CELLS 3 AND 4 INTERIM ACTION WORK PLAN

FORMER PACIFIC WOOD TREATING CORPORATION

Prepared for

PORT OF RIDGEFIELD

LAKE RIVER INDUSTRIAL SITE May 27, 2010 Project No. 9003.01.20

Prepared by Maul Foster & Alongi, Inc. 7223 NE Hazel Dell Avenue, Suite B Vancouver, WA 98665

[THIS PAGE INTENTIONALLY LEFT BLANK.]

CELLS 3 AND 4 INTERIM ACTION WORK PLAN

FORMER PACIFIC WOOD TREATING CORPORATION

The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Jennifer King, PE Project Engineer

Alan R. Hughes, LG Project Geologist [THIS PAGE INTENTIONALLY LEFT BLANK.]

TABLES AND ILLUSTRATIONS VII						
ACRONYMS AND ABBREVIATIONS IX						
1	INTRODUCTION					
2	SITE DESC 2.1 2.2	CRIPTION AND OVERVIEW LOCATION AND BACKGROUND OVERVIEW OF HISTORICAL OPERATIONS AND IMPACTS	2-1 2-1 2-1			
3	SOIL EVA 3.1 3.2	LUATION OVERVIEW OF SOIL INVESTIGATIONS AT LRIS COMPARISON OF SOIL ANALYTICAL RESULTS TO METHOD C CULS	3-1 3-1 3-1			
	3.3	METHOD B CULS	3-2			
4	SITE PREP. 4.1 4.2 4.3 4.4 4.5 4.6	ARATION SURVEYING AND MOBILIZATION WORK ON PROPERTY NOT OWNED BY PORT SOIL EXCAVATION AND MANAGEMENT BACKFILLING SUBGRADE PREPARATION HEALTH AND SAFETY PROCEDURES	4-1 4-1 4-2 4-5 4-6 4-8			
5	Soil Plac 5.1 5.2	CEMENT ON CELLS 3 AND 4 UPLAND CAPPING WORK ON PROPERTY NOT OWNED BY PORT	5-1 5-1 5-2			
6	APPLICABLE, RELEVANT, AND APPROPRIATE REQUIREMENTS 6-					
7	SCHEDULE 7-					
LIMITATIONS						
REFERENCES						
FIGURES						
APPENDIX A LETTER FROM L. KLASNER, RE: ECOLOGY COMMENTS ON THE DRAFT CELL 4 REMEDIAL INVESTIGATION AND FEASIBILITY STUDY, DATED JUNE 4, 2009						
APPENDIX B						

LETTER FROM L. KLASNER, RE: ECOLOGY APPROVAL OF SOIL ACCEPTANCE, DATED JULY 17, 2009

APPENDIX C

FIGURES FROM CELL 3 RI/RA REPORT (4-10 THROUGH 4-12) FIGURE FROM DRAFT CELL 4 RI/FS REPORT (5-5) APPENDIX D

ANALYTICAL DATA – SOIL GENERATED FROM GROUNDWATER INVESTIGATION

APPENDIX E

ANALYTICAL DATA - SOIL FROM CITY STOCKPILE

APPENDIX F

CELLS 3 AND 4 INTERIM ACTION PLAN, PREPARED BY GROUP MACKENZIE

APPENDIX G

ECOLOGY-APPROVED PLANTING LIST

APPENDIX H

SEPA CHECKLIST

PAGE 4-2

TABLE

IN REPORT:

4-1 PROPOSED EXCAVATION AREAS

FIGURES

- 1-1 SITE LOCATION
- 4-1 PROPOSED CELL 3 SOIL REMOVAL INTERIM ACTION LOCATIONS
- 4-2 PROPOSED CELL 4 SOIL REMOVAL INTERIM ACTION LOCATIONS

[THIS PAGE INTENTIONALLY LEFT BLANK.]

bgs	below ground surface
BNSF	BNSF Railroad
CFR	Code of Federal Regulations
Chem Waste Landfill	Chemical Waste Management, Subtitle C landfill
City	City of Ridgefield
сРА́Н	carcinogenic polycyclic aromatic hydrocarbon
CUL	cleanup level
dioxins/furans	chlorinated dibenzo-p-dioxins and dibenzofurans
Ecology	Washington State Department of Ecology
FS	feasibility study
IHS	indicator hazardous substance
LRIS	Lake River Industrial Site
MFA	Maul Foster & Alongi, Inc.
mg/kg	milligrams per kilogram
MTCA	Model Toxics Control Act
µg/kg	micrograms per kilogram
ng/kg	nanograms per kilogram
OHW	ordinary high water
Order	Agreed Order No. 01TCPSR-3119
OSHA	Occupational Safety and Health Act
Pace	Pace Analytical Services, Inc.
РАН	polycyclic aromatic hydrocarbon
Plan	this interim action work plan
Port	Port of Ridgefield
PWT	Pacific Wood Treating Corporation
RA	risk assessment
RCW	Revised Code of Washington
REL	remediation level
RI	remedial investigation
SEPA	State Environmental Policy Act
SWPPP	stormwater pollution prevention plan
TEC	toxicity equivalent concentration
TEE	terrestrial ecological evaluation
UP	Union Pacific Railroad
USEPA	U.S. Environmental Protection Agency
WAC	Washington Administrative Code
WSDOT	Washington State Department of Transportation

On behalf of the Port of Ridgefield (Port), Maul Foster & Alongi, Inc. (MFA) has prepared this interim action work plan (Plan) to remove selected areas of soil from Cells 3 and 4 and complete soil grading and capping on Cells 3 and 4 at the Port's Lake River Industrial Site (LRIS) (see Figure 1-1). This work is being conducted in accordance with the requirements of Washington State Department of Ecology (Ecology) Agreed Order No. 01TCPSR-3119 (the Order) and the interim action requirements provided in the Model Toxics Control Act (MTCA), Washington Administrative Code (WAC) 173-340-430.

This Plan includes an evaluation that compares soil sampling data collected at the LRIS to MTCA Method C cleanup levels (CULs) identified as site-specific remediation levels in the draft Cell 3 feasibility study (FS) (MFA, 2008a) and draft Cell 4 remedial investigation (RI) and FS (MFA, 2009b). The response from Ecology regarding the Cell 4 RI/FS did not raise any issues with the proposed remediation levels (Appendix A).

For the purposes of this Plan, the areas where concentrations of chemicals in soil exceed Method C CULs are identified as "hot spots." The hot spots are areas of unsaturated soil that will be excavated and disposed of off site as the interim action.

Excavated soil will be disposed of at Chemical Waste Management, a Subtitle C landfill in Arlington, Oregon (Chem Waste Landfill) or the Aragonite incineration facility in Aragonite, Utah, depending on the results from the waste profiling.

This Plan describes the placement of a soil cap on Cells 3 and 4, as evaluated in the draft Cell 3 FS (MFA, 2008a) and draft Cell 4 RI/FS (MFA, 2009b) and identified as a component of the preferred remedial action. Soil from the new Interstate 5 interchange currently being constructed at Exit 14 (269th Street) is being provided by the Washington State Department of Transportation (WSDOT). This soil was analyzed for chemicals of concern and was approved by Ecology for use as clean fill (Appendix B).

2.1 Location and Background

The LRIS occupies approximately 40 acres in the northwest corner of the northeast corner of section 24, township 4 north, range 1 west, Willamette Meridian (see Figure 1-1). The LRIS is currently zoned for mixed waterfront use, but was historically zoned industrial.

The LRIS is the former location of the Pacific Wood Treating Corporation (PWT) facility. PWT surface treated and pressure treated lumber at the LRIS. Previous environmental work completed on site under the Order documented that soil and groundwater on the LRIS have been impacted by wood-treating chemicals.

2.2 Overview of Historical Operations and Impacts

The LRIS consists of four areas designated as "Cells" (1, 2, 3, and 4). Portions of Cells 1 and 2 are heavily contaminated with wood-treatment chemicals from several decades of spills and other uncontrolled releases of nonaqueous-phase liquid to the underlying soil and groundwater during PWT's operations. Cell 3, formerly referred to as the south pole yard, was used to store treated lumber; for approximately ten years, a drip trough was operated on Cell 3. Cell 4, formerly referred to as the north pole yard, was used to store untreated lumber and to peel poles. The historical operations of each cell are detailed in Volume I of the 2004 RI work plan (MFA, 2004b).

Impacted soil in Cells 3 and 4 is believed to have been caused by the incidental drippage and associated activities from wood storage. Because soil in Cells 3 and 4 contain wood-preserving wastes from former PWT operations, under the state's Dangerous Waste Regulations (WAC 173-303) they are designated as listed wastes and are subject to Land Disposal Restrictions (WAC 173-303-140). The following waste codes (WAC 173-303-9904) apply to soil that will be removed from Cells 3 and 4 and disposed of:

- Listed Waste code F032—Preservative drippage in soil that contains chlorophenolic wastes
- Listed Waste code F034—Preservative drippage in soil that contains creosote wastes
- Listed Waste code F035—Preservative drippage in soil that contains arsenic and chromium wastes

3.1 Overview of Soil Investigations at LRIS

Investigations have been conducted on the LRIS since 1985. The following documents detail the investigations and analytical results and were used to prepare this Plan:

- Volume I—RI work plan for Port LRIS (MFA, 2004b)
- Volume II—Cell 3 RI/FS work plan for Port LRIS (MFA, 2004a)
- Cell 3 RI and risk assessment (RA) report (MFA, 2007)
- Draft Cell 3 FS report (MFA, 2008a)
- Boundary soil sampling results (MFA, 2009a)
- Draft Cell 4 RI/FS report (MFA, 2009b)

The results of these investigations have established the nature and extent of site indicator hazardous substances (IHSs) and allowed evaluation of remedial options. This Plan is consistent with the findings of the preferred alternative actions discussed in the draft FS reports for Cells 3 and 4 (MFA, 2008a and 2009b).

3.2 Comparison of Soil Analytical Results to Method C CULs

In the draft Cell 3 FS and draft Cell 4 RI/FS reports, soil remediation levels were developed based on the MTCA Method C soil CULs. A component of the preferred alternative remedial actions in the draft Cell 3 FS and draft Cell 4 RI/FS reports is removal of soil above Method C soil CULs, referred to as "hot spots." In Cell 3, the following locations have confirmed detections of IHSs that exceed Method C CULs:

- MW-9S: arsenic (111 milligrams per kilogram [mg/kg]) and carcinogenic polycyclic aromatic hydrocarbon (cPAH) toxicity equivalent concentration (TEC) (29,840 micrograms per kilogram [µg/kg]) at 0.5 foot below ground surface (bgs)
- SPY-01A: cPAH TEC (25,540 µg/kg) at 1 foot bgs
- SPY-01B: arsenic (98.6 mg/kg) at 5 feet bgs
- SS-7: arsenic at 374 mg/kg and chlorinated dibenzo-p-dioxins and dibenzofurans (dioxins/furans) at 7,924 nanograms per kilogram (ng/kg) at 0.3 foot bgs

In Cell 4, the following locations have confirmed detections of IHSs that exceed Method C CULs:

- SS-4B detected dioxin/furan TEC (1,523 ng/kg) at 0.3 foot bgs
- SS-30 detected dioxin/furan TEC (1,600 ng/kg) at 0.5 foot bgs

Soil with confirmed detections above Method C CULs for arsenic, cPAHs, and dioxins/furans will be removed as part of this interim action.

3.3 Comparison of Soil Analytical Results to Method B CULs

In soil samples collected throughout Cells 3 and 4, results from one or more of the IHSs generally exceeded MTCA Method B soil CULs, potentially posing risk to human health. IHS exceedances of ecological screening criteria also generally occurred throughout Cells 3 and 4. In order to address the risk posed by the soil, capping was determined to be the preferred alternative action proposed in the draft Cell 3 FS (MFA, 2008a) and draft Cell 4 RI/FS (MFA, 2009b). As further discussed in the terrestrial ecological evaluation (TEE) (MFA, 2010), soil capping will also be protective of potential ecological receptors.

The extent of IHSs in Cells 3 and 4 was discussed in the Cell 3 RI/RA report (MFA, 2007) and the draft Cell 4 RI/FS report (MFA, 2009b). Figures 4-10 through 4-12 from the Cell 3 RI/RA report and Figure 5-5 from the draft Cell 4 RI/FS report are included in Appendix C. These figures show the extent of IHS exceedances in Cells 3 and 4.

4.1 Surveying and Mobilization

The hot spot excavations will be located by a registered land surveyor. The surveyor will re-mark the sample locations, originally surveyed when completed, where concentrations of IHSs exceed Method C CULs in Cells 3 and 4. The initial dimensions of the hot spot excavations will be measured from the re-surveyed sample locations which will be used to identify the excavation centers. The final extent of the excavations will be confirmed by soil sampling. Before excavation, the locations of subsurface utilities will be identified within 50 feet of the excavation areas by "One Call" public notification and a private utility locating company.

Exclusion zones and associated site controls will be established in accordance with the site health and safety plan.

Equipment will be mobilized to the site and is expected to include, but not be limited to, the following:

- Trackhoe excavator
- Front-end loader
- Dump truck
- Water truck
- Support vehicles and equipment

One of the interim action excavation locations is centered on monitoring well MW-9S. Capping will also be employed in this area. If the well is damaged or obstructs the excavation, a licensed driller will repair or abandon and replace the monitoring well, as necessary. The protective bollards around the well will be removed to facilitate the excavation but will be reinstalled after the excavation is backfilled.

4.2 Work on Property Not Owned by Port

The Port is proposing to complete a portion of the interim action on property within the Cell 3 designation that is owned by Union Pacific Railroad (UP). Excavation (SPY-01A, SPY01B, and SS-7) and capping will be conducted on UP property only if UP is in agreement with this Plan and Ecology approves the Plan. The Port will coordinate activities and access directly with UP and anticipates UP cooperation.

4.3 Soil Excavation and Management

Oversight and monitoring for consistency with this Plan will be performed by a professional engineer or geologist registered in Washington State or by a qualified technician under the direct supervision of a professional engineer or geologist registered in Washington State.

Excavations will be conducted at the following sampling locations with the initial excavation area as shown below:

Location	Approximate Excavation Dimensions (feet)	Approx. Volumes (cubic yards)	IHSs				
Cell 3 (Figure 4-1)							
MW-9S	20x20, 1 foot deep	14.8	Arsenic and cPAHs				
SPY-01A	20x20, 2 feet deep	29.6	cPAHs				
SPY-01B	20x20, 6 feet deep	88.9	Arsenic				
SS-7	20x10, 1 foot deep	7.4	Arsenic and dioxins/furans				
Cell 4 (Figure 4-2)							
SS-4B	10x10, 1 foot deep	3.7	Dioxins/furans				
SS-30	10x10, 1 foot deep	3.7	Dioxins/furans				

Table 4-1 Proposed Excavation Areas

The minimum lateral extent of the excavations will be delineated in the field before excavation begins. The estimated volume of in-place soil to be removed is 148 cubic yards. The final extent of excavation may be expanded if results from confirmation samples exceed MTCA Method C CULs, to the extent that access is granted from adjacent property owners.

Some of the proposed excavation locations (SS-4B, SS-7, and SS-30) are located near the cell boundaries with the adjacent railroad east of the LRIS, which is currently owned by BNSF Railroad (BNSF). SS-4B and SS-30 are on Port property and SS-7 is located on UP property. At these locations the Port will excavate up to the property boundary with BNSF. If confirmation sampling at the property boundary exceeds MTCA Method C CULs, the Port will contact BNSF to obtain an access agreement to complete the excavation on BNSF's property.

Most of the excavations are shallow (less than 3 feet bgs) and will not need sloped sides or shoring. The deeper excavation at SPY-01B will be completed to approximately 6 feet bgs, with sloped sides to ensure a safe work environment. Based on the depth of the excavation and past site work, shoring is not expected to be necessary; however, shoring will be implemented if site conditions warrant. Soil will be excavated using conventional excavation equipment (e.g., trackhoe).

Once soil is removed from the excavation, it will be temporarily stockpiled or placed in drop boxes for profiling. Soil stockpiles will be established in locations approved by the Port, either adjacent to the excavations or in a central location. Soil will only be stockpiled together if it is from the same profile group as discussed in Section 4.3.1.

Best management practices will be used to secure excavated material in stockpiles or drop boxes. Stockpiles will be placed on impermeable liners and will be covered and secured at the end of each workday. Before placing liners, the contractor will clear the existing ground surface of debris and sharp objects. Soil stockpile covers will be secured to prevent displacement by wind as well as contact between precipitation and excavated soils. Berms will be constructed around stockpiles to prevent run-on and runoff. Drop boxes will be lined and covered to prevent erosion by wind or precipitation.

Once the soil stockpiles have been profiled for disposal (see Section 4.3.1), trucks will be loaded adjacent to stockpiles in a manner that prevents spilling or tracking of contaminated soil. Loose material that falls onto the truck exterior during loading will be removed before the truck leaves the loading area. Any material collected on the ground surface in the loading area will be placed back into the truck. The soil will then be transferred to the appropriate off-site facility. Excavated soil will be disposed of at Chem Waste Landfill or the Aragonite incinerator, depending on the results from the waste profiling.

Once the lateral and vertical extent of the excavation has been reached, confirmation samples will be collected as discussed in Section 4.3.2. Excavations will be left open during laboratory analysis of confirmation samples; adequate barriers will be installed to protect against unauthorized entry.

4.3.1 Stockpile Profiling Sampling and Analysis

The excavated soil will be profiled for disposal purposes. Historical analytical results from the proposed excavation locations are not adequate for waste profiling purposes, as they represent discrete samples. The proposed hot spot excavations are on UP and Port properties; therefore, soil stockpiling and waste profiling of excavated soil will be conducted based on discrete sample results and the generator (i.e., property owner). For example, the SS-7 discrete soil sample indicated a 1,2,3,6,7,8-hexachloro dibenzo-p-dioxin result above the land-disposal restriction treatment standard. Therefore, the excavated material from the SS-7 sample location will be stockpiled and profiled separately from the rest of the excavated soils.

The soil excavations will be profiled per the following profile groups:

• SS-7 – The soil from this excavation on UP's property totals approximately 7 cubic yards.

- SPY-01A and SPY-01B The soil from these excavations on UP's property will be profiled together and total approximately 118 cubic yards.
- MW-9S, SS-4B, and SS-30 The soil from these excavations on the Port's property will be profiled together and total approximately 22 cubic yards.

Four soil samples will be randomly collected at varying depths from soil generated in each profile group. The four discrete samples will be homogenized to create a composite stockpile sample for each profile group.

The samples will be collected with standard industry techniques, using a properly decontaminated hand auger or stainless steel spoons. The profile samples will be tested for the constituents outlined in the waste codes indicated in Section 2 and will include the following:

- Semivolatile organic compounds, including polycyclic aromatic hydrocarbons (PAHs), chlorinated phenolics, pentachlorophenol, and 2,4-dimethylphenol, by U.S. Environmental Protection Agency (USEPA) Method 8270C
- Dioxin/furan congeners with tetra-, penta-, and hexa- prefixes, by USEPA Method 8290
- Arsenic and chromium, by toxicity characteristic leaching procedure USEPA Method 1311/6010B

The soil samples will be placed on ice in a shipping container with chain-of-custody paperwork and transported to either Specialty Analytical, of Clackamas, Oregon, or Pace Analytical Services, Inc. (Pace), of Minneapolis, Minnesota, for analyses. Pace will conduct analyses for dioxin/furans and Specialty Analytical will conduct analyses for all other IHSs.

Once the data have been received, they will be provided to Waste Management to profile the excavated soil for disposal.

4.3.2 Confirmation Sampling and Analysis

Analytical results will be used to evaluate whether the final extent of excavation has been reached, or whether additional soil removal is necessary. Confirmation samples will be collected from the floor and side walls of each excavation and analyzed for the specific IHSs that exceeded Method C CULs at the excavation area (see Table 4-1).

A minimum of one sample will be collected from the floor of each excavation for analysis. Discrete soil samples will be collected every 20 linear feet along the side walls of the excavation at a location approximately halfway between the floor of the excavation and the original ground surface. Soil samples will be submitted to the Port's analytical laboratory under chain-of-custody documentation for analysis.

The soil samples will be collected using stainless steel sampling equipment and new nitrile gloves. If the excavation is deeper than 3 feet bgs, the excavator or trackhoe bucket will be used to collect the soil samples. Care will be taken to make sure that no soil sample contacts the excavation equipment.

Analysis will be performed using the following methods: for arsenic, by USEPA Method 6010; for PAHs, by USEPA Method 8270 selective ion monitoring; and for dioxins/furans, by USEPA Method 8290. The soil samples will be placed on ice in a shipping container with chain-of-custody paperwork and transported to either Specialty Analytical or Pace for analyses. Pace will conduct analyses for dioxin/furans and Specialty Analytical will conduct analyses for all other IHSs.

Excavations will remain open, with safety measures in place, until confirmation sampling analysis is completed and demonstrates results below MTCA Method C CULs.

4.4 Backfilling

The excavations will not be backfilled until confirmation sample analysis indicates that the "hot spots" have been adequately addressed. Excavations will be filled using WSDOT I-5 interchange soils (discussed in Section 5), fill discussed below, or fill generated from grading within the cell. If a source other than WSDOT soil or grading within the cell is used to fill the excavations, the Port will obtain Ecology approval before placement.

4.4.1 Additional LRIS Stockpiled Soil

There are two on-site soil stockpiles proposed for incorporation (i.e., graded into low spots) on Cell 3 before the soil cap is constructed. The soil stockpiles were generated during reconnaissance drilling in Cell 2 and the Ridgefield National Wildlife Refuge in May and June 2008 (approximately 30 cubic yards) and during the City of Ridgefield's (City's) wastewater treatment plant expansion into Cell 2 (approximately 2,000 cubic yards).

The May and June 2008 reconnaissance drilling generated soil was initially stockpiled into a 10-cubic yard and a 20-cubic yard drop box. A letter documenting this work was submitted to Ecology outlining the sampling procedures and results (MFA, 2008b). In summary, six samples were collected from each drop box and composited into two samples for analysis. The samples were tested for petroleum hydrocarbons, metals (i.e., arsenic, chromium, copper, and zinc), and semivolatile organic compounds. Arsenic was the only analyte which exceeded Method B CULs. Arsenic was detected in the both samples at 3.1 mg/kg (20-cubic yard drop box) and 12.1 mg/kg (10-cubic yard drop box), above the Method B CUL of 0.67 mg/kg (see analytical results in Appendix D). Only one of the samples exceeded the natural occurring background concentration of 5.81 mg/kg for Clark County (Ecology, 1999). The soil detections are below preliminary remediation levels (RELs) for arsenic which is the Method C CUL of 88 mg/kg arsenic.

In October 2000, Ecology indicated that the City's waste water treatment facility (WWTF) could be expanded (Ecology, 2000). The soil in the area of expansion contained some IHSs above Method B and Method C CULs. Locations with contaminant levels above Method C soil CULs were excavated for removal. The approval for WWTF expansion was based on earlier soil investigation and excavation confirmation sampling results following removal of soil exceeding Method C soil CULs. The expansion of the WWTF created excess soil which has been stockpiled adjacent to the WWTF. In August 2008, the City retained GeoEngineers, Inc. to collect and analyze two soil samples from the stockpiled soils for PCP, PAHs, and metals (i.e., arsenic, cadmium, copper, and zinc). A GeoEngineers memorandum related to the sampling and analyses is included in Appendix E. Arsenic was the only compound detected above the Method B soil CULs at 8.10 mg/kg and 9.76 mg/kg. Arsenic detections also exceeded the natural background concentration of 5.81 mg/kg. The soil detections are below preliminary RELs (Method C CULs) and the results are consistent with previous sampling in the area of the WWTF expansion.

The 30- and 2,000-cubic yard soil stockpiles have contaminant concentrations lower or similar to those in surface soils of Cell 3. Grading the soil stockpiles on Cell 3 before cap construction is appropriate for the following reasons:

- The soil is from the site and movement of soil within a site is allowed under the area of contamination policy (Ecology, 1991).
- The soil concentrations are below preliminary RELs and are similar or lower than current concentrations of IHSs in Cell 3 soil.

The soil cap which will be constructed on Cell 3, above the stockpiled soils, is appropriate to address any risk the soil may pose.

4.5 Subgrade Preparation

Cell 4 is generally flat and free of obstructions. Obstructions on Cell 3 will be removed before placement of the soil cap. In addition, Cell 3 has areas of the site that will require grading to facilitate capping. Actions required to address existing site features in Cell 3 include the following:

- Demolition of Building 11.
- Demolition of the timber bulkhead and loading ramp on the western boundary with Lake River.

- Removal of the power pole for Building 11, if necessary, and treated poles located along Lake River.
- Renovation of the existing storm system on Cell 3, including removal of the existing catch basin and outfall and replacement with an upgraded stormwater system (see Appendix F).
- Stormwater improvements on Cell 3 including decommissioning of existing Outfall 1 and replacement with two new outfalls of (see Appendix F).
- Grading of the site, including the bank along Lake River down to mean high tide. The grading will reduce the slope of the bank, allow placement of a soil cap, and promote stabilization by vegetation. The soil created from the grading will be incorporated on site before the clean soil cap placement.
- Placement of soil from the May and June 2008 groundwater investigation currently stockpiled in Cell 3, approximately 30 cubic yards (see Section 4.4.1). The soil will be incorporated on site before the clean soil cap placement.
- Placement of soil from Cell 2, within the area leased by the City, approximately 2,000 cubic yards (see Section 4.4.1). The soil will be incorporated on site before the clean soil cap placement.
- Concrete rubble located in Cell 3 will be crushed and graded into the site before placing the soil cap and geotextile fabric.
- Decommissioning of monitoring well MW-28S will be conducted by a licensed well driller. Monitoring well MW-28S was not installed deep enough to intersect groundwater.
- Elevations of monitoring wells MW-9S, MW-45S, MW-45D, MW-46D, MW-46S, MW20-D, MW-20S, and MW-29D will be adjusted by a licensed well driller to finished grade, following completion of excavation and capping. The measuring point elevation of modified monitoring wells will be surveyed after alteration to the nearest 0.01 foot (National Geodetic Vertical Datum 29) by a licensed surveyor. Bollards will be replaced around monitoring wells.
- Removal of the UP spur railroad line.
- Construction of an emergency access to allow traffic to move from Mill Street to Division Street will be re-established.

Once Cell 3 has been graded and prepared for the soil cap, an interim survey will be conducted. A second survey will be conducted after the soil cap has been placed. The

two surveys will be compared to ensure that the required minimum soil cap thickness is maintained.

Stormwater improvements will also be implemented on Cell 4, included placement of a pipe to direct stormwater to Cell 2 (see Appendix F).

4.6 Health and Safety Procedures

The interim action will be conducted according to WAC 173-340-810, the Occupational Safety and Health Act (OSHA) of 1970 (29 U.S.C. Sec. 651 et seq.), the Washington Industrial Safety and Health Act (Chapter 49.17 Revised Code of Washington [RCW]), and relevant regulations. Before implementation of the interim action, the Port will prepare a health and safety plan for Ecology's review and comment.

The Port will retain a contractor that will complete the interim actions in compliance with OSHA regulations. The contractor will be required to use a crew that has received Hazardous Waste Operations and Emergency Response Standard 40-hour training and received refresher training in the past year for placement of the geotextile and handling of any soil material on site besides the clean stockpile soil.

Dust-suppression techniques will be employed during handling of soil materials, as necessary.

The Port is receiving approximately 140,000 cubic yards of soil from WSDOT's construction at the new interchange on Interstate 5 at 269th Street (Pioneer Street). The WSDOT soil was analyzed in accordance with the Ecology-approved soil acceptance plan (MFA, 2009c), and the results were presented to Ecology in a letter report (MFA, 2009d). The soil was determined to be acceptable for use as a clean soil cap and fill on the LRIS. Based on analytical results, soil from two locations was excluded from acceptance at the LRIS (Klasner, 2009a,b).

The stockpiled soil has been managed in accordance with the Stormwater Pollution Prevention Plan submitted to Ecology (Group MacKenzie, 2009). Implementation of best management practices will be continued to control stormwater generated at the site during the interim action.

The soil cap will be constructed as specified in the interim action plan set included as Appendix F. The soil capping actions are summarized below.

5.1 Upland Capping

As part of the interim action, soil will be placed on Cells 3 and 4 as a cap above the impacted surface soil. The soil cap will be constructed consistent with the soil cap options discussed in the TEE report submitted and approved by Ecology (MFA, 2010).

A geotextile (SKAPS GT-160 Nonwoven GeotextileTM or equivalent) will be placed on a smooth, prepared surface, free of puncture obstructions, between the contaminated surface and the clean fill.

Clean soil is currently being stockpiled in Cell 4 by WSDOT, and a geotextile (SKAPS GT-160 Nonwoven GeotextileTM) has been placed beneath the stockpiles to distinguish clean soil from site soils. The geotextile used as demarcation layer will also serve as a component of the cap. The "hot spots" will be removed, the subgrade will be modified as necessary, a geotextile will be placed on areas in Cells 3 and 4 that do not have a geotextile, and the soil cap will be placed.

A minimum of 2 feet of soil will be placed and compacted. The cap will be deeper in certain areas to allow for additional vegetation for stabilization (e.g., the bank along Lake River in Cell 3) and to contour the cap to control stormwater. In addition, capping will be elevated in the upland area in order to protect the cap from potential flooding, as the cap is partially located within the 100-year floodplain, and in preparation for development. The extent and anticipated elevation of the interim action capping on Cells 3 and 4 is shown in Sheets G2.1 and G2.2, respectively, in Appendix F.

Following its placement, the cap will be stabilized by Ecology-approved vegetation (Appendix G). Any landscaping will correspond to the shallow-rooted species specified in the TEE (MFA, 2010), based on the thickness of the clean soil cap. The capping will be inspected and maintained in accordance with a soil management and cap maintenance plan, yet to be completed.

Note that, before fill placement, the Port's geotechnical consultant will inspect surface conditions and evaluate the competence of the existing surface soil. The fill material will be graded and compacted according to the engineer's specifications.

5.2 Work on Property Not Owned by Port

The Port is proposing to complete a portion of the interim action on property within the Cell 3 and 4 designations. A portion of Cell 3 is owned by UP. Capping will be conducted on UP property only if UP is in agreement with this Plan and Ecology approves the plan. The Port is coordinating activities and access directly with UP and anticipates UP cooperation. This interim action will protect human health and the environment by substantially reducing the potential for human and ecological exposure to soils above CULs in Cells 3 and 4 of the LRIS. The interim action will comply with federal, state, and local laws, under WAC 173-340-710.

Under WAC 173-340-710, applicable requirements are "cleanup standards, standards of control, and other environmental protection requirements, criteria, or limitations adopted under state or federal law that specifically address a hazardous substance, cleanup action, location, or other circumstances at the site." Relevant and appropriate requirements are "cleanup standards, standards of control, and other environmental requirements, criteria, or limitations established under state or federal law that, while not legally applicable to the hazardous substance, cleanup action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at a site that their use is well suited to the particular site."

Remedial actions conducted under an agreed order are exempt from the procedural requirements of certain laws. This exemption applies to the following laws: Chapters 70.94 (Air), 70.95 (Solid Waste), 70.105 (Hazardous Waste), 75.20 (Hydraulic Permit), 90.48 (Water Quality), and 90.58 (Shorelands) RCW.

The following is a discussion of regulatory requirements and their potential application, relevance, and appropriateness to the interim action:

- Washington Water Quality Standards for Surface Waters (Chapter 90.48 RCW and Chapter 173-201A WAC). These regulations pertain to discharges to surface water in Washington State. The interim action construction plan is designed to prevent any discharge of excavated or fill material into surface water bodies. The Port will meet the substantive requirements in preventing a discharge to surface water in Washington State, during excavation and fill work as part of interim action.
- Clean Water Act, Section 404—Dredge or Fill Regulations (33 Code of Federal Regulations [CFR] Parts 320–330, 40 CFR Part 230). These requirements are applicable to construction activities conducted below the OHW mark. They are intended to limit the discharge of dredged or fill material into navigable waters. No discharge of material to navigable waters is anticipated. Excavation and filling below the OHW mark is not anticipated during implementation of this interim action.

