East Bay Site: Interim Action Work Plan

Public Comment Draft

PREPARED FOR:

PORT OF OLYMPIA 915 WASHINGTON STREET NE OLYMPIA, WA 98501

PREPARED BY:

2612 Yelm Hwy SE, Suite B Olympia, WA 98501-4826 Phone: 360.570.1700 Fax: 360.570.1777 www.uspioneer.com

MARCH 2009

This document was prepared under my direction. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Date

Troy D. Bussey Jr., P.E., L.G., L.HG. Senior Professional Engineer PIONEER Technologies Corporation Washington PE Registration No. 38877 Washington L.G. and L.HG. Registration No. 1568

TABLE OF CONTENTS

SECTION	I 1 – INTRODUCTION	1
1.1 1.2 1.3	PURPOSE INFRASTRUCTURE IMPROVEMENTS PROJECT BACKGROUND NPDES PERMIT APPLICATION	1
SECTION	2 – SITE BACKGROUND	3
2.1 2.2 2.3	SITE DESCRIPTION REGULATORY CONTEXT CHRONOLOGY OF INVESTIGATIONS APPLICABLE TO IAWP	3
SECTION	I 3 – IA OBJECTIVES AND CLEANUP LEVELS	5
3.1 3.2 3.3	IA OBJECTIVES CONSTITUENTS OF POTENTIAL CONCERN IA CLEANUP LEVELS	5
SECTION	I 4 – PLANS AND SPECIFICATIONS FOR INFRASTRUCTURE CONSTRUCTION	7
4.1 4.2 4.3	PLANS AND SPECIFICATIONS Relation to IA Construction Contractor Selection	7
SECTION	I 5 – IA DESIGN	8
5.1 5.2	DESIGN BASIS DESCRIPTION OF ENGINEERING CONTROLS (ECS)	
SECTION	I 6 – IA EVALUATION	11
6.1 6.2	EVALUATION USING IA OBJECTIVES EVALUATION USING WAC 173-340-430(7) CRITERIA	
SECTION	I 7 – IA IMPLEMENTATION	13
7.1 7.2 7.3 7.4	ROLES AND RESPONSIBILITIES PRIOR COORDINATION IA REPORTING IA SCHEDULE	13 14
SECTION	I 8 – COMPLIANCE MONITORING PLAN	15
8.1 8.2 8.3	PROTECTION MONITORING Performance Monitoring Confirmational Monitoring	15
SECTION	9 – HEALTH AND SAFETY PLANS	17
9.1 9.2	CONSTRUCTION CONTRACTOR HASP PIONEER HASP	
REFERE	NCES	18

TABLES

- TABLE 3-1.
 INTERIM ACTION CLEANUP LEVELS AND REUSE UNDER PAVEMENT LEVELS
- TABLE 5-1.COMPARISON OF INFRASTRUCTURE CORRIDOR SOIL DATA WITH INTERIM ACTION
REUSE UNDER PAVEMENT LEVELS
- TABLE 7-1. PROJECT ROLES AND RESPONSIBILITIES
- TABLE 7-2.PROJECT SCHEDULE

FIGURES

- FIGURE 1-1. INFRASTRUCTURE CORRIDOR SOIL SAMPLING LOCATIONS
- FIGURE 5-1. SOIL STOCKPILE SEGREGATION ZONES

Appendices

- APPENDIX A. SUMMARY OF PRE-RI INFRASTRUCTURE CORRIDOR SOIL DATA
- APPENDIX B. SUMMARY OF PHASE 1 REMEDIAL INVESTIGATION
- APPENDIX C. CALCULATION OF INTERIM ACTION CLEANUP LEVELS AND REUSE UNDER PAVEMENT LEVELS
- APPENDIX D. SAMPLING AND ANALYSIS PLAN / QUALITY ASSURANCE PROJECT PLAN
- APPENDIX E. PIONEER HEALTH AND SAFETY PLAN
- APPENDIX F. CALCULATION OF AIRBORNE DUST ACTION LEVEL
- APPENDIX G. TECHNICAL MEMORANDUM ON FISH CONSUMPTION EXPOSURE ASSUMPTIONS

ACRONYMS AND ABBREVIATIONS

Acronym	Explanation
AO	Agreed Order No. DE5471
CMP	Compliance Monitoring Plan
COPC	Constituents of Potential Concern
cPAHs	Carcinogenic Polycyclic Aromatic Hydrocarbons
Dioxins/Furans	Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans
Ecology	Washington State Department of Ecology
ECs	Engineering Controls
EDR	Engineering Design Report
FS	Feasibility Study
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
IA	Interim Action
IACLs	Interim Action Cleanup Levels
IARUPLs	Interim Action Reuse Under Pavement Levels
IAWP	Interim Action Work Plan
MTCA	Model Toxics Control Act
NPDES	National Pollutant Discharge Elimination System
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PIONEER	PIONEER Technologies Corporation
Port	Port of Olympia
PPE	Personal Protective Equipment
QA/QC	Quality Assurance / Quality Control
QAPP	Quality Assurance Project Plan
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
RIWP	Remedial Investigation Work Plan
SAP	Sampling and Analysis Plan
Site	East Bay Site
TPH	Total Petroleum Hydrocarbons
TPH-D	Total Petroleum Hydrocarbons in the Diesel Range
TPH-G	Total Petroleum Hydrocarbons in the Gasoline Range
TPH-HO	Total Petroleum Hydrocarbons in the Heavy Oil Range
VCP	Voluntary Cleanup Program
WAC	Washington Administrative Code
WISHA	Washington Industrial Safety and Health Act

SECTION 1 – INTRODUCTION

1.1 Purpose

The purpose of this Interim Action Work Plan (IAWP) is to present the required planning documentation to support an Interim Action (IA) at the Port of Olympia's (Port's) East Bay Site (Site) in accordance with Agreed Order No. DE5471 (AO) and Model Toxics Control Act (MTCA) regulations in Washington Administrative Code (WAC) 173-340-430(7). This IAWP only applies to soil in the portions of the Site in which utility and road infrastructure improvements are planned in 2009.

1.2 Infrastructure Improvements Project Background

The Port, in conjunction with a wide variety of public and private partners (e.g., State of Washington, City of Olympia, LOTT Alliance, and Hands On Children's Museum), is redeveloping the approximately 14-acre Site located in Olympia, Washington (see Figure 1-1). This urban redevelopment project is very important to the Port, its partners, and the Olympia community due to the project's role in revitalizing downtown Olympia. It is expected that a new Hands On Children's Museum facility, public plaza, and a variety of mixed-use, urban buildings will be constructed at the Site in the near future.

Before these amenities can be built, a civil engineering construction project will be completed in 2009 to improve the existing infrastructure (e.g., underground utilities and roads) within the approximately 2.5-acres of public right-of-ways. The approximate location and layout of these right-of-ways (referred to in this document as the infrastructure corridor) are shown in Figure 1-1. These infrastructure improvements are necessary so that the property can be platted and prepared for redevelopment, and so that the project can receive state funding from the Public Facilities District. In summary, infrastructure improvement activities (Skillings-Connolly 2009b, Skillings-Connolly 2009c) will include:

- Demolition and reuse of unnecessary concrete and asphalt
- Decommissioning of unnecessary public utilities
- Installation of new public utilities (i.e., water, reclaimed water, sewer, storm water)
- Installation of new private utilities (e.g., electricity, natural gas, telephone, cable)
- Redevelopment of existing paved streets, including addition of bike lines and sidewalks
- Construction of new paved streets, bike lanes, and sidewalks

Since this is a designated MTCA Site and the infrastructure improvements will disturb subsurface soil, the infrastructure improvements project must satisfy the requirements of the MTCA IA described in this IAWP. In other words, this IAWP is designed to ensure the subsurface soil disturbances resulting from the infrastructure improvement project comply with applicable MTCA regulations and are protective of human health and the environment.

1.3 NPDES Permit Application

Since the depth of the utility excavations in some locations is expected to be below the depth to groundwater, dewatering of excavations will be conducted as necessary. This IAWP does not address any of the technical or administrative requirements associated with dewatering and associated wastewater disposal since those requirements are being addressed separately in accordance with the Port's National Pollutant Discharge Elimination System (NPDES) permit application. Likewise, this IAWP does not address issues related to stormwater control, which are also being addressed in the NPDES permit application. The Port's technical approach for addressing dewatering and stormwater control is presented in a dewatering engineering design report (EDR) (Skillings-Connolly 2009a). Rather than reiterate the technical and administrative requirements associated with construction dewatering and stormwater control, this IAWP simply references the NPDES permit application and/or EDR as appropriate.

SECTION 2 – SITE BACKGROUND

2.1 Site Description

The Site is located in the southeast corner of the Port Peninsula adjacent to the East Bay of Budd Inlet, Olympia, Washington (see Figure 1-1). The Site is relatively flat, with ground surface elevations ranging from approximately 10 to 12 feet above mean sea level. The Site has been used for commercial and light industrial purposes (e.g., wood processing and milling operations from the late 1800s to mid 1900s; warehouse and storage operations since circa 1970) from the late 1800s to 2008. The Site is situated on fill material deposited during a series of fill events over the past 100 to 150 years. More detailed information about Site history, features, and land uses are presented in the Remedial Investigation (RI) Work Plan (RIWP) (GeoEngineers and PIONEER 2008).

2.2 Regulatory Context

The Site originally entered into the Washington State Department of Ecology's (Ecology) Voluntary Cleanup Program (VCP) in 2007. Subsequently, the Port and Ecology entered an AO for the Site on October 3, 2008. In the AO, the Port agreed to submit the following deliverables to Ecology:

- RIWP (draft and final)
- IAWP (draft and final)
- IA Report (draft and final)
- RI Report (draft and final)
- Supplemental RIWP (draft and final), if necessary
- Supplemental RI Report (draft and final), if necessary

The RIWP was submitted to Ecology on October 22, 2008. This IAWP is the second major milestone document required by the AO.

2.3 Chronology of Investigations Applicable to IAWP

A number of environmental investigations were conducted at the Site prior to the AO effective date (and prior to Phase 1 of the RI). The results of these investigations are summarized in a VCP RI/Feasibility Study (FS) and Conceptual Cleanup Action Plan (GeoEngineers 2007) and the AO RIWP (GeoEngineers and PIONEER 2008). In general, most of the soil data collected prior to the Phase 1 RI was located outside of the infrastructure corridor, with the following exceptions. The following eight pre-RI soil sampling locations were located within or immediately adjacent to the infrastructure corridor: Boring 7, Boring 8, Boring 9, DP07, DP22, MW02, MW05, and TP03. Figure 1-1 shows the locations of the eight pre-RI soil sampling locations. A total of 10 discrete primary soil samples (and one duplicate) collected from these eight sampling locations were analyzed for metals, total petroleum hydrocarbons (TPH) in the diesel range (TPH-D), TPH in the heavy oil range (TPH-HO), TPH in the gasoline range (TPH-G), polychlorinated biphenyls (PCBs), semi-volatile organic compounds, volatile organic compounds, and/or

chlorinated dibenzo-p-dioxins / chlorinated dibenzofurans (dioxins/furans). A summary of the analytical results and the boring logs for these sample locations are included in Appendix A.

In November 2008, PIONEER Technologies Corporation (PIONEER) conducted Phase 1 of the RI in accordance with the RIWP (GeoEngineers and PIONEER, 2008) in order to provide soil data to support this IAWP. Eight soil borings (designated as DP32, DP33, DP40, DP36, DP38, DP30, DP27, and DP34) located within the infrastructure corridor were advanced and sampled during the Phase 1 RI. Figure 1-1 shows the locations of the eight Phase 1 RI borings. A total of 25 discrete soil samples collected from these eight borings were analyzed for metals, TPH-D, TPH-HO, polycyclic aromatic hydrocarbons (PAHs), TPH-G, benzene, toluene, ethylbenzene, xylenes, and/or dioxins/furans. Appendix B summarizes the methodology used and results from soil samples collected during the Phase 1 RI.

SECTION 3 – IA OBJECTIVES AND CLEANUP LEVELS

3.1 IA Objectives

The objectives of this IA are to:

- Protect human health and the environment
- Comply with IA cleanup levels
- Comply with applicable state and federal laws and regulations
- Provide for compliance monitoring
- Not preclude reasonable alternatives for a final cleanup action
- Consider public concerns
- Be cost-effective

3.2 Constituents of Potential Concern

The following constituents, which are the Site-wide constituents of potential concern (COPCs) (GeoEngineers and PIONEER 2008), are also the COPCs for the IA:

- Arsenic
- Cadmium
- Lead
- Total carcinogenic PAHs (cPAHs)
- Total dioxins/furans
- Total naphthalenes
- TPH-D
- TPH-HO
- TPH-G

In addition, the following will be considered COPCs if TPH-G is encountered during the IA:

- Benzene
- Toluene
- Ethylbenzene
- Total xylenes

3.3 IA Cleanup Levels

IA Cleanup Levels (IACLs) based on unrestricted land use are presented in Table 3-1 for the COPCs listed in Section 3.2. Also presented in Table 3-1 are IA Reuse Under Pavement Levels (IARUPLs). IARUPLs only apply to soil that is reused as subsurface fill underneath paved surfaces within the infrastructure corridor. Soil excavated from the infrastructure corridor that has concentrations exceeding

IARUPLs will be disposed of off Site. The IACLs and the IARUPLs were calculated as discussed in Appendix C.

Compliance with IARUPLs for soil excavated from the infrastructure corridor and designated for reuse will be determined by evaluating soil samples collected from soil stockpiles in accordance with the Compliance Monitoring Plan (CMP) in Section 8 of this IAWP. A compliance evaluation for soil within the excavation sidewalls of the infrastructure corridor is not expected and will only be conducted if gross contamination is encountered within the infrastructure corridor (see Section 5.2 regarding gross contamination provisions). If gross contamination is encountered, then compliance with IARUPLs will be applied to soil within the excavation sidewalls of the infrastructure corridor (and under pavement) from a depth of ground surface to 15 feet below the ground surface, unless groundwater is encountered at a shallower depth. If shallower groundwater is encountered in the gross contamination scenario, then compliance with IARUPLs will be applied to a depth of two feet deeper than the necessary depth for infrastructure construction or two feet deeper than the depth at which groundwater was encountered, whichever is deeper.

No other applicable state and federal laws or regulations based on the type of IA or location of the IA have been identified that would require modifications to the IACLs or IARUPLs.

SECTION 4 – PLANS AND SPECIFICATIONS FOR INFRASTRUCTURE CONSTRUCTION

4.1 Plans and Specifications

The construction requirements for the infrastructure improvement activities listed in Section 1.2 are fully defined in the construction plans (Skillings-Connolly 2009b) and specifications (Skillings-Connolly 2009c), with one exception. The plans and specifications for installation of new private utilities (e.g., electricity, natural gas, telephone, cable) are still in development. However, the development timeline for the private utility plans and specifications is essentially inconsequential to the IAWP since the private utility plans and specifications will be incorporated with the primary plans and specifications (Skillings-Connolly 2009b, Skillings Connolly 2009c) prior to contract bid selection, and private utility lines will be placed within the public utility excavation footprint governed by the primary plans and specifications (Skillings-Connolly 2009b, Skillings Connolly 2009c).

4.2 Relation to IA

This MTCA-driven IA is fully integrated with the civil engineering plans and specifications (Skillings-Connolly 2009b, Skillings-Connolly 2009c). Specifically, this IAWP is included within the special provisions of the construction specifications (Skillings-Connolly 2009c) in Section 01560. In other words, the infrastructure construction contractor must satisfy the requirements of this IAWP in addition to the non-cleanup requirements included in the plans and specifications. It should also be noted that the infrastructure construction plans and specifications were designed to minimize the volume of soil disturbed and excavated during infrastructure construction due to environmental concerns related to MTCA regulations and the NPDES permit application.

4.3 Construction Contractor Selection

The Port will competitively bid the planned infrastructure improvements and related environmental work (i.e., work pursuant to this IAWP and the NPDES permit). The Port will advertise a public notice soliciting bid proposals from potential contractors by a certain date and time. A complete set of plans and specifications will be made available for public review. Each bidding contractor will prepare a cost estimate based on the plans and specifications. The Port will collect bid proposals on the time and date advertised. The Port will review each bid proposal for consistency with the plans and specifications. Following its review, the Port intends to award and enter into a public works contract (per Chapter 39.04 of the Revised Code of Washington) with the lowest bidder whose proposal satisfies the plans and specifications. Construction is expected to proceed shortly after the public works contract is in force.

SECTION 5 – IA DESIGN

5.1 Design Basis

IARUPLs are conservatively protective of all receptors who could be exposed to soil within the infrastructure corridor during and following construction and are conservatively protective of potential surface water receptors (see Appendix C). The maximum soil concentrations of COPCs detected to date within the infrastructure corridor are below the IARUPLs as shown in Table 5-1, with the exception of cadmium in a single sample. In addition, it should be noted that exposure risks are typically based on average concentrations or 95th upper confidence levels on the average concentrations rather than maximum concentrations. As a result, it is unlikely that COPC concentrations in soil exceeding the IARUPLs will be encountered during infrastructure construction.

5.2 Description of Engineering Controls (ECs)

Even though COPC concentrations exceeding IARUPLs are not expected in the infrastructure corridor, the Port and its contractors will implement and maintain the following engineering controls (ECs) during infrastructure construction:

- <u>Site Control</u>: The construction contractor will:
 - Install and maintain a continuous perimeter fence with a height of approximately five feet to limit access to the Site interior (e.g., area bounded by Marine Drive, State Avenue, and Jefferson Street) for the duration of subsurface construction activities.
 - Implement and maintain appropriate traffic and pedestrian control measures to restrict public access (e.g., road closures, traffic diversions, pedestrian detours, signs/barricades) to right-of-ways with open excavations.
- **Excavation Width Control**: The construction contractor will utilize trench boxes or similar approaches, to the extent practical, to minimize the width of utility excavations.
- **Dust Control**: The construction contractor will utilize best management practices (e.g., Washington State Department of Transportation 2008, Ecology 2005) to suppress dust (e.g., watering of dry soil as necessary) for all earthwork within the infrastructure corridor. In addition, protection monitoring for dust will be conducted as discussed in the CMP.
- <u>Soil Segregation</u>: The construction contractor will segregate soil excavated during infrastructure construction in accordance with the zones shown in Figure 5-1. For soil excavated within a particular zone, the construction contractor will further segregate soils from that zone into separate stockpiles as follows:
 - Soil that is geotechnically suitable for reuse within the utility corridor.
 - o Soil that is geotechnically unsuitable for reuse within the utility corridor.
 - Soil that is grossly contaminated (if encountered). See provisions below for addressing any gross contamination in the unlikely event that it is encountered.

It should be noted that soils excavated from a particular zone do not need to necessarily be stored within the zone from which the soil was generated.

- <u>**Temporary Storage**</u>: The construction contractor will conduct the following actions for all stockpiled soil:
 - Place all excavated soil in stockpiles on an impervious surface such as concrete, asphalt, polyethylene liner (e.g. Visqueen) with a thickness of at least 10-mils, or equivalent.
 - Establish and maintain a tracking (e.g., placards) and recordkeeping system to indicate the original locations of soil that comprise a given stockpile.
 - Cover all stockpiles with a polyethylene liner with a thickness of at least 10-mils (or equivalent material) and secure the liner with ropes and sandbags or equivalent.
 - Uncover only the working face of a stockpile when adding, removing, or sampling a stockpile, and recover and secure the entire stockpile at the end of each work day.
 - Perform maintenance as necessary to keep the bottom impervious surface and cover liner intact.
- <u>Stormwater Control</u>: The construction contractor will address all stormwater control requirements associated with the soil stockpiles in accordance with the NPDES permit application (Skillings-Connolly 2009a).
- **<u>Reuse/Disposal</u>**: The construction contractor will reuse or dispose of soil excavated from the infrastructure corridor as follows:
 - Soil that is geotechnically suitable for reuse within the utility corridor and that has concentrations below IARUPLs (per stockpile performance monitoring per the CMP) will be reused underneath paved surfaces within the utility corridor.
 - Soil that is geotechnically unsuitable for reuse within the utility corridor and that has concentrations below IARUPLs (per stockpile performance monitoring in the CMP) will be reused underneath paved surfaces within the utility corridor if it can be reconditioned or modified with amendments to meet the applicable geotechnical criteria for its intended use. If this soil cannot be reconditioned or modified, it will be transported to and disposed of at an off-Site Resource Conservation and Recovery Act (RCRA) Subtitle D facility.
 - Any soil that has concentrations exceeding IARUPLs (per stockpile performance monitoring in the CMP), regardless of geotechnical suitability, will be transported to and disposed of at an off-Site RCRA Subtitle D facility.
 - Soil that is grossly contaminated (if encountered) that has concentrations exceeding IARUPLs (per gross contamination characterization sampling in CMP) will be transported to and disposed of at an off-Site RCRA Subtitle D facility.
- <u>Compliance Monitoring</u>: A third party Port contractor(s) will conduct all compliance monitoring per the CMP in Section 8 and the Sampling and Analysis Plan (SAP) / Quality Assurance Project Plan (QAPP) in Appendix D.
- <u>Health and Safety</u>: The construction contractor, organizations/contractors installing private utilities, and on-Site third party organization(s)/contractor(s) providing oversight will prepare and implement Health and Safety Plans (HASPs) as discussed in Section 9. As discussed in Section 9, the HASPs will include use of personal protective equipment (PPE) to minimize dermal contact with soil and groundwater.

- **Documentation**: The construction contractor will be responsible for preparing and maintaining daily reports. In addition, the construction contractor will be responsible for preparing and maintaining detailed field notes and photographs to document all soil management activities (e.g., excavation, segregation, stockpiling, reuse, disposal) conducted by the construction contractor. The construction contractor will provide copies of the daily reports, field notes, and photographs to those conducting oversight (see below) and PIONEER. Those conducting oversight (see below) will also prepare and maintain field notes and photographs to document their oversight activities.
- <u>Oversight</u>: The Port, Port contractors, City of Olympia, and/or City of Olympia contractors will conduct general construction oversight of the construction contactor to ensure all contract specifications are satisfied. A third party Port contractor and/or PIONEER will provide oversight support for environmental soil issues related to implementation of this IAWP. Likewise, a third party Port contractor will support those conducting general oversight for environmental water issues related to the NPDES permit application.
- <u>Gross Contamination Provisions</u>: As discussed previously, COPC concentrations encountered during excavation of the infrastructure corridor are not expected to exceed IARUPLs. However, if visual or olfactory evidence of gross contamination (e.g., free product, heavy sheen) is observed by the construction contractor or others performing oversight during any portion of the excavation work, the following provisions will be implemented:
 - The construction contractor will segregate any soil excavated from the location of suspected gross contamination from other soil (as mentioned previously).
 - The third party Port contractor providing oversight support for environmental soil issues will utilize visual observations, olfactory observations, water sheen screening, and/or headspace vapor screening as described in the RIWP (GeoEngineers and PIONEER 2008) to confirm the presence of suspected gross contamination.
 - If field screening results confirm the presence of suspected gross contamination, then the third party Port contractor providing oversight support for environmental soil issues will collect soil samples from worst case locations (e.g., excavation sidewall and/or stockpile of grossly contaminated soil) to characterize the suspected gross contamination as necessary and in consultation with Ecology (see CMP and SAP).
 - If the analytical results of the characterization sample(s) exceed IARUPLs, then the following actions will be implemented as necessary and in consultation with Ecology:
 - The construction contractor will overexcavate soil to a maximum width of 10 feet beyond the planned edge of the infrastructure corridor.
 - The construction contractor will transport grossly contaminated soil exceeding IARUPLs to a RCRA Subtitle D facility for disposal.
 - The third party Port contractor providing oversight support for environmental soil issues will collect excavation sidewall and bottom samples (see CMP and SAP) following overexcavation to confirm grossly contaminated soil has been removed.

SECTION 6 – IA EVALUATION

As described in Section 5, the MTCA-based IA remedy is ECs. The appropriateness of the IA design (i.e., ECs) was evaluated using the IA Objectives presented in Section 3.1 and the submittal requirements for IAs in WAC 173-340-430(7) as described in the following subsections.

6.1 Evaluation Using IA Objectives

The IA design (i.e., ECs) was evaluated using the IA Objectives presented in Section 3.1. The IA design of ECs satisfies the IA Objectives for the following reasons:

- The IA is anticipated to protect human health and the environment since none of the exposures associated with the infrastructure corridor are anticipated to pose an unacceptable risk. In addition, the ECs will provide added measures of safety and certainty for construction-phase receptors and potential future receptors. It is recognized that institutional controls may eventually be required for soil left in place under paved roads if final cleanup levels are based on direct contact by child residents and/or terrestrial ecological organisms.
- The IAWP was designed so that the IA can comply with IA cleanup levels and all applicable state and federal laws and regulations (e.g., MTCA regulations, Washington Industrial Safety and Health Act [WISHA] regulations, RCRA regulations for soil disposal at Subtitle D facility, NPDES permit application for dewatering/stormwater).
- The IAWP provides for compliance monitoring during the IA as discussed in Section 8.
- The IA is not anticipated to preclude a final action since the primary purpose of the IA is to remove soil with concentrations greater than IARUPLs. It is unlikely that the IA will preclude further RI work or Site-wide remedial alternatives given the relatively small area taken up by the infrastructure corridor and the fact that investigation and remediation infrastructure can be installed through paved surfaces. Nonetheless, the Port understands that it may need to remove or alter infrastructure improvements as part of the final Site-wide cleanup action and that any removal/alternation costs should not be included in the disproportionate cost analysis under WAC 173-340-360(3).
- Public concerns will be considered before the IA is implemented with public participation on this IAWP in accordance with WAC 173-340-600 and the AO.
- Although a formal cost evaluation has not been performed beyond a draft FS submitted to Ecology under the VCP (GeoEngineers 2007), the IA is the most cost-effective possible remedial alternative given the regulatory context.

6.2 Evaluation Using WAC 173-340-430(7) Criteria

The IA design (i.e., ECs) was evaluated using the submittal requirements for IAs in WAC 173-340-430(7). The IA design of ECs satisfies WAC 173-340-430(7) for the following reasons:

• The IA meets the criteria in WAC 173-340-430(1)(a) since there are complete exposure pathways associated with infrastructure construction.

- The IA meets the criteria in WAC 173-340-430(2)(a) since the IA is expected to achieve applicable standards for a portion of the Site.
- The IA meets the criteria in WAC 173-340-430(3)(b) since the IA will not foreclose reasonable alternatives for the final cleanup action as discussed in Section 6.1.
- The IAWP summarizes the existing Site conditions and available RI data related to the IA in Section 2. There is no appropriate information from an appropriate FS to include in the IAWP.
- The road and utility construction plans and specifications (Skillings-Connolly 2009b, Skillings-Connolly 2009c) are appropriate engineering submittals per WAC 173-340-400 given the nature of the EC remedy being implemented in the IA.
- A CMP meeting the requirements of WAC 173-340-410 is included in Section 8.
- Appendix E includes a HASP satisfying WAC 173-340-810, while Section 9 identifies the requirement for the construction contractor and on-Site third party organization(s)/contractor(s) providing oversight to prepare their own HASPs.
- A SAP / QAPP meeting the requirements of WAC 173-340-820 is included as Appendix D.

SECTION 7 – IA IMPLEMENTATION

This section summarizes the details of IA implementation that are known at this time (see also Section 8 for CMP and Section 9 for HASP requirements). Additional details will be developed once the construction contractor is selected and oversight roles are defined.

7.1 Roles and Responsibilities

The project planning and design team consists of representatives from:

- The Port
- Skillings-Connolly
- PIONEER
- Ecology

The project implementation and reporting team consists of representatives from:

- The Port
- To be determined construction contractor
- To be determined organizations/contractors installing private utilities
- To be determined organization(s) conducting general construction oversight
- To be determined third party Port contractor providing oversight support for environmental soil issues (which may be PIONEER)
- PIONEER (who at a minimum will be providing limited oversight support and writing the IA Report)
- To be determined third party Port contractor providing oversight support for environmental water issues
- To be determined analytical laboratory
- To be determined RCRA Subtitle D facility (if necessary)
- Ecology

Table 7-1 shows anticipated roles and responsibilities for the project.

7.2 Prior Coordination

A significant amount of prior coordination will need to be completed after the construction contractor is selected, but before any excavation associated with this IA begins. Although other prior coordination tasks will likely be identified, the following are major prior coordination actions that have been identified at this time:

• The Port will formalize agreements and contracts as necessary in order to select the organization(s) and third party Port contractor(s) providing oversight services. The Port will also further define the roles, responsibilities, and lines of communication for those conducting oversight.

- An environmental-specific kickoff meeting to be attended by representatives of the Port, the construction contractor, organizations/contractors installing private utilities, all organizations and third party Port contractors conducting oversight activities, PIONEER, and Ecology will be held.
- The construction contractor will coordinate and contract as necessary for possible transportation and disposal of waste at a RCRA Subtitle D facility.
- The Port and/or the third party Port contractor providing oversight support for environmental soil issues will coordinate and contract as necessary with an analytical laboratory certified by Ecology.
- The construction contractor will provide a detailed construction schedule to the Port, all organizations and third party Port contractors conducting oversight activities, PIONEER, and Ecology.

7.3 IA Reporting

After completing the IA, PIONEER will prepare a draft IA Report for Ecology review in accordance with the AO. The report will include:

- A description of construction contractor's field activities related to IA soil management (e.g., excavation, segregation, stockpiling, reuse, disposal)
- A description of EC implementation
- A description of compliance monitoring methodology
- A discussion and justification of any deviations from this IAWP
- A discussion of observed ability of ECs to satisfy IA objectives
- A discussion comparing quantitative performance monitoring results for soil samples collected from stockpiles designated for reuse with IACLs and IARUPLs
- A discussion of quality assurance/quality control (QA/QC) review and verification process including implications for project data as described in the QAPP
- A figure showing final excavation locations and dimensions
- A figure showing soil stockpile locations
- A figure showing compliance monitoring sampling locations
- A summary table of compliance monitoring results
- Copy of the construction contractor's daily reports, field notes, and photographs
- Copy of field notes and photographs from the third party Port contractor providing oversight support for environmental soil issues
- Copy of waste disposition documentation (e.g., manifests and disposal receipts)
- Copy of laboratory certificates of analysis with chain-of-custodies

7.4 IA Schedule

The current schedule for completing the IAWP, infrastructure construction, and IA Report is presented in Table 7-2. A more detailed infrastructure construction schedule will be developed by the construction contractor following contract award.

SECTION 8 – COMPLIANCE MONITORING PLAN

The purpose of this section is to describe the general approach of the IA CMP in accordance with the requirements of WAC 173-340-410. There are three types of compliance monitoring defined in WAC 173-340-410: protection monitoring, performance monitoring, and confirmational monitoring. The application of each type of compliance monitoring during the IA is described below. The applicable sampling and QA/QC details associated with the CMP are presented in the SAP / QAPP in Appendix D. Quantitative data collected pursuant to the CMP will be analyzed and evaluated for compliance in accordance with WAC 173-340-740(7). The third party Port contractor providing oversight support for environmental soil issues will implement the CMP.

8.1 Protection Monitoring

The purpose of IA protection monitoring is to confirm that human health and the environment are adequately protected during infrastructure construction. Even though existing data indicate that human health and the environment will be adequately protected during infrastructure construction as discussed previously, the third party Port contractor providing oversight support for environmental soil issues will conduct the following protection monitoring during infrastructure construction:

• Conduct airborne dust monitoring with a particulate matter field monitor and compare results with Airborne Dust Action Levels presented in Appendix F in order to ensure the safety of on-Site workers in accordance with WISHA regulations.

8.2 Performance Monitoring

The purpose of IA performance monitoring is to confirm that the IA has satisfied the IA design, IA cleanup levels, and applicable IA objectives. The third party Port contractor providing oversight support for environmental soil issues will conduct the following performance monitoring during infrastructure construction:

- Provide periodic on-Site construction-oversight support and periodic review of documentation from the construction contractor (e.g., daily reports and field notes) in order to qualitatively assess the effectiveness of ECs.
- Collect and analyze soil samples from stockpiles designated for off-Site disposal and compare results with criteria in RCRA and Chapter 173-303 WAC regulations in order to confirm the appropriateness of disposing the soil at a RCRA Subtitle D facility.
- Collect and analyze soil samples from stockpiles designated for on-Site reuse and compare results with IARUPLs in order to confirm the appropriateness of on-Site reuse of the soil in the stockpiles. If COPC concentrations in a stockpile performance monitoring sample exceed IARUPLs, it is not anticipated that additional re-sampling will take place. Rather, the stockpile represented by the soil sample exceedance will be disposed of off-Site.
- If necessary in the event that suspected gross contamination is encountered, collect and analyze soil samples from worst case locations (e.g., excavation sidewall and/or stockpile) and compare

results with IACLs and IARUPLs in order to characterize soil with suspected gross contamination.

• If necessary in the event that gross contamination is encountered that has concentrations exceeding IARUPLs, collect and analyze excavation sidewall and bottom samples following overexcavation, and compare results with IARUPLs in order to confirm that soil with COPC concentrations exceeding IARUPLs has been successfully removed.

In addition, it should be noted that performance monitoring will also be conducted for water discharges pursuant to the NPDES permit (Skillings-Connolly 2009a).

8.3 Confirmational Monitoring

The purpose of confirmational monitoring per WAC 173-340-410(1)(c) is to "confirm the long-term effectiveness of the interim action or cleanup action once cleanup standards and, if appropriate, remediation levels or other performance standards have been attained." Since the RI is still on-going and a final cleanup action is not known, it is premature to propose confirmational monitoring at this time. However, the final cleanup action will take into account any necessary confirmational monitoring associated with the IA.

SECTION 9 – HEALTH AND SAFETY PLANS

This infrastructure construction project is being conducted at a designated MTCA Site. Thus, Occupational Safety and Health Act and WISHA regulations for hazardous waste operations apply to infrastructure construction in accordance with WAC 173-340-810 and WAC 246-843-100. As a result, appropriate HASPs must be prepared for the IA.

9.1 Construction Contractor HASP

Once the construction contract is awarded, the primary construction contractor and other organizations/contractors with on-Site workers (e.g., organizations/contractors installing private utilities, those conducting construction oversight) will:

- Prepare and maintain a HASP in accordance with WAC 173-340-810 and WAC 296-843-100.
- Utilize Hazardous Waste Operations and Emergency Response (HAZWOPER) trained workers in accordance with WAC 296-843-20010 as necessary in accordance with the nature of the work being conducted.
- Use PPE in accordance with the HASP(s) to minimize dermal contact with soil and groundwater.

9.2 PIONEER HASP

At a minimum, PIONEER will be providing construction-oversight support related to implementation of this IAWP in accordance with its current contract. In addition, if the existing contract is modified, then PIONEER may be conducting all of the field activities currently assigned to the "third-party Port contractor providing oversight support for environmental soil issues." A HASP specific to PIONEER's known and possible IA activities is included in Appendix E.

REFERENCES

- Ecology 2005. "BMP C140: Dust Control" in Stormwater Management Manual for Western Washington: Volume II Construction Stormwater Pollution Prevention, February.
- GeoEngineers 2007. Remedial Investigation/Feasibility Study and Conceptual Cleanup Action Plan, East Bay Redevelopment, Port of Olympia, December 20.
- GeoEngineers and PIONEER 2008. Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia, October 22.
- Skillings-Connolly 2009a. East Bay Infrastructure Project, Groundwater Pump and Treat, Interim Action, Engineering Design Report, January 2009.
- Skillings-Connolly 2009b. Construction plans titled "East Bay Infrastructure Project," January 2009.
- Skillings-Connolly 2009c. Port of Olympia Contract No. 2008-1057 Specifications, East Bay Infrastructure, Project No. PR0704, pending.
- Washington State Department of Transportation 2008. Section 2-07 of Standard Specifications for Road, Bridge, and Municipal Construction 2008, January.

TABLES

Constituent of Potential Concern	Interim Action Cleanup Level (Based on Unrestricted Land Use) (mg/kg)	Interim Action Reuse Under Pavement Level (mg/kg)
Arsenic	20	20
Cadmium	2	2
Lead	250	250
Total cPAHs	0.095	1.4
Total dioxins/furans	9.8E-06	5.1E-04
Total naphthalenes	160	160
TPH-D	2,000	2,000
TPH-HO	2,000	2,000
TPH-G	100	100
Benzene	0.22	0.22
Toluene	240	240
Ethylbenzene	43	43
Total xylenes	23	23

 TABLE 3-1

 INTERIM ACTION CLEANUP LEVELS AND INTERIM ACTION REUSE UNDER PAVEMENT LEVELS

March 2009

Constituent of Potential Concern	Number of Soil Samples Collected Within Infrastructure Corridor	Maximum Concentration Detected in Infrastructure Corridor (mg/kg)	Interim Action Reuse Under Pavement Level (mg/kg)	Maximum Concentration Above Interim Action Reuse Under Pavement Level?		
Arsenic	30	14	20	No		
Cadmium	30	3.7	2	Yes ⁽¹⁾		
Lead	30	170	250	No		
Total cPAHs	23	0.33	1.4	No		
Total dioxins/furans	26	6.2E-05	5.1E-04	No		
Total naphthalenes	23	0.32	160	No		
TPH-D	17	91	2,000	No		
TPH-HO	17	610	2,000	No		
TPH-G	15	31	100	No		
Benzene	15	0.25 U	0.22	No		
Toluene 15		0.12 U	240	No		
Ethylbenzene	15	0.12 U	43	No		
Total xylenes	15	0.24 U	23	No		

TABLE 5-1

COMPARISON OF INFRASTRUCTURE CORRIDOR SOIL DATA WITH INTERIM ACTION REUSE UNDER PAVEMENT

Notes:

U = Not detected at the shown concentration

⁽¹⁾ It should be noted that only one of the 30 cadmium samples is above 2 mg/kg. The 95th upper confidence limit on the mean cadmium concentration (assuming a lognormal distribution and non-detects are equal to half the practical quantitation limit) is 0.4 mg/kg. It should also be noted that the Interim Action Reuse Under Pavement Level for cadmium is based on protection of potential surface water receptors and that cadmium was not detected in either of the two groundwater samples collected from the location where cadmium was detected in soil at 3.7 mg/kg.

Project Role	Contact Name, Phone Number, and Email	Project Responsibilities
Port Engineering Director	Jeff Lincoln, P.E. (360) 528-8061 JeffL@portolympia.com	Communication and coordination with Port Executive Director, Port Commissioners, and Port engineering staff.
Port Project Manager	Kevin Dragon, P.E. (360) 528-8022 KevinD@portolympia.com	Overall engineering management of road and utility construction. Reports to Port Engineering Director.
Port Environmental Program Manager	Joanne Snarski (360) 528-8020 JoanneS@portolympia.com	Overall environmental management of project. Communication and coordination with Ecology. Reports to Port Engineering Director.
Skillings-Connolly Project Manager	Steve Thomas, P.E. (360) 491-3399 sthomas@skillings.com	Prepare construction plans and specifications. Prepare EDR for NPDES permit application.
PIONEER Project Manager	Troy Bussey, P.E., L.HG. (360) 570-1700 busseyt@uspioneer.com	Prepare IAWP. Provide oversight support in accordance with existing contract. Prepare IA Report.
Ecology Site Manager	Steve Teel, L.HG. (360) 407-6362	Regulatory review and approval of IAWP and IA Report. Complete public notification requirements.
Construction Contractor	To be determined	Construct public utilities, construct roads, and complete rest of infrastructure improvements in accordance with plans and specifications. Implement vast majority of ECs in IAWP.
Install Private Utilities	To be determined	Install private utilities (e.g., electricity, natural gas, telephone, cable).
General Construction Oversight	To be determined	Responsible for all aspects of construction oversight.
Oversight Support for Environmental Soil Issues	To be determined	Support primary organization(s) conducting oversight for environmental soil issues related to implementation of this IAWP. Implement CMP, SAP, and QAPP.
Oversight Support for Environmental Water Issues	To be determined	Support primary organization(s) conducting oversight for environmental water issues related to NPDES permit application and decommissioning of artesian wells.
Analytical Laboratory	To be determined	Analyze soil samples and conduct laboratory QC.
RCRA Subtitle D Facility (if necessary)	To be determined	Facility for disposal of off-Site waste. Assist with waste characterization and transportation to facility as necessary.

TABLE 7-1 **PROJECT ROLES AND RESPONSIBILITIES**

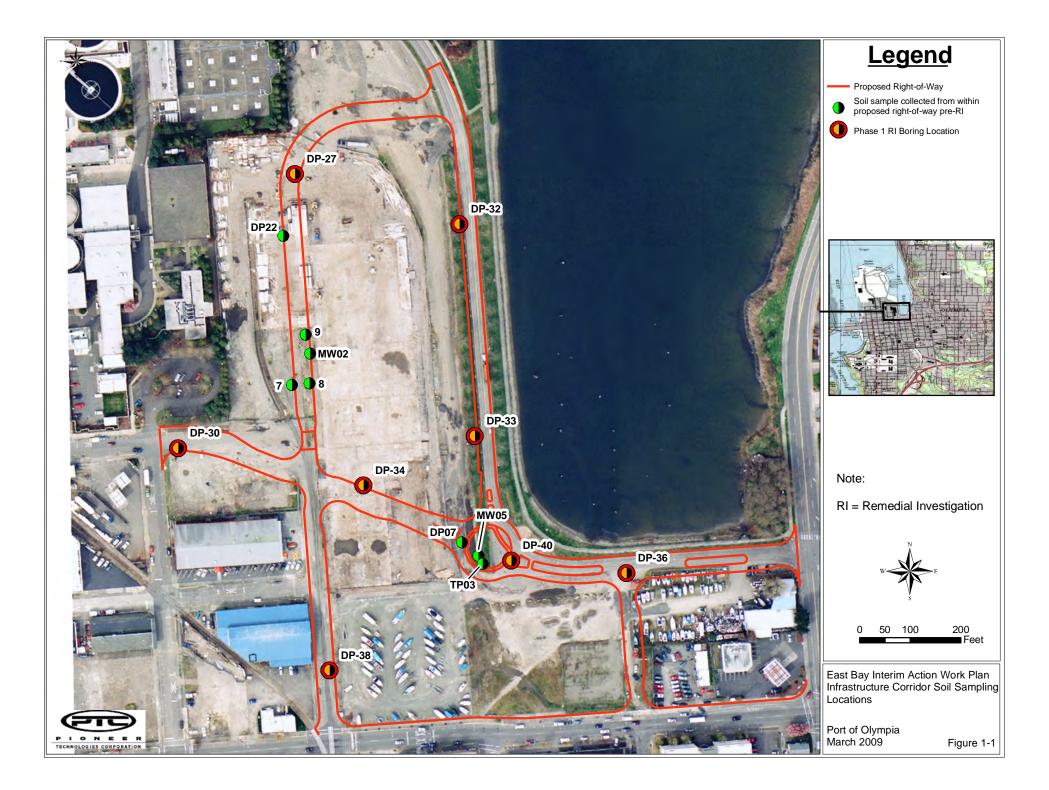
Notes:

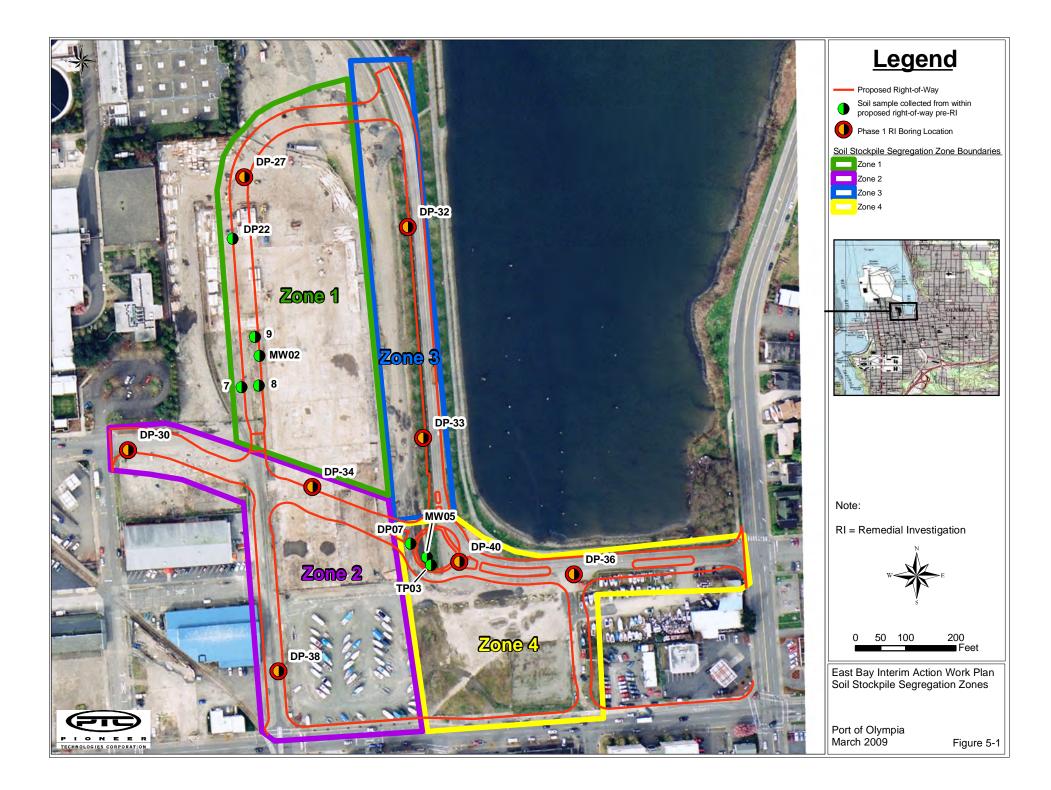
CMP: Compliance Monitoring Plan EC: Engineering Control EDR: Engineering Design Report IA: Interim Action

IAWP: Interim Action Work Plan NPDES: National Pollutant Discharge Elimination System RCRA: Resource Conservation and Recovery Act

SAP: Sampling and Analysis Plan QAPP: Quality Assurance Project Plan QC: Quality Control

MARCH 2009


TABLE 7-2 PROJECT SCHEDULE


Action Items	Estimated Dates				
Public comment period on draft IAWP	March 2009 – April 2009				
Submit final IAWP to Ecology	Within 30 days after receipt of Ecology's comments				
Ecology approval of final IAWP	To be determined				
Interim Action / infrastructure construction	May 2009 – January 2010				
Submit draft IA Report to Ecology	Within 60 days after field work is completed				
Ecology review of draft IA Report	To be determined				
Submit final IA Report to Ecology	Within 30 days after receipt of Ecology's comments				
Ecology approval of final IA Report	To be determined				

Notes:

IA: Interim Action IAWP: Interim Action Work Plan

FIGURES

Appendix A

SUMMARY OF PRE-RI INFRASTRUCTURE CORRIDOR SOIL DATA

Table A-1 is a summary of the previously reported analytical results for the pre-Remedial Investigation (RI) soil samples collected from the infrastructure corridor (GeoEngineers 2007). Copies of boring logs are included in this Appendix. Please note that there are no boring logs for Borings 7, 8, and 9 because these sample locations were surficial soil samples.

TABLE A-1. Pre-RI Analytical Results for Soil Samples Collected within the Infrastructure Corridor

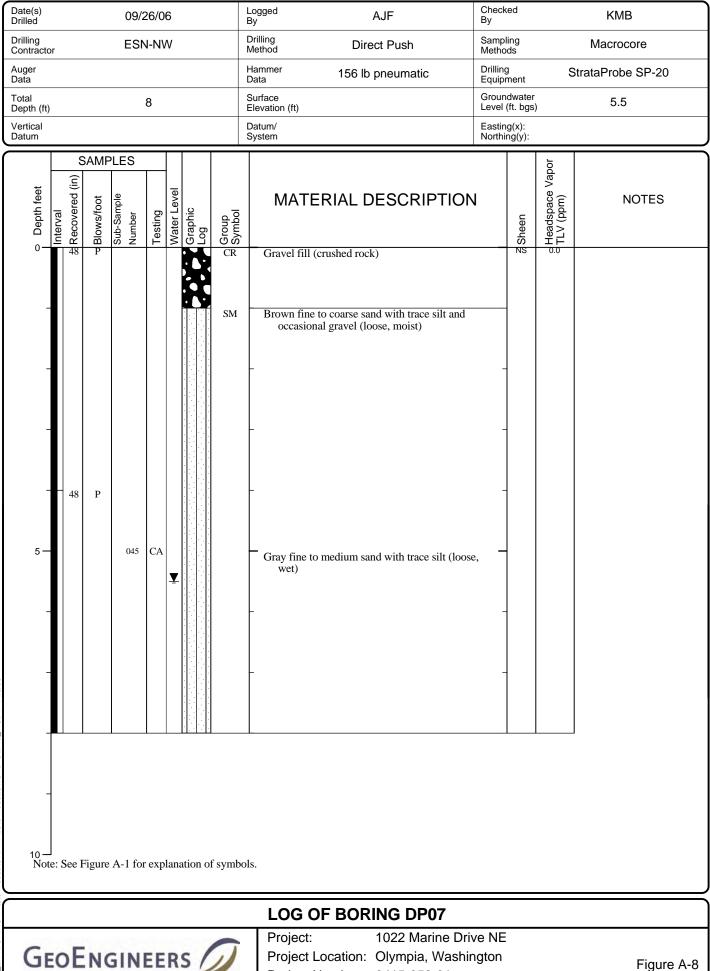
	Sample					Ethyl	Total				Total	Total										Total Dioxins/	
Boring	Depth (feet bgs)	Sample Date	TPH-G (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	VOCs (mg/kg)	TPH-D (mg/kg)	TPH-HO (mg/kg)	Naphthalenes (mg/kg)	cPAHs ⁽¹⁾ (mg/kg)	SVOCs (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Furans ⁽¹⁾ (mg/kg)	PCB (mg/kg)
7	0-0.5	2/14/2007							2.3E+01	8.2E+01				7.1E+00	6.6E+01	5.0E-02 U	3.5E+01	7.2E+00	1.0E-02 U	1.6E-01 U	5.0E-02 U		
8	0-0.5	2/14/2007							9.1E+01	6.1E+02				3.9E+00	6.2E+01	5.0E-02 U	2.8E+01	4.9E+00	1.0E-02 U	1.6E-01 U	5.0E-02 U		
9	0-0.5	2/14/2007							4.5E+01	2.9E+02				3.8E+00	6.8E+01	5.0E-02 U	3.4E+01	1.2E+01	1.0E-02 U	1.6E-01 U	5.0E-02 U		
DP07	4.5-6.5	9/26/2006	2.8E+00 J	1.6E-02 U	8.1E-02 U	8.1E-02 U	1.6E-01 U	(2)	2.7E+01 U	5.4E+01 U	7.7E-02 U	1.6E-03	(2)	2.8E+00	2.5E+01	2.3E-02 J	1.5E+01	1.5E+00J	1.1E-02 U	2.1E+00 U	4.2E-01 U		(3)
	4.5-6.5 ⁽⁴⁾	9/26/2006	1.4E+00 J	1.5E-02 U	7.5E-02 U	7.5E-02 U	1.5E-01 U	(2)	2.7E+01 U	5.4E+01 U	7.0E-02 U	6.8E-03 U	(2)	2.9E+00	1.8E+01	1.9E-01 U	1.7E+01	1.4E+00J	1.1E-02J	4.4E-01J	4.8E-01 U		(3)
DP22	4-6	8/3/2007	8.4E+00 U	1.7E-02 U	8.4E-02 U	8.4E-02 U	1.7E-01 U	(2)	3.1E+01 U	6.4E+01 U	1.4E-01 U	5.4E-02 U	(2)	3.8E+00 U	4.3E+01	6.3E-01 U	2.5E+01	2.2E+00	2.4E-02 U	6.3E+00 U	1.3E+00 U		(3)
	10-12	8/3/2007	1.0E+01 U	1.7E-02 U	1.0E-01 U	1.0E-01 U	2.0E-01 U	(2)	3.3E+01 U	6.6E+01 U	1.7E-01 U	6.0E-02 U	(2)	3.9E+00 U	6.3E+01	6.5E-01 U	2.5E+01	1.1E+01	4.2E-02	6.5E+00 U	1.3E+00 U		(3)
MW02	2-4	1/2/2007	2.5E+00 U	2.5E-01 U	1.2E-01 U	1.2E-01 U	2.4E-01 U	(2)	1.1E+01 U	6.8E+01	6.1E-02 J	3.5E-02	(2)	3.1E+00	4.2E+01J	2.7E-01 U	1.6E+01	8.8E+00	2.8E-02	6.8E-01UJ	5.5E-01 U		(3)
	8-10	1/2/2007	9.8E+00 J	1.7E-02 U	8.7E-02 U	8.7E-02 U	1.7E-01 U	(2)	1.0E+01 U	2.8E+01 J	7.7E-03 U	8.6E-03	(2)	3.6E+00	9.7E+01J	2.5E-01 U	1.6E+01	7.0E+00	2.1E-02 U	2.1E+00J	5.1E-01 U		(3)
MW05	10-12	1/15/2007	3.1E+01	1.7E-02 U	8.5E-02 U	8.5E-02 U	1.7E-01 U	(2)	3.8E+01	1.7E+02	9.8E-03 U	1.4E-01	(2)	9.9E+00	3.2E+02	3.7E+00	2.2E+01	1.7E+02	2.5E-02 U	3.9E+00	6.2E-01		(3)
TP03	3.5-4	10/4/2007																				5.8E-05	

Notes:

All detected concentration results shown to two significant figures.

Blank cells means constituent was not analyzed for the sample.

U = Not detected at shown concentration.

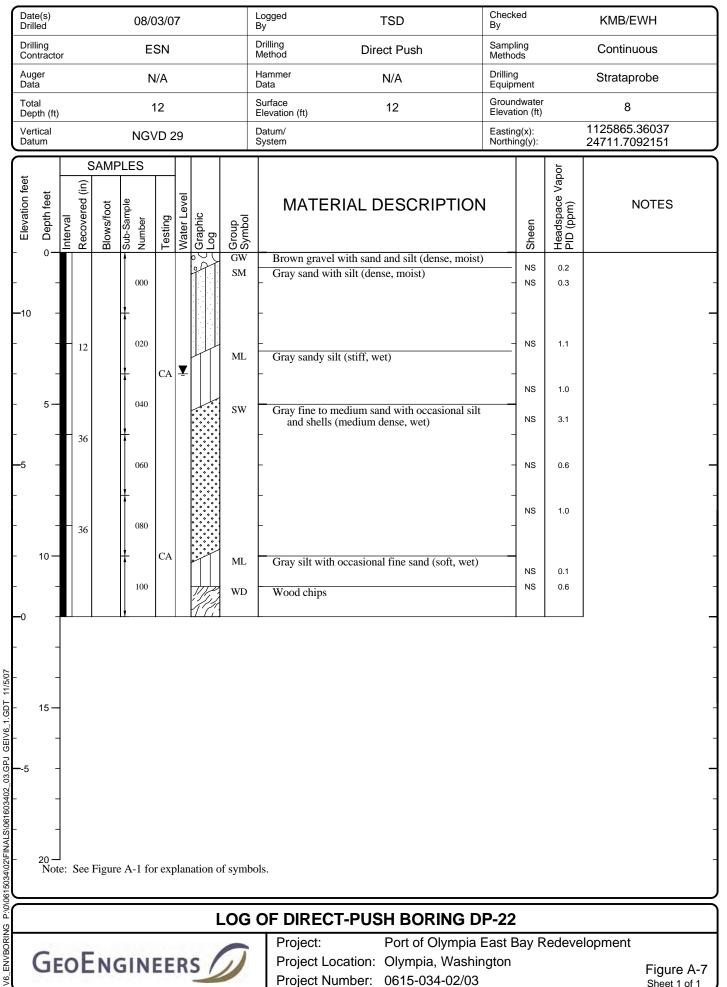

J = Estimated concentration.

⁽¹⁾ Calculated using MTCA toxicity equivalency factors in Washington Administrative Code (WAC) 173-340-708(8).

⁽²⁾ Sample was analyzed for additional VOCs and SVOCs beyond what is presented in this table. Only VOC and SVOC COPCs (i.e., BTEX, total naphthalenes, total cPAHs) are presented in this table. See Geoengineers Draft December 2007 RI/FS/Conceptual CAP for the complete summary of other VOC and SVOC results.

 $^{(3)}$ Sampe was analyzed for PCBs, but no PCB congeners were detected.

(4) Duplicate sample.


