

Engineering + Environmental Est. 1982

October 7, 2014

Roy Farms, Inc. Attn: John Reeves 401 Walters Road Moxee, Washington 98936

Re: August 2014 Biannual Monitoring Report Yakima County Parcel #201208-31001 PBS Project No. 62357.005

Dear Mr. Reeves:

PBS Engineering and Environmental Inc. (PBS) is pleased to provide the results of the groundwater sampling event conducted at the above-referenced location on August 5-6th, 2014. As part of the biannual monitoring program adopted for the site, this was the first sampling event of the year.

Background

A gasoline and diesel fuel release was discovered during a Phase II Environmental Site Assessment conducted by PBS in the spring of 2009. Once the release was discovered, Roy Farms excavated contaminated soil and removed two aboveground fuel storage tanks in the spring of 2009. A limited amount of petroleum-contaminated soil was left in place due to structural concerns at the adjacent shop building foundation. After removing contaminated soil, the pit was backfilled with clean soil. Contaminated soil from the remedial action is currently on site, and has been the subject of land farming, bio-remediation and ongoing sampling and analysis.

In June 2009, three monitoring wells were installed, designated as MW-1 through MW-3. A fourth well was installed in 2010 due to petroleum constituents detected above state cleanup levels in all three wells. Monitoring well MW-4, installed several hundred feet down gradient, serves as a sentry well to help determine if petroleum contaminated groundwater is moving off-site.

August 2014 Groundwater Sampling

The four on-site monitoring wells are sampled twice annually. Monitoring wells MW-1 and M-2 are located northeast and southeast of the former excavated area, respectively. Monitoring well MW-3 is located within the contaminated groundwater plume downgradient of the former excavated area. Monitoring well MW-4 is a downgradient well placed near a seasonal irrigation canal. Figure 1 is a site plan showing the wells and is included as Attachment I.

Prior to sampling each individual monitoring well, the water table elevation was recorded by PBS using an interface meter. PBS sampled the monitoring wells following PBS' standard operating procedure for low-flow sampling, which is included as Attachment II to this report. Also included with this report are the low flow field data sheets in Attachment III. Sampling was completed in accordance with the sampling plan for the site.

400 Bradley Boulevard, Suite 300, Richland, WA 99352 509.942.1600 Main 866.727.0140 Fax www.pbsenv.com Mr. John Reeves, Roy Farms, Inc. Re: October 2014 Biannual Monitoring Report – Yakima County Parcel # 201208-31001 October 7, 2014 Page 2

Groundwater samples were collected in laboratory-prepared sample containers and stored in a cooler with ice. Groundwater parameters for conductivity, pH, temperature, oxidation reduction potential (ORP), and dissolved oxygen were collected at the time of sampling.

Sample Analysis

The collected samples were submitted to the Friedman and Bruya Laboratory in Seattle, Washington, within specified holding times. The samples were analyzed for gasoline (method NWTPH-Gx), benzene, toluene, ethylbenzene, and xylenes (BTEX, EPA Method 8260C) and diesel (Method NWTPH-Dx). Samples were also analyzed for volatile organic compounds (VOCs) methyl-tertiary-butyl ether (MTBE), ethylene dibromide (EDB), ethylene dichloroethane (EDC), and naphthalene by Method 8260C.

The laboratory analytical report is included with this report as Attachment IV.

Results

Sample results for MW-1 – MW-4 are presented in Table 1 in Attachment V along with the historical analytical results. Results from monitoring wells MW-2 and MW-3 were found to exceed the Model Toxics Control Act (MTCA) Method A cleanup level of 5 micrograms per liter (μ g/L) for benzene. Gasoline was detected in both these monitoring well; however the concentration of gasoline in monitoring well MW-2 was below the MTCA Method A cleanup value of 800 μ g/L when benzene is present.

Gasoline, BTEX, gasoline additive MTBE, and naphthalene all exceeded the respective MTCA Method A cleanup levels in well MW-3. Diesel range hydrocarbons were also detected in this monitoring well at a concentration exceeding the Method A cleanup level. However, the diesel result was flagged by the lab and the diesel is likely due to overlap of gasoline range hydrocarbons. Refer to Figure 1 for monitoring well locations and a plume diagram based on August 2014 gasoline concentrations.

Groundwater elevations were used to determine the direction of groundwater flow, which was found to be approximately North 53° West. The northwest direction of flow was in agreement with observed flow directions during previous sampling events. The gradient was calculated as .007 foot per foot.