- Hydraulics Project Approval (Chapter 220-110 WAC). This regulation applies to construction, which may require work waterward of the OHW mark that could change the natural flow or bed of the water body (and therefore has the potential to affect fish habitat). The requirements include bank protection (WAC 220-110-050), bed materials restrictions, siltation minimization, and debris disposal (WAC-222-110-270). Work will not occur waterward of the OHW mark, and therefore does not apply to this interim action. An application to the jurisdiction will be completed to ensure the interim action meets substantive requirements.
- Washington Hazardous Waste Management Act Regulations (Chapter 173- 303 WAC) and Resource Conservation and Recovery Act Subtitle C Regulations (40 CFR Parts 261 and 268). These regulations are applicable to the identification and disposal of solid wastes designated as dangerous (including federally hazardous) wastes. Requirements for designation, management, and disposal of dangerous/hazardous waste apply to this interim action.
- Washington Solid Waste Management Act Regulations (Chapter 173-350 WAC). These regulations are applicable to the management and disposal of solid waste materials that are not Washington dangerous wastes. They provide minimum functional standards for solid waste handling. These requirements apply to solid (nonhazardous) wastes generated during the project.
- Washington Water Pollution Control Law and Federal Clean Water Act Storm Water Multi-Sector General Permit for Construction Activities (Chapter 90.48 RCW and 40 CFR 122.26, respectively). These regulations provide that discharges of stormwater associated with "construction activities over 1 acre" require a National Pollutant Discharge Elimination System permit. The general permit provides for use of sediment and erosion controls and for stormwater management measures. Although a permit will not be required for implementing the interim action on the site, as it is not applicable to the handing of contaminated soils, the substantive requirements of the state Construction Stormwater General Permit apply to activities that could result in discharges of stormwater, including excavation and fill placement. The Port will comply with the substantive requirements of the regulations by implementing the interim action in accordance with a construction stormwater pollution prevention plan (SWPPP).
- Washington State Environmental Policy Act (SEPA) (Chapter 197-11 WAC). These regulations require the lead state or local agency to evaluate the environmental impacts of actions and identify possible alternatives before committing to a particular course of action. SEPA also provides for the preparation of environmental documentation and mitigation for project impacts where applicable, and encourages public involvement in the decision making process. Ecology is the lead agency under SEPA for this interim

action. A SEPA checklist has been completed for the interim action and is attached as Appendix H.

- Washington Shoreline Management Act of 1971 (Chapter 90.58 RCW), Shoreline Master Program Planning Guidelines (Chapter 173-26 WAC), Shoreline Management Permit and Enforcement Procedures (Chapter 173-27 WAC), City of Ridgefield Shoreline Regulations (Chapter 18.820), and Clark County Shoreline Master Program, 1974. Management of shorelines in the City has been delegated to Clark County. The shoreline of Carty Lake is within the boundaries of the Ridgefield National Wildlife Refuge and is not subject to the Shoreline Management Act. Shorelines along Lake River are classified as an "urban environment" and development activities within the banks or floodplains of the shoreline must comply with the substantive requirements of the County's Shoreline Management Program. The interim action will result in a more gently sloping bank, restoring ecological function to the extent possible without working waterward of the OHW. Public access and public recreation objectives are components of the Port's overall remediation and development of the shoreline.
- Washington Archaeological Sites and Resources Act (Chapter 27.53 RCW). This state law requires identification, preservation, and special handling of cultural and archaeological resources. No known archaeological sites are located within the project area. As the bank excavation may encounter native soils below fill, the Department of Archaeology and Historic Preservation will be consulted. If required, the Port will contract an independent, qualified cultural resource firm to observe any excavation in native soils.
- Washington State Growth Management Act RCW 36.70., City of Ridgefield Critical Areas Ordinance (Chapter 18.280), and City of Ridgefield Flood Control Development Code (Chapter 18.750). The Critical Areas Ordinance pertains to the designation, classification, and protection of critical areas within the existing and future municipal limits of the City.

The interim action will be conducted in "frequently flooded" critical areas. In accordance with the Ridgefield Code, filling within floodways is prohibited unless certification by a registered professional engineer is provided, demonstrating through hydrologic and hydraulic analyses performed in accordance with standard engineering practice that the proposed encroachment will not result in any increase in flood levels during the base flood discharge. Minimal filling within the 100-year floodplain will occur; however, this fill is mitigated by creation of additional flood storage via bank excavation in the current interim action in Cell 3 and concurrent with a planned interim action in Cell 2. Documentation of the balanced fill calculation will be provided to Ecology and the local regulatory authority. The remedial action is an activity conducted to prevent an immediate threat to public health, safety, or welfare and may be exempt from the requirements of the code. As avoiding filling within the floodway is not feasible because the cap must be elevated above the floodway to protect human health and the environment, the Port will minimize the impact of the activity and mitigate to the extent necessary to achieve the activity's purpose and the purpose of Chapter 18.750.

The interim action will meet the substantive requirements for applicable, relevant, and appropriate requirements, as discussed above. Permits and/or documentation from the appropriate regulatory agencies will confirm that the interim action will meet substantive requirements.

Ecology approval is required before the interim action can begin; this approval process includes a public comment period. The Port will proceed with the excavation, grading, and capping activities once Ecology has approved the interim action.

Once the interim action has been completed, a technical memorandum addressing the following items will be prepared for Ecology's review:

- Descriptions of field activities and observations
- Survey showing the final lateral and vertical extent of the excavations, finished grade, and constructed soil cap thickness
- Tables summarizing the confirmation sampling analytical results
- Copies of the waste disposal manifest
- Copies of laboratory analytical results

The services undertaken in completing this Plan were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This Plan is solely for the use and information of our client unless otherwise noted. Any reliance on this Plan by a third party is at such party's sole risk.

Opinions and recommendations contained in this Plan apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this Plan. Group MacKenzie. 2009. Stormwater pollution prevention plan. Prepared for Port of Ridgefield. Group MacKenzie. August 13.

Ecology 1991. Interprogram Policy, Area of Contamination. Prepared by Washington State Department of Ecology, Waste Management Program, Solid and Hazardous Waste program, and Toxics Cleanup Program. August 20.

Ecology. 1999. Natural Background Soil Metals Concentrations in Washington State. Publication #94-115. Washington State Department of Ecology. October.

Klasner. 2009a. Letter (re I-5 interchange soil acceptance plan dated May 7, 2009, Ecology approval of soil acceptance) to M. Clark, Washington State Department of Transportation, from L. Klasner, Washington State Department of Ecology. July 17.

Klasner, L. 2009b. Electronic mail communications (re PWT, conditional approval for SWPPP, revised September 15, 2009) to B. Grening, Port of Ridgefield. September 18.

MFA. 2004a. Remedial investigation and feasibility study workplan for Port of Ridgefield Lake River industrial site. Vol. II, Cell 3. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. July 2.

MFA. 2004b. Remedial investigation workplan for Port of Ridgefield Lake River industrial site. Vol. I, Cells 1, 2, and 4. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. July 2.

MFA. 2007. Cell 3 remedial investigation and risk assessment report. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. February 23.

MFA. 2008a. Draft Cell 3 feasibility study report. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. April 21.

MFA. 2008b. Letter (re Request for soil placement) to Laura Klasner, Washington State Department of Ecology, from Steve Taylor and Alan Hughes, Maul Foster & Alongi, Inc. November 10.

MFA. 2009a. Letter (re: boundary soil sampling results at the former Pacific Wood Treating site) to L. Klasner, Washington State Department of Ecology, from Maul Foster & Alongi, Inc. February 9 (revised).

MFA. 2009b. Cell 4 remedial investigation and feasibility study report. Draft. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. March 20.

MFA. 2009c. I-5 interchange soil acceptance plan. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. May 18.

MFA. 2009d. I-5 interchange soil sampling results. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. August 6.

MFA. 2010. Letter (re: final terrestrial ecological evaluation for the former Pacific Wood Co. Treating site, Agreed Order No. 01TCPSR-3119) to C. Rankine, Washington State Department of Ecology, from Maul Foster & Alongi, Inc. April 13.

FIGURES

Address: Lake River Industrial Site 111 W. Division Street, Ridgefield, WA 98642 Source: USGS (1990) 7.5 Minute Topo Quads: Saint Helens & Ridgefield Section 24, Township 4N, Range 1W of Willamette Meridian

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend Site Boundary

Figure 1-1 Site Location

Port of Ridgefield Ridgefield, Washington

Figure 4-1 Proposed Cell 3 Soil Removal Interim Action Locations

Port of Ridgefield Ridgefield, Washington

Legend

Monitoring Well To Be Decommissioned ø Monitoring Well Timber Pole/Piling To Be Removed • Surface Soil Samples Soil Boring • Test Pit Excavate to 1 Ft BGS Excavate to 2 Ft BGS Excavate to 6 Ft BGS Loading Dock Cell 3 Boundary Tax Lot Boundary Cell 3 Tax Lots OWNER Port of Ridgefield Union Pacific Railway Company <u>Note:</u> Ft BGS = Feet Below Ground Surface 0 50 100 Feet Source: Aerial photograph (2007) obtained from Clark County GIS Department

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Source: Aerial photograph (2007) and tax lots obtained from Clark County GIS Department

Note: Ft BGS = Feet Below Ground Surface

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend

- Soil Boring
- Test Pit
- Surface Soil Sample
- Excavate to 1 Ft BGS
- Cell 4 Boundary
- Tax Lot Boundary
- Cell 4 Tax Lots

OWNER

- Port of Ridgefield
- BNSF Railroad

Figure 4-2 Proposed Cell 4 Soil Removal Interim Action Locations

Port of Ridgefield Ridgefield, Washington

APPENDIX A

LETTER FROM L. KLASNER, RE: ECOLOGY COMMENTS ON THE DRAFT CELL 4 REMEDIAL INVESTIGATION AND FEASIBILITY STUDY, DATED JUNE 4, 2009

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

<u>CERTIFIED MAIL</u>

7008 2810 0001 3939 5767

June 4, 2009

Brent Grening, Executive Director Port of Ridgefield PO Box 55 Ridgefield, WA 98642

Dear Mr. Grening:

Re: Ecology comments on the Draft Cell 4 Remedial Investigation and Feasibility Study Report, Former Pacific Wood Treating Corporation (FS/ID# 1019), April 27, 2009

This letter provides the Port of Ridgefield (Port) with comments from the Washington State Department of Ecology (Ecology) for the Draft Cell 4 Remedial Investigation and Feasibility Study Report, Former Pacific Wood Treating Corporation Site (Site), dated March 20, 2009. Formal approval is required by Agreed Order Number DE 01TCPSR-3119, negotiated between Ecology and the Port. Please submit a revised report for Ecology's review and approval.

The following outlines Ecology's comments on the Draft Cell 4 Remedial Investigation and Feasibility Study Report:

 Throughout remedial activities completed to date, the Port has presented Remedial Investigation/Feasibility Study (RI/FS) results on a cell-by-cell basis, as allowed in the existing Agreed Order. The sum of cell-specific RI/FS reports will collectively complete the RI/FS for the entire Site, at which time a Cleanup Action Plan (CAP) will be drafted. At our March 26, 2009 meeting, we discussed that remedial actions performed under the Agreed Order are considered "interim actions". The intent of both the Port and Ecology is to design and evaluate these interim actions to sufficiently meet the requirements of MTCA for protection of human health and environment, so that they may dovetail into a single, site-wide Cleanup Action Plan (CAP). However, until a site-wide CAP is finalized, language within the RI/FS should reflect that, in addition to remediation levels (RELs), cleanup levels and remedial actions described in the proposed cleanup alternatives will be considered "interim". Please modify the text to reflect this (ex. "preliminary cleanup levels" for cleanup levels & "interim cleanup actions" or "interim actions" for the cleanup phases identified in the FS).

Mr. Brent Grening June 4, 2009 Page 2

- 2) Executive Summary, Recommended Alternative: Please include groundwater use restriction in the description of institutional controls for Alternative 2.
- 3) Section 4.7.1: Will uses for Cell 4 be restricted to industrial and commercial only? If public or residential uses may be a possibility, please include these as well (ex. public walking trails, educational facilities, apartments, etc.)?
- 4) Section 5.1.6, Table 5-6, and Figure 5.5: Not all soil locations that were found to exceed Terrestrial Ecological Evaluation (TEE) screening level are indicated on Figure 5.5 or Table 5-6. A natural background concentration of 2.2 mg/kg 2,3,7,8-TCDD (as a dioxin/furan toxicity equivalent concentration) should be used as a screening level for the TEE, per Ecology's 2007 publication number 07-09-108, *Concise Explanatory Statement and Responsiveness Summary for the Amendment of Chapter 173-340 WAC, Model Toxics Control Act Cleanup Regulation*.
- 5) Sections 4.7.2, 5.1.7: Although the data presented support the hypothesis that bioaccumulation of dioxins may be higher than specified in MTCA, site-specific evaluation of bioaccumulation factors (BAFs) is needed to evaluate dioxin findings on the RNWR property. Three co-located worm and soil samples should be collected from the RNWR near the Cell 4 boundary and analyzed for dioxins. Collecting the three worm samples near the previous soil sample locations will save on analysis costs, by avoiding duplication of soil analysis. The results will be evaluated and may be useful for establishing BAFs and site-specific cleanup levels.
- 6) Section 6.2.1: The proposed engineered cap design specifies 6 inches and 3 inches of clean fill over a geotextile membrane for permeable (landscaped) and impermeable (asphalt, concrete, building) areas, respectively. However, for all landscaped areas, clean fill thickness should be increased to 2 feet to prevent exposure.
- 7) Section 7.3: WAC 173-340-370(4) contains guidance for reasonable restoration time frames, not implementation time frames. Alternative 3b would have the shortest time frame for restoration to natural background concentrations.
- Section 6, Section 7.4, and Table 6.1, Alternative 1: In Section 6 and Table 6.1 calculations, the exposure barrier consists of a geotextile membrane and clean fill. However, in Section 7.4 a gravel barrier is included in the Alternative 1 description. If the proposed cap will contain a gravel layer, it should be included in the cost estimates as well. Please clarify.
- 9) Figure 4-1: Ecology considers the surface and subsurface soil exposure pathways as potentially complete for ecological receptors. Please revise the figure accordingly.

Mr. Brent Grening June 4, 2009 Page 3

Please do not hesitate to contact me with questions. I can be reached at (360) 407-6265 or lkla461@ecy.wa.gov.

Sincerely,

Laura Klasner

Laura Klasner Site Manager/Hydrogeologist Toxic Cleanup Program Southwest Regional Office

LK/ksc:Cell 4 RIFS ECY comments 0509 pb(lk1)

cc: Laurie Olin, Port of Ridgefield Bruce Wiseman, Port of Ridgefield Steve Taylor, MFA Alan Hughes, MFA Lisa Pearson, Ecology, TCP/SWRO Rebecca Lawson, Ecology, TCP/SWRO

APPENDIX B

LETTER FROM L. KLASNER, RE: ECOLOGY APPROVAL OF SOIL ACCEPTANCE, DATED JULY 17, 2009

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

July 17, 2009

Mike Clark Engineering Services Manager Washington State Department of Transportation PO Box 1709 Vancouver, WA 98668-1709

Re: I-5 Interchange Soil Acceptance Plan dated May 7, 2009, Ecology Approval of Soil Acceptance, Pacific Wood Treating, FS/ID#1019

Dear Mr. Clark:

I understand that you are the contact person representing Washington State Department of Transportation (WSDOT) in negotiating and organizing the transport of excess soils expected to be generated from the I-5 interchange 14 upgrade to the Port of Ridgefield (Port) property. I work as Department of Ecology's (Ecology) Toxics Cleanup Program Site Manager for the Pacific Wood Treating Site (Site), located on the Port's property.

I am writing to you regarding Ecology's recommendations and requirements for the Port's acceptance of soil for use as fill and engineered cap material on the Site. Ecology has been working with the Port to determine the suitability of the interchange material for the Site with respect to the ongoing investigation and cleanup and has approved the above-referenced soil acceptance plan. This plan outlines testing requirements and acceptance criteria for fill estimated at up to 190,000 cubic yards in volume. We received results from recent testing of the interchange soils. There were two sample locations identified (NB-4A at 0.5 feet below ground surface (ft bgs) and SR-1A at 0.5 ft bgs) that exceeded the criteria for acceptance based on dioxin and lead concentrations. As a result, Ecology has approved the acceptance of the majority of the material, with the exception of an estimated 6,200 cubic yards in the vicinity of these two sample locations. I understand that these locations were identified to you in a July 16, 2009 email from Randy Mueller of the Port.

With respect to the approximately 6,200 cubic yards of material, Ecology recommends keeping this material on the same I-5 interchange location (ex. beneath the road). This recommendation is specific to this situation only and is consistent on the Model Toxics Control Act (MTCA, Chapter 173-340 WAC and Chapter 70.105D RCW) and Dangerous Waste policy.

same and the second

Please do not hesitate to contact me with questions. I can be reached at 360-407-6265 or <u>lkla461@ecy.wa.gov</u>.

Sincerely,

Caura Klasner

Laura Klasner, PE Site Manager Toxic Cleanup Program Southwest Regional Office

LMK/ksc:WA DOT fill acceptance letter July 2009

cc: Brent Grening, Port of Ridgefield Laurie Olin, Port of Ridgefield Bruce Wiseman, Port of Ridgefield Steve Taylor, MFA Alan Hughes, MFA Marian Abbett, TCP-SWRO Rebecca Lawson, TCP-SWRO

APPENDIX C

FIGURES FROM CELL 3 RI/RA REPORT (4-10 THROUGH 4-12)

FIGURE FROM DRAFT CELL 4 RI/FS REPORT (5-5)

Layout: 1

Legend

- Soil Boring \bigcirc
- Surface Soil Sample
- Test Pit
 - Tax Lot Boundary

Notes:

- 1. ft bgs = feet below ground surface 2. IHS = indicator hazardous substance
- IHS exceedances are arsenic, chromium, copper, zinc, pentachlorophenol, carcinogenic polycyclic aromatic hydrocarbons, and dioxin/furan concentrations which exceed MTCA Method B soil cleanup levels, background concentrations, and/or ecological screening levels.

Source: Aerial photograph (2007) and tax lot data (September 2008) obtained from Clark County

Cell 4 Boundary

IHS Exceedance in Surface Soil (0 to 2.5 ft bgs)

IHS Exceedance in Surface and Subsurface Soil (0 to 10.0 ft bgs)

Ν

Figure 5-5 **Indicator Hazardous** Substance Exceedances in Soil in Cell 4

> Port of Ridgefield Ridgefield, Washington

APPENDIX D

ANALYTICAL DATA – SOIL GENERATED FROM GROUNDWATER INVESTIGATION

11711 SE Capps Road Clackamas, OR 97015 (503) 607-1331 Fax (503) 607-1336

July 07, 2008

Alan Hughes Maul, Foster & Alongi 7223 NE Hazel Dell Avenue Suite B Vancouver, WA 98665

TEL: (360) 694-2691 FAX (360) 906-1958

RE: Port of Ridgefield / 9003.01.36

Dear Alan Hughes:

Order No.: 0806103

Specialty Analytical received 5 samples on 6/23/2008 for the analyses presented in the following report.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Ned Engleson Project Manager

Technical Review

Date:	07-Jul-08

CLIENT: Project:	Maul, Foster & Along Port of Ridgefield / 90	gi 003.01.36			Lab Order:	0806103
Lab ID:	0806103-01			Collection I	Date: 6/18/200	8 3:01:00 PM
Client Sample ID:	: MW58D-S-0.0			Ma	trix: SOIL	
Analyses		Result	Limit Qu	al Units	DF	Date Analyzed
HOLD PER CLIEN Hold	TREQUEST	Hold	PER CLIENT		1	Analyst: ADM 6/24/2008
Lab ID:	0806103-02			Collection I	Date: 6/18/200	8 3:25:00 PM
Client S ample ID:	: MW58D-S-5.0			Ma	trix: SOIL	
Analyses		Result	Limit Qu	al Units	DF	Date Analyzed
HOLD PER CLIEN	TREQUEST	Hold	PER CLIENT		1	Analyst: ADM 6/24/2008

Date: 07-Jul-08

CLIENT:	Maul, Foster & Along	i				Lab Order:	0806103
Project:	Port of Ridgefield / 900	03.01.36				2000 010010	0000100
-	C the						
Lab ID:	0806103-03				Collection D	ate: 6/18/200	8 3:29:00 PM
Client Sample ID:	: MW58D-S-10.0				Mat	trix: SOIL	
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
NW TPH-DX			NW TPH-DX				Analyst: kms
Diesel		33.3	16.3	A1	mg/Kg-dry	1	6/24/2008
Lube Oil		103	54.4		mg/Kg-dry	1	6/24/2008
Surr: o-Terpher	nyl	73.4	50-150		%REC	1	6/24/2008
TOTAL METALS F	BYICP		E6010				Analyst: zau
Arsenic		15.0	1.62		mg/Kg-dry	1	6/24/2008 4:01:32 PM
Chromium		27.0	0.406		mg/Kg-dry	1	6/24/2008 4:01:32 PM
Copper		18.8	0.812		mg/Kg-dry	1	6/24/2008 4:01:32 PM
Zinc		117	0.812		mg/Kg-dry	1	6/24/2008 4:01:32 PM
SEMIVOLATILE O	RGANICS BY GC/MS		SW 8270 D				Analyst: bda
1-Methylnaphthale	ene	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2,3,4,6-Tetrachlor	ophenol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2,3,4-Trichlorophe	enol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2,3,5,6-Tetrachlor	ophenol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2,3,5-Trichlorophe	enol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2,3,6-Trichlorophe	enol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2,4,5-Trichlorophe	enol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2,4,6-Trichlorophe	enol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
2-Methylnaphthale	ene	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
3,4,5-Trichlorophe	enol	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Acenaphthene		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
A cenaphthy lene		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Anthracene		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Benz(a)anthracer	ne	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Benzo(a)py rene		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Benzo(b)fluoranth	iene	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Benzo(g,h,i) peryle	ene	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Benzo(k)fluoranth	ene	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Bis(2-ethylhexyl)p	ohthalate	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Carbaz ole		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Chrysene		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Dibenz (a,h)anthra	icene	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Dibenzofuran		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Fluoranthene		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Fluorene		ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Indeno(1,2,3-cd)p	yrene	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Naphthalene	-	ND	36.3		µg/Kg-dry	1	6/27/2008 10:04:00 PM
Pentachlorophenc		720	54.4		µg/Ka-drv	1	6/27/2008 10:04:00 PM

CLIENT:	Maul, Foster & Alongi
Project:	Port of Ridgefield / 9003.01.36

Lab Order: 0806103

SEMIVOLATILE ORGANICS BY GC/MS		SW 8270 D		<i>"</i> ()		Analyst: bda
Pyrene	ND	36.3	_	µg/Kg-dry	1	6/27/2008 10:04:00 PM
Surr: 2,4,6-Tribromophenol	54.7	57.8-119	S	%REC	1	6/27/2008 10:04:00 PM
Surr: 2-Fluorobiphenyl	69.5	52.6-93.2		%REC	1	6/27/2008 10:04:00 PM
Surr: 2-Fluorophenol	46.6	40.7-111		%REC	1	6/27/2008 10:04:00 PM
Surr: 4-Terphenyl-d14	76.7	49.8-118		%REC	1	6/27/2008 10:04:00 PM
Surr: Nitrobenzene-d5	53.2	44.8-103		%REC	1	6/27/2008 10:04:00 PM
Surr: Phenol-d6	48.2	47.5-117		%REC	1	6/27/2008 10:04:00 PM
VOLATILES BY GC/MS		SW 8260 B				Analyst: das
1,1,1,2-Tetrachloroethane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,1,1-Trichloroethane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,1,2,2-Tetrachloroethane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,1,2-Trichloroethane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,1-Dic hloro ethan e	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,1-Dic hloro ethen e	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,1-Dic hloro propene	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2,3-Trichlorobenzene	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2,3-Trichloropropane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2,4-Trichlorobenzene	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2,4-Trimethylbenzene	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2-Dibromo-3-chloropropane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2-Dibromoethane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2-Dichlorobenzene	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1,2-Dic hloro ethan e	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1.2-Dichloropropane	ND	10.9		ua/Ka-drv	1	7/2/2008 4:18:00 AM
1,3,5-Trimethylbenzene	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1.3-Dichlorobenzene	ND	10.9		ua/Ka-drv	1	7/2/2008 4:18:00 AM
1,3-Dichloropropane	ND	10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
1.4-Dichlorobenzene	ND	10.9		ua/Ka-drv	1	7/2/2008 4:18:00 AM
2.2-Dic hloro propane	ND	10.9		ua/Ka-drv	1	7/2/2008 4:18:00 AM
2-Butanone	ND	21.8		ua/Ka-drv	1	7/2/2008 4:18:00 AM
2-Chlorotoluene	ND	10.9		ua/Ka-drv	1	7/2/2008 4:18:00 AM
2-Hexanone	ND	21.8		ua/Ka-drv	1	7/2/2008 4:18:00 AM
4-Chlorotoluene	ND	10.9		ua/Ka-drv	1	7/2/2008 4:18:00 AM
	ND	10.9		ua/Ka-drv	1	7/2/2008 4·18·00 AM
4-Methyl-2-pentanone	ND	21.8		ug/Kg-dry	1	7/2/2008 4:18:00 AM
A cetone	ND	54.4		ua/Ka-dry	1	7/2/2008 4:18:00 AM
Benzene	ND	10.9		ug/Kg-dry	1	7/2/2008 4:18:00 AM
Bromohenzene		10.0		ug/Kg-dry	1	7/2/2008 4:18:00 AM
Bromochloromethane		10.9		µg/Kg dry	1	7/2/2008 4:18:00 AM
Bromodichloromethane		10.9		µg/Kg-dry	1	7/2/2008 4:18:00 AM
Bromoform		10.5		µg/Kg dry	1	7/2/2008 4:18:00 AM
Bromomethane		10.9		µg/i\g-uiy ua/Ka-dry	1	7/2/2000 4.10.00 AN
		10.9		µg/itg-uiy ug/Ka-dry	1	7/2/2000 4.10.00 AM
		10.9		µy/i\y-uiy	1	7/2/2000 4.10.00 AN
	ND	10.9		µg/rkg-ary	1	1/2/2000 4.18:00 ANI

Date:	07-Jul-08
-------	-----------

CLIENT:	Maul, Foster & Alongi
Project:	Port of Ridgefield / 9003.01.36

Lab Order: 0806103

OLATILES BY GC/MS		SW 8260 B			Analyst: da s
Chlorobenzene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Chloroethane	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Chloroform	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Chloromethane	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
cis-1,2-Dichloroethene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
c is-1,3-Dichloropr open e	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Dibromochloromethane	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Dibromomethane	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Dichlor odif lu oromethan e	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Ethylbenzene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Hexac hlorob utadiene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
lsopropylbenzene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
m,p-Xy lene	ND	21.8	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Methyl tert-butyl ether	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Methylene chloride	ND	54.4	µg/Kg-dry	1	7/2/2008 4:18:00 AM
n-Buty Ibenz ene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
n-Propylbenzene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Naphthalene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
o-Xylene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
sec-Butylbenzene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Styrene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
tert-Butylbenzene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Tetrac hloroe thene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Toluene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
trans-1,2-Dichloroethene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
trans-1,3-Dichloropropene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Trichlo roeth ene	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Trichlorofluoromethane	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
V inyl c hlorid e	ND	10.9	µg/Kg-dry	1	7/2/2008 4:18:00 AM
Surr: 1,2-Dichloroethane-d4	100	71.5-112	%REC	1	7/2/2008 4:18:00 AM
Surr: 4-Bromofluorobenzene	95.4	75.7-122	%REC	1	7/2/2008 4:18:00 AM
Surr: Dibromofluoromethane	105	64.3-124	%REC	1	7/2/2008 4:18:00 AM
Surr: Toluene-d8	95.3	74.9-120	%REC	1	7/2/2008 4:18:00 AM

Date: 07-Jul-08

CLIENT: Maul, Foster & Alor	ngi				Lab Order:	0806103
Project: Port of Ridgefield / 9	0003.01.36					0000100
Lab ID: 0806103-04				Collection D	Date: 6/18/200	8 3:45:00 PM
Client Sample ID: MW58D-S-13.5				Ma	trix: SOIL	
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
NW TPH-DX		NW TPH-DX				Analyst: kms
Diesel	74.9	22.4	A1	mg/Kg-dry	1	6/24/2008
Lube Oil	96.8	74.5	A2	mg/Kg-dry	1	6/24/2008
Surr: o-Terphenyl	77.3	50-150		%REC	1	6/24/2008
TOTAL METALS BY ICP		E6010				Analyst: zau
Arsenic	4.47	2.48		mg/Kg-dry	1	6/24/2008 4:21:43 PM
Chromium	23.5	0.621		mg/Kg-dry	1	6/24/2008 4:21:43 PM
Copper	32.5	1.24		mg/Kg-dry	1	6/24/2008 4:21:43 PM
Zinc	162	1.24		mg/Kg-dry	1	6/24/2008 4:21:43 PM
SEMIVOLATILE ORGANICS BY GC/MS		SW 8270 D				Analyst: bda
1-Methylnaphthalene	1090	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2,3,4,6-Tetra chlor ophe nol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2,3,4-Trichlorophenol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2,3,5,6-Tetrachlorophenol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2,3,5-Trichlorophenol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2,3,6-Trichlorophenol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2,4,5-Trichlorophenol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2,4,6-Trichlorophenol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
2-Methylnaphthalene	103	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
3,4,5-Trichlorophenol	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Acenaphthene	512	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
A cenaphthy lene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Anthracene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Benz(a)anthracene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Benzo(a)py rene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Benzo(b)fluoranthene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Benzo(g,h,i) perylene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Benzo(k)fluoranthene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Bis(2-ethylhexyl)phthalate	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Carbaz ole	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Chrysene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Dibenz (a,h)anthracene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Dibenzofuran	50.2	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Fluoranthene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Fluorene	68.6	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Indeno(1,2,3-cd)pyrene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Naphthalene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Pentac hloro pheno l	ND	74.5		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Phenanthrene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM

CLIENT:	Maul, Foster & Alongi
Project:	Port of Ridgefield / 9003.01.36

Lab Order: 0806103

SEMIVOLATILE ORGANICS BY GC/MS		SW 8270 D				Analyst: bda
Pyrene	ND	49.7		µg/Kg-dry	1	6/27/2008 9:32:00 PM
Surr: 2,4,6-Tribromophenol	52.8	57.8-119	S	%REC	1	6/27/2008 9:32:00 PM
Surr: 2-Fluorobiphenyl	68.0	52.6-93.2		%REC	1	6/27/2008 9:32:00 PM
Surr: 2-Fluorophenol	50.1	40.7-111		%REC	1	6/27/2008 9:32:00 PM
Surr: 4-Terphenyl-d14	79.3	49.8-118		%REC	1	6/27/2008 9:32:00 PM
Surr: Nitrobenzene-d5	57.1	44.8-103		%REC	1	6/27/2008 9:32:00 PM
Surr: Phenol-d6	49.5	47.5-117		%REC	1	6/27/2008 9:32:00 PM
VOLATILES BY GC/MS		SW 8260 B				Analyst: das
1,1,1,2-Tetrachloroethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,1,1-Trichloroethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,1,2,2-Tetrachloroethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,1,2-Trichloroethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,1-Dichloroethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,1-Dichloroethene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,1-Dichloropropene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2,3-Trichlorobenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2,3-Trichloropropane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2,4-Trichlorobenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2,4-Trimethylbenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2-Dibromo-3-chloropropane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2-Dibromoethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2-Dichlorobenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2-Dic hloro ethan e	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,2-Dichloropropane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,3,5-Trimethylbenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,3-Dichlorobenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,3-Dichloropropane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
1,4-Dichlorobenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
2,2-Dichloropropane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
2-Butanone	ND	29.8		µg/Kg-dry	1	7/2/2008 4:53:00 AM
2-Chlorotolu ene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
2-Hexanone	ND	29.8		µg/Kg-dry	1	7/2/2008 4:53:00 AM
4-Chlorotoluene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
4-lsopropyltoluene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
4-Methyl-2-pentanone	ND	29.8		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Acetone	ND	74.5		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Benzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Bromobenzene	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Bromochloromethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Bromodichloromethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Bromoform	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Bromomethane	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Carbon disulfide	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM
Carbon tetrachloride	ND	14.9		µg/Kg-dry	1	7/2/2008 4:53:00 AM

Surr: 4-Bromof luorobenzene

Surr: Dibromof luoromethane

Surr: Toluene-d8

Date:	07-Jul- 08
-------	--------------

CLIENT:	Maul, Foster & Alongi
Project:	Port of Ridgefield / 9003.01.36

Lab Order:

0806103 **VOLATILES BY GC/MS** SW 8260 B Analyst: das µg/Kg-dry Chlorobenzene ND 14.9 1 7/2/2008 4:53:00 AM Chloroethane ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Chloroform ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Chloro methane 14.9 7/2/2008 4:53:00 AM ND µg/Kg-dry 1 cis-1,2-Dichloroethene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM cis-1,3-Dichloropropene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Dibromochlo rome thane ND 14.9 1 7/2/2008 4:53:00 AM µg/Kg-dry Dibromometh ane ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Dichlor odif lu oromethan e ND 14.9 1 7/2/2008 4:53:00 AM µg/Kg-dry Ethvlbenzene ND 14.9 1 7/2/2008 4:53:00 AM µg/Kg-dry Hexac hlorob utadiene 14.9 1 7/2/2008 4:53:00 AM ND µg/Kg-dry ls opropylben zene ND 14.9 1 7/2/2008 4:53:00 AM µg/Kg-dry ND 29.8 1 7/2/2008 4:53:00 AM m,p-Xy lene µg/Kg-dry Methyl tert-butyl ether ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Methylene chloride ND 74.5 µg/Kg-dry 1 7/2/2008 4:53:00 AM n-Buty Ibenz ene ND 14.9 1 µg/Kg-dry 7/2/2008 4:53:00 AM n-Propylbenzene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Naphthalene ND 14.9 1 7/2/2008 4:53:00 AM µg/Kg-dry ND 14.9 1 7/2/2008 4:53:00 AM o-Xylene µg/Kg-dry sec-Butylbenzene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Styrene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM 7/2/2008 4:53:00 AM tert-Butylbenzene ND 14.9 µg/Kg-dry 1 Tetrac hloroe thene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Toluene 14.9 7/2/2008 4:53:00 AM ND µg/Kg-dry 1 trans-1,2-Dichloroethene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM trans-1,3-Dichloropropene ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Trichloroeth ene ND 14.9 1 7/2/2008 4:53:00 AM µg/Kg-dry Trichlorofluoromethane ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM V inyl chloride ND 14.9 µg/Kg-dry 1 7/2/2008 4:53:00 AM Surr: 1,2-Dichloroethane-d4 105 71.5-112 %REC 1 7/2/2008 4:53:00 AM

94.9

107

96.5

75.7-122

64.3-124

74.9-120

%REC

%REC

%REC

1

1

1

7/2/2008 4:53:00 AM

7/2/2008 4:53:00 AM

7/2/2008 4:53:00 AM

Date: 07-Jul-08

CLIENT: Maul, Foster & Along	i				Lab Order:	0806103
Project: Port of Ridgefield / 90	03.01.36				240 014010	0000100
•						
Lab ID: 0806103-05				Collection D	ate: 6/20/200	8 2:00:00 PM
Client Sample ID: Box-Comp-1				Ma	trix: SOIL	
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
NW TPH-DX		NW TPH-DX				Analyst: kms
Diesel	23.2	19.3	A1	mg/Kg-dry	1	6/24/2008
Lube Oil	ND	64.4		mg/Kg-dry	1	6/24/2008
Surr: o-Terphenyl	66.4	50-150		%REC	1	6/24/2008
TOTAL METALS BY ICP		E6010				Analyst: zau
Arsenic	12.1	1.98		mg/Kg-dry	1	6/24/2008 4:26:41 PM
Chromium	35.5	0.495		mg/Kg-dry	1	6/24/2008 4:26:41 PM
Copper	15.5	0.990		mg/Kg-dry	1	6/24/2008 4:26:41 PM
Zinc	102	0.990		mg/Kg-dry	1	6/24/2008 4:26:41 PM
SEMIVOLATILE ORGANICS BY GC/MS		SW 8270 D				Analyst: bda
1-Methylnaphthalene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2,3,4,6-Tetra chlor ophe nol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2,3,4-Trichlorophenol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2,3,5,6-Tetra chlor ophe nol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2,3,5-Trichlorophenol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2,3,6-Trichlorophenol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2,4,5-Trichlorophenol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2,4,6-Trichlorophenol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
2-Methylnaphthalene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
3,4,5-Trichlorophenol	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Acenaphthene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
A cenaphthy lene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Anthracene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Benz(a)anthracene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Benzo(a)py rene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Benzo(b)fluoranthene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Benzo(g,h,i)perylene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Benzo(k)fluoranthene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Bis(2-ethylhexyl)phthalate	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Carbaz ole	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Chrysene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Dibenz (a,h)anthracene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Dibenzofuran	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Fluoranthene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Fluorene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Indeno(1,2,3-cd)pyrene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Naphthalene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Pentachlorophenol	ND	64.4		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Phenanthrene	ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM

Date:	07-Jul-08
-------	-----------

CLIENT: Project:	Maul, Foster & Alongi Port of Ridgefield / 9003	.01.36		Lab Order:	0806103		
SEMIVOLATI	LE ORGANICS BY GC/MS		SW 8270 D				Analyst: bda
Pyrene		ND	42.9		µg/Kg-dry	1	6/27/2008 9:00:00 PM
Surr: 2,4,6	-Tribromophenol	56.8	57.8-119	S	%REC	1	6/27/2008 9:00:00 PM
Surr: 2-Flu	iorob iphen y l	81.1	52.6-93.2		%REC	1	6/27/2008 9:00:00 PM
Surr: 2-Flu	iorophenol	55.9	40.7-111		%REC	1	6/27/2008 9:00:00 PM
Surr: 4-Te	rphe nyl-d14	78.5	49.8-118	%REC		1	6/27/2008 9:00:00 PM
Surr: Nitrol	benzene-d5	67.3	44.8-103		%REC	1	6/27/2008 9:00:00 PM
Surr: Phen	iol-d6	55.5	47.5-117		%REC	1	6/27/2008 9:00:00 PM

CLIENT: Maul, Foster & Alongi 0806103 Work Order:

Port of Ridgefield / 9003.01.36 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_S

Sample ID:	MBLK-21332	SampType: N	MBLK	TestCode: 6010_S Uhits: mg/Kg				Prep Date	e: 6/24/20	Run ID: TJA IRIS_080624D			
Client ID:	<u>77777</u>	Batch ID: 2	21332	Test	b: E6010			Analysis Da	te: 6/24/20	008	SeqNo: 54	4994	
Analyte		I	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	2.00									
Chromium			ND	0.500									
Copper			ND	1.00									
Zinc			0.17	1.00									J
Sample ID:	LCS-21332	SampType: L	_CS	TestCo	de: 6010_S	Uhits: mg/Kg		Prep Date	e: 6/24/20	008	Run ID: TJ	A IRIS_0806	24D
Client ID:	ZZZZZ	Batch ID: 2	21332	Test	b: E6010			Analysis Da	te: 6/24/20	800	SeqNo: 54	4995	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			103.9	2.00	100	0	104	85.1	107	0	0		
Chromium			27.35	0.500	25	0	109	84	113	0	0		
Copper			51.67	1.00	50	0	103	91.3	111	0	0		
Zinc			52.46	1.00	50	0	105	86.8	112	0	0		
Sample ID:	0806090-02AMS	SampType: N	MS	TestCo	de: 6010_S	Units: mg/Kg		Prep Date	e: 6/24/20	008	Run ID: TJ	A IRIS_0806	24D
Client ID:	ZZZZZ	Batch ID: 2	21332	Test	b: E6010			Analysis Da	te: 6/24/20	008	SeqNo: 54	4998	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte Arsenic		I	Result 91.55	PQL 1.72	SPK value 86.21	SPK Ref Val 6.491	%REC 98.7	Low Limit 86.1	HighLimit 109	RPD Ref Val	%RPD 0	RPDLimit	Qual
Analyte Arsenic Chromium		I	Result 91.55 30.77	PQL 1.72 0.431	SPK value 86.21 21.55	SPK Ref Val 6.491 10.52	%REC 98.7 94	Low Limit 86.1 75	HghLimit 109 121	RPD Ref Val 0 0	%RPD 0 0	RPDLimit	Qual
Analyte Arsenic Chromium Copper		I	Result 91.55 30.77 48.05	PQL 1.72 0.431 0.862	SPK value 86.21 21.55 43.1	SPK Ref Val 6.491 10.52 6.095	%REC 98.7 94 97.3	Low Limit 86.1 75 75.1	HghLimit 109 121 126	RPD Ref Val 0 0 0	%RPD 0 0 0	RPDLimit	Qual
Analyte Arsenic Chromium Copper Zinc			Result 91.55 30.77 48.05 68.55	PQL 1.72 0.431 0.862 0.862	SPK value 86.21 21.55 43.1 43.1	SPK Ref Val 6.491 10.52 6.095 29.91	%REC 98.7 94 97.3 89.7	Low Limit 86.1 75 75.1 86.2	HghLimit 109 121 126 113	RPD Ref Val 0 0 0 0	%RPD 0 0 0 0	RPDLimit	Qual
Analyte Arsenic Chromium Copper Zinc Sample ID:	0806090-02AM SD	SampType: N	Result 91.55 30.77 48.05 68.55 MSD	PQL 1.72 0.431 0.862 0.862 TestCoo	SPK value 86.21 21.55 43.1 43.1 de: 6010_S	SPK Ref Val 6.491 10.52 6.095 29.91 Uhits: mg/Kg	%REC 98.7 94 97.3 89.7	Low Limit 86.1 75 75.1 86.2 Prep Date	HghLimit 109 121 126 113 e: 6/24/20	RPD Ref Val 0 0 0 0 008	%RPD 0 0 0 0 Run ID: TJ	RPDLimit	Qual
Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID:	0806090-02AMSD ZZZZZ	SampType: N Batch ID: 2	Result 91.55 30.77 48.05 68.55 MSD 21332	PQL 1.72 0.431 0.862 0.862 TestCoo TestN	SPK value 86.21 21.55 43.1 43.1 de: 6010_S vb: E6010	SPK Ref Val 6.491 10.52 6.095 29.91 Uhits: mg/Kg	%REC 98.7 94 97.3 89.7	Low Limit 86.1 75 75.1 86.2 Prep Date Analysis Date	HghLimit 109 121 126 113 e: 6/24/20 te: 6/24/20	RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%RPD 0 0 0 0 Run ID: TJ SeqNo: 54	RPDLimit A IRIS_0806 4999	Qual
Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID: Analyte	0806090-02AMSD ZZZZZ	SampType: N Batch ID: 2	Result 91.55 30.77 48.05 68.55 MSD 21332 Result	PQL 1.72 0.431 0.862 0.862 TestCoo TestM PQL	SPK value 86.21 21.55 43.1 43.1 de: 6010_S vb: E6010 SPK value	SPK Ref Val 6.491 10.52 6.095 29.91 Uhits: mg/Kg SPK Ref Val	%REC 98.7 94 97.3 89.7 %REC	Low Limit 86.1 75 75.1 86.2 Prep Date Analysis Date Low Limit	HghLimit 109 121 126 113 e: 6/24/20 te: 6/24/20 HghLimit	RPD Ref Val 0 0 0 0 0 0 0 0 0	%RPD 0 0 0 8 8 8 9 8 9 8 8 9 8 7 9 8 7 9 8 7 9 8 9 8	RPDLimit A IRIS_0806 4999 RPDLimit	Qual 24D Qual
Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID: Analyte Arsenic	0806090-02AMSD ZZZZZ	SampType: N Batch ID: 2	Result 91.55 30.77 48.05 68.55 MSD 21332 Result 89.66	PQL 1.72 0.431 0.862 0.862 TestCoo TestM PQL 1.69	SPK value 86.21 21.55 43.1 43.1 de: 6010_S bo: E6010 SPK value 84.75	SPK Ref Val 6.491 10.52 6.095 29.91 Uhits: mg/Kg SPK Ref Val 6.491	%REC 98.7 94 97.3 89.7 %REC 98.1	Low Limit 86.1 75 75.1 86.2 Prep Date Analysis Date Low Limit 86.1	HghLimit 109 121 126 113 e: 6/24/20 te: 6/24/20 HghLimit 109	RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%RPD 0 0 0 0 Run ID: TJ SeqNo: 54 %RPD 2.09	RPDLimit A IRIS_0806 4999 RPDLimit 20	Qual 24D Qual
Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID: Analyte Arsenic Chromium	0806090-02AM SD ZZZZZ	SampType: N Batch ID: 2	Result 91.55 30.77 48.05 68.55 MSD 21332 Result 89.66 30.46	PQL 1.72 0.431 0.862 0.862 TestCoo TestM PQL 1.69 0.424	SPK value 86.21 21.55 43.1 43.1 de: 6010_S b: E6010 SPK value 84.75 21.19	SPK Ref Val 6.491 10.52 6.095 29.91 Uhits: mg/Kg SPK Ref Val 6.491 10.52	%REC 98.7 94 97.3 89.7 %REC 98.1 94.1	Low Limit 86.1 75 75.1 86.2 Prep Date Analysis Date Low Limit 86.1 75	HghLimit 109 121 126 113 e: 6/24/20 te: 6/24/20 HghLimit 109 121	RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%RPD 0 0 0 0 Run ID: TJ SeqNo: 54 %RPD 2.09 1.01	RPDLimit A IRIS_0806 4999 RPDLimit 20 20	Qual 24D Qual

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blanl

J - Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_S

Sample ID:	0806090-02AMSD	SampType: MSD	TestCo	de: 6010_S	Uhits: mg/Kg	Prep Date: 6/24/2008			Run ID: TJA IRIS_080624D			
Client ID:	77777	Batch ID: 21332	Test	vb: E6010			Analysis Da	ite: 6/24/2	008	SeqNo: 544	4999	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Copper		48.08	0.847	42.37	6.095	99.1	75.1	126	48.05	0.0687	20	
Zinc		65.26	0.847	42.37	29.91	83.4	86.2	113	68.55	4.92	20	S
Sample ID:	0806090-02ADUP	SampType: DUP	TestCo	de: 6010_S	Uhits: mg/Kg		Prep Dat	te: 6/24/2	008	Run ID: TJ	A IRIS_08062	24D
Client ID:	ZZZZZ	Batch ID: 21332	Test	b: E6010			Analysis Da	ite: 6/24/2	008	SeqNo: 544	4997	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		5.798	1.75	0	0	0	0	0	6.491	11.3	20	
Chromium		10.3	0.439	0	0	0	0	0	10.52	2.10	20	
Copper		5.702	0.877	0	0	0	0	0	6.095	6.66	20	
Zinc		29.24	0.877	0	0	0	0	0	29.91	2.26	20	
Sample ID:	CCV	SampType: CCV	TestCo	de: 6010_S	Uhits: mg/Kg		Prep Dat	te:		Run ID: TJ	A IRIS_0806	24D
Client ID:	ZZZZZ	Batch ID: 21332	Test	vb: E6010			Analysis Da	ite: 6/24/2	008	SeqNo: 544	4993	
Client ID: Analyte	77772	Batch ID: 21332 Result	Testl PQL	No: E6010 SPK value	SPK Ref Val	%REC	Analysis Da LowLimit	ite: 6/24/2 0 HighLimit	008 RPD Ref Val	SeqNo: 544 %RPD	4993 RPDLimit	Qual
Client ID: Analyte Arsenic	72222	Batch ID: 21332 Result 104.5	Testi PQL 2.00	No: E6010 SPK value 100	SPK Ref Val	%REC 104	Analysis Da LowLimit 90	tte: 6/24/2 0 HighLimit 110	008 RPD Ref Val 0	SeqNo: 54 4 %RPD 0	1993 RPDLimit	Qual
Client ID: Analyte Arsenic Chromium	72222	Batch ID: 21332 Result 104.5 26.79	Testf PQL 2.00 0.500	No: E6010 SPK value 100 25	SPK Ref Val 0 0	%REC 104 107	Analysis Da LowLimit 90 90	tte: 6/24/2 0 HghLimit 110 110	008 RPD Ref Val 0 0	SeqNo: 544 %RPD 0 0	1993 RPDLimit	Qual
Client ID: Analyte Arsenic Chromium Copper	72222	Batch ID: 21332 Result 104.5 26.79 50.55	Testi PQL 2.00 0.500 1.00	No: E6010 SPK value 100 25 50	SPK Ref Val 0 0 0	%REC 104 107 101	Analysis Da Low Limit 90 90 90	tte: 6/24/2 0 HighLimit 110 110 110	008 RPD Ref Val 0 0 0	SeqNo: 544 %RPD 0 0 0	1993 RPDLimit	Qual
Client ID: Analyte Arsenic Chromium Copper Zinc	72222	Batch ID: 21332 Result 104.5 26.79 50.55 51.87	Test PQL 2.00 0.500 1.00 1.00	No: E6010 SPK value 100 25 50 50	SPK Ref Val 0 0 0 0	%REC 104 107 101 104	Analysis Da Low Limit 90 90 90 90	tte: 6/24/20 HghLimit 110 110 110 110	008 RPD Ref Val 0 0 0 0	SeqNo: 544 %RPD 0 0 0 0	1993 RPDLimit	Qual
Client ID: Analyte Arsenic Chromium Copper Zinc Sample ID:	ZZZZZ	Batch ID: 21332 Result 104.5 26.79 50.55 51.87 SampType: CCV	Test PQL 2.00 0.500 1.00 1.00 TestCod	No: E6010 SPK value 100 25 50 50 de: 6010_S	SPK Ref Val 0 0 0 0 Uhits: mg/Kg	%REC 104 107 101 104	Analysis Da Low Limit 90 90 90 90 Prep Dat	HghLimit HghLimit 110 110 110 110 110	008 RPD Ref Val 0 0 0 0	SeqNo: 544 %RPD 0 0 0 0 8 0	4993 RPDLimit A IRIS_08062	Qual
Client ID: Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID:	ZZZZZ CCV ZZZZZ	Batch ID: 21332 Result 104.5 26.79 50.55 51.87 SampType: CCV Batch ID: 21332	Test PQL 2.00 0.500 1.00 1.00 TestCoo Test	No: E6010 SPK value 100 25 50 50 de: 6010_S No: E6010	SPK Ref Val 0 0 0 0 Uhits: mg/Kg	%REC 104 107 101 104	Analysis Da Low Limit 90 90 90 Prep Dat Analysis Da	HghLimit HghLimit 110 110 110 110 110 110 110	008 RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	SeqNo: 544 %RPD 0 0 0 0 0 8 0 8 0 8 0 8 0 0 8 0 8 0	4993 RPDLimit A IRIS_08062 5001	Qual
Client ID: Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID: Analyte	ZZZZZ	Batch ID: 21332 Result 104.5 26.79 50.55 51.87 SampType: CCV Batch ID: 21332 Result	Test PQL 2.00 0.500 1.00 1.00 TestCou TestDu PQL	No: E6010 SPK value 100 25 50 50 6e: 6010_S No: E6010 SPK value	SPK Ref Val 0 0 0 Uhits: mg/Kg SPK Ref Val	%REC 104 107 101 104 %REC	Analysis Da LowLimit 90 90 90 Prep Dat Analysis Da LowLimit	tte: 6/24/20 HghLimit 110 110 110 110 te: te: HghLimit	008 RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	SeqNo: 544 %RPD 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 8 9 8 8 9	4993 RPDLimit A IRIS_08062 5001 RPDLimit	Qual 24D Qual
Client ID: Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID: Analyte Arsenic	ZZZZZ CCV ZZZZZ	Batch ID: 21332 Result 104.5 26.79 50.55 51.87 SampType: CCV Batch ID: 21332 Result 104.4	Test PQL 2.00 0.500 1.00 1.00 TestCou Test PQL 2.00	No: E6010 SPK value 100 25 50 50 de: 6010_S No: E6010 SPK value 100	SPK Ref Val 0 0 0 Uhits: mg/Kg SPK Ref Val 0	%REC 104 107 101 104 %REC 104	Analysis Da Low Limit 90 90 90 Prep Dat Analysis Da Low Limit 90	tte: 6/24/20 HghLimit 110 110 110 110 tte: tte: 6/24/20 HghLimit 110	008 RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	SeqNo: 544 %RPD 0 0 0 0 Run ID: TJ SeqNo: 545 %RPD 0	4993 RPDLimit A IRIS_08062 5001 RPDLimit	Qual 24D Qual
Client ID: Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID: Analyte Arsenic Chromium	ZZZZZ CCV ZZZZZ	Batch ID: 21332 Result 104.5 26.79 50.55 51.87 SampType: CCV Batch ID: 21332 Result 104.4 26.99	Test PQL 2.00 0.500 1.00 1.00 TestCou Test PQL 2.00 0.500	No: E6010 SPK value 100 25 50 50 de: 6010_S No: E6010 SPK value 100 25	SPK Ref Val 0 0 0 0 Uhits: mg/Kg SPK Ref Val 0 0 0	%REC 104 107 101 104 %REC 104 108	Analysis Da Low Limit 90 90 90 Prep Dat Analysis Da Low Limit 90 90	tte: 6/24/20 HghLimit 110 110 110 110 tte: tte: 6/24/20 HghLimit 110 110	008 RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	SeqNo: 544 %RPD 0 0 0 0 0 0 0 0 0 8 8 9 8 8 9 8 8 9 8 8 9 0 0 0 0	4993 RPDLimit A IRIS_08062 5001 RPDLimit	Qual 24D Qual
Client ID: Analyte Arsenic Chromium Copper Zinc Sample ID: Client ID: Analyte Arsenic Chromium Copper	ZZZZZ CCV ZZZZZ	Batch ID: 21332 Result 104.5 26.79 50.55 51.87 SampType: CCV Batch ID: 21332 Result 104.4 26.99 50.69	Test PQL 2.00 0.500 1.00 1.00 TestCod TestT PQL 2.00 0.500 1.00	No: E6010 SPK value 100 25 50 50 de: 6010_S No: E6010 SPK value 100 25 50	SPK Ref Val 0 0 0 Uhits: mg/Kg SPK Ref Val 0 0 0 0 0	%REC 104 107 101 104 %REC %REC 104 108 101	Analysis Da Low Limit 90 90 90 90 Prep Dat Analysis Da Low Limit 90 90	tte: 6/24/24 HghLimit 110 110 110 110 te: tte: 6/24/24 HghLimit 110 110 110	008 RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	SeqNo: 544 %RPD 0 0 0 0 0 0 0 0 8 8 9 8 8 9 8 8 9 8 8 9 8 9	4993 RPDLimit A IRIS_08062 5001 RPDLimit	Qual 24D Qual

Qualifiers:

CLIENT:

Project:

Work Order:

Maul, Foster & Alongi

Port of Ridgefield / 9003.01.36

0806103

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_S

Sample ID: CCV	SampType: CCV	TestCoo	te: 6010_S	Units: mg/Kg		Prep Dat	e:		Run ID: TJ	A IRIS_0806	24D
Client ID: ZZZZZ	Batch ID: 21332	Test	b: E6010			Analysis Da	te: 6/24/20	800	SeqNo: 54	5006	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	104.6	2.00	100	0	105	90	110	0	0		
Chromium	26.76	0.500	25	0	107	90	110	0	0		
Copper	50.59	1.00	50	0	101	90	110	0	0		
Zinc	51.64	1.00	50	0	103	90	110	0	0		
Sample ID: ICV	SampType: ICV	TestCoo	de: 6010_S	Units: mg/Kg		Prep Dat	e:		Run ID: TJ	A IRIS_0806	24D
Sample ID: ICV Client ID: ZZZZZ	SampType: ICV Batch ID: 21332	TestCoo TestN	de: 6010_S vb: E6010	Units: mg/Kg		Prep Dat Analysis Da	e: te: 6/24/20	008	Run ID: TJ SeqNo: 54 4	A IRIS_0806 1992	24D
Sample ID: ICV Client ID: ZZZZZ Analyte	SampType: ICV Batch ID: 21332 Result	TestCoo TestN PQL	de: 6010_S do: E6010 SPK value	Uhits: mg/Kg SPK Ref Val	%REC	Prep Dat Analysis Da Low Limit	e: te: 6/24/20 HghLimit	108 RPD Ref Val	Run ID: TJ SeqNo: 54 4 %RPD	A IRIS_0806 1992 RPDLimit	24D Qual
Sample ID: ICV Client ID: ZZZZZ Analyte Arsenic	SampType: ICV Batch ID: 21332 Result 100.8	TestCoo TestN PQL 2.00	de: 6010_S No: E6010 SPK value 100	Uhits: mg/Kg SPK Ref Val 0	%REC 101	Prep Dat Analysis Da Low Limit 90	e: te: 6/24/20 HghLimit 110	008 RPD Ref Val 0	Run ID: TJ , SeqNo: 54 4 %RPD 0	A IRIS_0806 1992 RPDLimit	24D Qual
Sample ID: ICV Client ID: ZZZZZ Analyte Arsenic Chromium	SampType: ICV Batch ID: 21332 Result 100.8 26.12	TestCoo TestN PQL 2.00 0.500	de: 6010_S No: E6010 SPK value 100 25	Units: mg/Kg SPK Ref Val 0 0	%REC 101 104	Prep Dat Analysis Da Low Limit 90 90	e: te: 6/24/20 HghLimit 110 110	008 RPD Ref Val 0 0	Run ID: TJ. SeqNo: 54 4 %RPD 0 0	A IRIS_0806 4992 RPDLimit	24D Qual
Sample ID: ICV Client ID: ZZZZZ Analyte Arsenic Chromium Copper	SampType: ICV Batch ID: 21332 Result 100.8 26.12 49.67	TestCoo TestN PQL 2.00 0.500 1.00	de: 6010_S do: E6010 SPK value 100 25 50	Units: mg/Kg SPK Ref Val 0 0 0	%REC 101 104 99.3	Prep Dat Analysis Da Low Limit 90 90 90	e: te: 6/24/20 HghLimit 110 110 110	008 RPD Ref Val 0 0 0	Run ID: TJ. SeqNo: 54 4 %RPD 0 0 0	A IRIS_0806 4992 RPDLimit	24D Qual

Qualifiers: ND - Not Detected at the Reporting Limit

CLIENT:

Project:

Work Order:

Maul, Foster & Alongi

Port of Ridgefield / 9003.01.36

0806103

S - Spike Recovery outside accepted recovery limits

CLIENT:Maul, Foster & AlongiWork Order:0806103

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: MB-21367	SampType: MBLK	TestCode: 8260_S	Uhits: µg/Kg	Prep Date: 7/1/2008				Run ID: 5973J_080701A			
Client ID: ZZZZZ	Batch ID: 21367	TestNo: SW8260B	6		Analysis Dat	e: 7/1/20 0	08	SeqNo: 54	6060		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,1,2-Tetrachloroethane	ND	10.0									
1,1,1-Trichloroethane	ND	10.0									
1,1,2,2-Tetrachloroethane	ND	10.0									
1,1,2-Trichloroethane	ND	10.0									
1,1-Dichloroethane	ND	10.0									
1,1-Dichloroethene	ND	10.0									
1,1-Dichloropropene	ND	10.0									
1,2,3-Trichlorobenzene	ND	10.0									
1,2,3-Trichloropropane	ND	10.0									
1,2,4-Trichlorobenzene	ND	10.0									
1,2,4-Trimethylbenzene	ND	10.0									
1,2-Dibromo-3-chloropropane	ND	10.0									
1,2-Dibromoethane	ND	10.0									
1,2-Dichlorobenzene	ND	10.0									
1,2-Dichloroethane	ND	10.0									
1,2-Dichloropropane	ND	10.0									
1,3,5-Trimethylbenzene	ND	10.0									
1,3-Dichlorobenzene	ND	10.0									
1,3-Dichloropropane	ND	10.0									
1,4-Dichlorobenzene	ND	10.0									
2,2-Dichloropropane	ND	10.0									
2-Butanone	ND	20.0									
2-Chlorotoluene	ND	10.0									
2-Hexanone	ND	20.0									
4-Chlorotoluene	ND	10.0									
4-lsopropyltoluene	ND	10.0									
4-Methyl-2-pentanone	ND	20.0									
Acetone	ND	50.0									
Benzene	ND	10.0									
Bromobenzene	ND	10.0									
Bromochloromethane	ND	10.0									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

CLIENT:Maul, Foster & AlongiWork Order:0806103

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: MB-21367	SampType: MBLK	TestCode: 8260_S	Units: µg/Kg		Prep Date: 7/1	2008	Run ID: 59	73J_080701	A
Client ID: ZZZZZ	Batch ID: 21367	TestNo: SW8260	В		Analysis Date: 7/1	2008	SeqNo: 54	6060	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	Low Limit High Li	nit RPD Ref Val	%RPD	RPDLimit	Qual
Bromodichloromethane	ND	10.0							
Bromoform	ND	10.0							
Bromomethane	ND	10.0							
Carbon disulfide	ND	10.0							
Carbon tetrachloride	ND	10.0							
Chlorobenzene	ND	10.0							
Chloroethane	ND	10.0							
Chloroform	ND	10.0							
Chloromethane	0.51	10.0							J
cis-1,2-Dichloroethene	ND	10.0							
cis-1,3-Dichloropropene	ND	10.0							
Dibromochloromethane	ND	10.0							
Dibromomethane	ND	10.0							
Dichlorodifluoromethane	ND	10.0							
Ethylbenzene	ND	10.0							
Hexachlorobutadiene	ND	10.0							
lsopropylbenzene	ND	10.0							
m,p-Xylene	ND	20.0							
Methyl tert-butyl ether	ND	10.0							
Methylene chloride	5.63	50.0							J
n-Butylbenzene	ND	10.0							
n-Propylbenzene	ND	10.0							
Naphthalene	ND	10.0							
o-Xylene	ND	10.0							
sec-Butylbenzene	ND	10.0							
Styrene	ND	10.0							
tert-Butylbenzene	ND	10.0							
Tetrachloroethene	ND	10.0							
Toluene	ND	10.0							
trans-1,2-Dichloroethene	ND	10.0							
trans-1,3-Dichloropropene	ND	10.0							

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

CLIENT: Maul, Foster & Alongi Work Order: 0806103

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: MB-21367	SampType: MBLK	TestCod	e: 8260_S	Units: µg/Kg		Prep Dat	te: 7/1/200	08	Run ID: 597	73J_080701	A
Client ID: ZZZZZ	Batch ID: 21367	TestN	b: SW8260B			Analysis Da	te: 7/1/200)8	SeqNo: 540	6060	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	ND	10.0									
Trichlorofluoromethane	ND	10.0									
Vinyl chloride	ND	10.0									
Surr: 1,2-Dichloroethane-d4	106.3	0	100	0	106	71.5	112	0	0		
Surr: 4-Bromofluorobenzene	96.67	0	100	0	96.7	75.7	122	0	0		
Surr: Dibromofluoromethane	107.3	0	100	0	107	64.3	124	0	0		
Surr: Toluene-d8	95.85	0	100	0	95.8	74.9	120	0	0		
Sample ID: LCS-21367	SampType: LCS	TestCod	e: 8260_S	Units: µg/Kg		Prep Dat	te: 7/1/200	08	Run ID: 59	73J_080701	4
Client ID: ZZZZZ	Batch ID: 21367	TestN	b: SW8260B			Analysis Da	te: 7/1/200)8	SeqNo: 54	6059	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	61.16	10.0	60	0	102	65.4	133	0	0		
Benzene	58.57	10.0	60	0	97.6	78	123	0	0		
Chlorobenzene	55.43	10.0	60	0	92.4	79.5	125	0	0		
Toluene	58	10.0	60	0	96.7	77.5	132	0	0		
Trichloroethene	57.75	10.0	60	0	96.2	72.4	124	0	0		
Sample ID: 0806103-03BMS	SampType: MS	TestCod	e: 8260_S	Units: µg/Kg-o	lry	Prep Dat	te: 7/1/200)8	Run ID: 59	73J_080701	A
Client ID: MW58D-S-10.0	Batch ID: 21367	TestN	b: SW8260B			Analysis Da	ite: 7/2/200	08	SeqNo: 54	6066	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	60.37	10.9	65.26	0	92.5	69.2	158	0	0		
Benzene	55.16	10.9	65.26	0	84.5	71.7	147	0	0		
Chlorobenzene	51	10.9	65.26	0	78.2	75	148	0	0		
Toluene	52.63	10.9	65.26	0	80.6	75.8	153	0	0		
Trichloroethene	54.17	10.9	65.26	0	83	77.1	138	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

CLIENT:Maul, Foster & AlongiWork Order:0806103Project:Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_S