Project Location: Olympia, Washington

Project Number: 0415-052-01

P:\0\0415052\01\FINALS\041505201.GPJ GEIV6_1.GDT 11/3/06 ENVBORING

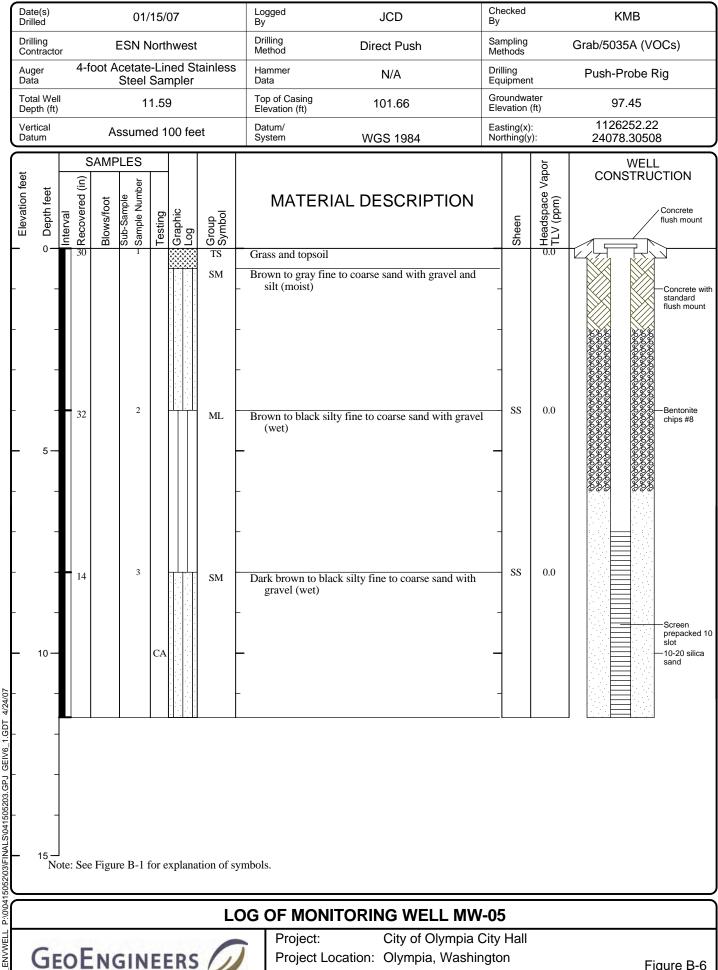

۷6_

Figure A-8 Sheet 1 of 1

Sheet 1 of 1

Project Number:

0415-052-03

P:\0\0415052\03\FINALS\041505203.GPJ GEIV6_1.GDT ENVWELL

~ 9 0

Figure B-6 Sheet 1 of 1

Date Excavated:	10/04/07 Logged by	Logged by: JCD					
Equipment: Kubota 12	1 Excavator Surface E	levation (ft):~11					
Elevation feet Depth Feet Sample Sample Analytical Testing Group Group	MATERIAL DESCRIPTION	C) C) C) C) C) C) C) C) C) C) C) C) C) C					
CA	Brown fine to coarse sand with gravel and silt (medium de moist) Dark brown to black fine to coarse sand with gavel and silt (medium dense, moist) concrete brick and glass debris Test pit completed at 4 feet on 10/04/07 No groundwater seepage observed No caving observed ation of symbols.						
The depths on the test pit logs are	based on an average of measurements across the test pit and sho LOG OF TEST PIT TP03	una de considerea accurate to 0.5 foot.					
C	Project: Port of Olympia						
GeoEngineers	Project Location: Olympia, Washing Project Number: 0615-034-01	gton Figure A-4					

Project Number: 0615-034-01

Figure A-4 Sheet 1 of 1

Appendix B

SUMMARY OF PHASE 1 REMEDIAL INVESTIGATION

TABLE OF CONTENTS

SUMMA	ARY OF PHASE 1 REMEDIAL INVESTIGATION	1
1.1	INTRODUCTION	1
	DESCRIPTION OF SOIL SAMPLING AND ANALYSIS	
1.3	MINOR DEVIATIONS FROM THE SAP/QAPP	2
1.4	RESULTS	3
REFERE	ENCES	4

TABLES

- TABLE B-1:PHASE 1 RI ANALYTICAL RESULTS
- TABLE B-2:
 INFRASTRUCTURE CORRIDOR ANALYTICAL SUMMARY (PRE-RI + PHASE 1 RI DATA)

ATTACHMENTS

- ATTACHMENT B-1: FIELD NOTES AND BORING LOG FIELD FORMS
- ATTACHMENT B-2: DATA QUALITY REVIEW AND VERIFICATION, LABORATORY CERTIFICATES OF ANALYSES, AND CHAIN-OF-CUSTODIES

SUMMARY OF PHASE 1 REMEDIAL INVESTIGATION

1.1 Introduction

The purpose of this appendix is to summarize the results from the Port of Olympia's Phase 1 Remedial Investigation (RI) for use in Interim Action (IA) Work Plan (IAWP) at the East Bay Site (Site). The intent of this appendix is not to prepare a full RI Report or to completely document the Phase 1 results in a formal report. The Phase 1 data will still be included in the full RI Report required by Agreed Order No. DE5471 (AO).

The Phase 1 RI tasks were delineated in the RI Work Plan (GeoEngineers and PIONEER 2008) and consisted of soil sampling and analysis from eight soil borings located within the utility infrastructure improvement corridors. The purpose of the Phase 1 RI was to collect soil data to support the IAWP.

1.2 Description of Soil Sampling and Analysis

PIONEER Technologies Corporation (PIONEER), with support from Environmental Services Network (ESN) Northwest, collected the soil samples for the Phase 1 RI on November 4, 2008 in general accordance with the Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) contained in the RI Work Plan (GeoEngineers and PIONEER 2008). Eight direct-push soil borings designated as DP32, DP33, DP40, DP36, DP38, DP30, DP27, and DP34 were advanced and sampled. Locations of the eight soil borings are shown in Figure 1-1 of the main text. Copies of the field notes and boring log field forms are included in Attachment B-1 to this appendix.

Continuous soil samples were obtained within each boring for field screening and possible laboratory analyses. Field screening consisted of visual and olfactory observations, water sheen screening, and vapor headspace screening with a photoionization detector. Containerized sample intervals for possible laboratory analyses were determined based on sample intervals specified in the SAP/QAPP (GeoEngineers and PIONEER 2008), field screening results, and the encountered lithology. All soil samples possibly being analyzed for total petroleum hydrocarbons (TPH) in the gasoline range (TPH-G) and benzene, toluene, ethylbenzene, and xylenes (BTEX) were collected first and in accordance with United States Environmental Protection Agency (USEPA) Method SW846-5035A. Soil samples for possible non-volatile analyses that contained coarse soils were sieved with a #10 sieve (two millimeters) and homogenized prior to placing in the sample containers. Soil samples for possible non-volatile analyses that were completely comprised of fine-grained soils were homogenized, but not sieved.

All containerized soil samples were held for possible analyses. The initial selection of laboratory analyses was based on what was specified in the SAP/QAPP (GeoEngineers and PIONEER 2008). The constituents and analytical methods used were:

- TPH in the diesel range (TPH-D) and heavy oil range (TPH-HO) by Ecology Method NWTPH-Dx
- TPH-G by Ecology Method NWTPH-G
- BTEX by USEPA Method SW846-8260B

- Resource Conservation and Recovery Act (RCRA) metals by USEPA Method SW846-6020A
- Chlorinated dibenzo-p-dioxins and chlorinated dibenzofurans (CDDs/CDFs) by USEPA Method SW846-8290
- Polycyclic aromatic hydrocarbons (PAHs) by USEPA Method SW846-8270C

Based on the results from the initial selection of laboratory analyses, the following subsequent analyses were performed on select samples:

- Extractable petroleum hydrocarbons (EPH) by Ecology Method NWEPH
- Total organic carbon (TOC) by United States Department of Agriculture Method HB60
- Chromium VI by USEPA Method SW846-7196 or Standard Method 3500

All analyses were performed by Anatek Labs or Anatek Labs subcontracted laboratories, which included Pace Analytical Services (for CDDs/CDFs), CCI Analytical Laboratories (for EPH and one chromium VI), and SVL Analytical (for TOC and one chromium VI).

PIONEER conducted a global positioning system (GPS) survey of the eight boring locations on November 7, 2008 with a Trimble GeoXH unit.

1.3 Minor Deviations from the SAP/QAPP

Phase 1 of the RI was completed in general accordance with the SAP/QAPP (GeoEngineers and PIONEER 2008). The only minor deviations noted from the SAP/QAPP were:

- PIONEER conducted the investigation instead of GeoEngineers.
- The SAP called for containerized samples to be collected from core intervals of approximately four to six inches in length. Given the gravelly lithology and actual core recovery, in most cases it was impossible to collect sufficient sample volume with a four- to six-inch sample interval. Even with two side-by-side borings (which were employed for all locations except DP32 and DP34), it typically required a one-foot sample interval or longer in order to obtain the minimum required container volume. Despite these limitations related to sample volume, a containerized sample was collected from within each of the sample intervals specified in the SAP.
- DP32 was extended one foot deeper and DP40 was extended two feet deeper than specified in the SAP to verify the encountered lithology.
- Samples specified for metal analyses were analyzed for all RCRA metals rather than just arsenic, cadmium, and lead since the footnote to Table 1 of the SAP was unclear about which samples should be analyzed for all RCRA metals.
- The sample collected from DP33 at a depth of seven to eight feet was analyzed for metals and PAHs analyses even though such analyses were not specified in the SAP. These analyses were performed since this sample location was one of the few locations in which dark sand fill was encountered.
- The three samples with the highest TPH-D and/or TPH-HO concentrations were analyzed for EPH.
- Two of the ten locations specified in the SAP for TOC analysis were replaced with alternate sample locations due to the presence of TPH-D and/or TPH-HO in the originally proposed locations.

- The two samples in which total chromium was detected above the accepted natural background concentration for Puget Sound (i.e., 48 mg/kg) (Ecology 1994) were analyzed for chromium VI. Since the selection of the chromium VI analysis occurred after the follow-on EPH and TOC selections, the chromium VI samples were analyzed by separate laboratories.
- Investigation-derived waste (IDW) was handled as follows. An insignificant volume of decontamination water was generated during the investigation and was discharged on Site. An insignificant volume of unused soil core (approximately five gallons) was generated and added to the existing IDW stockpile near DP34.
- PIONEER slightly revised the proposed sample identification nomenclature (i.e., the suffix that identified the depth of a sample) to improve data usability during subsequent data evaluations.
- The survey was completed with a more accurate GPS unit.

1.4 Results

The encountered lithology was generally consistent with the conceptual site model and geologic crosssections presented in the RI Work Plan (GeoEngineers and PIONEER 2008). The interpreted lithologic unit for each containerized sample interval is included in Table B-1. There was no obvious evidence of a release detected in the field for any of the soil borings based on field screening results (i.e., visual, olfactory, water sheen, or vapor).

Table B-1 presents all of the analytical results by boring number. Table B-2 presents a summary of the analytical results by constituent for the Phase 1 RI (along with the pre-RI soil data collected within the infrastructure corridor). Attachment B-2 to this appendix contains a data quality review and verification, copies of laboratory certificates of analyses, and chain-of-custody documentation.

REFERENCES

Ecology 1994. Natural Background Soil Metals Concentrations in Washington State, October.

GeoEngineers and PIONEER 2008. Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia, Olympia, WA, October 22.

TABLE B-1. PHASE 1 RI ANALYTICAL RESULTS

Boring	Sampe Depth (feet bgs)	Interpreted Lithologic Unit	TPH-G (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl benzene (mg/kg)	Total Xylenes (mg/kg)	TPH-D (mg/kg)	TPH-HO (mg/kg)	EPH (mg/kg)	Total Naphthalenes (mg/kg)	Total cPAHs ⁽¹⁾ (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Chromium VI (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Total Dioxins/ Furans ⁽¹⁾ (mg/kg)	TOC (%)	Moisture (%)
DP32	1-2	Light Gravel Fill																				1.6E-07	3.5E-01	
	4-5	Light Gravel Fill									1.0E-02 U	7.5E-03 U	2.3E+00	4.1E+01	2.0E-01 U	1.5E+01		2.5E+00	2.4E-02	2.0E-01 U	2.0E-01 U	2.1E-07	2.3E-01	6.4E+00
	8-9	Light Gravel Fill																				4.5E-07		
DP33	1-2	Light Gravel Fill									1.0E-02 U	2.7E-02	1.9E+00	3.6E+01	2.0E-01 U	2.1E+01		2.2E+00	2.0E-02	2.0E-01 U	2.0E-01 U	2.9E-06		8.8E+00
	3-4	Light Sand Fill									1.4E-02	2.6E-01	2.1E+00	5.0E+01	2.0E-01 U	1.9E+01		2.2E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	8.9E-06	2.8E-01	5.7E+00
	5-6	Light Sand Fill									1.0E-02 U	2.4E-02	3.0E+00	5.3E+01	2.0E-01 U	3.4E+01		2.6E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	9.4E-07		5.3E+00
	7-8	Dark Sand Fill									3.2E-01	3.3E-01	2.8E+00	4.5E+01	2.2E-01	1.8E+01		7.7E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	6.3E-06	4.3E+00	1.9E+01
DP40	1-2	Light Gravel Fill	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	2.2E+01	1.1E+02		1.6E-02	3.1E-02	2.7E+00	5.9E+01	2.0E-01 U	1.9E+01		3.8E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	5.2E-06		5.7E+00
	3-4	Light Gravel Fill	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	5.0E+00 U	3.9E+01		2.7E-02	7.5E-03	2.8E+00	5.3E+01	2.0E-01 U	2.1E+01		3.4E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	1.2E-06	3.6E-01	7.6E+00
	5-6	Light Sand Fill	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	1.9E+01	3.0E+02	(2)	1.0E-02 U	3.7E-02	2.4E+00	5.1E+01	2.0E-01 U	8.4E+01	5.0+00 U	2.6E+00	2.0E-02 U	2.0E-01 U	4.1E-01	7.1E-07		6.6E+00
	7-8	Light Sand Fill																						
DP36	1-2	Light Gravel Fill																				2.1E-07		
	3-4	Light Gravel Fill																						
	5-6	Light Gravel Fill	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	1.6E+01	1.6E+02	(2)			2.6E+00	6.2E+01	2.0E-01 U	3.0E+01		2.9E+00	2.0E-02 U	2.0E-01 U	7.4E-01	1.2E-06		4.5E+00
	7-8	Light Gravel Fill																						
	8-9	Light Gravel Fill																				2.6E-07		
DP38	1-2	Light Gravel Fill									2.3E-02	5.2E-02	2.9E+00	6.6E+01	2.0E-01 U	1.8E+01		1.2E+01	2.0E-02 U	2.0E-01 U	2.0E-01 U			1.0E+01
	3-4	Light Gravel Fill																						
	5-6	Dark Sand Fill	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	8.2E+00	1.4E+01		2.9E-01	9.8E-02	6.8E+00	4.3E+01	6.8E-01	3.1E+01		3.2E+01	6.0E-02	2.9E-01	2.0E-01 U	4.2E-06		3.6E+01
	6-7	Coarse Sawdust	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	5.6E+01	4.7E+02	(2)	3.3E-02	8.4E-02	7.5E+00	1.7E+01	4.7E-01	7.7E+00		9.5E+01	3.0E-02	4.1E-01	2.0E-01 U	5.5E-06	3.4E+01	8.0E+01
	9-10	Dark Sand Fill																						
DP30	1-2	Light Sand Fill											3.4E+00	2.7E+01	2.0E-01 U	1.9E+01		6.3E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	1.0E-06		5.8E+00
	3-4	Light Sand Fill									1.0E-02 U	2.8E-02	5.1E+00	5.5E+01	2.0E-01 U	3.1E+01		2.9E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	1.6E-07		2.2E+01
	4-5	Light Sand Fill																						
	7-7.5	Disturbed Native Silt											9.9E+00	6.3E+01	6.9E-01	4.6E+01		5.6E+01	8.6E-02	4.9E-01	2.0E-01 U	6.2E-05		6.1E+01
DP27	0-1	Light Gravel Fill									4.4E-02	1.6E-01	3.0E+00	5.4E+01	2.0E-01 U	1.8E+01		6.6E+00	2.0E-02 U	2.0E-01 U	5.9E-01	3.6E-06		1.0E+01
	3-4	Light Sand Fill	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U				1.0E-02 U	9.7E-03	3.5E+00	8.5E+01	2.1E-01	4.8E+01		5.1E+00	2.8E-02	2.0E-01 U	2.0E-01 U	2.3E-07	4.3E-01	2.5E+01
	4-5	Disturbed Native Silt									2.6E-02	4.3E-02	3.1E+00	6.3E+01	2.5E-01	5.2E+01	1.0E-01 U	4.2E+00	2.0E-02 U	2.0E-01 U	3.3E-01	1.0E-06	4.8E-01	2.0E+01
	6-7	Disturbed Native Sand											2.1E+00	2.2E+01	2.0E-01 U	1.8E+01		1.3E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	1.8E-07		1.4E+01
DP34	1-3	Light Sand Fill																				7.6E-06		
	4-6	Light Sand Fill	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	5.4E+00	1.3E+01		7.4E-02	5.4E-02	3.9E+00	7.1E+01	2.0E-01 U	2.5E+01		4.7E+00	2.0E-02 U	2.0E-01 U	2.0E-01 U	1.6E-06	8.0E-01	
	7.5-9.5	Coarse Sawdust	5.0E+00 U	1.0E-03 U	1.0E-03 U	1.0E-03 U	2.0E-03 U	1.6E+01	3.6E+01		8.1E-02	4.8E-02	1.5E+01	3.7E+01	2.0E-01 U	2.1E+01		5.6E+01	4.6E-02	1.3E+00	2.0E-01 U	3.2E-06	1.5E+01	7.6E+01

Notes:

All detected concentration results shown to two significant figures.

Blank cells means constituent was not analyzed for the sample.

U = Not detected at shown concentration.

⁽¹⁾ Calculated using MTCA toxicity equivalency factors in Washington Administrative Code (WAC) 173-340-708(8).

 $^{\rm (2)}$ This sample was analyzed for EPH fractions. See laboratory report for specific results.

TABLE B-2. INFRASTRUCTURE CORRIDOR ANALYTICAL SUMMARY (Pre-RI + Phase 1 RI Data)

Constituent Type	Constituent	No. of Samples	No. of Detections	Minimum Concentation (mg/kg)	Average Concentration ⁽¹⁾ (mg/kg)	Maximum Concentration (mg/kg)
	TPH-G	15	3	2.8J	N/A ⁽²⁾	31
	Benzene	15	0	0.001U	N/A ⁽²⁾	0.25U
Gasoline Range	Toluene	15	0	0.001U	N/A ⁽²⁾	0.12U
	Ethyl Benzene	15	0	0.001U	N/A ⁽²⁾	0.12U
	Total Xylenes	15	0	0.002U	N/A ⁽²⁾	0.24U
	TPH-D	17	11	5.4	23	91
Diesel and Heavy	TPH-HO	17	14	13	140	610
Oil Range	Total Naphthalenes	23	11	0.016	0.052	0.32
	Total cPAHs ⁽³⁾	23	20	0.0016	0.067	0.33
	Arsenic	30	28	1.9	4.2	14.5
Metals	Cadmium	30	8	0.023	0.32	3.7
	Lead	30	30	1.3	18	170
Dioxins/Furans	Total Dioxins/Furans ⁽³⁾	26	26	1.6E-07	6.8E-06	6.2E-05

Notes:

All detected concentration results shown to two significant figures.

U = Not detected at shown concentration.

⁽¹⁾ Assuming non-detects at value equal to half of the practical quantitation limit.

⁽²⁾ Not applicable because of number of non-detects.

⁽³⁾ Calculated using MTCA toxicity equivalency factors in Washington Administrative Code (WAC) 173-340-708(8).

ATTACHMENT B-1

FIELD NOTES AND BORING LOG FIELD FORMS

PIONEER TECHNOLOGIES CORPORATION (PTC) FIELD CHECKLIST

Project/Task Name:	Site Location: Pour OF Ormpin	-EAST BAY
Requested By / Date: TD13 / 10/28/03	Work Deadline: U/4/02	
SERVICES REQUESTED		COMPLETED
DADMANCE BORNES AND COLLECT SOIL SA	ngues Ervery 2' From	
DP38, 0P40, 0P36, 0P33, 0P27, 0P30, 0P	32, w DP34 per SAP TABLE 1	
(2) HOLDING An SAMPLE FROM EARLY 2	" internete For pass, BLC Anters,	
() SUBMIT INITIAL SAMPLES PER SAR TA		
(9) BITEX BY CONTUTED BY 5035		
(S) SLAFENING = VISUAL ODON SITEEN, PID		YES INO
(6) QL = BTER TRIP BLANKS ANY		YES INO
(7) TAKE RE-RESENTATIVE DIFOTOS		YES INO
(2) KEVIN GPS & BARINGE -THURSON	247	
	/	
	- 	TYES NO
ADDITIONAL STANDARD INSTRUCTIONS COMPLET	λ	
	NO A Health & Safety Meeting	
	NO Call PM from Site	
	NO Draw Site Map	
Coordinate Sub / Equip: <u>Esk</u> X YES C	NO Cuttings Purge Water Characterizat	ion & Disposal
Purchase Rent Equip: <u>PID GRS, VAN</u> X YES D	NO Potential HW	
Client/Agency Coordination: TEEL, SMASKI XYES C	NO / ANOn-Haz or Gravers	
Calibrate Equipment: <u>PID</u> X YES C		
LOODDINATE IZLS W/ LAB - Dave	S WATTOR ON GROWD	
	SOIL to 10w Pt Stoc	KING
SAMPLING REQUIREMENTS	~ 5 gr 1	/
K Field Testing: SHEEN SCREEN PID TPH-S: HO by NUTTH-DX, TPH-6 by NUTH K Lab Testing: RCHA & metals PANS by B270 Sim	et 6, isrop & 82603, Laboratory: ANAJ	5K - Pat Dincon
	Laboratory: PALE -	
De Lab Testing: Dioxins & 1613 or 8290		<i>p</i>
Lab Testing: TOL AN ERH	Laboratory: Antrol	- 12/02 JUS
FIELD SUPPLIES NEEDED		
Site Map 🛛 Camera 🖾 Survey Equip GPS 🖾 Vehicle	Water Level Indicator / Interface Probe	
Std Field Equip (keys, forms, SAP, HASP, PPE, decon, tools)	Water Quality Meter Field T	est Kits
Drilling Equip (PID, references, knife, baggies, tape)	Sample Kit / Cooler / COC / Ice	
Soil Equip (SS bowls, spoon/shovel, hand auger, pick, sieves)		uckets
GWM (pump, tubing, gen., compres., bailers, rope/string, PDB)	Other:	<u> </u>
Pump / Slug Test Equip (GWM Equip, slug, stopwatch)	Other:	· · ·

PIONEER TECHNOLOGIES CORPORATION (PTC) DAILY FIELD REPORT

EATHER	Clear Sun	Overcast	Drizzle	Rain	Snow
MPERATURE	10 32	32-50	50-70	70-85	85 Up
ND	Calm	Med.	X Strong	Severe	
· · -	L				t
OPLE PRESENT OF	N-SITE	NAME	ASSOCIATI	-	ME ON-SITE AND OFF-SITE
		TRAY BUSSEN	ATZ	See	asono
		MARTI artist H			30 -1545
	Ĺ	SASIN OF DAY Lon	~		0-0945
		Kon GALADAN	n for		15-See usup
			<u>a</u> <u> </u>		
			· · ·		
			•		#10;#4
Strup in	DAYOR			outumb SIDCE-BY	SIPE BORING FAL SAMPLE VILLED
Stor-up on		1140 - + + + + + + + + + + + + + + + + + +	PHOTO		
SET-M AN	DR 30 C	1240 -> 1000-	PH. TO		
+			- 10		MATERIA I
/GANAVELLY FIL	e is miles	and thampfilling 1	1 Frankfranker war	SAMPLE VILUM	A CONTRACTOR OF THE OWNER
*					
7 Also DIFFICI			CRAY to BROWN 62	WOULY SAND FU	And SANDY GARVER
6 .		werisit Bourow	CRAY to BROWN 62		And SANDY GARVER
6 .	UT JU DIST.	2) DAVIET CLEA	CARAN TO BRONN GR	WOUY SAM FU ALEA CLEANER 3	And SANDY GARVER
6 .	NT TO DIST.	2) DAVIET CLEA	CRAY to BROWN 62. AR PISTINGTON 'S DR	WOUY SAN FU MKEN, CLEANEN 3 Ly	And Stroy GALVER
6 .	NT TO DIST.	2) DAVIS PHOTO	CRAY to BROWN 62. AR PISTINGTON 'S DR	WOUY SAN FU MKEN, CLEANEN 3 Ly	And SANDY GARVER
6 .	1345 -9 1430 -9	TOUC PHOTO	ONAN TO BROWN 62. AR PISTINETIN 'S DE Drow'T MOOD The	WOUY SAN FU 1250, CLEANER S - tog Obong chre to g	And Stroy GALVER
1 Fue 14	1345 -9 1430 -9	TOUL PHOT	CRAY to BROWN 62. AR PISTINGTON 'S DR	WOUY SAN FU 1250, CLEANER S - tog Obong chre to g	And Stroy GALVER
Υ FUL 14 1 P30 C 0 P27 C 5 P34 C	1345 - 1345 - 1345 - 1430 - 1515 -	TOUR PHOTO TOUR PHOTO TOUR PHOTO TOUR PHOTO TOURDN'T DI	ONAN TO BROWN 624 AR PISTINETIN ') DA DNON'T NEED The D 200 500 due for	WOUY SAN FU 1250, CLEANER S - tog Obong chre to g	And Stroy GALVER
Υ FUL 14 1 P30 C 0 P27 C 5 P34 C	1345 - 1345 - 1345 - 1430 - 1515 -	TOUC PHOTO	ONAN TO BROWN 624 AR PISTINETIN ') DA DNON'T NEED The D 200 500 due for	WOUY SAN FU 1250, CLEANER S - tog Obong chre to g	And Stroy GALVER
2 FUL 14 ΩΡ30 C DP27 C DP34 C ΑυνΑνικ	1345 -9 1345 -9 1430 - 1515 -9 0 AU	2) DWLY CLEA 2) DWLY CLEA 1 TOUIC PHOTO 7 PHOTO 7 COULDN 7 DI 2011MUT AT	CAAN to BROWN 64. AR PISTINETIN 1) DR DNON'T NEOD BUT D 200 Soris due for PLANNED	Nour SAN Fu RESA, CLEAREN 5 Ly compete	And Stroy GALVER
2 FUL 14 ΩΡ30 C DP27 C DP34 C ΑυνΑνικ	1345 -7 1345 -7 1430 - 1515 -7 0 AU / CWE Ext	2) DAVIS ABOUTOON 2) DAVIT CLEA 7 PHOTO 7 COULDN'T DI 2011DN T DI 2011DN F	anpie For Ann	Woury SAN Fu ALISA, CLEANER S - Agg - O bong chre to g - concrete - V7 (11	And Stroy barver And I GAARE
2 FUL 14 1 P 30 C 0 P 27 C D P 34 C AOVANCE	1345 -7 1345 -7 1430 - 1515 -7 0 AU / CWE Ext	2) DAVIS ABOUTOON 2) DAVIT CLEA 7 PHOTO 7 COULDN'T DI 2011DN T DI 2011DN F	CAAN to BROWN 64. AR PISTINETIN 1) DR DNON'T NEOD BUT D 200 Soris due for PLANNED	Woury SAN Fu ALISA, CLEANER S - Agg - O bong chre to g - concrete - V7 (11	And Stroy barver And I GAARE
2 FUL 14 AP 30 C DP 27 C DP 34 C AOVANCES AOVES	1345 - 1345 - 1345 - 1430 - 1515 - 1515 - 0 AU / CONE EXT 10P33	2) DALLY CLEA 2) DALLY CLEA 7 PHODO 7 COULDN'T DI COULDN'T DI SAMMES A. 24 Arctansi SA 7-8 SWIE	(Afri to Beaun 64 Al PISTINETIN 1) De Dron'T NGOD Bur D 200 Join due H PLANNED AMPLE For And ONLY Constrain	WOUY SAN FU REISA, CLEANER 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	And Stroy barver And I GAARE
2 FUL 14 AP 30 C DP 27 C DP 34 C AOVANCES ADDED	1345	2) DAVIS IL BODITON 2) DAVIT CLEA 2) DAVIT CLEA 2) TOUC PHOTO 7 PHOTO 7 COULDN'T DI 200000 TO 1 200000 ATOMIC 20 ATOMIC ATOMIC 20 ATOM	CRAY to BROWN 64 AR PISTINITION 1) DE DRON'T MEGO BUR D 200 boing due for PLANNED AMPLE For And ONLY COLATION (DNR, SHEEN, ON D	WOUY SAN FU REISA, CLEANER 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	And Stroy barver And I GAARE
2 FUL 14 NP 30 C DP 27 C DP 34 C ADVANCES ADVANCES ADDESS IN SUMMAR	1345	2) DALLY CLEA 2) DAL	CRAY to BROWN 64 AR PISTINETIN 1) DR DRON'T NGOD BUT D 200 500 dr H PLANNED AMPLE For ANN ONLY COLLATIN BORNES	WOUY SAN FU REDA, CLEANER 5 - - - - - - - - - - - - -	AND Stroy barvin AND / GRAFT And / GRAFT And Size E recever AND EIL
2 FUL 14 NP 30 C DP 27 C DP 34 C ADVANCES ADVANCES ADDESS IN SUMMAR	1345	2) DALLY CLEA 2) DAL	CRAY to BROWN 64 AR PISTINITION 1) DE DRON'T MEGO BUR D 200 boing due for PLANNED AMPLE For And ONLY COLATION (DNR, SHEEN, ON D	WOUY SAN FU RESA, CLEANER 5 Ly connete VISII NJ DAUC SA IP EN. PENIE (FX/CEF DF3	AND SANDY GAAVER AND / GAAVER and Size E receives AND FILL 2 and DP34
2 FUL 14 NP 30 C DP 27 C DP 34 C ADVANCES ADVANCES ADDESS IN SUMMAR	1345	2) DALLY CLEA 2) DAL	CRAY to BROWN 64 AR PISTINETIN 1) DR DRON'T NGOD BUT D 200 500 dr H PLANNED AMPLE For ANN ONLY COLLATIN BORNES	WOUY SAN FU REDA, CLEANER 5 - - - - - - - - - - - - -	AND Stroy barvin AND / GRAFT And / GRAFT And Size E recever AND EIL
2 FUL 14 NP 30 C DP 27 C DP 34 C ADVANCES ADVANCES ADDESS IN SUMMAR	1345	2) DALLY CLEA 2) DAL	CRAY to BROWN 64 AR PISTINETIN 1) DR DRON'T NGOD BUT D 200 500 dr H PLANNED AMPLE For ANN ONLY COLLATIN BORNES	WOUY SAN FU RESA, CLEANER 5 Ly connete VISII NJ DAUC SA IP EN. PENIE (FX/CEF DF3	AND SANDY GAAVER AND / GAAVER and Size E receives AND FILL 2 and DP34
2 FUL 14 NP 30 C DP 27 C DP 34 C ADVANCES ADVANCES ADDESS IN SUMMAR	1345	2) DALLY CLEA 2) DAL	CAPY to BROWN 64 AR PISTINITION 1) DR DNON'T NEOD BUT D 200 500 due H PLANNED AMPLE For And ONLY COLLAND DNL SHEED, ON D BORNES FROM AN BORNES	WOUY SAN FU RESA, CLEANER 5 Lag col bong che to g connete UNSII NJ DAUC SA (15t) (15t)	<u>And Stroy bapvin</u> <u>And Ichartz</u> <u>ani size Erecure</u> <u>AND (E)14</u> <u>2 and D.P34</u> ((ast)
L FUL 14 1 FUL 14 1 P 30 C DP 27 C BP 34 C Αυλωισ Αυλωισ Αυλωισ Αυλωισ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	1345 -9 1345 -9 1430 - 1515 -9 1515 -9 P. AU / CANÉ EXT 10P33 M. NO DB 6- JM BY 5-DE	2) DALLY CLEA 2) DAL	CAPY to BROWN 64 AR PISTINITION 1) DR DNON'T NEOD BUT D 200 500 due H PLANNED AMPLE For And ONLY COLLAND DNL SHEED, ON D BORNES FROM AN BORNES	WOUY SAN FU RESA, CLEANER 5 Ly connete VISII NJ DAUC SA IP EN. PENIE (FX/CEF DF3	<u>And Stroy bapvin</u> <u>And Ichartz</u> <u>ani size Erecure</u> <u>AND (E)14</u> <u>2 and D.P34</u> ((ast)
L FUL 14 1 FUL 14 1 P 30 C DP 27 C BP 34 C Αυλωισ Αυλωισ Αυλωισ Αυλωισ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	1345 -9 1345 -9 1430 - 1515 -9 1515 -9 P. AU / CANÉ EXT 10P33 M. NO DB 6- JM BY 5-DE	2) DWGWISH BOOMOON 2) DWLY CLEA 7 PHOD 7 COULDN'T DI 2011DN T DI 2011DN T DI 2011DN F SA 7-8 SWGC UIDUS VISUAL A 2ACT IN ANY COULT COURT ON ANY	CAPY to BROWN 64. AR PISTINITION 1) DR DNON'T MEGO The D 200 Sorig due for PERPERTY AMPLE For And ONLY COLLATION (BORMUS FROM AN BORMUS FROM AN BORMUS FROM MAS MUC	WOUY SAN FU RESA, CLEANER 5 Lag col bong che to g connete UNSII NJ DAUC SA (15t) (15t)	<u>And Stroy bapvin</u> <u>And Ichartz</u> <u>ani size Erecure</u> <u>AND (E)14</u> <u>2 and D.P34</u> ((ast)
L FUL 14 1 FUL 14 1 P 30 C DP 27 C BP 34 C Αυλωισ Αυλωισ Αυλωισ Αυλωισ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	1345 - 1345 - 1345 - 1430 - 1515 - 1515 - 0 AU / CONÉ EXT 1 DP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 34 57 OF 314AU	NOWING BOUNDA	CAPY to BROWN 64. AR PISTINITION 1) DR DNON'T MEGO The D 200 Sorig due for PERPERTY AMPLE For And ONLY COLLATION (BORMUS FROM AN BORMUS FROM AN BORMUS FROM MAS MUC	WOUY SAN FU RESA, CLEANER 5 Lag col bong che to g connete UTSII UT	<u>And Stroy bapvin</u> <u>And Ichartz</u> <u>ani size Erecure</u> <u>AND (E)14</u> <u>2 and D.P34</u> ((ast)
L FUL 14 1 FUL 14 1 P 30 C DP 27 C BP 34 C Αυλωισ Αυλωισ Αυλωισ Αυλωισ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	1345 - 1345 - 1345 - 1430 - 1515 - 1515 - 0 AU / CONÉ EXT 1 DP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 34 57 OF 314AU	NOWING BOUNDA	CAPY to BROWN 64. AR PISTINITION 1) DR DNON'T MEGO The D 200 Sorig due for PERPERTY AMPLE For And ONLY COLLATION (BORMUS FROM AN BORMUS FROM AN BORMUS FROM MAS MUC	WOUY SAN FU RESA, CLEANER 5 Lag col bong che to g connete UTSII UT	<u>And Stroy bapvin</u> <u>And Ichartz</u> <u>ani size Erecure</u> <u>AND (E)14</u> <u>2 and D.P34</u> ((ast)
L FUL 14 1 FUL 14 1 P 30 C DP 27 C BP 34 C Αυλωισ Αυλωισ Αυλωισ Αυλωισ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	1345 - 1345 - 1345 - 1430 - 1515 - 1515 - 0 AU / CONÉ EXT 1 DP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 34 57 OF 314AU	NOWING BOUNDA	CAPY to BROWN 64. AR PISTINITION 1) DR DNON'T MEGO The D 200 Sorig due for PERPERTY AMPLE For And ONLY COLLATION (BORMUS FROM AN BORMUS FROM AN BORMUS FROM MAS MUC	WOUY SAN FU RESA, CLEANER 5 Ly connete VISII J DAUC SA 10 EN. DENIE (1st) d more GRA	<u>And Stroy baptin</u> <u>And Stroy baptin</u> <u>And I GRATEL</u> <u>and Size E receive</u> <u>AND EILA</u> <u>2 and DP34</u> <u>(last)</u> <u>JELLY</u>
L FUL 14 1 FUL 14 1 P 30 C DP 27 C BP 34 C Αυλωισ Αυλωισ Αυλωισ Αυλωισ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	1345 - 1345 - 1345 - 1430 - 1515 - 1515 - 0 AU / CONÉ EXT 1 DP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 33 M. NO DB 0 JP 34 57 OF 314AU	NOWING BOUNDA	CAPY to BROWN 64. AR PISTINITION 1) DR DNON'T MEGO The D 200 Sorig due for PERPERTY AMPLE For And ONLY COLLATION DNR SHEEN ON O BORMUS FROM AN BORMUS FROM AN BORMUS	WOUY SAN FU RESA, CLEANER 5 Ly connete VISII J DAUC SA 10 EN. DENIE (1st) d more GRA	<u>And Stroy bapvin</u> <u>And Ichartz</u> <u>ani size Erecure</u> <u>AND (E)14</u> <u>2 and D.P34</u> ((ast)

GENERAL INFOR	LOCATION SKETCH	
Boring/MW ID DP3 Z	Drilling Co.	
Project/Site Name But ge Di ImliA -EAST BAY	Lisc. Driller MARY HANN	
Field Professional Troy Bussting	Drilling Method	
Start Date/Time 11/4/08 0815	Drill Rig TRULL MOUNT	
Stop Date/Time 11/4/08 0845	Drill Bit <u>N/A</u>	North Arrow

	SAMPLE COLLECTION										
	Sample D	Depth (ft)	Sampling	SPT Blows	%	Contacts			nerized	PID	Sent
Time	From	То	Method	per 6 in.	Recov.	or GW?	Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	0	Ц	4 marso	NIA	60	See description	GRAY AND BLACK SULTY GAAVEL WITH	1	2	ø	Y
			LINGA	11			Fine SAND LOOSE, MOLT, (Brown SAND)				0900
				1 1			·				
	4	8		i	50	- 1	SAME AS ABOVE WITH MORE	4	5	ø	Y
			Y	iVi		VY	MEDIUM SAWD, MEDIUM DENSE				0905
				11				0	C ₁	d	4
	8	10	\downarrow	4r	75	V	SAME AS ABOUT ul bu Q~9'	8	9	4	70910
				1 1							
				1 1							
				1 1		ļ					
				1 1							
				1 1							
				1 1							
				11							
				11			NO VISUAL, ODAR, OR SHEEN 1				
				11			IN ANY INTERVAL				

		1	GENERALIZED DESCRIPTION OF SOIL/ROCK ENCOUNTERED IN BORING
Depth	of Boring	USCS/	
From	То	Rock Ty	Generalized Soil or Rock Description
0	4 ^{(c}		DARK BROWN SANDY SLLT LOAM [TOPSOIL]
410	10'	Gm	GRAY BROWN AND BLACK SILTY GRAVEL WITH FINE AND MEDIUM SAND, LOOSE TO
			CRAY BROWN AND BLACK SILTY GRANEL WITH FINE AND MEDIUM SAND, LOOSE TO (FINE) MEDIUM DENSE, MOIST TO WET (BELW GW) [FIL]
	SOIL desc: 1	ISCS CO	I lor, sand drain size, SECONDARY modifier, PRIMARY grain size, tertiary constituents, (stiffness/density), (moisture), detail, [geologic interpretation]

Typical soil desc: USCS Color, sand grain size, SECONDARY modifier, PRIMARY grain size, tertiary constituents, (stiffness/density), (moisture), detail, [g Typical rock desc: Rock Type Color, grain description, ROCK TYPE, (strength), (state of weathering), (moisture), detail and bedding, [geologic formation]

OTHER RELEVANT INFORMATION							
Casing Info (e.g., type, diameter, depths, casing reduction):	· ·						
Groundwater Encountered (e.g., time, depth, quantity, casing position):	ş /						
Misc. (e.g., drilling rate, drill cuttings, rig decon, etc.):							
	Page of						

Page <u>]</u> of <u>|</u>

				GENERAL		LOCA	TION SI	KETCH			
Boring	/MW ID	DP	33			Drilling C	o. Esní				
Projec	t/Site Nam	le 100	- EAST	BAY		Lisc. Drill	er MAPTY HANN				
Field Professional					_	Drilling M	ethod				
Start D	ate/Time	11/0	1/08 0	1930	_		TRUCK MANT				
			4/02 1			Drill Bit	NIA			North	Arrow
	Sample [Depth (ft)	Sampling	SPT Blows	%	Contacts		Contai	nerized	PID	Sent
Time	From	To	Method			or GW?	Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	D	4	1' mais	N/A	60	Sel desv. My	4"-3': GRAY SILTY BRAVER WITH	1	2	¢	Y
			Core w/	/ /			OLLASSIMME FINE SAND, MEDIUM DENSE		,		0950
				1 1			DRY TO moist (Browns silt and send)				
				, ,							
				11		<u> </u>	3 - 4: BROWN SILTY MEDIUM SAND	3	4	Ø	Y
				\mathcal{M}_{i}		\mathbf{V}	WITH FREQUENT WHITTENSH GRAN OR			<u> </u>	0955
				11			BLACK GAANELS, MEDIUM DENSE, MOIST	_			
				, ,						<u>,</u>	
	4	8		<u>/</u>	leo		4-7': SAME AS 3-4' ABURE	5	6	¢	4
			V	1 1		v	7'-8' DARK BROWN TO SILTY				
				1 1			COARSE SAND TO FINE GRAVEL,	7	ଥ	¢	Y
				1 1			LODSE, MUIST TO LET, WITH Some				1005
				1 1			nood Debris				
				1 1							
				1 1			NO VISUAL WES, DOWL, DIR SHEEN				
				11			IN ANY INTERNAL	-			

	GENERALIZED DESCRIPTION OF SOIL/ROCK ENCOUNTERED IN BORING									
Depth	of Boring	USCS/								
From	То	Rock Ty	Generalized Soil or Rock Description							
D	4"	Gm / Lw	DARK BROWN SAMPY SILT LOAM [TOPSOIL]							
4	3	Gn/w								
B	-51	Salja	Day to moist [GRAVER FILL]							
3'	• 7'	smisw	BROWN SILTY MEDIUM SAND WITH FREDUCT WHITESIT GALY OR BLACK GALLES MED. DEVER MOST							
7'	8'	5m/5p	DACK BROWN TO BLACK SILTY LOAASE SAND AND FINE GRAVEL, LOUSSE, LIGHT							
			MOIST TO NOT, WITH SAME MOUS DEBRUS [DARK SAND Fin]							
Typical Typical	soil desc: l rock desc:	JSCS Co Rock Type	or, sand grain size, SECONDARY modifier, PRIMARY grain size, tertiary constituents, (stiffness/density), (moisture), detail, [geologic interpretation] Color, grain description, ROCK TYPE, (strength), (state of weathering), (moisture), detail and bedding, [geologic formation]							

OTHER RELEVANT INFORMATION

6n Q ~7'

Casing Info (e.g., type, diameter, depths, casing reduction):

Groundwater Encountered (e.g., time, depth, quantity, casing position):

Misc. (e.g., drilling rate, drill cuttings, rig decon, etc.):

Page _____ of ____

GENERAL IN	LOCATION SKETCH	
Boring/MWID DPY0	Drilling Co. Esn	
Project/Site Name_ Roo - Errs BAy	Lisc. Driller MARTY HAW	
Field Professional	Drilling Method	
Start Date/Time <u>11 / 4 / 08 10 3 6</u>	Drill Rig Truck-mount	
Stop Date/Time ((/4/15 1(15	Drill Bit W 14	North Arrow

	SAMPLE COLLECTION										
	Sample [Depth (ft)	Sampling	SPT Blows	%	Contacts		Contai	nerized	PID	Sent
Time	From	То	Method	per 6 in.			Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	0	4	41 mActo Colt of Linke	NIA	75	See	GRAY GILTY LAME WITH FINE AND MEDIUM	1	2	¢	Y 1110
			Liver	11			SAND, LOOSE TO MEDIUM DENSE, DPY				
				11			to moist (from silt and sud)	3	4	¢	4
				11							""
	4	સ	\vee	\mathcal{N}_{i}	75	J	4-5': SAME AS ABOVE				
		,		1 1			51-8. BROWN SLLTY FINE AND	5	Q	Ø	4
				1 1			MEDUM SAND WITH Steadsmart		•		
				1 1			GRAY OR BWACK COMMENT GRANTE LOUST	7	0	Ý	Y
				11			TO mERLIN DENSE MOIST TO				1125
				11			wer (Julin 7.5')				
:				1 1							
				11		NO	DALK SAND FILL ENCOUNTERED!				
				1 1							
				11							
				11			NO VISUAL ODOR, OR SHEEN IN				
				11			ANY INTERVAL				

	GENERALIZED DESCRIPTION OF SOIL/ROCK ENCOUNTERED IN BORING							
Depth	of Boring	USCS/						
From								
0	2"		ASPHALT WITH MINIMAL BASECONSE					
2"	5'	6m	GARY to BROWN (FINES) SILTY CAMPER WITH FINE AND MEANING LOUSE					
			GARY to BROWN (FINES) SILTY CAMPER WITH FINE AND MEDIUM SIAND, LOUSE TO MEDIUM DENSE, DAY TO MOIST [GRAVER FIL]					
51			BROW SILTY FINE AND MEONIN SAND WITH OLLASSING GRAY on BLACK					
			COARSE GRAVER, LOUSE TO MEDIUM DENSE, MONT TO NOT [Litor SAND Fil]					
Typical Typical	Typical soil desc: USCS Color, sand grain size, SECONDARY modifier, PRIMARY grain size, tertiary constituents, (stiffness/density), (moisture), detail, [geologic interpretation] Typical rock desc: Rock Type Color, grain description, ROCK TYPE, (strength), (state of weathering), (moisture), detail and bedding, [geologic formation]							

OTHER RELEVANT INFORMATION

Casing Info (e.g., type, diameter, depths, casing reduction):

Groundwater Encountered (e.g., time, depth, quantity, casing position): (m (m 7.5)

Misc. (e.g., drilling rate, drill cuttings, rig decon, etc.):

Page _____ of ____

GENERAL	LOCATION SKETCH	
Boring/MWID 0936	Drilling Co. ESN	
Project/Site Name P.C - EAST BAY	Lisc. Driller MARTY HAUN	
Field Professional TR	Drilling Method DP	
Start Date/Time ((/4/08 1140	Drill Rig TRULK mount	
Stop Date/Time 11/4/09, 12/0	Drill Bit <u>NIA</u>	North Arrow

							SAMPLE COLLECTION				
	Sample [Depth (ft)	Sampling	SPT Blows	%	Contacts		Contai	nerized	PID	Sent
Time	From	То	Method	per 6 in.	Recov.	or GW?	Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	D	Ч	4' mario	NIA	75	desurphy	GRAY SILTY GAANÓN WITH FMIE	t	2	Ø	Y
			LINGE	11			to more share wast to mean				1150
				_ / _/			DENSE, DAY to moist (mostly Refy)	3	4	þ	
				11			(brown silt and sond)				1200
				1		Y					
	4	8		//	60		SAME AS ABOVE	5	6	d	Y
				1 1					· · ·		1210
				11				7	8	à	Y 1270
				11							12.00
	в	10	1	,¥,	75	V	SAME AS ASUNE, EXCEPT WET BELOW 9'	B	9	4	Y
				11			Beron 91				1230
				1 1		-					
				1 1							
				11							
				11			No Jison avis, about, on stream of				
				11			IN ANY INTERNAL				

	GENERALIZED DESCRIPTION OF SOIL/ROCK ENCOUNTERED IN BORING									
Depth	of Boring	USCS/								
From										
0	N"		ASPHALT WITH MINIMAL BASECOURSE							
2	2" 10' 6M GRAY to BROWN (FINES) SILTY GAAVER WITH FINE TO MEDIUM SAND,									
			LOOSE TO MODIUM DENSE, DAY TO WET [LIGHT GAMER FIL]							
	Typical soil desc: USCS Color, sand grain size, SECONDARY modifier, PRIMARY grain size, tertiary constituents, (stiffness/density), (moisture), detail, [geologic interpretation] Typical rock desc: Rock Type Color, grain description, ROCK TYPE, (strength), (state of weathering), (moisture), detail and bedding, [geologic formation]									
[OTHER RELEVANT INFORMATION									

Casing Info (e.g., type, diameter, depths, casing reduction):

Groundwater Encountered (e.g., time, depth, quantity, casing position):

6~ e~9'

Misc. (e.g., drilling rate, drill cuttings, rig decon, etc.):

Ч

Page ____ of ____

~	
	٠
	,

GENERAL I	LOCATION SKETCH	
Boring/MW ID 0938	Drilling Co. 500	
Project/Site Name Ro - EAST BAY	Lisc. Driller mdary afour	
Field Professional	Drilling Method P	
Start Date/Time 11/4/08 1240	Drill Rig Thuck - norms	·
Stop Date/Time 11/4/08 1310	Drill Bit <u>N/A</u>	North Arrow

	SAMPLE COLLECTION										
	Sample I	Depth (ft)	Sampling	SPT Blows	%	Contacts		Contai	nerized	PID	Sent
Time	From	То	Method	per 6 in.	Recov.		Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	0	4	1' MARO	NIA	50	sel descript.	GRAY to BACK BROWN WITT FINE TO	1	2	Ø	1250
			LINGA	1			MEDIUM \$4ms, mEDIUM DEWSE, DRY			``	1250
				//			TO serving 31 long solid word chink m 2nd survey fin 3.51-41 interval (dark some sitt and sev)	3	4	Ø	Y
				, ,			1 2nd suring from 3.51-41 interval				1300
			\vee			¥.					
	Ч	8		/\/	50		41-5" SAME AS ABOVE				
				, ,			5-6: DALK BERY CLAYEY FINE SAND	5	6	Ø	Y
				,)			WITH SILT MOUND DEUSE MOIST TO		'	,	1310
				, ,			WET, WUTH Some BARK SIZED NOOD				
				,			OGONI				
				1			6-31: REDDISH BROWN FINE SHEEDDED	6	7	đ	Y
				1			WOOD JEBRIS -> COARSY SAMONST				1320
	B	10		, 🗸	25/100		B-9; SANE AS 6-8				
			T	ΪI.	T 1		9-10: BROWN GAMENY FINE SAND, MEDUM OBNE, WOIST TO WET	9	15	Ø	Y
				۲ <i>٤۱</i> ۲۰۰۰ ۲۰	50	b	No visual was, about, on SHEEN				1330
				1 1	Í		IN ANY INTERVAL				

[GENERALIZED DESCRIPTION OF SOIL/ROCK ENCOUNTERED IN BORING				
Depth	of Boring	USCS/					
From	То	Rock Ty	Generalized Soil or Rock Description				
6	9"		LOUSE LOARSE GRAVER / DECOMPOSING ASPITAL				
3 '3'	15'	Gm	GAALY TO DK BROWN (FINDS) SILTY GRANDE WITH FIND TO MEDIUM SAND, INTOWN DENSE, DAY TO NOT				
			WITH WEDD DESTENSTANTION DEGRES OR PILING? ELIGHT GAIVER FUL]				
51	6'	5415m	DARK GRAY CLAYEY WET FINE SAND WITH SILT, MEDIUM DEWST, MUIST TO LET, WITH NOOD [PARK				
6	9'		REPOISH BROWN FINE SHEEDOFFD NOUS DESRUS [COMASE SANDUST]				
9'	9' 10' SP BEON GRAVELY FINE SAND MEANIN DENSE, MUST TO NET [DARK SAND FIN?]						
Typical soil desc: USCS Color, sand grain size, SECONDARY modifier, PRIMARY grain size, tertiary constituents, (stiffness/density), (moisture), detail, [geologic interpretation] Typical rock desc: Rock Type Color, grain description, ROCK TYPE, (strength), (state of weathering), (moisture), detail and bedding, [geologic formation]							
			OTHER RELEVANT INFORMATION				

bucn 3'

Casing Info (e.g., type, diameter, depths, casing reduction):

Groundwater Encountered (e.g., time, depth, quantity, casing position):

Misc. (e.g., drilling rate, drill cuttings, rig decon, etc.):

Page _ [of _ /

PIONEER TECHNOLOGIES CORPORATION (PT BORING LOG FORM	Г С)

GENERAL I	LOCATION SKETCH	
Boring/MW ID	Drilling Co. FSN	
Project/Site Name <u>Po0 - 6457 BA4</u>	Lisc. Driller MARY AAN	
Field Professional <u>TB</u>	Drilling Method	
Start Date/Time <u>\\/4/04 /345</u>	Drill Rig TALC- MANT	
Stop Date/Time [1/9/09 1410	Drill Bit / A	North Arrow

						5	SAMPLE COLLECTION				
1	Sample I	Depth (ft)	Sampling	SPT Blows	%	Contacts		Contai	nerized	PID	Sent
Time	From	То	Method		Recov.	or GW?	Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	0	4	4 mALA	NIA	40	See	GANTY SILTY FINE S.M.D WITH OLEMSSIMM	1	2	Ф	Y
			n/ Linta	11			COMME CALINEL, MOIS F			(1350
				1 1				3	4	Þ	4
				, ,		Y					1400
	4	C		1VI	100	\mathbf{V}	SAME AS ABOUT TO 7', BRCEAF WEST BELOW 5'	4	5	đ	4
			•	1 1			was becon 5	-		,	MIO
				1 1							
				1 1			7-7.5 : bar to BLACK CUMEYSILT	7	7.5	¢	4
				11			WITH SIME FINE SAMS, MERIUM STRF, MUST				1420
				1 1			n rl. 61.				
				1 1			7.5(-e1. 750 · AEODISH BROWN FINE SHEEDORD WOOD DESRIS - SAME 45 DP38				
				1 1			WOOD DESRUS - SAME IS DP 38				
							· · · · · · · · · · · · · · · · · · ·				
				11							
							IN ANY INTERUAL				
				11	L		IN ANY INTORVAL				

			GENERALIZED DESCRIPTION OF SOIL/ROCK ENCOUNTERED IN BORING
Depth	of Boring	USCS/	
From	То	Rock Ty	Generalized Soil or Rock Description
0	24		Asponny with minimum BASEcourse
2 "	7'	Sm	GRAY SILFY FINE SAND WITH OLEASSMALL COASS GRAVER, MOIST TO NOT (SAND FUR?
71	7.51	ALL.	GAAN to BLACK CANYER SILT WITH SUNE FINE SAND, MEDIUM STIFF, MO IST [SILT?]
75	81		REDOUSH BROWN FING SURFORED WOOD DEBRUS (COMME SANDUST)
			or, sand grain size, SECONDARY modifier, PRIMARY grain size, tertiary constituents, (stiffness/density), (moisture), detail, [geologic interpretation] Color, grain description, ROCK TYPE, (strength), (state of weathering), (moisture), detail and bedding, [geologic formation]
ſ			OTHER RELEVANT INFORMATION
Casing	Info (e.g.	, type, dia	meter, depths, casing reduction):
Ground	dwater End	countered	(e.g., time, depth, quantity, casing position): $6 \sim (-5)^{\prime}$
Misc. (e.g., drillin	ig rate, dr	ill cuttings, rig decon, etc.):

GENERAL	INFORMATION	LOCATION SKETCH
Boring/MWID DP27	Drilling Co. 51	
Project/Site Name RD FAST BAY	Lisc. Driller MARTY chand	
Field Professional 73	Drilling Method	
Start Date/Time <u>\(///00, //30</u>	Drill Rig Trever mans	
Stop Date/Time 1/4/08 1500	Drill Bit <u>Pl/A</u>	North Arrow

							SAMPLE COLLECTION				
	Sample D	Depth (ft)	Sampling	SPT Blows	%	Contacts		Contai	nerized	PID	Sent
Time	From	То	Method	per 6 in.			Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	O	4	4 mars	NIA	75	Sel	DE TO 2.5' BROWN TO GARY SANDY	Ю	l	Þ	Y
			LINER	1			GRAVER MEDIUM DEVISE , DAY to moist		×	,	1440
				, ,			2.5'-4' GRAM CLAYEY FIND SAND	3	2	ø	<u> </u>
				1 1			WITH SILT, MEDIUM DENSE, MOIST				1450
			¥.	/ /							
	4	в	V	N1	90	¥	4-5: GRAMISH Brown CLAYEY Sect	4	5	Ø	4
				1 1			WITH SOME FINE SAND, MEDIL STIFF, nois	r			1500
				1 1			5'-7.5': GRAY FINE SAND (WELL	6	7	d	Y
				1 1			Source), with some sitters present, with				1570
				1 1			7.5'-B': REDDISCH BROWN ENTO				
				1 1			Statesto was DEGRIS 7 SANG AS DI38				
				1 1							
				1 1							
				1 1							
				1 1			NO VISUAL LES, DOWR, OR SHEEN				
				1 1			IN ANY INTERVAL				

			GENERALIZED DESCRIPTION OF SOIL/ROCK ENCOUNTERED IN BORING
Depth	of Boring	USCS/	
From	То	Rock Ty	Generalized Soil or Rock Description
Ď	2"		Aspitar with Miniman Bassicousi
2"	2.51	68	BROWN TO GRAY SAMOY BRATER, MEDIUM DENSE, ORY TO MOIST ELIGHT GRAM FILL?
251	4'		GRAM CLAMENT FINE SAND WITH SILT, MEANIN PENSE, MOIST [LIGHT SAND FU?]
41	51	ML	GRANGIA BROWN CLAYEY SILT WITH SIME FIND SAND, MEDIUM STIFF, MAST [DISPUNSED SILT?]
5'	7.5'	SP	GRAY FINE SAND (WELL SOLTED), WITH SOME SHELLS PRESENT, WET [DISTURSED MATTIC SAND?
7.51	Bi		REODISH BROWN FINT SHARDOOTS WOOD DEBANS (COARSE S.A. PUST]

Typical solid desc: Rock Type Color, grain description, ROCK TYPE, (strength), (state of weathering), (moisture), detail and bedding, [geologic formation]

OTHER RELEVANT INFORMATION

6~ 2-51

Casing Info (e.g., type, diameter, depths, casing reduction):

Groundwater Encountered (e.g., time, depth, quantity, casing position):

Misc. (e.g., drilling rate, drill cuttings, rig decon, etc.):

7

				GENERAL	NFORM			LOCAT		ETCH	
Boring	/MW ID	DPS	34				o. Esn	LUUAI	1011 37	LIGH	
				BAY			ler MARTY HAW				
	Profession		Ъ		_		lethod				
Start D	ate/Time	11/4	VOB .	1515			TRUC - mant				
Stop D	ate/Time	1/41	08 1	540		Drill Bit	NA			North /	Arrow
	Sample I	Depth (ft)	Sampling	SPT Blows	%	Contacts		Contair	nerized	PID	Sent
Time	From	То	Method	per 6 in.	Recov.		Localized Soil/Rock Description	From	То	(ppm)	to Lab?
	0	4	CORE #/	NIA	60	See descript	BROWN TO GRAY GRAVERUY SAND WITH		3	Ø	Y
			CINCL	11		ſ	SILT, médium Dérisé, Dry to moist				1530
				1 1							
	4	8		<u>' '</u>	50			4	1.	d	1/
		0			20		SAME AS ABOUE 40 7.5	· ·	Q	9	1540
			$-\Psi_{-}$	Ň		V	7.5'-8': REDOISH BROWN FINT SHEGODOG				
				1 1			WOOD DEBRU - SAME AT PPBB				
				1 1				7.5	9.5	ф	4
	8	10		1 1	(00)		State B- 9.5' 15 54mb 45 7.5'-8'				1530
				1 1							
							9.5'-10' REDOISH BROWN WOOD				
							(BARK SIZED)				
				11							
				1 1					,		
				1 1							
				1 1			NO VISUAL CUES, ODM, OR SHEEN				
							IN ANY INTOUCH				
				/ /							
		11000/	I	GENERA		ESCRIPT	ION OF SOIL/ROCK ENCOUNTERED IN BORING		• · · · ·	·	
From	of Boring To	USCS/ Rock Ty	Generalize	d Soil or Roo	k Descr	iption			è		
D	6"		CONC	_							
. (*	7.51					4-100	SCHID WITH SULT IN FORMA AND AND		Se com	54	c. 7
6	(.>	Jw/sm	0	IU ORA	7 014	neuy	SAND WITH SILT, MEDIUM NEWLE DRY TO M FORFO WOOD DESNIS [COASE SANDIST]	1031	1.1.1.19	~~~~~	muj
7.51											
9.51	101		REDDIS	it Brow	in u		CARLY BARK-SIZED WOUD DEBRIS				
Typical Typical	soil desc: (rock desc:	JSCS Col Rock Type	lor, sand grai Color, grai	n size, SECON n description, R	DARY MO	Daifier, PRIN PE, (strengt	MARY grain size, tertiary constituents, (stiffness/density), (moisture), del h), (state of weathering), (moisture), detail and bedding, [geologic formation]	ail, [geolo ation]	ogic inter	pretation	J
			-				R RELEVANT INFORMATION				
Casing	Info (e.g.	, type, dia	meter, dep	ths, casing re	duction						
Ground	dwater En	countered	l (e.g., time	, depth, quan	tity, cas	ing positio	n): $Gw @ \sim G'$				
Misc. (e.g., drillir	ng rate, dr	ill cuttings,	rig decon, etc	c.):				·		
									Page	<u> </u>	f

8

ATTACHMENT B-2

DATA QUALITY REVIEW AND VERIFICATION, LABORATORY CERTIFICATES OF ANALYSES, AND CHAIN-OF-CUSTODIES

Data Quality Review and Verification East Bay Phase 1 RI – November 2008

1. Precision

Precision was assessed via the relative percent difference (RPD) for matrix spike duplicates. As shown in the analytical reports, all matrix spike duplicate RPDs were within the acceptable range, with one exception. The RPD for 1,2,3,4,6,7,8,9-octachloro dibenzo-p-dioxin in one matrix spike duplicate was low due to variable background-subtracted results in the two matrix spikes as discussed in the Pace Analytical Services case narrative. Further data qualification beyond what was reported by the laboratories was not necessary. It should be noted that the QAPP (GeoEngineers, 2008) did not specify expectations for constituents to be spiked or for RPDs.

