Kennedy/Jenks Consultants

32001 32nd Avenue South, Suite 100 Federal Way, Washington 98001 253-835-6400 FAX: 253-952-3435

Site Investigation Wishram Railyard Wishram, Washington

August 2012

Prepared for

BNSF Railway Company

2454 Occidental Avenue South, Suite 1A Seattle, Washington 98134

K/J Project No. 1196010*00

SITE INVESTIGATION Wishram Railyard, Wishram, Washington

Prepared for

BNSF RAILWAY COMPANY

Prepared by:

Joe R. Sawdey

Project Hydrogeologist

Reviewed by:

Ty Schreiner Vice President

Prepared by

KENNEDY/JENKS CONSULTANTS ENGINEERS AND SCIENTISTS 32001 32nd Avenue South, Suite 100 Federal Way, Washington 98001 (253) 835-6400

K/J 1196010*00

August 2012

Table of Contents

List of Tables			i
List of Figures			i
, ,			
Section 1:	Intro	oduction	1
Section 2:	Site	Background and Past Findings	2
	2.1 2.2 2.3 2.4 2.5	Site Location Site Description Current and Historical Site Operations Past Findings / Remediation Activities Hydrogeology	2 3
Section 3:	Site	Activities	6
	3.1	Site Investigation Activities 3.1.1 Maintenance Shop Area 3.1.2 Former Powerhouse Area AS/SVE Well Installation 3.2.1 AS Wells 3.2.2 SVE Wells	6 8 8
Section 4:	Sum	mary	10
	4.1 4.2	Maintenance Shop AreaFormer Powerhouse Area	
References			10

Table of Contents (Continued)

List of Tables

- 1 Groundwater Elevation Measurements
- 2 Direct-Push Reconnaissance Groundwater Analytical Results, January-February 2012
- 3 Direct-Push Subsurface Soil Analytical Results, January-February 2012

List of Figures

- 1 Vicinity Map
- 2 Sampling Location Map
- 3 Current and Former Facilities / Storage Tanks
- 4 Approximate Bedrock Topography
- 5 Potentiometric Surface Maps: March 12 and 14 2012
- 6 Site Groundwater and Lake Celilo Levels
- 7 Approximate Hydrocarbon Distribution
- 8 Chromatographic Signatures
- 8A Former Powerhouse Site Generalized Cross Section A-A'
- 8B Former Powerhouse Site Generalized Cross Section B-B'
- 8C Former Powerhouse Site Generalized Cross Section C-C'

List of Appendices

- A Station Maps
- B Site Photographs
- C Boring and Well Construction Logs
- D Laboratory Analytical Reports
- E Chromatographs

Section 1: Introduction

Kennedy/Jenks Consultants completed an environmental investigation at the BNSF Railway Company (BNSF) railyard in Wishram, Washington (site). A vicinity map showing the location of the site is included as Figure 1.

The investigation was conducted to further characterize site hydrogeology and evaluate soil and groundwater quality in two areas where past assessments (Kennedy/Jenks Consultants 2003, 2004, 2010, and others) revealed the presence of chemicals of concern (COCs) in the subsurface. The two locations include 1) the area next to the current Maintenance Shop and 2) the area associated with the former Powerhouse facility. The site map (see Figure 2) shows these locations.

This site investigation report (report) describes site investigation activities and presents soil and reconnaissance groundwater analytical data for samples collected at the site in January and February 2012. The report also includes the installation details for three air sparge (AS) wells and four soil vapor extraction (SVE) wells. The SVE and AS wells were installed for remediation purposes in the vicinity of the Maintenance Shop (Figure 2).

The objectives of this investigation included:

- Review past reports and analytical data to assist in soil boring and monitoring well placement.
- Review historical information for the site to further identify potential sources of encountered COCs.
- Investigate the former Powerhouse and Maintenance Shop areas using soil borings with continuous sampling using direct-push techniques.
- Install shallow monitoring wells (WMW-8, WMW-9, WMW-10, and WMW-11) to provide further definition regarding the distribution of hydrocarbon compounds in groundwater.
- Install three AS wells and four SVE wells to support construction of remediation systems.

Section 2: Site Background and Past Findings

2.1 Site Location

Wishram is located in Klickitat County, Washington, approximately 13 miles northeast of The Dalles, Oregon, and 0.75 mile south of Washington State Route 14. The site, consisting of the western half of the Wishram railyard, lies between the town of Wishram and the northern shoreline of the Columbia River, within the southwestern quarter of Section 17, Township 2 north, Range 15, east of the Willamette Meridian.

2.2 Site Description

The site is approximately 2,000 feet long, ranges from 150 to 720 feet wide, and encompasses approximately 20 acres, including land no longer occupied by BNSF (Kennedy/Jenks Consultants 2004b). The site is bounded by the town of Wishram to the north, the vacant portion of the railyard to the east, the Columbia River to the south and southwest, and railroad right-of-way to the west. Onsite structures include a small Amtrak depot, storage building, maintenance shop that includes office and tool storage, two mainline tracks, and three active track spurs.

2.3 Current and Historical Site Operations

The site was constructed between 1910 and 1912 by the Spokane, Portland, and Seattle (SP&S) Railway and later merged with Burlington Northern (BN), which then merged with BNSF. Historically, the site included many facilities to accommodate the locomotive traffic. These facilities included a 12-stall/6-track engine house, turntable, Powerhouse, fueling platform, boiler house, and depot.

The site was used primarily for railcar switching, conducted on approximately 35 track spurs that extended from the far eastern end of the site to the former engine house (Kennedy/Jenks Consultants 2004b). Most of the track spurs and facilities have been removed. Current site operations include Amtrak passenger service at the depot and limited railcar switching on track spurs located just south of the depot. A track truck maintenance facility is also currently in operation at the site.

Information regarding historical use and storage of petroleum fuel onsite was collected from several sources. The *Site Assessment Report, Wishram Railyard, Wishram, Washington* (Kennedy/Jenks Consultants 2004b), provides a list of known former aboveground storage tanks (ASTs) and underground storage tanks (USTs), along with the approximate locations and contents of the tanks. Multiple historical maps (see Appendix A) were used to identify onsite petroleum appurtenances, including oil tanks, an oil sump, oil/fuel piping, an oil unloading track, diesel piping, and a diesel fueling spur (Figure 3). The approximate duration of various fueling practices was obtained from station maps (Appendix A), as well as literature regarding SP&S Railway history (Grande 1992; Austin and Dill 1996, Woods 1974). The SP&S Railway histories also included useful historical photographs (see Appendix B) and site maps spanning the history of the site. Information obtained from these references is summarized below.

Fueling of locomotives took place onsite from approximately 1912 to the 1970s. Initially, site power demands appear to have been provided by steam generation through Bunker fuel. The former Powerhouse appears to have been used to generate steam to power the site (see Steam Pipe System Map in Appendix A).

Reported locations of fuel storage are shown in a historical photograph of the site (see Appendix B) and were identified using past reports, historical maps, and the historical documents mentioned above. The approximate former locations of these features are also displayed with previous sampling locations on Figure 3.

Based on available information, Bunker fuel use onsite was phased out during the late 1940s or early 1950s, when locomotives switched to diesel generators for power (Grande 1992). The Powerhouse was demolished between 1956 and 1960.

Diesel fueling continued onsite from approximately the late 1940s to the 1970s on either a fueling platform or fuel spur (Untitled Map, 1956, in Appendix A). During this time, diesel fuel was reportedly stored primarily in two 100,000-gallon ASTs (Figure 3) and connected by underground piping to fueling platform on the southern side of the mainline tracks. The 100,000-gallon tanks were removed and fueling ceased during the late 1970s (Kennedy/Jenks Consultants 2004b).

2.4 Past Findings / Remediation Activities

Two primary soil removal events have occurred onsite to remove accessible petroleum-containing soils. Figure 2 displays the approximate boundaries of these excavations, and Figure 3 displays storage tanks removed during the excavations. During the first excavation, which occurred between January and April 2002, RMCAT Environmental Services, Inc. (RMCAT) of Portland, Oregon, removed a 30,000-gallon UST located west of the former Boiler House and associated petroleum-containing soil (see Figures 2 and 3) (Kennedy/Jenks Consultants 2004a). The tank reportedly had been used to store heating oil from the early 1970s until 1982 (BNSF 1988). Confirmation sampling revealed residual petroleum hydrocarbons above Ecology Model Toxics Control Act (MTCA) Method A soil cleanup levels remain in soil above the bedrock around the excavation area. Further removal of the hydrocarbon was not possible due to the presence of bedrock.

The findings presented in the *Site Assessment Report, Wishram, Washington*, dated August 2004 (Kennedy/Jenks Consultants), served as the primary source of data for initiating the second site soil excavation in 2005. Soil/groundwater analytical results indicated elevated concentrations of COCs (primarily hydrocarbon compounds) in three areas onsite: 1) an area west of the Maintenance Shop near a former Pump House foundation, 2) the former fueling platform, and 3) the former Powerhouse. Excavation activities at these locations are documented in the *Remediation Documentation Report, Wishram, Washington*, dated March 2007.

The following findings from the 2005 excavation project are relevant to this report:

Former Powerhouse

- Removed a large, oval-like, oil/fuel piping system that apparently connected the former fueling platform area to the former Powerhouse (Figure 3). The system included Bunker oil-filled pipes, as well as steam pipes.
- Discovered a 40-foot-long by 12-foot-wide by 15-foot-deep concrete vault next to the former Powerhouse (Figure 3). During the excavation, approximately 250 tons of petroleum-containing soil were removed from this vault, which was subsequently backfilled with clean soil. The steam pipe system map (Appendix A) identifies the vault as an oil sump.
- Observed that well WMW-2, in which dense non-aqueous phase liquid (DNAPL) had been encountered, was installed in oily timber associated with the base of the abovementioned concrete vault/oil sump. Well WMW-2 was abandoned, because the well had been completed in oily timbers and was not representative of site conditions.

Maintenance Shop

Removed the former Pump House and the majority of related diesel fuel piping. Petroleum-filled piping remaining in place following the excavation activities have been cleaned of all fuel. Conditions encountered during the 2005 excavation activities led to the assumption the former Pump House had delivered diesel fuel to the fueling platform via underground piping. An untitled SP&S Railway station map appears to confirm this assumption (Appendix A).

Summary for all areas

Following completion of remedial activities: removed one underground lube oil storage tank, and the former Pump House and well WMW-2 was abandoned; pressure washed the oil-sump/concrete vault walls; excavated approximately 3,656 tons of contaminated soil, and transported it to an offsite disposal facility; and recycled approximately 1,800 gallons of fuel and oil removed from abandoned piping, as well as approximately 10 tons of cleaned, abandoned piping (scrap).

Post-excavation confirmation sampling and groundwater monitoring events (Kennedy/Jenks Consultants 2007, 2010a, 2010b, 2010c) indicate residual concentrations of petroleum hydrocarbons that exceeded MTCA Method A soil and groundwater cleanup levels in site soil and groundwater. In addition, light non-aqueous phase liquid (LNAPL) was encountered in well WMW-7; the most recent (March 2012) measured product thickness in well WMW-7 was 0.18 foot.

2.5 Hydrogeology

Site hydrogeologic conditions are dominated by the effects of historical, large-scale geoengineering projects in the area, including filling to create the site in the late 1800s and construction of The Dalles Dam, with subsequent upstream flooding of the Columbia River Gorge in 1957.

Kennedy/Jenks Consultants

Wishram is located on a basalt bench at the base of an approximately 500-foot-high cliff that descends nearly vertically from the Columbia Plateau into the Columbia River Gorge. Early photographs indicate that before construction of the The Dalles Dam, basalt bedrock sloped southward from Wishram to the Columbia River channel, which was approximately 40 feet lower and up to several hundred feet farther south of the current shoreline. A map displaying the estimated depth to underlying bedrock for a select portion of the site is included (Figure 4). When the railyard was constructed, sand was reportedly excavated from large dunes at the western end Wishram and used to fill a portion of the basalt slope to create flat areas for track and maintenance buildings. After completion of The Dalles Dam in 1957, the river stage rose to a level approximately 10 to 15 feet below the ground surface elevation of the site, creating Lake Celilo, and through loss from the lake, produced an artificial saturated zone within the sand fill beneath the site.

A potentiometric surface map was created using groundwater elevation data collected on 12 and 14 March 2012 (Figure 5). Based on historical monitoring results (Table 1), the hydraulic gradient of shallow groundwater can shift from either predominantly north or south depending on local recharge conditions.

Groundwater monitoring using pressure transducers was conducted from 14 March 2012 through 9 April 2012 to assess the impacts of daily fluctuations in Lake Celilo on site groundwater. Water level measurements were made at 10-minute intervals in wells WMW-1, WMW-8, WMW-9, and WMW-10. These continuous water level data has been plotted with Lake Celilo stage data (as measured at The Dalles Dam) provided by U.S. Army Corps of Engineer's databases (Figure 6). (Note: Stage elevations at The Dalles Dam are likely a few feet lower than stage elevations in Lake Celilo adjacent to the site.) The data collected display a responsive potentiometric surface to daily Lake Celilo fluctuations caused by variable discharge rates from the The Dalles Dam. Changes in Lake Celilo stage seem to propagate through the saturated zone and dissipate as a function of distance from the bank.

Wells WMW-1 and WMW-11 water level fluctuations (located within approximately 60 feet from the bank) display the largest water level changes due to water level fluctuations in Lake Celilo. Well WMW-8 (the furthest well from the lake included in the monitoring) shows no obvious response to Lake Celilo fluctuations.

Section 3: Site Activities

Site activities described in this section occurred during January through February 2012. Activities included advancing direct-push soil borings with continuous sampling, hollow-stem auger drilling and well installation, well development, groundwater and soil sample collection for analytical testing, and air sparge/soil vapor extraction (AS/SVE) well installation.

Soil samples for lithologic logging and laboratory analysis were collected using a 2.5-inch outside diameter, 60-inch-long, MC5© soil sampling system (Geoprobe Systems 2012) with disposable polyvinyl chloride (PVC) liners. Reconnaissance groundwater samples for laboratory analysis were collected from temporary wells using a peristaltic pump, with a target depth of 3 to 5 feet below the water table.

3.1 Site Investigation Activities

3.1.1 Maintenance Shop Area

Monitoring wells WMW-8, WMW-9, WMW-10, and WMW-11 were installed onsite from 2 through 3 February 2012 (Figure 2). Drilling activities were performed by Major Drilling of Sherwood, Oregon, and observed by a Kennedy/Jenks Consultants geologist. Prior to well installation, direct-push probing included collecting soil samples using the MC5© sampling system to record subsurface soil conditions, including lithologic composition, visual observations, and hydrocarbon presence. Well boring were then advanced using hollow-stem auger drilling techniques with an 8-inch outside diameter bit.

General well construction design is described below. Complete construction design and dimensions for individual wells are provided in Appendix C. Monitoring wells were installed to depths ranging from 22 to 23.5 feet below ground surface (bgs). The wells were constructed with 2-inch schedule 40 PVC blank casing with 15 feet of 0.010-inch slotted screens at the base of the well. Well construction depths were targeted to provide approximately 2 feet of screen above historical high water levels. Sand filter pack consisting of 10-20 silica sand was installed within the annular space from the depth of the boring to approximately 1.5 feet above the top of the well screens. The wells were then sealed with 3/8-inch bentonite chips and hydrated in place. Flush-mounted well monuments set in concrete were used to complete the wells at ground surface. Well development included surging and bailing with disposable bailers. Approximately 10 gallons of water was bailed from each well and contained in drums onsite. Drummed purge water was subsequently transported offsite for recycling at Thermo Fluids in Portland, Oregon.

On 16 and 17 January 2012, reconnaissance groundwater samples were collected via temporary wells from AS-12-1, AS-12-2, AS-12-3, RB1, RB2, RB3, and RB4 (Figure 2) and submitted for laboratory analysis (Table 2). The RBx sample locations were intended to span the length of the former fueling platform on the southern side of the mainline tracks where prior sampling activities had not been conducted. Well AS-12-X groundwater samples were collected prior to sparge well installation to assess groundwater quality at that location prior to starting the air sparging system.

Each groundwater sample collected from these locations was submitted for the following analyses:

- Gasoline-range hydrocarbons using Northwest Total Petroleum Hydrocarbons as Gasoline Extended (NWTPH-Gx)
- Diesel and oil-range hydrocarbons using Northwest Total Petroleum Hydrocarbons as Diesel and Oil Extended (NWTPH-Dx) (with silica gel cleanup)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8260B.

Analytical results of reconnaissance groundwater samples are summarized in Table 2. No groundwater sample contained BTEX compounds or gasoline-range hydrocarbon concentrations exceeding Ecology's MTCA Method A cleanup levels for groundwater. Reconnaissance groundwater samples from wells AS-12-2, AS-12-3, RB-1, RB-3, and RB-4 contained concentrations of diesel-range hydrocarbons exceeding MTCA Method A cleanup levels for groundwater (see Figure 2). Samples collected at wells AS-12-2 and AS-12-3 were the only reconnaissance groundwater samples analyzed that contained concentrations of oil-range hydrocarbons exceeding MTCA Method A cleanup levels (Table 2). The laboratory analytical report is included in Appendix D.

The data were used in conjunction with results from past sampling efforts to delineate the approximate distribution of hydrocarbon-containing soil and groundwater in the vicinity of the Maintenance Shop (Figure 7). Field observations indicated hydrocarbon impacts in this vicinity are localized to the upper few feet above and below the water table (smear zone, including LNAPL in well WMW-7) and are not associated with the deeper saturated zone impacts in the vicinity of the former Powerhouse (discussed below). In general, hydrocarbon impacts in the vicinity of the Maintenance Building consist primarily of weathered diesel and oil-range range hydrocarbon, which appear to originate near the former excavation area north of the mainline tracks, near the former fueling platform, and west of the former Boiler House (Figure 7).

3.1.2 Former Powerhouse Area

Between 10 January and 4 February 2012, 14 soil borings (B-12-X) were advanced to depths up to 68.5 feet bgs in an area next to the former Powerhouse (Figure 2). Boring logs describing subsurface lithologic conditions are included in Appendix C. Borings were advanced using direct-push probing methods, and continuous sampling occurred using a 5-foot-long MC5© sampling system.

During sampling, a viscous black/brown petroleum product was encountered in multiple borings advanced in this area. The petroleum product was typically encountered at depths below the water table (in the saturated zone), and typically was not encountered until depths lower than 25 feet bgs, and extended to depths up to 68 feet bgs in some locations. This material may represent an aged bunker fuel associated with past fueling and power generation at the site. Figure 3 shows the location of some of the former fueling appurtenances in relation to the soil boring locations near the former Powerhouse.

Soil samples were collected for laboratory analysis at depths ranging from 12 to 68 feet bgs around the former Powerhouse. These samples were analyzed using one or more of the following analytical tests:

- Gasoline-range hydrocarbons using NWTPH-Gx
- Diesel and oil-range hydrocarbons using NWTPH-Dx
- BTEX by EPA Method 8260B
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C in select on monitoring (SIM) mode (up to two samples)
- Volatile petroleum hydrocarbons (VPH) by NWTPH/VPH
- Extractable petroleum hydrocarbons (EPH) by NWTPH/EPH.

The results of the soil sample chemical analyses are summarized in Table 3. With the exception of samples from four soil borings (B-12-5, B-12-6, B-12-9, and B-12-10), all boring locations contained hydrocarbon concentrations above MTCA Method A soil cleanup levels for diesel- and oil-range hydrocarbons. Five soil borings (B-12-1, B-12-2, B-12-3, B-12-4, and B-12-11) contained soils with gasoline-range hydrocarbons exceeding MTCA Method A cleanup levels. Soil samples B-12-2-40 and B-12-4-40 were analyzed for PAHs by EPA Method 8270C in SIM mode. Both samples exceeded MTCA Method A cleanup levels for naphthalene compounds, including methylnaphthalene compounds (Table 3). Other semivolatile organic compounds (SVOCs) were not detected above MTCA Method A/B soil cleanup levels.

The laboratory chromatographs provided in Appendix E display differences between encountered petroleum hydrocarbon types. Hydrocarbons in the saturated zone near the former Powerhouse have distinctly different chromatographic signatures from those encountered near the water table in the vicinity of the Maintenance Shop.

The estimated horizontal distribution of petroleum-containing soils near the former Powerhouse is displayed on Figure 7, and the estimated vertical distribution is displayed on multiple cross-sections created for the site (see Figure 8 for cross-section locations and Figures 8a, 8b, and 8c for actual cross-sections).

3.2 AS/SVE Well Installation

This section describes the completion of AS and SVE wells at the site. AS/SVE construction activities are summarized in a separate report.

3.2.1 **AS Wells**

Three AS wells (AS-12-1, AS-12-2, and AS-12-3) and four SVE wells (SVE-12-1, SVE-12-2, SVE-12-3, and SVE-12-4) were installed between 12 and 16 January 2012 (Figure 2). Complete well construction and soil boring logs for these wells are included in Appendix C. AS wells were installed to depths ranging from 19.3 to 19.5 feet bgs using a 3.25-inch

direct-push rod. The AS wells were constructed using 2-inch schedule 40 PVC blank casing with 2.5 feet of 0.010-inch slotted screen at the base of the well.

Sparge well construction depths were targeted to ensure that the screen was at least 5 feet below the water table. The sand filter pack consisting of 10-20 silica sand was installed within the annular space from the depth of the boring to approximately 1.5 feet above the top of the slotted screens. The wells were then sealed with granular bentonite and hydrated in place. Wells were developed using disposable bailers, with at least 10 gallons bailed per well. Produced water was staged in drums onsite and later transported to Thermofluids of Clackamas, Oregon. Less water was bailed from well AS-12-1 due to a material encountered within the well, which limited bailer submersion. Completing the surface of the wells was postponed until completion of system construction.

3.2.2 SVE Wells

SVE wells were installed to depths ranging from 8.5 to 10.4 feet bgs using hollow-stem augers with a 10-inch drill bit. Complete well construction and soil boring logs for these wells are included in Appendix C. The SVE wells were constructed using 4-inch Schedule 40 PVC blank casing with 3 or 4 feet of 0.020-inch slotted screens at the base of the well. The sand filter pack consisting of 10-20 silica sand was installed in the annular space from the depth of the boring to approximately 0.5 foot above the top of the slotted screens. The wells were then sealed with 3/8-inch bentonite chips and hydrated in place. Completion of the surface of the wells was postponed until completion of system construction.

Section 4: Summary

4.1 Maintenance Shop Area

The findings of the investigation, combined with results of past investigation and remedial activities, were used to estimate the distribution of hydrocarbon-containing groundwater in the Maintenance Shop area (Figure 7). Reconnaissance groundwater samples collected from wells AS-12-2, AS-12-3, RB1, RB3, and RB4 contained concentrations of diesel-range hydrocarbons above MTCA Method A cleanup levels (Table 2). Reconnaissance groundwater samples from wells AS-12-2 and AS-12-3 contained concentrations of oil-range hydrocarbons above MTCA Method A groundwater cleanup levels (Table 2).

Laboratory chromatographic data and field observations (Appendix C) indicate that impacts in the Maintenance Shop area likely resulted from diesel fueling/storage activities from the 1950s through the 1970s. Available data suggest that hydrocarbon compounds in the Maintenance Shop area originate primarily from the former 30,000-gallon UST in the Boiler House area, as it is the farthest upgradient location in which hydrocarbons have been detected.

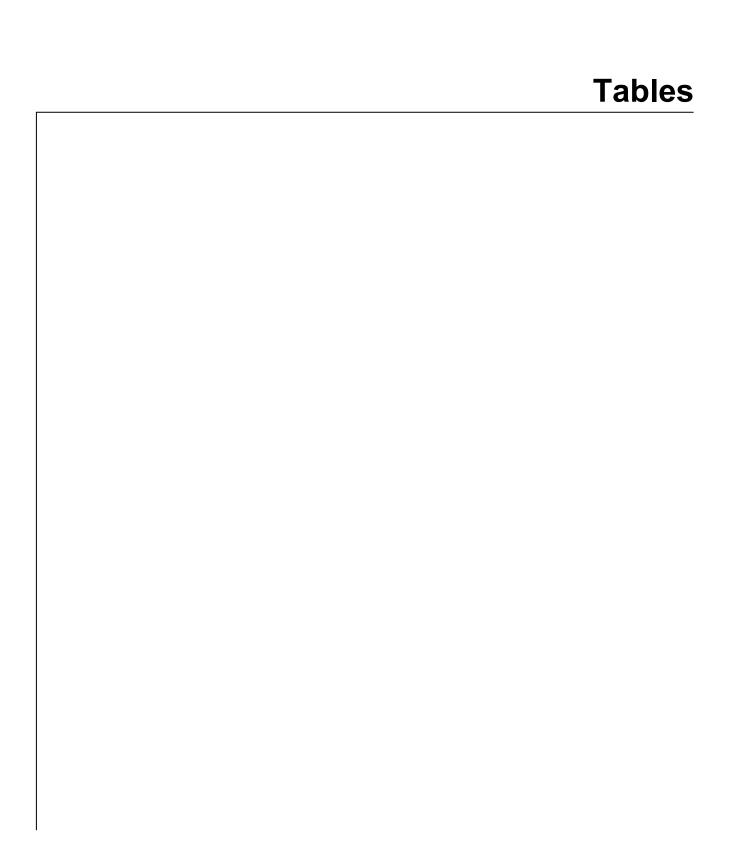
However, a downgradient contributing source might have included the former Pump House and associated fuel lines. Figure 3 depicts the former 30,000-gallon oil/diesel tank as well as the former Pump House and former fueling spur associated with this area. Soil samples collected in this area (following soil removal in 2002) contained diesel and oil-range hydrocarbon concentrations up to 15,700 milligrams per kilogram (mg/kg) and 10,500 mg/kg, respectively (Kennedy/Jenks Consultants 2004b).

Based on the shallow depth (as little as 12 feet below grade) of the bedrock below the Maintenance Building area and the seasonal fluctuations observed in shallow groundwater, it appears that hydrocarbon migration from areas north of the mainline tracks is partially influenced by the topography of the bedrock surface. The bedrock is deeper (greater than 20 feet below grade) south of the mainline tracks, and hydrocarbon migration appears to be dominated by seasonal and temporal groundwater flow patterns.

4.2 Former Powerhouse Area

Fourteen soil borings were advanced near the former Powerhouse area. With the exception of B-12-3, B-12-5, B-12-6, and B-12-9, a thick viscous black hydrocarbon was encountered in each boring. Soil samples affected by the Bunker fuel contained concentrations of gasoline, diesel, and oil-range hydrocarbons exceeding MTCA Method A cleanup levels for soil (Table 3).

The horizontal distribution of the heavy oil in the saturated zone is displayed on Figure 7. The vertical distribution of the soils affected by Bunker fuel is displayed with cross-sections constructed from boring logs (Figure 8). In the center of the soil containing Bunker fuel, the vertical hydrocarbon thickness is approximately 40 feet. Toward the edges of the Bunker fuel containing areas, the vertical thickness is less than 10 feet. The Bunker fuel was found exclusively in the saturated zone. The current presence of the NAPL in the saturated zone is likely the consequence of large-scale Columbia River flooding after construction of The Dalles


Kennedy/Jenks Consultants

Dam in 1957. Potential mobility and migration paths of the submerged Bunker fuel is currently unknown.

The presence of heavy oil in the saturated zone had been delineated by soil borings. The eastern, northeastern and, to a lesser extent, southern boundary of the Bunker fuel-containing soil has been delineated by borings bereft of apparent hydrocarbon impacts (clean borings) in these directions. Clean borings in other directions were inhibited by shallow bedrock that limits soil boring depths.

References

- Austin, Ed and Tom Dill. 1996. SP&S: The Spokane Portland & Seattle Railway. Published and Copyrighted by Pacific Fast Mail, Edmunds, Washington.
- BNSF Railway Company (BNSF). 1988. UST database records.
- Grande, Walter R. 1992. The Northwest's Own Railway: Spokane, Portland & Seattle Railway and its Subsidiaries. Published and Copyrighted by Grande Press, Portland, Oregon.
- Kennedy/Jenks Consultants. 2003. UST Site Assessment and Removal Report, Wishram, Washington. Prepared by Kennedy/Jenks Consultants for BNSF Railway Company. October 2003.
- Kennedy/Jenks Consultants. 2004a. UST Site Assessment Report, Wishram, Washington. Prepared by Kennedy/Jenks Consultants for BNSF Railway Company. February 2004.
- Kennedy/Jenks Consultants. 2004b. Site Assessment Report, Wishram Railyard, Washington. Prepared by Kennedy/Jenks Consultants for BNSF Railway Company. August 2004.
- Kennedy/Jenks Consultants. 2007. Remediation Documentation Report, Wishram, Washington. Prepared by Kennedy/Jenks Consultants for BNSF Railway Company. March 2007.
- Kennedy/Jenks Consultants. 2010a. Groundwater Monitoring Report, Wishram, Washington. Prepared by Kennedy/Jenks Consultants for BNSF Railway Company. March 2010.
- Kennedy/Jenks Consultants. 2010c. Supplemental Site Remediation, Wishram Railyard, Washington. Prepared by Kennedy/Jenks Consultants for BNSF Railway Company. August 2010.
- Kennedy/Jenks Consultants. 2010b. Supplemental Site Investigation MW-7 Area, Wishram, Washington. Prepared by Kennedy/Jenks Consultants for BNSF Railway Company. September 2010.
- Wood, Charles and Dorothy. 1974. The Northwest's Own Railway. Copyrighted and Published by Superior Publishing Company. Seattle, Washington.

TABLE 1

GROUNDWATER ELEVATION MEASUREMENTS BNSF WISHRAM, WASHINGTON

			1			
Well ID	Date	Well Elevation (TOC)	Depth to LNAPL	Depth to Groundwater (feet)	LNAPL Thickness (feet) ^(b)	Groundwater Elevation (feet above datum)
	9/17/03	172.51 ^(c)	^(d)	15.88		156.63
	4/15/04	172.51		10.46		162.05
	7/13/04	172.51		10.78		161.73
	11/9/06	172.51		9.60		162.91
	7/3/07	172.51		9.85		162.66
	8/16/07	172.51		10.55		161.96
WMW-1	4/16/08	172.51		10.10		162.41
	8/21/08	172.51		10.59		161.92
	3/12/09	172.51		10.15		162.36
	9/10/09	172.51		10.44		162.07
	7/7/11	172.51		9.96		162.55
	3/12/12	172.48 ^(e)		10.36		162.12
	3/14/12	172.48		10.28		162.20
	9/18/03 ^(f)	173.12 ^(c)				
WMW-2 (g)	4/15/04	173.12	LNAPL (h)	10.81	LNAPL	162.31
	7/13/04	173.12		11.08	0.00 (F)	162.04
	9/17/03	173.03 ^(c)		16.37		156.66
	4/16/04	173.03		10.32		162.71
	7/13/04	173.03	10.64	10.65	0.01	162.38
	11/9/06	173.03		10.20		162.83
WMW-3	7/3/07	173.03		10.08		162.95
VVIVIVV-3	8/16/07	173.03		10.65		162.38
	4/16/08	173.03		10.14		162.89
	8/21/08	173.03		10.89		162.14
	3/12/12	173.03 ^(e)		10.58		162.45
	3/14/12	173.03		10.67		162.36
	9/18/03 ⁽ⁱ⁾	173.18 ^(c)				
WMW-4 (j)	4/15/04	173.18		11.10		162.08
	7/13/04	173.18		11.40		161.78
	4/16/04	172.60 ^(c)		10.12		162.48
	7/13/04	172.60		10.40		162.20
	11/9/06	172.60		11.00		161.60
	7/3/07	172.60		9.79		162.81
	8/16/07	172.60		10.35		162.25
10/00/07	4/16/08	172.60		9.91		162.69
WMW-5	8/21/08	172.60		10.53		162.07
	3/12/09	172.60		10.09		162.51
	9/10/09	172.60		10.62		161.98
	7/7/11	172.60		9.80		162.80
	3/12/12	172.67 ^(e)		10.18		162.49
	3/14/12	172.67		10.24		162.43

TABLE 1

GROUNDWATER ELEVATION MEASUREMENTS BNSF WISHRAM, WASHINGTON

Well ID	Date	Well Elevation (TOC)	Depth to LNAPL (feet) ^(a)	Depth to Groundwater (feet)	LNAPL Thickness (feet) ^(b)	Groundwater Elevation (feet above datum)
WMW-6 (k)	4/16/04	173.08 ^(c)	LNAPL	10.46	LNAPL	162.62
VVIVIVV-O	7/13/04	173.08	10.82	10.83	0.01	162.25
	4/16/04	174.12 ^(c)		10.43	0.00 (S)	163.69
	7/13/04	174.12	10.97	11.04	0.07	163.08
	7/3/07	174.12	10.40	10.58	0.18	163.54
	8/16/07	174.12	LNAPL	11.00	LNAPL	163.12
	4/16/08	174.12	10.50	10.66	0.16	163.46
WMW-7	8/21/08	174.12	11.59	12.19	0.60	161.93
	3/12/09	174.12	11.31	11.45	0.14	162.67
	9/10/2009 ^(l)	174.12	12.10	13.60	1.50	160.52
	7/7/2011 ^(l)	174.12	11.10	11.10	<0.01	163.02
	3/12/2012 ^(l)	174.13 ^(e)	11.52	11.66	0.14	162.47
	3/14/12	174.13	11.56	11.74	0.18	162.39
MW-8	3/12/12	173.80 ^(e)		11.11		162.69
IVIVV-O	3/14/12	173.80		11.17		162.63
MW-9	3/12/12	173.21 ^(e)		10.83		162.38
10100-9	3/14/12	173.21		10.86		162.35
M/M/ 10	3/12/12	173.07 ^(e)		10.91		162.16
MW-10	3/14/12	173.07		10.82		162.25
NAVA/ 11	3/12/12	173.00 ^(e)		10.90		162.10
MW-11	3/14/12	173.00		10.81		162.19

Notes:

- (a) LNAPL = light non-aqueous phase liquid
- (b) The following symbols indicate observed conditions of groundwater:

LNAPL = presence of light non-aqueous phase liquid (thickness not measured);

- (S) = sheen; (F) = film
- (c) Groundwater elevations are based on a wellhead top-of-casing survey relative to an arbitrary vertical datum of 100 feet, which was established at a temporary benchmark located near the Wishram Post Office.
- (d) "--" indicates not applicable.
- (e) Groundwater elevations are based on a wellhead top-of-casing survey relative to the North American Vertical Datum-1988 (NAVD88).
- (f) Monitoring well was dry. Sample collected from purge water drum.
- (g) Monitoring well WMW-2 was removed during excavation in November 2005.

 Results are not representative of groundwater conditions because the well screen was positioned within a localized mass of oil-coated timbers.
- (h) LNAPL observed in well, but no depth or thickness measurement provided.
- (i) No information on depth to water noted on purge form.
- (j) Monitoring well WMW-4 appears to have been destroyed in summer 2006.
- (k) Monitoring well WMW-6 was removed during excavation and removal of the adjacent lubricating oil underground storage tank (UST) in 2006.

TABLE 2

DIRECT-PUSH RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS JANUARY-FEBRUARY 2012 BNSF WISHRAM, WASHINGTON

	S	parge Well	S	Recon. Borings					MTCA		
Chemical	AS-12-1	AS-12-2	AS-12-3	RB1	RB2	DUP-1 ^(a)	RB3	RB4	RL ^(b)	MDL ^(c)	Method A (d)
Volatile Organic Compou	unds (BTEX)	(e) (µg/kg)(f)									
Benzene	ND ^(g)	ND	0.17 J	ND	ND	ND	ND	ND	1	0.15	5
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	1	0.15	40
Ethylbenzene	ND	0.31 J ^(h)	1.1	ND	ND	ND	ND	ND	1	0.15	30
m-Xylene + p-Xylene	ND	0.77 J	1.4 J	ND	ND	ND	ND	ND	2	0.3	NA
o-Xylene	ND	ND	0.41 J	ND	ND	ND	ND	ND	1	0.15	NA
Total Xylenes	ND	0.77	1.81	ND	ND	ND	ND	ND	NA	NA	20
Volatile Petroleum Produ	ucts ⁽ⁱ⁾ (mg/kg) ^(j)									
Gasoline	0.043 J	0.2	0.390	0.078	ND	ND	0.076	0.020 J	0.05	0.01	1
Semi-Volatile Petroleum Products ^(k) (mg/kg)											
#2 Diesel (C10-C22)	0.19 Y ^(l)	3.7	2.8 Y	1.0 Y	0.13 Y	0.20 Y	1.8 Y	0.63 Y	0.12	0.069	0.5
Motor Oil (>C24-C36)	0.085 J	1.3	0.52 Y	0.37 Y	0.089 J	0.11 J	0.28 Y	0.21 J	0.24	0.045	0.5

Notes:

- (a) DUP-1 is a duplicate sample of RB2.
- (b) RL= Reporting Limit
- (c) MDL = Method Detection Limit
- (d) Model Toxics Control Act (MTCA; WAC 173-340) Method A industrial groundwater cleanup levels.
- (e) By EPA Method 8260B.
- (f) μg/kg = micrograms per kilogram
- (g) ND = Not detected
- (h) J = Result is less than the RL but greater than or equal to the MDL; the concentration is an approximate value.
- (i) By Ecology Method NWTPH-Gx
- (j) mg/kg = milligrams per kilogram
- (k) By Ecology Method NWTPH-Dx
- (I) Y = The chromatogrphic response resembles a typical fuel pattern.

Values detected above MTCA Method A cleanup level in bold.

TABLE 3 Page 1 of 3

DIRECT-PUSH SUBSURFACE SOIL ANALYTICAL RESULTS JANUARY-FEBRUARY 2012 BNSF WISHRAM, WASHINGTON

		Sample	Designation (Boring	ID - Depth (feet below gro	ound surface)		MTCA Method A
	B-1	Industrial Soil					
Analyte	32 feet	59 feet	12 feet	B-12-2 40 feet	55 feet	13 feet	Cleanup Level ^(a)
TPH (mg/kg) ^(b)	<u>"</u>	<u>'</u>				<u> </u>	
Gasoline-range Hydrocarbons	700 B	1.5 J	1,000 B	380	<4.6 ^(c)	1,300 B	100/30 ^(d)
Diesel-range Hydrocarbons	12,000 Y	<28	38,000 Y	5,400 Y / 5,800 BY ^(r)	33 Y	28,000 Y	2,000 ^(e)
Oil-range Hydrocarbons	14,000 Y	20 J	71,000 Y	6,300 Y/5,500 Y	54 J	2,700 Y	2,000 ^(e)
BTEX (µg/kg) ^(f)							
Benzene	<25	<17	89 J	<18	<18	<180	30
Toluene	<62	<43	160 J	<45	<46	<450	7,000
Ethylbenzene	<62	<43	170 J	<45	<46	<450	6,000
m-Xylene + p-Xylene	660	<43	470 J	<45	<46	490	NA ^(g)
o-Xylene	<62	<43	340 J	<45	<46	<450	NA
Total Xylenes	691	<86	810 J	<90	<92	715	9,000
/PH (mg/kg) ^(h)							
C10 - C12 Aliphatics	⁽ⁱ⁾	0.25 JB		18 B		140 B	NA
C10 - C12 Aromatics		1.4 J		43		260	NA
C12 - C13 Aromatics		0.88 JB		38 B		340 B	NA
C8 - C10 Aliphatics		<2.2		25		23	NA
C8 - C10 Aromatics		0.78 JB		24 B		25 B	NA
C5 - C6 Aliphatics		0.61 JB		0.57 JB		1.1 JB	NA
C6 - C8 Aliphatics		0.65 JB		8.9 B		3.4 JB	NA
Total VPH		4.4 JB		160 B		790 B	NA
EPH (mg/kg) ^(j)							
C10 - C12 Aliphatics		<5.6		260		1,500	NA
C12 - C16 Aliphatics		<5.6		880		8,500	NA
C16 - C21 Aliphatics		1.7 J		970		7,800	NA
C21 - C34 Aliphatics		2.2 J		1,500		1,500	NA
C10 - C12 Aromatics		<5.6		32		330	NA
C12 - C16 Aromatics		<5.6		250		3,000	NA
C16 - C21 Aromatics		1.9 J		990		5,700	NA
C21 - C34 Aromatics		4.2 J		1,600		1,000	NA
PAHs (μg/kg) ^(k)							
Naphthalene				100			5,000 ^(l)
2-Methylnaphthalene				3,100			5,000 ^(l)
I-Methylnaphthalene				2,400			5,000 ^(l)
Acenaphthylene				280			NA ^(k)
Acenaphthene				680			2.1E+08 ^(m)
Fluorene				1,800			1.4E+08 ^(m)
Phenanthrene				1,600			NA
Anthracene				190			1.1E+09 ^(m)
Fluoranthene				230			1.4E+08 ^(m)
Pyrene				300			1.1E+08 ^(m)
Benzo(g,h,i)perylene				30 J			NA
cPAHs (ug/kg) ⁽ⁿ⁾							
Benzo(a)anthracene				55 J			NA
Chrysene				420			NA
Benzo(b)fluoranthene				120			NA
Benzo(k)fluoranthene				<65			NA
Benzo(a)pyrene				29 J			NA
ndeno(1,2,3-cd)pyrene				<65			NA
Dibenz(a,h)anthracene				<65			NA
Total cPAHs (ug/kg) ^(o)							
Non-Detects Included ^(p)				60.5			2,000
Non-Detects Excluded ^(q)				50.7			2,000

TABLE 3Page 2 of 3

DIRECT-PUSH SUBSURFACE SOIL ANALYTICAL RESULTS JANUARY-FEBRUARY 2012 BNSF WISHRAM, WASHINGTON

		MTCA Method A						
	B-12		B-12-5	D - Depth (feet below gr	B-12-7	B-12-8	Industrial Soil	
Analyte	40 ft	68 ft	45 ft	45 ft	24 ft	37 ft	Cleanup Level ^(a)	
TPH (mg/kg) ^(b)								
Gasoline-range Hydrocarbons	1,300 B	4.1 JB	(i)	<5.5 ^(c)	25	1.9 J	100/30 ^(d)	
Diesel-range Hydrocarbons	45,000 Y / 65,000 B	14 J	<30	12 JB	470 BY	340 BY	2,000 ^(e)	
Oil-range Hydrocarbons	53,000 Y / 67,000	24 J	<61	<63	530 Y	1,700 Y	2,000 ^(e)	
BTEX (µg/kg) ^(f)								
Benzene	<160	<18		<22	<18	<20	30	
Toluene	<410	<45		<55	<45	<49	7,000	
Ethylbenzene	<410	<45		<55	<45	<49	6,000	
m-Xylene + p-Xylene	850	<45		<55	<45	<49	NA ^(g)	
o-Xylene	<410	<45		<55	<45	<49	NA	
Total Xylenes	1,055	<90		<110	<90	<98	9,000	
VPH (mg/kg) ^(h)								
VPH							NA	
EPH (mg/kg) ^(j)							100	
EPH							NA	
PAHs (μg/kg) ^(k)							NA NA	
Naphthalene	4,500						5,000 ^(l)	
2-Methylnaphthalene	27,000						5,000 ^(l)	
1-Methylnaphthalene	22,000						5,000 ^(l)	
Acenaphthylene	1,200						NA ^(k)	
Acenaphthene	4,600						2.1E+08 ^(m)	
Fluorene	16,000						1.4E+08 ^(m)	
Phenanthrene	28,000						NA	
Anthracene	<56						1.1E+09 ^(m)	
Fluoranthene	2,100						1.4E+08 ^(m)	
Pyrene	2,900						1.1E+08 ^(m)	
Benzo(g,h,i)perylene	330						NA	
cPAHs (µg/kg) ⁽ⁿ⁾								
Benzo(a)anthracene	<56						NA	
Chrysene	4,500						NA	
Benzo(b)fluoranthene	1,200						NA	
Benzo(k)fluoranthene	<56						NA	
Benzo(a)pyrene	320						NA	
Indeno(1,2,3-cd)pyrene	230						NA	
Dibenz(a,h)anthracene	200						NA	
Total cPAHs (μg/kg) ^(o)								
Non-Detects Included ^(p)	534						2,000	
Non-Detects Excluded ^(q)	528						2,000	

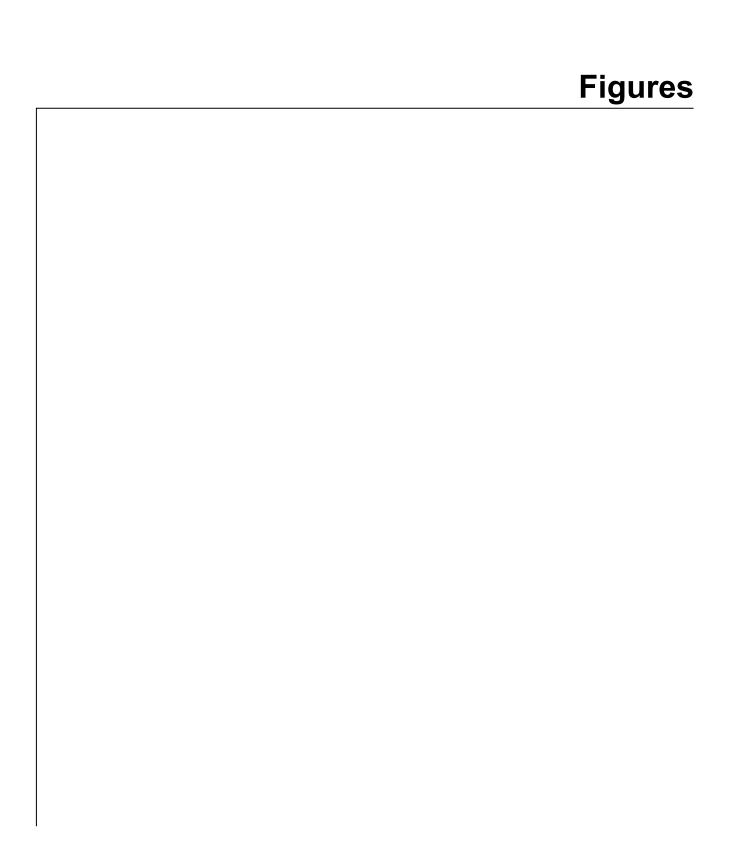
TABLE 3 Page 3 of 3

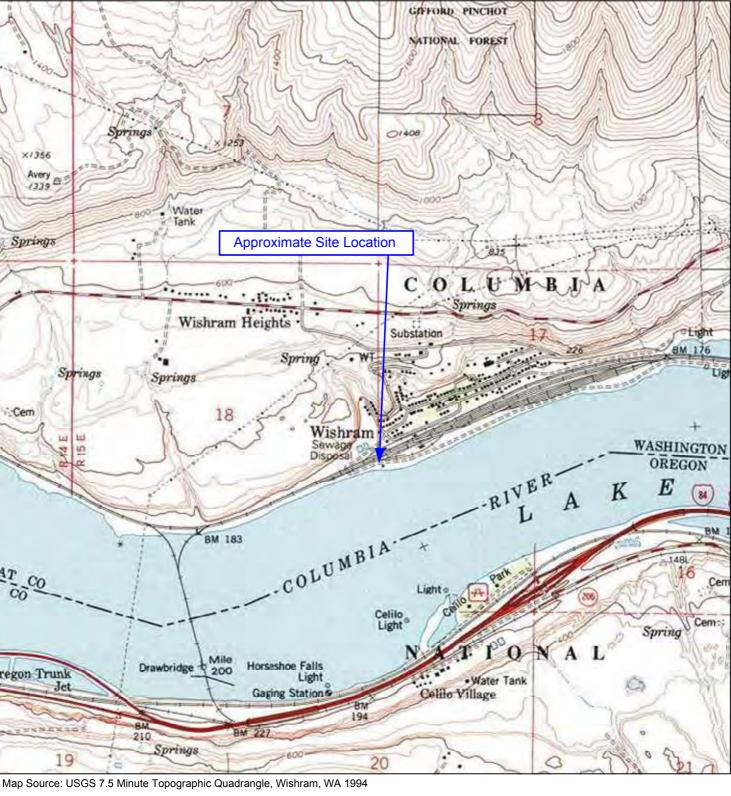
DIRECT-PUSH SUBSURFACE SOIL ANALYTICAL RESULTS JANUARY-FEBRUARY 2012 BNSF WISHRAM, WASHINGTON

	Sample Designation (Boring ID - Depth (feet below ground surface)						MTCA Method A
	B-12-9	B-12-10	B-12-11	B-1	2-12	B-12-13	Industrial Soil
Analyte	40 ft	40 ft	35 ft	12 ft	23 ft	30 ft	Cleanup Level ^(a)
TPH (mg/kg) ^(b)							
Gasoline-range Hydrocarbons	<4.9 ^(c)	<4.7	1,100	(i)			100/30 ^(d)
Diesel-range Hydrocarbons	12 JB	14 JB	52,000 BY	30,000 BY	42,000 BY	7,200 BY	2,000 ^(e)
Oil-range Hydrocarbons	<59	<61	61,000 Y	1,700 Y	52,000 Y	10,000 Y	2,000 ^(e)
BTEX (μg/kg) ^(f)							
Benzene	<20	<19	140 J				30
Toluene	<49	<47	<990				7,000
Ethylbenzene	<49	<47	<990				6,000
m-Xylene + p-Xylene	<49	<47	900 J				NA ^(g)
o-Xylene	<49	<47	<990				NA
Total Xylenes	<98	<94	1,395 J				9,000
VPH (mg/kg) ^(h)							
VPH							NA
EPH (mg/kg) ^(j)							
EPH							NA
PAHs (μg/kg) ^(k)							
PAHs							NA
cPAHs (μg/kg) ⁽ⁿ⁾							
cPAHs							NA

Notes:

- (a) Model Toxics Control Act (MTCA; WAC 173-340) Method A industrial soil cleanup levels (Ecology 2007).
- (b) Samples were analyzed for diesel- and oil-range total petroleum hydrocarbons (TPH) by Ecology Method NWTPH-Dx(extended), and gasoline-range TPH by Ecology Method NWTPH-G.
- (c) "<" denotes that the analyte was not detected at a concentration above the indicated laboratory reporting limit.
- (d) TPH screening levels based on MTCA Method A industrial soil cleanup levels (Ecology 2007). For gasoline mixtures without benzene and total ethylbenzene, toluene and xylenes less than 1% of the gasoline mixture the cleanup level is 100 mg/kg. For all other gasoline mixtures, the cleanup level is 30 mg/kg.
- (e) Cleanup level is for diesel-range + oil-range TPH.
- (f) Benzene, toluene, ethylbenzene and xylenes (BTEX) analyzed by EPA Method 8260B.
- (g) "NA" denotes no cleanup level established.
- (h) Volatile petroleum hydrocarbons (VPH) analyzed by Ecology Method NWTPH/VPH.
- (i) "---" denotes that the sample was not analyzed for the indicated analyte.
- (j) Extractable petroleum hydrocarbons (EPH) analyzed by Ecology Method NWTPH/EPH.
- (k) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C in select ion monitoring (SIM) mode.
- (I) Cleanup level is for the total of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.
- (m) MTCA Method C industrial soil cleanup level from Ecology's online CLARC database (Method A cleanup level not available).
- (n) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C in SIM mode.
- (o) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708).
- (p) A value of 1/2 the laboratory method reporting limit (MRL) was used for total cPAH summation for non-detected cPAH analytes for TEF summation.
- (q) Non-detected cPAH analytes were excluded from the TEF summation for total cPAHs.
- (r) If two values are presented in notation XX / YY, XX value represents a result without use of a silica gel cleanup. YY values represent a result with use of a silica gel cleanup.


mg/kg = milligrams per kilogram


 $\mu g/km$ = micrograms per kilogram

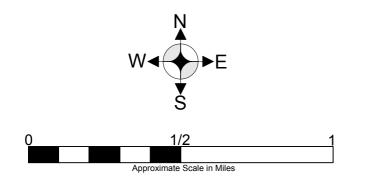
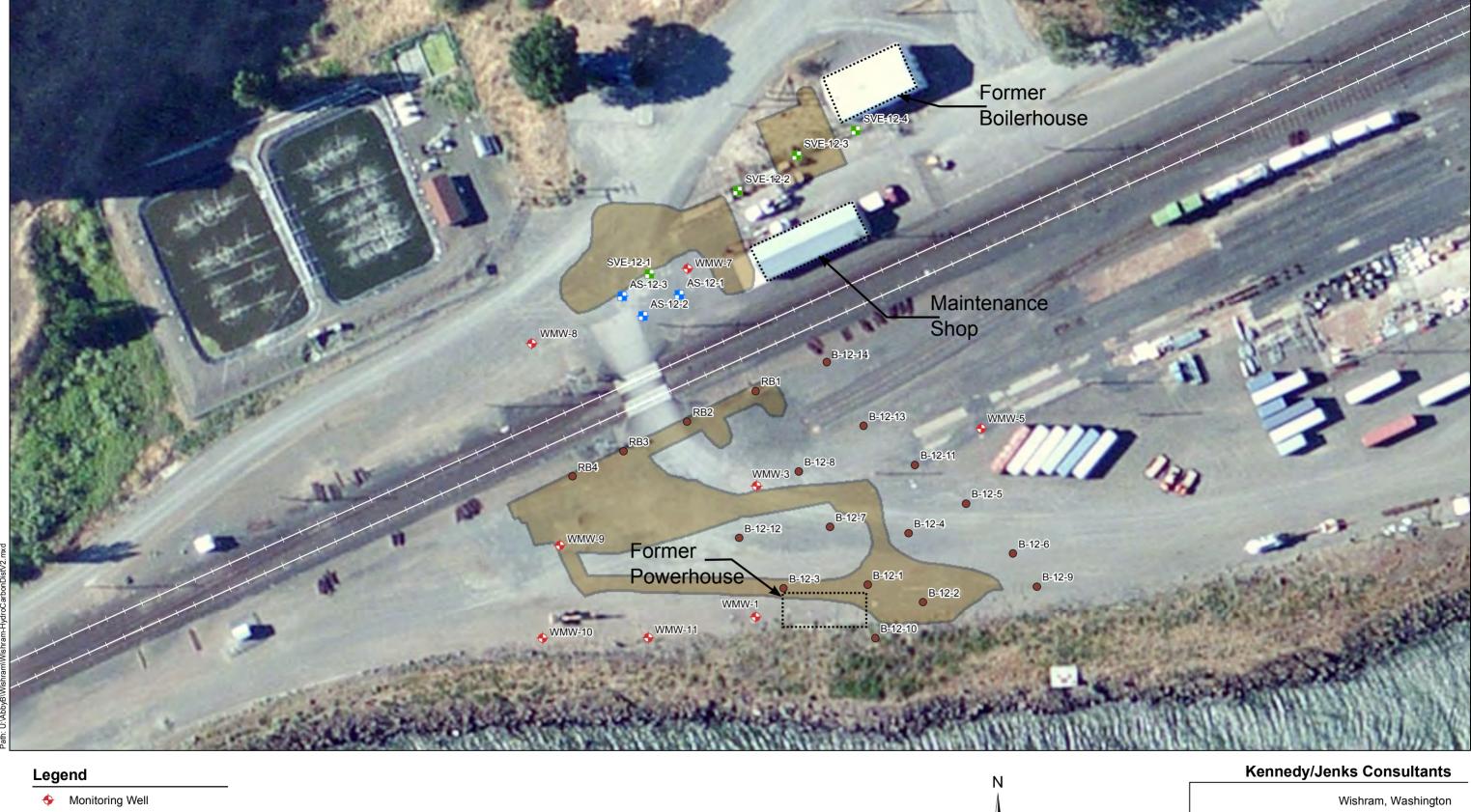

- J laboratory data flag indicating an estimate concentration below the MRL (method reporting limit) but above the MDL (method detection limit).
- Y laboratory data flag indicating that the chromatographic response resembles a typical fuel pattern.
- B laboratory data flag indicating that the compound was also detected in the method blank.

