350	0.000	2849	962		Ž.	· · · · · · · · · · · · · · · · · · ·	
Filter Peak	6.994	0.001	2166	430	JP-4 (Tol-C14)	240284	21
C36	6.672	0.009	4980	9791	CREOSOT	(C8-C22)	318613	51
C38	7.065	-0.002	2117	1177			1	
C40	7,595 	-0.011	2677	4736	BUNKERC (C10-C38)	540704	68
AZDIESEL (CI	LO-C22)	20	====== 6986	13	=======:	========	===========	=====
AZMOIL (C2	22-Ç32)	17	3085	27		w'		/_3

Range Times: NW Diesel(2.987 - 5.225) NW Gas(1.689 - 2.987) NW M.Oil(5.225 - 7.117) AK102(2.402 - 5.261) AK103(5.261 - 6.713) Jet A(2.402 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	375776 362896	23.9	53.0

mo 8/19/0 8

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA	RF 15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5	Curve Date 26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008
Min Oil Min Spirit	12823.0 15825.3	27-JUN-2008 15-APR-2005
OR Diesel OR M.Oil Bunker C	14789.5 9098.1 7951.9	01-APR-2008
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20080813.b/0813a015.d

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080813.b/0813a016.d Method: /chem3/fid3a.i/20080813.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308

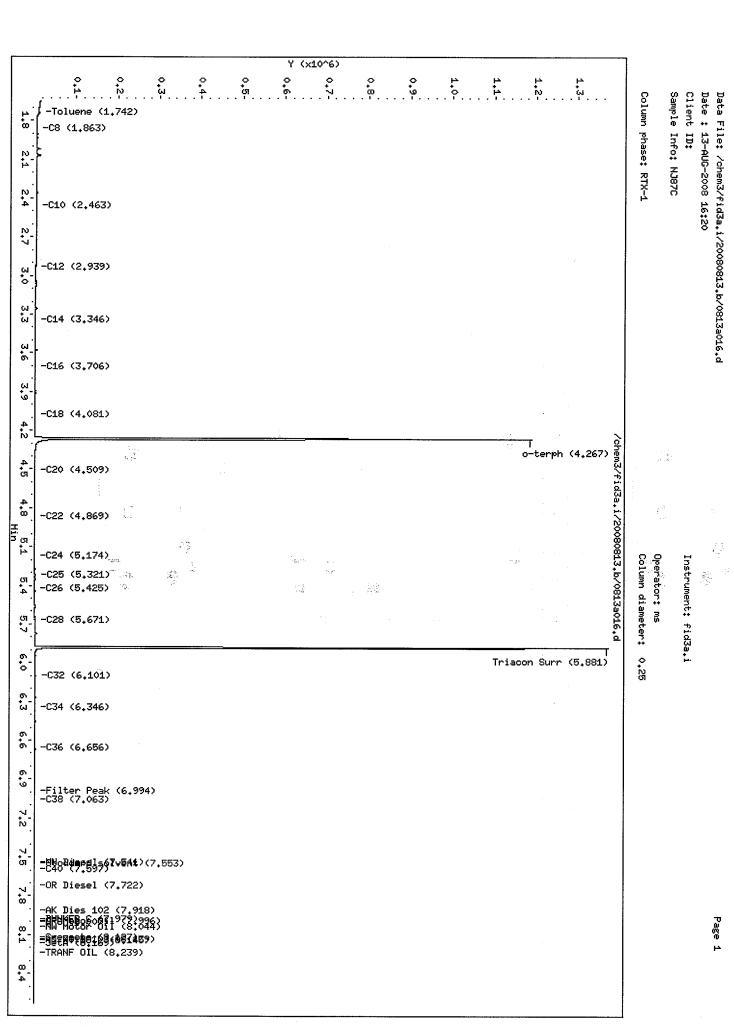
ARI ID: NJ87C

Client ID:

Injection: 13-AUG-2008 16:20

Dilution Factor: 1

DTI	ヽ.つヿ	RESHI	тc


Compound	RT	Shift	Height	Aı	rea	Rā	ange	Tot	al Area	Conc
			=======					=====	=======================================	======
Toluene	1.742	0.004	10322	1	L5443	GAS	(Tol-C12)		192324	11
C8	1.863	-0.001	2848		1749	DIESEL	(C12-C24)		103994	9
C10	2.463	0.011	2944		2717	M.OIL	(C24-C38)		223625	23 —
C12	2.939	0.002	1485		702	AK-102	(C10-C25)		166341	12
C14	3.346	-0.004	1103		560	AK-103	(C25-C36)		173172	25
C16	3.706	-0.005	904		589	OR DIES	(C10-C28)		203219	14
C18	4.081	-0.001	473		73	OR.MOIL	(C28-C40)		244874	27
C20	4.509	0.002	576		166	JET-A	(C10-C18)		126777	9
C22	4.869	0.000	630		318	MIN.OIL	(C24-C38)		223625	17
C24	5.174	-0.001	754		396	MSPIRIT	(Tol-C12)		192324	12
C25	5.321	0.010	2231		2566	į				
C26	5.425	-0.010	1027		662	İ				
C28	5.671	0.008	2715		3437	İ				
C32	6.101	0.006	3821	No. and	3414	Ì		1722		
C34	6.346	-0.004	2422		1712	İ		(1)		
Filter Peak	6.994	0.001	1979		1053	JP-4	(Tol-C14)		223062	20
C36	6.656	-0.007	2172		388	CREOSOT	(C8-C22)		247432	40
C38	7.063	-0.003	1973		1176	İ				÷μ
C40	7.597	-0.009	2361		3894	BUNKERC	(C10-C38)		388412	49
AZDIESEL (C1	10-C22)	======== 1:	====== 38093	===== 9	=====		:=======	=====	======	===== `*
AZMOIL (C2	22-C32)	10	09023	17				*17		

Range Times: NW Diesel(2.987 - 5.225) NW Gas(1.689 - 2.987) NW M.Oil(5.225 - 7.117) AK102 (2.402 - 5.261) AK103 (5.261 - 67713) Jet A(2.402 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl	681126	43.3	96.1
Triacontane	664836	54.2	120.4

mos/10/01

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080813.b/0813a017.d Method: /chem3/fid3a.i/20080813.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ87D

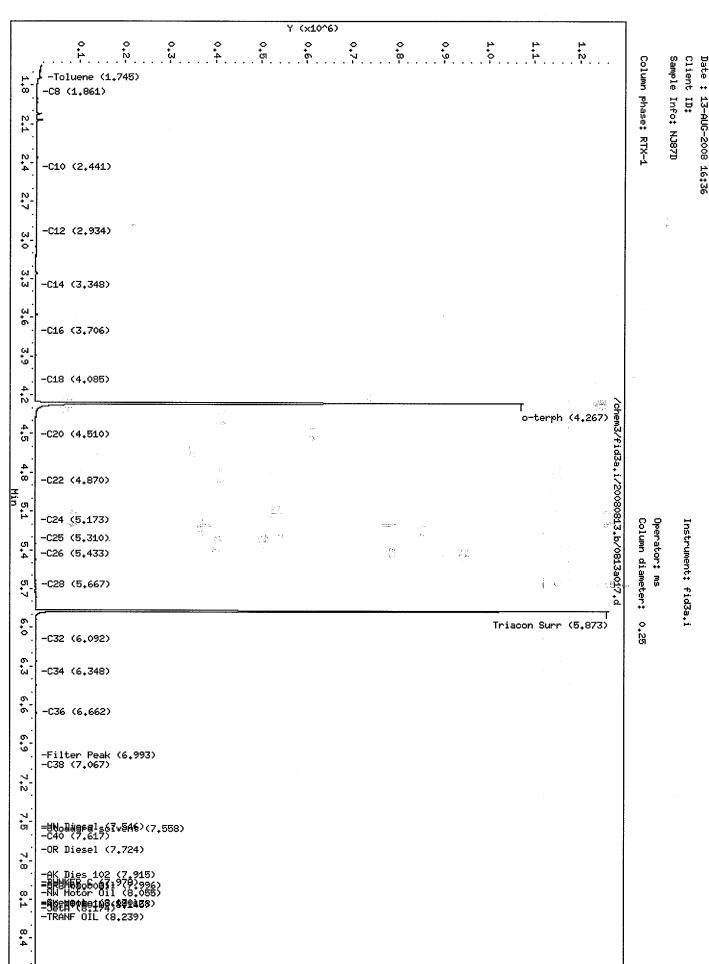
Client ID:

Injection: 13-AUG-2008 16:36

Dilution Factor:

FID:3A RESULTS

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=======================================	======	========		========		========		====
Toluene	1.745	0.006	11985	16419	GAS	(Tol-C12)	193820	11 ,
C8	1.861	-0.003	2750	764	DIESEL	(C12-C24)	68593	6-/-
C10	2.441	-0.012	3234	4083	M.OIL	(C24-C38)	179404	18
C12	2.934	-0.003	1342	897	AK-102	(C10-C25)	125228	9
C14	3.348	-0.002	866	218	AK-103	(C25-C36)	135046	19
C16	3.706	-0.005	713	515	OR.DIES	(C10-C28)	148127	10
C18	4.085	0.002	211	62	OR.MOIL	(C28-C40)	214761	24
C20	4.510	0.003	390	193	JET-A	(C10-C18)	105823	7
C22	4.870	0.002	249	36	MIN.OIL	(C24-C38)	179404	14
C24	5.173	-0.003	427	269	MSPIRIT	(Tol-C12)	193820	12
C25	5.310	-0.001	492	135	İ			
C26	5.433	-0.002	657	166	İ			
C28	5.667	0.003	1448	1726	j			
C32	6.092	-0.003	3259	3263	·.			
C34	6.348	-0.002	1970	623	35"		*** *** ***	
Filter Peak	6.993	0.000	1769	_~ 280	JP-4	(Tol-C14)	220781	19
C36	6.662	-0.001	3719	6290	CREOSOT	(C8-C22)	212725	34
C38	7.067	0.000	1766	978	j			
C40	7.617	0.011	1981	1053	BUNKERC	(C10-C38)	303442	38
			========	========	· =======			
AZDIESEL (C1	.0-C22)	10	5737	7				
AZMOIL (C2	2-C32)		9760	11			Tan-	


Range Times: NW Diesel(2.987 - 5.225) NW Gas(1.689 - 2.987) NW M.Oil(5.225 - 7.117)

AK102(2.402 - 5.261) AK103(5.261 - 6.713) Jet A(2.402 - 4.132)

Surrogate	Area	Amount	%Rec
o-Terphenyl	650855	41.3	91.9 /
Triacontane	619391	50.5	112.2

nss/19/28

: 		
Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
	0201.1	00 1100 2000

Page 1

Data File: /chem3/fid3a.i/20080813.b/0813a017.d

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC 17490-01

0

91.8%

Client ID	OTER	TOT OUT
MB-080808	95.8%	0
LCS-080808	101%	0
LCSD-080808	96.7%	0
EBC-2	91.1%	0
EBC-5	53.1%	0
EBC-6	96.2%	0

LCS/MB LIMITS QC LIMITS (OTER) = o-Terphenyl (49-118)(45-112)

EBC-16

Prep Method: SW3510C Log Number Range: 08-19934 to 08-19937

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: LCS-080808

LCS/LCSD

Lab Sample ID: LCS-080808

LIMS ID: 08-19934

Matrix: Water

Data Release Authorized:

Reported: 08/19/08

QC Report No: NJ87-HART CROWSER, INC.

Project: PIER 23-EBC

17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Date Extracted LCS/LCSD: 08/08/08

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 08/13/08 15:19

Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL

LCSD: 08/13/08 15:34

Dilution Factor LCS: 1.00

LCSD: 1.00

Instrument/Analyst LCS: FID/MS LCSD: FID/MS

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	
Diesel	2.54	3.00	84.7%	2.52	3.00	84.0%	0.8%	

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

101% 96.7%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20080813.b/0813a012.d Method: /chem3/fid3a.i/20080813.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308

ARI ID: NJ87LCSW1

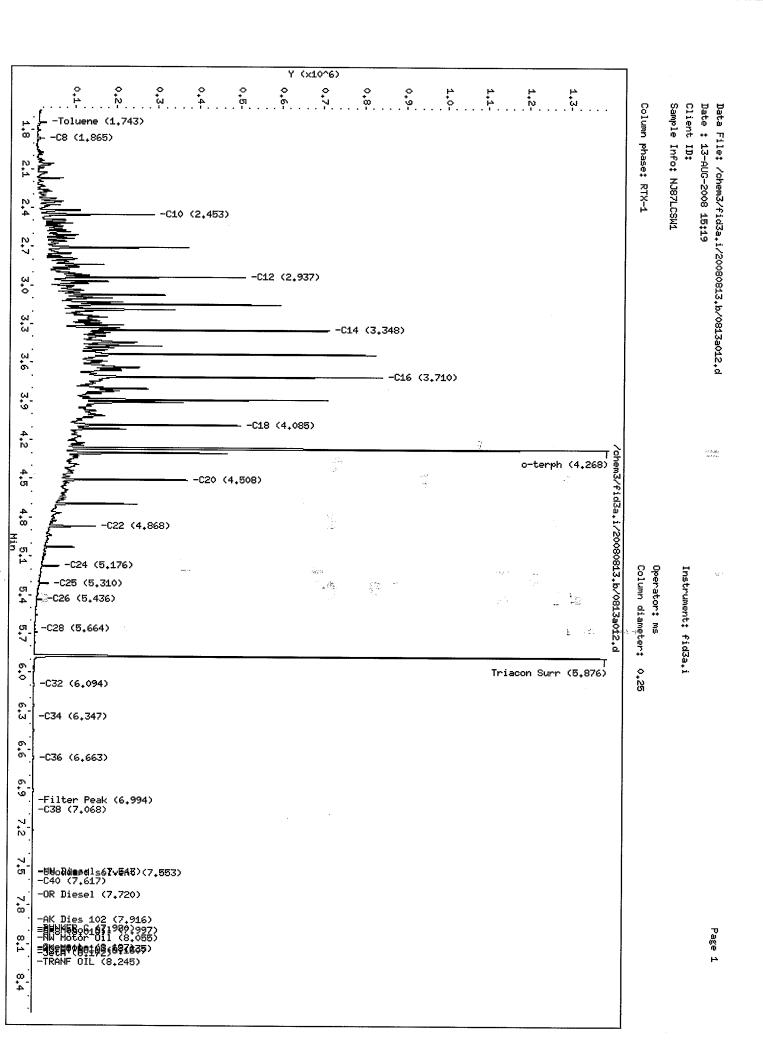
Client ID:

Injection: 13-AUG-2008 15:19

1×3.

Dilution Factor: 1

TTD.	3 N	DEGI	II,TS
$\Gamma \perp D$.7 /4	וכייזא	11:15


Compound	RT	Shift	Height	Area	R	ange	Total Area	Conc
Toluene	1.743	0.004	===== 25606	17843	GAS	======== (Tol-C12)	2015450	1.00
C8	1.865	0.002	19832	12773	DIESEL		3015452 15044087	169
C10	2.453	0.001	288555	125476	M.OIL	(C24-C38)	499399	1268 / 51 /
C12	2.937	0.000	509256	245273	AK-102	(C10-C25)	17499507	1222
C14	3.348	-0.002	714743	320931	AK-103	(C25-C36)	409555	58
C16	3.710	-0.001	842555	462466	OR.DIES	(C10-C28)	17758006	1201
C18	4.085	0.002	501156	331101	OR.MOIL	(C28-C40)	266908	29
C20	4.508	0.001	372979	255247	JET-A		13051083	879
C22	4.868	0.000	151473	114156	MIN.OIL	(C24-C38)	499399	39
C24	5.176	0.000	62282	48687	MSPIRIT	(Tol-C12)	3015452	191
C25	5.310	0.000	36990	38685	İ	(3013132	171
C26	5.436	0.001	21481	21823	j			
C28	5.664	0.001	6995	8557	İ			
C32	6.094	-0.001	4837	8697	į	# 5 *****		
C34	6.347	-0.003	2424	48.0	İ	Act.		
Filter Peak	6.994	0.001	2103	1323	JP-4	(Tol-C14)	6496480	572
C36	6.663	0.001	4316	6674	CREOSOT	(C8-C22)	17475375	2803
C38	7.068	0.002	2053	402		,	_, _, _,	2005
C40	7.617	0.011	1921	303	BUNKERC	(C10-C38)	17962162	2259
•	====== 10-C22) 22-C32)			======== 037 137	=======		=======================================	====

Range Times: NW Diesel(2.987 - 5.225) NW Gas(1.689 - 2.987) NW M.Oil(5.225 - 7.117) AK102(2.402 - 5.261) AK103(5.261 - 6.713) Jet A(2.402 - 4.132)

Surrogate	Area	Amount	%Rec	
o-Terphenyl Triacontane	718368 664957	45.6 54.2	101.4	

~ ms 8/19/00

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Analytical Resources Inc. TPH Quantitation Report

FID:3A RESULTS

Data file: /chem3/fid3a.i/20080813.b/0813a013.d Method: /chem3/fid3a.i/20080813.b/ftphfid3a.m

Shift-

Instrument: fid3a.i

Operator: ms

Compound

C40

Report Date: 08/19/2008 Macro: FID:3A081308

ARI ID: NJ87LCSDW1

Client ID:

Injection: 13-AUG-2008 15:34

Total Area

17741275

Dilution Factor: 1

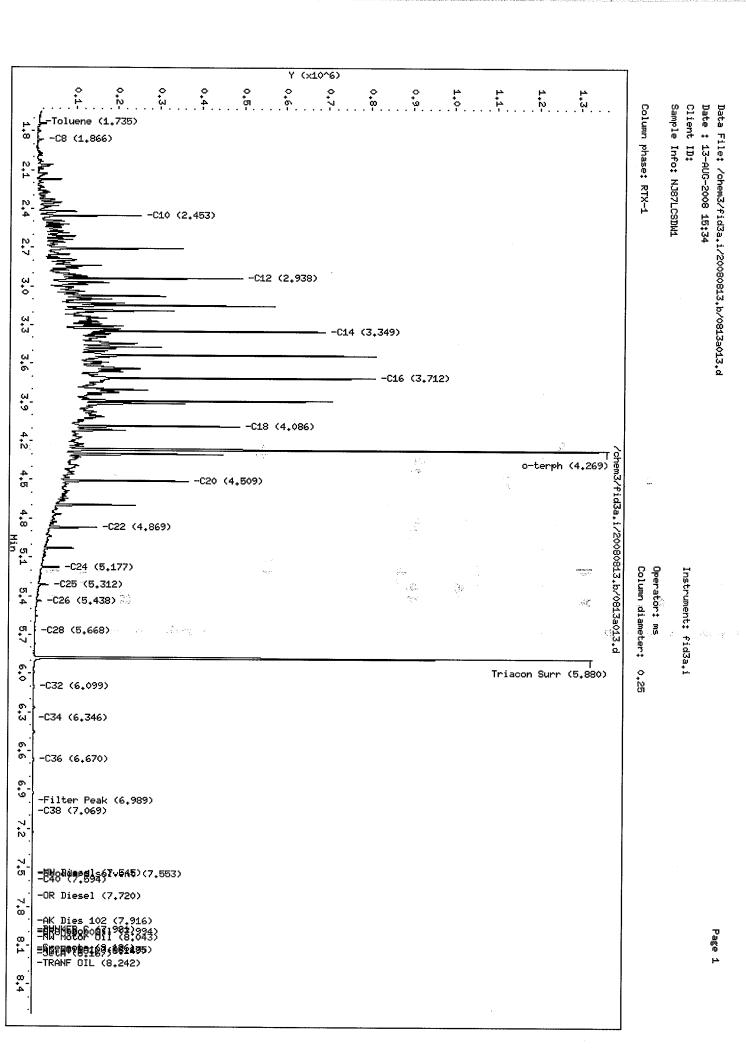
Compound	RT	Shift	Height	Area	Range
Toluene	1.735	-0.004	8147	1294	GAS (Tol-
C8	1.866	0.002	18552	12071	DIESEL (C12-
C10	2.453	0.001	251626	115617	M.OIL (C24-
C12	2.938	0.001	492927	233864	AK-102 (C10-
C14	3.349	-0.001	689978	317059	AK-103 (C25-

2723

-C12) 2839283 -C24) 14972766 1262~ -C38) 475462 49)-C25) 17301024 1208 CC25-C36) 391947 C16 3.712 0.001 810272 480201 OR.DIES (C10-C28) 17546416 1186 C18 4.086 0.003 488253 OR.MOIL (C28-C40) 387877 255304 C20 4.509 0.002 368150 257982 JET-A (C10-C18) 12869577 867 C22 4.869 0.001 150869 115764 MIN.OIL (C24-C38) 475462 37 C24 5.177 0.001 61689 48663 MSPIRIT (Tol-C12) 2839283 179 C25 5.312 0.002 36935 43321 C26 5.438 0.003 20693 26207 C28 5.668 0.005 6528 8458 C32 6.099 0.004 5165 4245 C34 6.346 -0.004 2333 1102 Filter Peak 6.989 -0.003 2001 951 JP-4 (Tol-C14) 6236524 549 . C36 6.670 0.007 4880 CREOSOT (C8-C22) 7937 17218005 C38 7.069 0.002 1965 704

AZDIESEL (C10-C22) 16462037 1025 AZMOIL (C22-C32) 873834 136

7.594 -0.012


Range Times: NW Diesel(2.987 - 5.225) NW Gas(1.689 - 2.987) NW M.Oil(5.225 - 7.117) AK102 (2.402 - 5.261) AK103 (5.261 - 6.713) Jet A(2.402 - 4.132)

4501 | BUNKERC (C10-C38)

(5)			
Surrogate	Area	Amount	%Rec
			
o-Terphenyl	685150	43.5	96.7
Triacontane	649305	52.9	117.6

ma 8/19/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Proph

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NJ87

Matrix: Water Project: PIER 23-EBC Date Received: 08/06/08

17490-01

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
08-19934-080808MB1	Method Blank	500 mL	1.00 mL	08/08/08
08-19934-080808LCS1	Lab Control	500 mL	1.00 mL	08/08/08
08-19934-080808LCSD1	Lab Control Dup	500 mL	1.00 mL	08/08/08
08-19934-NJ87A	EBC-2	500 mL	1.00 mL	08/08/08
08-19935-NJ87B	EBC-5	500 mL	1.00 mL	08/08/08
08-19936-NJ87C	EBC-6	500 mL	1.00 mL	08/08/08
08-19937-NJ87D	EBC-16	500 mL	1.00 mL	08/08/08

September 9, 2008

Analytical Report for Service Request No: K0807486

Kelly Bottem Analytical Resources, Incorporated 4611 So. 134th Place Suite 100 Tukwila, WA 98168

RE: Pier 23-EBC

Dear Kelly:

Enclosed are the results of the samples submitted to our laboratory on August 11, 2008. For your reference, these analyses have been assigned our service request number K0807486.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

09/10/08

Pradeep Divvela

Project Chemist

PD/11

Page 1 of 19

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable

NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

Analytical Resources, Incorporated

Service Request No.:

K0807486

Project: Sample Matrix: Pier 23-EBC Water Date Received:

08/11/2008

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Four water samples were received for analysis at Columbia Analytical Services on 08/11/2008. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Holding Time Exceptions:

Samples EBC-2, EBC-5, EBC-6, and EBC-16 were received past the recommended holding time for filtration prior to analysis of Mercury via method 1631. The filtration was performed as soon as possible after receipt by the laboratory.

No other anomalies associated with the analysis of these samples were observed

	8	ocholor
Approved by		Date

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water Service Request: K0807486

Date Collected: 07/31-08/01/08 Date Received: 08/11/08

Mercury, Total

Prep Method: Analysis Method: METHOD

1631E

Units: ng/L Basis: NA

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-2	K0807486-001	5.0	5	08/13/08	08/15/08	87.8	
EBC-5	K0807486-002	5.0	5	08/13/08	08/15/08	66.8	
EBC-6	K0807486-003	1.0	1	08/13/08	08/15/08	3.5	
EBC-16	K0807486-004	1.0	1	08/13/08	08/15/08	3.6	
Method Blank 1	K0807486-MB1	1.0	1	08/13/08	08/15/08	ND	
Method Blank 2	K0807486-MB2	1.0	1	08/13/08	08/15/08	ND	
Method Blank 3	K0807486-MB3	1.0	1	08/13/08	08/15/08	ND	

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix:

Water

Service Request: K0807486

Date Collected: 07/31-08/08/08

Date Received: 08/11/08

Mercury, Dissolved

Prep Method:

METHOD

Analysis Method: 1631E

Test Notes:

Units:	ng/L
Pacie:	NIA

Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-2	K0807486-001 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-5	K0807486-002 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-6	K0807486-003 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-16	K0807486-004 DISS	1.0	1	08/18/08	08/22/08	ND	
Method Blank 1	K0807486-MB1	1.0	1	08/18/08	08/22/08	ND	
Method Blank 2	K0807486-MB2	1.0	1	08/18/08	08/22/08	ND	
Method Blank 3	K0807486-MB3	1.0	1	08/18/08	08/22/08	ND	

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:	
Project	Name:

Analytical Resources, Incorporated

Pier 23-EBC

Project No.:

Comments:

Approved By:

Service Request: K0807486

Sample Name:	Lab Code:	
EBC-2	K0807486-001	
EBC-2	 K0807486-001 DISS	
EBC-5	 K0807486-002	
EBC-5	K0807486-002 DISS	
EBC-6	K0807486-003	
EBC-6	 K0807486-003 DISS	
EBC-16	K0807486-004	
EBC-16	 K0807486-004 DISS K0807486-MB	
Method Blank	 KU8U/480-I/IB	
	•	
	Date:	

Metals

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected: 7/31/2008

Project Name: Pier 23-EBC

Date Received: 8/11/2008

ug/L

Matrix:

WATER

Units:

N/A Basis:

Sample Name:

EBC-2

Lab Code:

K0807486-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
-Arsenic	200.8	0.51	1.0	08/27/08	09/02/08	0.51	Ü	
Cadmium	200.8	0.021	1.0	08/27/08	09/02/08	0.028		
Chromium	200.8	0.21	1.0	08/27/08	09/02/08	5.65		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	4.4		
Lead	200.8	0.021	1.0	08/27/08	09/02/08	1.730		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	6.2		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	9.8		***************************************

% Solids:

0.0

Metals

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected:

7/31/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-2

Lab Code:

K0807486-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.40		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.2		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.133		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	1.2		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	3.0		

% Solids:

0.0

Metals

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat

Service Request: K0807486

Project No.: NA

Date Collected:

8/1/2008

8/11/2008

Project Name: Pier 23-EBC

Date Received:

0/11/20

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-5

Lab Code:

K0807486-002

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.98	2.98	5.0	08/27/08	09/03/08	3.27		
Cadmium	200.8	0.119	0.119	5.0	08/27/08	09/03/08	0.485		
Chromium	200.8	1.19	1.19	5.0	08/27/08	09/03/08	41.4		
Copper	200.8	0.6	0.6	5.0	08/27/08	09/03/08	13.9		
Lead	200.8	0.119	0.119	5.0	08/27/08	09/03/08	2.890		
Nickel	200.8	1.2	1.2	5.0	08/27/08	09/03/08	153		
Zinc	200.8	3.0	3.0	5.0	08/27/08	09/03/08	201		

% Solids:

0.0

Metals

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected:

8/1/2008

8/11/2008

Project Name: Pier 23-EBC

Date Received:

ug/L

Matrix:

WATER

Units:

Basis: N/A

Sample Name:

EBC-5

Lab Code:

K0807486-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.71		
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.023		
Chromium	- 200.8	0.20	1.0	08/27/08	09/02/08	1.98		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.1		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.702		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	3.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	4.7		

% Solids:

Comments:

0.0

Metals

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units:

ug/L

Basis: N/A

Sample Name:

EBC-6

Lab Code:

K0807486-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	- 0.50	Ü	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	ט	
Chromium	200.8	0.20	1.0	0.8/27/08	09/02/08	2.46	•	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.1	-	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.747		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	2.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	9.2		

% Solids:

0.0

Metals

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Units:

ug/L

Matrix:

WATER

N/A Basis:

Sample Name:

EBC-6

Lab Code:

K0807486-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ü	-
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.26		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.3		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.035		*****
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	1.0		

% Solids:

0.0

Metals

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-16

Lab Code:

K0807486-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	ט	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.97		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	2.8		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.656		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	2.4		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	5.6		

% Solids:

0.0

Metals

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

NA

Date Collected: 8/1/2008

Date Received:

8/11/2008

____**_**___

Project Name: Pier 23-EBC

... . .

: ug/L

Matrix:

WATER

Units:

Basis: N/A

Sample Name:

EBC-16

Lab Code:

K0807486-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.25		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	Ū	

% Solids:

0.0

Metals

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request:

K0807486

Project No.:

Date Collected:

Project Name: Pier 23-EBC

Date Received:

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

Method Blank

Lab Code:

K0807486-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	ט	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	Ü	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	Ü	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.2	Ü	
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	Ü	

% Solids:

0.0

		Columbia <i>A</i>								PC_	VV	
11		ler Receip		ťΑ.	-			P	$\overline{\Box}$	06		
Client / Project: Han		NOMO	<u>,67</u>	AMC	Service	Reque	est <i>K08_</i> _	\mathcal{U}	1	120)	
Received: <u>8-11-8</u> 0	pened:	8-11-	8	Ву	:_ <u>\</u>	\sim						
1. Samples were received via? US	Mail	Fed Ex	(UPS	D	HL C	GH	GS P	PDX	Couri	er Ha	ınd Deli	vered
2. Samples were received in: (circle)	Cho	Der Box	: 1	Envelo		Other_					NA	
3. Were <u>custody seals</u> on coolers?	NA	Y	D	•	•	-	nd where?_				·	
If present, were custody seals intact	?		4				they signed		_		Y	N
4. Is shipper's air-bill filed? If not, re	cord air-b	ill number:	129	857	695	03	4518	146	21	NA	\lozenge	N
5. Temperature of cooler(s) upon re	ceipt (°C):	۱Ď, Z	L_								
Temperature Blank (°C):			<u>. — </u>									
6. If applicable, list Chain of Custody	Numbers	.:·	4					 				_
7. Packing material used. Inserts	Buggies	Bubble Wi	pp G	I Pack	s Wet	Ice S	Sleeves C	Other_				
8Were custody papers properly filled	l out (ink,	signed, etc.)	?							NA	Y	Q
9. Did all bottles arrive in good cond	lition (un	ibroken)? /	ndicate	in the	table bel	ow.				NA	Ø	N
10. Were all sample labels complete (i										NA	0	N
11. Did all sample labels and tags agre										NA	Ø	N
12. Were appropriate bottles/contain										NA		N
13. Were the pH-preserved bottles test										NA	Ø	N
14. Were VOA vials and 1631 Mercur										APA	Y	N
15. Are CWA Microbiology samples	received	with $>1/2$ th	ie 24hr	. hold	time rem	naining	from coll	lection	?	MA	Y	N
16. Was C12/Res negative?										MA)	Y	N
Sample ID on Bottle	Samp	le ID on COC			Sample	ID on E	3ottle		Sa	ımple ID oı	1 COC	
				_								
								l.				 J
Sample ID	Bottle Count	Bottle Type	Out of		Broken	На	Reage		Volume added	Reager Num		Initials
Sample to	Count	Bottle Type	2 PERSONAL PROPERTY.				-					w
			<u> </u>									
							-					
			1	<u> </u>		L						L
*Does not include all pH preserved sample aliqu Additional Notes, Discrepancies, &	ots received Resolut	l. See sample ro ions:	ceiving S	OP (SM	O-GEN). J	rot	sign	ed				
Auditoria rioles, Discrepancies, &	ALCOVINE				1							
					- :			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,	

2

ARI Project: NJ87

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Project ID: PIER 23-EBC Lab Address: 1317 South 13th Street ARI PM: KELLY BOTTEM Kelso, WA 98626 Phone: 206-695-6211 Phone: 360-577-7222 Fax: 206-695-6201

Fax: 360-636-1068

Analytical Protocol: In-house

Special Instructions:

Requested Turn Around: 08/22/08 Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses	
08-19934-NJ87A	EBC-2	07/31/08	Water	6	Metals (Sub)	
Special Instruc	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn, Hg]		Low Level Hg	(Sub)
08-19935-NJ87B	EBC-5	08/01/08	Water	6	Metals (Sub)	/= 1 \
Special Instruc	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn, Hg]		Low Level Hg	(Sub)
08-19936-NJ87C	EBC-6	08/01/08	Water	6	Metals (Sub)	
Special Instruct	cions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn, Hg]	٠	Low Level Hg	(Sub)
08-19937-NJ87D	EBC-16	08/01/08	Water	6	Metals (Sub)	
Special Instruct	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn, Hg]		Low Level Hg	(Sub)

Carrier	Airbill	Airbill				
Relinquished by	Company	Date	Time			
Received by	Company CAS	Date 8-11-8	Time /D3D			

September 9, 2008

Analytical Report for Service Request No: K0807486

Kelly Bottem Analytical Resources, Incorporated 4611 So. 134th Place Suite 100 Tukwila, WA 98168

RE: Pier 23-EBC

Dear Kelly:

Enclosed are the results of the samples submitted to our laboratory on August 11, 2008. For your reference, these analyses have been assigned our service request number K0807486.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

dollas

Pradeep Divvela **Project Chemist**

PD/11

Page 1 of 19

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

Analytical Resources, Incorporated

Service Request No.:

K0807486

Project:

Pier 23-EBC

Water

Date Received:

08/11/2008

Sample Matrix:

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Four water samples were received for analysis at Columbia Analytical Services on 08/11/2008. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Holding Time Exceptions:

Samples EBC-2, EBC-5, EBC-6, and EBC-16 were received past the recommended holding time for filtration prior to analysis of Mercury via method 1631. The filtration was performed as soon as possible after receipt by the laboratory.

No other anomalies associated with the analysis of these samples were observed

	No.	ogholo	
Approved by	*	Date	

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water Service Request: K0807486

Date Collected: 07/31-08/01/08

Date Received: 08/11/08

Mercury, Total

Prep Method:

METHOD

Analysis Method: 1631E

Units: ng/L Basis: NA

Test Notes:

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
EBC-2	K0807486-001	5.0	5	08/13/08	08/15/08	87.8	
EBC-5	K0807486-002	5.0	5	08/13/08	08/15/08	66.8	
EBC-6	K0807486-003	1.0	1	08/13/08	08/15/08	3.5	
EBC-16	K0807486-004	1.0	1	08/13/08	08/15/08	3.6	
Method Blank 1	K0807486-MB1	1.0	1	08/13/08	08/15/08	ND	
Method Blank 2	K0807486-MB2	1.0	1	08/13/08	08/15/08	ND	
Method Blank 3	K0807486-MB3	1.0	1	08/13/08	08/15/08	ND	

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water Service Request: K0807486

Date Collected: 07/31-08/08/08

Date Received: 08/11/08

Mercury, Dissolved

Prep Method:

Test Notes:

METHOD

Analysis Method:

1631E

Units: ng/L Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-2	K0807486-001 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-5	K0807486-002 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-6	K0807486-003 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-16	K0807486-004 DISS	1.0	1	08/18/08	08/22/08	ND	
Method Blank 1	K0807486-MB1	1.0	1	08/18/08	08/22/08	ND	
Method Blank 2	K0807486-MB2	1.0	1	08/18/08	08/22/08	ND	
Method Blank 3	K0807486-MB3	1.0	1	08/18/08	08/22/08	ND	

Columbia Analytical Services

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Comments:

Approved By:

Analytical Resources, Incorporated

Project Name: Project No.: Pier 23-EBC

ject value. Tiel 25-Ei

Service Request: K0807486

Sample Name:	Lab Code:
EBC-2	K0807486-001
EBC-2	K0807486-001 DISS
EBC-5	K0807486-002
EBC-5	K0807486-002 DISS
EBC-6	K0807486-003
EBC-6	K0807486-003 DISS
EBC-16	K0807486-004
EBC-16	K0807486-004 DISS
Method Blank	K0807486-MB

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat

Service Request: K0807486

Project No.: NA

Date Collected: 7/31/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-2

Lab Code:

K0807486-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.51	1.0	08/27/08	09/02/08	0.51	U	
Cadmium	200.8	0.021	1.0	08/27/08	09/02/08	0.028		
Chromium	200.8	0.21	1.0	08/27/08	09/02/08	5.65		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	4.4		
Lead	200.8	0.021	1.0	08/27/08	09/02/08	1.730		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	6.2		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	9.8		

% Solids:

Comments:

0.0

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

NA

Date Collected:

7/31/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

ug/L N/A

Units: Basis:

Sample Name:

EBC-2

Lab Code:

K0807486-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.40		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.2		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.133		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	1.2		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	3.0		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected:

8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

EBC-5

Lab Code: K0807486-002

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.98	- 2.98	5.0	08/27/08	09/03/08	3.27		
Cadmium	200.8	0.119	0.119	5.0	08/27/08	09/03/08	0.485		
Chromium	200.8	1.19	1.19	5.0	08/27/08	09/03/08	41.4		
Copper	200.8	0.6	0.6	5.0	08/27/08	09/03/08	13.9		
Lead	200.8	0.119	0.119	5.0	08/27/08	09/03/08	2.890		
Nickel	200.8	1.2	1.2	5.0	08/27/08	09/03/08	153		
Zinc	200.8	3.0	3.0	5.0	08/27/08	09/03/08	201		

% Solids:

0.0

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client: An

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

NA

Date Collected:

8/1/2008

Project Name: Pier 23-EBC

.

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-5

Lab Code:

K0807486-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.71		
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.023		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.98		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.1		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.702		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	3.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	4.7		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807486

Project No.: NA

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received: 8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-6

Lab Code:

K0807486-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	- 0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	2.46		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.1		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.747		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	2.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	9.2		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807486

Project No.: NA

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

EBC-6

Lab Code:

K0807486-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ŭ	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.26		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.3		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.035		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	1.0		

% Solids:

0.0

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

NA

Date Collected:

8/1/2008

Project Name: Pier 23-EBC

....

Date Received:

8/11/2008

Matrix:

WATER

Units:

ug/L

Basis:

is: N/A

Sample Name:

EBC-16

Lab Code:

K0807486-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.97		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	2.8		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.656		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	2.4		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	5.6		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat

Service Request: K0807486

Project No.: NA

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-16

Lab Code:

K0807486-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.25		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	Ū	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	U	

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807486

Project No.: NA

Date Collected:

Project Name: Pier 23-EBC

Date Received:

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

Method Blank

Lab Code:

K0807486-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	Ū	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.2	Ü	
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	Ü	

% Solids:

0.0

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form PC YV

Client / Project: Har	1	Jrows	,er	AR	S ervice	Reque	est <i>K08</i> () (L	180		
Received: 8-11-8	Opened:	8-11-	8	Ву	<u> </u>	\mathcal{N}					
 Samples were received via? Samples were received in: (circle Were <u>custody seals</u> on coolers? 	I S Mail) Coo o NA		UPS D	Envelo	ne	<i>GH</i> <i>Other_</i> nany ai	GS PDX	Couri		nd Deli NA	ivered
If present, were custody seals inta		Y	ACHIP.	-			they signed and			Y	N
4. Is shipper's air-bill filed? If not,	record air-b	ill number:	12	832	695	6 ² 7	451874	69	NA	8)	Ν
5. Temperature of cooler(s) upon	receipt (°C):	\$.	<u></u>							
Temperature Blank (°C):					was delivery and the second		The state of the s		***************************************		
6. If applicable, list Chain of Custoo					**/	······································	71		***************************************		
7. Packing material used. <i>Inserts</i>		Bubble Wi	•	I Pack	s wet	ice S	Sleeves Other_		NA	Y	Q
8. Were custody papers properly fill				in the	table bel				NA	A)	N
9. Did all bottles arrive in good co					iuoie bei	OW.			NA	Ø	N
10. Were all sample labels complete11. Did all sample labels and tags ag					he table l	helow			NA	Ŕ	N
									NA	(P)	N
12. Were appropriate bottles/conta13. Were the pH-preserved bottles to									NA	Ó	N
14. Were VOA vials and 1631 Merc									MA	Y	Ν
15. Are CWA Microbiology sampl								n?	NA	Y	Ν
16. Was C12/Res negative?				•		e'			MA	Y	N
Sample ID on Bottle	Samn	le ID on COC		A CONTRACTOR OF THE CONTRACTOR	Sample	ID on I	3ottle	, Sa	mple ID on	coc	
Sample ib on Bottle	,	·							-		
Sample ID	Bottle Count	Bottle Type		Head- space	Broken	рН	Reagent	Volume added	Reagen Numb		Initials
a			/				yana ali				w
							-,				
					·						
*Does not include all pH preserved sample ali	quots received	See sample red	ceiving S	OP (SM	O-GEN).	ut	signed				
Additional Notes, Discrepancies,	& Kesoiii	was:		<i>i i</i>	, W	a /8/4 B	- 1 mil 1 , p / p , 1				
					İ						

ARI Project: NJ87

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street

Kelso, WA 98626 Phone: 360-577-7222 ARI PM: KELLY BOTTEM
Phone: 206-695-6211
Fax: 206-695-6201

Project ID: PIER 23-EBC

Fax: 360-636-1068

Analytical Protocol: In-house

Special Instructions:

Requested Turn Around: 08/22/08
Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
08-19934-NJ87A	EBC-2	07/31/08	Water	6	Metals (Sub)
Special Instruc	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn,Hg]		Low Level Hg (Sub)
08-19935-NJ87B	EBC-5	08/01/08	Water	6	Metals (Sub)
Special Instruc	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn,Hg]		Low Level Hg (Sub)
08-19936-NJ87C	EBC-6	08/01/08	Water	6	Metals (Sub)
Special Instruct	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ní,	Zn,Hg]		Low Level Hg (Sub)
08-19937-NJ87D	EBC-16	08/01/08	Water	6	Metals (Sub)
Special Instruct	tions: TOT/DIS[As,Cd,Cr	Cu,Pb,Ni,	Zn,Hg]		Low Level Hg (Sub)

Carrier		Airbill		Dat	e
Relinquished by	Company		Date	TOWNS TANKERS OF	Time
Received by	Company	4 S	Date 8-11-6		Time /NBD

Rick Moore Hart Crowser, Inc. 1700 Westlake Avenue N. Suite 200 Seattle, WA 98109-3256

RE: Client Project: Pier 23-EBC ARI Job No. NJ45

Dear Rick:

Please find enclosed the original chain of custody (COC) records, sample receipt documentation, and the final data for samples from the project referenced above. Analytical Resources, Inc. (ARI) received twenty-five soil samples on August 8, 2008. The samples were received in good condition with a cooler temperature range of 6.6 to 12.2°C. Sample Please note that select samples were put on hold pending further client instruction. For sample ID's and analyses that are on hold, please refer to the original COC. All samples were frozen upon receipt.

The samples were analyzed for VOCs, SVOCs, PCBs, NWTPH-Gx/BTEX, NWTPH-Dx, and Total Metals.

For the Volatiles analysis: It was noted upon the receipt of sample EBC-12-S1 that all sample vials were preserved with MeoH. An aliquot of sample EBC-12-S1 was taken from the total solids jar for analysis.

The internal standard percent recovery for d4-1,4-Dichlorobenzene was outside the recommended control limits for sample **EBC-7-S1**. The sample was re-analyzed and all internal standard recoveries were within control limits. Both sets of data have been included in this report for your review. No further corrective action was required.

All internal standard percent recoveries were outside the recommended control limits for sample **EBC-3-S1**. The sample was re-analyzed and all internal standard recoveries were within control limits. Both sets of data have been included in this report for your review. No further action was required.

The surrogate percent recoveries for d4-1,2-Dichloroethane, Bromofluorobenzene, and d4-1,2-Dichlorobenzene were outside control limits both low and high for sample **EBC-3-S1**. The sample was re-analyzed and all surrogate recoveries were within control limits. No further corrective action was required.

The surrogate percent recoveries for d4-1,2-Dichloroethane and d8-Toluene were outside control limits both high and low for sample **EBC-7-S1**. The sample was re-analyzed and all surrogate recoveries were within control limits. No further corrective action was required.

For the Semi-volatiles analysis: The surrogate percent recoveries for 2-Fluorophenol and 2,4,6-Tribromophenol were outside control limits low for sample **EBC-7-S1** due to sample matrix effects. All other surrogate recoveries were within control limits. No further corrective action was required.

Several matrix spike and matrix spike duplicate percent recoveries were outside the advisory control limits high for sample **EBC-8-S1**. Since all LCS and LCSD percent recoveries were within the control limits, no further corrective action was taken.

There were no matrix spike and matrix spike duplicate percent recoveries for 2,4-Dinitrophenol and 4,6-Dinitro-2-Methylphenol for sample **EBC-8-S1**. Since all LCS and LCSD percent recoveries were within control limits, no further corrective action was required.

For the PCBs analysis: There were no surrogate percent recoveries for Decachlorobiphenyl for samples EBC-1-S1, EBC-7-S1, and EBC-9-S1. This is due to chromatographic interferences. All other surrogate recoveries were within control limits, therefore no further corrective action was required.

There were no anomalies associated with the NWTPH-Gx/BETX analysis.

For the NWTPH-Dx analysis: The matrix spike duplicate percent recovery for diesel was outside advisory control limits low for sample **EBC-1-S2**. Since the matrix spike duplicate percent recovery was within advisory control limits, no further corrective action was required.

The LCS percent recovery for diesel was outside control limits high. Since the LCSD percent recovery was within control limits, no further corrective action was required.

For the Total Metals analysis: The duplicate relative percent differences for arsenic, copper, lead, and nickel were outside control limits for sample **EBC-1-S1**. All relevant data have been flagged with an "*" qualifier on Forms VI. No further corrective action was required.

The matrix spike percent recoveries for chromium and mercury were outside control limits both low and high for sample **EBC-1-S1**. Since the LCS percent recoveries were within control limits, no further corrective action was taken. Data have been flagged with an "N" qualifier on Forms V.

The matrix spike percent recoveries for copper, lead, and zinc were outside control limits both low and high for sample **EBC-1-S1**. The sample concentrations of these elements exceed the spike concentrations by a factor of four or more, therefore no further corrective action was required. Data have been flagged with an "H" qualifier on Forms V.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem Client Services Manager

kellyb@arilabs.com

206/695-6211 Enclosures

cc: eFile NJ45

KFB/co

183 Sample Custody Record Samples Shipped to:

HARTCROWSER N543

1910 Fairview Avenue East Seattle, Washington 98102-3699 Hart Crowser, Inc. Phone: 206-324-9530 FAX: 206-328-5581

* 8 Par recovery in 16 02 jar/archive/166 Were already Svibmitted to 1981 on 7131/08 TOTAL NUMBER OF CONTAINERS **COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/** 8 Please anchive all **□OVERNIGHT** X STANDARD □ 1 WEEK SHIPMENT METHOD:

—HAND SAMPLE RECEIPT INFORMATION 8 Archive Vols 8 Archive VOGS 8 Archive all * & Archive ** * 8 Archive all **FURNAROUND TIME:** GOOD CONDITION Short STORAGE REQUIREMENTS.

Sport for Voluting CUSTOBY SEALS.

That solids GROOD CONDITION **TEMPERATURE** ☐ 24 HOURS ☐ 48 HOURS ☐ 72 HOURS COURIER * <u>*</u> NO. OF CONTAINERS * As, Cd, Cv, Cu, Pro, Hg, Ni, & Zn Please hold for There(1311) STORAGE LOCATION: REQUESTED ANALYSIS SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS: for Other Contract Requirements 40178 2008 * 800128 200V \$ 200128 200V \$ 200128 \$ 20010 \$ 2001 X X X X X See Lab Work Order No. COOLER NO.: MATRIX (300) DATE TIME 1250 1330 Kill Moon **1515** and 7/31/08 1240 7/30/08 13/20 26420 S/6/08 Stilling Mi 1/20/08 1/21/5 8/1/08 0830 22 = 32 7/24/08 MIC TIME COMPANY RECEIVED BY RECEIVED BY DATE PRINT NAME 23-ER SIGNATURE COMPANY LAB NUMBER Ulara bottles DESCRIPTION EBC-1-51 Various Osa DATE DATE TIME HART CROWSER CONTACT PROJECT NAME PIEN 10- Obhll BOr SAMPLED BY: (av) EBC-6-52 -B-3-82 EB-2-52 E&C-5-51 EBC 5-51 E34-7-51 EBC-1-52 FBC-6-5) BX-4-51 EX-3-51 EBC-2-51 SAMPLE ID RELINQUISHED BY RELINQUISHED BY PRINT NAME SIGNATURE LAB NO. COMPANY

Gold to Sample Custodian

Lab to Return White Copy to Hart Crowser

Pink to Project Manager

White and Yellow Copies to Lab

Sample Custody Record 2 6 3 Samples Shipped to:

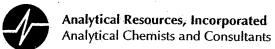
HARTCROWSER

1910 Fairview Avenue East Seattle, Washington 98102-3699

Hart Crowser, Inc. Phone: 206-324-9530 FAX: 206-328-5581

1000 DATE 1215 1215 1400 1400 1410 1
SAMPLE ID DESCRIPTION DATE TIME MATRIX
NAME PIEN ZS - EBL NAME PIEN ZS - EBL BY: Can Ulbura SAMPLE ID DESCRIPTION DATE TIME EBC-1-52 Vanios 7/21/08 0720 EBC-1-5
1490-0 WAME PLEY WAME PLEY SAMPLE ID
1490-0 NAME PIEV NAME PIEV SAMPLE ID
PY: CONTROL OWSER CONTROL OWSER CONTROL OF SAMPLE ID SAM

383 Sample Custody Record Samples Shipped to: ___


HARTCROWSER シカラク

Phone: 206-324-9530 FAX: 206-328-5581

1910 Fairview Avenue East Seattle, Washington 98102-3699 Hart Crowser, Inc.

TOTAL NUMBER OF CONTAINERS COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ 8 Phase archive all □ OVERNIGHT X STANDARD SHIPMENT METHOD:

HAND □1 WEEK SAMPLE RECEIPT INFORMATION OTHER **TURNAROUND TIME:** GOOD CONDITION CUSTODY SEALS: TEMPERATURE □ 24 HOURS ☐ 48 HOURS COURIER NO. OF CONTAINERS * 15, Cd, Cr, Cu, Pb, Hg, Ni, 8 Zn Please hold for TCLP (1511) SPECIAL SIII. INC.
STORAGE REQUIREMENTS:
STORAGE REQUIREMENTS:
STORAGE REQUIREMENTS:
Yolatile Tetal Solids STORAGE LOCATION: REQUESTED ANALYSIS for Other Contract Requirements Gold to Sample Custodian 1816-1916 10178-2008 10178-2008 10178-2008 10178-2008 10178-2008 10178-2008 See Lab Work Order No. Lab to Return White Copy to Hart Crowser MATRIX DATE TIME HART CROWSER CONTACT PARIE GOODWIN MALCHOOL 8/6/88/ / MAL / MAL NAME OF COMMINIONE SOURCE / COMMINIONE / EBC-15-52 Various 7/29/26 1540 TIME RECEIVED BY RECEIVED BY PRINT NAME SIGNATURE PROJECT NAME PICY 23-EBK COMPANY COMPANY SAMPLED BY: Carl Ulberry _ LAB NUMBER Pink to Project Manager DESCRIPTION bottles 0800 DATE DATE TIME 10-0PYT1 80L SAMPLE ID White and Yellow Copies to Lab REMINQUISHED BY RELINQUISHED BY PRINT NAME SIGNATURE LAB NO. COMPANY

Cooler Receipt Form

ARI Client:	Hart Crowser	Project Name:	Pier 29	Debris Pa	6 T
COC No:	THE STANFORM	Delivered by:	Pier 29 Hand	1007/3 1/1	
Assigned ARI Job No:	N.755/15	1 \	Fillan		
Assigned Arti Job No.	-/* <u>-09</u> /HD	Tracking No			
Preliminary Exan	nination Phase:				
Were intact, proper	rly signed and dated custoo	ly seals attached to	the outside of to c	ooler? YES	(NO)
Were custody paper	ers included with the cooler	?	``` ** * * * * *	VES	NO
Were custody pape	ers properly filled out (ink, s	igned, etc.)	*********		NO ·
Record cooler temp	ers properly filled out (ink, s perature (recommended 2.0	0-6.0 °C for chemist	ry L.8/5,0/	9.2/1.47.0/	26c
Cooler Accepted by:	7/			8 Time: /	311
Cooler Accepted by:	Complete custody fo	rms and attach all			200_
	Complete dustody 10	inis and attach an		· · · · · · · · · · · · · · · · · · ·	
Log-In Phase:					
	•				
•	blank included in the coole	-		YES	(NO)
	ng material was used?	,			50f(
Was sufficient ice u	sed (if appropriate)?		······		NO
Were all bottles sea	aled in individual plastic bac	js?			NO VIAL
Did all bottle arrive	in good condition (unbroke	n)?	•••••		NO VICE
Were all bottle labe	ls complete and legible?		· • • • • • • • • • • • • • • • • • • •	YES	NO
Did all bottle labels	and tags agree with custod	ly papers?		TES	NO
Were all bottles use	ed correct for the requested	analyses?		YES,	NO
Do any of the analy	ses (bottles) require preser	vation? (attach pres	ervation checklist)	YES 7	NO S
	free of air bubbles?		-2		NO
Was sufficient amou	unt of sample sent in each l	oottle?		~ ~ ~	NO
_	R1016	Date:	8/2/25/		
Samples Logged by:	. /			ime: <u>1150</u>	-
	** Notify Project Man	ager of discrepan	cies or concerns	**	
Explain discrepancie	es or negative responses:				
· ·					
	·				
	· -				
					1
-					

By:

Date:

Page 1 of 2

Lab Sample ID: NJ45B LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 14:47

QC Report No: NJ45-Hart Crowser, Inc.

Sample ID: EBC-1-S2

SAMPLE

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 3.79 g-dry-wt

Purge Volume: 5.0 mL Moisture: 7.0%

CAS Number	Analyte	RL	Result Q	
74-87-3	Chloromethane	1.3	< 1.3 U	
74-83-9	Bromomethane	1.3	< 1.3 U	
75-01-4	Vinyl Chloride	1.3	< 1.3 U	
75-00-3	Chloroethane	1.3	< 1.3 U	
75-09-2	Methylene Chloride	2.6	62	
67-64-1	Acetone	6.6	31	
75-15-0	Carbon Disulfide	1.3	< 1.3 U	
75-35-4	1,1-Dichloroethene	1.3	< 1.3 U	
75-34-3	1,1-Dichloroethane	1.3	< 1.3 U	
156-60-5	trans-1,2-Dichloroethene	1.3	< 1.3 U	
156-59-2	cis-1,2-Dichloroethene	1.3	< 1.3 U	
67-66-3	Chloroform	1.3	< 1.3 U	
107-06-2	1,2-Dichloroethane	1.3	< 1.3 U	
78-93-3	2-Butanone	6.6	< 6.6 U	
71-55-6	1,1,1-Trichloroethane	1.3	< 1.3 U	
56-23-5	Carbon Tetrachloride	1.3	< 1.3 U	
108-05-4	Vinyl Acetate	6.6	< 6.6 U	
75-27-4	Bromodichloromethane	1.3	< 1.3 U	
78-87-5	1,2-Dichloropropane	1.3	< 1.3 U	
10061-01-5	cis-1,3-Dichloropropene	1.3	< 1.3 U	
79-01-6	Trichloroethene	1.3	< 1.3 U	
124-48-1	Dibromochloromethane	1.3	< 1.3 U	
79-00-5	1,1,2-Trichloroethane	1.3	< 1.3 U	
71-43-2	Benzene	1.3	< 1.3 U	
10061-02-6	trans-1,3-Dichloropropene	1.3	< 1.3 U	
110-75-8	2-Chloroethylvinylether	6.6	< 6.6 Ü	
75-25-2	Bromoform	1.3	< 1.3 U	
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.6	< 6.6 U	
591-78-6	2-Hexanone	6.6	< 6.6 U	
127-18-4	Tetrachloroethene	1.3	< 1.3 U	
79-34-5	1,1,2,2-Tetrachloroethane	1.3	< 1.3 U	
108-88-3	Toluene	1.3	< 1.3 U < 1.3 U	
108-90-7	Chlorobenzene	1.3		
100-41-4	Ethylbenzene	1.3	< 1.3 U < 1.3 U	
100-42-5	Styrene	1.3		
75-69-4	Trichlorofluoromethane	1.3	32	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.6 U	
1330-20-7	m,p-Xylene	1.3	< 1.3 U	
95-47-6	o-Xylene	1.3	< 1.3 U < 1.3 U	
95-50-1	1,2-Dichlorobenzene	1.3	< 1.3 U < 1.3 U	
541-73-1	1,3-Dichlorobenzene	1.3		
106-46-7	1,4-Dichlorobenzene	1.3 66	< 1.3 U < 66 U	
107-02-8	Acrolein	1.3	< 1.3 U	
74-88-4	Methyl Iodide	2.6	< 1.3 U	
74-96-4	Bromoethane	2.6 6.6	< 2.6 U	
107-13-1	Acrylonitrile	0.0	< 0.0 U	

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-1-S2

Page 2 of 2 SAMPLE

Lab Sample ID: NJ45B LIMS ID: 08-19395

QC Report No: NJ45-Hart Crowser, Inc.

Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/07/08 14:47

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.3	< 1.3	U
74-95-3	Dibromomethane	1.3	< 1.3	U
630-20-6	1,1,1,2-Tetrachloroethane	1.3	< 1.3	U
96-12-8	1,2-Dibromo-3-chloropropane	6.6	< 6.6	U
96-18-4	1,2,3-Trichloropropane	2.6	< 2.6	U
110-57-6	trans-1,4-Dichloro-2-butene	6.6	< 6.6	U
108-67-8	1,3,5-Trimethylbenzene	1.3	< 1.3	U
95-63-6	1,2,4-Trimethylbenzene	1.3	< 1.3	U
87-68-3	Hexachlorobutadiene	6.6	< 6.6	U
106-93-4	Ethylene Dibromide	1.3	< 1.3	U
74-97-5	Bromochloromethane	1.3	< 1.3	U
594-20-7	2,2-Dichloropropane	1.3	< 1.3	U
142-28-9	1,3-Dichloropropane	1.3	< 1.3	U
98-82-8	Isopropylbenzene	1.3	< 1.3	U
103-65-1	n-Propylbenzene	1.3	< 1.3	U
108-86-1	Bromobenzene	1.3	< 1.3	U
95-49-8	2-Chlorotoluene	1.3	< 1.3	U
106-43-4	4-Chlorotoluene	1.3	< 1.3	U
98-06-6	tert-Butylbenzene	1.3	< 1.3	υ
135-98-8	sec-Butylbenzene	1.3	< 1.3	U
99-87-6	4-Isopropyltoluene	1.3	< 1.3	U
104-51-8	n-Butylbenzene	1.3	< 1.3	U
120-82-1	1,2,4-Trichlorobenzene	6.6	< 6.6	U
91-20-3	Naphthalene	6.6	< 6.6	U
87-61-6	1,2,3-Trichlorobenzene	6.6	< 6.6	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	119%
d8-Toluene	98.4%
Bromofluorobenzene	95.5%
d4-1 2-Dichlorobenzene	1028

Sample ID: EBC-3-S1 Page 1 of 2 SAMPLE

Lab Sample ID: NJ45E LIMS ID: 08-19398

Matrix: Soil

Data Release Authorized: Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/12/08 13:16

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 4.62 g-dry-wt

Purge Volume: 5.0 mL Moisture: 7.5%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.1	< 1.1	U
74-83-9	Bromomethane	1.1	< 1.1	U
75-01-4	Vinyl Chloride	1.1	< 1.1	U
75-00-3	Chloroethane	1.1	< 1.1	U
75-09-2	Methylene Chloride	2.2	8.4	
67-64-1	Acetone	5.4	86	
75-15-0	Carbon Disulfide	1.1	< 1.1	U
75-35-4	1,1-Dichloroethene	1.1	< 1.1	U
75-34-3	1,1-Dichloroethane	1.1	< 1.1	U
156-60-5	trans-1,2-Dichloroethene	1.1	< 1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	< 1.1	U
67-66-3	Chloroform	1.1	< 1.1	U
107-06-2	1,2-Dichloroethane	1.1	< 1.1	U
78-93-3	2-Butanone	5.4	13	
71-55-6	1,1,1-Trichloroethane	1.1	< 1.1	U
56-23-5	Carbon Tetrachloride	1.1	< 1.1	U
108-05-4	Vinyl Acetate	5.4	< 5.4	U
75-27-4	Bromodichloromethane	1.1	< 1.1	U
78-87-5	1,2-Dichloropropane	1.1	< 1.1	U
10061-01-5	cis-1,3-Dichloropropene	1.1	< 1.1	U
79-01-6	Trichloroethene	1.1	8.8	M
124-48-1	Dibromochloromethane	1.1	< 1.1	U
79-00-5	1,1,2-Trichloroethane	1.1	< 1.1	U
71-43-2	Benzene	1.1	16	
10061-02-6	trans-1,3-Dichloropropene	1.1	< 1.1	U
110-75-8	2-Chloroethylvinylether	5.4	< 5.4	U
75-25-2	Bromoform	1.1	< 1.1	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.4	< 5.4	U
591-78-6	2-Hexanone	5.4	< 5.4	U
127-18-4	Tetrachloroethene	1.1	1.1	
79-34-5	1,1,2,2-Tetrachloroethane	1.1	< 1.1	U
108-88-3	Toluene	1.1	81	
108-90-7	Chlorobenzene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	210	
100-42-5	Styrene	1.1	< 1.1	U
75-69-4	Trichlorofluoromethane	1.1	< 1.1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.2	< 2.2	U
1330-20-7	m,p-Xylene	1.1	780	ES
95-47-6	o-Xylene	1.1	540	ES
95-50-1	1,2-Dichlorobenzene	1.1	< 1.1	U
541-73-1	1,3-Dichlorobenzene	1.1	< 1.1	U
106-46-7	1,4-Dichlorobenzene	1.1	1.1	
107-02-8	Acrolein	54	< 54	U
74-88-4	Methyl Iodide	1.1	< 1.1	U
74-96-4	Bromoethane	2.2	< 2.2	υ
107-13-1	Acrylonitrile	5.4	< 5.4	U

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-3-S1 Page 2 of 2 SAMPLE

Lab Sample ID: NJ45E LIMS ID: 08-19398 QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC Matrix: Soil 17490-01

Date Analyzed: 08/12/08 13:16

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.1	< 1.1	U
74-95-3	Dibromomethane	1.1	< 1.1	U
630-20-6	1,1,1,2-Tetrachloroethane	1.1	< 1.1	U
96-12-8	1,2-Dibromo-3-chloropropane	5.4	< 5.4	U
96-18-4	1,2,3-Trichloropropane	2.2	< 2.2	U
110-57-6	trans-1,4-Dichloro-2-butene	5.4	< 5.4	υ
108-67-8	1,3,5-Trimethylbenzene	1.1	610	E
95-63-6	1,2,4-Trimethylbenzene	1.1	820	ES
87-68-3	Hexachlorobutadiene	5.4	< 5.4	U
106-93-4	Ethylene Dibromide	1.1	< 1.1	U
74-97-5	Bromochloromethane	1.1	< 1.1	U
594-20-7	2,2-Dichloropropane	1.1	< 1.1	U
142-28-9	1,3-Dichloropropane	1.1	< 1.1	U
98-82-8	Isopropylbenzene	1.1	76	
103-65-1	n-Propylbenzene	1.1	120	
108-86-1	Bromobenzene	1.1	< 1.1	U
95-49-8	2-Chlorotoluene	1.1	< 1.1	U
106-43-4	4-Chlorotoluene	1.1	< 1.1	U
98-06-6	tert-Butylbenzene	1.1	9.6	M
135-98-8	sec-Butylbenzene	1.1	50	
99-87-6	4-Isopropyltoluene	1.1	210	
104-51-8	n-Butylbenzene	1.1	< 1.1	U
120-82-1	1,2,4-Trichlorobenzene	5.4	< 5.4	U
91-20-3	Naphthalene	5.4	140	
87-61-6	1,2,3-Trichlorobenzene	5.4	< 5.4	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	157%
d8-Toluene	83.1%
Bromofluorobenzene	63.9%
d4-1.2-Dichlorobenzene	50.3%

Sample ID: EBC-3-S1 Page 1 of 2 REANALYSIS

Lab Sample ID: NJ45E

LIMS ID: 08-19398 Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/12/08 21:47

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 92.7 mg-dry-wt

Purge Volume: 5.0 mL Moisture: 7.5%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	54	< 54	υ
74-83-9	Bromomethane	54	< 54	Ū
75-01-4	Vinyl Chloride	54	< 54	Ū
75-00-3	Chloroethane	54	< 54	U
75-09-2	Methylene Chloride	110	270	
67-64-1	Acetone	270	360	
75-15-0	Carbon Disulfide	54	< 54	U
75-35-4	1,1-Dichloroethene	54	< 54	Ü
75-34-3	1,1-Dichloroethane	54	< 54	Ü
156-60-5	trans-1,2-Dichloroethene	54	< 54	Ū
156-59-2	cis-1,2-Dichloroethene	54	< 54	Ŭ
67-66-3	Chloroform	54	< 54	Ŭ
107-06-2	1,2-Dichloroethane	54	< 54	Ŭ
78-93-3	2-Butanone	270	< 270	ΰ
71-55-6	1,1,1-Trichloroethane	54	< 54	Ū
56-23-5	Carbon Tetrachloride	54	< 54	U
108-05-4	Vinyl Acetate	270	< 270	ΰ
75-27-4	Bromodichloromethane	54	< 54	Ū
78-87-5	1,2-Dichloropropane	54	< 54	Ū
10061-01-5	cis-1,3-Dichloropropene	54	< 54	ΰ
79-01-6	Trichloroethene	54	< 54	U
124-48-1	Dibromochloromethane	54	< 54	Ū
79-00-5	1,1,2-Trichloroethane	54	< 54	Ū
71-43-2	Benzene	54	< 54	Ū
10061-02-6	trans-1,3-Dichloropropene	54	< 54	Ū
110-75-8	2-Chloroethylvinylether	270	< 270	Ū
75-25-2	Bromoform	54	< 54	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	270	< 270	Ū
591-78-6	2-Hexanone	270	< 270	Ū
127-18-4	Tetrachloroethene	54	< 54	Ū
79-34-5	1,1,2,2-Tetrachloroethane	54	< 54	Ū
108-88-3	Toluene	54	100	
108-90-7	Chlorobenzene	54	< 54	U
100-41-4	Ethylbenzene	54	230	-
100-42-5	Styrene	54	< 54	U
75-69-4	Trichlorofluoromethane	54	< 54	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluo		< 110	Ū
1330-20-7	m,p-Xylene	54	880	_
95-47-6	o-Xylene	54	680	
95-50-1	1,2-Dichlorobenzene	54	< 54	U
541-73-1	1,3-Dichlorobenzene	54	< 54	U
106-46-7	1,4-Dichlorobenzene	54	< 54	Ū
107-02-8	Acrolein	2,700	< 2,700	Ü
74-88-4	Methyl Iodide	54	< 54	Ū
74-96-4	Bromoethane	110	< 110	U
107-13-1	Acrylonitrile	270	< 270	Ū

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-3-S1

Page 2 of 2

Matrix: Soil

Lab Sample ID: NJ45E

LIMS ID: 08-19398

Sample ID: EBC-3-S1
REANALYSIS

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/12/08 21:47

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	54	< 54	U
74-95-3	Dibromomethane	54	< 54	U
630-20-6	1,1,1,2-Tetrachloroethane	54	< 54	U
96-12-8	1,2-Dibromo-3-chloropropane	270	< 270	U
96-18-4	1,2,3-Trichloropropane	110	< 110	U
110-57-6	trans-1,4-Dichloro-2-butene	270	< 270	U
108-67-8	1,3,5-Trimethylbenzene	54	1,200	
95-63-6	1,2,4-Trimethylbenzene	54	2,400	
87-68-3	Hexachlorobutadiene	270	< 270	U
106-93-4	Ethylene Dibromide	54	< 54	U
74-97-5	Bromochloromethane	54	< 54	U
594-20-7	2,2-Dichloropropane	54	< 54	U
142-28-9	1,3-Dichloropropane	54	< 54	U
98-82-8	Isopropylbenzene	54	91	
103-65-1	n-Propylbenzene	54	160	
108-86-1	Bromobenzene	54	< 54	U
95-49-8	2-Chlorotoluene	54	< 54	U
106-43-4	4-Chlorotoluene	54	< 54	U
98-06-6	tert-Butylbenzene	54	< 54	U
135-98-8	sec-Butylbenzene	54	98	
99-87-6	4-Isopropyltoluene	54	520	
104-51-8	n-Butylbenzene	54	< 54	U
120-82-1	1,2,4-Trichlorobenzene	270	< 270	U
91-20-3	Naphthalene	270	1,400	
87-61-6	1,2,3-Trichlorobenzene	270	< 270	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	105%
d8-Toluene	91.8%
Bromofluorobenzene	106%
d4-1,2-Dichlorobenzene	103%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-3-S2 Page 1 of 2 SAMPLE

Lab Sample ID: NJ45F

LIMS ID: 08-19399 Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 15:39

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01 Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 4.29 g-dry-wt

Purge Volume: 5.0 mL Moisture: 15.1%

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	1.2	< 1.2 U
74-83-9	Bromomethane	1.2	< 1.2 U
75-01-4	Vinyl Chloride	1.2	< 1.2 U
75-00-3	Chloroethane	1.2	< 1.2 U
75-09-2	Methylene Chloride	2.3	< 2.3 U
67-64-1	Acetone	5.8	27
75-15-0	Carbon Disulfide	1.2	7.6
75-35-4	1,1-Dichloroethene	1.2	< 1.2 U
75-34-3	1,1-Dichloroethane	1.2	< 1.2 U
156-60-5	trans-1,2-Dichloroethene	1.2	< 1.2 U
156-59-2	cis-1,2-Dichloroethene	1.2	< 1.2 U
67-66-3	Chloroform	1.2	< 1.2 U
107-06-2	1,2-Dichloroethane	1.2	< 1.2 U
78-93-3	2-Butanone	5.8	< 5.8 U
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2 U
56-23-5	Carbon Tetrachloride	1.2	< 1.2 U
108-05-4	Vinyl Acetate	5.8	< 5.8 U
75-27-4	Bromodichloromethane	1.2	< 1.2 U
78-87-5	1,2-Dichloropropane	1.2	< 1.2 U
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2 U
79-01-6	Trichloroethene	1.2	< 1.2 U
124-48-1	Dibromochloromethane	1.2	< 1.2 U
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2 U
71-43-2	Benzene	1.2	< 1.2 U
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2 U
110-75-8	2-Chloroethylvinylether	5.8	< 5.8 U
75-25-2	Bromoform	1.2	< 1.2 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.8	< 5.8 U
591-78-6	2-Hexanone	5.8	< 5.8 U
127-18-4	Tetrachloroethene	1.2	< 1.2 U
79-34-5	1,1,2,2-Tetrachloroethane Toluene	1.2	< 1.2 U
108-88-3	Chlorobenzene	1.2	< 1.2 U
108-90-7 100-41-4	Ethylbenzene	1.2	< 1.2 U
100-41-4	Styrene	1.2	< 1.2 U < 1.2 U
75-69-4	Trichlorofluoromethane	1.2	< 1.2 U < 1.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 1.2 U
1330-20-7	m,p-Xylene	1.2	< 1.2 U
95-47-6	o-Xylene	1.2	< 1.2 U
95-50-1	1,2-Dichlorobenzene	1.2	< 1.2 U
541-73-1	1,3-Dichlorobenzene	1.2	< 1.2 U
106-46-7	1,4-Dichlorobenzene	1.2	< 1.2 U
107-02-8	Acrolein	58	< 58 U
74-88-4	Methyl Iodide	1.2	< 1.2 U
74-96-4	Bromoethane	2.3	< 2.3 U
107-13-1	Acrylonitrile	5.8	< 5.8 U
		- · ·	

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-3-S2 Page 2 of 2 SAMPLE

Lab Sample ID: NJ45F LIMS ID: 08-19399

Project: Pier 23-EBC Matrix: Soil 17490-01

QC Report No: NJ45-Hart Crowser, Inc.

