B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Prepared for

B&L Custodial Trust 606 Columbia Street NW, Suite 212 Olympia, Washington 98501

Prepared by

Floyd|Snider Two Union Square 600 Union Street, Suite 601 Seattle, Washington 98101

AMEC Geomatrix 600 University Street, Suite 1020 Seattle, Washington 98101

July 2009

FINAL

Table of Contents

1.0	Intro	duction	1	1-1	
	1.1	PURPOSE AND SCOPE OF CLEANUP MEASURES			
	1.2	OVERVIEW OF 2008 CLEANUP ACTION			
		1.2.1	Landfill Cleanup Action Area	1-3	
		1.2.2	Wetlands Cleanup Action Area	1-5	
		1.2.3	End-of-Plume Cleanup Action Area	1-5	
	1.3	CLEAN	1-6		
		1.3.1	Landfill/Ditch Cleanup Action Area	1-6	
		1.3.2	Wetlands Cleanup Action Area	1-7	
		1.3.3	End-of-Plume Cleanup Action Area	1-8	
	1.4	RESPO	ONSIBILITY FOR THE CLEANUP ACTION	1-8	
	1.5	REGULATORY REQUIREMENTS AND EDR ORGANIZATION1-			
2.0	Site	Site Description and Background			
	2.1	PHYSICAL SITE DESCRIPTION			
	2.2	SITE LAND USE			
	2.3	SITE OWNERSHIP			
	2.4	SITE HISTORY AND PREVIOUS CLEANUP ACTIONS			
		2.4.1	1993 Remedial Action	2-3	
		2.4.2	2005 Enforcement Order and 2008 CAP	2-4	
		2.4.3	2008 Consent Decree	2-4	
3.0	Site	ite Conditions			
	3.1	GEOLOGIC AND HYDROGEOLOGIC SETTING		3-1	
		3.1.1	Local Geology and Hydrostratigraphy	3-1	
		3.1.2	Local Hydrogeology and Surface Water Hydrology	3-2	
		3.1.3	Local Seismicity	3-4	
	3.2	SITE CLIMATE		3-5	
	3.3	LANDFILL GAS3			
	3.4	SITE PLANNING AND DEVELOPMENT ISSUES			

4.0	Pred	lesign S	tudies	4-1		
	4.1	NATUF	RE AND EXTENT OF GROUNDWATER CONTAMINATION	4-1		
		4.1.1	Arsenic Release to Groundwater from Landfill Materials	4-1		
		4.1.2	Extent of Arsenic Groundwater Plume	4-2		
	4.2	GEOTECHNICAL CHARACTERIZATION				
	4.3	HYDRO	OGEOLOGIC STUDY	4-4		
	4.4	WETLA	ANDS ASSESSMENT	4-6		
	4.5	CULTU	JRAL RESOURCES	4-6		
5.0	Inter	rim and	Long-term Monitoring	5-1		
	5.1	COMP	LIANCE MONITORING	5-1		
		5.1.1	Monitoring Requirements under the Consent Decree	5-1		
		5.1.2	Monitoring Requirements under MTCA	5-3		
	5.2	INTERIM COMPLIANCE MONITORING				
	5.3	CONDITIONAL POINT OF COMPLIANCE				
	5.4	GROU	NDWATER AND SURFACE WATER MONITORING SYSTEM	5-4		
		5.4.1	Existing Monitoring Network	5-4		
		5.4.2	Extension of Monitoring Network	5-5		
6.0	Insti	nstitutional Controls				
	6.1	RESTF	RICTING SITE ACCESS (FENCING, GATES, SIGNS)	6-1		
	6.2	INSTIT	UTIONAL CONTROLS	6-1		
7.0	CAP	CAP Implementation				
	7.1	PERMI	ITTING REQUIREMENTS UNDER MTCA	7-1		
	7.2	PHASED IMPLEMENTATION APPROACH		7-1		
		7.2.1	Phase 1	7-2		
		7.2.2	Phase 2	7-2		
		7.2.3	Phase 3	7-3		
	7.3	CAP IMPLEMENTATION SCHEDULE				
8.0	Refe	rences		8-1		

List of Tables

Table 5.1	Interim Compliance Monitoring Well Information
Table 7.1	Permitting and Substantive Requirements Documentation
	List of Figures
Figure 1.1	Site Plan Showing Cleanup Action Areas, Property Ownership, and Interim Compliance Monitoring Locations
Figure 2.1	Vicinity Map
Figure 3.1	Topography and Drainage Features in Site Vicinity
Figure 3.2	Groundwater Arsenic Plume Extent and WSDOT Riparian Restoration
Figure 4.1	Geotechnical Exploration Locations
Figure 4.2	Phase 1 Hydrogeologic Monitoring Points and Model Domain
Figure 4.3	Delineated Wetlands
	List of Appendices
	List of Appendices
Appendix A	Arsenic Characterization Study Data Report
Appendix B	Geotechnical Investigation Report
Appendix C	Phase 1 Hydrogeologic Study Report
Appendix D	Critical Areas Study
Appendix E	Interim Compliance Monitoring Plan (Reserved)
	List of Addenda
	List of Addenda
Addendum 1	Phase 1 Part 1 Remediation Design Report: Barrier Wall and Groundwate Interception Trench
Addendum 2	Phase 1 Part 2 Remediation Design Report: End-of-Plume Remedy (Reserved)
Addendum 3	Phase 2 Remediation Design Report: Groundwater Extraction and Treatment System (Reserved)

Addendum 4 Long-Term Operation, Maintenance, and Compliance Monitoring (Reserved)

List of Acronyms and Abbreviations

Acronym/Abbreviation	Definition
AMEC	AMEC Geomatrix, Inc.
APE	Area of Potential Effect
ARAR	Applicable or Relevant and Appropriate Requirement
bgs	Below ground surface
CAA	Cleanup Action Area
CAP	Cleanup Action Plan
CBN/T Site	Commencement Bay Nearshore/Tideflats Superfund Site
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
COC	Contaminant of concern
CPT	Cone penetrometer testing
CRWP	Cultural Resources Work Plan
CUL	Cleanup level
DAHP	Washington State Department of Archaeology and Historic Preservation
Decree	Consent Decree
DOC	Dissolved organic carbon
Ecology	Washington State Department of Ecology
EDR	Engineering Design Report
FS	Feasibility Study
GAE	Groundwater Alternatives Evaluation
GIWP	Geotechnical Investigation Work Plan
GRWP	Groundwater Remediation Work Plan
HRA`	Historical Research Associates, Inc.
I-5	Interstate 5
ICMP	Interim Compliance Monitoring Plan
KJC	Kennedy/Jenks/Chilton
LEL	Lower explosive limit
Landfill	B&L Landfill

AMEC Geomatrix

Acronym/Abbreviation	Definition
LFG	Landfill gas
MTCA	Washington State Model Toxics Control Act
Murray	Murray Pacific Corporation
NHPA	National Historic Preservation Act
OMI&MP	Operations, Monitoring, Inspection, and Maintenance Plan
PLP	Potentially liable party
POC	Point of Compliance
QAPP	Quality Assurance Project Plan
RA	Remedial Action
RAO	Remedial Action Objective
RI	Remedial Investigation
RCRA	Resource Conservation and Recovery Act
RCW	Revised Code of Washington
RI/FS	Remedial Investigation/Feasibility Study
SAP	Sampling and Analysis Plan
SEPA	State Environmental Policy Act
Site	B&L Woodwaste Site
SOW	Scope of Work
SR	State Route
TDS	Total dissolved solids
Tribe	Puyallup Tribe of Indians
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
WAC	Washington Administrative Code
WSDOT	Washington State Department of Transportation

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

AMEC Geomatrix

1.0 Introduction

In response to documented releases from the B&L Woodwaste Site (Site), the Washington State Department of Ecology (Ecology) has issued a Final Cleanup Action Plan (2008 CAP, Ecology 2008) to remediate contaminated groundwater and achieve compliance with regulatory requirements established under the Washington State Model Toxics Control Act (MTCA). The 2008 CAP remedy will provide a comprehensive, long-term solution to protect human health and the environment for Site contamination.

Initial implementation of the 2008 CAP is covered under the terms of Consent Decree No. 08 210610 7 (Consent Decree; Ecology vs. Murray 2008a) between Ecology and Murray Pacific Corporation (MPC). As described in the Scope of Work (SOW, Exhibit B to the Consent Decree), the 2008 CAP will be implemented in three major phases. Phases 1 and 2 include additional Site investigation, testing, collection of design data, design, construction, and startup for all elements of the remedy; these implementation phases will be performed under the Consent Decree. Phase 3 includes long-term operations, maintenance, and monitoring for the Site; this implementation phase will be performed after completing the work covered under the Consent Decree. As specified in the Consent Decree, upon completion of Phases 1 and 2, Ecology will assume complete responsibility for implementation of Phase 3. The three phases comprise the complete remedy specified in the 2008 CAP.

The remedial actions to be implemented at the B&L Site involve different technologies on different sections of the Site. For this reason, the remedy design and construction will occur in sections or phases as follows:

- **Phase 1:** Part 1 focuses on source control on the Landfill site itself and includes the construction of the slurry wall containment system and associated structures such as the interceptor trench.
- **Phase 1:** Part 2 focuses on the End-of-Plume Cleanup Action Area (CAA) and is intended to halt the migration of arsenic at 12th Street East.
- Phase 2: This phase addresses remediation of groundwater contamination that exists outside the footprint of the Landfill (where source control has now blocked future releases) and upgradient of the End-of-Plume CAA (where further migration has also been blocked).

Ecology work in Phase 3 may also be incorporated into this Engineering Design Report (EDR) in the future.

To support the work to be completed under this phased approach, the EDR will be released to the public in discrete packets addressing the work elements noted above as follows:

Release 1: The main body of the EDR that describes the Site and the planned remedial actions plus Addendum 1, which contains a detailed description of the work to be performed in Phase 1, Part 1: the Barrier Wall and Groundwater Interception Trench.

- **Release 2:** Addendum 2 which contains the detailed description of the work to be performed in Phase 1, Part 2: the End-of-Plume In-situ Treatment System.
- Release 3 and beyond: Additional releases, referred to as Addenda, will be developed as appropriate during Phase 2 to address the residual groundwater contamination and hydraulic control of groundwater beneath the Landfill. Future addenda may also be identified or developed by Ecology to address long-term operations, maintenance, or monitoring activities.

This EDR outlines general plans as required under the Consent Decree and in accordance with Washington Administrative Code (WAC) 173-340-400(4)(a). More specific engineering designs for remedy components are provided in the Addenda to this EDR.

1.1 PURPOSE AND SCOPE OF CLEANUP MEASURES

As described in the 2008 CAP, the cleanup action has been separated to address three CAAs as defined in the 2008 CAP and as shown on Figure 1.1. The cleanup action proposed by in the 2008 CAP (Ecology vs. Murray 2008a) for each area includes the following:

- Landfill/Ditch CAA. Installation of a perimeter slurry wall around the Landfill that is
 tied into both the existing Landfill cap and a low permeability soil unit located below
 the Landfill, the diversion of clean surface water and groundwater before it reaches
 the slurry wall, and the extraction and treatment of leachate from within the slurry
 wall to maintain hydraulic control by creating an inward hydraulic flow gradient. Once
 the slurry wall is installed, contaminated sediments in the adjacent agricultural
 drainage ditches will be excavated and disposed of at a permitted landfill.
- **Wetlands CAA.** A groundwater pump and treat system will be used to remove arsenic from the groundwater plume in the Wetlands CAA. Performance-based criteria will be used to assure compliance with MTCA requirements. It is anticipated that up to 120 million gallons of water may require treatment.
- End-of-Plume CAA. In-situ treatment will be used to precipitate out dissolved arsenic followed by monitored natural attenuation of groundwater that reaches 12th Street East. Performance-based criteria will be used to assure compliance with MTCA requirements. Only a thin layer of arsenic-contaminated groundwater remains above the cleanup level in the End-of-Plume CAA; without treatment this area would likely come into compliance as the effect of cleanups in the Landfill and Wetlands CAAs reached the End-of-Plume CAA. Treatment in the End-of-Plume CAA is, therefore, intended to reduce the restoration time frame by bringing the area into compliance within 2 to 5 years; although treatment will be continued as long as needed based on the performance criteria.

Definitions

A few additional definitions are useful moving forward.

- The Site: Under the definitions specified in the MTCA regulations, the Site is defined as the source area where releases to the environment occurred (i.e., the B&L Woodwaste Landfill) and all areas that have been contaminated by those releases. Therefore, all three of the CAAs are contained within the Site.
- The Landfill: The B&L Woodwaste Landfill (the Landfill) is an approximately 13-acre area on which woodwaste materials mixed with Asarco slag have been placed and covered by an engineered cap. The demarcation of the Landfill is based on the presence of refuse, in this case, wood debris and slag.
- The B&L Property: The Landfill sits on a larger property (18.5 acres) that is privately owned by the party who developed the Landfill. The Landfill CAA is contained within the B&L Property.
- The Wetlands: Unless otherwise indicated in specific sections of the document, the term "the Wetlands" refers to the wetlands located north of the Landfill that have become contaminated by a plume of arsenic contaminated groundwater coming from the Landfill. The Wetlands areas impacted by contaminated groundwater are owned by several different owners that include municipalities and private parties. The Wetlands and End-of-Plume CAA are contained within the Wetlands.
- The Halo: In addition to the downgradient plume of arsenic contaminated groundwater, there are various localized areas of groundwater contamination that are close to the footprint of the Landfill. These areas are referred to collectively as "the Halo." Their locations are described in future detail in later sections of the EDR.

1.2 OVERVIEW OF 2008 CLEANUP ACTION

The cleanup action addressed by this EDR comprehensively addresses the B&L Woodwaste Site, as defined in the Consent Decree. The cleanup action will provide physical and hydraulic containment for waste and contaminated groundwater within and beneath the Landfill. Groundwater contamination beneath the Wetlands area immediately north of the Landfill and in areas to the east, south, and west of the Landfill will be remediated to attain the cleanup levels specified in the 2008 CAP. Groundwater at the leading edge of the plume, designated as the End-of-Plume area, will be treated to attain cleanup levels. Finally, contaminated sediment in ditches associated with the Landfill will be removed to ensure the ditches attain cleanup levels.

Specific cleanup actions for each of the CAAs are described below.

1.2.1 Landfill Cleanup Action Area

This CAA, as described in the CAP, includes the Landfill, the Halo area, and contaminated ditch sediment adjacent to and extending off the B&L Property. The planned cleanup action for the Landfill CAA includes the following elements:

1. A slurry wall around the entire perimeter of the Landfill, that is tied into the existing landfill cap above and, to the extent possible, the Lower Silt Aquitard beneath the

AMEC Geomatrix

Landfill. The landfill cap, slurry wall, aquitard, and existing hydraulic gradients will work together to form a physical containment system for landfill materials, leachate, and contaminated groundwater beneath the Landfill.

- 2. An interceptor trench outside the slurry wall to redirect groundwater that historically would have flowed beneath the Landfill. The goal will be to prevent the build-up of groundwater in the Upper Sand Aquifer immediately upgradient of the Landfill to limit the contribution of groundwater to seasonal flooding of the area near the Landfill.
- 3. Hydraulic control will be maintained within the area contained by the slurry wall to prevent leakage of contaminated groundwater from the area. Hydraulic control will use groundwater extraction (followed by treatment and discharge) to augment the existing hydraulic gradients.
- 4. The groundwater extraction system within the slurry wall will be designed to dewater the saturated Landfill waste if this is determined by Ecology to be practicable.
- 5. As defined in the 2008 CAP, the Halo areas, which consist of contaminated groundwater located adjacent to or very near the Landfill, will be remediated by extraction and treatment of the contaminated groundwater. The groundwater extracted from the Halo will be treated and discharged with groundwater recovered from beneath the Landfill.
- 6. The agricultural ditches identified in the 2008 CAP will be cleaned by excavation of contaminated sediments. Excavated sediment will be disposed of in accordance with applicable Ecology regulations.
- A Conditional Point of Compliance (CPOC) has been established at the perimeter of the landfill cap (which corresponds to the edge of refuse), as described in the 2008 CAP.
- 8. Performance monitoring of the containment system will be accomplished by a network of paired piezometers located inside and outside the slurry wall. The performance monitoring network will be installed and baseline measurements will be collected following barrier wall installation. Performance monitoring will consist of a discrete period to assess the initial effectiveness of the containment system following startup of the groundwater extraction and treatment systems. After system performance is confirmed, hydraulic measurements will continue as part of long-term compliance monitoring.
- 9. Compliance monitoring wells and piezometers will be installed and monitored as needed to confirm attainment of the cleanup standard and to monitor performance of the slurry wall, hydraulic control system, and other remedy components.

Implementation Phases

Phase 1 Part 1 of the implementation process will include items 1, 2, and 8. Baseline conditions of item 9 will also be included in Phase 1 Part 1. The other components of the Landfill/Ditch CAA will be implemented during Phase 2, as described in further detail in later sections of this report.

1.2.2 Wetlands Cleanup Action Area

This CAA includes the Wetlands area to the west and north of the Landfill CAA that overlies groundwater that has been impacted by releases from the Landfill. Following the Final Arsenic Characterization Study conducted in 2008 (refer to Appendix A), this area was modified to accurately reflect the extent of the groundwater plume. The boundaries of the Wetlands CAA shown on Figure 1.1 (from the CAP) do not reflect the correct extent of the plume to the west. Further investigation in this area is planned for 2009 to better define the area that will be remediated.

The cleanup action for the Wetlands CAA specified in the 2008 CAP includes the following elements:

- Pumping of groundwater from the Upper Sand Aquifer beneath the Wetlands in the core of the plume.
- Treatment of the pumped groundwater to remove arsenic.
- Re-infiltration of treated groundwater into existing stormwater ponds or back into the Wetlands.
- Monitoring of groundwater quality in the Wetlands CAA to document eventual attainment of cleanup levels.

The intent of the cleanup action for the Wetlands CAA, as specified in the 2008 CAP, is to install a number of pumping wells to remove arsenic-contaminated groundwater with a goal of achieving cleanup levels. Many years of pumping and treatment will likely be required; the ultimate achievement of the arsenic cleanup level (set equal to background arsenic concentrations) may not be possible. The extracted groundwater will be piped to the treatment system used to treat groundwater extracted from the Landfill CAA.

The goal for cleanup of the Wetlands CAA is to meet the groundwater CUL of 5 μ g/L. According to the 2008 CAP, an alternative treatment technology may be considered to achieve this goal if Ecology considers it appropriate.

Implementation Phases

Remedy implementation for the Wetlands CAA is planned for Phase 2.

1.2.3 End-of-Plume Cleanup Action Area

This CAA consists of the Wetlands area near 12th Street East to the north of the Wetlands CAA, which comprises the leading edge of impacted groundwater. The cleanup action for the Wetlands CAA contains the following elements:

• In situ treatment of contaminated groundwater to irreversibly precipitate the dissolved arsenic, preventing future migration.

AMEC Geomatrix

 Monitoring of groundwater quality to ensure attainment of cleanup levels within the End-of-Plume CAA.

This will be accomplished along the 12th Street East right-of-way. Treatment reagents will be injected into the base of the aquifer where natural conditions are already reducing and favorable for the microbial reactions that will cause the arsenic to irreversibly precipitate. Compliance monitoring wells will be installed downgradient of the 12th Street East right-of-way to monitor the success of the remedy and confirm compliance with Site arsenic cleanup levels.

Implementation Phases

This work will be implemented as Phase 1 Part 2.

1.3 CLEANUP GOALS AND PERFORMANCE REQUIREMENTS

1.3.1 Landfill/Ditch Cleanup Action Area

Remedial Action Objectives

Since the installation of the 1993 remedy, the exposure pathways from the Landfill are limited to the migration of arsenic-contaminated groundwater beyond the perimeter of the Landfill and into the surrounding ditches and adjacent Wetlands area. The drainage ditch system along the perimeter of the Landfill presents potential exposure pathways to terrestrial receptors (animals and birds) and occasional recreational human users. Both groups would come into incidental direct contact with the surface water and sediments. Since water from the ditches eventually drains into Hylebos Creek, there is also the potential for contamination from the perimeter ditches to reach Hylebos Creek, although current data indicate that this has not happened since the 1993 remedy was implemented.

The following Remedial Action Objectives (RAOs) apply to this action area:

- Meet MTCA threshold requirements, as defined by WAC 173-340-760(6)(f) for containment remedies.
- Implement closure requirements from Minimum Functional Standards for Solid Waste Landfills (Chapter 173-304 WAC).
- Prevent arsenic-containing groundwater from migrating beyond the Landfill into adjacent wetlands and agricultural drainage ditches.
- Meet MTCA minimum requirements, including the use of a permanent solution to the maximum extent possible.
- Protect the sediment and surface water quality of Hylebos Creek (and associated restoration projects) from arsenic releases from the B&L Landfill.

Cleanup Levels

The cleanup level (CUL) for arsenic in soil is 20 mg/kg. The point of compliance for soil, as defined in WAC 173-304-462(2)(e)(i) and WAC 173-304-100, is limited to those soils that are outside the footprint of the Landfill containment area. Since this CAA only includes the Landfill footprint and surrounding ditches, this effectively means that the clean soil layer of the landfill cap must meet the soil CUL.

The CUL for arsenic in groundwater is 5 μ g/L or the background level, whichever is higher. The groundwater CPOC is at the landfill cap perimeter areally (refer to Section 5.3 for additional details). A series of groundwater wells (many of which already exist) will be installed around the perimeter of the Landfill and will act to measure groundwater quality at the landfill cap perimeter. Monitoring at this point will be used to assess the successful implementation of source control at the Landfill.

The CUL for arsenic in sediment is 20 mg/kg and includes consideration for the protection of Hylebos Creek. The point of compliance for this area is throughout the ditch system.

The CUL for arsenic in surface water is $5 \mu g/L$ or the background level, whichever is higher. Because some of the surface water within the Landfill CAA comes from groundwater discharge (these are drainage ditches for seasonally flooded agricultural lands), the regional groundwater background concentration has been considered in establishing the surface water standard. The point of compliance for surface water is everywhere within the perimeter ditch system.

1.3.2 Wetlands Cleanup Action Area

Remedial Action Objectives

The potential exposure pathway for groundwater contaminants within the Wetlands CAA is due to discharge of arsenic-contaminated groundwater to the surface of the Wetlands CAA. Therefore, the RAOs for this CAA include the following objectives to prevent or minimize exposure of potential human or ecological receptors to groundwater within the Upper Sand Aquifer and surface water, as well as exposure to contaminated surface water in the Wetlands CAA. Wetlands CAA soils are not considered an exposure pathway because sampling of Wetlands CAA soils has determined them to be in compliance with CULs.

The following RAOs apply to this CAA:

- Meet MTCA threshold requirements, including protection of recreational, human, and ecological receptors from arsenic contamination that is seasonally present in ponded surface water, soil porewater, and groundwater.
- Meet MTCA minimum requirements, including the use of a permanent solution to the maximum extent practicable.
- Remove or control the potential for the groundwater plume in the Wetlands CAA to continue to migrate downgradient into the End-of-Plume CAA and discharge to surface water, within a reasonable restoration time frame.

 Ensure remediation activities in Wetlands CAA will be consistent with the potential restoration activities in the area associated with the Washington State Department of Transportation (WSDOT) SR 167 Project and potential Hylebos Creek relocation. Coordination with the WSDOT planning process is anticipated to ensure the selected alternative will not negatively impact the planned riparian restoration along Hylebos Creek.

Cleanup Levels

The CUL for groundwater in the Wetlands CAA is 5 μ g/L. Soils in the Wetlands CAA already comply with the MTCA soil CUL of 20 mg/kg (Hydrometrics 2001). The point of compliance is the upper 15 feet of the Wetlands soils throughout the CAA.

1.3.3 End-of-Plume Cleanup Action Area

Remedial Action Objectives

Within the End-of-Plume CAA, there appears to be no current exposure to the thin seam of arsenic-contaminated groundwater at the base of the aquifer; therefore, the RAOs for this CAA are designed to prevent discharge of contaminated groundwater to Hylebos Creek. The following RAOs apply to this CAA:

- Meet MTCA threshold requirements, including considerations for the long-term potential for the plume to reach Hylebos Creek.
- Meet MTCA minimum requirements, including the use of a permanent solution to the maximum extent possible.
- Ensure that remediation activities in the End-of-Plume CAA will be consistent with the potential restoration activities in the area associated with the WSDOT SR 167 project and potential Hylebos Creek relocation. Coordination with the WSDOT planning process is anticipated to ensure the selected alternative will not negatively impact the planned riparian restoration along Hylebos Creek.

Cleanup Levels

Soils in the End-of-Plume CAA already comply with MTCA CULs. The CUL for arsenic in groundwater is 5 μ g/L. Groundwater within the End-of-Plume CAA must comply with the CUL throughout the Upper Sand Aquifer.

1.4 RESPONSIBILITY FOR THE CLEANUP ACTION

The entity that is implementing the remedy does not own the Landfill property or any of the adjacent properties involved in the remedy. As described in the Consent Decree and Exhibit G to the Consent Decree, the entity that is implementing this cleanup action is the B&L Woodwaste Site Custodial Trust (Trust). The sole beneficiary of this Trust is Ecology. The

Trust is obligated to fulfill the Scope of Work as outlined in Exhibit B to the Consent Decree through Phase 2. Upon completion of Phase 2, Ecology will be obligated to conduct the long-term monitoring and maintenance phase of the remedy. At that point, the Trust will be dissolved.

1.5 REGULATORY REQUIREMENTS AND EDR ORGANIZATION

This EDR and the Addenda have been designed to fulfill MTCA regulatory requirements under WAC 173-340-400(a) and to accommodate the phased implementation program for this cleanup action described above. The generally applicable information is presented in the main body of this EDR in Sections 1.0 through 7.0. The main body of the EDR has been organized as follows:

- **Section 1.** General introductory information, an overview of the cleanup action, cleanup levels, and cleanup scope and objectives.
- **Section 2.** A description of the B&L Property, property ownership, Site physical description, land use, and historical cleanup actions.
- Section 3. Summaries of the Site geologic, hydrogeologic, and climate conditions.
- **Section 4.** Summaries of the predesign studies completed under the Groundwater Remediation Work Plan (GRWP) in 2008, with complete reports for additional site characterization, geotechnical characterization, the hydrogeologic study, the Wetlands assessment, and the cultural resources evaluation appended to this EDR.
- **Section 5.** An outline of the long-term monitoring program to be implemented after completing remedial construction.
- **Section 6.** A general description of considerations for institutional controls to be implemented during Phase 2.
- **Section 7.** A summary of the overall CAP implementation approach and projected schedule.
- **Section 8**. Tabulations of references used in this report.

As noted above, several Addenda will be added to this EDR as future phases of the CAP implementation proceed. These Addenda will provide the detailed technical information and plans to address the technical regulatory requirements under MTCA for each major construction component in the implementation program. Detailed information documenting compliance with WAC 173-340-400(a) is included in Section 1.1 of each Addendum attached to this EDR. This information includes a table citing the relevant regulatory requirements and referencing the relevant sections of this EDR and the Addendum that addresses the regulatory requirements. Plans and specifications addressing the requirements under WAC 173-340-400(b) will be prepared as attachments to the Addenda. They will be prepared in the same sequence as the Addenda, with the first set of plans and specifications addressing the Barrier Wall and Interceptor Trench. This approach will ultimately provide a complete and concise set of design and engineering documents addressing the full remedy specified in the final 2008 CAP.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

2.0 Site Description and Background

2.1 PHYSICAL SITE DESCRIPTION

The Site is located in Pierce County and consists of the B&L Property, the parcel on which the Landfill is situated, and adjacent areas that have been affected by releases from the Landfill. Portions of the Site extend into the city limits of Milton and Fife, Washington. Approximate Site boundaries based on the extent of contamination are illustrated on Figure 1.1. As described in the 2008 CAP, the Site includes the following areas:

- The B&L Woodwaste Landfill (Landfill) is an approximately 13-acre area on which
 wood waste materials have been placed and covered by an engineered cap. The
 Landfill contains an estimated volume of 350,000 cubic yards of wood waste
 material, over 95 percent of which is log yard deck debris consisting of soil, wood,
 rock, and slag.
- The B&L Property, which includes property on which the Landfill is located and is owned by the same party as the Landfill.
- Contaminated groundwater adjacent to the Landfill to the south, west, and north, and
 in a discrete area to the east of the Landfill, some of which extends beyond the B&L
 Property boundaries. These areas of contaminated groundwater include a plume
 that extends north from the Landfill beneath the Wetlands areas and beyond the 12th
 Street East right-of-way, and an area that extends northwest from the Landfill
 beneath the adjacent agricultural field and Interurban Trail.
- Contaminated ditch sediments adjacent to and extending to the west of the Landfill.

The B&L Property tax parcel is comprised of approximately 18.5 acres in unincorporated Pierce County, approximately 1/4 mile east of Interstate 5 (I-5) and 5 miles east of Tacoma. The property is situated in a residential and agricultural area in northern Pierce County. Farmland borders the western and southwestern edges of the B&L Property, and the Autumn Village Apartment complex adjoins the southeastern corner. Fife Way defines the southeastern boundary. Puget Power Access Road, which was very recently converted to a bicycle trail and is now known as the Interurban Trail (it also is referenced as Barth Road on some local maps) delineates the north side. The Interurban Trail and adjacent drainage ditches are located in the City of Milton. The pentagonal-shaped Landfill occupies approximately 13 acres of the 18.5 acre B&L Property and rises to an elevation of approximately 53 feet in elevation (NAVD 88).

To the north of the Landfill and Interurban Trail is former farmland that has re-established itself as a grassy wetland that stretches north and west to I-5. Portions of this wetland have been affected by releases from the Landfill and are, therefore, within the Site. This wetland area is located in unincorporated Pierce County. The wetland ground surface is flat and lies at approximately 13 feet in elevation (NAVD 88). During winter months, the ground is generally covered with shallow standing water. Several hundred feet north of the Interurban Trail is another roadway, 12th Street East, a primitive, unused, and now mostly overgrown road grade that cuts through the wetland, marking the boundary between the parcels.

2.2 SITE LAND USE

Historically, land surrounding the B&L Property has been used for agriculture; however, in recent years it has become increasingly developed, as has most of the land in northern Pierce County and southern King County. The B&L Property, wetlands, and 12th Street East parcels are zoned for moderate-density, single-family development (Pierce County 2008). The Interurban Trail is zoned as an open space district as part of the Interurban Trail project (City of Milton 2008).

The B&L Property is undeveloped and currently used only for ongoing monitoring, maintenance, and other remediation activities. The B&L Property is currently bordered by vacant and/or agricultural lands immediately to the south (farmed land), west (vacant and farmed lands,) and north (wetlands). Several of these wetlands and agricultural properties would be impacted by a major proposed WSDOT highway project, the completion of State Route (SR) 167 between SR 161 in North Puyallup and SR 509 in Tacoma (refer to Section 3.4.) East of the B&L Property is Fife Way East, which is a public road. To the south is a multi-unit residential apartment complex (Autumn Village Apartments, which was formerly Greenwood Apartments) built in the late-1980s. To the northeast lies a privately owned, unoccupied parcel of land previously occupied by a single private residence; according to public record, this property was the subject of permit applications in 2007 for development of 10 single-family homes.

2.3 SITE OWNERSHIP

It should be noted that neither the B&L Property, nor any other properties that comprise the Site, are owned by the entity performing the remedy, the B&L Custodial Trust (refer to Section 1.3).

The B&L Property is currently owned by Executive Bark, Inc., which is a dissolved corporation. Camille Fjetland was at one time an officer of Executive Bark and remained the sole shareholder when the corporation was administratively dissolved. Property taxes for the property have been paid by Ms. Fjetland through her attorney. Communications regarding the current activities on the Site have been conducted through her attorney.

Ownership of parcels in the vicinity of the B&L Property and that comprise the Site are illustrated on Figure 1.1. The City of Fife currently owns the agricultural fields to the south and west of the B&L Property. M-F Associates owns the wetland property directly to the north of the Interurban Trail. WSDOT owns the wetland parcels to the west and north of the M-F Associates parcel. The Autumn Village Apartments parcel to south of the Landfill is owned by GRE Greenwood LLC. Benaroya Capital Company, LLC owns the parcel along the northeast side of the B&L Property. The City of Milton owns the Interurban Trail and maintains the Fife Way easement. The 12th Street East unimproved easement is held by Pierce County.

2.4 SITE HISTORY AND PREVIOUS CLEANUP ACTIONS

Relevant elements of the detailed Site history presented in the GRWP are summarized here. The Landfill was operated beginning in the 1970s as a disposal site for deck debris from log sort yards operating in the Tacoma Tideflats area. The log sort yards operators used Asarco slag as

roadway and yard ballast, believing it to be inert "rock." This slag was mixed with the bark and dirt that was cleaned periodically from the log sort yards and transported to the Landfill for disposal.

Following the discovery by Ecology in the early 1980s that the slag at the yards and at the Landfill was leaching arsenic and other heavy metals at concentrations in exceedance of surface water standards, the Landfill was included as a source of metal contamination to Hylebos Waterway and the Commencement Bay Nearshore/Tideflats (CBN/T) CERCLA site by the U.S. Environmental Protection Agency (USEPA). In January 1988, Ecology sent notices to Potentially Responsible Parties (PLPs) under MTCA for contamination at the Landfill. A Consent Decree was negotiated in March 1989 to conduct a Remedial Investigation/Feasibility Study (RI/FS) and implement a cleanup remedy at the Site. The RI/FS was completed in September 1990 (Kennedy/Jenks/Chilton [KJC] and AGI 1990a and b) and a Cleanup Action Plan was issued in 1991 (1991 CAP; Ecology 1991).

In 1988, the owners of the log sort yard and the Port of Tacoma sued Asarco for slag-related contamination at the yards and at the Landfill. The court found Asarco liable for 79 percent of the costs to cleanup the Site, the Landfill operator for 14 percent (assigned equally to Eagle Trucking, Inc. and William Fjetland), and MPC responsible for the remaining 7 percent. The verdict and decision were affirmed on appeal in 1994.

2.4.1 1993 Remedial Action

Following the judgment in the federal lawsuit, Ecology issued an Enforcement Order (No. DE-91TC-S267) to Asarco, MPC, and Executive Bark, Inc. (care of Camille Fjetland, who is Mr. Fjetland's widow) to develop preliminary designs for the remedial actions (RAs) identified in the 1991 Cleanup Action Plan (1991 CAP). In June 1992, Ecology issued another Enforcement Order (No. DE-92TC-S214) to Asarco, MPC, and Executive Bark, Inc. for construction, operation, and monitoring of the selected RA. Asarco and its consultant, Hydrometrics, Inc. (Hydrometrics), took the lead in implementing the remedy, which was substantially completed in 1993 (Hydrometrics 1994).

In the 1991 CAP (Ecology 1991), Ecology identified a selected remedial alternative for the Site consisting of the following elements:

- Consolidation of the Landfill to a less than 13-acre footprint.
- Installation of a multimedia Resource Conservation and Recovery Act (RCRA) cap or equivalent.
- Installation of a stormwater system, including a detention basin.
- Excavation of ditch sediments.
- Passive landfill gas controls.
- Placement of institutional controls (including barrier fencing around the Landfill and groundwater and surface water monitoring).
- Surface and groundwater monitoring.

Contingency for groundwater actions, if needed in the future.

The remedy selected in the 1991 CAP was implemented in 1993. This cleanup action primarily consisted of consolidating and capping landfill materials with a multi-layer, RCRA-equivalent capping system; installing landfill gas collection wells; installing a leachate monitoring system; a stormwater collection pond and infiltration trenches; ditch remediation; institutional controls (site fencing); and routine monitoring of surface water and groundwater. A groundwater remedy (pump and treat) was evaluated, but not implemented, as it was viewed only as a future contingency action. The 1993 capping of the Landfill was effective in reducing surface water infiltration into the Landfill and likely substantially reduced the production of leachate generated by surface water infiltration. The remedy did not include the bottom liner for the Landfill that was a component of the preferred remedy in the FS, and as a result did not adequately address groundwater under or adjacent to the Landfill.

Groundwater monitoring and investigative activities conducted by Hydrometrics beginning in 1994 indicated the presence of an off-site plume of elevated arsenic in groundwater that was determined to have migrated from the Landfill into downgradient areas, including wetlands north of the Landfill and ditches to the west and north of the Landfill (Hydrometrics 2001a). In June 2001, Asarco submitted a "Contingency Plan for the B&L Landfill" that proposed several remedies for controlling groundwater at the Landfill (Hydrometrics 2001b). Asarco did not complete the activities scoped in the Plan.

2.4.2 2005 Enforcement Order and 2008 CAP

In February 2005, the Second Amendment to the Enforcement Order issued by Ecology required the resumption, completion, and implementation of the activities outlined in the 2001 Contingency Plan.

Asarco declared bankruptcy on August 10, 2005 with none of the activities outlined in the Second Amendment to the Enforcement Order completed. In the interim, MPC took on the investigation of groundwater contamination in the Wetlands and the development of remedial alternatives to address groundwater. The alternatives were evaluated and presented in the Groundwater Alternatives Evaluation (GAE; Floyd|Snider 2007), which provided a basis for Ecology's alternative selection as presented in the 2008 CAP (Ecology 2008).

Executive Bark, Inc. has not participated in remedial activities at the Site. According to records obtained from the Secretary of State, Executive Bark, Inc. has been administratively dissolved. Counsel for the former corporation's sole shareholder, Camille Fjetland, was contacted during the planning process for implementation of the work specified in the 2008 CAP and was informed of the requirements of the 2008 CAP and the activities that will be performed on the B&L Property.

2.4.3 2008 Consent Decree

Initial implementation of the 2008 CAP under the terms of the Consent Decree between Ecology and MPC (Ecology vs. Murray 2008a), including additional Site investigation, testing, collection

of design data, design, construction, and startup for all elements of the remedy are described in the GRWP (Floyd|Snider/AMEC Team 2008). The results of these activities are included as appendices and/or addenda to this EDR.

Consistent with the terms of the Consent Decree, MPC established a Settlement Trust as a Qualified Settlement Fund. MPC funded the Settlement Trust in accordance with the terms specified in the Consent Decree. The purpose of the Settlement Trust is to fund and manage the work required under the Consent Decree. Any funds in the possession of the Settlement Trust will be used to perform the work required under the Consent Decree, including the reimbursement of Ecology's RA costs, implementation costs, and the expenses of administering the Settlement Trust. The terms and responsibilities of the Trust, including the funding of the Trust, are described in Exhibit G to the Consent Decree and the Custodial Trust Agreement that has been signed by MPC and Ecology (Ecology vs. Murray 2008b).

After funding of the Settlement Trust, the obligations set forth in the sections identified in Exhibit G of the Consent Decree and clarified in the Custodial Trust Agreement (Ecology vs. Murray 2008b), became those of the Settlement Trust and MPC shall have no further obligations under those sections. The Settlement Trustee was selected to oversee the implementation with a fiduciary duty to act in the best interest of the Trust and thereby, the beneficiary to the Trust (the State), while meeting the requirements of the Consent Decree.

The Consent Decree, between MPC and the State, designated Floyd|Snider as the selected consultant to implement the remedy. Floyd|Snider will implement the remedy as required by the Consent Decree. Floyd|Snider has assembled a Project Team that includes key personnel from both Floyd|Snider and AMEC Geomatrix to implement the remedy as outlined in the final CAP.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

3.0 Site Conditions

The following descriptions of Site conditions are generally based on previous summaries (Floyd|Snider/AMEC 2009a, Ecology 2008; Floyd|Snider 2007; KJC and AGI 1990b) that are updated where appropriate with the results from 2008 pre-design activities.

3.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

The regional topographic and hydrologic setting exerts significant influence upon the surface water and the shallow groundwater regime at the Site. Regional topography, surface water, and drainage features are shown in Figure 3.1. The Site is located in the floodplain of the Hylebos Creek watershed, close to where it merges with the larger Puyallup River valley. To the east of the Site, Fife Way marks the steep transition between the flat floodplain and the rolling hilly relief of the uplands glacial drift plain.

The Hylebos Creek watershed is a tributary sub-basin that drains 19 square miles of urban and suburban area between Fife and Federal Way. The primary surface water body, Hylebos Creek, is primarily a man-made channel in the vicinity of the Landfill. Hylebos Creek generally flows in a southerly direction until turning west for the last 2 miles prior to its discharge into the Hylebos Waterway. The last 1.6 miles of stream is influenced by tidal backwater (MSG et al. 2004). A historic survey completed in 1870 indicates the floodplain was already cleared, drained, and at least partially diked for agriculture by the time of the survey (MSG et al. 2004).

The Hylebos Creek floodplain is situated on a series of alluvial deposits. The transition between the adjacent glacial drift hills and the floodplain alluvium is marked by a mixed gravel and sand colluvial deposit. Groundwater flowing from the glacial hills recharges the several hundred feet of water-bearing alluvial sand units that are punctuated by low-permeability strata (aquitards). The inputs of groundwater from this higher elevation drive groundwater flow beneath the Landfill in a northwesterly direction toward its eventual discharge into Hylebos Creek. Recent field measurements confirm the recurrence of flooding during major storm events, likely due to a combination of flat topography, high groundwater table, and backwater conditions experienced at high tide during major storm events.

3.1.1 Local Geology and Hydrostratigraphy

Beneath the Landfill material and forming the surface soils in the Wetlands is an organic silt and peat unit 4- to 7-feet thick that transitions into a plastic silt deposit approximately 6-inches thick at its base. These deposits correspond to the pre-landfill ground surface. Boring logs indicate that the silt unit beneath the Landfill has been compacted and partially reworked into the fill material by grading and filling activities.

Saturated alluvial deposits (primarily sands) underlie the surface soils and comprise the Upper and Lower Sand Aquifer. These alluvial sands were encountered to the depths of the deepest

¹ This near-surface, low permeability unit was referred to as the "Upper Silt Aquitard" in the RI (KJC and AGI 1990b).

borings advanced for remedial investigation. At the southeastern edge of the Site, closest to the glacial drift plain, the alluvial deposits grade into the colluvium and Pleistocene glacial silty gravel deposits. Previous subsurface investigations (KJC and AGI 1990b; Hydrometrics 2001a) identified the Upper Sand Aquifer and Lower Sand Aquifer as the primary water-bearing units underlying the Landfill. At the Landfill, the Upper Sand Aquifer extends into the lowest several feet of consolidated wood waste within the cap². The alluvial deposits are divided in much of the area of the Site into the Upper and Lower Sand Aquifer by the Lower Aquitard, a 3- to 6-foot thick layer of interbedded silt, peat, and silty sand. This low permeability silt unit was determined not to be continuous beneath the Landfill during 2008 pre-design investigation activities, with gaps identified in the southwest corner and eastern side of the Landfill apparently associated with channel scouring. (Refer to Section 4.2 and Appendix B for additional results from the geotechnical investigation.)

Soil borings in the Wetlands demonstrate that the same native geologic units extend throughout the Wetland area. Subsurface soils are generally uniform throughout the Upper Sand Aquifer in the Wetland area, with fine silty sands coarsening downward and becoming increasingly silt-free until the Lower Aquitard is encountered.³ The Lower Silt Aquitard is approximately 3-feet deeper at the northern end of the Wetlands investigation area than at the southern end.

3.1.2 Local Hydrogeology and Surface Water Hydrology

3.1.2.1 Groundwater Flow Direction and Gradients

Groundwater potentiometric contours (refer to Appendix C) are consistent with topography and a flow path towards Hylebos Creek. The groundwater flow direction in the Upper Sand Aquifer is north-northwesterly, from the upland bluff area east of the Landfill to the Wetlands area north of the Landfill, where the flow direction shifts westerly towards Hylebos Creek. The flow direction generally becomes more westerly in the wet season. The groundwater flow direction in the Lower Sand Aquifer is northwesterly towards Hylebos Creek during the dry seaon, and becomes more westerly in the wet season.

Also reflecting topography are the horizontal groundwater gradients that are steeper adjacent to the upland bluff area east of the Landfill than beneath the Landfill and in the Wetlands, where the gradient is comparatively flat. Horizontal gradients in the Upper Sand Aquifer range from approximately 0.0025 to 0.005 in the vicinity of the Landfill and generally steepen slightly during the wet season as groundwater builds up on the upgradient side of the Landfill. Horizontal gradients beneath the Wetlands are generally less than 0.001. Horizontal gradients at the transition from the Landfill to the bluff area are generally greater than 0.006.

Vertical gradients between the Lower and Upper Sand Aquifers are generally flat or weakly downward in the areas upgradient of the Landfill (approximately -0.001), and transition to neutral and then increasingly strong (up to +0.1) upward gradients on the northern side of the Landfill and in the Wetlands area. These vertical upward gradients are characteristic of floodplains that function as regional groundwater discharge areas.

_

² Saturated refuse was referred to as the "Fill Aquifer" in the RI (KJC and AGI 1990b).

³ The Upper Sand Aquifer was referred to as the "Shallow Aquifer" in the 2005 Data Report (Floyd|Snider 2006).

3.1.2.2 Hydraulic conductivity and average linear velocity

Pump and slug testing of the Upper Sand Aquifer in the Wetlands indicates a highly transmissive aquifer with a preferential direction of hydraulic conductivity in the north–south direction. Calculated hydraulic conductivities in the Wetlands areas are in the range of 100 to 220 feet per day (0.035 to 0.078 cm/s) parallel to the direction of groundwater flow and 2.7 to 5.7 feet per day (9.5 x 10⁻⁴ to 2 x 10⁻³ cm/s) perpendicular to the direction of groundwater flow. Average linear groundwater (seepage) velocities within the Wetlands, calculated based on a wetlands hydraulic gradient of 0.001 and an assumed effective porosity of 35 percent, indicate range from approximately 100 to 260 feet/year. Hydraulic conductivities in the areas upgradient of the Landfill are in the range of 0.3 to 11 ft/day (1.04 x 10⁻⁴ to 3.7 x 10⁻³). Average linear groundwater velocities in the upgradient area, calculated based on a hydraulic gradient of 0.006 and an assumed effective porosity of 35 percent, indicate a range from approximately 2 to 67 feet/year.

The observed anisotropy in hydraulic conductivities, with hydraulic conductivity an order of magnitude greater in the approximate north-south direction than in the east-west direction, is consistent with the observed presence of coarser sand grain sizes (up to medium-to-coarse and thin deposits of coarse sand at the base of the Upper Sand Aquifer) in apparent channel features along the southwest corner of the Landfill and the eastern edge of the Landfill and extending into the Wetlands. This may reflect that the Upper Sand Aquifer is composed of highly elongated sand channels that were deposited by alluvial processes, predominantly in a northwest-southeast direction.

3.1.2.3 Local Surface Water Hydrology and Flooding

Surface water at the vicinity of the Site drains to Hylebos Creek via two small sub-basins, one north of the Interurban Trail in the wetlands within the floodplain of Hylebos Creek and the other south of the road, in the agricultural farmlands of the Puyallup River valley (refer to Figure 3.1). Surface water features close to the Site are shown on Figure 1.1.

The Wetlands receive significant surface water input via precipitation, runoff from Fife Way and, during flood stages, overflow from Hylebos Creek. Flooding of Hylebos Creek is most frequently caused by precipitation events occurring between October and March, with melting snow occasionally contributing to flooding. Hylebos Creek rises quickly because of the relatively steep terrain and extent of development in the upper watershed. As a rule, the creek rises to flood stage within a day of peak rainfall and the duration of the flooding is only a few days (FEMA 1987). Flood waters in the Wetlands slowly drain to the west to Hylebos Creek but the low areas of the Wetlands remain seasonally ponded well into summer, depending on dry season rainfall intensity. In the Wetlands, during winter months or other wet conditions, the potentiometric surface rises above the ground surface due to both flooding inputs and upward discharge from the aquifer.

Flood events that approach or exceed the elevation of the Interurban Trail (approximately 18 feet NAVD 88), flooding the adjacent farm fields and inundating nearly all the ground surface surrounding the Landfill, have been observed repeatedly in recent years. This magnitude of

flood stage, which corresponds with the 100-year flood event (MSG 2004), is an important Site condition for remedial design purposes.

Land south of the Interurban Trail is drained by the agricultural ditches that run along the perimeter of the B&L Property and further south, the larger Surprise Lake Drain. These ditches are within Pierce County Drainage District #23. The headwaters for the Surprise Lake Drain are located on the north hill plateau in the City of Milton—east of the project area. The outlet from Surprise Lake flows through a ravine, then along the Puyallup valley, and finally into a ditch system that receives runoff from mostly agricultural land, including land immediately surrounding the project area to the south and southeast. The drain discharges to Hylebos Creek via the 70th Avenue culvert under I-5.

The ditch adjacent to the south and west perimeter of the B&L Property drains surface water from the agricultural fields and the apartment complex south of the Landfill. Water is conveyed along a ditch running parallel to the Puget Power Access Road and then south to where it joins the Surprise Lake Drain. The agricultural fields west of the Landfill drain overland flow into this ditch system as well. Portions of the fields near the Landfill are observed to be slightly lower, and they flood more easily. These ponded waters drain slowly due to saturated soil conditions and backwater caused by the normally higher water level in the Surprise Lake drainage channel.

Within the fenced area surrounding the Landfill, precipitation drains into troughs around the Landfill that lead to an infiltration/detention pond. Within the primary infiltration/detention pond immediately north of the Landfill, there is an overflow pipe that leads into the agricultural ditch system (refer to Figure 1.1). This ditch system also captures stormwater that overflows from the smaller secondary stormwater detention pond outside the northeast corner of the Landfill; the secondary detention pond drains the B&L Property east of the Landfill.

The agricultural drainage ditches outside the B&L Property boundary (shown on Figure 1.1) are deep enough to receive seasonal groundwater discharge from the Upper Sand Aquifer. These ditches collect groundwater discharge over most of the year, but locally and seasonally can recharge the shallow groundwater system. The section of ditch along the northern perimeter of the Landfill is higher than the rest of the ditch system and is often dry; therefore, this section is not as prone to receiving groundwater discharge. The ditch system drains to the west where it joins the Surprise Lake Drain; however, drainage of ditch water is limited by the shallow depth of the ditch, its flat gradient, and the generally consistent flow of water in the Surprise Lake Drain (the release of which is controlled from Surprise Lake).

3.1.3 Local Seismicity

Because the Puget Sound Lowland is situated in the fore-arc basin of the subduction zone associated with the collision of the Juan de Fuca and North American tectonic plates, the entire region is at risk for earthquake hazard. Over the last 100 years, large magnitude earthquakes (greater than 5.0) have occurred repeatedly in the Puget Sound region. This plate collision results in three types of earthquakes: deep intraplate earthquakes within the subducting plate, thought to be the most frequent large events that affect Pierce County; shallow crustal earthquakes associated with faults within the North American Plate, which may be significant to

local seismic risk if the Tacoma fault is determined to be active; and deep Cascadia Subduction Zone (interplate) earthquakes, which are thought to occur less frequently but with a regional source area.

The Pierce County Mitigation Planning Team determined the probability of recurrence for the earthquake hazard in Pierce County to be "100 years or less occurrence." The prediction was made in the context of differences and uncertainties in recurrence intervals for each type of earthquake. On average, the intervals are on the order of decades for intraplate earthquakes, and centuries for Cascadia Subduction Zone earthquakes. The interval for shallow crustal earthquakes is highly uncertain and dependent on the movement history of local faults. Limited research has been completed on the history of movement along the Tacoma Fault, which is known to extend as far east as Commencement Bay, several miles west of the Site, and runs westward and northwestward across much of the Puget Lowland.

Based on previous earthquakes in the region, an earthquake at or near the Site is likely to be amplified by the unconsolidated, sandy and silty alluvial deposits at the Site. The southern edge of the Hylebos Embayment, including most or all of the Site, is located within an area of potential seismic hazard that extends throughout the Puyallup River valley. This area is considered an area of high potential for liquefaction hazards and high potential for dynamic settlement hazards. Liquefaction hazard areas are underlain by unconsolidated sandy or silt soils and a shallow groundwater table capable of liquefying in response to earthquake shaking. Noteworthy liquefaction took place in nearby Puyallup during the 1949 earthquake. Dynamic settlement hazard areas are areas underlain by a significant thickness of loose or soft soil not susceptible to liquefaction, but that could result in vertical settlement of the ground surface in response to earthquake shaking (Pierce County Department of Emergency Management 2004).

3.2 SITE CLIMATE

Climate conditions at the Site are typical for the coastal marine environment of the Puget Sound Lowland in which conditions are controlled largely by air movements from the Pacific Ocean. Average temperatures are in the range of approximately 40 degrees Fahrenheit in the winter and approximately 70 degrees Fahrenheit in the summer. Temperatures rarely exceed 90 degrees Fahrenheit. Winters are wet and overcast, and summers are generally warm and dry. Average annual precipitation, based on data from 1918 through 2008 at nearby Tacoma rain gauge stations, is 38.8 inches, with most of this occurring as rain between October and March (NOAA-NCDC 2009). Annual evaporation, based on pan evaporation data, averages 25 to 30 inches (KJC and ACI 1990b).

3.3 LANDFILL GAS

Emission of landfill gas (LFG), including methane, was not identified during the 1990 RI as a pathway by which contamination leaves the Site, and was not included in the 1991 CAP as a risk associated with the Site. Active and passive LFG controls were evaluated as part of the 1990 Focused Feasibility Study, which noted that existing information regarding the type and quantity of gas production at the Landfill was inadequate for determining which approach was more appropriate. In the 1992 EDR, passive gas controls were selected based on calculations

of the maximum potential emissions of methane and carbon dioxide from decomposition of wood waste (Hydrometrics 1992). Passive gas controls were installed as part of the consolidation and capping remedy implemented in 1993 to control the potential release of LFG. Methane was monitored at the edge of the Landfill mound to ensure it did not exceed the lower explosive limit (LEL) as part of protection monitoring (Hydrometrics 1994). Air monitoring was not included in post-1993 remediation monitoring.

Based on November 2005 air quality measurements of the vents of the gas collection system, the Landfill does not appear to produce measurable quantities of methane. Based on 2005 monitoring, the Landfill is also not emitting measurable quantities of hydrogen sulfide. Due to the potential for methane production, the passive venting system will be maintained.

3.4 SITE PLANNING AND DEVELOPMENT ISSUES

The development plans for parcels that are adjacent to the B&L Property, some of which are part of the Site, may have important implications for remedial design. As described in previous sections, the B&L Property is undeveloped and currently used only for ongoing remediation activities. There are currently no other known uses for the B&L Property, much of which is physically constrained by the presence of the Landfill and its protective cap. Much of the B&L Property will be subject to institutional controls (refer to Section 6.0). Remedy implementation will include construction of a permanent groundwater treatment building with associated parking, access road, electrical, water, and telephone connections.

Several parcels to the north and west of the B&L Property likely will be impacted by a major proposed WSDOT highway project, the completion of SR 167 between SR 161 in north Puyallup and SR 509 in Tacoma (refer to Figure 3.2). As part of its proposed SR 167 project, WSDOT has proposed major riparian restoration projects in the vicinity of the Landfill, including relocating both the Hylebos Creek and the Surprise Lake Drain, and enhancement of wetland areas. The proposed mitigation project is designed to mitigate SR 167 construction impacts, to improve stormwater management, and to enhance and protect aquatic habitat. While the exact locations of the new creek channels and wetland areas are subject to change prior to completing the final design, the present preliminary layout for the proposed relocation, as shown on Figure 3.2, indicates that the Hylebos Creek channel may be relocated several hundred feet closer to the Site. The current Surprise Lake Drain will also be restored to a more natural meandering channel. Based on the anticipated schedule for the WSDOT mitigation project, the groundwater in the End-of-Plume area is expected to be remediated and under control prior to the initiation of the SR 167 mitigation project.

4.0 Predesign Studies

In this section, the results of predesign studies completed in 2008 to support design of the barrier wall and interceptor trench are summarized. These predesign studies were implemented in general accordance with the GRWP (Floyd|Snider/AMEC Team 2008). The results of several of these studies are presented as appendices to this EDR. Additional pre-design study results will be presented as Addenda to this EDR.

4.1 NATURE AND EXTENT OF GROUNDWATER CONTAMINATION

The 2008 Arsenic Characterization Study (included as Appendix A) is the latest of a number of investigations and monitoring activities that have been conducted to examine soil, surface water, ditch sediment, and groundwater conditions at the Site. This investigation was performed to further delineate the Site plume in support of design for the remedy in the 2008 CAP. The results of these investigations and years of groundwater monitoring indicate that arsenic is the only constituent of concern (COC; Ecology 2008). Arsenic exceeds CULs in groundwater, surface water, and ditch sediments.

Elevated arsenic concentrations in groundwater generally extend from beneath the Landfill in the Upper Sand Aquifer, beneath the Interurban Trail and into groundwater beneath the Wetlands north of the Landfill. A section of the plume also extends beneath the agricultural field west of the Landfill. Arsenic contamination in surface water and sediments in the drainage ditch system extends to the west of the Landfill. The pattern of groundwater contamination at the Landfill perimeter includes a "halo" of slightly elevated concentrations immediately adjacent to the Landfill perimeter. Groundwater monitoring since the 1990s has indicated that the arsenic plume in the Wetlands is generally stable (Floyd|Snider 2007 and Floyd|Snider/AMEC Team 2009b). Further descriptions of the nature and extent of the arsenic plume are given below.

4.1.1 Arsenic Release to Groundwater from Landfill Materials

Arsenic speciation and the reduction-oxidation (redox) chemistry that controls it are central to the release, transport, and attenuation mechanisms at the Site. The plume of elevated arsenic concentrations in groundwater beneath the Site is primarily composed of As(III), a form of inorganic arsenic (known as trivalent arsenic or arsenite) that generally occurs under moderately reducing conditions. Such reducing conditions within the Landfill are generally responsible for releases of arsenic trapped on mineral surfaces in soil or slag via dissolution and desorption. In addition to arsenic and iron, Landfill materials appear to be the source of elevated groundwater concentrations of dissolved organic carbon (DOC) and common groundwater ions present in Landfill leachate, including chloride, calcium, magnesium, and sodium. The presence of elevated concentrations of DOC and these ions, and the resulting elevated total dissolved solids (TDS) and specific conductance, define a general leachate plume in the Wetlands that overlaps with, and is broader than, the arsenic plume.

4.1.2 Extent of Arsenic Groundwater Plume

The areal extent of the arsenic groundwater plume, which is present only in the Upper Sand Aquifer, is illustrated in Figure 3.2. The plume downgradient of the Landfill consists primarily of a broad central lobe beneath the Wetlands that terminates within approximately 300 feet of the Landfill boundary, an elongated eastern plume 'finger' that extends approximately 400-feet downgradient of the Landfill. In addition, a western lobe of the plume is present beneath the City of Fife property that extends several hundred feet beyond the B&L Property boundary to the northwest, beneath the adjacent agricultural fields. The western lobe, which appears to extend beneath the Interurban Trail, has not been fully delineated. The halo areas upgradient of the Landfill include an area of groundwater contamination along the southern edge of the Landfill and a small area of groundwater contamination on the B&L Property, adjacent to Fife Way.

In an area of high arsenic concentrations near the southern edge of the Wetlands CAA, known as the Wetlands "hotspot", arsenic is present at concentrations up to approximately 2,500 µg/L and is elevated throughout the full saturated thickness of the Upper Sand Aquifer. The northernmost extent of the plume beneath the Wetlands (the End-of-Plume CAA; refer to Section 1.2.3) is characterized by a thin seam of elevated concentrations at the more permeable coarse sandy base of the Upper Sand Aquifer. Elevated arsenic within the End-of-Plume CAA has been delineated to extend approximately 100-feet beyond the existing raised roadway (12th Street East). Along 12th Street East, arsenic is present at concentrations of approximately 50 µg/L across a transect 250-feet wide by 5-feet thick, between depths of 17 and 22 feet.

The area previously identified as Halo West (refer to the GRWP) has been further delineated as the western lobe of the arsenic plume, emanating from the Landfill and being transported toward the north, in the direction of groundwater flow. Arsenic has been detected in this area at concentrations up to 950 μ g/L, and elevated arsenic is generally present throughout the saturated thickness of the Upper Sand Aquifer. The western boundary of this lobe has been delineated. The northern extent of the lobe has not been fully delineated; additional characterization is planned to complete the northern extent of the western lobe of the plume. Further information is presented in Appendix A.

Figure 3.2 also shows that a relatively small halo of arsenic extends from the Landfill to the south (referred to as Halo South), which is limited to an area within about 75-feet of the Landfill boundary. Several borings more than 100-feet south of the Landfill (i.e., upgradient of the Landfill) indicate an apparent pattern of scattered, low-level arsenic exceedances that may not be associated with the wastes within the Landfill (refer to Appendix A).

A localized area of elevated concentrations exists on the B&L Property upgradient of and to the east of the Landfill in the vicinity of Monitoring Well D-10A. This well is completed in a colluvium deposit, upgradient of the Upper Sand Aquifer This area, known as the Halo East hotspot (refer to the GRWP), has been delineated and is limited to a small plume that extends approximately 150-feet downgradient from Monitoring Well D-10A with a plume front approximately 150-feet wide. Concentrations of arsenic in Halo East groundwater appear to be higher within the upper 15-feet of groundwater, which is consistent with a shallow source. The source of this contamination is unknown, but its footprint and concentrations have remained stable since the RI was conducted in the late-1980s.

Groundwater monitoring in the Lower Sand Aquifer indicates that the Landfill has had little or no impact on the aquifer. The only exceedance of CULs for arsenic in the Lower Sand Aquifer potentially related to the Landfill was found at Well D-8B. In October 2008 compliance monitoring (Floyd|Snider/AMEC 2009b), arsenic was detected in D-8B at 11.6 μ g/L; concentrations in this monitoring well have displayed a decreasing trend since elevated concentrations were detected following implementation of the 1993 remedy. The Lower Silt Aquitard is discontinuous in this area, but neutral to upward hydraulic gradients continue to prevent contamination of Lower Sand Aquifer Groundwater.

4.2 GEOTECHNICAL CHARACTERIZATION

As noted previously, earlier subsurface investigations identified four subsurface units in the vicinity of the Landfill. These units, in sequence from shallow to deep are as follows:

- 1. A near surface silt or shallow silt layer designated as the Upper Silt Aquitard.
- 2. A water bearing sand designated as the Upper Sand Aquifer.
- 3. A low-permeability silt layer designated as the Lower Silt Aquitard.
- 4. A water bearing sand designated as the Lower Sand Aquifer.

A geotechnical investigation was completed along the alignment for the slurry wall to assess the upper three strata and to collect information needed for design and engineering of the slurry wall. The geotechnical investigation was performed consistent with the Geotechnical Investigation Work Plan (GIWP) that was appended to the GWRP.

The purposes of the geotechnical investigation was to determine the depth to the Lower Silt Aquitard, to assess the continuity of the Lower Silt Aquitard (and the extent of any gaps), to assess engineering characteristics of subsurface soils along the barrier wall alignment, and to collect samples to evaluate the backfill amendments and compatibility of backfill with Site groundwater. The specific objectives of this investigation were as follows:

- Develop stratigraphic information concerning the depth and thickness of the upper sand aquifer and the presence and the depth to the lower silt aquitard.
- Obtain sufficient geotechnical data to complete the design of the subsurface barrier wall
- Collect soil and groundwater samples for compatibility testing for use in designing the barrier wall backfill.

The following tasks were completed for this investigation:

- Drilled 15 soil borings using hollow-stem augers along the proposed barrier wall alignment.
- Advanced 9 push probes in the vicinity of the southwest gap in the Lower Silt Aquitard.

- Conducted cone penetrometer testing (CPT) at 46 locations along the anticipated subsurface barrier wall alignment and the areas of the known gaps in the Lower Silt Aquitard.
- Collected soil samples that were subsequently submitted to a geotechnical laboratory for testing of physical characteristics and for performing compatibility testing.
- Collected a groundwater sample from an existing monitoring well in the Upper Sand Aquifer and potable water sample from the local water supply.
- Conducted compatibility testing to confirm that the proposed barrier wall construction materials are compatible with the contaminated Site groundwater.

The geotechnical exploration locations are shown in Figure 4.1. A geotechnical investigation report is included as Appendix B.

The geotechnical investigation borings revealed the presence of a 3- to 3.5-ft thick layer of fill at the ground surface, which is the existing perimeter road berm. The Upper Silt Aquitard was encountered in most borings at depths ranging from approximately 3- to 11-feet below ground surface. A distinct shallow silt layer, corresponding to the Upper Silt Aquitard, was absent at Borings H-3, H-12, and H-14. The Lower Silt Aquitard, where present, was encountered at depths ranging from approximately 14- to 30-feet below grade. In two portions of the alignment (i.e., at the southwest corner and along the east side of the Landfill, the Lower Silt Aquitard was generally absent or was present as discontinuous seams or lenses. The southwest aquitard gap is located between Borings H-3 and H-15 and the eastern aquitard gap is located between Borings H-9 and H-10. Refer to Figure 4.1. At most locations, transitions between silt and sand layers were very gradual; otherwise, these layers were interbedded.

These field observations combined with physical test results lead to the following recommendations regarding the barrier wall depth: (1) the barrier wall should extend to at least the midsection of the Lower Silt Aquitard, where a distinct silt layer is present and (2) when the Lower Silt Aquitard is absent, the wall should continue below the silt lenses. The recommended depth to the bottom of the barrier wall surrounding the Landfill is presented in Table B.1.

Five soil mixes of the composite samples were tested for hydraulic conductivity using Site groundwater and potable water samples. The hydraulic conductivity tests indicated only minor differences between groundwater and potable water; these differences are believed to be in the range of accuracy of the test method. These results indicate that Site groundwater does not adversely affect the permeability of the barrier wall backfill. The results also indicate that a mixture of 3 percent bentonite with soil underlying the Landfill would achieve a laboratory hydraulic conductivity of about 5×10^{-8} cm/s, and would be suitable for construction of the barrier wall.

4.3 HYDROGEOLOGIC STUDY

A hydrogeologic study was conducted as part of the Phase 1 implementation plan described in the GRWP (Floyd|Snider/AMEC 2009a). The objectives of the hydrogeologic study were (1) to

establish a baseline for evaluating the effects of Phase 1 remedy components, including barrier wall and interceptor trench, on local hydrology; and (2) to support the design of Phase 2 remedy components. Tasks performed included collection of hydrogeologic and surface water data, aquifer tests, refinement of the existing conceptual hydrologic model, and development of a numerical groundwater model for the selected domain area (Figure 4.2).

A hydrogeologic monitoring network was established through the installation of 39 piezometers and 19 wells, and surveying of existing monitoring wells (refer to Figure 4.2). During installation of wells and piezometers, borings were logged to provide detailed characterization of subsurface lithology. Monthly depth to water measurements were collected at each location within the monitoring network to determine groundwater elevations and gradients. At select locations, pressure transducers with data loggers were deployed for hourly water level information.

Surface water data were collected from a surface water monitoring network that consists of 15 staff gauges installed in the agricultural ditches, Surprise Lake Drain, and Hylebos Creek (Figure 4.2). Monthly measurements of stage height and velocity were conducted to determine discharge at each monitoring location. A complete description of both hydrogeologic and surface water data collection activities is provided in Section 2 of Appendix C.

Aquifer tests conducted adjacent to the Landfill and in the Wetland areas provided data that were used to define the range of aquifer parameters used within the numerical groundwater model.

A numerical groundwater model was developed based upon the current conceptual model, which incorporates refinements based upon the collected hydrogelogic and surface water data. The numerical model was used as a decision tool to help understand the physical flow system, evaluate various remedial design scenarios, and assess potential affects of the remedial actions specified in the 2008 CAP on local hydrology. The U.S. Geological Survey's Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW-2000) was used to simulate groundwater flow within the model domain (Figure 4.2). MODFLOW (McDonald and Harbaugh 1988; Harbaugh and McDonald 1996; and Harbaugh et al. 2000) is a well documented program that is publically available and used extensively in the environmental industry to characterize and assess groundwater flow.

The model domain spans approximately 290 acres and includes the Landfill, Wetlands, and End-of-Plume CAAs. Based upon available lithologic data, the numerical model represents major hydrostratigraphic units including the Landfill, the Upper Sand Aquifer, the Lower Silt Aquitard, and the Lower Sand Aquifer. Major surface water features represented within the numerical model include the agricultural ditches, Surprise Lake Drain, and Hylebos Creek. Boundary conditions include constant head and flux boundaries. A detailed summary of numerical model development is presented in Section 4 of Appendix C.

The numerical model was calibrated under steady-state condition using a suite of both quantitative and qualitative criteria. The calibrated model is able to adequately simulate groundwater elevations and gradients within the model domain. Details regarding model calibration and results are discussed in Section 5 of Appendix C. The calibrated model will be

used to evaluate design alternatives of Phase 1 and Phase 2 remedy components and their effects on local hydrology. These results are presented in the Addenda to the EDR.

Model runs were used to evaluate the relationship between drawdown within the barrier wall, associated pumping rates, and barrier wall depth in the areas where the Lower Silt Aquitard is absent. These model runs were used to support the decision to extend the barrier wall to a depth of 35 ft below land surface in the areas where the aquitard is absent.

4.4 WETLANDS ASSESSMENT

The Critical Areas Study (CAS: Appendix D) describes wetland locations and boundaries, and characterizes those wetlands within the remediation area that may be affected by construction in 2009. Project team scientists delineated wetlands based on best professional judgment, existing Site conditions during field analysis, and information from previous environmental site investigations. The project team delineated wetland boundaries using the Routine Determinations Method described in the U.S. Army Corps of Engineers (USACE) Wetland Determination Manual (USACE 1987). Delineated and surveyed wetland boundaries are subject to verification and approval by jurisdictional agencies.

Project scientists verified the presence of five wetlands and one stream (Hylebos Creek) within the remediation area. The areas identified as wetlands met all three jurisdictional wetland criteria (hydrophytic vegetation, hydric soils, and wetland hydrology). To assess the resource value of the identified wetlands, project scientists determined wetland ratings using the Washington State Wetland Rating System for Western Washington (Hruby 2004). In addition to Wetlands A-F and Hylebos Creek, the project team also verified the locations of four ditches: (1) the Interurban Trail ditch, (2) landfill cap drainage ditch, (3) Surprise Lake Drain, and (4) an unnamed ditch. Figure 4.3 shows critical area locations in the vicinity of the remediation area.

USACE has regulatory jurisdiction over "Waters of the U.S." (33 CFR Part 328). Hylebos Creek is classified as a "Water of the U.S." The ditches and wetlands within the remediation area may also classify as "Waters of the U.S." A jurisdictional determination from USACE would be required to determine which, if any, ditch or wetland is regulated by the USACE. Any alteration to a USACE jurisdictional wetland or ditch requires a federal permit from the USACE.

For 2009 construction of the barrier wall and interceptor trench systems, the USACE reviewed a project site plan and issued a No Permit Required letter, indicating that the proposed construction appears to be outside of USACE jurisdiction (USACE 2009). A jurisdictional determination may be required for future remediation activities, including remediation of the Wetlands CAA and the cleanout and restoration of the agricultural ditch system.

4.5 CULTURAL RESOURCES

A Cultural Resources Assessment was completed at the B&L Landfill by Floyd|Snider and Historical Research Associates, Inc. (HRA) in accordance with the requirements of WAC 197-11, Revised Code of Washington (RCW) 27.44, and RCW 27.53. RCW Chapter 197-11 requires that state and local agencies evaluate and mitigate the impacts of their actions on

cultural resources. The State Environmental Policy Act (SEPA) requires that significant properties be given consideration when actions have the potential to impact them. Although SEPA does not include a requirement to obtain Department of Archaeology and Historic Preservation (DAHP) concurrence of the Area of Potential Effect (APE), as is required by the National Historic Preservation Act's (NHPA) regulations, Floyd|Snider invited the DAHP and the Puyallup Tribe of Indians (Tribe) to review the project description and APE, and to observe field work.

Cultural resources monitoring was completed for exploratory drilling during predesign studies, followed by a cultural resources survey to determine if any cultural resources have the potential to be impacted by the remainder of ground-disturbing activities. All fieldwork was completed in accordance with the Cultural Resources Work Plan, submitted as Appendix C to the GRWP.

As part of the consultation process for the CAP implementation, the Draft Cultural Resources Work Plan was provided to both the Tribe and DAHP for comment prior to the fieldwork. At that time the Tribe and DAHP were invited to the Site to observe the monitoring and the survey activities. No comment or inquiry was received. A copy of the Final Cultural Resources Work Plan was then provided to both the Tribe and DAHP, and in March 2009, a copy of the Archaeological Monitoring and Cultural Resources Assessment documenting the findings of the assessment was provided.

No prehistoric- or historic-period cultural resources were observed during the surface or subsurface survey. The groundwater monitoring project did not adversely affect any identified cultural resources in the APE. However, the potential remains for unidentified archaeological materials to be present within the APE. The APE's position within former marsh- and tidelands suggest that shell midden deposits, or other evidence of resource-gathering or processing activities (i.e., lithic scatters, hearths or other fire-features) may exist, potentially buried beneath alluvial sediments or hidden by the dense vegetation. The findings are summarized in the Archaeological Monitoring and Cultural Resources Assessment Report. This Report contains sensitive information regarding archaeological sites and has not been provided for public review. Copies have been provided to DAHP and the Tribe.

Additional archaeological monitoring will be completed prior to slurry wall construction. Excavations are planned nearby in the APE that will allow for subsurface examination through archaeological monitoring. Geotechnical test pits will be conducted around the perimeter of the landfill pile ahead of construction activities. These test pits will be approximately 15- x -3-feet and extend to approximately 5-feet below the ground surface. The pits will be spaced approximately 250-feet apart. In addition, a detention basin and additional direct-push soil borings will be conducted west of the landfill pile. HRA will monitor each of these excavations and soil borings, which will collectively provide an adequate subsurface sample of the portion of the APE south of the former railroad grade to conclude that no significant cultural deposits are or will be impacted by the project. The results of all future monitoring activities will be described in an addendum report.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

AMEC Geomatrix

5.0 Interim and Long-term Monitoring

Monitoring of the cleanup action will be performed in accordance with the requirements of WAC 173-340-410 and the Consent Decree, and will include protection, performance, and confirmational monitoring. The overall approach by which the cleanup action will address these monitoring requirements is presented in this section. Specific requirements for the ongoing, semiannual monitoring of the cleanup action during Phases 1 and 2 are provided in the Interim Compliance Monitoring Plan (ICMP; Appendix E). Because the current remedy implementation is planned over several years in a phased implementation program, the monitoring provisions in the ICMP will be modified as appropriate during Phases 1 and 2 to address changing conditions as new information is acquired during remedy implementation, new groundwater quality monitoring wells are installed, and/or as remedy components are installed during phased construction. The monitoring provisions in the ICMP will be modified with subsequent versions to replace and supersede the January 2009 version that was approved by Ecology and is included as Appendix E to this EDR. Other provisions for hydraulic monitoring to confirm the operational effectiveness of the Landfill CAA containment system are presented in a Performance Monitoring Plan that is included with Addendum 1 to this EDR. Requirements for monitoring following construction of other major remedial components, including long-term hydraulic and groundwater quality monitoring will be presented in subsequent updates. The final, long-term monitoring program will be documented in the Operation, Monitoring, Inspection and Maintenance Plan (OMI&MP) to be prepared after completing Phase 2 construction, as described in the 2008 CAP.

5.1 COMPLIANCE MONITORING

5.1.1 Monitoring Requirements under the Consent Decree

The measures through which the remedy addresses the monitoring requirements established in the CAP Implementation SOW (Exhibit B to the Decree) are summarized in this section. In Phase 1, the Consent Decree calls for the development of an interim compliance monitoring plan for the entire Site that will be implemented during Phases 1 and 2. This plan, the ICMP, was originally submitted to Ecology as Appendix A to the GRWP and was subsequently approved by Ecology; the ICMP is appended to this EDR as Appendix E. The interim compliance monitoring program is aimed at monitoring plume behavior and trends during remedy implementation. According to the Consent Decree, interim compliance monitoring must include the following:

- Installation of an interim compliance well network in the vicinity of 12th Street East and compliance monitoring at an interim point of compliance along 12th Street East during Phase 1. These elements of the interim compliance monitoring program will be provided as part of the implementation of the End-of-Plume remedy. The design for this well network and associated ICMP adjustments will be included with the End-of-Plume Remediation Design Report, as Addendum 2 to this EDR.
- Monitoring of the temporary mass-removal action in the Wetlands was an element identified in the SOW included in the Consent Decree. However, this SOW

component was removed in accordance with the provisions of the Consent Decree; therefore, monitoring mass removal will not be included until Phase 2. Interim compliance monitoring will incorporate monitoring of the Wetlands remedy during Phase 2 implementation.

- Performance monitoring for the barrier wall and interceptor trench. During Phase 2, the Consent Decree SOW specifies that interim compliance monitoring will include continued monitoring of the Phase 1 remediation components as needed to achieve their remediation objectives. This requirement will be met through the following:
 - * A Performance Monitoring Plan, included with Addendum 1 to this EDR, describes the network of piezometers and program for monitoring hydraulic containment along the barrier wall that will surround the Landfill. The barrier wall and interceptor trench systems are intended to act in conjunction with the hydraulic control and groundwater treatment systems that will be implemented during Phase 2. Performance monitoring will take place for a discrete period following startup of the groundwater extraction and treatment systems to confirm the operational effectiveness of the containment system. Monitoring of the piezometer network prior to the completion of these Phase 2 components will be done to collect baseline data for comparative purposes, for design of the groundwater extraction system, and to develop appropriate hydraulic performance standards in consultation with Ecology. At the completion of performance monitoring, hydraulic monitoring will be incorporated into the compliance monitoring program.
 - * Interceptor trench water quality monitoring will be incorporated into interim compliance monitoring as appropriate and in consultation with Ecology.
 - * For compliance monitoring of the containment system, the Consent Decree stipulates that a long-term groundwater monitoring system incorporating any additional compliance wells will be designed and constructed during Phase 2. The Consent Decree further requires that a long-term operations, maintenance, inspection and monitoring plan be developed. This OMI&MP will be prepared during the Phase 2 implementation and will supersede and replace the ICMP. The OMI&MP will establish a program of long-term groundwater quality and hydraulic monitoring to confirm attainment of the cleanup standard and to monitor performance of the barrier wall, hydraulic control system, and other remedy components following the construction of the final remedy components.
- Monitoring associated with the Wetlands and Halo remedy components. These compliance monitoring elements will be added during implementation of the groundwater extraction and treatment system. The design for additional wells, associated ICMP adjustments, and a separate Performance Monitoring Plan to assess operational effectiveness will be provided with the Phase 2 Remediation Design Report, Addendum 3 to this EDR. The long-term monitoring program for these components will be included with the OMI&MP.
- Appropriate elements of the existing groundwater monitoring program. As described in the approved ICMP, interim compliance monitoring will monitor the existing monitoring network (refer to Section 5.4 and the ICMP), with modifications as

appropriate and in consultation with Ecology to add additional wells and piezometers as the monitoring network is modified during Phase 1 and Phase 2 implementation.

5.1.2 Monitoring Requirements under MTCA

In accordance with WAC 173-340-410, interim and long-term compliance monitoring will address the three purposes described in MTCA for compliance monitoring: protection, performance, and confirmational monitoring.

Protection monitoring will be conducted to confirm that human health and the environment are adequately protected during implementation of the cleanup action. Provisions for protection monitoring will be provided in the Health and Safety Plans included with the Addenda to this EDR.

The objectives and requirements of performance monitoring under MTCA are currently being met as part of interim compliance monitoring under the ICMP (refer to Section 5.2 below). Monitoring requirements will continue to be met through expansion of the interim compliance monitoring program to monitor the performance of additional remedy components as they are constructed relative to CULs, performance monitoring of the containment system relative to hydraulic performance standards, and long-term compliance monitoring under the OMI&MP, as described in the previous section.

MTCA requirements for confirmational monitoring will be met as appropriate in the Addenda to this EDR (e.g., to confirm removal of contaminated sediment during ditch remediation in Phase 2) and as part of long-term compliance monitoring under the OMI&MP. Elements of long-term monitoring are expected to continue indefinitely, to confirm the long-term effectiveness of the remedy following the attainment of cleanup standards and full implementation of the remedy specified in the 2008 CAP.

5.2 INTERIM COMPLIANCE MONITORING

Interim compliance monitoring is currently being conducted to meet the monitoring, inspection, and maintenance requirements during the implementation of the 2008 CAP, in accordance with the ICMP. These requirements are specified in the Consent Decree and meet the substantive regulatory requirements of MTCA and the Solid Waste Management, Reduction, and Recycle Act. Interim compliance monitoring includes regular assessments of the plume and groundwater quality trends. Compliance monitoring also monitors the condition of the landfill cap and other components from the Site remedy implemented in 1993 to ensure that existing remediation components are properly maintained. The existing interim compliance monitoring program meets the goals of performance monitoring as described in WAC 173-340-410(1)(b), and will be expanded to assess the performance of remedy components as they are constructed, as described above.

Interim compliance monitoring under the ICMP is being implemented in accordance with the SOW included in the Consent Decree, and replaces and supersedes all previous monitoring and inspection plans applicable to the Site. The ICMP establishes a program of semiannual

groundwater sampling, water level measurements, and surface water sampling, the first event of which occurred in October 2008 (Floyd|Snider/AMEC 2009b). Specific sampling and quality assurance procedures are provided in the Sampling and Analysis and Quality Assurance Project Plan (SAP/QAPP; Appendix B to the GRWP). The ICMP also sets forth procedures for inspection and maintenance of the landfill cap and other 1993 remedy components. The ICMP will be revised to incorporate hydraulic control monitoring and installation of additional monitoring wells as appropriate during Phases 1 and 2. The ICMP will be replaced by the OMI&MP in Phase 2 for long-term compliance monitoring, inspection, and maintenance of the complete 2008 CAP remedy.

5.3 CONDITIONAL POINT OF COMPLIANCE

As described in the 2008 CAP and in accordance with WAC 173-340-720(8)(c), a CPOC for soil, ditch sediment, groundwater and surface water has been established at the landfill cap perimeter areally, extending vertically downward through the first aquitard. Beyond this CPOC, groundwater and soil cleanup levels must be attained for the Site to be in compliance with the cleanup standards (refer to Section 1.2). As noted in the CAP, the plume of affected groundwater extends well downgradient of the designated CPOC location. Therefore, it is expected that a period of time will be needed to achieve the cleanup levels in areas outside the CPOC. The CPOC will correspond to the final alignment of the barrier wall and landfill cap following barrier wall construction and cap extension (refer to Addendum 1).

5.4 GROUNDWATER AND SURFACE WATER MONITORING SYSTEM

5.4.1 Existing Monitoring Network

The current interim compliance monitoring network is illustrated on Figure 1.1 and monitoring well construction and location details are summarized in Table 5.1 (refer to the ICMP for additional details). Currently, 16 Upper Sand Aquifer monitoring wells are used to monitor the Upper Sand Aquifer across the Landfill, Wetlands, and End-of-Plume CAAs. These include the following:

- Ten monitoring wells surrounding the Landfill and extending into the adjacent Wetlands (D-1U, D-5U, D-6A, D-7A, D-8A, D-9A, D-10A, D-11A, MW-23, MW-30).
- Five monitoring wells distributed across the arsenic plume in the Wetlands and extending to the downgradient edge of the arsenic plume (MW-13, MW-14, MW-15, MW-16, MW-17).
- One monitoring well located at the downgradient edge of the arsenic plume (MW-31A).

Because the arsenic plume is confined to the Upper Sand Aquifer, fewer monitoring wells have been completed in the Lower Sand Aquifer. Seven monitoring wells are currently used to monitor the Lower Sand Aquifer, including six monitoring wells that surround the Landfill and extend into the adjacent Wetlands (D-1U, D-5U, D-6B, D-7B, D-8B, and D-11B), and one monitoring well near the downgradient edge of the arsenic plume (MW-31B).

The existing surface water sampling locations are illustrated in Figure 5.1. Existing surface water sampling locations SW-1 through SW-6 are used to monitor the surface water arsenic concentrations in the agricultural ditch system to protect potential downgradient receptors.

5.4.2 Extension of Monitoring Network

As described above, the current monitoring network will be expanded to address monitoring goals for additional remedy components as they are constructed and to provide for a comprehensive, long-term monitoring network. The anticipated additions to the ICMP during Phase 1 and Phase 2 are described below.

- During Phase 1, the monitoring network will be expanded by the addition of a network of piezometers for measuring hydraulic gradients and the addition of wells to monitor the End-of-Plume remedy. The design for the hydraulic monitoring network is included in the Performance Monitoring Plan attached to Addendum 1 to this EDR. The monitoring network will also be expanded through the installation of an interim compliance well network in the vicinity of 12th Street East to support compliance monitoring for the End-of-Plume remedy along 12th Street East during Phase 1. The design for this extension of the compliance monitoring well network and associated ICMP adjustments will accompany the End-of-Plume Remediation Design Report, which will be submitted as Addendum 2 to this EDR.
- During Phase 2, the monitoring network will be expanded with additional compliance wells that will complete the long-term compliance monitoring network. Locations to be added are expected to include additional wells to monitor groundwater quality at the CPOC and any additional monitoring wells or other sampling locations to monitor wetlands groundwater quality, interceptor trench water quality, or groundwater extraction water quality. Additional monitoring wells and sampling locations will be initially added through modifications to the ICMP. The final design for the compliance monitoring well network will be presented in the OMI&MP during Phase 2.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank

6.0 Institutional Controls

The cleanup action specified in the 2008 CAP includes a containment remedy for the Landfill; therefore, the cleanup action will rely on institutional controls to achieve cleanup goals. These institutional controls include on-site features restricting access to the Landfill, such as signs and fences to protect the integrity of the landfill cap and remedy, and legal mechanisms, which may include lease restrictions, deed restrictions, land use and zoning designations, or building permit requirements.

The Trust implementing this remedy does not own any of the properties affected by the remedy. Therefore, to obtain permission to implement these institutional controls at the Site, the Trust will have to negotiate with the current owners of the properties. As described in the Consent Decree, the Trust will take reasonable actions necessary to implement institutional controls for the remedy short of litigation. Figure 1.1 shows current property ownership in the vicinity of the B&L Site.

6.1 RESTRICTING SITE ACCESS (FENCING, GATES, SIGNS)

The Landfill is currently surrounded by security fencing adequate to protect the landfill cap. Sections of this fence will be temporarily removed for construction activities; portions of the cap may be relocated. The fencing will be replaced following construction of the barrier wall and interception trench. Details regarding changes to the fence are included in Addendum 1 to this EDR.

A gate has been installed on the access road to the B&L Property at Fife Way. This gate is expected to prevent unlawful vehicular access to the B&L property and reduce the illegal dumping of trash and debris that has been evident in recent years. At the request of the City of Milton, additional signs have been placed along the Interurban Trail indicating the dangers of the surface water in adjacent ditches. Maintenance and inspection of the signs and entry gate will be incorporated into the ICMP. The final components for security and signage for the B&L Property will be addressed in the OMI&MP.

6.2 INSTITUTIONAL CONTROLS

Under MTCA, institutional controls can include use restrictions limiting the use of the subject property or resources. These restrictions are typically implemented through legal mechanisms such as lease restrictions, deed restrictions, land use and zoning designations, or building permit requirements. Because the Site includes a closed landfill, a restrictive covenant will be required on the B&L Property. Although the Landfill has been located on the B&L Property in its present configuration since 1993, no records of a restrictive covenant were found among the documents recorded for this parcel with the Pierce County Auditor. A restrictive covenant requiring that the Site security features be maintained, restricting invasive work at the Landfill, and limiting withdrawal of groundwater will be drafted for the B&L Property and included with Addendum 3.

Use restrictions and groundwater recovery restrictions may be required for portions of adjacent properties until groundwater CULs are attained. Washington State Well Regulations already require that no drinking water well be screened at depths less than 20 feet and wells are banned from being drilled within 1,000 feet of an existing landfill. Water rights to Hylebos Creek and to groundwater needed to protect flows into Hylebos Creek have been closed since 1976 (WAC 173-510-040 and -050). The need for and scope of any additional restrictions will be determined during Phase 2 of the remedy implementation. Restrictive covenants for adjacent properties, if any, will be included with Addendum 3.

Because the entity that is implementing the 2008 CAP remedy is not the owner of any portion of the Site, negotiations with the property owners will be necessary to determine the nature of the instruments to be used to impose any restrictive covenants needed to protect human health and the environment.

7.0 CAP Implementation

7.1 PERMITTING REQUIREMENTS UNDER MTCA

This cleanup action is being conducted under an Ecology Consent Decree and, therefore, is exempt from the procedural requirements of certain Washington laws and all local permits (WAC 173-340-710[9][b]); however, it must comply with the substantive requirements of these laws and permits and it must comply with any federal permits that may be required.

The exemption from procedural requirements applies to the following laws:

- Washington Clean Air Act (RCW 70.94)
- Solid Waste Management Act (RCW 70.95)
- Hazardous Waste Management Act (RCW 70.105)
- Construction Projects in State Waters (RCW 77.55)
- Water Pollution Control Act (RCW 90.48)
- Shoreline Management Act (RCW 90.58)
- Any laws requiring or authorizing local government permits or approvals

The permitting exemption is not applicable if Ecology determines that the exemption would result in the loss of approval from a federal agency that may be necessary for the state to administer any federal law. For this reason, any component of the cleanup action requiring a permit under Section 402 (NPDES) or Section 404 (dredge and fill) of the federal Clean Water Act, must obtain a permit prior to implementation.

The cleanup action for the Site will fully comply with all action-, chemical- and location-specific Applicable or Relevant and Appropriate Requirements (ARARs) as described in the final 2008 CAP (Ecology 2008). The cleanup action also includes all of the regulatory elements for landfill closure, as specified in Minimum Functional Standards for Solid Waste Landfills (WAC 173-304), including the use of a slurry wall to halt migration of leachate and contaminated groundwater from beneath the Landfill. Table 7.1 provides a summary of general permitting and substantive requirements with a description of how these requirements will be met. The specific permitting requirements for each component of the remedy will be addressed in the Addenda to this EDR that will be prepared as work proceeds under Phases 1 and 2.

7.2 PHASED IMPLEMENTATION APPROACH

Under the Consent Decree, the cleanup actions specified in the 2008 CAP will be implemented using a phased approach. As described in the SOW (Exhibit B to the Consent Decree), the 2008 CAP implementation will occur in three major work phases: Phases 1 and 2 comprise the initial construction that will be performed by the Trust under the Consent Decree. Phase 3, consisting of long-term operations, monitoring, and maintenance, will be performed by Ecology.

The first two implementation phases include design and construction of all components of the remedy specified in the 2008 CAP; at the completion of Phase 2, all components of the final 2008 CAP remedy will be installed and functional, and all work specified in the Consent Decree will be complete

The three implementation phases acknowledge major design, construction, and operations milestones. At the completion of Phase 1, physical containment of the Landfill will be complete, and in-situ treatment will be active for the End-of-Plume CAA. At the completion of Phase 2, contaminated sediments will be removed from area ditches, hydraulic containment will be established for the Landfill CAA, the remedy for the Wetlands CAA will be installed and operational, and it is expected that the End-of-Plume CAA will have attained the cleanup objectives for that area. The OMI&MP that will be prepared during Phase 2 will document plans for long-term containment of the Landfill CAA, final cleanup of the Wetlands CAA, and long-term maintenance and monitoring of the remedy. Phase 1 and 2 work may overlap to effectively and efficiently implement the 2008 CAP. An overview of the work to be performed during Phases 1, 2 and 3 is provided below.

7.2.1 Phase 1

Phase 1 includes activities necessary for the design and construction of the barrier wall, interceptor trench, and the remedy for the End-of-Plume CAA. Predesign investigations have been or are being conducted within all three CAAs. Field data collection and hydrogeologic modeling to support barrier wall and interceptor trench design have been completed. Engineering for the implementation of the barrier wall and interceptor trench is presently underway. Preliminary design and engineering is provided in Addendum 1 to this EDR. Construction of the barrier wall, interceptor trench, and End-of-Plume remedy will take place in Phase 1.

Additional field data are presently being collected as part of the Phase 1 implementation for design of the End-of-Plume CAA remedy. Design and engineering for the End-of-Plume remedy will be provided in Addendum 2 to this EDR. Additional field data will also be collected as part of Phase 1 to complete delineation of the northern extent of the newly identified western lobe of the groundwater arsenic plume. Collection of hydrogeologic data will continue during the Phase 1 implementation to support collection of seasonal hydrologic and hydrogeologic data needed to support groundwater modeling and transient model calibration and establish a baseline representative of full seasonal variation for use during Phase 2.

7.2.2 Phase 2

The Phase 1 construction of the barrier wall and interceptor trench around the Landfill will significantly change the hydrogeologic conditions in the vicinity of the Landfill, including within the Wetlands area immediately downgradient of the Landfill. Additional data collection studies to be conducted during Phase 2 will assess these changes and support design of a cost-effective hydraulic control component for the Landfill. These studies will also support design and implementation of a cost-effective remedy for the Wetlands CAA and Halo areas within the Landfill CAA. The contaminated sediments in the agricultural ditches will also be cleaned up as

part of the Phase 2 implementation. Design and engineering for the groundwater extraction and treatment system, ditch cleanup, and Wetlands CAA remedy will be provided in Addendum 3 to this EDR.

Phase 2 will complete the installation and startup of all remedy components specified in the 2008 CAP. The extraction and treatment systems for the Landfill CAA and the Wetlands CAA will be constructed and operations will commence during Phase 2. Contaminated ditch sediments will be excavated and removed from the Site for off-site disposal. Treatment of the End-of-Plume CAA will continue during Phase 2 to achieve the cleanup objectives specified in the 2008 CAP. Installation of the compliance monitoring network will be completed, and the OMI&MP will be prepared and implemented during Phase 2.

7.2.3 Phase 3

On completion of Phase 2, the initial construction specified under the Consent Decree will be complete and Ecology will assume responsibility for implementation of the third and final implementation phase for implementation of the remedy specified in the 2008 CAP. Phase 3 consists of long-term operations, maintenance, inspection, and monitoring. The scope of the Phase 3 activities will be documented in the OMI&MP.

7.3 CAP IMPLEMENTATION SCHEDULE

The implementation of the 2008 CAP will take several years to complete. Phase 1 implementation commenced when the Consent Decree was formally entered by the Court on July 24, 2008. The general schedule projected for implementation of the 2008 CAP is shown in the table below. Dates are subject to change. Detailed schedules will be included in the Addenda to this EDR for each major portion of work described in this EDR.

TASK	EXPECTED DATES		
IASK	Begin	End	
Barrier Wall and Interceptor Trench	August 2009	November 2009	
End-of-Plume Remedy (on-going injections)	September 2009	August 2012	
Groundwater Treatment Plant Construction/Startup	April 2011	December 2011	
Hydraulic Containment System Operation, Landfill/Ditch CAA	December 2011	No end date	
Ditch Sediment Remediation	August 2011	September 2011	
Installation of Wetlands and Halo Extraction System	July 2011	September 2011	
Wetlands and Halo Pump and Treat, Wetlands CAA	December 2011	Unknown	
Phase 2 Completion, Transition to Ecology		January 2013	

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

8.0 References

- City of Milton 2008. City of Milton, Current Zoning Map. Accessed online at http://www.cityofmilton.net/files/library/6bd9774208d32037.pdf. Accessed 18 September.
- Federal Emergency Management Agency (FEMA). 1987. Flood Insurance Study—Pierce County, Washington, Unincorporated Areas.
- Floyd|Snider. 2006. *Wetlands Investigation Data Report, B&L Landfill Milton, Washington.*Prepared for Murray Pacific Corporation. 8 February.
- _____. 2007. *B&L Landfill Groundwater Alternatives Evaluation*. Prepared for Murray Pacific Corporation, Tacoma, Washington. January.
- Floyd|Snider/AMEC 2009a. *Groundwater Remediation Work Plan.* Prepared for B&L Custodial Trust, Olympia, Washington. January.
- _____. 2009b. *Compliance Monitoring Report.* Prepared for B&L Custodial Trust, Olympia, Washington. 26 February.
- Harbaugh, A.W. and M. B. McDonald. 1996. User's Documentation for MODFLOW-96, An Update to the U.S. Geological Survey Modular Finite-difference Ground-water Flow Model: U.S. Geological Survey Open-File Report 96-485.
- Harbaugh, A.W., E.R. Banta, M. C. Hill, and M. G. McDonald. 2000, MODFLOW-2000, The U.S. Geological Survey Modular Ground-water Model—User Guide to Modularization Concepts and the Ground-water Flow Process: U.S. Geological Survey7 Open-File Report.
- Hruby, T. 2004. Washington State Wetland Rating System for Western Washington, Revised: Washington State Department of Ecology, Publication # 04-06-025, Olympia, Washington.
- Hydrometrics, Inc. 1994. *Closure Report B&L Landfill*. Prepared for Mr. Thomas L. Aldrich, Asarco Incorporated. 6 May.
- _____. 2001a. Review of Remedial Activities at the B&L Landfill. Prepared for Mr. Thomas E. Martin, Site Manager, Asarco Incorporated. May.
- _____. 2001b. Contingency Plan for the B&L Landfill. Prepared for Mr. Thomas E. Martin, Site Manager, Asarco Incorporated. June.
- In re: Asarco LLC et al. Case No. 05-21207. Chapter 11 (Jointly Administered). 2007. Settlement Agreement Regarding the B&L Woodwaste, Washington Site.

AMEC Geomatrix

Kennedy/Jenks/Chilton (KJC) and AGI. 1990a. Focused Feasibility Study B&L Woodwaste Site. Prepared for Murray Pacific. September.
1990b. Focused Remedial Investigation B&L Woodwaste Site. Prepared for Murray Pacific. September.
McDonald, M.G. and A. W. Harbaugh. 1988. A ModularTthree-dimensional Finite differenceGground-water Flow Model: U.S. Geological Survey Techniques of Water-Resources Investigation: p. 586 in Book 6, Chap. A1.
MSG Engineering Consultants, Inc., Montgomery Water Group, Inc., GeoEngineers, Kirsty Burt Geographic Information Services. 2004. <i>Analysis of the SR-167 Extension and Riparian Restoration Proposal in the Hylebos Watershed Hydrology, Hydraulics and Geomorphology.</i> Prepared for Washington State Department of Transportation. November.
National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) 2009. Precipitation data from Tacoma City Hall station (1897–1981) and Tacoma #1 (1981 -2008). http://www.ncdc.noaa.gov/oa/climate/climateinventories.html, accessed on January 12, 2009
Pierce County. 2008. Pierce County Planning Cartography Lab, Zoning and Land Use Designations Geospatial_Data_Presentation_Form: vector digital data as of 1 June. ">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/map.cfm?Cmd=INIT>">http://matterhorn.co.pierce.wa.us/Publicgis/presentation/matterhorn.co.pierce.wa.us/Publicgis/presentation/matterhorn.co.pierc
Pierce County Department of Emergency Management. 2004. <i>Pierce County Natural Hazard Mitigation Plan, 2004–2009 Edition.</i> Adopted by Pierce County Council, October 26, 2004. November.
State of Washington Department of Ecology vs. Murray Pacific Corp. 2008a. Consent Decree No. 08-2-10610-7 and Exhibits. 24 July.
2008b Custodial Trust Agreement between Murray Pacific Corporation and Daniel J. Silver. 24 July.
U.S. Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetland Delineation Manual: Corps, Environmental Laboratory, Waterways Experiment Station, Technical Report Y-87-1. Vicksburg, Mississippi.
2009. Letter to Mr. Daniel Silver from Michael Lamprecht re: no Section 404 Department of the Army permit required. Reference: NWS-2008-1255-SO B&L Woodwaste Site Trust. 19 March.

U.S. Environmental Protection Agency (USEPA). 2007. Monitored Natural Attenuation of Inorganic Contaminants in Groundwater, Vol. I and Vol. II. October.

AMEC Geomatrix

- U.S. Fish and Wildlife Service (USFWS). 2008. National Wetlands Inventory. http://www.fws.gov/nwi/WetlandsData/GoogleEarth.htm. Accessed May.
- Washington State Department of Ecology (Ecology). 1991. Final Cleanup Action Plan B&L Woodwaste Site, Milton, Washington. October..
- . 2008. Final Cleanup Action Plan B&L Woodwaste Site. January.
- Washington State Department of Transportation (WSDOT). 2006. *SR 167 Puyallup to SR 509 Tier II Final Environmental Impact Statement and Section 4(f) Evaluation*. U.S. Department of Transportation Federal Highway Administration, Army Corps of Engineers, City of Fife. November.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Tables

Table 5.1
Interim Compliance Monitoring Well Information

Monitoring Well	Installed By	Date Installed	Total Depth Drilled (feet bgs)	Total Depth Cased (feet bgs)	Screened Interval (feet bgs)	Casing Size (ID; in.)	Approximate Ground Surface Elevation ¹ (feet NAVD 88)	Measuring Point Elevation ¹ (feet NAVD 88)	Northing ¹ (feet NAD 83/98)	Easting ¹ (feet NAD 83/98)
	Upper Sand Aquifer									
D-1U	AGI	9/19/1989	15	13.1	8.1–13.1	2	13.764	15.154	702581.1467	1186263.53
D-5U	AGI	7/25/1990	16.5	13.5	8.5–13.5	2	13.339	17.364	702321.4743	1185708.41
D-6A	Hydrometrics	10/26/1993	15	15	10–15	2	13.094	14.128	702465.581	1185996.46
D-7A	Hydrometrics	10/25/1993	14.5	14.5	9.5–14.5	2	15.269	15.854	702190.9768	1185698.42
D-8A	Hydrometrics	11/10/1993	17	15	10–15	2	14.954	16.174	701886.3802	1185691.53
D-9A	Hydrometrics	11/11/1993	16	13.5	8.5-13.5	2	15.514	17.164	701581.3487	1186172.04
D-10A	Hydrometrics	11/9/1993	15	15	10–15	2	19.501	21.534	701754.648	1186794.84
D-11A	Hydrometrics	11/9/1993	15	15	10–15	2	17.925	19.89	702114.962	1186710.32
MW-23	Hydrometrics	4/1/2002	20.5	17.28	7.28-17.28	2	17.264	20.474	701768.884	1186707.69
MW-30	Floyd Snider	9/14/2006	21	21	16–21	3/4	18.516	18.516	702394.4934	1186126.76
MW-13	Hydrometrics	9/16/1998	15	14.5	9.5-14.5	2	13.304	15.434	702573.9139	1186104.44
MW-14	Hydrometrics	9/16/1998	15	15	10–15	2	12.746	15.201	702656.6904	1185883.56
MW-15	Hydrometrics	9/17/1998	15	15	10–15	2	12.754	15.319	702717.8081	1186011.71
MW-16	Hydrometrics	9/17/1998	15	15	10–15	2	13.364	15.799	702799.199	1186173.74
MW-17	Hydrometrics	9/17/1998	15	15	10–15	2	12.472	15.197	702857.742	1185983.46
MW-31A	Floyd Snider	3/23/2007	22	22	17–22	2	14.057	16.482	702917.222	1185835.9
Lower Sand Aquifer										
D-1L	AGI	9/18/1989	30.3	30.3	25.3-30.3	2	13.514	15.084	702586.7477	1186260.33
D-5L	AGI	7/24/1990	30.75	30.3	25.3-30.3	2	13.589	17.189	702330.3977	1185711
D-6B	Hydrometrics	10/26/1993	33	33	28-33	2	13.044	14.541	702460.2	1185997.9
D-7B	Hydrometrics	10/25/1993	34	33	28-33	2	15.169	16.429	702196.2509	1185699.32
D-8B	Hydrometrics	11/11/1993	35	33	28–33	2	14.784	16.179	701881.042	1185691.09
D-11B	Hydrometrics	11/10/1993	34	30	25–30	2	17.985	19.934	702110.806	1186706.36
MW-31B	Floyd Snider	3/23/2007	40	40	35–40	2	14.057	16.322	702916.222	1185840.57

Notes:

Abbreviations:

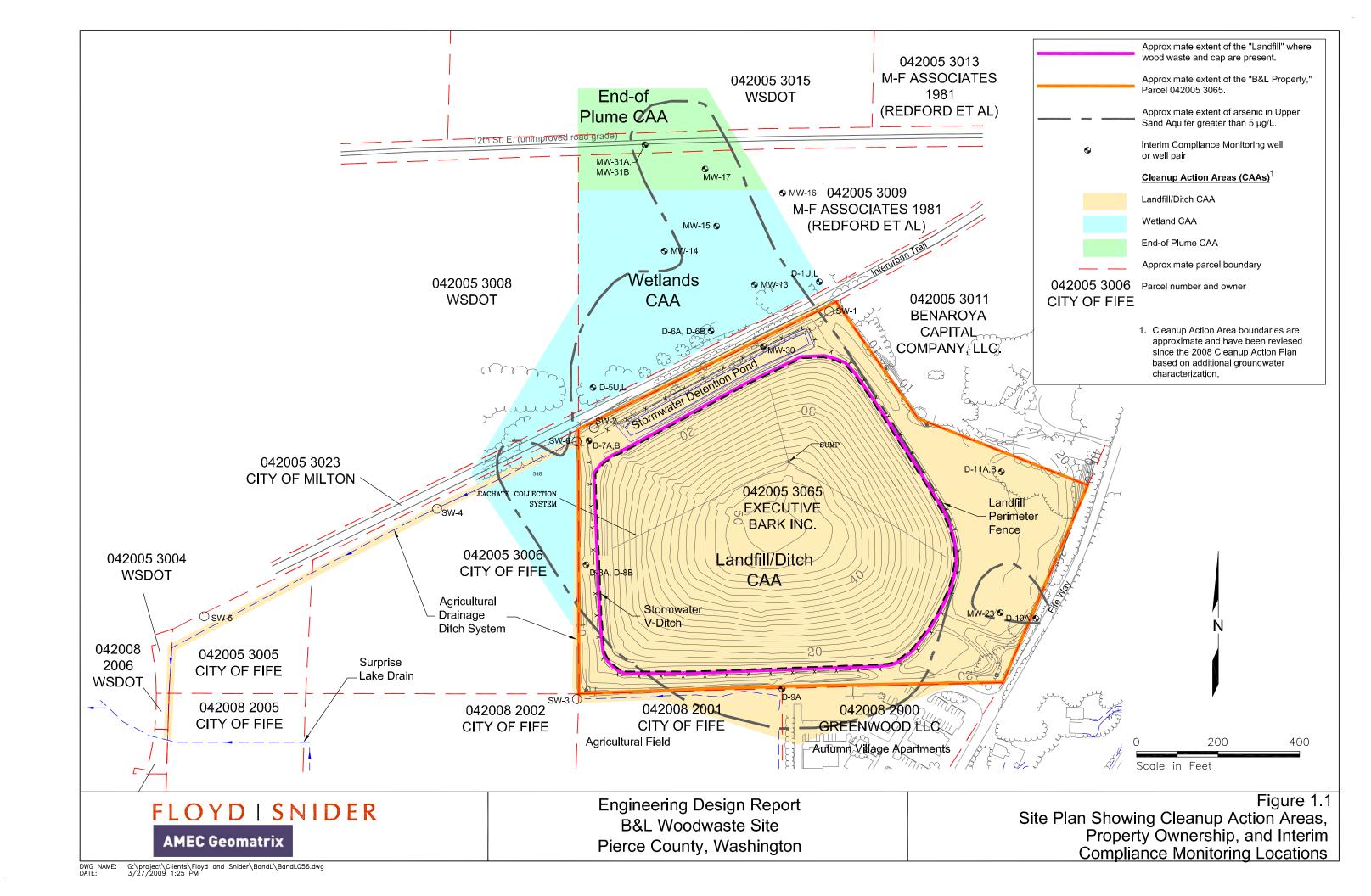
bgs Below ground surface

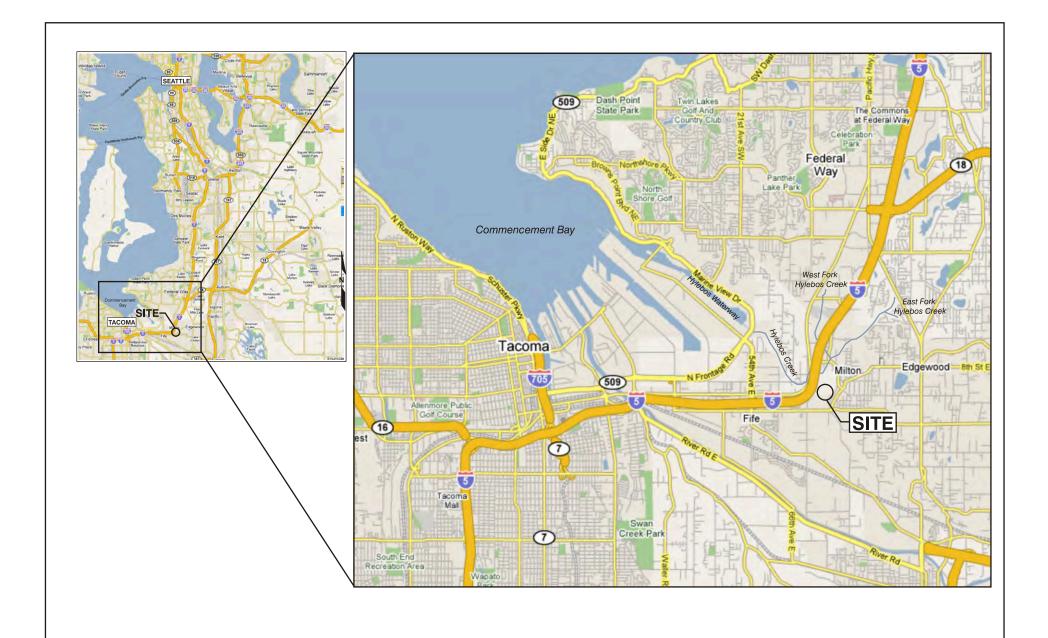
in Inches

ID Internal diameter

NAD 83/98 North American Vertical Datum of 1983/1998 NAVD 88 North American Vertical Datum of 1988

¹ Survey information from November-December 2008 survey.

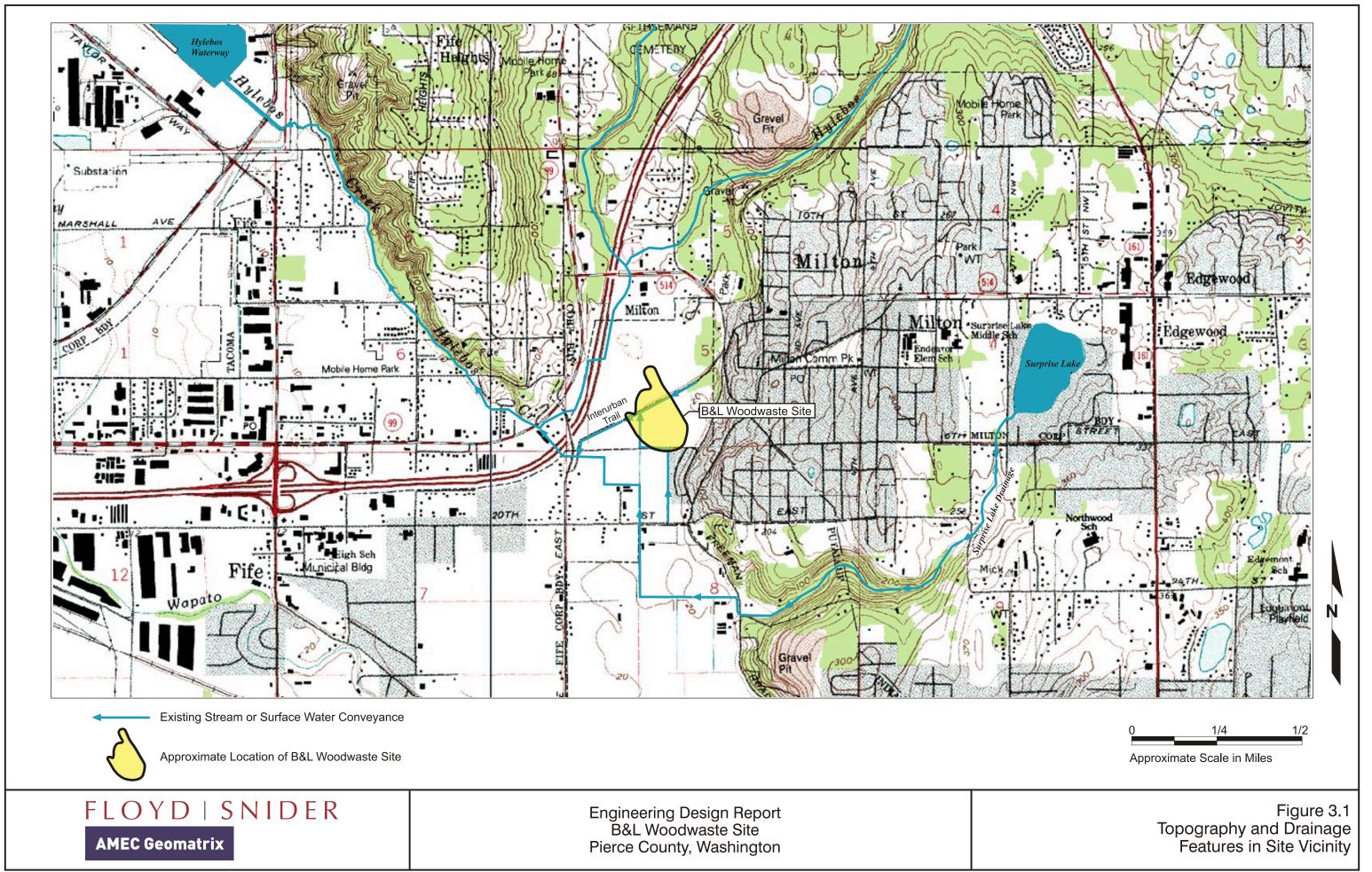

Table 7.1
Permitting and Substantive Requirements Documentation

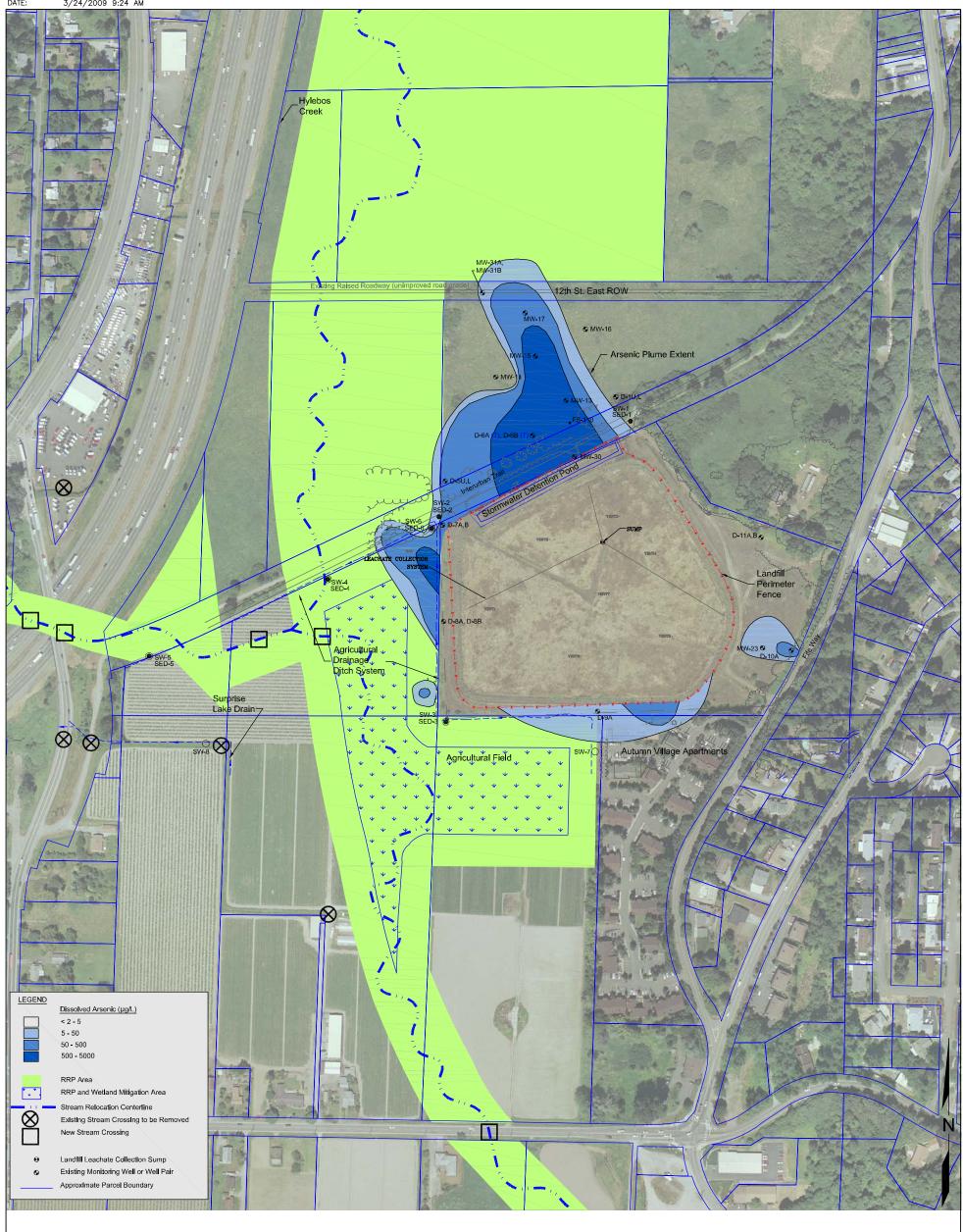

Activity	Regulating Agency	Code/Citation	Permit Required?	Comments	
Construction Stormwater Management—Erosion and Sediment Control	Ecology	Stormwater Management Manual for Western Washington	NPDES Construction Stormwater General Permit	Follow Ecology's Stormwater Management Manual for the Puget Sound Basin and Pierce County Stormwater Management Plan.	
	Pierce County	Title 17A—Construction and Infrastructure Regulations–Site Development and Stormwater Drainage	MTCA Exemption Title 17A.10.050(I)		
Grading and clearing	Pierce County	Chapter 8—Pierce County Stormwater Management and Site Development Manual	No permit, but must meet substantive requirement	This manual is incorporated by reference in Title 17A and by ordinance. Provides best management practices for grading and sediment control.	
Drainage from Interceptor Trench	•	•			
Discharge to Privately Owned Property	Pierce County	Title 17A.40.080	Permission needed	Obtain written permission/easements from the owners of record for both the closed depression and potential overflow routes receiving the runoff.	
Infiltration Trench	Ecology	Underground Injection Control (UIC)	The trench is not regulated as a underground injection control (UIC) well if it does not meet Class V requirements	If an infiltration trench is "deeper than its widest surface dimension," or includes an assemblage of perforated pipes, drain tiles, or other similar mechanisms intended to distribute fluids below the surface of the ground, it would probably be considered a Class V injection well.	
Overflow into Ditches	•	1	1		
Discharge to Privately owned Property	Pierce County	Stormwater Drainage Title 17A.40.080	Written permission/easement with owners recorded with Pierce County Auditor	t Because stormwater cannot be controlled by shutting off pumps, to maintain capacity it mbe necessary for clean cap stormwater to flointo both the ditches and the wetland north of the Interurban Trail. In this case, these requirements would apply.	
	Pierce County Drainage District #23		Permission needed		
End-of-Plume Injection	•	·	•		
Underground Injection Control (UIC)	Ecology	WAC 173-218	Registration Required	Registered for UIC. Rule Authorized.	
Washington Water Wells	Ecology	WAC 173-160	Start Card Required	Standard well installation procedures followed.	

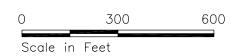
B&L Woodwaste Site Pierce County, Washington

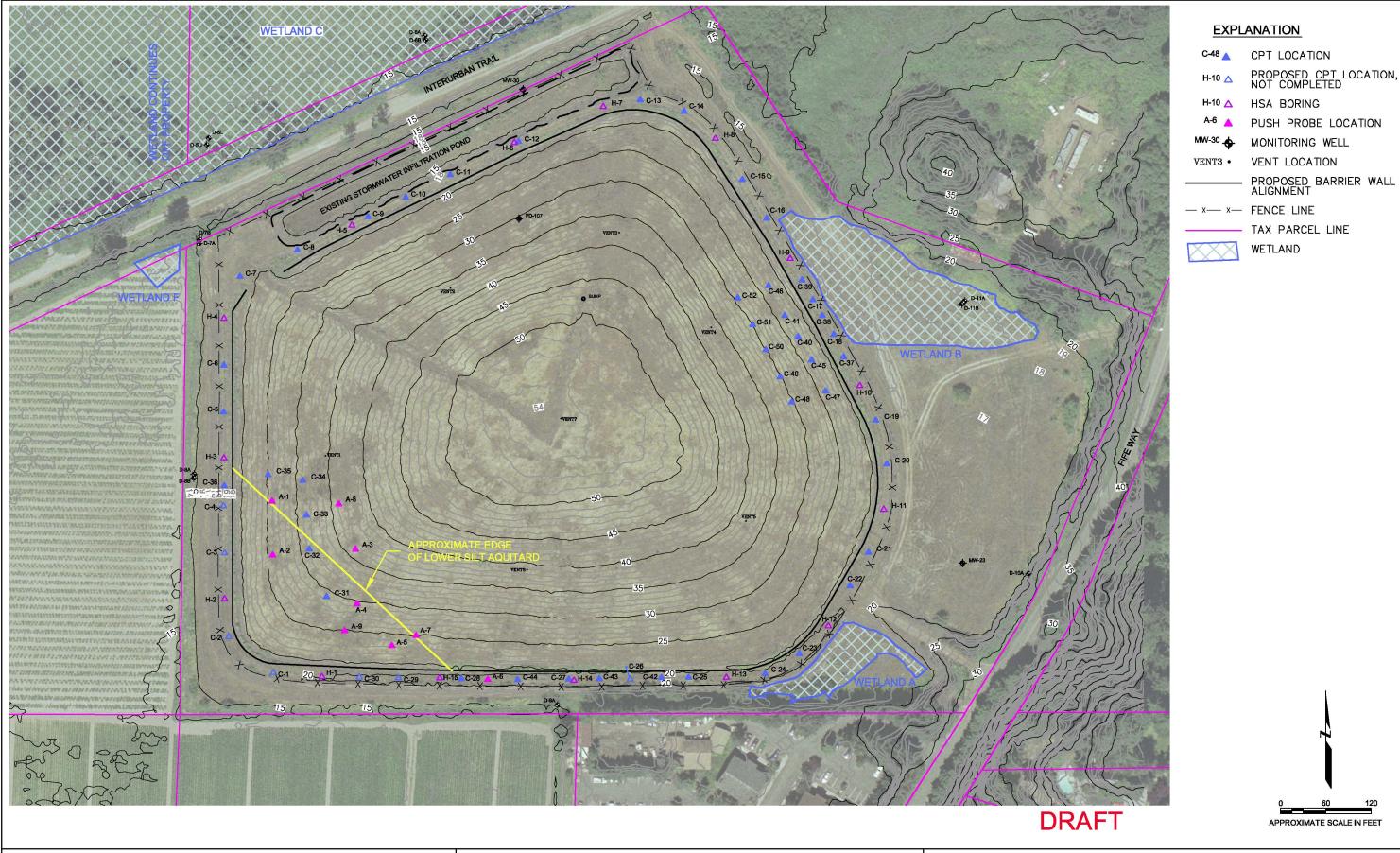
Engineering Design Report (EDR)

Figures

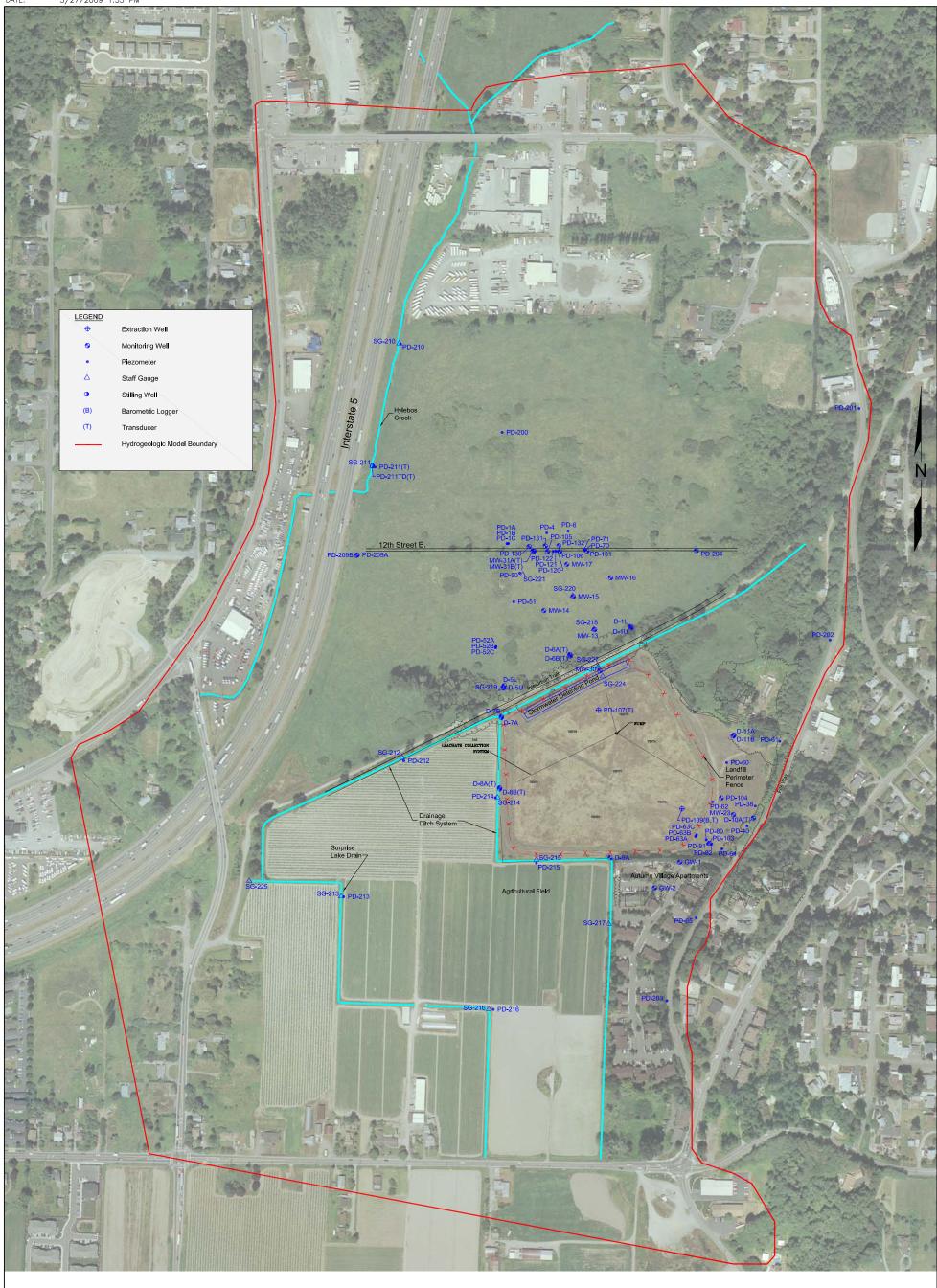





FLOYD | SNIDER


AMEC Geomatrix

Engineering Design Report B&L Woodwaste Site Pierce County, Washington Figure 2.1 Vicinity Map

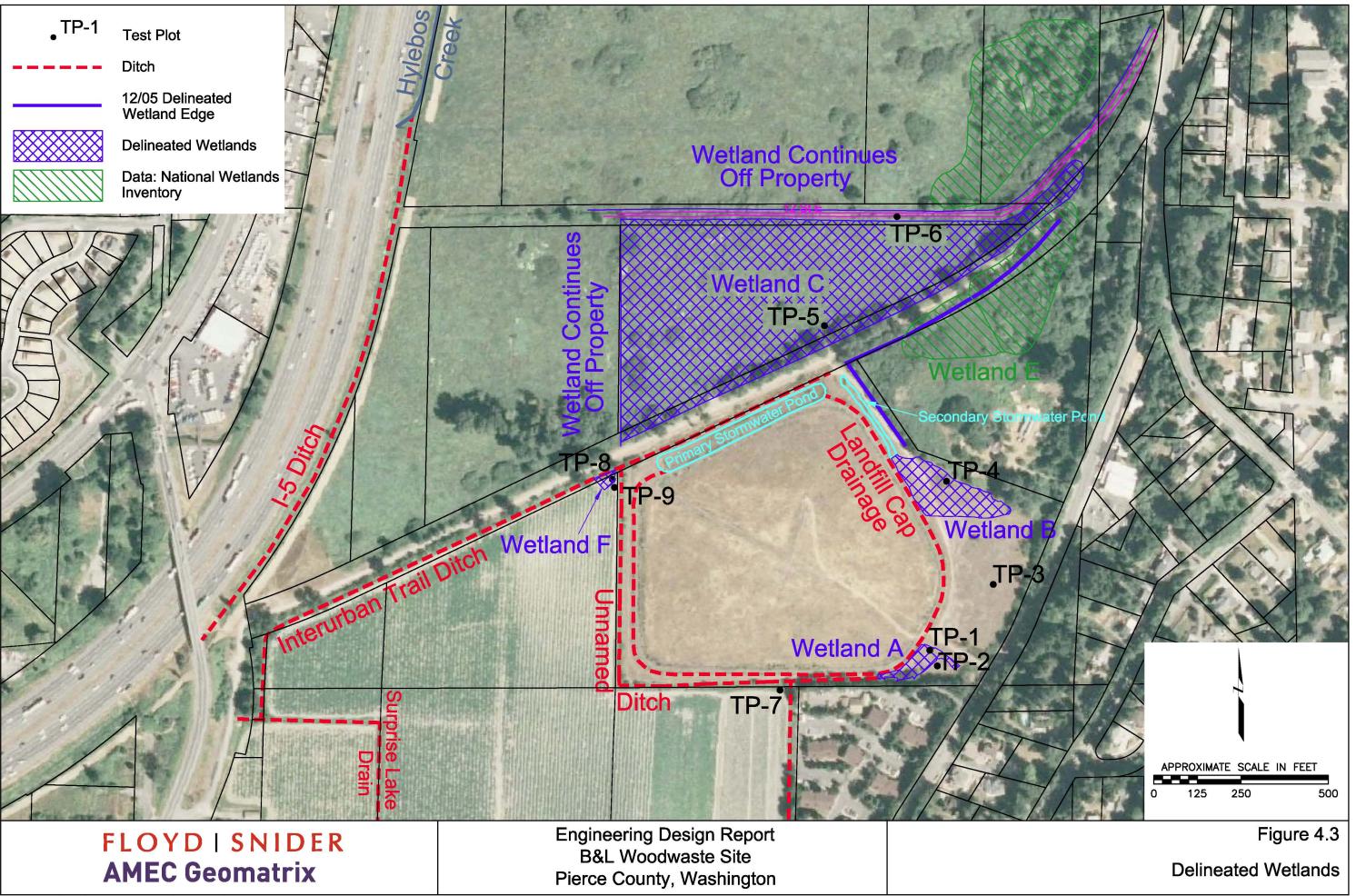


FLOYD | SNIDER AMEC Geomatrix

Engineering Design Report
B&L Woodwaste Site
Pierce County, Washington

Figure 4.1

Geotechnical Exploration Locations



0 400 800 Scale in Feet

FLOYD | SNIDER

AMEC Geomatrix

Engineering Design Report B&L Woodwaste Site Pierce County, Washington Figure 4.2
Phase 1 Hydrogeologic Monitoring
Points and Model Domain

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Appendix A Arsenic Characterization Study Data Report

600 University Street, Suite 1020 Seattle, WA 98101

601 Union Street, Suite 600 Seattle, WA 98101

Technical Memorandum

To: Dom Reale, Department of Ecology

Copies: Dan Silver, B&L Custodial Trust

From: Teri Floyd, Larry McGaughey, Brett Beaulieu

Date: December 10, 2008

Project No: B&L RIM

Re: Arsenic Characterization Study Data Report

INTRODUCTION

In this technical memorandum, the data supporting the delineation of arsenic contamination in groundwater at the B&L Woodwaste Site (Site) are presented. These data include compliance monitoring results from the September/October 2008 sampling event in addition to the data collected in the recently completed Arsenic Characterization Study. The purpose of the Arsenic Characterization Study was to fill data gaps necessary for implementation of the Site remedy specified in the final Cleanup Action Plan (CAP) issued by the Washington Department of Ecology (Ecology) in July 2008. As described in the Final Characterization Work Plan (FCWP, Appendix G of the Groundwater Remediation Work Plan [GRWP]), additional data collection was conducted in areas where the extent of arsenic in the Upper Sand Aquifer (USAq) was uncertain or where more precise delineation was necessary for design of the CAP remedy. The recently collected data were gathered from the following areas:

- The arsenic plume beneath the Wetlands immediately north of the Landfill, including the End-of-Plume area
- The Halo area along the western edge of the Landfill (Halo West)
- The Halo area along the southern edge of the Landfill (Halo South)
- The discrete Halo area east of the Landfill, near Wells D-10A and MW-23 (Halo East)

With the modifications noted below, the Arsenic Characterization Study was carried out as described in the FCWP.

FIELD METHODOLOGY

Groundwater and Soil Sampling Methods

Groundwater samples were collected from the depth intervals described in the FCWP. In general, two intervals within the USAq were sampled at each location: an upper and lower

FLOYD | SNIDER AMEC Geomatrix

interval, according to the rationale provided in the FCWP. Retractable-screen groundwater samples were collected from direct-push borings in accordance with the procedures described in the FCWP and the SAP/QAPP (Appendix B of the GRWP). Analytical laboratory reports are included as Attachment A.¹

Soil samples were collected and logged for each groundwater sampling location in accordance with the FCWP and SAP/QAPP. Boring logs are included as Attachment B. In selected locations in the Halo West area, including hand-dug shallow sample locations, soil sub-samples were collected and submitted for total arsenic analysis according to standard methods and procedures described in the SAP/QAPP. Analytical laboratory reports for soil are included in Attachment A.

In one location where the interval being sampled did not produce sufficient water for sampling (the lower interval at PD-30; refer to Figure 1), the sample from this interval was not collected.

In three locations in the Halo East area (PD-41, PD-42, and PD-43; refer to Figure 2), the standard procedure was lightly modified. Borings at these locations were advanced as step-out borings to supplement the initial delineation locations in this area. Preliminary results from the initial borings indicated that elevated arsenic was limited to upper-interval groundwater. Therefore, only the upper interval was sampled in these three locations. No soil was sampled and no boring logs were produced for these locations.

Arsenic Field Test Screening

Hach Arsenic Test Kits were specified for field screening in the FCWP. The test kits were used for field testing of arsenic in groundwater for the Halo East and End-of-Plume areas to provide rapid screening results and to improve the efficiency of the delineation process. The results of arsenic field screening were recorded in the field log book and were initially used by the field geologist to determine whether additional step-out borings were warranted. Where field test results indicated concentrations greater than approximately 10 μ g/L, additional borings were advanced to delineate the plume boundaries.

After the laboratory analytical results were received and reviewed, it became apparent that the arsenic field test kit was not a reliable measurement of whether or not arsenic was greater than 10 μ g/L. The margin of error in the colorimetric test kits was greater than expected and greater than described in the test kit literature. Therefore, the use of the test kits was discontinued and field testing was not used to assist with the delineation of arsenic in the Halo West and Halo South areas.

Laboratory Analyses and Field Quality Control

As specified in the FCWP, the only constituent analyzed for was dissolved arsenic. For retractable-screen groundwater sampling, dissolved arsenic (field filtered using disposable 0.45 µm filters) is considered the appropriate measurement of groundwater arsenic, due to the turbid nature of retractable-screen samples and the presence of natural arsenic within soil.

_

¹ Due to its volume, Attachment A is included as a standalone PDF file.

Equipment decontamination and field quality control procedures were performed as described in the SAP/QAPP.

ARSENIC CHARACTERIZATION STUDY RESULTS

Halo West—Groundwater

Results for delineation of arsenic in groundwater for the Halo West area are presented in Table 1 and illustrated in Figure 1 with relevant monitoring well and surface water sampling results from September/October 2008 compliance monitoring. Direct-push boring locations (PD-13 through PD-21) were advanced in north to south transects in the agricultural field west of the Landfill and drainage ditch. Additional step out boring locations (PD-22, PD-90, PD-91, PD-92, PD-94, PD-96, and PD-97) were advanced around areas that required further delineation to the west in Fife field.

Concentrations of dissolved arsenic in the upper interval of the USAq (typically 4- to 8-feet below ground surface [bgs]) ranged from non-detect to 390 μ g/L. Dissolved arsenic in groundwater from the lower interval of the USAq (typically 12- to 16-feet bgs) ranged from non-detect to 950 μ g/L.

The majority of detections of elevated arsenic in Halo West groundwater occurred in borings advanced in the northern area. Groundwater in the northern portion of the Halo West area exceeded the Site cleanup level (5 μ g/L) in both depth intervals within the USAq, and these results indicate that a lobe of the elevated arsenic plume extends several hundred feet beyond the property boundary with the Landfill.

This Halo West plume is present beneath the northeastern corner of the agricultural field and may extend northward into the adjacent, downgradient parcels. The western extent of the plume has been delineated as shown on Figure 1. The northern extent of the plume as it approaches the ditch, Interurban Trail, and wetlands to the north has not yet been fully delineated, as noted by the broken lines in this area on Figure 1.

With one exception, the concentrations of dissolved arsenic in the southern portion of Halo West area were reported at or below the Site cleanup level of 5 μ g/L. Concentrations in the upper interval ranged from non-detect to 5 μ g/L. In one location, PD-18, a dissolved arsenic concentration of 160 μ g/L was detected in groundwater from the lower interval. Borehole PD-18 is located downgradient of the area where slag was observed in shallow soil outside the Landfill as described below. Lower interval groundwater surrounding PD-18 was otherwise less than the detection limit of 2 μ g/L, indicating that the issue is very localized around PD-18.

Halo West—Observed Wood Debris in Soil

During the Cultural Resources Survey, shovel test pits (STPs) were advanced in the City of Fife fields to the west of the Site to look for artifacts of historical or cultural significance. Wood debris was identified in shallow soil in several of the test pits along the western boundary of the B&L Property. Additionally, an isolated piece of slag was identified in STP-6 located in the agricultural field on the west side of the ditch near the southwestern corner of B&L Property.

FLOYD | SNIDER AMEC Geomatrix

The STP locations, approximate extent of observed woody material, and the location of the observed slag are shown in Figure 1.

Observations of woody material were treated as if they were associated with Landfill wood waste due to their shallow depth and the presence of slag. Native deposits of woody material are also frequently encountered in borings at the Site, though typically at deeper intervals, and consistent with the wetlands nature of the Site.

This finding of wood debris outside the Landfill resulted in additional characterization work outside the scope of the investigation described in the FCWP. Based on this finding, additional step-out direct-push borings were advanced further to the west to assess the extent of woody material and whether the material had impacted groundwater. The characterization was supplemented by STPs and shallow soil sample locations. The extent of woody material in shallow soil is generally limited to shallow soil at depths of approximately 1.5- to 2-feet bgs within approximately 30-feet west of the ditch between the agricultural field and the Landfill. As shown in Figure 1, woody material was also observed in shallow soil further from the Landfill boundary in STP 20.

The finding also resulted in collection and analysis of soil and woody material samples. Soil results are provided in Figure 1 and Table 2. The soil and woody material data suggest that the woody material did not exceed soil cleanup levels (for example, arsenic was detected at 2.3 mg/kg in a representative sample from location P-4). The data also suggest no correlation between woody material and elevated arsenic in groundwater with the possible exception of PD-18, which was located near the observed piece of slag in shallow soil.

Arsenic was detected in shallow soil above the Site cleanup level of 20 mg/kg at location PD-13, which is near the northwest corner of the Landfill. No woody material was observed in shallow soil at this location. The elevated arsenic concentration in soil at PD-13 may be associated with the elevated arsenic present in sediment within the nearby ditch.

Halo South

Results for the Halo South arsenic delineation are presented in Table 3 and illustrated in Figure 1; this figure includes direct-push and monitoring well sampling results from September/October 2008 compliance monitoring. Direct-push boring locations (PD-25 through PD-34) were advanced south of the Landfill in the agricultural field and in the northwestern portion of the Autumn Village Apartments property. Dissolved arsenic concentrations from the upper interval (typically 4- to 8-feet bgs) ranged from non-detect to 180 μ g/L, and from the lower interval (typically 11- to 15-feet bgs) ranged from non-detect to 27 μ g/L.

The highest concentration of dissolved arsenic, 180 μ g/L, was detected within the upper sampling interval of the USAq at PD-31. This boring is located on the Autumn Village Apartments property, approximately 50 feet from the Landfill boundary, where elevated arsenic concentrations were anticipated based on previous sampling results. The extent of elevated arsenic in groundwater near PD-31 is bounded to the southwest by Boring PD-30, in which arsenic was below the cleanup level at a depth of 5- to 9-feet bgs.

Boring locations PD-33 and PD-34 returned the highest concentration of dissolved arsenic in groundwater collected from the lower interval of the USAq. The results were reported at 17 and 27 μ g/L, respectively. The pattern of detections in this area, more than 100-feet upgradient of the Landfill, appears to be one of scattered, low-level exceedances that may not be related to the Halo South area or attributable to leaching from the Landfill.

Halo East

Results for the Halo East delineation are presented in Table 4 and illustrated in Figure 2 along with monitoring well sampling results from September/October 2008 compliance monitoring. Boring locations (PD-37 through PD-43) were advanced on B&L Property east of the Landfill and in close proximity to Monitoring Wells MW-23 and D-10A. The results delineate the horizontal extent of elevated arsenic for this hotspot. Elevated arsenic within this Halo area is limited to an area extending approximately 150-feet downgradient from D-10A. The concentrations of dissolved arsenic suggest a small plume emanating from a localized source near D-10A. Elevated concentrations adjacent to D-10A are confined to a narrow area approximately 75-feet wide, while elevated dissolved arsenic appears to spread out laterally as it moves downgradient, broadening to a plume of low-level detections approximately 150-feet wide. This plume may affect groundwater quality in an interceptor trench that may be placed immediately east of the planned barrier wall.

The results also characterize the vertical distribution of arsenic: the highest concentrations of elevated arsenic in Halo East groundwater are present in shallow groundwater (i.e., the upper 15 feet). Near the apparent source of the plume at PD-D10A, the highest concentrations in the Halo East groundwater were detected in the upper interval at 400 μ g/L, while 100 μ g/L was detected in the lower interval (12- to 16-feet bgs). More elevated concentrations in the upper interval than lower interval were also observed in groundwater collected from the downgradient location PD-37.

End-of-Plume and Wetlands

Results for the End-of-Plume area are illustrated in Figure 3 along with monitoring well sampling results from September/October 2008 compliance monitoring. As described in the FCWP, boring locations (PD-1 through PD-6) were advanced in an east-west transect north of the 12^{th} Street East right-of-way in the area anticipated to be the downgradient edge of the plume. The results indicate that arsenic concentrations within the End-of-Plume area have been delineated, with the plume extending approximately 100-feet beyond the existing raised roadway (12^{th} Street East). At locations PD-1 through PD-6, concentrations of dissolved arsenic from the upper interval (8- to 12-feet bgs) of the USAq ranged from 3 to 5 μ g/L. Concentrations of dissolved arsenic from the lower interval (16- to 20-feet bgs) of the USAq ranged from 3 to 10 μ g/L.

Boring locations PD-50, PD-51, and PD-52 were advanced in a north-to-south transect to the west of MW-14 to delineate the western extent of affected groundwater within the Wetlands area primarily located on the Redford property. Concentrations of dissolved arsenic were reported to be non-detect or at the method reporting limit at these locations, indicating that the western boundary of the plume in this area has been delineated. Based on these results, the

FLOYD | SNIDER AMEC Geomatrix

areal extent of arsenic-impacted groundwater within the Wetlands and End-of-Plume Cleanup Action Areas (CAAs) is shown on Figure 3.

SUMMARY OF FINDINGS

The primary findings associated with these analytical results are summarized as follows. Refer to Figure 4 for a summary of the extent of elevated arsenic in groundwater.

- The area previously identified as Halo West has been delineated as a lobe of the arsenic plume in groundwater that extends several hundred feet beyond the B&L Property boundary to the northwest, onto property owned by the City of Fife, the Interurban Trail, and, possibly, onto property owned by the Washington State Department of Transportation (WSDOT). The western boundary of this lobe has been delineated. The northern extent of the lobe has not been fully delineated and may require additional characterization on WSDOT property.
- Woody material in shallow soil and an isolated piece of slag were identified in area of the
 agricultural field west of the landfill. Most of the woody material has not been
 contaminated by arsenic. The data suggest no correlation between woody debris and
 the lobe of the arsenic plume identified in groundwater beneath the agricultural field.
- A discrete area with elevated arsenic was identified west of the Landfill, at boring location PD-18. This detection appears to be associated with the presence of slag outside the Landfill boundary.
- The highest concentration of dissolved arsenic in the Halo South area was 180 μg/L, which was detected within the upper groundwater interval at PD-31. This boring is located where elevated arsenic concentrations were anticipated based on historic characterization data. Elevated arsenic within the Halo South area appears to be limited to an area within about 75-feet of the Landfill boundary, extending from the central portion of the southern Landfill boundary to the east just beyond PD-32.
- Several borings more than 100-feet south of the Landfill (i.e., upgradient of the Landfill) indicate an apparent pattern of scattered, low-level arsenic exceedances that may not be associated with the wastes within the Landfill.
- The Halo East hotspot appears to be limited to a small plume emanating from the area near Monitoring Well D-10A. This small plume extends approximately 150-feet downgradient from D-10A with a plume front approximately 150-feet wide. Concentrations of arsenic in Halo East groundwater appear to be higher within the upper 15-feet of groundwater, which is consistent with a shallow source.
- The Halo East hotspot extends into an area in which an interceptor trench may be constructed, and may affect the quality of intercepted groundwater.
- Elevated arsenic within the End-of-Plume area has been delineated to extend approximately 100-feet beyond the existing raised roadway (12th Street East).

• The western extent of elevated arsenic within the Wetlands area primarily on the Redford property has been delineated.