Sample ID: 0806103-03BM SD	SampType: MSD	TestCo	de: 8260_S	Uhits: µg/Kg-	dry	Prep Dat	te: 7/1/20	08	Run ID: 59	73J_080701 <i>/</i>	A
Client ID: MW58D-S-10.0	Batch ID: 21367	Test	b: SW8260B	6		Analysis Da	ate: 7/2/20	08	SeqNo: 54	6063	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	49.74	10.9	65.26	0	76.2	69.2	158	60.37	19.3	20	
Benzene	48.63	10.9	65.26	0	74.5	71.7	147	55.16	12.6	20	
Chlorobenzene	44.78	10.9	65.26	0	68.6	75	148	51	13.0	20	S
Toluene	46.42	10.9	65.26	0	71.1	75.8	153	52.63	12.5	20	S
Trichloroethene	47.28	10.9	65.26	0	72.4	77.1	138	54.17	13.6	20	S
Sample ID: CCV	SampType: CCV	TestCo	de: 8260_S	Units: µg/Kg		Prep Dat	te:		Run ID: 59	73J_080701	4
Client ID: ZZZZZ	Batch ID: 21367	Testl	b: SW8260B	3		Analysis Da	ate: 7/1/20	08	SeqNo: 54	6058	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	62.32	10.0	60	0	104	80	120	0	0		
1,2-Dichloropropane	59.81	10.0	60	0	99.7	80	120	0	0		
Chloroform	60.19	10.0	60	0	100	80	120	0	0		
Ethylbenzene	58.3	10.0	60	0	97.2	80	120	0	0		
Toluene	58.7	10.0	60	0	97.8	80	120	0	0		
Vinyl chloride	62.07	10.0	60	0	103	80	120	0	0		
Sample ID: CCV	SampType: CCV	TestCo	de: 8260_S	Units: µg/Kg		Prep Dat	te:		Run ID: 59	73J_080701	4
Client ID: ZZZZZ	Batch ID: 21367	Test	b: SW8260B	5		Analysis Da	ate: 7/2/20	08	SeqNo: 54	6064	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	54.29	10.0	60	0	90.5	80	120	0	0		
1,2-Dichloropropane	53.34	10.0	60	0	88.9	80	120	0	0		
Chloroform	57.37	10.0	60	0	95.6	80	120	0	0		
Ethylbenzene	53.34	10.0	60	0	88.9	80	120	0	0		
Toluene	52.91	10.0	60	0	88.2	80	120	0	0		
Vinvl chloride	50.26	10.0	60	0	83.8	80	120	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

CLIENT:Maul, Foster & AlongiWork Order:0806103Project:Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: MB-21330	SampType: MBLK TestCode: 8270POR_S Units: µg/Kg				1	Prep Dat	e: 6/24/2	Run ID: 5973G_080627A			
Client ID: ZZZZZ	Batch ID: 21330	Test	b: SW8270D			Analysis Da	te: 6/27/2	008	SeqNo: 54	5625	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1-Methylnaphthalene	ND	33.3									
2,3,4,6-Tetrachlorophenol	ND	33.3									
2,3,4-Trichlorophenol	ND	33.3									
2,3,5,6-Tetrachlorophenol	ND	33.3									
2,3,5-Trichlorophenol	ND	33.3									
2,3,6-Trichlorophenol	ND	33.3									
2,4,5-Trichlorophenol	ND	33.3									
2,4,6-Trichlorophenol	ND	33.3									
2-Methylnaphthalene	ND	33.3									
3,4,5-Trichlorophenol	ND	33.3									
Acenaphthene	ND	33.3									
Acenaphthylene	ND	33.3									
Anthracene	ND	33.3									
Benz(a)anthracene	ND	33.3									
Benzo(a)pyrene	29.67	33.3									J
Benzo(b)fluoranthene	22.33	33.3									J
Benzo(g,h,i)perylene	38.33	33.3									
Benzo(k)fluoranthene	27.67	33.3									J
Bis(2-ethylhexyl)phthalate	ND	33.3									
Carbazole	ND	33.3									
Chrysene	9.333	33.3									J
Dibenz(a,h)anthracene	37.33	33.3									
Dibenzofuran	ND	33.3									
Fluoranthene	ND	33.3									
Fluorene	ND	33.3									
Indeno(1,2,3-cd)pyrene	38.67	33.3									
Naphthalene	ND	33.3									
Pentachlorophenol	ND	50.0									
Phenanthrene	ND	33.3									
Pyrene	ND	33.3									
Surr: 2,4,6-Tribromophenol	1837	0	3333	0	55.1	57.8	119	0	0		S

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blanl

J - Analyte detected below quantitation limits

CLIENT:Maul, Foster & AlongiWork Order:0806103

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: MB-21330	SampType: MBLK	TestCode	e: 8270POR_	S Units: μg/Kg		Prep Dat	e: 6/24/20	008	Run ID: 597	73G_080627	Α
Client ID: ZZZZZ	Batch ID: 21330	TestNa	: SW8270D		Analysis Date: 6/27/2008			SeqNo: 545625			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl	2408	0	3333	0	72.3	52.6	93.2	0	0		
Surr: 2-Fluorophenol	1461	0	3333	0	43.8	40.7	111	0	0		
Surr: 4-Terphenyl-d14	2736	0	3333	0	82.1	49.8	118	0	0		
Surr: Nitrobenzene-d5	1760	0	3333	0	52.8	44.8	103	0	0		
Surr: Phenol-d6	1406	0	3333	0	42.2	47.5	117	0	0		S
Sample ID: LCS-21330	SampType: LCS	TestCode	e: 8270POR_	S Units: µg/Kg		Prep Dat	e: 6/24/20	008	Run ID: 597	73G_080627	A
Client ID: ZZZZZ	Batch ID: 21330	TestNa	: SW8270D		Analysis Date: 6/27/2008			SeqNo: 545626			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	1167	33.3	1667	0	70	30.9	106	0	0		
1,4-Dichlorobenzene	1025	33.3	1667	0	61.5	31.4	98.2	0	0		
2,4-Dinitrotoluene	1429	33.3	1667	0	85.7	59.7	111	0	0		
2-Chlorophenol	1021	33.3	1667	0	61.2	46.2	105	0	0		
4-Chloro-3-methylphenol	1304	33.3	1667	0	78.3	47.4	114	0	0		
4-Nitrophenol	1227	167	1667	0	73.6	45.3	114	0	0		
Acenaphthene	1253	33.3	1667	0	75.2	48.2	105	0	0		
N-Nitrosodi-n-propylamine	992	33.3	1667	0	59.5	42.4	101	0	0		
Pentachlorophenol	882.7	50.0	1667	0	53	46.8	120	0	0		
Phenol	1017	33.3	1667	0	61	51.1	103	0	0		
Pyrene	1326	33.3	1667	0	79.6	56.7	130	0	0		
Sample ID: 0806103-03AMS	SampType: MS	TestCode	e: 8270POR_	S Units: µg/Kg-a	dry	Prep Dat	e: 6/24/2 0	908	Run ID: 597	73G_080627	A
Client ID: MW58D-S-10.0	Batch ID: 21330	TestNa	D: SW8270D			Analysis Da	te: 6/27/20	008	SeqNo: 54	5630	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	1332	36.3	1813	0	73.5	31.1	92.7	0	0		
1,4-Dichlorobenzene	1329	36.3	1813	0	73.3	16.5	85.6	0	0		
2,4-Dinitrotoluene	1406	36.3	1813	0	77.6	43.4	118	0	0		
2-Chlorophenol	1369	36.3	1813	0	75.5	36.8	103	0	0		
4-Chloro-3-methylphenol	1410	36.3	1813	0	77.8	49.5	119	0	0		

Qualifiers: ND - Not Dete

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blanl

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

1

CLIENT:Maul, Foster & AlongiWork Order:0806103Project:Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: 0806103-03AMS	SampType: MS	TestCode: 8270POR_S Units: µg/Kg-dry			Prep Dat	e: 6/24/20	008	Run ID: 5973G_080627A				
Client ID: MW58D-S-10.0	Batch ID: 21330	Test	b: SW8270D		Analysis Date: 6/27/2008				SeqNo: 545630			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
4-Nitrophenol	1113	181	1813	0	61.4	45	111	0	0			
Acenaphthene	1339	36.3	1813	0	73.9	45.1	102	0	0			
N-Nitrosodi-n-propylamine	1324	36.3	1813	0	73.1	45.6	94.1	0	0			
Pentachlorophenol	1770	54.4	1813	719.7	57.9	36.6	112	0	0			
Phenol	1327	36.3	1813	0	73.2	37.7	107	0	0			
Pyrene	1347	36.3	1813	0	74.3	42.4	131	0	0			
Sample ID: 0806103-03AMSD	SampType: MSD	TestCo	de: 8270POR_	S Units: µg/Kg-o	dry	Prep Dat	e: 6/24/20	008	Run ID: 597	73G_080627	٩	
Client ID: MW58D-S-10.0	Batch ID: 21330	Test	b: SW8270D			Analysis Da	te: 6/27/20	008	SeqNo: 545631			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,2,4-Trichlorobenzene	1212	36.3	1813	0	66.8	31.1	92.7	1332	9.46	20		
1,4-Dichlorobenzene	1180	36.3	1813	0	65.1	16.5	85.6	1329	11.9	20		
2,4-Dinitrotoluene	1314	36.3	1813	0	72.5	43.4	118	1406	6.80	20		
2-Chlorophenol	1205	36.3	1813	0	66.5	36.8	103	1369	12.7	20		
4-Chloro-3-methylphenol	1306	36.3	1813	0	72.1	49.5	119	1410	7.66	20		
4-Nitrophenol	1057	181	1813	0	58.3	45	111	1113	5.11	20		
Acenaphthene	1259	36.3	1813	0	69.4	45.1	102	1339	6.20	20		
N-Nitrosodi-n-propylamine	1129	36.3	1813	0	62.3	45.6	94.1	1324	15.9	20		
Pentachlorophenol	1686	54.4	1813	719.7	53.3	36.6	112	1770	4.85	20		
Phenol	1153	36.3	1813	0	63.6	37.7	107	1327	14.0	20		
Pyrene	1254	36.3	1813	0	69.2	42.4	131	1347	7.08	20		
Sample ID: CCV-21330	SampType: CCV	TestCo	de: 8270POR_	S Units: µg/Kg		Prep Dat	e:		Run ID: 597	73G_080627	A	
Client ID: ZZZZZ	Batch ID: 21330	Test	b: SW8270D			Analysis Da	te: 6/27/20	800	SeqNo: 54	5624		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,4-Dichlorobenzene	2121	33.3	2000	0	106	80	120	0	0			
2,4,6-Trichlorophenol	2331	33.3	2000	0	117	80	120	0	0			
2,4-Dichlorophenol	2192	33.3	2000	0	110	80	120	0	0			
2-Chlorophenol	2108	33.3	2000	0	105	80	120	0	0			

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blanl

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

1

CLIENT:Maul, Foster & AlongiWork Order:0806103

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: CCV-21330	SampType: CCV	TestCode: 8270POR_S Units: µg/Kg				Prep Dat	te:		Run ID: 5973G_080627A			
Client ID: ZZZZZ	Batch ID: 21330	TestNo: SW8270D				Analysis Da	ate: 6/27/20	008	SeqNo: 545624			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
2-Nitrophenol	2033	167	2000	0	102	80	120	0	0			
4-Chloro-3-methylphenol	2034	33.3	2000	0	102	80	120	0	0			
Acenaphthene	1888	33.3	2000	0	94.4	80	120	0	0			
Benzo(a)pyrene	1993	33.3	2000	0	99.7	80	120	0	0			
Di-n-octyl phthalate	2036	33.3	2000	0	102	80	120	0	0			
Fluoranthene	1658	33.3	2000	0	82.9	80	120	0	0			
Hexachlorobutadiene	2061	33.3	2000	0	103	80	120	0	0			
N-Nitrosodiphenylamine	1788	33.3	2000	0	89.4	80	120	0	0			
Pentachlorophenol	1954	50.0	2000	0	97.7	80	120	0	0			
Phenol	2113	33.3	2000	0	106	80	120	0	0			

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

CLIENT:Maul, Foster & AlongiWork Order:0806103

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHDX_S

Sample ID:	MB-21331	SampType: ME	BLK T	TestCode	e: NWTPHD	(_ S Uhits: mg/	٨g	Prep Dat	e: 6/24/2	800	Run ID: GC	-M_080624A	
Client ID:	ZZZZZ	Batch ID: 21	331	TestN	o: NWTPH-D	x		Analysis Da	te: 6/24/2	008	SeqNo: 54	5033	
Analyte		Re	esult	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel			ND	15.0									
Lube Oil			ND	50.0									
Surr: o-	Terphenyl		28.2	0	33.33	0	84.6	50	150	0	0		
Sample ID:	LCS-21331	SampType: LC	: s T	TestCode	e: NWTPHDX	(_ S Units: mg/	۲g	Prep Dat	e: 6/24/2	008	Run ID: GC	-M_080624A	
Client ID:	ZZZZZ	Batch ID: 21	331	TestN	D: NWTPH-D	x		Analysis Da	te: 6/24/2	008	SeqNo: 54	5034	
Analyte		Re	esult	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel		1	72.6	15.0	166.6	0	104	76.3	125	0	0		
Lube Oil		10	69.8	50.0	166.6	0	102	69.9	127	0	0		
Sample ID:	0806103-04ADUP	SampType: DU	IP T	FestCode	e: NWTPHD)	_S Units: mg/k	Kg-dry	Prep Dat	e: 6/24/2	008	Run ID: GC	-M_080624A	
Client ID:	MW58D-S-13.5	Batch ID: 21	331	TestN	o: NWTPH-D	x		Analysis Da	te: 6/24/2	008	SeqNo: 54	5037	
Apolyto		Pr	oo ult						Light insit		0/ DDD		Qual
Analyte		ne.	esuit	PQL	SPK value	SPK Ref Val	%REC	LowLimit	ngnLimit	RED NEI VAI	70KFD	RPULIM	Qual
Diesel		8	1.53	22.4	SPK value	SPK Ref Val	%REC	Low Limit	ngn∟imit 0	74.94	8.41	20	Qual A1
Diesel Lube Oil		8 1:	1.53 22.2	22.4 74.5	SPK Value 0 0	O O	%REC 0 0	Low Limit 0 0	HighLimit 0 0	74.94 96.77	8.41 23.2	20 20 R	A1 R, MI, A2
Diesel Lube Oil Sample ID:	ссу	8 1: SampType: CC	1.53 22.2 CV T	22.4 74.5 TestCode	SPK Value 0 0 e: NWTPHD>	0 0 (_S Units: mg/h	%REC 0 0	Low Limit 0 0 Prep Dat	e:	74.94 96.77	8.41 23.2 Run ID: GC	20 20 R 20 R	A1 R, MI, A2
Diesel Lube Oil Sample ID: Client ID:	CCV ZZZZZ	8 12 SampType: CC Batch ID: 21	1.53 22.2 CV T 331	22.4 74.5 TestCode TestN	0 0 e: NWTPHD	0 0 (_S Units: mg/k	%REC 0 0	Low Limit 0 0 Prep Dat Analysis Da	e: 6/24/20	74.94 96.77	8.41 23.2 Run ID: GC SeqNo: 54	20 20 R 20 R 2-M_080624A 5032	A1 A, MI, A2
Diesel Lube Oil Sample ID: Client ID: Analyte	CCV ZZZZZ	8 1: SampType: CC Batch ID: 21: Re	1.53 22.2 CV T 331 esult	PQL 22.4 74.5 TestCode TestNi PQL	0 0 e: NWTPHD D: NWTPH-D SPK value	SPK Ref Val 0 C_S Units: mg/k x SPK Ref Val	%REC 0 0 (g %REC	Low Limit 0 0 Prep Dat Analysis Da Low Limit	e: te: 6/24/2 0 HghLimit	74.94 96.77 008 RPD Ref Val	8.41 23.2 Run ID: GC SeqNo: 54: %RPD	20 20 R 20 R 20 R 20 R 20 R 20 R 20 R 20	Quai A1 &, MI, A2 Qual
Diesel Lube Oil Sample ID: Client ID: Analyte Diesel	CCV ZZZZZ	8 12 SampType: CC Batch ID: 21 Re 9	1.53 22.2 CV T 331 esult 73.6	PQL 22.4 74.5 TestCode TestNo PQL 15.0	0 0 e: NWTPHDX D: NWTPH-D SPK value 999.9	0 0 (_S Uhits: mg/k x SPK Ref Val 0	%REC 0 0 %g %REC 97.4	Low Limit 0 0 Prep Dat Analysis Da Low Limit 85	e: te: 6/24/2 HghLimit 115	74.94 96.77 008 RPD Ref Val 0	8.41 23.2 Run ID: GC SeqNo: 54 %RPD 0	20 20 R 20 R 20 R 20 R 20 R 20 R 20 R 20	A1 A, MI, A2 Qual
Diesel Lube Oil Sample ID: Client ID: Analyte Diesel Lube Oil	CCV ZZZZZ	8 12 SampType: CC Batch ID: 213 Re 9 5	1.53 22.2 CV T 331 esult 73.6 14.4	22.4 74.5 TestCode TestN PQL 15.0 50.0	0 0 e: NWTPHDX b: NWTPH-D SPK value 999.9 500	0 0 C_S Units: mg/k x SPK Ref Val 0 0 0 0	%REC 0 0 %g %REC 97.4 103	Low Limit 0 Prep Dat Analysis Da Low Limit 85 85	e: te: 6/24/20 HghLimit 115	74.94 96.77 008 RPD Ref Val 0 0	8.41 23.2 Run ID: GC SeqNo: 54 %RPD 0 0	20 20 R 20 R 20 R 20 R 20 R 20 R 20 R 20	A1 A, MI, A2 Qual
Diesel Lube Oil Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID:	CCV ZZZZZ CCV	SampType: CC Batch ID: 21: Re 99 5 SampType: CC	1.53 22.2 CV T 331 esult 73.6 14.4	22.4 74.5 TestCode TestN PQL 15.0 50.0	SPK Value 0 0 e: NWTPHD> D: NWTPH-D SPK value 999.9 500 e: NWTPHD>	0 0 0 0 0 X SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 0 0 ćg %REC 97.4 103	Low Limit 0 Prep Dat Analysis Da Low Limit 85 85 Prep Dat	e: HghLimit HghLimit 115 115 e:	74.94 96.77 008 RPD Ref Val 0 0	8.41 23.2 Run ID: GC SeqNo: 54 %RPD 0 0 Run ID: GC	20 20 R 20 R 20 R 20 R 20 R 20 R 20 R 20	Qual A1 3, MI, A2 Qual
Diesel Lube Oil Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID: Client ID:	CCV ZZZZZ CCV ZZZZZ	SampType: CC Batch ID: 21: Re 99 55 SampType: CC Batch ID: 21:	1.53 22.2 CV T 331 esult 73.6 14.4 CV T 331	22.4 74.5 TestCode TestN PQL 15.0 50.0 FestCode TestN	SPK Value 0 0 e: NWTPHDX D: NWTPH-D SPK value 999.9 500 e: NWTPHDX D: NWTPH-D	0 0 0 0 C_S Units: mg/H x SPK Ref Val 0 0 0 0 0 0 0 0 X	%REC 0 0 %g %REC 97.4 103	Low Limit 0 0 Prep Dat Analysis Da Low Limit 85 85 Prep Dat Analysis Da	e: te: 6/24/20 HghLimit 115 115 e: te: 6/24/20	74.94 96.77 008 RPD Ref Val 0 0	8.41 23.2 Run ID: GC SeqNo: 54 %RPD 0 0 Run ID: GC SeqNo: 54	20 20 R 20 R 5032 RPDLimit C-M_080624A 5039	A1 A, MI, A2 Qual
Diesel Lube Oil Sample ID: Client ID: Analyte Diesel Lube Oil Sample ID: Client ID: Analyte	CCV ZZZZZ CCV ZZZZZ	SampType: CC Batch ID: 21: Re 9 5 SampType: CC Batch ID: 21: Re Re	1.53 22.2 CV T 331 73.6 14.4 CV T 331 esult	PQL 22.4 74.5 TestCode PQL 15.0 50.0 TestCode TestNu PQL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 X SPK Ref Val 0 0 0	%REC 0 0 % 97.4 103 % 97.4 103 % 8 97.4	Low Limit 0 0 Prep Dat Analysis Da Low Limit 85 85 Prep Dat Analysis Da Low Limit	e: HghLimit 115 115 e: te: 6/24/2 4 HghLimit	74.94 96.77 008 RPD Ref Val 0 0 0 8 RPD Ref Val	8.41 23.2 Run ID: GC SeqNo: 54 %RPD 0 0 Run ID: GC SeqNo: 54 %RPD	20 20 R 20 R 5032 RPDLimit C-M_080624A 5039 RPDLimit	Qual A1 A, MI, A2 Qual Qual

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHDX_S

Sample ID: CCV	SampType: CCV	TestCode: NWTPHDX_S Units: mg/Kg			Prep Date:				Run ID: GC-M_080624A			
Client ID: ZZZZZ	Batch ID: 21331	TestNb: NWTPH-Dx				Analysis Da	te: 6/24/20	SeqNo: 545039				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Lube Oil	694.6	50.0	666.6	0	104	85	115	0	0			

Qualifiers: ND - Not Detected at the Reporting Limit

CLIENT:

Project:

Work Order:

Maul, Foster & Alongi

Port of Ridgefield / 9003.01.36

0806103

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blanl

KEY TO FLAGS

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards.
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- B The blank exhibited a positive result greater than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- H Sample was analyzed outside recommended hold time.
- HT At clients request, sample was analyzed outside recommended hold time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- N Gasoline result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- P Detection levels of Methylene Chloride may be laboratory contamination, due to previous analysis or background levels.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits, post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- * The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.
| | | | CHAIN | | - C | US | TO | DY | RE | ECO | RD | 1 | | | | | | Page | <u>. </u> | _of_1_ |
|--------------|-----------------|--|-----------------|-------------|------------|----------------|----------|----------|----------|--|--------|-------|-------|------------|-----------------|-------|----------|-------------|--|-----------------------|
| | / 5 | necialty Analytica | 1 | | | c | Contac | ct Per | son/F | Project | Mana | ager | | A | an H. | ر مرا | res | | | |
| | 11 | 711 SE Capps Road | 1 | | | (| Comp | any | | Ma | s1 1 | East | hew | 3 | Alonsi | | | | | |
| 7 | — 11
Cl | ackamas, OR 97015 | | | | | Addre | ss | | 722 | 3 1 | VE | _ H | a2 | al Ro | U | Ave | | | |
| | Ph | one: 503-607-1331 | | | | | | | | Va | .n cor | ver | | λ | | | | | | |
| | Fa | x: 503-607-1336 | | | | | Phon | e. | | | | | | | Fax | | | | | |
| Collected B | v. 🕤 | \sim $^{\circ}$ | | | | | Proie | ct No | 900 | 05,0 | .34 | , | F | Projec | t Name | Pa | 4 | | | |
| Signature | " (<u>)</u> | | | | | | Projec | ct Site | Loca | tion O | R | | WA | * | Other_ | | | | | |
| Printed | 0; | Justin Pounds | | | | | Invoid | e To _ | | MFA | ٢ | | | | - 1 - 1 - 1 - 1 | | P.C |). No | | |
| Signature | | | | | | | | | Analy | vses | | | | | | F | or Lab | oratory Use | | |
| Printed | | | | | | | | y i | | | | | | | Lab Job N | lo | 08 | OLODE | 2 | · · · · · |
| | | | | y
S | | +5 | 2.4 | N. | | | | | | | Shipped V | /ia | <u>A</u> | reval | Ц | |
| Turn Around | Time | | | iner | | - | 1 | 1 2 3 | | | | | | | Air Bill No. | • | | | - | |
| 29 1 | Normal 5-7 | Business Days | | onta | x | + 1 | ler | 30 | | | | | | | | | | | | |
| O F | Rush | | | Ŭ | ę | C ² | 4 | Å i | | | | | | | Temperatu | ure C | In Rece | eipt | _⁰C | |
| | | Specify | | o
o | t. | | 10 | 51 | | | | | | | Specialty / | Analy | /tical C | containers? | Y/N | 1 |
| Rush Analys | ses Must Be | Scheduled With The Lab In Advance | | Ž | 13 | 2 | 2 | 5 5 | | | | | | | Specialty | Anal | /tical T | rip Blanks? | Y/N | 4 |
| Date | Time | Sample I.D. | Matrix | | Z | J | > | 33 | | | | | | | | Co | mment | s | | Lab I.D. |
| 4/18/08 | 1501 | MW58D-5-0.0 | 5 | 2 | | | | | | | | | | | please | e c | عدوله | ive | | |
| 6/18/08 | 1525 | MW58D-5-5.0 | S | 2 | <u> </u> | ļ | | | | | | | | | Same | مص | s H | 6~ | | |
| 6/18/05 | 1529 | MW58D-5-10.0 | S | 2 | X | x | 7 | × | ļ | | | | | | att. | fr | _the | - and his | 4 | |
| 6 20 0 5 g | 1545 | NW58D-5- 13.5 | S | 2 | R | × | X | × | | | | | | | | | <u></u> | | | |
| ietolos | 1400 | Box-come-1 | 5 | 2 | X | X | <u> </u> | × | | | | | | | | | | | | |
| | | | | | | ļ | _ | | <u> </u> | | | | | | | | | | | |
| | | | | | <u> </u> | ļ | <u> </u> | | ļ | | | | | | <u> </u> | | | | | |
| | | | | | ļ | ļ | ļ | ļ | | | | | | | | | | | | |
| | | | | | | <u> </u> | | <u> </u> | | | | | | | | | | | | No barran managemente |
| | | | | | <u> </u> | _ | ļ | | ļ | | | | | | | | | | | |
| | | | | ┥— | <u> </u> | <u> </u> | _ | | ļ | | | | | | | | | | | |
| | \Box_{Δ} | 2 | | <u> </u> | | <u> </u> | <u> </u> | | | | | | | | L | | | <u> </u> | ┶ | |
| Relinquishe | d Ву: | Date Tir | ne Receive | ed By: | W | Un | U U | Ut | m | | Relin | quish | ed By | / : | _ | | | Date | | Time |
| Company: | <u> </u> | -1FA 6/23/08/132 | Compai | ny: <u></u> | per | 10 | lh | A | | and a second | Com | pany: | | | - | | | | | |
| Unless Reci | aimed, Sam | ples Will Be Disposed of 60 Days After Red | ceipt. | - | l | | |) | | i | Rece | eived | For L | ab By | | | | Date | | Time |
| Samples held | beyond 60 o | lays subject to storage fee(s) | | | | | | | | | | (U | Xh | 11 | HU | De |) | 6230 | <u>XL</u> | 51le |
| Copies: Whit | e-Original | Yellow-Project File | Pink-Customer C | ору | | | | | | | | - | | | | | | 1 1 | | |

÷.

Copies:	White-	Original
---------	--------	----------

11711 SE Capps Road Clackamas, OR 97015 (503) 607-1331 Fax (503) 607-1336

July 30, 2008

Alan Hughes Maul, Foster & Alongi 7223 NE Hazel Dell Avenue Suite B Vancouver, WA 98665

TEL: (360) 694-2691 FAX: (360) 906-1958

RE: Port of Ridgefield / 9003.01.36

Dear Alan Hughes:

Order No.: 0807091

Specialty Analytical received 1 sample on 7/18/2008 for the analyses presented in the following report.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Ned Engleson Project Manager

Technical Review

Date: 30-Jul-08

CLIENT: Lab Order:	Maul, Foster & Alongi 0807091			C	Client Sample ID: Collection Date:	DB-2 7/16/20	08 1:05:00 PM
Project:	Port of Ridgefield / 9003.	01.36					
Lab ID:	0807091-01				Matrix:	SOIL	
Analyses		Res ult	Limit	Qual	Uni ts	DF	Date Analyzed
NW TPH-DX			NWTPH-DX				Analyst: jrp
Diesel		24.5	15.5		mg/Kg-dry	1	7/21/2008
Lube Oil		ND	51.6		mg/Kg-dry	1	7/21/2008
Surr: o-Terp	henyl	65.6	50-150		%REC	1	7/21/2008
TOTAL METAL	S BY ICP		E6010				Analyst: zau
Chromium		19.8	0.497		mg/Kg-dry	1	7/21/2008 1:55:17 PM
Copper		7.37	0.993		mg/Kg-dry	1	7/21/2008 1:55:17 PM
Zinc		223	0.993		mg/Kg-dry	1	7/21/2008 1:55:17 PM
τοται μεται	S BY ICP/MS		SW6020				Analyst: zau
Arsenic		3100	99.3		µg/Kg-dry	1	7/21/2008 5:10:00 PM
SEMIVOLATIL	E ORGANICS BY GC/MS		SW8270D				Analyst: bda
1-Methy Inapht	halene	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2,3,4,6-Tetrac	hlorophenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2,3,4-Trichloro	phenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2,3,5,6-Tetrac	hlorophenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2,3,5-Trichloro	phenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2,3,6-Trichloro	phenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2,4,5-Trichloro	phenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2,4,6-Trichloro	phenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
2-Methy Inapht	halene	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
3,4,5-Trichloro	phenol	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Acenaphthene	9	51.6	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Acenaphthyle	ne	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
A nthrac ene		49.2	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Benz(a)anthra	icene	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Benzo(a)pyre	ne	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Benzo(b)fluor	anthene	35.1	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Benzo(g,h,i)pe	erylene	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Benzo(k)fluora	anthene	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Bis(2-ethylhex	yl)phthalate	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Carbaz ole		43.4	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Chrysene		ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Dibenz(a,h)an	thracene	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Dibenzofuran		48.2	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Fluoranthene		181	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Fluorene		67.1	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Indeno(1,2,3-c	d)pyrene	ND	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Naphthalene		42.0	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Pentachloroph	enol	365	51.6		µg/Kg-dry	1	7/29/2008 2:50:00 PM
Phenanthrene		292	34.4		µg/Kg-dry	1	7/29/2008 2:50:00 PM

Date: 30-Jul-08

CLIENT: Lab Order:	IENT: Maul, Foster & Alon Order: 0807091 ject: Port of Ridge field / 9		zi Client Sample Collection D				08 1:05:00 PM
Project:	Port of Ridgefield / 900	3.01.36					
Lab ID:	0807091-01				Matrix:	SOIL	
Analyses		Result	Limit	Qual Uni	ts	DF	Date Analyzed
SEMIVOLATILI Pyrene	E ORGANICS BY GC/MS	126	SW8270D 34.4	µg/ł	(a-dry	1	Analyst: bda 7/29/2008 2:50:00 PM
Surr: 2,4,6-1	Tribromophenol	79.8	57.8-119	%R	EC	1	7/29/2008 2:50:00 PM
Surr: 2-Fluo	robiphenyl	86.3	52.6-93.2	%R	EC	1	7/29/2008 2:50:00 PM
Surr: 2-Fluo	rophenol	79.0	40.7-111	%R	EC	1	7/29/2008 2:50:00 PM
Surr: 4-Terp	henyl-d14	77.6	49.8-118	%R	EC	1	7/29/2008 2:50:00 PM
Surr: Nitrobe	enzene-d5	69.5	44.8-103	%R	EC	1	7/29/2008 2:50:00 PM
Surr: Pheno	l-d6	95.2	47.5-117	%R	EC	1	7/29/2008 2:50:00 PM