Date Analyzed: 08/07/08 15:39

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.2	< 1.2	υ
74-95-3	Dibromomethane	1.2	< 1.2	U
630-20-6	1,1,1,2-Tetrachloroethane	1.2	< 1.2	U
96-12-8	1,2-Dibromo-3-chloropropane	5.8	< 5.8	U
96-18-4	1,2,3-Trichloropropane	2.3	< 2.3	U
110-57-6	trans-1,4-Dichloro-2-butene	5.8	< 5.8	Ų
108-67-8	1,3,5-Trimethylbenzene	1.2	< 1.2	U
95-63-6	1,2,4-Trimethylbenzene	1.2	< 1.2	U
87-68-3	Hexachlorobutadiene	5.8	< 5.8	U
106-93-4	Ethylene Dibromide	1.2	< 1.2	U
74-97-5	Bromochloromethane	1.2	< 1.2	U
594-20-7	2,2-Dichloropropane	1.2	< 1.2	U
142-28-9	1,3-Dichloropropane	1.2	< 1.2	U
98-82-8	Isopropylbenzene	1.2	< 1.2	U
103-65-1	n-Propylbenzene	1.2	< 1.2	U
108-86-1	Bromobenzene	1.2	< 1.2	U
95-49-8	2-Chlorotoluene	1.2	< 1.2	U
106-43-4	4-Chlorotoluene	1.2	< 1.2	U
98-06-6	tert-Butylbenzene	1.2	< 1.2	U
135-98-8	sec-Butylbenzene	1.2	< 1.2	U
99-87-6	4-Isopropyltoluene	1.2	< 1.2	U
104-51-8	n-Butylbenzene	1.2	< 1.2	U
120-82-1	1,2,4-Trichlorobenzene	5.8	< 5.8	U
91-20-3	Naphthalene	5.8	< 5.8	U
87-61-6	1,2,3-Trichlorobenzene	5.8	< 5.8	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	116%
d8-Toluene	98.7%
Bromofluorobenzene	95.8%
d4-1,2-Dichlorobenzene	102%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-6-S1 Page 1 of 2 SAMPLE

Lab Sample ID: NJ45J LIMS ID: 08-19403

Matrix: Soil

Data Release Authorized: Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 16:05

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 4.11 g-dry-wt

Purge Volume: 5.0 mL Moisture: 6.7%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.2	< 1.2	U
74-83-9	Bromomethane	1.2	< 1.2	U
75-01-4	Vinyl Chloride	1.2	< 1.2	U
75-00-3	Chloroethane	1.2	< 1.2	U
75-09-2	Methylene Chloride	2.4	< 2.4	U
67-64-1	Acetone	6.1	33	
75-15-0	Carbon Disulfide	1.2	3.6	
75-35-4	1,1-Dichloroethene	1.2	< 1.2	U
75-34-3	1,1-Dichloroethane	1.2	< 1.2	U
156-60-5	trans-1,2-Dichloroethene	1.2	< 1.2	U
156-59-2	cis-1,2-Dichloroethene	1.2	< 1.2	U
67-66-3	Chloroform	1.2	< 1.2	U
107-06-2	1,2-Dichloroethane	1.2	< 1.2	U
78-93-3	2-Butanone	6.1	< 6.1	U
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	U
56-23-5	Carbon Tetrachloride	1.2	< 1.2	U
108-05-4	Vinyl Acetate	6.1	< 6.1	U
75-27-4	Bromodichloromethane	1.2	< 1.2	U
78-87-5	1,2-Dichloropropane	1.2	< 1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	U
79-01-6	Trichloroethene	1.2	< 1.2	U
124-48-1	Dibromochloromethane	1.2	< 1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	Ū
71-43-2	Benzene	1.2	< 1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U
110-75-8	2-Chloroethylvinylether	6.1	< 6.1	U
75-25-2	Bromoform	1.2	< 1.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.1	< 6.1	U
591-78-6	2-Hexanone	6.1	< 6.1	U
127-18-4	Tetrachloroethene	1.2	< 1.2	U
79-34-5	1,1,2,2-Tetrachloroethane	1.2	< 1.2	Ū
108-88-3	Toluene	1.2	< 1.2	U
108-90-7	Chlorobenzene	1.2	< 1.2	U
100-41-4	Ethylbenzene	1.2	< 1.2	Ų
100-42-5	Styrene	1.2	< 1.2	U
75-69-4	Trichlorofluoromethane	1.2	< 1.2	Ŭ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.4	U
1330-20-7	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xylene	1.2	< 1.2	U
95-50-1	1,2-Dichlorobenzene	1.2	< 1.2	U
541-73-1	1,3-Dichlorobenzene	1.2	< 1.2	U
106-46-7	1,4-Dichlorobenzene	1.2	< 1.2	U
107-02-8	Acrolein	61	< 61	U
74-88-4	Methyl Iodide	1.2	< 1.2	U
74-96-4	Bromoethane	2.4	< 2.4	Ŭ
107-13-1	Acrylonitrile	6.1	< 6.1	U

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-6-S1
Page 2 of 2 SAMPLE

Lab Sample ID: NJ45J QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19403 Project: Pier 23-EBC Matrix: Soil 17490-01

Date Analyzed: 08/07/08 16:05

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.2	< 1.2	U
74-95-3	Dibromomethane	1.2	< 1.2	U
630-20-6	1,1,1,2-Tetrachloroethane	1.2	< 1.2	U
96-12-8	1,2-Dibromo-3-chloropropane	6.1	< 6.1	U
96-18-4	1,2,3-Trichloropropane	2.4	< 2.4	U
110-57-6	trans-1,4-Dichloro-2-butene	6.1	< 6.1	U
108-67-8	1,3,5-Trimethylbenzene	1.2	< 1.2	U
95-63-6	1,2,4-Trimethylbenzene	1.2	< 1.2	U
87-68-3	Hexachlorobutadiene	6.1	< 6.1	U
106-93-4	Ethylene Dibromide	1.2	< 1.2	U
74-97-5	Bromochloromethane	1.2	< 1.2	U
594-20-7	2,2-Dichloropropane	1.2	< 1.2	U
142-28-9	1,3-Dichloropropane	1.2	< 1.2	U
98-82-8	Isopropylbenzene	1.2	< 1.2	U
103-65-1	n-Propylbenzene	1.2	< 1.2	U
108-86-1	Bromobenzene	1.2	< 1.2	U
95-49-8	2-Chlorotoluene	1.2	< 1.2	U
106-43-4	4-Chlorotoluene	1.2	< 1.2	U
98-06-6	tert-Butylbenzene	1.2	< 1.2	U
135-98-8	sec-Butylbenzene	1.2	< 1.2	U
99-87-6	4-Isopropyltoluene	1.2	< 1.2	U
104-51-8	n-Butylbenzene	1.2	< 1.2	U
120-82-1	1,2,4-Trichlorobenzene	6.1	< 6.1	U
91-20-3	Naphthalene	6.1	< 6.1	U
87-61-6	1,2,3-Trichlorobenzene	6.1	< 6.1	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	121%
d8-Toluene	98.0%
Bromofluorobenzene	94.1%
d4-1.2-Dichlorobenzene	103%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-7-S1 Page 1 of 2 SAMPLE

Lab Sample ID: NJ45L LIMS ID: 08-19405

Matrix: Soil

Data Release Authorized: Reported: 08/15/08

Instrument/Analyst: FINN5/PAB Date Analyzed: 08/07/08 16:32

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 2.51 g-dry-wt

Purge Volume: 5.0 mL Moisture: 8.9%

CAS Number	Analyte	RL	Result Q)
74-87-3	Chloromethane	2.0	< 2.0 U	_ J
74-83-9	Bromomethane	2.0	< 2.0 U	J
75-01-4	Vinyl Chloride	2.0	< 2.0 U	J
75-00-3	Chloroethane	2.0	< 2.0 U	Г
75-09-2	Methylene Chloride	4.0	4.7	
67-64-1	Acetone	10	490	
75-15-0	Carbon Disulfide	2.0	11	
75-35-4	1,1-Dichloroethene	2.0	< 2.0 U	Г
75-34-3	1,1-Dichloroethane	2.0	< 2.0 U	ſ
156-60-5	trans-1,2-Dichloroethene	2.0	< 2.0 U	ſ
156-59-2	cis-1,2-Dichloroethene	2.0	< 2.0 U	Г
67-66-3	Chloroform	2.0	< 2.0 U	Ī
107-06-2	1,2-Dichloroethane	2.0	< 2.0 U	ſ
78-93-3	2-Butanone	10	93	
71-55-6	1,1,1-Trichloroethane	2.0	< 2.0 U	•
56-23-5	Carbon Tetrachloride	2.0	< 2.0 U	
108-05-4	Vinyl Acetate	10	< 10 U	•
75-27-4	Bromodichloromethane	2.0	< 2.0 U	
78-87-5	1,2-Dichloropropane	2.0	< 2.0 U	
10061-01-5	cis-1,3-Dichloropropene	2.0	< 2.0 U	
79-01-6	Trichloroethene	2.0	< 2.0 U	
124-48-1	Dibromochloromethane	2.0	< 2.0 U	
79-00-5	1,1,2-Trichloroethane	2.0	< 2.0 U	
71-43-2	Benzene	2.0	12	
10061-02-6	trans-1,3-Dichloropropene	2.0	< 2.0 U	
110-75-8	2-Chloroethylvinylether	10	< 10 U	
75-25-2	Bromoform	2.0	< 2.0 U	
108-10-1	4-Methyl-2-Pentanone (MIBK)	10	29 M	
591-78-6	2-Hexanone	10	< 10 U	
127-18-4	Tetrachloroethene	2.0	< 2.0 U	
79-34-5	1,1,2,2-Tetrachloroethane	2.0	< 2.0 U	
108-88-3	Toluene	2.0	29	
108-90-7	Chlorobenzene	2.0	< 2.0 U	
100-41-4	Ethylbenzene	2.0	22	
100-42-5	Styrene	2.0	< 2.0 U	
75-69-4	Trichlorofluoromethane	2.0	< 2.0 U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 4.0 U	
1330-20-7	m,p-Xylene	2.0	65	
95-47-6	o-Xylene	2.0	50	
95-50-1	1,2-Dichlorobenzene	2.0	12 M	
541-73-1	1,3-Dichlorobenzene	2.0	< 2.0 U	
106-46-7	1,4-Dichlorobenzene	2.0	5.0	
107-02-8	Acrolein	100	< 100 U	
74-88-4	Methyl Iodide	2.0	< 2.0 U	
74-96-4	Bromoethane	4.0	< 4.0 U	
107-13-1	Acrylonitrile	10	< 10 U	

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-7-S1

Page 2 of 2

Lab Sample ID: NJ45L LIMS ID: 08-19405 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC

17490-01

Matrix: Soil
Date Analyzed: 08/07/08 16:32

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	2.0	< 2.0	U
74-95-3	Dibromomethane	2.0	< 2.0	U
630-20-6	1,1,1,2-Tetrachloroethane	2.0	< 2.0	U
96-12-8	1,2-Dibromo-3-chloropropane	10	< 10	U
96-18-4	1,2,3-Trichloropropane	4.0	< 4.0	U
110-57-6	trans-1,4-Dichloro-2-butene	10	< 10	U
108-67-8	1,3,5-Trimethylbenzene	2.0	150	
95-63-6	1,2,4-Trimethylbenzene	2.0	330	
87-68-3	Hexachlorobutadiene	10	< 10	U
106-93-4	Ethylene Dibromide	2.0	< 2.0	U
74-97-5	Bromochloromethane	2.0	< 2.0	U
594-20-7	2,2-Dichloropropane	2.0	< 2.0	U
142-28-9	1,3-Dichloropropane	2.0	< 2.0	U
98-82-8	Isopropylbenzene	2.0	14	
103-65-1	n-Propylbenzene	2.0	27	
108-86-1	Bromobenzene	2.0	< 2.0	U
95-49-8	2-Chlorotoluene	2.0	< 2.0	U
106-43-4	4-Chlorotoluene	2.0	< 2.0	U
98-06-6	tert-Butylbenzene	2.0	2.8	M
135-98-8	sec-Butylbenzene	2.0	17	
99-87-6	4-Isopropyltoluene	2.0	66	
104-51-8	n-Butylbenzene	2.0	78	M
120-82-1	1,2,4-Trichlorobenzene	10	< 10	U
91-20-3	Naphthalene	10	320	
87-61-6	1,2,3-Trichlorobenzene	10	< 10	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	170%
d8-Toluene	75.1%
Bromofluorobenzene	84.4%
d4-1 2-Dichlorobenzene	96 N%

Sample ID: EBC-7-S1 Page 1 of 2 REANALYSIS

Lab Sample ID: NJ45L LIMS ID: 08-19405

Matrix: Soil

Data Release Authorized: Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/12/08 21:21

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 5.37 g-dry-wt

Purge Volume: 5.0 mL Moisture: 8.9%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.9	< 0.9	U
74-83-9	Bromomethane	0.9	< 0.9	U
75-01-4	Vinyl Chloride	0.9	< 0.9	U
75-00-3	Chloroethane	0.9	< 0.9	U
75-09-2	Methylene Chloride	1.9	7.2	
67-64-1	Acetone	4.6	190	
75-15-0	Carbon Disulfide	0.9	6.4	
75-35-4	1,1-Dichloroethene	0.9	< 0.9	U
75-34-3	1,1-Dichloroethane	0.9	< 0.9	U
156-60-5	trans-1,2-Dichloroethene	0.9	< 0.9	U
156-59-2	cis-1,2-Dichloroethene	0.9	< 0.9	U
67-66-3	Chloroform	0.9	< 0.9	U
107-06-2	1,2-Dichloroethane	0.9	< 0.9	U
78-93-3	2-Butanone	4.6	28	
71-55-6	1,1,1-Trichloroethane	0.9	< 0.9	U
56-23-5	Carbon Tetrachloride	0.9	< 0.9	U
108-05-4	Vinyl Acetate	4.6	< 4.6	Ū
75-27-4	Bromodichloromethane	0.9	< 0.9	Ü
78-87-5	1,2-Dichloropropane	0.9	< 0.9	U
10061-01-5	cis-1,3-Dichloropropene	0.9	< 0.9	U
79-01-6	Trichloroethene	0.9	< 0.9	U
124-48-1	Dibromochloromethane	0.9	< 0.9	U
79-00-5 71-43-2	1,1,2-Trichloroethane Benzene	0.9 0.9	< 0.9 < 0.9	U U
10061-02-6	trans-1,3-Dichloropropene	0.9	< 0.9	U
110-75-8	2-Chloroethylvinylether	4.6	< 4.6	U
75-25-2	Bromoform	0.9	< 0.9	IJ
108-10-1	4-Methyl-2-Pentanone (MIBK)	4.6	7.8	Ü
591-78-6	2-Hexanone	4.6	< 4.6	U
127-18-4	Tetrachloroethene	0.9	< 0.9	Ü
79-34-5	1,1,2,2-Tetrachloroethane	0.9	< 0.9	Ü
108-88-3	Toluene	0.9	6.2	-
108-90-7	Chlorobenzene	0.9	< 0.9	U
100-41-4	Ethylbenzene	0.9	8.5	
100-42-5	Styrene	0.9	1.2	M
75-69-4	Trichlorofluoromethane	0.9	< 0.9	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	1.9	< 1.9	U
1330-20-7	m,p-Xylene	0.9	24	
95-47-6	o-Xylene	0.9	19	
95-50-1	1,2-Dichlorobenzene	0.9	3.9	M
541-73-1	1,3-Dichlorobenzene	0.9	< 0.9	U
106-46-7	1,4-Dichlorobenzene	0.9	1.6	
107-02-8	Acrolein	46	< 46	U
74-88-4	Methyl Iodide	0.9	< 0.9	U
74-96-4	Bromoethane	1.9	< 1.9	U
107-13-1	Acrylonitrile	4.6	< 4.6	U

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-7-S1

Page 2 of 2

Matrix: Soil

REANALYSIS

Lab Sample ID: NJ45L LIMS ID: 08-19405 QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/12/08 21:21

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	0.9	< 0.9	U
74-95-3	Dibromomethane	0.9	< 0.9	U
630-20-6	1,1,1,2-Tetrachloroethane	0.9	< 0.9	U
96-12-8	1,2-Dibromo-3-chloropropane	4.6	< 4.6	U
96-18-4	1,2,3-Trichloropropane	1.9	< 1.9	U
110-57-6	trans-1,4-Dichloro-2-butene	4.6	< 4.6	U
108-67-8	1,3,5-Trimethylbenzene	0.9	56	
95-63-6	1,2,4-Trimethylbenzene	0.9	120	
87-68-3	Hexachlorobutadiene	4.6	< 4.6	U
106-93-4	Ethylene Dibromide	0.9	< 0.9	U
74-97-5	Bromochloromethane	0.9	< 0.9	U
594-20-7	2,2-Dichloropropane	0.9	< 0.9	U
142-28-9	1,3-Dichloropropane	0.9	< 0.9	U
98-82-8	Isopropylbenzene	0.9	5.6	
103-65-1	n-Propylbenzene	0.9	10	
108-86-1	Bromobenzene	0.9	< 0.9	U
95-49-8	2-Chlorotoluene	0.9	< 0.9	U
106-43-4	4-Chlorotoluene	0.9	< 0.9	U
98-06-6	tert-Butylbenzene	0.9	1.3	
135-98-8	sec-Butylbenzene	0.9	6.5	
99-87-6	4-Isopropyltoluene	0.9	25	
104-51-8	n-Butylbenzene	0.9	< 0.9	U
120-82-1	1,2,4-Trichlorobenzene	4.6	< 4.6	U
91-20-3	Naphthalene	4.6	110	
87-61-6	1,2,3-Trichlorobenzene	4.6	< 4.6	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	132%
d8-Toluene	84.0%
Bromofluorobenzene	90.0%
d4-1,2-Dichlorobenzene	96.1%

Sample ID: EBC-8-S1 Page 1 of 2 SAMPLE

Lab Sample ID: NJ45N

LIMS ID: 08-19407 Matrix: Soil

Data Release Authorized: Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 16:58

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 3.78 g-dry-wt

Purge Volume: 5.0 mL Moisture: 4.6%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.3	< 1.3	U
74-83-9	Bromomethane	1.3	< 1.3	U
75-01-4	Vinyl Chloride	1.3	< 1.3	U
75-00-3	Chloroethane	1.3	< 1.3	U
75-09-2	Methylene Chloride	2.6	< 2.6	Ū
67-64-1	Acetone	6.6	26	
75-15-0	Carbon Disulfide	1.3	< 1.3	U
75-35-4	1,1-Dichloroethene	1.3	< 1.3	U
75-34-3	1,1-Dichloroethane	1.3	< 1.3	U
156-60-5	trans-1,2-Dichloroethene	1.3	< 1.3	υ
156-59-2	cis-1,2-Dichloroethene	1.3	< 1.3	U
67-66-3	Chloroform	1.3	< 1.3	υ
107-06-2	1,2-Dichloroethane	1.3	< 1.3	U
78-93-3	2-Butanone	6.6	< 6.6	U
71-55-6	1,1,1-Trichloroethane	1.3	< 1.3	U
56-23-5	Carbon Tetrachloride	1.3	< 1.3	U
108-05-4	Vinyl Acetate	6.6	< 6.6	U
75-27-4	Bromodichloromethane	1.3	< 1.3	U
78-87-5	1,2-Dichloropropane	1.3	< 1.3	U
10061-01-5	cis-1,3-Dichloropropene	1.3	< 1.3	U
79-01-6	Trichloroethene	1.3	< 1.3	U
124-48-1	Dibromochloromethane	1.3	< 1.3	U
79-00-5	1,1,2-Trichloroethane	1.3	< 1.3	U
71-43-2	Benzene	1.3	< 1.3	U
10061-02-6	trans-1,3-Dichloropropene	1.3	< 1.3	U
110-75-8	2-Chloroethylvinylether	6.6	< 6.6	U
75-25-2	Bromoform	1.3	< 1.3	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.6	< 6.6	U
591-78-6	2-Hexanone	6.6	< 6.6	υ
127-18-4	Tetrachloroethene	1.3	< 1.3	υ
79-34-5	1,1,2,2-Tetrachloroethane	1.3	< 1.3	U
108-88-3	Toluene	1.3	< 1.3	U
108-90-7	Chlorobenzene	1.3	< 1.3	U
100-41-4	Ethylbenzene	1.3	< 1.3	U
100-42-5	Styrene	1.3	< 1.3	U
75-69-4	Trichlorofluoromethane	1.3	< 1.3	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.6	U
1330-20-7	m,p-Xylene	1.3	< 1.3	U
95-47-6	o-Xylene	1.3	< 1.3	U
95-50-1	1,2-Dichlorobenzene	1.3	< 1.3	U
541-73-1	1,3-Dichlorobenzene	1.3	< 1.3	U
106-46-7	1,4-Dichlorobenzene	1.3	< 1.3	U
107-02-8	Acrolein	66	< 66	U
74-88-4	Methyl Iodide	1.3	< 1.3	U
74-96-4	Bromoethane	2.6	< 2.6	U
107-13-1	Acrylonitrile	6.6	< 6.6	Ū

Page 2 of 2

Sample ID: EBC-8-S1 SAMPLE

Lab Sample ID: NJ45N

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19407 Matrix: Soil Project: Pier 23-EBC 17490-01

Date Analyzed: 08/07/08 16:58

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.3	< 1.3	U
74-95-3	Dibromomethane	1.3	< 1.3	U
630-20-6	1,1,1,2-Tetrachloroethane	1.3	< 1.3	U
96-12-8	1,2-Dibromo-3-chloropropane	6.6	< 6.6	U
96-18-4	1,2,3-Trichloropropane	2.6	< 2.6	U
110-57-6	trans-1,4-Dichloro-2-butene	6.6	< 6.6	U
108-67-8	1,3,5-Trimethylbenzene	1.3	< 1.3	U
95-63-6	1,2,4-Trimethylbenzene	1.3	< 1.3	U
87-68-3	Hexachlorobutadiene	6.6	< 6.6	U
106-93-4	Ethylene Dibromide	1.3	< 1.3	U
74-97-5	Bromochloromethane	1.3	< 1.3	U
594-20-7	2,2-Dichloropropane	1.3	< 1.3	U
142-28-9	1,3-Dichloropropane	1.3	< 1.3	U
98-82-8	Isopropylbenzene	1.3	< 1.3	U
103-65-1	n-Propylbenzene	1.3	< 1.3	U
108-86-1	Bromobenzene	1.3	< 1.3	U
95-49-8	2-Chlorotoluene	1.3	< 1.3	U
106-43-4	4-Chlorotoluene	1.3	< 1.3	U
98-06-6	tert-Butylbenzene	1.3	< 1.3	U
135-98-8	sec-Butylbenzene	1.3	< 1.3	U
99-87-6	4-Isopropyltoluene	1.3	< 1.3	U
104-51-8	n-Butylbenzene	1.3	< 1.3	U
120-82-1	1,2,4-Trichlorobenzene	6.6	< 6.6	υ
91-20-3	Naphthalene	6.6	< 6.6	U
87-61-6	1,2,3-Trichlorobenzene	6.6	< 6.6	U

Reported in $\mu g/kg$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	118%
d8-Toluene	95.4%
Bromofluorobenzene	94.7%
d4-1,2-Dichlorobenzene	101%

Sample ID: EBC-10-S1 Page 1 of 2 SAMPLE

Lab Sample ID: NJ45P LIMS ID: 08-19409

Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 17:25

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 3.91 g-dry-wt

Purge Volume: 5.0 mL Moisture: 5.0%

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.3	< 1.3	υ
74-83-9	Bromomethane	1.3	< 1.3	υ
75-01-4	Vinyl Chloride	1.3	< 1.3	U
75-00-3	Chloroethane	1.3	< 1.3	υ
75-09-2	Methylene Chloride	2.6	4.1	
67-64-1	Acetone	6.4	29	
75-15-0	Carbon Disulfide	1.3	< 1.3	U
75-35-4	1,1-Dichloroethene	1.3	< 1.3	U
75-34-3	1,1-Dichloroethane	1.3	< 1.3	U
156-60-5	trans-1,2-Dichloroethene	1.3	< 1.3	U
156-59-2	cis-1,2-Dichloroethene	1.3	< 1.3	U
67-66-3	Chloroform	1.3	< 1.3	U
107-06-2	1,2-Dichloroethane	1.3	< 1.3	Ü
78-93-3	2-Butanone	6.4	< 6.4	U
71-55-6	1,1,1-Trichloroethane	1.3	< 1.3	U
56-23-5	Carbon Tetrachloride	1.3	< 1.3	U
108-05-4	Vinyl Acetate	6.4	< 6.4	U
75-27-4	Bromodichloromethane	1.3	< 1.3	Ų
78-87-5	1,2-Dichloropropane	1.3	< 1.3	U
10061-01-5	cis-1,3-Dichloropropene	1.3	< 1.3	U
79-01-6	Trichloroethene	1.3	< 1.3	U
124-48-1	Dibromochloromethane	1.3	< 1.3	U
79-00-5	1,1,2-Trichloroethane	1.3	< 1.3	U
71-43-2	Benzene	1.3	< 1.3	U
10061-02-6	trans-1,3-Dichloropropene	1.3	< 1.3	U
110-75-8	2-Chloroethylvinylether	6.4	< 6.4	Ū
75-25-2	Bromoform	1.3	< 1.3	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.4	< 6.4	U
591-78-6	2-Hexanone	6.4	< 6.4	Ü
127-18-4	Tetrachloroethene	1.3	< 1.3	Ũ
79-34-5	1,1,2,2-Tetrachloroethane	1.3	< 1.3	U
108-88-3	Toluene	1.3	< 1.3	U
108-90-7	Chlorobenzene	1.3	< 1.3	U
100-41-4	Ethylbenzene	1.3	< 1.3	U
100-42-5	Styrene	1.3	< 1.3	U
75-69-4	Trichlorofluoromethane	1.3	< 1.3	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.6	U
1330-20-7	m,p-Xylene	1.3	< 1.3	U
95-47-6	o-Xylene	1.3	< 1.3	U
95-50-1	1,2-Dichlorobenzene	1.3	< 1.3	U
541-73-1	1,3-Dichlorobenzene	1.3	< 1.3	U
106-46-7	1,4-Dichlorobenzene	1.3	< 1.3	υ
107-02-8	Acrolein	64	< 64	U
74-88-4	Methyl Iodide	1.3	< 1.3	U
74-96-4	Bromoethane	2.6	< 2.6	U
107-13-1	Acrylonitrile	6.4	< 6.4	U

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-10-S1 Page 2 of 2 SAMPLE

Lab Sample ID: NJ45P QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19409 Project: Pier 23-EBC Matrix: Soil 17490-01

Date Analyzed: 08/07/08 17:25

CAS Number Analyte		RL	Result	Q
563-58-6	1,1-Dichloropropene	1.3	< 1.3	U
74-95-3	Dibromomethane	1.3	< 1.3	U
630-20-6	1,1,1,2-Tetrachloroethane	1.3	< 1.3	U
96-12-8	1,2-Dibromo-3-chloropropane	6.4	< 6.4	U
96-18-4	1,2,3-Trichloropropane	2.6	< 2.6	U
110-57-6	trans-1,4-Dichloro-2-butene	6.4	< 6.4	U
108-67-8	1,3,5-Trimethylbenzene	1.3	< 1.3	U
95-63-6	1,2,4-Trimethylbenzene	1.3	< 1.3	U
87-68-3	Hexachlorobutadiene	6.4	< 6.4	U
106-93-4	Ethylene Dibromide	1.3	< 1.3	U
74-97-5	Bromochloromethane	1.3	< 1.3	U
594-20-7	2,2-Dichloropropane	1.3	< 1.3	U
142-28-9	1,3-Dichloropropane	1.3	< 1.3	U
98-82-8	Isopropylbenzene	1.3	< 1.3	U
103-65-1	n-Propylbenzene	1.3	< 1.3	U
108-86-1	Bromobenzene	1.3	< 1.3	U
95-49-8	2-Chlorotoluene	1.3	< 1.3	U
106-43-4	4-Chlorotoluene	1.3	< 1.3	U
98-06-6	tert-Butylbenzene	1.3	< 1.3	U
135-98-8	sec-Butylbenzene	1.3	< 1.3	U
99-87-6	4-Isopropyltoluene	1.3	< 1.3	U
104-51-8	n-Butylbenzene	1.3	< 1.3	U
120-82-1	1,2,4-Trichlorobenzene	6.4	< 6.4	U
91-20-3	Naphthalene	6.4	< 6.4	U
87-61-6	1,2,3-Trichlorobenzene	6.4	< 6.4	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	122%
d8-Toluene	97.3%
Bromofluorobenzene	94.3%
d4-1 2-Dichlorobenzene	101%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: EBC-11-S1 SAMPLE Page 1 of 2

Lab Sample ID: NJ45Q LIMS ID: 08-19410

Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 17:51

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 4.10 g-dry-wt

Purge Volume: 5.0 mL Moisture: 21.3%

CAS Number Analyte		RL	Result	Q	
74-87-3	Chloromethane		< 1.2	U	
74-83-9	Bromomethane	1.2	< 1.2	U	
75-01-4	Vinyl Chloride		< 1.2	U	
75-00-3	Chloroethane	1.2	< 1.2	U	
75-09-2	Methylene Chloride	2.4	5.1		
67-64-1	Acetone	6.1	28		
75-15-0	Carbon Disulfide	1.2	7.8		
75-35-4	1,1-Dichloroethene	1.2	< 1.2	U	
75-34-3	1,1-Dichloroethane	1.2	< 1.2	U	
156-60-5	trans-1,2-Dichloroethene	1.2	< 1.2	U	
156-59-2	cis-1,2-Dichloroethene	1.2	< 1.2	U	
67-66-3	Chloroform	1.2	< 1.2	U	
107-06-2	1,2-Dichloroethane	1.2	< 1.2	Ũ	
78-93-3	2-Butanone	6.1	< 6.1	U	
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	U	
56-23-5	Carbon Tetrachloride	1.2	< 1.2	U	
108-05-4	Vinyl Acetate	6.1	< 6.1	U	
75-27-4	Bromodichloromethane	1.2	< 1.2	U	
78-87-5	1,2-Dichloropropane	1.2	< 1.2	U	
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	Ų	
79-01-6	Trichloroethene	1.2	< 1.2	U	
124-48-1	Dibromochloromethane	1.2	< 1.2	U	
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	U	
71-43-2	Benzene	1.2	< 1.2	U	
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U	
110-75-8	2-Chloroethylvinylether	6.1	< 6.1	U	
75-25-2	Bromoform	1.2	< 1.2	U	
108-10-1	4-Methyl-2-Pentanone (MIBK)	6.1	< 6.1	U	
591-78-6	2-Hexanone	6.1	< 6.1	U	
127-18-4	Tetrachloroethene	1.2	< 1.2	U	
79-34-5	1,1,2,2-Tetrachloroethane	1.2	< 1.2	U	
108-88-3	Toluene	1.2	< 1.2	U	
108-90-7	Chlorobenzene	1.2	< 1.2	U	
100-41-4	Ethylbenzene	1.2	< 1.2	U	
100-42-5	Styrene	1.2	< 1.2	U	
75-69-4	Trichlorofluoromethane	1.2	1.4		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.4	< 2.4	U	
1330-20-7	m,p-Xylene	1.2	< 1.2	U	
95-47-6	o-Xylene	1.2	< 1.2	U	
95-50-1	1,2-Dichlorobenzene	1.2	< 1.2	U	
541-73-1	1,3-Dichlorobenzene	1.2	< 1.2	U	
106-46-7	1,4-Dichlorobenzene	1.2	< 1.2	U	
107-02-8	Acrolein	61	< 61	U	
74-88-4	Methyl Iodide	1.2	< 1.2	U	
74-96-4	Bromoethane	2.4	< 2.4	υ	
107-13-1	Acrylonitrile	6.1	< 6.1	U	

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-11-S1 Page 2 of 2

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Matrix: Soil Date Analyzed: 08/07/08 17:51

Lab Sample ID: NJ45Q

LIMS ID: 08-19410

CAS Number Analyte		RL	Result	Q
563-58-6 1,1-Dichloropropene		1.2	< 1.2	U
74-95-3	-3 Dibromomethane		< 1.2	U
630-20-6	1,1,1,2-Tetrachloroethane	1.2	< 1.2	U
96-12-8	1,2-Dibromo-3-chloropropane	6.1	< 6.1	U
96-18-4	1,2,3-Trichloropropane	2.4	< 2.4	U
110-57-6	trans-1,4-Dichloro-2-butene	6.1	< 6.1	U
108-67-8	1,3,5-Trimethylbenzene	1.2	< 1.2	U
95-63-6	1,2,4-Trimethylbenzene	1.2	< 1.2	U
87-68-3	Hexachlorobutadiene	6.1	< 6.1	U
106-93-4	Ethylene Dibromide	1.2	< 1.2	U
74-97-5	Bromochloromethane	1.2	< 1.2	Ų
594-20-7	2,2-Dichloropropane	1.2	< 1.2	U
142-28-9	1,3-Dichloropropane	1.2	< 1.2	U
98-82-8	Isopropylbenzene	1.2	< 1.2	U
103-65-1	n-Propylbenzene	1.2	< 1.2	U
108-86-1 Bromobenzene		1.2	< 1.2	U
95-49-8	2-Chlorotoluene	1.2	< 1.2	U
106-43-4	4-Chlorotoluene	1.2	< 1.2	U
98-06-6	tert-Butylbenzene	1.2	< 1.2	U
135-98-8	sec-Butylbenzene	1.2	< 1.2	U
99-87-6	4-Isopropyltoluene	1.2	< 1.2	U
104-51-8	n-Butylbenzene	1.2	< 1.2	U
120-82-1	1,2,4-Trichlorobenzene	6.1	< 6.1	U
91-20-3	Naphthalene	6.1	< 6.1	U
87-61-6	1,2,3-Trichlorobenzene	6.1	< 6.1	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	119%
d8-Toluene	97.1%
Bromofluorobenzene	94.4%
d4-1.2-Dichlorobenzene	105%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: EBC-11-S2 Page 1 of 2 SAMPLE

Lab Sample ID: NJ45R LIMS ID: 08-19411

Matrix: Soil

Data Release Authorized Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 18:18

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 4.26 g-dry-wt

Purge Volume: 5.0 mL Moisture: 16.5%

CAS Number	Analyte		Result	Q
74-87-3	Chloromethane		< 1.2	
74-83-9	Bromomethane	1.2	< 1.2	U
75-01-4	Vinyl Chloride	1.2	< 1.2	U
75-00-3	Chloroethane	1.2	< 1.2	U
75-09-2	Methylene Chloride	2.4	21	
67-64-1	Acetone	5.9	22	
75-15-0	Carbon Disulfide	1.2	22	
75-35-4	1,1-Dichloroethene	1.2	< 1.2	U
75-34-3	1,1-Dichloroethane	1.2	< 1.2	U
156-60-5	trans-1,2-Dichloroethene	1.2	< 1.2	U
156-59-2	cis-1,2-Dichloroethene	1.2	< 1.2	U
67-66-3	Chloroform	1.2	< 1.2	U
107-06-2	1,2-Dichloroethane	1.2	< 1.2	U
78-93-3	2-Butanone	5.9	< 5.9	U
71-55-6	1,1,1-Trichloroethane	1.2	< 1.2	U
56-23-5	Carbon Tetrachloride	1.2	< 1.2	U
108-05-4	Vinyl Acetate	5.9	< 5.9	U
75-27-4	Bromodichloromethane	1.2	< 1.2	U
78-87-5	1,2-Dichloropropane	1.2	< 1.2	U
10061-01-5	cis-1,3-Dichloropropene	1.2	< 1.2	U
79-01-6	Trichloroethene	1.2	< 1.2	U
124-48-1	Dibromochloromethane	1.2	< 1.2	U
79-00-5	1,1,2-Trichloroethane	1.2	< 1.2	U
71-43-2	Benzene	1.2	< 1.2	U
10061-02-6	trans-1,3-Dichloropropene	1.2	< 1.2	U
110-75-8	2-Chloroethylvinylether	5.9	< 5.9	U
75-25-2	Bromoform	1.2	< 1.2	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.9	< 5.9	U
591-78-6	2-Hexanone	5.9	< 5.9	U
127-18-4	Tetrachloroethene	1.2	< 1.2	U U
79-34-5	1,1,2,2-Tetrachloroethane Toluene	1.2	< 1.2 < 1.2	U
108-88-3 108-90-7	Chlorobenzene	1.2	< 1.2	U
100-41-4	Ethylbenzene	1.2	< 1.2	ΰ
100-41-4	Styrene	1.2	< 1.2	U
75-69-4	Trichlorofluoromethane	1.2	12	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 2.4	U
1330-20-7	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xylene	1.2	< 1.2	Ū
95-50-1	1,2-Dichlorobenzene	1.2	< 1.2	U
541-73-1	1,3-Dichlorobenzene	1.2	< 1.2	U
106-46-7	1,4-Dichlorobenzene	1.2		Ŭ
107-02-8	Acrolein	59		U
74-88-4	Methyl Iodide	1.2		Ū
74-96-4	Bromoethane	2.4		Ü
107-13-1	Acrylonitrile	5.9		Ü
		- • •		-

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: EBC-11-S2

SAMPLE

Lab Sample ID: NJ45R

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19411

Project: Pier 23-EBC

Matrix: Soil

17490-01

Date Analyzed: 08/07/08 18:18

CAS Number Analyte		RL	Result	Q
563-58-6 1,1-Dichloropropene		1.2	< 1.2	U
74-95-3	Dibromomethane	1.2	< 1.2	U
630-20-6	1,1,1,2-Tetrachloroethane	1.2	< 1.2	U
96-12-8	1,2-Dibromo-3-chloropropane	5.9	< 5.9	U
96-18-4	1,2,3-Trichloropropane	2.4	< 2.4	U
110-57-6	trans-1,4-Dichloro-2-butene	5.9	< 5.9	U
108-67-8	1,3,5-Trimethylbenzene	1.2	< 1.2	U
95-63-6	1,2,4-Trimethylbenzene	1.2	< 1.2	U
87-68-3	Hexachlorobutadiene	5.9	< 5.9	U
106-93-4	Ethylene Dibromide	1.2	< 1.2	U
74-97-5	Bromochloromethane	1.2	< 1.2	υ
594-20-7	2,2-Dichloropropane	1.2	< 1.2	U
142-28-9	1,3-Dichloropropane	1.2	< 1.2	U
98-82-8	Isopropylbenzene	1.2	< 1.2	Ü
103-65-1	n-Propylbenzene	1.2	< 1.2	Ü
108-86-1	Bromobenzene	1.2	< 1.2	U
95-49-8	2-Chlorotoluene	1.2	< 1.2	U
106-43-4	4-Chlorotoluene	1.2	< 1.2	U
98-06-6	tert-Butylbenzene	1.2	< 1.2	U
135-98-8	sec-Butylbenzene	1.2	< 1.2	U
99-87-6	4-Isopropyltoluene	1.2	< 1.2	U
104-51-8	n-Butylbenzene	1.2	< 1.2	U
120-82-1	1,2,4-Trichlorobenzene	5.9	< 5.9	U
91-20-3	Naphthalene	5.9	14	
87-61-6	1,2,3-Trichlorobenzene	5.9	< 5.9	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	123%
d8-Toluene	97.9%
Bromofluorobenzene	94.8%
d4-1,2-Dichlorobenzene	103%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 2

Sample ID: EBC-12-S1 SAMPLE

Lab Sample ID: NJ45S

LIMS ID: 08-19412 Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/07/08 18:44

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 4.88 g-dry-wt

Purge Volume: 5.0 mL Moisture: 4.7%

CAS Number	RL	Result	Q	
74-87-3	Chloromethane	1.0	< 1.0	υ
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.1	< 5.1	U
75-15-0	Carbon Disulfide	1.0	< 1.0	υ
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	υ
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	U
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.1	< 5.1	Ü
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	υ
56-23-5	Carbon Tetrachloride	1.0	< 1.0	υ
108-05-4	Vinyl Acetate	5.1	< 5.1	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.1	< 5.1	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.1	< 5.1	U
591-78-6	2-Hexanone	5.1	< 5.1	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	υ
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0	U
107-02-8	Acrolein	51	< 51	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	2.0	< 2.0	U
107-13-1	Acrylonitrile	5.1	< 5.1	U

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: EBC-12-S1 SAMPLE

Page 2 of 2

Lab Sample ID: NJ45S QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19412 Project: Pier 23-EBC Matrix: Soil 17490-01

Date Analyzed: 08/07/08 18:44

CAS Number Analyte		RL	Result	Q
563-58-6	1,1-Dichloropropene	1.0	< 1.0	υ
74-95-3	Dibromomethane	1.0	< 1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	< 1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.1	< 5.1	U
96-18-4	1,2,3-Trichloropropane	2.0	< 2.0	U
110-57-6	trans-1,4-Dichloro-2-butene	5.1	< 5.1	U
108-67-8	1,3,5-Trimethylbenzene	1.0	< 1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	< 1.0	U
87-68-3	Hexachlorobutadiene	5.1	< 5.1	U
106-93-4	Ethylene Dibromide	1.0	< 1.0	Ü
74-97-5	Bromochloromethane	1.0	< 1.0	U
594-20-7	2,2-Dichloropropane	1.0	< 1.0	U
142-28-9	1,3-Dichloropropane	1.0	< 1.0	U
98-82-8	Isopropylbenzene	1.0	< 1.0	U
103-65-1			< 1.0	U
108-86-1			< 1.0	U
95-49-8	2-Chlorotoluene	1.0	< 1.0	U
106-43-4	4-Chlorotoluene	1.0	< 1.0	U
98-06-6	tert-Butylbenzene	1.0	< 1.0	U
135-98-8	sec-Butylbenzene	1.0	< 1.0	U
99-87-6	4-Isopropyltoluene	1.0	< 1.0	U
104-51-8	n-Butylbenzene	1.0	< 1.0	U
120-82-1	1,2,4-Trichlorobenzene	5.1	< 5.1	U
91-20-3	Naphthalene	5.1	< 5.1	U
87-61-6	1,2,3-Trichlorobenzene	5.1	< 5.1	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	104%
d8-Toluene	101%
Bromofluorobenzene	93.9%
d4-1.2-Dichlorobenzene	99.7%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: NJ45-Hart Crowser, Inc.

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC 17490-01

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
AKI ID	CITCHE ID	Tever	DCE	101	<u> </u>		101 001
MB-080708	Method Blank	Low	115%	99.2%	95.5%	100%	0
LCS-080708	Lab Control	Low	104%	99.2%	100%	100%	0
LCSD-080708	Lab Control Dup	Low	113%	106%	98.7%	101%	0
NJ45B	EBC-1-S2	Low	119%	98.4%	95.5%	102%	0
MB-081208	Method Blank	Med	116%	96.7%	93.2%	102%	0
LCS-081208	Lab Control	Med	109%	97.2%	101%	98.7%	0
LCSD-081208	Lab Control Dup	Med	109%	98.4%	100%	100%	0
NJ45E	EBC-3-S1	Low	157%*	83.1%	63.9%*	50.3%*	3
NJ45ERE	EBC-3-S1	Med	105%	91.8%	106%	103%	0
NJ45F	EBC-3-S2	Low	116%	98.7%	95.8%	102%	0
NJ45J	EBC-6-S1	Low	121%	98.0%	94.1%	103%	0
MB-081208	Method Blank	Low	116%	96.7%	93.2%	102%	0
LCS-081208	Lab Control	Low	109%	97.2%	101%	98.7%	0
LCSD-081208	Lab Control Dup	Low	109%	98.4%	100%	100%	0
NJ45L	EBC-7-S1	Low	170%*	75.1%*	84.4%	96.0%	2
NJ45LRE	EBC-7-S1	Low	132%	84.0%	90.0%	96.1%	0
NJ45N	EBC-8-S1	Low	118%	95.4%	94.7%	101%	0
NJ45P	EBC-10-S1	Low	122%	97.3%	94.3%	101%	0
NJ45Q	EBC-11-S1	Low	119%	97.1%	94.4%	105%	0
NJ45R	EBC-11-S2	Low	123%	97.9%	94.8%	103%	0
NJ45S	EBC-12-S1	Low	104%	101%	93.9%	99.7%	0
LCS/MB LIMITS QC				QC LIMIT	s		
SW8260B		Low		Med	Low	7	Med
(DCE) = d4-1,	2-Dichloroethane	75-120	7	6-120	72-1	34	69-120
(TOL) = d8-To	luene	80-122	8	0-120	78-1	24	80-120
(BFB) = Bromo	fluorobenzene	79-120	8	0-120	66-1	20	76-128
(DCB) = d4-1,	2-Dichlorobenzene	80-120	8	0-120	79-1	20	80-120

Log Number Range: 08-19395 to 08-19412

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-080708 Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-080708

LIMS ID: 08-19395 Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Instrument/Analyst LCS: FINN5/PAB

LCSD: FINN5/PAB

Date Analyzed LCS: 08/07/08 09:13

LCSD: 08/07/08 09:47

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte 	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	51.2	50.0	102%	51.5	50.0	103%	0.6%
Bromomethane	48.2	50.0	96.4%	47.5	50.0	95.0%	1.5%
Vinyl Chloride	44.9	50.0	89.8%	41.7	50.0	83.4%	7.4%
Chloroethane	45.7	50.0	91.4%	45.4	50.0	90.8%	0.7%
Methylene Chloride	51.9	50.0	104%	52.8	50.0	106%	1.7%
Acetone	226	250	90.4%	239	250·	95.6%	5.6%
Carbon Disulfide	47.6	50.0	95.2%	49.0	50.0	98.0%	2.9%
1,1-Dichloroethene	50.4	50.0	101%	53.0	50.0	106%	5.0%
1,1-Dichloroethane	48.5	50.0	97.0%	51.6	50.0	103%	6.2%
trans-1,2-Dichloroethene	48.5	50.0	97.0%	48.5	50.0	97.0%	0.0%
cis-1,2-Dichloroethene	47.9	50.0	95.8%	49.4	50.0	98.8%	3.1%
Chloroform	50.0	50.0	100%	51.3	50.0	103%	2.6%
1,2-Dichloroethane	48.9	50.0	97.8%	52.3	50.0	105%	6.7%
2-Butanone	226	250	90.4%	251	250	100%	10.5%
1,1,1-Trichloroethane	51.2	50.0	102%	51.3	50.0	103%	0.2%
Carbon Tetrachloride	51.7	50.0	103%	51.2	50.0	102%	1.0%
Vinyl Acetate	49.7	50.0	99.4%	49.2	50.0	98.4%	1.0%
Bromodichloromethane	48.0	50.0	96.0%	50.3	50.0	101%	4.7%
1,2-Dichloropropane	46.3	50.0	92.6%	50.8	50.0	102%	9.3%
cis-1,3-Dichloropropene	47.4	50.0	94.8%	50.8	50.0	102%	6.9%
Trichloroethene	49.9	50.0	99.8%	49.5	50.0	99.0%	0.8%
Dibromochloromethane	40.5	50.0	81.0%	41.0	50.0	82.0%	1.2%
1,1,2-Trichloroethane	47.0	50.0	94.0%	50.6	50.0	101%	7.4%
Benzene	51.0	50.0	102%	52.0	50.0	104%	1.9%
trans-1,3-Dichloropropene	39.1	50.0	78.2%	41.8	50.0	83.6%	6.7%
2-Chloroethylvinylether	45.0	50.0	90.0%	50.5	50.0	101%	11.5%
Bromoform	39.4	50.0	78.8%	40.0	50.0	80.0%	1.5%
4-Methyl-2-Pentanone (MIBK)	219	250	87.6%	253	250	101%	14.4%
2-Hexanone	248	250	99.2%	268	250	107%	7.8%
Tetrachloroethene	51.6	50.0	103%	48.8	50.0	97.6%	5.6%
1,1,2,2-Tetrachloroethane	47.8	50.0	95.6%	50.0	50.0	100%	4.5%
Toluene	47.5	50.0	95.0%	50.0	50.0	100%	5.1%
Chlorobenzene	50.6	50.0	101%	47.9	50.0	95.8%	5.5%
Ethylbenzene	51.2	50.0	102%	48.8	50.0	97.6%	4.8%
Styrene	51.4	50.0	103%	49.2	50.0	98.4%	4.4%
Trichlorofluoromethane	50.1	50.0	100%	50.5	50.0	101%	0.8%
1,1,2-Trichloro-1,2,2-trifluoroetha		50.0	102%	50.8	50.0	102%	0.6%
m,p-Xylene	104	100	104%	98.5	100	98.5%	5.4%
o-Xylene	49.8	50.0	99.6%	47.6	50.0	95.2%	4.5%
1,2-Dichlorobenzene	48.8	50.0	97.6%	47.0	50.0	94.0%	3.8%
1,3-Dichlorobenzene	51.6	50.0	103%	49.2	50.0	98.4%	4.8%
1,4-Dichlorobenzene	50.8	50.0	102%	48.4	50.0	96.8%	4.8%
Acrolein	223	250	89.2%	249	250	99.6%	11.0%
Methyl Iodide	47.4	50.0	94.8%	50.5	50.0	101%	6.3%
Bromoethane	49.5	50.0	99.0%	50.7	50.0	101%	2.4%
Acrylonitrile	44.3	50.0	88.6%	49.9	50.0	99.8%	11.9%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-080708

Page 2 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-080708

LIMS ID: 08-19395 Matrix: Soil QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
1,1-Dichloropropene	50.4	50.0	101%	50.3	50.0	101%	0.2%
Dibromomethane	47.6	50.0	95.2%	51.3	50.0	103%	7.5%
1,1,1,2-Tetrachloroethane	49.9	50.0	99.8%	48.7	50.0	97.4%	2.4%
1,2-Dibromo-3-chloropropane	39.6	50.0	79.2%	42.4	50.0	84.8%	6.8%
1,2,3-Trichloropropane	48.6	50.0	97.2%	50.5	50.0	101%	3.8%
trans-1,4-Dichloro-2-butene	47.9	50.0	95.8%	49.3	50.0	98.6%	2.9%
1,3,5-Trimethylbenzene	54.5	50.0	109%	51.2	50.0	102%	6.2%
1,2,4-Trimethylbenzene	54.7	50.0	109%	51.3	50.0	103%	6.4%
Hexachlorobutadiene	47.4	50.0	94.8%	42.3	50.0	84.6%	11.4%
Ethylene Dibromide	45.8	50.0	91.6%	51.4	50.0	103%	11.5%
Bromochloromethane	50.2	50.0	100%	52.6	50.0	105%	4.7%
2,2-Dichloropropane	46.9	50.0	93.8%	48.0	50.0	96.0%	2.3%
1,3-Dichloropropane	50.0	50.0	100%	50.1	50.0	100%	0.2%
Isopropylbenzene	53.9	50.0	108%	51.4	50.0	103%	4.7%
n-Propylbenzene	54.0	50.0	108%	51.1	50.0	102%	5.5%
Bromobenzene	49.5	50.0	99.0%	48.0	50.0	96.0%	3.1%
2-Chlorotoluene	51.5	50.0	103%	47.9	50.0	95.8%	7.2%
4-Chlorotoluene	55.2	50.0	110%	53.3	50.0	107%	3.5%
tert-Butylbenzene	52.3	50.0	105%	48.3	50.0	96.6%	8.0%
sec-Butylbenzene	52.0	50.0	104%	48.7	50.0	97.4%	6.6%
4-Isopropyltoluene	54.7	50.0	109%	50.3	50.0	101%	8.4%
n-Butylbenzene	54.6	50.0	109%	49.8	50.0	99.6%	9.2%
1,2,4-Trichlorobenzene	50.4	50.0	101%	47.0	50.0	94.0%	7.0%
Naphthalene	40.9	50.0	81.8%	42.2	50.0	84.4%	3.1%
1,2,3-Trichlorobenzene	46.2	50.0	92.4%	44.9	50.0	89.8%	2.9%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	104%	113%
d8-Toluene	99.2%	106%
Bromofluorobenzene	100%	98.7%
d4-1,2-Dichlorobenzene	100%	101%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: LCS-081208 Page 1 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-081208

LIMS ID: 08-19398 Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Date Analyzed LCS: 08/12/08 11:17

LCSD: 08/12/08 11:56

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount LCS: 100 mg-dry-wt LCSD: 100 mg-dry-wt Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

Moisture: NA

Chloromethane 2550 2500 102% 2480 2500 99.2% 2.8% Promomethane 2480 2500 99.2% 2380 2500 95.2% 4.1% Vinyl Chloride 2340 2500 99.2% 2380 2500 95.2% 4.1% Chloroethane 2550 2500 102% 2510 2500 100% 1.6% Acetone 12000 12500 96.0% 12900 12500 102% 251	Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Bromomethane	Chloromethane	2550	2500	102%	2480	2500	99.2%	2.8%
Vinyl Chloride 2340 2500 193.6% 2270 2500 96.8% 3.0% Chloroethane 2550 2500 112% 2510 2500 113% 1.6% Methylene Chloride 2850 2500 114% 2820 2500 113% 1.1% Acetone 12000 12500 106% 12500 101% 1.2% Carbon Disulfide 2560 2500 108% 2630 2500 101% 1.2% 1,1-Dichloroethane 2660 2500 106% 2600 2500 104% 1.1% cis-1,2-Dichloroethane 2660 2500 108% 2670 2500 101% 6.2% Chloroform 2690 2500 108% 2670 2500 101% 6.2% Chloroform 2690 2500 106% 2710 2500 107% 2.6 1,2-Pitchloroethane 2600 2500 106% 2710 2500 108% 2.6% <								
Chlorothame								
Methylene Chloride 2550 2500 114% 2820 2500 113% 1.1% Acetone 1200 1250 96.0% 1290 1250 103% 7.2% Carbon Disulfide 2560 2500 103% 2530 2500 101% 1.2% 1,1-Dichloroethane 2650 2500 106% 2600 2500 104% 1.2% 1,1-Dichloroethane 2650 2500 104% 2580 2500 104% 1.2% Chloroform 2690 2500 104% 2580 2500 107% 2520 100% 1.2% 1,2-Dichloroethane 2640 2500 106% 270 2500 107% 2.6% 2-Butanone 12500 12500 100% 2500 107% 2610 2500 107% 2610 2500 107% 2610 2500 103% 2.6% 2500 104% 2.6% 2-Butanone 12500 105% 2600 <	<u>-</u>							
Acetone 12000 12500 96.0% 12900 12500 103% 7.2% Carbon Disulfide 2560 2500 102% 2530 2500 101% 1.2% 1,1-Dichloroethane 2650 2500 106% 2630 2500 105% 2.6% 1,1-Dichloroethane 2650 2500 106% 2600 2500 104% 1.9% cis-1,2-Dichloroethene 2680 2500 107% 2520 2500 101% 6.2% Chloroform 2690 2500 106% 2710 2500 108% 2.6° 2-Butanone 12500 12500 100% 2700 2500 104% 2.6% 2-Butanone 12500 100% 2700 2500 104% 2.6% 2-Butanone 12500 105% 260 2500 104% 2.6% 2-Butanone 2500 105% 260 2500 104% 2.6% 2-Picchloroethane 2720 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Carbon Disulfide								
1.1-Dichloroethane								
1.1-Dichloroethane 2650 2500 104% 2580 2500 104% 1.9% ctans-1,2-Dichloroethene 2610 2500 104% 2580 2500 103% 1.2% ctis-1,2-Dichloroethene 2680 2500 107% 2520 2500 101% 6.2% Chloroform 2690 2500 108% 2670 2500 107% 2500 107% 2.6% 2.5%								
Cris=1,2-Dichloroethene 2610 2500 104% 2520 2500 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 6.2% 101% 10	· · · · · · · · · · · · · · · · · · ·							
cis-1,2-Dichloroethene 2680 2500 107% 2520 2500 101% 6.2% Chloroform 2690 2500 108% 2670 2500 107% 0.7% 1,2-Dichloroethane 2640 2500 106% 2710 2500 108% 2.6% 2-Butanome 12500 12500 100% 12500 12500 103% 3.1% 1,1,1-Trichloroethane 2680 2500 105% 2690 2500 104% 2.6% Carbon Tetrachloride 2630 2500 105% 2690 2500 104% 2.3% Vinyl Acetate 2720 2500 105% 2600 2500 104% 0.8% Bromodichloromethane 2620 2500 95.6% 2370 2500 94.8% 0.8% 1,2-Dichloroppopane 2630 2500 95.6% 2350 94.8% 0.8% Trichloroethane 2400 2500 97.6% 2450 2500 98.0% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Chloroform								
1,2-Dichloroethane 2640 2500 106% 2710 2500 108% 2.6% 2-Butanone 12500 12500 107% 2610 2500 103% 3.1% 1,1,1-Trichloroethane 2680 2500 107% 2610 2500 104% 2.6								
2-Butanone								
1,1Trichloroethane 2680 2500 107% 2610 2500 104% 2.6% Carbon Tetrachloride 2630 2500 105% 2690 2500 104% 2.3% Vinyl Acetate 2720 2500 109% 2600 2500 104% 4.5% Bromodichloromethane 2620 2500 105% 2600 2500 104% 4.5% Bromodichloromethane 2620 2500 105% 2600 2500 104% 0.8% 0.8% 0.2500 25	•							
Carbon Tetrachloride 2630 2500 105% 2690 2500 108% 2.3% Vinyl Acetate 2720 2500 109% 2600 2500 104% 4.5% Bromodichloromethane 2620 2500 105% 2600 2500 104% 0.8% 1,2-Dichloropropane 2390 2500 95.6% 2370 2500 94.8% 0.8% cis-1,3-Dichloropropene 2630 2500 97.6% 2450 2500 98.0% 0.4% Dibromochloromethane 2120 2500 84.8% 2120 2500 98.0% 0.4% Dibromochloropropene 2120 2500 99.6% 2560 2500 98.0% 0.4% Dibromochloropropene 2150 2500 99.6% 2560 2500 106% 1.5% Benzene 2610 2500 104% 2650 2500 106% 1.5% Bromoform 1990 2500 79.6% 1950 2500								
Vinyl Acetate 2720 2500 109% 2600 2500 104% 4.5% Bromodichloromethane 2620 2500 105% 2600 2500 104% 0.8% 1,2-Dichloropropane 2390 2500 95.6% 2370 2500 94.8% 0.8% cis-1,3-Dichloropropene 2630 2500 105% 2610 2500 104% 0.8% Trichloroethene 2440 2500 97.6% 2450 2500 84.8% 0.0% 1,1,2-Trichloroethane 2490 2500 99.6% 2560 2500 102% 2.8% Benzene 2610 2500 86.0% 2240 2500 89.6% 4.1% 2-Chloroethylvinylether 2420 2500 86.0% 2240 2500 89.6% 4.1% 2-Chloroethylvinylether 2420 2500 79.6% 1950 2500 101% 4.0% Bromoform 1990 2500 79.6% 1950 2500								
Bromodichloromethane 2620 2500 105% 2600 2500 104% 0.8% 1,2-Dichloropropane 2390 2500 95.6% 2370 2500 94.8% 0.8% cis-1,3-Dichloropropene 2630 2500 105% 2610 2500 104% 0.8% 2501 2500 2500 104% 0.8% 2501 2500 26% 2500 2500 26% 2500 2500 26% 2500 26% 2500 26% 2500 26% 2500 26% 2500 26% 2500 26% 2500 26% 2500 26% 2500 26% 26% 2500 26% 26% 2500 26% 26% 2500 26% 26% 2500 26% 26% 2500 26% 26								
1,2-Dichloropropane 2390 2500 95.6% 2370 2500 94.8% 0.8% cis-1,3-Dichloropropene 2630 2500 105% 2610 2500 104% 0.8% Cis-1,3-Dichloropropene 2440 2500 97.6% 2450 2500 98.0% 0.4% Dibromochloromethane 2120 2500 84.8% 2120 2500 84.8% 0.0% 1,1,2-Trichloroethane 2490 2500 99.6% 2560 2500 102% 2.8% Renzene 2610 2500 104% 2650 2500 106% 1.5% trans-1,3-Dichloropropene 2150 2500 86.0% 2240 2500 89.6% 4.1% 2-Chloroethylvinylether 2420 2500 96.8% 2520 2500 101% 4.0% Renzene 1990 2500 79.6% 1950 2500 101% 4.0% Renzene 1990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 113% 6.6% Tetrachloroethane 2600 2500 104% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% 2.1% 2.2% Ethylbenzene 2510 2500 106% 2480 2500 99.2% 1.2% Ethylbenzene 2510 2500 106% 2550 2500 104% 2.3% Styrene 2640 2500 106% 2560 2500 104% 2.3% Styrene 2640 2500 106% 2560 2500 106% 2.2% m,p-Xylene 2530 2500 104% 5180 5000 106% 2.2% m,p-Xylene 2530 2500 104% 5180 5000 104% 2.3% 1,2-Trichloroetnzene 2550 2500 104% 5180 5000 104% 2.2% m,p-Xylene 2550 2500 104% 5180 5000 104% 2.4% 1,3-Dichlorobenzene 2560 2500 102% 2460 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2460 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2460 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2460 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2460 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2460 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2460 2500 96.4% 1.6% 1,3-Dichloroben								
cis-1,3-Dichloropropene 2630 2500 105% 2610 2500 104% 0.8% Trichloroethene 2440 2500 97.6% 2450 2500 84.8% 0.0% 1,1,2-Trichloroethane 2490 2500 99.6% 2560 2500 102% 2.8% Benzene 2610 2500 99.6% 2560 2500 106% 1.5% trans-1,3-Dichloropropene 2150 2500 86.0% 2240 2500 89.6% 4.1% 2-Chloroethylvinylether 2420 2500 96.8% 2520 2500 89.6% 4.1% 2-Chloroethylvinylether 1990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone 11990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone 13200 12500 101% 13100 12500 101% 3.1% 2-Hexanone 13200 12500 106% 14100								
Trichloroethene 2440 2500 97.6% 2450 2500 98.0% 0.4% Dibromochloromethane 2120 2500 84.8% 2120 2500 84.8% 0.0% 1,1,2-Trichloroethane 2490 2500 99.6% 2560 2500 102% 2.8% Benzene 2610 2500 104% 2650 2500 106% 1.5% trans-1,3-Dichloropropene 2150 2500 86.0% 2240 2500 89.6% 4.1% 2-Chloroethylvinylether 2420 2500 96.8% 2520 2500 101% 4.0% Bromoform 1990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone (MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 101% 3.1% 6.6% Tetrachloroethene 2600 2500 104% 2520 2500 97.6% 0.8% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% 1,1,2,2-Tetrachloroethane 2530 2500 101% 2530 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2530 2500 101% 2530 2500 101% 2.3% Styrene 2650 2500 106% 2590 2500 101% 2.3% Styrene 2650 2500 106% 2590 2500 106% 2.2% Trichlorofluoromethane 2660 2500 106% 2590 2500 106% 2.3% Styrene 2660 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2500 2500 100% 2.2% m,p-Xylene 2560 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 2500 2500 106% 2.2% m,p-Xylene 2560 2500 2500 2500 2500 2500 2500 2500								
Dibromochloromethane 2120 2500 84.8% 2120 2500 84.8% 0.0% 1,1,2-Trichloroethane 2490 2500 99.6% 2560 2500 102% 2.8% Benzene 2610 2500 104% 2650 2500 106% 1.5% trans-1,3-Dichloropropene 2150 2500 86.0% 2240 2500 89.6% 4.1% 2-Chloroethylvinylether 2420 2500 96.8% 2520 2500 101% 4.0% Bromoform 1990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone (MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2500 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2500 97.6% 0.8% Toluene 2530 2500 101% 2500 97.6% 0.8% Styrene 2650 2500 106% 2650 2500 101% 0.0% Chlorobenzene 2510 2500 106% 2650 2500 101% 0.0% Styrene 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorobenzene 2530 2500 106% 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2500 106% 2.2% m,p-Xylene 2560 2560 2560 2560 2560								
1,1,2-Trichloroethane								
Benzene								
trans-1,3-Dichloropropene 2150 2500 86.0% 2240 2500 89.6% 4.1% 2-Chloroethylvinylether 2420 2500 96.8% 2520 2500 101% 4.0% Bromoform 1990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone (MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 113% 6.6% Tetrachloroethene 2600 2500 104% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% Toluene 2530 2500 101% 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 2.3% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 104% 2.2% m,p-Xylene 2530 2500 101% 2500 98.0% 2410 2500 96.4% 1.6% 1,2-Dichlorobenzene 2560 2500 102% 2500 103% 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2550 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2550 2500 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2550 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 2500 106% 250								
2-Chloroethylvinylether 2420 2500 96.8% 2520 2500 101% 4.0% Bromoform 1990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone (MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2.0% 4-Methyl-2-Pentanone (MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 113% 6.6% Tetrachloroethene 2600 2500 104% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% Toluene 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2650 2500 106% 2590 2500 101% 0.0% Styrene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2660 2500 106% 2650 2500 106% 2.3% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 2.2% m,p-Xylene 5220 5000 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 106% 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 106% 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 106% 2500 100% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1.3-Dichlorobenzene 2560 2500 102% 2500 102% 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 3.9% Acrolein 12500 12500 104% 2500 2500 100% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2500 2500 104% 3.9%								
Bromoform 1990 2500 79.6% 1950 2500 78.0% 2.0% 4-Methyl-2-Pentanone (MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 113% 6.6% Tetrachloroethene 2600 2500 104% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% Toluene 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 2650 2500 106% 2.3% Trichlorofluoromethane 2660 2500 106% 2650 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 104% 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 106% 2.2% m,p-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1.2% 1.2~Dichlorobenzene 2450 2500 2500 101% 2500 96.4% 1.6% 1.3~Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1.4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1.4-Dichlorobenzene 2560 2500 102% 2500 2500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 104% 3.9% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								
4-Methyl-2-Pentanone (MIBK) 12600 12500 101% 13100 12500 105% 3.9% 2-Hexanone 13200 12500 106% 14100 12500 113% 6.6% Tetrachloroethene 2600 2500 104% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% Toluene 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 2650 2500 106% 2.3% Trichlorofluoromethane 2660 2500 106% 2560 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 106% 2500 106% 2500 106% 2.2% m,p-Xylene 2530 2500 106% 2500 106% 2500 106% 2.2% m,p-Lylene 2530 2500 106% 2500 106% 2500 106% 2.2% m,p-Lylene 2530 2500 106% 2500 106% 2500 106% 2.2% m,p-Lylene 2530 2500 106% 2500 106% 2500 106% 2.2% m,p-Lylene 2530 2500 106% 2500 106% 2500 106% 2.2% m,p-Lylene 2530 2500 106% 2500 106% 2500 106% 2.2% m,p-Lylene 2530 2500 106% 2500 2500 100% 1.2% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 98.4% 4.0% Acrolein 12500 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 2500 104% 2590 2500 104% 0.4% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								
2-Hexanone 13200 12500 106% 14100 12500 113% 6.6% Tetrachloroethene 2600 2500 104% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% Toluene 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 106% 0.4% 1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 2500 101%								3.9%
Tetrachloroethene 2600 2500 104% 2520 2500 101% 3.1% 1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% Toluene 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 106% 2.2% m,p-Xylene 2530 2500 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,3-Dichlorobenzene 2560 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 3.9% Methyl Iodide 2610 2500 12500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 100% 4.3% Bromoethane								6.6%
1,1,2,2-Tetrachloroethane 2420 2500 96.8% 2440 2500 97.6% 0.8% Toluene 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 102% 3.8% 1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Toluene 2530 2500 101% 2530 2500 101% 0.0% Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 102% 3.8% 1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1A-Dichlorobenzene 2560 2500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								0.8%
Chlorobenzene 2510 2500 100% 2480 2500 99.2% 1.2% Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 102% 3.8% 1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000								
Ethylbenzene 2650 2500 106% 2590 2500 104% 2.3% Styrene 2640 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 102% 3.8% 1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 2500 104%	Chlorobenzene					2500	99.2%	1.2%
Styrene 2640 2500 106% 2650 2500 106% 0.4% Trichlorofluoromethane 2660 2500 106% 2560 2500 102% 3.8% 1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 2500 104% 2500 2500 104% 0.4% Bromoethane 2600 2500 104%								
Trichlorofluoromethane 2660 2500 106% 2560 2500 102% 3.8% 1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 2500 104% 2500 2500 104% 0.4% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%				106%		2500	106%	0.4%
1,1,2-Trichloro-1,2,2-trifluoroetha 2720 2500 109% 2660 2500 106% 2.2% m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%				106%			102%	3.8%
m,p-Xylene 5220 5000 104% 5180 5000 104% 0.8% o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%		2720	2500	109%	2660	2500	106%	2.2%
o-Xylene 2530 2500 101% 2500 2500 100% 1.2% 1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%							104%	0.8%
1,2-Dichlorobenzene 2450 2500 98.0% 2410 2500 96.4% 1.6% 1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%	o-Xylene			101%			100%	1.2%
1,3-Dichlorobenzene 2560 2500 102% 2500 2500 100% 2.4% 1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								
1,4-Dichlorobenzene 2560 2500 102% 2460 2500 98.4% 4.0% Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								2.4%
Acrolein 12500 12500 100% 13000 12500 104% 3.9% Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								
Methyl Iodide 2610 2500 104% 2500 2500 100% 4.3% Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								
Bromoethane 2600 2500 104% 2590 2500 104% 0.4%								
	4							

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-081208 Page 2 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-081208 LIMS ID: 08-19398

Matrix: Soil

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC 17490-01

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1,1-Dichloropropene	2680	2500	107%	2640	2500	106%	1.5%
Dibromomethane	2410	2500	96.4%	2540	2500	102%	5.3%
1,1,1,2-Tetrachloroethane	2610	2500	104%	2600	2500	104%	0.4%
1,2-Dibromo-3-chloropropane	2180	2500	87.2%	2250	2500	90.0%	3.2%
1,2,3-Trichloropropane	2630	2500	105%	2690	2500	108%	2.3%
trans-1,4-Dichloro-2-butene	2500	2500	100%	2540	2500	102%	1.6%
1,3,5-Trimethylbenzene	2680	2500	107%	2560	2500	102%	4.6%
1,2,4-Trimethylbenzene	2730	2500	109%	2620	2500	105%	4.1%
Hexachlorobutadiene	2590	2500	104%	2590	2500	104%	0.0%
Ethylene Dibromide	2490	2500	99.6%	2480	2500	99.2%	0.4%
Bromochloromethane	2630	2500	105%	2660	2500	106%	1.1%
2,2-Dichloropropane	2720	2500	109%	2660	2500	106%	2.2%
1,3-Dichloropropane	2650	2500	106%	2700	2500	108%	1.9%
Isopropylbenzene	2640	2500	106%	2530	2500	101%	4.3%
n-Propylbenzene	2680	2500	107%	2550	2500	102%	5.0%
Bromobenzene	2410	2500	96.4%	2360	2500	94.4%	2.1%
2-Chlorotoluene	2590	2500	104%	2410	2500	96.4%	7.2%
4-Chlorotoluene	2710	2500	108%	2670	2500	107%	1.5%
tert-Butylbenzene	2490	2500	99.6%	2480	2500	99.2%	0.4%
sec-Butylbenzene	2590	2500	104%	2500	2500	100%	3.5%
4-Isopropyltoluene	2730	2500	109%	2640	2500	106%	3.4%
n-Butylbenzene	2720	2500	109%	2590	2500	104%	4.9%
1,2,4-Trichlorobenzene	2650	2500	106%	2610	2500	104%	1.5%
Naphthalene	2240	2500	89.6%	2300	2500	92.0%	2.6%
1,2,3-Trichlorobenzene	2580	2500	103%	2590	2500	104%	0.4%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	109%	109%
d8-Toluene	97.2%	98.4%
Bromofluorobenzene	101%	100%
d4-1,2-Dichlorobenzene	98.7%	100%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-081208

Page 1 of 2 LAB CONTROL SAMPLE

Lab Sample ID: LCS-081208

LIMS ID: 08-19405 Matrix: Soil

Data Release Authorized: Reported: 08/15/08

Instrument/Analyst LCS: FINN5/PAB

LCSD: FINN5/PAB

Date Analyzed LCS: 08/12/08 11:17

LCSD: 08/12/08 11:56

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA
Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	51.0	50.0	102%	49.6	50.0	99.2%	2.8%
Bromomethane	49.7	50.0	99.4%	47.5	50.0	95.0%	4.5%
Vinyl Chloride	46.8	50.0	93.6%	45.3	50.0	90.6%	3.3%
Chloroethane	51.1	50.0	102%	50.3	50.0	101%	1.6%
Methylene Chloride	57.0	50.0	114%	56.3	50.0	113%	1.2%
Acetone	240	250	96.0%	259	250	104%	7.6%
Carbon Disulfide	51.3	50.0	103%	50.6	50.0	101%	1.4%
1,1-Dichloroethene	54.1	50.0	108%	52.5	50.0	105%	3.0%
1,1-Dichloroethane	53.1	50.0	106%	51.9	50.0	104%	2.3%
trans-1,2-Dichloroethene	52.3	50.0	105%	51.6	50.0	103%	1.3%
cis-1,2-Dichloroethene	53.5	50.0	107%	50.4	50.0	101%	6.0%
Chloroform	53.9	50.0	108%	53.4	50.0	107%	0.9%
1,2-Dichloroethane	52.9	50.0	106%	54.3	50.0	109%	2.6%
2-Butanone	249	250	99.6%	258	250	103%	3.6%
1,1,1-Trichloroethane	53.5	50.0	107%	52.3	50.0	105%	2.3%
Carbon Tetrachloride	52.6	50.0	105%	53.8	50.0	108%	2.3%
Vinyl Acetate	54.4	50.0	109%	52.0	50.0	104%	4.5%
Bromodichloromethane	52.3	50.0	105%	52.0	50.0	104%	0.6%
1,2-Dichloropropane	47.8	50.0	95.6%	47.4	50.0	94.8%	0.8%
cis-1,3-Dichloropropene	52.7	50.0	105%	52.1	50.0	104%	1.1%
Trichloroethene	48.9	50.0	97.8%	49.0	50.0	98.0%	0.2%
Dibromochloromethane	42.4	50.0	84.8%	42.5	50.0	85.0%	0.2%
1,1,2-Trichloroethane	49.9	50.0	99.8%	51.3	50.0	103%	2.8%
Benzene	52.3	50.0	105%	53.0	50.0	106%	1.3%
trans-1,3-Dichloropropene	43.0	50.0	86.0%	44.8	50.0	89.6%	4.1%
2-Chloroethylvinylether	48.5	50.0	97.0%	50.5	50.0	101%	4.0%
Bromoform	39.9	50.0	79.8%	39.0	50.0	78.0%	2.3%
4-Methyl-2-Pentanone (MIBK)	251	250	100%	262	250	105%	4.3%
2-Hexanone	265	250	106%	281	250	112%	5.9%
Tetrachloroethene	52.0	50.0	104%	50.5	50.0	101%	2.9%
1,1,2,2-Tetrachloroethane	48.4	50.0	96.8%	48.7	50.0	97.4%	0.6%
Toluene	50.7	50.0	101%	50.6	50.0	101%	0.2%
Chlorobenzene	50.3	50.0	101%	49.5	50.0	99.0%	1.6%
Ethylbenzene	53.0	50.0	106%	51.9	50.0	104%	2.1%
Styrene	52.8	50.0	106%	53.0	50.0	106%	0.4%
Trichlorofluoromethane	53.2	50.0	106%	51.1	50.0	102%	4.0%
1,1,2-Trichloro-1,2,2-trifluoroetha	54.4	50.0	109%	53.2	50.0	106%	2.2%
m,p-Xylene	104	100	104%	104	100	104%	0.0%
o-Xylene	50.6	50.0	101%	49.9	50.0	99.8%	1.4%
1,2-Dichlorobenzene	48.9	50.0	97.8%	48.1	50.0	96.2%	1.6%
1,3-Dichlorobenzene	51.2	50.0	102%	50.0	50.0	100%	2.4%
1,4-Dichlorobenzene	51.1	50.0	102%	49.3	50.0	98.6%	3.6%
Acrolein	249	250	99.6%	260	250	104%	4.3%
Methyl Iodide	52.3	50.0	105%	50.1	50.0	100%	4.3%
Bromoethane	51.9	50.0	104%	51.7	50.0	103%	0.4%
Acrylonitrile	49.7	50.0	99.4%	51.7	50.0	103%	3.9%
1	• •						

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-081208

LAB CONTROL SAMPLE Page 2 of 2

Lab Sample ID: LCS-081208

LIMS ID: 08-19405 Matrix: Soil

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1,1-Dichloropropene	53.5	50.0	107%	52.8	50.0	106%	1.3%
Dibromomethane	48.2	50.0	96.4%	50.8	50.0	102%	5.3%
1,1,1,2-Tetrachloroethane	52.3	50.0	105%	51.9	50.0	104%	0.8%
1,2-Dibromo-3-chloropropane	43.7	50.0	87.4%	45.0	50.0	90.0%	2.9%
1,2,3-Trichloropropane	52.6	50.0	105%	53.9	50.0	108%	2.4%
trans-1,4-Dichloro-2-butene	50.0	50.0	100%	50.8	50.0	102%	1.6%
1,3,5-Trimethylbenzene	53.6	50.0	107%	51.2	50.0	102%	4.6%
1,2,4-Trimethylbenzene	54.5	50.0	109%	52.3	50.0	105%	4.1%
Hexachlorobutadiene	51.8	50.0	104%	51.8	50.0	104%	0.0%
Ethylene Dibromide	49.9	50.0	99.8%	49.6	50.0	99.2%	0.6%
Bromochloromethane	52.6	50.0	105%	53.2	50.0	106%	1.1%
2,2-Dichloropropane	54.5	50.0	109%	53.1	50.0	106%	2.6%
1,3-Dichloropropane	52.9	50.0	106%	54.0	50.0	108%	2.1%
Isopropylbenzene	52.8	50.0	106%	50.6	50.0	101%	4.3%
n-Propylbenzene	53.7	50.0	107%	51.1	50.0	102%	5.0%
Bromobenzene	48.1	50.0	96.2%	47.1	50.0	94.2%	2.1%
2-Chlorotoluene	51.7	50.0	103%	48.2	50.0	96.4%	7.0%
4-Chlorotoluene	54.2	50.0	108%	53.5	50.0	107%	1.3%
tert-Butylbenzene	49.8	50.0	99.6%	49.5	50.0	99.0%	0.6%
sec-Butylbenzene	51.8	50.0	104%	50.0	50.0	100%	3.5%
4-Isopropyltoluene	54.6	50.0	109%	52.8	50.0	106%	3.4%
n-Butylbenzene	54.4	50.0	109%	51.9	50.0	104%	4.7%
1,2,4-Trichlorobenzene	53.0	50.0	106%	52.2	50.0	104%	1.5%
Naphthalene	44.8	50.0	89.6%	46.0	50.0	92.0%	2.6%
1,2,3-Trichlorobenzene	51.6	50.0	103%	51.8	50.0	104%	0.4%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	109%	109%
d8-Toluene	97.2%	98.4%
Bromofluorobenzene	101%	100%
d4-1.2-Dichlorobenzene	98.7%	100%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: MB-080708 Page 1 of 2 METHOD BLANK

Lab Sample ID: MB-080708

LIMS ID: 08-19395 Matrix: Soil

Data Release Authorized: Reported: 08/15/08

Instrument/Analyst: FINN5/PAB Date Analyzed: 08/07/08 10:14 QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	Ū
75-01-4	Vinyl Chloride	1.0	< 1.0	Ū
75-00-3	Chloroethane	1.0	< 1.0	Ū
75-09-2	Methylene Chloride	2.0	< 2.0	Ū
67-64-1	Acetone	5.0	< 5.0	Ū
75-15-0	Carbon Disulfide	1.0	< 1.0	Ū
75-35-4	1,1-Dichloroethene	1.0	< 1.0	Ū
75-34-3	1,1-Dichloroethane	1.0	< 1.0	Ū
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	Ū
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ū
67-66-3	Chloroform	1.0	< 1.0	ΰ
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ū
78-93-3	2-Butanone	5.0	< 5.0	Ū
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	Ū
56-23-5	Carbon Tetrachloride	1.0	< 1.0	Ū
108-05-4	Vinyl Acetate	5.0	< 5.0	Ū
75-27-4	Bromodichloromethane	1.0	< 1.0	Ü
78-87-5	1,2-Dichloropropane	1.0	< 1.0	Ū
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	Ū
79-01-6	Trichloroethene	1.0	< 1.0	ΰ
124-48-1	Dibromochloromethane	1.0	< 1.0	Ū
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	Ū
71-43-2	Benzene	1.0	< 1.0	Ū
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	Ū
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	Ū
75-25-2	Bromoform	1.0	< 1.0	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	Ū
591-78-6	2-Hexanone	5.0	< 5.0	Ū
127-18-4	Tetrachloroethene	1.0	< 1.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	Ū
108-88-3	Toluene	1.0	< 1.0	Ū
108-90-7	Chlorobenzene	1.0	< 1.0	Ū
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	Ū
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0	U
107-02-8	Acrolein	50	< 50	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	2.0	< 2.0	U
107-13-1	Acrylonitrile	5.0	< 5.0	U

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-080708

Page 2 of 2 METHOD BLANK

Lab Sample ID: MB-080708 QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19395 Project: Pier 23-EBC Matrix: Soil 17490-01

Date Analyzed: 08/07/08 10:14

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.0	< 1.0	U
74-95-3	Dibromomethane	1.0	< 1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	< 1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	< 5.0	U
96-18-4	1,2,3-Trichloropropane	2.0	< 2.0	U
110-57-6	trans-1,4-Dichloro-2-butene	5.0	< 5.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	< 1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	< 1.0	U
87-68-3	Hexachlorobutadiene	5.0	< 5.0	U
106-93-4	Ethylene Dibromide	1.0	< 1.0	U
74-97-5	Bromochloromethane	1.0	< 1.0	U
594-20-7	2,2-Dichloropropane	1.0	< 1.0	U
142-28-9	1,3-Dichloropropane	1.0	< 1.0	Ü
98-82-8	Isopropylbenzene	1.0	< 1.0	U
103-65-1	n-Propylbenzene	1.0	< 1.0	U
108-86-1	Bromobenzene	1.0	< 1.0	U
95-49-8	2-Chlorotoluene	1.0	< 1.0	U
106-43-4	4-Chlorotoluene	1.0	< 1.0	U
98-06-6	tert-Butylbenzene	1.0	< 1.0	U
135-98-8	sec-Butylbenzene	1.0	< 1.0	U
99-87-6	4-Isopropyltoluene	1.0	< 1.0	U
104-51-8	n-Butylbenzene	1.0	< 1.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0	U
91-20-3	Naphthalene	5.0	< 5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	< 5.0	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	115%
d8-Toluene	99.2%
Bromofluorobenzene	95.5%
d4-1.2-Dichlorobenzene	100%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-081208 Page 1 of 2

METHOD BLANK

Lab Sample ID: MB-081208

LIMS ID: 08-19405

Matrix: Soil

Data Release Authorized:

Reported: 08/15/08

Date Sampled: NA Date Received: NA

Instrument/Analyst: FINN5/PAB Sample Amount: 5.00 g-dry-wt Date Analyzed: 08/12/08 12:22

Purge Volume: 5.0 mL Moisture: NA

QC Report No: NJ45-Hart Crowser, Inc.