Encl.:	Table 1	Groundwater Arsenic Results for Halo West Area
	Table 2	Soil Arsenic Results for Halo West Area
	Table 3	Groundwater Arsenic Results for Halo South Area
	Table 4	Groundwater Arsenic Results for Halo East Area
	Table 5	Groundwater Arsenic Results for End-of-Plume Area
	Figure 1	Halo West & South Arsenic Characterization Results
	Figure 2	Halo East Arsenic Characterization Results
	Figure 3	End-of-Plume Arsenic Characterization Results
	Figure 4	Arsenic Characterization Results Summary
	Attachment A	Analytical Laboratory Results
	Attachment B	Boring Logs

Та	bles

Table 1
Groundwater Arsenic Results for Halo West Area

Upper Sand Aquif	er Groundwater I	Monitoring Well I	Data	
Location	Depth (ft bgs)	Sample Date	Dissolved Arsenic (µg/L)	Total Arsenic (µg/L)
D-7A	9.5–14.5	10/1/2008	93.0	97.5
D-8A	10–15	10/1/2008	26.1	37.7
Upper Sand Aquif	er Groundwater I	Data from Direct-	push Borings	
	Depth		Dissolved A	rsenic (µg/L)
Location	(ft bgs)	Sample Date	Upper Interval	Lower Interval
PD-13	4–8	10/16/2008	2 U	
F D-13	12–16	10/10/2008		8
PD-14	4–8	10/16/2008	950	
PD-14	12–16	10/10/2006		230
PD-15	4–8	10/15/2008	390	
PD-15	12–16	10/15/2006		160
PD-16	4–8	10/15/2008	64	
	12–16	10/13/2008		19
PD-17	4–8	10/15/2008	2 U	
FD-17	12–16	10/13/2008		2 U
PD-18	4–8	10/15/2008	4	
FD-10	12–16	10/13/2008		160
PD-19	4–8	10/22/2008	28	
FD-19	12–16	10/22/2008		42
PD-20	4–8	10/22/2008	3	
FD-20	12–16	10/22/2008		2 U
PD-21	4–8	10/22/2008	2 U	
F D-Z	12–16	10/22/2006		2
PD-22	4–8	10/16/2008	5	
Γ <i>U</i> -22	12–16	10/10/2006		2 U
PD-90	4–8	10/22/2008	2 U	
1 0-30	12–16	10/22/2000		350

Upper Sand Aquifer Groundwater Data from Direct-push Borings							
	Depth		Dissolved Arsenic (µg/L)				
Location	(ft bgs)	Sample Date	Upper Interval	Upper Interval			
PD-91	4–8	10/22/2008	110				
FD-91	12–16	10/22/2008		190			
PD-92	4–8		4				
	12–16	10/22/2008		4			
PD-94	4–8		3				
	12–16	10/23/2008		2 U			
PD-96	4–8		2 U				
	12–16	10/23/2008		2 U			
PD-97	4–8		2 U				
	12–16	10/23/2008		2 U			

Bold Indicates value exceeds Site cleanup level in groundwater of 5 µg/L

Abbreviations:

bgs Below ground surface

ft Feet

Table 2
Soil Arsenic Results for Halo West Area

Location	Depth (ft bgs)	Sample Date	Arsenic (mg/kg)
P-4-2	2	10/15/2008	2.4
PD-17-2	2	10/15/2008	1 U
PD-14-5	5	10/16/2008	1 U
PD-14-8	8	10/16/2008	1 U
PD-13-2	2	10/16/2008	37
PD-13-3	3	10/16/2008	3.6
PD-13-12	12	10/16/2008	1 U
PD-13-12D	12	10/16/2008	1 U
PD97-2.5'	2.5	10/23/2008	7.7
PD97-2.5'D	2.5	10/23/2008	7.9

Bold Indicates value exceeds Site cleanup level in soil of 20 mg/kg

Abbreviations:

bgs Below ground surface

ft Feet

Table 3
Groundwater Arsenic Results for Halo South Area

Upper Sand Aqı	uifer Groundwater	Monitoring Well Da	ıta	
Location	Depth (ft bgs)	Sample Date	Dissolved Arsenic (μg/L)	Total Arsenic (µg/L)
D-9A	8.5–13.5	10/1/2008	35.4	38.1
Upper Sand Aqu	uifer Groundwater	Data from Direct-p	ush Borings	
	Depth	Dissolved A	rsenic (µg/L)	
Location	(ft bgs)	Sample Date	Upper Interval	Lower Interval
PD-25	4–8	10/16/2008	2 U	
1 D-25	12–16	10/10/2000		2 U
PD-26	4–8	10/16/2008	2 U	
PD-20	12–16	10/16/2006		2 U
PD-27	4–8	10/16/2008	2 U	
	12–16	10/16/2006		2 U
PD-28	4–8	10/17/2008	9	
FD-20	12–16	10/17/2008		2 U
PD-29	4–8	9/26/2008	2 U	
FD-29	9–13	9/20/2006		12
PD-30	5–9	9/26/2008	4	NA
PD-31	5–9	9/26/2008	180	
PD-31	10–14	9/26/2006		2 U
DD 00	4–8	0/0/0000	10	
PD-32	11–15	8/6/2008		2
DD 22	4–8	10/17/2009	2 U	
PD-33	12–16	10/17/2008		17
PD-34	4–8	0/26/2009	2 U	
LD-94	10–14	9/26/2008		27

Bold Indicates value exceeds site cleanup level in groundwater of 5 µg/L

Abbreviations:

bgs Below ground surface

ft Feet

Table 4
Groundwater Arsenic Results for Halo East Area

Upper Sand Aqu	ifer Groundwater	Monitoring Well Da	ata	
Location	Depth (ft bgs)	Sample Date	Dissolved Arsenic (μg/L)	Total Arsenic (µg/L)
D-10A	12–16	9/29/2008	211	204
D-11A	10–15	10/1/2008	0.6	0.5
MW-23	10–15	9/30/2008	15.6	20.9
Upper Sand Aqu	ifer Groundwater I	Data from Direct-push	Borings	
	Depth		Dissolved A	rsenic (µg/L)
Location	(ft bgs)	Sample Date	Upper Interval	Lower Interval

	Depth		Dissolved Arsenic (µg/L)			
Location	(ft bgs)	Sample Date	Upper Interval	Lower Interval		
	10–14		26			
PD-37	16–20	8/7/2008		4		
	10–14		2 U			
PD-38	16–20	8/7/2008		2		
	10–14		2 U			
PD-39	16–20	8/6/2008		2 U		
	10–14		3			
PD-40	16–20	8/6/2008		3		
PD-41	10–14	8/8/2008	10	NA		
PD-42	10–14	8/8/2008	8	NA		
PD-43	10–14	8/8/2008	5	NA		
	9–13		400			
PD-D10A	12–16	8/27/2008		100		

Bold Indicates value exceeds site cleanup level in groundwater of 5 $\mu g/L$

Abbreviations:

bgs Below ground surface

ft Feet

U Analyte is undetected at given reporting limit

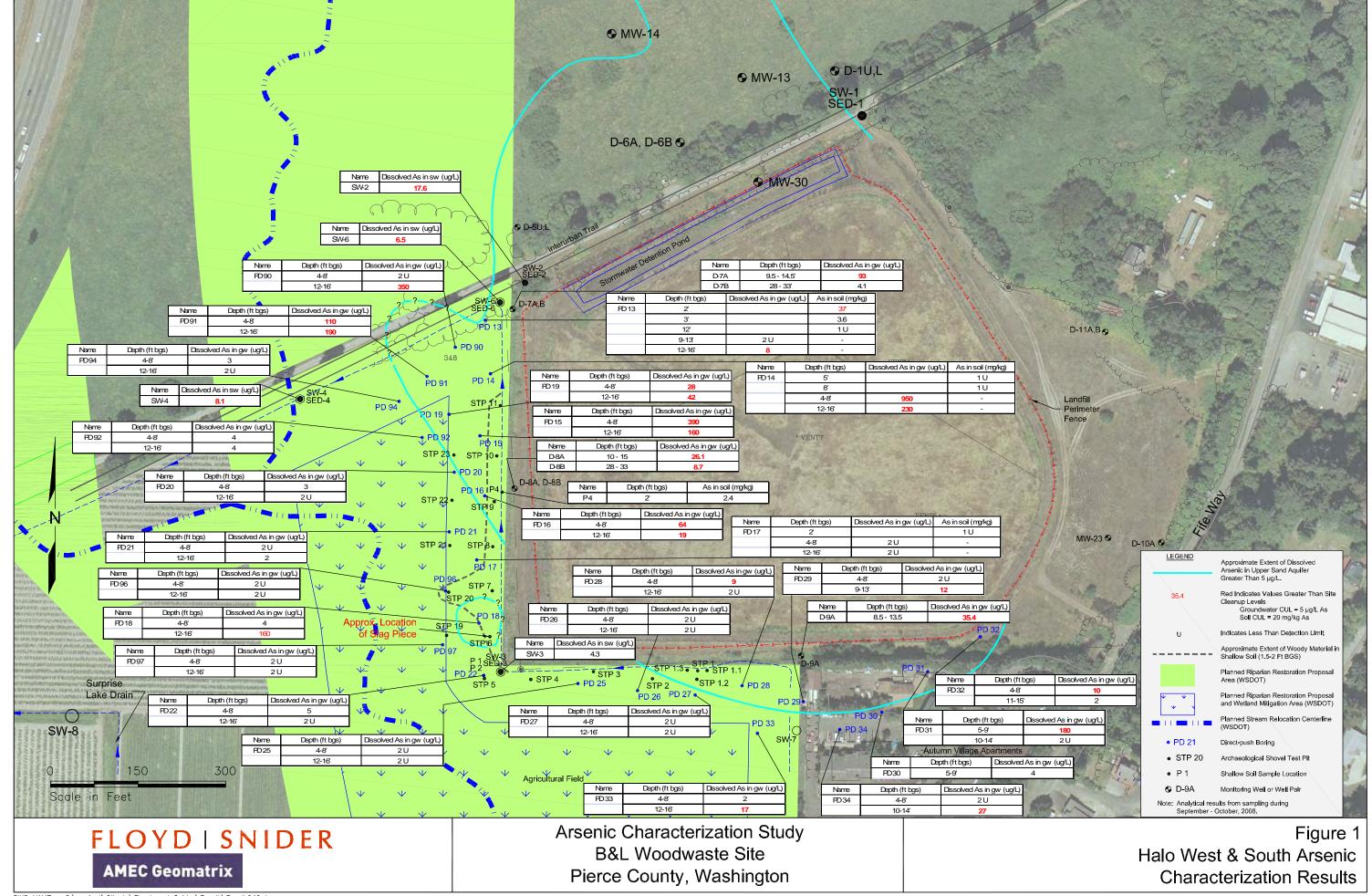
NA Not analyzed

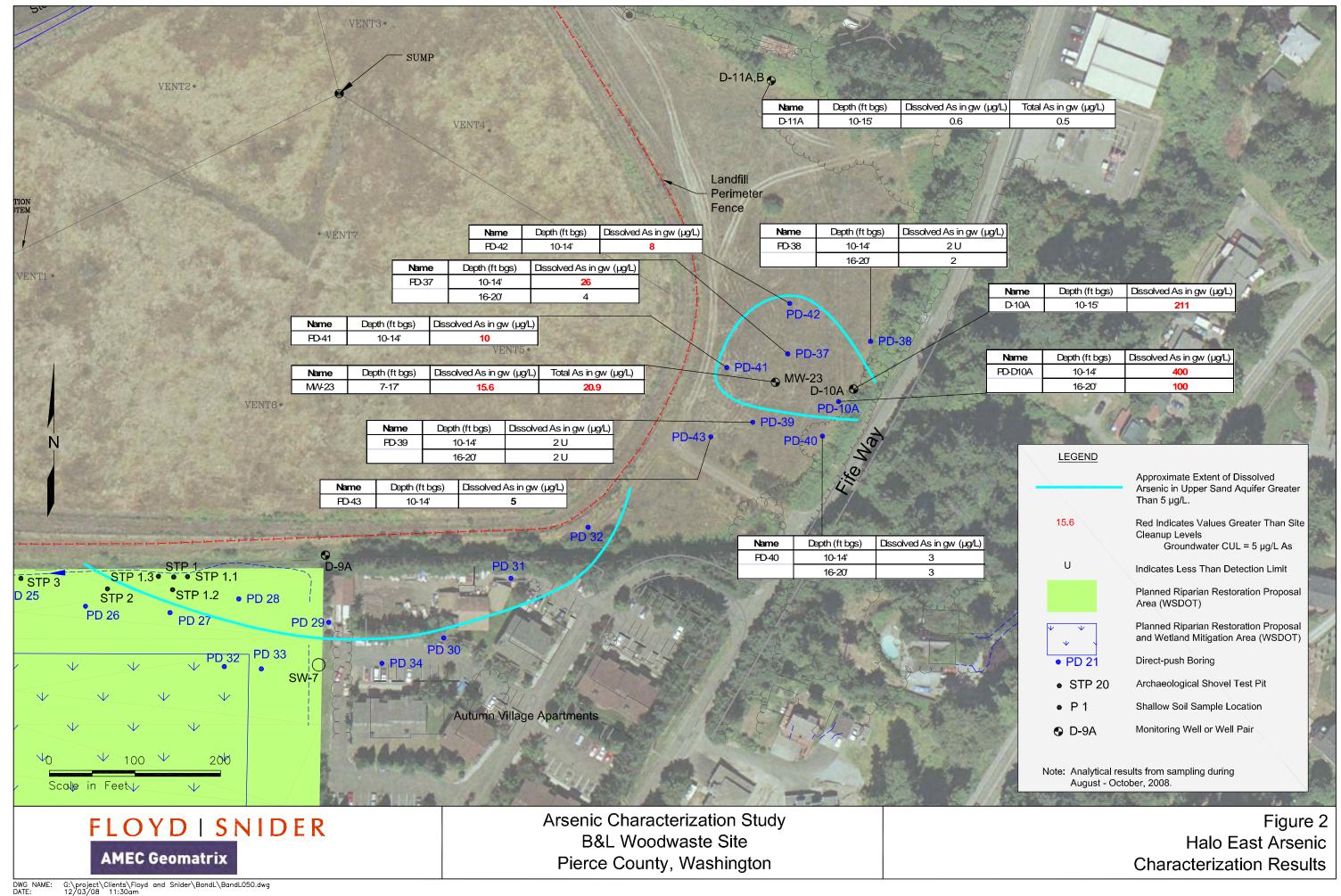
Table 5
Groundwater Arsenic Results for End-of-Plume Area

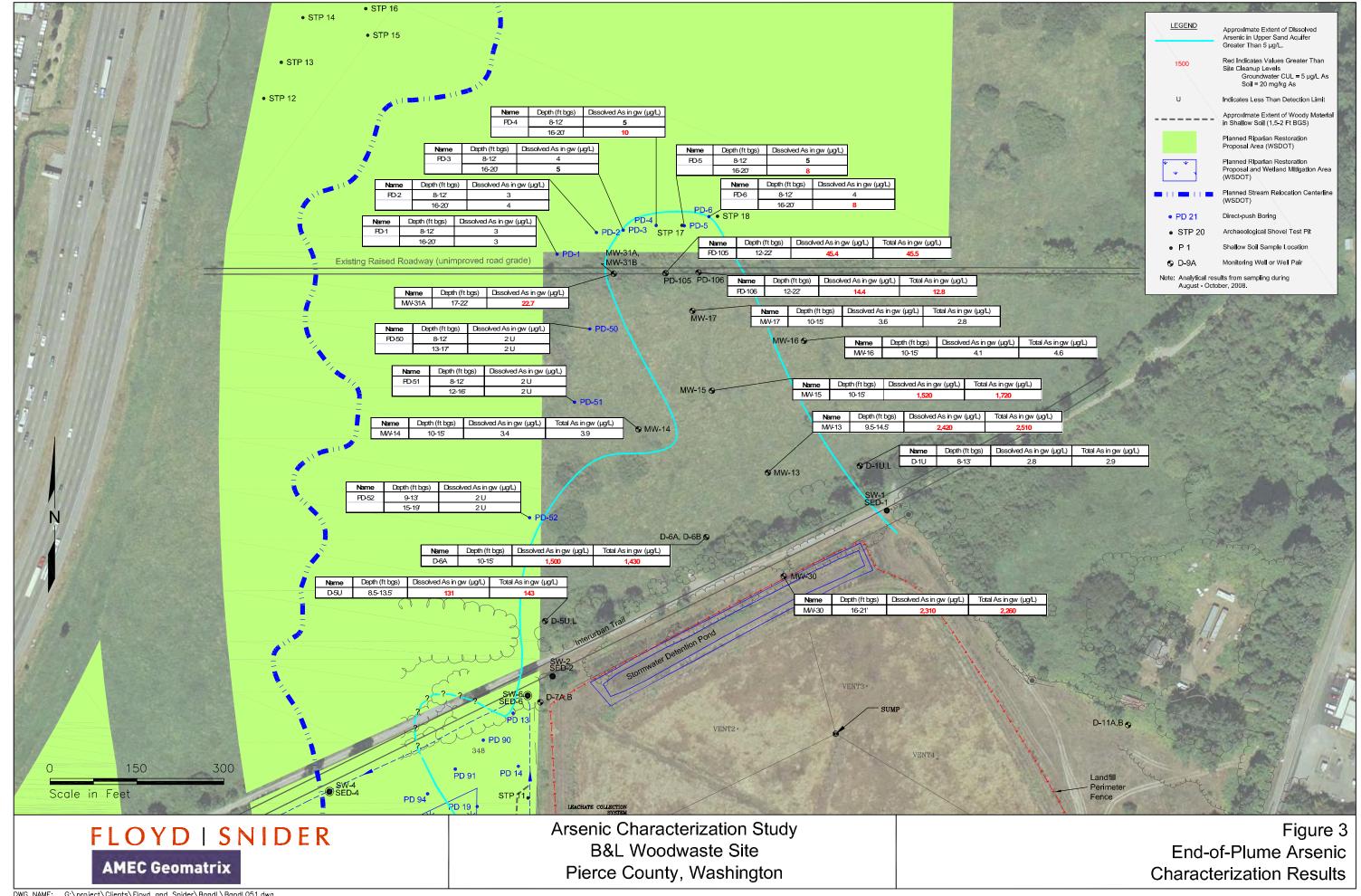
Upper Sand Aqu	uifer Groundwater	Monitoring Well Da	ata	
Location	Depth (ft bgs)	Sample Date	Dissolved Arsenic (µg/L)	Total Arsenic (μg/L)
D-1U	8–13	9/29/2008	2.8	2.9
D-5U	8.5–13.5	9/29/2008	131	143
D-6A	10–15	9/29/2008	1,500	1,430
MW-13	9.5–14.5	9/30/2008	2,420	2,510
MW-14	10–15	10/2/2008	3.4	3.9
MW-15	10–15	10/1/2008	1,520	1,720
MW-16	10–15	10/2/2008	4.1	4.6
MW-17	10–15	10/1/2008	3.6	2.8
MW-30	16–21	10/1/2008	2,310	2,260
MW-31A	10–15	10/1/2008	22.7	22.2
PD-105	12–22	10/1/2008	45.4	45.5
PD-106	12–22	10/1/2008	14.4	12.8
Upper Sand Aqı	uifer Groundwater	Data from Direct-p	ush Borings	
	Depth			Arsenic (µg/L)
Location	(ft bgs)	Sample Date	Upper Interval	Lower Interval
PD-1	8–12	8/15/2008	3	
	14–18	8/15/2008		3
PD-2	8–12	8/13/2008	3	
102	14–18	0/10/2000		4
PD-3	8–12	8/13/2008	4	
FD-3	16–20	6/13/2006		5
PD-4	8–12	8/14/2008	5	
Г <i>U</i>-4	16–20	0/14/2000		10
	8–12		5	
PD-5	16–20	8/14/2008		8
	17–21			8


Upper Sand Aq		Data from Direct-p		rsenic (µg/L)	
Location	Depth (ft bgs)	Sample Date	Upper Interval	Upper Interval	
DD C	8–12	0/45/2000	4		
PD-6	17–21	8/15/2008		8	
PD-50	8–12	8/19/2008	2 U		
	13–17	0/19/2006		2 U	
DD 51	8–12	9/40/2009	2 U		
PD-51	12–16	8/19/2008		3.6	
DD 52	9–13	9/40/2009	2 U		
PD-52	15–19	8/19/2008		2 U	

Bold Indicates value exceeds site cleanup level in groundwater of 5 µg/L


Abbreviations:


bgs Below ground surface


ft Feet

Figur	res

Attachment A
Analytical Laboratory Results

Brett Beaulieu Floyd Snider 600 Union Street, Suite 600 Seattle, WA 98101-2341

RE: Project: B&L Landfill

ARI Job No: NS10

Dear Brett:

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final results for the samples for the project referenced above. Analytical Resources, Inc. (ARI) accepted twenty water samples in good condition on October 1, 2008. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Total and Dissolved Arsenic and various conventional parameters, as requested on the COC.

TDS was present in the method blank at a concentration that was greater than the reporting limit. All associated samples contained concentrations of TDS that were greater than ten times the concentration of the method blank. No further corrective action was required.

The LCS percent recovery of sulfide fell outside the control limits low. The matrix spike percent recovery was within the LCS control limits. No further corrective action was required.

The matrix spike percent recovery of Ferrous Iron was outside the control limits for sample BLW-GW-PD103. The sample concentration exceeded the spike concentration by a factor of four or more, therefore no further corrective action was required.

An electronic copy of this report and all associated raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager

MMM

-For-

Susan Dunnihoo Director, Client Services sue@arilabs.com

206-695-6207

cc: eFile NS43

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: Turn-around Requested: NSIO ARI Client Company Phone:				Page:	· • [of	U 4 7	在实际) "我!""你	Analytic	cal Resources, Incorp cal Chemists and Con- outh 134th Place, Suit	sultants		
ARI Client Company - Suider		206-2	9e.2	078	Present? [65			Tukwila, WA 98168					
Client Contact: Brett Reaulies	_				No. of Coolers:		Coole Temp	er Is:		206-695	206-695-6200 206-695-6201 (fax)		
Client Project Name: B+L Landfill							Analysis F	Requested		Notes/Comment	is		
Client Project #: B4L RIM TRUST	Samplers:	poli/E	. neu	may	7 X	45							
Sample ID	Date	Time	Matrix	No. Containers	HOTAL STATE	D(\$5							
BC+Ga-D6B-F	9/24/08	1405	4W	1	/					_	all Diss. Sau	uples	
BU-GW-D6B-F BU-GW-D6B	•	1405		1	_	_					all Diss. Sau vere field.	filter.	
BONGW-DEU-F		1220		1	•	_							
BOX GW-D5U		1220		1	/	~							
BL-GW-DSUA-F		1225		1	1	1							
BU-GW-DOUA		1225		1	-	/							
BL GW-11B-F		1040		1	~								
BLM GW-11B		1040		1	~								
BUNGW-DRF		1500		1	7	1							
BU-GW-DIL	1	1500	+	1	/	/			1				
Comments/Special Instructions	Reling ished by:	neole	•		ant.	Wa	B	Relinquished (Signature)	by:	 Received by (Signature)			
	5	Mesli		Printed Narrie:	on h	lalter		Printed Name	e:	Printed Nam	e:		
	Company	1 800°C		Company AR	I			Company:		Company:			
	Data & Timork		1615	Date & Time: 10/1/	108	161	5	Date & Time:	:	Date & Time			

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 10510 ARI Client Companye	NSIO Sandara TM				Page:	<u></u>		7		4		Analytic	cal Resources, Incorporated cal Chemists and Consultants outh 134th Place, Suite 100
ARI Client Company Floyd Swider		206.	292-	2078		30 0			2 4 3 17 7 2 4 3 18 17 7 2 18 18 18 18 18 18 18 18 18 18 18 18 18			Tukwila,	, WA 98168
Client Contact: Breth Beaulier	•				No. o Coolers		Coole Temps					206-695	5-6200 206-695-6201 (fax)
Client Project Name:	ı l							7	Requested				Notes/Comments
Client Project # TRUST	Samplers	Liza Med	oli /E.,	Unray	ود	\$	us	3 25	sustide Alkaliuit	296			
Sample ID	Date	Time	Matrix	No. Containers	1 0	Z.S.	[errous	Sulfate, Nos	AK	705,70C, DOC			
BUTGW-D7A-F	9/30/	68 1000	GW	i	/	_						su t	riss. Samples were I filtered.
BOHGW-D7A		1006		1	/	_				_		riu.	d fritered.
BUNGW-D8A-F		1105		1	~						-		
BUN-GW-D8A		1109		1			·						
BLW-GW-PD106		9:20		1		/	V	V	_	_			
BLW-GW-PD106F	10/1	08 9:20		1	/	/							
BLW-GW-PD105	10/1	10:00		l l	/	1	<u> </u>		_	_			
BLW-GW-PD105	F'	10:00		1	~	_							
BLW-GW-MW314		10:15		1	_	~	-	~	-	-			
BLW-GW-MW3/A-	FV	* I *	/	1	/	-							
Comments/Special Instructions	Relinquishe (Signature)	* * * * * * * * * * * * * * * * * * *	7	Received by: (Signature)	levet.	2 W	de	Relinquished (Signature)	l by:	-	-	Received by: (Signature)	
	Printed Nam	nn Murra	y y	Printed Name:	ion h	la Her		Printed Nam	e:			Printed Name	ə:
	Company		/ 	Company:				Company:				Company:	
	Date & Time	nga Snia 11/08 4	15	Date & Time:		161	′ 5	Date & Time	:	·		Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: Floyd Snider COC No: Assigned ARI Job No:	Project Name: B\$L	Landfill		t.
COC No:	Delivered by: Hand			
Assigned ARI Job No:	Tracking No:			
Preliminary Examination Phase:				
Were intact, properly signed and dated custody			YES	NO
Were custody papers included with the cooler?				NO
Were custody papers properly filled out (ink, sign Record cooler temperature (recommended 2.0-6	ned, etc.)		OES IS ALL OF	NO
Record cooler temperature (recommended 2.0-6	5.0 °C for chemistry	••••	13,7,7.6	-12.67, 9.C
Cooler Accepted by: TW	Date:	10/1/08	Γime: <u>/</u>	15
Complete custody form	ns and attach all shippin	g documents	, 	
Log-In Phase:				
Was a temperature blank included in the cooler?)	**********	YES	(NO)
What kind of packing material was used?				E
Was sufficient ice used (if appropriate)?		***************	YES	(NO)
Were all bottles sealed in individual plastic bags'	?		YES	NO
Did all bottle arrive in good condition (unbroken)			(YES)	NO
Were all bottle labels complete and legible?			YES	NO
Did all bottle labels and tags agree with custody	papers?	*****	YES	NO
Were all bottles used correct for the requested a	nalyses?		YES	NO
Do any of the analyses (bottles) require preserva	ntion? (attach preservation	checklist)	YES	NO .
Were all VOC vials free of air bubbles?		(NA)	YES	NO
Was sufficient amount of sample sent in each bo	ttle?		(ES)	NO
Samples Logged by:	Date: 10/2	/ <u>08</u> Time:	1520	_ _
** Notify Project Mana	ger of discrepancies or o	concerns **		
Explain discrepancies or negative responses:				
Sample BLW-GW-PD(05 mis	ising DOC bottle	e		
· · · · · · · · · · · · · · · · · · ·				
	Ву:	Date:		

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS10A

LIMS ID: 08-26101

Matrix: Water

Data Release Authorize

Reported: 10/21/08

Sample ID: BLW-GW-D6B-F

SAMPLE

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	2.4	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D6B

SAMPLE

Lab Sample ID: NS10B LIMS ID: 08-26102

Matrix: Water

Data Release Authorized

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	2.4	

DISSOLVED METALS

Page 1 of 1

Sample ID: BLW-GW-D5U-F

SAMPLE

Lab Sample ID: NS10C LIMS ID: 08-26103

Matrix: Water

Data Release Authorized:

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	131	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D5U

SAMPLE

Lab Sample ID: NS10D LIMS ID: 08-26104

Matrix: Water

Data Release Authorized

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/16/08	7440-38-2	Arsenic	1	143	

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS10E

LIMS ID: 08-26105 Matrix: Water

Data Release Authorized

Reported: 10/21/08

Sample ID: BLW-GW-D5UA-F

SAMPLE

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	129	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D5UA

SAMPLE

Lab Sample ID: NS10F

LIMS ID: 08-26106

Matrix: Water

Data Release Authorized

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/16/08	7440-38-2	Arsenic	0.5	140	

DISSOLVED METALS

Page 1 of 1

Sample ID: BLW-GW-11B-F

SAMPLE

Lab Sample ID: NS10G

LIMS ID: 08-26107

Matrix: Water

Data Release Authorized

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.6	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-11B

SAMPLE

Lab Sample ID: NS10H LIMS ID: 08-26108

Matrix: Water

Data Release Authorized

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.5	

DISSOLVED METALS

Page 1 of 1

SAMPLE

Sample ID: BLW-GW-D1L-F

Lab Sample ID: NS10I LIMS ID: 08-26109

Matrix: Water

Data Release Authorized:

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider Project: B&L LANDFILL

Project: Ban Dandelli

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	8.2	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D1L

SAMPLE

Lab Sample ID: NS10J

LIMS ID: 08-26110

Matrix: Water

Data Release Authorized Reported: 10/21/08

QC Report No: NS10-Floyd-Snider Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	8.2	

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS10K

LIMS ID: 08-26111

Matrix: Water

Data Release Authorized

Reported: 10/21/08

Sample ID: BLW-GW-D7A-F

SAMPLE

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	93.0	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D7A

SAMPLE

Lab Sample ID: NS10L LIMS ID: 08-26112

Matrix: Water

Data Release Authorized

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	97.5	

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

rage 1 01 1

Lab Sample ID: NS10M LIMS ID: 08-26113

Matrix: Water

Data Release Authorize

Reported: 10/21/08

Sample ID: BLW-GW-D8A-F

SAMPLE

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	26.1	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D8A

SAMPLE

Lab Sample ID: NS10N LIMS ID: 08-26114

Matrix: Water

Data Release Authorized Reported: 10/21/08

QC Report No: NS10-Floyd-Snider Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	37.7

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS100

LIMS ID: 08-26115

Matrix: Water

Data Release Authorized

Reported: 10/21/08

Sample ID: BLW-GW-PD106

SAMPLE

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	12.8	

DISSOLVED METALS

Page 1 of 1

Sample ID: BLW-GW-PD106-F

SAMPLE

Lab Sample ID: NS10P LIMS ID: 08-26116

Matrix: Water

Data Release Authorized

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/16/08	7440-38-2	Arsenic	0.5	14.4	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-PD105

SAMPLE

Lab Sample ID: NS10Q LIMS ID: 08-26117

Matrix: Water

Data Release Authorized: Reported: 10/21/08

QC Report No: NS10-Floyd-Snider Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	45.5	

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS10R

LIMS ID: 08-26118

Matrix: Water
Data Release Authorized
Reported: 10/21/08

Sample ID: BLW-GW-PD105-F

SAMPLE

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08
Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/16/08	7440-38-2	Arsenic	0.5	45.4	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-MW31A

SAMPLE

Lab Sample ID: NS10S

LIMS ID: 08-26119

Matrix: Water

Data Release Authorized:

Reported: 10/21/08

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/20/08	7440-38-2	Arsenic	0.5	22.2	

Page 1 of 1

Lab Sample ID: NS10T LIMS ID: 08-26120
Matrix: Water

Data Release Authorized

Reported: 10/21/08

Sample ID: BLW-GW-MW31A-F

SAMPLE

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/16/08	7440-38-2	Arsenic	0.5	22.7	

Page 1 of 1

Lab Sample ID: NS10MB LIMS ID: 08-26101

Matrix: Water

Data Release Authorize Reported: 10/21/08

Sample ID: METHOD BLANK

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.2	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS10MB

LIMS ID: 08-26102

Matrix: Water

Data Release Authorized: Reported: 10/21/08

Sample ID: METHOD BLANK

QC Report No: NS10-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/08/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.2	U

Page 1 of 1

Lab Sample ID: NS10LCS LIMS ID: 08-26101 Matrix: Water

Data Release Authorized: Reported: 10/21/08

Sample ID: LAB CONTROL

QC Report No: NS10-Floyd-Snider Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	24.7	25.0	98.8%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS10LCS

LIMS ID: 08-26102

Matrix: Water

Data Release Authorized: Reported: 10/21/08

Sample ID: LAB CONTROL

QC Report No: NS10-Floyd-Snider Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	24.3	25.0	97.2%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

SAMPLE RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

Project: B&L LANDFILL

Event: NA

Date Sampled: 09/30/08 Date Received: 10/01/08

Client ID: BLW-GW-PD106 ARI ID: 08-26115 NS100

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	10/09/08 100908#2	SM 2320	mg/L CaCO3	1.0	796
Total Dissolved Solids	10/02/08 100208#1	EPA 160.1	mg/L	13.3	1,010
Ferrous Iron	10/01/08 100108#1	SM3500 FeD	mg/L	4.00	91.5
Chloride	10/08/08 100808#2	EPA 325.2	mg/L	10.0	52.8
N-Nitrate	10/02/08	Calculated	mg-N/L	0.200	< 0.200 U
N-Nitrite	10/02/08 100208#1	EPA 353.2	mg-N/L	0.200	< 0.200 U
Nitrate + Nitrite	10/02/08 100208#1	EPA 353.2	mg-N/L	0.200	< 0.200 U
Sulfate	10/16/08 101608#1	EPA 375.2	mg/L	2.0	16.8
Sulfide	10/06/08 100608#1	EPA 376.2	mg/L	0.050	< 0.050 U
Total Organic Carbon	10/13/08 101308#1	EPA 415.1	mg/L	6.00	56.8
Dissolved Organic Carbon	10/13/08 101308#1	EPA 415.1	mg/L	6.00	56.4

RL Analytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water
Data Release Authorized
Reported: 10/20/08

Project: B&L LANDFILL

Event: NA

Date Sampled: 10/01/08 Date Received: 10/01/08

Client ID: BLW-GW-PD105 ARI ID: 08-26117 NS10Q

Analyte	Date Batch Method		Units	RL	Sample
Alkalinity	10/09/08 100908#2	SM 2320	mg/L CaCO3	1.0	796
Total Dissolved Solids	10/02/08 100208#1	EPA 160.1	mg/L	13.3	961
Ferrous Iron	10/01/08 100108#1	SM3500 FeD	mg/L	4.00	77.1
Chloride	10/08/08 100808#2	EPA 325.2	mg/L	10.0	73.5
N-Nitrate	10/02/08	Calculated	mg-N/L	0.200	< 0.200 U
N-Nitrite	10/02/08 100208#1	EPA 353.2	mg-N/L	0.200	< 0.200 U
Nitrate + Nitrite	10/02/08 100208#1	EPA 353.2	mg-N/L	0.200	< 0.200 U
Sulfate	10/16/08 101608#1	EPA 375.2	mg/L	2.0	18.0
Sulfide	10/06/08 100608#1	EPA 376.2	mg/L	0.050	< 0.050 U
Total Organic Carbon	10/13/08 101308#1	EPA 415.1	mg/L	6.00	58.8
Dissolved Organic Carbon	10/13/08 101308#1	EPA 415.1	mg/L	6.00	53.2

Analytical reporting limit RL

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water

Data Release Authorized: Reported: 10/20/08

Project: B&L LANDFILL

Event: NA

Date Sampled: 10/01/08 Date Received: 10/01/08

Client ID: BLW-GW-MW31A ARI ID: 08-26119 NS10S

Analyte	Date Batch	Method	Units	RL	Sample
Alkalinity	10/09/08 100908#2	SM 2320	mg/L CaCO3	1.0	758
Total Dissolved Solids	10/02/08 100208#1	EPA 160.1	mg/L	13.3	888
Ferrous Iron	10/01/08 100108#1	SM3500 FeD	mg/L	4.00	91.5
Chloride	10/08/08 100808#2	EPA 325.2	mg/L	5.0	45.4
N-Nitrate	10/02/08	Calculated	mg-N/L	0.200	< 0.200 U
N-Nitrite	10/02/08 100208#1	EPA 353.2	mg-N/L	0.200	< 0.200 U
Nitrate + Nitrite	10/02/08 100208#1	EPA 353.2	mg-N/L	0.200	< 0.200 U
Sulfate	10/16/08 101608#1	EPA 375.2	mg/L	2.0	14.8
Sulfide	10/06/08 100608#1	EPA 376.2	mg/L	0.050	< 0.050 U
Total Organic Carbon	10/13/08 101308#1	EPA 415.1	mg/L	6.00	55.2
Dissolved Organic Carbon	10/13/08 101308#1	EPA 415.1	mg/L	6.00	59.2

RLAnalytical reporting limit

Undetected at reported detection limit U

MS/MSD RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water
Data Release Authorized
Reported: 10/20/08

Project: B&L LANDFILL

Event: NA

Date Sampled: 09/30/08 Date Received: 10/01/08

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery			
ARI ID: NS100 Client ID: BLW-GW-PD106										
Ferrous Iron	SM3500 FeD	10/01/08	mg/L	91.5	101	5.00	190.0%			
Chloride	EPA 325.2	10/08/08	mg/L	52.8	152	100	99.2%			
N-Nitrite	EPA 353.2	10/02/08	mg-N/L	< 0.200	22.8	25.0	91.2%			
Nitrate + Nitrite	EPA 353.2	10/02/08	mg-N/L	< 0.200	24.4	25.0	97.6%			
Sulfide	EPA 376.2	10/06/08	mg/L	< 0.050	5.46	6.11	89.4%			
Total Organic Carbon	EPA 415.1	10/13/08	mg/L	56.8	131	80.0	92.8%			
Dissolved Organic Carbo	onEPA 415.1	10/13/08	mg/L	56.4	129	80.0	90.8%			
ARI ID: NS10Q Client	ID: BLW-GW-	PD105								
Sulfate	EPA 375.2	10/16/08	mg/L	18.0	34.5	20.0	82.5%			

REPLICATE RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water

Data Release Authorized Reported: 10/20/08

Project: B&L LANDFILL Event: NA

Date Sampled: 09/30/08 Date Received: 10/01/08

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: NS100 Client	ID: BLW-GW-P	D106				
Alkalinity	SM 2320	10/09/08	mg/L CaCO3	796	794	0.3%
Total Dissolved Solids	EPA 160.1	10/02/08	mg/L	1,010	1,020	1.0%
Ferrous Iron	SM3500 FeD	10/01/08	mg/L	91.5	96.6	5.4%
Chloride	EPA 325.2	10/08/08	mg/L	52.8	52.4	0.8%
N-Nitrite	EPA 353.2	10/02/08	mg-N/L	< 0.200	< 0.200	NA
Nitrate + Nitrite	EPA 353.2	10/02/08	mg-N/L	< 0.200	< 0.200	NA
Sulfide	EPA 376.2	10/06/08	mg/L ·	< 0.050	< 0.050	NA
Total Organic Carbon	EPA 415.1	10/13/08	mg/L	56.8	57.6	1.4%
Dissolved Organic Carbo	EPA 415.1	10/13/08	mg/L	56.4	57.2	1.4%
ARI ID: NS10Q Client	ID: BLW-GW-P	D105				
Sulfate	EPA 375.2	10/16/08	mg/L	18.0	17.6	2.2%

LAB CONTROL RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water
Data Release Authorized: (
Reported: 10/20/08

Project: B&L LANDFILL

Event: NA Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	LCS	Spike Added	Recovery
Total Dissolved Solids	EPA 160.1	10/02/08	mg/L	508	500	101.6%
Ferrous Iron	SM3500 FeD	10/01/08	mg/L	0.771	0.800	96.4%
Sulfide	EPA 376.2	10/06/08 10/06/08	mg/L	0.487 4.60	0.503 6.11	96.8% 75.3%

METHOD BLANK RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water

Data Release Authorized Reported: 10/20/08

Project: B&L LANDFILL

Event: NA Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank
Total Dissolved Solids	EPA 160.1	10/02/08	mg/L	8.5
Ferrous Iron	SM3500 FeD	10/01/08	mg/L	< 0.040 U
Chloride	EPA 325.2	10/08/08	mg/L	< 1.0 U
N-Nitrite	EPA 353.2	10/02/08	mg-N/L	< 0.010 U
Nitrate + Nitrite	EPA 353.2	10/02/08	mg-N/L	< 0.010 U
Sulfate	EPA 375.2	10/16/08	mg/L	< 2.0 U
Sulfide	EPA 376.2	10/06/08 10/06/08 10/06/08	mg/L	< 0.050 U < 0.050 U < 0.050 U
Total Organic Carbon	EPA 415.1	10/13/08	mg/L	< 1.50 U
Dissolved Organic Carbon	EPA 415.1	10/13/08	mg/L	< 1.50 U

STANDARD REFERENCE RESULTS-CONVENTIONALS NS10-Floyd-Snider

Matrix: Water
Data Release Authorized:
Reported: 10/20/08

Project: B&L LANDFILL

Event: NA Date Sampled: NA Date Received: NA

Analyte/SRM ID	Met	thod	Date)	Units	SRM	True Value	Recovery
Alkalinity ERA #P114506	SM 2	2320	10/09/	08	mg/L CaCO3	100	101	99.0%
Chloride ERA #38084	EPA	325.2	10/08/	08	mg/L	5.1	5.0	102.0%
N-Nitrite ERA #23034	EPA	353.2	10/02/	08	mg-N/L	0.507	0.500	101.4%
Nitrate + Nitrite ERA #20034	EPA	353.2	10/02/	08	mg-N/L	0.523	0.500	104.6%
Sulfate ERA #37065	EPA	375.2	10/16/	08	mg/L	26.2	25.0	104.8%
Total Organic Carbon ERA #0528-08-02	EPA	415.1	10/13/	08	mg/L	20.0	20.0	100.0%
Dissolved Organic Carbon ERA #0206-02-02	EPA	415.1	10/13/	08	mg/L	20.0	20.0	100.0%

October 29, 2008

Brett Beaulieu Floyd Snider 600 Union Street, Suite 600 Seattle, WA 98101-2341

RE: Project: B&L Landfill

ARI Job No: NS43

Dear Brett:

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final results for the samples for the project referenced above. Analytical Resources, Inc. (ARI) accepted twenty water samples in good condition on October 1, 2008. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Total and Dissolved Arsenic as requested on the COC.

Arsenic was present in the 10/16/08 method blank at a level that was greater than the reporting limit. The client action level for arsenic is 5ug/L. All samples either contained concentrations of arsenic that were greater than ten times the concentration of the method blank or were less than the client action level. No further corrective action was required.

No other analytical complications were noted for these analyses. Quality control results are included for your review.

An electronic copy of this report and all associated raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager

-For-

Susan Dunnihoo Director, Client Services sue@arilabs.com 206-695-6207

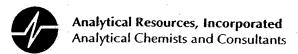
Enclosures

cc: eFile NS43

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: Turn-around Requested:					Page:	3	of	7		4			al Resources, Incorporated al Chemists and Consultants
ARI Client Company: Flund Sn Client Contact: Brett Buld Client Project Name:	ider	Phone: 206 -	292.2	078	Date:	1/08	Ice Pres	ent?		7		4611 So	uth 134th Place, Suite 100 WA 98168
Client Contact: Brett Bull	Beaulie	И			No. of Coolers:	1 de 10 de 1	Cool Temp					206-695	-6200 206-695-6201 (fax)
Client Project Name: B4L Lan	ufill							Analysis I	Requested	· · · · · · · · · · · · · · · · · · ·			Notes/Comments
Client Project #: BEL RIM TRUST	Samplers: L. McOli & E. Murraj				A5	45							
Sample ID	Date	Time	Matrix	No. Containers	701	Diss							
BLW-GW-IOA -F	9/29/08	9:45	GW	1	/								
BLW-GW-10A	9/29/08	9:45		1	/					-			
BLW-GW-114-F	9/29/08	10:30		/	/								
BLW-GW-114	9/29/08	10:30	(/									
BLW-GW-D5L-F	9/29/08	12:25		/	/	/							
BLW-GW-D5L	9/29/08	12:25		1	~								
BLN-GN-DGA-F	9/29/08	14:00		/	V	/							
BLW-GW- DGA	9/27/08	14:00		/	1	/							
BLW-GW-D14-F	9/29/08	14:50		1	~								
BLW-GW-D1U	9/29/08	14:50	4/	1	~								
Comments/Special Instructions	Relinquished by: (Signature)	mo	m	Received by: (Signature)	and the	Wa	D	Relinquished (Signature)	l by:	-	_	Received by: (Signature)	
	Printed Name: Printed Name:			Printed Name:	lon	Walte	ζ	Printed Nam	e:			Printed Name	9:
		d Swid	_,	Company:	_			Company:				Company:	
	Data & Time: 4	- /	1615	Date & Time:	8	1615	5	Date & Time	:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.


Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Turn-around Requested: Sandard				Page: 4 of 7					Analytical Resources, Incorporated Analytical Chemists and Consultant		
ARI Client Company: Fluya Sn	ider	Phone: 260	o-292·	2078	Date: ///	118	lce Prese	ent?		7		4611 So	uth 134th Place, Suite 100 WA 98168
Client Contact: Brett Beaut					No. of Coolers:		Coole Temp					206-695	-6200 206-695-6201 (fax)
Client Project Name: 8 9 L WoudWA								Analysis F	Requested				Notes/Comments
Client Project #: B 9L-RIM TRUST	ect#: L-RIM TRUST E. Murray & L. Meoli				tet	Disj							
Sample ID	Date	Time	Matrix	No. Containers	∥ ∽	1 54							
BLW-GW-07B-F	9/30/08	10:00	5W	1									
BLW-GW-D7B	9/30/08	10:00		1	1								
BLW-GW-D8B-F	9/30/08	11:05		/									
BLN-GW-D8B	9/30/08	11:05		/		\		a.					
BLW-GW-MW23-F	9/30/08	12:00		1	1								
BLW-GW-MW23	9/30/08	12:00		/_		/			٠				
BLW-GW-D9A-F	9/30/08	13:50		1		/							
BLW-GW-D9A	1/30/08	13:50		1	V	\							
BLW-GW-MW13-F	1/34/08	1525		/	レ	/							
BLW-GW-MW13	1/30/08	1525	4	1	/					-			
Comments/Special Instructions	Retinquished by: (Signature)	mm	Year	Received by:	enut	- Wa	fo	Relinquished (Signature)	l by:			Received by: (Signature)	
				Printed Name:	non			Printed Nam	e:		_	Printed Name	9:
	Company.	Company: Company: AR				, .		Сотрапу:		Company:			
	Date & Time:	"	15	Date & Time:		1615		Date & Time	Date & Time:		Date & Time:		

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: Floyd Snider	Project Name: B4L Land	201	
COC No:	Delivered by: Hand		
ARI Client: Floyd Snider COC No: Assigned ARI Job No: NS43	Tracking No:		* . *
Preliminary Examination Phase:			
Were intact, properly signed and dated custody	seals attached to the outside of to coole	r? YES	(NO)
Were custody papers included with the cooler?			NO
Were custody papers properly filled out (ink, sig			NO
Record cooler temperature (recommended 2.0-		_	_
Cooler Accepted by:	Date: 10/1/08	•	
Complete custody form	ms and attach all shipping documents		
			
Log-In Phase:			
Was a temperature blank included in the cooler?	?	YES	NO
What kind of packing material was used?		ICE	
Was sufficient ice used (if appropriate)?			
Were all bottles sealed in individual plastic bags'			410
Did all bottle arrive in good condition (unbroken)			NO
Were all bottle labels complete and legible?			NO
Did all bottle labels and tags agree with custody			NO
Were all bottles used correct for the requested a			NO
Do any of the analyses (bottles) require preserva		_	NO
Were all VOC vials free of air bubbles?	the state of the s		NO
Was sufficient amount of sample sent in each bo			NO
Samples Logged by: TW	Date: 10/3/05 Time:	1300	
	ger of discrepancies or concerns **		
		-,	
Explain discrepancies or negative responses:			
	By: Da	te:	

Page 1 of 1

Lab Sample ID: NS43A

LIMS ID: 08-26224

Matrix: Water
Data Release Authorized:

Reported: 10/20/08

Sample ID: BLW-GW-10A-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	0.2	211	

Page 1 of 1

Lab Sample ID: NS43B LIMS ID: 08-26225

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-11A-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.5	

Page 1 of 1

Lab Sample ID: NS43C

LIMS ID: 08-26226 Matrix: Water

Data Release Authorize Reported: 10/20/08

Sample ID: BLW-GW-D5L-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	3.3	

Page 1 of 1

Lab Sample ID: NS43D LIMS ID: 08-26227

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

Sample ID: BLW-GW-D6A-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	5	1,500	

Page 1 of 1

Lab Sample ID: NS43E

LIMS ID: 08-26228

Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-GW-D1U-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.5	2.8	

Page 1 of 1

Lab Sample ID: NS43F

LIMS ID: 08-26229

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

Sample ID: BLW-GW-D7B-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	4.1	

Page 1 of 1

Lab Sample ID: NS43G LIMS ID: 08-26230

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

Sample ID: BLW-GW-D8B-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	0.2	8.7	

Page 1 of 1

Lab Sample ID: NS43H LIMS ID: 08-26231

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-MW23-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	0.2	15.6	

Page 1 of 1

Lab Sample ID: NS43I LIMS ID: 08-26232

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

Sample ID: BLW-GW-D9A-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	0.2	35.4	

Page 1 of 1

Lab Sample ID: NS43J LIMS ID: 08-26233

Matrix: Water

Data Release Authorized Reported: 10/20/08 Sample ID: BLW-GW-MW13-F

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	5	2,420	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-10A

SAMPLE

Lab Sample ID: NS43K LIMS ID: 08-26234

Matrix: Water

Data Release Authorized: Reported: 10/20/08

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	204	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS43L LIMS ID: 08-26235

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-11A SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.6	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D5L

SAMPLE

Lab Sample ID: NS43M LIMS ID: 08-26236

Matrix: Water

Data Release Authorized

Reported: 10/20/08

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	0.2	3.3	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D6A

SAMPLE

Lab Sample ID: NS43N LIMS ID: 08-26237

Matrix: Water

Data Release Authorize

Reported: 10/20/08

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/17/08	7440-38-2	Arsenic	5	1,430	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D1U

SAMPLE

Lab Sample ID: NS430 LIMS ID: 08-26238

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/29/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/17/08	7440-38-2	Arsenic	0.5	2.9	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS43P LIMS ID: 08-26239

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-D7B SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	4.6	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D8B

SAMPLE

Lab Sample ID: NS43Q LIMS ID: 08-26240

Matrix: Water

Data Release Authorized Reported: 10/20/08

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	0.2	11.6	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS43R

LIMS ID: 08-26241

Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-GW-MW23

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	20.9	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS43S

LIMS ID: 08-26242

Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-GW-D9A

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	38.1	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS43T

LIMS ID: 08-26243 Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-GW-MW13

SAMPLE

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	5	2,510	

Page 1 of 1

Lab Sample ID: NS43MB LIMS ID: 08-26224 Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: METHOD BLANK

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.2	Ü

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS43MB

LIMS ID: 08-26234

Matrix: Water

Data Release Authorized: Reported: 10/20/08

Sample ID: METHOD BLANK

QC Report No: NS43-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/09/08	200.8	10/16/08	7440-38-2	Arsenic	0.2	0.5	

Page 1 of 1

Lab Sample ID: NS43LCS

LIMS ID: 08-26224

Matrix: Water

Data Release Authorized: Reported: 10/20/08

Sample ID: LAB CONTROL

QC Report No: NS43-Floyd-Snider Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	23.0	25.0	92.0%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS43LCS LIMS ID: 08-26234

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: LAB CONTROL

QC Report No: NS43-Floyd-Snider Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	23.8	25.0	95.2%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

October 21, 2008

Brett Beaulieu Floyd Snider 600 Union Street, Suite 600 Seattle, WA 98101-2341

RE: Project: B&L Landfill

ARI Job No: NS44

Dear Brett:

Please find enclosed the original Chain-of-Custody records, sample receipt documentation, and the final results for the samples for the project referenced above. Analytical Resources, Inc. (ARI) accepted twenty-two water samples in good condition on October 1, 2008. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Total and Dissolved Arsenic as requested on the COC.

No analytical complications were noted for these analyses. Quality control results are included for your review.

An electronic copy of this report and all associated raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager

-For-

Susan Dunnihoo Director, Client Services sue@arilabs.com 206-695-6207

Enclosures

cc: eFile NS44

Fremont
<u> Analytical</u>

Chain of Custody Record

2930 Westlake Ave. N. Geattle, WA 98109	Suite 100	Tel: 206-352- Fax: 206-352-							, .	. •	,						4	e e				7			
Client:	floyd 601 w Seath	Snid	w			Date	: <u>4</u>		/ · z			 ect Na	me:		Page:						_	ma m			
Address:	601 m	um 8	meet				- 44			•	Loca	tion:			_	27	L	/• •	1		11.				
City, State, Zip	Slatti	ewa			Tel: 2. D	6.	מצו	2	D/g	•	Colle	ected b	oy:		<u> </u>	<u>. ///</u>	eo	1	7 (N	m	m	· Y		—
Reports To (PM):				Fax:					Email	be	<u>2#.</u>	bea	ul	<u>ieu</u>	@	<u>Ho</u>	<u>yd</u>	Su	ide	BKjec	t No:	m '			
Sample N	ame	Time	Sample Type	Container Type	Date of Collection	VOA 8260	VOA 8021B BTEX		٥	NWTPH-Dx Ext.	SEMI VOL 8270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	1	METALS: # 2	N'ss						ments/Dep	pth .	
BLW-60	1-D8C	11:30	GW		9/30/08											/									
BW-Qu	1-08CF	(1:30	GW	600 m	le.											HA	/		·			_			
BLW-5W-		1010	u	te	1 e											س	-								,
BLW-8W.	- 02 - F	1010	U	U	11.												1								
BLW-SW-	04	1440	t•	e.	ts											1	1								
BLW-SW	- 64-F	1440	14	te	Į¢.					,							1	•							
BLW-SW BLW-SW	- 63	1135	le	1-	Cf						j					7									
BLW-SI	N-03-F	1135	u	((14												~	•							
BLW-51 BLW-5 BLW-8	w-035	1450	tı	t r	٠(•									
10 BLW-8	W-05-F	1450	ų	۲,	Įt.																				
				Pagaire d			Date /	Time				+==	le Rec	eipt:							Special R	temarks			
Relinquished Relinquished	J .	10/1/0	8 415	Received x			Date/	ume:				Good Temp	eratur	e:											
Relinquished	1.10-	Date/Time	100.00	Received			Date/	Time:				-	Intact?												
Hanti'	Wat	10/1108	1615	x								Total	Numbe	er of Co	ontain	ers:					TAT	> 24H	IR 48HR	Stand	lard

Fremont
<u> Analytical</u>

Chain of Custody Record

	TETT B																	`						
2930 Westlake Ave. N. Suite 100 🧀 🍜	Tel: 206-352	3790																						
Seattle, WA 98109	Fax: 206-352-	7178					15			C⁄						ľ	Λ				7			
					Date	:	10	<u> </u>	<u>' 0</u>	<u> </u>	_			Page:			<u> </u>			of:		_		
Client: Royd	Isude	v.		ş						Proje	ct Na	ne:		B	Ah	_ {	UL	J.	17/2	us				
Address:	MM S	Anest								Locat	tion:				00	ィ	,			_	-			_
City, State, Zip	10 . 11/4			Tel: 1D	6.	191	- 11	578		Colle	cted b	v:			i	-1	les	Sli	a	E.	KLI	was	1	-
300,000	R. IVI	·		···· ()Z	¥4	<u> </u>							۲.			1 (10	• 7	111	CA			 	-
Reports To (PM):			Fax:					Emai	:br	ett	-loe	ail	14	u (a	V 1	W.	K/Y	ua	Proje	ct No:			/	
		, 8 [±]													1		ľ							_
<u> </u>	- 81°	· John ·		1	1	ļ	1]] 12	51A	METALS A (TOT)	Z								
		,	'	Date of Collection		Ĕ			ij	ည			PESTICIDES 8081	CI HERBICIDES 8151A		1	ر پو	Ì						
				e	_	VOA 8021B BTEX	×	NWTPH-HCID	NWTPH-Dx Ext	SEMI VOL 8270C		7	DES	iDE:	13	1	CR/							
	Ų√.	1		ŏ	3260	3021	불	 	J-H	8	270	808	TICI	3BIC	S	S	S: R							
,	j.		Container	ate (VOA 8260	۱ő	NWTPH-Gx	ΜŢ	WTF	Ξ	PAH 8270	PCBs 8082	PES	포	ETA	Metals:	Metals:			_				
Sample Name	// Time	Sample Type	Туре	ے ا	>	<u> </u>	Z	z	Z	1 22	-6		C	ם	Σ,	2	2				Comr	ments/Dept	<u>h</u>	_
1 BW-5W-06	1425	GW	Soon	9/24	08										V							<u> </u>		
BW-SW-06 BW-SW-06F BWGWLENASHE	1425	SW	11	l.												/								
SHURGHE POLOSTE			The Real Property lies, the Parket lies,								_													
			10 4 6 644		 																			_
BLV-GW-MW31B-F	11-00	SW	WILLIAM	10/1/06			1																	
BLW-GW-MW31B	11:00	64	HOUTES	14/1/08											V				*	•				
6 BLW-GW-MW30-F			500mL	latilar					-]									
EBCN- GW-LIM 30-L	12.70		 			ļ		<u> </u>			-				ļ,	/								
BLW-GV-MW30	12:30	6W	500mL	10/1/08	1					3					/									
. BLW-GW-MW30B-E	12:45	6W	h.	h												/								
	****			+		-										,		 			-			
₈ BLW-GW-MW30B-F ₉ BLW-GW-MW30B	12,45	60	n	<u> </u>											<u></u>									
10BLN-GW-MW15-F	14:45	GW	15	n												/								
											Samp	e Rece	eipt:							Special	Remarks			
Relinquished x	Date/Time	4.1	Received			Date/	Time:				Good	,												
x 0/10/1/97	Date/Time	(11)	х	<u> </u>							⊢ ·	eratur	-								٨			
IRelinauished . (/ .	Date/Time	_	Received			Date/	Time:					ntact?												
* Saut Will	10/1/00	1615	x								Total !	Numbe	er of Co	ontain	ers:		l		1.	TAT	5> 24H	R 48HR	Standard	

Fremont
Analytical

Chain of Custody Record

330 Westlake Ave. N. Suite 100 eattle, WA 98109	Tel: 206-352- Fax: 206-352-	7178			Date	: <u>'</u>	10]	1/0	8		-										7			
lient: Floya	Snider Unit- UH981						_	_		Proje	ct Naı	me:		_6	ध	<u> </u>	LIM	1 -	TR	<u>457</u>				
ddress:	Unin-	y		A 5:4			<u> </u>	/		Locat	ion:													
ity, State, Zip	V4981	<u> </u>		Tel: 2-04	<u>·2</u>	<u>92·</u>	207	Y		Colle	cted b	y:					•		-					
teports To (PM):	•		Fax:					Email	:Br	ctt	· B	(1h	lizn	Q	Hor	1015	nid	7	Proje	ect No:				
· · · · · · · · · · · · · · · · · · ·														₹	1	ן צ				1				
				Date of Collection	99	VOA 8021B BTEX	NWTPH-Gx	NWTPH-HCID	NWTPH-Dx Ext.	OL 8270C	70	PCBs 8082	CI PESTICIDES 8081	3ICIDES 8151.	METALS: #5 737	Metals: MCA-5)[F	RCRA-8							
			Container	ite of	VOA 8260	N 8€	MTP	MTP	ΛΤΡ	M	'H 82	.Bs 86	PEST	HE.	ETAL	etals	etals			1				
Sample Name	Time	Sample Type				>	ź	ź	Ź	SE	ρĄ	2	ū	ㅁ	Σ	Σ	Σ		 			mments/[<u>Jepth</u>	
BLW-GW-MMS	14:45	GW	500ml	10/1/08	ĺ										√					15	707			
												,												
	-																						•	
										9														
																							-	
· · · · · · · · · · · · · · · · · · ·					-					:						_								
	 				_	 		-	-					\vdash				_	<u> </u>					
0				1											<u> </u>				<u> </u>					
13. m. daka ad	Data /Time		Possive d			Data /	Time					le Reco	eipt:				r -		-	Specia	l Remarks			
elinquished ODOMB elinquished Jaut Wats	Date/Time	4:15	Received			Date/	inne:				Good:	eratur	e:				<u> </u>			-				
elinquished / /.	Date/Time		Received			Date/	Time:					intact?	-							1				
Chart Wat	10/1/08	1615	x								Total	Numbe	er of C	ontain	ers:					1 _{TA}	T> 24	iHR 48	HR Sta	indard

Cooler Receipt Form

ARI Client: Floyd Snider	Project Name:		
COC No:			
Assigned ARI Job No:	· · · · · · · · · · · · · · · · · · ·		
Preliminary Examination Phase:			
Were intact, properly signed and dated co	ustody seals attached to the ou	utside of to cooler? YES	र्ती
Were custody papers included with the c			10
Were custody papers properly filled out (i	ink, signed, etc.)	WES N	lO.
Record cooler temperature (recommende	ed 2.0-6.0 °C for chemistry	15.4 9.2.12	·c4 9
Cooler Accepted by:		e: 10/1/08 Time: 16/5	•
Complete custod	ly forms and attach all shipp		5 ;
Log-In Phase:			
Log-III i nase.			
Was a temperature blank included in the	cooler?	YES	₽
What kind of packing material was used?		JCE	<u>-</u>
Was sufficient ice used (if appropriate)?		YES N	බි
Were all bottles sealed in individual plastic	bags?	_	
Did all bottle arrive in good condition (unb			2
Were all bottle labels complete and legible			
Did all bottle labels and tags agree with cu			
Were all bottles used correct for the reque			
Do any of the analyses (bottles) require pr			
Were all VOC vials free of air bubbles?			100
Was sufficient amount of sample sent in e			-
Samples Logged by:		12/08 Time:	
	Manager of discrepancies of	· · · · · · · · · · · · · · · · · · ·	
Explain discrepancies or negative respons	es:	1	
<u> </u>	MW17 & BLW	-6W-MW17-F	
were not on Coc	<u></u>		
	Ву:	Date:	1

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-D8C

SAMPLE

Lab Sample ID: NS44A LIMS ID: 08-26244

Matrix: Water

Data Release Authorized

Reported: 10/20/08

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	12.2	

TOTAL METALS

Page 1 of 1

of 1 SAMPLE

Lab Sample ID: NS44B LIMS ID: 08-26245

Matrix: Water

Data Release Authorized Reported: 10/20/08

QC Report No: NS44-Floyd-Snider Project: B&L LANDFILL

Sample ID: BLW-SW-02

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	25.0	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS44C LIMS ID: 08-26246

Matrix: Water

Data Release Authorized: Reported: 10/20/08

Sample ID: BLW-SW-04 SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	8.9	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS44D

LIMS ID: 08-26247 Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-SW-03

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	8.7	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-SW-05

SAMPLE

Lab Sample ID: NS44E LIMS ID: 08-26248

Matrix: Water

Data Release Authorized Reported: 10/20/08

QC Report No: NS44-Floyd-Snider Project: B&L LANDFILL

Data Campled: 00/20/00

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	54.0	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-SW-06

SAMPLE

Lab Sample ID: NS44F LIMS ID: 08-26249

Matrix: Water

Data Release Authorized

Reported: 10/20/08

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	26.1	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: NS44G

LIMS ID: 08-26250 Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-GW-MW31B

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	4.1	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-MW30

SAMPLE

Lab Sample ID: NS44H

LIMS ID: 08-26251

Matrix: Water Data Release Authorized: Reported: 10/20/08

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	<u>Q</u>
200.8	10/10/08	200.8	10/16/08	7440-38-2	Arsenic	5	2,260	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS44I LIMS ID: 08-26252

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-MW30B

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/16/08	7440-38-2	Arsenic	5	2,270	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS44J

LIMS ID: 08-26253

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

Sample ID: BLW-GW-MW15

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/16/08	7440-38-2	Arsenic	5	1,720	

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-MW17

SAMPLE

Lab Sample ID: NS44K LIMS ID: 08-26254

Matrix: Water

Data Release Authorized

Reported: 10/20/08

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/17/08	7440-38-2	Arsenic	0.5	2.8	

Page 1 of 1

Lab Sample ID: NS44L LIMS ID: 08-26255

Matrix: Water

Data Release Authorized Reported: 10/20/08

SAMPLE

Sample ID: BLW-GW-D8C-F

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	8.8	

Page 1 of 1

Lab Sample ID: NS44M LIMS ID: 08-26256

Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-SW-02-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	17.6	

Page 1 of 1

Lab Sample ID: NS44N

LIMS ID: 08-26257

Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-SW-04-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	8.1	

Page 1 of 1

Lab Sample ID: NS440 LIMS ID: 08-26258

Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-SW-03-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	4.3	

Page 1 of 1

Lab Sample ID: NS44P LIMS ID: 08-26259

Matrix: Water

Data Release Authorized:

Reported: 10/20/08

Sample ID: BLW-SW-05-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	8.0	

Page 1 of 1

Lab Sample ID: NS44Q LIMS ID: 08-26260

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-SW-06-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 09/30/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	6.5	

Page 1 of 1

Lab Sample ID: NS44R LIMS ID: 08-26261

Matrix: Water

Data Release Authorized: Reported: 10/20/08

Sample ID: BLW-GW-MW31B-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	3.8	

Page 1 of 1

Lab Sample ID: NS44S LIMS ID: 08-26262

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-MW30-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/16/08	7440-38-2	Arsenic	5	2,310	

Page 1 of 1

Lab Sample ID: NS44T LIMS ID: 08-26263

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-MW30B-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/17/08	7440-38-2	Arsenic	5	2,290	

Page 1 of 1

Lab Sample ID: NS44U

LIMS ID: 08-26264 Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: BLW-GW-MW15-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08
Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/17/08	7440-38-2	Arsenic	5	1,520	

Page 1 of 1

Lab Sample ID: NS44V LIMS ID: 08-26265

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: BLW-GW-MW17-F

SAMPLE

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: 10/01/08 Date Received: 10/01/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/17/08	7440-38-2	Arsenic	0.5	3.6	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS44LCS LIMS ID: 08-26244

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: LAB CONTROL

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	23.4	25.0	93.6%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: NS44LCS

LIMS ID: 08-26255

Matrix: Water

Data Release Authorized

Reported: 10/20/08

Sample ID: LAB CONTROL

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	22.2	25.0	88.8%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS44MB LIMS ID: 08-26244

Matrix: Water

Data Release Authorized Reported: 10/20/08

Sample ID: METHOD BLANK

QC Report No: NS44-Floyd-Snider

Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.2	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS44MB LIMS ID: 08-26255

Matrix: Water
Data Release Authorized:
Reported: 10/20/08

Sample ID: METHOD BLANK

QC Report No: NS44-Floyd-Snider Project: B&L LANDFILL

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	RL	μg/L	Q	
200.8	10/10/08	200.8	10/14/08	7440-38-2	Arsenic	0.2	0.2	U

October 30, 2008

Brett Beaulieu Floyd Snider 600 Union Street, Suite 600 Seattle, WA 98101-2341

RE: Project: B&L Woodwaste

ARI Job No: NS72

Dear Brett:

Please find enclosed the original Chain-of-Custody record, sample receipt documentation, and the final results for the samples for the project referenced above. Analytical Resources, Inc. (ARI) accepted four water samples in good condition on October 2, 2008. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Total and Dissolved Arsenic as requested on the COC.

No analytical complications were noted for these analyses. Quality control results are included for your review.

An electronic copy of this report and all associated raw data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

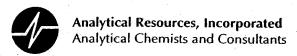
ANALYTICAL RESOURCES, INC.

Cheronne Oreiro Project Manager

-For-

Susan Dunnihoo Director, Client Services sue@arilabs.com 206-695-6207

Enclosures


cc: eFile NS72

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: NS 72 ARI Client Company: Client Contact: Reau	Turn-around Lev Lieu	Bequested: 7.00 Phone: 200	2078	Page: Date: No. of Coolers:	/2/08 1	lce Prese Coole Temp	er / /					Analytical Resources, Incorporated Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)		
Client Project Name:	wal					Ø.		Analysis F	Requested				Notes/Comments	
Client Project # Wst	Samplers:	lunay	JL.V.	heoli	ota /	Discolute								
Sample ID	Date	Time	, Matrix	No. Containers	18-J	A-1								
BW-GW-HW14	10/2/68	1530	GW	1		7								
BW-60-MW14-F		1530	(l	(
BLWGW-MWILEF		1420		1									_	
BLUGU)-HWILO		1420		i i	\	1								
						-								
								:						
Comments/Special Instructions	Relinquished by: (Signature)	Ina In	63 a 1 s	(Signature)		2/15		Relinquished (Signature)	by.			Received by: (Signature)		
-	Printed Name:	July	my.	Printed Name:	AN /	8480	<u> </u>	Printed Nam	e: ,	<u>.</u>		Printed Name	9:	
	Company:	d Sario	lev	Company:				Company:				Company:		
	Date & Time: ()	108 1-	100	Date & Time:	v8	17	00	Date & Time				Date & Time:		

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

^ - ~			
ARI Client:	Project Name: B & L Wadwaste	<u> </u>	1. -
COC No:	Delivered by: Hand		
	Tracking No:		_
Preliminary Examination Phase:			
Were intact, properly signed and dated custody se	eals attached to the outside of to cooler	? YES	40
Were custody papers included with the cooler?			NO
Were custody papers properly filled out (ink, signe			NO -
Record cooler temperature (recommended 2.0-6.0		/ /	, "C
	Date: 10/2/08	_ Time: <u>/</u>	100
// Complete custody forms	and attach all shipping documents		
Log-In Phase:			
Was a temperature blank included in the cooler? .		YES	(NO)
What kind of packing material was used?			
Was sufficient ice used (if appropriate)?			
Were all bottles sealed in individual plastic bags?			NO
Did all bottle arrive in good condition (unbroken)?			NO
Were all bottle labels complete and legible?	· · · · · · · · · · · · · · · · · · ·		NO
Did all bottle labels and tags agree with custody pa			NO
Were all bottles used correct for the requested ana			NO
Do any of the analyses (bottles) require preservation	and Tarana and the same and the		NO.
Were all VOC vials free of air bubbles?			NO
Was sufficient amount of sample sent in each bottl) NO
	Date: _1016108Time:		
化基础 化二氯化甲基甲基酚 化二氯甲基酚 医电影 化二氯甲基酚 化二氯甲基酚 医二甲基酚 化二氯甲基酚	er of discrepancies or concerns **	1200	_
Notify Project Manage	er of discrepancies of concerns	ē.	
Explain discrepancies or negative responses:		-	
		•	
	By: Dat	e :	
			1

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-MW14

SAMPLE

Lab Sample ID: NS72A LIMS ID: 08-26350

Matrix: Water

Data Release Authorized:

Reported: 10/29/08

QC Report No: NS72-Floyd-Snider

Project:

Date Sampled: 10/02/08 Date Received: 10/02/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L Q
200.8	10/24/08	200.8	10/28/08	7440-38-2	Arsenic	0.5	3.9

TOTAL METALS

Page 1 of 1

Sample ID: BLW-GW-MW16

SAMPLE

Lab Sample ID: NS72B

LIMS ID: 08-26351

Matrix: Water

Data Release Authorized:

Reported: 10/29/08

QC Report No: NS72-Floyd-Snider

Project:

Date Sampled: 10/02/08 Date Received: 10/02/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/24/08	200.8	10/28/08	7440-38-2	Arsenic	0.2	4.6	

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS72C

LIMS ID: 08-26352

Matrix: Water

Data Release Authorized:

Reported: 10/29/08

Sample ID: BLW-GW-MW14F

SAMPLE

QC Report No: NS72-Floyd-Snider

Project:

Date Sampled: 10/02/08 Date Received: 10/02/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/24/08	200.8	10/28/08	7440-38-2	Arsenic	0.5	3.4	

DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS72D

LIMS ID: 08-26353

Matrix: Water

Data Release Authorized:

Reported: 10/29/08

Sample ID: BLW-GW-MW16F

SAMPLE

QC Report No: NS72-Floyd-Snider

Project:

Date Sampled: 10/02/08 Date Received: 10/02/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/24/08	200.8	10/28/08	7440-38-2	Arsenic	0.2	4.1	

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS72LCS

LIMS ID: 08-26350

Matrix: Water

Reported: 10/29/08

Data Release Authorized

Sample ID: LAB CONTROL

QC Report No: NS72-Floyd-Snider

Project:

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	27.0	25.0	108%	

Reported in $\mu g/L$

N-Control limit not met Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS72LCS

LIMS ID: 08-26352

Matrix: Water

Data Release Authorized: Reported: 10/29/08

QC Report No: NS72-Floyd-Snider

Sample ID: LAB CONTROL

Project:

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	26.5	25.0	106%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Lab Sample ID: NS72MB

LIMS ID: 08-26350

Matrix: Water

Data Release Authorized: Reported: 10/29/08

Sample ID: METHOD BLANK

QC Report No: NS72-Floyd-Snider

Project:

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/24/08	200.8	10/28/08	7440-38-2	Arsenic	0.2	0.2	U

INORGANICS ANALYSIS DATA SHEET DISSOLVED METALS

Page 1 of 1

Lab Sample ID: NS72MB LIMS ID: 08-26352 Matrix: Water

Data Release Authorized Reported: 10/29/08

Sample ID: METHOD BLANK

QC Report No: NS72-Floyd-Snider

Project:

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	μg/L	Q
200.8	10/24/08	200.8	10/28/08	7440-38-2	Arsenic	0.2	0.2	U

Fremo	nt														(h	ain	0	f Custody Record
2930 Westlake Ave. N. Suite 100 Seattle, WA 98109	Tel: 206-352- Fax: 206-352-	7178						129/0	280				Page:				1		of:
Client: FCOY I Address: GC City, State, Zip SEAT	OF UN	LUN ST	SU	Tel: 7	60	20	@ 7	2070	Local	ect Na tion:			177		Br		1		ERENT REAVIEW
Reports To (PM):	1-7-00	+ 18	Fax:			2.5	1	Email:	,			-		00	11	2	3	Proje	EREST REAVER
Sample Name	Time	Sample Type	Container Type	Date of Collection	VOA 8260	VOA BOZ18 BTEX	NWTPH-Gx	A PSS IVE	SEMI VOL 8270C	PAH 8270	PCBs 8082.	CI PESTICIDES 8083	Sucasuades 21514	METALS AS, CALO	Marie MICAS 325	Marketing 335	ORSANC CREEN	Total Alleding	Comments/Depth
i PD-107-W-30'	11:00	W 31	500 mc only	8/29/19									X	×	×	×	×	X	ORGANIC CARBON SAMA
PD-104-13	12:40		2 × 500 st	_															12 I VELD- FILTYERED
1 PD=10A	88	3 8/29/															-		
BLW-DY-PODIOA	13/124	o W	1 4 500 WL	8/27/08	-			X										-	FIED-FILTERSU
s BLW-DM-PDDIOA			1x50ml	1				×		21									FIGUR FILLESSED
7																			
8																			
10																			
Anton	Pate/Pime 0	8 160	Received	2	5	Date/	111	فالك	00	Good Temp Seals	eratun Intact7	e;	ntáiní	History.					Special Remarks TAT -> 28HR 48HR Stándárú

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790

F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM080926-1

October 1st, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** water samples delivered to Fremont Analytical on September 26th, 2008.

The samples were received in good condition – in a cooler with wet ice, in the proper containers (500mL Polys), properly sealed, labeled and within holding time. The cooler temperature upon receipt was 5.4° C, which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The samples were extracted and stored in refrigeration units at the USEPA-recommended temperature of 4°C ± 2°C. There were no sample analysis or sample receipt issues to report.

Examination was conducted for the presence of the following:

- Dissolved Metals (As) in Water by EPA Method 6020
- Total Metals (As) in Water by EPA Method 6020

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements Lab Manager / Sr. Chemist

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

					Duplicate	
EPA 6020	MRL	Method	LCS	BLW-D4-PD31-9F	BLW-D4-PD31-9F	RPD
(mg/L)		Blank				
Date Extracted		9/29/08	9/29/08	9/29/08	9/29/08	%
Date Analyzed		9/30/08	9/30/08	9/30/08	9/30/08	
Matrix		Water		Water	Water	
Arsenic (As)	0.002	nd	86%	0.18	0.16	12%
Arsenic (As)	0.002	nd	86%	0.18	0.16	12%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

EPA 6020 (mg/L)	MRL	BLW-D4-PD31-14-F	BLW-D4-PD30-9-F	BLW-D4-PD34-8-F
Date Extracted		9/29/08	9/29/08	9/29/08
Date Analyzed		9/30/08	9/30/08	9/30/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	0.004	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

EPA 6020 (mg/L)	MRL	BLW-D4-PD34-14-F	BLW-D4-PD29-8F	BLW-D4-PD29-13F
Date Extracted		9/29/08	9/29/08	9/29/08
Date Analyzed		9/30/08	9/30/08	9/30/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.027	nd	0.012

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

		MS	MSD	
EPA 6020	MRL	BLW-D4-PD31-9F	BLW-D4-PD31-9F	RPD
(mg/L)				
Date Extracted		9/29/08	9/29/08	%
Date Analyzed		9/30/08	9/30/08	
Matrix		Water	Water	
Arsenic (As)	0.002	88%	89%	1%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:
As = 100μg/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

EPA 6020	MRL	Method	LCS	Decon 4	Decon 3	Decon 2	Decon 1	Duplicate Decon 1
(mg/L)		Blank		2000	20000	20002	2000	
Date Extracted		9/29/08	9/29/08	9/29/08	9/29/08	9/29/08	9/29/08	9/29/08
Date Analyzed		9/30/08	9/30/08	9/30/08	9/30/08	9/30/08	9/30/08	9/30/08
Matrix		Water		Water	Water	Water	Water	Water
Arsenic (As)	0.002	nd	86%	nd	nd	nd	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: MS, MSD, LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

		MS	MSD	
EPA 6020	MRL	Decon 1	Decon 1	RPD
(mg/L)				
Date Extracted		9/29/08	9/29/08	%
Date Analyzed		9/30/08	9/30/08	
Matrix		Water	Water	
Arsenic (As)	0.002	94%	95%	1%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

MS, MSD, LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremont
Analytical

Chain of Custody Record

Analyti	Deri h														,	-110	aiii C	i custo	dy Record
	Tel: 206-352- Fax: 206-352-			Dat	ie: _	4	20	6/0	8				Page:				/	af:	
Client: FLOY	SNID	ER					3		Proje	ct Na	me:		1	3+	LL	voc	50 und	18/13	
Address: 601 U	MIDE	51.5	UITEG	00					Locat				_						
City, State, Zip	15, W	A 218	101	Tel: 206	291	10	78		Colle	cted b	y:		1	50	29	- 1	STEAU	1150	
Reports To (PM):			Fax:		_	_	Emai	li .						_			J pro	ject No:	
Sample Name	Time	Sample Type	Container Type	Date of Collection	VOA 80218 BTEX	NWTPH-Gx	NWTPH-HCID	NWTPH-Dx.Ext.	SEMI VOL BZ70C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES 8151A	METALS	Metals: MTCA-5	Metals: RCRA-8	PASENIC TO GOOD IN	Co	mments/Depth
1 BLW- D4-PD31-9E	9:00	w	500-194	9/2/08													X	FIELD	FILIPPED -> DISSON
2 BLW-04-PO31-14-F	17.5	1		,													X		ARGM
3 BLW-DY-PD30-9-F																	X		
1BLW-D4. PD34.81																	X		
5 BLW - DY - PO34-14-1		. 1															X		
BLW - DY - PD29 - 8F																	X		
, BLW-DY-PD29-13F	13:30	1	,	4													X		1
	16:00																X	TOTAL	AS / UN FILTE
DECOW 3	(6:05																X		1
. 0	16:10	Y															X		
Kelinguished Kelinguished	pate/Time	V	Received	7	Date	Time	,			Sampl Good?		eipt				_	X	Special Remarks	
x 1 ~ St. Va	Date/Time	26/08-	Received			24 me	18	n	40	Tempe	erature	-				5	V	(4)	SAUDLES
x			×							Total I	Vumbe	er of Co	ntaine	rs:			(11)	TAT -> 24	tHR 48HR Standard

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste

Fremont Project No: CHM080808-4 Floyd | Snider Project No: B&L RIM

August 13th, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** water samples delivered to Fremont Analytical on August 8th, 2008.

The samples were received in good condition – in the proper containers, properly sealed, labeled and within holding time. The samples were contained in 500mL polys, preserved with HNO_3 . The cooler temperature upon receipt was 5°C , which is within the laboratory recommended cooler temperature range (4°C - 10°C). The samples were stored in refrigeration units at the USEPA-recommended temperature of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$. There were no sample receipt or sample analysis issues to report.

Examination was conducted for the presence of the following:

Total Arsenic in Water by EPA Method 6020

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

Thank you for using Fremont Analytical!

16Pm

Sincerely,

Michael Dee

Sr. Chemist / Principal

mikedee@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080808-4

Dunlicate

<u> </u>					Duplicate	
EPA 6020	MRL	Method	LCS	BLW-D4-PD39-14	BLW-D4-PD39-14	BLW-D4-PD39-20
(mg/L)		Blank				
Date Extracted		8/11/08	8/11/08	8/11/08	8/11/08	8/11/08
Date Analyzed		8/11/08	8/11/08	8/11/08	8/11/08	8/11/08
Matrix		Water		Water	Water	Water
Arsenic (As)	0.002	nd	92%	nd	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike
"MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080808-4

EPA 6020 (mg/L)	MRL	BLW-D4-PD40-14	BLW-D4-PD40-20	BLW-D4-PD37-14
Date Extracted		8/11/08	8/11/08	8/11/08
Date Analyzed		8/11/08	8/11/08	8/11/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.003	0.003	0.026

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike
"MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080808-4

EPA 6020 (mg/L)	MRL	BLW-D4-PD37-20	BLW-D4-PD38-20	BLW-D4-PD38-20D
Date Extracted		8/11/08	8/11/08	8/11/08
Date Analyzed		8/11/08	8/11/08	8/11/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.004	0.002	0.002

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike
"MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080808-4

EPA 6020 (mg/L)	MRL	BLW-D4-PD42-14	BLW-D4-PD41-14	BLW-D4-PD43-14	BLW-D4-PD32-8
Date Extracted		8/11/08	8/11/08	8/11/08	8/11/08
Date Analyzed		8/11/08	8/11/08	8/11/08	8/11/08
Matrix		Water	Water	Water	Water
Arsenic (As)	0.002	0.008	0.010	0.005	0.010

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike
"MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080808-4

			MS	MSD	
EPA 6020 (mg/L)	MRL	BLW-D4-PD32-15	BLW-D4-PD40-14	BLW-D4-PD40-14	RPD
Date Extracted		8/11/08	8/11/08	8/11/08	%
Date Analyzed		8/11/08	8/11/08	8/11/08	
Matrix		Water	Water	Water	
Arsenic (As)	0.002	0.002	119%	119%	0%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike
"MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

	Fremont
- 9	Analytical

Chain of Custody Record

					Date	. 8	6/	08		_				Page	=	J		_	af:		
lient: Floyd	Shide	~								Proje	ct Na	me:						usk			
ddress.	DIMAL	on Sty	Ste, OU	7)				_		Locat					Hom	_		-			
ity, State, Zip	INA	98001	_	Tel: 200	-2	12-	207	K		Calle	cted b	y:		Em	-1	74	oray	Bre	HB	Rauhen	
eports To (PM): BUCH BEA	HILLER		Fax: 20G	-682-	78	07		Emai	br	ctt.	be	en li	eum	11	ujds	nid	er. c	ann Pr	oject No	BALR	17
Sample Name	firme	Sample Type	Container Type	Date of Collection	VOA BZ60	VOA BOZJB BTEX	имтря-бл	NWTPH-HCID	WWTPH-Ds Ed	SEMI VOL BZZOC	PAH 8270	PCBs 8082	CI PESTICIDES BOB1.	D HERBIODES SISTA	METALS ANDENIE	Metals: MTCA-5	Metals RCRA-8			Camments/	Deote
BLW-04-PD39-14	17:30	GW	STONL	8/0/01											1						
BLW-D4-PD39-20	12:20	GW	SOUNL	8/0/08											1			9			
BLW-04-P040-14	14,20	ijw	5ZDn.L	8/0/08											1						
BLW-04-9040-20	15:00	GW	SOOML	8/0/08											/						
BLW-04-P037-14	29.10	gw	DOML	8/9/08											1						
BLW-04-P037-10	09:25	GW	STUML	8/7/08											1						
BLW-P4-8038-20	12:05	GW	520 mL	8/7/08											/						
BLW-04-PD38-20d	12:15	GW	SOUNL	8/7/18											1						
BLW-04-PD42-14	12:05	GW	JOONL	8/8/08											1						
BLW-D4-P041-14			SOOML	8/8/08																	
rlinguished	Date/Time	A	Receive	7		Date/	Time:		-	_	Sample Good?		ipt:			-1	V	_	Speci	al Remarks	
SWOOD 8	Date/Time 8 18 Date/Time	7-32	Received			S S	Time	3	63	0	Tempe	rsture macy?					5	2			
~			Y									_	r of Co	ntaine	rs.		A	5)	1	AT - 24HR 48	HR Stan

Fremo	nt															(Cha	ain	of C	cus	tod	y Re	cord
1930 Westlake Ave. N. Suite 100 Seattle, WA 98109	Tel: 206-352 Fax: 206-352				Date	0 4	3/8	108	7					Page			2		of	2			
Client: Florad I	Snider						1.1				ect Na	me:					dive						
Client: Floyd Address: City, State, Zip Star W	GOLUM	in St	Str. 6	00						Local				141;	110	Th	134						
City, State, Zip Star W	+ 780	9		Tel: 201	60	92	-20	78		Colle	cted l	by:		Er	in	140	in	4	Jona	10	MAR	Ma	
Reports To (PM): Brett Ben			Fax: 206		-7	86	7	Email	br	+11	bea	a fi	at A	24%	44	500	dere	Shy	Project N	o: Ł	371	RIM	
5ample Name	Time	Sample Typ∈	Container Type			VOA BOZIB BTEX									METALS ATTONIC							ents/Depth	
1 BLW-DY-PD43-14	13.15			8/8/08											1								
			-	-	-										1								
2 BLW-04-PD32-8							_						-		V.	1							
3 BLW-D4-PD32-15	15-10	GW	SODIML	8/8/08											1								
4																							
5																							
6											-												
7																							
6												П											
5												Г											
9																			-	_			
10											Came	le Ber	- lest-			Y			For	ial flor	eracles.		

Good? Temperature: Seals Intact?

Total Number of Containers:

TAT -> 24HH 48HR standard

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L RIM

Fremont Project No: CHM080815-3

August 20th, 2008

Brett:

Enclosed are the analytical results for the **B & L RIM** water samples delivered to Fremont Analytical on August 15th, 2008.

The samples were received in good condition – in the proper containers, properly sealed, labeled and within holding time. The samples were contained in 500mL Polys, preserved with HNO3. The cooler temperature upon receipt was 6°C, which is within the laboratory recommended cooler temperature range (4°C - 10°C). The samples were extracted, analyzed and then stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C. There were no sample receipt or sample analysis issues to report.

Examination was conducted for the presence of the following:

Total Arsenic in Water by EPA Method 6020

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

Thank you for using Fremont Analytical!

16Pm

Sincerely,

Michael Dee

Sr. Chemist / Principal

mikedee@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L RIM Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080815-3

EPA 6020 (mg/L)	MRL	Method Blank	LCS	BLW-D4-PD3-22	BLW-D4-PD3-16	BLW-D4-Rinsate
Date Extracted		8/18/08	8/18/08	8/18/08	8/18/08	8/18/08
Date Analyzed		8/18/08	8/18/08	8/18/08	8/18/08	8/18/08
Matrix		Water		Water	Water	Water
Arsenic (As)	0.002	nd	94%	0.005	0.004	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration: $As = 100 \mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L RIM Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080815-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD2-18	BLW-D4-PD2-12	BLW-D4-PD4-20	BLW-D4-PD4-12
Date Extracted		8/18/08	8/18/08	8/18/08	8/18/08
Date Analyzed		8/18/08	8/18/08	8/18/08	8/18/08
Matrix		Water	Water	Water	Water
Arsenic (As)	0.002	0.004	0.003	0.010	0.005

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:
As = 100 μg/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L RIM Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080815-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD5-20	BLW-D4-PD5-21	BLW-D4-PD5-12	BLW-D4-PD6-21
Date Extracted		8/18/08	8/18/08	8/18/08	8/18/08
Date Analyzed		8/18/08	8/18/08	8/18/08	8/18/08
Matrix		Water	Water	Water	Water
Arsenic (As)	0.002	0.008	0.008	0.005	0.008

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L RIM Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080815-3

			Duplicate	
MRL	BLW-D4-PD6-12	BLW-D4-PD1-18	BLW-D4-PD1-18	RPD
	8/18/08	8/18/08	8/18/08	%
	8/18/08	8/18/08	8/18/08	
	Water	Water	Water	
0.002	0.004	0.003	0.003	0%
		8/18/08 8/18/08 Water	8/18/08 8/18/08 8/18/08 8/18/08 Water Water	MRL BLW-D4-PD6-12 BLW-D4-PD1-18 BLW-D4-PD1-18 8/18/08 8/18/08 8/18/08 8/18/08 8/18/08 8/18/08 Water Water Water Water

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L RIM Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080815-3

			MS	MSD	
EPA 6020	MRL	BLW-D4-PD1-12	BLW-D4-PD1-18	BLW-D4-PD1-18	RPD
(mg/L)					
Date Extracted		8/18/08	8/18/08	8/18/08	%
Date Analyzed		8/18/08	8/18/08	8/18/08	
Matrix		Water	Water	Water	
Arsenic (As)	0.002	0.003	91%	91%	0%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentration:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

	Fremo	mi	
	Fremo	प्रस्ता	
29 JO Weetle	ke Asie W Sides 100	Tail	10

Chain of Custody Record

	0.0				Date	-	0//-	3/0	0	-	-								- 6	de
ent: Floyd Indiana.	Char	a viene	7.00			_		_			ct Nar	ne:		BA	4	EIN	1		_	
dress: inplication in Station	was TX	101	600	Tel: 2.0	0-2	192	-20	77		Locati		v:		80	in	14.	i ma	a L	de	Medi
ports To (PM): Brett Bean			Fax: 206														بالإحراء	<i>r</i> .	oject	
Sample Name	Time	Sample Type	Container Type	Date of Collection	VCA-SZED	VOA:S0218 BTEE	few TP UP Ex	WWTPHHOD	NWTPH-Ds Est	SEMI VOL 8270C	PAH B270	PCB1 6083	CI PESTICIDES ADE1	CI HERBICIDES BISIA	METALS: 45	Wetsis MTCA-5	Metals RCRA-S			Epmments/Deprin
	1130	6W	500m4	1/13/03				Ť		107					1		Ĩ	T	1	Limiteral Depti
3LW-D4-PD3-16	11:65	11	1	1											1					
LW-D4-Rinsate	12:30	71																		
bLW-D4-PD2-18	13:17	4																		
LW-04-PD2-12	18:36	4	7	4																
LW-04-PD4-20		GW	SXXIIIL	8/14/08																
LW-04-PD4-12		· Cc	1	1																
LW-D4-PD5-20		- 11													(
LW-DY-PD5-21		27.	1												7					
BLW-04-PD5-R		il.	-	4																
quished	Date/Time 8/15/	08 -	Received		(Dyte/	Time:	d	40	_	Sampl Good? Tempe	_					Y	0	5	pocial Remarks

	Fremont
- 10	Analytical

Chain of Custody Record

ross 601 C	mider	-		,			1	5		Proje	ct Na	ne:							is a leoli
State, Zip Scatt	lucion	Street	+ STE,	600	C - 7	92	.71	70		Locat	don:			6	+6	1		. 11	Su Hale
orts TO (PM): Brett Be	aulicy	7610	Fax: 206	-682	- 7	867	7	Email	bn	ett.	bea	ulie							
Sample Name	Time	Sample Type	Container Type	Date of Collection	VOA 8260	VOA 8021B BTEX	NUTPH-ISS	NWTPH-HCID.	HWITPH-DX EN	SEMI VOL 8270C	PAH 8270	PCH: 8082	CI PESTICIDES BOET	CI HERBICIDES 8151A	METALS AS	Metall: ATCA,5	Merals: RCSA-a		Comments/Depth
LW D4-PD6-21	9.45	GW	GUM	8(15)08											1				
LW-04-PD6-12		GW	vi.	11											N				
BLW-04-PD1-18		16	11	11											-				
3LW-04-POI-12	1300	11	10	11											-				
																		+	
																119			
			A-ma								Sampl	e Reco	100						Special Remarks

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Trust RIM

Fremont Project No: CHM080819-2

August 25th, 2008

Brett:

Enclosed are the analytical results for the **B & L RIM** water samples delivered to Fremont Analytical on August 19th, 2008.

The samples were received in good condition – in the proper containers, properly sealed, labeled and within holding time. The samples were contained in 500mL Polys, preserved with HNO_3 . The cooler temperature upon receipt was $5.5^{\circ}C$, which is within the laboratory recommended cooler temperature range (4°C - 10°C). The samples were extracted, analyzed and then stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C. There were no sample receipt issues to report.

Examination was conducted for the presence of the following:

Total Arsenic in Water by EPA Method 6020

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

EPA Method 6020 Notations: The Relative Percent Difference (RPD%) between sample (BLW-D4-PD51-16) and the sample duplicate exceeded laboratory limits. The Laboratory Control Sample (LCS), Matrix Spike (MS) and MS Duplicate were all within QC Limits, proving the analysis in control.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Sr. Chemist / Lab Manager

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Trust RIM
Client: Floyd | Snider
Client Project #: B&L RIM
Lab Project #: CHM080819-2

EPA 6020 (mg/L)	MRL	Method Blank	LCS	BLW-D4-PD52-19	BLW-D4-PD52-13	BLW-D4-PD51-16
Date Extracted		8/21/08	8/21/08	8/21/08	8/21/08	8/21/08
Date Analyzed		8/21/08	8/22/08	8/25/08	8/25/08	8/25/08
Matrix		Water		Water	Water	Water
Arsenic (As)	0.002	nd	84%	nd	nd	0.002

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Trust RIM
Client: Floyd | Snider
Client Project #: B&L RIM
Lab Project #: CHM080819-2

Duplicate

EPA 6020 (mg/L)	MRL	BLW-D4-PD51-16	RPD	BLW-D4-PD51-12	BLW-D4-PD50-17
Date Extracted		8/21/08	%	8/21/08	8/21/08
Date Analyzed		8/25/08		8/25/08	8/25/08
Matrix		Water		Water	Water
Arsenic (As)	0.002	0.004	53%	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Trust RIM Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080819-2

			MS	MSD
EPA 6020	MRL	BLW-D4-PD50-12	Batch	Batch
(mg/L)				
Date Extracted		8/21/08	8/21/08	8/21/08
Date Analyzed		8/25/08	8/21/08	8/21/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	99%	109%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike
"MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremont
 Analytical

Chain of Custody Record

ent: dress: y, State, Zip Brett Bra	Smid Lews	en Fae	600 Fax: 206	Tel: ZU	-Zu	n-	-21	9/0 	7	Locati	cted b	y:		157 157 157	the us	Tri	ust	RI	u.	Alleway inder BALRIM
		Sample Type	Containe: Type	Date of Collection	VOA 6260	VOA 80218 BTEX	WWTPH-GE	NWTPH-HGD	NWTPH-Dx Ext.	SEMI VOL 8270C	PAR 3270		CI PESTICIDES 8081	4	METALS AS		Merry, ROME			Comments/DeptH
Sample Name 19 BUV-04-PD52-B	1025	GW	Sound	8/19/8											1					
BLW-D4-PD52-B	1045	14	200	11.											~					
BLW-D4-PDS1-16		30	***	6											-					
BUU-04-PD8-12		ν.	tr	0											-					
7LW-D4-PD50-17		4).	×	4											V					
3LW-04-P052-12		19.	4.1	H											~					
											Sampl	e Rece	ipt:							Special Remarks
	Date/Time Date/Time	>	Received Received	er	r	Date/	Time:	19		28	Good? Tempe Seals !		0	intaine	ut:		ls	4		TAT => 24HR 48HR SI

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Trust RIM

Fremont Project No: CHM080819-2

August 25th, 2008

Brett:

Enclosed are the analytical results for the **B & L RIM** water samples delivered to Fremont Analytical on August 19th, 2008.

The samples were received in good condition – in the proper containers, properly sealed, labeled and within holding time. The samples were contained in 500mL Polys, preserved with HNO_3 . The cooler temperature upon receipt was $5.5^{\circ}C$, which is within the laboratory recommended cooler temperature range (4°C - 10°C). The samples were extracted, analyzed and then stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C. There were no sample receipt issues to report.

Examination was conducted for the presence of the following:

Total Arsenic in Water by EPA Method 6020

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

EPA Method 6020 Notations: The Relative Percent Difference (RPD%) between sample (BLW-D4-PD51-16) and the sample duplicate exceeded laboratory limits. The Laboratory Control Sample (LCS), Matrix Spike (MS) and MS Duplicate were all within QC Limits, proving the analysis in control.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Sr. Chemist / Lab Manager

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Trust RIM
Client: Floyd | Snider
Client Project #: B&L RIM
Lab Project #: CHM080819-2

EPA 6020 (mg/L)	MRL	Method Blank	LCS	BLW-D4-PD52-19	BLW-D4-PD52-13	BLW-D4-PD51-16
Date Extracted		8/21/08	8/21/08	8/21/08	8/21/08	8/21/08
Date Analyzed		8/21/08	8/22/08	8/25/08	8/25/08	8/25/08
Matrix		Water		Water	Water	Water
Arsenic (As)	0.002	nd	84%	nd	nd	0.002

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Trust RIM
Client: Floyd | Snider
Client Project #: B&L RIM
Lab Project #: CHM080819-2

Duplicate

EPA 6020 (mg/L)	MRL	BLW-D4-PD51-16	RPD	BLW-D4-PD51-12	BLW-D4-PD50-17
Date Extracted		8/21/08	%	8/21/08	8/21/08
Date Analyzed		8/25/08		8/25/08	8/25/08
Matrix		Water		Water	Water
Arsenic (As)	0.002	0.004	53%	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Trust RIM Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080819-2

			MS	MSD
EPA 6020	MRL	BLW-D4-PD50-12	Batch	Batch
(mg/L)				
Date Extracted		8/21/08	8/21/08	8/21/08
Date Analyzed		8/25/08	8/21/08	8/21/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	99%	109%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike
"MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremont
 Analytical

Chain of Custody Record

ent: dress: y, State, Zip Brett Bra	Smid Lews	en Fae	600 Fax: 206	Tel: ZU	-Zu	n-	-21	9/0 	7	Locati	cted b	y:		157 157 157	the us	Tri	ust	RI	u.	Alleway inder BALRIM
		Sample Type	Containe: Type	Date of Collection	VOA 6260	VOA 80218 BTEX	WWTPH-GE	NWTPH-HGD	NWTPH-Dx Ext.	SEMI VOL 8270C	PAR 3270		CI PESTICIDES 8081	4	METALS AS		Merry, ROME			Comments/DeptH
Sample Name 19 BUV-04-PD52-B	1025	GW	Sound	8/19/8											1					
BLW-D4-PD52-B	1045	14	200	11.											~					
BLW-D4-PDS1-16		30	***	6											-					
BUU-04-PD8-12		ν.	tr	0											-					
7LW-D4-PD50-17		4).	×	4											V					
3LW-04-P052-12		19.	4.1	H											~					
											Sampl	e Rece	ipt:							Special Remarks
	Date/Time Date/Time	>	Received Received	er	r	Date/	Time:	19		28	Good? Tempe Seals !		0	intaine	ut:		ls	4		TAT => 24HR 48HR SI

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790

F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM081016-3

October 20th, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** water samples delivered to Fremont Analytical on October 16th and 17th, 2008 (Note: Soil samples have been archived).

The samples were received in good condition –, in the proper containers (500mL Polys preserved with HNO₃), properly sealed, labeled and within holding time. The cooler temperature(s) upon receipt was 3°C (10/16/08) and 3°C (10/17/08), which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The samples were analyzed and then stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C. There were no sample analysis or sample receipt issues to report.

Examination of these samples was conducted for the presence of the following:

Dissolved Metals (As) in Water by EPA Method 6020

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Lab Manager / Sr. Chemist

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020	MRL	Method	Method	LCS	LCS
(mg/L)		Blank	Blank		
Date Extracted		10/16/08	10/17/08	10/16/08	10/17/08
Date Analyzed		10/16/08	10/17/08	10/16/08	10/17/08
Matrix					
Arsenic (As)	0.002	nd	nd	104%	116%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:
As = 100μg/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD18-8F	BLW-D4-PD18-16F	BLW-D4-PD17-8F
Date Extracted		10/16/08	10/16/08	10/16/08
Date Analyzed		10/16/08	10/16/08	10/16/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.004	0.16	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:
As = 100μg/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD17-16F	BLW-D4-PD16-8F	BLW-D4-PD16-16F
Date Extracted		10/16/08	10/16/08	10/16/08
Date Analyzed		10/16/08	10/16/08	10/16/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	0.064	0.019

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD190-16F	BLW-D4-PD15-8F	BLW-D4-PD15-16F
Date Extracted		10/16/08	10/16/08	10/16/08
Date Analyzed		10/16/08	10/16/08	10/16/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.019	0.39	0.16

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:
As = 100μg/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

Duplicate

			Duplicate		
EPA 6020 (mg/L)	MRL	BLW-D4-PD14-8F	BLW-D4-PD14-8F	RPD	BLW-D4-PD13-8F
Date Extracted		10/16/08	10/16/08	%	10/16/08
Date Analyzed		10/16/08	10/16/08		10/16/08
Matrix		Water	Water		Water
Arsenic (As)	0.002	0.95	0.88	8%	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD22-8F	BLW-D4-PD22-16F	BLW-D4-PD25-8F
Date Extracted		10/16/08	10/16/08	10/16/08
Date Analyzed		10/16/08	10/16/08	10/16/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.005	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD25-16F	BLW-D4-PD26-8F	BLW-D4-PD26-16F
Date Extracted		10/16/08	10/16/08	10/16/08
Date Analyzed		10/16/08	10/16/08	10/16/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD27-8F	BLW-D4-PD27-16F	BLW-D4-PD14-16F
Date Extracted		10/16/08	10/16/08	10/17/08
Date Analyzed		10/16/08	10/16/08	10/17/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	nd	0.23

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:

CONFIDENTIAL

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

1 11 1	nı	いへつも	^
1711	U	icat	т.

			Duplicate		
EPA 6020 (mg/L)	MRL	BLW-D4-PD13-16F	BLW-D4-PD13-16F	RPD	BLW-D4-PD33-8F
Date Extracted		10/17/08	10/17/08	%	10/17/08
Date Analyzed		10/17/08	10/17/08		10/17/08
Matrix		Water	Water		Water
Arsenic (As)	0.002	0.008	0.007	13%	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

EPA 6020 (mg/L)	MRL	BLW-D4-PD33-16F	BLW-D4-PD28-8F	BLW-D4-PD28-16F
Date Extracted		10/17/08	10/17/08	10/17/08
Date Analyzed		10/17/08	10/17/08	10/17/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.017	0.009	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

		MS	MSD	
EPA 6020	MRL	BLW-D4-PD14-8F	BLW-D4-PD14-8F	RPD
(mg/L)				
Date Extracted		10/16/08	10/16/08	%
Date Analyzed		10/16/08	10/16/08	
Matrix		Water	Water	
Arsenic (As)	0.002	104%	110%	6%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081016-3

		MS	MSD	
EPA 6020	MRL	BLW-D4-PD13-16F	BLW-D4-PD13-16F	RPD
(mg/L)				
Date Extracted		10/17/08	10/17/08	%
Date Analyzed		10/17/08	10/17/08	
Matrix		Water	Water	
A	0.000	4040/	4000/	00/
Arsenic (As)	0.002	121%	123%	2%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremont
Analytical

Chain of Custody Record

lient:	FLOY	DISUI	DER				-					ct Nar	me;		1	3+1		ه سا	acr	W	ASTI
ddress:	601	UNI	ON	STREE	I						Locat	ion:				1	110	10	U,	4	A
ity, State, Zip	5=	41116	WA		Tel:	20	6 5	85	2		Colle	cted b	ry:		- 1	5 B	Es	4	BE	24	UL14U
eports To (PM):				Fax:	Tel: _		-	5	Email	197	22	07	8			115	*	M	eg	Proje	AULIEU ct No:
Sample Na	ne	Time	Sample Type	Container Type	Date of Collection	VOA 8260	VOA BOZIB BTEX	NWTPH-Gx	NWTPH-HCID	NWTPH-Dx Ext	SEMI VOL BZ70C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES 8151A	METALS DISS.	Metals: MTCA-5	Metals: RCRA-8	TOTAL ARM		Comments/Depth
BCW . D4-	PD18-8F	11:15		500-L	10-15-	des.										X					1
Bew-04-A			w	HNO3	1											X					
BLW- D4-	PD17-8	F 1250	W													X					
BLW- D4-	PD17-161	= 13:05	·w													X					
Bew-04-	PD16-81	- 1350	w													X					
BLW-DY -	PD16-16	6F 1400	W													X					
BLW-04 -				1												X					
P-4-2'		1430	5	402															X		HOLD VOLUME FUE ADD'L TELP
BLW. DY-			W	500ml												X					
Bew-Dy.				HM2-3	1											*					
elinguished	oli 1	Date/Time	8 163	Received 9	lou	~	Date/	Tifre:	18	163	2	_	_	0				3	ç Şı		Special Remarks

2 samples submitted on 10/17/08

Frem Frem 2930 Westlake Ave. N. Suite 100	Tel; 206-352-																		of Custody Record
Seattle, WA 98109	Fax: 206-352-	-7178			Date		10	2-10	5-6	08				Page:			2		_ of 4
Client: E Address: City, State, Zip	601 SEATTU	SNIDE	ER NU ST	Tal. of						Proje	ct Na	me:		=	BI	L	16	100	DOWASTE WING
	2410	7 0		Tel: Z	06	70				& COILE	ctea	y:		_	-6	16	t		
Reports To (PM):	Time	Sample Type	Container Type	Date of Collection	VOA 8260	VOA 8021B BTEX		NWTPH-HCID		SEMI VOL 8270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES SISIA	METALS DISS AS	Metals: MTCA-5	Metals RCRA-8	J.S.	Project No: Comments/Depth
1PD-17 2'	12:30	-	402							-					Ì			X	HOLD VOLUME FOR
3																			
5																			
7			ļ.																
S S																			

Sample Receipt:

Total Number of Containers:

Temperature: Seals Intact7:

632 Good?

TAT ->	24HR	48HR	Standard

www.fremontanalytical.com

Special Remarks

10

Fremont

Chain of Custody Record

	Fax: 206-352-					-				_	-			Page:	_		_	3	ut #
ent: Floy	d Sni	der	suite b					_		Proje	ct Nar	ne:					7	aus:	T
dress: 60/11/ 4, State, Zip 4each	NON S	most	surfe b	00	v 4	On		- 0		Collec				_8	M	_	,.		
		-		. <u> </u>	10.0	SIL	·u					1						30/3 2	
ports To (PM): BYCH BEC	mien		Fax:	_				Email	: 50	ett	. Re	au	iev	ا نو)			u do	N-COM	Sect No: BOL RIM TRUST
Sample Name	Time	Sample Type	Container Type	Date of Collection	VOA 8260	VOA 80218 BTEX.	MWTPH-Gx.	WWTPH-HCID	NWTPH-Ds Ext.	SEMI VOU R270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES 8151A	METALS: AS (PASS	Metals: MTCA-5	Metals, RCRA-8	Dr As	Comments/Depth
	9:00	BOIL	402												Da.	· the		~	ARCHIVE GADZEN
	9:05	SOIL	402												Ma	1		1	ARCHIVE FLOREN
3CW-D4-PD14-8-F	9:15	GW	580 ML												~				(Field Filtered)
BUD-04-PD14-16-F		GW	500m												~				(Assometted 10/17
D-13-2'	10:00	SOIL	402												M	14	-	V	(ARCHIVE PROTEN)
D-13-3'	10:05	4012	402												W			~	CHICHNE FROZEN
bcw-04-PD13-8-F	10:20	61W	SOOM												V				
LW-D4-PD13-16-F	10:30	6,00	Soan												V				DSubmitted 10/17
	10:15		402												popular	1-90	•	~	ALCHEVE FROZEN
BLW-04-P022-8-F	11:30	6W	500 MM				, -								-				
- 4	Date/Time		Reciped V		. ,	Date/	To a	0 /	83		Good?	e Rece							Special Remarks
quished	Date/Nme		Received		-/	Bate/	ime	0			-	ntact7							TAT SAHR ABHR THAT

Fremo	nt															(Cha	ain	of	Cus	tody	Recor
2930 Westlake Ave. N. Suite 100 Seattle, WA 98109	Tel: 206-352-; Fax: 206-352-;				Date		10	116	108	3				Page:				2		of 1	£	
Client: Floyd Address: Coll City, State, Zip Geat	Usnich	184 Su	ite 601					-						_	B	B+	110	Rin	TA	ill	Ť	
Reports To (PM): PVCH BLO	ulien	K	Fax:	7	e v	10	w	Emai					ieu	@	an	id?	su	ider	Profet	SW	B+L1	LIM THY
			Container	Date of Collection	VOA 8260	VOA 80218 BTEX	WTPH-G»	NWTPH-HCID	NWTPH-Dx Ext.	SEMI VOL BŽ70C	PAH 8270		CI PESTICIDES 8081	SIA.	Dis		Metals: RCRA-8	10 tal 1	*			
8LW-D4-P022-16	-C 1140	G(W)	500m	10/16	>	>	Z	2	Z	SA.	T.	۵.	0	-	V	-	-	*			Commen	(s/Depth
BUN-04-P025-81	F 1245	17	1	-/											/							
FLW-D4-PD25-16-F	1300	(il													V							
BW-04-9026-8"+	1345		1	1											-							
8W-04-PD26-16-F		-													~							
BLW-04-P027-8-F				1											V							
BLW-D4-PD27-16-F		7	*	2					I						1							
10																						
elingustide h	Date/Time	8 9	Regelived 1602	~	10	-	08	7	163	Z.	Good Temp	eratur	e.						5	ipecial Re	marks	
Relinquished	Date/Time		Received			Date/	Time;					Intact? Numbe	_	ontaine	ers:					TAT -	ZaHR	48HR 5

Fremont
Analytical

Chain of Custody Record

F 45	mder on street	ł Ste	600	Tel: 2														1 2		
Sample Name Ti	instrue f	ydran	600	Tal: 17				_		Proje	ct Nan	ne:		B	46	TR	UST	RI.	n	
Sample Name Ti	lipu@fl	oydrázn	do	Tal- 17	J. 3	6 %	4	1.00		Locat				1			and			
Sample Name Ti	lieu@f	oydran	do	iei. L		92.	20-	18		Colle	cted b	Y:	-	_ (150	1	neol			
Sample Name Ti		/	ine	r. con	h			Email	:									Proje	ect No: (BHL TRUST RIM
P MA			tainer	ate of Collection	VOA 8260	VOA 8021B BTEX	NWTPH-5x	NWTPH-HCID	NWTPH-Dx Ext.	SEMI VOL 8270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES 8151A	METALS A 1755	Metals: MTCA-5	Metals: RCRA-8			
事	Time Sample	Type	ype	10/17					2	S	Q.	п.	-	-	1	-	2	+		Comments/Depth
學 概 俊	- 611	N Sot	mc	300	DODK	- 10	117	108						_			-	-	-	
	2:40 GN	J I	1	11	fr	1/6	117/	08						-	-					
W-D4-PD33-8-F 9:			om Dos	10/17			-								-					
LW-D4-PD83-16'F1/D!		0	-0	1											-					
W-D4-PDZ8-8'F 9!															1					
W-DX-PD28-16+9:		1	1	4											-					
Λ			1	7	1		_				Sampl	e Rece	ipt:						Special	Remarks
Whed New 10/17	/Time	Receiv	1991	//		Date/	Time:				A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
ulshed Date/	1104		/ // IV			151	7/0	8	1117	-	Good? Tempe						360	-		

4+2-from chmosoub-3

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178

info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM081020-1

October 21st, 2008

Brett:

Enclosed are the additional analytical results for the **B & L Woodwaste** soil samples delivered to Fremont Analytical on October 16th, 2008.

Examination of these samples was conducted for the presence of the following:

Total Metals (As) in Soil by EPA Method 6020

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Lab Manager / Sr. Chemist

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Total Metals in Soil by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081020-1

EPA 6020 (mg/kg)	MRL	Method Blank	LCS	P-4-2	PD-17-2	PD-14-5	PD-14-8	PD-13-2
Date Extracted		10/20/08	10/20/08	10/20/08	10/20/08	10/20/08	10/20/08	10/20/08
Date Analyzed		10/20/08	10/20/08	10/20/08	10/20/08	10/20/08	10/20/08	10/20/08
Matrix				Soil	Soil	Soil	Soil	Soil
Arsenic (As)	1.0	nd	103%	2.4	nd	nd	nd	37

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentration:

As = 30 mg/kg

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Soil by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081020-1

				Duplicate	MS	MSD	
EPA 6020 (mg/kg)	MRL	PD-13-3	PD-13-12	PD-13-12	PD-13-12	PD-13-12	RPD
Date Extracted		10/20/08	10/20/08	10/20/08	10/20/08	10/20/08	%
Date Analyzed		10/20/08	10/20/08	10/20/08	10/20/08	10/20/08	
Matrix		Soil	Soil	Soil	Soil	Soil	
Arsenic (As)	1.0	3.6	nd	nd	96%	111%	14%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentration:

As = 30 mg/kg

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremo	nt															(Ch	ain	0	f Custody Recor
7930 Westlake Ave N Suite 100 Seattle WA 98109	Tel. 206 352- Fax 206 352				Date		12	2-1	60	38				Page			ī			w. 4
Client: FLDY	DISUI	DER								Proje	ect Na	me:			3.		1.5	200	tai	ASTI
Address: (a D I	VNI	DN	3+256	T											1	1/4	10	p,	14/	A
City, State, Zip	4116	WA		Tel:	20	6 5	35	2		Colle	cted t	y:			50	6	T	Bo	EA	UL14U
Reports To (PM):			Fax:	Tel:		7	5	Lmai	197	22	07	8			LI	54	M	Eg	Proje	ect No:
Swertspile: Mainter	Tome	Sample Type	Centainer Type	Date of Collection	VOA 8250	VOA BEZZIB BITEX	NWTPH Ga	NWTPH-HOID	NWTPH DA EXE	SEMI VOL 8270C	PAH 5270	PCB1 809.2	C PESTICOES BORD	CHERBICOES \$151A	METRES DISS.	Metall MTCAS	Metars 80MA	TUTAL ARGA		Community/Depts
			500 aL		1										X		-			m
BCW D4 PD18 80	11.15	W		10-12	0									-	-					Add tralifers
BLW 04 PD18 16F	11:45	w	HNOZ												X					10/20/06
BLW - D4-PD17-8	F 1250	w	1												X					
BLW D4-PD17-16		- w													X					
BLW-04-PD16-81	- 1350	lu.													X					
BLW- D4 - PO16-1	GE 1400	w													X					
BLW-04-PD190-			1												×					
P-4-2'	1430	5	402 JAR														(X		HOLD VOLUME FOR
BLW DY-PD15-8	F 15:00	w	500 ml												K		,			
Bew- DY - PD15-16	F 15:10	w	H103	1											*			1		
Aut Is	Parkin Philosope		formed de			Date/	Timir				Samu	te Roc	ript.					_		Sportal Remarks
Leso Westi	0/16/0	8 16:	50 g	lou	1	10/1	6/0	180	163	2	-	eratur	v.				3	00		
lelinquished	date/Time	-	Received			Data/	Time.				Seals	Intact)				~			
			1							_	Total	Numb	ei di C	ontain			1	81	455	matted on 10/17/05

Fremo	VECTOR A															(Cha	ain	0	f Custody Record
930 Westlake Ave. N. Suite 100 eartle, WA. 98109	Feb 206-252-				Date		10	7-16	5-6	28				Page			2			4
lient: F(-040	SNIDE	R							Proje	ct Na	më:			3+	-	L	100	010	WASTE
ddress:	ENTTU	UNLO	N ST							Locat						p	16	LTC	yL.	1WA
ty, State, Zip 5	EATTU	F, W	14	Tel Z	06	20	12	21	07	Palle	cted b	y			B	TB	,	4	m	
eports To (PM):			Fac					Email											Proje	ect No:
harrysie Name	Time	Sample Type	Container Type	Date of Collection	VOA ADSE	VIDA 802338 87E'S	WATERGE	NUMTRE-HICKS	MWTPN-Dx Exc.	50MI VOL 82705;	FAH 8270	PCBs 8062	CI MESTICIDES BORI	CI +05 7(3) CIDAS 8151A	MITALS DISS AS	Metals MTCA-5	Mensis SCRA-8	TOTAL AS		Corpunctits/Depth
PD-17 2'	12:30	5	402														1	X)	HOLD VOLUME FOR
																				DAdd Analysis
																		-		
1																				
usa Mesle	Date Time	108 10.	Beceived 91	un		Date/	Time.	08	- 1	632	Good	Proceedings of the contract of	E							Special Remerks

Fremoi Westlake Ave. N. Swite 1007 De. WA. 1981/09	Tel 206-152- Fax 206-352-																			f Custody Recor
					Date	-	101	16	08	<u></u>	_			Fage				3	_	at et
nt Flor	d Swil	der								Proje	ct Nar	This						pu		
100/1/	Non Stre, W	tract	suite 1	00						Locat	lion			ě	4-L	-				
State, Zip Geat	he, W	7)		tet Z	2.7	972	20	278		Collec	cted b	Y:		1	-14	eoi	1;			
orts TO (PM) BYCH BEG			Fax: -	-						14.00	R	411	ieu					w.c	ARK	ect No. BAL KIM TRUST
	1100			of Callection	VOA 8760	VOA BUITS BTET	WWTPHGH	MATTER HOUSE	WANTEN DIS DOS	204.	Phos 8270		O PESTICIOES BOBS	DI HERBICIDES BISSA	METALS AS (DES)		No. School	As		DAT PORT
Sacuple Name	Time	Sample Type	Type	Date	VOA	9	NA	NOW	N.W.	3	Pales	97.8	0	11	MICE	March	Mari	E.		Comments/Depth
PD-14-5'	9:00	BOIL	402												pa	180		C		ARCHIVE GROZEN
D-14-8'	9:05	801L	402												100	1		9		ARCHIVE FROZEN
14-04-PD14-8-F	9:15	6W	500 m												~					(Field Filtered)
640-04-PD14-16F		GW	500m												~					Assemitted 10/17
	10:00	SOIL	402											- 1	M	14	_	6		(ARCHIVE PROZEN
D-13-3'	10:05	4012	402												W			P		(Archit FROZE
w-04-P013-8-F	10:20	64W	SOOM												V					
LW-D4-PDB-16+	10:30	Gel	50an												V			_		(8) Submitted 10/17
D-13-121	10:15	SOIL	402												Ma	7-9-	(-		ALCHINE FROZEN
BLW-04-P022-8-F	11:30	6W	500 MM												L					O Add mouse
lesa Neesle			HOU			Date?	Tions	8			Sarrus	e Ripor	rigt.							Special Remarks

Seats Intact?

Total Number of Containers

Relinquished

Fremor	nt															(Cha	air	0	f Cu	stoc	ly Re	cord
	Tel 206-352-3 Fdx 206-352-3				Date		10/	16	108	3				Page				2		pf.	4		
Hent: Audress: Collinity, State, Zip GLAH	Snich	ca su	ite 601				10	TY		Proje Locat Colle	cted b	y:		_	P	157 41	Wel	di		MUS G'[]			
Reports To (PM): BYCH Bla	ulien	,	Fax.	7				Email	by	ett.	bec	ul	ien	@	Flore	yds	8W	ide	No is	ON	144	RIM	145
		Samula Toron	Container Type	Date of Collection	VIDA 8260	VOA BOZZB BYSER	MVV IPPEGS.	MATTHEMOD	NWTPH-Ds Ect	SEMI VOL 8770C	PAN 8270	PCB1 \$082	C PESTODES FORT	CHEPBACIDES 8151A	METALS AS (DIS	Mersin Mica-S	Metals ROBAS	1000	*			ne-Sta/Degith	
8LW-D4-P022-16		GIW	SOOM	10/16											V	-		F			1.33111	and the triplet	
BLW-D4-P025-84		17	1	1											/								
BUN-04-PD25-16-F	1300	11													L								
BUW-04-P026-81-4			1	1											-								
BLW-04-PD26-16-F	1350	-													~								
BLW-D4-PD27-8-F		1		1											V								
BLW-D4-PD27-16-F		7	*	2											-								
10																							
Telu helli 1	Date/Time 6/16/01	8 9	Regeryod 1602 Nicewed	-	10	Date/	08	,	163	2	Good	de Reci eratur intact	0.							Special R	emarks		
i.	Andrey rimes		+			Trans.					-			ontain	011					TAT	- N 14H	A8HII *	Square .

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790

F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM081022-4

Floyd | Snider Project No: B&L RIM Trust

October 23rd, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** water samples delivered to Fremont Analytical on October 22nd, 2008

The samples were received in good condition –, in the proper containers (500mL Polys preserved with HNO_3 unless otherwise noted), properly sealed, labeled and within holding time. The cooler temperature upon receipt was 3.7°C, which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The samples were analyzed and then stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C.

Sample Receipt Notation:

BLW-D4-PD92-8F, BLW-D4-PD92-16F: Upon sample check in it was noted that the pH was above 2.

- BLW-D4-PD92-8F: The laboratory preserved upon receipt.
- BLW-D4-PD92-16F: The sample contained a high amount of sediment. The laboratory performed additional filtration before preservation and analysis.

There were no additional sample receipt or sample analysis issues to report.

Examination of these samples was conducted for the presence of the following:

Dissolved Metals (As) in Water by EPA Method 6020

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Lab Manager / Sr. Chemist

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081022-4

					Duplicate
EPA 6020	MRL	Method	LCS	BLW-D4-PD21-8F	BLW-D4-PD21-8F
(mg/L)		Blank			
Date Extracted		10/22/08	10/22/08	10/22/08	10/22/08
Date Analyzed		10/22/08	10/22/08	10/22/08	10/22/08
Matrix				Water	Water
Arsenic (As)	0.002	nd	79%	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentration:

 $As = 100\mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081022-4

EPA 6020 (mg/L)	MRL	BLW-D4-PD21-16F	BLW-D4-PD20-8F	BLW-D4-PD20-16F
Date Extracted		10/22/08	10/22/08	10/22/08
Date Analyzed		10/22/08	10/22/08	10/22/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.002	0.003	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentration:

 $As = 100 \mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081022-4

EPA 6020 (mg/L)	MRL	BLW-D4-PD19-8F	BLW-D4-PD19-16F	BLW-D4-PD90-8F
Date Extracted		10/22/08	10/22/08	10/22/08
Date Analyzed		10/22/08	10/22/08	10/22/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.028	0.042	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentration:

 $As = 100\mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081022-4

EPA 6020 (mg/L)	MRL	BLW-D4-PD90-16F	BLW-D4-PD91-8F	BLW-D4-PD91-16F
Date Extracted		10/22/08	10/22/08	10/22/08
Date Analyzed		10/22/08	10/22/08	10/22/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.35	0.11	0.19

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentration:

 $As = 100 \mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081022-4

EPA 6020 (mg/L)	MRL	BLW-D4-PD92-8F	BLW-D4-PD92-16F
Date Extracted		10/22/08	10/22/08
Date Analyzed		10/22/08	10/22/08
Matrix		Water	Water
Arsenic (As)	0.002	0.004	0.004

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentration:

 $As = 100\mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM081022-4

		MS	MSD	
EPA 6020 (mg/L)	MRL	BLW-D4-PD21-8F	BLW-D4-PD21-8F	RPD
Date Extracted Date Analyzed		10/22/08 10/22/08	10/22/08 10/22/08	%
Matrix		Water	Water	
Arsenic (As)	0.002	85%	88%	3%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentration:
As = 100μg/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremont
Analytical

Chain of Custody Record

2930 Westlake Ave. N. Suite 100 Seattle, WA 98109	Tel 206-352- Fax: 206-352-							,											
					Date		10	22	10	8	_			Page:			_/		of:
client: Floud	Suid	er					-		/	Proje	ect Na	me:		7	BAL		RIM	TRU	st-
Address: lab	umor	Street	t suit	260	D					Local	tion:			1	SAL				U. Kulton
City, State, Zip Seatt		4 981	07	Tel: 702	5.25	57.	971	4		Colle	cted l	oy:			1.1	100	li	E.U.	Upray
Reports To (PM): LISA ME	oli a	11 (20%)	1257.9	7714				Emai	1.4	cc.	B	reH	B	au			- /		desticon bulking
Sample Name	Time	Sample Type	Container Type	Date of Collection	VOA 8260	VDA 80218 8TEX	NWTPH-Gx	NWTPH-HCID	NWTPH-Dx Ext.	SEMI VOL 8270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES 8151A	METALS AS (DSS)	Metals: MTCA-S	Metals: RCRA-8		Comments/Depth
18UW-D4-PDZ1-8-F	10:15	GOW	SOOML	10/240	8										~				(ALL SAMPLES LIERE
2 BLW- D4-PD21-16-F	1020	6N	1												-				FIELD FILTERED)
3BW-D4-PDZD-8'-F	1/20	1													1				

2 BLW-D4-PD90-8-F 1400
2 BLW-D4-PD91-8-F
30 BLW-D4-PD91-8-F
30 BLW-D4-PD91-16-F
30 Sample Receipt: Special Re

Relinquished NOTO 10 Pate/Time
Relinquished Date/Time

Date/Time: 1710

Sample Receipt:

Good?

Temperature:

Seals Intact?:

Total Number of Containers:

(12)

Special Remarks
Please Call Usa Deoli
M Results on 10/23 a.m.
(206) 257. 9714. Thx!
TAT > (24H) 48HR Standard

Chain of Custody Record

Client: FLOYO Address: 6011 City, State, Zip SCA+ Reports To (PM): LiSa Meoli		Street 4 98		60 1 Tel: 206	15					Proje Locat Collec	ion: ted b	y:					- 6			Wilton	
Sample Name	Time	Sample Type	Container Type	Date of Collection	VOA 8260					SEMI VOL 8270C				CI HERBICIDES 1131A	METALS 4 (DISS)	Metals MTCA-5	Metals: RCRA-8	COM		No. BAL RIM TR	
BLW-N4-PD92-8'-F	1530	GW	500m	10/22/68											-				(Filld filtered	we
BLW-D4-PD92-16'F	1540	1	1	1											-						
1																					
6																					
5																					
,																					
																			1		
																			1		
10				2							Samp	e Rece	iot:						Sp	recial Remarks	11-1
Relinquished lest	Date/Time	08 -	Received				2/0	8	710		_	erature					3	700 00 10/23/08 a.m. (206)257.9714 TAT - CATHER ABHR		ulle.	
(wate/ nime		x sections /			Date/	ime:				Seals I Total I		_	ontaine	es:			2	-1	TAT - COHR 48HR 5	tandard

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790

F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM081023-1

Floyd | Snider Project No: B&L RIM Trust

October 27th, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** soil and water samples delivered to Fremont Analytical on October 23rd, 2008

The samples were received in good condition –, in the proper containers (500mL Polys preserved with HNO_3 & a 4oz soil jar), properly sealed, labeled and within holding time. The samples were analyzed and then stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C. There were no additional sample receipt or sample analysis issues to report.

Examination of these samples was conducted for the presence of the following:

- Dissolved Metals (As) in Water by EPA Method 6020
- Total Metals (As) in Soil by EPA Method 6020

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Lab Manager / Sr. Chemist

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider

Client Project #: B&L - Trust RIM Lab Project #: CHM081023-1

EPA 6020 (mg/L)	MRL	Method Blank	LCS	BLW-D4-PD96-8F	BLW-D4-PD96-16F
Date Extracted Date Analyzed Matrix		10/23/08 10/24/08	10/23/08 10/24/08	10/23/08 10/24/08 Water	10/23/08 10/24/08 Water
Arsenic (As)	0.002	nd	111%	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider

Client Project #: B&L - Trust RIM Lab Project #: CHM081023-1

EPA 6020 (mg/L)	MRL	BLW-D4-PD97-8F	BLW-D4-PD97-16F	BLW-D4-PD94-8F
Date Extracted		10/23/08	10/23/08	10/23/08
Date Analyzed		10/24/08	10/24/08	10/24/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	nd	0.003

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider

Client Project #: B&L - Trust RIM Lab Project #: CHM081023-1

			Duplicate
EPA 6020	MRL	BLW-D4-PD94-16F	BLW-D4-PD96-8F
(mg/L)			
Date Extracted		10/23/08	10/23/08
Date Analyzed		10/24/08	10/24/08
Matrix		Water	Water
Arsenic (As)	0.002	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider

Client Project #: B&L - Trust RIM Lab Project #: CHM081023-1

		MS	MSD	
EPA 6020	MRL	BLW-D4-PD96-8F	BLW-D4-PD96-8F	RPD
(mg/L)				
Date Extracted		10/23/08	10/23/08	%
Date Analyzed		10/24/08	10/24/08	
Matrix		Water	Water	
Arsenic (As)	0.002	115%	106%	8%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Soil by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider

Client Project #: B&L - Trust RIM Lab Project #: CHM081023-1

					Duplicate		MS	MSD	
EPA 6020	MRL	Method Blank	LCS	PD97-2.5'	PD97-2.5'	RPD	Batch	Batch	RPD
(mg/kg)			40/00/00	40/00/00	40/00/00	0/	40/00/00	40/00/00	0/
Date Extracted		10/22/08	10/22/08	10/22/08	10/22/08	%	10/22/08	10/22/08	%
Date Analyzed		10/24/08	10/24/08	10/24/08	10/24/08		10/24/08	10/24/08	
Matrix				Soil	Soil		Soil	Soil	
									_
Arsenic (As)	1.0	nd	118%	7.7	7.9	3%	99%	82%	19%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentrations:

As = 30 mg/kg

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremont

Chain of Custody Record

Seattle, WA 98109	Tel: 206-352- Fax: 206-352-	7178						3/0			-			Page:	_		/		af	. /			
Client: Flagd Address: City, State, Zip Seattle	Snid	er								Proje	ect Na	me:	1	341		WO	Mn	rste					
Address:	1607 1	mian :	treat	Stell	600					Loca				B	41								
City, State, Zip Stattle	, WA 1	8103	16.76	Tel: 200	, -2	92-	201	28		Colle	cted t	y:		٤.	Mul	Tan	1 1	7 4.	14%	011			
Reports To (PM): Bret Bea	ulleu		Fax: 204	-682-	782	7		Emai	1: 51	ret/	bea	4/10	40	fl	yd.	Ship	ten 1	on p	roject	No: B	9 L-	THUST	RIM
													-		1 Car								
			Container	Date of Collection	A 8260	VOA 8021B BTEX	VTPH-Gx	NWTPH-HCID	VTPH-Dx Ext.	MI VOL 82700	PAH 8270	81 8082	CI PESTICIDES 8081	HERBICIDES 8	METALS AS PAS	tals: MTCA	Metals, RCRA-8						
Sample Name	Time	Sample Type	Туре			3	ž	ž	2	SE	PA	PC	Ü	ō	M	ž	ž	-	-		Comme	nts/Depth	
1BLW-04-PD96-8F	0915	gw	STOML	10/23/08									Ц,		/				4				
2 BLW-04-PO96-16F	0925		1												V								
3 BLW-04-PD97-8F	1015														1								
4BLW-04-PD97-16F	1020														1								
5BLW-D4-P094-8F	1105														1								
6BLW-D4-PD94-16F	1.00	4	6												1								
	1000	5	4 03 100	V											1				1	grat,	nic Tr	chive	
8																							
9																							
10																							
F.W (Alex			_)							-	le Rece	igt:					,	5p	ecial Re	marks		
Relinquished x Relinquished	Date/Time Date/Time	/	Received	-	- (Of :	23/1	08	13	20	-	erature Intact?					0	14					
x .	- Day Tillies		X.	1							-		er of Co	ontaine	HS)		1	7)		TAT .	> 24HR	48HR 5	tandard

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790

F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM080829-1 Floyd | Snider Project No: B&L RIM

September 12th, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** water samples delivered to Fremont Analytical on August 29th, 2008.

The samples were received in good condition – in a cooler with wet ice, in the proper containers, properly sealed, labeled and within holding time. The cooler temperature upon receipt was 2°C, which is within the laboratory recommended cooler temperature range (2°C - 10°C). The samples were extracted and stored in refrigeration units at the USEPA-recommended temperature of 4°C ± 2°C. There were no sample receipt issues to report.

Examination was conducted for the presence of the following:

- Dissolved Metals (As, Ca, Fe, Mg, Na) in Water by EPA Method 6020
- pH by SM 4500-H
- Nitrate by SM 4500-NO3-E
- Chloride by EPA Method 300**
- Total Organic Carbons by SM 5310-B**
- Total Alkalinity by SM 2320-B**

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

www.fremontanalytical.com

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790

F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM080829-1 Floyd | Snider Project No: B&L RIM

EPA Method 6020 Notations:

- Metals samples were received in preserved bottles. The Chain of Custody indicated that the samples were "field filtered." Samples PD-107-W-30 and PDD10A-16F had visible sediment and were laboratory filtered before analysis
- Matrix spike and matrix spike duplicate for sample "PD-107-W-30" could not be determined for Ca, Fe, Mg and
 Na due to the concentration of these analytes in the sample relative to the concentration of these analytes in the
 spike solution
- Recoveries for the matrix spike and matrix spike duplicate were low for As due to the concentration of this
 analyte in the sample.
- The LCS recoveries for all analytes were within QC Limits providing Batch QC.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

6Pm

Sincerely,

Michael Dee

Principal / Sr. Chemist

mikedee@fremontanalytical.com

www.fremontanalytical.com

F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

Duplicate

					Duplicate		
EPA 6020	MRL	Method	LCS	PD-107-W-30'	PD-107-W-30'	RPD	BLW-D4-PDD10A-13F
(mg/L)		Blank					
Date Extracted		9/3/08	9/3/08	9/3/08	9/3/08	%	9/3/08
Date Analyzed		9/5/08	9/5/08	9/5/08	9/5/08		9/5/08
Matrix		Water		Water	Water		Water
Arsenic (As)	0.002	nd	93%	2.7	2.3	16%	0.4
Calcium (Ca)	0.02	nd	89%	107	83	25%	N/A
Iron (Fe)	0.1	nd	100%	38	31	20%	N/A
Magnesium (Mg)	0.1	nd	97%	75	69	8%	N/A
Sodium (Na)	0.5	nd	80%	29	25	15%	N/A

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentration:

As, Fe, Mg, Na, Ca = $100\mu g/L$

Fe = 200 μ g/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

			MS	MSD	
EPA 6020	MRL	BLW-D4-PDD10A-16F	PD-107-W-30'	PD-107-W-30'	RPD
(mg/L)					
Date Extracted		9/3/08	9/3/08	9/3/08	%
Date Analyzed		9/5/08	9/5/08	9/5/08	
Matrix		Water	Water	Water	
Arsenic (As)	0.002	0.1	62%	42%	38%
Calcium (Ca)	0.02	N/A			
Iron (Fe)	0.1	N/A			
Magnesium (Mg)	0.1	N/A			
Sodium (Na)	0.5	N/A			

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentration:

As, Fe, Mg, Na, Ca = $100\mu g/L$

Fe = 200 μ g/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

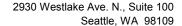
[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Nitrate by SM 4500 - NO₃ E


Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

					Duplicate	
SM 4500-NO ₃ E	MRL	Method	LCS	PD-107-W-30'	PD-107-W-30'	RPD
(mg NO ₃ -N/L)		Blank				%
Date Analyzed		9/1/08	9/1/08	9/1/08	9/1/08	
Matrix		Water		Water	Water	
Nitrate	0.8	nd	70%	10.2	10.5	3%

"nd" Indicates not detected at listed reporting limit

Acceptable RPD is determined to be less than 20%

[&]quot;MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample

F: 206.352.7178 email: info@fremontanalytical.com

Analysis of pH in Water by SM4500-H

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

		Duplicate
SM 4500-H	PD-107-W-30'	PD-107-W-30'
Date Analyzed	9/1/08	9/1/08
Matrix	Water	Water
		_
рН	6.3	6.3

[&]quot;int" Indicates that interference prevents determination

Burlington WA Corporate Office

1620 S Walnut St - 98233 800.755.9295 • 360.757.1400 • 360.757.1402fax

805 Orchard Dr Suite 4 - 98225

Bellingham WA Microbiology 360.671.0688 • 360.671.1577fax

Page 1 of 1

Data Report

Client Name: Fremont Analytical

2930 Westlake Ave N #100

Seattle, WA 98109

Report Date: 9/4/2008 Reference Number: 08-12499

Project: BTL Woodwaste

Collected By: Date Received: 9/3/2008

Peer Review:

Lab Nun	nber: 26275 S	ample Descriptio	n: PD-10	7 W 30				Sample	e Date	8/29/2008	
CAS ID#	Analyte	Result	PQL	MDL	Units	DF	Method	Analyzed	Analy	st Batch	Comments
E-14506	ALKALINITY	648	5.0	2	mg/L	1.0	SM2320 B	9/4/2008	CCN	ALK_080904	
16887-00-6	CHLORIDE	68	10.0	0.012	mg/L	100.0	300.0	9/3/2008	BJ	1080903A	
E-10195	TOTAL ORGANIC CARBON	29.6	0.50	0.0981	mg/L	1.0	SM5310 B	9/3/2008	BJ	TOC_080903	

Burlington WA | 1620 S Walnut St - 98233

Corporate Office 800.755.9295 • 360.757.1400 • 360.757.1402fax

Microbiology

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax

Page 1 of 2

Reference Number: 08-12499

Report Date: 9/4/2008

QUALITY CONTROL REPORT

Duplicate and Matrix Spike/Matrix Spike Duplicate Report

Duplicate

			Duplicate				QC	
Batch	Sample Analyte	Result	Result	Units	%RPD	Limits	Qualifier	Comments
ALK_080904								
	26275 ALKALINITY	648	645	mg/L	0.5	0-45	DUF	
I080903A								
	26292 CHLORIDE	51	51	mg/L	0.0	0-45	DUF	
	26311 CHLORIDE	28	28	mg/L	0.0	0-45	DUF	
	26341 CHLORIDE	6	6	mg/L	0.0	0-45	DUF	
TOC_080903								
	26057 TOTAL ORGANIC CARBON	1.06	1.06	mg/L	0.0	0-50	DUF	
	26318 TOTAL ORGANIC CARBON	4.81	4.81	mg/L	0.0	0-50	DUF	

Page 2 of 2

Reference Number: 08-12499

Report Date: 9/4/2008

Matrix Spike

Matrix S	pike			Duplicat	e									
			Spike	Spike	Spike		Percen	t Recovery				QC		
Batch	Sample Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifier	Comments	
I080903A														
	26292 CHLORIDE	51	51		1.00	mg/L	0	NA	80-120	NA	0-60	S	LFM	
	26311 CHLORIDE	28	28		1.00	mg/L	0	NA	80-120	NA	0-60	S	LFM	
	26341 CHLORIDE	6	7.1		1.00	mg/L	110	NA	80-120	NA	0-60		LFM	
TOC 080903														
_	26318 TOTAL ORGANIC CARBON	4.81	8.82	8.93	4.00	mg/L	100	103	65-135	2.7	0-70		LFM	

Burlington WA | 1620 S Walnut St - 98233 Corporate Office

800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax Page 1 of 4

SAMPLE INDEPENDENT **QUALITY CONTROL REPORT**

Laboratory Fortified Blank

Reference Number: 08-12499

Report Date: 09/04/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recover	y Limits	Qualifier Type*	Comment
alk_080904	ALKALINITY	108	100	mg/L	SM2320 B	108	80-120	LFB	
alk_080904	ALKALINITY	108	100	mg/L	SM2320 B	108	80-120	LFB	
TOC_080903	TOTAL ORGANIC CARBON	0.99	1.00	mg/L	SM5310 B	99	90-110	LFB	

*Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Burlington WA | 1620 S Walnut St - 98233 Corporate Office

800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax Page 2 of 4

SAMPLE INDEPENDENT **QUALITY CONTROL REPORT**

Laboratory Reagent Blank

Reference Number: 08-12499

Report Date: 09/04/08

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
I080903A	CHLORIDE	ND		mg/L	300.0	0.1000) LRB	

*Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Corporate Office

Burlington WA | 1620 S Walnut St - 98233

800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax Page 3 of 4

SAMPLE INDEPENDENT **QUALITY CONTROL REPORT**

Method Blank

Reference Number: 08-12499

Report Date: 09/04/08

			Hue			70	QO	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
TOC_080903	TOTAL ORGANIC CARBON	ND		mg/L	SM5310 B	0.12000) MB	

*Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Corporate Office

Burlington WA | 1620 S Walnut St - 98233 800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225

360.671.0688 • 360.671.1577fax

Page 4 of 4

SAMPLE INDEPENDENT **QUALITY CONTROL REPORT**

Quality Control Sample

Reference Number: 08-12499

Report Date: 09/04/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recovery	Limits	Qualifier Type*	Comment
1080903A	CHLORIDE	29.4	30.0	mg/L	300.0	98	80-120	QCS	
TOC_080903	TOTAL ORGANIC CARBON	2.13	2.22	mg/L	SM5310 B	96	90-110	QCS	

^{*}Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Page 1 of 1

Qualifier Definitions

Reference Number: 08-12499

Report Date: 09/04/08

Qualifier	Definition
М	Matrix induced bias assumed.
S	Spiking amount was lower than the 5:1 spike to background (sample amount) basis for performance criteria. The reported criteria does not apply due to increased errors in measurement of both sample and spike concentration.

Attachment B	
Boring Logs	

Coordinate System: NAD 83/98

Latitude/Northing: 702948.758

Longitude/Easting: 1185729.253

Casing Elevation: 16.167, NAVD 88

Boring Location: PD-1a

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

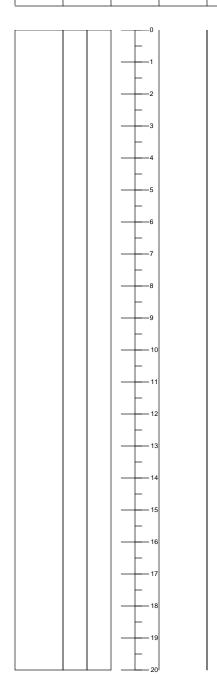
Ground Surf Elev. & Datum: 12.667, NAVD 88 Drill Type: Track Geoprobe 6620DT

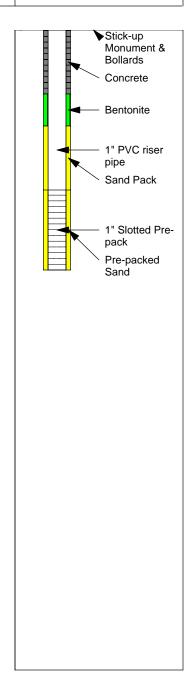
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 7.5 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust Project: B&L RIM

Task Number:


Site Location: B&L Woodwaste


Pierce County, WA

Remarks: Shallow well screen. First of three.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Latitude/Northing: 702948.583

Longitude/Easting: 1185725.946

Casing Elevation: 15.732, NAVD 88

Boring Location: PD-1b

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

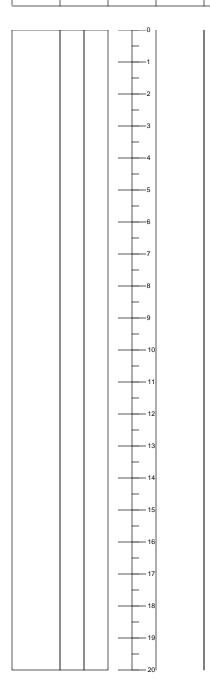
Ground Surf Elev. & Datum: 12.617, NAVD 88 Drill Type: Track Geoprobe 6620DT

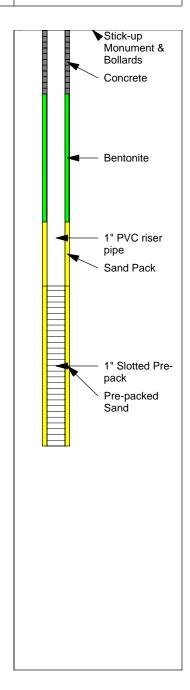
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 13 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste


Pierce County, WA

Remarks: Intermediate well screen. 2 of 3.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Boring Location: PD-1c

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.617, NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 24 ft bgs

Site Location: B&L Woodwaste Groundwater ATD (ft bgs): 6' bgs

Pierce County, WA

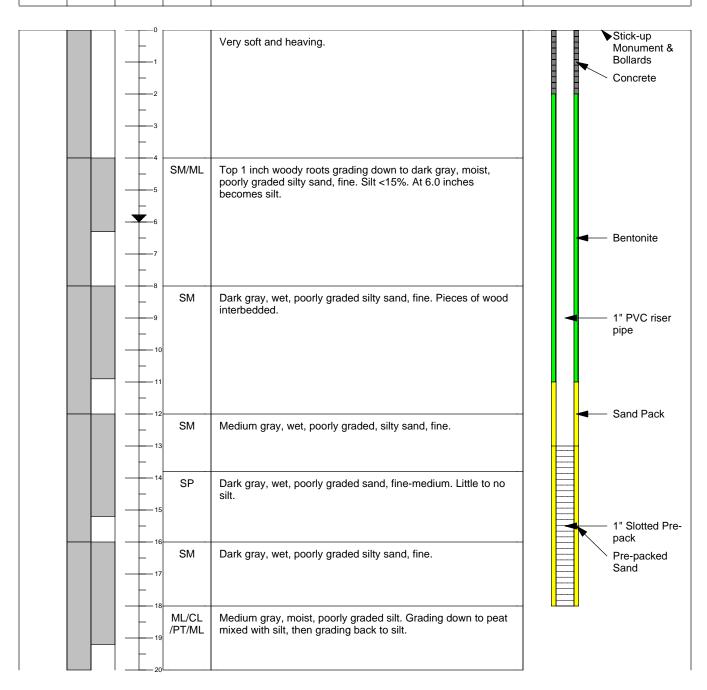
Project: B&L RIM

Task Number:

Client: B&L Custodial Trust

Remarks: Deep well screen. Third of three.

Sunny, hot.


Coordinate System: NAD 83/98

Longitude/Easting: 1185722.528

Casing Elevation: 15.932, NAVD 88

Latitude/Northing: 702948.758

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Boring Location: PD-1c

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.617, NAVD 88 Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust

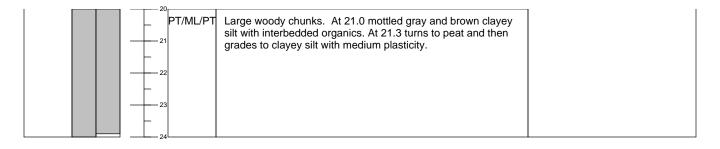
Sample Method: Dual Tube Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 24 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 6' bgs Pierce County, WA

Remarks: Deep well screen. Third of three.

Sunny, hot.


Coordinate System: NAD 83/98

Longitude/Easting: 1185722.528

Casing Elevation: 15.932, NAVD 88

Latitude/Northing: 702948.758

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Longitude/Easting: 1185786.668

Latitude/Northing: 702988.529

Casing Elevation: NA

Drill Date: August 13, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 13.577 NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches

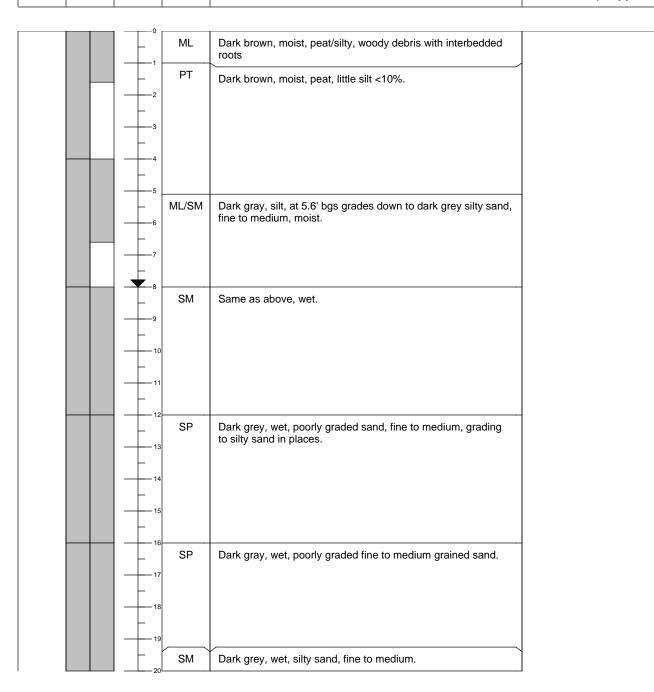
Boring Depth (ft bgs): 24 ft bgs

Groundwater ATD (ft bgs): 8' bgs

Boring Location: PD-2

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

Sunny and warm.

DRIVEN / SAMPLE DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 13.577 NAVD 88 Drill Type: Track Geoprobe 6620DT

Coordinate System: NAD 83/98 Latitude/Northing: 702988.529 Longitude/Easting: 1185786.668

Casing Elevation: NA

Drill Date: August 13, 2008

Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

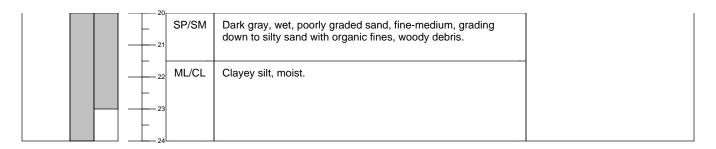
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 24 ft bgs

Groundwater ATD (ft bgs): 8' bgs

Boring Location: PD-2

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

Sunny and warm.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 13.545 NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches

Drill Date: August 13, 2008

Boring Depth (ft bgs): 24 ft bgs Site Location: B&L Woodwaste

Boring Location:

PD-3

Client: B&L Custodial Trust

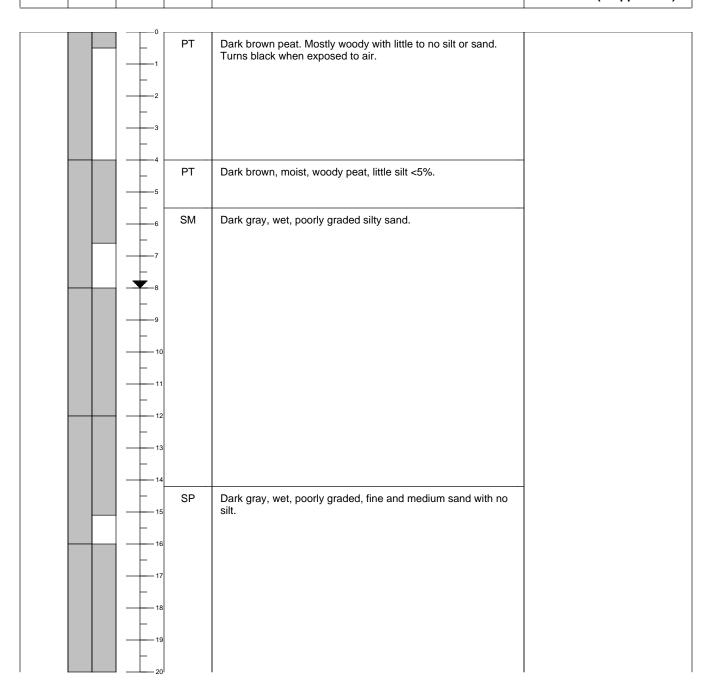
Project: B&L RIM

Task Number:

Pierce County, WA Groundwater ATD (ft bgs): 8' bgs

Remarks: Boring log and groundwater sample in wetland.