2. Accuracy

Accuracy was assessed by analysis of laboratory method and trip blanks as well as recoveries in blank spikes, matrix spikes, and surrogates. As shown in the analytical reports, no constituents were detected in the trip blank or any of the laboratory method blanks, with the following exception. Several CDD/CDF congeners were detected in the laboratory method blanks, which can be attributed to background conditions. As shown in the analytical reports, recoveries for all blank spikes, matrix spikes, and surrogates were within the acceptable range, with the following exceptions. The surrogate recoveries for all CDD/CDF congeners in DP38-081104-6-7 and the surrogate recovery for one CDD/CDF congener in DP36-081104-5-6 were outside of the surrogate control limits. It is standard protocol to re-extract and reanalyze a sample with poor surrogate recoveries such as DP38-081106-6-7, however, not enough sample volume was left to re-extract DP38-081104-6-7. Further J-flag qualification of the sample results with poor surrogate recovery was not necessary in accordance with the Pace Analytical Services case narrative. It should be noted that the QAPP (GeoEngineers 2008) did not specify expectations for constituents to be spiked or for expected recoveries.

3. Representativeness

Representativeness was assessed by evaluating the sample collection, sample handling, and sample analysis procedures. All samples were collected, handled, and analyzed in accordance with the SAP/QAPP (GeoEngineers, 2008), which was designed to obtain representative samples. In addition, all samples were extracted and analyzed within appropriate holding times.

4. Comparability

Comparability was assessed by comparing current sample collection and analysis procedures with standard procedures. The samples were collected and analyzed with standard procedures and were comparable with other data as qualified by the laboratories.

5. Sensitivity

Sensitivity was assessed by comparing actual practical quantification limits (PQLs) with the PQL expectations in the QAPP (GeoEngineers, 2008). The actual PQL was equal to or less than the expected PQL listed in the QAPP, with the following exceptions. The actual PQLs for 2,3,7,8-tetrachloro dibenzo-pdioxin in DP36-081104-5-6, 1,2,3,4,7,8,9-heptachloro dibenzofuran in DP33-081104-7-8, and most CDD/CDF congeners in DP38-081104-6-7 were slightly above the PQL expectations listed in the QAPP. However, these actual PQLs were still acceptable for use. Thus, no further data qualification beyond what was reported by the laboratories was necessary. It should be noted that the QAPP (GeoEngineers 2008) did not specify PQL expectations for EPH, TOC, and metals other than arsenic, cadmium, and lead.

6. Completeness

Completeness was assessed by calculating the percentage of acceptable sample results to all sample results. A total of 104 analyses were performed (nine NWTPH-G, nine BTEX, eight NWTPH-Dx, 17 PAHs, 21 metals, 25 CDDs/CDFs, two chromium VI, three EPH, 10 TOC). All of the sample results were acceptable as qualified by the laboratories. Thus, the completeness of the analytical data is 100 percent.

7. Conclusions

This data is deemed acceptable for use as presented by the laboratory. As a result, no corrective action or further data qualification is necessary.

ANATEK LABS REPORT

CASE NARRATIVE

Lab Name: Anatek Labs, Inc. 1282 Alturas Drive, Moscow, ID 83843 <u>www.anateklabs.com</u> FL NELAP E87893, NV ID13-2004-31, WA DOE C126, OR ELAP ID200001, MT 0028, ID, CO, NM

Project Tracking No.: EAST BAY RI PHASE 1 Anatek Batch: 081105018

Project Summary: Thirty-Three (33) soil samples were received on 11/5/2008. All samples were received with the appropriate chain of custody Samples were received at 7.9C. The requested analyses are summarized below. The TOC and EPH samples were held pending results of the initial round of analyses per the client request

Client Sample ID	Anatek Sample ID	TPHDx	TPHGx	BTEX	RCRA8	PAH	тос	EPH	HOLD
DP32-081104-1-2	0811050118-001								х
DP32-081104-4-5	0811050118-002				х	Х			
DP32-081104-8-9	0811050118-003								х
DP33-081104-1-2	0811050118-004				х	Х			
DP33-081104-3-4	0811050118-005				х	Х			
DP33-081104-5-6	0811050118-006				х	Х			
DP33-081104-7-8	0811050118-007				х	Х			
DP40-081104-1-2	0811050118-008	х	Х	Х	х	Х			
DP40-081104-3-4	0811050118-009	х	Х	Х	х	Х			
DP40-081104-5-6	0811050118-010	х	Х	Х	х	Х			
DP40-081104-7-8	0811050118-011								х
DP36-081104-1-2	0811050118-012								х
DP36-081104-3-4	0811050118-013								х
DP36-081104-5-6	0811050118-014	х	Х	Х	х				
DP36-081104-7-8	0811050118-015								х
DP36-081104-8-9	0811050118-016								х
DP38-081104-1-2	0811050118-017				х	Х			
DP38-081104-3-4	0811050118-018								х
DP38-081104-5-6	0811050118-019	х	Х	Х	х	Х			
DP38-081104-6-7	0811050118-020	х	Х	Х	х	Х			
DP38-081104-9-10	0811050118-021								х
DP30-081104-1-2	0811050118-022				х				
DP30-081104-3-4	0811050118-023				х	Х			
DP30-081104-4-5	0811050118-024								х
DP30-081104-7-7.5	0811050118-025				х				
DP27-081104-0-1	0811050118-026				х	Х			
DP27-081104-3-4	0811050118-027		Х	Х	х	Х			
DP27-081104-4-5	0811050118-028				х	Х			
DP27-081104-6-7	0811050118-029				х				
DP34-081104-1-3	0811050118-030								х
DP34-081104-4-6	0811050118-031	х	Х	Х	х	Х			
DP34-081104-7.5-9.5	0811050118-032	х	Х	Х	х	Х			
TRIP BLANK	0811050118-033		Х	Х					

QA/QC Checks

Parameters	Yes / No	Exceptions / Deviations
Sample Holding Time Valid?	Y	NĂ
Surrogate Recoveries Valid?	Y	NA
QC Sample(s) Recoveries Valid?	Y	NA
Method Blank(s) Valid?	Y	NA
Tune(s) Valid?	Y	NA
Internal Standard Responses Valid?	Y	NA
Initial Calibration Curve(s) Valid?	Y	NA
Continuing Calibration(s) Valid?	Y	NA
Comments:	Y	NA

1. Holding Time Requirements

Samples were received above the recommended temperature range of 0-6C and were stored at 4C after arrival at the laboratory. This is not expected to negatively impact the results.

2. GC/MS Tune Requirements

No problems encountered

3. Calibration Requirements

No problems encountered.

4. Surrogate Recovery Requirements

No problems encountered.

5. QC Sample (LCS/MS/MSD) Recovery Requirements

No problems encountered.

6. Method Blank Requirements

The method blanks were non-detect (<MDL) for all analytes. No problems encountered.

7. Internal Standard(s) Response Requirements

No problems encountered.

8. Comments

No problems encountered.

I certify that this data package is in compliance with the terms and conditions of the contract. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee.

Approved by:

A Anatok	<i>k</i> r			In win of	Custor	Chain of Custody Rooved	$\left[\right]$		st SAMP 11/4/2008 1st RCVD 11/5/2008
				fo umu	Cusiou	i wernin	٦		AST BAY RI PHASE 1
Inc.	0	1282 Alto 04 E Spra	1282 Alturas Drive, Moscow ID 8 504 E Sprague Ste D, Spokane WA	Moscow Spokane	ID 83843 WA 99203	 I282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 (504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433 	FAX 882. 9 FAX 83	9246 0	
				Project Ma	Project Manager:				Turn Around Time & Reporting
Address:	VELANDLOGIES	and and and	men	Project Name & #:	7 15/05/6				Please refer to our normal turn around times at:
2617 Your	in Any SE.	SUITE	S	2	67355 347	1 RJ PHASU	SUL		http://www.anateklabs.com/services/guidelines/reporting.asp
City: OUTINP, A	State:	Zip: 999-0	1	Email Ado	ress:	is proved.	con		
Phone: 360 - 57	570-1700			Purchase (Order#: BE Pitro	Purchase Order#: Par BC Pitro By River 40		Orympila	prior approved.
Fax:				Sampler Name	00 2	le:			LAU (
Provid	Provide Sample Description	cription				List Analyses Requested	equested		Note Special Instructions/Comments
				2 Sec		123			MW/BS
				ensiner nuloV e	2 9 0. Horn 041/0	1501 5 5000 1 50000 1 50000 1 50000 1 5000 1 50000 1 5000 1 5000 1 5000 1 5000			SW 2004-10C 9060
Lab Sample Identification	tion Sampling Date/Time	te/Time	Matrix		- Haf	28 28 28 28 28 28 28 28 28 28 28 28 28 2	101		HOLD Mr. SAMPLES For POSSIBUE
1 0032-081104-1-2	-	0690	SOIL		10.4 10.4		X		SURVEY. AWARYSGS
- D32-081104-45		0965	_			XX	X		
5 12922-081104-8-9		0110							RUN GOH an 3 History
P DP33-08404-1-2		0950				XX			hardonisinos attitude to that
		2995		-		X	X		
0933-281104-5-6	_	000	_	-	_	X X			SOU PAL Expectation Sect
	7-8	last				X			the Jath LOOPINGTON PREVIOLELY
5 DP40-041184-1-2		0111		_	X	XXX		_	Inspection Checklist
1 0840-091104 -3-4		1115			X	XXXX	X		Received Intact?
of oppy - yester and a	_	1120			X	XXX	X	_	Labels & Chains Agree? 🛛 🔍 N
11 0940-031107-7-8		1125	_						Containers Sealed?
12 DP36 681104-1-2	_	2511			_		_	_	VOC Head Space?
13 DP36 COUDY-3-4	>	1200	+	*			_		4
1	Printed Name	<u>S</u>	Signature			Company	Date	Time	
Relinquished by	TROY BUSSEY OR		tar	Sur (1	Mrc.	11/1	11/4/08 10/20	V Temperature (°C): 7-1
Received by	Kami lallunce	el and	Paris -	Lalla	9	Kinhel	11.5	115-06 10-45	C Preservative: Mco &
Relinquished by		-	1				,		
Received by							-	_	Date & Time:
Relinquished by							_	_	Inspected By:
		-							

A	Anatek			Chain of	1 of C	ustody	Custody Record	q			Anatek Loo-In #	
	Labs, Inc.	(10	O 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246	, Most	OW ID 8	33843 (08) 883-2	839 FAN	882-924	0		
		C 504 E SI	504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433	, Spok	ane WA	V 99202	(509) 838	-3999 Fr	AX 838-4	133 (٢
Company Name:				Proj	Project Manager:	1.1	Bussey				I urn Around Time & Reporting	
Address: 71017 VErn	Tur Huy	14 St. SUITE B	¥ 8	Proj	ect Name	Project Name & #: Ay NET	BU .	OHASE	1		http://www.anateklabs.com/services/guidelines/reporting.asp	
City: Nuturp, 17		ate:	A	Emé	by Ser 1	Fe up	C	5			Normal *All rush order Phone Next Dav*	Smar
Phone 360)	1	501702		Pur	shase ord	er #:	0 BV	Part	or ary	Olympul 12	prior approved.	
Fax:				San	A A	Sampler Name & phone:					IMI ING	
P	rovide Sa	Provide Sample Description	u			List	List Analyses Requested	s Reque	sted		Note Special Instructions/Comments	
				ntainers	Volume	1 29-40 1 29-40en	1 Lag 7)				
Lab Sample Id	Sample Identification	Sampling Date/Time	Matrix	# of Co	oldmes	- M&A	13151	70L 78L			How Are samples for Possigle	
14 DP36-81	DP36-88110454		SOIL	2	2281	X	XX					
15 0936-08	OP36 -0811 04-7-8	1220	-	-	-	_						1
16 2936 -081104-8-9	104-8-9	1230		-								T
7 0038-05	57-1-201109-1-2	1280		-			X	X	_			Т
18 10P38-681104	31104-34	1300	_	-		-				_		Т
N 0938-081104-	1104-5-6	1310		+	-	X	×) ×	\times				Т
20 DP38.09 11 04-6-7	1-9-4011	(320		-		X	X	× ×				1000000
	DP38-00404-9-10	(330	_	_							ection Checklist	
	DP30 08404-1-2	1362	_	_			X				>	
23 0930-06	0P30-091104-34	aey1	_	-			X	X			ree? Y	
24 0930-01	ppzu-obuoy-45	a1/1		+	4	-					~	
25 2930-0	PP30-08404-7-7.	ozh1 x 3	>)	>	_	X				VOC Head Space? Y N	
				_		_						
	Printe	Printed Name	Signature				Company		Date	Time		
Relinquished by	The	They Bussen TR.	51	Lana	5		F		11/4/08	1630	Temperature (°C):	
Received by	_		202		-						Preservative:	
Relinquished by												
Received by											Date & Time:	
Relinquished by	_										Inspected By:	
Received by												

	Anarek			Chain of Custody Record	Day Necor	d b		Anatek Log-In #
	Inc.	0 1282 A	Ituras Drive, J	 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 (504 E Sprague Ste D. Spokane WA 99202 (509) 838-3999 FAX 838-4433 	3 (208) 883-2839 02 (509) 838-399	839 FAX 882-9246 -3999 FAX 838-443	38-4433	
Compa	Company Name:			Project Manager:	0			Turn Around Time & Reporting
Addroom V	ELC			Brainet Mama P #	CASENSI			Please refer to our normal turn around times at:
Auures	NIZ YEAM	14NY SE.	SUITE B	Project Darie & #.	344 151	- Phase	,	http://www.anateklabs.com/services/guidelines/reporting.asp
City:	Wmp, M	State: Zip:	1	Email Address :	2 US DI ONER	5		Normal *All rush order Phone Next Dav*
Phone:	362 370	111		Purchase Order #: " 36 PMr. 37	18 0m	port w	arne a	
Fax:				Sampler Name & phone:	hone:			LANG L was
	Provide Sa	Provide Sample Description			ist Analyse	List Analyses Requested		Note Special Instructions/Comments
					1 49 1 49 1 49 1 49	1		
Lab ID	Sample Identification	Sampling Date/Time	Matrix	A of Contract	514100 10000 28 29251 100000 40000	204 =228 \$441d		How and Shubble Fer Passiol
1	1-0-VA1182-2200	11/4/00, 1440	Soll	1	X	X		2
	NP27-081104-3-4		-	1	XXX	XX		
	Str horror-2200	1580			X	XX		
10000000	0027-0811 6Y - 6-5	1570			X			
3	DP34051104-13	1530	_				_	
ā	0934-0811 04 -4-10		/	X	XXX	XX		
	DP34-081104-7.5-915	5 V 1530	7		XXX	X		
Ň	TRUP BLUMK	NIA	MM	1 1 004	XX			Inspection Checklist
					_	_		Received Intact? Y N
								Labels & Chains Agree? Y N
								>
	Printe	Printed Name	Signature		Company	Date	e Time	
Relinqu	Relinquished by	er Bussey ma	2 ml	non a	240	111	14/0° 1630	Temperature (°C):
Received by	ed by		200	1 /	_			Preservative:
Relinqu	Relinquished by		3					1
Received by	ed by							Date & Time:
Relinqu	Relinquished by							Inspected By
	Paceived hu						-	

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Login Report

Customer	Name:	-		ES CORPORATION	Order I	
		2612 YELM OLYMPIA	HVVY SE	WA 98001	Order Dat	te: 11/5/2008
Contact	Namo:	TROY BUSS	EV.		roject Name: EAS	T BAY RI PHASE 1
		INOT D038		F	Toject Name. L/10	
CO	nment:					
Sample #:	0811050	018-001 Custo	omer Sample #:	DP32-081104-1-2		
Recv'd:	\checkmark	Collector:	TROY	Date Collected:	11/4/2008	
Quantity:	2	Matrix:	Soil	Date Received:	11/5/2008 10:45:00 A	A
Comment	:					
Test		Test	Group	Method	Due Date	Priority
%Moisture		Test	Group	%moisture	11/12/2008	Priority 5 Days
TOC - EPA		d PSEP		EPA 9060mod	11/12/2008	<u>5 Days</u> <u>5 Days</u>
Sample #:	0811050	J16-002 Cust	omer Sample #:	DP32-081104-4-5		
Recv'd:	\checkmark	Collector:	TROY	Date Collected:	11/4/2008	
Quantity:	2	Collector: Matrix:	TROY Soil	Date Collected: Date Received:	11/4/2008 11/5/2008 10:45:00 A	A
	2					A
Quantity:	2	Matrix:				Priority
Quantity: Comment	2	Matrix:	Soil	Date Received:	11/5/2008 10:45:00 A	
Quantity: Comment Test	2	Matrix:	Soil	Date Received: Method	11/5/2008 10:45:00 A Due Date	Priority
Quantity: Comment: Test %Moisture	2 : LOW	Matrix: Test	Soil	Date Received: Method %moisture	11/5/2008 10:45:00 A Due Date 11/12/2008	Priority <u>5 Days</u>
Quantity: Comments Test %Moisture PAH 8270	2 : LOW	Matrix: Test	Soil Group	Date Received: Method %moisture EPA 8270C	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u>
Quantity: Comment: Test %Moisture PAH 8270 TOC - EPA	2 : LOW	Matrix: Test	Soil Group	Date Received: Method %moisture EPA 8270C EPA 9060mod	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>
Quantity: Comment: Test %Moisture PAH 8270 TOC - EP/ Arsenic	2 : LOW	Matrix: Test d PSEP Tota	Soil Group	Date Received: Method %moisture EPA 8270C EPA 9060mod EPA 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>
Quantity: Comment: Test %Moisture PAH 8270 TOC - EPA Arsenic Barium	2 : LOW A 9060mo	Matrix: Test d PSEP Tota Tota	Soil Group	Date Received: Method %moisture EPA 8270C EPA 9060mod EPA 6020A EPA 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days
Quantity: Comment: Test %Moisture PAH 8270 TOC - EPA Arsenic Barium Cadmium	2 : LOW A 9060mo	Matrix: Test d PSEP Tota Tota Tota	Soil Group 18 18 18 18 18	Date Received: Method %moisture EPA 8270C EPA 9060mod EPA 6020A EPA 6020A EPA 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>
Quantity: Comment: Test %Moisture PAH 8270 TOC - EPA Arsenic Barium Cadmium Chromium	2 : LOW A 9060mo	Matrix: Test d PSEP Tota Tota Tota Tota	Soil Group	Date Received: Method %moisture EPA 8270C EPA 9060mod EPA 6020A EPA 6020A EPA 6020A EPA 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days
Quantity: Comment: Test %Moisture PAH 8270 TOC - EPA Arsenic Barium Cadmium Chromium Lead	2 : LOW A 9060mo	Matrix: Test d PSEP Tota Tota Tota Tota Tota	Soil Group 18 18 18 18 18 18 18 18 18 18	Method%moistureEPA 8270CEPA 9060modEPA 6020AEPA 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days 5 Days
Quantity: Comment: Test %Moisture PAH 8270 TOC - EPA Arsenic Barium Cadmium Chromium Lead Mercury-IC	2 : LOW A 9060mo	Matrix: Test d PSEP Tota Tota Tota Tota Tota Tota	Soil Group	Method%moistureEPA 8270CEPA 9060modEPA 6020AEPA 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority 5 Days 5 Days

Customer Name:		PIONE	ER TE	CHNOLOGIE	S CORP	ORATION	Order I	D: (081105018
		2612 YELM HWY SE OLYMPIA		WA 98001		Order Date:		11/5/2008	
Contact	Name:	TROY	BUSS	EY		Р	Project Name: EAS	T BAY RI	PHASE 1
Cor	nment:								
Sample #:	081105	018-003	Custo	mer Sample #:	DP32-081	104-8-9			
Recv'd:		Co	llector	TROY		Date Collected:	11/4/2008		
	Recv'd:✓Collector:TROYQuantity:2Matrix:Soil		Date Received:		11/5/2008 10:45:00 A				
Comment		ma		Con		Dute Received.	11/0/2000 10.40.007	,	
Test			Test	Group	Met	hod	Due Date	Priority	
HOLD					hole	ł	11/12/2008	<u>5 Days</u>	
Sample #:	081105	018-004	Custo	mer Sample #:	DP33-081	104-1-2			
Recv'd:	\checkmark	Co	llector:	TROY		Date Collected:	11/4/2008		
Quantity:	2	Ma	trix:	Soil		Date Received:	11/5/2008 10:45:00 A	λ	
Comment	:								
Test			Test	Group	Me	hod	Due Date	Priority	
%Moisture	•				%m	oisture	11/12/2008	<u>5 Days</u>	
PAH 8270	LOW				EP	A 8270C	11/12/2008	<u>5 Days</u>	
Arsenic			Total	8	EP	A 6020A	11/12/2008		
Barium			Total	8	EP	A 6020A	11/12/2008	<u>5 Days</u>	
Cadmium			Total	8	EP	A 6020A	11/12/2008 <u>5 Days</u>		
Chromium			Total	8	EPA 6020A 11/12/2008 <u>5 Days</u>				
Lead			Total	8	EP	A 6020A	11/12/2008		
Mercury-IC	CPMS		Total	8	EP	A 6020A	11/12/2008	<u>5 Days</u>	
Selenium			Total	8	EP	A 6020A	11/12/2008	<u>5 Days</u>	
Silver			Total	8	EP	A 6020A	11/12/2008	<u>5 Days</u>	
TOTAL 8	TOTAL 8 TOTAL 8		N/A		11/12/2008	<u>5 Days</u>			
Sample #:	081105	018-005	Custo	mer Sample #:	DP33-081	104-3-4			
Recv'd:	\checkmark	Co	llector:	TROY		Date Collected:	11/4/2008		
Quantity: 2 Matrix: Soil		Date Received:		11/5/2008 10:45:00 A					
Comment	:								
Test			Test	Group	Me	hod	Due Date	Priority	
%Moisture	•				%m	oisture	11/12/2008	<u>5 Days</u>	
PAH 8270	LOW				EP	A 8270C	11/12/2008	<u>5 Days</u>	
TOC - EPA 9060mod PSEP					EP	A 9060mod	11/12/2008	<u>5 Days</u>	
Arsenic			Total	8	EP	A 6020A	11/12/2008	<u>5 Days</u>	
- ·				-					

EPA 6020A

11/12/2008

<u>5 Days</u>

Barium

Total 8

	me: FIONEE	RIECHNOLOG	IES CORPO	ECHNOLOGIES CORPORATION			08110501	
	2612 YE	LM HWY SE			Order Da	te:	11/5/200	
	OLYMPI	A	WA	98001				
Contact Na	me: TROY B	USSEY		F	Project Name: EAS	ST BAY F	RI PHASE 1	
Comm	ent:							
Cadmium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>5</u>	
Chromium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>.</u>	
Lead		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u> </u>	
Mercury-ICPM	S	Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>3</u>	
Selenium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>6</u>	
Silver		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>5</u>	
TOTAL 8		TOTAL 8	N/A		11/12/2008	<u>5 Days</u>	<u>i</u>	
Sample #: 08	1105018-006 (Customer Sample #	: DP33-081	104-5-6				
Recv'd:	Collec	ctor: TROY		Date Collected:	11/4/2008			
Quantity:	2 Matrix	k: Soil		Date Received:	11/5/2008 10:45:00	A		
Comment:								
Test		Test Group	Met	hod	Due Date	Priority		
%Moisture			%m	oisture	11/12/2008	<u>5 Days</u>	<u>5</u>	
PAH 8270 LO	N		EPA	8270C	11/12/2008	<u>5 Days</u>	<u>3</u>	
Arsenic		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u> </u>	
Barium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>5</u>	
Cadmium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>5</u>	
Chromium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>8</u>	
Lead		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>8</u>	
Mercury-ICPM	S	Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>8</u>	
Selenium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>8</u>	
Silver		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	8	
TOTAL 8		TOTAL 8	N/A		11/12/2008	<u>5 Days</u>	3	
Sample #: 08	1105018-007 (Customer Sample #	: DP33-081	104-7-8				
Recv'd:	Collec	ctor: TROY		Date Collected:	11/4/2008			
Quantity:	2 Matrix	k: Soil		Date Received:	11/5/2008 10:45:00	A		
Comment:								
Test		Test Group	Met	hod	Due Date	Priority		
%Moisture			%m	oisture	11/12/2008	<u>5 Days</u>	<u>5</u>	
PAH 8270 LO	N		EPA	8270C	11/12/2008	<u>5 Days</u>	<u>5</u>	
Arsenic		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u>5</u>	
Barium		Total 8	EPA	A 6020A	11/12/2008	<u>5 Days</u>	<u> </u>	

Customer Name:		PIONEER II		S CORPO	JRATION	Order				
		2612 YELM OLYMPIA	HWY SE	WA	98001	Order Da	ite:	11/5/200		
Contact	Name:	TROY BUSS	ΕY		P	Project Name: EAS	ST BAY RI	PHASE 1		
Cor	nment:					-				
Chromium		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Lead		Tota	8	EPA 6020A		11/12/2008	<u>5 Days</u>			
Mercury-IC	PMS	Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Selenium		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Silver		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
TOTAL 8		TOT	AL 8	N/A		11/12/2008	<u>5 Days</u>			
Sample #:	0811050	018-008 Custo	omer Sample #:	DP40-081	104-1-2					
Recv'd:	\checkmark	Collector:	TROY		Date Collected:	11/4/2008				
Quantity:	2	Matrix:	Soil		Date Received:	11/5/2008 10:45:00	A			
Comment	:									
Test		Test	Group	Met	hod	Due Date	Priority			
%Moisture				%m	oisture	11/12/2008	<u>5 Days</u>			
BTEX 8260	D			EPA	8260B	11/12/2008	<u>5 Days</u>			
PAH 8270	LOW			EPA	8270C	11/12/2008	<u>5 Days</u>			
TPHDX-N\	N			NW	TPHDX	11/12/2008	<u>5 Days</u>			
TPHG-NW				NW	TPHG	11/12/2008	<u>5 Days</u>			
Arsenic		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Barium		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Cadmium		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Chromium		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Lead		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Mercury-IC	PMS	Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Selenium		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
Silver		Tota	8	EPA	6020A	11/12/2008	<u>5 Days</u>			
TOTAL 8		TOT	AL 8	N/A		11/12/2008	<u>5 Days</u>			
Sample #:	0811050	018-009 Custo	omer Sample #:	DP40-081	104-3-4					
Recv'd:	\checkmark	Collector:	TROY		Date Collected:	11/4/2008				
Quantity:	2	Matrix:	Soil		Date Received:	11/5/2008 10:45:00	A			
Comment	:									
Test		Test	Group	Met	hod	Due Date	Priority			
%Moisture				%m	oisture	11/12/2008	<u>5 Days</u>			
BTEX 8260	D			EPA	8260B	11/12/2008	<u>5 Days</u>			
PAH 8270					8270C	11/12/2008	<u>5 Days</u>			

ustomer Name	: PIONEER TECHNOLOG	IES CORPORATION	Order ID:	081105018	
	2612 YELM HWY SE		Order Date:	11/5/2008	
	OLYMPIA	WA 98001			
Contact Name	: TROY BUSSEY		Project Name: EAST BAY RI PHASE 1		
Comment	:				
TOC - EPA 9060m	od DSED	EPA 9060mod	11/12/2008 5 Davs		
TPHDX-NW		NWTPHDX	11/12/2008 <u>5 Days</u> 11/12/2008 <u>5 Days</u>		
TPHG-NW		NWTPHG	11/12/2008 <u>5 Days</u>	-	
Arsenic	Total 8	EPA 6020A	11/12/2008 <u>5 Days</u>		
Barium	Total 8	EPA 6020A	11/12/2008 <u>5 Days</u>	-	
Cadmium	Total 8	EPA 6020A	11/12/2008 <u>5 Days</u>		
Chromium	Total 8	EPA 6020A	11/12/2008 <u>5 Days</u>		
Lead	Total 8	EPA 6020A	11/12/2008 <u>5 Days</u>		
Mercury-ICPMS	Total 8	EPA 6020A	11/12/2008 <u>5 Days</u>	-	
Selenium	Total 8	EPA 6020A	11/12/2008 <u>5 Days</u>		
Silver	Total 8	EPA 6020A	11/12/2008 5 Days	-	
	TOTAL 8	N/A	11/12/2008 5 Days	-	
TOTAL 8 ample #: 081105 Recv'd:	5018-010 Customer Sample #: Collector: TROY			-	
ample #: 081105	5018-010 Customer Sample #:	DP40-081104-5-6	11/4/2008	-	
ample #: 081105 Recv'd: 🖌 Quantity: 2	5018-010 Customer Sample #: Collector: TROY	DP40-081104-5-6 Date Collected:	11/4/2008		
ample #:081105Recv'd:Image: Image:	5018-010 Customer Sample #: Collector: TROY Matrix: Soil	DP40-081104-5-6 Date Collected: Date Received:	11/4/2008 11/5/2008 10:45:00 A		
ample #: 081105 Recv'd: 🔽 Quantity: 2 Comment: Test	5018-010 Customer Sample #: Collector: TROY Matrix: Soil	DP40-081104-5-6 Date Collected: Date Received: Method	11/4/2008 11/5/2008 10:45:00 A Due Date Priority	2	
ample #: 081105 Recv'd: Quantity: 2 Comment: Test %Moisture %Moisture (%Moisture) (%Moisture)	5018-010 Customer Sample #: Collector: TROY Matrix: Soil	DP40-081104-5-6 Date Collected: Date Received: <u>Method</u> %moisture	11/4/2008 11/5/2008 10:45:00 A Due Date Priority 11/12/2008 <u>5 Days</u>		
ample #:081108Recv'd:Image: Comment:Quantity:2Comment:2***********************************	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group	DP40-081104-5-6 Date Collected: Date Received: Method %moisture EPA 8260B	11/4/2008 11/5/2008 10:45:00 A Due Date Priority 11/12/2008 <u>5 Days</u> 11/12/2008 <u>5 Days</u>		
ample #: 081105 Recv'd: Quantity: 2 Comment: Test %Moisture BTEX 8260 PAH 8270 LOW 	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group	DP40-081104-5-6 Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C	Due Date Priority 11/12/2008 5 Days 11/12/2008 5 Days 11/12/2008 5 Days 11/12/2008 5 Days		
ample #: 081105 Recv'd: ✓ Quantity: 2 Comment: Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group	DP40-081104-5-6 Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C EPA 9060mod	Due Date Priority 11/12/2008 5 Days		
ample #: 081105 Recv'd: ✓ Quantity: 2 Comment: Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group	DP40-081104-5-6 Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C EPA 9060mod NWTPHDX	Due Date Priority 11/2/2008 5 Days 11/12/2008 5 Days		
ample #: 081105 Recv'd: ✓ Quantity: 2 Comment: Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW TPHG-NW	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group	DP40-081104-5-6 Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C EPA 9060mod NWTPHDX NWTPHG	Due Date Priority 11/2/2008 5 Days 11/12/2008 5 Days		
ample #: 081108 Recv'd: Quantity: 2 Comment: 2 Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW TPHG-NW Arsenic	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group od PSEP	DP40-081104-5-6 Date Collected: Date Received: Date Received Date Receiv	Due Date Priority 11/2/2008 5 Days 11/12/2008 5 Days		
ample #: 081105 Recv'd: ✓ Quantity: 2 Comment: 2 Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW TPHG-NW Arsenic Barium	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group od PSEP Total 8 Total 8	DP40-081104-5-6 Date Collected: Date Received: Date Received Date Received PA 8260B EPA 8270C EPA 9060mod NWTPHDX NWTPHG EPA 6020A EPA 6020A	Due Date Priority 11/5/2008 10:45:00 A 5 Days 11/12/2008 5 Days		
ample #: 081105 Recv'd: ✓ Quantity: 2 Comment: 2 Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW TPHG-NW Arsenic Barium Cadmium	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group od PSEP Total 8 Total 8 Total 8 Total 8	DP40-081104-5-6 Date Collected: Date Received: Date Received: Method %moisture EPA 8260B EPA 8270C EPA 9060mod NWTPHDX NWTPHDX NWTPHG EPA 6020A EPA 6020A EPA 6020A	Due Date Priority 11/5/2008 10:45:00 A 5 Days 11/12/2008 5 Days		
ample #: 081105 Recv'd: ✓ Quantity: 2 Comment: 2 Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW TPHG-NW Arsenic Barium Cadmium Chromium	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group od PSEP Total 8 Total 8 Total 8 Total 8 Total 8	DP40-081104-5-6 Date Collected: Date Received: Date Received Date Received Date Received Date Received Date Received Date Received Date Received Date Received Date Received Date Received PA 8260B EPA 8260B EPA 8260B EPA 8270C EPA 9060mod NWTPHDX NWTPHDX NWTPHG EPA 6020A EPA 6020A EPA 6020A	Due Date Priority 11/5/2008 10:45:00 A 5 Days 11/5/2008 10:45:00 A 5 Days 11/12/2008 5 Days		
ample #: 081105 Recv'd: ✓ Quantity: 2 Comment: 2 Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW TPHG-NW Arsenic Barium Cadmium Chromium Lead Mercury-ICPMS Selenium	5018-010 Customer Sample #: Collector: TROY Matrix: Soil Test Group od PSEP Total 8 Total 8	DP40-081104-5-6 Date Collected: Date Received: Date Received: Method %moisture EPA 8260B EPA 8270C EPA 9060mod NWTPHDX NWTPHDX NWTPHG EPA 6020A EPA 6020A EPA 6020A EPA 6020A	Due Date Priority 11/5/2008 10:45:00 A 5 Days 11/12/2008 5 Days		
ample #: 081105 Recv'd: Quantity: 2 Comment: 2 Comment: 8 Test %Moisture BTEX 8260 PAH 8270 LOW TOC - EPA 9060m TPHDX-NW TPHG-NW Arsenic Barium Cadmium Chromium Lead Mercury-ICPMS	Source Customer Sample #: Collector: TROY Matrix: Soil Test Group od PSEP Total 8 Total 8 Total 8 Total 8	 DP40-081104-5-6 Date Collected: Date Received: Date Received: Date Received: Method Mmoisture EPA 8260B EPA 8260B EPA 8270C EPA 9060mod NWTPHDX NWTPHDX NWTPHG EPA 6020A 	Due Date Priority 11/5/2008 10:45:00 A 5 Days 11/5/2008 10:45:00 A 5 Days 11/12/2008 5 Days 11/12/2008		

Customer	Name:	PIONE	ER TE	ECHNOLOGIE	ES CORPO	ORATION	Order I	D: 081105018
		2612 Y Olymf		HWY SE	WA	98001	Order Da	te: 11/5/2008
Contact	Name:	TROY	BUSS	EY		Р	roject Name: EAS	T BAY RI PHASE 1
Con	nment:							
Sample #:	0811050	018-011	Custo	mer Sample #:	DP40-081	104-7-8		
Recv'd:		Coll	lector:	TROY		Date Collected:	11/4/2008	
Quantity:	2	Mat	rix:	Soil		Date Received:	11/5/2008 10:45:00 A	Ą
Comment:	:							
Test			Test	Group	Met	hod	Due Date	Priority
HOLD					hold		11/12/2008	<u>5 Days</u>
Sample #:	0811050)18-012	Custo	mer Sample #:	DP36-081	104-1-2		
Recv'd:	\checkmark	Coll	lector:	TROY		Date Collected:	11/4/2008	
Quantity:	2	Mat	rix:	Soil		Date Received:	11/5/2008 10:45:00 /	Ą
Comment:	:							
Test			Test	Group	Met	hod	Due Date	Priority
HOLD					hold		11/12/2008	<u>5 Days</u>
Sample #:	0811050)18-013	Custo	mer Sample #:	DP36-081	104-3-4		
Recv'd:	\checkmark	Coll	lector:	TROY		Date Collected:	11/4/2008	
Quantity:			Date Received:		11/5/2008 10:45:00 A			
Comment:	:							
Test			Test	Group	Met	hod	Due Date	Priority
HOLD					hold		11/12/2008	<u>5 Days</u>
Sample #:	0811050	018-014	Custo	mer Sample #:	DP36-081	104-5-6		
Recv'd:	\checkmark	Coll	lector:	TROY		Date Collected:	11/4/2008	
Quantity:	2	Mat	rix:	Soil		Date Received:	11/5/2008 10:45:00 /	Ą
Comment:	:							
Test			Test	Group	Met	hod	Due Date	Priority
%Moisture	•				%m	oisture	11/12/2008	<u>5 Days</u>
BTEX 8260	0				EPA	8260B	11/12/2008	<u>5 Days</u>
TPHDX-NV	W				NW	TPHDX	11/12/2008	<u>5 Days</u>
TPHG-NW	1				NW	TPHG	11/12/2008	<u>5 Days</u>
Arsenic			Total	8	EPA	6020A	11/12/2008	<u>5 Days</u>
Arsenic Barium			Total Total			6020A 6020A	11/12/2008 11/12/2008	<u>5 Days</u> <u>5 Days</u>

	lame:	PIONEER TE	CHNOLOGIE	S CORPO	ORATION	Order I	D: 0	81105018
	:	2612 YELM H	IWY SE			Order Da	te:	11/5/2008
		OLYMPIA		WA	98001			
Contact N	lame:	TROY BUSSI	EY		Р	roject Name: EAS	T BAY RI	PHASE 1
Comn	ment:							
Chromium		Total	8	EPA	6020A	11/12/2008	<u>5 Days</u>	
Lead		Total	8	EPA	6020A	11/12/2008	<u>5 Days</u>	
Mercury-ICPN	MS	Total	8	EPA	6020A	11/12/2008	<u>5 Days</u>	
Selenium		Total	8	EPA	6020A	11/12/2008	<u>5 Days</u>	
Silver		Total	8	EPA	6020A	11/12/2008	<u>5 Days</u>	
TOTAL 8		ΤΟΤΑ	NL 8	N/A		11/12/2008	<u>5 Days</u>	
Sample #: 0	08110501	8-015 Custo	mer Sample #:	DP36-081	104-7-8			
Recv'd:	\checkmark	Collector:	TROY		Date Collected:	11/4/2008		
Quantity:	2	Matrix:	Soil		Date Received:	11/5/2008 10:45:00 /	Ą	
Comment:								
Test		Test	Group	Met	hod	Due Date	Priority	
HOLD		1001	oroup	hold		11/12/2008	<u>5 Days</u>	
Sample #: 0	08110501	0.16 C usto	mar Cample #	DP36-081	104.9.0			
Sample #. 0	0110301	Cusio	mer Sample #:	DI 30-001	104-0-9			
Recv'd:	\checkmark	Collector:	TROY		Date Collected:	11/4/2008		
Quantity:								
	2	Matrix:	Soil		Date Received:	11/5/2008 10:45:00 /	Ą	
Comment:	2	Matrix:	Soil		Date Received:		A	
-	2		Soil Group	Met			Priority	
Comment:	2			Met l	hod	11/5/2008 10:45:00 A		
Comment: Test HOLD	2	Test			hod	11/5/2008 10:45:00 A	Priority	
Comment: Test HOLD Sample #: 0.	08110501	Test	Group	hold	hod	11/5/2008 10:45:00 A	Priority	
Comment: Test HOLD Sample #: 0.		Test (8-017 Custor	Group mer Sample #:	hold	hod 1 104-1-2	11/5/2008 10:45:00 A Due Date 11/12/2008	Priority <u>5 Days</u>	
Comment: Test HOLD Sample #: 0: Recv'd:	D8110501 ✓	Test (8-017 Custor Collector:	Group mer Sample #: TROY	hold	hod 104-1-2 Date Collected:	11/5/2008 10:45:00 A Due Date 11/12/2008	Priority <u>5 Days</u>	
Comment: Test HOLD Sample #: 0 Recv'd: Quantity:	D8110501 ✓	Test (8-017 Custor) Collector: Matrix:	Group mer Sample #: TROY	hold	hod 104-1-2 Date Collected: Date Received:	11/5/2008 10:45:00 A Due Date 11/12/2008	Priority <u>5 Days</u>	
Comment: Test HOLD Sample #: 0 Recv'd: Quantity: Comment:	D8110501 ✓	Test (8-017 Custor) Collector: Matrix:	Group mer Sample #: TROY Soil	hold DP38-081	hod 104-1-2 Date Collected: Date Received:	11/5/2008 10:45:00 A Due Date 11/12/2008 11/4/2008 11/5/2008 10:45:00 A	Priority <u>5 Days</u>	
Comment: Test HOLD Sample #: 0 Recv'd: Quantity: Comment: Test	08110501 ✔ 2	Test (8-017 Custor) Collector: Matrix:	Group mer Sample #: TROY Soil	hold DP38-081 Met	hod 104-1-2 Date Collected: Date Received:	11/5/2008 10:45:00 A Due Date 11/12/2008 11/4/2008 11/5/2008 10:45:00 A Due Date	Priority <u>5 Days</u> Priority	
Comment: Test HOLD Sample #: 0 Recv'd: Quantity: Comment: Test %Moisture	08110501 ✔ 2	Test (8-017 Custor) Collector: Matrix:	Group mer Sample #: TROY Soil Group	hold DP38-081 Met %m EPA	hod 104-1-2 Date Collected: Date Received: hod oisture	11/5/2008 10:45:00 A Due Date 11/12/2008 11/5/2008 10:45:00 A Due Date 11/12/2008	Priority <u>5 Days</u> Priority <u>5 Days</u>	
Comment: Test HOLD Sample #: 0.0 Recv'd: Quantity: Comment: Test %Moisture PAH 8270 LC	08110501 ✔ 2	Test (18-017 Custor Collector: Matrix: Test (Group mer Sample #: TROY Soil Group	hold DP38-081 Meti Smr EPA	hod 104-1-2 Date Collected: Date Received: hod oisture	11/5/2008 10:45:00 A Due Date 11/12/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> Priority <u>5 Days</u> <u>5 Days</u>	
Comment: Test HOLD Sample #: 00 Recv'd: Quantity: Comment: Test %Moisture PAH 8270 LC Arsenic	08110501 ✔ 2	Test (18-017 Custor) Collector: Matrix: Test (Total	Group mer Sample #: TROY Soil Group 8 8	hold DP38-081 Met BPA EPA EPA	hod 104-1-2 Date Collected: Date Received: hod oisture & 8270C & 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>	
Comment: Test HOLD Sample #: 0.0 Recv'd: Quantity: Comment: Test %Moisture PAH 8270 LC Arsenic Barium	08110501 ✔ 2	Test (18-017 Custor Collector: Matrix: Test (Total Total	Group mer Sample #: TROY Soil Group 8 8 8	hold DP38-081 Met PA EPA EPA EPA	hod 104-1-2 Date Collected: Date Received: hod oisture & 8270C & 6020A & 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/5/2008 10:45:00 A 11/5/2008 10:45:00 A 11/5/2008 10:45:00 A 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>	
Comment: Test HOLD Sample #: 00 Recv'd: Quantity: Comment: Test %Moisture PAH 8270 LC Arsenic Barium Cadmium	08110501 ✔ 2	Test of 18-017 Custon Collector: Matrix: Test of Total Total Total	Group mer Sample #: TROY Soil Group 8 8 8 8	hold DP38-081 Met PA EPA EPA EPA EPA	hod 104-1-2 Date Collected: Date Received: hod oisture & 8270C & 6020A & 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/5/2008 10:45:00 A 11/5/2008 10:45:00 A 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority 5 Days Priority 5 Days	
Comment: Test HOLD Sample #: 0.0 Recv'd: Quantity: Comment: Test %Moisture PAH 8270 LC Arsenic Barium Cadmium Chromium	2 08110501 2 DW	Test (18-017 Custor Collector: Matrix: Test (Total Total Total Total Total	Group mer Sample #: TROY Soil Group 8 8 8 8 8 8	hold DP38-081 Met 9m EPA EPA EPA EPA EPA	hod 104-1-2 Date Collected: Date Received: hod oisture & 8270C & 6020A & 6020A & 6020A & 6020A	11/5/2008 10:45:00 A Due Date 11/12/2008 11/5/2008 10:45:00 A 11/5/2008 10:45:00 A 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority 5 Days Priority 5 Days	

Customer	Name:	PIONEER TE	CHNOLOGIE	S CORPORATION	Order	D: 081105018
		2612 YELM H	HWY SE		Order Date: 11/5	
		OLYMPIA		WA 98001		
Contact	Name:	TROY BUSS	EY	P	Project Name: EAS	T BAY RI PHASE 1
Corr	nment:					
Silver		Total	-	EPA 6020A	11/12/2008	<u>5 Days</u>
TOTAL 8		ΤΟΤΑ	AL 8	N/A	11/12/2008	<u>5 Days</u>
Sample #:	0811050	018-018 Custo	mer Sample #:	DP38-081104-3-4		
Recv'd:	\checkmark	Collector:	TROY	Date Collected:	11/4/2008	
Quantity:	2	Matrix:	Soil	Date Received:	11/5/2008 10:45:00 /	Ą
Comment:						
Test		Test	Group	Method	Due Date	Priority
HOLD			•	hold	11/12/2008	<u>5 Days</u>
Sample #:	0811050	18-010 Custo	mer Sample #:	DP38-081104-5-6		
Sample #.				DI 30 001104 3 0		
Recv'd:	\checkmark	Collector:	TROY	Date Collected:	11/4/2008	
Quantity:	2	Matrix:	Soil	Date Received:	11/5/2008 10:45:00 /	ł
Comment:						
Test		Test	Group	Method	Due Date	Priority
%Moisture				%moisture	11/12/2008	<u>5 Days</u>
BTEX 8260)			EPA 8260B	11/12/2008	<u>5 Days</u>
PAH 8270 l	LOW			EPA 8270C	11/12/2008	<u>5 Days</u>
TOC - EPA	9060mo	d PSEP		EPA 9060mod	11/12/2008	<u>5 Days</u>
TPHDX-NW	V			NWTPHDX	11/12/2008	<u>5 Days</u>
TPHG-NW				NWTPHG	11/12/2008	<u>5 Days</u>
Arsenic		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Barium		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Cadmium		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Chromium		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Lead		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Mercury-ICI	PMS	Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Selenium		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Silver		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
TOTAL 8		ΤΟΤΑ	AL 8	N/A	11/12/2008	<u>5 Days</u>

Customer Name: PIONEER TECHNOLOGIES CORPORATION

Order ID: 081105018

11/5/2008

2612 YELM HWY SE OLYMPIA

WA WA

Project Name: EAST BAY RI PHASE 1

Order Date:

Comment:

Contact Name: TROY BUSSEY

ample #:	0811050 ⁻	18-020	Custor	ner Sample #:	DP38-081104-6-7		
Recv'd:	\checkmark	Colle	ctor:	TROY	Date Collected:	11/4/2008	
Quantity:	2	Matri	x:	Soil	Date Received:	11/5/2008 10:45:00 A	A Contraction of the second se
Comment:							
Test			Test (Group	Method	Due Date	Priority
%Moisture					%moisture	11/12/2008	<u>5 Days</u>
BTEX 8260)				EPA 8260B	11/12/2008	<u>5 Days</u>
PAH 8270	LOW				EPA 8270C	11/12/2008	<u>5 Days</u>
TOC - EPA	9060mod	PSEP			EPA 9060mod	11/12/2008	<u>5 Days</u>
TPHDX-NV	V				NWTPHDX	11/12/2008	<u>5 Days</u>
TPHG-NW					NWTPHG	11/12/2008	<u>5 Days</u>
Arsenic			Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Barium			Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Cadmium			Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Chromium			Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Lead			Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Mercury-IC	PMS		Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Selenium			Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
Silver			Total	8	EPA 6020A	11/12/2008	<u>5 Days</u>
TOTAL 8			ΤΟΤΑ	L 8	N/A	11/12/2008	<u>5 Days</u>
ample #:	0811050 ⁻	18-021	Custor	mer Sample #:	DP38-081104-9-10		
Recv'd:	\checkmark	Colle	ctor:	TROY	Date Collected:	11/4/2008	
Quantity:	2	Matri	x:	Soil	Date Received:	11/5/2008 10:45:00 A	4
Comment:							
Test			Test (Group	Method	Due Date	Priority
HOLD					hold	11/12/2008	<u>5 Days</u>
ample #:	0811050	18-022	Custor	mer Sample #:	DP30-081104-1-2		
Recv'd:	\checkmark	Colle	ctor:	TROY	Date Collected:	11/4/2008	
Quantity:	2	Matri	x:	Soil	Date Received:	11/5/2008 10:45:00 A	A Contraction of the second seco
Comment:							
Test			Test (Group	Method	Due Date	Priority
1631				•			•

98001

OLYMPIAWA98001Project Name: TROY BUSSEYProject Name: EAST BAY RI PHASE 1Comment:ArsenicTotal 8EPA 6020A11/12/200855DaysBariumTotal 8EPA 6020A11/12/20085DaysCadmiumTotal 8EPA 6020A11/12/20085DaysCadmiumTotal 8EPA 6020A11/12/20085DaysChromiumTotal 8EPA 6020A11/12/20085DaysLeadTotal 8EPA 6020A11/12/20085DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085DaysSeleniumTotal 8EPA 6020A11/12/20085DaysSilverTotal 8EPA 6020A11/12/20085DaysSilverTotal 8EPA 6020A11/12/20085DaysTOTAL 8TOTAL 8N/A11/12/20085DaysSample #:081105018-023Customer Sample #:Date Collected:11/14/2008Quantity:2Matrix:SoilDate Received:11/15/2008 10:45:00 AComment:Test GroupMethodDue DatePriority	Justomer Name:	PIONEER TECHNOLOGIE	S CORPORATION	Order ID:	081105018
OLYMPIAWA98001Contact Name: TROY BUSSEYProject Name: EAST BAY RI PHASE 1Comment:ArsenicTotal 8EPA 6020A11/12/20085 DaysBariumTotal 8EPA 6020A11/12/20085 DaysCadmiumTotal 8EPA 6020A11/12/20085 DaysCadmiumTotal 8EPA 6020A11/12/20085 DaysChromiumTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:ICollector:TROYDate Collected:11/12/2008Quantity:2Matrix:SoilDate Received:11/12/2008TestTest GroupMethodDue DatePriority		2612 YELM HWY SE		Order Date:	11/5/2008
ArsenicTotal 8EPA 6020A11/12/20085 DaysBariumTotal 8EPA 6020A11/12/20085 DaysCadmiumTotal 8EPA 6020A11/12/20085 DaysChromiumTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Mecv'd:Image: Collector:TROYDate Collected:11/12/2008Guantity:2Matrix:SoilDate Received:11/12/2008TestTest GroupMethodDue DatePriority		OLYMPIA	WA 98001		
ArsenicTotal 8EPA 6020A11/12/20085 DaysBariumTotal 8EPA 6020A11/12/20085 DaysCadmiumTotal 8EPA 6020A11/12/20085 DaysChromiumTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Mecv'd:Image: Collector:TROYDate Collected:11/12/2008Guantity:2Matrix:SoilDate Received:11/12/2008TestTest GroupMethodDue DatePriority	Contact Name:	TROY BUSSEY	Р	roject Name: EAST E	BAY RI PHASE 1
ArsenicTotal 8EPA 6020A11/12/20085 DaysBariumTotal 8EPA 6020A11/12/20085 DaysCadmiumTotal 8EPA 6020A11/12/20085 DaysChromiumTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:Image: Collector:TROYDate Collected:11/4/2008Quantity:2Matrix:SoilDate Received:11/12/2008TestTest GroupMethodDue DatePriority			•		
Barium Total 8 EPA 6020A 11/12/2008 5 Days Cadmium Total 8 EPA 6020A 11/12/2008 5 Days Chromium Total 8 EPA 6020A 11/12/2008 5 Days Lead Total 8 EPA 6020A 11/12/2008 5 Days Mercury-ICPMS Total 8 EPA 6020A 11/12/2008 5 Days Selenium Total 8 EPA 6020A 11/12/2008 5 Days Selenium Total 8 EPA 6020A 11/12/2008 5 Days Silver Total 8 EPA 6020A 11/12/2008 5 Days Silver Total 8 EPA 6020A 11/12/2008 5 Days TOTAL 8 TOTAL 8 N/A 11/12/2008 5 Days Sample #: 081105018-023 Customer Sample #: DP30-081104-3-4 Recv'd: Image: Collector: TROY Date Collected: 11/4/2008 Quantity: 2 Matrix: Soil Date Received: 11/5/2008 10:45:00 A Comment: Test Group Method Due Date Priority	comment.				
CadmiumTotal 8EPA 6020A11/12/20085 DaysChromiumTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:Image: Collector:TROYDate Collected:11/4/2008Quantity:2Matrix:SoilDate Received:11/5/2008 10:45:00 AComment:TestTest GroupMethodDue DatePriority	Arsenic	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
ChromiumTotal 8EPA 6020A11/12/20085 DaysLeadTotal 8EPA 6020A11/12/20085 DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:Image: Collector:TROYDate Collected:11/4/2008Quantity:2Matrix:SoilDate Received:11/5/2008 10:45:00 AComment:Test GroupMethodDue DatePriority	Barium	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
LeadTotal 8EPA 6020A11/12/20085 DaysMercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:☑Collector:TROYDate Collected:11/4/2008Quantity:2Matrix:SoilDate Received:11/5/2008 10:45:00 AComment:	Cadmium	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
Mercury-ICPMSTotal 8EPA 6020A11/12/20085 DaysSeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:✓Collector:TROYDate Collected:11/4/2008Quantity:2Matrix:SoilDate Received:11/5/2008 10:45:00 AComment:Test GroupMethodDue DatePriority	Chromium	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
SeleniumTotal 8EPA 6020A11/12/20085 DaysSilverTotal 8EPA 6020A11/12/20085 DaysTOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:Image: Collector:TROYDate Collected:11/4/2008Quantity:2Matrix:SoilDate Received:11/5/2008 10:45:00 AComment:Test GroupMethodDue DatePriority	Lead	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
Silver Total 8 EPA 6020A 11/12/2008 5 Days TOTAL 8 TOTAL 8 N/A 11/12/2008 5 Days Sample #: 081105018-023 Customer Sample #: DP30-081104-3-4 Recv'd: Image: Collector: TROY Date Collected: 11/4/2008 Quantity: 2 Matrix: Soil Date Received: 11/5/2008 10:45:00 A Test Test Group Method Due Date Priority	Mercury-ICPMS	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
TOTAL 8TOTAL 8N/A11/12/20085 DaysSample #:081105018-023Customer Sample #:DP30-081104-3-4Recv'd:Image: Collector:TROYDate Collected:11/4/2008Quantity:2Matrix:SoilDate Received:11/5/2008 10:45:00 AComment:Test GroupMethodDue DatePriority	Selenium	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
Sample #: 081105018-023 Customer Sample #: DP30-081104-3-4 Recv'd:	Silver	Total 8	EPA 6020A	11/12/2008 <u>5</u>	<u>Days</u>
Recv'd: ✓ Collector: TROY Date Collected: 11/4/2008 Quantity: 2 Matrix: Soil Date Received: 11/5/2008 10:45:00 A Comment: Test Test Group Method Due Date Priority	TOTAL 8	TOTAL 8	N/A	11/12/2008 <u>5</u>	<u>Days</u>
Quantity: 2 Matrix: Soil Date Received: 11/5/2008 10:45:00 A Comment: Test Group Method Due Date Priority	Sample #: 081105	018-023 Customer Sample #:	DP30-081104-3-4		
Comment: Test Test Group Method Due Date Priority	Recv'd:	Collector: TROY	Date Collected:	11/4/2008	
Test Test Group Method Due Date Priority	Quantity: 2	Matrix: Soil	Date Received:	11/5/2008 10:45:00 A	
	Comment:				
	Test	Test Group	Method	Due Date Pr	riority
%Molsture 11/12/2008 <u>5 Days</u>	%Moisture		%moisture	11/12/2008 <u>5</u>	Days
PAH 8270 LOW EPA 8270C 11/12/2008 <u>5 Days</u>	PAH 8270 LOW		EPA 8270C		
Arsenic Total 8 EPA 6020A 11/12/2008 5 Days	Arsenic	Total 8	EPA 6020A	11/12/2008 5	Days
Barium Total 8 EPA 6020A 11/12/2008 <u>5 Days</u>	Barium	Total 8	EPA 6020A		
Cadmium Total 8 EPA 6020A 11/12/2008 5 Days	Cadmium	Total 8	EPA 6020A	11/12/2008 <u>5</u>	Days
Chromium Total 8 EPA 6020A 11/12/2008 <u>5 Days</u>	Chromium	Total 8	EPA 6020A		
Lead Total 8 EPA 6020A 11/12/2008 <u>5 Days</u>	Lead	Total 8	EPA 6020A	11/12/2008 <u>5</u>	Days
Mercury-ICPMS Total 8 EPA 6020A 11/12/2008 5 Days	Mercury-ICPMS	Total 8	EPA 6020A	11/12/2008 <u>5</u>	Days
Selenium Total 8 EPA 6020A 11/12/2008 5 Days	Selenium	Total 8	EPA 6020A	11/12/2008 <u>5</u>	Days
Silver Total 8 EPA 6020A 11/12/2008 <u>5 Days</u>	Silver	Total 8	EPA 6020A	11/12/2008 <u>5</u>	Days
TOTAL 8 TOTAL 8 N/A 11/12/2008 5 Days	TOTAL 8	TOTAL 8	N/A	11/12/2008 <u>5</u>	Days
Sample #: 081105018-024 Customer Sample #: DP30-081104-4-5	Sample #: 081105	018-024 Customer Sample #:	DP30-081104-4-5		
Recv'd: Collector: TROY Date Collected: 11/4/2008	Recv'd: 🗸	Collector: TROY	Date Collected:	11/4/2008	
Quantity: 2 Matrix: Soil Date Received: 11/5/2008 10:45:00 A		Matrix: Soil	Date Received:	11/5/2008 10:45:00 A	
Comment:	-				
Test Test Group Method Due Date Priority	Test	Test Group	Method	Due Date Pr	riority
HOLD hold 11/12/2008 <u>5 Days</u>		· ·			