CLIENT: Maul, Foster & Alongi Work Order: 0807091

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_S

Sample ID:	MBLK-21441	SampType:	MBLK	TestCode: 6010_S Units: mg/Kg			J/Kg Prep Date: 7/21/2008				Run ID: TJA IRIS_080721		
Client ID:	77777	Batch ID:	21441	Test	b: E6010			Analysis Da	ite: 7/21/20	800	SeqNo: 54	8124	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			ND	0.500									
Copper			ND	1.00									
Zinc			0.23	1.00									J
Sample ID:	LCS-21441	SampType:	LCS	TestCo	de: 6010_S	Uhits: mg/Kg		Prep Dat	te: 7/21/2	008	Run ID: T.	JA IRIS_0807	'21A
Client ID:	ZZZZZ	Batch ID:	21441	Test	b: E6010			Analysis Da	ite: 7/21/20	800	SeqNo: 54	8125	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			26.51	0.500	25	0	106	84	113	0	0		
Copper			50.52	1.00	50	0	101	91.3	111	0	0		
Zinc			51.41	1.00	50	0	103	86.8	112	0	0		
Sample ID:	0807091-01AMS	SampType:	MS	TestCoo	de: 6010_S	Units: mg/Kg-	dry	Prep Dat	te: 7/21/20	800	Run ID: T.	IA IRIS_0807	'21A
Sample ID: Client ID:	0807091-01AMS DB-2	SampType: Batch ID:	MS 21441	TestCoo TestN	de: 6010_S No: E6010	Units: mg/Kg-	dry	Prep Dat Analysis Da	te: 7/21/20 tte: 7/21/20	008 008	Run ID: T. SeqNo: 54	IA IRIS_0807 8128	'21A
Sample ID: Client ID: Analyte	0807091-01AMS DB-2	SampType: Batch ID:	MS 21441 Result	TestCoo TestM PQL	de: 6010_S No: E6010 SPK value	Uhits: mg/Kg - SPK Ref Val	dry %REC	Prep Dat Analysis Da LowLimit	te: 7/21/20 tte: 7/21/20 HghLimit	008 008 RPD Ref Val	Run ID: T. SeqNo: 54 %RPD	IA IRIS_0807 8 128 RPDLimit	21A Qual
Sample ID: Client ID: Analyte Chromium	0807091-01AMS DB-2	SampType: Batch ID:	MS 21441 Result 52.27	TestCoo Testh PQL 0.487	de: 6010_S No: E6010 SPK value 24.36	Units: mg/Kg- SPK Ref Val 19.76	dry %REC 133	Prep Dat Analysis Da Low Limit 75	te: 7/21/20 tte: 7/21/20 HghLimit 121	008 008 RPD Ref Val 0	Run ID: T. SeqNo: 54 %RPD	IA IRIS_0807 18128 RPDLimit	7 21A Qual S
Sample ID: Client ID: Analyte Chromium Copper	0807091-01AMS DB-2	SampType: Batch ID:	MS 21441 Result 52.27 58.64	TestCoo Test PQL 0.487 0.974	de: 6010_S No: E6010 SPK value 24.36 48.71	Units: mg/Kg - SPK Ref Val 19.76 7.368	dry %REC 133 105	Prep Dat Analysis Da Low Limit 75 75.1	te: 7/21/20 tte: 7/21/20 HghLimit 121 126	008 008 RPD Ref Val 0 0	Run ID: T. SeqNo: 54 %RPD 0 0	JA IRIS_0807 18 128 RPDLimit	21A Qual S
Sample ID: Client ID: Analyte Chromium Copper Zinc	0807091-01AMS DB-2	SampType: Batch ID:	MS 21441 Result 52.27 58.64 369.5	TestCoo TestN PQL 0.487 0.974 0.974	de: 6010_S No: E6010 SPK value 24.36 48.71 48.71	Units: mg/Kg - SPK Ref Val 19.76 7.368 222.7	dry %REC 133 105 301	Prep Dat Analysis Da Low Limit 75 75.1 86.2	te: 7/21/20 tte: 7/21/20 HghLimit 121 126 113	008 008 RPD Ref Val 0 0 0	Run ID: T. SeqNo: 5 4 %RPD 0 0 0	IA IRIS_0807 18128 RPDLimit	Qual S S,MC
Sample ID: Client ID: Analyte Chromium Copper Zinc Sample ID:	0807091-01AMS DB-2 0807091-01AMSD	SampType: Batch ID: SampType:	MS 21441 Result 52.27 58.64 369.5 MSD	TestCoo Testh PQL 0.487 0.974 0.974 TestCoo	de: 6010_S kb: E6010 SPK value 24.36 48.71 48.71 de: 6010_S	Units: mg/Kg - SPK Ref Val 19.76 7.368 222.7 Units: mg/Kg -	dry %REC 133 105 301 dry	Prep Dat Analysis Da Low Limit 75 75.1 86.2 Prep Dat	te: 7/21/20 HghLimit 121 126 113 te: 7/21/20	008 008 RPD Ref Val 0 0 0 0 008	Run ID: T, SeqNo: 54 %RPD 0 0 0 Run ID: T,	JA IRIS_0807 18128 RPDLimit JA IRIS_0807	Qual S S,MC
Sample ID: Client ID: Analyte Chromium Copper Zinc Sample ID: Client ID:	0807091-01AMS DB-2 0807091-01AMSD DB-2	SampType: Batch ID: SampType: Batch ID:	MS 21441 Result 52.27 58.64 369.5 MSD 21441	TestCoo TestN PQL 0.487 0.974 0.974 TestCoo TestN	de: 6010_S No: E6010 SPK value 24.36 48.71 48.71 de: 6010_S No: E6010	Units: mg/Kg - SPK Ref Val 19.76 7.368 222.7 Units: mg/Kg -	dry %REC 133 105 301 dry	Prep Dat Analysis Da Low Limit 75 75.1 86.2 Prep Dat Analysis Da	te: 7/21/20 HghLimit 121 126 113 te: 7/21/20	008 008 RPD Ref Val 0 0 0 0 008 008	Run ID: T, SeqNo: 54 %RPD 0 0 0 0 0 0 0 0 8 0 5 4 8 0 0 5 4 5 4 5 4	JA IRIS_0807 18128 RPDLimit JA IRIS_0807 18129	21A Qual S S,MC 21A
Sample ID: Client ID: Analyte Chromium Copper Zinc Sample ID: Client ID: Analyte	0807091-01AMS DB-2 0807091-01AMSD DB-2	SampType: Batch ID: SampType: Batch ID:	MS 21441 Result 52.27 58.64 369.5 MSD 21441 Result	TestCoo TestN PQL 0.487 0.974 0.974 TestCoo TestN PQL	de: 6010_S No: E6010 SPK value 24.36 48.71 48.71 de: 6010_S No: E6010 SPK value	Units: mg/Kg - SPK Ref Val 19.76 7.368 222.7 Units: mg/Kg -	dry %REC 133 105 301 dry %REC	Prep Dat Analysis Da Low Limit 75 75.1 86.2 Prep Dat Analysis Da Low Limit	te: 7/21/20 HghLimit 121 126 113 te: 7/21/20 te: 7/21/20 HghLimit	008 RPD Ref Val 0 0 0 0 008 008 RPD Ref Val	Run ID: T. SeqNo: 54 0 0 0 Run ID: T. SeqNo: 54 %RPD	IA IRIS_0807 I&128 RPDLimit IA IRIS_0807 I&129 RPDLimit	21A Qual S S,MC 21A Qual
Sample ID: Client ID: Analyte Chromium Copper Zinc Sample ID: Client ID: Analyte Chromium	0807091-01AMS DB-2 0807091-01AMSD DB-2	SampType: Batch ID: SampType: Batch ID:	MS 21441 Result 52.27 58.64 369.5 MSD 21441 Result 54.24	TestCoo Testh PQL 0.487 0.974 0.974 TestCoo Testh PQL 0.497	de: 6010_S kb: E6010 SPK value 24.36 48.71 48.71 de: 6010_S kb: E6010 SPK value 24.83	Units: mg/Kg- SPK Ref Val 19.76 7.368 222.7 Units: mg/Kg- SPK Ref Val 19.76	dry %REC 133 105 301 dry %REC 139	Prep Dat Analysis Da Low Limit 75 75.1 86.2 Prep Dat Analysis Da Low Limit 75	te: 7/21/20 HghLimit 121 126 113 te: 7/21/20 HghLimit 121	008 008 RPD Ref Val 0 0 0 008 008 008 RPD Ref Val 52.27	Run ID: T, SeqNo: 54 %RPD 0 0 0 0 Run ID: T, SeqNo: 54 %RPD 3.70	IA IRIS_0807 18128 RPDLimit IA IRIS_0807 18129 RPDLimit 20	21A Qual S S,MC 21A Qual S
Sample ID: Client ID: Analyte Chromium Copper Zinc Sample ID: Client ID: Analyte Chromium Copper	0807091-01AMS DB-2 0807091-01AMSD DB-2	SampType: Batch ID: SampType: Batch ID:	MS 21441 Result 52.27 58.64 369.5 MSD 21441 Result 54.24 60.3	TestCoo TestN PQL 0.487 0.974 0.974 TestCoo TestN PQL 0.497 0.993	de: 6010_S kb: E6010 SPK value 24.36 48.71 48.71 de: 6010_S kb: E6010 SPK value 24.83 49.65	Units: mg/Kg- SPK Ref Val 19.76 7.368 222.7 Units: mg/Kg- SPK Ref Val 19.76 7.368	dry %REC 133 105 301 dry %REC 139 107	Prep Dat Analysis Da Low Limit 75. 75.1 86.2 Prep Dat Analysis Da Low Limit 75 75.1	te: 7/21/20 HghLimit 121 126 113 te: 7/21/20 HghLimit 121 126	008 008 RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	Run ID: T, SeqNo: 54 %RPD 0 0 0 0 Run ID: T, SeqNo: 54 %RPD 3.70 2.78	IA IRIS_0807 18128 RPDLimit IA IRIS_0807 18129 RPDLimit 20 20	21A Qual S S,MC Z1A Qual S

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

TestCode: 6010_S

Sample ID: 080	07091-01ADUP	SampType:	DUP	TestCoc	le: 6010_S	Uhits: mg/Kg-	dry	Prep Date	e: 7/21/2 0	008	Run ID: TJ	A IRIS_08072	21A
Client ID: DB-	3-2	Batch ID:	21441	TestN	b: E6010			Analysis Dat	te: 7/21/20	008	SeqNo: 548	3127	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			22.36	0.497	0	0	0	0	0	19.76	12.4	20	
Copper			7.765	0.993	0	0	0	0	0	7.368	5.25	20	
Zinc			305.2	0.993	0	0	0	0	0	222.7	31.2	20	R
Sample ID: CC	SV	SampType:	CCV	TestCoo	le: 6010_S	Uhits: mg/Kg		Prep Date	e:		Run ID: TJ	A IRIS_08072	21A
Client ID: ZZ	ZZZ	Batch ID:	21441	TestN	b: E6010			Analysis Dat	te: 7/21/20	008	SeqNo: 548	3134	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			26.3	0.500	25	0	105	90	110	0	0		
Copper			49.74	1.00	50	0	99.5	90	110	0	0		
Zinc			50.95	1.00	50	0	102	90	110	0	0		
Sample ID: ICV	v	SampType:	ICV	TestCoc	le: 6010_S	Units: mg/Kg		Prep Date	e:		Run ID: TJ	A IRIS_08072	21A
Client ID: ZZ	ZZZ	Batch ID:	21441	TestN	b: E6010			Analysis Dat	te: 7/21/20	008	SeqNo: 548	3123	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			25.78	0.500	25	0	103	90	110	0	0		
Copper			49.44	1.00	50	0	98.9	90	110	0	0		
Zinc			50.5	1.00	50	0	101	90	110	0	0		

0807091 Project: Port of Ridgefield / 9003.01.36

Maul, Foster & Alongi

CLIENT:

Work Order:

ND - Not Detected at the Reporting Limit Qualifiers:

TestCode: 6020_S

Sample ID:	MBLK-21442	SampType:	MBLK	TestCode: 6020_S		Units: µg/Kg	/Kg Prep Date: 7/21/2008			008	Run ID: ICPMS_080721A		
Client ID:	77777	Batch ID:	21442	Test	b: SW6020			Analysis Dat	te: 7/21/20	008	SeqNo: 54	3037	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			23.01	100									J
Sample ID:	LCS-21442	SampType:	LCS	TestCo	de: 6020_S	Units: µg/Kg		Prep Date	e: 7/21/2 0	008	Run ID: ICI	PMS_080721	Α
Client ID:	ZZZZZ	Batch ID:	21442	Test	b: SW6020			Analysis Dat	te: 7/21/20	800	SeqNo: 54	3038	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			4379	100	5000	0	87.6	75	115	0	0		
Sample ID:	0807092-06AMS	SampType:	MS	TestCo	de: 6020_S	Units: µg/Kg-	dry	Prep Date	e: 7/21/2	008	Run ID: ICI	PMS_080721	Α
Client ID:	ZZZZZ	Batch ID:	21442	Test	b: SW6020			Analysis Dat	te: 7/21/20	800	SeqNo: 54	3041	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			8180	101	5032	3723	88.6	70	130	0	0		
Sample ID:	0807092-06AMSD	SampType:	MSD	TestCo	de: 6020_S	Units: µg/Kg-	dry	Prep Date	e: 7/21/2 0	008	Run ID: ICI	PMS_080721	Α
Client ID:	ZZZZZ	Batch ID:	21442	Test	b: SW6020			Analysis Dat	te: 7/21/20	008	SeqNo: 54	3042	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			8136	101	5032	3723	87.7	70	130	8180	0.531	20	
Sample ID:	0807092-06ADUP	SampType:	DUP	TestCo	de: 6020_S	Units: µg/Kg-	dry	Prep Date	e: 7/21/2 0	008	Run ID: ICI	MS_080721	Α
Client ID:	ZZZZZ	Batch ID:	21442	Test	b: SW6020			Analysis Dat	te: 7/21/20	008	SeqNo: 54	3040	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			3697	102	0	0	0	0	0	3723	0.709	20	
Sample ID:	CCV	SampType:	CCV	TestCo	de: 6020_S	Units: µg/Kg		Prep Date	e:		Run ID: ICI	PMS_080721	Α
Client ID:	77777	Batch ID:	21442	Test	b: SW6020			Analysis Dat	te: 7/21/20	008	SeqNo: 54	3036	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Qualifiers:

CLIENT:

Project:

Work Order:

Maul, Foster & Alongi

Port of Ridgefield / 9003.01.36

0807091

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blanl

J - Analyte detected below quantitation limits

TestCode: 6020_S

Sample ID: CCV	SampType: CC	/ TestCo	de: 6020_S	Uhits: µg/Kg		Prep Date	e:		Run ID: ICI	PMS_080721	1A
Client ID: ZZZ	ZZ Batch ID: 214	42 Testl	b: SW6020			Analysis Dat	te: 7/21/20	008	SeqNo: 54	8036	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	49	100 100	5000	0	98.6	90	110	0	0		
Sample ID: CCV	SampType: CC	/ TestCo	de: 6020_S	Uhits: µg/Kg		Prep Date	e:		Run ID: ICI	PM S_080721	1A
Client ID: ZZZ	ZZ Batch ID: 214	42 Testl	b: SW6020			Analysis Dat	te: 7/21/20	008	SeqNo: 54	8043	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	Low Limit	HghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	49	100	5000	0	98.8	90	110	0	0		
Sample ID: CCV	SampType: CC	/ TestCo	de: 6020_S	Uhits: µg/Kg		Prep Date	e:		Run ID: ICI	PM S_080721	1A
Sample ID: CCV Client ID: ZZZ	/ SampType: CC\ ZZ Batch ID: 214	/ TestCo 42 Test	de: 6020_S No: SW6020	Units: µg/Kg		Prep Date Analysis Dat	e: te: 7/21/20	008	Run ID: ICI SeqNo: 54	PMS_080721 8051	1A
Sample ID: CCV Client ID: ZZZ Analyte	/ SampType: CCV ZZ Batch ID: 214 Res	/ TestCo 42 Testl sult PQL	de: 6020_S No: SW6020 SPK value	Units: µg/Kg SPK Ref Val	%REC	Prep Date Analysis Dat Low Limit	e: te: 7/21/20 HghLimit	008 RPD Ref Val	Run ID: ICI SeqNo: 54 %RPD	PM S_080721 8051 RPDLimit	1A Qual
Sample ID: CCV Client ID: ZZZ Analyte Arsenic	/ SampType: CCV ZZ Batch ID: 214 Res 47	/ TestCo. 42 TestI sult PQL '98 100	de: 6020_S No: SW6020 SPK value 5000	Units: µg/Kg SPK Ref Val 0	%REC 96	Prep Date Analysis Dat Low Limit 90	e: te: 7/21/20 HghLimit 110	0 08 RPD Ref Val 0	Run ID: ICI SeqNo: 54 %RPD 0	PM S_08072 1 8051 RPDLimit	1A Qual
Sample ID: CCV Client ID: ZZZ Analyte Arsenic Sample ID: ICV	V SampType: CCV ZZ Batch ID: 214 Res 47 SampType: ICV	/ TestCo 42 Test sult PQL 198 100 TestCo	de: 6020_S No: SW6020 SPK value 5000 de: 6020_S	Units: µg/Kg SPK Ref Val 0 Units: µg/Kg	%REC 96	Prep Date Analysis Dat Low Limit 90 Prep Date	e: te: 7/21/20 HghLimit 110 e:	0 08 RPD Ref Val 0	Run ID: ICI SeqNo: 54 %RPD 0 Run ID: ICI	PM S_080721 8051 RPDLimit PM S_080721	IA Qual
Sample ID: CCV Client ID: ZZZ Analyte Arsenic Sample ID: ICV Client ID: ZZZ	ZZ SampType: CCV ZZ Batch ID: 214 Res 47 SampType: ICV ZZ Batch ID: 214	/ TestCo 42 Test sult PQL 98 100 TestCo 42 Test	de: 6020_S No: SW6020 SPK value 5000 de: 6020_S No: SW6020	Units: µg/Kg SPK Ref Val 0 Units: µg/Kg	%REC 96	Prep Date Analysis Dat Low Limit 90 Prep Date Analysis Dat	e: te: 7/21/2(HghLimit 110 e: te: 7/21/2(008 RPD Ref Val 0	Run ID: ICI SeqNo: 54 %RPD 0 Run ID: ICI SeqNo: 54	PM S_080721 8051 RPDLimit PM S_080721 8035	IA Qual
Sample ID: CCV Client ID: ZZZ Analyte Arsenic Sample ID: ICV Client ID: ZZZ Analyte	ZZ SampType: CCV ZZ Batch ID: 214 Res 47 SampType: ICV ZZ Batch ID: 214 Res	/ TestCo 42 Test sult PQL 98 100 TestCo 42 Test sult PQL	de: 6020_S No: SW6020 SPK value 5000 de: 6020_S No: SW6020 SPK value	Units: µg/Kg SPK Ref Val 0 Units: µg/Kg SPK Ref Val	%REC 96 %REC	Prep Date Analysis Dat Low Limit 90 Prep Date Analysis Dat Low Limit	e: HghLimit 110 e: HghLimit	008 RPD Ref Val 0 008 RPD Ref Val	Run ID: ICI SeqNo: 54 %RPD 0 Run ID: ICI SeqNo: 54 %RPD	PM S_080721 8051 RPDLimit PM S_080721 8035 RPDLimit	IA Qual IA Qual

Qualifiers: ND - Not Detected at the Reporting Limit

CLIENT:

Project:

Work Order:

Maul, Foster & Alongi

Port of Ridgefield / 9003.01.36

0807091

CLIENT:Maul, Foster & AlongiWork Order:0807091

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: MB-21484	SampType: MBLK	K TestCode: 8270POR_S Units: μg/Kg			/Kg Prep Date: 7/28/2008				Run ID: 5973G_080729A		
Client ID: ZZZZZ	Batch ID: 21484	TestN	b: SW8270D			Analysis Da	ate: 7/29/2	008	SeqNo: 54	8800	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	ND	33.3									
1,2-Dichlorobenzene	ND	33.3									
1,3-Dichlorobenzene	ND	33.3									
1,4-Dichlorobenzene	ND	33.3									
1-Methylnaphthalene	6	33.3									J
2,3,4,6-Tetrachlorophenol	ND	33.3									
2,3,4-Trichlorophenol	ND	33.3									
2,3,5,6-Tetrachlorophenol	ND	33.3									
2,3,5-Trichlorophenol	ND	33.3									
2,3,6-Trichlorophenol	ND	33.3									
2,4,5-Trichlorophenol	ND	33.3									
2,4,6-Trichlorophenol	ND	33.3									
2,4-Dichlorophenol	ND	33.3									
2,4-Dimethylphenol	ND	33.3									
2,4-Dinitrophenol	ND	333									
2,4-Dinitrotoluene	ND	33.3									
2-Chloronaphthalene	ND	33.3									
2-Chlorophenol	ND	33.3									
2-Methylnaphthalene	5.667	33.3									J
2-Methylphenol	ND	33.3									
2-Nitroaniline	ND	33.3									
2-Nitrophenol	ND	167									
3,3-Dichlorobenzidine	ND	167									
3,4,5-Trichlorophenol	ND	33.3									
3-&4-Methylphenol	ND	33.3									
3-Nitroaniline	ND	33.3									
4,6-Dinitro-2-methylphenol	ND	167									
4-Bromophenyl phenyl ether	ND	33.3									
4-Chloro-3-methylphenol	ND	33.3									
4-Chloroaniline	ND	33.3									
4-Chlorophenyl phenyl ether	ND	33.3									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

CLIENT:Maul, Foster & AlongiWork Order:0807091Project:Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: MB-21484	SampType: MBLK	K TestCode: 8270POR_S Units: μg/Kg			/Kg Prep Date: 7/28/2008				Run ID: 5973G_080729A		
Client ID: ZZZZZ	Batch ID: 21484	TestN	b: SW8270D		Analysis Date: 7/29/2008			008	SeqNo: 54	8800	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Nitroaniline	ND	33.3									
4-Nitrophenol	ND	167									
Acenaphthene	15	33.3									J
Acenaphthylene	ND	33.3									
Anthracene	ND	33.3									
Benz(a)anthracene	ND	33.3									
Benzo(a)pyrene	ND	33.3									
Benzo(b)fluoranthene	ND	33.3									
Benzo(g,h,i)perylene	18.67	33.3									J
Benzo(k)fluoranthene	7.667	33.3									J
Benzoic Acid	ND	667									
Benzyl Alcohol	ND	33.3									
Bis(2-chloroethoxy)methane	ND	33.3									
Bis(2-chloroethyl)ether	ND	33.3									
Bis(2-chloroisopropyl)ether	ND	33.3									
Bis(2-ethylhexyl)phthalate	ND	33.3									
Butyl benzyl phthalate	ND	33.3									
Carbazole	ND	33.3									
Chrysene	ND	33.3									
Di-n-butyl phthalate	ND	33.3									
Di-n-octyl phthalate	ND	33.3									
Dibenz(a,h)anthracene	15.33	33.3									J
Dibenzofuran	ND	33.3									
Diethyl phthalate	ND	33.3									
Dimethyl phthalate	ND	33.3									
Fluoranthene	ND	33.3									
Fluorene	ND	33.3									
Hexachlorobenzene	ND	33.3									
Hexachlorobutadiene	ND	33.3									
Hexachlorocyclopentadiene	ND	33.3									
Hexachloroethane	ND	33.3									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

CLIENT:Maul, Foster & AlongiWork Order:0807091

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: MB-21484	SampType: MBLK	TestCo	de: 8270POR_S	δ Units: μg/Kg		Prep Dat	te: 7/28/20	008	Run ID: 597	73G_080729	Α
Client ID: ZZZZZ	Batch ID: 21484	Test	b: SW8270D			Analysis Da	ite: 7/29/20	008	SeqNo: 548	800	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	ND	33.3									
lsophorone	ND	33.3									
N-Nitrosodi-n-propylamine	ND	33.3									
N-Ntrosodiphenylamine	7.333	33.3									J
Naphthalene	9.667	33.3									J
Nitrobenzene	ND	33.3									
Pentachlorophenol	ND	50.0									
Phenanthrene	ND	33.3									
Phenol	ND	33.3									
Pyrene	ND	33.3									
Surr: 2,4,6-Tribromophenol	2002	0	3333	0	60.1	57.8	119	0	0		
Surr: 2-Fluorobiphenyl	2672	0	3333	0	80.2	52.6	93.2	0	0		
Surr: 2-Fluorophenol	2342	0	3333	0	70.3	40.7	111	0	0		
Surr: 4-Terphenyl-d14	2835	0	3333	0	85	49.8	118	0	0		
Surr: Nitrobenzene-d5	2229	0	3333	0	66.9	44.8	103	0	0		
Surr: Phenol-d6	2533	0	3333	0	76	47.5	117	0	0		
Sample ID: LCS-21484	SampType: LCS	TestCo	de: 8270POR_S	δ Uhits: μg/Kg		Prep Dat	te: 7/28/20	008	Run ID: 597	73G_080729	A
Client ID: ZZZZZ	Batch ID: 21484	Test	b: SW8270D			Analysis Da	ite: 7/29/20	008	SeqNo: 548	3799	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	1448	33.3	1667	0	86.9	30.9	106	0	0		
1,4-Dichlorobenzene	1181	33.3	1667	0	70.8	31.4	98.2	0	0		
2,4-Dinitrotoluene	1697	33.3	1667	0	102	59.7	111	0	0		
2-Chlorophenol	1559	33.3	1667	0	93.5	46.2	105	0	0		
4-Chloro-3-methylphenol	1704	33.3	1667	0	102	47.4	114	0	0		
4-Nitrophenol	1749	167	1667	0	105	45.3	114	0	0		
Acenaphthene	1657	33.3	1667	15	98.5	48.2	105	0	0		
N-Nitrosodi-n-propylamine	1668	33.3	1667	0	100	42.4	101	0	0		
Pentachlorophenol	1177	50.0	1667	0	70.6	46.8	120	0	0		
Phenol	1797	33.3	1667	0	108	51.1	103	0	0		S,O

Qualifiers: ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

Maul, Foster & Alongi 0807091

Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: LCS-21484	SampType: LCS	TestC	ode: 8270POR_	S Units: µg/Kg		Prep Dat	te: 7/28/20	008	Run ID: 59	73G_080729	A
Client ID: ZZZZZ	Batch ID: 214	84 Tes	tNo: SW8270D			Analysis Da	ate: 7/29/20	008	SeqNo: 54	8799	
Analyte	Res	ult PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	17	33.3	1667	0	105	56.7	130	0	0		
Sample ID: A0807122-01AMS	SampType: MS	TestC	ode: 8270POR_	S Units: µg/Kg		Prep Dat	te: 7/28/20	008	Run ID: 59	73G_080729	A
Client ID: ZZZZZ	Batch ID: 214	84 Tes	tNb: SW8270D			Analysis Da	ate: 7/29/20	008	SeqNo: 54	8803	
Analyte	Res	sult PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	918	3.3 33.3	1667	0	55.1	31.1	92.7	0	0		
1,4-Dichlorobenzene	77:	2.3 33.3	1667	0	46.3	16.5	85.6	0	0		
2,4-Dinitrotoluene	12	34 33.3	1667	0	74	43.4	118	0	0		
2-Chlorophenol	10	09 33.3	1667	0	60.5	36.8	103	0	0		
4-Chloro-3-methylphenol	12	.67 33.3	1667	0	76	49.5	119	0	0		
4-Nitrophenol	11	93 167	1667	0	71.6	45	111	0	0		
Acenaphthene	12	48 33.3	1667	0	74.9	45.1	102	0	0		
N-Nitrosodi-n-propylamine	10	98 33.3	1667	0	65.9	45.6	94.1	0	0		
Pentachlorophenol	72	7.3 50.0	1667	0	43.6	36.6	112	0	0		
Phenol	13	41 33.3	1667	0	80.5	37.7	107	0	0		
Pyrene	14	49 33.3	1667	46.33	84.2	42.4	131	0	0		
Sample ID: A0807122-01AMSD	SampType: MSI	D TestC	ode: 8270POR_	S Uhits: µg/Kg		Prep Dat	te: 7/28/20	008	Run ID: 59	73G_080729	A
Client ID: ZZZZZ	Batch ID: 214	84 Tes	tNo: SW8270D			Analysis Da	ate: 7/29/20	008	SeqNo: 54	8804	
Analyte	Res	ult PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	12	.09 33.3	1667	0	72.6	31.1	92.7	918.3	27.4	20	R
1,4-Dichlorobenzene	10	18 33.3	1667	0	61.1	16.5	85.6	772.3	27.4	20	R
2,4-Dinitrotoluene	14	99 33.3	1667	0	89.9	43.4	118	1234	19.4	20	
2-Chlorophenol	12	.71 33.3	1667	0	76.3	36.8	103	1009	23.0	20	R
4-Chloro-3-methylphenol	15	33.3	1667	0	91.4	49.5	119	1267	18.3	20	
4-Nitrophenol	14	42 167	1667	0	86.5	45	111	1 193	18.9	20	
Acenaphthene	15	33.3	1667	0	90.6	45.1	102	1248	19.0	20	
N-Nitrosodi-n-propylamine	13	69 33.3	1667	0	82.2	45.6	94.1	1098	22.0	20	R
Pentachlorophenol	823	3.3 50.0	1667	0	49.4	36.6	112	727.3	12.4	20	

Qualifiers: ND - Not Detected at the Reporting Limit

CLIENT:

Project:

Work Order:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blanl

J - Analyte detected below quantitation limits

Maul, Foster & Alongi Work Order: 0807091

Project: Port of Ridgefield / 9003.01.36

CLIENT:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8270POR_S

Sample ID: A0807122-01AMSD	SampType: MSD	TestCo	de: 8270POR_	S Units: µg/Kg		Prep Dat	e: 7/28/20	908	Run ID: 597	73G_080729/	A
Client ID: ZZZZZ	Batch ID: 21484	Test	b: SW8270D			Analysis Da	te: 7/29/20	008	SeqNo: 548	804	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenol	2072	33.3	1667	0	124	37.7	107	1341	42.8	20	S,R
Pyrene	1715	33.3	1667	46.33	100	42.4	131	1449	16.8	20	
Sample ID: CCV-21484	SampType: CCV	TestCo	de: 8270POR_	S Units: µg/Kg		Prep Dat	e:		Run ID: 597	/3G_080729/	A
Client ID: ZZZZZ	Batch ID: 21484	Test	b: SW8270D			Analysis Da	te: 7/29/20	008	SeqNo: 548	3798	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	1900	33.3	2000	0	95	80	120	0	0		
2,4,6-Trichlorophenol	1974	33.3	2000	0	98.7	80	120	0	0		
2,4-Dichlorophenol	2031	33.3	2000	0	102	80	120	0	0		
2-Chlorophenol	2010	33.3	2000	0	100	80	120	0	0		
2-Nitrophenol	1985	167	2000	0	99.2	80	120	0	0		
4-Chloro-3-methylphenol	2060	33.3	2000	0	103	80	120	0	0		
Acenaphthene	1985	33.3	2000	0	99.2	80	120	0	0		
Benzo(a)pyrene	2087	33.3	2000	0	104	80	120	0	0		
Di-n-octyl phthalate	1970	33.3	2000	0	98.5	80	120	0	0		
Fluoranthene	1868	33.3	2000	0	93.4	80	120	0	0		
Hexachlorobutadiene	2078	33.3	2000	0	104	80	120	0	0		
N-Nitrosodiphenylamine	1778	33.3	2000	0	88.9	80	120	0	0		
Pentachlorophenol	1805	50.0	2000	0	90.2	80	120	0	0		
Phenol	2267	33.3	2000	0	113	80	120	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

CLIENT:Maul, Foster & AlongiWork Order:0807091

Project: Port of Ridgefield / 9003.01.36

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHDX_S

Sample ID:	MB-21448	SampType:	MBLK	TestCoo	de: NWTPHD >	(_S Uhits: m	g/Kg		Prep Dat	e: 7/21/2	008	Run ID: G	C-M_080721	4
Client ID:	ZZZZZ	Batch ID:	21448	Test	b: NWTPH-D	x			Analysis Da	te: 7/21/2	008	SeqNo: 54	8159	
Analyte			Result	PQL	SPK value	SPK Ref Val		%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel			ND	15.0										
Lube Oil			ND	50.0										
Surr: o-T	erphenyl		28.28	0	33.33	0		84.9	50	150	0	0		
Sample ID:	LCS-21448	SampType:	LCS	TestCoo	te: NWTPHD >	(_S Uhits: m	g/Kg		Prep Dat	e: 7/21/2	008	Run ID: G	C-M_080721	4
Client ID:	72222	Batch ID:	21448	Test	b: NWTPH-D	x			Analysis Da	te: 7/21/2	008	SeqNo: 54	8160	
Analyte			Result	PQL	SPK value	SPK Ref Val		%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel			178.6	15.0	167.3	0		107	76.3	125	0	0		
Lube Oil			178.6	50.0	168.3	0		106	69.9	127	0	0		
Sample ID:	0807091-01ADUP	SampType:	DUP	TestCoo	te: NWTPHD)	(_S Uhits: m	g/Kg-	dry	Prep Dat	e: 7/21/2	008	Run ID: G	C-M_080721	٩
Client ID:	DB-2	Batch ID:	21448	Test	b: NWTPH-D	x			Analysis Da	te: 7/21/2	008	SeqNo: 54	8163	
Analyte			Result	PQL	SPK value	SPK Ref Val		%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel			23.7	15.5	0	0		0	0	0	24.55	3.50	20	
Lube Oil			26.45	51.6	0	0		0	0	0	44.12	0	20	J
Sample ID:	CCV	SampType:	CCV	TestCoo	te: NWTPHD)	(_S Uhits: m	g/Kg		Prep Dat	e:		Run ID: G	C-M_080721	4
Client ID:	ZZZZZ	Batch ID:	21448	Test	b: NWTPH-D	x			Analysis Da	te: 7/21/2	008	SeqNo: 54	8161	
Analyte			Result	PQL	SPK value	SPK Ref Val		%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel			999.6	15.0	999.9	0		100	85	115	0	0		
Lube Oil			497.6	50.0	500	0		99.5	85	115	0	0		
Sample ID:	ccv	SampType:	CCV	TestCoo	te: NWTPHD	(_S Units: m	g/Kg		Prep Dat	e:		Run ID: G	C-M_080721	A
Client ID:	ZZZZZ	Batch ID:	21448	Test	vo: NWTPH-D	x			Analysis Da	te: 7/21/2	008	SeqNo: 54	8164	
Analyte			Result	PQL	SPK value	SPK Ref Val		%REC	Low Limit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel			1329	15.0	1333	0		99.7	85	115	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

