

A YARD WELL INSTALLATION REPORT

Kinder Morgan Harbor Island Terminal 2720 13th Avenue Southwest, Seattle, Washington

Antea[™]Group Project No. STKM-W-0003 December 2011

Prepared for: **Washington State Department of Ecology** Northwest Regional Office Toxics Cleanup Program 3160 160th Avenue Southeast Bellevue, WA 98009

Prepared by: Antea™Group 4006 148th Avenue NE Redmond, WA 98052 800 477 7411

TABLE OF CONTENTS

EXECUT	EXECUTIVE SUMMARYi							
1.0 1.1 H	BACKGROUND							
2.0	SCOPE OF WORK							
3.0	GROUNDWATER MONITORING WELL Installation2							
4.0	Waste Management3							
5.0 5.1 5.2 5.3	Sample Collection AND Analysis							
6.0 6.1 6.2	Analytical Results							
7.0	Conclusions5							
8.0	Remarks6							

TABLE OF CONTENTS (Cont.)

Tables

Table 1	Summary of Soil Sample Analytical Results
Table 2	Summary of Groundwater Analytical Results

Figures

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	A Yard Soil Concentrations
Figure 4	A Yard Concentrations of TPH in Groundwater
Figure 5	A Yard Concentrations of Benzene in Groundwater

Appendices

Appendix A	Boring Logs
Appendix B	Field Data Sheets
Appendix C	Analytical Laboratory Reports and Chain-of-Custody Documentation

EXECUTIVE SUMMARY

On October 3rd and 4th, 2011, Antea Group personnel directed the drilling and installation of one groundwater monitoring well (MW-26) at the property (Figure 2). Boring MW-26 was advanced to an approximate depth of 15 feet below ground surface (bgs) and completed as a monitoring well. Where recovered, soil samples were collected continuously from 5 to 15 feet bgs. Three samples from MW-26 were selected for laboratory analysis of petroleum hydrocarbons. All soil samples collected were field screened using a photo-ionization detector (PID).

Concentrations of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected above the laboratory method reporting limits (MRLs) in all three soil samples collected from MW-26, and are below the 10,000 mg/kg TPH cleanup level established under Consent Decree Number 00-2-07760-2SEA. Additionally, concentrations of TPH and BTEX in the groundwater sample were below MRLs, and are below the respective established cleanup levels for TPH-G, TPH-D, TPH-O, and benzene.

A Yard Well Installation Report

Kinder Morgan Harbor Island Terminal 2720 13th Ave SW, Seattle, Washington Antea[™]Group Project No. STKM-W-0003

Antea[™]Group has prepared this report to summarize well installation activities performed at the Kinder Morgan Liquids Terminals (KMLT) bulk facility located at 2720 13th Avenue Southwest, Seattle, Washington (the property, Figure 1). The purpose of this investigation is to respond to EPA's concerns regarding further evaluation of the 13th Avenue Southwest contamination. Specifically, in their 5-Year Review Report, EPA recommended evaluating the extent and potential migration pathway outside the TF-OU2 boundary. The intent of the well installation is to delineate the downgradient hydrocarbon impacts within the 13th Avenue corridor.

1.0 BACKGROUND

The KMLT Terminal is a bulk petroleum fuel storage facility which has been operating since 1944. KMLT purchased the terminal from GATX Terminals Corporation in February 2001. GATX previously owned and operated the facility since December 1994. Shell Oil Company owned and operated the terminal from 1944 through 1994. The facility is approximately 14 acres in area, and is situated on relatively flat topography in the north central portion of Harbor Island, a highly industrialized area located at the mouth of the Duwamish Waterway and Elliot Bay (Figure 1). The site is situated approximately 900 feet from the East Waterway and approximately 1,400 feet from the West Waterway with surface elevations (relative to NAVD 1988 vertical datum) ranging between approximately 9 to 17 feet above mean sea level (msl).

The Harbor Island Terminal has been divided into five distinct areas segregated on the basis of use, designated as the A, B, C, D, and E Yards (Figure 2). The B and C Yards contain bulk storage tanks. The B and C yards are each surrounded by concrete walls approximately 15 feet in height. Within the B and C Yards, the ground surface is unpaved gravel and silty sand.

The paved A Yard contains the facility office as well as the loading facilities for petroleum distribution. The D Yard consists of a driveway between the B and C Yards, and contains general repair and storage facilities. The E Yard is presently leased by another party and consists of an office building and vehicle storage facilities.

1.1 Historic Groundwater Gradient

Historic quarterly groundwater monitoring indicates that the groundwater gradient is generally flat across the majority of the site, with a slight trend towards the south starting from the south boundary of the C yard and

towards the north starting on the south boundary of the C yard. Groundwater levels throughout the southern portion of the site are generally slightly lower than levels observed throughout the northern portion of the site.

2.0 SCOPE OF WORK

The scope of work performed by Antea Group included the following tasks:

- Developed a site-specific Health and Safety Plan;
- Contracted One-Call and a private underground utility locater to delineate the location and marking of underground utilities and other potential subsurface obstructions in the vicinity of the proposed boring locations;
- Cleared for utilities to a minimum depth of 5 feet bgs using an air knife/vacuum rig;
- Drilled and installed one groundwater monitoring well (MW-26);
- Collected soil samples continuously from 5 to 15 feet bgs using acetate sleeve samplers driven ahead of the drill bit into the undisturbed formation;
- Performed examination and description of each sample using the Unified Soil Classification System (USCS) and standard geologic techniques;
- Submitted soil samples for quantitative chemical analysis from each boring interval;
- Developed and sampled the newly installed groundwater monitoring well;
- Performed profiling, removal, and proper disposal of investigative derived waste, and;
- Prepared a report summarizing the findings of the investigation.