Discussion

Gasoline and BTEX concentrations from monitoring well MW-3 continue to significantly exceed MTCA Method A cleanup levels. Gasoline concentrations in this well were identical to the previous sampling event, which had occurred in September 2013. BTEX concentrations were little changed between September 2013 and August 2014.

Gasoline and benzene concentrations in monitoring well MW-2 decreased in August 2014 as compared to September 2013, and both were at the lowest concentrations yet observed in this well. This is the first sampling event in which gasoline did not exceed the Method A cleanup level of 800 ug/L, however benzene continued to exceed the Method A cleanup level in this well.

All results from monitoring well MW-1 were below the respective laboratory MRL. This is the fourth consecutive six month sampling period with all the results below the laboratory MRL.

Groundwater at monitoring well MW-4, installed in 2010 after the first three wells had been installed, had no petroleum concentrations above the laboratory MRL. This is consistent with previous findings.

The water level elevations in each of the four monitoring wells had risen as compared to the previous sampling event. Monitoring well MW-4 showed the greatest increase in water level as compared to September 2013. As mentioned in previous reports, this well appears to be under the influence of the nearby irrigation canal, with water levels higher during the irrigation season.

Mr. John Reeves, Roy Farms, Inc. Re: October 2014 Biannual Monitoring Report – Yakima County Parcel # 201208-31001 October 7, 2014 Page 3

Conclusion

The elevated concentrations of benzene and gasoline in monitoring wells MW-2 and MW-3 are high enough that cleanup levels may be exceeded for a number of years. The Department of Ecology (Ecology) guidelines typically require that four consecutive quarters over a one-year period of results below cleanup levels be documented before Ecology will consider a no further action (NFA) letter for a site.

PBS had presented a discussion of additional wells to better characterize the plume and recommended joining the Ecology Voluntary Cleanup Program in the May 2012 sampling report. PBS would also suggest that interim actions, such as in-situ treatments, be considered to reduce hydrocarbon concentrations in monitoring well MW-3.

PBS understands that continued sampling on a twice yearly schedule is preferred by Roy Farms at this point in time. One additional sampling event is planned for 2014.

Mr. John Reeves, Roy Farms, Inc. Re: October 2014 Biannual Monitoring Report – Yakima County Parcel # 201208-31001 October 7, 2014 Page 4

Limitations

This work was performed in accordance with the generally accepted practices of consultants undertaking similar studies at the same time and in the same geographical area. PBS observed a degree of care and skill generally exercised by other consultants under similar circumstances and conditions. Findings and conclusions must be considered not as scientific certainties, but as opinions based on professional judgment concerning the significance of the data gathered during the course of monitoring. The site as a whole may have other contamination that was not characterized by this study. PBS is not able to represent that the site or adjoining land contain no hazardous waste, oil or other latent conditions beyond that detected or observed by PBS. Other than this, no warranty is implied or intended.

We appreciate the opportunity to provide this report. If you have any questions or need further services please contact us at 509.735.2698.

Prepared and submitted by:

Dana Ertel, LG PBS Project Manager October 7, 2014

Reviewed by: Tom Mergy, LG PBS Senior Geologist

Attachments: Figure 1. Site Plan PBS SOP: Low Flow Groundwater Sampling August 2014 Groundwater Sampling Forms MW1-MW4 Table 1. Roy Farms Groundwater Parameters and Petroleum Constituents for 2009-2014 Laboratory Data and COC Form

ATTACHMENT I

Figure 1: Site Plan

sers\dana\Documents\CAD Files\62357 Aug 2014 Fig 1.dwg Oct 03, 2014 12:02pm ds

ATTACHMENT II

PBS SOP: Low Flow Groundwater Sampling

STANDARD OPERATING PROCEDURE GROUNDWATER SAMPLING USING LOW-FLOW SAMPLING TECHNIQUES

1.0 BACKGROUND AND PURPOSE

Groundwater samples are collected from monitoring wells and temporary borings for analysis of physical and chemical parameters, either by using field observations and portable equipment and/or using off-site laboratory analytical methods. Groundwater is typically purged prior to sample collection to ensure that water sampled is representative of the formation. Traditional groundwater sampling methods required removal of multiple casing volumes of water, resulting in large quantities of water requiring disposal and increasing the potential for volatilization of organic compounds due to a high pump rate. The agitation from this removal could increase turbidity as well.