Customer Name: PIONEER TECHNOLOGIES CORPORATION

Order ID: 081105018 Order Date:

11/5/2008

2612 YELM HWY SE

OLYMPIA WA

Project Name: EAST BAY RI PHASE 1

Comment:

Contact Name: TROY BUSSEY

mple #:	0811050	18-025 Cu				
Recv'd:	\checkmark	Collecte	or: TROY	Date Collected:	11/4/2008	
Quantity:	2	Matrix:	Soil	Date Received: 11/5/2008 10:45:00 A		۱.
Comment:						
Fest		т	est Group	Method	Due Date	Priority
%Moisture				%moisture	11/12/2008	<u>5 Days</u>
Arsenic		Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Barium		Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Cadmium		Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Chromium		Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
_ead		Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Mercury-IC	PMS	Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Selenium		Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Silver		Т	otal 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Silver						
TOTAL 8	0811050	T	DTAL 8 stomer Sample #:	N/A DP27-081104-0-1	11/12/2008	<u>5 Days</u>
FOTAL 8	0811050 ✓ 2	T	stomer Sample #:		11/12/2008 11/4/2008 11/5/2008 10:45:00 A	
TOTAL 8 mple #: Recv'd:	✓2	Te 18-026 Cu Collecte	stomer Sample #: pr: TROY	DP27-081104-0-1 Date Collected:	11/4/2008	
rotal 8 mple #: Recv'd: Quantity:	✓2	Ti 18-026 Cu Collecto Matrix:	stomer Sample #: pr: TROY	DP27-081104-0-1 Date Collected:	11/4/2008	
rotal 8 mple #: Recv'd: Quantity: Comment:	⊻ 2	Ti 18-026 Cu Collecto Matrix:	stomer Sample #: or: TROY Soil	DP27-081104-0-1 Date Collected: Date Received:	11/4/2008 11/5/2008 10:45:00 A	
rotal 8 mple #: Recv'd: Quantity: Comment: Fest	2	Ti 18-026 Cu Collecto Matrix:	stomer Sample #: or: TROY Soil	DP27-081104-0-1 Date Collected: Date Received: Method	11/4/2008 11/5/2008 10:45:00 A Due Date	Priority
FOTAL 8 mple #: Recv'd: Quantity: Comment: Fest %Moisture	2	Ti 18-026 Cu Collecto Matrix: To	stomer Sample #: or: TROY Soil	DP27-081104-0-1 Date Collected: Date Received: Method %moisture	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008	Priority <u>5 Days</u>
rotal 8 mple #: Recv'd: Quantity: Comment: Fest %Moisture PAH 8270	2	Ti 18-026 Cu Collecto Matrix: To To	stomer Sample #: or: TROY Soil est Group	DP27-081104-0-1 Date Collected: Date Received: Method %moisture EPA 8270C	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u>
rotal 8 mple #: Recv'd: Quantity: Comment: Fest %Moisture PAH 8270 Arsenic	2	Tr 18-026 Cu Collecto Matrix: Tr Tr	stomer Sample #: or: TROY Soil est Group	DP27-081104-0-1 Date Collected: Date Received: Method %moisture EPA 8270C EPA 6020A	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Davs</u> <u>5 Davs</u> <u>5 Davs</u>
rotal 8 mple #: Recv'd: Quantity: Comment: Comment: Moisture PAH 8270 Arsenic Barium	2	Tr 18-026 Cu Collecto Matrix: Tr Tr Tr Tr	stomer Sample #: or: TROY Soil est Group	DP27-081104-0-1 Date Collected: Date Received: Method %moisture EPA 8270C EPA 6020A EPA 6020A	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>
rotal 8 mple #: Recv'd: Quantity: Comment: Comment: Moisture PAH 8270 Arsenic Barium Cadmium	2	Tr 18-026 Cu Collecto Matrix: Tr Tr Tr Tr Tr	stomer Sample #: or: TROY Soil est Group otal 8 otal 8 otal 8	DP27-081104-0-1 Date Collected: Date Received: Method %moisture EPA 8270C EPA 6020A EPA 6020A EPA 6020A	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Davs</u> <u>5 Davs</u> <u>5 Davs</u> <u>5 Davs</u> <u>5 Davs</u>
rotal 8 mple #: Recv'd: Quantity: Comment: Comment: Moisture PAH 8270 Arsenic Barium Cadmium Chromium	2 LOW	Tr 18-026 Cu Collecto Matrix: Tr Tr Tr Tr Tr Tr	stomer Sample #: pr: TROY Soil est Group Dtal 8 Dtal 8 Dtal 8 Dtal 8 Dtal 8	DP27-081104-0-1 Date Collected: Date Received: Date Received: Method %moisture EPA 8270C EPA 6020A EPA 6020A EPA 6020A EPA 6020A	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>
rotal 8 mple #: Recv'd: Quantity: Comment: Comment: Moisture PAH 8270 Arsenic Barium Cadmium Chromium Lead	2 LOW	Tr 18-026 Cu Collecto Matrix: Tr Tr Tr Tr Tr Tr Tr Tr Tr	stomer Sample #: Dr: TROY Soil Est Group Dtal 8 Dtal 8 Dtal 8 Dtal 8 Dtal 8 Dtal 8 Dtal 8 Dtal 8 Dtal 8	DP27-081104-0-1 Date Collected: Date Received: Date Received Method %moisture EPA 8270C EPA 6020A EPA 6020A EPA 6020A EPA 6020A EPA 6020A	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u> <u>5 Days</u>
rotal 8 mple #: Recv'd: Quantity: Comment: Comment: Moisture PAH 8270 Arsenic Barium Cadmium Chromium Lead Mercury-IC	2 LOW	Tr 18-026 Cu Collecto Matrix: Tr Tr Tr Tr Tr Tr Tr Tr	stomer Sample #: pr: TROY Soil est Group btal 8 btal 8	DP27-081104-0-1 Date Collected: Date Received: Date Received: Method Method EPA 8270C EPA 6020A EPA 6020A EPA 6020A EPA 6020A EPA 6020A EPA 6020A EPA 6020A	11/4/2008 11/5/2008 10:45:00 A Due Date 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008 11/12/2008	Priority <u>5 Days</u> <u>5 Days</u>

98001

Customer Name: PIONEER TECHNOLOGIES CORPORATION

Order ID: 081105018

11/5/2008

2612 YELM HWY SE

OLYMPIA WA

Project Name: EAST BAY RI PHASE 1

Order Date:

Comment:

Contact Name: TROY BUSSEY

ample #:	0811050	18-027 Cus	tomer Sample #:	DP27-081104-3-4		
Recv'd:	\checkmark	Collector	: TROY	Date Collected:	11/4/2008	
Quantity:	2	Matrix:	Soil	Date Received:	11/5/2008 10:45:00 A	
Comment:	:					
Test		Tes	st Group	Method	Due Date	Priority
%Moisture				%moisture	11/12/2008	<u>5 Days</u>
BTEX 8260	0			EPA 8260B	11/12/2008	<u>5 Days</u>
PAH 8270	LOW			EPA 8270C	11/12/2008	<u>5 Days</u>
TOC - EPA	A 9060moc	I PSEP		EPA 9060mod	11/12/2008	<u>5 Days</u>
TPHG-NW				NWTPHG	11/12/2008	<u>5 Days</u>
Arsenic		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Barium		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Cadmium		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Chromium		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Lead		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Mercury-IC	PMS	Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Selenium		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Silver		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
TOTAL 8		то	TAL 8	N/A	11/12/2008	<u>5 Days</u>
ample #:	0811050	18-028 Cus	tomer Sample #:	DP27-081104-4-5		
Recv'd:	\checkmark	Collector	: TROY	Date Collected:	11/4/2008	
Quantity:	2	Matrix:	Soil	Date Received:	11/5/2008 10:45:00 A	
Comment:	:					
Test		Tes	st Group	Method	Due Date	Priority
%Moisture				%moisture	11/12/2008	<u>5 Days</u>
PAH 8270	LOW			EPA 8270C	11/12/2008	<u>5 Days</u>
TOC - EPA	A 9060moc	I PSEP		EPA 9060mod	11/12/2008	<u>5 Days</u>
Arsenic		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Barium		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Cadmium		Tot	al 8	EPA 6020A	11/12/2008	<u>5 Days</u>
		-	0 0	EPA 6020A	11/12/2008	<u>5 Days</u>
Chromium		Tot	alo	EnvioaEavi		<u>o Days</u>
Chromium Lead			al 8	EPA 6020A	11/12/2008	<u>5 Days</u>

98001

Customer Name:	PIONEER TECHNOLOGI	ES CORPORATION	Order I	D: 081105018
:	2612 YELM HWY SE		Order Dat	e: 11/5/2008
	OLYMPIA	WA 98001		
Contact Name:	TROY BUSSEY	Р	roject Name: EAS	Γ BAY RI PHASE 1
Comment:				
Selenium	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Silver	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
TOTAL 8	TOTAL 8	N/A	11/12/2008	<u>5 Days</u>
Sample #: 08110501	8-029 Customer Sample #:	DP27-081104-6-7		
Recv'd:	Collector: TROY	Date Collected:	11/4/2008	
Quantity: 2	Matrix: Soil	Date Received:	11/5/2008 10:45:00 A	
Comment:				
Test	Test Group	Method	Due Date	Priority
%Moisture	•	%moisture	11/12/2008	5 Days
Arsenic	Total 8	EPA 6020A	11/12/2008	5 Days
Barium	Total 8	EPA 6020A	11/12/2008	5 Days
Cadmium	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Chromium	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Lead	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Mercury-ICPMS	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Selenium	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
Silver	Total 8	EPA 6020A	11/12/2008	<u>5 Days</u>
TOTAL 8	TOTAL 8	N/A	11/12/2008	<u>5 Days</u>
Sample #: 08110501	8-030 Customer Sample #:	DP34-081104-1-3		
Recv'd:	Collector: TROY	Date Collected:	11/4/2008	
Quantity: 2	Matrix: Soil	Date Received:	11/5/2008 10:45:00 A	
Comment:				
Test	Test Group	Method	Due Date	Priority
HOLD		hold	11/12/2008	<u>5 Days</u>
Sample #: 08110501				
	8-031 Customer Sample #:	DP34-081104-4-6		
Recv'd: 🗸	8-031 Customer Sample #: Collector: TROY	DP34-081104-4-6 Date Collected:	11/4/2008	
Recv'd: Quantity: 2			11/4/2008 11/5/2008 10:45:00 A	
	Collector: TROY	Date Collected:		
Quantity: 2	Collector: TROY	Date Collected:		Priority
Quantity: 2 Comment:	Collector: TROY Matrix: Soil	Date Collected: Date Received:	11/5/2008 10:45:00 A	
Quantity: 2 Comment: Test	Collector: TROY Matrix: Soil	Date Collected: Date Received: Method	11/5/2008 10:45:00 A Due Date	Priority

	: PIONEER TECHNOLOGIE	ES CORPORATION	Order ID:	081105018
	2612 YELM HWY SE		Order Date:	11/5/2008
	OLYMPIA	WA 98001		
Contact Name	: TROY BUSSEY	F	Project Name: EAST BA	Y RI PHASE 1
Comment	t:			
TOC - EPA 9060m	nod PSEP	EPA 9060mod	11/12/2008 <u>5 D</u>	avs
TPHDX-NW		NWTPHDX	11/12/2008 <u>5 D</u>	ays
TPHG-NW		NWTPHG	11/12/2008 <u>5 D</u>	ays
Arsenic	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	a <u>ys</u>
Barium	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	ays
Cadmium	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	ays
Chromium	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	ays
Lead	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	ays
Mercury-ICPMS	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	ays
Selenium	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	ays
Silver	Total 8	EPA 6020A	11/12/2008 <u>5 D</u>	
TOTAL 8	TOTAL 8	N/A	11/12/2008 <u>5 D</u>	a <u>ys</u>
ample #: 08110	5018-032 Customer Sample #:	DP34-081104-7.5-9.5		
anipie #. 00110	ousioner ounpie #.	DF 34-081104-7.3-9.3		
Recv'd:	Collector: TROY	DF34-081104-7.5-9.5 Date Collected:	11/4/2008	
•	-		11/4/2008 11/5/2008 10:45:00 A	
Recv'd: ✔	Collector: TROY	Date Collected:		
Recv'd: Quantity: 2	Collector: TROY	Date Collected:		rity
Recv'd: Quantity: 2 Comment:	Collector: TROY Matrix: Soil	Date Collected: Date Received:	11/5/2008 10:45:00 A	-
Recv'd: Quantity: 2 Comment: Test	Collector: TROY Matrix: Soil	Date Collected: Date Received: Method	11/5/2008 10:45:00 A Due Date Prio	ays
Recv'd: ✓ Quantity: 2 Comment: ✓ Test	Collector: TROY Matrix: Soil	Date Collected: Date Received: Method %moisture	11/5/2008 10:45:00 A Due Date Prio 11/12/2008 <u>5 D</u>	ays ays
Recv'd: ✓ Quantity: 2 Comment: ✓ Test %Moisture BTEX 8260	Collector: TROY Matrix: Soil	Date Collected: Date Received: Method %moisture EPA 8260B	Due Date Prio 11/12/2008 5 Date	avs avs avs
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOW	Collector: TROY Matrix: Soil	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C	Due Date Prio 11/12/2008 5 Date 11/12/2008 5 Date 11/12/2008 5 Date 11/12/2008 5 Date	a <u>vs</u> avs avs avs
Recv'd: ✓ Quantity: 2 Comment: 2 Test %Moisture BTEX 8260 PAH 8270 LOW TPHDX-NW	Collector: TROY Matrix: Soil	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C NWTPHDX	Due Date Prio 11/12/2008 5 Date	ays ays ays ays ays
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOWTPHDX-NWTPHG-NW	Collector: TROY Matrix: Soil Test Group	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C NWTPHDX NWTPHG	Due Date Prio 11/12/2008 5 Date	a <u>vs</u> a <u>vs</u> a <u>vs</u> a <u>vs</u> a <u>vs</u> a <u>vs</u>
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOWTPHDX-NWTPHG-NWArsenic	Collector: TROY Matrix: Soil Test Group	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C NWTPHDX NWTPHG EPA 6020A	Due Date Prio 11/12/2008 5 Date	ays ays ays ays ays ays ays ays
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOWTPHDX-NWTPHG-NWArsenicBarium	Collector: TROY Matrix: Soil Test Group Total 8 Total 8	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C NWTPHDX NWTPHG EPA 6020A EPA 6020A	Due Date Prio 11/12/2008 5 Date	a <u>vs</u> a <u>vs</u> a <u>vs</u> a <u>vs</u> a <u>vs</u> a <u>vs</u> a <u>vs</u>
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOWTPHDX-NWTPHG-NWArsenicBariumCadmium	Collector: TROY Matrix: Soil Test Group Total 8 Total 8 Total 8 Total 8	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C NWTPHDX NWTPHG EPA 6020A EPA 6020A EPA 6020A	Due Date Prio 11/12/2008 5 D.	ays ays ays ays ays ays ays ays ays ays
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOWTPHDX-NWTPHG-NWArsenicBariumCadmiumChromium	Collector: TROY Matrix: Soil Test Group Total 8 Total 8 Total 8 Total 8 Total 8	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C NWTPHDX NWTPHDX NWTPHG EPA 6020A EPA 6020A EPA 6020A EPA 6020A	Due Date Prio 11/12/2008 5 Date	ays ays ays ays ays ays ays ays ays ays
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOWTPHDX-NWTPHG-NWArsenicBariumCadmiumChromiumLead	Collector: TROY Matrix: Soil Test Group Total 8 Total 8 Total 8 Total 8 Total 8 Total 8 Total 8	Date Collected: Date Received: Method Method %moisture EPA 8260B EPA 8270C EPA 8270C NWTPHDX NWTPHG EPA 6020A EPA 6020A EPA 6020A EPA 6020A EPA 6020A	Due Date Prio 11/12/2008 5 Date 11/12/2008 5 Date	ays ays ays ays ays ays ays ays ays ays
Recv'd:✓Quantity:2Comment:2Test%MoistureBTEX 8260PAH 8270 LOWTPHDX-NWTPHG-NWArsenicBariumCadmiumChromiumLeadMercury-ICPMS	Collector: TROY Matrix: Soil Test Group Total 8 Total 8 Total 8 Total 8 Total 8 Total 8 Total 8 Total 8	Date Collected: Date Received: Method %moisture EPA 8260B EPA 8270C NWTPHDX NWTPHDX NWTPHG EPA 6020A EPA 6020A EPA 6020A EPA 6020A EPA 6020A EPA 6020A	Due Date Prio 11/12/2008 5 Date 11/12/2008 5 Date	ays ays ays ays ays ays ays ays ays ays

Customer Name:	PIONEER TE	CHNOLOGIE	S CORP	ORATION	Order I	D: 08	1105018
	2612 YELM H	IWY SE			Order Dat	i e: 1	1/5/2008
	OLYMPIA		WA	98001			
Contact Name:	TROY BUSSE	ΞY		Р	roject Name: EAS	T BAY RI PH	HASE 1
Comment:							
Sample #: 0811050	018 022 Custor	ner Sample #:	TRIP BLA				
		ner Sample #.		inn			
Recv'd:	Collector:	TROY		Date Collected:	11/4/2008		
Quantity: 1	Matrix:	Soil		Date Received:	11/5/2008 10:45:00 A	۱.	
Comment:							
Test	Test 0	Group	Met	hod	Due Date	Priority	
%Moisture			%m	oisture	11/12/2008	<u>5 Days</u>	
BTEX 8260			EP/	A 8260B	11/12/2008	<u>5 Days</u>	
TPHG-NW			NW	TPHG	11/12/2008	<u>5 Days</u>	
	S	SAMPLE C	ONDITI)		
Samples rece	ived in a cooler?				Yes		
Samples rece	ived intact?				Yes		
What is the te	mperature inside t	he cooler?			7.9		
Samples rece	ived with a COC?				Yes		
Samples rece	ived within holding	time?			Yes		
Are all sample	e bottles properly p	oreserved?			Yes		
Are VOC sam	ples free of heads	pace?			N/A		
Is there a trip	blank to accompar	ny VOC samples	?		N/A		

Yes

Labels and chain agree?

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-008 DP40-081104-1-2 Soil		Sampling Date Sampling Time Sample Locatio	1		Date/Time Rece Extraction Date		
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifier
Diesel		21.7	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		113	mg/kg	10	11/8/2008	MAH	NWTPHDX	
			Surrogate	Data				
mple Number	081105018-008							
Surrogate Stheward Stresson	tandard		Method NWTPHDX		Pe	rcent Recovery 66.0	Control 50-1	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		
	Analytical Results F	Report	

Sample Number Client Sample ID Matrix Comments	081105018-009 DP40-081104-3-4 Soil		Sampling Date Sampling Time Sample Locatio	1		Date/Time Rece Extraction Date		
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifier
Diesel		ND	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		39.2	mg/kg	10	11/8/2008	MAH	NWTPHDX	
			Surrogate	Data	I			
mple Number	081105018-009							
Surrogate S	tandard		Method		Pe	rcent Recovery	Control	Limits
hexacosane			NWTPHDX			70.2	50-1	150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		
	Analytical Results F	Report	

Sample Number Client Sample ID Matrix Comments	081105018-010 DP40-081104-5-6 Soil		Sampling Date Sampling Time Sample Locatio	1		Date/Time Rece Extraction Date		
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Method	Qualifier
Diesel		19.2	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		295	mg/kg	10	11/8/2008	MAH	NWTPHDX	
			Surrogate	Data	I			
mple Number	081105018-010							
Surrogate S	tandard		Method		Pe	ercent Recovery	Control	Limits
hexacosane			NWTPHDX			79.4	50-	150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018				
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1				
	OLYMPIA, WA 98001						
Attn:	TROY BUSSEY						
Analytical Results Report							

Sample Number Client Sample ID Matrix Comments	081105018-014 DP36-081104-5-6 Soil		Sampling Date Sampling Time Sample Locatio	1:		Date/Time Rece Extraction Date		
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifier
Diesel		15.7	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		163	mg/kg	10	11/8/2008	MAH	NWTPHDX	
			Surrogate	e Data				
mple Number	081105018-014							
Surrogate St hexacosane	tandard		Method NWTPHDX	(Pe	r cent Recovery 73.8		Limits 150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018				
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1				
	OLYMPIA, WA 98001						
Attn:	TROY BUSSEY						
Analytical Results Report							

Sample Number Client Sample ID Matrix Comments	081105018-019 DP38-081104-5-6 Soil		Sampling Date Sampling Time Sample Locatio	1		Date/Time Rece Extraction Date		
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifier
Diesel		8.15	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		14.3	mg/kg	10	11/8/2008	MAH	NWTPHDX	
			Surrogate	Data	I			
mple Number	081105018-019							
Surrogate S	tandard		Method		Ре	rcent Recovery	Control	Limits
hexacosane			NWTPHDX			78.6	50-	150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE OLYMPIA, WA 98001	Project Name:	EAST BAY RI PHASE 1
Attn:	TROY BUSSEY		
	Analytical Results	Report	

Sample Number	081105018-020		Sampling Date	1	1/4/2008 D	ate/Time Rece	ived 11/5/20	08 10:45 AM
Client Sample ID	DP38-081104-6-7		Sampling Time	1	:20 PM E	xtraction Date	11/07/20	800
Matrix	Soil		Sample Locatio	n				
Comments								
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
Diesel		56.3	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		470	mg/kg	10	11/8/2008	MAH	NWTPHDX	
			Surrogate	Data	l			
ample Number	081105018-020							
Surrogate S	tandard		Method		Per	cent Recovery	Contr	ol Limits
hexacosane			NWTPHDX			81.4	50	0-150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018				
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1				
	OLYMPIA, WA 98001						
Attn:	TROY BUSSEY						
Analytical Results Report							

Sample Number Client Sample ID Matrix Comments	081105018-031 DP34-081104-4-6 Soil		Sampling Date Sampling Time Sample Locatio	3		Date/Time Rece Extraction Date		
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Method	Qualifier
Diesel		5.36	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		12.6	mg/kg	10	11/8/2008	MAH	NWTPHDX	
			Surrogate	e Data	a			
mple Number	081105018-031							
Surrogate St hexacosane	tandard		Method NWTPHDX	[Pe	ercent Recovery 77.6		I Limits 150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-032 DP34-081104-7.5-9.5 Soil		Sampling Date Sampling Time Sample Locatio	3		Date/Time Rece Extraction Date		
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Method	Qualifier
Diesel		16.2	mg/kg	5	11/8/2008	MAH	NWTPHDX	
Lube Oil		36.1	mg/kg	50	11/8/2008	MAH	NWTPHDX	
			Surrogate	Data				
mple Number	081105018-032							
Surrogate S	tandard		Method		Pe	ercent Recovery	Control	Limits

NWTPHDX

71.4

Authorized Signature

hexacosane

Nohn. Catt

- MCL EPA's Maximum Contaminant Level ND Not Detected
- PQL Practical Quantitation Limit

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

50-150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		
	Analytical Results Rep	ort	

Quality Control Data

Lab Control Sample									
Parameter	LCS Resu	ılt Units	LCS Spi	ke %R	ec A	R %Rec	Pro	ep Date	Analysis Date
Diesel	74.2	mg/kg	100	74	.2	50-150	11	/7/2008	11/9/2008
Matrix Spike									
Samula Number - Devementer		Sample	MS	Unito	MS		AR	Dron Doto	Analysia Data
Sample Number Parameter 081107002-002 Diesel		Result ND	Result 83.6	Units mg/kg	Spike 100	%Rec 83.6	%Rec 50-150	Prep Date 11/7/2008	Analysis Date 11/9/2008
Matrix Spike Duplicate									
Matrix Spike Duplicate	MSD		MSD			А			
				0/ D	%RF		PD F	Draw Data	Analysis Data
Parameter	Result	Units s	Spike	%Rec	/0111	νD %R		Prep Date	Analysis Date
Parameter Diesel		Units s mg/kg	Spike 100	%Rec 78.0	6.9	/011		11/7/2008	11/9/2008
			•			/011		•	•
Diesel			100		6.9	/011	50 1	•	11/9/2008
Diesel Method Blank		mg/kg	100	78.0	6.9	0-{	50 1	11/7/2008	•

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-008 DP40-081104-1-2 Soil		Sampling Date Sampling Time		1/4/2008 [1:10 AM	Date/Time Recei	ived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
mple Number	081105018-008							
Surrogate S 4-Bromofluor			Method NWTPHG		Ре	rcent Recovery 80.4	Control 50-1	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLO 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	I	Batch #: Project I		081105018 EAST BAY RI PH	ASE 1
		Ana	lytical Resi	ults I	Report			
Sample Number Client Sample ID Matrix Comments	081105018-009 DP40-081104-3-4 Soil		Sampling Date Sampling Time	-	1/4/2008 1:15 AM	Date/Time	Received 11/5/2008	3 10:45 AM
Parameter		Result	Units	PQL	Analysis Da	te Analys	t Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
ample Number	081105018-009							
Surrogate 4 4-Bromofluc			Method NWTPHG		Pe	ercent Reco 70.8	•	I Limits 150

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLC 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	I	Batch #: Project Na		31105018 AST BAY RI PHA	SE 1
		Ana	alytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	081105018-010 DP40-081104-5-6 Soil		Sampling Date Sampling Time	-	1/4/2008 D a 1:20 AM	ate/Time Re	ceived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
ample Number	081105018-010							
Surrogate 4-Bromoflue			Method NWTPHG		Perc	cent Recove 71.2	ry Control	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLO 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	I	Batch # Project	-	081105 EAST B	018 BAY RI PHA	ASE 1
		Ana	lytical Resi	ults I	Report				
Sample Number Client Sample ID Matrix Comments	081105018-014 DP36-081104-5-6 Soil		Sampling Date Sampling Time		1/4/2008 2:10 PM	Date/Tin	ne Received	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis D	ate Anal	yst M	ethod	Qualifier
Gasoline		ND	mg/Kg	5	11/11/200	8 CA	S NV	VTPHG	
			Surrogate	Data					
ample Number	081105018-014								
Surrogate 4-Bromoflue			Method NWTPHG		F	Percent R 100	-	Control 50-1	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLO 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	l	Batch #: Project Na	-	81105018 AST BAY RI PH/	ASE 1
		Ana	alytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	081105018-019 DP38-081104-5-6 Soil		Sampling Date Sampling Time		1/4/2008 Da 10 PM	ate/Time Re	aceived 11/5/2008	5 10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/11/2008	CAS	NWTPHG	
			Surrogate	Data				
ample Number	081105018-019							
Surrogate 4 4-Bromoflue			Method NWTPHG		Pere	cent Recove 99.2	ery Control 50-1	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLO 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	I	Batch #: Project Na	-	81105018 AST BAY RI PH/	ASE 1
		Ana	lytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	081105018-020 DP38-081104-6-7 Soil		Sampling Date Sampling Time	-	1/4/2008 D a 20 PM	ate/Time Re	aceived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
ample Number	081105018-020							
Surrogate 4-Bromoflue			Method NWTPHG		Pere	cent Recov 71.6	ery Control 50-1	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLO 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	I	Batch #: Project N	-	81105018 AST BAY RI PH/	ASE 1
		Ana	lytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	081105018-027 DP27-081104-3-4 Soil		Sampling Date Sampling Time	-	1/4/2008 D 50 PM	ate/Time R	eceived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
ample Number	081105018-027							
Surrogate 4 4-Bromofluc			Method NWTPHG		Per	cent Recov 75.6	rery Control 50-1	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLO 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	I	Batch #: Project Na		31105018 AST BAY RI PH	ASE 1
		Ana	lytical Resi	ults F	Report			
Sample Number Client Sample ID Matrix Comments	081105018-031 DP34-081104-4-6 Soil		Sampling Date Sampling Time	-	1/4/2008 D a 40 PM	ate/Time Re	ceived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
ample Number	081105018-031							
- Surrogate 9 4-Bromofluc			Method NWTPHG		Perc	cent Recove 72.4	ry Control 50-1	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLC 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	GIES C	ORPORATION	I	Batch #: Project N		81105018 AST BAY RI PHA	ASE 1
		Ana	lytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	081105018-032 DP34-081104-7.5-9.5 Soil		Sampling Date Sampling Time		1/4/2008 D 50 PM	ate/Time R	eceived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
ample Number	081105018-032							
Surrogate	Standard		Method		Per	cent Recov	very Control	Limits
4-Bromofluc	probenzene		NWTPHG			84.8	50-1	50

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: Attn:	PIONEER TECHNOLC 2612 YELM HWY SE OLYMPIA, WA 98001 TROY BUSSEY	OGIES C	ORPORATION	I	Batch #: Project N		1105018 ST BAY RI PH	ASE 1
		Ana	lytical Res	ults I	Report			
Sample Number Client Sample ID Matrix Comments	081105018-033 TRIP BLANK Soil		Sampling Date Sampling Time	1	1/4/2008 C	Date/Time Rec	eived 11/5/2008	5 10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
Gasoline		ND	mg/Kg	5	11/6/2008	CAS	NWTPHG	
			Surrogate	Data				
Sample Number	081105018-033							
Surrogate	Standard orobenzene		Method NWTPHG		Per	rcent Recovery 75.2	y Control	

Authorized Signature

John. Conthe

MCL EPA's Maximum Contaminant Level ND Not Detected

PQL Practical Quantitation Limit

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018					
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1					
	OLYMPIA, WA 98001							
Attn:	TROY BUSSEY							
An above a Departure Departure								

Analytical Results Report

Quality Control Data

Parameter	LCS Resul	lt Units	LCS Spik	e %R	ec A	R %Rec	Pre	ep Date	Analysis Date
Gasoline	1.04	mg/kg	1	104	.0	70-130	11/	11/2008	11/11/2008
Gasoline	1.16	mg/kg	1	116	6.0	70-130	11	/6/2008	11/6/2008
Matrix Spike									
Sample Number Parameter		Sample Result	MS Result	Units	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
081105018-014 Gasoline		ND		mg/kg	50	110.6	60-140	11/11/2008	11/11/2008
Matrix Spike Duplicate									
Parameter	MSD Result U		MSD Spike 🦻	%Rec	%RP	Al D %R		rep Date	Analysis Date
Gasoline		ng/kg	•	95.4	14.8			1/11/2008	11/11/2008
Method Blank									
Method Blank Parameter		Resu	ilt	Uni	ts	PQL		Prep Date	Analysis Date
		Resu ND	ılt	Uni mg/K		PQL 5		Prep Date 1/11/2008	Analysis Date 11/11/2008

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-008 DP40-081104-1-2 Soil		Sampling Date Sampling Time		1/4/2008 C 1:10 AM	Date/Time Rece	eived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
ample Number	081105018-008							
Surrogate St	andard		Method		Per	rcent Recovery	y Control	Limits
1,2-Dichloroe	thane-d4		EPA 8260E	5		98.8	70-1	30
4-Bromofluor	obenzene		EPA 8260E	5		102.4	70-1	30
Toluene-d8			EPA 8260E	6		98.4	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-009 DP40-081104-3-4 Soil		Sampling Date Sampling Time		1/4/2008 D 1:15 AM	ate/Time Rece	eived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-009							
Surrogate St	tandard		Method		Per	cent Recovery	Control	Limits
1,2-Dichloroe	thane-d4		EPA 8260E	3		101.2	70-1	30
4-Bromofluor	obenzene		EPA 8260E	3		102.8	70-1	30
Toluene-d8			EPA 8260E	5		98.4	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number	081105018-010		Sampling Date	1	1/4/2008 C	Date/Time Rece	eived 11/5/2008	10:45 AM
Client Sample ID	DP40-081104-5-6		Sampling Time	1	1:20 AM			
Matrix	Soil							
Comments								
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifie
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-010							
Surrogate S	tandard		Method		Per	rcent Recovery	Control	Limits
1,2-Dichloroe	ethane-d4		EPA 8260E	8		99.2	70-1	30
4-Bromofluor	obenzene		EPA 8260E	3		102.0	70-1	30
Toluene-d8			EPA 8260E	5		98.4	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number	081105018-014		Sampling Date	11	1/4/2008 [Date/Time Reco	eived 11/5/2008	10:45 AN
Client Sample ID	DP36-081104-5-6		Sampling Time	12	2:10 PM			
Matrix	Soil							
Comments								
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Method	Qualifie
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-014							
Surrogate S	tandard		Method		Pe	rcent Recover	y Control	Limits
1,2-Dichloroe	ethane-d4		EPA 8260E	5		100.8	70-1	130
4-Bromofluor	obenzene		EPA 8260E	5		103.2	70-1	130
Toluene-d8			EPA 8260E			99.2	70-1	130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-019 DP38-081104-5-6 Soil		Sampling Date Sampling Time		1/4/2008 D 10 PM	ate/Time Reco	eived 11/5/2008	10:45 AN
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifie
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-019							
Surrogate S	tandard		Method		Per	cent Recovery	y Control	Limits
1,2-Dichloroe	ethane-d4		EPA 8260E	5		100.0	70-1	130
4-Bromofluor	robenzene		EPA 8260E	5		102.8	70-1	130
Toluene-d8			EPA 8260E			98.8	70-1	130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number	081105018-020		Sampling Date	1	1/4/2008 D	ate/Time Rece	eived 11/5/2008	10:45 AM
Client Sample ID	DP38-081104-6-7		Sampling Time	1:	20 PM			
Matrix	Soil							
Comments								
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifie
Benzene		ND	mg/Kg	0.001	11/11/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/11/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/11/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/11/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-020							
Surrogate S	tandard		Method		Per	cent Recovery	Control	Limits
1,2-Dichloroe	ethane-d4		EPA 8260E	5		101.2	70-1	30
4-Bromofluor	robenzene		EPA 8260E	5		94.0	70-1	30
Toluene-d8			EPA 8260E			101.2	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number	081105018-027		Sampling Date	11	1/4/2008 D	ate/Time Rece	eived 11/5/2008	10:45 AM
Client Sample ID	DP27-081104-3-4		Sampling Time	2:	50 PM			
Matrix	Soil							
Comments								
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifie
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-027							
Surrogate S	tandard		Method		Per	cent Recovery	Control	Limits
1,2-Dichloroe	ethane-d4		EPA 8260E	5		100.8	70-1	30
4-Bromofluor	obenzene		EPA 8260E	5		102.8	70-1	30
Toluene-d8			EPA 8260E	5		98.8	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-031 DP34-081104-4-6 Soil		Sampling Date Sampling Time		1/4/2008 E 40 PM	Date/Time Rece	eived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-031							
Surrogate St	tandard		Method		Per	cent Recovery	Control	Limits
1,2-Dichloroe	thane-d4		EPA 8260E	3		101.2	70-1	30
4-Bromofluor	obenzene		EPA 8260E	3		103.2	70-1	30
Toluene-d8			EPA 8260E	3		98.8	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-032 DP34-081104-7.5-9.5 Soil		Sampling Date Sampling Time		1/4/2008 D 50 PM	ate/Time Rece	eived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
mple Number	081105018-032							
Surrogate S	tandard		Method		Per	cent Recovery	y Control	Limits
1,2-Dichloroe	ethane-d4		EPA 8260E	5		98.8	70-1	30
4-Bromofluor	obenzene		EPA 8260E			101.2	70-1	30
Toluene-d8			EPA 8260E			97.6	70-1	30

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-033 TRIP BLANK Soil		Sampling Date Sampling Time		1/4/2008 D	ate/Time Rece	ived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Method	Qualifier
Benzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Ethylbenzene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Toluene		ND	mg/Kg	0.001	11/10/2008	CAS	EPA 8260B	
Total Xylene		ND	mg/Kg	0.002	11/10/2008	CAS	EPA 8260B	
			Surrogate	Data				
ample Number	081105018-033							
Surrogate St	andard		Method		Per	cent Recovery	Control	Limits
1,2-Dichloroe	thane-d4		EPA 8260E	3		98.8	70-1	30
4-Bromofluor	obenzene		EPA 8260E	3		102.4	70-1	30
Toluene-d8			EPA 8260E	3		98.4	70-1	30

Authorized Signature

John. Conth

MCL EPA's Maximum Contaminant Level

ND

Not Detected PQL Practical Quantitation Limit

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Quality Control Data

Lab Control Sample

Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Toluene	0.00477	mg/kg	0.005	95.4	70-130	11/10/2008	11/10/2008
Ethylbenzene	0.00502	mg/kg	0.005	100.4	70-130	11/10/2008	11/10/2008
Benzene	0.00508	mg/kg	0.005	101.6	70-130	11/10/2008	11/10/2008

Matrix Spike									
Sample Number	Parameter	Sample Result	MS Result	Units	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
081105018-008	Toluene	ND	0.502	mg/kg	0.5	100.4	70-130	11/10/2008	11/10/2008
081105018-008	Ethylbenzene	ND	0.522	mg/kg	0.5	104.4	70-130	11/10/2008	11/10/2008
081105018-008	Benzene	ND	0.545	mg/kg	0.5	109.0	70-130	11/10/2008	11/10/2008

Matrix Spike Duplicate

	MSD		MSD			AR		
Parameter	Result	Units	Spike	%Rec	%RPD	%RPD	Prep Date	Analysis Date
Toluene	0.553	mg/kg	0.5	110.6	9.7	0-25	11/10/2008	11/10/2008
Ethylbenzene	0.588	mg/kg	0.5	117.6	11.9	0-25	11/10/2008	11/10/2008
Benzene	0.593	mg/kg	0.5	118.6	8.4	0-25	11/10/2008	11/10/2008

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
Benzene	ND	mg/Kg	0.001	11/10/2008	11/10/2008
Ethylbenzene	ND	mg/Kg	0.001	11/10/2008	11/10/2008
Toluene	ND	mg/Kg	0.001	11/10/2008	11/10/2008
Total Xylene	ND	mg/Kg	0.002	11/10/2008	11/10/2008

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number lient Sample ID atrix omments	081105018-002 DP32-081104-4-5 Soil		Sampling Date Sampling Time		1/4/2008 D a :05 AM	ate/Time Rec	eived 11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Arsenic		2.27	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Barium		40.8	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Chromium		14.9	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Lead		2.51	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Mercury-ICPM	S	0.0236	mg/Kg	0.02	11/12/2008	ETL	EPA 6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-004 DP33-081104-1-2 Soil		Sampling Date Sampling Time		1/4/2008 D 50 AM	ate/Time Red	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
Arsenic		1.89	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	
Barium		35.5	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	
Chromium		21.3	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	
Lead		2.18	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	
Mercury-ICPM	S	0.0202	mg/Kg	0.02	11/12/2008	ETL	EPA 6	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-005 DP33-081104-3-4 Soil		Sampling Date Sampling Time		1/4/2008 D 55 AM	ate/Time Rec	:eived 11/5/2	008 10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Arsenic		2.14	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Barium		50.4	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Chromium		19.0	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Lead		2.19	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA 6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Aatrix Comments	081105018-006 DP33-081104-5-6 Soil		Sampling Date Sampling Time		1/4/2008 E D:00 AM	Date/Time Red	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Met	hod	Qualifier
Arsenic		2.95	mg/Kg	0.2	11/12/2008	ETL	EPA (6020A	
Barium		52.7	mg/Kg	0.2	11/12/2008	ETL	EPA (6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA (6020A	
Chromium		34.3	mg/Kg	0.2	11/12/2008	ETL	EPA (6020A	
Lead		2.61	mg/Kg	0.2	11/12/2008	ETL	EPA (6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA (6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA (6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Cample Number Client Sample ID Matrix Comments	081105018-007 DP33-081104-7-8 Soil		Sampling Date Sampling Time		1/4/2008 D D:05 AM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Ме	thod	Qualifier
Arsenic		2.84	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		44.6	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		0.219	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		17.7	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		7.67	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Aatrix Comments	081105018-008 DP40-081104-1-2 Soil		Sampling Date Sampling Time		1/4/2008 D 1:10 AM	ate/Time Red	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Me	thod	Qualifier
Arsenic		2.66	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		59.2	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		18.5	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		3.81	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number Ilient Sample ID Iatrix comments	081105018-009 DP40-081104-3-4 Soil		Sampling Date Sampling Time		1/4/2008 D 1:15 AM	Date/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Ме	thod	Qualifier
Arsenic		2.76	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		52.5	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		21.2	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		3.42	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Aatrix Comments	081105018-010 DP40-081104-5-6 Soil		Sampling Date Sampling Time		1/4/2008 D 1:20 AM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Ме	thod	Qualifier
Arsenic		2.42	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		51.3	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		84.4	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		2.63	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		0.405	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number ilient Sample ID latrix comments	081105018-014 DP36-081104-5-6 Soil		Sampling Date Sampling Time		1/4/2008 D 2:10 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Ме	thod	Qualifier
Arsenic		2.59	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		62.3	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		29.7	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		2.90	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		0.743	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-017 DP38-081104-1-2 Soil		Sampling Date Sampling Time		1/4/2008 D 2:50 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Ме	thod	Qualifier
Arsenic		2.90	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		65.7	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		17.5	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		11.6	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-019 DP38-081104-5-6 Soil		Sampling Date Sampling Time		1/4/2008 D 10 PM	ate/Time Red	:eived 11/5/2008	3 10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Arsenic		6.75	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Barium		42.7	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Cadmium		0.681	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Chromium		30.9	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Lead		32.2	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Mercury-ICPM	S	0.0600	mg/Kg	0.02	11/12/2008	ETL	EPA 6020A	
Selenium		0.286	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Aatrix Comments	081105018-020 DP38-081104-6-7 Soil		Sampling Date Sampling Time		1/4/2008 D 20 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Me	thod	Qualifier
Arsenic		7.53	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		17.3	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		0.473	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		7.74	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		95.4	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	0.0296	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		0.412	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number Ilient Sample ID Iatrix Comments	081105018-022 DP30-081104-1-2 Soil		Sampling Date Sampling Time		1/4/2008 D 50 PM	ate/Time Re	ceived 11/5/20	08 10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Arsenic		3.41	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Barium		26.8	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Chromium		19.0	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Lead		6.28	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA 6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number lient Sample ID latrix omments	081105018-023 DP30-081104-3-4 Soil		Sampling Date Sampling Time		1/4/2008 D 00 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Me	thod	Qualifier
Arsenic		5.08	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		54.6	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		31.3	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		2.91	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Aatrix Comments	081105018-025 DP30-081104-7-7.75 Soil		Sampling Date Sampling Time		1/4/2008 D 20 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Me	thod	Qualifier
Arsenic		9.87	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		63.4	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		0.691	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		45.9	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		55.7	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	0.0863	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		0.489	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number ient Sample ID atrix omments	081105018-026 DP27-081104-0-1 Soil		Sampling Date Sampling Time		1/4/2008 D 40 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Ме	thod	Qualifier
Arsenic		2.97	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		53.5	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		18.2	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		6.59	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	3	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		0.587	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-027 DP27-081104-3-4 Soil		Sampling Date Sampling Time		1/4/2008 D 50 PM	ate/Time Red	ceived 11	/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method		Qualifier
Arsenic		3.53	mg/Kg	0.2	11/12/2008	ETL	EPA 6020	A	
Barium		85.1	mg/Kg	0.2	11/12/2008	ETL	EPA 6020	A	
Cadmium		0.209	mg/Kg	0.2	11/12/2008	ETL	EPA 6020	A	
Chromium		47.9	mg/Kg	0.2	11/12/2008	ETL	EPA 6020	A	
Lead		5.07	mg/Kg	0.2	11/12/2008	ETL	EPA 6020)A	
Mercury-ICPM	S	0.0281	mg/Kg	0.02	11/12/2008	ETL	EPA 6020)A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020)A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020)A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number Ilient Sample ID latrix Comments	081105018-028 DP27-081104-4-5 Soil		Sampling Date Sampling Time		1/4/2008 D 00 PM	ate/Time Re	ceived 11/5/2	2008 10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Arsenic		3.07	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Barium		63.1	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Cadmium		0.245	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Chromium		51.7	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Lead		4.16	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA 6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Silver		0.332	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Aatrix Comments	081105018-029 DP27-081104-6-7 Soil		Sampling Date Sampling Time		1/4/2008 D 10 PM	ate/Time Red	ceived 11/5/2	2008 10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Arsenic		2.10	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Barium		21.5	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Chromium		17.7	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Lead		1.28	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA 6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA 6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Cample Number Client Sample ID Matrix Comments	081105018-031 DP34-081104-4-6 Soil		Sampling Date Sampling Time		1/4/2008 D 40 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Ме	thod	Qualifier
Arsenic		3.88	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		70.7	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		24.8	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		4.72	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	ND	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number ient Sample ID atrix omments	081105018-032 DP34-081104-7.5-9.5 Soil		Sampling Date Sampling Time		1/4/2008 D 50 PM	ate/Time Re	ceived	11/5/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	e Analyst	Ме	thod	Qualifier
Arsenic		14.5	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Barium		36.7	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Cadmium		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Chromium		21.3	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Lead		55.7	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Mercury-ICPM	S	0.0457	mg/Kg	0.02	11/12/2008	ETL	EPA	6020A	
Selenium		1.34	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	
Silver		ND	mg/Kg	0.2	11/12/2008	ETL	EPA	6020A	

Authorized Signature

John. Conth

MCL EPA's Maximum Contaminant Level ND Not Detected PQL Practical Quantitation Limit

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Quality Control Data

Lab Control Sample

Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Silver	0.0519	mg/kg	0.05	103.8	85-115	11/11/2008	11/12/2008
Selenium	0.0506	mg/kg	0.05	101.2	85-115	11/11/2008	11/12/2008
MERCURY-ICPMS	0.00304	mg/kg	0.00308	98.7	85-115	11/11/2008	11/12/2008
Lead	0.0517	mg/kg	0.05	103.4	85-115	11/11/2008	11/12/2008
Chromium	0.0523	mg/kg	0.05	104.6	85-115	11/11/2008	11/12/2008
Cadmium	0.0519	mg/kg	0.05	103.8	85-115	11/11/2008	11/12/2008
Barium	0.0508	mg/kg	0.05	101.6	85-115	11/11/2008	11/12/2008
Arsenic	0.0515	mg/kg	0.05	103.0	85-115	11/11/2008	11/12/2008

Matrix Spike

•		Sample	MS		MS		AR		
Sample Number	Parameter	Result	Result	Units	Spike	%Rec	%Rec	Prep Date	Analysis Date
081105018-002	Silver	ND	10.8	mg/kg	10.7	100.9	75-125	11/11/2008	11/12/2008
081105018-002	Selenium	ND	10.3	mg/kg	10.7	96.3	75-125	11/11/2008	11/12/2008
081105018-002	MERCURY-ICPMS	0.0236	0.623	mg/kg	0.659	90.9	75-125	11/11/2008	11/12/2008
081105018-002	Lead	2.51	12.9	mg/kg	10.7	97.1	75-125	11/11/2008	11/12/2008
081105018-002	Chromium	14.9	26.1	mg/kg	10.7	104.7	75-125	11/11/2008	11/12/2008
081105018-002	Cadmium	ND	10.9	mg/kg	10.7	101.9	75-125	11/11/2008	11/12/2008
081105018-002	Barium	40.8	51.5	mg/kg	10.7	100.0	75-125	11/11/2008	11/12/2008
081105018-002	Arsenic	2.27	13.0	mg/kg	10.7	100.3	75-125	11/11/2008	11/12/2008

Matrix Spike Duplicate

man m opino 2 aprovio								
	MSD		MSD			AR		
Parameter	Result	Units	Spike	%Rec	%RPD	%RPD	Prep Date	Analysis Date
Silver	10.9	mg/kg	10.7	101.9	0.9	0-20	11/11/2008	11/12/2008
Selenium	10.8	mg/kg	10.7	100.9	4.7	0-20	11/11/2008	11/12/2008
MERCURY-ICPMS	0.669	mg/kg	0.65912	97.9	7.1	0-20	11/11/2008	11/12/2008
Lead	13.0	mg/kg	10.7	98.0	0.8	0-20	11/11/2008	11/12/2008
Chromium	26.3	mg/kg	10.7	106.5	0.8	0-20	11/11/2008	11/12/2008
Cadmium	11.1	mg/kg	10.7	103.7	1.8	0-20	11/11/2008	11/12/2008
Barium	52.0	mg/kg	10.7	104.7	1.0	0-20	11/11/2008	11/12/2008
Arsenic	13.0	mg/kg	10.7	100.3	0.0	0-20	11/11/2008	11/12/2008

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		
	Analytical Results Re	port	

Quality Control Data

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
Arsenic	ND	mg/Kg	0.2	11/11/2008	11/12/2008
Barium	ND	mg/Kg	0.2	11/11/2008	11/12/2008
Cadmium	ND	mg/Kg	0.2	11/11/2008	11/12/2008
Chromium	ND	mg/Kg	0.2	11/11/2008	11/12/2008
Lead	ND	mg/Kg	0.2	11/11/2008	11/12/2008
Mercury-ICPMS	ND	mg/Kg	0.02	11/11/2008	11/12/2008
Selenium	ND	mg/Kg	0.2	11/11/2008	11/12/2008
Silver	ND	mg/Kg	0.2	11/11/2008	11/12/2008

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-002 DP32-081104-4-5 Soil		Sampling Date Sampling Time			ate/Time Rece xtraction Date	ived 11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
2-Methylnapht	halene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Acenaphthene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Acenaphthylen	ie	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Anthracene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Benzo(ghi)pery	ylene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Benzo[a]anthra	acene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Benzo[a]pyren	e	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Benzo[b]fluora	nthene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Benzo[k]fluora	nthene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Chrysene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Dibenz[a,h]ant	hracene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Fluoranthene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Fluorene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Indeno[1,2,3-c	d]pyrene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Naphthalene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Phenanthrene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
Pyrene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8270C	
			Surrogate	e Data	l			
mple Number	081105018-002							
Surrogate S	tandard		Method		Per	cent Recovery	Control L	imits
Terphenyl-d1	4		EPA 8270C	;		100.4	18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-004 DP33-081104-1-2 Soil		Sampling Date Sampling Time			te/Time Rece traction Date	ived 11/5/2008 11/06/2008	10:45 AM
Comments								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
2-Methylnaphtl	halene	ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Acenaphthene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Acenaphthylen	ie	ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Anthracene		0.0090	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo(ghi)pery	ylene	0.0232	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[a]anthra	acene	0.0182	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[a]pyren	e	0.0172	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[b]fluora	nthene	0.0188	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[k]fluora	nthene	0.0158	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Chrysene		0.0106	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Dibenz[a,h]ant	hracene	0.0211	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Fluoranthene		0.0114	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Fluorene		0.0073	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Indeno[1,2,3-c	d]pyrene	0.0215	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Naphthalene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Phenanthrene		0.0109	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Pyrene		0.0121	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
			Surrogate	e Data	l			
mple Number	081105018-004							
Surrogate S	tandard		Method		Perc	ent Recovery	Control L	imits.
Terphenyl-d1	4		EPA 82700	;		105.4	18-13	37