TABLE 3-A. TEFs for cPAHs						
cPAH Analyte	TEF					
Benzo(a)anthracene	0.1					
Chrysene	0.01					
Benzo(b)fluoranthene	0.1					
Benzo(k)fluoranthene	0.1					
Benzo(a)pyrene	1					
Indeno(1,2,3-cd)pyrene	0.1					
Dibenz(a.h)anthracene	0.1					

Analyte concentrations exceeding the indicated cleanup level are shown in bold and italics.


Kennedy/Jenks Consultants

Wishram, Washington

Vicinity Map

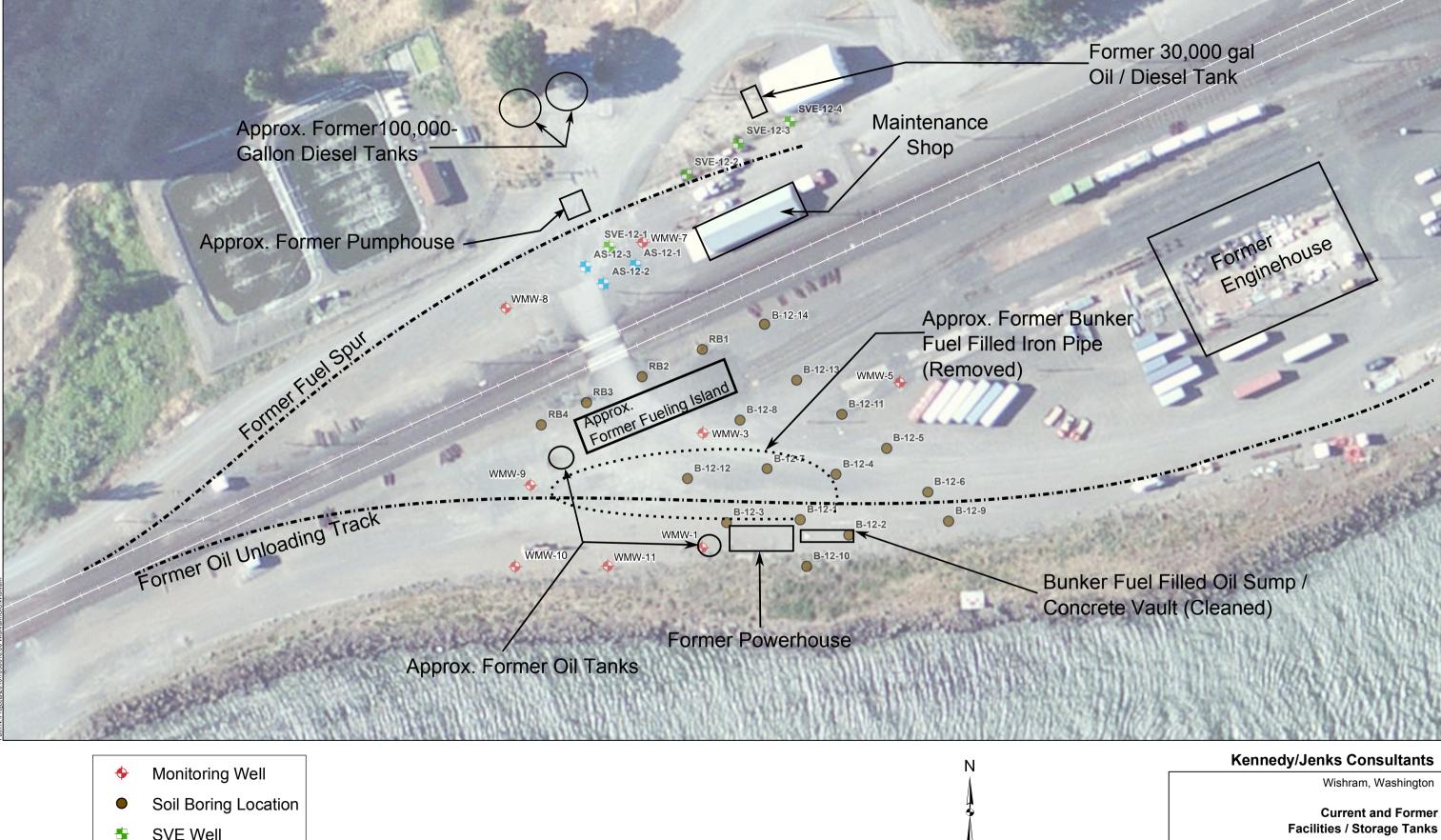
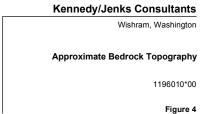
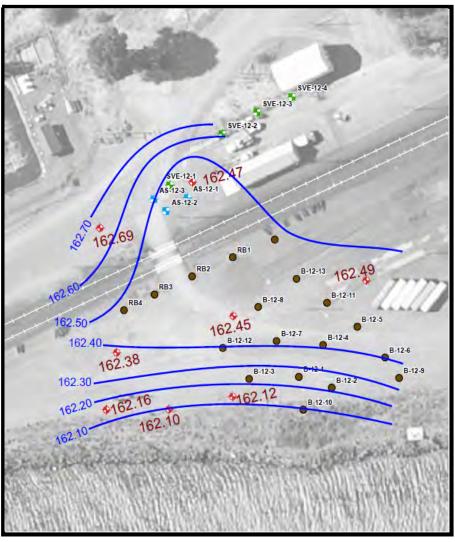

1196010*00

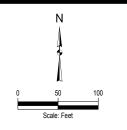
Figure 1

Soil Boring Location Sampling Location Map SVE Well Air Sparge Well 1196010*00 All locations are approximate. This layer contains the Bing Maps aerial imagery with labels web mapping service, which provides worldwide orthographic aerial and satellite imagery with roads and labels overlaid. Approximate Previous Excavation Area Figure 2

Scale: Feet







12 March 2012 14 March 2012

S-12-3 AS-12-1 AS-12-2

RB4

162.35

162.25

Kennedy/Jenks Consultants

B-12-6

Wishram, Washington

Potentiometric Surface Maps March 12 and 14 2012

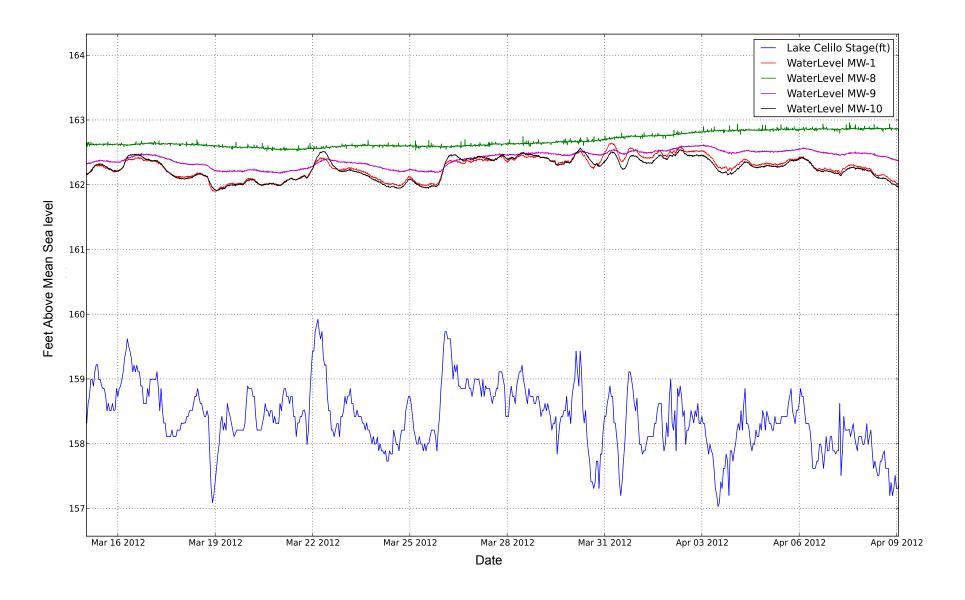

1196010*00

Figure 5

Legend

- Monitoring Well
- Soil Boring Location
- SVE Well
- Air Sparge Well
- Groundwater Surface

All locations are approximate. This layer contains the Bing Maps aerial imagery with labels web mapping service, which provides worldwide orthographic aerial and satellite imagery with roads and labels overlaid.

Kennedy/Jenks Consultants

Wishram, WA

Site Groundwater and Lake Celilo Levels

1196010*00

Figure 6

Notes :(1) Lake Celilo stage is based on The Dalles Dam forebay elevations (provided by the Army Corps of Engineers). Actual stage at Wishram site (upstream) is expected to be higher (2) Water levels corrected to mean sea level

Legend

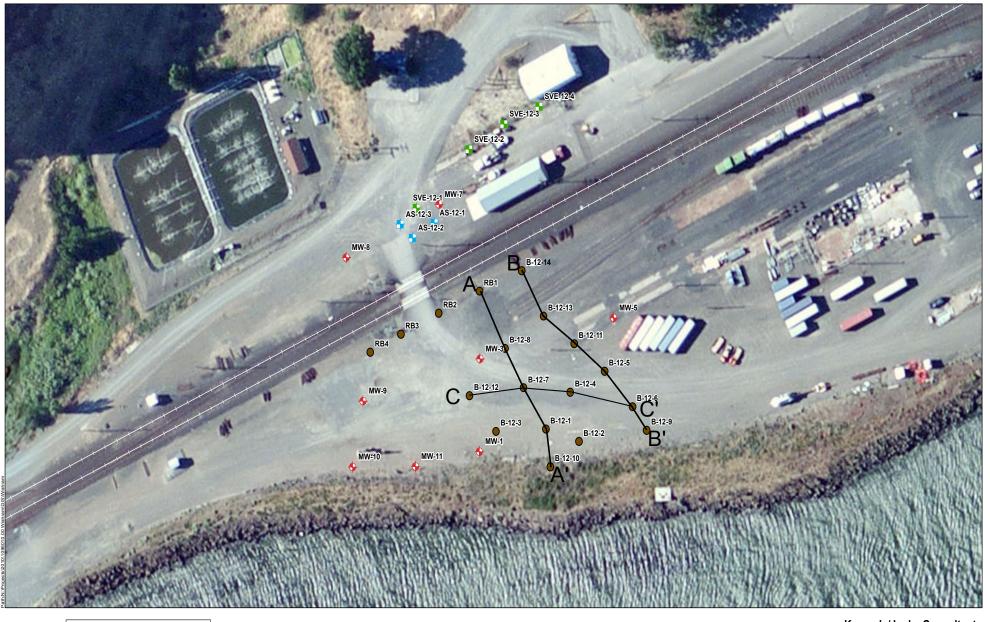

Existing Sampling Locations

- Monitoring Well
- Soil Boring Location
- SVE Well
- Air Sparge Well

Approximate Distribution of Hydrocarbon

Approximate Previous Excavation Area

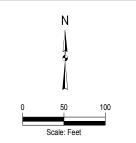
All locations are approximate.
This layer contains the Bing Maps aerial imagery with labels web mapping service, which provides worldwide orthographic aerial and satellite imagery with roads and labels overlaid.


Kennedy/Jenks Consultants

Wishram, Washington

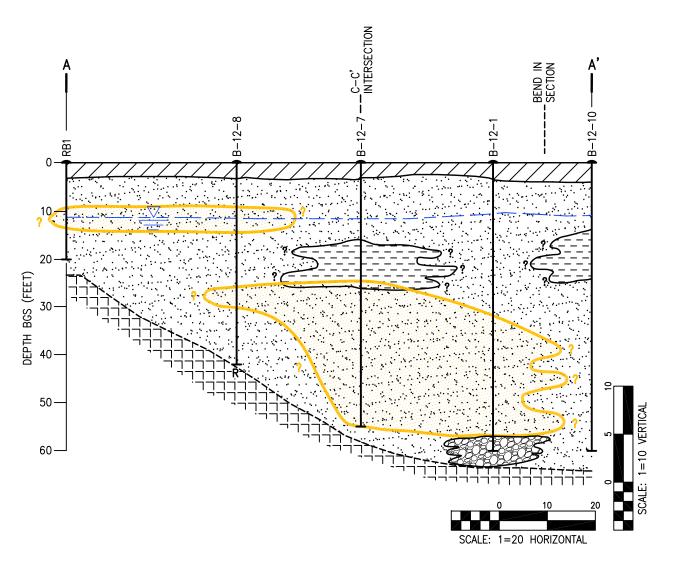

Approximate Hydrocarbon Distribution

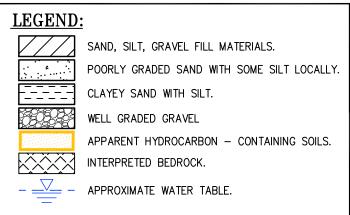
1196010*00


Figure 7

All locations are approximate.
This layer contains the Bing Maps aerial imagery with labels web mapping service, which provides worldwide orthographic aerial and satellite imagery with roads and labels overlaid.

- Soil Boring Location
- SVE Well
- Air Sparge Well


Kennedy/Jenks Consultants


Wishram, Washington

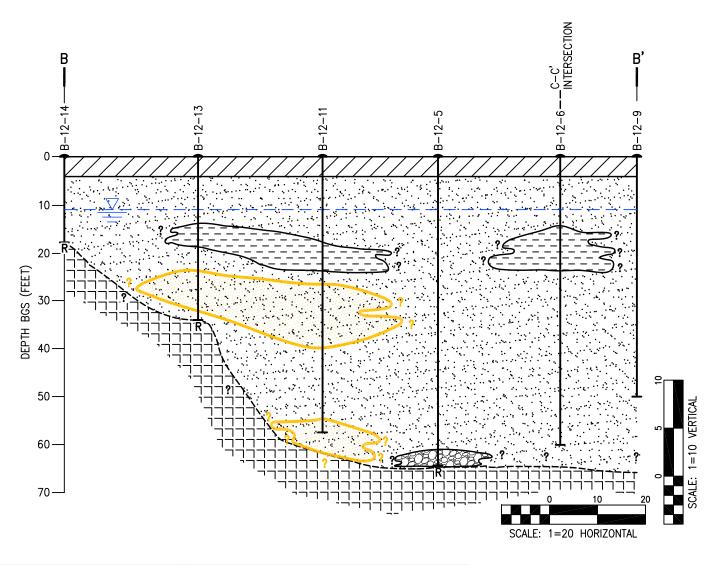
Cross Section Transect

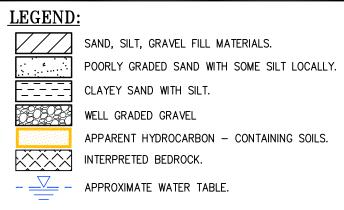
1196010*00

Figure 8

NOTES:

- 1. ALL LOCATIONS AND DEPTHS ARE APPROXIMATE.
- 2. R = BOTTOM DEPTH DETERMINED BY REFUSAL.


Kennedy/Jenks Consultants


WISHRAM, WASHINGTON

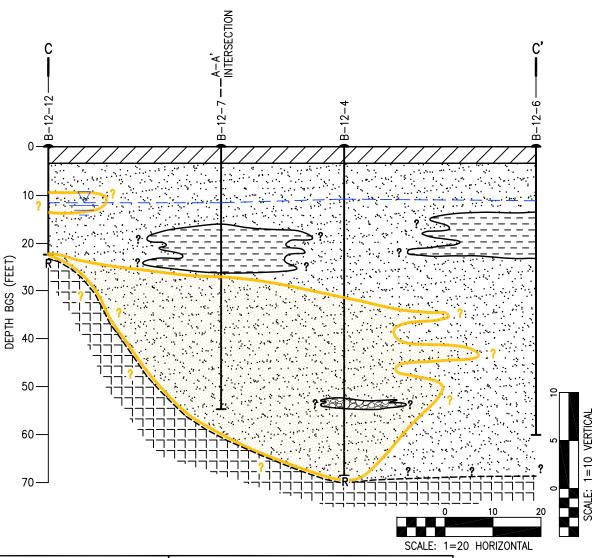
FORMER POWERHOUSE SITE GENERALIZED CROSS SECTION A-A'

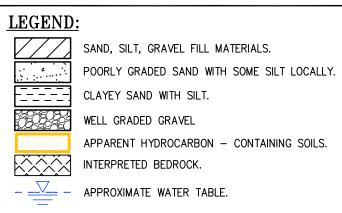
1196010.00\FIG-8A

FIGURE 8A

NOTES:

- 1. ALL LOCATIONS AND DEPTHS ARE APPROXIMATE.
- 2. R = BOTTOM DEPTH DETERMINED BY REFUSAL.


Kennedy/Jenks Consultants


WISHRAM, WASHINGTON

FORMER POWERHOUSE SITE GENERALIZED CROSS SECTION B-B'

1196010.00\FIG-8B

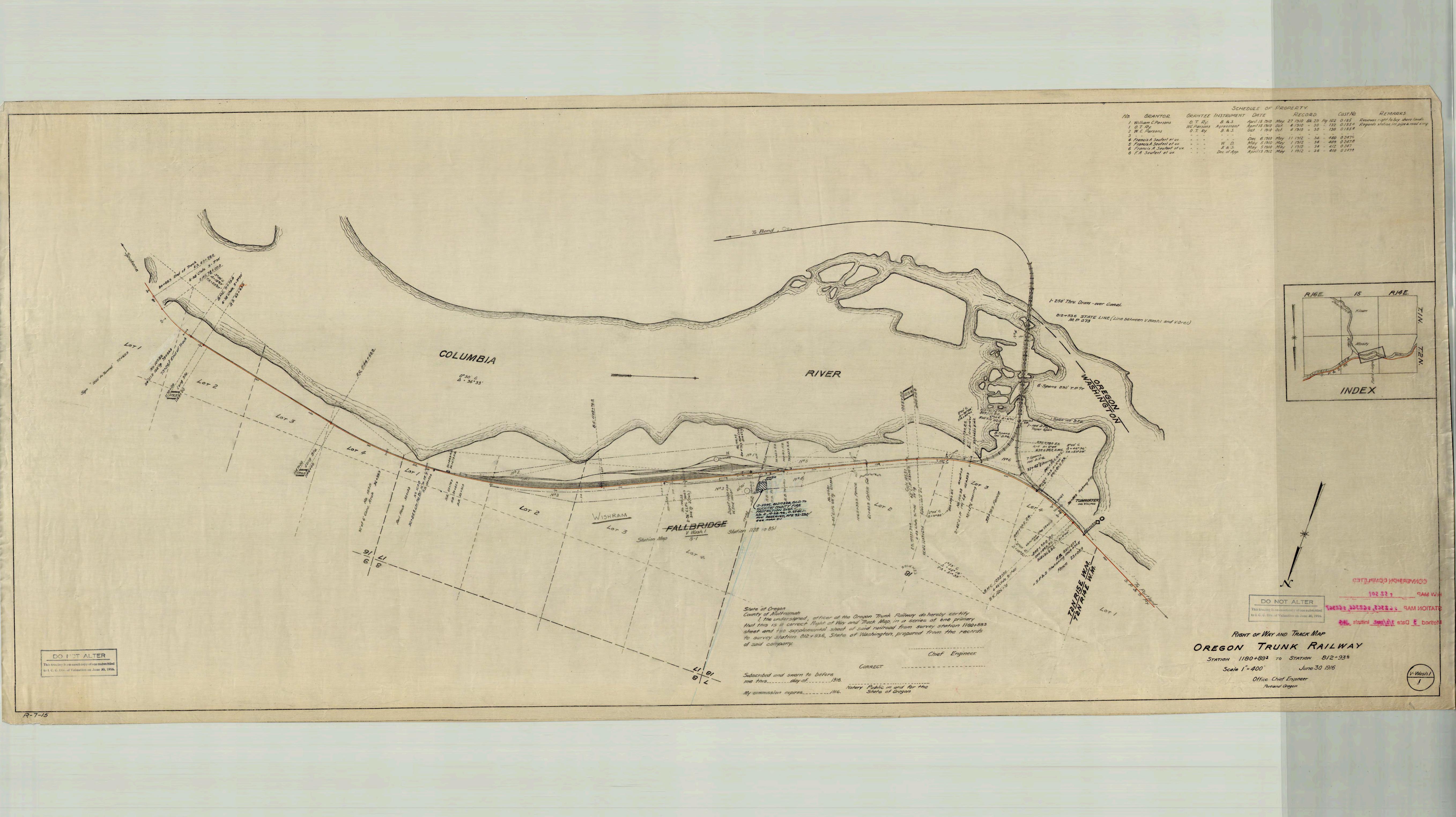
FIGURE 8B

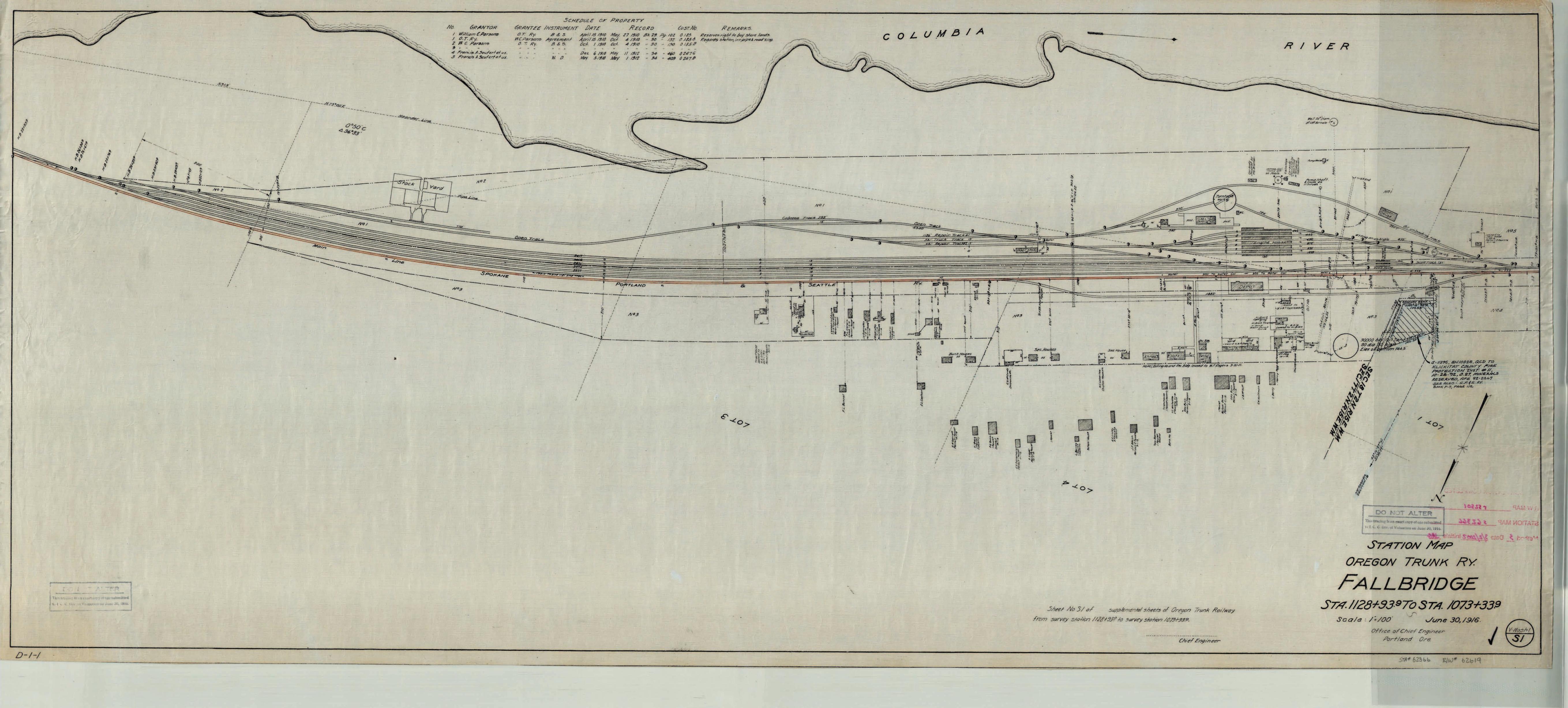
NOTES:

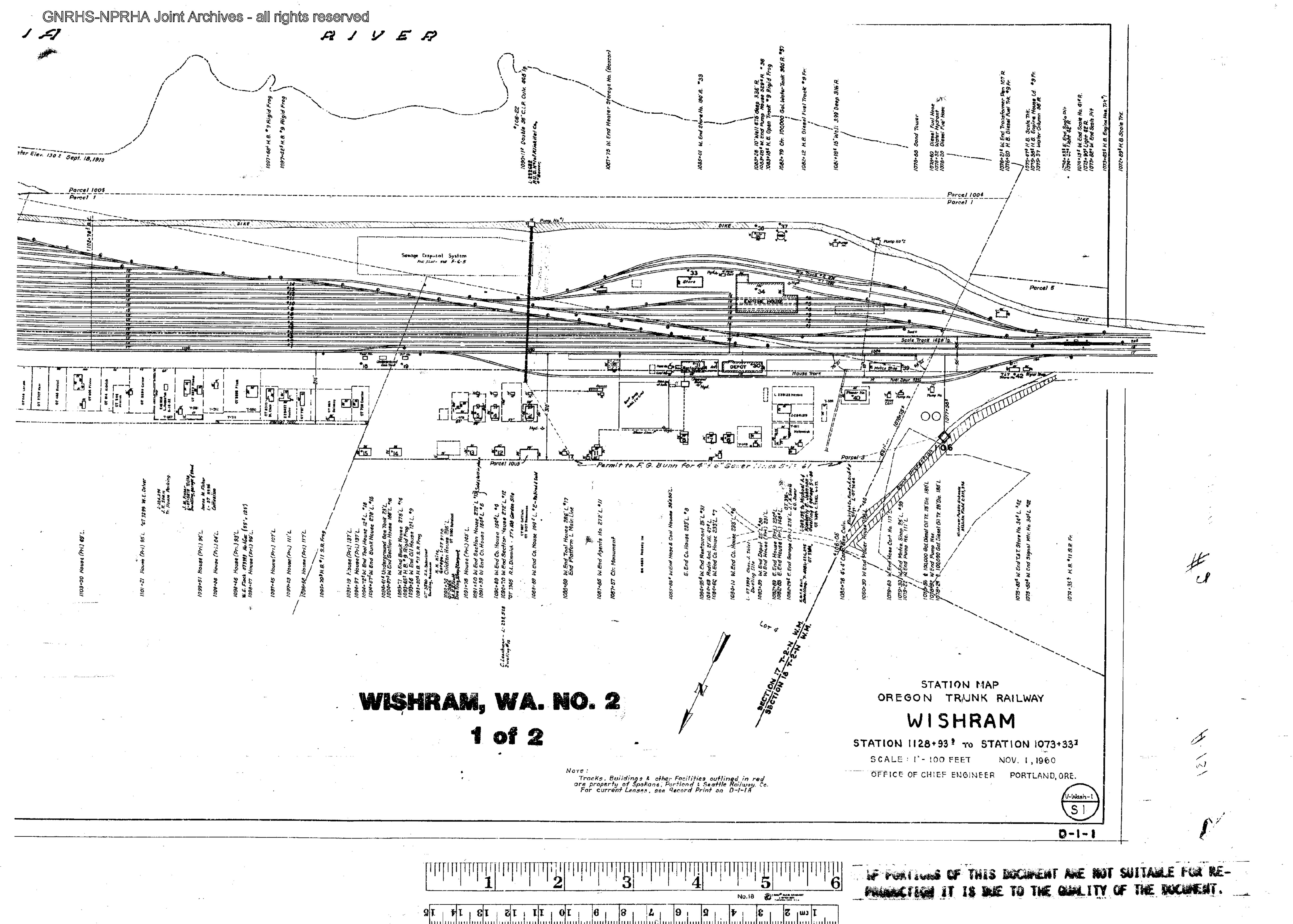
- 1. ALL LOCATIONS AND DEPTHS ARE APPROXIMATE.
- 2. R = BOTTOM DEPTH DETERMINED BY REFUSAL.

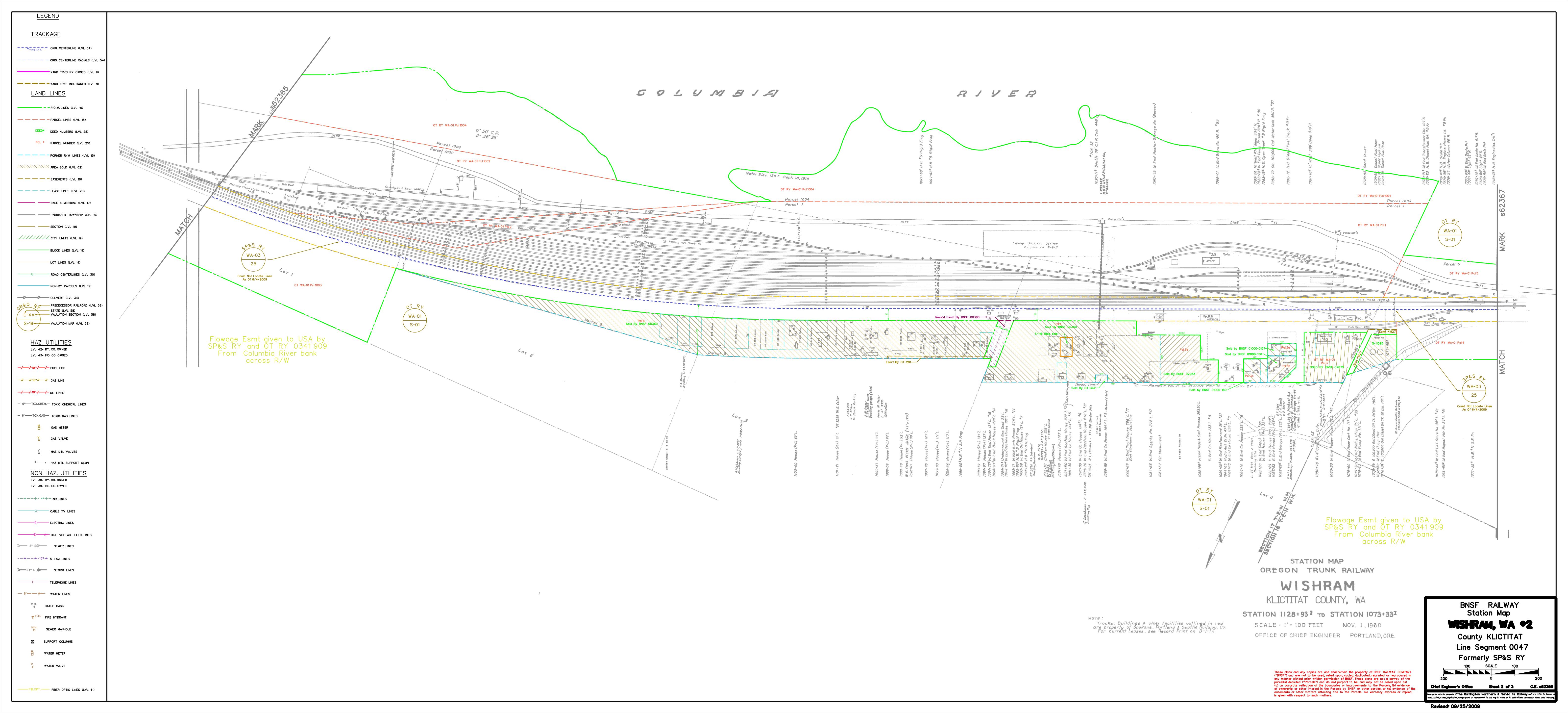
Kennedy/Jenks Consultants

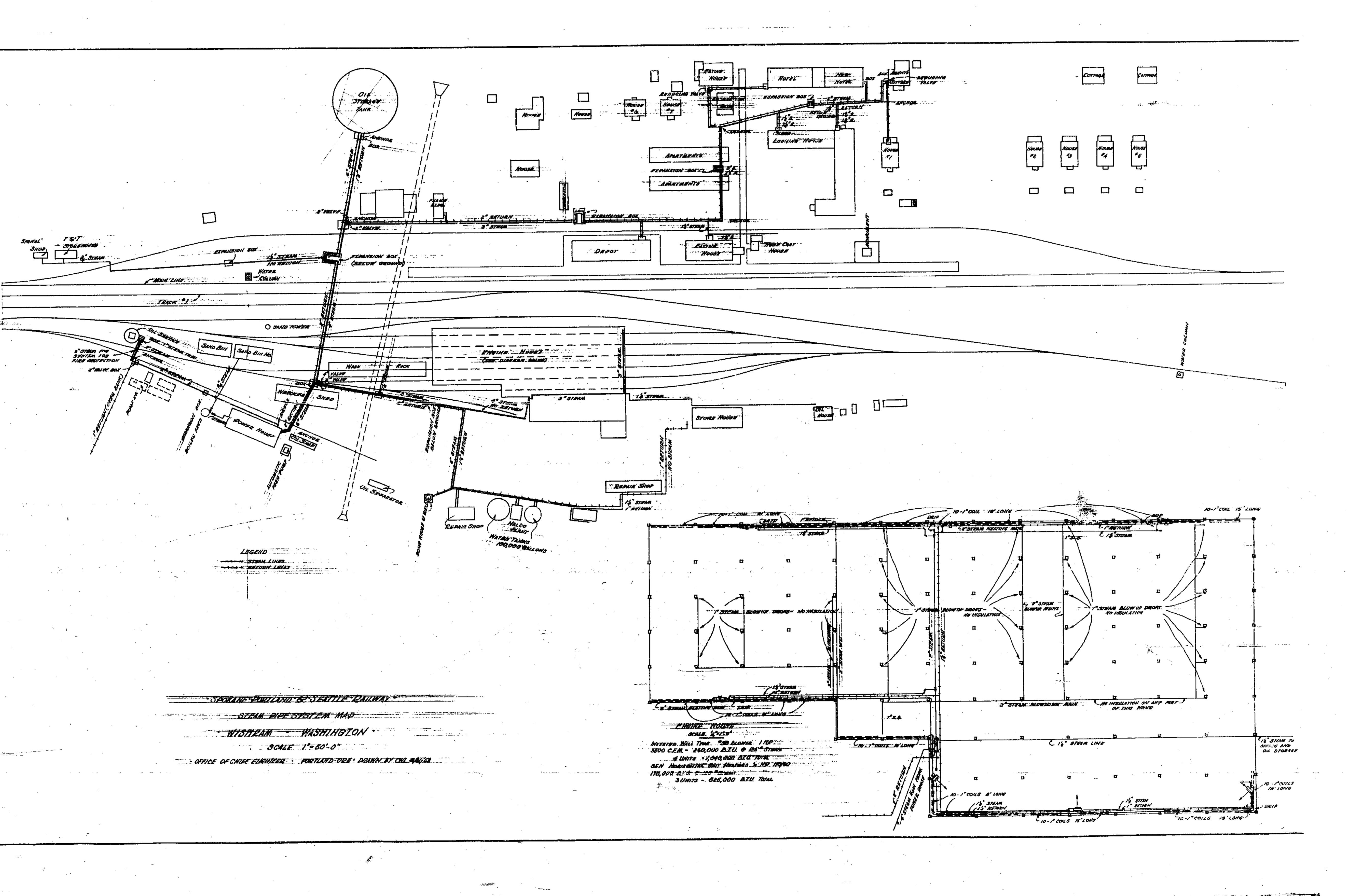
WISHRAM, WASHINGTON

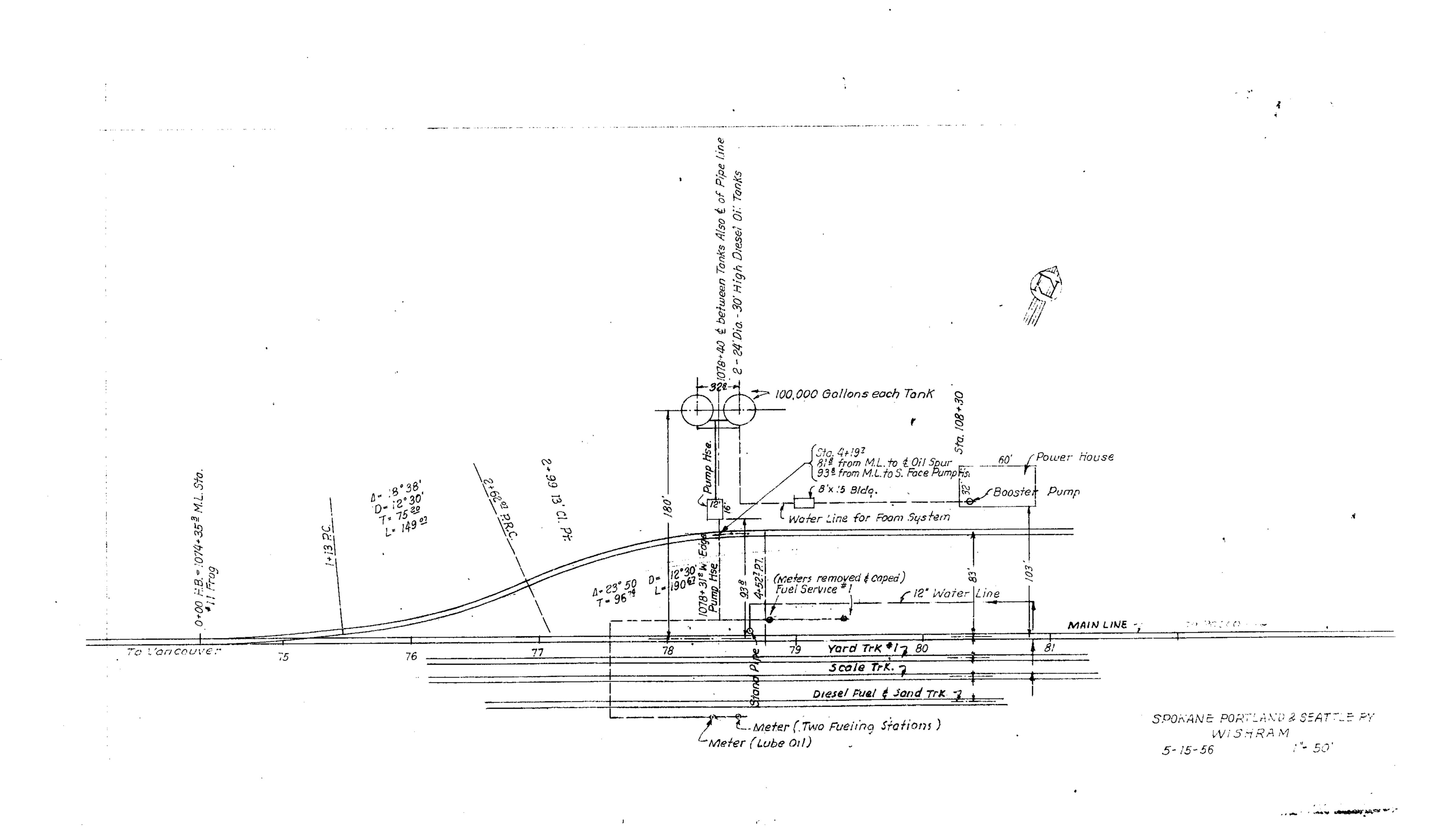

FORMER POWERHOUSE SITE GENERALIZED CROSS SECTION C-C'


1196010.00\FIG-8C


FIGURE 8C


Appendix A


Station	Maps

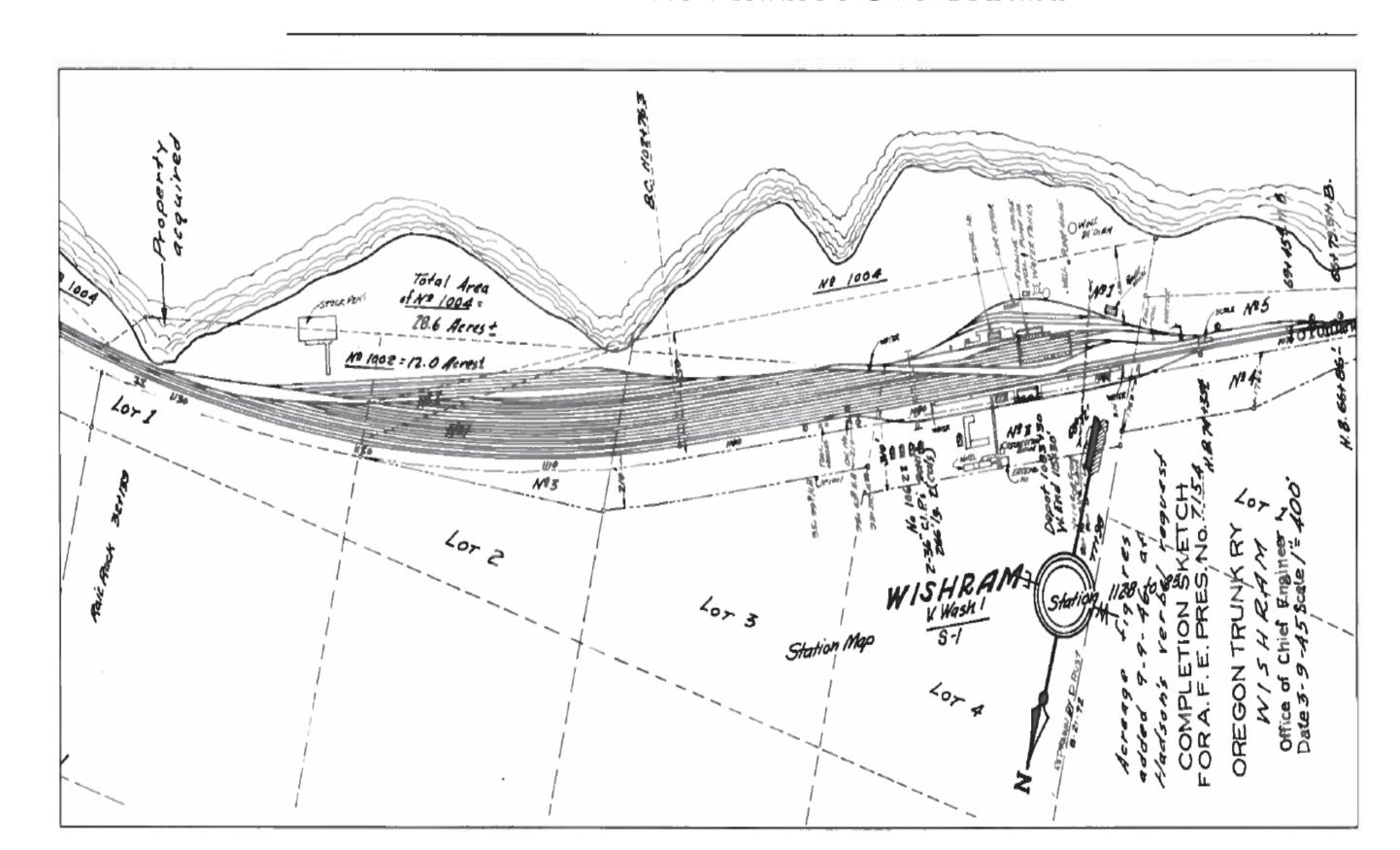


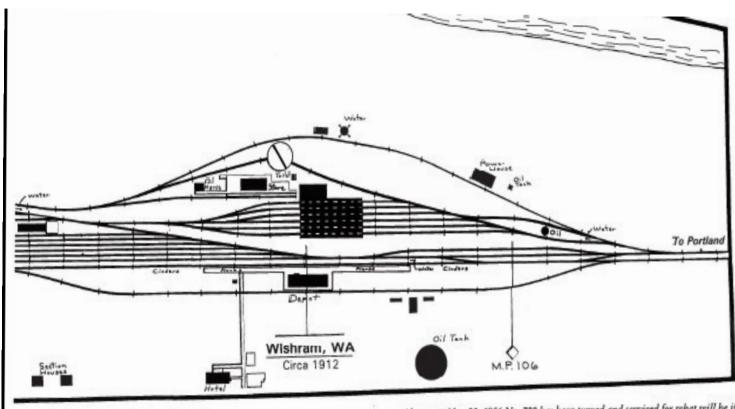
1 2 3 4 5 6

No.18 © CTRUE RESTORMENT

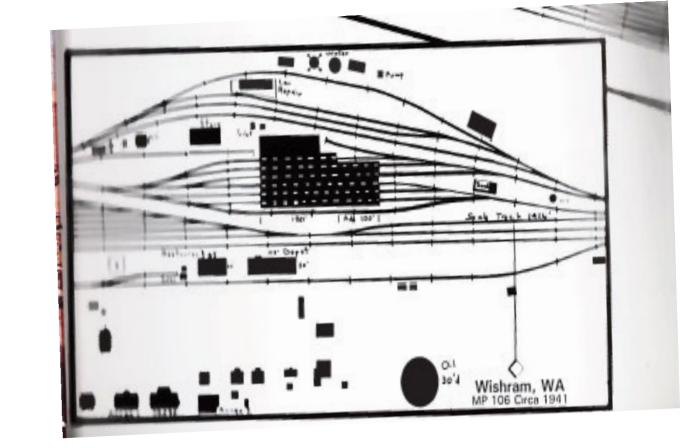
ST. II OI 6 8 4 9 9 9 F 8 7 WJ I

IN PORTIONS OF THIS DOCUMENT ARE NOT SUITABLE FOR RE-


1 2 3 4 5 6

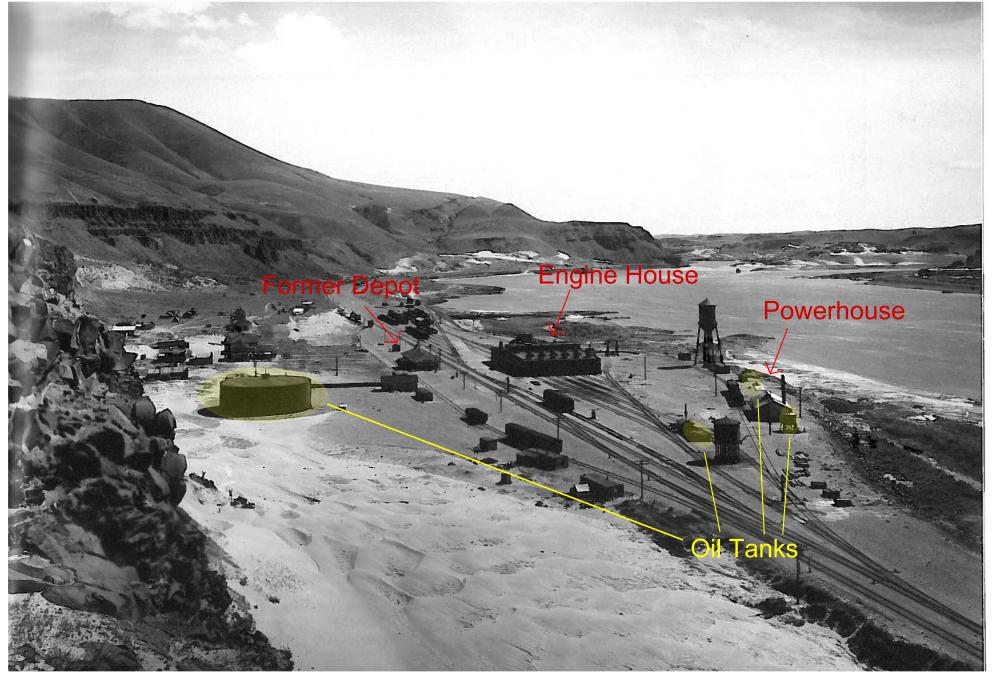

No.18 ***

Property Str. 1 1 0 1 6 8 2 9 9 9 7 8 7 W2 1


IF PORTIONS OF THIS DOCUMENT ARE NOT SUITABLE FOR RE-PRODUCTION IT IS DUE TO THE QUALITY OF THE DOCUMENT.