17490-01

Project: Pier 23-EBC

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	1.0	< 1.0	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	1.0	< 1.0	U
75-00-3	Chloroethane	1.0	< 1.0	U
75-09-2	Methylene Chloride	2.0	< 2.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	1.0	< 1.0	U
75-35-4	1,1-Dichloroethene	1.0	< 1.0	U
75-34-3	1,1-Dichloroethane	1.0	< 1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	< 1.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	< 1.0	Ω
67-66-3	Chloroform	1.0	< 1.0	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	U
78-93-3	2-Butanone	5.0	< 5.0	U
71-55-6	1,1,1-Trichloroethane	1.0	< 1.0	U
56-23-5	Carbon Tetrachloride	1.0	< 1.0	U
108-05-4	Vinyl Acetate	5.0	< 5.0	U
75-27-4	Bromodichloromethane	1.0	< 1.0	U
78-87-5	1,2-Dichloropropane	1.0	< 1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	< 1.0	U
79-01-6	Trichloroethene	1.0	< 1.0	U
124-48-1	Dibromochloromethane	1.0	< 1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	< 1.0	U
71-43-2	Benzene	1.0	< 1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	< 1.0	U
110-75-8	2-Chloroethylvinylether	5.0	< 5.0	U
75-25-2	Bromoform	1.0	< 1.0	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	5.0	< 5.0	U
591-78-6	2-Hexanone	5.0	< 5.0	U
127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
108-90-7	Chlorobenzene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	U
100-42-5	Styrene	1.0	< 1.0	U
75-69-4	Trichlorofluoromethane	1.0	< 1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	2.0	< 2.0	U
1330-20-7	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0	U
107-02-8	Acrolein	50	< 50	U
74-88-4	Methyl Iodide	1.0	< 1.0	υ
74-96-4	Bromoethane	2.0	< 2.0	U
107-13-1	Acrylonitrile	5.0	< 5.0	U

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-081208

Page 2 of 2 METHOD BLANK

Lab Sample ID: MB-081208 QC Re LIMS ID: 08-19405

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC

Matrix: Soil 17490-01 Date Analyzed: 08/12/08 12:22

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	1.0	< 1.0	U
74-95-3	Dibromomethane	1.0	< 1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	< 1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	< 5.0	U
96-18-4	1,2,3-Trichloropropane	2.0	< 2.0	U
110-57-6	trans-1,4-Dichloro-2-butene	5.0	< 5.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	< 1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	< 1.0	U
87-68-3	Hexachlorobutadiene	5.0	< 5.0	U
106-93-4	Ethylene Dibromide	1.0	< 1.0	U
74-97-5	Bromochloromethane	1.0	< 1.0	U
594-20-7	2,2-Dichloropropane	1.0	< 1.0	U
142-28-9	1,3-Dichloropropane	1.0	< 1.0	U
98-82-8	Isopropylbenzene	1.0	< 1.0	U
103-65-1	n-Propylbenzene	1.0	< 1.0	U
108-86-1	Bromobenzene	1.0	< 1.0	U
95-49-8	2-Chlorotoluene	1.0	< 1.0	U
106-43-4	4-Chlorotoluene	1.0	< 1.0	U
98-06-6	tert-Butylbenzene	1.0	< 1.0	U
135-98-8	sec-Butylbenzene	1.0	< 1.0	U
99-87-6	4-Isopropyltoluene	1.0	< 1.0	U
104-51-8	n-Butylbenzene	1.0	< 1.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0	U
91-20-3	Naphthalene	5.0	< 5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	< 5.0	υ

Reported in μ g/kg (ppb)

d4-1,2-Dichloroethane	116%
d8-Toluene	96.7%
Bromofluorobenzene	93.2%
d4-1,2-Dichlorobenzene	102%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-081208

Page 1 of 2

Lab Sample ID: MB-081208

LIMS ID: 08-19398 Matrix: Soil

Data Release Authorized:

Instrument/Analyst: FINN5/PAB

Date Analyzed: 08/12/08 12:22

Reported: 08/15/08

QC Report No: NJ45-Hart Crowser, Inc.

METHOD BLANK

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 100 mg-dry-wt

Purge Volume: 5.0 mL

Moisture: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	50	< 50	U
74-83-9	Bromomethane	50	< 50	U
75-01-4	Vinyl Chloride	50	< 50	U
75-00-3	Chloroethane	50	< 50	U
75-09-2	Methylene Chloride	100	< 100	U
67-64-1	Acetone	250	< 250	U
75-15-0	Carbon Disulfide	50	< 50	U
75-35-4	1,1-Dichloroethene	50	< 50	U
75-34-3	1,1-Dichloroethane	50	< 50	U
156-60-5	trans-1,2-Dichloroethene	50	< 50	U
156-59-2	cis-1,2-Dichloroethene	50	< 50	U
67-66-3	Chloroform	50	< 50	U
107-06-2	1,2-Dichloroethane	50	< 50	U
78-93-3	2-Butanone	250	< 250	U
71-55-6	1,1,1-Trichloroethane	50	< 50	U
56-23-5	Carbon Tetrachloride	50	< 50	Ū
108-05-4	Vinyl Acetate	250	< 250	Ū
75-27-4	Bromodichloromethane	50	< 50	Ū
78-87-5	1,2-Dichloropropane	50	< 50	Ū
10061-01-5	cis-1,3-Dichloropropene	50	< 50	U
79-01-6	Trichloroethene	50	< 50	U
124-48-1	Dibromochloromethane	50	< 50	ΰ
79-00-5	1,1,2-Trichloroethane	50	< 50	U
71-43-2	Benzene	50	< 50	ΰ
10061-02-6	trans-1,3-Dichloropropene	50	< 50	U
110-75-8	2-Chloroethylvinylether	250	< 250	U
75-25-2	Bromoform	50	< 50	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	250	< 250	U
591-78-6	2-Hexanone	250	< 250	U
127-18-4	Tetrachloroethene	50	< 50	υ
79-34-5	1,1,2,2-Tetrachloroethane	50	< 50	U
108-88-3	Toluene	50	< 50	U
	Chlorobenzene	50	< 50	U
108-90-7		50	< 50	U
100-41-4	Ethylbenzene	50 50	< 50 < 50	U
100-42-5	Styrene	50 50	< 50 < 50	U
75-69-4	Trichlorofluoromethane		< 100	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluo		< 50	U
1330-20-7	m,p-Xylene	50	< 50 < 50	U
95-47-6	o-Xylene	50		-
95-50-1	1,2-Dichlorobenzene	50	< 50	U
541-73-1	1,3-Dichlorobenzene	50	< 50	U
106-46-7	1,4-Dichlorobenzene	50	< 50	Ü
107-02-8	Acrolein	2,500	< 2,500	U
74-88-4	Methyl Iodide	50	< 50	U
74-96-4	Bromoethane	100	< 100	U
107-13-1	Acrylonitrile	250	< 250	U

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-081208 Page 2 of 2

METHOD BLANK

QC Report No: NJ45-Hart Crowser, Inc. Lab Sample ID: MB-081208

Project: Pier 23-EBC LIMS ID: 08-19398 17490-01 Matrix: Soil

Date Analyzed: 08/12/08 12:22

CAS Number	Analyte	RL	Result	Q
563-58-6	1,1-Dichloropropene	50	< 50	U
74-95-3	Dibromomethane	50	< 50	U
630-20-6	1,1,1,2-Tetrachloroethane	50	< 50	U
96-12-8	1,2-Dibromo-3-chloropropane	250	< 250	U
96-18-4	1,2,3-Trichloropropane	100	< 100	U
110-57-6	trans-1,4-Dichloro-2-butene	250	< 250	U
108-67-8	1,3,5-Trimethylbenzene	50	< 50	Ū
95-63-6	1,2,4-Trimethylbenzene	50	< 50	U
87-68-3	Hexachlorobutadiene	250	< 250	U
106-93-4	Ethylene Dibromide	50	< 50	U
74-97-5	Bromochloromethane	50	< 50	Ų
594-20-7	2,2-Dichloropropane	50	< 50	U
142-28-9	1,3-Dichloropropane	50	< 50	U
98-82-8	Isopropylbenzene	50	< 50	U
103-65-1	n-Propylbenzene	50	< 50	U
108-86-1	Bromobenzene	50	< 50	U
95-49-8	2-Chlorotoluene	50	< 50	U
106-43-4	4-Chlorotoluene	50	< 50	U
98-06-6	tert-Butylbenzene	50	< 50	U
135-98-8	sec-Butylbenzene	50	< 50	U
99-87-6	4-Isopropyltoluene	50	< 50	U
104-51-8	n-Butylbenzene	50	< 50	U
120-82-1	1,2,4-Trichlorobenzene	250	< 250	U
91-20-3	Naphthalene	250	< 250	U
87-61-6	1,2,3-Trichlorobenzene	250	< 250	U

Reported in $\mu g/kg$ (ppb)

d4-1,2-Dichloroethane	116%
d8-Toluene	96.7%
Bromofluorobenzene	93.2%
d4-1.2-Dichlorobenzene	102%

Page 1 of 2

Lab Sample ID: NJ45A LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/20/08 14:13 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-1-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 8.00 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 4.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	190	< 190 U
111-44-4	Bis-(2-Chloroethyl) Ether	190	< 190 U
95-57-8	2-Chlorophenol	190	< 190 U
541-73-1	1,3-Dichlorobenzene	190	< 190 U
106-46-7	1,4-Dichlorobenzene	190	< 190 U
100-51-6	Benzyl Alcohol	190	< 190 U
95-50-1	1,2-Dichlorobenzene	190	< 190 U
95-48-7	2-Methylphenol	190	< 190 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	190	< 190 U
106-44-5	4-Methylphenol	190	< 190 U
621-64-7	N-Nitroso-Di-N-Propylamine	940	< 940 U
67-72-1	Hexachloroethane	190	< 190 U
98-95-3	Nitrobenzene	190	< 190 U
78-59-1	Isophorone	190	< 190 U
88-75-5	2-Nitrophenol	190	< 190 U
105-67-9	2,4-Dimethylphenol	190	< 190 U
65-85-0	Benzoic Acid	1,900	< 1,900 U
111-91-1	bis(2-Chloroethoxy) Methane	190	< 190 U
120-83-2	2,4-Dichlorophenol	940	< 940 U
120-82-1	1,2,4-Trichlorobenzene	190	< 190 U
91-20-3	Naphthalene	190	420
106-47-8	4-Chloroaniline	940	< 940 U
87-68-3	Hexachlorobutadiene	190	< 190 U
59-50-7	4-Chloro-3-methylphenol	940	< 940 U
91-57-6	2-Methylnaphthalene	190	< 190 U
77-47-4	Hexachlorocyclopentadiene	940	< 940 U
88-06-2	2,4,6-Trichlorophenol	940	< 940 U
95-95-4	2,4,5-Trichlorophenol	940	< 940 U
91-58-7	2-Chloronaphthalene	190	< 190 U
88-74-4	2-Nitroaniline	940	< 940 U
131-11-3	Dimethylphthalate	190	< 190 U
208-96-8	Acenaphthylene	190	< 190 U
99-09-2	3-Nitroaniline	940	< 940 U
83-32-9	Acenaphthene	190	< 190 U
51-28-5	2,4-Dinitrophenol	1,900	< 1,900 U
100-02-7	4-Nitrophenol	940	< 940 U
132-64-9	Dibenzofuran	190	250
606-20-2	2,6-Dinitrotoluene	940	< 940 U
121-14-2	2,4-Dinitrotoluene	940	< 940 U

Page 2 of 2

Lab Sample ID: NJ45A LIMS ID: 08-19394 SAMPLE

Sample ID: EBC-1-S1

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Matrix: Soil
Date Analyzed: 08/20/08 14:13

84-66-2 Diethylphthalate	190 190	< 190 U
	190	
7005-72-3 4-Chlorophenyl-phenylether		< 190 U
86-73-7 Fluorene	190	300
100-01-6 4-Nitroaniline	940	< 940 U
534-52-1 4,6-Dinitro-2-Methylphenol	1,900	< 1,900 U
86-30-6 N-Nitrosodiphenylamine	190	< 190 U
101-55-3 4-Bromophenyl-phenylether	190	< 190 U
118-74-1 Hexachlorobenzene	190	< 190 U
87-86-5 Pentachlorophenol	940	< 940 U
85-01-8 Phenanthrene	190	2,100
86-74-8 Carbazole	190	240
120-12-7 Anthracene	190	340
84-74-2 Di-n-Butylphthalate	190	< 190 U
206-44-0 Fluoranthene	190	2,200
129-00-0 Pyrene	190	1,800
85-68-7 Butylbenzylphthalate	190	200
91-94-1 3,3'-Dichlorobenzidine	940	< 940 U
56-55-3 Benzo(a) anthracene	190	630
117-81-7 bis(2-Ethylhexyl)phthalate	190	1,800
218-01-9 Chrysene	190	800
117-84-0 Di-n-Octyl phthalate	190	< 190 U
205-99-2 Benzo(b) fluoranthene	190	860
207-08-9 Benzo(k) fluoranthene	190	680
50-32-8 Benzo(a)pyrene	190	700
193-39-5 Indeno(1,2,3-cd)pyrene	190	330
53-70-3 Dibenz (a, h) anthracene	190	< 190 U
191-24-2 Benzo(g,h,i)perylene	190	400
90-12-0 1-Methylnaphthalene	190	< 190 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	61.8%	2-Fluorobiphenyl	71.3%
d14-p-Terphenyl	85.4%	d4-1,2-Dichlorobenzene	65.8%
d5-Phenol	69.4%	2-Fluorophenol	60.1%
2.4.6-Tribromophenol	68.4%	d4-2-Chlorophenol	65.7%

Page 1 of 2

Lab Sample ID: NJ45B LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized: Reported: 08/26/08

Date Extracted: 08/11/08
Date Analyzed: 08/20/08 14:47
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-1-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 8.54 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 6.8%

108-95-2 Phenol	CAS Number	Analyte	RL	Result
95-57-8	108-95-2	Phenol	58	< 58 U
541-73-1 1,3-Dichlorobenzene 58 < 58	111-44-4		58	< 58 U
106-46-7 1,4-Dichlorobenzene 58 < 58 U 100-51-6 Benzyl Alcohol 58 < 58 U 95-50-1 1,2-Dichlorobenzene 58 < 58 U 95-48-7 2-Methylphenol 58 < 58 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 58 < 58 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 58 < 58 U 106-44-5 4-Methylphenol 58 < 58 U 106-44-7 N-Nitroso-Di-N-Propylamine 290 < 290 U 67-72-1 Hexachloroethane 58 < 58 U 98-95-3 Nitrobenzene 58 < 58 U 98-95-3 Nitrobenzene 58 < 58 U 105-67-9 2,4-Dimethylphenol 58 < 58 U 105-67-9 2,4-Dimethylphenol 58 < 58 U 111-91-1 bis(2-Chloroethoxy) Methane 58 < 58 U 120-83-2 2,4-Dichlorophenol 58 < 58 U 120-83-2 2,4-Dichlorophenol 59 < 290 U 120-82-1 1,2,4-Trichlorobenzene 58 < 58 U 91-20-3 Naphthalene 58 < 58 U 91-64-78 4-Chloroaniline 290 < 290 U 17-67-74 Hexachlorobutadiene 58 < 58 U 17-67-74 Hexachlorobutadiene 58 < 58 U 17-68-3 Hexachlorobutadiene 58 < 58 U 18-66-2 2,4,6-Trichlorophenol 290 < 290 U 19-57-6 2-Methylnaphthalene 58 < 58 U 19-58-7 4-Chloroanphthalene 58 < 58 U 19-58-7 4-Chloronphenol 290 < 290 U 19-58-7 4-Chloronphenol 290 < 290 U 19-58-7 4-Chloronphenol 290 < 290 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 4-Chloronphenol 290 < 290 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-58-7 2-Methylnaphthalene 58 < 58 U 19-59-90-90 2 3-Nitroaniline	95-57-8	2-Chlorophenol	58	< 58 U
100-51-6 Benzyl Alcohol 58 < 58	541-73-1	1,3-Dichlorobenzene	58	< 58 U
95-50-1 1,2-Dichlorobenzene 58 < 58 U 95-48-7 2-Methylphenol 58 < 58 U 108-60-1 2,2'-Oxybis (1-Chloropropane) 58 < 58 U 108-60-1 2,2'-Oxybis (1-Chloropropane) 58 < 58 U 106-44-5 4-Methylphenol 58 < 58 U 621-64-7 N-Nitroso-Di-N-Propylamine 290 < 290 U 67-72-1 Hexachloroethane 58 < 58 U 98-95-3 Nitrobenzene 58 < 58 U 78-59-1 Isophorone 58 < 58 U 105-67-9 2,4-Dimethylphenol 58 < 58 U 105-67-9 2,4-Dimethylphenol 58 < 58 U 111-91-1 bis (2-Chloroethoxy) Methane 58 < 58 U 120-83-2 2,4-Dichlorophenol 290 < 290 U 120-82-1 1,2,4-Trichlorobenzene 58 < 58 U 120-82-3 Naphthalene 58 < 58 U 106-47-8 4-Chloroaniline 290 < 290 U 106-47-8 4-Chloroaniline 290 < 290 U 191-57-6 2-Methylnaphthalene 58 < 58 U 17-47-4 Hexachlorocyclopentadiene 290 < 290 U 195-95-4 2,4,5-Trichlorophenol 290 < 290 U 195-95-4 2,4,5-Trichlorophenol 290 < 290 U 191-58-7 2-Chloronaphthalene 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-11-3 Dimethylphthalate 58 < 58 U 131-328-5	106-46-7	1,4-Dichlorobenzene	58	< 58 U
95-48-7 2-Methylphenol 58 < 58	100-51-6		58	< 58 U
108-60-1 2,2'-Oxybis(1-Chloropropane) 58 < 58 U	95-50-1	1,2-Dichlorobenzene	58	< 58 U
106-44-5 4-Methylphenol 58 < 58 U	95-48-7	2-Methylphenol	58	< 58 U
621-64-7 N-Nitroso-Di-N-Propylamine 290 < 290 U 67-72-1 Hexachloroethane 58 < 58 U 98-95-3 Nitrobenzene 58 < 58 U 98-95-1 Isophorone 58 < 58 U 88-75-5 2-Nitrophenol 58 < 58 U 105-67-9 2,4-Dimethylphenol 58 < 58 U 105-67-9 2,4-Dimethylphenol 58 < 58 U 111-91-1 bis (2-Chloroethoxy) Methane 58 < 58 U 120-83-2 2,4-Dichlorophenol 290 < 290 U 120-82-1 1,2,4-Trichlorobenzene 58 < 58 U 106-47-8 4-Chloroaniline 58 < 58 U 106-47-8 4-Chloroaniline 58 < 58 U 107-57-6 2-Methylnaphthalene 58 < 58 U 191-57-6 2-Methylnaphthalene 58 < 58 U 191-57-6 2-Methylnaphthalene 58 < 58 U 191-57-6 2-Methylnaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 < 58 U 191-58-7 2-Chloroaphthalene 58 <	108-60-1	2,2'-Oxybis(1-Chloropropane)	58	< 58 U
67-72-1 Hexachloroethane 58 < 58 U	106-44-5	4-Methylphenol	58	< 58 U
98-95-3 Nitrobenzene 58 < 58	621-64-7	N-Nitroso-Di-N-Propylamine	290	< 290 U
78-59-1 Isophorone 58 < 58	67-72-1	Hexachloroethane	58	< 58 U
88-75-5 2-Nitrophenol 58 < 58	98-95-3	Nitrobenzene	58	< 58 U
105-67-9 2,4-Dimethylphenol 58 < 58	78-59-1	Isophorone	58	< 58 U
65-85-0 Benzoic Acid 580 < 580	88-75-5	2-Nitrophenol	58	< 58 U
65-85-0 Benzoic Acid 580 < 580	105-67-9		58	< 58 U
120-83-2 2,4-Dichlorophenol 290 < 290	65-85-0		580	< 580 U
120-82-1 1,2,4-Trichlorobenzene 58 < 58	111-91-1	bis(2-Chloroethoxy) Methane	58	< 58 Ŭ
120-82-1 1,2,4-Trichlorobenzene 58 < 58	120-83-2	2,4-Dichlorophenol	290	< 290 U
106-47-8 4-Chloroaniline 290 < 290 U	120-82-1		58	< 58 U
87-68-3 Hexachlorobutadiene 58 < 58 U	91-20-3	Naphthalene	58	< 58 U
59-50-7 4-Chloro-3-methylphenol 290 < 290 U	106-47-8	4-Chloroaniline	290	< 290 U
91-57-6	87-68-3	Hexachlorobutadiene	58	< 58 U
77-47-4 Hexachlorocyclopentadiene 290 < 290 U	59-50-7	4-Chloro-3-methylphenol	290	< 290 U
88-06-2 2,4,6-Trichlorophenol 290 < 290	91-57-6	2-Methylnaphthalene	58	< 58 U
95-95-4 2,4,5-Trichlorophenol 290 < 290	77-47-4	Hexachlorocyclopentadiene	290	< 290 U
95-95-4 2,4,5-Trichlorophenol 290 < 290	88-06-2	2,4,6-Trichlorophenol	290	< 290 U
88-74-4 2-Nitroaniline 290 < 290 U	95-95-4		290	< 290 U
131-11-3 Dimethylphthalate 58 < 58 U	91-58-7	2-Chloronaphthalene	58	< 58 U
208-96-8 Acenaphthylene 58 < 58 U	88-74-4	2-Nitroaniline	290	< 290 U
99-09-2 3-Nitroaniline 290 < 290 U	131-11-3	Dimethylphthalate	58	< 58 U
99-09-2 3-Nitroaniline 290 < 290 U	208-96-8		58	< 58 U
51-28-5	99-09-2	3-Nitroaniline	290	< 290 U
100-02-7 4-Nitrophenol 290 < 290 U 132-64-9 Dibenzofuran 58 < 58 U 606-20-2 2,6-Dinitrotoluene 290 < 290 U	83-32-9	Acenaphthene	58	< 58 U
100-02-7 4-Nitrophenol 290 < 290 U	51-28-5	2,4-Dinitrophenol	580	< 580 U
132-64-9 Dibenzofuran 58 < 58 U	100-02-7		290	< 290 U
606-20-2 2,6-Dinitrotoluene 290 < 290 U			58	< 58 U
	606-20-2	2,6-Dinitrotoluene	290	< 290 U
	121-14-2		290	< 290 U

Page 2 of 2

Sample ID: EBC-1-S2 SAMPLE

Lab Sample ID: NJ45B

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19395 Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 14:47

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	58	< 58 U
7005-72-3	4-Chlorophenyl-phenylether	58	< 58 U
86-73-7	Fluorene	58	< 58 U
100-01-6	4-Nitroaniline	290	< 290 U
534-52-1	4,6-Dinitro-2-Methylphenol	580	< 580 U
86-30-6	N-Nitrosodiphenylamine	58	< 58 U
101-55-3	4-Bromophenyl-phenylether	58	< 58 U
118-74-1	Hexachlorobenzene	58	< 58 U
87-86-5	Pentachlorophenol	290	< 290 U
85-01-8	Phenanthrene	58	< 58 Ŭ
86-74-8	Carbazole	58	< 58 U
120-12-7	Anthracene	58	< 58 U
84-74-2	Di-n-Butylphthalate	58	< 58 U
206-44-0	Fluoranthene	58	< 58 U
129-00-0	Pyrene	58	< 58 U
85-68-7	Butylbenzylphthalate	58	< 58 U
91-94-1	3,3'-Dichlorobenzidine	290	< 290 U
56-55-3	Benzo(a) anthracene	58	< 58 U
117-81-7	bis(2-Ethylhexyl)phthalate	58	< 58 U
218-01-9	Chrysene	58	< 58 U
117-84-0	Di-n-Octyl phthalate	58	< 58 U
205-99-2	Benzo(b)fluoranthene	58	< 58 U
207-08-9	Benzo(k)fluoranthene	58	< 58 บั
50-32-8	Benzo(a)pyrene	58	< 58 U
193-39-5	Indeno(1,2,3-cd)pyrene	58	< 58 U
53-70-3	Dibenz(a,h)anthracene	58	< 58 U
191-24-2	Benzo(g,h,i)perylene	58	< 58 U
90-12-0	1-Methylnaphthalene	58	< 58 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	67.6%	2-Fluorobiphenyl	75.6%
d14-p-Terphenyl	91.2%	d4-1,2-Dichlorobenzene	76.8%
d5-Phenol	78.9%	2-Fluorophenol	73.6%
2,4,6-Tribromophenol	88.5%	d4-2-Chlorophenol	74.7%

Page 1 of 2

Lab Sample ID: NJ45C LIMS ID: 08-19396

Matrix: Soil Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/20/08 15:21 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-2-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 6.73 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 9.5%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	220	< 220 U
111-44-4	Bis-(2-Chloroethyl) Ether	220	< 220 U
95-57-8	2-Chlorophenol	220	< 220 U
541-73-1	1,3-Dichlorobenzene	220	< 220 U
106-46-7	1,4-Dichlorobenzene	220	< 220 U
100-51-6	Benzyl Alcohol	220	< 220 U
95-50-1	1,2-Dichlorobenzene	220	< 220 U
95-48-7	2-Methylphenol	220	< 220 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	220	< 220 Ŭ
106-44-5	4-Methylphenol	220	< 220 U
621-64-7	N-Nitroso-Di-N-Propylamine	1,100	< 1,100 U
67-72-1	Hexachloroethane	220	< 220 U
98-95-3	Nitrobenzene	220	< 220 U
78-59-1	Isophorone	220	< 220 U
88-75-5	2-Nitrophenol	220	< 220 Ŭ
105-67-9	2,4-Dimethylphenol	220	< 220 Ŭ
65-85-0	Benzoic Acid	2,200	< 2,200 U
111-91-1	bis(2-Chloroethoxy) Methane	220	< 220 U
120-83-2	2,4-Dichlorophenol	1,100	< 1,100 U
120-82-1	1,2,4-Trichlorobenzene	220	< 220 U
91-20-3	Naphthalene	220	840
106-47-8	4-Chloroaniline	1,100	< 1,100 U
87-68-3	Hexachlorobutadiene	220	< 220 U
59-50-7	4-Chloro-3-methylphenol	1,100	< 1,100 U
91-57-6	2-Methylnaphthalene	220	580
77-47-4	Hexachlorocyclopentadiene	1,100	< 1,100 U
88-06-2	2,4,6-Trichlorophenol	1,100	< 1,100 U
95-95-4	2,4,5-Trichlorophenol	1,100	< 1,100 U
91-58-7	2-Chloronaphthalene	220	< 220 U
88-74-4	2-Nitroaniline	1,100	< 1,100 U
131-11-3	Dimethylphthalate	220	< 220 U
208-96-8	Acenaphthylene	220	< 220 U
99-09-2	3-Nitroaniline	1,100	< 1,100 U
83-32-9	Acenaphthene	220	2,400
51-28-5	2,4-Dinitrophenol	2,200	< 2,200 U
100-02-7	4-Nitrophenol	1,100	< 1,100 U
132-64-9	Dibenzofuran	220	1,200
606-20-2	2,6-Dinitrotoluene	1,100	< 1,100 U
121-14-2	2,4-Dinitrotoluene	1,100	< 1,100 U
	-,	•	•

Page 2 of 2

Sample ID: EBC-2-S1 SAMPLE

Lab Sample ID: NJ45C QC F

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19396 Matrix: Soil Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 15:21

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	220	< 220 U
7005-72-3	4-Chlorophenyl-phenylether	220	< 220 U
86-73-7	Fluorene	220	1,900
100-01-6	4-Nitroaniline	1,100	< 1,100 U
534-52-1	4,6-Dinitro-2-Methylphenol	2,200	< 2,200 Ŭ
86-30-6	N-Nitrosodiphenylamine	290	< 290 Y
101-55-3	4-Bromophenyl-phenylether	220	< 220 U
118-74-1	Hexachlorobenzene	220	< 220 U
87-86-5	Pentachlorophenol	1,100	< 1,100 U
85-01-8	Phenanthrene	220	5,200
86-74-8	Carbazole	220	700
120-12-7	Anthracene	220	2,000
84-74-2	Di-n-Butylphthalate	220	< 220 U
206-44-0	Fluoranthene	220	3,800
129-00-0	Pyrene	220	4,600
85-68-7	Butylbenzylphthalate	220	< 220 U
91-94-1	3,3'-Dichlorobenzidine	1,100	< 1,100 U
56-55-3	Benzo(a) anthracene	220	770
117-81-7	bis(2-Ethylhexyl)phthalate	220	650
218-01-9	Chrysene	220	1,000
117-84-0	Di-n-Octyl phthalate	220	< 220 U
205-99-2	Benzo(b) fluoranthene	220	430
207-08-9	Benzo(k) fluoranthene	220	500
50-32-8	Benzo(a)pyrene	220	430
193-39-5	Indeno(1,2,3-cd)pyrene	220	< 220 U
53-70-3	Dibenz(a,h)anthracene	220	< 220 U
191-24-2	Benzo(g,h,i)perylene	220	< 220 U
90-12-0	1-Methylnaphthalene	220	760

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	66.8%	2-Fluorobiphenyl	71.4%
d14-p-Terphenyl	88.1%	d4-1,2-Dichlorobenzene	69.8%
d5-Phenol	72.6%	2-Fluorophenol	65.0%
2,4,6-Tribromophenol	80.8%	d4-2-Chlorophenol	70.1%

Page 1 of 2

Lab Sample ID: NJ45E LIMS ID: 08-19398

Matrix: Soil

Data Release Authorized: Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/20/08 15:55 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-3-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 8.17 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 20.4%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	180	< 180 U
111-44-4	Bis-(2-Chloroethyl) Ether	180	< 180 U
95-57-8	2-Chlorophenol	180	< 180 U
541-73-1	1,3-Dichlorobenzene	180	< 180 U
106-46-7	1,4-Dichlorobenzene	180	< 180 U
100-51-6	Benzyl Alcohol	180	< 180 U
95-50-1	1,2-Dichlorobenzene	180	< 180 U
95-48-7	2-Methylphenol	180	< 180 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	180	< 180 U
106-44-5	4-Methylphenol	180	860
621-64-7	N-Nitroso-Di-N-Propylamine	920	< 920 U
67-72-1	Hexachloroethane	180	< 180 U
98-95-3	Nitrobenzene	180	< 180 U
78-59-1	Isophorone	180	< 180 U
88-75-5	2-Nitrophenol	180	< 180 U
105-67-9	2,4-Dimethylphenol	180	1,100
65-85-0	Benzoic Acid	1,800	< 1,800 U
111-91-1	bis(2-Chloroethoxy) Methane	180	< 180 U
120-83-2	2,4-Dichlorophenol	920	< 920 U
120-82-1	1,2,4-Trichlorobenzene	180	< 180 U
91-20-3	Naphthalene	180	2,400
106-47-8	4-Chloroaniline	920	< 920 U
87-68-3	Hexachlorobutadiene	180	< 180 U
59-50-7	4-Chloro-3-methylphenol	920	< 920 U
91-57-6	2-Methylnaphthalene	180	1,100
77-47-4	Hexachlorocyclopentadiene	920	< 920 U
88-06-2	2,4,6-Trichlorophenol	920	< 920 U
95-95-4	2,4,5-Trichlorophenol	920	< 920 U
91-58-7	2-Chloronaphthalene	180	< 180 U
88-74-4	2-Nitroaniline	920	< 920 U
131-11-3	Dimethylphthalate	180	< 180 U
208-96-8	Acenaphthylene	180	< 180 U
99-09-2	3-Nitroaniline	920	< 920 Ŭ
83-32-9	Acenaphthene	180	1,000
51-28-5	2,4-Dinitrophenol	1,800	< 1,800 U
100-02-7	4-Nitrophenol	920	< 920 U
132-64-9	Dibenzofuran	180	840
606-20-2	2,6-Dinitrotoluene	920	< 920 U
121-14-2	2,4-Dinitrotoluene	920	< 920 U

Page 2 of 2

Sample ID: EBC-3-S1 SAMPLE

Lab Sample ID: NJ45E

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19398 Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 15:55

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	180	< 180 U
7005-72-3	4-Chlorophenyl-phenylether	180	< 180 U
86-73-7	Fluorene	180	790
100-01-6	4-Nitroaniline	920	< 920 U
534-52-1	4,6-Dinitro-2-Methylphenol	1,800	< 1,800 U
86-30-6	N-Nitrosodiphenylamine	180	< 180 U
101-55-3	4-Bromophenyl-phenylether	180	< 180 U
118-74-1	Hexachlorobenzene	180	< 180 U
87-86-5	Pentachlorophenol	920	< 920 U
85-01-8	Phenanthrene	180	3,100
86-74-8	Carbazole	180	320
120-12-7	Anthracene	180	1,300
84-74-2	Di-n-Butylphthalate	180	< 180 U
206-44-0	Fluoranthene	180	3,000
129-00-0	Pyrene	180	3,400
85-68-7	Butylbenzylphthalate	180	< 180 U
91-94-1	3,3'-Dichlorobenzidine	920	< 920 U
56-55-3	Benzo(a) anthracene	180	740
117-81-7	bis(2-Ethylhexyl)phthalate	180	220
218-01-9	Chrysene	180	1,100
117-84-0	Di-n-Octyl phthalate	180	< 180 U
205-99-2	Benzo(b) fluoranthene	180	920
207-08-9	Benzo(k) fluoranthene	180	600
50-32-8	Benzo(a)pyrene	180	580
193-39-5	Indeno(1,2,3-cd)pyrene	180	< 180 U
53-70-3	Dibenz(a,h)anthracene	180	< 180 U
191-24-2	Benzo(g,h,i)perylene	180	200
90-12-0	1-Methylnaphthalene	180	670

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	56.4%	2-Fluorobiphenyl	66.5%
d14-p-Terphenyl	84.5%	d4-1,2-Dichlorobenzene	58.4%
d5-Phenol	59.5%	2-Fluorophenol	52.3%
2,4,6-Tribromophenol	66.0%	d4-2-Chlorophenol	59.0%

Page 1 of 2

Lab Sample ID: NJ45F LIMS ID: 08-19399

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08
Date Analyzed: 08/20/08 16:29
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-3-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 7.75 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 14.5%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

Page 2 of 2

Sample ID: EBC-3-S2 SAMPLE

Lab Sample ID: NJ45F LIMS ID: 08-19399

QC Report No: NJ45-Hart Crowser, Inc.

Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 16:29

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a)anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo(a)pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 U
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	74.4%	2-Fluorobiphenyl	80.4%
d14-p-Terphenyl	101%	d4-1,2-Dichlorobenzene	83.6%
d5-Phenol	85.3%	2-Fluorophenol	80.5%
2,4,6-Tribromophenol	94.4%	d4-2-Chlorophenol	81.3%

Page 1 of 2

Lab Sample ID: NJ45G LIMS ID: 08-19400

Matrix: Soil
Data Release Authorized:
Reported: 08/26/08

Date Extracted: 08/11/08
Date Analyzed: 08/20/08 17:04
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-4-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 8.17 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 19.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	61	< 61 U
111-44-4	Bis-(2-Chloroethyl) Ether	61	< 61 U
95-57-8	2-Chlorophenol	61	< 61 U
541-73-1	1,3-Dichlorobenzene	61	< 61 U
106-46-7	1,4-Dichlorobenzene	61	< 61 U
100-51-6	Benzyl Alcohol	61	< 61 U
95-50-1	1,2-Dichlorobenzene	61	< 61 U
95-48-7	2-Methylphenol	61	< 61 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	61	< 61 U
106-44-5	4-Methylphenol	61	< 61 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	61	< 61 U
98-95-3	Nitrobenzene	61	< 61 Ŭ
78-59-1	Isophorone	61	< 61 U
88-75-5	2-Nitrophenol	61	< 61 Ŭ
105-67-9	2,4-Dimethylphenol	61	< 61 U
65-85-0	Benzoic Acid	610	< 610 U
111-91-1	bis(2-Chloroethoxy) Methane	61	< 61 U
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	61	< 61 Ŭ
91-20-3	Naphthalene	61	< 61 U
106-47-8	4-Chloroaniline	310	< 310 U
87-68-3	Hexachlorobutadiene	61	< 61 U
59-50-7	4-Chloro-3-methylphenol	310	< 310 U
91-57-6	2-Methylnaphthalene	61	< 61 U
77-47-4	Hexachlorocyclopentadiene	310	< 310 U
88-06-2	2,4,6-Trichlorophenol	310	< 310 U
95-95-4	2,4,5-Trichlorophenol	310	< 310 U
91-58-7	2-Chloronaphthalene	61	< 61 U
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	61	< 61 U
208-96-8	Acenaphthylene	61	< 61 U
99-09-2	3-Nitroaniline	310	< 310 U
83-32-9	Acenaphthene	61	< 61 U
51-28-5	2,4-Dinitrophenol	610	< 610 U
100-02-7	4-Nitrophenol	310	< 310 U
132-64-9	Dibenzofuran	61	< 61 U
606-20-2	2,6-Dinitrotoluene	310	< 310 U
121-14-2	2,4-Dinitrotoluene	310	< 310 U

Page 2 of 2

Sample ID: EBC-4-S1 SAMPLE

Lab Sample ID: NJ45G LIMS ID: 08-19400

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19400 Matrix: Soil Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 17:04

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 U
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	61	< 61 U
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	< 61 U
129-00-0	Pyrene	61	< 61 U
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k)fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	73.6%	2-Fluorobiphenyl	82.0%
d14-p-Terphenyl	101%	d4-1,2-Dichlorobenzene	80.4%
d5-Phenol	85.6%	2-Fluorophenol	77.9%
2,4,6-Tribromophenol	95.7%	d4-2-Chlorophenol	79.7%

Page 1 of 2

Lab Sample ID: NJ45H LIMS ID: 08-19401

Matrix: Soil Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/20/08 17:38 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-5-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 7.58 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 6.0%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	200	< 200 U
111-44-4	Bis-(2-Chloroethyl) Ether	200	< 200 U
95-57-8	2-Chlorophenol	200	< 200 U
541-73-1	1,3-Dichlorobenzene	200	< 200 U
106-46-7	1,4-Dichlorobenzene	200	< 200 U
100-51-6	Benzyl Alcohol	200	< 200 U
95-50-1	1,2-Dichlorobenzene	200	< 200 U
95-48-7	2-Methylphenol	200	< 200 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	200	< 200 U
106-44-5	4-Methylphenol	200	< 200 U
621-64-7	N-Nitroso-Di-N-Propylamine	990	< 990 U
67-72-1	Hexachloroethane	200	< 200 U
98-95-3	Nitrobenzene	200	< 200 U
78-59-1	Isophorone	200	< 200 U
88-75-5	2-Nitrophenol	200	< 200 U
105-67-9	2,4-Dimethylphenol	200	< 200 U
65-85-0	Benzoic Acid	2,000	< 2,000 U
111-91-1	bis(2-Chloroethoxy) Methane	200	< 200 U
120-83-2	2,4-Dichlorophenol	990	< 990 U
120-82-1	1,2,4-Trichlorobenzene	200	< 200 U
91-20-3	Naphthalene	200	< 200 U
106-47-8	4-Chloroaniline	990	< 990 U
87-68-3	Hexachlorobutadiene	200	< 200 U
59-50-7	4-Chloro-3-methylphenol	990	< 990 U
91-57-6	2-Methylnaphthalene	200	< 200 U
77-47-4	Hexachlorocyclopentadiene	990	< 990 U
88-06-2	2,4,6-Trichlorophenol	990	< 990 U
95-95-4	2,4,5-Trichlorophenol	990	< 990 U
91-58-7	2-Chloronaphthalene	200	< 200 U
88-74-4	2-Nitroaniline	990	< 990 U
131-11-3	Dimethylphthalate	200	< 200 U
208-96-8	Acenaphthylene	200	< 200 U
99-09-2	3-Nitroaniline	990	< 990 U
83-32-9	Acenaphthene	200	< 200 U
51-28-5	2,4-Dinitrophenol	2,000	< 2,000 U
100-02-7	4-Nitrophenol	990	< 990 U
132-64-9	Dibenzofuran	200	< 200 U
606-20-2	2,6-Dinitrotoluene	990	< 990 U
121-14-2	2,4-Dinitrotoluene	990	< 990 U

Page 2 of 2

Matrix: Soil

Sample ID: EBC-5-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc. Lab Sample ID: NJ45H LIMS ID: 08-19401

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 17:38

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	200	< 200 U
7005-72-3	4-Chlorophenyl-phenylether	200	< 200 U
86-73-7	Fluorene	200	< 200 Ŭ
100-01-6	4-Nitroaniline	990	< 990 U
534-52-1	4,6-Dinitro-2-Methylphenol	2,000	< 2,000 U
86-30-6	N-Nitrosodiphenylamine	200	< 200 U
101-55-3	4-Bromophenyl-phenylether	200	< 200 U
118-74-1	Hexachlorobenzene	200	< 200 U
87-86-5	Pentachlorophenol	990	< 990 U
85-01-8	Phenanthrene	200	< 200 U
86-74-8	Carbazole	200	< 200 U
120-12-7	Anthracene	200	< 200 U
84-74-2	Di-n-Butylphthalate	200	< 200 U
206-44-0	Fluoranthene	200	< 200 U
129-00-0	Pyrene	200	< 200 U
85-68-7	Butylbenzylphthalate	200	< 200 U
91-94-1	3,3'-Dichlorobenzidine	990	< 990 U
56-55-3	Benzo(a) anthracene	200	< 200 U
117-81-7	bis(2-Ethylhexyl)phthalate	200	< 200 U
218-01-9	Chrysene	200	< 200 U
117-84-0	Di-n-Octyl phthalate	200	< 200 U
205-99-2	Benzo(b)fluoranthene	200	< 200 U
207-08-9	Benzo(k)fluoranthene	200	< 200 U
50-32-8	Benzo(a)pyrene	200	< 200 U
193-39-5	Indeno(1,2,3-cd)pyrene	200	< 200 U
53-70-3	Dibenz(a,h)anthracene	200	< 200 U
191-24-2	Benzo(g,h,i)perylene	200	< 200 U
90-12-0	1-Methylnaphthalene	200	< 200 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	67.2%	2-Fluorobiphenyl	79.9%
d14-p-Terphenyl	102%	d4-1,2-Dichlorobenzene	74.5%
d5-Phenol	79.8%	2-Fluorophenol	71.4%
2.4.6-Tribromophenol	86.4%	d4-2-Chlorophenol	75.4%

Page 1 of 2

Lab Sample ID: NJ45J LIMS ID: 08-19403

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08
Date Analyzed: 08/20/08 18:12
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-6-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 8.58 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 7.5%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	58	< 58 U
111-44-4	Bis-(2-Chloroethyl) Ether	58	< 58 U
95-57-8	2-Chlorophenol	58	< 58 U
541-73-1	1,3-Dichlorobenzene	58	< 58 U
106-46-7	1,4-Dichlorobenzene	58	< 58 U
100-51-6	Benzyl Alcohol	58	< 58 U
95-50-1	1,2-Dichlorobenzene	58	< 58 U
95-48-7	2-Methylphenol	58	< 58 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	58	< 58 U
106-44-5	4-Methylphenol	58	< 58 U
621-64-7	N-Nitroso-Di-N-Propylamine	290	< 290 U
67-72-1	Hexachloroethane	58	< 58 U
98-95-3	Nitrobenzene	58	< 58 U
78-59-1	Isophorone	58	< 58 U
88-75-5	2-Nitrophenol	58	< 58 U
105-67-9	2,4-Dimethylphenol	58	< 58 U
65-85-0	Benzoic Acid	580	< 580 U
111-91-1	bis(2-Chloroethoxy) Methane	58	< 58 U
120-83-2	2,4-Dichlorophenol	290	< 290 U
120-82-1	1,2,4-Trichlorobenzene	58	< 58 U
91-20-3	Naphthalene	58	< 58 U
106-47-8	4-Chloroaniline	290	< 290 U
87-68-3	Hexachlorobutadiene	58	< 58 U
59-50-7	4-Chloro-3-methylphenol	290	< 290 U
91-57-6	2-Methylnaphthalene	58	< 58 Ŭ
77-47-4	Hexachlorocyclopentadiene	290	< 290 U
88-06-2	2,4,6-Trichlorophenol	290	< 290 U
95-95-4	2,4,5-Trichlorophenol	290	< 290 U
91-58-7	2-Chloronaphthalene	58	< 58 U
88-74-4	2-Nitroaniline	290	< 290 U
131-11-3	Dimethylphthalate	58	< 58 U
208-96-8	Acenaphthylene	58	< 58 U
99-09-2	3-Nitroaniline	290	< 290 U
83-32-9	Acenaphthene	58	< 58 U
51-28-5	2,4-Dinitrophenol	580	< 580 U
100-02-7	4-Nitrophenol	290	< 290 U
132-64-9	Dibenzofuran	58	< 58 U
606-20-2	2,6-Dinitrotoluene	290	< 290 U
121-14-2	2,4-Dinitrotoluene	290	< 290 U

Page 2 of 2

Lab Sample ID: NJ45J LIMS ID: 08-19403

QC Report No: NJ45-Hart Crowser, Inc.

Sample ID: EBC-6-S1

SAMPLE

Project: Pier 23-EBC

17490-01

Matrix: Soil Date Analyzed: 08/20/08 18:12

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	58	< 58 U
7005-72-3	4-Chlorophenyl-phenylether	58	< 58 U
86-73-7	Fluorene	58	< 58 U
100-01-6	4-Nitroaniline	290	< 290 U
534-52-1	4,6-Dinitro-2-Methylphenol	580	< 580 Ŭ
86-30-6	N-Nitrosodiphenylamine	58	< 58 Ü
101-55-3	4-Bromophenyl-phenylether	58	< 58 U
118-74-1	Hexachlorobenzene	58	< 58 U
87-86-5	Pentachlorophenol	290	< 290 U
85-01-8	Phenanthrene	58	< 58 U
86-74-8	Carbazole	58	< 58 U
120-12-7	Anthracene	58	< 58 U
84-74-2	Di-n-Butylphthalate	58	< 58 U
206-44-0	Fluoranthene	58	< 58 Ü
129-00-0	Pyrene	58	92
85-68-7	Butylbenzylphthalate	58	< 58 U
91-94-1	3,3'-Dichlorobenzidine	290	< 290 Ŭ
56-55-3	Benzo(a)anthracene	58	< 58 U
117-81-7	bis(2-Ethylhexyl)phthalate	58	< 58 U
218-01-9	Chrysene	58	< 58 U
117-84-0	Di-n-Octyl phthalate	58	< 58 U
205-99-2	Benzo(b) fluoranthene	58	68
207-08-9	Benzo(k)fluoranthene	58	< 58 U
50-32-8	Benzo(a)pyrene	58	< 58 U
193-39-5	Indeno(1,2,3-cd)pyrene	58	< 58 U
53-70-3	Dibenz(a,h)anthracene	58	< 58 U
191-24-2	Benzo(g,h,i)perylene	58	< 58 U
90-12-0	1-Methylnaphthalene	58	< 58 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	72.0%	2-Fluorobiphenyl	79.2%
d14-p-Terphenyl	103%	d4-1,2-Dichlorobenzene	80.0%
d5-Phenol	84.5%	2-Fluorophenol	76.0%
2,4,6-Tribromophenol	92.5%	d4-2-Chlorophenol	78.9%

Page 1 of 2

Lab Sample ID: NJ45L LIMS ID: 08-19405

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/20/08 18:47 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-7-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 6.43 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 3.00 Percent Moisture: 8.9%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	230	< 230 U
111-44-4	Bis-(2-Chloroethyl) Ether	230	< 230 U
95-57-8	2-Chlorophenol	230	< 230 U
541-73-1	1,3-Dichlorobenzene	230	< 230 U
106-46-7	1,4-Dichlorobenzene	230	< 230 U
100-51-6	Benzyl Alcohol	230	< 230 U
95-50-1	1,2-Dichlorobenzene	230	< 230 U
95-48-7	2-Methylphenol	230	< 230 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	230	< 230 U
106-44-5	4-Methylphenol	230	670
621-64-7	N-Nitroso-Di-N-Propylamine	1,200	< 1,200 U
67-72-1	Hexachloroethane	230	< 230 U
98-95-3	Nitrobenzene	230	< 230 U
78-59-1	Isophorone	230	< 230 U
88-75-5	2-Nitrophenol	230	< 230 U
105-67-9	2,4-Dimethylphenol	230	< 230 U
65-85-0	Benzoic Acid	2,300	< 2,300 U
111-91-1	bis(2-Chloroethoxy) Methane	230	< 230 U
120-83-2	2,4-Dichlorophenol	1,200	< 1,200 U
120-82-1	1,2,4-Trichlorobenzene	230	< 230 U
91-20-3	Naphthalene	230	440
106-47-8	4-Chloroaniline	1,200	< 1,200 U
87-68-3	Hexachlorobutadiene	230	< 230 U
59-50-7	4-Chloro-3-methylphenol	1,200	< 1,200 U
91-57-6	2-Methylnaphthalene	230	1,700
77-47-4	Hexachlorocyclopentadiene	1,200	< 1,200 U
88-06-2	2,4,6-Trichlorophenol	1,200	< 1,200 U
95-95-4	2,4,5-Trichlorophenol	1,200	< 1,200 U
91-58-7	2-Chloronaphthalene	230	< 230 U
88-74-4	2-Nitroaniline	1,200	< 1,200 U
131-11-3	Dimethylphthalate	230	< 230 U
208-96-8	Acenaphthylene	230	< 230 U
99-09-2	3-Nitroaniline	1,200	< 1,200 U
83-32-9	Acenaphthene	230	300
51-28-5	2,4-Dinitrophenol	2,300	< 2,300 U
100-02-7	4-Nitrophenol	1,200	< 1,200 U
132-64-9	Dibenzofuran	230	< 230 U
606-20-2	2,6-Dinitrotoluene	1,200	< 1,200 U
121-14-2	2,4-Dinitrotoluene	1,200	< 1,200 U
	•	•	

Page 2 of 2

Matrix: Soil

Sample ID: EBC-7-S1 SAMPLE

Lab Sample ID: NJ45L QC Report No: NJ45-Hart Crowser, Inc. LIMS ID: 08-19405

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 18:47

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	230	< 230 U
7005-72-3	4-Chlorophenyl-phenylether	230	< 230 U
86-73-7	Fluorene	230	430
100-01-6	4-Nitroaniline	1,200	< 1,200 U
534-52-1	4,6-Dinitro-2-Methylphenol	2,300	< 2,300 U
86-30-6	N-Nitrosodiphenylamine	960	< 960 Y
101-55-3	4-Bromophenyl-phenylether	230	< 230 U
118-74-1	Hexachlorobenzene	230	< 230 U
87-86-5	Pentachlorophenol	1,200	< 1,200 U
85-01-8	Phenanthrene	230	1,800
86-74-8	Carbazole	230	< 230 Ŭ
120-12-7	Anthracene	230	390
84-74-2	Di-n-Butylphthalate	230	< 230 U
206-44-0	Fluoranthene	230	1,400
129-00-0	Pyrene	230	2,400
85-68-7	Butylbenzylphthalate	230	< 230 U
91-94-1	3,3'-Dichlorobenzidine	1,200	< 1,200 U
56-55-3	Benzo(a) anthracene	230	520
117-81-7	bis(2-Ethylhexyl)phthalate	230	1,100
218-01-9	Chrysene	230	870
117-84-0	Di-n-Octyl phthalate	230	< 230 U
205-99-2	Benzo(b) fluoranthene	230	490
207-08-9	Benzo(k) fluoranthene	230	390
50-32-8	Benzo(a)pyrene	230	440
193-39-5	Indeno(1,2,3-cd)pyrene	230	< 230 U
53-70-3	Dibenz(a,h)anthracene	230	< 230 U
191-24-2	Benzo(g,h,i)perylene	230	240
90-12-0	1-Methylnaphthalene	230	2,000

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	64.2%	2-Fluorobiphenyl	73.7%
d14-p-Terphenyl	96.5%	d4-1,2-Dichlorobenzene	64.2%
d5-Phenol	62.0%	2-Fluorophenol	29.8%
2.4.6-Tribromophenol	4.6%	d4-2-Chlorophenol	44.2%

Page 1 of 2

Lab Sample ID: NJ45M LIMS ID: 08-19406

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

1:

Date Extracted: 08/11/08
Date Analyzed: 08/20/08 19:21
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-7-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01 ed: 07/29/08

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.79 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 4.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U
	2/1 222200000000000000000000000000000000	020	, , , ,

Page 2 of 2

Matrix: Soil

Sample ID: EBC-7-S2 SAMPLE

Lab Sample ID: NJ45M LIMS ID: 08-19406 QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 19:21

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	68
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a)anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo(a)pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 U
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	60.8%	2-Fluorobiphenyl	70.8%
d14-p-Terphenyl	92.8%	d4-1,2-Dichlorobenzene	68.8%
d5-Phenol	71.7%	2-Fluorophenol	65.1%
2,4,6-Tribromophenol	81.6%	d4-2-Chlorophenol	66.4%

Page 1 of 2

Lab Sample ID: NJ45N LIMS ID: 08-19407

Matrix: Soil Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/20/08 19:55 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-8-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.66 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 4.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	< 65 U
111-44-4	Bis-(2-Chloroethyl) Ether	65	< 65 Ŭ
95-57-8	2-Chlorophenol	65	< 65 U
541-73-1	1,3-Dichlorobenzene	65	< 65 U
106-46-7	1,4-Dichlorobenzene	65	< 65 U
100-51-6	Benzyl Alcohol	65	< 65 U
95-50-1	1,2-Dichlorobenzene	65	< 65 U
95-48-7	2-Methylphenol	65	< 65 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	< 65 U
106-44-5	4-Methylphenol	65	< 65 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	65	< 65 U
98-95-3	Nitrobenzene	65	< 65 U
78-59-1	Isophorone	65	< 65 U
88-75-5	2-Nitrophenol	65	< 65 U
105-67-9	2,4-Dimethylphenol	65	< 65 Ŭ
65-85-0	Benzoic Acid	650	< 650 U
111-91-1	bis(2-Chloroethoxy) Methane	65	< 65 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	65	< 65 Ŭ
91-20-3	Naphthalene	65	< 65 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	65	< 65 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	65	< 65 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	65	< 65 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	65	< 65 Ŭ
208-96-8	Acenaphthylene	65	< 65 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	65	< 65 U
51-28-5		650	< 650 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	65	< 65 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2		330	< 330 U
51-28-5 100-02-7 132-64-9 606-20-2	2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	650 330 65 330	< 65 < 33 < 6 < 33

Page 2 of 2

Sample ID: EBC-8-S1 SAMPLE

Lab Sample ID: NJ45N LIMS ID: 08-19407

QC Report No: NJ45-Hart Crowser, Inc.

Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 19:55

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	< 65 U
7005-72-3	4-Chlorophenyl-phenylether	65	< 65 U
86-73-7	Fluorene	65	< 65 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	650	< 650 U
86-30-6	N-Nitrosodiphenylamine	65	< 65 U
101-55-3	4-Bromophenyl-phenylether	65	< 65 U
118-74-1	Hexachlorobenzene	65	< 65 Ŭ
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	65	< 65 U
86-74-8	Carbazole	65	< 65 U
120-12-7	Anthracene	65	< 65 U
84-74-2	Di-n-Butylphthalate	65	< 65 U
206-44-0	Fluoranthene	65	< 65 U
129-00-0	Pyrene	65	< 65 U
85-68-7	Butylbenzylphthalate	65	< 65 Ŭ
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	65	< 65 U
117-81-7	bis(2-Ethylhexyl)phthalate	65	< 65 U
218-01-9	Chrysene	65	< 65 U
117-84-0	Di-n-Octyl phthalate	65	< 65 U
205-99-2	Benzo(b)fluoranthene	65	< 65 U
207-08-9	Benzo(k)fluoranthene	65	< 65 U
50-32-8	Benzo(a)pyrene	65	< 65 U
193-39-5	Indeno(1,2,3-cd)pyrene	65	< 65 U
53-70-3	Dibenz(a,h)anthracene	65	< 65 U
191-24-2	Benzo(g,h,i)perylene	65	< 65 U
90-12-0	1-Methylnaphthalene	65	< 65 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	56.0%	2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	98.4%	d4-1,2-Dichlorobenzene	62.8%
d5-Phenol	66.1%	2-Fluorophenol	60.5%
2.4.6-Tribromophenol	89.6%	d4-2-Chlorophenol	61.6%

Page 1 of 2

Lab Sample ID: NJ450 LIMS ID: 08-19408

Matrix: Soil

Data Release Authorized: Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/21/08 22:18 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-9-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.63 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 5.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	66	< 66 U
111-44-4	Bis-(2-Chloroethyl) Ether	66	< 66 U
95-57-8	2-Chlorophenol	66	< 66 U
541-73-1	1,3-Dichlorobenzene	66	< 66 U
106-46-7	1,4-Dichlorobenzene	66	< 66 U
100-51-6	Benzyl Alcohol	66	< 66 U
95-50-1	1,2-Dichlorobenzene	66	< 66 U
95-48-7	2-Methylphenol	66	< 66 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	66	< 66 U
106-44-5	4-Methylphenol	66	< 66 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	66	< 66 U
98-95-3	Nitrobenzene	66	< 66 U
78-59-1	Isophorone	66	< 66 U
88-75-5	2-Nitrophenol	66	< 66 U
105-67-9	2,4-Dimethylphenol	66	< 66 U
65-85-0	Benzoic Acid	660	< 660 U
111-91-1	bis(2-Chloroethoxy) Methane	66	< 66 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	66	< 66 U
91-20-3	Naphthalene	66	< 66 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	66	< 66 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	66	< 66 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	66	< 66 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	66	< 66 U
208-96-8	Acenaphthylene	66	< 66 U
99-09-2	3-Nitroaniline	330	< 330 Ŭ
83-32-9	Acenaphthene	66	< 66 U
51-28-5	2,4-Dinitrophenol	660	< 660 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	66	< 66 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2

Sample ID: EBC-9-S1 SAMPLE

Lab Sample ID: NJ450 LIMS ID: 08-19408 QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Matrix: Soil Date Analyzed: 08/21/08 22:18

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	66	< 66 U
7005-72-3	4-Chlorophenyl-phenylether	66	< 66 U
86-73-7	Fluorene	66	< 66 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	660	< 660 Ŭ
86-30-6	N-Nitrosodiphenylamine	66	< 66 U
101-55-3	4-Bromophenyl-phenylether	66	< 66 U
118-74-1	Hexachlorobenzene	66	< 66 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	66	< 66 U
86-74-8	Carbazole	66	< 66 U
120-12-7	Anthracene	66	< 66 U
84-74-2	Di-n-Butylphthalate	66	< 66 U
206-44-0	Fluoranthene	66	< 66 U
129-00-0	Pyrene	66	< 66 ปั
85-68-7	Butylbenzylphthalate	66	< 66 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	66	< 66 U
117-81-7	bis(2-Ethylhexyl)phthalate	66	< 66 U
218-01-9	Chrysene	66	< 66 U
117-84-0	Di-n-Octyl phthalate	66	< 66 U
205-99-2	Benzo(b)fluoranthene	66	< 66 U
207-08-9	Benzo(k)fluoranthene	66	< 66 U
50-32-8	Benzo(a)pyrene	66	< 66 U
193-39-5	Indeno(1,2,3-cd)pyrene	66	< 66 U
53-70-3	Dibenz(a,h)anthracene	66	< 66 U
191-24-2	Benzo(g,h,i)perylene	66	< 66 U
90-12-0	1-Methylnaphthalene	66	< 66 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	60.0%	2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	86.4%	d4-1,2-Dichlorobenzene	65.2%
d5-Phenol	70.9%	2-Fluorophenol	60.3%
2.4.6-Tribromophenol	88.5%	d4-2-Chlorophenol	65.6%

Page 1 of 2

Lab Sample ID: NJ45P LIMS ID: 08-19409

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

B

Date Extracted: 08/11/08
Date Analyzed: 08/20/08 22:12
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-10-S1
SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.80 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 4.6%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 ปั
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

Page 2 of 2

Matrix: Soil

Sample ID: EBC-10-S1 SAMPLE

Lab Sample ID: NJ45P QC Report No: NJ45-Hart Crowser, Inc. LIMS ID: 08-19409

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 22:12

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a)anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo (a) pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 U
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	58.8%	2-Fluorobiphenyl	72.48
d14-p-Terphenyl	100%	d4-1,2-Dichlorobenzene	64.4%
d5-Phenol	68.8%	2-Fluorophenol	61.3%
2.4.6-Tribromophenol	88.0%	d4-2-Chlorophenol	62.9%

Page 1 of 2

Lab Sample ID: NJ45Q LIMS ID: 08-19410

Matrix: Soil
Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08
Date Analyzed: 08/21/08 22:53
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-11-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01
Date Sampled: 07/29/08
Date Received: 08/06/08

Sample Amount: 8.08 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 20.2%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	62	< 62 U
111-44-4	Bis-(2-Chloroethyl) Ether	62	< 62 U
95-57-8	2-Chlorophenol	62	< 62 U
541-73-1	1,3-Dichlorobenzene	62	< 62 U
106-46-7	1,4-Dichlorobenzene	62	< 62 U
100-51-6	Benzyl Alcohol	62	< 62 U
95-50-1	1,2-Dichlorobenzene	62	< 62 U
95-48-7	2-Methylphenol	62	< 62 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	62	< 62 U
106-44-5	4-Methylphenol	62	< 62 U
621-64-7	N-Nitroso-Di-N-Propylamine	310	< 310 U
67-72-1	Hexachloroethane	62	< 62 U
98-95-3	Nitrobenzene	62	< 62 U
78-59-1	Isophorone	62	< 62 U
88-75-5	2-Nitrophenol	62	< 62 U
105-67-9	2,4-Dimethylphenol	62	< 62 U
65-85-0	Benzoic Acid	620	< 620 U
111-91-1	bis(2-Chloroethoxy) Methane	62	< 62 U
120-83-2	2,4-Dichlorophenol	310	< 310 U
120-82-1	1,2,4-Trichlorobenzene	62	< 62 U
91-20-3	Naphthalene	62	260
106-47-8	4-Chloroaniline	310	< 310 U
87-68-3	Hexachlorobutadiene	62	< 62 U
59-50-7	4-Chloro-3-methylphenol	310	< 310 U
91-57-6	2-Methylnaphthalene	62	< 62 Ŭ
77-47-4	Hexachlorocyclopentadiene	310	< 310 U
88-06-2	2,4,6-Trichlorophenol	310	< 310 U
95-95-4	2,4,5-Trichlorophenol	310	< 310 U
91-58-7	2-Chloronaphthalene	62	< 62 U
88-74-4	2-Nitroaniline	310	< 310 U
131-11-3	Dimethylphthalate	62	< 62 U
208-96-8	Acenaphthylene	62	< 62 U
99-09-2	3-Nitroaniline	310	< 310 U
83-32-9	Acenaphthene	62	270
51-28-5	2,4-Dinitrophenol	620	< 620 U
100-02-7	4-Nitrophenol	310	< 310 U
132-64-9	Dibenzofuran	62	< 62 U
606-20-2	2,6-Dinitrotoluene	310	< 310 U
121-14-2	2,4-Dinitrotoluene	310	< 310 U

Page 2 of 2

Sample ID: EBC-11-S1 SAMPLE

Lab Sample ID: NJ45Q

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19410 Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/21/08 22:53

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	62	< 62 U
7005-72-3	4-Chlorophenyl-phenylether	62	< 62 U
86-73-7	Fluorene	62	< 62 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	620	< 620 U
86-30-6	N-Nitrosodiphenylamine	62	< 62 U
101-55-3	4-Bromophenyl-phenylether	62	< 62 U
118-74-1	Hexachlorobenzene	62	< 62 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	62	< 62 U
86-74-8	Carbazole	62	< 62 U
120-12-7	Anthracene	62	< 62 U
84-74-2	Di-n-Butylphthalate	62	< 62 U
206-44-0	Fluoranthene	62	< 62 U
129-00-0	Pyrene	62	< 62 U
85-68-7	Butylbenzylphthalate	62	< 62 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	62	< 62 U
117-81-7	bis(2-Ethylhexyl)phthalate	62	< 62 U
218-01-9	Chrysene	62	< 62 U
117-84-0	Di-n-Octyl phthalate	62	< 62 U
205-99-2	Benzo(b)fluoranthene	62	< 62 U
207-08-9	Benzo(k)fluoranthene	62	< 62 U
50-32-8	Benzo(a)pyrene	62	< 62 U
193-39-5	Indeno(1,2,3-cd)pyrene	62	< 62 U
53-70-3	Dibenz(a,h)anthracene	62	< 62 U
191-24-2	Benzo(g,h,i)perylene	62	< 62 U
90-12-0	1-Methylnaphthalene	62	< 62 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	62.4%	2-Fluorobiphenyl	71.2%
d14-p-Terphenyl	85.2%	d4-1,2-Dichlorobenzene	72.8%
d5-Phenol	69.9%	2-Fluorophenol	68.3%
2,4,6-Tribromophenol	93.3%	d4-2-Chlorophenol	68.5%

Page 1 of 2

Lab Sample ID: NJ45R LIMS ID: 08-19411

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08
Date Analyzed: 08/22/08 15:32
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-11-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 8.45 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 16.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	< 59 U
111-44-4	Bis-(2-Chloroethyl) Ether	59	< 59 U
95-57-8	2-Chlorophenol	59	< 59 U
541-73-1	1,3-Dichlorobenzene	59	< 59 U
106-46-7	1,4-Dichlorobenzene	59	< 59 U
100-51-6	Benzyl Alcohol	59	< 59 U
95-50-1	1,2-Dichlorobenzene	59	< 59 U
95-48-7	2-Methylphenol	59	< 59 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	59	< 59 U
106-44-5	4-Methylphenol	59	< 59 U
621-64-7	N-Nitroso-Di-N-Propylamine	300	< 300 U
67-72-1	Hexachloroethane	59	< 59 U
98-95-3	Nitrobenzene	59	< 59 U
78-59-1	Isophorone	59	< 59 U
88-75-5	2-Nitrophenol	59	< 59 U
105-67-9	2,4-Dimethylphenol	59	< 59 U
65-85-0	Benzoic Acid	590	< 590 U
111-91-1	bis(2-Chloroethoxy) Methane	59	< 59 U
120-83-2	2,4-Dichlorophenol	300	< 300 U
120-82-1	1,2,4-Trichlorobenzene	59	< 59 U
91-20-3	Naphthalene	59	94
106-47-8	4-Chloroaniline	300	< 300 U
87-68-3	Hexachlorobutadiene	59	< 59 U
59-50-7	4-Chloro-3-methylphenol	300	< 300 U
91-57-6	2-Methylnaphthalene	59	< 59 U
77-47-4	Hexachlorocyclopentadiene	300	< 300 U
88-06-2	2,4,6-Trichlorophenol	300	< 300 U
95-95-4	2,4,5-Trichlorophenol	300	< 300 U
91-58-7	2-Chloronaphthalene	59	< 59 U
88-74-4	2-Nitroaniline	300	< 300 U
131-11-3	Dimethylphthalate	59	< 59 U
208-96-8	Acenaphthylene	59	< 59 U
99-09-2	3-Nitroaniline	300	< 300 U
83-32-9	Acenaphthene	59	62
51-28-5	2,4-Dinitrophenol	590	< 590 U
100-02-7	4-Nitrophenol	300	< 300 U
132-64-9	Dibenzofuran	59	< 59 U
606-20-2	2,6-Dinitrotoluene	300	< 300 U
121-14-2	2,4-Dinitrotoluene	300	< 300 U

Page 2 of 2

Sample ID: EBC-11-S2 SAMPLE

Lab Sample ID: NJ45R LIMS ID: 08-19411

QC Report No: NJ45-Hart Crowser, Inc.

Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/22/08 15:32

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	59	< 59 U
7005-72-3	4-Chlorophenyl-phenylether	59	< 59 U
86-73-7	Fluorene	59	< 59 U
100-01-6	4-Nitroaniline	300	< 300 U
534-52-1	4,6-Dinitro-2-Methylphenol	590	< 590 U
86-30-6	N-Nitrosodiphenylamine	59	< 59 U
101-55-3	4-Bromophenyl-phenylether	59	< 59 U
118-74-1	Hexachlorobenzene	59	< 59 U
87-86-5	Pentachlorophenol	300	< 300 U
85-01-8	Phenanthrene	59	75
86-74-8	Carbazole	59	< 59 Ŭ
120-12-7	Anthracene	59	< 59 U
84-74-2	Di-n-Butylphthalate	59	< 59 Ü
206-44-0	Fluoranthene	59	< 59 U
129-00-0	Pyrene	59	< 59 U
85-68-7	Butylbenzylphthalate	59	< 59 U
91-94-1	3,3'-Dichlorobenzidine	300	< 300 U
56-55-3	Benzo(a) anthracene	59	< 59 U
117-81-7	bis(2-Ethylhexyl)phthalate	59	< 59 U
218-01-9	Chrysene	59	< 59 U
117-84-0	Di-n-Octyl phthalate	59	< 59 U
205-99-2	Benzo(b)fluoranthene	59	< 59 U
207-08-9	Benzo(k)fluoranthene	59	< 59 U
50-32-8	Benzo(a)pyrene	59	< 59 Ŭ
193-39-5	Indeno(1,2,3-cd)pyrene	59	< 59 U
53-70-3	Dibenz(a,h)anthracene	59	< 59 U
191-24-2	Benzo(g,h,i)perylene	59	< 59 U
90-12-0	1-Methylnaphthalene	59	< 59 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	74.0%	2-Fluorobiphenyl	79.2%
d14-p-Terphenyl	95.2%	d4-1,2-Dichlorobenzene	79.6%
d5-Phenol	75.5%	2-Fluorophenol	74.4%
2,4,6-Tribromophenol	96.0%	d4-2-Chlorophenol	75.5%

Page 1 of 2

Lab Sample ID: NJ45S LIMS ID: 08-19412

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/21/08 19:59 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-12-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.78 g-dry-wt Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 13.8%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	64	< 64 U
111-44-4	Bis-(2-Chloroethyl) Ether	64	< 64 U
95-57-8	2-Chlorophenol	64	< 64 U
541-73-1	1,3-Dichlorobenzene	64	< 64 U
106-46-7	1,4-Dichlorobenzene	64	< 64 U
100-51-6	Benzyl Alcohol	64	< 64 U
95-50-1	1,2-Dichlorobenzene	64	< 64 U
95-48-7	2-Methylphenol	64	< 64 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	64	< 64 U
106-44-5	4-Methylphenol	64	< 64 U
621-64-7	N-Nitroso-Di-N-Propylamine	320	< 320 U
67-72-1	Hexachloroethane	64	< 64 U
98-95-3	Nitrobenzene	64	< 64 U
78-59-1	Isophorone	64	< 64 U
88-75-5	2-Nitrophenol	64	< 64 U
105-67-9	2,4-Dimethylphenol	64	< 64 U
65-85-0	Benzoic Acid	640	< 640 U
111-91-1	bis(2-Chloroethoxy) Methane	64	< 64 U
120-83-2	2,4-Dichlorophenol	320	< 320 U
120-82-1	1,2,4-Trichlorobenzene	64	< 64 U
91-20-3	Naphthalene	64	< 64 U
106-47-8	4-Chloroaniline	320	< 320 U
87-68-3	Hexachlorobutadiene	64	< 64 U
59-50-7	4-Chloro-3-methylphenol	320	< 320 U
91-57-6	2-Methylnaphthalene	64	< 64 U
77-47-4	Hexachlorocyclopentadiene	320	< 320 U
88-06-2	2,4,6-Trichlorophenol	320	< 320 U
95-95-4	2,4,5-Trichlorophenol	320	< 320 U
91-58-7	2-Chloronaphthalene	64	< 64 U
88-74-4	2-Nitroaniline	320	< 320 U
131-11-3	Dimethylphthalate	64	< 64 U
208-96-8	Acenaphthylene	64	< 64 U
99-09-2	3-Nitroaniline	320	< 320 U
83-32-9	Acenaphthene	64	< 64 U
51-28-5	2,4-Dinitrophenol	640	< 640 U
100-02-7	4-Nitrophenol	320	< 320 U
132-64-9	Dibenzofuran	64	< 64 U
606-20-2	2,6-Dinitrotoluene	320	< 320 U
121-14-2	2,4-Dinitrotoluene	320	< 320 U

Page 2 of 2

Matrix: Soil

Lab Sample ID: NJ45S

LIMS ID: 08-19412

Sample ID: EBC-12-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/21/08 19:59

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	64	< 64 U
7005-72-3	4-Chlorophenyl-phenylether	64	< 64 U
86-73-7	Fluorene	64	< 64 U
100-01-6	4-Nitroaniline	320	< 320 U
534-52-1	4,6-Dinitro-2-Methylphenol	640	< 640 U
86-30-6	N-Nitrosodiphenylamine	64	< 64 U
101-55-3	4-Bromophenyl-phenylether	64	< 64 U
118-74-1	Hexachlorobenzene	64	< 64 U
87-86-5	Pentachlorophenol	320	< 320 U
85-01-8	Phenanthrene	64	< 64 U
86-74-8	Carbazole	64	< 64 U
120-12-7	Anthracene	64	< 64 U
84-74-2	Di-n-Butylphthalate	64	< 64 U
206-44-0	Fluoranthene	64	< 64 U
129-00-0	Pyrene	64	< 64 U
85-68-7	Butylbenzylphthalate	64	< 64 U
91-94-1	3,3'-Dichlorobenzidine	320	< 320 U
56-55-3	Benzo(a)anthracene	64	< 64 U
117-81-7	bis(2-Ethylhexyl)phthalate	64	< 64 U
218-01-9	Chrysene	64	< 64 U
117-84-0	Di-n-Octyl phthalate	64	< 64 U
205-99-2	Benzo(b)fluoranthene	64	< 64 U
207-08-9	Benzo(k)fluoranthene	64	< 64 U
50-32-8	Benzo(a)pyrene	64	< 64 U
193-39-5	Indeno(1,2,3-cd)pyrene	64	< 64 U
53-70-3	Dibenz(a,h)anthracene	64	< 64 U
191-24-2	Benzo(g,h,i)perylene	64	< 64 U
90-12-0	1-Methylnaphthalene	64	< 64 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	68.0%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	90.4%	d4-1,2-Dichlorobenzene	79.6%
d5-Phenol	76.8%	2-Fluorophenol	74.1%
2,4,6-Tribromophenol	96.5%	d4-2-Chlorophenol	74.9%

Page 1 of 2

Lab Sample ID: NJ45U LIMS ID: 08-19414

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/21/08 20:34 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-13-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 8.49 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 5.00 Percent Moisture: 6.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	290	< 290 U
111-44-4	Bis-(2-Chloroethyl) Ether	290	< 290 Ŭ
95-57-8	2-Chlorophenol	290	< 290 U
541-73-1	1,3-Dichlorobenzene	290	< 290 U
106-46-7	1,4-Dichlorobenzene	290	< 290 U
100-51-6	Benzyl Alcohol	290	< 290 U
95-50-1	1,2-Dichlorobenzene	290	< 290 U
95-48-7	2-Methylphenol	290	< 290 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	290	< 290 U
106-44-5	4-Methylphenol	290	< 290 U
621-64-7	N-Nitroso-Di-N-Propylamine	1,500	< 1,500 U
67-72-1	Hexachloroethane	290	< 290 U
98-95-3	Nitrobenzene	290	< 290 U
78-59-1	Isophorone	290	< 290 U
88-75-5	2-Nitrophenol	290	< 290 U
105-67-9	2,4-Dimethylphenol	290	< 290 U
65-85-0	Benzoic Acid	2,900	< 2,900 U
111-91-1	bis(2-Chloroethoxy) Methane	290	< 290 U
120-83-2	2,4-Dichlorophenol	1,500	< 1,500 U
120-82-1	1,2,4-Trichlorobenzene	290	< 290 U
91-20-3	Naphthalene	290	< 290 U
106-47-8	4-Chloroaniline	1,500	< 1,500 U
87-68-3	Hexachlorobutadiene	290	< 290 U
59-50-7	4-Chloro-3-methylphenol	1,500	< 1,500 U
91-57-6	2-Methylnaphthalene	290	< 290 U
77-47-4	Hexachlorocyclopentadiene	1,500	< 1,500 U
88-06-2	2,4,6-Trichlorophenol	1,500	< 1,500 U
95-95-4	2,4,5-Trichlorophenol	1,500	< 1,500 U
91-58-7	2-Chloronaphthalene	290	< 290 U
88-74-4	2-Nitroaniline	1,500	< 1,500 U
131-11-3	Dimethylphthalate	290	< 290 U
208-96-8	Acenaphthylene	290	< 290 U
99-09-2	3-Nitroaniline	1,500	< 1,500 U
83-32-9	Acenaphthene	290	< 290 U
51-28-5	2,4-Dinitrophenol	2,900	< 2,900 U
100-02-7	4-Nitrophenol	1,500	< 1,500 U
132-64-9	Dibenzofuran	290	< 290 U
606-20-2	2,6-Dinitrotoluene	1,500	< 1,500 U
121-14-2	2,4-Dinitrotoluene	1,500	< 1,500 U
	_,	1,000	- 2,500 0

Page 2 of 2

Matrix: Soil

Sample ID: EBC-13-S1 SAMPLE

Lab Sample ID: NJ45U QC Report No: NJ45-Hart Crowser, Inc. LIMS ID: 08-19414

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/21/08 20:34

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	290	< 290 U
7005-72-3	4-Chlorophenyl-phenylether	290	< 290 U
86-73-7	Fluorene	290	< 290 U
100-01-6	4-Nitroaniline	1,500	< 1,500 U
534-52-1	4,6-Dinitro-2-Methylphenol	2,900	< 2,900 U
86-30-6	N-Nitrosodiphenylamine	290	< 290 U
101-55-3	4-Bromophenyl-phenylether	290	< 290 U
118-74-1	Hexachlorobenzene	290	< 290 U
87-86-5	Pentachlorophenol	1,500	< 1,500 U
85-01-8	Phenanthrene	290	< 290 U
86-74-8	Carbazole	290	< 290 U
120-12-7	Anthracene	290	< 290 U
84-74-2	Di-n-Butylphthalate	290	< 290 U
206-44-0	Fluoranthene	290	< 290 U
129-00-0	Pyrene	290	< 290 U
85-68-7	Butylbenzylphthalate	290	< 290 U
91-94-1	3,3'-Dichlorobenzidine	1,500	< 1,500 U
56-55-3	Benzo(a) anthracene	290	< 290 U
117-81-7	bis(2-Ethylhexyl)phthalate	290	< 290 U
218-01-9	Chrysene	290	< 290 U
117-84-0	Di-n-Octyl phthalate	290	< 290 U
205-99-2	Benzo(b)fluoranthene	290	< 290 U
207-08-9	Benzo(k) fluoranthene	290	< 290 U
50-32-8	Benzo(a)pyrene	290	< 290 U
193-39-5	Indeno(1,2,3-cd)pyrene	290	< 290 U
53-70-3	Dibenz(a,h)anthracene	290	< 290 Ŭ
191-24-2	Benzo(g,h,i)perylene	290	< 290 U
90-12-0	1-Methylnaphthalene	290	< 290 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	62.8%	2-Fluorobiphenyl	75.0%
d14-p-Terphenyl	94.2%	d4-1,2-Dichlorobenzene	65.8%
d5-Phenol	67.3%	2-Fluorophenol	61.3%
2.4.6-Tribromophenol	92.4%	d4-2-Chlorophenol	67.6%

Page 1 of 2

Lab Sample ID: NJ45V LIMS ID: 08-19415

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/21/08 21:09 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-13-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.65 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 6.2%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	< 65 U
111-44-4	Bis-(2-Chloroethyl) Ether	65	< 65 U
95-57-8	2-Chlorophenol	65	< 65 Ü
541-73-1	1,3-Dichlorobenzene	65	< 65 U
106-46-7	1,4-Dichlorobenzene	65	< 65 U
100-51-6	Benzyl Alcohol	65	< 65 U
95-50-1	1,2-Dichlorobenzene	65	< 65 U
95-48-7	2-Methylphenol	65	< 65 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	< 65 U
106-44-5	4-Methylphenol	65	< 65 Ü
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	65	< 65 U
98-95-3	Nitrobenzene	65	< 65 U
78-59-1	Isophorone	65	< 65 U
88-75-5	2-Nitrophenol	65	< 65 U
105-67-9	2,4-Dimethylphenol	65	< 65 Ŭ
65-85-0	Benzoic Acid	650	< 650 Ŭ
111-91-1	bis(2-Chloroethoxy) Methane	65	< 65 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	65	< 65 U
91-20-3	Naphthalene	65	< 65 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	65	< 65 U
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	65	< 65 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	65	< 65 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	65	< 65 U
208-96-8	Acenaphthylene	65	< 65 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	65	< 65 U
51-28-5	2,4-Dinitrophenol	650	< 650 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	65	< 65 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U

Page 2 of 2

Sample ID: EBC-13-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc. Lab Sample ID: NJ45V LIMS ID: 08-19415

Project: Pier 23-EBC 17490-01

Matrix: Soil Date Analyzed: 08/21/08 21:09

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	< 65 U
7005-72-3	4-Chlorophenyl-phenylether	65	< 65 U
86-73-7	Fluorene	65	< 65 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	650	< 650 U
86-30-6	N-Nitrosodiphenylamine	65	< 65 U
101-55-3	4-Bromophenyl-phenylether	65	< 65 U
118-74-1	Hexachlorobenzene	65	< 65 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	65	< 65 U
86-74-8	Carbazole	65	< 65 U
120-12-7	Anthracene	65	< 65 U
84-74-2	Di-n-Butylphthalate	65	< 65 U
206-44-0	Fluoranthene	65	< 65 U
129-00-0	Pyrene	65	< 65 U
85-68-7	Butylbenzylphthalate	65	< 65 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	65	< 65 U
117-81-7	bis(2-Ethylhexyl)phthalate	65	< 65 U
218-01-9	Chrysene	65	< 65 U
117-84-0	Di-n-Octyl phthalate	65	< 65 U
205-99-2	Benzo(b)fluoranthene	65	< 65 U
207-08-9	Benzo(k)fluoranthene	65	< 65 U
50-32-8	Benzo(a)pyrene	65	< 65 U
193-39-5	Indeno(1,2,3-cd)pyrene	65	< 65 U
53-70-3	Dibenz(a,h)anthracene	65	< 65 U
191-24-2	Benzo(g,h,i)perylene	65	< 65 U
90-12-0	1-Methylnaphthalene	65	< 65 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	66.4%	2-Fluorobiphenyl	71.6%
d14-p-Terphenyl	90.0%	d4-1,2-Dichlorobenzene	73.2%
d5-Phenol	71.5%	2-Fluorophenol	70.1%
2,4,6-Tribromophenol	95.5%	d4-2-Chlorophenol	69.9%

Page 1 of 2

Lab Sample ID: NJ45W LIMS ID: 08-19416

Matrix: Soil Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/21/08 21:43 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: EBC-14-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 8.18 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 14.3%

95-57-8 2-Chlore	Chloroethyl) Ether ophenol nlorobenzene	61 61 61	< 61 U < 61 U
95-57-8 2-Chlore	phenol	61	
541-73-1 1,3-Dich	lorobenzene		< 61 U
		61	< 61 U
106-46-7 1,4-Dich	nlorobenzene	61	< 61 U
100-51-6 Benzyl A	Alcohol	61	< 61 U
95-50-1 1,2-Dich	nlorobenzene	61	< 61 U
95-48-7 2-Methyl	.phenol	61	< 61 U
108-60-1 2,2'-Oxy	bis(1-Chloropropane)	61	< 61 U
106-44-5 4-Methyl	phenol	• 61	< 61 U
621-64-7 N-Nitros	o-Di-N-Propylamine	310	< 310 U
67-72-1 Hexachlo	proethane	61	< 61 U
98-95-3 Nitrober	nzene	61	< 61 U
78-59-1 Isophore	one	61	< 61 U
88-75-5 2-Nitrop	henol	61	< 61 U
105-67-9 2,4-Dime	thylphenol	61	< 61 U
65-85-0 Benzoic	Acid	610	< 610 U
111-91-1 bis(2-Ch	nloroethoxy) Methane	61	< 61 U
120-83-2 2,4-Dich	lorophenol	310	< 310 U
120-82-1 1,2,4-Tr	cichlorobenzene	61	< 61 U
91-20-3 Naphthal	ene	61	< 61 U
106-47-8 4-Chloro	paniline	310	< 310 U
87-68-3 Hexachlo	probutadiene	61	< 61 U
59-50-7 4-Chloro	-3-methylphenol	310	< 310 U
91-57-6 2-Methyl	naphthalene	61	< 61 U
77-47-4 Hexachlo	rocyclopentadiene	310	< 310 U
88-06-2 2,4,6-Tr	richlorophenol	310	< 310 U
95-95-4 2,4,5-Tr	richlorophenol	310	< 310 U
91-58-7 2-Chloro	naphthalene	61	< 61 U
88-74-4 2-Nitroa	niline	310	< 310 U
131-11-3 Dimethyl	.phthalate	61	< 61 U
208-96-8 Acenapht		61	< 61 U
99-09-2 3-Nitroa		310	< 310 U
83-32-9 Acenapht	hene	61	< 61 U
	trophenol	610	< 610 U
100-02-7 4-Nitrop		310	< 310 U
132-64-9 Dibenzof		61	< 61 U
	trotoluene	310	< 310 U
•	trotoluene	310	< 310 U

Page 2 of 2

Sample ID: EBC-14-S1 SAMPLE

Lab Sample ID: NJ45W QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19416 Project: Pier 23-EBC Matrix: Soil 17490-01 Date Analyzed: 08/21/08 21:43

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	61	< 61 U
7005-72-3	4-Chlorophenyl-phenylether	61	< 61 U
86-73-7	Fluorene	61	< 61 U
100-01-6	4-Nitroaniline	310	< 310 U
534-52-1	4,6-Dinitro-2-Methylphenol	610	< 610 U
86-30-6	N-Nitrosodiphenylamine	61	< 61 Ü
101-55-3	4-Bromophenyl-phenylether	61	< 61 U
118-74-1	Hexachlorobenzene	61	< 61 U
87-86-5	Pentachlorophenol	310	< 310 U
85-01-8	Phenanthrene	61	< 61 U
86-74-8	Carbazole	61	< 61 U
120-12-7	Anthracene	61	< 61 U
84-74-2	Di-n-Butylphthalate	61	< 61 U
206-44-0	Fluoranthene	61	< 61 U
129-00-0	Pyrene	61	< 61 U
85-68-7	Butylbenzylphthalate	61	< 61 U
91-94-1	3,3'-Dichlorobenzidine	310	< 310 U
56-55-3	Benzo(a)anthracene	61	< 61 U
117-81-7	bis(2-Ethylhexyl)phthalate	61	< 61 U
218-01-9	Chrysene	61	< 61 U
117-84-0	Di-n-Octyl phthalate	61	< 61 U
205-99-2	Benzo(b)fluoranthene	61	< 61 U
207-08-9	Benzo(k)fluoranthene	61	< 61 U
50-32-8	Benzo(a)pyrene	61	< 61 U
193-39-5	Indeno(1,2,3-cd)pyrene	61	< 61 U
53-70-3	Dibenz(a,h)anthracene	61	< 61 U
191-24-2	Benzo(g,h,i)perylene	61	< 61 U
90-12-0	1-Methylnaphthalene	61	< 61 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	58.0%	2-Fluorobiphenyl	67.2%
d5-Nittiopenzene	50.0%	z-fidorobiphenyi	07.20
d14-p-Terphenyl	81.6%	d4-1,2-Dichlorobenzene	60.8%
d5-Phenol	65.6%	2-Fluorophenol	58.9%
2,4,6-Tribromophenol	87.5%	d4-2-Chlorophenol	61.1%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC Matrix: Soil

17490-01

Client ID	NBZ	FBP	TPH	DCB_	PHL	2FP	TBP	2CP T	TOT OUT
				O	CO 40		CO 18	65.7%	0
EBC-1-S1	61.8%	71.3%	85.4%	65.8%	69.4%	60.1%	68.4%		
EBC-1-S2	67.6%	75.6%	91.2%	76.8%	78.9%	73.6%	88.5%	74.78	0
EBC-2-S1	66.8%	71.4%	88.1%	69.8%	72.6%	65.0%	80.8%	70.1%	0
EBC-3-S1	56.4%	66.5%	84.5%	58.4%	59.5%	52.3%	66.0%	59.0%	0
EBC-3-S2	74.4%	80.4%	101%	83.6%	85.3%	80.5%	94.4%	81.3%	0
EBC-4-S1	73.6%	82.0%	101%	80.4%	85.6%	77.9%	95.7%	79.7%	0
EBC-5-S1	67.2%	79.9%	102%	74.5%	79.8%	71.4%	86.4%	75.4%	0
EBC-6-S1	72.0%	79.2%	103%	80.0%	84.5%	76.0%	92.5%	78.9%	0
EBC-7-S1	64.2%	73.7%	96.5%	64.2%	62.0%	29.8%*	4.6%*	44.2%	2
EBC-7-S2	60.8%	70.8%	92.8%	68.8%	71.7%	65.1%	81.6%	66.4%	0
MB-081108	69.2%	73.2%	99.2%	74.4%	79.5%	72.8%	77.1%	73.9%	0
LCS-081108	67.2%	81.2%	102%	70.0%	78.4%	72.3%	94.1%	70.1%	0
LCSD-081108	68.8%	82.8%	104%	70.4%	79.5%	72.5%	95.5%	70.4%	0
EBC-8-S1	56.0%	70.0%	98.4%	62.8%	66.1%	60.5%	89.6%	61.6%	0
EBC-8-S1 MS	69.6%	82.4%	115%	73.2%	79.2%	75.2%	99.2%	72.3%	0
EBC-8-S1 MSD	74.8%	87.6%	122%	80.8%	87.2%	82.9%	107%	79.2%	0
EBC-9-S1	60.0%	70.0%	86.4%	65.2%	70.9%	60.3%	88.5%	65.6%	0
EBC-10-S1	58.8%	72.4%	100%	64.4%	68.8%	61.3%	88.0%	62.9%	0
EBC-11-S1	62.4%	71.2%	85.2%	72.8%	69.9%	68.3%	93.3%	68.5%	0
EBC-11-S2	74.0%	79.2%	95.2%	79.6%	75.5%	74.4%	96.0%	75.5%	0
EBC-12-S1	68.0%	77.2%	90.4%	79.6%	76.8%	74.1%	96.5%	74.9%	0
EBC-13-S1	62.8%	75.0%	94.2%	65.8%	67.3%	61.3%	92.4%	67.6%	0
EBC-13-S1	66.4%	71.6%	90.0%	73.2%	71.5%	70.1%	95.5%	69.9%	0
EBC-14-S1	58.0%	67.2%	81.6%	60.8%	65.6%	58.9%	87.5%	61.1%	0
EDC-14-51	30.0%	07.20	01.00	00.00	55.00	20.70			

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(30-160)	(30-160)
(FBP)	=	2-Fluorobiphenyl	(30-160)	(30-160)
		d14-p-Terphenyl	(30-160)	(30-160)
		d4-1,2-Dichlorobenzene	(30-160)	(30-160)
		d5-Phenol	(30-160)	(30-160)
(2FP)	=	2-Fluorophenol	(30-160)	(30-160)
(TBP)	=	2,4,6-Tribromophenol	(30-160)	(30-160)
		d4-2-Chlorophenol	(30-160)	(30-160)

Prep Method: SW3546

Log Number Range: 08-19394 to 08-19416

Page 1 of 2

Lab Sample ID: NJ45N LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted MS/MSD: 08/11/08

Date Analyzed MS: 08/20/08 20:29 MSD: 08/20/08 21:04

Instrument/Analyst MS: NT6/LJR MSD: NT6/LJR

GPC Cleanup: NO

Sample ID: EBC-8-S1 MS/MSD

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount MS: 7.68 g-dry-wt

MSD: 8.04 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL

Dilution Factor MS: 1.00

MSD: 1.00

Percent Moisture: 4.7 %

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Phenol	< 65.3	1190	1630	73.0%	1230	1550	79.4%	3.3%
Bis-(2-Chloroethyl) Ether	< 65.3	1190	1630	73.0%	1230	1550	79.4%	3.3%
2-Chlorophenol	< 65.3	1200	1630	73.6%	1260	1550	81.3%	4.9%
1,3-Dichlorobenzene	< 65.3	1170	1630	71.8%	1220	1550	78.7%	4.2%
1,4-Dichlorobenzene	< 65.3	1170	1630	71.8%	1230	1550	79.4%	5.0%
Benzyl Alcohol	< 65.3	1910	3260	58.6%	1970	3110	63.3%	3.1%
1,2-Dichlorobenzene	< 65.3	1110	1630	68.1%	1140	1550	73.5%	2.7%
2-Methylphenol	< 65.3	1290	1630	.79.1%	1330	1550	85.8%	3.1%
2,2'-Oxybis(1-Chloropropane	e< 65.3	1170	1630	71.8%	1220	1550	78.7%	4.2%
4-Methylphenol	< 65.3	2630	3260	80.7%	2680	3110	86.2%	1.9%
N-Nitroso-Di-N-Propylamine	< 326	1250	1630	76.7%	1300	1550	83.9%	3.9%
Hexachloroethane	< 65.3	892	1630	54.7%	927	1550	59.8%	3.8%
Nitrobenzene	< 65.3	1150	1630	70.6%	1150	1550	74.2%	0.0%
Isophorone	< 65.3	1450	1630	89.0%	1450	1550	93.5%	0.0%
2-Nitrophenol	< 65.3	1090	1630	66.9%	1140	1550	73.5%	4.5%
2,4-Dimethylphenol	< 65.3	1250	1630	76.7%	1250	1550	80.6%	0.0%
Benzoic Acid	< 653	3780	4880	77.5%	3740	4660	80.3%	1.1%
bis(2-Chloroethoxy) Methane		1300	1630	79.8%	1300	1550	83.9%	0.0%
2,4-Dichlorophenol	< 326	1320	1630	81.0%	1320	1550	85.2%	0.0%
1,2,4-Trichlorobenzene	< 65.3	1120	1630	68.7%	1140	1550	73.5%	1.8%
Naphthalene	< 65.3	1210	1630	74.2%	1230	1550	79.4%	1.6%
4-Chloroaniline	< 326	3660	3910	93.6%	3650	3730	97.9%	0.3%
Hexachlorobutadiene	< 65.3	1050	1630	64.4%	1070	1550	69.0%	1.9%
4-Chloro-3-methylphenol	< 326	1470	1630	90.2%	1480	1550	95.5%	0.7%
2-Methylnaphthalene	< 65.3	1290	1630	79.1%	1280	1550	82.6%	0.8%
Hexachlorocyclopentadiene	< 326	799	4880	16.4%	748	4660	16.1%	6.6%
2,4,6-Trichlorophenol	< 326	1430	1630	87.7%	1440	1550	92.9%	0.7%
2,4,5-Trichlorophenol	< 326	1470	1630	90.2%	1500	1550	96.8%	2.0%
2-Chloronaphthalene	< 65.3	1330	1630	81.6%	1340	1550	86.5%	0.7%
2-Nitroaniline	< 326	1540	1630	94.5%	1550	1550	100%	0.6%
Dimethylphthalate	< 65.3	1400	1630	85.9%	1420	1550	91.6%	1.4%
Acenaphthylene	< 65.3	1490	1630	91.4%	1500	1550	96.8%	0.7%
3-Nitroaniline	< 326	4650	4170	112%	4690	3980	118%	0.9%
Acenaphthene	< 65.3	1360	1630	83.4%	1390	1550	89.7%	2.2%
2,4-Dinitrophenol	< 653	< 651 U	4880	NA	< 622 U	4660	NA	NA
4-Nitrophenol	< 326	1220	1630	74.8%	1340	1550	86.5%	9.4%
Dibenzofuran	< 65.3	1450	1630	89.0%	1480	1550	95.5%	2.0%
2,6-Dinitrotoluene	< 326	1460	1630	89.6%	1500	1550	96.8%	2.7%
2,4-Dinitrotoluene	< 326	1470	1630	90.2%	1520	1550	98.1%	3.3%
Diethylphthalate	< 65.3	1280	1630	78.5%	1300	1550	83.9%	1.6%
4-Chlorophenyl-phenylether		1410	1630	86.5%	1440	1550	92.9%	2.1%
Fluorene	< 65.3	1410	1630	86.5%	1440	1550	92.9%	2.1%
4-Nitroaniline	< 326	1920	1630	118%	1940	1550	125%	1.0%
4,6-Dinitro-2-Methylphenol	< 653	< 651 U	4880	NA	< 622 U	4660	NA	NA
N-Nitrosodiphenylamine	< 65.3	1960	1630	120%	1990	1550	128%	1.5%
Wittoboarphonyramine	~ 03.3	100	1030	1200	1000	1000	1200	

Page 2 of 2

Sample ID: EBC-8-S1 MS/MSD

Lab Sample ID: NJ45N LIMS ID: 08-19407

QC Report No: NJ45-Hart Crowser, Inc.

Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed MS: 08/20/08 20:29 MSD: 08/20/08 21:04

			Spike	MS		Spike	MSD	
Analyte	Sample	MS	Added-MS	Recovery	MSD	Added-MSD	Recovery	RPD
4-Bromophenyl-phenylether	< 65.3	1310	1630	80.4%	1340	1550	86.5%	2.3%
Hexachlorobenzene	< 65.3	1320	1630	81.0%	1340	1550	86.5%	1.5%
Pentachlorophenol	< 326	1290	1630	79.1%	1290	1550	83.2%	0.0%
Phenanthrene	< 65.3	1310	1630	80.4%	1330	1550	85.8%	1.5%
Carbazole	< 65.3	1480	1630	90.8%	1490	1550	96.1%	0.7%
Anthracene	< 65.3	1380	1630	84.7%	1380	1550	89.0%	0.0%
Di-n-Butylphthalate	< 65.3	1390	1630	85.3%	1420	1550	91.6%	2.1%
Fluoranthene	< 65.3	1400	1630	85.9%	1420	1550	91.6%	1.4%
Pyrene	< 65.3	1730	1630	106%	1770	1550	114%	2.3%
Butylbenzylphthalate	< 65.3	1720	1630	106%	1760	1550	114%	2.3%
3,3'-Dichlorobenzidine	< 326	4270	4170	102%	4300	3980	108%	0.7%
Benzo(a)anthracene	< 65.3	1540	1630	94.5%	1580	1550	102%	2.6%
bis(2-Ethylhexyl)phthalate	< 65.3	1550	1630	95.1%	1570	1550	101%	1.3%
Chrysene	< 65.3	1410	1630	86.5%	1470	1550	94.8%	4.2%
Di-n-Octyl phthalate	< 65.3	1400	1630	85.9%	1420	1550	91.6%	1.4%
Benzo(b)fluoranthene	< 65.3	1870	1630	115%	1910	1550	123%	2.1%
Benzo(k)fluoranthene	< 65.3	1710	1630	105%	1770	1550	114%	3.4%
Benzo(a)pyrene	< 65.3	1440	1630	88.3%	1460	1550	94.2%	1.4%
Indeno(1,2,3-cd)pyrene	< 65.3	846	1630	51.9%	835	1550	53.9%	1.3%
Dibenz(a,h)anthracene	< 65.3	917	1630	56.3%	884	1550	57.0%	3.7%
Benzo(g,h,i)perylene	< 65.3	803	1630	49.3%	771	1550	49.7%	4.1%
1-Methylnaphthalene	< 65.3	1330	1630	81.6%	1340	1550	86.5%	0.7%

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery.

193910

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 1 of 2

Sample ID: EBC-8-S1
MATRIX SPIKE

Lab Sample ID: NJ45N LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08
Date Analyzed: 08/20/08 20:29
Instrument/Analyst: NT6/LJR

GPC Cleanup: No

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01
Date Sampled: 07/29/08
Date Received: 08/06/08

Sample Amount: 7.68 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 4.7%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	65	
111-44-4	Bis-(2-Chloroethyl) Ether	65	
95-57-8	2-Chlorophenol	65	
541-73-1	1,3-Dichlorobenzene	65	
106-46-7	1,4-Dichlorobenzene	65	
100-51-6	Benzyl Alcohol	65	
95-50-1	1,2-Dichlorobenzene	65	
95-48-7	2-Methylphenol	65	
108-60-1	2,2'-Oxybis(1-Chloropropane)	65	
106-44-5	4-Methylphenol	65	
521-64-7	N-Nitroso-Di-N-Propylamine	330	
57-72-1	Hexachloroethane	65	
98-95-3	Nitrobenzene	65	
78-59-1	Isophorone	65	
38-75-5	2-Nitrophenol	65	
105-67-9	2,4-Dimethylphenol	65	
55-85-0	Benzoic Acid	650	
L11-91-1	bis(2-Chloroethoxy) Methane	65	
L20-83-2	2,4-Dichlorophenol	330	
120-82-1	1,2,4-Trichlorobenzene	65	
91-20-3	Naphthalene	65	
L06-47-8	4-Chloroaniline	330	
37-68-3	Hexachlorobutadiene	65	
59-50-7	4-Chloro-3-methylphenol	330	
91-57-6	2-Methylnaphthalene	65	
77-47-4	Hexachlorocyclopentadiene	330	
38-06-2	2,4,6-Trichlorophenol	330	
95-95-4	2,4,5-Trichlorophenol	330	
91-58-7	2-Chloronaphthalene	65	
38-74-4	2-Nitroaniline	330	
31-11-3	Dimethylphthalate	65	
208-96-8	Acenaphthylene	65	
9-09-2	3-Nitroaniline	330	
33-32-9	Acenaphthene	65	
51-28-5	2,4-Dinitrophenol	650	
.00-02-7	4-Nitrophenol	330	
.32-64-9	Dibenzofuran	65	
506-20-2	2,6-Dinitrotoluene	330	
.21-14-2	2,4-Dinitrotoluene	330	

Page 2 of 2

Sample ID: EBC-8-S1

MATRIX SPIKE

Lab Sample ID: NJ45N

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19407 Matrix: Soil

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 20:29

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	65	
7005-72-3	4-Chlorophenyl-phenylether	65	
86-73-7	Fluorene	65	
100-01-6	4-Nitroaniline	330	
534-52-1	4,6-Dinitro-2-Methylphenol	650	
86-30-6	N-Nitrosodiphenylamine	65	
101-55-3	4-Bromophenyl-phenylether	65	
118-74-1	Hexachlorobenzene	65	
87-86-5	Pentachlorophenol	330	
85-01-8	Phenanthrene	65	
86-74-8	Carbazole	65	
120-12-7	Anthracene	65	
84-74-2	Di-n-Butylphthalate	65	
206-44-0	Fluoranthene	65	
129-00-0	Pyrene	65	
85-68-7	Butylbenzylphthalate	65	
91-94-1	3,3'-Dichlorobenzidine	330	
56-55-3	Benzo(a)anthracene	65	
117-81-7	bis(2-Ethylhexyl)phthalate	65	
218-01-9	Chrysene	65	
117-84-0	Di-n-Octyl phthalate	65	
205-99-2	Benzo(b)fluoranthene	65	
207-08-9	Benzo(k)fluoranthene	65	
50-32-8	Benzo(a)pyrene	65	
193-39-5	Indeno(1,2,3-cd)pyrene	65	
53-70-3	Dibenz(a,h)anthracene	65	
191-24-2	Benzo(g,h,i)perylene	65	
90-12-0	1-Methylnaphthalene	65	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	69.6%	2-Fluorobiphenyl	82.4%
d14-p-Terphenyl	115%	d4-1,2-Dichlorobenzene	73.2%
d5-Phenol	79.2%	2-Fluorophenol	75.2%
2,4,6-Tribromophenol	99.2%	d4-2-Chlorophenol	72.3%

Page 1 of 2

Sample ID: EBC-8-S1

MATRIX SPIKE DUPLICATE

Lab Sample ID: NJ45N LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 8.04 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 4.7%

Date	Extracted: 08/11/08	
	Analyzed: 08/20/08 21:04	1
Insti	rument/Analyst: NT6/LJR	

GPC Cleanup: No

CAS Number	Analyte	RL	Result
108-95-2	Phenol	62	
111-44-4	Bis-(2-Chloroethyl) Ether	62	
95-57-8	2-Chlorophenol	62	
541-73-1	1,3-Dichlorobenzene	62	
106-46-7	1,4-Dichlorobenzene	62	
100-51-6	Benzyl Alcohol	62	
95-50-1	1,2-Dichlorobenzene	62	
95-48-7	2-Methylphenol	62	
108-60-1	2,2'-Oxybis(1-Chloropropane)	62	
106-44-5	4-Methylphenol	62	
621-64-7	N-Nitroso-Di-N-Propylamine	310	
67-72-1	Hexachloroethane	62	
98-95-3	Nitrobenzene	62	
78-59-1	Isophorone	62	
88-75-5	2-Nitrophenol	62	
105-67-9	2,4-Dimethylphenol	62	
65-85-0	Benzoic Acid	620	-
111-91-1	bis(2-Chloroethoxy) Methane	62	
120-83-2	2,4-Dichlorophenol	310	
120-82-1	1,2,4-Trichlorobenzene	62	
91-20-3	Naphthalene	62	
106-47-8	4-Chloroaniline	310	
87-68-3	Hexachlorobutadiene	62	
59-50-7	4-Chloro-3-methylphenol	310	
91-57-6	2-Methylnaphthalene	62	
77-47-4	Hexachlorocyclopentadiene	310	
88-06-2	2,4,6-Trichlorophenol	310	
95-95-4	2,4,5-Trichlorophenol	310	
91-58-7	2-Chloronaphthalene	62	
88-74-4	2-Nitroaniline	310	
131-11-3	Dimethylphthalate	62	
208-96-8	Acenaphthylene	62	
99-09-2	3-Nitroaniline	310	-
83-32-9	Acenaphthene	62	
51-28-5	2,4-Dinitrophenol	620	
100-02-7	4-Nitrophenol	310	
132-64-9	Dibenzofuran	62	
606-20-2	2,6-Dinitrotoluene	310	
121-14-2	2,4-Dinitrotoluene	310	

is with

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS

Page 2 of 2

Matrix: Soil

Sample ID: EBC-8-S1

MATRIX SPIKE DUPLICATE

QC Report No: NJ45-Hart Crowser, Inc. Lab Sample ID: NJ45N LIMS ID: 08-19407

Project: Pier 23-EBC 17490-01

Date Analyzed: 08/20/08 21:04

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	62	
7005-72-3	4-Chlorophenyl-phenylether	62	
86-73-7	Fluorene	62	
100-01-6	4-Nitroaniline	310	
534-52-1	4,6-Dinitro-2-Methylphenol	620	
86-30-6	N-Nitrosodiphenylamine	62	
101-55-3	4-Bromophenyl-phenylether	62	
118-74-1	Hexachlorobenzene	62	
87-86-5	Pentachlorophenol	310	
85-01-8	Phenanthrene	62	
86-74-8	Carbazole	62	
120-12-7	Anthracene	62	
84-74-2	Di-n-Butylphthalate	62	
206-44-0	Fluoranthene	62	
129-00-0	Pyrene	62	
85-68-7	Butylbenzylphthalate	62	
91-94-1	3,3'-Dichlorobenzidine	310	
56-55-3	Benzo(a) anthracene	62	
117-81-7	bis(2-Ethylhexyl)phthalate	62	
218-01-9	Chrysene	62	
117-84-0	Di-n-Octyl phthalate	62	
205-99-2	Benzo(b) fluoranthene	62	
207-08-9	Benzo(k)fluoranthene	62	
50-32-8	Benzo(a)pyrene	62	
193-39-5	Indeno(1,2,3-cd)pyrene	62	
53-70-3	Dibenz(a,h)anthracene	62	
191-24-2	Benzo(g,h,i)perylene	62	
90-12-0	1-Methylnaphthalene	62	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	74.8%	2-Fluorobiphenyl	87.6%
d14-p-Terphenyl	122%	d4-1,2-Dichlorobenzene	80.8%
d5-Phenol	87.2%	2-Fluorophenol	82.9%
2,4,6-Tribromophenol	107%	d4-2-Chlorophenol	79.2%

Page 1 of 2

Lab Sample ID: LCS-081108

LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted LCS/LCSD: 08/11/08

Date Analyzed LCS: 08/20/08 13:04

LCSD: 08/20/08 13:38

Instrument/Analyst LCS: NT6/LJR

LCSD: NT6/LJR

GPC Cleanup: NO

Sample ID: LCS-081108 LCS/LCSD

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount LCS: 7.50 g

LCSD: 7.50 g Final Extract Volume LCS: 0.5 mL

LCSD: 0.5 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Analyte	псь	Added-Icb	Recovery	ПСВБ	Added LCDD	Recovery	
Phenol	1270	1670	76.0%	1280	1670	76.6%	0.8%
Bis-(2-Chloroethyl) Ether	1210	1670	72.5%	1220	1670	73.1%	0.8%
2-Chlorophenol	1210	1670	72.5%	1220	1670	73.1%	0.8%
1,3-Dichlorobenzene	1160	1670	69.5%	1190	1670	71.3%	2.6%
1,4-Dichlorobenzene	1170	1670	70.1%	1170	1670	70.1%	0.0%
Benzyl Alcohol	1930	3330	58.0%	1940	3330	58.3%	0.5%
1,2-Dichlorobenzene	1100	1670	65.9%	1100	1670	65.9%	0.0%
2-Methylphenol	1300	1670	77.8%	1310	1670	78.4%	0.8%
2,2'-Oxybis(1-Chloropropane	1220	1670	73.1%	1230	1670	73.7%	0.8%
4-Methylphenol	2620	3330	78.7%	2620	3330	78.7%	0.0%
N-Nitroso-Di-N-Propylamine	1280	1670	76.6%	1310	1670	78.4%	2.3%
Hexachloroethane	1030	1670	61.7%	1050	1670	62.9%	1.9%
Nitrobenzene	1160	1670	69.5%	1190	1670	71.3%	2.6%
Isophorone	1470	1670	88.0%	1500	1670	89.8%	2.0%
2-Nitrophenol	1240	1670	74.3%	1280	1670	76.6%	3.2%
2,4-Dimethylphenol	1220	1670	73.1%	1240	1670	74.3%	1.6%
Benzoic Acid	4170	5000	83.4%	4260	5000	85.2%	2.1%
bis(2-Chloroethoxy) Methane	1310	1670	78.4%	1340	1670	80.2%	2.3%
2,4-Dichlorophenol	1270	1670	76.0%	1320	1670	79.0%	3.9%
1,2,4-Trichlorobenzene	1100	1670	65.9%	1130	1670	67.7%	2.7%
Naphthalene	1200	1670	71.9%	1240	1670	74.3%	3.3%
4-Chloroaniline	3050	4000	76.2%	2950	4000	73.8%	3.3%
Hexachlorobutadiene	1050	1670	62.9%	1080	1670	64.7%	2.8%
4-Chloro-3-methylphenol	1430	1670	85.6%	1450	1670	86.8%	1.4%
2-Methylnaphthalene	1240	1670	74.3%	1290	1670	77.2%	4.0%
Hexachlorocyclopentadiene	3920	5000	78.4%	4040	5000	80.8%	3.0%
2,4,6-Trichlorophenol	1430	1670	85.6%	1450	1670	86.8%	1.4%
2,4,5-Trichlorophenol	1500	1670	89.8%	1530	1670	91.6%	2.0%
2-Chloronaphthalene	1360	1670	81.4%	1390	1670	83.2%	2.2%
2-Nitroaniline	1470	1670	88.0%	1480	1670	88.6%	0.7%
Dimethylphthalate	1450	1670	86.8%	1470	1670	88.0%	1.4%
Acenaphthylene	1500	1670	89.8%	1530	1670	91.6%	2.0%
3-Nitroaniline	4210	4270	98.6%	4360	4270	102%	3.5%
Acenaphthene	1370	. 1670	82.0%	1410	1670	84.4%	2.9%

Page 2 of 2

Sample ID: LCSD-081108 LCS/LCSD

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC Lab Sample ID: LCS-081108 LIMS ID: 08-19407

17490-01

Matrix: Soil Date Analyzed LCS: 08/20/08 13:04 LCSD: 08/20/08 13:38

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
2,4-Dinitrophenol	5330	5000	107%	5530	5000	111%	3.7%
4-Nitrophenol	1310	1670	78.4%	1240	1670	74.3%	5.5%
Dibenzofuran	1450	1670	86.8%	1470	1670	88.0%	1.4%
2,6-Dinitrotoluene	1530	1670	91.6%	1570	1670	94.0%	2.6%
2,4-Dinitrotoluene	1580	1670	94.6%	1620	1670	97.0%	2.5%
Diethylphthalate	1340	1670	80.2%	1360	1670	81.4%	1.5%
4-Chlorophenyl-phenylether	1400	1670	83.8%	1430	1670	85.6%	2.1%
Fluorene	1420	1670	85.0%	1450	1670	86.8%	2.1%
4-Nitroaniline	1650	1670	98.8%	1710	1670	102%	3.6%
4,6-Dinitro-2-Methylphenol	4340	5000	86.8%	4450	5000	89.0%	2.5%
N-Nitrosodiphenylamine	2040	1670	122%	2040	1670	122%	0.0%
4-Bromophenyl-phenylether	1390	1670	83.2%	1410	1670	84.4%	1.4%
Hexachlorobenzene	1400	1670	83.8%	1410	1670	84.4%	0.7%
Pentachlorophenol	1380	1670	82.6%	1380	1670	82.6%	0.0%
Phenanthrene	1390	1670	83.2%	1400	1670	83.8%	0.7%
Carbazole	1590	1670	95.2%	1590	1670	95.2%	0.0%
Anthracene	1450	1670	86.8%	1450	1670	86.8%	0.0%
Di-n-Butylphthalate	1530	1670	91.6%	1550	1670	92.8%	1.3%
Fluoranthene	1510	1670	90.4%	1520	1670	91.0%	0.7%
Pyrene	1650	1670	98.8%	1660	1670	99.4%	0.6%
Butylbenzylphthalate	1700	1670	102%	1710	1670	102%	0.6%
3,3'-Dichlorobenzidine	4100	4270	96.0%	4080	4270	95.6%	0.5%
Benzo(a)anthracene	1610	1670	96.4%	1620	1670	97.0%	0.6%
bis(2-Ethylhexyl)phthalate	1580	1670	94.6%	1660	1670	99.4%	4.9%
Chrysene	1520	1670	91.0%	1530	1670	91.6%	0.7%
Di-n-Octyl phthalate	1510	1670	90.4%	1530	1670	91.6%	1.3%
Benzo(b)fluoranthene	1570	1670	94.0%	1430	1670	85.6%	9.3%
Benzo(k)fluoranthene	1350	1670	80.8%	1500	1670	89.8%	10.5%
Benzo(a)pyrene	1490	1670	89.2%	1470	1670	88.0%	1.4%
Indeno(1,2,3-cd)pyrene	1640	1670	98.2%	1630	1670	97.6%	0.6%
Dibenz(a,h)anthracene	1650	1670	98.8%	1650	1670	98.8%	0.0%
Benzo(g,h,i)perylene	1770	1670	106%	1770	1670	106%	0.0%
1-Methylnaphthalene	1290	1670	77.2%	1330	1670	79.6%	3.1%

Semivolatile Surrogate Recovery

	LCS	LCSD
d5-Nitrobenzene	67.2%	68.8%
2-Fluorobiphenyl	81.2%	82.8%
d14-p-Terphenyl	102%	104%
d4-1,2-Dichlorobenzene	70.0%	70.4%
d5-Phenol	78.4%	79.5%
2-Fluorophenol	72.3%	72.5%
2,4,6-Tribromophenol	94.1%	95.5%
d4-2-Chlorophenol	70.1%	70.4%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Page 1 of 2

Lab Sample ID: MB-081108

LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized:

Reported: 08/26/08

Date Extracted: 08/11/08 Date Analyzed: 08/20/08 12:30 Instrument/Analyst: NT6/LJR

GPC Cleanup: No

Sample ID: MB-081108 METHOD BLANK

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 7.50 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	67	< 67 U
111-44-4	Bis-(2-Chloroethyl) Ether	67	< 67 U
95-57-8	2-Chlorophenol	67	< 67 Ŭ
541-73-1	1,3-Dichlorobenzene	67	< 67 U
106-46-7	1,4-Dichlorobenzene	67	< 67 U
100-51-6	Benzyl Alcohol	67	< 67 U
95-50-1	1,2-Dichlorobenzene	67	< 67 U
95-48-7	2-Methylphenol	67	< 67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67	< 67 Ŭ
106-44-5	4-Methylphenol	67	< 67 U
621-64-7	N-Nitroso-Di-N-Propylamine	330	< 330 U
67-72-1	Hexachloroethane	67	< 67 Ü
98-95-3	Nitrobenzene	67	< 67 U
78-59-1	Isophorone	67	< 67 U
88-75-5	2-Nitrophenol	67	< 67 Ŭ
105-67-9	2,4-Dimethylphenol	67	< 67 U
65-85-0	Benzoic Acid	670	< 670 U
111-91-1	bis(2-Chloroethoxy) Methane	67	< 67 U
120-83-2	2,4-Dichlorophenol	330	< 330 U
120-82-1	1,2,4-Trichlorobenzene	67	< 67 Ü
91-20-3	Naphthalene	67	< 67 U
106-47-8	4-Chloroaniline	330	< 330 U
87-68-3	Hexachlorobutadiene	67	< 67 Ŭ
59-50-7	4-Chloro-3-methylphenol	330	< 330 U
91-57-6	2-Methylnaphthalene	67	< 67 U
77-47-4	Hexachlorocyclopentadiene	330	< 330 U
88-06-2	2,4,6-Trichlorophenol	330	< 330 U
95-95-4	2,4,5-Trichlorophenol	330	< 330 U
91-58-7	2-Chloronaphthalene	67	< 67 U
88-74-4	2-Nitroaniline	330	< 330 U
131-11-3	Dimethylphthalate	67	< 67 U
208-96-8	Acenaphthylene	67	< 67 U
99-09-2	3-Nitroaniline	330	< 330 U
83-32-9	Acenaphthene	67	< 67 U
51-28-5	2,4-Dinitrophenol	670	< 670 U
100-02-7	4-Nitrophenol	330	< 330 U
132-64-9	Dibenzofuran	67	< 67 U
606-20-2	2,6-Dinitrotoluene	330	< 330 U
121-14-2	2,4-Dinitrotoluene	330	< 330 U
	,		

Page 2 of 2

Sample ID: MB-081108

METHOD BLANK

Lab Sample ID: MB-081108

QC Report No: NJ45-Hart Crowser, Inc.

LIMS ID: 08-19407

Project: Pier 23-EBC

Matrix: Soil

17490-01

Date Analyzed: 08/20/08 12:30

CAS Number	Analyte	RL	Result
84-66-2	Diethylphthalate	67	< 67 U
7005-72-3	4-Chlorophenyl-phenylether	67	< 67 U
86-73-7	Fluorene	67	< 67 U
100-01-6	4-Nitroaniline	330	< 330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670	< 670 U
86-30-6	N-Nitrosodiphenylamine	67	< 67 Ü
101-55-3	4-Bromophenyl-phenylether	67	< 67 U
118-74-1	Hexachlorobenzene	67	< 67 U
87-86-5	Pentachlorophenol	330	< 330 U
85-01-8	Phenanthrene	67	< 67 Ü
86-74-8	Carbazole	67	< 67 U
120-12-7	Anthracene	67	< 67 U
84-74-2	Di-n-Butylphthalate	67	< 67 U
206-44-0	Fluoranthene	67	< 67 U
129-00-0	Pyrene	67	< 67 Ŭ
85-68-7	Butylbenzylphthalate	67	< 67 U
91-94-1	3,3'-Dichlorobenzidine	330	< 330 U
56-55-3	Benzo(a)anthracene	67	< 67 U
117-81-7	bis(2-Ethylhexyl)phthalate	67	< 67 U
218-01-9	Chrysene	67	< 67 Ŭ
117-84-0	Di-n-Octyl phthalate	67	< 67 Ŭ
205-99-2	Benzo(b)fluoranthene	67	< 67 Ŭ
207-08-9	Benzo(k)fluoranthene	67	< 67 U
50-32-8	Benzo(a)pyrene	67	< 67 U
193-39-5	Indeno(1,2,3-cd)pyrene	67	< 67 U
53-70-3	Dibenz(a,h)anthracene	67	< 67 U
191-24-2	Benzo(g,h,i)perylene	67	< 67 U
90-12-0	1-Methylnaphthalene	67	< 67 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	69.2%	2-Fluorobiphenyl	73.2%
d14-p-Terphenyl	99.2%	d4-1,2-Dichlorobenzene	74.4%
d5-Phenol	79.5%	2-Fluorophenol	72.8%
2,4,6-Tribromophenol	77.1%	d4-2-Chlorophenol	73.9%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NJ45A LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized: Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 15:46 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-1-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 12.4 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 4.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	220
11096-82-5	Aroclor 1260	32	310
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	NR
Tetrachlorometaxylene	63.5%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NJ45B LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized: Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 16:08 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-1-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 12.1 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 6.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	64.8%
Tetrachlorometaxylene	66.2%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082

Page 1 of 1

Lab Sample ID: NJ45C LIMS ID: 08-19396

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 16:31 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-2-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 5.50 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 9.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	73	< 73 U
53469-21-9	Aroclor 1242	73	< 73 U
12672-29-6	Aroclor 1248	73	250
11097-69-1	Aroclor 1254	73	480
11096-82-5	Aroclor 1260	73	570
11104-28-2	Aroclor 1221	73	< 73 U
11141-16-5	Aroclor 1232	73	< 73 U

Reported in $\mu g/kg$ (ppb)

PCB Surrogate Recovery

Decachlorobiphenyl	123%
Tetrachlorometaxylene	76.0%

Page 1 of 1

Lab Sample ID: NJ45E LIMS ID: 08-19398

Matrix: Soil Data Release Authorized

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 17:15 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-3-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 20.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	130
11097-69-1	Aroclor 1254	31	280
11096-82-5	Aroclor 1260	31	100
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	51.8%
Tetrachlorometaxylene	74.2%

Page 1 of 1

Lab Sample ID: NJ45F LIMS ID: 08-19399

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 17:38 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-3-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 14.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 Ü
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	75.8%
Tetrachlorometaxylene	61.8%

Page 1 of 1

Lab Sample ID: NJ45G LIMS ID: 08-19400

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 18:00 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-4-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Sample Amount: 12.1 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 19.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	70.0%
Tetrachlorometaxylene	69.2%

Page 1 of 1

Lab Sample ID: NJ45H LIMS ID: 08-19401

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 18:22 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-5-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 12.3 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 6.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	81.0%
Tetrachlorometaxylene	84.0%

Page 1 of 1

Lab Sample ID: NJ45J LIMS ID: 08-19403

Matrix: Soil

Data Release Authorized: Reported: 09/02/08

Date Extracted: 08/12/08

Date Analyzed: 08/27/08 18:45 Instrument/Analyst: ECD6/YZ GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-6-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 12.0 g-dry-wt Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 7.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	73.5%
Tetrachlorometaxylene	70.5%

Page 1 of 1

Lab Sample ID: NJ45L LIMS ID: 08-19405

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/28/08 15:09 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-7-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 5.47 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 5.00 Silica Gel: No

Percent Moisture: 8.9%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	370	< 370 U
53469-21-9	Aroclor 1242	370	< 370 U
12672-29-6	Aroclor 1248	370	2,000
11097-69-1	Aroclor 1254	370	3,300
11096-82-5	Aroclor 1260	370	3,300
11104-28-2	Aroclor 1221	370	< 370 U
11141-16-5	Aroclor 1232	370	< 370 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	NR
Tetrachlorometaxylene	106%

Page 1 of 1

Lab Sample ID: NJ45M LIMS ID: 08-19406

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08
Date Analyzed: 08/27/08 21:43
Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: EBC-7-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08
Date Received: 08/06/08

Sample Amount: 12.5 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 4.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.5%
Tetrachlorometaxylene	66.0%

Page 1 of 1

Lab Sample ID: NJ45N LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 22:05 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-8-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 12.5 g-dry-wt Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 4.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	59.2%
Tetrachlorometaxylene	57.8%

Page 1 of 1

Lab Sample ID: NJ450 LIMS ID: 08-19408

Matrix: Soil

Data Release Authorized: Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 22:27 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-9-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 12.3 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 5.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	190
11096-82-5	Aroclor 1260	32	310
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	NR
Tetrachlorometaxylene	82.8%

Page 1 of 1

Lab Sample ID: NJ45P LIMS ID: 08-19409

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 22:50 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-10-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 12.5 g-dry-wt Final Extract Volume: 4.0 mL

Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 4.6%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	72.8%
Tetrachlorometaxylene	72.0%

Page 1 of 1

Lab Sample ID: NJ45Q LIMS ID: 08-19410

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 23:12 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-11-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 12.8 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 20.2%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	31	< 31 U
53469-21-9	Aroclor 1242	31	< 31 U
12672-29-6	Aroclor 1248	31	< 31 U
11097-69-1	Aroclor 1254	31	< 31 U
11096-82-5	Aroclor 1260	31	< 31 U
11104-28-2	Aroclor 1221	31	< 31 U
11141-16-5	Aroclor 1232	31	< 31 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	67.5%
Tetrachlorometaxylene	76.0%

Page 1 of 1

Lab Sample ID: NJ45R LIMS ID: 08-19411

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 23:34 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-11-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 12.5 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 16.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	32	< 32 U
53469-21-9	Aroclor 1242	32	< 32 U
12672-29-6	Aroclor 1248	32	< 32 U
11097-69-1	Aroclor 1254	32	< 32 U
11096-82-5	Aroclor 1260	32	< 32 U
11104-28-2	Aroclor 1221	32	< 32 U
11141-16-5	Aroclor 1232	32	< 32 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	74.8%
Tetrachlorometaxylene	76.0%

Page 1 of 1

Lab Sample ID: NJ45S LIMS ID: 08-19412

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 23:56 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-12-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 12.1 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 13.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	72.0%
Tetrachlorometaxylene	72.8%

Page 1 of 1

Lab Sample ID: NJ45U LIMS ID: 08-19414

Matrix: Soil

Data Release Authorized Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/28/08 00:19 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-13-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.50 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 6.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	53	< 53 U
53469-21-9	Aroclor 1242	53	< 53 U
12672-29-6	Aroclor 1248	53	< 53 U
11097-69-1	Aroclor 1254	53	1,500 E
11096-82-5	Aroclor 1260	53	330
11104-28-2	Aroclor 1221	53	< 53 U
11141-16-5	Aroclor 1232	53	< 53 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.5%
Tetrachlorometaxylene	79.5%

Page 1 of 1

Lab Sample ID: NJ45U LIMS ID: 08-19414

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/28/08 15:31 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-13-S1 DILUTION

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 7.50 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 5.00

Silica Gel: No

Percent Moisture: 6.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	270	< 270 U
53469-21-9	Aroclor 1242	270	< 270 U
12672-29-6	Aroclor 1248	270	< 270 U
11097-69-1	Aroclor 1254	270	1,900
11096-82-5	Aroclor 1260	270	460
11104-28-2	Aroclor 1221	270	< 270 U
11141-16-5	Aroclor 1232	270	< 270 Ŭ

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	106%
Tetrachlorometaxylene	102%

Page 1 of 1

Lab Sample ID: NJ45V LIMS ID: 08-19415

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/28/08 00:41 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-13-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Sample Amount: 12.2 g-dry-wt Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 6.2%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 Ŭ
11096-82-5	Aroclor 1260	33	< 33 Ü
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	65.2%
Tetrachlorometaxylene	64.5%

Page 1 of 1

Lab Sample ID: NJ45W LIMS ID: 08-19416

Matrix: Soil

Data Release Authorized: Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/28/08 01:03 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-14-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01 Date Sampled: 07/31/08 Date Received: 08/06/08

Sample Amount: 12.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 14.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	75.2%
Tetrachlorometaxylene	72.5%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC Matrix: Soil

17490-01

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-081208	84.0%	30-160	85.0%	30-160	0
LCS-081208	80.8%		83.0%	30-160	0
LCSD-081208	81.8%	30-160	83.0%	30-160	0
EBC-1-S1	NR	30-160	63.5%	30-160	0
EBC-1-S2	64.8%	30-160	66.2%	30-160	0
EBC-2-S1	123%	30-160	76.0%	30-160	0
EBC-3-S1	51.8%	30-160	74.2%	30-160	0
EBC-3-S2	75.8%	30-160	61.8%	30-160	0
EBC-4-S1	70.0%	30-160	69.2%	30-160	0
EBC-5-S1	81.0%	30-160	84.0%	30-160	0
EBC-6-S1	73.5%	30-160	70.5%	30-160	0
EBC-6-S1 MS	83.5%	30-160	77.5%	30-160	0
EBC-6-S1 MSD	74.0%	30-160	71.0%	30-160	0
EBC-7-S1	NR	30-160	106%	30-160	0
EBC-7-S2	84.5%	30-160	66.0%	30-160	0
EBC-8-S1	59.2%	30-160	57.8%	30-160	0
EBC-9-S1	NR	30-160	82.8%	30-160	0
EBC-10-S1	72.8%	30-160	72.0%	30-160	0
EBC-11-S1	67.5%	30-160	76.0%	30-160	0
EBC-11-S2	74.8%	30-160	76.0%	30-160	0
EBC-12-S1	72.0%	30-160	72.8%	30-160	0
EBC-13-S1	84.5%	30-160	79.5%	30-160	0
EBC-13-S1 DL	106%	30-160	102%	30-160	0
EBC-13-S2	65.2%	30-160	64.5%	30-160	0
EBC-14-S1	75.2%	30-160	72.5%	30-160	0

Microwave (MARS) Control Limits Prep Method: SW3546

Log Number Range: 08-19394 to 08-19416

Page 1 of 1

Lab Sample ID: NJ45J LIMS ID: 08-19403

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted MS/MSD: 08/12/08

Date Analyzed MS: 08/27/08 20:36

MSD: 08/27/08 20:58

Instrument/Analyst MS: ECD6/YZ

MSD: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-6-S1 MS/MSD

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount MS: 12.0 g-dry-wt

MSD: 12.0 g-dry-wt

Final Extract Volume MS: 4.0 mL

MSD: 4.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Silica Gel: No

Percent Moisture: 7.5%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016	< 33.3 U	117	166	70.5%	112	166	67.5%	4.4%
Aroclor 1260	< 33.3 U	133	166	80.1%	124	166	74.7%	7.0%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: NJ45J LIMS ID: 08-19403

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 20:36 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EBC-6-S1 MATRIX SPIKE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 12.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 7.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	83.5%
Tetrachlorometaxylene	77.5%

Page 1 of 1

Sample ID: EBC-6-S1

MATRIX SPIKE DUP

Lab Sample ID: NJ45J LIMS ID: 08-19403

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 20:58 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Sample Amount: 12.0 g-dry-wt

Final Extract Volume: 4.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 7.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	74.0%
Tetrachlorometaxylene	71.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Lab Sample ID: LCS-081208

LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted LCS/LCSD: 08/12/08

Date Analyzed LCS: 08/27/08 15:02

LCSD: 08/27/08 15:24

Instrument/Analyst LCS: ECD6/YZ

LCSD: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-081208 LCS/LCSD

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount LCS: 12.0 g-dry-wt

LCSD: 12.0 g-dry-wt

Final Extract Volume LCS: 4.0 mL

LCSD: 4.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Aroclor 1016	130	167	78.0%	131	167	78.6%	0.8%
Aroclor 1260	140	167	84.0%	141	167	84.6%	

PCB Surrogate Recovery

	LCS	LCSD
Decachlorobiphenyl	80.8%	81.8%
Tetrachlorometaxylene	83.0%	83.0%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: MB-081208

LIMS ID: 08-19394 Matrix: Soil

Data Release Authorized:

Reported: 09/02/08

Date Extracted: 08/12/08 Date Analyzed: 08/27/08 14:39 Instrument/Analyst: ECD6/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: MB-081208 METHOD BLANK

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Sample Amount: 12.0 g Final Extract Volume: 4.0 mL Dilution Factor: 1.00
Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	33	< 33 U
53469-21-9	Aroclor 1242	33	< 33 U
12672-29-6	Aroclor 1248	33	< 33 U
11097-69-1	Aroclor 1254	33	< 33 U
11096-82-5	Aroclor 1260	33	< 33 U
11104-28-2	Aroclor 1221	33	< 33 U
11141-16-5	Aroclor 1232	33	< 33 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.0%
Tetrachlorometaxylene	85.0%

ORGANICS ANALYSIS DATA SHEET
BETX by Method SW8021BMod
TPHG by Method NWTPHG
Page 1 of 1

Sample ID: EBC-1-S1 SAMPLE

Lab Sample ID: NJ45A LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized: Reported: 08/08/08

Date Analyzed: 08/07/08 14:07 Instrument/Analyst: PID3/PKC QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/30/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 40 mg-dry-wt

Percent Moisture: 9.3%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	31	38
108-88-3	Toluene	31	110
100-41-4	Ethylbenzene	31	< 31 U
	m,p-Xylene	62	89
95-47-6	o-Xylene	31	< 31 U
			GAS ID
	Gasoline Range Hydrocarbons	12	26 GRO

BETX Surrogate Recovery

Trifluorotoluene	102%
Bromobenzene	94.8%

Gasoline Surrogate Recovery

Trifluorotoluene	99.4%
Bromobenzene	90.3%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

īą,

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a007.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a007.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45A

Client ID: EBC-1-S1

Injection Date: 07-AUG-2008 14:07

Matrix: SOIL

Dilution Factor: 1.000

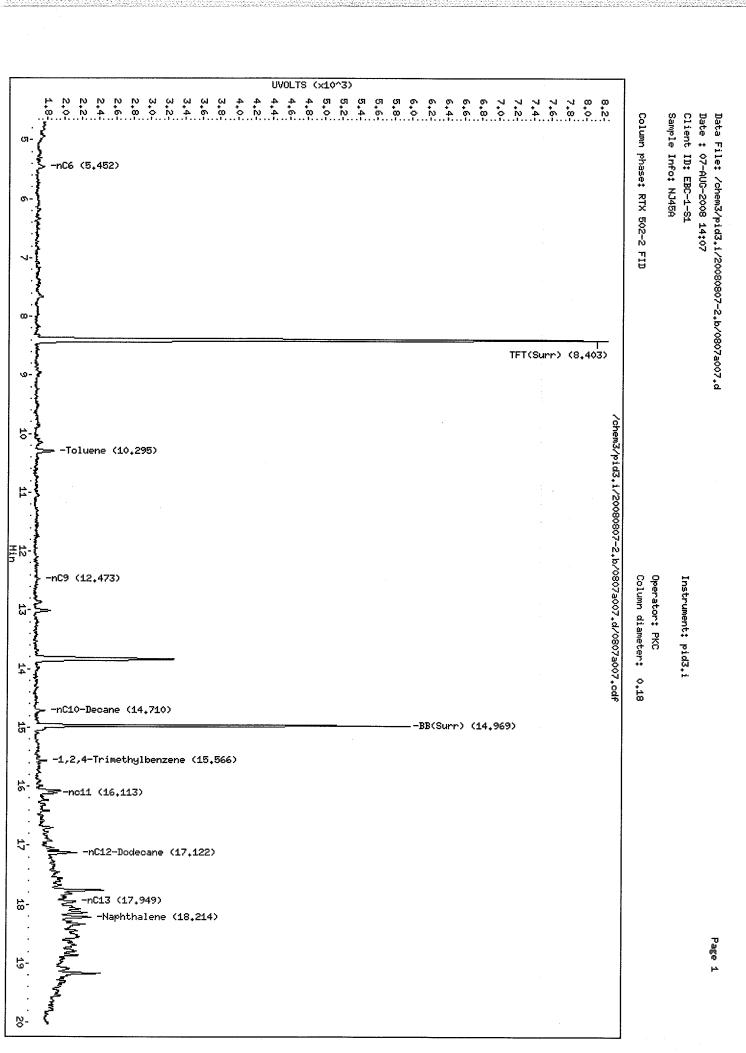
FID Surrogates

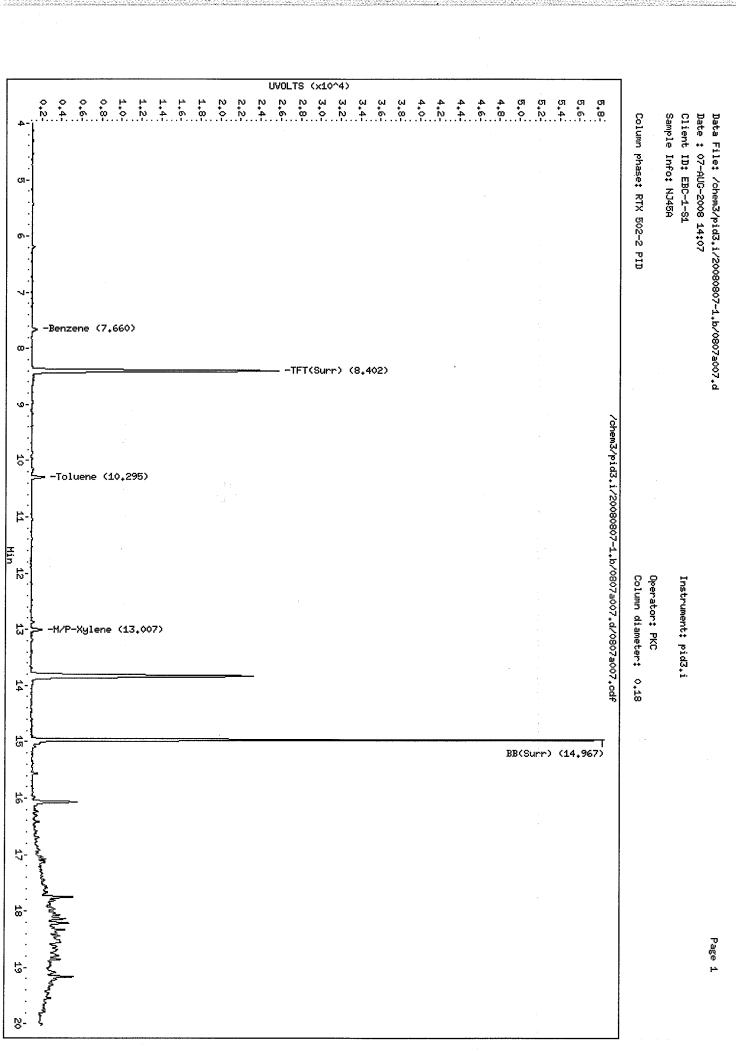
RT	Shift	Height	Area	%Rec	Compound
8.403	-0.007	6574	82607	99.4	TFT(Surr)
14.969	-0.002	4289	35987	90.3	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total Area*	Amount
-			
WAGas	(Tol-C12)	79216	0.107
8015B	(2MP-TMB)	55756	0.039
AKGas	(nC6-nC10)	53952	0.047
NWGas	(Tol-Nap)	166104	0.211

Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.402	-0.007	24792	102.1	TFT(Surr)
14.967	-0.002	57425	94.8	BB (Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.660	-0.005	479	0.31N	Benzene
10.295	-0.005	1308	0.89	Toluene
ND				Ethylbenzene
13.007	-0.003	1078	0.72	M/P-Xylene
ND				O-Xylene
ND				MTBE

Indicates Peak Area was used for quantitation instead of Height

Indicates peak peak was manually integrated

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-1-S2 SAMPLE

Lab Sample ID: NJ45B LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized: Reported: 08/08/08

d :

Date Analyzed: 08/07/08 14:32 Instrument/Analyst: PID3/PKC QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/30/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 65 mg-dry-wt

Percent Moisture: 7.0%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	19	< 19 U
108-88-3	Toluene	19	< 19 U
100-41-4	Ethylbenzene	19	< 19 U
	m,p-Xylene	38	< 38 U
95-47-6	o-Xylene	19	< 19 U
			GAS ID
	Gasoline Range Hydrocarbons	7.7	< 7.7 U

BETX Surrogate Recovery

Trifluorotoluene	99.2%
Bromobenzene	93.9%

Gasoline Surrogate Recovery

Trifluorotoluene	97.6%
Bromobenzene	91.1%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a008.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a008.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45B

Client ID: EBC-1-S2

Injection Date: 07-AUG-2008 14:32

Matrix: SOIL

Dilution Factor: 1.000

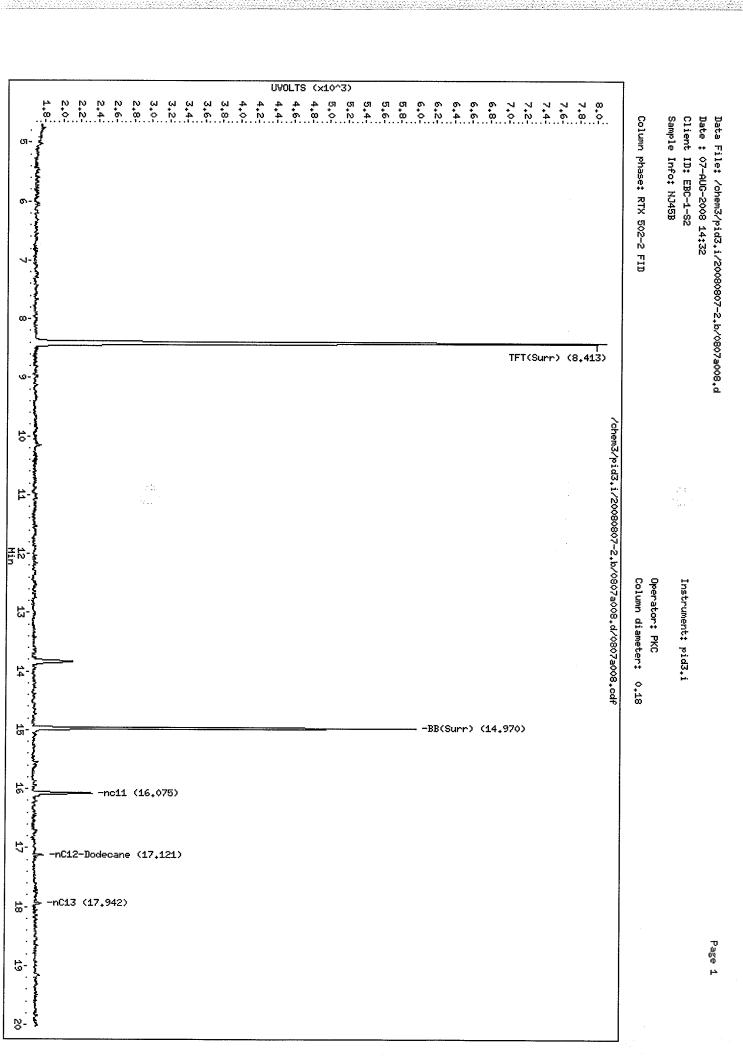
FID Surrogates

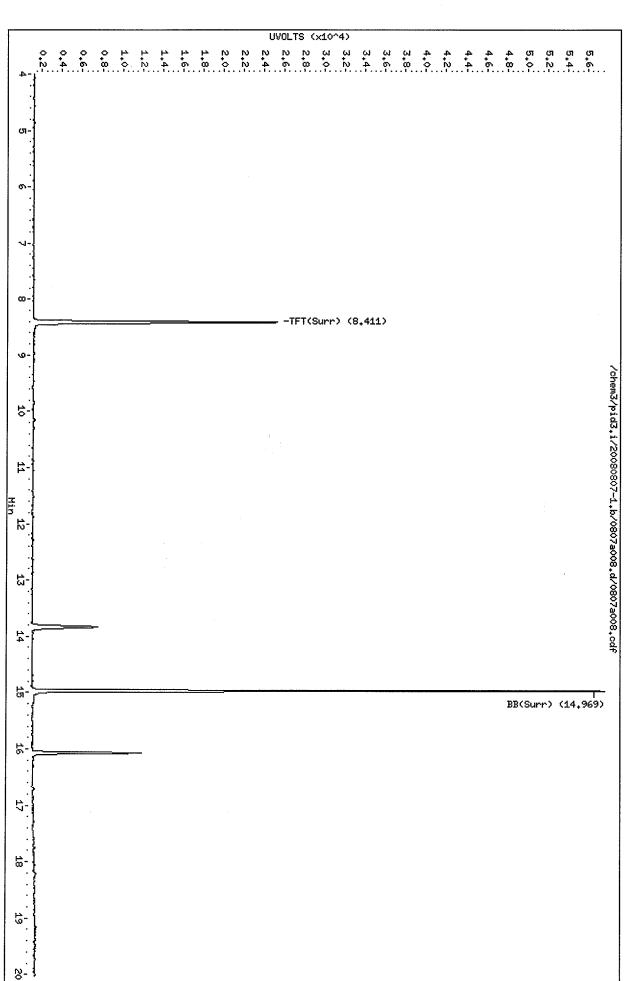
RT	Shift	Height	Area	%Rec	Compound
8.413	0.003	6451	83594	97.6	TFT (Surr)
14.970	0.000	4331	35673	91.1	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
WAGas	(Tol-C12)	17656	0.024
8015B	(2MP-TMB)	8525	0.006
AKGas	(nC6-nC10)	8524	0.007
NWGas	(Tol-Nap)	18675	0.024

* Surrogate areas are subtracted from Total Area


		PID Surrogate	ន	
RT	Shift	Response	%Rec	Compound
8.411	0.003	24099	99.2	TFT (Surr)
14.969	0.000	56883	93.9	BB(Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Data File: /chem3/pid3.i/20080807-1.b/0807a008.d

Client ID: EBC-1-S2 Date : 07-AUG-2008 14:32

Sample Info: NJ45B

Column phase: RTX 502-2 PID

Instrument: pid3.i

Column diameter: 0.18 Operator: PKC

Page 1

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-2-S1 SAMPLE

Lab Sample ID: NJ45C LIMS ID: 08-19396

Matrix: Soil

Data Release Authorized: Reported: 08/08/08

Instrument/Analyst: PID3/PKC

Date Analyzed: 08/07/08 14:57

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/31/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 80 mg-dry-wt

Percent Moisture: 9.2%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	16	< 16 U	
108-88-3	Toluene	16	28	
100-41-4	Ethylbenzene	16	44	
	m,p-Xylene	31	40	
95-47-6	o-Xylene	16	74	
				GAS ID
	Gasoline Range Hydrocarbons	6.2	160	GRO

BETX Surrogate Recovery

Trifluorotoluene	94.8%
Bromobenzene	93.8%

Gasoline Surrogate Recovery

Trifluorotoluene	92.7%
Bromobenzene	94.8%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

PZ 8/8/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a009.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a009.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45C

Client ID: EBC-2-S1

Injection Date: 07-AUG-2008 14:57

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.411	0.001	6127	80151	92.7	TFT(Surr)
14.970	0.000	4504	43045	94.8	BB(Surr)

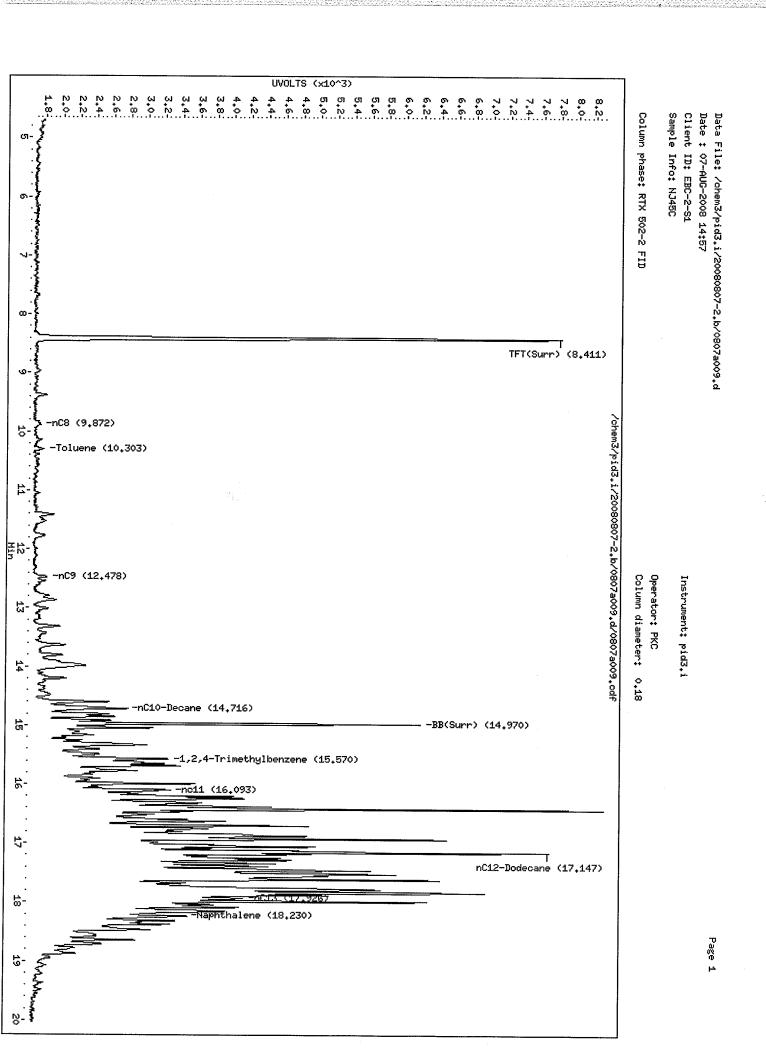
PETROLEUM HYDROCARBONS (FID)

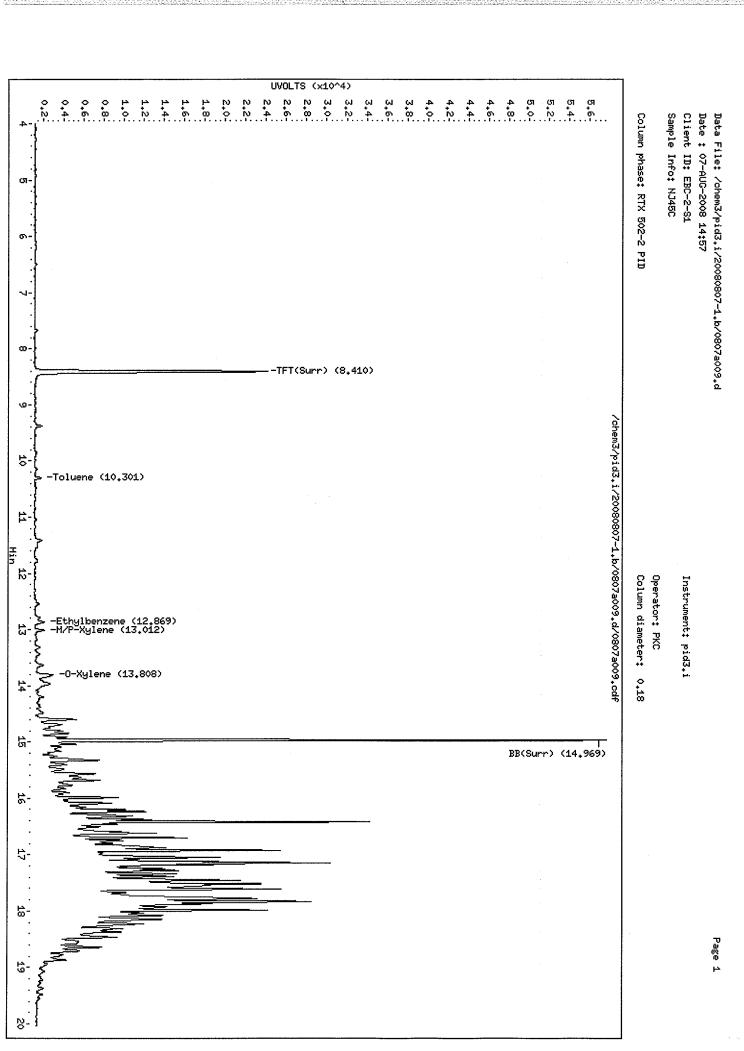
Range		Total Area*	Amount
WAGas	(Tol-C12)	1142134	1.543
8015B	(2MP-TMB)	326966	0.228
AKGas	(nC6-nC10)	155533	0.136
NWGas	(Tol-Nap)	1967350	2.495

2.495 SNO

* Surrogate areas are subtracted from Total Area

		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.410	0.001	23020	94.8	TFT (Surr)
14.969	0.000	56860	93.8	BB (Surr)


AROMATICS (PID)



RT	Shift	Response	Amount	Compound
ND				Benzene
10.301	0.002	664	0.45	Toluene
12.869	-0.002	961	0.71	Ethylbenzene
13.012	0.001	966	0.64	M/P-Xylene
13.808	0.009	1763	1.19	O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak peak was manually integrated

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Lab Sample ID: NJ45E LIMS ID: 08-19398

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 15:21 Instrument/Analyst: PID3/PKC Sample ID: EBC-3-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01
Date Sampled: 07/30/08
Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 61 mg-dry-wt

Percent Moisture: 7.5%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	20	210	_
108-88-3	Toluene	20	120	
100-41-4	Ethylbenzene	20	56	
	m,p-Xylene	41	100	
95-47-6	o-Xylene	20	< 20 T	IJ
				GAS ID
	Gasoline Range Hydrocarbons	8.2	150	GRO

BETX Surrogate Recovery

Trifluorotoluene	102%
Bromobenzene	100%

Gasoline Surrogate Recovery

Trifluorotoluene	97.9%
Bromobenzene	99.3%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

PK 108

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a010.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a010.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45E

Client ID: EBC-3-S1

Injection Date: 07-AUG-2008 15:21

Matrix: SOIL

Dilution Factor: 1.000

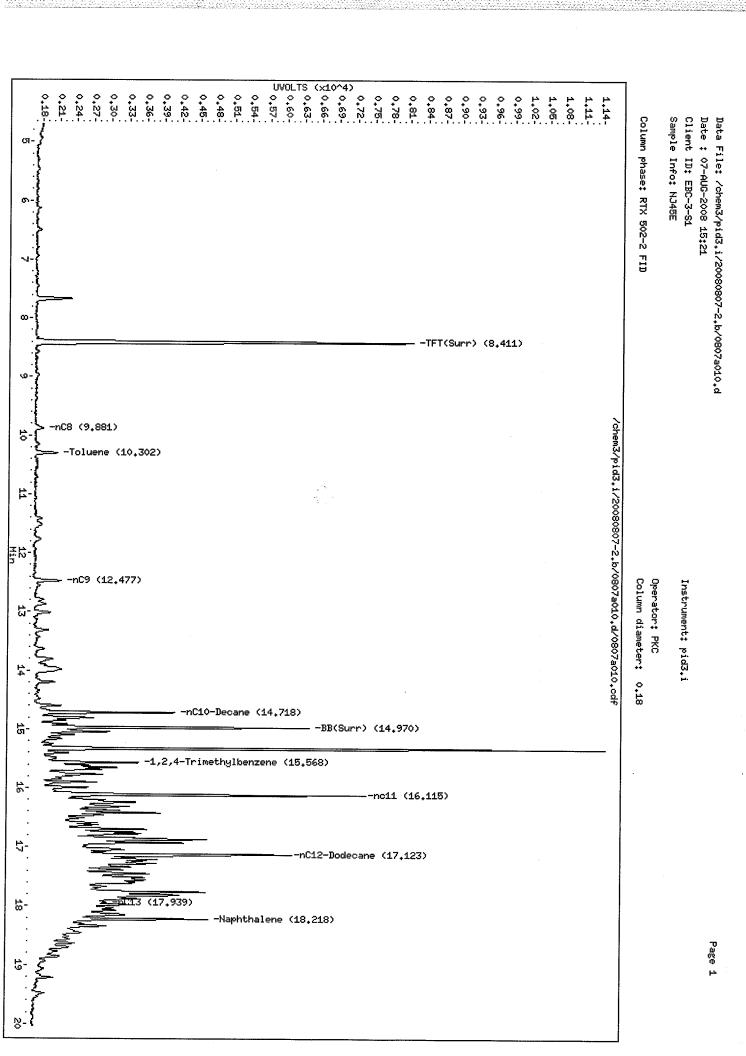
FID Surrogates

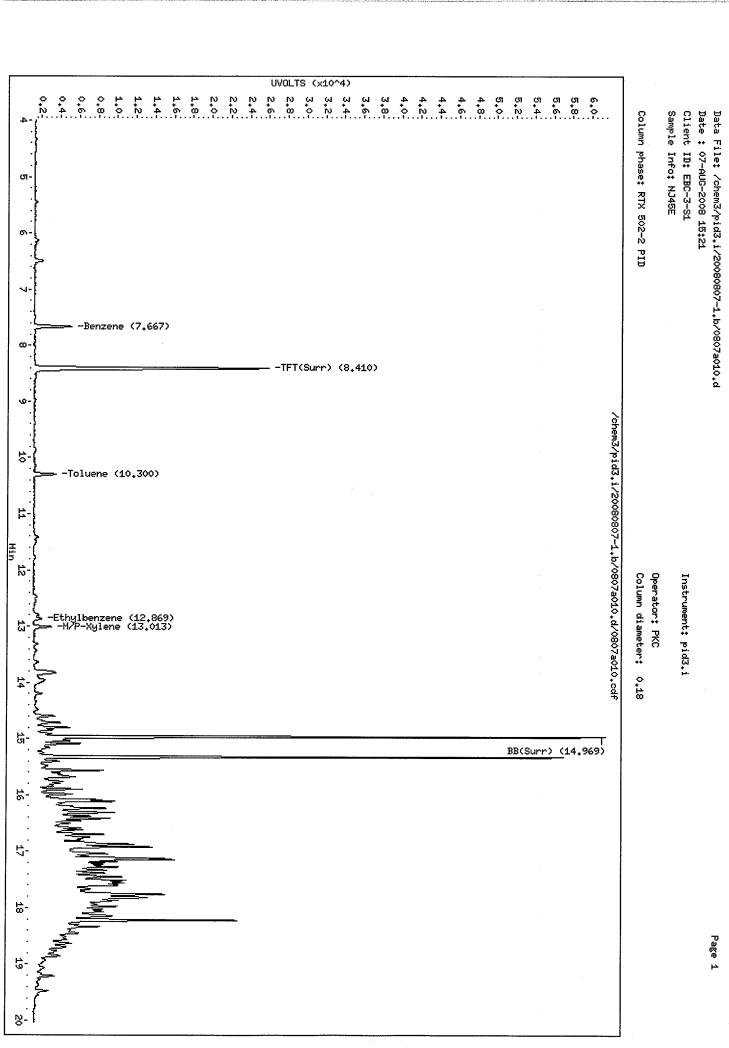
RT	Shift	Height	Area	%Rec	Compound
8.411	0.002	6472	83527	97.9	TFT (Surr)
14.970	0.000	4720	41781	99.3	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
WAGas	(Tol-C12)	900527	1.216
8015B	(2MP-TMB)	341932	. 0.238
AKGas	(nC6-nC10)	145836	5. 0.128
NWGas	(Tol-Nap)	1405974	1.783

SNO


* Surrogate areas are subtracted from Total Area


		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
	-			
8.410	0.002	24688	101.7	TFT (Surr)
14.969	0.000	60847	100.4	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.667	0.002	3951	2.59	Benzene
10.300	0.001	2258	1.53	Toluene
12.869	-0.002	929	0.69	Ethylbenzene
13.013	0.003	1903	1.27	M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Sample ID: EBC-3-S2 SAMPLE

Lab Sample ID: NJ45F LIMS ID: 08-19399

Matrix: Soil

Data Release Authorized: Reported: 08/08/08 //

Date Analyzed: 08/07/08 15:46

Instrument/Analyst: PID3/PKC

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01
Date Sampled: 07/30/08
Date Received: 08/06/08

Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 72 mg-dry-wt

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	17	< 17 U
108-88-3	Toluene	17	< 17 U
100-41-4	Ethylbenzene	17	< 17 U
	m,p-Xylene	35	< 35 U
95-47-6	o-Xylene	17	< 17 U
•			GAS ID
	Gasoline Range Hydrocarbons	6.9	< 6.9 U

BETX Surrogate Recovery

Triflu	ıorotoluene	98.8%	
Bromok	oenzene	93.6%	

Gasoline Surrogate Recovery

Trifluorotoluene	96.7%
Bromobenzene	90.3%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a011.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a011.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45F

Client ID: EBC-3-S2

Injection Date: 07-AUG-2008 15:46

Matrix: SOIL

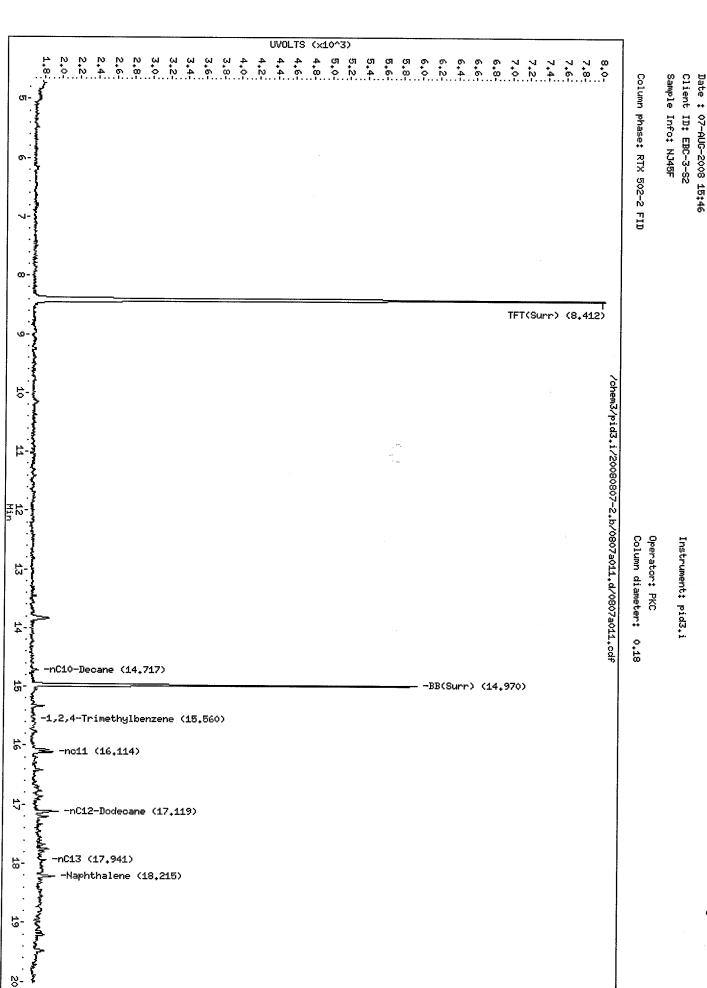
Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.412	0.002	6393	82272	96.7	TFT (Surr)
14.970	0.000	4289	35373	90.3	BB(Surr)

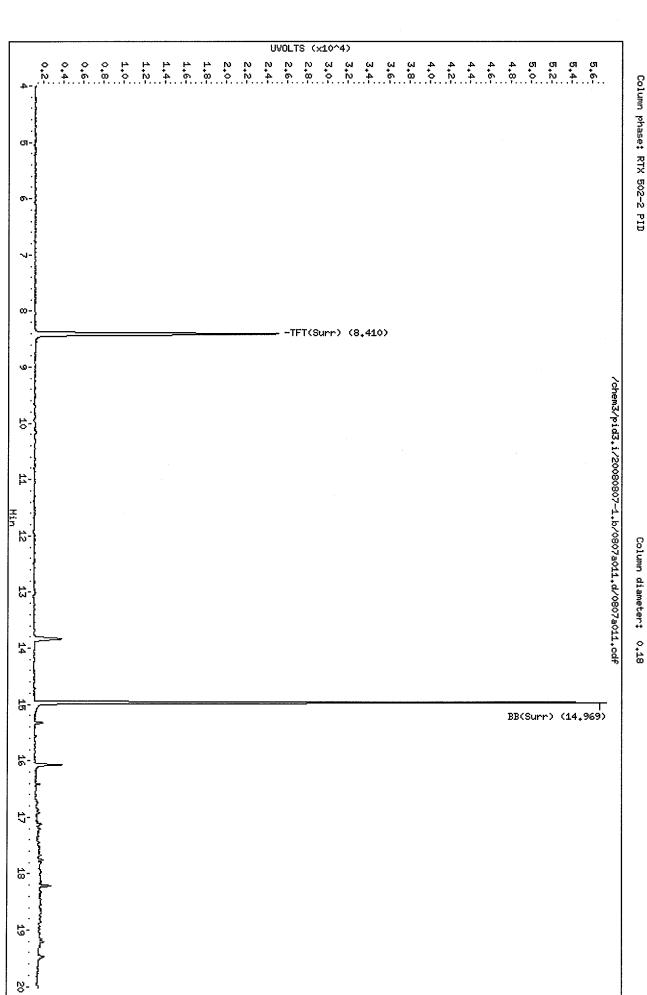
PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
WAGas	(Tol-C12)	40296	0.054
8015B	(2MP-TMB)	13169	0.009
AKGas	(nC6-nC10)	6907	0.006
NWGas	(Tol-Nap)	75000	0.095


* Surrogate areas are subtracted from Total Area

		PID Surrogate	S	
RT	Shift	Response	%Rec	Compound
·				
8.410	0.002	24004	98.8	TFT (Surr)
14.969	0.000	56704	93.6	BB(Surr)

AROMATICS (PID)


RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Page :

Data File: /chem3/pid3.i/20080807-2.b/0807a011.d

Instrument; pid3.i

Operator: PKC

Date : 07-AUG-2008 15:46 Client ID: EBC-3-S2 Sample Info: NJ45F

Data File: /chem3/pid3.i/20080807-1.b/0807a011.d

Page 1

Sample ID: EBC-4-S1 SAMPLE

Lab Sample ID: NJ45G LIMS ID: 08-19400

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

: M

Date Analyzed: 08/07/08 16:11 Instrument/Analyst: PID3/PKC

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01
Date Sampled: 07/30/08
Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 54 mg-dry-wt

Percent Moisture: 20.8%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	23	< 23 U
108-88-3	Toluene	23	< 23 U
100-41-4	Ethylbenzene	23	< 23 U
	m,p-Xylene	46	< 46 U
95-47-6	o-Xylene	23	< 23 U
			GAS II
	Gasoline Range Hydrocarbons	9.2	< 9.2 U

BETX Surrogate Recovery

Trifluorotoluene	96.4%
Bromobenzene	92.3%

Gasoline Surrogate Recovery

Trifluorotoluene	94.2%
Bromobenzene	90.8%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a012.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a012.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008

ARI ID: NJ45G

Client ID: EBC-4-S1

Injection Date: 07-AUG-2008 16:11

Matrix: SOIL

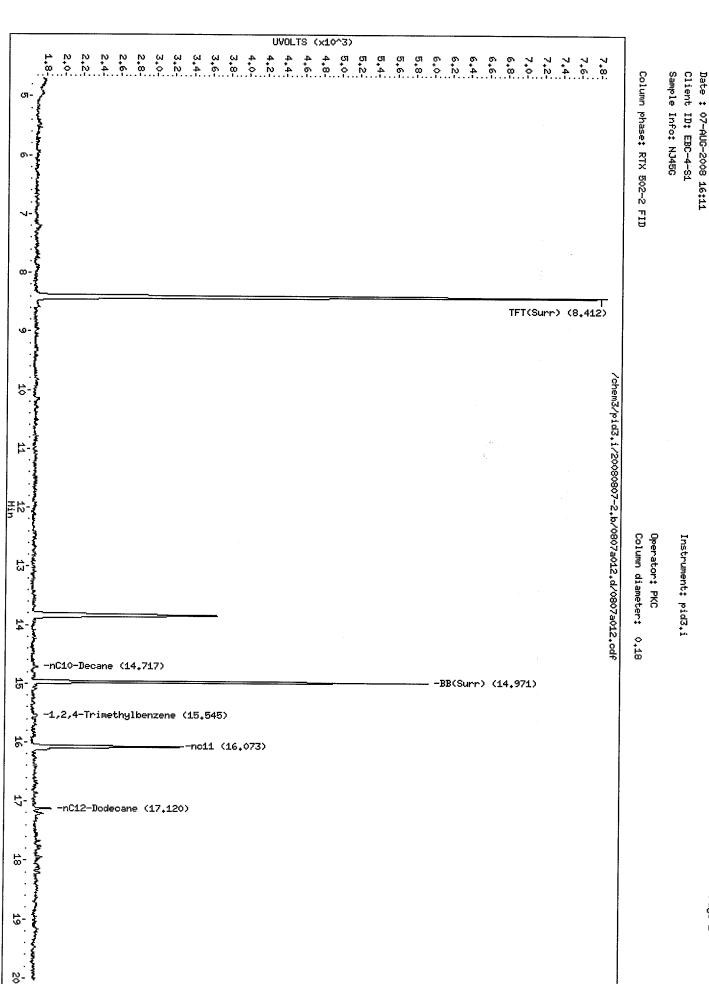
Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.412	0.002	6230	80461	94.2	TFT (Surr)
14.971	0.000	4317	35503	90.8	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Range	Total Area*	Amount
V	VAGas	(Tol-C12)	63533	0.086
8	3015B	(2MP-TMB)	42215	0.029
P	AKGas	(nC6-nC10)	38393	0.034
N	WGas	(Tol-Nap)	67013	0.085


Surrogate areas are subtracted from Total Area

		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.410	0.002	23417	96.4	TFT (Surr)
14.969	0.000	55911	92.3	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- Indicates Peak Area was used for quantitation instead of Height
- Indicates peak peak was manually integrated

Page 1

Data File: /chem3/pid3.i/20080807-2.b/0807a012.d

18

앙- j

Data File: /chem3/pid3.i/20080807-1.b/0807a012.d

Client ID: EBC-4-S1 Date : 07-AUG-2008 16:11

Sample Info: NJ45G

Column phase: RTX 502-2 PID

Instrument: pid3.i

Column diameter: Operator: PKC 0,18

Page 1

Lab Sample ID: NJ45H LIMS ID: 08-19401

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 17:50 Instrument/Analyst: PID3/PKC

Sample ID: EBC-5-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 08/01/08

Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 57 mg-dry-wt

Percent Moisture: 6.0%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	22	< 22 U	-
108-88-3	Toluene	22	< 22 U	
100-41-4	Ethylbenzene	22	< 22 Ŭ	
	m,p-Xylene	44	< 44 U	
95-47-6	o-Xylene	22	< 22 U	
				GAS II
	Gasoline Range Hydrocarbons	8.7	9.6	GRO
	BETX Surrogate Recove	ry		
	Trifluorotoluene	95.9%		
	Bromobenzene	93.8%		

94.3% Trifluorotoluene 91.5% Bromobenzene

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

8/8/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a016.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a016.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45H

Client ID: EBC-5-S1

Injection Date: 07-AUG-2008 17:50

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

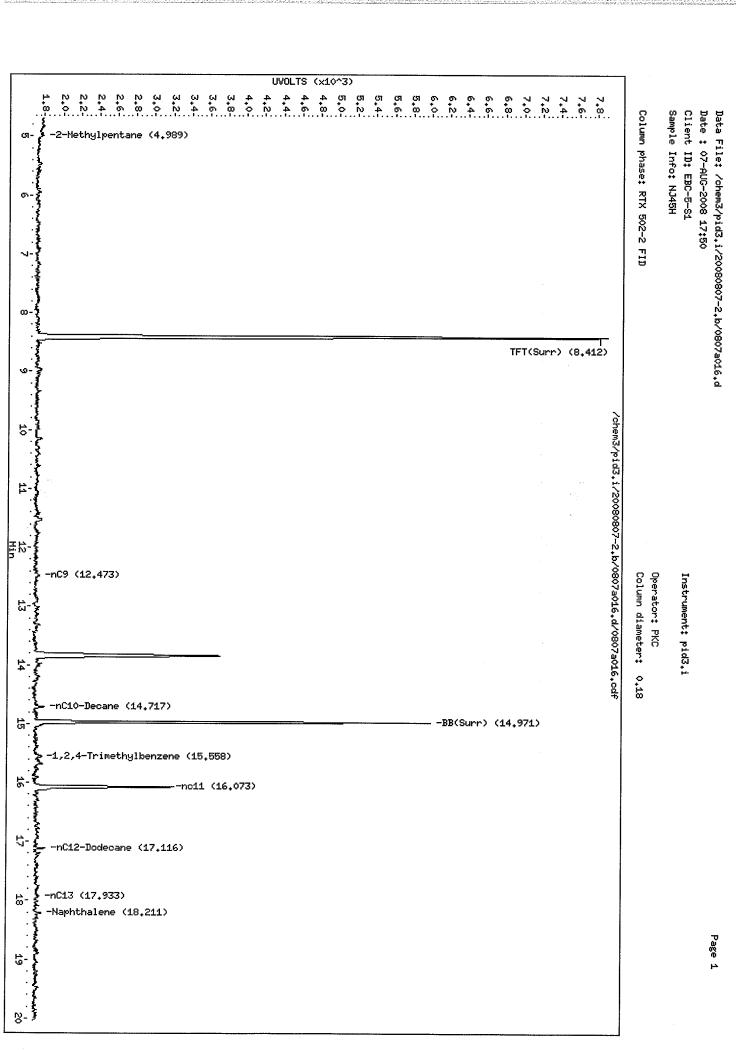
RT	Shift	Height	Area	%Rec	Compound
8.412	0.003	6234	79501	94.3	TFT (Surr)
14.971	0.001	4348	36787	91.5	BB (Surr)

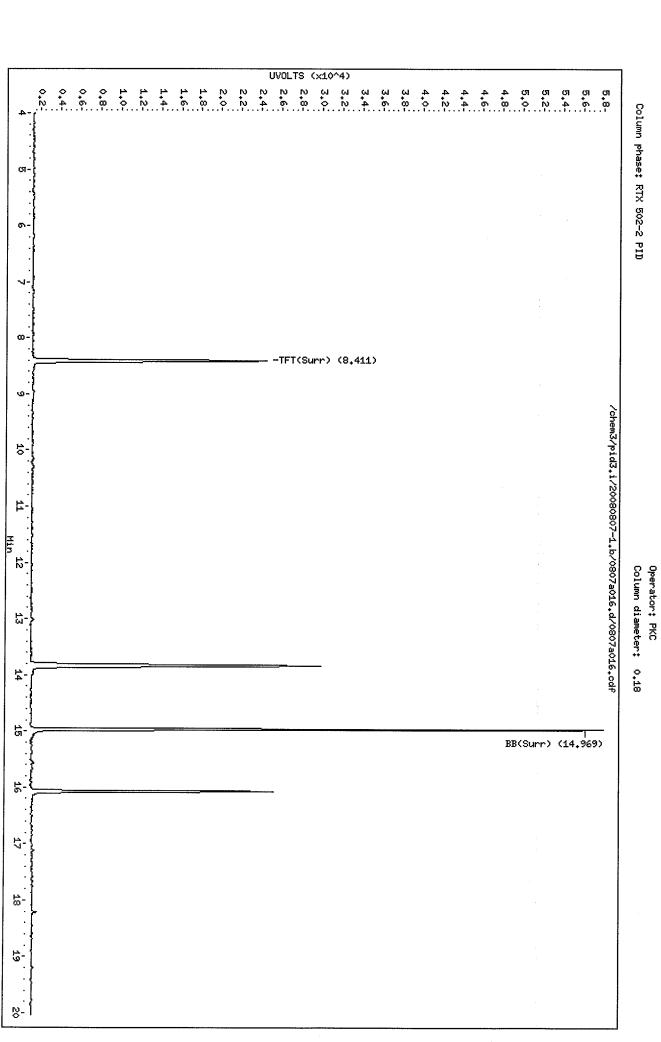
PETROLEUM HYDROCARBONS (FID)

.....

Range		Total Area*	Amount
WAGas	(Tol-C12)	78615	0.106
8015B	(2MP-TMB)	49789	0.035
AKGas	(nC6-nC10)	44875	0.039
NWGas	(Tol-Nap)	86569	0.110

* Surrogate areas are subtracted from Total Area




		PID Surrogate	S	
RT	Shift	Response	%Rec	Compound
~ -				
8.411	0.003	23284	95.9	TFT (Surr)
14.969	0.000	56869	93.8	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Page 1

Date : 07-AUG-2008 17:50 Client ID: EBC-5-S1

Instrument: pid3.i

Data File: /chem3/pid3.i/20080807-1.b/0807a016.d

Sample Info; NJ45H

Lab Sample ID: NJ45J LIMS ID: 08-19403

Matrix: Soil

Data Release Authorized: Reported: 08/08/08

Date Analyzed: 08/07/08 18:14 Instrument/Analyst: PID3/PKC Sample ID: EBC-6-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 08/01/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 70 mg-dry-wt

Percent Moisture: 6.7%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	36	< 36 U
95-47-6	o-Xylene	18	< 18 U
			GAS ID
	Gasoline Range Hydrocarbons	7.2	< 7.2 U

BETX Surrogate Recovery

Trifluorotoluene	102%
Bromobenzene	97.0%

Gasoline Surrogate Recovery

Trifluorotoluene	99.5%
Bromobenzene	94.6%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

FC 8/8/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a017.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a017.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45J

Client ID: EBC-6-S1

Injection Date: 07-AUG-2008 18:14

Matrix: SOIL

Dilution Factor: 1.000

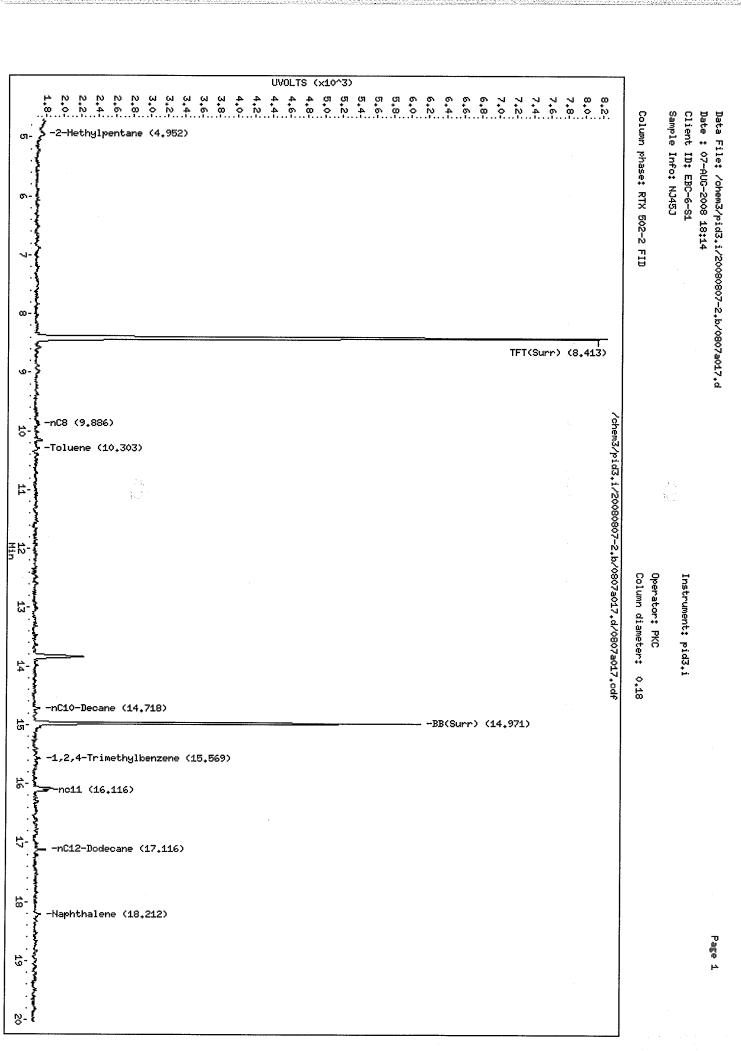
FID Surrogates

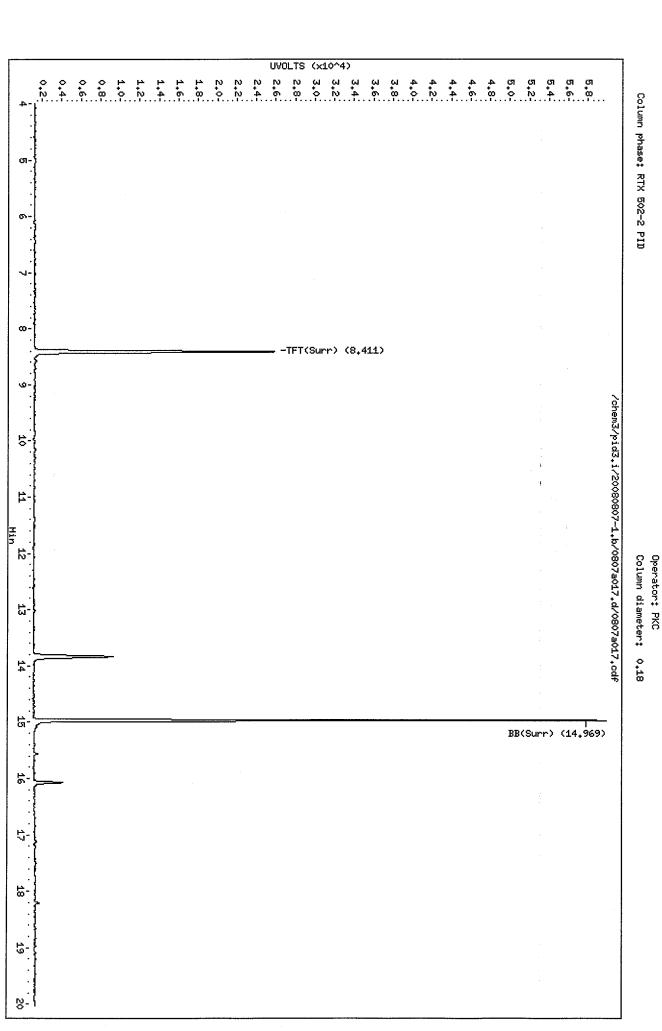
RT	Shift	Height	Area	%Rec	Compound
8.413	0.003	6576	83641	99.5	TFT (Surr)
14.971	0.001	4496	36842	94.6	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
WAGas	(Tol-C12)	23910	0.032
8015B	(2MP-TMB)	22227	0.015
AKGas	(nC6-nC10)	17497	0.015
NWGas	(Tol-Nap)	25617	0.032

Surrogate areas are subtracted from Total Area




		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
·				
8.411	0.003	24733	101.9	TFT (Surr)
14.969	0.001	58775	97.0	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Instrument: pid3.i

Sample Info: NJ45J Client ID: EBC-6-S1 Date : 07-AUG-2008 18:14

Data File: /chem3/pid3.i/20080807-1.b/0807a017.d

Page 1

Page 1 of 1

Lab Sample ID: NJ45L LIMS ID: 08-19405

Matrix: Soil Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 18:39 Instrument/Analyst: PID3/PKC

Sample ID: EBC-7-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 66 mg-dry-wt

Percent Moisture: 8.9%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	19	< 19 U	
108-88-3	Toluene	19	120	
100-41-4	Ethylbenzene	19	130	
	m,p-Xylene	38	240	
95-47-6	o-Xylene	19	220	
			GAS I	ID
	Gasoline Range Hydrocarbons	7.5	320 GR)

BETX Surrogate Recovery

Trifluorotoluene	99.4%
Bromobenzene	103%

Gasoline Surrogate Recovery

Trifluorotoluene	97.4%
Bromobenzene	109%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

pc 818108

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a018.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a018.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45L

Client ID: EBC-7-S1

Injection Date: 07-AUG-2008 18:39

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.412	0.002	6442	82730	97.4	TFT (Surr)
14.971	0.001	5183	50030	109.1	BB(Surr)

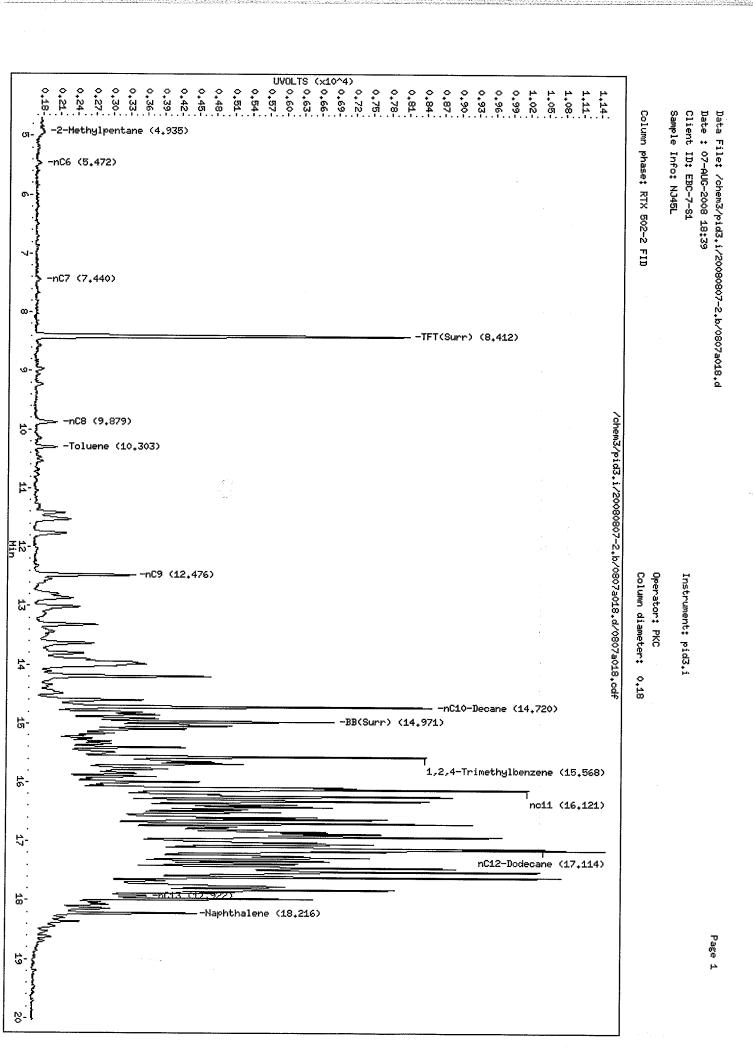
PETROLEUM HYDROCARBONS (FID)

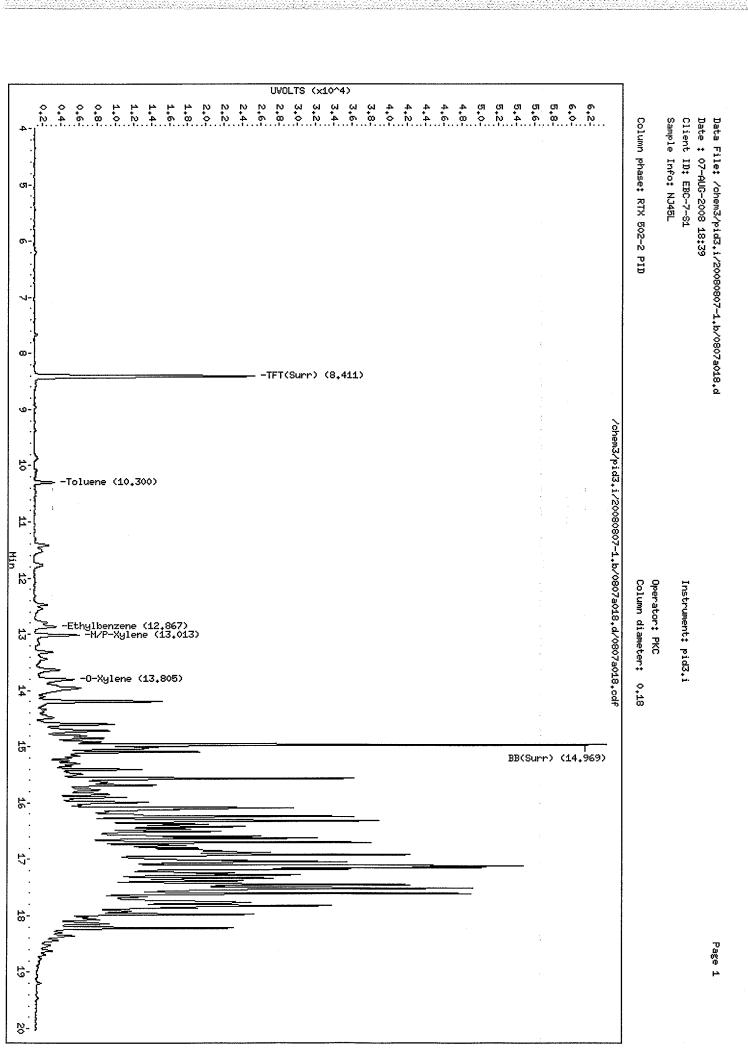
Range	Total Area*	Amount
WAGas (Tol-C12)	2450378	3.310
8015B (2MP-TMB)	896668	0.624
AKGas (nC6-nC10) 488712	0.427
NWGas (Tol-Nap)	3401536	4.313

920

* Surrogate areas are subtracted from Total Area

		PID Surrogate	es	
RT	Shift	Response	%Rec	Compound
8.411	0.002	24138	99.4	TFT (Surr)
14.969	0.001	62497	103.1	BB(Surr)


AROMATICS (PID)



RT	Shift	Response	Amount	Compound
ND				Benzene
10.300	0.001	2289	1.56	Toluene
12.867	-0.004	2374	1.76	Ethylbenzene
13.013	0.003	4835	3.23	M/P-Xylene
13.805	0.005	4282	2.89	O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak peak was manually integrated

Sample ID: EBC-7-S2 SAMPLE

Lab Sample ID: NJ45M LIMS ID: 08-19406

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 19:04 Instrument/Analyst: PID3/PKC

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 80 mg-dry-wt

Percent Moisture: 3.5%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	16	< 16 U
108-88-3	Toluene	16	< 16 U
100-41-4	Ethylbenzene	16	< 16 U
	m,p-Xylene	31	< 31 U
95-47-6	o-Xylene	16	< 16 U
			GAS ID
	Gasoline Range Hydrocarbons	6.2	13 GRO

BETX Surrogate Recovery

Trifluorotoluene	98.0%
Bromobenzene	93.7%

Gasoline Surrogate Recovery

Trifluorotoluene	96.7%
Bromobenzene	90.1%
Bronobenzene	プリ・1カ

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

M-818188

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a019.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a019.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45M

Client ID: EBC-7-S2

Injection Date: 07-AUG-2008 19:04

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

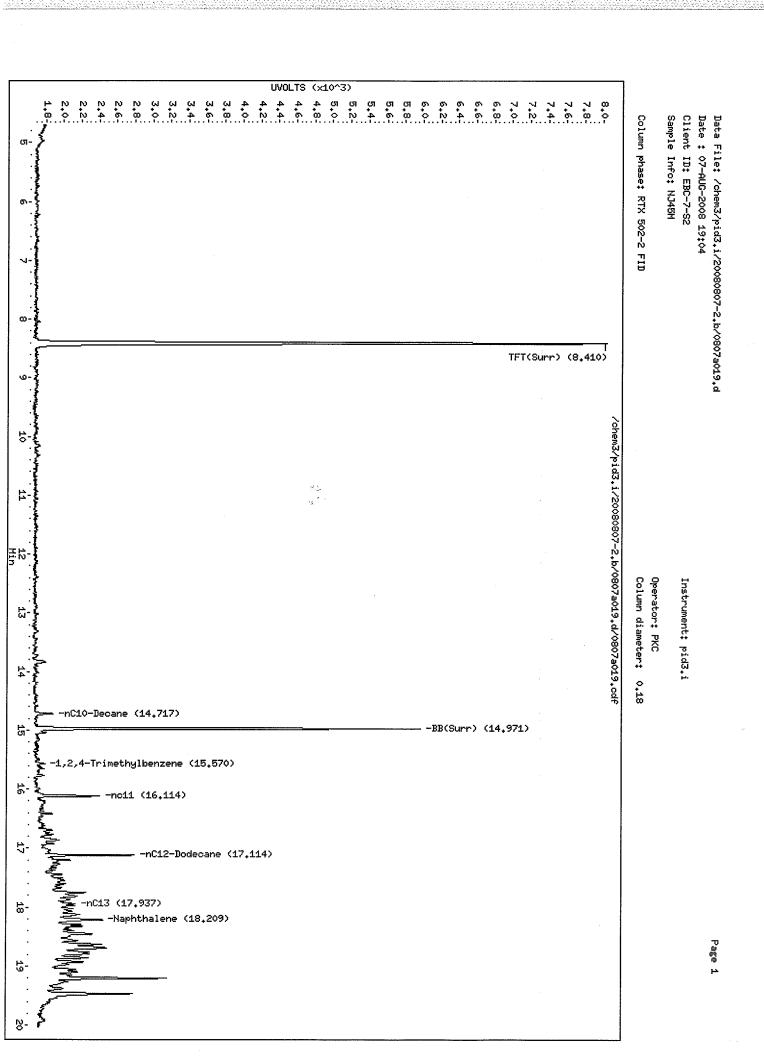
RT	Shift	Height	Area	%Rec	Compound
8.410	0.001	6394	80551	96.7	TFT(Surr)
14.971	0.000	4280	34936	90.1	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*		Amount
WAGas	(Tol-C12)	65218		0.088
8015B	(2MP-TMB)	16217	- * J	0.011
AKGas	(nC6-nC10)	8170	20	0.007
NWGas	(Tol-Nap)	166340		0.211

900

* Surrogate areas are subtracted from Total Area


		PID Surrogate	S	
RT	Shift	Response	%Rec	Compound
8.409	0.001	23805	98.0	TFT (Surr)
14.969	0.000	56801	93.7	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak peak was manually integrated

UVOLTS (x10^4) 2.6 8 3,2-1.6 1.8 2.0 2,2 4 4 6 6 6 4 4.4-.... 6. 4 জ • • ម ស ស ស ्ठा . ‡. ... 6-. **01ω**--TFT(Surr) (8,409) /chem3/pid3.i/20080807-1.b/0807a019.d/0807a019.cdf 당. Min ₽-4 녌. BB(Surr) (14.969)

Data File: /chem3/pid3.i/20080807-1.b/0807a019.d

Client ID; EBC-7-S2 Date : 07-AUG-2008 19:04

Sample Info: NJ45M

Column phase: RTX 502-2 PID

Instrument: pid3.i

Column diameter: Operator: PKC 0.18

Page 1

Sample ID: EBC-8-S1 SAMPLE

Lab Sample ID: NJ45N LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 19:28 Instrument/Analyst: PID3/PKC

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 70 mg-dry-wt

Percent Moisture: 4.6%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	36	< 36 U
95-47-6	o-Xylene	18	< 18 U
			GAS ID
	Gasoline Range Hydrocarbons	7.1	< 7.1 U

BETX Surrogate Recovery

Trifluorotoluene	90.7%
Bromobenzene	88.3%

Gasoline Surrogate Recovery

Trifluorotoluene 89.5% Bromobenzene 87.1%	

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a020.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a020.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45N

Client ID: EBC-8-S1

Injection Date: 07-AUG-2008 19:28

Matrix: SOIL

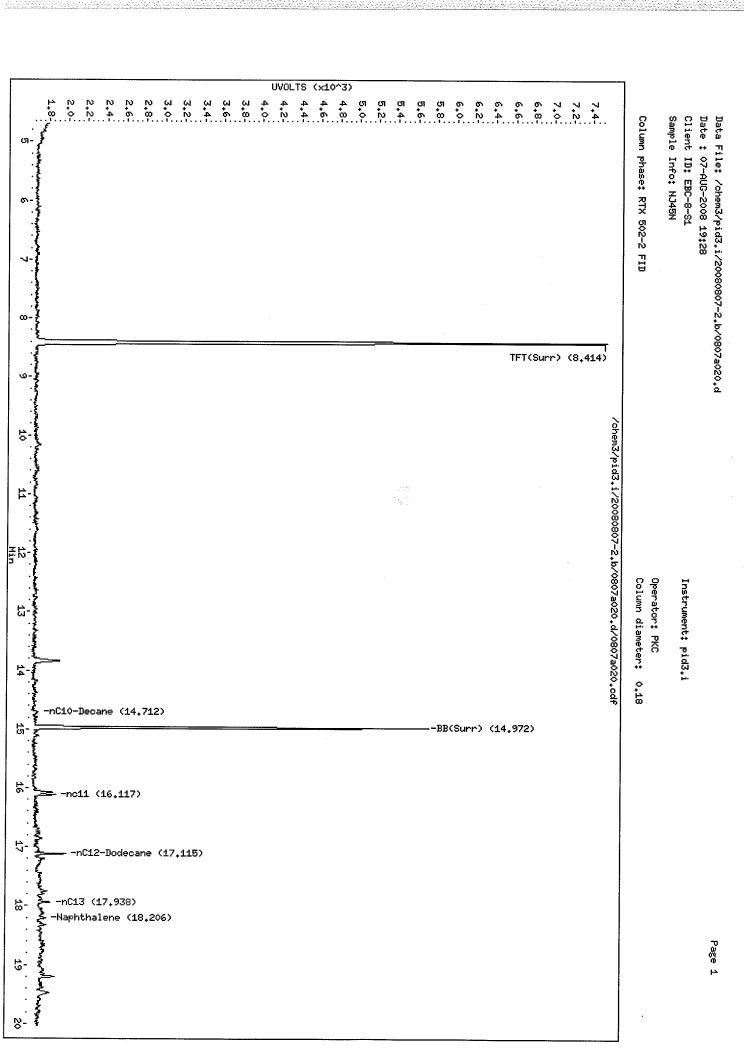
Dilution Factor: 1.000

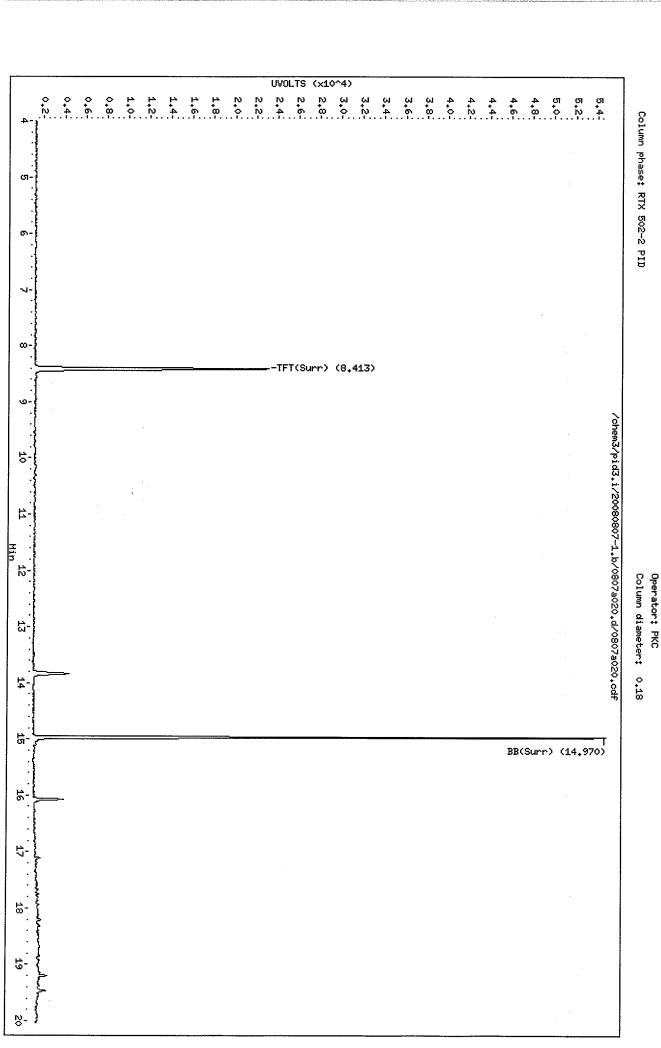
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
·					
8.414	0.005	5917	75429	89.5	TFT(Surr)
14.972	0.002	4138	33475	87.1	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

		Range	Total Area*	Amount
WZ	AGas	(Tol-C12)	16873	0.023
80)15B	(2MP-TMB)	6780	0.005
AI	(Gas	(nC6-nC10)	6780	0.006
N	V Gas	(Tol-Nap)	30589	0.039


* Surrogate areas are subtracted from Total Area


		PID Surrogates	S	
RT	Shift	Response	%Rec	Compound
8.413	0.005	22034	90.7	TFT (Surr)
14.970	0.002	53537	88 3	BR (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE
עוא				MIBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Page 1

Instrument: pid3.i

Client ID: EBC-8-S1 Sample Info: NJ45N Data File: /chem3/pid3.i/20080807-1.b/0807a020.d

Date : 07-AUG-2008 19:28

Lab Sample ID: NJ450 LIMS ID: 08-19408

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 19:53 Instrument/Analyst: PID3/PKC Sample ID: EBC-9-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01
Date Sampled: 07/29/08
Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 81 mg-dry-wt

Percent Moisture: 5.6%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	16	< 16 U
108-88-3	Toluene	16	< 16 U
100-41-4	Ethylbenzene	16	< 16 U
	m,p-Xylene	31	< 31 U
95-47-6	o-Xylene	16	< 16 U
			GAS ID
	Gasoline Range Hydrocarbons	6.2	< 6.2 U

BETX Surrogate Recovery

Trifluorotoluene	93.3%
Bromobenzene	91.4%

Gasoline Surrogate Recovery

Trifluorotoluene	91.7%
Bromobenzene	89.7%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a021.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a021.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008

ARI ID: NJ450

Client ID: EBC-9-S1

Injection Date: 07-AUG-2008 19:53

Matrix: SOIL

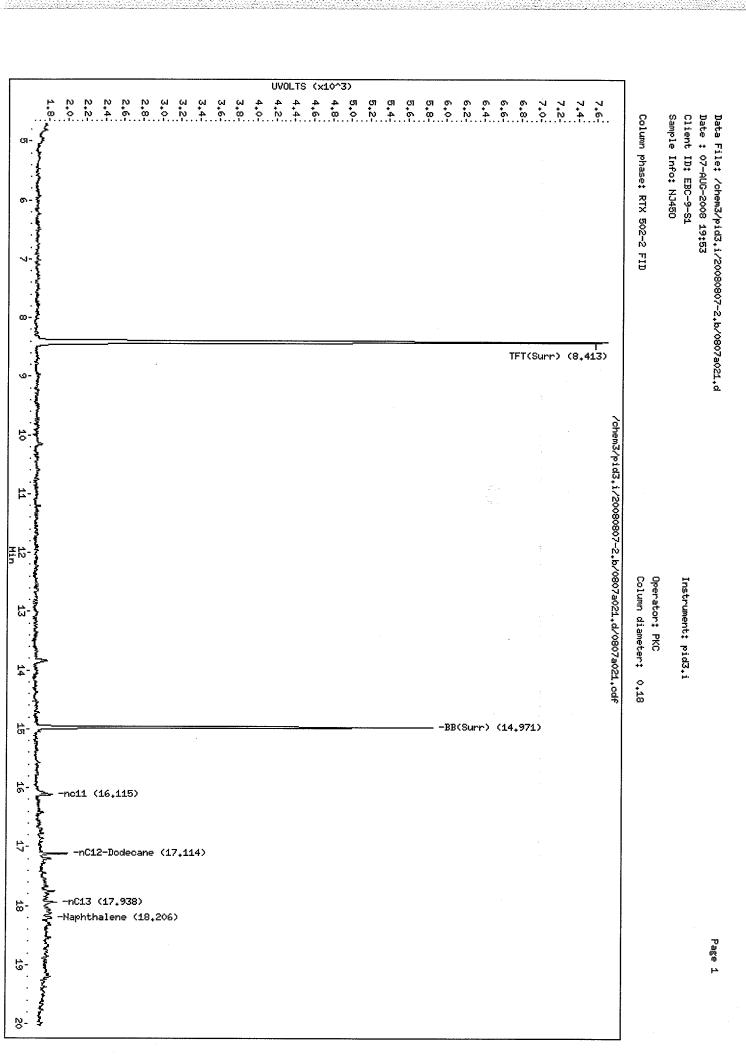
Dilution Factor: 1.000

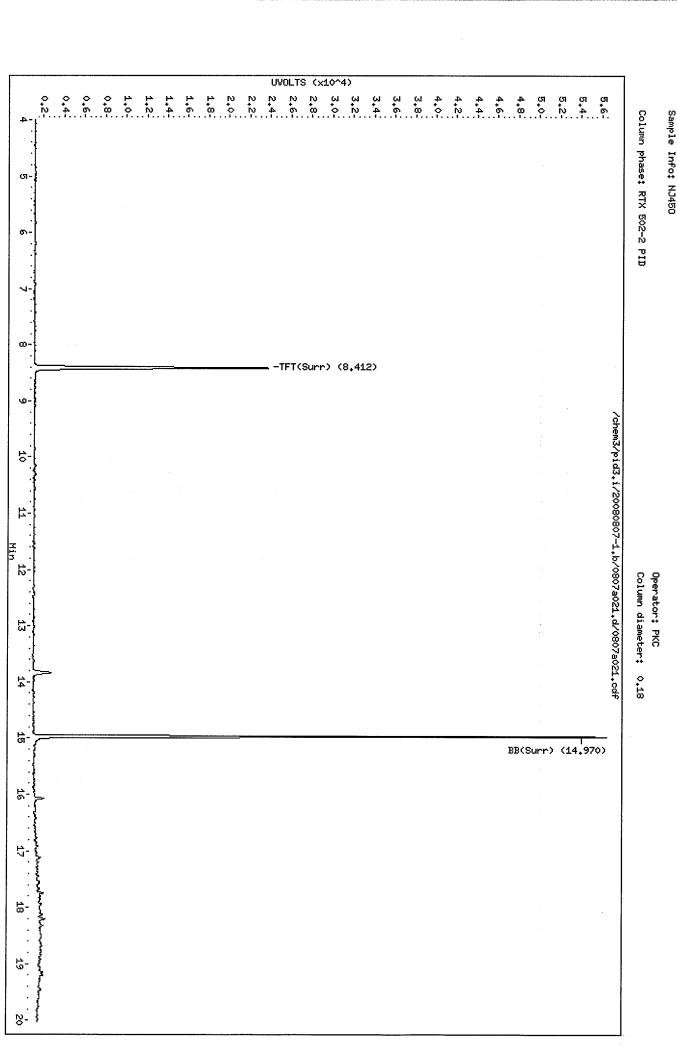
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.413	0.004	6065	77981	91.7	TFT (Surr)
14.971	0.001	4264	35099	89.7	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

F	Range	Total Area	* Amount
WAGas ((Tol-C12)	14055	0.019
8015B ((2MP-TMB)	3373	0.002
AKGas (nC6-nC10)	3373	0.003
NWGas ((Tol-Nap)	40393	0.051


Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.412	0.004	22649	93.3	TFT (Surr)
14.970	0.001	55393	91.4	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND	***			Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- Indicates Peak Area was used for quantitation instead of Height
- Indicates peak peak was manually integrated

Page 1

Date : 07-AUG-2008 19:53 Client ID: EBC-9-S1

Instrument: pid3.i

Data File: /chem3/pid3.i/20080807-1.b/0807a021.d

Page 1 of 1

Lab Sample ID: NJ45P LIMS ID: 08-19409

Matrix: Soil

Data Release Authorized: Reported: 08/08/08

Date Analyzed: 08/07/08 20:18 Instrument/Analyst: PID3/PKC

Sample ID: EBC-10-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 67 mg-dry-wt

Percent Moisture: 5.0%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	37	< 37 U
95-47-6	o-Xylene	18	< 18 U
			GAS I
	Gasoline Range Hydrocarbons	7.4	< 7.4 U
	BETX Surrogate Recovery		

Trifluorotoluene	91.3%
Bromobenzene	89.5%

Gasoline Surrogate Recovery

_	
Trifluorotoluene	89.9%
Bromobenzene	87.7%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a022.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a022.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45P

Client ID: EBC-10-S1

Injection Date: 07-AUG-2008 20:18

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

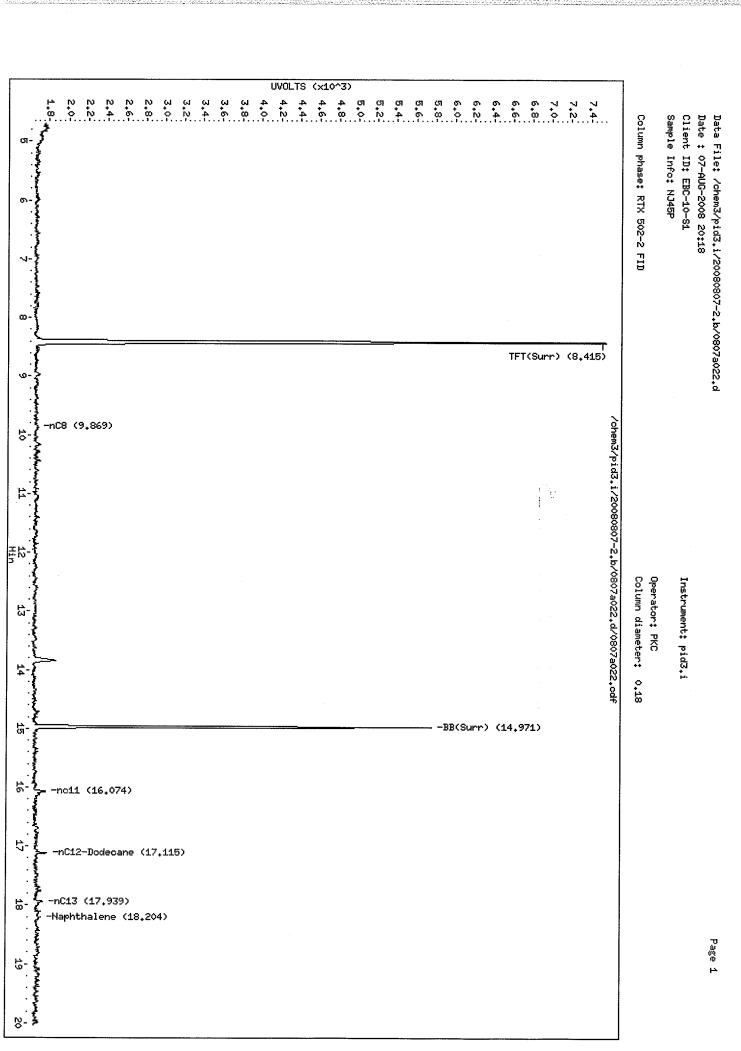
RT	Shift	Height	Area	%Rec	Compound
·					
8.415	0.006	5944	75412	89.9	TFT (Surr)
14.971	0.001	4166	33705	87.7	BB(Surr)