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-005 DP33-081104-3-4 Soil		Sampling Date Sampling Time			te/Time Rece		11/5/2008 11/06/2008	10:45 AM
Comments									
Parameter		Result	Units	PQL	Analysis Date	Analyst	Metl	nod	Qualifier
2-Methylnapht	halene	0.0142	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Acenaphthene		0.425	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Acenaphthylen	ie	0.0892	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Anthracene		0.435	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo(ghi)pery	ylene	0.0618	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[a]anthra	acene	0.492	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[a]pyren	e	0.169	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[b]fluora	nthene	0.143	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[k]fluora	nthene	0.184	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Chrysene		0.507	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Dibenz[a,h]ant	hracene	0.0292	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Fluoranthene		2.41	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Fluorene		0.345	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Indeno[1,2,3-c	d]pyrene	0.0514	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Naphthalene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Phenanthrene		2.93	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Pyrene		2.31	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
			Surrogate	e Data	l				
mple Number	081105018-005								
Surrogate S	tandard		Method		Perc	ent Recovery	,	Control L	imits
Terphenyl-d1	4		EPA 82700	;		95.9		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-006 DP33-081104-5-6 Soil		Sampling Date Sampling Time			te/Time Reco		11/5/2008 11/06/2008	10:45 AM
Comments									
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
2-Methylnaphtl	halene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Acenaphthene		0.0529	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Acenaphthylen	e	0.0086	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Anthracene		0.0227	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo(ghi)pery	/lene	0.0110	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[a]anthra	acene	0.0279	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[a]pyren	е	0.0160	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[b]fluora	nthene	0.0174	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[k]fluora	nthene	0.0128	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Chrysene		0.0287	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Dibenz[a,h]ant	hracene	0.0074	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Fluoranthene		0.102	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Fluorene		0.0306	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Indeno[1,2,3-c	d]pyrene	0.0088	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Naphthalene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Phenanthrene		0.128	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Pyrene		0.103	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
			Surrogate	e Data	l				
mple Number	081105018-006								
Surrogate S	tandard		Method		Perc	ent Recover	y	Control L	imits
Terphenyl-d1	4		EPA 82700	;		93.0		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-007 DP33-081104-7-8 Soil		Sampling Date Sampling Time			te/Time Rec		11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
2-Methylnapht	halene	0.0916	mg/Kg	0.005	11/9/2008	EMP	FPA	3270C	
Acenaphthene		0.178	mg/Kg	0.005	11/9/2008	EMP		3270C	
Acenaphthyler		0.0507	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Anthracene		0.144	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Benzo(ghi)per	vlene	0.0801	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]anthra		0.432	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]pyren	e	0.215	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Benzo[b]fluora	nthene	0.313	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Benzo[k]fluora	nthene	0.232	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Chrysene		0.484	mg/Kg	0.005	11/9/2008	EMP	EPA a	3270C	
Dibenz[a,h]ant	hracene	0.0766	mg/Kg	0.005	11/9/2008	EMP	EPA a	3270C	
Fluoranthene		2.88	mg/Kg	0.005	11/9/2008	EMP	EPA a	3270C	
Fluorene		0.0907	mg/Kg	0.005	11/9/2008	EMP	EPA a	3270C	
Indeno[1,2,3-c	d]pyrene	0.0797	mg/Kg	0.005	11/9/2008	EMP	EPA a	3270C	
Naphthalene		0.228	mg/Kg	0.005	11/9/2008	EMP	EPA a	3270C	
Phenanthrene		0.270	mg/Kg	0.005	11/9/2008	EMP	EPA a	3270C	
Pyrene		1.89	mg/Kg	0.005	11/9/2008	EMP	EPA a	8270C	
			Surrogate	e Data	l				
mple Number	081105018-007								
Surrogate S	tandard		Method		Perc	ent Recover	у	Control L	imits
Terphenyl-d1	4		EPA 82700	;		86.5		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-008 DP40-081104-1-2 Soil		Sampling Date Sampling Time			te/Time Rec traction Date		11/5/2008 11/06/2008	10:45 AM
Comments Parameter		Result	Units	PQL	Analysis Date	Analyst	Mot	hod	Qualifier
		0.0051		-	11/9/2008	EMP		3270C	Quaimer
2-Methylnapht		0.0051 ND	mg/Kg	0.005	11/9/2008	EMP		3270C 3270C	
Acenaphthene			mg/Kg	0.005					
Acenaphthyler Anthracene	le	ND 0.0107	mg/Kg	0.005	11/9/2008	EMP EMP		3270C	
	4		mg/Kg	0.005	11/9/2008			3270C	
Benzo(ghi)per		0.0230	mg/Kg	0.005	11/9/2008	EMP		3270C	
Benzo[a]anthra		0.0170	mg/Kg	0.005	11/9/2008	EMP		3270C	
Benzo[a]pyren		0.0211	mg/Kg	0.005	11/9/2008	EMP		3270C	
Benzo[b]fluora		0.0297	mg/Kg	0.005	11/9/2008	EMP		3270C	
Benzo[k]fluora	nthene	0.0136	mg/Kg	0.005	11/9/2008	EMP		3270C	
Chrysene		0.0244	mg/Kg	0.005	11/9/2008	EMP		3270C	
Dibenz[a,h]ant	hracene	0.0149	mg/Kg	0.005	11/9/2008	EMP		3270C	
Fluoranthene		0.0179	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Fluorene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Indeno[1,2,3-c	d]pyrene	0.0165	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Naphthalene		0.0113	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
Phenanthrene		0.0156	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Pyrene		0.0473	mg/Kg	0.005	11/9/2008	EMP	EPA	3270C	
			Surrogate	e Data					
mple Number	081105018-008								
Surrogate S	tandard		Method		Perc	ent Recover	у	Control L	imits
Terphenyl-d1	4		EPA 82700	;		104.9		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-009 DP40-081104-3-4 Soil		Sampling Date Sampling Time			te/Time Rece traction Date		11/5/2008 11/06/2008	10:45 AM
Comments									
Parameter		Result	Units	PQL	Analysis Date	Analyst	Meth	od	Qualifie
2-Methylnaphtl	halene	0.0069	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Acenaphthene		ND	mg/Kg	0.005	11/10/2008	11/10/2008 EMP EPA 82700		270C	
Acenaphthylene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Anthracene	Anthracene		mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Benzo(ghi)perylene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Benzo[a]anthra	Benzo[a]anthracene		mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Benzo[a]pyren	e	0.0051	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Benzo[b]fluora	nthene	0.0051	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Benzo[k]fluora	nthene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Chrysene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Dibenz[a,h]ant	hracene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Fluoranthene	Fluoranthene		mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Fluorene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Indeno[1,2,3-c	d]pyrene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Naphthalene		0.0197	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Phenanthrene		0.0156	mg/Kg	0.005	11/10/2008	EMP	EPA 8	270C	
Pyrene		0.0123	mg/Kg	0.005	11/10/2008	EMP	EPA 82	270C	
			Surrogate	e Data	l				
mple Number	081105018-009								
Surrogate S	tandard		Method		Perc	ent Recovery	,	Control L	imits
Terphenyl-d14			EPA 82700	;		97.7	, 18-137		7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-010 DP40-081104-5-6 Soil		Sampling Date Sampling Time			ate/Time Rece straction Date		11/5/2008 11/06/2008	10:45 AM
Comments									
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
2-Methylnaphtl	halene	ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Acenaphthene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Acenaphthylen	e	ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Anthracene	Anthracene		mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo(ghi)perylene		0.0279	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]anthra	Benzo[a]anthracene		mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]pyren	e	0.0266	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[b]fluora	nthene	0.0339	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[k]fluora	nthene	0.0134	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Chrysene		0.0692	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Dibenz[a,h]anthracene		0.0123	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Fluoranthene		0.125	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Fluorene		0.0050	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Indeno[1,2,3-c	d]pyrene	0.0125	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Naphthalene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Phenanthrene		0.0175	mg/Kg	0.005	11/9/2008	EMP	P EPA 8270C		
Pyrene		0.0259	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
			Surrogate	e Data					
mple Number	081105018-010								
Surrogate S	Surrogate Standard		Method		Perc	ent Recovery	,	Control L	imits
Terphenyl-d1	4		EPA 82700	;		91.0		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-017 DP38-081104-1-2 Soil		Sampling Date Sampling Time			ate/Time Rece straction Date		11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
2-Methylnapht	halene	0.0103	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Acenaphthene		0.0073	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Acenaphthylen		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Anthracene		0.0121	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo(ghi)per	Benzo(ghi)perylene		mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]anthra		0.0276	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]pyren	e	0.0355	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[b]fluora	nthene	0.0393	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[k]fluora	nthene	0.0510	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Chrysene		0.0497	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Dibenz[a,h]ant	hracene	0.0196	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Fluoranthene	Fluoranthene		mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Fluorene		0.0094	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Indeno[1,2,3-c	d]pyrene	0.0258	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Naphthalene		0.0126	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Phenanthrene		0.0244	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Pyrene		0.0303	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
			Surrogate	e Data					
mple Number	081105018-017								
Surrogate Standard		Method		Perc	ent Recovery	/	Control L	imits	
Terphenyl-d1	4		EPA 82700	;		92.4		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-019 DP38-081104-5-6 Soil		Sampling Date Sampling Time			te/Time Rece traction Date		11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Meth	od	Qualifier
2-Methylnaphtl	halene	0.0668	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Acenaphthene		0.0469	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Acenaphthylen	e	0.0311	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Anthracene		0.0605	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo(ghi)pery	/lene	0.0432	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[a]anthra	acene	0.0719	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[a]pyren	e	0.0705	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[b]fluora	nthene	0.0724	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[k]fluora	nthene	0.0560	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Chrysene		0.0947	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Dibenz[a,h]ant	hracene	0.0245	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Fluoranthene		0.222	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Fluorene		0.0693	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Indeno[1,2,3-c	d]pyrene	0.0400	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Naphthalene		0.226	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Phenanthrene		0.300	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Pyrene		0.203	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
			Surrogate	e Data	l				
Imple Number	081105018-019								
Surrogate S	tandard		Method		Perc	ent Recovery	,	Control L	imits
Terphenyl-d1	4		EPA 82700	;		98.9		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-020 DP38-081104-6-7 Soil		Sampling Date Sampling Time			ate/Time Reconstruction Date		11/5/2008 11/06/2008	10:45 AM
Comments									
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
2-Methylnaphtl	halene	0.0097	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Acenaphthene		0.0084	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Acenaphthylen	ie	0.0104	mg/Kg	0.005	11/9/2008	EMP	EPA a	8270C	
Anthracene		0.0162	mg/Kg	0.005	11/9/2008	EMP	EPA a	8270C	
Benzo(ghi)pery	ylene	0.0575	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Benzo[a]anthra	acene	0.0773	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Benzo[a]pyren	e	0.0565	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Benzo[b]fluora	nthene	0.0620	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Benzo[k]fluora	nthene	0.0416	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Chrysene		0.0941	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Dibenz[a,h]ant	hracene	0.0354	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Fluoranthene		0.0643	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Fluorene		0.0218	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Indeno[1,2,3-c	d]pyrene	0.0465	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Naphthalene		0.0233	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Phenanthrene		0.0447	mg/Kg	0.005	11/9/2008	EMP	EPA 8	8270C	
Pyrene		0.0926	mg/Kg	0.005	11/9/2008	EMP	EPA	8270C	
			Surrogate	e Data	l				
mple Number	081105018-020								
Surrogate S	tandard		Method		Perc	ent Recover	у	Control L	imits
Terphenyl-d1	4		EPA 82700	;		96.4		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-023 DP30-081104-3-4 Soil		Sampling Date Sampling Time			ate/Time Rece straction Date		11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	nod	Qualifier
2-Methylnapht	halene	ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Acenaphthene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8		
Acenaphthylen		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8		
Anthracene		0.0089	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo(ghi)per	vlene	0.0258	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[a]anthra		0.0206	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[a]pyren		0.0177	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[b]fluora	nthene	0.0200	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Benzo[k]fluora	nthene	0.0162	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Chrysene		0.0115	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Dibenz[a,h]ant	hracene	0.0203	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Fluoranthene		0.0133	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Fluorene		0.0079	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Indeno[1,2,3-c	d]pyrene	0.0230	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Naphthalene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Phenanthrene		0.0134	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
Pyrene		0.0140	mg/Kg	0.005	11/9/2008	EMP	EPA 8	270C	
			Surrogate	e Data	1				
mple Number	081105018-023								
Surrogate S	tandard		Method		Perc	ent Recovery	/	Control L	imits
Terphenyl-d1	4		EPA 8270C	;		104.6		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-026 DP27-081104-0-1 Soil		Sampling Date Sampling Time			ate/Time Rece straction Date	ived 11/5/2008 11/06/2008	10:45 AM
Comments								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
2-Methylnaphtl	halene	0.0131	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Acenaphthene		0.0064	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Acenaphthylen	ie	0.0241	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Anthracene		0.0254	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo(ghi)pery	ylene	0.0557	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[a]anthra	acene	0.0989	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[a]pyren	e	0.120	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[b]fluora	nthene	0.0876	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Benzo[k]fluora	nthene	0.0736	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Chrysene		0.101	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Dibenz[a,h]ant	hracene	0.0293	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Fluoranthene		0.190	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Fluorene		0.0127	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Indeno[1,2,3-c	d]pyrene	0.0548	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Naphthalene		0.0312	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Phenanthrene		0.0863	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
Pyrene		0.223	mg/Kg	0.005	11/9/2008	EMP	EPA 8270C	
			Surrogate	e Data				
mple Number	081105018-026							
Surrogate S	tandard		Method		Perc	ent Recovery	Control L	imits
Terphenyl-d1	4		EPA 82700	:		101.8	18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-027 DP27-081104-3-4 Soil		Sampling Date Sampling Time			te/Time Rec		11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	thod	Qualifier
2-Methylnapht	halene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Acenaphthene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Acenaphthylen		ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Anthracene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo(ghi)pery	ylene	0.0069	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[a]anthra		0.0092	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[a]pyren	e	0.0067	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[b]fluora	nthene	0.0085	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[k]fluora	nthene	0.0055	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Chrysene		0.0136	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Dibenz[a,h]ant	hracene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Fluoranthene		0.0291	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Fluorene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Indeno[1,2,3-c	d]pyrene	ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Naphthalene		ND	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Phenanthrene		0.0127	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Pyrene		0.0250	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
			Surrogate	e Data	1				
mple Number	081105018-027								
Surrogate S	tandard		Method		Perc	ent Recover	у	Control L	imits
Terphenyl-d1	4		EPA 8270C	;		98.1		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix	081105018-028 DP27-081104-4-5 Soil		Sampling Date Sampling Time			ate/Time Rece straction Date		11/5/2008 11/06/2008	10:45 AM
Comments									
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
2-Methylnaphtl	halene	0.0131	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Acenaphthene		ND	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Acenaphthylen	e	0.0060	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Anthracene		0.0090	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo(ghi)pery	/lene	0.0243	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]anthra	acene	0.0293	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[a]pyren	e	0.0314	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[b]fluora	nthene	0.0296	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Benzo[k]fluora	nthene	0.0159	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Chrysene		0.0228	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Dibenz[a,h]ant	hracene	0.0159	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Fluoranthene		0.0363	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Fluorene		0.0056	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Indeno[1,2,3-c	d]pyrene	0.0221	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Naphthalene		0.0131	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Phenanthrene		0.0242	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
Pyrene		0.0435	mg/Kg	0.005	11/9/2008	EMP	EPA 8	3270C	
			Surrogate	e Data					
mple Number	081105018-028								
Surrogate S	tandard		Method		Perc	ent Recovery	,	Control L	imits
Terphenyl-d1	4		EPA 82700	;		107.2		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	081105018-031 DP34-081104-4-6 Soil		Sampling Date Sampling Time			te/Time Reconstruction Date		11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Met	hod	Qualifier
2-Methylnapht	halene	0.0414	mg/Kg	0.005	11/10/2008	EMP	FPA	3270C	
Acenaphthene		ND	mg/Kg	0.005	11/10/2008	EMP		3270C	
Acenaphthylen		0.0100	mg/Kg	0.005	11/10/2008	EMP	EPA	3270C	
Anthracene		0.0146	mg/Kg	0.005	11/10/2008	EMP	EPA	3270C	
Benzo(ghi)per	lene	0.0297	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Benzo[a]anthra		0.0369	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Benzo[a]pyren	e	0.0393	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Benzo[b]fluora	nthene	0.0314	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Benzo[k]fluora	nthene	0.0331	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Chrysene		0.0341	mg/Kg	0.005	11/10/2008	EMP	EPA a	3270C	
Dibenz[a,h]ant	hracene	0.0172	mg/Kg	0.005	11/10/2008	EMP	EPA a	3270C	
Fluoranthene		0.0606	mg/Kg	0.005	11/10/2008	EMP	EPA a	3270C	
Fluorene		0.0111	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Indeno[1,2,3-c	d]pyrene	0.0250	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Naphthalene		0.0326	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Phenanthrene		0.0402	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
Pyrene		0.0687	mg/Kg	0.005	11/10/2008	EMP	EPA 8	3270C	
			Surrogate	e Data					
mple Number	081105018-031								
Surrogate S	tandard		Method		Perc	ent Recovery	y	Control L	imits
Terphenyl-d1	4		EPA 82700	;		98.3		18-13	7

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

ample Number client Sample ID latrix comments	081105018-032 DP34-081104-7.5-9.5 Soil		Sampling Date Sampling Time			ate/Time Re xtraction Da		11/5/2008 11/06/2008	10:45 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	thod	Qualifier
2-Methylnaphth	nalene	0.0161	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Acenaphthene		0.0122	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Acenaphthylen	е	0.0060	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Anthracene		0.0144	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo(ghi)pery	lene	0.0325	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[a]anthra	icene	0.0328	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[a]pyrene	e	0.0340	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[b]fluorar	nthene	0.0306	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Benzo[k]fluorar	nthene	0.0226	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Chrysene		0.0196	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Dibenz[a,h]anth	nracene	0.0184	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Fluoranthene		0.0489	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Fluorene		0.0170	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Indeno[1,2,3-cc	d]pyrene	0.0335	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Naphthalene		0.0653	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Phenanthrene		0.0564	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	
Pyrene		0.0483	mg/Kg	0.005	11/10/2008	EMP	EPA	8270C	

Surrogate Data

Sample Number	081105018-032				
Surrogate St	andard	Method	Percent Recovery	Control Limits	
Terphenyl-d1	4	EPA 8270C	92.6	18-137	

Authorized Signature

John. Conthe

MCL EPA's Maximum Contaminant Level

ND

Not Detected PQL Practical Quantitation Limit

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLOGIES CORPORATION	Batch #:	081105018
Address:	2612 YELM HWY SE	Project Name:	EAST BAY RI PHASE 1
	OLYMPIA, WA 98001		
Attn:	TROY BUSSEY		

Analytical Results Report

Quality Control Data

Lab Control Sample

Parameter	LCS Result	Units I	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Chrysene	0.788	mg/kg	1	78.8	30-140	11/6/2008	11/10/2008
Acenaphthene	1.01	mg/kg	1	101.0	30-140	11/6/2008	11/10/2008
Acenaphthylene	1.02	mg/kg	1	102.0	30-140	11/6/2008	11/10/2008
Anthracene	0.899	mg/kg	1	89.9	30-140	11/6/2008	11/10/2008
Benzo(ghi)perylene	1.02	mg/kg	1	102.0	30-140	11/6/2008	11/10/2008
Benzo[a]anthracene	0.872	mg/kg	1	87.2	30-140	11/6/2008	11/10/2008
Benzo[a]pyrene	1.01	mg/kg	1	101.0	30-140	11/6/2008	11/10/2008
2-Methylnaphthalene	1.09	mg/kg	1	109.0	30-140	11/6/2008	11/10/2008
Benzo[k]fluoranthene	0.960	mg/kg	1	96.0	30-140	11/6/2008	11/10/2008
Pyrene	0.853	mg/kg	1	85.3	30-140	11/6/2008	11/10/2008
Dibenz[a,h]anthracene	0.995	mg/kg	1	99.5	30-140	11/6/2008	11/10/2008
Fluoranthene	0.877	mg/kg	1	87.7	30-140	11/6/2008	11/10/2008
Fluorene	0.952	mg/kg	1	95.2	30-140	11/6/2008	11/10/2008
Indeno[1,2,3-cd]pyrene	1.00	mg/kg	1	100.0	30-140	11/6/2008	11/10/2008
Naphthalene	0.953	mg/kg	1	95.3	30-140	11/6/2008	11/10/2008
Phenanthrene	0.900	mg/kg	1	90.0	30-140	11/6/2008	11/10/2008
Benzo[b]fluoranthene	1.02	mg/kg	1	102.0	30-140	11/6/2008	11/10/2008

Matrix Spike

•		Sample	MS	Ν	MS		AR		
Sample Number	Parameter	Result	Result	Units Sp	pike	%Rec	%Rec	Prep Date	Analysis Date
081105018-023	Chrysene	0.0115	0.863	mg/kg	1	85.2	30-140	11/6/2008	11/10/2008
081105018-023	Acenaphthene	ND	1.09	mg/kg	1	109.0	30-140	11/6/2008	11/10/2008
081105018-023	Acenaphthylene	ND	1.09	mg/kg	1	109.0	30-140	11/6/2008	11/10/2008
081105018-023	Anthracene	0.0089	0.979	mg/kg	1	97.0	30-140	11/6/2008	11/10/2008
081105018-023	Benzo(ghi)perylene	0.0258	1.18	mg/kg	1	115.4	30-140	11/6/2008	11/10/2008
081105018-023	Benzo[a]anthracene	0.0206	0.984	mg/kg	1	96.3	30-140	11/6/2008	11/10/2008
081105018-023	Benzo[a]pyrene	0.0177	1.10	mg/kg	1	108.2	30-140	11/6/2008	11/10/2008
081105018-023	2-Methylnaphthalene	ND	1.16	mg/kg	1	116.0	30-140	11/6/2008	11/10/2008
081105018-023	Benzo[k]fluoranthene	0.0162	1.04	mg/kg	1	102.4	30-140	11/6/2008	11/10/2008
081105018-023	Pyrene	0.0140	0.940	mg/kg	1	92.6	30-140	11/6/2008	11/10/2008
081105018-023	Dibenz[a,h]anthracene	0.0203	1.13	mg/kg	1	111.0	30-140	11/6/2008	11/10/2008
081105018-023	Fluoranthene	0.0133	0.973	mg/kg	1	96.0	30-140	11/6/2008	11/10/2008
081105018-023	Fluorene	0.0079	1.04	mg/kg	1	103.2	30-140	11/6/2008	11/10/2008
081105018-023	Indeno[1,2,3-cd]pyrene	0.0230	1.15	mg/kg	1	112.7	30-140	11/6/2008	11/10/2008

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: PIONEER TECHNOLOGIES CORPORATION Batch #: 081105018 Address: 2612 YELM HWY SE Project Name: EAST BAY RI PHASE 1 OLYMPIA, WA 98001 TROY BUSSEY EAST BAY RI PHASE 1 Attn: TROY BUSSEY EAST BAY RI PHASE 1

Quality Control Data

Matrix Spike

		Sample	MS		MS		AR		
Sample Number	Parameter	Result	-	Units		%Rec	%Rec	Prep Date	Analysis Date
081105018-023	Naphthalene	ND	0.960	mg/kg	1	96.0	30-140	11/6/2008	11/10/2008
081105018-023	Phenanthrene	0.0134	0.947	mg/kg	1	93.4	30-140	11/6/2008	11/10/2008
081105018-023	Benzo[b]fluoranthene	0.0200	1.02	mg/kg	1	100.0	30-140	11/6/2008	11/10/2008

Matrix Spike Duplicate

	MSD		MSD			AR		
Parameter	Result	Units	Spike	%Rec	%RPD	%RPD	Prep Date	Analysis Date
Chrysene	0.822	mg/kg	1	81.1	4.9	0-50	11/6/2008	11/10/2008
Acenaphthene	1.05	mg/kg	1	105.0	3.7	0-50	11/6/2008	11/10/2008
Acenaphthylene	1.07	mg/kg	1	107.0	1.9	0-50	11/6/2008	11/10/2008
Anthracene	0.932	mg/kg	1	92.3	4.9	0-50	11/6/2008	11/10/2008
Benzo(ghi)perylene	1.06	mg/kg	1	103.4	10.7	0-50	11/6/2008	11/10/2008
Benzo[a]anthracene	0.943	mg/kg	1	92.2	4.3	0-50	11/6/2008	11/10/2008
Benzo[a]pyrene	1.07	mg/kg	1	105.2	2.8	0-50	11/6/2008	11/10/2008
2-Methylnaphthalene	1.11	mg/kg	1	111.0	4.4	0-50	11/6/2008	11/10/2008
Benzo[k]fluoranthene	1.01	mg/kg	1	99.4	2.9	0-50	11/6/2008	11/10/2008
Pyrene	0.929	mg/kg	1	91.5	1.2	0-50	11/6/2008	11/10/2008
Dibenz[a,h]anthracene	1.05	mg/kg	1	103.0	7.3	0-50	11/6/2008	11/10/2008
Fluoranthene	0.942	mg/kg	1	92.9	3.2	0-50	11/6/2008	11/10/2008
Fluorene	0.981	mg/kg	1	97.3	5.8	0-50	11/6/2008	11/10/2008
Indeno[1,2,3-cd]pyrene	1.07	mg/kg	1	104.7	7.2	0-50	11/6/2008	11/10/2008
Naphthalene	0.924	mg/kg	1	92.4	3.8	0-50	11/6/2008	11/10/2008
Phenanthrene	0.927	mg/kg	1	91.4	2.1	0-50	11/6/2008	11/10/2008
Benzo[b]fluoranthene	1.04	mg/kg	1	102.0	1.9	0-50	11/6/2008	11/10/2008

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
2-Methylnaphthalene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Acenaphthene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Acenaphthylene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Anthracene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Benzo(ghi)perylene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Benzo[a]anthracene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Benzo[a]pyrene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Benzo[b]fluoranthene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Benzo[k]fluoranthene	ND	mg/Kg	0.005	11/6/2008	11/10/2008

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	PIONEER TECHNOLO	GIES CORPORATION	Batch #:	081105018			
Address:	2612 YELM HWY SE		Project Name:	EAST BAY RI PHASE 1			
	OLYMPIA, WA 98001						
Attn:	TROY BUSSEY						
Analytical Results Report							

Quality Control Data

Method Blank

Parameter	Result	Units	PQL	Prep Date	Analysis Date
Chrysene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Dibenz[a,h]anthracene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Fluoranthene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Fluorene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Indeno[1,2,3-cd]pyrene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Naphthalene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Phenanthrene	ND	mg/Kg	0.005	11/6/2008	11/10/2008
Pyrene	ND	mg/Kg	0.005	11/6/2008	11/10/2008

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

PACE ANALYTICAL SERVICES REPORT

www.pacelabs.com

Report Prepared for:

John Coddington Anatek Labs, Inc. 1282 Alturas Drive Moscow ID 83843

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Prepared Date:

December 2, 2008

Pace Analytical Services, Inc. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 1083915 Sample Receipt Date: 11/05/2008 Client Project #: East Bay RI Phase I Client Sub PO #: N/A State Cert #: Idaho

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed and prepared by:

monter

Nate Habte, Project Manager (612) 607-6407 (612) 607-6444 (fax) natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

DISCUSSION

This report presents the results from the analyses performed on twenty-five samples submitted by a representative of Anatek Labs, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements. The samples received on 11/05/2008 were outside of the recommended temperature range of 0-6 degrees Celsius.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts generally ranged from 29-108%. All of the labeled standard recoveries obtained for sample DP38-081104-6-7 were below the 40-135% target range specified in Method 8290 and were flagged "P" on the results tables. Also, one low recovery was obtained for sample DP36-081104-5-6. Since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained. Pace Analytical Services will perform a repeat analysis of sample DP38-081104-6-7 at no charge if additional sample material is submitted within 30-days of this report.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained, or "E" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

Laboratory and matrix spike samples were also prepared using clean sand or sample matrix that had been fortified with native standard materials. The spiked native compounds were generally recovered at 72-130%, with relative percent differences of 0.5-18.2%. Somewhat variable background-subtracted results were obtained for the spiked native OCDD in the matrix spike samples due to the levels of this congener in the sample materials. Matrix spikes were prepared with the 11/19/2008 sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

DISCUSSION

The responses obtained for the labeled OCDD and/or HpCDD in calibration standard analyses D81112B01 and D81112B02 were outside the target range. As specified in the method, the averages of the daily response factors for these compounds were used in the calculations for the samples from these runshifts. The affected values were flagged "Y" on the results tables. It should be noted that the accuracy of the native congener determinations was not impacted by these deviations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

				1									r																
Anatek	$rog_{\text{th}} = 08.5915$	Turn Around Time & Reporting	http://www.anateklabs.com/services/guidelines/reporting.asp		requests must be		Note Special Instructions/Comments			1) How the structor Fac	a subsequent and		2) BILL ANTUYSES & SEAD RESURS	TO AWATER LASS							VOC Head Scare?			Temperature ("C.) <u>9. /</u>	Preservative.		Date & Time:	Inspected By	
	00	Coop with a			March	à					120	28	643	ŝ	202	19 29 1	5	ଞ୍ଚ	\$,	010	3	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Time	1638	9:20				
_	882-9246 X 838-44	Coopi			 Servo Yeso 	aolinels	sted																Date	11/4/02	115-08				
Custody Record	D 83843 (208) 883-2839 FAX 882-9246 WA 99202 (509) 838-3999 FAX 838-4433	CHIT (MAND	RE PHASE 1		BY AWATER	(360)	List Analyses Requested																Company	<i>إ</i> بر	lace		-		
Chain of Custod			1.1	Email Address :	Purchase Order #:	Sampler Name & phone:	List	ر ار	e volume s'foretry of volume	idme2	$1 \eta_m \times$	X - -	X	X			X	X	X.	X				vr, J	1 1				
C	 1282 Alturas Drive, Moscow 504 E Sprague Ste D, Spokane) 		٤,						Matrix	SOL	.											Signature	7 7	212	9			
	1282 Alt 504 E Spr	•		Zip: 23843			scription			Sampling Date/Time	0900	29.05	0910	٥٤٤٥	OVST	1000	1005	011	lt IS	(<u>2</u>)	311	051		Busstr On					
	00		DRAVE	State: Plate:	- 2839		ample De					·	~			-		4					Printed Name	then bus	SS				
Anatek	Labs, Inc.	Company Name:	いたい	1	Phone: 208 893-	Fax:	Provide Sample Description			Lab Sample Identification	0032-0Bil 04-1-7	322-0BUDY-45	2022.08164 - 49	pf33-081101-1-2	DP33-0404 1-3-4	DP33-28114-56	0933-36 1104-7-8	DQ Y 0- 0BILON 1-2	DP40-DS1164-3-4	0140-08404-5-6	06 30-0210 02-102	Dr 34-081104-34	Paint	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Received by
X	R	epor	t No)1	1083	3915	5_8	329	0)	12	Ú.	l				2	7 3 7 3 7 1		ŝ	ŀ			F	Page	e 5 (of 4	7

Á

ŝ

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Stody Record 843 (208) 883-2839 FAX 882- 843 (208) 883-2839 FAX 882- 9202 (509) 838-3999 FAX 882- 9202 (509) 838-3999 FAX 882- 9202 (509) 838-3999 FAX 882- 9202 (509) 838-3999 FAX 882- 840 PAL PL& I			T
Stody Record 843 (208) 883-283 843 (208) 883-39 9202 (509) 833-39 9202 (509) 833-39 9205 (7 / 76) 847 / 76 900 8 4 8 11st Analyses F 11st Anal			
of Cust w ID 8384 W ID 8384 W ID 8384 M ID 838			
Chain of Custod ive, Moscow ID 83843 (ive, Moscow ID 83843 (B, Spokane WA 99202 Project Manager: Project Manager: Project Name & #: Project Name & #: Proj	2		
E Sprague Ste E Sprague Ste E Sprague Ste E Sprague Ste B38Y3 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
atek abs, Inc. Arguer Brate Ber-1-2 Ber-1-15 Ber-15 Ber			
Anatek Labs, Labs, Address, Address, Phone. City. City. Cit	Relinquished by	Received by	Relinquished by

Report No.....1083915_8290

0

Anatek 1 oko	Chain of Custody Record	Record		Anatek Log-In # 102.01 <
00	O 1282 Alturas Drive, Moscow ID 83843 (208) 883-2839 FAX 882-9246 O 504 E Sprague Ste D, Spokane WA 99202 (509) 838-3999 FAX 838-4433 O	08) 883-2839 FAX 88 (509) 838-3999 FAX	2-9246 O 838-4433 O	
	Project Manager:	Caller	رحال الرجعين	Turn Around Time & Reporting Blasse refer to our normal turn around times at
Address Arguets DR	Project Name & #:	Ret PHASE 1		http://www.anateklabs.com/services/guidelines/reporting.asp
利				
883 - 2839		By award		requests must be
	Sampler Name & phone:	(360)	570-1700	
Provide Sample Description	List	List Analyses Requested	d .	Note Special Instructions/Comments
	vitainers			
Sample Identification Sampling Date/Time	olqms2			1) HULD ALL SAMPLE EN
NH/04 1446	<u> </u>		026 227	Presigue Jussenuent
1 1/20 J			027 728	
0627-051104-45 1200	X		62859451	2) Rin to Award a
			421-20	Saw Resurts to Amoth
0(34-08404-1-5 (1550			032 635	
			031 32	
ac()				Inspection Checklist
				Received Intact?
				Labels & Chains Agree? 🥂 N
				Containers Sealed?
				VOC Head Space? Y (N)
Printed Name St	Signature	Company Date	te Time	
- 200 haring half	Fr. Bum d		11/1/16 1/03	Temperature (°C): 7.1
J25	11200	Pare 1	11-5-08 9:20	Preservative:
	0			
				Date & Tane
				Inspected By

6 State Stat	ample Condition Upon Receip	
Pace Analytical Client Name	e: Anatek	Project # <u>/083915</u>
Courier: Fed Ex UPS USPS Cli Tracking #: <u>8(43 182 894</u> 2	ient Commercial Pace Other	Optional Proj. Due Date:
Custody Seal on Cooler/Box Present: Gyes	s 🔲 no 🛛 Seals intact: 🛃 yes	no Proj. Name:
Packing Material:	le Bags 🔲 None 🔲 Other	Temp Blank: Yes No
Thermometer Used 80344042, (79425)	Type of Ice: Wet Blue None	Samples on ice, cooling process has begun
Cooler Temperature 9,1 Temp should be above freezing to 6°C	Biological Tissue is Frozen: Yes No Comments:	Date and Initials of person examining contents:
Chain of Custody Present:	Gres INO IN/A 1.	
Chain of Custody Filled Out:	Defes INO IN/A 2.	
Chain of Custody Relinquished:	Pres DNo DN/A 3.	
Sampler Name & Signature on COC:	Pres No IN/A 4.	
Samples Arrived within Hold Time:	Pres INO IN/A 5.	
Short Hold Time Analysis (<72hr):		`````
Rush Turn Around Time Requested:	Fres DNO DNIA 7.5 DAY TAT	
Sufficient Volume:		
Correct Containers Used:	ØYes □No □N/A 9.	
-Pace Containers Used:	Eres Ono Onia	
Containers Intact:	Deres DNO DN/A 10.	
Filtered volume received for Dissolved tests	□Yes 12150 □N/A 11.	
Sample Labels match COC:	Ves DNO DNA 12.	
-Includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	 □Yes □No ØN/A 13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ØN/A	
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water)	⊡Yes Dro Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No 251/A 14.	
Headspace in VOA Vials (>6mm):	□Yes □No. 17. 15.	,
Trip Blank Present:	□Yes □No 2/N/A 16.	
Trip Blank Custody Seals Present		
Pace Trip Blank Lot # (if purchased):		
	Ler Date/Time: 11/5/08 JINGDA 0, 10, DS, Rush Lippite temp excer 2 parkage regn 2 checked sange Invoice to John	Field Data Required? Y / N PIJJOD JAT JEVEL EDD PART JEVEL PART JEVEL EDD PART JEVEL EDD
Project Manager Review:	MAN	Date: 11/5/08

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Jan S	ampl	a Co	nditi	on Upon Receip	
Pace Analytical Client Name	e: 🖌	Inat	eK	,	Project # 108 3915
Courier:	ent []Corr	mercia	al 🗍 Pace Other	Optional Rroj Due Date
Custody Seal on Cooler/Box Present: 🗌 yes	s 🛛	no	Sea	als intact: 🔲 yes	no Proj Name
Packing Material: 📋 Bubble Wrap 🛛 🗍 Bubble	e Bags		None	Other	Temp Blank: Yes No 🖊
Thermometer Used 80344042, 179425	Тур	e of lo	e: W	et Bive None	Samples on Ice, cooling process has begun
Cooler Temperature <u>3.7</u> Temp should be above freezing to 6°C	Biol	logica	l Tissı	ie is Frozen: Yes No Comments:	Date and Initials of person examining contents:
Chain of Custody Present:	ΠYe	s JIN	o □n/	'A 1.	
Chain of Custody Filled Out:	ΩYe		, ₀ .⊡n/	A 2.	
Chain of Custody Relinquished:	ŪYe	s ZN	₀	A 3.	
Sampler Name & Signature on COC:	DYe	s Dina	ы Пи	A 4.	
Samples Arrived within Hold Time:	P Ye	s 🗆 No	> □n/.	A 5.	
Short Hold Time Analysis (<72hr):	Ye		> □n/	A 6.	
Rush Turn Around Time Requested:	Ve:			A 7.	
Sufficient Volume:				A 8.	· · · · · · · · · · · · · · · · · · ·
Correct Containers Used:		s ⊡No	□n//	9,	
-Pace Containers Used:					
Containers Intact:	Yes		Dn/A	10.	
Filtered volume received for Dissolved tests	□Yes	ШNo	E)/NIA	11.	······································
Sample Labels match COC:	F Yes	ШNo	DN/A	12.	······································
-Includes date/time/ID/Analysis Matrix: <u></u> All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	′ ⊡Yes	⊡No		13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	ШNo	ØN/A		
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water)	□Yes	P No		Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes	ΠNo	<u>Phia</u>	14.	-
Headspace in VOA Vials (>6mm):	□Yes	□No		15.	
Trip Blank Present:	□Yes	ШNo	ZÎN/A	16.	
Trip Blank Custody Seals Present	⊡Yes	□ No			
Pace Trip Blank Lot # (if purchased):					
Client Notification/ Resolution:		- tidei me			Field Data Required? Y / N
Person Contacted:			Date/1	ìme:	
Comments/ Resolution:	<u>830</u>	HF =	-	- resubmi	Hel for re-extraction
					. , , , , , , , , , , , , , , , , , , ,
	<u></u> -			······································	
· · · · · · · · · · · · · · · · · · ·			•	<u></u>	· · · · · · · · · · · · · · · · · · ·
Project Manager Review:		- P	44	₽/#.00×4	Date: 11/19/08
					/ / [~]

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 D81 SM 13.1 6.8 12.2 D81 D81	g 2 g 031GC2	-2 D81112B02	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/12/200	08 08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.041 0.041	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	;	2.00 2.00	82 72
2,3,7,8-TCDD Total TCDD	ND ND		0.077 0.077	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	92 93 91
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.074	0.028 I 0.039 0.034	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	13C 13C 13C	2.00 2.00 2.00 2.00	80 70 75 92 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.082 0.082	1,2,3,4,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	68 86
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 	0.069 0.100 0.067	0.030 0.033 0.021	1,2,3,4,7,8,9-HpCl 1,2,3,4,6,7,8-HpCl OCDD-13C		2.00 2.00 4.00	96 84 Y 76 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.045 0.140		0.028 J 0.028 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.130 0.130	0.045 	0.043 I 0.045 0.050 J 0.046 J	2,3,7,8-TCDD-37C	514	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.260 0.150 0.410	 	0.072 BJ 0.097 BJ 0.084 BJ	Total 2,3,7,8-TCD Equivalence: 0.04 (Using ITE Factors	6 ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.400 2.500		0.100 J 0.100 J				
OCDF OCDD	0.700 9.600		0.170 J 0.190				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Anal	ysis Results
--------	------	--------	------	--------------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R81 CVS 13.1 6.2 12.3 R81 R81	l g 3 g 101GC1	-5 R81111A25	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/11/20	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.11	0.029	0.025 l 0.025 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	;	2.00 2.00	68 75
2,3,7,8-TCDD Total TCDD	ND ND		0.053 0.053	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	74 70 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.26	0.064	0.053 0.036 I 0.045 BJ	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	13C 13C 13C	2.00 2.00 2.00 2.00 2.00 2.00	82 83 70 72 79
1,2,3,7,8-PeCDD Total PeCDD	 ND	0.039	0.029 I 0.029	1,2,3,4,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00	77 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.11 0.14	 0.084	0.045 BJ 0.046 J 0.022 I	1,2,3,4,7,8,9-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 2.00 4.00	67 87 85
1,2,3,7,8,9-HxCDF Total HxCDF	0.90	0.055	0.046 I 0.040 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDE		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	 0.16	0.086 0.190 0.120 	0.074 0.055 0.054 0.061 J	2,3,7,8-TCDD-37C	:14	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	 2.30	0.370 0.110 	0.056 E 0.051 I 0.054 BJ	Total 2,3,7,8-TCD Equivalence: 0.08 (Using ITE Factors	0 ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.90 5.10		0.042 J 0.042				
OCDF OCDD	3.10 23.00		0.061 J 0.052				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 D81 SM 13.4 6.6 12.5 D81 D81	⊧g 5 g 031GC2	-9 D81112B02	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/12/20	800	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.22	0.130	0.120 I 0.120 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	,	2.00 2.00	98 84
2,3,7,8-TCDD Total TCDD	ND ND		0.060 0.060	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	102 100 101
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.10	0.220	0.081 0.091 I 0.086 J	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	13C 13C 13C	2.00 2.00 2.00 2.00	91 80 83 105
1,2,3,7,8-PeCDD Total PeCDD	0.16 0.85		0.096 J 0.096 J	1,2,3,4,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	90 80 98
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.17 0.25 0.14	 	0.017 BJ 0.028 J 0.014 J	1,2,3,4,7,8,9-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C	DD-13C	2.00 2.00 4.00	108 97 Y 83 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.11 2.50		0.019 J 0.020 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDE		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.32	0.079 0.180 	0.076 0.082 J 0.064 0.074 J	2,3,7,8-TCDD-37C	:14	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.20 3.30	0.150	0.095 BJ 0.130 I 0.110 J	Total 2,3,7,8-TCD Equivalence: 0.25 (Using ITE Factors	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	3.20 6.30		0.052 J 0.052				
OCDF OCDD	3.80 24.00		0.130 J 0.120				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Resul	ts
-----------------------------------	----

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 R811 CVS 13.1 9.8 11.8 R811 R811	g g 101GC1	-2 R81111A25	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/12/20	800	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.93 37.00		0.140 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1		2.00 2.00 2.00	61 62 58
2,3,7,8-TCDD Total TCDD	0.43 15.00		0.150 J 0.150	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00	60 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.86 0.88 36.00	 	0.190 J 0.160 J 0.170	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00	65 65 59 60
1,2,3,7,8-PeCDD Total PeCDD	0.94 22.00		0.094 J 0.094	1,2,3,4,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00 2.00	64 62 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.95 0.61 1.50	 	0.061 J 0.042 J 0.042 J	1,2,3,4,7,8,9-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 2.00 4.00	48 64 59
1,2,3,7,8,9-HxCDF Total HxCDF	0.11 18.00		0.041 J 0.047	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDE		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.50 3.40 2.10 35.00	 	0.088 J 0.086 J 0.130 J 0.100	2,3,7,8-TCDD-37C	14	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.35 6.10	4.2	0.051 E 0.075 BJ 0.063	Total 2,3,7,8-TCD Equivalence: 2.6 r (Using ITE Factors	ig/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	17.00 35.00		0.092 0.092				
OCDF OCDD	4.20 63.00		0.085 J 0.038				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Resul	ts
-----------------------------------	----

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 D81 ² SMT 13.2 5.6 12.5 D810 D81 ²	g g)31GC2	-4 D81112B02	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/12/200)8)8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.34 3.60		0.081 J 0.081	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	88 73 93
2,3,7,8-TCDD Total TCDD	ND 7.30		0.075 0.075	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 13C	2.00 2.00	92 92
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.10 7.40 36.00	 	0.150 J 0.220 0.180	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	81 68 72 94 77
1,2,3,7,8-PeCDD Total PeCDD	0.68 7.10		0.098 J 0.098	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD)-13C DF-13C	2.00 2.00 2.00 2.00	66 84 100
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	16.00 3.80 3.20	6.2	0.120 0.130 E 0.092 J 0.096 J	1,2,3,4,7,8,9-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C 1,2,3,4-TCDD-13C	DD-13C	2.00 4.00 2.00	84 Y 84 Y NA
Total HxCDF 1,2,3,4,7,8-HxCDD	99.00		0.110 0.110 l	1,2,3,7,8,9-HxCDD 2,3,7,8-TCDD-37C		2.00 0.20	NA 79
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.20 1.90 65.00	 	0.093 0.110 J 0.100				
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	25.00 4.70 140.00	 	0.095 0.150 0.120	Total 2,3,7,8-TCD Equivalence: 10 ng (Using ITE Factors	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	150.00 440.00		0.190 0.190				
OCDF OCDD	140.00 1000.00		0.170 0.065				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit.

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R81 CVS 13.8 6.3 12.9 R81 R81	3 g 9 g 101GC1	-6 R81111A25	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/12/20	800	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.72	0.063	0.027 l 0.027 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	;	2.00 2.00	56 56
2,3,7,8-TCDD Total TCDD	ND ND		0.040 0.040	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	56 54 62
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.15 2.20	0.340	0.064 J 0.049 I 0.056 J	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDE	⁻ -13C -13C -13C	2.00 2.00 2.00 2.00 2.00 2.00	66 67 55 58 62
1,2,3,7,8-PeCDD Total PeCDD	0.13	0.089	0.049 l 0.049 J	1,2,3,6,7,8-HxCDE 1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI 1,2,3,4,7,8,9-HpCI	D-13C DF-13C	2.00 2.00 2.00 2.00	60 53 47
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.91 0.42	0.220	0.042 J 0.029 I 0.049 J	1,2,3,4,7,6,7,8-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 2.00 4.00	62 57
1,2,3,7,8,9-HxCDF Total HxCDF	0.24 9.20		0.042 J 0.041	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDI	; D-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.29 0.86 13.00	0.370	0.056 J 0.070 J 0.056 I 0.061	2,3,7,8-TCDD-37C	314	0.20	60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.47 15.00	8.000	0.057 E 0.049 BJ 0.053	Total 2,3,7,8-TCD Equivalence: 0.71 (Using ITE Factors	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	25.00 81.00		0.110 0.110				
OCDF OCDD	16.00 160.00		0.074 0.097				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not DetectedNA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U81 ² BAL 13.9 16.8 11.5 U810 U81 ²	g g)02	-8 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/13/200	8 8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.82 8.20		0.21 J 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13		2.00 2.00 2.00	93 87 86
2,3,7,8-TCDD Total TCDD	ND 15.00		0.35 0.35	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	BC BC	2.00 2.00	86 91
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 2.00 16.00	 	1.80 0.90 J 1.30	1,2,3,4,7,8-HxCDF- 1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD-	13C 13C 13C	2.00 2.00 2.00 2.00 2.00	101 82 71 80 99
1,2,3,7,8-PeCDD Total PeCDD	1.70 17.00		1.50 J 1.50	1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCDI	13C F-13C	2.00 2.00	99 78 58 50
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 1.70	1.9 9.7	0.60 I 0.69 E 0.56 J	1,2,3,4,7,8,9-HpCDI 1,2,3,4,6,7,8-HpCDI OCDD-13C		2.00 2.00 4.00	65 46
1,2,3,7,8,9-HxCDF Total HxCDF	1.20 21.00		0.72 J 0.64	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.70 4.20 2.70 40.00	 	1.10 J 1.30 J 0.89 J 1.10	2,3,7,8-TCDD-37Cl4	l	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	21.00 ND 80.00	 	2.50 1.60 2.00	Total 2,3,7,8-TCDD Equivalence: 5.4 ng (Using ITE Factors)	/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	84.00 160.00		1.50 1.50				
OCDF OCDD	90.00 1200.00		2.50 2.30				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R8′ CV 12.: 6.4 11. R8′ R8′	2 g		Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/12/20	800	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.37 5.10		0.056 J 0.056	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	,	2.00 2.00	69 72
2,3,7,8-TCDD Total TCDD	0.20 3.40		0.036 J 0.036	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	67 71 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.34 0.49 4.50	 	0.120 J 0.073 BJ 0.094	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDE	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	79 78 68 69 72
1,2,3,7,8-PeCDD Total PeCDD	2.30	0.440	0.120 I 0.120 J	1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00	72 73 65 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.53 0.38 0.47	 	0.048 BJ 0.053 J 0.062 J	1,2,3,4,7,8,9-HpCl 1,2,3,4,6,7,8-HpCl OCDD-13C		2.00 2.00 4.00	55 76 74
1,2,3,7,8,9-HxCDF Total HxCDF	11.00	0.090	0.052 I 0.054	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.10 4.00 2.40 43.00	 	0.098 J 0.099 J 0.130 J 0.110	2,3,7,8-TCDD-37C	:14	0.20	71
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.84 46.00	16.000 	0.140 E 0.180 BJ 0.160	Total 2,3,7,8-TCD Equivalence: 6.6 r (Using ITE Factors	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	250.00 660.00		0.280 0.280				
OCDF OCDD	84.00 2600.00		0.091 0.086				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....1083915_8290

Page 18 of 47

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 R81 CVS 13.2 6.9 12.3 R81 R81	g g 101GC2	-4 R81112A02	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/12/200)8)8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.34		0.290 0.290 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13		2.00 2.00 2.00	68 74 63
2,3,7,8-TCDD Total TCDD	ND 0.79		0.074 0.074 J	2,3,4,7,8-PeCDF-1; 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	65 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	4.10	0.24 0.34 	0.090 0.150 0.120	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	66 61 71 74 74
1,2,3,7,8-PeCDD Total PeCDD	0.86	0.16	0.130 I 0.130 J	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	69 59 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.30 0.43 0.49 0.37	 	0.061 J 0.087 J 0.073 J 0.074 J	1,2,3,4,7,6,9-1 pCD 1,2,3,4,6,7,8-HpCD OCDD-13C 1,2,3,4-TCDD-13C		2.00 2.00 4.00 2.00	53 65 53 NA
Total HxCDF	12.00		0.074 0	1,2,3,7,8,9-HxCDD	-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.40 0.58 9.90	0.25 	0.100 I 0.100 J 0.077 J 0.094	2,3,7,8-TCDD-37Ck	4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	6.30 0.68 24.00	 	0.100 0.190 BJ 0.140	Total 2,3,7,8-TCDE Equivalence: 0.96 r (Using ITE Factors)	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	22.00 51.00		0.190 0.190				
OCDF OCDD	22.00 180.00		0.120 0.180				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Anal	ysis	Results
--------	------	--------	------	------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R81 CVS 12.5 7.0 11.6 R81 R81	5 g 6 g 101GC1	-6 R81111B23	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/12/20	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 ND	0.055	0.050 l 0.050	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	77 84 79
2,3,7,8-TCDD Total TCDD	ND 0.27		0.120 0.120 J	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	76 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.130 0.130 0.130	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00 2.00	82 78 78 72 84
1,2,3,7,8-PeCDD Total PeCDD	0.29 0.73		0.210 J 0.210 J	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD)-13C)F-13C	2.00 2.00	69 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.120 0.130 0.100	1,2,3,4,7,8,9-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C		2.00 2.00 4.00	63 74 85
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.41		0.110 0.110 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	0-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	 0.55 3.70	0.230 0.520 	0.220 0.260 0.320 J 0.270 J	2,3,7,8-TCDD-37C	14	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.83 ND 3.20	 	0.420 BJ 0.360 0.390 J	Total 2,3,7,8-TCD Equivalence: 0.48 (Using ITE Factors	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	13.00 35.00		0.430 0.430				
OCDF OCDD	5.40 140.00		0.400 J 0.210				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc. Report No.....1083915_8290

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis	Results
-----------	------------	----------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R81 CVS 12.7 7.1 11.8 R81 R81	′g 3g 101GC2	-2 R81112A02	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/12/200)8)8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.061 0.061	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1	20	2.00 2.00 2.00	53 65 60
2,3,7,8-TCDD Total TCDD	ND ND		0.075 0.075	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	65 77 57
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	 0.120	0.074 0.090 	0.069 I 0.055 I 0.062 BJ	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	57 51 70 66 69
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.075 0.075	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD)-13C)F-13C	2.00 2.00 2.00 2.00	68 55 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 	0.092 0.110 0.110	0.053 0.059 0.056	1,2,3,4,6,7,8-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C		2.00 2.00 4.00	64 55
1,2,3,7,8,9-HxCDF Total HxCDF	0.093 0.093		0.055 BJ 0.056 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	0-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.160	0.120 0.150	0.068 0.100 J 0.090 0.087 BJ	2,3,7,8-TCDD-37C	14	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.410 0.150 0.560		0.100 BJ 0.110 J 0.110 BJ	Total 2,3,7,8-TCD Equivalence: 0.053 (Using ITE Factors	3 ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.200 2.300		0.140 BJ 0.140 BJ				
OCDF OCDD	0.910 9.100		0.160 J 0.220				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis	Results
-----------	------------	----------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U811 BAL 13.0 5.0 12.4 U810 U811	g g 002	-6 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/13/20	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.27 0.27	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	89 83 68
2,3,7,8-TCDD Total TCDD	ND ND		0.52 0.52	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	67 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.78 0.66 0.72	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00 2.00	98 79 78 77 91
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.78 0.78	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C)F-13C	2.00 2.00	79 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.86 	0.59 E 0.47 0.64	1,2,3,4,7,8,9-HpCD 1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 2.00 4.00	44 55 29 P
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.1		0.76 0.61 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.88 0.74 0.90 0.84	2,3,7,8-TCDD-37Cl	4	0.20	97
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.4 ND 6.9		1.60 J 1.50 1.60	Total 2,3,7,8-TCDI Equivalence: 0.13 ((Using ITE Factors)	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.7 11.0		2.00 2.00				
OCDF OCDD	47.0	6.60	3.10 I 3.20				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

P = Recovery outside target range

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis	Results
-----------	------------	----------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 R811 CVS 11.1 5.0 10.6 R811 R811	g g 101GC2	-9 R81112A02	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/12/200)8)8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.042 0.042	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1	20	2.00 2.00 2.00	68 79 63
2,3,7,8-TCDD Total TCDD	ND ND		0.096 0.096	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	66 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.17	 	0.100 0.130 0.110 BJ	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	75 66 84 80 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.099 0.099	1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD)-13C)F-13C	2.00 2.00 2.00 2.00	78 72 62 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 	0.18 0.14 0.11	0.110 I 0.120 E 0.093 I	1,2,3,4,6,7,8-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C		2.00 2.00 4.00	72 54
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.76		0.140 0.110 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	0-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.12 ND 0.44	0.20	0.110 J 0.170 I 0.180 0.150 BJ	2,3,7,8-TCDD-37C	14	0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	 2.60	1.30 0.24 	0.190 E 0.150 I 0.170 J	Total 2,3,7,8-TCD Equivalence: 0.058 (Using ITE Factors	3 ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.50 4.60		0.200 J 0.200 J				
OCDF OCDD	20.00	3.90	0.350 l 0.230				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis	Results
-----------	------------	----------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U81 BAL 14.2 46.0 7.70 U810 U81	g g)02	-6 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/13/200	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.68 10.00		0.30 J 0.30	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13		2.00 2.00 2.00	72 69 72
2,3,7,8-TCDD Total TCDD	ND 2.30		0.43 0.43	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	3C 3C	2.00 2.00	74 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.79 6.40	0.51 	0.45 l 0.49 J 0.47 J	1,2,3,4,7,8-HxCDF- 1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD-	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00 2.00	71 63 66 66 80
1,2,3,7,8-PeCDD Total PeCDD	0.83 1.90		0.63 J 0.63 J	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	63 59 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	1.90	0.71 0.71 E 0.66	1,2,3,4,7,8,9-HpCD 1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 4.00	68 47
1,2,3,7,8,9-HxCDF Total HxCDF	30.00	0.66	0.65 I 0.68	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 4.60 1.30 22.00	 	1.10 0.76 J 0.82 J 0.90	2,3,7,8-TCDD-37Ck	4	0.20	91
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	56.00 2.70 190.00		0.64 0.59 J 0.61	Total 2,3,7,8-TCDE Equivalence: 4.2 no (Using ITE Factors)	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	93.00 160.00		0.80 0.80				
OCDF OCDD	320.00 900.00		1.50 1.60				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Resul	ts
-----------------------------------	----

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U81 BAL 15.2 75.9 3.65 U810 U81	g 002	-7 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/14/20	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 ND	2.3	1.9 I 1.9	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-	;	2.00 2.00 2.00	11 P 10 P 11 P
2,3,7,8-TCDD Total TCDD	ND ND		3.8 3.8	2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00	12 P 13 P
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	2.7 1.8 2.3	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDI	=-13C =-13C =-13C	2.00 2.00 2.00 2.00 2.00 2.00	10 P 10 P 10 P 11 P 11 P
1,2,3,7,8-PeCDD Total PeCDD	ND ND		3.9 3.9	1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpC	D-13C DF-13C	2.00 2.00 2.00 2.00	10 P 9 P 8 P
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		2.0 2.0 3.3	1,2,3,4,7,8,9-HpCl 1,2,3,4,6,7,8-HpCl OCDD-13C		2.00 2.00 4.00	10 P 8 P
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		2.3 2.4	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	2.8 2.1 2.6 2.5	2,3,7,8-TCDD-37C	214	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 6.6	5.1 	2.3 I 2.6 2.5 J	Total 2,3,7,8-TCD Equivalence: 0.22 (Using ITE Factors	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	11.0 11.0		3.1 J 3.1 J				
OCDF OCDD	18.0 97.0		9.2 J 5.8				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

P = Recovery outside target range

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....1083915_8290

Page 25 of 47

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8	3290 Sam	ple Analy	ysis Resul	ts
----------	----------	-----------	------------	----

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 R81 CVS 13.1 16.7 10.9 R81 R81	g g 101GC1	-2 R81111B23	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/12/20	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.24 3.50		0.098 J 0.098	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-1		2.00 2.00 2.00	59 63 60
2,3,7,8-TCDD Total TCDD	0.22 1.90		0.180 J 0.180	2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-2	13C 13C	2.00 2.00	65 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.30 2.40	0.42	0.170 BJ 0.150 I 0.160 J	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDE	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00 2.00	65 63 59 57 66
1,2,3,7,8-PeCDD Total PeCDD	0.99	0.37	0.140 I 0.140 J	1,2,3,6,7,8-HxCDE 1,2,3,4,6,7,8-HpCI	D-13C DF-13C	2.00 2.00	62 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.28 0.29	0.21	0.140 I 0.140 J 0.096 J	1,2,3,4,7,8,9-HpCI 1,2,3,4,6,7,8-HpCI OCDD-13C		2.00 2.00 4.00	47 63 55
1,2,3,7,8,9-HxCDF Total HxCDF	0.26 1.50		0.130 BJ 0.130 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDE		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.32 0.57 0.56 6.00	 	0.170 J 0.210 J 0.190 BJ 0.190	2,3,7,8-TCDD-37C	14	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.66 ND 0.66	 	0.220 BJ 0.220 0.220 BJ	Total 2,3,7,8-TCD Equivalence: 0.56 (Using ITE Factors	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	3.20 7.60		0.310 J 0.310				
OCDF OCDD	1.10 33.00		0.520 J 0.830				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Anal	ysis	Results
--------	------	--------	------	------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108: R81 CVS 13.6 7.0 12.6 R81 R81	g g 101GC2	-4 R81112A02	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/12/200)8)8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.048 0.048	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00	62 75
2,3,7,8-TCDD Total TCDD	ND ND		0.072 0.072	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00 2.00	64 66 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	 ND	0.060 0.059 	0.030 0.027 0.028	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	67 59 77 75 76
1,2,3,7,8-PeCDD Total PeCDD	0.062 0.062		0.045 J 0.045 J	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD	-13C)F-13C	2.00 2.00	71 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.068 	0.048 0.071	0.034 J 0.043 I 0.042 I	1,2,3,4,7,8,9-HpCD 1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 2.00 4.00	56 66 54
1,2,3,7,8,9-HxCDF Total HxCDF	0.068	0.077	0.045 I 0.041 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.047 0.053 0.051 0.050	2,3,7,8-TCDD-37Cl	4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.220 ND 0.220	 	0.075 BJ 0.078 0.076 BJ	Total 2,3,7,8-TCDI Equivalence: 0.044 (Using ITE Factors	l ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.580	0.350	0.110 I 0.110 BJ				
OCDF OCDD	0.450 3.400		0.130 J 0.200 BJ				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290	Sample	Analysis	Results
-------------	--------	----------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U81 SMT 43.4 55.7 19.2 U81 U81	g g 123	-7.5 U81125A_15	Dilution Collected Received Extracted	Soil NA 11/04/200 11/05/200 11/19/200 11/25/200	8 8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 810.0	56 	0.35 E 0.35	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13		2.00 2.00 2.00	74 69 62
2,3,7,8-TCDD Total TCDD	10.0 660.0		0.23 0.23	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	8C 8C	2.00 2.00	60 66
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	20.0 24.0 330.0	 	0.63 1.10 0.88	1,2,3,4,7,8-HxCDF- 1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF-	13C 13C 13C	2.00 2.00 2.00 2.00 2.00	99 86 85 79 83
1,2,3,7,8-PeCDD Total PeCDD	24.0 510.0		0.94 0.94	1,2,3,4,7,8-HxCDD- 1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	13C F-13C	2.00 2.00 2.00 2.00	83 87 61 49
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.0 18.0 9.9	 	1.20 1.90 1.00	1,2,3,4,6,7,8-HpCDI OCDD-13C		2.00 4.00	60 40
1,2,3,7,8,9-HxCDF Total HxCDF	3.2 150.0		1.30 1.40	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	14.0 27.0 17.0 540.0	 	0.78 1.10 0.93 0.94	2,3,7,8-TCDD-37Cl4	ļ	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	200.0 8.5 440.0	 	1.40 2.00 1.70	Total 2,3,7,8-TCDD Equivalence: 51 ng/ (Using ITE Factors)			
1,2,3,4,6,7,8-HpCDD Total HpCDD	180.0 370.0		1.50 1.50				
OCDF OCDD	310.0 840.0		1.20 0.85				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. E = PCDE Interference

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....1083915_8290

RL = Reporting Limit.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample	Analysis Results
--------------------	------------------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U811 BAL 13.8 10.3 12.4 U810 U811	g)02	-1 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/14/200)8)8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.18 0.61		0.11 J 0.11 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13		2.00 2.00 2.00	79 76 80
2,3,7,8-TCDD Total TCDD	ND 2.20		0.14 0.14	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	3C 3C	2.00 2.00	84 91
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.72 6.20	 	0.22 0.24 J 0.23	1,2,3,4,7,8-HxCDF- 1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD-	13C 13C 13C	2.00 2.00 2.00 2.00 2.00	75 68 71 73 86
1,2,3,7,8-PeCDD Total PeCDD	0.66 3.70		0.34 J 0.34 J	1,2,3,4,6,7,8-HxCDD- 1,2,3,4,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	68 66 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.60 0.90 0.94	 	0.18 J 0.14 J 0.16 J	1,2,3,4,6,7,8-HpCD 0CDD-13C		2.00 2.00 4.00	76 57
1,2,3,7,8,9-HxCDF Total HxCDF	0.61 16.00		0.20 BJ 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.96 3.10 1.90 20.00	 	0.16 J 0.19 J 0.21 J 0.19	2,3,7,8-TCDD-37Cl4	4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	20.00 1.90 71.00	 	0.25 0.31 J 0.28	Total 2,3,7,8-TCDE Equivalence: 4.2 ng (Using ITE Factors)	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	98.00 170.00		0.62 0.62				
OCDF OCDD	81.00 1200.00		0.36 0.49				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

RL = Reporting Limit.