· THE NORTHWEST'S OWN RAILWAY ·

Above, on May 20. 1956 No. 700 has been turned and serviced for what will be its last run back to Portland. (Bob Wenzel)



Appendix B

Appendix 6
Site Photographs

Wishram railyard overview, view to the west.

Wishram Site Photo (circa 1920s)

1196010*00

Appendix C

Appendix C
Boring and Well Construction Logs

	<u> </u>			ioti aotioi i								
	ORING LOCATION W of Maintenance Facility									-	Well Name	AS-12-1
DRILLING	Major	Drilli	ng				DRIL	Jerr	y Ric	hard	Project Name	BNSF Wishram
DRILLING	эметн Direc	^{OD(S)} t-Pus l	h				DRIL	L BIT(S) 3.5"	SIZE		Project Number	1196010.02
ISOLATIO	ON CAS N/A	ING					FRO	M N/A	ТО	N/A	ELEVATION AND DATUM	TOTAL DEPTH 19.3 ft. bgs
BLANK C	ASING 2" Sc	hedul	e 40 F	PVC			FRO	м 0	ТО	FT. 16.75	bgs DATE STARTED	DATE COMPLETED
SLOTTE		IG		-			FRO		TO	FT. 19.3	1/12/12 INITIAL WATER DEPTH (FT)	1/12/12 STATIC WATER DEPTH (FT)
SIZE ANI	D TYPE	OF FILT					FRO		ТО	FT. 19.3	N/A \ \ \ \ LOGGED BY	12.43
SEAL							FRO		ТО	FT.	J.Sawdey	I
	Gran	ular B	ent I	Hydrated				1		14.5	SAMPLING METHODS	WELL COMPLETION ■ SURFACE HOUSING
GROUT	Ceme	ent					FRO	м 0	ТО	1 FT.	Macro Core Liner	☐ STAND PIPE FT.
S/ TYPE	RECOV. (FEET)		DEPTH (FEET)	SAMPLE NUMBER	WELL CON	STRUCTION	PID PPM / ST	LITHOLOGY	USCS	5	SAMPLE DESCRIPTION AND	DRILLING REMARKS
- - - - - - - - - - - -	3.5		- - 5- - - - 10-		Σ =	Δ	0.1 / NS		SP	Poorl Brown	y graded SAND n, Tan, fine sand, some verid, soft, dry - wet	
- _ SS _	5		- - -		Y	-	10.2 / SS			Petrol Wet.	leum-like odor and sheen	
- - SS -	4.3		15 - - - -	AS-12-1			0.3 / NS		SP		y graded SAND gray brown, fine and medi wet	um sand, poorly graded,

- NOTES
 1. PID PPM = Photo ionization detector reading in parts per million
- 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen

 3. bgs = below ground surface
- 4. Direct-Push with 2.25" diameter push rod for soil sample. Install AS-12-1 with 3.25" direct push rod after appropriate depth determined from temp wells/soil samples
- 5. Petroleum-like odor and sheen from approximately 10' to 13.5' bgs

BORING	LOCATI W of	on Maint	enanc	e Facility								Well Name	AS-12-2
DRILLING	G COMP Major		ng					DRIL	LER Jerr	y Ric	hard		BNSF Wishram
DRILLING	G METH	OD(S)						DRIL	L BIT(S) 3.5'	SIZE			
ISOLATI	Direc		1					FDO				Project Number	1196010.02
	N/A	ING						FROI	N/A	ТО	N/A	ELEVATION AND DATUM bgs	TOTAL DEPTH 19.3 ft. bgs
BLANK C	CASING 2" Sc	hedul	e 40 F	PVC				FROI	м 0	ТО	16.75	DATE STARTED	DATE COMPLETED
SLOTTE	D CASIN 2" 0.0	IG 110 el	ot					FROI	и 16.75	ТО	FT. 19.25	1/13/12 INITIAL WATER DEPTH (FT)	1/13/12 STATIC WATER DEPTH (FT)
SIZE AN	D TYPE	OF FILT	ER PAC					FROI	M	TO	FT.	N/A	12.49
SEAL	10-20) Silica	a Sano	d				FROI	15.5	ТО	19.25 FT.	LOGGED BY J.Sawdey	
	Grani	ular B	ent	Hydrated					2		15.5	SAMPLING METHODS	WELL COMPLETION
GROUT	Ceme	ent						FROI	м 0	TO	FT. 2	Macro Core Liner	■ SURFACE HOUSING □ STAND PIPE FT.
S. TYPE	RECOV. (FEET)		DEPTH (FEET)	SAMPLE NUMBER	WELL	CONST	RUCTION	PID PPM / ST	LITHOLOGY	USCS LOG	3	SAMPLE DESCRIPTION AND	DRILLING REMARKS
		BEOTTORO				٦	<i>Ρ</i> -				Sand,	silt, and gravel fill materia	l
			_			3 4 7 777					,	SAND with gravel	t large gravels, well
SS	4		_				-				grade		riargo gravolo, tron
-			_				-	0.0/		SM	-		
-			5 -				-	NS			F		
-			=				-						
ss	5		_				-					y graded SAND	
			_				-					brow, tan, very fine and fin unded to rounded grains, r	
			10-					44.2./		SP	soft, o	damp	3 1 7
			10-					41.2 / SS					
			_				_					leum-like odor and sheen	
SS	5		_		\		_					y graded SAND gray, gray, fine sand, poorl	ly graded subrounded to
-			_				-					ed grains, very soft, wet	y gradou, odbrodridou to
-			15 -				-	0.3 / WS		1	L		
			=			<i></i>	-	WS		SP	-		
ss	4.3			AS-12-2		=	-				-		
-			_				-				-		
-			-			<u>. </u>	_]	-		

- 1. PID PPM = Photo ionization detector reading in parts per million
- 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen
- 3. bgs = below ground surface
 4. Direct-Push with 2.25" diameter push rod for soil sample. Install AS-12-2 with 3.25" direct push rod after appropriate depth determined from temp wells/soil
- 5. Petroleum-like odor and sheen from approximately 8.5' to 12.5' bgs

soring & Well Col	ISHUCHON	Log					Refilledy	Jenks Consultant
BORING LOCATION W of Maintenand	ce Facility						Well Name	AS-12-3
DRILLING COMPANY			DRIL					
Major Drilling			DDII		y Rich	ard	Project Name	BNSF Wishram
DRILLING METHOD(S) Direct-Push				L BIT(S) S 3.5"			Project Number	1196010.02
ISOLATION CASING N/A			FROI	M N/A	TO	N/A	ELEVATION AND DATUM	TOTAL DEPTH 19.5 ft. bgs
BLANK CASING 2" Schedule 40 F	21/10		FROI		TO	FT. 17.0	bgs DATE STARTED	DATE COMPLETED
SLOTTED CASING	- VC		FROI	<u>О</u>	TO	17.0 FT.	1/16/12	1/16/12
2" 0.010 slot				17.0		19.5	INITIAL WATER DEPTH (FT) N/A	STATIC WATER DEPTH (FT)
SIZE AND TYPE OF FILTER PAC 10-20 Silica San			FROI	м 15.0	TO	FT. 19.5	LOGGED BY	12.77
SEAL	<u>u</u>		FROI		TO	13.5 FT.	J.Sawdey	
Granular Bent	Hydrated			2		15	SAMPLING METHODS	WELL COMPLETION
GROUT Cement			FRO	Μ 0	TO	FT.	Macro Core Liner	■ SURFACE HOUSING □ STAND PIPE FT
SAMPLES		WELL CONSTRUCTION ,						
TYPE RECOV PENETR. (FEET) BLOWS/6"	SAMPLE NUMBER	F	PID PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS
SS 2.5		7 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	0.5 / NS 51.7 / SS		SP/ SM	Poorly some soft, d Poorly Gray,	y graded SAND with silt light gray, fine sand, some por to moderate grading, su	d, some very fine and ing, subrounded grains, very fine sand and some
SS 5 -		▼	71.1 / SS	X	SP/ SM	Petrol Wet	eum-like odor and sheen	
SS 4.5	AS-12-3		/ NS	***	SP	- Mottle suban	y graded SAND ed gray and brown, Coarse agular to subrounded, wet	grained sand zone,
NOTES			4.5 / NS		SP	\sqsubseteq Browr	y graded SAND n, dark brown, fine to mediu v graded, rounded grains, so	

- PID PPM = Photo ionization detector reading in parts per million
 ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen
 bgs = below ground surface
- Direct-Push with 2.25" diameter push rod for soil sample. Install AS-12-3 with 3.25" direct push rod after appropriate depth determined from temp wells/soil
- 5. Petroleum-like odor and sheen from approximately 8' to 14' bgs

KJ PNW WK DRAFT AS_SVEWELLS2.GPJ KJ PNW.GDT 8/2/12

ORILLING	G COMPAN' Major D						DRIL		ry Ricl	nard	Well Name Project Name	BNSF Wishram
ORILLING	G METHOD(ıer				DRIL	L BIT(S)	SIZE		Project Number	1196010.02
SOLATIO	ON CASING N/A		,01				FRO		ТО	FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLANK C	CASING	dule 40 F	PVC				FRO		TO	FT. 7.5	bgs DATE STARTED	25.0 ft. bgs DATE COMPLETED
SLOTTE	D CASING 2" 0.010						FRO		ТО	22.5	2/2/12 INITIAL WATER DEPTH (FT)	2/2/12 STATIC WATER DEPTH (F
	D TYPE OF	FILTER PAC ilica Sand	K 1				FRO		TO	FT. 22.5	LOGGED BY	11.1
EAL			- Hydrated				FRO		TO	FT.	J.Sawdey SAMPLING METHODS	WELL COMPLETION
ROUT	Cement	-	riyaratea				FRO		TO		Macro Core Liner	■ SURFACE HOUSING □ STAND PIPE I
	AMPLES		SAMPLE NUMBER	WELL	L CONST	RUCTION	PID PPM		USCS		SAMPLE DESCRIPTION AND	
TYPE	RECOV. PENI (FEET) RES BLOV	IST. (FEET) VS/6"	SAWFLE NUMBER		II del	11	/ST	LITHOLOGY	LOG	0		
		_			D 2 4	P N _				Sand	, silt, gravel, fill material, dr	у
SS	3.5	-				-		<u></u>		Poor	v graded SAND	
										Light	y graded SAND brown, brown, tan brown, f	ine sand, very poorly
		5-				-	0.0 / NS			grade	ed, trace silt (<5%), modera	nery derise, dry
		_				_	I NS			-		
ss	5	-			=	-						
							-		SP	[
		10-				-	0.0 / NS			-		
		_		_		-	INO			-		
ss	5								:	SAA,	except wet and softer	
		_				-	-		:	_		
		15-				-	0.0 / NS			Poorl	y graded SAND with silt	
		-				-	- 110				n, dark brown, fine sand wi	th up to 40% silt, very sof
SS	5											
		_				-	-					
		20-				-	0.0 / NS		SP/ SM	-		
SS	2.5											
							-			-		
		-				-				-		
		25-		1		-			- -			

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million

 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen

 3. bgs = below ground surface

 4. Direct-Push with 2.25" diameter push rod for soil sample. Install MW-10 with 8" diameter hollow stem augers after appropriate depth determined from temp wells/soil samples

 5. No petroleum-like odor or sheep observed in this borehole
- 5. No petroleum-like odor or sheen observed in this borehole

			001	istruction		<u> </u>					110111100	ly/ochks consultants
		ИW-1	0								Well Name	MW-11
DRILLIN	IG COMP Major	ANY Drillin	 ng				DRIL		rry Rich	ard	Project Name	BNSF Wishram
DRILLIN	IG METH	OD(S)	m Aug	jer			DRIL	L BIT(S			Project Number	1196010.02
ISOLAT	ION CAS N/A						FRO	м N /A	то 4	N/A FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLANK	CASING 2" Sc	hedul	e 40 F	PVC			FRO	М	то 0	FT. 7	DATE STARTED	25.0 ft. bgs DATE COMPLETED
SLOTTE	D CASIN	IG	e 40 F				FRO	M	то 7	FT. 22	2/3/12 INITIAL WATER DEPTH (F	2/3/12 FT) STATIC WATER DEPTH (FT)
SIZE AN	ID TYPE	OF FILT		K			FRO	М	, то 5	FT.	N/A LOGGED BY	11
SEAL				- Hydrated			FRO	М	то 2	 FT. 5	J.Sawde SAMPLING METHODS	WELL COMPLETION
GROUT				,			FRO	М	то 0	FT. 2	Macro Core Liner	■ SURFACE HOUSING □ STAND PIPE FT.
	SAMPLES		DEPTH (FEET)	SAMPLE NUMBER	WELL	CONSTRUCTION	PID PPM		LICCO		SAMPLE DESCRIPTION A	
TYPE	RECOV. (FEET)	RESIST. BLOWS/6"	(FEEI)			ו או יא	/51		LOG	Sand	, silt, gravel fill material,	
_			-			X	_			- Cana	, siit, gravei iii materiai,	ury
ss	3											
-			_				_			Light		n, fine sand with some silt
-			5-				0.0 / NS			\ (~10 ⁹	6), poorly graded, mode	rately soft, dry
			-				- 1.5		SP/	-		
ss	5								SM			
-			-				_			-		
-			10-				1.2 / NS			-		
					<u> </u>						y graded SAND with sil	
ss	5		-				_				gray, gray, brown gray, 6), poorly graded, very s	oft, very wet, petroleum-like
-			-				-			_		
-			15-				11.7 / MS	:		-		
SS -	5		-				_		SP/ SM	-		
-										-		
- - SS	2		20-				 12.8 / SS					
			_							SAA; petrol	except lighter gray and eum-like odor	more silt (30-40%),
<u> </u>			-				_			-		
L			25.				62.0.			L		
NO.	TES	1 = Db -	25 <u>-</u>	ration data star ==	nod!	a in north ass	5S million		_			
1. F 2. S		en tes		ration detector re WS, MS, SS =				loderat	te sheen	,		
3. b	gs = be	low gro	und su	rface diameter push r	nd fo	r soil sampla	Inetall N	<i>/</i> /\Λ/_11	with 9"			
d .v	liameter vells/soil	hollow	stem a	augers after app	opria	ate depth dete	ermined	from te	emp			
5. F				d sheen from ap	proxi	imately 15' to	25' bgs.					
-												
1. S. S. D. T. S. D. T. S. S. D. T. S. D. T. S. S. D.												
ـــــا ۷												

- 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen,
- 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen Strong sheen
 3. bgs = below ground surface
 4. Direct-Push with 2.25" diameter push rod for soil sample. Install MW-11 with 8" diameter hollow stem augers after appropriate depth determined from temp wells/soil samples
 5. Database like adapted the springer approximately 4514s 251 has
- 5. Petroleum-like odor and sheen from approximately 15' to 25' bgs.

DRII I ING	Major Dril G METHOD(S)						DRII	Jeri L BIT(S)	ry Rich	nard	Project Name	BNSF Wishram
	Hollow St	em Aug	jer				FRC	8"	TO	FT.	Project Number	1196010.02
BLANK C	N/A						FRC	N/A		N/A	ELEVATION AND DATUM bgs	TOTAL DEPTH 25.0 ft. bgs
	2" Schedu D CASING	ıle 40 F	PVC					0		7 FT.	DATE STARTED 2/3/12	DATE COMPLETED 2/3/12
	2" 0.010 s		W.Z.				FRC	7	TO	22 FT.	INITIAL WATER DEPTH (FT) N/A	STATIC WATER DEPTH (F 11.5
	D TYPE OF FII 10-20 Silio	ca San	d d				FRC	5		22 FT.	LOGGED BY J.Sawdey	
SEAL	3/8" Bent.	Chips	- Hydrated				FRC	2		FT. 5	SAMPLING METHODS	WELL COMPLETION SURFACE HOUSING
ROUT	Cement						FRC	0	ТО	2 FT.	Macro Core Liner	☐ STAND PIPE
	AMPLES RECOV. PENETF RESIST (FEET) BLOWS/	DEPTH (FEET)	SAMPLE NUMBER	WEL	L CONST	RUCTIO	PID PPN / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	
		_			A V	D 0				Sand	, silt, gravel fill material, dry	У
SS	3.5	-				7	-			-		
									<u> </u>	Poorl	ly graded SAND	
		5-					0.0 / NS		:	Light	brown, brown, tan brown, Fe silt (<5%), poor to modera	
		-					NS		:		ded grains, moderately soft	
SS	5	-					1		SP	-		
									1			
		10-					5.4 / SS			-		
		_		<u>_</u>			- 33		<u>.</u> 	L		
SS	5			-						Gray	ly graded SAND brown, light gray brown, Fi	
		_					_		SP	very s	soft, wet, petroleum-like od	or
		15-					0.3 / WS			-		
		-										
SS	5									Light - ~10%	brown, brown, medium sar	nd, poorly graded with
		_					-			-	,	
		20-					0.0 / NS	-		-		
SS	2						1					
		_					-			SAA;	except more fine grained a	and siltier (~20%)
		-					-			-		
				1			_ 0.0 / NS	<u> </u>	<u> </u>			

- NS

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen
 3. bgs = below ground surface
 4. Direct-Push with 2.25" diameter push rod for soil sample. Install MW-8 with 8" diameter hollow stem augers after appropriate depth determined from temp wells/soil samples
 5. Patroleum like order and sheep from approximately 9.5' to 12' bos
- 5. Petroleum-like odor and sheen from approximately 9.5' to 12' bgs.

	S of Mai		cks				1				Well Name	MW-9
	G COMPANY Major Dr	illing						LER Jer i	ry Ricl	hard	Project Name	BNSF Wishram
	G METHOD(S Hollow S	stem Aug	jer				DRIL	L BIT(S) 8"	SIZE		Project Number	1196010.02
SOLATIO	ON CASING N/A						FRO	M N/A	ТО	N/A FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLANK C	CASING 2" Sched	lule 40 F	PVC				FRO	М 0	ТО	FT. 6.5	DATE STARTED	25.0 ft. bgs
SLOTTE	D CASING 2" 0.010	slot					FRO	M 8.5	ТО	23.5 FT.	2/2/12 INITIAL WATER DEPTH (FT	
SIZE ANI	D TYPE OF F	ILTER PAC	K 1				FRO		ТО	23.5 FT.	N/A LOGGED BY	11.5
SEAL			- Hydrated				FRC		TO	FT. 6.5	J.Sawdey SAMPLING METHODS	WELL COMPLETION
ROUT	Cement	<u> </u>	- i y ai ato a				FRO		TO	FT. 2	Macro Core Liner	■ SURFACE HOUSING □ STAND PIPE F
Si	AMPLES	TR. DEPTH	SAMPLE NUMBER	WEL	L CONS	TRUCTIO	N PID PPN		uscs		SAMPLE DESCRIPTION AN	
TYPE	RECOV. PENE (FEET) PENE RESI: BLOW	ST. (FEET) S/6"	SAMPLE NUMBER		1		/ST	LITHOLOGI	LOG			
		_			Δ. Δ		-			Sand	, silt, gravel, fill material, o	dry
SS	3.5	-			7	1	+			-		
		-					1		1		graded SAND	and coorse is not fire to
		5-					0.0 / NS		· sw		well graded, subrounded	and, coarse in part, fine in grains, moderately soft, dr
		=					NS			- uall	Ψ.	
ss	5	-					+		<u>+</u>	1	y graded SAND	
							1				brown, tan, fine sand, ver ning wet at 11.5'	y poorly graded, soft, dam
		10-					0.0 / NS			-		
		-		<u>_</u>			NS			-		
ss	5	-		=			+		SP	-		
		15-					0.0 / NS			-		
		_					- INS			-		
ss	5	-								1	y graded SAND	and mooths are de-d
		_							SP	mode	n, gray brown, medium sa rately dense, wet	ına, poony graded,
		20-					0.0 / NS) 				
ss	3.5	-					- INS				y graded SAND with silt n, dark brown, fine sand,	poorly graded with up to
	3.5								SP/ SM		silt, dense, wet	
		+ -				-[:]	-		JOIN	-		
		25-										

- NOTES
 PID PPM = Photo ionization detector reading in parts per million
 ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen
 bgs = below ground surface
 Direct-Push with 2.25" diameter push rod for soil sample. Install MW-9 with 8" diameter hollow stem augers after appropriate depth determined from temp wells/soil samples
 No petroleum-like odor or sheen observed
- 5. No petroleum-like odor or sheen observed

builing & Well Colls	ti dotion Log			i toilliouy/	Jenks Consultants
BORING LOCATION W of Maintenance F	Facility			Well Name	SVE-12-1
DRILLING COMPANY Major Drilling		DRILLER Jerry	Richard		BNSF Wishram
DRILLING METHOD(S) Hollow Stem Auger		DRILL BIT(S) S 10"	IZE	Project Number	1196010.02
ISOLATION CASING N/A		FROM 1	TO FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLANK CASING 4" Schedule 40 PV	С	FROM 1	TO FT. 5.5	bgs DATE STARTED	22.0 ft. bgs DATE COMPLETED
SLOTTED CASING 4" 0.020 slot		FROM 1	го FT. 8.5	1/16/12 INITIAL WATER DEPTH (FT)	1/16/12 STATIC WATER DEPTH (FT)
SIZE AND TYPE OF FILTER PACK 10-20 Silica Sand		FROM 1	го FT. 8.5	N/A LOGGED BY	12.38
SEAL 3/8" Bent. Chips - H	Hydrated	FROM 1	го FT. 5	J.Sawdey SAMPLING METHODS	WELL COMPLETION
GROUT Cement		FROM 1	го FT. 2	Macro Core Liner	■ SURFACE HOUSING □ STAND PIPE FT.
SAMPLES TYPE RECOV. PENETR RESIST. (FEET) BLOWS/6" SAMPLES DEPTH (FEET) SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES DEPTH (FEET) SAMPLES SAMPLES SAMPLES DEPTH (FEET) SAMPLES S	WELL CONSTRUCTION	PID PPM / ST	USCS LOG	SAMPLE DESCRIPTION AND	DRILLING REMARKS
SS 3		0.4 / NS	Poorly Light subro	y graded SAND with silt brown, tan, fine sand, some unded grains, moderately s	
SS 4	- - -	99.4 / SS	SP/ Light	gray, gray, fine sand, some unded grains, very soft, we eum-like odor and sheen	
SS 5	- - - -	0.7 / NS	Brown	y graded SAND with silt n, dark brown, fine and med silt, poor to moderate grad	
- SS 2 -	-	1.4 / NS		refusal, bedrock, basalt, w t Group	eathered, Columbia River

- 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen
- bgs = below ground surface
 Direct-Push with 2.25" diameter push rod for soil sample. Install SVE-12-1 with 10" diameter hollow stem augers after appropriate depth determined from temp wells/soil samples
- 5. Petroleum-like odor and sheen from approximately 11' to 15' bgs

KJ PNW WK DRAFT AS_SVEWELLS2.GPJ KJ PNW.GDT 8/2/12

	<u>J - </u>										
BORING			ntenar	nce Facility						Well Name	SVE-12-2
DRILLIN		PANY r Drilli	ng	-		DRIL		y Rich	ard		BNSF Wishram
DRILLIN			m Aug	er		DRIL	L BIT(S) 10"	SIZE		Project Number	1196010.02
ISOLATI	ON CAS N/A	ING				FRO	M N/A	ТО	N/A FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (hedul	le 40 F	VC.		FRO		ТО	6.0 FT.	bgs DATE STARTED	16.0 ft. bgs DATE COMPLETED
SLOTTE	D CASIN					FRO		ТО	9 FT.	1/15/12 INITIAL WATER DEPTH (FT)	1/15/12 STATIC WATER DEPTH (FT)
SIZE AN	D TYPE	OF FILT	TER PAC			FRO	M	ТО	FT.	N/A \ ´	12.16
SEAL			a Sand			FRO		ТО	9 _ FT.	J.Sawdey SAMPLING METHODS	WELL COMPLETION
GROUT			Chips	- Hydrated		FRO	<u>2</u> M	ТО	5 FT.	Macro Core Liner	WELL COMPLETION ■ SURFACE HOUSING
	Ceme	ent					0		2		☐ STAND PIPE FT.
TYPE	RECOV. (FEET)		DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	PID PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS
		BLUW5/0							Silty	sand, gravel, fill material, dr	у
_ _ SS _	2		- - - - 5-			0.0 / NS			1	y graded SAND with silt n. light dark brown, fine san	. — — — — — — — — — — — — — — — — — — —
- - SS -	5		- - -			/ NS		SP/ SM	sand,	some silt, poorly graded, s s, moderately soft, damp	
-			10-		_	4571		SP/	Gray,	y graded SAND with silt light gray, fine sand with so oorly graded, subrounded to	
ss -	5		_		= -	45.7 / SS		SM	Petro	leum-like odor and sheen	
SS	1		15-			0.3 / NS		SP	- Brown	y graded SAND n, dark brown, medium san s, moderately graded, mode	
NOT	ES	_				_		•	@ 16	refusal, bedrock, basalt, d	ark gray, moderately

- 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen

 3. bgs = below ground surface
- 4. Direct-Push with 2.25" diameter push rod for soil sample. Install SVE-12-2 with 10" diameter hollow stem augers after appropriate depth determined from temp wells/soil samples
- 5. Petroleum-like odor and sheen from approximately 11.5' to 14' bgs

KJ PNW WK DRAFT AS_SVEWELLS2.GPJ KJ PNW.GDT 8/2/12

F-40.1 (6-87) (3-88) (8-90) weathered, Columbia River Basalt Group

	<u> </u>				3					,	
BORING			enance	e Facility						Well Name	SVE-12-3
DRILLING						DRILL	ER			vveii ivairie	
	Majo	r Drilli	ng				Jerr	y Rich	nard	Project Name	BNSF Wishram
DRILLING			_			DRILL	BIT(S)	SIZE		1	
			m Aug	jer			10"			Project Number	1196010.02
ISOLATION		ING				FROM		TO	FT.	ELEVATION AND DATUM	TOTAL DEPTH
	N/A						N/A		N/A	bgs	12.0 ft. bgs
BLANK C		hedul	e 40 F	PVC		FROM	0	TO	6.4	DATE STARTED	DATE COMPLETED
SLOTTE						FROM		TO	FT.	1/13/12	1/13/12
CEOTTE		020 sl	ot			T I KON	6.4	10	10.4	INITIAL WATER DEPTH (FT) N/A	
SIZE ANI						FROM		TO	FT.	LOGGED BY	
	10-20) Silic	a San	d			5.0		10.4	J.Sawdey	
SEAL	ז ייט/ כ	Dont	China	Llydratad		FROM	1 2	TO	FT. 5	SAMPLING METHODS	WELL COMPLETION
GROUT	3/0 [bent.	Chips	- Hydrated		FROM		TO		1	■ SURFACE HOUSING
GROUT	Ceme	ent				FRON	0	10	PT.	Macro Core Liner	□ STAND PIPE FT.
S/	AMPLES	0110			WELL CONCEDUCTION						
	RECOV	PENETR.	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION F	PID PPM / ST	LITHOLOGY	USCS		SAMPLE DESCRIPTION AND	D DRILLING REMARKS
TYPE	(FEET)	PENETR. RESIST. BLOWS/6"	(FEE1)			/31		LUG			
					P P				Silty s	sand and gravel, well grad	ed fill material, dry
-			_						-		
_			_		8.0						
SS	3										
-			_						T		
-			_			0.0 /			-		
L			5 -			NO/NS			L		
			5-						Brown	n, dark red brown, fine sar	nd, small amounts of very
-			_							and, rounded grains, mod	erately soft, damp - dry -
			_						wet		
SS	5										
			-						†		
-			-			0.0 /			-		
L			10-			NO/NS			L		
			10=						@11'	Saturated soil samples	
- SS	2		-						⊢ _{@12'}	geoprobe refusal, not inte	rpreted as bedrock
			_						L W 12	geoprobe relasar, not litte	i protoc do bourook

- NOTES
 1. PID PPM = Photo ionization detector reading in parts per million
- 2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen
- 3. bgs = below ground surface
- 4. Direct-Push with 2.25" diameter push rod for soil sample. Install SVE-12-3 with 10" diameter hollow stem augers after appropriate depth determined from temp
- 5. No petroleum-like odor or sheen observed in this boring

KJ PNW WK DRAFT AS_SVEWELLS2.GPJ KJ PNW.GDT 8/2/12

			001	istruction	Log					110111104	y/ocinto consultante
BORING	N of	Mainte	enance	e Facility						Well Name	SVE-12-4
DRILLIN		Pany r Drilli	ng			DRILL		y Rich	nard	Project Name	BNSF Wishram
DRILLIN		OD(S) W Ste	m Aug	jer		DRILL	BIT(S) 10"	SIZE		Project Number	1196010.02
ISOLATI	ON CAS N/A	SING				FRON	л N/A	ТО	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH 10.1 ft. bgs
BLANK (hedul	e 40 F	PVC		0 6.1			FT. 6.1	bgs DATE STARTED 1/13/12	DATE COMPLETED 1/13/12
SLOTTE	4" 0.0	020 sl				FRON	л 6.1	ТО	10.1 FT.	INITIAL WATER DEPTH (F N/A	
SIZE AN		OF FILT				FRON	5.0	ТО	10.1 FT.	LOGGED BY J. Sawde	v
SEAL	3/8" I	Bent. (Chips	- Hydrated		FRON	л 2	ТО	FT. 5	SAMPLING METHODS	WELL COMPLETION
GROUT	Cem					FRON	0	ТО	FT. 2	Logging Cuttings	■ SURFACE HOUSING □ STAND PIPE FT.
TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION P	ID PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
- - SS -	4		- - -		7 22 7 4 4 7 7 4 7 4 7 4 7 4 7 4 7 4 7 4						l cobbles (up to 6" diameter)
SS	SS 5							SP	Brow	y graded SAND n, dark brown, fine sand, ilts, poorly graded, soft, o	with some very fine sand dry
- ss	0.1		10-			0.0 / O/NS		<u>L</u>			

1. PID PPM = Photo ionization detector reading in parts per million
2. ST = Sheen test: NS, WS, MS, SS = No sheen, Weak sheen, Moderate sheen, Strong sheen

3. bgs = below ground surface
4. Install SVE-12-3 with 10" diameter hollow stem augers. Lithology interpretations from logging cuttings.

5. No petroleum-like odor or sheen observed in this boring

DUIII	y Lu	<i>y</i> y								Remieuy	Jenks Consultants
BORING	LOCAT South	ion n of tra	acks, E	East of road o	verpass					Boring Name	RB1
DRILLING	G COMF	PANY			<u> </u>	DRIL	LER.	D: 1			
DRILLING	Majo		ng			DDII	Jerr L BIT(S)	y Rich	ard	Project Name	BNSF Wishram
	Direc	t-Pus	h				2.2	5"		Project Number	1196010.02
ISOLATIO	N/A	ING				FRO	N/A	ТО	N/A FT.	ELEVATION AND DATUM bgs	TOTAL DEPTH 20.0 ft. bgs
BLANK C	N/A					FRO	N/A	ТО	N/A	DATE STARTED 1/16/12	DATE COMPLETED 1/16/12
SLOTTE	N/A					FRO	N/A	ТО	N/A FT.	INITIAL WATER DEPTH (FT) N/A	STATIC WATER DEPTH (FT) 11.24
SIZE ANI	SIZE AND TYPE OF FILTER PACK N/A SEAL 3/8" Bent. Chips							ТО	N/A FT.	LOGGED BY J.Sawdey	11.24
SEAL	2/0" [Dont (China			FRO		ТО	FT.	SAMPLING METHODS	WELL COMPLETION
GROUT	3/0 [sent. (Chips			FRO	<u>0</u>	ТО	20 FT.		☐ SURFACE HOUSING
	N/A						™ N/A	.0	N/A	IVIACIO COTE LITTEI	☐ STAND PIPE FT.
	RECOV. (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS
SS	RECOV. (FEET) PENETR. (FEET) SAMPLE NUMBER 2.5 5- 5- 5-					0.2/ NS		SW/ SM	Well-q light to poorly	graded SAND with silt brown, light red brown, fine graded, very soft, damp by graded SAND o dark gray, fine sand, som d, subrounded to rounded graded to rounded graded.	ne medium sand, poorly
SS	5		10 - - - -		- - -	- 39.1 / SS		SP		leum-like odor and sheen	grains, soit, damp-wet
- - - SS -	5		15-	RB1	- - -	45.7 / SS		SP	Light	y graded SAND gray, light brown, brown, m graded, subrounded grain eum-like odor	
	•		20_				• •	-			

- 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
 3. bgs = below ground surface
 4. Petroleum-like odor and sheen encountered from approximately 10' to 15' bgs

DUIII	9 -	9										ittilica	y/Jenks Consultants
BORING	LOCATI	ion n of tra	acks, I	East of road o	verpa	ass			Boring Name	RB2			
DRILLING	G COMP Major		na				D	RILL		y Rich	ard	Project Name	BNSF Wishram
DRILLING	3 METH	OD(S)					D	RILL	BIT(S)	SIZE	idi d	_	
ISOLATIO	Direc ON CAS		<u>n</u>				F	ROM	2.25	TO	FT.	Project Number	1196010.02
BLANK C	N/A								N/A	TO.	N/A	ELEVATION AND DATUM bgs	TOTAL DEPTH 20.0 ft. bgs
	N/A							N/A		ТО	N/A	DATE STARTED 1/17/12	DATE COMPLETED 1/17/12
SLOTTE	D CASIN N/A	IG					F	ROM N/A		ТО	N/A FT.	INITIAL WATER DEPTH (F	T) STATIC WATER DEPTH (FT)
SIZE AND	SIZE AND TYPE OF FILTER PACK N/A								1	ТО	FT.	N/A LOGGED BY	13.28
SEAL										ТО	FT.	J.Sawdey	
GROUT	3/8" E	Bent. (Chips					ROM	0	TO	20 FT.	SAMPLING METHODS	WELL COMPLETION ☐ SURFACE HOUSING
	N/A							KOIV	N/A	10	N/A	Macro Core Liner	☐ STAND PIPE FT.
TYPE	RECOV. (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	BAC	KFILL DETAILS	PID F	PPM ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
ss	SAMPLES PE RECOV. RESIST. BLOWS/61 4 4 5 10 10 10 10 10 10 10 10 10						- 0.6 N:	1 / S		SP/ SM	Poorly Browr fine sa damp	and and silt, subrounded	poorly graded, some very to rounded grains, soft,
SS	5		- - - 20 -	RB2									

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
 3. bgs = below ground surface
 4. No petroleum-like odor or sheen encountered in this boring.

DOITH	9 -	9										i termicay.	benks bonsultants
BORING	South	n of tra	acks, \	West of road o	overp	pass						Boring Name	RB3
DRILLING	3 СОМР Мајо і	PANY r Drilli	ng					DRIL	Jer	ry Rich	nard	Project Name	BNSF Wishram
DRILLING		od(s) t-Pus	h					DRIL	L BIT(S) 2.2	SIZE 5"		Project Number	1196010.02
ISOLATIO	N/A	ING						FROI	и N/A	ТО	N/A	ELEVATION AND DATUM	TOTAL DEPTH 20.0 ft. bgs
BLANK C	N/A							FROI	и N/A	ТО	N/A	bgs DATE STARTED 1/16/12	DATE COMPLETED 1/16/12
SLOTTE	D CASIN N/A	IG						FROI	и N/A	ТО	N/A	INITIAL WATER DEPTH (FT)	STATIC WATER DEPTH (FT)
SIZE ANI								FROI		ТО	N/A	N/A LOGGED BY	12.05
SEAL	AL 3/8" Bent. Chips							FROI		TO	FT. 20	J.Sawdey SAMPLING METHODS	WELL COMPLETION
GROUT	OUT N/A SAMPLES DACKELL DET.							FROI	VI	TO	FT.	Macro Core Liner	☐ SURFACE HOUSING ☐ STAND PIPE FT.
SA	N/A SAMPLES BACKELL DET								N/A		IN/A		
TYPE	RECOV. (FEET)	RESIST. BLOWS/6"	(FEET)	SAMPLE NUMBER				ID PPM / ST	LITHOLOGY	USCS		SAMPLE DESCRIPTION AND	DRILLING REMARKS
- SS SS	DEGOV PENETR, DEPTH SAMPLE NUMBER						0.2 /- NS		SP/ SM	Poorl Brown poorly dry		n some very fine sand, unded grains, soft, damp -	
- - - - -	5		- - - 15 -		≯ I₁·		-	8.4 / SS		SP/ SM	Light poorly	y graded SAND with silt gray, gray, fine with some / graded, soft, wet, petrole leum like odor, iridescent s	um-like odor
- SS -							-	1.8 / NS		SM	Silty S	SAND n, tan, silty sand, soft, wet	

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
 3. bgs = below ground surface
 4. Petroleum-like odor and sheen encountered from approximately 9' to 14' bgs.

וווטט	ig Lc	9								rterinicay,	oenko oonoulant
BORING	LOCAT	ion n of tra	acks, \	Nest of road o	overpass					Boring Name	RB4
DRILLIN		PANY r Drilli	na			DRIL	LER Jerr	y Rich	ard		BNSF Wishram
DRILLIN	G METH	OD(S)				DRIL	L BIT(S)	SIZE	iaiu	Project Name	
ICOL ATI		t-Pus	<u>h</u>			FDO	2.25			Project Number	1196010.02
ISOLATI	N/A	ING				FRO	M N/A	ТО	N/A FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (CASING N/A					FRO	M	ТО	N/A	bgs DATE STARTED	20.0 ft. bgs DATE COMPLETED
SLOTTE		IG				FRO	N/A M	TO	FT.	1/16/12	1/16/12
0.75 44	N/A	05 511 7					N/A		N/A FT.	INITIAL WATER DEPTH (FT) N/A	STATIC WATER DEPTH (FT) 12.01
SIZE AN	D TYPE N/A	OF FIL	ER PAC	K.		FRO				LOGGED BY	-
SEAL	2/0" [Bent.	China			FRO	М	1 TO F		J.Sawdey SAMPLING METHODS	WELL COMPLETION
GROUT	3/0 [sent. v	onips			FRO	<u>О</u> м	TO		Macro Core Liner	☐ SURFACE HOUSING
	N/A AMPLES						N/A		N/A	Madro dero Enter	☐ STAND PIPE FT.
	RECOV. (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS
		BLUVV5/0							Silt, s	and, gravel, fill material	
			_								
SS	3		_					L	L		
			_							y graded SAND with silt brown, brown, dark brown,	fine cond, come year, fine
			5-			00/			some	silt, poorly graded, subroui	nded, moderately soft
			_			0.0 / NS					
SS	5		_								
			_								
			10			0.4./		SP/			
			10-			0.1 / NS		SM	Γ		
			_						Wet.		
SS	5		_		-						
			_				:				
			-							except more medium sand	, becoming more coarse
	1		15 -				::		- with d	ieptn	
			_								
SS	5			RB4		0.1 / NS		<u> </u>		CLAY with sand	
			_					CL/	Light	brown, brown, silty sandy c	lay, soft, low, damp
			_					ML			
			20_						_		

NOTES

1. PID PPM = Photo ionization detector reading in parts per million
2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
3. bgs = below ground surface
4. No petroleum-like odor or sheen encountered in this boring.

KJ PNW WK DRAFT FUELINGSANDINGAREA.GPJ KJ PNW.GDT 8/2/12 F-40.1 (6-87) (3-88) (8-90)

		er Po	werho	use Area								Boring Name	B-12-1
DRILLIN	IG COMP Majo	Pany r Drilli	ng					DRIL	Jerr	y Rich	ard	Project Name	BNSF Wishram
DRILLIN	IG METH							DRIL	L BIT(S) 2.25	SIZE		Project Number	1196010*00
ISOLAT	ION CAS							FRO	M N/A	ТО	N/A	ELEVATION AND DATU	M TOTAL DEPTH
BLANK	CASING N/A							FRO		ТО	FT.	DATE STARTED	60.0 ft. bgs DATE COMPLETED
SLOTTI	ED CASIN	NG						FRO		ТО	FT.	1/10/12 INITIAL WATER DEPTH	1/10/12
SIZE AN	ND TYPE	OF FIL	TER PAC	K				FROI	M	ТО	FT.	11.0 LOGGED BY	
SEAL			O1 :					FRO		ТО	FT.	J.Sawd	WELL COMPLETION
GROUT	•	Bent.	Chips					FRO		ТО	60 FT.		☐ SURFACE HOUSING
,	N/A SAMPLES				BAC	KFILL DETAI	LS _		N/A		N/A		☐ STAND PIPE FT.
TYPE	RECOV (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	27.10		PI	ID PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	N AND DRILLING REMARKS
		DEOW5/0									Silt, s	and, gravel, fill materia	al, dry
_			_										
SS	2		_				-				Poorl	y graded SAND	
-			_				-				Light		ded fine to medium sand,
	1		5 -				†	0.0 / NS			lound	led to well rounded, so	it, ury
			_										
SS	4		_										
-			_				-			SP	-		
-			10-		$\overline{}$		+				-		
				11	Ė						Wet		
SS	5		_								_		
-			_				-				_		
-			15 -				+	0.0 / NS				y graded SAND with s	
			_								Gray,	dark gray, poorly grad led to well rounded, ve	ded medium sand, some fine, ery soft, wet
SS	5		_										
-			_				-				-		
7	1		20-				+				_		
- -			_				1	0.4./			-		
SS	5		_] '	0.1 / NS					
Ž –			_								6 inch	n layer black coaly/woo	ody material
5			25 -				+			SP/ SM	_		
			_				-				_		
SS	5		_					41/					
			_]	4.1 / SS					
<u> </u>	-		30-				$\mid \perp \mid$				_		
-			-										
SS SS	5			B-12-1-32			6	81.5 / SS			@ 32	; Apperance of black/l	brown hydrocarbon in sands,
						Strong	g petroleum odor with	uiack/brown sneem					
			35-							L	L		

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Projec		e		BNSF Wishra	<u>ım</u> P	roject	Numbe	r	1196010*00 Boring Name B-12-1
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
- - - SS -	5	BLOWGE	- - -			50.7.4			Poorly graded SAND Gray, dark gray, black/brown hydrocarbon presence, moderate to poorly graded medium sand, well rounded, some fine sand, strong petroleum-like odor and sheen, damp/wet
ss -	5		40 - - - -			+ 50.7 / SS -			- - -
- - SS -	5		45 - - - -			110 / SS		SP	Gray, moderately firm clay layer (3"), moderately dense, low plasticity, damp/wet
- - SS -	5		50 - - - -			-141.5 / SS			Gravel layer (6") with fine to medium sand, petroleum-like odor and sheen
- - - SS	5		55- - - - - - 60-	B-12-1-59			*	 GP	Gradual decreasing visible black / brown hydrocarbon presence in sands Poorly graded GRAVEL with sand Well graded, rounded gravels, abundant sand, moderately dense

- 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
- 3. bgs = below ground surface
 4. Petroleum-like odor and sheen encountered from approximately 30' to 55' bgs

KJ PNW WK DRAFT POWERHOUSEAREABORINGS.GPJ KJ PNW.GDT 8/2/12

BORING	G LOCAT Form		werho	use Area								Boring Name		B-12-10
DRILLIN	NG COMF Majo	PANY r Drilli	ng					DRILI		y Rich	nard	Project Name	E	BNSF Wishram
DRILLIN	NG METH							DRILI	L BIT(S) 2.25	SIZE		Project Number		1196010*00
ISOLAT	ION CAS							FROM		TO	FT. N/A	ELEVATION AND DATU		TOTAL DEPTH
BLANK	CASING N/A							FROM		ТО	FT.	DATE STARTED		60.0 ft. bgs DATE COMPLETED 2/1/12
SLOTTI	ED CASIN	NG						FROM		ТО	N/A	2/1/12 INITIAL WATER DEPTH	(FT)	2/1/12
SIZE A	ND TYPE N/A	OF FILT	TER PAC	K				FROM		ТО	FT.	11.0 LOGGED BY		
SEAL		Pont (Chips					FROM	M	ТО	FT.	J.Sawd	ley	WELL COMPLETION
GROUT	-	Dent.	Chips					FROM		ТО	FT.			☐ SURFACE HOUSING
:	N/A SAMPLES		DEDTH		BAC	KFILL DETAIL	S _{PI}	D PPM	N/A	USCS	N/A			☐ STAND PIPE FT.
TYPE	RECOV (FEET)	RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				/ST	LITHOLOGY	LOG		SAMPLE DESCRIPTION	N AND E	DRILLING REMARKS
			_									dy, rooty, oraganic soil		
ss	3		-				-				Sand	, silt, gravel, and conc	rete ru	iddie fili material
- 33	3		-				+				-			
			5 -					20/				y graded SAND	4	Constant constant
			5]).0 /- NS			grade	brown, light brown gra ed, soft - moderately fir	ny, tan m, da	, fine sand, very poorly ımp - dry
ss	5		_				-				-			
- 33	5		_				-							
-			40				1	٠.,		SP				
			10-	11	¥			0.0 / NS		1				
-			_		=		-				-			
SS	5		-				-]	-			
			4.5				-					y SAND		
			15-).0 / NS			Browi	n, dark brown, very fin silt, and 20% clay, ver	e and y soft,	fine sand, approximately low plasticity, wet
			_				-				-			
SS	5		-				4				-			
-			-				+			sc	-			
71/7			20-				1							
ò - - -														
SS	5		_				-				-			
2-			-				+				Poorl	y graded SAND		
5 -			25 -				+).0 / NS			Light grade	gray, gray, fine to med d, soft, wet	dium s	sand, <5% silt, poorly
SS S	5		_				-				-			
55-			-				-			SP	-			
			30-				+).1 / NS		"	-			
SS	5						-				-			
<u> </u>											-			
·L			35-		[l	L			

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Projec	SAMPLES PACKELL DETAILS			B-12-10							
TYPE	RECOV. (FEET)		DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAIL	S PID PPM	LITHOLOGY	USCS LOG	SAMPLE DESC	CRIPTION AND DRILLING R	EMARKS
- SS	5	DLUVVS/0	- - - 40-			0.17 NS		SP	Poorly graded SAND Light gray, gray, fine graded, soft, wet (Co	to medium sand, <5°	% silt, poorly
SS	5		40 - - - -	B-12-10-40		- 0.1/ NS			Poorly graded SAND Light gray, gray, gray graded with some me	brown, coarse sand edium sand, dense, c	, moderately lamp
SS	5		45 - - - - -			- 0.1/ NS -		SP	@ 45' Thin layer well - dense, damp - -	l graded gravel (up to	1/2" diam),
SS	5		50-			- 0.0 / NS		0.0	Poorly graded SANE Light gray, gray, gray moderate grading, de	brown, coarse to ve	ry coarse sand,
- - SS -	5		55-	B-12-10-60		- 0.0 / NS - 0.1 / NS		SP	-		

- NOTES
 PID PPM = Photo ionization detector reading in parts per million
 ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
 bgs = below ground surface
 No petroleum-like odor or sheen encountered in this boring

Former Powerhouse Area DRILLING COMPANY Major Drilling DRILLER DRILLING METHOD(S) DIRECT-Push DRILL BIT(S) SIZE 2.25" Project Number 119601	
DRILLING METHOD(S) DRILL BIT(S) SIZE	10*00
ISOLATION CASING FROM TO FT. FI EVATION AND DATUM TOTAL DE	PTH
BLANK CASING FROM TO FT. DGS 53	5.0 ft. bgs
SLOTTED GASING N/Δ N/Δ N/Δ N/Δ N/Δ N/Δ N/Δ N	2/2/12
SIZE AND TYPE OF FILTER PACK N/\Delta FROM TO FT. LOGGED BY LOGGED BY	
SEAL FROM TO ET J.Sawdey	MPLETION
0/0 Dont. Onips	ACE HOUSING O PIPE FT.
SAMPLES BACKELL DETAILS	
TYPE RECOV. RESIST. (FEET) BLOWS6" /ST LIMOUST LOG SAMPLE DESCRIPTION AND DRILLING RE	
Sand, silt, gravel fill material, with some cin	nders, dry
Poorly graded SAND	
Light brown, brown, tan, fine sand, poorly g	raded, soft, dry
5- NS	
SP -	
NS NS NS NS NS NS NS NS	
Light gray brown, gray brown, fine sand, po	orly graded
SS 5 with ~15% silt, and minor amounts of clay ((<<5%), very
SP/ SM L	
15- NS NS N	
SS 5 Silty CLAY	
Gray, gray brown, silty clay, variable silt %	(10 - 35), and
NS CL/	····P
Poorly graded SAND	
25 Light gray, gray, gray brown, medium sand, moderately dense, damp - wet	, poorly graded,
@ 26': Black/brown hydrocarbon presence	
30- SS SS	
B-12-11-35 (See next page for lithology description)	

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Projec		e		BNSF Wishra	Trojost Hamber				1196010*00 Boring Name B-12-11			
	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	/31		LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS			
- - - - -	5	,	40-	B-12-Spec.Grav		114.67 _ SS _ _			Abundant lean clay layers, strong petroleum-like odor and sheen Poorly graded SAND Light gray, gray, gray brown, medium sand, poorly graded, moderately dense, damp - wet (Continued)			
- - SS -	5		-			87.5/ SS		0.0	@ 40': Begin gradual decrease black/brown hydrocarbon staining, occasional pockets			
- - SS -	5		45 - - - - 50 -			-101.9 / SS -		SP				
SS	5		50 - - - - - 55 -	B-12-11-55		2.0 / NS - - - - - - - - - - - - - - - - - -						

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
- 3. bgs = below ground surface
- 4. Petroleum-like odor and sheen encountered from approximately 25' to 40' and 55'