Sunny, warm.


Coordinate System: NAD 83/98

Latitude/Northing: 702992.564

Casing Elevation: NA

Longitude/Easting: 1185833.003

SAMPLE DRIVEN / DEPTH SOIL DESCRIPTION AND OBSERVATIONS USCS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 13.545 NAVD 88 Drill Type: Track Geoprobe 6620DT

Coordinate System: NAD 83/98 Latitude/Northing: 702992.564 Longitude/Easting: 1185833.003

Casing Elevation: NA

Boring Location: PD-3

Drill Date: August 13, 2008 Logged By: Erin Murray

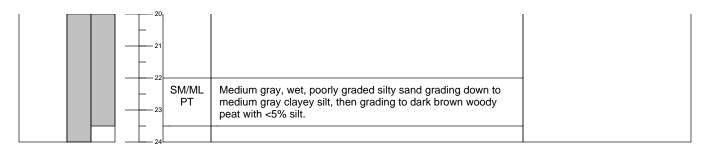
Drilled By: Eli Floyd / Cascade Drilling

Client: B&L Custodial Trust

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 24 ft bgs

Groundwater ATD (ft bgs): 8' bgs

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

Sunny, warm.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 12.292 NAVD 88 Drill Type: Track Geoprobe 6620DT

Coordinate System: NAV83/98 Latitude/Northing: 702994.7977 Longitude/Easting: 1185895.931 Casing Elevation: 15.297 NAVD 88

PD-4 **Boring Location:**

Drill Date: August 14, 2008 Logged By: Erin Murray

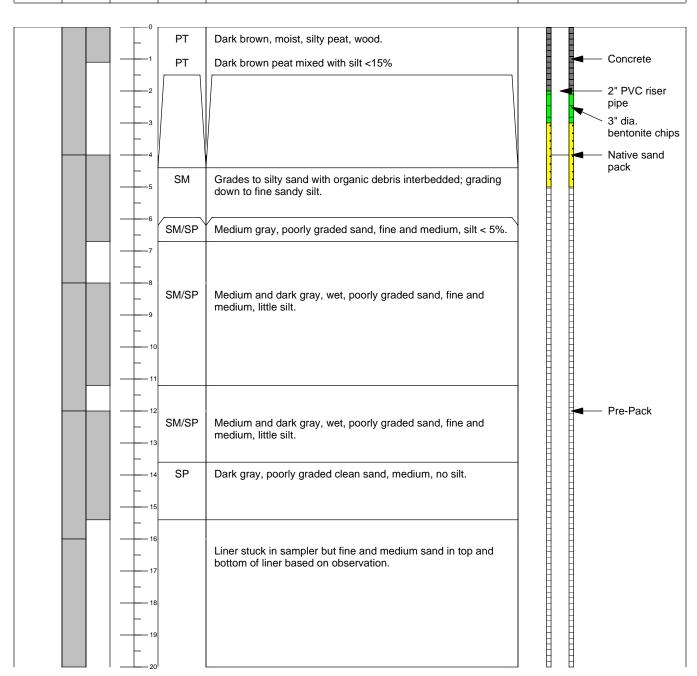
Drilled By: Eli Floyd / Cascade Drilling

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 24 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 12.292 NAVD 88 Drill Type: Track Geoprobe 6620DT

Coordinate System: NAV83/98 Latitude/Northing: 702994.7977 Longitude/Easting: 1185895.931 Casing Elevation: 15.297 NAVD 88 **Boring Location:** PD-4

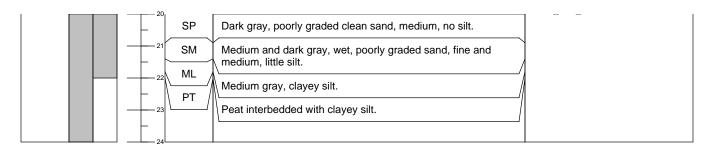
Drill Date: August 14, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 24 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Drill Date: August 14, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 13.609 NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 24 ft bgs Site Location: B&L Woodwaste

Boring Location:

PD-5

Client: B&L Custodial Trust

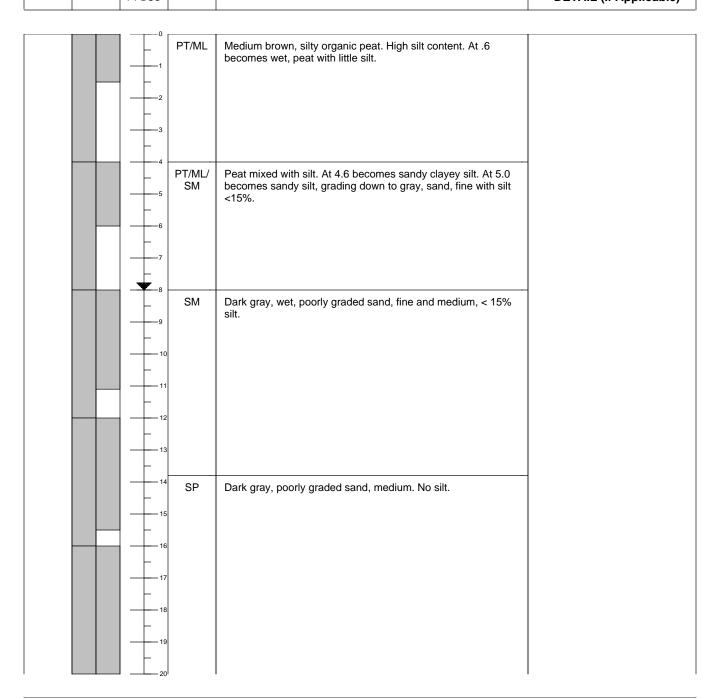
Project: B&L RIM

Task Number:

Groundwater ATD (ft bgs): 8' bgs Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

Sunny, warm.


Coordinate System: NAD 83/98

Latitude/Northing: 703000.143

Casing Elevation: NA

Longitude/Easting: 1185938.281

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 13.609 NAVD 88 Drill Type: Track Geoprobe 6620DT

Coordinate System: NAD 83/98 Latitude/Northing: 703000.143 Longitude/Easting: 1185938.281

Casing Elevation: NA

Boring Location: PD-5

Drill Date: August 14, 2008 Logged By: Erin Murray

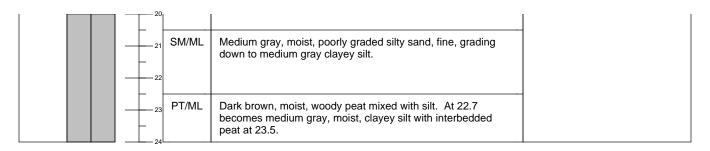
Drilled By: Eli Floyd / Cascade Drilling

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 24 ft bgs

Groundwater ATD (ft bgs): 8' bgs

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

Sunny, warm.

SAMPLE DRIVEN / DEPTH SOIL DESCRIPTION AND OBSERVATIONS USCS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 12.812 NAVD 88 Drill Type: Track Geoprobe 6620DT

Coordinate System: NAV83/98 Latitude/Northing: 703003.1398 Longitude/Easting: 1185989.093 Casing Elevation: 15.642 NAVD 88 Drill Date: August 15, 2008

Logged By: Lisa Meoli

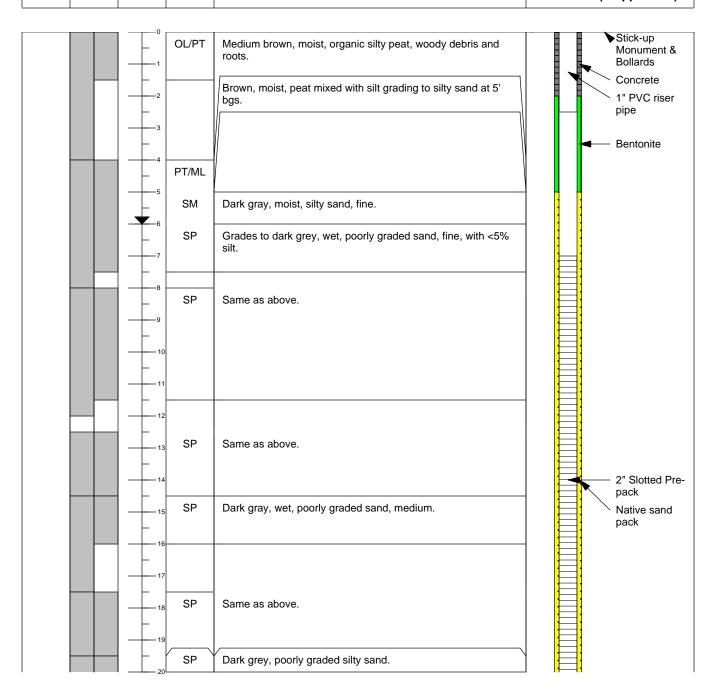
Drilled By: Eli Floyd/Cascade Drilling

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 23 ft bgs

Groundwater ATD (ft bgs): 6' bgs

Boring Location: PD-6

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 12.812 NAVD 88 Drill Type: Track Geoprobe 6620DT

Coordinate System: NAV83/98 Latitude/Northing: 703003.1398 Longitude/Easting: 1185989.093 Casing Elevation: 15.642 NAVD 88 Drill Date: August 15, 2008

Logged By: Lisa Meoli

Drilled By: Eli Floyd/Cascade Drilling

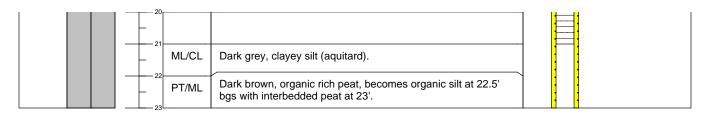
Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 23 ft bgs

Groundwater ATD (ft bgs): 6' bgs

Boring Location: PD-6

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 14.18 NAVD 88

Coordinate System: NAV83/98 Latitude/Northing: 702158.989 Longitude/Easting: 1185642.761

Casing Elevation: NA

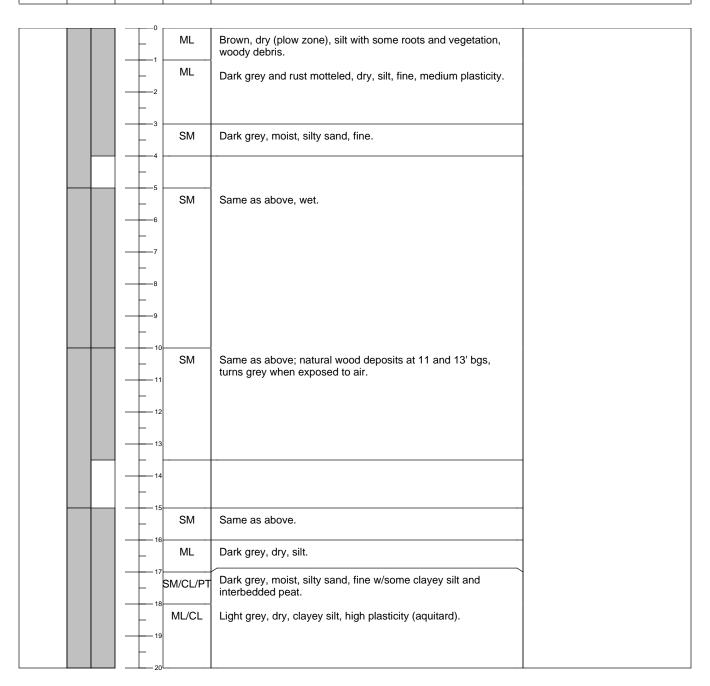
Drill Date: October 16, 2008

Logged By: Lisa Meoli

Drilled By: Casey Goble/Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust

Sample Method: 2" x 5' core barrel **Project:** B&L RIM **Boring Diameter:** 2 inches **Task Number:**


Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

PD-13

Groundwater ATD (ft bgs): Unknown Pierce County, WA

Remarks: Piston sampler used below 10' bgs.

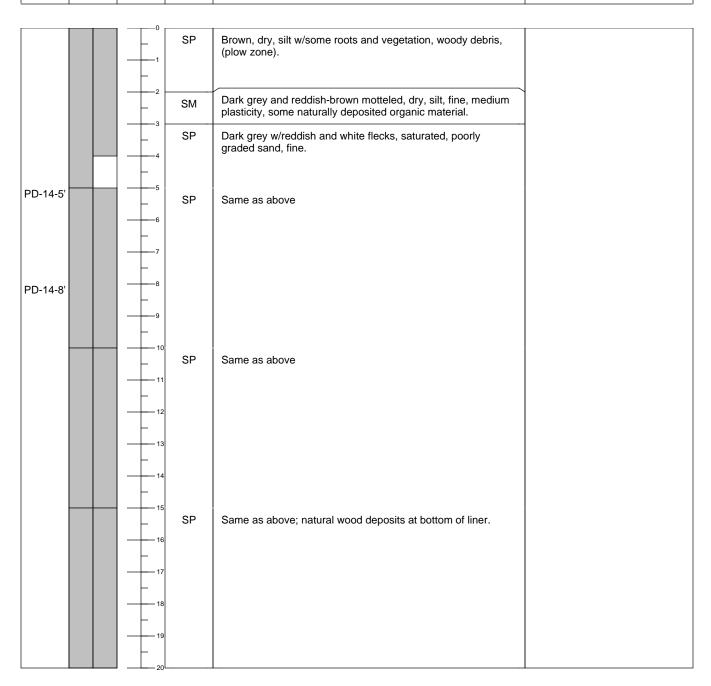
SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 13.84 NAVD 88 Coordinate System: NAV83/98 Latitude/Northing: 702067.177 Longitude/Easting: 1185651.77

Casing Elevation: NA

Drill Date: October 16, 2008 Boring Location: PD-14

Logged By: Lisa Meoli


Drilled By: Casey Goble/Cascade Drilling

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): Unknown Pierce County, WA

Remarks: Fife field delineation sampling. Piston sampler used below 10' bgs.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 14.03 NAVD 88

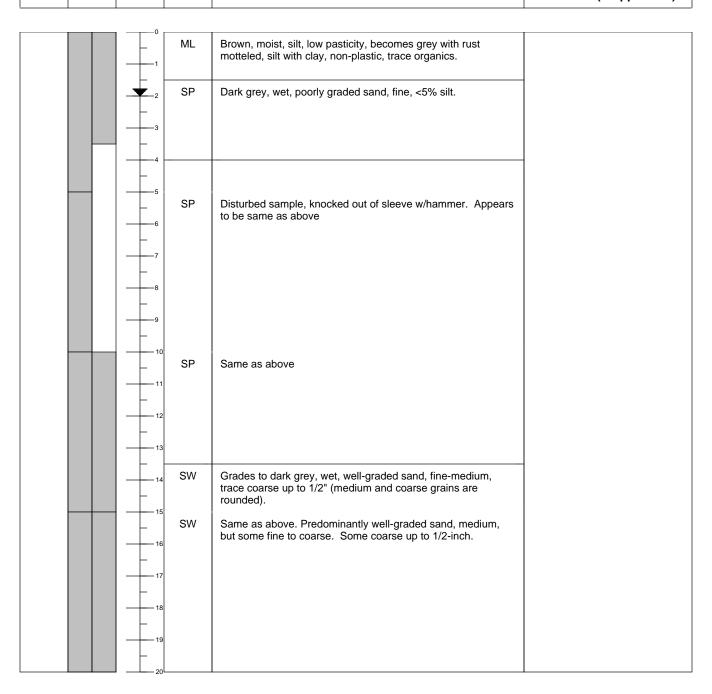
Coordinate System: NAV83/98 Latitude/Northing: 701960.765 Longitude/Easting: 1185633.762

Casing Elevation: NA

Boring Location: PD-15

Drill Date: October 15, 2008 Logged By: Brett Beaulieu

Drilled By: Casey Goble/Cascade Drilling


Sample Method: 2" x 5' core barrel **Project:** B&L RIM **Boring Diameter:** 2 inches **Task Number:**

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 2' bgs. Pierce County, WA

Remarks: Fife field delineation sampling. Piston sampler used below 10' bgs.

٠						
	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 14.43 NAVD 88

Coordinate System: NAD 83/98
Latitude/Northing: 701858.085
Longitude/Easting: 1185641.931

Casing Elevation: NA

Boring Location: PD-16

Drill Date: October 15, 2008 **Logged By:** Brett Beaulieu

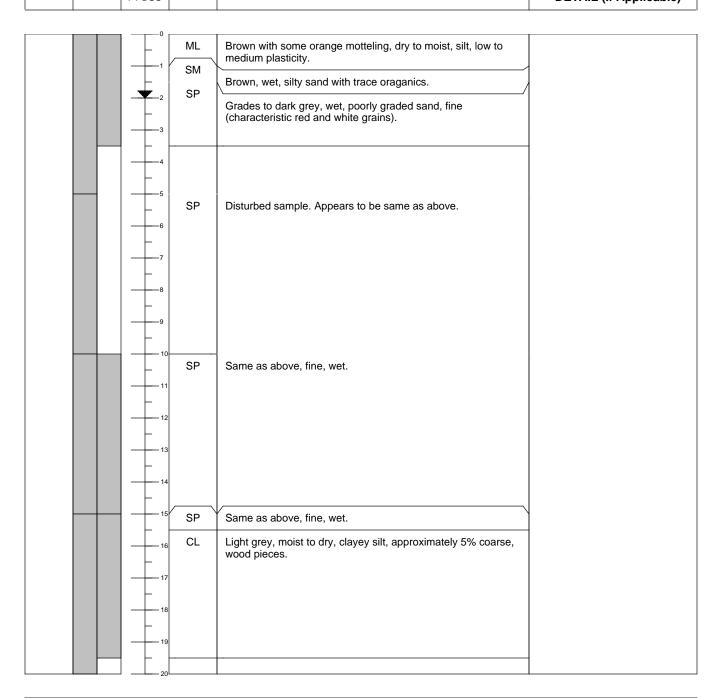
Drilled By: Casey Goble/Cascade Drilling

Drill Type: Track Geoprobe 6620DT

Sample Method: 2" x 5' core barrel

Project: B&L RIM

Boring Diameter: 2 inches Task Number:


Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 2' bgs. Pierce County, WA

Remarks: Fife field delineation sampling. Piston sampler used below 10' bgs.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS

ID RECOVERED FT BGS SYMBOL DETAIL (If Applicable)

Ground Surf Elev. & Datum: 14.58 NAVD 88 Coordinate System: NAD 83/98

Latitude/Northing: 701748.363 Longitude/Easting: 1185628.183

Casing Elevation: NA

Boring Location: PD-17

Drill Date: October 15, 2008 **Logged By:** Brett Beaulieu

Drilled By: Casey Goble/Cascade Drilling

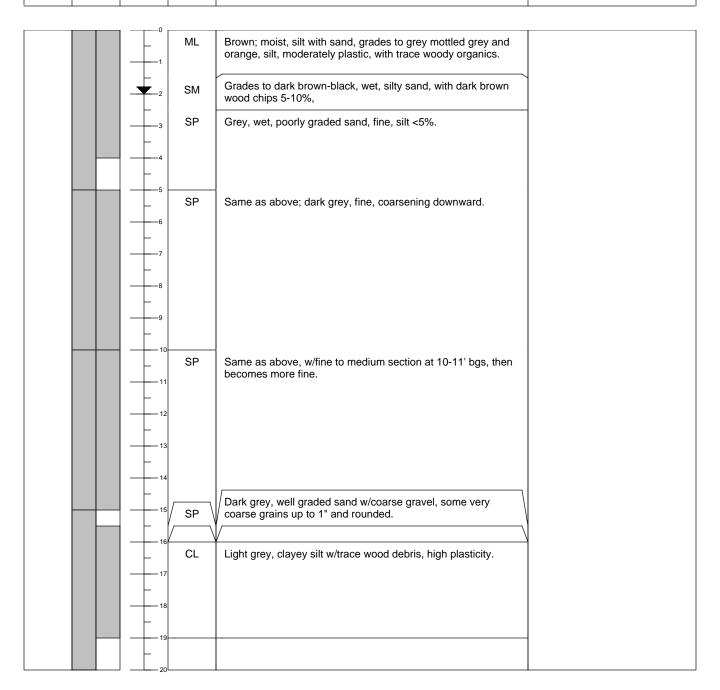
Drill Type: Track Geoprobe 6620DT

Sample Method: 2" x 5' core barrel

Project: B&L RIM

Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste


Groundwater ATD (ft bgs): 2' bgs. Pierce County, WA

Remarks: Piston sampler used below 10' bgs.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS

ID RECOVERED FT BGS SYMBOL SOIL DESCRIPTION AND OBSERVATIONS

WELL COMPLETION DETAIL (If Applicable)

Ground Surf Elev. & Datum: 14.65 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 701640.052 Longitude/Easting: 1185632.12

Casing Elevation: NA

Boring Location: PD-18

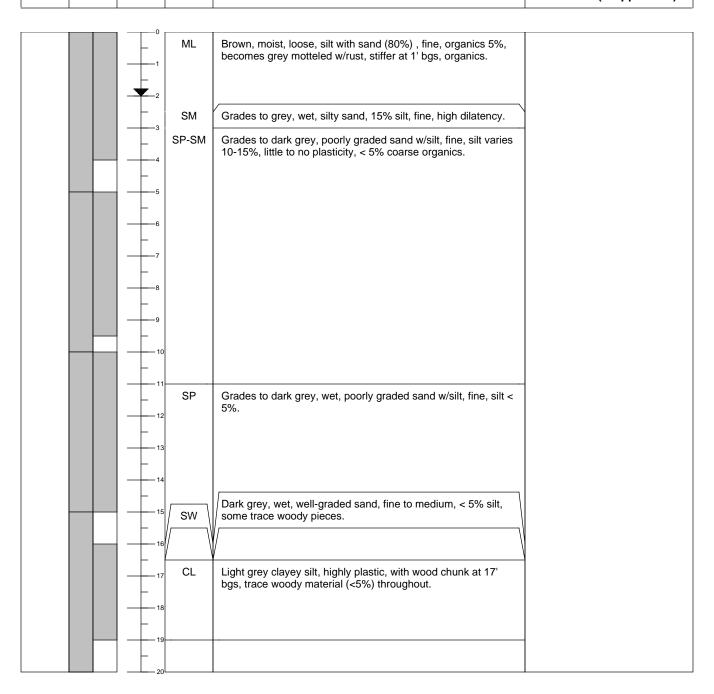
Drill Date: October 15, 2008 **Logged By:** Brett Beaulieu

Drilled By: Casey Goble/Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust

Sample Method: 2" x 5' core barrel **Project:** B&L RIM **Boring Diameter:** 2 inches **Task Number:**

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste


Groundwater ATD (ft bgs): 2 bgs Pierce County, WA

Remarks: Fife field delineation sampling. Piston sampler used below 10' bgs.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS

ID RECOVERED FT BGS SYMBOL WELL COMPLETION

DETAIL (If Applicable)

Ground Surf Elev. & Datum: 13.83 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 701997.699 Longitude/Easting: 1185580.781

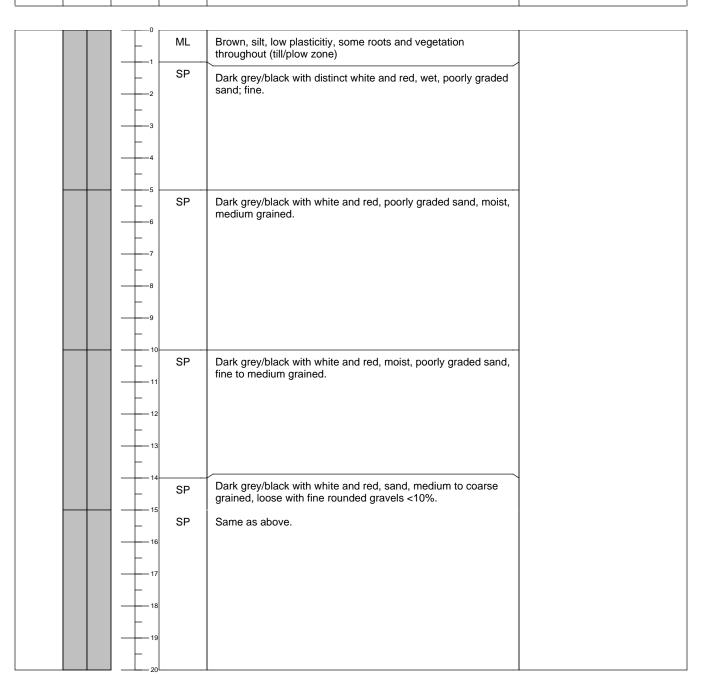
Casing Elevation: NA

Boring Location: PD-19 Drill Date: October 22, 2008

Logged By: Lisa Meoli

Drilled By: Casey Goble/ Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust


Sample Method: 2" x 5' core barrel Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): Unknown Pierce County, WA

Remarks: Fife Fields Delineation Sampling. Piston sampler used below 10' bgs.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 14.13 NAVD 88 Coordinate System: NAD 83/98 Latitude/Northing: 701898.44 Longitude/Easting: 1185589.557

Casing Elevation: NA

Boring Location: PD-20 Drill Date: October 22, 2008

Logged By: Erin Murray

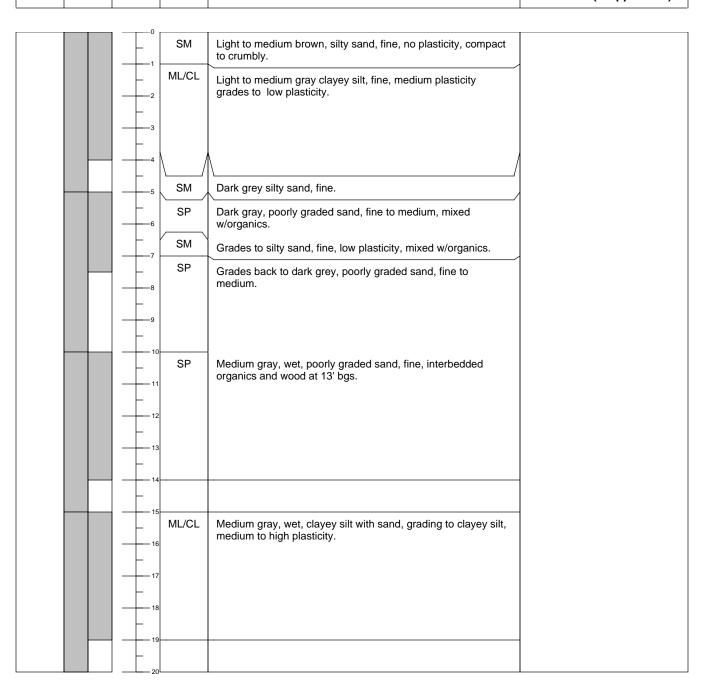
Drilled By: Casey Goble/ Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust

Sample Method: 2" x 5' core barrel Boring Diameter: 2 inches

Boring Depth (ft bgs): 20 ft bgs

Site Location: B&L Woodwaste Groundwater ATD (ft bgs): Unknown


Pierce County, WA

Project: B&L RIM

Task Number:

Remarks: Fife Fields Delineation Sampling. Piston sampler used below 10' bgs.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 14.51 NAVD 88

Coordinate System: NAV83/98 Latitude/Northing: 701796.375 Longitude/Easting: 1185581.192

Casing Elevation: NA

Boring Location: Drill Date: October 22, 2008

Logged By: Erin Murray

Drilled By: Casey Goble/ Cascade Drilling

Drill Type: Track Geoprobe 6620DT

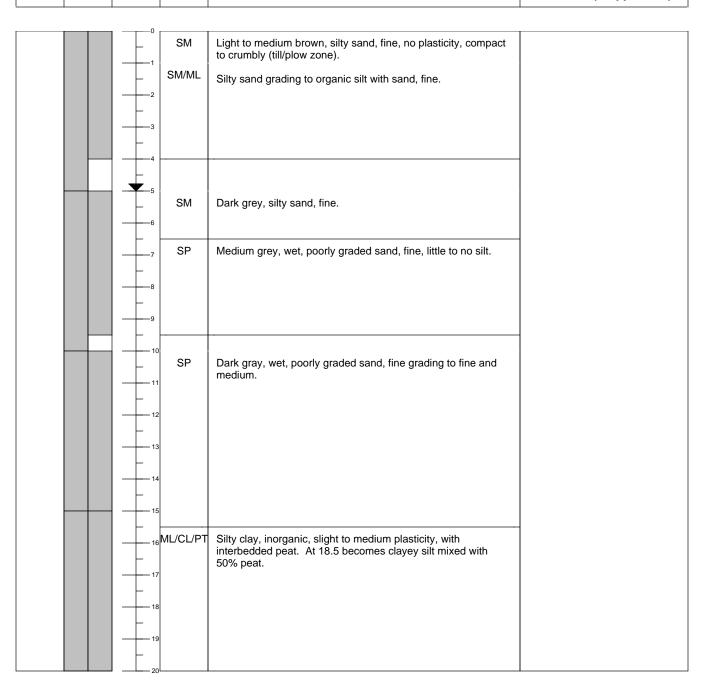
Sample Method: 2" x 5' core barrel Boring Diameter: 2 inches

Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): 5' bgs

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

PD-21

Pierce County, WA

Remarks: Fife Fields Delineation Sampling. Piston sampler used below 10" bgs.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 15.14 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 701550.652 Longitude/Easting: 1185640.035

Casing Elevation: NA

Drill Date: October 15, 2008

Logged By: Lisa Meoli

Drilled By: Casey Goble/Cascade Drilling

Drill Type: Track Geoprobe 6620DT C

Sample Method: 2" x 5' core barrel
Boring Diameter: 2 inches

Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): Unknown

Boring Location: PD-22

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Fife field delineation sampling. Piston sampler used below 10' bgs.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 15.95 NAVD 88 Coordinate System: NAV83/98

Latitude/Northing: 701536.818 Longitude/Easting: 1185801.647

Casing Elevation: NA

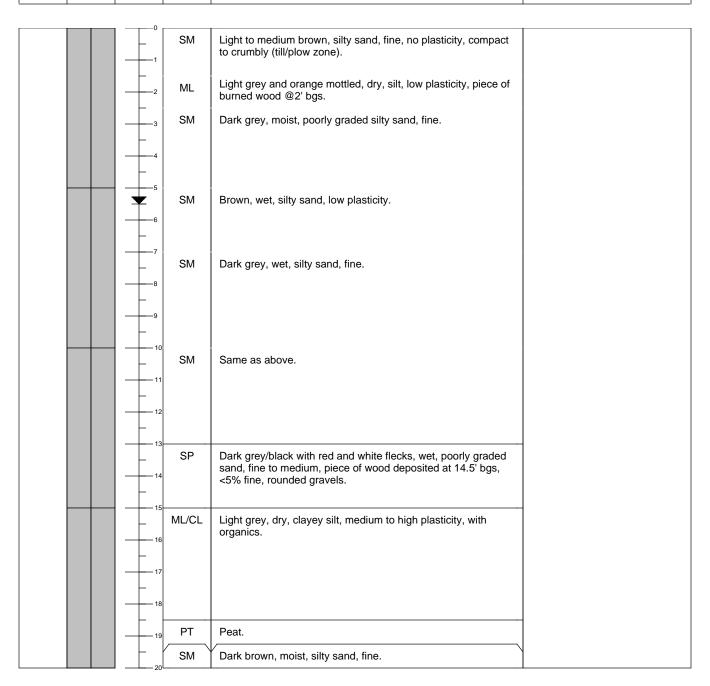
Boring Location: PD-25

Drill Date: October 16, 2008

Logged By: Lisa Meoli

Drilled By: Casey Goble/ Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust Sample Method: 2" x 5' core barrel Project: B&L RIM


Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 5.5' bgs Pierce County, WA

Remarks: Fife Fields Delineation Sampling. Piston Sampler used below 10' bgs.

					-
SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 15.82 NAVD 88

Coordinate System: NAV83/98 Latitude/Northing: 701524.578326 Longitude/Easting: 1185903.5321

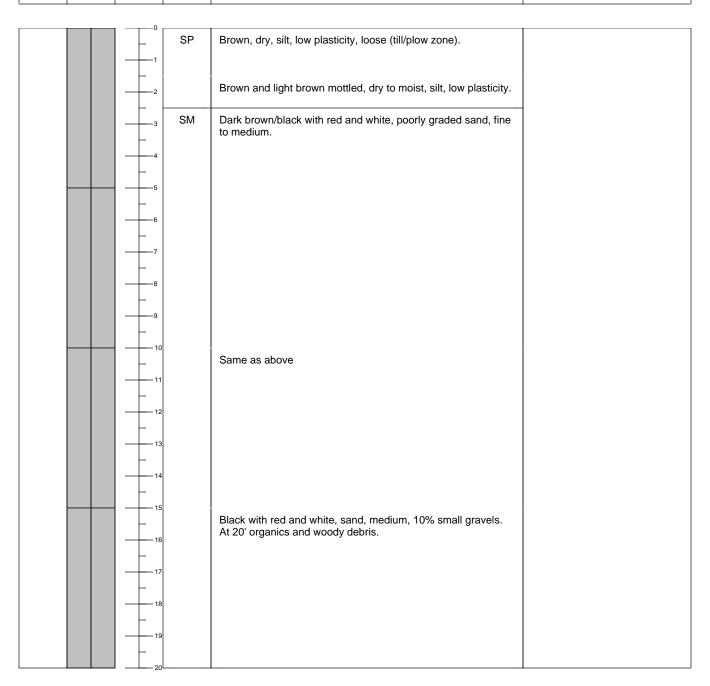
Casing Elevation: NA

Boring Location: PD-26 Drill Date: October 16, 2008

Logged By: Lisa Meoli

Drilled By: Casey Goble/Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust


Sample Method: 2" x 5' core barrel Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): Unknown Pierce County, WA

Remarks: Fife field delineation sampling. Piston sampler used below 10' bgs.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 16.41 NAVD 88

Coordinate System: NAV83/91 Latitude/Northing: 701517.06 Longitude/Easting: 1186002.232

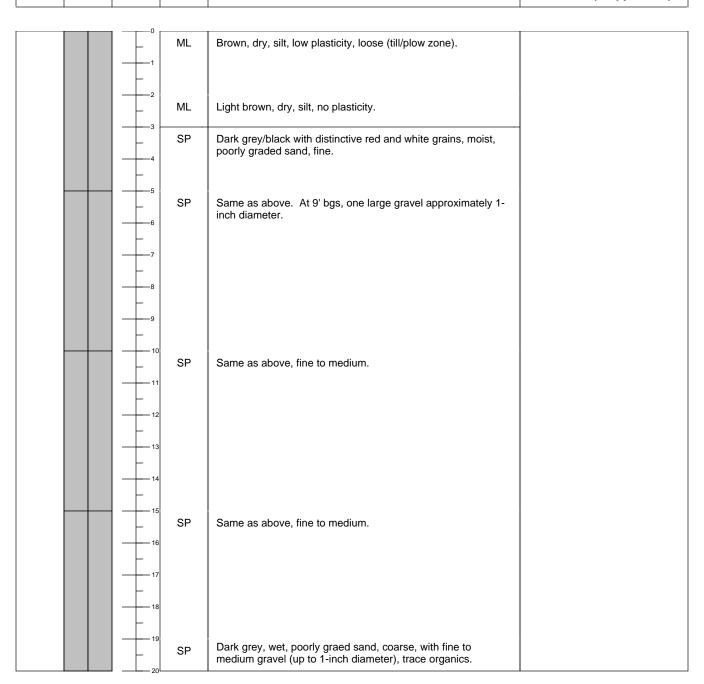
Casing Elevation: NA

Boring Location: PD-27

Drill Date: October 16, 2008 Logged By: Lisa Meoli

Drilled By: Casey Goble/Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust


Sample Method: 2" x 5' core barrel. Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): Unknown Pierce County, WA

Remarks: Fife field delineation sampling. Piston sampler used below 10' bgs.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 16.34 NAVD 88 Coordinate System: NAD 83/98 Latitude/Northing: 701533.223 Longitude/Easting: 1186082.579

Casing Elevation: NA

Boring Location: PD-28

Drill Date: August 14, 2008 **Logged By:** Lisa Meoli

Drilled By: Casey Goble/ Cascade Drilling

Sample Method: 2" x 5' core barrel. Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): Unknown Pierce County, WA

Remarks: Piston sampler used below 10' bgs.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

	ML	Brown, dry, silt, low plasticity, loose (till/plow zone).	
	SP	Dark grey, dry, poorly graded sand, fine.	
2	•	At 2' bgs, pale yellow-brown layer of intact log appears to be recent. Does not turn grey when exposed to air.	
-	SP	Dark grey, wet, poorly graded sand, fine.	
-	SP	Same as above.	
		Intact log (rings present), turns grey when exposed to air.	
9	SP	At 8', grades back to poorly graded sand, fine (same as above).	
- 10			
- 11	SP	Dark grey, sand, fine, interbedded woody debris throughout.	
- 12			
- 13			
——————————————————————————————————————		Intact log encountered, turns grey when exposed to air.	
15			
16	SP	Dark grey, wet, poorly graded sand, fine, wood interbedded at top of boring. Grades to fine to medium at 19-20' bgs and has	
17		distinct red and white grains.	
18			
19			

Ground Surf Elev. & Datum: 18.20 NAVD 88 Coordinate System: NAV83/98 Latitude/Northing: 701505.841 Longitude/Easting: 1186187.622 Casing Elevation: NA

Drill Date: September 26, 2008

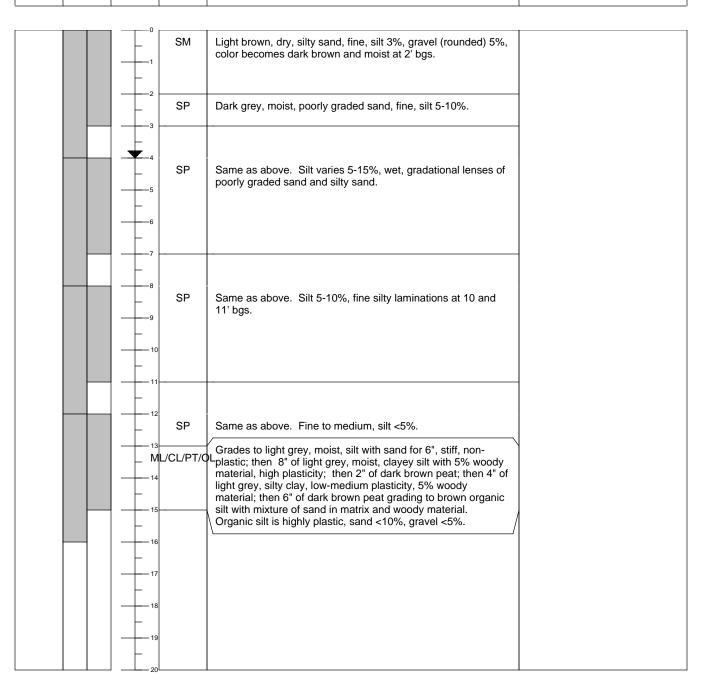
Logged By: Brett Beaulieu

Drilled By: Eli Floyd/ Cascade Drilling

Drill Type: Truck CME probe Client: B&L Custodial Trust

Sample Method: 2" x 4' core barrel. Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 16 ft bgs Site Location: B&L Woodwaste


Boring Location:

PD-29

Groundwater ATD (ft bgs): 4' bgs Pierce County, WA

Remarks: Autumn Village Apartments. Piston sampler used below 4' bgs.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 17.93 NAVD 88

Coordinate System: NAV83/98 Latitude/Northing: 701487.556 Longitude/Easting: 1186321.910

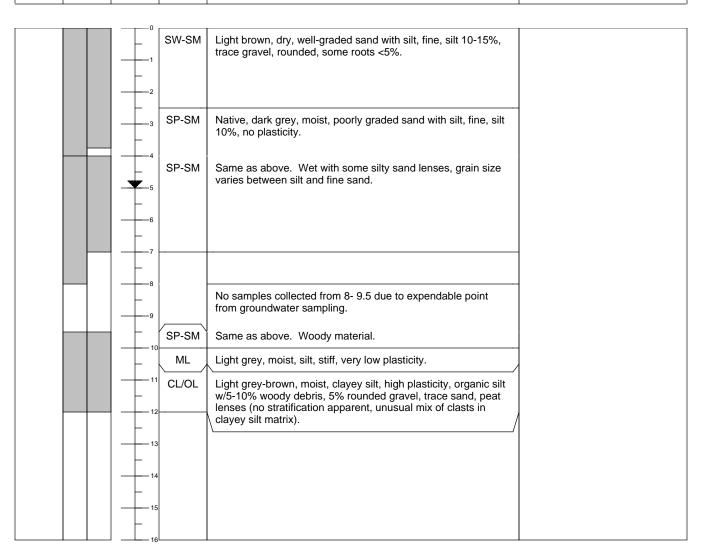
Casing Elevation: NA

Drill Date: September 26, 2008 Boring Location: PD-30

Logged By: Brett Beaulieu

Drilled By: Eli Floyd/ Cascade Drilling

Drill Type: Truck CME probe Client: B&L Custodial Trust


Sample Method: 2' x 4' core barrel. Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 12 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 5' bgs Pierce County, WA

Remarks: Autumn Village Apartments. Boring in landscaping.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 18.73 NAVD 88

Coordinate System: NAV83/98 Latitude/Northing: 701557.263 Longitude/Easting: 1186400.403

Casing Elevation: NA

Drill Date: September 26, 2008

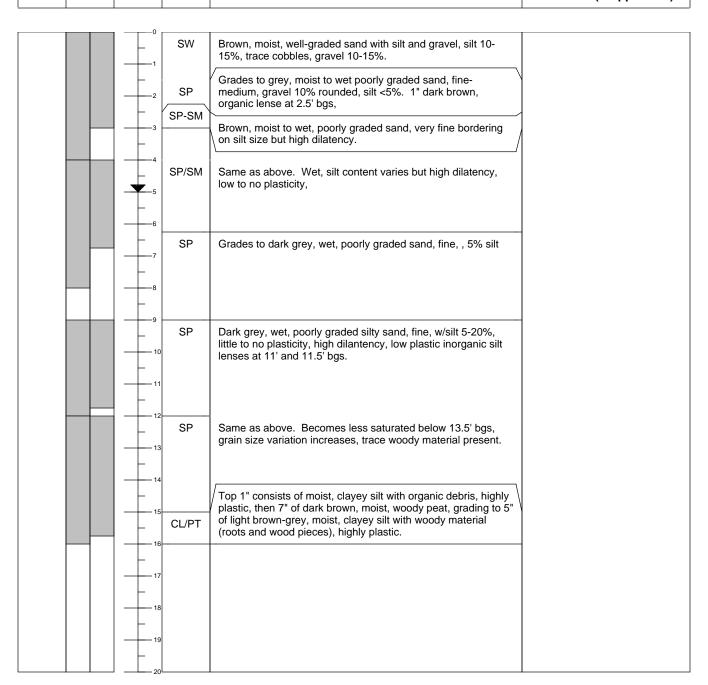
Logged By: Brett Beaulieu

Drilled By: Eli Floyd/ Cascade Drilling

Drill Type: Truck CME probe Client: B&L Custodial Trust

Sample Method: 2" x 4' core barrel Project: B&L RIM Boring Diameter: 2 inches Task Number:

Site Location: B&L Woodwaste Boring Depth (ft bgs): 16 ft bgs


Boring Location:

PD-31

Groundwater ATD (ft bgs): 5' bgs Pierce County, WA

Remarks: Autumn Village Apartments

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 17.21 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 701613.192 Longitude/Easting: 1186474.339

Casing Elevation: NA

_____ Dri

Logged By: John LaManna

Drill Date: August 8, 2008

Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT **Sample Method:** 2" x 4' core barrel

Boring Diameter: 2 inches

Boring Depth (ft bgs): 16 ft bgs

Groundwater ATD (ft bgs): 4' bgs

Boring Location: PD-32

Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Partly sunny, breezy, warm.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS

ID RECOVERED FT BGS SYMBOL WELL COMPLETION
DETAIL (If Applicable)

Ground Surf Elev. & Datum: 15.96 NAVD 88

Coordinate System: NAV83/98 Latitude/Northing: 701451.487 Longitude/Easting: 1186108.878

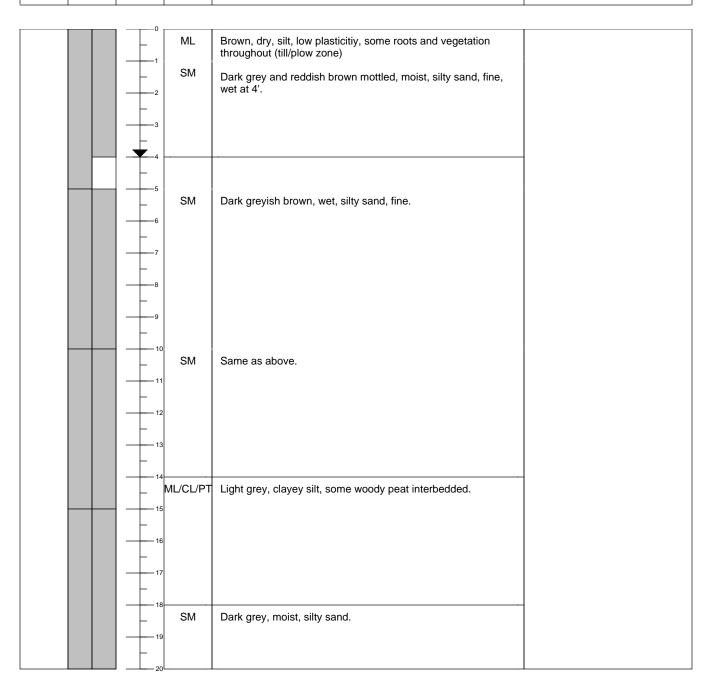
Casing Elevation: NA

Boring Location: PD-33

Drill Date: August 14, 2008 Logged By: Lisa Meoli

Drilled By: Casey Goble/ Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust


Sample Method: 2' x 5' core barrel. Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 4.5' bgs. Pierce County, WA

Remarks: Fife Fields Delineation Sampling. Piston sampler used below 10'.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 18.28 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 701457.951 Longitude/Easting: 1186249.760

Casing Elevation: NA

Boring Location: Drill Date: September 26, 2008

Logged By: Brett Beaulieu

Drilled By: Eli Floyd/ Cascade Drilling

Drill Type: Truck CME probe

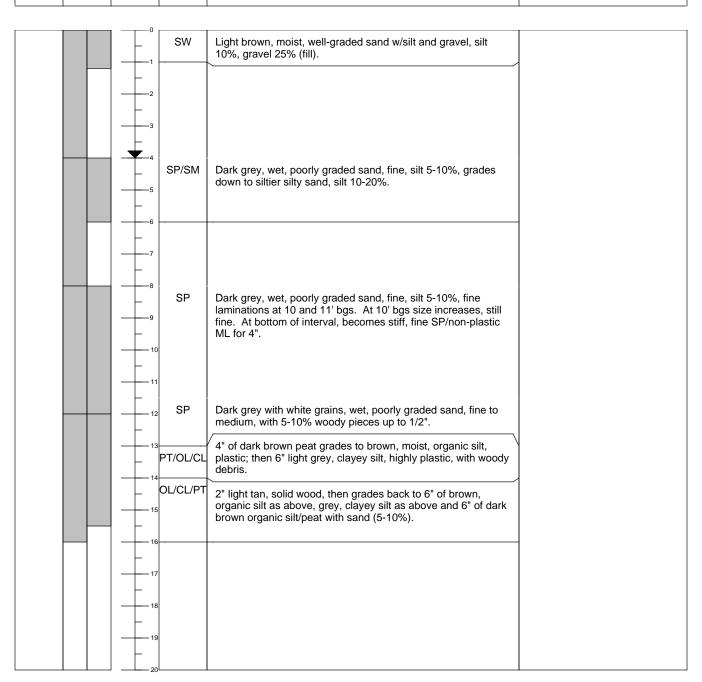
Sample Method: 2" x 4' core barrel Boring Diameter: 2 inches

Boring Depth (ft bgs): 16 ft bgs

Groundwater ATD (ft bgs): 4' bgs

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

PD-34

Pierce County, WA

Remarks: Autumn Village Apartments. Piston sampler used below 4' bgs.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 17.07 NAVD 88

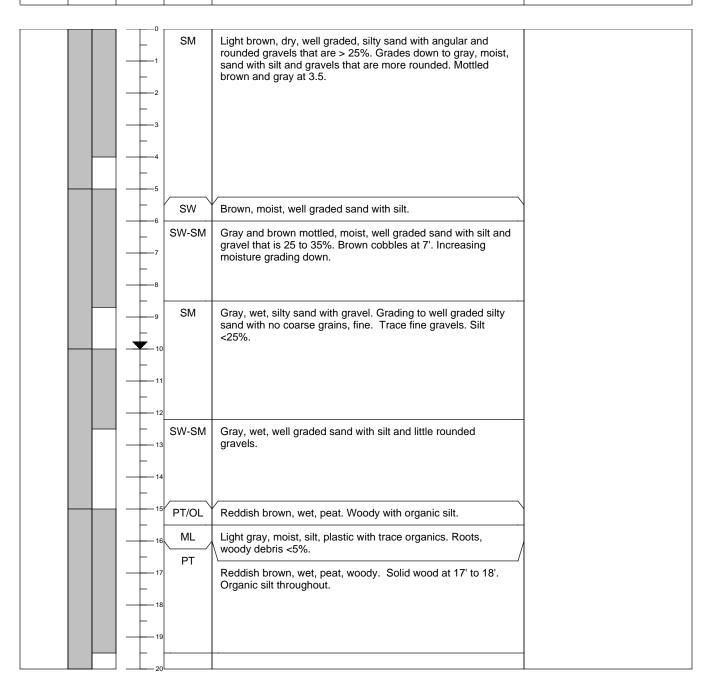
Coordinate System: NAD 83/98 Latitude/Northing: 701819.316 Longitude/Easting: 1186723.879

Casing Elevation: NA

Boring Location: PD-37

Drill Date: August 7, 2008 **Logged By:** Brett Beaulieu

Drilled By: Casey Goble / Cascade Drilling


Sample Method: 2" x 5' core barrel Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 10' bgs Pierce County, WA

Remarks: Overcast, 60s.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Drill Date: August 7, 2008

Logged By: Brett Beaulieu

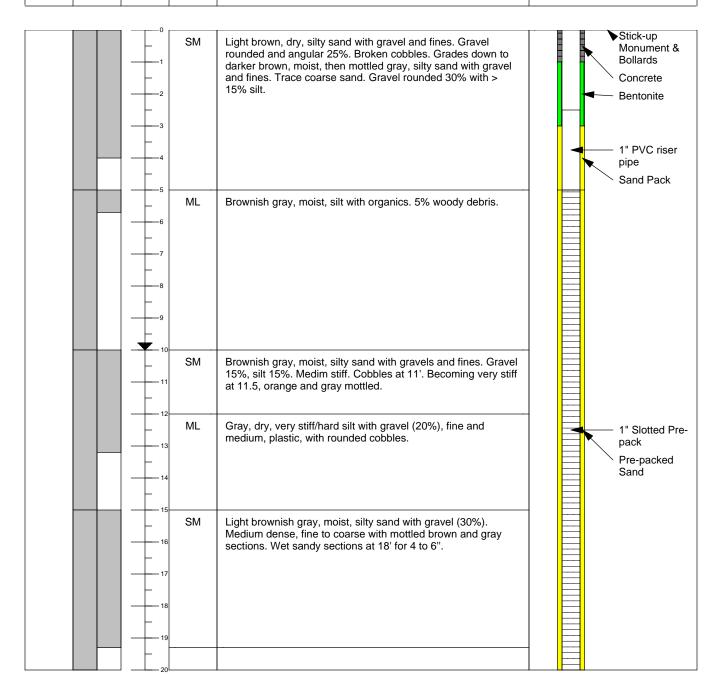
Drilled By: Casey Goble / Cascade Drilling

Boring Location:

PD-38

Ground Surf Elev. & Datum: 18.998, NAVD 88 Drill Type: Truck Geoprobe 6600 Client: B&L Custodial Trust

Coordinate System: NAD 83/98 Sample Method: Dual Tube/Macro Core Project: B&L RIM Latitude/Northing: 701806.207 Boring Diameter: 2 inches Task Number:


Remarks: Driller reports difficulty with 3 1/4" dual-tube due to large cobbles. Switched to 2" x 5' macro core.

Longitude/Easting: 1186803.104 Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste Pierce County, WA

Casing Elevation: 21.635, NAVD 88 Groundwater ATD (ft bgs): 10' bgs

Log is a composite of two drives. 5 gallons of water added during piezometer installation.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 17.21 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 701739.53 Longitude/Easting: 1186682.922

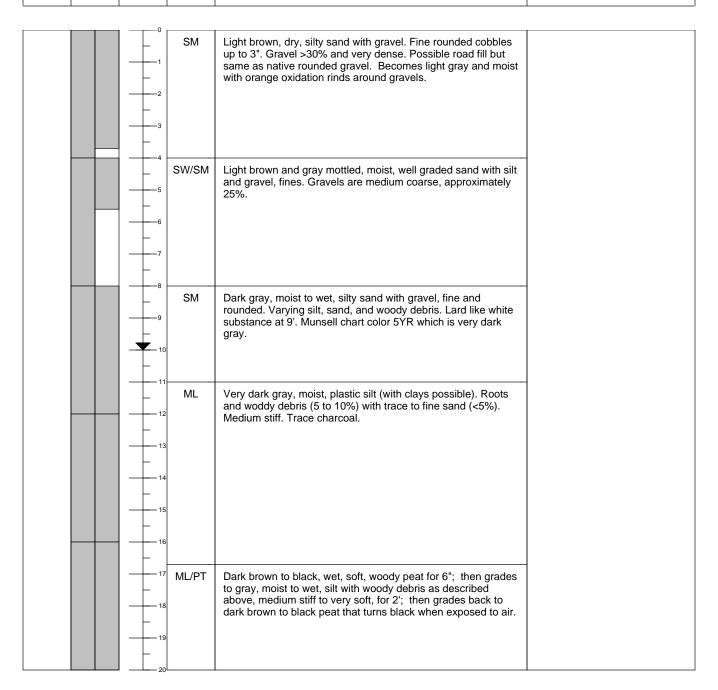
Casing Elevation: NA

Boring Location: PD-39

Drill Date: August 6, 2008 **Logged By:** Brett Beaulieu

Drilled By: Eli Floyd / Cascade Drilling

Sample Method:Dual TubeProject: B&L RIMBoring Diameter:2 inchesTask Number:


Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 10' bgs Pierce County, WA

Remarks: The driller reported difficulty drilling 1st. drive. On second drive driller added 4 gallons of

water to control heave after removal of 8-12' drive. Log is a composite of the two boring attempts.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 19.670 NAVD88

Coordinate System: NAD 83/98 Latitude/Northing: 701719.308704 Longitude/Easting: 1186767.139073 Casing Elevation: 22.531 NAVD88

Boring Location: PD-40

Drill Date: August 6, 2008 Logged By: Brett Beaulieu

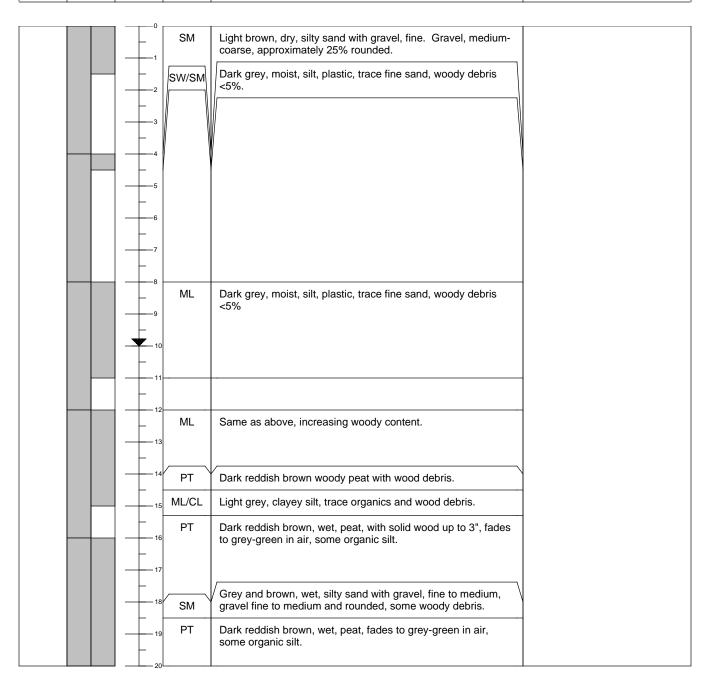
Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): 10' bgs

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks:

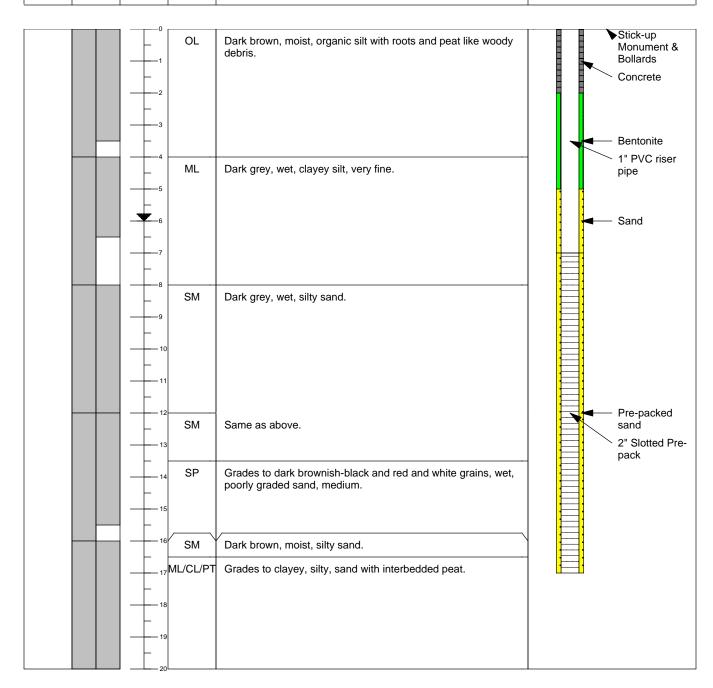
SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 12.296 Coordinate System: NAV83/98 Latitude/Northing: 702820.184 Longitude/Easting: 1185778.645 Casing Elevation: 14.766

Boring Location: PD-50

Drill Date: August 19, 2008 Logged By: Lisa Meoli Drilled By: Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust


Sample Method: Dual Tube Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 6' bgs Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

ı						
I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Boring Location: PD-51

Drill Date: August 19, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.129, NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): 6' bgs

Client: B&L Custodial Trust

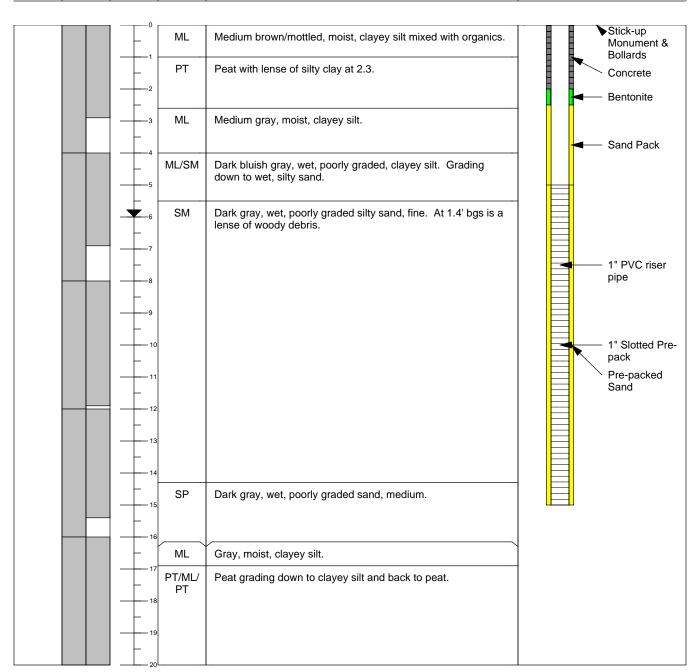
Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks:

Sunny, hot.


Coordinate System: NAD 83/98

Longitude/Easting: 1185752.702

Casing Elevation: 15.199, NAVD 88

Latitude/Northing: 702695.029

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Longitude/Easting: 1185675.209

Casing Elevation: 15.044, NAVD 88

Latitude/Northing: 702501.017

Boring Location: PD-52a

Drill Date: August 19, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

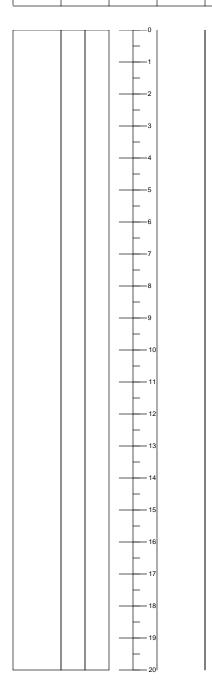
Ground Surf Elev. & Datum: 12.499, NAVD 88 Drill Type: Track Geoprobe 6620DT

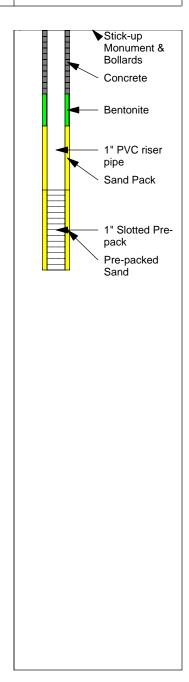
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 7.5 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste


Pierce County, WA

Remarks: Shallow well screen. First of three.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

FLOYD | SNIDER strategy • science • engineering

Coordinate System: NAD 83/98

Latitude/Northing: 702497.933

Longitude/Easting: 1185674.567

Casing Elevation: 15.104, NAVD 88

Boring Location: PD-52b

Client: B&L Custodial Trust

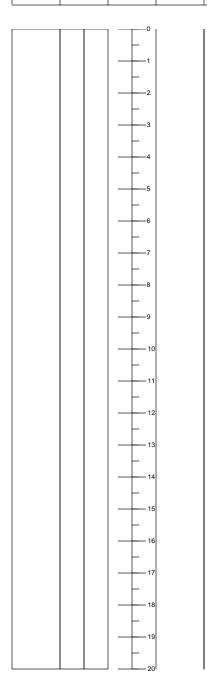
Drill Date: August 19, 2008 Logged By: Erin Murray

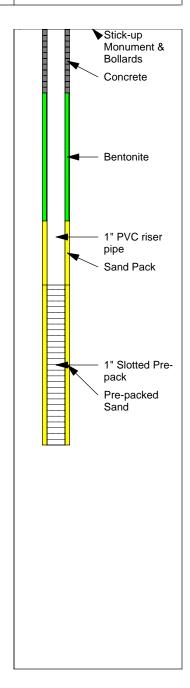
Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.299, NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 13 ft bgs

Groundwater ATD (ft bgs): Unknown


Task Number: Site Location: B&L Woodwaste Pierce County, WA


Project: B&L RIM

Remarks: Intermediate well screen. 2 of 3.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

FLOYD | SNIDER strategy • science • engineering

Boring Location: PD-52c

Drill Date: August 19, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.389, NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): 6' bgs

Client: B&L Custodial Trust

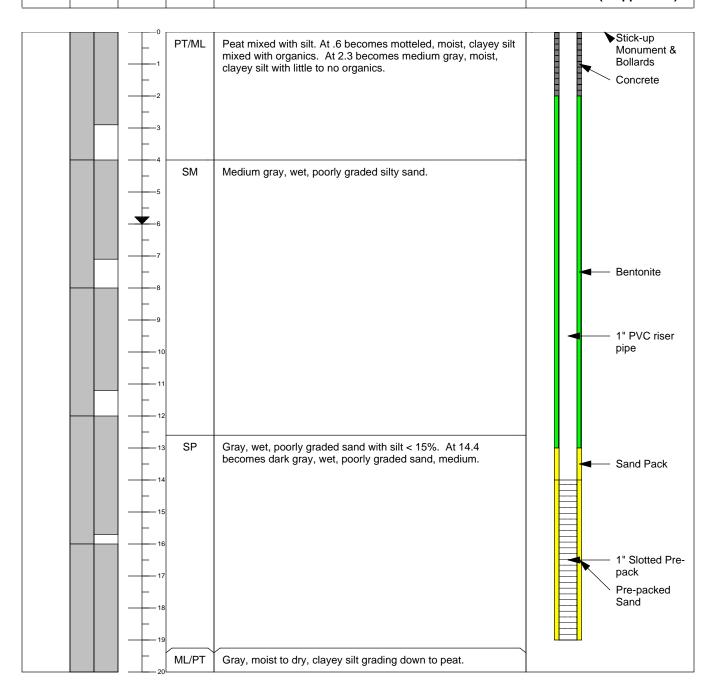
Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Deep well screen. Third of three.

Cloudy, warm.


Coordinate System: NAD 83/98

Longitude/Easting: 1185673.518

Casing Elevation: 15.039, NAVD 88

Latitude/Northing: 702494.381

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Appendix B Geotechnical Investigation Report

AMEC Geomatrix

600 University Street, Suite 1020 Seattle, WA 98101

Technical Memorandum

Prepared By: Koorus Tahghighi, P.E.

Date: March 20, 2009

Re: Geotechnical Investigation Report

INTRODUCTION

This Geotechnical Investigation Report supports implementation of the final Cleanup Action Plan (CAP) for the barrier wall and groundwater interception trench for the B&L Woodwaste Landfill (Landfill) as shown on Figure B.1. The Washington State Department of Ecology (Ecology) issued the final CAP in 2008 and requires, among other cleanup actions, that a perimeter barrier wall be installed around the Landfill. The 2008 CAP specifies that this barrier wall should be tied into both the existing landfill cap and a low-permeability soil unit located below the Landfill. The purpose of the subsurface, low-permeability barrier wall is to hydraulically isolate and contain arsenic-contaminated groundwater beneath the Landfill to prevent migration of arsenic beyond the landfill perimeter.

The physical characteristics of the Landfill are described in the Groundwater Alternatives Evaluation (GAE; Floyd|Snider 2007). Previous subsurface investigations revealed the presence of four subsurface units: (1) a near surface silt or upper silt aquitard, (2) an upper sand aquifer, (3) a lower silt aquitard, and (4) a lower sand aquifer. Although present in most soil borings, the lower silt aquitard appeared to be absent in one boring near the southwest perimeter of the Landfill and in borings to the east of the Landfill

A geotechnical investigation was performed to collect site-specific information needed for design of the subsurface barrier wall. This investigation was completed in general accordance with the Geotechnical Investigation Work Plan (Work Plan) which was included as Appendix F to the Groundwater Remediation Work Plan (GRWP; Floyd|Snider/AMEC Geomatrix 2009). This report presents a summary of the geotechnical investigation and findings. Geotechnical results are presented in the context of the barrier wall design in Addendum 1 to this EDR.

PURPOSE

The purpose of the geotechnical investigation was to determine the depth to the lower silt aquitard, the continuity of the lower silt aquitard, and to assess the engineering characteristics of subsurface soils along the barrier wall alignment. Specifically, the objectives of this geotechnical investigation were as follows:

- Develop stratigraphic information concerning the depth and thickness of the upper sand aquifer and the presence and the depth to the lower silt aquitard;
- Obtain sufficient geotechnical data to complete the design of the subsurface barrier wall; and
- Collect soil and groundwater samples for compatibility testing for use in designing the barrier wall backfill.

SCOPE OF WORK

The following tasks were completed for this investigation:

- Drilled 15 soil borings using hollow-stem augers (HSA) along the proposed barrier wall alignment.
- Advanced nine push probes in the vicinity of the southwest gap in the lower silt aquitard. Push probes were not included in the Work Plan, but were considered necessary to properly characterize the aquitard based on the discontinuities identified in HSA borings.
- Conducted cone penetrometer testing (CPT) at 46 locations along the anticipated subsurface barrier wall alignment and in the areas where gaps in the lower silt aquitard were identified.
- Collected soil samples that were submitted to a geotechnical laboratory for testing of physical characteristics and for compatibility testing.
- Conducted compatibility testing to confirm that the proposed barrier wall construction
 materials are compatible with the contaminated groundwater, using groundwater from
 a monitoring well completed in the Upper Sand Aquifer beneath the Landfill and
 potable water from the local water supply.

FIELD INVESTIGATION

Project staff from Floyd|Snider and AMEC Geomatrix, Inc. (AMEC) conducted the field investigation between August 11 and September 30, 2008 to support implementation of the final 2008 CAP. A representative of the project team was present during all field investigations. After completion of each exploration point, the exploration location was backfilled with bentonite slurry in accordance with the State of Washington water well regulations. The field investigation was performed in general accordance with the Work Plan; the scope of work was modified from the Work Plan scope in consultation with Ecology to investigate the extent of the gaps that were identified in the Lower Silt Aquitard.

FIELD ACTIVITIES

Fifteen soil borings (H-1 through H-15) were drilled around the perimeter of the Landfill on the existing Landfill access road from August 11 to 15, 2008. These boring locations are shown on Figure B.2. The soil borings were completed by Cascade Drilling, Inc. using hollow-stem augers. The soil borings were logged and samples classified based on visual method using the

Unified Soil Classification System (USCS) as described in ASTM Standard D 2487-00. The soil classifications on the boring logs were subsequently adjusted to reflect the laboratory test results. The boring logs are included as Attachment B.1.

Standard penetration tests (SPT) were conducted during the drilling and blow counts were recorded on the logs. The soil borings were advanced to a maximum depth of 41 feet (ft) below ground surface (bgs) through the lower silt aquitard layer where this unit was present. At Boring H-10 location, a gravel and cobble layer was encountered near the ground surface, resulting in refusal. This boring was offset 5 ft and re-drilled, and was completed to the planned depth.

The HSA investigation revealed an absence or substantial reduction of thickness of the lower silt aquitard in the southwest portion of the alignment, between Borings H-3 and H-15, and on the east side between Borings H-9 to H-10.

Following HSA borings, nine push probes (A-1 through A-9) were advanced in the southwest corner of the Landfill from August 22 to 29, 2008 in an attempt to define the extent of the aquitard gap in this area (Figure B.2) based on HSA borings. Push probe logs are included in Attachment B.1.

As described in the Work Plan, in order to assess the continuity of the lower silt aquitard between the HSA borings, 46 cone penetration tests (CPTs) were performed from September 22 to 30, 2008 by In Situ Engineering of Snohomish, Washington. Only 30 CPTs were proposed in the Work Plan; however, additional CPTs were required to delineate the gaps in the lower silt aquitard. To compare results with the HSA method, CPTs C-7 and C-12 were positioned adjacent to Borings H-14 and H-6, respectively. The CPT readouts were compared to the logging results for the HSA borings.

CPTs C-1 through C-4, C-29, and C-30 were not performed as had been proposed in the Work Plan, since the HSA borings indicated a gap in the aquitard beneath the southwest corner of the Landfill, where the CPTs were located. Instead, six CPTs (C-31 through C-35) were completed on the upslope of the Landfill in an effort to identify the extent of the aquitard gap toward the center of the Landfill. Similarly, 10 CPTs (C-40, C-41, and C-45 through C-52) were completed upslope of the eastern aquitard gap to delineate the extent of the aquitard gap on the east side of the Landfill. C-26 was attempted at two locations, but due to refusal it was abandoned. The exploration points were surveyed for location and elevation by Barghausen Consulting Engineers, Inc. A summary of the exploration points, coordinates, and ground surface elevations is presented in Table B.1.

Soil samples were collected from SPT samplers during HSA soil borings for geotechnical testing as described in the Work Plan. Fifteen representative discrete samples were collected for moisture content and grain size for each soil type identified. Six representative discrete samples of cohesive soils were collected for Atterberg limit testing. Four undisturbed samples were collected using large-diameter drive samplers (Shelby tubes) from the Upper Sand Aquifer, fine-grained zones within the Upper Sand Aquifer, and the underlying Lower Silt Aquitard for permeability and triaxial strength testing. Undisturbed samples were also submitted for Atterberg limit testing.

In addition, four 5-gallon (80-lb) composite soil samples were collected from the 15 HSA soil borings to provide materials for compatibility testing. Each composite sample was collected

from SPT samples from four to five HSA borings above the Lower Silt Aquitard. The Lower Silt Aquitard material was excluded from the composite samples.

Groundwater samples for compatibility testing were collected from Monitoring Well PD-107 (refer to Figure B.2) in accordance with the procedures described in the Sampling Analysis Plan/Quality Assurance Project Plan (SAP/QAPP; Appendix B to the GRWP) and Work Plan. A potable water sample for compatibility testing was collected from the City of Milton Public Works Department at Kent Street.

INVESTIGATION-DERIVED WASTE

The field sampling equipment and exploration equipment were decontaminated between samples and exploration locations in accordance with the protocols in the Work Plan and SAP/QAPP. Soil cuttings from HSA borings were characterized using composite samples from containerized wastes (WP 4-8 from Borings H-4 through H-8, WP 12-3 from Borings H-12 through H-3, and WP 9-11 from Borings H-9 through H-11) submitted to Fremont Analytical Inc. in Seattle, Washington. Soil cuttings from push probes advanced through the Landfill wastes were containerized and characterized in conjunction with HSA borings advanced through the Landfill (PD-107, PD-108, and PD-109) as part of other predesign studies (refer to Appendix C). Decontamination rinsate was characterized by samples (Decon 1 through Decon 4) submitted to Fremont Analytical. The investigation-derived waste generated was disposed off-site along with other waste from the predesign investigations as dangerous (hazardous) and non-regulated waste, as applicable based on the waste characterization results. The waste characterization analytical laboratory results and waste manifests are included as Attachment B.2.

LABORATORY TESTING

Soil samples collected by split spoon and Shelby tube samplers were submitted for geotechnical testing to Soil Technology, Inc. on Bainbridge Island, Washington. Selected soil samples were tested for grain size, moisture content, Atterberg limits, strength, and permeability, as described in the Work Plan.

Compatibility testing consisted of testing five soil samples for hydraulic conductivity using potable water and groundwater. Four composite soil samples collected for compatibility testing were consolidated from the four composite samples by the test laboratory prior to preparation of compatibility test samples. The laboratory test report and sample chain of custodies are included in Attachment B.3. Two composite soil samples were mixed with different concentrations of bentonite, another two composite soil samples were mixed with different concentrations of bentonite and cement. A fifth sample was composed of cement mixed with bentonite. The mix ratios and hydraulic conductivity test results are summarized in Table B.2.

Impacted groundwater sampled from beneath the Landfill for compatibility testing was submitted for chemical analysis to Fremont Analytical.. Groundwater was analyzed for metals including arsenic, iron, calcium, magnesium, and sodium, and other water quality indicators including total alkalinity, chloride, dissolved organic carbon, and sulfide. Analytical results are summarized in Table B.3. The laboratory test report and sample chain-of-custody forms are included in Attachment B.3.

INVESTIGATION FINDINGS

The soil borings encountered a 3- to 3.5-ft thick layer of fill at the ground surface, which is the existing perimeter road berm. The Upper Silt Aquitard was encountered in most borings at depths ranging from approximately 3- to 11-ft below ground surface. A distinct shallow silt layer was absent at H-3, H-12, and H-14. Where present, the Lower Silt Aquitard was generally encountered at depths ranging from approximately 14-to 30-ft below grade. In the two areas along the barrier wall alignment, the southwest corner and an area on the eastern side of Landfill (refer to Figure B.2) low-permeability deposits were either not encountered or present only as thin seams or lenses. At most locations, transitions between silt and sand layers were very gradual. Otherwise, these layers were interbedded. The Lower Silt Aquitard was typically identified as olive grey silt or clayey silt, and was in places interbedded with peat. The Lower Silt Aquitard ranged in thickness from approximately 3.5- to 10.5-feet thick.

Delineation of the horizontal extent of the eastern aquitard gap toward the center of the Landfill was attempted, but was not determined. After two transects of CPTs, further delineation toward the center of the Landfill was deemed impractical due to the increasing and substantial thickness of wood waste. The horizontal extent of the southwest aquitard gap into the Landfill is shown on Figure B.2.

The laboratory test results confirmed the presence of silts in the Upper and Lower Silt Aquitards. The results indicated mostly non-plastic or low plasticity silt. However, at four locations the Lower Silt Aquitard was classified as high plasticity, organic silt with an average strength of approximately 1,500 pounds per square foot (psf). Hydraulic conductivity of the lower silt aquitard was tested in the laboratory on the high and low plasticity samples (H-4 at 26-ft bgs and H-11 at 24.7-ft bgs, respectively), to assess the range of hydraulic conductivity values for the Lower Silt Aquitard. The measured hydraulic conductivity ranged between 7x10-8 to 4 x10-6 centimeters per second (cm/s).

Based on these findings, the barrier wall should extend to at least the midsection of the Lower Silt Aquitard, where a distinct silt layer is generally present. In the two aquitard gap areas, where a distinct silt layer is absent but thin silt lenses were typically encountered, the wall should continue below the depth of silt lenses. The recommended depth of the bottom of the barrier wall at each HSA boring location is presented in Table B.1.

The compatibility testing results indicate that Site groundwater composition has no significant effect on the barrier wall mix. The hydraulic conductivity tests indicated only minor differences between groundwater and potable water, which are believed to be in the range of accuracy of the test method. The hydraulic conductivity of the Site soil with addition of only 3 percent bentonite was found to be 5×10^{-8} cm/s. This mix ratio will meet the intent of the design and will be used for this project.

REFERENCES

Floyd|Snider. 2007. *B&L Landfill Groundwater Alternatives Evaluation*. Prepared for Murray Pacific Corporation, Tacoma, Washington. January.

Floyd|Snider/AMEC 2009. Groundwater Remediation Work Plan. Prepared for B&L Custodial Trust, Olympia, Washington. January.

Encl.: Table B.1-List of Exploration Locations

Table B.2-Backfill Mix Design

Table B.3-Groundwater Analytical Results for PD-107

Figure B.1–Site Vicinity Map
Figure B.2–Geotechnical Exploration Locations

Attachment B.1-Boring Logs and Cone Penetrometer Test Logs Attachment B.2-Investigation-derived Waste Documentation

Attachment B.3-Laboratory Analytical Reports

Copies:

Та	bles

Table B.1
List of Exploration Locations¹

					Ground Surface	Depth to Bottom
	Installation	Total Depth			Elevations	of Barrier Wall
ID	Date	(ft. bgs)	Northing ²	Easting ²	(ft. NAVD 88) ³	(ft. bgs) ⁴
	stem Auger B		Northing	Lasting	(IL. NAVD 66)	(it. bgs)
H-1	8/12/2008	36.00	1185860.52	701618.68	20.15	31.00
H-2	8/12/2008	36.00	1185731.80	701721.70	19.49	28.00
H-3	8/12/2008	41.00	1185730.96	701907.42	19.39	35.00
H-4	8/13/2008	41.00	1185731.33	702092.07	18.80	26.00
H-5	8/13/2008	43.00	1185900.34	702214.87	19.20	26.00
H-6	8/13/2008	41.00	1186115.05	702324.37	19.24	26.00
H-7	8/14/2008	41.00	1186232.63	702371.60	19.12	24.00
H-8	8/14/2008	35.00	1186381.07	702329.80	18.95	22.00
H-9	8/14/2008	31.00	1186479.75	702171.01	19.29	27.00
H-10	8/15/2008	31.00	1186571.87	702003.16	19.85	27.00
H-11	8/15/2008	37.00	1186603.45	701839.72	19.93	24.00
H-12	8/11/2008	31.00	1186530.15	701685.61	20.43	23.00
H-13	8/11/2008	31.00	1186395.32	701617.75	20.56	27.00
H-14	8/11/2008	33.00	1186193.91	701613.66	20.80	25.00
H-15	8/15/2008	35.00	1186016.29	701616.94	20.44	27.00
Push Pi	robes					
A-1	8/25/2008	40.00	1185794.60	701850.21	25.70	NA
A-2	8/25/2008	44.00	1185795.45	701779.16	25.79	NA
A-3	8/25/2008	44.00	1185905.00	701787.01	36.01	NA
A-4	8/25/2008	36.00	1185907.06	701714.87	29.35	NA
A-5	8/22/2008	32.00	1185953.23	701659.63	23.11	NA
A-6	8/22/2008	32.00	1186079.77	701614.84	20.54	NA
A-7	8/27/2008	28.00	1185985.27	701672.86	25.00	NA
A-8	8/29/2008	42.00	1185883.05	701846.85	36.02	NA
A-9	8/29/2008	40.00	1185890.57	701679.12	24.81	NA
CPTs	T				1	
C-1 ⁵			1185796.19	701623.92	20.04	NA
C-2 ⁵			1185737.55	701671.45	19.73	NA
C-3 ⁵			1185731.99	701781.95	19.49	NA
C-4 ⁵			1185730.30	701844.23	19.46	NA
C-5	9/24/2008	36.78	1185730.78	701968.27	19.24	NA
C-6	9/24/2008	29.53	1185730.95	702030.03	18.96	NA
C-7	9/23/2008	36.42	1185752.33	702147.33	19.64	NA
C-8	9/23/2008	33.96	1185828.26	702182.15	19.15	NA
C-9	9/23/2008	33.63	1185921.58	702226.32	19.18	NA
C-10	9/23/2008	32.64	1185971.56	702251.62	19.29	NA
C-11	9/23/2008	31.99	1186030.26	702281.81	19.07	NA
C-12	9/22/2008	34.94	1186120.56	702325.63	19.26	NA
C-13	9/22/2008	28.38	1186281.47	702380.72	19.04	NA
C-14	9/22/2008	26.57	1186339.53	702365.44	19.03	NA
C-15	9/22/2008	31.00	1186416.38	702275.23	19.14	NA
C-16	9/22/2008	22.31	1186448.49	702224.18	19.30	NA
C-17	9/23/2008	39.86	1186509.73	702116.67	19.45	NA
C-18	9/25/2008	32.97	1186537.20	702070.85	19.89	NA
C-19	9/25/2008	35.93	1186593.13	701957.46	19.91	NA

FLOYD | SNIDER AMEC Geomatrix

					Ground Surface	Depth to Bottom
	Installation	Total Depth			Elevations	of Barrier Wall
ID	Date	(ft. bgs)	Northing ²	Easting ²	(ft. NAVD 88) ³	(ft. bgs) ⁴
C-20	9/25/2008	35.93	1186607.24	701899.55	20.00	NA
C-21	9/25/2008	32.32	1186583.29	701782.92	19.99	NA
C-22	9/25/2008	26.41	1186558.76	701738.58	19.85	NA
C-23	9/25/2008	32.81	1186491.82	701649.00	20.50	NA
C-24	9/25/2008	38.88	1186446.57	701622.55	20.54	NA
C-25	9/24/2008	23.29	1186345.46	701617.64	20.66	NA
C-26 ⁶			1186268.14	701615.45	20.71	NA
C-27	9/22/2008	29.04	1186186.88	701615.24	20.80	NA
C-28	9/24/2008	31.33	1186045.05	701615.62	20.41	NA
C-29 ⁵			1185962.04	701616.74	20.34	NA
C-30 ⁵			1185910.21	701618.07	20.27	NA
C-31	9/23/2008	39.70	1185866.54	701724.42	29.06	NA
C-32	9/23/2008	40.03	1185844.06	701787.12	31.08	NA
C-33	9/23/2008	42.98	1185840.14	701831.99	31.25	NA
C-34	9/23/2008	46.42	1185835.50	701877.82	30.83	NA
C-35	9/25/2008	42.65	1185789.68	701885.54	25.12	NA
C-36	9/24/2008	42.98	1185731.52	701870.74	19.31	NA
C-37	9/29/2008	26.57	1186550.53	702041.26	20.06	NA
C-38	9/29/2008	29.86	1186521.96	702095.70	19.65	NA
C-39	9/29/2008	33.30	1186495.34	702142.48	19.34	NA
C-40	9/29/2008	32.64	1186490.18	702067.68	23.20	NA
C-41	9/29/2008	33.30	1186472.63	702095.85	23.24	NA
C-42	9/30/2008	32.64	1186309.35	701617.28	20.82	NA
C-43	9/30/2008	33.30	1186227.29	701615.77	20.76	NA
C-44	9/30/2008	29.86	1186119.53	701614.53	20.64	NA
C-45	9/29/2008	26.57	1186508.08	702036.99	23.08	NA
C-46	9/29/2008	30.18	1186451.03	702135.13	22.87	NA
C-47	9/29/2008	32.97	1186526.40	701995.91	23.66	NA
C-48	9/30/2008	38.22	1186481.66	701981.36	30.41	NA
C-49	9/30/2008	28.87	1186466.44	702014.68	30.24	NA
C-50	9/30/2008	40.52	1186447.26	702050.54	30.15	NA
C-51	9/30/2008	46.59	1186430.23	702083.32	29.87	NA
C-52	9/30/2008	27.89	1186410.59	702118.76	29.38	NA

Notes:

- 1 Exploration locations and elevations were surveyed by Barghausen Consulting Engineering, Inc. in November 2008.
- 2 Northings and Eastings in Washington State Plane coordinate system, NAD 83 South (ft).
- 3 Ground surface elevations in NAVD 88.
- 4 Barrier wall depth based on hollow-stem auger results.
- 5 CPTs were not advanced because soil borings did not encounter the lower silt aquitard.
- 6 CPT advanced twice but ultimately encountered refusal. A third boring at this location was not attempted.

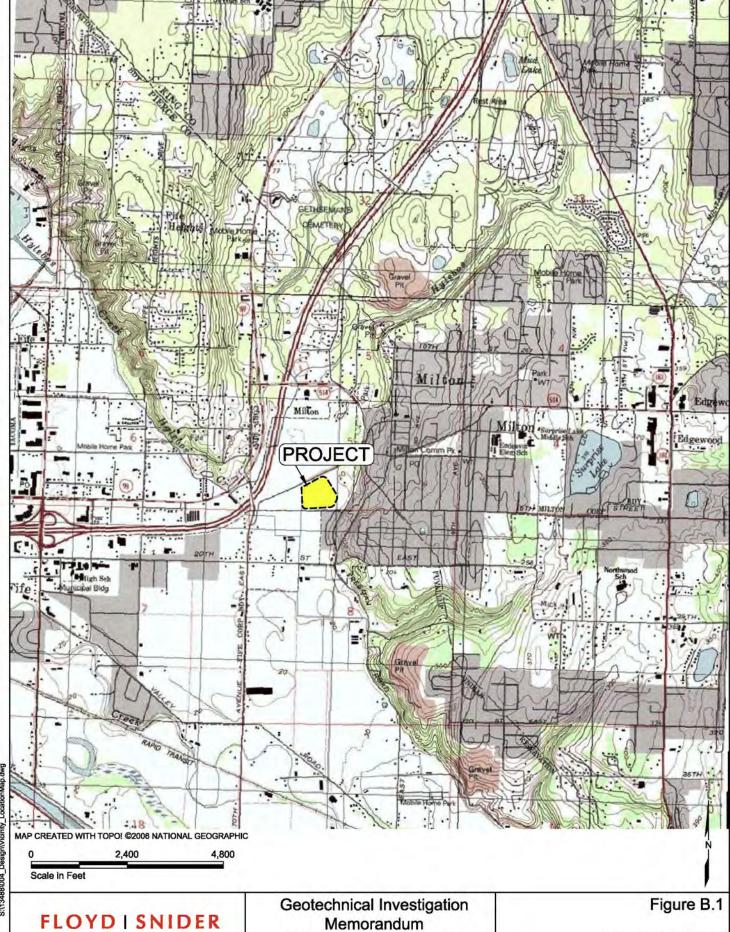
Page 2 of 2

Abbreviations:

bgs Below ground surface CPT Cone penetrometer test ft Feet NA Not applicable

Table B.2 Backfill Mix Design

	Hydraulic Conductivity (cm/s)					
Mix Ratio	With Potable Water	With Groundwater				
Soil with 3% bentonite	5 x 10 ⁻⁸	5 x 10 ⁻⁸				
Soil with 7% bentonite	<1 x 10 ⁻⁸	<1 x 10 ⁻⁸				
Soil with 3% bentonite and 7% cement	6 x 10 ⁻⁷	3 x 10 ⁻⁷				
Soil with 6% bentonite and 7% cement	3 x 10 ⁻⁷	1 x 10 ⁻⁷				
Cement with 5% bentonite	4 x 10 ⁻⁶	9 x 10 ⁻⁷				

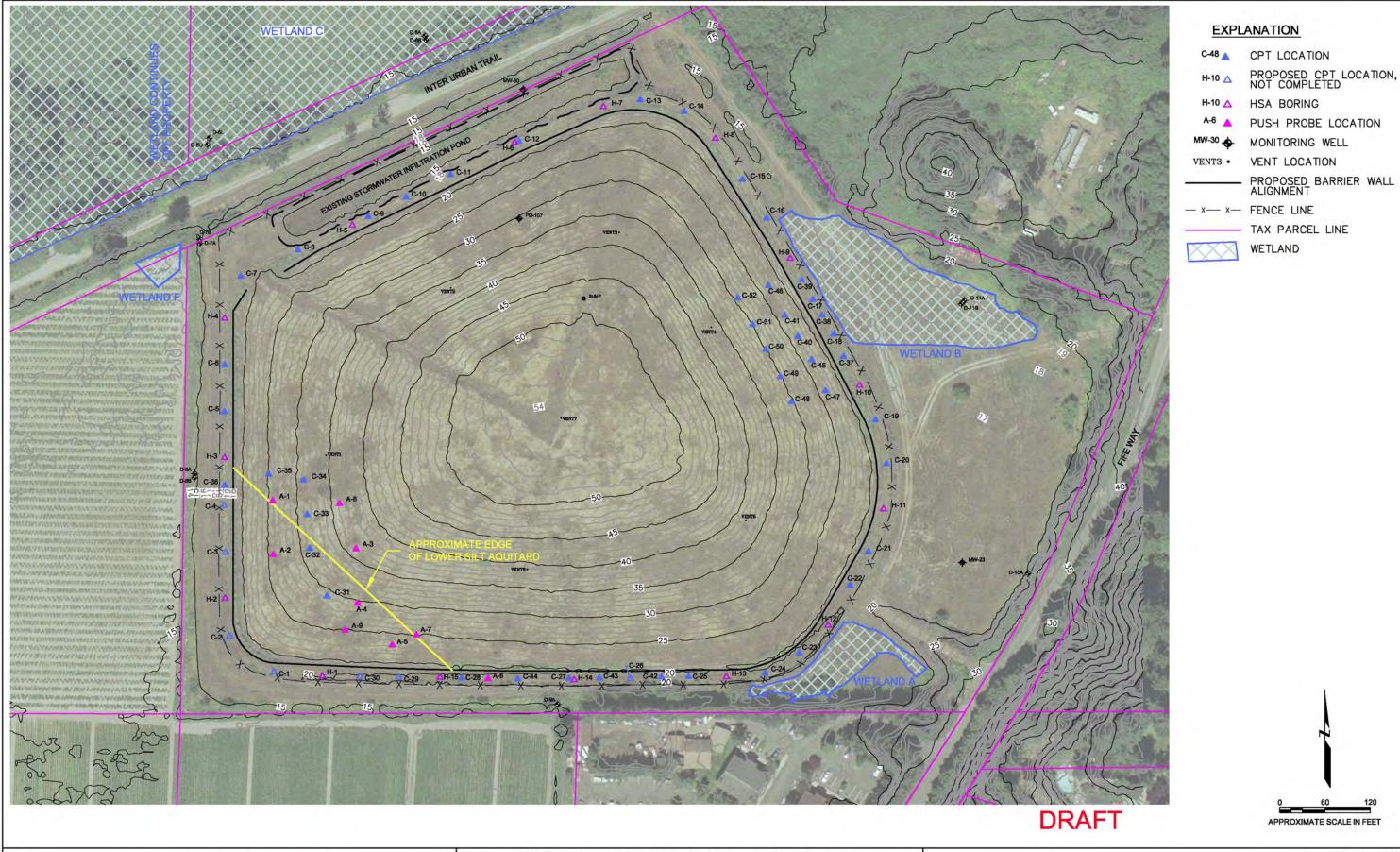

Table B.3
Groundwater Analytical Results for PD-107

Parameter	Analysis Method	PD-107-W-30' ¹	Units
Alkalinity	SM 2320B	648	mg/L
рН	SM 4500H	6.3	рН
Nitrate	SM 4500N03E	10.2	mg NO₃-N/L
Dissolved Organic Carbon (DOC) ²	SM 5310B	29.6	mg/L
Arsenic		2.7	mg/L
Calcium		107	mg/L
Iron	SW 6020	38	mg/L
Magnesium		75	mg/L
Sodium		29	mg/L
Chloride	SW 300.0	68	mg/L

Notes:

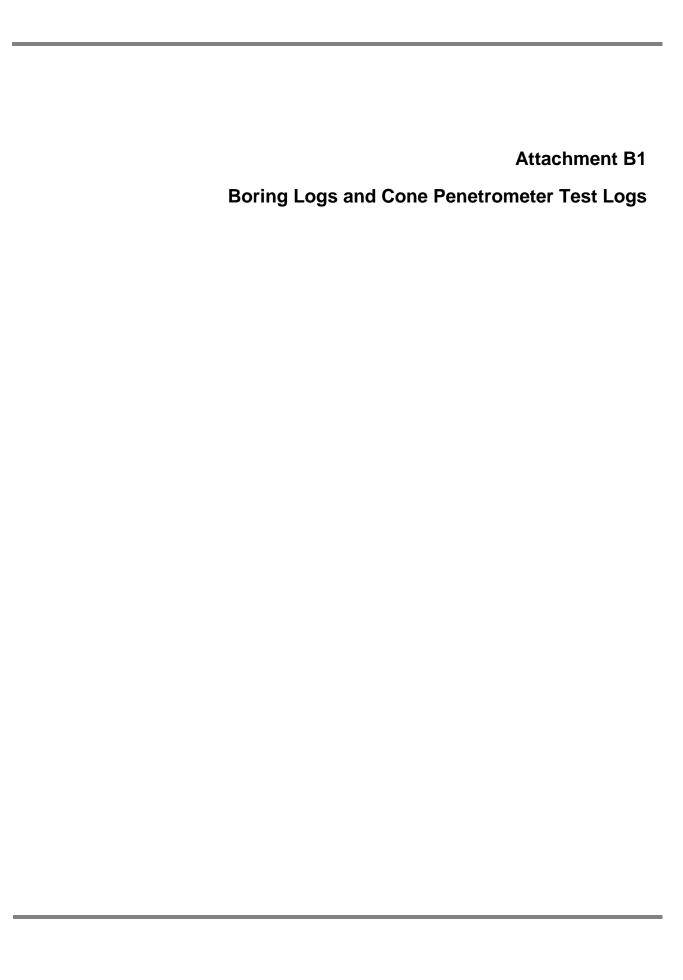
- 1 Groundwater sample collected on 8/29/2008 at 11:00:00 AM.
- 2 Analyzed for total organic carbon following field-filtration at 0.45 $\mu m.$

Figur	res



DWG NAME: 3/23/2009 12:06 PM DATE: S:\13488\004_Design\Vicinity_Lo

FLOYD | SNIDER AMEC Geomatrix


Geotechnical Investigation Memorandum B&L Woodwaste Property Pierce County, Washington

Site Vicinity Map

FLOYD | SNIDER AMEC Geomatrix

Geotechnical Investigation Memorandum B&L Woodwaste Property Pierce County, Washington Figure B.2
Geotechnical Exploration Locations

PROJECT: Geotechnical Inve B&L Landfill Milton, Washingto		Log of B	oring	No.	H-1	
BORING LOCATION:	D DATUM: NAVD88 DELOTE TINISHED:					
DRILLING CONTRACTOR: (DRILLING CONTRACTOR: Cascade Drilling, Inc. DATE STARTED: 8/12/2008					
DRILLING EQUIPMENT: (CME 75	TOTAL DEPTH (fee	et):		ING POINT: Fround surface	
DRILLING METHOD: 8	3-inch diameter hollow-stem auger	DEPTH TO FREE V 9.0 feet	VATER FIF	RST ENCO	UNTERED:	
SAMPLING METHOD:	SPT split spoon drive sampler [24" x 1.5"]	DEPTH TO FREE V	VATER AT	COMPLET	ΓΙΟΝ:	
HAMMER WEIGHT: 140 lb	HAMMER DROP: 30 in	LOGGED BY: N. Bacher				
SAMPLES SAMPLES	MATERIAL RECORDITION				DRY TESTS	
Cfeet) Sample No. Sample Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	Other	
13 Signature S	OORLY GRADED SAND (SP) edium dense, blackish gray with orange grains edium sand, moist	- - - - -	22		Sieve = SP (Poorly graded sand) Add water to control heave.	
Project No. 13488.130	AMEC Geomatri	v Inc			GT-1 (12/0	

PROJECT: Geotechnical Investigation Log of Boring No. H-1 cont. B&L Landfill Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Sample No. Sample Blows/ 6 inches Dry Density (pcf) Moisture MATERIAL DESCRIPTION Content (%) Other Thin peat seams to 31' WELL GRADED SAND (SW) Dense, blackish gray with orange grains, medium to coarse sand, wet, trace gravel, trace silt 50/6" Bottom of boring at 36.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout).

AMEC Geomatrix, Inc.

Project No. 13488.130

Figure

Cont.

B&L Landf Milton, Wa		Log of B		No. H	1-2	
BORING LOCATION:	ELEVATION AND D 19.49 ft NA	ON AND DATUM: 19.49 ft NAVD88				
DRILLING CONTRACT	DR: Cascade Drilling, Inc.	DATE STARTED: 8/12/2008	DATE STARTED:			
DRILLING EQUIPMENT	: CME 75	TOTAL DEPTH (fee	t):	MEASURING	2/2008 G POINT: und surface	
DRILLING METHOD:	8-inch diameter hollow-stem auger	DEPTH TO FREE W	/ATER FIF			
SAMPLING METHOD:	SPT split spoon drive sampler [24" x 1.5"]	9.0 feet DEPTH TO FREE V	/ATER AT	COMPLETIC	N:	
HAMMER WEIGHT: 1		LOGGED BY:				
CAMPLEC	17 time 1 30 ti	N. Bacher		_ABORATOR	Y TESTS	
Sample Sample Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	Other	
1 - 2 - 25 2 - 25 3 - 10 4 - 10 4 - 5 5 - 5 5 - 5 5 - 5 7 - 11 11 - 4 12 - 11 13 - 4 14 - 8 9 - 10 3 - 6 7 - 7 11 - 4 6 - 8 9 - 10 3 - 6 7 - 7 11	SANDY GRAVEL (GW) Dense, light brown, coarse subrounded gravel trace silt, dry GRAVELLY SAND (SW) Medium dense, olive gray, fine to coarse sand gravel, trace silt, dry to moist POORLY GRADED SAND TO SILTY SAND (S Loose, blackish gray with orange grains, fine to sand, trace to some silt, moist wet WOOD yellowish beige, fresh-looking, not treated, oxiowithin 1 minute POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, fine to sand, trace silt, moist; 1" wood layers intersper oxidizes with exposure	some SP-SM) o medium ATD dizes to gray o medium				
					GT-1 (

PROJECT: Geotechnical Investigation
B&L Landill

Log of Boring No. H-2 cont.

			Land on, Wa	itili ashingt	ton	Log of Boring	NO.	H-2 C	ont.	
ı	SA	MPL	ES					LABORA	TORY TES	TS
DEPTH (feet)	Sample No.	Sample	Blows/ 6 inches		MATERIAL DESCRIPT	TION	Moisture Conten (%)		С	ther
18 –		X	6 9			-				water to of heave.
19 -			10 10							
20 -			5 4			-				
21 -			4 6							
22 -	-		10	fir	SANDY SILT (ML) ne sand, some silt, wet; 1" wood layers xidizes with exposure	s interspersed; wood	_			
23 - -			12 7 9	L	OORLY GRADED SAND (SP) oose, blackish gray with orange grains	s, fine to medium	_			
24 -	_		12		and, trace silt, wet; 1" wood layers inte xidizes with exposure	rspersed; wood	_			
25 -			6 8	 ↓ n∈	o wood fragments					
26 - - 27 -			8 12							
- 28 –	-	X	9 14 15		POORLY GRADED SAND TO SILTY S. Medium dense, blackish gray, fine sand		_			
29 -	-		17		POORLY GRADED SAND (SP)		_			
30 -			12 13		Medium dense, blackish gray with orang nedium sand, trace silt, wet	ge grains, fine to				
31 -	-		13 15	14	WELL CDADED CAND (CM)		_			
32 -	_		18 21 25	D	VELL GRADED SAND (SW) Dense, blackish gray with orange and woarse sand, trace gravel, trace silt, wet		_			
33 - - 34 -	-		12 18	 ↓gı	ravel content varies					
35 -	-		25				-			
36 -	_	X	23 50/6"		ottom of boring at 36.0 feet. Borehole	backfilled with	-			
-	-			tr	remied bentonite baroid grout (Quick-G	Grout).	-			
-	- -					-				
					Ι					GT-2 (8/0
rojec	t No. 1	1348	8.130		AMEC	Geomatrix, Inc.			Figure	Cont.

	Milto	Landfill n, Was	hington	Log of	D	oring	J NO.	п-3		
						ELEVATION AND DATUM: 19.39 ft NAVD88				
DRILLING (CONTR	RACTO	R: Cascade Drilling, Inc.	OATE STARTED 8/12/200			DATE FIN	NISHED: 3/12/2008		
DRILLING E	QUIP	MENT:	CME 75 T	OTAL DEPTH		et):	MEASUR	ING POINT: Ground surface		
DRILLING N	ИЕТНО	DD:	8-inch diameter hollow-stem auger	DEPTH TO FRE 9.0 feet	ΕV	VATER FIF				
SAMPLING	METH	IOD:	SPT split spoon drive sampler [24" x 1.5"]	DEPTH TO FRE	ΕV	VATER AT	COMPLE	TION:		
HAMMER V	VEIGH	T: 140	0 lb HAMMER DROP: 30 in	OGGED BY: N. Bach	er					
ı S/	AMPLE			11. Duoi	01	l	LABORAT	ORY TESTS		
(feet)	Sample	Blows/ 6 inches	MATERIAL DESCRIPTION			Moisture Content (%)	Dry Density (pcf)	Other		
_			(FILL)		_					
1 -					-					
					-					
2 –					_					
3 -		18	WELL GRADED SAND (SW)		-					
-		20	Loose, light brown, fine to coarse sand		-					
4 –		13	SANDY GRAVEL (GW)		_					
5 -		12	Loose, grayish brown, fine gravel, some sand, trace s	ilt	_					
-	$\backslash / $	5			-					
6	X	6			_					
7 -		6			_					
-		3			-					
8 –		1			_					
9 -	Ш	5		ATD	-					
_		25 25	POORLY GRADED SAND (SP) Medium dense, blackish gray with orange grains, fine	to	-					
10 –		25	medium sand, trace silt, wet		_					
11 -		25			-					
-	$\backslash /$	7			-					
12 –	X	11			-					
13 -		13	fresh wood piece at 12.8'							
-	$\setminus \setminus$	8			-			۸ مام <u>-</u> د د		
14 –	X	14 14			_			Add water to control heave		
15 -		14								
-	M	7	fresh wood fragments at 15'		-					
16 –		10			_					
17 -		20			_	24		Sieve = SM (s sand)		
	VV		T			l		GT-1 (1		

PROJECT: Geotechnical Investigation Log of Boring No. H-3 cont. **B&L Landfill** Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Sample Blows/ 6 inches Dry Density (pcf) Moisture MATERIAL DESCRIPTION Content (%) Other WELL GRADED SAND (SW) Medium dense, blackish gray with orange grains, medium to coarse sand, trace gravel, wet trace wood shreds at 25' WELL GRADED SAND with GRAVEL (SW); fresh wood, yellowish beige in shoe; oxidizes to gray trace fresh wood SILT (ML) Soft to stiff, gray, low plasticity, trace to some sand Att. = ML; PI= 1% H-3-33-35 POORLY GRADED SAND (SP) Dense, blackish gray with orange grains, fine to medium

PROJECT: Geotechnical Investigation B&L Landfill Log of Boring No. H-3 cont. Milton, Washington SAMPLES LABORATORY TESTS DEPTH (feet) Sample Blows/ 6 inches Moisture Content (%) Dry Density (pcf) MATERIAL DESCRIPTION Other 8 12 40 20 20 41 Bottom of boring at 41.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout). GT-2 (8/01) AMEC Geomatrix, Inc. Figure Project No. 13488.130 Cont.

PROJECT: Geotechnica B&L Landfill Milton, Wash		Log of B	oring	y No.	H-4
BORING LOCATION:		ELEVATION AND D			
DRILLING CONTRACTOR	R: Cascade Drilling, Inc.	DATE STARTED: 8/13/2008		DATE FINI	SHED: 13/2008
DRILLING EQUIPMENT:	CME 75	TOTAL DEPTH (fee	et):	MEASURIN	
DRILLING METHOD:	8-inch diameter hollow-stem auger	DEPTH TO FREE V 9.0 feet	VATER FIF		
SAMPLING METHOD:	SPT split spoon [24" x 1.5"]; Shelby tube [30" x 2.875"]	DEPTH TO FREE V	VATER AT	COMPLETI	ON:
HAMMER WEIGHT: 140) lb HAMMER DROP: 30 in	LOGGED BY: N. Bacher			
_ SAMPLES			l	LABORATO	RY TESTS
Sample Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	Other
	(FILL)	_			
1 -		-			
-		-			
2-		-			
3 -	WELL GRADED SAND (SW)	-			
- \times 11	Medium dense, olive gray, fine to coarse sand, sor trace gravel (varies), dry	ne silt,			
4 - 7	trace graver (varies), dry	-			
5 - 6 4		_			
5		-			
6 - 5		_			
7 - 5		_			
$ \left \begin{array}{c} 1 \\ 3 \end{array} \right $		-			
8 1					
9 - 2	POORLY GRADED SAND (SP) Loose, gray, fine sand, trace silt, wet	ATD ∑			
- 3 7	, g.e.,, cance, aloos c,	-			
10 - 8		_			
11 - 9		_			
- 6 6		-			
12 - \ \ 7	4! most posket at 40.0!	-			
13 - 8	1" peat pocket at 12.3'	-			
5		-			
14 -		-			
15 - 13 -	-	-			
_ \/ ' ,	blackish gray	-			
16 - 8 10		-			
17 - 11 8		-			Add water to control heave
			I		GT-1 (1
Project No. 13488.130	AMEC Geomatrix,	Inc.			Figure

PROJECT: Geotechnical Investigation Log of Boring No. H-4 cont. B&L Landfill Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Blows/ 6 inches Sample No. Sample Dry Density MATERIAL DESCRIPTION Moisture Content (%) Other (pcf) 1" peat seam at 17.5' SILT (MH) Soft, dark gray silt, high plasticity; interbedded peat Att. = OH; Perm. = 7 x 10-8 cm/sec; Triax. = 1650 psf; PI = 52% H-4-25-27 S Ţ stiff SILTY SAND (SM) Medium dense, gray, fine sand, some silt, wet; trace peat fragments POORLY GRADED SAND (SP) Medium dense, blackish gray, fine to medium sand, trace silt, wet

PROJECT: Geotechnical Investigation B&L Landfill Log of Boring No. H-4 cont. Milton, Washington SAMPLES LABORATORY TESTS DEPTH (feet) Sample Blows/ 6 inches Moisture Content (%) Dry Density (pcf) MATERIAL DESCRIPTION Other 8 9 40 WELL GRADED SAND (SW) 16 Medium dense, blackish gray, fine to coarse sand, trace 26 41 Bottom of boring at 41.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout). GT-2 (8/01) AMEC Geomatrix, Inc. Figure Project No. 13488.130 Cont.

DRILLING CONTRACTOR: Cascade Drilling, Inc. DATE STANTED:	PROJECT: Geotechnica B&L Landfil Milton, Was		Log of B	oring	J No.	H-5	
SPILLING CONTROL OF Sescrete brilling in: Sescrete brilling in: SPI 3/2008	BORING LOCATION:			:			
SAMPLING METHOD: Substitution	DRILLING CONTRACTO	R: Cascade Drilling, Inc.					
DEPTH TO FREE WATER FIRST ENCOUNTERED: 13.0 feet 13.0 feet 15.0	DRILLING EQUIPMENT:	CME 75		et):		RING POINT:	
HAMMER WEIGHT: 140 lb HAMMER DROP: 30 in LABORATORY TESTS SAMPLES SAMPLES LABORATORY TESTS LABORATO	DRILLING METHOD:	8-inch diameter hollow-stem auger		VATER FIF	RST ENCO	UNTERED:	
SANDY TOPSOIL SANDY TOPSOIL SULTY SAND (SM) Loose, olive gray, fine to coarse sand, moist Silt (ML) Soft, gray slit, trace fine sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sand, wet, trace peat fragments Silt (ML) Soft, gray slit, some sa	SAMPLING METHOD:	SPT split spoon drive sampler [24" x 1.5"]	EPTH TO FREE V	VATER AT	COMPLE	TION:	
Material Description	HAMMER WEIGHT: 14	D Ib HAMMER DROP: 30 in					
(FILL) (FILL)		· · · · · · · · · · · · · · · · · · ·		l	LABORAT	ORY TESTS	
1 - 2 - 3 - 7 SANDY TOPSOIL. 5 - 6 - 7	(feet) Sample No. Sample Blows/ 6 inches			Content	Density	Other	
	2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 11- 12- 11- 11- 12- 11- 13- 14- 15- 16- 17- 16- 3 4 5 6 3 4 5 6 3 4 5 6 6 3 4 5 6 6 7 6 6 6 7 6 6 6 7 6 6 7 6 7 6 7 6	SANDY TOPSOIL SILTY SAND (SM) Loose, olive gray, fine to coarse sand, moist SILT (ML) Soft, gray silt, trace fine sand, wet, trace peat fragment SILT (ML) Soft, gray silt, some sand, wet, trace peat fragments	- - -	31		Sieve = ML (silt)	
	Project No. 13488.130	AMEC Geomatrix, Inc.		1	<u> </u>	GT-1 (12/0	

PROJECT: Geotechnical Investigation
B&L Landfill

Log of Boring No. H-5 cont.

	B&L Landf Milton, Wa		Log of Boring	No. ł	1-5 CC	ont.
I 	MPLES				LABORATO	DRY TESTS
(feet) Sample No.	Sample Blows/ 6 inches	MATERIAL DESCRIPT	TION	Moisture Content (%)	Dry Density (pcf)	Other
18 -	7 7 7 3	fresh wood piece (yellowish beige) at 18	3.5'			
20 -	5 6 12 2 2	dark brown bark chunk at 20' fresh wood piece at 20.5'	-	_ - -		Add water to control heave.
2392-62-9-H	4 5 3 4 5	SILT (MH) Soft, gray, medium plasticity silt, some s Peat lense at 22.8' peat lense at 23.5'	sand	_ - 56		Att. = MH; Sieve = MH (silt with sand); PI = 11%
25 -	5 1 1			- - -		
26 – - 27 –	2 3	PEAT (PT) Reddish dark brown, trace organic odor	- -			
28 –	3 5 6	SILT (ML) Firm, gray silt, trace sand, low plasticity peat fragments		_		
29 -	7 5 9 10		-	- - -		
31 -	11 3 5 8 10		-	_		
33 -	7 8 10	SILTY SAND (SM) Medium dense, gray, fine sand, some s _ fresh wood lense at 34.5'	ilt, wet	-		
35 - - 36 - -	11 3 4 5	POORLY GRADED SAND (SP) Loose, gray, fine sand, trace silt, wet bark at 35.5'		-		
37 - 38 - 30	7 4 5 6 7	POORLY GRADED SAND (SP) Loose, blackish gray, fine to medium sa	and, trace silt, wet	- - -		
39 —	1			_1		GT-2 (8/01)
Project No. 13	3488.130	AMEC	Geomatrix, Inc.			Figure Cont.

PROJECT: Geotechnical Investigation B&L Landfill Log of Boring No. H-5 cont. Milton, Washington SAMPLES LABORATORY TESTS DEPTH (feet) Sample No. Sample Blows/ 6 inches Moisture Content (%) Dry Density (pcf) MATERIAL DESCRIPTION Other bark lense at 38.7'; fresh wood in shoe 6 9 40 20 23 41 8 9 42 WELL GRADED SAND (SW) 11 Loose, blackish gray, fine to coarse sand, trace gravel, wet 15 43 Bottom of boring at 43.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout). GT-2 (8/01) AMEC Geomatrix, Inc.

Figure

Cont.

Project No. 13488.130

PROJECT: Geotechnic B&L Landfil Milton, Was		Log of B	oring	No.	H-6		
BORING LOCATION:	ELEVATION AND I						
DRILLING CONTRACTOR: Cascade Drilling Inc. DATE STARTED: DATE FI					NISHED: 8/13/2008		
DRILLING EQUIPMENT:	DRILLING FOLIPMENT: CMF 75 TOTAL DEPTH (feet): MEASUF						
DRILLING METHOD:	8-inch diameter hollow-stem auger	DEPTH TO FREE \	VATER FIF		Ground surface DUNTERED:		
SAMPLING METHOD:	SPT split spoon [24" x 1.5"]; Shelby tube [30" x 2.875"]	DEPTH TO FREE \	VATER AT	COMPLE	TION:		
HAMMER WEIGHT: 14	0 lb HAMMER DROP: 30 in	LOGGED BY: N. Bacher					
± SAMPLES		!		LABORAT	RATORY TESTS		
Sample No. Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	Other		
1 - 2 - 8 8 11 13 13 5 - 14 9 4 6 6 6 7 7 8 7 5 8 4 9 - 10 - 7 11 - 11 - 12 - 13 11 12 - 14 11 - 15 - 15 - 15 - 17 - 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	WELL GRADED SAND (SW) Medium dense, light brown, fine to coarse sand, so moist NON-PLASTIC SILT (ML) Soft gray silt, some sand, wet, trace bark fragments POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, fine sand,	ATD \(\sum_{\text{-}} \)	34		Add water to control heave. Att. = ML; Triax. 8300 psf; PI = N		
			1	·	GT-1 (12/0		

PROJECT: Geotechnical Investigation Log of Boring No. H-6 cont. B&L Landfill Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Blows/ 6 inches Sample No. Sample Dry Density (pcf) Moisture MATERIAL DESCRIPTION Content (%) Other SILT (ML) Soft, olive gray silt, medium plasticity Peat lense (1") at 22.3' Peat lense (1") at 22.7' H-6-23-25 S SILT (ML) Soft, olive gray to dark brown, low plasticity, mixed with peat, minor organic odor Sieve = ML (silt) H-6-31-33 [⊒]-fresh wood fresh wood POORLY GRADED SAND (SP) Loose, gray to blackish gray with orange grains, fine sand, trace silt, wet

AMEC Geomatrix, Inc.

Project No. 13488.130

GT-2 (8/01)

Cont.

Figure

PROJECT: Geotechnical Investigation B&L Landfill Log of Boring No. H-6 cont. Milton, Washington SAMPLES LABORATORY TESTS DEPTH (feet) Sample No. Sample Blows/ 6 inches Moisture Content (%) Dry Density (pcf) MATERIAL DESCRIPTION Other 18 40 21 small silt pockets at 40.1' 25 41 Bottom of boring at 41.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout). GT-2 (8/01) AMEC Geomatrix, Inc. Figure Project No. 13488.130 Cont.

	. Landfi	al Investigation	Log of	Bo	oring	J No.	H-7	
BORING LOCAT	ION:	El	ELEVATION AND DATUM: 19.13 ft NAVD88					
DRILLING CONT	RACTO	DR: Cascade Drilling, Inc.	DATE STARTED: DATE F			DATE FIN		
DRILLING EQUIF	PMENT	: CME 75	TOTAL DEPTH (feet): MEASUR			MEASUR	8/14/2008 RING POINT:	
DRILLING METH	OD:	8-inch diameter hollow-stem auger	41 EPTH TO FREI 11.0 fee	E WA	ATER FIF		Ground surface UNTERED:	
SAMPLING MET	HOD:	-	EPTH TO FRE		ATER AT	COMPLET	ΓΙΟΝ:	
HAMMER WEIG	HT: 14	10	DGGED BY: N. Bache	or				
_ SAMPL			IV. Dacin		ı	LABORATO	DRY TESTS	
Sample Sample Sample Sample	Blows/ 6 inches	MATERIAL DESCRIPTION			Moisture Content (%)	Dry Density (pcf)	Other	
	9	(FILL)						
1 -								
-								
2-				+				
3 -								
J	7	WELL GRADED SAND (SW) Medium dense, light brown, fine to coarse sand, some						
4 -	9	gravel, some silt		-				
	10			-				
5	3							
6 \	6							
-	8	- SILTY SAND (SM)		-				
7	8	Loose, gray, fine to coarse sand, some silt, moist		-				
8	4							
	4							
9 -	10	Ţ medium dense		-				
	6	V mediam dense		-				
10	10							
11 -	11	POORLY GRADED SAND (SP) Medium dense, gray to blackish gray with orange grain	ATD ∑					
-	5 8	fine sand, trace silt, wet	,					
12	10							
13	11							
	6							
14 -	8 10							
1-	12			-				
15	3							
16	5							
17 -	8 9 9			-	26		Sieve = SM (s sand) Add water to	
							GT-1 (1	
Project No. 1348	3.130	AMEC Geomatrix, Inc.					Figure	

PROJECT: Geotechnical Investigation B&L Landfill Milton, Washington

Log of Boring No. H-7 cont.

		Milto	n, Wa	ashington LOG OI I	Dorning i	10. 1	1-7 66	<i>/</i> 111.	
Ţ	SAI	MPLE				I	LABORATO	DRY TES	TS
DEPTH (feet)	Sample No.	Sample	Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)		Other
18 –	H-7-17-19	M	12					contro	ol heave.
_	H-7-1	\square	14 16		-	_			
19 -		\square	6		-				
20 -		V	10		-				
_		/	12 12		-				
21 -		\square	3		-				
22		V	5	HIGH PLASTICITY SILT (OH)					
-		//	8 12	Soft, olive gray, high plasticity silt; interbedded peat and	-			Att. =	OH; PI = 32%
23 -	3-25'	\square	1	wood lenses	-	91		3	32%
24 –	H-7-23-25'	X	1 2		_				
-		\square	3		-				
25 -		M	5	DEAT (DT)					
26 –		\square	7 8	PEAT (PT) Soft, dark brown, slight organic odor	_	1			
27 -			9	SILT (ML) Soft, gray	-				
-		M	2	Soit, gray	-	_			
28 –		\triangle	4	□─dark brown peat	-				
29 -			5 6	SANDY SILT (ML)					
		V	7	Loose, gray, fine sand, wet	-				
30 -		\triangle	8						
31 -		H	9	SILTY SAND (SM) Loose, gray, fine sand, wet		_			
32 -		X	4	Loose, gray, line sand, wet	-	_			
32 -		\square	8		-	-			
33 -		\forall	9 5	POORLY GRADED SAND (SP) Medium dense, gray to blackish gray with orange grains		-			
34 –		X	8	fine to medium sand, trace silt, wet	-, -	1			
-		\square	9 10		-	-			
35 -		\forall	9		-	†			
36 –		X	10		-	1			
-		\square	12 13		-	-			
37 -		\forall	10		-				
38 -		X	18	□ silt lense	-				
_		\vdash	28 30		-	-			
39 [⊥]						1	I		GT-2 (8/01)
Project	No. 1	3488	3.130	AMEC Geomatrix, Inc.				Figure	Cont.

PROJECT: Geotechnical Investigation B&L Landfill Log of Boring No. H-7 cont. Milton, Washington SAMPLES LABORATORY TESTS DEPTH (feet) Sample Blows/ 6 inches Moisture Content (%) Dry Density (pcf) MATERIAL DESCRIPTION Other 5 9 40 11 18 41 Bottom of boring at 41.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout). GT-2 (8/01) AMEC Geomatrix, Inc. Figure Project No. 13488.130 Cont.

BORING LOCATIO DRILLING CONTRA DRILLING EQUIPM	N:					
			ELEVATION AN 18.95 ft	DATUM: NAVD88		
DRILLING EQUIPM	ACTOR: Cascade Drilling	, Inc.	DATE STARTED 8/14/200	:	DATE FINIS	SHED: 4/2008
	MENT: CME 75		TOTAL DEPTH		MEASURIN	
DRILLING METHO	D: 8-inch diameter	nollow-stem auger	DEPTH TO FRE	E WATER F		
SAMPLING METHO	OD: SPT split spoon	[24" x 1.5"]; Shelby tube [30" x 2.875"]	DEPTH TO FRE	E WATER A	T COMPLETION	ON:
HAMMER WEIGHT	Γ: 140 lb	HAMMER DROP: 30 in	LOGGED BY: N. Bach	or		
± SAMPLES			N. Buon	51	LABORATOR	RY TESTS
Sample No. Sample Sampl	Blows/ 6 inches	MATERIAL DESCRIPTION		Moistur Conten (%)		Other
	(FILL)					
1 -				_		
-				-		
2						
3 -		ED SAND (SW)		_		
- X I	Dense, yellow	ish brown, fine to coarse sand, s	some silt,	_		
4 —	trace gravel, r	noist				
5 → ├	32					
	23 piece of ballas 24 medium dens	st on top of sample		-		
6 → ├	15 Triculati della	o, gray		-		
7	12					
.	3 4 SANDY SILT	(MI)		_		
8	Soft, dark brow	wn silt, minor roots/grass, loose,	gray, some	_		
9 -	fine sand, moi	Sī	ATD ∑			
	4		_	_		
10	5			-		
11 -	1			-		
	5					
12 -	2 4			_		
12	10			-		
13	1 CH TY CAND	(CNA)				
14 -	SILTY SAND Loose, gray, s	(SM) ilty fine sand, wet		_		
	8			-		
15	1					
16 –	5 POORLY GRA	ADED SAND with SILT (SP-SM)	a manadia see			
17	Loose, blackis wet medium dens	sh gray with orange grains, fine t	o medium,			
	, inequality					GT-1 (1

PROJECT: Geotechnical Investigation Log of Boring No. H-8 cont. B&L Landfill Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Blows/ 6 inches Sample No. Dry Density Sample MATERIAL DESCRIPTION Moisture Content (%) Other (pcf) 8 18 10 12 19 SILT with SAND (ML) 2 20 Soft, olive gray, high plasticity silt, some sand 3 dark brown peat lense Att. = OH; Triax. = 1350 psf; PI = 54% 4 dark brown peat lense 21 H-8-21-23 S 22 HIGH PLASTICITY SILT (OH) Sieve = ML (silt 73 with sand) 23 3 5 .23-25' PEAT with SAND (PT) 24 5 dark brown 5 25 1 2 26 SILT (ML) 2 soft, gray silt 3 27 2 1 dark brown peat lense 28 1 dark brown peat lense 4 29 0 2 30 4 4 31 POORLY GRADED SAND (SP) 7 Medium dense, blackish gray with orange grains, fine to 8 medium sand, some silt, wet 32 10 12 33 5 10 34 5 12 35 Bottom of boring at 35.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout).

AMEC Geomatrix, Inc.

Project No. 13488.130

Figure

Cont.

Milton, Wa	shington	Log of E			
BORING LOCATION:		19.29 ft N. DATE STARTED:		DATE FIN	IICHED:
DRILLING CONTRACT	DR: Cascade Drilling, Inc.	8/14/2008		8	/14/2008
DRILLING EQUIPMENT	: CME 75	TOTAL DEPTH (fee	et):		ING POINT: Fround surface
DRILLING METHOD:	8-inch diameter hollow-stem auger	DEPTH TO FREE \ 9.0 feet	VATER FIF	RST ENCO	UNTERED:
SAMPLING METHOD:	SPT split spoon drive sampler [24" x 1.5"]	DEPTH TO FREE \	VATER AT	COMPLE	ΓΙΟΝ:
HAMMER WEIGHT: 1	40 lb HAMMER DROP: 30 in	LOGGED BY: N. Bacher			
_I SAMPLES		111 246.161		LABORATO	ORY TESTS
Sample Sample Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	Other
	(FILL)				
1 -		-	-		
-		-			
2-		-	_		
-		-	-		
3 - 20	WELL GRADED SAND (SW)		-		
4 - 28	gray, fine to coarse sand, some gravel, some sil	It, moist			
_ / 18		-			
5 - 12		-			
5 8		-	_		
6 - 8		-			
5 5	SILT AND SAND (SM) Soft, gray, moist silt and sand	-	-		Sieve = SM (
7 - 6 1	, 6 3,		23		and sand)
8 - 1		_			
$ \begin{vmatrix} 1\\1 \end{vmatrix}$		_ -			
9 - 0		ATD 💆 📗			
- \/ ₁		-	-		
10 -		-			
11 - 6	POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, fine sa	nd trace			
] 3	silt, wet	ind, trace	-		
12 -		-			
-	1/8" peat lense	-	-		
13 - 0	—noat longo	-	-		
14 - 2	peat lense peat lense	_ -			
_ /\ 1	SILT (MH)	-	-		
15 - 4	olive gray, medium to high plasticity WOOD ()		-		
2 2	yellowish beige, fresh, small chips, oxidizes gray	y -			
16 - 2	PEAT (PT)				
17 - 2	dark brown, slight organic odor	-			
'' \ \ 4		1	1		

PROJECT: Geotechnical Investigation Log of Boring No. H-9 cont. B&L Landfill Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Blows/ 6 inches Sample No. Dry Density Sample Moisture MATERIAL DESCRIPTION Content (%) Other (pcf) WELL GRADED SAND (SW) 12 18 Medium dense, gray, fine to coarse sand, some gravel, 13 some silt, wet 14 19 8 11 20 12 POORLY GRADED SAND (SP) 16 21 multicolored, medium sand, wet 11 14 22 WELL GRADED SAND (SW) 17 Dense, orange brown, fine to coarse sand, some gravel, 18 some silt, wet 23 15 WELL GRADED SAND (SW) 23 Dense, orange brown, fine to coarse sand, trace gravel, 24 trace silt, wet 24 28 25 7 11 26 SILTY SAND (SM) 12 Medium dense, olive brown with orange oxidation mottling 14 and metallic flakes, fine sand, some silt, wet 27 7 8 28 12 14 29 6 12 30 14 14 31 Bottom of boring at 31.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout).

B&L Landfill Milton, Wash	ington	Log of B		No.	H-10
BORING LOCATION:		ELEVATION AND I			
DRILLING CONTRACTOR	R: Cascade Drilling, Inc.	DATE STARTED: 8/15/2008		DATE FIN	NSHED: /15/2008
DRILLING EQUIPMENT:	CME 75	TOTAL DEPTH (fee	et):		ING POINT: Fround surface
DRILLING METHOD:	8-inch diameter hollow-stem auger	DEPTH TO FREE \	VATER FIF	RST ENCO	UNTERED:
SAMPLING METHOD:	SPT split spoon [24" x 1.5"]; Shelby tube [30" x 2.875"]	DEPTH TO FREE \	VATER AT	COMPLE	TION:
HAMMER WEIGHT: 140	lb HAMMER DROP: 30 in	LOGGED BY: N. Bacher			
_ SAMPLES	<u> </u>	111 2001101		LABORATO	ORY TESTS
DEPTH (feet) Sample No. Sample Blows/ G inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	Other
	(FILL)				
1 -		-			
-		-			
2					
3	GRAVEL AND COBBLE	<u>ATD</u>			Very cobbly wh
	GRAVEL AND COBBLE	-			drilling; water coming into ho at 3.'
4 - 3		-			
5 - 15		-			
-		-			
6-		-			
7		-			
		-			
8-	WELL GRADED SAND (SW)				
9	Loose, gray, fine to coarse sand, some gravel, som wet	ne silt,			
3 3		-			
10 - 2		_			
11 - 3		-			
12 - 1 2	Soft, gray, none to low plasticity silt, trace sand, mil	nor peat			
13 - 1	fragments throughout	-	42		Sieve = ML (si with sand)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-	72		with Sand)
14 - \frac{\display}{\pm} \ \frac{1}{2} \ \rightarrow	fresh wood chunk	-			
15 - 2		-			
		-			
16 - 17-17-19-19-19-19-19-19-19-19-19-19-19-19-19-		-			
17 - \(\frac{\frac{1}{2}}{\sqrt{3}} \)	peat lense	-			
1 1/1 3 1					GT-1 (12/

PROJECT: Geotechnical Investigation B&L Landfill Milton, Washington

Log of Boring No. H-10 cont.

Milton, Wa		n borning is	Ю. Г	1-10 C	OIIL.	
_ SAMPLES			L	ABORATO	RY TEST	rs
Sample No. Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	0	ther
18 - 5 8	PEAT (PT) Soft, dark brown					
19 - 10 6	POORLY GRADED SAND (SP) Loose, gray, fine to medium sand, trace silt, wet					
20 - 5 6	CII T (MLI): alive grav modium to high placticity tra					
21 - 6 9	SILT (MH): olive gray, medium to high plasticity, tra fragments, medium dense, white and orange sand opening POORLY GRADED SAND (SP)	grains				
22 - 12 9 11	Loose, gray, fine to medium sand, trace silt, wet	-				
23 - 7 12		-				
24 –	4 • • • • • • • • • • • • • • • • • • •					
25 - 3 6	POSSIBLE NON-PLASTIC SILT					
26 - 7 8						
27 - 3 8 8	POORLY GRADED SAND (SP) Loose, gray, fine to medium sand, trace silt, wet					
29 30		-				
30 -		-				
31 - 18 20	Bottom of boring at 31.0 feet. Borehole backfilled w	ith -				
-	tremied bentonite baroid grout (Quick-Grout).					
-						
-						
_						
-						
-		-				
						GT-2 (8/0
Project No. 13488.130	AMEC Geomatrix, In	с.			Figure	Cont.

B&L Landfil Milton, Was		Log of E	Boring	y No.	H-11
BORING LOCATION:		ELEVATION AND 19.93 ft N			
DRILLING CONTRACTO	DR: Cascade Drilling, Inc.	DATE STARTED: 8/15/2008	1	DATE FIN	NISHED: /15/2008
DRILLING EQUIPMENT	CME 75	TOTAL DEPTH (fe	et):		ING POINT: Ground surface
DRILLING METHOD:	8-inch diameter hollow-stem auger	DEPTH TO FREE 9.0 feet	WATER FIF	RST ENCO	UNTERED:
SAMPLING METHOD:	SPT split spoon [24" x 1.5"]; Shelby tube [30" x 2.875"]	DEPTH TO FREE	WATER AT	COMPLET	TION:
HAMMER WEIGHT: 14	0 lb HAMMER DROP: 30 in	LOGGED BY: N. Bacher			
_ SAMPLES				LABORATO	ORY TESTS
Sample No. Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	Other
1 - 2 - 3 - 9 13 14 5 - 9 13 14 5 - 16 - 17 - 17 - 18 6 5 16 - 17 - 17 - 17 - 18 6 17 - 17 - 17 - 18 6 17 - 17 - 18 6 17 - 17 - 18 6 17 - 17 - 18 6 17 - 17 - 18 6 17 - 17 - 18 6 17 - 17 - 18 6 17 - 17 - 18 6 17 - 18 6 18 6 18 6 18 6 18 6 18 6 18 6 18	SANDY GRAVEL (GW) Medium dense, orange brown, fine and coarse grave some sand WELL GRADED SAND (SW) Medium dense, brown, fine to coarse sand, some grasome silt, moist gray POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, fine to medisand, trace silt, wet SILT with SAND (ML) Soft, gray, non-plastic to low plasticity		27		Sieve = SP-SM (poorly graded sand with silt) Add water to control heave.
	AMEC Geomatrix, Inc				GT-1 (12/

PROJECT: Geotechnical Investigation Log of Boring No. H-11 cont. B&L Landfill Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Blows/ 6 inches Sample No. Sample Dry Density Moisture MATERIAL DESCRIPTION Content (%) Other (pcf) 3 18 1 3 19 1 2 20 3 4 21 1 SILT (ML) 2 22 Soft, gray, low plasticity to medium plasticity 3 Att. = ML; Perm. = 4 x 10-6 cm/sec; Triax. = 2800 psf; PI = 7 3 23 H-11-23-25 24 S 25 2 2 26 2 PEAT (PT) 2 27 Soft, dark brown to black 1 SILT (ML) 2 28 4 SILT (ML) 6 29 0 30 3 4 31 1 3 32 5 -SILT 6 Sieve = ML (silt with sand) NON-PLASTIC SILT (ML) 33 34 5 Firm blackish gray silt, some orange fine sand, wet 7 34 8 9 35 5 7 36 8 9 37 Bottom of boring at 37.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout). GT-2 (8/01) AMEC Geomatrix, Inc. Figure Project No. 13488.130 Cont.

DRILLING METHOD: 8-inch diameter hollow-siem auger DEPTH TO FREE WATER FIRST ENCOUNTER 16.0 feet 1	PROJECT: Geotechnic B&L Landf Milton, Wa	fill	Log of E	Boring	y No.	H-12
DRILLING EQUIPMENT: CME 75 DRILLING EQUIPMENT: CME 75 DRILLING METHOD: 8-inch diameter hollow-stem auger DEPTH TO FREE WATER FIRST ENCOUNTER 16.0 feet SAMPLING METHOD: SPT split spoon drive sampler [18" x 1.5" and 24" x 1.5"] DEPTH TO FREE WATER FIRST ENCOUNTER 16.0 feet SAMPLING METHOD: SPT split spoon drive sampler [18" x 1.5" and 24" x 1.5"] DEPTH TO FREE WATER FIRST ENCOUNTER 16.0 feet	BORING LOCATION:					
DRILLING EQUIPMENT: CME 75 DRILLING METHOD: 8-inch diameter hollow-stem auger DRILLING METHOD: 8-inch diameter hollow-stem auger DRILLING METHOD: SPT split spoon drive sampler [18" x 1.5" and 24" x 1.5"] DEPTH TO FREE WATER FIRST ENCOUNTER SAMPLING METHOD: SPT split spoon drive sampler [18" x 1.5" and 24" x 1.5"] DEPTH TO FREE WATER AT COMPLETION: DEPTH TO FREE WATER AT COMPLETION: LOGGED BY: N. Bacher LABORATORY TE Moisture Content Content Dry Content Co	DRILLING CONTRACTO	OR: Cascade Drilling, Inc.	DATE STARTED:			
DRILLING METHOD: 8-inch diameter hollow-stem auger SAMPLING METHOD: SPT split spoon drive sampler [18" x 1.5" and 24" x 1.5"] DEPTH TO FREE WATER AT COMPLETION: HAMMER WEIGHT: 140 lb HAMMER DROP: 30 in LOGGED BY: N. Bacher LABORATORY TE Moisture Original Content Conten	DRILLING EQUIPMENT	T: CME 75	TOTAL DEPTH (fee	et):	MEASUR	
SAMPLING METHOD: SPT split spend with the sampler [18" x 1.5" and 24" x 1.5"] DEPTH TO FREE WATER AT COMPLETION:	DRILLING METHOD:	8-inch diameter hollow-stem auger	DEPTH TO FREE \	WATER FIF		
Note	SAMPLING METHOD:	SPT split spoon drive sampler [18" x 1.5" and 24" x 1.5"]		WATER AT	COMPLE	TION:
SAMPLES Subject Subj	HAMMER WEIGHT: 14	HAMMER DROP: 30 in				
1			14. Daoriei	ı	LABORAT	ORY TESTS
Sandy Silt (ML) Silve sand	DEPT (feet) Sample No. Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Content	Density	Other
	2- 3- 3- 4- 5- 6- 7- 8- 10- 11- 12- 13- 14- 15- 16- 17- 16- 17- 17- 17- 17- 17- 18- 18- 19- 19- 19- 19- 19- 19- 19- 19- 19- 19	SANDY SILT (ML) Firm, gray silt, some fine sand, non-plastic slightly wet				Sieve = SM (silty sand with gravel)
Project No. 13488.130 AMEC Geomatrix, Inc. Figure	Droinet No. 40400 400	AMPOOL	Inc			GT-1 (12/0 Figure

PROJECT: Geotechnical Investigation Log of Boring No. H-12 cont. B&L Landfill Milton, Washington **SAMPLES** LABORATORY TESTS DEPTH (feet) Sample Blows/ 6 inches Dry Density (pcf) Moisture MATERIAL DESCRIPTION Content (%) Other 5 18 8 8 19 3 4 20 □─SILT (ML) 5 5 21 PEAT (PT) 0 Soft, dark brown to reddish brown, wood shreds, slight 1 organic odor 22 3 4 23 0 3 24 13 POORLY GRADED SAND (SP) 16 25 Medium dense, blackish gray with orange grains, fine to 3 medium sand, trace silt, wet 5 26 7 12 27 7 9 28 Ţ dense 16 21 29 7 10 30 12 16 31 Bottom of boring at 31.0 feet. Borehole backfilled with tremied bentonite baroid grout (Quick-Grout).

DRILLING CONTRACTOR: Cascade Drilling, Inc. DATE STARTED: DATE STARTED: DATE FINISHED. DATE	PROJECT: Geotechnical Invest B&L Landfill Milton, Washington	gation	Log of I	3oring	y No.	H-13
### DRILLING CONTENT: CASCADE DISTRICT. STATE Content Conte	BORING LOCATION:					
DRILLING METHOD: 8 inch diameter hollow stem auger DRILLING METHOD: 8 inch diameter hollow stem auger DEPTH TO FREE WATER FIRST ENCOUNTERED: 12 feet 12 fe	DRILLING CONTRACTOR: Cas	cade Drilling, Inc.		3		
DEPITH OF REE WATER FIRST ENCOUNTERED: 20 Pile 10 Pile SamPLING METHOD: SAMPLING METHOD: SPT spit spoon of the sampler [24" x 1.5"] DEPITH TO FREE WATER AT COMPLETION: LABORATORY TESTS MATERIAL DESCRIPTION Moisture Orders of the subangular gravel, trace silt, moist Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine to coarse sand, some sand, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD ALL SCRIPTION ALL SCRIPTION ALL SCRIPTION ALL SCRIPTION ALL SCRIPTION ALABORATORY TESTS LABORATORY TESTS LABORATORY TESTS LABORATORY TESTS LABORATORY TESTS ALBORATORY TESTS Depict of the subangular gravel, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trace silt, moist to slightly wet sample grains, medium sand, trac	DRILLING EQUIPMENT: CM	E 75	TOTAL DEPTH (fo		MEASUR	ING POINT:
SAMPLING METHOD: SPT spit spoon brive Sampler [24" x 1.5"] DEPTH TO FREE WATER AT COMPLETION:	DRILLING METHOD: 8-in	ch diameter hollow-stem auger	DEPTH TO FREE	WATER FIF		
SAMPLES SAMPLES ALBORATORY TESTS ALBORATORY	SAMPLING METHOD: SP	Split spoon drive sampler [24" x 1.5"]		WATER AT	COMPLET	ΓΙΟΝ:
ABORATORY TESTS Maisture Dry Content Dry Dense, gray, fine to coarse sand, some gravel, trace silt, moist POORLY GRADED SAND (SP) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Dense, gray, fine sand, some silt, moist Dry Dense, gray, fine sand, some silt, moist Dry Dense, gray, fine subangular gravel, some sand, moist Dry Dense, gray, fine sand, some silt, moist Dry Dense, gray, fine subangular gravel, some sand, moist Dry Dense, gray, fine subangular gravel, some sand, moist Dry Dense, gray, fine subangular gravel, some sand, moist Dry Dense, gray, fine subangular gravel, some sand, moist Dry Dense, gray, fine subangular gravel, some sand, moist Dry Dense, gray, fine sand, some silt, moist Dry Dense, gray, fine sand, some sand, moist Dry Dense, gray, fine sand, some sand, moist Dry Dense, gray, fine sand, some s	HAMMER WEIGHT: 140 lb	HAMMER DROP: 30 in		r		
WELL GRADED SAND (SW) Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist FOORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist FOORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet SANDY SILT (MS) Silt (GH) Soft to firm silt, some sand, wet ATD Att = OH. PI 32%	_			T	LABORATO	DRY TESTS
WELL GRADED SAND (SW) Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet SIEVE = ML (sandy silt) SILT (OH) Soft to firm silt, some sand, wet	(feet) Sample No. Sample Blows/ 6 inches	MATERIAL DESCRIPTION		Content	Density	Other
WELL GRADED SAND (SW) Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet SIEVE = MIL (sandy silt) SIEVE = MIL (sandy silt) SIEVE = MIL (sandy silt) Att = OH; PI 32% Att = OH; PI 32%	_			_		
WELL GRADED SAND (SW) Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD ATD Att = OH-PI Soft to firm silt, some sand, wet Att = OH-PI Soft to firm silt, some sand, wet	1 -			-		
WELL GRADED SAND (SW) Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Sieve = ML (sandy silt) ATD Att = OH-PI Soft to firm silt, some sand, wet	2					
WELL GRADED SAND (SP) Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet SIEVE = MI. SIEVE = MI				_		
Dense, gray, fine to coarse sand, some gravel, trace silt, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDV SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Att = OH: PI 32% Att = OH: PI 32%	3 -	LL GRADED SAND (SW)		-		
WELL GRADED GRAVEL (GW) Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Att = OH: PI 32% Att = OH: PI 32%	The state of the s	se, gray, fine to coarse sand, some gravel, trace	e silt,	-		
Dense, gray, fine subangular gravel, some sand, moist Dense, gray, fine subangular gravel, some sand, moist Dense, gray, fine subangular gravel, some sand, moist POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Att. = OH: PI 32% Att. = OH: PI 32%	. 20					
POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Att. = OH: PI 32% Att. = OH: PI 32%	5 - Der		oist	-		
POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Sieve = ML (sandy silt) ATD Att. = OH; Pl 32% GT-10	- X 12			-		
POORLY GRADED SAND (SP) Medium dense, gray, fine sand, some silt, moist POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Sieve = ML (sandy silt) ATD Att. = OH; Pl 32%	15			_		
8 9 9 8 8 2 10 10 10 10 10 10 10 10 10 10 10 10 10	7	ORLY GRADED SAND (SP)		-		
POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD \(\frac{1}{2} \) Sieve = ML (sandy silt) ATD \(\frac{1}{2} \) Sieve = ML (sandy silt) ATD \(\frac{1}{2} \) Att. = OH; Pl 32%] <u> </u> 9	num dense, gray, line sand, some slit, moist		-		
POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Sieve = ML (sandy silt) ATD Sieve = ML (sandy silt) SILT (OH) Soft to firm silt, some sand, wet Att. = OH; Pl 32%	9					
POORLY GRADED SAND (SP) Loose, blackish gray with orange grains, medium sand, trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD Sieve = ML (sandy silt) ATD Sieve = ML (sandy silt) Sieve = ML (sandy silt) Sieve = ML (sandy silt) ATD ATD Att. = OH; Pl 32% GT-1 (1)	9 →			-		
POORLY GRADED SAND (SP) 10 12 11 12 12 13 14 14 16 15 16 17 17 18 19 10 10 10 10 10 10 10 10 11 11 12 12 12 13 14 14 15 15 15 16 17 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	- \/ ₅			-		
trace silt, moist to slightly wet SANDY SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD SILT (OH) Soft to firm silt, some sand, wet Att. = OH; PI 32% Att. = OH; PI 32%		ORLY GRADED SAND (SP)	and			
SANDT SILT (ML) Firm, blackish gray, fine sandy silt, wet ATD A	11 - trac	e silt, moist to slightly wet		- 31		
13	$\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ 8 Firm		ATD ▽	-		
13	4 4 4 9			_		
14 - 4 6 9 3 5 SILT (OH) Soft to firm silt, some sand, wet 17 - 5 6 0 79 Att. = OH; PI 32%	13 9			_		
15 - 6 9 3 5 SILT (OH) Soft to firm silt, some sand, wet - 79 Att. = OH; PI 32%	- \/ 4			-		
15 - 3 SILT (OH) Soft to firm silt, some sand, wet - 79 Att. = OH; PI 32% GT-1 (1	_					
16 - 5 SILT (OH) Soft to firm silt, some sand, wet - 79 Att. = OH; PI 32% GT-1 (1	15 -			_		
17 - 5 6 779 Att. = OH; PI 32%	- \/ 5 SIL					
		to tirm slit, some sand, wet				_
	17 - 6 0			79		Att. = OH; PI = 32%
Project No. 13488.130 AMEC Geomatrix, Inc. Figure					1	GT-1 (12

PROJECT: Geotechnical Investigation
B&L Landfill

Log of Boring No. H-13 cont.

SA	Milton, Wa				_ABORATO	RY TESTS
(feet) Sample S		MATERIAL DESCRIPT	TION	Moisture Content (%)	Dry Density (pcf)	Other
8-	1 1 2	\dark brown peat SILT (MH) Soft, olive gray, medium plasticity, wet				
9 -	1 1 3	PEAT (PT) reddish dark brown, wood shreds, stron	g odor -			
1 - 1	5 3 5	SILT (ML) Soft, olive gray, medium plasticity silt, so scattered 1" peat pockets	ome sand, wet;	41		Sieve = ML (s with sand)
H-13-21-23	7 13 4	SILTY SAND (SM) Loose, gray, fine sand, some silt, interbolenses; trace peat material; trace red ox	edded 1/8" silt didation mottling			
- - - -	5 6 7		- - -			
5 -	0 1 2	SILT (ML) Soft, olive gray silt, interbedded with pea	at -			
7 - - 3 -	7 5 5		-			
9 -	8 8 6	SILTY SAND (SM) Loose, gray, fine to coarse sand, wet POORLY GRADED SAND (SP)	-	-		
-) - -	7 8 10	Medium dense, gray, medium sand, trad	ce silt, wet -			
-		Bottom of boring at 31.0 feet. Borehole tremied bentonite baroid grout (Quick-G				
-			- - -			
_			- - -			
_			- - -			
_			-			
			-			

PROJECT: Geotechnical Investigation B&L Landfill Milton, Washington	Log of B	oring	No.	H-14
BORING LOCATION:	ELEVATION AND D 20.81 ft NA			
DRILLING CONTRACTOR: Cascade Drilling, Inc.	DATE STARTED: 8/11/2008		DATE FINIS 8/1	SHED: 1/2008
DRILLING EQUIPMENT: CME 75	TOTAL DEPTH (fee	t):	MEASURIN Gro	G POINT: ound surface
DRILLING METHOD: 8-inch diameter hollow-stem auger	DEPTH TO FREE V 12.0 feet	VATER FIF		
SAMPLING METHOD: SPT split spoon drive sampler [24" x 1.5"]	DEPTH TO FREE V	VATER AT	COMPLETION	ON:
HAMMER WEIGHT: 140 lb HAMMER DROP: 30 in	LOGGED BY: N. Bacher			
_ SAMPLES		l	ABORATOF	RY TESTS
T (feet) No. Samples MATERIAL DESCRIPTION MATERIAL DESCRIPTION	N	Moisture Content (%)	Dry Density (pcf)	Other
(FILL)	_			
1 -				
2-	_			
3 - TOPSOU				
17 TOPSOIL 19 WELL GRADED SAND (SW)				
4 – Medium dense, gray, fine to coarse sand, t trace silt, dry	race gravel,			
5 - 20 -				
6 moist	-			
6 - 13				
7 - 4 9	-			
13	-			
8 – 14 POORLY GRADED SAND (SP)				
9 Loose, gray, fine sand, trace silt, moist	-			
10 -				
	-			
$11 - \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 4 \end{array}\right)$	-			
$12 - \left \begin{array}{c c} 7 \\ 2 \end{array} \right $	ATD ∑			
-	-			
13 4	-			
$14 - \left \begin{array}{c} 0 \\ 0 \\ 10 \end{array} \right $	-			
15 - 12				
$ \left \begin{array}{c} 1 \\ 1 \\ 5 \end{array} \right $	-			
16 some orange sand grains				
17 - 4 1	-			
				GT-1 (1
Project No. 13488.130 AMEC Geo	omatrix, Inc.		F	gure

PROJECT: Geotechnical Investigation B&L Landfill Milton, Washington

Log of Boring No. H-14 cont.