B = Less than 10x higher than method blank level

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method	8290	Sample	Anal	ysis	Results
--------	------	--------	------	------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R81 CVS 13.8 21.6 10.8 R81 R81 BLA	3 g 3 g 101GC1 111A25 & .NK-18170	R81111B23	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/12/200	8 8 8 14:08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.10		0.061 0.061 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	30	2.00 2.00 2.00	67 67 67
2,3,7,8-TCDD Total TCDD	ND ND		0.078 0.078	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13 1,2,3,4,7,8-HxCDF-	3C 3C	2.00 2.00 2.00 2.00	71 83 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.099	0.130 0.080 I 0.100	1,2,3,6,7,8-HxCDF- 2,3,4,6,7,8-HxCDF- 1,2,3,7,8,9-HxCDF- 1,2,3,4,7,8-HxCDD-	·13C ·13C ·13C	2.00 2.00 2.00 2.00 2.00	85 77 75 82
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.130 0.130	1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C F-13C	2.00 2.00 2.00 2.00	74 71 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.15	0.130 0.130	0.096 I 0.100 J 0.100 I	1,2,3,4,6,7,8-HpCD OCDD-13C		2.00 2.00 4.00	81 72
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.15		0.120 0.100 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND 0.18 0.18	 	0.120 0.190 0.160 BJ 0.160 BJ	2,3,7,8-TCDD-37Ck	4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.380	0.160 E 0.160 0.160	Total 2,3,7,8-TCDE Equivalence: 0.034 (Using ITE Factors)	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND 0.41		0.210 0.210 BJ				
OCDF OCDD	 1.20	0.350	0.320 l 0.410 BJ				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Resul	ts
-----------------------------------	----

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U81 BAL 14.8 33.1 9.93 U810 U81	g)02	-5 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/14/20	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.16 0.16	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00 2.00	72 67 75
2,3,7,8-TCDD Total TCDD	ND 3.80		0.26 0.26	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00	78 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.48	 	0.20 0.16 0.18 BJ	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00 2.00	69 62 64 65 73
1,2,3,7,8-PeCDD Total PeCDD	ND	0.29	0.25 I 0.25	1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD	-13C)F-13C	2.00 2.00 2.00 2.00	65 59 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.33 0.22 0.25 ND	 	0.12 J 0.16 J 0.13 J 0.14	1,2,3,4,7,6,9-HPCL 1,2,3,4,6,7,8-HPCD OCDD-13C 1,2,3,4-TCDD-13C		2.00 2.00 4.00 2.00	68 50 NA
Total HxCDF	5.10		0.14	1,2,3,7,8,9-HxCDD		2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.36 0.60 6.90	0.66	0.16 J 0.36 I 0.17 BJ 0.23	2,3,7,8-TCDD-37Cl	4	0.20	89
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5.70 0.30 14.00	 	0.20 0.19 J 0.20	Total 2,3,7,8-TCDI Equivalence: 0.65 ((Using ITE Factors)	ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	16.00 33.00		0.27 0.27				
OCDF OCDD	13.00 240.00		0.41 0.51				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	108 D81 SM 13.5 16.1 11.3 D81 D81	5 g 8 g 103GC1	-7 D81112B01	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/12/20	08	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.069		0.042 0.042 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	;	2.00 2.00	78 65
2,3,7,8-TCDD Total TCDD	ND ND		0.052 0.052	1,2,3,7,8-PeCDF- 2,3,4,7,8-PeCDF- 1,2,3,7,8-PeCDD-	13C 13C	2.00 2.00 2.00	69 69 65
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.098 0.098	0.080	0.054 I 0.046 J 0.050 BJ	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	13C 13C 13C	2.00 2.00 2.00 2.00	74 65 75 87
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.088 0.088	1,2,3,4,7,8-HxCDI 1,2,3,6,7,8-HxCDI 1,2,3,4,6,7,8-HpCl	D-13C DF-13C	2.00 2.00 2.00	77 67 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.120	0.056 0.088	0.042 J 0.039 I 0.040 I	1,2,3,4,7,8,9-HpCl 1,2,3,4,6,7,8-HpCl OCDD-13C		2.00 2.00 4.00	83 88 69 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.200	0.080	0.034 I 0.039 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDI		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.160 0.160	 0.091 	0.053 0.034 J 0.041 I 0.043 BJ	2,3,7,8-TCDD-37C	;14	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.390 0.390	0.140	0.046 BJ 0.097 I 0.071 BJ	Total 2,3,7,8-TCD Equivalence: 0.09 (Using ITE Factors	6 ng/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.750 0.750		0.098 BJ 0.098 BJ				
OCDF OCDD	 6.800	0.840	0.100 l 0.170 BJ				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample	Analysis Results
--------------------	------------------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U811 BAL 12.1 15.9 10.2 U810 U811	g g)02	-6 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/20 11/05/20 11/06/20 11/14/20	208	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.36 6.40		0.13 J 0.13	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00	77 71
2,3,7,8-TCDD Total TCDD	ND 3.00		0.20 0.20	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00 2.00	71 73 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.50 16.00	 	0.29 0.23 J 0.26	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	74 65 67 68 76
1,2,3,7,8-PeCDD Total PeCDD	3.60	0.48	0.28 l 0.28 J	1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCD)-13C)F-13C	2.00 2.00	66 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.51	0.29 0.67	0.16 I 0.24 J 0.20 I	1,2,3,4,7,8,9-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C		2.00 2.00 4.00	47 60 40
1,2,3,7,8,9-HxCDF Total HxCDF	9.40	0.25	0.19 I 0.20	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD	-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.44 0.84 0.56 9.30	 	0.24 J 0.22 J 0.28 BJ 0.25	2,3,7,8-TCDD-37C	14	0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3.70 ND 7.80	 	0.22 J 0.34 0.28	Total 2,3,7,8-TCD Equivalence: 1.2 n (Using ITE Factors	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	9.50 18.00		0.41 0.41				
OCDF OCDD	7.20 61.00		0.63 J 0.52				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

I = Interference present

RL = Reporting Limit.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 D81 SMT 13.1 54.6 5.94 D81 D81	g g 103GC1	7.5-9.5 D81112B01	Dilution Collected Received Extracted	Soil NA 11/04/2008 11/05/2008 11/06/2008 11/12/2008	18:30	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's dded	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.93 18.00		0.086 J 0.086	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13	2	2.00 2.00 2.00	86 76 75
2,3,7,8-TCDD Total TCDD	12.00	0.38	0.170 I 0.170	2,3,4,7,8-PeCDF-13 1,2,3,7,8-PeCDD-13	C 2 C 2	2.00 2.00 2.00 2.00	75 73 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.30 9.10	0.64 	0.380 I 0.310 J 0.350	1,2,3,4,7,8-HxCDF-1 1,2,3,6,7,8-HxCDF-1 2,3,4,6,7,8-HxCDF-1 1,2,3,7,8,9-HxCDF-1 1,2,3,4,7,8-HxCDD-1	13C 2 13C 2 13C 2	2.00 2.00 2.00 2.00 2.00	84 71 78 94 81
1,2,3,7,8-PeCDD Total PeCDD	1.10 15.00		0.310 J 0.310	1,2,3,6,7,8-HxCDD- 1,2,3,6,7,8-HxCDD- 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	13C 2 -13C 2	2.00 2.00 2.00 2.00	71 83 91
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 0.86	0.64 1.20	0.190 l 0.260 E 0.230 J	1,2,3,4,6,7,8-HpCDE OCDD-13C	D-13C 2	2.00 2.00 4.00	94 74 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.32 6.40		0.180 BJ 0.220 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-1		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.92 2.20 25.00	 1.20 	0.280 J 0.280 J 0.390 I 0.320	2,3,7,8-TCDD-37Cl4	(0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.69 14.00	11.00 	0.180 E 0.190 J 0.180	Total 2,3,7,8-TCDD Equivalence: 2.3 ng/ (Using ITE Factors)	/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	28.00 55.00		0.300 0.300				
OCDF OCDD	24.00 280.00		0.430 0.440				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

I = Interference present

RL = Reporting Limit.

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 82	290 Sample	Analysis R	Results
-----------	------------	------------	---------

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted % Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U811 BAL 13.4 11.2 11.9 U810 U811	g)02	-3 U81113A_18	Matrix Dilution Collected Received Extracted Analyzed	Soil NA 11/04/200 11/05/200 11/06/200 11/13/200)8)8	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.20 23.00		0.19 0.19	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	20	2.00 2.00	86 80
2,3,7,8-TCDD Total TCDD	ND 17.00		0.23 0.23	1,2,3,7,8-PeCDF-1 2,3,4,7,8-PeCDF-1 1,2,3,7,8-PeCDD-1	3C 3C	2.00 2.00 2.00	85 86 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	6.00 55.00	1.6 	0.38 E 0.35 0.36	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	-13C -13C -13C	2.00 2.00 2.00 2.00 2.00	84 64 68 76 87
1,2,3,7,8-PeCDD Total PeCDD	2.00 29.00		0.82 J 0.82	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCE	-13C)F-13C	2.00 2.00 2.00 2.00	87 72 63 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.80 0.79	7.7 2.4	0.50 J 0.36 E 0.41 I 0.33 BJ	1,2,3,4,7,8,9-HpCE 1,2,3,4,6,7,8-HpCE OCDD-13C 1,2,3,4-TCDD-13C		2.00 2.00 4.00 2.00	59 70 49 NA
Total HxCDF	38.00		0.40	1,2,3,7,8,9-HxCDD	-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.40 5.40 3.00 63.00	 	0.55 J 0.30 0.45 J 0.43	2,3,7,8-TCDD-37Cl	4	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	26.00 1.70 81.00	 	0.45 0.88 J 0.67	Total 2,3,7,8-TCDI Equivalence: 7.1 n (Using ITE Factors	g/Kg		
1,2,3,4,6,7,8-HpCDD Total HpCDD	75.00 140.00		0.26 0.26				
OCDF OCDD	85.00 550.00		0.53 0.50				

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

B = Less than 10x higher than method blank level

E = PCDE Interference

RL = Reporting Limit.

I = Interference present

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s)	D81 12.4 D81	103GC1	D81112B01	Matrix Dilution Extracted Analyzed Injected By	Solid NA 11/06/2008 11/12/2008 14: SMT	33
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.048		0.045 0.045 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 62 63
2,3,7,8-TCDD Total TCDD	ND ND		0.086 0.086	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 62 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.082 0.082	 	0.079 0.040 J 0.059 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	64 69 81 71
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.075 0.075	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-130 1,2,3,4,7,8,9-HpCDF-130	2.00 C 2.00	63 75 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.065	0.058 0.069	0.036 J 0.041 I 0.040 I	1,2,3,4,6,7,8-HpCDD-13 OCDD-13C		80 65 Y
1,2,3,7,8,9-HxCDF Total HxCDF	 0.110	0.110	0.040 I 0.043 I 0.040 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND	 0.086 	0.064 0.070 0.066 I 0.067	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.140 0.160 0.300	 	0.073 J 0.093 J 0.083 J	Total 2,3,7,8-TCDD Equivalence: 0.051 ng/K (Using ITE Factors)	g	
1,2,3,4,6,7,8-HpCDD Total HpCDD	 0.240	0.200	0.120 I 0.120 J			
OCDF OCDD	0.630	0.190	0.098 I 0.140 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-18170			Matrix	Solid		
Filename	D81112A08			Dilution	NA		
Total Amount Extracted	13.1 g			Extracted	11/06/2008		
ICAL ID	D81031GC2			Analyzed	11/12/2008 15:05		
CCal Filename(s)	D81112A02 & D81112B02			Injected By	SMT		
Native	Conc	EMPC	RL	Internal	ng's	Percent	
Isomers	ng/Kg	ng/Kg	ng/Kg	Standards	Added	Recovery	
2,3,7,8-TCDF Total TCDF	ND ND		0.043 0.043	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	55 49 76	
2 3 7 8-TCDD	ND		0.076	2 3 4 7 8-PeCDF-13C	2.00	81	

2,3,7,8-TCDD Total TCDD	ND ND		0.076 0.076	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	81 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.12	0.091	0.075 J 0.070 I 0.072 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 65 71 84 71
1,2,3,7,8-PeCDD Total PeCDD	ND	0.130 	0.083 l 0.083	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	62 83 88
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 	0.097 0.098 0.094	0.047 0.047 0.052	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 Y 71 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.11 0.11		0.056 J 0.050 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.10 0.10	0.100 0.110 	0.050 I 0.066 I 0.061 J 0.059 J	2,3,7,8-TCDD-37Cl4	0.20	54
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.15 0.15	0.140	0.057 J 0.087 I 0.072 J	Total 2,3,7,8-TCDD Equivalence: 0.032 ng/Kg (Using ITE Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.24 0.42		0.079 J 0.079 J			
OCDF OCDD	0.69	0.350	0.150 I 0.110 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Value below calibration range

I = Interference present

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID	BLANK-18300	Matrix	Solid
Filename	U81124A_08	Dilution	NA
Total Amount Extracted	10.2 g	Extracted	11/19/2008
ICAL ID	U81123	Analyzed	11/25/2008 00:08
CCal Filename(s)	U81123A_27 & U81124A_16	Injected By	BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.61		0.14 0.14 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,2,7,8-DCDF 13C	2.00 2.00	77 82 90
2,3,7,8-TCDD Total TCDD	ND ND		0.18 0.18	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	92 104
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.19 0.14 0.17	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	88 84 82 82
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.18 0.18	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	85 83 80
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.16 0.14 0.16	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	70 87 68
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.20 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.15 0.16 0.15 0.15	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	0.16 0.26 0.21	Total 2,3,7,8-TCDD Equivalence: 0.00100 ng/Kg (Using ITE Factors)	I	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.25 0.25			
OCDF OCDD	0.44 0.56		0.34 J 0.26 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	D81 12.4 D81 D81	-18169 112A03 g 103GC1 112A01 & [NK-18168	D81112B01	Matrix Dilution Extracted Analyzed Injected By	Solid NA 11/06/2008 11/12/2008 12 SMT	2:04
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	114	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	85 70 72
2,3,7,8-TCDD Total TCDD	0.20	0.22	111	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	74 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	1.22 1.15	122 115	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	84 72 79 89 80
1,2,3,7,8-PeCDD Total PeCDD	1.00	1.10	110	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,2,4,7,8-HpCDF-13C		80 72 82 86
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.05 1.10 1.07	105 110 107	1,2,3,4,7,8,9-HpCDF-130 1,2,3,4,6,7,8-HpCDD-130 OCDD-13C		84 70 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.04	104	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.10 1.10 1.08	110 110 108	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.06 1.16	106 116			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	1.04	104			
OCDF OCDD	2.00 2.00	2.59 2.29	130 114			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range X = Background subtracted value

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	U81 11.4 U81 U81	002	U81113A_18	Matrix Dilution Extracted Analyzed Injected By	Solid NA 11/06/2008 11/13/2008 17 BAL	7:49
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.19	94	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	68 67
2,3,7,8-TCDD Total TCDD	0.20	0.20	100	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	77 82 90
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.98 0.93	98 93	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	72 68 70 72
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.92	92	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C		83 71 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	0.94 0.95 0.94	94 95 94	1,2,3,4,7,8,9-HpCDF-130 1,2,3,4,6,7,8-HpCDD-130 OCDD-13C		62 77 60
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	0.94	94	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	0.98 1.00 0.98	98 100 98	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.03 1.08	103 108			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	0.91	91			
OCDF OCDD	2.00 2.00	2.14 2.13	107 107			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range

X = Background subtracted value

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	U81 10.7 U81 U81	123	U81124A_16	Matrix Dilution Extracted Analyzed Injected By	Solid NA 11/19/2008 11/24/2008 21 BAL	:45
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.19	95	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	82 83
2,3,7,8-TCDD Total TCDD	0.20	0.19	93	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	86 90 100
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.96 0.95	96 95	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	87 84 84 82
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.87	87	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C		81 85 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	0.91 0.97 0.96	91 97 96	1,2,3,4,7,8,9-HpCDF-130 1,2,3,4,6,7,8-HpCDD-130 OCDD-13C	2.00 2.00 4.00	74 91 64
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	0.94	94	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	0.97 0.96 0.95	97 96 95	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	0.95 1.03	95 103			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	0.90	90			
OCDF OCDD	2.00 2.00	2.00 1.95	100 98			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

P = Recovery outside of target range

X = Background subtracted value

Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R8′ 13. R8′ R8′	40-081104-1 33915008-MS 1111B01 1 g 1101GC1 1111A25 & F ANK-18168	3	Matrix Dilution Extracted Analyzed Injected By	Soil NA 11/06/200 11/12/200 CVS		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.19	96	2,3,7,8-TCDF- 2,3,7,8-TCDD-	-13C	2.00	64 68
2,3,7,8-TCDD	0.20	0.20	98	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	62 65 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.06 1.02	106 102	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 2,3,4,6,7,8-Hx 1,2,3,7,8,9-Hx	CDF-13C CDF-13C CDF-13C	2.00 2.00 2.00 2.00	73 73 63 66
1,2,3,7,8-PeCDD	1.00	0.93	93	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 1,2,3,4,6,7,8-H 1,2,3,4,6,7,8-H	CDD-13C HpCDF-13C	2.00 2.00 2.00 2.00	68 67 61 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.01 1.05 1.03	101 105 103	1,2,3,4,6,7,8-F OCDD-13C		2.00 4.00	72 72 72
1,2,3,7,8,9-HxCDF	1.00	0.99	99	1,2,3,4-TCDD 1,2,3,7,8,9-Hx		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.02 1.07 1.08	102 107 108	2,3,7,8-TCDD	-37Cl4	0.20	71
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.26 1.08	126 108				
1,2,3,4,6,7,8-HpCDD	1.00	4.11	411				
OCDF OCDD	2.00 2.00	3.00 35.46	150 1773				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	108 R8 ⁻ 12. R8 ⁻ R8 ⁻	40-081104-1 33915008-MS 1111B02 8 g 1101GC2 1111A26 & 1 ANK-18168	SD	Matrix Dilution Extracted Analyzed Injected By	Soil NA 11/06/200 11/12/200 CVS		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.20	98	2,3,7,8-TCDF- 2,3,7,8-TCDD-	-13C	2.00 2.00	68 82
2,3,7,8-TCDD	0.20	0.20	99	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	67 71 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.13 1.05	113 105	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 2,3,4,6,7,8-Hx 1,2,3,7,8,9-Hx	CDF-13C CDF-13C CDF-13C	2.00 2.00 2.00 2.00	68 61 75 80
1,2,3,7,8-PeCDD	1.00	0.98	98	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 1,2,3,4,6,7,8-H 1,2,3,4,7,8,9-H	CDD-13C HpCDF-13C	2.00 2.00 2.00 2.00	76 71 60 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.07 1.11 1.09	107 111 109	1,2,3,4,6,7,8-F 1,2,3,4,6,7,8-F OCDD-13C		2.00 2.00 4.00	67 61
1,2,3,7,8,9-HxCDF	1.00	1.08	108	1,2,3,4-TCDD- 1,2,3,7,8,9-Hx		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.06 1.17 1.11	106 117 111	2,3,7,8-TCDD	-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.34 1.18	134 118				
1,2,3,4,6,7,8-HpCDD	1.00	3.70	370				
OCDF OCDD	2.00 2.00	3.33 31.93	167 1597				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	1083 U81 15.2 U81 U81	002		Matrix Dilution Extracted Analyzed Injected By	Soil NA 11/06/200 11/14/200 BAL		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.22	110	2,3,7,8-TCDF 2,3,7,8-TCDD	-13C	2.00 2.00	8 P 7 P
2,3,7,8-TCDD	0.20	0.22	108	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	7 P 8 P 8 P
1,2,3,7,8-PeCDF	1.00	0.99	99	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx	CDF-13C	2.00 2.00	6 P 6 P
2,3,4,7,8-PeCDF	1.00	1.04	104	2,3,4,6,7,8-Hx 1,2,3,7,8,9-Hx 1,2,3,4,7,8-Hx	CDF-13C	2.00 2.00 2.00	6 P 7 P 6 P
1,2,3,7,8-PeCDD	1.00	1.06	106	1,2,3,4,7,6-17 1,2,3,6,7,8-Hx 1,2,3,4,6,7,8-H 1,2,3,4,7,8,9-H	CDD-13C HpCDF-13C	2.00 2.00 2.00 2.00	6 P 4 P 4 P
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	1.00 1.00	0.95 0.97	95 97	1,2,3,4,6,7,8-ł OCDD-13C	HpCDD-13C	2.00 2.00 4.00	6 P 4 P
2,3,4,6,7,8-HxCDF	1.00	1.00	100			4.00	4 P
1,2,3,7,8,9-HxCDF	1.00	0.98	98	1,2,3,4-TCDD 1,2,3,7,8,9-Hx		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	1.00 1.00	1.08 1.14	108 114	2,3,7,8-TCDD	-37Cl4	0.20	87
1,2,3,7,8,9-HxCDD	1.00	1.14	114 112				
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.22 1.26	122 126				
1,2,3,4,6,7,8-HpCDD	1.00	1.14	114				
OCDF OCDD	2.00 2.00	2.59 3.87	130 194				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. P = Recovery outside target range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - Anatek Labs, Inc.

Client's Sample ID Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID	108 U81 15.2 U81 U81	002		Matrix Dilution Extracted Analyzed Injected By	Soil NA 11/06/200 11/14/200 BAL		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.21	107	2,3,7,8-TCDF 2,3,7,8-TCDD	-13C	2.00 2.00	6 P 6 P
2,3,7,8-TCDD	0.20	0.21	107	1,2,3,7,8-PeC 2,3,4,7,8-PeC 1,2,3,7,8-PeC	DF-13C DD-13C	2.00 2.00 2.00	7 P 7 P 8 P
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.02 1.03	102 103	1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx 2,3,4,6,7,8-Hx	CDF-13C	2.00 2.00 2.00	6 P 6 P 6 P
1,2,3,7,8-PeCDD	1.00	1.05	105	1,2,3,7,8,9-Hx 1,2,3,4,7,8-Hx 1,2,3,6,7,8-Hx	(CDF-13C (CDD-13C	2.00 2.00 2.00	7 P 7 P 6 P
1,2,3,7,0-FECDD	1.00	1.05	105	1,2,3,4,6,7,8-ł 1,2,3,4,7,8,9-ł	HpCDF-13C	2.00 2.00 2.00	5 P 5 P
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	1.00 1.00	0.95 1.04	95 104	1,2,3,4,6,7,8-ł OCDD-13C	HpCDD-13C	2.00 4.00	6 P 4 P
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.00 1.00	1.01 1.02	101 102	1,2,3,4-TCDD 1,2,3,7,8,9-Hx		2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.09 1.14 1.18	109 114 118	2,3,7,8-TCDD	-37Cl4	0.20	79
1,2,3,7,0,9-03000	1.00	1.10	110				
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.18 1.18	118 118				
1,2,3,4,6,7,8-HpCDD	1.00	1.04	104				
OCDF OCDD	2.00 2.00	2.56 3.22	128 161				

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. P = Recovery outside target range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - Anatek Labs, Inc.

Client Sample ID	DP40-081104-1-2			Dry Weights	
Lab Sample ID	1083915008	Sample Filename	R81111B05	Sample Amount	11.4 g
MS ID	1083915008-MS	MS Filename	R81111B01	MS Ámount	12.3 g
MSD ID	1083915008-MSD	MSD Filename	R81111B02	MSD Amount	11.9 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Background Subtracted		
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.365	0.20	0.19	0.20	2.3	94	96	2.5
2,3,7,8-TCDD	0.199	0.20	0.20	0.20	0.8	97	98	0.8
1,2,3,7,8-PeCDF	0.337	1.00	1.06	1.13	6.6	105	113	6.6
2,3,4,7,8-PeCDF	0.493	1.00	1.02	1.05	3.3	101	105	3.3
1,2,3,7,8-PeCDD	0.000	1.00	0.93	0.98	4.9	93	97	5.0
1,2,3,4,7,8-HxCDF	0.532	1.00	1.01	1.07	6.0	100	107	6.1
1,2,3,6,7,8-HxCDF	0.380	1.00	1.05	1.11	4.8	105	110	4.9
2,3,4,6,7,8-HxCDF	0.467	1.00	1.03	1.09	6.1	102	109	6.2
1,2,3,7,8,9-HxCDF	0.000	1.00	0.99	1.08	9.1	98	108	9.1
1,2,3,4,7,8-HxCDD	1.125	1.00	1.02	1.06	4.3	100	105	4.4
1,2,3,6,7,8-HxCDD	3.961	1.00	1.07	1.17	8.8	102	112	9.4
1,2,3,7,8,9-HxCDD	2.429	1.00	1.08	1.11	3.3	105	108	3.4
1,2,3,4,6,7,8-HpCDF	0.000	1.00	1.26	1.34	6.8	106	115	8.5
1,2,3,4,7,8,9-HpCDF	0.837	1.00	1.08	1.18	9.4	107	117	9.5
1,2,3,4,6,7,8-HpCDD	249.729	1.00	4.11	3.70	10.6	104	72	37.0
OCDF	84.310	2.00	3.00	3.33	10.4	98	116	16.7
OCDD	2630.278	2.00	35.46	31.93	10.5	156	26	141.9

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate Qm = Quantity Measured Qs = Quantity Spiked % Rec. = Percent Recovery RPD = Relative Percent Difference NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin

CDF = Chlorinated dibenzo-p-furan

T = Tetra

- Pe = Penta
- Hx = Hexa

Hp = Hepta

O = Octa

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - Anatek Labs, Inc.

Client Sample ID	DP38-081104-6-7			Dry Weights	
Lab Sample ID	1083915020	Sample Filename	U81113A_14	Sample Amount	3.65 g
MS ID	1083915020-MS	MS Filename	U81113A_15	MS Amount	3.7 g
MSD ID	1083915020-MSD	MSD Filename	U81113A_16	MSD Amount	3.6 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.000	0.20	0.22	0.21	3.1	106	103	3.2
2,3,7,8-TCDD	0.000	0.20	0.22	0.21	0.6	108	107	0.6
1,2,3,7,8-PeCDF	0.000	1.00	0.99	1.02	3.1	99	102	3.1
2,3,4,7,8-PeCDF	0.000	1.00	1.04	1.03	1.3	104	103	1.3
1,2,3,7,8-PeCDD	0.000	1.00	1.06	1.05	1.3	106	105	1.3
1,2,3,4,7,8-HxCDF	0.000	1.00	0.95	0.95	0.5	95	95	0.5
1,2,3,6,7,8-HxCDF	0.000	1.00	0.97	1.04	6.3	97	104	6.3
2,3,4,6,7,8-HxCDF	0.000	1.00	1.00	1.01	0.7	100	101	0.7
1,2,3,7,8,9-HxCDF	0.000	1.00	0.98	1.02	3.6	98	102	3.6
1,2,3,4,7,8-HxCDD	0.000	1.00	1.08	1.09	1.5	108	109	1.5
1,2,3,6,7,8-HxCDD	0.000	1.00	1.14	1.14	0.6	114	114	0.6
1,2,3,7,8,9-HxCDD	0.000	1.00	1.12	1.18	5.7	112	118	5.7
1,2,3,4,6,7,8-HpCDF	0.000	1.00	1.22	1.18	2.7	120	116	2.7
1,2,3,4,7,8,9-HpCDF	0.000	1.00	1.26	1.18	6.3	126	118	6.3
1,2,3,4,6,7,8-HpCDD	10.538	1.00	1.14	1.04	8.7	110	100	9.0
OCDF	18.427	2.00	2.59	2.56	1.1	126	125	1.1
OCDD	96.582	2.00	3.87	3.22	18.2	176	144	20.1

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate Qm = Quantity Measured Qs = Quantity Spiked % Rec. = Percent Recovery RPD = Relative Percent Difference NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin

CDF = Chlorinated dibenzo-p-furan

T = Tetra

Pe = Penta

Hx = Hexa

Hp = Hepta

O = Octa

CCI ANALYTICAL LABORATORIES REPORT

CLIENT: ANATEK LABS 1282 ALTURAS DR MOSCOW, ID 83843

DATE:	11/24/2008
CCIL JOB #:	0811095
DATE RECEIVED:	11/14/2008
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT: CLIENT PROJECT ID:	JUSTIN DOTY PITC	
CLIENT SAMPLE ID: CCIL SAMPLE #:	11/4/2008 -01	081105018-10

DATA RESULTS

ANALYTE	METHOD	RESULTS *	UNITS**	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	ND(<5)	MG/KG	11/19/2008	EBS
>C8-C10 Aromatics	NWEPH	ND(<5)	MG/KG	11/18/2008	EBS
>C10-C12 Aliphatics	NWEPH	ND(<5)	MG/KG	11/19/2008	EBS
>C12-C16 Aliphatics	NWEPH	ND(<5)	MG/KG	11/19/2008	EBS
>C16-C21 Aliphatics	NWEPH	11	MG/KG	11/19/2008	EBS
>C21-C34 Aliphatics	NWEPH	180	MG/KG	11/19/2008	EBS
>C10-C12 Aromatics	NWEPH	ND(<5)	MG/KG	11/18/2008	EBS
>C12-C16 Aromatics	NWEPH	ND(<5)	MG/KG	11/18/2008	EBS
>C16-C21 Aromatics	NWEPH	10	MG/KG	11/18/2008	EBS
>C21-C34 Aromatics	NWEPH	160	MG/KG	11/18/2008	EBS
Total Aliphatics	NWEPH	200	MG/KG	11/19/2008	EBS
Total Aromatics	NWEPH	180	MG/KG	11/18/2008	EBS
Chromium (VI)	EPA-7196	ND(<5.0)	MG/KG	11/17/2008	BAM

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

NOTE: TOTAL ALIPHATICS AND AROMATICS ARE BASED ON EC RANGE "ND" RESULTS SUMMED AT 1/2 OF REPORTING LIMIT

CLIENT: ANATEK LABS 1282 ALTURAS DR MOSCOW, ID 83843

DATE:	11/24/2008
CCIL JOB #:	0811095
DATE RECEIVED:	11/14/2008
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT: CLIENT PROJECT ID:	JUSTIN DOTY PITC	
CLIENT SAMPLE ID: CCIL SAMPLE #:	11/4/2008 -02	081105018-14

DATA RESULTS

ANALYTE	METHOD	RESULTS *	UNITS**	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	ND(<5)	MG/KG	11/19/2008	EBS
>C8-C10 Aromatics	NWEPH	ND(<5)	MG/KG	11/18/2008	EBS
>C10-C12 Aliphatics	NWEPH	ND(<5)	MG/KG	11/19/2008	EBS
>C12-C16 Aliphatics	NWEPH	ND(<5)	MG/KG	11/19/2008	EBS
>C16-C21 Aliphatics	NWEPH	9	MG/KG	11/19/2008	EBS
>C21-C34 Aliphatics	NWEPH	110	MG/KG	11/19/2008	EBS
>C10-C12 Aromatics	NWEPH	ND(<5)	MG/KG	11/18/2008	EBS
>C12-C16 Aromatics	NWEPH	ND(<5)	MG/KG	11/18/2008	EBS
>C16-C21 Aromatics	NWEPH	8	MG/KG	11/18/2008	EBS
>C21-C34 Aromatics	NWEPH	96	MG/KG	11/18/2008	EBS
Total Aliphatics	NWEPH	120	MG/KG	11/19/2008	EBS
Total Aromatics	NWEPH	100	MG/KG	11/18/2008	EBS

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

NOTE: TOTAL ALIPHATICS AND AROMATICS ARE BASED ON EC RANGE "ND" RESULTS SUMMED AT 1/2 OF REPORTING LIMIT

Port Bagun

CLIENT: ANATEK LABS 1282 ALTURAS DR MOSCOW, ID 83843

DATE:	11/24/2008
CCIL JOB #:	0811095
DATE RECEIVED:	11/14/2008
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT: CLIENT PROJECT ID:	JUSTIN DOTY PITC	
CLIENT SAMPLE ID: CCIL SAMPLE #:	11/4/2008 -03	081105018-20

DATA RESULTS

ANALYTE	METHOD	RESULTS *	UNITS**	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	ND(<15)*	MG/KG	11/19/2008	EBS
>C8-C10 Aromatics	NWEPH	ND(<15)*	MG/KG	11/18/2008	EBS
>C10-C12 Aliphatics	NWEPH	ND(<15)*	MG/KG	11/19/2008	EBS
>C12-C16 Aliphatics	NWEPH	ND(<15)*	MG/KG	11/19/2008	EBS
>C16-C21 Aliphatics	NWEPH	22	MG/KG	11/19/2008	EBS
>C21-C34 Aliphatics	NWEPH	220	MG/KG	11/19/2008	EBS
>C10-C12 Aromatics	NWEPH	ND(<15)*	MG/KG	11/18/2008	EBS
>C12-C16 Aromatics	NWEPH	ND(<15)*	MG/KG	11/18/2008	EBS
>C16-C21 Aromatics	NWEPH	ND(<15)*	MG/KG	11/18/2008	EBS
>C21-C34 Aromatics	NWEPH	130	MG/KG	11/18/2008	EBS
Total Aliphatics	NWEPH	260	MG/KG	11/19/2008	EBS
Total Aromatics	NWEPH	150	MG/KG	11/18/2008	EBS

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

NOTE: TOTAL ALIPHATICS AND AROMATICS ARE BASED ON EC RANGE "ND" RESULTS SUMMED AT 1/2 OF REPORTING LIMIT

for Bagun

CLIENT: ANATEK LABS 1282 ALTURAS DR MOSCOW, ID 83843

DATE:	11/24/2008
CCIL JOB #:	0811095
DATE RECEIVED:	11/14/2008
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT: JUSTIN DOTY CLIENT PROJECT ID: PITC

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

CCIL SAMPLE ID
0811095-01
0811095-01
0811095-02
0811095-02
0811095-03
0811095-03

METHOD NWEPH NWEPH NWEPH NWEPH NWEPH

SUR ID	% RECV
C25	109
p-Terphenyl	88
C25	114
p-Terphenyl	88
C25	110
p-Terphenyl	88

for Bagun

SVL ANALYTICAL REPORT

	Anatek			hair	of	~	tody P				ר			W8K0325
	Labs,	0			-	_	tody R	_	_		J			Anatek Log-In #
	Inc.		lturas Drive,				•						_	
		504 E S	orague Ste D,		ane w ect Mar		202 (50	_				443:	3	Turn Around Time & Reporting
Compa	iny Name:	ANATEK LABS	5			· · ·			JUST	IN D	ΟΤΥ			Please refer to our normal turn around times at:
Addres	^{.s:} 12	282 ALTURAS DR		Proje	ect Nar	ne & a	¥:		[ΡΙ ΤΟ	2			http://www.anateklabs.com/services/guidelines/reporting.asp
City:	MOSCOW	State: ID Zip:	83843	Ema	il Addro	ess :		justir	@ana	ateki	abs.c	om		Normal *All rush orderPhone Next Day* requests must beMail
Phone:		(208) 883-2839		Purc	hase C	rder #	:							2nd Day* prior approvedFax
Fax:	(2	208) 882-9246		Sam	pler Na	me &	phone:							Other*
成 自己的	Provide S	ample Description			1.2.1		List Ar	nalyse	es Rec	ques	ted	- s. 5		Note Special Instructions/Comments
rates for the second second second	a na anan'ny fanisana definandra a serien an' ang				ervative:									SVL
				Containers	Sample Volume						ľ			375
				ntai	0 × 0	<u>1</u> 0								
Lab				of Cc	du	۴.								
ID	Sample Identification	Sampling Date/Time	Matrix	*	Sa									
Sec	081105018-001	11/4/08	SOIL			×								
	081105018-002	11/4/08	SOIL			×								
	081105018-005	11/4/08	SOIL			×								
	081105018-007	11/4/08	SOIL			×								
	081105018-009	11/4/08	SOIL			×								
	081105018-020	11/4/08	SOIL			×							1	
	081105018-027	11/4/08	SOIL			×								
Sec.	081105018-028	11/4/08	SOIL			×								Inspection Checklist
	081105018-031	11/4/08	SOIL			×				ſ				Received Intact? Y N
	081105018-032	11/4/08	SOIL			×								Labels & Chains Agree?
														Containers Sealed? Y N
(112) (12)	· · · · · · · · · · · · · · · · · · ·													VOC Head Space? Y North North A
						1								
A. 19	Print				Saes d	}.÷∂	Co	mpany	ų (*					
Reling	uished by	sha boty	A L					Rom	lote		1/17	6	12.	K Temperature (°C)
		FLORES	an Un		1			SV			<u>i 114</u>	~	21130	70 Preservative
Receiv		FURES	(V_FLO	101_				<u>V (S</u>			<u>////4/</u>		Mis	
	uished by	···										+		Date & Time:
Receiv									<u></u>			+		
	uished by									-+				Inspected By
Receiv	red by				4									

One Government Gulch - PO Box 929

Kellogg ID 83837-0929

(208) 784-1258

Fax (208) 783-0891

Project Name: metals Work Order: W8K0325 Reported: 26-Nov-08 10:52

1282 Alturas Drive Moscow, ID 83843

Anatek Labs (ID)

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
081105018-001	W8K0325-01	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-002	W8K0325-02	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-005	W8K0325-03	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-007	W8K0325-04	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-009	W8K0325-05	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-020	W8K0325-06	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-027	W8K0325-07	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-028	W8K0325-08	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-031	W8K0325-09	Soil	04-Nov-08 00:00	14-Nov-2008
081105018-032	W8K0325-10	Soil	04-Nov-08 00:00	14-Nov-2008

Solid samples are analyzed on an as-received, wet-weight basis, unless otherwise requested.

Sample preparation is defined by the client as per their Data Quality Objectives.

This report supercedes any previous reports for this Work Order. The complete report includes pages for each sample, a full QC report, and a notes section.

The results presented in this report relate only to the samples, and meet all requirements of the NELAC Standards unless otherwise noted.

One Government Gulch	n - PO Box 929 Kellog	g ID 83837-0929			Fax (208) 783-0891					
Anatek Labs (ID)									Project Na	ne: metal
1282 Alturas Drive								Work O	rder: W8K032	5
Moscow, ID 83843								Repo	rted: 26-Nov-0	8 10:52
	ient Sample ID: 081105 VL Sample ID: W8K032			Sa	mple Report	Page 1 of 1			pled: 04-Nov-0 eived: 14-Nov-0 ed By:	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	
	Analyte	Result	Onits	KL	MDL	Dilution	Baten	Analyst	Analyzeu	Notes
Classical Chemist	, ,	Kesuit	Units	KL	MDL	Dilution	Baten	Anaryst	Anaryzeu	Notes

John Ken

One Government Gulch	n - PO Box 929 Kellogg	gg ID 83837-0929 (208) 784-1258						Fax (208) 783-0891			
Anatek Labs (ID)									Project Na	ne: metals	
1282 Alturas Drive								Work O	rder: W8K032	5	
Moscow, ID 83843								Repo	rted: 26-Nov-0	8 10:52	
	ient Sample ID: 081105 VL Sample ID: W8K032			Sample Report Page 1 of 1					pled: 04-Nov-0 eived: 14-Nov-0 ed By:	7-08 00:00 7-08	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed		
	7 that y te	Result	Onits	KL	MDL	Dilution	Baten	Analyst	Anaryzeu	Notes	
Classical Chemist	,	Result	Units	KL	MDL	Dilution	Baten	Analyst	Anaryzeu	Notes	

John Ken

One Government Gulch	h - PO Box 929 Kellogg			Fax (208) 783-0891						
Anatek Labs (ID)									Project Nar	ne: metals
1282 Alturas Drive						Work Or	der: W8K032	5		
Moscow, ID 83843	oscow, ID 83843							Repor	rted: 26-Nov-0	8 10:52
	Client Sample ID: 081105018-005 SVL Sample ID: W8K0325-03 (Soil)				Sample Report Page 1 of 1					8 00:00 8
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Method Classical Chemist	<u>,</u>	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes

John Ken

One Government Gulch	n - PO Box 929 Kello	Kellogg ID 83837-0929 (208) 784-1258						Fax (208) 783-0891			
Anatek Labs (ID)									Project Na	ne: metals	
1282 Alturas Drive						Work O	rder: W8K032	5			
Moscow, ID 83843								Repo	rted: 26-Nov-0	08 10:52	
	ient Sample ID: 08110 VL Sample ID: W8K03			Sa	mple Report	Page 1 of 1			pled: 04-Nov-0 eived: 14-Nov-0 ed By:		
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
										110100	
Classical Chemist	ry Parameters										

John Ken

One Government Gulch	h - PO Box 929 Kellog	(208) 784-1258						Fax (208) 783-0891			
Anatek Labs (ID)									Project Nai	ne: metals	
1282 Alturas Drive						Work Or	rder: W8K032	5			
Moscow, ID 83843	oscow, ID 83843							Repo	rted: 26-Nov-0	8 10:52	
	ient Sample ID: 081105 VL Sample ID: W8K032			Sa	mple Report	Page 1 of 1		Sam Rece Sample	eived: 14-Nov-0		
Method	A	D 1	TT '4	DI	MDI	Dilution	Batch		A		
memou	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	
Classical Chemist		Result	Units	KL	MDL	Dilution	Batch	Analyst	Analyzed	Notes	

John Ken

One Government Gulcl	h - PO Box 929 Kello	gg ID 83837-0929			(208) 78	4-1258		F	Fax (208) 783-089	1
Anatek Labs (ID)									Project Na	me: metals
1282 Alturas Drive								Work O	rder: W8K032	5
Moscow, ID 83843	3							Repo	orted: 26-Nov-0	08 10:52
	ient Sample ID: 08110 SVL Sample ID: W8K03			Sa	ample Report	Page 1 of 1			npled: 04-Nov-0 eived: 14-Nov-0 ed By:	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Classical Chemist	try Parameters									
USDA HB60(24)	Total Organic Carbon	34	%	0.60			W848032	SJK	11/26/08 06:50	

One Government Gulch	A - PO Box 929 Kellog	g ID 83837-0929			(208) 784	4-1258		F	ax (208) 783-089	1
Anatek Labs (ID)									Project Na	me: metals
1282 Alturas Drive								Work O	rder: W8K032	25
Moscow, ID 83843								Repo	rted: 26-Nov-0	08 10:52
	ent Sample ID: 081105 VL Sample ID: W8K03			Sa	mple Report	Page 1 of 1			pled: 04-Nov-0 eived: 14-Nov-0 ed By:	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Classical Chemist	ry Parameters									
Classical Chemist	i y i ai anicici s									

John Ken

Jne Government Gu	ulch - PO Box 929 Kellogg	g ID 83837-0929			(208) 784	4-1258		I	Fax (208) 783-0891	
Anatek Labs (ID))								Project Nan	ne: metals
1282 Alturas Drive								Work C	Order: W8K0325	5
Moscow, ID 838	343							Repo	orted: 26-Nov-0	8 10:52
(Client Sample ID: 081105	018-028							npled: 04-Nov-08	
	SVL Sample ID: W8K032	5-08 (Soil)		Sa	mple Report	Page 1 of 1			ceived: 14-Nov-08 led By:	8
Method	SVL Sample ID: W8K032 Analyte	S-08 (Soil) Result	Units	Sa RL	mple Report	Page 1 of 1 Dilution	Batch		cerreu.	8 Notes
Method	*		Units			0		Sampl	ed By:	-
Method	Analyte		Units mg/L			0		Sampl	ed By:	-

John Ken

One Government Gulch	n - PO Box 929 Kellog	g ID 83837-0929			(208) 784	4-1258		F	ax (208) 783-089	1
Anatek Labs (ID)									Project Na	ne: metal
1282 Alturas Drive	;							Work O	rder: W8K032	5
Moscow, ID 83843	1							Repo	rted: 26-Nov-0	8 10:52
	ient Sample ID: 081105 VL Sample ID: W8K032			Sa	mple Report	Page 1 of 1		Sam Rece Sample	eived: 14-Nov-0	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	A 1 4	Analyzed	
memou	Analyte	Result	Units	KL	MDL	Dilution	Batch	Analyst	Anaryzeu	Notes
Classical Chemist	, ,	Kesuit	Units	KL	MDL	Dilution	Batch	Analyst	Anaryzed	Notes

John Ken

One Government Gulc	h - PO Box 929 Ke	ellogg ID 83837-0929			(208) 78	4-1258		F	ax (208) 783-089	1
Anatek Labs (ID)									Project Na	me: metals
1282 Alturas Drive	2							Work O	rder: W8K032	5
Moscow, ID 83843	3							Repo	rted: 26-Nov-0	08 10:52
	ient Sample ID: 0811 SVL Sample ID: W8K			Sa	mple Report	t Page 1 of 1			npled: 04-Nov-0 eived: 14-Nov-0 ed By:	
Method	Analyte	Result	Units	RL	MDL	Dilution	Batch	Analyst	Analyzed	Notes
Classical Chemis	try Parameters									

One Government Gulch - PO Box 929	Kellogg ID 83837-0929	(208) 784-1258	Fax (208) 783-0891
Anatek Labs (ID)			Project Name: metals
1282 Alturas Drive			Work Order: W8K0325
Moscow, ID 83843			Reported: 26-Nov-08 10:52

Quality Control - BLANK Data									
Method	Analyte	Units	Result	MDL	MRL	Batch ID	Analyzed	Notes	
Classical Chemi	stry Parameters								
SM 3500 Cr D	Hexavalent	mg/L	< 0.010	0.004	0.010	W847107	25-Nov-08		
USDA HB60(24)	Chromium Total Organic Carbon	%	<0.030		0.030	W848032	26-Nov-08		

Quality Control - LABORATORY CONTROL SAMPLE Data									
Method	Analyte	Units	LCS Result	LCS True	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Classical Chemis	stry Parameters								
SM 3500 Cr D	Hexavalent Chromium	mg/L	0.204	0.200	102	80 - 120	W847107	25-Nov-08	
USDA HB60(24)	Total Organic Carbon	%	28.9	28.7	101	80 - 120	W848032	26-Nov-08	

Quality Control - DUPLICATE Data									
Method	Analyte	Units	Duplicate Result	Sample Result	RPD	RPD Limit	Batch ID	Analyzed	Notes
Classical Chemi	stry Parameters								
SM 3500 Cr D	Hexavalent Chromium	mg/L	< 0.010	<0.010	UDL	20	W847107	25-Nov-08	
USDA HB60(24)	Total Organic Carbon	%	0.350	0.350	0.0	20	W848032	26-Nov-08	

Quality Control - MATRIX SPIKE Data										
Method	Analyte	Units	Spike Result	Sample Result (R)	Spike Level (S)	% Rec.	Acceptance Limits	Batch ID	Analyzed	Notes
Classical Chemi	stry Parameters									
SM 3500 Cr D	Hexavalent Chromium	mg/L	0.204	<0.010	0.200	102	75 - 125	W847107	25-Nov-08	
USDA HB60(24)	Total Organic Carbon	%	2.15	0.350	1.69	107	75 - 125	W848032	26-Nov-08	

Anatek Labs (ID)

1282 Alturas Drive

Moscow, ID 83843

One Government Gulch - PO Box 929

Kellogg ID 83837-0929

(208) 784-1258

Fax (208) 783-0891

Project Name: metals Work Order: W8K0325 Reported: 26-Nov-08 10:52

Notes and Definitions

H7	Sample analysis performed past standard holding time but within project-specific holding time.
LCS	Laboratory Control Sample (Blank Spike)
RPD	Relative Percent Difference
UDL	A result is less than the detection limit
R > 4S	% recovery not applicable, sample concentration more than four times greater than spike level
<rl< td=""><td>A result is less than the reporting limit</td></rl<>	A result is less than the reporting limit
MRL	Method Reporting Limit
MDL	Method Detection Limit
N/A	Not Applicable

Troy Bussey

From:	John Coddington [john@anateklabs.com]
Sent:	Wednesday, November 26, 2008 4:06 PM
То:	Troy Bussey
Subject:	FW: W8K0325
Attachmente	wellenge 1 adf. A actaly MOKOGGE 1 agy

Attachments: w8k0325-1.pdf; Anatek W8K0325-1.csv

Troy,

The results are reported as mg/L of sample extract. Their extraction multiplier is 8.333, which would make their reporting limit ~0.1 mg/Kg. Based on that, I hope the results are satisfactory.

John

John W. Coddington, Ph.D. Laboratory Manager Anatek Labs, Inc - Moscow Idaho Voice: (208)883-2839 Fax: (208)882-9246 Cell: (208)301-1301

Notice of Confidentiality

This message contains confidential information intended exclusively for the intended recipient. This message should not be forwarded to any other party. Use or disclosure of information transmitted in error is prohibited. Please delete the message along with any attachments and alert the sender by return e-mail if this message was received in error.

From: Jim Hodge [mailto:jim@svl.net] Sent: Wednesday, November 26, 2008 3:51 PM To: John Coddington Subject: RE:

John

We start with 3.0 grams of sample in 25ml so the conversion to mg/kgm would be times 8.333. I hope this is what you need.

Jim

From: John Coddington [mailto:john@anateklabs.com] Sent: Wednesday, November 26, 2008 3:26 PM To: Jim Hodge Subject: RE:

Thanks Jim,

My client needs to know how that relates to the amount in the soil. In other words, corrected for the extraction multiplier.

John W. Coddington, Ph.D. Laboratory Manager Anatek Labs, Inc - Moscow Idaho Voice: (208)883-2839 Fax: (208)882-9246 Cell: (208)301-1301

From: Melba Bencich [mailto:melba@svl.net] Sent: Wednesday, November 26, 2008 3:02 PM To: John Coddington Subject: W8K0325

John, The Hex Cr is reported as mg/L extract.

Thank you. Melba Melba Bencich Document Control Supervisor *SVL Analytical, Inc.* (208)784-1258 (208)783-0891 (fax)

This message and any of the attached documents contain information from SVL Analytical that may be confidential and/or privileged. If you are not the intended recipient, you may not read, copy, distribute, or use this information, and no privilege has been waived by your inadvertent receipt. If you have received this transmission in error, please notify the sender by reply e-mail and then delete this message. Thank you.

Appendix C

CALCULATION OF INTERIM ACTION CLEANUP LEVELS AND REUSE UNDER PAVEMENT LEVELS

TABLE OF CONTENTS

	N 1 – CALCULATION OF INTERIM ACTION CLEANUP LEVELS AND REUSE PAVEMENT LEVELS 1	
UNDER		
1.1	INTRODUCTION 1	
1.2	CONSTITUENTS OF POTENTIAL CONCERN	
1.3	SITE-WIDE COMPLETE OR POTENTIALLY COMPLETE EXPOSURE PATHWAYS	
1.4	INCOMPLETE OR INSIGNIFICANT EXPOSURE PATHWAYS FOR THIS IA	5
1.5	RESULTING IA EXPOSURE PATHWAYS FOR QUANTIFICATION OF IACLS AND IARUPLS 4	
1.6	DEVELOPMENT OF IACLS BASED ON UNRESTRICTED LAND USE	,)
1.7	DEVELOPMENT OF IARUPLS BASED ON REUSE UNDER PAVEMENT	j
REFERE	ENCES	,

FIGURES

FIGURE C-1: CONCEPTUAL SITE EXPOSURE MODEL

TABLES

- TABLE C-1:
 EQUATIONS AND PARAMETERS FOR INHALATION OF PARTICULATES CALCULATIONS
- TABLE C-2:
 CALCULATIONS FOR INHALATION OF PARTICULATES PATHWAY
- TABLE C-3:
 DETERMINING TARGET CONCENTRATIONS FOR PROTECTION OF POTENTIAL SURFACE

 WATER RECEPTORS
 WATER RECEPTORS
- TABLE C-4: INTERIM ACTION CLEANUP LEVELS (IACLS) BASED ON UNRESTRICTED LAND USE
- TABLE C-5:
 INTERIM ACTION REUSE UNDER PAVEMENT LEVELS (IARUPLS)

ATTACHMENTS

ATTACHMENT C-1: MTCA SPREADSHEETS SUPPORTING CALCULATIONS

SECTION 1 – CALCULATION OF INTERIM ACTION CLEANUP LEVELS AND REUSE UNDER PAVEMENT LEVELS

1.1 Introduction

The purpose of this appendix is to present the methodology used to calculate soil Interim Action Cleanup Levels (IACLs) and soil Interim Action Reuse Under Pavement Levels (IARUPLs) for the Interim Action (IA) at the Port of Olympia's (Port's) East Bay Site (Site). PIONEER Technologies Corporation (PIONEER) calculated IACLs and IARUPLs in accordance with Model Toxics Control Act (MTCA) regulations in WAC-173-340-357, -708, -720, -730, -740, -745, and -747.

The IACLs and IARUPLs are applicable to soil disturbed during this IA, and are not applicable to any future interim actions or a final Site remedy. A central premise of this IA is the anticipation that virtually all of the infrastructure corridor soil that is disturbed during infrastructure construction activities will be reused under pavement, disposed of off-site, or will have concentrations below unrestricted land use cleanup levels. However, it is recognized that there may be small amounts of disturbed soil with concentrations above unrestricted land use cleanup levels and/or terrestrial ecological screening criteria that are not located under pavement. Areas within the infrastructure corridor that are not covered by pavement will be addressed as necessary as part of a future interim action or the final cleanup action for the site. As a result, cleanup levels developed for future interim actions or the future feasibility study may incorporate a different set of exposure pathways than those that were deemed complete for this IA.