Low-flow purging and sampling methods were developed to minimize purge water volume and reduce the potential for contaminant volatilization. Low-flow techniques have become the industry standard for collecting a groundwater sample because the method minimizes turbidity and produces a more representative groundwater sample. Although it is preferable to use pumps dedicated to specific wells, low-flow techniques can be achieved with a portable pump.

The procedures in this Standard Operating Procedure (SOP) are specific to standard monitoring wells with a single-slotted interval. This SOP is generally acceptable for use with temporary borings.

2.0 EQUIPMENT LIST

- 1. Well lock keys
- 2. Groundwater Sampling Field Form
- 3. Electronic water level probe
- Interface probe (if dense or light non-aqueous phase liquids are [DNAPL or LNAPL] is present)
- 5. Knife or scissors
- 6. Decontamination equipment
- 7. Site map and health and safety plan
- 8. Personal Protection Equipment (PPE) appropriate for the site
- 9. Submersible pump or peristaltic pump and associated equipment
- 10. Compressed gas source (Nitrogen or air compressor), battery source, or generator and fuel
- 11. Control box
- 12. Disposable tubing, if necessary
- 13. Field water quality monitoring equipment
- 14. Buckets or containers for purge water and drum labels
- 15. Sample containers, labels, packaging material

3.0 PROCEDURE

Low-flow techniques rely on stabilization of field water quality parameters to determine when groundwater is representative of aquifer conditions. Measurement of groundwater quality

parameters occurs in a closed system in which groundwater does not come in contact with open air; dissolved oxygen (DO), oxygen-reduction potential (ORP), and pH measurements are sensitive to reactions with the atmosphere. A flow-through cell (flow cell) serves as this closed system and is used to measure field parameters prior to collecting groundwater samples. Stabilization of selected parameters indicated that conditions are suitable for sampling to begin.

This method requires care when placing a portable pump and/or tubing in the well to minimize disturbance to the water column. Low-flow purge and sample methods call for low pumping rates (0.1 to 0.5 liter/minute) to reduce drawdown. A drawdown of less than 0.3 feet in the water column, once the pumping rate has stabilized, is desirable; however depending on the lithology, this is not always possible. At a minimum, the depth-to-water should be stabilized for three consecutive readings taken between 3 to 5 minutes apart (in conjunction with the stabilization of the other parameters).

For monitoring wells, sampling should proceed as follows:

- 1. Note the general condition of the well. Check well for security damage or evidence of tampering and record pertinent observations. Note any maintenance tasks that should be completed, such as well cap or padlock replacement.
- 2. Open the well and wait a minimum of five minutes for water levels to approach an equilibrium state with atmospheric pressure before taking any measurements.
- 3. Measure the depth to water relative to the marking on the well casing. If there is no mark, use the north side of the casing. Record the water level on the field form. Note if DNAPL or LNAPL is present.
- 4. If using a portable pump setup, slowly lower the pump or tubing to the midpoint of the screen or sample interval. Secure the pump or tubing to prevent it from moving. Skip this step if using dedicated pumps.
- 5. Hook up the control box, compressor or nitrogen tank with regulator, or peristaltic pump, and flow cell with field water quality monitoring equipment. Put the water level probe in the well so water levels can be measured as you are pumping. Start the pump and adjust the pumping rate to between 0.1 and 0.5 liters per minute (using a measuring cup to calculate the flow rate). Begin recording readings on the field sheet. Be sure to purge the amount of water in tubing before taking readings or a sample. Monitor water levels as well as groundwater parameters.
- 6. During purging, take readings every 3 to 5 minutes. Record readings on the field form. Purging is considered complete when the groundwater parameters have stabilized for three consecutive readings.

Field Parameter	Stabilization Goal
Temperature	+/- 3%
Specific conductance	+/- 3% mS/cm
рН	+/- 0.1 pH units
DO	+/- 10% or +/- 0.3 mg/L
ORP	+/- 10 millivolts
Depth to Water	+/1 0.3 feet

- 7. Measure turbidity of the sample water using field instruments prior to sample collection and upon any obvious visual changes in turbidity during sample collection.
- 8. The water sample must be collected before the water passes through the flow cell. Disconnect the tubing from the flow cell and directly fill the sample containers. If you are

collecting samples for volatile organic compound (VOC) analysis, you may need to decrease the pump rate; if this is the case, other samples should be collected first. Fill unpreserved bottles first. Filtered samples should be collected after all other samples have been collected.