3.0 GROUNDWATER MONITORING WELL INSTALLATION

On October 3rd and 4th, 2011, Antea Group personnel directed the drilling and installation of one groundwater monitoring well (MW-26) at the property. Prior to the drilling activities, Antea Group coordinated the location and marking of underground utilities in the vicinity of the proposed boring locations. The utilities survey included contacting the local utility locating service and contracting with a private locating service.

Prior to drilling, the boring location was cleared to a final depth of 5 feet bgs with an air-knife and vacuum truck. Following air-knifing, the boring was advanced using hydraulic direct-push drilling equipment operated by Cascade Drilling, Inc. The boring was advanced to an approximate depth of 15 feet bgs. Where recovered, soil samples were collected continuously from 5 to 15 feet bgs using acetate sleeve samplers advanced into the undisturbed formation ahead of the drill bit. Groundwater was encountered at an approximate depth of 10 feet bgs. Boring MW-26 was completed as a 2-inch groundwater monitoring well to a depth of 15 feet consisting of Schedule 40 (SCH 40) polyvinyl chloride (PVC) casing with 10 feet of 0.010-inch slotted screen. The annular space in the well consisted of #2/12 filter sand to 2 feet above the screened interval, followed by a 1 foot seal of bentonite chips.

Cement was placed in the remaining annular space and a flush-mount surface monument was installed over each well head.

Soil encountered during the drilling activities primarily consisted of fine grained sand and silty-sand with periodic thin lenses of silt to the maximum drilled depth of 15 feet bgs. Boring logs, soil sampling intervals, lithology descriptions, and well completion details are included in Appendix A.

Well MW-26 was developed on October 4, 2011. Development activities were completed by purging the well with a submersible pump until the amount of suspended sediment in the purge water decreased significantly and the water appeared clear. Approximately 10-gallons of water were purged from the monitoring well.

4.0 WASTE MANAGEMENT

Soil cuttings, decontamination fluids and purge water generated during drilling and sampling were temporarily stored in properly labeled 55-gallon DOT drums. Analytical data for soil and water samples were used for disposal profiling. The drums were removed by Filter Recycling Services on October 12, 2011 for off site treatment and disposal.

5.0 SAMPLE COLLECTION AND ANALYSIS

5.1 Soil Sampling

Soil samples were field screened using a PID for volatile petroleum hydrocarbons. Three soil samples were submitted for quantitative chemical analysis for petroleum hydrocarbons. The soil samples were individually labeled, registered on a Chain-of-Custody form, and placed in a chilled cooler pending delivery to a certified analytical laboratory. Soil analytical results are presented in Table 1 and on Figure 3.

5.2 Groundwater Sampling

On October 25, 2011, Antea Group personnel collected groundwater samples from MW-26. Tasks performed and associated with groundwater monitoring included:

- Water level measurement;
- Groundwater sample collection; and
- Sample shipping to the analytical laboratory.

Low flow techniques were used to collect the groundwater samples. New, dedicated polyethylene tubing was used. Geochemical parameters were collected with a YSI multi-meter. Groundwater samples were collected in laboratory-supplied containers and individually labeled, registered on a Chain-of-Custody form, and placed in

A Yard Well Installation Report Kinder Morgan Harbor Island Terminal 2720 13th Ave SW, Seattle, Washington December 2011 Page 4

chilled coolers pending delivery to a certified analytical laboratory. A summary of groundwater analytical results is presented in Table 2 and Figures 4 and 5.

5.3 Laboratory Analysis

Soil samples were submitted to Alpha Analytical of Sparks, Nevada for quantitative chemical analysis. One or more soil samples were analyzed for the following parameters:

- Total petroleum hydrocarbons in the gasoline (TPH-G) range using Northwest Method NWTPH-Gx;
- Total petroleum hydrocarbons in the diesel (TPH-D) and oil (TPH-O) ranges using Northwest Method NWTPH-Dx with Silica Gel cleanup; and,
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method SW8260B.

Groundwater samples were also submitted to Alpha Analytical of Sparks, Nevada for quantitative chemical analysis. One or more samples were analyzed for the following parameters:

- TPH-G range using Northwest Method NWTPH-Gx;
- TPH-D and TPH-O ranges using Northwest Method NWTPH-Dx with Silica Gel cleanup; and,
- BTEX using EPA Method SW8260B.

6.0 ANALYTICAL RESULTS

6.1 Soil

Concentrations of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected above the laboratory method reporting limits (MRLs) in all three soil samples collected from MW-26, and are below the 10,000 mg/kg TPH cleanup level established under Consent Decree Number 00-2-07760-2SEA. Soil analytical results are presented in Table 1. A map showing TPH soil analytical results from MW-26 as well as historic soil analytical results is shown on Figure 3. Soil analytical reports are included in Appendix C.

6.2 Groundwater

A groundwater sample was collected from MW-26 on October 25, 2011. Concentrations of TPH and BTEX in the groundwater sample were below MRLs, and are below the respective established cleanup levels for TPH-G, TPH-D, TPH-O, and benzene. Groundwater analytical results are presented in Table 2. A map showing TPH and benzene groundwater analytical results from MW-26 as well as recent groundwater results from A Yard monitoring wells is shown on Figures 4 and 5, respectively. Groundwater analytical reports are included in Appendix C.