1.2 Constituents of Potential Concern

IACLs and IARUPLs were developed for the following constituents of potential concern (COPCs) listed in the Remedial Investigation Work Plan (GeoEngineers and PIONEER 2008):

- Arsenic
- Cadmium
- Lead
- Total carcinogenic polycyclic aromatic hydrocarbons (cPAHs)
- Total chlorinated dibenzo-p-dioxins and chlorinated dibenzofurans (dioxins/furans)
- Total naphthalenes
- Total petroleum hydrocarbons (TPH) in the diesel range (TPH-D)
- TPH in the heavy oil range (TPH-HO)
- TPH in the gasoline range (TPH-G)

In addition, IACLs and IARUPLs were developed for the following constituents in the event that TPH-G is encountered during the IA:

- Benzene
- Toluene
- Ethylbenzene
- Total xylenes

1.3 Site-Wide Complete or Potentially Complete Exposure Pathways

A Conceptual Site Exposure Model (CSEM) was developed for the Remedial Investigation Work Plan (GeoEngineers and PIONEER 2008) to present a conceptual, site-wide understanding of all potential exposure pathways during current land use, construction-phase land use, and future land use at the Site. As shown in Figure C-1, complete or potentially complete exposure pathways for the entire Site during the construction phase and future land use are:

- Direct contact (incidental ingestion and dermal contact) with soil by:
 - o Construction-phase utility installation workers
 - o Construction-phase utility installation trespassers
 - o Construction-phase building construction workers
 - o Construction-phase building construction trespassers
 - Future urban residents
 - Future commercial workers
 - o Future utility maintenance workers
 - o Future recreators
 - o Terrestrial organisms
- Inhalation of particulates by:
 - Construction-phase utility installation workers
 - Construction-phase utility installation trespassers
 - o Construction-phase building construction workers
 - o Construction-phase building construction trespassers
 - Future urban residents
 - Future commercial workers
 - Future utility maintenance workers
 - Future recreators
 - Terrestrial organisms
- Inhalation of vapors by:
 - Construction-phase utility installation workers
 - o Construction-phase utility installation trespassers
 - Construction-phase building construction workers
 - Construction-phase building construction trespassers
 - Future urban residents
 - Future commercial workers
 - o Future utility maintenance workers
 - o Future recreators
 - Terrestrial organisms
- Dermal contact with shallow groundwater in utility excavations by:
 - Construction-phase utility installation workers
 - o Construction-phase utility installation trespassers
 - Future utility maintenance workers
- Ingestion of groundwater used as drinking water by:

- Future urban residents
- Future commercial workers
- o Future utility maintenance workers
- Future recreators
- Dermal contact (i.e., bathing) with groundwater used as drinking water by:
 - o Future urban residents
 - Future commercial workers
- Incidental ingestion of and dermal contact with surface water in East Bay by:
 - o Construction-phase recreators and subsistence fishers (i.e., Squaxin Island Tribe)
 - o Future recreators and subsistence fishers (i.e., Squaxin Island Tribe)
 - Aquatic organisms
- Consumption of seafood from East Bay by:
 - o Construction-phase recreators and subsistence fishers (i.e., Squaxin Island Tribe)
 - Future recreators and subsistence fishers (i.e., Squaxin Island Tribe)
 - o Aquatic organisms

1.4 Incomplete or Insignificant Exposure Pathways for this IA

All of the exposure pathways listed in Section 1.3 will be evaluated further before site-wide cleanup levels are developed during the feasibility study. Furthermore, as discussed in Section 1.1, it is recognized that some or all of these exposure pathways may be complete and significant for infrastructure corridor soil locations that are not covered by pavement, and that additional action may be necessary for infrastructure corridor locations not covered by pavement. However, the following exposure pathways listed in Section 1.3 are either incomplete or insignificant for infrastructure corridor areas to be covered by pavement during this IA for the following reasons:

- Direct contact of soil and inhalation of particulates by building construction workers and building construction trespassers (i.e., those receptors at the Site during the building construction portion of the construction phase, which will occur after the utility and road installation portion of the construction phase is complete) are incomplete pathways for IA areas beneath pavement. Further evaluation of these pathways for non-paved areas of the Site will be performed following the IA.
- Direct contact of soil and inhalation of particulates by future urban residents, future commercial workers, and future recreators are incomplete pathways for IA areas beneath pavement. Further evaluation of these pathways for non-paved areas of the Site will be performed following the IA.
- The terrestrial ecological evaluation was ended for IA areas beneath pavement in accordance with WAC 173-340-7491(1)(b). It is recognized that an institutional control may be required for the paved roads due to terrestrial ecological regulations. Further evaluation of these pathways for non-paved areas of the Site will be performed following the IA.
- Inhalation of vapors is incomplete for all receptors since no volatile constituents have been detected at elevated concentrations in soil samples collected within the infrastructure corridor. In addition, no occupied buildings are planned over paved and unpaved portions of the infrastructure corridor. Further evaluation of these pathways for areas of the Site outside of the infrastructure corridor will be performed following the IA.

- Dermal contact with groundwater in utility excavations by construction-phase utility installation workers and utility installation trespassers is insignificant relative to the direct contact with soil pathway given the planned dewatering activities, the general lack of elevated groundwater constituent concentrations in existing data, the engineering controls being implemented during infrastructure construction pursuant to the IAWP, and the health and safety measures (e.g., personal protective equipment) being implemented pursuant to the IAWP.
- Dermal contact with groundwater in utility excavations by future utility maintenance workers is likely insignificant relative to the direct contact with soil pathway since it is anticipated that implementation of engineering controls and health and safety measures similar to this IAWP will be institutional control requirements for all future utility maintenance work. However, further evaluation of this pathway will be performed following the IA.
- The groundwater as drinking water pathway is insignificant for all receptors for the IA since there is no current or anticipated future land use of drinking water on Site or downgradient of the Site. More importantly, a suitable drinking water well could not be installed in shallow groundwater on Site or downgradient of the Site per WAC 173-340-720(2)(b)(i) given the regulatory requirements of Chapter 173-160 WAC and Chapter 246-290 WAC, the extremely shallow depth to water, the low sustainable yield available from shallow groundwater remedial actions that may be necessary in the future at the Site.

1.5 Resulting IA Exposure Pathways for Quantification of IACLs and IARUPLs

Figure C-1 highlights in blue the remaining exposure pathways for infrastructure corridor areas under pavement after accounting for the exposure pathways that are incomplete or insignificant as discussed in Section 1.4. These resulting exposure pathways were used to quantify IACLs and IARUPLs.

Complete soil-based exposure pathways relevant to the IA are:

- Direct contact (ingestion and dermal contact) with soil by:
 - Construction-phase utility installation workers
 - Construction-phase utility installation trespassers
 - Future utility maintenance workers
- Inhalation of particulates by:
 - Construction-phase utility installation workers
 - o Construction-phase utility installation trespassers
 - o Future utility maintenance workers

As directed by Washington State Department of Ecology (Ecology), the following surface water pathways are also considered complete for the IA:

- Incidental ingestion of and dermal contact with surface water in East Bay by:
 - Construction-phase recreators and subsistence fishers (i.e., Squaxin Island Tribe)
 - o Future recreators and subsistence fishers (i.e., Squaxin Island Tribe)
 - Aquatic organisms
- Consumption of seafood from East Bay by:
 - o Construction-phase recreators and subsistence fishers (i.e., Squaxin Island Tribe)

- Future recreators and subsistence fishers (i.e., Squaxin Island Tribe)
- Aquatic organisms

1.6 Development of IACLs Based on Unrestricted Land Use

IACLs based on unrestricted land use were developed for the exposure pathways listed in Section 1.5 as follows:

- Soil levels protective of direct contact exposures were calculated as shown in Attachment C-1 using MTCA Equation 740-3, 740-4, or 740-5, the associated default exposure parameters for those equations, and chemical-specific parameters from the Cleanup Levels and Risk Calculations (CLARC) database (Ecology 2008, Ecology 2009), with the following exceptions:
 - The arsenic level was adjusted up to accepted natural background value per WAC 173-340-740(5)(c) and MTCA Table 740-1 footnote b.
 - Method A soil cleanup levels were used for lead, TPH-G, TPH-D, and TPH-HO (Kmet 2001a). The three extractable petroleum hydrocarbon results obtained during the Phase 1 Remedial Investigation were not used to calculate direct contact levels for TPH-D and TPH-HO with MTCA Equation 740-3 per Ecology direction.
- Soil levels protective of inhalation of particulates exposures for COPCs with inhalation toxicity values in the CLARC database (Ecology 2008, Ecology 2009) were calculated as presented in Tables C-1 and Tables C-2.
- Soil levels protective of potential surface water receptors were calculated as shown in Attachment C-1 using MTCA Equations 747-1 and 747-2, the associated default parameters for those equations, and chemical-specific parameters from the CLARC database (Ecology 2008, Ecology 2009), with the following exceptions and site-specific modifications:
 - Concentrations protective of potential surface water receptors (see Table C-3) were used as the target water concentrations in MTCA Equation 747-1. The target water concentrations are the most stringent of MTCA Method A and Standard Method B surface water cleanup levels. It should be noted that the MTCA Standard Method B surface water cleanup levels are conservatively protective for recreators and subsistence fishers (i.e., Squaxin Island Tribe) during construction-phase and future land use as discussed in Appendix G. It should also be noted that the surface water concentrations that are protective for the consumption of seafood pathway are also sufficiently protective for the incidental ingestion of and dermal contact with surface water pathways per WAC 173-340-730(3)(b)(iii).
 - An average, site-specific fraction organic carbon (foc) value of 0.4% was used in accordance with WAC 173-340-747(5)(b)(i) for organic compound calculations. This average foc value was calculated from the seven lowest foc values measured during the Phase 1 Remedial Investigation (see Appendix B). The three highest foc values from the Phase 1 Remedial Investigation were excluded from the average due the presence of wood debris. All foc samples were collected from soil that is not significantly impacted with TPH at concentrations that would affect the foc measurements.
 - The arsenic level was adjusted up to accepted natural background value per WAC 173-340-740(5)(c) and MTCA Table 740-1 footnote b.

- The cadmium level was adjusted up the accepted practical quantification limit per WAC 173-340-740(5)(c) and MTCA Table 740-1 footnote e.
- Since there are no organic carbon partitioning coefficient (Koc) and Henry's Law Constants (Hcc) values for dioxins/furans in CLARC (Ecology 2008), a Koc value of 3.9E+06 L/kg (USEPA 2005) was used and Hcc was assumed to be negligible in the total dioxins/furans calculation.
- The total naphthalenes level was adjusted down due to residual saturation concerns in WAC 173-340-747(10).
- MTCA A soil cleanup levels were used for TPH-D and TPH-HO, which are based on default residual saturation values per WAC 173-340-747(10)(d)(i).
- A Method A soil cleanup level was used for TPH-G since there is no site-specific volatile petroleum hydrocarbon data available.

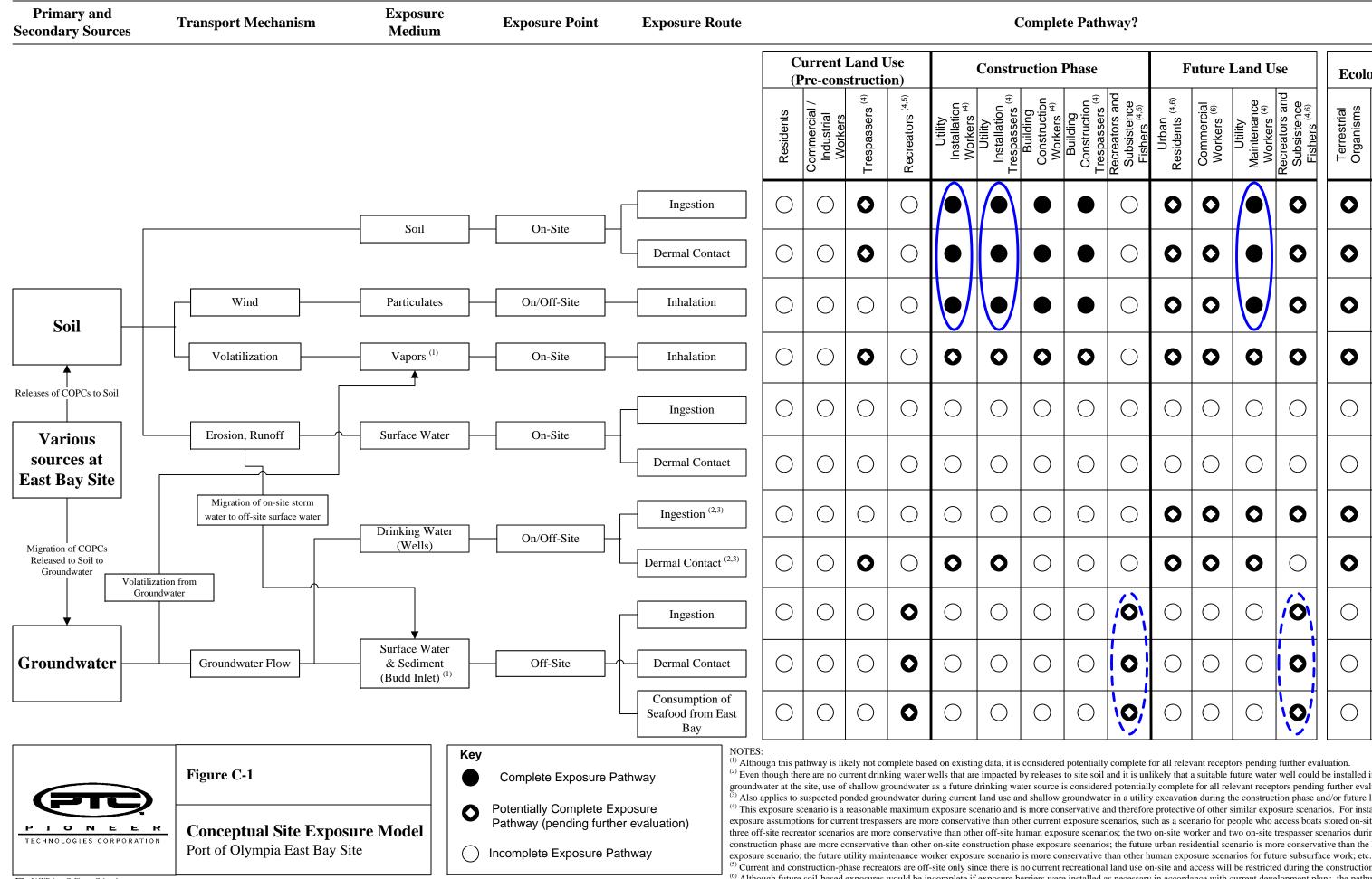
As shown in Table C-4, the resulting IACLs are the most stringent of the soil levels calculated for the IA exposure pathways in an unrestricted land use scenario. It should be noted that the default exposure assumptions for unrestricted land use (i.e., a child resident) are significantly more conservative than the reasonable maximum exposure assumptions for any construction-phase receptor and for any future receptor who may access soil beneath pavement (i.e., future utility maintenance worker).

1.7 Development of IARUPLs Based on Reuse Under Pavement

IARUPLs based on reuse under pavement were developed for the exposure pathways listed in Section 1.5 as follows:

- Soil levels protective of direct contact exposures were calculated as shown in Attachment C-1 using MTCA Equation 745-3, 745-4, or 745-5, the associated default exposure parameters for those equations, and chemical-specific parameters from the CLARC database (Ecology 2008, Ecology 2009), with the following exceptions:
 - Method A soil cleanup levels were used for lead, TPH-G, TPH-D, and TPH-HO (Kmet 2001b). The three extractable petroleum hydrocarbon results obtained during the Phase 1 Remedial Investigation were not used to calculate direct contact levels for TPH-D and TPH-HO with MTCA Equation 745-3 per Ecology direction.
- Soil levels protective of inhalation of particulates exposures for COPCs with inhalation toxicity values in the CLARC database (Ecology 2008, Ecology 2009) were calculated as presented in Tables C-1 and Tables C-2.
- Soil levels protective of potential surface water receptors were calculated exactly as described in Section 1.6.

As shown in Table C-5, the resulting IARUPLs are the most stringent of the soil levels calculated for the IA exposure pathways in a reuse under pavement scenario. Exposure assumptions for an adult worker were used in the direct contact and inhalation of particulates calculations since the only receptors that could be exposed to soil beneath the pavement are construction-phase utility installation workers, construction-phase utility installation trespassers, and future utility maintenance workers. It should be



noted that the default adult worker exposure assumptions used to determine these IARUPLs are significantly more conservative than the reasonable maximum exposure assumptions for construction-phase utility installation workers, construction-phase utility installation trespassers, and future utility maintenance workers.

REFERENCES

- Ecology 2008. Cleanup Levels and Risk Calculations database at https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx, database accessed in August.
- Ecology 2009. Cleanup Levels and Risk Calculations database at <u>https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx</u>, database accessed in February.
- GeoEngineers and PIONEER 2008. Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia, October 22.
- Kmet, Pete 2001a. Memorandum to Interested Persons with subject of "Calculations for Table 740-1: Method A Soil Cleanup Levels for Unrestricted Land Uses", February 9.
- Kmet, Pete 2001b. Memorandum to Interested Persons with subject of "Calculations for Table 745-1: Method A Industrial Soil Cleanup Levels For Industrial Properties", February 9.
- United States Environmental Protection Agency (USEPA) 1991. Interim Risk Assessment Guidance for Superfund: Volume I – Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals), December.
- USEPA 1996. Soil Screening Guidance: Technical Background Document, May.
- USEPA 2005. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, July.

File: IAWP App C_Figure C-1.vsd

Complete Pathway?

n]	Phase		F	uture	Land U	se	Ecolo	ogical
Workers (4)	Building Construction Trespassers ⁽⁴⁾	Recreators and Subsistence Fishers ^(4,5)	Urban Residents ^(4,6)	Commercial Workers ⁽⁶⁾	Utility Maintenance Workers ⁽⁴⁾	Recreators and Subsistence Fishers ^(4,6)	Terrestrial Organisms	Aquatic Organisms
		\bigcirc	0	0		0	0	0
		0	0	0	\bullet	0	0	0
		0	0	0		0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	Ó	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0,	\bigcirc	\bigcirc	0	0,	0	0,

⁽²⁾ Even though there are no current drinking water wells that are impacted by releases to site soil and it is unlikely that a suitable future water well could be installed in the shallow groundwater at the site, use of shallow groundwater as a future drinking water source is considered potentially complete for all relevant receptors pending further evaluation. ⁽³⁾ Also applies to suspected ponded groundwater during current land use and shallow groundwater in a utility excavation during the construction phase and/or future land use. ⁽⁴⁾ This exposure scenario is a reasonable maximum exposure scenario and is more conservative and therefore protective of other similar exposure scenarios. For instance, the exposure assumptions for current trespassers are more conservative than other current exposure scenarios, such as a scenario for people who access boats stored on-site. Likewise, all three off-site recreator scenarios are more conservative than other off-site human exposure scenarios; the two on-site worker and two on-site trespasser scenarios during the construction phase are more conservative than other on-site construction phase exposure scenarios; the future urban residential scenario is more conservative than the hotel guest (5) Current and construction-phase recreators are off-site only since there is no current recreational land use on-site and access will be restricted during the construction phase. (6) Although future soil-based exposures would be incomplete if exposure barriers were installed as necessary in accordance with current development plans, the pathway is

considered potentially complete for all relevant receptors pending further evaluation.

TABLE C-1: EQUATIONS AND PARAMETERS FOR INHALATION OF PARTICULATES CALCULATIONS

	Non-Carcinogenic Level (mg/kg) ⁽¹⁾			_ RfDi * HQ * ABW * A	T * 365 days/year * PEF	
	Non-Carcinogenic Level (ing/kg)			IR*	EF * ED	
				Risk * ABW * AT *	* 365 days/year * PEF	
Carcinogenic Level (mg/kg) ⁽¹⁾				=	R * EF * ED	
			Unrestricted Land Us	e (Child Resident) ⁽²⁾	Reuse Under Paveme	nt (Adult Worker) ⁽³⁾
Abbreviation	Parameter	Units	Non-Carcinogen Values ⁽²⁾	Carcinogen Values ⁽²⁾	Non-Carcinogen Values (3)	Carcinogen Values ⁽³⁾
RfDi	Reference dose (inhalation)	mg/kg-day	Chemical-specific	N/A	Chemical-specific	N/A
HQ	Hazard quotient	unitless	1	N/A	1	N/A
CPFi	Carcinogenic potency factor (inhalation)	kg-day/mg	N/A	Chemical-specific	N/A	Chemical-specific
Risk	Acceptable cancer risk level	unitless	N/A	1.0E-06	N/A	1.0E-05
ABW	Average body weight	kg	16	16	70	70
AT	Averaging time	years	6	75	20	75
PEF	Particulate emission factor	m³/kg	4.63E+09 ⁽¹⁾	4.63E+09 ⁽¹⁾	4.63E+09 ⁽¹⁾	4.63E+09 ⁽¹⁾
IR	Inhalation rate	m³/day	10 (1)	10 ⁽¹⁾	20 ⁽¹⁾	20 ⁽¹⁾
EF	Exposure frequency	days/year	365	365	146	146
ED	Exposure duration	years	6	6	20	20

Notes: ⁽¹⁾ From Interim Risk Assessment Guidance for Superfund (USEPA 1991). ⁽²⁾ Default exposure assumptions for a child resident from WAC 173-340-740(3)(b)(iii)(B). ⁽³⁾ Default exposure assumptions for an adult worker from WAC 173-340-745(5)(b)(iii)(B).

			Non-Carcinogenic Levels (mg/kg)		Carcinogenic	Levels (mg/kg)
Constituent	Inhalation Reference Dose (mg/kg-day) ⁽¹⁾	Unrestricted Land Use (Child Resident)	Reuse Under Pavement (Adult Worker)	Inhalation Cancer Potency Factor (kg- day/mg) ⁽¹⁾	Unrestricted Land Use (Child Resident)	Reuse Under Pavement (Adult Worker)
Arsenic	1.5E+01	1.1E+11	6.1E+11	1.5E+01	6.2E+03	1.0E+05
Cadmium	No value (3)	NC ⁽⁴⁾	NC ⁽⁴⁾	6.3E+00	1.5E+04	2.4E+05
Lead	No value (3)	NC ⁽⁴⁾	NC ⁽⁴⁾	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾
Total cPAHs (2)	No value (3)	N/A ⁽⁵⁾	N/A ⁽⁵⁾	6.1E+00	1.5E+04	2.5E+05
Total Dioxins/Furans ⁽²⁾	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾	1.5E+05	6.2E-01	1.0E+01
Total Naphthalenes ⁽²⁾	8.6E-04	6.4E+06	3.5E+07	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾
TPH-D	No value (3)	NC ⁽⁴⁾	NC ⁽⁴⁾	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾
TPH-HO	No value (3)	NC ⁽⁴⁾	NC ⁽⁴⁾	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾
TPH-G	No value (3)	NC ⁽⁴⁾	NC ⁽⁴⁾	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾
Benzene	8.6E-03	6.4E+07	3.5E+08	2.7E-02	3.4E+06	5.6E+07
Toluene	1.4E+00	1.0E+10	5.7E+10	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾
Ethylbenzene	2.9E-01	2.1E+09	1.2E+10	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾
Total Xylenes	2.9E-02	2.1E+08	1.2E+09	No value ⁽³⁾	N/A ⁽⁵⁾	N/A ⁽⁵⁾

Table C-2. Calculations for Inhalation of Particulates Pathway

Notes for both tables:

(1) All toxicity information (i.e., reference doses and cancer potency factors) from Ecology's Cleanup Levels and Risk Calculations (CLARC) on-line database (Ecology 2008).

(2) Benzo[a]pyrene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naphthalene used to evaluate compliance for total cPAHs, total dioxins/furans, and total naphthalenes, respectively, per WAC 173-340-708(8) and footnotes on MTCA Tables 740- and 745-1.

⁽³⁾ "No value" means no appropriate toxicity value is available.

⁽⁴⁾ "NC" means value cannot be directly calculated since no appropriate toxicity information is available for this exposure scenario.

⁽⁵⁾ "N/A" means noncancer hazard calculations only apply to noncarcinogens and cancer risk calculations only apply to carcinogens.

Constituent of Potential Concern	MTCA Standard Method B Surface Water Equations ^(1,2) (ug/L)	Surface Water ARARs for Human Health in Marine Waters ^(2,3) (ug/L)	Surface Water ARARs for Aquatic Life in Marine Waters ^(2,3) (ug/L)	Resulting Target Concentration for Protection of Potential Surface Water Receptors ⁽⁴⁾ (ug/L)
Arsenic	0.098	0.14	36	5 ⁽⁶⁾
Cadmium	20	No value	8.8	8.8
Lead	No value	No value	8.1	8.1
Total cPAHs (5)	0.030	0.018	No value	0.018 (7)
Total Dioxins/Furans (5)	No value	5.1E-09	No value	1.0E-05 ⁽⁸⁾
Total Naphthalenes ⁽⁵⁾	4,900	No value	No value	4,900
TPH-D	No value ⁽⁹⁾	No value ⁽⁹⁾	No value ⁽⁹⁾	500 ⁽⁹⁾
TPH-HO	No value ⁽⁹⁾	No value ⁽⁹⁾	No value ⁽⁹⁾	500 ^(7,9)
TPH-G	No value ⁽⁹⁾	No value ⁽⁹⁾	No value ⁽⁹⁾	1000 ^(9,10)
Benzene	23	51	No value	23
Toluene	19,000	15,000	No value	15,000
Ethylbenzene	6,900	2,100	No value	2,100
Total Xylenes	No value	No value	No value	1,000 (11)

TABLE C-3: DETERMINING TARGET CONCENTRATIONS FOR PROTECTION OF POTENTIAL SURFACE WATER RECEPTORS

Notes:

(1) Most stringent of human health protection values calculated with MTCA Equation 730-1 for noncarcinogens and MTCA Equation 730-2 for carcinogens, subject to adjustments (e.g., background, PQLs, ARARs). The resulting values are overly conservative since the portion of East Bay downgradient of the Site is closed to shellfish harvesting and does not contain resident fish populations due to the mud flat habitat.
(2) Values from Ecology's Cleanup Levels and Risk Calculations (CLARC) on-line database (Ecology 2008, Ecology 2009).

(3) Most stringent of all applicable or relevant and appropriate requirement (ARAR) values referenced in WAC 173-340-730(3)(b)(i) (i.e., Chapter 173-201A WAC, Section 304 of the Clean Water Act, 40 Code of Federal Regulations 131). For aquatic life, more stringent of acute and chronic values used. The resulting values are overly conservative since the portion of East Bay downgradient of the Site is closed to shellfish harvesting and does not contain resident fish populations due to the mud flat habitat.

⁽⁴⁾ Most stringent of Standard Method B equations, human health ARARs, and aquatic life ARARs, subject to any necessary natural background and practical quantitation limit (PQL) adjustments.

⁽⁵⁾ Method B equation results and ARAR values for total cPAHs, total dioxins/furans, and total naphthalenes are based on benzo(a)pyrene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naphthalene, respectively.

⁽⁶⁾ Adjusted up to natural background for groundwater of 5 ug/L per WAC 173-340-720(7)(c) and WAC 173-340-730(5)(c) (see footnote b to MTCA Table 720-1).

⁽⁷⁾ May need to be adjusted up to actual PQLs per WAC 173-340-720(7)(c) and WAC 173-340-730(5)(c) since expected groundwater PQLs for cPAHs and TPH-HO are 0.014 ug/L and 500 ug/L, respectively (GeoEngineers and PIONEER 2008).

(8) Adjusted up to PQL expectation for groundwater per WAC 173-340-720(7)(c) and WAC 173-340-730(5)(c). Although the Port and PIONEER contend that 57 pg/L is the appropriate PQL expectation for total dioxins/furans based on the PQL expectation for all congeners (GeoEngineers and PIONEER 2008) on a toxicity equivalency basis, a PQL value of 10 pg/L was used per Ecology request.

⁹⁾ For TPH compounds, MTCA Method A groundwater cleanup levels are used in accordance with WAC 173-340-730(3)(b)(iii)(C).

⁽¹⁰⁾ 1000 ug/L value used since no benzene is present.

⁽¹¹⁾ Used MTCA Method A groundwater cleanup level since no surface water values for xylenes.

Constituent of Potential Concern	Direct Contact Pathway ^(1,2,3) (mg/kg)	Inhalation of Particulates Pathway ^(2.4) (mg/kg)	Protection of Potential Surface Water Receptors ^(1,5) (mg/kg)	Resulting Interim Action Cleanup Levels Based on Unrestricted Land Use ⁽⁶⁾ (mg/kg)
Arsenic	20	6,200	20	20
Cadmium	72	15,000	2	2
Lead	250 ⁽⁷⁾	No value	1,600	250
Total cPAHs	0.095	15,000	1.4	0.095
Total Dioxins/Furans	9.8E-06	6.2E-01	3.1E-03	9.8E-06
Total Naphthalenes	1,100	6.4E+06	160 ⁽⁸⁾	160
TPH-D	3,000 (7)	No value	2,000 (7,8)	2,000
TPH-HO	3,000 (7)	No value	2,000 (7,8)	2,000
TPH-G	4,700 (7)	No value	100 (7)	100
Benzene	18	3.4E+06	0.22	0.22
Toluene	5,900	1.0E+10	240	240
Ethylbenzene	7,400	2.1E+09	43	43
Total Xylenes	15,000	2.1E+08	23	23

TABLE C-4 – INTERIM ACTION CLEANUP LEVELS (IACLS) BASED ON UNRESTRICTED LAND USE

Notes:

⁽¹⁾ All values are from Method B calculations presented in Attachment C-1, unless otherwise noted as a Method A value.

⁽²⁾ Default exposure assumptions for a child resident from WAC 173-340-740(3)(b)(iii)(B) were utilized for the Interim Action per Ecology request.

(3) Includes both ingestion and dermal contact even though non-TPH Method A and Method B calculations typically only quantify ingestion in accordance with Kmet 2001a and WAC 173-340-740(3)(b)(iii)(B), respectively.

(4) From Table C-2. More stringent of non-carcinogenic level and carcinogenic level used. The risk associated with the inhalation of particulates pathway is additive to the risk associated with the direct contact pathway since both pathways are complete for the same receptors. However, in this case, the sum of direct contact and inhalation of particulates pathways equals the direct contact value since inhalation contributes an insignificant portion of the combined risk, to two significant figures.

(5) It should be noted that these values were calculated using a methodology developed by the United States Environmental Protection Agency (USEPA) for use in calculating soil screening levels, not cleanup levels (USEPA 1996). It should also be noted that this calculation assumes that no attenuation occurs and that there is no mixing zone as groundwater flows into surface water. In addition, target surface water concentrations are overly conservative as noted previously. For these reasons, the levels calculated for protection of potential surface water receptors are overly conservative. This conservatism is evidenced by the general lack of groundwater detections above MTCA Method A groundwater cleanup levels in the existing data that can be attributable to a Site release.

⁽⁶⁾ The most stringent of the values for the individual pathways. It should be noted that future actions may have different levels that are protective of the same land use. For instance, future actions could have different levels if site-specific exposure assumptions were used or if more information is learned about the exposure pathways following additional data collection.

⁽⁷⁾ Method A value. TPH-G, TPH-D, and TPH-HO direct contact values from Kmet 2001a.

⁽⁸⁾ Based on residual saturation concerns.

Constituent of Potential Concern	Direct Contact Pathway ^(1,2,3) (mg/kg)	Inhalation of Particulates Pathway ^(2,4) (mg/kg)	Protection of Potential Surface Water Receptors ^(1,5) (mg/kg)	Resulting Interim Action Reuse Under Pavement Levels ⁽⁶⁾ (mg/kg)
Arsenic	33	100,000	20	20
Cadmium	1,300	240,000	2	2
Lead	250 ⁽⁷⁾	No value	1,600	250
Total cPAHs	3.4	250,000	1.4	1.4
Total Dioxins/Furans	5.1E-04	1.0E+01	3.1E-03	5.1E-04
Total Naphthalenes	13,000	3.5E+07	160 ⁽⁸⁾	160
TPH-D	39,000 (7)	No value	2,000 (7,8)	2,000
ТРН-НО	39,000 (7)	No value	2,000 (7,8)	2,000
TPH-G	150,000 ⁽⁷⁾	No value	100 (7)	100
Benzene	1,400	5.6E+07	0.22	0.22
Toluene	120,000	5.7E+10	240	240
Ethylbenzene	140,000	1.2E+10	43	43
Total Xylenes	290,000	1.2E+09	23	23

TABLE C-5 – INTERIM ACTION REUSE UNDER PAVEMENT LEVELS (IARUPLS)

Notes:

⁽¹⁾ All values are from site-specific calculations presented in Attachment C-1, unless otherwise noted as a Method A value.

⁽²⁾ Default exposure assumptions for an adult worker from WAC 173-340-745(5)(b)(iii)(B) were utilized for the Interim Action per Ecology request. However, it should be noted that these assumptions are significantly more conservative than reasonable maximum exposure assumptions for construction phase utility installation workers, construction phase utility installation trespassers, and future utility maintenance workers.

⁽³⁾ Includes both ingestion and dermal contact even though non-TPH calculations with these default assumptions typically only quantify ingestion in accordance with Kmet 2001b and WAC 173-340-745(5)(b)(iii)(B).

(4) From Table C-2. More stringent of non-carcinogenic level and carcinogenic level used. The risk associated with the inhalation of particulates pathway is additive to the risk associated with the direct contact pathway since both pathways are complete for the same receptors. However, in this case, the sum of direct contact and inhalation of particulates pathways equals the direct contact value since inhalation contributes an insignificant portion of the combined risk, to two significant figures.

⁽⁵⁾ It should be noted that these values were calculated using a methodology developed by the United States Environmental Protection Agency (USEPA) for use in calculating soil screening levels, not cleanup levels (USEPA 1996). It should also be noted that this calculation assumes that no attenuation occurs and that there is no mixing zone as groundwater flows into surface water. In addition, target surface water concentrations are overly conservative as noted previously. For these reasons, the levels calculated for protection of potential surface water receptors are overly conservative. This conservatism is evidenced by the general lack of groundwater detections above MTCA Method A groundwater cleanup levels in the existing data that can be attributable to a Site release.

⁽⁶⁾ The most stringent of the values for the individual pathways. It should be noted that future actions may have different levels that are protective of the same land use. For instance, future actions could have different levels if site-specific exposure assumptions were used or if more information is learned about the exposure pathways following additional data collection.

⁽⁷⁾ Method A value. TPH-G, TPH-D, and TPH-HO direct contact values from Kmet 2001b. Method A cleanup level for unrestricted land uses used for Interim Action since there is no toxicity value for lead. ⁽⁸⁾ Based on residual saturation concerns. **ATTACHMENT C-1**

MTCA Spreadsheets Supporting Calculations

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:		Arsenic	
1.2 Measured Soil Concentration, if any:	C_{s}		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s	20	mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:			_
2. Toxicological Properties of the Chemical: Chemical-Specific			
2.1 Oral Reference Dose ^{1, 3}	RfD _o	3.00E-04	mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o	1.50E+00	kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	-		-
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	1	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{1, 2}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.01	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.2	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	-		-
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	2.900E+01	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	0.000E+00	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S		mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:			
*Results from the Ground Water Cleanup Level Worksheet are	C_w	5.00E+00	ug/l
not automatically transferred into this worksheet.			
6. Site-Specific Hydrogeological Characteristics			_
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{lpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	1	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			-
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS

Chemical of Concern: Arsenic

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

Conc	Units	
t		Warning: Soil Cleanup Level is higher than Soil Saturation
2.9E+00	mg/kg	Limit!
20	mg/kg	
N/A	mg/kg	
2.0E+01	mg/kg	
protective of var	por exposure	
vay further.		
0.000E+00	ma/lra	C _{sat} corresponds to the total soil chemical concentration
0.000E+00	mg/kg	saturated in soil.
0.0E+00	mg/kg	<i>R</i> is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone
	t 2.9E+00 20 N/A 2.0E+01 protective of vap vay further. 0.000E+00	t 2.9E+00 mg/kg 20 mg/kg N/A mg/kg 2.0E+01 mg/kg protective of vapor exposure vay further. 0.000E+00 mg/kg

Retardation Factor, R:

102.2 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

Summary by Exposure Pathway							
				<u>ood B</u> d Land Use RISK =1.0E-6	<u>Meth</u> Industrial @ HQ=1.0; R	Land Use	
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	2.400E+01 6.7E-01	2.162E+01 6.0E-01	1.050E+03 8.8E+01	4.000E+02 3.3E+01	
			<u>Meth</u> @ HQ=1.0; R		<u>Meth</u> @ HQ=1.0; R		
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/		/A		
-	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A		N/A N/A		
Ground Water	Target Ground Wate	5.0E+00					
	Target Soil CUL?	mg/kg	2.9E+00				
			<u>Meth</u> @ HQ=1.0; R		<u>Meth</u> @ HQ=1.0; R		
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point	N		[/A		
Air Quality	Condition	HQ? @ Exposure Point	N/A		N/A		
(for informational purpose only)		RISK? @ Exposure Point	N/A		N/A		
	Target Air	@ HQ=1.0	N	/A	N/A		
	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5	N	/A	N/A		
	Target Soil	@ HQ=1.0	N	/A	N/A		
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	N	/A	N	/A	

NOTES: "CUL" = Cleanup Level; "Conc" = concentration; "HQ" = hazard quotient; "RISK" = carcinogenic risk.

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

CAUTION: The requirements and procedures for establishing air cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-750). The use of this Workbook may not be sufficient to establish air cleanup levels under the regulation. Specifically, the air cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:	(Cadmium	
1.2 Measured Soil Concentration, if any:	C_s		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s	2	mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS d, GI:			_
2. Toxicological Properties of the Chemical: Chemical-Specific	_		_
2.1 Oral Reference Dose ^{1, 3}	RfD _o	1.00E-03	mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o		kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	_		_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	1	unitless
3.2 Inhalation Absorption Fraction $(default = "1")^5$	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{1, 2}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.01	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.2	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	-		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	6.700E+00	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	0.000E+00	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13 °C: (Enter this converted value into " H_{cc} input Box" above for a calculation)		0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S		mg/l
5. Target Ground Water Cleanup Level		-	
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:			1
*Results from the Ground Water Cleanup Level Worksheet are	C_w	8.80E+00	ug/l
not automatically transferred into this worksheet.			
6. Site-Specific Hydrogeological Characteristics			_
Total Soil Porosity (default = "0.43"):	п	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = $"0.13"$):	Θ_{α}	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	1	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			_
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS

Chemical of Concern: Cadmium

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

Conc	Units	
		Warning: Soil Cleanup Level is higher than Soil Saturation
1.2E+00	mg/kg	Limit!
N/A	mg/kg	
2	mg/kg	
2.0E+00	mg/kg	
protective of var	por exposure	
ay further.		
0.000E+00	malta	C _{sat} corresponds to the total soil chemical concentration
0.000E+00	mg/kg	saturated in soil.
0.0E+00	mg/kg	<i>R</i> is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone
	1.2E+00N/A22.0E+00protective of vapyay further.0.000E+00	1.2E+00mg/kgN/Amg/kg2mg/kg2.0E+00mg/kg2.0E+00mg/kgprotective of vapor exposure yay further.0.000E+00mg/kg

Retardation Factor, R:

24.4 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

Summary by Exposure Pathway							
			Unrestricte	n <u>od B</u> ed Land Use RISK =1.0E-6	<u>Meth</u> Industrial @ HQ=1.0; R	Land Use	
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion &	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	8.000E+01 N/A	7.207E+01 N/A	3.500E+03 N/A	1.333E+03 N/A	
			<u>Meth</u> @ HQ=1.0; R		<u>Meth</u> @ HQ=1.0; R		
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/		'A		
Potable	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A		N/A N/A		
Ground Water	Target Ground Wate Target Soil CUL?	8.8E+00 1.2E+00					
		ingkg	<u>Meth</u> @ HQ=1.0; R	iod <u>B</u>	<u>Meth</u> @ HQ=1.0; R		
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point	N/		//A		
		HQ? @ Exposure Point	N/A		N/A		
(for informational purpose only)	Target Air	RISK? @ Exposure Point @ HQ=1.0		//A //A	N/A N/A		
purpose only)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5		//A		/A	
	Target Soil CUL? mg/kg	@ HQ=1.0 @ RISK=1.0E-6 or 1.0E-5		//A //A		/A /A	

NOTES: "CUL" = Cleanup Level; "Conc" = concentration; "HQ" = hazard quotient; "RISK" = carcinogenic risk.

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

CAUTION: The requirements and procedures for establishing air cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-750). The use of this Workbook may not be sufficient to establish air cleanup levels under the regulation. Specifically, the air cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:		Lead (Soil-te	o-SW only)
1.2 Measured Soil Concentration, if any:	C_{s}		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:	\checkmark		
2. Toxicological Properties of the Chemical: Chemical-Specific			
2.1 Oral Reference Dose ^{1, 3}	RfD _o		mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o		kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters			_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	1	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{$1,2$}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.01	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.2	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific			_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K_{oc}	1.000E+04	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	0.000E+00	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	Н	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13° C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S		mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:	C	9 10E - 00	ua/1
*Results from the Ground Water Cleanup Level Worksheet are	C _w	8.10E+00	ug/l
not automatically transferred into this worksheet.			J
6. Site-Specific Hydrogeological Characteristics			
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{lpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	1	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			-
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Chemical of Concern: Lead (Soil-to-SW only)

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

Basis for Soil Concentration	Conc	Units	
Most stringent soil concentration based on Soil Direct			Warning: Soil Cleanup Level is higher than Soil Saturation
Contact & Ground Water Protection:	1.6E+03	mg/kg	Limit!
Natural Background concentration for Soil:	N/A	mg/kg	
Practical Quantitation Limit for Soil:	N/A	mg/kg	
Soil Cleanup Level (not considering vapor pathway):	1.6E+03	mg/kg	
Warning! Soil Cleanup Level above may not be pro-	otective of var	por exposure	
pathway - evaluate vapor pathway	y further.		
Soil concentration based on Vapor Pathway		ma/ka	
(informational purposes only):	0.000E+00	mg/kg	
Soil Saturation Limit, C _{sat} :	0.0E+00	mg/kg	•
Soil concentration based on Vapor Pathway (informational purposes only):	0.000E+00	mg/kg mg/kg	 <i>C</i>_{sat} corresponds to the total soil chemical concentration saturated in soil. <i>R</i> is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zon

34,884.7 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

	Summary by Exposure Pathway					
			<u>Method B</u> Unrestricted Land Use @ HQ=1.0; RISK =1.0E-6		<u>Method C</u> Industrial Land Use @ HQ=1.0; RISK =1.0E-5	
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
			<u>Meth</u> @ HQ=1.0; RI	od <u>B</u>	<u>Meth</u> @ HQ=1.0; R	od C
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/A			
Potable	Condition	HQ? @ Exposure Point	N/A		N/A N/A	
Ground Water	RISK? @ Exposure Point Target Ground Water CUL? ug/l		N/A N/A 8.1E+00			
	Target Soil CUL?	mg/kg		1.6E	E+03	
			<u>Meth</u> @ HQ=1.0; RI		<u>Meth</u> @ HQ=1.0; R	
Protection of	Protection of Under the Current		N/A			
Air Quality	Condition	HQ? @ Exposure Point	N/A		N/A	
e v		RISK? @ Exposure Point	N	/A	N	/A
(for informational purpose only)	Target Air	@ HQ=1.0	N	/A	N	/A
purpose only)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5	N	/A	N	/A
	Target Soil	@ HQ=1.0	N	/A	N	/A
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	N	/A	N	/A

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:	'	Fotal cPAHs	
1.2 Measured Soil Concentration, if any:	C_{s}		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:			_
2. Toxicological Properties of the Chemical: Chemical-Specific			_
2.1 Oral Reference Dose ^{1, 3}	RfD _o		mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o	7.30E+00	kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	_		_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	1	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{$1,2$}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.1	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.5	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	_		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	9.700E+05	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	$H_{cc} \blacktriangle$	4.600E-05	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	1.600E-03	mg/l
5. Target Ground Water Cleanup Level		-	
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation: *Results from the Ground Water Cleanup Level Worksheet are	C _w	1.80E-02	ug/l
not automatically transferred into this worksheet.	- W		0
6. Site-Specific Hydrogeological Characteristics			
Total Soil Porosity (default = "0.43"):	п	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{\alpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.004	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			_
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			_
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Chemical of Concern: Total cPAHs

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

	1 1	5,			
Basis for Soil Concentration	Conc	Units			
Most stringent soil concentration based on Soil Direct					
Contact & Ground Water Protection:	1.4E+00	mg/kg			
Natural Background concentration for Soil:	N/A	mg/kg			
Practical Quantitation Limit for Soil: N/A					
Soil Cleanup Level (not considering vapor pathway):	1.4E+00	mg/kg			
Warning! Soil Cleanup Level above may not be pr	Warning! Soil Cleanup Level above may not be protective of vapor exposure				
pathway - evaluate vapor pathwa	y further.				
Soil concentration based on Vapor Pathway	0.000E+00				
(informational purposes only):	0.000E+00	mg/kg			
Soil Saturation Limit, C _{sat} :	6.208E+00	mg/kg			

- **C**_{sat} corresponds to the total soil chemical concentration saturated in soil.
- **R** is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone

13,535.9 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

	Summary by Exposure Pathway					
			<u>Meth</u> Unrestricte @ HQ=1.0; I		<u>Meth</u> Industrial @ HQ=1.0; R	Land Use
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	N/A 1.4E-01	N/A 9.5E-02	N/A 1.8E+01	N/A 3.4E+00
			<u>Meth</u> @ HQ=1.0; RI		<u>Meth</u> @ HQ=1.0; R	
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/A			
Potable Ground Water	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A		N/A N/A	
Ground water	Target Ground Wate	1.8E-02 1.4E+00				
	Target Soil CUL?	mg/kg	<u>Meth</u> @ HQ=1.0; RI	od B	<u>Meth</u> @ HQ=1.0; R	
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point	N/		/A	
Air Quality	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A		N/A N/A	
(for informational purpose only)	Target Air	@ HQ=1.0	N/A N/A		N/A N/A	
r - r	CUL? ug/m ³ Target Soil	@ RISK=1.0E-6 or 1.0E-5 @ HQ=1.0		/A /A	N/A N/A	
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5		/A		/A

Page 3

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:		Total CDDs/	CDFs
1.2 Measured Soil Concentration, if any:	C_{s}		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:	\checkmark		
2. Toxicological Properties of the Chemical: Chemical-Specific			
2.1 Oral Reference Dose ^{1, 3}	RfD _o		mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o	1.50E+05	kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF _i	1.50E+05	kg-day/mg
3. Exposure Parameters			_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	1	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{1, 2}	AB1	0.6	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.03	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.8	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific			_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K_{oc}	3.900E+06	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	0.000E+00	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	1.930E-05	mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation: *Results from the Ground Water Cleanup Level Worksheet are not automatically transferred into this worksheet.	C_w	1.00E-05	ug/l
6. Site-Specific Hydrogeological Characteristics			
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	${\boldsymbol \varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	Θ_{α}	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.004	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms		-	
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			_
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Chemical of Concern: Total CDDs/CDFs

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

Basis for Soil Concentration	Conc	Units		
Most stringent soil concentration based on Soil Direct				
Contact & Ground Water Protection:	5.1E-04	mg/kg		
Natural Background concentration for Soil:	N/A	mg/kg		
Practical Quantitation Limit for Soil:	N/A	mg/kg		
Soil Cleanup Level (not considering vapor pathway):	5.1E-04	mg/kg		
Warning! Soil Cleanup Level above may not be protective of vapor exposure pathway - evaluate vapor pathway further.				
Soil concentration based on Vapor Pathway (informational purposes only):	0.000E+00	mg/kg		
Soil Saturation Limit, C _{sat} :	3.011E-01	mg/kg		

- **C**_{sat} corresponds to the total soil chemical concentration saturated in soil.
- **R** is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone

54,419.6 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

	Summary by Exposure Pathway					
			<u>Method B</u> Unrestricted Land Use @ HQ=1.0; RISK =1.0E-6		<u>Method C</u> Industrial Land Use @ HQ=1.0; RISK =1.0E-5	
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	N/A 1.1E-05	N/A 9.8E-06	N/A 1.5E-03	N/A 5.1E-04
			<u>Meth</u> @ HQ=1.0; RI		<u>Meth</u> @ HQ=1.0; R	
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/A			
Potable	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A		N/A N/A	
Ground Water	Target Ground Water CUL? ug/l		1.0E-05 3.1E-03			
	Target Soil CUL?	mg/kg	<u>Meth</u> @ HQ=1.0; RI	od <u>B</u>	<u>Meth</u> @ HQ=1.0; R	
Protection of	Protection of Under the Current		N/A			
Air Quality	Air Quality	HQ? @ Exposure Point	N/A		N/A	
(for informational	Target Air	RISK? @ Exposure Point @ HQ=1.0		/A /A	N N	
purpose only)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5		/A	N	
	Target Soil	@ HQ=1.0		/A	N	
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	N	/A	N	/A

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:		Total naphth	alenes
1.2 Measured Soil Concentration, if any:	C_{s}		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS d, GI:	- 		_
2. Toxicological Properties of the Chemical: Chemical-Specific			_
2.1 Oral Reference Dose ^{1, 3}	RfD _o	2.00E-02	mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o		kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD _i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	_		_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	1	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{$1, 2$}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.1	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.5	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	-		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	1.200E+03	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	$H_{cc} \blacktriangle$	2.000E-02	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	3.100E+01	mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation: *Results from the Ground Water Cleanup Level Worksheet are not automatically transferred into this worksheet.	<i>C</i> _w	4.90E+03	ug/l
6. Site-Specific Hydrogeological Characteristics			
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{\alpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.004	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			-
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Chemical of Concern: Total naphthalenes

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

tration	Conc	Units	
sed on Soil Direct			Warning: Soil Cleanup Level is higher than Soil Saturation
:	4.9E+02	mg/kg	Limit!
or Soil:	N/A	mg/kg	
	N/A	mg/kg	
vapor pathway):	4.9E+02	mg/kg	
ove may not be pro	otective of var	or exposure	
ate vapor pathwa	y further.		
athway		ma/lra	C _{sat} corresponds to the total soil chemical concentration
	0.000E+00	mg/kg	saturated in soil.
	1.6E+02	mg/kg	<i>R</i> is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone
	sed on Soil Direct : or Soil: : vapor pathway): ove may not be pro	sed on Soil Direct4.9E+02:Yasel 1000or Soil:N/A:N/Avapor pathway):4.9E+02ove may not be protective of vapuate vapor pathway further.Pathway0.000E+00	sed on Soil Direct4.9E+02mg/kg:4.9E+02mg/kgor Soil:N/Amg/kg:N/Amg/kgvapor pathway):4.9E+02mg/kgove may not be protective of vapor exposure nate vapor pathway further.mg/kgPathway0.000E+00mg/kg

17.7 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

Summary by Exposure Pathway							
			<u>Method B</u> Unrestricted Land Use @ HQ=1.0; RISK =1.0E-6				
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion &	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	1.600E+03 N/A	1.111E+03 N/A	7.000E+04 N/A	1.333E+04 N/A	
			<u>Meth</u> @ HQ=1.0; R	n <u>od B</u> ISK =1.0E-6	<u>Method C</u> @ HQ=1.0; RISK =1.0E-5		
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/A				
Potable	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A		N/A N/A		
Ground Water	Target Ground Wate	4.9E+03					
	Target Soil CUL?	mg/kg		4.9E+02 <u>Method B</u> <u>Method</u> Q=1.0; RISK =1.0E-6 @ HQ=1.0; RISK			
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point		N	/A		
Air Quality	Condition	HQ? @ Exposure Point		//A		N/A	
(for informational purpose only)	Target Air	RISK? @ Exposure Point @ HQ=1.0		//A //A		/A /A	
purpose oniy)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5		//A		/A	
	Target Soil CUL? mg/kg	@ HQ=1.0 @ RISK=1.0E-6 or 1.0E-5		//A //A		/A /A	

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:	-	Benzene	
1.2 Measured Soil Concentration, if any:	C_{s}		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:	\checkmark		
2. Toxicological Properties of the Chemical: Chemical-Specific			
2.1 Oral Reference Dose ^{1, 3}	RfD _o	4.00E-03	mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o	5.50E-02	kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	_		_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	2	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{1, 2}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.0005	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.8	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	_		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	6.200E+01	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	2.300E-01	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13 °C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	1.800E+03	mg/l
5. Target Ground Water Cleanup Level		-	
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:			
*Results from the Ground Water Cleanup Level Worksheet are	C_w	2.30E+01	ug/l
not automatically transferred into this worksheet.			
6. Site-Specific Hydrogeological Characteristics			
Total Soil Porosity (default = "0.43"):	п	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{\alpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.004	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms		-	
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS

Chemical of Concern:

Benzene

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

	e super puint	5
Basis for Soil Concentration	Conc	Units
Most stringent soil concentration based on Soil Direct		
Contact & Ground Water Protection:	2.2E-01	mg/kg
Natural Background concentration for Soil:	N/A	mg/kg
Practical Quantitation Limit for Soil:	N/A	mg/kg
Soil Cleanup Level (not considering vapor pathway):	2.2E-01	mg/kg
Warning! Soil Cleanup Level above may not be pr	otective of var	por exposure
pathway - evaluate vapor pathwa	y further.	
Soil concentration based on Vapor Pathway	0.000E+00	malta
(informational purposes only):	0.000E+00	mg/kg
Soil Saturation Limit, C _{sat} :	8.4E+02	mg/kg

- **C**_{sat} corresponds to the total soil chemical concentration saturated in soil.
- **R** is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone

1.9 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

Summary by Exposure Pathway							
			<u>Method B</u> Unrestricted Land Use @ HQ=1.0; RISK =1.0E-6		<u>Method C</u> Industrial Land Use @ HQ=1.0; RISK =1.0E-5		
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	3.200E+02 1.8E+01	3.196E+02 1.8E+01	1.400E+04 2.4E+03	7.950E+03 1.4E+03	
			<u>Meth</u> @ HQ=1.0; R		<u>Method C</u> @ HQ=1.0; RISK =1.0E-5		
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/A				
Potable Ground Water	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A		N/A N/A		
Ground water	Target Ground Wate	2.3E+01					
	Target Soil CUL?	mg/kg		2.2E-01 <u>Method B</u> <u>Method C</u> =1.0; RISK =1.0E-6 @ HQ=1.0; RISK =			
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point		N	/A		
Air Quality	Condition	HQ? @ Exposure Point	N/A			N/A	
(for informational purpose only)	Target Air	RISK? @ Exposure Point @ HQ=1.0		/A /A		/A /A	
ραιροse οπιγ)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5		/A /A		/A /A	
	Target Soil CUL? mg/kg	@ HQ=1.0 @ RISK=1.0E-6 or 1.0E-5		/A /A		/A /A	

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:	r	Foluene	
1.2 Measured Soil Concentration, if any:	C_s		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS _d , GI:	_ _		_
2. Toxicological Properties of the Chemical: Chemical-Specific			_
2.1 Oral Reference Dose ^{1, 3}	RfD _o	8.00E-02	mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o		kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	-		_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	2	unitless
3.2 Inhalation Absorption Fraction $(default = "1")^5$	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{$1,2$}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.03	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.8	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	_		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	1.400E+02	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	$H_{cc} \blacklozenge$	2.700E-01	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	5.300E+02	mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:	~		
*Results from the Ground Water Cleanup Level Worksheet are	C_w	1.50E+04	ug/l
not automatically transferred into this worksheet.			
6. Site-Specific Hydrogeological Characteristics			
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{lpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.004	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			_
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Toluene

Chemical of Concern:

1. Summary of Results

 \checkmark To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here: -To calculate a soil concentration based on Method C vapor pathway, check here:

Basis for Soil Concentration	Conc	Units			
Most stringent soil concentration based on Soil Direct					
Contact & Ground Water Protection:	2.4E+02	mg/kg			
Natural Background concentration for Soil:	N/A	mg/kg			
Practical Quantitation Limit for Soil:	N/A	mg/kg			
Soil Cleanup Level (not considering vapor pathway):	2.4E+02	mg/kg			
	Warning! Soil Cleanup Level above may not be protective of vapor exposu pathway - evaluate vapor pathway further.				
Soil concentration based on Vapor Pathway (informational purposes only):	0.000E+00	mg/kg			
Soil Saturation Limit, C _{sat} :	4.2E+02	mg/kg			

- C_{sat} corresponds to the total soil chemical concentration saturated in soil.
- R is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone

3.0 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

Summary by Exposure Pathway							
			<u>Method B</u> Unrestricted Land Use @ HQ=1.0; RISK =1.0E-6		<u>Method C</u> Industrial Land Use @ HQ=1.0; RISK =1.0E-5		
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion & Dermal	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	6.400E+03 N/A	5.912E+03 N/A	2.800E+05 N/A	1.164E+05 N/A	
			<u>Meth</u> @ HQ=1.0; R		Method C		
Protection of	Under the Current	Predicted Ground Water Conc? ug/l		N	/A		
Potable	Condition	HQ? @ Exposure Point		N/A N/A		N/A	
Ground Water	Target Ground Wate	RISK? @ Exposure Point er CUL? ug/l	IN	1.5E	N/A E+04		
	Target Soil CUL?	mg/kg		2.4E	E+02		
			<u>Meth</u> @ HQ=1.0; R		<u>Meth</u> @ HQ=1.0; R		
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point		N	/A		
Air Quality	Condition	HQ? @ Exposure Point	N	/A	N	/A	
		RISK? @ Exposure Point	N/A		N	/A	
(for informational purpose only)	Target Air	@ HQ=1.0	N	/A	N	/A	
purpose only)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5	N	/A	N	/A	
	Target Soil	@ HQ=1.0	N	/A	N	/A	
	CUL? mg/kg	@ RISK=1.0E-6 or 1.0E-5	Ν	/A	N	/A	

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:		Ethylbenzen	9
1.2 Measured Soil Concentration, if any:	C_{s}		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS d, GI:	\checkmark		_
2. Toxicological Properties of the Chemical: Chemical-Specific			
2.1 Oral Reference Dose ^{1, 3}	RfD _o	1.00E-01	mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o		kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	_		-
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	2	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{1, 2}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.03	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.8	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	_		-
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	2.000E+02	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	H_{cc}	3.200E-01	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13 °C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H _{cc}	0.000E + 00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	1.700E+02	mg/l
5. Target Ground Water Cleanup Level		-	_
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation:	_		
*Results from the Ground Water Cleanup Level Worksheet are	C_w	2.10E+03	ug/l
not automatically transferred into this worksheet.			
6. Site-Specific Hydrogeological Characteristics			_
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{lpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.004	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			_
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			_
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Chemical of Concern: Ethylbenzene

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

Basis for Soil Concentration	Conc	Units
Most stringent soil concentration based on Soil Direct		
Contact & Ground Water Protection:	4.3E+01	mg/kg
Natural Background concentration for Soil:	N/A	mg/kg
Practical Quantitation Limit for Soil:	N/A	mg/kg
Soil Cleanup Level (not considering vapor pathway):	4.3E+01	mg/kg
Warning! Soil Cleanup Level above may not be pr	otective of var	por exposure
pathway - evaluate vapor pathway	y further.	
Soil concentration based on Vapor Pathway	0.000E+00	ma/ka
(informational purposes only):	0.000E+00	mg/kg
Soil Saturation Limit, C _{sat} :	1.7E+02	mg/kg

C_{sat} corresponds to the total soil chemical concentration saturated in soil.