TestCode: NWTPHDX_S

Sample ID: CCV SampType: CCV TestCode: NWTPHDX_S Units: mg/Kg Prep Date: Run ID: GC-M_080721A Client ID: ZZZZZ Batch ID: 21448 TestNo: NWTPH-Dx Analysis Date: 7/21/2008 SeqNo: 548164 PQL SPK value SPK Ref Val %REC Low Limit High Limit RPD Ref Val %RPD RPDLimit Qual Analyte Result 0 103 85 0 0 Lube Oil 686.7 50.0 666.6 115 Sample ID: CCV SampType: CCV TestCode: NWTPHDX_S Units: mg/Kg Run ID: GC-M_080721A Prep Date: ZZZZZ Batch ID: 21448 TestNo: NWTPH-Dx Analysis Date: 7/22/2008 SeqNo: 548288 Client ID: Result PQL SPK value SPK Ref Val %REC Low Limit High Limit RPD Ref Val %RPD RPDLimit Analyte Qual 1002 15.0 999.9 0 100 85 115 0 0 Diesel Lube Oil 488.9 50.0 500 0 97.8 85 115 0 0 Sample ID: CCV SampType: CCV TestCode: NWTPHDX_S Units: mg/Kg Run ID: GC-M_080721A Prep Date: SeqNo: 548299 Client ID: 77777 Batch ID: 21448 TestNo: NWTPH-Dx Analysis Date: 7/22/2008 SPK value SPK Ref Val Low Limit High Limit RPD Ref Val RPDLimit Analvte Result PQL %REC %RPD Qual 1333 0 0 0 Diesel 1377 15.0 103 85 115 Lube Oil 665.7 50.0 666.6 0 99.9 85 115 0 0

CLIENT:

Project:

Work Order:

Maul, Foster & Alongi

Port of Ridgefield / 9003.01.36

0807091

KEY TO FLAGS

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards.
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- B The blank exhibited a positive result greater than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- H Sample was analyzed outside recommended hold time.
- HT At clients request, sample was analyzed outside recommended hold time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- N Gasoline result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- P Detection levels of Methylene Chloride may be laboratory contamination, due to previous analysis or background levels.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits, post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- * The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

		(CHAIN		FC	US	TO	DY	RE	CO	RD					Page	of
		Specialty Analytical				C	Conta	ct Pe	son/Pr	oiect	Man	ager		A١	an Hushes		
XV	-	11711 SE Capps Road					Comp	any		Mau	I F	oster	B	Alos	~		**************************************
ZAN	-	Clackamas, OR 97015					Addre	ess	7	223	N	E H	azel	De	211 Ave	<u></u>	
	\backslash	Phone: 503-607-1331							V	Janco	00-00	. w	A				
		Fax: 503-607-1336					Phon	e							Fax		
Collected	By:						Proje	ct No	.9603	5,01.7	36 		Pr	roiec	t Name Part of	Ridgefie	ld
Signature_	\overline{Q}	Ri					Projec	ct Site	Locati	on Ol	R		WA	γ	Other		
Printed		Justin Paunds					Invoid	e To	Port	of	Rid	sefi	eld	<u> </u>	P.C	. No. 900	3,01.36
Cimeture											- in the second			- r			
Drinted					 	T			Analys	ses		<u> </u>			For Lab	n M h a l	
- mileu				6		20									Shipped Via	CIDEN	
Turn Around	d Time			ners		N C M								1	Air Bill No.		
Ø	Normal 5	-7 Business Days		ntai		7.6										- 1	
	Rush			ပိ	07	33									Temperature On Rece	eipt <u> </u>	°C
		Specify		o l	+	e s	L A								Specialty Analytical C	ontainers? Y	//N
Rush Analy	ses Must	Be Scheduled With The Lab In Advance		Ž	1	ats,	Ð,								Specialty Analytical T	rip Blanks?	r/N
Date	Time	Sample I.D.	Matrix	1	Pov	to a	NCEK.							ŀ	Comments		LabID
7/16/08	1305	DR-Z	5	2	К	×	X										200 1.0.
	ļ																
	_		<u> </u>	<u> </u>	ļ												
					_	_	ļ										
			<u> </u>		 		 		_								
					<u> </u>		 		-								
					 		 	 	 -								ļ
					 	<u> </u>	 	 	 -	\rightarrow					A		
					╂───	+			┣┣-								ļ
					╂	+	┼──		┝──┼	-+							ļ
						<u> </u>										· i · · · · · · · ·	ļ
Relinquishe		Date Time	Receive	d By: Υ	M	SU	U)	Ut	0		Relin	quishe	ed By:			Date	Time
	Intring 1	1.118/08/19.00		·y.							Com	pany:					
Samples hel	id beyond 6	imples will be Disposed of 60 Days After Receipt 0 days subject to storage fee(s)									Rece	eived F	or Lab	By:	shht.	Date	Time
Copies: Whi	te-Original	Yellow-Project File Pink-	Customer Co							L		WV	XX	1	ULIM.	_FTUS IDX_	1,742

opies:	White-0	Original
--------	---------	----------

APPENDIX E

ANALYTICAL DATA - SOIL FROM CITY STOCKPILE

15055 SW SEQUOIA PKWY, SUITE 140, PORTLAND, OR 97224, TELEPHONE: (503) 624-9274, FAX: (503) 620-5940

www.geoengineers.com

To:	Mr. Ken Alexander, Gray and Osborne, Inc.
FROM:	Chris Breemer, L.G
DATE:	September 16, 2008
FILE:	12383-001-01
SUBJECT:	Summary of Soil Analytical Data – Ridgefield WWTP Soil Stockpile

INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) prepared this memorandum to document soil sampling and chemical testing activities that GeoEngineers conducted on behalf of Gray and Osborne, Inc. at the City of Ridgefield Wastewater Treatment Plant (WWTP) in Ridgefield, Washington. The purpose of the sampling activities was to obtain chemical analytical data necessary for further characterizing the chemical characteristics of stockpiled soil at the WWTP. The City of Ridgefield intends to transfer the stockpiled soil to nearby property owned by the Port of Ridgefield. GeoEngineers conducted the sampling and testing activities at your request and in accordance with our proposal dated August 21, 2008.

SOIL SAMPLING

GeoEngineers collected two soil samples on September 5, 2008 from soil stockpiled at the northeast corner of the WWTP. Mr. John Duback, an employee of the WWTP identified the location of the stockpile. The soil samples were collected at depths of approximately 1 foot below ground surface (bgs) using decontaminated shovels. One sample was collected from the north portion of the stockpile (sample "Soil #1") and one sample was collected from the stockpile (sample "Soil #2"). The soil samples were placed in laboratory-supplied jars and stored in an iced cooler under chain-of-custody procedures.

CHEMICAL ANALYSES

GeoEngineers submitted the soil samples to Apex Laboratory in Tigard, Oregon for analysis of polycyclic aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) by U.S. Environmental Protection Agency (EPA) Method 8270C-SIM and arsenic, cadmium, copper, and zinc by EPA Method 6020. The laboratory report is included as Attachment A.

PAHs were not detected in either soil sample. PCP was detected in sample "Soil #2" at a concentration of 233 micrograms per kilogram (μ g/kg). Arsenic was detected in both soil samples at concentrations ranging between 8.10 and 9.76 milligrams per kilogram (mg/kg). Copper was detected in both soil samples at concentrations ranging between 23.0 and 25.4 mg/kg. Zinc was detected in both soil samples at concentrations ranging between 61.8 and 87.3 mg/kg.

GeoEngineers reviewed the laboratory analytical report to evaluate the data quality. No laboratory data exceptions were reported that significantly affect the reliability of the data.

CONCLUSION

GeoEngineers appreciates the opportunity to be of service to Gray and Osborne, Inc. Please do not hesitate to contact us if you have any questions of comments regarding the information presented herein.

Memorandum to Mr. Ken Alexander September 16, 2008 Page 2

LIMITATIONS

GeoEngineers conducted our services for the exclusive use of Gray and Osborne, Inc. and their design team. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This limitation provides our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 15, 2008

Chris Breemer GeoEngineers 15055 SW Sequoia Pkwy, # 140 Portland, OR 97224

RE: Ridgefield WWTP / 12383-001-01

Enclosed are the results of analyses for work order <u>A809062</u>, which was received by the laboratory on 9/5/2008 at 2:00:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>dthomas@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darwin Thomas, Sales/Marketing

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Geo	Engineers	Project:	Ridgefield WWTP	
1505	55 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Port	land, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
Soil #1	A809062-01	Soil	09/05/08 11:00	09/05/08 14:00				
Soil #2	A809062-02	Soil	09/05/08 11:15	09/05/08 14:00				

Apex Laboratories

Darwin Thomas, Sales/Marketing

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 13

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers	Project:	Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Portland, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

ANALYTICAL SAMPLE RESULTS

			PAH by	EPA 8270C SIM							
Analyte	Reporting Analyte Result MDL Limit Units Dilution Date Analyzed Method Notes										
Soil #1 (A809062-01)			Matrix: Sc	>il				R-04			
Acenaphthene	ND		543	ug/kg dry	20	09/10/08 18:48	EPA 8270C (SIM)				
Acenaphthylene	ND		543	"	u	n	н				
Anthracene	ND		543	H	"		11				
Benz(a)anthracene	ND		543	14	71	Ħ	Tf				
Benzo(a)pyrene	ND		543			"	n				
Benzo(b)fluoranthene	ND		543	n	u	u	u				
Benzo(k)fluoranthene	ND		543	"			n				
Benzo(g,h,i)perylene	ND		543	19	11		n				
Chrysene	ND		543	и	н	**	74				
Dibenz(a,h)anthracene	ND		543	u	u	17	n				
Fluoranthene	ND		543		н	"	U				
Fluorene	ND		543	н	n.	"	U				
Indeno(1,2,3-cd)pyrene	ND		543	11	**	**	17				
Naphthalene	ND		543	u	18	77	by				
Phenanthrene	ND		543		u	**	**				
Pyrene	ND		543	"	u.		u				
Pentachlorophenol (PCP)	ND		724	"	11		ч				
Surrogate: Nitrobenzene-d5 (Surr)		Reco	overy: 77 %	Limits: 35-120 %	11	11	**				
2,4-Dibromophenol (Surr)			71 %	Limits: 30-125 %	ti	۲e	u				
2-Fluorobiphenyl (Surr)			91 %	Limits: 45-120 %	ч	n	u				
p-Terphenyl-d14 (Surr)			100 %	Limits: 30-120 %	н	u	ŭ				

Apex Laboratories

a

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Darwin Thomas, Sales/Marketing

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers	Project:	Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Portland, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

ANALYTICAL SAMPLE RESULTS

			PAH by I	EPA 8270C SIM				
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
Soil #2 (A809062-02)			Matrix: So	il .				
Acenaphthene	ND		142	ug/kg dry	5	09/10/08 19:15	EPA 8270C (SIM)	
Acenaphthylene	ND		142	"	**	n	11	
Anthracene	ND		142	11		18	11	
Benz(a)anthracene	ND		142		"	11	11	
Benzo(a)pyrene	ND		142	"	"	0	u	
Benzo(b)fluoranthene	ND		142	**	н	"	0	
Benzo(k)fluoranthene	ND		142	и	"	14	**	
Benzo(g,h,i)perylene	ND		142	U		11	ft	
Chrysene	ND		142	"	"	u	"	
Dibenz(a,h)anthracene	ND		142	**	**	0	ч	
Fluoranthene	ND		142	"		"	u	
Fluorene	ND		142	n	u	τε	17	
Indeno(1,2,3-cd)pyrene	ND	- M M	142		п	"	**	
Naphthalene	ND	***	142	19	"		n	
Phenanthrene	ND		142	"	ш	n	u	
Pyrene	ND		142	U	ч	78	"	
Pentachlorophenol (PCP)	233		190	11	н	u	17	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 78 %	Limits: 35-120 %	n	ч	u	
2,4-Dibromophenol (Surr)			63 %	Limits: 30-125 %	TT		н	
2-Fluorobiphenyl (Surr)			84 %	Limits: 45-120 %	"	n	u	
p-Terphenyl-d14 (Surr)			92 %	Limits: 30-120 %	(r	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 GeoEngineers	Project: Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number: 12383-001-01	Reported:
Portland, OR 97224	Project Manager: Chris Breemer	09/15/08 15:52

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes			
Soil #1 (A809062-01)			Matrix: Soil	*******			***************************************				
Arsenic	9.76		1.11	mg/kg dry	10	09/10/08 22:18	EPA 6020				
Cadmium	ND		1.11	**	ч	Ð	u				
Copper	23.0		4.43	ч	U.	H					
Zinc	87.3		4.43	"	"	н	"				
Soil #2 (A809062-02)			Matrix: Soil								
Arsenic	8.10		1.06	mg/kg dry	10	09/10/08 22:21	EPA 6020				
Cadmium	ND		1.06	11	н	n	"				
Copper	25.4		4.25	a	"	н	11				
Zinc	61.8		4.25	.,		*					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers	Project:	Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Portland, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

ANALYTICAL SAMPLE RESULTS

	Percent Dry Weight by D2216										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes			
Soil #1 (A809062-01)			Matrix: Soil								
% Solids	92.5	***	1.00	% by Weight	1	09/09/08 07:51	D2216				
Soil #2 (A809062-02)			Matrix: Soil								
% Solids	93.6	~ * *	1,00	% by Weight]	09/09/08 07:51	D2216				

Apex Laboratories

Qυ

Darwin Thomas, Sales/Marketing

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Ì	GeoEngineers	Project: Ridgefield WWTP	
	15055 SW Sequoia Pkwy, # 140	Project Number: 12383-001-01	Reported:
	Portland, OR 97224	Project Manager: Chris Breemer	09/15/08 15:52

QUALITY CONTROL (QC) SAMPLE RESULTS

				PAH by El	PA 8270	C SIM						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8090070 - EPA 3546							Soil					
Blank (8090070-BLK2)						Analyzed:	09/10/08 17	:49				Q-16
EPA 8270C (SIM)												
Acenaphthene	ND		25.0	ug/kg wet	1					***		
Acenaphthylene	ND		25,0	11	0							
Anthracene	ND		25.0	11	0							
Benz(a)anthracene	ND		25.0	11	17				***			
Benzo(a)pyrene	ND		25.0	4	**					~~~~		
Benzo(b)fluoranthene	ND		25,0		**							
Benzo(k)fluoranthene	ND		25.0	n	11	****						
Benzo(g,h,i)perylene	ND		25.0	U	Ħ							
Chrysene	ND		25.0	"	а					****		
Dibenz(a,h)anthracene	ND		25.0		tr			***				
Fluoranthene	ND		25.0	н	ų							
Fluorene	ND		25.0	"	ч	****						
Indeno(1,2,3-cd)pyrene	ND		25.0	**	u		***					
Naphthalene	ND		25.0		U							
Phenanthrene	ND		25.0	м	ч					***		
Ругепе	ND		25,0	+1	U.			***				
Pentachlorophenol (PCP)	ND		33.3	11	н							
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 96 %	Limits: 3	5-120 %	Dili	ution: Ix					
2,4-Dibromophenol (Surr)			101 %	3	0-125 %		"					
2-Fluorobiphenyl (Surr)			90 %	4	5-120 %		"					
p-Terphenyl-d14 (Surr)			95 %	3	0-120 %		"					
LCS (8090070-BS2)						Analyzed:	09/10/08 18	:16				Q-16
EPA 8270C (SIM)												
Acenaphthene	313		25.0	ug/kg wet	1	333		94	45-120%		***	
Acenaphthylene	335	***	25.0		η	н		100	n			
Anthracene	369		25.0	"	11	н	***	111	55-120%			
Benz(a)anthracene	323		25.0		11	11		97	50-120%			
Benzo(a)pyrene	364		25.0	"	"	*	10. 10 1 .	109	п			
Benzo(b)fluoranthene	380		25.0	"	a	11		114	45-120%			

**

,,

"

n

25.0

25.0

25.0

25.0

11

ų

...

11

14

Apex Laboratories

Benzo(k)fluoranthene

Benzo(g,h,i)perylene

Dibenz(a,h)anthracene

Chrysene

376

364

343

372

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

113

109

103

112

45-125%

40-125%

55-120%

40-125%

.....

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers	Project:	Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Portland, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

QUALITY CONTROL (QC) SAMPLE RESULTS

				PAH by I	EPA 8270	C SIM						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limíts	RPÐ	RPD Limit	Notes
Batch 8090070 - EPA 3546							Soil					
LCS (8090070-BS2)						Analyzed:	09/10/08 18	:16				Q-16
Fluoranthene	373		25.0	ug/kg wet	t "	0		112	55-120%			
Fluorene	314		25.0	.,				94	50-120%			
Indeno(1,2,3-cd)pyrene	381		25.0	"		0		114	40-120%			
Naphthalene	335	***	25.0	11	0	0	***	100				
Phenanthrene	340		25.0	11	"	"		102	50-120%			
Pyrene	357		25.0	TI	H	H		107	45-125%	**		
Pentachlorophenol (PCP)	378		33.3	a	11	**	~~~	113	25-120%			
Surr: Nitrobenzene-d5 (Surr) 2,4-Dibromophenol (Surr) 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Rec	overy: 93 % 98 % 87 % 92 %	Limits:	35-120 % 30-125 % 45-120 % 30-120 %	Dil	lution: 1x " "					
Matrix Spike (8090070-MS1)			Source: A	809062-02		Analvzed:	09/10/08 19	:41				
EPA 8270C (SIM)												
Acenaphthene	340		143	ug/kg dry	5	382	ND	89	45-120%			
Acenaphthylene	376	***	143		*	**	20.4	93	0			
Anthracene	445		143	ч	*1	Ħ	53,1	102	55-120%			
Benz(a)anthracene	389		143	11	11	**	43.7	90	50-120%			
Benzo(a)pyrene	400		143		u	u	29.8	97	11			
Benzo(b)fluoranthene	517		143	ų.	11	"	106	107	45-120%			
Benzo(k)fluoranthene	429		143		н		29.7	104	45-125%			
Benzo(g,h,i)perylene	535		143	"	"		73.1	121	40-125%			
Chrysene	414		143	Ħ	11		44.2	97	55-120%			
Dibenz(a,h)anthracene	502		143	ч	и	11	41.5	121	40-125%		Are and we	
Fluoranthene	473		143	14	**	п	46.2	112	55-120%			
Fluorene	343		143	11	н	"	ND	90	20-120%			
Indeno(1,2,3-cd)pyrene	603		143	u	ਅ	n	105	130	40-120%		*	Q-01
Naphthalene	346		143	u	tr	n	ND	91		***		
Phenanthrene	398		143	"	(I	**	49.2	91	50-120%			
Pyrene	450		143		11	**	43.9	106	45-125%			
Pentachlorophenol (PCP)	609		191		11	**	233	98	25-120%			
Surr: Nitrobenzene-d5 (Surr) 2,4-Dibromophenol (Surr) 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Reco	overy: 77 % 72 % 83 % 94 %	Limits:	35-120 % 30-125 % 45-120 % 30-120 %	Dil	lution: 5x " "					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers	Project:	Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Portland, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)											
Analyte	Result	MDL	Reporting Limit	Units	Dil,	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8090105 - EPA 3051							Soil					
Blank (8090105-BLK1)						Analyzed:	09/10/08 21	:34				
EPA 6020												
Arsenic	ND		1.00	mg/kg wet	10							
Cadmium	ND		1.00	"	11							
Copper	ND		4.00	"	ч				***			
Zinc	ND		4.00	**	"							
LCS (8090105-BS1)						Analyzed: ()9/10/08 21	:37				
EPA 6020												
Arsenic	50.3		1.00	mg/kg wet	10	50.0		101	80-120%			
Cadmium	51.8		1.00	"	н			104				
Copper	52.2		4.00	n			~~~	104	н			
Zinc	51.1		4.00	u	"			102	н			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers	Project:	Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Portland, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight by D2216												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8090071 - Dry Weight							Soi					
Duplicate (8090071-DUP1)			Source:	A809062-01		Analyzed:	09/09/08 07	:51				
D2216												
% Solids	92.8		1.00	% by Weight	1		92,5	~~~		0.3	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darwin Thomas, Sales/Marketing

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers	Project;	Ridgefield WWTP	
15055 SW Sequoia Pkwy, # 140	Project Number:	12383-001-01	Reported:
Portland, OR 97224	Project Manager:	Chris Breemer	09/15/08 15:52

SAMPLE PREPARATION INFORMATION

			PAH by EPA	8270C SIM			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8090070							
A809062-01	Soil	EPA 8270C (SIM)	09/05/08 11:00	09/08/08 11:31	14.92g/5mL	15g/5mL	1.01
A809062-02	Soil	EPA 8270C (SIM)	09/05/08 11:15	09/08/08 11:31	14.08g/5mL	15g/5mL	1.07
			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8090105			********				
A809062-01	Soil	EPA 6020	09/05/08 11:00	09/10/08 10:39	0.488g/50mL	0.5g/50mL	1.02
A809062-02	Soil	EPA 6020	09/05/08 11:15	09/10/08 10:39	0.503g/50mL	0.5g/50mL	0.99

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoEngineers 15055 SW Sequoia Pkwy, # 140 P Portland, OR 97224 Pr		Project: Project Number: Project Manager:	Ridgefield WWTP 12383-001-01 Chris Breemer	Reported: 09/15/08 15:52
		Notes and De	finitions	
Qualifiers	<u>.</u>			
Q-01	The percent recovery and/or RPD was o	outside acceptance limits for this sp	iked sample. The batch was accepted b	pased on LCS recovery.
Q-16	Reanalysis of an original Batch QC sample.			
R-04	Reporting levels elevated due to dilution necessary for analysis.			
<u>Notes an</u> DET	d Conventions: Analyte DETECTED			
ND	Analyte NOT DETECTED at or above	the reporting limit		
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
MDL	If MDL is not listed, data has been eval	uated to the Method Reporting Lin	it only.	
WMSC	C Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.			

 Batch
 Unless specifically stated, all analyses include full Batch QC, including Sample Duplicates, Matrix Spikes and/or Matrix Spike

 QC
 Duplicates, in order to meet or exceed method and regulatory requirements. This report contains only results for Batch QC derived from samples included in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chuin of custody document. This analytical report must be reproduced in its entirety.

Darwin Thomas, Sales/Marketing

APPENDIX F

CELLS 3 AND 4 INTERIM ACTION PLAN, PREPARED BY GROUP MACKENZIE

PROPERTY OWNER

PORT OF RIDGEFIELD

ATTN: LAURIE OLIN PO BOX 55 RIDGEFIELD, WA 98642 PHONE: (360) 887-3873 FAX: (360) 887-3403 E-MAIL: LOLIN@PORTRIDGEFIELD.ORG

CONTACT

MAUL FOSTER + ALONGI, INC

2001 NW 19th Avenue, Suite 200, Portland, OR 97209 PHONE: (971) 544 2139 FAX: (971) 544 2140 CONTACT: JENNIFER KING E-MAIL: jking@maulfoster.com

SITE AREA

41.22 AC (1,795,404 SF)

SITE ADDRESS

111 WEST DIVISION STREET RIDGEFIELD, WA 98642

TOWNSHIP, RANGE AND SECTION

T4N R1W SEC 13 AND 24

ELEVATION DATUM AND BENCHMARK

NGVD(29/47)

BENCHMARKS: PIONEER AVE 1795 - BRASS DISK IN SE BRIDGE ABUTMENT OF THE GEE CREEK BRIDGE ON 269 ST, EL = 64.92

DEPOT ST 111 - BRASS DISK IN CURB IN SW QUADRANT OF INTERSECTION OF DEPOT AND MAIN, 2' EAST OF WEST CURB RETURN, EL = 84.05

CELLS 3 AND 4 INTERIM ACTION RIDGEFIELD, WA

CELL 3 AND 4 INTERIM ACTION PLANS

GRADING PLAN (CELL 3)

GRADING PLAN (CELL 4)

EROSION CONTROL NOTES

EROSION CONTROL DETAILS

EROSION CONTROL PLAN - CELL 3 + 4

COVER SHEET

DETAILS

L1.0 PLANTING PLAN

CROSS SECTIONS

G1.0

G2.1

G2.2

G3.1

G4.0

G4.1

G4.2

G8.0

Client

Project CELLS 3 AND 4 INTERIM ACTION

RIDGEFIELD, WA

GROUP MACKENZIE 2010 ALL RIGHTS RESERVED \bigcirc THESE DRAWINGS ARE THE PROPERTY OF GROUP MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION

REVISIONS:	
NOISTINE INDICATIONS INTRA INTERNA INTRA INTRA I	REVISION DELTA CLOSING DATE
• •	

1	
	r 1
 •	

SHEET TITLE: COVER SHEET

DRAWN BY: MJS/DAH

CHECKED BY: DGL SHEET:

JOB NO. 2050304.00 REVISED PER MFA COMMENTS- MAY 27, 2010 SUBMITTED TO ECOLOGY - APRIL 14, 2010

1 inch = 40 ft.

- GENERAL NOTES
- EXCAVATED MATERIAL FROM CELL 3, WEST OF TOP OF NEW BANK PLACE IN DESIGNATED FILL AREAS WITHIN CELL 3. 1.
- USE CLEAN FILL FROM STOCKPILES TO ATTAIN REQUIRED CLEAN SOIL CAP THICKNESS AND FINISHED GRADE. 2.
- CONTAMINATED SOIL TO BE REMOVED, STOCKPILED, AND DISPOSED OF PRIOR TO PLACEMENT OF FILL, PER THE INTERIM ACTION WORK PLAN PREPARED BY MAUL, 3. FOSTER & ALONGI.
- CONTRACTOR TO INSTALL <u>OWNER-SUPPLIED</u> SKAPS GT-160 NON-WOVEN GEOTEXTILE OR APPROVED EQUIVALENT (AOS 0.212mm, MINIMUM PUNCTURE RESISTANCE 90 LBS) ON TOP OF FINISHED SUBGRADE BELOW CLEAN FILL WITH MIN. 6" OVERLAP. 4.
- MONITORING WELL MW-28S SHALL BE DECOMMISSIONED BY A LICENSED WELL DRILLER <u>CONTRACTED BY OWNER</u>. MONITORING WELLS MW-9S, MW-45S, MW-45D, MW-46D, MW-46S, MW20-D, MW-20S, MW-29D WILL BE MAINTAINED DURING CONSTRUCTION. ELEVATIONS WILL BE MODIFIED BY A LICENSED WELL DRILLER <u>CONTRACTED BY OWNER</u>, FOLLOWING COMPLETION OF EXCAVATION AND CAPPING. 5.
- 6. ALL PIPING SHALL BE ASTM D-3034 PVC.
- TREATED WOOD TO BE DISPOSED OF PER WAC 173–303–071. THE PORT WILL COORDINATE APPROVALS FOR DISPOSAL OF MATERIAL. 7.
- TRENCH SPOILS TO BE PLACED IN EXCAVATION AS BACKFILL OR PLACED UNDERNEATH GEOTEXTILE AND CLEAN CAP. 8.
- COMPACTED FILL MATERIAL SHALL MEET THE SPECIFICATIONS PROVIDED IN WSS 9-03.14(3) -BORROW MATERIAL. SOILS SHALL BE PLACED IN LIFTS OF AN UNCOMPACTED THICKNESS OF 8-12 INCHES. PLACED FILL SHALL BE COMPACTED TO NOT LESS THAN 92 PERCENT OF THE MAXIMUM DRY DENSITY AS DETERMINED BY AASHTO T-180. 9.

NZIE	Architecture Interior Design Land Use Planning	Seattle WA 206.749.9993
ACKE	y Ieering Pitecture	Vancouver WA 360.695.7879
G R O L P	Civil Engineering Structural Engin Transportation Landscape Arch	Portland OR 503.224.9560

Client

LOCATION	EXCAVATION DIMENSIONS (FEET)	DIMENSIONS (CU YDS)	COORDINATES (WASHINGTON STATE PLANE FEET NAD83)
CELL 3			
MW-9S	20x20, 1 FT DEEP	14.8	184957.32 1066779.79
SPY-01A	20x20, 2 FT DEEP	29.6	185063.38 1066975.27
SPY-01B	20x20, 6 FT DEEP	88.9	185031.89 1066993.15
SS-7	20x10, 1 FT DEEP	7.4	185007.94 1067076.94

RIDGEFIELD, WA

LEGEND

EXISTING PROPERTY LINE/ROW EXISTING EASEMENT EXISTING 100-YR FLOODPLAIN SITE BOUNDARY LINE EXISTING CONTOUR PROPOSED CONTOUR SHORELINES AREA EXISTING BUILDING TO BE REMOVE EXISTING TREE EXISTING TREE TO BE REMOVED

AREA OF CUT 3' CAP

AREA OF FILL 2' CAP

CONTAMINATED SOIL LOCATION

PROPOSED MANHOLE PROPOSED CATCH BASIN PROPOSED STORMLINE

EXISTING PILINGS/POLES TO BE REMOVED

MONITORING WELL TO BE MAINTAINED

GROUP MACKENZIE 2010 ALL RIGHTS RESERVED \bigcirc THESE DRAWINGS ARE THE PROPERTY O GROUP MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION

REVISIONS:

REVISIONS REVISION DELTA

 	r
 -	

DRAWN BY: MJS/DAH

CHECKED BY: DGL SHEET:

G2.1

у^{Јов} ^{NO.} 2050304.00 REVISED PER MFA COMMENTS- MAY 27, 2010 SUBMITTED TO ECOLOGY - APRIL 14, 2010
30 = 38 = 37287 SS-30 EARTH BERM 1' TALL, 2' WIDE TOP -6' WIDE BOTTOM CONSTRUCT 12' WIDE CONCRETE TRAIL PER DETAIL 5/C8.2 ____ _ · ____ · 43____ _____ $\begin{pmatrix} 4\\ G3.1 \end{pmatrix}$

GENERAL NOTES

- 1. USE CLEAN FILL FROM STOCKPILES TO ATTAIN REQUIRED CLEAN SOIL CAP THICKNESS AND FINISHED GRADE.
- CONTAMINATED SOIL TO BE REMOVED, STOCKPILED, AND DISPOSED OF PRIOR TO PLACEMENT OF FILL, PER THE INTERIM ACTION WORK PLAN PREPARED BY MAUL, FOSTER & ALONGI.
- 3. CONTRACTOR TO INSTALL <u>OWNER-SUPPLIED</u> SKAPS GT-160 NON-WOVEN GEOTEXTILE OR EQUIVALENT (AOS 0.212mm, MINIMUM PUNCTURE RESISTANCE 90 LBS) ON TOP OF FINISHED SUBGRADE BELOW CLEAN FILL WITH MIN. 6" OVERLAP.
- TRENCH SPOILS TO BE PLACED IN EXCAVATION AS BACKFILL OR PLACED UNDERNEATH GEOTEXTILE AND CLEAN CAP.
- 5. COMPACTED FILL MATERIAL SHALL MEET THE SPECIFICATIONS PROVIDED IN WSS 9-03.14(3) – BORROW MATERIAL. SOILS SHALL BE PLACED IN LIFTS OF AN UNCOMPACTED THICKNESS OF 8-12 INCHES. PLACED FILL SHALL BE COMPACTED TO NOT LESS THAN 92 PERCENT OF THE MAXIMUM DRY DENSITY AS DETERMINED BY AASHTO T-180.
- 6. CONTRACTOR TO PROTECT EXISTING SITE FEATURES IN AREA OF WORK, INCLUDING STORMWATER, WATER, AND CITY OF RIDGEFIELD DISCHARGE UTILITIES, AND EXTRACTION, INJECTION AND MONITORING WELLS.