7.0 CONCLUSIONS

Antea Group directed the drilling and installation of one groundwater monitoring well at the property on October 3rd and 4th, 2011. Concentrations of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected above the laboratory method reporting limits (MRLs) in all three soil samples collected from MW-26, and are below the 10,000 mg/kg TPH cleanup level established under Consent Decree Number 00-2-07760-2SEA. Additionally, concentrations of TPH and BTEX in the groundwater sample were below MRLs, and are below the respective established cleanup levels for TPH-G, TPH-D, TPH-O, and benzene.

The purpose of this investigation is to respond to EPA's concerns regarding further evaluation of the 13th Avenue Southwest contamination. Specifically, in their 5-Year Review Report, EPA recommended evaluating the extent and potential migration pathway outside the TF-OU2 boundary. This investigation has demonstrated that down-gradient hydrocarbon impacts within the 13th Avenue Southwest corridor does not extend to the KMLT Harbor Island Terminal's southern boundary.

A Yard Well Installation Report Kinder Morgan Harbor Island Terminal 2720 13th Ave SW, Seattle, Washington December 2011 Page 6

8.0 REMARKS

The recommendations contained in this report represent Antea USA, Inc.'s professional opinions based upon the currently available information and are arrived at in accordance with currently accepted professional standards. This report is based upon a specific scope of work requested by the client. The contract between Antea USA, Inc. and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Antea USA, Inc.'s client and anyone else specifically identified in writing by Antea USA, Inc. as a user of this report. Antea USA, Inc. will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Antea USA, Inc. makes no express or implied warranty as to the contents of this report.

Prepared by:

Megen MacDonald

Megan MacDonald Project Professional

Reviewed by:

Jauna Leon

Dawna Leong, PE Consultant

Date: December 2011

Date: December 2011

Tables

- Table 1
 Summary of Soil Sample Analytical Results
- Table 2Summary of Groundwater Sample Analytical Data

TABLE 1 SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS

Kinder Morgan Liquids Terminal, LLC Harbor Island Terminal 2720 13th Avenue Southwest Seattle, Washington

			Analysis								
Sample ID	Sample Date	Depth BGS (feet)	Gasoline Range (mg/kg)	Diesel Range (mg/kg)	Heavy Range (mg/kg)	Total TPH (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	
MW-26-6	10/04/11	6	<5.0	<5.0	<10	<20	<0.01	<0.01	<0.01	<0.01	
MW-26-10	10/04/11	10	<5.0	<5.0	<10	<20	<0.0087	<0.0087	<0.0087	<0.0087	
MW-26-15	10/04/11	15	<5.0	<5.0	<10	<20	<0.0081	<0.0081	<0.0081	<0.0081	
Cleanup Lev	/els ^a					10,000					
NOTES:											
All concentrations are in mg/kg (ppm).											

< = Less than the stated laboratory reporting limit</p>

NA = not applicable

TPH = Total Petroleum Hydrocarbons

Gasoline range = Gasoline range hydrocarbons by Ecology Method NWTPH-Gx

Diesel and Heavy range hydrocarbons, respectively, by Ecology Method NWTPH-Dx with Acid Silica Gel Cleanup

Benzene, Ethylbenzene, Toluene, and Total Xylenes by Ecology Method SW8260B.

^a Cleanup Levels established under Consent Decree 00-2-07760-2SEA

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Kinder Morgan Liquids Terminal, LLC Harbor Island Terminal 2720 13th Avenue Southwest Seattle, Washington

Sample	Sample	TPH-G	TPH-D	TPH-O	Benzene	Toluene	Ethyl- benzene	Total Xylenes
ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-26	10/25/11	<0.25	<0.25	<0.50	<0.0005	<0.0005	<0.0005	<0.0005
Cleanup Level ¹		1.0	10	10	0.071		29.0	
NOTES:								
¹ Cleanup I	evel establis	hed under C	onsent Decree	00-2-07760-2	SEA			
Bold values	s indicate cor	ncentrations	which exceed	MTCA cleanup	levels			
mg/kg = mi	lligrams per	kilogram						
NA = Not a	nalyzed in th	e laboratory						
TPH-G = Total Petroleum Hydrocarbon as Gasoline; analyzed using Northwest Method NWTPH-Gx.								
Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) analyzed using EPA Method 8021B								
TPH-D = T	otal Petroleu	m Hydrocarl	oon as Diesel;	TPH-O = Total	Petroleum I	Hydrocarbor	ns as Oil.	

TPH-D and TPH-O analyzed using Northwest Method NWTPH-Dx w/ silica gel cleanup.

Figures

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 A Yard Soil Concentrations
- Figure 4 A Yard Concentrations of TPH in Groundwater
- Figure 5 A Yard Concentrations of Benzene in Groundwater

<u>LEGEND</u>

GROUNDWATER MONITORING WELL (INSTALLED BEFORE 1992)

REPLACEMENT GROUNDWATER MONITORING WELL (INSTALLED BETWEEN JANUARY 31 AND FEBRUARY 21, 2002)

MONITORING WELLS INSTALLED SEPTEMBER 30, 2003

MONITORING WELL INSTALLED OCTOBER 2011

DESTROYED, DAMAGED OR DECOMMISSIONED DUE TO CONSTRUCTION ACTIVITIES

DISSOLVED TPH-GASOLINE/TPH-DIESEL/TPH-OIL CONCENTRATIONS IN SOIL (mg/kg)

0

CB-A-3 CONFIRMATION SOIL BORING (ADVANCED AUGUST 11, 2009)