Milton, Wa	shington	Log of borning	10. 1	1-140	OIII.	
SAMPLES				LABORATO	RY TEST	S
Sample No. Sample Sample Blows/ 6 inches	MATERIAL DESCRIP	ΓΙΟΝ	Moisture Content (%)	Dry Density (pcf)	O	ther
18 - 2 1 2 1 1 2 1	SAND (SM) Loose, gray, fine sand, wet		-			
$\begin{bmatrix} 20 - \\ - \end{bmatrix} $ $\begin{bmatrix} 1 \\ 6 \\ 7 \end{bmatrix}$	trace brown peat pockets, trace silt lens	ses	-			
21 - 1 3 22 - 2	SANDY SILT (ML) Sandy, soft, gray, no plasticity		-			
23 - 5			29		Att. =	ML; PI = NP
24 - ± 57.8 7 7 11 25 5 - 11 11 25 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	SILT (ML) Firm, gray, low plasticity, scattered pea	t pockets/clumps				
26 - 4 6 9	POORLY GRADED SAND (SP)					
27 -	Medium dense, gray, fine sand, trace si	It, wet	-			
28 - 1 8		-	-			
30 - 6 10 23		-				
31 - 24 8 10 32 - 15	WELL GRADED SAND (SW) Dense, gray, fine to coarse sand, trace wet	gravel, trace silt,	_			
33 - 15	WELL GRADED GRAVEL (GW) Dense, gray, rounded fine and coarse of trace silt, wet Bottom of boring at 33.0 feet. Borehole	_ -				
-	tremied bentonite baroid grout (Quick-0	Grout).	-			
			-			
		-] - -			
						GT-2 (8/01
roject No. 13488.130	AMEC	Geomatrix, Inc.			Figure	Cont.

PROJECT: Geotechnical Investigation B&L Landfill Milton, Washington	Log of B	oring	j No.	H-15
BORING LOCATION:	ELEVATION AND D 20.44 ft NA			
DRILLING CONTRACTOR: Cascade Drilling, Inc.	DATE STARTED: 8/15/2008		DATE FIN	ISHED: /15/2008
DRILLING EQUIPMENT: CME 75	TOTAL DEPTH (fee	t):		NG POINT: fround surface
DRILLING METHOD: 8-inch diameter hollow-stem auger	DEPTH TO FREE V 9.0 feet	VATER FIR		
SAMPLING METHOD: SPT split spoon drive sampler [24" x 1.5"]	DEPTH TO FREE V	VATER AT	COMPLET	TON:
HAMMER WEIGHT: 140 lb HAMMER DROP: 30 in	LOGGED BY: N. Bacher			
SAMPLES	Tt. Baciloi	L	ABORATO	ORY TESTS
(feet) No.	N	Moisture Content (%)	Dry Density (pcf)	Other
1 - 2 - 3 - 5	- - - - - -			Add water to control heave
17 7 dense	-			
	omatrix, Inc.			GT-1 (12

PROJECT: Geotechnical Investigation
B&L Landfill
Milton, Washington

Log of Boring No. H-15 cont.

MATERIAL DESCRIPTION Solution Solution	_ SAN	MPLES	;			ı	_ABORAT(DRY TESTS
18 -	÷		- 1	MATERIAL DESCRIPTION		Content	Density	Other
GT-2 (8/01	18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 35 - 35 - 35 - 35 - 35		13	WELL GRADED SAND (SW) Medium dense, blackish gray with white and orangline to coarse sand, trace silt, wet gray silt lense gray silty clay lense with trace peat dark brown silty peat lense POORLY GRADED SAND (SP) Dense, gray, fine sand, some silt, wet POORLY GRADED SAND (SP) Medium dense to dense, gray, fine sand, wet Bottom of boring at 35.0 feet. Borehole backfilled	ge grains,			Sand bridging when pulling out rods.
Project No. 13488.130 AMEC Geomatrix, Inc. Figure Cont.								GT-2 (8/01

Coordinate System: NAD 83/98

Latitude/Northing: 701679

Drill Date: August 29, 2008 Logged By: Lisa Meoli

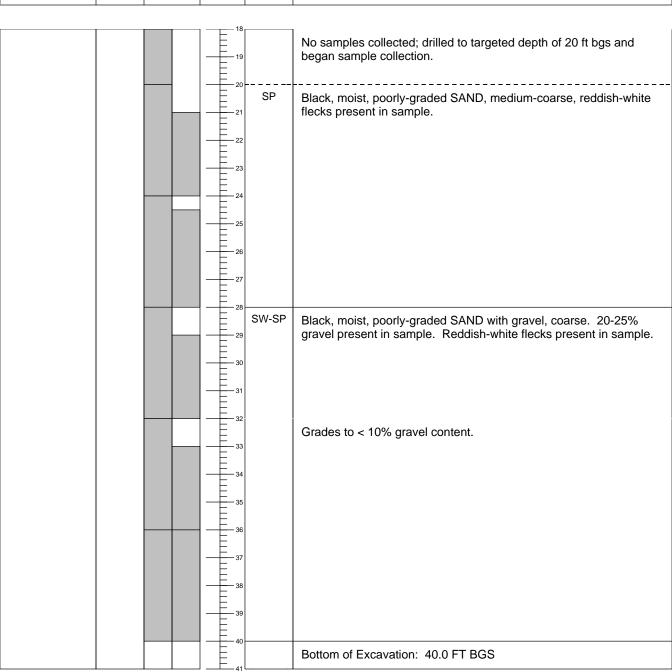
Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Mounted Geoprobe

Ground Surface Elevation: 24.81 ft., NAVD 88 Sample Method: Dual Tube Boring Diameter: 2 inches

Longitude/Easting: 1185891 Boring Depth (ft bgs): 40 FT BGS Boring Location: Landfill Cap Groundwater ATD (ft bgs): Unknown Boring ID: A-9

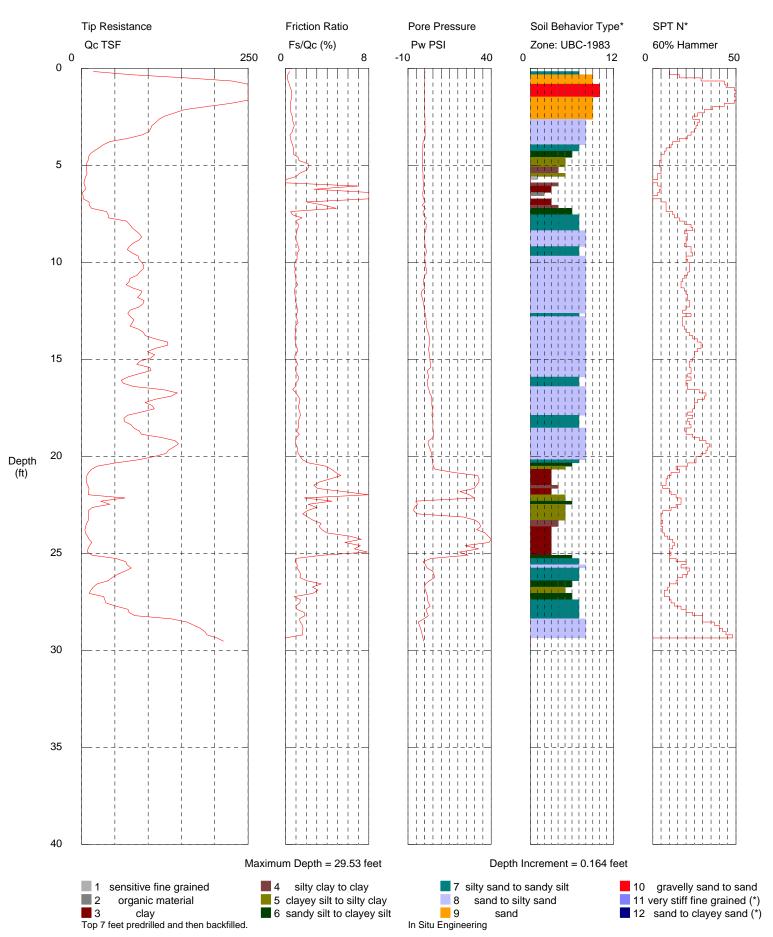
Client: B&L Custodial Trust

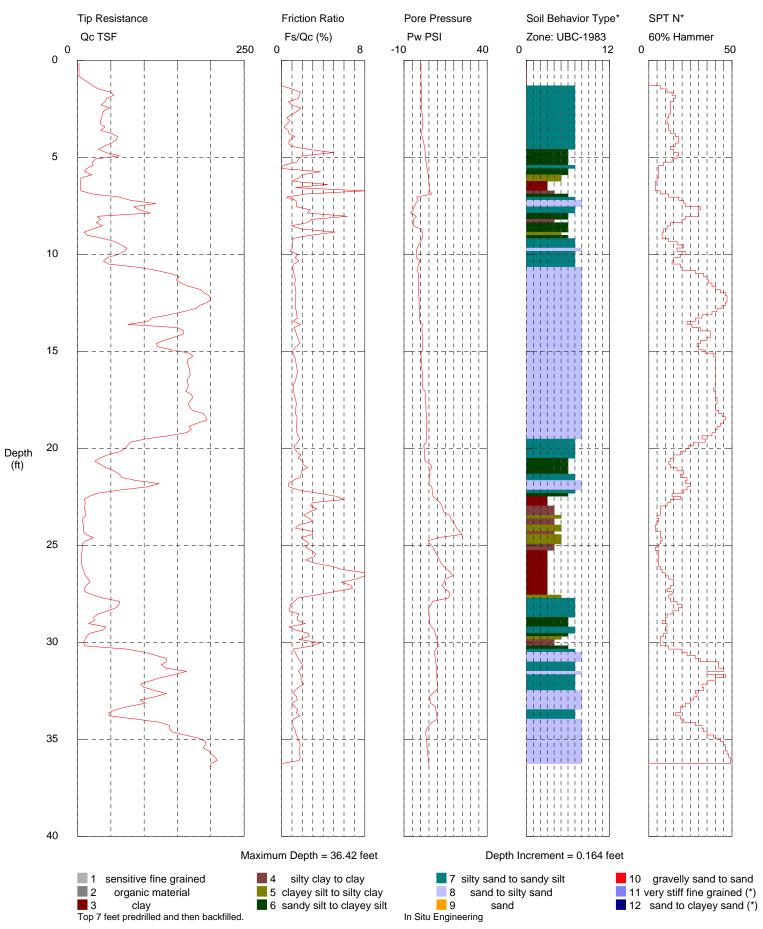

Project: B&L RIM

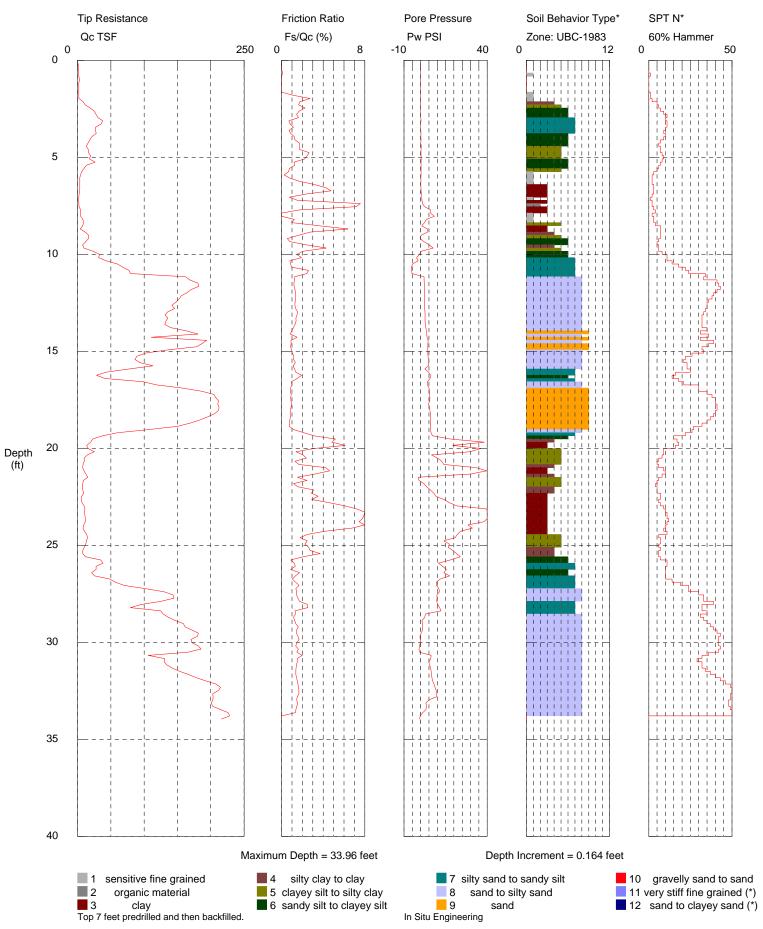
Task:

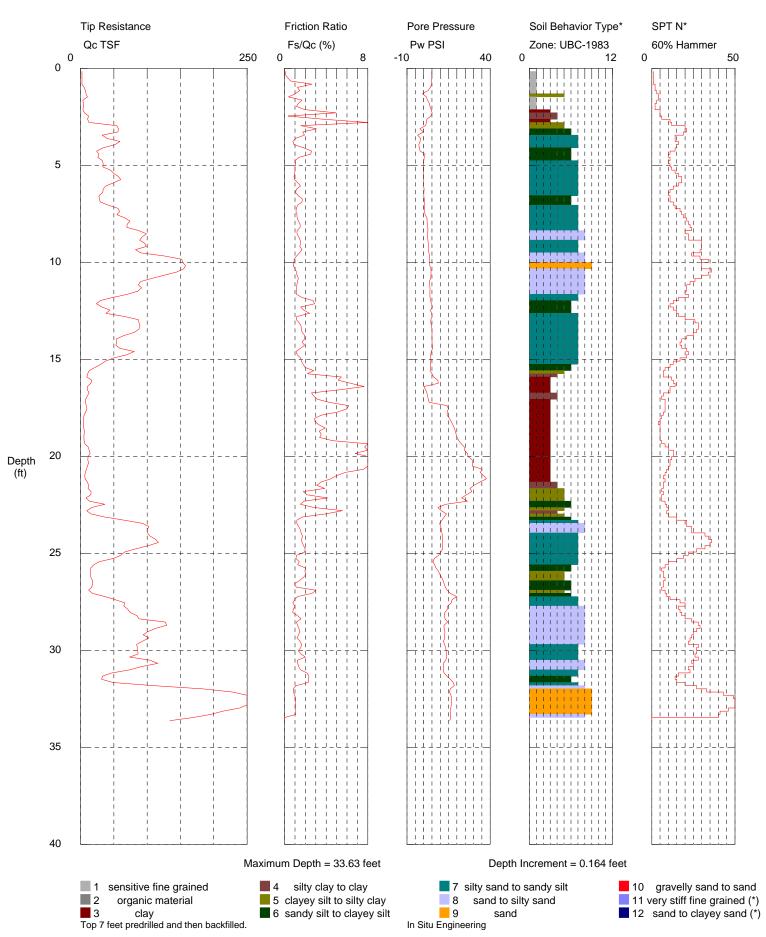
Address:B&L Woodwaste Pierce County, Washington

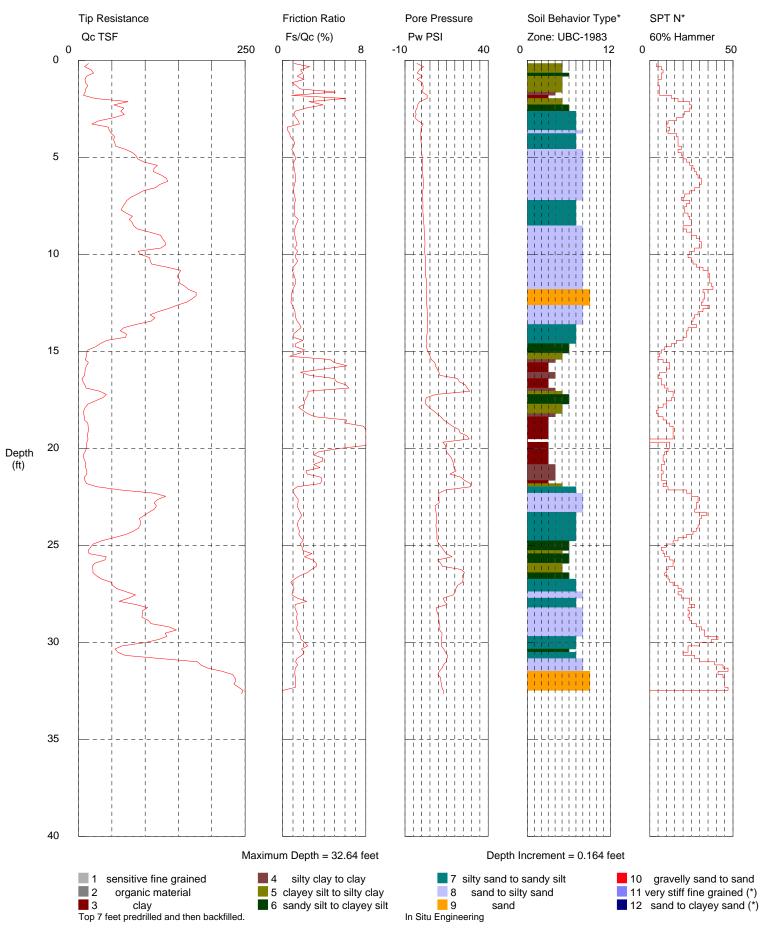
Remarks: Ground surface consists of landfill cap. Did not locate aguitard.

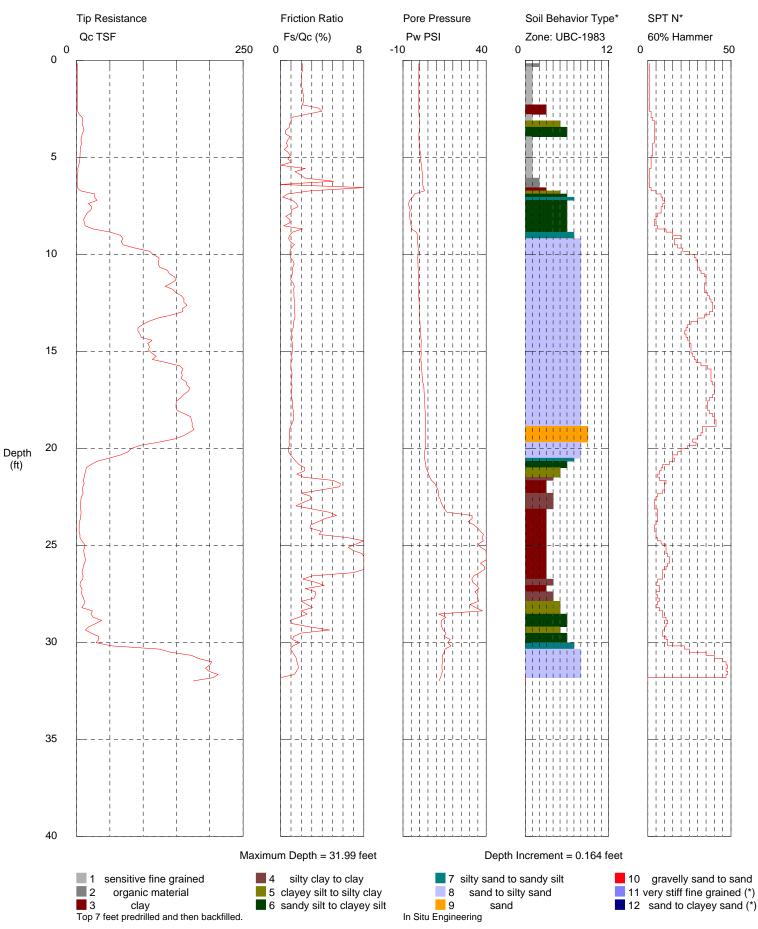

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	

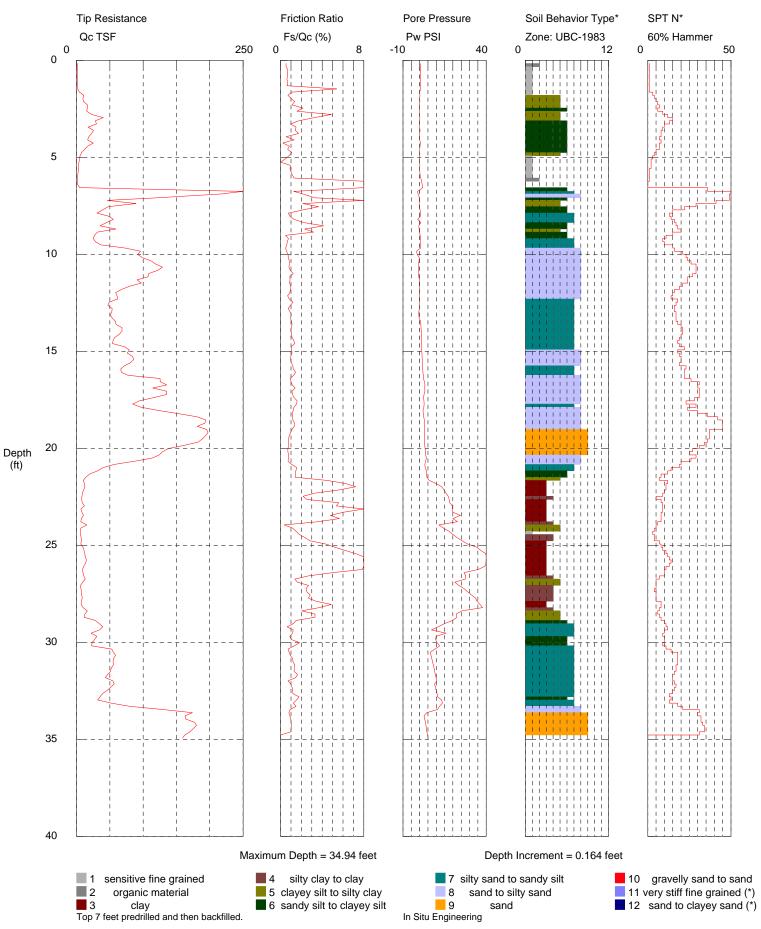

Operator: Brown Sounding: CPT-5 Cone Used: DSG1029 CPT Date/Time: 9/24/2008 11:33:12 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

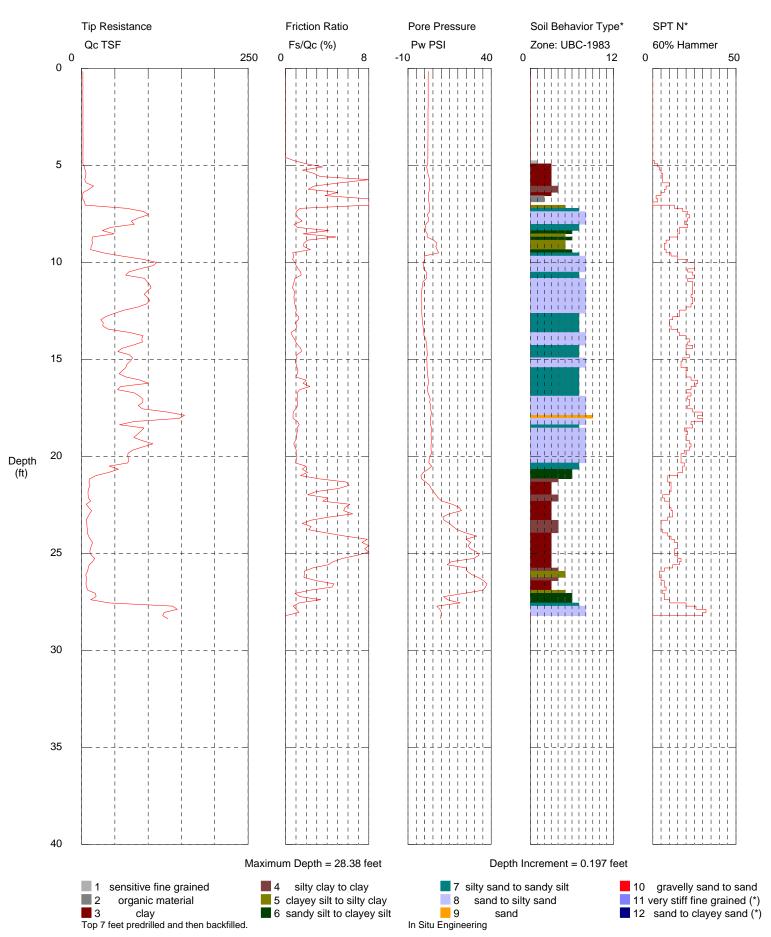

Operator: Brown Sounding: CPT-6 Cone Used: DSG1029 CPT Date/Time: 9/24/2008 10:13:33 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

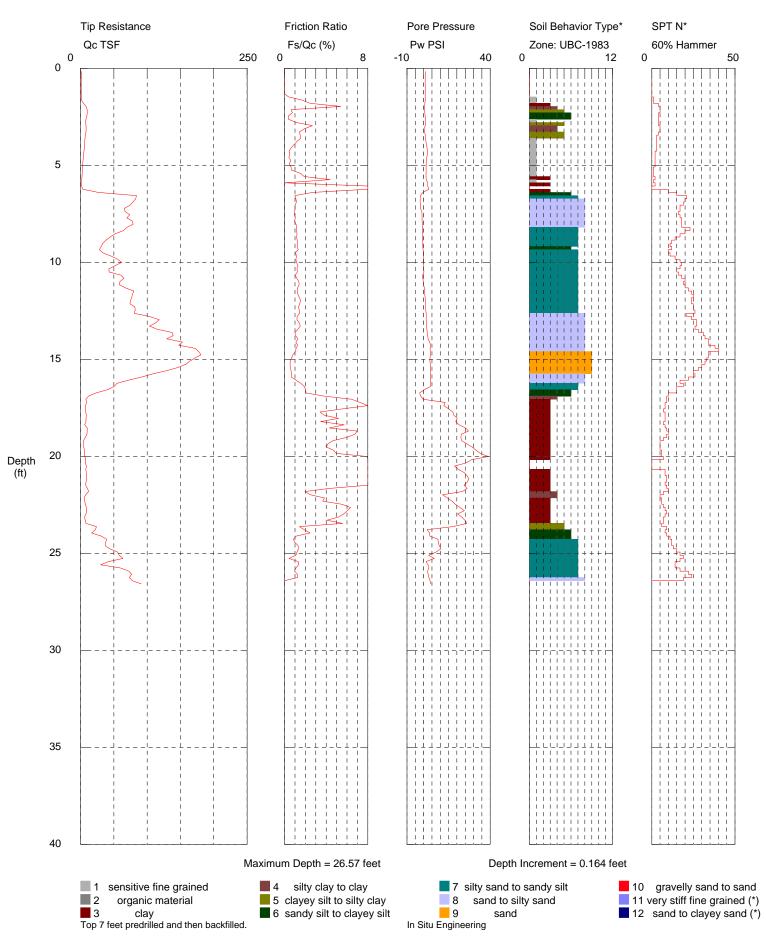

Operator: Brown Sounding: CPT-7 Cone Used: DSG1029 CPT Date/Time: 9/23/2008 3:36:41 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

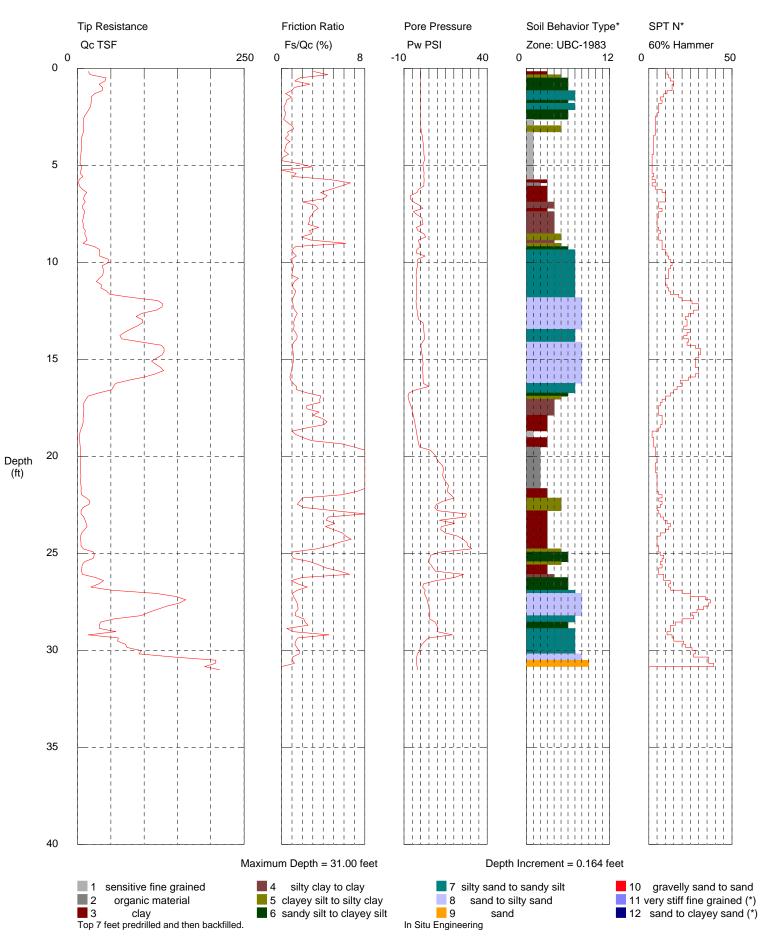

Operator: Brown Sounding: CPT-8 Cone Used: DSG1029 CPT Date/Time: 9/23/2008 1:57:28 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

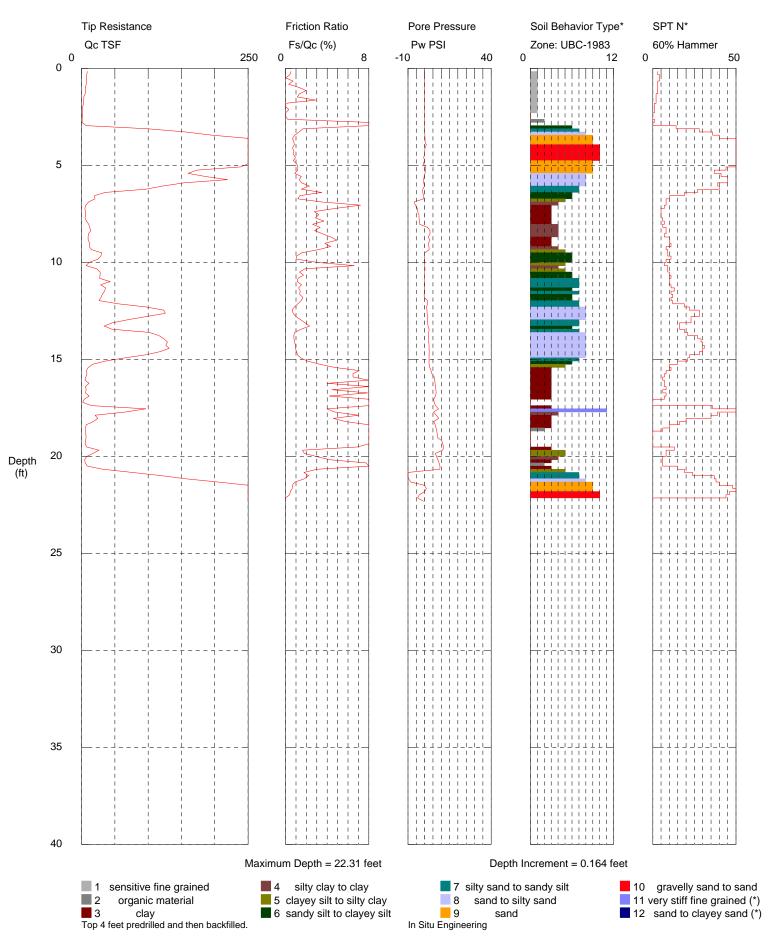

Operator: Brown Sounding: CPT-9 Cone Used: DSG1029 CPT Date/Time: 9/23/2008 12:22:12 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

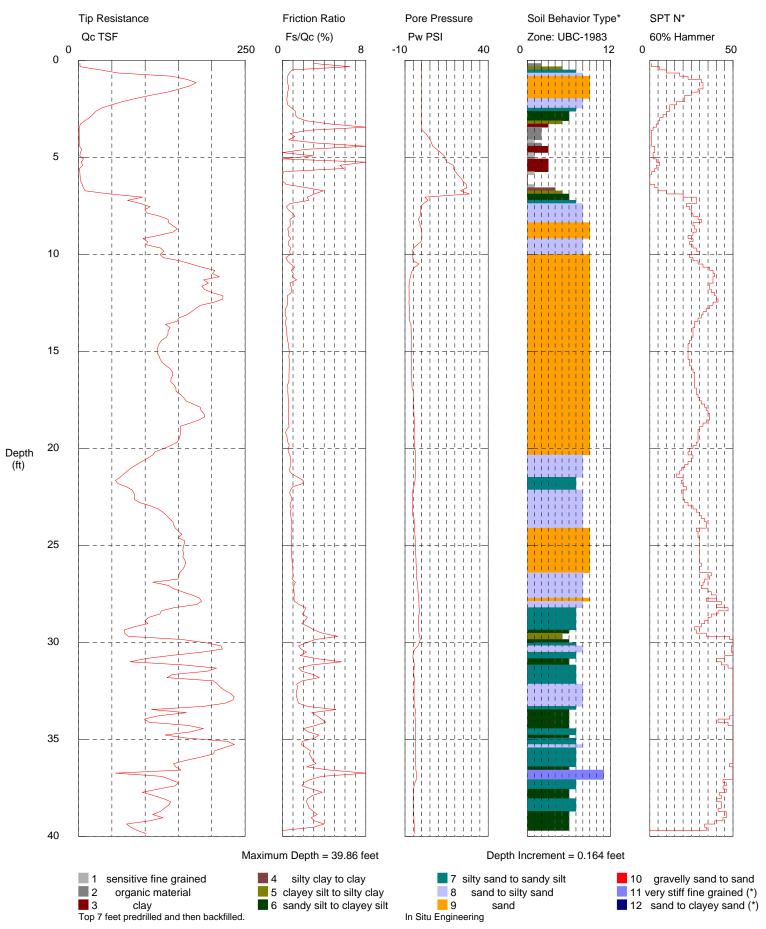

Operator: Brown Sounding: CPT-10a Cone Used: DSG1029 CPT Date/Time: 9/23/2008 11:10:56 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

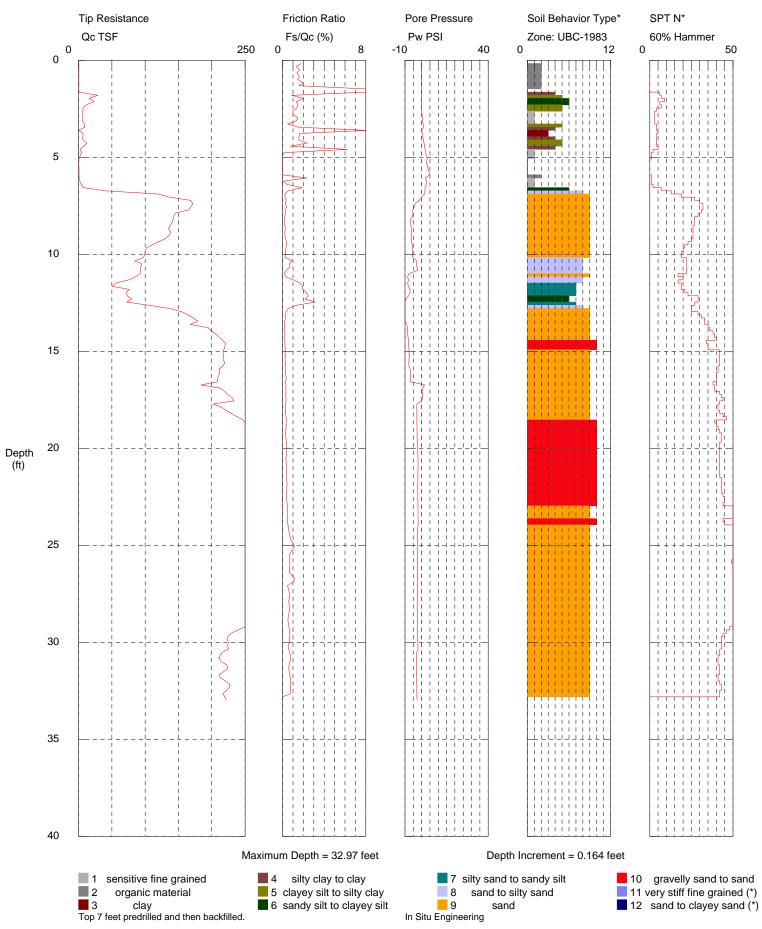

Operator: Brown Sounding: CPT-11 Cone Used: DSG1029 CPT Date/Time: 9/23/2008 10:09:22 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

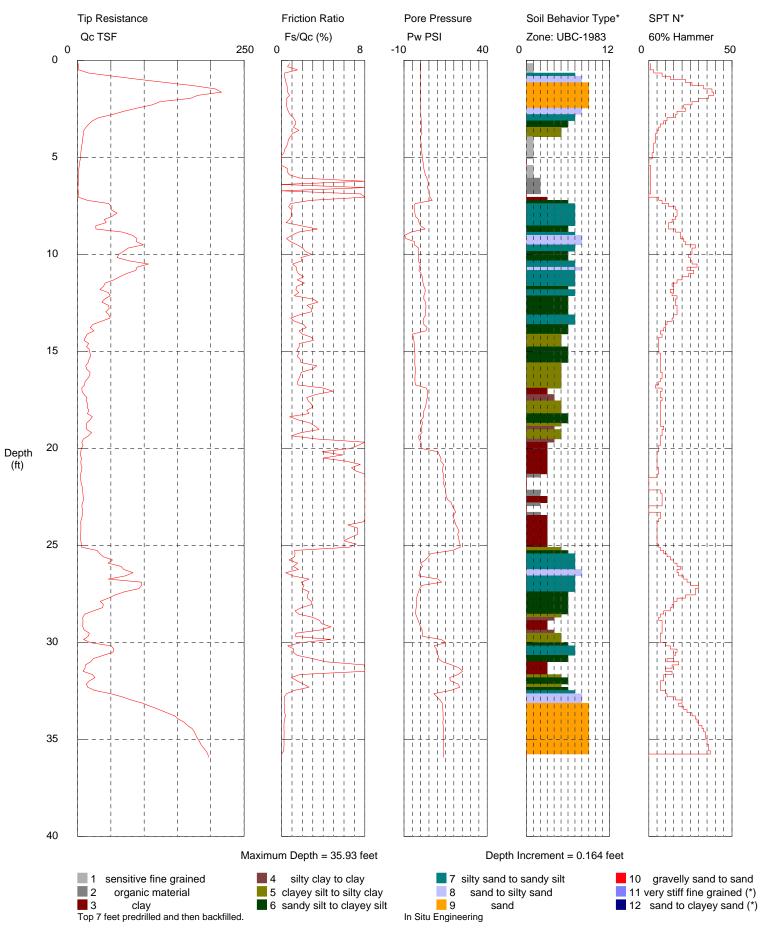

Operator: Brown Sounding: CPT-12 Cone Used: DSG1029 CPT Date/Time: 9/22/2008 12:42:12 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

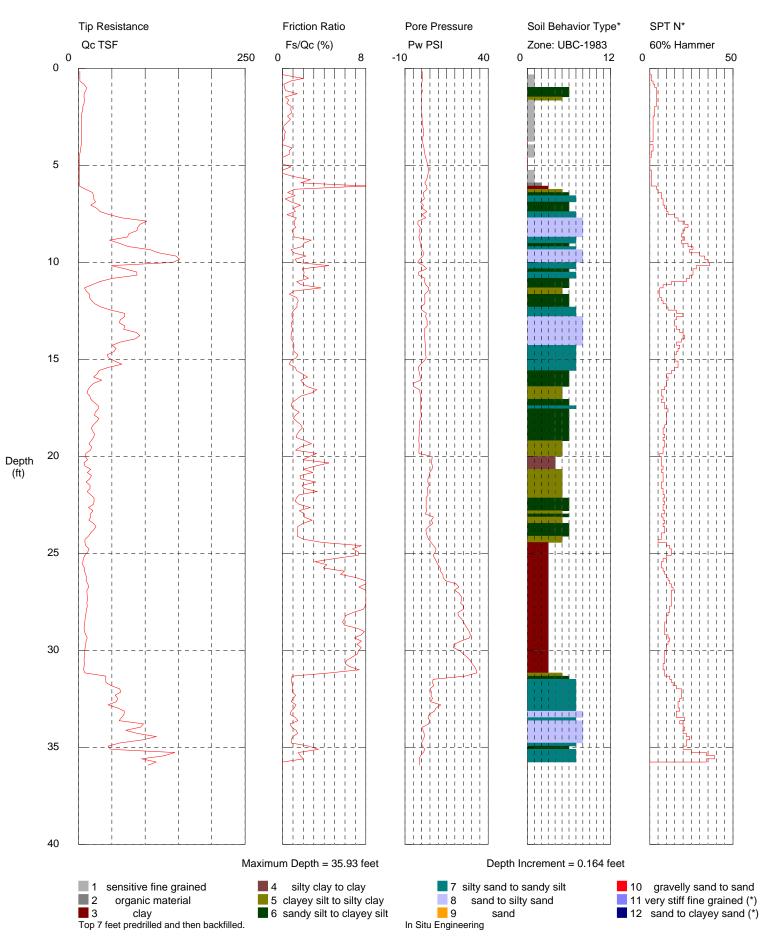

Operator: Brown Sounding: CPT-13 Cone Used: DSG1029 CPT Date/Time: 9/22/2008 2:01:18 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

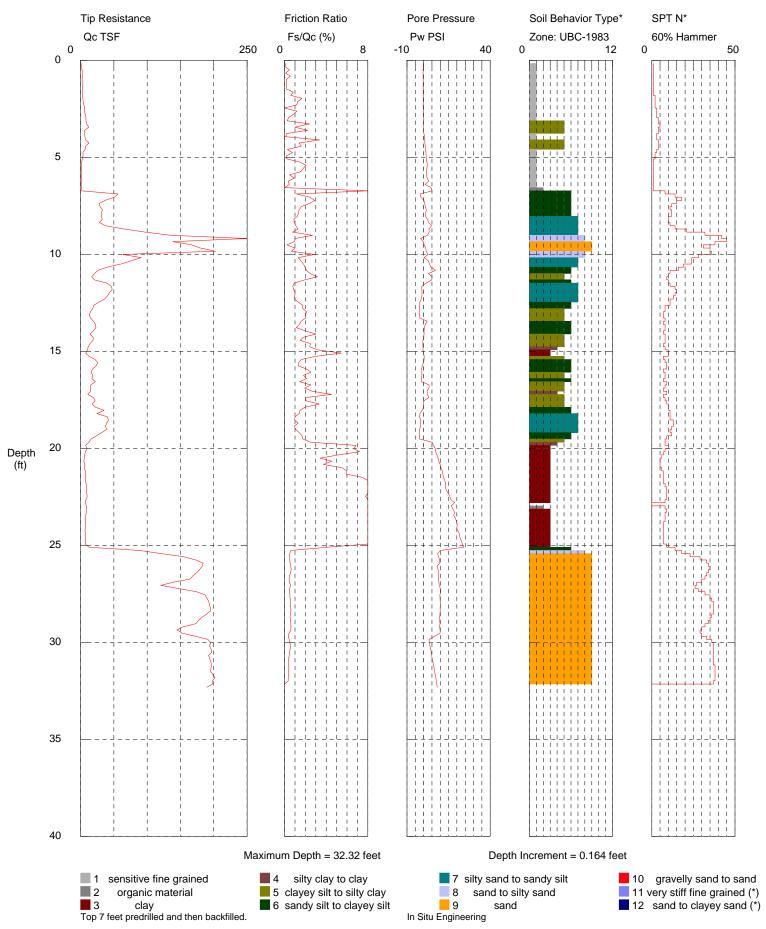

Operator: Brown Sounding: CPT-14 Cone Used: DSG1029 CPT Date/Time: 9/22/2008 2:51:35 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

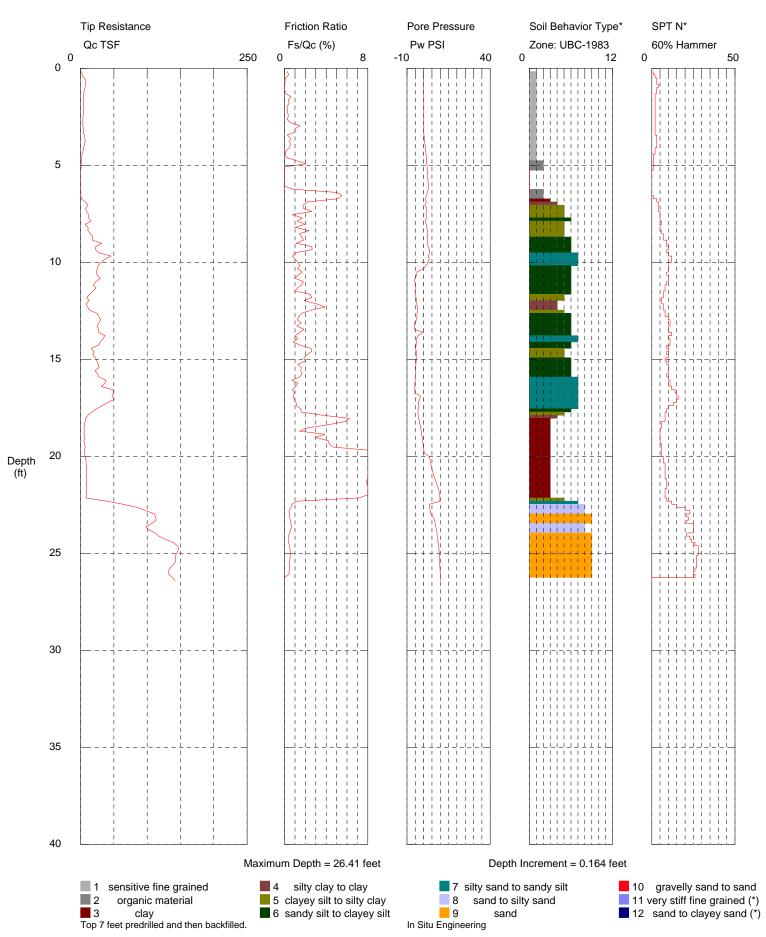

Operator: Brown Sounding: CPT-15 Cone Used: DSG1029 CPT Date/Time: 9/22/2008 3:43:06 PM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Brown Sounding: CPT-16 Cone Used: DSG1029 CPT Date/Time: 9/22/2008 4:22:30 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

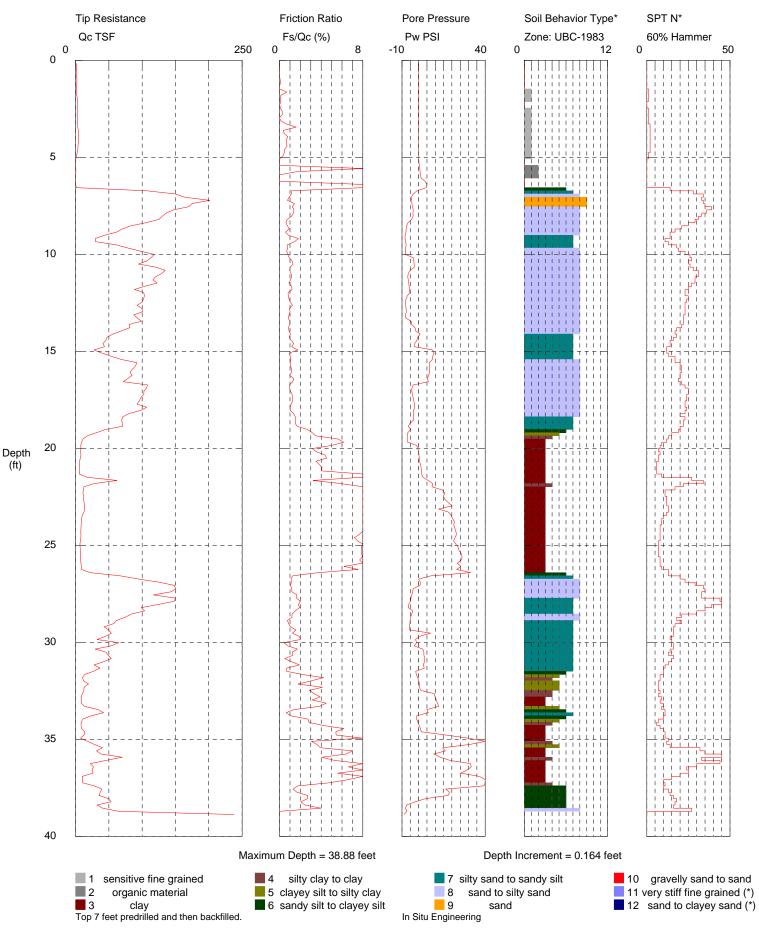

Operator: Brown Sounding: CPT-17 Cone Used: DSG1029 CPT Date/Time: 9/23/2008 9:13:07 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

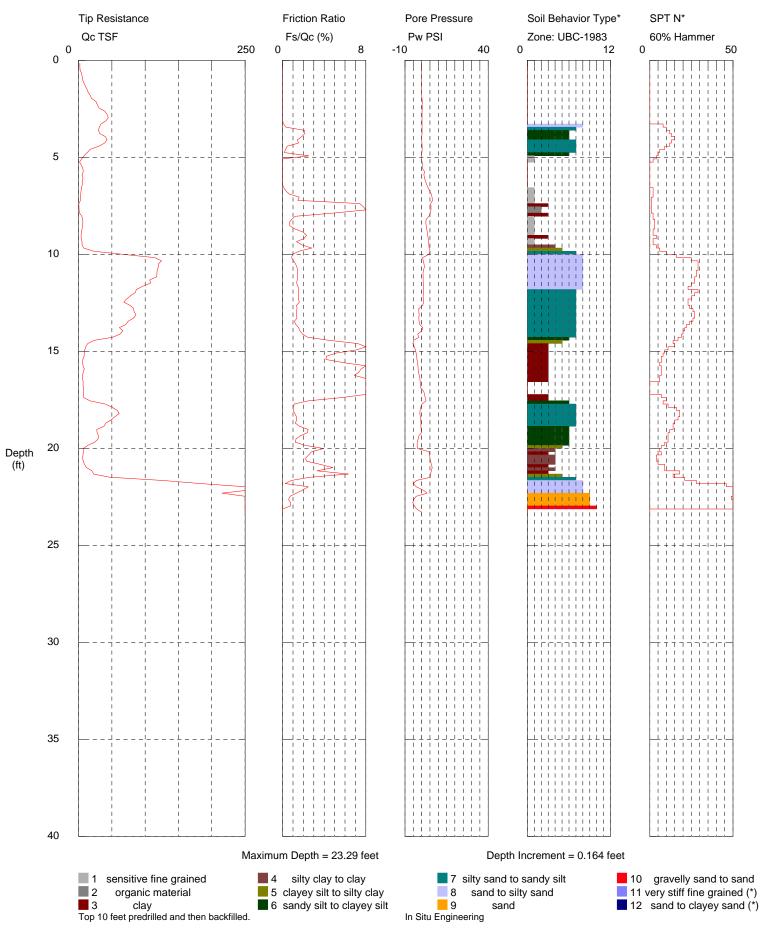

Operator: Brown Sounding: CPT-18 Cone Used: DSG1015 CPT Date/Time: 9/25/2008 3:35:57 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

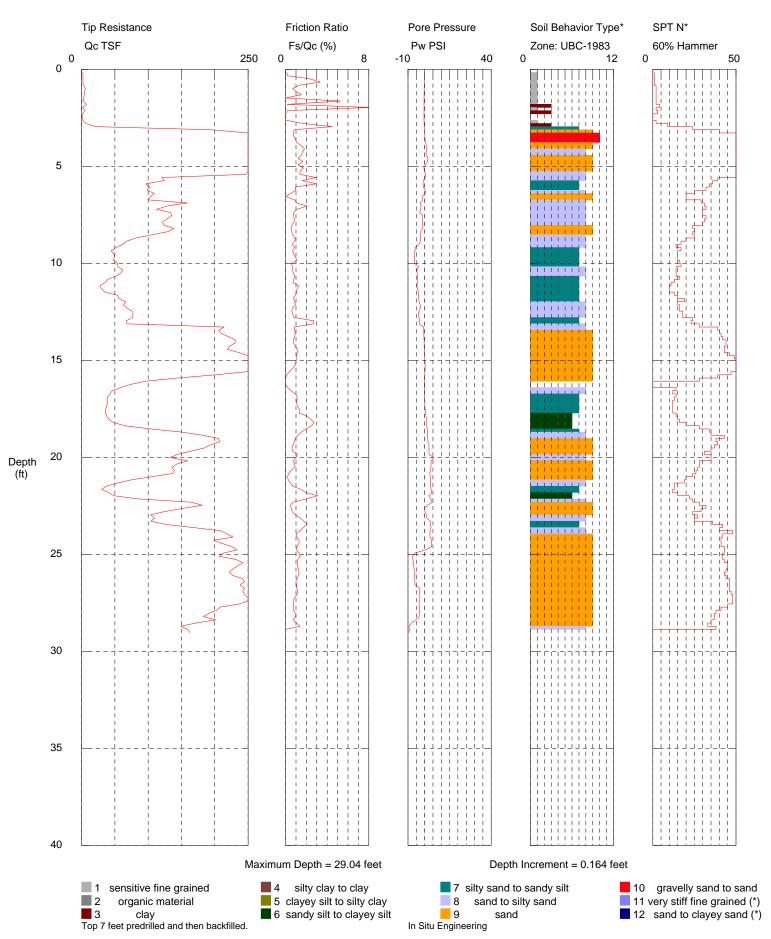

Operator: Brown Sounding: CPT-19 Cone Used: DSG1015 CPT Date/Time: 9/25/2008 2:02:20 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

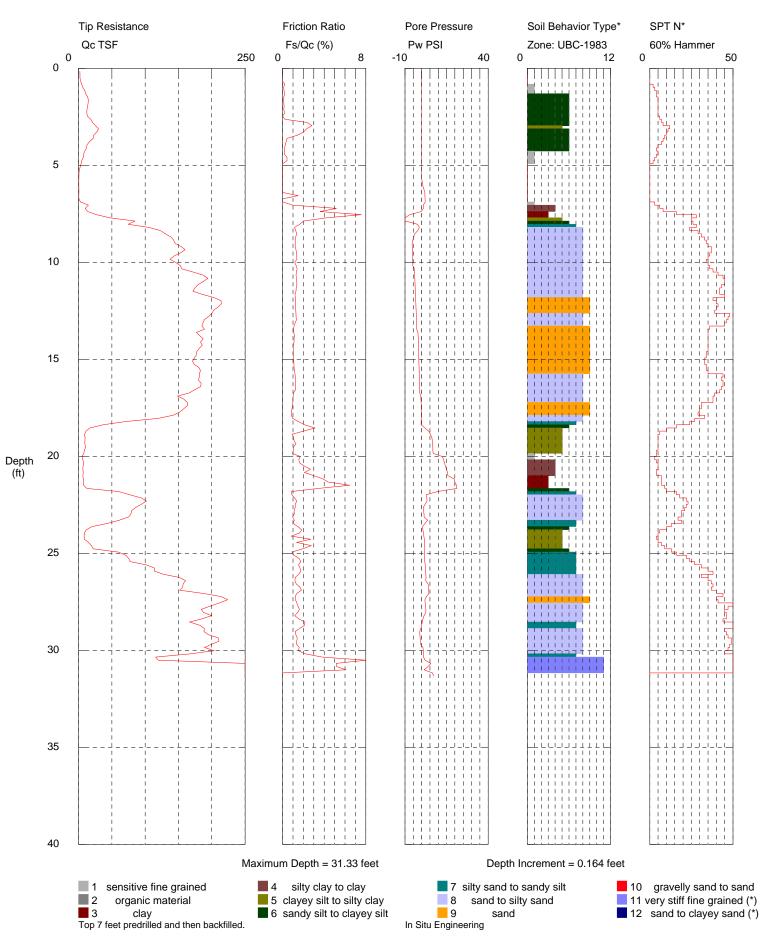

Operator: Brown Sounding: CPT-20 Cone Used: DSG1015 CPT Date/Time: 9/25/2008 1:20:25 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

Operator: Brown Sounding: CPT-21 Cone Used: DSG1015 CPT Date/Time: 9/25/2008 12:21:09 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

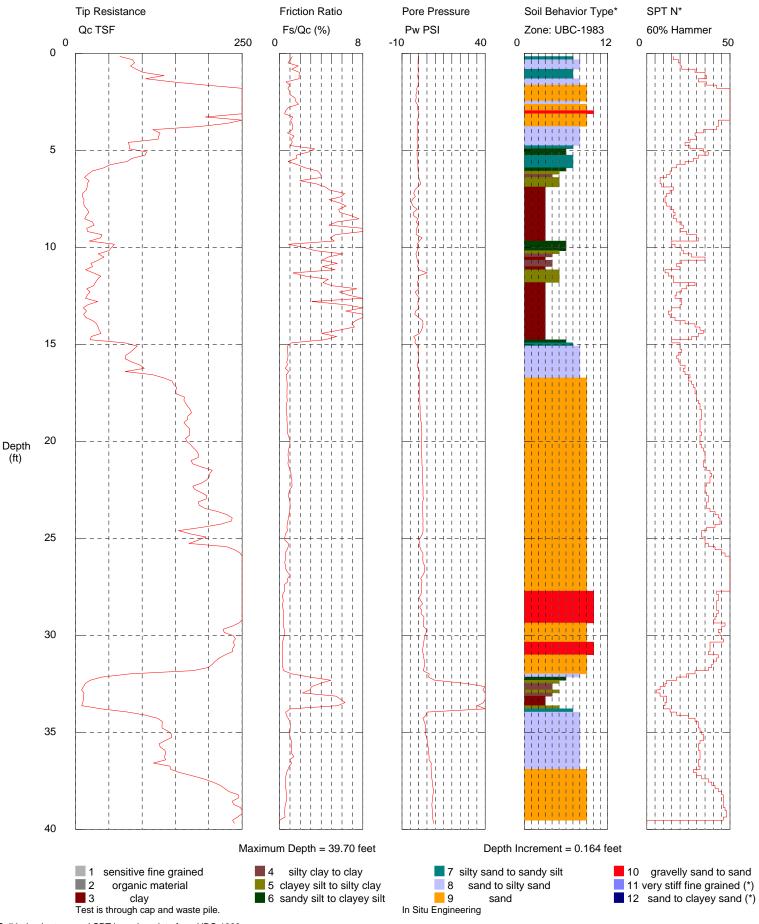

Operator: Brown Sounding: CPT-22 Cone Used: DSG1015 CPT Date/Time: 9/25/2008 11:57:09 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

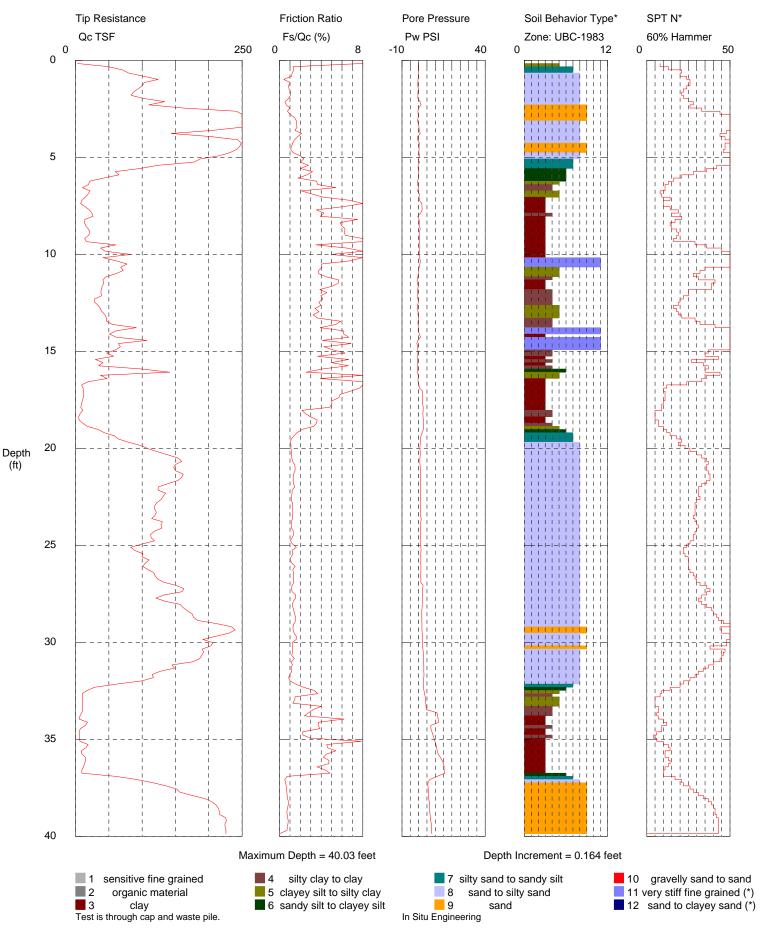

Operator: Brown Sounding: CPT-23 Cone Used: DSG1015 CPT Date/Time: 9/25/2008 10:58:02 AM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Brown Sounding: CPT-24 Cone Used: DSG1015 CPT Date/Time: 9/25/2008 10:10:12 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

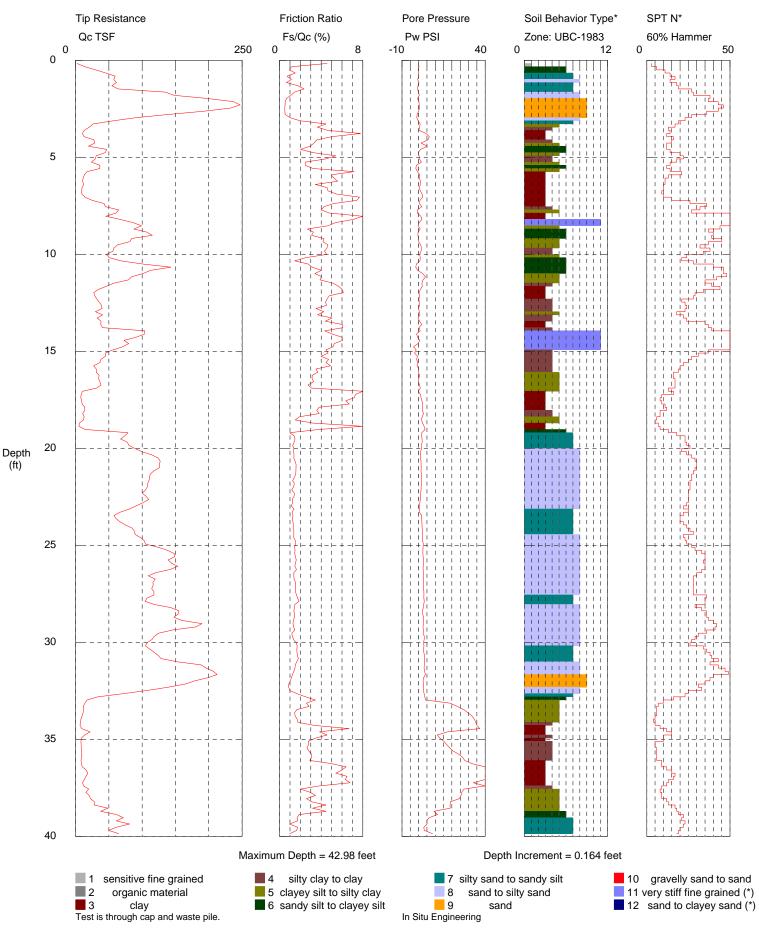

Operator: Brown Sounding: CPT-25 Cone Used: DSG1029 CPT Date/Time: 9/24/2008 5:37:24 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

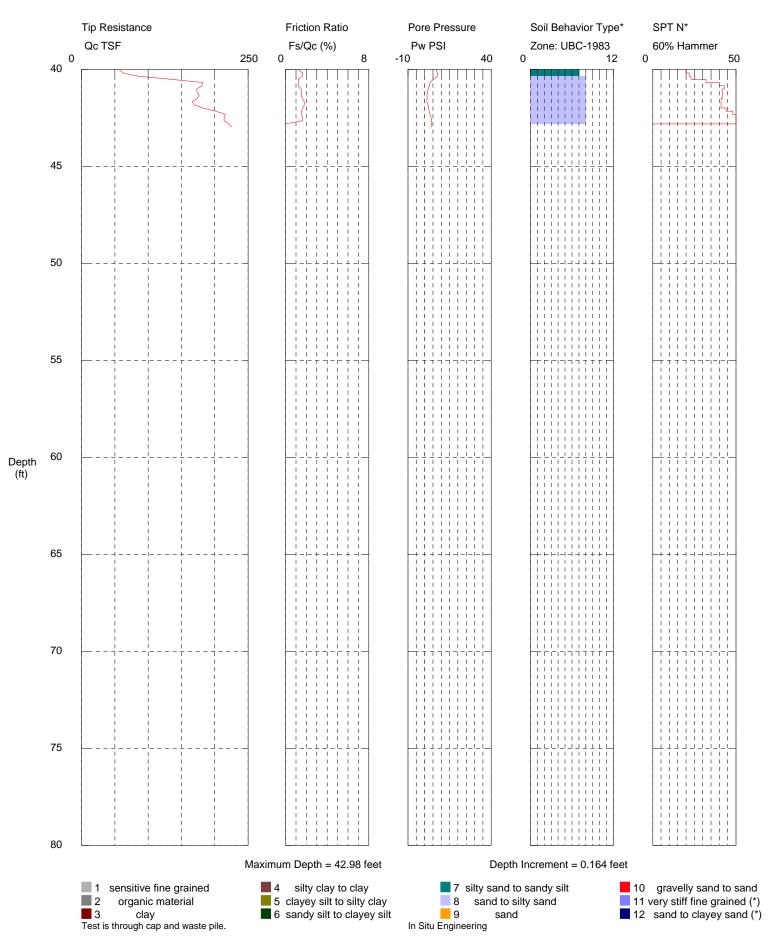
Operator: Brown Sounding: CPT-27 Cone Used: DSG1029 CPT Date/Time: 9/22/2008 11:16:15 AM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Brown Sounding: CPT-28 Cone Used: DSG1029 CPT Date/Time: 9/24/2008 2:39:15 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

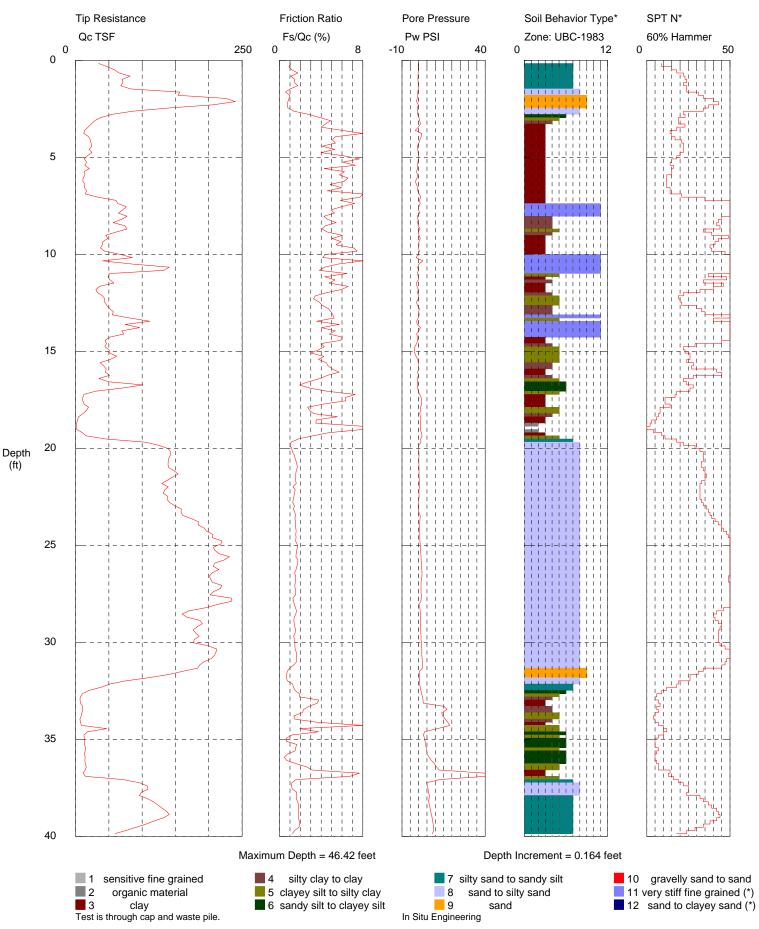

Operator: Brown

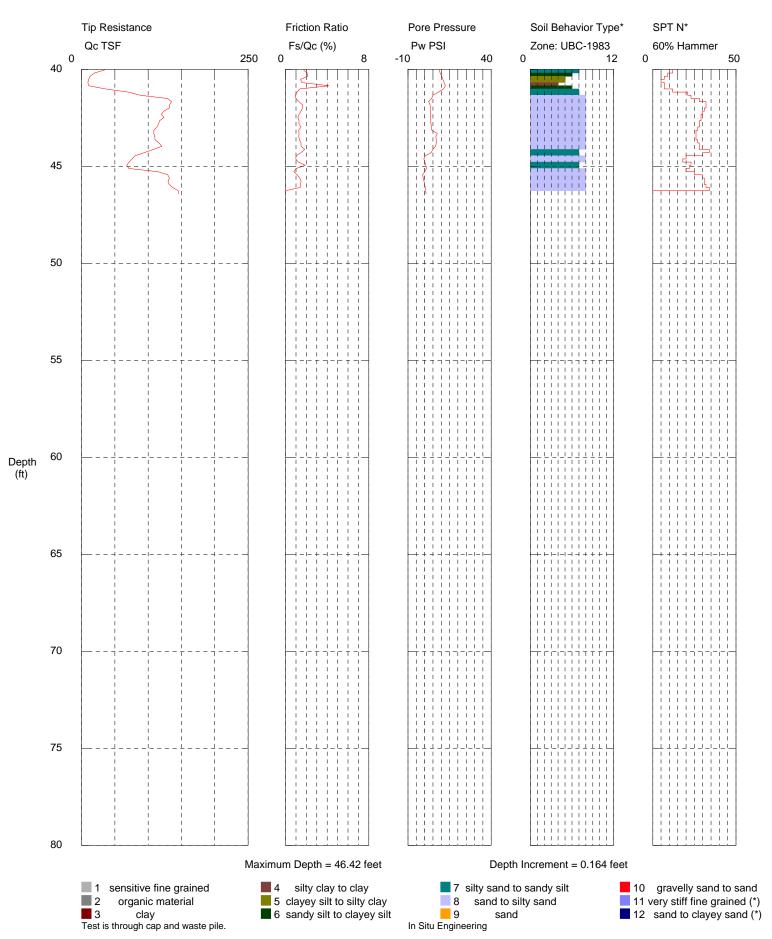
Sounding: CPT-31 Cone Used: DSG1079 CPT Date/Time: 9/23/2008 12:10:56 PM

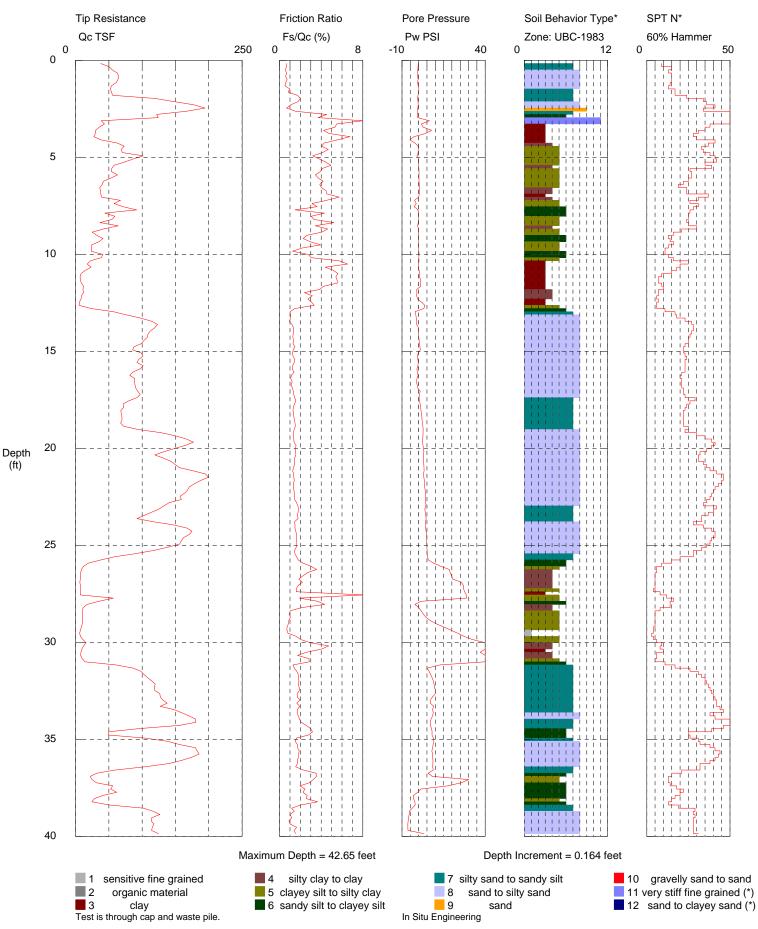

Location: B & L Wood Waste Job Number: BL RIM 1306

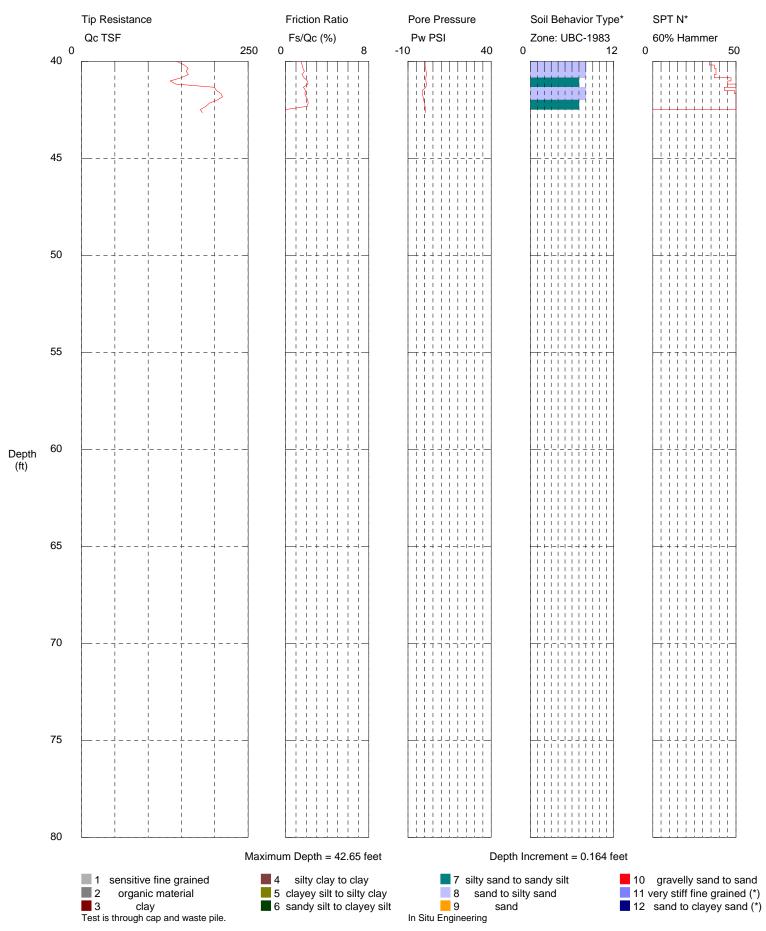

Operator: Brown Sounding: CPT-32 Cone Used: DSG1079 CPT Date/Time: 9/23/2008 1:16:31 PM Location: B & L Wood Waste Job Number: BL RIM 1306

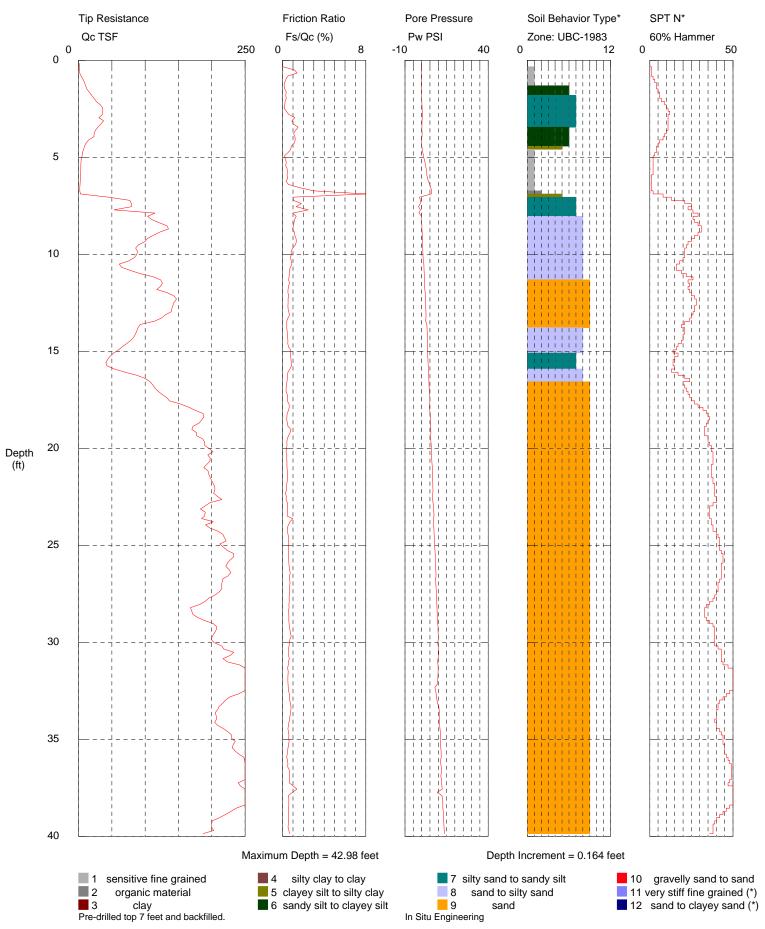

Operator: Brown Sounding: CPT-33 Cone Used: DSG1079 CPT Date/Time: 9/23/2008 2:33:00 PM Location: B & L Wood Waste Job Number: BL RIM 1306

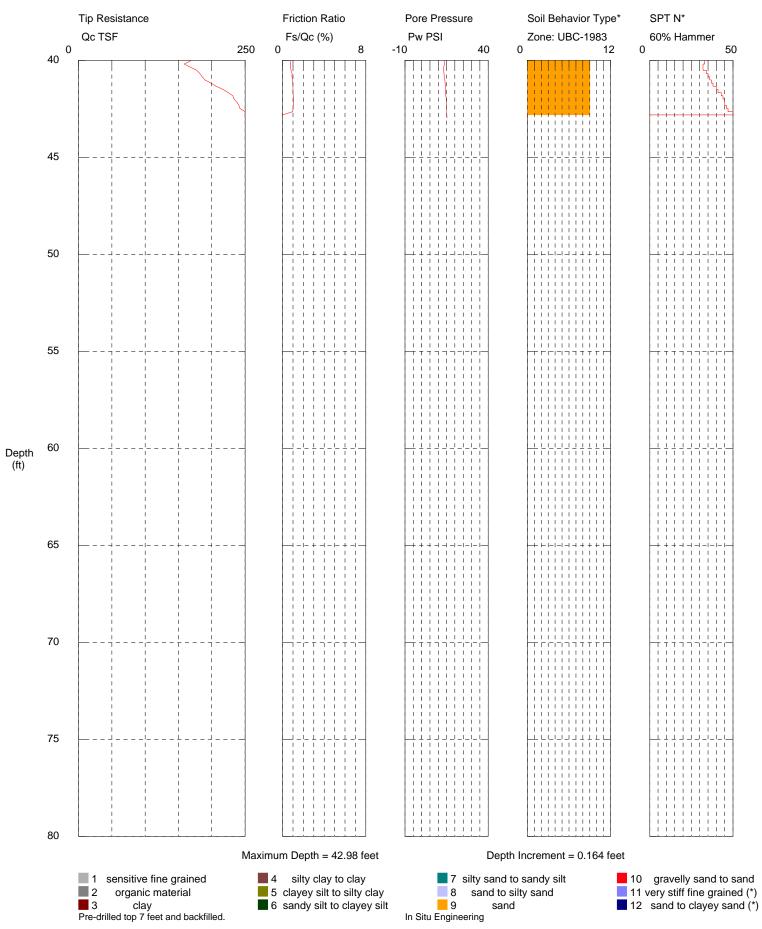

Operator: Brown Sounding: CPT-33 Cone Used: DSG1079 CPT Date/Time: 9/23/2008 2:33:00 PM Location: B & L Wood Waste Job Number: BL RIM 1306

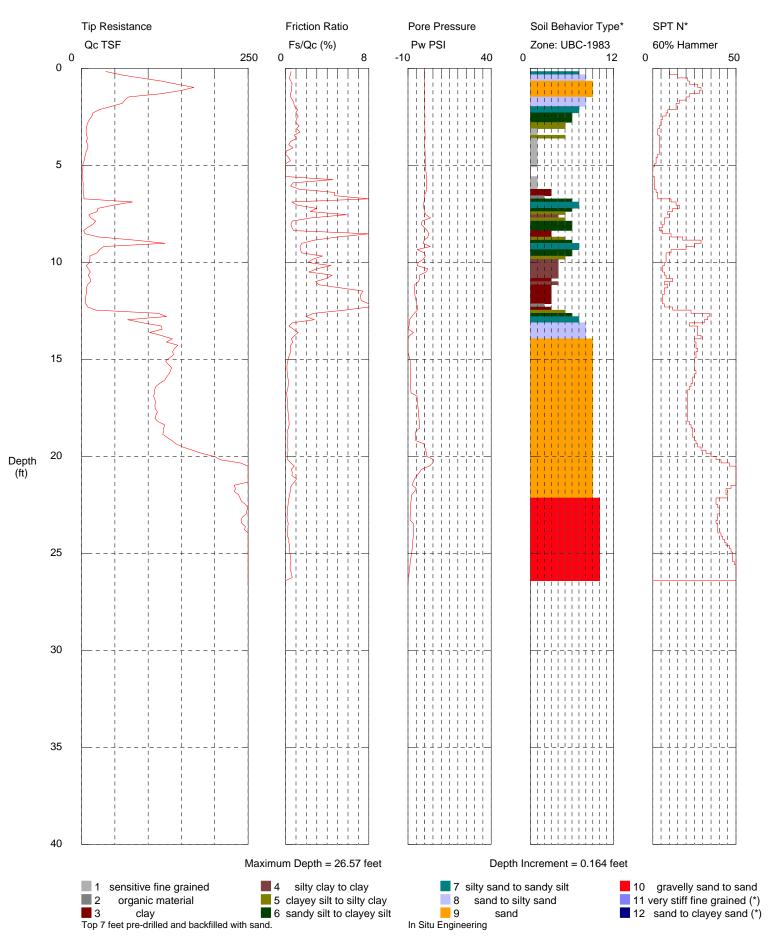

Operator: Brown Sounding: CPT-33 Cone Used: DSG1079 CPT Date/Time: 9/23/2008 2:33:00 PM Location: B & L Wood Waste Job Number: BL RIM 1306

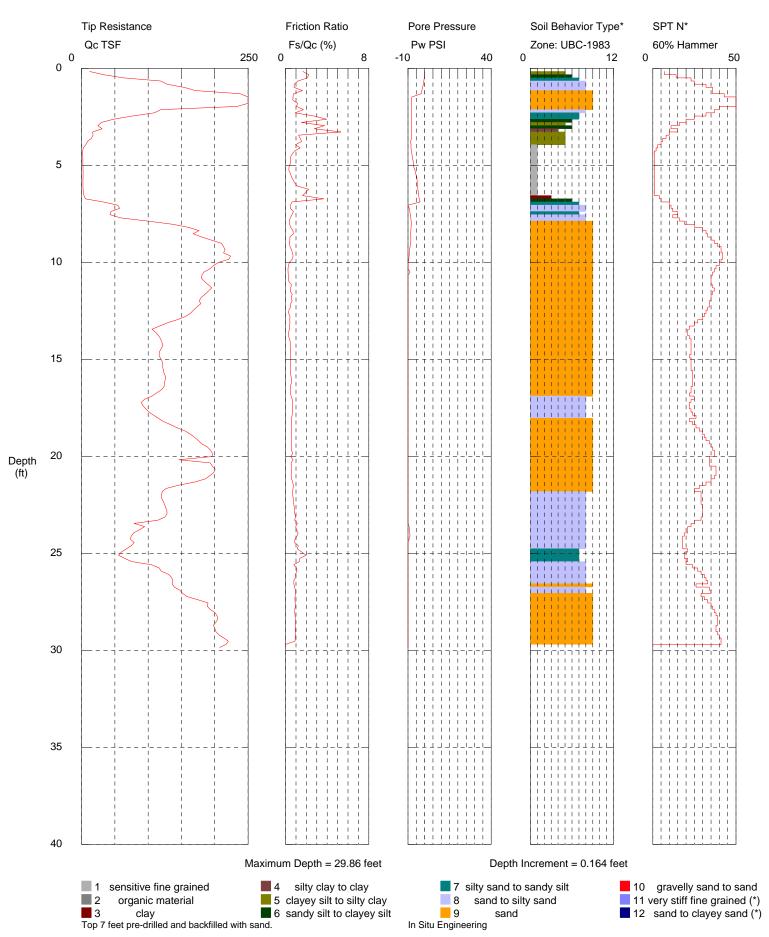

Operator: Brown Sounding: CPT-34 Cone Used: DSG1079 CPT Date/Time: 9/23/2008 3:14:50 PM Location: B & L Wood Waste Job Number: BL RIM 1306

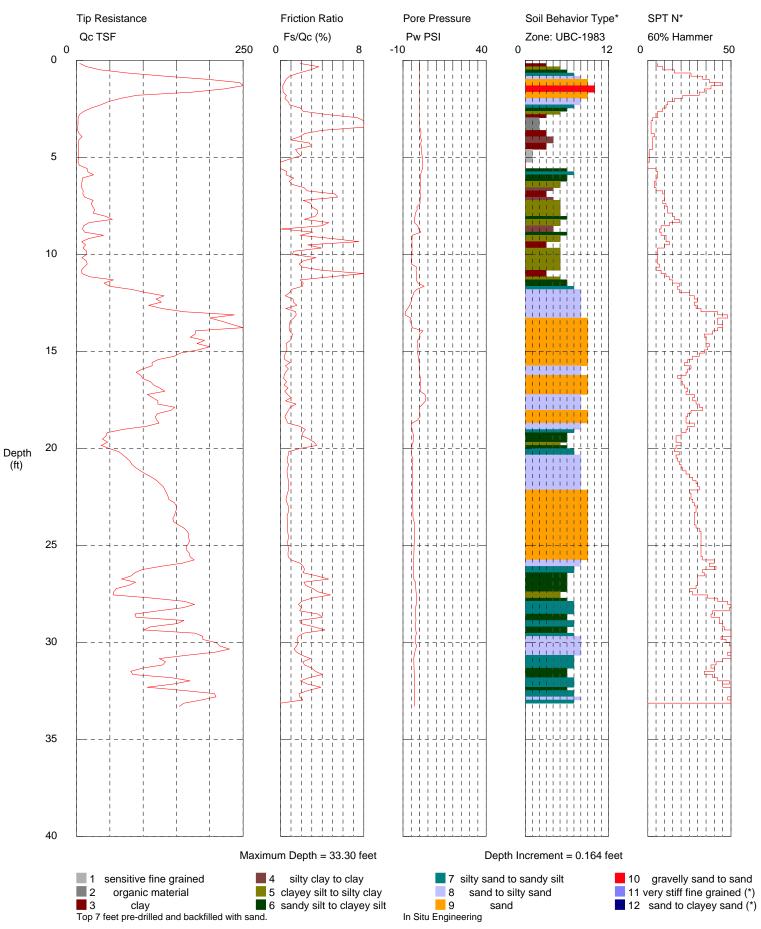

Operator: Brown Sounding: CPT-34 Cone Used: DSG1079 CPT Date/Time: 9/23/2008 3:14:50 PM Location: B & L Wood Waste Job Number: BL RIM 1306

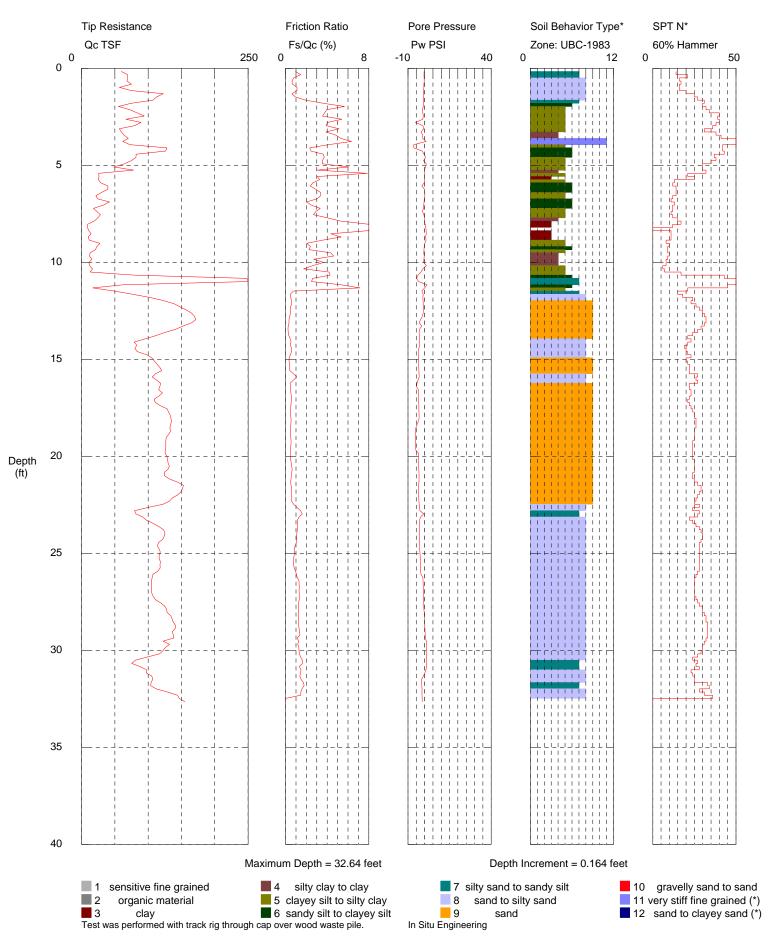

Operator: Brown Sounding: CPT-35 Cone Used: DSG1079 CPT Date/Time: 9/25/2008 9:11:42 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

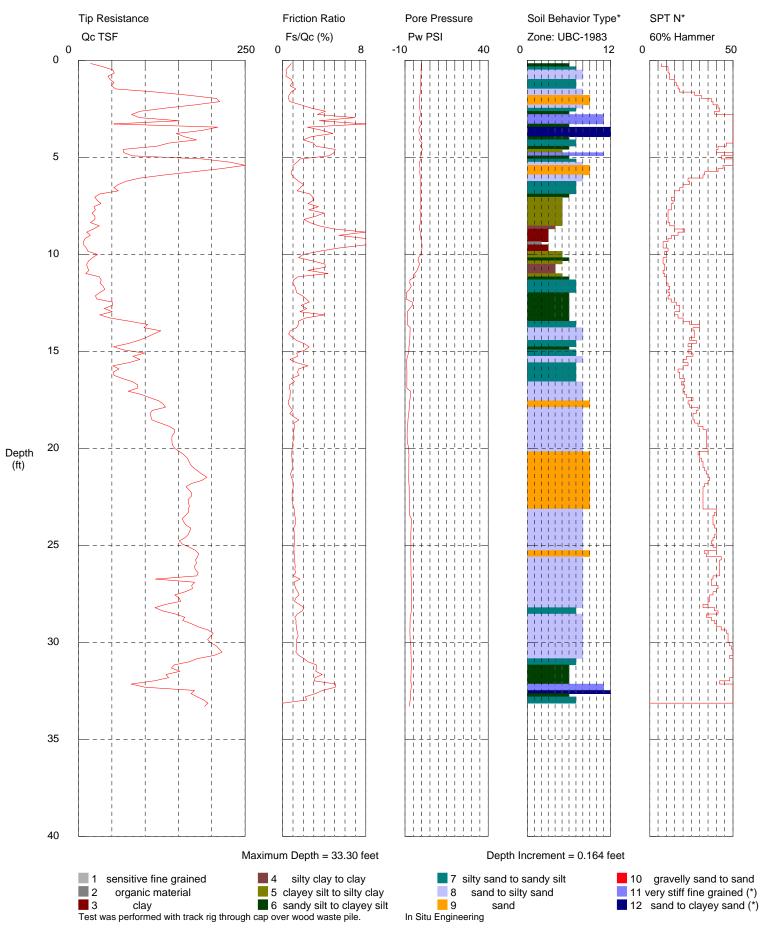

Operator: Brown Sounding: CPT-35 Cone Used: DSG1079 CPT Date/Time: 9/25/2008 9:11:42 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

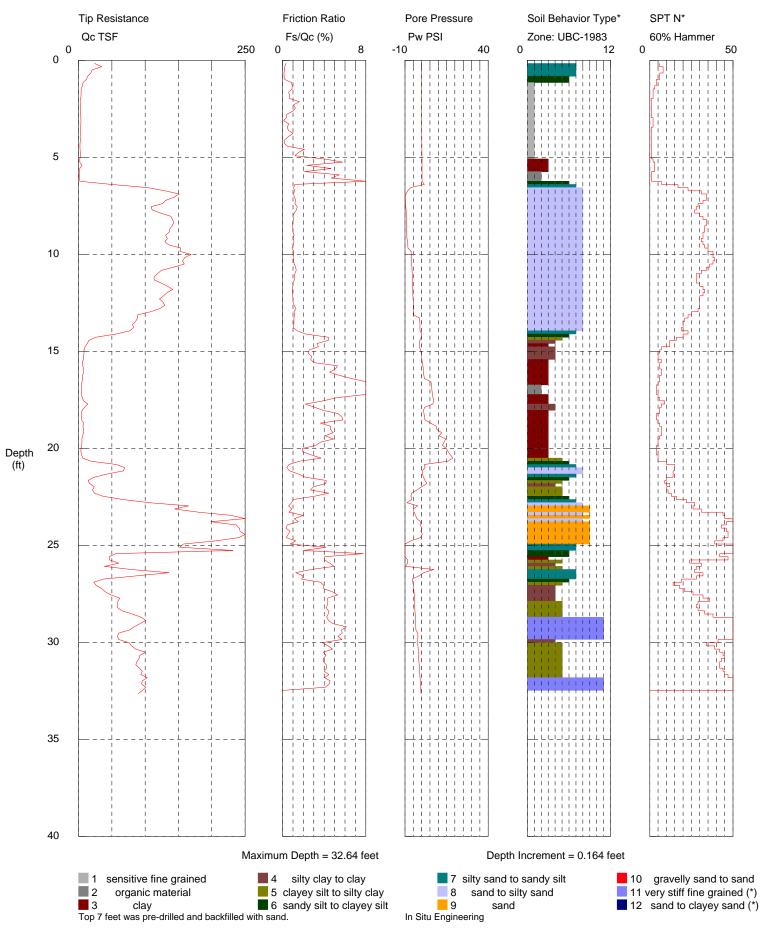

Operator: Brown Sounding: CPT-36 Cone Used: DSG1029 CPT Date/Time: 9/24/2008 1:09:44 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

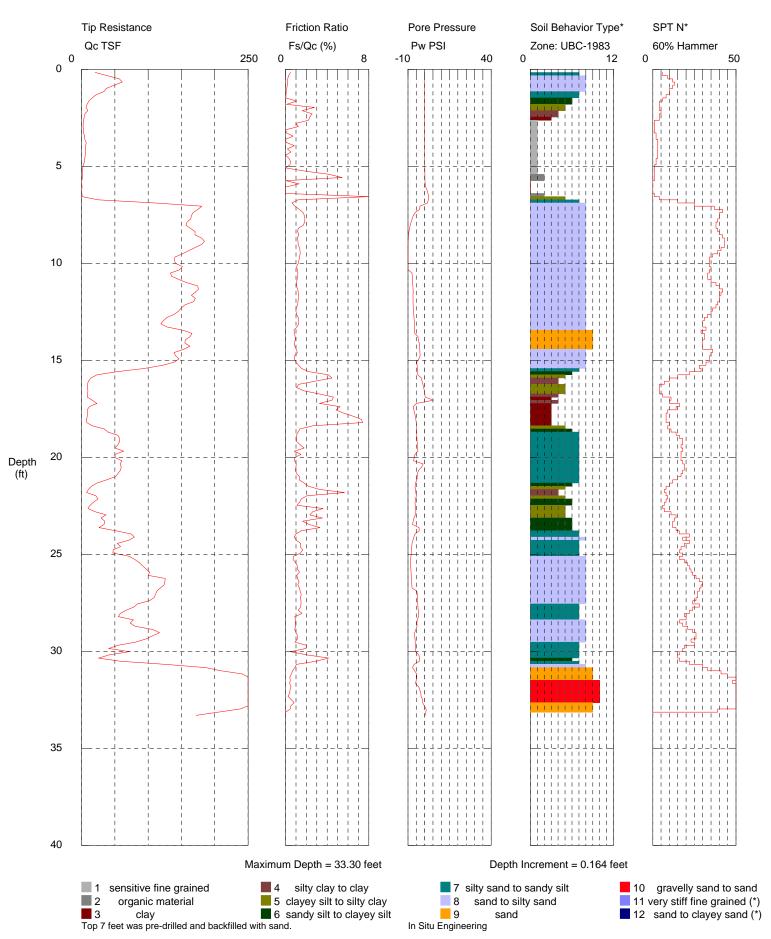

Operator: Brown Sounding: CPT-36 Cone Used: DSG1029 CPT Date/Time: 9/24/2008 1:09:44 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

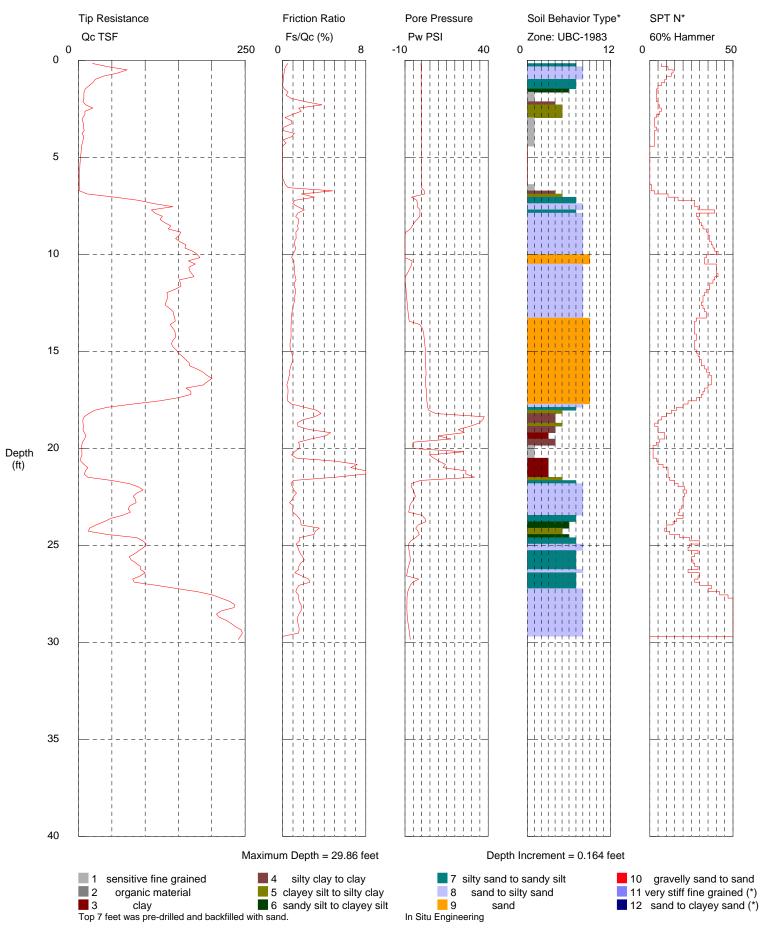

Operator: Nowak Sounding: CPT-37 Cone Used: DSG1015 CPT Date/Time: 9/29/2008 11:12:32 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

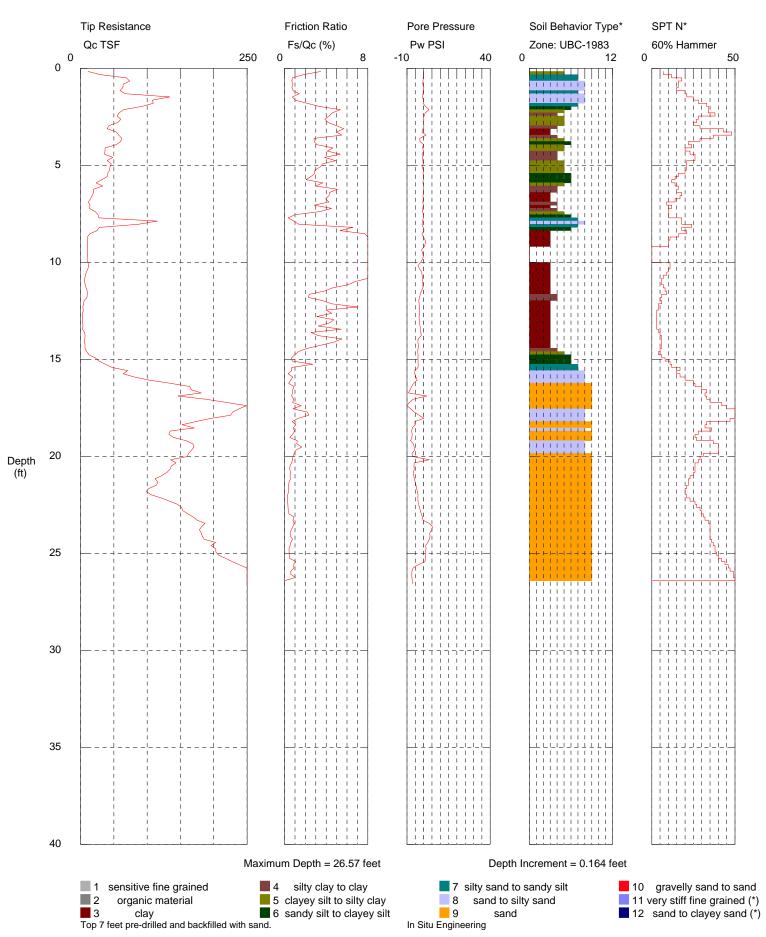

Operator: Nowak Sounding: CPT-38 Cone Used: DSG1015 CPT Date/Time: 9/29/2008 9:44:08 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

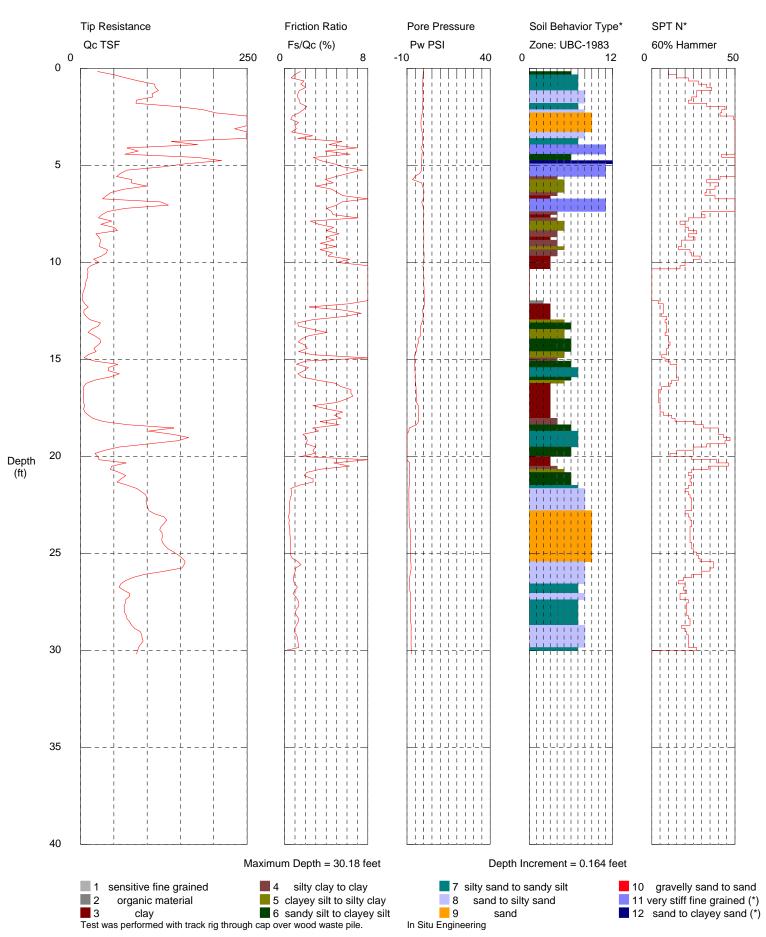

Operator: Nowak Sounding: CPT-39 Cone Used: DSG1015 CPT Date/Time: 9/29/2008 10:20:13 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

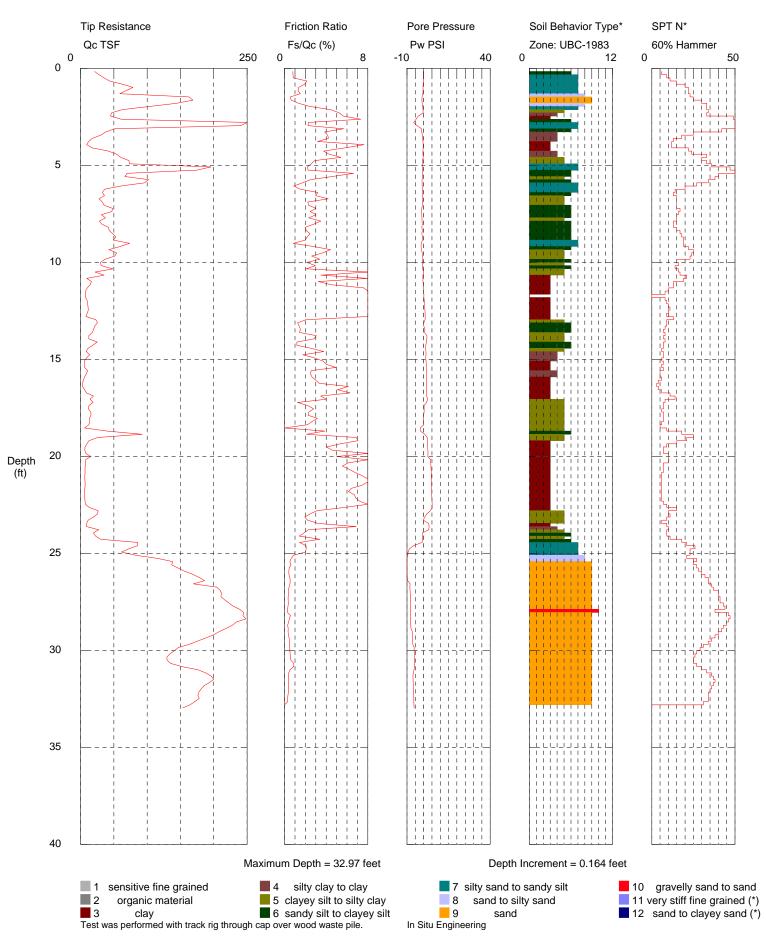

Operator: Nowak Sounding: CPT-40 Cone Used: DSG1079 CPT Date/Time: 9/29/2008 1:36:21 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

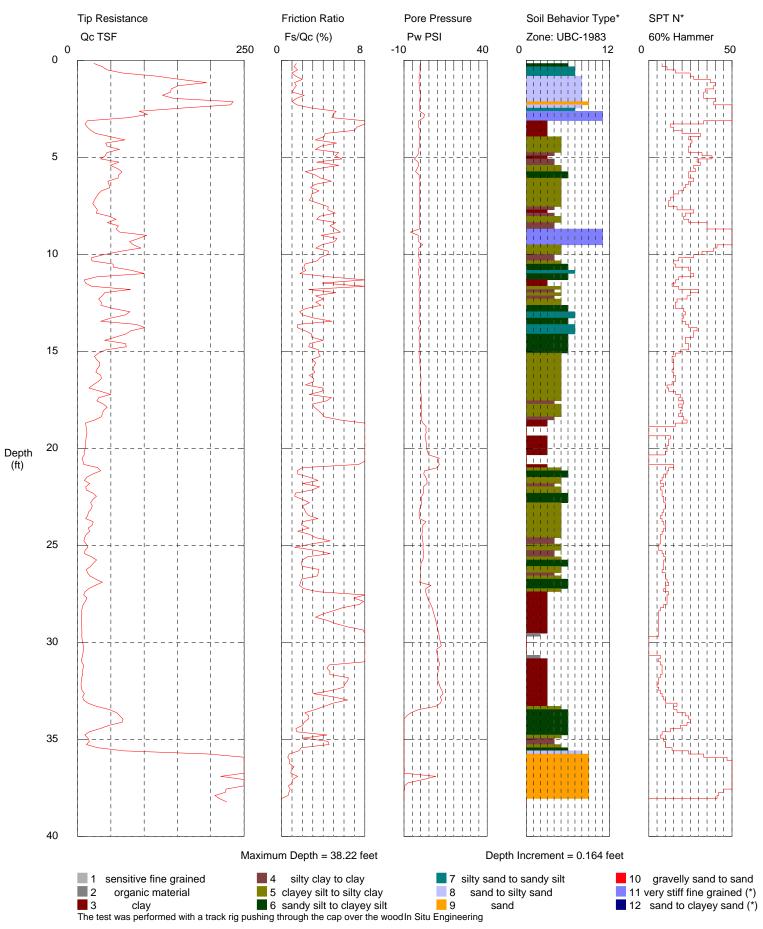

Operator: Nowak Sounding: CPT-41 Cone Used: DSG1079 CPT Date/Time: 9/29/2008 2:14:45 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

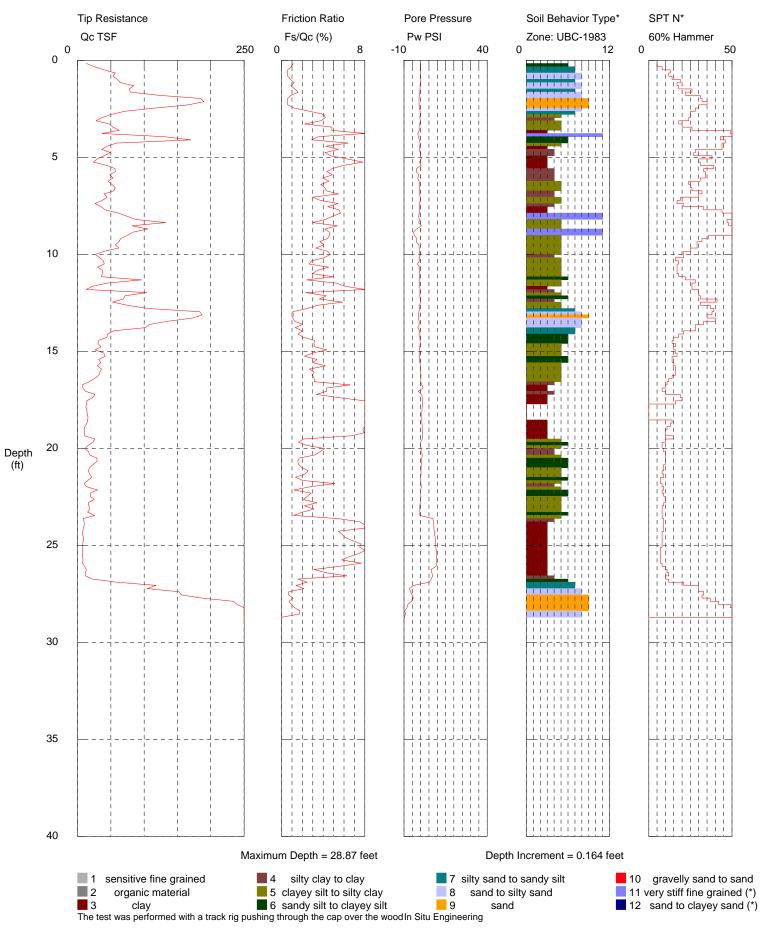

Operator: Nowak Sounding: CPT-42 Cone Used: DSG1015 CPT Date/Time: 9/30/2008 11:35:10 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

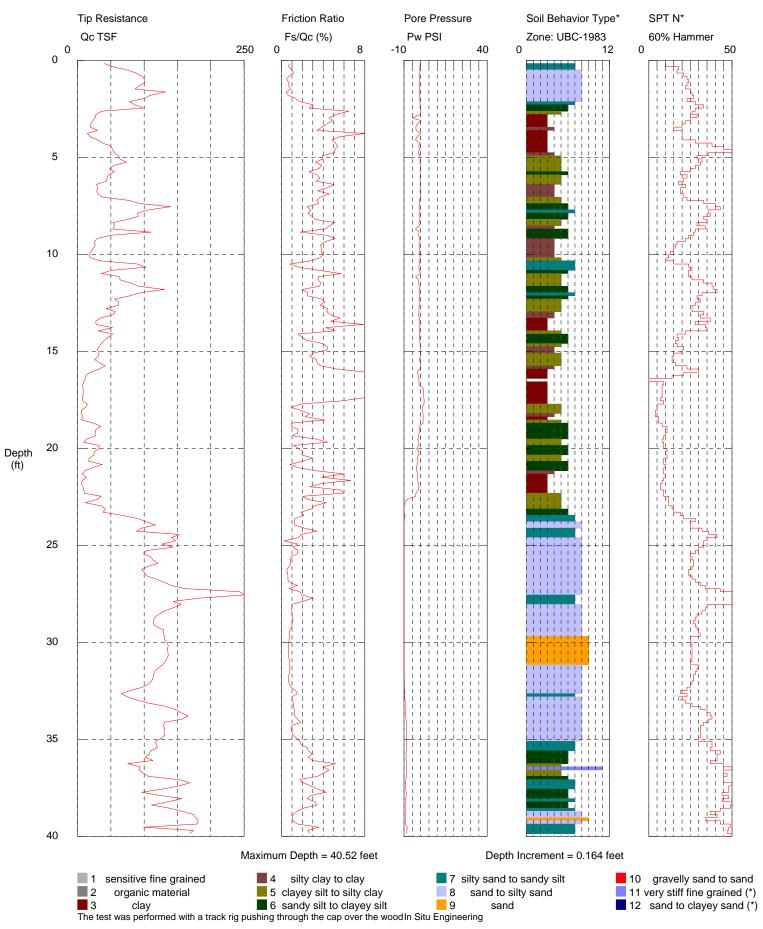

Operator: Nowak Sounding: CPT-43 Cone Used: DSG1015 CPT Date/Time: 9/30/2008 10:51:41 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

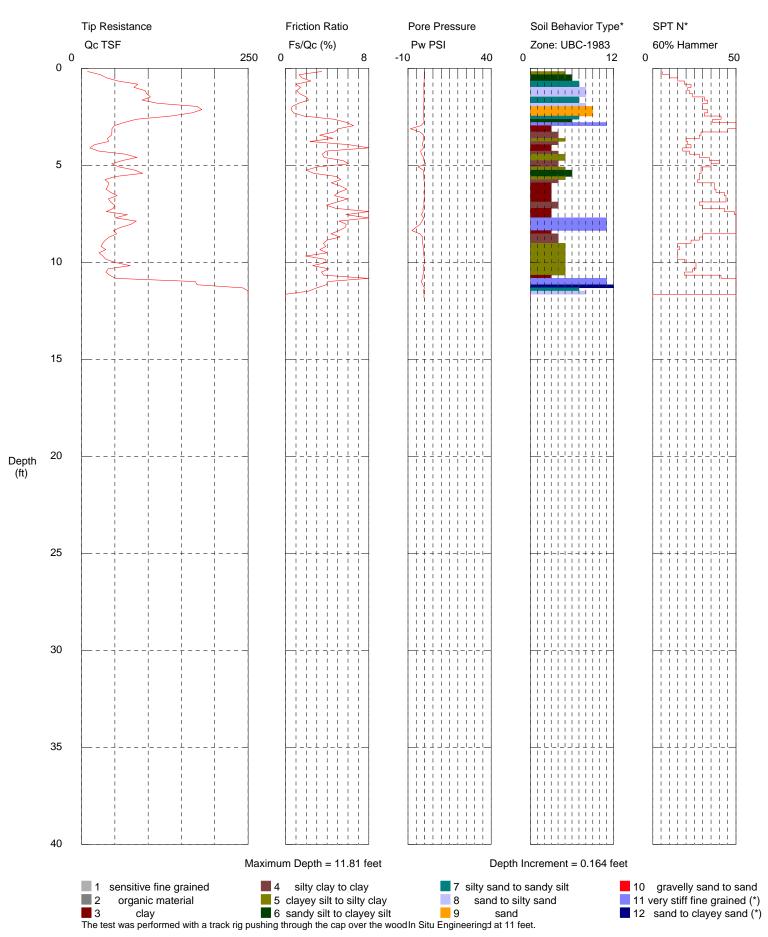

Operator: Nowak Sounding: CPT-44 Cone Used: DSG1015 CPT Date/Time: 9/30/2008 9:57:22 AM Location: B & L Wood Waste Site Job Number: BL RIM 304

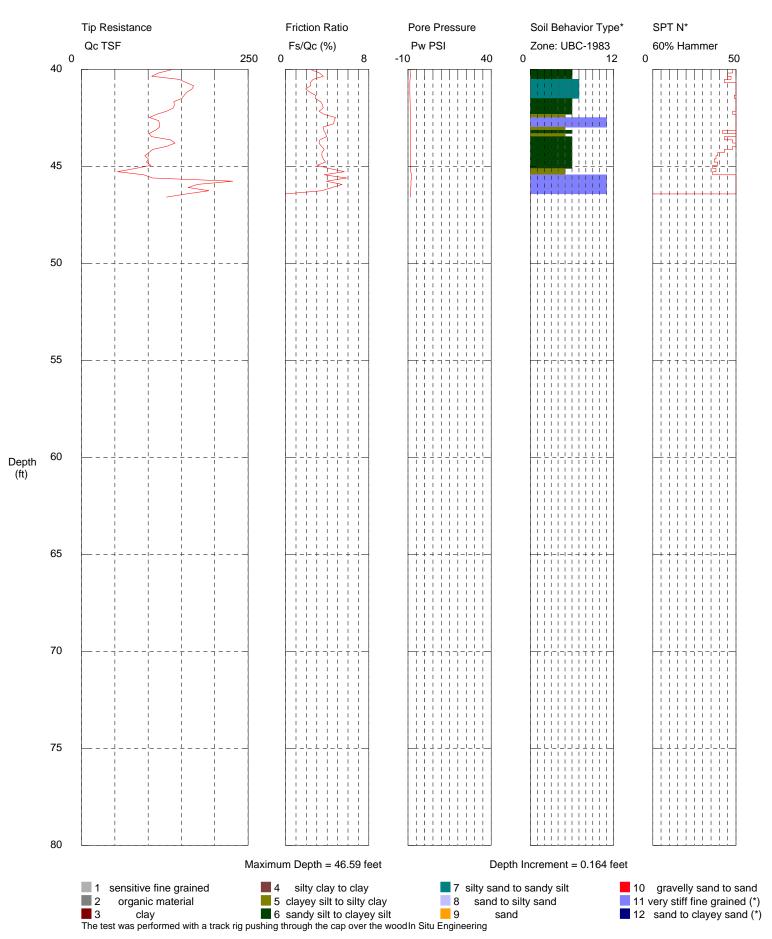

Operator: Nowak Sounding: CPT-45 Cone Used: DSG1079 CPT Date/Time: 9/29/2008 12:54:39 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

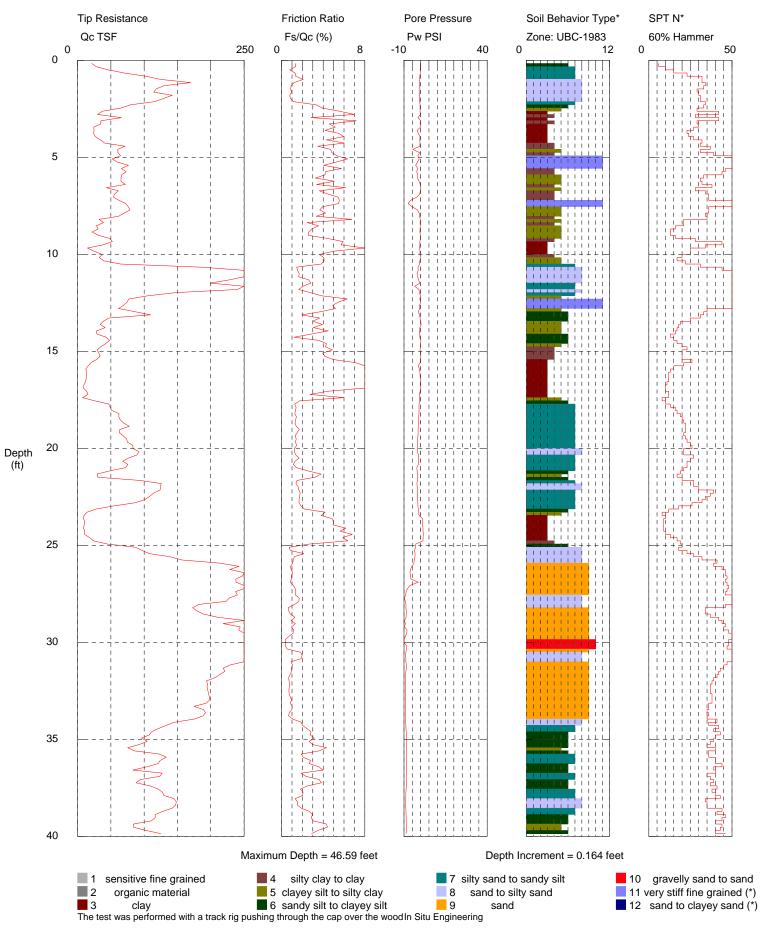

Operator: Nowak Sounding: CPT-46 Cone Used: DSG1079 CPT Date/Time: 9/29/2008 2:53:44 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

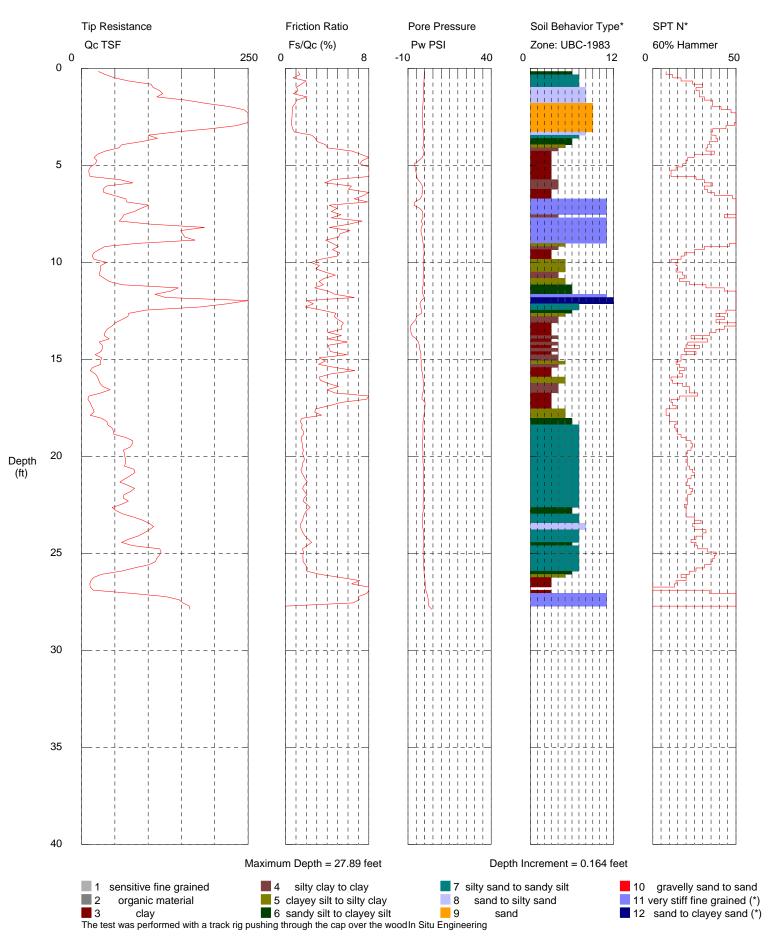

Operator: Nowak Sounding: CPT-47 Cone Used: DSG1079 CPT Date/Time: 9/29/2008 3:58:08 PM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Nowak Sounding: CPT-48 Cone Used: DSG1079 CPT Date/Time: 9/30/2008 12:54:17 PM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Nowak Sounding: CPT-49 Cone Used: DSG1079 CPT Date/Time: 9/30/2008 1:31:35 PM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Nowak Sounding: CPT-50 Cone Used: DSG1079 CPT Date/Time: 9/30/2008 2:04:39 PM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Nowak Sounding: CPT-51 Cone Used: DSG1079 CPT Date/Time: 9/30/2008 2:54:03 PM Location: B & L Wood Waste Site Job Number: BL RIM 304


Operator: Nowak Sounding: CPT-51a Cone Used: DSG1079 CPT Date/Time: 9/30/2008 3:10:24 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

Operator: Nowak Sounding: CPT-51a Cone Used: DSG1079 CPT Date/Time: 9/30/2008 3:10:24 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

Operator: Nowak Sounding: CPT-52 Cone Used: DSG1079 CPT Date/Time: 9/30/2008 3:58:13 PM Location: B & L Wood Waste Site Job Number: BL RIM 304

Coordinate System: NAD 83/98

Ground Surface Elevation: 25.70, NAVD 88

Latitude/Northing: 701851 Longitude/Easting: 1185795 Boring Location: Landfill Cap **Drill Date:** August 25, 2008 **Logged By:** John LaManna

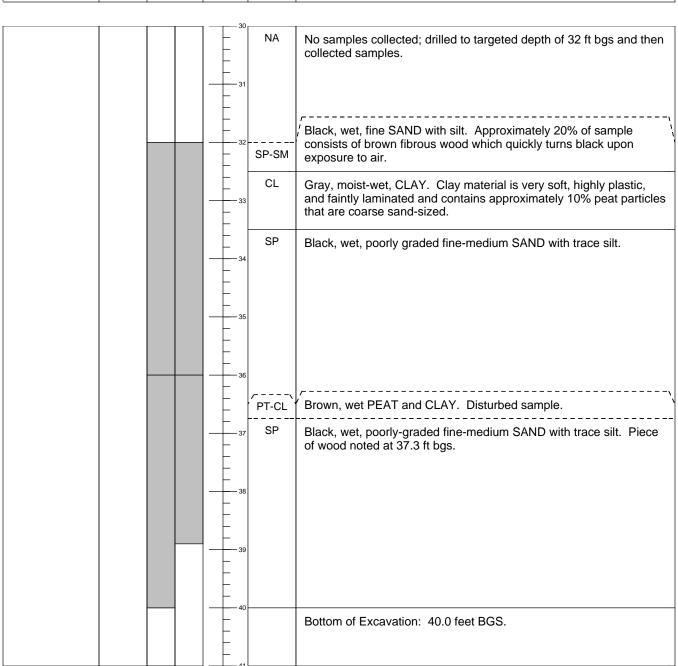
Drilled By: Eli Floyd / Cascade Drilling **Drill Type:** Track Geoprobe 6620DT

Sample Method: 2" x 48" macrocore

Boring Diameter: 2 inches
Boring Depth (ft bgs): 40 ft. bgs
Groundwater ATD (ft bgs): Unknown

Boring ID: A-1a

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap. Partly cloudy, breezy, warm.

ı						
I	OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
		ID	RECOVERED	FT BGS	SYMBOL	
1						

Coordinate System: NAD 83/98

Ground Surface Elevation: 25.70 ft. NAVD88

Latitude/Northing: 701850 Longitude/Easting: 1185794 Boring Location: Landfill Cap **Drill Date:** August 25, 2008 **Logged By:** John LaManna

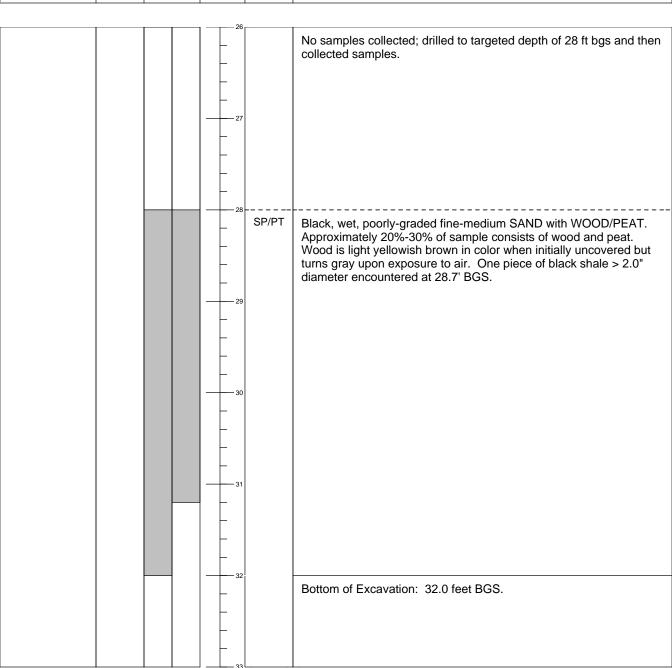
Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube
Boring Diameter: 2 inches

Boring Depth (ft bgs): 32 ft. bgs Groundwater ATD (ft bgs): Unknown **Boring ID: A-1b**

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap. Second location approximately 1ft south of first A-1(a) location.

ı						
	OIL INDICATORS	SAMPLE	DRIVEN/	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
		ID	RECOVERED	FT BGS	SYMBOL	

Ground Surface Elevation: 25.79 ft. NAVD 88 Sample Method: 2" x 48" macrocore

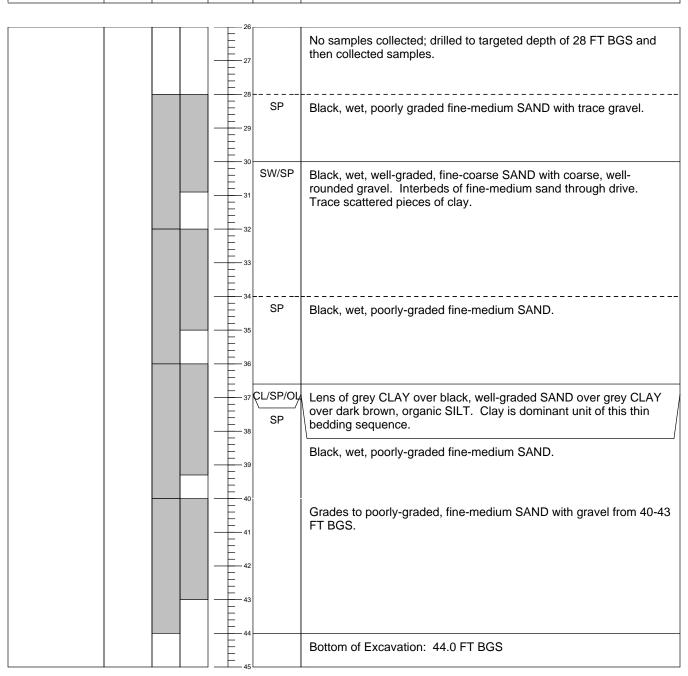
Latitude/Northing: 701779 Longitude/Easting: 1185795 Boring Location: Landfill Cap Drill Date: August 25, 2008 Logged By: John LaManna

Drilled By: Eli Floyd / Cascade Drilling Drill Type: Track Geoprobe 6620DT

Boring Diameter: 2 inches

Boring Depth (ft bgs): 44 FT BGS Groundwater ATD (ft bgs): Unknown Boring ID: A-2

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap. Partly cloudy, calm, warm.

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	

Latitude/Northing: 701787

Longitude/Easting: 1185905

Boring Location: Landfill Cap

Drill Date: August 25, 2008

Logged By: John LaManna

Drilled By: Eli Floyd / Cascade Drilling

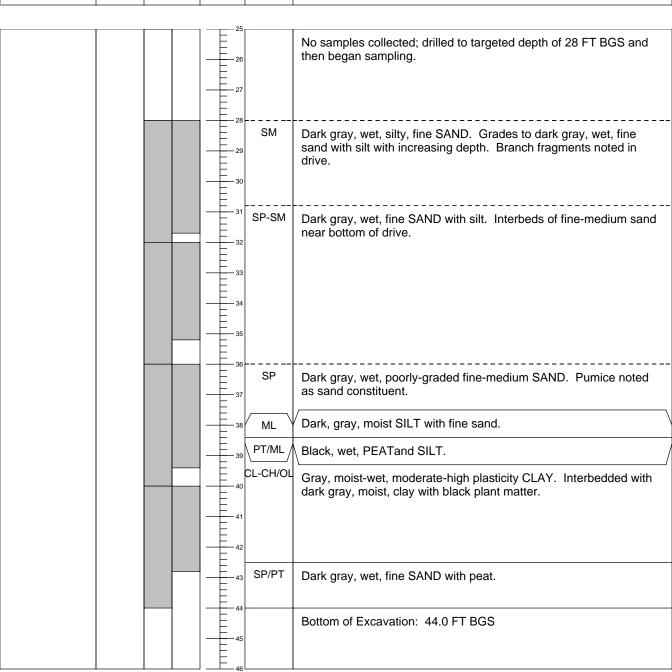
Drill Type: Track Geoprobe 6620DT

Ground Surface Elevation: 36.06 ft., NAVD 88 Sample Method: 2" x 48" macrocore

Boring Diameter: 2 inches

Boring Depth (ft bgs): 44 FT BGS Groundwater ATD (ft bgs): Unknown Boring ID: A-3

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap. Overcast, slight breeze, cool.

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
0.2	ID.	RECOVERED	FT BGS	SYMBOL	
	"	REGOVERED		OTWIDGE	

Latitude/Northing: 701715

Longitude/Easting: 1185907

Boring Location: Landfill Cap

Drill Date: August 22, 2008 Logged By: John LaManna

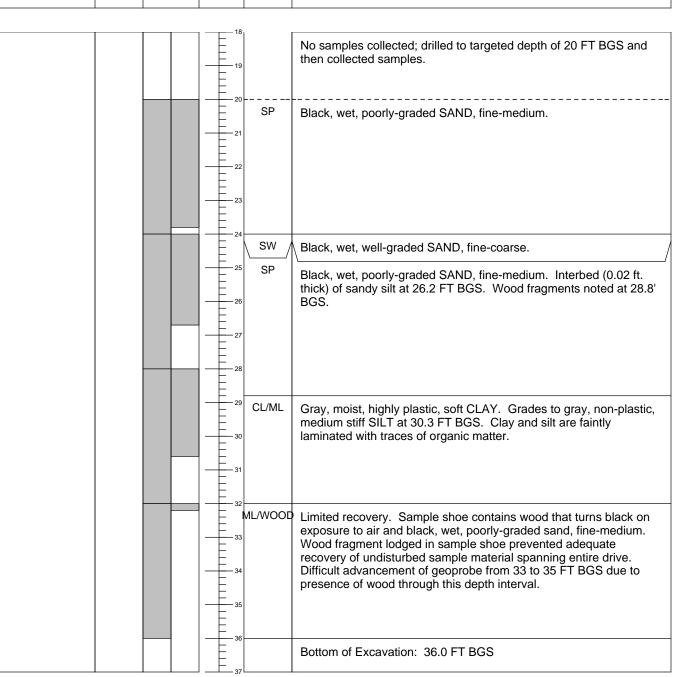
Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT

Ground Surface Elevation: 29.35 ft., NAVD 88 Sample Method: 2" x 48" macrocore Boring Diameter: 2 inches

Boring Depth (ft bgs): 36 ft bgs Groundwater ATD (ft bgs): Unknown Boring ID: A-4 (a)

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap. A-4 (a) is first attempt to get to 36ft bgs; refer to log for boring A-4(b).

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	

Latitude/Northing: 701715

Longitude/Easting: 1185907

Boring Location: Landfill Cap

Drill Date: August 25, 2008

Logged By: John LaManna

Drilled By: Eli Floyd / Cascade Drilling

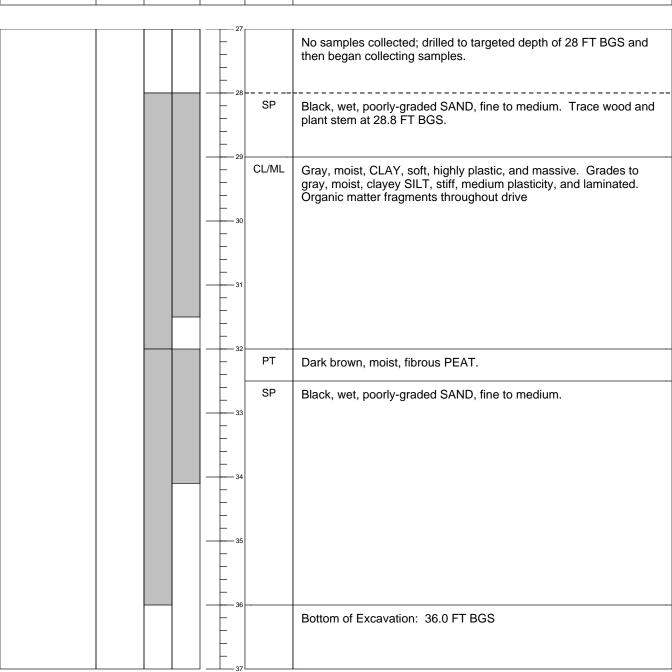
Drill Type: Track Geoprobe 6620DT

Ground Surface Elevation: 29.35 ft., NAVD 88 Sample Method: 2" x 48" macrocore

Boring Diameter: 2 inches
Boring Depth (ft bgs): 36 ft bgs
Groundwater ATD (ft bgs): Unknown

Boring ID: A-4 (b)

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap. A-4 (b) is located 2 ft west of A-4 (a). Partly sunny, damp. calm.

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	

Latitude/Northing: 701660

Longitude/Easting: 1185953

Boring Location: Landfill Cap

Drill Date: August 22, 2008 Logged By: John LaManna

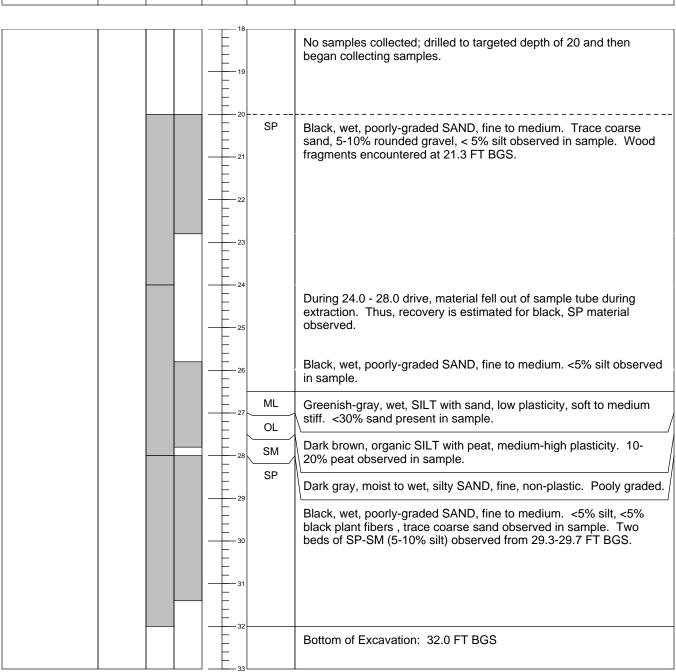
Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT

Ground Surface Elevation: 23.11 ft., NAVD 88Sample Method: 2" x 48" macrocore Boring Diameter: 2 inches

Boring Depth (ft bgs): 32 ft bgs Groundwater ATD (ft bgs): Unknown Boring ID: A-5

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap.

OIL INDICATORS	SAMPLE	DRIVEN/	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	

Latitude/Northing: 701615

Longitude/Easting: 1186080

Boring Location: Landfill Cap

Drill Date: August 22, 2008

Logged By: John LaManna Drilled By: Eli Floyd / Cascade Drilling

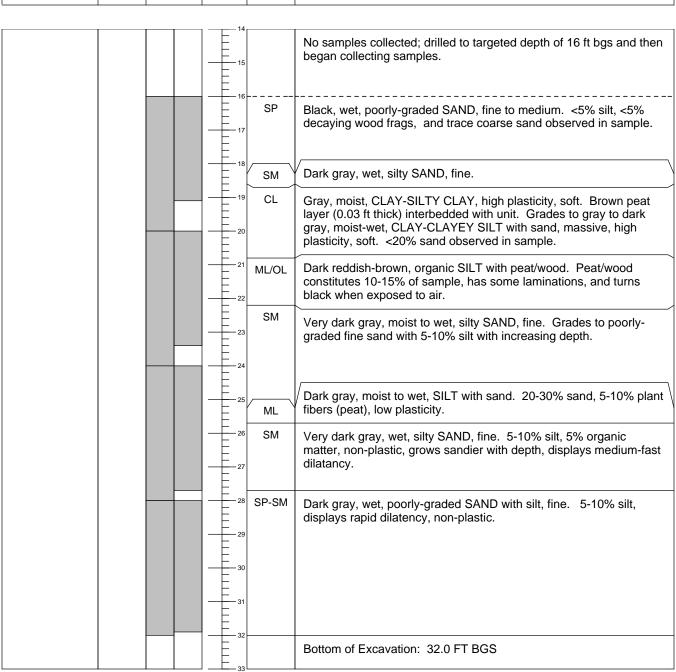
Drill Type: Track Geoprobe 6620DT

Ground Surface Elevation: 20.54 ft., NAVD 88 Sample Method: 2" x 48" macrocore Boring Diameter: 2 inches Boring Depth (ft bgs): 32 ft bgs

Groundwater ATD (ft bgs): Unknown

Boring ID: A-6

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap. Partly cloudy, 65-70 degrees, calm.

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	
			I		

Latitude/Northing: 701673

Drill Date: August 27, 2008 Logged By: Lisa Meoli

Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Mounted Geoprobe

Ground Surface Elevation: 25.00 ft., NAVD 88Sample Method: Dual Tube Boring Diameter: 2 inches

Longitude/Easting: 1185985 Boring Depth (ft bgs): 28 FT BGS Boring Location: Landfill Cap Groundwater ATD (ft bgs): Unknown Boring ID: A-7

Client: B&L Custodial Trust

Project: B&L RIM

Task:

Address:B&L Woodwaste Pierce County, WA

Remarks: Ground surface consists of landfill cap.

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	

No samples collected; drilled to targeted depth of 20 ft bgs and began sample collection. SP Black, moist, poorly-graded, SAND, fine. Reddish-white flecks present. No gravel or pebbles present.				
began sample collection. SP Black, moist, poorly-graded, SAND, fine. Reddish-white flecks present. No gravel or pebbles present.		18		
SP Black, moist, poorly-graded, SAND, fine. Reddish-white flecks present. No gravel or pebbles present.		19		No samples collected; drilled to targeted depth of 20 ft bgs and then began sample collection.
		21	SP	Black, moist, poorly-graded, SAND, fine. Reddish-white flecks present. No gravel or pebbles present.
CL Grey, dry, clayey SILT, tight, high plasticity. Some small woody debris present.		25	CL	Grey, dry, clayey SILT, tight, high plasticity. Some small woody debris present.
PT/SM Moist, WOOD/PEAT. Grades to black, moist, fine silty SAND.		27	PT/SM	Moist, WOOD/PEAT. Grades to black, moist, fine silty SAND.
Bottom of Excavation: 28.0 FT BGS		28		Bottom of Excavation: 28.0 FT BGS

Drill Date: August 29, 2008 **Logged By:** Lisa Meoli

Drilled By: Eli Floyd / Cascade Drilling

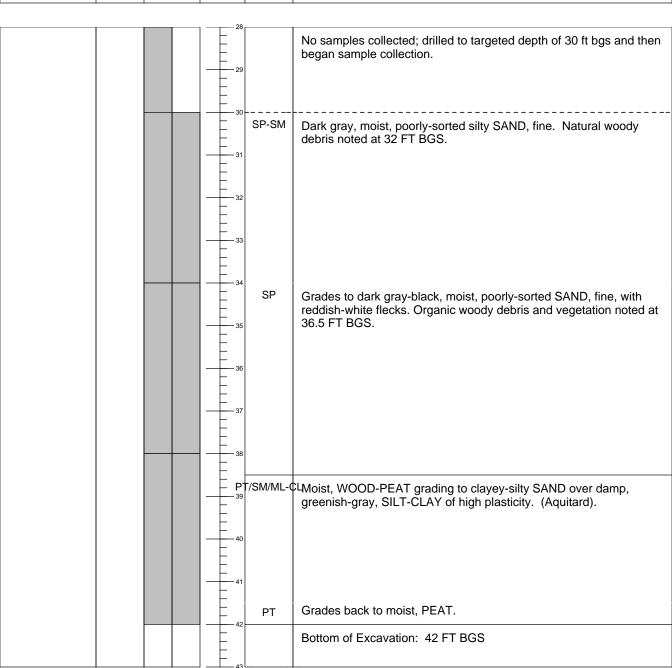
Drill Type: Track Mounted Geoprobe

Ground Surface Elevation: 36.02 ft., NAVD 88 **Sample Method:** Dual Tube **Latitude/Northing:** 701847 **Boring Diameter:** 2 inches

Longitude/Easting:1185883Boring Depth (ft bgs):42 FT BGSBoring Location:Landfill CapGroundwater ATD (ft bgs):Unknown

Boring ID: A-8

Client: B&L Custodial Trust


Project: B&L RIM

Task:

Address:B&L Woodwaste
Pierce County, Washington

Remarks: Ground surface consists of landfill cap.