R is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone

3.8 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

	Summary by Exposure Pathway							
			<u>Method B</u> Unrestricted Land Use @ HQ=1.0; RISK =1.0E-6		<u>Method C</u> Industrial Land Use @ HQ=1.0; RISK =1.0E-5			
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion &		
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A		
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	8.000E+03 N/A	7.390E+03 N/A	3.500E+05 N/A	1.455E+05 N/A		
			<u>Meth</u> @ HQ=1.0; R		<u>Method C</u> @ HQ=1.0; RISK =1.0E-5			
Protection of	Under the Current	Predicted Ground Water Conc? ug/l		N	N/A			
Potable Ground Water	Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A		N/A N/A			
Ground water	Target Ground Water CUL? ug/l		2.1E+03					
	Target Soil CUL?	mg/kg				<u>Method C</u> =1.0; RISK =1.0E-5		
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point		N	/A			
Air Quality (for informational	Condition	HQ? @ Exposure Point	N/A		N			
	Target Air	RISK? @ Exposure Point @ HQ=1.0	nt N/A N/A		- 0	N/A N/A		
purpose only)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5		/A	N			
	Target Soil CUL? mg/kg	@ HQ=1.0 @ RISK=1.0E-6 or 1.0E-5		N/A N/A N/A N/A				

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Worksheet for Calculating Soil Cleanup Levels for Unrestricted & Industrial Land Use

Date:	2/16/2009
Site Name:	Port of Olympia East Bay
Evaluator:	Troy Bussey

Refer to WAC 173-340-720, 740, 745, 747 and 750 for details.

¹Soil ingestion only; ²Soil dermal contact; ³Soil to Ground Water; ⁴Ground Water ingestion; ⁵Vapor exposure pathway

A. INPUT PARAMETERS FOR SOIL CLEANUP LEVEL CALCULATIONS

Note: If no data is available for any of the following inputs, then leave the input box blank

Item	Symbol	Value	Units
1. General information			
1.1 Name of Chemical:	'	Fotal Xylene	s
1.2 Measured Soil Concentration, if any:	C_s		mg/kg
1.3 Natural Background Concentration for Soil, if any:	NB_s		mg/kg
1.4 Practical Quantitation Limit for Soil, if any:	PQL_s		mg/kg
* To evaluate the ingestion and dermal pathways concurrently, check here and input values for AF, ABS d, GI:	_ _		_
2. Toxicological Properties of the Chemical: Chemical-Specific	_		_
2.1 Oral Reference Dose ^{1, 3}	RfD _o	2.00E-01	mg/kg-day
2.2 Oral Carcinogenic Potency Factor ^{1, 3}	CPF _o		kg-day/mg
2.3 Inhalation Reference Dose ⁵	RfD_i		mg/kg-day
2.4 Inhalation Carcinogenic Potency Factor ⁵	CPF_i		kg-day/mg
3. Exposure Parameters	_		_
3.1 Inhalation Correction Factor (default = "2" for volatiles; "1" for all others) ⁴	INH	2	unitless
3.2 Inhalation Absorption Fraction (default = "1") ⁵	ABS_i	1	unitless
3.3 Gastrointestinal Absorption Fraction (default = "1") ^{$1,2$}	AB1	1	unitless
3.4 Adherence Factor $(default = "0.2")^2$	AF	0.2	mg/cm ² -day
3.5 Dermal Absorption Fraction (chemical-specific or defaults) ²	ABS_d	0.03	unitless
3.6 Gastrointestinal Absorption Conversion Factor (chemical-specific or defaults) ²	GI	0.8	unitless
4. Physical and Chemical Properties of the Chemical: Chemical-Specific	_		_
Soil Organic Carbon-Water Partitioning Coefficient: for metals, enter K_d value here and enter "1" for f_{oc} value	K _{oc}	2.300E+02	l/kg
Henry's Law Constant: for the evaluation of ground water and vapor exposure pathway	$H_{cc} \blacktriangle$	2.800E-01	unitless
*If the value for Henry's Law Constant is given in the unit of "atm.m ³ /mol", enter value here:	H	0.000E+00	atm.m ³ /mol
*Converted unitless form of H_{cc} @13°C: (Enter this converted value into " H_{cc} input Box" above for a calculation)	H_{cc}	0.000E+00	unitless

Solubility of the Chemical in Water: for the calculation of soil saturation limit	S	1.700E+02	mg/l
5. Target Ground Water Cleanup Level			
Target Ground Water Cleanup Level applicable for a soil cleanup level calculation: *Results from the Ground Water Cleanup Level Worksheet are not automatically transferred into this worksheet.	<i>C</i> _w	1.00E+03	ug/l
6. Site-Specific Hydrogeological Characteristics			
Total Soil Porosity (default = "0.43"):	n	0.43	unitless
Volumetric Water Content (default = "0.30"):	$\boldsymbol{\varTheta}_w$	0.3	unitless
Volumetric Air Content (default = "0.13"):	${\cal O}_{lpha}$	0.13	unitless
Dry Soil Bulk Density (default = "1.50"):	$ ho_{b}$	1.5	kg/l
Fraction Soil Organic Carbon (default = "0.001"): for metals, enter "1" for f_{oc} value here	f_{oc}	0.004	unitless
Dilution Factor (default = "20" for unsaturated zone soil; "1" for saturated zone soil; or site-specific)	DF	20	unitless
7. Vapor Attenuation Factor due to Advection (building structure) & Diffusion (soil layer) Mechanisms			_
* Vapor Attenuation Factor is the ratio of air concentration at the exposure point (e.g., within the building) to the vapor-			
phase contaminant concentration within the soil at the source			_
Enter Vapor Attenuation Factor: for the evaluation of vapor exposure pathway	VAF		unitless

B. SUMMARY OF SOIL CLEANUP LEVEL CALCULATIONS Chemical of Concern: Total Xylenes

1. Summary of Results

To calculate a soil cleanup level based on Industrial Land Use (Method C) for Direct Soil Contact, check here:

	1 1	5
Basis for Soil Concentration	Conc	Units
Most stringent soil concentration based on Soil Direct		
Contact & Ground Water Protection:	2.3E+01	mg/kg
Natural Background concentration for Soil:	N/A	mg/kg
Practical Quantitation Limit for Soil:	N/A	mg/kg
Soil Cleanup Level (not considering vapor pathway):	2.3E+01	mg/kg
Warning! Soil Cleanup Level above may not be pr	otective of vap	por exposure
pathway - evaluate vapor pathwa	y further.	
Soil concentration based on Vapor Pathway	0.000E+00	
(informational purposes only):	0.000E+00	mg/kg
Soil Saturation Limit, <i>C</i> _{sat} :	1.9E+02	mg/kg

C_{sat} corresponds to the total soil chemical concentration saturated in soil.

R is the ratio of the ground water flow velocity to the contaminant migration velocity in saturated zone

4.2 unitless

contaminant migration velocity in saturated zone.

2. Summary of Calculation for each Exposure Pathway

Summary by Exposure Pathway							
		<u>Method</u> Unrestricted L @ HO=1 0: BIS			<u>Meth</u> Industrial @ HQ=1.0; R	Land Use	
Soil Direct			Ingestion only	Ingestion & Dermal	Ingestion only	Ingestion &	
Contact	Under the Current Condition	HQ? @ Exposure Point RISK? @ Exposure Point	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Target Soil CUL? mg/kg	@HQ=1.0 @RISK =1.0E-6 or 1.0E-5	1.600E+04 N/A	1.478E+04 N/A	7.000E+05 N/A	2.909E+05 N/A	
			<u>Meth</u> @ HQ=1.0; RI		<u>B</u> <u>Method C</u>		
Protection of	Under the Current	Predicted Ground Water Conc? ug/l	N/A				
Potable Cround Water	Condition	HQ? @ Exposure Point RISK? @ Exposure Point		N/A N/A		N/A N/A	
Ground Water	Target Ground Wate	er CUL? ug/l		1.0E	E+03		
	Target Soil CUL?	mg/kg	2.3E+01 <u>Method B</u> <u>Method C</u> @ HQ=1.0; RISK =1.0E-6 @ HQ=1.0; RISK =1.				
Protection of	Under the Current	Predicted Air Conc? ug/m ³ @Exposure Point		N	/A		
Air Quality	Condition	HQ? @ Exposure Point		/A		/A	
(for informational	Target Air	RISK? @ Exposure Point @ HQ=1.0		/A /A	N. N.	/A /A	
purpose only)	CUL? ug/m ³	@ RISK=1.0E-6 or 1.0E-5	N	//A	N	/A	
	Target Soil CUL? mg/kg	@ HQ=1.0 @ RISK=1.0E-6 or 1.0E-5		/A /A	N. N.	/A /A	

CAUTION: The requirements and procedures for establishing soil cleanup levels that are protective of human health and the environment are specified in the MTCA Cleanup Regulation (see WAC 173-340-740, 173-340-745, 173-340-747 and 173-340-7490 through 173-340-7494). The use of this Workbook is not sufficient to establish soil cleanup levels under the regulation. Specifically, the soil cleanup levels derived using this Workbook do not account for the following:

- · Concentrations based on applicable state and federal laws (see WAC 173-340-740(3)(b)(i) and 173-340-745(5)(b)(i));
- · Soil residual saturation (see WAC 173-340-747(10));
- · Ecological impacts (see WAC 173-340-7490 through 7494); and
- Total site risk (see WAC 173-340-740(5)(a) and 173-340-745(6)(a)).

Other exposure pathways may also need to be evaluated on a site-specific basis to establish soil cleanup levels.

- · Concentrations based on applicable state and federal laws (see WAC 173-340-750(3)(b)(i) and (4)(b)(i));
- · Concentrations based on natural background and the practical quantitation limit (see WAC 173-340-750(5)(c));
- Total site risk (see WAC 173-340-750(5)(a)).

Appendix D

SAMPLING AND ANALYSIS PLAN / QUALITY ASSURANCE PROJECT PLAN

TABLE OF CONTENTS

SECTION 1 – SAMPLING AND ANALYSIS PLAN 1				
1.1	PURPOSE	1		
1.2	AIRBORNE DUST MONITORING	1		
1.3	SOIL SAMPLING AND ANALYSIS	1		
1.4	EQUIPMENT DECONTAMINATION PROCEDURES			
1.5	INVESTIGATION-DERIVED WASTE	2		
1.6	FIELD RECORDKEEPING	3		
1.7	SAMPLE IDENTIFICATION AND LABELING	3		
1.8	SAMPLE HANDLING AND SHIPMENT	3		
1.9	CHAIN-OF-CUSTODY DOCUMENTATION	4		
SECTION 2 – QUALITY ASSURANCE PROJECT PLAN				
2.1	Purpose			
2.2	FIELD QUALITY CONTROL SAMPLES	5		
2.3	LABORATORY QUALITY CONTROL.	5		
2.4	PRACTICAL QUANTITATION LIMIT			
2.5	QA/QC REVIEW AND VERIFICATION			

TABLES

- TABLE D-1: SOIL SAMPLING AND ANALYSIS PLAN SUMMARY
- TABLE D-2:
 SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES
- TABLE D-3: SPIKE RECOVERY AND SPIKE DUPLICATE CONTROL LIMITS
- TABLE D-4: SURROGATE RECOVERY CONTROL LIMITS
- TABLE D-5: PRACTICAL QUANTITATION LIMITS

SECTION 1 – SAMPLING AND ANALYSIS PLAN

1.1 Purpose

The purpose of the Sampling and Analysis Plan (SAP) is to present the methodology for samples collected and analyzed pursuant to the Interim Action Work Plan (IAWP). The SAP is designed so that sampling and analysis activities can be completed in accordance with Washington Administrative Code (WAC) 173-340-820 and applicable components of Washington State Department of Ecology (Ecology) guidance (Ecology 1995a). It should be noted that the brevity of this SAP is based on the nature of anticipated sampling activities and that typical contents of a SAP are not repeated if included elsewhere in the IAWP.

1.2 Airborne Dust Monitoring

The third-party Port of Olympia (Port) contractor providing oversight support for environmental soil issues will utilize a calibrated PDR-1000 Personal DataRAM Particulate Monitor Kit or equivalent field meter to measure the amount of respirable dust (i.e., particles less than 10 microns in diameter) in the air and log that information throughout the day. Real-time monitoring will be conducted for the work-day duration at one reasonable maximum sample location (e.g., next to heavy equipment operators) for each work day. Each work day may have a different monitoring location depending on the nature of work being conducted that day. The field meter will be configured to collect measurements approximately every minute and to alarm if a concentration exceeding the Airborne Dust Action Level presented in Appendix F is measured.

If the time-weighted average of daily dust measurements does not exceed the Airborne Dust Action Level during the first two weeks of monitoring, then airborne dust monitoring may be temporarily discontinued until June 22^{nd} (assuming the initial monitoring began prior to June 8^{th}). Regardless of initial results, airborne dust monitoring will be continued for two weeks starting on June 22^{nd} (if the initial monitoring begins prior to June 8^{th}). If the Airborne Dust Action Level is not exceeded during the two weeks of initial monitoring may be permanently discontinued.

1.3 Soil Sampling and Analysis

The third-party Port contractor providing oversight support for environmental soil issues will utilize hand tools (e.g., shovel, trowel, mixing bowl) to collect stockpile samples at the sampling frequencies shown in Table D-1. The current estimated volume of soil to be excavated and stockpiled during the IA ranges from 20,000 cubic yards (CY) to 30,000 CY. Although the exact number of stockpile samples will depend on the actual size and location of the stockpiles, no less than 40 to 60 soil stockpile samples will be collected (based on the estimated excavation volume).

Each soil stockpile sample from stockpiles designated for off-site disposal (due to geotechnical considerations or gross contamination provisions) will be a five-point composite of representative sub-sampling locations. All soil stockpile samples collected from stockpiles designated for off-site disposal will be analyzed for:

• Arsenic, cadmium, and lead by the toxicity characteristic leaching procedure (TCLP) per United States Environmental Protection Agency (USEPA) Method SW846-1311

Each soil stockpile sample from stockpiles designated for on-site reuse under pavement will be collected from a representative depth as discrete, non-homogenized, and non-sieved samples. All soil stockpile samples collected from stockpiles designated for on-site reuse under pavement will be analyzed for:

- Arsenic, cadmium, and lead by USEPA Method SW846-6010 or 6020
- Polycyclic aromatic hydrocarbons (PAHs) by USEPA Method SW846-8270C
- Chlorinated dibenzo-p-dioxins and chlorinated dibenzofurans (dioxins/furans) by USEPA Method SW846-8290
- Total petroleum hydrocarbons (TPH) in the diesel range (TPH-D) and the heavy oil range (TPH-HO) by Ecology Method NWTPH-Dx
- TPH in the gasoline range (TPH-G) by Ecology Method NWTPH-G, with follow-on analysis for benzene, toluene, ethylbenzene, and xylenes (BTEX) by USEPA Method SW846-8260B or SW846-8021 if TPH-G is detected.

Sample containers for all analyses will be provided by the analytical laboratory. At each sampling location, sample containers for TPH-G and possible BTEX analyses will be filled before all other sample containers. Samples for TPH-G and possible BTEX analyses will be collected and prepared in accordance with USEPA Method SW846-5035A. Table D-2 presents the appropriate sample containers, preservation, and holding times for the analyses used in this SAP. Sample containers will be held by the laboratory for possible subsequent analyses.

If suspected gross contamination is encountered and gross contamination sampling becomes necessary in accordance with the Compliance Monitoring Plan (CMP), then the specific sampling locations, sample density, and analytical methods for such sampling will be determined on a case-by-case basis in consultation with Ecology, as shown in Table D-1. In general, it is expected that all necessary excavation sidewall and bottom samples will be collected by the third-party Port contractor providing oversight support for environmental soil issues as discrete, grab-soil samples from the excavator bucket.

The third-party Port contractor providing oversight support for environmental soil issues will survey all soil sample locations with a Trimble GeoXT unit or equivalent.

1.4 Equipment Decontamination Procedures

All non-dedicated soil sampling equipment will be cleaned before use. Following use, the affected portions of the equipment will be scrubbed with potable water containing diluted detergent (e.g., Liquinox) before being sufficiently rinsed with potable water. Gloves will be changed before working at the next monitoring location. Dedicated equipment will be stored in dedicated plastic bags to prevent cross-contamination.

1.5 Investigation-Derived Waste

Investigation-derived waste generated pursuant to this SAP will be handled and disposed of as follows:

• Decontamination water will be added to the dewatering treatment system or discharged on Site.

• Disposable personal protective equipment (PPE) (e.g., nitrile gloves) and other general garbage will be disposed of at Port property as part of the normal solid waste stream.

1.6 Field Recordkeeping

The third-party Port contractor providing oversight support for environmental soil issues will record and maintain field notes and take photographs as appropriate. The third-party Port contractor providing oversight support for environmental soil issues will provide PIONEER Technologies Corporation (PIONEER) with a copy of all field notes and photographs, and will maintain these records for three years.

1.7 Sample Identification and Labeling

All samples will be identified by a unique sample designation that includes the sample location name, sample date, and sample depth. The sample designation scheme is as follows:

• Sample Location Name-Sample Date-Sample Depth

The sample location name is a four character code that uniquely identifies each sampling location. The station location name has two parts: a two-letter location type (i.e., "SP" for stockpile sample and "SW" for excavation sidewall or bottom sample) followed by a unique, sequential two-digit number (i.e., "nn"). Sample date is in the format of year, month, date (i.e., "YYMMDD"). Sample depth is the sample interval in feet below stockpile or ground surface (e.g., "0.5-1").

Two examples of complete sample designations are:

٠	SP03-090605-0.5-1	Stockpile sample #3 collected on June 5, 2009 from depth of 0.5 to 1 feet
		below stockpile surface

• SW12-090830-6-7 Sidewall sample #12 collected on August 30, 2009 from depth of 6 to 7 feet below ground surface

All sample labels will clearly indicate the site location, sample designation, date, time, sampler's initials, parameters to be analyzed, preservative added (if any), and any pertinent comments.

1.8 Sample Handling and Shipment

Samples being submitted for laboratory analysis will be packaged and shipped in accordance with 49 Code of Federal Regulations (CFR) 173.6 and 49 CFR 173.24. All samples will be shipped as "Environmental Samples" and not as hazardous material. Samples will be shipped via express delivery to the laboratory as soon as reasonably possible after sample collection. The following are general packaging procedures:

- Sample labels will be securely attached to each sample container.
- Plastic bubble-wrap bags, sheets, or Styrofoam packing material will be used to protect sample containers.
- Insulated plastic or metal-clad plastic coolers will be used as shipping containers.
- All samples will be chilled with the addition of blue, cube, or block ice.
- The original chain-of-custody form (see also below) will be placed inside the cooler in a sealed plastic bag.

- Two signed custody seals will be placed over the lid of the cooler and covered with clear plastic tape.
- The cooler will be securely taped shut with strapping tape.
- The completed shipping label will be attached to the top of the cooler.
- The cooler will then be delivered to the shipping courier.

1.9 Chain-of-Custody Documentation

Chain-of-custody procedures are employed to maintain and document sample possession. A sample is considered under a person's custody if it is in that person's physical possession, within visual sight of that person after taking physical possession, secured by that person so that the sample cannot be tampered with, or secured by that person in an area that is restricted to unauthorized personnel.

The originator (the sampler) will fill in all requested information on the custody record and will sign and date the record in the first "relinquished by" box. Original signed custody records listing the samples in the cooler will accompany all shipments of samples (note: it is possible that more than one custody form will be needed per cooler to list all the samples contained in the cooler). The originator of the custody record will keep the bottom copy (usually pink).

SECTION 2 – QUALITY ASSURANCE PROJECT PLAN

2.1 Purpose

The purpose of the Quality Assurance Project Plan (QAPP) is to provide methodology for evaluating whether sampling and analysis procedures will produce data of acceptable quality. The QAPP is designed to produce data of acceptable quality in accordance with WAC 173-340-820 and Ecology guidance (Ecology 2004). It should be noted that the brevity of this QAPP is based on the nature of anticipated sampling activities and that typical contents of a QAPP are not repeated if included elsewhere in the IAWP.

2.2 Field Quality Control Samples

In accordance with the soil sampling approach utilized in the Remedial Investigation Work Plan (RIWP) (GeoEngineers and PIONEER 2008), the following field quality control (QC) soil samples will be collected and submitted for analysis:

• One trip blank will be submitted for each batch of TPH-G/BTEX samples submitted to the analytical laboratory and analyzed for TPH-G and BTEX (if necessary).

2.3 Laboratory Quality Control

The project analytical laboratory will be responsible for conducting laboratory QC procedures and reporting laboratory QC results in accordance with laboratory standard operating procedures. It is expected at a minimum that the project laboratory will perform and report a method blank, blank spike, matrix spike, and matrix spike duplicate once per batch of metals, PAHs, dioxins/furans, NWTPH-Dx, NWTPH-G, or BTEX analyses. Control limits for acceptable spike recoveries and the relative percent difference on spike duplicates are shown in Table D-3. Also, it is expected that the laboratory will perform and report results of surrogate recovery for every PAHs, dioxins/furans, NWTPH-Dx, NWTPH-G, and BTEX sample. Control limits for acceptable surrogate recoveries are shown in Table D-4.

2.4 Practical Quantitation Limit

Table D-5 presents a comparison of Interim Action Cleanup Levels and Interim Action Reuse Under Pavement Levels with expected practical quantitation limits (PQLs) for each constituent of potential concern (COPC). It is expected that the project will be able to achieve soil PQLs of appropriate sensitivity.

2.5 QA/QC Review and Verification

The overall data quality will be reviewed and verified by PIONEER to determine the appropriateness of project-related data. Project data as well as quality assurance/quality control (QA/QC) data (i.e., field QC results, lab QC results, PQLs, and holding times) will be evaluated in terms of precision, accuracy, representativeness, comparability, completeness, and sensitivity. Results of this evaluation will be summarized in the IA Report. Corrective action for field or laboratory procedures will be taken as needed in consultation with Ecology.

SECTION 3 – REFERENCES

- Ecology 1995a. Guidance on Sampling and Data Analysis Methods, January.
- Ecology 1995b. Guidance for Remediation of Petroleum Contaminated Soils, November.
- Ecology 2003. Guidance for Site Checks and Site Assessments for Underground Storage Tanks, May.
- Ecology 2004. Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies, July.
- PIONEER 2008. Personal correspondence between Troy Bussey and Leslie Whiteman of Rabanco, Dean Large of Waste Connections, and Missy Boone of Waste Management, December.

Monitoring Location / Media	Total Arsenic, Cadmium, and Lead by USEPA Method SW846-6010 or 6020	TCLP Arsenic, Cadmium, and Lead by USEPA Method SW846-1311	PAHs by USEPA Method SW846- 8270C	Dioxins/ Furans by USEPA Method SW846-8290	TPH-D and TPH-HO by NWTPH-Dx	TPH-G by Ecology Method NWTPH-G
Soil stockpiles designated for off-site disposal		\geq 1 sample per 500 CY				
Soil stockpiles designated for on-site reuse	\geq 1 sample per 500 CY		\geq 1 sample per 500 CY	\geq 1 sample per 500 CY	\geq 1 sample per 500 CY	\geq 1 sample per 500 CY
Worst-case locations (e.g., excavation sidewall and/or stockpile) to characterize suspected gross contamination	TBD ⁽⁶⁾	TBD ⁽⁶⁾	TBD ⁽⁶⁾	TBD ⁽⁶⁾	TBD ⁽⁶⁾	TBD ^(5,6)
Excavation sidewalls/bottom to confirm gross contamination overexcavation was completed successfully	TBD ⁽⁶⁾		TBD ⁽⁶⁾	TBD ⁽⁶⁾	TBD ⁽⁶⁾	TBD ^(5,6)

TABLE D-1. SOIL SAMPLING AND ANALYSIS PLAN SUMMARY

Notes:

⁽¹⁾ Samples from soil stockpiles designated for off-site disposal still need to be characterized for acceptance at a Resource Conservation and Recovery Act (RCRA) Subtitle D facility. Toxicity characteristic leaching procedure (TCLP) results for arsenic, cadmium, and lead will be used in concert with the existing infrastructure corridor soil data to profile soil stockpiles designated for off-site disposal.

- ⁽²⁾ An appropriate sampling frequency for acceptance of soil for disposal at a RCRA Subtitle D facility is one sample per 500 cubic yards (CY) (PIONEER 2008).
- (3) 500 CY is the maximum volume that will be represented by a single soil sample. Thus, stockpiles can be combined for sampling purposes as long as the soil stockpiles in question contain similar soil (e.g., the stockpiles were generated from the same zone as shown on Figure 5-1, none of the stockpiles contain any grossly contaminated soil, etc). Likewise, multiple samples will be collected from stockpiles larger than 500 CY. For instance, four samples would be collected from a 1900 CY stockpile.
- (4) The sampling frequency that is appropriate for land disposal at a landfill is also appropriate for reuse of soil under pavement. Ecology guidance for stockpile sampling at leaking underground storage tanks sites (Ecology 1995b, Ecology 2003) was not utilized given the amount of performance soil data that will be collected with the 500 CY sampling frequency, the soil will be reused under pavement, the maximum soil concentrations within the infrastructure corridor are relatively low, and the purpose of this sampling is not to determine whether or not a release from an underground storage tank has occurred.
- ⁽⁵⁾ All TPH-G samples will be held for possible subsequent analysis. If TPH-G is detected above the practical quantitation limit in a given
- sample, that sample will be analyzed for benzene, toluene, ethylbenzene, and xylenes by USEPA Method SW846-8260B or SW846-8021. ⁽⁶⁾ TBD = to be determined. If suspected gross contamination is encountered, then sample locations and analyses will be determined on a caseby-case basis in consultation with Ecology.

CY: Cubic yards

Dioxins/Furans: Chlorinated dibenzo-p-dioxins / chlorinated dibenzofurans PAHs: Polycyclic aromatic hydrocarbons TCLP: Toxicity Characteristic Leaching Procedure TPH-D: Total petroleum hydrocarbons in the diesel range TPH-HO: Total petroleum hydrocarbons in the heavy oil range TPH-G: Total petroleum hydrocarbons in the gasoline range USEPA: United States Environmental Protection Agency

TABLE D-2. SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Analytical Method	Container Type	Preservation	Extraction Holding Time (days)	Analysis Holding Time (days)
USEPA Method SW846-6010/6020	One 4-oz glass jar	Cool to 4°C	N/A	180
USEPA Method SW846-8270C	One 4-oz glass jar	Cool to 4°C	14	40
USEPA Method SW846-8290	One 4-oz glass jar	Cool to 4°C	30	40
Ecology Method NWTPH-Dx	One 4-oz glass jar	Cool to 4°C	14	40
Ecology Method NWTPH-G and USEPA Method SW846-8260B or -8021	Depends on sampling USEPA Method SW8		N/A	14

Notes: N/A: Not applicable USEPA: United States Environmental Protection Agency

TABLE D-3. SPIKE RECOVERY AND SPIKE DUPLICATE CONTROL LIMITS

Analytical Method	Range of Acceptable Blank Spike Recoveries (%)	Range of Acceptable Matrix Spike/Matrix Spike Duplicate Recoveries (%)	Acceptable Spike Duplicate Relative Percent Difference (%)
USEPA Method SW846-6010/6020	80 – 120	75 – 125	< 25
USEPA Method SW846-8270C	30 – 140	30 - 140	< 50
USEPA Method SW846-8290	20 – 180	20 – 180	< 30
Ecology Method NWTPH-Dx	50 – 150	50 – 150	< 50
Ecology Method NWTPH-G	50 – 150	50 – 150	< 50
USEPA Method SW846-8260B or -8021	70 – 130	70 – 130	< 25

Notes: USEPA: United States Environmental Protection Agency

TABLE D-4. SURROGATE RECOVERY CONTROL LIMITS

		Acceptable Range of Surrogate Percent Recovery
Analytical Method	Typical Surrogate(s)	(%)
USEPA Method SW846-6010/6020	N/A	N/A
USEPA Method SW846-8270C	Terphenyl-d14	18 – 137
USEPA Method SW846-8290	Various carbon-13 compounds	40 – 135
Ecology Method NWTPH-Dx	Hexacosane	50 – 150
Ecology Method NWTPH-G	4-Bromofluorobenzene	50 – 150
USEPA Method SW846-8260B or -8021	1,2-Dichloroethane-d4	70 – 130
	4-Bromofluorobenzene	70 – 130
	Toluene-d8	70 – 130

Notes: N/A: Not applicable USEPA: United States Environmental Protection Agency

TABLE D-5. PRACTICAL QUANTITATION LIMITS

Analytical Method	Constituent	Interim Action Cleanup Level (mg/kg)	Interim Action Reuse Under Pavement Level (mg/kg)	Typical Expectations for Laboratory PQL ⁽¹⁾ (mg/kg)	Acceptable PQL for IA Project Laboratory ⁽²⁾ (mg/kg)
USEPA Method SW846-	Arsenic	20	20	2.5 – 10	2
6010/6020	Cadmium	2	2	0.01 – 2	2
	Lead	250	250	1.2 - 8	2
USEPA Method SW846-8270C	Total cPAHs	0.095	1.4	0.009 - 1.2	0.15 ⁽³⁾
	Total naphthalenes	160	160	0.067 – 1.3	0.3 (3)
USEPA Method SW846-8290	Total dioxins/furans	9.8E-06	5.1E-04	9E-06	3E-06 ⁽⁴⁾
Ecology Method NWTPH-Dx	TPH-D	2,000	2,000	N/A	50
	ТРН-НО	2,000	2,000	N/A	100
Ecology Method NWTPH-G	TPH-G	100	100	N/A	10
USEPA Method SW846-8260B	Benzene	0.22	0.22	0.001 - 0.01	0.01
or SW846-8021	Toluene	240	240	0.001 – 0.01	0.01
	Ethylbenzene	43	43	0.001 – 0.01	0.01
	Total xylenes	23	23	0.003 - 0.03	0.03

 Notes:
 10
 20
 20
 0000

 (1) Based on Ecology guidance (Ecology 1995a).
 (2)
 11
 may not be possible to achieve these quantitation limits (e.g., samples that require dilution before analysis).
 (3)

 (3) Based on 0.1 mg/kg for each PAH constituent.
 (4)
 Based on 0.000001 mg/kg for each dioxins/furans congener constituent.

 PQL: Practical quantitation limit
 (2)
 (2)
 (4)
 (2)

 PALL: Convine action prime relevant is budge achieved.
 (3)
 (4)
 (4)

cPAHs: Carcinogenic polycyclic aromatic hydrocarbons Dioxins/furans: Chlorinated dibenzo-p-dioxins / chlorinated dibenzofurans

TPH-D: Total petroleum hydrocarbons in the diesel range

TPH-HO: Total petroleum hydrocarbons in the deser range TPH-HO: Total petroleum hydrocarbons in the heavy oil range TPH-G: Total petroleum hydrocarbons in the gasoline range

Appendix E

PIONEER HEALTH AND SAFETY PLAN PLAN

PIONEE	R HEALTH AND SAFETY PLAN PLAN	1
1.1	PURPOSE	1
1.2	PIONEER ROLE IN SITE OPERATIONS	1
1.3	HAZARD ANALYSIS	1
1.3.1	1 Chemical Hazards	1
1.3.2	2 Physical Hazards	1
1.3.3	3 Biological Hazards	1
1.4	SITE CONTROL	2
1.5	PERSONAL PROTECTIVE EQUIPMENT	
1.6	EXPOSURE MONITORING	
1.7	DECONTAMINATION	2
1.8	DRUM/CONTAINER ISSUES	2
1.9	CONFINED SPACES	
1.10	PERSONNEL TRAINING	
1.11	MEDICAL SURVEILLANCE	
1.12	SANITATION	3
1.13	LIGHTING	3
1.14	EXCAVATIONS	
1.15	EMERGENCY CONTINGENCY PLAN	
1.15		
1.15		
1.15	8 7 1	
1.15	.4 Emergency Equipment	4

PIONEER HEALTH AND SAFETY PLAN

1.1 Purpose

The purpose of this health and safety plan (HASP) is to establish personnel protection standards, specify safe operating procedures, and provide for contingencies that may arise during on-site interim action (IA) activities conducted by PIONEER Technologies Corporation (PIONEER) at the Port of Olympia (Port) East Bay Site (Site). This HASP does not cover any other on-site contractors or organizations. This HASP has been developed in accordance with 29 Code of Federal Regulations (CFR) 1910.120, Chapter 296-843 of the Washington Administrative Code (WAC), and WAC 173-340-810. This HASP will be updated as necessary when conditions change.

PIONEER employees will keep a copy of this HASP on-site when they are conducting work on Site.

1.2 PIONEER Role in Site Operations

A description of the Site, IA, and possible PIONEER roles and responsibilities during the IA are discussed in the main text of the Interim Action Work Plan (IAWP). PIONEER has a limited support role in implementing Site operation activities. PIONEER's designated Site Safety Officer is included in the Emergency Response Section below.

1.3 Hazard Analysis

Possible chemical, physical, and biological hazards for PIONEER workers are discussed below.

1.3.1 Chemical Hazards

Table E-1 presents the maximum detected concentrations detected in Site soil, along with their associated permissible exposure limits and symptoms of overexposure. Overexposure from site chemicals is not anticipated given the concentrations in Site soil and the limited nature of PIONEER's IA activities.

1.3.2 Physical Hazards

Potential physical hazards and procedures to be used to monitor/reduce these hazards will include the following:

- Slip/trip/fall: Good housekeeping practices should be employed to prevent slip/trip/fall hazards. Caution must be employed when walking to prevent slip/trip/fall hazards caused by terrain.
- Getting hit by heavy equipment: Wear appropriate personal protective equipment (PPE) including high-visibility safety vest, maintain visibility with equipment operators, and do not approach equipment while in operation.
- Excessive noise: Wear ear protection, as necessary, when in close proximity to noisy equipment.
- Vehicle traffic: Abide by traffic control measures implemented by the construction contractor.
- Cold/heat stress: Be aware of cold/heat stress symptoms and remedies, use work/rest cycle as necessary, and stop work under extreme temperature conditions.

1.3.3 Biological Hazards

No biological hazards are anticipated given the location of the Site and nature of IA activities.

1.4 Site Control

Due to the nature and scope of the fieldwork being conducted by PIONEER, establishment of a formal Site control plan for PIONEER fieldwork is not warranted. PIONEER will employee the buddy system to the extent feasible to assist in the event of an emergency.

1.5 Personal Protective Equipment

The level of PPE for PIONEER employees was selected by evaluating the performance characteristics of the PPE against the requirements and limitations of the Site and task-specific conditions. Based on the nature of potential Site hazards and the nature of PIONEER's IA activities, the following Modified Level D PPE is recommend for all PIONEER employees while on Site:

- Leather steel-toed boots
- Hard hat
- Safety glasses with side shields
- High-visibility safety vest
- Nitrile (surgical-type) gloves, as necessary
- Hearing protection, as necessary

Provisions for upgrade to Level C PPE have not been made because the potential for overexposure to chemical hazards by PIONEER employees is low given the nature of potential Site hazards and the nature of PIONEER's IA activities.

1.6 Exposure Monitoring

Provisions for exposure monitoring of PIONEER employees have not been made at this time because the potential for overexposure to chemical hazards is low given soil concentrations and the nature of PIONEER's IA activities. However, it should be noted that airborne dust monitoring will be conducted on a site-wide basis during the IA as described in the Compliance Monitoring Plan (CMP) and Sampling and Analysis Plan (SAP). Air monitoring of PIONEER employees will be conducted as necessary if warranted based on the results of the airborne dust monitoring.

1.7 Decontamination

Due to the nature and scope of fieldwork being conducted by PIONEER, establishment of formal decontamination infrastructure is not warranted for PIONEER employees. In the event that nondisposable PPE or clothing becomes contaminated during Site work, the PPE or clothing must either be appropriately cleaned before put back in service or replaced. In the event of skin contact with contaminated media, the affected skin should be washed immediately, as appropriate.

1.8 Drum/Container Issues

Sampling, managing, or handling of drums/containers is not in the scope of the fieldwork being conducted by PIONEER. As a result, a drum/container sampling and analysis plan, a spill containment plan, and drum/container standard operating procedures are not warranted.

1.9 Confined Spaces

The scope of PIONEER's IA activities does not include confined space entry. Under no circumstances should a PIONEER employee enter a confined space during the IA.

1.10 Personnel Training

All on-site PIONEER employees will be appropriately trained in accordance with WAC 296-843-200. For IA work to be conducted by PIONEER, this entails 40-hour initial Hazardous Waste Operations and Emergency Response (HAZWOPER) training, three days of supervised fieldwork, and eight-hour annual HAZWOPER refreshers.

PIONEER employees will review this HASP prior to initiating field activities. Additional training and information briefings will be conducted as necessary.

1.11 Medical Surveillance

Medical surveillance is not required since no PIONEER employees meet any of the criteria in WAC 296-843-21005.

1.12 Sanitation

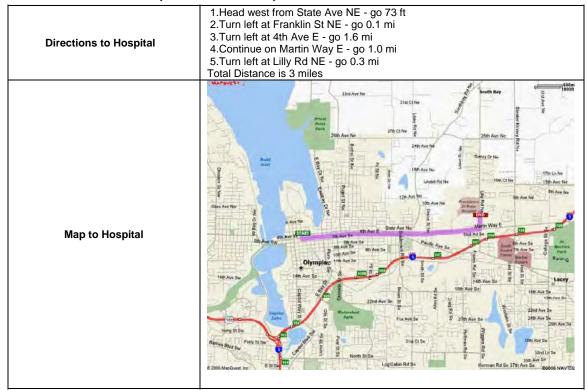
Due to the nature and scope of fieldwork being conducted by PIONEER, establishment of PIONEERspecific sanitation facilities is not warranted. PIONEER should use potable water and toilet facilities provided by the construction contractor and/or the Port. As standard procedure, PIONEER employees should wash hands and face before eating, drinking, smoking, or other hand to mouth contact.

1.13 Lighting

Due to the nature and scope of fieldwork being conducted by PIONEER, provisions for lighting are not necessary.

1.14 Excavations

PIONEER will not be conducting excavations, trenching, or shoring as part of its fieldwork.


1.15 Emergency Contingency Plan

1.15.1 Emergency Phone Numbers

Contact	Name	Number
Police/Security	Police Department	911
Fire and Ambulance	Fire Department	911
Hospital	Providence St. Peter Hospital 413 Lilly Road NE Olympia, Washington 98506-5166	(360) 491-9480
PIONEER Project Manager / Site Safety Officer	Troy Bussey	(360) 570-1700
PIONEER Principal	Chris Waldron or Brad Grimsted	(360) 570-1700
Site/Client Contact	Joanne Snarski	(360) 528-8020
Environmental Release Contact	Washington State Department of Ecology 24-hour Emergency Response	(360) 753-2355
Regulatory Agency	Washington State Department of Ecology	(360) 586-0364

1.15.2 Directions and Map to Nearest Hospital

1.15.3 Emergency Response Procedures

In the event of a personnel injury, fire, explosion, or spill:

- Ensure that all equipment has been shut off.
- Assess the nature of the situation.
- If appropriate, conduct corrective action if it can be done safely (e.g., bandage a minor injury, stop and contain a minor spill).
- If necessary, sound emergency alarm or phone 911 for emergency assistance.
- If appropriate, secure the area until emergency assistance arrives.
- If necessary, rally at designated location and take head count.
- Meet emergency crew and advise of location and nature of situation.
- Contact the PIONEER Site Safety Officer and PIONEER Principal.
- Begin investigation of situation.

1.15.4 Emergency Equipment

The following emergency equipment will be located in the field vehicle:

- First-aid kit
- Fire extinguisher

TABLE E-1: CHEMICAL HAZARD ANALYSIS

Constituent of Potential Concern	Maximum Concentration Detected in Infrastructure Corridor Soil (mg/kg)	Permissible Exposure Limit, Time- Weighted Average ⁽¹⁾ (mg/m3)	Symptoms of Overexposure ⁽²⁾
Arsenic	14	0.01	Respiratory system irritation
Cadmium	3.7	0.005	Headache, difficulty breathing
Lead	170	0.05	Weakness, exhaustion
Total cPAHs	0.33	0.2	Respiratory system irritation
Total dioxins/furans	6.2E-05	No value	Suspected carcinogen. Acute effects of overexposure have not been reported.
Total naphthalenes	0.32	50	Irritated eyes, headaches, malaise, confusion, profuse sweating, nausea, vomiting, abdominal pain, dermatitis.
TPH-D	91	100 ⁽³⁾	Irritated eyes and mucous membranes. CNS effects including dizziness, headaches, blurred vision, and slurred speech.
трн-но	610	100 (4)	Dependant on constituents- may contain cPAHs and metals.
TPH-G	31	900 ⁽⁵⁾	Irritated eyes and mucous membranes. CNS effects including dizziness, headaches, blurred vision, and slurred speech.

Notes: ⁽¹⁾ From Chapter 296-841 WAC and/or September 2005 National Institute for Occupational Safety and Health Pocket Guide to Chemical

⁽²⁾ Exposure is assumed through the inhalation route. PPE, work practices, and hygiene will minimize incidental ingestion of and dermal contact with soil.

With Son.
 ⁽³⁾ A Threshold Limit Value from American Conference of Government Industrial Hygienists, based on total hydrocarbons
 ⁽⁴⁾ Assumed based on TPH-D value.
 ⁽⁵⁾ Note that this Permissible Exposure Limit was vacated at the federal level.

cPAHs: Carcinogenic polycyclic aromatic hydrocarbons

Dioxin/Furans: Chlorinated dibenzo-p-dioxins / chlorinated dibenzofurans

TPH-D: Total petroleum hydrocarbons in the diesel range

TPH-HO: Total petroleum hydrocarbons in the heavy oil range

TPH-G: Total petroleum hydrocarbons in the gasoline range

Appendix F

CALCULATION OF AIRBORNE DUST ACTION LEVEL

CALCULATION OF AIRBORNE DUST ACTION LEVEL

Personal protective equipment (PPE) and clothing will minimize incidental ingestion of and dermal contact with soil for on-site workers exposed to Site soil. The Airborne Dust Action Level is the level that is protective for inhalation exposures by on-site workers without any control measures (e.g., respirators). The Airborne Dust Action Level of 18 mg/mg³ is the most stringent of protective levels that were calculated for each constituent of potential concern (COPC) as shown in the following table.

Airborne Dust Action Level (mg/m ³) = $\frac{\text{Health - based inhalation standard for constituent (mg/m3)}}{\text{Maximum percentage of constitutent in soil * Safety factor of 2}}$					
Maximumpercentageor constitutent in soil * Safety factor of 2Health-BasedMaximumAirborne DustInhalation StandardPercentageAction LevelConstituent of Potential Concern(mg/m³) (1)in Soil (2)(mg/m³)					
Arsenic	0.01	1.4E-05	360		
Cadmium	0.005	3.7E-06	680		
Lead	0.05	1.7E-04	150		
Total cPAHs	0.2	3.3E-07	300,000		
Total Dioxins/Furans	2.2E-09 ⁽³⁾	6.2E-11	18		
Total Naphthalenes	50	3.2E-07	7.8E+07		
TPH-D	100	9.1E-05	550,000		
ТРН-НО	100	6.1E-04	82,000		
TPH-G	900	3.1E-05	1.4E+07		

Notes:

⁽¹⁾ Permissible Exposure Level from Table E-1 in Appendix E, unless otherwise noted.

⁽²⁾ Maximum detected concentration in infrastructure corridor soil in mg/kg from Table 5-1 of main text divided by unit conversion factor of 1,000,000 mg/kg.

⁽³⁾ No Permissible Exposure Level exists. Therefore, value was calculated using Model Toxics Control Act (MTCA) Equation 750-2 using default exposure assumptions for inhalation of particulates by an adult worker (seeAppendix C).

cPAHs: Carcinogenic polycyclic aromatic hydrocarbons

Dioxins/Furans: Chlorinated dibenzo-p-dioxins / chlorinated dibenzofurans

TPH-D: Total petroleum hydrocarbons in the diesel range

TPH-HO: Total petroleum hydrocarbons in the heavy oil range

TPH-G: Total petroleum hydrocarbons in the gasoline range

Appendix G

TECHNICAL MEMORANDUM ON FISH CONSUMPTION EXPOSURE ASSUMPTIONS

TABLE OF CONTENTS

	N 1 – TECHNICAL MEMORANDUM ON FISH CONSUMPTION PTIONS	
1.1	PURPOSE	1
	INTRODUCTION	
1.3	EVALUATION OF FISH CONSUMPTION RATES FOR SUBSISTENCE FISHERS	2
1.4	CONCLUSION	
REFERE	ENCES	4

FIGURES

FIGURE G-1: PORTION OF BUDD INLET COMPRISED OF SURFACE WATER DOWNGRADIENT OF THE SITE

SECTION 1 – TECHNICAL MEMORANDUM ON FISH CONSUMPTION EXPOSURE Assumptions

1.1 Purpose

The purpose of this technical memorandum is to discuss fish consumption exposure assumptions for the Interim Action (IA) at the Port of Olympia's (Port's) East Bay Site (Site). Specifically, this memorandum discusses fish consumption exposure assumptions for subsistence fishers (i.e., Squaxin Island Tribe) in response to comments from the Washington State Department of Ecology (Ecology) (Ecology 2009).

1.2 Introduction

Potential surface water exposure pathways were not included when action levels¹ were quantified in the January 12, 2009 preliminary draft IA Work Plan (IAWP) because the Port and PIONEER Technologies Corporation (PIONEER) did not and do not believe the soil to surface water (via groundwater) exposure pathways are complete and significant pathways that need to be quantified for the IA based on the following facts:

- Fifteen to 30 soil samples collected from the infrastructure corridor were analyzed for constituents of potential concern (COPCs), with the number of samples depending on the COPC. None of the detected COPC concentrations exceeded Model Toxics Control Act (MTCA) Method A or Method B soil cleanup levels for the protection of surface water, with the exception of a single cadmium soil sample collected from MW05². MTCA Method A and Method B soil cleanup levels for the protection of substantial conservatism based on the following facts:
 - The soil to surface water (via groundwater) partitioning calculations use a partitioning equation and default assumptions developed by the United States Environmental Protection Agency (USEPA) for use in calculating conservative soil-to-groundwater screening levels, not soil-to-surface water cleanup levels (USEPA 1996).
 - The soil to surface water (via groundwater) partitioning calculations assume that no attenuation occurs along the groundwater flow path.
 - The soil to surface water (via groundwater) partitioning calculations assume that there is no mixing zone as groundwater flows into surface water.
 - \circ The target surface water concentrations used in the partitioning equation (i.e., MTCA Method A³ and Method B⁴ surface water cleanup levels) are based on default surface

¹ The current terms are Interim Action Cleanup Levels and Reuse Under Pavement Levels. The generic term "action levels" is used in this memorandum for simplicity since several other terms were used in previous IAWP versions.

² It should be noted that cadmium has not been detected in either of the two groundwater samples collected from MW05. It should also be noted that the Method A soil cleanup level for total polychlorinated biphenyls is less than the laboratory reporting limits for some soil samples.

³ MTCA Method A surface water cleanup levels for this Site are the most stringent of promulgated state and federal marine water quality standards.

⁴ MTCA Method B surface water cleanup levels are based on default exposure assumptions that correspond to consumption of 54 grams/day of fish from the surface water downgradient of the Site every other day for 30 years.

water exposure assumptions that are significantly more conservative than what the Port and PIONEER would propose as Site-specific, reasonable maximum exposure (RME) for surface water receptors at this Site.

- There are a total of 20 groundwater monitoring wells (MWs) at the Site. Groundwater samples have been collected from MW01 through MW10 during two different monitoring events and from MW11 through MW13 and MW15 through MW20 during one monitoring event. There have been no COPCs that exceed MTCA Method A / Standard Method B surface water cleanup levels in any MW located between the Site and East Bay, with the one exception of arsenic in MW04⁵, which may be elevated due to natural background conditions.
- There is minimal recreational use of the surface water or sediment that involves human direct contact downgradient of the Site given the lack of a designated public beach area, lack of public swimming facilities, and the daily presence of tidal mud flats in that portion of East Bay.
- Budd Inlet is closed to recreational shellfish harvesting (Washington State Department of Health 2009). Commercial shellfish growing is prohibited in Budd Inlet (Washington State Department of Health 2007).
- There is a limited potential for resident fish populations in the surface water downgradient of the Site due to the daily presence of tidal mud flats in that portion of East Bay.
- Risk-based action levels are preferably based on Site-specific, RME scenarios for complete and significant pathways rather than hypothetical or possible exposure scenarios for potentially complete pathways.
- This IA is not a final cleanup action. This allows time for future cleanup actions to be considered in the event that any surface water pathways need to be addressed in the future.

As additional measures of protection, Ecology is requiring additional investigation work for the soil to surface water (via groundwater) pathways as well as consideration of the surface water pathways during the IA. Therefore, action level calculations in all subsequent IAWP versions have quantified the consumption of seafood pathway. The result is that the IAWP action levels are now equal to or more stringent than MTCA Method A and Method B soil cleanup levels for protection of surface water.

1.3 Evaluation of Fish Consumption Rates for Subsistence Fishers

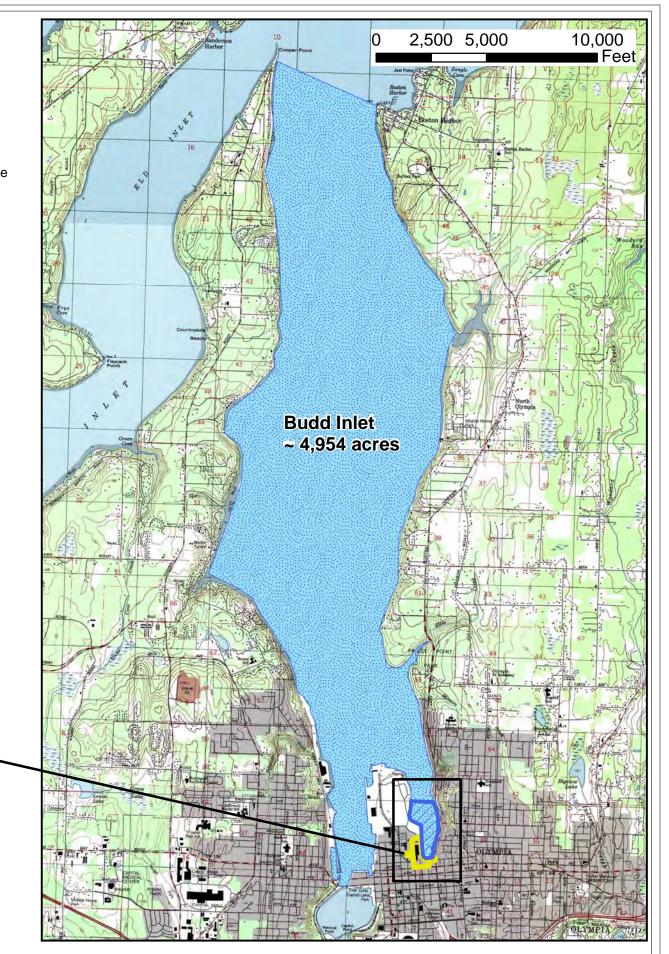
The Squaxin Island fish consumption rate used at the nearby Cascade Pole Site (Landau Associates 1992) was reviewed for possible applicability to this Site. A Squaxin Island Tribe daily consumption rate of 31 grams/day of fish for 70 years was assumed for Cascade Pole based on an estimated annual catch of 10,000 chinook, coho, and chum salmon from Budd Inlet (Landau Associates 1992). The Cascade Pole tribal fish consumption rate is not directly applicable to the East Bay Site for the following reasons:

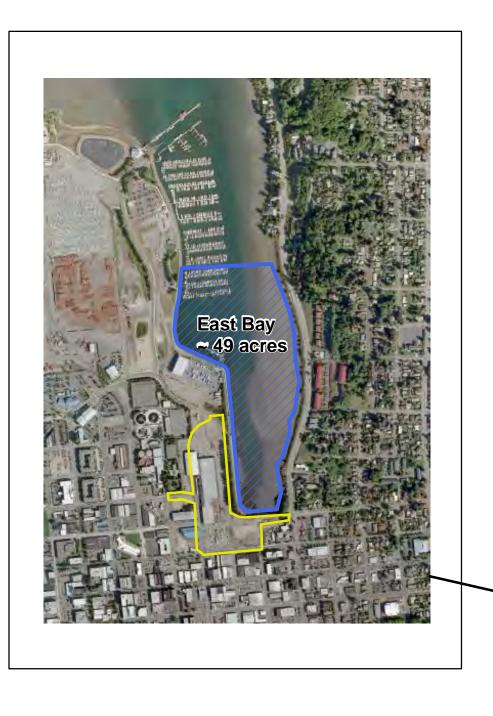
• The Squaxin Island Tribe does not consider East Bay to be a high priority fish habitat for restoration (Port of Olympia 2008).

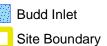
⁵ Although bis-(2-ethylhexyl) phthalate is not listed as a soil COPC in the Remedial Investigation Work Plan or the IAWP, it has been detected above its Method A / Standard Method B surface water cleanup level and will continue to be evaluated in groundwater following the IA. It should also be noted that the Method A / Standard Method B surface water cleanup levels for total carcinogenic polycyclic aromatic hydrocarbons and total polychlorinated biphenyls are less than the laboratory reporting limits for all groundwater samples collected to date.

- Fishing opportunities are limited due to the daily presence of tidal mud flats in that portion of East Bay.
- The portion of East Bay downgradient of the Site comprises a small percentage of Budd Inlet.
- Chinook, coho, and chum salmon are migratory and do not spend an appreciable amount of time in the surface water downgradient of the Site. Consequently, the bodily accumulation of COPCs predicted by modeling are overly conservative because the bioconcentration factors are based on a lifetime of exposure.
- The quantities of other fin fish (e.g., flat fish) in the portion of East Bay downgradient of the Site would not be sufficient to support subsistence consumption rates.

Nonetheless, a Squaxin Island fish consumption rate was developed for East Bay. As shown in Figure G-1, the portion of East Bay surface water downgradient of the Site conservatively comprises no more than 1% of Budd Inlet (i.e., 49 acres divided by 4,954 acres). It can be conservatively assumed the Squaxin Island fish diet fraction coming from the surface water downgradient of the Site would not exceed the proportional area of East Bay relative to Budd Inlet. Thus, the estimated lifetime Squaxin Island fish consumption total from the Site equals 31 grams/day * 365 days/year * 70 years * 0.01 diet fraction from the Site * 0.001 kilograms/gram = 7.9 kilograms. By comparison, the lifetime fish consumption total for MTCA default assumptions equal 54 grams/day * 365 days/year * 30 years * 0.5 diet fraction from the Site * 0.001 kilograms/gram = 296 kilograms.


1.4 Conclusion


Since the MTCA default surface water exposure assumptions provide substantial conservatism compared to RME assumptions for native subsistence fishers, MTCA default fish consumption exposure assumptions were used in the calculation of target surface water concentrations in Appendix C.


REFERENCES

- Ecology 2009. Email from Steve Teel of Ecology to Joanne Snarski of the Port of Olympia with subject of "IA work plan comments," February 27.
- Landau Associates 1992. Risk Assessment, Sediments Operable Unit, Cascade Pole Site, Port of Olympia, Washington, October 28.
- Port of Olympia 2008. Joanne Snarski personal notes for meeting between Port of Olympia, City of Olympia, LOTT, Thurston County, and the Squaxin Island Tribe, November 3
- USEPA 1996. Soil Screening Guidance: Technical Background Document, May.
- Washington State Department of Health 2007. Commercial and Recreational Shellfish Growing Areas: December 31, 2007, http://www.doh.wa.gov/ehp/sf/Pubs/ai-map.pdf.
- Washington State Department of Health 2009. Shellfish Safety Information website, http://ww4.doh.wa.gov/scripts/esrimap.dll?name=bioview&Cmd=Map&Step=1, accessed February.

East Bay Interim Action Work Plan Portion of Budd Inlet Comprised of Surface Water Downgradient of the Site

Port of Olympia - East Bay March 2009 Figure G-1