LOCATION	EXCAVATION DIMENSIONS (FEET)	DIMENSIONS (CU YDS)	COORDINATES (WASHINGTON STATE PLANE FEET NAD83)	
CELL 4				
SS-4B	10x10, 1 FT DEEP	3.7	187066.71 1067053.73	
SS-30	10x10, 1 FT DEEP	3.7	187759.89 1067043.19	

Project CELLS 3 AND 4 INTERIM ACTION

RIDGEFIELD, WA

© GROUP MACKENZIE 2010 ALL RIGHTS RESERVED THESE DRAWINGS ARE THE PROPERTY OF GROUP MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION

REVISIONS:

REVISIO DELTA	revisions This Sheet	REVISION DELTA CLOSING DATE
	•	
	 	<u> </u>
	⊦	
	• •	
	•	

SHEET TITLE: GRADING PLAN CELL 4

DRAWN BY: MJS/DAH

CHECKED BY: DGL

G2.2

LEGEND

EXISTING PROPERTY LINE/ROW EXISTING EASEMENT EXISTING 100-YR FLOODPLAIN SITE BOUNDARY LINE EXISTING CONTOUR PROPOSED CONTOUR SHORELINES AREA EXISTING BUILDING TO BE REMOVED EXISTING TREE \bigotimes EXISTING TREE TO BE REMOVED AREA OF CUT AREA OF FILL (2' MIN CLEAN SOIL CAP) (\cdot) CONTAMINATED SOIL LOCATION PROPOSED MANHOLE PROPOSED CATCH BASIN PROPOSED STORMLINE

EXISTING PILINGS/POLES TO BE REMOVED

REVISED PER MFA COMMENTS- MAY 26, 2010 SUBMITTED TO ECOLOGY - APRIL 14, 2010 205030400(CIVIL\30462-2.DWG:3624 MJS 05/27/10 10:07 1:20

X

J^{JOB NO.} 2050304.00 REVISED PER MFA COMMENTS- MAY 27, 2010 SUBMITTED TO ECOLOGY - APRIL 14, 2010

L\304G3-1.DWG: 3624 MJS 05/27/10 10:10 1:20

RIDGEFIELD, WA D G. / GROUP MACKENZIE 2010 ALL RIGHTS RESERVED \bigcirc THESE DRAWINGS ARE THE PROPERTY OF GROUP MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION **REVISIONS:** 이주 REVISIONS REVISION DELTA 그 THIS CLOSING DATE 맺⊢ SHEET

Project CELLS 3 AND 4 INTERIM ACTION

SHEET TITLE: EROSION CONTROL PLAN CELL 3 + 4

DRAWN BY: MJS

CHECKED BY: DGL SHEET:

G4.0

REVISED PER MFA COMMENTS- MAY 27, 2010 SUBMITTED TO ECOLOGY - APRIL 14, 2010 205030400\CIVIL\30464-0,DWG: 3624 M/S 05/27/10 4040 406

NARRATIVE DESCRIPTIONS

EXISTING SITE CONDITIONS

CURRENTLY THE SITE IS AN INDUSTRIAL SITE WITH A VARIETY OF INDUSTRIAL TENANTS. THE SITE WAS PREVIOUSLY UTILIZED AS AN INDUSTRIAL WOOD TREATMENT FACILITY. THE ENTIRE SITE HAS BEEN CLEARED, GRADED, STOCKPILED AND OTHERWISE SURFACED WITH CONCRETE, GRAVEL OR ASPHALT. SUBSURFACE CONTAMINATION HAS BEEN REMEDIATED IN ACCORDANCE WITH DOE REQUIREMENTS.

DEVELOPED CONDITIONS

THE PROPOSAL WILL GRADE CELLS 3 AND 4, CONSTRUCT A 2 FOOT MINIMUM SOIL CAP WITH A GEOTEXTILE EAST OF THE PROPOSED TOP OF BANK IN CELLS 3 AND 4, CONSTRUCT A 3 FOOT MINIMUM SOIL CAP WITH A GEOTEXTILE WEST OF THE PROPOSED TOP OF BANK TO MEAN HIGH TIDE IN CELL 3 AND UPGRADE THE EXISTING STORMWATER SYSTEM.

NATURE OF CONSTRUCTION ACTIVITY AND ESTIMATED TIME TABLE

- * CLEARING (JULY 2010)
- * GRADING (JULY 2010 AUGUST 2010) * FINAL STABILIZATION (AUGUST 2010 - SEPTEMBER 2010)

TOTAL SITE AREA = 1,905,750 SF = 45.08 ACRES

TOTAL DISTURBED AREA = 669,348 SF = 15.37 ACRES

SITE SOIL CLASSIFICATION:

THE SITE CONSISTS MAINLY OF SAUVIE SILT LOAM AND HILLSBORO SILT LOAM.

RECEIVING WATER BODIES:

THE GRADING ONSITE WILL INCLUDE EROSION CONTROL MEASURES AND SOILS STABILIZATION MEASURES. STORMWATER DISCHARGES WILL FLOW OVER LAND AND WILL EVENTUALLY FLOW TO LAKE RIVER.

INSPECTION FREQUENCY:

ACTIVE SITES:

- WEEKLY AND WITHIN 24 HRS. OF A PRECIPITATION/DISCHARGE EVENT **INACTIVE SITES:**

- MONTHLY AND WITHIN 24 HRS. OF A PRECIPITATION/DISCHARGE EVENT TOTAL 0.5 IN OF RAINFALL OVER A 24 HOUR PERIOD

INSPECTION LOGS MUST BE KEPT IN ACCORDANCE WITH SWPPP REQUIREMENTS

BMP MATRIX FOR CONSTRUCTION PHASES

REFER TO DOE SWM FOR WESTERN WASHINGTON

				FINAL	WET WEATHER
	CLEARING	GRADING	STOCKPILE	STABILIZATION	(OCT. 1 - MAY 31ST)
EROSION PREVENTION					
PRESERVE NATURAL VEGETATION	**X	X	X	X	X
GROUND COVER	X	X	X	X	X
HYDRAULIC APPLICATIONS					
PLASTIC SHEETING			X	X	X
MATTING			X	X	X
DUST CONTROL	X	X	X	X	X
TEMPORARY/ PERMANENT SEEDING		X	X	X	X
BUFFER ZONE	**X	X	X	X	X
OTHER:					
SEDIMENT CONTROL					
SEDIMENT FENCE (PERIMETER)	* X	X	X	X	X
SEDIMENT FENCE (INTERIOR)	* X	X	X	X	X
STRAW WATTLES		X	X	X	X
FILTER BERM					
INLET PROTECTION	**X	X	X	X	X
WHELL WASH	** X	X	X	X	X
SEDIMENT BASIN	** X	X	X	X	X
OTHER:					
RUN OFF CONTROL					
CONSTRUCTION ENTRANCE	* X	X	X	X	X
PIPE SLOPE DRAIN					
OUTLET PROTECTION					
SURFACE ROUGHENING	X	X	X		
CHECK DAMS					
OTHER:					
POLLUTION PREVENTION					
PROPER SIGNAGE	X	X	X	X	X
HAZ WASTE MGMT	X	X	X	X	X
SPILL KIT ON-SITE	X	X	X	X	X
OTHER:					

** SIGNIFIES BMP THAT WILL BE INSTALLED PRIOR TO ANY GROUND DISTURBING ACTIVITY.

DRAINAGE SYSTEM, ROADWAYS, OR VIOLATE APPLICABLE WATER STANDARDS.

8. AT NO TIME SHALL MORE THAN ONE FOOT OF SEDIMENT BE ALLOWED TO ACCUMULATE WITHIN A TRAPPED CATCH BASIN. ALL CATCH BASINS AND CONVEYANCE LINES SHALL BE CLEANED PRIOR TO PAVING. THE CLEANING OPERATION SHALL NOT SLUSH SEDIMENT LADEN WATER INTO THE DOWNSTREAM SYSTEM.

A. PRIOR TO ANY SITE EXCAVATION, ALL STORM DRAINAGE INLETS SHALL BE PROTECTED AS SHOWN ON THE DETAIL SHEET TO PREVENT SEDIMENT FROM ENTERING THE STORM DRAINAGE SYSTEM PRIOR TO PERMANENT STABILIZATION OF THE DISTURBED AREA. CLEAN THE FILTER AS NECESSARY TO MAINTAIN DRAINAGE. PROVIDE APPROVED TRAFFIC CONTROL DEVICES AS NECESSARY. REMOVE FILTER AND CLEAN CATCH BASINS FOLLOWING COMPLETION OF SITEWORK.

B. INSTALL SILT FENCE PRIOR TO EXCAVATION AS SHOWN ON THIS SHEET TO PREVENT SILT INTRUSION UPON ADJACENT LAND. FOR MAINTENANCE AND REMOVAL OF SILT FENCE. SEE DETAIL STANDARD ON THE DETAIL SHEET.

C. PRIOR TO CONSTRUCTION, INSTALL SILT FENCE, PRIOR TO EXCAVATION ALONG THE DOWNHILL LOT LINE, IN ACCORDANCE WITH THIS SHEET TO PREVENT SILT INTRUSION UPON ADJACENT LOTS. IF CONSTRUCTION OCCURS SIMULTANEOUSLY ON ADJACENT LOTS AND THE LOTS HAVE THE SAME OWNER DURING CONSTRUCTION, THEN THE SILT FENCE ALONG THE COMMON LOT LINE CAN BE ELIMINATED.

12. PROTECTION OF ADJACENT ROADS AND STREETS

A. AT ALL ACCESS POINTS ONTO THE SITE THAT ARE UTILIZED BY CONSTRUCTION EQUIPMENT AND TRUCKS, PROVIDE A CONSTRUCTION ENTRANCE AS SHOWN ON PLAN PER DETAILS ATTACHED. ALL TRUCKS LEAVING THE PAD SHALL EGRESS ACROSS THE PAD. ACCUMULATED SOIL SHALL BE PERIODICALLY REMOVED, OR ADDITIONAL ROCK SHALL BE PLACED UPON THE PAD SURFACE. ROCK SHALL BE CLEAN 4" TO 8" QUARRY SPALLS. ALL MATERIALS SPILLED, DROPPED, WASHED OR TRACKED FROM VEHICLES ONTO ROADWAYS OR INTO STORM DRAINS MUST BE REMOVED IMMEDIATELY.

B. IF CONSTRUCTION OCCURS SIMULTANEOUSLY ON ADJACENT LOTS AND THE SAME OWNER DURING CONSTRUCTION, THEN, ONE LOT ENTRANCE CAN BE USED FOR ADJACENT LOTS.

13. IN AREAS SUBJECT TO SURFACE AND AIR MOVEMENT OF DUST, WHERE ON-SITE OR OFF-SITE DAMAGE IS LIKELY TO OCCUR, ONE OR MORE OF THE FOLLOWING PREVENTATIVE MEASURES SHALL BE TAKEN FOR DUST CONTROL:

A. MINIMIZE THE PERIOD OF SOIL EXPOSURE THROUGH THE USE OF TEMPORARY GROUND COVER AND OTHER TEMPORARY STABILIZATION PRACTICES.

B. THE SITE IS SPRINKLED WITH WATER UNTIL SURFACE IS WET. REPEAT AS NEEDED TO PREVENT THE CARRY OUT OF MUD ONTO STREET, REFER TO STABILIZED CONSTRUCTION ENTRANCE DETAILS.

C. SPRAY EXPOSED SOIL AREAS WITH A DUST PALLIATIVE. NOTE, USED OIL IS PROHIBITED AS A PALLIATIVE. 14. TEMPORARY SEEDING SHALL BE PLACED ON EXPOSED SURFACES THAT WILL NOT BE BROUGHT TO FINAL GRADING OR PERMANENT COVER TREATMENT OR VEGETATION WITHIN 30 DAYS OF THE EXPOSURE TO REDUCE EROSION SEDIMENTATION BY STABILIZING EXPOSED SOILS. SEEDED AREAS SHALL BE CHECKED REGULARLY TO ASSURE A GOOD STAND OF GRASS IS BEING MADE AREAS THAT FAIL TO ESTABLISH VEGETATION COVER ADEQUATE TO PREVENT HILL EROSION WILL BE RESEEDED AS SOON AS SUCH AREAS ARE IDENTIFIED.

15. APPLY THE FC

20. EXPOSED CUT OR FILL AREAS SHALL BE STABILIZED THROUGH THE USE OF TEMPORARY SEEDING AND MULCHING, EROSION CONTROL BLANKETS OR MATS, MID-SLOPE SEDIMENT FENCES OR WATTLES, OR OTHER APPROPRIATE MEASURES. SLOPES EXCEEDING 25% MAY REQUIRE ADDITIONAL EROSION CONTROL MEASURES.

GENERAL EROSION CONTROL NOTES

1. APPROVAL OF THIS EROSION/SEDIMENTATION CONTROL (ESC) PLAN DOES NOT CONSTITUTE AN APPROVAL OF PERMANENT ROAD OR DRAINAGE DESIGN (E.G. SIZE AND LOCATION OF ROADS, PIPES, RESTRICTORS, CHANNELS, RETENTION FACILITIES, UTILITIES, ETC.)

2. THE IMPLEMENTATION OF THESE ESC PLANS AND THE CONSTRUCTION, MAINTENANCE, REPLACEMENT, AND UPGRADING OF THESE ESC FACILITIES IS THE RESPONSIBILITY OF THE APPLICANT/CONTRACTOR UNTIL ALL CONSTRUCTION IS COMPLETED AND APPROVED AND VEGETATION/LANDSCAPING IS ESTABLISHED.

3. THE BOUNDARIES OF THE CLEARING LIMITS SHOWN ON THIS PLAN SHALL BE CLEARLY FLAGGED IN THE FIELD PRIOR TO CONSTRUCTION. DURING THE CONSTRUCTION PERIOD, NO DISTURBANCE BEYOND THE FLAGGED CLEARING LIMITS SHALL BE PERMITTED. THE FLAGGING SHALL BE MAINTAINED BY THE APPLICANT/CONTRACTOR FOR THE DURATION OF CONSTRUCTION. 4. THE ESC FACILITIES SHOWN ON THIS PLAN MUST BE CONSTRUCTED IN CONJUNCTION WITH ALL CLEARING AND GRADING ACTIVITIES, AND IN SUCH A MANNER AS TO INSURE THAT SEDIMENT AND SEDIMENT LADEN WATER DO NOT ENTER THE

THE ESC FACILITIES SHOWN ON THIS PLAN ARE THE MINIMUM REQUIREMENTS FOR ANTICIPATED SITE CONDITIONS. DURING THE CONSTRUCTION PERIOD, THESE ESC FACILITIES SHALL BE UPGRADED AS NEEDED FOR UNEXPECTED STORM EVENTS AND TO ENSURE THAT SEDIMENT AND SEDIMENT-LADEN WATER DO NOT LEAVE THE SITE.

6. THE ESC FACILITIES SHALL BE INSPECTED DAILY BY THE APPLICANT/CONTRACTOR AND MAINTAINED AS NECESSARY TO ENSURE THEIR CONTINUED FUNCTIONING.

7. THE ESC FACILITIES ON INACTIVE SITE SHALL BE INSPECTED AND MAINTAINED A MINIMUM OF ONCE A MONTH AND WITHIN THE 24 HOURS FOLLOWING A RAINFALL EVENT TOTALING 0.5 IN OVER A 24 HOUR PERIOD OR GREATER.

9. STABILIZED CONSTRUCTION ENTRANCE SHALL BE INSTALLED AT THE BEGINNING OF CONSTRUCTION AND MAINTAINED FOR THE DURATION OF THE PROJECT. ADDITIONAL MEASURES MAY BE REQUIRED TO INSURE THAT ALL PAVED AREAS ARE KEPT CLEAN FOR THE DURATION OF THE PROJECT.

10. ALL EROSION AND SEDIMENT CONTROL MEASURES ARE TO BE PLACED PRIOR TO ANY DISTURBANCE CAUSED BY CLEARING OR GRADING AND SHALL CONFORM TO THE REQUIREMENTS OF THE PUGET SOUND MANUAL, VOLUME II – EROSION AND SEDIMENT CONTROL, THE CITY OF RIDGEFIELD ENGINEERING AND CONSTRUCTION STANDARDS, AND TO THE STANDARD DETAILS ATTACHED TO THIS SET OF PLANS. NEWLY CONSTRUCTED OR MODIFIED INLETS AND CATCH BASINS ARE TO BE PROTECTED IMMEDIATELY. UPON INSTALLATION. TEMPORARY SEEDING AND MULCHING OF FILL SLOPES AND DIVERSION DIKES SHALL BE COMPLETED WITHIN ONE WEEK AFTER ROUGH GRADING. ALL EXPOSED AND UNWORKED SOILS SHALL BE STABILIZED BY THE APPROPRIATE BMP. DURING THE PERIOD FROM OCTOBER 1 TO APRIL 30 NO SOIL SHALL BE EXPOSED FOR MORE THAN TWO (2) DAYS. FROM MAY 1 TO SEPTEMBER 30 NO SOIL SHALL BE EXPOSED FOR MORE THAN SEVEN (7) DAYS.

11. PROTECTION

OLLOWI	NG TEMPORARY/	PERMANENT	SEEDING	MIXTURE	TO 1	THE	PREPARED	SEED	BED	AT A	RATE	OF	120	LBS/A	CRE:
_	NAME		PROPOR BY WEIG	TIONS SHT		PER PU	CENT RITY		PI GER		NT TION	_			
-	REDTOP ANNUAL RYE		10% 40%				92 98 97			90 90		-			

WHITE DUTCH CLOVER 90 10% 96 * NOTE: "HYDROSEEDING" APPLICATIONS WITH APPROVED SEED-MULCH-FERTILIZER MIXTURES MAY ALSO BE USED 16. SLOPE TO RECEIVE TEMPORARY OR PERMANENT SEEDING SHALL HAVE THE SURFACE ROUGHENED BY MEANS OF

TRACK-WALKING OR THE USE OF OTHER APPROVED IMPLEMENTS. SURFACE ROUGHENING IMPROVES SEED BEDDING AND REDUCES RUN-OFF VELOCITY. 17. LONG TERM SLOPE STABILIZATION MEASURES SHALL INCLUDE THE ESTABLISHMENT OF PERMANENT VEGETATIVE COVER VIA

SEEDING WITH APPROVED MIX AND APPLICATION RATE. 18. TEMPORARY SLOPE STABILIZATION MEASURES SHALL INCLUDE: COVERING EXPOSED SOIL WITH PLASTIC SHEETING, STRAW

MULCHING, WOOD CHIPS, OR OTHER APPROVED MEASURES. 19. STOCKPILED SOIL OR STRIPPINGS SHALL BE PLACED IN A STABLE LOCATION AND CONFIGURATION. DURING "WET WEATHER" PERIODS, STOCKPILES SHALL BE COVERED WITH PLASTIC SHEETING OR STRAW MULCH. SEDIMENT FENCE IS REQUIRED AROUND THE PERIMETER OF THE STOCKPILE.

21. AREAS SUBJECT TO WIND EROSION SHALL USE APPROPRIATE DUST CONTROL MEASURES INCLUDING THE APPLICATION OF A FINE SPRAY OF WATER, PLASTIC SHEETING, STRAW MULCHING, OR OTHER APPROVED MEASURES.

22. ACTIVE INLETS TO STORM WATER SYSTEMS SHALL BE PROTECTED THROUGH THE USE OF APPROVED INLET PROTECTION MEASURES. ALL INLET PROTECTION MEASURES ARE TO BE REGULARLY INSPECTED AND MAINTAINED AS NEEDED. 23. VEGETATION TO BE ESTABLISHED SHALL BE CONSISTENT WITH APPROVED DEPARTMENT OF ECOLOGY PLANTING LIST.

GENERAL SEDIMENT FENCE NOTES

- 5. NOT USED

- 8. CONSTRUCTION SPECIFICATIONS
- SUFFICIENT TO CAUSE FAILURE OF THE STRUCTURE).
- FROM THE BARRIER.
- D. THE TRENCH SHALL BE BACKFILLED WITH NATIVE SOIL 9. MAINTAINANCE

WHEEL WASH NOTES

EROSION AND SEDIMENT CONTROL BMP IMPLEMENTATION:

- OCTOBER 1

THESE EROSION AND SEDIMENT CONTROL PLANS ASSUME "DRY WEATHER" CONSTRUCTION. "WET WEATHER" CONSTRUCTION MEASURES NEED TO BE APPLIED BETWEEN NOVEMBER 1ST AND APRIL 31ST.

THE FILTER FABRIC SHALL BE PURCHASED IN A CONTINUOUS ROLL CUT TO THE LENGTH OF THE BARRIER TO AVOID USE OF JOINTS. WHEN JOINTS ARE NECESSARY, FILTER CLOTH SHALL BE SPLICED TOGETHER ONLY AT A SUPPORT POST, WITH A MINIMUM 6-INCH OVERLAP, AND BOTH ENDS SECURELY FASTENED TO THE POST. 2. THE FILTER FABRIC FENCE SHALL BE INSTALLED TO FOLLOW THE CONTOURS WHERE FEASIBLE. THE FENCE POSTS SHALL BE SPACED A MAXIMUM OF 8 FEET APART AND DRIVEN SECURELY INTO THE GROUND A MINIMUM OF 24 INCHES. 3. WHEN STANDARD STRENGTH FILTER FABRIC IS USED, A WIRE SUPPORT FENCE SHALL BE FASTENED SECURELY TO THE UPSLOPE SIDE OF THE POSTS USING HEAVY-DUTY WIRE STAPLES AT LEAST 1 INCH LONG, TIE WIRE OR HOG RINGS. THE WIRE SHALL EXTEND INTO THE TRENCH A MINIMUM OF 4 INCHES AND SHALL NOT EXTEND MORE THAN 36 INCHES ABOVE THE ORIGINAL GROUND SURFACE. 4. THE STANDARD STRENGTH FILTER FABRIC SHALL BE STAPLED OR WIRED TO THE FENCE, AND 12 INCHES OF THE FABRIC SHALL BE EXTENDED INTO THE TRENCH. THE FABRIC SHALL NOT EXTEND MORE THAN 36 INCHES ABOVE THE ORIGINAL GROUND SURFACE. FILTER FABRIC SHALL NOT BE STAPLED TO EXISTING TREES.

6. SEDIMENT FENCES SHALL BE REMOVED WHEN THEY HAVE SERVED THEIR USEFUL PURPOSE, BUT NOT BEFORE THE UPSLOPE AREA HAS BEEN PERMANENTLY STABILIZED. 7. SEDIMENT FENCES SHALL BE INSPECTED BY APPLICANT/CONTRACTOR IMMEDIATELY AFTER EACH RAINFALL AND AT LEAST DAILY DURING PROLONGED RAINFALL. ANY REQUIRED REPAIRS SHALL BE MADE IMMEDIATELY.

A. SILT FENCE: THIS SEDIMENT BARRIER UTILIZES STANDARD STRENGTH OR EXTRA STRENGTH SYNTHETIC FILTER FABRICS. IT IS DESIGNED FOR SITUATIONS IN WHICH ONLY SHEET OR OVERLAND FLOWS ARE EXPECTED. B. THE HEIGHT OF A SILT FENCE SHALL NOT EXCEED 36 INCHES (HIGHER FENCES MAY IMPOUND VOLUMES OF WATER

C. A TRENCH SHALL BE EXCAVATED 8 TO 12 INCHES WIDE AND 12 INCHES DEEP ALONG THE LINE OF POSTS AND UPSLOPE

A. SHOULD THE FABRIC ON A SILT FENCE OF FILTER BARRIER DECOMPOSE OR BECOME INEFFECTIVE PRIOR TO THE END OF THE EXPECTED USABLE LIFE AND THE BARRIER STILL BE NECESSARY, THE FABRIC SHALL BE REPLACED PROMPTLY. B. SEDIMENT DEPOSITS SHOULD BE REMOVED AFTER EACH STORM EVENT. THEY MUST BE REMOVED WHEN DEPOSITS REACH APPROXIMATELY ONE-HALF THE HEIGHT OF THE BARRIER. C. ANY SEDIMENT DEPOSITS REMAINING IN PLACE AFTER THE SILT FENCE OR FILTER BARRIER IS NO LONGER REQUIRED SHALL BE DRESSED TO CONFORM WITH THE EXISTING GRADE, PREPARED AND SEEDED.

1. USE EXISTING ONSITE WHEEL WASH TO PREVENT MUD AND DEBRIS ARE TRACKED OUT ONTO THE STREET DUE TO EITHER CONSTRUCTION PRACTICES OR WET WEATHER CONSTRUCTION. 2. WHEEL WASH WATER SHALL BE DISCHARGED TO NEIGHBORING SEDIMENT BASIN. THE SEDIMENT BASIN PROVIDES A MEANS OF SEDIMENT SETTLING AREA, AND ENERGY DISSAPATION. 3. WHEEL WASH AND SEDIMENT BASIN IS REQUIRED TO BE PUMPED OUT DAILY. 4. INSTALL NEW WHEEL WASH WHEN WORK ITEMS PREVENT USE OF EXISTING WHEEL WASH.

1. ALL BASE ESC MEASURES (INLET PROTECTION, PERIMETER SEDIMENT CONTROL, GRAVEL CONSTRUCTION ENTRANCES, ETC.) MUST BE IN PLACE, FUNCTIONAL, AND APPROVED IN AN INITIAL INSPECTION, PRIOR TO COMMENCEMENT OF CONSTRUCTION ACTIVITIES.

2. ALL "SEDIMENT BARRIERS (TO BE INSTALLED AFTER GRADING)" SHALL BE INSTALLED IMMEDIATELY FOLLOWING ESTABLISHMENT OF FINISHED GRADE AS SHOWN ON THESE PLANS. 3. SLOPE STABILIZATION WILL INCLUDE SURFACE ROUGHENING DETAIL 4-12 AND MATTING DETAIL 4-1 SHEET MG3.3 AND WILL BECOME PART OF THE LONG TERM STABILIZATION PROTECTION. 4. LONG TERM SLOPE STABILIZATION MEASURES "INCLUDING MATTING" SHALL BE IN PLACE OVER ALL EXPOSED SOILS BY

CELLS 3 AND 4 INTERIM ACTION

RIDGEFIELD, WA

GROUP MACKENZIE 2010 \bigcirc ALL RIGHTS RESERVED THESE DRAWINGS ARE THE PROPERTY OF GROUP MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION

REVISIONS:

REVISION DELTA	revisions This Sheet	REVISION DELTA CLOSING DATE
	X	
	· · ·	
	· ·	
	· · ·	
·		
	· · ·	

SHEET TITLE: EROSION CONTROL NOTES

DRAWN BY: MJS

CHECKED BY: DGL SHEET:

G4

0\CIVIL\304G4-1.DWG MJS 05/27/10 10:20 1:1

JOB NO. 2050304.00 **REVISED PER MFA COMMENTS- MAY 27, 2010** SUBMITTED TO ECOLOGY - APRIL 14, 2010

Client

Project CELLS 3 AND 4 INTERIM ACTION

RIDGEFIELD, WA

© GROUP MACKENZIE 2010 ALL RIGHTS RESERVED THESE DRAWINGS ARE THE PROPERTY OF GROUP MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION

REVISIONS:

	DELTA	revisions This Sheet	S REVISION DELTA CLOSING DATE
_		Х	
_			
_			
_			
_			
_			
_			
_			

SHEET TITLE: EROSION CONTROL DETAILS

DRAWN BY: MJS

CHECKED BY: DGL

G4.2

REVISED PER MFA COMMENTS- MAY 27, 2010 SUBMITTED TO ECOLOGY - APRIL 14, 2010 205030400(CIVIL\30464-2.DWG MJS 05/27/10 10:22 1:1

Plants without a Tap Root List

Trees (SOIL CAP:	3 FEET OR GREATER)
Abies concolor	White Fir
Acer japonicum*	Japanese Maple
Acer macrophyllum	Big-Leaf Maple
Acer palmatum*	Japanese Maple
Acer rubrum*	Red Maple
Betula papyrifera*	Paper Maple
Betula pendula	Weeping Birch
Carpinus betulus*	European Hornbeam
Cercidiphyllum japonicum	Katsuratree
Cornus florida	Flowering Dogwood
Fagus sylvatica*	European Beech
Fraxinus pennsylvanica*	Green Ash
Larix occidentalis	Western Larch

Picea pungens* Picea sitchensis Platanus x acerfolia Populus balsamifera Prunus emarginata Prunus serrulata Psuedotsug menziesii Douglas Fir Salix sp. Styrax japonicas Thuja occidentalis* Thuja plicata Tilia cordata

Colorado Spruce Sitka Spruce London Plane Tree Black Cottonwood Bitter Cherry Japanese Flowering Cherry Willows Japanese Snowball Arborvitae Western Red Cedar Little Leaf Linden

Callur Cama Cornu Dicen Fraga Fragat Maian Oxalis Polyst Vance Carex

Shrubs (SOIL CAP: 3 FEET OR GREATER)

Abelia x grandifolia	Glossy Abelia	Abelia Mahonia aquifolium 'Cor	
Acer circinatum	Vine Maple	Oregon Grape	
Andromeda polifolia	Bog Rosemary	Oemleria cerasiformis	Indian plum
Arcostaphylos uvu-ursi	Kinnikinnik	Physocarpus capitatus	Western Ninebark
Azalea sp*	Azaleas	Rosa Gymnocarpa	Baldhip Rose
Berberis Thunbergii*	Japanese Barberry	Rhododendron sp.*	Rhododendrons
Clethra alnifolia	Summersweet Clethra	Sambucus cerulean	Blue elderberry
Cornus alba*	Dogwood	Sambucus racemosa	Red elderberry
Cornus siricea*	Redosier Dogwood	Symphoricarpos albus	Snowberry
Deutzia gracilis	Slender Deutzia	Vaccinium corymbosum	Highbush blueberry
Euonymus fortunei*	Wintercreeper	Viburnum davidii -	Davids Viburnum
	Euonymus	Vaccinium ovatum	Evergreen huckleberry
Gautheria shallon	Salal	Viburnum lantana	Wayfaring Tree
Hamamelis mollis*	Chinese Witchhazel		Viburnum
Hamamelis Virginia	Witch Hazel	Viburnum opulus*	European Crapherrybush
Kalmia latifolia	Mountain Laurel		Cranoenybush
Lonicera japonica*	Japanese Honeysuckle		

Ground Cover (SOIL CAP: 2 FEET OR GREATER)

The following list includes anticipated ground cover for the site. However, other perennial herbaceous plants, annual flowers, grasses, sedges, ferns, and mosses are acceptable as well.

Aruncus dioicus	Goat's Beard	Helictotrichon sempervi	rens Blue Oat Grass
Belchnum spicant	Deer fern	Miscanthus Sinensis	Maiden Grass
Calluna vulgaris*	Scotch Heather	Pennisetum alopecuroide	es Fountain Grass
Camassia quamash	Common Camas	Sesleria autumnalis	Autumn Moor Grass
Cornus Canadensis	Bunchberry	Anemone hybrida	Japanese Anemone
Dicentra Formosa	Bleeding Heart	Daffodil -	Narcissus
Fragaria chiloensis	Coastal Strawberry	Echinacea purpurea -	Putple Cone Flower
Fragaria vesca	Woodland Strawberry	Hemerocallis -	Daylily
Maianthemum dilatatum	False Lily-of-the-Valley	Liriope muscari -	Lilyturf
Oxalis oregano	Wood sorrel	Rudbekia hirta -	Black-eyed Susan
Polystichum munitum	Sword fern	Sedum -	Stonecrop
Vancouveria hexandra	Inside-out flower	Lawn mixes	
Carex -	Sedges		
Deschampsia caespitosa	Tufted Hair Grass		

* Including varieties

Note: This list is not all inclusive and other plant material may be added with if they do not have a tap root. Data for list was obtained from the following sources:

US Forest Service Handbook 654 http://www.na.fs.fed.us/pubs/silvics_manual/table_of_contents.shtm

US Forest Service Shrub list http://www.fs.fed.us/database/feis/plants/shrub/

 USDA Natural Resources Conservation Service – Plants Data Base- <u>http://plants.usda.gov/index.html</u> The Complete Plant Selection Guide for Landscape Design by Marc C. Stoecklein

G8.0

J^{JOB NO.} 2050304.00

D\CIVIL\304G8-0.DWG MJS 05/27/10 10:23 1:1

REVISED PER MFA COMMENTS- MAY 27, 2010 SUBMITTED TO ECOLOGY - APRIL 14, 2010

NOTES

AREA TO BE PLANTED ALONG 2:1 SLOPE WEST OF CONCRETE TRAIL ALONG SLOPE FACE SPECIFIC PLAN TO FOLLOW

- TOTAL AREA TO BE PLANTED = 25,690 SQUARE FEET - TREES = 60 PLANTS PLACED IN GROUPS, 1 GALLON CONTAINERS - SHRUBS = 350 PLANTS GROUPED IN DRIFTS (AVG 6-FOOT ON CENTER), 1 GALLON CONTAINERS - GROUNDCOVER = 440 PLANTS GROUPED IN CLUSTERS (AVG 30" ON CENTER), 4" POTS - HYDROSEED UNDER ALL PLANTS WITH ANNUAL RYE GRASS - IRRIGATION = TEMPORARY OVER FIRST 3 YEARS

- SALIX LASIANDRA / PACIFIC WILLOW - SALIX SCOULERIANA / SCOULER WILLOW - SALIX SITCHENSIS / SITKA WILLOW

– THUJA PLICATA / WESTERN RED CEDAR

- MAHONIA AQUIFOLIUM 'COMPACTA' / COMPACT OREGON GRAPE

- OEMLERIA CERASIFORMIS / INDIAN PLUM

- SYMPHORICARPOS ALBUS / SNOWBERRY

- VACCINIUM OVATUM / EVERGREEN HUCKLEBERRY

GROUNDCOVER

- ANEMONE DELTOIDEA / WESTERN WHITE ANEMONE

- ATHYRIUM FILIX-FEMINA / LADY FERN ?