OIL INDICATORS	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	ID	RECOVERED	FT BGS	SYMBOL	

	Attachment B2
Investigation-derived Waste	Documentation

Pie	se prir	it or type. (Form designed for use on		CI2102361-00			V 01/10/2008		n Approved.	OMB No.	2050-0039			
↑	W/		Number +1 0 0 0 0 3 3 4 (2. Page 1 of 3. Em	ergency Responsi (800) 483-3		4. Manifest		266	6 F	LE			
		erator's Name and Mailing Address & L Woodwaste Site		Genera	itor's Site Address	(if different if	nan mailing addre							
	55	2-817 Fife Way , Milton/Fife												
		nicorporated Pierce Cot, Wi ator's Phone: 208 852-7558	A 98354	1										
	6. Trai	sporter 1 Company Name			· · · · · · · · · · · · · · · · · · ·		U.S. EPA ID I	Number			••			
		ean Harbors Environmental	Services Inc	~					3 2 2	250				
	. ـ ا	sporter 2 Company Name		-			U.S. EPA JO!	Yumber	420	ファダ	`~\ `			
	8 Des	ionated Eacility Name and Site Address	ENU. Sorvi	<u>ces auc</u>	,		U.S. EPAID		100	<u>ر ر ب</u>	<u></u>			
	CI	ean Harbors Buttonwillow Ll	_C				CAD980875278							
		00 West Lokem Road ittonwillow, CA, 93208			/ # U U		4 7 0							
	Facility	s Phone: (681) 782-820	·/·····		·									
	9a. HM	9b. U.S. DOT Description (including Prep and Packing Group (if any))	er Shipping Name, Hazard Class, ID I	Number,	10. Contai No.	T	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Code	5			
		RQ, UN3077, ENVIRON	FEEDSTALLS CALL TATORING	HC OUDDTANACO	Nu.	Туре	Goanny	V11,1VQ1.	844	500.				
5	х	SOLID, N.O.S., (ARSEN		US SUBSTANCES,	002	Ma	1600	$ \phi $	811	D004				
ERA		·			DUX			<u> </u>						
GENERATOR		2.								į				
										* ************************************				
		3												
	ŀ				:									
		4,				-								
								,			,			
1														
	14. Special Handling Instructions and Additional Information 1. CH324981 Q L850WI ERG#171													
	15. G	ENERATOR'S/OFFEROR'S CERTIFICAT arked and labeled/placarded, and are in all	ON: Thereby declare that the confer	nts of this consignment are fully	and accurately des	scribed above	by the proper shi	pping name	and are clas	sified, packa	ged,			
	E	(porter, I certify that the contents of this cor	nsignment conform to the terms of the	e attached EPA Acknowledgmen	t of Consent.		-	п өхроп эн	ihmenrano re	ani ure riana	u y			
	Genera	ertify that the waste minimization statementor's/Offeror's Printed/Typed Name	in ochanica in 40 OFIX 202.27(a) (ii 1 2	Signalure	(b) (ii i aili a siiia	n quarrity ger	ieratorį is irus.		Mon	th Day	Year			
Į,			AULIFU] <i>Æ</i>	Total	1700	sele-	-7"	176	017	08			
Z Z	16. Inte	rnational Shipments Impor	te U.S.	Export from U.S.	Port of en	lry/exit								
		orter signature (for exports only): reporter Acknowledgment of Receipt of Mat-	-મંત્રી ૬		Date leavi	ng U.S.:								
TR ANSPORTER		rter 1 Printed/Typed Name		Signature	1	- T	7,		Mon	th Day	Year			
S S	M_i	chael H. Wei	5	12	us	5/2	5-54-57	رم	I-C	1 1 1	05			
Z AN	Transc	nter 2 Printed/Typed Natrie	,	Signature	()				Mon		Year			
⊭	18, Disa	repancy Aucr	<u></u>		7-6					27	<i>a</i>			
	***************************************	screpancy Indication Space Qua	ntily T	unn [Desidue		0-4-10-1		г	7- ""				
		L. Qua	outy — I	ype	Residue		Partial Reje	ection	Ł.	l Full Reje	dian			
<u>-</u>	18h Ali	ernate Facility (or Gonerator)		M	anifest Reference	Number:	U.S. EPA ID N			······································				
듯		omov rading for donovady					U.U. EFA ID N	anne.						
Ŧ	Facility'	s Phone:									ľ			
TEC	18c. Si	nature of Alternate Facility (or Generator)							Mor	nth Day	Year			
Ŝ	10 Mos	ardous Waste Report Management Method	Lodge En London for horsedous	Note that we discuss the same										
DESIGNATED FACILITY	19. naz 1.	продения императоры в продения ментор	2.	aste treatment, disposal, and rec	young systems)		4.							
7		H132									Ī			
		ignated Facility Owner or Operator: Certific	alion of receipt of hazardous materia		ot as noted in Item	18a								
	Printedi	Typed Name		Signature	a	0	Deus		Mon	th Day	Year			
♥ PA	Form 8	700-22 (Rev. 3-05) Previous editions	are obsolete					AT DOWN 1	1	114	07			
					DESIG	MAIED F	ACILITY <i>j</i> fo d	ı⊏Ş HNA]	HUN STAT	ıc (#FRE€	JUIRED)			

Please	print or type. (Form designed for use on elite	(12-pitch) typewriter.)	1 20 2			Form	Approved. OMB No. 2050-003
ĬŢĬŪŇ	VIFORM HAZARDOUS WASTE MANIFEST (Continuation Sheet)	21 Generator ID Number WAH 0006334. Whate ste site	54 2 Page 2	23. Mani	lest Tracking Ni	imber 7 <i>ぬう(</i>	066 FZF
24	Generator's Name SEL Was	dubste site				<u>دي در د</u>	006101
	""	· · · · · · · · · · · · · · · · · · ·					
25.	Transporter 3 Company Name	U 4- C1		~ ~~ ~	U.S. EPA ID	Number ~	10000
	<u> </u>	on 10/00/5 au	. Downe	2100	w	HDS	136600
26.	Transporter Company Name	ear Howhers Eve			U.S. EPAID 1 71 12	Number	9722250
27a		hipping Name, Hazard Class, ID Number,	28. Conta		29. Total	30. Unit	
HM			No.	Турв	Quantity	WL/Vol.	31 Waste Codes
						<u> </u>	
						-	record account of the control of the
					······································	1	
						1	
Œ.					·	 	
SATO.						-	·····
GENERATOR			<u> </u>	<u> </u>		 	
<u>ت</u>							
_							
			-				
							(
							art are art format of the section of
		· · · · · · · · · · · · · · · · · · ·				-	
							رو مورد بروست چار مساحهای برد مار امیرادی اساعت الله اعتماد عاد الادامات ا از امار امارات الله الله الله الله الله الله الله ال
					Marianen	╂	<u> </u>
							· · · · · · · · · · · · · · · · · · ·
- -							
						-	
1							
32. 3	Special Handling Instructions and Additional Inform	ลขอก				<u> </u>	
+							
33. Print	Transporter Acknowly@ment of Receipt of ted/Typed Name		atura // / /		1 41 d.	• /	Month Day Year
క్ష[· · · · · · · · · · · · · · · · · · ·	11/11/11/11		$\Delta Z \parallel$)	\mathcal{U}	111318
TRANSPORTER	Transporter Acknowledgment of Receipt of led/Typed Name		nature	1	V - V	4	Month Day Year
É	KAYTUR			وسيسل		V	Month Day Year
≥ 35. E	Discrepancy		S. Committee of the Com	<u></u>			TO
딇							
DESIGNATED FACILITY			_				
¥ 36. ⊢	lazardous Waste Report Management Method Co	des (i.e., codes for hazardous waste treatment, disposat	, and recycling systems)			ı	
Sig	,				,,		······································
ă		1	1			ı	
PA Form	n 8700-22A (Rev. 3-05) Previous editions ar	e obsolete.	DESIG	NATED FA	CILITY TO E	ESTINATIO	ON STATE (IF REQUIRED

ase print or type. (Form designed for use on elite (12-pitch) typewriter.) UNIFORM HAZARDOUS WASTE MANIFEST 21. Generator ID Number	22 Dags	52 8616	est Tracking N	Form /	Approved, OMB No. 2050
(Continuation Sheet) WAH 000033454 24. Generalor's Name. BEL Woodwaste Site	22. Page 3 0F3	23. Manin	00/7	111001 8 Z 66	6 FLE
BEL Woodwaste Site					
			·		
25. Transporter 5 Company Name Clean Harbou Env. Servi	ا مرین		U.S. EPAID	Number	202222
26. Transporter Company Name	(4)		U.S. EPA ID	Number	39322250
27a. 27b. U.S. DQT Description (including Proper Shipping Name, Hazard Class, ID Number. HM and Packing Group (if any))	28. Contai No.	Type	29. Total Quantity	30. Unit Wt./Vol.	31. Waste Codes
				1	
				-	
	 			 -	
			<u> </u>		
	ļ.,				
	1				j
		1			
•					
		·			
2. Special Handling Instructions and Additional Information	1				
3. Transporter S Acknowledgment of Receipt of Maleria's rinted/Typed Name Signature	· · · · · · · · · · · · · · · · · · ·		-		~
Egoliel Kodrigns	180			>	Month Day Ye
4. Transporter Acknowledgment of Receipt of Materials Signature Signature					
rmted/Typed Name Signature	Sire.				Month Day Ye
5. Oiscrepancy	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
6. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and re	cycling systems)				
s. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and re	cycling systems)				

Please print or type. (Form designed for use on elite (12-pitch) typewriter.)	D/20859	332	ee.	4 6 1 11 6 2 10 1 8 4	Form	Approved.	OMB No. 2	050-0039
UNIFORM HAZARDOUS 1. Generator ID Number WASTE MANIFEST A H D D D D B 3 3 4 5 4	2. Page 1 of 3.	Emergency Response (880) 483-3	Phone	4. Manifest	Tracking No.		1 F	LE
S. Generator's Name and Mailing Address H. S. C. ANGGOVAGENS Sitte 552-817 Aide Mary Militory/Fife - Chicomporated Pierce Cot. NAA - 88854		nerator's Site Address	(if different th	ian mailing addre	ss)			
Generator's Phone: 206 257-7566 6. Transporter 1 Company Name				U.S. EPA ID		- ,		
Clean Harbors Environmental Services Inc 7. Transporter 2 Company Name				U.S. EPA ID				
clean Holais End Senices	Tuc_			U.S. EPA ID	bos	7320	225c	೨
8. Designated Facility Name and Site Address Clean Hambors Guttom-vallow LLC 2500 West Lokem Road Buttom-willows CA, 93205 Facility's Phone: (253, 752-5000	*.				ivumber D-9-8-G	675	276	
Facility's Phone: (名称) 注意(图) Sa. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number HM and Packing Group (if any))	Г.	10. Contai	iners Type	11. Total Quantity	12. Unit Wt./Vol.	13	Wasie Codes	
	STANCES,	8		4800	Q	fs:	D004	
WINDSTALENCY, 9, PG.III LA SOUD, N.O.S., TARSENICY, 9, PG.III 2.		O	DM	7000	1			
3.					ļ			
						*,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
4.								
					<u> </u>			
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of the marked and labeled/placarded, and are in all respects in proper condition for transport at Exporter, I certify that the contents of this consignment conform to the terms of the attack I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a labeled of the contents of the certification of	ccording to applicabled EPA Acknowledge	e international and nat gment of Consent.	tional govern	nental regulation:	hipping name s. If export sh	a, and are cla apment and I	am the Prima	iged, iry Year
Generator's (Official Printed/Typed Name BREAULIEU		1881	al	ســـــــــــــــــــــــــــــــــــــ		1.6		
16. International Shipments Import to U.S. Transporter signature (for exports only):	Export from U.S	Port of ea	,					
	Sional	re/) (7	71		Mo	nth Day	Year
ED JOHNSON	135	Leeves		KuDa		19	nih Day	(S)
Transporter 2 Printed/Typed Valla A 18. Discrepancy				7		/	OZ	8
18a Discrepancy Indication Space Quantity Type		Residue		Partial Re	ejection		Full Reje	ction
18b. Alternate Facility (or Generator)		Manifest Referenc	e Number:	U.S. EPA ID	Number	· · · · · · · · · · · · · · · · · · ·	······································	,
Facility's Phone:					······			
18b. Alternate Facility (or Generator) Facility's Phone: 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste tre						M	onth Day	Year
19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste tre	eatment, disposal, ar	nd recycling systems)		. 4.				
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials cover			m 18a				· · · · · · · · · · · · · · · · · · ·	
Printed/Typed Name Charles Terry	Signat 	ure Z	200	Parler .	Deco		onto 20ay	708
PA Form 8700-22 (Rev. 3-05). Previous editions are obsolete. Clean Harbor's has the appropriate permits for and will accept the	o wrane in	DESI	GNATED	FACILITY TO	DESTINA	ATION STA	TE (IF RE	QUIRED

'lease	print or type. (Form designed for	use on elite (12-pitch) typewriter.)					Form /	pproved, OMB No. 2050-00
IL	NIFORM HAZARDOUS WASTE (Continuation Sheet)		WAHOO	10 033 454	Zof Z	23. Mani	or 72	.597	1 FLE
29.	. Générator's Name B+L	Woo	dwaste s	site					
25.	Transporter Company Na Transporter Company Na 27b. U.S. DOT Description (include	ome C6	on Herbor	s Envr Su	ر ي		U.S EPAID	D039	322 220
26.	Transporter Company Na	inte <u>S</u>	CT EXP	nero					007708
27a HM		ling Proper Ship	pping Name, Hazard Class, IC	O Number,	28. Cont. No.	ainers Type	29. Total Quantity	30. Unit Wt./Vol.	31. Waste Codes
$\ -$				to the state of th				<u> </u>	
									VI. VI. W. W. W. C.
		-							
GENERAL UK								-	
3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			·····					
_									
			· · · · · · · · · · · · · · · · · · ·						
32.	Special Handling Instructions and Add	litional Informat	ion		<u> </u>				
33.	Transporter S Acknowledgment	of Receipt of N	laterials						
Print	Kevin			Signatur L	<u> Leni B</u>	ened	A		Month Day Year
34.] Prin!	Transporter Acknowledgment ted/Types Name	of Receipt of M	laterials	Sign	1 1 2	\mathcal{K}	F		Month Day Year
35.5	Discrepancy				TUTT	D) -			1017198
132									
36. }	Hazardous Waste Report Managemer	nt Method Code	s (i.e., codes for hazardous v	waste treatment, disposal, and	recycling systems)				
36. }	<u> </u>			1					
<u> </u>	n 8700-224 (Ray 3-05) Provious			<u>.l</u>					

se print or type. (Form designed for use on elite (12-pitch) typewriter.)			Form Approved, OMB No. 2050-0
UNIFORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) 21. Generator ID Number WAH (CONTINUATION SHEET)		3. Manifest Tracking Numb	971F4E
24. Generator's Name			
B3L WOODWASTE SIT	t	U.S. EPA ID No	mher
25. Transporter 5 Company Name CLEAN WARK	OKS_	MA	D03937275C
26. Transporter 6 Company Name Clean Harbors Env. 2	Services	U.S. EPA ID NU	D 0393 ZZZSD
27a. 27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, HM and Packing Group (if any))	28. Containers		30. Unit 31. Waste Codes Wt./Vot.
1 / /			
	· ·		
32. Special Handling instructions and Additional Information			
33. Transporter S Acknowledgment of Receipt of Materials Printed/Typed Name Sig	anature // /	2 St	Pura 10 20 0
34. Transporter Acknowledgment of Receipt of Materials	.		
Printed/Typed Name Cabuci Radu givn	mature	5	Month Day Y
35. Discrepancy			, , , , , , , , , , , , , , , , , , ,
	-		
36. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposa	al, and recycling systems)		
Form 8700-22A (Rev. 3-05) Previous editions are obsolete.	<u> </u>		ESTINATION STATE (IF REQUIF

PARTE OF THE CATALOGUE OF THE CATALOGUE

NON-HAZARDOUS WASTE

NON-HAZARDOUS WASTE MANIFEST (Form designed for use on elite (12 pitch) typewriter) **NON-HAZARDOUS** 1. Generator's US EPA ID No. Manifest Document No 2. Page 1)231a **WAHDOOD33454 WASTE MANIFEST** 3. Generator's Name and Mailing Address
B& I. Waxdwagete Site
552-847 Fine Way
Unicorporated Pierce Count, WA 98354 Million/Fife BAM 4. Generator's Phone (206 852-7556 5. Transporter 1 Company Name A. State Transporters ID Clean Harbors Environmental Services Inc (781) 792-5000 B. Transporter 1 Phone 7. Transporter 2 Company Name C. State Transporter's ID SUT FRENCSSELLY INC MIKOUX D. Transporter 2 Phone 9. Designated Facility Name and Site Address 10. US EPA ID Number E. State Facility's ID Clean Harbors Grassy Mountain LLC 3 Miles East 7 Miles North of Knolls F. Facility's Phone (435) 884-8900 Grantsville, UT, 84029 UTD991301748 11, WASTE DESCRIPTION 12 Containers 13. Yolal Quantity 14. Unit Wt./Vol. No. NA, NON D.O.T. REGULATED, NONE P 016 PM 6750 G EZER A OR d. G. Additional Descriptions for Materials Listed Above H. Handling Codes for Wastes Listed Above 03/A132 15. Special Handling Instructions and Additional Information **EMERGENCY PHONE #: (800) 483-3718** A: CH333395 14,55 DM 1285 DM 16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations. Date Printed/Typed Name Day Year BEAULIEU KREM 17. Transporter 1 Acknowledgement of Receipt of Materials RANSPORTER Printed/Typed Name Signature Month Day Year 1. Wes $O\!\! imes$ Michael 18. Transporter 2 Acknowledgement of Receipt of Materials Date Year rilli 10 Jan 19. Discrepancy Indication Space F A 20. Facility Owner or Operator; Certification of receipt of the waste materials covered by this manifest, except as noted in item 19 Printed/Typed Name Month

T

Ple	ase pr	unt or type. (Form designed for use on elite (12-pitch) typewriter.)		.,			n Approved. OMB No. 2050-0039
1	UN	FORM HAZARDOUS WASTE MANIFEST 21. Generator ID Number (Continuation Sheet)		23. Mani	fest Tracking Nu	nber Í	
	24. (Generator's Name	1000	II ()	$\gamma \cup \varphi$	l	
		BEL WANDER	sta	< 1	(a)		
		<u> </u>	217	<u> </u>			
	25.	Transporter Company Name (()()()()()	-		U.S. EP (D)	/ Jupa	12034275
	-				U.S. EPA ID:	Number	<u> </u>
	26.	Transporter 7 Company Name Cheantarbor			MAL	107	arres
	27a.	27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,	28. Contair		29. Total	30. Unit	31. Waste Codes
	HM	and Packing Group (if any))	No.	Туре	Quantity	Wt./Vol.	!
						<u> </u>	
Ш							
E		·					
FRA							
GENERATOR							
l ï							AND
Н							
Ш							
Ш	İ						
	-						
						İ	
	<u> </u>						
$\ $	32. \$	gecial Handling Instructions and Additional Information				J	
$ \downarrow$		2					
_	33. Ti	ransporter Acknowledgment of Receipt of Materials	1 1.		, \		
TRANSPORTER	Printe	ed/Typed Na/M-1 / / Signifie	MIINN	N M	111		MM , 24 XE
Ö,			May 1	X Y C	<u>in</u>		11/1/11/11/11/21
2	Printe	ransporter VAcknowledgment of Receipt of Materials			7		Month Day Year
Ŀ		Stue-Pail	SE	7	()		11/10508
2	35. D	iscrepancy	<i>O</i>	•	7		
5							İ
27							
DESIGNATED FACILITY	36. H	lazerdous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and re	cycling systems)			,	
100							
E E		4	ţ			1	
E D	A Corm	1 8700-22A (Rev. 3-05) Previous editions are obsolete.		MATER	ል <i>ር</i> ነሀ ITV TA F	L CTIMA	TION STATE (IE REOLIRED)

GENERATOR WASTE PROFILE SHEET

Page 1 of 2

allied waste		r				
		\[\varthingsquare\]	/aste Profile #			
Requested Disposal Facility:	Roosevelt Regional MSW LF WA 1	78				
	an Allied Waste Company		WI Sales Rep:			
I. Generator Information	on		Date: 9/3/08			
Generator Name: B&L Woody	vaste Custodial Trust	···				
Generator Site Address: 2201	6th Avenue					
City: Milton	County: Pierce	State: W	ashington	Zip: 98354		
State ID/Reg No: N/A	State Approval/Waste Code: N/A		(if applicable)	SIC Code:		
Generator Mailing Address (if d	ifferent): Trustee, Daniel J. Silve	r, 606 Colu	ımbia St Ste 212			
City: Olympia	County: Thurston	State: W	ashington	Zip: 98501		
Generator Contact Name: Dar	niel J. Silver	E	mail:			
Phone Number: (360) 754-934	13	Fax Num	ber:			
IIa. Transporter Informati	on					
Transporter Name: Clearcreek	Contractors, Inc.	Contact N	Name: Jay Wilcox			
Transporter Address: 3203 15	th Street					
City: Everett	County: Snohomish	State: V	/A	Zip: 98201		
Phone Number: (425) 252-5800	Fax Number: (425) 252-1093	State Tra	nsportation Numbe	er: NA		
Ilb. Billing Information						
Bill To: Clearcreek Contractors	, Inc.	Contact N	Name: Kim Curnet	tt		
Billing Address: 3203 15th Str	reet		Email: Kim@clear	creekcon.com		
City: Everett	State: WA Zip: 98201	Phone	: (425) 252-5800	Fax: (425) 252-1093		
III. Waste Stream Informa	ation					
Name of Waste: drill cuttings from	om geotechnical hollow stem auger	borings H1	through H-15			
Process Generating Waste: dri	Il cuttings from site investigation act	vities				
Type of Waste IND	USTRIAL PROCESS WASTE 0	· V PO	LLUTION CONTRO	DL WASTE		
Physical State: 🗸 SO	LID SEMI-SOLID POWDE	R LIC	QUID OTHER:			
Method of Shipment: 🔽 BU	LK DRUM BAGGED D	OTHER:				
Estimated Annual Volume: C	CUBIC YARDS: 📝 TONS: 1	2]	GALLONS	POUNDS:		
	ORUMS:					
Frequency:	☐ ANNUAL					
Special Handling Instructions:	None					
IV. Representative Samp	le Certification		☐NO SAM	IPLE TAKEN		
Is the representative sample co analysis, collected in accordance equivalent rules?	llected to prepare this profile and lab e with U.S. EPA 40 CFR 261.20(c) g	oratory juidelines d	or YES or [ОМ		
Sample Date: 08/19/2008	Type of Sample: ✓ COMPOSITE	SAMPLE	GRAB SAMPI	LE		
Laboratory: Fremont Analytical			oloyer: Floyd Snid	er, Inc.		
Sample ID Numbers: WP 12-3				and the same of th		
Sampler's Name (printed): Bre		natūre:	sell (teers .		

GENERATOR WASTE PROFILE SHEET (continued)

Page 2 of 2

Waste Profile #

	I Characteristics of W	aste					
Characteristic C	Components				eight (ra	nge)	
2. Debris				95.000 5.000			
3.		***************************************	· · · · · · · · · · · · · · · · · · ·	0.000			
4.			······				
5.							
Color	Odor (describe)	Free Liquids	% Solids	pH:	Flash P	oint	Phenol
Grey	None	YES or ✓NO Content%	100.00	7-9	N/A ₃	οF	N/A ppm
	atory Analytical Report (and/					rovided	for this Profile
Chlordane, Endri defined in 40 CFI		indane, Methoxychlor, T	oxaphene, 2,4-D, c	r 2,4,5-TP Silvex a	s	∐Ye	s or 🔽 No
Hydrogen Cyanid	r generating process cause it to en le as defined in 40 CFR 261.23?						s or 🔽 No
	ontain regulated concentrations o					Ye	s or 🛛 No
including RCRA	ontain regulated concentrations o F-Listed Solvents?					Ye	s or 🔽 No
dioxin as defined	ontain regulated concentrations o in 40 CFR 261.31?			ICCD), or any othe	r		s or 🗸 No
	Toxic Material as defined by Fee		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				s or V No
	Radioactive Waste as defined by Medical or Infectious Waste as c						s or ✓ No s or ✓ No
	rated at a Federal Superfund Clea	<u>-</u>	State regulations?				sor√No
	tor Certification	и ор энс:			j	<u> </u>	3 01 [4] 140
description of the Results/Materia utilizing this pro- any waste which from accepting Our company he	that to the best of my knowled the waste material being offered I Safety Data Sheets submitted offile, neither myself nor any of this classified as toxic waste, he by law. I shall immediately give ereby agrees to fully indemnif- ture. I further certify that the of	I for disposal and all kill are truthful and compose of the contract of the contract waste or infective written notice of any this disposal facility.	nown or suspected blete and are repre ompany will delivectious waste, or a y change or cond- against any dama	I hazards have be sentative of the w er for disposal or ny other waste ma ition pertaining to ges resulting from	en disclos aste. I fu attempt to terial this the waste this certi	ed. All rther cent deliver stacility enot profession fication	Analytical rtify that by r for disposal v is prohibited ovided herein. being
	Daniel J. Silve	er ,		Dan Silv	er Asso	ciates	
	Authorized Representative Name	And Jille (Printed)			npany Nam 1/03/2008		
	Authorized Representative	Signature			Date	·····	······································
VII. Allied W	laste Decision						
Approved	Rejected V Exiratio	on Date:					
Conditions:							

	Name, Title	444,000	Signatu	Ire			Dale

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM080819-3 Floyd | Snider Project No: B&L RIM

August 25th, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** soil samples delivered to Fremont Analytical on August 19th, 2008.

The samples were received in good condition – in the proper containers (8oz soil jars), properly sealed, labeled and within holding time. The cooler temperature upon receipt was 5°C, which is within the laboratory recommended cooler temperature range (4°C - 10°C). The samples were extracted and stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C. There were no sample receipt issues to report.

Examination was conducted for the presence of the following:

• Total Metals (As, Pb, Ni, Zn, Cd, Cu) in Soil by EPA Method 6020

This application was performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

EPA Method 6020 Notations:

1. **The Relative Percent Difference (RPD%) for Nickel and Zinc** – The RPD for the Matrix Spike (MS) and MS Duplicate exceed laboratory QC limits. The Laboratory Control Sample (LCS), MS and MSD were within QC range, proving the analysis in control.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Sr. Chemist / Lab Manager

M. y. Clements

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Total Metals in Soil by EPA Method 6020

Project: B&L Woodwaste Site

Client: Floyd | Snider Client Project #:

Lab Project #: CHM080819-3

EPA 6020	MRL	Method	LCS	PD 108 5-7'	PD 108 10-12'	PD 107 5-7'	PD 107 12-14'
(mg/kg)		Blank					
Date Extracted		8/20/08	8/20/08	8/20/08	8/20/08	8/20/08	8/20/08
Date Analyzed		8/22/08	8/22/08	8/22/08	8/22/08	8/22/08	8/22/08
Matrix		Soil		Soil	Soil	Soil	Soil
Arsenic (As)	2.0	nd	114%	102	152	230	278
Lead (Pb)	4.0	nd	110%	26	309	214	352
Cadmium (Cd)	2.0	nd	101%	nd	6.8	nd	nd
Copper (Cu)	10.0	nd	92%	36	150	227	423
Nickel (Ni)	10.0	nd	91%	11	17	16	13
Zinc (Zn)	5.0	nd	109%	72	702	404	662

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spiked Soil Concentrations:

As = 50 mg/kg

Pb = 50 mg/kg

Cu = 50 mg/kg

Ni = 50 mg/kg

Cd = 50 mg/kgZn = 50 mg/kg

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate
"RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Soil by EPA Method 6020

Project: B&L Woodwaste Site

Client: Floyd | Snider Client Project #:

Lab Project #: CHM080819-3

					Duplicate		MS	MSD	
EPA 6020	MRL	WP 12-3	WP 4-8	WP 9-11	WP 9-11	RPD	WP 9-11	WP 9-11	RPD
(mg/kg)									
Date Extracted		8/20/08	8/20/08	8/20/08	8/20/08	%	8/20/08	8/20/08	%
Date Analyzed		8/22/08	8/22/08	8/22/08	8/25/08		8/22/08	8/22/08	
Matrix		Soil	Soil	Soil	Soil		Soil	Soil	
Arsenic (As)	2.0	3.3	nd	2.9	2.6	11%	74%	81%	9%
Lead (Pb)	4.0	nd	nd	nd	nd		105%	109%	4%
Cadmium (Cd)	2.0	nd	nd	nd	nd		87%	91%	4%
Copper (Cu)	10.0	11	nd	12	9.8	20%	68%	90%	28%
Nickel (Ni)	10.0	nd	nd	14	12	14%	62%	102%	49%
Zinc (Zn)	5.0	20	18	24	18	30%	91%	130%	35%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135% Spiked Soil Concentrations:

As = 50 mg/kg

Pb = 50 mg/kg

Cu = 50 mg/kg

Ni = 50 mg/kg

Cd = 50 mg/kgZn = 50 mg/kg

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate
"RPD" Indicates Relative Percent Difference

Fremont
(Analytical)

Chain of Custody Record

Date: St Wood was St St St St St St St S	
Client: FLOYD SNIDER Project Name: BT C WOODWASTE SITE Address: 601 UNION ST. SUITE 600 Location:	
Address: 601 UNION ST. SUITE 600 Location:	
City, State, Zip SEATTLE, WA 98117 Tel206 29 2 2078 Collected by: BTB EM, LM	
Reports To (PM): bretheaulieu@ Floyds wides: 10 m Email: Project No: B+C RIM	
Comments/Debth Comments: RCRA-8 Metals: RCRA-8 Metals: RCRA-8	
and the second s	
1 APD 108 5-7 10:30 SOIL 1 x 802 8/18/08 X FOR TCLP	ME
2 PD 108 10-12' LO:45 SOIL 1×80Z 1 X RESERVE VOLUME	6
3 PD 108 15' 11:00 SDIL 1×802 Had	
4 PD 108 12-14 10:50 SOIL 1 X 80Z HOLD	
5 PD 108 19.20 11:05 SOIL 1X802 HOLD	
6 PD 107 5-7 1400 5016 1×802 X RESGRUE VOLUME	
7 PD 107 12-14 1405 SOIL 1×802 X RESERVE VOLA	nc
X (V) [ERVE
WP 4-8 16:30 SOIL 21802 X COMPOSITE FOR	UME
10 44	CLP
Relinquished Date/Time Received 1 Date/Tyme: Good? Special Remarks NOTE HOLDS	AND
x July Juli 8/19/08 x July Ville 8/19/08 /2=20 emperature: 5°C. POTE ATIM AN	DIL
Received to Date/Time Received to Date/Time/ 16 00 Seals Intact?: x Date/Time/ 16 00 Total Number of Containers: (13) TAT> 24HR 48HR	1565

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178

info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM080926-1

October 1st, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** water samples delivered to Fremont Analytical on September 26th, 2008.

The samples were received in good condition – in a cooler with wet ice, in the proper containers (500mL Polys), properly sealed, labeled and within holding time. The cooler temperature upon receipt was 5.4° C, which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The samples were extracted and stored in refrigeration units at the USEPA-recommended temperature of 4°C ± 2°C. There were no sample analysis or sample receipt issues to report.

Examination was conducted for the presence of the following:

- Dissolved Metals (As) in Water by EPA Method 6020
- Total Metals (As) in Water by EPA Method 6020

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

Sincerely,

Michelle Clements

Lab Manager / Sr. Chemist

mclements@fremontanalytical.com

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

				Duplicate	
MRL	Method	LCS	BLW-D4-PD31-9F	BLW-D4-PD31-9F	RPD
	Blank				
	9/29/08	9/29/08	9/29/08	9/29/08	%
	9/30/08	9/30/08	9/30/08	9/30/08	
	Water		Water	Water	
0.002	nd	86%	0.18	0.16	12%
		9/29/08 9/30/08 Water	9/29/08 9/29/08 9/30/08 9/30/08 Water	Blank 9/29/08 9/29/08 9/29/08 9/30/08 9/30/08 9/30/08 Water Water	MRL Method Blank LCS BLW-D4-PD31-9F BLW-D4-PD31-9F 9/29/08 9/29/08 9/29/08 9/29/08 9/30/08 9/30/08 9/30/08 9/30/08 Water Water Water Water

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

 $As = 100\mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

EPA 6020 (mg/L)	MRL	BLW-D4-PD31-14-F	BLW-D4-PD30-9-F	BLW-D4-PD34-8-F
Date Extracted		9/29/08	9/29/08	9/29/08
Date Analyzed		9/30/08	9/30/08	9/30/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	nd	0.004	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: LCS, LCSD: 65% to 135%

Spike Concentrations:

 $As = 100 \mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

EPA 6020 (mg/L)	MRL	BLW-D4-PD34-14-F	BLW-D4-PD29-8F	BLW-D4-PD29-13F
Date Extracted		9/29/08	9/29/08	9/29/08
Date Analyzed		9/30/08	9/30/08	9/30/08
Matrix		Water	Water	Water
Arsenic (As)	0.002	0.027	nd	0.012

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135% Spike Concentrations:

 $As = 100\mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

		MS	MSD	
EPA 6020 (mg/L)	MRL	BLW-D4-PD31-9F	BLW-D4-PD31-9F	RPD
Date Extracted		9/29/08	9/29/08	%
Date Analyzed		9/30/08	9/30/08	
Matrix		Water	Water	
Arsenic (As)	0.002	88%	89%	1%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentrations:
As = 100μg/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

EPA 6020	MRL	Method	LCS	Decon 4	Decon 3	Decon 2	Decon 1	Duplicate Decon 1
(mg/L)		Blank						
Date Extracted		9/29/08	9/29/08	9/29/08	9/29/08	9/29/08	9/29/08	9/29/08
Date Analyzed		9/30/08	9/30/08	9/30/08	9/30/08	9/30/08	9/30/08	9/30/08
Matrix		Water		Water	Water	Water	Water	Water
Arsenic (As)	0.002	nd	86%	nd	nd	nd	nd	nd

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

MS, MSD, LCS, LCSD: 65% to 135%

Spike Concentrations:

 $As = 100\mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: N/A

Lab Project #: CHM080926-1

		MS	MSD	
EPA 6020	MRL	Decon 1	Decon 1	RPD
(mg/L)				
Date Extracted		9/29/08	9/29/08	%
Date Analyzed		9/30/08	9/30/08	
Matrix		Water	Water	
Arsenic (As)	0.002	94%	95%	1%

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

MS, MSD, LCS, LCSD: 65% to 135%

Spike Concentrations:

 $As = 100\mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

Fremont
Analytical)

Chain of Custody Record

Analy	TUTTE																						
2930 Westlake Ave. N. Suite 100	Tel: 206-352																						
Seattle, WA 98109	Fax: 206-352	-7178			Date	: _	9	26	10	8	_			Page:	_			/	of:		_		
Client: FLOY	DISNID	92								Proje	ect Na	me:							48TZ				
Address: 601 (MION	ST, 5	VITE 6	00				72		Locat	tion:												
City, State, Zip	TUE, W	A ag	101	Tel: 20	16 2	292	20	78		Colle	cted b	y:		_	30	297	- 1	SEAU	use)			
Reports To (PM):	170		Fax:					Email	l:									J Pro	oject No:				
														_				\$					1
			Container	Date of Collection	VOA 8260	VOA 8021B BTEX	NWTPH-Gx	NWTPH-HCID	NWTPH-Dx Ext.	SEMI VOL 8270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES 8151A	METALS:	Metals: MTCA-5	Metals: RCRA-8	PASENIK TO GOOD					
Sample Name	Time	Sample Type	Type	Dai	9	9	ž	ž	ž	SEP	PA	PCE	G	Ü	ME	Me	Me	4		Come	ments/Dep	oth	
1 BLW- D4-PD31-9F	9-00	w	500 m Pd	9/26/0	8													X	FIL	E61) F	UPERE	D -> 0155	042
BLW-04-PD31-14-F	9:30	1		,														X			1	Are	
3 BLW-DY-PD30-9-		1 1																X					
4 BLW- Dy. PD34-8	= 11:00																	X					
5 BLW - DY . PD 34-14.	- 11:43																	X					
6BLW-DY-PD29-8F	13:00																	X					
BLW-04-PD29-131	13230	1	4	4														X			1		
DECON 4	16:00																	X	70	TAL	As	/UNFIL	12
DECON 3	6:05																	X					
10 DECON 2 LINDECON 1	16:10	r																1					
Relinguished	Pate/Time	U	Received	7		Date/	Time:	,			Sampl Good?	e Rece	eipt:				_	X	Special	Remarks			
	7-9	26/08-	X /			Date/	241	18	17	40	Temp		9:				5	1400	= /	11 8	AUDI	ES	
Relinquished	Date/Time	,	Received			Date/	ime:					ntact?	er of Co	ntaire				K				(1
			^								1 Otal 1	eambe	or Co	mtaine	15:		-	11)	TAT	> 24HI	48HR	Standard	1

Attachment B3	
Laboratory Test Reports	

LABORATORY SERVICE REQUEST FORM/SAMPLE TESTING PROGRAM

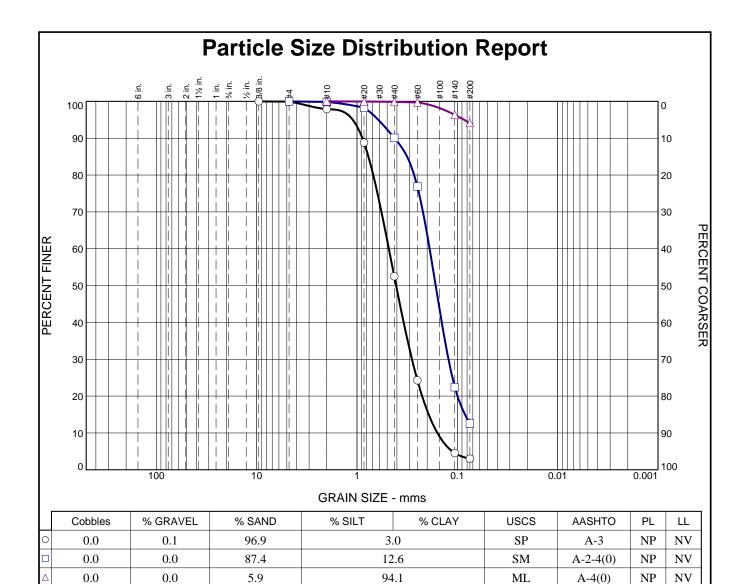
Project Name:	BEL Landfill.	Soil Technology Job N	umb	er:					10 Sant 17		San	ıple .	Arriv	al D	ate:		T			-		Pag	e Z -of	2	I
Client Name:	AMEZ Geomatry			*				1			Del	ivera	bles	Due	Date	::				-		<u> </u>			ı
Project No.:		Telephone No.		-				1			Elec	tron	ic De	liver	able	s?	Т	~	Yes	or N	o				
Purchase Orde		Email Address						1			Nur	nber	of S	ampl	es:										
Notes/ Special	Instructions:																								
			Moisture Content (ASTM D2216)	Sieve Analysis (D-422)	Ombined Analysis (D-422)	Percent Passing #200 (D1140)	Atterberg Limits (D4318)	pecific Gravity (D-854)	Standard Proctor (D-698)	Modified Proctor (D-1557)	Organic Content ASTM D-2437	California Bearing Ratio (CBR) (ASTM D-1883)	Triaxial: Unconfined Compression (QU) ASTM D-2166	Triaxial: Unconsolidation Undrained (UU,Q) (ASTM D-285	Consolidated Undrained (CU) (ASTM D-4767)	(Tiaxial: Unconsolidated Undrained (UU) (ASTM D-2850)	rimming or Remolding of Sample	helby Tube Extrusion and Visual Classification (D-2488)	One Dimensional Consolidation (ASTM D-2435)	With secondary compression	lemolding of Sample	Hydraulic Conductivity in flexible-wall (ASTM D-5084)	/ Rigid Wall Hydraulic Conductivity (ASTM D-2434		Please return remainmy sample to corresponding composite buellet.
Boring No.	Sample No.	Sample Depth	Moistu	Sieve A	Combir	Percent	Atterbe	Specific	Standar	Modifie	Organi	Califorr	Triaxial	Triaxial	Consoli	Triaxial	Trimmi	Shelby	One Dir	With	Remold	Hydrau	Rigid W	Other:	ログロ
Discrete	H-10-13-15	13-15	\nearrow	\times																					East
Discrete	H-11-13-15	(3-15	\times																						East
Discrete.	H-11-33-35	33-35	\succeq	\times					L																
Shelby Shelby Shelby Shelby	H-4-25-27 H-8-21-23 H-11-23-25 H-6-13-15	25 - 27 21 - 23 23 - 25 13 - 15					XXXX							XXXX								×			
Composite Composite	North Composite East Composite South Composite	5 gal. Suchet 5 gal. Suchet 5 gal. buchet	-																						
H ₂ O	Site Water	2×5gal. Suck.																							
	1 2	V					5	$\overline{}$			\cap														
Samples Relingu Date & Time:	rished by:			ole Re & Tir		d by:_ &/	2 2 2	708	<u>ه ح</u> کم '	2:2	10 o	70				ples I & Ti		uishe	ed by:						

LABORATORY SERVICE REQUEST FORM/SAMPLE TESTING PROGRAM

Project Name:	Bil landfill	Soil Technology Job N	Vumb	er:							San	aple	Arriv	val D	ate:	-	T				- Annie de la Constantina del Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la Constantina de la	Pa	ge 1 c	of 2	l	
	AMEC Geomatrix	Contact Name: Zauw			اسلام	uit		1					ables			<u></u>	—					1			1	į
Project No.:	11 120 000-	Telephone No. 206 -	-34	$\frac{2}{2}$	761	~~~	<u> </u>	1					nic De				1		Ye	s or N	.Vo				1	
Purchase Order	r No.:	Email Address 2 59 He	terui	4,7.	ھ تے		—	1		,	Nur	nber	r of Sa	ampl	ıes:										1	į
Notes/Special						ή×·	· <u>co</u>	$\overline{\sim}$																	1 ~	i
			-)] ~ 3'	
Boring No. Discrete	Sample No. H-12-7.5-9.0 H-12-15-13	Sample Depth 7.5-9.0 15-17	Moisture Content (ASTM D2216)	Sieve Analysis (D-422)	Combined Analysis (D-422)	Percent Passing #200 (D1140)	Atterberg Limits (D4318)	Specific Gravity (D-854)	Standard Proctor (D-698)	Modified Proctor (D-1557)	Organic Content ASTM D-2437	California Bearing Ratio (CBR) (ASTM D-1883)	Triaxial: Unconfined Compression (QU) ASTM D-2166	Triaxial: Unconsolidation Undrained (UU,Q) (ASTM D-285	Consolidated Undrained (CU) (ASTM D-4767)	Triaxial: Unconsolidated Undrained (UU) (ASTM D-2850)	Trimming or Remolding of Sample	Shelby Tube Extrusion and Visual Classification (D-2488)	One Dimensional Consolidation (ASTM D-2435)	With secondary compression	Remolding of Sample	Hydraulic Conductivity in flexible-wall (ASTM D-5084)	m. 2. 2 11-11 II II Landing on Anatority (A GTM D. 2434	Rigid Wall Hydraulic Conductivity (ASTM D-2434 Other:	Sout	5/2 composite
Discrete	H-13 - 11-13	11-13	×	X	 '	+		+	1	+-	+'	+	+	+	+	-	+	+-	+-		+	+	+-	+	Sout	11
Discrete	H-13-17-19	17-19	+-/	1	 '	+		+		+	 '	+	+	+		+	+	+-	+	+	+		+	+		
Discrete	H-13-21-23	21-23	X	 	₩'	+		\mathcal{H}		+	 	+	+	+	-	+	+-	+	+	+	+	+-	+	+	+	
Discret	H-14-23-25	23-25	+'	 /	 '	+		1	\leftarrow	+	 	+	+-	+-		+	+	+-	+-	+	+		+	+		
Discrete	14-1-13-15	13-15	\times	X	,'	+	\leftarrow	\vdash		 		+	+-	+	+	+	+-	+	+	+-	+	+	+-	+		<u></u>
Discrete	11-3-17-19	33-35	 	+X	+'	+	1	\leftarrow	$\overline{}$	+	+'	+-	+	+	+	+	+	+	-	+	+	+-	+	+		
Discrek	H-3-33-35	33-35	+	 	 '	+		+	 	+	+'	+-	+	+	+	+	+-	+	+	+	+	+	-	+-	North	1
Discrete	H-5-11-13			+	 '	+		1		+		+	+	+	+	+	+-	+	+	+	+	+			North	
Discrete	1+-5-23-25	23-25	₹	X	+'	+		+		+	+'	+	+	+		+	+	+-	+-	+	+	-		+	North	
Discrete	H-6-5-7	5-7	六	K	<u></u>	1	+	+		+		+	+-	+	+-	+	+	+	+	+	+		+	+	Noi.	~_
Discrete	1+-6-31-33	31-33	\Rightarrow	Ϋ́Х,	<u>,</u>	1	4	1		4	 	+-	+	+-			+	+	+	+	+		-	+	+ 1 2	ſ <u>.</u>
Discrete	1+-7-17-19	17-19	/ △	15	4'	4	[]	.41	+	-	4′	4	-			+-	—		+	+	+	_	+	+	North	1_
Discrete	H-7-23-25	23-25	 '	'ښا	—'	4	ľΧ	41	4		_	4				+			-		+		—	—		
Discrete	H-8-23-25	23-25	<u> </u>	13	<u>-</u> -	1	 '	4				1		4					\perp	+	+		4			
Digerete	H-9-7-9	7-9	<u> </u>	7天,	'بل	۲۲	\bigcirc	1_		1	 ′		<u></u>		ــــــــــــــــــــــــــــــــــــــ	<u></u>	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ					Ш.		<u>East</u>	_
Samples Relingu	uished by: Un Der	2 4				ed by:	F	100 m	200	85	to	20		-		nples l te & Ti		nguish	ed by	y:					-	
Date & Time:			_ Date	e & Tir	me:	`	\$100	<u> </u>	<u> </u>	2	2 × ×		200	<u> </u>	Dan	302 1.	Inte									

Physical Soil Testing Laboratory Report for B & L Woodwaste Site Project

Prepared for Floyd Snider Two Union Square 601 Union Street, Suite 600


Seattle, WA 98101

and

AMEC Geomatrix

1201 Webster Street, 12th Floor Oakland, CA 94612

Prepared by Soil Technology 7865 NE Day Road West Bainbridge Island, WA 98110

SIEVE	PERCENT FINER									
inches size	0		Δ							
.375	100.0									
	(GRAIN SIZE	Ī							
D ₆₀	0.4813	0.1889								
D ₃₀	0.2832	0.1226								
D ₁₀	0.1580									
	cc	DEFFICIEN	TS							
C _C	1.05									

SIEVE	PEI	IER	
number size	0		Δ
#4	99.9	100.0	
#10	97.9	99.8	100.0
#20	88.8	98.3	100.0
#40	52.5	90.1	99.9
#60	24.3	76.9	99.7
#140	4.5	22.4	96.4
#200	3.0	12.6	94.1

o poorly graded sand	
□ silty sand	
△ silt	
REMARKS:	
O	

USC Classification

Δ

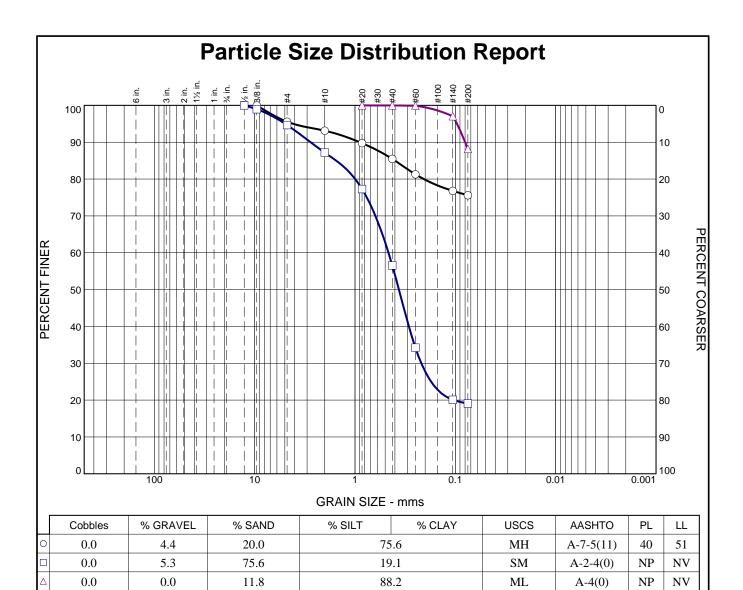
0	Source of Sample: Discrete
	Source of Sample: Discrete
Δ	Source of Sample: Discrete

3.05

Depth: 17-19 Depth: 11.0-13.0

Depth: 13.0-15.0

Sample Number: H-1 Sample Number: H-3 Sample Number: H-5


SOIL TECHNOLOGY

Client: Geomatrix

Bainbridge Island, WA

Project: B&L Landfill Project No.: J-08-2284

Figure

SIEVE	PEI	IER	
inches size	0		Δ
.5	100.0	100.0	
.375	100.0	99.0	
	(GRAIN SIZE	<u> </u>
D ₆₀		0.4636	
D ₃₀		0.2182	
D ₁₀			
	CC	DEFFICIEN	TS
C _C			
C _c			

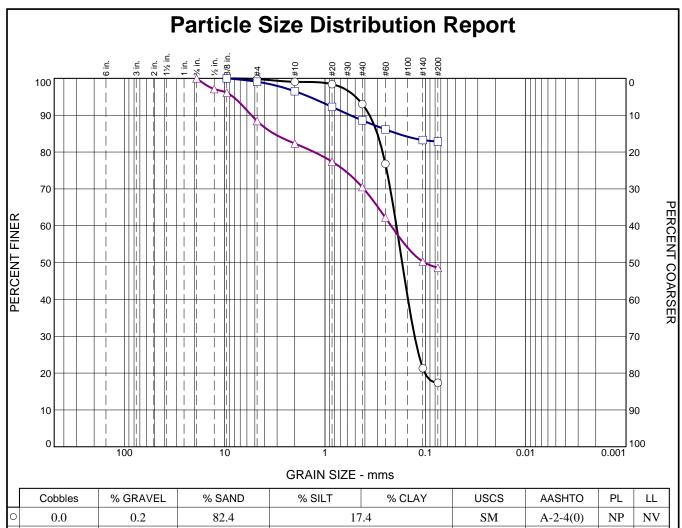
SIEVE	PEI	RCENT FIN	IER
number size	0		Δ
#4	95.6	94.7	
#10	93.1	87.2	
#20	89.7	77.3	100.0
#40	85.5	56.5	100.0
#60	81.3	34.2	99.9
#140	76.8	20.1	97.0
#200	75.6	19.1	88.2

USC Classification	
○ silt with sand	
□ silty sand	
△ silt	
REMARKS:	
0	
I^{\diamond}	
1	

 Source of Sample: Discrete 	,
☐ Source of Sample: Discrete	;
△ Source of Sample: Discrete	;

Depth: 23.0-25.0 Depth: 5.0-7.0 Depth: 31.0-33.0 Sample Number: H-6 Sample Number: H-6 Sample Number: H-6 Δ

SOIL TECHNOLOGY


Client: Geomatrix
Project: B&L Landfill

Bainbridge Island, WA

Project No.: J-08-2284

Figure

2

	Cobbles	% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
0	0.0	0.2	82.4	17	'.4	SM	A-2-4(0)	NP	NV
	0.0	0.9	16.2	82	2.9	ML	A-4(0)	NP	NV
Δ	0.0	11.6	39.8	48	3.6	SM	A-4(0)	NP	NV

size			Δ	
.75 .5 .375	100.0	100.0	97.1 96.1	
	(GRAIN SIZE		
D ₆₀	0.1942		0.2196	
D ₃₀	0.1278			
D ₁₀				
	CC	DEFFICIEN	TS	
C _c C _u				
C _u				

PERCENT FINER

SIEVE

inches

SIEVE	PERCENT FINER					
number size	0		Δ			
#4	99.8	99.1	88.4			
#10	99.1	96.5	82.3			
#20	98.4	92.3	77.4			
#40	93.0	88.6	70.5			
#60	76.8	86.2	62.2			
#140	21.3	83.3	50.3			
#200	17.4	82.9	48.6			
	I	l				

□ silt with sand	
\triangle silty sand	
REMARKS:	- 7
0	
Δ	

USC Classification

o silty sand

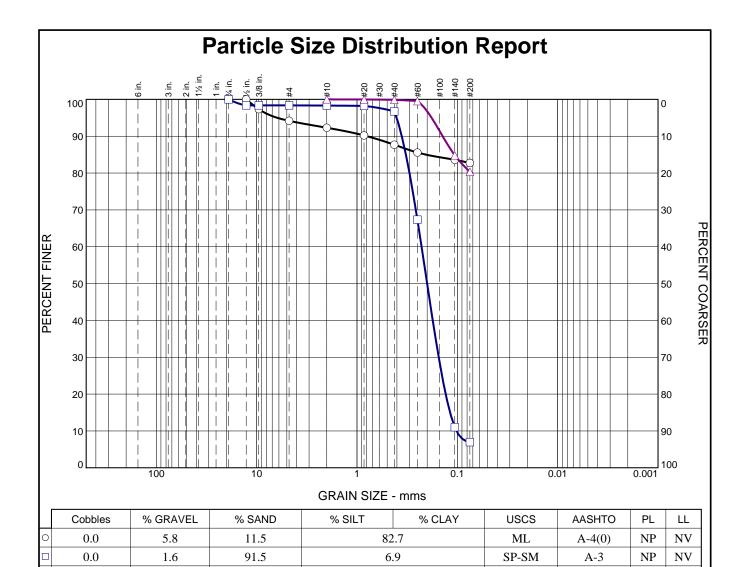
○ Source of Sample: Discrete
 □ Source of Sample: Discrete
 △ Source of Sample: Discrete

Depth: 17.0-19.0 Depth: 23.0-25.0

Depth: 7.0-9.0

Sample Number: H-7 Sample Number: H-8 Sample Number: H-9

SOIL TECHNOLOGY


Client: Geomatrix
Project: B&L Landfill

Bainbridge Island, WA

Project No.: J-08-2284

Figure

<u>3</u>

Δ	0.0			0.0	19.	6	
	SIEVE inches size .75 .5	100)	RCENT FIN 100.0 98.4	IER		
	.375	97		98.4			
	><		(SRAIN SIZE			
	D ₆₀			0.2271			
	D ₃₀				0.1532		
	D ₁₀			0.1020			
	$\geq \leq$		CC	DEFFICIEN	TS		
	C_{C}			1.01			
	C			2.22		П	

SIEVE	PEI	RCENT FIN	IER
number size	0		Δ
#4	94.2	98.4	
#10	92.3	98.3	100.0
#20	90.2	98.2	100.0
#40	87.7	96.7	99.9
#60	85.6	67.3	99.5
#140	83.6	11.0	84.8
#200	82.7	6.9	80.4

80.4

	USC Classification
	○ silt with sand
	□ poorly graded sand with silt
	\triangle silt with sand
	REMARKS:
	REMARKS:
	0
	0

A-4(0)

ML

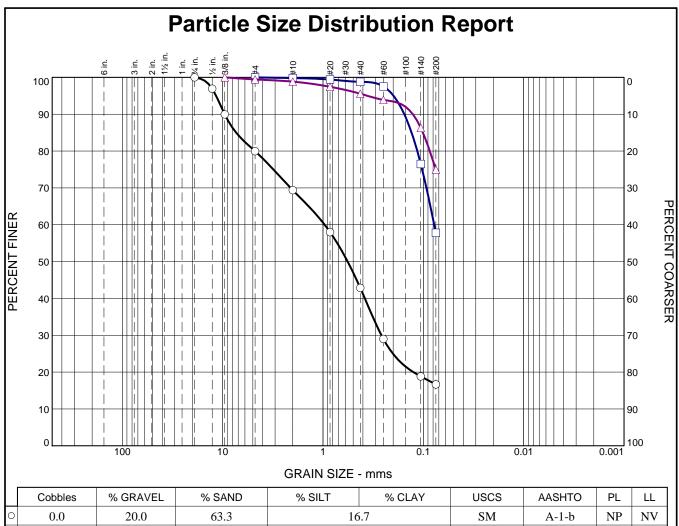
NP

NV

○ Source of Sample: Discrete
 □ Source of Sample: Discrete
 △ Source of Sample: Discrete

Depth: 13.0-15.0 Depth: 13.0-15.0 Depth: 33.0-35.0 Sample Number: H-10 Sample Number: H-11 Sample Number: H-11

SOIL TECHNOLOGY


Client: Geomatrix
Project: B&L Landfill

Bainbridge Island, WA

Project No.: J-08-2284

Figure

_ 4

L	Cobble	s % GRAVEL	% SAND		% SILT	% CLAY	USCS	AASHTO	PL	LL
	0.0	20.0	63.3		16.7		SM	A-1-b	NP	NV
			42.2		57.8		ML	A-4(0)	NP	NV
4	0.0	0.6	24.4		75	0.0	ML	A-4(0)	NP	NV
Γ										
ı	SIEVE	PERCENT FIN	IER S	SIEVE	PERCI	ENT FINER	USC Classific	cation		

inches size	0		Δ					
.75	100.0							
.5	96.9							
.375	89.9		100.0					
	(GRAIN SIZI						
D ₆₀	0.9626	0.0779						
D ₃₀	0.2616							
D ₁₀								
	COEFFICIENTS							
C _C								
C _C								

SIEVE	PEI	RCENT FIN	IER
number size	0		Δ
#4	80.0	100.0	99.4
#10	69.4	99.8	98.9
#20	58.0	99.4	97.4
#40	42.9	98.8	95.6
#60	29.0	97.5	93.9
#140	18.8	76.5	86.3
#200	16.7	57.8	75.0

:K	1
Δ	o silty sand with gravel
99.4	
98.9	□ sandy silt
97.4	
95.6	
93.9	△ silt with sand
86.3	
75.0	
	REMARKS:
	0
	O

O	Source	of Sample:	Discrete
	Source	of Sample:	Discrete
Δ	Source	of Sample:	Discrete

Depth: 7.5-9.0 Depth: 11.0-13.0 Sample Number: H-12

Depth: 21.0-23.0

Sample Number: H-13 Sample Number: H-13

SOIL TECHNOLOGY

Client: Geomatrix

Bainbridge Island, WA

Project: B&L Landfill
Project No.: J-08-2284

Figure

_ 5

			,	SOIL DATA	4			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Discrete	H-3	33.0-35.0	5	26	27	1	ML
•	Discrete	H-4	25.4-25.9	206	249	301	52	ОН
A	Discrete	H-5	23.0-25.0	56	40	51	11	MH
•	Discrete	H-6	13.4-13.9	34	NP	NV	NP	ML
▼	Discrete	H-7	23.0-25.0	91	49	81	32	ОН

LIQUID LIMIT

MH or OH

90 100 110 120 130 140 150 160 170 180

SOIL TECHNOLOGY

ML or OL

40

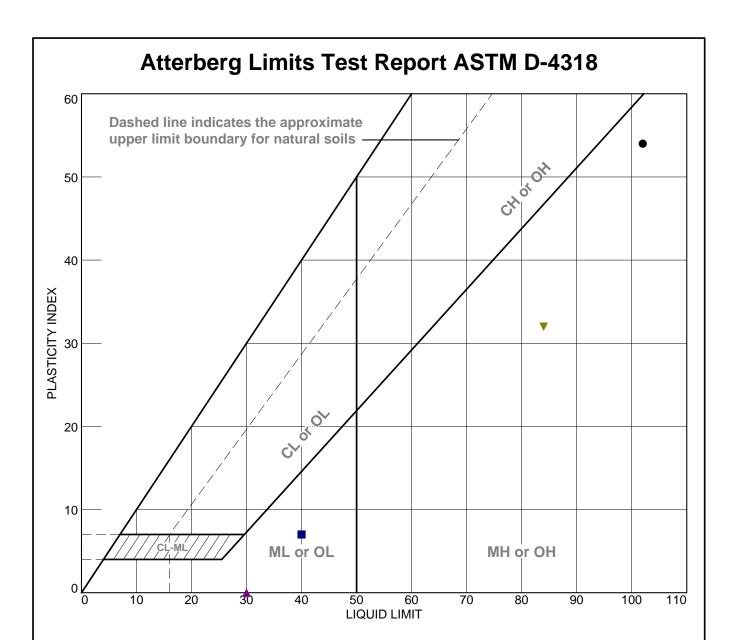
50

70

Client: Geomatrix
Project: B&L Landfill

Bainbridge Island, WA

Project No.: J-08-2284


Figure 6

200

Tested By: CJE

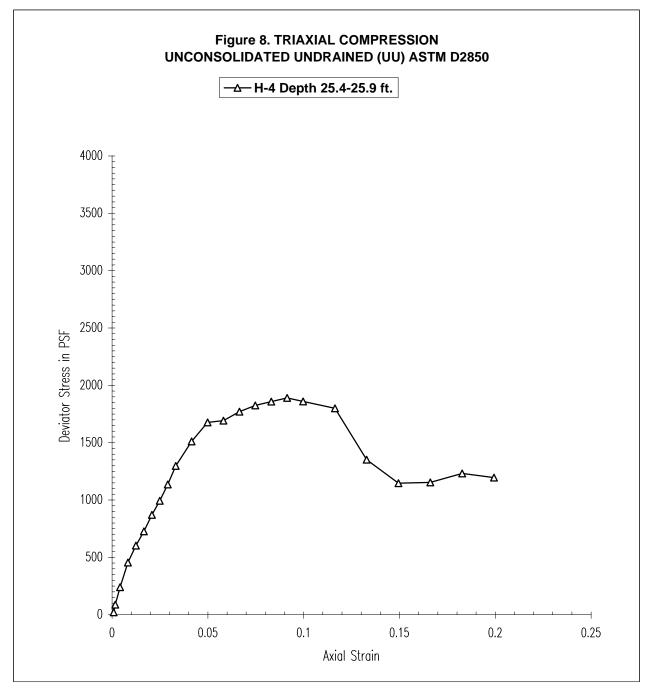
20

Checked By: AJA

			(SOIL DATA	4			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Discrete	H-8	21.7-22.2	121	48	102	54	ОН
•	Discrete	H-11	24-24.5	42	33	40	7	ML
A	Discrete	H-12	15.0-17.0	36	30	30	0	ML
•	Discrete	H-14	23.0-25.0	29	NP	NV	NP	ML
▼	Discrete	H-13	17.0-19.0	79	52	84	32	ОН

SOIL TECHNOLOGY

Client: Geomatrix

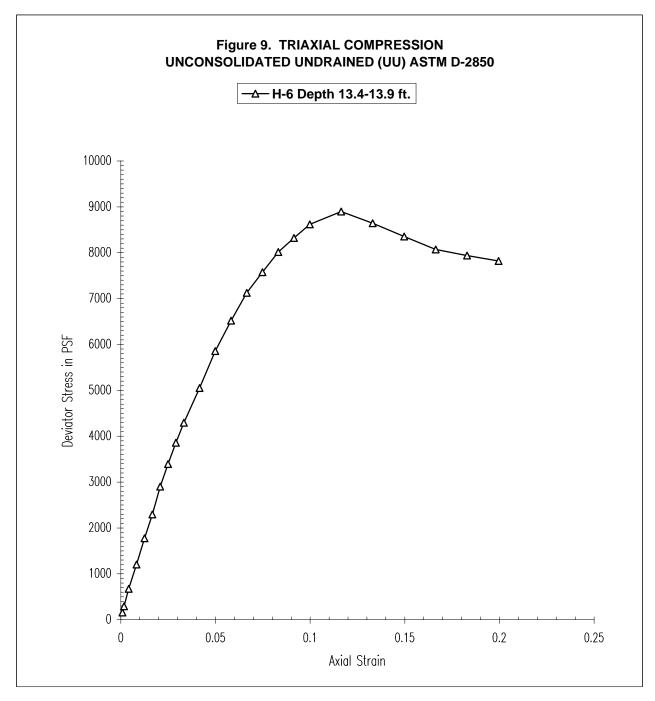

Project: B&L Landfill

Bainbridge Island, WA

Project No.: J-08-2284

Figure 7

B & L Woodwaste Site Prepared for Floyd Snider/GeoMatrix

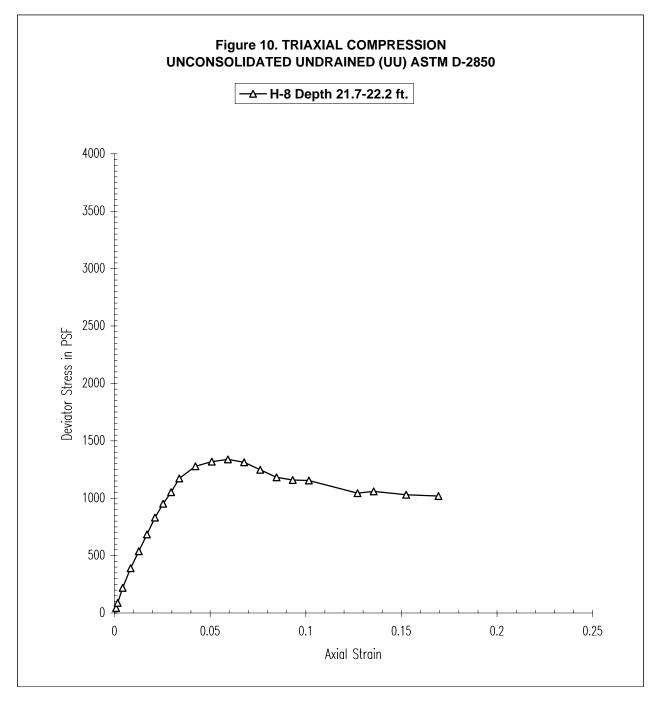


				W	ater Conte	nt in Perce	Unit V	Cell		
Symbol	Boring	Sample	Depth	Natural	Liquid	Plastic	Plasticity	Wet	Dry	Pressure
Symbol	Number	Number	ft	Ivaluiai	Limit	Limit	Index	pcf	pcf	psi
Δ	H-4	Shelby	25.4-25.9	206	301	249	52	74	24	22.2

B & L Woodwaste Site AMEC / Geomatrix

			Load		Deviator
Job #	J-08-2284	Deflection	Read	Strain	Stress
Exploration #	H-4	READ	lb	Ratio	psf
Sample ID #	Shelby	5	8	0.000831	21
Sample Depth (ft)	25.4-25.9	10	11	0.001661	87
Type of Test	UU	25	18	0.004153	240
Cell Pressure (psi)	22.2	50	28	0.008306	455
Strain Rate (in/min)	0.06	75	35	0.012458	603
Initial Platen Reading (mm)	0	100	41	0.016611	726
Initial Load Cell Reading (lbs)	7	125	48	0.020764	871
Date	10/14/2008	150	54	0.024917	993
Test by	RGS	175	61	0.02907	1135
Initial Length (in)	6.02	200	69	0.033223	1298
Area (ft**2)	0.0446128	250	80	0.041528	1511
Youngs Modulus for membrane(lbs/in2)	200	300	89	0.049834	1678
Membrane Thickness in.	0.012	350	91	0.05814	1693
		400	96	0.066445	1771
		450	100	0.074751	1825
		500	103	0.083056	1858
		550	106	0.091362	1890
H-4 Depth 25.4-25.9 ft.		600	106	0.099668	1860
		700	106	0.116279	1800
		800	86	0.13289	1352
		900	78	0.149502	1147
		1000	81	0.166113	1154
		1100	88	0.182724	1231
		1200	89	0.199336	1196

B L Woodwaste Site AMEC/Geomatrix

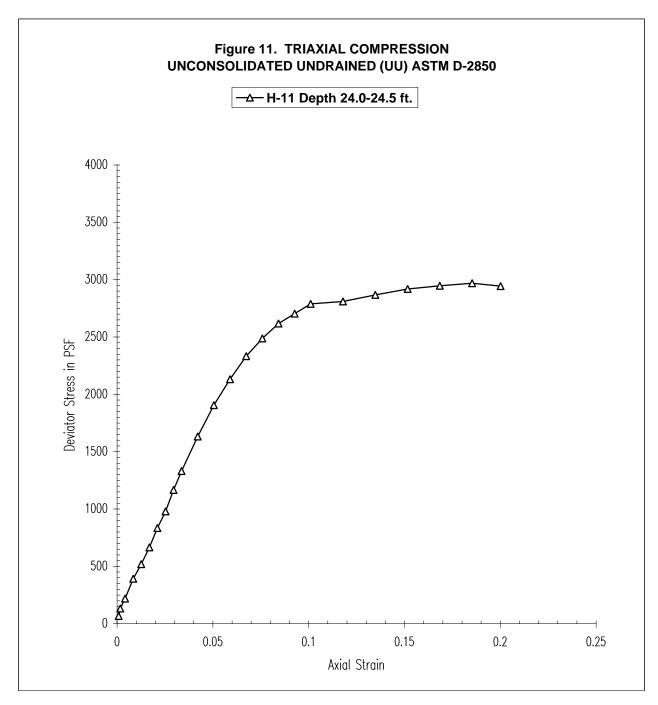


				W	ater Conte	nt in Perce	Unit V	Cell		
Symbol	Boring	Sample	Depth	Natural	Liquid	Plastic	Plasticity	Wet	Dry	Pressure
Symbol	Number	Number	ft	Ivaturai	Limit	Limit	Index	pcf	pcf	psi
Δ	H-6	Shelby	13.4-13.9	34	GNP	GNP	GNP	117	87	12.2

B L Woodwaste Site AMEC / Geomatrix

			Load		Deviator
Job #	J-08-2284	Deflection	Read	Strain	Stress
Exploration #	H-6	READ	lb	Ratio	psf
Sample ID #	Shelby	5	9	0.000831	157
Sample Depth (ft)	13.4-13.9	10	15	0.001663	292
Type of Test	UU	25	32	0.004157	672
Cell Pressure (psi)	12.2	50	56	0.008315	1203
Strain Rate (in/min)	0.06	75	82	0.012472	1774
Initial Platen Reading (mm)	0	100	106	0.01663	2296
Initial Load Cell Reading (lbs)	2	125	134	0.020787	2903
Date	10/20/2008	150	157	0.024945	3393
Test by	RGS	175	179	0.029102	3857
Initial Length (in)	6.01333	200	200	0.033259	4295
Area (ft**2)	0.0440943	250	237	0.041574	5050
Youngs Modulus for membrane(lbs/in2)	200	300	277	0.049889	5857
Membrane Thickness in.	0.012	350	311	0.058204	6519
		400	343	0.066519	7127
		450	368	0.074834	7576
		500	393	0.083149	8015
		550	412	0.091463	8321
H-6 Depth 13.4-13.9 ft.		600	431	0.099778	8620
		700	454	0.116408	8897
		800	451	0.133038	8644
		900	446	0.149667	8355
		1000	441	0.166297	8070
		1100	444	0.182927	7937
		1200	448	0.199557	7820

B & L Woodwaste Site AMEC/Geomatrix



				W	ater Conte	nt in Perce	Unit V	Cell		
Symbol	Boring	Sample	Depth	Natural	Liquid	Plastic	Plasticity	Wet	Dry	Pressure
G y	Number	Number	ft	· · · · · · · · · · · · · · · · · · ·	Limit	Limit	Index	pcf	pcf	psi
Δ	H-8	Shelby	21.7-22.2	121	102	48	54	85	39	18.8

B L Woodwaste Site AMEC / Geomatrix

			Load			
Job #	J-08-2284	Deflection	Read	Strain	Stress	
Exploration #	H-8	READ	lb	Ratio	psf	
Sample ID #	Shelby	5	6	0.000847	44	
Sample Depth (ft)	21.7-22.2	10	8	0.001694	88	
Type of Test	UU	25	14	0.004235	218	
Cell Pressure (psi)	18.8	50	22	0.00847	390	
Strain Rate (in/min)	0.059	75	29	0.012705	538	
Initial Platen Reading (mm)	0	100	36	0.01694	685	
Initial Load Cell Reading (lbs)	4	125	43	0.021175	830	
Date	10/17/2008	150	49	0.02541	953	
Test by	RGS	175	54	0.029644	1052	
Initial Length (in)	5.9033	200	60	0.033879	1172	
Area (ft**2)	0.044405	250	66	0.042349	1279	
Youngs Modulus for membrane(lbs/in2)	200	300	69	0.050819	1319	
Membrane Thickness in.	0.012	350	71	0.059289	1337	
		400	71	0.067759	1313	
		450	69	0.076229	1247	
		500	67	0.084698	1182	
		550	67	0.093168	1158	
H-8 Depth 21.7-22.2 ft.		600	68	0.101638	1154	
		750	66	0.127048	1043	
		800	68	0.135517	1059	
		900	69	0.152457	1030	
		1000	71	0.169397	1019	

B & L Woodwaste Site AMEC/Geomatrix

				W	ater Conte	nt in Perce	Unit V	Cell		
Symbol	Boring Number	Sample Number	Depth #	Natural	Liquid Limit	Plastic Limit	Plasticity Index	Wet pcf	Dry pcf	Pressure psi
	Number	Number	11		LIIIIII	LIIIII	IIIUEX	PCI	ρci	ρsi
Δ	H-11	Shelby	24.0-24.5	42	40	33	7	112	79	20.1

B & L Woodwaste Site AMEC / Geomatrix

			Load		Deviator
Job #	J-08-2284	Deflection	Read	Strain	Stress
Exploration #	H-11	READ	lb	Ratio	psf
Sample ID #	Shelby	5	8	0.000842	67
Sample Depth (ft)	24.0-24.5	10	11	0.001684	133
Type of Test	UU	25	15	0.004211	219
Cell Pressure (psi)	20.1	50	23	0.008422	392
Strain Rate (in/min)	0.059	75	29	0.012633	519
Initial Platen Reading (mm)	0	100	36	0.016845	666
Initial Load Cell Reading (lbs)	5	125	44	0.021056	834
Date	10/16/2008	150	51	0.025267	979
Test by	RGS	175	60	0.029478	1167
Initial Length (in)	5.9366	200	68	0.033689	1330
Area (ft**2)	0.044209	250	83	0.042112	1632
Youngs Modulus for membrane(lbs/in2)	200	300	97	0.050534	1906
Membrane Thickness in.	0.012	350	109	0.058956	2132
		400	120	0.067379	2333
		450	129	0.075801	2487
		500	137	0.084223	2618
		550	143	0.092646	2704
H-11 Depth 24.0-24.5 ft.		600	149	0.101068	2788
		700	154	0.117913	2810
		800	161	0.134757	2867
		900	168	0.151602	2918
		1000	174	0.168447	2946
		1100	180	0.185291	2969
		1188	183	0.200115	2944

B & L Woodwaste Site Prepared for Floyd Snider/GeoMatrix

Table 1
Moisture Contents

Sample	Sample Depth	Moisture Content
Number	(ft)	%
H-1	13.0-15.0	22
H-3	17.0-19.0	24
H-3	33.0-35.0	5
H-5	11.0-13.0	31
H-5	23.0-25.0	56
H-6	5.0-7.0	11
H-6	31.0-33.0	37
H-7	17.0-19.0	26
H-7	23.0-25.0	91
H-8	23.0-25.0	73
H-9	7.0-9.0	23
H-10	13.0-15.0	42
H-11	13.0-15.0	27
H-11	33.0-35.0	34
H-12	7.5-9.0	10
H-12	15.0-17.0	34
H-13	11.0-13.0	31
H-13	17.0-19.0	79
H-13	21.0-23.0	41
H-14	23.0-25.0	29

Table 2
Moisture Contents and
Percent Passing U.S. Sieve No. 200, 75 Micron

Sample Number	Sample Depth (ft)	Moisture Content %	Percent Passing U.S. Sieve No. 200% 75 Micron
H-6	13.4-13.9	34	85
H-12	15.0-17.0	34	74
H-14	23.0-25.0	29	63

B & L Woodwaste Site Prepared for Floyd Snider/GeoMatrix

Table 3 Flexible Wall Hydraulic Conductivity of Shelby Tube Specimens, ASTM D5084

Sample Identification	Sample Depth	Water C		Wet D	•	Por	osity	Satura %		Hydraulic Conductivity ² cm/sec
	(FT)	Before	After	Before	After	Before	After	Before	After	
H-4, 25-27	25.9-26.2	373	301	66	68	0.86	0.82	0.98	1.0	7 X 10 ⁻⁸
H-11, 23-25	24.5-24.8	44	41	112	115	0.54	0.52	1.0	1.0	4 X 10 ⁻⁶

Table 4 Flexible Wall Hydraulic Conductivity Test Parameters

Sample Identification	Sample Depth	Gradient (i)	Triaxial Pressure (psi)			Average Effective Confining Stress
	(FT)		Cell	HW	TW	(psi)
H-4, 25-27	25.9-26.2	10.7	44.6	30.5	29.5	14.6
H-11, 23-25	24.5-24.8	3.2	43.5	30	30	13.5

HW = Head Water; TW = Tail Water; i = h/l

¹ Specific gravity assumed for H-4 = 1.6, H-11 = 2.7 ² Average saturated hydraulic conductivity using de-aired tap water.

B & L Woodwaste Site Prepared for Floyd Snider/GeoMatrix **Chemical Compatibility Test**

Table 5. Flexible Wall Hydraulic Conductivity of Remolded 28 Day Cure Slurry Wall Design Specimens **ASTM Method D-5084**

Sample Identification		Content %	Wet D	ensity cf)	Poro	sity	Saturation ¹ %		Hydraulic Conductivity ² cm/sec	Hydraulic Conductivity ³ cm/sec
	Before	After	Before	After	Before	After	Before	After	With Tapwater	With Groundwater
Soil/Bentonite 3%	39	25	112	130	0.52	0.38	0.97	1.0	5 X 10 ⁻⁸	5 X 10 ⁻⁸
Soil/Bentonite 7%	51	29	97	121	0.62	0.45	0.85	1.0	<1 x 10 ⁻⁸	<1 x 10 ⁻⁸
Soil/Cement 7%/Bentonite 3%	50	51	107	108	0.58	0.57	1.0	1.0	6 X 10 ⁻⁷	3 X 10 ⁻⁷
Soil/Cement 7%/Bentonite 6%	65	64	100	100	0.64	0.64	1.0	1.0	3 X 10 ⁻⁷	1 X 10 ⁻⁷
95%cement/5%Bentonite	327	323	74	74	0.90	0.90	1.0	1.0	4 X 10 ⁻⁶	9 X 10 ⁻⁷

Table 6. Flexible Wall Hydraulic Conductivity Test Parameters

Sample Identification	Gradient (i)	Triaxial Pressure (psi)			Average Effective Confining Stress
		Cell	HW	TW	(psi)
Soil/Bentonite 3%	11.9	40.0	30.5	29.5	10.0
Soil/Bentonite 7%	12.9	40.0	30.5	29.5	10.0
Soil/Cement 7%/Bentonite 3%	3.1	40.0	30.0	30.0	10.0
Soil/Cement 7%/Bentonite 6%	2.6	40.0	30.0	30.0	10.0
95%cement/5%Bentonite	3.9	40.0	30.0	30.0	10.0

HW = Head Water; TW = Tail Water; i = h/l

Specific gravity assumed to be 2.7

Average saturated hydraulic conductivity using de-aired tapwater.

Average Saturated hydraulic conductivity using as received site groundwater, 4-week analysis period for compatibility test

B & L Woodwaste Site Prepared for Floyd Snider/GeoMatrix

Slurry Wall Mix Design and Compatibility Testing

The mix designs for the chemical compatibility testing were prepared at the Soil Technology laboratory using a site soil composite, Hydrogel Wyoben Bentonite, Type I-II Ashgrove Cement and MI Drilling Fluids Spersene CF. Four mix designs were prepared using a site soil composite, and one mix design was prepared using only the grout mixture materials. Site water was used for the slurry mix designs, identified as: City of Milton, Public Works-Kent St., ID = Milton #1, Date 8/18/08 at 10:00 am. The groundwater used in hydraulic conductivity analysis for compatibility testing was identified as: PD-107-W-30' 8/29/08 at 11:00 am.

Site Soil Sample Composite

On 10/28/08, the site soil samples were composited. The following soil samples, received in small plastic bags, were homogenized to prepare the composite:

H5, 11-13 feet

H5, 23-25 feet

H6, 5-7 feet

H7, 17-19 feet

H9, 7-9 feet

H10, 13-15 feet

H11, 13-15 feet

H12, 7.5-9 feet

H12, 15-17 feet

H13, 11-13 feet

Soil Composite and Bentonite Mixtures

On 10/22/08, a bentonite slurry was made as 64.3 grams dry bentonite per liter of site water by weight. The slurry was homogenized and allowed to hydrate. On 10/29/08 the bentonite slurry was a 40-second-slurry using the Marsh funnel. The 40-second-slurry was used on 10/20/08 to prepare a 3% dry bentonite to dry site soil composite mixture and a 7% dry bentonite to site soil composite mixture. The slump was 5.75 to 6-inches for the soil composite with 3% bentonite mixture. Molds were prepared and subsequently allowed to cure for 28-days in a cool and humid environment. Then a chemical compatibility test was performed on the mixture using site groundwater.

Soil Composite, Bentonite and Cement Mixtures

Using the bentonite slurry from 10/22/08, a site soil composite with bentonite and cement mix design was prepared on 10/31/08. A cement slurry was prepared on 10/30/08 as 65g water per 100 g dry cement. Spersene was added at 0.8 percent dry of the dry cement

B & L Woodwaste Site Prepared for Floyd Snider/GeoMatrix

weight. Two mixes were prepared, both containing 7 % cement by dry weight of dry site soil composite however varying in bentonite percentage. One containing 3% and the other at 6% dry weight bentonite to dry weight of site soil composite. The bentonite was also added by slurry. The slump was 5.5 to 6-inches for the Soil with 7% cement and 3% bentonite mixture and 5.5-inches for the soil with 7% cement and 6% bentonite mixture. Molds were prepared and subsequently allowed to cure for 28-days in a cool and humid environment. Then a chemical compatibility test was performed on the mixture using site groundwater.

Grout Mixture Preparation

On 11/12/08, a slurry was prepared using site water at 5 % dry bentonite to site water by weight and 0.14% dry spersene to site water by weight. The slurry was allowed to hydrate for 24-hours. Then the cement was added as 20% dry weight to site water. Using the Marsh funnel the slurry was at 42-seconds. The mixture was subsequently allowed to cure for 28-days in a cool and humid environment. Then a chemical compatibility test was performed on the mixture using site groundwater.

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178

info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM080829-1 Floyd | Snider Project No: B&L RIM

September 12th, 2008

Brett:

Enclosed are the analytical results for the **B & L Woodwaste** water samples delivered to Fremont Analytical on August 29th, 2008.

The samples were received in good condition – in a cooler with wet ice, in the proper containers, properly sealed, labeled and within holding time. The cooler temperature upon receipt was 2°C, which is within the laboratory recommended cooler temperature range (2°C - 10°C). The samples were extracted and stored in refrigeration units at the USEPA-recommended temperature of 4°C \pm 2°C. There were no sample receipt issues to report.

Examination was conducted for the presence of the following:

- Dissolved Metals (As, Ca, Fe, Mg, Na) in Water by EPA Method 6020
- pH by SM 4500-H
- Nitrate by SM 4500-NO3-E
- Chloride by EPA Method 300**
- Total Organic Carbons by SM 5310-B**
- Total Alkalinity by SM 2320-B**

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

www.fremontanalytical.com

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178

info@fremontanalytical.com

Floyd | Snider Attn: Brett Beaulieu 601 Union St., Ste 600 Seattle, WA 98101

RE: B & L Woodwaste Site

Fremont Project No: CHM080829-1 Floyd | Snider Project No: B&L RIM

EPA Method 6020 Notations:

- Metals samples were received in preserved bottles. The Chain of Custody indicated that the samples were "field filtered." Samples PD-107-W-30 and PDD10A-16F had visible sediment and were laboratory filtered before analysis
- Matrix spike and matrix spike duplicate for sample "PD-107-W-30" could not be determined for Ca, Fe, Mg and Na due to the concentration of these analytes in the sample relative to the concentration of these analytes in the spike solution
- Recoveries for the matrix spike and matrix spike duplicate were low for As due to the concentration of this
 analyte in the sample.
- The LCS recoveries for all analytes were within QC Limits providing Batch QC.

If you have any questions about the results, please contact the laboratory.

Thank you for using Fremont Analytical!

6Pm

Sincerely,

Michael Dee

Principal / Sr. Chemist

mikedee@fremontanalytical.com

www.fremontanalytical.com

T: 206.352.3790

F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

Duplicate

					Duplicate		
EPA 6020	MRL	Method	LCS	PD-107-W-30'	PD-107-W-30'	RPD	BLW-D4-PDD10A-13F
(mg/L)		Blank					
Date Extracted		9/3/08	9/3/08	9/3/08	9/3/08	%	9/3/08
Date Analyzed		9/5/08	9/5/08	9/5/08	9/5/08		9/5/08
Matrix		Water		Water	Water		Water
Arsenic (As)	0.002	nd	93%	2.7	2.3	16%	0.4
Calcium (Ca)	0.02	nd	89%	107	83	25%	N/A
Iron (Fe)	0.1	nd	100%	38	31	20%	N/A
Magnesium (Mg)	0.1	nd	97%	75	69	8%	N/A
Sodium (Na)	0.5	nd	80%	29	25	15%	N/A

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentration:

As, Fe, Mg, Na, $Ca = 100 \mu g/L$

 $Fe = 200 \mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

T: 206.352.3790 F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Dissolved Metals in Water by EPA Method 6020

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

			MS	MSD	
EPA 6020	MRL	BLW-D4-PDD10A-16F	PD-107-W-30'	PD-107-W-30'	RPD
(mg/L)					
Date Extracted		9/3/08	9/3/08	9/3/08	%
Date Analyzed		9/5/08	9/5/08	9/5/08	
Matrix		Water	Water	Water	
Arsenic (As)	0.002	0.1	62%	42%	38%
Calcium (Ca)	0.02	N/A			
Iron (Fe)	0.1	N/A			
Magnesium (Mg)	0.1	N/A			
Sodium (Na)	0.5	N/A			

[&]quot;nd" Indicates no detection at the listed reporting limits

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD: 65% to 135%

Spike Concentration:

As, Fe, Mg, Na, $Ca = 100 \mu g/L$

 $Fe = 200 \mu g/L$

[&]quot;int" Indicates that interference prevents determination

[&]quot;J" Indicates estimated value

[&]quot;N/A" Analysis not requested

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

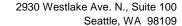
[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

T: 206.352.3790 F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Nitrate by SM 4500 - NO₃ E


Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

					Duplicate	
SM 4500-NO ₃ E	MRL	Method	LCS	PD-107-W-30'	PD-107-W-30'	RPD
(mg NO ₃ -N/L)		Blank				%
Date Analyzed		9/1/08	9/1/08	9/1/08	9/1/08	
Matrix		Water		Water	Water	
Nitrate	8.0	nd	70%	10.2	10.5	3%
Date Analyzed Matrix	0.8	9/1/08 Water		Water	Water	

"nd" Indicates not detected at listed reporting limit

"MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample

Acceptable RPD is determined to be less than 20%

T: 206.352.3790

F: 206.352.7178 email: info@fremontanalytical.com

Analysis of pH in Water by SM4500-H

Project: B&L Woodwaste Client: Floyd | Snider Client Project #: B&L RIM Lab Project #: CHM080829-1

		Duplicate
SM 4500-H	PD-107-W-30'	PD-107-W-30'
	- 1 - 1	- 1-1
Date Analyzed	9/1/08	9/1/08
Matrix	Water	Water
рН	6.3	6.3

[&]quot;int" Indicates that interference prevents determination

Burlington WA Corporate Office

1620 S Walnut St - 98233

800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard II Microbiology 360.671.0688

805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax

Page 1 of 1

Data Report

Client Name: Fremont Analytical

2930 Westlake Ave N #100

Seattle, WA 98109

Report Date: 9/4/2008 Reference Number: 08-12499

Project: BTL Woodwaste

Collected By: Date Received: 9/3/2008

Peer Review:

Lab Nu	mber: 26275 Sa	ample Descriptio	n: PD-10	7 W 30		Sample Date: 8/29/2008							
CAS ID#	Analyte	Result	PQL	MDL	Units	DF	Method	Analyzed	Analy	st Batch	Comments		
E-14506	ALKALINITY	648	5.0	2	mg/L	1.0	SM2320 B	9/4/2008	CCN	ALK_080904			
16887-00-6	CHLORIDE	68	10.0	0.012	mg/L	100.0	300.0	9/3/2008	BJ	1080903A			
E-10195	TOTAL ORGANIC CARBON	29.6	0.50	0.0981	mg/L	1.0	SM5310 B	9/3/2008	BJ	TOC_080903			

Burlington WA | 1620 S Walnut St - 98233

Corporate Office

800.755.9295 • 360.757.1400 • 360.757.1402fax

Microbiology

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax

Page 1 of 2

Reference Number: 08-12499

QUALITY CONTROL REPORT

Duplicate and Matrix Spike/Matrix Spike Duplicate Report

Report Date: 9/4/2008

Duplicate

			Duplicate				QC	
Batch	Sample Analyte	Result	Result	Units	%RPD	Limits	Qualifier	Comments
ALK_080904								
	26275 ALKALINITY	648	645	mg/L	0.5	0-45	DUI	
1080903A								
	26292 CHLORIDE	51	51	mg/L	0.0	0-45	DUI	•
	26311 CHLORIDE	28	28	mg/L	0.0	0-45	DUI	•
	26341 CHLORIDE	6	6	mg/L	0.0	0-45	DUI	•
TOC_080903								
	26057 TOTAL ORGANIC CARBON	1.06	1.06	mg/L	0.0	0-50	DUI	>
	26318 TOTAL ORGANIC CARBON	4.81	4.81	mg/L	0.0	0-50	DUI	•

Page 2 of 2

Reference Number: 08-12499

Report Date: 9/4/2008

Matrix Spike

Matrix S	Matrix Spike													
			Spike	Spike	Spike		Percen	Percent Recovery						
Batch	Sample Analyte	Result	Result	Result	Conc	Units	MS	MSD	Limits	%RPD	Limits	Qualifie	Comments	
I080903A														
	26292 CHLORIDE	51	51		1.00	mg/L	0	NA	80-120	NA	0-60	S	LFM	
	26311 CHLORIDE	28	28		1.00	mg/L	0	NA	80-120	NA	0-60	S	LFM	
	26341 CHLORIDE	6	7.1		1.00	mg/L	110	NA	80-120	NA	0-60		LFM	
TOC 080903														
	26318 TOTAL ORGANIC CARBON	4.81	8.82	8.93	4.00	mg/L	100	103	65-135	2.7	0-70		LFM	

Corporate Office

Burlington WA | 1620 S Walnut St - 98233 800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225

360.671.0688 • 360.671.1577fax

Page 1 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Fortified Blank

Reference Number: 08-12499

Report Date: 09/04/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recover	/ Limits	Qualifier Type*	Comment
alk_080904	ALKALINITY	108	100	mg/L	SM2320 B	108	80-120	LFB	
alk_080904	ALKALINITY	108	100	mg/L	SM2320 B	108	80-120	LFB	
TOC_080903	TOTAL ORGANIC CARBON	0.99	1.00	mg/L	SM5310 B	99	90-110	LFB	

*Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Corporate Office

Burlington WA | 1620 S Walnut St - 98233 800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225

360.671.0688 • 360.671.1577fax

Page 2 of 4

SAMPLE INDEPENDENT QUALITY CONTROL REPORT

Laboratory Reagent Blank

Reference Number: 08-12499

Report Date: 09/04/08

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
I080903A	CHLORIDE	ND		mg/L	300.0	0.10000) LRB	

*Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Corporate Office

Burlington WA | 1620 S Walnut St - 98233 800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax Page 3 of 4

SAMPLE INDEPENDENT **QUALITY CONTROL REPORT**

Method Blank

Reference Number: 08-12499

Report Date: 09/04/08

			True			%	QC	
Batch	Analyte	Result	Value	Units	Method	Recovery Limits	Qualifier Type*	Comment
TOC_080903	TOTAL ORGANIC CARBON	ND		mg/L	SM5310 B	0.12000) MB	

*Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Burlington WA | 1620 S Walnut St - 98233 Corporate Office

800.755.9295 • 360.757.1400 • 360.757.1402fax

Bellingham WA 805 Orchard Dr Suite 4 - 98225 360.671.0688 • 360.671.1577fax Page 4 of 4

SAMPLE INDEPENDENT **QUALITY CONTROL REPORT**

Quality Control Sample

Reference Number: 08-12499

Report Date: 09/04/08

			True			%		QC	
Batch	Analyte	Result	Value	Units	Method	Recove	ry Limits	Qualifier Type*	Comment
I080903A	CHLORIDE	29.4	30.0	mg/L	300.0	98	80-120	QCS	
TOC_080903	TOTAL ORGANIC CARBON	2.13	2.22	mg/L	SM5310 B	96	90-110	QCS	

^{*}Notation:

[%] Recovery = (Result of Analysis)/(True Value) * 100

NA = Indicates % Recovery could not be calculated.

QCS: Quality Control Sample, a solution containing known concentrations of method analytes which is used to fortify an aliquot of reagent matrix. The QCS is obtained from an external source and is used to check lab performance.

LFB: Laboratory Fortified Blank, an aliquot of reagent matrix to which known quantities of method analytes are added in the lab. The LFB is analyzed exactly like a sample, and its purpose is to determine whether method performance is within accepted control limits.

MB or LRB: Method Blank or Laboratory Reagent Blank, an aliquot of reagent matrix is analyzed exactly like a sample, and its purpose is to determine if there is background contamination.

Page 1 of 1

Qualifier Definitions

Reference Number: 08-12499

Report Date: 09/04/08

Qualifier	Definition
М	Matrix induced bias assumed.
S	Spiking amount was lower than the 5:1 spike to background (sample amount) basis for performance criteria. The reported criteria does not apply due to increased errors in measurement of both sample and spike concentration.

Fremo	nt															(Cha	ain	of	f Cu	sto	dy R	ecor	t
2930 Westlake Ave. N. Suite 100	Tel: 206-352-	3790																						
	Fax: 206-352-							1	,															
					Date:	-	81	29	100	8	-			Page:	_				_	of: _	(_			
Client: FCOY!	1/SNU	DER						_	F	Proje	ct Nar	ne:				Bt	-	w	200	WA	STE	,		
Address: 60	or UN	UN 87	- SU	15=	60	20		_	ı	Locati	ion:							,						
Client: FCOYI Address: GC City, State, Zip SAATI	TEW,	4 98	101	Tel: 2	06	20	92	. 20	18	Collec	ted b	y:		T,	-(N	mi	MAY	4		5	eles.	I By	EAUU.	4
Reports To (PM):			Fax:	975-175-1-1-2	· ·			Email:				C	-		2/2	2	1,	2	Proje	ct No:	·BH	RU	2	
			Container	Date of Collection	VOA 8260	VOA 8021B BTEX	NWTPH-Gx	APSENIE	WTPH-Dx Ext.	SEMI VOL 8270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	HERBICHDES 81514	METALS: AS, CALL	Matals: MICAS 325	Metzler Report 375	ORGANIC CARGO	Dal Alleding	9				
Sample Name	Time	Sample Type	S700 in L DXh		>	>	2	4	2	S	۵.	۵.	0	φ/			_	_				ments/Dept		\dashv
1PD-107-W-30'	1(100	WIN	500 ml pay	8/29/08										×	×	×	×	×	×	OR	GANZE	CARBI	W SA	191
PD-104-13'	12:40	W	2 x 500 ml	<u></u>																	1211	Un-F	UKR	in
3 PD-10A.	84	3 8/29/	08																					
BLW-DY-PDDIOA-	13F12:4	o W	1 SOUNL	8/27/08				X												FI	54D	-FUT	ENGU	
SBLW-DY-PDDIOA			1x sound	1 .				X												FIG	ELN-	FILI	WEN.	2
6			110-0																					
7																								
8																								
9																								
10																								7
10				_							Sampl	e Rece	eipt:							Special F	lemarks			\dashv
	Pate/Time	8 160	Receive		5	Date/	Time!	170	la		Good?	_												
Reliaquished	Date/Time		Received V	1		Date/					Seals I	_												
x			Х								Total I	Numbe	er of Co	ntaine	ers:					TAT	> 24H	R 48HR	Standard	╝

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Appendix C Phase 1 Hydrogeologic Study Report

Table of Contents

1.0	Intro	duction		1-1
2.0	Data	Collect	ion	2-1
	2.1	MEAS	UREMENT LOCATIONS	2-1
		2.1.1	Piezometer and Well Installation	2-1
		2.1.2	Staff Gauges	2-2
		2.1.3	Transducer Installation	2-2
		2.1.4	Investigation-Derived Waste	2-3
	2.2	REGU	LAR DATA COLLECTION	2-3
		2.2.1	Water Level Measurements	2-3
		2.2.2	Discharge Monitoring	2-3
		2.2.3	Transducer Upload	2-4
	2.3	HYDR	OGEOLOGIC TESTING	2-4
		2.3.1	Pumping Tests	2-4
		2.3.2	Infiltration Tests	2-5
3.0	Con	ceptual	Site Model	3-1
	3.1	HYDR	OSTRATIGRAPHY AND AQUIFER PROPERTIES	3-1
	3.2	GROU	NDWATER FLOW DIRECTIONS AND GRADIENTS	3-1
	3.3	SURFA	ACE WATER AND GROUNDWATER INTERACTIONS	3-1
	3.4	STEAD	OY-STATE WATER BALANCE	3-2
4.0	Num	erical M	lodel Development	4-1
	4.1	NUME	RICAL MODEL CODE	4-1
	4.2	MODE	L DOMAIN	4-1
	4.3	MODE	L DISCRETIZATION AND GROUND SURFACE ELEVATION	4-2
	4.4	INITIAI	MODEL PROPERTY ESTIMATES	4-3
		4.4.1	Recharge and Evapotranspiration (ET)	4-3
		4.4.2	Hydraulic Conductivity	4-4
	4.5	BOUN	DARY CONDITIONS	4-4

5.0	Mode	l Calib	ration	5-1
	5.1	CALIB	RATION TARGETS	5-1
	5.2	CALIB	RATION GOALS	5-1
	5.3	RESUI	LTS	5-2
		5.3.1	Observed vs. Simulated Heads and Flow Paths	5-2
		5.3.2	Calibrated Parameter Distribution	5-2
	5.4	UNCE	RTAINTY AND SENSITIVITY ANALYSIS	5-3
		5.4.1	Sensitivity Analysis	5-3
		5.4.2	Model Limitations	5-4
6.0	Barri	er Wall	and Interceptor Trench Representation	6-1
7.0	Refer	ences .		7-1
			List of Tables	
Table	C.1	Water	Level Measurement Location Construction Details	
Table	C.2	Water	Level Measurements	
Table	C.3	Discha	rge Estimates	
Table	C.4	Pumpii	ng Test Results	
Table	C.5	Infiltrat	ion Test Results	
Table	C.6	Steady Units	y-state Calibration Targets, Target Values, and Target Hydrost	ratigraphic
Table	C.7	Steady	y-state Model Calibration Statistics	
			List of Figures	
Figure	e C.1	Phase	1 Hydrogeologic Study Model Domain	
Figure	e C.2	Phase	1 Hydrogeologic Study Monitoring Points	
Figure	e C.3	Octobe	er 2008 Upper Sand Aquifer Potentiometric Contours	
Figure	e C.4	Octobe	er 2008 Lower Sand Aquifer Potentiometric Contours	
Figure	e C.5	Novem	nber 2008 Upper Sand Aquifer Potentiometric Contours	
Figure	e C.6	Novem	nber 2008 Lower Sand Aquifer Potentiometric Contours	
Figure	e C.7	Decem	nber 2008 Upper Sand Aquifer Potentiometric Contours	

FLOYD | SNIDER

AMEC Geomatrix

B&L Woodwaste Site

igure C.8	December 2008 Lower Sand Aquifer Potentiometric Contours
igure C.9	January 2009 Upper Sand Aquifer Potentiometric Contours
Figure C.10	January 2009 Lower Sand Aquifer Potentiometric Contours
Figure C.11	February 2009 Upper Sand Aquifer Potentiometric Contours
Figure C.12	February 2009 Lower Sand Aquifer Potentiometric Contours
Figure C.13	Annual Average and Total Precipitation Values
Figure C.14	Numerical Model Select Boundary Condition Types
Figure C.15	Simulated Groundwater Contours and Advective Transport from Suspected Source Area
Figure C.16	Observed vs. Simulated Heads
Figure C.17	Numerical Model Hydraulic Conductivities
Figure C.18	Upper Sand Aquifer (Layer 2) Background Hydraulic Conductivity Sensitivity Analysis
igure C.19	Lower Sand Aquifer (Layers 4 and 5) Background Hydraulic Conductivity Sensitivity Analysis
igure C.20	East Sand Channel Hydraulic Conductivity Sensitivity Analysis
igure C.21	Southwest Sand Channel Hydraulic Conductivity Sensitivity Analysis
igure C.22	Lower Silt Aquifer (Layer 3) Background Hydraulic Conductivity Sensitivity Analysis
igure C.23	Recharge Sensitivity Analysis
igure C.24	Flux Boundary Sensitivity Analysis

List of Attachments

Attachment CT	Builing logs
Attachment C2	Discharge Calculation Worksheets
Attachment C3	Aquifer Test Solutions

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

1.0 Introduction

This Hydrogeologic Study Report (Report) has been prepared to support implementation of the 2008 Cleanup Action Plan (CAP) for the B&L Woodwaste Site (Site). The hydrogeologic model described in this report will be used to support the phased implementation of the CAP. The CAP addresses the B&L Woodwaste Landfill (Landfill) that is located on the B&L Property. A plume of contaminated groundwater extends downgradient from the Landfill. Additional groundwater contamination is present on the B&L Property and extending onto the adjacent upgradient property and the property located to the west of the Landfill. Additionally, sediments in nearby agricultural drainage ditches have been affected by arsenic releases from the Landfill. All affected properties and media comprise the Site that is addressed by this Report. For convenience in describing the remedy, the Site has been subdivided into several areas. The following Cleanup Action Areas (CAAs) and remedy components have been defined for implementation of the 2008 CAP:

- Landfill/Ditch CAA. Installation of a perimeter slurry wall around the Landfill that is tied into both the existing landfill cap and a low-permeability soil unit located below the Landfill, the diversion of clean surface water and groundwater before it reaches the slurry wall, and the extraction and treatment of leachate from within the slurry wall to maintain hydraulic control by creating an inward hydraulic flow gradient. Once the slurry wall is installed, contaminated sediments in the adjacent agricultural drainage ditches will be excavated and disposed of at a permitted landfill.
- Wetlands CAA. A groundwater pump and treat system will be used to remove arsenic from the groundwater plume in the Wetlands CAA. Performance-based criteria will be used to assure compliance with MTCA requirements. It is anticipated that up to 120 million gallons of water may require treatment.
- End-of-Plume CAA. In-situ treatment will be used to precipitate out dissolved arsenic followed by monitored natural attenuation of groundwater that reaches 12th Street East. Performance-based criteria will be used to assure compliance with Model Toxics Control Act (MTCA) requirements. Only a thin layer of arsenic-contaminated groundwater remains above the cleanup level in the End-of-Plume CAA; without treatment this area would likely come into compliance as the effect of cleanups in the Landfill and Wetlands CAAs reached the End-of-Plume CAA. Treatment in the End-of-Plume CAA is, therefore, intended to reduce the restoration time frame by bringing the area into compliance within 2 to 5 years although treatment will be continued as long as needed based on the performance criteria.

The 2008 CAP was issued by the Washington State Department of Ecology (Ecology) and requires implementation of several cleanup actions that comprehensively address remediation of the Site. The 2008 CAP is being implemented in a phased program as follows:

 Phase 1: Part 1 focuses on source control on the Landfill site itself and includes the construction of the slurry wall containment system and associated structures such as the interceptor trench.

AMEC Geomatrix

- Phase 1: Part 2 focuses on the End-of-Plume CAA and is intended to halt the migration of arsenic at 12th Street East.
- Phase 2: This phase addresses remediation of groundwater contamination that exists outside the footprint of the Landfill (where source control has now blocked future releases) and upgradient of the End-of-Plume CAA (where further migration has also been blocked). Specific components of Phase 2 include the following:
- Installation of a groundwater extraction system both within the contained area of the Landfill and in areas outside the Landfill.
- Installation, start-up, and optimization of a treatment system for the extracted groundwater.
- Cleanup of the contaminated agricultural ditch.
- Development of a long-term operations, maintenance, and ,monitoring program, including installation of new monitoring wells.
- Implementation of institutional controls, including deed restrictions.

Upon completing Phase 2, long-term operation and maintenance of the cleanup action will commence under Ecology. Hydrogeologic modeling will support the work to be completed during Phases 1 and 2. This report summarizes tasks performed as part of Phase 1 activities described in the Hydrogeologic Study Work Plan (HSWP) found in the Groundwater Remediation Work Plan (GWRP; Floyd|Snider/AMEC 2009). This includes hydrogeologic and surface water data collection, the refinement of the existing conceptual hydrogeologic model, and the construction and operation of a numerical groundwater model. Results for the calibrated groundwater model are presented in this Report, while simulations incorporating the containment barrier and interceptor trench are presented in Addendum 1 of the Engineering Design Report (EDR). Subsequent reports will be prepared to document additional data collection and modeling to be performed as implementation of the 2008 CAP proceeds. The model domain is shown in Figure C.1.

AMEC Geomatrix

2.0 Data Collection

The following descriptions of data collection are based on work performed during the 2008 predesign activities, as described in the HSWP.

2.1 MEASUREMENT LOCATIONS

2.1.1 Piezometer and Well Installation

A network of 38 piezometers and 5 wells was installed within the model domain area as part of the study. Additional wells were installed for other predesign study data objectives (refer to the GWRP). Well and piezometer installation and construction began in August 2008 and was completed in November 2008 by Cascade Drilling, Inc. of Woodinville, Washington. The following changes were made to the proposed network of measurement stations described in HSWP:

- PD-217 was eliminated due to access issues associated with active agricultural operations. It was determined that adequate coverage existed in this area with the addition of GW-1 and GW-2 (described below).
- PD-209A, PD-209B, GW-1, and GW-2 are existing wells within the hydrogeologic model boundary that were installed by others. These wells, for which construction details are unavailable, were named, surveyed, and incorporated into the study network.
- Pumping Well PD-104 was added due to field indications that the initial interceptor trench area pumping test well, PD-103, was located in an area of low transmissivity. The PD-104 location was thought to be more representative of groundwater entering the Landfill area from the adjacent uplands.
- PD-108, a boring located in the southwest portion of the Landfill intended to initially serve as a piezometer and potentially as an extraction well in Phase 2, was not completed as a monitoring well due to its proximity to an alternative barrier wall alignment. The boring was completed to its target depth, logged, and backfilled, and the hole in the protective cap was re-sealed in accordance with the HSWP.
- PD-72 was eliminated due to redundancy with PD-70 and PD-71 as pumping test observation wells.

Additional description and rationale for measurement locations can be found in the HSWP.

Piezometer and well construction and installation were conducted in accordance with procedures outlined in the HSWP and Samping Analysis Plan/Quality Assurance Project Plan (SAP/QAPP; refer to Appendix B of the GRWP: Floyd|Snider 2009). Borings for all constructed wells were logged to characterize subsurface geology and constrain model input parameters. Boring logs are included as Attachment C.1.

Following construction, all installations were surveyed by Barghausen Consulting Engineers, Inc. in November and December of 2008. Locations and elevations were surveyed using the North American Datum of 1983 (NAD 83/98) and the North American Vertical Datum of 1988 (NAVD 88). Refer to Figure C.2 and Table C.1 for construction details and location information for the entire hydrogeologic monitoring network, including monitoring wells installed prior to 2008.

2.1.2 Staff Gauges

In addition to piezometers and wells, 15 staff gauges were installed in the locations proposed in the HSWP as part of the August–November field work; the staff gauges were installed in accordance with the HSWP. Bank head pins were installed for staff gauges in the agricultural ditch system (PD-212, PD-214, PD-215, and PD-225), Hylebos Creek (PD-210 and PD-211), and Surprise Lake Drain (PD-216, PD-213, and PD-225) intended as discharge measurement stations (refer to Section 2.2.2). All staff gauges and head pins were surveyed by Barghausen Consulting Engineers, Inc. using the NAD 83/98 and NAVD 88. Refer to Figure C.2 and Table C.1 for installation specifications and staff gauge locations. Staff gauges SG-210, SG-211, and SG-225 were damaged during flooding in November 2008, and were reinstalled with reinforced posts and subsequently re-surveyed the following month.

2.1.3 Transducer Installation

Eleven 7/8-inch diameter unvented transducers (Solinst 3001 LT Levellogger Junior, M5/15) were installed in wells and transducers along an approximate flow path from the interceptor trench area through the Landfill, Wetlands, and End-of-Plume CAAs to Hylebos Creek (see Figure C.2 for location of transducers). Installation and calibration relative to water level measurements collected by hand were completed in accordance with the HSWP on October 30, 2008.

Additionally, one barometric logger (Solinst 3001 LT Barologger Gold, M1.5/F5) was installed in Well PD-109 within the Landfill to provide barometric compensation data. Per the HSWP, the transducer corresponding to SG-211 was installed in a PVC stilling well (PD-211TD) located in Hylebos Creek adjacent to SG-211.

The 11 transducers and the barometric logger were connected to a laptop computer to verify their functionality and that their battery capacity was full prior to their deployment. The clocks of all 11 transducers and the barometric logger were synchronized using a laptop computer. Each transducer was then suspended within the PVC casing of its respective piezometer, well, or stilling well using a static 0.025-inch diameter steel wire to ensure that a fixed distance was maintained between the transducer and the top of the piezometer, well, or stilling well casing. The barometric logger was suspended outside of the PVC casing but within the protective steel monument of PD-109 to shield it from the effects of wind and rain using steel wire as well.

2.1.4 Investigation-Derived Waste

Investigation-derived waste (IDW) was handled in accordance with the SAP/QAPP) as summarized below. IDW, including soil cuttings and water from well and piezometer installation borings within the Landfill, was containerized in Department of Transportation (DOT) approved 55-gallon drums for temporary storage prior to off-site disposal. Soil cuttings from borings outside areas of contaminated soil were placed at the ground surface in accordance with the SAP/QAPP. Containers were labeled with the date on which the waste was placed in the container and the boring(s) from which they were obtained. Containers were transferred to a designated temporary storage area and managed in accordance with applicable regulations and standards.

IDW was characterized relative to Dangerous Waste criteria by analytical sampling of representative samples submitted to Fremont Analytical in Seattle, Washington. IDW from borings advanced through the landfill cap was designated for off-site disposal based on analytical results (samples PD 107 5-7', PD-107 12-14', PD 108 5-7', and PD-108 10-12'). The IDW generated was disposed off-site along with other waste from the predesign investigations as dangerous (hazardous) and non-regulated waste, as applicable based on the waste characterization results. The waste characterization analytical laboratory results and waste manifests are included in Appendix B to this EDR as Attachment B.2.

2.2 REGULAR DATA COLLECTION

2.2.1 Water Level Measurements

A program of regular measurement of water levels in piezometers, monitoring wells and staff gauges was implemented to meet the hydrologic data objectives described in the HSWP. Water levels were measured in accordance with the HSWP and following standard procedures described in the SAP/QAPP. Water levels were measured during monthly field events, beginning in October 2008. Water levels will continue to be measured monthly on an ongoing basis throughout Phase 1.

Water level measurements observed in the field between October 2008 and February 2009 are presented in Table C.2. Upper and Lower Sand Aquifer potentiometric surface maps created from depth to water measured during the October 2008 through February 2009 monthly monitoring events are presented in Figures C.3 through C.12.

2.2.2 Discharge Monitoring

Surface water discharge measurements and synoptic runs were completed as part of quarterly events in October 2008 and February 2009. Discharge data were collected from multiple locations along Hylebos Creek (PD-210 and PD-211), Surprise Lake Drain (PD-216, PD-213, and PD-225), and the agricultural ditch system (PD-212, PD-214, PD-215, and PD-225). Discharge measurements were conducted in accordance with the HSWP and following standard U.S. Geological Survey (USGS) methods for streamflow gauging. The discharge measurements consisted of measuring depth and flow velocity across stream transects

perpendicular to the flow direction. All stream transect locations are clearly marked by bank head pins. Depth and flow velocity were measured at 1-foot intervals across stream transects with a Marsh-McBirney flow meter. A summary of discharge measurement results is presented in Table C.3 and discharge measurement worksheets are included as Attachment C2.

Data from discharge measurements were used to perform synoptic runs, or comparisons of streamflow discharge at points along a stream to evaluate whether a given reach of a stream is gaining (i.e., receiving water from adjacent groundwater) or losing (i.e., discharging water into adjacent groundwater) at the time of the discharge measurement. This evaluation was performed as part of numerical model construction and calibration.

Data collected to date are insufficient to support development of stage-discharge rating curves. Data will continue to be collected to support development of stage-discharge rating curves.

2.2.3 Transducer Upload

The internal data loggers in the transducers record a water level measurement once per hour and the internal data logger in the barometric logger records a barometric pressure reading once per hour. Hourly data dating back to the time of installation was transferred from the 11 transducers and the barometric logger to a laptop during the November 2008 and January 2009 water level measurement events. The transducers and the barometric logger were inspected during data load events and their remaining battery and storage capacity verified and recorded on field forms. All 11 transducers and the barometric logger appear to be fully functional and are free of damage following these two events.

2.3 HYDROGEOLOGIC TESTING

2.3.1 Pumping Tests

Pumping tests were conducted in wells located near the anticipated interceptor trench alignment and in the End-of-Plume area on October 7, 2008 and October 8, 2008, respectively, to provide estimates of aquifer characteristics. The two pumping tests were completed in general accordance with the HSWP, and following standard methods for constant-rate discharge tests, American Society for Testing and Materials (ASTM) Method D4050-96 (ASTM 2008). Pump test results are summarized in Table C.4 and the data analyses are included as Attachment C3.

A variable-speed 4-inch Grundfos submersible pump with 20 gallons per minute (gpm) capacity was employed for both pumping tests, and pumping rates were measured by filling a graduated container and measuring the filling time. Based on detailed characterization of areas of contaminated groundwater (refer to the Arsenic Characterization Study, Appendix A to the EDR), the groundwater from the pumping well was deemed suitable for discharge to the ground surface in accordance with the HSWP. During pumping, water was conveyed by a hose to locations approximately 100-feet cross-gradient from the pumping well and discharged onto the ground.

Electronic data was logged continuously for the duration of the pumping tests. Aquifer transmissivity and storativity were calculated from pump test drawdown and recovery data using the Theis approximation for unconfined aquifers. (USACE, 1999) Analyses of both drawdown and recovery data were performed using Aquifer Win 32 software Version 3.28 by Environmental Simulations. Inc.

In consultation with Ecology, the pumping test planned for PD-103 was instead conducted at PD-104 due to apparent anomalously low transmissivity at PD-103 based on soil classification. Additionally, drawdown data could not be collected from PD-104 during the interceptor trench area pumping test due to a transducer malfunction apparently caused by interference from the pump motor. Recovery data were collected from PD-104 during this pumping test using a backup transducer.

For the pumping test that was carried out as planned in PD-101, drawdown and recovery data from observation wells PD-70 and PD-71 were nearly identical. Consequently, only PD-70 was used as the observation well for estimating aquifer characteristics for the End-of-Plume area.

Based on pumping test results, estimates of hydraulic conductivity were between approximately 0.30 to 11 ft/d $(1.0 \times 10\text{-}4$ to $3.7 \times 10\text{-}3$ cm/s) in the area upgradient of the Landfill and 54 to 220 ft/d $(1.9 \times 10\text{-}2$ to $7.8 \times 10\text{-}2$ cm/s) in the End-of-Plume area of the Wetlands. These results are consistent with previous estimates of aquifer characteristics at the Site.

2.3.2 Infiltration Tests

A basin flooding test was performed in the stormwater pond to assess infiltration capacity, as described in the HSWP. The test was conducted on September 18, 2008, at which time the stormwater pond was dry. The test basin was constructed and installed according to the HSWP and following procedures outlined by the U.S. Environmental Protection Agency (USEPA 1981 and 1984). The 3-meter diameter, circular basin was constructed by placing aluminum flashing into a narrow, 6-inch deep excavated trench at the test basin perimeter. The trench was backfilled using the excavated sediments. Bentonite was also used to improve the seal between the aluminum flashing of the basin and the backfilled sediments.

Water was pumped from a clean, upgradient monitoring well (D-11A) into a 500-gallon tank and transferred into the constructed basin on September 17, 2008 for pre-test sediment saturation. On September 18, 2008, only a few inches of water remained in the basin; water level readings (Table C.5) were collected over about an hour, showing no change in basin water level. The test basin was refilled with water from the tank. Water levels were then monitored and recorded from two staff gauge locations within the basin, one along the south sidewall and one within the basin center, at 3- to 15-minute intervals for a total duration of 3 hours. As shown by the data of Table C.5, initial readings showed negligible infiltration. Subsequent readings showed a measurable drop in water level; however, leakage from the side of the basin was noted. Leakage was partially plugged later in the test. It appears that the measurements were affected by leakage from the basin ring.

The rate of infiltration from the existing detention pond appears to be very low, based on the negligible drop in water level that occurred over the first 1.25 hours of measurements on

FLOYD | SNIDER

AMEC Geomatrix

B&L Woodwaste Site

September 18, 2008. Based on these observations, it was concluded that the infiltration rate from the detention pond is substantially lower than the rate needed for the pond to function as an infiltration site for the groundwater interceptor system. It was decided to terminate testing rather than repair the ring for extended test runs. The very low infiltration rate is consistent with observed stormwater basin sediments throughout the detention pond. These sediments generally include compacted silty sand and sand with silt with coarse gravel and cobbles. Test data indicate that modifications to the pond are needed to support infiltration.

3.0 Conceptual Site Model

3.1 HYDROSTRATIGRAPHY AND AQUIFER PROPERTIES

Field investigations performed during the 2008 predesign activities provided hydrogeologic information that led to refinements of the Site conceptual model. Data collected during the study allowed accurate delineation of major hydrostratigraphic units, including the Upper Sand Aquifer and the Lower Silt Aquitard, as well as characterization of aquifer properties within the Landfill and Wetlands areas. Information contained in boring logs detailing the spatial extent and depth of the Upper Sand Aquifer and Lower Silt Aquitard were incorporated directly into the numerical groundwater model geometry. Likewise, parameters derived from aquifer pump tests provided confidence in hydraulic conductivity values in the model for locations upgradient of the Landfill and in wetlands areas. Additionally, the 2008 predesign investigations confirmed gaps in the Lower Silt Aquitard in both the southwest corner and the eastern side of the Landfill, which were also represented in the model design (refer to Section 5.3.2 through Section 5.3.3).

A full description of the site conceptual model is provided in the EDR Section 3.1.1. Detailed cross-sections were developed for key portions of the model area and are presented in Addendum 1 to the EDR.

3.2 GROUNDWATER FLOW DIRECTIONS AND GRADIENTS

Depth to groundwater measured in wells between October 2008 and February 2009 were used to calculate groundwater elevations and generate potentiometric surface maps (Figures C.3 through C.12). Groundwater flow directions in the Upper Sand Aquifer are generally north-northwesterly, from the upland bluff east of the Landfill to the Wetlands area north and west of the Landfill. North and east of the Landfill, groundwater flows westerly towards Hylebos Creek.

Horizontal groundwater gradients are steeper in areas of the upland bluff east of the Landfill and flatten beneath the Landfill and in the Wetlands. Horizontal gradients in the Upper Sand Aquifer range from approximately 0.0025 to 0.005 in the vicinity of the Landfill. Horizontal gradients beneath the Wetlands are generally less than 0.001. Horizontal gradients in the transition area between the upland bluff and the Landfill are typically greater than 0.006.

Vertical gradients between the Lower and Upper Sand Aquifers are generally neutral or slightly downward in the areas upgradient of the Landfill and transition to neutral followed by increasingly strong (0.1) upward gradients on the north side of the Landfill in the Wetlands areas.

3.3 SURFACE WATER AND GROUNDWATER INTERACTIONS

Streamflow data gathered from the agricultural ditch network, Hylebos Creek, and Surprise Lake Drain indicate that the shallow groundwater system and surface water are in hydraulic communication within the model domain. Furthermore, a single reach may change between

gaining or losing depending on a variety of factors including changes in seasonal groundwater elevation and surface water stage.

The limited data available indicate that there are both gaining and losing surface water reaches across the model domain. Because only one round of discharge data was available, accurately determining the magnitude of the flux between surface water and shallow groundwater has proven problematic. Surface water discharge data collected in October 2008 contains irregularities due to near-zero velocity eddies in Hylebos Creek, Surprise Lake Drain, and in the ditches adjacent to the Landfill. Changes in volumetric flow calculated from streamflow data suggest that neighboring reaches within these drainage networks transition from gaining to losing conditions (or losing to gaining) over short distances. While the presence of gaining and losing reaches within the model domain area is likely, the abrupt transitions between adjacent reaches as well as the magnitude of the calculated groundwater-surface water fluxes between surface water features and the Upper Sand Aquifer are not likely. This issue will continue to be evaluated as work proceeds for the hydrogeologic study.

3.4 STEADY-STATE WATER BALANCE

A comprehensive water budget for the model was developed using estimates for recharge, evapotranspiration (ET), and groundwater flux into and out of the model domain. However, only very limited surface water stream gauging data was available for drainages within the model domain. The data available only encompassed one season; ttherefore, calculations based upon the data indicated unreasonable fluxes between surface water and shallow groundwater. Field measurements also indicated volumetric surface storage of water in the stream network (i.e., stream velocity equal to zero), which did not support the development of a steady-state water balance model. Consequently, flux estimates for groundwater-surface water interactions were used in development of the water balance model.

AMEC Geomatrix

4.0 Numerical Model Development

The project team developed a numerical model to simulate groundwater flow conditions for the B&L Landfill study area. The numerical groundwater model is designed based on the current conceptual model. The model is intended to serve as a decision-making tool to help understand the physical flow system and advective transport, evaluate various remedial design scenarios, and assess potential effects of the remedial actions specified in the CAP on water resources.

4.1 NUMERICAL MODEL CODE

The USGS Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW-2000) was selected to simulate groundwater flow within the Site. In order to represent surface water drainages, the DRAIN and RIVER head dependent boundary conditions within MODFLOW were used to simulate the agricultural ditches, Surprise Lake Drain, and Hylebos Creek (Refer to Section 4.5). MODFLOW (McDonald and Harbaugh 1988, Harbaugh and McDonald 1996, and Harbaugh et al. 2000 [2000 Version]) is a well-documented program that is publically available and extensively used in the environmental industry to characterize and assess groundwater flow. MODLFOW has been used successfully to simulate groundwater flow in many subsurface environments similar to that within the model domain for this project. The code was developed by the USGS to simulate groundwater flow in a three-dimensional, heterogeneous, and anisotropic medium. MODFLOW uses a block-centered finite difference approach for the numerical solution of the three-dimensional partial differential equation for flow through a saturated porous media with constant fluid density.

Advective groundwater movement was simulated using the particle tracking code MODPATH Version 3.0 (Pollock, 1994). MODPATH is a three-dimensional, particle-tracking code that uses output from MODFLOW to calculate particle velocity changes over time in three dimensions. MODPATH also calculates groundwater seepage velocities and groundwater flow directions, which allows comparisons between observed and simulated flow fields during the model calibration process.

4.2 MODEL DOMAIN

The model domain encompasses an area of approximately 290 acres and includes the B&L Property. Figure C.1 shows the entire model domain, which includes the Landfill/Ditch CAA, the Wetlands CAA, and the End-of-Plume CAA, and the surrounding areas, encompassing Hylebos Creek and the Surprise Lake Drain. External model boundaries were selected to ensure that simulated internal stresses would not inappropriately impact prescribed boundary conditions. The eastern model boundary generally parallels a north-south trending bluff and is located adjacent to Fife Way where alluvial valley deposits contact the base of the hillslope. All other model boundaries were located outward from their original locations proposed in the HSWP.

The northern model boundary was extended outward from its proposed location in the HSWP to coincide with a more suitable topographic boundary just below the confluence of East and West Hylebos Creek. The northwestern boundary was relocated to so that it paralleled the bluff

located to the west of Hylebos Creek. The repositioning of the northwestern boundary allows numerical representation of potential throughflow beneath Hylebos Creek in the Upper Sand Aquifer. The southwestern model boundary was moved outward from its original location along Surprise Lake Drain. The increased area within this portion of the model domain allows numerical representation of throughflow beneath Surprise Lake Drain. The southern model boundary was relocated southward to orient the model boundary parallel to observed flow directions.

4.3 MODEL DISCRETIZATION AND GROUND SURFACE ELEVATION

The numerical model has a uniform horizontal grid spacing of 20 by 20 feet. This high-resolution grid spacing allows accurate representation of curvature in potentiometric surfaces, recharge and discharge to surface water features, and aquifer response due to pumping (Anderson and Woessner 2002). Despite using a high-grid resolution, the calibrated steady-state model maintained acceptable computation times.

Boring logs (Attachment C.1) were examined to construct model geometry consistent with major hydrostratigraphic units within the domain area. Based upon an interpretation of available lithologic data, model Layers 1 through 3 represent the Landfill, Upper Sand Aquifer, and Lower Silt Aquitard, respectively. The Lower Sand Aquifer is divided into two identical 15-feet thick units. Division of the Lower Sand Aquifer unit into two layers allows representation of the hanging barrier wall design within the numerical model (refer to Addendum 1). The table below provides a summary of each respective model layer and the corresponding hydrostratigraphic unit.

Layer	Unit Representation
1	Landfill
2	Upper Sand Aquifer
3	Lower Silt Aquitard
4	Lower Sand Aquifer
5	Lower Sand Aquifer

The vertical extent of the Lower Sand Aquifer could not be determined from the boring logs; therefore, the model bottom was set to 30-feet below the bottom of Lower Silt Aquitard. This depth was considered sufficient to minimize any boundary effects caused by the bottom of the model domain.

Light detection and ranging (LIDAR) bare-earth topographic data at approximately 6 x 6 foot resolution was obtained from the Puget Sound LIDAR Consortium (2008) for the entire model domain (available online at http://pugetsoundlidar.ess.washington.edu). The LIDAR data product was resampled to 20 x 20 foot spaced intervals and used to establish the ground surface elevation for the numerical model.

4.4 INITIAL MODEL PROPERTY ESTIMATES

4.4.1 Recharge and Evapotranspiration (ET)

Local precipitation data were used as the basis for estimating areal recharge in model calibration. Monthly precipitation totals between 1919 and 2008 were obtained for two weather stations in Tacoma, Washington (1919 to 1981: Tacoma #1, COOP ID 458278; and 1982 to 2008: Tacoma City Hall, COOP ID 458286). These two stations were selected because of their proximity to the Landfill and, when combined, provided nearly complete coverage of the available precipitation record. The data for the period of January 1919 through August 2008 were obtained from the National Climatic Data Center (National Climatic Data Center 2009). The data for September 2008 through December 2008 were provided by the Western Regional Climate Center through e-mail communication (Western Regional Climate Center 2009).

The average annual precipitation was calculated from the composite monthly dataset and used to estimate recharge rates for the numerical model. The annual average did not include years where at least one month contained missing data. These years included 1946, 1947, 1960, 1961, 1982, 1997, 1998, 2000, and 2002. The only exception is year 1996 when the monthly precipitation for June was missing. Because precipitation during the month of June is typically low, the missing data is not expected to significantly affect the annual precipitation total for 1996. Figure C.13 shows yearly totals and the average annual precipitation from 1919 to 2008. According to the data, the average annual precipitation is 36.7 inches. The maximum annual precipitation was 53.3 inches.

The model domain was divided into two different groundwater recharge zones to represent areas with different precipitation recharge potential: the Landfill and the remaining model domain. Over the Landfill, recharge was set to zero to reflect the presence of the Resource Conservation and Recovery Act (RCRA) cap. For the remaining model domain, the recharge rate was estimated as a fraction of the annual average precipitation. The initial recharge rate was estimated as 10 percent of the average annual precipitation rate. Through the calibration process, recharge was assigned as 8 percent of the annual average precipitation.

An ET rate of 20 inches/year with a root extinction depth of 3 feet was assigned to the Wetland area located north of the Landfill. Within the MODFLOW ET package, the ET rate occurs at a maximum when the water table rises to the top of a layer. ET decreases linearly to zero over the vertical length defined by the root extinction depth (McDonald and Harbaugh 1988). The ET rate was initially estimated based on annual average pan evaporation values for the region (KJC and AGI 1990) and then adjusted as part of model calibration process.

4.4.2 Hydraulic Conductivity

Initial hydraulic conductivity values were assigned based on results from available pump test data and interpretation of lithologic logs. Estimates of hydraulic conductivity from pump test data were between approximately 0.3 to 220 ft/d (1.04 x 10-4 to 7.8 x 10-2 cm/s) with lower values corresponding to areas upgradient of the Landfill and higher values characteristic of the Upper Sand Aquifer in the Wetlands areas. To represent anisotropy in the model, vertical hydraulic conductivity values were scaled to one tenth (1/10) of the hydraulic conductivity in the horizontal direction. Following model runs using initial parameter values, hydraulic conductivity values were adjusted as part of model calibration so that model output matched observed heads and flow directions (refer to Section 5.0).

Boring logs, aquifer tests, and contaminant concentration contours from predesign and previous site investigation activities were used to identify areas of higher hydraulic conductivity within Layer 2, the Upper Sand Aquifer. Two northwest-trending features that correspond to depositional sand channels were identified: a sand channel that intersects the southwest corner of the Landfill, and a sand channel at the eastern side of the Landfill that extends into the wetlands (refer to Section 5.3.2).

4.5 BOUNDARY CONDITIONS

Boundary conditions were assigned based on groundwater flow directions and gradients inferred from groundwater contour maps and the steady-state water balance model developed for the model domain area. The Landfill layer (Layer 1) consists of active cells in the area of the Landfill footprint surrounded by a no-flow boundary condition (not shown). Under this construction, saturation of the wood waste occurs as the water table rises from beneath the Landfill.

Figure C.14 shows constant head and constant flux boundary type distribution assigned to the remaining model layers. In Layer 2 (the Upper Sand Aquifer), a constant flux boundary condition and a constant head boundary condition were used to introduce water into the model domain as throughflow from both the north, northwest, east, and southeast (Figure C.14). A constant head boundary was assigned to cells in the southwest corner of the model so that groundwater would exit the model domain either as groundwater contributions to surface flow in Hylebos Creek and Surprise Lake Drain or as groundwater throughflow towards the southwest.

In Layer 3, a constant flux boundary was assigned along the east side of the model domain (Figure C.14). The flux into the model was minimal relative to fluxes used in the overlying Upper Sand Aquifer and underlying Lower Sand Aquifer. The constant flux boundary in Layer 3, however, allowed numerical representation of the low transmissivity typical for a silt aquitard.

Both Layers 4 and 5 represent the Lower Sand Aquifer and have identical boundary conditions. In each layer, a combination of constant flux boundaries and constant head boundaries allows groundwater to enter the model domain as throughflow from the north, northwest, east, and southeast. A constant head boundary, located along the southwest edge of the model, allows groundwater in the Lower Sand Aquifer to exit the domain as throughflow (Figure C.14).

Hylebos Creek, Surprise Lake Drain, and certain portions of the agricultural ditch network were simulated using the RIVER package of MODFLOW. For modeling purposes, the bottom elevation of each drainage was established using surveyed elevation data for each staff gauge location. Surface water staff gauge measurements were used to define stage elevation for each drainage reach in the numerical model. Stream Conductance parameters within the RIVER package were used to match simulated groundwater-surface water fluxes to reasonable values and to match observed and simulated heads for piezometer measurements adjacent to surface drainages. Stream Conductance for each river reach is calculated as,

$$C = \frac{K * L * W}{D}$$

where C is conductance (ft2/d), K is stream bed hydraulic conductivity (ft/d), L is length of each river reach (ft), W is stream width (ft), and D is thickness of the bed material (ft). Because the model was developed with uniform grid spacing, the length of each river reach was 20 ft. Stream width values were well constrained based upon data collected during stream gauging activities. Stream bed hydraulic conductivity values were estimated based upon observed streambed properties. Estimates were used for the thickness of the bed material considering the size and discharge of each drainage. Stream bed conductance values ranged from 28 to 1,000 ft2/d in the calibrated steady state numerical model.

The MODFLOW DRAIN package was used to simulate the reach of the agricultural ditch due north of the Landfill as well as the agricultural drain due west of the Autumn Village Apartments. These reaches were simulated using the DRAIN package in the model because field observations indicated these reaches are often dry during parts of the year. The DRAIN package assigns a head-dependent boundary condition that removes water from the aquifer once the simulated water table is higher than the drain head (Harbaugh and McDonald 1996). Conductance values, calculated using the same approach as with the RIVER package, varied from 20 to 200 ft2/d.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

5.0 Model Calibration

5.1 CALIBRATION TARGETS

The model was calibrated to match simulated potentiometric heads with observed groundwater level data at 62 calibration target locations (55 targets in Layer 2; 7 targets in Layer 4). Groundwater elevations and surface water stage data collected during the months of October 2008 through December 2008 were averaged to provide calibration targets for the steady state numerical model. Table C.6 provides a list of the target locations used during model calibration.

Due to issues with streamflow data and surface storage discussed in Sections 3.3 and 3.4, target fluxes could not be established for stream reaches. As a result, model calibration focused on matching simulated and observed heads as well as flow directions while field-measured surface water stage data were used to maintain appropriate water elevations in the model's river boundary package.

Differences between the observed heads and simulated heads at calibration targets were used to calculate statistics for model residuals. Residual (R) is the difference between simulated and measured groundwater elevations at specific locations in the model domain (62 targets were used for calibration). During the calibration process, model parameter values were varied over an acceptable range to minimize calibration statistics such as the residual mean (RM), absolute residual mean (ARM), residual standard deviation (RSD), and residual sum of squares (RSS; Duffield et al. 1990). The ratio of the RSD to the range of observed head values across the entire model domain should be minimal for a calibrated model, indicating that the residual errors are a small component of the model response. A ratio of less than 10 percent is considered acceptable for groundwater flow and solute transport applications (Anderson and Woessner 2002).

5.2 CALIBRATION GOALS

Steady-state model calibration was evaluated both quantitatively and qualitatively using a suite of different criteria. Criteria included:

- visual comparison between groundwater elevation contour maps based on measured and simulated heads.
- visual evaluation of a scatter plot comparing measured and simulated heads,
- statistical evaluation of residuals,
- acceptable water balance error (less than 1 percent).
- ratio of RSD to the total head change across the domain of less than 10 percent,
- comparison of advective transport to observed plume dimensions.

5.3 RESULTS

5.3.1 Observed vs. Simulated Heads and Flow Paths

Figure C.15 shows simulated groundwater contours and particle tracking for Layer 2 (Upper Sand Aquifer) produced by the calibrated steady-state model. Generally, contours calculated by the numerical model reflect observed groundwater elevations and flow directions (Figure C.3 through C.12). To the north of 12th Street East, groundwater flows from northeast to southwest. In the south region of the model, including the area around the Landfill, groundwater flows to the northwest but gradually bends toward the west in the central and western portions of the model domain. Particle tracking, using release points in suspected constituent source areas, demonstrates that simulated advective transport replicates observed arsenic plume dimensions, as shown in Figure C.15.

Table C.6 provides calibration target values as well as the simulated groundwater heads and calculated residuals. Figure C.16 shows a scatter plot of simulated versus observed groundwater elevations. A correlation coefficient of 0.96 indicates a strong positive relationship between observed and simulated heads. A correlation coefficient equal to 1 would be the result of a model that perfectly replicates observed heads.

Calibration statistics based on residuals are shown in Table C.7. The average residual is minus 0.37 ft. The average absolute value of the residuals is 0.54 ft. The standard deviation of the difference between observed and simulated groundwater elevations is 0.50 ft. The model error, provided by the RSD divided by the total range in observed head, is 3.2 percent. The water balance error was minus 4.7 x 10-4 percent (not shown). Based upon statistical analyses of groundwater elevations and comparison of observed and simulated flow paths, the calibration results are considered acceptable.

5.3.2 Calibrated Parameter Distribution

Model calibration focused primarily on the adjustment of hydraulic conductivity to match observed and simulated groundwater elevations. In Layer 1 (the Landfill), a uniform conductivity of 0.1 ft/d was used to parameterize the wood waste (not shown). Figure C.17 shows calibrated hydraulic conductivity values for the Upper Sand Aquifer (Layer 2), the Lower Silt Aquitard (Layer 3), and the Lower Sand Aquifer (Layers 4 and 5). The Upper Sand Aquifer has a background hydraulic conductivity of 50 ft/d. The eastern sand channel has a conductivity value of 150 ft/d, whereas the southwestern sand channel feature has a conductivity value of 95 ft/d. The Lower Silt Aquitard (Layer 3) has a background conductivity of 0.23 ft/d. Areas where the sand channels cut through the Lower Silt Aquitard were parameterized with the same hydraulic conductivity values used in Upper Sand Aquifer (Layer 2). The Lower Sand Aquifer has a background hydraulic conductivity of 50 ft/d across the majority of the modeling domain.

Currently, the model is calibrated for only a steady-state condition. Once sufficient field data have been collected that include an entire wet through dry season cycle, a transient verification will be performed. The transient model will require estimates of additional parameters including storativity (S). Storativity will be estimated based on aquifer test results and literature values,

and will be adjusted as part of the model calibration process so that seasonal changes in groundwater elevation and fluxes are accurately captured by the transient numerical model.

5.4 UNCERTAINTY AND SENSITIVITY ANALYSIS

Numerical models always contain uncertainty due to the both the inability to accurately estimate the magnitude and timing of system stresses as well as an inability to accurately quantify both spatial and temporal distribution of parameter values (Anderson and Woessner 2002). As an example, while pump tests are often performed to quantify hydraulic conductivity in known critical areas, hydraulic conductivity is rarely homogeneous throughout the entire model domain. Additionally, depending on the pumping rate and aquifer properties, tests may stress the aquifer over a limited spatial extent. As a result, conductivity values derived from aquifer tests may be indicative of the physical system only in areas where the pump test occurred.

For the Site numerical model, while conductivity is well characterized in areas where pump tests were performed, there remains uncertainty in other regions of the model domain. Consequently, hydraulic conductivity in portions of the model, such as the Lower Sand Aquifer or far northern areas of the domain, required parameter estimation based upon either lithological descriptions from available borings logs or the extrapolation of hydrostratigraphy from well characterized areas within the model domain.

Similarly, measurements of recharge to groundwater are typically unavailable for modeling exercises. Therefore, a standard approach is to calculate recharge using a constant proportion of precipitation and in the absence of other data begin with 10 percent of precipitation (Anderson and Woessner 2002). This fractionation approach accounts for potential recharge losses including precipitation runoff and evapotranspiration. Because it is not easily measured, recharge may be varied from the initial estimate during model calibration exercises to improve simulated results.

While it is impossible to completely characterize parameter distributions in both time and space, analyses can be performed to quantify model sensitivity due to the uncertainty associated with a given parameter. Results for sensitivity analyses, including both hydraulic conductivity and recharge rates, were performed for the Site model and are presented in Section 5.4.1.

5.4.1 Sensitivity Analysis

The calibrated groundwater model is not a unique solution. It is possible that the model would calibrate using different combinations of boundary conditions and parameter values. Sensitivity analyses were performed to assess the sensitivity of the model calibration to certain model inputs by adjusting the inputs within a plausible range and observing the effect on model error. Parameters and boundary condition analyzed to assess sensitivity included the background hydraulic conductivity for the Upper Sand Aquifer, the Lower Silt Aquitard, the Lower Sand Aquifer, the east sand channel, the southwest sand channel as well as recharge, and flux boundaries. Results are shown in Figures C.17 through C.23 and discussed below.

Sensitivity analysis was performed for the background hydraulic conductivity of the Upper Sand Aquifer by scaling the calibrated hydraulic conductivity by factors of 0.1, 0.5, 1, 1.5, and 2 where a scaling factor equal to 1 reproduces results from the calibrated model. The metric used to quantify model sensitivity in each run is the RSD divided by the observed range in head. As discussed in Section 5.3.1, this statistical metric provides quantification of model error. The same analysis was performed for background conductivity in layers corresponding to the Lower Silt Aquitard (Layer 3), the Lower Sand Aquifer (Layers 4 and 5), the east sand channel, and the southwest sand channel.

Sensitivity analyses indicate that model calibration is especially sensitive to decreases in hydraulic conductivity in the Upper Sand Aquifer (Layer 2; Figure C.16). In addition, model error also increases with increasing background hydraulic conductivity in both the Upper Sand Aquifer (Layer 2; Figure C.17) and the Lower Sand Aquifer (Layer 4 and 5; Figure C.18). In addition, both increases and decreases in hydraulic conductivity for the eastern sand channel result in an increase in model error (Figure C.19). However, the model is insensitive to changes in the hydraulic conductivity associated with the southwest sand channel (Figure C.20). Likewise, model results do not vary significantly in response to changes in the background hydraulic conductivity of the Lower Silt Aquitard (Layer 3; Figure C.21). In each of the previous cases, the lowest model error was associated with the hydraulic conductivity value used in the calibrated version of the model.

As with hydraulic conductivity, the calibrated recharge rate was scaled prior to running a suite of five simulations. Scaling factors applied to the calibrated recharge rate were .5, 0.75, 1, 1.25, and 1.875, respectively. The calculated error for each simulation was used to determine model sensitivity to changes in the model recharge rate. Results presented in Figure C.22 indicate the model is insensitive to changes in recharge over the evaluated range. Again, the lowest model error was associated with the recharge value used in the calibrated version of the model

Constant flux boundaries were also evaluated for influence on model sensitivity. Scaling factors applied to flux boundaries were 0.5, 0.95, 1, 1.05, and 1.5, respectively. Because different flux magnitudes are used in different portions of the model, the error metric is plotted as a function of the scaling factor. Results indicate that the model is sensitive to both increases and decreases in the flux boundary (Figure C.23). In this case, the 1.05 multiplier provides a slightly lower model error than the calibrated model; however, the difference is so small that the overall model results are not influenced.

5.4.2 Model Limitations

Calibration of the groundwater model demonstrates that it is capable of simulating groundwater flow under steady-state conditions for the model area within a reasonable range of error. Inherent in any numerical groundwater modeling effort is a degree of uncertainty. For example, there is a fair degree of uncertainty associated with the hydraulic conductivity of some units. In addition, transient verification of the model has not yet been completed and would improve confidence in the model's predictive capabilities. Transient calibration will be completed during the next phase of modeling and presented in future addenda to the EDR.

FLOYDISNIDER

AMEC Geomatrix

B&L Woodwaste Site

The numerical model described in this report is appropriate for use in decision making regarding design parameters for the barrier wall and interceptor trench.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

AMEC Geomatrix

6.0 Barrier Wall and Interceptor Trench Representation

The containment barrier around the Landfill perimeter was represented using MODFLOW's Flow Barrier Package. Within the numerical model, the barrier wall was assigned a thickness of 2 feet and a hydraulic conductivity of 0.0003 ft/d (1 x 10-7 cm/s). This hydraulic conductivity is consistent with likely values for the permeability of the barrier wall. The groundwater interceptor trench on the upgradient side of the Landfill was simulated using MODFLOW's Drain Package (a head-dependent boundary). Model runs incorporating the barrier wall and interceptor trench were conducted for evaluation of these remedial measures and are presented in Addendum 1 to the EDR.

FLOYD | SNIDER **AMEC Geomatrix**

B&L Woodwaste Site

This page intentionally left blank.

AMEC Geomatrix

7.0 References

- American Society for Testing and Materials (ASTM) 2008. ASTM D4050–96 (Reapproved 2002). Standard Test Method (Field Procedure) for Withdrawal and Injection Well Tests for Determining Hydraulic Properties of Aquifer Systems. ASTM International, West Conshohocken, PA, www.astm.org.
- Anderson, M.P. and W.W. Woessner. 2002. *Applied Groundwater Modeling, Simulation of Flow and Advective Transport.* Academic Press, Inc.
- Duffield, G.M., Stephenson, D.E., and D.R. Buss. 1990. Velocity Prediction Errors Related to Flow Model Calibration Uncertainty, ModelCARE 90: Calibration and Reliability in Ground Water Modeling. IAHS Publication No. 195, Washington D.C.
- Floyd|Snider/AMEC 2009. *Groundwater Remediation Work Plan.* Prepared for B&L Custodial Trust, Olympia, Washington. January.
- Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald. 2000. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model User Guide to Modularization Concepts and the Ground-Water Flow Process: U.S. Geological Survey 7 Open-File Report.
- Harbaugh, A.W. and M. G. McDonald. 1996. User's Documentation for MODFLOW-96, An Update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model: U.S. Geological Survey Open-File Report 96-485.
- Kennedy/Jenks/Chilton (KJC) and AGI. 1990. Focused Remedial Investigation B&L Woodwaste Site. Prepared for Murray Pacific Corporation. September.
- McDonald, M.G. and A. W. Harbaugh. 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model: U.S. Geological Survey Techniques of Water-Resources Investigation: p. 586 in Book 6, Chap. A1.
- National Climatic Data Center. 2009. Available online at http://www.ncdc.noaa.gov/oa/climate/climateinventories.html/. Accessed on 12 January/
- Pollock, D.W. 1994. User's Guide for MODPATH/MODPATH-PLOT, Version 3: A Particle Tracking Post-Processing Package for MODFLOW, the U.S. Geological Survey Finite-Difference Ground-Water Flow Model: U.S. Geological Survey Open-File Report 94-464: in Chapter 6.
- Puget Sound LIDAR Consortium. 2008. Available online at http://pugetsoundlidar.ess.washington.edu

- U.S. Environmental Protection Agency (USEPA). 1981. Process Design Manual for Land Treatment of Municipal Wastewater. EPA 625/1-81-013 (COE EM1110-1-501). October.
- _____. 1984. Process Design Manual of Municipal Wastewater, Supplement on Rapid Infiltration and Overland Flow. EPA 625/1-81-013a. October.
- U.S. Army Corp of Engineers (USACE). 1999. *Groundwater Hydrology. Engineer Manual* 1110-2-1421. February.
- Western Regional Climate Center. 2009. E-mail communication with Michelle Breckner, Service Climatologist.