FIGURE 3									
A YARD SOIL CONCENTRATIONS									
KINDER MORGAN LIQUID TERMINALS, LLC HARBOR ISLAND TERMINAL 2720 13 TH AVENUE SOUTHWEST									
CT NO. KM-001-W.0003	DRAWN BY MM NOV 2011 PREPARED BY	C							
KM-001-W-0003 DN NO.	DL REVIEWED BY DL	anteagroup							

24

<u>LEGEND</u>

GROUNDWATER MONITORING WELL (INSTALLED BEFORE 1992)

REPLACEMENT GROUNDWATER MONITORING WELL (INSTALLED BETWEEN JANUARY 31 AND FEBRUARY 21, 2002)

MONITORING WELLS INSTALLED SEPTEMBER 30, 2003

MONITORING WELL INSTALLED OCTOBER 2011

DESTROYED, DAMAGED OR DECOMMISSIONED DUE TO CONSTRUCTION ACTIVITIES

DISSOLVED TPH-GASOLINE/TPH-DIESEL/TPH-OIL CONCENTRATIONS IN GROUNDWATER (mg/L). SAMPLED MAY 2011.

NOT DETECTED ABOVE LABORATORY METHOD REPORTING

* SAMPLED OCTOBER 25, 2011.

FIGURE 4								
A YARD CONCENTRATIONS OF TPH IN GROUNDWATER								
KINDER MORGAN LIQUID TERMINALS, LLC HARBOR ISLAND TERMINAL 2720 13 TH AVENUE SOUTHWEST SEATTLE, WASHINGTON								
T NO. M-001-W.0003	DRAWN BY MM NOV 2011	0						
M-001-W-0003	PREPARED BY DL							
N NO.	REVIEWED BY	antea group						

<u>LEGEND</u>

GROUNDWATER MONITORING WELL (INSTALLED BEFORE 1992)

REPLACEMENT GROUNDWATER MONITORING WELL (INSTALLED BETWEEN JANUARY 31 AND FEBRUARY 21, 2002)

MONITORING WELLS INSTALLED SEPTEMBER 30, 2003

MONITORING WELL INSTALLED OCTOBER 2011

DESTROYED, DAMAGED OR DECOMMISSIONED DUE TO CONSTRUCTION ACTIVITIES

0.32 DISSOLVED BENZENE CONCENTRATIONS IN GROUNDWATER (mg/L). SAMPLED MAY 2011.

NOT ANALYZED NOT DETECTED ABOVE LABORATORY METHOD REPORTING

* SAMPLED OCTOBER 25, 2011.

FIGURE 5									
YARD CONCENTRATIONS OF BENZENE IN GROUNDWATER									
KINDER MORGAN LIQUID TERMINALS, LLC HARBOR ISLAND TERMINAL 2720 13 TH AVENUE SOUTHWEST									
KM-001-W.0003	MM NOV 2011	0							
. PREPARED BY									
M-001-W-0003 DL									
ON NO.	REVIEWED BY	anteaidroun							
	DI	anceagroup							

Appendix A

Boring Logs

WELL/BORING LOCATION MAP							Antea Group					WELL/BORING: MW-26
						INST	ALLATIO	N DA	1 DRILLING ME	THOD: Geoprobe		
							JECT: Ha	arbor l	sland ⁻	Termiı	nal SAMPLING ME	THOD: Acetate Sleeve
						CLIE	NT: Kinde	er Mor	gan		BORING DIAM	ETER: 2.5"
						LOCA	ATION: 2	720 13	3 th Ave	SW	BORING DEPT	TH 15 feet
						CITY	: Seattle				WELL CASING	5: SCH 40 PVC 2"
						STAT	TE: WA				WELL SCREE	N: 5 – 15 feet (0.010")
			1	1		DRIL	LER: Cas	scade	Drilling	g, Inc.	SAND PACK:	3 – 15 (2x12)
		ST	ZED	ШК	Ê	ہ ج	тo	۲ RVAI		<u></u>	CASING ELEVATION -	
WEL		FIR	ABILI	STU	ıdd)	ISIT VS /	EET	OVEF INTE	SCS	APH	SURVEY DATE: -	
001			ST	MOI	DID	DEN	E E	REC	∩≻S	GR	DTW:	
			T			<u> </u>		SAI			DESCRIPTION/LOGGED BY: N	legan MacDonald
Q							_		-			
ncret							1 —					
ර (-					2					
uten k							<u> </u>		_			
		2					3—		_			
							4-					
							5—					
							_					
				MST	3.2	NA	6—		SP		Fine <u>SAND;</u> dark brown; loose; m	ioist; no odor.
							· -					
							8—		SM		Silty- <u>SAND;</u> dark brown; moist; n	o odor.
pus							9—		ML		Thin lens of sandy-SILT: dark bro	wn: rust band: moist: no odor.
Ö				WET	9.0	NA	- 10					
							- 11		SM		Silty-SAND; dark brown; wet.	
									ML		Thin lens of <u>SILT;</u> wet; no odor.	
							12 —		SP			
							13—		ML		Thin lens of <u>SILT;</u> wet; no odor.	
				WET	21.5	NA			SP		Fine <u>SAND;</u> dark brown-black; lo	ose; wet; no odor.
							-		_			
							17 —					
									-			
							 19 —		1			
							20		1			
							 21 —		4			
							 22		-			