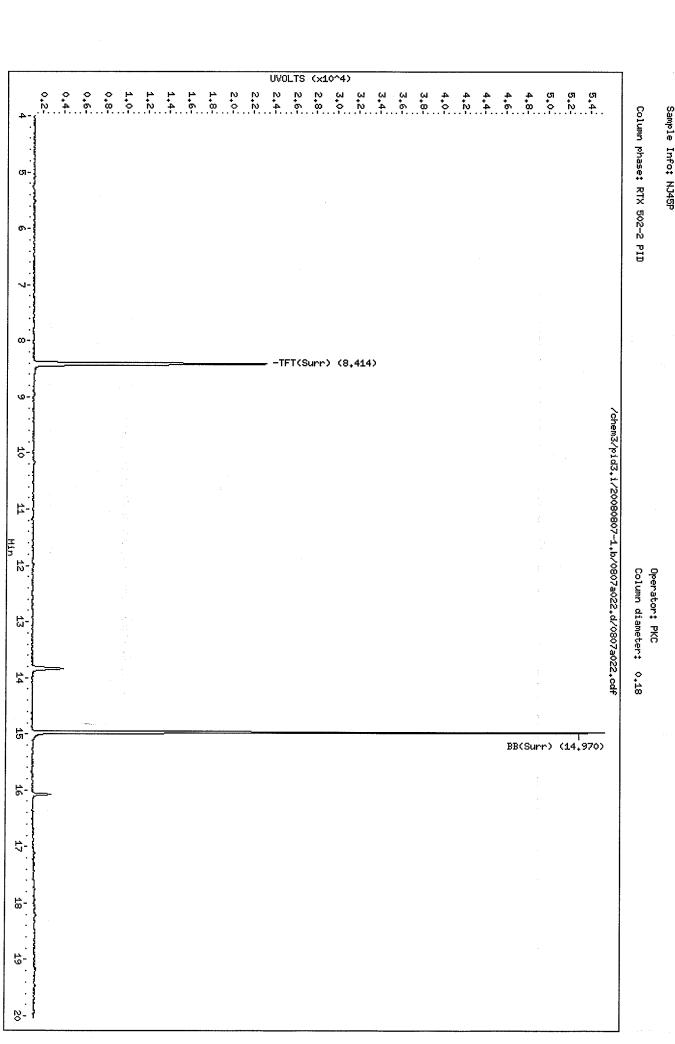
PETROLEUM HYDROCARBONS (FID)

		Range	Total Area*	Amount
	WAGas	(Tol-C12)	7405	0.010
	8015B	(2MP-TMB)	6598	0.005
ċ	AKGas	(nC6-nC10)	6598	0.006
	NWGas	(Tol-Nap)	9921	0.013

* Surrogate areas are subtracted from Total Area

		PID Surrogate	ន	
RT	Shift	Response	%Rec	Compound
8.414	0.006	22175	91.3	TFT (Surr)
14.970	0.001	54236	89.5	BB(Surr)


AROMATICS (PID)



RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak peak was manually integrated

Page 1

Date : 07-AUG-2008 20:18 Client ID: EBC-10-S1

Instrument: pid3.i

Data File: /chem3/pid3.i/20080807-1.b/0807a022.d

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-11-S1 SAMPLE

Lab Sample ID: NJ45Q LIMS ID: 08-19410

Matrix: Soil

Data Release Authorized: Reported: 08/08/08

Date Analyzed: 08/07/08 20:42 Instrument/Analyst: PID3/PKC

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 68 mg-dry-wt

Percent Moisture: 21.3%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	37	< 37 Ü
95-47-6	o-Xylene	18	< 18 U
			GAS ID
	Gasoline Range Hydrocarbons	7.4	< 7.4 U
	BETX Surrogate Recovery		

Trifluorotoluene	98.4%
Bromobenzene	95.9%

Gasoline Surrogate Recovery

Trifluorotoluene	97.0%
Bromobenzene	93.9%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a023.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a023.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45Q

Client ID: EBC-11-S1

Injection Date: 07-AUG-2008 20:42

Matrix: SOIL

Dilution Factor: 1.000

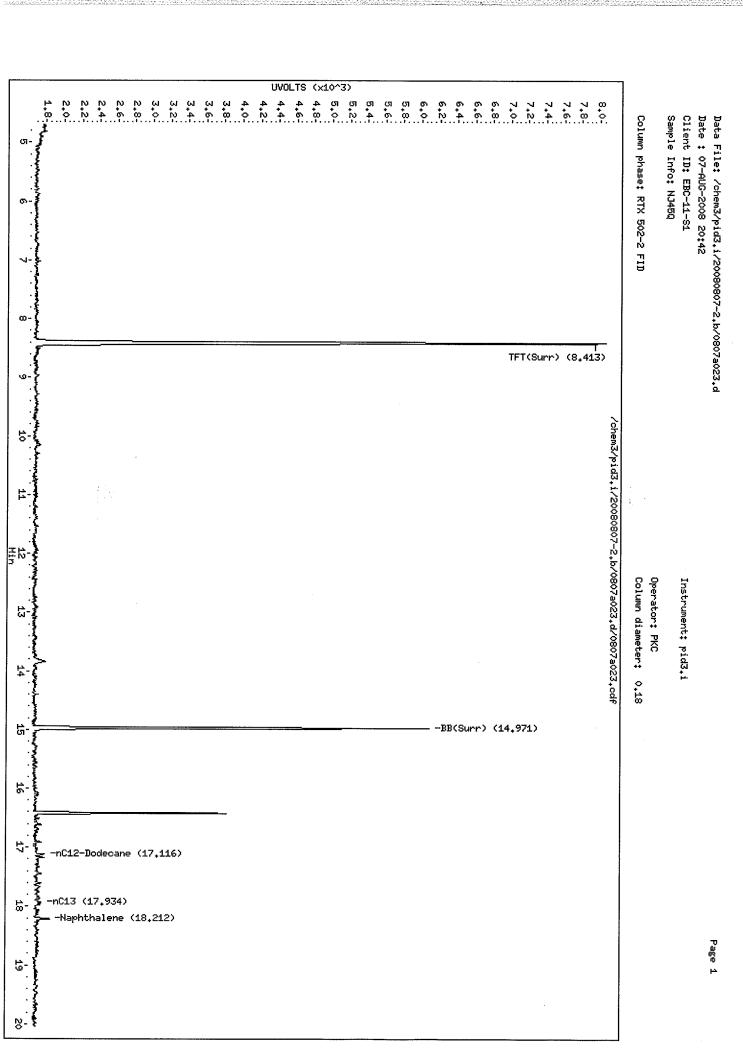
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.413	0.003	6415	81305	97.0	TFT(Surr)
14.971	0.000	4463	36808	93.9	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

8015B (2MP-TMB) 4014 0.0 AKGas (nC6-nC10) 4014 0.0		Range	Total Area*	Amount
8015B (2MP-TMB) 4014 0.0 AKGas (nC6-nC10) 4014 0.0				
AKGas (nC6-nC10) 4014 0.0	WAGas	(Tol-C12)	25191	0.034
,	8015B	(2MP-TMB)	4014	0.003
NWGas (Tol-Nap) 35764 0.0	AKGas	(nC6-nC10)	4014	0.004
	NWGas	(Tol-Nap)	35764	0.045

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.411	0.003	23896	98.4	TFT (Surr)
14.969	0.000	58092	95.9	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND	~			Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Data File: /chem3/pid3.i/20080807-1.b/0807a023.d

Date : 07-AUG-2008 20:42

Client ID: EBC-11-S1 Sample Info: NJ45Q

Column phase: RTX 502-2 PID

Instrument: pid3.i

Operator: PKC Column diameter: 0,18

Page 1

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-11-S2 SAMPLE

Lab Sample ID: NJ45R LIMS ID: 08-19411

Matrix: Soil

Data Release Authorized: Reported: 08/08/08

ed:

Date Analyzed: 08/07/08 21:07 Instrument/Analyst: PID3/PKC

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

92.2%

Purge Volume: 5.0 mL

Sample Amount: 68 mg-dry-wt

Percent Moisture: 16.5%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	18	< 18 U	 「
108-88-3	Toluene	18	< 18 U	Г
100-41-4	Ethylbenzene	18	< 18 U	Г
	m,p-Xylene	36	< 36 U	r
95-47-6	o-Xylene	18	< 18 U	Г
				GAS ID
	Gasoline Range Hydrocarbons	7.3	8.9	GRO
	BETX Surrogate Recovery			
	Trifluorotoluene 92	.4%		

Gasoline	Surrogate	Recovery

_	-
Trifluorotoluene	90.8%
Bromobenzene	89.4%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

Bromobenzene

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8 Kl08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a024.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a024.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45R

Client ID: EBC-11-S2

Injection Date: 07-AUG-2008 21:07

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

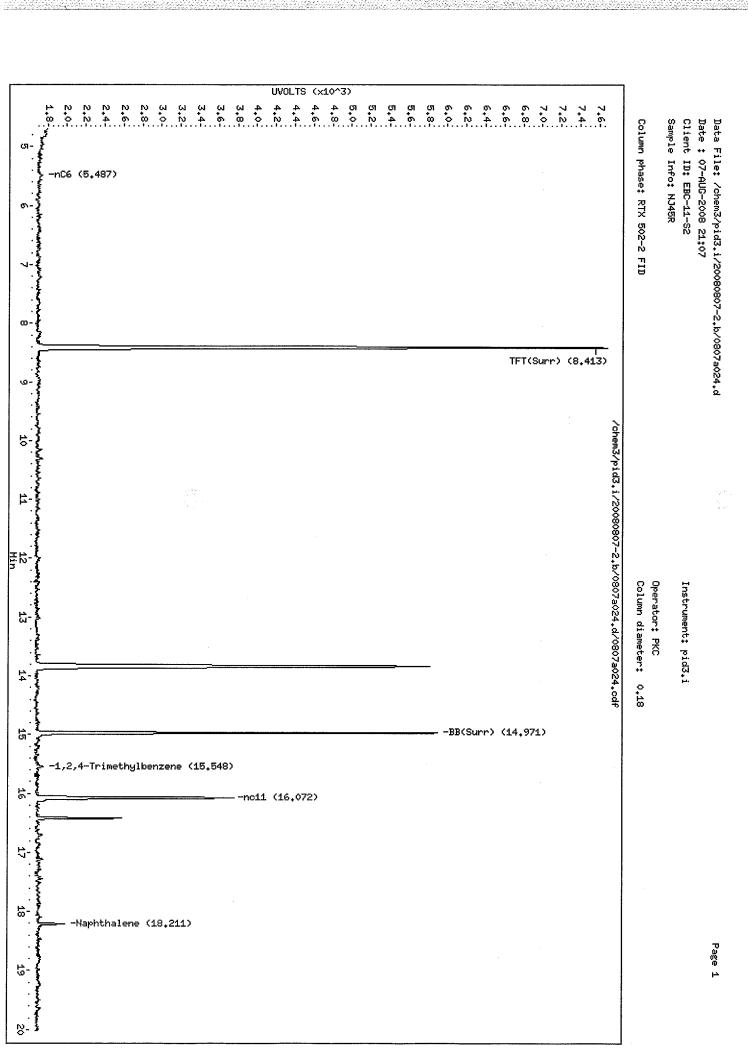
RT	Shift	Height	Area	%Rec	Compound
8.413	0.003	6003	75237	90.8	TFT (Surr)
14.971	0.001	4250	34629	89.4	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	93835	0.127
8015B (2MP-TMB)	65455	0.046
AKGas (nC6-nC10)	64319	0.056
NWGas (Tol-Nap)	96238	0.122

Spo

Surrogate areas are subtracted from Total Area


		PID Surrogates	3	
RT	Shift	Response	%Rec	Compound
8.412	0.003	22442	92.4	TFT(Surr)
14.970	0.001	55898	92.2	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

i in a

Page 1

Column phase: RTX 502-2 PID

Column diameter: 0.18

Operator: PKC

Instrument: pid3.i

Date : 07-AUG-2008 21:07 Client ID: EBC-11-S2 Sample Info: NJ45R

Data File: /chem3/pid3.i/20080807~1.b/0807a024.d

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: EBC-12-S1 SAMPLE

Lab Sample ID: NJ45S LIMS ID: 08-19412

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 22:46 Instrument/Analyst: PID3/PKC

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 76 mg-dry-wt

Percent Moisture: 4.7%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	16	< 16 U
108-88-3	Toluene	16	< 16 U
100-41-4	Ethylbenzene	16	< 16 U
	m,p-Xylene	33	< 33 U
95-47-6	o-Xylene	16	< 16 U
			GAS ID
	Gasoline Range Hydrocarbons	6.6	< 6.6 U

BETX Surrogate Recovery

Trifluorotoluene	88.6%
Bromobenzene	89.3%

Gasoline Surrogate Recovery

Trifluorotoluene	89.1%
Bromobenzene	88.9%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PL 818108

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a028.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a028.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45S

Client ID: EBC-12-S1

Injection Date: 07-AUG-2008 22:46

Matrix: SOIL

Dilution Factor: 1.000

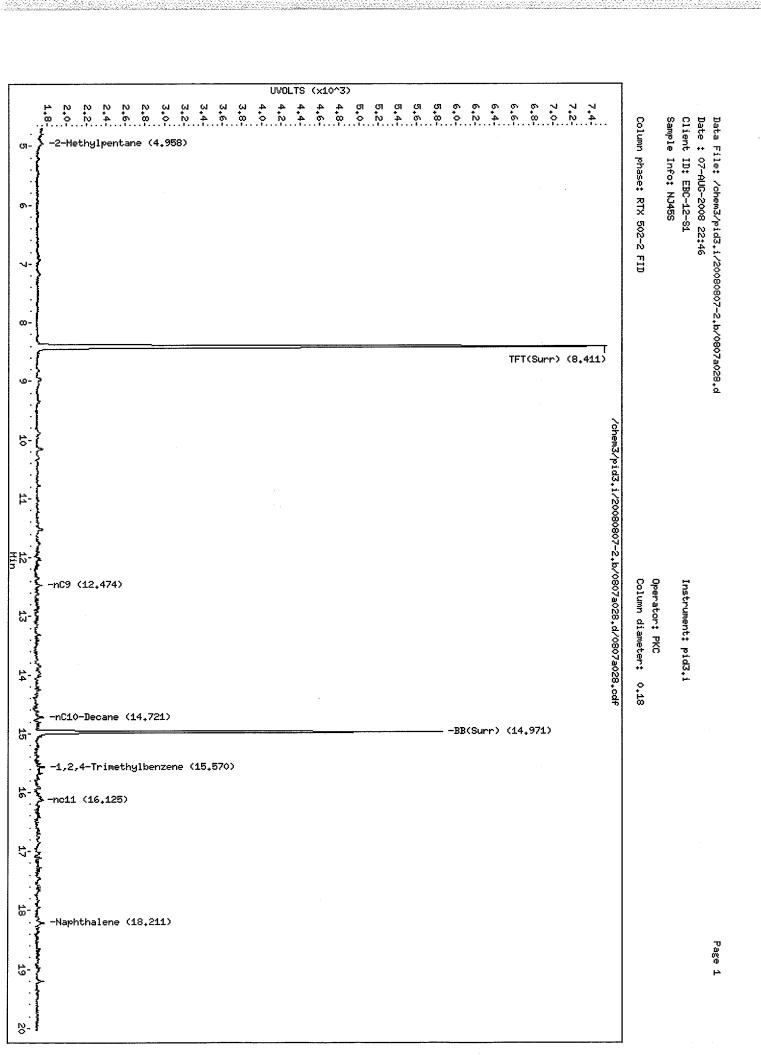
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.411	0.001	5889	74565	89.1	TFT (Surr)
14.971	0.001	4227	36411	88.9	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	30775	0.042
8015B (2MP-TMB)	24089	0.017
AKGas (nC6-nC10)	20019	0.018
NWGas (Tol-Nap)	38262	0.049

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.410	0.001	21516	88.6	TFT (Surr)
14.969	0.000	54099	89.3	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND	** *** ***			Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Data File: /chem3/pid3.i/20080807-1.b/0807a028.d

Client ID: EBC-12-S1 Date : 07-AUG-2008 22:46

Sample Info: NJ45S

Column phase: RTX 502-2 PID

Instrument: pid3.i

Column diameter: Operator: PKC 0,18

Page 1

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: NJ45U LIMS ID: 08-19414

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 23:10 Instrument/Analyst: PID3/PKC

Sample ID: EBC-13-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 74 mg-dry-wt

Percent Moisture: 6.0%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	17	< 17 U
108-88-3	Toluene	17	< 17 U
100-41-4	Ethylbenzene	17	< 17 U
	m,p-Xylene	34	< 34 U
95-47-6	o-Xylene	17	< 17 U
			GAS ID
	Gasoline Range Hydrocarbons	6.8	< 6.8 U
	BETY Surrogate Recovery		

BETX Surrogate Recovery

Trifluorotoluene	86.3%
Bromobenzene	88.6%

Gasoline Surrogate Recovery

	•
Trifluorotoluene	86.2%
Bromobenzene	87.0%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a029.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a029.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45U

Client ID: EBC-13-S1

Injection Date: 07-AUG-2008 23:10

Matrix: SOIL

Dilution Factor: 1.000

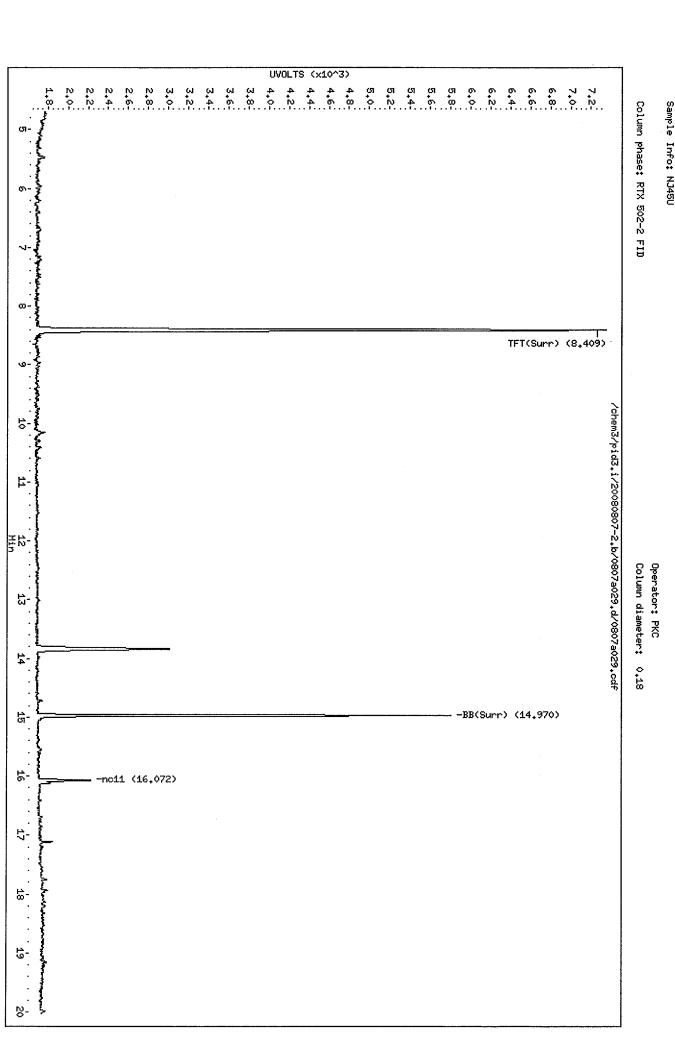
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.409	0.000	5698	71651	86.2	TFT(Surr)
14.970	0.000	4133	33598	87.0	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Total Area*	Amount	
25559	0.035	
23524	0.016	
23524	0.021	
25559	0.032	
	25559 23524 23524	

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.408	0.000	20949	86.3	TFT (Surr)
14.969	0.000	53676	88.6	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

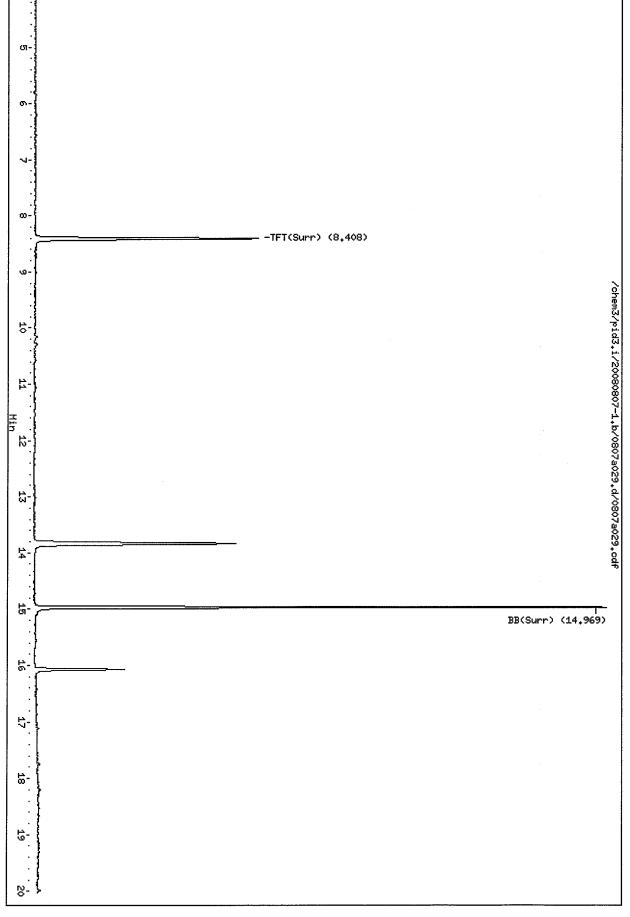
- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Page 1

Date : 07-AUG-2008 23:10 Client ID; EBC-13-81

Instrument: pid3.i

Data File: /chem3/pid3.i/20080807-2.b/0807a029.d


Client ID: EBC-13-S1

Sample Info: NJ45U

Column phase: RTX 502-2 PID

Instrument: pid3.i

Column diameter: 0.18 Operator: PKC

UVOLTS (x10^4) 5.6-

\$.4. 0.6-0.8: 1.0-1² • 4. . 1.6. 1 8 20 0 2 2 2 2 2 4.6. 4. 00..

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: NJ45V LIMS ID: 08-19415

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 23:35 Instrument/Analyst: PID3/PKC

Sample ID: EBC-13-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/29/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 46 mg-dry-wt

Percent Moisture: 9.4%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	27	< 27 U
108-88-3	Toluene	27	< 27 U
100-41-4	Ethylbenzene	27	< 27 U
	m,p-Xylene	55	< 55 U
95-47-6	o-Xylene	27	< 27 U
			GAS
	Gasoline Range Hydrocarbons	11	< 11 U
	BETX Surrogate Recovery		

Trifluorotoluene	88.1%
Bromobenzene	90.4%

Gasoline Surrogate Recovery

Trifluorotoluene	87.7%
Bromohenzene	89.7%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/8/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a030.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a030.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45V

Client ID: EBC-13-S2

Op.

Injection Date: 07-AUG-2008 23:35

Matrix: SOIL

Dilution Factor: 1.000

FID Surrogates

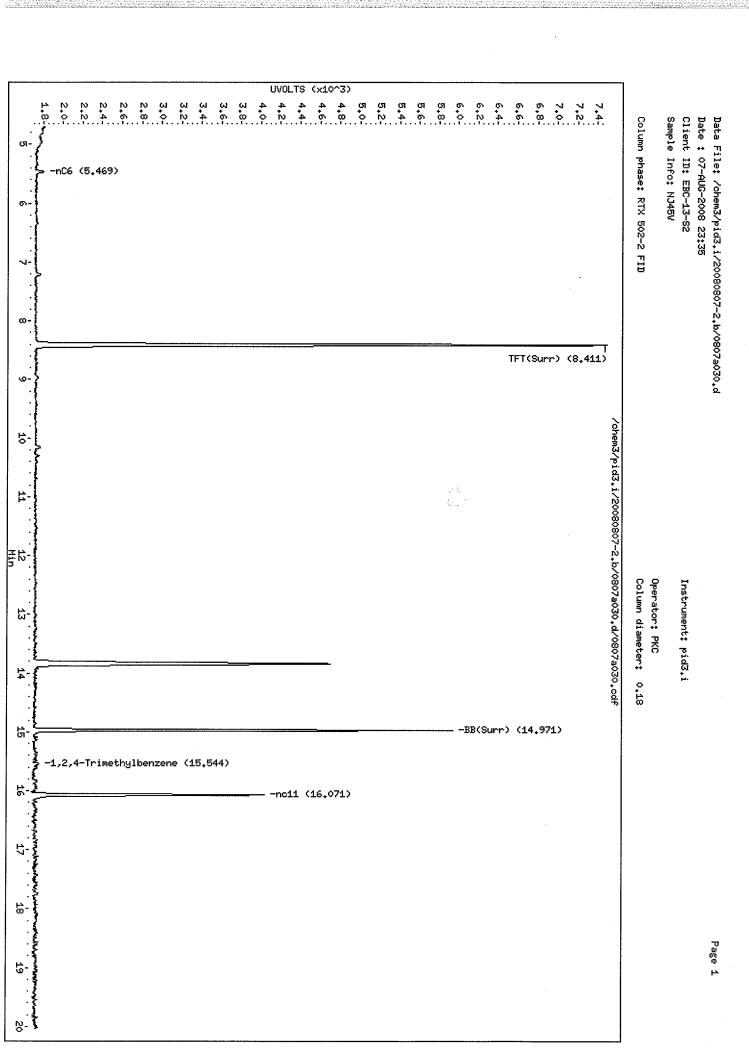
RT	Shift	Height	Area	%Rec	Compound
8.411	0.002	5799	72688	87.7	TFT (Surr)
14.971	0.000	4265	34912	89.7	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total	Area*	Amount
WAGas (Tol-	C12)	7	72587	0.098
8015B (2MP-	TMB)	4	17526	0.033
AKGas (nC6-	nC10)	4	15246	0.040
NWGas (Tol-1	Nap)	,	72587	0.092

* Surrogate areas are subtracted from Total Area

		PID Surrogate	:S	
RT	Shift	Response	%Rec	Compound
8.410	0.002	21399	88.1	TFT (Surr)
14.969	0.000	54781	90.4	BB(Surr)


AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

A Indicates Peak Area was used for quantitation instead of Height

N Indicates peak peak was manually integrated

UVOLTS (x10^4) 0.6 .00 1 0 ... 14 23 4 4 4 N N 2 .4.. ₩ .4.. ... 6... 3 4 0 0 4 2 4 4 4 5 5 5 5 4 6 8 0 2 4 មា-00--TFT(Surr) (8,410) დ-/chem3/pid3.i/20080807-1.b/0807a030.d/0807a030.cdf 6. 片-눉-13-긒 녒 BB(Surr) (14.969) 꿏. 뜒-19-

ß- }

Data File: /chem3/pid3.i/20080807-1.b/0807a030.d

Client ID: EBC-13-S2 Date : 07-AUG-2008 23:35

Sample Info; NJ45V

Column phase: RTX 502-2 PID

Instrument: pid3.i

Column diameter: 0.18 Operator: PKC

Page 1

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: NJ45W LIMS ID: 08-19416

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 00:00 Instrument/Analyst: PID3/PKC

Sample ID: EBC-14-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01 Date Sampled: 07/31/08 Date Received: 08/06/08

Purge Volume: 5.0 mL

Sample Amount: 71 mg-dry-wt

Percent Moisture: 8.9%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	35	< 35 U
95-47-6	o-Xylene	18	< 18 U
			GAS ID
	Gasoline Range Hydrocarbons	7.0	< 7.0 U
	BETX Surrogate Recovery		

Trifluorotoluene	93.1%
Bromobenzene	90.9%

Gasoline Surrogate Recovery

Trifluorotoluene	93.6%
Bromobenzene	90.5%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

PC 8/x/08

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a031.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a031.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: NJ45W

Client ID: EBC-14-S1

Injection Date: 07-AUG-2008 00:00

Matrix: SOIL

Dilution Factor: 1.000

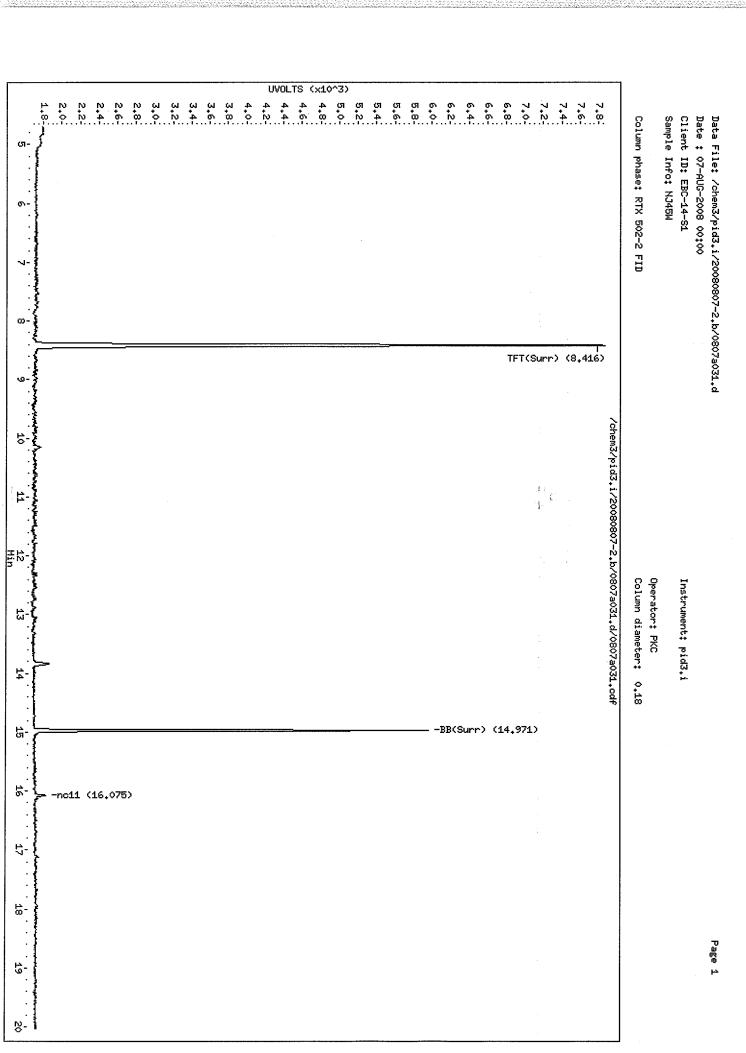
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.416	0.006	6190	78768	93.6	TFT (Surr)
14.971	0.001	4301	34469	90.5	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total Area*	Amount
WAGas	(Tol-C12)	4037	0.005
8015B	(2MP-TMB)	3871	0.003
AKGas	(nC6-nC10)	3870	0.003
NWGas	(Tol-Nap)	4037	0.005

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.414	0.006	22617	93.1	TFT(Surr)
14.970	0.001	55114	90.9	BB (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND	··· ··· ·			Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Data File: /chem3/pid3.i/20080807-1.b/0807a031.d

Date : 07-AUG-2008 00:00 Client ID: EBC-14-S1

Client ID; EBC-14-S1 Sample Info; NJ45W

Column phase: RTX 502-2 PID

Instrument: pid3.i

Operator: PKC Column diameter: 0,18

Page 1

BETX SOIL SURROGATE RECOVERY SUMMARY

ARI Job: NJ45 Matrix: Soil QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC Event: 17490-01

Client ID	TFT	BBZ	TOT OUT
MB-080708	95.7%	91.8%	0
LCS-080708	94.4%	89.9%	0
LCSD-080708	98.4%	92.8%	0
EBC-1-S1	102%	94.8%	0
EBC-1-S2	99.2%	93.9%	0
EBC-2-S1	94.8%	93.8%	0
EBC-3-S1	102%	100%	0
EBC-3-S2	98.8%	93.6%	0
EBC-4-S1	96.4%	92.3%	0
EBC-5-S1	95.9%	93.8%	0
EBC-6-S1	102%	97.0%	0
EBC-7-S1	99.4%	103%	0
EBC-7-S2	98.0%	93.7%	0
EBC-8-S1	90.7%	88.3%	0
EBC-9-S1	93.3%	91.4%	0
EBC-10-S1	91.3%	89.5%	0
EBC-11-S1	98.4%	95.9%	0
EBC-11-S2	92.4%	92.2%	0
EBC-12-S1	88.6%	89.3%	0
EBC-13-S1	86.3%	88.6%	0
EBC-13-S2	88.1%	90.4%	0
EBC-14-S1	93.1%	90.9%	0

			LCS/MB LIMITS	QC LIMITS
(TFT)	=	Trifluorotoluene	(80-120)	(61-137)
(BBZ)	=	Bromobenzene	(80-120)	(58-139)

Log Number Range: 08-19394 to 08-19416

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: NJ45 Matrix: Soil

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC Event: 17490-01

Client ID	BFB	TFT	BBZ	TOT OUT
MB-080708	NA	93.3%	89.2%	0
LCS-080708	NA	92.2%	87.3%	0
LCSD-080708	NA	96.1%	89.8%	0
EBC-1-S1	NA	99.4%	90.3%	0
EBC-1-S2	NA	97.6%	91.1%	0
EBC-2-S1	NA	92.7%	94.8%	0
EBC-3-S1	NA	97.9%	99.3%	0
EBC-3-S2	NA	96.7%	90.3%	0
EBC-4-S1	NA	94.2%	90.8%	0
EBC-5-S1	NA	94.3%	91.5%	0
EBC-6-S1	NA	99.5%	94.6%	0
EBC-7-S1	NA	97.4%	109%	0
EBC-7-S2	NA	96.7%	90.1%	0
EBC-8-S1	NA	89.5%	87.1%	0
EBC-9-S1	NA	91.7%	89.7%	0
EBC-10-S1	NA	89.9%	87.7%	0
EBC-11-S1	NA	97.0%	93.9%	0
EBC-11-S2	NA	90.8%	89.4%	0
EBC-12-S1	NA	89.1%	88.9%	0
EBC-13-S1	NA	86.2%	87.0%	0
EBC-13-S2	NA	87.7%	89.7%	0
EBC-14-S1	NA	93.6%	90.5%	0

			LCS/MB LIMITS	QC LIMITS
(BFB)	=	Bromofluorobenzene	(70-130)	(70-130)
(TFT)	=	Trifluorotoluene	(80-120)	(65-137)
(BBZ)	=	Bromobenzene	(80-120)	(54-144)

Log Number Range: 08-19394 to 08-19416

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-080708

LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed LCS: 08/07/08 12:34

LCSD: 08/07/08 12:58

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-080708

LAB CONTROL SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	45.3	50.0	90.6%	46.6	50.0	93.2%	2.8%

Reported in mg/kg (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	92.2%	96.1%
Bromobenzene	87.3%	89.8%

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod Page 1 of 1

Page I OI I

Lab Sample ID: LCS-080708

LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed LCS: 08/07/08 12:34

LCSD: 08/07/08 12:58

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-080708

LAB CONTROL SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

Event: 17490-01

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	236	265	89.1%	242	265	91.3%	2.5%
Toluene	1820	2060	88.3%	1870	2060	90.8%	2.7%
Ethylbenzene	444	500	88.8%	458	500	91.6%	3.1%
m,p-Xylene	1820	2120	85.8%	1890	2120	89.2%	3.8%
o-Xylene	646	745	86.7%	671	745	90.1%	3.8%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	94.4%	98.4%
Bromobenzene	89.9%	92.8%

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a004.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a004.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: LCS080708W1

Client ID:

Injection Date: 07-AUG-2008 12:34

Matrix: WATER

Dilution Factor: 1.000

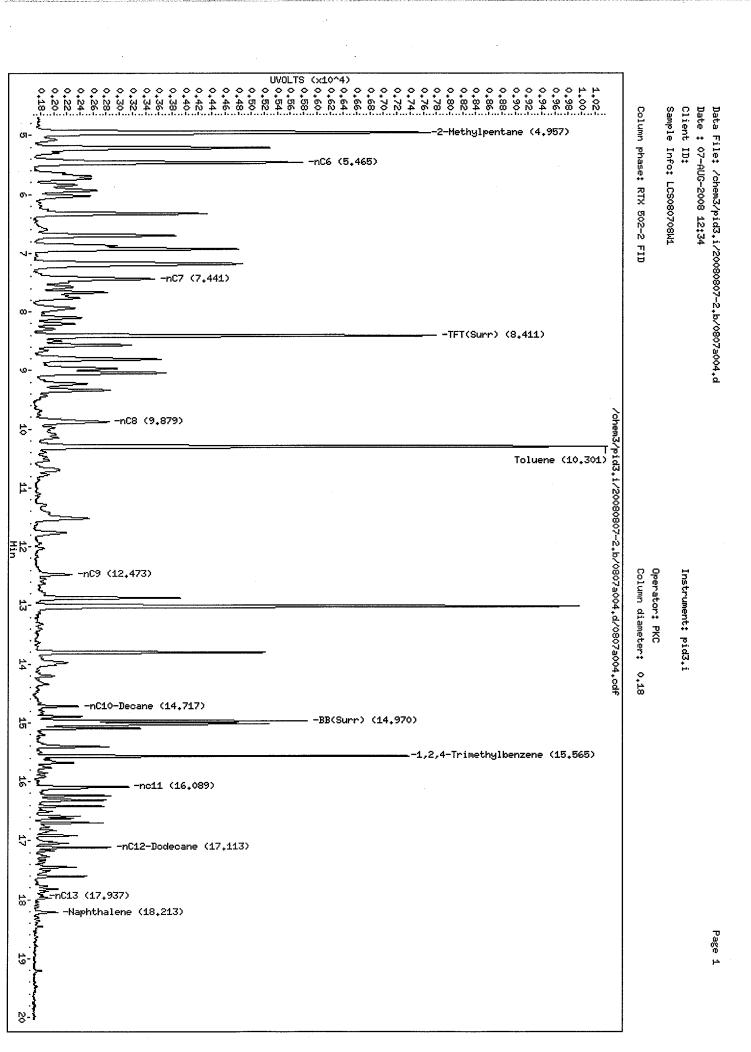
FID Surrogates

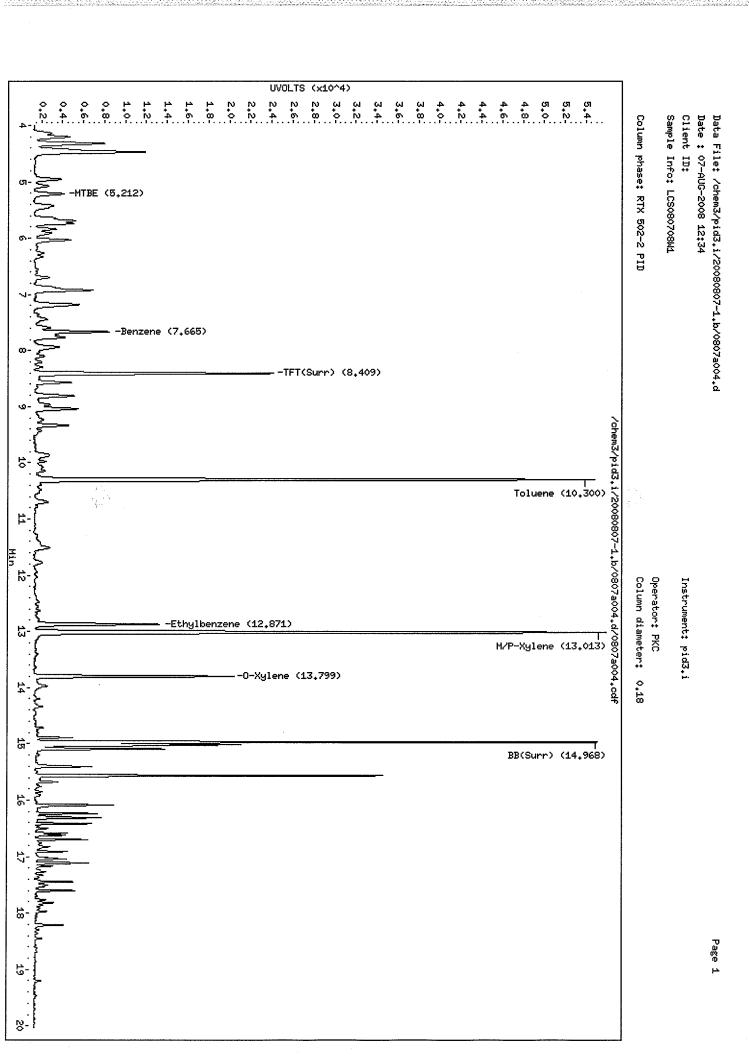
RT	Shift	Height	Area	%Rec	Compound
8.411	0.001	6098	78978	92.2	TFT (Surr)
14.970	0.000	4151	34590	87.3	BB (Surr)

PETROLEUM HYDROCARBONS (FID) _______

Total Area* Amount ._g.u Range WAGas (Tol-C12) 671950 1392103 1102008 0.908 8015B (2MP-TMB) 0.969 AKGas (nC6-nC10) 0.964 NWGas (Tol-Nap) 714623 0.906

Surrogate areas are subtracted from Total Area




		PID Surrogate	:S	
RT	Shift	Response	%Rec	Compound
8.409	0.001	22930	94.4	TFT(Surr)
14.968	0.000	54480	89.9	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
7.665	0.001	7195	4.72	Benzene
10.300	0.000	53466	36.34	Toluene
12.871	0.000	11992	8.89	Ethylbenzene
13.013	0.002	54701	36.49	M/P-Xylene
13.799	0.000	19159	12.93	O-Xylene
5.212	-0.010	2890	5.29	MTBE

- Indicates Peak Area was used for quantitation instead of Height
- Indicates peak peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20080807-2.b/0807a005.d

Data file 2: /chem3/pid3.i/20080807-1.b/0807a005.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 27-JUN-2008 BETX Ical Date: 27-JUN-2008 ARI ID: LCSD080708W1

Client ID:

Injection Date: 07-AUG-2008 12:58

Matrix: WATER

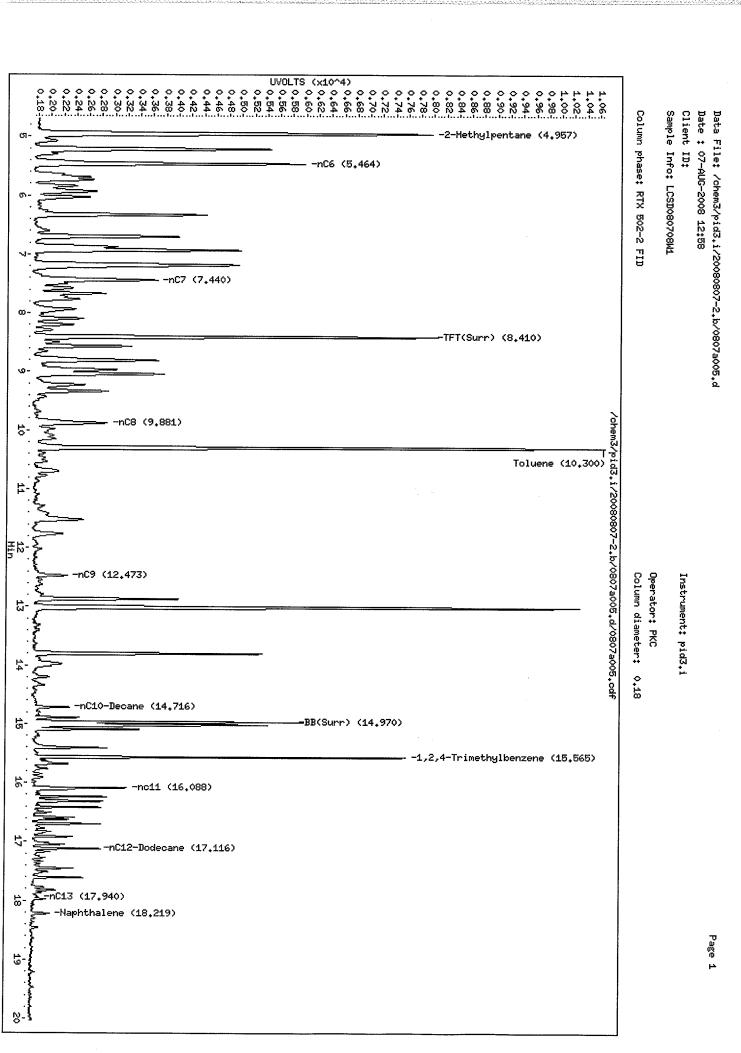
Dilution Factor: 1.000

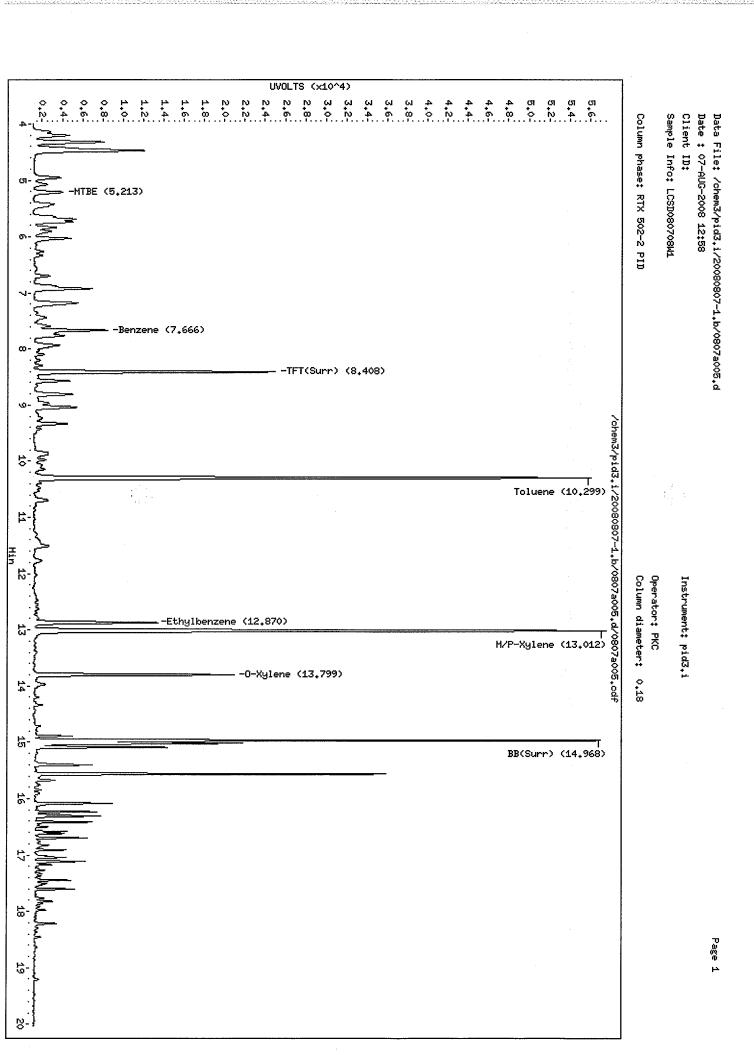
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.410	0.000	6351	81067	96.1	TFT (Surr)
14.970	-0.001	4267	35463	89.8	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total Area*	Amount
WAGas	(Tol-C12)	691791	0.934
8015B	(2MP-TMB)	1434574	0.999
AKGas	(nC6-nC10)	1136988	0.995
NWGas	(Tol-Nap)	735025	0.932


Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
· ·				
8.408	0.000	23890	98.4	TFT (Surr)
14.968	-0.001	56233	92.8	BB (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
·				
7.666	0.001	7368	4.83	Benzene
10.299	0.000	55009	37.39	Toluene
12.870	-0.001	12360	9.16	Ethylbenzene
13.012	0.001	56604	37.76	M/P-Xylene
13.799	-0.001	19889	13.42	O-Xylene
5.213	-0.010	2982	5.46	MTBE

- Indicates Peak Area was used for quantitation instead of Height
- Indicates peak peak was manually integrated

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: MB-080708

LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized:

Reported: 08/08/08

Date Analyzed: 08/07/08 13:23 Instrument/Analyst: PID3/PKC

Sample ID: MB-080708 METHOD BLANK

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC Event: 17490-01

Date Sampled: NA

Date Received: NA

Purge Volume: 5.0 mL

Sample Amount: 100 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	12	< 12 U
108-88-3	Toluene	12	< 12 U
100-41-4	Ethylbenzene	12	< 12 U
	m,p-Xylene	25	< 25 U
95-47-6	o-Xylene	12	< 12 U
			GAS ID
	Gasoline Range Hydrocarbons	5.0	< 5.0 U

BETX Surrogate Recovery

Trifluorotoluene	95.7%
Bromobenzene	91.8%

Gasoline Surrogate Recovery

Trifluorotoluene	93.3%
Bromobenzene	89.2%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Data file 1: /chem3/pid3.i/20080807-2.b/0807a006.d Data file 2: /chem3/pid3.i/20080807-1.b/0807a006.d

Method: /chem3/pid3.i/20080807-1.b/PIDB.m

Instrument: pid3.i Gas Ical Date: 27-JUN-2008

BETX Ical Date: 27-JUN-2008

ARI ID: MB080708W1

Client ID:

Injection Date: 07-AUG-2008 13:23

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
8.412	0.002	6166	78684	93.3	TFT (Surr)
14.970	-0.001	4240	35555	89.2	BB(Surr)

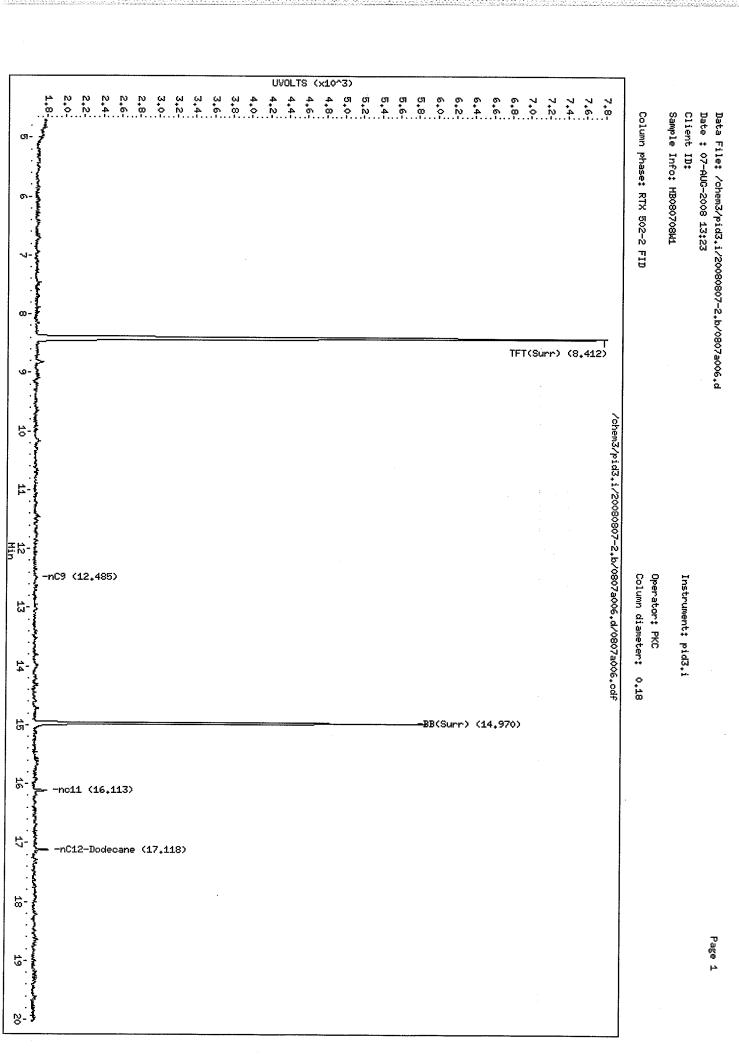
PETROLEUM HYDROCARBONS (FID)

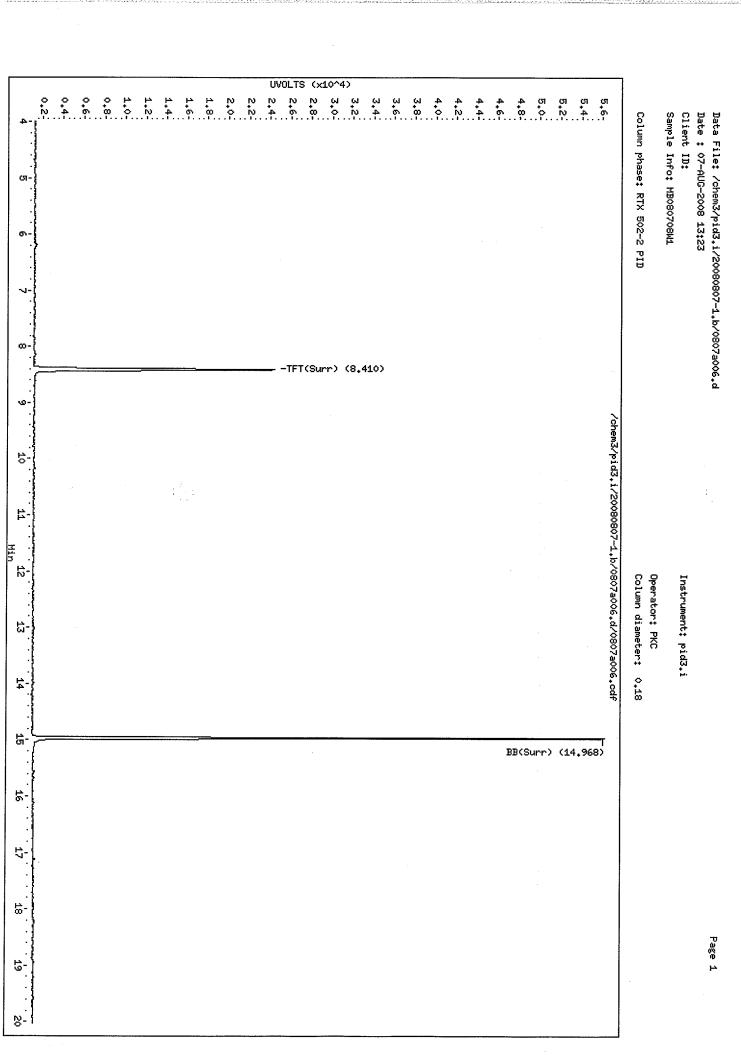
Range	Total Area*	Amount
WAGas (Tol-C12)	5220	0.007
8015B (2MP-TMB)	3445	0.002
AKGas (nC6-nC10)	3445	0.003
NWGas (Tol-Nap)	5220	0.007

Surrogate areas are subtracted from Total Area

		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
8.410	0.002	23235	95.7	TFT(Surr)
14.968	-0.001	55614	91.8	BB(Surr)

AROMATICS (PID)


RT Shift Response Amount Comp	ound
ND Benze	ne
ND Tolue	ne
ND Ethyl	benzene
ND M/P-X	ylene
ND O-Xyl	- ene


Indicates Peak Area was used for quantitation instead of Height

MTBE

Indicates peak peak was manually integrated

ND

QC Report No: NJ45-Hart Crowser, Inc.

17490-01

Project: Pier 23-EBC

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 2 Matrix: Soil

Data Release Authorized: MX Reported: 08/28/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
NJ45A 08-19394	EBC-1-S1 HC ID: DRO/MOTOR OI	08/11/08	08/15/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	100 200	180 960 60.0%
MB-081108 08-19395	Method Blank HC ID:	08/11/08	08/15/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 90.4%
NJ45B 08-19395	EBC-1-S2 HC ID: DRO/MOTOR OII	08/11/08	08/15/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.3 11	5.8 17 91.3%
NJ45C 08-19396	EBC-2-S1 HC ID: DIESEL/MOTOR	08/11/08 OIL	08/15/08 FID3A	1.00 20	Diesel Motor Oil o-Terphenyl	110 220	900 1400 72.0%
NJ45E 08-19398	EBC-3-S1 HC ID: DIESEL/MOTOR	08/11/08 OIL	08/15/08 FID3A	1.00 10	Diesel Motor Oil o-Terphenyl	62 120	560 950 84.9%
NJ45F 08-19399	EBC-3-S2 HC ID:	08/11/08	08/15/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.7 11	< 5.7 U < 11 U 86.4%
NJ45G 08-19400	EBC-4-S1 HC ID: DRO	08/11/08	08/15/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.0 12	7.0 < 12 U 76.2%
NJ45H 08-19401	EBC-5-S1 HC ID: DRO/MOTOR OII	08/11/08	08/15/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.2 10	15 98 79.8%
NJ45J 08-19403	EBC-6-S1 HC ID: DRO/MOTOR OIL	08/11/08	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.2 10	10 58 72.2%
NJ45L 08-19405	EBC-7-S1 HC ID: DIESEL/MOTOR	08/11/08 OIL	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	1000 2100	3600 5100 D
NJ45M 08-19406	EBC-7-S2 HC ID: DRO/RRO	08/11/08	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	49 10 70.9%
NJ45N 08-19407	EBC-8-S1 HC ID:	08/11/08	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 68.9%
NJ450 08-19408	EBC-9-S1 HC ID: DRO/MOTOR OIL		08/16/08 FID3A	1.00 5.0	Diesel Motor Oil o-Terphenyl	26 52	60 180 86.7%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 2 of 2 Matrix: Soil

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC

17490-01

Data Release Authorized: W

Reported: 08/28/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
NJ45P 08-19409	EBC-10-S1 HC ID:	08/11/08	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.2 10	< 5.2 U < 10 U 80.4%
NJ45Q 08-19410	EBC-11-S1 HC ID: DRO/MOTOR OI	08/11/08 L	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.2 12	18 24 95.8%
NJ45R 08-19411	EBC-11-S2 HC ID: DRO/MOTOR OI	08/11/08 L	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	56 110	140 300 80.4%
NJ45S 08-19412	EBC-12-S1 HC ID:	08/11/08	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.7 12	< 5.7 U < 12 U 87.8%
NJ45U 08-19414	EBC-13-S1 HC ID: DIESEL/MOTOR	08/11/08 OIL	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	53 110	160 3 50 87.8%
NJ45V 08-19415	EBC-13-S2 HC ID:	08/11/08	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.3 11	< 5.3 U < 11 U 72.9%
NJ45W 08-19416	EBC-14-S1 HC ID:	08/11/08	08/16/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.6 11	< 5.6 U < 11 U 86.2%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicate results of organics or additional hydrocarbons in ranges are not identifiable.

Data file: /chem3/fid3a.i/20080815.b/0815a020.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45MBS1

Client ID:

Injection: 15-AUG-2008 20:16

Dilution Factor: 1

FID: 3A RESUL'	TS	TT	SI	ES	R	Α	3	:	D	F
----------------	----	----	----	----	---	---	---	---	---	---

Compound	RT	Shift	Height	A	rea	Ra	ange	To	tal Area	Conc
Toluene	1.749	0.010	-======= 5080	=====	===== 2520	GAS	======================================	=====	======================================	
C8	1.876	0.014	6466		4688	DIESEL	(C12-C24)		595506 497300	33 42
C10	2.444	-0.004	3698		2849	M.OIL	(C24-C38)		490700	50
C12	2.934	0.001	18279	:	16420	AK-102	(C10-C25)		673585	47
C14	3.347	0.000	3145		1127	AK-103	(C25-C36)		376514	54
C16	3.716	0.008	5209		4362	OR.DIES	(C10-C28)		761052	5 1
C18	4.082	0.003	2684		3386	OR.MOIL	(C28-C40)		552445	61
C20	4.505	0.001	3274		3437		(C10-C18)		452690	30
C22	4.864	-0.001	4834		3717	MIN.OIL	(C24-C38)		490700	38
C24	5.172	-0.004	2851		2196	MSPIRIT	(Tol-C12)		595506	38
C25	5.316	0.003	2677		2052	İ	•			
C26	5.449	0.010	2786		1204	j				
C28	5.675	0.002	4520		3589	ĺ				
C32	6.110	0.000	5486		2299					
C34	6.365	-0.001	5252		2834	İ				•
Filter Peak	6.994	-0.003	4634		1754	JP-4	(Tol-C14)		710199	63
C36	6.659	-0.020	5520	1	L3810	CREOSOT	(C8-C22)		995963	160
C38	7.082	0.000	4602		2293					
C40	7.622	0.002	4670		1583	BUNKERC	(C10-C38)		1161108	146
	0-C22) 2-C32)		====== 8774 4057	37 41	=====	====== ਹ	=======================================	=== = ===	=======	=====

Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	640191	40.7	90.4
Triacontane	583745	47.6	105.7

Nos 4/27/19

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
		22 22000

						***			Y (x10	`6 >							1			
			\$ 1-	0,2-	o₊3- 		› ·	្ បា 	0,6	0.7-		.		<u>+</u> +	1 		ŭ	ဖွ	Ω	Ħ
1,4	- 1		uene (:		-												olumn k	Sample 1	Ŧ.	Date : 1
1 t	. ,	-															Column phase: RTX-1	Info: NJ45MBS1	Ħ	15-AUG-2008 20:16
N 4		-C10	(2,44	4)													RTX-1	1J45MBS		2008 2
2.7		520		••														<u> </u>		0:16
3.0		-C12	2 (2,9	34)			•	** **				•								
3+3		-C14	(3,347	7)																
3,6		- -C16	(3,71	۵)																
3,9	j.	-C18	(4.082	2)																
4.2	(* **	 o-ter	ph (4,2) (아)				·s
4. 55		-C20	(4,505	5)								% f()			i	3/fid3				
4. 00 E	7	 -C22	(4,86	4)						5	٠					chem3/fid3a,i/20080815,b/0815a020,c ගි				
Min 5.1	,		(5,172			: J*					4.1 4.1		: V.	0.4		080815	S -		Ins	
4			(5,316 (5,449										ĸ		-; «f	,b/081g	umn di	Operator: ms	strumen	
5.7	-	-C28	(5,675	5>											: 1 .2	್ದ ೧	Column diameter:	B J	Instrument: fid3a.i	
0.0	-[-C32	(6,11)))								***	Tri	acon Su	rr (5,8	55)	0,25		₩ •	
6		-C34	(6,369	5)																
6,6	-	-C36	(6,659	3)																
6,0		-Filt	er Pea	ak (6.9	94)															
7,2			(7,082																	
7,5		-C40	(7,622	2)	:)(7,539 \	>						•								
7.8	-1			7,723 7,99 1,984 1,084																
8.1	-	=ÖNÖR PORRAN -TRAN	ijāter (4960 19 FÖIC	(7,984) (1,087) (8,230)	039) 48> >															•
0 4 4	•																			

Page 1

Data File: /chem3/fid3a.i/20080815.b/0815a020.d

n.a.

Data file: /chem3/fid3a.i/20080815.b/0815a026.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

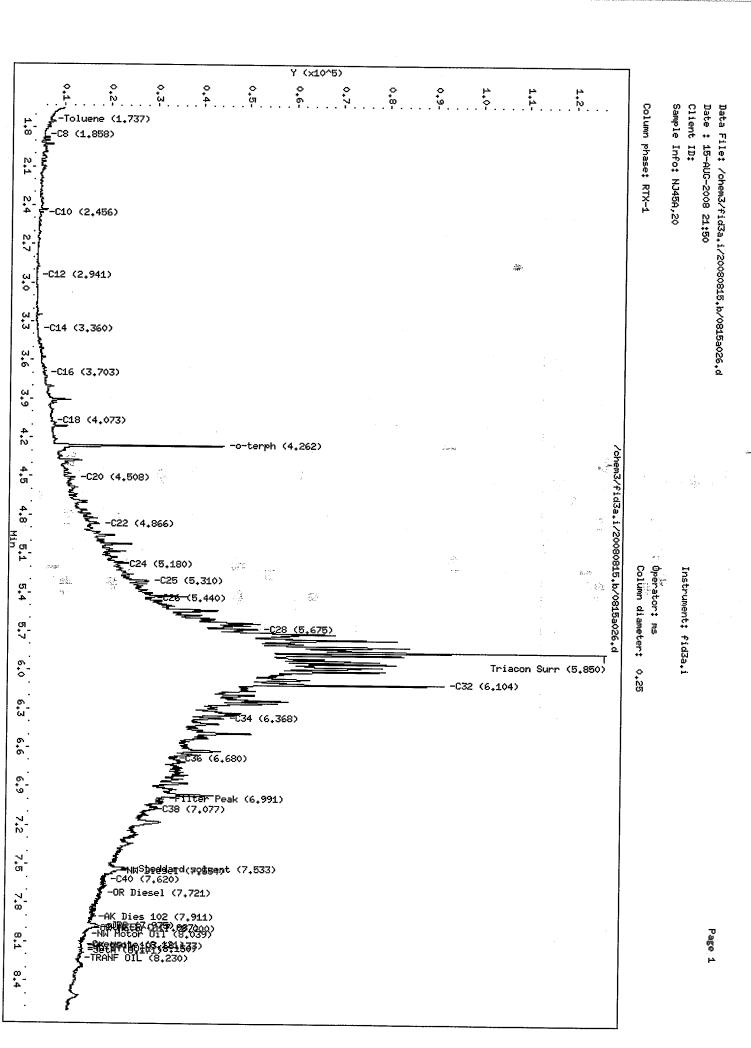
Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45A Client ID:

Injection: 15-AUG-2008 21:50

Dilution Factor: 20 ___

FID	. 3A	RESULTS


Compound	RT	Shift	Height		Area	Ra	ange	$\mathbf{T}^{\mathbf{c}}$	otal Area	Conc
	======	=======	======	=====	======	=======			========	=====
Toluene	1.737	-0.002	4619		3342	GAS	, ,	244	204122	11
C8	1.858	-0.003	3267		2070	DIESEL	(C12-C24)	-40,1	1004266	85-
C10	2.456	0.009	3083		2615	M.OIL	(C24-C38)		4558137	468 —
C12	2.941	0.008	1873		1559	AK-102	(C10-C25)		1128645	79
C14	3.360	0.014	2243		2596	AK-103	(C25-C36)		3757042	534
C16	3.703	-0.005	3866		3629	OR.DIES	(C10-C28)		2058383	139
C18	4.073	-0.005	5372		855	OR.MOIL	(C28-C40)		4274315	470
C20	4.508	0.004	10553		11922	JET-A	(C10-C18)		303340	20
C22	4.866	0.001	15874		12263	MIN.OIL	(C24-C38)		4558137	355
C24	5.180	0.005	19968		5153	MSPIRIT	(Tol-C12)		204122	13
C25	5.310	-0.003	26579		26070	İ				
C26	5.440	0.000	27207		9642	İ				
C28	5.675	0.002	50415		42543	İ				
C32	6.104	-0.005	90342		91433		مد ادورد			
C34	6.368	0.001	43285		63380	İ	ma vege			
Filter Peak **	6.991	-0.006	30395		21173	JP-4	(Tol-C14)		251444	22
C36	6.680	0.001	32393		12845	CREOSOT	(C8-C22)		845765	136
C38	7.077	-0.005	27710		22126		, ,		, , , , ,	-50
C40 . 4.	7.620	0.000	17934		7377	BUNKERC	(C10-C38)		5634873	709.
==============	======	=======	======	====	======		========		========	
AZDIESEL (C10	0-C22)	72	28080	45						
	2-C32)		53450	445						*
=======================================		=======								7 24.1

Range Times: NW Diesel (2.983 - 5.225) NW Gas (1.689 - 2.983) NW M.Oil (5.225 - 7.133) AK102 (2.397 - 5.263) AK103 (5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec	7ª.
o-Terphenyl Triacontane	21278 22029	1.4	60.1	

ws 8/27/00

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

: \$

-

Data file: /chem3/fid3a.i/20080815.b/0815a027.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45B

Client ID:

Injection: 15-AUG-2008 22:05 /

Dilution Factor: 1

FID:	37	A R	ESU	JL	TS
------	----	-----	-----	----	----

Compound	RT	Shift	Height	Area	R	ange	Total Area	Conc
============	======	========				========	=======================================	=====
Toluene	1.739	0.000	11276	1091	GAS	(Tol-C12)	342512	19
C8	1.861	0.000	3765	418	L DIESEL	(C12-C24)	636492	54
C10	2.457	0.010	5756	541	L M.OIL	(C24-C38)	1544723	159
C12	2.937	0.004	2766	1423	3 AK-102	(C10-C25)	809661	57
C14	3.371	0.024	3090	476	L AK-103	(C25-C36)	1302245	185
C16	3.704	-0.004	3336	3314	OR.DIES	(C10-C28)	1157802	78
C18	4.079	0.001	6533	779	7 OR.MOIL	(C28-C40)	1419864	156
C20	4.507	0.004	7489	7324	! JET-A	(C10-C18)	420826	28
C22	4.864	-0.001	9014	8016	MIN.OIL	(C24-C38)	1544723	120
C24	5.170	-0.005	11069	10012	MSPIRIT	(Tol-C12)	342512	22
C25	5.321	0.008	9783	1559	5 j			
C26	5.438	-0.002	11225	6854	Ŀ İ			
C28	5.674	0.001	16538	1055	L İ			
C32	6.107	-0.002	20515	27250)		Section 2	
C34	6.365	-0.002	12915	7820	!			
Filter Peak	6.994	-0.003	9194	6315	JP4	(Tol-C14)	439059	39
C36	6.684	0.005	10226	6252	!	(C8-C22)	781165	125
C38	7.078	-0.004	9108	5336	!	, ,		
C40	7.620	0.000	7000	2502		(C10-C38)	2334872	294
=======================================	======	========					=======================================	====
AZDIESEL (C10)-C22)	61	.5454	38				
•	2-C32)		34506	161			.4.g	
			15					

Range Times: NW Diesel (2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	646766 538394	41.1	91.3

ma 8/24/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
		•

		·			Y	(x10^6)							
	, , , , , , , , , , , , , , , , , , ,	, N	٥ 	o • •	о бі	٥ • •	· · · · · · · · · · · · · · · · · · ·			•	<u></u> * * *	, k		
1.8	-Toluene (1 -C8 (1.861)						,				1		Column	Date : Client Sample
2,1													Column phase: RTX-1	Date : 15-AUG-2008 Client ID: Sample Info: NJ45B
	.[et RT	15-AUG-2008 22:05 ID: Info: NJ45B
12°.	-C10 (2,457)											1	₽ % 22:
2.7														ថ្ង
3.0	-C12 (2.937))										# <u>***</u>		
3 3	,													
3,6	-014 (3,371))												
	-C16 (3,704))												
₩ •9	-C18 (4.079)													
4 70	(4,079)					:		v		·		:		
4 51	-C20 (4,507)))		₹.,				. *			o-terph	(4.259) ORIGINAL TRANSPORTED TO STANDARD T	3	K. in
4.00		# # # # # # # # # # # # # # # # # # #	*									71908	2	
8 . 8 . 5,1	-C22 (4.864)	g can											3	4. *
:	-C24 (5,170)	a min rigg,	25. d.			e parago la ma						61808		I
- * - 4	-C26 (5,438)		\$\$2 E			10 mm 10 mm 10 mm		fulfile Control Control				18079	Column diamet	trume
51	-C28 (5,674	>						\$\display \cdot \delta_1 \cdot \delta_2 \cdot \delt			1 0.	5a027,	: ms	Instrument: fid3a.i
6.								-		Triac	on Surr	(5 ₊ 856)	**	d3a, i
σ- ω-	} -C32 (6.107												0.25	
	-C34 (6,365)	ı												
6,6	-C36 (6.684)												:	
6 9	-Filter Peak	(6,994)												
7.2	-C38 (7,078)													
7.5	⊒Ωtronidands cod	iumski (7. r	≅44 \											
١.	-@moddagelso; -C40 (7.620) -OR Diesel (7		J-71.7											
_ ;}	-AK Dies 102 - GRANS Ro 276) -NW Motor Oil	(7,910) 988\ <u>282</u> }												-
-4 -4	■95年日申94846 -TRANF 01L (8	\$₹£677>												1 0 0 0 1 1
.4												:		
.														