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Appendix C Tables Phase 1 Hydrogeologic Study Report

Table C.1
Water Level Measurement Location Construction Details

Location	Monument Type	Diameter (inches)	Northing (ft. NAD 83/98)	Easting (ft. NAD 83/98)	Measuring Point Elevation (NAVD88)	Ground Surface Elevation (NAVD88)	Depth to Top of Screen (ft. bgs)	Depth to Bottom of Screen (ft. bgs)	Aquifer or Water Body
North End a	and Hylebos Creek								
PD-210	Above ground piezo	1	703817.762	1185259.758	19.154	15.714	8.00	18.00	Upper Sand
SG-210	Staff gauge	NA	703819.587	1185254.116	15.576	8.884	NA	NA	Hylebos Creek
PD-211	Above ground piezo	1	703281.052	1185150.092	16.774	13.994	6.00	16.00	Upper Sand
SG-211	Staff gauge	NA	703286.154	1185137.093	15.181	11.361	NA	NA	Hylebos Creek
PD-211TD	Above ground piezo	1	703285.856	1185137.236	16.880	11.361	NA	NA	Hylebos Creek
PD-200	Above ground piezo	1	703432.233	1185702.110	15.864	12.864	3.00	18.00	Upper Sand
PD-209A	Above ground well	2	702899.187	1185072.731	17.131	15.574	NA	NA	Upper Sand
PD-209B	Above ground well	2	702896.569	1185068.508	17.062	15.672	NA	NA	Unknown
ife Way									
PD-201	Flush	1	703536.077	1187254.520	40.049	40.049	12.00	27.00	Upper Sand
PD-202	Flush	1	702529.017	1187128.079	56.305	56.305	4.00	24.00	Upper Sand
PD-65	Flush	1	701319.661	1186546.326	30.924	30.924	4.00	24.00	Upper Sand
PD-203	Flush	1	700959.817	1186418.866	37.896	37.896	5.00	25.00	Upper Sand
Autumn Vill	age Apartments		•		•	•	•	<u> </u>	· ·
GW-1	Flush	2	701562.790	1186475.029	19.052	19.052	NA	NA	Upper Sand
3W-2	Flush	2	701449.977	1186364.768	18.754	18.754	NA	NA	Upper Sand
SG-217	Staff gauge	NA	701294.301	1186165.519	18.981	NA	NA	NA	Drainage Ditch
Wetlands A	pproach from 12 th Stre	et			•	•	•		
PD-204	Above ground well	2	702917.316	1186546.417	17.566	14.936	15.00	25.00	Upper Sand
PD-101	Above ground well	4	702916.209	1186071.438	17.011	14.150	7.00	22.00	Upper Sand
PD-70	Flush	2	702918.212	1186061.179	14.283	14.283	5.20	20.20	Upper Sand
PD-71	Flush	2	702923.295	1186058.151	14.410	14.410	5.00	20.00	Upper Sand
PD-120	Flush	 1	702915.097	1185943.911	13.856	13.856	11.00	21.00	Upper Sand
PD-121	Flush	1	702915.554	1185934.462	13.934	13.934	11.00	21.00	Upper Sand
PD-122	Flush	1	702915.129	1185924.186	13.863	13.863	11.00	21.00	Upper Sand
PD-130	Above ground piezo	1	702935.618	1185819.200	15.187	12.802	12.00	22.00	Upper Sand
PD-131	Above ground piezo	1	702938.177	1185889.610	14.532	12.502	12.00	22.00	Upper Sand
PD-132	Above ground piezo	1	702939.626	1185948.769	15.352	12.942	11.00	21.00	Upper Sand
PD-105	Above ground piezo	2	702914.152	1185899.584	16.162	13.511	12.00	22.00	Upper Sand
PD-106	Above ground piezo	2	702914.618	1185953.824	16.742	14.156	11.00	21.00	Upper Sand
ЛW-31A	Above ground well	2	702917.222	1185835.899	16.482	14.057	17.00	22.00	Upper Sand
ЛW-31В	Above ground well	2	702916.222	1185840.565	16.322	14.057	35.00	40.00	Lower Sand
PD-4	Above ground piezo	1	702994.798	1185895.931	15.297	12.292	5.00	20.00	Upper Sand
PD-6	Above ground piezo	1	703003.140	1185989.093	15.642	12.812	6.00	21.00	Upper Sand
MW-16	Above ground well	2	702799.199	1186173.741	15.799	13.364	10.00	15.00	Upper Sand
ЛW-17	Above ground well	2	702857.742	1185983.458	15.197	12.472	10.00	15.00	Upper Sand
PD-1A	Above ground piezo	1	702948.758	1185729.253	16.167			7.50	Upper Sand
PD-1B	Above ground piezo	1	702948.583	1185725.946	15.732	12.617	5.00 8.00	13.00	Upper Sand
PD-1C	Above ground piezo	1	702948.550	1185722.528	15.932	12.617	13.00	18.00	Upper Sand

Table C.1
Water Level Measurement Location Construction Details

	I I		1		1	I			
Location	Monument Type	Diameter (inches)	Northing (ft. NAD 83/98)	Easting (ft. NAD 83/98)	Measuring Point Elevation (NAVD88)	Ground Surface Elevation (NAVD88)	Depth to Top of Screen (ft. bgs)	Depth to Bottom of Screen (ft. bgs)	Aquifer or Water Body
Wetlands Ap	proach from Interurb	an Trail							
D-1U	Above ground well	2	702581.1467	1186263.532	15.154	13.764	8.10	13.10	Upper Sand
D-1L	Above ground well	2	702586.7477	1186260.328	15.084	13.514	25.30	30.30	Lower Sand
D-5U	Above ground well	2	702321.4743	1185708.409	17.364	13.339	8.50	13.50	Upper Sand
D-5L	Above ground well	2	702330.3977	1185710.997	17.189	13.589	25.30	30.30	Lower Sand
SG-219	Staff gauge	NA	702316.6903	1185698.609	17.199	13.019	NA	NA	Wetlands Surface Water
D-6A	Above ground well	2	702465.581	1185996.456	14.128	13.094	10.00	15.00	Upper Sand
D-6B	Above ground well	2	702460.2	1185997.9	14.541	13.044	28.00	33.00	Lower Sand
MW-13	Above ground well	2	702573.9139	1186104.435	15.434	13.304	9.50	14.50	Upper Sand
SG-218	Staff gauge	NA	702575.8661	1186101.037	17.109	12.904	NA	NA	Wetlands Surface Water
MW-14	Above ground well	2	702656.6904	1185883.564	15.201	12.746	10.00	15.00	Upper Sand
MW-15	Above ground well	2	702717.8081	1186011.709	15.319	12.754	10.00	15.00	Upper Sand
SG-220	Staff gauge	NA	702721.0418	1186008.695	16.064	12.134	NA	NA	Wetlands Surface Water
PD-50	Above ground piezo	1	702820.1843	1185778.645	14.766	12.296	7.00	17.00	Upper Sand
SG-221	Staff gauge	NA	702813.4476	1185791.855	16.046	11.946	NA	NA	Wetlands Surface Water
PD-51	Above ground piezo	1	702695.0286	1185752.702	15.199	12.129	5.00	15.00	Upper Sand
PD-52A	Above ground piezo	1	702501.0168	1185675.209	15.044	12.499	5.00	7.50	Upper Sand
PD-52B	Above ground piezo	1	702497.9331	1185674.567	15.104	12.299	8.00	13.00	Upper Sand
PD-52C	Above ground piezo	1	702494.3809	1185673.518	15.039	12.389	14.00	19.00	Upper Sand
Ditch along I	Interrurban Trail								
MW-30	Flush	0.75	702394.4934	1186126.763	18.516	18.516	16.00	21.00	Upper Sand
SG-227	Staff gauge	NA	702411.5585	1186120.317	17.594	13.504	NA	NA	Drainage Ditch
PD-212	Above ground	1	702003.3593	1185274.184	17.791	15.461	4.70	19.70	Upper Sand
SG-212	Staff gauge	NA	702015.8783	1185267.173	15.79	11.481	NA	NA	Drainage Ditch
Landfill and	Perimeter Area								
PD-107	Extraction Well	6	702223.955	1186121.226	32.769	30.579	19.00	33.70	Upper Sand
PD-109	Extraction Well	6	701795.046	1186484.494	30.667	28.916	18.00	28.00	Upper Sand
SUMP	Sump	12	702118.073	1186206.479	50.896	48.126	NA	NA	Fill
SG-224	Staff gauge	NA	702370.460	1186139.077	18.464	14.564	NA	NA	Stormwater Pond
D-7A	Above ground well	2	702190.9768	1185698.422	15.854	15.269	9.50	14.50	Upper Sand
D-7B	Above ground well	2	702196.2509	1185699.323	16.429	15.169	28.00	33.00	Lower Sand
D-8A	Above ground well	2	701886.3802	1185691.527	16.174	14.954	10.00	15.00	Upper Sand
D-8B	Above ground well	2	701881.042	1185691.089	16.179	14.784	28.00	33.00	Lower Sand
SG-214	Staff gauge	NA	701843.8845	1185681.476	17.299	13.084	NA	NA	Drainage Ditch
PD-214	Above ground	1	701842.8007	1185673.02	17.674	15.564	5.00	20.00	Upper Sand
PD-215	Above ground	1	701558.881	1185850.799	19.324	16.609	4.20	19.20	Upper Sand
SG-215	Staff gauge	NA	701573.7788	1185851.475	17.634	13.059	NA	NA	Drainage Ditch
D-9A	Above ground well	2	701581.3487	1186172.041	17.164	15.514	8.50	13.50	Upper Sand

Table C.1
Water Level Measurement Location Construction Details

Location	Monument Type	Diameter (inches)	Northing (ft. NAD 83/98)	Easting (ft. NAD 83/98)	Measuring Point Elevation (NAVD88)	Ground Surface Elevation (NAVD88)	Depth to Top of Screen (ft. bgs)	Depth to Bottom of Screen (ft. bgs)	Aquifer or Water Body
Area East of	f Landfill								
MW-11A	Above ground well	2	702114.962	1186710.323	19.890	17.925	10.00	15.00	Upper Sand
MW-11B	Above ground well	2	702110.806	1186706.361	19.934	17.985	25.00	30.00	Lower Sand
PD-60	Above ground piezo	1	701995.337	1186678.210	20.134	17.096	4.00	19.00	Upper Sand
PD-61	Above ground piezo	1	702087.890	1186909.415	27.291	24.215	4.50	17.00	Upper Sand
PD-62	Above ground piezo	1	701824.995	1186617.214	20.365	17.636	5.00	20.00	Upper Sand
PD-104	Above ground well	4	701841.895	1186655.373	18.761	16.952	5.00	20.00	Upper Sand
PD-63A	Above ground piezo	1	701673.909	1186543.412	19.751	16.729	5.00	7.50	Upper Sand
PD-63B	Above ground piezo	1	701681.257	1186548.409	18.848	16.771	8.00	13.00	Upper Sand
PD-63C	Above ground piezo	1	701677.691	1186546.219	19.503	16.749	15.00	20.00	Upper Sand
PD-64	Above ground piezo	1	701620.047	1186657.786	22.285	19.544	5.00	20.00	Upper Sand
PD-38	Above ground piezo	1	701806.207	1186803.104	21.635	18.998	5.00	20.00	Upper Sand
PD-40	Above ground piezo	1	701719.309	1186767.139	22.531	19.670	5.00	20.00	Upper Sand
MW-23	Above ground well	2	701768.884	1186707.686	20.474	17.264	7.28	17.28	Upper Sand
D-10A	Above ground well	2	701754.648	1186794.841	21.534	19.501	10.00	15.00	Upper Sand
PD-80	Above ground piezo	1	701659.555	1186590.030	20.361	16.932	5.00	20.00	Upper Sand
PD-81	Above ground piezo	1	701641.860	1186594.973	20.568	17.393	5.00	20.00	Upper Sand
PD-82	Above ground piezo	1	701641.322	1186613.563	20.447	17.373	5.00	20.00	Upper Sand
PD-103	Above ground well	4	701644.963	1186604.073	18.617	17.095	4.15	16.50	Upper Sand
Agricultural	Fields and Ditches								
PD-216	Above ground	1	700921.424	1185663.481	20.449	17.364	2.50	17.50	Upper Sand
SG-216	Staff gauge	NA	700922.658	1185643.972	17.264	12.534	NA	NA	Surprise Lake Drain
PD-213	Above ground	1	701411.858	1185013.037	18.254	15.724	5.00	15.00	Upper Sand
SG-213	Staff gauge	NA	701412.808	1185002.323	16.114	11.574	NA	NA	Surprise Lake Drain
SG-225	Staff gauge	NA	701481.300	1184602.442	16.092	11.626	NA	NA	Surprise Lake Drain/ Drainage Ditch

Abbreviations:

bgs Below ground surface

ft Feet

NA Not applicable or not available

FLOYD | SNIDER AMEC Geomatrix

Table C.2
Water Level Measurements

				_									ı			February 2009		
		October 200	08	Trans	ducer Instal	Event	November 2008 December 2008						J	January 20	009	F	109	
			Water Level (DTW or stage			Water Level (DTW or stage height			Water Level (DTW or stage height			Water Level (DTW or stage height			Water Level (DTW or stage height		_	Water Level (DTW or stage height
Location	Date Taken	Time	height in feet) ¹	Date Taken	Time	in feet)1	Date Taken	Time	in feet)1	Date Taken	Time	in feet)1	Date Taken	Time	in feet) ¹	Date Taken	Time	in feet)1
North End and Hy			5.04		110	1 110	4.4.10.10.00.0	10.00	1 101	40/4/0000	10.50	5.40	4/40/0000	10.15	1 4 45	0/05/0000	40.00	T 5.40
PD-210	10/3/2008	NA 10:10	5.94	NA NA	NA	NA NA	11/6/2008	13:26	4.81	12/4/2008	10:56	5.46	1/16/2009	12:45	4.45	2/25/2009	13:20	5.40
SG-210 PD-211	10/3/2008 10/3/2008	10:40 NA	0.98 4.15	NA 10/30/2008	NA 15:05	NA 3.73	11/6/2008 11/6/2008	13:26 13:34	2.58 2.87	12/4/2008 12/4/2008	10:56 10:58	1.19 3.20	1/16/2009 1/16/2009	12:45 12:58	2.11 2.40	2/25/2009 2/25/2009	13:20 13:25	2.01 3.02
SG-211	10/3/2008	NA NA	1.85	NA	15.05 NA	NA	11/6/2008	13:35	2.68	12/4/2008	10:58	1.50	1/16/2009	12:57	2.39	2/25/2009	13:25	2.22
PD-211TD	NA	NA NA	NA	10/30/2008	15:56	4.20	11/6/2008	13:35	2.72	12/4/2008	NA	NA	1/16/2009	13:10	3.34	NA	NA	NA
PD-200	10/3/2008	NA	3.48	NA	NA	NA	11/6/2008	13:35	1.50	12/4/2008	11:07	2.32	1/16/2009	13:00	1.53	2/25/2009	14:00	2.50
PD-209A	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	12/4/2008	11:00	3.6	1/16/2009	13:03	2.67	2/25/2009	13:00	3.52
PD-209B	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	12/4/2008	11.02	2.73	1/16/2009	13:04	1.99	2/25/2009	13:00	2.4
Fife Way	10.0		101	10.0		101	10.	147.	10.0	12/ 1/2000	11.02	2.10	1710/2000	10.01	1.00	2/20/2000	10.00	
PD-201	10/2/2008	NA	21.25	NA	NA	NA	11/6/2008	10:27	20.89	12/4/2008	11:29	19.95	1/15/2009	10:25	17.95	2/24/2009	14:23	19.95
PD-202	39724.0	NA NA	28.1	NA NA	NA	NA NA	39758.0	0.4	28.1	12/4/2008	11:36	28.9	1/15/2009	10:23	28.1	2/24/2009	14:26	28.12
PD-65	10/3/2008	NA	13.95	NA	NA	NA	11/6/2008	10:42	13.85	12/4/2008	11:50	13.36	1/15/2009	10:55	12.04	2/24/2009	14:36	12.54
PD-203	10/3/2008	NA	16.00	NA	NA	NA	11/6/2008	10:53	15.86	12/4/2008	11:59	15.66	1/15/2009	10:58	14.88	2/24/2009	14:42	15.40
Autumn Village A	partments		· I						·I		I	I			· L			,L
GW-1	NA NA	NA	NA	NA	NA	NA	11/7/2008	13:45	NA ²	12/4/2008	11:41	1.50	1/15/2009	10:38	0.80	2/24/2009	14:11	1.08
GW-2	NA NA	NA	NA	NA	NA	NA NA	11/7/2008	13:57	NA ²	12/4/2008	11:48	0.06	1/15/2009	10:44	0.62	2/24/2009	14:18	1.08
SG-217	NA NA	NA NA	NA NA	NA NA	NA	NA	11/6/2008	11:27	1.02	12/4/2008	11:42	1.20	1/15/2009	10:40	0.99	2/24/2009	14:15	0.73
	ch from 12 th Street						6. 2 6 6 6					0			0.00			00
PD-204	10/2/2008	NA	4.24	NA	NA	NA	11/6/2008	9:05	3.73	12/4/2008	14:33	3.55	1/16/2009	10:30	2.72	2/24/2009	12:54	3.01
PD-101	10/2/2008	NA NA	5.00	NA NA	NA	NA NA	11/6/2008	9:10	3.83	12/4/2008	14:17	3.87	1/16/2009	10:40	2.32	2/24/2009	12:57	3.90
PD-70 ⁴	10/2/2008	NA NA	1.81	NA NA	NA	NA NA	11/6/2008	9:15	0.663	12/4/2008	NA	NA	NA	NA	NA	NA	NA	NA
PD-71 ⁴	10/2/2008	NA NA	2.14	NA NA	NA	NA NA	11/6/2008	9:14	0.89	12/4/2008	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
PD-120 ⁴	1	NA NA		NA NA	NA NA	NA NA	11/6/2008	9:14	0.40 ³	12/4/2008	NA NA	NA NA	NA NA			NA NA		NA NA
PD-120	NA NA	NA NA	NA NA	NA NA					0.40 0.45 ³		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	
	NA NA		NA NA		NA	NA	11/6/2008	9:20		12/4/2008			NA NA	NA	NA			NA
PD-122 ⁴	NA NA	NA	NA NA	NA NA	NA	NA	11/6/2008	9:36	0.39	12/4/2008	NA 44.42	NA 2.05	NA	NA 44:00	NA 1.20	NA	NA 12:11	NA 2.40
PD-130 PD-131	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	11/6/2008 11/6/2008	10:02 9:46	1.98 1.34	12/4/2008 12/4/2008	14:13 14:14	2.05 0.04	1/16/2009 1/16/2009	11:00	1.36 0.69	2/24/2009 2/24/2009	13:14	2.10 1.35
PD-131 PD-132	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	11/6/2008	9:40	2.19	12/4/2008	14:14	2.22	1/16/2009	10:56 10:47	1.56	2/24/2009	13:05 13:10	2.24
PD-105	10/1/2008	NA NA	4.29	NA NA	NA NA	NA NA	11/6/2008	9:44	2.19	12/4/2008	14:15	3.02	1/16/2009	10:51	2.33	2/24/2009	13:08	3.08
PD-106	10/1/2008	NA NA	4.83	NA NA	NA	NA NA	11/6/2008	9:47	3.58	12/4/2008	14:00	3.62	1/16/2009	10:46	2.95	2/24/2009	13:09	3.65
MW-31A	10/1/2008	NA NA	4.61	10/30/2008	14:04	4.10	11/6/2008	9:50	3.23	12/4/2008	14:10	3.23	1/16/2009	11:01	2.67	2/24/2009	13:10	3.40
MW-31B	10/1/2008	NA	2.83	10/30/2008	14:06	2.41	11/6/2008	9:53	1.95	12/4/2008	14:11	2.02	1/16/2009	11:02	1.37	2/24/2009	13:10	1.91
PD-4	10/2/2008	NA	3.41	NA	NA	NA	11/6/2008	10:20	2.08	12/4/2008	14:04	2.12	1/16/2009	11:00	1.51	2/24/2009	13:05	2.20
PD-6	10/2/2008	NA	3.73	NA	NA	NA	11/6/2008	10:25	2.43	12/4/2008	14:06	2.47	1/16/2009	10:56	1.85	2/24/2009	13:00	2.53
MW-16	10/2/2008	NA	3.38	NA	NA	NA	11/10/2008	10:28	1.03	12/4/2008	14:36	2.42	1/16/2009	10:46	1.85	2/24/2009	13:35	2.56
MW-17	10/1/2008	NA	3.30	NA	NA	NA	11/10/2008	10:08	0.63	12/4/2008	14:21	2.07	1/16/2009	11:17	1.57	2/24/2009	13:30	2.10
PD-1A	10/2/2008	NA	4.40	NA	NA	NA	11/6/2008	10:10	2.91	12/4/2008	13:59	2.96	1/16/2009	11:07	2.38	2/24/2009	13:15	3.03
PD-1B	10/2/2008	NA	3.96	NA	NA	NA	11/6/2008	10:12	2.55	12/4/2008	13:59	2.54	1/16/2009	11:08	1.95	2/24/2009	13:15	2.63
PD-1C	10/2/2008	NA	4.85	NA	NA	NA	11/6/2008	10:14	2.80	12/4/2008	14:00	2.75	1/16/2009	11:09	1.73	2/24/2009	13:15	2.82
Wetlands Approa	ch from Interurban	Trail																
D-1U	9/29/2008	NA	3.27	NA	NA	NA	11/6/2008	16:21	2.41 ²	12/4/2008	13:43	0.82	1/15/2009	14:58	1.19	2/24/2009	12:50	2.01
D-1L	9/29/2008	NA	1.15	NA	NA	NA	11/6/2008	16:20	0.35	12/4/2008	13:43	0.42	1/15/2009	14:58	NA ²	2/24/2009	12:50	0.03
D-5U	9/29/2008	NA	5.00	NA	NA	NA	11/6/2008	15:19	4.06	12/4/2008	12:57	3.99	1/15/2009	18:34	3.30	2/24/2009	11:20	4.08
D-5L	9/29/2008	NA	3.65	NA	NA	NA	11/6/2008	15:18	2.60	12/4/2008	12:58	2.82	1/15/2009	13:38	1.76	2/24/2009	11:20	2.53
SG-219	10/1/2008	NA	0.00	NA	NA	NA	11/6/2008	15:19	0.00	12/4/2008	12:56	NA	1/15/2009	13:35	0.74	2/24/2009	11:20	0.00
D-6A	9/29/2008	NA	1.95	10/30/2008	11:51	1.51	11/6/2008	15:00	1.06	12/4/2008	13:24	0.86	1/15/2009	10:15	0.35	2/24/2009	12:10	0.96
D-6B	9/29/2008	NA	0.80	10/30/2008	11:53	0.58	11/6/2008	15:05	NA ²	12/4/2008	13:23	0.25	1/15/2009	10:14	NA ²	2/24/2009	12:10	0.0 ²
MW-13	9/30/2008	NA	3.49	NA	NA	NA	11/6/2008	16:00	3.80	12/4/2008	13:29	2.23	1/15/2009	14:41	1.49	2/24/2009	12:40	2.31
SG-218	10/2/2008	NA	0.00	NA	NA	NA	11/6/2008	13:00	0.00	12/4/2008	13:29	0.04	1/15/2009	14:41	0.81	2/24/2009	12:40	0.02
MW-14	10/2/2008	NA	2.96	NA	NA	NA	11/10/2008	10:47	0.75	12/4/2008	13:15	1.40	1/15/2009	14:25	1.37	2/24/2009	11:50	1.70

Table C.2
Water Level Measurements

		October 200)8	Trans	ducer Instal	Event	l N	ovember 2	2008	D	ecember 2	008		lanuary 20	009	February 2009		
Logation	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹
Location			,						,									
MW-15	10/1/2008	NA NA	3.39	NA NA	NA	NA NA	11/10/2008	10:00	0.75	12/4/2008	13:28	2.20 1.10	1/15/2009	14:46	1.40	2/25/2009	9:00	2.09
SG-220	10/2/2008	NA NA	0	NA NA	NA NA	NA NA	11/10/2008	10:00	2.57	12/4/2008	13:16		1/15/2009	14:38	1.89	2/25/2009	9:00	1.09
PD-50	10/2/2008 10/2/2008	NA NA	2.95	NA NA	NA NA	NA NA	11/6/2008	15:20 15:23	1.75 0.92	12/4/2008 12/4/2008	13:05 13:05	1.65 1.10	1/15/2009 1/15/2009	14:10	0.75 1.88	2/24/2009 2/24/2009	11:26 11:26	1.71 0.00
SG-221 PD-51		NA NA	0	NA NA	NA NA	NA NA	11/10/2008							14:10				
	10/2/2008		3.49		NA NA	NA NA	11/6/2008	15:22	2.24	12/4/2008	13:00	2.70	1/15/2009	14:06	1.24	2/24/2009	11:41	2.12
PD-52A PD-52B	10/2/2008	NA NA	3.32 3.33	NA NA	NA NA	NA NA	11/6/2008	15:25 15:25	2.07	12/4/2008	13:06	1.86 1.90	1/15/2009	13:48 13:48	0.70	2/24/2009 2/24/2009	11:26 11:26	1.92
PD-52B	10/2/2008	NA NA		NA NA	NA NA	NA NA	11/6/2008		2.17	12/4/2008	13:05		1/15/2009		1.14			1.96 1.87
	10/2/2008	INA	3.23	IVA	INA	INA	11/6/2008	15:26	1.99	12/4/2008	13:03	1.81	1/15/2009	13:47	1.05	2/24/2009	11:26	1.07
Ditch along Interur			5.05	N. A.	N14		4.4.0.0000	44.05	4.70	10/1/0000	10.00	4.00	4/45/0000	44.07	1 0.00	0/04/0000	1445	0.04
MW-30	10/1/2008	NA NA	5.65	NA NA	NA NA	NA NA	11/6/2008	14:35	4.76	12/4/2008	13:38	4.26	1/15/2009	14:37	0.39	2/24/2009	11:15	0.01
SG-227	10/2/2008	NA NA	0.00	NA NA	NA	NA NA	11/6/2008	14:35	0.90	12/4/2008	13:36	0.59	1/15/2009	14:35	0.81	2/242009	11:13	0.68
PD-212 SG-212	10/3/2008	NA NA	4.59	NA NA	NA NA	NA NA	11/6/2008	14:59	3.35	12/4/2008	12:47	3.90 0.87	1/15/2009	12:54 12:53	3.25	2/25/2009	14:05	3.71 0.80
	10/2/2008	NA	0.75	NA	NA	NA	11/6/2008	14:56	1.49	12/4/2008	12:48	0.87	1/15/2009	12:53	1.10	2/25/2009	14:05	0.80
Landfill and Perime			10.00	10/00/0000	11.0-	10.70	4.4.0.0000		10.15	10///0000		1= 0=	111010000		1 1-1-	0/01/0000		
PD-107	10/2/2008	NA NA	19.28	10/30/2008	11:05	18.76	11/6/2008	11:43	18.47	12/4/2008	9:33	17.85	1/16/2009	9:32	17.17	2/24/2009	9:45	17.51
PD-109	10/2/2008	NA	15.26	10/30/2008	9:55	14.97	11/6/2008	11:26	15.04	12/4/2008	9:21	14.94	1/16/2009	9:13	14.46	2/24/2009	9:37	14.26
SUMP	NA	NA	NA	NA	NA	NA	11/6/2008	12:40	35.65	12/4/2008	9:28	35.54	1/15/2009	9:42	35.13	2/242009	9:42	35.08
SG-224	NA	NA	NA	NA	NA	NA	11/6/2008	11:05	1.40	12/4/2008	9:27	NA	1/15/2009	9:47	NA	2/24/2009	9:50	NA
D-7A	9/30/2008	NA	3.00	NA	NA	NA	11/6/2008	11:57	2.05	12/4/2008	9:44	2.19	1/15/2009	9:52	1.75	2/24/2009	9:58	2.19
D-7B	9/30/2008	NA	2.82	NA	NA	NA	11/6/2008	11:58	3.16	12/4/2008	9:45	2.41	1/15/2009	9:54	2.10	2/24/2009	10:00	2.19
D-8A	9/30/2008	NA	2.50	10/30/2008	13:34	2.09	11/6/2008	11:56	1.27	12/4/2008	9:20	1.65	1/16/2009	9:43	1.35	2/24/2009	10:04	1.68
D-8B	9/30/2008	NA	2.38	10/30/2008	13:37	2.08	11/6/2008	11:57	1.27	12/4/2008	9:22	1.68	1/16/2009	9:47	1.32	2/24/2009	10:04	1.67
SG-214	10/2/2008	NA	0.90	NA	NA	NA	11/6/2008	12:07	1.05	12/4/2008	9:55	0.83	1/15/2009	9:59	0.90	2/24/2009	10:04	0.72
PD-214	10/3/2008	NA NA	3.81	NA	NA	NA	11/6/2008	12:06	2.76	12/4/2008	9:58	3.19	1/15/2009	10:00	2.78	2/24/2009	10:06	3.17
PD-215	10/3/2008	NA NA	4.84	NA	NA	NA	11/6/2008	12:10	3.75	12/4/2008	10:03	4.26	1/15/2009	10:09	3.83	2/24/2009	10:28	4.22
SG-215	10:00	NA NA	0.98	NA	NA NA	NA	11/6/2008	12:10	1.30	12/4/2008	10:04	1.17	1/15/2009	10:09	1.20	2/24/2009	10:30	0.90
D-9A	9/30/2008	NA	2.45	NA	NA	NA	11/6/2008	12:20	1.30	12/4/2008	9:58	1.59	1/15/2009	10:10	1.21	2/24/2009	10:35	1.52
Area East of Landfi			1															
MW-11A	9/29/2008	NA	3.52	NA	NA	NA	11/6/2008	9:05	3.54	12/4/2008	9:00	3.06	1/15/2009	9:20	1.84	2/24/2009	11:10	2.25
MW-11B	9/29/2008	NA NA	3.70	NA	NA	NA	11/6/2008	9:05	3.60	12/4/2008	8:59	3.13	1/15/2009	9:19	1.90	2/24/2009	11:08	2.32
PD-60	10/2/2008	NA NA	4.80	NA	NA NA	NA	11/6/2008	9:15	4.56	12/4/2008	8:56	4.09	1/15/2009	9:16	3.26	2/24/2009	9:15	2.97
PD-61	10/2/2008	NA NA	10.83	NA	NA NA	NA	11/6/2008	9:21	10.72	12/4/2008	9:03	10.24	1/15/2009	9:24	8.96	2/24/2009	9:20	9.41
PD-62	10/2/2008	NA NA	4.91	NA	NA NA	NA	11/6/2008	9:02	4.70	12/4/2008	8:54	4.32	1/15/2009	9:07	3.62	2/24/2009	9:02	3.40
PD-104	10/2/2008	NA NA	3.33	NA NA	NA	NA	11/6/2008	10:05	3.11	12/4/2008	8:56	2.71	1/15/2009	9:12	2.00	2/24/2009	9:10	1.76
PD-63A	10/2/2008	NA	4.11	NA NA	NA NA	NA	11/6/2008	9:41	3.86	12/4/2008	8:33	3.58	1/15/2009	9:11	2.91	2/24/2009	9:05	2.98
PD-63B	10/2/2008	NA NA	3.18	NA NA	NA	NA	11/6/2008	9:42	2.91	12/4/2008	8:30	2.65	1/15/2009	9:14	1.96	2/24/2009	9:00	2.10
PD-63C	10/2/2008	NA NA	3.33	NA NA	NA	NA	11/6/2008	9:42	3.32	12/4/2008	8:32	2.84	1/15/2009	9:13	2.05	2/24/2009	9:02	2.15
PD-64	10/2/2008	NA NA	6.11	NA NA	NA NA	NA NA	11/6/2008	9:57	6.05	12/4/2008	8:51	5.59	1/15/2009	9:17	4.49	2/24/2009	9:10	4.71
PD-38	10/2/2008	NA	5.31	NA NA	NA	NA	11/6/2008	9:37	5.00	12/4/2008	8:46	4.67	1/15/2009	9:29	3.40	2/24/2009	9:16	3.79
PD-40	10/2/2008	NA	6.28	NA	NA	NA	11/6/2008	9:07	5.95	12/4/2008	8:44	5.60	1/15/2009	9:24	4.32	2/24/2009	9:12	4.61
MW-23	9/30/2008	NA 0:40	4.80	NA 40/00/0000	NA 11:01	NA 5.40	11/6/2008	9:39	4.36	12/4/2008	8:49	3.91	1/15/2009	9:25	3.20	2/24/2009	9:15	2.91
D-10A	9/29/2008	9:10	5.12	10/30/2008	11:24	5.10	11/6/2008	11:06	4.79	12/4/2008	9:06	4.56	1/16/2009	10:01	3.21	2/24/2009	9:17	3.66
PD-80 ⁴	10/3/2008	NA	4.49	NA	NA	NA	11/6/2008	10:15	4.24	12/4/2008	8:41	3.92	NA	NA	NA	NA	NA	NA
PD-81 ⁴	10/3/2008	NA	4.63	NA	NA	NA	11/6/2008	10:17	4.40	12/4/2008	8:43	4.51	NA	NA	NA	NA	NA	NA
PD-82 ⁴	10/3/2008	NA	4.40	NA	NA	NA	11/6/2008	10:18	4.22	12/4/2008	8:50	3.86	NA	NA	NA	NA	NA	NA
PD-103	10/3/2008	NA	2.66	NA	NA	NA	11/6/2008	10:20	2.34	12/4/2008	8:45	2.05	1/15/2009	9:15	1.21	2/24/2009	9:07	1.35

Table C.2
Water Level Measurements

		October 2008			Transducer Install Event			November 2008			December 2008			January 2009			February 2009		
Location	Date Taken	Time	Water Level (DTW or stage height in feet) ¹		Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	Date Taken	Time	Water Level (DTW or stage height in feet) ¹	
Agricultural Field	ds and Ditches																		
PD-216	10/3/2008	NA	4.83	NA	NA	NA	11/6/2008	12:49	3.80	12/4/2008	10:15	4.35	1/15/2009	11:11	4.00	2/25/2009	11:08	4.16	
SG-216	10/3/2008	13:40	0.72	NA	NA	NA	11/6/2008	12:49	1.72	12/4/2008	10:15	0.77	1/15/2009	11:10	3.55	2/25/2009	11:08	1.85	
PD-213	10/3/2008	14:00	7.78	NA	NA	NA	11/6/2008	13:05	4.19	12/4/2008	10:25	4.88	1/15/2009	11:15	4.25	2/25/2009	11:30	4.73	
SG-213	10/3/2008	9:30	0.14	NA	NA	NA	11/6/2008	13:05	1.28	12/4/2008	10:23	0.29	1/15/2009	11:15	0.92	2/25/2009	11:30	0.40	
SG-225	10/3/2008	14:50	0.5	NA	NA	NA	11/6/2008	13:12	1.55	12/4/2008	10:33	0.16	1/15/2009	11:32	0.52	2/25/2009	11:40	0.25	

Notes:

- 1 For wells and piezometers, water levels are depth to water from the measuring point. Staff gauge measurements are reported as distance from the bottom of the gauge (not necessarily ground surface).
- 2 Water level not consistent and unable to be accurately measured due to rapidly rising water level and/or water level rising above the measuring point.
- 3 Water level approximate due to instrument limitations; depth to water was less than 1 foot.
- 4 Locations were intended for other predesign data collection and were removed from the regular monitoring network due to redundancy.

Abbreviations:

DTW Depth to water

NA Not applicable or not available

Table C.3
Discharge Estimates (cfs)¹

Location	October 2008	February 2009
Hylebos Creek		-
SG-210	5.860	21.070
SG-211	6.090	22.380
Ditch System		
SG-212	0.126	0.239
SG-214	0.167	0.256
SG-215	0.033	0.190
Surprise Lake Drain		
SG-216	0.757	1.505
SG-213	0.555	1.789
Ditch System and Surpris	se Lake Drain	
SG-225	0.429	2.826

Note:

Abbreviations:

cfs Cubic feet per second

¹ The difference between stations SG-212/SG-213 and SG-225 is assumed to be within the margin of error for discharge measurements and does not indicate the reach is a losing stream.

Table C.4 **Pumping Test Results**

		S ¹	T ¹	b ²	K _h ³		Solution
Observation Well	Pumping Well		ft ² /day	ft	ft/day	cm/s	
PD-104	PD-104	NA	5.039	17	0.30	1.04E-04	Theis Recovery
PD-62	PD-104	NA	181.6	17	10.68	3.74E-03	Theis Recovery
PD-62	PD-104	0.0012	98.28	17	5.78	2.02E-03	Theis
PD-70	PD-101	NA	1961	21	93.38	3.27E-02	Theis Recovery
PD-70	PD-101	NA	1131	21	53.86	1.89E-02	Theis
FS-22	MW-17	NA	4230	19	222.63	7.79E-02	Theis Recovery
FS-22	MW-17	0.026	3405	19	179.21	6.27E-02	Theis

Notes:

- 1 Values for S, T from pump test solutions (refer to attachment C.2).
- 2 Values for b from boring logs and water level measurements.
- 3 Values for K_h (ft/day) calculated using $T = K_h^*b$.

Abbreviations:

- b Saturated zone thickness
- cm/s Centimeters per second
 - ft Feet
 - K_h Horizontal hydraulic conductivity
 - S Storativity
 - T Transmissivity

Table C.5
Infiltration Test Results

	DTW (feet) ¹	DTW (feet) ¹	Elapsed time					
Time	Basin Wall	Staff Gauge	(minutes)	Comments				
Pre-test Measurements								
10:48	0.96	3.07	NA					
10:58	0.96	3.07	NA					
11:08	0.96	3.07	NA	Static water from pre-				
11:19	0.96	3.07	NA	test overnight				
11:28	0.96	3.07	NA	saturation.				
11:38	0.96	3.07	NA					
11:46	0.96	3.07	NA					
Basin-floo	oding Measure	ments						
12:37	0.63	2.74	0					
12:40	0.63	2.74	3.0	Initial readings after				
12:46	0.63	2.74	9	refilling basin.				
12:53	0.63	2.74	16					
13:02	0.64	2.76	25					
13:12	0.65	2.77	35					
13:16	0.665	2.775	39	Level readings after				
13:20	0.665	2.78	43	observing small leak in				
13:25	0.67	2.785	48	basin near sheeting				
13:30	0.675	2.79	53	overlap at 13:02.				
13:35	0.68	2.80	58	Overlap at 13.02.				
13:40	0.685	2.80	63					
13:45	0.695	2.81	68					
13:50	0.70	2.82	73					
13:55	0.71	2.82	78					
14:00	0.715	2.825	83					
14:05	0.715	2.825	88	Level readings following				
14:15	0.72	2.83	98	repair with bentonite				
14:25	0.73	2.84	108	which reduced leakage				
14:35	0.735	2.85	118	rate.				
14:50	0.745	2.86	133	iale.				
15:01	0.755	2.87	144					
15:15	0.765	2.88	158					
15:30	0.775	2.89	173					

Notes:

1 Water levels were measured from graduated marks on basin sheeting wall and central staff gauge for redundancy.

Abbreviations:

DTW Depth to water

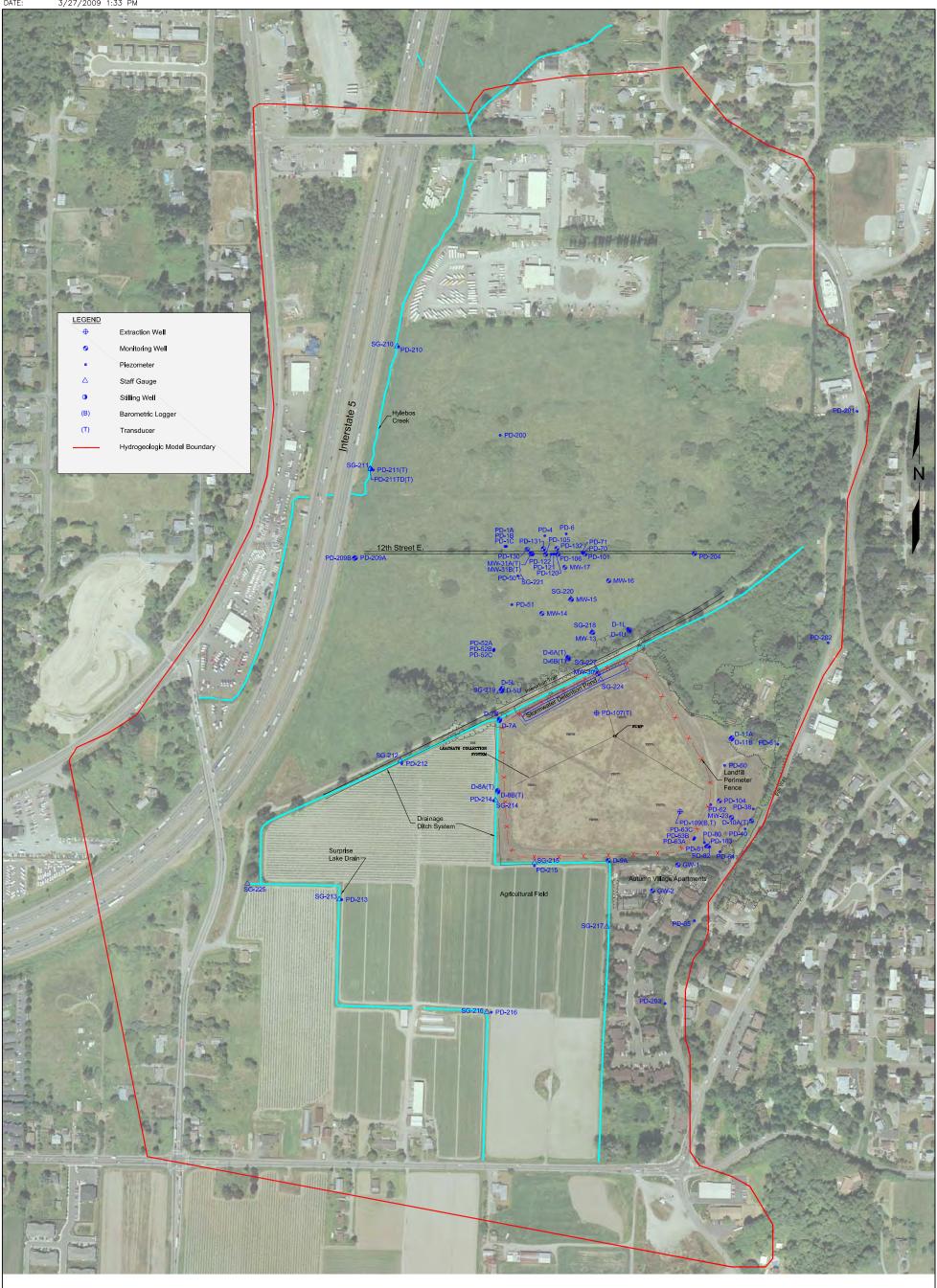
NA Not applicable or not available

Table C.6 Steady-state Calibration Targets, Target Values, and Target Hydrostratigraphic Units

			Simulated Groundwater		
Well ID	Target Value (feet)	Hydrostratigraphic Unit	Elevation (feet)	Residual (feet)	
D-1U	12.99	Upper Sand Aquifer	14.03	-1.04	
D-1L	14.44	Lower Sand Aquifer	14.77	-0.33	
D-5U	13.01	Upper Sand Aquifer	13.70	-0.69	
D-5L	14.17	Lower Sand Aquifer	13.96	0.21	
D-6A	12.84	Upper Sand Aquifer	13.99	-1.15	
D-6B	14.02	Lower Sand Aquifer	14.40	-0.38	
D-7A	13.44	Upper Sand Aquifer	13.69	-0.25	
D-7A D-7B	13.63	Lower Sand Aquifer	13.95	-0.23	
D-7B D-8A	14.37	Upper Sand Aquifer	14.12	0.25	
D-8B	14.40	Lower Sand Aquifer	14.14	0.26	
D-8B D-9A	15.38	Upper Sand Aquifer	15.22	0.26	
D-9A D-10A	16.71	Upper Sand Aquifer	17.23	-0.52	
D-10A D-11A	16.52	Upper Sand Aquifer	16.08	0.44	
D-11A D-11B	16.46	Lower Sand Aquifer	16.06	0.40	
MW-13	12.26			-1.70	
		Upper Sand Aquifer	13.96		
MW-14	13.50	Upper Sand Aquifer	13.54	-0.04	
MW-15	13.21	Upper Sand Aquifer	13.83	-0.62	
MW-16	13.52	Upper Sand Aquifer	13.93	-0.41	
MW-17	13.20	Upper Sand Aquifer	13.72	-0.52	
MW-23	16.12	Upper Sand Aquifer	16.95	-0.83	
MW-30	13.63	Upper Sand Aquifer	14.10	-0.47	
MW-31A	12.79	Upper Sand Aquifer	13.46	-0.67	
MW-31B	14.06	Lower Sand Aquifer	13.37	-0.65	
PD-1B	12.72	Upper Sand Aquifer	14.26	-0.20	
PD-4	13.20	Upper Sand Aquifer	13.51	-0.31	
PD-6	12.77	Upper Sand Aquifer	13.62	-0.85	
PD-38	16.64	Upper Sand Aquifer	17.03	-0.39	
PD-40	16.59	Upper Sand Aquifer	17.34	-0.75	
PD-50	12.65	Upper Sand Aquifer	13.39	-0.74	
PD-51	12.39	Upper Sand Aquifer	13.35	-0.96	
PD-52B	12.64	Upper Sand Aquifer	13.31	-0.67	
PD-60	15.65	Upper Sand Aquifer	16.12	-0.47	
PD-61	16.69	Upper Sand Aquifer	17.14	-0.45	
PD-62	15.72	Upper Sand Aquifer	16.23	-0.51	
PD-63B	15.93	Upper Sand Aquifer	16.45	-0.52	
PD-64	16.37	Upper Sand Aquifer	17.07	-0.70	
PD-65	17.20	Upper Sand Aquifer	17.48	-0.28	
PD-70	13.05	Upper Sand Aquifer	13.76	-0.72	
PD-71	12.90	Upper Sand Aquifer	13.76	-0.86	
PD-80	16.14	Upper Sand Aquifer	16.93	-0.79	
PD-81	16.05	Upper Sand Aquifer	16.96	-0.91	
PD-82	16.29	Upper Sand Aquifer	16.98	-0.69	
PD-101	12.78	Upper Sand Aquifer	13.78	-1.00	
PD-103	16.27	Upper Sand Aquifer	16.97	-0.70	
PD-104	15.71	Upper Sand Aquifer	16.43	-0.72	
PD-105	12.74	Upper Sand Aquifer	13.53	-0.79	
PD-106	12.73	Upper Sand Aquifer	13.63	-0.75	
PD-107	14.23	Upper Sand Aquifer	14.47	-0.24	
PD-107	15.59	Upper Sand Aquifer	15.66	-0.24	
PD-200	13.43	Upper Sand Aquifer	13.77	-0.07	
PD-200	19.35	Upper Sand Aquifer	19.43	-0.08	
PD-201 PD-202	28.00	Upper Sand Aquiler Upper Sand Aquiler	27.27	0.73	
PD-202 PD-203	22.05	Upper Sand Aquifer	22.23	-0.18	
PD-203 PD-204	13.73	Upper Sand Aquiler Upper Sand Aquiler	14.45	-0.72	
PD-204 PD-209A	13.53	Upper Sand Aquiler Upper Sand Aquiler	13.26	0.27	
PD-209A PD-210	13.75	Upper Sand Aquiler Upper Sand Aquiler	13.59	0.27	
PD-211	13.37	Upper Sand Aquifer	13.12	0.25	
PD-212	13.84	Upper Sand Aquifer	13.27	0.57	
PD-213	12.64	Upper Sand Aquifer	12.61	0.03	
PD-214	14.42	Upper Sand Aquifer	14.16	0.26	
PD-215	15.04	Upper Sand Aquifer	14.74	0.30	
PD-216	16.12	Upper Sand Aquifer	15.10	1.02	

Table C.7
Steady-state Model Calibration Statistics

Calibration Statistic	Value
Residual Mean (RM)	-0.37 (ft)
Absolute Residual Mean (ARM)	0.54 (ft)
Resdiual Standard Deviation (RSD)	0.50 (ft)
Residual Sum of Squares (RSS)	24.5 (ft²)
RSD / Total Head Change	0.032 (unitless)


Abbreviation:

ft Feet

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Appendix C Figures Phase 1 Hydrogeologic Study Report

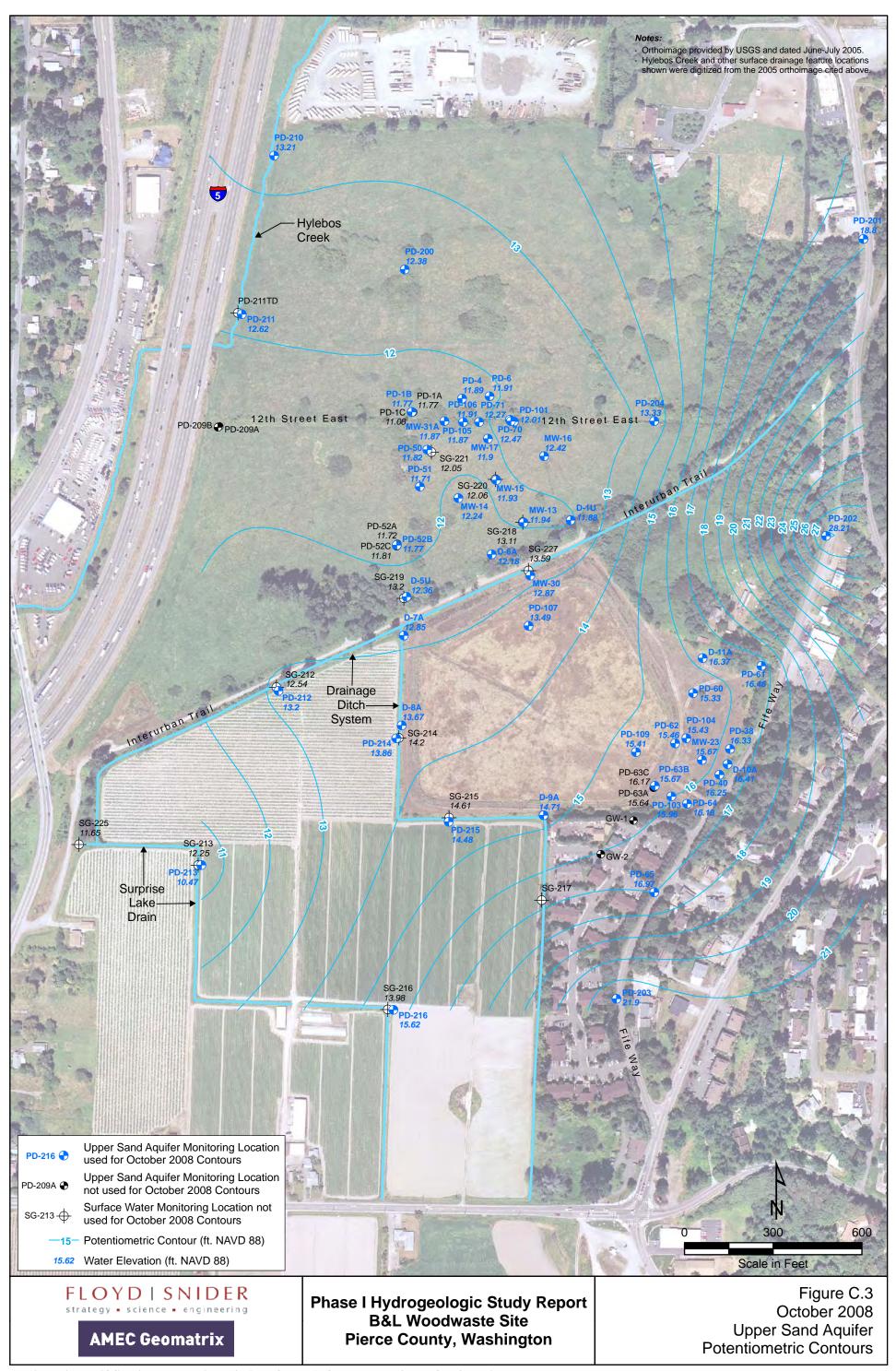
FLOYD | SNIDER

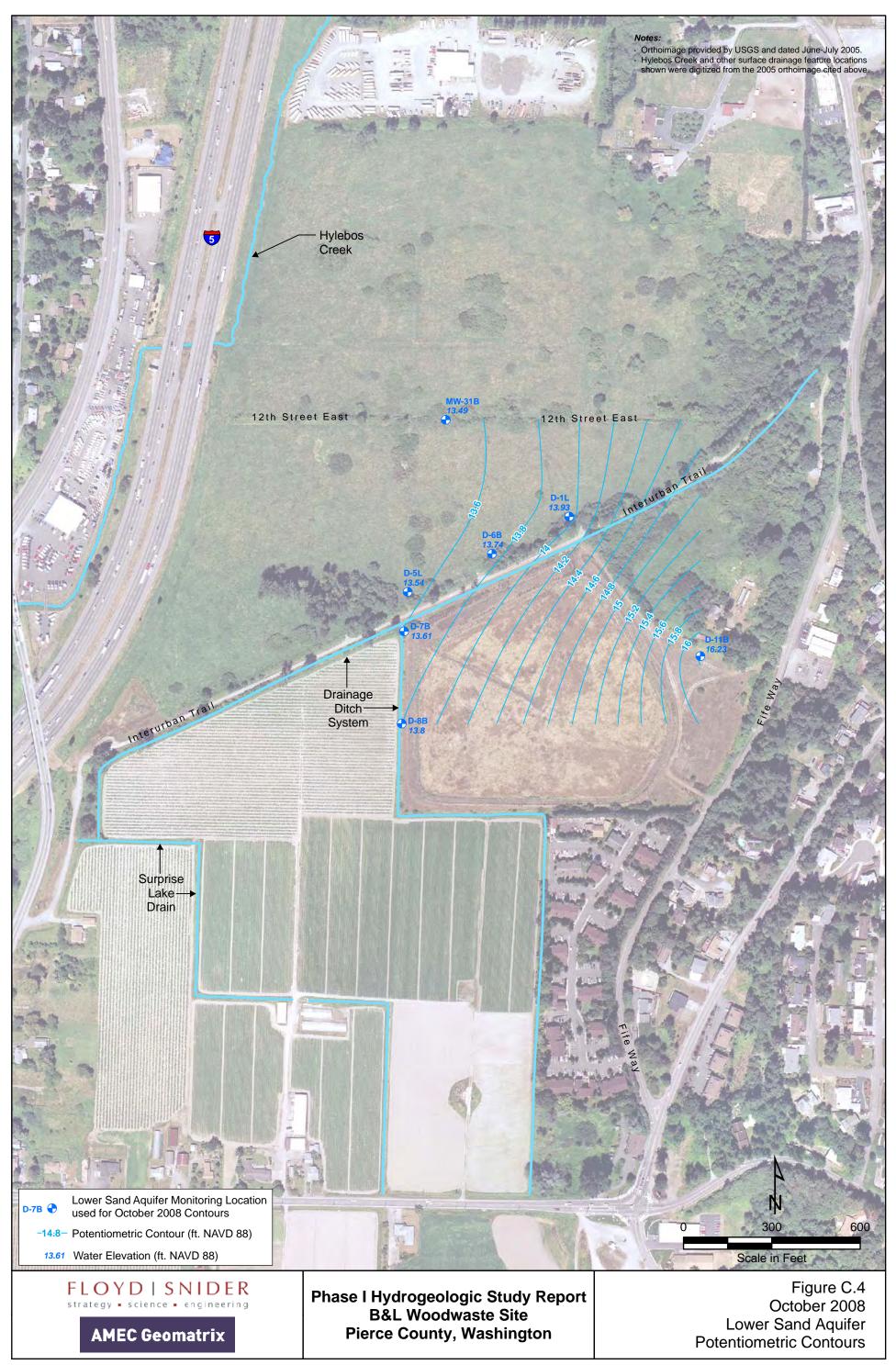
AMEC Geomatrix

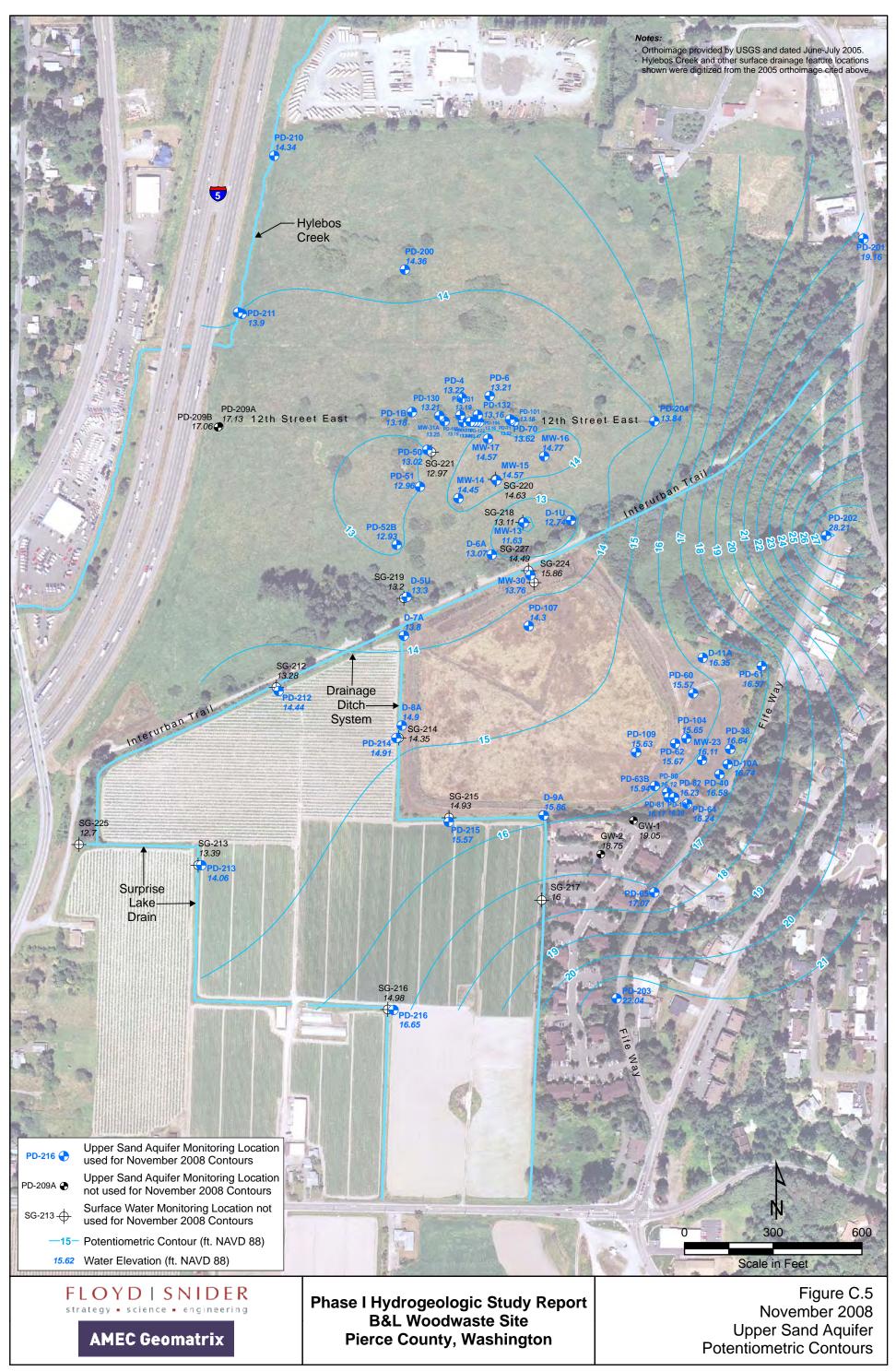
Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington Figure C.1 Phase 1 Hydrogeologic Study Model Domain

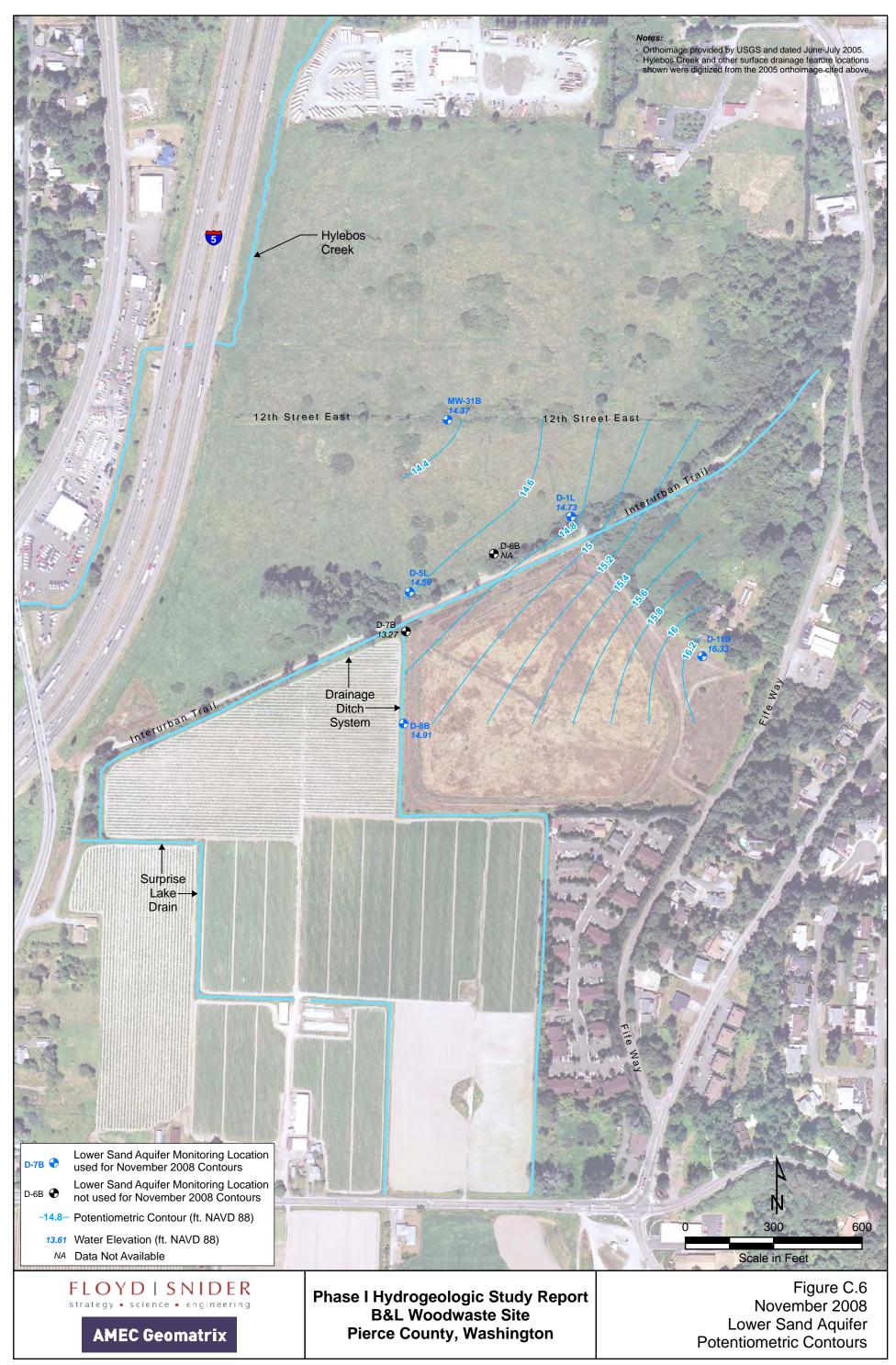
400

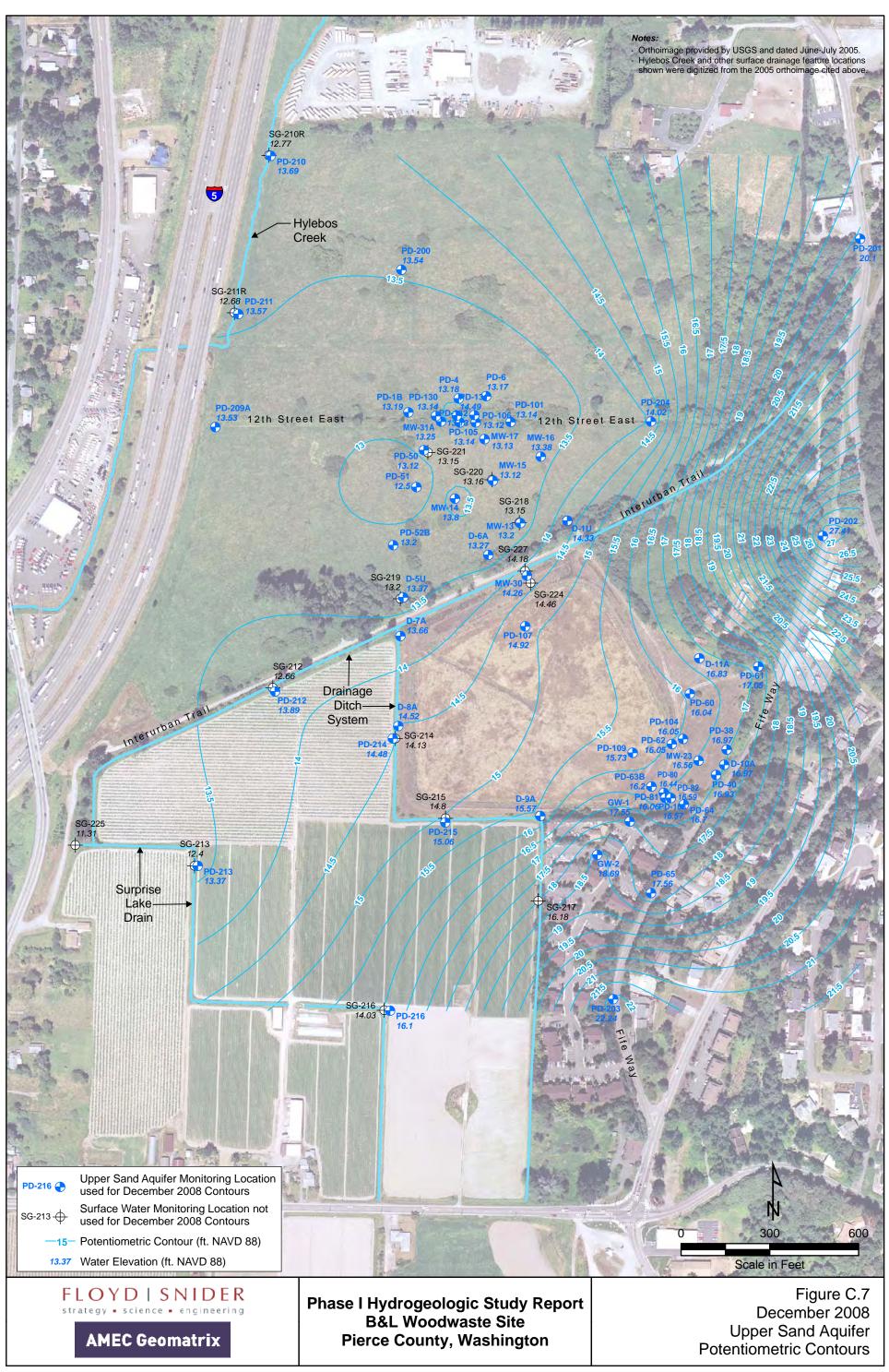
Scale in Feet

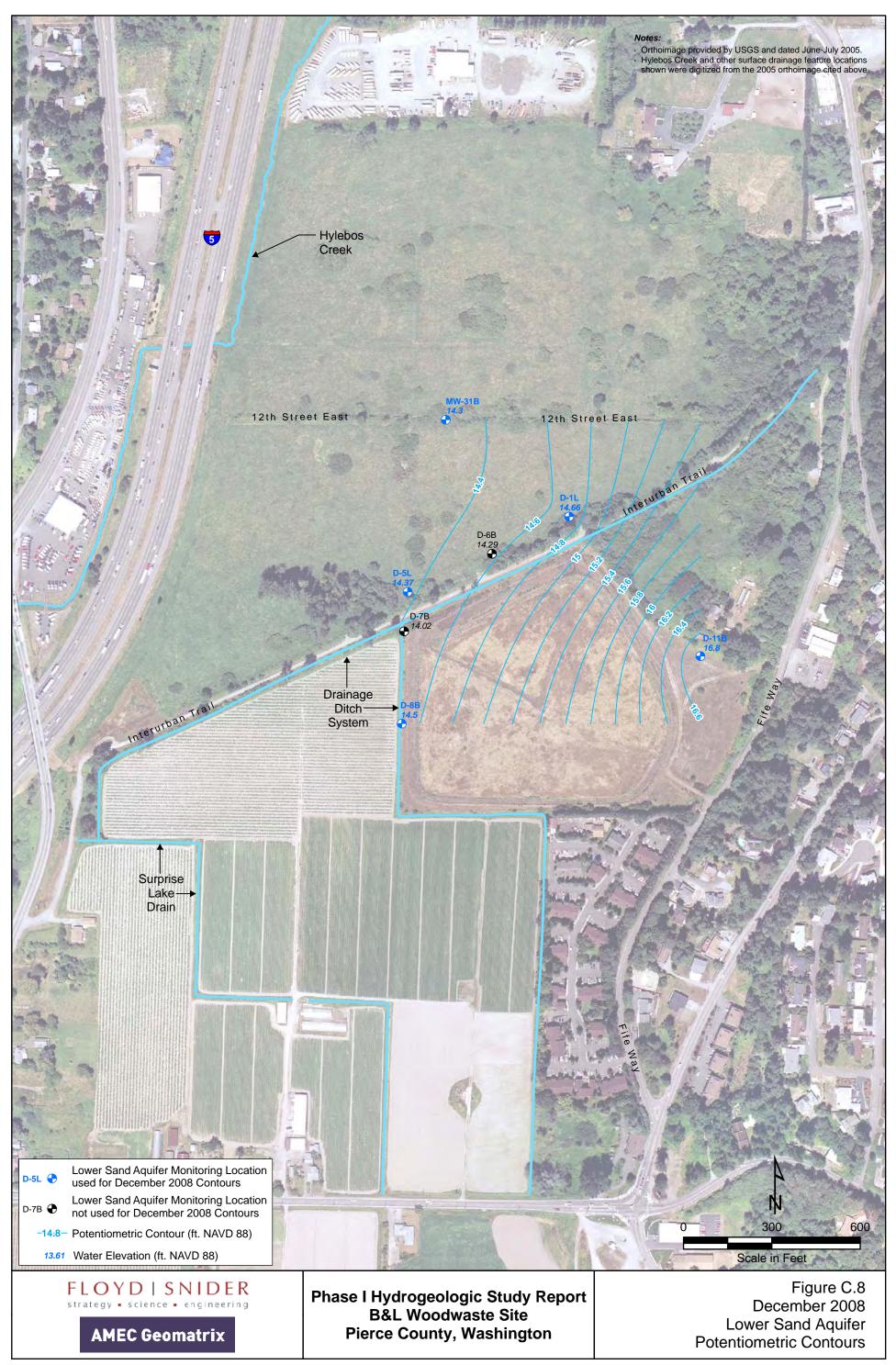

800

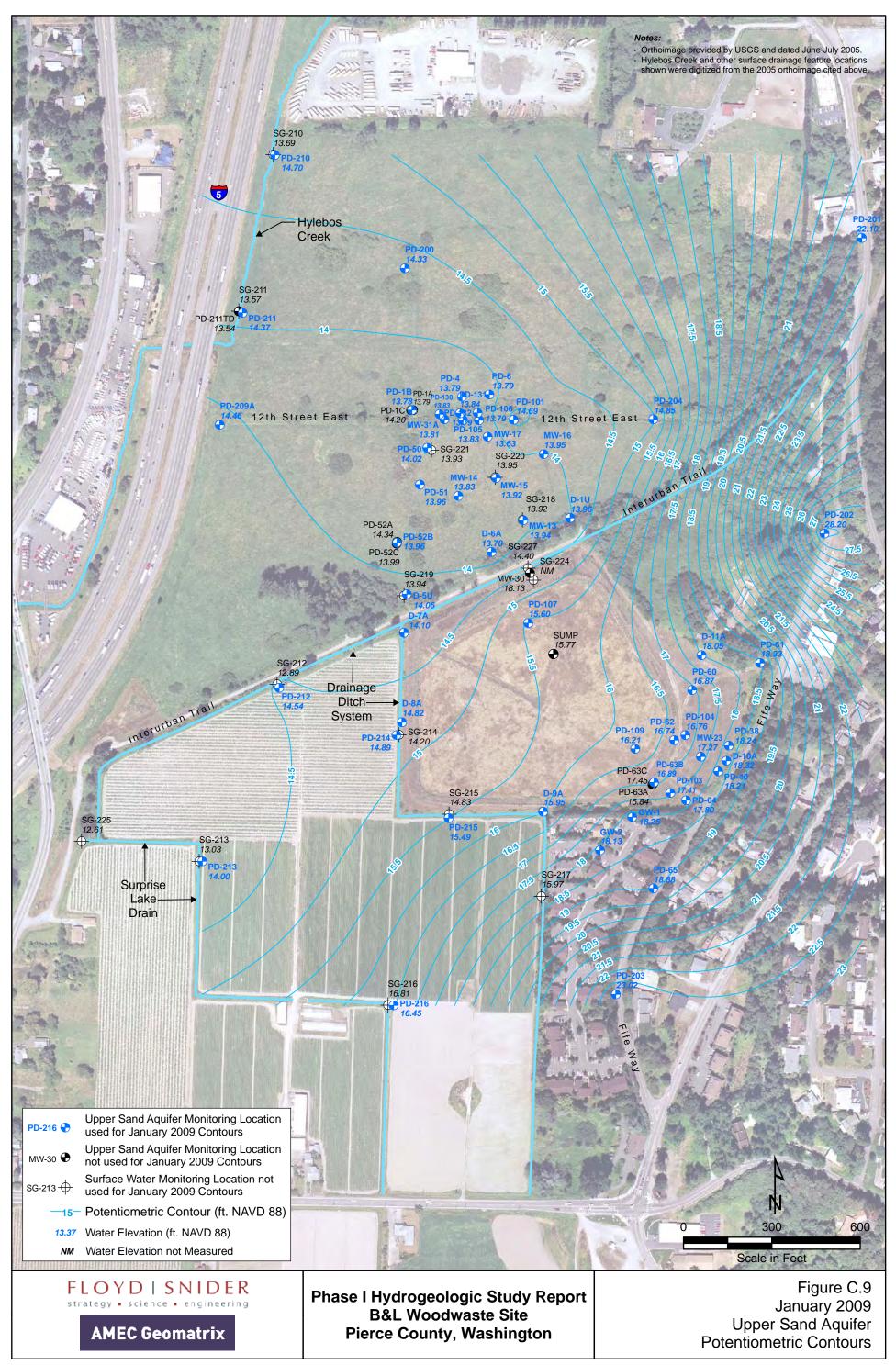

FLOYDISNIDER **AMEC Geomatrix**

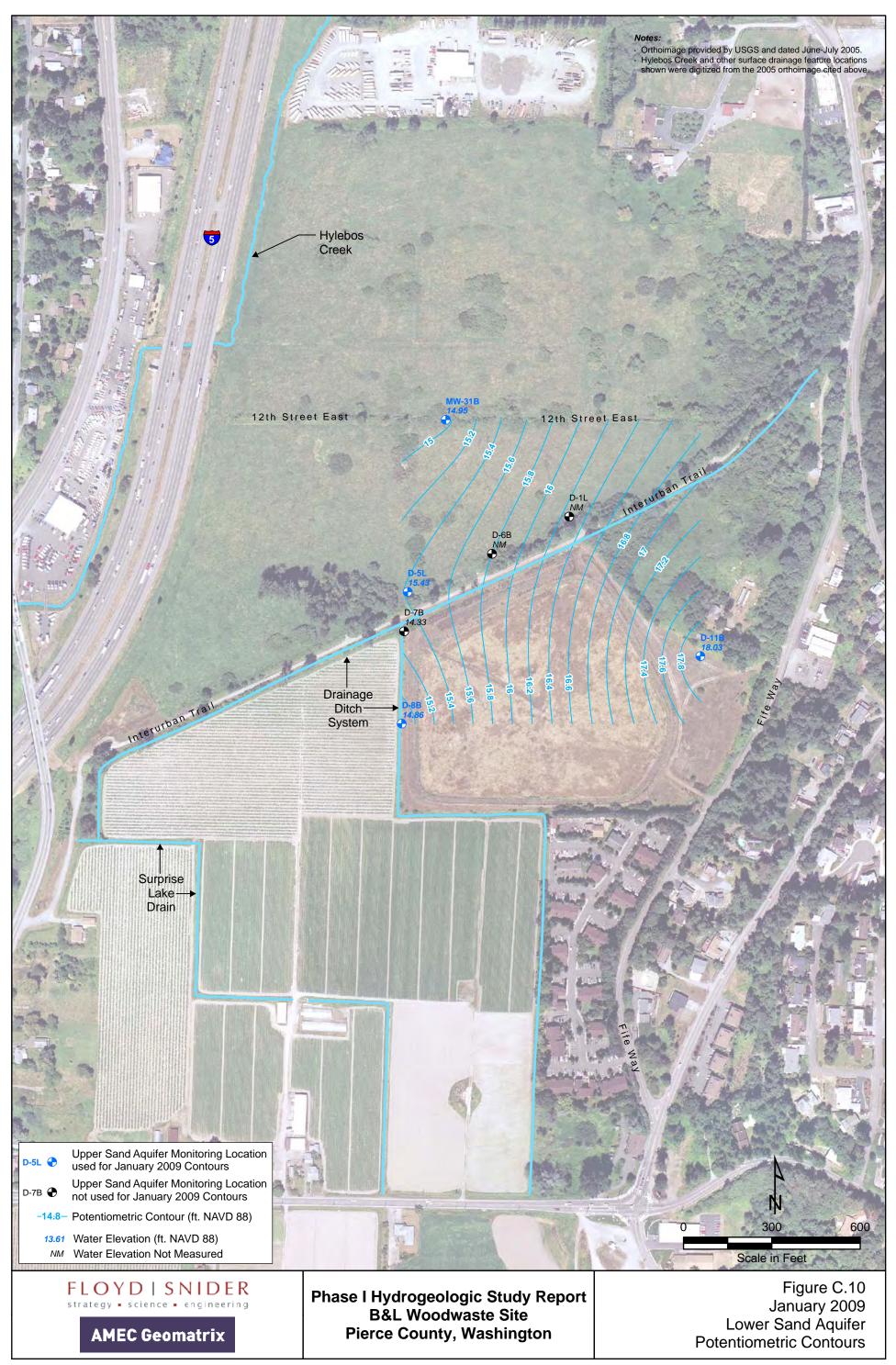

Scale in Feet

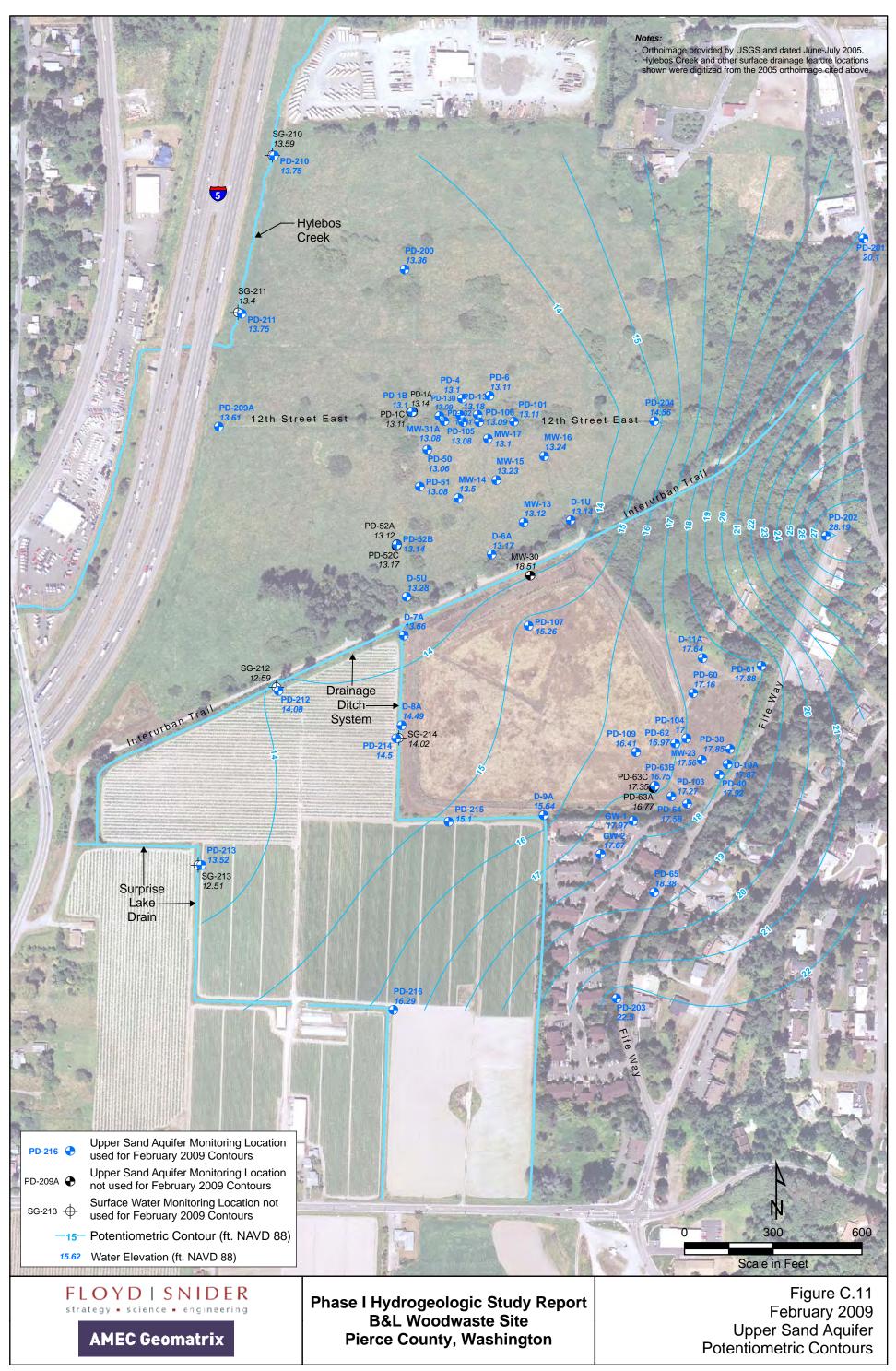

Phase 1 Hydrogeologic Study Report **B&L** Woodwaste Site Pierce County, Washington

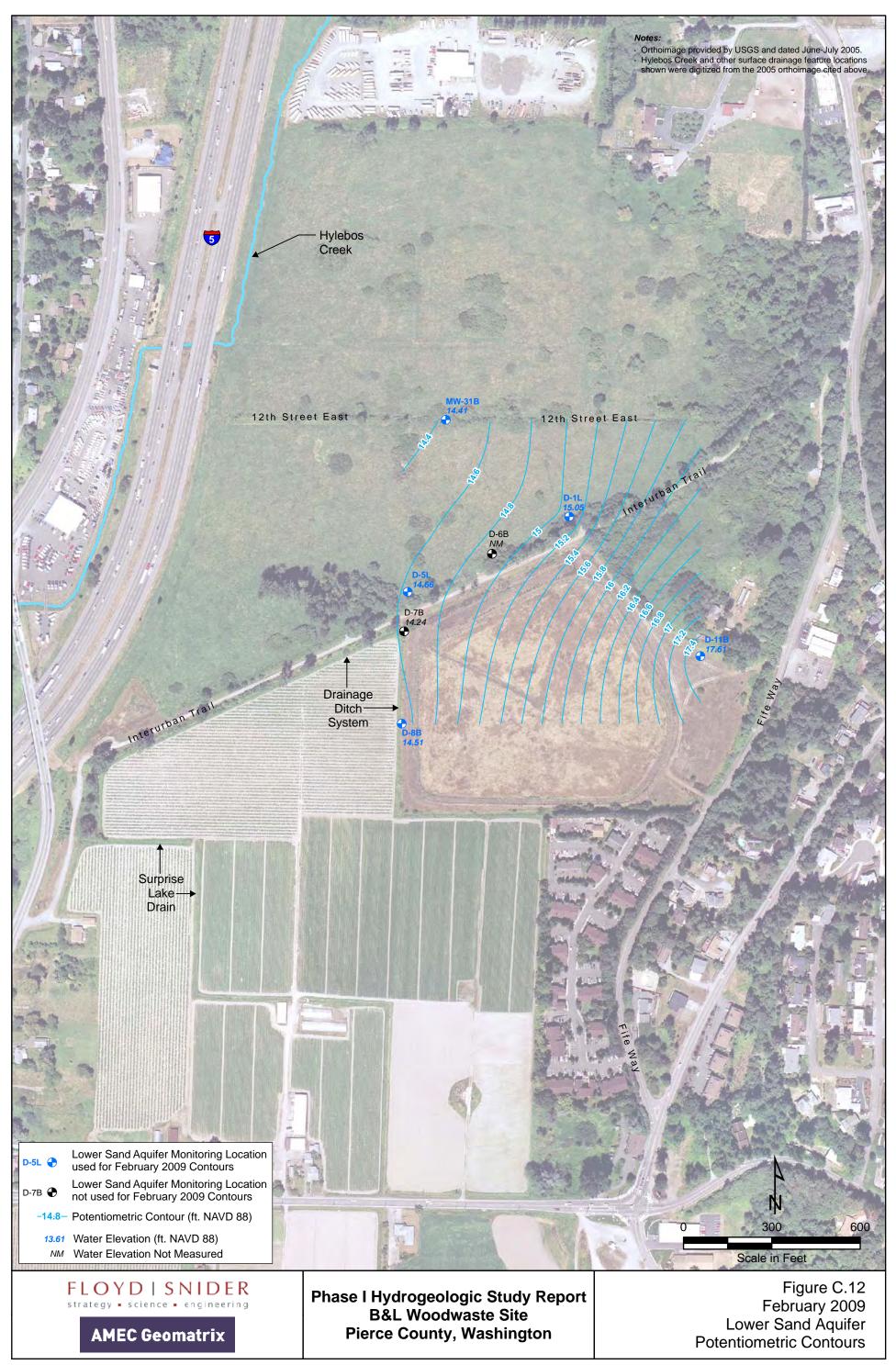

Figure C.2 Phase 1 Hydrogeologic **Monitoring Points**

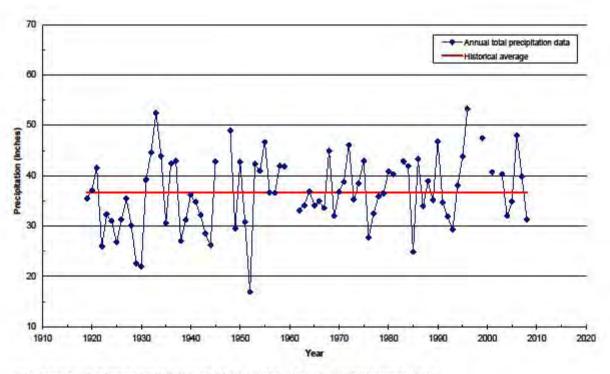




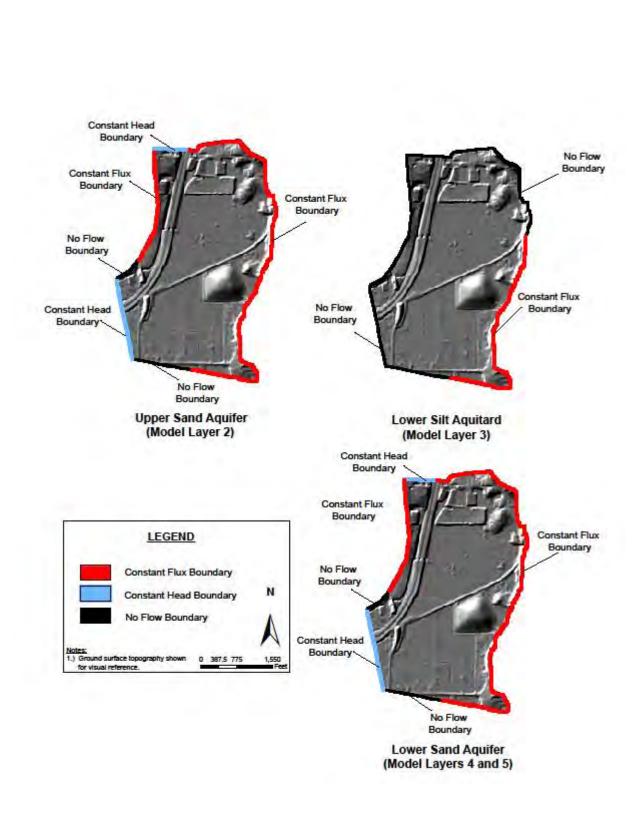








Notes: 1.) Data Source: Precipitation data were obtained from two weather stations in Tacorna, WA (1919 to 1981: Tacorna #1, COOP ID 458278; and 1982 to 2008: Tacorna City Hail, COOP ID 458256). Data for Jan 1919 through August 2008 were provided by the National Climatic Data Center. Data for September 2008 through December 2008 were provided by the Western Recipical Climate Center.


by the Western Regional Climate Center.

2.) Annual precipitation is not profiled for years that have at least 1 month of missing precipitation data. This includes years 1945, 1947, 1960, 1961, 1982, 1997, 1998, 2000, and 2002.

FLOYDISNIDER

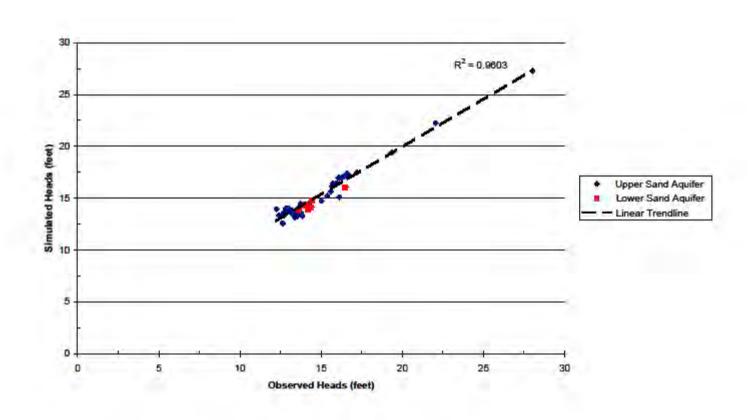
AMEC Geomatrix

Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington Figure C.13 Annual Average and Total Precipitation Values

AMEC Geomatrix

Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington

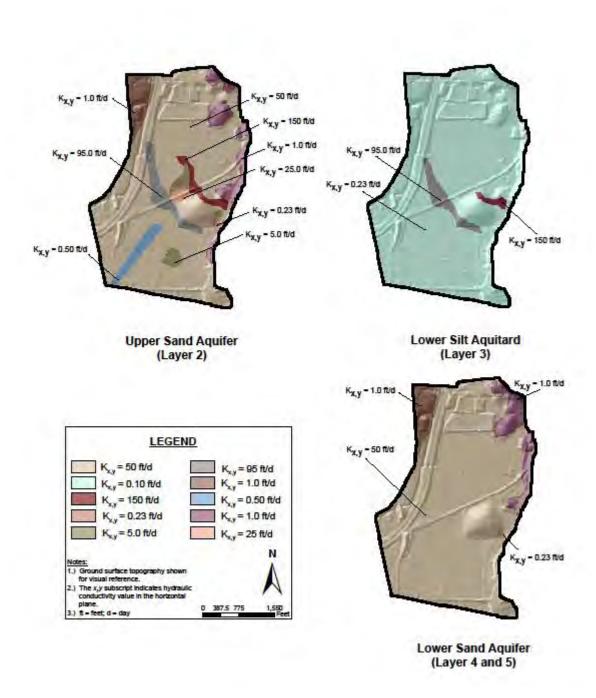
Figure C.14 Numerical Model Select Boundary Condition Types



AMEC Geomatrix

Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington Figure C.15 Simulated Groundwater Contours and Advective Transport from Suspected Source Area

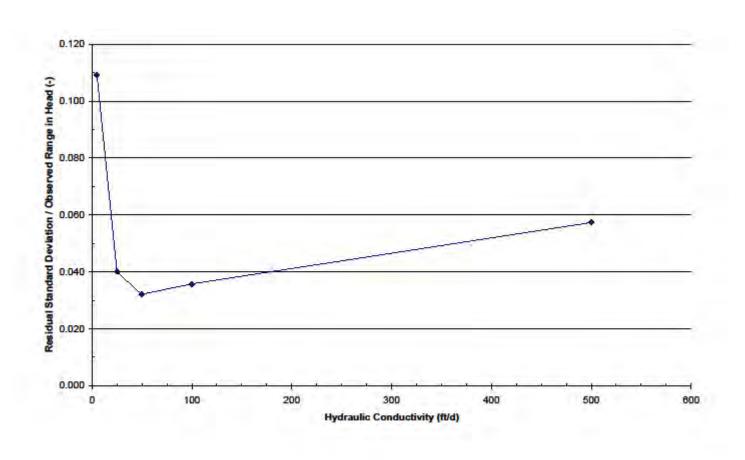
500 - 5,000



FLOYD | SNIDER

AMEC Geomatrix

Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington


Figure C.16 Observed vs. Simulated Heads

AMEC Geomatrix

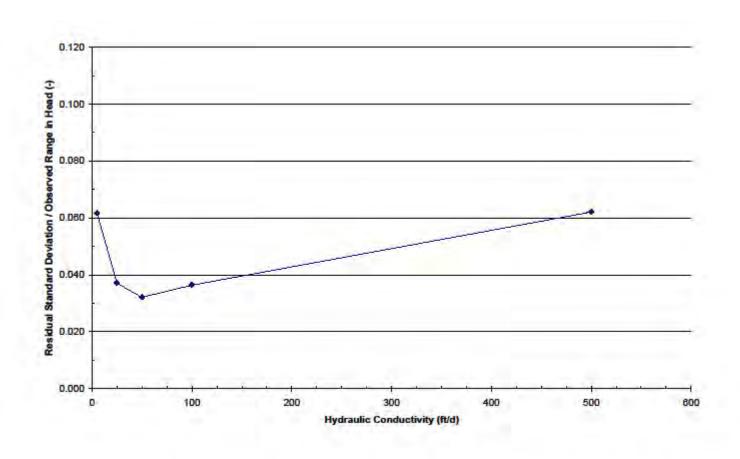
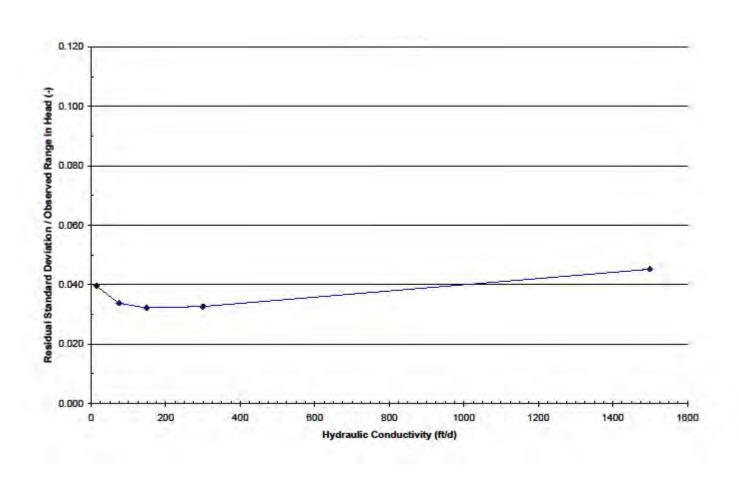

Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington

Figure C.17 Numerical Model Hydraulic Conductivities

AMEC Geomatrix


Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington Figure C.18
Upper Sand Aquifer (Layer 2) Background
Hydraulic Conductivity Sensitivity Analysis

AMEC Geomatrix

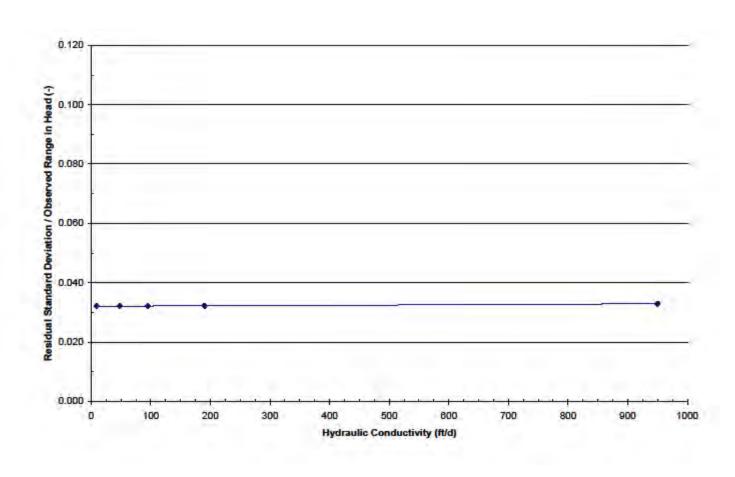
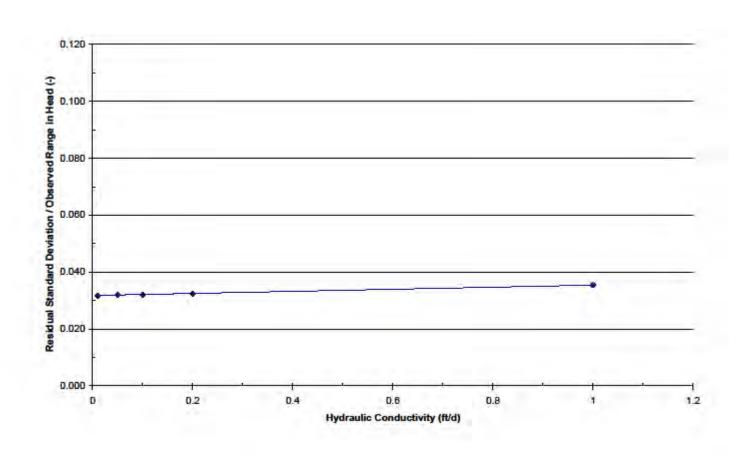

Phase 1 Hydrogeologic Study Report
B&L Woodwaste Site
Pierce County, Washington

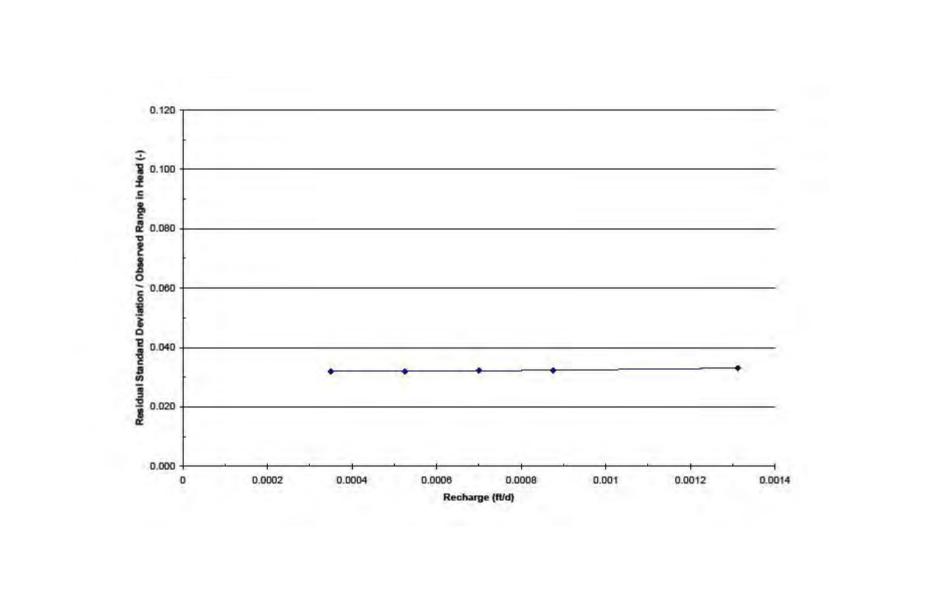
Figure C.19 Lower Sand Aquifer (Layer 4 and 5) Background Hydraulic Conductivity Sensitivity Analysis

AMEC Geomatrix


Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington Figure C.20 East Sand Channel Hydraulic Conductivity Sensitivity Analysis

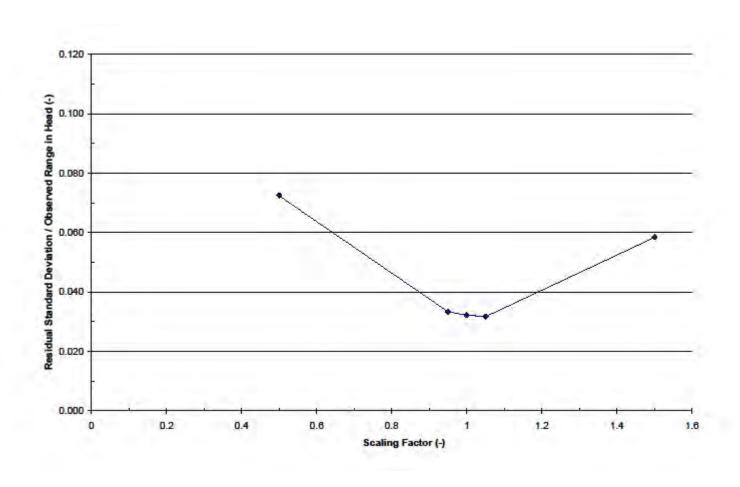
AMEC Geomatrix

Phase 1 Hydrogeologic Study Report
B&L Woodwaste Site
Pierce County, Washington


Figure C.21 Southwest Sand Channel Hydraulic Conductivity Sensitivity Analysis

FLOYD | SNIDER

AMEC Geomatrix


Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington Figure C.22 Lower Silt Aquitard (Layer 3) Background Hydraulic Conductivity Sensitivity Analysis

AMEC Geomatrix

Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington

Figure C.23 Recharge Sensitivity Analysis

FLOYD | SNIDER

AMEC Geomatrix

Phase 1 Hydrogeologic Study Report B&L Woodwaste Site Pierce County, Washington

Figure C.24 Flux Boundary Sensitivity Analysis

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Attachment C1 Phase 1 Hydrogeologic Study Report Boring Logs

Coordinate System: NAD 83/98

Latitude/Northing: 702948.758

Longitude/Easting: 1185729.253

Casing Elevation: 16.167, NAVD 88

Boring Location: PD-1a

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

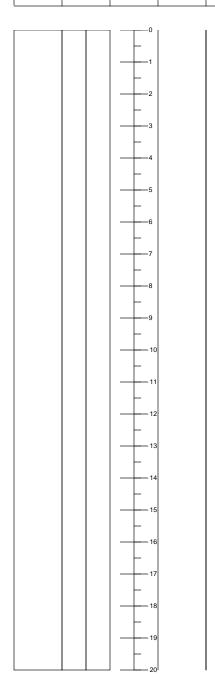
Ground Surf Elev. & Datum: 12.667, NAVD 88 Drill Type: Track Geoprobe 6620DT

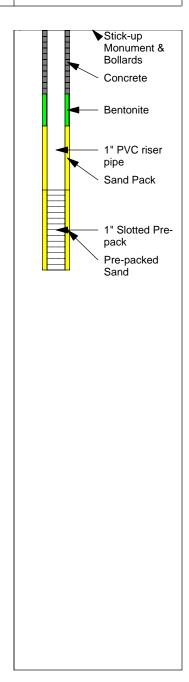
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 7.5 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste


Pierce County, WA

Remarks: Shallow well screen. First of three.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Latitude/Northing: 702948.583

Longitude/Easting: 1185725.946

Casing Elevation: 15.732, NAVD 88

Boring Location: PD-1b

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

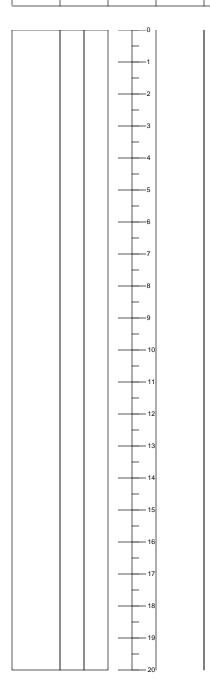
Ground Surf Elev. & Datum: 12.617, NAVD 88 Drill Type: Track Geoprobe 6620DT

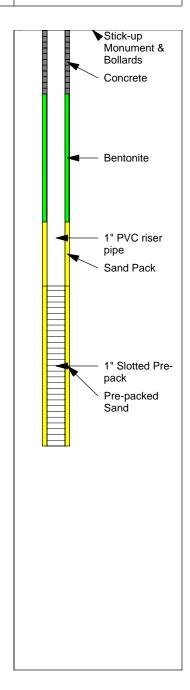
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 13 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste


Pierce County, WA

Remarks: Intermediate well screen. 2 of 3.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Boring Location: PD-1c

Project: B&L RIM

Task Number:

Client: B&L Custodial Trust

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.617, NAVD 88 Drill Type: Track Geoprobe 6620DT

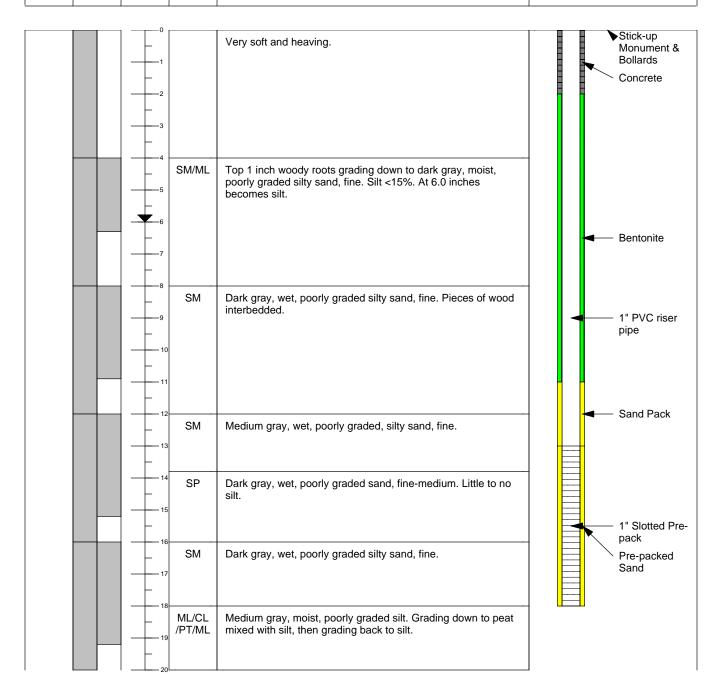
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 24 ft bgs

Site Location: B&L Woodwaste Groundwater ATD (ft bgs): 6' bgs

Pierce County, WA

Remarks: Deep well screen. Third of three.

Sunny, hot.


Coordinate System: NAD 83/98

Longitude/Easting: 1185722.528

Casing Elevation: 15.932, NAVD 88

Latitude/Northing: 702948.758

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Boring Location: PD-1c

Project: B&L RIM

Task Number:

Drill Date: August 15, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.617, NAVD 88 Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust

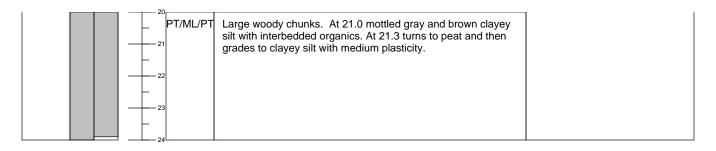
> Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 24 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 6' bgs Pierce County, WA

Remarks: Deep well screen. Third of three.

Sunny, hot.


Coordinate System: NAD 83/98

Longitude/Easting: 1185722.528

Casing Elevation: 15.932, NAVD 88

Latitude/Northing: 702948.758

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 12.29 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 702994.8 Longitude/Easting: 1185895.9 Casing Elevation: 15.30 NAVD 88

PD-4 **Boring Location:**

Drill Date: August 14, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

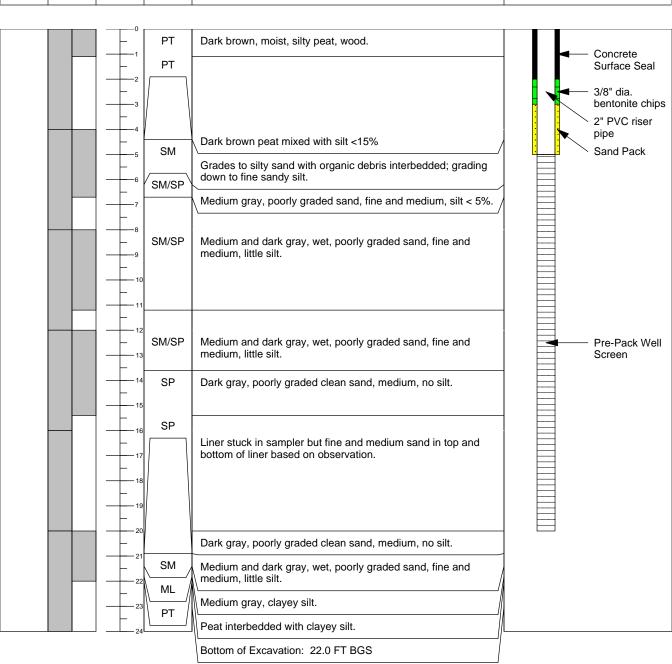
Drill Type: Track Geoprobe 6620DT Sample Method: Dual Tube

Boring Diameter: 2 inches

Boring Depth (ft bgs): 24 FT BGS

Groundwater ATD (ft bgs): Unknown Pierce County, WA

Site Location: B&L Woodwaste


Project: B&L RIM

Task Number:

Client: B&L Custodial Trust

Remarks: Boring log and groundwater sample in wetland.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 12.81 NAVD 88

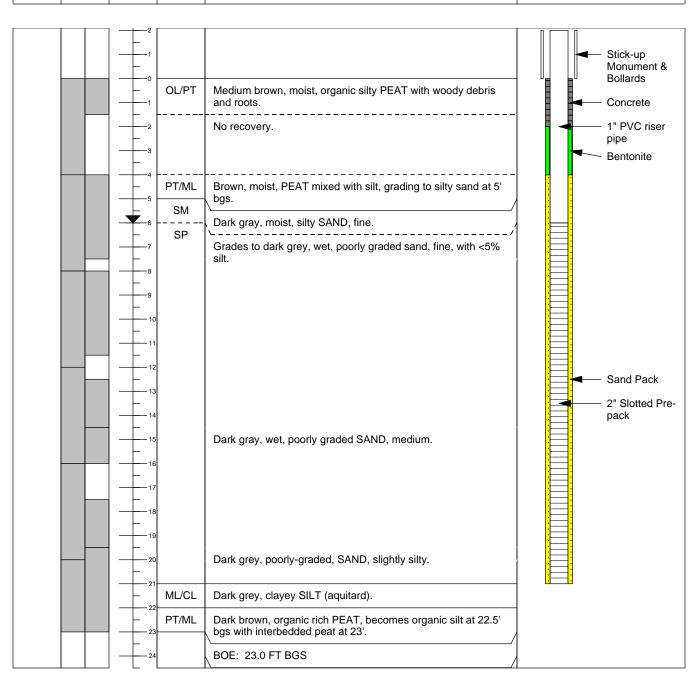
Coordinate System: NAD 83/98 Latitude/Northing: 703003.1 Longitude/Easting: 1185989.1 Casing Elevation: 15.64 NAVD 88 **Boring Location:** PD-6

Drill Date: August 15, 2008 Logged By: Lisa Meoli

Drilled By: Eli Floyd/Cascade Drilling Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 23 FT BGS Groundwater ATD (ft bgs): 6 FT BGS Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

Client: B&L Custodial Trust

Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Drill Date: August 7, 2008

Logged By: Brett Beaulieu

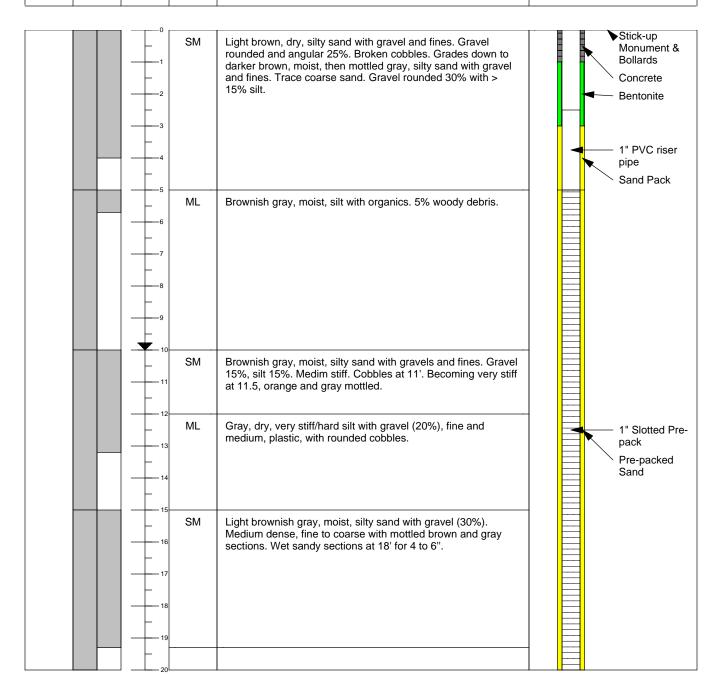
Drilled By: Casey Goble / Cascade Drilling

Boring Location:

PD-38

Ground Surf Elev. & Datum: 18.998, NAVD 88 Drill Type: Truck Geoprobe 6600 Client: B&L Custodial Trust

Coordinate System: NAD 83/98 Sample Method: Dual Tube/Macro Core Project: B&L RIM Latitude/Northing: 701806.207 Boring Diameter: 2 inches Task Number:


Remarks: Driller reports difficulty with 3 1/4" dual-tube due to large cobbles. Switched to 2" x 5' macro core.

Longitude/Easting: 1186803.104 Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste Pierce County, WA

Casing Elevation: 21.635, NAVD 88 Groundwater ATD (ft bgs): 10' bgs

Log is a composite of two drives. 5 gallons of water added during piezometer installation.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 19.670 NAVD88

Coordinate System: NAD 83/98 Latitude/Northing: 701719.308704 Longitude/Easting: 1186767.139073 Casing Elevation: 22.531 NAVD88

Boring Location: PD-40

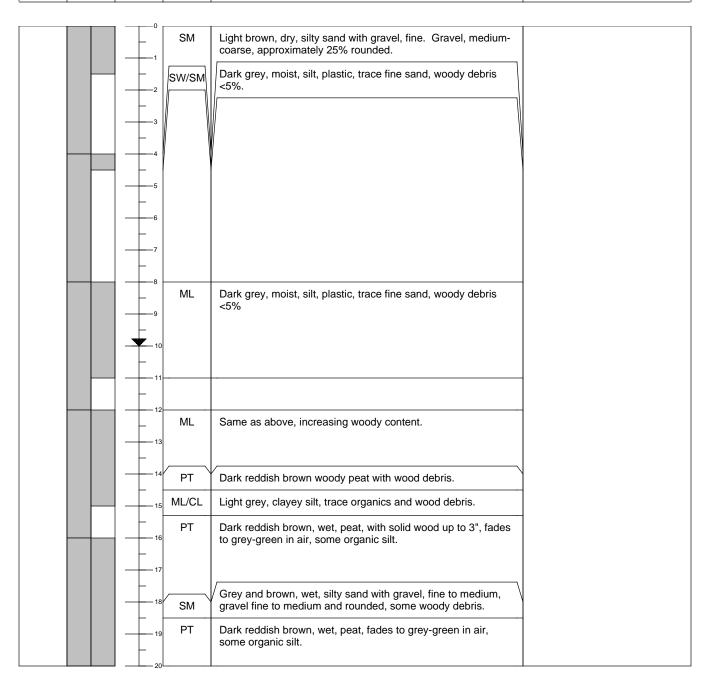
Drill Date: August 6, 2008 Logged By: Brett Beaulieu

Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): 10' bgs


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

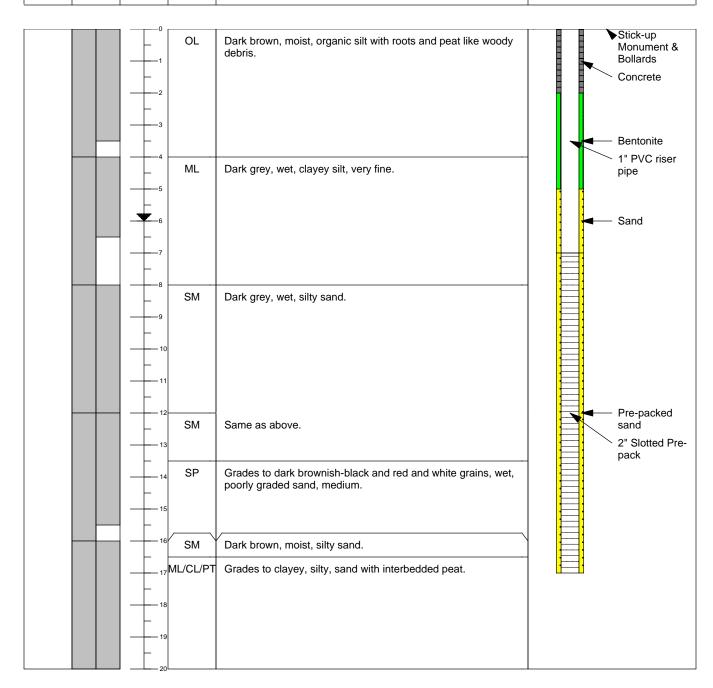
SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 12.296 Coordinate System: NAV83/98 Latitude/Northing: 702820.184 Longitude/Easting: 1185778.645 Casing Elevation: 14.766

Boring Location: PD-50

Drill Date: August 19, 2008 Logged By: Lisa Meoli Drilled By: Cascade Drilling

Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust


Sample Method: Dual Tube Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 20 ft bgs Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 6' bgs Pierce County, WA

Remarks: Boring log and groundwater sample in wetland.

ı						
I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Boring Location: PD-51

Drill Date: August 19, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.129, NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): 6' bgs

Client: B&L Custodial Trust

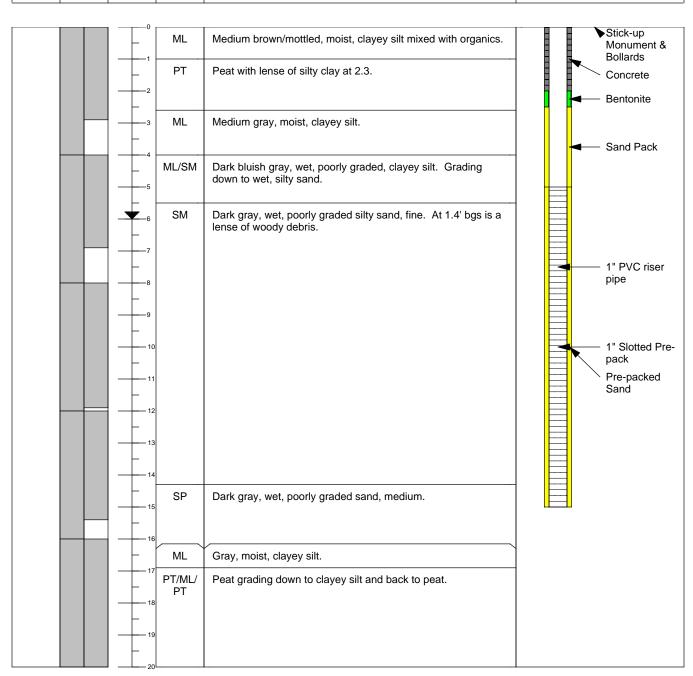
Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks:

Sunny, hot.


Coordinate System: NAD 83/98

Longitude/Easting: 1185752.702

Casing Elevation: 15.199, NAVD 88

Latitude/Northing: 702695.029

ı						
I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Longitude/Easting: 1185675.209

Casing Elevation: 15.044, NAVD 88

Latitude/Northing: 702501.017

Boring Location: PD-52a

Drill Date: August 19, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

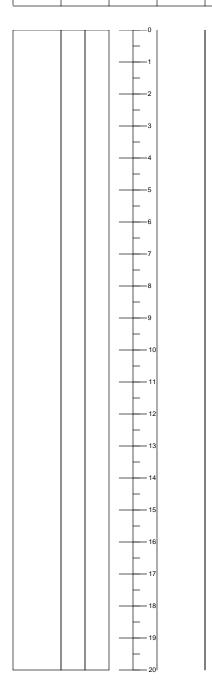
Ground Surf Elev. & Datum: 12.499, NAVD 88 Drill Type: Track Geoprobe 6620DT

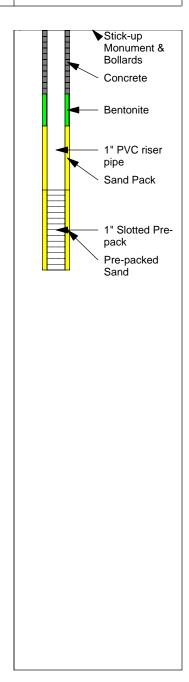
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 7.5 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste


Pierce County, WA

Remarks: Shallow well screen. First of three.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Latitude/Northing: 702497.933

Longitude/Easting: 1185674.567

Casing Elevation: 15.104, NAVD 88

Boring Location: PD-52b

Drill Date: August 19, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

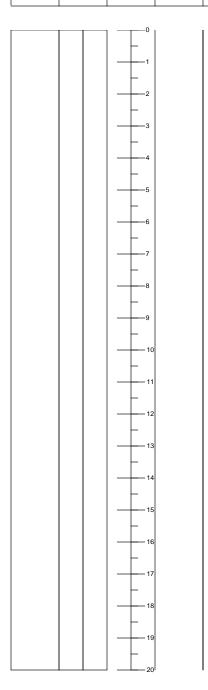
Ground Surf Elev. & Datum: 12.299, NAVD 88 Drill Type: Track Geoprobe 6620DT

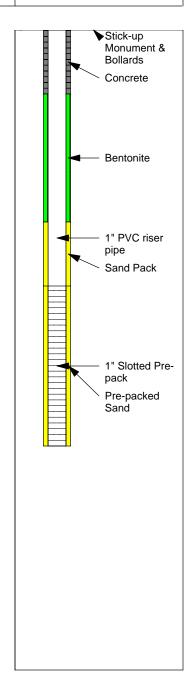
Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 13 ft bgs

Groundwater ATD (ft bgs): Unknown

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste


Pierce County, WA

Remarks: Intermediate well screen. 2 of 3.

No logging was done.

I	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Boring Location: PD-52c

Drill Date: August 19, 2008 Logged By: Erin Murray

Drilled By: Eli Floyd / Cascade Drilling

Ground Surf Elev. & Datum: 12.389, NAVD 88 Drill Type: Track Geoprobe 6620DT

Sample Method: Dual Tube Boring Diameter: 2 inches Boring Depth (ft bgs): 20 ft bgs

Groundwater ATD (ft bgs): 6' bgs

Client: B&L Custodial Trust

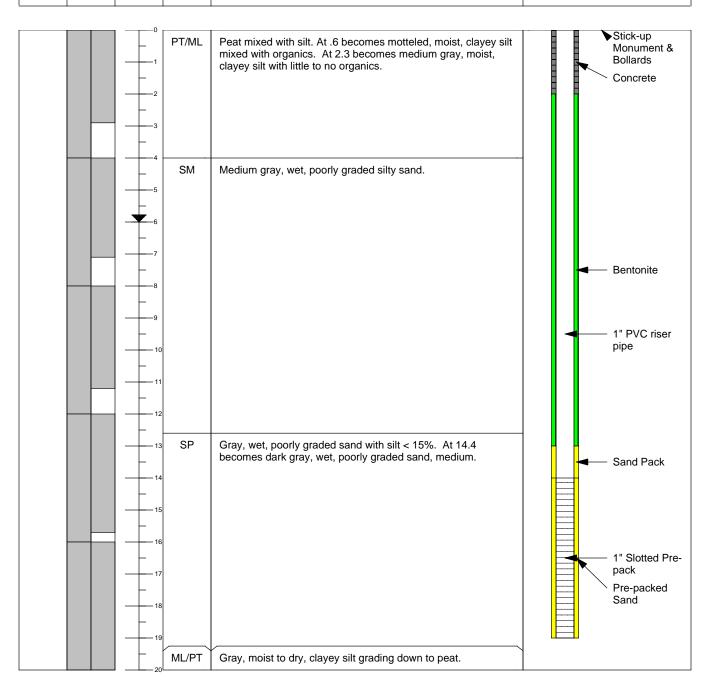
Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Deep well screen. Third of three.

Cloudy, warm.


Coordinate System: NAD 83/98

Longitude/Easting: 1185673.518

Casing Elevation: 15.039, NAVD 88

Latitude/Northing: 702494.381

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS ID SYMBOL **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 17.10, NAVD 88

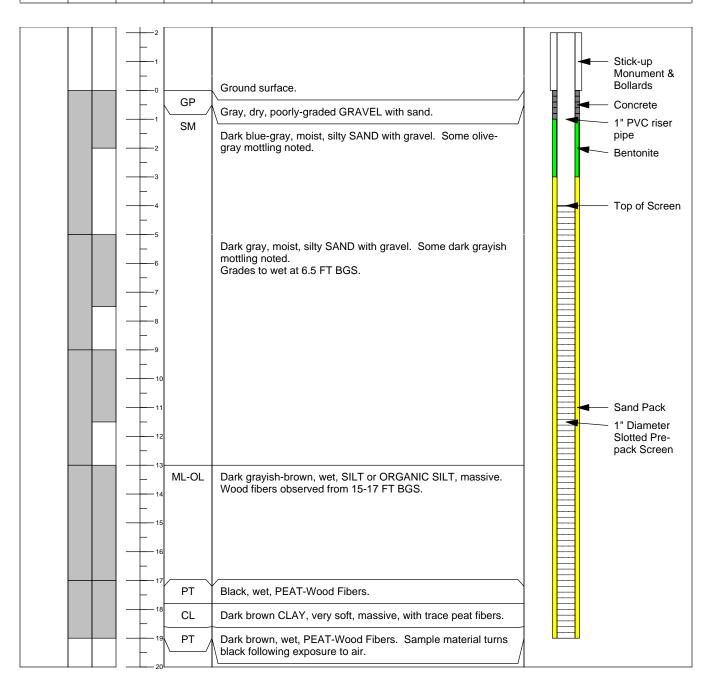
Coordinate System: NAD 83/98 Latitude/Northing: 701995 Longitude/Easting: 1186678

Casing Elevation: 20.13, NAVD 88

Boring Location: PD-60

Drill Date: August 7, 2008 Logged By: John LaManna

Drilled By: Casey Goble / Cascade Drilling


Drill Type: Track Geoprobe 6620DT Client: B&L Custodial Trust

Sample Method: Dual Tube Project: B&L RIM Boring Diameter: 2 inches Task Number:

Boring Depth (ft bgs): 19 FT BGS Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 6.5 FT BGS Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 24.22, NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 702088 Longitude/Easting: 1186909 Casing Elevation: 27.29, NAVD 88 **Boring Location: PD-61**

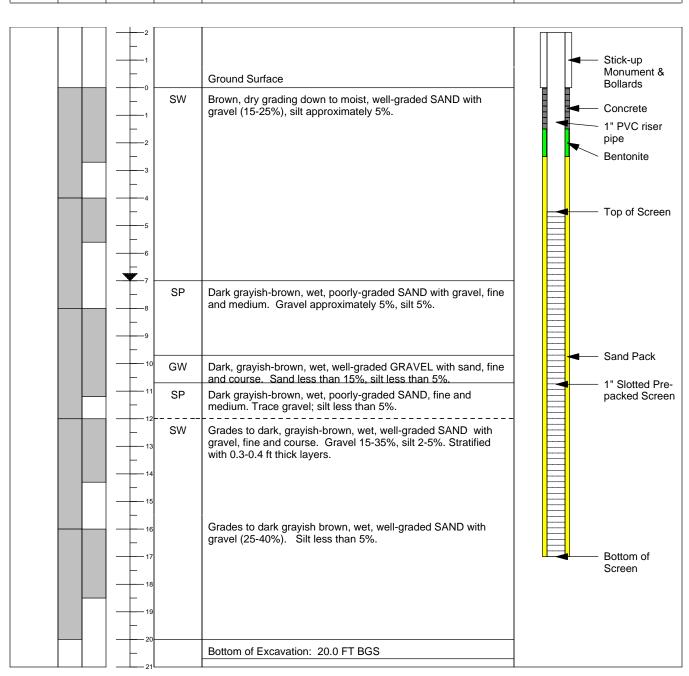
Drill Date: August 8, 2008 Logged By: John LaManna

Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT Sample Method: Dual Tube

Boring Diameter: 2 inches Boring Depth (ft bgs): 20 FT BGS

Groundwater ATD (ft bgs): 6-8 FT BGS Pierce County, WA


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Remarks: This is the second attempt. Refusal at 8 ft bgs on first attempt.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 17.64 NAVD88 Coordinate System: NAD 83/98 Latitude/Northing: 701825 Longitude/Easting: 1186617

Casing Elevation: 20.37 NAVD88

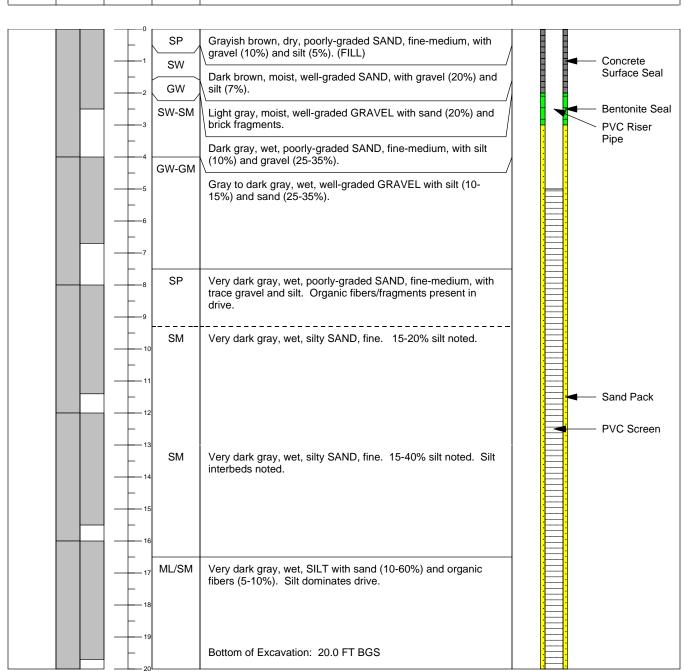
Boring Location: PD-62

Drill Date: August 11, 2008 Logged By: John LaManna

Drilled By: Eli Floyd / Cascade Drilling Drill Type: Track Geoprobe 6620DT Sample Method: Direct Push, 2" X 4'

Boring Diameter: 2 inches

Boring Depth (ft bgs): 20.0 FT BGS


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Groundwater ATD (ft bgs): 5.5 FT BGS Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 19.75 FT, NAVD88

Latitude/Northing: 701674

Longitude/Easting: 1186543

Boring Location: PD-63a

Drill Date: August 12, 2008 Logged By: Brett Beaulieu

Drilled By: Eli Floyd / Cascade Drilling

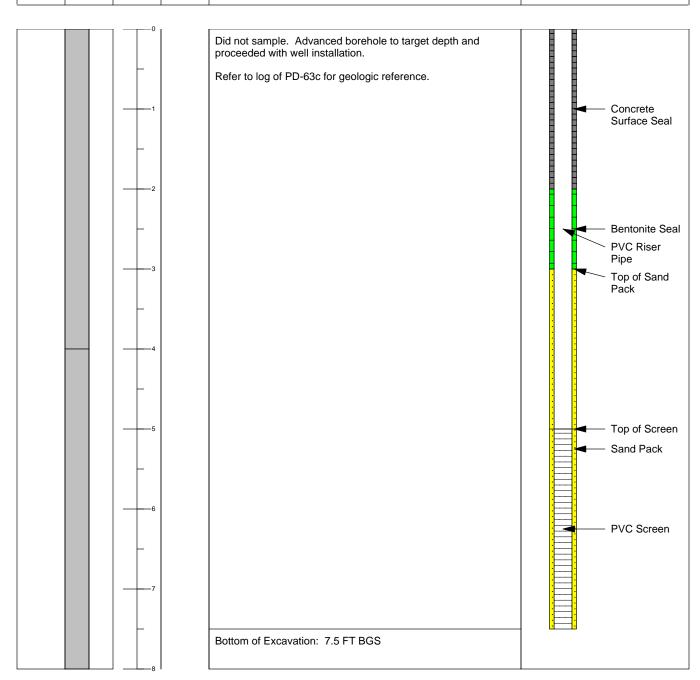
Ground Surf Elev. & Datum: 16.73 FT, NAVD8Brill Type: Track Geoprobe 6620DT

Sample Method: Direct Push, 2" X 4' Boring Diameter: 2 inches

Boring Depth (ft bgs): 7.5 FT BGS

Groundwater ATD (ft bgs): NA

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Sunny

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 16.77 NAVD 88

Coordinate System: NAD 83/98 Latitude/Northing: 701681 Longitude/Easting: 1186548 Casing Elevation: 18.85 NAVD 88 Boring Location: PD-63B

Drill Date: August 12, 2008 **Logged By:** Brett Beaulieu

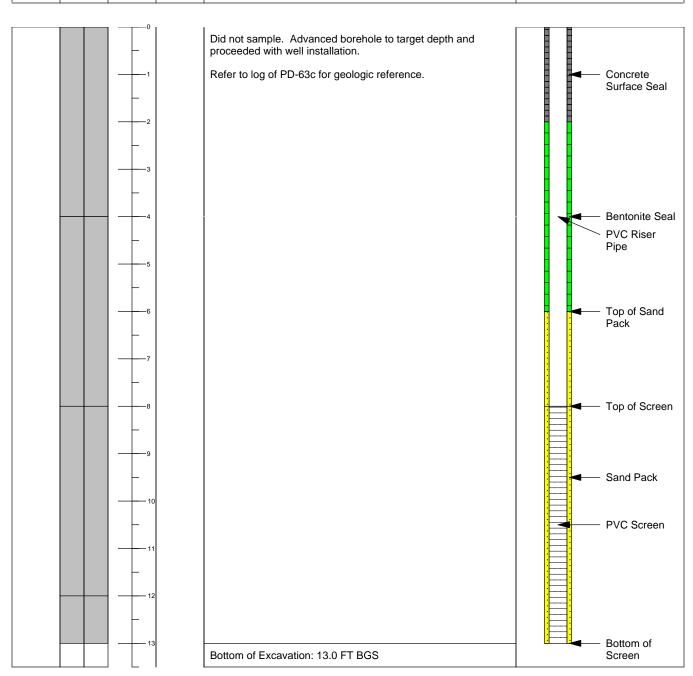
Drilled By: Eli Floyd / Cascade Drilling

Drill Type: Track Geoprobe 6620DT **Sample Method:** Direct Push, 2" X 4' **Boring Diameter:** 2 inches

Boring Depth (ft bgs): 13

Groundwater ATD (ft bgs): NA

Client: B&L Custodial Trust


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Sunny

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 16.75 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 701678 Longitude/Easting: 1186546

Casing Elevation: 19.50, FT NAVD 88

Drill Date: August 12, 2008 Logged By: Brett Beaulieu

Drilled By: Eli Floyd / Cascade Drilling

82rill Type: Track Geoprobe 6620DT Sample Method: Direct Push, 2" X 4'

Boring Diameter: 2 inches

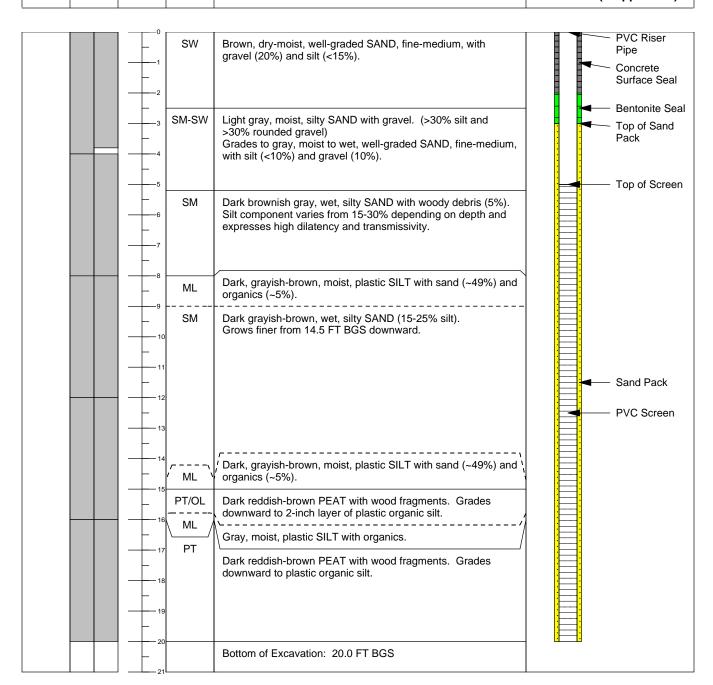
Boring Depth (ft bgs): 20.0 FT BGS

Groundwater ATD (ft bgs): NA

PD-63C Boring Location:

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Site Location: B&L Woodwaste

Pierce County, WA

Remarks: Driller unable to set well on first attempt due to heave.

10 gal water added to reduce heave and enable installation of well.

SAMPLE DRIVEN / DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS WELL COMPLETION RECOVERED FT BGS SYMBOL ID **DETAIL (If Applicable)**

Ground Surf Elev. & Datum: 19.54 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 701620 Longitude/Easting: 1186657

Casing Elevation: 22.29, FT NAVD 88

Boring Location: PD-64 Drill Date: August 11, 2008

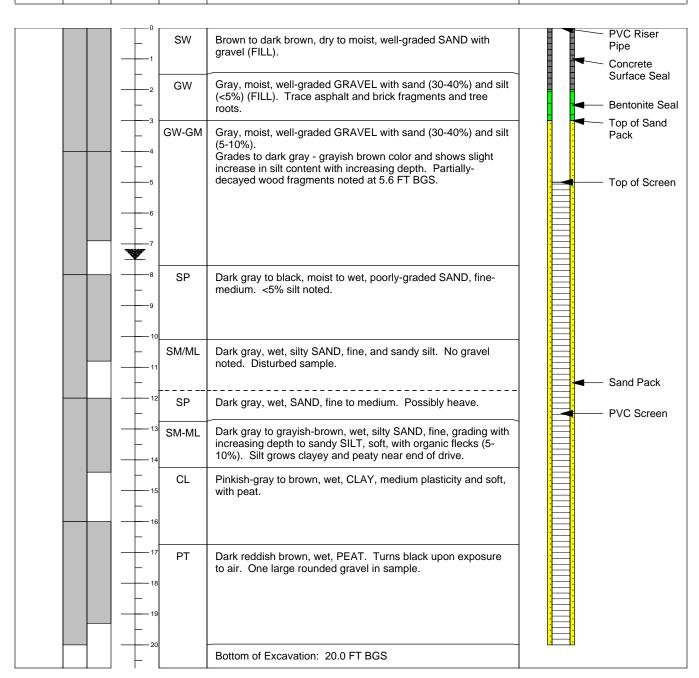
Logged By: John Lamanna

Drilled By: Eli Floyd / Cascade Drilling 827ill Type: Track Geoprobe 6620DT

Sample Method: Direct Push, 2" X 4'

Boring Diameter: 2 inches

Boring Depth (ft bgs): 20.0 FT BGS


Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Client: B&L Custodial Trust

Groundwater ATD (ft bgs): 7-8 FT BGS Pierce County, WA

ı						
	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 30.92 FT, NAVD 82 rill Type: Geoprobe/Direct Push

Coordinate System: NAD 83/98 Latitude/Northing: 701320 Longitude/Easting: 1186546

Casing Elevation: 30.92 FT, NAVD 88

Drill Date: August 26, 2008 Logged By: Lisa Meoli Drilled By: Cascade Drilling

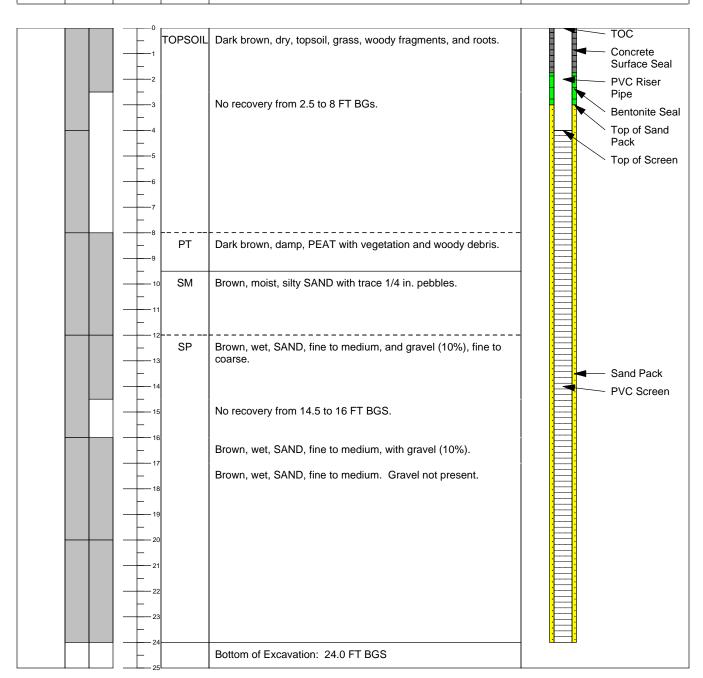
Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 24.0 FT BGS Groundwater ATD (ft bgs): NA

Task Number:

Project: B&L RIM

Boring Location:


Site Location: B&L Woodwaste

Client: B&L Custodial Trust

PD-65

Pierce County, WA

- 1						
	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 14.28, FT NAVD 88

Latitude/Northing: 702918

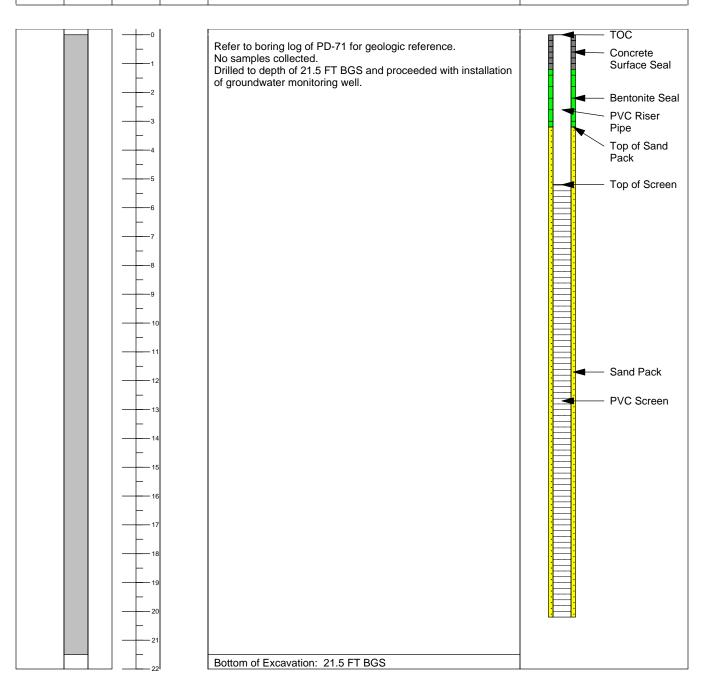
Longitude/Easting: 1186061

Drill Date: September 24, 2008

Logged By: Chris Gardner Drilled By: Cascade Drilling

Ground Surf Elev. & Datum: 14.28 FT, NAVD 80% rill Type: CME 55 Ltd Access Client: B&L Custodial Trust

> Sample Method: 3.0" D&M w/ 140lb Hmr Project: B&L RIM **Boring Diameter: 0.7 FT** Task Number:


Boring Depth (ft bgs): 21.5 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-70

Groundwater ATD (ft bgs): NA Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 14.41, FT NAVD 88

Latitude/Northing: 702923

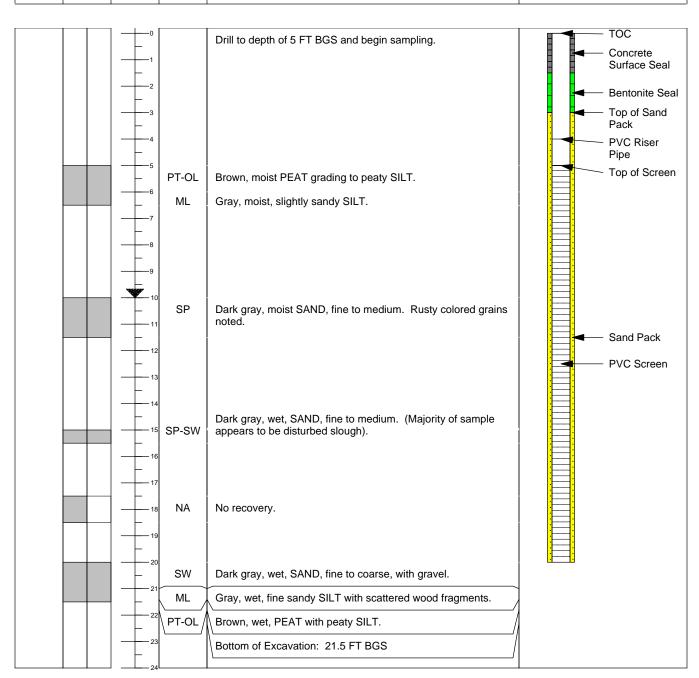
Longitude/Easting: 1186058

Drill Date: September 24, 2008

Logged By: Chris Gardner Drilled By: Cascade Drilling Ground Surf Elev. & Datum: 14.41 FT, NAVD

8Drill Type: CME 55 Ltd Access Client: B&L Custodial Trust

Sample Method: 3.0" D&M w/ 140lb Hmr Project: B&L RIM Boring Diameter: 2 inches Task Number:


Boring Depth (ft bgs): 21.5 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-71

Groundwater ATD (ft bgs): 10 FT BGS Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 16.93 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 701660 Longitude/Easting: 1186590

Casing Elevation: 20.36, FT NAVD 88

PD-80 Boring Location:

Drill Date: August 11, 2008 Logged By: Brett Beaulieu

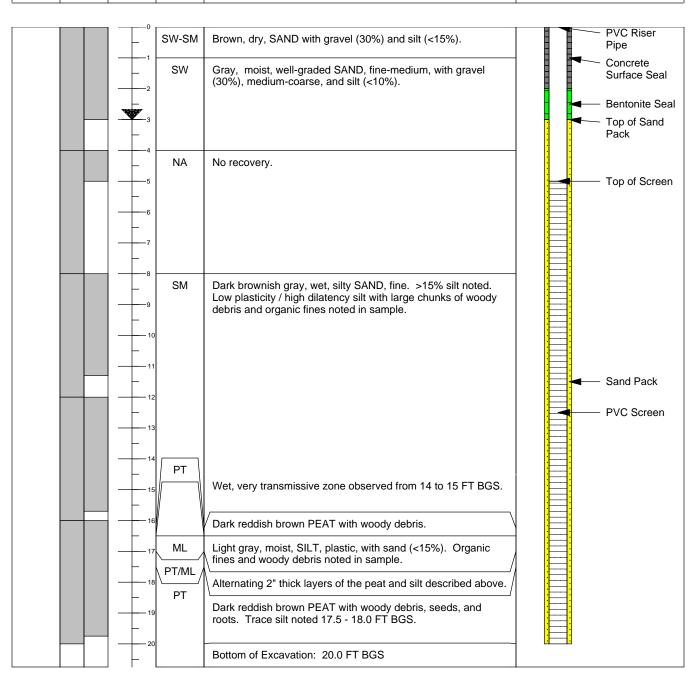
Drilled By: Eli Floyd / Cascade Drilling

82rill Type: Track Geoprobe 6620DT Sample Method: Direct Push, 2" X 4'

Boring Diameter: 2 inches

Boring Depth (ft bgs): 20.0 FT BGS

Groundwater ATD (ft bgs): 3.0


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 17.39 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 701642 Longitude/Easting: 1186595

Casing Elevation: 20.57, FT NAVD 88

Boring Location: PD-81

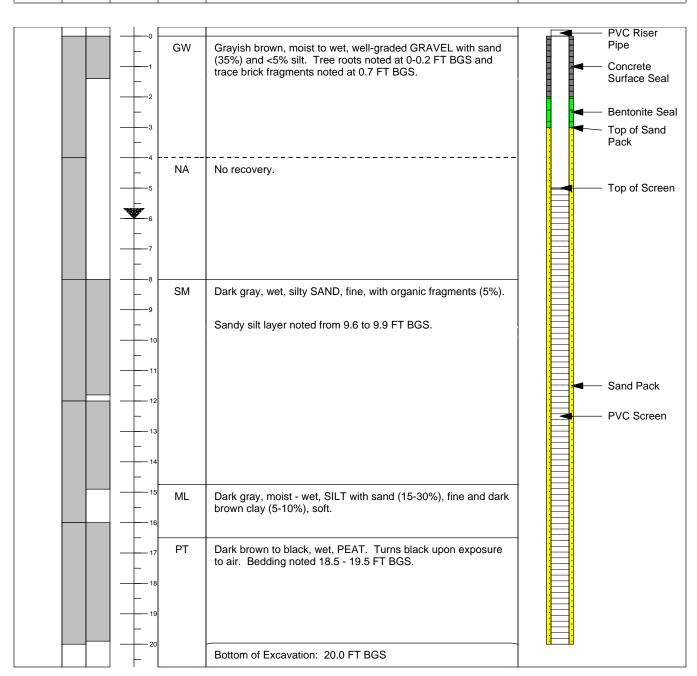
Drill Date: August 11, 2008 Logged By: John Lamanna

Drilled By: Eli Floyd / Cascade Drilling 82rill Type: Track Geoprobe 6620DT

Sample Method: Direct Push, 2" X 4' Boring Diameter: 2 inches

Boring Depth (ft bgs): 20.0 FT BGS

Groundwater ATD (ft bgs): 4-8 FT BGS Pierce County, WA


Project: B&L RIM

Task Number:

Site Location: B&L Woodwaste

Client: B&L Custodial Trust

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 17.37 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 701641 Longitude/Easting: 1186614

Casing Elevation: 20.45, FT NAVD 88

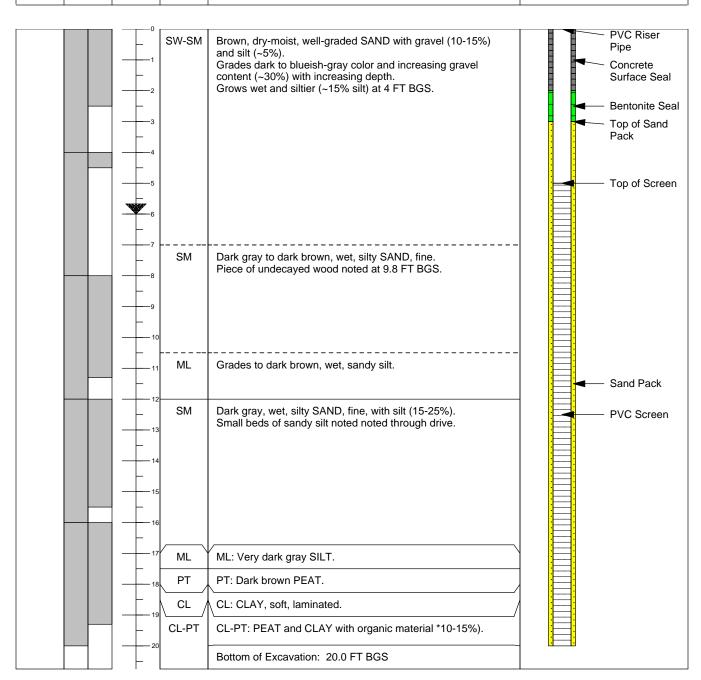
Boring Location: PD-82

Drill Date: August 11, 2008 Logged By: John Lamanna

Drilled By: Eli Floyd / Cascade Drilling 82rill Type: Track Geoprobe 6620DT

Sample Method: Direct Push, 2" X 4'

Boring Diameter: 2 inches Boring Depth (ft bgs): 20.0 FT BGS


Groundwater ATD (ft bgs): 4-8 FT BGS Pierce County, WA

Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98 Latitude/Northing: 702916

Casing Elevation: 17.01, FT NAVD 88

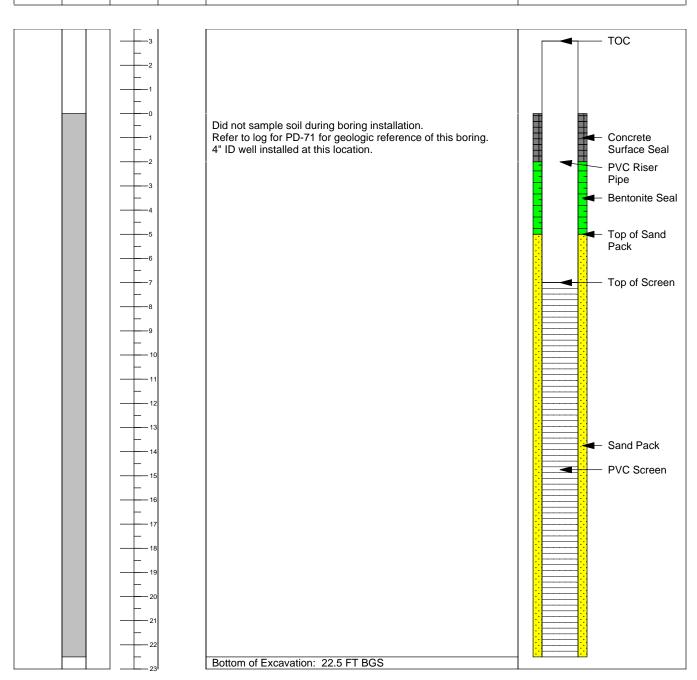
Longitude/Easting: 1186071

Drill Date: September 25, 2008

Logged By: Chris Gardner Drilled By: Cascade Drilling

Ground Surf Elev. & Datum: 14.15 FT, NAVD 822rill Type: CME 55 Ltd Access Client: B&L Custodial Trust

> Sample Method: 3.0" D&M w/ 140lb Hmr Project: B&L RIM Boring Diameter: 0.9 Feet Task Number:


Boring Depth (ft bgs): 22.5 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-101

Groundwater ATD (ft bgs): NA Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

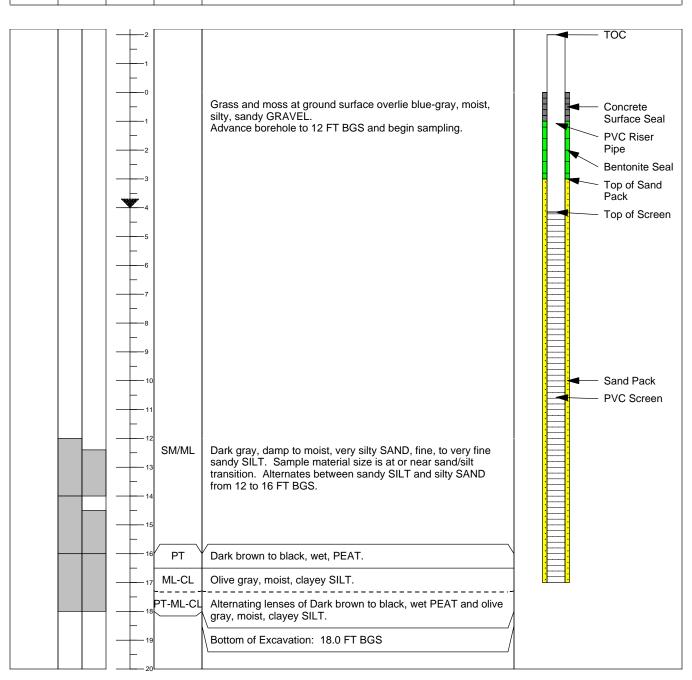
PD-103 **Boring Location:**

Drill Date: August 20, 2008 Logged By: Chris Gardner Drilled By: Cascade Drilling

Ground Surf Elev. & Datum: 17.10 FT NAVD8@rill Type: CME 75

Coordinate System: NAD 83/98 Latitude/Northing: 701645 Longitude/Easting: 1186604

Casing Elevation: 18.62 FT NAVD88


Sample Method: Split spoon /140lb Hmr Project: B&L RIM Boring Diameter: 8"/12" final Boring Depth (ft bgs): 18 FT BGS

Groundwater ATD (ft bgs): 4 FT BGS Pierce County, WA

Client: B&L Custodial Trust

Task Number: Task No. 1308 Site Location: B&L Woodwaste

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 18.76, FT NAVD 88

Latitude/Northing: 701842

Longitude/Easting: 1186655

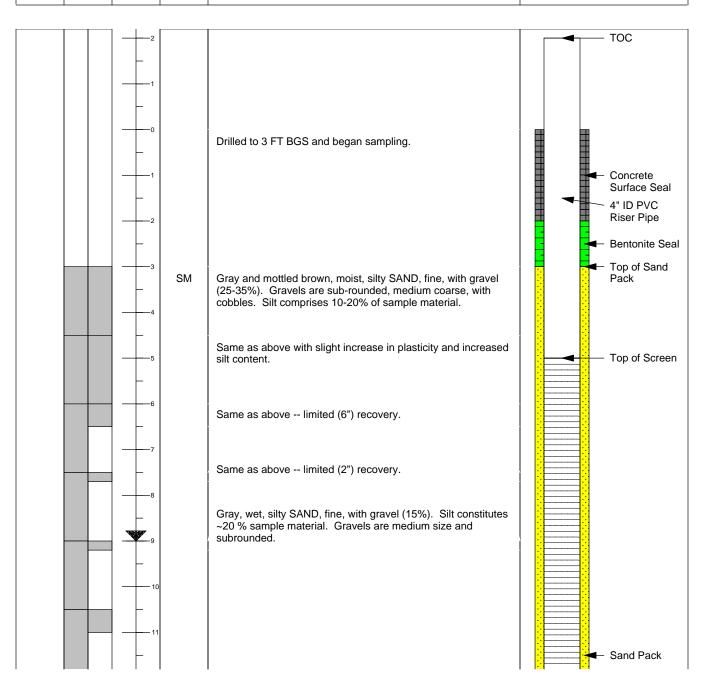
Ground Surf Elev. & Datum: 16.95 FT, NAVD

Drill Date: September 22, 2008

Logged By: Brett Beaulieu Drilled By: Cascade Drilling

8Drill Type: CME 55 Ltd Access Client: B&L Custodial Trust

Sample Method: 3.0" D&M w/ 140lb Hmr Project: B&L RIM Boring Diameter: 0.7 FT Task Number:


Boring Depth (ft bgs): 20 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-104

Groundwater ATD (ft bgs): 9 FT BGS Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 18.76, FT NAVD 88

Latitude/Northing: 701842

Longitude/Easting: 1186655

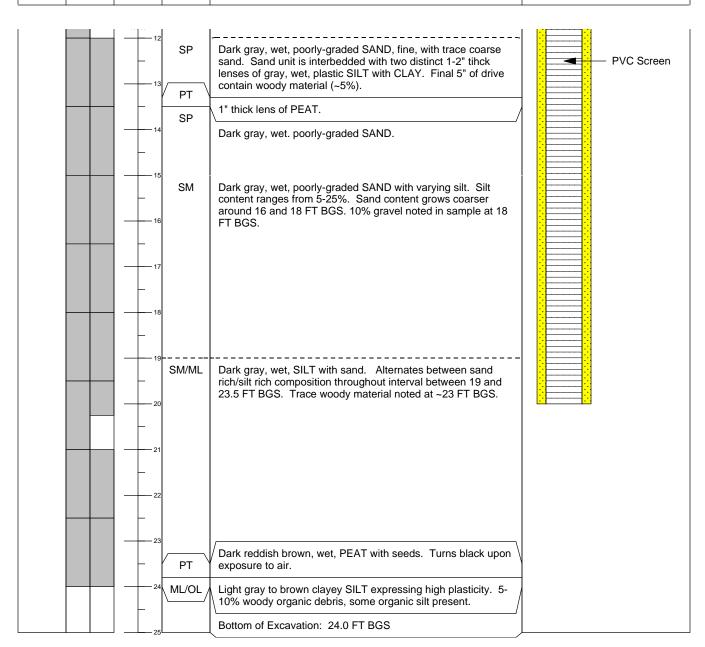
Ground Surf Elev. & Datum: 16.95 FT, NAVD

Drill Date: September 22, 2008

Logged By: Brett Beaulieu Drilled By: Cascade Drilling

822rill Type: CME 55 Ltd Access Client: B&L Custodial Trust

Sample Method: 3.0" D&M w/ 140lb Hmr Project: B&L RIM Boring Diameter: 0.7 FT Task Number:


Boring Depth (ft bgs): 20 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-104

Groundwater ATD (ft bgs): 9 FT BGS Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

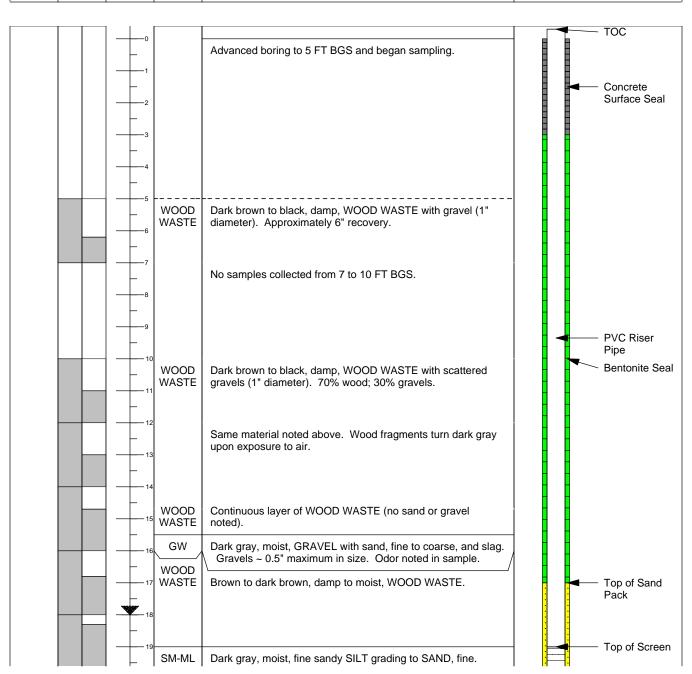
PD-107 Boring Location:

Drill Date: August 18, 2008 Logged By: Chris Gardner Drilled By: Cascade Drilling

Ground Surf Elev. & Datum: 30.58 FT NAVD8&Drill Type: CME 75

Coordinate System: NAD 83/98 Latitude/Northing: 702224 Longitude/Easting: 1186121 Casing Elevation: 32.77 FT NAVD88

Sample Method: Split spoon /140lb Hmr Project: B&L RIM Boring Diameter: 8"/12" final


Boring Depth (ft bgs): 38 FT BGS Groundwater ATD (ft bgs): 18 FT BGS Pierce County, WA

Client: B&L Custodial Trust

Task Number: Task No. 1308 Site Location: B&L Woodwaste

Remarks: Excavated cautiously down to 2' bgs and cut through geotex, PVC and cap liner.