Appendix B

Field Data Sheets

GROUNDWATER SAMPLING FIELD SHEET

diit	eau	Jiou	J							,	
	PROJE	CT NUMBER:	STYM	1.00/W-	CLIENT: PAGE		Kinder Morgan				
	SITE	io./JOB No.:					/ of 7				
site address/location: <u>2720</u> 13 th A/c SW . field personnel: MM								DATE:	10 ·	25-11	
								THER:	Clon	dy r	150°F
		Well Diameter	Depth to Bottom	Depth to Water	Depth to LPH	1PH Thickness	Calc. Purge	Actual Purge	Purge Method	Dissolved Oxygen	Sample Appearance/
Well ID		(in.)	(feet)	(feet)	(feet)	(feet)	(gal)	(gal)	(B/LF/P)	(mg/l)	Comments
1410-20	8-10			0.11				4	1		
			•								
		_									
					-						
											· · · · · · · · · · · · · · · · · · ·
						·					
								1			
		· · · · · ·		<u> </u>			ł.		I.		
		Remedial Sy	/stem On-Sit				Co	mments:			
		Operationa	l Upon Arriva				Co	mments:			
System Instructions: Shut Down System		System 1 / 2	4 hours before	gauging (Y				Time/Date	e Downed:		
		Re-Start Sys	stem (Y//				~	•	lime/Date	e Restarted:	
		Purge Meth	od:	3			Co	mments:			
urge Water	Disposal	Method:		Treated thr	ough mobile	carbon treat	ment unit :	and disch	arged on-s	ite	
			\checkmark	Placed in dr	ums on site		I	No. of dru	ims:		
				- Transporter	off-site for	treatment	-	Facility/1	cation:	DYAR7	A
1	nules/->		L	1			-				
ieasuring D	evice(s):										

\Deltaseattle\belred drive\Antea Group\Field Notes\Original Form Spreadsheet\GW Sampling Field Sheet

GROUNDWATER SAMPLING FIELD SHEET

DELTA PROJECT NUMBER:	STKM-001-W	CLIENT:	Kinder Morgan
SITE No./JOB No.:	Harbor Island, Seattle, WA	PAGE:	of
SITE ADDRESS/LOCATION:	2720 13 M AVE SW	DATE:	10-25-11
FIELD TECHNICIAN(S):	M. MacDonald	WEATHER:	Clouds 50°F

Bioparameter / Water Quality Measurements: (Pre-Purge / Post- Purge / Low-flow Cell)

	TEMP	COND	TDS	DO		ORP	
Well ID	(°C)	(ms/cm)	(g/L)	(mg/L)	рН	(mV)	Comments
	1616_	3188	2.502	1.02	6.32	47.3	
Mw.26.	16.18	3.276	2.513	1.02	6.30	46.2	
1 · · · P	16:20	3 236	2.529	1.02	6.31	44,0	· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·
							······
					 2		·
							· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·
Svet	om	Romodial	Svetom On	Sito	2		Commente:
Instruct	tions:	Oneration	al Upon Ari	rival (YIN))		Comments:
1100 40	liono.	Shut Dowr	n Svstem 1	/ 24 hours	before Ga	auaina (Y/I	N? NA Time/Date Downed:
		Re-Start S	ystem (Y/N)?		<u></u>	Time/Date Restarted:
Purge Wat	er Disnos	al Method		Treated th	rough Mo	bile Carbo	n System
i argo trac	or Biopoo	ur motriour					
				Placed in	arums on	SITE	No. of drums:
				Transport	ed off-site	for treatm	ent Facility/Location:
				(Attach Bi	ll of Ladin	g)	Hauler:
Instrument	Callibrat	ion:	Note: Use [DO Meter a	nd YSI for	Field Meas	urements.
YSI (Calibra	ation Che	ck):			pH (4.00 r	ef.)	Cond. (4.49 ref.) Turb. (0.0 ref.)
DO Meter			ma/l		% Saturat	ion	Temp
	Ĩ.,		<u>9-</u>	/100 ppm	isobutulor	o Callibra	tion Gas)
riu.			hhiii	I we hhiu	sobutyter	ie Gampra	

: 2

. . . .

Appendix C

Analytical Laboratory Reports and Chain-of-Custody Documentation

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Antea Group	Attn:	Dawna Leong
4006 148TH AVE NE	Phone:	(425) 498-7726
Redmond, WA 98052	Fax:	(425) 869-1892
Job: STKM-W-003/ Kinder Morgan-HI		

Northwest Total Petroleum Hydrocarbons - Diesel Extended (NWTPH-Dx) Northwest Total Petroleum Hydrocarbons - Gasoline Extended (NWTPH-Gx)

		Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID :	MW-26					
Lab ID :	ALS11102746-01A	TPH-E (DRO), Silica Gel	ND	0.25 mg/L	10/28/11	10/29/11
Date Sampled	10/25/11 08:30	TPH-E (ORO), Silica Gel	ND	0.50 mg/L	10/28/11	10/29/11
		TPH-P (GRO)	ND	0.25 mg/L	10/30/11	10/30/11
Client ID :	Trip Blanks					
Lab ID :	ALS11102746-02A	TPH-P (GRO)	ND	0.25 mg/L	10/30/11	10/30/11
Date Sampled	10/25/11 00:00			C C		

Diesel Range Organics (DRO) C13-C22 Gasoline Range Organics (GRO) C4-C13 Oil Range Organics (ORO) C22-C40+ ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

11/7/11 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Antea Group 4006 148TH AVE NE Redmond, WA 98052

Attn: Dawna Leong Phone: (425) 498-7726 Fax: (425) 869-1892 Date Received : 10/27/11