20111	9 =	<i>'</i> 9									- 1011110		
BORING	Form	ion er Po	werho	ouse Area							Boring Name		B-12-12
DRILLIN	IG COMF Majo	PANY r Drilli	ing				DRILI		ry Rich	nard	Project Name		BNSF Wishram
DRILLIN	IG METH						DRILI	L BIT(S) 2.2	SIZE		Project Number		1196010*00
ISOLAT	ION CAS						FROM		ТО	N/A	ELEVATION AND DATU		TOTAL DEPTH
BLANK	CASING N/A						FROM		TO	N/A FT.	DATE STARTED		22.5 ft. bgs DATE COMPLETED
SLOTTE	D CASIN	NG					FROM		TO	FT.	2/4/12 INITIAL WATER DEPTH	(FT)	2/4/12
SIZE AN	ID TYPE	OF FIL	TER PAC	OK .			FROM	VI	TO	FT.	12.0 LOGGED BY		
SEAL	N/A		01:				FROM		TO	N/A FT.	J.Sawd	ley	WELL COMPLETION
GROUT		Bent.	Chips				FROM		TO	22.5 FT.			☐ SURFACE HOUSING
	N/A SAMPLES				BACKFILL DETAI	II S		N/A		N/A			☐ STAND PIPE FT.
TYPE	RECOV (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	BACKI ILL DL IAI	IP.	ID PPM / ST	LITHOLOGY	USCS		SAMPLE DESCRIPTION	N AND E	DRILLING REMARKS
		BLOWS/0								Sand	, silt, gravel fill materia	al, dry	
-			_	-		-				_			
SS -	3		-	-		-				-			
-			-	_		-				Poorl	y graded SAND with s	silt	
			5 -	•		+	/ NS				brown, fine sand with ine sand, poorly grade		(~10%) silt, and some oderately soft, dry
SS	5		-	-		-			SP/ SM	-			
-			-	-		-				-			
-			10-	-		+	0.0 / NS			-			
				12				,,,,		<u></u>			
SS	5			B-12-12	\	7	73.1 / SS				y graded SAND with s dark gray, dark gray b		fine sand with some
-			_	-		-				(~109	6) silt, and some very strong petroleum-like o	fine sa	and, poorly graded, soft,
_			15 -			$\mid + \mid$	0.0 / NS		OD/	-			
-			-	-		-			SP/ SM	-			
ss	5		_										
			_										
			20-	-		$\mid \perp$		7	L				
SS	2.5		-	_		-				SAA;	except lighter gray an	d mor	e silt (~25%) and minor
-			_	B-12-23		-[3	34.2 / SS		_	clay (vn hvc	drocarbon in shoe with
	<u>tes</u> Pid ppn	/I = Pho	oto ioni:	zation detector re	eading in parts r	per mi	illion		_	basal		,-	
2. 8	ST = She Strong S	een tes	st: NS,	WS, MS, SS = N	o sheen, Weak	shee	n, Mo	derate	Sheen,				
3. b	gs = be	low gr		urface nd sheen encount	tered from appr	oxima	atelv 1	0.5' to	13' and				
2	:0' to 22	.5' bgs	3.				,						
2													
5													

BORING LOCATION Former Powerhouse Area											Boring Name	B-12-13			
DRILLING COMPANY Major Drilling									LER Jerr	y Rich	ard	Project Name BNSF Wishram			
DRILLIN	IG METH							DRILL BIT(S) SIZE 2.25"				Project Number	1100010+00		
ISOLATION CASING N/A									и N/A	ТО	N/A	ELEVATION AND DATUM	M TOTAL DEPTH		
BLANK CASING N/A									N/A	ТО	N/A FT.	DATE STARTED	33.5 ft. bgs DATE COMPLETED		
SLOTTED CASING N/A											FT.	2/4/12 INITIAL WATER DEPTH	2/4/12 (FT)		
SIZE AND TYPE OF FILTER PACK N/A											FT.	11.0 LOGGED BY			
SEAL										FT.	J.Sawdey SAMPLING METHODS WELL COMPLETION				
3/8" Bent. Chips GROUT								FROM TO N/A		TO	55.5 FT. N/A	4	☐ SURFACE HOUSING ☐ STAND PIPE FT.		
	N/A SAMPLES		DEPTH		BACI	KFILL DETAILS	S PI	D PPM		LICCO	IN/A				
TYPE	RECOV. PENETR. RESIST. BLOWS/6"		DEPTH (FEET)	SAMPLE NUMBER				/ST	LITHOLOGY LOG		SAMPLE DESCRIPTION AND DRILLING REMARKS				
			_				-				Sand	, silt, gravel fill material	l, dry		
ss	3		_				-								
			_				1			1		y graded SAND			
			5 -					n n /			Light mode	brown, brown, brown g rate grading, trace of s	ray, fine to medium sand, silt (<5%), moderate soft, dry		
-			_				`	0.0 / NS		1	_				
SS	5		_				-			SP					
			_				+				_				
			10-					n n /							
_			_	11	¥		┧`	0.0 / NS		.] 		v graded SAND with a			
SS	5		_		-	+			SP/ SM	Light	Poorly graded SAND with silt ight brown, brown, brown gray, fine to medium sand, moderate grading with ~25% silt, soft, wet				
			_				1			Sivi			δ SIIT, SOTT, Wet		
			15-					n n /		1	Dark		n, clayey silt with ~10% fine		
-			_				`	0.0 / NS		ML/ CL	sand,	very dense and firm, o	aamp		
SS	5		_				+			1	_				
			_				1			1	- Doorl	v avaded CAND with a	:14		
			20-					3.0.7			Dark	y graded SAND with s gray brown, dark brown	n, fine sand with abundant silt		
12/0			_				`	3.0 / NS			(>30%	%) and some clay (<5%	o), dense, wet		
S SS	5		_				+			SP/ SM	_				
			_				+			Sivi					
			25 -					24/			@24':	: Appearance of black/	brown hydrocarbon presence		
200			_					SS /		L					
SS	5		_				+				Brown		sand, poorly graded, some		
			_				+				fine s and s		se, wet, petroleum-like odor		
			30-					2.0./		SP					
			30-	B-12-13-30			Ţ	3.0 / SS			<u></u>				
SS	3.5		_				+				_				
	<u> </u>										_				
										_					

Project Na	me		BNSF Wishra	am P	roject	Numbe	r	1196010*00	Boring Name	B-12-13
SAMPLES TYPE RECOV RESIST. BLOWS/6'		EPTH FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DESC	CRIPTION AND DRILLING R	EMARKS

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
- 3. bgs = below ground surface
 4. Petroleum-like odor and sheen encountered from approximately 25' to 33.5' bgs

KJ PNW WK DRAFT POWERHOUSEAREABORINGS.GPJ KJ PNW.GDT 8/2/12

	<u> </u>	<u> </u>									
BORING	LOCATI Form	on er Po	werho	use Area						Boring Name	B-12-14
DRILLING	G COMP Major		ng			DRIL	Jerr	y Rich	nard	Project Name	BNSF Wishram
DRILLING	G METH Direc	^{OD(S)}	 h			DRIL	L BIT(S) 2.25	SIZE 5"		Project Number	1196010*00
ISOLATI	ON CASI	ING				FROI	и N/A	ТО	FT. N/A	ELEVATION AND DATU	JM TOTAL DEPTH
BLANK C						FROI	M	ТО	FT.	bgs DATE STARTED	17.5 ft. bgs
SLOTTE	D CASIN	IG				FROI		ТО	FT.	2/4/12 INITIAL WATER DEPTH	DATE COMPLETED 2/4/12
SIZE AN	N/A D TYPE	OF FILT	TER PAC	CK .		FROI	<u>N/A</u> и	ТО	N/A FT.	10.0	1(Г1)
SEAL	N/A					FROI	N/A	ТО	N/A FT.	LOGGED BY J.Sawo	dey
	3/8" E	Bent.	Chips				0		17.5	SAMPLING METHODS	WELL COMPLETION □ SURFACE HOUSING
GROUT	N/A					FROI	м N/A	ТО	N/A	Macro Core Liner	☐ STAND PIPE FT.
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	N AND DRILLING REMARKS
			_						Sand	, silt, gravel fill materia	al, dry
			_		-				-		
SS -	2		_		-				-		
-			_		-					y graded SAND with	
			5-		-	0.0 / NS			Light dry-w		nd, poorly graded, ~20% silt,
			_								
SS	4		_		-				_		
-			_		-				-		
-			10-	10	<u></u>	0.8 / NS		SP/	-		
-			_		-	INO		SM	-		
ss	5		-		-				-		
			_								
			15-			01/					
SS	2.5		.5		-	0.1/ NS			- Define	al @ 47 5! bas	
			_		-				Refus	sal @ 17.5' bgs	
			•	-							

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
- 3. bgs = below ground surface
 4. No petroleum-like odor or sheen encountered in this boring

Kennedy/Jenks Consultants

			er Po	werho	use Area						Boring Name	B-12-2
			r Drilli	ng					y Rich	ard	Project Name	BNSF Wishram
			t-Pus	h			DRIL	L BIT(S) 2.25			Project Number _	1196010*00
		ON CAS N/A					FRO	M N/A	ТО	N/A FT.	ELEVATION AND DATUM	TOTAL DEPTH 55.0 ft. bgs
BL	ANK C	CASING N/A					FRO	M N/A	ТО	N/A FT.	DATE STARTED	DATE COMPLETED
SL	OTTE	D CASIN	NG				FRO	M N/A	ТО	N/A FT.	1/10/12 INITIAL WATER DEPTH (T/11/12
SIZ	ZE ANI	D TYPE N/A	OF FILT	TER PAC	K		FRO		ТО	N/A FT.	12.0	
SE	AL	3/8"	Bent.	Chips			FRO		ТО	FT. 55	J.Sawde	WELL COMPLETION
GF	ROUT	N/A					FRO		ТО	FT.	Macro Core Liner	☐ SURFACE HOUSING ☐ STAND PIPE FT.
F	S/ YPE	AMPLES	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPN / ST		USCS LOG		SAMPLE DESCRIPTION	AND DRILLING REMARKS
F		(FEET)	BLOWS/6"	` ′						No Re	ecovery	
ŀ				-			-			-	,	
S	SS	2							L			
-	5-								1	Light		to medium well graded sand
┝	5-							ļ	sw	_ with g	ravel, some carbonace	eous material, soft, dry
t				-			-		1	-		
S	SS	3					23.5 /			1	D DEBRIS	material (some woody
-				_			NS			mater		oslty silty, becoming very
┢	10-									_	,,,, , , , , , , , , , , , , , ,	
ŀ				-	40		1,,,,		Wood	-		
5	SS	4		\square	B-12-2-12	¥	14.5 / NS					
-				_			-			-		
┝				15 -						-		
ŀ				-			-				y graded SAND with si	
5	SS	5							SP/		orown, very fine grained s, soft, wet, petroleum	d sand with silt, more silty in like-odor
-				_			-		SM	-		
₁₂				20-			1.3 / NS			Sand	y silty CLAY	
8/2				-					CL/ ML		gray, very stiff clay, der	nse, low, damp
S S	SS	5									y graded SAND light gray, very fine an	d fine poorly graded sand,
2 -							-			some	medium grains, round	ed, wet
				25-			2.2 / WS			-		
										t		
\$ \$	ss	5					_			-	INTERNAL	DBAET
000SE/							-		SP	-	INTERNAL ATTORNE	Y WORK PRODUCT
				30-			1.6 / NS	 		-		ED & CONFIDENTIAL
2							1			Ĺ		
Š s	SS	5								@32.	5 ft. (bgs) appearance	of black/brown hydrocarbon in
KJ PNW WK DRAFT POWERHOUSERREABORINGS.GFJ KJ PNW.GDT 8/2/12							-			sands	s, strong petroleum odo	r with black/brown sheen
<u>-</u>				35-					1	L		

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

	t Name	·		BNSF Wishra	am F	roject	Numbe	r	1196010*00	Boring Name	B-12-2
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DE	SCRIPTION AND DRILLING F	REMARKS
- - SS -	5		-			121 / SS			some medium grai	ND ry fine and fine poorly one, rounded, wet (Cont) ore medium sands	graded sand, tinued)
SS	5	·	40- - - -	B-12-2-40		76.4 / SS			- - -		
SS	5		45 - - - - -			- 10 / WS -		SP		ual decreasing visual bl ng	ack/brown
SS	50 - 0.9 / NS 55 B-12-2-55							- - -			

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
 2. has = below ground surface
- 4. Petroleum coated woody material encountered from approximately 7' to 16' bgs.
 5. Petroleum-like odor and sheen encountered from approximately 30' to 45' bgs.

Kennedy/Jenks Consultants

												1	
BORING	Form	ion er Po	werho	use Area								Boring Name	B-12-3
DRILLIN	IG COMF	PANY r Drilli	ina					DRIL		y Rich	nard		BNSF Wishram
DRILLIN	IG METH							DRIL	L BIT(S) 2.25	SIZE	iaiu	Project Name	1196010*00
ISOLAT	ION CAS		••					FROI	М	TO	FT.	Project Number _	
BLANK	N/A CASING							FROI	N/A M	ТО	N/A FT.	bgs	37.0 ft. bgs
SLOTTE	N/A D CASIN	ıc						FROI	N/A	ТО	N/A FT.	DATE STARTED 1/11/12	DATE COMPLETED 1/11/12
	N/A								N/A		N/A	INITIAL WATER DEPTH (FT)
SIZE AN	ID TYPE N/A	OF FIL	TER PAC	K				FROI	M N/A	ТО	N/A	LOGGED BY	
SEAL	3/8"	Rent	Chips					FROI		ТО	FT. 37	J.Sawde	WELL COMPLETION
GROUT		Jone.	Ompo					FROI	М	ТО	FT.	Macro Core Liner	☐ SURFACE HOUSING
	N/A SAMPLES				BAC	CKFILL DETAIL	S		N/A		N/A		☐ STAND PIPE FT.
TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	D/ (C	711 ILE DE 1711E	PII	D PPM / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	AND DRILLING REMARKS
			_								Sand	and gravel fill material	
SS	3		_							<u> </u>	L		
-			_									y graded SAND with gr n. redbrown, predomina	ravel tely fine poorly graded sand,
-			5 -				+					large gravels, soft, dry	
-			_				-			SP	F		
- SS	5		_				- 0	0.9 / NS		-	-		
- 33			_				-	INO			-		
-			_				+			+	Poorl	y graded SAND	
-			10-				+			:	Light	brown, tan, fine poorly	graded sand, soft, dry
=			_				1			SP			
ss	4			13	3\\ \rightarrow \]_	65/					
_				B-12-3-13	7=			6.5 / SS				y graded SAND	color change to dark gray
-			15-				_				@13	ft, very soft, wet	color orlange to dank gray
-			_				-				-		
- SS	5		_				-			SP	-		
- 33	5		_				+				-		
-			_				-				-		
7			20-				+	1.7 / WS		1		y graded SAND	
			-				1				Light gradir	brown, tan, fine to med ng, rounded, moderatel	ium sand, moderate to poor y soft, wet
SS	5											,	•
5			25-					1.6 /					
<u> </u>			-					1.6 / NS		-	-		
20-			_				-				-		
SS SS	5		_				-			SP	-		
			-				+			}	-		
-			30-				+1	1.5 / NS			-		
5-			-				+				-		
S S	5		-				1						
			-				1						
			0.5							1	SAA,	more gray in color, more	re medium sand

F-40.1 (6-87) (3-88) (8-90)

SHEET 1 OF 2

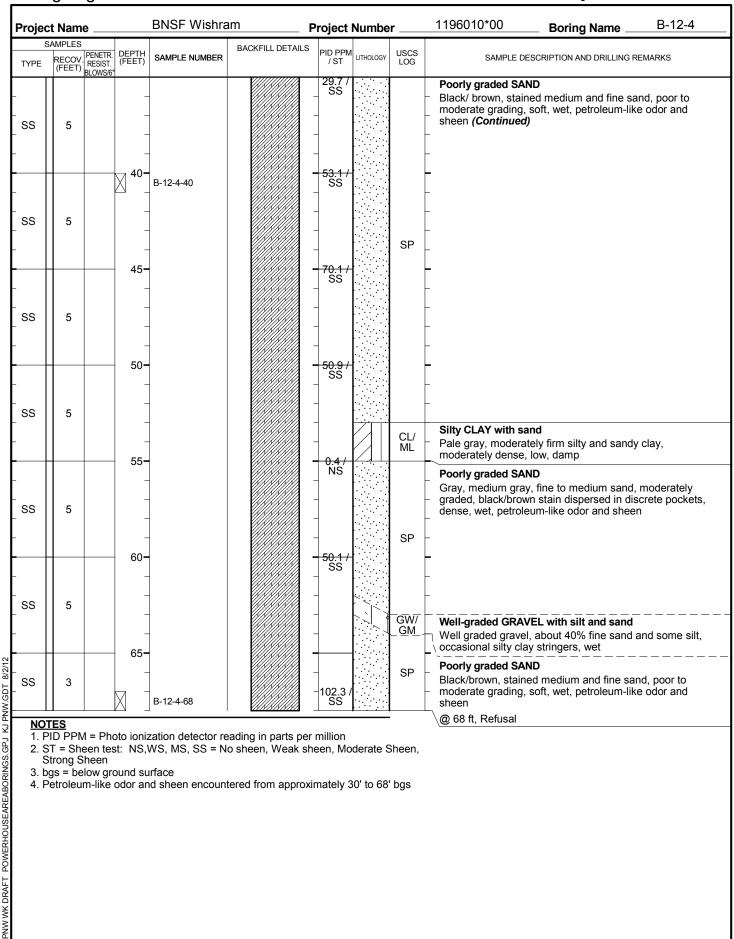
Proje	ct Nan	ne		BNSF Wishra	am P	roject l	Numbe	r	1196010*00	Boring Name	B-12-3
TYPE	RECO' (FEET	PENETR.	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DE	ESCRIPTION AND DRILLING R	EMARKS
- SS	2		_		-	1.1 / NS 0.8 / NS		SP			

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million

 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen

 3. bgs = below ground surface


 4. Petroleum-like odor and sheen encountered from approximately 12' to 14' bgs.

KJ PNW WK DRAFT POWERHOUSEAREABORINGS.GPJ KJ PNW.GDT 8/2/12

BORING	G LOCAT Form	ION er Po	werho	use Area								Boring Name	B-12-4	
DRILLIN	NG COMP Maio	PANY r Drilli	na					DRIL		y Rich	ard	Project Name	BNSF Wishram	
DRILLIN	NG METH							DRIL	L BIT(S) 2.25	SIZE		Project Name	4.4000.40400	
ISOLAT	ION CAS							FRO		TO	N/A FT.	ELEVATION AND DATU	M TOTAL DEPTH	
BLANK	CASING N/A							FRO		ТО	FT.	DATE STARTED	68.0 ft. bgs	<u> </u>
SLOTTI	ED CASIN	NG						FROI		ТО	N/A FT.	1/11/12 INITIAL WATER DEPTH	1/12/12 (FT)	
SIZE AN	ND TYPE N/A	OF FILT	TER PAC	K				FRO		ТО	FT.	12.0 LOGGED BY		
SEAL		Pont (China					FRO	M	ТО	FT.	J.Sawd SAMPLING METHODS	ey WELL COMPLETION	
GROUT	-	Dent.	Chips					FRO	0 M	ТО	FT.	-	☐ SURFACE HOUSIN	
	N/A SAMPLES	DENETD	DEDTH		BAC	KFILL DETAIL	S PI	ID PPM	N/A	USCS	N/A		☐ STAND PIPE	FT.
TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				/ST	LITHOLOGY	LOG		SAMPLE DESCRIPTION	I AND DRILLING REMARKS	
											Sand	, silt, gravel fill		
SS	4		-				-). - -					
- 33	4		-				-			<u> </u>	Poorl	y graded SAND	. — — — — — — — —	
t			5-					0.0./			Brown subro	n, light brown / tan, fine unded to rounded grai	e poorly graded sand, ns, soft, damp	
			37]	0.0 /- NS						
ss	5		-				-							
- 33	5		-				-							
-			40				1	0.0./		SP	_			
			10-					0.0 / NS) SP				
-				12	¥		-				Wet			
SS	5		-				-				- Wet			
-			4.5				1	00/						
			15-					0.0 / NS			_			
-			4				-			<u> </u>	Poorl	y graded SAND		
SS	5		-				-				Gray,	very fine to fine sand,	poorly graded, subrounde	∍d
-			-				-				grains	s, soft, wet		
71/7			20-					0.0 / NS						
) - -														
SS	5		-				-							
2-			-				-			SP				
- -			25-				+	0.0 / NS			SAA,	except with fine to me	dium sand	
SS	5		-				-							
- -			-				+				@30.	5 ft appearance of blace	ck/brown hydrocarbon in	
-			30-				+	1.8 / WS	***	<u> </u>	- sands	s, strong petroleum ode y graded SAND	or with black/brown sheen	
[1	Black	/ brown, stained mediu	um and fine sand, poor to , petroleum-like odor and	
SS	5						+			SP	sheer		, perioleum-like ouor and	
							+				-			
-L	Ш		35-		E				l	ł	∟			

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

		er Po	werho	use Area								Boring Name	B-12-5
DRILLIN	IG COMP Major	PANY r Drill i	ng					DRIL	Jerr	ry Rich	nard	Project Name	BNSF Wishram
DRILLIN	G METH Direc	OD(S)						DRIL	L BIT(S) 2.2	SIZE		Project Number	1196010*00
ISOLAT	ION CAS N/A	ING						FROI		TO	N/A	ELEVATION AND DATUM	TOTAL DEPTH
BLANK								FROI		TO	N/A	bgs DATE STARTED	64.5 ft. bgs DATE COMPLETED
SLOTTE	D CASIN	IG						FROI		TO	N/A FT.	1/17/12 INITIAL WATER DEPTH (F	1/17/12 T)
SIZE AN	ID TYPE N/A	OF FIL	TER PAC	K				FROI		TO	N/A FT.	13.0 LOGGED BY	
SEAL		Rent	Chips					FROI		TO	FT. 64.5	J.Sawde SAMPLING METHODS	WELL COMPLETION
GROUT		JOIII.	Onipo					FROI		TO	FT. N/A	Macro Core Liner	☐ SURFACE HOUSING☐ STAND PIPE FT.
8	SAMPLES	DENETR	DEPTH	04440154114050	BAC	CKFILL DETAIL	LS P	ID PPM		LICCO	IN/A	AMBLE DESCRIPTION A	
TYPE	RECOV. (FEET)	RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER		· · · · · · · · · · · · · · · · · · ·		/ST	LITHOLOGY	LOG		SAMPLE DESCRIPTION A	
-			_				4				Sand	, silt, gravel, road fill mat	terial
- SS	2		_				+				-		
-			_				1			 		y graded SAND with sill	
			5-				1	0.0 /			and v	brown, tan, tine sand, ve ery fine sand, subrounde	ery poorly graded, trace silt ed grains, soft, damp
-			_				4	0.0 / NS			-		
SS	4		-				+				-		
-			-				1				-		
_			10-					0.0 /					
=			_				4	0.0 / NS			SAA,	with more medium sand	I grains
- SS	4		-				+			SP/	-		
			-	13	\neq		1			SM	Wet.		
			15-				1	0 0 /					
-			_				4	0.0 / NS			-		
- SS	5		-				+				-		
			-				1				-		
			20-				1	0 0 /					
<u> </u>			_				4	0.0 / NS			More	silty	
ss	5		-				+			├	Poorl	y graded SAND with silt	
-			-				1				Brown	n, dark brown, medium s rately graded, some silt,	and, some coarse, soft, wet
5			25-				1	0.0 /					
							4	0.0 / NS			-		
ss s	5		_				+				-		
			_				1			SP/ SM	-		
			30-				1	0.0 /					
			-				+	0.0 / NS			-		
ss	5		-				+				-		
			-				+						
			35_				1						

F-40.1 (6-87) (3-88) (8-90)

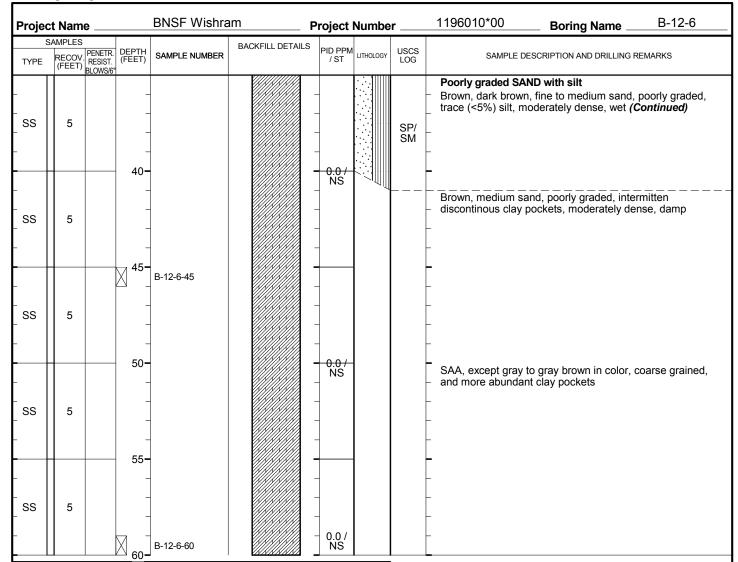
SHEET __1__OF __2_

Projec	t Name	e		BNSF Wishra	am	Project	Numbe	r	1196010*00 Boring Name B-12-5
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
SS	5	<u>BEOWGO</u>	-			0.0 / NS		SP/ SM	Poorly graded SAND with silt Brown, dark brown, medium sand, some coarse, moderately graded, some silt, soft, wet (Continued)
SS	5		40 - - - -	B-12-5-40		- 0.3 / NS -			Well-graded SAND Brown, dar brown, medium sand, coarse in part, fine in part, moderately graded, soft, wet
SS	5		45 - - - -			- 0.4 / NS -			
SS	5		50 - - - -			- 0.0 / NS -		SW	Thin (~1cm) wide clay stringers
SS	5		55 - - - -			- 0.0 / NS -			<u>-</u> - - -
SS	4.5		60 - - -			0.0/ NS - - - 0.0/ - NS	••••	GW	Well-graded GRAVEL with sand Well graded rounded gravels, abundant sand (30%) and some silt, wet
NOT	Ee					140			@64.5 ft, Refusal

KJ PNW WK DRAFT POWERHOUSEAREABORINGS.GPJ KJ PNW.GDT 8/2/12

NOTES

1. PID PPM = Photo ionization detector reading in parts per million
2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
3. bgs = below ground surface
4. No petroleum-like odor or sheen encountered in this boring


F-40.1 (6-87) (3-88) (8-90)

SHEET 2 OF 2

BORING	G LOCAT Form	ION Ier Po	werho	use Area								Boring Name	B-12-6	
DRILLIN	NG COMF Majo	PANY r Drilli	ng					DRIL	Jerr	ry Rich	nard	Project Name	BNSF Wishram	
DRILLIN	NG METH							DRIL	L BIT(S) 2.2	SIZE		Project Number	1196010*00	
ISOLAT	ION CAS							FROI		TO	FT. N/A	ELEVATION AND DATU	M TOTAL DEPTH	
BLANK	CASING N/A							FRO		TO	FT.	DATE STARTED	60.0 ft. bgs DATE COMPLETED	
SLOTTI	ED CASIN	NG						FRO		TO	FT.	1/31/12 INITIAL WATER DEPTH	1/31/12	
SIZE AN	ND TYPE	OF FILT	TER PAC	K				FRO	M	TO	FT.	13.0 LOGGED BY		
SEAL	N/A	Da.=4 /	Obin a					FRO		TO	FT.	J.Sawo	WELL COMPLETION	
GROUT	-	sent.	Chips					FRO		TO	60.0 FT.	Macro Core Liner	☐ SURFACE HOUSING	
	N/A SAMPLES		DEDTIL		BAC	CKFILL DETAIL	s n	ID DDM	N/A		N/A		☐ STAND PIPE	_ FT.
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER			PI	ID PPM / ST	LITHOLOGY	LOG		SAMPLE DESCRIPTION	N AND DRILLING REMARKS	
											Sand	, silt, and gravel fill ma	iterial, dry	
-			_				4				-			
SS	3		-					0.0 / NS			-			
-			_				+	110				y graded SAND		
			5-									brown, brown, fine sar noderately soft, dry	nd, very poorly graded, <5%	Ö
-							4	0.0 / NS			-			
SS	5		-				-	NS			-			
-			-				+			SP	-			
			10-				+							
SS	5		_	13	s ¥			0.0/			-			
-			-				-	NS			Claye	ey SAND		
-			15-				+				Light	brown, light gray, silty	(~10%) clayey (~20%) very y soft, low to moderate	ý
											plasti	city, wet	y con, low to illoudiate	
SS	5							0.0 / NS			_			
-			-				-	NS		sc	-			
			20-				+				-			
70			-				1				-			
SS	5													
2 -			-				4	0.0 / NS				y graded SAND with s		
			25-				+	NS				n, dark brown, fine to r (<5%) silt, moderately	medium sand, poorly grade dense, wet	d,
			-				+				-			
SS	5													
20-										SP/				
			30-				+	0.0 / NS		SM	-			
-							-	СИ			-			
SS SS	5		-				-							
			35_								SAA,	except with medium to	o coarse sand	

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

NOTES

- 1. PID PPM = Photo ionization detector reading in parts per million
- ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
- 3. bgs = below ground surface
- B-12-6 sampled to 35', sample rods slipped through rubber and abandoned down hole. Move probing rig 1.5' W, continue logging.
- 5. No petroleum-like odor or sheen encountered in this boring

BORING	Form		werho	use Area								Boring Name	B-12-7
DRILLIN	NG COMF Majo		ng					DRIL	Jerr	y Rich	ard	Project Name	BNSF Wishram
DRILLIN	NG METH	IOD(S)						DRIL	L BIT(S) 2.25	SIZE		Project Number _	1196010*00
ISOLAT	ION CAS	ING						FRO		ТО	N/A	ELEVATION AND DATUM	1 TOTAL DEPTH
BLANK	CASING N/A							FRO		ТО	N/A FT.	bgs DATE STARTED	55.0 ft. bgs DATE COMPLETED
SLOTTI	ED CASIN	NG						FRO		ТО	N/A FT.	1/31/12 INITIAL WATER DEPTH (1/31/12 FT)
SIZE AN		OF FIL	TER PAC	K				FRO		ТО	FT.	12.0	,
SEAL		Pont	Chips					FRO	M	ТО	FT.	J.Sawde SAMPLING METHODS	WELL COMPLETION
GROUT	-	Deni.	Chips					FRO		ТО	FT.	4	☐ SURFACE HOUSING
	N/A SAMPLES	DENIETO	DEPTH		BAC	KFILL DETAIL	S PI	D PPM	N/A	USCS	N/A		☐ STAND PIPE FT.
TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				/ST	LITHOLOGY	LOG		SAMPLE DESCRIPTION	AND DRILLING REMARKS
			_								Sand	, silt, and gravel fill mat	erial, dry
SS	0		-				+						
- 33			-				+					y graded SAND with si	
			5-					0.0./					some very fine, some silt ading, moderately soft, dry -
]	0.0 / NS			damp	,	
ss	5		_				+			SP/			
- 33	5		_				+			SM			
-			40				1	0.0.7			-		
			10-				Ţ	0.0 / NS					
- 00	_		_	12	¥		+		7.		Poorl	y graded SAND	
SS	5			B-12-7-13			+				Dark	gray brown, dark brown	, fine sand, trace silt (<5%),
				2 .20			1	0.0.		SP	_ very s	saturated, poorly graded	a, very soit, wet
			15 -					0.3 / NS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
-			_				4					e y SAND brown gray, dark brown	, fine to very fine sand, ~20%
SS	4.5		_				-				silt, 1	0% clay, poor to moder	ate grading, very soft, wet
-			_				+				-		
71/7			20 -				12	28.7 / WS		sc			
) - - -			_				-			30	_		
SS	5		-				-						
2-			25-	B-12-7-24			+						
- -			Ľ 25 -				+3	31.9 / SS					
												y graded SAND brown grav. black/brov	vn hydrocarbon stained
SS	4			D 40 7 00			+				mediu	um sand, poorly graded s, moderately dense, da	, subrounded to rounded
-				B-12-7-28			+				@ 26	: Appearance of black	/brown hydrocarbon in sands,
-			30-				+5	1.9 / SS		SP	strong	g petroleum-like odor w	iui diack/drown sneen
]			
SS	5						+]			
<u> </u>			-				+]			
-L	Ц		35_							1	L		

F-40.1 (6-87) (3-88) (8-90)

SHEET 1 OF 2

Projec	t Nam	e		BNSF Wishra	am F	Project	Numbe	r	1196010*00 Boring Name B-12-7
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
- - SS -	5		-						Poorly graded SAND Gray, brown gray, black/brown hydrocarbon stained medium sand, poorly graded, subrounded to rounded grains, moderately dense, damp (Continued)
- - - SS -	5		40 - - - -			- 75.6 / SS - - -			- - -
- - - SS -	5		45 - - - -			- 80.8 / SS - -		SP	SAA, except coarser grained (medium to coarse sands), petroleum-like odor
- - - - - -	5		50- - - - -	B-12-7-55		65.2 / SS - 74.4 / SS			- @ 55' black/brown petroleum sheen and odor present until total depth of 55', with no indication of dissipating

- 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
- 3. bgs = below ground surface
- 4. Petroleum-like odor and sheen encountered from approximately 25' to 55' bgs.

KJ PNW WK DRAFT POWERHOUSEAREABORINGS.GPJ KJ PNW.GDT 8/2/12

BORING	Form	ION er Po	werho	use Area								Boring Name		B-12-8
DRILLIN	NG COMP Majo	PANY r Drilli	ng				D	RILL		y Rich	nard	Project Name	F	BNSF Wishram
DRILLIN	NG METH						D	RILL	BIT(S) 2.25	SIZE		Project Number		1196010*00
ISOLAT	ION CAS						F	RON		TO	N/A FT.	ELEVATION AND DATU		TOTAL DEPTH
BLANK	CASING N/A						F	RON		ТО	N/A FT.	bgs DATE STARTED		37.5 ft. bgs DATE COMPLETED 2/1/12
SLOTTE	ED CASIN	NG					F	RON		ТО	N/A FT.	2/1/12 INITIAL WATER DEPTH	(FT)	2/1/12
SIZE AN	ND TYPE N/A	OF FIL	TER PAC	K			F	RON		ТО	N/A	LOGGED BY		
SEAL		Ront	Chips				F	RON	Л	ТО	37.5	J.Sawd	еу	WELL COMPLETION
GROUT		Jent.	Chips				F	RON		ТО	57.5 FT. N/A	4		☐ SURFACE HOUSING ☐ STAND PIPE FT.
	SAMPLES		DEPTH		BACK	KFILL DETAILS	S PID F	PPM	N/A	USCS	IN/A			
TYPE	RECOV (FEET)	RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER			/ S	ST T	LITHOLOGY	LOG		SAMPLE DESCRIPTION	1 AND E	DRILLING REMARKS
							_				Sand	, silt, and gravel fill ma	terial,	dry
SS	0		-				-				_			
			-				-	ŀ				y graded SAND with s		
			5-					$_{\perp}$			and s	ome very fine sand, po		I with some (~10%) silt graded, subrounded, soft,
_							- 0.0 N:	š′			dry-da	amp		
ss	5		-				-	Ì		SP/ SM				
			-				-	Ì			_			
			10-											
-				10.5	¥		_	ł				y graded SAND		
ss	5			B-12-8-11			11. S	၅ /			and c	lays, poorly graded, su	ubrour	sand, trace (<5%) silts nded to rounded grains,
- 33			-				- 3	۱ ٔ			_ soft, \	wet, petroleum-like odo	or and	Isheen
			15-							SP				
-							_	ł						
- 00	1		-				-	-						
SS	4.5		-				-	}			_			
			20				0.0 N) / S				y graded SAND		
-			20-					Ì			grains	brown, gray, medium s s, moderately dense, v	sand, vet	poorly graded, rounded
	_		-				-	İ		SP	_			
SS	5		-				-							
2-			0.5				-	أر				y graded SAND with s		
			25-				- 22. S	š			silts (ranging from ~10 to 30	0%) po	with variable amounts of oorly graded rounded
N 00			-				-				grains - sheer		⁄et, pe	etroleum-like odor and
SS	4		-				-	-						
8-							-	_ ,		SP/ SM				
			30-				- 31. - Si	ś]	@ 27 - and o	- 30': trace black/brow one by total depth of 3	n bub 37.5'	obly sheen. Dissipated
-	_						-				-		-	
SS SS	5						-							
			25											

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Projec	t Name		BNSF Wishra	am P	roject l	Numbe	r	1196010*00	_ Boring Name _	B-12-8
TYPE	RECOV. (FEET) PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DE:	SCRIPTION AND DRILLING R	EMARKS
- SS -	2.5		B-12-8-37	-			SP/ SM	-		

- 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
 3. bgs = below ground surface
 4. Petroleum-like odor and sheen encountred from approximately 10' to 13' and 27'
- to 30' bgs

BORING	G LOCAT Form	ION Ier Po	werho	use Area								Boring Name		B-12-9
DRILLIN	NG COMF Majo	PANY r Drilli	ng					DRIL	Jerr	y Ricł	nard	Project Name	F	BNSF Wishram
DRILLIN	NG METH	IOD(S)						DRIL	L BIT(S) 2.25	SIZE 5"		Project Number		1196010*00
ISOLAT	ION CAS							FROI		TO	FT. N/A	ELEVATION AND DATU		TOTAL DEPTH
BLANK	CASING N/A							FROI		ТО	FT. N/A	bgs DATE STARTED		50.0 ft. bgs DATE COMPLETED 2/1/12
SLOTTI	ED CASIN	NG						FROI		ТО	FT.	2/1/12 INITIAL WATER DEPTH	1 (FT)	2/1/12
SIZE AN	ND TYPE N/A	OF FILT	TER PAC	K				FROI		ТО	FT.	LOGGED BY		
SEAL		Ront	Chips					FROI		ТО	FT.	J.Sawo SAMPLING METHODS	ley	WELL COMPLETION
GROUT		Jent.	Criips					FROI	М	ТО	FT.			☐ SURFACE HOUSING ☐ STAND PIPE FT.
;	SAMPLES	DENETO	DEPTH		BAC	KFILL DETAI	LS P	ID PPM	N/A	USCS	IN/A			
TYPE	(FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				/ST	LITHOLOGY	LOG		SAMPLE DESCRIPTIO		
-			_								Sand	, silt, and gravel fill ma	aterial,	, dry
ss	3		-				-				-			
- 55			-				1				-			
			5-					0.1/				y graded SAND with		some silt (~10%), poorly
_			_					0.1 / NS				ed, soft, dry	u	201112 Circ (1070), poorly
- SS	5		_				-			SP/ SM	-			
			_											
			10-	10	$\stackrel{\checkmark}{=}$		1			L 				
-			-		-		-				Light	y graded SAND gray brown, brown gra	ay, fine	e sand with traces of silt
SS	5		-				-	0.0 / NS			and v	ery fine sand, poorly (graded	I, rounded grains, soft,
-			15-								_			
-			-				-			SP	-			
SS	5		-				-				-			
								0.0 / NS						
			20-								_			
7 7 0 0 0 0 0 0 0 0			-				-				-			
S SS	5		_				-				- 14/00	D DEBRIS		
										Wood		tan/brown, Wood deb	ris	
-			25 -				4					y graded SAND n, brown gray, mediur	n sanc	1 noorly graded
			-				-	0.0 / NS			mode	erately dense, damp	ii sano	i, poorly graded,
SS SS	5		-				-	110						
- -			30-							SP	-			
2-			-								-			
S SS	5		-							<u> </u>	-			
								0 0 <i>/</i>		<u> </u>				
			35_					0.0 / NS		$L_{}$	L			

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Projec	t Nam	e		BNSF Wishra	<u>ım</u> P	roject	Numbe	r	1196010*00 Boring Name B-12-9
TYPE	RECOV (FEET)	DENETO	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID PPM / ST	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
- - - SS -	5		- - -		-				Poorly graded SAND with silt Brown, brown gray, medium to coarse sands, variable amounts of silt (~10-35%), moderately graded,, dense, wet - damp
- - - SS -	5		40- - - -	B-12-9-40	-	NS		SP/ SM	- - -
- - - SS	5		45- - - - 50-			0.1 / NS			

- NOTES

 1. PID PPM = Photo ionization detector reading in parts per million
 2. ST = Sheen test: NS,WS, MS, SS = No sheen, Weak sheen, Moderate Sheen, Strong Sheen
 3. bgs = below ground surface
 4. No petroleum-like odor or sheen encountered in this boring

J: Λ

Appendix L)
Laboratory Analytical Reports	3

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-30818-1 Client Project/Site: BNSF Wishram

For:

Kennedy/Jenks Consultants 32001-32nd Ave South, Suite 100 Federal Way, Washington 98001

Attn: Joseph Sawdey

Knistine D. allen

Authorized for release by: 2/6/2012 4:22:37 PM

Kristine Allen Project Manager I

kristine.allen@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 580-30818-1

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions	
Client Sample Results	6
QC Sample Results	14
Chronicle	18
Certification Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

q

4

5

9

Case Narrative

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1

Project/Site: BNSF Wishram

Job ID: 580-30818-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

One cooler was received via UPS Ground on Friday, January 20, 2012. This cooler was received without the Chain of Custody (COC). The remaining two coolers of the project were received with the corresponding COC arrived on Monday, January 23, 2012. The project began on Monday after receipt was complete.

The COC requests a 48 hour rush turn around time on these samples. Per client request, samples were logged in for a standard ten business day turn around time.

Twelve HCl preserved voa vials were received as trip blanks, but were not listed on the COC. They were recorded on the COC, logged-in, and labeled.

The following samples had a collection time reported on sample containers that differed from that of the sample times recorded on the COC. All samples were logged in following the information provided on the COC.

For NWTPH-Dx sample containers, sample AS-12-3 (580-30818-1) reports a collection time of 09:35 on the sample container while the COC lists a collection time of 09:30. Sample RB4 (580-30818-4) reports a collection time of 14:30 on the sample container while the COC lists a collection time of 14:25.

The following sampling times were respectively reported on the sample containers of the voa vials:

AS-12-3 (580-30818-1): 09:20 or 09:25 AS-12-2 (580-30818-2): 10:15 or 10:20 AS-12-1 (580-30818-3): 14:50 or 14:55 RB4 (580-30818-4): 14:15 or 14:20 RB3 (580-30818-5): 15:30 or 15:35 RB2 (580-30818-6),: 10:15 or 10:20 RB1 (580-30818-7): 08:40 or 08:45 DUP-1 (580-30818-8): 10:20 or 10:25

These are the sample times for all samples as reported on the COC:

AS-12-3 (580-30818-1): 09:30 AS-12-2 (580-30818-2): 10:25 AS-12-1 (580-30818-3): 15:00 RB4 (580-30818-4): 14:25 RB3 (580-30818-5): 15:40 RB2 (580-30818-6): 10:30 RB1 (580-30818-7): 08:55 DUP-1 (580-30818-8): 10:35

All other samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC Semi VOA - Method NWTPH-Dx

The results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for samples AS-12-3 (580-30818-1) and RB3 (580-30818-5) are due primarily to weathered/degraded diesel fuel. The Y qualifier was added to the affected sample ranges and reported.

The results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for samples AS-12-2 (580-30818-2), AS-12-1 (580-30818-3), RB4 (580-30818-4), RB2 (580-30818-6), RB1 (580-30818-7) and DUP-1 (580-30818-8) are due primarily to a mixture of what most closely resembles heavily weathered/degraded diesel fuel, and/or a mineral/transformer oil range product. The Y qualifier was added to the affected sample ranges and reported.

No other analytical or quality issues were noted.

Organic Prep

3

4

8

9

10

Case Narrative

Client: Kennedy/Jenks Consultants TestAmerica Job ID: 580-30818-1 Project/Site: BNSF Wishram

Job ID: 580-30818-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

No analytical or quality issues were noted.

Definitions/Glossary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30818-1

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier Qualifier Description

Y The chromatographic response resembles a typical fuel pattern.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CNF Contains no Free Liquid

DL, RA, RE, IN Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample

EDL Estimated Detection Limit

EPA United States Environmental Protection Agency

MDL Method Detection Limit
ML Minimum Level (Dioxin)

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control RL Reporting Limit

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

2

3

4

6

U

9

10

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1

Project/Site: BNSF Wishram

Client Sample ID: AS-12-3

Date Collected: 01/16/12 09:30 Date Received: 01/23/12 09:25 Lab Sample ID: 580-30818-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.17	J	1.0	0.15	ug/L			01/25/12 19:01	1
oluene	ND		1.0	0.15	ug/L			01/25/12 19:01	1
thylbenzene	1.1		1.0	0.15	ug/L			01/25/12 19:01	1
n-Xylene & p-Xylene	1.4	J	2.0	0.30	ug/L			01/25/12 19:01	1
-Xylene	0.41	J	1.0	0.15	ug/L			01/25/12 19:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
luorobenzene (Surr)	98		80 - 120			-		01/25/12 19:01	1
oluene-d8 (Surr)	102		85 - 120					01/25/12 19:01	1
thylbenzene-d10	104		80 - 120					01/25/12 19:01	1
rifluorotoluene (Surr)	102		80 - 120					01/25/12 19:01	1
-Bromofluorobenzene (Surr)	106		75 - 120					01/25/12 19:01	1

ı	Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline	0.39		0.050	0.010	mg/L			01/25/12 19:01	1
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	103		50 - 150			_		01/25/12 19:01	1
	Trifluorotoluene (Surr)	105		50 - 150					01/25/12 19:01	1

Method: NWTPH-Dx - North	west - Semi-Volatile	e Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	2.8	Υ	0.12	0.069	mg/L		01/23/12 12:27	01/24/12 20:01	1
Motor Oil (>C24-C36)	0.52	Y	0.24	0.045	mg/L		01/23/12 12:27	01/24/12 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		50 - 150				01/23/12 12:27	01/24/12 20:01	1

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1

Project/Site: BNSF Wishram

Client Sample ID: AS-12-2

Date Collected: 01/13/12 10:25 Date Received: 01/23/12 09:25 Lab Sample ID: 580-30818-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 19:23	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 19:23	1
Ethylbenzene	0.31	J	1.0	0.15	ug/L			01/25/12 19:23	1
m-Xylene & p-Xylene	0.77	J	2.0	0.30	ug/L			01/25/12 19:23	1
o-Xylene	ND		1.0	0.15	ug/L			01/25/12 19:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120			-		01/25/12 19:23	1
Toluene-d8 (Surr)	102		85 - 120					01/25/12 19:23	1
Ethylbenzene-d10	105		80 - 120					01/25/12 19:23	1
Trifluorotoluene (Surr)	101		80 - 120					01/25/12 19:23	1
4-Bromofluorobenzene (Surr)	105		75 - 120					01/25/12 19:23	1

Method. MWTFTI-GX - Morthwes	i - voiaille Feli	oleuili Fiou	ucis (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.20		0.050	0.010	mg/L			01/25/12 19:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		50 - 150			_		01/25/12 19:23	1
Trifluorotoluene (Surr)	105		50 - 150					01/25/12 19:23	1

Method: NWTPH-Dx - North	west - Semi-Volatile	e Petroleum	Products (GC))					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	3.7	Y	0.12	0.069	mg/L		01/23/12 12:27	01/24/12 20:22	1
Motor Oil (>C24-C36)	1.3	Y	0.24	0.045	mg/L		01/23/12 12:27	01/24/12 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Ternhenyl	72		50 150				01/23/12 12:27	01/24/12 20:22	

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1 Project/Site: BNSF Wishram

Client Sample ID: AS-12-1

Date Collected: 01/12/12 15:00 Date Received: 01/23/12 09:25 Lab Sample ID: 580-30818-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 20:30	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 20:30	1
Ethylbenzene	ND		1.0	0.15	ug/L			01/25/12 20:30	1
m-Xylene & p-Xylene	ND		2.0	0.30	ug/L			01/25/12 20:30	1
o-Xylene	ND		1.0	0.15	ug/L			01/25/12 20:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	97		80 - 120			-		01/25/12 20:30	1
Toluene-d8 (Surr)	102		85 - 120					01/25/12 20:30	1
Ethylbenzene-d10	104		80 - 120					01/25/12 20:30	1
Trifluorotoluene (Surr)	101		80 - 120					01/25/12 20:30	1
4-Bromofluorobenzene (Surr)	106		75 - 120					01/25/12 20:30	1

Method: NWTPH-Gx - Northwest -	Volatile Petro	oleum Produ	ıcts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.043	J	0.050	0.010	mg/L			01/25/12 20:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		50 - 150			_		01/25/12 20:30	1
Trifluorotoluene (Surr)	104		50 - 150					01/25/12 20:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.19	Y	0.12	0.069	mg/L		01/23/12 12:27	01/24/12 20:44	1
Motor Oil (>C24-C36)	0.085	J	0.24	0.045	mg/L		01/23/12 12:27	01/24/12 20:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				01/23/12 12:27	01/24/12 20:44	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1

Project/Site: BNSF Wishram

Client Sample ID: RB4 Lab Sample ID: 580-30818-4

Date Collected: 01/16/12 14:25 Matrix: Water

Date Received: 01/23/12 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 20:52	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 20:52	1
Ethylbenzene	ND		1.0	0.15	ug/L			01/25/12 20:52	1
m-Xylene & p-Xylene	ND		2.0	0.30	ug/L			01/25/12 20:52	1
o-Xylene	ND		1.0	0.15	ug/L			01/25/12 20:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120			-		01/25/12 20:52	1
Toluene-d8 (Surr)	102		85 - 120					01/25/12 20:52	1
Ethylbenzene-d10	104		80 - 120					01/25/12 20:52	1
Trifluorotoluene (Surr)	105		80 - 120					01/25/12 20:52	1
4-Bromofluorobenzene (Surr)	105		75 - 120					01/25/12 20:52	1

moundarith in Ox Indianact	rolatilo i oti t	Jiouiii i i ouc	.0.0 (00)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.020	J	0.050	0.010	mg/L			01/25/12 20:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		50 - 150			_		01/25/12 20:52	1
Trifluorotoluene (Surr)	108		50 - 150					01/25/12 20:52	1
	Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr)	Analyte Result Gasoline 0.020 Surrogate %Recovery 4-Bromofluorobenzene (Surr) 102	Analyte Result Qualifier Gasoline 0.020 J Surrogate %Recovery 4-Bromofluorobenzene (Surr) 102	Analyte Result Qualifier RL Qualifier Gasoline 0.020 J 0.050 Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier Limits 50 - 150	Analyte Result Gasoline Qualifier RL O.050 MDL O.050	Analyte Result Gasoline Qualifier RL D. 0.050 MDL D. 0.010 Unit mg/L Surrogate 4-Bromofluorobenzene (Surr) %Recovery 102 Qualifier Limits 50 - 150 50 - 150	Analyte Result Gasoline Qualifier Qualifier RL Qualifier MDL Property Unit Property D Property Surrogate 4-Bromofluorobenzene (Surr) %Recovery 102 Qualifier Qualifier Property Limits Property 50 - 150 50 - 150 100 <t< th=""><th>Analyte Result Gasoline Qualifier RL NDL Unit DIT NOTE D Prepared Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier Limits DIT SOLUTION Prepared</th><th>Analyte Result Qualifier RL OLIDITION MDL Unit mg/L D olid mg/L Prepared OLI/25/12 20:52 Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier Limits Limits Solution Prepared Analyzed Analyzed OLI/25/12 20:52</th></t<>	Analyte Result Gasoline Qualifier RL NDL Unit DIT NOTE D Prepared Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier Limits DIT SOLUTION Prepared	Analyte Result Qualifier RL OLIDITION MDL Unit mg/L D olid mg/L Prepared OLI/25/12 20:52 Surrogate %Recovery 4-Bromofluorobenzene (Surr) Qualifier Limits Limits Solution Prepared Analyzed Analyzed OLI/25/12 20:52