ı						
	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 32.77 FT NAVD88

Latitude/Northing: 702224

Longitude/Easting: 1186121

Drill Date: August 18, 2008 **Logged By:** Chris Gardner

Drilled By: Chris Gardner **Drilled By:** Cascade Drilling

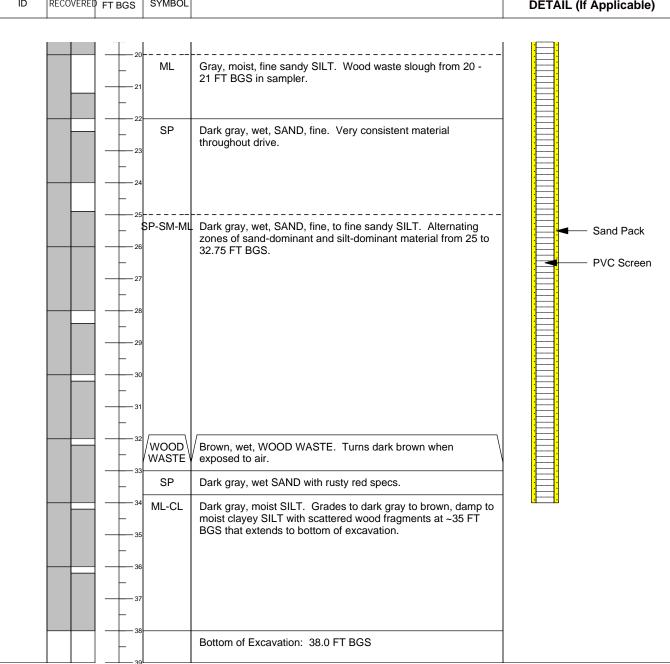
Ground Surf Elev. & Datum: 30.58 FT NAVD8@rill Type: CME 75

Sample Method: Split spoon /140lb Hmr Project: B&L RIM

Boring Diameter: 8"/12" final
Boring Depth (ft bgs): 38 FT BGS

Client: B&L Custodial Trust

Task Number: Task No. 1308
Site Location: B&L Woodwaste


PD-107

Groundwater ATD (ft bgs): 18 FT BGS Pierce County, WA

Boring Location:

Remarks: Excavated cautiously down to 2' bgs and cut through geotex, PVC and cap liner.

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

FLOYD | SNIDER

Coordinate System: NAD 83/98 Ground Surface Elevation: 29.00 Latitude/Northing: 701709 Longitude/Easting: 1185937

Boring Location:

Drill Date: August 18, 2008

Logged By: Chris Gardner Drilled By: Cascade Drilling Drill Type: CME Track Rig

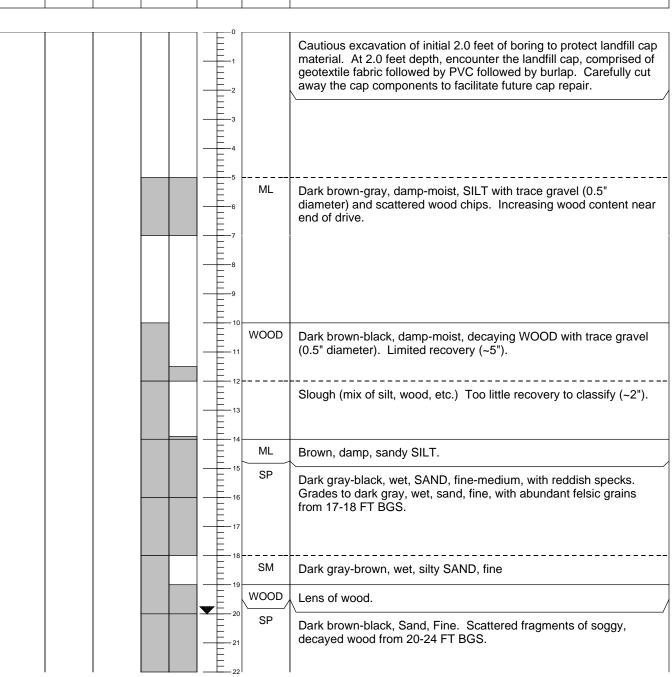
Sample Method: 140 lbs auto hammer

Boring Diameter: 8 inches
Boring Depth (ft bgs): 38 FT BGS
Groundwater ATD (ft bgs): 20 FT BGS

Boring ID: PD-108

Client: B&L Custodial Trust

Project: B&L RIM


Task: Task No. 1308

Address: B&L Woodwaste

Pierce County, Washington

Remarks: No monitoring well installed at this location due to proximity to proposed slurry wall.

PID	OIL	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
(ppm)	INDICAT.	ID	RECOVERED	FT BGS	SYMBOL	

FLOYD | SNIDER

Coordinate System: NAD 83/98 Ground Surface Elevation: 29.00 Latitude/Northing: 701709 Longitude/Easting: 1185937

Boring Location:

Drill Date: August 18, 2008 **Logged By:** Chris Gardner

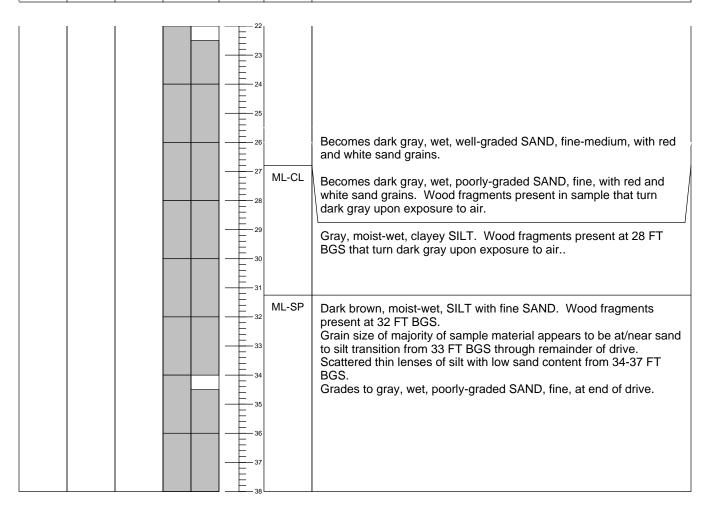
Drilled By: Cascade Drilling
Drill Type: CME Track Rig

Sample Method: 140 lbs auto hammer Boring Diameter: 8 inches

Boring Depth (ft bgs): 38 FT BGS Groundwater ATD (ft bgs): 20 FT BGS Boring ID: PD-108

Client: B&L Custodial Trust

Project: B&L RIM


Task: Task No. 1308

Address: B&L Woodwaste

Pierce County, Washington

Remarks: No monitoring well installed at this location due to proximity to proposed slurry wall.

ı							
	PID	OIL	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS
	(ppm)	INDICAT.	ID	RECOVERED	FT BGS	SYMBOL	

Coordinate System: NAD 83/98

Casing Elevation: 30.67 FT NAVD88

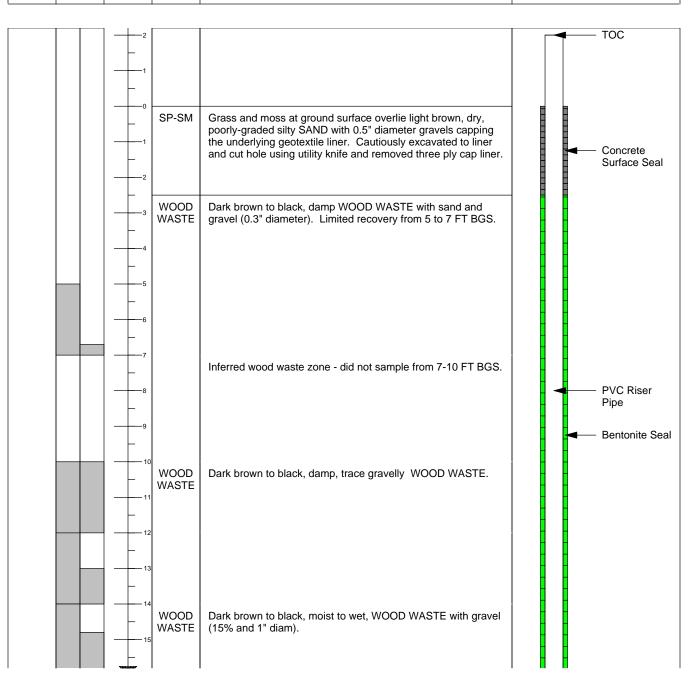
Latitude/Northing: 701795

Longitude/Easting: 1186484

Boring Location: PD-109

Drill Date: August 19, 2008 Logged By: Chris Gardner Drilled By: Cascade Drilling

Ground Surf Elev. & Datum: 28.92 FT NAVD88Drill Type: CME Track Rig Client: B&L Custodial Trust


> Sample Method: 140 lbs auto hammer Boring Diameter: 4.25/8"; 12" final

Boring Depth (ft bgs): 30 FT BGS Groundwater ATD (ft bgs): 16 FT BGS Project: B&L RIM

Task Number: Task No. 1308 Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 30.67 FT NAVD88

Latitude/Northing: 701795

Longitude/Easting: 1186484

Drill Date: August 19, 2008

Boring Location:

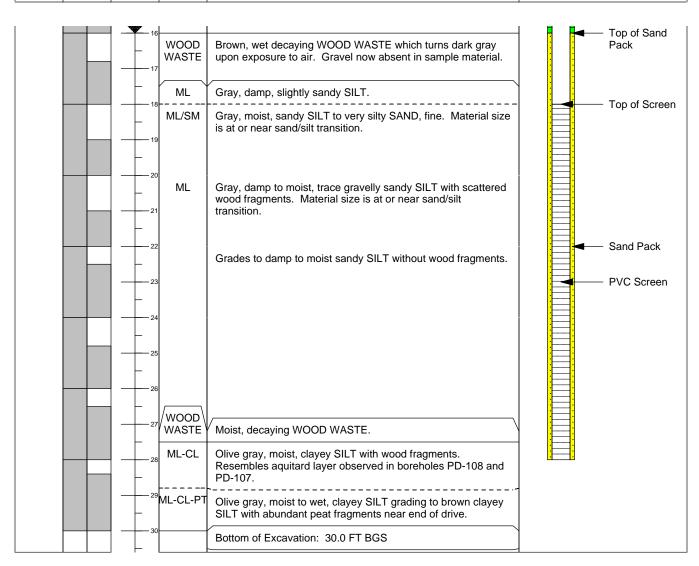
Logged By: Chris Gardner
Drilled By: Cascade Drilling

Ground Surf Elev. & Datum: 28.92 FT NAVD8@Drill Type: CME Track Rig Client: B&L Custodial Trust

Sample Method: 140 lbs auto hammer Boring Diameter: 4.25/8"; 12" final

Boring Depth (ft bgs): 30 FT BGS

Task Number: Task No. 1308
Site Location: B&L Woodwaste


PD-109

Groundwater ATD (ft bgs): 16 FT BGS

Pierce County, WA

Project: B&L RIM

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 12.86 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 703432 Longitude/Easting: 1185702

Casing Elevation: 15.86, FT NAVD 88

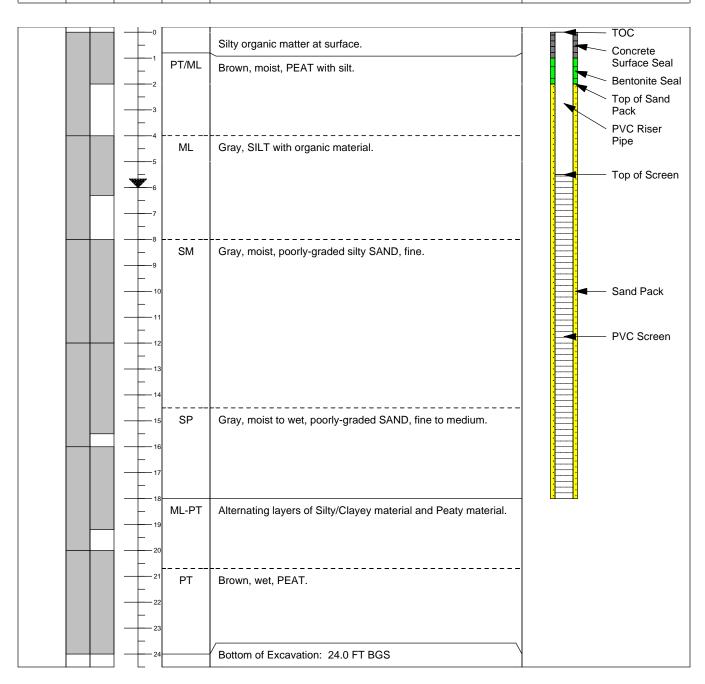
Boring Location: PD-200

Drill Date: August 18, 2008 Logged By: Erin Murray Drilled By: Cascade Drilling 82rill Type: Geoprobe/Direct Push

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 24.0 FT BGS

Groundwater ATD (ft bgs): 6 FT BGS


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 40.05 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 703536 Longitude/Easting: 1187255

Casing Elevation: 40.05, FT NAVD 88

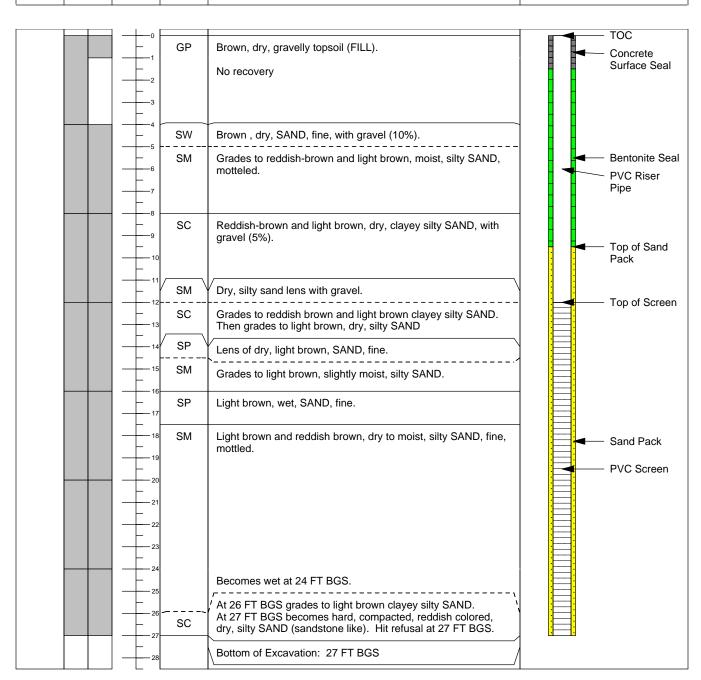
PD-201 **Boring Location:**

Drill Date: August 26, 2008 Logged By: Lisa Meoli Drilled By: Cascade Drilling 822rill Type: Geoprobe

Sample Method: Dual Tube Boring Diameter: 2.0"

Boring Depth (ft bgs): 27 FT BGS

Groundwater ATD (ft bgs): NA


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 56.31 FT, NAVD 82rill Type: Geoprobe/Direct Push

Coordinate System: NAD 83/98 Latitude/Northing: 702529 Longitude/Easting: 1187128

Casing Elevation: 56.31, FT NAVD 88

Logged By: Lisa Meoli Drilled By: Cascade Drilling

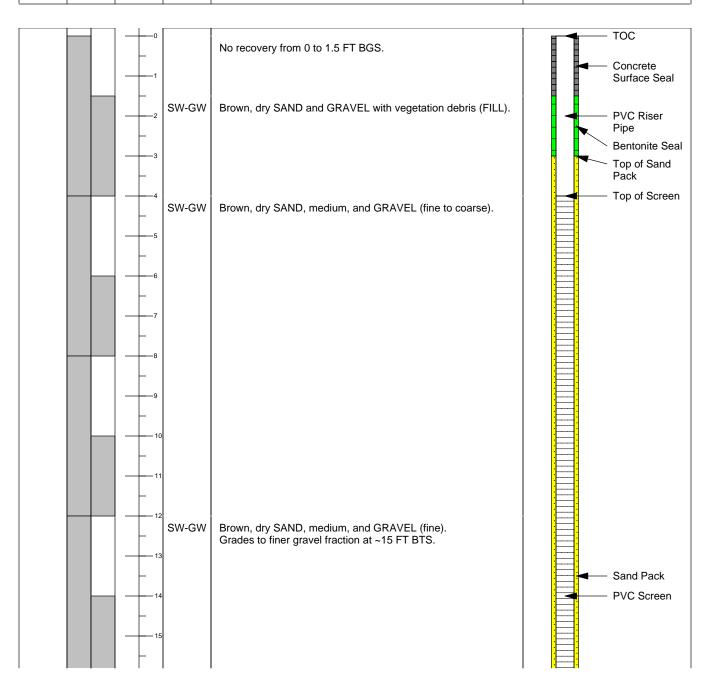
Drill Date: August 26, 2008

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 29.0 FT BGS Groundwater ATD (ft bgs): NA

Client: B&L Custodial Trust

Project: B&L RIM Task Number:


Boring Location:

Site Location: B&L Woodwaste

PD-202

Pierce County, WA

- 1						
	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 56.31 FT, NAVD SOFTII Type: Geoprobe/Direct Push

Coordinate System: NAD 83/98 Latitude/Northing: 702529 Longitude/Easting: 1187128

Casing Elevation: 56.31, FT NAVD 88

Logged By: Lisa Meoli Drilled By: Cascade Drilling

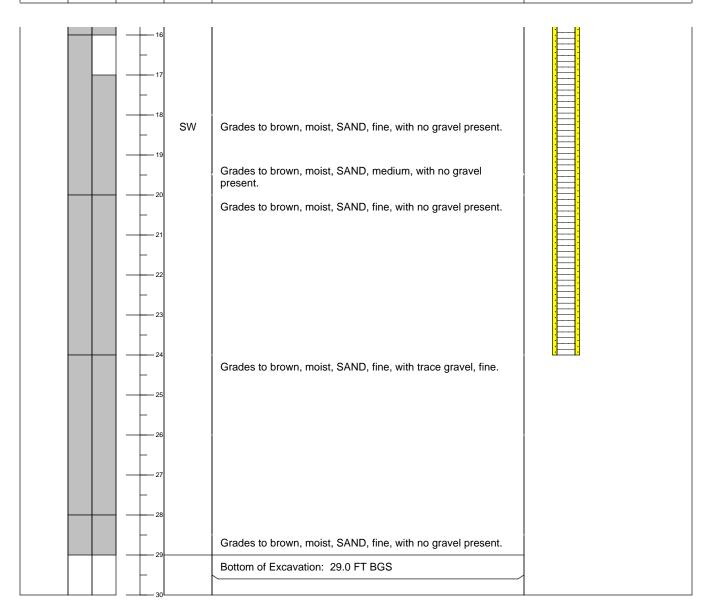
Drill Date: August 26, 2008

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 29.0 FT BGS

Groundwater ATD (ft bgs): NA

Boring Location: PD-202


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 37.90 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 700960 Longitude/Easting: 1186419

Casing Elevation: 37.90 FT, NAVD 88

Logged By: Lisa Meoli Drilled By: Cascade Drilling

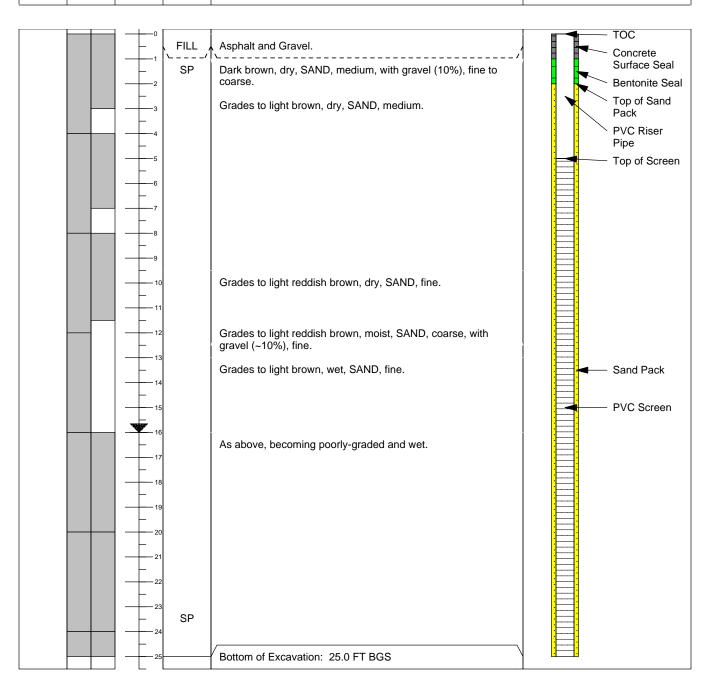
Drill Date: August 27, 2008

82rill Type: Geoprobe/Direct Push

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 25.0 FT BGS Groundwater ATD (ft bgs): 16 FT BGS Client: B&L Custodial Trust

PD-203


Project: B&L RIM Task Number:

Boring Location:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 17.57, FT NAVD 88

Latitude/Northing: 702917

Longitude/Easting: 1186546

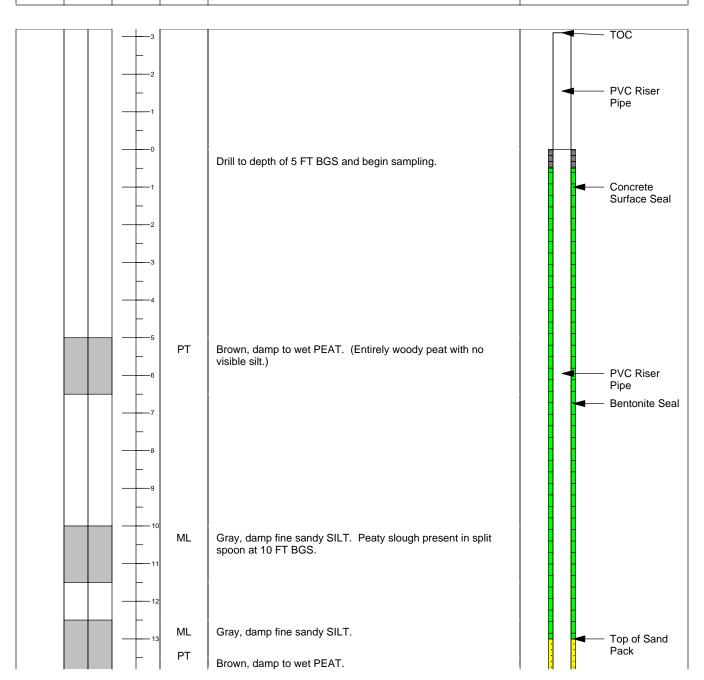
Ground Surf Elev. & Datum: 14.94 FT, NAVD

Drill Date: September 25, 2008

Logged By: Chris Gardner Drilled By: Cascade Drilling

822rill Type: CME 55 Ltd Access Client: B&L Custodial Trust

Sample Method: 3.0" D&M w/ 140lb Ham Project: B&L RIM Boring Diameter: 2 inches Task Number:


Boring Depth (ft bgs): 26.5 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-204

Groundwater ATD (ft bgs): NA Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 17.57, FT NAVD 88

Latitude/Northing: 702917

Longitude/Easting: 1186546

Ground Surf Elev. & Datum: 14.94 FT, NAVD

Drill Date: September 25, 2008

Logged By: Chris Gardner Drilled By: Cascade Drilling

822rill Type: CME 55 Ltd Access Client: B&L Custodial Trust

Sample Method: 3.0" D&M w/ 140lb Ham Project: B&L RIM Boring Diameter: 2 inches Task Number:


Boring Depth (ft bgs): 26.5 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-204

Groundwater ATD (ft bgs): NA Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 15.71 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 703818 Longitude/Easting: 1185260

Casing Elevation: 19.15 FT, NAVD 88

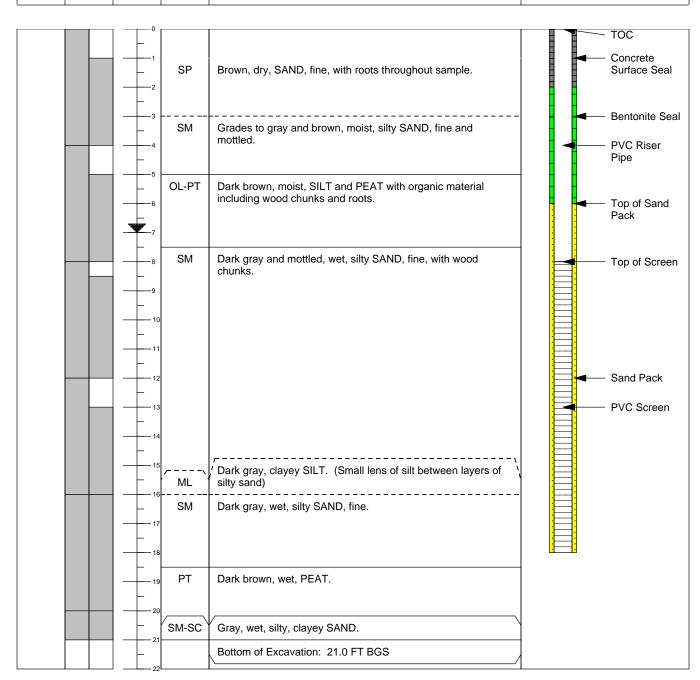
Boring Location: PD-210

Drill Date: August 16, 2008 Logged By: Lisa Meoli Drilled By: Cascade Drilling 82rill Type: Geoprobe/Direct Push

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 21.0 FT BGS

Groundwater ATD (ft bgs): 7 FT BGS


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 13.99 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 703281 Longitude/Easting: 1185150

Casing Elevation: 16.77, FT NAVD 88

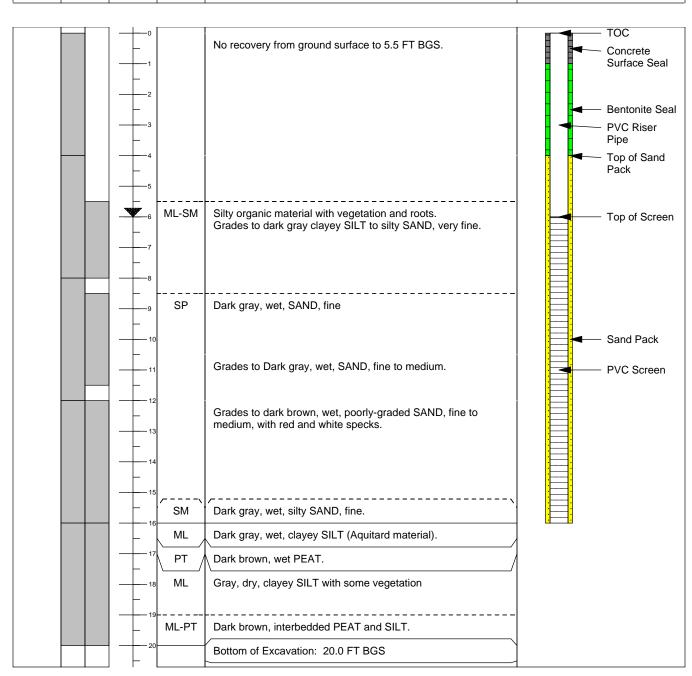
Boring Location: PD-211

Drill Date: August 18, 2008 Logged By: Lisa Meoli Drilled By: Cascade Drilling **Sprill Type:** Geoprobe/Direct Push

Sample Method: Dual Tube Boring Diameter: 2 inches

Boring Depth (ft bgs): 20.0 FT BGS

Groundwater ATD (ft bgs): 6 FT BGS


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Drill Date: September 30, 2008

Logged By: Chris Gardner **Drilled By:** ESN Northwest

Client: B&L Custodial Trust 822rill Type: Geoprobe Project: B&L RIM

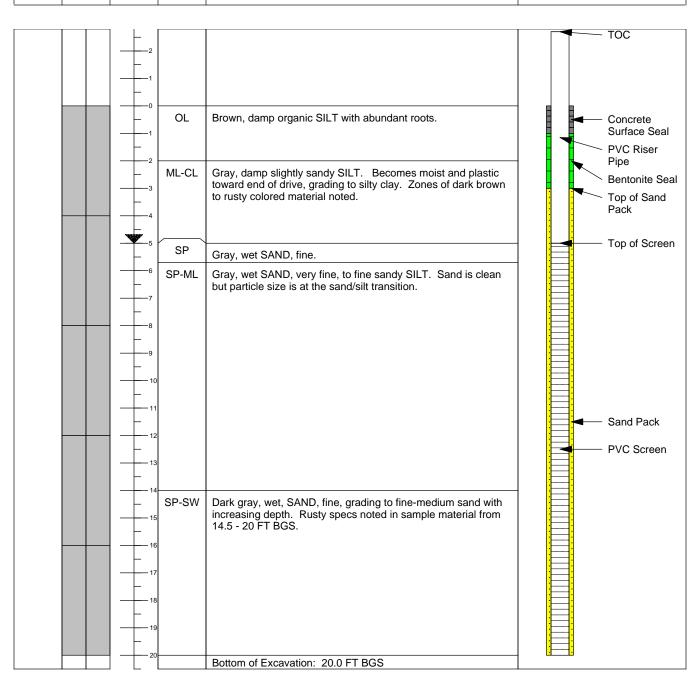
Sample Method: Stanley BR-107 Hmr Boring Diameter: 2 inches

Boring Depth (ft bgs): 20.0 FT BGS

Site Location: B&L Woodwaste

Task Number:

Boring Location:


PD-212

Groundwater ATD (ft bgs): 5.0 FT BGS Pierce County, WA

Ground Surf Elev. & Datum: 15.46 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 702003 Longitude/Easting: 1185274 Casing Elevation: 17.79, FT NAVD 88

ı						
	SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
	ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Coordinate System: NAD 83/98

Casing Elevation: 18.25, FT NAVD 88

Latitude/Northing: 701412

Longitude/Easting: 1185013

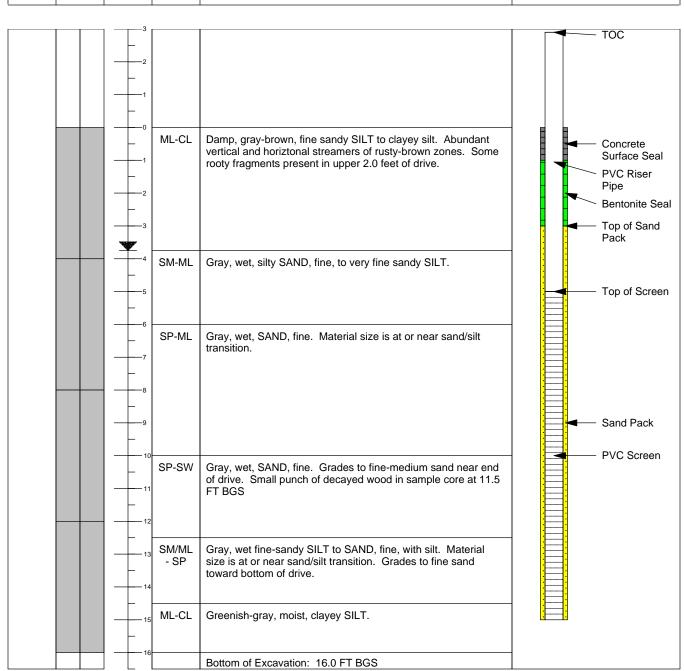
Ground Surf Elev. & Datum: 15.72 FT, NAVD

Drill Date: September 25, 2008

Logged By: Chris Gardner **Drilled By:** ESN Northwest

Client: B&L Custodial Trust 822rill Type: Geoprobe

Sample Method: Stanley BR-187 Project: B&L RIM Boring Diameter: 2.0" Task Number:


Site Location: B&L Woodwaste Boring Depth (ft bgs): 16 FT BGS

Boring Location:

PD-213

Groundwater ATD (ft bgs): 3.75 FT BGS Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 15.56 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 701843 Longitude/Easting: 1185673

Casing Elevation: 17.67, FT NAVD 88

Drill Date: October 1, 2008 Logged By: Chris Gardner

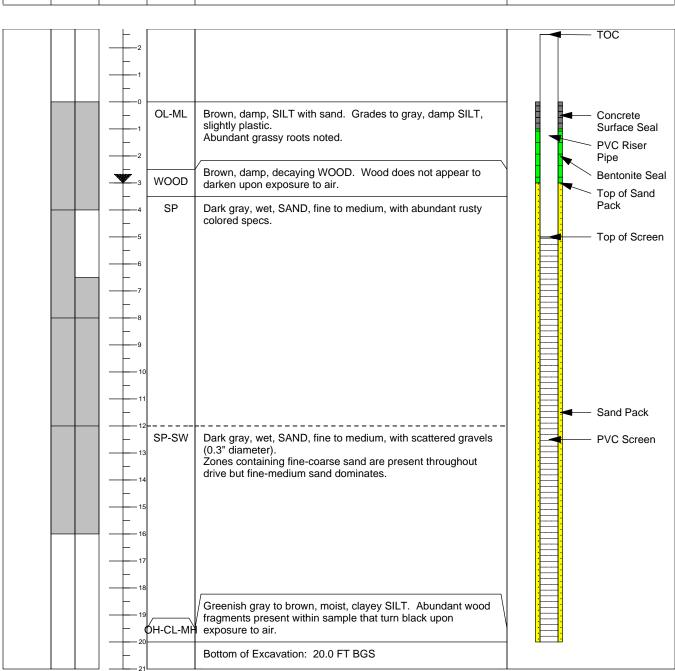
Drilled By: ESN Northwest 822rill Type: Geoprobe

Sample Method: Stanley BR-187 Boring Diameter: 2.0"

Boring Depth (ft bgs): 20 FT BGS

Groundwater ATD (ft bgs): 3 FT BGS

PD-214 **Boring Location:**


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 16.61 FT, NAVD 82rill Type: Geoprobe

Coordinate System: NAD 83/98 Latitude/Northing: 701559 Longitude/Easting: 1185851

Casing Elevation: 19.32, FT NAVD 88

Sample Method: Stanley BR-187

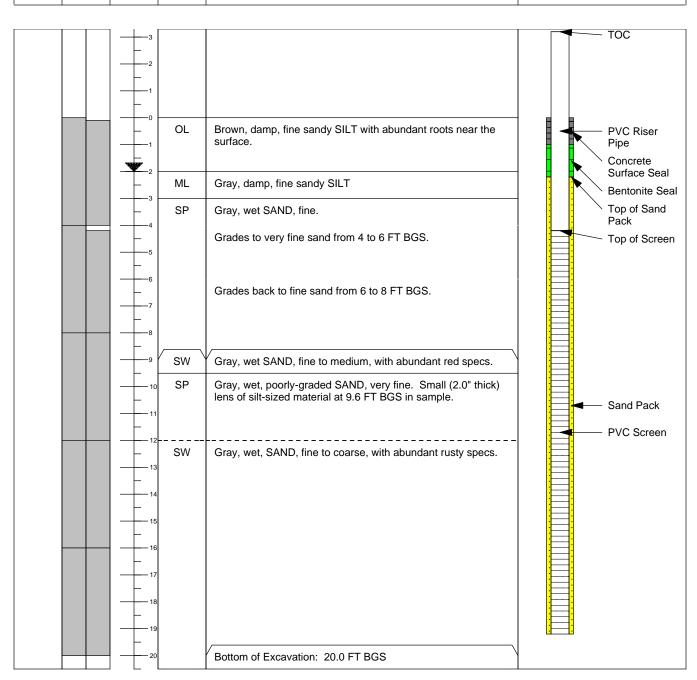
Boring Diameter: 2.0"

Drill Date: October 1, 2008 Logged By: Chris Gardner **Drilled By:** ESN Northwest

Boring Depth (ft bgs): 20 FT BGS

Groundwater ATD (ft bgs): 2 FT BGS

Boring Location: PD-215


Client: B&L Custodial Trust

Project: B&L RIM Task Number:

Site Location: B&L Woodwaste

Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

Ground Surf Elev. & Datum: 17.36 FT, NAVD

Coordinate System: NAD 83/98 Latitude/Northing: 700921 Longitude/Easting: 1185663

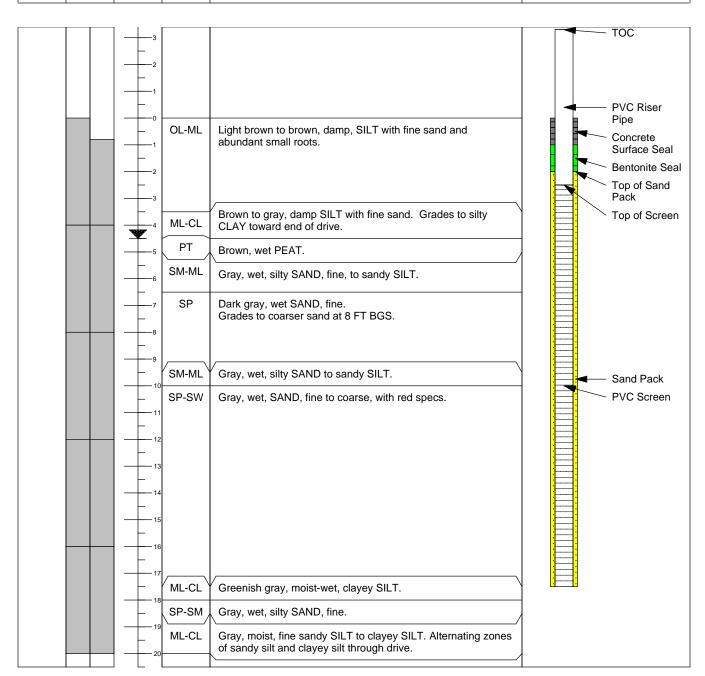
Casing Elevation: 20.45, FT NAVD 88

Drill Date: September 30, 2008 Logged By: Chris Gardner

Drilled By: ESN Northwest

822rill Type: Geoprobe Client: B&L Custodial Trust

Sample Method: Stanley BR-187 Project: B&L RIM Boring Diameter: 2.0" Task Number:


Boring Depth (ft bgs): 20 FT BGS Site Location: B&L Woodwaste

Boring Location:

PD-216

Groundwater ATD (ft bgs): 4.5 FT BGS Pierce County, WA

SAMPLE	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	WELL COMPLETION
ID	RECOVERED	FT BGS	SYMBOL		DETAIL (If Applicable)

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Attachment C2 Phase 1 Hydrogeologic Study Report Discharge Calculation Worksheets

Stream: Hylebos Station: #210 Staff gage: 0.98 Piezo: Date/Time: 10/3/2008 1040

Total Distance: 10.7 Flow: 5.85875 Flow Crew: TG/EM

Station	Depth	Vel	ocity 0.8	Angle	Flov Area	v Calculat Avg Vel		Notes	Angle	Cosine
2		0.13			1.075	0.130		LWE	0	1.000
3	2.45	0.32			2.45	0.320	0.784		15	0.966
4	2.6	0.43			2.6	0.430	1.118		30	0.866
5	2.5	0.44			2.5	0.440	1.1		45	0.707
6	2.4	0.38	3		2.4	0.380	0.912		60	0.500
7	2.25	0.39			2.25	0.390	0.878		75	0.259
8	2.3	0.23	3		2.3	0.230	0.529		90	0.000
9	2.3	0.11			2.3	0.110	0.253		105	-0.259
10	2.45	0.00	3		2.45	0.030	0.074	Behind Vegetation	120	-0.500
11	2.4	0.00	3		2.4	0.030	0.072	Behind Vegetation	135	-0.707
12	1.3	(1.105	0.000	0		150	-0.866
12.7	0.7	(0.245	0.000	0	RWE	165	-0.966
12.7					0	0.000	0		180	-1.000
					0	0.000	0			
					0	0.000	0			
					0	0.000	0		1	
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
ļ					0	0.000	0		_	
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0	RWE (9/26)		

Calc. Flow: 5.859 Computed by:

Notes:		

Stream:	Hylebos	Station:	#211	Staff gage:	1.2	Piezo:	Date/Time:	10/3/2008	111!

Total Distance: 9.2 Replaced fencepostold sg reading 1.85 Flow: 6.0852 Flow Crew: TG/EM

			Velo				v Calculat			1	
Station		0.2	0.6	0.8	Angle	Area	Avg Vel		Notes	Angle	Cosine
0.6			0.2			0.39			LVVE	0	1.000
1.0			0.31		ļ <u>-</u>	1.54				15	0.966
2.0			0.38			2.25				30	0.866
3.0	2.05		0.54			2.05	0.540	1.107		45	0.707
4.0	2		0.7			2	0.700	1.4		60	0.500
5.0	1.8		0.47			1.8	0.470	0.846		75	0.259
6.0	1.55	·	0.45			1.55	0.450	0.698		90	0.000
7.0	1.4		0.33			1.4	0.330	0.462		105	-0.259
8.0	1.2		0.13			1.2	0.130	0.156	Behind Vegetation	120	-0.500
9.0	0.35		0.02			0.315	0.020	0.006	Behind Vegetation	135	-0.707
9.8	0.45		0			0.18	0.000	0		150	-0.866
9.8						0	0.000	0	RWE	165	-0.966
						0	0.000	0		180	-1.000
						0	0.000	0		1	
						0	0.000	0		1	
<u> </u>						0	0.000	0		1	
			-			0	0.000	0		1	
					 	0	0.000	0		1	
						0	0.000	0		1	
					-	0		0		1	
						0			······································	1	
						0	-			-	
			 			0				-	
						0		-			
						0					
	<u> </u>					0		-		-	
	1					_	 			-	
						0	-				
·	 					0		-		4	
	<u> </u>					0		 		_	
	<u> </u>					0		<u> </u>		1	
						0	0.000	0	RWE (9/26)	J	

Calc. Flow: 6.085 Computed by:

Notes:		

Stream: Ag ditch b/t field & Interurban Station: #212 Staff Gage 0.75 Piezo: 4.59 Date/Time: 10/2/2008 855

Total Distance: 6.6 Flow: 0.126 Flow Crew: TG/EM

Station	Depth	0.2	Velo 0.6	city 0.8	Angle	Flow Area	/ Calculat Avg Vel		Notes	Angle	Cosine
7.5			0			0	0		LWE at 7.5 (10/02)	0	1.000
7.6	0.1		0			0.025	0.000	0		15	0.966
8	0.5		0.1			0.35	0.100	0.035	Thick layer of muck	30	0.866
9	0.6		0.07			0.6	0.070	0.042	Thick layer of muck	45	0.707
10	0.7		0.06			0.7	0.060	0.042	0.3 ft of muck	60	0.500
11	0.7		0.01			0.7	0.010	0.007	sitting on top of veg	75	0.259
12	0.7		0			0.7	0.000	0	sitting on top of veg	90	0.000
13	0.4		0			0.4	0.000	0		105	-0.259
14	0.1		0			0.055	0.000	0	RWE in veg (10/02)	120	-0.500
14.1	0					0	0.000	0		135	-0.707
						0	0.000	0		. 150	-0.866
						0	0.000	0		165	-0.966
						0	0.000	0		180	-1.000
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
	<u></u>					0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
	<u> </u>					0	0.000	0			
		,				0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	ļ <u> </u>	<u> </u>		
	<u> </u>					0	0.000	1	on small boulder (8/02)		
	<u> </u>				<u> </u>	0	0.000	0	on small boulder (8/02)		
					ļ 	0	0.000	0			
				<u> </u>		0	0.000	0	RWE (9/26)		

Calc. Flow: 0.126 Computed by:

Notes:			

Stream: Surprise Lake Drain - Upstream

Station: #213 Staff gage: 0.14

Piezo:

Date/Time: 10/3/2008

1400

Total Distance:

4.0

Flow:

0.5552 Flow Crew: TG/EM

			Velo				/ Calculat		Notes	A1-	0
Station 0.9	Depth 0.7	0.2	0.6 -0.7	8.0	Angle	Area 0.385	Avg Vel -0.700		LWE at bulkhead	Angle 0	Cosine 1.000
<u> </u>						<u> </u>			LIVE at builtieau		
2.0			0.6			0.5775				15	0.966
3.0			0.74			0.6		0.444	<u> </u>	30	0.866
4.0			0.12		ļ	0.285		0.034		45	0.707
4.9			0			0.045			RWE	60	0.500
4.9						0		0		75	0.259
						0	0.000	0		90	0.000
						0	0.000	0		105	-0.259
						0	0.000	0		120	-0.500
						0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
						0	0.000	0	- m · .	180	-1.000
						0	0.000	0			
						0	0.000	0			
				•		0	0.000	0			
	<u> </u>					0	0.000	0			
	<u></u>					0					
						0		<u> </u>			
						0					
-					<u> </u>	0					
	<u> </u>				 	0					
			<u> </u>			0					
	<u> </u>			<u> </u>							
	-				•	0	ļ				
						0				ŀ	
						0				ļ	
	<u> </u>					0	-	1			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0]	
						C	0.000	0	RWE (9/26)		
						(Calc. Flow:	0.555	Computed by:	_	

Notes:

Stream: Ag ditch b/t LF & Pumpkins

Station: #214 Staff gage:

0.9

Piezo: 3.81

Date/Time: #######

930

Total Distance:

7.3

Flow:

0.1667 Flow Crew: TG/EM

			Velo				v Calculat			l	
	Depth	0.2	0.6	0.8	Angle	Area	Avg Vei		Notes	Angle	Cosine
1.6			0			0		-	LWE at 1.6 lotsa veg (10/02)	0,	1.000
3	1.1		0			1.32	0.000		1.5' of veg no flow	15	0.966
4	1.4		0.01			1.4	0.010	0.014	may be an eddy at higher flow	30	0.866
5	1.4	0		0.21		1.4	0.105	0.147	dense veg on bottom, most flow	45	0.707
6	1.2		0			1.2	0.000	0	same lotsa veg	60	0.500
7	0.7		0			0.7	0.000	0	same lotsa veg	75	0.259
8	0.3		0.02			0.285	0.020	0.006		90	0.000
8.9	0		0			0	0.000	0	RWE in veg (10/02)	105	-0.259
"''	0		0			0	0.000	0		120	-0.500
	0					0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
					:	0	0.000	0		180	-1.000
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	1				
					<u> </u>	0					
					<u> </u>	0		 			
						0		-			
	-					0	 	 			
	 						 		RWE (9/26)		
<u> </u>						0			l .		
						C	aic. Flow:	0.167	Computed by:		

Notes:			

 Stream:
 Ag ditch b/t LF & Pumpkins
 Station:
 #215
 Staff gage:
 0.98
 Piezo:
 4.84
 Date/Time:
 10/2/2008
 1049

Total Distance: 8.5 Flow: 0.033 Flow Crew: TG/EM

			Velo				/ Calculat		Natao		0
Station 7	Depth 0	0.2	0.6	0.8	Angle	Area 0	Avg Vel 0.000		Notes LWE at 705 (10/02)	Angle 0	Cosine 1.000
8			0			0.1	0.000		Lotsa veg (reed canary crass)	15	0.966
9	 		0.03			0.4	0.030		Veg right in front	30	0.866
10			0.00			0.8	0.000		Veg	45	0.707
11	 		0.02			0.7			sitting on top of veg	60	0.500
12	<u> </u>		0.04			0.1			sitting on top of veg	75	0.259
13	-		0.01			0.3		0.003		90	0.000
14	_		0.01			0.0	0.000		 Veg	105	-0.259
15			0			0			Veg	120	-0.500
15.5	_		-		1	0	0.000		RWE in veg (10/02)	135	-0.707
10.5						0	0.000		· · ·	150	-0.866
						0	0.000	<u> </u>		165	-0.966
						0				180	-1.000
			1			0	· · · · · · · · · · · · · · · · · · ·	 	LBHP = 0	100	7.000
****				:		0		 	RBHP = 17		
-						0		<u> </u>			
						0					
						0				İ	
-						0					
	<u> </u>				<u> </u>	0		├─-			
						0				1	
					<u> </u>	0				1	
					<u> </u>	0					
	<u> </u>					0				ł	
						0		 		ł	
						0		 			
						0				-	
						0	·		· · · · · · · · · · · · · · · · · · ·	1	
-	 			<u> </u>		0				1	
	-					0		ļ	-	1	
	<u> </u>				 	0		-	RWE (9/26)	1	
	<u> </u>			<u> </u>			0.000		1.0.2 (0/20)	1	

Calc. Flow: 0.033 Computed by:

Notes:				
				·

Stream: Fife Ag Ditch Station: #216 Staff gage: 0.72 Piezo: Date/Time: 10/3/2008 1340

Total Distance: 4.4 Flow: 0.75728 Flow Crew: TG/EM

Station	Depth	0.2	Velo	city 0.8	Angle	Flow Area	/ Calculat Avg Vel		Notes	Angle	Cosine
2.3		U.Z.	0.0	0.0	Angic	0.35	0.000		LWE, in vegetation	0	1.000
3.0	1.15		0			0.9775	0.000	0	~4" of muck at the bottom	15	0.966
4.0	0.95		0.27			0.95	0.270	0.257		30	0.866
5.0	0.95		0.25			0.95	0.250	0.238		45	0.707
6.0	0.8		0.32			0.68	0.320	0.218		60	0.500
6.7	0.45		0.29			0.1575	0.290	0.046	RWE	75	0.259
6.7						0	0.000	0	,	90	0.000
						0	0.000	0		105	-0.259
						0	0.000	0		120	-0.500
						0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
						0	0.000	0		180	-1.000
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	o			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0)		
						0	0.000	0			
						0	0.000	0			
***						0	0.000	0)		
						0	0.000	0	RWE (9/26)		

Calc. Flow: 0.757 Computed by:

Notes:				

Surprise lake Drain Stream: @ Culvert

Station: #225 Staff gage:

0.5

Piezo: None

Date/Time: 10/3/2008

1450

Cosine

1.000

0.966

0.866

0.707

0.500

0.259

0.000 -0.259

-0.500 -0.707

-0.866

-0.966

-1.000

Total Distance:

5.7

Flow:

0.4294 Flow Crew: TG/EM

			Velo				/ Calculat		N. 4	1
	Depth	0.2	0.6	8.0	Angle	Area	Avg Vel		Notes	Angle
0.6			0			0.1	0.000		LWE, behind vegetation	0
1.0			-0.8			0.14		-0.112		15
2.0	0.5		-0.5			0.5				30
3.0	0.45		0.23			0.45	0.230	0.104		45
4.0	0.6		0.72			0.6	0.720	0.432		60
5.0	0.4		0.5			0.4	0.500	0.2		75
6.0	0.2		0.43			0.13	0.430	0.056		90
6.3	0.05		0			-0.15	0.000	0	RWE	105
						0	0.000	0		120
						0	0.000	o		135
						0	0.000	0		150
						0	0.000	0		165
		-				0	0.000	0		180
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		1
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		7
						. 0	0.000	0	·	1
						0	0.000	0		
						0	0.000	C)	1
-	 					0	0.000	, .	RWE (9/26)	-
L	L	<u> </u>	J	L			<u> </u>		Computed by:	_

Calc. Flow: 0.429 Computed by:

Notes:			
		1	

Stream: Hylebos

Station: #210 Staff gage: 2.01

Piezo:

5.4

Date/Time:

2/25/2009

Total Distance:

11

Flow:

20.1472 Flow Crew:

TG/LM

	Velocity Flow Calcul								
	Depth	0.2	0.6	8.0	Angle	Area	Avg Vel	Flow	Notes
20	3.15		0.02			1.575	0.020	-	LWE in vegetaton
21	3.5		0.55			3.5	0.550	1.925	
22	3.4		0.59	180 TT		3.4	0.590	2.006	
23	3.5		0.69			3.5	0.690	2.415	
24	3		0.9			3	0.900	2.7	
25	2.9		0.96			2.9	0.960	2.784	
26	2.9		0.9			2.9	0.900	2.61	
27	2.8		0.82			2.8	0.820	2.296	
28	2.7		0.72			2.7	0.720	1.944	
29	2.8		0.56			2.8	0.560	1.568	
30	2.75		0.03			2.75	0.030	0.083	Behind vegetation and in center of eddy.
31	2.7		-0.02			2.7	-0.020	-0.054	Same as above.
32	2.1		-0.08			1.89	-0.080	-0.151	Same as above.
32.8	1.2		-0.02			0.48	-0.020	-0.01	Same as above.
32.8	0		0			0	0.000	0	Same as above; RWE.
						0	0.000	0	
						0	0.000	0	
						0	0.000	0	
						0	0.000	0	- · · · · · · · · · · · · · · · · · · ·
						0	0.000	0	
						0	0.000	0	
					-	0	0.000	0	
						0	0.000	0	
					<u> </u>	0	0.000	0	
						0		-	
				1		0			
		=				0			
						0		├	
						0		-	
						0		 	
	<u> </u>				 	0		 	
		L	<u>. </u>	<u> </u>				<u> </u>	Computed by:

Angle Cosine 0 1.000 15 0.966 30 0.866 45 0.707 0.500 60 75 0.259 0.000 90 105 -0.259 120 -0.500 135 -0.707 150 -0.866 -0.966 165 180 -1.000

Calc.	Flow:	20.15	Computed	by:
Caic.	1 IOVV.	20.10	Compated	Uy.

Notes:			

Stream: Hylebos Station: #210 Staff gage: 2.01 Piezo: 5.4 Date/Time: 2/25/2009

Total Distance: 11 Flow: 21.0658 Flow Crew: TG/LM

Station	Depth	0.2	Velo 0.6	Angle	Flov Area	v Calculat Avg Vel		Notes	Angle	Cosine
20		<u> </u>	0.05		1.575				0	1.000
21	3.5		0.55	 	3.5	0.550	1.925	:	15	0.966
22	3.4		0.62		3.4	0.620	2.108		30	0.866
23	3.3		0.8		3.3	0.800	2.64		45	0.707
24	2.8		0.91		2.8	0.910	2.548		60	0.500
25	3		0.95		3	0.950	2.85		75	0.259
26	3		0.98		3	0.980	2.94		90	0.000
27	2.85		0.85		2.85	0.850	2.423		105	-0.259
28	2.7		0.77		2.7	0.770	2.079		120	-0.500
29	2.8		0.6		2.8	0.600	1.68		135	-0.707
30	2.8		0.05		2.8	0.050	0.14	Behind vegetation, in center of eddy.	150	-0.866
31	2.65		-0.08		2.65	-0.080	-0.212	Same as above.	165	-0.966
32	2.15		-0.05		2.15	-0.050	-0.108	Same as above.	180	-1.000
33	1.3		-0.04		0.65	-0.040	-0.026	RWE, Same as above.		
33	0		0		0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
				 	0	0.000	0			
					0	0.000	0			
				:	0	0.000	0			
					0	0.000	О			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			

Calc. Flow: 21.07 Computed by:

Notes:	 	 	

Stream:	Hylebos	Station:	#211	Staff gage:	2.22	Piezo:	3.02	Date/Time:	2/25/2009

Total Distance: 9.5 Replaced fencepostold sg reading 1.85 Flow: 21.1088 Flow Crew: TG/LM

<u> </u>			ocity		1	v Calculat		N-4		
Station 17.5	Depth 1.95	0.2 0.6 -0.	0.8	Angle	Area 0.4875	Avg Vel -0.800		Notes LWE, lots of vegetation.	Angle 0	Cosine 1.000
					}			LWE, lots of vegetation.		
18.0		0.2	+		1.725	0.270			15	0.966
19.0		1.0	+		2.6		2.704		30	0.866
20.0		1.3			2.75				45	0.707
21.0	-	1.3	+		2.5				60	0.500
22.0		1.3			2.2				75	0.259
23.0	1.9	1.3	5		1.9	1.350	2.565		90	0.000
24.0	1.6	1.3	7		1.6	1.370	2.192		105	-0.259
25.0	1.5	1.2	4		1.5	1.240	1.86		120	-0.500
26.0	1.5	0.8	5		1.5	0.850	1.275		135	-0.707
27.0	1.65	0.2	5		1.65	0.250	0.413		150	-0.866
28.0	1.35	0.1	6		0.675	0.160	0.108	RWE, in vegetation.	165	-0.966
28	0				0	0.000	0		180	-1.000
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	- 0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
· ·					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
					0	0.000	0			
			<u> </u>	†	0					
					0	0.000	0			
				 	0					
<u> </u>				1	0		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
-	 		 	-	0		-			
<u> </u>	<u> </u>				J	0.000		<u></u>	I	

Calc. Flow: 21.11 Computed by:

Notes:		

Stream:	Hylebos	Station:	#211	Staff gage:	2.22	Piezo:	3.02	Date/Time:	2/25/2009	11:45

Total Distance: 9.5 Replaced fencepostold sg reading 1.85 Flow: 22.3801 Flow Crew: TG/LM

			Velo				v Calculat			1	
	Depth	0.2	0.6	8.0	Angle	Area	Avg Vel		Notes	Angle	Cosine
17.5	ļ		0.06		<u> </u>	0.475		0.029		0	1.000
18.0	2.15		0.33			1.6125		0.532		15	0.966
19.0	2.7		0.97			2.7		2.619		30	0.866
20.0	2.65		1.44			2.65	1.440	3.816		45	0.707
21.0	2.5		1.31			2.5	1.310	3.275		60	0.500
22.0	2		1.42			2	1.420	2.84		75	0.259
23.0	1.95		1.43			1.95	1.430	2.789		90	0.000
24.0	1.7		1.44			1.7	1.440	2.448		105	-0.259
25.0	1.6		1.18			1.6	1.180	1.888		120	-0.500
26.0	1.6	·	1.02			1.6	1.020	1.632		135	-0.707
27.0	1.7		0.25			1.7	0.250	0.425		150	-0.866
28.0	1.6		0.11			0.8	0.110	0.088	RWE	165	-0.966
28	0			·		0	0.000	0		180	-1.000
						0	0.000	0			
						0	0.000	0			
						0	0.000	0		1	
						0	0.000	0		1	
						0	0.000	0		1	
						0	0.000	0		1	
						0	0.000	0	,	1	
						0	0.000	0		1	
						0	0.000	0]	
						0	0.000	0			
						0	0.000	0		1	
						0	0.000	0		1	
					1	0	0.000	0		1	
			1			0	0.000	0		1	
						0	0.000	0		1	
						0	0.000	0		1	
						0		<u> </u>		1	
						0		ļ		1	
L	L	1			.l	<u> </u>	3.000	ı		1	

Calc. Flow: 22.38 Computed by:

Notes:	

Stream: Ag ditch b/t fieid & Interurban

Station: #212 Staff Gage

0.8

Piezo: 3.71 Date/Time:

2/25/2009

Total Distance:

Notes:

6.5

Flow:

0.2389 Flow Crew:

TG/LM

C4-4"	D 41.	0.2	Velo		A 1 -		/ Calculat		Notes	A1	0
Station 7.5	Depth 0.1	0.2	0.6	0.8	Angle	Area 0	Avg Vel		LWE at 7.5	Angle 0	Cosine 1.000
7.6	ļ		-0.02			0.1	-0.020	-0.002	· · · · · · · · · · · · · · · · · · ·	15	0.966
8	0.7		0.01			0.49	0.010	0.005	Reading on top of sediment at 1.4.	30	0.866
9	0.8		0.04			0.8	0.040	0.032	Reading on top of sediment at 1.4.	45	0.707
10	0.9		0.05			0.9	0.050	0.045	Reading on top of sediment at 1.4.	60	0.500
11	0.9		0.11			0.9	0.110	0.099	Reading on top of sediment at 1.4.	75	0.259
12	0.8		0.08			0.8	0.080	0.064	Reading on top of sediment at 1.0.	90	0.000
13	0.55		0			0.55	0.000	0	Reading at 1.0 on top of vegetation.	105	-0.259
14	0.4		-0.02			0.2	-0.020	-0.004	RWE, reading at 0.7.	120	-0.500
14						0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
						0	0.000	0		180	-1.000
						0	0.000	0		ı	
						0	0.000	0		ı	
						0	0.000	0		ı	
				ļ		0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
					ļ	0	0.000	0			
<u></u>						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						C	alc. Flow:	0.239	Computed by:		

Stream: Surprise Lake Drain - Upstream

Station: #213 Staff gage:

0.4

Piezo: 4.73

Date/Time:

2/25/2009

11:30

Total Distance:

3.9

Flow:

1.7597 Flow Crew:

TG/LM

0.9 1 0.29 0.55 0.290 0.16 LWE at bulkhead 0 2.0 1.1 0.66 1.155 0.660 0.762 Reading taken behind staff guage, may influence rate of flow. 15 3.0 0.9 0.76 0.9 0.760 0.684 30 4.0 0.9 0.19 0.81 0.190 0.154 Reading at 45 degree angle away from right b 45 4.8 0 0 0.000 0 RWE 60 4.8 0 0 0.000 0 75 0 0.000 0 90 4.8 0 0 0.000 0 0 0 90 90 4.8 0 0 0.000 0 0 105 105 105 105 105 105 120 135 120 135 150 165 165 165 165 165 165 165 165 165 165 165 165 165 165		ion Depth 0.2 0.6 0.8 Angle					v Calculat		Notes			
2.0		T	0.2		0.8	Angle	T					1.000
3.0 0.9 0.76 0.9 0.76 0.9 0.760 0.894 4.0 0.9 0.19 0.19 0.81 0.190 0.154 Reading at 45 degree angle away from right b 45 48.8 0 0 0 0 0 0.000 0 0 RWE 60 4.8 0 0 0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0										Reading taken behind staff guage, may		0.966
4.0 0.9 0.19 0.19 0.81 0.190 0.154 Reading at 45 degree angle away from right b 4.8 0 0 0 0 0 0.0000 0 RWE 60 4.8 0 0 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0												0.866
4.8 0 0 0 0 0 0 0 0 0							-					
4.8	 	-					· · · · · · · · · · · · · · · · · · ·					0.707
0 0.000 0 105 105 105 105 105 105 105 105 120 120 135 150		 -		0			 					0.500
0 0 0.000 0 120 120	4.8						 					0.259
120 0 0.000 0 135 0 0.000 0 1550 1550 0 0.000 0 0 1655 180 0 0.0000 0 0 1655 180 0 0.0000 0 1655 180 0 0.0000 0 1655 180 0 0.0000 0 1655							ł		 			0.000
135 150 100 0000000000000000000000000000				,			0	0.000	0		105	-0.259
0 0,000 0 0 155 165 165 165 180 165 180 165 180 165 180 165 180 165 180							0	0.000	0		120	-0.500
0 0,000 0 0 185							0	0.000	0		135	-0.707
0 0 0,000 0 0 180							0	0.000	0		150	-0.866
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>						0	0.000	0		165	-0.966
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0		180	-1.000
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							. 0	0.000	0	-	:	
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>					0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>					0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>				<u> </u>	0		 			
0 0.000 0							ļ	ļ				
0 0.000		1							-			
		<u> </u>				, , , , , , , ,	-	ļ				
0 0.000		 					 	 				
0 0000 0									 			
0 0.000 0		<u> </u>					1	<u> </u>	 			
0 0.000		<u> </u>					1	<u> </u>				
0 0.000 0 Calc. Flow: 1.76 Computed by:		<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	

Notes:	

Stream: Surprise Lake Drain - Upstream

Station: #213 Staff gage: 0.4

Piezo: 4.73

Date/Time:

2/25/2009

11:30

Total Distance:

3.9

Flow:

1.7885 Flow Crew:

TG/LM

				ocity			v Calculat			1	
	Depth	0.2	0.6	8.0	Angle	Area	Avg Vel		Notes	Angle	Cosine
0.9	1		0.38			0.55			LWE at bulkhead Reading taken behind staff guage, may	0	1.000
2.0	1.1		0.6			1.155	0.600	0.693	influence rate of flow.	15	0.966
3.0	0.9		0.94			0.9	0.940	0.846		30	0.866
4.0	0.9		0.05			0.81	0.050	0.041		45	0.707
4.8	0		0			0	0.000	0	RWE	60	0.500
4.8						0	0.000	0		75	0.259
						0	0.000	0		90	0.000
						0	0.000	0		105	-0.259
						0	0.000	0		120	-0.500
						0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
						0	0.000	0		180	-1.000
						0	0.000	0		1	
						0	0.000	0			
						0	0.000	0		1	
						0	0.000	0		1	
						0	0.000	0		1	
						0	0.000	0			
						0	0.000	0		1	
						0	0.000	0		1	
	1					0	0.000	O		1	
						0	0.000	О			
						0	0.000	a		1	
						C	0.000	C		1	
						C	0.000	C		1	
	-					C	0.000	C			
						C	0.000	C		1	
					1	C	0.000	C		1	
		†				C	0.000	C		1	
							0.000			1	
L	J	I		<u>' </u>	. 	(Calc. Flow:	1.789	Computed by:	 1 	

Notes:

Stream: Ag ditch b/t LF & Pumpkins

Station: #214 Staff gage: 0.72

Piezo: 3.17

Date/Time:

2/25/2009

Total Distance:

Notes:

7

Flow:

0.2039 Flow Crew:

TG/LM

Station	Depth	0.2	Velo 0.6	city 0.8	Angle	Flow Area	/ Calculat Avg Vel		Notes	Angle	Cosine
1.9			0			0			LWE at 1.9 lot of vegetation (2/25)	0	1.000
3	1		0.01			1.05	0.010	0.011		15	0.966
4	1.25		0			1.25	0.000	0	6" of sed	30	0.866
5	1.45		-0.01			1.45	-0.010	-0.015	6" of sed, elevated meter to get out of sed	45	0.707
6	1.4		0.13			1.4	0.130	0.182	6" of sed, elevated meter to get out of sed	60	0.500
7	1.45		0.01			1.45	0.010	0.015	6" of sed, elevated meter to get out of sed	75	0.259
8	0.4		0.03			0.38	0.030	0.011	on top of veg	90	0.000
8.9	0					0	0.000	0	RWE in veg	105	-0.259
						0	0.000	0		120	-0.500
	0					0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
						o	0.000	0		180	-1.000
						0	0.000	0			
			•			0	0.000	0			
						0	0.000	0			
						0	0.000	0			
	:					0	0.000	0			
						0	0.000	0			
					·	0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0	.		
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						С	alc. Flow:	0.204	Computed by:	_	

Stream: Ag ditch b/t LF & Pumpkins

Station: #214 Staff gage: 0.72

Piezo: 3.17

Date/Time:

2/25/2009

Total Distance:

6.1

Flow:

0.256 Flow Crew:

LM/TG

Station	Depth	0.2	Velo	city 0.8	Angle	Flov Area	v Calculat Avg Vel		Notes	Angle	Cosine
1.9		0.2	0.0		Aigic	0			LWE at 1.9 lot of vegetation (2/25)	0	1.000
3	1		0			1.05	0.000	0		15	0.966
4	1.25		0			1.25	0.000	0	6" of sed	30	0.866
5	1.4		-0.01			1.4	-0.010	-0.014	6" of sed, elevated meter to get out of sed	45	0.707
6	1.45		0.17			1.45	0.170	0.247	6" of sed, elevated meter to get out of sed	60	0.500
7	1.5		0.01			1.5	0.010	0.015	6" of sed, elevated meter to get out of sed	75	0.259
8	0.5		0.02			0.425	0.020	0.009	on top of veg	90	0.000
8.7	0					0	0.000	0	RWE in veg at 8.7'	105	-0.259
						0	0.000	0		120	-0.500
	0					0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
						0	0.000	0		180	-1.000
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0]	
						0	0.000	0		<u> </u>	
						0	0.000	0			
						0	0.000	0		Ì	
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0]	
						0	0.000	0			
						0	0.000	0			
						C	alc. Flow:	0.256	Computed by:	-	

Notes:

Stream: Ag ditch b/t LF & Pumpkins

Station: #215 Staff gage: 0.9

Piezo: 4.22

Date/Time:

2/25/2009

Total Distance:

Notes:

8.5

Flow:

0.19 Flow Crew: TG/LM

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Velo				v Calculat				
8 0.4 0.02 0.08 Reading on top of sed at 0.9 15 0.966 9 0.6 0.02 0.02 0.012 Reading on top of sed at 0.7 30 0.866 10 1.8 0.07 1.8 0.07 1.8 0.07 0.112 Reading on top of sed at 0.7 45 0.767 11 1.5 0.01 1.5 0.01 1.5 0.01 0.015 Reading on top of veg at 2.8 60 0.500 12 0.05 0.02 0.03 Reading on top of veg at 2.8 60 0.500 12 0.05 0.02 0.03 Reading on top of veg at 1.4 75 0.259 13 0.9 0.03 0.01 0.03 0.027 Reading on top of veg at 0.4 90 0.000 14 0.3 0.01 0.03 0.027 Reading on top of veg at 0.4 90 0.000 15 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.2	0.6	0.8	Angle	Area			Notes	Angle	Cosine
9 0.6 0.02 0.02 0.05 0.000 0.012 Reading on top of sed at 0.7												
10				0.02			0.4	0.020			15	0.966
11	9	0.6		0.02			0.6	0.020	0.012	Reading on top of sed at 0.7	30	0.866
12 0.65 0.02 0.65 0.02 0.06 0.02 0.013 Reading on top of veg at 1.4 75 0.259 13 0.9 0.03 0.01 0.03 0.027 Reading on top of veg at 0.4 90 0.000 14 0.3 0.01 0.03 0.010 0.003 Reading on top of veg at 0.4 90 0.000 15.5 0 0 0 0.000 0 RWE, on top of veg 120 0.500 15.5 0 0 0.000 0 0 RWE, on top of veg 135 0.707 150 0.000 0 0 0.000 0 0 186 0 0 0 0.000 150 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	1.6		0.07			1.6	0.070	0.112	Reading on top of sed at 3.1	45	0.707
13 0.9 0.03 0.9 0.03 0.09 0.000 0.000 0.000 105 0.259 14 0.3 0.01 0.00 0.000 0 15 0 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0 0 0.000 0 15.5 0.966 1 0 0.000 0	11	1.5		0.01			1.5	0.010	0.015	Reading on top of veg at 2.8	60	0.500
14 0.3 0.01 0.3 0.010 0.003 Reading on top of veg 105 -0.259 15 0 0 0 0 0 0.000 0 RWE, on top of veg 133 -0.707 150 -0.866 0.000 0 0 0.000 0 0 155 -0.866 0.000 0 0 0.000 0 0 0 0 0 0 0 0 0 0 0	12	0.65		0.02			0.65	0.020	0.013	Reading on top of veg at 1.4	75	0.259
15 0 0 0 0 0 0 0 0 0 0 0 0 120 -0.500 15.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 -0.966 0 0 0 0.000 0 0 0 0 0 0 0 165 -0.966 0 0 0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0	13	0.9		0.03			0.9	0.030	0.027	Reading on top of veg at 0.4	90	0.000
15.5 0 0 0 0 0.000 0 RWE, on top of veg 155 -0.707 0 0 0.000 0 150 -0.866 165 -0.966 180 -1.0000 180 -1.0000 180 -1.0000 180 -1.0000 180 -1.0000 180 -1.0000 180 -1.0000 180 -1.0000 180 -1.0000 180 -	14	0.3		0.01			0.3	0.010	0.003	Reading on top of veg	105	-0.259
150 -0.866 165 -0.966 165 -0.966 180 -1.000 180 -0.866 180 -1.000 180	15	0	•	0			0	0.000	0		120	-0.500
165 -0.966 180 -1.000 165 -0.966 180 -1.000 185 -0.966 180 -1.000 185 -0.966 180 -1.000 180	15.5		!	О			0	0.000	0	RWE, on top of veg	135	-0.707
0 0.000 0 180 -1.000 180 -1.000 180 -1.000 180 -1.000 180 170 180 -1.000 180 170 180							0	0.000	. 0		150	-0.866
0 0.000 0 LBHP = 0 0 0.000 0 RBHP = 17 0 0.000 0							0	0.000	0		165	-0.966
0 0.000 0 RBHP = 17 0 0.000 0	•••						0	0.000	0		180	-1.000
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0	LBHP = 0		
0 0.000 0 0 0.000 0 0 0 0 0 0 0 0							0	0.000	0	RBHP = 17		
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0 0 0.000 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						<u> </u>	0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0		_			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		:				<u> </u>	0	0.000	0			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0		-			
0 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
0 0.000 0 RWE (9/26)									1			
									 			
Caid Flow: Dita Complified by:				<u> </u>	<u>. </u>	<u> </u>	<u> </u>	alc. Flow:		Computed by:	J	

 Stream:
 Fife Ag Ditch
 Station:
 #216
 Staff gage:
 1.85
 Piezo:
 4.16
 Date/Time:
 2/25/2009
 11:08

Total Distance: 4.0 Flow: 1.7224 Flow Crew: TG/LM

			Velo	city		Flov	/ Calculat	ions	· 	1	
	Depth	0.2	0.6	0.8	Angle	Area	Avg Vel		Notes	Angle	Cosine
2.3	1		0.3			0.35	0.300	0.105	LWE, in vegetation	0	1.000
3.0	1.1		0.44			0.935	0.440	0.411		15	0.966
4.0	1.1		0.5		<u> </u>	1.1	0.500	0.55		30	0.866
5.0	1		0.5			1	0.500	0.5		45	0.707
6.0	0.6		0.4			0.39	0.400	0.156		60	0.500
6.3			0			0	0.000	0	RWE	75	0.259
		-				0	0.000	0		90	0.000
						0	0.000	0		105	-0.259
						0	0.000	0		120	-0.500
						0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
				·		0	0.000	0		165	-0.966
						0	0.000	0		180	-1.000
						0	0.000	0]	
***************************************						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0			
						0	0.000	0	·	1	
		,				0	0.000	O)		
						0	0.000	О			
						0	0.000	O			
						0	0.000	C			
	<u> </u>					0	0.000	C			
						0	0.000	C			
						0	0.000	٠ ر)		
	1					0	0.000	()		
	 					0	0.000			1	
						0	0.000	()	1	
		•			1	C	0.000	(1	
	1					C		<u> </u>	RWE (9/26)	1	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1		I	<u> </u>	_	

Calc. Flow: 1.722 Computed by:

Notes:			
		· ·	

Stream: Fife Ag Ditch Station: #216 Staff gage: 1.85 Piezo: 4.16 Date/Time: 2/25/2009 11:08

Cosine
1.000
0.966
0.866
0.707
0.500
0.259
0.000
-0.259
-0.500
-0.707
-0.866
-1.000

Total Distance: 4.1 Flow: 1.50495 Flow Crew: TG/LM

			Velo				Calculat		N-4	
	Depth	0.2	0.6	0.8	Angle	Area	Avg Vel		Notes	Angle 0
2.2	 		0.2			0.4	0.200		LWE, in vegetation	
3.0			0.35			1.125	0.350			15
4.0	ļ		0.5			1.1	0.500	0.55		30
5.0	1		0.45			1	0.450	0.45		45
6.0	8.0		0.06			0.52	0.060	0.031		60
6.3			0			0	0.000	0	RWE	75
						0	0.000	0		90
						0	0.000	0		105
						0	0.000	0		120
						0	0.000	0		135
	1					0	0.000	0		150
						0	0.000	0		165
						0	0.000	0		180
	•					0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						0	0.000	0		
						-0	0.000	0		
						0	0.000	0		
						0	0.000	0		
					<u> </u>	0	0.000	0	,	
						0	0.000	0		
			 		1	0	0.000	0		
					1	0	0.000	0		
	 		 			0		 		
					 	0		— —		1
	1					0		<u> </u>		1
-						0	ļ	ļ		1
	+	<u> </u>			-	0		-		
	-	 	-	1			 		RWE (9/26)	-
	<u> </u>	<u> </u>		L			0.000	<u>'</u>	IVANE (AINO)	J [.]

Calc. Flow: 1.505 Computed by:

Notes:			

Stream: Surprise lake Drain @ Culvert

Station: #225 Staff gage: 0.25

Piezo: None

Date/Time: 2/25/2009

1140

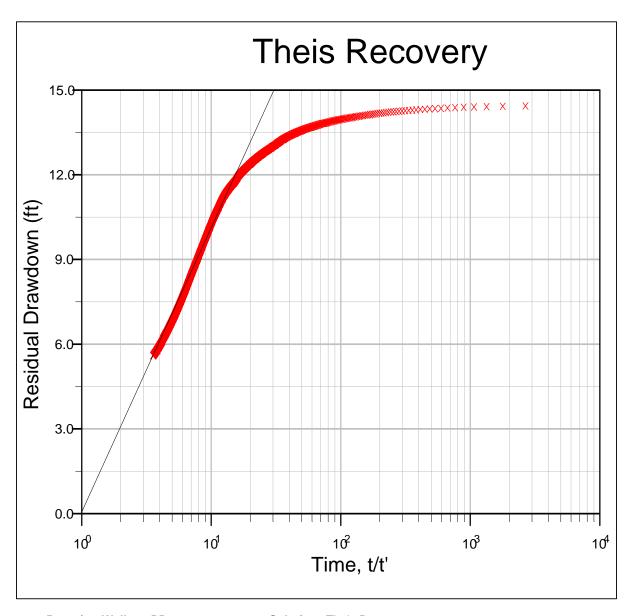
Total Distance:

Notes:

6.2

Flow:

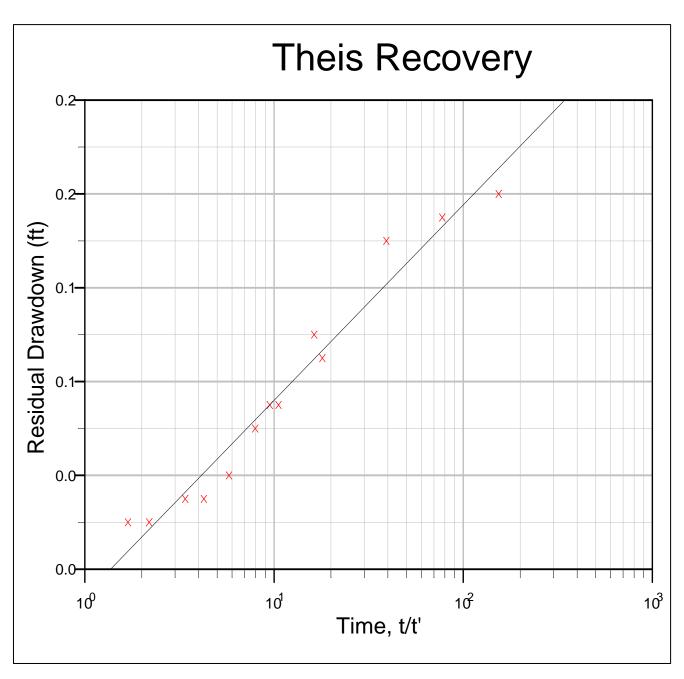
2.8257 Flow Crew: TG/LM


			Velo				v Calculat		Nata		0
	Depth	0.2	0.6	0.8	Angle	Area	Avg Vel		Notes	Angle	Cosine
0.4			0			0.003			LWE, behind vegetation	0	1.000
1.0	0.4		-0.03			0.32			behind vegetation	15	0.966
2.0	0.65		0.03			0.65	0.030	0.02	behind vegetation	30	0.866
3.0	0.7		0.87			0.7	0.870	0.609		45	0.707
4.0	0.75		1.24			0.75	1.240	0.93		60	0.500
5.0	0.7		1.2			0.7	1.200	0.84		75	0.259
6.0	0.65		0.84			0.52	0.840	0.437		90	0.000
6.6			0			0	0.000	0	RWE	105	-0.259
						0	0.000	0		120	-0.500
						0	0.000	0		135	-0.707
						0	0.000	0		150	-0.866
						0	0.000	0		165	-0.966
	 -		1			0	0.000	0		180	-1.000
	<u> </u>					0	0.000	0			
						0	0.000	0	*		
	 				· · · · · · · · · · · · · · · · · · ·	0	0.000	0			
						0	0.000	0		1	
	 				<u> </u>	0	0.000	0			
	<u> </u>					0	0.000	0			
				<u> </u>		0					
	1					0					
						0				1	
	1					0				1	
	<u> </u>				<u> </u>	0				ł	
-	<u> </u>					C					
	╂			ļ	<u> </u>	C		-		1	
								<u> </u>		-	
		<u> </u>				C	 	 		-	
	_					C		1			
	 				 	(-		-	
					<u> </u>	(-	<u> </u>	-	
					<u>l</u> .	(1	<u> </u>	RWE (9/26)]	
						(Calc. Flow:	2.826	Computed by:	_	

B&L Woodwaste Site Pierce County, Washington

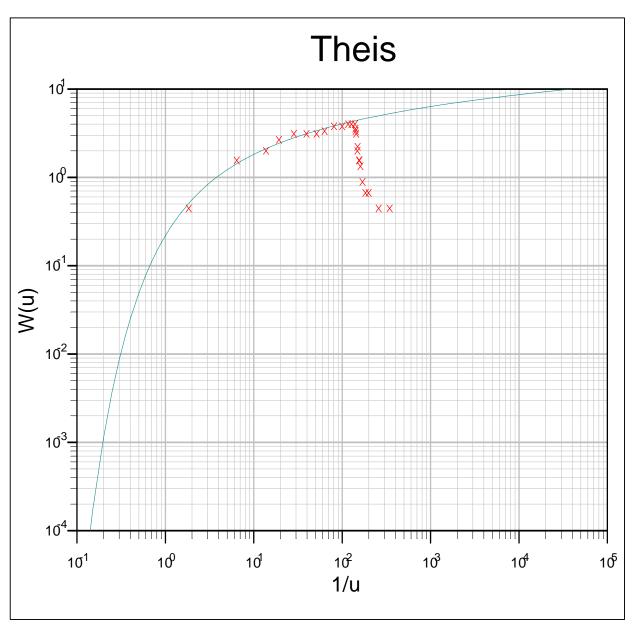
Engineering Design Report (EDR)

Attachment C3 Phase 1 Hydrogeologic Study Report Aquifer Test Solutions



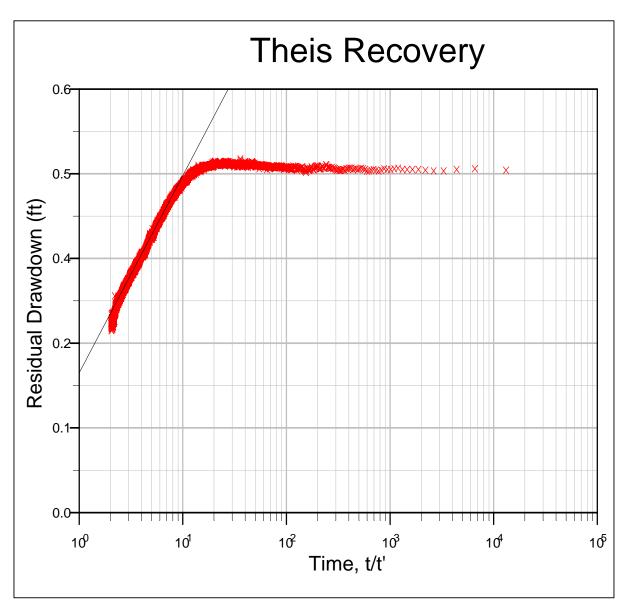
Pumping Well: PD-104
Observation Well: PD-104
Radial Distance: 0
Pumping Rate: 1.45 gpm

Solution: Theis Recovery
Transmissivity: 5.039 ft²/day
Storativity: NA



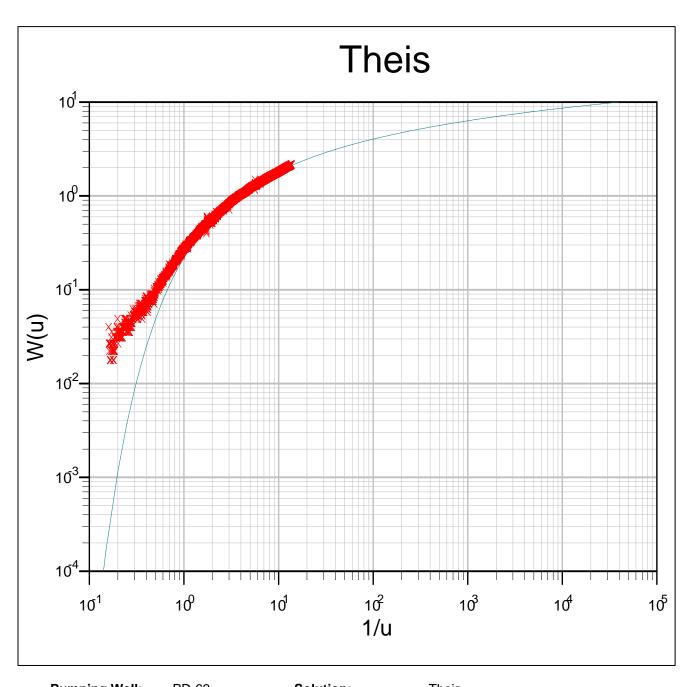
Pumping Well: MW-17
Observation Well: FS-22
Radial Distance: 19 feet
Pumping Rate: 10 gpm

Solution: Theis Recovery
Transmissivity: 4230 ft²/day
Storativity: NA



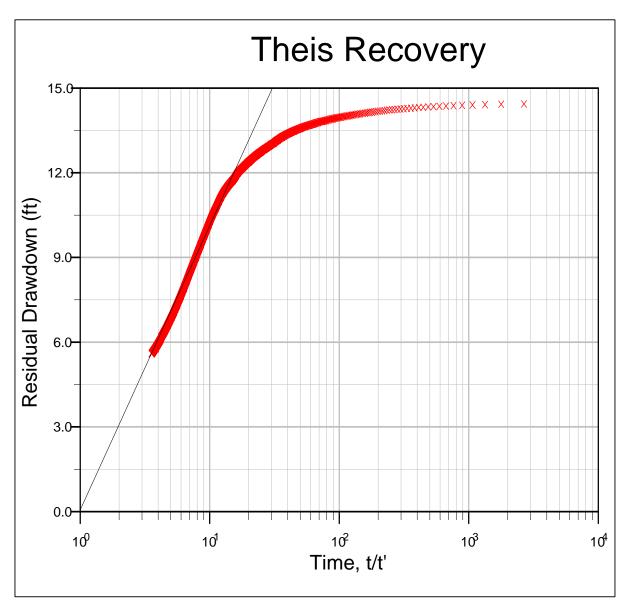
Pumping Well: MW-17
Observation Well: FS-22
Radial Distance: 19 feet
Pumping Rate: 10 gpm

Solution: Theis Unconfined
Transmissivity: 3405 ft²/day
Storativity: 0.028



Pumping Well: PD-62
Observation Well: PD-104
Radial Distance: 42.2
Pumping Rate: 1.45 GPM

Solution: Theis Recovery
Transmissivity: 181.6 ft²/day
Storativity: NA



Pumping Well: PD-62
Observation Well: PD-104
Radial Distance: 42.2
Pumping Rate: 1.45 GPM

Solution:TheisTransmissivity:98.28 ft²/dayStorativity:0.0012

Pumping Well: PD-101
Observation Well: PD-70
Radial Distance: 10.55 ft
Pumping Rate: 14 gpm

Solution: Theis Recovery
Transmissivity: 1961 ft²/day
Storativity: NA

Pumping Well: PD-101
Observation Well: PD-70
Radial Distance: 10.55 ft
Pumping Rate: 14 gpm

Solution: Theis Unconfined
Transmissivity: 1131 ft²/day
Storativity: NA

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Appendix D Critical Areas Study

B&L Woodwaste Site

Critical Areas Study

Prepared by F L O Y D | S N I D E R 601 Union Street, Suite 600 Seattle, WA 98101

Geomatrix
3500 - 188th Street S.W., Suite 600
Lynnwood, WA 98037-4763

Review Draft June 30, 2008

Table of Contents

1.0	Intro	Introduction1				
2.0	Meth	nods		2-1		
	2.1	DELINEATION				
	2.2	WETLA	AND RATING	2-1		
3.0	Results					
	3.1	WETLA	3-1			
		3.1.1	Wetland A	3-1		
		3.1.2	Wetland B	3-2		
		3.1.3	Wetland C	3-2		
		3.1.4	Wetland D	3-3		
		3.1.5	Wetland E	3-3		
		3.1.6	Wetland F	3-4		
	3.2	DITCH	IES	3-5		
		3.2.1	Unnamed Ditch	3-5		
		3.2.2	Interurban Trail Ditch	3-5		
		3.2.3	Surprise Lake Drain	3-5		
		3.2.4	Landfill Ditch	3-5		
	3.3	STREAMS		3-6		
	3.4	UPLANDS				
4.0	REGULATORY CONSIDERATIONS					
	4.1	CITY C	OF MILTON	4-1		
	4.2	CITY C	OF FIFE	4-1		
	4.3	PIERCE COUNTY				
	4.4	U.S. Al	RMY CORPS OF ENGINEERS	4-3		
5.0	DEE	EDENIC	Ee	5_1		

List of Tables

Table 1 Plant Species found on the Project Site

Table 2 Wetland Rating Scores

List of Figures

Figure 1 Site Vicinity

Figure 2 Delineated Wetlands
Figure 3 Remediation Area

List of Appendices

Appendix A Wetland Determination Methods

Appendix B Wetland Delineation Forms

Appendix C Wetland Rating Forms

Appendix D Site Photographs

List of Acronyms and Abbreviations

Acronym/Abbreviation	Definition				
AMEC	AMEC Geomatrix, Inc.				
Asarco	ASARCO, LLC				
bgs	Below ground surface				
CAP	Cleanup Action Plan				
CAS	Critical Areas Study				
Consent Decree	B&L Landfill Consent Decree				
dtw	Depth to water table				
Ecology	Washington State Department of Ecology				
FAC	Facultative				
FACU	Facultative upland				
FACW	Facultative wetland				
FMC	City of Fife Municipal Code				
FWS	Free water surface				
Landfill	B&L Woodwaste Landfill				
MMC	City of Milton Municipal Code				
Murray	Murray Pacific Corporation				
NWI	National Wetlands Inventory				
OBL	Obligate wetland				
PLP	Potentially liable party				
Project Team	Floyd Snider and AMEC Geomatrix, Inc.				
SEPA	State Environmental Policy Act				
USACE	U.S. Army Corps of Engineers				
USEPA	U.S. Environmental Protection Agency				
WDWP	Wetlands Delineation Work Plan				
WDFW	Washington State Department of Fish and Wildlife				
WSDOT	Washington State Department of Transportation				

1.0 Introduction

On May 7, 2008, Floyd|Snider and AMEC Geomatrix, Inc. (AMEC, the Project Team), conducted an investigation to determine the presence and extent of critical areas in the vicinity of the existing B&L Woodwaste Landfill (Landfill). The area extends over several parcels located within the cities of Milton and Fife and in unincorporated Pierce County. Parcel addresses include 552 through 817 Fife Way, in Milton and Fife, Washington. The Landfill property is located in Township 20 North, Range 4 East, Section 5, in Pierce County (Figure 1). The Landfill was used from the mid-1970s until the early 1980s. Wood waste originating from log sort yards in Commencement Bay, mixed with soil and Asarco, Inc. (Asarco) smelter slag (used as a base material for the log sort yards), were taken to the Landfill for disposal. The Asarco slag leached arsenic into soils and groundwater.

In 1992, the Washington State Department of Ecology (Ecology) issued an Enforcement Order requiring Asarco, and other potentially responsible parties (Murray Pacific, Louisiana-Pacific, and Executive Bark) to consolidate the wood waste into an 11-acre landfill, construct a multilayer capping system, and install and operate a groundwater monitoring well system. In the years following implementation of this remedy, an extensive study of the wetland area north of the landfill was conducted. The study found that dissolved arsenic levels in the groundwater in the wetland were greater than applicable cleanup standards and required additional evaluation.

In the meantime, Asarco filed for bankruptcy and Murray Pacific Corporation (Murray) stepped in as lead potentially liable party (PLP) for the site. As part of the B&L Woodwaste Site Consent Decree (Consent Decree) currently under public review, Murray has agreed to perform certain elements of the remedial action defined in the 2008 Final Cleanup Action Plan (CAP). Upon completion of these elements, the State of Washington will assume responsibility for the site, including the operation, maintenance, and monitoring requirements of the remedy, which comprise the remaining remedial actions specified in the CAP.

Implementation of the remedial action specified in the CAP will occur in three major phases, with MURRAY performing Phases 1 and 2. Phase 3, to be performed by Ecology, includes operation, maintenance, and monitoring of the remedy after completion of all work required to be performed by Murray under the Consent Decree.

Phase 1 includes design and construction of the physical containment and in-situ treatment components of the remedy. Work to be completed includes investigations necessary to complete the design and permitting processes, and an archaeological assessment of the site. Phase 1 construction is comprised of three major elements that will be performed concurrently:

- 1. Pilot testing, design, and implementation of the remedy needed for the area at the leading end of the arsenic plume.
- 2. Design, permitting, and construction of a barrier wall and upgradient interceptor trench to contain the area immediately beneath the Landfill.
- 3. Design, permitting, and construction of an interim system to recover and treat groundwater from the hotspot area within the wetlands.

This approach will complete the physical containment for the landfill, will treat the leading edge of the plume to reduce arsenic concentration and mobility, and will include an expedited mass-removal action to begin remediation of the wetlands. The End-of-Plume remedial action will allow downgradient restoration projects by others (for example, relocation of Hylebos Creek) to proceed independent of remediation work for the B&L Woodwaste Site.

Phase 2 will include additional hydrogeologic studies to fully characterize Site groundwater and support design of the hydraulic control components specified in the CAP. Phase 2 work will commence as Phase 1 work is completed. Phase 2 construction will include the following:

- 1. Permitting and excavation of contaminated sediments in the ditches designated in the CAP, followed by restoration of the ditches.
- 2. Permitting and construction of a groundwater recovery and collection system beneath the landfill in the areas defined in the CAP as the "Halo".
- 3. Permitting and construction of a groundwater remediation system for the wetlands area immediately north of the Landfill.
- 4. Permitting and construction of a groundwater treatment system capable of removing groundwater contaminants to regulatory levels.
- 5. Permitting and construction of a system for infiltration and/or discharge of treated groundwater.

Following construction, the recovery, treatment, and discharge systems will be commissioned and started up to confirm that the systems meet design specifications and achieve design requirements. After systems have been proven operable and the requirements specified in the Consent Decree have been met and approved by Ecology, Phase 3, which consists of long-term operation and maintenance, will commence.

The remediation area that will potentially be affected by implementation of the CAP remedy is shown in Figure 3. Phase 1 work is projected for completion in the fall of 2009 and Phase 2 work is projected for completion by the end of 2012. Since designs have not been completed, it is not possible to identify the full nature of the work that will be performed and, consequently, the area that must be disturbed. However, the areas that will be disturbed this year for completing the pre-design studies have been determined. This Critical Areas Study (CAS) describes the identified wetland locations and boundaries, and characterizes wetlands located within the remediation area that will be affected by work to be completed in 2008; this area has been designated the 2008 work area for the purposes of this report.

The Project Team delineated four wetlands within the 2008 work area and identified two wetland areas from the National Wetland Inventory (NWI) that are close to but outside of the remediation area. The wetlands located within the 2008 work area are classified as Category I, III, and IV wetlands in accordance with the Ecology wetland rating system. The delineated wetland outside of the remediation area is likely classified as Category II wetland (Hruby 2004). Hylebos Creek, a Type F stream, is located to the northwest of the remediation area (Washington State Department of Natural Resources 2008).

As described in the Web Soil Survey for Township 20 North, Range 4 East, Section 5, Washington (Natural Resource Conservation Service 2008), most of the soils of the properties

within the 2008 work area are mapped as Semiahmoo muck. Soils in the southwestern portion of the area are mapped as Shalar muck, Sultan silt loam, and Tisch silt. The Semiahmoo and Shalar muck series are very poorly-drained hydric soils, with a depth to water (dtw) of 0 to 12 inches. The Sultan silt loam series is a moderately well-drained non-hydric soil, with a dtw of 18 to 24 inches. The Tisch silt series is a very poorly-drained non-hydric soil, with a dtw of 0 to 12 inches.

2.0 Methods

2.1 DELINEATION

Project Team scientists delineate wetlands based on best professional judgment, existing site conditions during field analysis, and information from previous environmental site investigations. Wetland boundaries were delineated using the Routine Determinations method described in the U.S. Army Corps of Engineers (USACE) Wetland Determination Manual (USACE 1987), to comply with Pierce County and federal regulations. USACE requires that three characteristics be present for an area to be identified as a wetland: (1) hydrophytic vegetation, (2) hydric soil, and (3) wetland hydrology. The methods used to determine the presence of each characteristic are described in Appendix A. A total of six test plots (TP1, TP2, etc.) were used to describe the wetland and upland characteristics. Test plots consist of a 10- to 30-foot circular plot centered on an 18-inch-deep pit. The circular plot is used to characterize the dominant plant species in the area. The pit is used to characterize the soil and hydrologic characteristics of the area. Delineated and surveyed wetland boundaries are subject to verification and approval by jurisdictional agencies.

2.2 WETLAND RATING

Project Team scientists determined wetland ratings using the Washington State Wetland Rating System for Western Washington (Hruby 2004) to assess the resource value of the identified wetlands. This rating system is based on the wetland functions and values, sensitivity to disturbance, rarity, and irreplaceability.

Category I wetlands are generally considered uncommon wetlands that have one or more of the following characteristics:

- Provide life support for threatened or endangered species
- Are on file in databases maintained by state agencies
- Are not hydrologically isolated (e.g., connected to estuarine water or tidal fresh water)
- Represent a high-quality example of a rare wetland; are rare within a given region
- Are relatively undisturbed and contain ecological attributes that are impossible to replace within a human lifetime

Examples of Category I wetlands are mature forested wetlands, estuarine wetlands, kelp beds, bogs, and fens.

Category II wetlands have one or more of the following characteristics:

- Occur more commonly than Category I wetlands
- Provide habitat for very sensitive or important wildlife of plant species

- Are partially or completely hydrologically isolated
- Are difficult to replace
- Provide very high functions, particularly for wildlife

Examples of Category II wetlands are bogs and fens less than 0.5 acre in size and wetlands with high wildlife functions but have human-related disturbances such as diking, ditching, or grazing.

Category III wetlands have one or more of the following characteristics

- · Provide habitat for a variety of wildlife
- Occur more commonly than Category I or II wetlands
- Are smaller, less diverse, and more hydrologically isolated than Category II wetlands

Examples of Category III wetlands are hydrologically-isolated scrub-shrub or emergent wetlands with moderate wildlife functions.

Category IV wetlands have the following characteristics

- Are less than 1 acre in size with one dominant vegetation class by one species
- Are less than 2 acres in size with one dominant vegetation class by one species by invasive or exotic species
- Are hydrologically isolated

Examples of Category IV wetlands are hydrologically-isolated wetlands dominated by reed canarygrass.

3.0 Results

3.1 WETLANDS

The areas identified as wetlands met all three jurisdictional wetland criteria (hydrophytic vegetation, hydric soils, and wetland hydrology). The wetland determination forms and wetland rating forms supporting this determination are provided in Appendices B and C, respectively. Table 1 lists the plant species found in the wetlands and their associated wetland indicator status (Reed 1988; Reed et al. 1993). Figure 2 presents the location and extent of wetlands. Site photographs are provided in Appendix D.

3.1.1 Wetland A

Wetland A, approximately 0.2 acre in area, is located just east of the southeast corner of the Landfill (Figure 2). All of Wetland A is within the 2008 work area. The southwestern corner of Wetland A drains into an unnamed ditch, which is connected to the ditch that runs along the Interurban Trail. The ditch that runs along the Interurban Trail drains into the Surprise Lake Drain, which discharges into Hylebos Creek, a "Water of the U.S.", as defined by USACE. Thus, there is a surface water connection between Wetland A and a "Water of the U.S.".

Wetland A is classified as a seasonally-saturated, emergent wetland with persistent vegetation (PEM1R), per the Cowardin classification system (Cowardin et al. 1979). As described in the Ecology rating system, this wetland is a Category IV wetland (Table 2; Appendix C). Test Plot 1 (TP1) is representative of Wetland A, which is dominated by soft rush (Juncus effusus), fox sedge (Carex vulpinoidea), velvetgrass (Holcus lanatus), Pacific willow (Salix lucida), Scouler's willow (Salix scouleriana), white clover (Trifolium repens), and red fescue (Festuca rubra). Because more than 50 percent of the dominant plant species have an indicator status of facultative (FAC), facultative wetland (FACW), or obligate wetland (OBL), vegetation in Wetland A meets the wetland vegetation criterion (Table 1).

One soil test pit was dug in Wetland A. The surface horizon (A horizon) extends to 18 inches and is a saturated, dark grayish brown (10YR 4/2) sand with gravel (highly compacted fill material) and very few, small, distinct, yellowish brown (10YR 5/6) mottles. A low chroma value (i.e., the last digit of the MunsellTM soil color is a 1 without mottles or a 2 with mottles) in soil 2 inches below the A horizon is a positive indicator of hydric soils, thus meeting the hydric soils criterion.

Primary indicators of wetland hydrology observed included areas of 1 to 2 inches of inundation and saturated soils at the surface. Secondary indicators of wetland hydrology observed included a positive FAC neutral test, water-stained vegetation, and drainage patterns. A positive FAC neutral test is defined as when the number of species with indicator status of FACW- or wetter is greater than the number of species with indicator status of facultative upland (FACU)+ or drier. The presence of two primary and three secondary indicators meets the wetland hydrology criterion.

The wetland boundary was identified based on the defined contour of the drainage pattern, and a distinct vegetation shift from soft rush and white clover dominated vegetation (characteristic of wetland habitat) to the presence of red clover (Trifolium pratense) and hairy cat's ear (Hypochaeris radicata) (characteristic of upland habitat).

3.1.2 Wetland B

Wetland B, approximately 0.7 acre in area, is located northeast of Wetland A, just east of the northeast corner of the landfill (Figure 2). All of Wetland B is within the 2008 work area. The northern end of Wetland B drains via a stormwater pond with stand pipe into the ditch that runs along the Interurban Trail. Thus, there is a surface water connection between Wetland B and a "Water of the U.S.".

Wetland B is classified as a seasonally-saturated, emergent wetland with persistent vegetation (PEM1R), according to the Cowardin classification system (Cowardin et al. 1979). In accordance with the Ecology rating system, this wetland is a Category III wetland (Table 2; Appendix C). Test Plot 4 (TP4) is representative of Wetland B. Wetland B is dominated by soft rush, black cottonwood (Populus balsamifera ssp. trichocarpa), hooker willow (Salix hookeriana), red clover, redtop (Agrostis gigantea), reed canarygrass (Phalaris arundinacea), and unidentified grass. Because more than 50 percent of the dominant plant species have an indicator status of FAC, FACW, or OBL, vegetation in Wetland B meets the wetland vegetation criterion (Table 1).

One soil test pit was dug in Wetland B. The surface horizon (A horizon) extends to 6 inches and is a saturated, very dark gray (7.5YR 3/1) sand with many fine root masses and without mottles. The B horizon extends from 6 to 18 inches and is a saturated, dark gray (2.5Y 4/1) sand with a little gravel and without mottles. A low chroma value (i.e., the last digit of the Munsell™ soil color is a 1 without mottles or a 2 with mottles) in soil 2 inches below the A horizon is a positive indicator of hydric soils, thus meeting the hydric soils criterion.

Primary indicators of wetland hydrology observed included areas of 1 to 2 inches of inundation, saturated soils at the surface, and free water at the surface in the test pit. Secondary indicators of wetland hydrology observed included a positive FAC neutral test, local soil survey characteristics, and drainage patterns. The presence of two primary and three secondary indicators meets the wetland hydrology criterion.

The wetland boundary was identified based on the defined contour of the inundation and saturated surface soils, drainage pattern, and a distinct vegetation shift from soft rush dominated vegetation (characteristic of wetland habitat) to the presence of red clover and hairy cat's ear (characteristic of upland habitat).

3.1.3 Wetland C

Wetland C, approximately 59 acres in area, is located north of the Landfill and the Interurban Trail. Approximately 7 acres of Wetland C is within the 2008 work area. The 12th Street E. unimproved road grade bisects Wetland C (Figure 2). Hylebos Creek flows west along the northern and western edges of the wetland before crossing west under Interstate 5. A ditch

flows north along the southwestern edge of Wetland C and discharges into Hylebos Creek, where it flows under Interstate 5. A small portion of Wetland C located northeast of the lower section was designated on the NWI, as noted on Figure 2. This area appears contiguous with the wetland that continues to the north of 12th Street E.

Wetland C is classified as a seasonally-saturated, scrub-shrub, emergent wetland with persistent vegetation (PSS/EM1R) (Cowardin et al. 1979). Under the Ecology rating system, this wetland is a Category I wetland (Table 2; Appendix C). Test Plot 5 (TP5) is representative of Wetland C. Wetland C is dominated by reed canarygrass, Sitka willow (Salix sitchensis), and Pacific willow. Because more than 50 percent of the dominant plant species have an indicator status of FAC, FACW, or OBL, vegetation in Wetland C meets the wetland vegetation criterion (Table 1).

One soil test pit was dug in Wetland C. The surface horizon (A horizon) extends to 8 inches and is a saturated, very dark gray (7.5YR 3/1), silt loam without mottles. The B horizon extends from 8 to 17 inches and is a saturated, very dark gray (7.5YR 3/1), silt loam with common, medium, distinct gray (5YR 5/1) mottles. The C horizon extends from 17 to 18 inches and is a saturated, very dark grayish brown (10YR 3/2) loam with peat. A low chroma value (i.e., the last digit of the MunsellTM soil color is a 1 without mottles or a 2 with mottles) in soil 2 inches below the A horizon is a positive indicator of hydric soils, thus meeting the hydric soils criterion.

Primary indicators of wetland hydrology observed included areas of more than 6 inches of inundation, saturated soils at the surface, and free water at the surface in the test pit. Secondary indicators of wetland hydrology observed included a positive FAC neutral test, local soil survey characteristics, watermarks, local soils survey characteristics, water-stained leaves, and drainage patterns. The presence of the two primary and the five secondary indicators meets the wetland hydrology criterion.

The northern, eastern, and southern wetland boundaries were identified on-site based on the drainage pattern (i.e., slopes associated with the Interurban Trail and 12th Street E. road grade). The western wetland boundary was not identified because the wetland continued west, off site.

3.1.4 Wetland D

For purposes of this report, a wetland originally identified and designated as Wetland D was merged into Wetland C and therefore does not appear in this CAS.

3.1.5 Wetland E

Wetland E, approximately 4.25 acres in area, is located north of Wetland B, northeast of the Landfill, and south of the ditch that runs along the Interurban Trail (Figure 2). All of Wetland E is outside of the remediation area. A portion of Wetland E was identified by the NWI (Figure 2). Wetland delineation flagging dated 12/15/2005 was observed hanging on vegetation along the southwest and northwest edges of the wetland.

Wetland E is classified as a seasonally-saturated, forested and emergent wetland with persistent vegetation (PFO/EM1R) (Cowardin et al. 1979). Under the Ecology rating system, this wetland is a Category II wetland (Table 2; Appendix C). Because Wetland E is off-site, no test plot was established. Dominant vegetation was based on observations made from the Interurban Trail. Wetland E is dominated by black cottonwood, willow, and hawthorne (Crataegus douglasii). Because more than 50 percent of the dominant plant species have an indicator status of FAC, FACW, or OBL, vegetation in Wetland E meets the wetland vegetation criterion (Table 1).

No soil test pit was dug in Wetland E. According to the Web Soil Survey for Township 20 North, Range 4 East, Section 5, Washington (NRCS, 2008), Wetland E soils are mapped as Semiahmoo muck, a hydric soil. Because of the observed inundation, observed wetland delineation flagging, observed hydrophytic vegetation, and the area being mapped as a hydric soil, it is assumed the hydric soils criterion is met.

Primary indicators of wetland hydrology observed included areas of up to 8 inches of inundation and saturated soils at the surface. Secondary indicators of wetland hydrology observed included a positive FAC neutral test, local soils survey characteristics, water-stained leaves, and drainage patterns. The presence of two primary and four secondary indicators meets the wetland hydrology criterion.

Because the wetland is located off site, only the wetland boundaries along the southwestern and northwestern side could be estimated. The southwestern and northwestern wetland boundaries were identified on-site based on the existing wetland delineation flagging observed and the drainage pattern (i.e., slopes associated with the Interurban Trail and an access road along the landfill). The eastern and southern wetland boundaries were not identified because the entire wetland is off site.

3.1.6 Wetland F

Wetland F, approximately 0.05 acre in area, is located just west of the northwest corner of the Landfill (Figure 2). All of Wetland F is within the remediation area. The northern edge of Wetland F is adjacent to the ditch that runs along the Interurban Trail and the eastern edge is adjacent to the unnamed ditch. Thus, there is a surface water connection between Wetland F and a "Water of the U.S.".

Wetland F is located mostly within an agricultural field. The edge is classified as a seasonally-saturated, emergent wetland with persistent vegetation (PEM1R), per the Cowardin classification system (Cowardin et al. 1979). Under the Ecology rating system, this wetland is a Category IV wetland (Table 2; Appendix C). Test Plot 8 (TP8) is representative of Wetland F. Wetland F is dominated by reed canarygrass, field bindweed (Convolvulus arvensis), and stinging nettle (Urtica dioica). Because more than 50 percent of the dominant plant species have an indicator status of FAC, FACW, or OBL, vegetation in Wetland F meets the wetland vegetation criterion (Table 1).

One soil test pit was dug in Wetland F. The surface horizon (A horizon) extends to 6 inches and is a moist, very dark grayish brown (10YR 3/2), silt loam with common, small, faint, brown (7.5YR 4/4) mottles. The B horizon extends from 6 to 18 inches and is a moist, very dark

grayish brown (10YR 3/2), silt loam with many, small to medium, faint, dark brown (7.5YR 3/4) mottles. A low chroma value (i.e., the last digit of the Munsell™ soil color is a 1 without mottles or a 2 with mottles) in soil 2 inches below the A horizon is a positive indicator of hydric soils, thus meeting the hydric soils criterion.

No primary indicators of wetland hydrology were observed. Secondary indicators of wetland hydrology observed included oxidized rhizospheres, a positive FAC neutral test, and drainage patterns. The presence of three secondary indicators meets the wetland hydrology criterion.

The wetland is bounded to the north and east by agricultural ditches. Due to the lack of vegetation, the southern wetland boundary was based on the presence (characteristic of wetland habitat) or the absence (characteristic of upland habitat) of mottles within the top 12 inches of soil.

3.2 DITCHES

3.2.1 Unnamed Ditch

A small ditch flows west from the western edge of Wetland A into an agricultural ditch. This agricultural ditch drains into the ditch that runs along the Interurban Trail near the northwestern corner of the Landfill. The ditch is approximately 3 to 5 feet wide and 6 feet deep. Water in the ditch was approximately 8 inches deep at the time of the survey.

3.2.2 Interurban Trail Ditch

The ditch that runs along the Interurban Trail is located on the southern edge of the Interurban Trail and flows westward into the Surprise Lake Drain. The ditch is approximately 6 to 10 feet wide and 4 to 5 feet deep. Water in the ditch was approximately 2 inches deep at the time of the survey.

3.2.3 Surprise Lake Drain

The Surprise Lake Drain, which flows from Surprise Lake into Hylebos Creek on the west side of Interstate 5, is a tributary to Hylebos Creek. Within and near the remediation area, the Surprise Lake Drain is about 8 feet wide and 6 feet deep. Water in the Drain was approximately 4 to 6 inches deep at the time of the survey. The Surprise Lake Drain is designated as a Type F stream (Washington State Department of Natural Resources [DNR] 2008).

3.2.4 Landfill Ditch

Along the base of the Landfill Cap, a ditch collects surface water runoff. This ditch discharges into a primary stormwater detention pond located along the northern edge of the Landfill (Figure 2). When surface water in the primary detention pond is high enough, it overflows into a secondary detention pond northeast of the Landfill and to the ditch along the Interurban Trail. Flow from the secondary detention pond is via a stand pipe located in the western portion of the pond. The Landfill cap drainage ditch is approximately 3 to 4 feet wide and 2 feet deep. No

water was observed in the ditch at the time of the survey. The cap drainage system, comprised of the ditch and the two detention ponds, is designed to keep the cap ditches dry except during extreme rainfall conditions.

3.3 STREAMS

Hylebos Creek flows southward along Interstate 5 just northwest of the remediation area before crossing beneath the freeway. Riparian conditions along the creek are dominated by reed canarygrass. This section of Hylebos Creek is on the Washington State 303(d) list for fecal coliform (Ecology, 2004). Hylebos Creek is designated as a Type F stream (DNR 2008). Fall Chinook, fall chum, coho, pink salmon, and winter steelhead are known to use Hylebos Creek (Washington State Department of Fish and Wildlife 2008).

3.4 UPLANDS

The upland areas lack indicators of hydrophytic vegetation, hydric soils, and/or wetland hydrology. Three test plots were evaluated in upland areas (Figure 2).

Test Plot 2 (TP2) is located south of TP1 (Wetland A). TP2 is dominated by red clover, white clover, velvetgrass, hairy cat's ear, redtop, and Himalayan blackberry (Rubus armeniacus). Because less than 50 percent of the dominant vegetation has an indicator status of FAC, FACW, or OBL, the hydrophytic vegetation criterion is not met. The surface horizon (A horizon) extends to 18 inches and is a dark grayish brown (2.5Y 4/2), sandy loam with gravel (compacted fill material) and without mottles. There are no indicators of hydric soils 10 inches below ground surface (bgs); therefore, the hydric soil criterion is not met. Primary indicators of wetland hydrology included saturated soils in the top 3 inches in the test pit. Below 3 inches, soils were moist to dry. No secondary indicators were observed. The wetland hydrology criterion is not met. Because all three wetland criteria were not met, the area represented by TP2 is considered upland.

Test Plot 3 (TP3) is located northeast of TP2, on the north side of the access road off of Fife Way. TP3 is dominated by red clover, white clover, velvetgrass, hairy cat's ear, redtop, and soft rush. Because more than 50 percent of the dominant vegetation has an indicator status of FAC, FACW, or OBL, the hydrophytic vegetation criterion is met. The surface horizon (A horizon) extends to 7 inches and is a gray (2.5Y 5/1), sandy loam with gravel (compacted fill material) and with many distinct, medium to large, strong brown (7.5YR 4/6) mottles. The B horizon extends from 7 to 18 inches and is a grayish brown (10YR 5/2) sand with gravel (compacted fill material) and without mottles. There are no indicators of hydric soils 2 inches below the A horizon; therefore, the hydric soil criterion is not met. Primary indicators of wetland hydrology were not observed. One secondary indicator, oxidized rhizospheres, was observed. The wetland hydrology criterion is not met. Because all three wetland criteria were not met, the area represented by TP3 is considered upland.

Test Plot 6 (TP6) is located along the 12th Street E unimproved road grade, north of the landfill. TP6 is dominated by red clover, white clover, reed canarygrass, common tansy (Tanacetum vulgare), redtop, Douglas spiraea (Spiraea douglasii), black cottonwood, Himalayan blackberry, and yellow sweetclover (Melilotus sp.). Because more than 50 percent of the dominant

vegetation has an indicator status of FAC, FACW, or OBL, the hydrophytic vegetation criterion is met. The surface horizon (A horizon) extends to 18 inches and is a brown (10YR 5/3) sand with gravel and cobbles (very compacted fill material) and without mottles. There are no indicators of hydric soils 10 inches bgs; therefore, the hydric soil criterion is not met. No primary or secondary indicators of wetland hydrology were observed. Therefore, the wetland hydrology criterion is not met. Because all three wetland criteria were not met, the area represented by TP6 is considered upland.

Test Plot 7 (TP7) is located at the edge of an agricultural field, just south of the south-central edge of the landfill. TP7 is dominated by reed canarygrass, field bindweed, field horsetail (Equisetum arvense), giant horsetail (Equisetum telmateia), and common vetch (Vicia sativa). Because more than 50 percent of the dominant vegetation has an indicator status of FAC, FACW, or OBL, the hydrophytic vegetation criterion is met. The surface horizon (A horizon) extends to 18 inches and is a slightly moist to dry, dark brown (7.5YR 3/2), silt loam without mottles. There are no indicators of hydric soils 10 inches or more bgs; therefore, the hydric soil criterion is not met. No primary indicators of wetland hydrology were observed. Secondary indicators of wetland hydrology included drainage patterns and a positive FAC neutral test. Because all three wetland criteria were not met, the area represented by TP7 is considered upland.

Test Plot 9 (TP9) is located in an agricultural field just south of Wetland F (TP8). TP9 is dominated by reed canarygrass, field bindweed, creeping buttercup (Ranunculus repens), Himalayan blackberry, and hairy cat's ear. Because less than 50 percent of the dominant vegetation has an indicator status of FAC, FACW, or OBL, the hydrophytic vegetation criterion is not met. The surface horizon (A horizon) extends to 3 inches and is a moist, very dark grayish brown (10YR 3/2), silt loam without mottles. The B horizon extends from 3 to 8 inches and is a moist to dry, brown (7.5YR 4/4), silt loam without mottles. Large portions of the B horizon soils are stained to a very dark grayish brown (10YR 3/2) by an unknown contaminant that smells like hydrocarbons and has a metallic sheen. The C horizon extends from 8 to 18 inches and is a dry, dark brown (7.5YR 3/2), silt loam without mottles. There are no indicators of hydric soils 2 inches below the A horizon; therefore, the hydric soil criterion is not met. No primary indicators of wetland hydrology were observed. Only one secondary indicator, drainage pattern, was observed. Therefore, the wetland hydrology criterion is not met. Because all three wetland criteria were not met, the area represented by TP9 is considered upland.

4.0 REGULATORY CONSIDERATIONS

4.1 CITY OF MILTON

The City of Milton regulates wetlands, streams, and their buffers through the Milton Municipal Code (MMC) Title 18. As specified in the MMC, wetland categories are exempt from the City of Milton regulations as follows:

- Category I—no exemptions
- Category II—no exemptions
- Category III—wetlands less than 1,000 square feet, not part of a wetland mosaic or riparian area, and determined to be isolated
- Category IV—wetlands less than 1,000 square feet, not part of a wetland mosaic or riparian area, and determined to be isolated

None of the wetlands identified meet the exemption criteria and, therefore, are not exempt from the City of Milton regulations. For regulated wetlands, the City of Milton requires the following buffers for:

- Category I, II, or III—ranges from 60 to 300 feet, depending on adjacent land use and habitat function score
- Category IV—ranges from 40 to 50 feet, depending on adjacent land use

The 2008 work would impact only Wetland C, which is not located within the limits of the City of Milton. Although potential impacts cannot be determined at this point in the project, future work to be completed in 2009 and 2011-2012 may impact Wetlands A, B, C, and F and the buffers of Wetlands A, B, C, E, and F. Impacting regulated wetlands or their buffers may require mitigation. If mitigation is required, a conceptual mitigation plan would need to be prepared and accepted by The City of Milton prior to permits being issued.

The Washington Department of Natural Resources has defined Hylebos Creek as a Type F stream (DNR, 2008). MMC Code (18.16.640) requires a 150-foot buffer landward from ordinary high water on a Type F stream. Because the remediation area is approximately 500 feet away from Hylebos Creek, construction activities within the remediation area would not impact the Creek or its buffer.

4.2 CITY OF FIFE

The City of Fife regulates wetlands, streams, and their buffers through the Fife Municipal Code (FMC) Title 17. As specified in the FMC, wetland categories are exempt from the City Fife regulations as follows:

- Category I—no exemptions
- Category II—wetlands 2,500 square feet or less

- Category III—wetlands less than 2,500 square feet or less
- Category IV—wetlands less than 10,000 square feet or less

Wetlands A and F meet exemption criteria and, therefore, are exempt from the City of Fife regulations. For regulated wetlands, the City of Fife requires the following buffers for:

- Category I—150 feet
- Category II—100 feet
- Category III—50 feet
- Category IV—25 feet

The 2008 work would impact Wetland C, which is not located within limits of the City of Fife. Although potential impacts cannot be determined at this point in the project, future work to be completed in 2009 and 2011-2012 may impact Wetlands A, B, C, and F and the buffers of Wetlands A, B, C, E, and F. Impacting regulated wetlands or their buffers may require mitigation. If mitigation is required, a conceptual mitigation plan would need to be prepared and accepted by the City of Fife prior to permits being issued.

The Washington Department of Natural Resources has defined Hylebos Creek as a Type F stream (DNR 2008). FMC Code (17.15.050) states that "the width of the buffers shall be determined on a case-by-case basis by the community development director based on the required habitat assessment and on the criteria established in this chapter." Because the remediation area is approximately 500 feet away from Hylebos Creek, construction activities within the remediation area would not impact the Creek or its buffer.

4.3 PIERCE COUNTY

Pierce County regulates wetlands, streams, and their buffers through the Pierce County Code Title 18. As specified in the County, the wetlands exemptions from Pierce County regulations are as follows:

- Category I—no exemptions
- Category II—no exemptions
- Category III—wetlands less than 2,500 square feet, not part of a wetland mosaic, and determined to be isolated
- Category IV—wetlands less than 10,000 square feet, not part of a wetland mosaic, and determined to be isolated

None of the wetlands identified meet exemption criteria and, therefore, are not exempt from Pierce County regulations. For regulated wetlands, Pierce County requires the following buffers:

- Category I—150 feet
- Category II—100 feet

- Category III—50 feet
- Category IV—25 feet

The 2008 work would impact Wetland C, which is located within the limits of Pierce County. Although potential impacts cannot be determined at this point in the project, future work to be completed in 2009 and 2011-2012 may impact Wetlands A, B, C, and F and the buffers of Wetlands A, B, C, E, and F. Impacting regulated wetlands or their buffers may require mitigation. If mitigation is required, a conceptual mitigation plan would need to be prepared and accepted by Pierce County prior to permits being issued.

The Washington Department of Natural Resources has defined Hylebos Creek as a Type F stream (DNR, 2008). Pierce County Code (18E.40.060) requires a 150-foot buffer landward from ordinary high water on a Type F stream. Because the remediation area is approximately 500 feet away from Hylebos Creek, construction activities within the remediation area would not impact the Creek or its buffer.

4.4 U.S. ARMY CORPS OF ENGINEERS

USACE has regulatory jurisdiction over "Waters of the U.S." (33 CFR Part 328). Hylebos Creek is classified as a "Water of the U.S.". The ditches and wetlands within the remediation area may also classify as "Waters of the U.S.". A jurisdictional determination from USACE is required to determine which, if any, ditch or wetland is regulated by the USACE. Any alteration to a USACE jurisdictional wetland or ditch will require a federal permit from the USACE.

5.0 REFERENCES

- Cowardin, L.M., Carter, V., Golet, F.C., and LaRoe, E.T. 1979. Classification of Wetlands and Deepwater Habitats of the United States: U.S. Fish and Wildlife Service, Office of Biological Services, Publication FWS/OBS/79/31, Washington, D.C.
- Hruby, T. 2004. Washington State Wetland Rating System for Western Washington, Revised: Washington State Department of Ecology, Publication # 04-06-025, Olympia.
- Natural Resources Conservation Service (NRCS). 2008. Web Soil Survey for Township 20 North, Range 4 East, Section 5, Washington: U.S. Department of Agriculture, NRCS, Washington D.C., http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed May 13, 2008).
- Reed, P.B., Jr.. 1988. National List of Plant Species that Occur on Wetlands Northwest (Region 9): U.S. Fish and Wildlife, Biological Report 88(26.9), Washington, D.C.
- Reed, P.B., Jr., Peters, D., Goudzwaard, J., Lines, I., and Weinmann, F. 1993. Supplement to List of Plant Species that Occur in Wetlands Northwest (Region 9): U.S. Fish and Wildlife Service, Supplement to Biological Report 88(26.9), Washington, D.C.
- U.S. Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetland Delineation Manual: Corps, Environmental Laboratory, Waterways Experiment Station, Technical Report Y-87-1, Vicksburg, Mississippi.
- Washington State Department of Ecology (Ecology). 2004. Washington State's Water Quality Assessment [303(d)] List for 1998: Ecology, Water Quality Program, Olympia, http://apps.ecy.wa.gov/wqawa/viewer.htm (accessed February 21, 2008).
- Washington Department of Fish and Wildlife (WDFW). 2008. SalmonScape Database: WDFW, Olympia, http://wdfw.wa.gov/mapping/salmonscape/index.html (accessed May 13, 2008).
- Washington State Department of Natural Resources (DNR). 2008. Forest Practices Application Review System, Water Typing Map for Township 20N, Range 4E, Section 5: DNR, Olympia, http://www3.wadnr.gov/dnrapp5/website/fpars/viewer.htm (accessed May 13, 2008).

B&L Woodwaste Site

Critical Areas Study

Tables

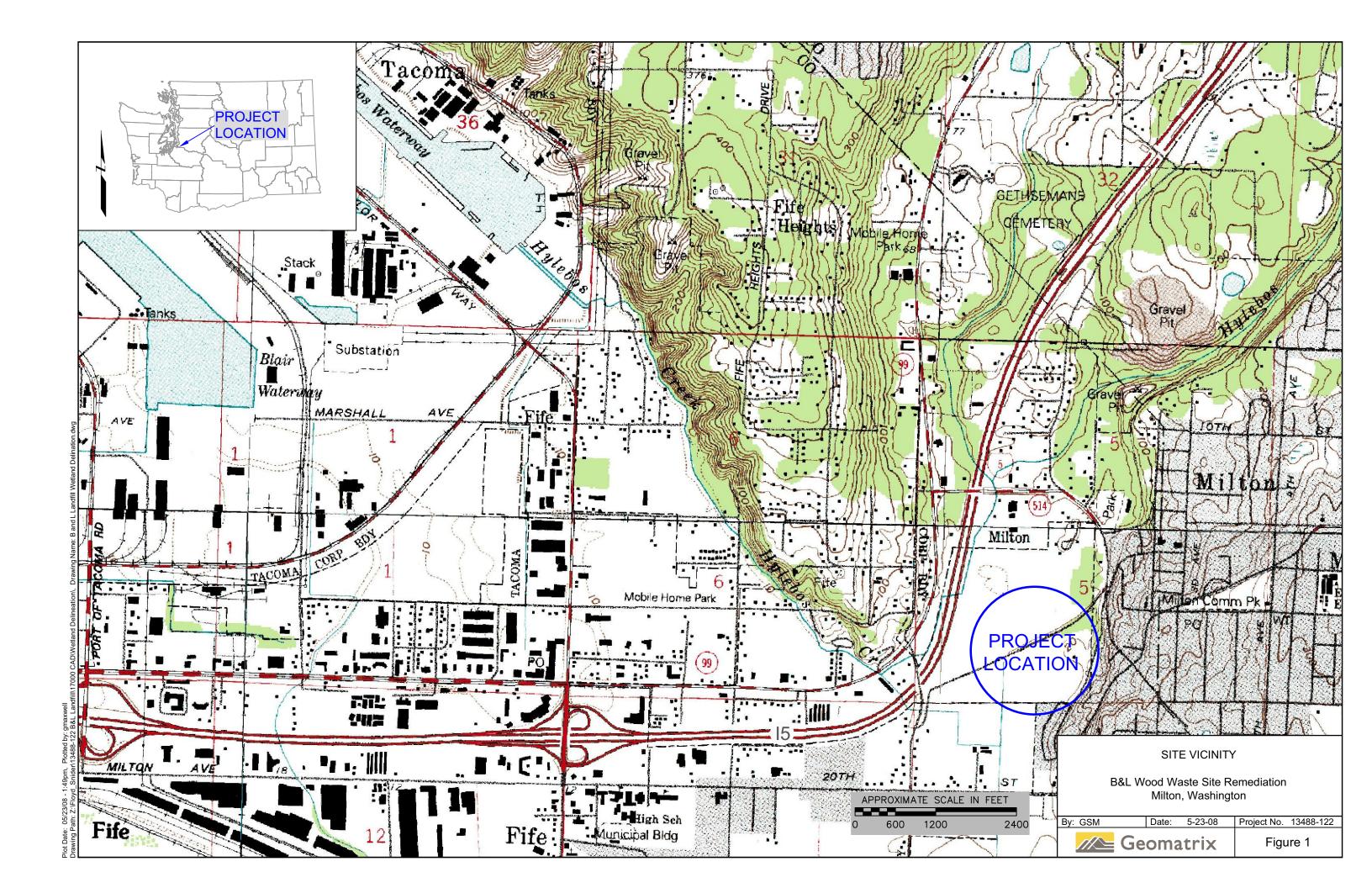
TABLE 1

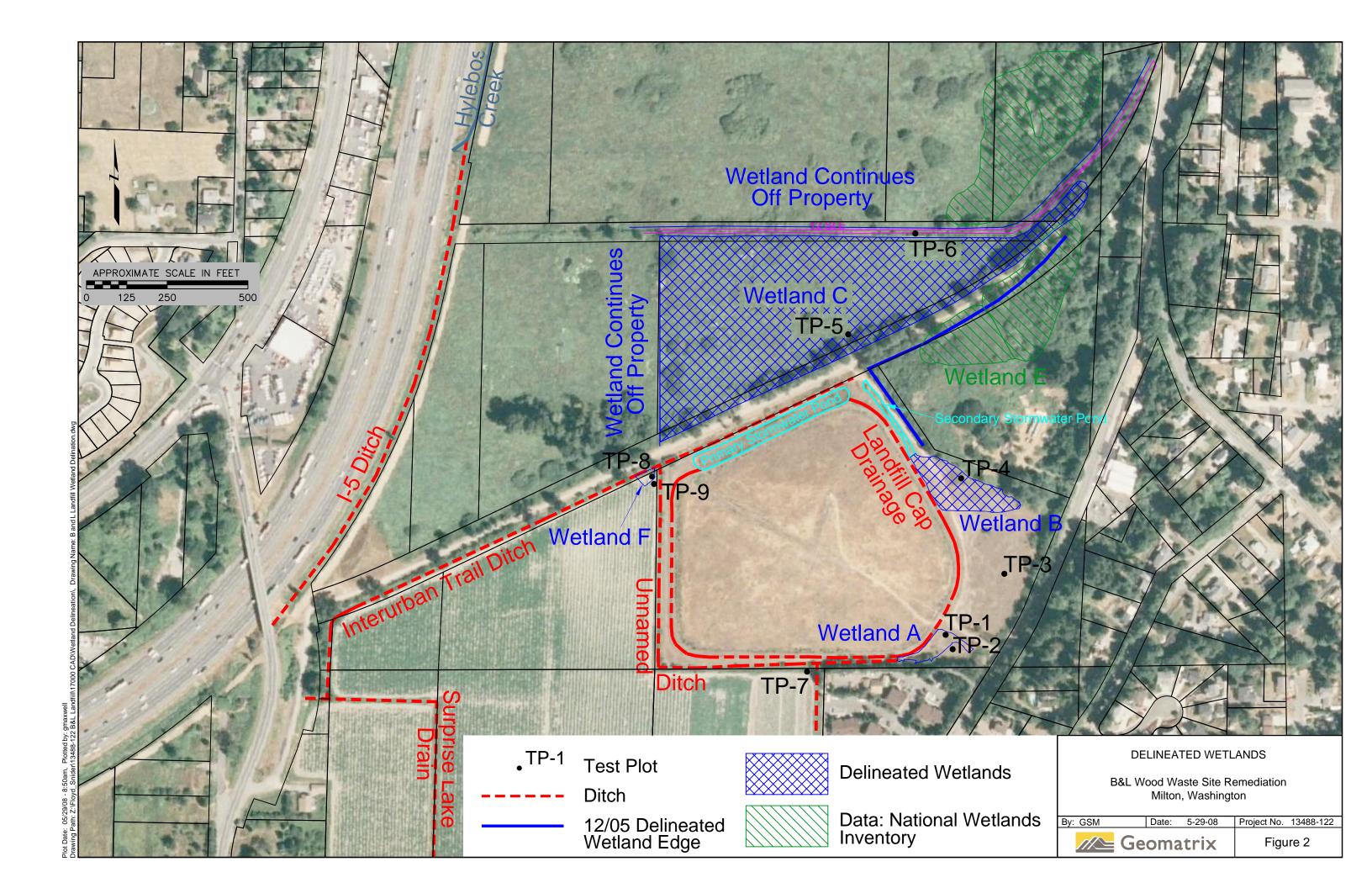
Plant Species Found on the Project Site

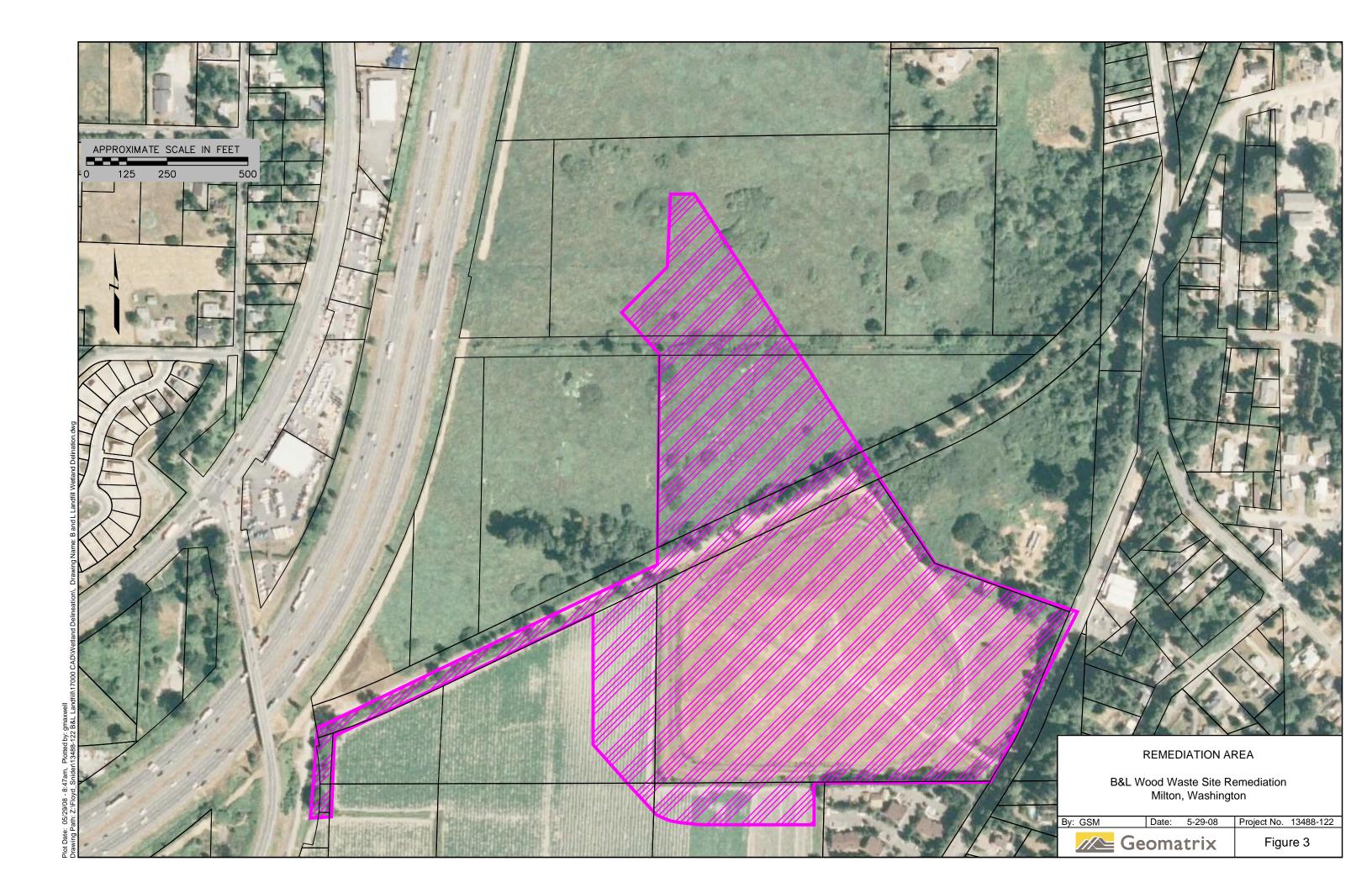
Cover Class	Common Name	Scientific Name	Wetland Indicator Status	
Trees	black cottonwood	Populus balsamifera ssp. trichocarpa	FAC	
	Pacific willow	Salix lucida	FACW+	
Shrubs	Douglas spiraea	Spiraea douglasii	FACW	
	hawthorne	Crataegus douglasii	FAC	
	Himalayan blackberry	Rubus armeniacus	FACU	
	hooker willow	Salix hookeriana	FACW-	
	Scouler's willow	Salix scouleriana	FAC	
	Sitka willow	Salix sitchensis	FACW	
Herbs	common tansy	Tanacetum vulgare	NI	
	common vetch	Vicia sativa	UPL	
	creeping buttercup	Ranunculus repens	FACW	
	field bindweed	Convolvulus arvensis	NI	
	field horsetail	Equisetum arvense	FAC	
	fox sedge	Carex vulpinoidea	OBL	
	giant horsetail	Equisetum telmateia	FACW	
	hairy cat's ear	Hypochaeris radicata	FACU*	
	red clover	Trifolium pratense	FACU	
	red fescue	Festuca rubra	FAC+	
	redtop	Agrostis gigantea	NI	
	reed canarygrass	Phalaris arundinacea	FACW	
	soft rush	Juncus effusus	FACW	
	stinging nettle	Urtica dioica	FAC+	
	unidentified grass			
	velvetgrass	Holcus lanatus	FAC	
	white clover	Trifolium repens	FAC*	
	yellow sweetclover	Melilotus sp.	FACU	

⁺ A plus (+) sign or minus (-) sign is used with the facultative indicator categories to more specifically define the regional frequency of occurrence in wetlands. The + indicates a more frequent occurrence.

^{*} An asterisk (*) identifies a tentative assignment based on limited information.


TABLE 2 WETLAND RATING SCORES


		Functional Score				
Wetland	Size (acre)	Water Quality	Hydrologic	Habitat	Total	Wetland Rating
Α	0.2	14	4	10	28	IV
В	0.71	18	4	13	35	III
С	59	28	24	21	73	I
E	4.25	26	16	15	57	II
F	0.05	12	0	6	18	IV


B&L Woodwaste Site

Critical Areas Study

Figures

B&L Woodwaste Site

Critical Areas Study

Appendix A Wetland Determination Methods

Appendix A

METHODS OF DETERMINING WETLAND CHARACTERISTICS AND CLASSIFICATION

WETLAND CHARACTERISTICS

The U.S. Army Corps of Engineers (Corps 1987) usually require that the following three characteristics be present for an area to be identified as a wetland: (1) hydrophytic vegetation, (2) hydric soil, and (3) wetland hydrology. The following subsections detail the methods we used to determine whether these characteristics are present on site.

Hydrophytic Vegetation

To determine whether an area has hydrophytic vegetation, the dominant plant species are identified. The Floyd|Snider AMEC-Geomatrix project team (Project Team) uses the method described in the 1989 Federal Manual for Wetland Identifying and Delineating Jurisdictional Wetlands (FICWD. 1989) to determine the dominant plants in each stratum. Dominant plants are those species that, when ranked in descending order of abundance and cumulatively totaled, immediately exceed 50 percent of the dominance threshold number, plus any additional species comprising 20 percent or more of the sum of the midpoints for a given stratum. The dominance threshold number is equal to 50 percent of the sum of the midpoints for a given stratum. Cover classes (and midpoints) are as follows: T = <1% (none), 1 to 5% (3.0), 6 to 15% (10.5), 16 to 25% (20.5), 26 to 50% (38.0), 51 to 75% (63.0), 76 to 95% (85.5), 95 to 100% (98.0). The PLANTS database (NRCS 2008) lists the wetland indicator status of plants based on the species' probability of occurring in wetlands (Table 1). A plant community dominated by species commonly found in wetlands (OBL, FACW, and FAC) meets the criteria for hydrophytic vegetation.

TABLE 1
KEY TO WETLAND INDICATOR STATUS

Code	Wetland Indicator Status	Probability of Occurrence in Wetland
OBL	Obligate wetland species	>99%
FACW	Facultative wet	67 to 99%
FAC	Facultative	34 to 66%
FACU	Facultative upland	1 to 33%
UPL	Obligate upland	<1%
NI	No indicator	_

Hydric Soil

To determine whether an area has hydric soil, test pits are dug and the soil color and other characteristics are examined. Soil in which any of the following indicators is present meets the criteria for hydric soil:

Low chroma matrix. Soil with a low chroma matrix typically develops when mineral soil is saturated or inundated for sufficient periods of time to result in anaerobic (oxygen less) conditions. Anaerobic conditions cause elements common in soil, particularly iron compounds, to exist in reduced forms that are usually bluish, greenish, or grayish in color. Soil colors are determined using a Munsell color chart (Kollmorgen, 1995), which uses abbreviations to describe colors; e.g., 10YR 2/1. In the abbreviation, the last number indicates the chroma; a chroma of 1 (without mottles) or 2 (with mottles) in the subsurface horizon is considered low. Soils with a matrix chroma of 2 are usually considered hydric when mottles are present.