Job: STKM-W-003/ Kinder Morgan-HI

Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID :	MW-26					
Lab ID :	ALS11102746-01A	Benzene	ND	0.50 µg/L	10/30/11	10/30/11
Date Sampled	10/25/11 08:30	Toluene	ND	0.50 µg/L	10/30/11	10/30/11
		Ethylbenzene	ND	0.50 μg/L	10/30/11	10/30/11
		Xylenes, Total	ND	0.50 µg/L	10/30/11	10/30/11
Client ID :	Trip Blanks					
Lab ID :	ALS11102746-02A	Benzene	ND	0.50 μg/L	10/30/11	10/30/11
Date Sampled	10/25/11 00:00	Toluene	ND	0.50 µg/L	10/30/11	10/30/11
		Ethylbenzene	ND	0.50 µg/L	10/30/11	10/30/11
		Xylenes, Total	ND	0.50 µg/L	10/30/11	10/30/11

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

11/7/11 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: ALS11102746Job:STKM-W-003/ Kinder Morgan-HIAlpha's Sample IDClient's Sample IDMatrixpH11102746-01AMW-26Aqueous211102746-02ATrip BlanksAqueous2

11/7/11 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Nov-11	(QC S	ummary	y Report				Work Orde 11102746	er:
Method Blank File ID: 2A10281105.D Sample ID: MBLK-27561 Analyte	Units : mg/L Result	Type: N	/BLK Te Ba Run ID: FII SpkVal	est Code: EPA M atch ID: 27561SG D_1_111028C SpkRefVal %RE	ethod SW8	0 15B / E / S Analy Prep I) UCL(ME)	SG sis Date: Date: RPDRefVa	10/28/2011 16:26 10/28/2011 10:09 al %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel TPH-E (ORO), Silica Gel Surr: Nonane, Silica Gel	ND ND 0.174	0.25 0.5	5 5 0.15	116	6 49	145			
Laboratory Control Spike File ID: 2A10281107.D Sample ID: LCS-27561 Analyte	Units : mg/L Result	Type: L PQL	.CS Te Ba Run ID: FII SpkVal	est Code: EPA M ltch ID: 27561SG D_1_111028C SpkRefVal %RE	ethod SW8	015B / E / S Analy Prep I) UCL(ME)	SG sis Date: Date: RPDRefVa	10/28/2011 17:19 10/28/2011 10:09 al %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	2.54 0.155	0.05	5 2.5 0.15		1 70 3 49	130 145			
Sample Matrix Spike File ID: 2A10281109.D Sample ID: 11102528-11AMS Analyte	Units : mg/L Result	Type: N	IS Te Ba Run ID: FIE SpkVal	est Code: EPA M itch ID: 27561SG D_1_111028C SokRefVal %RE	ethod SW8	015B / E / S Analys Prep I) UCL(ME)	SG sis Date:	10/28/2011 18:10 10/28/2011 10:09 al %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	2.49 0.183	0.05	5 2.5 0.15	0 99.0 122	6 53 2 49	150 145			
Sample Matrix Spike Duplicate File ID: 2A11011164.D Sample ID: 11102528-11AMSD Analyte	Units : mg/L Result	Type: N	ISD Te Ba Run ID: FIE SokVal	st Code: EPA M tch ID: 27561SG)_1_11028C SpkRefVal %RF	ethod SW8	015B / E / S Analys Prep [) UCL(MF)	SG sis Date: 1 Date: 1 RPDRefV≉	11/02/2011 13:45 10/28/2011 10:09 al %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	2.58 0.185	0.05	5 2.5 0.15	0 103 123	53 53 53 53	150 145	2.489	3.5(47)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Nov-11		(QC S	ummary	y Repor	t				Work Orde 11102746	er:
Method Blan File ID: 11100	1k 307.D		Туре: N	IBLK Te Ba	est Code: El atch ID: MS	PA Met 15W100	hod SW8()3B	015B/C Analys	is Date:	10/03/2011 10:28	
Sample ID:	MBLK MS15W1003B	Units : mg/L		Run ID: MS	SD_15_111	003A		Prep D)ate:	10/03/2011 10:28	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichlo Surr: Toluene-o Surr: 4-Bromof	proethane-d4 d8 luorobenzene	ND 0.0112 0.00979 0.00891	0.25	0.01 0.01 0.01		112 98 89	70 70 70	130 130 130			
Laboratory	Control Spike		Type: L	CS Te	est Code: El	PA Met	hod SW80)15B/C			
File ID: 11100:	303.D			Ba	atch ID: MS	15W100)3B	Analys	is Date:	10/03/2011 08:53	
Sample ID:	GLCS MS15W1003B	Units : mg/L		Run ID: MS	SD_15_111	003A		Prep D)ate:	10/03/2011 08:53	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichlo Surr: Toluene-o Surr: 4-Bromof	proethane-d4 d8 luorobenzene	0.428 0.0106 0.0096 0.00926	0.05	i 0.4 0.01 0.01 0.01		107 106 96 93	70 70 70 70	130 130 130 130 130			