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.63	Y	0.12	0.069	mg/L		01/23/12 12:27	01/24/12 21:06	1
Motor Oil (>C24-C36)	0.21	J	0.24	0.045	mg/L		01/23/12 12:27	01/24/12 21:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Temhenyl	96	-	50 150				01/23/12 12:27	01/24/12 21:06	

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1

Project/Site: BNSF Wishram

Client Sample ID: RB3

Date Collected: 01/16/12 15:40 Date Received: 01/23/12 09:25 Lab Sample ID: 580-30818-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 21:15	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 21:15	1
Ethylbenzene	ND		1.0	0.15	ug/L			01/25/12 21:15	1
n-Xylene & p-Xylene	ND		2.0	0.30	ug/L			01/25/12 21:15	1
p-Xylene	ND		1.0	0.15	ug/L			01/25/12 21:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120			_		01/25/12 21:15	1
oluene-d8 (Surr)	102		85 - 120					01/25/12 21:15	1
Ethylbenzene-d10	104		80 - 120					01/25/12 21:15	1
rifluorotoluene (Surr)	103		80 - 120					01/25/12 21:15	1
-Bromofluorobenzene (Surr)	106		75 - 120					01/25/12 21:15	1

Method: NWTPH-Gx - Northwest	- Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.076		0.050	0.010	mg/L			01/25/12 21:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		50 - 150					01/25/12 21:15	1
Trifluorotoluene (Surr)	107		50 - 150					01/25/12 21:15	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.8	Y	0.12	0.069	mg/L		01/23/12 12:27	01/24/12 21:28	1
Motor Oil (>C24-C36)	0.28	Y	0.24	0.045	mg/L		01/23/12 12:27	01/24/12 21:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91	-	50 - 150				01/23/12 12:27	01/24/12 21:28	

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1

Project/Site: BNSF Wishram

Client Sample ID: RB2

Date Collected: 01/17/12 10:30 Date Received: 01/23/12 09:25 Lab Sample ID: 580-30818-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 21:37	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 21:37	1
Ethylbenzene	ND		1.0	0.15	ug/L			01/25/12 21:37	1
m-Xylene & p-Xylene	ND		2.0	0.30	ug/L			01/25/12 21:37	1
o-Xylene	ND		1.0	0.15	ug/L			01/25/12 21:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120			_		01/25/12 21:37	1
Toluene-d8 (Surr)	102		85 - 120					01/25/12 21:37	1
Ethylbenzene-d10	105		80 - 120					01/25/12 21:37	1
Trifluorotoluene (Surr)	102		80 - 120					01/25/12 21:37	1
4-Bromofluorobenzene (Surr)	106		75 - 120					01/25/12 21:37	1

ı	Method: NWTPH-Gx - Northwest -	voiatile Petro	oleum Prod	ucts (GC)						
İ	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline	ND		0.050	0.010	mg/L			01/25/12 21:37	1
ł	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	102		50 - 150			_		01/25/12 21:37	1
ı	Trifluorotoluene (Surr)	104		50 - 150					01/25/12 21:37	1

 Method: NWTPH-Dx - North	west - Semi-Volatile	e Petroleum	Products (GC))					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.13	Y	0.12	0.069	mg/L		01/23/12 12:27	01/24/12 21:49	1
Motor Oil (>C24-C36)	0.089	J	0.24	0.045	mg/L		01/23/12 12:27	01/24/12 21:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				01/23/12 12:27	01/24/12 21:49	

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30818-1

Project/Site: BNSF Wishram

Client Sample ID: RB1 Lab Sample ID: 580-30818-7

Date Collected: 01/17/12 08:55 Matrix: Water

Date Received: 01/23/12 09:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 22:45	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 22:45	1
Ethylbenzene	ND		1.0	0.15	ug/L			01/25/12 22:45	1
m-Xylene & p-Xylene	ND		2.0	0.30	ug/L			01/25/12 22:45	1
o-Xylene	ND		1.0	0.15	ug/L			01/25/12 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120			-		01/25/12 22:45	1
Toluene-d8 (Surr)	102		85 - 120					01/25/12 22:45	1
Ethylbenzene-d10	105		80 - 120					01/25/12 22:45	1
Trifluorotoluene (Surr)	104		80 - 120					01/25/12 22:45	1
4-Bromofluorobenzene (Surr)	106		75 - 120					01/25/12 22:45	1

method. WWT IT IT-OX - Northwest									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	0.078		0.050	0.010	mg/L			01/25/12 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		50 - 150			_		01/25/12 22:45	1
Trifluorotoluene (Surr)	108		50 ₋ 150					01/25/12 22:45	1

Method: NWTPH-Dx - North	west - Semi-Volatile	Petroleum	Products (GC))					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.0	Y	0.12	0.069	mg/L		01/23/12 12:27	01/24/12 22:54	1
Motor Oil (>C24-C36)	0.37	Y	0.24	0.045	mg/L		01/23/12 12:27	01/24/12 22:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89	-	50 - 150				01/23/12 12:27	01/24/12 22:54	1

Client: Kennedy/Jenks Consultants

Project/Site: BNSF Wishram

TestAmerica Job ID: 580-30818-1

Lab Sample ID: 580-30818-8

Matrix: Water

Client Sample ID: DUP-1 Date Collected: 01/17/12 10:35 Date Received: 01/23/12 09:25

4-Bromofluorobenzene (Surr)

	Watrix	t: water
Prepared	Analyzed	Dil Fac
	04/05/40 00:07	

01/25/12 23:07

Method: 8260B - Volatile Orga	nic Compounds (C	GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 23:07	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 23:07	1
Ethylbenzene	ND		1.0	0.15	ug/L			01/25/12 23:07	1
m-Xylene & p-Xylene	ND		2.0	0.30	ug/L			01/25/12 23:07	1
o-Xylene	ND		1.0	0.15	ug/L			01/25/12 23:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120			-		01/25/12 23:07	1
Toluene-d8 (Surr)	103		85 ₋ 120					01/25/12 23:07	1
Ethylbenzene-d10	104		80 - 120					01/25/12 23:07	1
Trifluorotoluene (Surr)	105		80 - 120					01/25/12 23:07	1

 Volatile Petro 	oleum Prod	ucts (GC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.050	0.010	mg/L			01/25/12 23:07	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
101		50 - 150			-		01/25/12 23:07	1
							01/25/12 23:07	
	Result ND %Recovery 101	Result Qualifier ND %Recovery Qualifier 101	ND 0.050 %Recovery Qualifier Limits 101 50 - 150	Result ND Qualifier RL 0.050 MDL 0.010 **Recovery 101 Qualifier 201 Limits 201 50 - 150	Result ND Qualifier RL 0.050 MDL 0.010 Unit mg/L %Recovery 101 Qualifier Limits 50 - 150 50 - 150	Result ND Qualifier RL 0.050 MDL model Unit mg/L D mg/L %Recovery Qualifier Limits	Result ND Qualifier RL 0.050 MDL mode of mod	Result ND Qualifier RL 0.050 MDL mg/L D mg/L Prepared 01/25/12 23:07 %Recovery 101 101 50 - 150 Frepared 01/25/12 23:07 Analyzed 01/25/12 23:07

75 - 120

Method: NWTPH-Dx - Northwes Analyte		Petroleum Qualifier	Products (GC)) MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.20		0.12	0.069	ma/l	— <u> </u>	01/23/12 12:27	01/24/12 23:15	1
Motor Oil (>C24-C36)	0.11	-	0.24	0.045	J		01/23/12 12:27	01/24/12 23:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93	Quamici	50 - 150				01/23/12 12:27	01/24/12 23:15	

TestAmerica Job ID: 580-30818-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-104095/32

Matrix: Water

Analysis Batch: 104095

Client Sample ID: Method Blank

Prep Type: Total/NA

	IND	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.15	ug/L			01/25/12 11:56	1
Toluene	ND		1.0	0.15	ug/L			01/25/12 11:56	1
Ethylbenzene	ND		1.0	0.15	ug/L			01/25/12 11:56	1
m-Xylene & p-Xylene	ND		2.0	0.30	ug/L			01/25/12 11:56	1
o-Xylene	ND		1.0	0.15	ug/L			01/25/12 11:56	1

MD MD

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	97		80 - 120		01/25/12 11:56	1
Toluene-d8 (Surr)	101		85 - 120		01/25/12 11:56	1
Ethylbenzene-d10	104		80 - 120		01/25/12 11:56	1
Trifluorotoluene (Surr)	102		80 - 120		01/25/12 11:56	1
4-Bromofluorobenzene (Surr)	106		75 - 120		01/25/12 11:56	1

Lab Sample ID: LCS 580-104095/33

Matrix: Water

Analysis Batch: 104095

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

0
0
5
0
0
0 5 0

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	97		80 - 120
Toluene-d8 (Surr)	102		85 - 120
Ethylbenzene-d10	104		80 - 120
Trifluorotoluene (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	106		75 ₋ 120

Lab Sample ID: LCSD 580-104095/34

Matrix: Water

Analysis Batch: 104095

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	25.0	25.4		ug/L		102	80 - 120	2	30	
Toluene	25.0	24.5		ug/L		98	75 - 120	4	30	
Ethylbenzene	25.0	24.2		ug/L		97	75 - 125	2	30	
m-Xylene & p-Xylene	50.0	48.8		ug/L		98	75 - 130	3	30	
o-Xylene	25.0	24.8		ug/L		99	80 - 120	2	30	

LCSD L	.CSD
--------	------

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	98		80 - 120
Toluene-d8 (Surr)	102		85 - 120
Ethylbenzene-d10	104		80 - 120
Trifluorotoluene (Surr)	95		80 - 120
4-Bromofluorobenzene (Surr)	105		75 ₋ 120

TestAmerica Seattle 2/6/2012

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-30818-6 MS **Client Sample ID: RB2** Prep Type: Total/NA

Analysis Batch: 104095

Matrix: Water

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		20.1	22.2		ug/L		111	80 - 120	
Toluene	ND		20.1	21.2		ug/L		106	75 - 120	
Ethylbenzene	ND		20.1	20.8		ug/L		104	75 - 125	
m-Xylene & p-Xylene	ND		40.1	41.9		ug/L		104	75 - 130	
o-Xylene	ND		20.1	21.0		ug/L		105	80 - 120	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	98		80 - 120
Toluene-d8 (Surr)	101		85 - 120
Ethylbenzene-d10	104		80 - 120
Trifluorotoluene (Surr)	100		80 - 120
4-Bromofluorobenzene (Surr)	105		75 - 120

Lab Sample ID: 580-30818-6 MSD Client Sample ID: RB2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 104095

Sample Sample MSD MSD %Rec. Spike **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Benzene ND 20.1 22.1 110 80 - 120 30 ug/L 0 Toluene ND 20.1 21.4 ug/L 107 75 - 120 30 Ethylbenzene ND 20.1 21.0 ug/L 105 75 - 125 30 ND 75 - 130 m-Xylene & p-Xylene 40.1 42.6 ug/L 106 2 30 o-Xylene ND 20.1 21.5 107 80 - 120 30 ug/L

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	97		80 - 120
Toluene-d8 (Surr)	102		85 - 120
Ethylbenzene-d10	104		80 - 120
Trifluorotoluene (Surr)	106		80 - 120
4-Bromofluorobenzene (Surr)	105		75 - 120

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

105

Lab Sample ID: MB 580-104093/39 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 104093

Trifluorotoluene (Surr)

Allalysis Datell. 104000									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.050	0.010	mg/L			01/25/12 11:56	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		50 - 150			_		01/25/12 11:56	1

50 - 150

01/25/12 11:56

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-104093/40 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 104093

Spike LCS LCS %Rec. babbA Result Qualifier Unit D %Rec Limits Analyte Gasoline 1.00 0.839 mg/L 84 79 _ 110

LCS LCS Limits Surrogate %Recovery Qualifier 50 - 150 4-Bromofluorobenzene (Surr) 103 Trifluorotoluene (Surr) 97 50 - 150

Lab Sample ID: LCSD 580-104093/41

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 104093

LCSD LCSD %Rec. Spike RPD Result Qualifier Analyte Added Unit D %Rec Limits RPD Limit Gasoline 1.00 0.841 mg/L 84 79 - 110 20

LCSD LCSD %Recovery Qualifier Limits Surrogate 50 - 150 4-Bromofluorobenzene (Surr) 104 Trifluorotoluene (Surr) 94 50 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-103958/1-B Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 104033 Prep Batch: 103958 MR MR

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac #2 Diesel (C10-C24) 0.13 01/23/12 12:27 01/24/12 18:55 ND 0.073 mg/L Motor Oil (>C24-C36) ND 0.25 0.048 mg/L 01/23/12 12:27 01/24/12 18:55

MR MR Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 94 01/23/12 12:27 o-Terphenyl 50 - 150 01/24/12 18:55

Lab Sample ID: LCS 580-103958/2-B Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA Analysis Batch: 104033 Prep Batch: 103958

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits D #2 Diesel (C10-C24) 5.00 4.05 mg/L 70 - 130 81 Motor Oil (>C24-C36) 5.00 4.33 mg/L 87 70 - 130

LCS LCS %Recovery Qualifier Limits Surrogate 50 - 150 o-Terphenyl 67

Lab Sample ID: LCSD 580-103958/3-B Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA Analysis Batch: 104033 Prep Batch: 103958

LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit #2 Diesel (C10-C24) 5.00 4.28 mg/L 86 70 - 130 5 30 Motor Oil (>C24-C36) 5.00 4 54 mg/L 91 70 - 1305 30

QC Sample Results

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram

TestAmerica Job ID: 580-30818-1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Limits

50 - 150

LCSD LCSD

%Recovery Qualifier

76

Lab Sample ID: LCSD 580-103958/3-B

Matrix: Water

Surrogate

o-Terphenyl

Analysis Batch: 104033

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Pron Batch: 103959

TestAmerica Job ID: 580-30818-1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram

Client Sample ID: AS-12-3 Date Collected: 01/16/12 09:30 Date Received: 01/23/12 09:25

Lab Sample ID: 580-30818-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	104095	01/25/12 19:01	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 19:01	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 20:01	KKW	TAL SEA

Client Sample ID: AS-12-2 Lab Sample ID: 580-30818-2

Date Collected: 01/13/12 10:25 **Matrix: Water**

Date Received: 01/23/12 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			104095	01/25/12 19:23	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 19:23	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 20:22	KKW	TAL SEA

Client Sample ID: AS-12-1 Lab Sample ID: 580-30818-3

Date Collected: 01/12/12 15:00 **Matrix: Water** Date Received: 01/23/12 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	104095	01/25/12 20:30	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 20:30	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 20:44	KKW	TAL SEA

Client Sample ID: RB4 Lab Sample ID: 580-30818-4

Date Collected: 01/16/12 14:25 Matrix: Water Date Received: 01/23/12 09:25

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			104095	01/25/12 20:52	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 20:52	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 21:06	KKW	TAL SEA

Client Sample ID: RB3 Lab Sample ID: 580-30818-5

Date Collected: 01/16/12 15:40 **Matrix: Water** Date Received: 01/23/12 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			104095	01/25/12 21:15	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 21:15	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram

Lab Sample ID: 580-30818-5

Client Sample ID: RB3 Date Collected: 01/16/12 15:40

Matrix: Water

Date Received: 01/23/12 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 21:28	KKW	TAL SEA

Lab Sample ID: 580-30818-6

Matrix: Water

Date Collected: 01/17/12 10:30 Date Received: 01/23/12 09:25

Client Sample ID: RB2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	104095	01/25/12 21:37	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 21:37	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 21:49	KKW	TAL SEA

Lab Sample ID: 580-30818-7

Matrix: Water

Date Collected: 01/17/12 08:55 Date Received: 01/23/12 09:25

Client Sample ID: RB1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	104095	01/25/12 22:45	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 22:45	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 22:54	KKW	TAL SEA

Client Sample ID: DUP-1 Lab Sample ID: 580-30818-8

Date Collected: 01/17/12 10:35 Matrix: Water

Date Received: 01/23/12 09:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	104095	01/25/12 23:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	104093	01/25/12 23:07	JMB	TAL SEA
Total/NA	Prep	3510C			103958	01/23/12 12:27	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 23:15	KKW	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30818-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP		L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007
TestAmerica Seattle	USDA	USDA		P330-11-00222
TestAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

5

7

8

3

10

10

Sample Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30818-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-30818-1	AS-12-3	Water	01/16/12 09:30	01/23/12 09:25
580-30818-2	AS-12-2	Water	01/13/12 10:25	01/23/12 09:25
580-30818-3	AS-12-1	Water	01/12/12 15:00	01/23/12 09:25
580-30818-4	RB4	Water	01/16/12 14:25	01/23/12 09:25
580-30818-5	RB3	Water	01/16/12 15:40	01/23/12 09:25
580-30818-6	RB2	Water	01/17/12 10:30	01/23/12 09:25
580-30818-7	RB1	Water	01/17/12 08:55	01/23/12 09:25
580-30818-8	DUP-1	Water	01/17/12 10:35	01/23/12 09:25

--

5

6

Q

10

Comments	3. Relinquished By Sign/Prim	2. Relinquished By Significials	1. Relinquished By SignPrint RLA Juscoli Si	ness days) □ 5 Days	Cooler Possible Hazard Identification ☐ Yes ☐ No Cooler Temp: ☐ Non-Hazard ☐ Flam		Well of the	THIS BLADK 1128 112 SK	Dur-1 1/1/12	1/4/12	PB2 /19/12	R83 /11/12	P84 /11/12	A5-12-1 1/12/12	A5-12-2 Y13/12	AS-12-3 YILL 12	Sample I.D. and Location/Description (Containers for each sample may be combined on one line) Date	Contract/Purchase Order/Quote No. 10 6010	Tions.	2	Z	Client Kennedy Junky	THE LEADER IN ENVIRONMENTAL TESTING	1 2 3 4 5 6 7 8
	Date	Date	about Vision 12	ays Other	∵ification □ Flammable □ Skin Irritant				1035 X	. 0855 X	1030 X	X OF S	MES X	1500 X	1025 X	0930 Y	Time Air Aqueous	M	Billing Contact	Sampler Smile	Voo Telephone Number (Area C	Client Contact	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com	11
	Time 3. Rece	Time 2. Received #	Time 1. Regel	QC Req	□ Poison B												Sed. Soil Unpres. H2S04 HN03	Matrix Con Pres		Lab Contact	335 (5	e 24 ainc.com	
	3. Received By Sign/Print	sived By Sign/Prim	Why Tunt &	ігетеп	□ Unknown □ Return To Client				× × ×	× × ×	× × ×	XXX	XXX	× × ×	× × ×	× × ×	NaOH ZnAc/ NaOH NaOH NaOH NaOH		-Dx -Gx	Day	, 400 l	miden	X Rush ☐ Short Hold	
			hy Jamble		Disposal By Lab Archive For Months					3	Wet/Packs	Cooler Dsc	Cooler/TB)		(Wg/Lacks	Cooler Dsc	Cooler/TB			Analysis (Attach list if more space is needed)		Date 1/18/17	Hold	
	Date Time	Date lime	Pate Imme		(A fee may be assessed if samples are retained longer than 1 month)		>			WM Com	S Packing by by	~~~	Dig/IR cor/1/1 unc/1/5	W. W.	101	Packing bubb	Dig/IR cor 1/2 unc 1/4	Conditions of Receipt	Special Instructions/		Page of	Chain of Custody Number 5	Chain of Custody Record ろろする	
	ı	•	1	•	•	. '	1	,	•	· Pa	age	22 (' of 23	, 3	•	•						2	 2/6/2012	

TAL-8274-580 (0210)

Login Sample Receipt Checklist

Client: Kennedy/Jenks Consultants

Job Number: 580-30818-1

Login Number: 30818 List Source: TestAmerica Seattle

List Number: 1 Creator: Gamble, Cathy

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	N/A	Not present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	False	Refer to Job Narrative for details.
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to Job Narrative for details.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time.	False	Refer to Job Narrative for details.
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

_

4

O

9

10

11

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-30758-1

Client Project/Site: BNSF Wishram Monitoring

For:

Kennedy/Jenks Consultants 32001-32nd Ave South, Suite 100 Federal Way, Washington 98001

Attn: Joseph Sawdey

Knistine D. allen

Authorized for release by: 2/2/2012 4:07:11 PM

Kristine Allen Project Manager I

kristine.allen@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	19
Chronicle	29
Certification Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	35

-5

4

5

7

8

10

10

Case Narrative

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Job ID: 580-30758-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The Chain of Custody (COC) requested an ASAP turnaround - after conversation with the client the samples have been logged in for a five business day TAT.

No analyses were requested on the COC for Sample B-12-1-15 (580-30758-10). Per client request, this sample will be tested for NWTPH-Dx, NWTPH-Gx and 8260B (BTEX).

VPH/EPH analyses were added for samples B-12-3-13 (580-30758-4), B-12-40 (580-30758-5) and B-12-1-59 (580-30758-7) per client request.

A trip blank was received with these samples. It was not recorded on the COC. The client requested this sample to be tested for NWTPH-Gx and 8260B (BTEX).

Sample collection date and time was not recorded on the COC for sample B-12-1-15 (580-30758-10). The sample was logged in using sample collection information provided on the sample label.

The tared, methanol preserved vials for each client sample had an additional label affixed to them.

All other samples were received in good condition within temperature requirements.

GC/MS VOA - Method 8260B

The following samples were diluted due to the nature of the sample matrix: B-12-4-40 (580-30758-1), B-12-3-13 (580-30758-4) and B-12-2-12 (580-30758-8). Elevated reporting limits (RLs) are provided.

GC/MS VOA - NWTPH/VPH

The method blank for analysis batch 103966 contained several ranges above the method detection limit. These target analyte concentrations were less than 1/2 the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Recovery of the surrogate, 4-Bromofluorobenzene, was outside control limits for the following samples: (580-30758-4 MS), (580-30758-4 MSD), B-12-3-13 (580-30758-4) and B-12-2-40 (580-30758-5). The surrogate, BFB-PID, was outside of control limits for sample B-12-2-40 (580-30758-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed. The affected data have been qualified "4" and are reported.

GC/MS VOA - NWTPH-Gx

The following samples were diluted due to the nature of the sample matrix: B-12-4-40 (580-30758-1), B-12-3-13 (580-30758-4) and B-12-2-12 (580-30758-8). Elevated reporting limits (RLs) are provided.

Sample B-12-1-59 (580-30758-7) was reanalyzed (RA) due to the likelihood of carryover from a previously analyzed heavily contaminated sample.

The continuing calibration blank (CCB) for analysis batch 103962 contained GRO analyte greater than the method detection limit (MDL). The detection in the CCB was flagged "J" and all associated samples were flagged "B."

The matrix spike duplicate (MSD) recovery for analysis batch 103962 were outside control limits. The associated laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC/MS Semi VOA - Method 8270C SIM

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analysis batch 104359 were outside control limits. The relative percent difference (RPD) is also outside of control limits for Pyrene. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC Semi VOA - Method NWTPH/EPH

The following samples were diluted due to the nature of the sample matrix: B-12-3-13 (580-30758-4) and B-12-2-12 (580-30758-8).

2

3

6

7

8

9

10

4 -

Case Narrative

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

3

Job ID: 580-30758-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Elevated reporting limits (RLs) are provided.

Surrogate recoveries of 1-Chlorooctadecane and o-Terphenyl for the following samples from analysis batch 104360 were outside control limits: (580-30758-4 MS), (580-30758-4 MSD), B-12-3-13 (580-30758-4). Evidence of matrix interference is present; this sample required a 10X dilution due to high target analytes. The affected surrogates have been qualified and reported.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analysis batch 104360 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The affected data have been qualified "4" and are reported.

GC Semi VOA -Method NWTPH-Dx

The following samples were diluted due to the nature of the sample matrix: B-12-4-40 (580-30758-1), B-12-3-13 (580-30758-4), B-12-2-12 (580-30758-8) and B-12-1-32 (580-30758-9). Elevated reporting limits (RLs) are provided.

The results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for samples B-12-4-40 (580-30758-1), B-12-3-13 (580-30758-4), B-12-2-40 (580-30758-5), B-12-2-12 (580-30758-8) and B-12-1-32 (580-30758-9) are due primarily to a complex mixture of weathered diesel fuel, a mineral/transformer oil range product, and motor oil. The Y qualifier was added to the affected sample ranges and reported.

The results in the #2 Diesel range for sample B-12-2-55 (580-30758-3) are due to heavily weathered/degraded diesel fuel or a mineral/transformer oil range product, and/or possible biogenic interference. The Y qualifier was added to the affected sample ranges and reported.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

6

9

10

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not	
	applicable.	
F	MS or MSD exceeds the control limits	
F	RPD of the MS and MSD exceeds the control limits	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC VOA		

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
F	MS or MSD exceeds the control limits
۸	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
1	Indicates the presence of an interference, recovery is not calculated.
X	Surrogate is outside control limits
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

GC Semi VOA

Qualifier	Qualifier Description
Y	The chromatographic response resembles a typical fuel pattern.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D. Indicates the presence of an interference, recovery is not calculated.
X	Surrogate is outside control limits
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-4-40

Date Collected: 01/11/12 15:45 Date Received: 01/19/12 09:50 Lab Sample ID: 580-30758-1

Matrix: Solid
Percent Solids: 88.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		160	41	ug/Kg	₽	01/23/12 10:21	01/23/12 20:42	10
Toluene	ND		410	100	ug/Kg	₽	01/23/12 10:21	01/23/12 20:42	10
Ethylbenzene	ND		410	100	ug/Kg	₽	01/23/12 10:21	01/23/12 20:42	10
m-Xylene & p-Xylene	850		410	100	ug/Kg	₽	01/23/12 10:21	01/23/12 20:42	10
o-Xylene	ND		410	100	ug/Kg	₽	01/23/12 10:21	01/23/12 20:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Fluorobenzene (Surr)	98		80 - 120				01/23/12 10:21	01/23/12 20:42	10
Toluene-d8 (Surr)	102		80 - 120				01/23/12 10:21	01/23/12 20:42	10
Ethylbenzene-d10	104		70 - 120				01/23/12 10:21	01/23/12 20:42	10
4-Bromofluorobenzene (Surr)	107		70 - 120				01/23/12 10:21	01/23/12 20:42	10
Method: 8270C SIM - Semivola	atile Organic Com	npounds (G	C/MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	4500		56	22	ug/Kg	\$	01/23/12 12:14	01/30/12 15:12	10
2-Methylnaphthalene	27000		56	22	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
1-Methylnaphthalene	22000		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Acenaphthylene	1200		56	17	ug/Kg	\$	01/23/12 12:14	01/30/12 15:12	10
Acenaphthene	4600		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Fluorene	16000		56	17	ug/Kg	≎	01/23/12 12:14	01/30/12 15:12	10
Phenanthrene	28000		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Anthracene	ND		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Fluoranthene	2100		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Pyrene	2900		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Benzo[a]anthracene	ND		56	17	ug/Kg	₩	01/23/12 12:14	01/30/12 15:12	10
Chrysene	4500		56	17	ug/Kg	≎	01/23/12 12:14	01/30/12 15:12	10
Benzo[b]fluoranthene	1200		56	17	ug/Kg	*	01/23/12 12:14	01/30/12 15:12	10
Benzo[k]fluoranthene	ND		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Benzo[a]pyrene	320		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Indeno[1,2,3-cd]pyrene	230		56	17	ug/Kg	*	01/23/12 12:14	01/30/12 15:12	10
Dibenz(a,h)anthracene	200		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Benzo[g,h,i]perylene	330		56	17	ug/Kg	₽	01/23/12 12:14	01/30/12 15:12	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	72		42 - 151				01/23/12 12:14	01/30/12 15:12	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1300	В	41	5.1	mg/Kg	₩	01/23/12 10:21	01/23/12 20:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		50 - 150				01/23/12 10:21	01/23/12 20:42	10

%Recovery	Qualifier	Limits				Prepared	Allalyzeu	Dil Fac
						Droporod	Analyzed	D# E-
53000	Υ	2700	500	mg/Kg	₩	01/22/12 09:19	01/24/12 14:55	5
45000	Y	1400	310	mg/Kg	<u> </u>	01/22/12 09:19	01/24/12 14:55	50
		Products (GC)		Unit	D	Prepared	Analyzed	Dil Fac
	45000	emi-Volatile Petroleum Result 45000 Y 53000 Y	Result 45000 Qualifier Y RL 1400	45000 Y 1400 310	Result 45000 Qualifier Y RL 1400 MDL 310 mg/Kg	Result 45000 Qualifier RL 1400 MDL mg/Kg Unit mg/Kg D	Result 45000 Qualifier RL 1400 MDL 310 mg/Kg Unit mg/Kg D 01/22/12 09:19	Result 45000 Qualifier RL 1400 MDL 310 mg/Kg Unit mg/Kg D 01/22/12 09:19 Prepared 01/22/12 09:19 Analyzed 01/24/12 14:55

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-4-40

Date Collected: 01/11/12 15:45 Date Received: 01/19/12 09:50 Lab Sample ID: 580-30758-1

Matrix: Solid

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	89		0.10	0.10	%			01/20/12 13:16	1
Percent Moisture	11		0.10	0.10	%			01/20/12 13:16	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-4-68

Date Collected: 01/12/12 11:10

Date Received: 01/19/12 09:50

TestAmerica Job ID: 580-30758-1

Lab Sample ID: 580-30758-2

Percent Solids: 81.8

Matrix: Solid

	١

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		18	4.5	ug/Kg	₩	01/23/12 10:21	01/23/12 19:34	1
Toluene	ND		45	11	ug/Kg	₽	01/23/12 10:21	01/23/12 19:34	1
Ethylbenzene	ND		45	11	ug/Kg	₽	01/23/12 10:21	01/23/12 19:34	1
m-Xylene & p-Xylene	ND		45	11	ug/Kg	₽	01/23/12 10:21	01/23/12 19:34	1
o-Xylene	ND		45	11	ug/Kg	₩	01/23/12 10:21	01/23/12 19:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	97		80 - 120				01/23/12 10:21	01/23/12 19:34	1
Toluene-d8 (Surr)	102		80 - 120				01/23/12 10:21	01/23/12 19:34	1
Ethylbenzene-d10	104		70 - 120				01/23/12 10:21	01/23/12 19:34	1
4-Bromofluorobenzene (Surr)	105		70 - 120				01/23/12 10:21	01/23/12 19:34	1
Method: NWTPH-Gx - Northw	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	4.1	JB	4.5	0.57	mg/Kg	₩	01/23/12 10:21	01/23/12 19:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		50 - 150				01/23/12 10:21	01/23/12 19:34	1

	4-Bromonuoropenzene (Surr)	102		50 - 150				01/23/12 10:21	01/23/12 19:34	7
	— Method: NWTPH-Dx - Northwo	est - Semi-Volatile	Petroleum	Products (GC)						
١	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	#2 Diesel (C10-C24)	14	J	28	6.5	mg/Kg	\	01/22/12 09:19	01/24/12 15:39	1
	Motor Oil (>C24-C36)	24	J	57	10	mg/Kg	₽	01/22/12 09:19	01/24/12 15:39	1
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	o-Terphenyl	105		50 - 150				01/22/12 09:19	01/24/12 15:39	1
ĺ	General Chemistry									

General Chemistry								
Analyte	Result Qualifie	er RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	82	0.10	0.10	%			01/20/12 13:16	1
Percent Moisture	18	0.10	0.10	%			01/20/12 13:16	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-2-55

Date Collected: 01/11/12 09:00 Date Received: 01/19/12 09:50

Percent Moisture

TestAmerica Job ID: 580-30758-1

Lab Sample ID: 580-30758-3

Matrix: Solid
Percent Solids: 79.2

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ND	-	18	4.6	ug/Kg	<u> </u>	01/23/12 10:21	01/23/12 17:42	-
ND		46	11	ug/Kg	₽	01/23/12 10:21	01/23/12 17:42	
ND		46	11	ug/Kg	₽	01/23/12 10:21	01/23/12 17:42	
ND		46	11	ug/Kg	\$	01/23/12 10:21	01/23/12 17:42	
ND		46	11	ug/Kg	₽	01/23/12 10:21	01/23/12 17:42	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
97		80 - 120				01/23/12 10:21	01/23/12 17:42	
101		80 - 120				01/23/12 10:21	01/23/12 17:42	
103		70 - 120				01/23/12 10:21	01/23/12 17:42	
104		70 - 120				01/23/12 10:21	01/23/12 17:42	
		ucts (GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ND		4.6	0.57	mg/Kg	₽	01/23/12 10:21	01/23/12 17:42	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
102		50 - 150				01/23/12 10:21	01/23/12 17:42	
st - Semi-Volatile	Petroleum	Products (GC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
33	Y	31	7.0	mg/Kg	\	01/22/12 09:19	01/24/12 16:01	-
54	J	62	11	mg/Kg	₽	01/22/12 09:19	01/24/12 16:01	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
	Qualifier	Limits 50 - 150				Prepared 01/22/12 09:19	Analyzed 01/24/12 16:01	
	Qualifier							Dil Fa
106	Qualifier Qualifier		RL	Unit	D			
	Result ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND St - Volatile Petroleum Prod Result ND %Recovery 102 %Recovery 102 %Recovery 102 %Recovery 102 Qualifier Result Qualifier Qualifier Qualifier	Result Qualifier RL ND	Result Qualifier RL MDL	Result Qualifier RL MDL Unit ND	Result Qualifier RL MDL Unit D	Result Qualifier RL MDL Unit D Prepared	Result Qualifier RL MDL Unit D Prepared Analyzed

0.10

21

0.10 %

01/20/12 13:16

2

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-3-13 Date Collected: 01/11/12 11:30

Date Received: 01/19/12 09:50

C21-C34 Aromatics

Lab Sample ID: 580-30758-4

Matrix: Solid	
Percent Solids: 80.2	
Percent Solids. 60.2	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		180	45	ug/Kg	₽	01/23/12 10:21	01/23/12 21:49	10
Toluene	ND		450	110	ug/Kg	₽	01/23/12 10:21	01/23/12 21:49	10
Ethylbenzene	ND		450	110	ug/Kg	₽	01/23/12 10:21	01/23/12 21:49	10
m-Xylene & p-Xylene	490		450	110	ug/Kg	₽	01/23/12 10:21	01/23/12 21:49	10
o-Xylene	ND		450	110	ug/Kg	₽	01/23/12 10:21	01/23/12 21:49	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120				01/23/12 10:21	01/23/12 21:49	10
Toluene-d8 (Surr)	102		80 - 120				01/23/12 10:21	01/23/12 21:49	10
Ethylbenzene-d10	105		70 - 120				01/23/12 10:21	01/23/12 21:49	10
4-Bromofluorobenzene (Surr)	106		70 - 120				01/23/12 10:21	01/23/12 21:49	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	140	В	11	0.56	mg/Kg	*	01/23/12 11:59	01/23/12 15:42	5
C10-C12 Aromatics	260		11	0.56	mg/Kg	₽	01/23/12 11:59	01/23/12 15:42	5
C12-C13 Aromatics	340	В	11	0.56	mg/Kg	₽	01/23/12 11:59	01/23/12 15:42	5
C8-C10 Aliphatics	23		11	0.56	mg/Kg	₽	01/23/12 11:59	01/23/12 15:42	5
C8-C10 Aromatics	25	В	11	0.56	mg/Kg	₽	01/23/12 11:59	01/23/12 15:42	5
C5-C6 Aliphatics	1.1	J B	11	0.56	mg/Kg	₽	01/23/12 11:59	01/23/12 15:42	5
C6-C8 Aliphatics	3.4	JB	11	0.56	mg/Kg	₽	01/23/12 11:59	01/23/12 15:42	5
Total VPH	790	В	79	0.56	mg/Kg	₽	01/23/12 11:59	01/23/12 15:42	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

BFB - PID	109	60 - 140	01/23/12 11:59	01/23/12 15:42	5
4-Bromofluorobenzene	151 XI	60 - 140	01/23/12 11:59	01/23/12 15:42	5
Method: NWTPH-Gx - Northwest -	Volatile Petroleum Pro	oducts (GC) - DL			

			· /						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1300	В	45	5.6	mg/Kg	*	01/23/12 10:21	01/23/12 21:49	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	-	50 - 150				01/23/12 10:21	01/23/12 21:49	10

		00 - 700				0.7.207.12.70.27	0 20 2 2	. •
Method: NWTPH/EPH - North	west - Extractable Petroleum H	lydrocarbons	(GC) - D	L				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	1500	250	4.7	mg/Kg	\$	01/23/12 15:00	01/31/12 08:16	10
C12-C16 Aliphatics	8500	250	49	mg/Kg	₽	01/23/12 15:00	01/31/12 08:16	10
C16-C21 Aliphatics	7800	250	49	mg/Kg	₽	01/23/12 15:00	01/31/12 08:16	10
C21-C34 Aliphatics	1500	250	49	mg/Kg	₽	01/23/12 15:00	01/31/12 08:16	10
C10-C12 Aromatics	330	250	3.5	mg/Kg	₽	01/23/12 15:00	01/31/12 08:16	10
C12-C16 Aromatics	3000	250	49	mg/Kg	₩	01/23/12 15:00	01/31/12 08:16	10
C16-C21 Aromatics	5700	250	49	mg/Kg	₽	01/23/12 15:00	01/31/12 08:16	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl		DIX	60 - 140	01/23/12 15:00	01/31/12 08:16	10
1-Chlorooctadecane	0	DIX	60 - 140	01/23/12 15:00	01/31/12 08:16	10

250

1000

49 mg/Kg

Method: NWTPH-Dx - Northwest - \$	Semi-Volatile Petrolei	ım Products (G	iC)					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	2700 Y	57	10	mg/Kg		01/22/12 09:19	01/24/12 16:23	1

10

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-3-13

Date Collected: 01/11/12 11:30 Date Received: 01/19/12 09:50 Lab Sample ID: 580-30758-4

Matrix: Solid

Percent Solids: 80.2

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	72		50 - 150				01/22/12 09:19	01/24/12 16:23	1
- Method: NWTPH-Dx - Northwes	t - Semi-Volatile	Petroleum	n Products (GC)	- RADL					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	28000	Y	290	65	mg/Kg	₽	01/22/12 09:19	01/26/12 09:54	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	58		50 - 150				01/22/12 09:19	01/26/12 09:54	10
General Chemistry									
	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	rtcsuit								
Analyte Percent Solids	80		0.10	0.10	%			01/20/12 13:16	1

2

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-2-40

Date Collected: 01/10/12 16:00

Lab Sample ID: 580-30758-5

Matrix: Solid
Percent Solids: 75.1

Date Collected: 01/10/12 16:00
Date Received: 01/19/12 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		18	4.5	ug/Kg	\$	01/23/12 10:21	01/23/12 18:05	1
Toluene	ND		45	11	ug/Kg	₽	01/23/12 10:21	01/23/12 18:05	1
Ethylbenzene	ND		45	11	ug/Kg	₽	01/23/12 10:21	01/23/12 18:05	1
m-Xylene & p-Xylene	ND		45	11	ug/Kg	₽	01/23/12 10:21	01/23/12 18:05	1
o-Xylene	ND		45	11	ug/Kg	\$	01/23/12 10:21	01/23/12 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	97		80 - 120				01/23/12 10:21	01/23/12 18:05	1
Toluene-d8 (Surr)	101		80 - 120				01/23/12 10:21	01/23/12 18:05	1
Ethylbenzene-d10	103		70 - 120				01/23/12 10:21	01/23/12 18:05	1
4-Bromofluorobenzene (Surr)	112		70 - 120				01/23/12 10:21	01/23/12 18:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	100		65	26	ug/Kg	\$	01/23/12 12:14	01/30/12 16:10	10
2-Methylnaphthalene	3100		65	26	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
1-Methylnaphthalene	2400		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Acenaphthylene	280		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Acenaphthene	680		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Fluorene	1800		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Phenanthrene	1600		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Anthracene	190		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Fluoranthene	230		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Pyrene	300		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Benzo[a]anthracene	55	J	65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Chrysene	420		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Benzo[b]fluoranthene	120		65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Benzo[k]fluoranthene	ND		65	20	ug/Kg	☼	01/23/12 12:14	01/30/12 16:10	10
Benzo[a]pyrene	29	J	65	20	ug/Kg	☼	01/23/12 12:14	01/30/12 16:10	10
Indeno[1,2,3-cd]pyrene	ND		65	20	ug/Kg	\$	01/23/12 12:14	01/30/12 16:10	10
Dibenz(a,h)anthracene	ND		65	20	ug/Kg	☼	01/23/12 12:14	01/30/12 16:10	10
Benzo[g,h,i]perylene	30	J	65	20	ug/Kg	₽	01/23/12 12:14	01/30/12 16:10	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	67		42 - 151				01/23/12 12:14	01/30/12 16:10	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	18	В	2.2	0.11	mg/Kg	₩	01/23/12 11:59	01/23/12 17:54	1
C10-C12 Aromatics	43		2.2	0.11	mg/Kg	≎	01/23/12 11:59	01/23/12 17:54	1
C12-C13 Aromatics	38	В	2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 17:54	1
C8-C10 Aliphatics	25		2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 17:54	1
C8-C10 Aromatics	24	В	2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 17:54	1
C5-C6 Aliphatics	0.57	JB	2.2	0.11	mg/Kg	≎	01/23/12 11:59	01/23/12 17:54	1
C6-C8 Aliphatics	8.9	В	2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 17:54	1
Total VPH	160	В	16	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 17:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
BFB - PID	141	ΧI	60 - 140				01/23/12 11:59	01/23/12 17:54	1
4-Bromofluorobenzene	401	ΧI	60 - 140				01/23/12 11:59	01/23/12 17:54	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Lab Sample ID: 580-30758-5

Matrix: Solid

Percent Solids: 75.1

Client	Sample	ID: B-12-2-40	
--------	--------	---------------	--

Date Collected: 01/10/12 16:00 Date Received: 01/19/12 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	380		4.5	0.56	mg/Kg	-	01/23/12 10:21	01/23/12 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		50 - 150				01/23/12 10:21	01/23/12 18:05	
Method: NWTPH/EPH - Northwes	st - Extractable	Petroleum	Hydrocarbons	(GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
C10-C12 Aliphatics	260		26	0.50	mg/Kg	<u></u>	01/23/12 15:00	01/30/12 12:47	
C12-C16 Aliphatics	880		26	5.3	mg/Kg	₽	01/23/12 15:00	01/30/12 12:47	•
C16-C21 Aliphatics	970		26	5.3	mg/Kg	₽	01/23/12 15:00	01/30/12 12:47	•
C21-C34 Aliphatics	1500		26	5.3	mg/Kg	₽	01/23/12 15:00	01/30/12 12:47	
C10-C12 Aromatics	32		26	0.38	mg/Kg	₽	01/23/12 15:00	01/30/12 12:47	
C12-C16 Aromatics	250		26	5.3	mg/Kg	₽	01/23/12 15:00	01/30/12 12:47	
C16-C21 Aromatics	990		26	5.3	mg/Kg	₽	01/23/12 15:00	01/30/12 12:47	
C21-C34 Aromatics	1600		26	5.3	mg/Kg	₽	01/23/12 15:00	01/30/12 12:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95	-	60 - 140				01/23/12 15:00	01/30/12 12:47	-
1-Chlorooctadecane	78		60 - 140				01/23/12 15:00	01/30/12 12:47	
Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	5400	Y	31	7.0	mg/Kg	<u> </u>	01/22/12 09:19	01/24/12 16:44	
Motor Oil (>C24-C36)	6300	Y	62	11	mg/Kg	₽	01/22/12 09:19	01/24/12 16:44	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenvl	116		50 - 150				01/22/12 09:19	01/24/12 16:44	

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	75		0.10	0.10	%			01/20/12 13:16	1
Percent Moisture	25		0.10	0.10	%			01/20/12 13:16	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-1-59

BFB - PID

Analyte

#2 Diesel (C10-C24)

4-Bromofluorobenzene

Lab Sample ID: 580-30758-7

01/23/12 11:59 01/23/12 18:47

01/23/12 18:47

01/23/12 11:59

Prepared

01/22/12 09:19

Matrix: Solid Percent Solids: 87.7

Date Collected: 01/10/12 14:00 Date Received: 01/19/12 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		17	4.3	ug/Kg	₩	01/23/12 10:21	01/23/12 18:27	1
Toluene	ND		43	11	ug/Kg	₽	01/23/12 10:21	01/23/12 18:27	1
Ethylbenzene	ND		43	11	ug/Kg	₽	01/23/12 10:21	01/23/12 18:27	1
m-Xylene & p-Xylene	ND		43	11	ug/Kg	₽	01/23/12 10:21	01/23/12 18:27	1
o-Xylene	ND		43	11	ug/Kg	\$	01/23/12 10:21	01/23/12 18:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	97		80 - 120				01/23/12 10:21	01/23/12 18:27	1
Toluene-d8 (Surr)	100		80 - 120				01/23/12 10:21	01/23/12 18:27	1
Ethylbenzene-d10	102		70 - 120				01/23/12 10:21	01/23/12 18:27	1
4-Bromofluorobenzene (Surr)	104		70 - 120				01/23/12 10:21	01/23/12 18:27	1

Method: NWTPH/VPH - Northwes Analyte		Qualifier	RL `	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	0.25	J B	2.2	0.11	mg/Kg	<u></u>	01/23/12 11:59	01/23/12 18:47	1
C10-C12 Aromatics	1.4	J	2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 18:47	1
C12-C13 Aromatics	0.88	J B	2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 18:47	1
C8-C10 Aliphatics	ND		2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 18:47	1
C8-C10 Aromatics	0.78	J B	2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 18:47	1
C5-C6 Aliphatics	0.61	J B	2.2	0.11	mg/Kg	₩	01/23/12 11:59	01/23/12 18:47	1
C6-C8 Aliphatics	0.65	JB	2.2	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 18:47	1
Total VPH	4.4	JB	15	0.11	mg/Kg	₽	01/23/12 11:59	01/23/12 18:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC) - RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1.5	J	4.3	0.54	mg/Kg	₩	01/23/12 10:21	01/24/12 17:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorohenzene (Surr)	101		50 150				01/23/12 10:21	01/24/12 17:48	

60 - 140

60 - 140

104 106

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Result Qualifier

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		5.6	0.11	mg/Kg	₩	01/23/12 15:00	01/30/12 13:14	1
C12-C16 Aliphatics	ND		5.6	1.1	mg/Kg	₽	01/23/12 15:00	01/30/12 13:14	1
C16-C21 Aliphatics	1.7	J	5.6	1.1	mg/Kg	₽	01/23/12 15:00	01/30/12 13:14	1
C21-C34 Aliphatics	2.2	J	5.6	1.1	mg/Kg	₽	01/23/12 15:00	01/30/12 13:14	1
C10-C12 Aromatics	ND		5.6	0.081	mg/Kg	₽	01/23/12 15:00	01/30/12 13:14	1
C12-C16 Aromatics	ND		5.6	1.1	mg/Kg	₽	01/23/12 15:00	01/30/12 13:14	1
C16-C21 Aromatics	1.9	J	5.6	1.1	mg/Kg	₽	01/23/12 15:00	01/30/12 13:14	1
C21-C34 Aromatics	4.2	J	5.6	1.1	mg/Kg	₽	01/23/12 15:00	01/30/12 13:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89	-	60 - 140				01/23/12 15:00	01/30/12 13:14	1
1-Chlorooctadecane	85		60 - 140				01/23/12 15:00	01/30/12 13:14	1

Dil Fac

Analyzed

01/24/12 17:06

RL

28

MDL Unit

6.5 mg/Kg

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-1-59

Date Collected: 01/10/12 14:00 Date Received: 01/19/12 09:50 Lab Sample ID: 580-30758-7

Matrix: Solid

Percent Solids: 87.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	20	J	57	10	mg/Kg	₩	01/22/12 09:19	01/24/12 17:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	109		50 - 150				01/22/12 09:19	01/24/12 17:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	88		0.10	0.10	%			01/20/12 13:16	1
Percent Moisture	12		0.10	0.10	0/			01/20/12 13:16	4

Ę

7

8

9

10

1,6

2

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-2-12

Date Collected: 01/10/12 15:00 Date Received: 01/19/12 09:50

Percent Solids

Percent Moisture

Lab Sample ID: 580-30758-8

Matrix: Solid

Percent Solids: 92.3

Benzene Foluene Ethylbenzene n-Xylene & p-Xylene	89 160 170	•	200	50	ug/Kg	*	01/23/12 10:21	01/23/12 22:12	10
thylbenzene		J	500						
	170		500	120	ug/Kg	₽	01/23/12 10:21	01/23/12 22:12	10
n-Xylene & p-Xylene		J	500	120	ug/Kg	₩	01/23/12 10:21	01/23/12 22:12	10
	470	J	500	120	ug/Kg	₽	01/23/12 10:21	01/23/12 22:12	10
o-Xylene	340	J	500	120	ug/Kg	₽	01/23/12 10:21	01/23/12 22:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
luorobenzene (Surr)	98		80 - 120				01/23/12 10:21	01/23/12 22:12	1
oluene-d8 (Surr)	102		80 - 120				01/23/12 10:21	01/23/12 22:12	1
Ethylbenzene-d10	104		70 - 120				01/23/12 10:21	01/23/12 22:12	1
-Bromofluorobenzene (Surr)	106		70 - 120				01/23/12 10:21	01/23/12 22:12	10
Gasoline	1000 %Recovery		50 Limits	6.2	mg/Kg		01/23/12 10:21	01/23/12 22:12	Dil Fa
Gurrogate I-Bromofluorobenzene (Surr)		Quaimer	50 - 150				Prepared 01/23/12 10:21	Analyzed 01/23/12 22:12	10 Fac
Method: NWTPH-Dx - Northwest		Petroleum Qualifier	n Products (GC)		Unit	D	Prepared	Analyzed	Dil Fa
2 Diesel (C10-C24)	38000	Y	1300	290	mg/Kg	<u> </u>	01/22/12 09:19	01/24/12 17:28	50
Motor Oil (>C24-C36)	71000	Y	2600	470	mg/Kg	₩	01/22/12 09:19	01/24/12 17:28	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Terphenyl	114		50 - 150				01/22/12 09:19	01/24/12 17:28	5