- 9. Groundwater samples for dissolved metals analyses can be field filtered with a 0.45 micron filter directly connected to the tubing. Mark "field filtered" or "FF" on the bottle label, field form, and chain of custody.
- 10. Prior to filling or just after filling, label each bottle and make sure it is properly sealed. Place in a cooler with ice and pack for transportation.
- 11. As necessary, pull pump and discard tubing. Decontaminate the pump based on the SOP for the site.
- 12. Close and lock the well.
- 13. Make sure all information is completed on the groundwater field form and sign and date it.
- 14. Dispose of all purge and decontamination water in the appropriate containers.

For temporary borings, the goal of minimizing the drawdown may not be obtainable for the following reasons:

- The narrow temporary casing (often 1-inch PVC) can prevent monitoring groundwater level measurements (insufficient room in the temporary casing to install a water level meter)
- Excessive fines (silt and clay) may be present in the temporary screened interval because the boring has not been developed in the manner of a constructed monitoring well.
- Excessive suspended sediment in the water column may prevent a peristaltic pump from operating at a low flow rate (the peristaltic pump often quits working at very low flow rates).

For these reasons, temporary borings should be sampled by utilizing the lowest flow rate possible and monitoring field parameters as indicated above to indicate when sampling is appropriate. All other procedural steps should be completed as appropriate to a temporary boring scenario.

References:

Puls, R.W. and M.J. Barcelona, 1996, GROUNDWATER ISSUE PAPER: Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures; U.S. Environmental Protection Agency, EPA/540/S-95/504.

Yeskis, D. and Bernard Zavala, GROUNDWATER ISSUE PAPER: Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers, U.S. Environmental Protection Agency, EPA 542-S-02-001, May 2002

ATTACHMENT III

August 2014 Groundwater Sampling Forms MW1-MW4

		PBS Engineering	& Environme	ental	Project:	loy Farm	rs	
PR	ς	GROUNI	OWATER		Project No.	: 6235	7	
	5	SAMPLING Revised:	12/2011		Date: 8	10/14		
Field Pers	onnel: <i>D</i>	40			Mo	nitoring We	MID. MA	/=/
Weather C	onditions:	Hot, clear, 85°F			Init	tial DTW:	13.13	•
		INITIAL WELL	DATA & WELL	PURGING	INFORMATI	ON		
Time	Water	Specific	Dissolved	.0025 gallon Water	S/linear foot	Turbidity	Mator I	Valuma
(0.00 -	Temperatur	e Conductivity	Oxygen	pН		rarbialty	Level	Purged
117.1-	(+/-0.50C)	(mS/cm)	mg/L		(mV)	(visual)	(feet TOC)	(gallons)
1130	10-14	12.71	7/7	747	211	- Cleary	13.13	
1133	14.36	1249	1 78	7.47	-36.6	"	0	
1137	14.43	12.7.1	0.11	7110	-11.0		13.13	
1142	14.37	1163	7.04	750	5.0	,,	<i>n</i>	
1148	14.27	1117	8.7.1	7.20	13.5			
1154	14.14	1090	8.47	1.63	77.7		13.13	
1156	14.12	1085	8.60	771	74.4			
1158	14.14	(081	8.55	771	25.4	21		
					23.9			
the second second	and the second			Party and the second second				
	Second and party balls of a second					Total P	urged =	
Type of pur	np used (circle	e one): Peristaltic B	laddes	Other			_	
Depth of tub	oing inlet (appi	rox. feet bgs): 27-5		Fina	al Turbidity Re	eading (NTU	s): 8.25	
Purge Pump	oing Rate (app	orox. ml/m): <u>300 3</u> 04	m	Tim	e Sampled:	1200		
QA/QC Sam	ple collected	(circle one):		San	nle ID: A	a Malla	-	
Du	olicate Lab	QA/QC Equipment Blan	k None	Oan		o price	-1	
Ċ			in none			mw	DUP	
			WELL CON	DITION				
Recommend	led Well Repa	airs/Additional Notes:	TILL CON					
	W	ell in good condition,	ine well care	1 bult is	Groken.			
	~							
	10-	39.65						
					And a second			
	· · · · · · · · · · · · · · · · · · ·	記 · · · · · · · · · · · · ·	ELD OBSERVAT	IONS / NOTE	S	湖州也在同门	92 () State	國民主任主義

Signature of Field Personnel:

And the second se		PBS Engineering	g & Environme	ental	Project: 🏾	ing Farms		
		GROUN	DWATER		Project No.:	62357		
LR:	2	SAMPLING Revised	FIELD FORM	1	Date: 8/0	5/14		
ield Perso	onnel: DBE		. 12/2011		Mo	nitoring We	IIID. Mul-	-2_
Veather Co	onditions: 1tht,	clear, 95°F			Init		1672	
a starte e		INITIAL WELI	DATA & WELL	PURGING	INFORMATIO	ON .		
Time	Water I	1/4 inch t	ubing = approx 0	.0025 gallons	/linear foot			
(0.00 -	Temperature	Conductivity	Oxygen	vvater	ORP	Turbidity	Water	Volume
24:00)	(+/-0.50C)	(mS/cm)	mg/L		(mV)	(visual)	(feet TOC)	Purged (gallons)
1334		nen Store fillen inder son en			<u>,,,,,,</u>	(noull	1672	(galions)
1340	16.80	1050	3.11	729	-49.7	si maning	10.1	
1343	15.30	1032	1.96	7/7	-41.8			
1345	14.95	(027	1.73	7.28	- 34.0		11 00	
1350	15.46	1023	2.05	724	-78-7		16.85	
1357	15.33	1019	2.44	777	-10.1		16.80	
1400	15.19	1008	7.60	7 2 2	-01.4		11.0	
1405	15.03	951	1.97	7.20	112		16.80	1
1408	15.10	981	307	7.71	-1613			
1410	16.07	471	7.00	1.09	-15-0	**		
1412	10.01	971	1.12	1.65	-/1.6	11	"	
	15:10	116).//	7.29	-11-0	"		
					and the second statements and the			
						Total Pu	irged =	
opth of tub	ing inlet (approx. f): Peristallic eet bgs): <u>/?'</u> ml/m): <u>2<i>vo@</i>2</u>	- 3 Cpm	Other Fina 7 Time	I Turbidity Re	eading (NTUs	s): <u>3.85</u>	
urge Pump A/QC Sam Dup	nig Rate (approx. ple collected (circl llicate Lab QA/	e one): QC Equipment Bla	nk None	C Pm Sam	nple ID:/	1w-2		
urge Pump A/QC Sam Dup	nig Rate (approx. ple collected (circl llicate Lab QA/	e one): QC Equipment Bla	nk None	Com Sam	aple ID:	1w-2		
epin on tab urge Pump A/QC Sam Dup ecommend	ed Well Repairs/A	e one): QC Equipment Bla ditional Notes:	None WELL CON	DITION Cendition.	Several Jule 1D: Several Jule bo P(PS ba	inches of them of a	" water i the well c the water.	were us over, PBS
epin on tab urge Pump A/QC Sam Dup ecommend	ed Well Repairs/A	e one): QC Equipment Bla	nk None WELL CON	CPM Sarr DITION Cend.Scon.	Several June ID: _// Several June bo P(FS ba observed	inclos of them of d ited out t a sheen	the well c the well c the worker. on this c	vere vis over, PBS water.
epin on tab urge Pump A/QC Sam Dup ecommend	ed Well Repairs/A	e one): QC Equipment Bla .dditional Notes: (None WELL CON Well in good	DITION Cendition.	Several Jup ba Jul ba D(FS ba observed S	inclos of them of a field cut of a sheen	the water is the water. on this is	were us over, PBS water.
epin of tab urge Pump A/QC Sam Dup ecommend	ed Well Repairs/A	e one): QC Equipment Bla dditional Notes:	nk None WELL CON Well in gottal	IDITION Cendition.	Several JLa bo P(35 ba observed S	inclos of them of a ited cut + a sheen	the well c the water. on this c	were is over, PBS water.
arge Pump A/QC Sam Dup commend	ed Well Repairs/A	e one): QC Equipment Bla dditional Notes:	nk None WELL CON WELL CON	IDITION Cendition.	Several Jule ID: _// Several Jule bo P(PS ba observed S	inclos of them of d iled out + a sheen	the water is the water. on this is	were is over, PBS water.