Sample Mat	rix Snike		Type: N	IS Te	est Code: El	PA Met	hod SW80	15B/C			
File ID: 111003	310.D		.,	Ba	atch ID: MS	15W100)3B	Analvs	is Date:	10/03/2011 11:33	
Sample ID:	11093023-01AGS	Units : mg/L		Run ID: MS	SD 15 111	003A		Prep D	ate:	10/03/2011 11:33	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichlo Surr: Toluene-o Surr: 4-Bromof	proethane-d4 18 luorobenzene	2.4 0.0559 0.0475 0.0448	0.25	0.05 0.05 0.05	0	120 112 95 90	51 70 70 70	144 130 130 130			
Sample Mat	rix Spike Duplicate		Type: N	ISD Te	est Code: El	PA Met	hod SW80	15B/C			
File ID: 111003	B11.D			Ba	atch ID: MS	15W100)3B	Analys	is Date:	10/03/2011 11:54	
Sample ID:	11093023-01AGSD	Units : mg/L		Run ID: MS	SD_15_1110	003A		Prep D	ate:	10/03/2011 11:54	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichlo Surr: Toluene-o Surr: 4-Bromof	proethane-d4 18 luorobenzene	2.17 0.0557 0.048 0.0456	0.25	0.05 0.05 0.05 0.05	0	109 111 96 91	51 70 70 70	144 130 130 130	2.403	3 10.0(29)	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Nov-11	(QC Su	immary	Report	t			Work Ord 1110274	er: 6
Method Blank		Type: M	BLK Te	st Code: EP	A Met	hod SW82	260B		
File ID: 11103005.D			Bat	tch ID: MS1	5W10:	30A	Analysis Date	: 10/30/2011 13:32	
Sample ID: MBLK MS15W1030A	Units : µg/L		Run ID: MS	D 15 1110	30A		Prep Date:	10/30/2011 13:32	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
Benzene	ND	0.5				· · · · · · · · · · · · · · · · · · ·			
Toluene	ND	0.5							
Ethylbenzene	ND	0.5							
Xylenes, Total	ND	0.5							
Surr: 1,2-Dichloroethane-d4	9.86		10		99	70	130		
Surr: Toluene-d8	10.1		10		101	70	130		
Surr: 4-Bromofluorobenzene	9.77		10		98	70	130		
Laboratory Control Spike		Type: LC	CS Te	st Code: EP	A Met	hod SW82	260B		
File ID: 11103004.D			Bat	tch ID: MS1	5W103	30A	Analysis Date	: 10/30/2011 13:10	
Sample ID: LCS MS15W1030A	Units : µg/L		Run ID: MS	D_15_1110	30A		Prep Date:	10/30/2011 13:10	
Analyte	Result	PQL	SpkVal 3	SpkRefVal '	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
Benzene	9.87	0.5	10		99	70	130		
Toluene	9.57	0.5	10		96	80	120		
Ethylbenzene	9.95	0.5	10		100	80	120		
Xylenes, Total	19.5	0.5	20		97	70	130		
Surr: 1,2-Dichloroethane-d4	9.78		10		98	70	130		
Surr: A Bromofluorobonzono	10.1		10		101	70	130		
Sun: 4-Bioniondorobenzene	10.2		10		102	70	130		
Sample Matrix Spike		Type: M	S Te	st Code: EP	A Met	hod SW82	260B		
File ID: 11103006.D			Bat	tch ID: MS1	5W103	30A	Analysis Date	: 10/30/2011 13:54	
Sample ID: 11102521-01AMS	Units : µg/L	1	Run ID: MS	D_15_1110	30A		Prep Date:	10/30/2011 13:54	
Analyte	Result	PQL	SpkVal S	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
Benzene	49.1	1.3	50	0	98	59	138		
Toluene	46.9	1.3	50	0	94	68	130		
Ethylbenzene Vulence Tatal	50	1.3	50	0	99.9	68	130		
Ayrenes, Total Surr: 1.2 Dichloroothono d4	96.9	1.3	100	0	97	70	130		
Surr: Toluene-d8	48.0		50		97	70	130	,	
Surr: 4-Bromofluorobenzene	51.1		50 50		100	70	130		
Sample Matrix Spike Duplicate		Type: M	SD Tes	st Code: EP	A Met	hod SW82	60B		
File ID: 11103007.D		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bat	ch ID: MS1	5W103	30A	Analysis Date	: 10/30/2011 14:15	
Sample ID: 11102521-01AMSD	Units : µg/L	1	Run ID: MS	D 15 1110	30A		Prep Date:	10/30/2011 14:15	
Analyte	Result	PQL	SpkVal S	SpkRefVal '	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
Benzene	50.6	1.3	50		101	59	138 49	1 3.0(21)	
Toluene	47.6	1.3	50	ŏ	95	68	130 46.8	38 1.5(20)	
Ethylbenzene	50.8	1.3	50	Ő	102	68	130 49.9	95 1.6(20)	
Xylenes, Total	99.4	1.3	100	Ő	99	70	130 96.9	2 2.6(20)	
Surr: 1,2-Dichloroethane-d4	48.4		50		97	70	130		
Surr: Toluene-d8	49.3		50		99	70	130		
Surr: 4-Bromofluorobenzene	51		50		102	70	130		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