0.10

0.10

92

7.7

0.10

0.10 %

01/20/12 13:16

01/20/12 13:16

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: B-12-1-32

Date Collected: 01/10/12 11:00 Date Received: 01/19/12 09:50

Lab Sample ID: 580-30758-9

Matrix: Solid

Percent Solids: 71.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		25	6.2	ug/Kg	₩	01/23/12 10:21	01/23/12 22:34	-
Toluene	ND		62	16	ug/Kg	₽	01/23/12 10:21	01/23/12 22:34	
Ethylbenzene	ND		62	16	ug/Kg	₽	01/23/12 10:21	01/23/12 22:34	
m-Xylene & p-Xylene	660		62	16	ug/Kg	₽	01/23/12 10:21	01/23/12 22:34	
o-Xylene	ND		62	16	ug/Kg	₽	01/23/12 10:21	01/23/12 22:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Fluorobenzene (Surr)	98		80 - 120				01/23/12 10:21	01/23/12 22:34	
Toluene-d8 (Surr)	102		80 - 120				01/23/12 10:21	01/23/12 22:34	
Ethylbenzene-d10	104		70 - 120				01/23/12 10:21	01/23/12 22:34	
4-Bromofluorobenzene (Surr)	117		70 - 120				01/23/12 10:21	01/23/12 22:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Gasoline	700	_			mg/Kg				
	<u>·</u>	Qualifier							
4-Bromofluorobenzene (Surr)	145		50 ₋ 150				01/23/12 10:21	01/23/12 22:34	
Method: NWTPH-Dx - Northw	est - Semi-Volatile	Petroleum	Products (GC)	- RADL					
		Petroleum Qualifier	Products (GC)	- RADL MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte		Qualifier	, ,		Unit mg/Kg	D	Prepared 01/22/12 09:19	Analyzed 01/24/12 18:34	
Analyte #2 Diesel (C10-C24)	Result	Qualifier Y	RL	MDL 370					5
Method: NWTPH-Dx - Northwo Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	Result 12000	Qualifier Y Y	1600 RL	MDL 370	mg/Kg	<u> </u>	01/22/12 09:19	01/24/12 18:34	5
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	12000 14000	Qualifier Y Y	1600 3200	MDL 370	mg/Kg	<u> </u>	01/22/12 09:19 01/22/12 09:19	01/24/12 18:34 01/24/12 18:34	5 Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	Result 12000 14000 %Recovery	Qualifier Y Y	1600 3200 <i>Limits</i>	MDL 370	mg/Kg	<u> </u>	01/22/12 09:19 01/22/12 09:19 Prepared	01/24/12 18:34 01/24/12 18:34 <i>Analyzed</i>	5i Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	Result 12000 14000 %Recovery 116	Qualifier Y Y	1600 3200 <i>Limits</i>	MDL 370 590	mg/Kg	<u> </u>	01/22/12 09:19 01/22/12 09:19 Prepared	01/24/12 18:34 01/24/12 18:34 <i>Analyzed</i>	Dil Fac
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	Result 12000 14000 %Recovery 116	Qualifier Y Y Qualifier	RL 1600 3200 Limits 50 - 150	MDL 370 590	mg/Kg mg/Kg	*	01/22/12 09:19 01/22/12 09:19 Prepared 01/22/12 09:19	01/24/12 18:34 01/24/12 18:34 Analyzed 01/24/12 18:34	50 50 Dil Fac 50

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Client Sample ID: Trip Blank

Date Collected: 01/10/12 00:00 Date Received: 01/19/12 09:50 Lab Sample ID: 580-30758-11

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		16	4.0	ug/Kg		01/23/12 10:21	01/23/12 17:20	1
Toluene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 17:20	1
Ethylbenzene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 17:20	1
m-Xylene & p-Xylene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 17:20	1
o-Xylene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120				01/23/12 10:21	01/23/12 17:20	1
Toluene-d8 (Surr)	101		80 - 120				01/23/12 10:21	01/23/12 17:20	1
Ethylbenzene-d10	104		70 - 120				01/23/12 10:21	01/23/12 17:20	1
4-Bromofluorobenzene (Surr)	104		70 - 120				01/23/12 10:21	01/23/12 17:20	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Gasoline	ND		4.0	0.50	mg/Kg		01/23/12 10:21	01/23/12 17:20	1	
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
	4-Bromofluorobenzene (Surr)	102		50 150				01/23/12 10:21	01/23/12 17:20	1	

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-103945/1-A

Matrix: Solid

Analysis Batch: 103964

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 103945

ı		IVID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	ND		16	4.0	ug/Kg		01/23/12 10:21	01/23/12 15:28	1
١	Toluene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 15:28	1
١	Ethylbenzene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 15:28	1
١	m-Xylene & p-Xylene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 15:28	1
١	o-Xylene	ND		40	10	ug/Kg		01/23/12 10:21	01/23/12 15:28	1
ł										

	INID	IVID					
Surrogate	%Recovery	Qualifier	Limits	F	Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	97		80 - 120	01/2	23/12 10:21	01/23/12 15:28	1
Toluene-d8 (Surr)	101		80 - 120	01/2	23/12 10:21	01/23/12 15:28	1
Ethylbenzene-d10	103		70 - 120	01/2	23/12 10:21	01/23/12 15:28	1
Trifluorotoluene (Surr)	103		65 - 140	01/2	23/12 10:21	01/23/12 15:28	1
4-Bromofluorobenzene (Surr)	104		70 - 120	01/2	23/12 10:21	01/23/12 15:28	1

Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 103964

Lab Sample ID: LCS 580-103945/4-A

Prep Type: Total/NA Prep Batch: 103945

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	800	812		ug/Kg		102	75 - 125	
Toluene	800	808		ug/Kg		101	70 - 125	
Ethylbenzene	800	796		ug/Kg		100	75 - 125	
m-Xylene & p-Xylene	1600	1600		ug/Kg		100	80 - 125	
o-Xylene	800	796		ug/Kg		100	75 - 125	

65 - 140

70 - 120

LCS LCS Surrogate %Recovery Qualifier Limits Fluorobenzene (Surr) 97 80 - 120 Toluene-d8 (Surr) 101 80 - 120 Ethylbenzene-d10 103 70 - 120

Trifluorotoluene (Surr) 100 4-Bromofluorobenzene (Surr) 104

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 103945

Matrix: Solid Analysis Batch: 103964

Lab Sample ID: LCSD 580-103945/5-A

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	800	808		ug/Kg		101	75 - 125	0	30	
Toluene	800	800		ug/Kg		100	70 - 125	1	30	
Ethylbenzene	800	788		ug/Kg		99	75 - 125	1	30	
m-Xylene & p-Xylene	1600	1600		ug/Kg		100	80 - 125	0	30	
o-Xylene	800	796		ug/Kg		100	75 - 125	0	30	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	97		80 - 120
Toluene-d8 (Surr)	101		80 - 120
Ethylbenzene-d10	104		70 - 120
Trifluorotoluene (Surr)	98		65 - 140
4-Bromofluorobenzene (Surr)	104		70 - 120

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	97		80 - 120
Toluene-d8 (Surr)	101		80 - 120
Ethylbenzene-d10	104		70 - 120
Trifluorotoluene (Surr)	98		65 - 140
4-Bromofluorobenzene (Surr)	104		70 - 120

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-30758-2 MS

Matrix: Solid

Analysis Batch: 103964

Client Sample ID: B-12-4-68 Prep Type: Total/NA Prep Batch: 103945

Sample Sample Spike MS MS Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit D ₩ Benzene 907 109 75 - 125 ND 986 ug/Kg Toluene ND 907 959 ₽ 106 70 - 125 ug/Kg ₽ Ethylbenzene ND 907 959 ug/Kg 106 75 - 125 ₽ m-Xylene & p-Xylene ND 1810 1950 108 80 - 125 ug/Kg ₽ o-Xylene ND 907 959 ug/Kg 106 75 - 125

MS MS

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	97		80 - 120
Toluene-d8 (Surr)	101		80 - 120
Ethylbenzene-d10	104		70 - 120
4-Bromofluorobenzene (Surr)	105		70 - 120

Lab Sample ID: 580-30758-2 MSD

Matrix: Solid

Analysis Batch: 103964

Client Sample ID: B-12-4-68

Prep Type: Total/NA

Prep Batch: 103945

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	ND		907	968		ug/Kg	₩	107	75 - 125	2	30	
Toluene	ND		907	954		ug/Kg	₩	105	70 - 125	0	30	
Ethylbenzene	ND		907	936		ug/Kg	₩	103	75 - 125	2	30	
m-Xylene & p-Xylene	ND		1810	1940		ug/Kg	₽	107	80 - 125	1	30	
o-Xylene	ND		907	963		ug/Kg	₽	106	75 - 125	0	30	

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	98		80 - 120
Toluene-d8 (Surr)	101		80 - 120
Ethylbenzene-d10	103		70 - 120
4-Bromofluorobenzene (Surr)	105		70 - 120

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-103957/1-A

Matrix: Solid

Analysis Batch: 104359

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 103957

•	МВ	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0	2.0	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
2-Methylnaphthalene	ND		5.0	2.0	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
1-Methylnaphthalene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Acenaphthylene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Acenaphthene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Fluorene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Phenanthrene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Anthracene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Fluoranthene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Pyrene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Benzo[a]anthracene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Chrysene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Benzo[b]fluoranthene	ND		5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

MR MR

Lab Sample ID: MB 580-103957/1-A

Matrix: Solid

Analysis Batch: 104359

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 103957

	IND IND	ь						
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	ND	5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Benzo[a]pyrene	ND	5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Indeno[1,2,3-cd]pyrene	ND	5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Dibenz(a,h)anthracene	ND	5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1
Benzo[g,h,i]perylene	ND	5.0	1.5	ug/Kg		01/23/12 12:14	01/30/12 14:33	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	88		42 - 151	01/23/12 12:14	01/30/12 14:33	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 580-103957/2-A **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 104359 Prep Batch: 103957

Analysis Batch. 104000	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	1000	877		ug/Kg		88	64 - 129
2-Methylnaphthalene	1000	833		ug/Kg		83	65 - 125
1-Methylnaphthalene	1000	853		ug/Kg		85	48 - 148
Acenaphthylene	999	947		ug/Kg		95	69 - 129
Acenaphthene	1000	917		ug/Kg		92	65 _ 130
Fluorene	1000	1090		ug/Kg		109	68 - 128
Phenanthrene	1000	873		ug/Kg		87	65 - 125
Anthracene	1000	928		ug/Kg		93	73 - 123
Fluoranthene	1000	862		ug/Kg		86	61 - 121
Pyrene	1000	853		ug/Kg		85	54 ₋ 134
Benzo[a]anthracene	1000	800		ug/Kg		80	64 - 124
Chrysene	1000	797		ug/Kg		80	71 - 126
Benzo[b]fluoranthene	1000	907		ug/Kg		91	66 - 136
Benzo[k]fluoranthene	1000	845		ug/Kg		84	63 - 143
Benzo[a]pyrene	1000	839		ug/Kg		84	68 - 128
Indeno[1,2,3-cd]pyrene	1000	716		ug/Kg		72	59 - 139
Dibenz(a,h)anthracene	999	755		ug/Kg		76	57 ₋ 142
Benzo[g,h,i]perylene	1000	644		ug/Kg		64	57 ₋ 142

LCS LCS

%Recovery Qualifier Surrogate Limits Terphenyl-d14 42 - 151 76

Lab Sample ID: 580-30758-1 MS

Matrix: Solid

Analysis Batch: 104359

Client Sample ID: B-12-4-40
Prep Type: Total/NA
Prep Batch: 103957

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	4500		1090	4630	4	ug/Kg	*	12	64 - 129	
2-Methylnaphthalene	27000		1090	25000	4	ug/Kg	₽	-228	65 - 125	
1-Methylnaphthalene	22000		1090	19700	4	ug/Kg	₽	-183	48 - 148	
Acenaphthylene	1200		1090	1710	F	ug/Kg	\$	51	69 - 129	
Acenaphthene	4600		1090	3870	4	ug/Kg	₽	-68	65 _ 130	
Fluorene	16000		1090	14000	4	ug/Kg	₽	-199	68 - 128	
Phenanthrene	28000		1090	28600	4	ug/Kg	¢	61	65 - 125	
Anthracene	ND		1090	1610	F	ug/Kg	≎	148	73 - 123	

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 580-30758-1 MS **Matrix: Solid**

Analysis Batch: 104359

Client Sample ID: B-12-4-40 Prep Type: Total/NA

Prep Batch: 103957

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	2100		1090	2640	F	ug/Kg	₩	46	61 - 121	
Pyrene	2900		1090	3720		ug/Kg	₩	76	54 - 134	
Benzo[a]anthracene	ND		1090	1390	F	ug/Kg	₽	127	64 - 124	
Chrysene	4500		1090	4280	4	ug/Kg	₽	-20	71 - 126	
Benzo[b]fluoranthene	1200		1090	1740	F	ug/Kg	₽	49	66 - 136	
Benzo[k]fluoranthene	ND		1090	797		ug/Kg	₽	73	63 - 143	
Benzo[a]pyrene	320		1090	957	F	ug/Kg	₽	58	68 - 128	
Indeno[1,2,3-cd]pyrene	230		1090	883		ug/Kg	₽	60	59 - 139	
Dibenz(a,h)anthracene	200		1090	842		ug/Kg	₽	59	57 - 142	
Benzo[g,h,i]perylene	330		1090	838	F	ug/Kg	☼	47	57 ₋ 142	

MS MS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 42 - 151 66

Lab Sample ID: 580-30758-1 MSD

Matrix: Solid

Analysis Batch: 104359

Client Sample ID: B-12-4-40

Prep Type: Total/NA

Prep Batch: 103957

Alialysis Datell. 104000									1 leb D	aten. i	00301
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	4500		1060	4440	4	ug/Kg	*	-5	64 - 129	4	26
2-Methylnaphthalene	27000		1060	24300	4	ug/Kg	₽	-298	65 - 125	3	27
1-Methylnaphthalene	22000		1060	18900	4	ug/Kg	₩	-267	48 - 148	4	30
Acenaphthylene	1200		1060	1910		ug/Kg	₽	71	69 - 129	11	28
Acenaphthene	4600		1060	4480	4	ug/Kg	₽	-12	65 _ 130	15	27
Fluorene	16000		1060	13300	4	ug/Kg	₽	-271	68 - 128	5	31
Phenanthrene	28000		1060	27000	4	ug/Kg	₽	-85	65 - 125	6	28
Anthracene	ND		1060	1700	F	ug/Kg	₽	160	73 - 123	6	27
Fluoranthene	2100		1060	2100	F	ug/Kg	₽	-4	61 - 121	23	36
Pyrene	2900		1060	2640	F	ug/Kg	*	-24	54 - 134	34	31
Benzo[a]anthracene	ND		1060	1600	F	ug/Kg	₽	150	64 - 124	14	27
Chrysene	4500		1060	3700	4	ug/Kg	₽	-76	71 - 126	15	26
Benzo[b]fluoranthene	1200		1060	1790	F	ug/Kg	*	55	66 - 136	3	31
Benzo[k]fluoranthene	ND		1060	902		ug/Kg	₽	85	63 - 143	12	31
Benzo[a]pyrene	320		1060	1040		ug/Kg	₽	68	68 - 128	9	30
Indeno[1,2,3-cd]pyrene	230		1060	848		ug/Kg	₽	59	59 - 139	4	29
Dibenz(a,h)anthracene	200		1060	769	F	ug/Kg	₽	54	57 - 142	9	30
Benzo[g,h,i]perylene	330		1060	815	F	ug/Kg	₽	46	57 ₋ 142	3	28

MSD MSD

Surrogate %Recovery Qualifier Limits Terphenyl-d14 64 42 - 151

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-103956/1-A

Matrix: Solid

Analysis Batch: 103966

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 103956

MR MR Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2.0 01/23/12 11:59 01/23/12 14:23 C10-C12 Aliphatics 0.118 J 0.10 mg/Kg

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

2

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: MB 580-103956/1-A

Matrix: Solid

Analysis Batch: 103966

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 103956

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aromatics	ND		2.0	0.10	mg/Kg		01/23/12 11:59	01/23/12 14:23	1
C12-C13 Aromatics	0.216	J	2.0	0.10	mg/Kg		01/23/12 11:59	01/23/12 14:23	1
C8-C10 Aliphatics	ND		2.0	0.10	mg/Kg		01/23/12 11:59	01/23/12 14:23	1
C8-C10 Aromatics	0.130	J	2.0	0.10	mg/Kg		01/23/12 11:59	01/23/12 14:23	1
C5-C6 Aliphatics	0.676	J	2.0	0.10	mg/Kg		01/23/12 11:59	01/23/12 14:23	1
C6-C8 Aliphatics	0.289	J	2.0	0.10	mg/Kg		01/23/12 11:59	01/23/12 14:23	1
Total VPH	1.36	J	14	0.10	mg/Kg		01/23/12 11:59	01/23/12 14:23	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
BFB - PID	103		60 - 140	01/23/12 11:59	01/23/12 14:23	1
4-Bromofluorobenzene	101		60 - 140	01/23/12 11:59	01/23/12 14:23	1

Lab Sample ID: LCS 580-103956/2-A

Matrix: Solid

Analysis Batch: 103966

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 103956

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C12 Aliphatics	4.00	4.49		mg/Kg		112	70 - 130	
C10-C12 Aromatics	4.00	4.17		mg/Kg		104	70 - 130	
C12-C13 Aromatics	8.00	7.17		mg/Kg		90	70 - 130	
C8-C10 Aliphatics	8.00	8.39		mg/Kg		105	70 _ 130	
C8-C10 Aromatics	16.0	16.9		mg/Kg		105	70 - 130	
C5-C6 Aliphatics	8.00	7.17		mg/Kg		90	70 - 130	
C6-C8 Aliphatics	4.00	3.71		mg/Kg		93	70 _ 130	
Total VPH	64.0	64.2		mg/Kg		100	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
BFB - PID	103		60 - 140
4-Bromofluorobenzene	100		60 - 140

Lab Sample ID: 580-30758-4 MS

Matrix: Solid

Analysis Batch: 103966

Client Sample ID: B-12-3-13
Prep Type: Total/NA

Prep Batch: 103956

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C12 Aliphatics	140		22.5	168	4	mg/Kg	<u></u>	135	70 - 130	
C10-C12 Aromatics	260		22.5	288	4	mg/Kg	₽	122	70 - 130	
C12-C13 Aromatics	340	В	45.1	384	4	mg/Kg	₽	106	70 - 130	
C8-C10 Aliphatics	23		45.1	81.2		mg/Kg	\$	129	70 - 130	
C8-C10 Aromatics	25	В	90.2	122		mg/Kg	₽	108	70 - 130	
C5-C6 Aliphatics	1.1		45.1	40.0		mg/Kg	₩	86	70 - 130	
C6-C8 Aliphatics	3.4		22.5	34.4	4	mg/Kg	₽	138	70 - 130	
Total VPH	790		361	1180		mg/Kg	₽	110	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
BFB - PID	110		60 - 140
4-Bromofluorobenzene	151	ΧI	60 - 140

TestAmerica Seattle 2/2/2012

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: NWTPH/VPH - Northwest - Volatile Pertroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 580-30758-4 MSD

Matrix: Solid

Analysis Batch: 103966

Client Sample ID: B-12-3-13 Prep Type: Total/NA

Prep Batch: 103956

_											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C10-C12 Aliphatics	140		22.5	163	4	mg/Kg	<u></u>	116	70 - 130	3	25
C10-C12 Aromatics	260		22.5	290	4	mg/Kg	₽	128	70 - 130	0	25
C12-C13 Aromatics	340	В	45.1	377	4	mg/Kg	₽	92	70 - 130	2	25
C8-C10 Aliphatics	23		45.1	82.5	4	mg/Kg	₽	132	70 - 130	2	25
C8-C10 Aromatics	25	В	90.2	122		mg/Kg	₽	108	70 - 130	0	25
C5-C6 Aliphatics	1.1		45.1	39.8		mg/Kg	₽	86	70 - 130	0	25
C6-C8 Aliphatics	3.4		22.5	32.2		mg/Kg	₽	128	70 - 130	7	25
Total VPH	790		361	1170		mg/Kg	₽	108	70 - 130	1	25

MSD MSD

Surrogate	%Recovery	Qualifier	Limits		
BFB - PID	109		60 - 140		
4-Bromofluorobenzene	151	ΧI	60 - 140		

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-103945/1-A

Matrix: Solid

Analysis Batch: 103962

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 103945

Result Qualifier RL MDL Unit Prepared Analyzed Gasoline ND 4.0 0.50 mg/Kg 01/23/12 10:21 01/23/12 15:28

MB MB

мв мв

MR MR

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	DII Fac	
4-Bromofluorobenzene (Surr)	101		50 - 150	0	01/23/12 10:21	01/23/12 15:28	1	
Trifluorotoluene (Surr)	108		50 - 150	0	1/23/12 10:21	01/23/12 15:28	1	

Lab Sample ID: MB 580-103945/1-A

Matrix: Solid

Analysis Batch: 104066

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 103945

Analyte Result Qualifier MDL Unit Dil Fac RL D Prepared Analyzed 0.50 mg/Kg 01/23/12 10:21 01/24/12 15:55 Gasoline 4 0 ND

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 01/23/12 10:21 102 50 - 150 01/24/12 15:55 Trifluorotoluene (Surr) 01/23/12 10:21 01/24/12 15:55 109 50 - 150

Lab Sample ID: LCS 580-103945/2-A

Matrix: Solid

Analysis Batch: 103962

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 103945

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec D Gasoline 40.0 68 - 120 36.2 mg/Kg 91

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		50 - 150
Trifluorotoluene (Surr)	103		50 ₋ 150

Prep Batch: 103945

Client Sample ID: B-12-4-40

Prep Type: Total/NA

Prep Batch: 103945

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 580-103945/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 103962 Prep Batch: 103945 Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limits Limit Analyte Unit D %Rec RPD 2 40.0 68 - 120 25 Gasoline 36.9 mg/Kg 92

LCSD LCSD Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 104 50 - 150 Trifluorotoluene (Surr) 102 50 - 150

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) - DL

Lab Sample ID: 580-30758-1 MS Client Sample ID: B-12-4-40 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 103962

Spike MS MS %Rec. Sample Sample Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits ₩ Gasoline - DL 1300 В 475 1960 141 50 - 150 mg/Kg

MS MS %Recovery Surrogate Qualifier Limits 4-Bromofluorobenzene (Surr) -105 50 - 150

DL

Lab Sample ID: 580-30758-1 MSD **Matrix: Solid**

Analysis Batch: 103962

MSD MSD

Sample Sample Spike %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Gasoline - DL ₩ 1300 В 475 2010 F mg/Kg 152 50 - 150

MSD MSD Qualifier Surrogate %Recovery Limits 105 50 - 150 4-Bromofluorobenzene (Surr) -DL

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 580-103975/1-B Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 104360 **Prep Batch: 103975**

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C12 Aliphatics	ND		5.0	0.095	mg/Kg		01/23/12 15:00	01/30/12 10:34	1
C12-C16 Aliphatics	ND		5.0	1.0	mg/Kg		01/23/12 15:00	01/30/12 10:34	1
C16-C21 Aliphatics	ND		5.0	1.0	mg/Kg		01/23/12 15:00	01/30/12 10:34	1
C21-C34 Aliphatics	ND		5.0	1.0	mg/Kg		01/23/12 15:00	01/30/12 10:34	1
C10-C12 Aromatics	ND		5.0	0.072	mg/Kg		01/23/12 15:00	01/30/12 10:34	1
C12-C16 Aromatics	ND		5.0	1.0	mg/Kg		01/23/12 15:00	01/30/12 10:34	1
C16-C21 Aromatics	ND		5.0	1.0	mg/Kg		01/23/12 15:00	01/30/12 10:34	1
C21-C34 Aromatics	ND		5.0	1.0	mg/Kg		01/23/12 15:00	01/30/12 10:34	1

МВ	MB	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	75	60 - 140	01/23/12 15:00	01/30/12 10:34	1

TestAmerica Seattle 2/2/2012

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: MB 580-103975/1-B

Lab Sample ID: LCS 580-103975/2-B

Matrix: Solid

Matrix: Solid

Analysis Batch: 104360

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 103975

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctadecane 60 - 140 01/23/12 15:00 01/30/12 10:34 82

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 103975

Analysis Batch: 104424 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec C10-C12 Aliphatics 6.67 5.13 mg/Kg 77 70 - 130 C12-C16 Aliphatics 13.3 11.7 88 70 - 130 mg/Kg C16-C21 Aliphatics 20.0 18.8 mg/Kg 94 70 - 130 C21-C34 Aliphatics 37.0 70 - 130 40.0 mg/Kg 93 C10-C12 Aromatics 6.67 5.20 mg/Kg 78 70 - 130 C12-C16 Aromatics 20.0 18.1 mg/Kg 90 70 - 130 C16-C21 Aromatics 40.0 34.9 mg/Kg 87 70 - 130 C21-C34 Aromatics 53.3 57.7 108 70 - 130 mg/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits		
o-Terphenyl	87		60 - 140		
1-Chlorooctadecane	83		60 - 140		

Lab Sample ID: 580-30758-4 MS

Matrix: Solid

Analysis Batch: 104360

Client Sample ID: B-12-3-13

Prep Type: Total/NA

Prep Batch: 103975

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C12 Aliphatics	1500		8.14	1260	E 4	mg/Kg	₩	-3025	70 - 130	
C12-C16 Aliphatics	8500		16.3	8130	E 4	mg/Kg	≎	-2281	70 - 130	
C16-C21 Aliphatics	7800		24.4	8750	E 4	mg/Kg	₽	4039	70 - 130	
C21-C34 Aliphatics	1500		48.9	1820	E 4	mg/Kg	≎	715	70 - 130	
C10-C12 Aromatics	330		8.14	251	E 4	mg/Kg	₽	-999	70 - 130	
C12-C16 Aromatics	3000		24.4	2180	E 4	mg/Kg	₩	-3396	70 - 130	
C16-C21 Aromatics	5700		48.9	4670	E 4	mg/Kg	\$	-2011	70 - 130	
C21-C34 Aromatics	1000		65.2	967	E 4	mg/Kg	₽	-45	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl		IX	60 - 140
1-Chlorooctadecane	0	IX	60 - 140

Lab Sample ID: 580-30758-4 MSD

Matrix: Solid

Analysis Batch: 104360

Client	Sample	e ID:	B-12	-3-13
--------	--------	-------	------	-------

Prep Type: Total/NA

Prep Batch: 103975

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C10-C12 Aliphatics	1500		8.19	1270	E 4	mg/Kg	<u> </u>	-2866	70 - 130	1	25
C12-C16 Aliphatics	8500		16.4	8460	E 4	mg/Kg	₩	-223	70 - 130	4	25
C16-C21 Aliphatics	7800		24.6	9260	E 4	mg/Kg	₩	6067	70 - 130	6	25
C21-C34 Aliphatics	1500		49.1	1960	E 4	mg/Kg	₽	1006	70 - 130	8	25
C10-C12 Aromatics	330		8.19	252	E 4	mg/Kg	₩	-986	70 - 130	0	25
C12-C16 Aromatics	3000		24.6	2280	E 4	mg/Kg	₩	-2946	70 - 130	5	25

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

o-Terphenyl 1-Chlorooctadecane

Surrogate

o-Terphenyl - RADL

Method: NWTPH/EPH - Northwest - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 580-30758-4 MSD Matrix: Solid Analysis Batch: 104360								Clie	nt Sample Prep Ty Prep B		tal/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C16-C21 Aromatics	5700		49.1	5080	E 4	mg/Kg	₩	-1162	70 - 130	8	25
C21-C34 Aromatics	1000		65.5	1080	E 4	mg/Kg	₽	123	70 - 130	11	25
	MSD	MSD									
Surrogate %	Recovery	Qualifier	Limits								

60 - 140

60 - 140

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

0 TX

0 IX

Lab Sample ID: MB 580-103895/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 104033 Prep Batch: 103895 MB MB Analyte Pocult Qualifier Analyzod

Analyte	Result	Qualifier	RL	MDL	Unit	ט	Prepared	Analyzed	DII Fac
#2 Diesel (C10-C24)	ND		25	5.7	mg/Kg		01/22/12 09:19	01/24/12 14:13	1
Motor Oil (>C24-C36)	ND		50	9.1	mg/Kg		01/22/12 09:19	01/24/12 14:13	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	108		50 - 150				01/22/12 09:19	01/24/12 14:13	1

Lab Sample ID: LCS 580-103895/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 104033 Prep Batch: 103895 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits #2 Diesel (C10-C24) 500 70 - 125 455 mg/Kg 91 Motor Oil (>C24-C36) 500 473 95 64 - 127 mg/Kg LCS LCS %Recovery Qualifier Limits Surrogate 50 - 150 o-Terphenyl 88

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) - RADL

%Recovery Qualifier

57

Lab Sample ID: 580-30758-1 DU Client Sample ID: B-12-4-40 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 104033 Prep Batch: 103895** DU DU Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit ₩ #2 Diesel (C10-C24) - RADL 45000 Y 43900 mg/Kg 35 Motor Oil (>C24-C36) - RADL 53000 Y ₩ 52100 mg/Kg 35 DU DU

Limits

50 - 150

QC Sample Results

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-30758-1 DU Client Sample ID: B-12-4-40 Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 103855 Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit % 0.5 Percent Solids 89 89 20 Percent Moisture 11 11 % 4 20

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-4-40

Date Collected: 01/11/12 15:45

Date Received: 01/19/12 09:50

Lab Sample ID: 580-30758-1

Matrix: Solid Percent Solids: 88.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	DL		103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B	DL	10	103964	01/23/12 20:42	JMB	TAL SEA
Total/NA	Prep	3550B			103957	01/23/12 12:14	RS	TAL SEA
Total/NA	Analysis	8270C SIM		10	104359	01/30/12 15:12	CM	TAL SEA
Total/NA	Prep	5035	DL		103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx	DL	10	103962	01/23/12 20:42	JMB	TAL SEA
Total/NA	Prep	3550B	RADL		103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx	RADL	50	104033	01/24/12 14:55	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

Client Sample ID: B-12-4-68 Lab Sample ID: 580-30758-2

Date Collected: 01/12/12 11:10 **Matrix: Solid** Date Received: 01/19/12 09:50 Percent Solids: 81.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B		1	103964	01/23/12 19:34	JMB	TAL SEA
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	103962	01/23/12 19:34	JMB	TAL SEA
Total/NA	Prep	3550B			103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 15:39	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

Client Sample ID: B-12-2-55 Lab Sample ID: 580-30758-3 Date Collected: 01/11/12 09:00 Matrix: Solid Date Received: 01/19/12 09:50 Percent Solids: 79.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B		1	103964	01/23/12 17:42	JMB	TAL SEA
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	103962	01/23/12 17:42	JMB	TAL SEA
Total/NA	Prep	3550B			103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 16:01	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

Client Sample ID: B-12-3-13 Lab Sample ID: 580-30758-4

Date Collected: 01/11/12 11:30 **Matrix: Solid** Date Received: 01/19/12 09:50 Percent Solids: 80.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	DL		103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B	DL	10	103964	01/23/12 21:49	JMB	TAL SEA
Total/NA	Prep	5035	DL		103945	01/23/12 10:21	JMB	TAL SEA

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-3-13 Lab Sample ID: 580-30758-4

 Date Collected: 01/11/12 11:30
 Matrix: Solid

 Date Received: 01/19/12 09:50
 Percent Solids: 80.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Gx	DL	10	103962	01/23/12 21:49	JMB	TAL SEA
Total/NA	Prep	5035			103956	01/23/12 11:59	MAT	TAL SEA
Total/NA	Analysis	NWTPH/VPH		5	103966	01/23/12 15:42	MAT	TAL SEA
Total/NA	Prep	3550B			103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 16:23	KKW	TAL SEA
Total/NA	Prep	3550B	RADL		103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx	RADL	10	104222	01/26/12 09:54	KKW	TAL SEA
Total/NA	Prep	3550B	DL		103975	01/23/12 15:00	GH	TAL SEA
Total/NA	Analysis	NWTPH/EPH	DL	10	104424	01/31/12 08:16	EK	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

 Client Sample ID: B-12-2-40
 Lab Sample ID: 580-30758-5

 Date Collected: 01/10/12 16:00
 Matrix: Solid

 Date Received: 01/19/12 09:50
 Percent Solids: 75.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B		1	103964	01/23/12 18:05	JMB	TAL SEA
Total/NA	Prep	3550B			103957	01/23/12 12:14	RS	TAL SEA
Total/NA	Analysis	8270C SIM		10	104359	01/30/12 16:10	CM	TAL SEA
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	103962	01/23/12 18:05	JMB	TAL SEA
Total/NA	Prep	5035			103956	01/23/12 11:59	MAT	TAL SEA
Total/NA	Analysis	NWTPH/VPH		1	103966	01/23/12 17:54	MAT	TAL SEA
Total/NA	Prep	3550B			103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 16:44	KKW	TAL SEA
Total/NA	Prep	3550B			103975	01/23/12 15:00	GH	TAL SEA
Total/NA	Analysis	NWTPH/EPH		1	104360	01/30/12 12:47	EK	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

 Client Sample ID: B-12-1-59
 Lab Sample ID: 580-30758-7

 Date Collected: 01/10/12 14:00
 Matrix: Solid

 Date Received: 01/19/12 09:50
 Percent Solids: 87.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B		1	103964	01/23/12 18:27	JMB	TAL SEA
Total/NA	Prep	5035			103956	01/23/12 11:59	MAT	TAL SEA
Total/NA	Analysis	NWTPH/VPH		1	103966	01/23/12 18:47	MAT	TAL SEA
Total/NA	Prep	5035	RA		103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx	RA	1	104066	01/24/12 17:48	JMB	TAL SEA
Total/NA	Prep	3550B			103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104033	01/24/12 17:06	KKW	TAL SEA
Total/NA	Prep	3550B			103975	01/23/12 15:00	GH	TAL SEA

TestAmerica Seattle 2/2/2012

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-1-59

Date Collected: 01/10/12 14:00 Date Received: 01/19/12 09:50

Lab Sample ID: 580-30758-7

Matrix: Solid Percent Solids: 87.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH/EPH		1	104360	01/30/12 13:14	EK	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

Lab Sample ID: 580-30758-8

Matrix: Solid

Client Sample ID: B-12-2-12 Date Collected: 01/10/12 15:00 Date Received: 01/19/12 09:50 Percent Solids: 92.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	DL		103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B	DL	10	103964	01/23/12 22:12	JMB	TAL SEA
Total/NA	Prep	5035	DL		103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx	DL	10	103962	01/23/12 22:12	JMB	TAL SEA
Total/NA	Prep	3550B	RADL		103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx	RADL	50	104033	01/24/12 17:28	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

Client Sample ID: B-12-1-32 Lab Sample ID: 580-30758-9

Date Collected: 01/10/12 11:00 Date Received: 01/19/12 09:50

Matrix: Solid Percent Solids: 71.8

Prep Type	Batch Type	Batch	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
		Method						
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B		1	103964	01/23/12 22:34	JMB	TAL SEA
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	103962	01/23/12 22:34	JMB	TAL SEA
Total/NA	Prep	3550B	RADL		103895	01/22/12 09:19	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx	RADL	50	104033	01/24/12 18:34	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	103855	01/20/12 13:16	RD	TAL SEA

Client Sample ID: Trip Blank Lab Sample ID: 580-30758-11 **Matrix: Solid**

Date Collected: 01/10/12 00:00 Date Received: 01/19/12 09:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	8260B		1	103964	01/23/12 17:20	JMB	TAL SEA
Total/NA	Prep	5035			103945	01/23/12 10:21	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	103962	01/23/12 17:20	JMB	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP		L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007
TestAmerica Seattle	USDA	USDA		P330-11-00222
TestAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Sample Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-30758-1	B-12-4-40	Solid	01/11/12 15:45	01/19/12 09:50
580-30758-2	B-12-4-68	Solid	01/12/12 11:10	01/19/12 09:50
580-30758-3	B-12-2-55	Solid	01/11/12 09:00	01/19/12 09:50
580-30758-4	B-12-3-13	Solid	01/11/12 11:30	01/19/12 09:50
580-30758-5	B-12-2-40	Solid	01/10/12 16:00	01/19/12 09:50
580-30758-7	B-12-1-59	Solid	01/10/12 14:00	01/19/12 09:50
580-30758-8	B-12-2-12	Solid	01/10/12 15:00	01/19/12 09:50
580-30758-9	B-12-1-32	Solid	01/10/12 11:00	01/19/12 09:50
580-30758-11	Trip Blank	Solid	01/10/12 00:00	01/19/12 09:50

4

5

6

O

Client Contact See Sand	Reduced by Sign Print ents Sample By Sign Print Rents Sample By Sign Print Sample I.D. and Location/Description What I wan Show I wan Show I wan Possible Hamp: Ressible Hamps R		Time Poisson XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	sived By Sign/ sived By Sign/	Analysis (Attaa more space is Survey by Archive F	Months Months	Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Part Imme Time Time Time Time Time
	THE LEADER IN ENVIRONMENTAL TESTING	737 oth Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericai	Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com	[] \	Short Hold		Chain of Custody Record
	22601 32m2 /wa 5		Vumber (Area Code)/Fax Nu	umber (Lab Num	751	of .
32601 32 The S, Sink No Telephone Number (Area Code)/Fax Number 1 Lab Number 5075 Page of	edward way State		Lab	Contagt Oler	Analysis (Attac more space is		
32001 32 Ma S, Suite 100 Telephone Number (Area Code)/Fax Number 1 200 1 30 7 5 6 100 253-235-6400 250-6400 Analysis (Attach list if more space is needed)	W. shrw	_	Q 2 2 3	SIM	D _×		Special Instru
Rame and Location (State) 1.5 - 1.00 Sample Contact Lab Number Lab Number Lab Number Lab Number Lab Ontact Lab Sontact Lab Son			Matrix	insl	1-49 1-49		Conditions of
Rame and Location (State) State Analysis (Attach list if more space is needed) Matrix State Sta	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Тіте	Sed. Soil Unpres.	HNO3 HCI NaOH ZnÄc/ NaOH	NWT		:
Sample I.D. and Location/Description Sample Many Sample Time is ague to see the sample may be combined on one line) Page Itelephone Number (Area Code)/Fax Num	-12-4-40	15 45	× ×	×	×		
Sample I.D. and Location/Description iners for each sample may be combined on one line) Name and Location/Description Sample I.D. and Location/Description Date Time Interest or each sample may be combined on one line) Name and Location/Description Lab Contact Analysis (Attach list if More space is needed) Matrix Matrix Matrix Analysis (Attach list if More space is needed) Matrix Natrix	b-12-4-68			*	×		
Address 32 by 32 b	2-55			*	×		
Address 32001 32 m² Ava 5 5k 100 Telephone Number (Areg Code) Fax	3-13	<u> </u>	ļ	*	×		
Address 32 w1 32 m² Ava 5 5 m² k vo lelephone Number (Areg Code)/Fax Number (253 - 635 - 6400	Z-40				×		
Address 32 w 32 m 32 m 4 w 5 5 m 100	8-12-4-12	_		×.	~		
Address 32 w 32 w 32 w 4 s 5 suit 100 liethone Number (Angl Code) Fax Number 1 word of the days of the	1.5	100		×	×		
Address 32 601 32 Na Such 25 Suite 100 Offe 253-935- Educo State Suite 100 Offe 100	-2-12			-	×		
Address 3.2 w/ 3	1.32			*	~		
Address 32 601 32 12 100 1	8-12-1-1						
Address 32 by 32 kz Au S Suite No. Belginone Number (Angelor Number) Collect Name and Legistra (Style) Contractiffer teach sumple may be combined on one line) Contractiffer teach sumple may be contractified to teach sum	= (= (
Address 3,2 to 1	□ No Cooler Temp:	ımable 🗆		□ Unknown		Months	fee may be assesse retained longer tha
Total Name and Cardinor (State 10 Org 10 O	ound Time Required (business days)	15 Days 🕅 Other		C Requirements (Spe			
Address 32 col 32 kg 32 kg 32 kg 33 kg 34 kg 3	od by Signyring Joseph		Inne 18 DO	1. Received By Sign/Prim	James Comp	· .	19/12
Address 3,2 Lin 3,2 kk Aus 5,5 kk No. Besinhore Number (August Number 12 August (August Number 12 August (August Number 12 August (August Number 12 August (August Number Number Number Number Number Number (August Number Number Number Number Number Number (August Number Numb		Date		2. Received By Sign/Print		Daite	
Address 3,2 cm 3,2 km 3,2 km 3,5 km 3,0 km	3. Relinquished By Sign/Print	Date		3. Received By Sign/Print		Date	
Address 3,2 cm 3,2 cm 3,2 cm 3,5 cm	Is possible provide	proximber - Secit	.		33	UPS	2

Login Sample Receipt Checklist

Client: Kennedy/Jenks Consultants

Job Number: 580-30758-1

Login Number: 30758 List Source: TestAmerica Seattle

List Number: 1

Creator: Blankinship, Tom

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	No sample date and/or time on COC, logged in per container labels for sample -10
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	Client attached additional labels to tared MeOH vials.
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

_

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-30758-2

Client Project/Site: BNSF Wishram Monitoring

For:

Kennedy/Jenks Consultants 32001-32nd Ave South, Suite 100 Federal Way, Washington 98001

Attn: Joseph Sawdey

Milles Christy

Authorized for release by: 2/21/2012 2:00:01 PM Melissa Armstrong Project Manager I melissa.armstrong@testamericainc.com

Designee for

Kristine Allen

Project Manager I

kristine.allen@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-2

Table of Contents

Cover Page	
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	7
Chronicle	8
Certification Summary	9
Sample Summary	10
Chain of Custody	11
Receipt Checklists	12

4

9

10

Case Narrative

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-2

Job ID: 580-30758-2

Laboratory: TestAmerica Seattle

Narrative

Receipt

The chain of custody doesn't have the sampling date or time for sample -10. The sample was logged in with the information found on the labels.

A trip blank was submitted for analysis with these samples; however, it was not listed on the Chain of Custody (COC).

The tared methanol-preserved vials for each client sample had an additional label affixed to them.

All other samples were received in good condition within temperature requirements.

GC Semi VOA - Method NWTPH-Dx

Due to the level of dilution required for the following samples in analysis batch 580-105186, surrogate recoveries are not reported: B-12-4-40 (580-30758-1) and (580-30758-1) DU.

The results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for sample B-12-2-40 (580-30758-2) are due primarily to a complex mixture of a gasoline/kerosene range product, weathered diesel fuel, a mineral/transformer oil range product, and motor oil. The affected analyte ranges are qualified "Y" and have been reported.

In analytical batch 580-105066, the method blank for preparation batch 580-105005 contained #2 Diesel (C10-C24) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed. The value should be considered as estimate, and has been flagged "J". The associated sample results have been flagged "B".

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

4

3

A

E

6

6

7

Ö

40

10

Definitions/Glossary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-2

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
X	Surrogate is outside control limits
Υ	The chromatographic response resembles a typical fuel pattern.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\(\tilde{\pi} \)	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-2

Client Sample ID: B-12-4-40

Date Collected: 01/11/12 15:45

Date Received: 01/19/12 09:50

Lab Sample ID: 580-30758-1

Matrix: Solid

Percent Solids: 88.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	65000	В	1400	310	mg/Kg	₽	01/22/12 09:35	02/13/12 14:55	50
Motor Oil (>C24-C36)	67000		2700	500	mg/Kg	₩	01/22/12 09:35	02/13/12 14:55	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenvl	733	X	50 - 150				01/22/12 09:35	02/13/12 14:55	50

5

5

7

ŏ

9

Client Sample Results

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-2-40

Date Collected: 01/10/12 16:00

Date Received: 01/19/12 09:50

TestAmerica Job ID: 580-30758-2

Lab Sample ID: 580-30758-5

Matrix: Solid

Percent Solids: 75.1

Method: NWTPH-Dx - North	west - Semi-Volatile	e Petroleum	Products (GC))					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	5800	ВҮ	31	7.0	mg/Kg	₽	01/22/12 09:35	02/10/12 13:19	1
Motor Oil (>C24-C36)	5500	Y	62	11	mg/Kg	₽	01/22/12 09:35	02/10/12 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	104		50 - 150				01/22/12 09:35	02/10/12 13:19	1

TestAmerica Job ID: 580-30758-2

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-105005/1-B

Lab Sample ID: LCS 580-105005/2-B

Matrix: Solid

#2 Diesel (C10-C24)

Motor Oil (>C24-C36)

Matrix: Solid

Analysis Batch: 105066

Analyte

Analysis Batch: 105066

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 105005

мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 25 5.7 mg/Kg 01/22/12 09:35 7.05 J 02/10/12 11:53 50 01/22/12 09:35 02/10/12 11:53 ND 9.1 mg/Kg

MB MB

Surrogate %Recovery Qualifier I imits Prepared Analyzed Dil Fac o-Terphenyl 125 50 - 150 01/22/12 09:35 02/10/12 11:53

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 105005

Spike LCS LCS %Rec. Result Qualifier Limits Analyte Added Unit D %Rec #2 Diesel (C10-C24) 500 506 101 64 - 127 mg/Kg Motor Oil (>C24-C36) 500 106 70 - 125 529 mg/Kg

LCS LCS

Surrogate %Recovery Qualifier Limits 114 50 - 150 o-Terphenyl

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) - RADL

Lab Sample ID: 580-30758-1 DU Client Sample ID: B-12-4-40 **Matrix: Solid** Prep Type: Total/NA

Analyte

Analysis Batch: 105186

#2 Diesel (C10-C24) - RADL

Motor Oil (>C24-C36) - RADL

Prep Batch: 105005 Sample Sample DU DU RPD Result Qualifier Result Qualifier D RPD Limit Unit ₩ 65000 B 57000 mg/Ka 12 35 ₩ 67000 59100 mg/Kg 13 35

DU DU

%Recovery Qualifier Surrogate Limits 635 X o-Terphenyl - RADL 50 - 150

> TestAmerica Seattle 2/21/2012

Page 7 of 12

Lab Chronicle

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-4-40

Date Collected: 01/11/12 15:45

Date Received: 01/19/12 09:50

TestAmerica Job ID: 580-30758-2

Matrix: Solid

Percent Solids: 88.8

Lab Sample ID: 580-30758-1

Batch Batch Dilution Batch Prepared Prep Type Method Factor or Analyzed Lab Type Run Number Analyst Total/NA Prep 3550B RADL 105005 01/22/12 09:35 GH TAL SEA NWTPH-Dx Total/NA RADL 105186 02/13/12 14:55 KKW TAL SEA Analysis 50

Client Sample ID: B-12-2-40 Lab Sample ID: 580-30758-5

Date Collected: 01/10/12 16:00 **Matrix: Solid** Date Received: 01/19/12 09:50 Percent Solids: 75.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			105005	01/22/12 09:35	GH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105066	02/10/12 13:19	KKW	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-2

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP		L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007
TestAmerica Seattle	USDA	USDA		P330-11-00222
TestAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Sample Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-30758-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-30758-1	B-12-4-40	Solid	01/11/12 15:45	01/19/12 09:50
580-30758-5	B-12-2-40	Solid	01/10/12 16:00	01/19/12 09:50

2

4

5

6

8

9

Comments	3. Relinqu	2. Relinquished By	1. Relinquished by	Turn Around ☐ 24 Hours	Cooler □ Yes [108-12-	9 6-12-	B-12	-78-12-	0 R-12-4	5 8-12-	4 6-12-	-36-12-	-21-6-12-	8-12	S. (Container	Contract/F	Project Na.	city-e band	Address	Client	
Is possible	3. Relinquished By Sign/Print	shed by Sign Print	shed by Signyrim	Turn Around Time Required (business days) 24 Hours 48 Hours 5 D	□ No Cooler Temp:_	Bank	15	1.52	-2-12	1-5	4-12	2- 4D	3-13	ئ	4-68	12-4-40	ample I.D. and Locat s for each sample may l	Contract/Purchase Order/Quote No.	Project Name and Location (State)	and way	32001 32	Kennelen	THE LEADER IN ENVIRONMENTAL TESTING
المرسيد			りしてき	gys	Possible □ Non-				-			white to					Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	0.	Wishram	State 2	ohe Ava S	Jenus	STICO
1) framoso - Specific			Saudon	10 Days 🔲 15 Days	Possible Hazard Identification ☐ Non-Hazard ☐ Flammable			1/10/12			Ĺ	1/10/12	<u> </u>	1/11/12 0	1/12/12 11	1/11/12 1) Date		and according to	1 an Ybo diz	حورا عاسك		9 10
Comments IS possible, gravite Hydrocurber-Specific April	Date	Date	Date 1-17-12	Ka Other ASA @	nable 🔲 Skin Irritant			001	1500	NOO	1430	1600	1130	0900	1110	1242	Air Aqueous	M	Billing Contact	Sample Swale	Telephone Number 253	Client Contact	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com
Andrysis	Time 3	Time 2	Firme (B DO)		□ Poison			×	×	×	×	×	メ	*	× ×	×	Sed. Soil Unpres. H2S04	Matrix	Q_	1	Telephone Number (Area Code)/Fax Number 253 - 235 - 6400	Jos Sanda	inc.com
ers	3. Received By Sign/Print	2. Received By Sign/Print	1. Received By Sign/Prim	QC Requirements (Specify)	□ Uпкпомп	-											HNO3 HCI NaOH	Containers & • Preservatives		Lab Contact Dun	imber 1	Š	
	Print	Print	Prim /> / com	ecify)	Sample Disposal Return To Client			×	×××	× ×	×	× × ×	×	×	×	×××	ZNAC/ NaOH Meth 827 NWT NWT	<u> ۲۲۷</u> ۱۲۸	SIM Dx Gx				Rush
Ly Blue/wh			**************************************		Disposal By Lab			× ×	*	*	メ	×	×	y <	*	×	826	OB		Analysis (Attach list if more space is needed)	Lab Number	Date 1-17-12	Rush Short Hold
NO TO			Blankinskyp		_ab Months																+500		Cha Cus
	Date	Date	Date 1/19/12		(A fee may be as are retained longe						,							Conditions	Special Ir	ı	Page	Chain of Custody Number	Chain of Custody Record
	Time	Time	0950		(A fee may be assessed if samples are retained longer than 1 month)													Conditions of Receipt	Special Instructions/	,	of	Number 3575	ord

Login Sample Receipt Checklist

Client: Kennedy/Jenks Consultants

Job Number: 580-30758-2

Login Number: 30758 List Source: TestAmerica Seattle

List Number: 1

Creator: Blankinship, Tom

orotton Blankinomp, rom		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	No sample date and/or time on COC, logged in per container labels for sample -10
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	Client attached additional labels to tared MeOH vials.
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

Л

5

6

Ŏ

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-30930-1 Client Project/Site: BNSF Wishram

For:

Kennedy/Jenks Consultants 32001-32nd Ave South, Suite 100 Federal Way, Washington 98001

Attn: Joseph Sawdey

Knittene D. allen

Authorized for release by: 2/9/2012 5:03:30 PM

Kristine Allen Project Manager I

kristine.allen@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30930-1

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	6
Chronicle	7
Certification Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Checklists	11

6

6

Q

9

10

Case Narrative

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram

TestAmerica Job ID: 580-30930-1

Job ID: 580-30930-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

Samples were received at the laboratory outside of the required temperature criteria at 20.0C. Samples were not received on ice. Client noted that the samples were stored in the refrigerator until delivery.