Data File: /chem3/fid3a,i/20080815,b/0815a027,d
Date : 15-AUG-2008 22:05

Page 1

Data file: /chem3/fid3a.i/20080815.b/0815a030.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

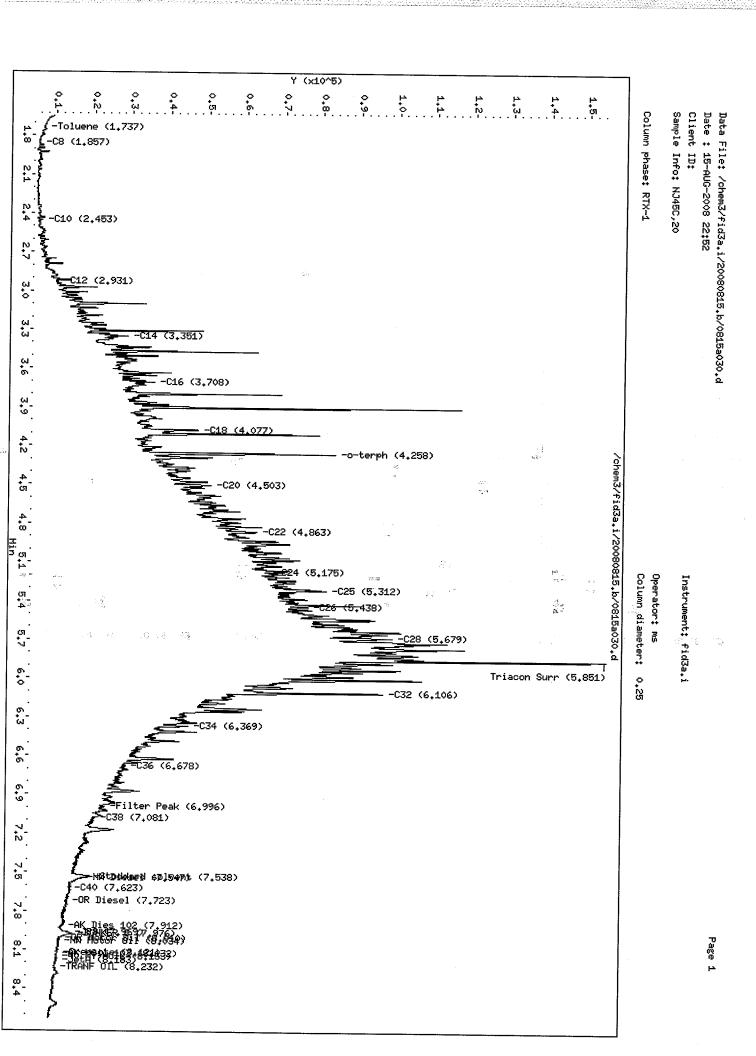
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45C Client ID:

Injection: 15-AUG-2008 22:52 __

Dilution Factor: 20

FID:3A RESULT	FID	:3A	RESU	LTS
---------------	-----	-----	------	-----

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=======================================	=======	=======	=======	========	========		===========	======
Toluene	1.737	-0.002	4477	3588	GAS	(Tol-C12)	316926	18
C8	1.857	-0.005	3162	3095	DIESEL	(C12-C24)	4873777	411
C10	2.453	0.005	3913	4095	M.OIL	(C24-C38)	6103836	627 🖊
C12	2.931	-0.002	8273	5643	AK-102	(C10-C25)	5257592	367
C14	3.351	0.004	26665	16164	AK-103	(C25-C36)	5368461	763
C16	3.708	0.001	33786	22085	OR.DIES	(C10-C28)	7394230	500
C18	4.077	-0.002	45465	51427	OR.MOIL	(C28-C40)	4271068	469
C20	4.503	0.000	48914	66777	JET-A	(C10-C18)	1939769	131
C22	4.863	-0.002	61194	79254	MIN.OIL	(C24-C38)	6103836	476
C24	5.175	-0.001	64543	8980	MSPIRIT	(Tol-C12)	316926	20
C25	5.312	-0.001	79428	82016	İ			
C26	5.438	-0.001	74812	63819	İ			
C28	5.679	0.006	97025	134523	İ			
C32	6.106	-0.003	94698	94854	İ .		\$50.00 \$10.00	
C34	6.369	0.003	43550	41939			1.50	
Filter Peak	6,996	-0.001	21916	6855	JP-4	(Tol-C14)	719625	-63
C36	6.678	-0.001	27145	8046	CREOSOT	(C8-C22)	4057010	651
C38	7.081	-0.002	19376	10624	İ			
C40	7.623	0.003	12946	4107	BUNKERC	(C10C38)	11164808	1404
=======================================	======	=======	=======	=======	=======	=========	===========	=====
	.0-C22)			245				
AZMOIĻ (C2	2-C32)	543	35740 8	344		9.8	_p a-	


Range Times: NW Diesel (2.983 - 5.225) NW Gas (1.689 - 2.983) NW M.Oil (5.225 - 7.133)

AK102 (2.397 - 5.263) AK103 (5.263 - 6.729) Jet A(2.397 - 4.129)

41.		- A.	
Surrogate	Area	Amount	%Rec
			
o-Terphenyl	25554	1.6	72.1
Triacontane	22474	1.8	81.4

No 146/8 cm

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
OR Diesel OR M.Oil	14789.5 9098.1	
OR Diesel		
Bunker C Creosote	7951.9 6234.4	01-APR-2008 08-AUG-2008

Data file: /chem3/fid3a.i/20080815.b/0815a031.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

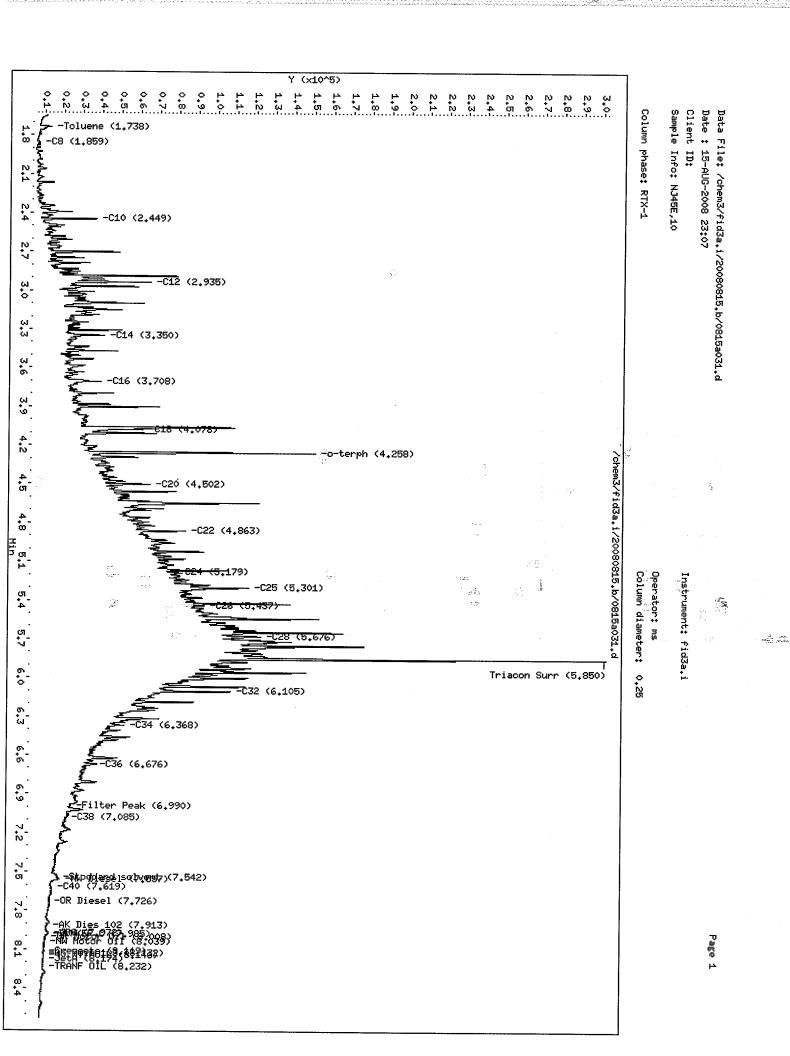
Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45E Client ID:

Injection: 15-AUG-2008 23:07 —

Dilution Factor: 10 _

CTT	• 3 A	RESULTS


Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.738	-0.001	10478	9336	GAS	======================================	========== 827646	1.6
C8	1.859	-0.002	4765	4755	DIESEL	(C12-C24)	5361979	46 452
C10	2.449	0.001	34579	21998	M.OIL	(C24-C38)	7445964	765
C12	2.935	0.002	63102	50354		(C10-C25)	6166317	430
C14	3.350	0.003	39337	26428	AK-103	(C25-C36)	6632282	943
C16	3.708	0.001	37882	28178	OR.DIES	(C10-C28)	8864932	599
C18	4.078	-0.001	59845	46231	OR.MOIL	(C28-C40)	5095565	560
C20	4.502	-0.001	63725	76336	JET-A	(C10-C18)	2447503	165
C22	4.863	-0.002	81927	88002	MIN.OIL	(C24-C38)	7445964	581
C24	5.179	0.004	75988	20838	MSPIRIT	(Tol-C12)	827646	52
C25	5.301	-0.012	115323	126540				
C26	5.437	-0.003	92257	75090				
C28	5,676	0.003	121615	174489	1			
C32	6.105	-0.004	105997	116347				
C34	6.368	0.002	50959	55260		F:		
Filter Peak	6.990	-0.007	23777	15348	JP-4	(Tol-C14)	1432670	126
C36	6.676	-0.003	35639	17988	CREOSOT	(C8-C22)	4842778	777
C38	7.085	0.002	21106	5839				
C40.	7.619	-0.001	13971	7956	BUNKERC	(C10-C38)	13420678	1688
AZDIESEL (C1	0-C22)	===== 462	:======= :1744	== == ================================	=======	==========	=========	====
AZMOIL (C2	2-C32)		8808 1033				MC	weeth

Range Times: NW Diesel (2.983 - 5.225) NW Gas (1.689 - 2.983) NW M.Oil (5.225 - 7.133) AK102 (2.397 - 5.263) AK103 (5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	े %Rec	12.
o-Terphenyl	60100	3.8	84.8	
Triacontane	71770	5.9	130.0	

mospolos

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Data file: /chem3/fid3a.i/20080815.b/0815a032.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45F

Client ID:

Injection: 15-AUG-2008 23:22

Dilution Factor: 1

FID:3A RESULTS

Compound	ъm	ar: er	TT = 2 = 1 = 1	10.511 10001				
Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.740	0.001	 18078	28992	GAS	 (Tol-C12)	010011	=======
C8	1.864	0.001	8516	10329	DIESEL	(C12-C24)	912011	51
C10	2.455				!		518330	44
		0.007	10853	8996	M.OIL	(C24-C38)	789207	81 —
C12	2.938	0.005	14719	11894	AK-102	(C10-C25)	844353	59
C14	3.350	0.003	4073	2311	AK-103	(C25-C36)	640001	91
C16	3.700	-0.007	4337	4018	OR.DIES	(C10-C28)	1003263	68
C18	4.079	0.000	5420	5012	OR.MOIL	(C28-C40)	794746	87
C20	4.508	0.005	4421	4539	JET-A	(C10-C18)	647239	44
C22	4.866	0.001	4870	4414	MIN.OIL	(C24-C38)	789207	62
C24	5.172	-0.004	5515	4739	MSPIRIT	(Tol-C12)	912011	58
C25	5.304	-0.009	6122	10028	İ			
C26	5.448	0.008	4890	1363	į			
C28	5.673	0.000	7805	5837	İ			
C32	6.108	-0.002	8710	7495	384	ş.		
C34	6.368	0.002	7127	8335	1 2	•		
Filter Peak	6.984	-0.013	5715	3176	JP-4	(Tol-C14)	1066459	94
C36	6.686	0.008	5931	2487	CREOSOT	(C8-C22)	1288344	207 🕾
C38	7.083	0.000	5523	1210			8	
C40	7.620	0.000	4900	1464	BUNKERC	(C10-C38)	1626760	205
AZDIESEL (C	 10-C22)	=	====== 35494	43	=======	=======	=========	=====
	22 ² C32)		3841	72				# JV
(C.	22 (32)	40) 2 O 4 T	14			4	2012 27

Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)
AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	612699	38.9	86.5
Triacontane	519136	42.3	94.0

mo 1/27/18

Analyte	RF	Curve Date
o-Terph Surr	15745.7	26-JUL-2008
Triacon Surr	12268.2	26-JUL-2008
Gas	17825.4	13-AUG-2008
Diesel	11860.8	26-JULY-2008
Motor Oil	9730.4	26-JULY2008
AK102	14326.1	26-JULY-2008
AK103	7036.1	26-JULY-2008
JP4	11362.0	05-FEB-2007
JetA	14845.5	11-JUL-2008
Min Oil	12823.0	27-JUN-2008
Min Spirit	15825.3	15-APR-2005
OR Diesel	14789.5	
OR M.Oil	9098.1	
Bunker C	7951.9	01-APR-2008
Creosote	6234.4	08-AUG-2008

	***************************************				(x10^6)			 .		<u>.</u>				
	, .	, N		ហ៊ី	.	0. 7			1. 	4 4 4	1 * 2	\ \frac{\darkappa}{2}	တ္က င	2 2
4	Toluene (1, <u>-C8 (</u> 1,864)	.740)										Column phase: RTX-1	Sample Info: NJ45F	
2 4	with the second											ohase:	Info: h	
22												RTX-1	1J45F	15-AUG-2008 23:22
2.7	F													23:22
3.0	-C12 (2,938)							. Pr						
3.3	-C14 (3.350)													
3 6	-C16 (3.700)													
3,9 4,2	-C18 (4,079)	Ma									:			4
4.5	-C20 (4,508)			ï			<u>** 4</u> **********************************	- v (0.	-terph '	T (4,259) em ムイ・	a ey e		<u> </u>
4. 80 M	-C22 (4,866)									; 10	chem3/fid3a.1/20080815,6/0815a032			
Min 5-1	-C24 (5.172)	egin Magagin					- Marie Carlo			+	0080818	요용	Ir	ı
ت 4	-C25 (5,304) -C26 (5,448)	iga Iga	n "	\alpha						19 - 29 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	5,b/08 <u>1</u>	Operator: ms Column diame	Instrument: fi	
5,7	-C28 (5,673)			1	44.00 25		digmile.				5a032.d	Operator: ms Column diameter:	nt: fid	
6.0	-C32 (6,108)								Triacor	Surr (0.25	ld3a₊i	
8.	-C34 (6,368)									٠				
6,6	-C36 (6,686)													
6,9 7,2	-Filter Peak (-C38 (7.083)	(6,984)												
2 7,5	·-Stoddard solv	vent (7.536)												
7.8	-Stoddard solv =ዚዛዕ ^D ፥ ኖ፥ይ2 0\$7 -OR Diesel (7.													
	-AK Dies 192 (-BRN 1566 1921 (-BRE 1666 1921 (-BRE 1666 1931 (-TRANF OIL (8.	(7.914))\$8)0\$3) \$97\$56)									ed .			ግ ዕኝ ባ
8 - 4	-:KANF OIL (8,	,232)												F
<u> </u>														

Data File: /chem3/fid3a.i/20080815.b/0815a032.d

Z.

Data file: /chem3/fid3a.i/20080815.b/0815a033.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

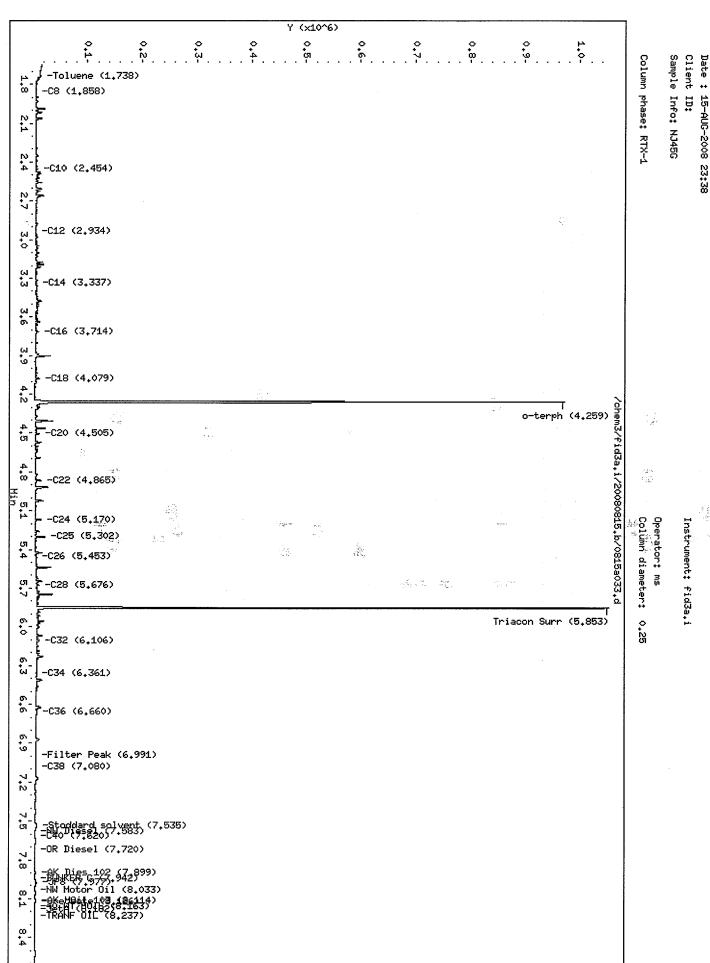
Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45G Client ID:

Injection: 15-AUG-2008 23:38

Dilution Factor: 1

FID	÷	3 A	RESULTS


	Compound	RT	Shift	Height		Area	Ra	ange		Total Area	Conc
	========	=======	======	========		======	=======		====	=========	======
	Toluene	1.738	-0.001	13320		13162	GAS	(Tol-C12)		403982	23
	C8	1.858	-0.004	4349		5705	DIESEL	(C12-C24)		683167	58
	C10	2.454	0.007	6705		6683	M.OIL	(C24-C38)		783290	80 —
	C12	2.934	0.001	3702		1977	AK-102	(C10-C25)		883257	62
	C14	3.337	-0.010	5687		3991	AK-103	(C25-C36)		651911	93
	C16	3.714	0.007	8843		15537	OR.DIES	(C10-C28)		1055545	71
	C18	4.079	0.000	10866		8892	OR.MOIL	(C28-C40)		762297	84
	C20	4.505	0.002	10682		9157	JET-A	(C10-C18)		551927	37
	C22	4.865	0.000	13571		12205	MIN.OIL	(C24-C38)		783290	61
	C24	5.170	-0.006	13992		11134	MSPIRIT	(Tol-C12)		403982	26
	C25	5.302	-0.011	21361		16017	i				
	C26	5.453	0.014	5826		4225	İ				
	C28	5.676	0.003	10336		15861	İ				
4 :	C32	6.106	-0.004	10690	2	17997	İ		المنافعين		
	C34	6.361	-0.006	6404	345	2031	j		seeded.		4.1
	Filter Peak	6.991	-0.006	4918		4098	JP-4	(Tol-C14)		538573	47
	C36	6.660	-0.019	7075		14734	CREOSOT	(C8-C22)		928289	149
	C38	7.1080	-0.003	4829		2117		, ,			5.7
	C40	7.620	0.000	4568		3714	BUNKERC	(C10-C38)		1653569	208
=		=======	======	======	====	=====	=======		====	=========	
	•	10-C22)		38661	46						
	AZMOIL (C	(22-C32)	5.	30892	82						
=											

Range Times: NW Diesel (2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) AKI02(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	539860	34.3	76.2 ~
Triacontane	459412		83.2

ms 8/27/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

rage 1

Data File: /chem3/fid3a.i/20080815.b/0815a033.d

Data file: /chem3/fid3a.i/20080815.b/0815a034.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

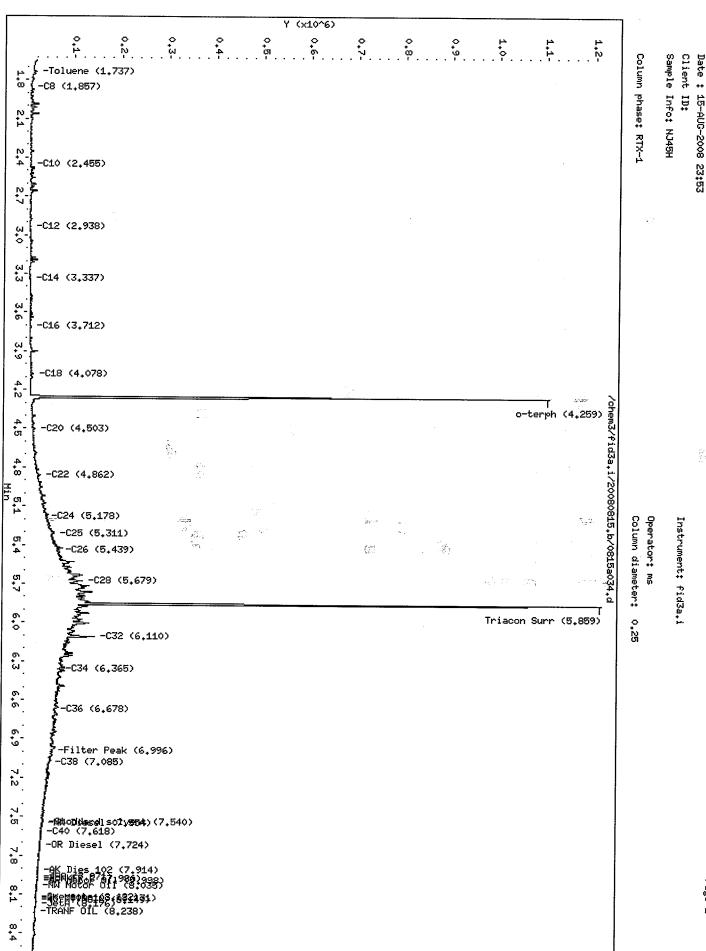
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45H Client ID:

Injection: 15-AUG-2008 23:53 -

Dilution Factor: 1

TTD	. 27	RESUL	TС
P 111	: 3A	KESU	11.5

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=============	======	======	=======	==========	=======	========	============	======
Toluene	1.737	-0.002	14455	14817	GAS	(Tol-C12)	425397	24
C8	1.857	-0.004	4307	4063	DIESEL	(C12-C24)	1749025	147
C10	2.455	0.008	5291	5374	M.OIL	(C24-C38)	9105483	936
C12	2.938	0.005	4111	5204	AK-102	(C10-C25)	2049167	143
C14	3.337	-0.010	4127	2542	AK-103	(C25-C36)	7543033	1072
C16	3.712	0.005	7929	10856	OR.DIES	(C10-C28)	4198557	284
C18	4.078	-0.001	12287	12216	OR.MOIL	(C28-C40)	8205045	902
.C20	4.503	0.000	17072	18354	JET-A	(C10-C18)	598524	40
C22	4.862	-0.003	28930	41443	MIN.OIL	(C24-C38)	9105483	710
C24	5.178	0.002	42637	15180	MSPIRIT	(Tol-C12)	425397	27
C25	5.311	-0.002	60904	53609	İ			
C26	5.439	0.000	71900	64415	İ			
C28	5.679	0.006	121621	138979	İ			
C32	6.110	0.001	148031	156171			romi	
C34	6.365	-0.001	75107	22030			7 12/0% -	
Filter Peak	6.996	-0.001	61021	20106	JP-4	(Tol-C14)	554560	49
C36	6.678	-0.001	65044	30565	CREOSOT	(C8-C22)	1447622	232
C38	7.085	0.002	54652	26397	İ			
C40	7.618	-0.002	36955	8091	BUNKERC	(C10-C38)	11033859	1388
=======================================	=======	=======	=======	========	=======	========	==========	====
· · · · · · · · · · · · · · · · · · ·	.0-C22)	123	38817	77				
AZMOIL (C2	22-C32)	588	34610	914				


Range Times: NW Diesel(2.983 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	565010	35.9	79.7
Triacontane	502377	40.9	

ms 8/27/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
		00 1100 2000

Data File: /chem3/fid3a.i/20080815.b/0815a034.d

Page

Data file: /chem3/fid3a.i/20080815.b/0815a035.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

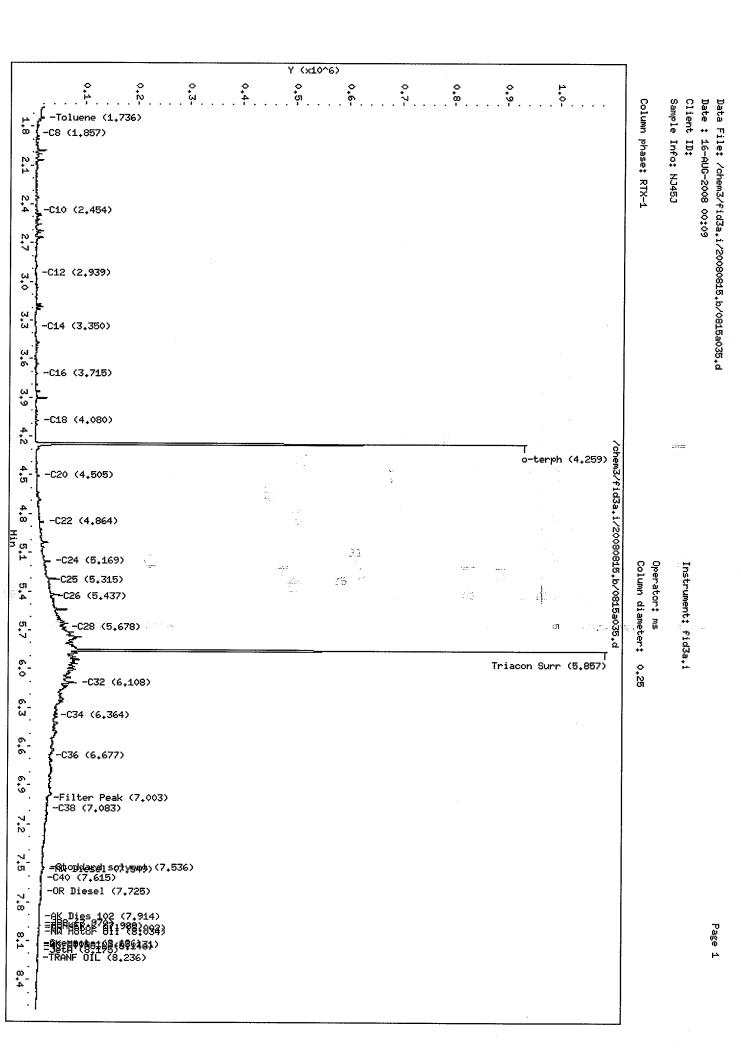
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45J

Client ID:

Injection: 16-AUG-2008 00:09 /

Dilution Factor: 1

┎	TT	٦.	2	7	RE	יסי	TT.	тσ
т.	<u> </u>	<i>,</i>	_	\mathbf{r}	L.	-	ш	T O


Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
Toluene	1.736	-0.003	18324	16509	GAS	(Tol-C12)	425772	24
C8	1.857	-0.005	4617	5000	DIESEL	(C12-C24)	1170558	99 1
C10	2.454	0.007	6667	6777	M.OIL	(C24-C38)	5491040	564
C12	2.939	0.006	3897	2744	AK-102	(C10-C25)	1410350	98
C14	3.350	0.003	3935	1932	AK-103	(C25-C36)	4596812	653
C16	3.715	0.008	7540	9541	OR.DIES	(C10-C28)	2605894	176
C18	4.080	0.001	9817	10668	OR.MOIL	(C28-C40)	5021857	552
C20	4.505	0.002	12713	12752	JET-A	(C10-C18)	551258	37
C22	4.864	-0.001	21137	26314	MIN.OIL	(C24-C38)	5491040	428
C24	5.169	-0.007	34773	40286	MSPIRIT	(Tol-C12)	425772	27
C25	5.315	0.002	32359	9604	İ			
C26	5.437	-0.003	37331	32648				
C28	5.678	0.005	64383	57782	İ			
C32	6.108	-0.002	85182	127566	300		\$3500	
C34	6.364	-0.003	44319	6161			# 15° i aa	
Filter Peak	7.003	0.006	31583	9261	JP-4	(Tol-C14)	546845	48
C36	6.677	-0.001	35612	12686	CREOSOT	(C8-C22)	1141779	183
C38	7.083	0.000	30114	4192	İ			
C40	7.615	-0.005	20544	12818	BUNKERC	(C10-C38)	6843930	861
	====== 0-C22) 2-C32)		====== 4245 3939	58 560	=======			

Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	512040 444431	32.5	72.3

mo 8/29/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
	0201.1	00 1100 2000

Data file: /chem3/fid3a.i/20080815.b/0815a036.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

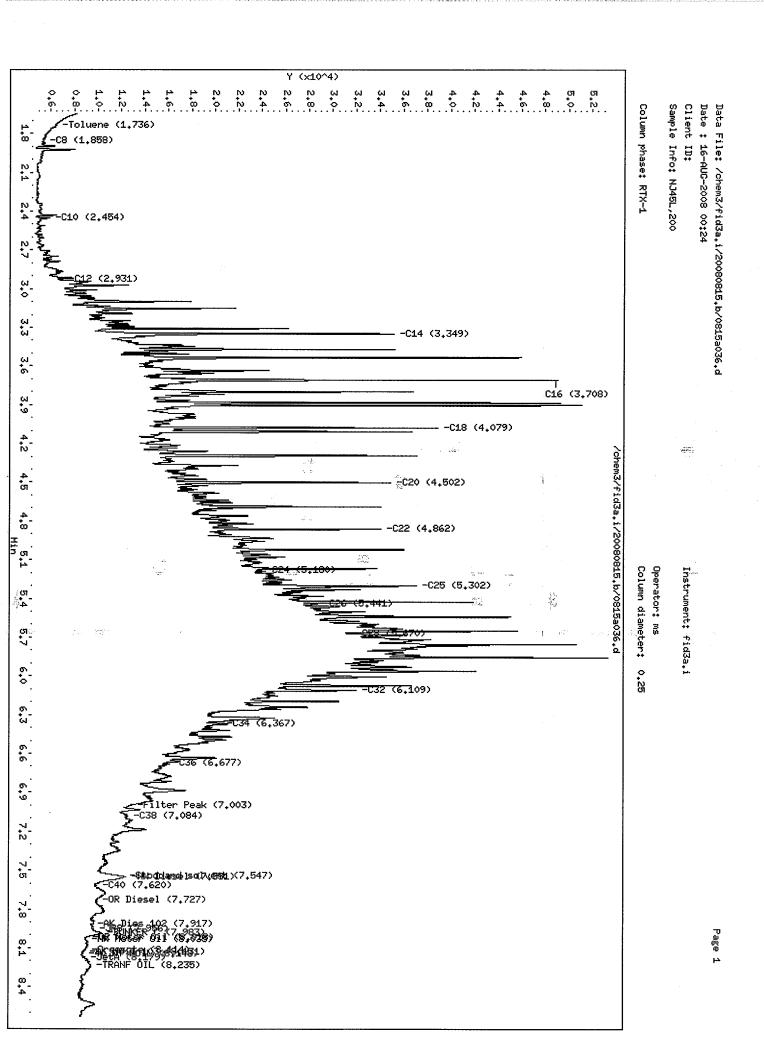
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45L Client ID:

Injection: 16-AUG-2008 00:24

Dilution Factor: 200

F	ΊD	:	3A	RESULTS	

Compound	RT	Shift	Height		Area	Ra	Total Area	Conc			
Toluene	1.736	-0.003	4090	=====	======= 2516	GAS	======================================	229557	10		
C8	1.858	-0.004	3083		2181	DIESEL	(C12-C24)	2053435	13 173		
C10	2.454	0.007	3568		4892	M.OIL	• • • • • • •	2408152	247		
C12	2.931	-0.002	4705		2985	AK-102	• •	2224935	155		
C14	3.349	0.002	32876		34332	AK-103	(C25-C36)	2080728	296		
C16	3.708	0.001	46770		34390	OR.DIES	(C10-C28)	2970148	201		
C18	4.079	0.000	36625		27889	OR.MOIL	(C28-C40)	1871326	206		
C20	4.502	-0.001	32562		32988	JET-A	(C10-C18)	1017507	69		
C22	4.862	-0.003	31782		37438	MIN.OIL	(C24-C38)	2408152	188		
C24	5.180	0.005	21656		9906	MSPIRIT	(Tol-C12)	229557	15		
C25	5.302	-0.011	34777		44092	İ					
C26	5.441	0.001	26441		13961	İ					
C28	5.670	-0.003	29261		7582						
C32	6.109	0000	29730		31918		Ase*				
C34	6.367	0.001	18273		9520						
Filter Peak	7.003	0.006	10656		8336	JP-4	(Tol-C14)	446986	. 39		
C36	6.677	-0.002	13659		6480	CREOSOT	(C8-C22)	1867902	300		
C38	7.084	0.002	10305	سائب	5915						
C40	7.620	0.000	7694		3351	BUNKERC	(C10-C38)	4580600	576		
AZDIESEL (C1	====== 0-C22)	======================================	:=====:: :6597	109	=====	=======	=========	===========	=====		
AZMOIL (C2	2-C32)	C32) 1958285			. حدود	43					


Range Times: NW Diesel(2.983 - 5.225) NW Gas(1:689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	0	0.0	0.0
Triacontane		0.0	0.0

no 8/27/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008
Bunker C Creosote	7951.9 6234.4	01-APR-2008 08-AUG-2008

Data file: /chem3/fid3a.i/20080815.b/0815a040.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

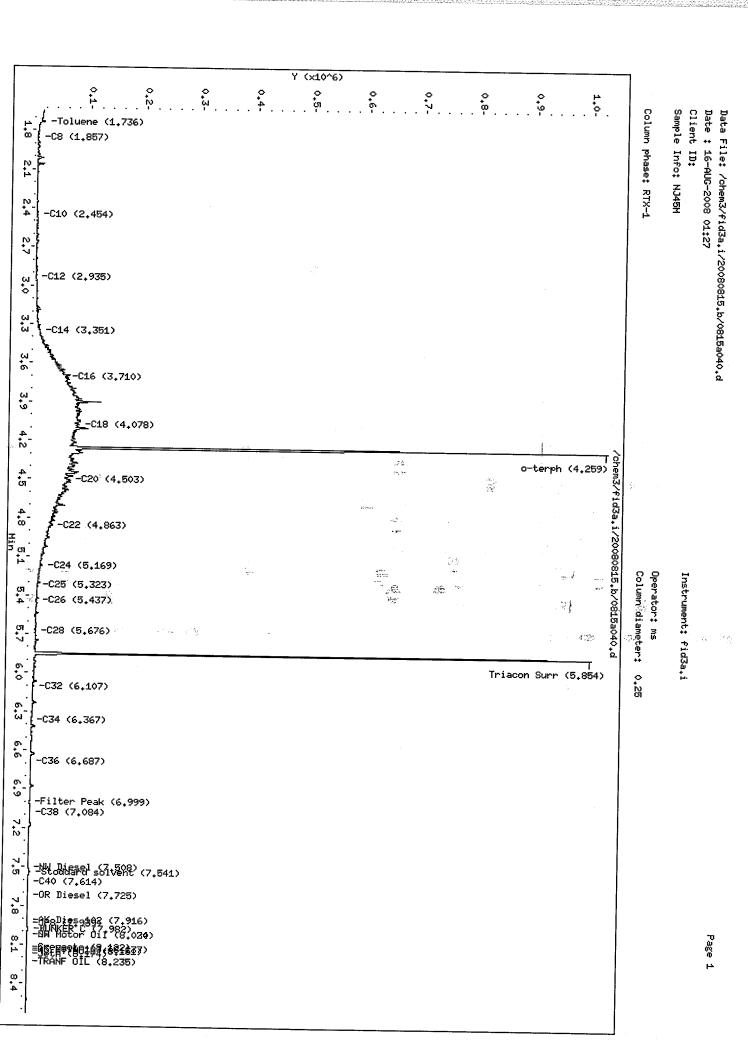
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45M

Client ID:

Injection: 16-AUG-2008 01:27

Dilution Factor:

FTD:	ZΑ	RESUL	T.S


Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.736	-0.003	14409	25188	GAS (Tol-C1	2) 291603	16
C8	1.857	-0.005	3562	4376	DIESEL (C12-C2		492
C10	2.454	0.007	4967	4885	M.OIL (C24-C3		103
C12	2.935	0.002	3247	1090	AK-102 (C10-C2	5) 5985725	418
C14	3.351	0.004	11212	9058	AK-103 (C25-C3	6) 838614	119
C16	3.710	0.003	58910	11729	OR.DIES (C10-C2	8) 6323676	428
C18	4.078	-0.001	83977	31210	OR.MOIL (C28-C4	0) 785426	86
C20	4.503	-0.001	67602	35692	JET-A (C10-C1	8) 2821844	190
C22	4.863	-0.002	36632	19035	MIN.OIL (C24-C3	8) 998098	78
C24	5.169	-0.006	21062	20722	MSPIRIT (Tol-C1:		18
C25	5.323	0.010	13492	2142			
C26	5.437	-0.002	12150	6610			
C28	5.676	0.003	11687	11414			
C32	6.107	-0.003	9321	16374		L.	•
C34	6.367	0.001	6787	1218	.d. %.		
Filter Peak	6.999	0.002	5196	3315	JP-4 (Tol-C1	4) 441092	39
C36	6.687	0.009	5497	2408	CREOSOT (C8-C2:		907
C38	7.084	0.002	5328	1274	eseri.		
C40	7.614	-0.006	4617	1566	BUNKERC (C10-C3	8) 6953959	875
•	====== 0-C22) 2-C32)		L0245 343 55097 164		======================================		=======

Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) AKI02(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	501726	31.9	70.8
Triacontane	436484	35.6	79.1

No 8/29/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
		2000

Data file: /chem3/fid3a.i/20080815.b/0815a041.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45N

Client ID:

Injection: 16-AUG-2008 01:42

Dilution Factor: 1

FID	• 3 A	RESUL	TS.

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=======================================	=======	=======	=======	-=========	========	========	============	======
Toluene	1.738	-0.001	16636	30488	GAS	(Tol-C12)	260602	15
C8	1.859	-0.003	3510	2877	DIESEL	(C12-C24)	274337	23
C10	2.458	0.010	4090	4432	M.OIL	(C24-C38)	635989	65 —
C12	2.928	-0.005	2382	1798	AK-102	(C10-C25)	379232	26
C14	3.342	-0.005	2064	1271	AK-103	(C25-C36)	510468	73
C16	3.705	-0.003	1955	1809	OR.DIES	(C10-C28)	510849	35
C18	4.080	0.002	3146	3199	OR.MOIL	(C28-C40)	648572	71
C20	4.495	-0.008	2113	2319	JET-A	(C10-C18)	255487	17
C22	4.867	0.002	3688	6810	MIN.OIL	(C24-C38)	635989	50
C24	5.171	-0.004	4674	5186	MSPIRIT	(Tol-C12)	260602	16
C25	5.303	-0.010	5369	7487	ĺ			
C26	5.439	0.000	4012	1353	į			
C28	5.676	0.003	6340	6166	İ			
C32	6.118	0.008	6922	5223				1. S. S. S. S. S. S. S. S. S. S. S. S. S.
C34	6.363	-0.003	6124	4365	İ	2 V		Ther
Filter Peak	7.000	0.003	4836	1345	JP-4	(Tol-C14)	328229	29
C36	6.680	0.001	5401	1506	CREOSOT	(C8-C22)	440705	71
C38	7.084	0.001	4821	3822	Ì	Line	• •	
C40	7.621	0.001	4532	2343	BUNKERC		1007958	127
AZDIESEL (C)	====== L0-C22)	30	=======)2334	19	======	=========	=======================================	=====
	22-C32)	36	2758	56		• 4		· ©.

Range Times: NW Diesel (2.983 - 5.225) NW Gas (1.689 - 2.983) NW M.Oil (5.225 - 7.133) AKI 02 (2.397 - 5.263) AK103 (5.263 - 6.729) Jet A (2.397 - 4.129)

Surrogate	Area	Amount	%Rec	
o-Terphenyl Triacontane	488132 442395	31.0	68.9	

ms/27/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007
JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	11-JUL-2008 27-JUN-2008 15-APR-2005 01-APR-2008 08-AUG-2008

													Ý	, (x	(10	^5>			<u>-</u>														7				
μ α		Tol			₽ ₽ 519 738:		2,4.	2,7:	3.0-	3,3.	3,6	ਕ ਭੂ- -	4 2 	4 5 -		5 1 1	ای 4.	5,7:	6 • 0 • . • .	6,3-	6,6.	6. 9.	7,2:	7,55	7 ₊ 8-	.1.	8 • 4-	8,7:	9.0-	9 .3.	9.6-	-	Column		Sample		Data F Date :
N P																																	Column phase: RTX-1				ile: /o 16-AUG
7. 4.	- -C1	LO	(2.4	58>																													RTX-1		Ú45N		File: /chem3/fid3a.i/20080815.b/0815a041.d : 16-AUG-2008 01:42
2.7	-																																			•	43a.i/20 . : 42
40	-C1	2 ((2,92	28)																11																	080815.
3,3]	4 (3,34	12)																																	b/0815a
3,6	- C1:	6 (3.70	5)																																	041 ₊ d
3,9 4,2	-} - - -	8 (4.08	(0)																																	
4 to	-,C20	۰ (4.49	5)			Ī								-	3.59									id de Nase		o-t	T erpi		4.2	:59)	/chem3/fid3a.i/20080815.b/0815a041	ino:				Ž.
4.8 5.1 Min	-c2:	2 (4.86	7)																			- Chau		5 							d3a.i/200					
5,1 5,4	-C2!	5 (5,17 5,30 5,43	3>	ee CG	<u></u>				·													2	55 - - 			\$3k					80815.670	Column	Operat	านจรินา	•	
5,7	}		5,67		· · · · · · · · · · · · · · · · · · ·	21 	. · *.		,																							815a041.d	Column diameter:	Operator: ms	Instrument: fio		
6.0	-c3:	2 (6,11	.8>																					Tr	iac	on	Surr	· (!	5,8			÷ 0.25		103a+1	i	
6.3	-034	4 (6,36	3)																																	
6,6	-C36	5 (1	6,68	٥)																																	
9 7,2	-Fil -C38	ter (7	^ Pea 7.084	ak (4)	(7,00	o >																															
7,5					/ 673 >	(7,5	28)																														
7.8 8	-0R -AK =000				.720) :7,91! : 18 }0!	5> 3 6 3																															25
8,1 8,4					913 8 229)																																Page 1

Data file: /chem3/fid3a.i/20080815.b/0815a042.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

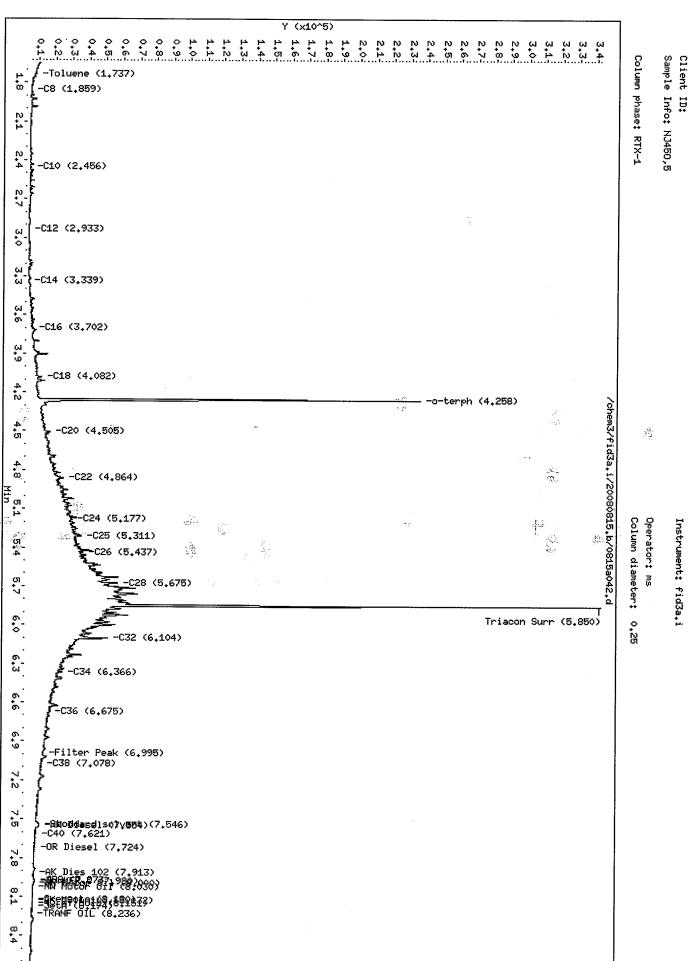
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ450 Client ID:

Injection: 16-AUG-2008 01:57-

Dilution Factor

FT	D:3	Δ Τ	PESI	TT.F	rc

Compound	RT	Shift	Height		Area	Rá	ange	Total Area	Conc
=========		=======	======	====		========		:======================================	======
Toluene	1.737	-0.002	5596		4731	GAS	(Tol-C12)	209973	12
C8	1.859	-0.002	3152		2830	DIESEL	(C12-C24)	1349069	114
C10	2.456	0.008	3238		3273	M.OIL	(C24-C38)	3303594	340
C12	2.933	0.000	1881		449	AK-102	(C10-C25)	1508593	105
C14	3.339	-0.007	2044		885	AK-103	(C25-C36)	2917877	415
C16	3.702	-0.005	4436		3709	OR.DIES	(C10-C28)	2549215	172
C18	4.082	0.003	9836		11168	OR.MOIL	(C28-C40)	2470871	272
C20	4.505	0.001	14734		13879	JET-A	(C10-C18)	359906	24
C22	4.864	-0.001	22851		22539	MIN.OIL	(C24-C38)	3303594	258
C24	5.177	0.002	28105		6645	MSPIRIT	(Tol-C12)	209973	13
C25	5.311	-0.002	33744		28472	İ			
C26	5.437	-0.003	34697		11548	j			
C28	5.675	0.002	55362		50227			•	
C32	6.104	-0.006	49385		51823	4-	ds.		
C34	6.366	-0.001	22684		20039		9°		
Filter Peak	6.995	-0.002	11875		4207	JP-4	(Tol-C14)	265438	23
C36	6.675	-0.003	15688		7926	CREOSOT	(C8-C22)	1061843	170
C38	7.078	-0.004	11133		6989	İ	,		
C40 ./	7.621	0.001	7803		2628	BUNKERC	(C10-C38)	4734792	595
AZDIESEL (C1	====== 0-C22)	92	====== 18071	==== 59	======	=======	=========	=======================================	=====
	2 (Ç32)	280	03653 	435					3


Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	122790	7.8	86.6
Triacontane	112250	9.1	101.7

No 8/27/6/

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005 01-APR-2008 08-AUG-2008
0200000	0231.1	00 1100 2000

Date : 16-AUG-2008 01:57 Data File: /chem3/fid3a.i/20080815.b/0815a042.d

Instrument: fid3a.i

195 25,

tok USA

Page

Data file: /chem3/fid3a.i/20080815.b/0815a043.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45P

Client ID:

Injection: 16-AUG-2008 02:13 —

Dilution Factor: 1

F	ID	:	3A	RESULTS	

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
=========	=======		========	=========	=======	========	=========	======
Toluene	1.737	-0.002	10655	9146	GAS	(Tol-C12)	336326	19
C8	1.860	-0.002	3666	4718	DIESEL	(C12-C24)	386861	33
C10	2.456	0.008	5131	5002	M.OIL	(C24-C38)	550749	57
C12	2.935	0.002	2656	1781	AK-102	(C10-C25)	542437	38
C14	3.339	-0.007	2315	1740	AK-103	(C25-C36)	439095	62
C16	3.702	-0.006	3372	3798	OR.DIES	(C10-C28)	655975	44
C18	4.080	0.001	4566	4659	OR.MOIL	(C28-C40)	570146	63
C20	4.510	0.007	4027	3676	JET-A	(C10-C18)	389848	26
C22	4.868	0.003	4105	5569	MIN.OIL	(C24-C38)	550749	43
C24	5.171	-0.004	4834	5308	MSPIRIT	(Tol-C12)	336326	21
C25	5.304	-0.009	5329	7466	İ			
C26	5.450	0.011	3989	2396	İ			
C28	5.672	-0.001	5298	5161	İ			
C32	6.104	-0.006	6412	6556	İ	1946		
C34	6.368	0.002	5307	6130	İ	6.04.000		tor.
Filter Peak	6.995	-0.002	4402	2625	JP-4	(Tol-C14)	438565	39
C36	6.678	-0.001	4719	752	CREOSOT	(C8-C22)	622603	100
C38	7.086	0.003	4496	1342	į .	•		
C40	7.618	-0.002	4360	1303	BUNKERC	(C10-C38)	1087843	137
=======================================	=======	=======	=======	========	========		==========	=====
AZDIESEL (C	10-C22)	4.5	55186	28				
AZMOIL (C	22-C32)	31	.3557	49				
							5.3	

Range Times: NW Diesel (2.983 - 5.225) NW Gas (1.689 - 2.983) NW M.Oil (5.225 - 7.133)

AK102 (2.397 - 5.263) AK103 (5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	570147	36.2	80.5
Triacontane	514556	41.9	93.2

ms 8/24/88

RF	Curve Date
15745.7	26-JUL-2008
12268.2	26-JUL-2008
17825.4	13-AUG-2008
11860.8	26-JULY-2008
9730.4	26-JULY2008
14326.1	26-JULY-2008
7036.1	26-JULY-2008
11362.0	05-FEB-2007
14845.5	11-JUL-2008
12823.0	27-JUN-2008
15825.3	15-APR-2005
14789.5	
9098.1	
7951.9	01-APR-2008
6234.4	08-AUG-2008
	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9

			·····	*****		×10^6)						7		
	· · · · · · · · · · · · · · · · · · ·	, N	φ 	0	♦	\$	0.7	, .			4 4		w n	ы.
آ- ^د	Toluene (1								1			io1um	Client Sample	Date
ω.	-C8 (1,860)) n		16-
2-1	۶											Se **	Client ID: Sample Info: NJ45P	취
, . -												Column phase: RTX-1	J45P	* 16-AUG-2008 02:13
4	C10 (2.456)													02:1
7	<u></u>													ω ·
ا د د	-C12 (2,935)									v.				Š
	<u>.</u> F													+ 0
^'-{ ~'-	-C14 (3,339)													Š
														0 (1
	-C16 (3,702)													Š
٠- ا	•													
<u>.</u> 	-C18 (4.080)				.t									
		rae		' '	r ·				- 37 - 37	T o-terph	<u>်</u> (4,259) ရှိ			
	-C20 (4,510)										n3/f1	, reign		
-	la a	u.									03a •	79		
	-C22 (4.868)	·									1/20	3		
!	-C24 (5,1 <u>7</u> 1)				ng kar				Lighter		Chem3/fid3a,i/20080815,b/0815a043 9 5 5 4 4	000	<u>.</u>	\$4. \$
.	-C25 (5,304)		1 3 ×			1.1			•		2, 5%	Operator: ms Column diame	7.43 St	i.
1	-C26 (5,450)				©	** or et.					815	dia -	ment	
"- •	-C28 (5,672)										043₊d	Operator: ms Column diameter:	Instrument: fid3a.i	
, · {									Tri	acon Surr		i	3a₊i	
	'-C32 (6.104)											¢.25		
֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֓֓֡֓֓֡֝֓֡֓֡֝֡֓֡֓֡֝֡֡֝֡	-034 (6,368)													
 - -														
	-C36 (6,678)													
;-}	-Filter Peak	(6,995)												
, · , -	-C38 (7,086)												•	
-	-Stoddard so -U40 (7:618)	lyent, (7.5	530)											
: -	-OR Diesel (7,714)												
	-AK Dies 102 -Jes (7.974) -ARNMEROS 08:	(7,916) 028)0231												
-	=95284661634 -TRANF OIL (6	955727)												Page 1
2	INMAF UIL (8	+630/												
- 1														

Data file: /chem3/fid3a.i/20080815.b/0815a044.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

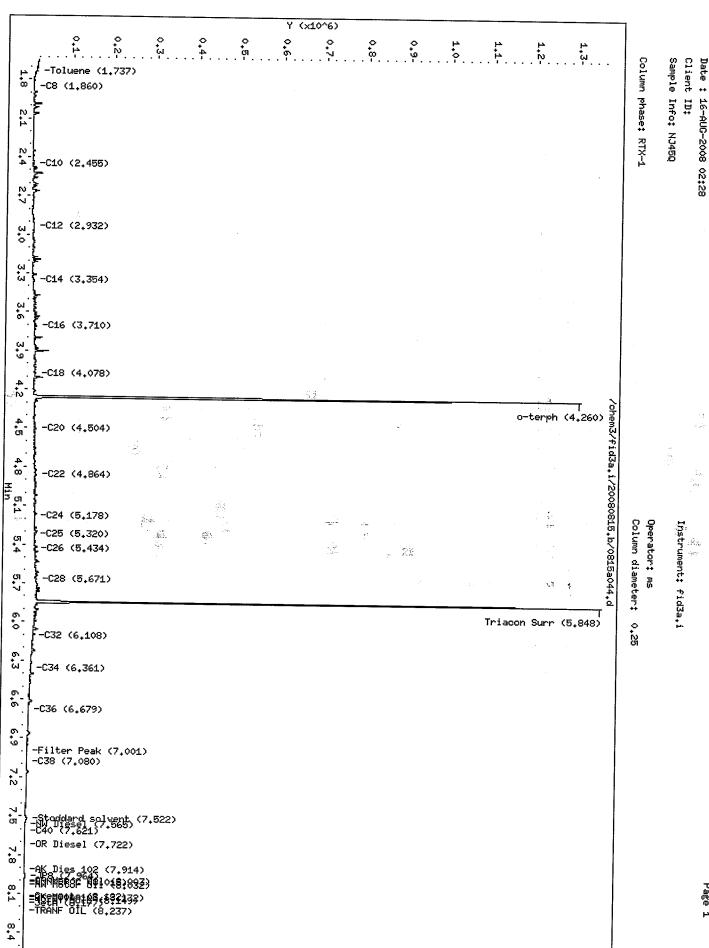
Report Date: 08/19/2008 Macro: FID:3A081308

ARI ID: NJ45Q Client ID:

Injection: 16-AUG-2008 02:28

Dilution Factor: 1

アイカ	- 77	DEGITE	
ピエロ	: 3A	RESHITES	


				LID:3	OA KESUL	1122			
Compound	RT	Shift	Height		Area	R	ange	Total Area	Conc
=========	=======	======:	======	=====	=======	=======	=========	==========	
Toluene	1.737	-0.002	10816		9211	GAS	(Tol-C12)	393907	22
C8	1.860	-0.002	3691		4805	DIESEL	·,	1774814	150
C10	2.455	0.008	5929		5965	M.OIL		1865225	192
C12	2.932	-0.001	7135		4479	AK-102	(C10-C25)	2018129	141
C14	3.354	0.008	10203		9770	AK-103	(C25-C36)	1626944	
C16	3.710	0.002	17359		13807	OR.DIES	(C10-C28)	2621621	231
C18	4.078	0.000	17278		18403	OR.MOIL	(C28-C40)		177
C20	4.504	0.000	19154		22669	JET-A		1432558	157
C22	4.864	-0.001	21040		20283	MIN.OIL		958803	65
C24	5.178	0.002	18431		3665	MSPIRIT		1865225	145
C25	5.320	0.007	18858		2614	INDEIRII	(101-C12)	393907	25
C26	5.434	-0.006	20638		18026	} 			
C28	5.671	-0.002	25445		11348	 			
C32	6.108	-0.002	18615						
C34	6.361	-0.002	14556		4417	ļ		2 chard.	
Filter Peak	7.001	0.004	7858		8155		/m 3 ma .)		
C36	6,679	0.004			2342	JP-4	(567695	50
C38	7.080		10102	* .	6970	CREOSOT	(C8-C22)	1786566	287
C40		-0.003	7182		2992	ļ			
	7.621	0.001	5865		2200	BUNKERC	(C10-C38)	3839948	483
AZDIESEL (C1	0 000)			=====	======	=======	==========	============	====
. •	.0-C22)		8428	101					
wanorh (CS	2-C32)	155	5444	242				#"	

Range Times: NW Diesel (2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	678627	43.1	95.8
Triacontane	608494	49.6	

ms 8/24/0 g

O-Terph Surr 15745.7 26-JUL-2008 Triacon Surr 12268.2 26-JUL-2008 Gas 17825.4 13-AUG-2008 Diesel 11860.8 26-JULY-2008 Motor Oil 9730.4 26-JULY-2008 AK102 14326.1 26-JULY-2008 AK103 7036.1 26-JULY-2008 JP4 11362.0 05-FEB-2007 JetA 14845.5 11-JUL-2008 Min Oil 12823.0 27-JUN-2008 Min Spirit 15825.3 15-APR-2005 OR Diesel 14789.5 OR M.Oil 9098.1 Bunker C 7951.9 01-APR-2008 Creosote 6234.4 08-AUG-2008	Analyte	RF	Curve Date
	Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Data File: /chem3/fid3a.i/20080815.b/0815a044.d

441

Data file: /chem3/fid3a.i/20080815.b/0815a045.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

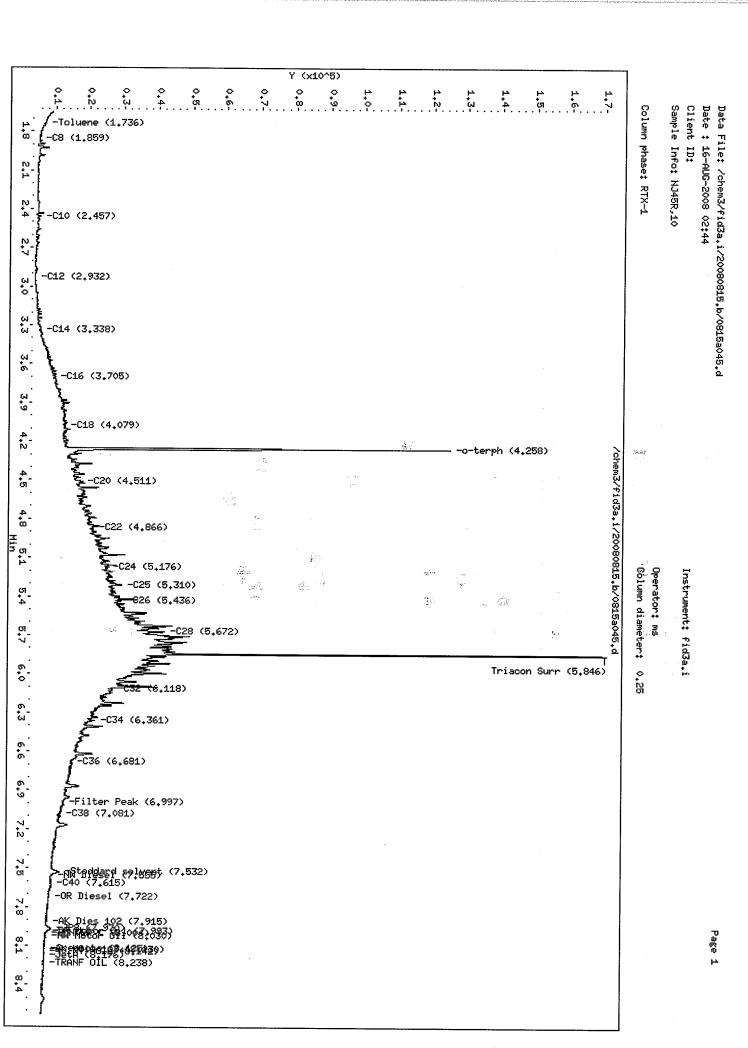
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45R Client ID:

Injection: 16-AUG-2008 02:44

Dilution Factor: 10

77.7	~ ~	DMOTT	
H	: 3A	RESUL	-119

Compound	RT	Shift	Height	•	Area	Ra	ange	Total Area	Conc
Toluene	1.736	-0.003	====== 4674	====	4052	GAS	======================================		11
C8	1.859	-0.003	3085		2359	DIESEL	(C12-C24)	1532221	129
C10	2.457	0.010	3196		3809	M.OIL	(C24-C38)	2622895	270
C12	2.932	-0.001	1912		567	AK-102	(C10-C25)	1666588	116
C14	3.338	-0.009	3515		2050	AK-103	(C25-C36)	2291445	326
C16	3.705	-0.003	7792		4000	OR.DIES	(C10-C28)	2469892	167
C18	4.079	0.001	10870		4483	OR.MOIL	(C28-C40)	2031860	223
C20	4.511	0.007	15966		12124	JET-A	(C10-C18)	490400	33
C22	4.866	0.001	19246		6114	MIN.OIL	(C24-C38)	2622895	205
C24	5.176	0.000	23402		11115	MSPIRIT	(Tol-C12)	192376	12
C25	5.310	-0.003	27592		23773				
C26	5.436	-0.004	27485		23055				
C28	5.672	-0.001	40269		32768				
C32	6.118	0.008	25203		5444		·		·~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C34	6.361	-0.005	19917	J*3	19126			a contract of	
Filter Peak	6.997	0.000	10998		4806	JP-4	(Tol-C14)	258006	23
C36	6.681	0.002	13340		6358	CREOSOT	(C8-C22)	1289815	207
C38	7.081	-0.001	10160		3403				
C40	7.615	-0.005	7712		4564	BUNKERC	(C10-C38)	4231637	532
AZDIESEL (C1	0-C22)	======= 117	====== '9751	==== 73	======	=======	========	======================================	=====
•	2-C32)		6051	340					
==========	=========	=======							ġ'


Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	57000 51510	3.6	80.4 /

mospator

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data file: /chem3/fid3a.i/20080815.b/0815a046.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45S Client ID:

Injection: 16-AUG-2008 03:00 -

Dilution Factor: 1

FID	:3A	RESULTS	

				. TD . 2W	KESUL	110				
Compound	RT	Shift	Height	Α	rea	Ra	ange	Ţ	otal Area	Conc
==========	=======	========	=======	=====	=====	=======	========	====	========	======
Toluene	1.737	-0.002	15695		27675	GAS	(Tol-C12)		254606	14
C8	1.859	-0.003	3574		3656	DIESEL	(C12-C24)		246115	21 /
C10	2.457	0.010	4023		3971	M.OIL	(C24-C38)		599881	62
C12	2.929	-0.004	2147		1407	AK-102	(C10-C25)		347062	24
C14	3.349	0.002	1564		248	AK-103	(C25-C36)		480277	68
C16	3.701	-0.007	1669		1190	OR.DIES	(C10-C28)		474507	32
C18	4.080	0.001	2400		2623	OR.MOIL	(C28-C40)		608567	67
C20	4.494	-0.010	2077		1822	JET-A	(C10-C18)		227188	15
C22	4.861	-0.004	2558		2097	MIN.OIL	(C24-C38)		599881	47
C24	5.173	-0.003	3314		2681	MSPIRIT	(Tol-C12)		254606	16
C25	5.307	-0.006	3670		6596	j	•			
C26	5.443	0.004	4295		1771	İ				
C28	5.670	-0.003	7280		8828	į				
C32	6.118	0.009	6503		1804	İ		1941		
C34	6.362	-0.004	5911		4857	j.		159.1		
Filter Peak	6.998	0.001	4731		1975	JP-4	(Tol-C14)		309058	27
C36	6.682	0.003	4885		2729	CREOSOT	(C8-C22)		396613	64
C38	7.083	0.001	4597		1099	İ	,			0.1
C40	7.621	0.001	4432		1322	BUNKERC	(C10-C38)		939054	118
==========	.======	=======	=======	=====	======	, ========	========			
AZDIESEL (C	(10-C22)	27	4000	17						
AZMOIL (C	(22-C32)	34	2549	53		<u></u>				
===========	=======	=======		=====						

Range Times: NW Diesel (2.983 - 5.225) NW Gas (1.689 - 2.983) NW M.Oil (5.225 - 7.133)

AK102 (2.397 - 5.263) AK103 (5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	<i>A</i> rea	Amount	%Rec
o-Terphenyl Triacontane	622591 579406	39.5	87.9 /

10/f6/8 am

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
0000000	0454.4	00-A0G-2008

				Y (x10^6)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			·	\neg		
	,	ф 44	٥ نا	o o	.	• 	.	4 4 	₩ 	-	, w	C
, L	-Toluene (1.737) -C8 (1.859)									Column phase: RTX-1	Sample Info: NJ458	Client
ĮŊ.										phas	Info	ΙD‡
14										₽ 2	. ·	
4 4	-C10 (2,457)									Ž Ž	Š	
2,7												
:	- -C12 (2.929)											
3 -												
3.	-C14 (3,349)											
ط ه												
	-C16 (3.701)											
ુ. કુ.	040 44 404											
4. '.	-C18 (4.080)						viet e					
4.51	-C20 (4.494)	n gran		27 P		2		r -terph	(4,260)	Column diamete /chem3/fid3a.i/20080815.b/0815a046		
	020 (4,434)			u.		y de y de			\$8 \$2 	7 1 1 1 1		
- 4	-C22 (4.861)									3a 1		
5.1	004 (5 477)	side.			<u></u>					0080		
5-4	-C24 (5,173) -C25 (5,307)			100 mg/s 100 mg/s 100 mg/s	en er		10.27			Colu	Open.	T 5 0 0
- '- - 4	C26 (5,443)			D _{ign}			\$ f		£7	nn di 0815	Operator: ms	Instrument: +
ច <u>់</u>	-C28 (5,670)	\$ 1.50 ×						}	Ci (S	Column diameter:	-	++ 5
							Triaco	n Surr	(5,847)	- 1	\$ 0 +	122
	-C32 (6,118)									0,25		
٦- ا	-C34 (6.362)											
ر د	-C36 (6.682)											
۔ و	1010000											
	-Filter Peak (6.998) -C38 (7.083)											
]]												
٠ ٦	-Stoddard,solvent.(7.52	?7)										
	-Stoddard, solvent, (7,52 -D40 (7,621) -OR Diesel (7,721)											
, . -	_AK_Djes_102 (7.915)											
	= 前時内内的的的的。 = 所以											
-2	-IKANF UIL (8,236)											
`.\												
										1		

Data File: /chem3/fid3a.i/20080815.b/0815a046.d Date : 16-AUG-2008 03:00

Page 1

Data file: /chem3/fid3a.i/20080815.b/0815a047.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

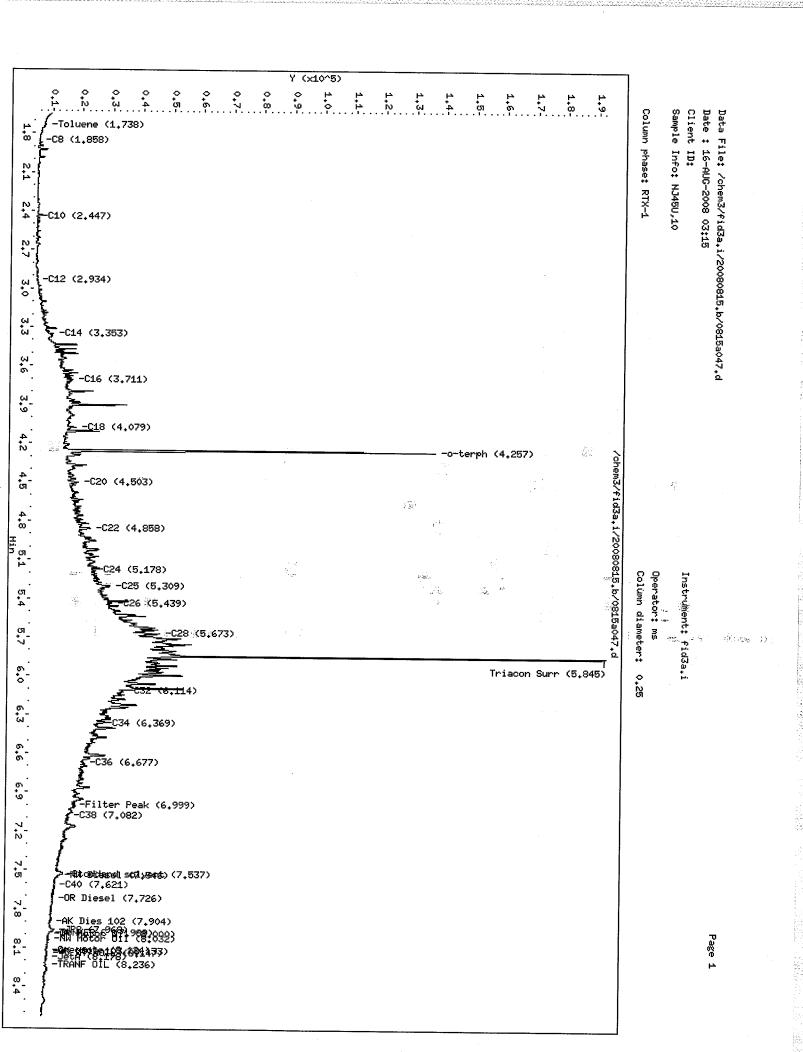
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45U Client ID:

Injection: 16-AUG-2008 03:15

Dilution Factor: 10 _

FID	• 3 D	RESULTS

	Compound	RT	Shift	Height	Area	Ra	ange		al Area	Conc
	Toluene	1.738	-0.001	4988	4550	GAS		======	======= 214662	12
	C8	1.858	-0.003	3109		DIESEL	(C12-C24)		1786490	151
	C10	2.447	0.000	2358		M.OIL	(C24-C38)		3229184	332
	C12	2.934	0.001	2669	743	AK-102	(C10-C25)		1928034	135
	C14	3.353	0.007	8178	8034	AK-103	(C25-C36)		2764263	393
	C16	3.711	0.003	14955	14756	OR DIES	(C10-C28)		2791307	189
	C18	4.079	0.000	16126	19292	OR.MOIL	(C28-C40)		2720614	299
	C20	4.503	-0.001	17140	8933	JET-A	(C10-C18)		775268	52
	C22	4.858	-0.007	21193	27780		(C24-C38)		3229184	252
	C24	5.178	0.003	22044	5269	1	(Tol-C12)		214662	14
	C25	5.309	-0.004	28040	27679		(===		211002	7.4
(C26	5.439	-0.001	28413	14419	Ì				
(C28	5.673	0.000	44526	58318					
	C32	6.114	0.005	32389	8351	j				
	C34	6.369	0.002	25347	12737	İ			14:	
	Filter Peak	6.999	್ಲ0.002	16730	4967	JP-4	(Tol-C14)		335651	30
	C36	6.677	-0.001	19876	6647	CREOSOT	(C8-C22)		1582066	254
	C38	7.082	-0.001	14829	4987					231
==	C40 =====	7.621 ======	0.001	10616	4406	BUNKERC	(C10-C38)	. !	5107603	642
		 0-C22)		1741	======================================	=======	========	=====	=======	=====
		2-C32)		4704	369			f		
1.	·	t			(**					


Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	62252 59988	4.0	87.9

10/4 d/8 om

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Data file: /chem3/fid3a.i/20080815.b/0815a048.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45V Client ID:

Injection: 16-AUG-2008 03:31

Dilution Factor: 1

FID	:37	RES	ULTS
-----	-----	-----	------

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
	======	=======	========	=========	========	=======		======
Toluene	1.737	-0.002	15389	15681	GAS	(Tol-C12)	572963	32
C8	1.861	-0.001	5655	6685	DIESEL	(C12-C24)	427279	36
C10	2.454	0.007	7238	5751	M.OIL	(C24-C38)	625562	64
C12	2.941	0.008	7241	7502	AK-102	(C10-C25)	649358	45
C14	3.353	0.007	3158	1999	AK-103	(C25-C36)	495655	70
C16	3.703	-0.005	4009	4452	OR.DIES	(C10-C28)	777556	53
C18	4.081	0.002	4523	4787	OR.MOIL	(C28-C40)	647060	71
C20	4.511	0.008	3777	4939	JET-A	(C10-C18)	493490	33
C22	4.861	-0.004	3141	2938	MIN.OIL	(C24-C38)	625562	49
C24	5.172	-0.003	4495	3695	MSPIRIT	(Tol-C12)	572963	36
C25	5.319	0.006	3902	2116		(===,	0,200	50
C26	5.443	0.004	4517	2057				
C28	5.669	-0.004	5967	4091	i			
C32	6.109	-0.001	6727	2393	İ			
C34,	6.367	0.000	6044	5617	que sida c			
Filter Peak	7003	0.006	4628	646	JP-4	(Tol-C14)	692523	61
C36	6.680	0.001	4925	2445	CREOSOT	(C8-C22)	893643	61 143
% C38	7.083	0.000	4816	2288	CKEODOI	(00 022)	093043	143
C4.0	7.622	0.002	4520	3149	BUNKERC	(C10-C38)		1.00
=========	,.022		4520	3149	IDUNKERC	(CIO-C38)	1269480	160
AZDIESEL (C	10-C22)	 52	28250	33	=======	========	=======================================	====
•	22-C32)		1819	55				
	(52)	. ر	11019	ر ر	- 17 ·		a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	

Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225% - 7.133) AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	515819	32.8	72.8
Triacontane	475857	38.8	86.2

mo 8/27/08

95

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
CICODOCC	0434.4	00-A0G-2008

				Υ (×10^6>						 .]	
	· · · · · · · · · · · · · · · · · · ·	\$ N	٥	\$	္ ဖြ	\$ •	0.7-	.		1			~~~
1.8	Toluene (1.7 <u>-C</u> 8 (1.861)	37)							1 .	• • • •	•	Column phase: RTX-1	Data File: /chem3/ Date : 16-AUG-2008 Client ID: Sample Info: NJ45V
]	¥											n pha	Tilet 116-
2,1												3.e. + ₹2.	/che AUG-2
2° 4	C10 (2,454)											7-X-Z	File: /chem3/fid3a.i/20080815.b/0815a048.d : 16-AUC-2008 03:31 ht ID: le Info: NJ45V
2.7	<u>د</u>												d3a.i 3;31
	-C12 (2.941)												./2008
3.0	-[-012 (2,941)												30815
3,3	-C14 (3,353)												80/d•
3.6													15a04
6	-016 (3,703)												ر 8
3.9													
4.2	-C18 (4,081)												
:						· ·		 _	o-terk	h (4,259)	/cher		ing t from
\$ 51	-C20 (4,511)		ii ii					· Š			13/fi		
4 0	-C22 (4.861)							121	· Zu		¥3a.i.		
Min .]								:		/2008		
	-C24 (5,172) -C25 (5,319)		gen a			es de Sus es			200 <u>0</u>		0815	100 100 100	Inst
ار 4. 4.	-C26 (5,443)	+E.C							1.20% 1.20%	Ç-C	b/081	Operator: ms Column diame	trume
5,7	-C28 (5,669)	:	$f_{i_{s_s}}^{(\mathbf{x})}$ $\epsilon_s^{i_s}$	$\{ i_j \} = \sum_{i \in I} i_{ij}$	1	10. 6					chem3/fid3a.i/20080815.b/0815a048	Operator: ms Column diameter:	Instrument: fid3a.i
6.0							······································	Tni	DOON CUI	r (5,848)	٥		id3a.
•	-C32 (6,109)							1, 4	acon our	1. (01040)		۰ کی	34.
٠ <u>٠</u> ٠	-C34 (6,367)												
e, 6,	}												
	(-C36 (6.68¢)												
6.9	-Filter Peak (7, -C38 (7,083)	,003)											
, N	,												
7.5	_Oh and down d												
	=9009942591 501 955 -C40 (7.622) -OR Diesel (7.72												
7.8	-9KaDies-182 (7.												
8-	=BBUNB68¢,681048	128 3 83											P a & e
8-4	=986890000000000000000000000000000000000	()											4
4													
- 5													