~

Billing Information :	Silling Information :				-OF	-C	USTC	DY	SD	WA	ENU		1 of 1	
, 1	Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406								WorkOrder : ALS11102746 Report Due By : 5:00 PM On : 07-Nov-11					
Client:	Client: Antea Group			Report Attention Phone Numb				EMail Address			_			
Antea Group 4006 148TH AVE NE			Dawna Leong (425) 498-7		726 x	dawna.lec	ng@anteagroup	.com		_				
			Megan Mac	Megan MacDonald (425) 301-2741 x			2741 x	megan.macdonald@anteagroup.com			m EDD Required : No			
Redmond, WA 9	8052										Sampled by : N	legan MacD	onald	
PO:											Cooler Temp	Samples R	eceived	Date Printed
Client's COC #: 56	6791	Job :	STKM-W-00	3/ Kinde	er Morga	n-Hl					5 °C	27-Oct	-11	07-Nov-11
QC Level: S3	= Final Rpt, MB	LK, LCS, MS/	MSD With Su	irrogates	6									
Aluba	0		A 11						Rec	quested T	ests			
Sample ID	Sample ID	Matr	Collection ix Date	No. of Alpha	Bottles Sub	ТАТ	TPH/E_SG_ W	TPH/P_W	voc_w				Samp	le Remarks
ALS11102746-01A	MW-26	AQ	10/25/11 08:30	6	0	10	NWTPH-Dx Silica Gel	NWTPH-Gx	BTXE_C					
ALS11102746-02A	Trip Blanks	AQ	10/25/11 00:00	2	0	10		NWTPH-Gx	BTXE_C					

A A APON IN THE PARTY

Comments:

No security seals. Blue Ice. Client provided temp blank. Total Xylenes. Amended 11/7/11 @ 8:48 to change TAT from standard to 7 day per email from Dawna, :

Signature	Print Name	Company	Date/Time
Logged in by: AlmaCapper	Sara Coffee	Alpha Analytical, Inc.	11/1/11 8:50

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type : AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Dilliam	Inda and a C	
BHUDA	Intormation	
Diming	momation	

CHAIN-OF-CUSTODY RECORD

-			СН	AIN	-OF	` -C	USTC	DDY]	RECC	ORD	$\Lambda \Delta$	Page	1 07 1		
,		Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406									WorkOrder : ALS11102746 Report Due By : 5:00 PM On : 10-Nov-11				
Client: Antea Group 4006 148TH AVE NE			Report Atte	ntion	Phone Nu		lumber EMa		ddress	d					
			Dawna Leong		(425) 498-7		7726 x dawna.leong		ong@anteagr	oup.com					
			Megan MacDonald (42)) 301-2	301-2741 x megan.macdonald@anteagroup.com				EDD Required : No				
Redmond, WA §									Sampled by : Megan MacDonald						
PO :											Cooler Temp	Samples Received	Date Printed		
Client's COC # : 56	6791	Job :	STKM-W-00)3/ Kinde	er Morga	n-HI					5 °C	27-Oct-11	27-Oct-11		
QC Level: S3	= Final Rpt, MB	LK, LCS, MS/N	/ISD With S	urrogate	s						······································				
Alaba	01	·····	_							Requested Te	ests				
Sample ID	Sample ID	Matri	Collection x Date	No. of Alpha	Bottles Sub	TAT	TPH/E_SG_ W	TPH/P_W	voc_w			Sam	ole Remarks		
ALS11102746-01A	MW-26	AQ	10/25/11 08:30	6	0	10	NWTPH-Dx Silica Gel	NWTPH-Gx	BTXE_C						
ALS11102746-02A	Trip Blanks	AQ	10/25/11 00:00	2	0	10		NWTPH-Gx	BTXE_C						

Comments:

No security seals. Blue Ice. Client provided temp blank. Total Xylenes. :

	Signature	Print Name	Company	Date/Time
Logged in by: Nara	- Capper	Sara Coffee	Alpha Analytical, Inc.	10/27/11 13:42
	i /			777

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Matrix Type : AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

56791

Billing Information: Company Name Antla Group Attn: Dawna Leony Address 4006 148 ^M AVE NE City, State, Zip Leal Mond, WA 98052 Phone Number 425 498 1726 Eax 425 869		Ipha Analytical, Inc 5 Glendale Avenue, Suite 2 ⁻ barks, Nevada 89431-5778 tone (775) 355-1044 x (775) 355-0406	1 I I J Sa AZ ID	mples Collecte CA OR Analy	d From Which 	State? DOD Site VA DOD Site - Page # of
Consultant / Client Name Address 4ddress 4ddress 4ddress 448 ^M Are NE Sity, State, Zip Consultant / Client Name Address 448 ^M Are NE 548 ^M Are NE 548 ^M Are State 548 ^M Are NE 548 ^M Are NE 548 ^M Are NE 548 ^M Are State 548 ^M Are	Job # STKM-W-0063 Report Attention Name: Dawno Leong Email auma, leong 2000 Phone: 425-498-7726	Job Name Jundur Morgu n/Project Manager Heagnonp. Com Mobile: 425 8604 - 0	nHI	UTPH-GX UTPH-GX UTPH-GX		Data Validation Level: III or IV EDD / EDF? YES NO Global
Sampled Sampled Below Lab ID Number (Use Only)	Sample Description	TAT Field Filtered	# Containers**	22	\square	REMARKS
	MW-26 The Blanks	Stand. N	6V 4	\times		
	Inp blanks	Stang. N	/			
land Charles						
	······································			<u> </u>		
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · ·					

ADDITIONAL INSTRUCTIONS:

Please issue [report per CoC. I, (field sampler), attest to the validity and authenticity of this sam grounds for legal action. Sampled By:	ole. I am aware that tampering with or intentionally mislabeling the sample loc.	ation, date or time of collection is consi	dered fraud and may be
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation)	Date:	Time: 15:00
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation)	Date:	Time: 13:41
Relinquished by: (Signature/Affiliation)	Received by: (Signature/Affiliation)	Date:	Time:
			····•

*Key: AQ - Aqueous SO - Soil WA - Waste OT - Other AR - Air **: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.