GC Semi VOA

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30930-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

9

4

5

6

Q

10

10

Client Sample Results

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-30930-1 Project/Site: BNSF Wishram

Client Sample ID: B-12-5-45

Date Collected: 01/17/12 13:00 Date Received: 01/27/12 13:05 Lab Sample ID: 580-30930-1

Matrix: Solid

Percent Solids: 80.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND ND		30	6.9	mg/Kg	<u></u>	01/30/12 11:48	01/31/12 16:10	1
Motor Oil (>C24-C36)	ND		61	11	mg/Kg	₽	01/30/12 11:48	01/31/12 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	103		50 - 150				01/30/12 11:48	01/31/12 16:10	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	80		0.10	0.10	%			01/30/12 13:15	1
Percent Moisture	20		0.10	0.10	%			01/30/12 13:15	1

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 104399**

Client: Kennedy/Jenks Consultants TestAmerica Job ID: 580-30930-1 Project/Site: BNSF Wishram

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-104399/1-A Matrix: Solid

Analysis Batch: 104460

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		25	5.7	mg/Kg		01/30/12 11:48	01/31/12 15:27	1
Motor Oil (>C24-C36)	ND		50	9.1	mg/Kg		01/30/12 11:48	01/31/12 15:27	1

MB MB

%Recovery Qualifier Surrogate I imits Prepared Analyzed Dil Fac 01/31/12 15:27 o-Terphenyl 101 50 - 150 01/30/12 11:48

Lab Sample ID: LCS 580-104399/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 104460

Prep Batch: 104399 Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec #2 Diesel (C10-C24) 500 495 mg/Kg 99 70 - 125 Motor Oil (>C24-C36) 500 509 102 64 - 127 mg/Kg

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 83 50 - 150

Lab Sample ID: 580-30930-1 DU Client Sample ID: B-12-5-45

Matrix: Solid

Analysis Batch: 104460

Prep Type: Total/NA **Prep Batch: 104399** Camania Camania

	Sample	Sample	DU	טע				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
#2 Diesel (C10-C24)	ND		ND		mg/Kg	-	 NC	35	
Motor Oil (>C24-C36)	ND		ND		mg/Kg	₩.	NC	35	

DU DU

Surrogate Qualifier Limits %Recovery o-Terphenyl 103 50 - 150

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-30930-1 DU Client Sample ID: B-12-5-45 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 104411									
	Sample	Sample	DU	DU				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
Percent Solids	80		80		%		 0.4	20	
Percent Moisture	20		20		%		2	20	

TestAmerica Seattle 2/9/2012

Lab Chronicle

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30930-1

Lab Sample ID: 580-30930-1

Matrix: Solid

Percent Solids: 80.4

Client Sample ID: B-12-5-45 Date Collected: 01/17/12 13:00

Date Received: 01/27/12 13:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			104399	01/30/12 11:48	RS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	104460	01/31/12 16:10	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	104411	01/30/12 13:15	MT	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

5

7

8

4 6

Certification Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30930-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP		L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007
TestAmerica Seattle	USDA	USDA		P330-11-00222
TestAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

5

8

0

10

Sample Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram TestAmerica Job ID: 580-30930-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-30930-1	B-12-5-45	Solid	01/17/12 13:00	01/27/12 13:05

-

4

5

9

TAL-8274-580 (0210)	Date	Dake 1205	Dato Time	(A fee may be assessed if samples are retained longer than 1 month)	Woes	po ice	1R=20.0120.0	before delivery	Of fridae e	Ruled but of	11				Conditions of Keceipt	Special Instructions/		Page of	Chain of Custody Number	Chain of Custody Record
		A labor		Archive For Months													Analysis (Attach list if more space is needed)		\$	427
ASAR	3. Received By Sign/Prim	ned By Sign/Print	QC Requirements (Specify)	ple Disposal Return To Client									X	HCI NaOH ZnAc/ NaOH	Containers & Preservatives	_Dv	Den !		and dery	☐ Rush ☐ Short Hold
1		80	1	□ Poison B [7	Unpres. H2S04 HN03		3	Lab Cantach		3	com
th Report; PINK - Field	Date Time	Date Time		ble 🔲 Skin Irritant									8	Air Aqueous Sed.	Matrix	Billing Contact	Samples JRS	Telephone Number (Area Code)	Client Contact	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com
Y - Returned to Client w		Smilder	□ 15 Days	Possible Hazard Identification ☐ Non-Hazard ☐ Flammable									1/17/12 1300	1			(Zip coch 000)	શ		Tos 575 Tac Tel Fax
CAPISCS th the Samples; CANAR		Wist W.	ss days)	Possible Hazard ☐ Non-Hazard	10	- Andrews	, de principal de la constante de la constante de la constante de la constante de la constante de la constante							on/Description e combined on one line)	0	No strans	State	are Ave 5	Jensey	TICQ NTAL TESTING
Comments 1002 time expires 1/31/12 Place extrusion and the Samples; CANARY - Returned to Client with Report; PINK - Field Copy	3. Relinquished By Sign/Prim	Relinguished By Sign/Him Relinguished By Sign/Prim	Turn Around Time Required (business days) 24 Hours	Coaler No Cooler Temp:	e transporter de la constanta		And the second s	 th (m)				1	8-12-5-45	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Contract/Purchase Order/Quote No.	Project Name and Location (State)	City Februl Was	اللم	Client	THE LEADER IN ENVIRONMENTAL TESTING

Login Sample Receipt Checklist

Client: Kennedy/Jenks Consultants

Job Number: 580-30930-1

Login Number: 30930 List Source: TestAmerica Seattle

List Number: 1

Creator: Kalicki, Samantha

• "	_	
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	N/A	Not present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Pulled out of fridge before drop-off.
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Not needed.
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	No voa vial rec'd.
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

3

e

0

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-31095-1

Client Project/Site: BNSF Wishram Monitoring

For:

Kennedy/Jenks Consultants 32001-32nd Ave South, Suite 100 Federal Way, Washington 98001

Attn: Joseph Sawdey

Pamela R. Johnson

Authorized for release by: 2/20/2012 2:57:39 PM

Pam Johnson

Project Manager I

pamr.johnson@testamericainc.com

Designee for

Kristine Allen

Project Manager I

kristine.allen@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Table of Contents

Cover Page	
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	12
Chronicle	16
Certification Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	22

3

4

5

7

8

10

Case Narrative

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Job ID: 580-31095-1

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA - Method 8260B

The following sample B-12-11-35 (580-31095-13) was diluted due to the nature of the sample matrix (Oily film in MeOH kit). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC Semi VOA - Method NWTPH-Dx

In analytical batch 105278, the results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for samples B-12-7-24 (580-31095-5) and B-12-8-37 (580-31095-8) are due primarily to a mixture of heavily weathered/degraded diesel fuel, and/or a mineral/transformer oil range product, and motor oil. The affected analyte ranges are qualified "Y" and have been reported.

In analytical batch 105384, the results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for sample B-12-11-35 (580-31095-13) are due primarily to a mixture of heavily weathered/degraded diesel fuel, and/or a mineral/transformer oil range product, and motor oil. The affected analyte ranges are gualified "Y" and have been reported.

In analytical batch 105384, the surrogate recovery for the following sample B-12-11-35 (580-31095-13) from preparation batch 105275 was outside control limits. Evidence of matrix interference is present, due to the high concentration of target analytes. This sample required a 10X dilution.

In analytical batches 105278 and 105384 the method blank for preparation batch MB 580-105275/1-A contained #2 Diesel (C12-C24) at a level that was above the method detection limit but below the reporting limit. The values should be considered as an estimate, and have been flagged "J". The associated sample results have been flagged "B".

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

2

3

4

3

6

1 0

TestAmerica Seattle 2/20/2012

Definitions/Glossary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

9

Qualifiers

GC/MS VOA

Qualifier Qualifier	Description
	•

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

These commonly used abbreviations may or may not be present in this report.

GC VOA

Qualifier	Qualifier Description
۸	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Υ	The chromatographic response resembles a typical fuel pattern.
X	Surrogate is outside control limits
X	Surrogate is outside control limits

Glossary Abbreviation

Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains no Free Liquid
Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Estimated Detection Limit
United States Environmental Protection Agency
Method Detection Limit
Minimum Level (Dioxin)
Not detected at the reporting limit (or MDL or EDL if shown)
Practical Quantitation Limit
Quality Control
Reporting Limit
Relative Percent Difference, a measure of the relative difference between two points
Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

TestAmerica Seattle 2/20/2012

2

Client: Kennedy/Jenks Consultants

TestAmerica Job ID: 580-31095-1

Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-6-45

Date Collected: 01/31/12 11:45

Date Received: 02/06/12 10:40

Lab Sample ID: 580-31095-1

Matrix: Solid

Percent Solids: 73.4

Method: 8260B - Volatile O	rganic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND		22	5.5	ug/Kg	₩	02/10/12 14:07	02/13/12 22:12	1
Toluene	ND		55	14	ug/Kg	₽	02/10/12 14:07	02/13/12 22:12	1
Ethylbenzene	ND		55	14	ug/Kg	₽	02/10/12 14:07	02/13/12 22:12	1
m-Xylene & p-Xylene	ND		55	14	ug/Kg	₽	02/10/12 14:07	02/13/12 22:12	1
o-Xylene	ND		55	14	ug/Kg	₽	02/10/12 14:07	02/13/12 22:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	99	-	80 - 120				02/10/12 14:07	02/13/12 22:12	1
Toluene-d8 (Surr)	102		80 - 120				02/10/12 14:07	02/13/12 22:12	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)									
4-Bromofluorobenzene (Surr)	105	70 - 120	02/10/12 14:07	02/13/12 22:12	1				
Ethylbenzene-d10	104	70 - 120	02/10/12 14:07	02/13/12 22:12	1				
Toluene-d8 (Surr)	102	80 - 120	02/10/12 14:07	02/13/12 22:12	1				
Fluorobenzene (Surr)	99	80 - 120	02/10/12 14:07	02/13/12 22:12	1				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		5.5	0.69	mg/Kg	‡	02/10/12 14:07	02/13/12 22:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		50 - 150				02/10/12 14:07	02/13/12 22:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	12	J B	32	7.2	mg/Kg	₩	02/14/12 08:44	02/14/12 18:14	1
Motor Oil (>C24-C36)	ND		63	12	mg/Kg	\$	02/14/12 08:44	02/14/12 18:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150				02/14/12 08:44	02/14/12 18:14	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	73		0.10	0.10	%			02/15/12 09:48	1
Percent Moisture	27		0.10	0.10	%			02/15/12 09:48	1

2

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Client Sample ID: B-12-7-24

Percent Solids

Percent Moisture

Date Collected: 01/31/12 13:50 Date Received: 02/06/12 10:40 Lab Sample ID: 580-31095-5 Matrix: Solid

02/15/12 09:48

02/15/12 09:48

Percent Solids: 75.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		18	4.5	ug/Kg	₩	02/10/12 14:07	02/13/12 23:18	
Toluene	ND		45	11	ug/Kg	₽	02/10/12 14:07	02/13/12 23:18	
Ethylbenzene	ND		45	11	ug/Kg	₩	02/10/12 14:07	02/13/12 23:18	
m-Xylene & p-Xylene	ND		45	11	ug/Kg	₽	02/10/12 14:07	02/13/12 23:18	
o-Xylene	ND		45	11	ug/Kg	₽	02/10/12 14:07	02/13/12 23:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Fluorobenzene (Surr)	98	-	80 - 120				02/10/12 14:07	02/13/12 23:18	
Toluene-d8 (Surr)	101		80 - 120				02/10/12 14:07	02/13/12 23:18	
Ethylbenzene-d10	102		70 - 120				02/10/12 14:07	02/13/12 23:18	
4-Bromofluorobenzene (Surr)	103		70 - 120				02/10/12 14:07	02/13/12 23:18	
- Method: NWTPH-Gx - Northwest	- Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	25		4.5	0.57	mg/Kg	*	02/10/12 14:07	02/13/12 23:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		50 - 150				02/10/12 14:07	02/13/12 23:18	
- Method: NWTPH-Dx - Northwest	- Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	470	ВҮ	31	7.0	mg/Kg	₽	02/14/12 08:44	02/14/12 18:39	
Motor Oil (>C24-C36)	530	Y	61	11	mg/Kg	₽	02/14/12 08:44	02/14/12 18:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	98		50 - 150				02/14/12 08:44	02/14/12 18:39	
General Chemistry									

0.10

0.10

76

24

%

0.10

0.10 %

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Client Sample ID: B-12-8-37 Date Collected: 02/01/12 10:10

Lab Sample ID: 580-31095-8

Matrix: Solid

Percent Solids: 74.6

Pate Received: 02/06/12 10:40								Percent Solid	us: /4.
Method: 8260B - Volatile Orga	anic Compounds	(GC/MS)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND			4.9	ug/Kg	<u> </u>	02/10/12 14:07	02/14/12 00:23	
Toluene	ND		49	12	ug/Kg	₩	02/10/12 14:07	02/14/12 00:23	
Ethylbenzene	ND		49	12	ug/Kg	₩	02/10/12 14:07	02/14/12 00:23	
m-Xylene & p-Xylene	ND		49	12	ug/Kg	₽	02/10/12 14:07	02/14/12 00:23	
o-Xylene	ND		49	12	ug/Kg	\$	02/10/12 14:07	02/14/12 00:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Fluorobenzene (Surr)	98		80 - 120				02/10/12 14:07	02/14/12 00:23	
Toluene-d8 (Surr)	101		80 - 120				02/10/12 14:07	02/14/12 00:23	
Ethylbenzene-d10	102		70 - 120				02/10/12 14:07	02/14/12 00:23	
4-Bromofluorobenzene (Surr)	103		70 - 120				02/10/12 14:07	02/14/12 00:23	
Gasoline	1.9		4.9		mg/Kg		02/10/12 14:07	02/14/12 00:23	D:// E-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	
4-Bromofluorobenzene (Surr)	100		50 ₋ 150				02/10/12 14:07		DII Fa
Method: NWTPH-Dx - Northwe			30 - 130				02/10/12 14.07	02/14/12 00:23	
			Products (GC)			_			
Analyte	Result	Qualifier	Products (GC)	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Analyte #2 Diesel (C10-C24)	Result 340	Qualifier B Y	Products (GC) RL 33	7.5	mg/Kg		Prepared 02/14/12 08:44	Analyzed 02/14/12 19:04	Dil Fa
Analyte	Result	Qualifier B Y	Products (GC)	7.5			Prepared	Analyzed	
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	Result 340 1700 %Recovery	Qualifier B Y Y	Products (GC) RL 33 66 Limits	7.5	mg/Kg		Prepared 02/14/12 08:44 02/14/12 08:44 Prepared	Analyzed 02/14/12 19:04 02/14/12 19:04 Analyzed	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	Result 340 1700	Qualifier B Y Y	Products (GC) RL 33 66	7.5	mg/Kg		Prepared 02/14/12 08:44 02/14/12 08:44	Analyzed 02/14/12 19:04 02/14/12 19:04	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	Result 340 1700 %Recovery 103	Qualifier B Y Y Qualifier	Products (GC) RL 33 66 Limits 50 - 150	7.5 12	mg/Kg mg/Kg	*	Prepared 02/14/12 08:44 02/14/12 08:44 Prepared 02/14/12 08:44	Analyzed 02/14/12 19:04 02/14/12 19:04 Analyzed 02/14/12 19:04	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry Analyte	Result 340 1700 %Recovery 103 Result	Qualifier B Y Y	Products (GC) RL 33 66 Limits 50 - 150 RL	7.5 12 RL	mg/Kg mg/Kg		Prepared 02/14/12 08:44 02/14/12 08:44 Prepared	Analyzed 02/14/12 19:04 02/14/12 19:04 Analyzed 02/14/12 19:04 Analyzed	Dil Fa
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	Result 340 1700 %Recovery 103	Qualifier B Y Y Qualifier	Products (GC) RL 33 66 Limits 50 - 150	7.5 12	mg/Kg mg/Kg	*	Prepared 02/14/12 08:44 02/14/12 08:44 Prepared 02/14/12 08:44	Analyzed 02/14/12 19:04 02/14/12 19:04 Analyzed 02/14/12 19:04	Dil Fa

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Client Sample ID: B-12-9-40

Date Collected: 02/01/12 12:30 Date Received: 02/06/12 10:40 Lab Sample ID: 580-31095-9

Matrix:	Solid
Percent Solids	: 79.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		20	4.9	ug/Kg	\	02/10/12 14:07	02/14/12 00:45	1
Toluene	ND		49	12	ug/Kg	₩	02/10/12 14:07	02/14/12 00:45	1
Ethylbenzene	ND		49	12	ug/Kg	₩	02/10/12 14:07	02/14/12 00:45	1
m-Xylene & p-Xylene	ND		49	12	ug/Kg	₩	02/10/12 14:07	02/14/12 00:45	1
o-Xylene	ND		49	12	ug/Kg	₩	02/10/12 14:07	02/14/12 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	99		80 - 120				02/10/12 14:07	02/14/12 00:45	1
Toluene-d8 (Surr)	101		80 - 120				02/10/12 14:07	02/14/12 00:45	1
Ethylbenzene-d10	103		70 - 120				02/10/12 14:07	02/14/12 00:45	1
4-Bromofluorobenzene (Surr)	104		70 - 120				02/10/12 14:07	02/14/12 00:45	1
Analyte		Qualifier	RL 4.9		Unit mg/Kg	<u>D</u>	Prepared 02/10/12 14:07	Analyzed 02/14/12 00:45	
Method: NWTPH-Gx - Northwee Analyte Gasoline	Result		RL						
Analyte	Result	Qualifier	RL						1
Analyte Gasoline Surrogate	Result ND	Qualifier	RL 4.9				02/10/12 14:07	02/14/12 00:45	Dil Fac
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte	Result ND %Recovery 101 est - Semi-Volatile Result	Qualifier Qualifier Petroleum Qualifier	RL 4.9	0.62	mg/Kg	<u></u>	02/10/12 14:07 Prepared 02/10/12 14:07 Prepared	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed	Dil Fac
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24)	Result ND %Recovery 101 est - Semi-Volatile Result 12	Qualifier Qualifier Petroleum	RL 4.9	0.62 MDL 6.8	mg/Kg Unit mg/Kg		02/10/12 14:07 Prepared 02/10/12 14:07 Prepared 02/14/12 08:44	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed 02/14/12 19:28	Dil Fac
Analyte Gasoline	Result ND %Recovery 101 est - Semi-Volatile Result	Qualifier Qualifier Petroleum Qualifier	RL 4.9	0.62 MDL 6.8	mg/Kg	<u></u>	02/10/12 14:07 Prepared 02/10/12 14:07 Prepared	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed	Dil Fac
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24)	Result ND %Recovery 101 est - Semi-Volatile Result 12	Qualifier Qualifier Petroleum Qualifier J B	RL 4.9	0.62 MDL 6.8	mg/Kg Unit mg/Kg		02/10/12 14:07 Prepared 02/10/12 14:07 Prepared 02/14/12 08:44	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed 02/14/12 19:28	Dil Fac
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	Result ND %Recovery 101 est - Semi-Volatile Result 12 ND	Qualifier Qualifier Petroleum Qualifier J B	RL 4.9	0.62 MDL 6.8	mg/Kg Unit mg/Kg		02/10/12 14:07 Prepared 02/10/12 14:07 Prepared 02/14/12 08:44 02/14/12 08:44	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed 02/14/12 19:28 02/14/12 19:28	Dil Fac
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	Result ND %Recovery 101 est - Semi-Volatile Result 12 ND %Recovery	Qualifier Qualifier Petroleum Qualifier J B	RL 4.9	0.62 MDL 6.8	mg/Kg Unit mg/Kg		02/10/12 14:07 Prepared 02/10/12 14:07 Prepared 02/14/12 08:44 02/14/12 08:44 Prepared	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed 02/14/12 19:28 02/14/12 19:28 Analyzed	Dil Fac
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	Result ND %Recovery 101 est - Semi-Volatile Result 12 ND %Recovery 108	Qualifier Qualifier Petroleum Qualifier J B	RL 4.9	0.62 MDL 6.8 11	mg/Kg Unit mg/Kg		02/10/12 14:07 Prepared 02/10/12 14:07 Prepared 02/14/12 08:44 02/14/12 08:44 Prepared	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed 02/14/12 19:28 02/14/12 19:28 Analyzed	Dil Fac
Analyte Gasoline Surrogate 4-Bromofluorobenzene (Surr) Method: NWTPH-Dx - Northwee Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	Result ND %Recovery 101 est - Semi-Volatile Result 12 ND %Recovery 108	Qualifier Qualifier Petroleum Qualifier J B Qualifier	RL 4.9 Limits 50 - 150 Products (GC) RL 30 59 Limits 50 - 150	0.62 MDL 6.8 11	mg/Kg Unit mg/Kg mg/Kg	D	02/10/12 14:07 Prepared 02/10/12 14:07 Prepared 02/14/12 08:44 02/14/12 08:44 Prepared 02/14/12 08:44	02/14/12 00:45 Analyzed 02/14/12 00:45 Analyzed 02/14/12 19:28 02/14/12 19:28 Analyzed 02/14/12 19:28	Dil Fac

2

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Client Sample ID: B-12-10-40

Lab Sample ID: 580-31095-10

Date Collected: 02/01/12 15:45 Date Received: 02/06/12 10:40

Percent Moisture

Matrix: Solid Percent Solids: 75.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		19	4.7	ug/Kg	\	02/10/12 14:07	02/14/12 01:07	
Toluene	ND		47	12	ug/Kg	₩	02/10/12 14:07	02/14/12 01:07	
Ethylbenzene	ND		47	12	ug/Kg	☼	02/10/12 14:07	02/14/12 01:07	
m-Xylene & p-Xylene	ND		47	12	ug/Kg	₩	02/10/12 14:07	02/14/12 01:07	
o-Xylene	ND		47	12	ug/Kg	₩	02/10/12 14:07	02/14/12 01:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Fluorobenzene (Surr)	98		80 - 120				02/10/12 14:07	02/14/12 01:07	
Toluene-d8 (Surr)	101		80 - 120				02/10/12 14:07	02/14/12 01:07	
Ethylbenzene-d10	103		70 - 120				02/10/12 14:07	02/14/12 01:07	
4-Bromofluorobenzene (Surr)	104		70 - 120				02/10/12 14:07	02/14/12 01:07	
Gasoline	ND	Ovelifier	4.7	0.59	mg/Kg	*	02/10/12 14:07	02/14/12 01:07	D# F-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		50 - 150				02/10/12 14:07	02/14/12 01:07	
- Bromondorobenzene (Suri)	101		00 .00					02.12 00.	
Method: NWTPH-Dx - Northw		Petroleum						02 2 0 0 .	
: Method: NWTPH-Dx - Northw	vest - Semi-Volatile	Petroleum Qualifier	Products (GC)	MDL	Unit	D	Prepared	Analyzed	
Method: NWTPH-Dx - Northw Analyte	vest - Semi-Volatile Result		Products (GC)	MDL 6.9	Unit mg/Kg	<u>D</u>	Prepared 02/14/12 08:44		Dil Fa
Method: NWTPH-Dx - Northw Analyte #2 Diesel (C10-C24)	vest - Semi-Volatile Result	Qualifier	Products (GC)					Analyzed	Dil Fa
Method: NWTPH-Dx - Northw Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	vest - Semi-Volatile Result	Qualifier J B	Products (GC) RL 30	6.9	mg/Kg		02/14/12 08:44	Analyzed 02/14/12 19:54	Dil Fa
Method: NWTPH-Dx - Northw Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)	vest - Semi-Volatile Result 14 ND	Qualifier J B	Products (GC) RL 30 61	6.9	mg/Kg		02/14/12 08:44 02/14/12 08:44	Analyzed 02/14/12 19:54 02/14/12 19:54	Dil Fa
Method: NWTPH-Dx - Northw Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	vest - Semi-Volatile Result 14 ND %Recovery 105	Qualifier J B Qualifier	Products (GC) RL 30 61 Limits 50 - 150	6.9	mg/Kg mg/Kg		02/14/12 08:44 02/14/12 08:44 Prepared	Analyzed 02/14/12 19:54 02/14/12 19:54 Analyzed 02/14/12 19:54	Dil Fa
·	vest - Semi-Volatile Result 14 ND %Recovery 105	Qualifier J B	Products (GC) RL 30 61 Limits	6.9	mg/Kg mg/Kg		02/14/12 08:44 02/14/12 08:44 Prepared	Analyzed 02/14/12 19:54 02/14/12 19:54 Analyzed	Dil Fa

0.10

0.10 %

25

02/15/12 09:48

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Date Collected: 02/02/12 10:40

Date Received: 02/06/12 10:40

Client Sample ID: B-12-11-35

Lab Sample ID: 580-31095-13

Matrix: Solid

Percent Solids: 89.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	140	J	400	99	ug/Kg	\$	02/10/12 14:07	02/14/12 04:24	25
Toluene	ND		990	250	ug/Kg	₽	02/10/12 14:07	02/14/12 04:24	25
Ethylbenzene	ND		990	250	ug/Kg	☼	02/10/12 14:07	02/14/12 04:24	25
m-Xylene & p-Xylene	900	J	990	250	ug/Kg	₽	02/10/12 14:07	02/14/12 04:24	25
o-Xylene	ND		990	250	ug/Kg	₽	02/10/12 14:07	02/14/12 04:24	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120				02/10/12 14:07	02/14/12 04:24	25
Toluene-d8 (Surr)	101		80 - 120				02/10/12 14:07	02/14/12 04:24	25
Ethylbenzene-d10	102		70 - 120				02/10/12 14:07	02/14/12 04:24	25
4-Bromofluorobenzene (Surr)	104		70 - 120				02/10/12 14:07	02/14/12 04:24	25
Analyte Gasoline	Result 1100	Qualifier	99 —		Unit mg/Kg	<u>D</u>	Prepared 02/10/12 14:07	Analyzed 02/14/12 04:24	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		50 - 150				02/10/12 14:07	02/14/12 04:24	25
•		Detuslace		D.			02.76.72.7.10.	02	
Method: NWTPH-Dx - Northw Analyte		Qualifier	RL	- DL MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	52000	BY	270	60	mg/Kg		02/14/12 08:44	02/15/12 11:52	10
Motor Oil (>C24-C36)	61000	Y	530	97	mg/Kg	\$	02/14/12 08:44	02/15/12 11:52	10
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate							02/14/12 08:44	02/15/12 11:52	
o-Terphenyl		X	50 - 150				02/14/12 00.44	02/13/12 11.52	70
	0	X	50 ₋ 150				02/14/12 00:44	02/13/12 11.32	10
o-Terphenyl		X Qualifier	50 ₋ 150 RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
o-Terphenyl General Chemistry				RL 0.10		<u>D</u>			

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Client Sample ID: Trip Blank

Date Collected: 01/31/12 00:00 Date Received: 02/06/12 10:40 Lab Sample ID: 580-31095-16

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		16	4.0	ug/Kg		02/10/12 14:07	02/13/12 19:39	1
Toluene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 19:39	1
Ethylbenzene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 19:39	1
m-Xylene & p-Xylene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 19:39	1
o-Xylene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 19:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120				02/10/12 14:07	02/13/12 19:39	1
Toluene-d8 (Surr)	101		80 - 120				02/10/12 14:07	02/13/12 19:39	1
Ethylbenzene-d10	103		70 - 120				02/10/12 14:07	02/13/12 19:39	1
4-Bromofluorobenzene (Surr)	103		70 - 120				02/10/12 14:07	02/13/12 19:39	1

	Method: NWTPH-Gx - Northwest -	Volatile Petro	oleum Prodi	ucts (GC)						
ı	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline	ND		4.0	0.50	mg/Kg		02/10/12 14:07	02/13/12 19:39	1
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1	4-Bromofluorobenzene (Surr)	101		50 - 150				02/10/12 14:07	02/13/12 19:39	

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-105127/1-A

Matrix: Solid

Analysis Batch: 105242

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 105127

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		16	4.0	ug/Kg		02/10/12 14:07	02/13/12 17:49	1
Toluene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 17:49	1
Ethylbenzene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 17:49	1
m-Xylene & p-Xylene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 17:49	1
o-Xylene	ND		40	10	ug/Kg		02/10/12 14:07	02/13/12 17:49	1

	IND	IVID					
Surrogate	%Recovery	Qualifier	Limits	Prep	pared	Analyzed	Dil Fac
Fluorobenzene (Surr)	98		80 - 120	02/10/	12 14:07	02/13/12 17:49	1
Toluene-d8 (Surr)	100		80 - 120	02/10/	12 14:07	02/13/12 17:49	1
Ethylbenzene-d10	102		70 - 120	02/10/	12 14:07	02/13/12 17:49	1
Trifluorotoluene (Surr)	104		65 - 140	02/10/	12 14:07	02/13/12 17:49	1
4-Bromofluorobenzene (Surr)	102		70 - 120	02/10/	12 14:07	02/13/12 17:49	1

Lab Sample ID: LCS 580-105127/4-A

Matrix: Solid

Analysis Batch: 105242

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 105127

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 800 844 ug/Kg 106 75 - 125 Toluene 800 832 ug/Kg 104 70 - 125 Ethylbenzene 800 808 ug/Kg 101 75 - 125 80 - 125 m-Xylene & p-Xylene 1600 1670 ug/Kg 105 o-Xylene 800 832 ug/Kg 104 75 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	98		80 - 120
Toluene-d8 (Surr)	101		80 - 120
Ethylbenzene-d10	104		70 - 120
Trifluorotoluene (Surr)	101		65 - 140
4-Bromofluorobenzene (Surr)	103		70 - 120

Lab Sample ID: LCSD 580-105127/5-A

Matrix: Solid

Analysis Batch: 105242

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105127

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	800	860		ug/Kg		108	75 - 125	2	30	
Toluene	800	852		ug/Kg		107	70 - 125	2	30	
Ethylbenzene	800	840		ug/Kg		105	75 - 125	4	30	
m-Xylene & p-Xylene	1600	1690		ug/Kg		106	80 - 125	1	30	
o-Xylene	800	848		ug/Kg		106	75 - 125	2	30	

LCSD L	CSD
--------	-----

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	98		80 - 120
Toluene-d8 (Surr)	101		80 - 120
Ethylbenzene-d10	103		70 - 120
Trifluorotoluene (Surr)	103		65 - 140
4-Bromofluorobenzene (Surr)	104		70 - 120

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-31095-5 MS

Matrix: Solid

Analysis Batch: 105242

Client Sample ID: B-12-7-24 Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 105127

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		907	1000		ug/Kg	*	111	75 - 125	
Toluene	ND		907	968		ug/Kg	₽	107	70 - 125	
Ethylbenzene	ND		907	968		ug/Kg	₽	107	75 - 125	
m-Xylene & p-Xylene	ND		1810	1960		ug/Kg	₽	108	80 - 125	
o-Xylene	ND		907	977		ug/Kg	₽	108	75 - 125	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	99		80 - 120
Toluene-d8 (Surr)	102		80 - 120
Ethylbenzene-d10	103		70 - 120
4-Bromofluorobenzene (Surr)	104		70 - 120

Lab Sample ID: 580-31095-5 MSD

Matrix: Solid

Analysis Batch: 105242

Client Sample ID: B-12-7-24

Prep Type: Total/NA Prep Batch: 105127

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		907	990		ug/Kg	\tilde{\pi}	109	75 - 125	1	30
Toluene	ND		907	959		ug/Kg	₩	106	70 - 125	1	30
Ethylbenzene	ND		907	954		ug/Kg	₩	105	75 - 125	1	30
m-Xylene & p-Xylene	ND		1810	1930		ug/Kg	₽	106	80 - 125	2	30
o-Xylene	ND		907	968		ug/Kg	₩	107	75 - 125	1	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Fluorobenzene (Surr)	98		80 - 120
Toluene-d8 (Surr)	100		80 - 120
Ethylbenzene-d10	103		70 - 120
4-Bromofluorobenzene (Surr)	104		70 - 120

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

MB MB

Lab Sample ID: MB 580-105127/1-A

Matrix: Solid

Analysis Batch: 105240

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 105127

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Gasoline ND 4.0 0.50 mg/Kg 02/10/12 14:07 02/13/12 17:49 1

	INIB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		50 - 150	02/10/12 14:07	02/13/12 17:49	1
Trifluorotoluene (Surr)	109		50 - 150	02/10/12 14:07	02/13/12 17:49	1

Lab Sample ID: LCS 580-105127/2-A

Matrix: Solid

Analysis Batch: 105240

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 105127

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result Qualifier
 Unit
 D
 %Rec Limits

 Gasoline
 40.0
 36.8
 mg/Kg
 92
 68 - 120

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 580-105127/2-A

Matrix: Solid

Analysis Batch: 105240

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 105127

Limits Surrogate %Recovery Qualifier 4-Bromofluorobenzene (Surr) 103 50 - 150 Trifluorotoluene (Surr) 100 50 - 150

Lab Sample ID: LCSD 580-105127/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 105240

Prep Batch: 105127 LCSD LCSD %Rec. Spike RPD Added Result Qualifier Limits Analyte Unit %Rec RPD Limit Gasoline 40.0 37.3 93 68 - 120 1 mg/Kg

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 103 50 - 150 Trifluorotoluene (Surr) 103 50 - 150

Lab Sample ID: 580-31095-1 MS Client Sample ID: B-12-6-45 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 105240

Prep Batch: 105127 Sample Sample Spike MS MS Qualifier Added Result Qualifier Analyte Result Unit D %Rec Limits ₩ Gasoline ND 64.0 63.2 mg/Kg 99 50 - 150

MS MS Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 105 50 - 150

Lab Sample ID: 580-31095-1 MSD Client Sample ID: B-12-6-45

Matrix: Solid

Analysis Batch: 105240

Prep Batch: 105127 Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit ₩ Gasoline ND 64.0 60.7 mg/Kg 95 50 - 150 4

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 104 50 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-105275/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 105275

Analysis Batch: 105278

-	МВ	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	7.01	J	25	5.7	mg/Kg		02/14/12 08:44	02/14/12 16:10	1
Motor Oil (>C24-C36)	ND		50	9.1	mg/Kg		02/14/12 08:44	02/14/12 16:10	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	103		50 - 150				02/14/12 08:44	02/14/12 16:10	1

QC Sample Results

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

9

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-105275/2-A

Matrix: Solid

Analysis Batch: 105278

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 105275

**Rec

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
#2 Diesel (C10-C24)	500	546	mg/Kg		109	70 - 125	
Motor Oil (>C24-C36)	500	513	mg/Kg	I	103	64 - 127	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	92		50 - 150

А

6

10

Client Sample ID: B-12-6-45

Date Collected: 01/31/12 11:45

Date Received: 02/06/12 10:40

Matrix: Solid

Percent Solids: 73.4

Lab Sample ID: 580-31095-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	8260B		1	105242	02/13/12 22:12	JMB	TAL SEA
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	105240	02/13/12 22:12	JMB	TAL SEA
Total/NA	Prep	3550B			105275	02/14/12 08:44	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105278	02/14/12 18:14	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	105394	02/15/12 09:48	RD	TAL SEA

Client Sample ID: B-12-7-24 Lab Sample ID: 580-31095-5

Date Collected: 01/31/12 13:50 **Matrix: Solid** Date Received: 02/06/12 10:40 Percent Solids: 75.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	8260B		1	105242	02/13/12 23:18	JMB	TAL SEA
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	105240	02/13/12 23:18	JMB	TAL SEA
Total/NA	Prep	3550B			105275	02/14/12 08:44	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105278	02/14/12 18:39	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	105394	02/15/12 09:48	RD	TAL SEA

Client Sample ID: B-12-8-37 Lab Sample ID: 580-31095-8

Date Collected: 02/01/12 10:10 **Matrix: Solid** Date Received: 02/06/12 10:40 Percent Solids: 74.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	8260B		1	105242	02/14/12 00:23	JMB	TAL SEA
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	105240	02/14/12 00:23	JMB	TAL SEA
Total/NA	Prep	3550B			105275	02/14/12 08:44	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105278	02/14/12 19:04	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	105394	02/15/12 09:48	RD	TAL SEA

Client Sample ID: B-12-9-40 Lab Sample ID: 580-31095-9

Date Collected: 02/01/12 12:30 **Matrix: Solid** Date Received: 02/06/12 10:40 Percent Solids: 79.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	8260B		1	105242	02/14/12 00:45	JMB	TAL SEA
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	105240	02/14/12 00:45	JMB	TAL SEA
Total/NA	Prep	3550B			105275	02/14/12 08:44	RD	TAL SEA

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-9-40

Date Collected: 02/01/12 12:30 Date Received: 02/06/12 10:40

Lab Sample ID: 580-31095-9

Matrix: Solid Percent Solids: 79.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Dx		1	105278	02/14/12 19:28	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	105394	02/15/12 09:48	RD	TAL SEA

Lab Sample ID: 580-31095-10

Matrix: Solid

Client Sample ID: B-12-10-40 Date Collected: 02/01/12 15:45 Date Received: 02/06/12 10:40 Percent Solids: 75.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	8260B		1	105242	02/14/12 01:07	JMB	TAL SEA
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	105240	02/14/12 01:07	JMB	TAL SEA
Total/NA	Prep	3550B			105275	02/14/12 08:44	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105278	02/14/12 19:54	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	105394	02/15/12 09:48	RD	TAL SEA

Client Sample ID: B-12-11-35 Lab Sample ID: 580-31095-13

Date Collected: 02/02/12 10:40 **Matrix: Solid** Date Received: 02/06/12 10:40 Percent Solids: 89.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	DL		105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	8260B	DL	25	105242	02/14/12 04:24	JMB	TAL SEA
Total/NA	Prep	5035	DL		105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx	DL	25	105240	02/14/12 04:24	JMB	TAL SEA
Total/NA	Prep	3550B	DL		105275	02/14/12 08:44	RD	TAL SEA
Total/NA	Analysis	NWTPH-Dx	DL	10	105384	02/15/12 11:52	KKW	TAL SEA
Total/NA	Analysis	D 2216		1	105394	02/15/12 09:48	RD	TAL SEA

Client Sample ID: Trip Blank Lab Sample ID: 580-31095-16 Date Collected: 01/31/12 00:00 **Matrix: Solid**

Date Received: 02/06/12 10:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	8260B		1	105242	02/13/12 19:39	JMB	TAL SEA
Total/NA	Prep	5035			105127	02/10/12 14:07	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	105240	02/13/12 19:39	JMB	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093
TestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP		L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
TestAmerica Seattle	Louisiana	NELAC	6	05016
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A
TestAmerica Seattle	Oregon	NELAC	10	WA100007
TestAmerica Seattle	USDA	USDA		P330-11-00222
TestAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

2

3

4

J

7

8

0

4 6

Sample Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31095-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-31095-1	B-12-6-45	Solid	01/31/12 11:45	02/06/12 10:40
580-31095-5	B-12-7-24	Solid	01/31/12 13:50	02/06/12 10:40
580-31095-8	B-12-8-37	Solid	02/01/12 10:10	02/06/12 10:40
580-31095-9	B-12-9-40	Solid	02/01/12 12:30	02/06/12 10:40
580-31095-10	B-12-10-40	Solid	02/01/12 15:45	02/06/12 10:40
580-31095-13	B-12-11-35	Solid	02/02/12 10:40	02/06/12 10:40
580-31095-16	Trip Blank	Solid	01/31/12 00:00	02/06/12 10:40

3

4

_

6

8

9

Comments	3. Relinquished By Sign/Print	2. Relinquished By Sign Pring	1. Relinquished By Signutzini	Turn Around Time Required (business days) 24 Hours 48 Hours 5 Days 10 Days	Cooler Possible Hazaro ☐ Yes ☐ No Cooler Temp: ☐ Non-Hazard	8-12-11-55	8-12-10-60	B-12-10-40 2	8-17-9-40	ا د د	12-8-11	ユージン	8-17-7-24	-	(3)	. 60	B-12-6-45 1	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)		Project Name and Location (State)	Margar	Address 3200/ 22 - Av. 5, Suite	Client Kennedy Danks	I ESTAMETICA THE LEADER IN ENVIRONMENTAL TESTING
	Date	Date	Date	□ 15 Days □ Other	Identification ☐ Flammable	2/2/12 1200	21112 1640	2/1/12 1545	2/1/12 1230	V1/12 1010	2/1/12 0820	731/12 1845	1/31/12 1350	V31/12 1420	V31/12 1530	7.1	V31/12 1145	Date Time		Billing		100	Clien	5755 8th Tacoma, Tel. 253- Fax 253- www.te
	Time	Time	1-3-12 W3 1500	her	Skin Irritant Po	and the second			The supplement	and the strike requ	an water and a second					*	×	Air Aqueous Sed. Soil	Matrix	Billing Contact		Telephone Number (Area Code)/Fax Number 253 でいる	Client Contact Soc (5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com
	3. Received By Sign/Print	2. Received By Sign/Print	1. Received by Sign/Print	QC Requirements (Specify)	Poison B											ン -	× ×	Unpres. H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	Containers & Preservatives		Lab Contact	228 (6400)	Simblery / Ty	
Lg Bhefrih			Sank 3		teturn To Client										C STATE	ブメメ	メメ		74.0 7011.	x (5 x	Analysis (Attach list it more space is needed)	Lab Number	Schreiner 7.3-	Short Hold
W/cs 4			Blun Kinshin		Archive For Months	****	*****	70		0.0		-	37	7	3						is needed)		7	Cha Cus
3 P2/Wn	Date Time	Date Time	6/12		(A fee may be assessed if samples are retained longer than I month)									-			R Chesh		Conditions of I	Special Instructions/	*	Page of	Chain of Custody Number	Chain of Custody Record

DISTRIBUTION: WHITE - Stays with the Samples; CANARY- Returned to Client with Report, PINK-Field Copy	3. Relinquished By Sign/Print Date Time	2. Relinquished By SignuPrint 1 Date lime	21-2-12 Paragement March 12-12	☐ 5 Days ☐ 10 Days ☐ 15 Days ☐ Other	☐ No Cooler Temp: ☐ Non-Hazard ☐ Flammable ☐ Skin Irritant	Cooler Possible Hazard Identification				X X	8-12-Specific Gravity 2/2/12 1015 X	B-12-11-11 2/2/12 0945- 1	8-12-11-35 2/2/12 1040 X	Sample I.D. and Location/Description (Containers for each sample may be combined on one line) Date Time Ai Ague di So Si	Contract/Purchase Order/Quote No. NAPO 10 Matrix	vation (State)	State Zip Gode	32" Au 5, 5 mg 100	Client Kenneday Jenks Client Contact Saw de	TestAmerica Seattle 5755 8th Street E. 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com
of findret conting for soil sumpe	3. Received By Sign/Print	2. Received By Sign/Print			eturn To Client	Sample Disposal				* * *	×		×	Unpres. H2SO4 HNO3 HCI NaOH ZnAc/ NaOH NaOH SZ	H 17 160 200	Dx -6x B	ore spa	Number '	1 J Schnoines	Rush Short Hold
TAL-8274-580 (0210)	Date	Date	14/3 2/6/12		Months are retained longer than 1 month)	(A fee may be accessed if camples		:			5,		625	3	Conditions of Receipt	Special Instructions/		Page 2 of 2	Chain of Custody Number	Chain of Custody Record

Login Sample Receipt Checklist

Client: Kennedy/Jenks Consultants

Job Number: 580-31095-1

Login Number: 31095 List Source: TestAmerica Seattle

List Number: 1

Creator: Blankinship, Tom

• •		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

4

6

0

9

10

1-

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-31073-1

Client Project/Site: BNSF Wishram Monitoring

For:

Kennedy/Jenks Consultants 32001-32nd Ave South, Suite 100 Federal Way, Washington 98001

Attn: Joseph Sawdey

Pamela R. Johnson

Authorized for release by: 2/20/2012 12:19:59 PM

Pam Johnson Project Manager I

pamr.johnson@testamericainc.com

Designee for

Kristine Allen

Project Manager I

kristine.allen@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	9
Chronicle	12
Certification Summary	13
Sample Summary	15
Chain of Custody	16
Receint Checklists	17

4

6

<u>۾</u>

9

Case Narrative

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Job ID: 580-31073-1

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The following samples B-12-12-23 (580-31073-1), B-12-12-12 (580-31073-2), 1DW-Composite (580-31073-3) and B-12-13-3D (580-31073-4) were received at the laboratory outside the required temperature criteria. The samples were kept in the client's refrigerator prior to delivery, but were received at the lab, without ice, at 10.8°C.

All other samples were received in good condition.

GC Semi VOA - Method NWTPH-Dx

In analytical batch 105494, the matrix duplicate %RPD for #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges associated with preparation batch 105430 were outside the control limits due to matrix interference. This sample required a 10X dilution due to high target analytes.

In analytical batch 105494, the surrogate recovery for the following samples B-12-12-23 (580-31073-1), (580-31073-1DU), B-12-12-12 (580-31073-2) from preparation batch 105430 were outside control limits. Evidence of matrix interference is present, as these samples required dilutions due to high target analytes; therefore, re-extraction and/or re-analysis was not performed.

In analytical batch 105494, the results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for samples B-12-12-23 (580-31073-1), 1DW-Composite (580-31073-3), and B-12-13-3D (580-31073-4) are due to a complex mixture of what most closely resembles weathered diesel fuel, and/or a mineral/transformer oil range product, and motor oil.

In analytical batch 105494, the results in the #2 Diesel (C10-C24) and Motor Oil (>C24-C36) ranges for sample B-12-12-12 (580-31073-2) are due to weathered diesel fuel.

The affected analyte ranges are qualified "Y" and have been reported.

In analytical batch 105494, the method blank for preparation batch 105430 contained #2 Diesel (C10-C24) at levels that were above the method detection limit but below the reporting limit. The values should be considered as estimates, and have been flagged "J". The associated sample results have been flagged "B".