3 Section 1995

Data file: /chem3/fid3a.i/20080815.b/0815a049.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45W Client ID:

Injection: 16-AUG-2008 03:46

Dilution Factor: 1

TTD.	· 2 Z	RESULTS

Compound	RT	Shift	Height	Area	Rang	e	Total Area	Conc
Toluene	1.739	0.000	11042	 10395	======================================	======= ol-C12)	======================================	18,
C8	1.860	-0.002	3663	3752	! , -	12-C24)	448016	
C10	2.456	0.009	5392	5116	i	24-C38)	678458	38 70
C12	2.922	-0.011	3116	2774		10-C25)	615467	43
C14	3.340	-0.007	2708	1629	- , -	25-C36)	566131	80
C16	3.702	-0.005	3438	2883	OR.DIES (C		777835	53
C18	4.080	0.001	6398	4824	i	28-C40)	634089	70
C20	4.508	0.005	5105	4657	JET-A (C		422848	28
C22	4.866	0.001	5563	4911	MIN.OIL (C		678458	53
C24	5.170	-0.005	6203	4597		ol-C12)	326505	21
C25	5.324	0.011	4220	2011	, , , ,		520505	21.
C26	5.452	0.012	6102	5451				
C28	5.668	-0.005	8026	9119				
C32	6.113	0.004	7658	6109				
C34	6.368	0.002	5767	4341	İ	All a		
Filter Peak	6.997	0.000	4350	694	JP-4 (To	ol-C14)	436464	[₩] 38
C36	6.690	0.011	4860	2023		C8-C22)	671453	108
C38	7.082	-0.001	4319	1809	,	022,	071433	100
C40	<u>7.622</u> .	0.002	4450	2303	BUNKERC (C	LO-C38)	1285787	<u>_</u> 162 .
AZDIESEL (C:	====== 10-C22)	====== 51	.6055	:======= 32	=========	=======	=======================================	=====
AZMOIL (C	22-C32)	44	4673	69				

Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec	
o-Terphenyl Triacontane	610331 527747	38.8 43.0	86.1 <i>,</i> 95.6	_

Nus 8/27/08

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	15745.7 12268.2	26-JUL-2008 26-JUL-2008
Gas Diesel	17825.4 11860.8	13-AUG-2008
Motor Oil	9730.4	26-JULY-2008 26-JULY2008
AK102 AK103	14326.1 7036.1	26-JULY-2008 26-JULY-2008
JP4 JetA	11362.0	05-FEB-2007
Min Oil	14845.5 12823.0	11-JUL-2008 27-JUN-2008
Min Spirit OR Diesel	15825.3 14789.5	15-APR-2005
OR M.Oil	9098.1	
Bunker C Creosote	7951.9 6234.4	01-APR-2008 08-AUG-2008

Instrument: fid3a,i

Data File: /chem3/fid3a.i/20080815.b/0815a049.d

Date : 16-AUG-2008 03:46

Column phase: RTX-1

Sample Info; NJ45W

Client ID:

Operator: ms Column diameter:

-4 (816,52,52,53,18) (82,893) 118 48181 제구 (85,53) 128 4818 (85,53,53) 128 4818 (85,48) 110 48181 ۲. 0 (357,7) [ezeid 90--C40 (7,622) -G40 (7,622) -C40 (7,622) , 12 7.2 -C38 (Y*08S) (5,997) Abaq metliq-6 (069*9) 923-9 (892*9) +20-0,25 -C3S (0°113) Triacon Surr (5,846) /chem3/f1d3a,1/20080815,b/0815a049,d (899*9) 8ZO<u>-</u> (52₄452) 2.5 -CS2_(2/2S4) -csf (e*110) 댭 -CSS (4*899) 4 ը -CSO (4*208) -CT8 (4*080) -CTP (3°505) -074 (3*340) -CTS (5*855) 5. CTO (5°426) 5,1 (098°T) 80-(4°22°T) euenlol-1.0-.60 9 ¢.7-្ញុំ 0 • 4 0+3-5.2 0,1-(9~0T×) X

CLEANED TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Client ID	OTER	TOT OUT
EBC-1-S1	60.0%	0
MB-081108	90.4%	0
LCS-081108	104%	0
LCSD-081108	92.4%	0
EBC-1-S2	91.3%	0
EBC-1-S2 MS	72.2%	0
EBC-1-S2 MSD	83.3%	0
EBC-2-S1	72.0%	0
EBC-3-S1	84.9%	0
EBC-3-S2	86.4%	0
EBC-4-S1	76.2%	0
EBC-5-S1	79.8%	0
EBC-6-S1	72.2%	0
EBC-7-S1	D	0
EBC-7-S2	70.9%	0
EBC-8-S1	68.9%	0
EBC-9-S1	86.7%	0
EBC-10-S1	80.4%	0
EBC-11-S1	95.8%	0
EBC-11-S2	80.4%	0
EBC-12-S1	87.8%	0
EBC-13-S1	87.8%	0
EBC-13-S2	72.9%	0
EBC-14-S1	86.2%	0

LCS/MB	LIMITS	QC	LIMITS
LCS/MB	LIMITS	QC	LIMITS

(62-118) (49-125)

(OTER) = o-Terphenyl

Prep Method: SW3546

Log Number Range: 08-19394 to 08-19416

ORGANICS ANALYSIS DATA SHEET

NWTPHD by GC/FID-Silica and Acid Cleaned

Page 1 of 1

Sample ID: EBC-1-S2 MS/MSD

Lab Sample ID: NJ45B LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized:

Reported: 08/28/08

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Date Extracted MS/MSD: 08/11/08

Sample Amount MS: 9.73 g-dry-wt

MSD: 9.41 g-dry-wt

Date Analyzed MS: 08/15/08 22:21 Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.0

MSD: 1.0

Percent Moisture: 6.8%

MSD: 08/15/08 22:36 Instrument/Analyst MS: FID/MS

MSD: FID/MS

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	5.8	85.3	154	51.6%	106	159	63.0%	21.6%

TPHD Surrogate Recovery

o-Terphenyl

MS MSD

72.2% 83.3%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

Data file: /chem3/fid3a.i/20080815.b/0815a028.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

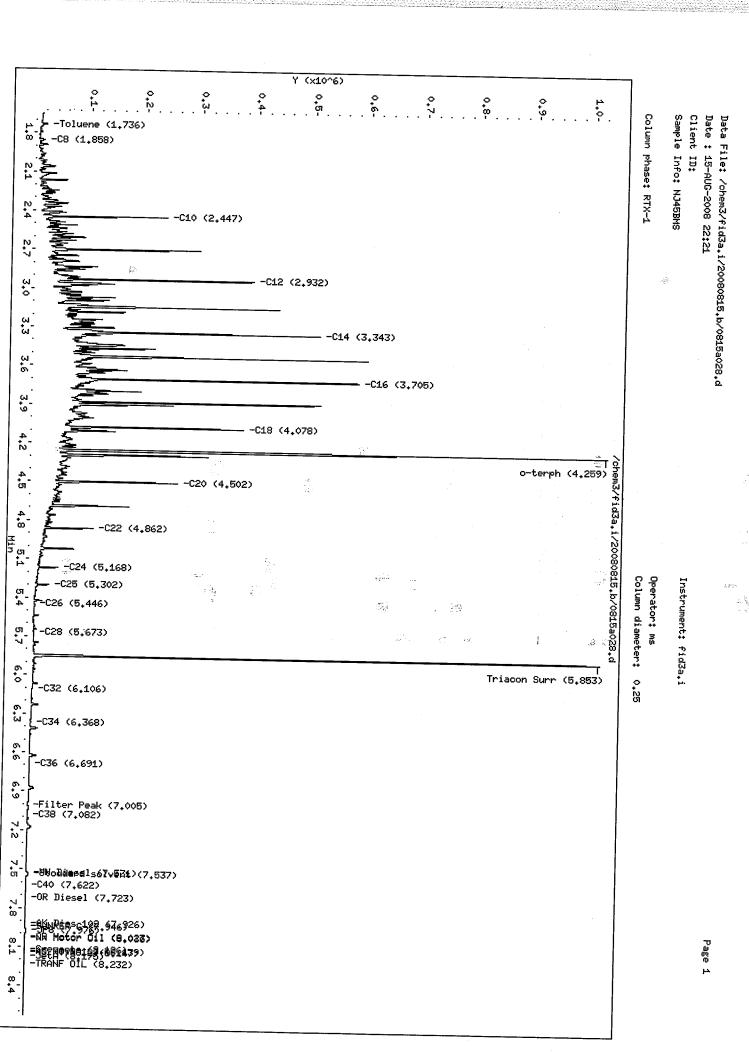
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45BMS

Client ID:

Injection: 15-AUG-2008 22:21

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Aı	rea	R	ange	Total Area	Conc
Toluene	1.736	-0.003	17095		23086	GAS		2466993	138
C8	1.858	-0.004	13432	1	L2124	DIESEL	(C12-C24)	9845544	830
C10	2.447	-0.001	235289	10	04907	M.OIL	(C24-C38)	1076843	111
C12	2.932	-0.001	391258	19	94010	AK-102	(C10-C25)	11756146	821
C14	3.343	-0.004	511652	23	32332	AK-103	(C25-C36)	889252	126
C16	3.705	-0.002	582707	32	29779	OR.DIES	(C10-C28)	12076517	817
C18	4.078	0.000	377971	23	31530	OR.MOIL	(C28-C40)	897023	99
C20	4.502	-0.001	262350	17	76480	JET-A		8822532	594
C22	4.862	-0.003	114121	8	32433	MIN.OIL	•	1076843	84
C24	5.168	-0.007	52063	3	7966	MSPIRIT		2466993	156
C25	5.302	-0.011	35457	3	8710		,		130
C26	5.446	0.006	10414		5135	İ			
C28	5.673	0.000	10480		5966	İ			
C32	6.106	-0.004	10944	1	.3696				
C34	6.368	0.001	.8019		4907	1			:
Filter Peak	7.005	0.008	6090		2544	JP-4	(Tol-C14)	4688086	413
C36	6.691	0.012	6863		3524	CREOSOT	(C8-C22)	11842432	1900
C38	7.082	-0.001	6082		1935	İ	•		
C40	7.622	0.002	5399		1826	BUNKERC	(C10-C38)	12805958	1610
•)-C22) :-C32)		55960 52855	 689 165	=====	= = = = = = = =	========	=======================================	

Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl Triacontane	511443 429518	32.5	72.2

ms 8/27/88

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Data file: /chem3/fid3a.i/20080815.b/0815a029.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45BMSD

Client ID:

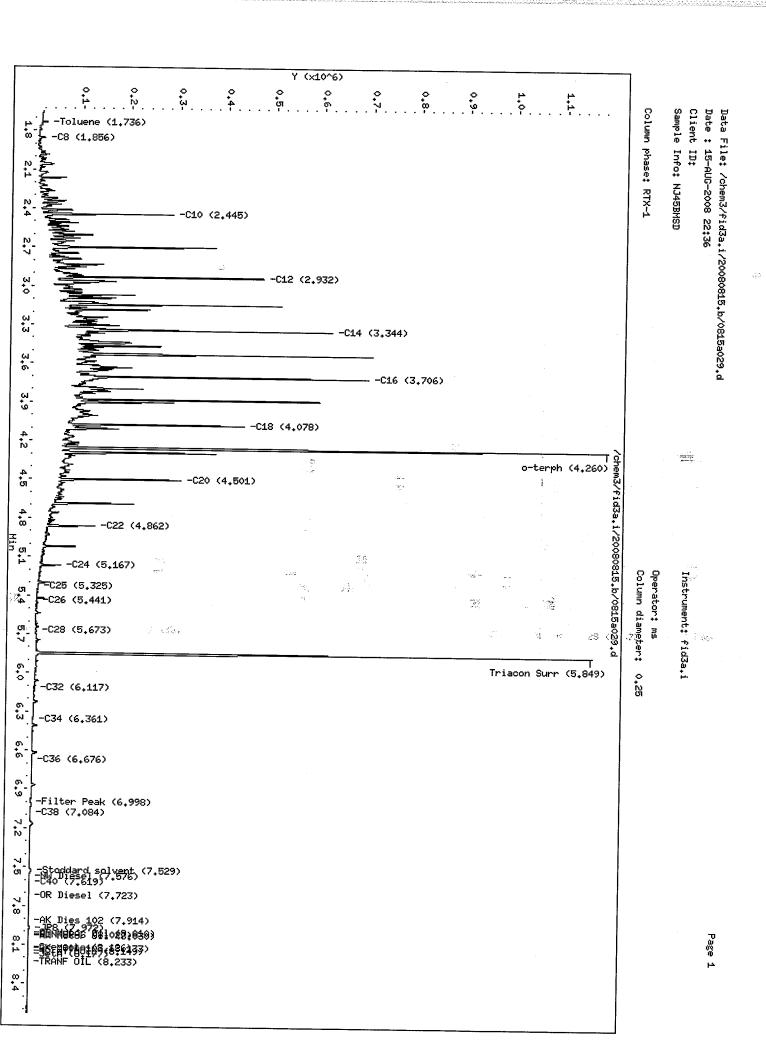
Injection: 15-AUG-2008 22:36

34.30 70.3

Dilution Factor: 1

FID	· 3 A	RESULTS

Compound	RT =======	Shift	Height	Area	R	ange	Total Area	Conc
Toluene	1.736	-0.003	22339	19296	GAS	======================================	2044008	======
C8	1.856	-0.006	16613		DIESEL		2844887 11810970	160
C10	2.445	-0.002	284885		M.OIL		1236360	996
C12	2.932	-0.001	472910		AK-102		14098994	127-
C14	3.344	-0.003	617273		AK-103		1029216	984
C16	3.706	-0.001	691857		OR.DIES	, ,	14488674	146 980
C18	4.078	0.000	437978		OR.MOIL	(C28-C40)	999395	110
C20	4.501	-0.002	308617	203208		(C10-C18)	10577815	713
C22	4.862	-0.003	131393	85601	MIN.OIL	(C24-C38)	1236360	96
C24	5.167	-0.008	61203		MSPIRIT		2844887	180
C25	5.325	0.012	15490	3651	İ	,,	2011007	100
C26	5.441	0.002	12844	4054	į			
C28	5.673	0.000	12931	12964	İ			
C32	6.117	0.008	10644	2321	İ	2		
C34	6.361	-0.006	8799	7,919	İ	**************************************		
Filter Peak	6.998	0.001	6516	1687	JP-4	(Tol-C14)	5579369	491
C36	6.676	-0.003	7300	4322	CREOSOT	(C8-C22)	14074234	2258
C38	7.084	0.002	6400	2792	İ	,		2230
C40	7.619	-0.001	5598	3341	BUNKERC	(C10-C38)	15295692	1924
	0-C22) 2-C32)		====== 9741 8652	== ==== ==============================			==========	====
===========								


Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	591044	37.5	83.4/
Triacontane	510476	41.6	92.5

83/A6/6m

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID-Silica and Acid Cleaned Page 1 of 1

Sample ID: LCS-081108 LCS/LCSD

Lab Sample ID: LCS-081108

LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized:

Reported: 08/28/08

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Date Extracted LCS/LCSD: 08/11/08

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 08/15/08 20:32

Final Extract Volume LCS: 1.0 mL

LCSD: 08/15/08 20:47

LCSD: 1.0 mL

Instrument/Analyst LCS: FID/MS

Dilution Factor LCS: 1.0

LCSD: FID/MS

LCS

139

LCSD: 1.0

Spike LCS Spike LCSD Added-LCS Recovery LCSD Added-LCSD Recovery RPD

Range Diesel

150 92.7% 122 150 81.3% 13.0%

TPHD Surrogate Recovery

LCSD

o-Terphenyl

104% 92.4%

LCS

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

Data file: /chem3/fid3a.i/20080815.b/0815a021.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

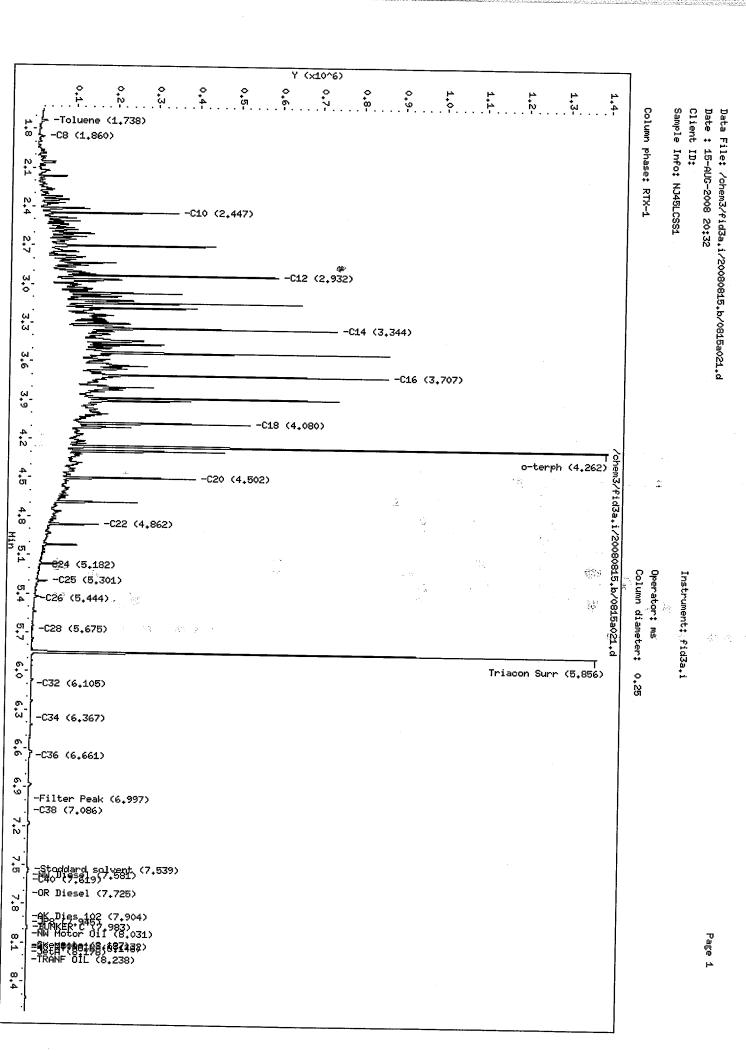
Report Date: 08/19/2008 Macro: FID:3A081308 ARI ID: NJ45LCSS1

Client ID:

Injection: 15-AUG-2008 20:32

Dilution Factor: 1

Go				'ID:3	BA RESUL	TS			
Compound	RT	Shift	Height		Area	R	ange	Total Area	Conc
Toluene	1.738	-0.001	===== 24887	====	22007	=======	=======================================	===========	======
C8	1.860	-0.002	18547		23807		(Tol-C12)	3636104	204
C10	2.447	0.002	345173		17404	DIESEL	(C12-C24)	16453849	1387
C12	2.932	-0.001	591132		150834	M.OIL	(C24-C38)	846452	87 -
C14	3.344	-0.003	737152		277641	AK-102	(C10-C25)	19390775	1354
C16	3.707	-0.001			339257	AK-103	(C25-C36)	688776	98
C18	4.080	0.001	863022		415284	OR DIES	(C10-C28)	19718150	1333
C20	4.502	-0.001	527974		348480	OR.MOIL	(C28-C40)	638796	70
C22	4.862		396955		282381	JET-A	(C10-C18)	14453634	974
C24	5.182	-0.003	164197		123886	MIN.OIL	(C24-C38)	846452	66
C25	5.301	0.007	24640		21429	MSPIRIT	(Tol-C12)	3636104	230
C26		-0.012	41986		46334				
C28	5.444	0.004	11622		7029				
	5.675	0.002	8556		7630				
C32	6.105	-0.004	6480		4241				
C34	6.367	0.001	5872		5546			n _{de}	
Filter Peak	6.997		4919		784	JP-4	(Tol-C14)	7473131	658
C3.6	6.661	-0.018	5755		16966	CREOSOT	(C8-C22)	19396424	3111
C38	7.086	0.004	4861		2127	2	,,	10000424	2111
C40	7.619	-0.001	5078		1114	BUNKERC	(C10-C38)	20194130	2540
	===== -0-C22)	====== 1836	======== 6812 11	==== .44	======	=======	========	=======================================	=====
AZMOIL (C2	2-C32)	114	9209 1	.79.					


Range Times: NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133)

AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	732901	46.5	103.4 /
Triacontane	649596	52.9	117.7

No 8/24/9

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C Creosote	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9 6234.4	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005

Data file: /chem3/fid3a.i/20080815.b/0815a022.d Method: /chem3/fid3a.i/20080815.b/ftphfid3a.m

Instrument: fid3a.i

Operator: ms

Report Date: 08/19/2008 Macro: FID:3A081308

ARI ID: NJ45LCSDS1

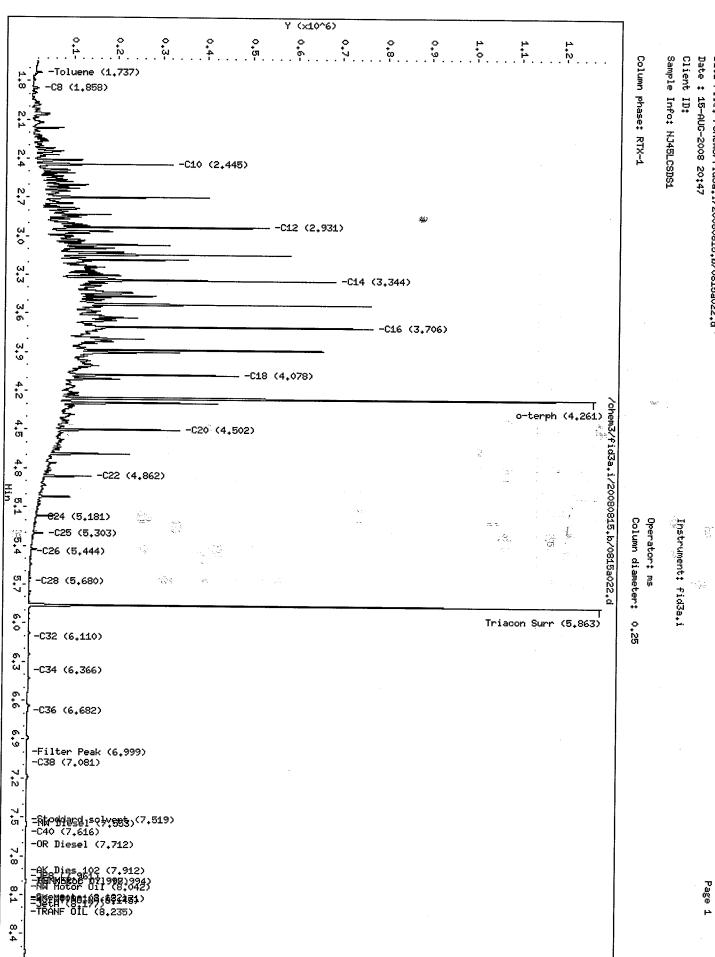
Client ID:

Injection: 15-AUG-2008 20:47

Dilution Factor: 1

FID	. 27	RESULTS
F 111	: . T M	K POSTULIA S

Compound	RT	Shift	Height	Area	Ra	ange	Total Area	Conc
========	=======	=======	========	=======	=======			======
Toluene	1.737	-0.002	25587	21993	GAS	(Tol-C12)	3371471	189
C8	1.858	-0.004	19733	16620	DIESEL	(Ĉ12-C24)	14515989	1224
C10	2.445	-0.002	318961	138073	M.OIL		775259	80-
C12	2.931	-0.002	535178	254491	AK-102	(C10-C25)	17199050	1201
C14	3.344	-0.003	683375	301232	AK-103	(C25-C36)	637399	91
C16	3.706	-0.002	768219	379896	OR.DIES	(C10-C28)	17496623	1183
C18	4.078	-0.001	468755	341513	OR.MOIL	(C28-C40)	592717	65
C20	4.502	-0.002	341325	241714	JET-A	(C10-C18)	12959358	873
C22	4.862	-0.003	143139	101691	MIN.OIL	(C24-C38)	775259	60
C24	5.181	0.005	21234	13769	MSPIRIT	(Tol-C12)	3371471	213
C25	5.303	-0.010	37125	40509	İ	·		
C26	5.444	0.005	10527	6911	İ			
C28	5.680	0.007	7509	6610	j			
C32	6.110	0.000	6193	3583				
C34	6.366	0.000	5590	892			3	Sala
Filter Peak	6.999	0.002	, 4777	1426	JP-4	(Tol-C14)	6817960	600
C36	₹6.682	0.003	5636	9766	CREOSOT	(C8-C22)	17253059	2767
C38	7.081	-0.001	4747	2746	İ		_,	2,0,
C40	7.616	-0.004	4656	2320	BUNKERC	(C10-C38)	17942127	2256
AZDIESEL (C	====== 10-C22)	 1627	77011 1013	======== }	======	=========	=======================================	=====
	22-C32)		33027 160		1:		\$4 ¹	


NW Diesel(2.983 - 5.225) NW Gas(1.689 - 2.983) NW M.Oil(5.225 - 7.133) Range Times: AK102(2.397 - 5.263) AK103(5.263 - 6.729) Jet A(2.397 - 4.129)

Surrogate	Area	Amount	%Rec
o-Terphenyl	655196	41.6	92.5
Triacontane	584408	47.6	105.9 /

No 8/24/08

. 3

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JetA Min Oil Min Spirit OR Diesel OR M.Oil Bunker C	15745.7 12268.2 17825.4 11860.8 9730.4 14326.1 7036.1 11362.0 14845.5 12823.0 15825.3 14789.5 9098.1 7951.9	26-JUL-2008 26-JUL-2008 13-AUG-2008 26-JULY-2008 26-JULY-2008 26-JULY-2008 05-FEB-2007 11-JUL-2008 27-JUN-2008 15-APR-2005
Creosote	6234.4	08-AUG-2008

Data File: /chem3/fid3a.i/20080815.b/0815a022.d

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: NJ45 Project: Pier 23-EBC Matrix: Soil

Date Received: 08/06/08

17490-01

	Gl. Land TD	Client	Final	Dogåa	Prep
ARI ID	Client ID	Amt	Vol	Basis	Date
08-19394-NJ45A	EBC-1-S1	9.74 g	1.00 mL	D	08/11/08
08-19395-081108MB1	Method Blank	10.0 g	1.00 mL	_	08/11/08
08-19395-081108LCS1	Lab Control	10.0 g	1.00 mL	_	08/11/08
08-19395-081108LCSD1	Lab Control Dup	10.0 g	1.00 mL	_	08/11/08
08-19395-NJ45B	EBC-1-S2	9.39 g	1.00 mL	D	08/11/08
08-19395-NJ45BMS	EBC-1-S2	9.73 g	1.00 mL	D	08/11/08
08-19395-NJ45BMSD	EBC-1-S2	9.41 g	1.00 mL	D	08/11/08
08-19396-NJ45C	EBC-2-S1	9.09 g	1.00 mL	D	08/11/08
08-19398-NJ45E	EBC-3-S1	8.06 g	1.00 mL	D	08/11/08
08-19399-NJ45F	EBC-3-S2	8.77 g	1.00 mL	D	08/11/08
08-19400-NJ45G	EBC-4-S1	8.29 g	1.00 mL	D	08/11/08
08-19401-NJ45H	EBC-5-S1	9.55 g	1.00 mL	D	08/11/08
08-19403-NJ45J	EBC-6-S1	9.69 g	1.00 mL	D	08/11/08
08-19405-NJ45L	EBC-7-S1	9.67 g	1.00 mL	D	08/11/08
08-19406-NJ45M	EBC-7-S2	10.1 g	1.00 mL	D	08/11/08
08-19407-NJ45N	EBC-8-S1	10.2 g	1.00 mL	D	08/11/08
08-19408-NJ45O	EBC-9-S1	9.53 g	1.00 mL	D	08/11/08
08-19409-NJ45P	EBC-10-S1	9.64 g	1.00 mL	D	08/11/08
08-19410-NJ45Q	EBC-11-S1	8.11 g	1.00 mL	D	08/11/08
08-19411-NJ45R	EBC-11-S2	8.93 g	1.00 mL	D	08/11/08
08-19412-NJ45S	EBC-12-S1	8.72 g	1.00 mL	D	08/11/08
08-19414-NJ45U	EBC-13-S1	9.37 g	1.00 mL	D	08/11/08
08-19415-NJ45V	EBC-13-S2	9.46 g	1.00 mL	D	08/11/08
08-19416-NJ45W	EBC-14-S1	8.90 g	1.00 mL	D	08/11/08

Page 1 of 1

Lab Sample ID: NJ45A LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Percent Total Solids: 95.3%

Sample ID: EBC-1-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC 17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	50	240	
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	2	3	
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	5	72	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	2	1,630	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	20	790	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.49	
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	10	50	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	10	2,300	

Page 1 of 1

Lab Sample ID: NJ45B LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized Reported: 09/05/08

Percent Total Solids: 91.4%

Sample ID: EBC-1-S2

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	00/25/00	C010D	00/00/00					
	08/25/08	6010B	09/03/08	7440-38-2	Arsenic	5	5	Ū
3050B	08/25/08	6010B	09/03/08	7440-43-9	Cadmium	0.2	0.2	Ū
3050B	08/25/08	6010B	09/03/08	7440-47-3	Chromium	0.5	14.4	U
3050B	08/25/08	6010B	09/03/08	7440-50-8	Copper	0.2	16.9	
3050B	08/25/08	6010B	09/03/08	7439-92-1	Lead	2	13	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.08	
3050B	08/25/08	6010B	09/03/08	7440-02-0	Nickel	1	7	
3050B	08/25/08	6010B	09/03/08	7440-66-6	Zinc	1	42	

Page 1 of 1

Lab Sample ID: NJ45C LIMS ID: 08-19396

Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

M/

Percent Total Solids: 91.6%

Sample ID: EBC-2-S1

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/31/08 Date Received: 08/06/08

Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
							mg/ ng cty	
3050B	08/25/08	6010B	09/03/08	7440-38-2	Arsenic	10	- 50	
3050B	08/25/08	6010B	09/03/08	7440-43-9	Cadmium	0.5	1.6	
3050B	08/25/08	6010B	09/03/08	7440-47-3	Chromium	0.5	<u>.</u>	
3050B	08/25/08	6010B	09/03/08	7440-50-8	Copper	0 5	58	
3050B	08/25/08	6010B	09/03/08	7439-92-1	Lead	0.5	208	
CLP	08/25/08	7471A	08/25/08	7439-97-6		5	923	
3050B	08/25/08	_	09/03/08		Mercury	0.05	0.86	
3050B	08/25/08	6010B		7440-02-0	Nickel	3	51	
00000	00/23/00	0010B	09/03/08	7440-66-6	Zinc	3	789	

Sample ID: EBC-3-S1

QC Report No: NJ45-Hart Crowser, Inc.

17490-01

Project: Pier 23-EBC

SAMPLE

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45E LIMS ID: 08-19398

Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Date Sampled: 07/30/08 Date Received: 08/06/08

Percent Total Solids: 80.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	00/05/00							
	08/25/08	6010B	09/03/08	7440-38-2	Arsenic	10	120	
3050B	08/25/08	6010B	09/03/08	7440-43-9	Cadmium	0.6	3.5	
3050B	08/25/08	6010B	09/03/08	7440-47-3	Chromium	0.0		
3050B	08/25/08	6010B	09/03/08			Ţ	67	
3050B				7440-50-8	Copper	0.6	668	
	08/25/08	6010B	09/03/08	7439-92-1	Lead	6	724	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05		
3050B	08/25/08	6010B	09/03/08	7440-02-0	-	0.05	1.30	
3050B	,,				Nickel	3	54	
30308	08/25/08	6010B	09/03/08	7440-66-6	Zinc	3	1,690	

Page 1 of 1

Lab Sample ID: NJ45F

LIMS ID: 08-19399

Matrix: Soil

Data Release Authorized

Reported: 09/05/08

Percent Total Solids: 84.6%

Sample ID: EBC-3-S2

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
00/05/00							
	6010B	09/04/08	7440-38-2	Arsenic	6	6	Ü
08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	U
08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.6	16.1	
08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	13.1	
08/25/08	6010B	09/04/08	7439-92-1	Lead	2	2	U
08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.05	Ü
08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	10	-
08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	43	
	08/25/08 08/25/08 08/25/08 08/25/08 08/25/08 08/25/08 08/25/08	Date Method 08/25/08 6010B 08/25/08 6010B 08/25/08 6010B 08/25/08 6010B 08/25/08 6010B 08/25/08 7471A 08/25/08 6010B	Date Method Date 08/25/08 6010B 09/04/08 08/25/08 6010B 09/04/08 08/25/08 6010B 09/04/08 08/25/08 6010B 09/04/08 08/25/08 6010B 09/04/08 08/25/08 6010B 09/04/08 08/25/08 7471A 08/25/08 08/25/08 6010B 09/04/08	Date Method Date CAS Number 08/25/08 6010B 09/04/08 7440-38-2 08/25/08 6010B 09/04/08 7440-43-9 08/25/08 6010B 09/04/08 7440-47-3 08/25/08 6010B 09/04/08 7440-50-8 08/25/08 6010B 09/04/08 7439-92-1 08/25/08 7471A 08/25/08 7439-97-6 08/25/08 6010B 09/04/08 7440-02-0	Date Method Date CAS Number Analyte 08/25/08 6010B 09/04/08 7440-38-2 Arsenic 08/25/08 6010B 09/04/08 7440-43-9 Cadmium 08/25/08 6010B 09/04/08 7440-47-3 Chromium 08/25/08 6010B 09/04/08 7440-50-8 Copper 08/25/08 6010B 09/04/08 7439-92-1 Lead 08/25/08 7471A 08/25/08 7439-97-6 Mercury 08/25/08 6010B 09/04/08 7440-02-0 Nickel	Date Method Date CAS Number Analyte RL 08/25/08 6010B 09/04/08 7440-38-2 Arsenic 6 08/25/08 6010B 09/04/08 7440-43-9 Cadmium 0.2 08/25/08 6010B 09/04/08 7440-47-3 Chromium 0.6 08/25/08 6010B 09/04/08 7440-50-8 Copper 0.2 08/25/08 6010B 09/04/08 7439-92-1 Lead 2 08/25/08 7471A 08/25/08 7439-97-6 Mercury 0.05 08/25/08 6010B 09/04/08 7440-02-0 Nickel 1	Date Method Date CAS Number Analyte RL mg/kg-dry 08/25/08 6010B 09/04/08 7440-38-2 Arsenic 6 6 08/25/08 6010B 09/04/08 7440-43-9 Cadmium 0.2 0.2 08/25/08 6010B 09/04/08 7440-47-3 Chromium 0.6 16.1 08/25/08 6010B 09/04/08 7440-50-8 Copper 0.2 13.1 08/25/08 6010B 09/04/08 7439-92-1 Lead 2 2 08/25/08 7471A 08/25/08 7439-97-6 Mercury 0.05 0.05 08/25/08 6010B 09/04/08 7440-02-0 Nickel 1 10

TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45G

LIMS ID: 08-19400

Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Percent Total Solids: 79.7%

Sample ID: EBC-4-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08
Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	6	6	U
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	Ü
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.6	15.4	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	21.4	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	3	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.05	U
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	8	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	25	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45H

LIMS ID: 08-19401

Matrix: Soil

Data Release Authorized

Reported: 09/05/08

Percent Total Solids: 93.6%

Sample ID: EBC-5-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	10	10	U
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.5	0.5	U
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	1	21	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.5	120	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	5	7	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.05	U
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	2	29	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	2	52	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45J

LIMS ID: 08-19403

Matrix: Soil Data Release Authorized

Reported: 09/05/08

Sample ID: EBC-6-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 08/01/08 Date Received: 08/06/08

Percent Total Solids: 92.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	8	
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.3	
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	16.8	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	35.4	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	34	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.05	U
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	15	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	67	

TOTAL METALS Page 1 of 1

Lab Sample ID: NJ45L LIMS ID: 08-19405

Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Percent Total Solids: 92.6%

Sample ID: EBC-7-S1

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
							<u> </u>	
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	30	50	
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	1	4	
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	3	162	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	1	932	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	10	600	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	3.31	
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	5	151	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	5	2,450	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45M

LIMS ID: 08-19406

Matrix: Soil Data Release Authorized

Reported: 09/05/08

Percent Total Solids: 96.7%

Sample ID: EBC-7-S2

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	5	U
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	11.9	•
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	11.1	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	2	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.04	0.04	IJ
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	8	•
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	22	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45N

LIMS ID: 08-19407

Matrix: Soil

Data Release Authorized

Reported: 09/05/08

Percent Total Solids: 95.4%

Sample ID: EBC-8-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	5	Ü
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	Ū
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	11.5	-
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	11.2	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	2	U
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.04	0.04	U
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	8	ŭ
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	20	

TOTAL METALS
Page 1 of 1

Lab Sample ID: NJ450

LIMS ID: 08-19408 Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Sample ID: EBC-9-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08
Date Received: 08/06/08

rercent	Total	Solias:	94.98

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	6	
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.5	
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	26.0	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	80.2	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	83	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.29	
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	21	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	. 1	189	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45P

LIMS ID: 08-19409 Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Percent Total Solids: 94.8%

Sample ID: EBC-10-S1

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	5	IJ
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	IJ
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	11.8	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	10.4	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	2	U
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.04	0.04	Ü
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	7	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	20	

TOTAL METALS Page 1 of 1

Lab Sample ID: NJ45Q LIMS ID: 08-19410

Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Sample ID: EBC-11-S1

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Percent Total Solids: 80.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	6	6	Ü
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	Ü
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.6	12.2	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	11.1	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	2	U
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.06	0.06	Ü
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	8	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	21	

TOTAL METALSPage 1 of 1

Lab Sample ID: NJ45R

LIMS ID: 08-19411

Matrix: Soil
Data Release Authorized

Reported: 09/05/08

ed

Percent Total Solids: 85.1%

Sample ID: EBC-11-S2

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08
Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	F	F.7
	• •					_	5	U
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	13.9	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	10.3	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	2	U
CLP	08/25/08	7471A	08/25/08	7439 - 97-6	Mercury	0.04	0.04	U
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	9	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	21	

TOTAL METALSPage 1 of 1

Lab Sample ID: NJ45S LIMS ID: 08-19412

Matrix: Soil

Data Release Authorized: Reported: 09/05/08

Percent Total Solids: 94.7%

Sample ID: EBC-12-S1 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08
Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	5	U
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	Ū
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	23.7	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	12.9	
30.50B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	3	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.05	U
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	30	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	30	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45U

LIMS ID: 08-19414

Matrix: Soil

Data Release Authorized: Reported: 09/05/08

Percent Total Solids: 92.8%

Sample ID: EBC-13-S1

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
20505	00/05/00	604.0-						
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	6	
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	1.3	
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	29.7	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	83.5	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	140	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.43	
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	. 1	16	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	160	

TOTAL METALS Page 1 of 1

Lab Sample ID: NJ45V

LIMS ID: 08-19415

Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Sample ID: EBC-13-S2 SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/29/08 Date Received: 08/06/08

Percent Total Solids: 93.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	5	5	U
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	0.5	12.7	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.2	11.6	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	2	2	U
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.04	0.04	U
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	1	8	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	1	23	

TOTAL METALSPage 1 of 1

Lab Sample ID: NJ45W LIMS ID: 08-19416

Matrix: Soil

Data Release Authorized: Reported: 09/05/08

Percent Total Solids: 90.9%

Sample ID: EBC-14-S1

SAMPLE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/31/08
Date Received: 08/06/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/04/08	7440-38-2	Arsenic	10	10	U
3050B	08/25/08	6010B	09/04/08	7440-43-9	Cadmium	0.5	0.5	Ü
3050B	08/25/08	6010B	09/04/08	7440-47-3	Chromium	1	26	
3050B	08/25/08	6010B	09/04/08	7440-50-8	Copper	0.5	29.2	
3050B	08/25/08	6010B	09/04/08	7439-92-1	Lead	5	48	
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.05	
3050B	08/25/08	6010B	09/04/08	7440-02-0	Nickel	3	18	
3050B	08/25/08	6010B	09/04/08	7440-66-6	Zinc	3	100	

TOTAL METALS Page 1 of 1

Lab Sample ID: NJ45A LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized

Reported: 09/05/08

Sample ID: EBC-1-S1

MATRIX SPIKE

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	ક	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	6010B	240	440	191	105%	
Cadmium	6010B	3	46	47.8	90.0%	
Chromium	6010B	72	105	47.8	69.0%	N
Copper	6010B	1,630	1,650	47.8	41.8%	Н
Lead	6010B	790	610	191	-94.2%	H
Mercury	7471A	0.49	1.59	0.471	234%	N
Nickel	6010B	50	90	47.8	83.7%	
Zinc	6010B	2,300	2,490	47.8	397%	H

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS Page 1 of 1

Lab Sample ID: NJ45A LIMS ID: 08-19394

Matrix: Soil

Data Release Authorized Reported: 09/05/08

Sample ID: EBC-1-S1 DUPLICATE

QC Report No: NJ45-Hart Crowser, Inc. Project: Pier 23-EBC

17490-01

Date Sampled: 07/30/08 Date Received: 08/06/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	6010B	240	320	28.6%	+/- 50	Γ_*
Cadmium	6010B	3	3	0.0%	+/- 2	L
Chromium	6010B	72	76	5.4%	+/- 20%	
Copper	6010B	1,630	2,080	24.3%	+/- 20%	*
Lead	6010B	790	410	63.3%	+/- 20%	*
Mercury	7471A	0.49	0.49	0.0%	+/- 20%	
Nickel	6010B	50	40	22.2%	+/- 10	L
Zinc	6010B	2,300	2,530	9.5%	+/- 20%	

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45LCS

LIMS ID: 08-19395

Matrix: Soil

Data Release Authorized Reported: 09/05/08

Sample ID: LAB CONTROL

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	6010B	213	200	106%	•
Cadmium	6010B	51.8	50.0	104%	
Chromium	6010B	49.5	50.0	99.0%	
Copper	6010B	52.1	50.0	104%	
Lead	6010B	203	200	102%	
Mercury	7471A	0.96	1.00	96.0%	
Nickel	6010B	50	50	100%	
Zinc	6010B	52	50	104%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NJ45MB

LIMS ID: 08-19395 Matrix: Soil

Data Release Authorized:

Reported: 09/05/08

Sample ID: METHOD BLANK

QC Report No: NJ45-Hart Crowser, Inc.

Project: Pier 23-EBC

17490-01

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	08/25/08	6010B	09/03/08	7440-38-2	Arsenic	5	5	Ū.
3050B	08/25/08	6010B	09/03/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	08/25/08	6010B	09/03/08	7440-47-3	Chromium	0.5	0.5	U
3050B	08/25/08	6010B	09/03/08	7440-50-8	Copper	0.2	0.2	Ü
3050B	08/25/08	6010B	09/03/08	7439-92-1	Lead	2	2	U
CLP	08/25/08	7471A	08/25/08	7439-97-6	Mercury	0.05	0.05	U
3050B	08/25/08	6010B	09/03/08	7440-02-0	Nickel	1	1	U
3050B	08/25/08	6010B	09/03/08	7440-66-6	Zinc	1	1	Ü

CERTIFICATES OF ANALYSIS COLUMBIA ANALYTICAL SERVICES JOB NO. K0807445 AND K0807486

September 9, 2008

Analytical Report for Service Request No: K0807445

Kelly Bottem Analytical Resources, Incorporated 4611 So. 134th Place Suite 100 Tukwila, WA 98168

Pier 23-EBC RE:

Dear Kelly:

Enclosed are the results of the samples submitted to our laboratory on August 07, 2008. For your reference, these analyses have been assigned our service request number K0807445.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Pradeep Divvela **Project Chemist**

PD/II

Page 1 of 35

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	_

Case Narrative

Client:

Analytical Resources, Incorporated

Service Request No.:

K0807445

Project:

Pier 23-EBC

Date Received:

08/17/2008

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three water samples were received for analysis at Columbia Analytical Services on 08/07/2008. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Holding Time Exceptions:

Samples EBC-1, EBC-3, and EBC-4 were received past the recommended holding time for filtration prior to analysis of Mercury via method 1631. The filtration was performed as soon as possible after receipt by the laboratory.

No other anomalies associated with the analysis of these samples were observed

N

00/10/03

Chain of Custody Documentation

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 08/12/08

ARI Project: NI87

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street ARI PM: KELLY BOTTEM

Kelso, WA 98626 Phone: 360-577-7222 Phone: 206-695-6211 Fax: 206-695-6201

Project ID: PIER 23-EBC

Fax: 360-636-1068

Analytical Protocol: In-house Requested Turn A

Special Instructions:

Requested Turn Around: 05/30/08
Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses	
08-18787-NI87A		, ,	Water	4	Metals (Sub) Low Level Hg	(Sub)
08-18788-NI87B	tions: T-LL HG, T-AS CD		NI ZN 	4	Metals (Sub)	
	tions: T-LL HG, T-AS CD			'1	Low Level Hg	(Sub)
	EBC-4	. , ,	Water ZN&LL HG	10	Metals (Sub) Low Level Hg	(Sub)
08-18791-NI87E Special Instruct	EBC-1 zions: D-AS CD CR CU PB	. , ,	Water HG	2	Metals (Sub) Low Level Hg	(Sub)
08-18792-NI87F		07/30/08	Water	2	Metals (Sub) Low Level Hg	(Sub)
08-18793-NI87G	EBC-4 ions: MS/MSD D-AS CD C	07/30/08	Water	6	Metals (Sub) Low Level Hg	(Sub)

	Carrier	Airbill 12832	69503 4432 1230	Date 8/12/02
5	Relinquished by	Company	Pate 8/12/08	Time 1602
	Received by	Company Cas	Date/13/08	Time 1030

SUBCONTRACTOR ANALYSIS REQUEST

CUSTODY TRANSFER 08/05/08

ARI Project: NI87

10807445

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street

Kelso, WA 98626 Phone: 360-577-7222 Fax: 360-636-1068

Project ID: PIER 23-EBC ARI PM: KELLY BOTTEM Phone: 206-695-6211

Fax: 206-695-6201

Analytical Protocol: In-house Requested Turn Around: 05/30/08 Special Instructions: Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses	
08-18787-NI87A	A E3C-1	07/30/08	Water	4	Metals (Sub) Low Level Hg	(Sub)
Special Instru	actions: T-LL HG, T-AS C	D CR CU PB	NI ZN		now never my	(Dub)
08-18788-NI87E	B E3C-3	07/30/08	Water	4	Metals (Sub) Low Level Hg	(Sub)
Special Instru	ections: T-LL HG, T-AS C	O CR CU PB	ZN		now hever mg	(Sub)
08-18789-NI870	E3C-4	07/30/08	Water	10	Metals (Sub)	/Carlo \
Special Instru	ctions: MS/MSD T-AS CO	CR CU PB NI	I ZN&LL HG		Low Level Hg	(Sub)
08-18791-NI87E	E3C-1	07/30/08	Water	2	Metals (Sub)	/ C1- \
Special Instru	ctions: D-AS CD CR CU PE	3 NI ZN&LL	HG		Low Level Hg	(Sup)
08-18792-NI87F	E3C-3	07/30/08	Water	2	Metals (Sub)	/ C - 1- \
Special Instru	ctions: D-AS CD CR CU PE	3 NI ZN&LL	HG		Low Level Hg	(Sub)
08-18793-NI87F	E3C-14	07/30/08	Water	6	Metals (Sub)	(0.1.)
Special Instru	ctions: MS/MSD D-AS CO (CR CU PB NI	ZN&LL HG		Low Level Hg	(Sup)

only Rec'd 6 bottles	for EBC-3		
Reed ac for EBC-	4. 16 bottles total	l	
CarrierUPS	Airbill 1Z832695-03	4458 1978	Date /02
Relinquished by	PAN	Dat# /6/02	Time 1600
Received by flair	Comp. any	Da'te/7/08	Time (030)

Subcentractor Custody Form - N187 Page 1 of 1

Cooler Receipt and Preservation Form 2500005 Service Request K08Client / Project: Opened: Received: Fed Ex UPS DHL. GHGSPDXCourier Hand Delivered Samples were received via? US Mail Samples were received in: (circle) Cooper BoxEnvelope Other N If yes, how many and where? NA 3. Were custody seals on coolers? If present, were they signed and dated? Ϋ. If present, were custody seals intact? N Is shipper's air-bill filed? If not, record air-bill number: NA 1Z832695034432 1230 -XCV5SAP WAKEL105 Aug 13 07 45:31 200 ть эрал шэр 7 л а тытииол -7.4 Temperature of cooler(s) upon receipt (°C): Temperature Blank (°C): If applicable, list Chain of Custody Numbers: Bubble Wrap Gel Packs Well Ice Sleeves Other Packing material used. Inserts Baggies 0 Were custody papers properly filled out (ink, signed, etc.)? NA N 8. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? NA Y) N 10. Y) Did all sample labels and tags agree with custody papers? Indicate in the table below NA N Were appropriate bottles/containers and volumes received for the tests indicated? NA N Were the pH-preserved bottles tested* received at the appropriate pH? Indicate in the table below NA Υ N Were VOA vials and 1631 Mercury bottles received without headspace? Indicate in the table below. NA Υ N Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection? ŃΆ Y N N 16. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC Out of Head-Volume Reagent Lot Bottle Number Initials рΗ Reagent added Bottle Type | Temp | space | Broken Sample ID Count *Does not include all pH preserved sample aliquots received. See sample receiving SOP (SMO-GEN) Additional Notes, Discrepancies, & Resolutions:

Columbia Analytical Services, Inc.

2

PC

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC /

Cli	ient / Project: A 21			X.		_Service	e Requ	est <i>K08</i>		44)		
Re	ceived: \$17108	Opened:	8/7/08	<u>.</u>	В	y:_ <u>b.</u> ī							
1. 2. 3.	Samples were received via? Samples were received in: (circle Were <u>custody seals</u> on coolers?	US Mail e) Coo	Fed Ex oler Bo	UPS x N	Envel	ope	<i>GH Other</i> many a		DX Cour		and De	livered	
	If present, were custody seals int	act?	\bigcirc	N				they signed			(Y)	N	
4.	Is shipper's air-bill filed? If not,	record air-	bill number:_	12	832	- 69	5 03	3 445	7 197	F NA	Ø	N	
5.	Temperature of cooler(s) upon	receipt (°C	C):	5.0	No obligation								
	Temperature Blank (°C):		na contraction de la contracti					Name of the last o		M-100-100-100-100-100-100-100-100-100-10		erronamon	
6.	If applicable, list Chain of Custoo	·	A STATE OF THE PERSON NAMED IN COLUMN TO PER		NATIONAL PROPERTY.					***			
7.	Packing material used. <i>Inserts</i>		A STATE OF THE PARTY OF THE PAR		el Pác	ks Wei	t Ice S	Sleeves Oi	ther		~		
8.	The springer of the second control of the se												
9. 10.													
10.													
12.													
13.													
14.	Were VOA vials and 1631 Merc		• •	•	•				w.	(NA)	Y	N	
15.	Are CWA Microbiology sampl	•			•					(NA)	Y	N	
16.	Was C12/Res negative?									(NA)	Y	Ν	
	Sample ID on Bottle	Samp	le ID on COC			Sample	e ID on E	3ottle	Sa	imple ID or	1 COC		
-										AND THE RESIDENCE OF THE PARTY			

	Sample ID	Bottle Count	Bottle Type	1	Head- space	Broken	рН	Reagent	Volume added	Reagen Numb		Initials	
					The state of the s								
	s not include all pH preserved sample aliq litional Notes, Discrepancies, &			reiving S	OP (SM	O-GEN).							
	,									1		***************************************	
											***************************************	***************************************	

Metals

Analytical Report

Client: Analytical Resources, Incorporated

Service Request: K0807445 Date Collected: 07/30/08 Project: Pier 23-EBC Sample Matrix: Date Received: 08/07/08 Water

Mercury, Dissolved

Prep Method: Units: ng/L METHOD Analysis Method: Basis: NA 1631E

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-1	K0807445-001 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-3	K0807445-002 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-4	K0807445-003 DISS	1.0	1	08/18/08	08/22/08	ND	
Method Blank 1	K0807445-MB1	1.0	1	08/18/08	08/22/08	ND	
Method Blank 2	K0807445-MB2	1.0	1	08/18/08	08/22/08	ND	
Method Blank 3	K0807445-MB3	1.0	1	08/18/08	08/22/08	ND	

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix:

Water

Service Request: K0807445

Date Collected: NA

Date Received: NA

Date Extracted: 08/18/08 Date Analyzed: 08/22/08

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code:

K0807759-001S,

K0807759-001SD

Units: ng/L

Basis: NA

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike I	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	1.0	25	25	ND	29.3		117	113	71-125	3	riotes

QA/QC Report

Client: Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA

LCS Matrix:

Water

Date Received: NA **Date Extracted:** NA

Date Extracted: NA
Date Analyzed: 08/22/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.28	106	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA

LCS Matrix:

Water

Date Received: NA
Date Extracted: NA

Date Analyzed: 08/22/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

					CAS Percent Recovery					
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes			
Mercury	METHOD	1631E	5.00	4.34	87	77-123				

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA

LCS Matrix:

Water

Date Received: NA Date Extracted: NA

Date Analyzed: 08/22/08

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/L Basis: NA

Test Notes:

CAS Percent

Recovery Prep Analysis True Percent Acceptance Result Method Analyte Method Value Result Recovery Limits Notes METHOD 1631E 77-123 Mercury 5.00 5.72 114

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water

Service Request: K0807445 Date Collected: 07/30/08 Date Received: 08/07/08

Mercury, Total

Prep Method:

METHOD

Analysis Method: 1631E

Units: ng/L Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-1	K0807445-001	5.0	5	08/13/08	08/15/08	41.0	
EBC-3	K0807445-002	1.0	1	08/13/08	08/15/08	11.7	
EBC-4	K0807445-003	1.0	1	08/13/08	08/15/08	2.9	**
Method Blank 1	K0807445-MB1	1.0	1	08/13/08	08/15/08	ND	
Method Blank 2	K0807445-MB2	1.0	1	08/13/08	08/15/08	ND	
Method Blank 3	K0807445-MB3	1.0	1	08/13/08	08/15/08	ND	

QA/QC Report

Client:

Analytical Resources, Incorporated

Project:

Sample Matrix:

Pier 23-EBC

Water

Service Request: K0807445

Date Collected: 07/30/08 Date Received: 08/07/08

Date Extracted: 08/13/08

Date Analyzed: 08/15/08

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

EBC-4

K0807445-003S,

K0807445-003SD

Units: ng/L

Basis: NA

Lab Code: Test Notes:

Percent Recovery

	Prep	Analysis		•		Sample	_				CAS Acceptance		Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	1.0	25	25	2.9	29.1	29.5	105	106	71-125	1	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA **Date Received:** NA

LCS Matrix:

Water

Date Extracted: NA

Date Analyzed: 08/15/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.94	99	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA Date Received: NA

LCS Matrix: Water

Date Extracted: NA

Date Analyzed: 08/15/08

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.64	93	77-123	

QA/QC Report

Client:

Analytical Resources, Incorporated

Service Request: K0807445

Project:

Pier 23-EBC

Date Collected: NA
Date Received: NA

LCS Matrix:

Water

Date Extracted: NA
Date Analyzed: 08/15/08

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/L

Basis: NA

		Analysis Method	True Value			CAS Percent	
Analyte	Prep Method			Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.24	105	77-123	

Columbia Analytical Services

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporated

Project Name: Project No.:

Pier 23-EBC

Service Request: K0807445

Sample Name:	Lab Code:
EBC-1	K0807445-001
EBC-1	K0807445-001 DISS
EBC-3	K0807445-002
EBC-3	K0807445-002 DISS
EBC-4	K0807445-003
EBC-4	K0807445-003 DISS
EBC-4D	K0807445-003D
EBC-4D	K0807445-003D DISS
EBC-4S	K0807445-003S
EBC-4S	K0807445-003S DISS
Method Blank	K0807445-MB

Comments:

Approved By:

Date:

Metals

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

Date Collected:

7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

EBC-1

Lab Code:

K0807445-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.55	5.0	08/27/08	09/03/08	2.55	U	
Cadmium	200.8	0.102	5.0	08/27/08	09/03/08	0.102	U	
Chromium	200.8	1.02	5.0	08/27/08	09/03/08	23.6		
Copper	200.8	0.5	5.0	08/27/08	09/03/08	20.5		
Lead	200.8	0.102	5.0	08/27/08	09/03/08	5.890		
Nickel	200.8	1.0	5.0	08/27/08	09/03/08	15.1		
Zinc	200.8	2.6	5.0	08/27/08	09/03/08	53.3		

% Solids:

0.0

Comments:

Metals

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807445

Project No.: NA Date Collected: 7/30/2008

Project Name: Pier 23-EBC Date Received: 8/7/2008

Matrix: WATER Units: ug/L

Basis: N/A

Sample Name: EBC-1 Lab Code: K0807445-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.022		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	5.60		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.8		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	1.160		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	4.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	8.4		

% Solids: 0.0

Comments:

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

Date Collected: 7/30/2008

Project Name: Pier 23-EBC

Date Received: 8/7/2008

Matrix:

WATER

Units: ug/L

N/A

Basis:

Sample Name:

EBC-3

Lab Code: K0807445-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.56	5.0	08/27/08	09/03/08	2.56	U	
Cadmium	200.8	0.103	5.0	08/27/08	09/03/08	0.424	•	
Chromium	200.8	1.03	5.0	08/27/08	09/03/08	31.6		
Copper	200.8	0.5	5.0	08/27/08	09/03/08	17.8		
Lead	200.8	0.103	5.0	08/27/08	09/03/08	7,100		
Nickel	200.8	1.0	5.0	08/27/08	09/03/08	22.6		
Zinc	200.8	2.6	5.0	08/27/08	09/03/08	52.5		

% Solids:

0.0

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807445

Project No.: NA Date Collected: 7/30/2008

Project Name: Pier 23-EBC Date Received: 8/7/2008

Matrix: WATER Units: ug/L

Basis: N/A

Sample Name: EBC-3 Lab Code: K0807445-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.90		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	1.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	1.8		

% Solids: 0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request:

K0807445

Project No.:

Date Collected: 7/30/2008

Project Name: Pier 23-EBC

NA

Date Received: 8/7/2008

Matrix:

WATER

Units:

ug/L

N/A

Basis:

Sample Name:

EBC-4

Lab Code:

K0807445-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.51	1.0	08/27/08	09/02/08	0.51	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.040		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	4.07		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	5.2		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	1.500		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	4.0		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	6.6		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

Date Collected: 7/30/2008

Project Name: Pier 23-EBC

Date Received:

8/7/2008

Matrix:

WATER

Units:

ug/L

Basis: N/A

Sample Name:

EBC-4

Lab Code:

K0807445-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	U	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.3		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	U	

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.: NA

Date Collected:

Project Name: Pier 23-EBC

Date Received:

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

Method Blank

Lab Code:

K0807445-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	U	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	Ū	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.2	Ū	
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	Ū	

% Solids:

0.0

- 5A -

SPIKE SAMPLE RECOVERY

Analytical Resources, Incorporat Client:

Service Request: K0807445

Units:

Project No.:

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids:

0.0

UG/L

Sample Name:

EBC-4S

Lab Code: K0807445-003S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	50 - 147	1.58	0.51 บ	2.04	77.5		200.8
Cadmium	65 - 114	1.940	0.040	2.04	93.1		200.8
Chromium	50 - 130	6.18	4.07	2.04	103.4		200.8
Copper	50 - 120	6.7	5.2	2.04	73.5		200.8
Lead	55 - 118	3.450	1.500	2.04	95.6		200.8
Nickel	60 - 126	5.9	4.0	2.04	93.1		200.8
Zinc	50 - 133	8.1	6.6	2.04	73.5		200.8

- 5A -

SPIKE SAMPLE RECOVERY

Client: Analytical Resources, Incorporat

Service Request: K0807445

Project No.: NA

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids: 0.0

Sample Name: EBC-4S

Lab Code: K0807445-003S DISS

Analyte	Control Limit %R	Spike Result C	Sample Result	C Spike Added	%R	Q	Method
Arsenic	50 - 147	1.75	0.50	2.00	87.5		200.8
Cadmium	65 - 114	1.910	0.020	2.00	95.5		200.8
Chromium	50 - 130	2.18	0.20	2.00	109.0		200.8
Copper	50 - 120	1.9	0.1	2.00	95.0		200.8
Lead	55 - 118	1.970	0.020	2.00	98.5		200.8
Nickel	60 - 126	2.3	0.3	2.00	100.0		200.8
Zinc	50 - 133	2.2	0.5	2.00	110.0		200.8

- 6 -

DUPLICATES

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

WATER

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

TICE 25 DD

% Solids: 0.0

Sample Name:

EBC-4D

Lab Code:

K0807445-003D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.51	U	0.51	U			200.8
Cadmium		0.040		0.030		28.6		200.8
Chromium	20	4.07		4.22		3.6		200.8
Copper	20	5.2		5.2		0.0		200.8
Lead	20	1.500		1.520		1.3		200.8
Nickel	20	4.0		4.0		0.0		200.8
Zinc	20	6.6		6.7		1.5		200.8

- 6 -

DUPLICATES

Client:

Analytical Resources, Incorporat

Service Request: K0807445

Project No.:

NA

Units: UG/L

Project Name: Pier 23-EBC

Basis: N/A

Matrix:

WATER

% Solids: 0.0

Sample Name:

EBC-4D

Lab Code:

K0807445-003D DISS

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.50	U	0.50	Ū		***************************************	200.8
Cadmium		0.020	υ	- 0.020	U			200.8
Chromium		0.20	U	0.20	Ū			200.8
Copper		0.1	U	0.1	Ū			200.8
Lead		0.020	U	0.020	Ū			200.8
Nickel		0.3		0.3		0.0		200.8
Zinc		0.5	υ	0.5	U			200.8

-7-

LABORATORY CONTROL SAMPLE

Client:

Analytical Resources, Incorporat Service Request: K0807445

Project No.:

NA

Project Name: Pier 23-EBC

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueou	Aqueous (ug/L)			Solid (mg/kg)			
Analyte	True	Found	%R	True	Found	С	Limits	%R
Arsenic	<u> </u>	1.84	92.0					
Cadmium	1 2	1.950	97.5					
Chromium	2	2.03	101.5					
Copper	2	2.0	100.0		1			
Lead	2	2.040	102.0					
Nickel	2	2.1	105.0					
Zinc	2	2.0	100.0					

September 9, 2008

Analytical Report for Service Request No: K0807486

Kelly Bottem Analytical Resources, Incorporated 4611 So. 134th Place Suite 100 Tukwila, WA 98168

RE: Pier 23-EBC

Dear Kelly:

Enclosed are the results of the samples submitted to our laboratory on August 11, 2008. For your reference, these analyses have been assigned our service request number K0807486.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at PDivvela@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

dollas

Pradeep Divvela Project Chemist

PD/11

Page 1 of 19

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

COLUMBIA ANALYTICAL SERVICES, INC.

Client:

Analytical Resources, Incorporated

Service Request No.:

K0807486

Project:

Pier 23-EBC

Water

Date Received:

08/11/2008

Sample Matrix:

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Four water samples were received for analysis at Columbia Analytical Services on 08/11/2008. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Holding Time Exceptions:

Samples EBC-2, EBC-5, EBC-6, and EBC-16 were received past the recommended holding time for filtration prior to analysis of Mercury via method 1631. The filtration was performed as soon as possible after receipt by the laboratory.

No other anomalies associated with the analysis of these samples were observed

	No.	ogholol	
Approved by	*	Date	

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water Service Request: K0807486

Date Collected: 07/31-08/01/08

Date Received: 08/11/08

Mercury, Total

Prep Method:

METHOD

Analysis Method: 1631E

Units: ng/L Basis: NA

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-2	K0807486-001	5.0	5	08/13/08	08/15/08	87.8	
EBC-5	K0807486-002	5.0	5	08/13/08	08/15/08	66.8	
EBC-6	K0807486-003	1.0	1	08/13/08	08/15/08	3.5	
EBC-16	K0807486-004	1.0	1	08/13/08	08/15/08	3.6	
Method Blank 1	K0807486-MB1	1.0	1	08/13/08	08/15/08	ND	
Method Blank 2	K0807486-MB2	1.0	1	08/13/08	08/15/08	ND	
Method Blank 3	K0807486-MB3	1.0	1	08/13/08	08/15/08	ND	

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

Analytical Resources, Incorporated

Project:

Pier 23-EBC

Sample Matrix: Water Service Request: K0807486

Date Collected: 07/31-08/08/08

Date Received: 08/11/08

Mercury, Dissolved

Prep Method:

Test Notes:

METHOD

Analysis Method:

1631E

Units: ng/L Basis: NA

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
EBC-2	K0807486-001 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-5	K0807486-002 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-6	K0807486-003 DISS	1.0	1	08/18/08	08/22/08	ND	
EBC-16	K0807486-004 DISS	1.0	1	08/18/08	08/22/08	ND	
Method Blank 1	K0807486-MB1	1.0	1	08/18/08	08/22/08	ND	
Method Blank 2	K0807486-MB2	1.0	1	08/18/08	08/22/08	ND	
Method Blank 3	K0807486-MB3	1.0	1	08/18/08	08/22/08	ND	

Columbia Analytical Services

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

Comments:

Approved By:

Analytical Resources, Incorporated

Project Name: Project No.: Pier 23-EBC

ject value. Tiel 25-Ei

Service Request: K0807486

Sample Name:	Lab Code:
EBC-2	K0807486-001
EBC-2	K0807486-001 DISS
EBC-5	K0807486-002
EBC-5	K0807486-002 DISS
EBC-6	K0807486-003
EBC-6	K0807486-003 DISS
EBC-16	K0807486-004
EBC-16	K0807486-004 DISS
Method Blank	K0807486-MB

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat

Service Request: K0807486

Project No.: NA

Date Collected: 7/31/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-2

Lab Code:

K0807486-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.51	1.0	08/27/08	09/02/08	0.51	U	
Cadmium	200.8	0.021	1.0	08/27/08	09/02/08	0.028		
Chromium	200.8	0.21	1.0	08/27/08	09/02/08	5.65		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	4.4		
Lead	200.8	0.021	1.0	08/27/08	09/02/08	1.730		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	6.2		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	9.8		

% Solids:

Comments:

0.0

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

NA

Date Collected:

7/31/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

ug/L N/A

Units: Basis:

Sample Name:

EBC-2

Lab Code:

K0807486-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.40		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.2		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.133		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	1.2		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	3.0		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

Date Collected:

8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

EBC-5

Lab Code: K0807486-002

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	2.98	- 2.98	5.0	08/27/08	09/03/08	3.27		
Cadmium	200.8	0.119	0.119	5.0	08/27/08	09/03/08	0.485		
Chromium	200.8	1.19	1.19	5.0	08/27/08	09/03/08	41.4		
Copper	200.8	0.6	0.6	5.0	08/27/08	09/03/08	13.9		
Lead	200.8	0.119	0.119	5.0	08/27/08	09/03/08	2.890		
Nickel	200.8	1.2	1.2	5.0	08/27/08	09/03/08	153		
Zinc	200.8	3.0	3.0	5.0	08/27/08	09/03/08	201		

% Solids:

0.0

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

NA

Date Collected:

8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

ug/L

Units: Basis: N/A

Sample Name:

EBC-5

Lab Code:

K0807486-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.71		
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.023		
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.98		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.1		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.702		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	3.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	4.7		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807486

Project No.: NA

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received: 8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-6

Lab Code:

K0807486-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	- 0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	2.46		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	3.1		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.747		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	2.7		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	9.2		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807486

Project No.: NA

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

N/A Basis:

Sample Name:

EBC-6

Lab Code:

K0807486-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ŭ	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	U	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.26		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.3		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.035		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	1.0		

% Solids:

0.0

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client:

Analytical Resources, Incorporat

Service Request: K0807486

Project No.:

NA

Date Collected:

8/1/2008

Project Name: Pier 23-EBC

....

Date Received:

8/11/2008

Matrix:

WATER

Units:

ug/L

Basis:

is: N/A

Sample Name:

EBC-16

Lab Code:

K0807486-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	Ū	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	1.97		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	2.8		
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.656		
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	2.4		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	5.6		

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat

Service Request: K0807486

Project No.: NA

Date Collected: 8/1/2008

Project Name: Pier 23-EBC

Date Received:

8/11/2008

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

EBC-16

Lab Code:

K0807486-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.25		
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	Ū	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.6		
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	U	

% Solids:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Analytical Resources, Incorporat Service Request: K0807486

Project No.: NA

Date Collected:

Project Name: Pier 23-EBC

Date Received:

Matrix:

WATER

Units: ug/L

Basis: N/A

Sample Name:

Method Blank

Lab Code:

K0807486-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.50	1.0	08/27/08	09/02/08	0.50	U	
Cadmium	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ü	
Chromium	200.8	0.20	1.0	08/27/08	09/02/08	0.20	Ū	
Copper	200.8	0.1	1.0	08/27/08	09/02/08	0.1	U	
Lead	200.8	0.020	1.0	08/27/08	09/02/08	0.020	Ū	
Nickel	200.8	0.2	1.0	08/27/08	09/02/08	0.2	Ü	
Zinc	200.8	0.5	1.0	08/27/08	09/02/08	0.5	Ü	

% Solids:

0.0

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form PC YV

Client / Project: Har	+	Jrows	,er	AR	L ervice	Reque	est <i>K08</i> () (L	180		
Received: 8-11-8	Opened:	8-11-	8	Ву	: <u>\</u>	\mathcal{N}					
 Samples were received via? Samples were received in: (circle Were <u>custody seals</u> on coolers? 	US Mail) Coo NA		UPS D	Envelo	pe	GH Other_ nany ar	GS PDX	Couri		nd Deli NA	ivered
If present, were custody seals inta		Y	ACHIP.	-			they signed and			Y	N
4. Is shipper's air-bill filed? If not,	record air-b	ill number:	12	832	695	52	451874	69	NA	(A)	Ν
5. Temperature of cooler(s) upon	receipt (°C):	\$.	<u></u>							
Temperature Blank (°C):					Marine State		The state of the s				
6. If applicable, list Chain of Custoo					**/	· · ·	71		***************************************		
7. Packing material used. <i>Inserts</i>		Bubble Wi	•	I Pack	is wet	ice s	Sleeves Other_		NA	Y	
8. Were custody papers properly fill				in the	table bel				NA	T)	N
	Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 10. Were all sample labels complete (i.e analysis, preservation, etc.)?							NA	Ø	N	
					he table l	nelow			NA	Ŕ	N
									NA	(P)	N
12. Were appropriate bottles/containers and volumes received for the tests indicated? 13. Were the pH-preserved bottles tested* received at the appropriate pH? Indicate in the table below							NA	Ó	N		
13. Were the pH-preserved bottles te14. Were VOA vials and 1631 Merc									MA	Y	Ν
15. Are CWA Microbiology sampl								n?	NA	Y	Ν
16. Was C12/Res negative?				•		Ų.			MA	Y	N
Sample ID on Bottle	Samn	le ID on COC		A CONTRACTOR OF THE CONTRACTOR	Sample	ID on E	3ottle	Sa	mple ID on	coc	yy (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Sample ib on Bottle	,	·									
Sample ID	Bottle Count	Bottle Type		Head- space	Broken	рН	Reagent	Volume added	Reagen Numb		Initials
		Acres (I)	/				and the second second				
							-,				
1											
*Does not include all pH preserved sample ali	quots received	. See sample red	ceiving S	OP (SM	O-GEN).	at	cianed				
*Does not include all pH preserved sample ali Additional Notes, Discrepancies,	quots received & Resolut	! See sample red ions:	ceiving S	OP (SM	O-GEN). V	cot	signed				

ARI Project: NJ87

Laboratory: Columbia Analytical Services Inc. ARI Client: HART CROWSER, INC.

Lab Contact: Ed Wallace

Lab Address: 1317 South 13th Street

Kelso, WA 98626 Phone: 360-577-7222 ARI PM: KELLY BOTTEM
Phone: 206-695-6211
Fax: 206-695-6201

Project ID: PIER 23-EBC

Fax: 360-636-1068

Analytical Protocol: In-house

Special Instructions:

Requested Turn Around: 08/22/08
Fax Results (Y/N): email

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

ARI ID	Client ID/ Add'l ID	Sampled	Matrix	Bottles	Analyses
08-19934-NJ87A	EBC-2	07/31/08	Water	6	Metals (Sub)
Special Instruc	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn,Hg]		Low Level Hg (Sub)
08-19935-NJ87B	EBC-5	08/01/08	Water	6	Metals (Sub)
Special Instruc	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ni,	Zn,Hg]		Low Level Hg (Sub)
08-19936-NJ87C	EBC-6	08/01/08	Water	6	Metals (Sub)
Special Instruct	tions: TOT/DIS[As,Cd,Cr	,Cu,Pb,Ní,	Zn,Hg]		Low Level Hg (Sub)
08-19937-NJ87D	EBC-16	08/01/08	Water	6	Metals (Sub)
Special Instruct	tions: TOT/DIS[As,Cd,Cr	Cu,Pb,Ni,	Zn,Hg]		Low Level Hg (Sub)

Carrier		Airbill	Date		
Relinquished by	Company		Date	TOWNSON STANSON AND	Time
Received by	Company	4 S	Date 8-11-6		Time /NBD