- DESCHAMPSIA CESPITOSA / TUFTED HAIRGRASS

- FRAGARIA VESCA / WOOD STRAWBERRY

– IRIS TENAX / OREGON IRIS

Project CELLS 3 AND 4 INTERIM ACTION

RIDGEFIELD, WA

© GROUP MACKENZIE 2010 ALL RIGHTS RESERVED THESE DRAWINGS ARE THE PROPERTY OF GROUP MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION

REVISIONS:

이 문 REVISIONS REVISION DELTA 다니 THIS CLOSING DATE 교실 SHEET

	•
	•
	ł

SHEET TITLE: PLANTING PLAN CELL 3

DRAWN BY: MJS/DAH

CHECKED BY: DGL SHEET:

L1.0

APPENDIX G

ECOLOGY-APPROVED PLANTING LIST

Plants without a Tap Root List

Trees

Abies concolor	White Fir
Acer japonicum*	Japanese Maple
Acer macrophyllum	Big-Leaf Maple
Acer palmatum*	Japanese Maple
Acer rubrum*	Red Maple
Betula papyrifera*	Paper Maple
Betula pendula	Weeping Birch
Carpinus betulus*	European Hornbeam
Cercidiphyllum japonicum	Katsuratree
Cornus florida	Flowering Dogwood
Fagus sylvatica*	European Beech
Fraxinus pennsylvanica*	Green Ash
Larix occidentalis	Western Larch

Picea pungens* Colorado Spruce Picea sitchensis Sitka Spruce London Plane Tree Platanus x acerfolia Black Cottonwood Populus balsamifera Prunus emarginata Bitter Cherry Prunus serrulata Japanese Flowering Cherry Psuedotsug menziesii Douglas Fir Willows Salix sp. Styrax japonicas Japanese Snowball Thuja occidentalis* Arborvitae Thuja plicata Western Red Cedar Tilia cordata Little Leaf Linden

Shrubs

Lonicera japonica*

Glossy Abelia Vine Maple Bog Rosemary	Mahonia aquifolium 'Con Oregon Grape	mpacta' - Compact
Vine Maple Bog Rosemary	Oregon Grape	
Bog Rosemary	Openlaria corregiformia	
	Oemiena cerasitornis	Indian plum
Kinnikinnik	Physocarpus capitatus	Western Ninebark
Azaleas	Rosa Gymnocarpa	Baldhip Rose
Japanese Barberry	Rhododendron sp.*	Rhododendrons
Summersweet Clethra	Sambucus cerulean	Blue elderberry
Dogwood	Sambucus racemosa	Red elderberry
Redosier Dogwood	Symphoricarpos albus	Snowberry
Slender Deutzia	Vaccinium corymbosum	Highbush blueberry
Wintercreeper	Viburnum davidii -	Davids Viburnum
Euonymus	Vaccinium ovatum	Evergreen huckleberry
Salal	Viburnum lantana	Wayfaring Tree
Chinese Witchhazel		Viburnum
Witch Hazel	Viburnum opulus*	European Crapherrybush
Mountain Laurel		CranoerryDush
	Bog Rosemary Kinnikinnik Azaleas Japanese Barberry Summersweet Clethra Dogwood Redosier Dogwood Slender Deutzia Wintercreeper Euonymus Salal Chinese Witchhazel Witch Hazel Mountain Laurel	Bog RosemaryOemleria cerasiformisKinnikinnikPhysocarpus capitatusAzaleasRosa GymnocarpaJapanese BarberryRhododendron sp.*Summersweet ClethraSambucus ceruleanDogwoodSambucus racemosaRedosier DogwoodSymphoricarpos albusSlender DeutziaVaccinium corymbosumWintercreeper EuonymusVaccinium ovatumSalalViburnum davidii -Kinnese WitchhazelViburnum lantanaMountain LaurelViburnum opulus*

Japanese Honeysuckle

Ground Cover

The following list includes anticipated ground cover for the site. However, other perennial herbaceous plants, annual flowers, grasses, sedges, ferns, and mosses are acceptable as well.

Aruncus dioicus	Goat's Beard	Helictotrichon sempervirens Blue Oat Grass	
Belchnum spicant	Deer fern	Miscanthus Sinensis	Maiden Grass
Calluna vulgaris*	Scotch Heather	Pennisetum alopecuroide	es Fountain Grass
Camassia quamash	Common Camas	Sesleria autumnalis	Autumn Moor Grass
Cornus Canadensis	Bunchberry	Anemone hybrida	Japanese Anemone
Dicentra Formosa	Bleeding Heart	Daffodil -	Narcissus
Fragaria chiloensis	Coastal Strawberry	Echinacea purpurea -	Purple Cone Flower
Fragaria vesca	Woodland Strawberry	Hemerocallis -	Daylily
Maianthemum dilatatum	False Lily-of-the-Valley	Liriope muscari -	Lilyturf
Oxalis oregano	Wood sorrel	Rudbekia hirta -	Black-eyed Susan
Polystichum munitum	Sword fern	Sedum -	Stonecrop
Vancouveria hexandra	Inside-out flower	Lawn mixes	
Carex -	Sedges		
Deschampsia caespitosa	Tufted Hair Grass		

* Including varieties

Note: This list is not all inclusive and other plant material may be added with if they do not have a tap root. Data for list was obtained from the following sources:

- US Forest Service Handbook 654 <u>http://www.na.fs.fed.us/pubs/silvics_manual/table_of_contents.shtm</u>
- US Forest Service Shrub list <u>http://www.fs.fed.us/database/feis/plants/shrub/</u>
- USDA Natural Resources Conservation Service Plants Data Base- <u>http://plants.usda.gov/index.html</u>
- The Complete Plant Selection Guide for Landscape Design by Marc C. Stoecklein

APPENDIX H

SEPA CHECKLIST

SEPA Environmental Checklist Cells 3 and 4—Lake River Industrial Site Interim Action Work Plan for Soils

WAC 197-11-960 Environmental checklist

- A. BACKGROUND
- *1. Name of proposed project, if applicable:*

Cells 3 and 4—Lake River Industrial Site (LRIS) Interim Action Work Plan for Soils

2. Name of applicant:

Port of Ridgefield

- Address and phone number of applicant and contact person: Brent Grening, Executive Director Port of Ridgefield PO Box 55
 111 W. Division Street Ridgefield, WA 98642 Tel: (360) 887-3873
- 4. Date checklist prepared:

April 21, 2010

5. *Agency requesting checklist:*

Washington State Department of Ecology (Ecology)

6. *Proposed timing or schedule (including phasing, if applicable):*

Approval from Ecology is required before the start of the interim action. The Port anticipates proceeding with the excavation activities in summer 2010 at the conclusion of the State Environmental Protection Act (SEPA) comment period for the soil interim action in Cells 3 and 4. The project is expected to be completed by fall 2010.

7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.

The interim action is part of the larger cleanup of the LRIS. This work is being conducted consistent with the requirements of Ecology Agreed Order No. 01TCPSR-3119 (the Order). The interim action addresses soil contamination "hot spots" in Cells 3 and 4 of the LRIS and the placement of a soil cap on these cells. Future activities at the project site will include soil and groundwater monitoring, and additional remedial actions for other portions of the LRIS, including upland capping and bank remediation of Cell 2 planned for 2011. Final site cleanup actions will be determined as part of the remedial investigation and feasibility study (RI/FS) process required by the Order.

8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.

Substantial environmental documentation has been prepared for the LRIS regarding the soil and groundwater contamination caused by a former Port tenant, Pacific Wood Treating Company.

Applicable to this requested action, a draft Cell 3 and 4 Interim Action Work Plan for Soil, dated April 14, 2010, has been prepared. Documents that were used to prepare the Interim Action Work Plan for soils on Cells 3 and 4 were:

- Volume I—RI work plan for Port LRIS (MFA, 2004b)
- Volume II—Cell 3 RI/FS work plan for Port LRIS (MFA, 2004a) Cell 3 RI and risk assessment report (MFA, 2007)
- Draft Cell 3 FS report (MFA, 2008)
- Boundary soil sampling results (MFA, 2009a)
- Draft Cell 4 RI/FS report (MFA, 2009b)

The following reports are available to the public at the Port office:

- Cell 4 Remedial Investigation and Feasibility Study Report. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. April 27, 2009.
- Draft Cell 3 Feasibility Study Report. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. April 21, 2008.
- Cell 3 Remedial Investigation and Risk Assessment Report. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. February 23, 2008.
- Remedial Investigation Workplan for Port of Ridgefield Lake River Industrial Site. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. July 2, 2004.
- 9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain.

There are no pending applications for proposals directly affecting this project. However, the Port is moving forward with permits for future development. This interim action is discrete from the development, however, conditions of these permits, if known prior to implementation of the interim action will be incorporated into construction.

10. List any government approvals or permits that will be needed for your proposal, if known.

The proposed action will be conducted as an interim action under the Order within the authority of the state Model Toxics Control Act (MTCA). The proposed action is exempt from the procedural requirements of state and local permits that would otherwise be required, per Revised Code of Washington (RCW) 70.105D.090. However, the proposed action is required to demonstrate substantive compliance with appropriate state and local permits. These include: SEPA review; NPDES Stormwater Permit for Construction Activities; shorelines and critical areas; and the City of Ridgefield drainage approvals and building and construction permits, including grading.

11. Give a brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain

aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.)

The proposed project lies on the LRIS, a former wood-treating facility that is now a MTCA cleanup site (see Figure 1). The Port and Ecology have entered into the Order to investigate and develop a cleanup action plan for the site. Draft RIs that delineated the nature and extent of contamination in Cells 3 and 4 and draft FSs that evaluated remedial action alternatives have been submitted to Ecology. This interim action addresses hot spots of soil contamination and capping in Cells 3 and 4 and will reduce risks to human health and the environment.

The project involves excavation of contaminated soil in six discrete locations in Cells 3 and 4 (see Figure 2) on the LRIS. This work is being conducted consistent with the requirements of the Order. Approximately 148 cubic yards of material will be excavated and disposed of at Chemical Waste Management, a Subtitle C landfill in Arlington, Oregon, or at the Aragonite incineration facility in Aragonite, Utah, depending on the results of the waste profiling. Cell 3, formerly referred to as the south pole yard, was used to store treated lumber. Cell 4, formerly referred to as the north pole yard, was used to store untreated lumber and to peel poles. Soil excavation will be conducted around sample locations where soil analysis indicated that concentrations of indicator hazardous substances exceed remediation levels. Four excavation locations have been identified on Cell 3 and two excavation areas have been located on Cell 4. Approximate volumes of excavated soil will total 140.7 cubic yards on Cell 3 and 7.4 cubic yards on Cell 4. The final extent of excavation will be based on results from confirmation samples in the excavated area.

The Port is proposing to complete some of the excavations in a portion of Cell 3 owned by the Union Pacific Railroad (UP). The excavations on the UP property will occur only if UP is in agreement with the Interim Action Work Plan and Ecology approves the plan. The excavated material will temporarily be stockpiled or placed in drop boxes for profiling. After the soil has been profiled it will be transferred to an approved off-site facility. The excavations will be backfilled following the completion of confirmation sample analysis.

Following soil excavation, site grading will be completed in preparation for soil cap installation. In Cell 3, approximately 7,400 cubic yards of soil will be removed east of the ordinary high water elevation and used to regrade the site before clean fill is placed on site. Approximately 41,000 cubic yards of fill will be imported and placed on Cell 3 and 28,000 cubic yards of clean fill will be imported and placed on Cell 4. The imported clean fill will cap over impacted surface soil. A demarcation layer (e.g., geotextile fabric) will be placed on the graded surface before covering with clean fill. The imported clean fill will come from the Washington State Department of Transportation construction at the new interchange on Interstate 5 at 269th Street (Pioneer Street). To protect the cap and facilitate development, fill material will be used to raise the site surface above the 100 year flood plain.

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not

required to duplicate maps or detailed plans submitted with any permit applications related to this checklist.

The LRIS occupies approximately 41 acres and is situated along Lake River and on the west side of downtown Ridgefield. The Lake River property is located in the northwest quarter of the northeast quarter of section 24, township 4 north, range 1 west of the Willamette Meridian (see Figure 1).

B. ENVIRONMENTAL ELEMENTS

- 1. Earth
 - a. General description of the site (circle one): <u>Flat</u>, rolling, hilly, steep slopes, mountainous, other

The property is primarily flat. The only area with steep slopes is the river embankment.

b. What is the steepest slope on the site (approximate percent slope)?

The steepest slope on the LRIS is approximately 25 to 30 percent in grade. However, the excavation areas are generally flat.

c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any prime farmland.

The property is located on Sauvie Series soils, according to the U.S. Department of Agriculture Soil Conservation Service soil typing for Clark County. The specific soil type is Sauvie silt loam 3 to 8 percent slopes. Most of the material that will be excavated as part of this project consists of sandy gravel fill that was historically placed on the property.

Investigations of soil and groundwater contamination have been conducted on the LRIS since 1985. Analytical testing of soil samples in Cells 3 and 4 has identified concentrations of the following indicator hazardous substances above interim remediation levels: arsenic, dioxins/furans, and carcinogenic polycyclic aromatic hydrocarbons. Soil at the sample locations that exceeds remediation levels will be removed as part of the Interim Action Work Plan.

d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe.

According to Clark County Geographic Information Systems (GIS) mapping, there are no historical, active, or potentially unstable slopes in the proposal vicinity.

e. Describe the purpose, type, and approximate quantities of any filling or grading proposed. Indicate source of fill.

The project involves excavation of contaminated soil in six locations on the LRIS in Cells 3 and 4 (see Figure 2). The excavation will remove contaminated material and reduce risks to environmental and public health. The material that will be excavated consists of sandy gravel fill that was historically placed on the site. A total of approximately 148 cubic yards of material will be excavated and disposed of at Chemical Waste Management, a Subtitle C landfill in Arlington, Oregon, or at the Aragonite incineration facility in Aragonite, Utah, depending on the results of the waste profiling. Table 1 identifies the locations and volumes of excavation.

Location	Initial Excavation Dimensions (feet)	Approx. Volumes (cubic yards)	Indicator Hazardous Substances	
Cell 3				
MW-9S	20x20, 1 foot deep	14.8	Arsenic and cPAHs	
SPY-01A	20x20, 2 feet deep	29.6	cPAHs	
SPY-01B	20x20, 6 feet deep	88.9	Arsenic	
SS-7	20x10, 1 foot deep	7.4	Arsenic and dioxins/furans	
Cell 4				
SS-4B	10x10, 1 foot deep	3.7	Dioxins/furans	
SS-30	10x10, 1 foot deep	3.7	Dioxins/furans	

Table 1. Proposed Interim Action Details

In Cell 3, approximately 7,400 cubic yards of soil will be removed east of the ordinary high water elevation and used to regrade the site before clean fill is placed on site. Approximately 41,000 cubic yards of clean fill will be imported and placed on Cell 3 and 28,000 cubic yards of clean fill will be imported and placed on Cell 4 as a soil cap.

f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe.

Erosion is expected to be limited because of the scope of excavation activities and the topography of the site. Most of the proposed excavations are shallow and will not need sloped sides or shoring. The deeper excavation at SPY-01B (6 feet) will be completed with sloped sides. Best management practices will be implemented to address any potential erosion and sediment control issues.

g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)?

The site will not be covered with impervious surface as a result of this project.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any:

An Erosion and Sediment Control Plan is included as part of the proposed plans using best management practices for inlet protection, perimeter and site sediment control, gravel construction entrances, etc. All erosion and sediment control measures are required to be in place prior to any disturbance caused by clearing and grading activities. Temporary and permanent sediment control measures have been identified to control erosion. Precautions will be taken during the excavation to make sure that contaminated soils are contained. Once soil is removed from the excavation, it will be temporarily stockpiled for profiling. Soil stockpile areas will be placed on impermeable liners and will be covered and secured at the end of each workday. Before placing liners, the contractor will clear the existing ground surface of debris and sharp objects. Soil stockpile covers will be secured to prevent displacement by wind as well as from contact with precipitation. Berms will be constructed around stockpiles to prevent run-on and runoff.

Truck loading will take place adjacent to stockpiles or excavations, just outside designated exclusion zones. Trucks will be loaded in a manner that prevents spilling or tracking of contaminated soil. Loose material that falls onto the truck exterior during loading will be removed before the truck leaves the loading area. Any material collected on the ground surface in the loading area will be placed back into the truck.

- 2. Air
 - a. What types of emissions to the air would result from the proposal (i.e., dust, automobile, odors, and industrial wood smoke) during construction and when the project is completed? If any, generally describe and give approximate quantities if known.

Short-term air emissions are expected to be limited to diesel and gasoline engine emissions from trucks and other heavy equipment being used for excavation, backfilling, and disposal of material. No long-term air emissions from this proposed action will occur.

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe.

No. Sources of air emissions in the project area include vehicle and rail traffic. These emissions will not affect the proposal. These sources are minor and are not likely to create any adverse impacts.

c. Proposed measures to reduce or control emissions or other impacts to air, if any:

If visible dust is created during excavation, water will be sprayed over the work area to control it. Covers will be placed over soil stockpile areas to prevent displacement by wind.

3. Water

a. Surface:

 Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into.

Lake River and Carty Lake are year-round water bodies in close proximity to the LRIS (see Figure 2). Lake River flows from Vancouver Lake (approximately 8 miles south) to the Columbia River (approximately 2.5 miles to the north). Lake River is tidally influenced along its entire length. Under certain conditions the direction of flow changes either south or north for weeks at a time. The change in flow direction depends on tidal elevation, discharge, the water level in the Columbia River and in Vancouver Lake, and inputs to Lake River from other streams (e.g., Salmon Creek).

Carty Lake is recharged by rainwater and is partially connected to Gee Creek during the wet months. As Gee Creek enters the Carty Unit of the Ridgefield National Wildlife Refuge, it spreads into a system of wetlands and lakes. Eventually, near the northern end of the unit, the channel reestablishes and flows to the Columbia River, near the mouth of Lake River.

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans.

In Cell 3, approximately 7,400 cubic yards of soil will be removed east of the ordinary high water elevation and used to regrade the site before clean fill is placed on site. Off-site soils will be imported and placed on Cells 3 and 4 above the impacted surface soil. Figure 2 designates the location of the Lake River and the location of the 100-year floodplain.

- 3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material. None.
- 4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

The proposed project will not require surface water withdrawals.

5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan.

The proposed hot spot excavation areas are not within the 100-year floodplain. Bank excavation on Cell 3 and the placement of a portion of imported soils on Cell 3 will be within the 100-year floodplain (Figure 2).

6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge.

The proposal does not involve the discharge of waste materials to surface waters.

- b. Ground:
 - 1) Will ground water be withdrawn, or will water be discharged to ground water? Give general description, purpose, and approximate quantities if known.

The proposal does not involve the withdrawal or discharge of water to ground waters. The soils that will be excavated are located above typical groundwater elevations.

2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: Domestic sewage; industrial, agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve.

The proposal does not require the use of septic systems or discharging of waste material into the ground.

- *c.* Water runoff (including stormwater):
 - 1) Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe.

The proposed excavation and soil cap areas are unpaved, and stormwater generally infiltrates into the subsurface in these areas. However, some of the stormwater sheet flows to catch basins. Once stormwater enters the stormwater system, it flows to Outfalls 1 and 3 along Lake River. The excavation areas will create depressions that will not allow stormwater to discharge to the stormwater system. Therefore, while the excavations are completed, stormwater in the project area will not enter water bodies.

Once the excavations are backfilled, rainwater will either infiltrate or sheet flow toward the stormwater system.

The project will include the removal of an existing stormwater outfall on Cell 3 and replacing it with two outfalls into Lake River. There are no existing stormwater outfalls on Cell 4 and there are no outfalls planned as part of this project. Stormwater in Cell 4 will be routed to a new conveyance system which will transport stormwater to an existing outfall in Cell 2.

2) Could waste materials enter ground or surface waters? If so, generally describe.

Waste materials are not likely to enter ground or surface waters as a result of this proposed work. Measures such as placing impermeable layers beneath soil stockpiles, covering stockpiles to prevent contact with rainwater, creating berms around stockpiles, and sweeping areas where dump trucks are loaded will prevent waste materials from entering surface or ground waters.

3) Proposed measures to reduce or control surface, ground, and runoff water impacts, if any:

Measures will be implemented to prevent precipitation from contacting the excavated soils. Soil stockpiles will be placed on impermeable liners and will be covered and secured at the end of each workday. Before placing liners, the contractor will clear the existing ground surface of debris and sharp objects. Soil stockpile covers will be secured against displacement by wind and to prevent contact between precipitation and excavated soils. Berms will be constructed around stockpiles to prevent run-on and runoff.

Additional erosion and sediment control measures have been identified and will be included in the Stormwater Pollution Prevention Plan (SWPPP).

4. Plants

- a. Check or circle types of vegetation found on the site:
 - X deciduous tree: alder, maple, aspen, other
 - X evergreen tree: fir, cedar, pine, other
 - X shrubs
 - <u>X</u> grass
 - _____ pasture
 - ----- crop or grain
 - ------ wet soil plants: cattail, buttercup, bullrush, skunk cabbage, other
 - ------ water plants: water lily, eelgrass, milfoil, other
 - ------ other types of vegetation
- b. What kind and amount of vegetation will be removed or altered?

Grass and invasive plants, such as Himalayan blackberry and black cottonwood, that are growing on site.

c. List threatened or endangered species known to be on or near the site.

No federally listed threatened or endangered plant species are expected to occur within the project area, based on searches of the Washington State Department of Natural Resources Natural Heritage Data System and Clark County GIS database.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any:

Once the clean soil cap has been placed on the site, it will be vegetated per the Ecology-approved planting list.

5. Animals

a. Circle any birds and animals which have been observed on or near the site or are known to be on or near the site:

birds<u>: hawk, heron, eagle, songbirds</u>, other: <u>osprey</u> mammals: <u>deer</u>, bear, elk, beaver, other: <u>squirrels, coyotes</u> fish: <u>bass, salmon, trout</u>, herring, shellfish, other: <u>carp</u>

b. List any threatened or endangered species known to be on or near the site.

Coho salmon and winter steelhead are known or presumed to be present in Lake River. Both are listed as threatened species under the federal Endangered Species Act.

c. Is the site part of a migration route? If so, explain.

The LRIS is in the generally defined Pacific Flyway for migrating birds, a broad migratory corridor that extends from Alaska to Baja, California. The property is also in close proximity to the Ridgefield National Wildlife Refuge.

Lake River is used as a migration corridor for coho salmon and winter steelhead.

d. Proposed measures to preserve or enhance wildlife, if any:

No such measures are necessary or proposed as part of this project.

6. Energy and natural resources

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project's energy needs? Describe whether it will be used for heating, manufacturing, etc.

Construction equipment will be operated with gasoline and diesel fuels.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.

This project will not affect the potential use of solar energy by adjacent properties.

c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any:

No specific energy conservation features are included in this proposal.

7. Environmental health

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal? If so, describe.

There is risk of exposure to contaminated soils as part of this excavation, so work will be conducted in compliance with a health and safety plan (HASP) for the LRIS. The project also involves the typical risks, such as vehicle leaks, from operation of construction equipment. To control these risks a construction SWPPP will be implemented.

1) Describe special emergency services that might be required.

No special emergency service requirements are anticipated.

2) Proposed measures to reduce or control environmental health hazards, if any:

Implementation of the HASP and construction SWPPP will minimize potential environmental health hazards. Contractors will be required to have current hazardous materials training and personal protective equipment.

- b. Noise
 - 1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, other)?

Existing noise includes freight and passenger trains using the railroad tracks adjacent to the Lake River property. The noise will not affect the project.

2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

> The proposed action will generate short-term noise from construction equipment and truck traffic. The project is scheduled to begin in summer

2010 at the end of the SEPA comment period for the soil interim action and be completed by fall 2010. The normal hours of operation on the site will be from 8:00 a.m. to 5:00 p.m.

3) Proposed measures to reduce or control noise impacts, if any:

Construction activities will be carried out in a manner consistent with the City of Ridgefield Municipal Code.

8. Land and shoreline use

a. What is the current use of the site and adjacent properties?

The LRIS property is currently used for light industrial activities and the Port's administrative, maintenance, and operations offices. A public boat launch ramp, parking area, and restrooms are located at the south end of this property. Existing uses adjacent to the property include the Ridgefield National Wildlife Refuge to the north, Lake River to the west, railroad tracks and single-family residences to the east, and a houseboat marina to the south.

b. Has the site been used for agriculture? If so, describe.

Historically, areas of the LRIS were used for agriculture. The earliest recorded uses include lumber mills along Lake River in the 1910s. Early aerial photographs from the 1930s, 1940s, and 1950s show that some areas of the LRIS may have been used for agriculture. Agricultural use completely ceased on the site in the 1960s when the Pacific Wood Treating Company began operation on the site.

c. Describe any structures on the site.

Structures existing on the LRIS include ten industrial buildings, primarily of wood frame construction with metal roofing and siding. One of the buildings (or structures) is a large tent used to house the steam-enhanced remediation system. A public restroom building of concrete block construction and metal roof is located at the boat launch property south of the LRIS. There is a public boat launch ramp on the boat launch property and a floating dock for canoe and kayak launch use on the LRIS at the west end of Division Street.

d. Will any structures be demolished? If so, what?

There are no existing structures on Cell 4. One existing structure on Cell 3 will be removed from the site. This is an office building currently used by a Port tenant. The Port is in the process of evaluating if any of the materials from the existing structures can be reused as a part of future Port development.

A bulkhead and pilings along Lake River in Cell 3 will be removed as part of the Interim Action.

- *e.* What is the current zoning classification of the site?
 According to the City of Ridgefield Zoning Map, the site is zoned for Waterfront Mixed Use Development (see Figure 3).
- f. What is the current comprehensive plan designation of the site?

The current City of Ridgefield Comprehensive Plan designation for the site is Mixed Use.

g. If applicable, what is the current shoreline master program designation of the site?

The Clark County Shoreline Master Program designation for areas of the LRIS that fall within the shoreline jurisdiction is Urban. The City of Ridgefield has adopted the Clark County Shoreline Management Master Program.

h. Has any part of the site been classified as an "environmentally sensitive" area? If so, specify.

The City of Ridgefield considers the following as critical areas in the municipal code: fish and wildlife habitat conservation areas, frequently flooded areas, geologic hazard areas, critical aquifer recharge areas, and wetlands. Based on Clark County GIS mapping and field observations, the project area does not contain fish and wildlife habitat conservation areas or wetlands. The project area does not meet criteria in the municipal code for landslide hazard or erosion hazard. The project area is in an area designated as moderate to high liquefaction susceptibility. The project area is within a Category 2 aquifer recharge area. Portions of the project area are located inside the 100-year floodplain.

i. Approximately how many people would reside or work in the completed project?

The project does not directly create housing or long-term employment.

j. Approximately how many people would the completed project displace?

A current tenant of the Port uses this site as a staging area for railcar repairs. There are up to five employees on the site on a part-time basis, as needed.

k. Proposed measures to avoid or reduce displacement impacts, if any?

The staff will be relocated to an alternative rail spur and the project will not result in job loss for the current tenant employees.

l. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any?

The project is fully compatible with existing and projected land uses and plans of both the City and Port of Ridgefield. No additional compatibility measures are needed.

9. Housing

a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing.

Not applicable.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing.

Not applicable.

c. Proposed measures to reduce or control housing impacts, if any? Not applicable.

10. Aesthetics

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

No aboveground structures are proposed as part of this project.

b. What views in the immediate vicinity would be altered or obstructed?

No views would be altered or obstructed by this project. Soil stockpile areas will be temporary in nature and in place to be profiled for disposal purposes.

c. Proposed measures to reduce or control aesthetic impacts, if any:

Soil stockpile areas will be temporary in nature and will be removed after the soils are profiled for disposal purposes.

11. Light and glare

a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

No light or glare will be produced by the proposed project.

b. Could light or glare from the finished project be a safety hazard or interfere with views?

Not applicable.

c. What existing off-site sources of light or glare may affect your proposal?

There are no existing off-site sources of light or glare that will affect the proposed project.

d. Proposed measures to reduce or control light and glare impacts, if any:

No adverse impacts from light and glare will occur from this project, so no measures are proposed to reduce or control light and glare.

12. Recreation

a. What designated and informal recreational opportunities are in the immediate vicinity?

Lake River and the Columbia River provide boating, water skiing, and fishing opportunities near the property. A public boat launch ramp, parking area, and restrooms are located south of the LRIS. The Ridgefield National Wildlife Refuge provides opportunities for bird-watching, canoeing, kayaking, nature walks, and auto tours near the property.

b. Would the proposed project displace any existing recreational uses? If so, describe.

No recreational uses will be displaced as a result of this proposal.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any:

No adverse impacts to recreation will result from this project; therefore, no measures to reduce impacts are proposed.

13. Historic and cultural preservation

a. Are there any places or objects listed on, or proposed for, national, state, or local preservation registers known to be on or next to the site? If so, generally describe.

Clark County GIS records indicate no places or objects existing on the property included in this proposal that are listed on, or proposed for, national, state, or local preservation registers. Historic-preservation places are known to exist on the Ridgefield National Wildlife Refuge adjacent to the LRIS property.

b. Generally describe any landmarks or evidence of historic, archaeological, scientific, or cultural importance known to be on or next to the site.

The proposed project will be conducted primarily in previously developed and disturbed areas. No known archaeological sites are located within the project area. The historic and cultural sites located on the Ridgefield National Wildlife Refuge, the Wapato Portage and the ancient Chinookan village known as Cathlapotle, which were visited by the Lewis & Clark Expedition in 1806, will not be impacted by this proposal.

c. Proposed measures to reduce or control impacts, if any:

As the bank excavation may encounter native soils below fill, the Department of Archaeology and Historic Preservation will be consulted. If required, the Port will contract an independent, qualified cultural resource firm to observe any excavation in native soils. In the event that any unknown archaeological resources are encountered during site work, project activities will be halted in the area of the find in accordance with RCW 27.53.060 (Archaeological Sites and Resources) and RCW 27.44.020 (Indian Graves and Records). A professional

archaeologist will be called in to assess the significance of the find and the Department of Archaeological and Historic Preservation in Olympia will be notified so that a course of action can be implemented.

14. Transportation

a. Identify public streets and highways serving the site, and describe proposed access to the existing street system. Show on site plans, if any.

The LRIS is served by Division Street, which is a City of Ridgefield right-of-way.

b. Is site currently served by public transit? If not, what is the approximate distance to the nearest transit stop?

The site is not served by public transit, except for the C-Tran Ridgefield Express bus that runs between the Ridgefield Park & Ride located at NW 269th Street and NW 11th Avenue and the Salmon Creek Park & Ride at NE 134th Avenue and the I-5 freeway.

c. How many parking spaces would the completed project have? How many would the project eliminate?

The proposed project would not require any new parking spaces or eliminate existing parking spaces.

d. Will the proposal require any new roads or streets, or improvements to existing roads or streets, not including driveways? If so, generally describe (indicate whether public or private).

The proposed project would not require any new roads. The project will however provide a replacement emergency access between Mill and Division Street for Port use.

e. Will the project use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe.

The project will not use water, rail, or air transportation. Excavation will take place in the right-of-way of a railroad, pending permission from the UP. The site is adjacent to Lake River, which is used by recreational boaters.

f. How many vehicular trips per day would be generated by the completed project? If known, indicate when peak volumes would occur.

It is estimated that approximately six vehicle trips per day would be generated from the hauling of excavated material. The project is tentatively scheduled to begin in summer 2010 and be completed by fall 2010.

g. Proposed measures to reduce or control transportation impacts, if any:

The project would not create any permanent transportation impacts. Access to all facilities in the project environs would be unimpeded during construction.

15. Public services

a. Would the project result in an increased need for public services (for example: fire protection, police protection, health care, schools, other)? If so, generally describe.

The proposed project will not create an increased need for public services.

b. Proposed measures to reduce or control direct impacts on public services, if any.

Since there are no anticipated impacts, there are no proposed reduction or control measures.

16. Utilities

- a. Circle utilities currently available at the site: <u>electricity, natural gas</u>, <u>water</u>, <u>refuse service</u>, <u>telephone</u>, <u>sanitary sewer</u>, septic system, other.
- b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed.

No utilities will be needed for the proposed project.

C. SIGNATURE

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Signature:	AA.
Date Submitted:	May 21, 2010

Legend

Site Boundary

Figure 1 Site Vicinity

Port of Ridgefield Ridgefield, Washington

Source: Topographic Quadrangle obtained from ESRI, Inc. NGS/USGS Topo.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

MAUL FOSTER ALONGI p. 360 694 2691 | www.maulfoster.com

Source: Aerial photograph (2007) and railroad, flood, wetland and tax lot data (2008) obtained from Clark County

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend Railroad Excavation Site Wetland 100-Year Flood Zone Site Boundary Cell Boundary

Figure 2 Plan View

Port of Ridgefield Ridgefield, Washington

Source: Tax lot and zoning data (2008) obtained from Clark County

Figure 3 Land Use

Port of Ridgefield Ridgefield, Washington

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.