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

3

4

5

6

10

Definitions/Glossary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
Υ	The chromatographic response resembles a typical fuel pattern.
X	Surrogate is outside control limits
F	Duplicate RPD exceeds the control limit
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

J

PQL

QC

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
*	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)

RPD Relative Percent Difference, a measure of the relative difference between two points TEF

Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Quality Control

Reporting Limit

Practical Quantitation Limit

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Client Sample ID: B-12-12-23	Lab Sample ID: 580-31073-1
Date Collected: 02/04/12 10:15	Matrix: Solid
Date Received: 02/06/12 12:00	Percent Solids: 89.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	42000	Y B	270	61	mg/Kg	₩	02/15/12 13:01	02/16/12 15:11	10
Motor Oil (>C24-C36)	52000	Υ	530	97	mg/Kg	₽	02/15/12 13:01	02/16/12 15:11	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	274	X	50 - 150				02/15/12 13:01	02/16/12 15:11	10
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	89		0.10	0.10	%			02/10/12 14:25	1
Percent Moisture	11		0.10	0.10	%			02/10/12 14:25	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Client Sample ID: B-12-12-12

Date Collected: 02/04/12 10:00 Date Received: 02/06/12 12:00 TestAmerica Job ID: 580-31073-1

Lab Sample ID: 580-31073-2

Percent Solids: 79.8

Matrix: Solid
Parcent Solids: 79.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	1700	Y	62	11	mg/Kg	₩	02/15/12 13:01	02/16/12 12:17	1
Method: NWTPH-Dx - North	west - Semi-Volatile	Petroleum	n Products (GC)	- DL					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	30000	ВҮ	150	35	mg/Kg	₩	02/15/12 13:01	02/16/12 16:01	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	329	X	50 - 150				02/15/12 13:01	02/16/12 16:01	5
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	80		0.10	0.10	%			02/10/12 14:25	1
Percent Moisture	20		0.10	0.10	%			02/10/12 14:25	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

2

Client Sample ID: 1DW-Composite

Date Collected: 02/04/12 13:00 Date Received: 02/06/12 12:00 Lab Sample ID: 580-31073-3

Matrix: Solid

Percent Solids: 84.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	3600	ВҮ	28	6.5	mg/Kg	₩	02/15/12 13:01	02/16/12 12:42	1
Motor Oil (>C24-C36)	3200	Y	57	10	mg/Kg	₩	02/15/12 13:01	02/16/12 12:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	114		50 - 150				02/15/12 13:01	02/16/12 12:42	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2	J	2.6	0.28	mg/Kg	*	02/13/12 16:27	02/14/12 23:27	1
Barium	78		0.44	0.087	mg/Kg	₽	02/13/12 16:27	02/14/12 23:27	1
Cadmium	0.50		0.44	0.17	mg/Kg	₩	02/13/12 16:27	02/14/12 23:27	1
Chromium	12		1.1	0.34	mg/Kg	₽	02/13/12 16:27	02/14/12 23:27	1
Lead	4.6		1.3	0.13	mg/Kg	₽	02/13/12 16:27	02/14/12 23:27	1
Selenium	ND		4.4	0.17	mg/Kg	₽	02/13/12 16:27	02/14/12 23:27	1
Silver -	ND		0.87	0.49	mg/Kg	\$	02/13/12 16:27	02/14/12 23:27	1
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0047	J	0.013	0.0041	mg/Kg	#	02/10/12 10:35	02/10/12 12:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Halogens, Extractable Organic	ND		20	10	mg/Kg	₩		02/12/12 09:00	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	85		0.10	0.10	%			02/10/12 14:25	1
Percent Moisture	15		0.10	0.10	%			02/10/12 14:25	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Lab Sample ID: 580-31073-4

Matrix: Solid

Percent Solids: 73.3

Client Sample ID: B-12-13-3D)
Date Collected: 02/04/12 12:00	

Date Received: 02/06/12 12:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	7200	ВҮ	33	7.4	mg/Kg	\$	02/15/12 13:01	02/16/12 13:06	1
Motor Oil (>C24-C36)	10000	Y	65	12	mg/Kg	₽	02/15/12 13:01	02/16/12 13:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	108		50 - 150				02/15/12 13:01	02/16/12 13:06	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	73		0.10	0.10	%			02/10/12 14:25	1
Percent Moisture	27		0.10	0.10	%			02/10/12 14:25	1

8

9

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-105430/1-B Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 105494

Prep Batch: 105430 мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 25 5.7 mg/Kg 02/15/12 13:01 10.2 J 02/16/12 10:38 50 02/15/12 13:01 02/16/12 10:38 ND 9.1 mg/Kg

MB MB Surrogate %Recovery Qualifier I imits Prepared Analyzed Dil Fac o-Terphenyl 86 50 - 150 02/15/12 13:01 02/16/12 10:38

Lab Sample ID: LCS 580-105430/2-B

Matrix: Solid

Analyte

#2 Diesel (C10-C24)

Motor Oil (>C24-C36)

Analysis Batch: 105494 Prep Batch: 105430 LCS LCS %Rec. Spike Result Qualifier Limits Analyte Added Unit D %Rec #2 Diesel (C10-C24) 500 494 99 64 - 127 mg/Kg Motor Oil (>C24-C36) 500 70 - 125 500 mg/Kg 100

LCS LCS Surrogate %Recovery Qualifier Limits 85 50 - 150 o-Terphenyl

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) - DL

Lab Sample ID: 580-31073-1 DU Client Sample ID: B-12-12-23 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 105494

Prep Batch: 105430 Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit D ₩ #2 Diesel (C10-C24) - DL 42000 Y B 28400 F 40 35 mg/Kg ₩ Motor Oil (>C24-C36) - DL 52000 Y 34500 F mg/Kg 40 35

DU DU Surrogate %Recovery Qualifier Limits 204 X o-Terphenyl - DL 50 - 150

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 580-105248/17-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 105371 Prep Batch: 105248 MD MD

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		3.0	0.32	mg/Kg		02/13/12 16:27	02/14/12 21:13	1
Barium	ND		0.50	0.10	mg/Kg		02/13/12 16:27	02/14/12 21:13	1
Cadmium	ND		0.50	0.20	mg/Kg		02/13/12 16:27	02/14/12 21:13	1
Chromium	ND		1.3	0.39	mg/Kg		02/13/12 16:27	02/14/12 21:13	1
Lead	ND		1.5	0.15	mg/Kg		02/13/12 16:27	02/14/12 21:13	1
Selenium	ND		5.0	0.20	mg/Kg		02/13/12 16:27	02/14/12 21:13	1
Silver	ND		1.0	0.56	mg/Kg		02/13/12 16:27	02/14/12 21:13	1

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Lab Sample ID: LCS 580-105248/18-A

Lab Sample ID: LCSD 580-105248/19-A

Matrix: Solid

Analysis Batch: 105371

Method: 6010B - Metals (ICP) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 105248

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	200	193		mg/Kg		97	80 - 120	
Barium	200	197		mg/Kg		98	80 - 120	
Cadmium	5.00	4.95		mg/Kg		99	80 - 120	
Chromium	20.0	18.7		mg/Kg		94	80 - 120	
Lead	50.0	49.6		mg/Kg		99	80 - 120	
Selenium	200	192		mg/Kg		96	80 - 120	
Silver	30.0	28.6		mg/Kg		95	75 ₋ 120	

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 105248

Matrix: Solid Analysis Batch: 105371

Analysis Batch. 100071							1 TCP E	aton. I	00270
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	200	191		mg/Kg		96	80 - 120	1	20
Barium	200	196		mg/Kg		98	80 - 120	0	20
Cadmium	5.00	4.94		mg/Kg		99	80 - 120	0	20
Chromium	20.0	18.9		mg/Kg		95	80 - 120	1	20
Lead	50.0	49.4		mg/Kg		99	80 - 120	0	20
Selenium	200	189		mg/Kg		95	80 - 120	2	20
Silver	30.0	28.7		mg/Kg		96	75 - 120	0	20

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 580-105100/13-A

Matrix: Solid

Analysis Batch: 105116

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 105100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.017	0.0053	mg/Kg		02/10/12 10:35	02/10/12 11:41	1

Lab Sample ID: LCS 580-105100/14-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 105116 **Prep Batch: 105100**

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Mercury 0.167 0.162 mg/Kg 80 - 120

Lab Sample ID: LCSD 580-105100/15-A			Client Sample ID: Lab Control Sample Dup
Matrix: Solid			Prep Type: Total/NA
Analysis Batch: 105116			Prep Batch: 105100
	Spike	LCSD LCSD	%Rec. PPD

Analyte Added Result Qualifier Unit %Rec Limits Limit Mercury 0.167 0.167 mg/Kg 100 80 - 120 20

Lab Sample ID: LCSSRM 580-105100/16-A Client Sample ID: Lab Control Sample

MB MB

Matrix: Solid

Analysis Batch: 105116 Prep Batch: 105100 LCSSRM LCSSRM Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec Mercury 16.3 19.7 51.1 - 148. mg/Kg 121 9

Prep Type: Total/NA

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

Lab Sample ID: MB 680-228847/1

Matrix: Solid

Method: 9023 - Organic Halides, Extractable (EOX)

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 20 10 mg/Kg 02/12/12 09:00 Halogens, Extractable Organic ND

Lab Sample ID: LCS 680-228847/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Solid**

Analysis Batch: 228847

Analysis Batch: 228847

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Halogens, Extractable Organic 49.2 34.2 mg/Kg 70 60 - 140

Lab Sample ID: 580-31073-3 MS Client Sample ID: 1DW-Composite **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 228847 Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier Unit %Rec Limits ₩ Halogens, Extractable Organic ND 57.5 45.6 mg/Kg

Lab Sample ID: 580-31073-3 MSD Client Sample ID: 1DW-Composite **Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 228847

Spike %Rec. Sample Sample MSD MSD **RPD** Result Qualifier Added Qualifier Unit Limits Limit Result %Rec Halogens, Extractable Organic ND 52.1 55.8 ₩ 107 mg/Kg 60 - 140 50

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Client Sample ID: B-12-12-23

Client Sample ID: B-12-12-12

Date Collected: 02/04/12 10:00

Date Received: 02/06/12 12:00

Date Collected: 02/04/12 10:15 Date Received: 02/06/12 12:00

Lab Sample ID: 580-31073-1

Matrix: Solid Percent Solids: 89.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B	DL		105430	02/15/12 13:01	GH	TAL SEA
Total/NA	Analysis	NWTPH-Dx	DL	10	105494	02/16/12 15:11	EK	TAL SEA
Total/NA	Analysis	D 2216		1	105131	02/10/12 14:25	KKW	TAL SEA

Lab Sample ID: 580-31073-2

Matrix: Solid Percent Solids: 79.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B	DL		105430	02/15/12 13:01	GH	TAL SEA
Total/NA	Analysis	NWTPH-Dx	DL	5	105494	02/16/12 16:01	EK	TAL SEA
Total/NA	Prep	3550B			105430	02/15/12 13:01	GH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105494	02/16/12 12:17	EK	TAL SEA
Total/NA	Analysis	D 2216		1	105131	02/10/12 14:25	KKW	TAL SEA

Lab Sample ID: 580-31073-3 Client Sample ID: 1DW-Composite

Date Collected: 02/04/12 13:00 Date Received: 02/06/12 12:00

Matrix: Solid Percent Solids: 84.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			105430	02/15/12 13:01	GH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105494	02/16/12 12:42	EK	TAL SEA
Total/NA	Prep	7471A			105100	02/10/12 10:35	PAB	TAL SEA
Γotal/NA	Analysis	7471A		1	105116	02/10/12 12:16	FCW	TAL SEA
Γotal/NA	Prep	3050B			105248	02/13/12 16:27	PAB	TAL SEA
Total/NA	Analysis	6010B		1	105371	02/14/12 23:27	SP	TAL SEA
Total/NA	Analysis	D 2216		1	105131	02/10/12 14:25	KKW	TAL SEA
Total/NA	Analysis	9023		1	228847	02/12/12 09:00	CN	TAL SAV

Client Sample ID: B-12-13-3D Lab Sample ID: 580-31073-4 Date Collected: 02/04/12 12:00 **Matrix: Solid**

Date Received: 02/06/12 12:00 Percent Solids: 73.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			105430	02/15/12 13:01	GH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	105494	02/16/12 13:06	EK	TAL SEA
Total/NA	Analysis	D 2216		1	105131	02/10/12 14:25	KKW	TAL SEA

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

> TestAmerica Seattle 2/20/2012

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring

2

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093
ΓestAmerica Seattle	California	NELAC	9	1115CA
TestAmerica Seattle	Florida	NELAC	4	E871074
TestAmerica Seattle	L-A-B	DoD ELAP		L2236
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
estAmerica Seattle	Louisiana	NELAC	6	05016
estAmerica Seattle	Montana	MT DEQ UST	8	N/A
estAmerica Seattle	Oregon	NELAC	10	WA100007
estAmerica Seattle	USDA	USDA		P330-11-00222
FestAmerica Seattle	Washington	State Program	10	C553
estAmerica Savannah	A2LA	DoD ELAP		0399-01
estAmerica Savannah	A2LA	ISO/IEC 17025		399.01
estAmerica Savannah	Alabama	State Program	4	41450
estAmerica Savannah	Arkansas	Arkansas DOH	6	N/A
estAmerica Savannah	Arkansas	State Program	6	88-0692
estAmerica Savannah	California	NELAC	9	3217CA
estAmerica Savannah	Colorado	State Program	8	N/A
estAmerica Savannah	Connecticut	State Program	1	PH-0161
estAmerica Savannah	Delaware	State Program	3	N/A
estAmerica Savannah	Florida	NELAC	4	E87052
estAmerica Savannah	Georgia	Georgia EPD	4	N/A
estAmerica Savannah	Georgia	State Program	4	803
estAmerica Savannah	Guam	State Program	9	09-005r
estAmerica Savannah	Hawaii		9	N/A
		State Program	5	
estAmerica Savannah	Illinois	NELAC		200022
estAmerica Savannah	Indiana	State Program	5	N/A
estAmerica Savannah	lowa	State Program	7	353
estAmerica Savannah	Kentucky	Kentucky UST	4	18
estAmerica Savannah	Kentucky	State Program	4	90084
estAmerica Savannah	Louisiana	NELAC	6	30690
estAmerica Savannah	Louisiana	NELAC	6	LA100015
estAmerica Savannah	Maine	State Program	1	GA00006
estAmerica Savannah	Maryland	State Program	3	250
estAmerica Savannah	Massachusetts	State Program	1	M-GA006
estAmerica Savannah	Michigan	State Program	5	9925
estAmerica Savannah	Mississippi	State Program	4	N/A
estAmerica Savannah	Montana	State Program	8	CERT0081
estAmerica Savannah	Nebraska	State Program	7	TestAmerica-Savannah
estAmerica Savannah	New Jersey	NELAC	2	GA769
estAmerica Savannah	New Mexico	State Program	6	N/A
estAmerica Savannah	New York	NELAC	2	10842
estAmerica Savannah	North Carolina	North Carolina DENR	4	269
estAmerica Savannah	North Carolina	North Carolina PHL	4	13701
estAmerica Savannah	Oklahoma	State Program	6	9984
estAmerica Savannah	Pennsylvania	NELAC	3	68-00474
estAmerica Savannah	Puerto Rico	State Program	2	GA00006
estAmerica Savannah	Rhode Island	State Program	1	LAO00244
estAmerica Savannah	South Carolina	State Program	4	98001
estAmerica Savannah	Tennessee	State Program	4	TN02961
estAmerica Savannah	Texas	NELAC	6	T104704185-08-TX
estAmerica Savannah	USDA	USDA		SAV 3-04
estAmerica Savannah	Vermont	State Program	1	87052

Q

9

10

1,0

Certification Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Savannah	Virginia	NELAC	3	460161
TestAmerica Savannah	Virginia	State Program	3	302
TestAmerica Savannah	Washington	State Program	10	C1794
TestAmerica Savannah	West Virginia	West Virginia DEP	3	94
TestAmerica Savannah	West Virginia	West Virginia DHHR (DW)	3	9950C
TestAmerica Savannah	Wisconsin	State Program	5	999819810
TestAmerica Savannah	Wyoming	State Program	8	8TMS-Q

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

4

5

6

0

46

Sample Summary

Client: Kennedy/Jenks Consultants Project/Site: BNSF Wishram Monitoring TestAmerica Job ID: 580-31073-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-31073-1	B-12-12-23	Solid	02/04/12 10:15	02/06/12 12:00
580-31073-2	B-12-12-12	Solid	02/04/12 10:00	02/06/12 12:00
580-31073-3	1DW-Composite	Solid	02/04/12 13:00	02/06/12 12:00
580-31073-4	B-12-13-3D	Solid	02/04/12 12:00	02/06/12 12:00

3

4

6

Ω

q

TAL-8274-580 (0210)				NK – Field Copy	ent with Report; PI	- Returned to CI	DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy
11/3/01/21/11	box willinders no rec	J. S.	chent	_	-		Comments
Date Time		Print	3. Received By Sign/Print	Time	Date		3. Relinquished By Sign/Print
Date / Time		vPrim ()	2. Received By Sign/Print	Time	Date		2. Relinquished By Sign/Print
1/12	Plankinship	SPrim /	1. Received By Sign/Prim	1700	2-1-12		1. Relinguisped By Sign/Print
		pecify)	QC Requirements (Specify)			ays 🗆 15 Days	Turn Around Time Required (business days) ☐ 24 Hours ☐ 48 Hours ☐ 5 Pays ☐ 10 Days
are retained longer than 1 month)	Archive For Months	eturn To Client	ison B Unknown	☐ Skin Irritant ☐ Poison B	mable	azard \square FI	☐ No Cooler Temp:
	Disnosal By Lah	Sample Disposal				Possible Hazard Identification	Cooler Possible H
*		×.	quicuming.		1200	シトトル	8-12-13-30
-3		× × ×			(300)	2-4-12	1 July - Composite
-2		×			(Soc)	7-4-12	8-12-12-12
		×	× -	×	1915	7417	8-12-12-23
			H2SO4 HNO3 HCI NaOH ZnAc/	Aqueous Sed. Soil	Time Air	Date	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)
Conditions of Receipt		AN	Containers & Preservatives	Matrix			Contract/Purchase Order/Quote No.
Special Instructions/		Dx. letak		tact	Billing Cantact		Project Name and Location (State)
	Analysis (Attach list if more space is needed)	An mc	Lab Contact Les		Sampler 5	21p Code	State WA
Page of	73	And the second s	GNOC	er (Area Code)/	Telephone Numb		72001 12nd Av. 5
Chain of Custody Number	12		Sanden	ntact \	Client Contact		Client Kenneby Sents
Chain of Custody Record	5 S	Rush Short Hold		PestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericai		TestAmerica THE LEADER IN ENVIRONMENTAL TESTING
	,				1 (1 1	9	1 2 3 4 5 6

Login Sample Receipt Checklist

Client: Kennedy/Jenks Consultants

Job Number: 580-31073-1

Login Number: 31073 List Source: TestAmerica Seattle

List Number: 1

Creator: Blankinship, Tom

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	client states samples were kept in refridgerator prior to delivery.
Cooler Temperature is acceptable.	False	10.8
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle
Page 17 of 18
2/20/2012

2

4

Q

9

10

Login Sample Receipt Checklist

Client: Kennedy/Jenks Consultants

Job Number: 580-31073-1

Login Number: 31073

List Source: TestAmerica Savannah

List Number: 1

List Creation: 02/10/12 10:28 AM

Creator: Barnett, Eddie T

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

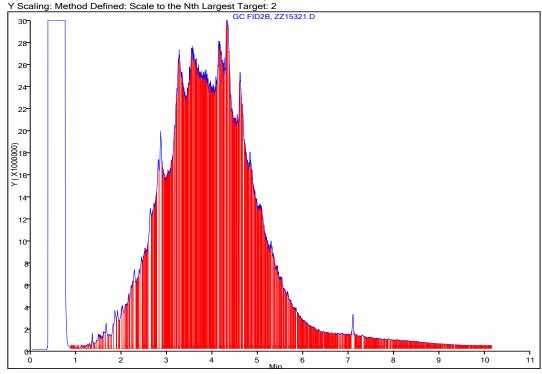
J

R

9

10

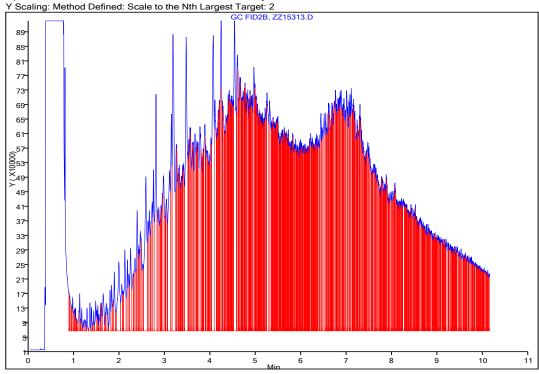
1.


Residual Chlorine Checked.

Appendix E

Appendix
Chromatograph

Injection Date: 24-Jan-2012 16:23:11 Limit Group: NWTPH-DX Standard list


Client ID: B-12-3-13 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 1.00 ul Operator ID: KKW Injection Vol:

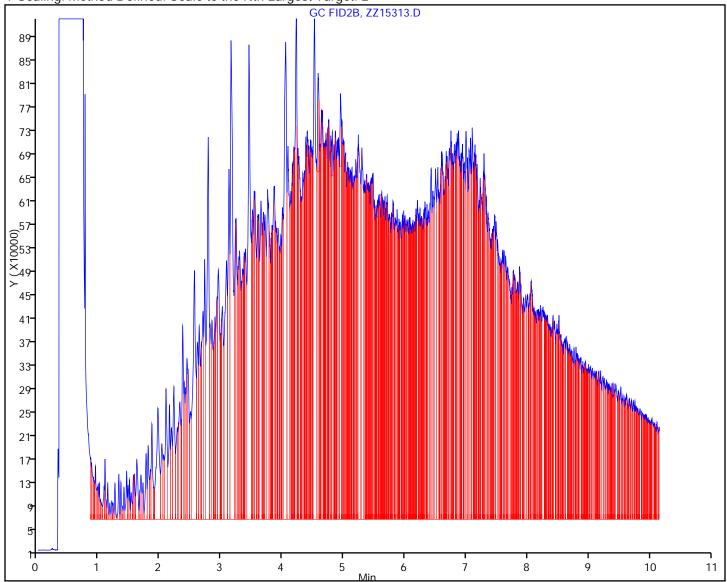
Smear Zone Hydrocarbon Chromatograph

NWTPH-DX Standard list 24-Jan-2012 14:55:48 Injection Date: Limit Group: B-12-4-40

Client ID: Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 5 1.00 ul Operator ID: KKW Injection Vol:

Saturated Zone Hydrocarbon Chromatograph

Kennedy/Jenks Consultants

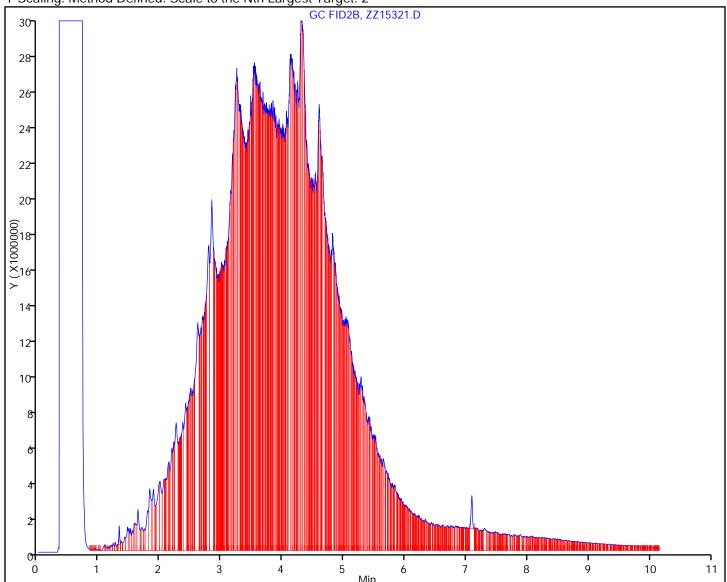

Report Date: 24-Jan-2012 15:18:09 Chrom Revision: 1.2 13-Jul-2011 10:43:06 Data File: \\tacsvr5\ChromData\TAC017\20120124-21281.b\ZZ15313.D

Injection Date: 24-Jan-2012 14:55:48 Limit Group: **NWTPH-DX Standard list**

Client ID: B-12-4-40 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 5

Operator ID: KKW Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

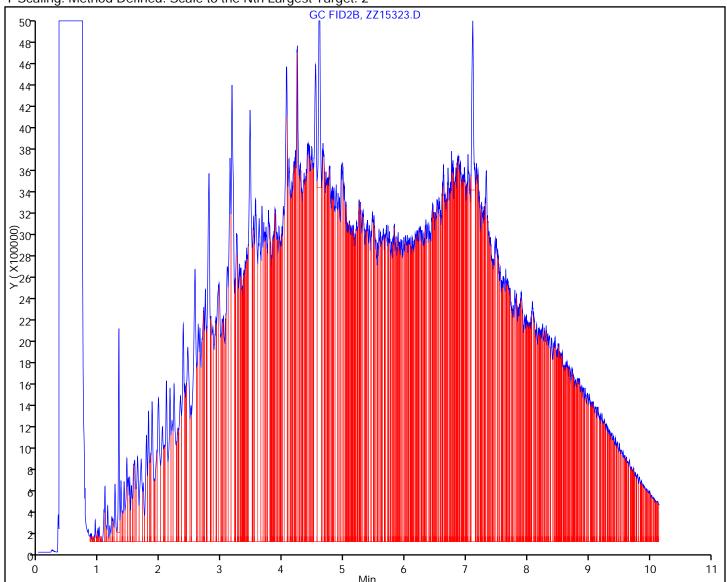


Injection Date: 24-Jan-2012 16:23:11 Limit Group: **NWTPH-DX Standard list**

Client ID: B-12-3-13 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 9

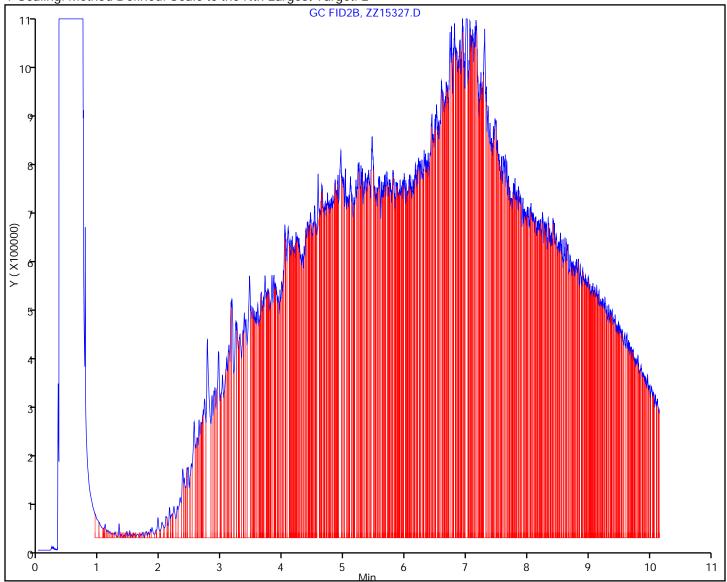
Injection Vol: Operator ID: KKW 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2



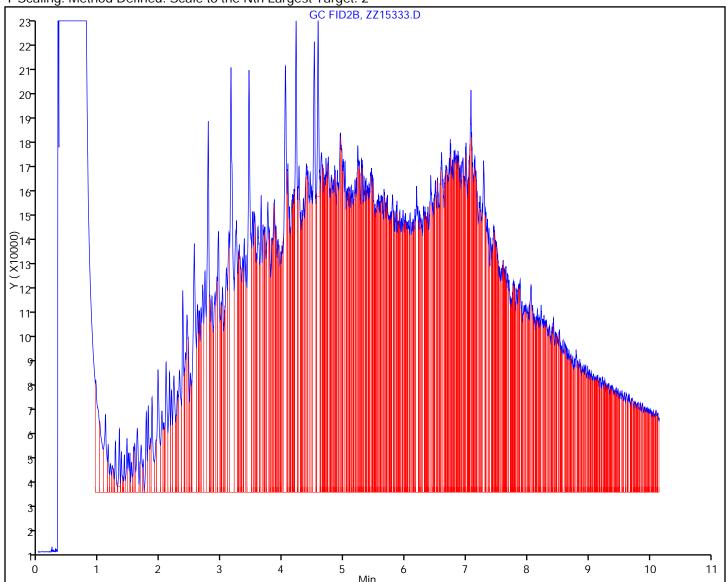
Report Date: 25-Jan-2012 08:32:34 Chrom Revision: 1.2 13-Jul-2011 10:43:06 Data File: \\tacsvr5\ChromData\TAC017\20120124-21281.b\\ZZ15323.D

Injection Date: 24-Jan-2012 16:44:57 Limit Group: **NWTPH-DX Standard list**

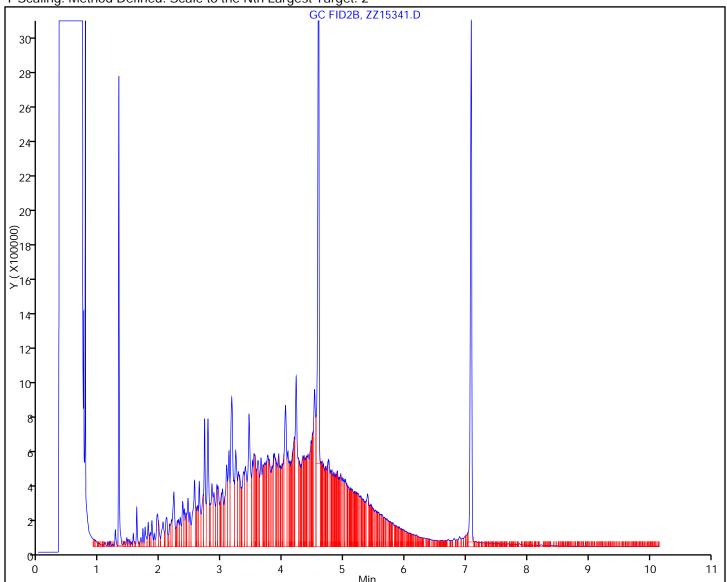

Client ID: B-12-2-40 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 10 Operator ID: KKW Injection Vol: 1.00 ul

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

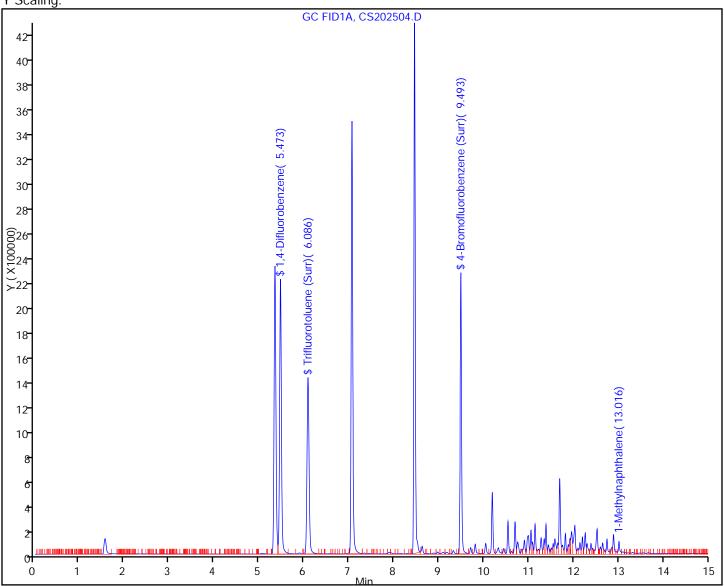
Injection Date: 24-Jan-2012 17:28:22 Limit Group: **NWTPH-DX Standard list**


Client ID: B-12-2-12 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 12 Operator ID: KKW Injection Vol: 1.00 ul

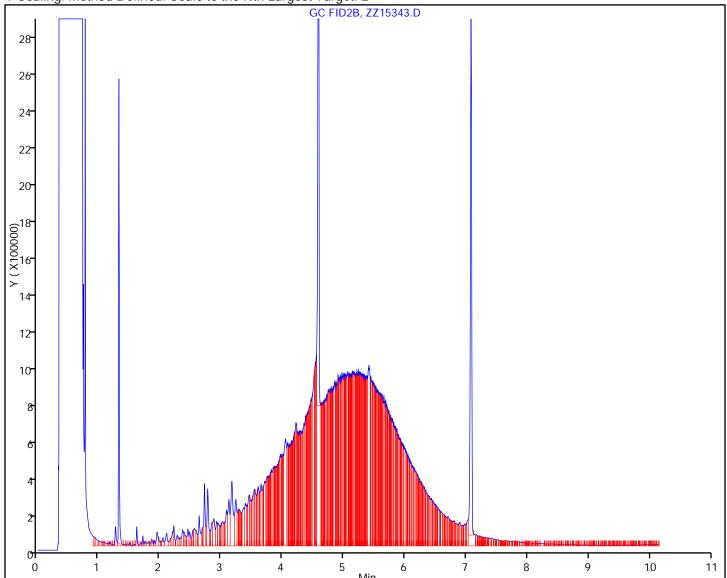
Report Date: 25-Jan-2012 08:34:21 Chrom Revision: 1.2 13-Jul-2011 10:43:06 Data File: \\tacsvr5\ChromData\TAC017\20120124-21281.b\ZZ15333.D


Injection Date: 24-Jan-2012 18:34:03 Limit Group: **NWTPH-DX Standard list**

Client ID: B-12-1-32 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 15 Operator ID: KKW Injection Vol: 1.00 ul

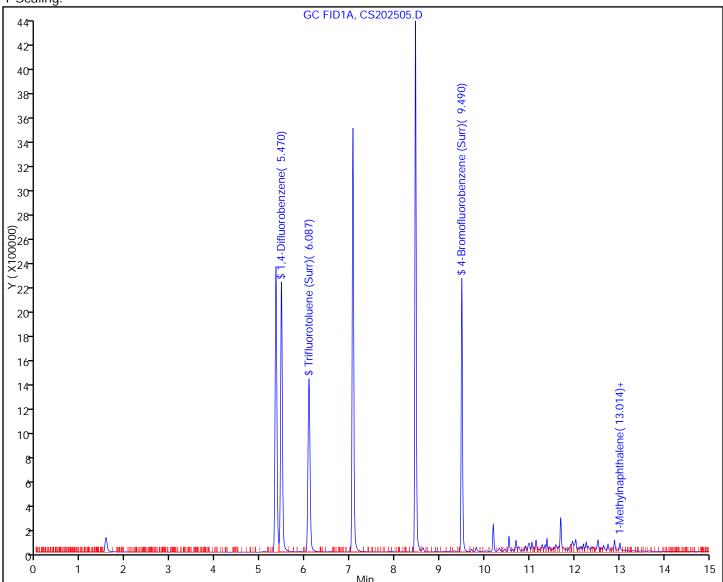

Injection Date: 24-Jan-2012 20:01:11 Limit Group: **NWTPH-DX Standard list**

Client ID: AS-12-3 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 19 Operator ID: Injection Vol: KKW 1.00 ul


Injection Date: 25-Jan-2012 19:01:05 Limit Group: **NWTPH-GX** Client ID: AS-12-3 TAC003 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 56

Operator ID: **JMB**

Injection Date: 24-Jan-2012 20:22:59 Limit Group: **NWTPH-DX Standard list**

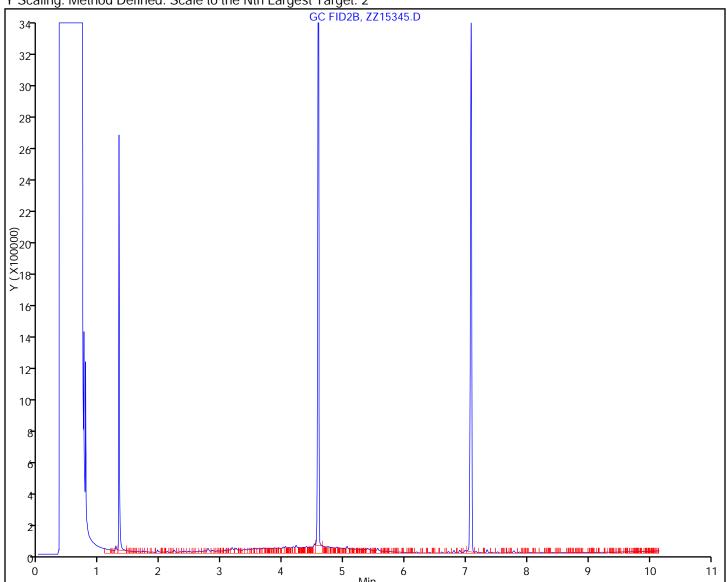

Client ID: AS-12-2 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 20 Injection Vol: Operator ID: KKW 1.00 ul

Report Date: 26-Jan-2012 13:08:01 Chrom Revision: 1.2 13-Jul-2011 10:43:06 Data File: \\tacsvr5\ChromData\TAC003\20120124-21289.b\CS202505.D

Injection Date: 25-Jan-2012 19:23:28 Limit Group: **NWTPH-GX** Client ID: AS-12-2 TAC003 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 57

Operator ID: **JMB**

Report Date: 25-Jan-2012 08:35:38 Data File: \\tacsvr5\Chrom|

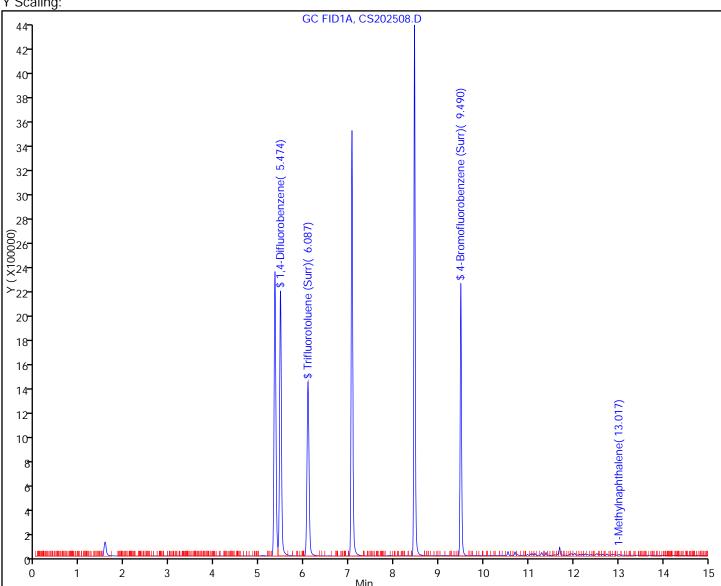

Injection Date: 24-Jan-2012 20:44:35 Limit Group: **NWTPH-DX Standard list**

Client ID: TAC017 AS-12-1 Instrument ID: Lims Batch ID: 104033 Lims Sample ID: 21

Y Scaling: Method Defined: Scale to the Nth Largest Target: 2

KKW

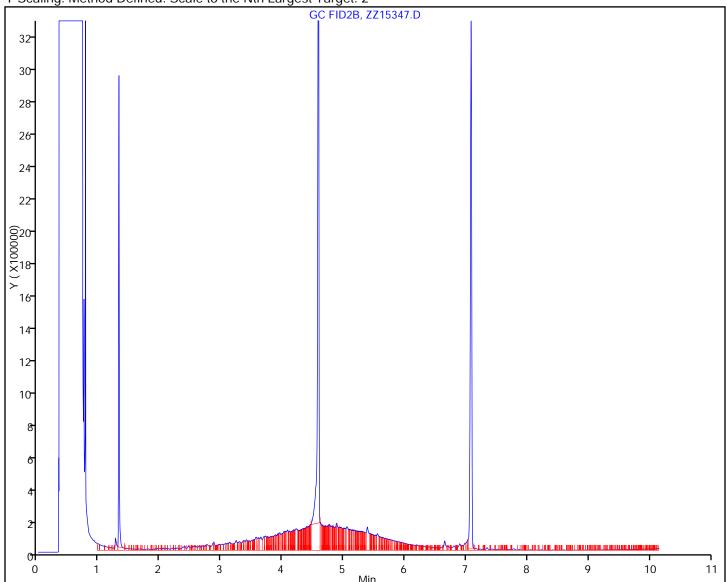
Operator ID:


Injection Vol:

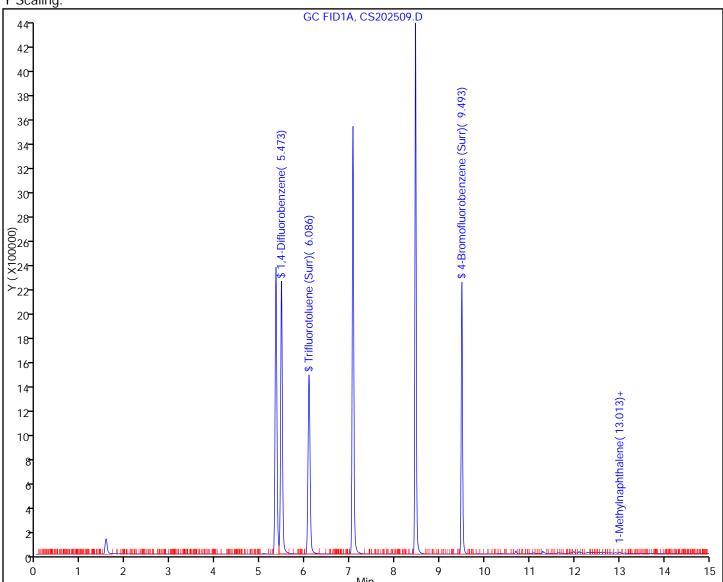
1.00 ul

Report Date: 26-Jan-2012 13:08:21 Chrom Revision: 1.2 13-Jul-2011 10:43:06 Data File: \\tacsvr5\ChromData\TAC003\20120124-21289.b\CS202508.D

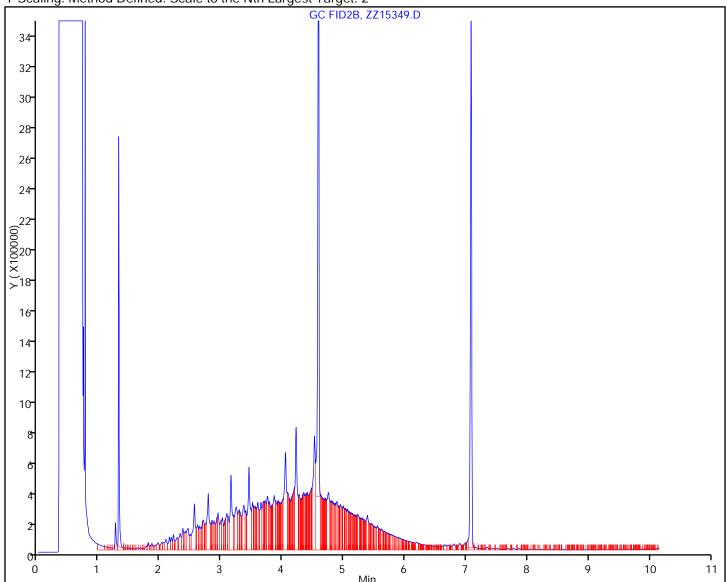
Injection Date: 25-Jan-2012 20:30:31 Limit Group: **NWTPH-GX** Client ID: AS-12-1 TAC003 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 60


Operator ID: **JMB**

Report Date: 25-Jan-2012 08:35:44 Data File: \\tacsvr5\Chrom|

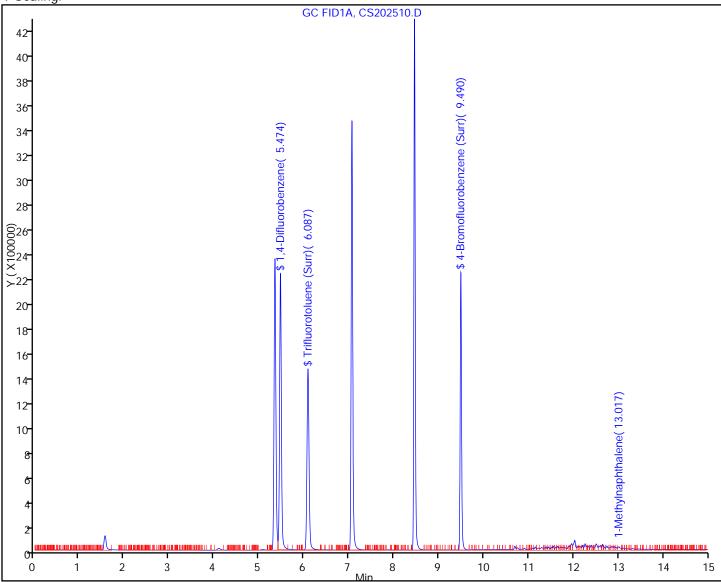

Injection Date: 24-Jan-2012 21:06:20 Limit Group: **NWTPH-DX Standard list**

Client ID: RB4 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 22 Injection Vol: Operator ID: KKW 1.00 ul


Injection Date: 25-Jan-2012 20:52:48 Limit Group: **NWTPH-GX** Client ID: TAC003 RB4 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 61

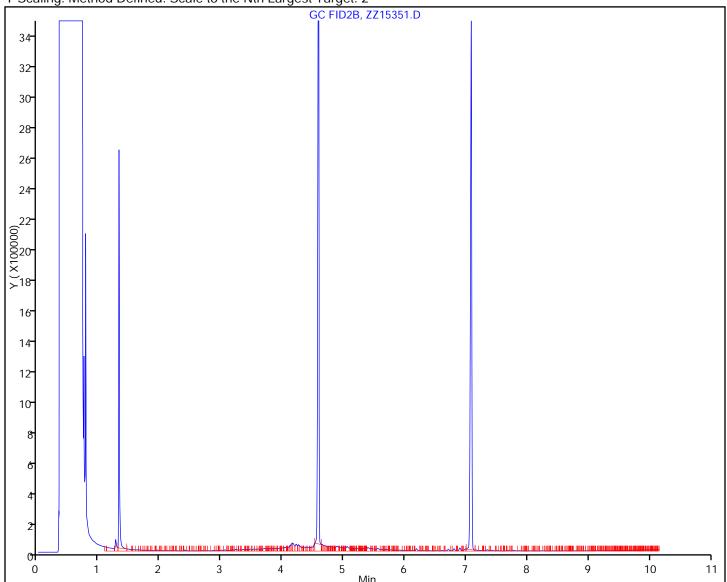
JMB Operator ID:

Injection Date: 24-Jan-2012 21:28:02 Limit Group: **NWTPH-DX Standard list**


Client ID: RB3 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 23 KKW Injection Vol: Operator ID: 1.00 ul

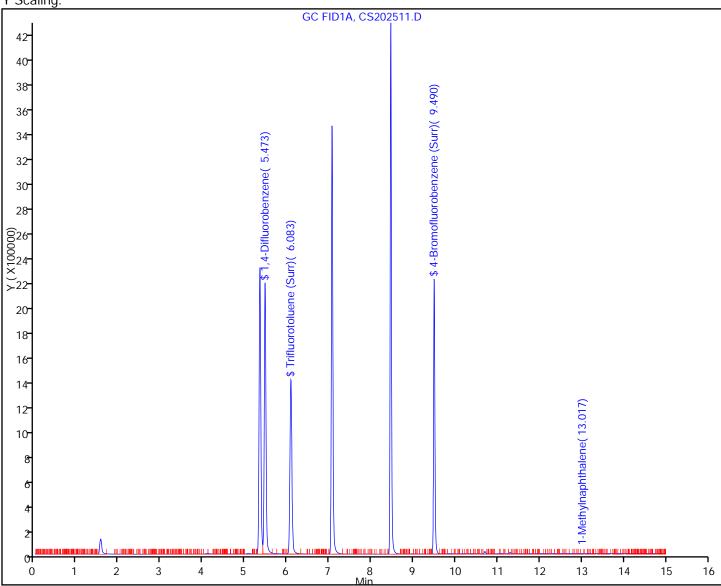
Injection Date: 25-Jan-2012 21:15:06 Limit Group: **NWTPH-GX** Client ID: TAC003 RB3 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 62

JMB Operator ID:



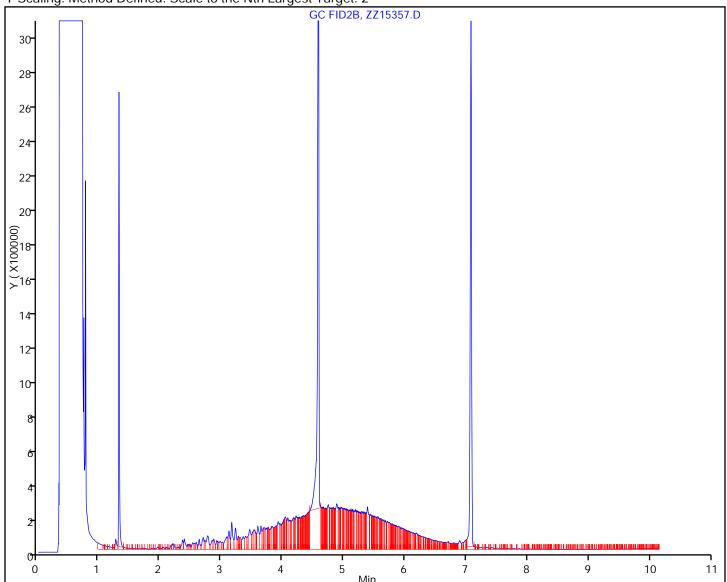
Report Date: 25-Jan-2012 08:35:57 Data File: \\tacsvr5\Chrom|

Injection Date: 24-Jan-2012 21:49:45 Limit Group: **NWTPH-DX Standard list**


Client ID: RB2 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 24 Injection Vol: Operator ID: KKW 1.00 ul

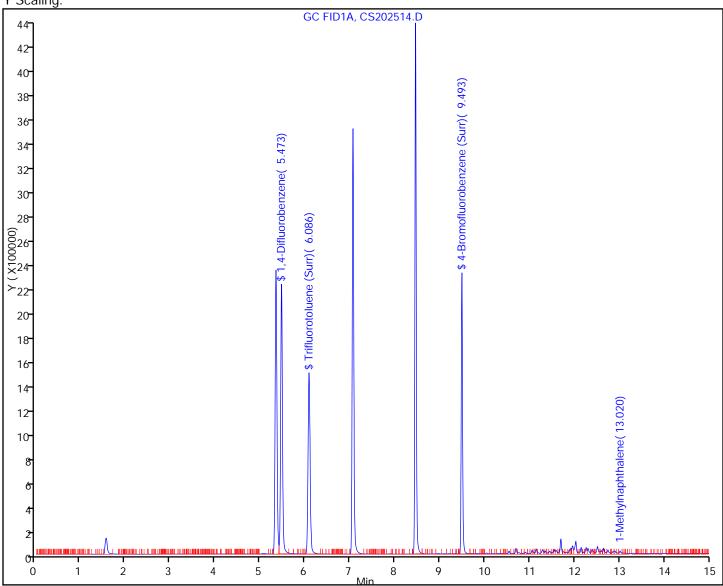
Report Date: 26-Jan-2012 13:08:42 Data File: \\tacsvr5\Chrom|

Injection Date: 25-Jan-2012 21:37:21 Limit Group: **NWTPH-GX** Client ID: TAC003 RB2 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 63 JMB


Operator ID: Y Scaling:

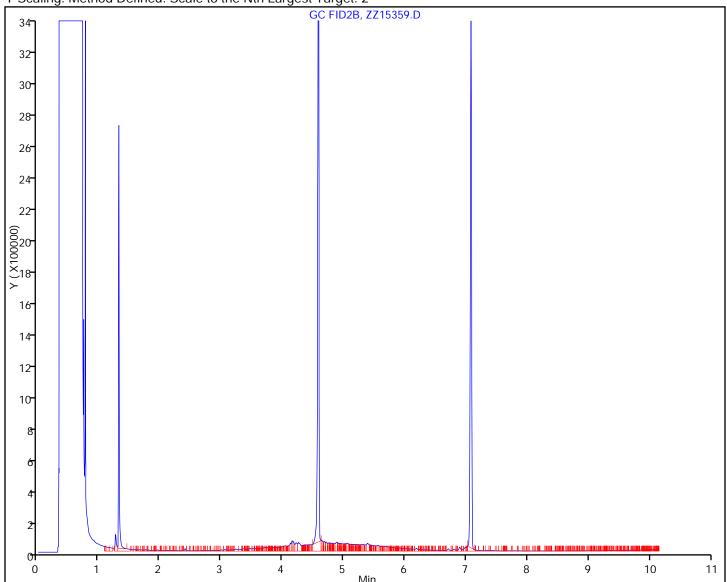
Report Date: 25-Jan-2012 08:36:19 Data File: \\tacsvr5\Chrom|

Injection Date: 24-Jan-2012 22:54:34 Limit Group: **NWTPH-DX Standard list**


Client ID: RB1 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 27 Injection Vol: Operator ID: KKW 1.00 ul

Report Date: 26-Jan-2012 13:08:49 Data File: \\tacsvr5\Chrom| n-2012 13:08:49 Chrom Revision: 1.2 13-Jul-2011 10:43:06 \tacsvr5\ChromData\TAC003\20120124-21289.b\CS202514.D

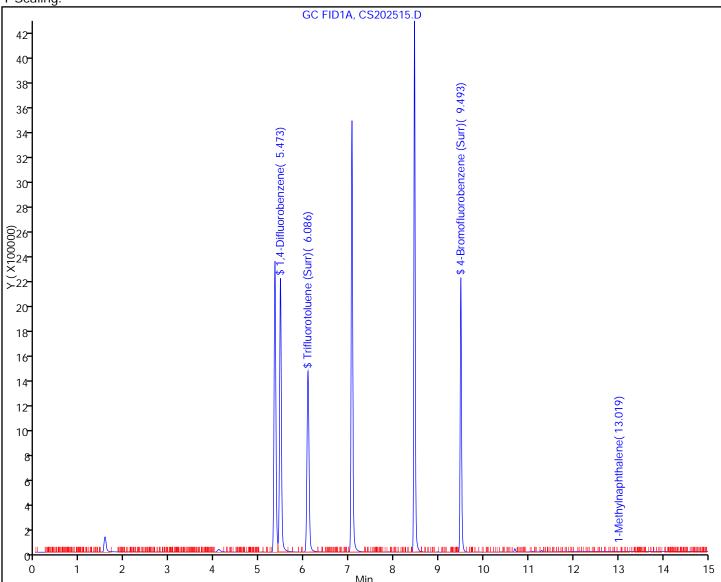
Injection Date: 25-Jan-2012 22:45:04 Limit Group: **NWTPH-GX** Client ID: TAC003 RB1 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 64


JMB Operator ID:

Report Date: 25-Jan-2012 08:36:26 Data File: \\tacsvr5\ChromI

Injection Date: 24-Jan-2012 23:15:56 Limit Group: **NWTPH-DX Standard list**

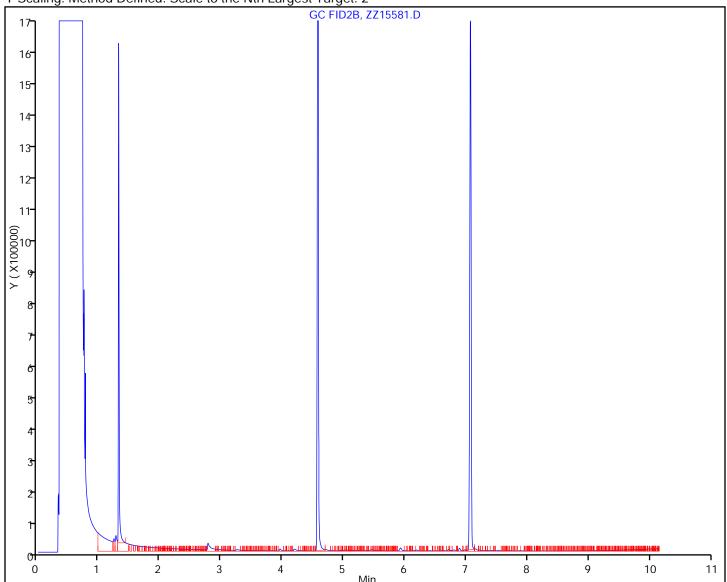
Client ID: DUP-1 Instrument ID: TAC017 Lims Batch ID: 104033 Lims Sample ID: 28 Injection Vol: Operator ID: KKW 1.00 ul



Report Date: 26-Jan-2012 13:08:54 Chrom Revision: 1.2 13-Jul-2011 10:43:06 Data File: \\tacsvr5\ChromData\TAC003\20120124-21289.b\CS202515.D

Injection Date: 25-Jan-2012 23:07:35 Limit Group: **NWTPH-GX** Client ID: DUP-1 TAC003 Instrument ID: Lims Batch ID: 104093 Lims Sample ID: 65 JMB

Operator ID:



Injection Date: 31-Jan-2012 16:10:37 Limit Group: **NWTPH-DX Standard list**

Client ID: Instrument ID: TAC017 B-12-5-45 Lims Batch ID: 104460 Lims Sample ID: 5

Injection Vol: Operator ID: **EKK** 1.00 ul