Mottles. In seasonally saturated wetlands, fluctuating water levels can trap air bubbles in the soil. The air pockets allow magnesium and iron compounds in the soil to oxidize, forming rust colored mottles (spots or blotches). Mottles found in soil with a matrix chroma of 2 or less often indicate the soil is hydric.

High organic content. Organic soils form if inundation prevents decomposition and organic debris accumulates. Organic content is considered high if the soil is composed of more than 20 to 30 percent (range fluctuates depending upon other soil characters) organic material by weight in the upper 32 inches of the soil profile.

Other hydric indicators. Other positive indicators of hydric soils include histic epipedons, sulfide or "rotten egg" odor, aquic or peraquic moisture regimes, presence of soils listed as hydric soils, and presence of iron or manganese concretions.

WETLAND HYDROLOGY

To determine whether an area has wetland hydrology, the area is examined for inundation, soil saturation, or shallow groundwater tables, or for hydrologic indicators. In western Washington, an area in which soils are saturated to the surface for at least 12.5 percent of the growing season (30 days) meets the criteria for wetland hydrology; however, seasonal changes in water levels and immediacy of precipitation events must be considered when an area's hydrology is evaluated. When wetland hydrology is not present at the time of the site visit, it can be inferred from the presence of any of the following hydrologic indicators: watermarks on vegetation, drift lines, sediment deposits, water stained leaves, surface scoured areas, wetland drainage patterns, oxidized root channels, or a positive FAC neutral test. A positive FAC neutral test is defined as when the number of species with indicator status of FACW- or wetter is greater than the number of species with indicator status FACU+ or drier. Presence of hydrophytic vegetation and hydric soils also are strong indicators that wetland hydrology is likely present.

CLASSIFICATION

Wetlands are classified according to Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al. 1979). Under the Cowardin classification scheme, wetlands and deepwater habitats are grouped into systems based on shared hydrologic factors. The systems described in Cowardin et al. are palustrine, marine, estuarine, riverine, and lacustrine.

The palustrine system includes all nontidal wetlands dominated by trees, shrubs, persistent emergents, mosses and lichens, and all such wetlands that occur in tidal areas where the salinity due to ocean derived salts is below 5 parts per thousand. Wetlands included in the palustrine system are those commonly referred to as marshes, swamps, bogs, fens, prairies, seeps, and intermittent ponds.

Palustrine wetlands are divided into classes by the dominant vegetation: Forested wetlands are dominated by trees greater than approximately 20 feet tall with 30 percent cover, scrub shrub wetlands are dominated by woody shrubs, and emergent wetlands are dominated by nonwoody plants. Other common palustrine wetland classes include unconsolidated bottom (<30% plant cover) and aquatic bed. These latter two classes are usually permanently inundated areas and sometimes referred to as open water.

REFERENCES

- Cowardin, L.M., Carter, V., Golet, F.C., and LaRoe, E.T. 1979. Classification of Wetlands and Deepwater Habitats of the United States: U.S. Fish and Wildlife Service, Office of Biological Services, Publication FWS/OBS 79/31, Washington, D.C.
- Federal Interagency Committee for Wetland Delineation (FICWD). 1989. Federal Manual for Identifying and Delineating Jurisdictional Wetlands: U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, U.S. Department of Agriculture Soil Conservation Service, cooperative technical publication, Washington, D.C.
- Kollmorgen Corporation. 1995. Munsell Soil Color Charts: Kollmorgen Corporation, Baltimore, Maryland.
- Natural Resources Conservation Service (NRCS). 2008. The PLANTS Database: National Plant Data Center, Natural Resources Conservation Service Natural Resources Conservation Service, U.S. Department of Agriculture, Baton Rouge, Louisiana, http://plants.usda.gov (accessed May 14, 2008).
- U.S. Army Corps of Engineers. 1987. Corps of Engineers Wetlands Delineation Manual: Corps, Waterways Experiment Station, Technical Report Y-87-1, Vicksburg, Mississippi.

B&L Woodwaste Site

Critical Areas Study

Appendix B Wetland Delineation Forms

Routine Wetland Determination (WA State Wetland Delineation Manual or

1987 Corps Wetland Delineation Manual)

Applicant/owner: Floyd Sun	U der		County	5/7/08 Purce	
			State:		41
Investigator(s): KAM & KLW	1 0			DON 4E 5 unity ID: Wet A	
Do Normal Circumstances exist o Is the site significantly disturbed (yes n			
Is the area a potential Problem Are		ves G	2		
VEGETATION					
· DODINATE.					
Dominant Plant Species	Stratum	Indicator	Dominant Plant Specie	s Stratum	Indicator
Softrush	BH	FACW	who clover	14	FACE
fox sedge	2 /7	OBL	red Fescus	H	FACT
velvetgrass	H	FAL			
velvetgrass Pacific willow	T	FACW+			
Scorley willow	5	FAC			18
HYDROPHYTIC VEGETATION	ON INDICATORS				
Check all indicators that apply &	explain below:				
Regional knowledge of plant com Physiological or reproductive ada Technical Literature	enunities V	Morpholo Wetland I	olant list (nat'l or regiona gical adaptations Plant Data Base) <u> </u>	THER
Regional knowledge of plant com Physiological or reproductive ada	enunities V	Morpholo	gical adaptations	1) <u>X</u> 0	THER
Regional knowledge of plant com Physiological or reproductive ada Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks:	enunities V	Morpholo Wetland I	gical adaptations	Sediment Dep	
Regional knowledge of plant com Physiological or reproductive ada Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season?	amunities	Morpholo Wetland F no No Wa	gical adaptations Plant Data Base		osits: yes (no
Regional knowledge of plant com Physiological or reproductive ada Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season?	amunities	mo Wa Dri	gical adaptations Plant Data Base ter Marks: yes no ft Lines: yes no idized Root (live roots)	Sediment Dep	osits: yes (no
Regional knowledge of plant com Physiological or reproductive ada Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season? Based on:	yes yes yes inches whin of he inches	mo Watland F	ter Marks: yes no ft Lines: yes no dized Root (live roots) annels <12 in. yes no C Neutral: yes no	Sediment Dep Drainage Patte Local Soil Sur Water-stained Leaves:	osits: yes no erns: (ves no rvey: yes no
Regional knowledge of plant come Physiological or reproductive adar Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season? Based on: Dept. of inundation: Depth to free water in pit:	yes yes yes inches inches	mo Watland For Charles FA	ter Marks: yes no ft Lines: yes no dized Root (live roots) annels <12 in. yes no C Neutral: yes no	Sediment Dep Drainage Patte Local Soil Sur Water-stained	osits: yes (no erns: (yes)no rvey: yes no
Regional knowledge of plant com Physiological or reproductive ada Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season? Based on: Dept. of inundation: Depth to free water in pit: Depth to saturated soil: Check all that apply & explain be	yes yes yes inches inches	mo Watland F	ter Marks: yes no ft Lines: yes no dized Root (live roots) annels <12 in. yes no C Neutral: yes no	Sediment Dep Drainage Patte Local Soil Sur Water-stained Leaves:	osits: yes (no erns: (yes) no rvey: yes no
Regional knowledge of plant com Physiological or reproductive ada Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season? Based on: Dept. of inundation: Depth to free water in pit: Depth to saturated soil: Check all that apply & explain be Stream, Lake or gage data:	yes yes yes inches inches inches	mo Watland For Charles FA	ter Marks: yes no ft Lines: yes no dized Root (live roots) annels <12 in. yes no C Neutral: yes no	Sediment Dep Drainage Patte Local Soil Sur Water-stained Leaves:	osits: yes (no erns: (yes)no rvey: yes no
Regional knowledge of plant come Physiological or reproductive adar Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season? Based on: Dept. of inundation: Depth to free water in pit: Depth to saturated soil: Check all that apply & explain be Stream, Lake or gage data: Aerial photographs:	yes yes yes inches inches clow: Other:	mo Watland F Oxion Charles FA	ter Marks: yes no ft Lines: yes no dized Root (live roots) annels <12 in. yes no C Neutral: yes no	Sediment Dep Drainage Patte Local Soil Sur Water-stained Leaves:	osits: yes (no erns: (yes) no rvey: yes no
Regional knowledge of plant com Physiological or reproductive ada Technical Literature Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY Is it the growing season? Based on: Dept. of inundation: Depth to free water in pit: Depth to saturated soil: Check all that apply & explain be Stream, Lake or gage data:	yes yes yes inches inches inches	mo Watland For Charles FA	ter Marks: yes no ft Lines: yes no dized Root (live roots) annels <12 in. yes no C Neutral: yes no	Sediment Dep Drainage Patte Local Soil Sur Water-stained Leaves:	osits: yes no erns: (yes) no rvey: yes no

SOILS	
Map Unit Name Semiahmou muck	Drainage Class Very poorly
(Series & Phase)	Field observations confirm Yes (No)
Taxonomy (subgroup)	mapped type?

Profile D	escription					
Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mortle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile (match description)
18	A	10424/2	IOYR5 16	Distinct small veryfew (21%)	sand wlgravel	
Hydric s	Histos Histic Sulfidi Aquic Reduc Glever	Epipedon ic Odor Moisture Regir ing Conditions d or Low-Chror yes	ne	Organi Listed Listed	rtions organic Content in Surface or Streaking in Sandy Soi on Local Hydric Soils Li on National Hydric Soils explain in remarks)	ls ist
Rationale highli motte	for decision y compac cling in	ted fill ma	aterial a 2			
Wetland Hydrophy Hydric so Wetland	d Determing the vegetation of the present? The hydrology p	nation (circle) on present?	yes no	Is the samplir within a wetla		yes no
Rational	e/Remarks:		н			lw)

NOTES:

701727.6N 1546452.3E Flago Al through A/2 wot A drains into ditch 6twn A8+A9

(Series &	Phase) v (subgrou	emlahma 10)			Field observations confinapped type?	irm Yes No
Profile De	escription					
Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile (match description)
\$8	A	7.5YR3/i		ined.	seltloan	mothes
17	B	7.548311	SYRSII	distinct common med	ment Silt	
TO 36	e +			. 4		
18	Ø C	104R3/2			peat w)	
Hydric so	Histose Histic Sulfidi Aquic Reduc	Epipedon ic Odor Moisture Regin ing Conditions d or Low-Chron yes	ne	Organi Listed Listed	etions Organic Content in Surface C Streaking in Sandy Soi on Local Hydric Soils Li on National Hydric Soils (explain in remarks)	ils ist

Rationale/Remarks:

Hydric soils present?

Hydrophytic vegetation present?

Wetland hydrology present?

NOTES: TPS

DITES: TPS

Wet C not flagged. Bounded along S edge by

Interviban trail, N by 12th St. E road grade & thi

15 4 6015 2 E What indicated on map

about when indicated on map

No upland to st, 2nd clug associated w/ Wet. C 6/c we could not

OS 5655 peoperty W/ uplands o ther than apphalt / road bed

Is the sampling point

within a wetland?

no

no

по

Routine Wetland Determination (WA State Wetland Delineation Manual or

1987 Corps Wetland Delineation Manual)

Project/Site: BOL Land Fill					17/08	
Applicant/owner: Floyd/St	ricles			County: State:	Pierce	
Investigator(s): KAM 4.KLW				S/T/R:	anity ID: Upl Mu	
Do Normal Circumstances exist on Is the site significantly disturbed (a	rypical situation)	yes 🔾	10	Transec Plot ID:	t ID:	ir Wet A
Is the area a potential Problem Area	a ?	yes (10)	FIOLID.	16	
VEGETATION						
Dominant Plant Species	Stratum	Indicator	Dominant I	Plant Species	Stratum	Indicator
red clover	H	FACU	H. Was	11 berry	5	FALL
wh. Clover	H	FAC				
velvet glass	Н	FAC				
herry cat's ear	H	FACU	¥E			
	H	FAC				
HYDROPHYTIC VEGETATIO	NINDICATORS	i:	-			
% of dominants OBL, FACW, & F Check all indicators that apply & e Regional knowledge of plant common Physiological or reproductive adapted Technical Literature	xplain below:	Morphol	plant list (nat' ogical adaptati Plant Data Ba	ions) <u> </u>	THER
Hydrophytic vegetation present? Rationale for decision/Remarks:	yes	no				
HYDROLOGY			4			
Is it the growing season?	ves	no W	ater Marks:	yes no	Sediment Dep	
Based on:			ift Lines:	yes (no)	Drainage Patte	
Dept. of inundation:	inches		idized Root (l annels <12 in	-	Local Soil Sur	vey: yes no
Depth to free water in pit: Depth to saturated soil:	inches inches		C Neutral:	yes no	Water-stained Leaves:	yes no
Check all that apply & explain bell Stream, Lake or gage data: Aerial photographs:			her:			
Wetland hydrology present? Rationale for decision/Remarks:	yes	no				

Map Unit Name Semiahrmes MUUL (Series & Phase)	Drainage Class Very pooly Field observations confirm Yes No
Taxonomy (subgroup)	mapped type?
Profile Description	

	escription			THE RESERVE OF THE RE		D
Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mottle abundance size & contrast	Sandy loam w	Drawing of soil profile (match description)
ķ	A	2544/2	_			
					[×	
Hydric S	Histos Histic Sulfid Aquic Reduc	ors: (check all tool Epipedon ic Odor Moisture Regining Conditions d or Low-Chron	ne	Organi Listed Listed	etions Organic Content in Surface or Streaking in Sandy Soi on Local Hydric Soils Li on National Hydric Soils (explain in remarks)	ls st
Hydric se Rationale	oils present for decision	? yes	(no)			
no r	nottelin y compa	s in a chu cted fill ma	ima 2 terial			
		ation (circle)		\		
	ytic vegetati oils present?		yes no yes no	Is the samplir within a wetl:		yes no

NOTES: 1P2 701683,810 1546476,9 E

Routine Wetland Determination

(WA State Wetland Delineation Manual or 1987 Corps Wetland Delineation Manual)

Project/Site: Bol L Landfull				Date: 5	17108	
Applicant/owner: Floyd Snicker				County: State:	Pierce	
Investigator(s): KAM & KLW					20N 48 5	
Do Normal Circumstances exist on the s		yes no	2	Commu		
Is the site significantly disturbed (atypic	al situation)		2	Transection Plot ID:		- }
Is the area a potential Problem Area?		yes n)——	FIOLID.	IFS	=
VEGETATION						
Dominant Plant Species	Stratum	Indicator	Dominant Pla	ant Species	Stratum	Indicator
veluet grass	H	FAC	red top		14	F4C
soft rush red clover	14	FACW			·	
red clover	14	FACU				
hairy cats ear white clover	H	FACU*	1			
white clover	H	FAC				
HYDROPHYTIC VEGETATION IN	DICATORS	S:				
	11					Ì
% of dominants OBL, FACW, & FAC:	1	6				
Check all indicators that apply & explain	n below:					
Check an indicators that apply & explain	n bolow.				- N	
Regional knowledge of plant communit	ies \geq		lant list (nat'l o		> 0.	THER
Physiological or reproductive adaptatio			gical adaptation			
Technical Literature		1	lant Data Base		_	
Hydrophytic vegetation present? Rationale for decision/Remarks:	yes	no no				
Rationale for decision/Remarks.						
			16.			
HYDROLOGY			·¥·			
Is it the growing season?	yes	no Wa	ter Marks: ye	s fro	Sediment Dep	osits: yes 10
Based on:		Dri	ft Lines: y	es (no)	Drainage Patte	
Dept. of inundation:	inches	The Manager	dized Root (liv		Local Soil Sur	vey: yes no
	J. 10 E.		innels <12 in (y		377	
Depth to free water in pit:	inches	FA		es no	Water-stained Leaves:	yes (no)
Depth to saturated soil:	inches		1:2		Leaves.	yes (110)
Check all that apply & explain below:		Oth			1	
Stream, Lake or gage data:						
Aerial photographs:	Other:					
Wetland hydrology present?	yes	no)	J. M. W.	000	hickling	un motal
Wetland hydrology present? Rationale for decision/Remarks: 501	s moist	rai stirter	ec & dvy	14) 18	. My Co	in juice
fill wil lots of thre tra	cKS.					

Map Unit Name Semiahmou muck	Drainage Class Very Poorly
(Series & Phase)	, ,
	Field observations confirm Yes (No
Taxonomy (subgroup)	mapped type?

Profile D	escription					
Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile (match description)
7	A	2545/1	7.5 VRU/6	med-large distinct	Sandy loam wl lots of grayel	
18	В	10185/2	-	_	Sant ul gravel (fill)	
				lin_		
Hydric S	History History Sulfid Aquic	ors: (check all sol Epipedon lic Odor Moisture Reginating Conditions d or Low-Chron	ne	Organi Listed Listed	etions Organic Content in Surfact or Streaking in Sandy Soit on Local Hydric Soils Lit on National Hydric Soils (explain in remarks)	ls ist
Rationale	oils present			orna 2 wlo mo	Hus 2 in below	A hovitare
Wetland	l Determir	nation (circle)				
Hydric so	ytic vegetat oils present? hydrology p		yes no yes no	Is the sampling within a wetle		yes mo
			n fill - lót	ts of tire tro	cks (4x4) ing +	donuts)

NOTES: TP3 701914,5 N 15-46634,75

Routine Wetland Determination (WA State Wetland Delineation Manual or 1987 Corps Wetland Delineation Manual)

Project/Site: Bal Landfill	987 Curps vv	etianu D	emicanon iviz		15/7/08	
Applicant/owner: Floyd Snider				State: 1	Piere	
Investigator(s): KFIN WILLW				S/T/R:	2011 4E S	5
Do Normal Circumstances exist on the s	site?	ves	no	Commu	nity ID: Wet R	
Is the site significantly disturbed (atypic		yes	no,	Transec	et ID:	× 1
Is the area a potential Problem Area?	***	yes	no	Plot ID:	TP4	
VEGETATION						
VEGETATION						
Dominant Plant Species	Stratum	Indica	or Domina	nt Plant Species	Stratum	Indicator
Dominant I lant Obecies						
Softrush	14	FACE	v red clo	West	H	FALL
unidgrass (no infloress.)	H		red h	20	. H	FAC
OM A GRASS E TO MILE SOL				•		
Black Cotton wood	SIT	FAC	reed c	anary gras	ss H	FACW
TOWER CONDINGER						
redusur dogwood	S	FAL	ω			
TO OSON CONTROL	1107					
willow (Hookers)	5	FACU)_			
HYDROPHYTIC VEGETATION IN	DICATORS					
III DROI III II C + EGEIIII 2011 E	A THE RESERVE OF THE PROPERTY					
% of dominants OBL, FACW, & FAC:	6/8	2				
% of dominants OBL, TACW, & TAC.	10	3				
GI I II I I a salar a la Prancia	in balour					
Check all indicators that apply & explain	ili below.					
2	×	3771-		atil as majanal	× 0	THER
Regional knowledge of plant communit				at'l or regional) 0	THER
Physiological or reproductive adaptatio	ns		ological adap			
Technical Literature		Wetla	nd Plant Data	Base		
Hydrophytic vegetation present?	(yes)	no				
Rationale for decision/Remarks:						
Land by A. C. S. C						
				0		
HYDROLOGY						
HIBROLOGI						
Is it the growing season?	(yes)	no	Water Marks:	yes no	Sediment Dep	osits: yes no
	003	2000	Drift Lines:	yes (no)	Drainage Patte	
Based on:	Verifica a					
Dept. of inundation:	inches		Oxidized Roo		Local Soil Su	vey. (yes) no
	resident.		Channels <12			
Depth to free water in pit:	inches		FAC Neutral:	yes no	Water-stained	\sim
			4:1		Leaves:	yes (no)
Depth to saturated soil:	inches		1.7			
Check all that apply & explain below:		200	Other:			
Stream, Lake or gage data:						
Aerial photographs:	Other: _					
Wetland hydrology present?	(yes)	no				
Rationale for decision/Remarks:		110				
Rationale for decision/Remarks.		L	. 0 /	1	. 1	
125 oder white aigs	ing pit to	ee wate	TO SULF	ice, when	ue broke	through the

Aborton 26", 420 in test pit dupped to Dinches 1 H20 coming in 2 0/4 inter

السدي						- 1
(Series &	z Phase)	emiahmes	il sak	F	Prainage Class Very Field observations confinance type?	
Taxonon	ny (subgrou	(סנ		,II	napped type:	
Profile D	escription	7				
Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile (match description)
\$6	@/A	7.5 YR3/1	~		Sand willows of fine rout-masses	
18	B	25441			sand will little to no gravel	
	A	Rotesti			'Sand	
Hydric S	Histos Histic Sulfid Aquic Reduc	Epipedon	ne	Organi Listed Listed	etions Organic Content in Surface or Streaking in Sandy Soi on Local Hydric Soils Li on National Hydric Soils (explain in remarks)	ls st
Rationale	oils present for decision	? yes	no lo	u Chrome, - 9	soils of B horiton I to A/L w/ in 10 min.	oxidized from ninutes of hithing
Wetland	l Determir	ation (circle)				
Hydrophy	ytic vegetati	on present?	yes no	T. A	1.5.	Cras no

NOTES: TP4

Hydric soils present?

Wetland hydrology present? Rationale/Remarks:

702215 N 15-46504.4 E

Wet. B Flago B1-13 pipe that goes to detach a boy
(note we ban trail

no

Is the sampling point

within a wetland?

Routine Wetland Determination

(WA State Wetland Delineation Manual or 1987 Corps Wetland Delineation Manual)

Project/Site: B+L Landfill		Date: 5/7/08				
Applicant/owner: Flagd/Sn	idev		County: Pierce State: WA			
Investigator(s): KAM KLM					20N 34ES	
Do Normal Circumstances exist or	the site?	yes	no		nity ID: Wet C	,
Is the site significantly disturbed (a	rypical simation)		no	Transect		
Is the area a potential Problem Are	a?	yes	no	Plot ID:	TP5	
VEGETATION						
					2 was 1	2.1170
Dominant Plant Species	Stratum	Indicate	or Dominant Pl	ant Species	Stratum	Indicator
reedcanarygiass	Н	FACH				
Sitka willow Pac. willow	2	FACL				
Pac. willow	T	FACE	+			
HYDROPHYTIC VEGETATIO	N INDICATOR	S.			- 4	
Check all indicators that apply & c Regional knowledge of plant com Physiological or reproductive ada Technical Literature	munities ptations	Morph Wetlar	d plant list (nat'l ological adaptatic d Plant Data Bas	ons	Or	THER
Hydrophytic vegetation present Rationale for decision/Remarks: HYDROLOGY	? (ye	s) no				
MIDNOZO .		_				
Is it the growing season?	(yes)	_		es) no	Sediment Dep	
Based on:				yes (no)	Drainage Patte	
Dept. of inundation:	6 + inches	74	Oxidized Root (li Channels <12 in.		Local Soil Sur	
Depth to free water in pit: Depth to saturated soil:	inches inches		FAC Neutral: (yes) no	Water-stained Leaves:	yes no
Check all that apply & explain be			Other:			
Stream, Lake or gage data:	Other					
Aerial photographs:		no				*
Wetland hydrology present? Rationale for decision/Remarks:	yes	що	-			

Routine Wetland Determination

(WA State Wetland Delineation Manual or 1987 Corps Wetland Delineation Manual)

Project/Site: Bol Landfill	/			Date: 5/		
Applicant/owner: Floyd/Snide				County: Pl		
Investigator(s): KAMIKUN					NHE 5	0 1 1
Do Normal Circumstances exist on the	ne site?	yes	no			. Roadgrada
Is the site significantly disturbed (aty	pical situation)		10	Transect III		
Is the area a potential Problem Area?		yes	10	riol ID.	0	
VEGETATION		_				
Dominant Plant Species	Stratum	Indicator	Dominant Plan	t Species	Stratum	Indicator
CERTIFICATION OF THE PROPERTY				alima I	< .	FAC
white cloves	- H	PAC	3K cotto	INCOM	Jap.	
reed carary grass	+	FALW	red top	- 5	1+	FAC
red clover	+1	FACU	Hellow swee	tclover	H	FACU
common tansay	H	FACU	H. black	Derry	S	FACH
	5	FACW		1		
HYDROPHYTIC VEGETATION						
Check all indicators that apply & ex- Regional knowledge of plant community Physiological or reproductive adaptate Technical Literature	inities	Morpho	l plant list (nat'l or logical adaptations I Plant Data Base		0	THER
Hydrophytic vegetation present? Rationale for decision/Remarks:	yes	no no	€-			
HYDROLOGY			94			
Is it the growing season?	yes	no V	Vater Marks: yes		The state of the s	osits: yes (no
Based on:		D	rift Lines: ye		rainage Patt	Station
Dept. of inundation:	inches		xidized Root (live hannels <12 in. ye		ocal Soil Su	rvey: yes no
Depth to free water in pit:inches				s no V	Vater-stained Leaves:	yes no
Depth to saturated soil:	inches)th any			
Check all that apply & explain belo Stream, Lake or gage data:	w: — Other:		Other:			
Aerial photographs: Wetland hydrology present?	yes Other.	no				1
Rationale for decision/Remarks:	3.0					

Routine Wetland Determination (WA State Wetland Delineation Manual or

1987 Corps Wetland Delineation Manual)

Project/Site: BOL Lardfell		Date: \$ /19/08				
Applicant/owner: Flourd Shart		County: Pierce State: WA			11/2	
Applicant/owner: Y 10 10 1 3 11 1		State: WA				
T				S/T/R:	ON HE S	-
Investigator(s): Karn & KUN Do Normal Circumstances exist on the	site?	yes	no	Commun		
Is the site significantly disturbed (atypo	ical simiation)?		Con	Transect		
Is the area a potential Problem Area?	car situado ii,	100	E	Plot ID:	TP7	
VEGETATION		101		1666	two dites	40
VEGETATION		Lla	Seconas-	July 0	1001 (111-)	-1
Dominant Plant Species	Stratum	Indicator	Dominant Pl	ant Species	Stratum	Indicator
Dominian viante g	1	1				
reed canany grass	H	PACW				
	1.1					
Field horsetand	Н	AC				
L'0	1.1	FACW	,			
Glant horse Tall	T	PACW				1
Grant horse fail Fuld Birdweed	H	NI				
rula biraweso.		UPL	1/4			
common vetch	H	المنافق				
HYDROPHYTIC VEGETATION I	NDICATORS	5:				
	5 /					
% of dominants OBL, FACW, & FAC	= 5/4	5				
	1	3				
Check all indicators that apply & expl	ain below:					
		Zalidan.	i a a circai	4	07	41CD
Regional knowledge of plant commun	ities,		l plant list (nat'l			THER
Physiological or reproductive adaptati	ons		logical adaptation		-	
Technical Literature		\	l Plant Data Bas	е		
Hydrophytic vegetation present?	yes	no no				
Rationale for decision/Remarks:						
HYDROLOGY						
		70 7	ater Marks:	es (fió)	Sediment Depo	sits: ves (no)
Is it the growing season?	yes	20.00		yes (no)	Drainage Patte	
Based on:	inahaa		xidized Root (li		Local Soil Sur	
Dept. of inundation:	_ inches		channels <12 in.		Local boll bar	
1	inches			yes no	Water-stained	
Depth to free water in pit:	_ IIICHE2	1		yes/ 110	Leaves:	yes no
Doub to convented soil:	inches		2:1		202.00	,
Depth to saturated soil: Check all that apply & explain below		0	Other:			
Stream, Lake or gage data:						
Aerial photographs:	Other:					
Wetland hydrology present?	yes	no				
Rationale for decision/Remarks:	7					
sals were slightly m	nord to	dvii				
SOIS WERE STIGHTLY M	01 7200	019				

(Series &		emlahma 10)	Much	F	Drainage Class Very Field observations confinanced type?	
		-				
Profile D Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile (match description)
18	А	104R5/3			Stavel & Cobble Troad Sed	
ā ž tu	- 1			·		
Hydric so	Histos Histic Sulfid Aquic Reduc	Epipedon ic Odor Moisture Regin ing Conditions d or Low-Chrom yes	ne	Organi Listed Listed	etions Organic Content in Surfactic Streaking in Sandy Soilon Local Hydric Soils Lion National Hydric Soils (explain in remarks)	ls st
	chren					
Hydrophy Hydric so Wetland h		resent?	yes no yes no yes no	Is the samplin within a wetla		yes no

NOTES:

SOLL

TP10 702981 N 1546 358 E

Motali 3 criteria met

<u>UVANU</u>	
Map Unit Name Sultan Sult Coarn	Drainage Class Ward 11 10 10 10 10 10 10 10 10 10 10 10 10
(Series & Phase)	Field observations confirm (Yes) No
Taxonomy (subgroup)	mapped type?

Depth (inches)	Horizon	Matrix color (Munsell	Mottle colors (Munsell	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile
(menes)		moist)	moist)	8		(match description)
18	A	7.54R3/2	_		sutloam	
Hydric So	Histos Histic Sulfid Aquic Reduc	ors: (check all tool Epipedon ic Odor Moisture Regining Conditions d or Low-Chron	ne	Organi Listed Listed	etions Organic Content in Surfac or Streaking in Sandy Soi on Local Hydric Soils Li on National Hydric Soils (explain in remarks)	ls st
Hydric so Rationale	ils present for decision	? yes (n/Remarks:	no			
		ation (circle)				
		on present?	yes no	Is the sampling	ng point	yes (no)
Hydric so	ils present? vydrology p		yes no	within a wetla		

NOTES: Test-plot located in corner 80 2 ditches just 5. 8 SE corner 30 lardfill took an auger test pit C. 30' S. 0, TP7 + got a servey loam 7.5 4R3/2 who mothes; soils moist but not sat.

Routine Wetland Determination (WA State Wetland Delineation Manual or

1987 Corps Wetland Delineation Manual)

Project/Site: BIL Landfil	Date: 5/19/08						
Applicant/owner: Floyd/Sru	lo Y			County: Pierce State: WA			
Investigator(s): KAM & K-LW	(4)	-			0 10 40 3	2	
Do Normal Circumstances exist on t		(yes)	no	Commun			
Is the site significantly disturbed (ary	pical situation)?	yes	(no)	Transect			
Is the area a potential Problem Area?	}	(ves)	no	Plot ID:			
VEGETATION		45	in ag fuld	rickt to c	h relu	-	
Dominant Plant Species	Stratum	Indica	tor Dominant P	lant Species	Stratum	Indicator	
reed canary grass	14	FAC	در				
Fuld bindweed	Ц	N F	Sec. 1.			-	
creeping butterup	14	FACI	u u				
Him. blackberry	14/5	FAC	υ				
	L	FALL	,				
HYDROPHYTIC VEGETATION	TT TT TT TT TT TT TT TT TT TT TT TT TT	II-I K				-	
Regional knowledge of plant common Physiological or reproductive adaptate Technical Literature Hydrophytic vegetation present?	ations	Morp	ind plant list (nat'l hological adaptation and Plant Data Bas	ons	=	HER	
Rationale for decision/Remarks:	*		4				
HYDROLOGY							
To in the committee common ?	VAC	no	Water Marks:	yes (no)	Sediment Depo	sits: yes no	
Is it the growing season?	yes	110		yes (no)	Drainage Patter	The second of th	
Based on: Dept. of inundation:	inches		Oxidized Root (li Channels <12 in.	ve roots)	Local Soil Sur		
Depth to free water in pit:	inches			yes no	Water-stained Leaves:	yes no	
Depth to saturated soil:	inches						
Check all that apply & explain belo	w:		Other:				
Stream, Lake or gage data:							
Aerial photographs:	Other:_					1)	
Wetland hydrology present? Rationale for decision/Remarks:	yes	no					
Soils Norst today					20 to lolote		

00220		- 1	
Map Unit Name Salt tan Sitt how	Drainage Class $M0i$	1,31 1.1	
(Series & Phase)	Field observations confirm	(Yes)	No
Taxonomy (subgroup)	mapped type?		

Profile D	escription					
Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile (match description)
3	A	104R3/2	_	A	Sectloam	
8	3	7.54R4/4-	Stained w/ co	ntaminants	scet lown which the sheen	
18	C	7.54R3/2	_	-	s, Itloan	
Hydric S	History History Sulfice Aquice Reduce	ors: (check all t sol Epipedon lic Odor Moisture Regin cing Conditions	ne	Organi Listed Listed	etions Organic Content in Surfact or Streaking in Sandy Soit on Local Hydric Soils Lit on National Hydric Soils (explain in remarks)	ls st
Hydric se Rationale	oils presen		no			
		nation (circle)				
Hydric so	ytic vegetat oils present' hydrology t		yes no yes no	Is the samplir within a wetla		yes 💿
	e/Remarks					

NOTES: Goils smells like hydrocarbon 2 8-18" + has metalic sheen ir spots

Routine Wetland Determination

(WA State Wetland Delineation Manual or 1987 Corps Wetland Delineation Manual)

Project/Site: BAL Las ofel		Date: 5/19/08					
Applicant/owner: Floyd Sin	cles			State: 20 M 4E			
Investigator(s): V MAN A KLU	J La vissa	(20) 20		Commun	nity D: Wetla	hal E	
Do Normal Circumstances exist on the Site significantly disturbed (ary		yes no)	Tonnanat	III.		
Is the site significantly disturbed (aty). Is the area a potential Problem Area?	picai situadon):	yes no	A	Plot ID:	TP8		
VEGETATION		9 00	Caldin	CONNON	TP8 Daditchos		
VEGETATION		45 9	FUIC II	COMME	-0		
Dominant Plant Species	Stratum	Indicator	Dominant Plan		Stratum	Indicator	
	1.1	T0					
rendranary guass	Н	FACW					
Field bind weed	H	FAC FACH					
ne HLe	H	FACT				1	
TAL HOL							
HYDROPHYTIC VEGETATION	INDICATORS:						
HIDROITITIE VEGETATION	- 1	1				1	
% of dominants OBL, FACW, & FA	.c: 23	3				X	
	-lain halann						
Check all indicators that apply & ex	piani below.						
Regional knowledge of plant commu	mities	Wetland p	lant list (nat'l or	regional)	OT	HER	
Physiological or reproductive adapta	rions		gical adaptations				
Technical Literature			lant Data Base				
Hydrophytic vegetation present? Rationale for decision/Remarks:	yes	no	÷				
HYDROLOGY							
Is it the growing season?	(yes)	no Wa	er Marks: yes	no)	Sediment Depo	sits: yes (no	
Based on:				s (no)	Drainage Patter	rns: yes no	
Dept. of inundation:	inches	Oxi	dized Root (live	roots)	Local Soil Surv	vey: (m)	
	inches		nnels <12 in. ye		Water-stained		
Depth to free water in pit:	inches	A Property of	C Neutral: ye	s) no	Leaves:	yes no	
Depth to saturated soil:	inches		1:0		Leaves.	yes no	
Check all that apply & explain belo		Oth	er:				
Stream, Lake or gage data:	110	0.5					
Aerial photographs:	Other:	0					
Wetland hydrology present?	(yes)	no					
Rationale for decision/Remarks:							
soils moist,							
	3/61 to 16	1. 6 2"					

00220	
Map Unit Name Sultan Sich burn	Drainage Class 100 100 11
(Series & Phase)	Field observations confirm (Yes) No
	Field observations confirm Yes No
Taxonomy (subgroup)	mapped type?

Depth (inches)	Horizon	Matrix color (Munsell	Mottle colors (Munsell	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile
6	А	moist)	7,5/24/4	small, common, faint	scetloan	(match description)
18	В	104R3/2	754R3/4	sm-med many	sulticam	
e en e				:		
	Histos Histic Sulfid Aquic Reduc	ors: (check all tool Epipedon ic Odor Moisture Regireing Conditions d or Low-Chron	ne	Organic Listed o	ions ganic Content in Surface Streaking in Sandy Soi on Local Hydric Soils Li on National Hydric Soils explain in remarks)	ls st
	oils present for decisio	? (yes	no			
Wetland	Determin	nation (circle)	^			
Hydric so	rtic vegetati ils present? iydrology p	on present?	yes no	Is the sampling within a wetlan		(yes) no
Rational	Remarks.					346

NOTES:
Soils have metalic concretions that smell like metals
can't hang flago ble in ag field Field

Flago F-1 & F-Z are hung on reed canany grass 2 edge of ago field Wetland F guesto ditch edge.

Routine Wetland Determination (WA State Wetland Delineation Manual or

1987 Corps Wetland Delineation Manual)

Project/Site: B+L Landfell	1987 Corps ***		I	are: 5		
Applicant/owner: Floyd/Snide	1		S	County: 1-	A	
Investigator(s): KAM KLW					DN 4E 5	
Do Normal Circumstances exist on Is the site significantly disturbed (at Is the area a potential Problem Area	rypical situation)?	yes on		Communi Transect I Plot ID:	ty ID: WEFT D: N. of 1244	Twetc ste.
VEGETATION		,00				
VEGETATION						
Dominant Plant Species	Stratum	Indicator	Dominant Plant S	Species	Stratum	Indicator
reed convery grass	H	FACW				
willow	TS	FACW		å		
duglas spira la	5	FACW				
HYDROPHYTIC VEGETATION			_			-1/
Physiological or reproductive adap Technical Literature Hydrophytic vegetation present? Rationale for decision/Remarks:			ogical adaptations Plant Data Base			
HYDROLOGY						
• • • • • • •	CVas.	no 111/	ater Marks: yes	no)	Sediment Depo	osits: yes (no
Is it the growing season?	yes		ift Lines: yes		Drainage Patte	
Based on: Dept. of inundation:	-24 inches all a	long Ox	idized Root (live ro		Local Soil Sur	
Depth to free water in pit:	inches		C Neutral: yes	no	Water-stained Leaves:	yes) no
Depth to saturated soil:	onches inches		3:0			
Check all that apply & explain bel Stream, Lake or gage data:	ow: Other:	Ot	her:			
Aerial photographs:	yes Other.	no				
Rationale for decision/Remarks:						
Notestpit was	dua to loo	K of for	free water a	or Ox	1. roots.	

SCANO.	
Map Unit Name Semiahmoomuck	Drainage Class Vevi Poor
(Series & Phase)	Field observations confirm Yes No
Taxonomy (subgroup)	mapped type?

Depth (inches)	Horizon	Matrix color (Munsell moist)	Mottle colors (Munsell moist)	Mottle abundance size & contrast	Texture, concretions, structure, etc.	Drawing of soil profile (match description)
0				*		
Hydri c S –	Histos		hat apply)	Concre		- Lavas of Pandy Sail
-	Reduc			Organi Listed Listed	organic Content in Surfact c Streaking in Sandy Soit on Local Hydric Soils Lit on National Hydric Soils explain in remarks)	ls st
Rationale	ile precent	? yes yes yes yes yes yes yes	no		Survey + F	HA/WSDOT 200
W-4lood	Determin	ation (circle)	(

NOTES: Wotland D is as located on wsbot property that we do not have an access agreement to. Therefore veg. 10 + hydrology indicators based on Visual observations made from standing on the 12th st. road grade ton local soil survey into t on wetland characteristics described in wsbot's FOIS for 15 SR167 Pugallup to SRSOn Ther II Aralysis

this is part of such a ble 12th of dues not bird all the way occurred to the 20th of School Bo connectice where 20th 20th and School Bo connectice

Routine Wetland Determination (WA State Wetland Delineation Manual or 1987 Corps Wetland Delineation Manual)

Project/Site: B4L Land fell	1907 COLPS 11			Date: 5	2	
Applicant/owner: Moyd/Snider			County: Pierce State: WA			
Investigator(s): KAM/KLW					ION 4E 5	
Do Normal Circumstances exist on			10		ry ID: Wetla	nd E
Is the site significantly disturbed (at		1.0		Transect 1	Ю:	
Is the area a potential Problem Area	?	yes (10)	Plot ID:		
VEGETATION						
	4	90.90.3516	Dominant Plan	t Cassies	Stratum	Indicator
Dominant Plant Species	Stratum	Indicator	Tommant Flan	r anecies	Juatum	marcator
hawthome	TIS	FAC	reedmana	MANASS	H	PACH
				30		
black cottonwood	1	FAC			4	
willow (Hookers)	5	FACW				
0						
redesive in will		1716				# 7
Pac, Willow	T	FACW.	+			111
HYDROPHYTIC VEGETATION	INDICATORS					
MIDROIMING (DOCUMENT)			1			
% of dominants OBL, FACW, & FA	AC: CE	Kom	5/6			
to of dominants opp, 1110 vi, at 1	1 that	- A	13			
Check all indicators that apply & ex	plain below:					
Chicago III in Inc.						
Regional knowledge of plant comm	unities	Wetland	plant list (nat'l or	regional)		THER
Physiological or reproductive adapt		Morphol	ogical adaptations			
Technical Literature		Wetland	Plant Data Base			
Hydrophytic vegetation present? Rationale for decision/Remarks:	yes	no	*			
HYDROLOGY			*			
To task a manufacture and and	(Vec)	no W	ater Marks: yes	(no)	Sediment Dep	osits: ves no
Is it the growing season?	yes		ift Lines: yes		Drainage Patte	
Based on: Dept of inundation: 0-9	inches		idized Root (live		Local Soil Su	-
Dept. of inundation:	niches		nannels <12 in. ye		2002 001 04	
Depth to free water in pit:	inches		C Neutral: ye	-	Water-stained	
Depth to free water in pit.	mones	1.7	Late Control)	Leaves:	yes no
Depth to saturated soil:	inches in No	0.605	THE T	:0		
Check all that apply & explain belo			her:	1 10		
Stream, Lake or gage data:	. V.V					
Aerial photographs:	Other:					
Wetland hydrology present?	yes	no				13)
Rationale for decision/Remarks:		-				
No test pit dun						
NO 1651 (DIT duy						

مستورين		
Map Unit Name Schrichmon whole	Drainage Class Very par	
(Series & Phase)		
	. Field observations confirm Yes No	
Taxonomy (subgroup)	mapped type?	

	escription	150000000000000000000000000000000000000	Mottle colors	Mottle abundance	Texture, concretions,	Drawing of soil
Depth (inches)	Horizon	Matrix color (Munsell moist)	(Munsell moist)	size & contrast	structure, etc.	profile (match description)
	1 in 1 in 1 in 1 in 1 in 1 in 1 in 1 in			i i		
	Histos Histic Sulfidi Aquic Reduc Glevee	Epipedon ic Odor Moisture Regin ing Conditions d or Low-Chron	ne na Colors	Organi X Listed Listed Other (organic Content in Surface c Streaking in Sandy Soi on Local Hydric Soils Li on National Hydric Soils explain in remarks)	ls st : List
Hydric se Rationale a SSUN deline	oils present for decision	? yes) 1/Remarks:	no based ar ill in pl	local soil su	rug & previous	s (12/05/05)
Wetland	l Determin	ation (circle)				
Hydric so	ytic vegetationils present? hydrology p		yes no	Is the sampling within a wetla		уеѕ по
Rational	e/Remarks:					3

NOTES: wetland edge based on wetland flags observed hanging (flags dated 12/15/03). Wetland to absite & and not have access toproperty,

Flags marked "A-XX 14/15/05 GA"

Sequential number ins

- outlet into Brash Road Oitale - constructed, presm. Flowing

B&L Woodwaste Site

Critical Areas Study

Appendix C
Wetland Rating Forms

WETLAND RATING FORM - WESTERN WASHINGTON

Version 2 - Updated July 2006 to increase accuracy and reproducibility among users

Name of wetland (if known): Wetland A	Date of site visit: 5/7/08
Rated by Kerric Mc Arthur Train	ned by Ecology? Yes No Date of training 1/200
SEC: 5 TWNSHP: 2011 RNGE: 45 Is S/T/	R in Appendix D? YesNol
Map of wetland unit: Figure	Estimated size 8600 SF
SUMMARY	Y OF RATING
Category based on FUNCTIONS provide	led by wetland
I II IV	and the second of the second o
Category I = Score >= 70 Category II = Score 51-69 Category III = Score 30-50 Category IV = Score < 30	Score for Water Quality Functions Score for Hydrologic Functions Score for Habitat Functions TOTAL score for Functions
Category based on SPECIAL CHARAC	TERISTICS of wetland
Final Category (choose the '	'highest" category from above)

Summary of basic information about the wetland unit

Wetland Unit has Special Characteristics	Wetland HGM Class used for Rating
Estuarine	Depressional -
Natural Heritage Wetland	Riverine
Bog	Lake-fringe
Mature Forest	Slope
Old Growth Forest	Flats
Coastal Lagoon	Freshwater Tidal
Interdunal	
None of the above	Check if unit has multiple HGM classes present

Does the wetland unit being rated meet any of the criteria below?

If you answer YES to any of the questions below you will need to protect the wetland according to the regulations regarding the special characteristics found in the wetland.

Check List for Wetlands That May Need Additional Protection (in addition to the protection recommended for its category)	YES	NO
SP1. Has the wetland unit been documented as a habitat for any Federally listed Threatened or Endangered animal or plant species (T/E species)?		
For the purposes of this rating system, "documented" means the wetland is on the appropriate state or federal database.		-
SP2. Has the wetland unit been documented as habitat for any State listed Threatened or Endangered animal species?		
For the purposes of this rating system, "documented" means the wetland is on the appropriate state database. Note: Wetlands with State listed plant species are categorized as Category I Natural Heritage Wetlands (see p. 19 of data form).		
SP3. Does the wetland unit contain individuals of Priority species listed by the WDFW for the state?		r
SP4. Does the wetland unit have a local significance in addition to its functions? For example, the wetland has been identified in the Shoreline Master Program, the Critical Areas Ordinance, or in a local management plan as having special significance.		~

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

The hydrogeomorphic classification groups wetlands into those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands.

Wetland name or number

Classification of Wetland Units in Western Washington

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides (i.e. except during floods)? NO_{-}^{-1} go to 2 YES - the wetland class is Tidal Fringe If yes, is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)? YES - Freshwater Tidal Fringe NO - Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term "Estuarine" wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine wetlands have changed (see p.). 2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit. NO -\go to 3 YES – The wetland class is Flats If your wetland can be classified as a "Flats" wetland, use the form for Depressional wetlands. 3. Does the entire wetland unit meet both of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? + go to 4 YES - The wetland class is Lake-fringe (Lacustrine Fringe) 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.

YES – The wetland class is Slope

<3ft diameter and less than 1 foot deep).

The water leaves the wetland without being impounded?

go to 5

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually

5. Does the entire wetland unit meet all of the following criteria?	
The unit is in a valley, or stream channel, where it gets inundated by overbank	
flooding from that stream or river	
The overbank flooding occurs at least once every two years.	
NOTE: The riverine unit can contain depressions that are filled with water when the river	is
not flooding.	
NO - go to 6 YES - The wetland class is Riverine	
6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the	ė
surface, at some time during the year. This means that any outlet, if present, is higher than the	?
interior of the wetland	
NO - go to 7 $(YES - The wetland class is Depressional$	

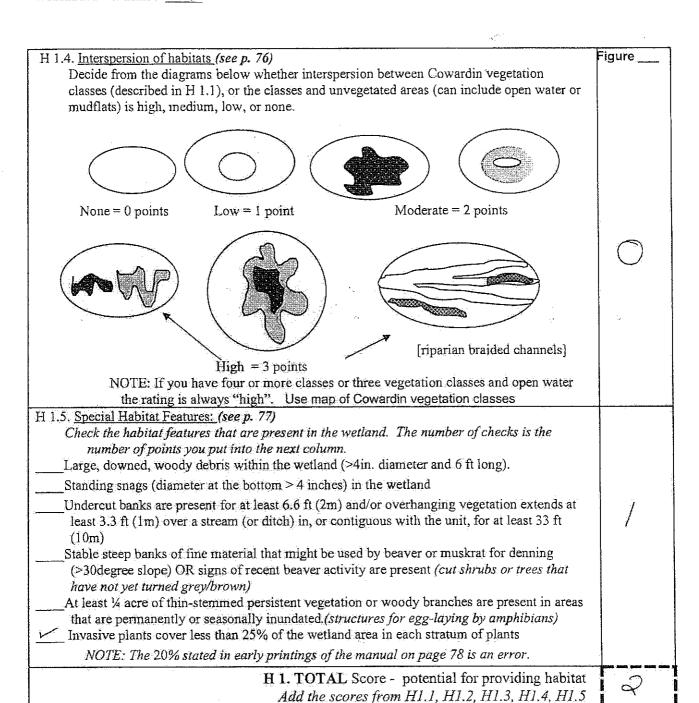
7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding. The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO - go to 8YES - The wetland class is Depressional

Wetland name or number

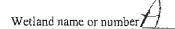
8. Your wetland unit seems to be difficult to classify and probably contains several different HGM clases. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides, GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM Classes within the wetland unit being rated	HGM Class to Use in Rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake-fringe	Lake-fringe
Depressional + Riverine along stream within boundary	Depressional
Depressional + Lake-fringe	Depressional
Salt Water Tidal Fringe and any other class of freshwater wetland	Treat as ESTUARINE under wetlands with special characteristics


If you are unable still to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as Depressional for the rating.

D	Depressional and Flats Wetlands WATER QUALITY FUNCTIONS - Indicators that the wetland unit functions to improve water quality	Points (only 1 score per box)
D	D 1. Does the wetland unit have the <u>potential</u> to improve water quality?	(see p.38)
	D 1.1 Characteristics of surface water flows out of the wetland:	Figure
D	Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 1 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch (If ditch is not permanently flowing treat unit as "intermittently flowing") Provide photo or drawing	2
D	S 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS definitions) YES NO points = 4 points = 0	0
	D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class)	Figure
D	Wetland has persistent, ungrazed, vegetation > = 95% of area points = 5 Wetland has persistent, ungrazed, vegetation > = 1/2 of area points = 3 Wetland has persistent, ungrazed vegetation > = 1/10 of area points = 1 Wetland has persistent, ungrazed vegetation < 1/10 of area points = 0	5
	Map of Cowardin vegetation classes D1.4 Characteristics of seasonal ponding or inundation.	Figure
D	This is the area of the wetland unit that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate area as the average condition 5 out of 10 yrs.	
	Area seasonally ponded is > ½ total area of wetland Area seasonally ponded is > ½ total area of wetland Area seasonally ponded is < ½ total area of wetland Area seasonally ponded is < ½ total area of wetland Map of Hydroperiods	
\mathbf{D}	Total for D 1 Add the points in the boxes above	171
D	D 2. Does the wetland unit have the opportunity to improve water quality? Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland. Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity. — Grazing in the wetland or within 150 ft — Untreated stormwater discharges to wetland — Tilled fields or orchards within 150 ft of wetland — A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging	(see p. 44)
	Residential, urban areas, golf courses are within 150 ft of wetland Wetland is fed by groundwater high in phosphorus or nitrogen	multiplier
	Other multiplier is 2 NO multiplier is 1	2
D	TOTAL - Water Quality Functions Multiply the score from D1 by D2 Add score to table on p. 1	14

D	Depressional and Flats Wetlands HYDROLOGIC FUNCTIONS - Indicators that the wetland unit functions to reduce flooding and stream degradation	Points (only 1 score per box)
	D 3. Does the wetland unit have the potential to reduce flooding and erosion?	(see p.46)
D	D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch [If ditch is not permanently flowing treat unit as "intermittently flowing") Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 0	2
D	D 3.2 Depth of storage during wet periods Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 The wetland is a "headwater" wetland" points = 5 Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5 Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3	0
\mathbf{D}	Unit is flat (yes to Q. 2 or Q. 7 on key) but has small depressions on the surface that trap water points = 1 Marks of ponding less than 0.5 ft points = 0 D 3.3 Contribution of wetland unit to storage in the watershed	
	Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class points = 5	0
D	Total for D 3 Add the points in the boxes above	
D	D 4. Does the wetland unit have the opportunity to reduce flooding and erosion? Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. Note which of the following indicators of opportunity apply. — Wetland is in a headwater of a river or stream that has flooding problems — Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems — Other	multiplier
	YES multiplier is 2 NO multiplier is 1	
D	TOTAL - Hydrologic Functions Multiply the score from D 3 by D 4 Add score to table on p. 1	4


These questions apply to wetlands of all HGH HABITAT FUNCTIONS - Indicators that unit function		nabitat	Points (only 1 score per box)
H 1. Does the wetland unit have the potential to pr	rovide habitat for many	species?	•
H 1.1 Vegetation structure (see p. 72)		· · ·	Figure
Check the types of vegetation classes present (as defined class is ¼ acre or more than 10% of the area if unit i Aquatic bed Emergent plants	is smaller than 2.5 acres.	old for each	The configuration and
Scrub/shrub (areas where shrubs have >30% Forested (areas where trees have >30% cover	,		
If the unit has a forested class check if:	• 7		\bigcirc
The forested class has 3 out of 5 strata (cano moss/ground-cover) that each cover 20%	within the forested polygon	baceous,	
Add the number of vegetation structures that qualify. If	4 structures or more	points = 4	
Man of Coulodin vecestation almost a	3 structures	points $= 2$	
Map of Cowardin vegetation classes	2 structures	points = 1	
	1 structure	points = 0	
H 1.2. <u>Hydroperiods</u> (see p. 73) Check the types of water regimes (hydroperiods) pr		- " -	Figure
regime has to cover more than 10% of the wetland of descriptions of hydroperiods) Permanently flooded or inundated Seasonally flooded or inundated Occasionally flooded or inundated Saturated only Permanently flowing stream or river in, or adj Seasonally flowing stream in, or adjacent to, t Lake-fringe wetland = 2 points Freshwater tidal wetland = 2 points	4 or more types present 3 types present 2 types present 1 type present acent to, the wetland	points = 3 points = 2 point = 1 points = 0	
H 1.3. Richness of Plant Species (see p. 75) Count the number of plant species in the wetland the of the same species can be combined to meet the size You do not have to name the species. Do not include Eurasian Milfoil, reed canarygre. If you counted: List species below if you want to:	se threshold) ass, purple loosestrife, Can > 19 species 5 - 19 species	adian Thistle points = 2 points = 1 points = 0	

Total for page ___/

Comments

Total for page 💙

H 2.3 Near or adjacent to other priority habitats listed by WDFW (see p. 82)	
Which of the following priority habitats are within 330ft (100m) of the wetland unit? NOTE: the	
connections do not have to be relatively undisturbed.	
These are DFW definitions. Check with your local DFW biologist if there are any questions.	
Riparian: The area adjacent to aquatic systems with flowing water that contains elements of	
both aquatic and terrestrial ecosystems which mutually influence each other.	
Aspen Stands: Pure or mixed stands of aspen greater than 0.8 ha (2 acres).	
Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft.	
Old-growth forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species,	
forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8	
trees/acre) > 81 cm (32 in) dbh or > 200 years of age.	
Mature forests: Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover	
may be less that 100%; crown cover may be less that 100%; decay, decadence, numbers of	
snags, and quantity of large downed material is generally less than that found in old-	
growth; 80 - 200 years old west of the Cascade crest.	
Prairies: Relatively undisturbed areas (as indicated by dominance of native plants) where	
grasses and/or forbs form the natural climax plant community.	
Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft),	
composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine	;
tailings. May be associated with cliffs.	1
Caves: A naturally occurring cavity, recess, void, or system of interconnected passages	1
Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where	
canopy coverage of the oak component of the stand is 25%.	
Urban Natural Open Space: A priority species resides within or is adjacent to the open	
space and uses it for breeding and/or regular feeding; and/or the open space functions as a	
corridor connecting other <i>priority habitats</i> , especially those that would otherwise be	
isolated; and/or the open space is an isolated remnant of natural habitat larger than 4 ha (10	
acres) and is surrounded by urban development.	
Estuary/Estuary-like: Deepwater tidal habitats and adjacent tidal wetlands, usually semi-	
enclosed by land but with open, partly obstructed or sporadic access to the open ocean, and	
in which ocean water is at least occasionally diluted by freshwater runoff from the land. The salinity may be periodically increased above that of the open ocean by evaporation.	
Along some low-energy coastlines there is appreciable dilution of sea water. Estuarine	
habitat extends upstream and landward to where ocean-derived salts measure less than	
0.5ppt, during the period of average annual low flow. Includes both estuaries and lagoons.	
Marine/Estuarine Shorelines: Shorelines include the intertidal and subtidal zones of	
beaches, and may also include the backshore and adjacent components of the terrestrial	
landscape (e.g., cliffs, snags, mature trees, dunes, meadows) that are important to shoreline	
associated fish and wildlife and that contribute to shoreline function (e.g., sand/rock/log	
recruitment, nutrient contribution, erosion control).	
If wetland has 3 or more priority habitats = 4 points	
If wetland has 2 priority habitats = 3 points	
If wetland has 1 priority habitat = 1 point No habitats = 0 points	
Note: All vegetated wetlands are by definition a priority habitat but are not included in this	
list. Nearby wetlands are addressed in question H 2.4)	

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

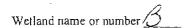
Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the Category when the appropriate criteria are met.	
SC 1.0 Estuarine wetlands (see p. 86)	
Does the wetland unit meet the following criteria for Estuarine wetlands?	
 The dominant water regime is tidal, Vegetated, and 	
 — With a salinity greater than 0.5 ppt. YES = Go to SC 1.1 NO ✓ 	
SC 1.1 Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	Cat. I
YES = Category I NO go to SC 1.2	
SC 1.2 Is the wetland unit at least 1 acre in size and meets at least two of the following three conditions? YES = Category I NO = Category II	Cat. I
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant species. If the non-native <i>Sparting</i> spp. are the only species that cover	Cat. II
more than 10% of the wetland, then the wetland should be given a dual rating (I/II). The area of Spartina would be rated a Category II while the	Dual rating
relatively undisturbed upper marsh with native species would be a Category I. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre.	IMI
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.	
 The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands. 	

	
SC 4.0 Forested Wetlands (see p. 90) Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its functions. — Old-growth forests: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm) or more.	
NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter.	PO TO THE POST OF
— Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 - 200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth.	
YES = Category I NOnot a forested wetland with special characteristics	Cat. I
SC 5.0 Wetlands in Coastal Lagoons (see p. 91)	
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) YES = Go to SC 5.1 NO Lanot a wetland in a coastal lagoon	
SC 5.1 Does the wetland meets all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). — At least 34 of the landward edge of the wetland has a 100 ft buffer of	The state of the s
 At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland. The wetland is larger than 1/10 acre (4350 square feet) 	Cat. I
YES = Category I NO = Category II	Cat. II

This page left blank

Wetland name or number ________


WETLAND RATING FORM - WESTERN WASHINGTON

Version 2 - Updated July 2006 to increase accuracy and reproducibility among users

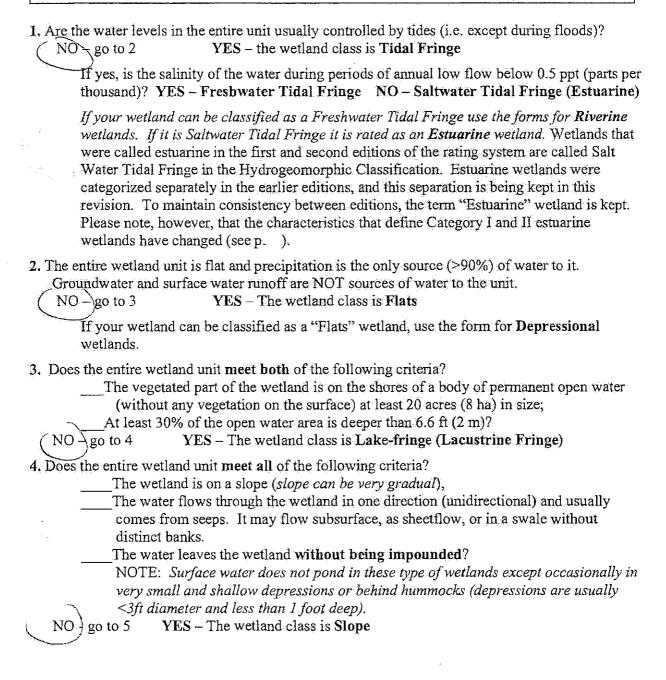
Name of wetland (if known): We Hand B Date of site visit: 5/7/08
Rated by Kerric McAythur Trained by Ecology? Yes No Date of training 1/2008
SEC: 5 TWNSHP: 20N RNGE: 40 Is S/T/R in Appendix D? Yes No
Map of wetland unit: Figure Estimated size 35, 763 sf
SUMMARY OF RATING
Category based on FUNCTIONS provided by wetland I II IV
Category I = Score >=70 Category II = Score 51-69 Category III = Score 30-50 Category IV = Score < 30 Category IV = Score < 30 Score for Water Quality Functions Score for Hydrologic Functions TOTAL score for Functions 7 TOTAL score for Functions
Category based on SPECIAL CHARACTERISTICS of wetland I II Does not Apply
Final Category (choose the "highest" category from above)

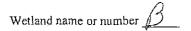
Summary of basic information about the wetland unit

Wetland Unit has Special Characteristics	Wetland HGM Class used for Rating	
Estuarine	Depressional	سسا
Natural Heritage Wetland	Riverine	
Bog	Lake-fringe	
Mature Forest	Slope	
Old Growth Forest	Flats	
Coastal Lagoon	Freshwater Tidal	
Interdunal		
None of the above	Check if unit has multiple HGM classes present	

Does the wetland unit being rated meet any of the criteria below?

If you answer YES to any of the questions below you will need to protect the wetland according to the regulations regarding the special characteristics found in the wetland.


Check List for Wetlands That May Need Additional Protection (in addition to the protection recommended for its category)	YES	NO
SP1. Has the wetland unit been documented as a habitat for any Federally listed Threatened or Endangered animal or plant species (T/E species)?		
For the purposes of this rating system, "documented" means the wetland is on the appropriate state or federal database.		
SP2. Has the wetland unit been documented as habitat for any State listed Threatened or Endangered animal species?		
For the purposes of this rating system, "documented" means the wetland is on the appropriate state database. Note: Wetlands with State listed plant species are categorized as Category I Natural Heritage Wetlands (see p. 19 of data form).		u
SP3. Does the wetland unit contain individuals of Priority species listed by the WDFW for the state?		<u>[</u>
SP4. Does the wetland unit have a local significance in addition to its functions? For example, the wetland has been identified in the Shoreline Master Program, the Critical Areas Ordinance, or in a local management plan as having special significance.		V


To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

The hydrogeomorphic classification groups wetlands into those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands.

Classification of Wetland Units in Western Washington

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

- 5. Does the entire wetland unit meet all of the following criteria?

 The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river

 The overbank flooding occurs at least once every two years.

 NOTE: The riverine unit can contain depressions that are filled with water when the river is not flooding.

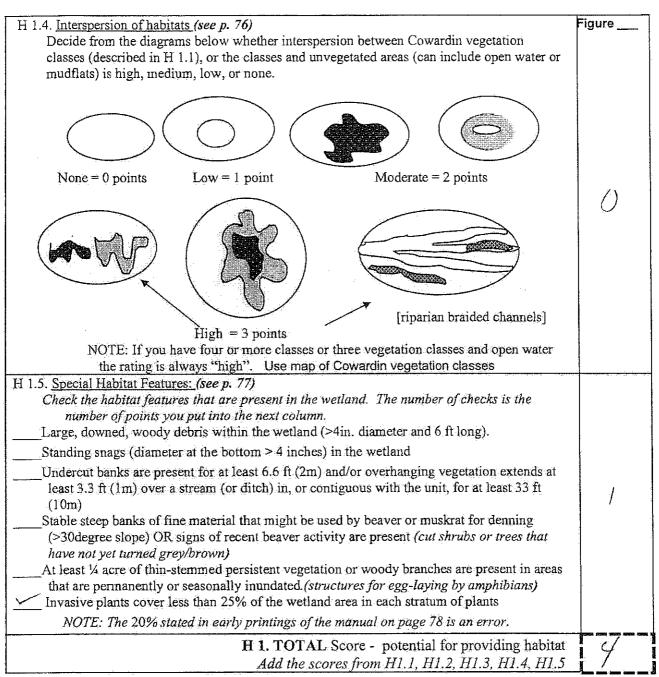
 NO-go to 6 YES The wetland class is Riverine
- 6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year. This means that any outlet, if present, is higher than the interior of the wetland.

 NO go to 7 YES The wetland class is Depressional
- 7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding. The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO - go to 8 YES - The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM clases. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM Classes within the wetland unit being rated	HGM Class to Use in Rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake-fringe	Lake-fringe
Depressional + Riverine along stream within boundary	Depressional
Depressional + Lake-fringe	Depressional
Salt Water Tidal Fringe and any other class of freshwater wetland	Treat as ESTUARINE under wetlands with special characteristics


If you are unable still to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as **Depressional** for the rating.

D	Depressional and Flats Wetlands WATER QUALITY FUNCTIONS - Indicators that the wetland unit functions to improve water quality	Points (only 1 score per box)
\mathbf{D}	D 1. Does the wetland unit have the potential to improve water quality?	(see p.38)
	D 1.1 Characteristics of surface water flows out of the wetland: Unit is a depression with no surface water leaving it (no outlet) points = 3	
D	Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 1 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch points = 1 (If ditch is not permanently flowing treat unit as "intermittently flowing") Provide photo or drawing	7
	S 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS	
D	definitions) yes points = 4 NO points = 0	0
	D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class)	Figure
D	Wetland has persistent, ungrazed, vegetation $> = 95\%$ of area points $= 5$ Wetland has persistent, ungrazed, vegetation $> = 1/2$ of area points $= 3$ Wetland has persistent, ungrazed vegetation $> = 1/10$ of area points $= 1$	5
	Wetland has persistent, ungrazed vegetation <1/10 of area points = 0 Map of Cowardin vegetation classes	
	D1.4 Characteristics of seasonal ponding or inundation.	Figure
D	This is the area of the wetland unit that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate area as the average condition 5 out of 10 yrs. Area seasonally ponded is > ½ total area of wetland points = 4 Area seasonally ponded is > ½ total area of wetland points = 2 Area seasonally ponded is < ½ total area of wetland points = 0 Map of Hydroperiods	2
D	Total for D 1 Add the points in the boxes above	9
D	D 2. Does the wetland unit have the opportunity to improve water quality? Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland. Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity. Grazing in the wetland or within 150 ft Untreated stormwater discharges to wetland Tilled fields or orchards within 150 ft of wetland A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging Residential, urban areas, golf courses are within 150 ft of wetland Wetland is fed by groundwater high in phosphorus or nitrogen Other	multiplier
	YES multiplier is 2 NO multiplier is 1 TOTAL - Water Quality Functions Multiply the score from D1 by D2	702
D	TOTAL - Water Quality Functions Multiply the score from D1 by D2 Add score to table on p. 1	10

D	Depressional and Flats Wetlands HYDROLOGIC FUNCTIONS - Indicators that the wetland unit functions to reduce flooding and stream degradation	Points (only 1 score per box)
	D 3. Does the wetland unit have the <u>potential</u> to reduce flooding and erosion?	(see p.46)
D	D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch points = 1 (If ditch is not permanently flowing treat unit as "intermittently flowing") Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 0	2
D	D 3.2 Depth of storage during wet periods Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 The wetland is a "headwater" wetland" points = 5 Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5 Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3 Unit is flat (yes to Q. 2 or Q. 7 on key) but has small depressions on the surface that trap water points = 1 Marks of ponding less than 0.5 ft points = 0	0
D	D 3.3 Contribution of wetland unit to storage in the watershed Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class points = 5	0
D	Total for D 3 Add the points in the boxes above	
D	Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. Note which of the following indicators of opportunity apply. — Wetland is in a headwater of a river or stream that has flooding problems — Wetland drains to a river or stream that has flooding problems — Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems — Other Other	multiplier
	YES multiplier is 2 NO multiplier is 1 TOTAL Hydrologic Functions Multiply the score from D 3 by D 4	
$ \mathbf{D} $	TOTAL - Hydrologic Functions Multiply the score from D 3 by D 4 Add score to table on p. 1	4

These questions apply to wetlands of all HGM classes. HABITAT FUNCTIONS - Indicators that unit functions to provide important habitat			Points (only 1 score per box)
H 1. Does the wetland unit have the potential to			-
H 1.1 Vegetation structure (see p. 72) Check the types of vegetation classes present (as defication class is ¼ acre or more than 10% of the area if un Aquatic bed	ned by Cowardin)- Size thresh		Figure
Emergent plants Scrub/shrub (areas where shrubs have >30 Forested (areas where trees have >30% co			
If the unit has a forested class check if: The forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the forested polygon			
Add the number of vegetation structures that qualify. Map of Cowardin vegetation classes	4 structures or more 3 structures 2 structures 1 structure	points = 4 points = 2 points = 1 points = 0	
H 1.2. Hydroperiods (see p. 73)	1 Structure	pomts - o	Figure
Check the types of water regimes (hydroperiods) regime has to cover more than 10% of the wetland descriptions of hydroperiods) Permanently flooded or inundated Seasonally flooded or inundated Occasionally flooded or inundated Saturated only Permanently flowing stream or river in, or Seasonally flowing stream in, or adjacent the Lake-fringe wetland = 2 points Freshwater tidal wetland = 2 points	4 or more types presen 3 types present 2 types present 1 type present adjacent to, the wetland	for t points = 3 points = 2 point = 1 points = 0	2
H 1.3. Richness of Plant Species (see p. 75) Count the number of plant species in the wetland of the same species can be combined to meet the You do not have to name the species. Do not include Eurasian Milfoil, reed canary If you counted: List species below if you want to:	d that cover at least 10 ft ² . (die size threshold)	fferent patches	/

Total for page

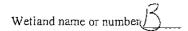
Comments

H 2.1 Buffers (see p. 80) Choose the description that best represents condition of buffer of wetland unit. The highest scoring criterion that applies to the wetland is to be used in the rating. See text for definition of "undisturbed." — 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% of circumference. No structures are within the undisturbed part of buffer. (relatively undisturbed also means no-grazing, no landscaping, no daily human use) Points = 5 — 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference. Points = 4 — 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% circumference, Points = 3 — 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. Points = 3 If buffer does not meet any of the criteria above No paved areas (except paved trails) or buildings within 25 m (80ft) of wetland > 95% circumference. Light to moderate grazing, or lawns are OK. Points = 2 No paved areas or buildings within 50m of wetland for >50% circumference.	igure
criterion that applies to the wetland is to be used in the rating. See text for definition of "undisturbed." — 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% of circumference. No structures are within the undisturbed part of buffer. (relatively undisturbed also means no-grazing, no landscaping, no daily human use) Points = 5 — 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference. — 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% circumference. — 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference, — 250 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference, — 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. — Points = 3 — If buffer does not meet any of the criteria above No paved areas (except paved trails) or buildings within 25 m (80ft) of wetland > 95% circumference. Light to moderate grazing, or lawns are OK. Points = 2	
of circumference. No structures are within the undisturbed part of buffer. (relatively undisturbed also means no-grazing, no landscaping, no daily human use) Points = 5 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference. Points = 4 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% circumference. Points = 4 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference, Points = 3 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. Points = 3 If buffer does not meet any of the criteria above No paved areas (except paved trails) or buildings within 25 m (80ft) of wetland > 95% circumference. Light to moderate grazing, or lawns are OK. Points = 2	
Light to moderate grazing, or lawns are OK. Heavy grazing in buffer. Vegetated buffers are <2m wide (6.6ft) for more than 95% of the circumference (e.g. tilled fields, paving, basalt bedrock extend to edge of wetland Buffer does not meet any of the criteria above. Points = 1 Aerial photo showing buffers	2
H 2.2 Corridors and Connections (see p. 81) H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft wide, has at least 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor). YES = 4 points (go to H 2.3) NO = go to H 2.2.2 H 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 50ft wide, has at least 30% cover of shrubs or forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25 acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in the question above? YES = 2 points (go to H 2.3) NO = H 2.2.3 H 2.2.3 Is the wetland: within 5 mi (8km) of a brackish or salt water estuary OR	/
within 3 mi of a large field or pasture (>40 acres) OR within 1 mi of a lake greater than 20 acres? YES = 1 point NO = 0 points	

Total for page 3

H 2.3 Near or adjacent to other priority habitats listed by WDFW (see p. 82)	
Which of the following priority habitats are within 330ft (100m) of the wetland unit? NOTE: the	
connections do not have to be relatively undisturbed.	
These are DFW definitions. Check with your local DFW biologist if there are any questions.	
Riparian: The area adjacent to aquatic systems with flowing water that contains elements of	
both aquatic and terrestrial ecosystems which mutually influence each other.	
Aspen Stands: Pure or mixed stands of aspen greater than 0.8 ha (2 acres).	
Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft.	
Old-growth forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species,	:
forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8	
trees/acre) > 81 cm (32 in) dbh or > 200 years of age.	
Mature forests: Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover	
may be less that 100%; crown cover may be less that 100%; decay, decadence, numbers of	
snags, and quantity of large downed material is generally less than that found in old-	
growth; 80 - 200 years old west of the Cascade crest.	
Prairies: Relatively undisturbed areas (as indicated by dominance of native plants) where	
grasses and/or forbs form the natural climax plant community.	
Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft),	· · i
composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine	
tailings. May be associated with cliffs.	<u>t</u>
Caves: A naturally occurring cavity, tecess, void, or system of interconnected passages Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where	. /
canopy coverage of the oak component of the stand is 25%.	I
Urban Natural Open Space: A priority species resides within or is adjacent to the open	
space and uses it for breeding and/or regular feeding; and/or the open space functions as a	
corridor connecting other <i>priority habitats</i> , especially those that would otherwise be	
isolated; and/or the open space is an isolated remnant of natural habitat larger than 4 ha (10	
acres) and is surrounded by urban development.	
Estuary/Estuary-like: Deepwater tidal habitats and adjacent tidal wetlands, usually semi-	į
enclosed by land but with open, partly obstructed or sporadic access to the open ocean, and	
in which ocean water is at least occasionally diluted by freshwater runoff from the land,	
The salinity may be periodically increased above that of the open ocean by evaporation.	
Along some low-energy coastlines there is appreciable dilution of sea water. Estuarine	
habitat extends upstream and landward to where ocean-derived salts measure less than	
0.5ppt, during the period of average annual low flow. Includes both estuaries and lagoons.	
Marine/Estuarine Shorelines: Shorelines include the intertidal and subtidal zones of	
beaches, and may also include the backshore and adjacent components of the terrestrial	
landscape (e.g., cliffs, snags, mature trees, dunes, meadows) that are important to shoreline	
associated fish and wildlife and that contribute to shoreline function (e.g., sand/rock/log	
recruitment, nutrient contribution, erosion control).	
If wetland has 3 or more priority habitats = 4 points	
If wetland has 2 priority habitats = 3 points	
If wetland has 1 priority habitat = 1 point No habitats = 0 points	
Note: All vegetated wetlands are by definition a priority habitat but are not included in this	1
list. Nearby wetlands are addressed in question H 2.4)	

H 2.4 Wetland Landscape (choose the one description of the landscape around the wetland that best fits) (see p. 84) There are at least 3 other wetlands within ½ mile, and the connections between them are relatively undisturbed (light grazing between wetlands OK, as is lake shore with some boating, but connections should NOT be bisected by paved roads, fill, fields, or other development. The wetland is Lake-fringe on a lake with little disturbance and there are 3 other lake-fringe wetlands within ½ mile There are at least 3 other wetlands within ½ mile, BUT the connections between them are disturbed The wetland is Lake-fringe on a lake with disturbance and there are 3 other lake-fringe wetland within ½ mile There is at least 1 wetland within ½ mile. There are no wetlands within ½ mile. There are no wetlands within ½ mile.	5
H 2. TOTAL Score - opportunity for providing habitat Add the scores from H2.1,H2.2, H2.3, H2.4	9
TOTAL for H 1 from page 14	4
Total Score for Habitat Functions — add the points for H 1, H 2 and record the result on p. I	13


CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the Category when the appropriate criteria are met.	
SC 1.0 Estuarine wetlands (see p. 86)	
Does the wetland unit meet the following criteria for Estuarine wetlands?	
 The dominant water regime is tidal, Vegetated, and With a salinity greater than 0.5 ppt. 	
YES = Go to SC 1.1 NO ∠	
SC 1.1 Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	Cat. I
YES = Category I NO go to SC 1.2	
SC 1.2 Is the wetland unit at least 1 acre in size and meets at least two of the following three conditions? YES = Category I NO = Category II	Cat. I
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant species. If the non-native Spartina spp. are the only species that cover	Cat. II
more than 10% of the wetland, then the wetland should be given a dual	Dual
rating (I/II). The area of Spartina would be rated a Category II while the	rating
relatively undisturbed upper marsh with native species would be a Category I. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre.	1/11
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of	
shrub, forest, or un-grazed or un-mowed grassland.	
The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands.	

Natura Progra state T SC 2	m/DNR as either high quality hreatened, Endangered, or Ser. 1 Is the wetland unit being rat Natural Heritage wetland? before you need to contact is information from Appendix D ES contact WNHP/DNI	identified by the Washington Natural Heritage undisturbed wetlands or wetlands that support asitive plant species. The dina Section/Township/Range that contains a contain the section is used to screen out most sites with white with the section	Cat. I
	a site with state threatened or YES = Category I	tland as a high quality undisturbed wetland or as endangered plant species? NOnot a Heritage Wetland	
Does t	tion in bogs? Use the key below	of the unit) meet both the criteria for soils and w to identify if the wetland is a bog. If you the wetland based on its functions.	
1	peats or mucks, that compose	oil horizons (i.e. layers of organic soil), either 16 inches or more of the first 32 inches of the 3 for a field key to identify organic soils)? Yes - No go to Q. 2	de constitución de la constituci
2.		oils, either peats or mucks that are less than 16 an impermeable hardpan such as clay or ing on a lake or pond? (No) Is not a bog for purpose of rating	
3.	Does the unit have more than other plants, if present, consist significant component of the and herbaceous cover consist	n 70% cover of mosses at ground level, AND st of the "bog" species listed in Table 3 as a vegetation (more than 30% of the total shrub is of species in Table 3)?	
	you may substitute that cr seeps into a hole dug at le	pose of rating No - go to Q. 4 in about the extent of mosses in the understory riterion by measuring the pH of the water that east 16" deep. If the pH is less than 5.0 and the ble 3 are present, the wetland is a bog.	
1.	red cedar, western hemlock, spruce, or western white pine species) on the bog species p	over) with sitka spruce, subalpine fir, western lodgepole pine, quaking aspen, Englemann's e, WITH any of the species (or combination of lant list in Table 3 as a significant component coverage of the total shrub/herbaceous cover)?	
2.	YES = Category I	No Is not a bog for purpose of rating	Cat. I

SC 4.0 Forested Wetlands (see p. 90) Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its functions. — Old-growth forests: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm) or more. NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter. — Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 – 200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth. YES = Category I NO		ļ
Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter. — Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 – 200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth. YES = Category I NO	Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its functions. — Old-growth forests: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a	
80 – 200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth. YES = Category I NO	Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR"	
SC 5.0 Wetlands in Coastal Lagoons (see p. 91) Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) YES = Go to SC 5.1 NO not a wetland in a coastal lagoon SC 5.1 Does the wetland meets all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland. — The wetland is larger than 1/10 acre (4350 square feet)	80 – 200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found	
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) YES = Go to SC 5.1 NO not a wetland in a coastal lagoon SC 5.1 Does the wetland meets all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland. — The wetland is larger than 1/10 acre (4350 square feet)	YES = Category I NOnot a forested wetland with special characteristics	Cat. I
 The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) YES = Go to SC 5.1 NO not a wetland in a coastal lagoon SC 5.1 Does the wetland meets all of the following three conditions? The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). At least ¼ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland. The wetland is larger than 1/10 acre (4350 square feet) 	SC 5.0 Wetlands in Coastal Lagoons (see p. 91)	
 The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). At least ¼ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland. The wetland is larger than 1/10 acre (4350 square feet) 	 The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) 	
	 The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). At least ¼ of the landward edge of the wetland has a 100 ft buffer of 	Cat. I
		Cat. II

SC 6.0 Interdunal Wetlands (see p. 93)	
Is the wetland unit west of the 1889 line (also called the Western Boundary of Upland	
Ownership or WBUO)?	
YES - go to SC 6.1 NO not an interdunal wetland for rating	
If you answer yes you will still need to rate the wetland based on its	
functions.	
In practical terms that means the following geographic areas:	
 Long Beach Peninsula- lands west of SR 103]
Grayland-Westport- lands west of SR 105	
 Ocean Shores-Copalis- lands west of SR 115 and SR 109 	
SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is	um de AAA de de de de de de de de de de de de de
once acre or larger?	
YES = Category II $NO - go to SC 6.2$	Cat. II
SC 6.2 Is the unit between 0.1 and 1 acre, or is it in a mosaic of wetlands that is	
between 0.1 and 1 acre?	}
YES = Category III	Cat. III
Category of wetland based on Special Characteristics	0.7
Choose the "highest" rating if wetland falls into several categories, and record on	IVA
p. I.	
If you answered NO for all types enter "Not Applicable" on p.1	

This page left_blank

Wetland name or number _____

WETLAND RATING FORM - WESTERN WASHINGTON

Version 2 - Updated July 2006 to increase accuracy and reproducibility among users

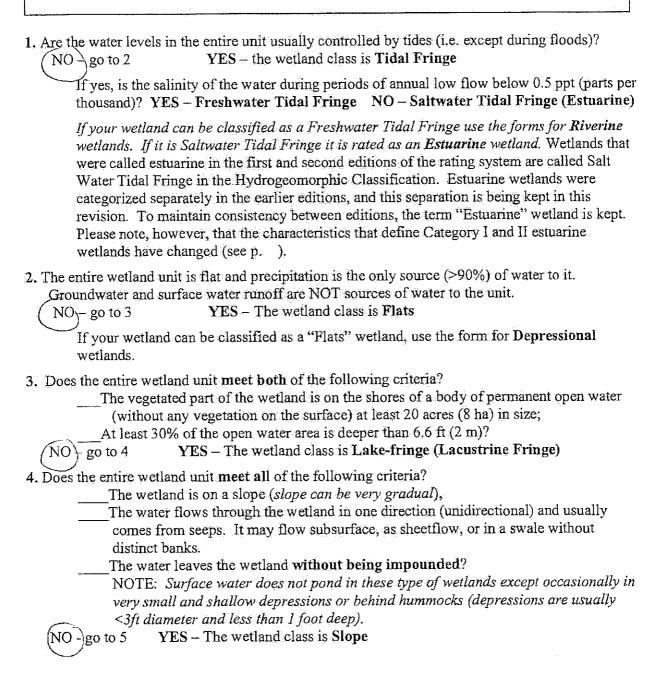
	1 1 2
Name of wetland (if known): Wetland C	Date of site visit: 5/7/0
Rated by Kerne McAythat Trainer	d by Ecology? Yes No Date of training 1//2005
SEC: 5 TWNSHP: 20M RNGE: 45 Is S/T/R	in Appendix D? Yes No
Map of wetland unit: Figure	Estimated size
SUMMARY	OF RATING
Category based on FUNCTIONS provide	ed by wetland
I II IV	
Category I = Score >= 70 Category II = Score 51-69 Category III = Score 30-50 Category IV = Score < 30	Score for Hydrologic Functions Score for Habitat Functions TOTAL score for Functions 73
Category based on SPECIAL CHARACT	TERISTICS of wetland
I II Does not Apply	
Final Category (choose the "I	highest" category from above)
Summary of basic informa	tion about the wetland unit
Wetland Unit has Special	Wetland HGM Class
Characteristics	used for Rating
Estuarine	Depressional
Natural Heritage Wetland	Riverine
Bog	Lake-fringe

Characteristics	used for Rating	
Estuarine	Depressional	1
Natural Heritage Wetland	Riverine	
Bog	Lake-fringe	<u> </u>
Mature Forest	Slope	
Old Growth Forest	Flats	
Coastal Lagoon	Freshwater Tidal	
Interdunal		Agency for it and histories
None of the above	Check if unit has multiple HGM classes present	

				/)
Wetland	name	or	number	
r, 001010				

Does the wetland unit being rated meet any of the criteria below?

If you answer YES to any of the questions below you will need to protect the wetland according to the regulations regarding the special characteristics found in the wetland.


Check List for Wetlands That May Need Additional Protection (in addition to the protection recommended for its category)	YES	NO
SP1. Has the wetland unit been documented as a habitat for any Federally listed Threatened or Endangered animal or plant species (T/E species)?		
For the purposes of this rating system, "documented" means the wetland is on the appropriate state or federal database.		
SP2. Has the wetland unit been documented as habitat for any State listed Threatened or Endangered animal species? For the purposes of this rating system, "documented" means the wetland is on the appropriate state database. Note: Wetlands with State listed plant species are categorized as Category I Natural Heritage Wetlands (see p. 19 of data form).		
SP3. Does the wetland unit contain individuals of Priority species listed by the WDFW for the state?		
SP4. Does the wetland unit have a local significance in addition to its functions? For example, the wetland has been identified in the Shoreline Master Program, the Critical Areas Ordinance, or in a local management plan as having special significance.		

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

The hydrogeomorphic classification groups wetlands into those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands.

Classification of Wetland Units in Western Washington

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

					$^{\circ}$	
Wetland	name	or	number	1		/

- 5. Does the entire wetland unit meet all of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river
 - The overbank flooding occurs at least once every two years.

NOTE: The riverine unit can contain depressions that are filled with water when the river is not flooding.

NO)- go to 6 YES - The wetland class is Riverine

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year. This means that any outlet, if present, is higher than the interior of the wetland.

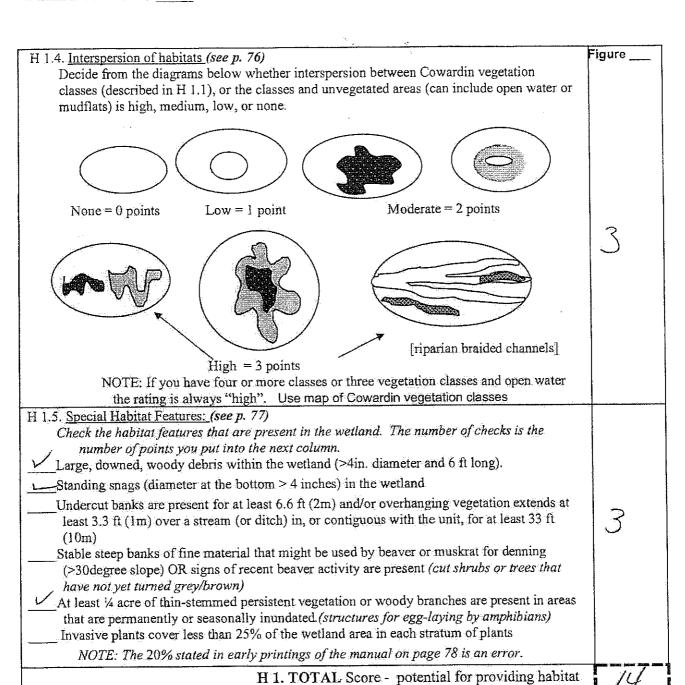
NO - go to 7 YES - The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding. The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO - go to 8 YES - The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM clases. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM Classes within the wetland unit being rated	HGM Class to Use in Rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake-fringe	Lake-fringe
Depressional + Riverine along stream within boundary	Depressional
Depressional + Lake-fringe	Depressional
Salt Water Tidal Fringe and any other class of freshwater wetland	Treat as ESTUARINE under wetlands with special characteristics


If you are unable still to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as **Depressional** for the rating.

D	Depressional and Flats Wetlands WATER QUALITY FUNCTIONS - Indicators that the wetland unit functions to improve water quality	Points (only 1 score per box)
D	D 1. Does the wetland unit have the potential to improve water quality?	(see p.38)
D	D 1.1 Characteristics of surface water flows out of the wetland: Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 1	Figure
	Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch points = 1 (If ditch is not permanently flowing treat unit as "intermittently flowing") Provide photo or drawing S 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS)	/
	definitions)	
D	YES points = 4 NO points = 0	
	D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class)	Figure
т,	Wetland has persistent, ungrazed, vegetation >= 95% of area points = 5	
D	Wetland has persistent, ungrazed, vegetation > = 1/2 of area points = 3 Wetland has persistent, ungrazed vegetation > = 1/10 of area points = 1	
	Wetland has persistent, ungrazed vegetation > = 1/10 of area points = 1 Wetland has persistent, ungrazed vegetation <1/10 of area points = 0	
	Map of Cowardin vegetation classes	
	D1.4 Characteristics of seasonal ponding or inundation.	Figure
	This is the area of the wetland unit that is ponded for at least 2 months, but dries out	
D	sometime during the year. Do not count the area that is permanently ponded. Estimate	//
	area as the average condition 5 out of 10 yrs.	14 1
	Area seasonally ponded is > ½ total area of wetland points = 4	1/ 1
	Area seasonally ponded is $> \frac{1}{4}$ total area of wetland points = 2	'
	Area seasonally ponded is < 1/4 total area of wetland points = 0 Map of Hydroperiods	
D	Total for D 1 Add the points in the boxes above	14
D	D 2. Does the wetland unit have the opportunity to improve water quality?	(see p. 44)
	Answer YES if you know or believe there are pollutants in groundwater or surface water	
	coming into the wetland that would otherwise reduce water quality in streams, lakes or	
	groundwater downgradient from the wetland. Note which of the following conditions	
	provide the sources of pollutants. A unit may have pollutants coming from several]
	sources, but any single source would qualify as opportunity.	
	Grazing in the wetland or within 150 ft	
	Untreated stormwater discharges to wetland Tilled fields or orchards within 150 ft of wetland	
	A stream or culvert discharges into wetland that drains developed areas, residential areas,	
	farmed fields, roads, or clear-cut logging	
	Residential, urban areas, golf courses are within 150 ft of wetland	multiplier
	 Wetland is fed by groundwater high in phosphorus or nitrogen 	
	Other	<u>~</u>
	(YES) multiplier is 2 NO multiplier is 1	
D	TOTAL - Water Quality Functions Multiply the score from D1 by D2 Add score to table on p. 1	98

D	Depressional and Flats Wetlands HYDROLOGIC FUNCTIONS - Indicators that the wetland unit functions to reduce flooding and stream degradation	Points (only 1 score per box)
	D 3. Does the wetland unit have the potential to reduce flooding and erosion?	(see p.46)
D	D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch (If ditch is not permanently flowing treat unit as "intermittently flowing") Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 0	2
D	D 3.2 Depth of storage during wet periods Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7. The wetland is a "headwater" wetland" points = 5. Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5. Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3. Unit is flat (yes to Q. 2 or Q. 7 on key) but has small depressions on the surface that trap water points = 1. Marks of ponding less than 0.5 ft.	5
D	D 3.3 Contribution of wetland unit to storage in the watershed Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class points = 5	5
D	Total for D 3 Add the points in the boxes above	1/2
D	Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. Note which of the following indicators of opportunity apply. Wetland is in a headwater of a river or stream that has flooding problems Wetland drains to a river or stream that has flooding problems	(see p. 49)
	Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems Other	multiplier
	(YES) multiplier is 2 NO multiplier is 1	
D	TOTAL - Hydrologic Functions Multiply the score from D 3 by D 4 Add score to table on p. 1	24

These questions apply to wetlands of all HG	M classes.	Points
HABITAT FUNCTIONS - Indicators that unit funct		(only 1 score per box)
H 1. Does the wetland unit have the potential to p	rovide habitat for many species?	
H 1.1 Vegetation structure (see p. 72)		Figure
Check the types of vegetation classes present (as define	ed by Cowardin)-Size threshold for each	
class is 4 acre or more than 10% of the area if unit Aquatic bed	is smaller than 2.5 acres.	
Emergent plants		
Scruh/shrub (areas where shrubs have >30%	6 cover)	
Forested (areas where trees have >30% cov		
If the unit has a forested class check if:		1/1
The forested class has 3 out of 5 strata (can	lopy, sub-canopy, shrubs, herbaceous,	1 4
moss/ground-cover) that each cover 20%		
Add the number of vegetation structures that qualify.	y you have: 4 structures or more points = 4	1
A CO. III I I I I I I I I I I I I I I I I I	3 structures points = 2	ļ
Map of Cowardin vegetation classes	2 structures points = 1	
	1 structure points = 0	
H 1.2. Hydroperiods (see p. 73)		Figure
Check the types of water regimes (hydroperiods) p	present within the wetland. The water	
regime has to cover more than 10% of the wetland	or % acre to count. (see text for	
descriptions of hydroperiods)	4 or more types present points = 3	
Permanently flooded or inundated Seasonally flooded or inundated	4 or more types present points = 3 3 types present points = 2	
Occasionally flooded or inundated	2 types present point = 1	
Saturated only	1 type present points = 0	
Permanently flowing stream or river in, or a	2.2.1	
Seasonally flowing stream in, or adjacent to		
Lake-fringe wetland = 2 points		
Freshwater tidal wetland = 2 points	Map of hydroperiods	
H 1.3. Richness of Plant Species (see p. 75)	2	
Count the number of plant species in the wetland	that cover at least 10 ft ² . (different patches	
of the same species can be combined to meet the s	ize threshold)	
You do not have to name the species.	Thistle	
Do not include Eurasian Milfoil, reed canarys If you counted:	> 19 species points = 2	
List species below if you want to:	5 - 19 species points = 1	1 /
Dist species below if you want to.	< 5 species points = 0	1
		ļ
		-

Total for page 8

Comments

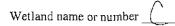
Add the scores from H1.1, H1.2, H1.3, H1.4, H1.5

H 2. Does the wetland unit have the opportunity to provide habitat for many species?	
H 2.1 Buffers (see p. 80)	Figure
Choose the description that best represents condition of buffer of wetland unit. The highest scoring	
criterion that applies to the wetland is to be used in the rating. See text for definition of	
'undisturbed."	
 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% of circumference. No structures are within the undisturbed part of buffer. (relatively undisturbed also means no-grazing, no landscaping, no daily human use) Points = 5 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference. Points = 4 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% circumference. Points = 4 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference, Points = 3 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. Points = 3 If buffer does not meet any of the criteria above 	
— No paved areas (except paved trails) or buildings within 25 m (80ft) of wetland > 95%	
circumference. Light to moderate grazing, or lawns are OK. Points = 2	
— No paved areas or buildings within 50m of wetland for >50% circumference.	
Light to moderate grazing, or lawns are OK. Points = 2	
— Heavy grazing in buffer. Points = 1	
— Vegetated buffers are <2m wide (6.6ft) for more than 95% of the circumference (e.g. tilled	
fields, paving, basalt bedrock extend to edge of wetland Points = 0.	
Buffer does not meet any of the criteria above. Points = 1	ļ
Aerial photo showing buffers	
H 2.2 Corridors and Connections (see p. 81)	
H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft wide, has at least 30% cover of shrubs, forest	
or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed	
uplands that are at least 250 acres in size? (dams in riparian corridors, heavily used gravel	
roads, paved roads, are considered breaks in the corridor).	
YES = 4 points (go to $H2.3$) (NO \neq go to $H2.2.2$	1
H 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor	/
(either riparian or upland) that is at least 50ft wide, has at least 30% cover of shrubs or	1 '
forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25.	
acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in	
the question above?	
YES = 2 points (go to $H 2.3$) NO =\H 2.2.3	
H 2.2.3 Is the wetland:	
within 5 mi (8km) of a brackish or salt water estuary OR	
within 3 mi of a large field or pasture (>40 acres) OR	
within I mi of a lake greater than 20 acres?	

Total for page 2

	H 2.3 Near or adjacent to other priority habitats listed by WDFW (see.p. 82) Which of the following priority habitats are within 330ft (100m) of the wetland unit? NOTE: the connections do not have to be relatively undisturbed. These are DFW definitions. Check with your local DFW biologist if there are any questions. Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other. Aspen Stands: Pure or mixed stands of aspen greater than 0.8 ha (2 acres). Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft. Old-growth forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8 trees/acre) > 81 cm (32 in) dbh or > 200 years of age. Mature forests: Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover may be less that 100%; crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80 - 200 years old west of the Cascade crest. Prairies: Relatively undisturbed areas (as indicated by dominance of native plants) where grasses and/or forbs form the natural climax plant community. Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs. Caves: A naturally occurring cavity, recess, void, or system of interconnected passages Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component of the stand is 25%. Urban Natural Open Space: A priority species resides within or is adjacent to the open space and uses it for breeding and/or regular feeding; and/or the open space functions as a corridor connecting other priority habitats, especially those that would	Z
	corridor connecting other priority habitats, especially those that would otherwise be isolated; and/or the open space is an isolated remnant of natural habitat larger than 4 ha (10 acres) and is surrounded by urban development. Estuary/Estuary-like: Deepwater tidal habitats and adjacent tidal wetlands, usually semi-enclosed hy land but with open, partly obstructed or sporadic access to the open ocean, and in which ocean water is at least occasionally diluted by freshwater runoff from the land. The salinity may be periodically increased above that of the open ocean by evaporation. Along some low-energy coastlines there is appreciable dilution of sea water. Estuarine	
1	Note: All vegetated wetlands are by definition a priority habitat but are not included in this list. Nearby wetlands are addressed in question H 2.4)	

Total Score for Habitat Functions – add the points for H 1, H 2 and record the result on p. 1	21
H 2. TOTAL Score - opportunity for providing habitat Add the scores from H2.1,H2.2, H2.3, H2.4 TOTAL for H 1 from page 14	7
H 2.4 Wetland Landscape (choose the one description of the landscape around the wetland that best fits) (see p. 84) There are at least 3 other wetlands within ½ mile, and the connections between them are relatively undisturbed (light grazing between wetlands OK, as is lake shore with some boating, but connections should NOT be bisected by paved roads, fill, fields, or other development. The wetland is Lake-fringe on a lake with little disturbance and there are 3 other lake-fringe wetlands within ½ mile There are at least 3 other wetlands within ½ mile, BUT the connections between them are disturbed The wetland is Lake-fringe on a lake with disturbance and there are 3 other lake-fringe wetland within ½ mile There is at least 1 wetland within ½ mile. There are no wetlands within ½ mile. There are no wetlands within ½ mile.	3


CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the Category when the appropriate criteria are met.	
SC 1.0 Estuarine wetlands (see p. 86)	
Does the wetland unit meet the following criteria for Estuarine wetlands?	
The dominant water regime is tidal,Vegetated, and	
— With a salinity greater than 0.5 ppt. YES = Go to SC 1.1 NO V	
SC 1.1 Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	Cat. I
YES = Category I NO go to SC 1.2	
 SC 1.2 Is the wetland unit at least 1 acre in size and meets at least two of the following three conditions? YES = Category I NO = Category II — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant 	Cat. I
species. If the non-native <i>Spartina</i> spp. are the only species that cover more than 10% of the wetland, then the wetland should be given a dual rating (I/II). The area of Spartina would be rated a Category II while the relatively undisturbed upper marsh with native species would be a Category I. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre.	Dual ratiug I/II
 At least ¼ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland. The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands. 	

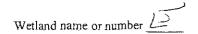
	· · · · · · · · · · · · · · · · · · ·
SC 2.0 Natural Heritage Wetlands (see p. 87) Natural Heritage wetlands have been identified by the Washington Natural Heritage Program/DNR as either high quality undisturbed wetlands or wetlands that support state Threatened, Endangered, or Sensitive plant species. SC 2.1 Is the wetland unit being rated in a Section/Township/Range that contains a Natural Heritage wetland? (this question is used to screen out most sites before you need to contact WNHP/DNR) S/T/R information from Appendix D or accessed from WNHP/DNR web site	Cat. I
YES contact WNHP/DNR (see p. 79) and go to SC 2.2 NO \checkmark	
SC 2.2 Has DNR identified the wetland as a high quality undisturbed wetland or as or as a site with state threatened or endangered plant species? YES = Category l NOnot a Heritage Wetland	
SC 3.0 Bogs (see p. 87) Does the wetland unit (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key below to identify if the wetland is a bog. If you answer yes you will still need to rate the wetland based on its functions.	
1. Does the unit have organic soil horizons (i.e. layers of organic soil), either peats or mucks, that compose 16 inches or more of the first 32 inches of the soil profile? (See Appendix B for a field key to identify organic soils)? Yes - go to Q. 3	
2. Does the unit have organic soils, either peats or mucks that are less than 16 inches deep over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on a lake or pond? Yes - go to Q. 3 No Is not a bog for purpose of rating	
3. Does the unit have more than 70% cover of mosses at ground level, AND other plants, if present, consist of the "bog" species listed in Table 3 as a significant component of the vegetation (more than 30% of the total shrub and herbaceous cover consists of species in Table 3)?	
Yes—Is a bog for purpose of rating No-go to Q. 4 NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that criterion by measuring the pH of the water that seeps into a hole dug at least 16" deep. If the pH is less than 5.0 and the "bog" plant species in Table 3 are present, the wetland is a bog.	-
1. Is the unit forested (> 30% cover) with sitka spruce, subalpine fir, western red cedar, western hemlock, lodgepole pine, quaking aspen, Englemann's spruce, or western white pine, WITH any of the species (or combination of species) on the bog species plant list in Table 3 as a significant component of the ground cover (> 30% coverage of the total shrub/herbaceous cover)?	
2. YES = Category I No_ Is not a bog for purpose of rating	Cat. I

SC 4.0 Forested Wetlands (see p. 90) Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its functions. — Old-growth forests: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm) or more.			
NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter.			
— Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 - 200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth.			
YES = Category I NO not a forested wetland with special characteristics	Cat. I		
SC 5.0 Wetlands in Coastal Lagoons (see p. 91)			
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks			
— The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) YES = Go to SC 5.1 NO \(\nu\) not a wetland in a coastal lagoon			
SC 5.1 Does the wetland meets all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant	and the second s		
species (see list of invasive species on p. 74). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.	Cat. I		
— The wetland is larger than 1/10 acre (4350 square feet) YES = Category I NO = Category II	Cat. II		

SC 6.0 Interdunal Wetlands (see p. 93)		
Is the wetland unit west of the 1889 line (also called the Western Boundary of Upland		
Ownership or WBUO)?		
YES - go to SC 6.1 NO / not an interdunal wetland for rating		
If you answer yes you will still need to rate the wetland based on its	:	
functions.		
In practical terms that means the following geographic areas:		
Long Beach Peninsula- lands west of SR 103		
Grayland-Westport- lands west of SR 105		
Ocean Shores-Copalis- lands west of SR 115 and SR 109		
SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is once acre or larger?		
YES = Category II NO – go to SC 6.2	Cat. II	
SC 6.2 Is the unit between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?	Cat. II	
YES = Category III	Cat. III	
Category of wetland based on Special Characteristics		
Choose the "highest" rating if wetland falls into several categories, and record on		
p, I,	* <i>T1</i>	
If you answered NO for all types enter "Not Applicable" on p.1		

This page left blank

Wetland name or number


WETLAND RATING FORM - WESTERN WASHINGTON

Version 2 - Updated July 2006 to increase accuracy and reproducibility among users

	that the second of the second
Name of wetland (if known): Wetland &	Date of site visit: 5/7/08
Rated by Kerrie McArthur Trained 1	by Ecology? Yes No Date of training 11/200
SEC: 5 TWNSHP200 RNGE: 45 Is S/T/R in	Appendix D? Yes No
Map of wetland unit: Figure	Estimated size 4.25 acres
SUMMARY O	OF RATING
Category based on FUNCTIONS provided I II IV	by wetland
Category I = Score >= 70	re for Water Quality Functions core for Hydrologic Functions Score for Habitat Functions TOTAL score for Functions
Category based on SPECIAL CHARACTE	ERISTICS of wetland
Final Category (choose the "hig	ghest" category from above)

Summary of basic information about the wetland unit

Wetland Unit has Special Characteristics	Wefland HGM Class used for Rating	
Estuarine	Depressional	سسسا
Natural Heritage Wetland	Riverine	
Bog	Lake-fringe	
Mature Forest	Slope	
Old Growth Forest	Flats	
Coastal Lagoon	Freshwater Tidal	
Interdunal		
None of the above	Check if unit has multiple HGM classes present	

Does the wetland unit being rated meet any of the criteria below?

If you answer YES to any of the questions below you will need to protect the wetland according to the regulations regarding the special characteristics found in the wetland.

Check List for Wetlands That May Need Additional Protection (in addition to the protection recommended for its category)	YES	NO
SP1. Has the wetland unit been documented as a habitat for any Federally listed Threatened or Endangered animal or plant species (T/E species)?		
For the purposes of this rating system, "documented" means the wetland is on the appropriate state or federal database.		
SP2. Has the wetland unit been documented as habitat for any State listed Threatened or Endangered animal species? For the purposes of this rating system, "documented" means the wetland is on the appropriate state database. Note: Wetlands with State listed plant species are categorized as Category I Natural Heritage Wetlands (see p. 19 of data form).		
SP3. Does the wetland unit contain individuals of Priority species listed by the WDFW for the state?		
SP4. Does the wetland unit have a local significance in addition to its functions? For example, the wetland has been identified in the Shoreline Master Program, the Critical Areas Ordinance, or in a local management plan as having special significance.		

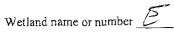
To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

The hydrogeomorphic classification groups wetlands into those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands.

Classification of Wetland Units in Western Washington

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides (i.e. except during floods)? NO go to 2 YES – the wetland class is Tidal Fringe If yes, is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)? YES – Freshwater Tidal Fringe NO – Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term "Estuarine" wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine wetlands have changed (see p.). 2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit. NO go to 3 YES – The wetland class is Flats If your wetland can be classified as a "Flats" wetland, use the form for Depressional wetlands. 3. Does the entire wetland unit meet both of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usu	
thousand)? YES - Freshwater Tidal Fringe NO - Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term "Estuarine" wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine wetlands have changed (see p.). 2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groindwater and surface water runoff are NOT sources of water to the unit. NO _go to 3 YES — The wetland class is Flats If your wetland can be classified as a "Flats" wetland, use the form for Depressional wetlands. 3. Does the entire wetland unit meet both of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? NO _go to 4 YES — The wetland class is Lake-fringe (Lacustrine Fringe) 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than I foot deep).	
wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term "Estuarine" wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine wetlands have changed (see p.). 2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit. NO go to 3 YES - The wetland class is Flats If your wetland can be classified as a "Flats" wetland, use the form for Depressional wetlands. 3. Does the entire wetland unit meet both of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? NO go to 4 YES - The wetland class is Lake-fringe (Lacustrine Fringe) 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than 1 foot deep).	
Groundwater and surface water runoff are NOT sources of water to the unit. NO—go to 3 YES—The wetland class is Flats If your wetland can be classified as a "Flats" wetland, use the form for Depressional wetlands. 3. Does the entire wetland unit meet both of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? NO—go to 4 YES—The wetland class is Lake-fringe (Lacustrine Fringe) 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than I foot deep).	wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term "Estuarine" wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine
wetlands. 3. Does the entire wetland unit meet both of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? NO go to 4 YES – The wetland class is Lake-fringe (Lacustrine Fringe) 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than I foot deep).	Groundwater and surface water runoff are NOT sources of water to the unit.
The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? NO go to 4 YES – The wetland class is Lake-fringe (Lacustrine Fringe) 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than I foot deep).	
The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than I foot deep).	The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)?
NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than I foot deep).	The wetland is on a slope (slope can be very gradual), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.
	NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3ft diameter and less than I foot deep).

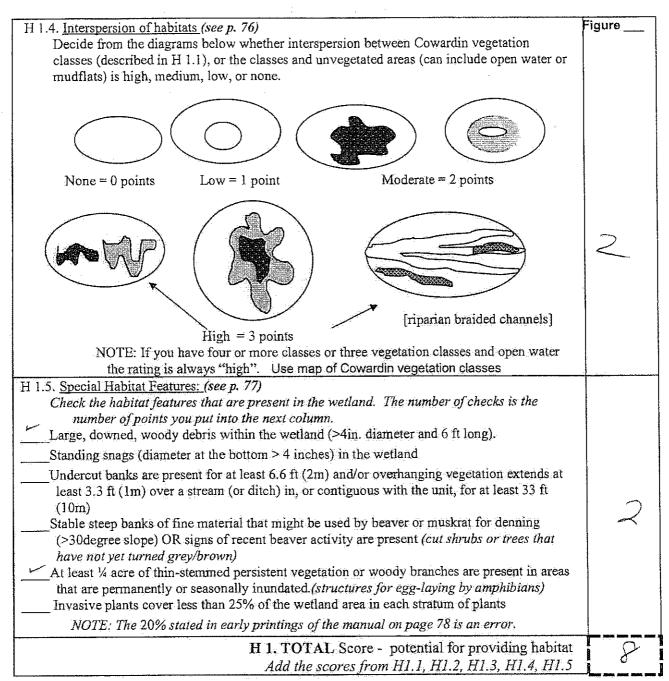

- 5. Does the entire wetland unit meet all of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river
 - The overbank flooding occurs at least once every two years.

NOTE: The riverine unit can contain depressions that are filled with water when the river is not flooding.

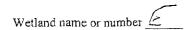
- NO go to 6 YES The wetland class is Riverine
- 6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year. This means that any outlet, if present, is higher than the interior of the wetland.
 - NO go to 7 YES The wetland class is Depressional
- 7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding. The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet,
 - NO go to 8 YES The wetland class is Depressional
- 8. Your wetland unit seems to be difficult to classify and probably contains several different HGM clases. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM Classes within the wetland unit being rated	HGM Class to Use in Rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake-fringe	Lake-fringe
Depressional + Riverine along stream within boundary	Depressional
Depressional + Lake-fringe	Depressional
Salt Water Tidal Fringe and any other class of freshwater wetland	Treat as ESTUARINE under wetlands with special characteristics

If you are unable still to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as **Depressional** for the rating.



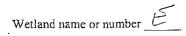
D	Depressional and Flats Wetlands				
	WATER QUALITY FUNCTIONS - Indicators that the wetland unit functions to				
	improve water quality				
D	D 1. Does the wetland unit have the potential to improve water quality?	(see p.38)			
	D 1.1 Characteristics of surface water flows out of the wetland:	Figure			
D	Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 1 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch (If ditch is not permanently flowing treat unit as "intermittently flowing")				
	Provide photo or drawing				
D	S 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS definitions) YES points = 4	4			
	NO points = 0	PO 1			
D	D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class) Wetland has persistent, ungrazed, vegetation >= 95% of area points = 5 Wetland has persistent, ungrazed, vegetation >= 1/2 of area points = 3	Figure			
ישו	Wetland has persistent, ungrazed, vegetation > = 1/2 of area points = 3 Wetland has persistent, ungrazed vegetation > = 1/10 of area points = 1				
	Wetland has persistent, ungrazed vegetation < 1/10 of area points = 0 Map of Cowardin vegetation classes				
		Figure			
D	D1.4 Characteristics of seasonal ponding or inundation. This is the area of the wetland unit that is ponded for at least 2 months, but dries out sometime during the year. Do not count the area that is permanently ponded. Estimate				
:	area as the average condition 5 out of 10 yrs.	17_			
	Area seasonally ponded is > ½ total area of wetland points = 4				
	Area seasonally pended is > ½ total area of wetland points = 2 Area seasonally pended is < ½ total area of wetland points = 0				
	Area seasonally ponded is < ¼ total area of wetland points = 0 Map of Hydroperiods	<u> </u>			
D	Total for D 1 Add the points in the boxes above	/3			
D	D 2. Does the wetland unit have the opportunity to improve water quality?	(see p. 44)			
	Answer YES if you know or believe there are pollutants in groundwater or surface water coming into the wetland that would otherwise reduce water quality in streams, lakes or groundwater downgradient from the wetland. Note which of the following conditions provide the sources of pollutants. A unit may have pollutants coming from several sources, but any single source would qualify as opportunity.				
	Grazing in the wetland or within 150 ft Untreated stormwater discharges to wetland Tilled fields or orchards within 150 ft of wetland				
	 A stream or culvert discharges into wetland that drains developed areas, residential areas, farmed fields, roads, or clear-cut logging 				
	Residential, urban areas, golf courses are within 150 ft of wetland				
	Wetland is fed by groundwater high in phosphorus or nitrogen Other				
	YES multiplier is 2 NO multiplier is 1				
D	TOTAL - Water Quality Functions Multiply the score from D1 by D2 Add score to table on p. 1	26			


D	Depressional and Flats Wetlands HYDROLOGIC FUNCTIONS - Indicators that the wetland unit functions to reduce flooding and stream degradation	Points (only 1 score per box)				
	D 3. Does the wetland unit have the potential to reduce flooding and erosion?					
D	D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch (If ditch is not permanently flowing treat unit as "intermittently flowing") Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 0					
D	D 3.2 Depth of storage during wet periods Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 The wetland is a "headwater" wetland" points = 5 Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5 Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3 Unit is flat (yes to Q. 2 or Q. 7 on key) but has small depressions on the surface that trap water points = 1 Marks of ponding less than 0.5 ft					
D	D 3.3 Contribution of wetland unit to storage in the watershed Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class					
D	Total for D 3 Add the points in the boxes above	8				
D	D 4. Does the wetland unit have the opportunity to reduce flooding and erosion? Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. Note which of the following indicators of opportunity apply. — Wetland is in a beadwater of a river or stream that has flooding problems — Wetland drains to a river or stream that has flooding problems					
- I - I - I - I - I - I - I - I - I - I	Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems Other					
	YES multiplier is 2 NO multiplier is 1	1 _2_				
D	TOTAL - Hydrologic Functions Multiply the score from D 3 by D 4 Add score to table on p. 1	16				

			Dointe
These questions apply to wetlands of all HGM classes.			Points (only 1 score
HABITAT FUNCTIONS - Indicators that unit functions to provide important habitat			per box)
H 1. Does the wetland unit have the potential to pr	ovide habitat for many	species?	•
H 1.1 Vegetation structure (see p. 72)			Figure
Check the types of vegetation classes present (as defined	by Cowardin)- Size thresh	old for each	
class is ¼ acre or more than 10% of the area if unit is		·	
Aquatic bed	·		
Emergent plants			
Scrub/shrub (areas where shrubs have >30% of	cover)		· ·
Forested (areas where trees have >30% cover)		
If the unit has a forested class check if:			
The forested class has 3 out of 5 strata (cano)			
moss/ground-cover) that each cover 20%	within the forested polygon	n	
Add the number of vegetation structures that qualify. If	you have:		
'	4 structures or more	points $= 4$	
Map of Cowardin vegetation classes	3 structures	points $= 2$	
	2 structures	points = 1	
	1 structure	points = 0	
H 1.2. Hydroperiods (see p. 73)			Figure
Check the types of water regimes (hydroperiods) pro			
regime has to cover more than 10% of the wetland or	4 acre to count. (see text	for	
descriptions of hydroperiods)			
Permanently flooded or inundated	4 or more types present		
Seasonally flooded or inundated	3 types present		,
Occasionally flooded or inundated	2 types present	point = 1	1
Saturated only	1 type present	points = 0	
Permanently flowing stream or river in, or adja			
Seasonally flowing stream in, or adjacent to, the	ne wenano		1
Lake-fringe wetland = 2 points Freshwater tidal wetland = 2 points	Map of hyd	ropariode	1
	Map of Mydi	оренов	
H 1.3. Richness of Plant Species (see p. 75)	3 10.02 47	rr .	Î
Count the number of plant species in the wetland the	at cover at least 10 ft. (di	ferent patches	1
of the same species can be combined to meet the siz	e th r eshold)		1
You do not have to name the species.	1 1. / 'C. C.		ļ
Do not include Eurasian Milfoil, reed canarygro			
If you counted:	> 19 species	points $= 2$	
List species below if you want to:	5 - 19 species	points = 1 points = 0	
	< 5 species	botturs ~ 0	/
			ļ
X			

Total for page

Comments

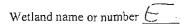


H 2. Does the wetland unit have the opportunity to provide habitat for many species?			
H 2.1 Buffers (see p. 80)	Figure		
Choose the description that best represents condition of buffer of wetland unit. The highest scoring	-		
criterion that applies to the wetland is to be used in the rating. See text for definition of			
"undisturbed." — 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% of circumference. No structures are within the undisturbed part of buffer. (relatively undisturbed also means no-grazing, no landscaping, no daily human use) Points = 5 — 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference. — 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% circumference. — 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference,. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water for > 50% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 100 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. — 100 m (170ft) of rel	2		
Light to moderate grazing, or lawns are OK. Points = 2 Heavy grazing in buffer. Points = 1			
— Vegetated buffers are <2m wide (6.6ft) for more than 95% of the circumference (e.g. tilled			
fields, paving, basalt bedrock extend to edge of wetland Points = 0.			
- Buffer does not meet any of the criteria above. Points = 1			
Aerial photo showing buffers			
H 2.2 Corridors and Connections (see p. 81) H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft wide, has at least 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor). YES = 4 points (go to H 2.3) H 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor			
(either riparian or upland) that is at least 50ft wide, has at least 30% cover of shrubs or	/		
forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25	1		
acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in			
the question above?			
YES = 2 points (go to $H 2.3$) NO \mp H 2.2.3			
H 2.2.3 Is the wetland:			
within 5 mi (8km) of a brackish or salt water estuary OR			
within 3 mi of a large field or pasture (>40 acres) OR			
within I mi of a lake greater than 20 acres?			
(YES = 1) point $NO = 0$ points			

Total for page 3

H 2.3 Near or adjacent to other priority habitats listed by WDFW (see p. 82) Which of the following priority habitats are within 330ft (100m) of the wetland unit? NOTE: the	
connections do not have to be relatively undisturbed.	
These are DFW definitions. Check with your local DFW biologist if there are any questions.	
Riparian: The area adjacent to aquatic systems with flowing water that contains elements of	
both aquatic and terrestrial ecosystems which mutually influence each other.	
Aspen Stands: Pure or mixed stands of aspen greater than 0.8 ha (2 acres).	
Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft.	
Old-growth forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species,	
forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8	
trees/acre) > 81 cm (32 in) dbh or > 200 years of age.	
Mature forests: Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover	
may be less that 100%; crown cover may be less that 100%; decay, decadence, numbers of	
snags, and quantity of large downed material is generally less than that found in old-	
growth; 80 - 200 years old west of the Cascade crest.	
Prairies: Relatively undisturbed areas (as indicated by dominance of native plants) where	
grasses and/or forbs form the natural climax plant community.	
Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft),	
composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine	
tailings. May be associated with cliffs.	
Caves: A naturally occurring cavity, recess, void, or system of interconnected passages	İ
Oregon white Oak: Woodlands Stands of pure oak or oak/confer associations where	- 1
canopy coverage of the oak component of the stand is 25%.	/
Urban Natural Open Space: A priority species resides within or is adjacent to the open	-1
space and uses it for breeding and/or regular feeding; and/or the open space functions as a	
corridor connecting other <i>priority habitats</i> , especially those that would otherwise be	
isolated; and/or the open space is an isolated remnant of natural habitat larger than 4 ha (10	
acres) and is surrounded by urban development.	
Estuary/Estuary-like: Deepwater tidal habitats and adjacent tidal wetlands, usually semi-	
enclosed by land but with open, partly obstructed or sporadic access to the open ocean, and	
in which ocean water is at least occasionally diluted by freshwater runoff from the land.	
The salinity may be periodically increased above that of the open ocean by evaporation.	
Along some low-energy coastlines there is appreciable dilution of sea water. Estuarine	
habitat extends upstream and landward to where ocean-derived salts measure less than	
0.5ppt, during the period of average annual low flow. Includes both estuaries and lagoons.	
Marine/Estuarine Shorelines: Shorelines include the intertidal and subtidal zones of	
beaches, and may also include the backshore and adjacent components of the terrestrial	
landscape (e.g., cliffs, snags, mature trees, dunes, meadows) that are important to shoreline associated fish and wildlife and that contribute to shoreline function (e.g., sand/rock/log	
recruitment, nutrient contribution, erosion control).	
If wetland has 3 or more priority habitats = 4 points	
If wetland has 2 priority habitats = 3 points If wetland has 1 priority habitat = 1 point No habitats = 0 points	
Note: All vegetated wetlands are by definition a priority habitat but are not included in this	
list. Nearby wetlands are addressed in question H 2.4)	
inc. Itearry wertains are dagressed in question 11 2.47)	L

H 2.4 Wetland Landscape (choose the one-description of the landscape around the wetland that best fits) (see p. 84) There are at least 3 other wetlands within ½ mile, and the connections between them are relatively undisturbed (light grazing between wetlands OK, as is lake shore with some boating, but connections should NOT be bisected by paved roads, fill, fields, or other development. The wetland is Lake-fringe on a lake with little disturbance and there are 3 other lake-fringe wetlands within ½ mile There are at least 3 other wetlands within ½ mile, BUT the connections between them are disturbed The wetland is Lake-fringe on a lake with disturbance and there are 3 other lake-fringe wetland within ½ mile There is at least 1 wetland within ½ mile. There are no wetlands within ½ mile. There are no wetlands within ½ mile.	3
H 2. TOTAL Score - opportunity for providing habitat Add the scores from H2.1,H2.2, H2.3, H2.4	7
TOTAL for H 1 from page 14	8
Total Score for Habitat Functions - add the points for H 1, H 2 and record the result on p. 1	15



CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the Category when the appropriate criteria are met.	
SC 1.0 Estuarine wetlands (see p. 86)	
Does the wetland unit meet the following criteria for Estuarine wetlands?	
The dominant water regime is tidal,Vegetated, and	
— With a salinity greater than 0.5 ppt. YES = Go to SC 1.1 NO	
SC 1.1 Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	Cat. I
YES = Category I NO go to SC 1.2	
SC 1.2 Is the wetland unit at least 1 acre in size and meets at least two of the following three conditions? YES = Category I NO = Category II	Cat. I
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant	Cat. II
species. If the non-native Spartina spp. are the only species that cover more than 10% of the wetland, then the wetland should be given a dual	Dual
rating (I/II). The area of Spartina would be rated a Category II while the	rating
relatively undisturbed upper marsh with native species would be a Category I. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre.	1/11
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.	
— The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands.	
	<u> </u>

SC 2.0 Natural Heritage Wetlands (see p. 87) Natural Heritage wetlands have been identified by the Washington Natural Heritage Program/DNR as either high quality undisturbed wetlands or wetlands that support state Threatened, Endangered, or Sensitive plant species. SC 2.1 Is the wetland unit being rated in a Section/Township/Range that contains a Natural Heritage wetland? (this question is used to screen out most sites before you need to contact WNHP/DNR) S/T/R information from Appendix D or accessed from WNHP/DNR web site	Cat. I
YES contact WNHP/DNR (see p. 79) and go to SC 2.2 NO	
SC 2.2 Has DNR identified the wetland as a high quality undisturbed wetland or as or as a site with state threatened or endangered plant species? YES = Category I NOnot a Heritage Wetland	
SC 3.0 Bogs (see p. 87) Does the wetland unit (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key below to identify if the wetland is a bog. If you answer yes you will still need to rate the wetland based on its functions.	
1. Does the unit have organic soil horizons (i.e. layers of organic soil), either peats or mucks, that compose 16 inches or more of the first 32 inches of the soil profile? (See Appendix B for a field key to identify organic soils)? Yes - go to Q. 3 (No) - go to Q. 2	
2. Does the unit have organic soils, either peats or mucks that are less than 16 inches deep over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on a lake or pond?	
Yes - go to Q. 3 No/- Is not a bog for purpose of rating	
3. Does the unit have more than 70% cover of mosses at ground level, AND other plants, if present, consist of the "bog" species listed in Table 3 as a significant component of the vegetation (more than 30% of the total shrub and herbaceous cover consists of species in Table 3)?	
Yes – Is a bog for purpose of rating No - go to Q. 4	
NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that criterion by measuring the pH of the water that seeps into a hole dug at least 16" deep. If the pH is less than 5.0 and the "bog" plant species in Table 3 are present, the wetland is a bog.	
1. Is the unit forested (> 30% cover) with sitka spruce, subalpine fir, western red cedar, western hemlock, lodgepole pine, quaking aspen, Englemann's spruce, or western white pine, WITH any of the species (or combination of species) on the bog species plant list in Table 3 as a significant component of the ground cover (> 30% coverage of the total shrub/herbaceous cover)?	
2. YES = Category I No Is not a bog for purpose of rating	Cat, I
	P .

SC 4.0 Forested Wetlands (see p. 90)

Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its functions.

Old-growth forests: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm) or more.

NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter.

— Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80-200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth.

YES = Category I

NO not a forested wetland with special characteristics

Cat. I

SC 5.0 Wetlands in Coastal Lagoons (see p. 91)

Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?

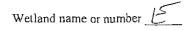
- The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks
- The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom)

YES = Go to SC 5.1

NO not a wetland in a coastal lagoon

SC 5.1 Does the wetland meets all of the following three conditions?

- The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74).
- At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.


— The wetland is larger than 1/10 acre (4350 square feet)

YES = Category I

NO = Category II

Cat. I

Cat. II

SC 6.0 Interdunal Wetlands (see p. 93)	
Is the wetland unit west of the 1889 line (also called the Western Boundary of Upland	ļ
Ownership or WBUO)?	
YES - go to SC 6.1 NO <u>not an interdunal wetland for rating</u>	
If you answer yes you will still need to rate the wetland based on its	
functions.	
In practical terms that means the following geographic areas:	
 Long Beach Peninsula- lands west of SR 103 	
 Grayland-Westport- lands west of SR 105 	
 Ocean Shores-Copalis- lands west of SR 115 and SR 109 	
SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is once acre or larger?	To all the state of the state o
YES = Category II $NO - go to SC 6.2$	Cat. II
SC 6.2 Is the unit between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?	
YES = Category III	Cat. III
Category of wetland based on Special Characteristics	
Choose the "highest" rating if wetland falls into several categories, and record on	NA
p.~I.	
If you answered NO for all types enter "Not Applicable" on p.1	

This page left blank

Wetland name or number

WETLAND RATING FORM - WESTERN WASHINGTON

Version 2 - Updated July 2006 to increase accuracy and reproducibility among users

ame of wetland (if known): 100 Have F Date of site visit: 5/9/08
ated by Kerrie McArther Trained by Ecology? Yes No Date of training 11/2005
EC: 5 TWNSHP: 20N RNGE: 4E Is S/T/R in Appendix D? Yes No
Map of wetland unit: Figure Estimated size
SUMMARY OF RATING
Category based on FUNCTIONS provided by wetland
<u>I II IV</u>
Category I = Score >= 70 Category II = Score 51-69 Category III = Score 30-50 Category IV = Score < 30 Score for Water Quality Functions Score for Hydrologic Functions TOTAL score for Functions TOTAL score for Functions
Category based on SPECIAL CHARACTERISTICS of wetland I II Does not Apply
Final Category (choose the "highest" category from above)

Summary of basic information about the wetland unit

Wetland Unit has Special Characteristics	Wetland HGM Class used for Rating
Estuarine	Depressional $ u$
Natural Heritage Wetland	Riverine
Bog	Lake-fringe
Mature Forest	Slope
Old Growth Forest	Flats
Coastal Lagoon	Freshwater Tidal
Interdunal	
None of the above	Check if unit has multiple HGM classes present

					γ
Wetland	name	OL	numb	er .	

Does the wetland unit being rated meet any of the criteria below?

If you answer YES to any of the questions below you will need to protect the wetland according to the regulations regarding the special characteristics found in the wetland.

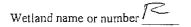
Check List for Wetlands That May Need Additional Protection (in addition to the protection recommended for its category)	YES	NO
SP1. Has the wetland unit been documented as a habitat for any Federally listed Threatened or Endangered animal or plant species (T/E species)?		1/
For the purposes of this rating system, "documented" means the wetland is on the appropriate state or federal database.		
SP2. Has the wetland unit been documented as habitat for any State listed Threatened or Endangered animal species? For the purposes of this rating system, "documented" means the wetland is on the appropriate state database. Note: Wetlands with State listed plant species are categorized as Category I Natural Heritage Wetlands (see p. 19 of data form).		
SP3. Does the wetland unit contain individuals of Priority species listed by the WDFW for the state?		المسترية
SP4. Does the wetland unit have a local significance in addition to its functions? For example, the wetland has been identified in the Shoreline Master Program, the Critical Areas Ordinance, or in a local management plan as having special significance.		7

To complete the next part of the data sheet you will need to determine the Hydrogeomorphic Class of the wetland being rated.

The hydrogeomorphic classification groups wetlands into those that function in similar ways. This simplifies the questions needed to answer how well the wetland functions. The Hydrogeomorphic Class of a wetland can be determined using the key below. See p. 24 for more detailed instructions on classifying wetlands.

August 2004

Wetland name or number


Classification of Wetland Units in Western Washington

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides (i.e. except during floods)? YES - the wetland class is Tidal Fringe NO + go to 2If yes, is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)? YES - Freshwater Tidal Fringe NO - Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is rated as an Estuarine wetland. Wetlands that were called estuarine in the first and second editions of the rating system are called Salt Water Tidal Fringe in the Hydrogeomorphic Classification. Estuarine wetlands were categorized separately in the earlier editions, and this separation is being kept in this revision. To maintain consistency between editions, the term "Estuarine" wetland is kept. Please note, however, that the characteristics that define Category I and II estuarine wetlands have changed (see p.). 2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit. YES - The wetland class is Flats $NO \rightarrow go to 3$ If your wetland can be classified as a "Flats" wetland, use the form for Depressional wetlands. 3. Does the entire wetland unit meet both of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any vegetation on the surface) at least 20 acres (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m)? - go to 4 YES - The wetland class is Lake-fringe (Lacustrine Fringe) 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (slope can be very gradual). The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks. The water leaves the wetland without being impounded? NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually

<3ft diameter and less than 1 foot deep).

YES – The wetland class is Slope

5. Does the entire wetland unit meet all of the following criteria?

The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river

The overbank flooding occurs at least once every two years.

NOTE: The riverine unit can contain depressions that are filled with water when the river is

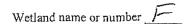
NOTE: The riverine unit can contain depressions that are filled with water when the river is not flooding.

- NO go to 6 YES The wetland class is Riverine
- 6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year. This means that any outlet, if present, is higher than the interior of the wetland.

NO - go to 7 (YES - The wetland class is Depressional

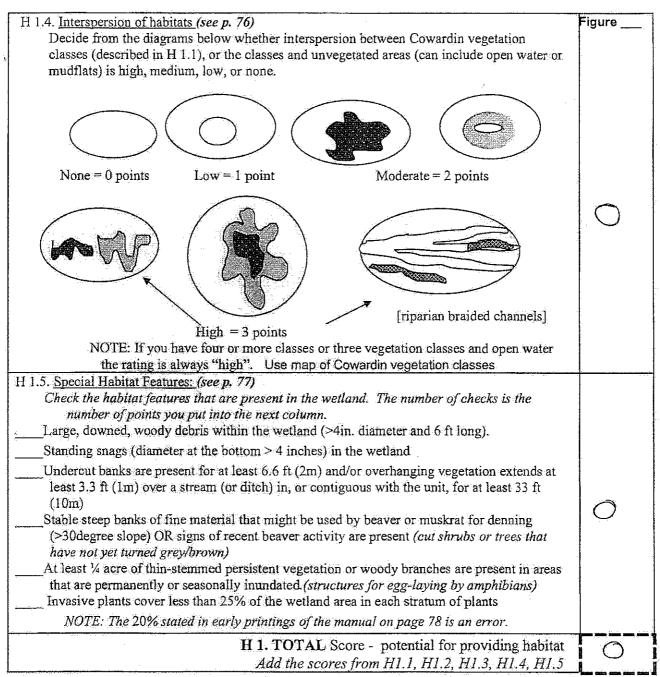
7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding. The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO – go to 8 YES – The wetland class is Depressional


8. Your wetland unit seems to be difficult to classify and probably contains several different HGM clases. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within your wetland. NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM Classes within the wetland unit being rated	HGM Class to Use in Rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake-fringe	Lake-fringe
Depressional + Riverine along stream within boundary	Depressional
Depressional + Lake-fringe	Depressional
Salt Water Tidal Fringe and any other class of freshwater wetland	Treat as ESTUARINE under wetlands with special characteristics

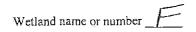
If you are unable still to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as **Depressional** for the rating.


D	Depressional and Flats Wetlands WATER QUALITY FUNCTIONS - Indicators that the wetland unit functions to improve water quality	Points (only 1 score per box)				
D	D 1. Does the wetland unit have the <u>potential</u> to improve water quality?					
D	D 1.1 Characteristics of surface water flows out of the wetland: Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 1					
	Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch points = 1 (If ditch is not permanently flowing treat unit as "intermittently flowing") Provide photo or drawing					
	S 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS					
	definitions)					
$\mid \mathbf{D} \mid$	YES points = 4					
	NO points = 0					
	D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class)	Figure				
_	Wetland has persistent, ungrazed, vegetation > = 95% of area points = 5	1 , [
$ \mathbf{D} $	Wetland has persistent, ungrazed, vegetation $> = 1/2$ of area points = 3					
	Wetland has persistent, ungrazed vegetation $> = 1/10$ of area points $= 1$	1 1				
	Wetland has persistent, ungrazed vegetation <1/10 of area points = 0 Map of Cowardin vegetation classes					
	D1.4 Characteristics of seasonal ponding or inundation.	Figure				
	This is the area of the wetland unit that is ponded for at least 2 months, but dries out					
D	sometime during the year. Do not count the area that is permanently ponded. Estimate					
	area as the average condition 5 out of 10 yrs.	1,4				
	Area seasonally ponded is $> \frac{1}{2}$ total area of wetland points = 4	[; t				
	Area seasonally ponded is $> \frac{1}{4}$ total area of wetland points = 2	1				
	Area seasonally ponded is < 1/4 total area of wetland points = 0 Map of Hydroperiods					
D	Total for D 1 Add the points in the boxes above	. 6				
D	D 2. Does the wetland unit have the opportunity to improve water quality?	(see p. 44)				
ע.	Answer YES if you know or believe there are pollutants in groundwater or surface water					
	coming into the wetland that would otherwise reduce water quality in streams, lakes or					
	groundwater downgradient from the wetland. Note which of the following conditions					
	provide the sources of pollutants. A unit may have pollutants coming from several					
	sources, but any single source would qualify as opportunity.	1				
	 Grazing in the wetland or within 150 ft 					
	— Untreated stormwater discharges to wetland	1				
	Tilled fields or orchards within 150 ft of wetland	Ť				
	— A stream or culvert discharges into wetland that drains developed areas, residential areas,					
	farmed fields, roads, or clear-cut logging Residential, urban areas, golf courses are within 150 ft of wetland	multiplier				
	Wetland is fed by groundwater high in phosphorus or nitrogen	membrica				
	Other					
	YES multiplier is 2 NO multiplier is 1	محت				
D	TOTAL - Water Quality Functions Multiply the score from D1 by D2	1/2				
	Add score to table on p. 1					

D	Depressional and Flats Wetlands HYDROLOGIC FUNCTIONS - Indicators that the wetland unit functions to reduce flooding and stream degradation	Points (only 1 score per box)			
	D 3. Does the wetland unit have the <u>potential</u> to reduce flooding and erosion?	(see p.46)			
D	D 3.1 Characteristics of surface water flows out of the wetland unit Unit is a depression with no surface water leaving it (no outlet) Unit has an intermittently flowing, OR highly constricted permanently flowing outlet points = 2 Unit is a "flat" depression (Q. 7 on key), or in the Flats class, with permanent surface outflow and no obvious natural outlet and/or outlet is a man-made ditch (If ditch is not permanently flowing treat unit as "intermittently flowing") Unit has an unconstricted, or slightly constricted, surface outlet (permanently flowing) points = 0	0			
D	D 3.2 Depth of storage during wet periods Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 The wetland is a "headwater" wetland" points = 5 Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5 Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3 Unit is flat (yes to Q. 2 or Q. 7 on key) but has small depressions on the surface that trap water Marks of ponding less than 0.5 ft - Per landwar observation points = 1 points = 0	0			
D	D 3.3 Contribution of wetland unit to storage in the watershed Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire unit is in the FLATS class points = 5 Total for D 3 Add the points in the boxes above				
		(200 = 40)			
D	D 4. Does the wetland unit have the <u>opportunity</u> to reduce flooding and erosion? Answer YES if the unit is in a location in the watershed where the flood storage, or reduction in water velocity, it provides helps protect downstream property and aquatic resources from flooding or excessive and/or erosive flows. Answer NO if the water coming into the wetland is controlled by a structure such as flood gate, tide gate, flap valve, reservoir etc. OR you estimate that more than 90% of the water in the wetland is from groundwater in areas where damaging groundwater flooding does not occur. Note which of the following indicators of opportunity apply. Wetland is in a headwater of a river or stream that has flooding problems Wetland has no outlet and impounds surface ranoff water that raight otherwise	(see p. 49)			
	Wetland has no outlet and impounds surface runoff water that might otherwise flow into a river or stream that has flooding problems				
	— Other	2			
D	TOTAL - Hydrologic Functions Multiply the score from D 3 by D 4 Add score to table on p. 1	0			

These questions apply to wetlands of all HABITAT FUNCTIONS - Indicators that unit fu		Points (only 1 score per box)
H 1. Does the wetland unit have the potential		_
H 1.1 Vegetation structure (see p. 72)		Figure
Check the types of vegetation classes present (as de class is ¼ acre or more than 10% of the area if Aquatic bed Emergent plants Scrub/shrub (areas where shrubs have > Forested (areas where trees have > 30%)	unit is smaller than 2.5 acres. 230% cover)	
If the unit has a forested class check if:	•]
The forested class has 3 out of 5 strata (moss/ground-cover) that each cover		. 0
Add the number of vegetation structures that quali		
	4 structures or more points = 4 3 structures points = 2	
Map of Cowardin vegetation classes	2 structures points = 1	
	1 structure points = 0	
H 1.2. Hydroperiods (see p. 73)		Figure
regime has to cover more than 10% of the wetland descriptions of hydroperiods) Permanently flooded or inundated Seasonally flooded or inundated Occasionally flooded or inundated Saturated only Permanently flowing stream or river in, or Seasonally flowing stream in, or adjacen Lake-fringe wetland = 2 points Freshwater tidal wetland = 2 points	4 or more types present points = 3 3 types present points = 2 2 types present point = 1 1 type present points = 0 or adjacent to, the wetland	
H 1.3. Richness of Plant Species (see p. 75) Count the number of plant species in the wetla of the same species can be combined to meet to You do not have to name the species. Do not include Eurasian Milfoil, reed can If you counted List species below if you want to:	the size threshold) arygrass, purple loosestrife, Canadian Thistle	-

Total for page _____O__



Comments

H 2. Does the wetland unit have the opportunity to provide habitat for many species?	
	Figure
H 2.1 Buffers (see p. 80) Choose the description that best represents condition of buffer of wetland unit. The highest scoring criterion that applies to the wetland is to be used in the rating. See text for definition of "undisturbed." — 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% of circumference. No structures are within the undisturbed part of buffer. (relatively undisturbed also means no-grazing, no landscaping, no daily human use) Points = 5 — 100 m (330 ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 50% circumference. Points = 4 — 50 m (170ft) of relatively undisturbed vegetated areas, rocky areas, or open water >95% circumference. Points = 4 100 m (330ft) of relatively undisturbed vegetated areas, rocky areas, or open water > 25% circumference. Points = 3	Figure
circumference, . Points = 3	Q
H 2.2 Corridors and Connections (see p. 81) H 2.2.1 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 150 ft wide, has at least 30% cover of shrubs, forest or native undisturbed prairie, that connects to estuaries, other wetlands or undisturbed uplands that are at least 250 acres in size? (dams in riparian corridors, heavily used gravel roads, paved roads, are considered breaks in the corridor. YES = 4 points (go to H 2.3) H 2.2.2 Is the wetland part of a relatively undisturbed and unbroken vegetated corridor (either riparian or upland) that is at least 50ft wide, has at least 30% cover of shrubs or forest, and connects to estuaries, other wetlands or undisturbed uplands that are at least 25 acres in size? OR a Lake-fringe wetland, if it does not have an undisturbed corridor as in the question above? YES = 2 points (go to H 2.3) H 2.2.3 Is the wetland: within 5 mi (8km) of a brackish or salt water estuary OR within 3 mi of a large field or pasture (>40 acres) OR within 1 mi of a lake greater than 20 acres? YES = 1 point NO = 0 points	

Total for page____

TIOONIA DE MAR AND STATE OF THE WINDOW (CO.)	
H 2.3 Near or adjacent to other priority habitats listed by WDFW (see p. 82)	ı
Which of the following priority habitats are within 330ft (100m) of the wetland unit? NOTE: the	l
connections do not have to be relatively undisturbed.	ı
These are DFW definitions. Check with your local DFW biologist if there are any questions.	ı
Riparian: The area adjacent to aquatic systems with flowing water that contains elements of	
both aquatic and terrestrial ecosystems which mutually influence each other.	
Aspen Stands: Pure or mixed stands of aspen greater than 0.8 ha (2 acres).	
Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft.	
Old-growth forests: (Old-growth west of Cascade crest) Stands of at least 2 tree species,	
forming a multi-layered canopy with occasional small openings; with at least 20 trees/ha (8	
trees/acre) > 81 cm (32 in) dbh or > 200 years of age.	
Mature forests: Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover	
may be less that 100%; crown cover may be less that 100%; decay, decadence, numbers of	r
snags, and quantity of large downed material is generally less than that found in old-	:
growth; 80 - 200 years old west of the Cascade crest.	l
Prairies: Relatively undisturbed areas (as indicated by dominance of native plants) where	<i>:</i> I
grasses and/or forbs form the natural climax plant community. Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft),	l
composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine	I
tailings. May be associated with cliffs.	l
Caves: A naturally occurring cavity, recess, void, or system of interconnected passages	l
Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where	l
canopy coverage of the oak component of the stand is 25%.	
Urban Natural Open Space: A priority species resides within or is adjacent to the open	\sim
space and uses it for breeding and/or regular feeding; and/or the open space functions as a	ı
corridor connecting other <i>priority habitats</i> , especially those that would otherwise be	
isolated; and/or the open space is an isolated remnant of natural habitat larger than 4 ha (10	= -
acres) and is surrounded by urban development.	
Estuary/Estuary-like: Deepwater tidal habitats and adjacent tidal wetlands, usually semi-	
enclosed by land but with open, partly obstructed or sporadic access to the open ocean, and	
in which ocean water is at least occasionally diluted by freshwater runoff from the land,	
The salinity may be periodically increased above that of the open ocean by evaporation.	
Along some low-energy coastlines there is appreciable dilution of sea water. Estuarine	
habitat extends upstream and landward to where ocean-derived salts measure less than	
0.5ppt, during the period of average annual low flow. Includes both estuaries and lagoons.	
Marine/Estuarine Shorelines: Shorelines include the intertidal and subtidal zones of	
beaches, and may also include the backshore and adjacent components of the terrestrial	
landscape (e.g., cliffs, snags, mature trees, dunes, meadows) that are important to shoreline	
associated fish and wildlife and that contribute to shoreline function (e.g., sand/rock/log	
recruitment, nutrient contribution, erosion control).	
If wetland has 3 or more priority habitats = 4 points	
If wetland has 2 priority habitats = 3 points	
If wetland has 1 priority habitat = 1 point No habitats = 0 points	
Note: All vegetated wetlands are by definition a priority habitat but are not included in this	
list. Nearby wetlands are addressed in question H 2.4)	

Total Score for Habitat Functions — add the points for H 1, H 2 and record the result on p. 1	6
TOTAL for H I from page 14	0
H 2. TOTAL Score - opportunity for providing habitat Add the scores from H2.1,H2.2, H2.3, H2.4	6
H 2.4 Wetland Landscape (choose the one description of the landscape around the wetland that best fits) (see p. 84) There are at least 3 other wetlands within ½ mile, and the connections between them are relatively undisturbed (light grazing between wetlands OK, as is lake shore with some boating, but connections should NOT be bisected by paved roads, fill, fields, or other development. The wetland is Lake-fringe on a lake with little disturbance and there are 3 other lake-fringe wetlands within ½ mile There are at least 3 other wetlands within ½ mile, BUT the connections between them are disturbed The wetland is Lake-fringe on a lake with disturbance and there are 3 other lake-fringe wetland within ½ mile There is at least 1 wetland within ½ mile. There are no wetlands within ½ mile. There are no wetlands within ½ mile.	3

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland meets the attributes described below and circle the appropriate answers and Category.

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the Category when the appropriate criteria are met.	
SC 1.0 Estuarine wetlands (see p. 86)	
Does the wetland unit meet the following criteria for Estuarine wetlands?	
 The dominant water regime is tidal, Vegetated, and With a salinity greater than 0.5 ppt. YES = Go to SC 1.1 NO 	
SC 1.1 Is the wetland unit within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151? YES = Category I NO go to SC 1.2	Cat. I
 SC 1.2 Is the wetland unit at least 1 acre in size and meets at least two of the following three conditions? YES = Category I NO = Category II — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less than 10% cover of non-native plant species. If the non-native Spartina spp. are the only species that cover more than 10% of the wetland, then the wetland should be given a dual rating (I/II). The area of Spartina would be rated a Category II while the relatively undisturbed upper marsh with native species would be a Category I. Do not, however, exclude the area of Spartina in determining the size threshold of 1 acre. — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland. — The wetland has at least 2 of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands. 	Cat. I Cat. II Dual rating I/II

SC 4.0 Forested Wetlands (see p. 90) Does the wetland unit have at least 1 acre of forest that meet one of these criteria for the Department of Fish and Wildlife's forests as priority habitats? If you answer yes you will still need to rate the wetland based on its functions. Old-growth forests: (west of Cascade crest) Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/acre (20 trees/hectare) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 inches (81 cm) or more.	
NOTE: The criterion for dbh is based on measurements for upland forests. Two-hundred year old trees in wetlands will often have a smaller dbh because their growth rates are often slower. The DFW criterion is and "OR" so old-growth forests do not necessarily have to have trees of this diameter.	
— Mature forests: (west of the Cascade Crest) Stands where the largest trees are 80 - 200 years old OR have average diameters (dbh) exceeding 21 inches (53cm); crown cover may be less that 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth.	- Constitution of the Cons
YES = Category I NOnot a forested wetland with special characteristics	Cat. I
SC 5.0 Wetlands in Coastal Lagoons (see p. 91)	
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks The lagoon in which the wetland is located contains surface water that is	The state of the s
 The lagoon in which the wetland is located contains surface water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) YES = Go to SC 5.1 NO not a wetland in a coastal lagoon 	1
 SC 5.1 Does the wetland meets all of the following three conditions? The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of invasive plant species (see list of invasive species on p. 74). At least ¼ of the landward edge of the wetland has a 100 ft buffer of 	
shrub, forest, or un-grazed or un-mowed grassland. The wetland is larger than 1/10 acre (4350 square feet)	Cat. I
YES = Category I NO = Category II	Cat. II

SC 6.0 Interdunal Wetlands (see p. 93)	
Is the wetland unit west of the 1889 line (also called the Western Boundary of Upland	
Ownership or WBUO)?	
YES - go to SC 6.1 NO not an interdunal wetland for rating	
If you answer yes you will still need to rate the wetland based on its	=
functions.	Granding
In practical terms that means the following geographic areas:	
 Long Beach Peninsula- lands west of SR 103 	
Grayland-Westport- lands west of SR 105	
 Ocean Shores-Copalis- lands west of SR 115 and SR 109 	
SC 6.1 Is the wetland one acre or larger, or is it in a mosaic of wetlands that is once acre or larger?	
YES = Category II $NO - go to SC 6.2$	Cat. II
SC 6.2 Is the unit between 0.1 and 1 acre, or is it in a mosaic of wetlands that is between 0.1 and 1 acre?	
YES = Category III	Cat. III
Category of wetland based on Special Characteristics	Na
Choose the "highest" rating if wetland falls into several categories, and record on	1"4
$p.I_c$	
If you answered NO for all types enter "Not Applicable" on p.1	

B&L Woodwaste Site

Critical Areas Study

Appendix D Site Photographs

This appendix provides photo documentation to supplement the Critical Areas Study. Photos were taken in May 2008.

Photo 2: Pacific Chorus Frog in Wetland A

Photo 3: Test plot 2 in upland area

Photo 4: Test plot 3 in upland area

Photo 5: Test Plot 4 in Wetland B

Photo 6: South of road looking South toward Wetland B

Photo 7: South of Ditch Looking North Toward Wetland C

Photo 8: South of Ditch Looking North Toward Wetland C

Photo 9: Ditch facing Westward

Photo 10: View North to Wetland C from Trail

Photo 11: Test Plot 5 in Wetland C

Photo 12: Wetland E

Photo 13: Test Plot 6 on road across Wetland C

Photo 14: Ditch looking eastward

Photo 15: Culvert facing eastward

Photo 16: Test Plot 8 in Wetland F

Photo 17: Wetland F

Photo 18: Test Plot 9 in Upland Area

Photo 19: Test Plot 7

B&L Woodwaste Site Pierce County, Washington

Engineering Design Report (EDR)

Appendix E Interim Compliance Monitoring Plan (Reserved:)

Note: The Interim Compliance Monitoring Plan (ICMP) will be revised as the remedy is implemented (refer to Section 5.0 of this EDR). Revised ICMP versions will supersede and replace the initial January 2009 ICMP, which was included as Appendix A to the Groundwater Remediation Work Plan (Floyd|Snider/AMEC 2009).