Signature of Field Personnel:

		PBS Engineering	g & Environme	ntal	Project: R	my Farms		
DD	C	GROUN	DWATER		Project No.	: 62357		
FD	3	SAMPLING	FIELD FORM		Data: 6/	1 10.1		
Field Perso	onnel: Dr.		5. 12/2011		Date. 8/	6/19	and the second distance of the second distanc	and the second
Weather Co	onditions: //	clear Sport			Mo	nitoring We	IIID: Mh	1-3
	////	INITIAL WELI	DATA & WELL	PURGING		tial DTW:	13.95	
		1/4 Inch 1	tubing = approx 0	0025 gallons	/linear foot		81 Mg	
(0.00 - 24 [.] 00)	Water Temperature (+(-0.50C)	Specific Conductivity (mS(cm))	Dissolved Oxygen	Water pH	ORP	Turbidity	Water Level	Volume Purged
1210	(1) 0.000)	(morcin)	mg/L		(mV)	(visual)	(feet TOC)	(gallons)
213						st murky	17.95	
1215						<u> </u>	1403	
1217	15.2.2	1256	2.42	70	-750 1	<u>h</u>	19.10	
1224	15.56	1255	7.59	7002	-3711))])	14.03	
1228	15.50	1256	2.44	7.00	-7707		14.03	
1231	15.53	1255	2.10	7.14	-7350			
1275	15.37	1256	1.95	7.14	- 337.7			
1238	15.35	1256	1.78	7.14	- 338.0		•	
1240	15.36	1256	1.77	7.14	- 337.7		11	
		······································						
Nincerold on other sector				J				
						Total Pu	urged =	
ype of pum Depth of tubi Purge Pump	p used (circle one ing inlet (approx. ing Rate (approx. pla collocted (circ	e): Peristaltic feet bgs): <u>20</u> ml/m): <u>[[0/] C/M</u>	Z CPM	Other Fina Time	I Turbidity Re	eading (NTU:	5): 21.28	
Dur	pie collected (cito			Sam	ple ID:	1-3		
Dup	incate Lab QA	QC Equipment Bla	nk None					
(Charles in a local entry								
			WELL CON	DITION				
lecommena	ed vvell Repairs/	Additional Notes:						
	TD=30.55	Well m jord	Cendition					
And the second se	and the second second	4	ELD OBSERVATI	ONS / NOTES	Section of the section of the	NEAL PROPERTY.	2. 9. 95 C 1920 PARA	Control construction of
1999 - A.	15 of st							
		•						
	1 nu ador							1
	I hu daor							
	1 na odor							
	(na saor							

-

		PBS Engineering	& Environme	ental	Project:	onFarms			٦
	<u> </u>	GROUN	DWATER		Project No.	62202			
PB	S	SAMPLING	FIELD FORM	7	niojectino.	11.1			
Field Pers		Revised	12/2011		Date: 8/6	119			4
Weather C	onditions:	that class SUPE			<u>Mo</u>	nitoring We	IIID: Mh	1-9	_
		INITIAL WELL	DATA & WELL	PURGING	INFORMATIO	ial DTW: ~	7.72		_
		1/4 Inch tu	ibing = approx (0.0025 gallon	s/linear foot				
(0.00 - 24:00)	vvater Temperature (+/-0.50C)	Specific Conductivity (mS/cm)	Dissolved Oxygen mg/L	Water pH	ORP (mV)	Turbidity (visual)	Water Level (feet TOC)	Volume Purged (gallons)	1
0146	1-17	116		<i>c</i> 1			7.72		1
075 5	17.61	165	3.16	8.24	-54.0	SI murky	4.25		30
1005							0	1401d	
1012	18.69	166	2.80	0.20			8.36		10
1016	18.46	166	3 12	8.01	-48.5	P	8.55		- "
1020	18.41	165	3.00	0.00	48.1	+1	8:61		-
1027	18.38	166	164	817	- 40.1	<u>71</u>	1.72		-
1032	18.32	165	3.20	8.26	-70.6	41	8.70		-
1038	18.26	164	3.47	8.27	- 31.9	h	\$70		-
1044	18.16	165-	3.36	8.2	-29,9	n	\$ 70		-
1046	18.13	165	7.20	8,27	-30,1	p	n		-
1048	18.16	165	3.22	8.27	-30.0	**	h		1
1050	18.12	165	3.22	8,27	-262	n	m		
									1
]
						l otal Pi	urged =		
Type of pum	ip used (circle	one): Peristaltic	ladder	Other			-		
Depth of tub	ing inlet (appro	ex. feet bgs): 21	-	Fina	al Turbidity Re	eading (NTU	s): 11.28	2	
Purge Pump	ing Rate (appr	ox. ml/m):25/14m	3 CPM fr.	start Tim	e Sampled [.]	1100			
QA/QC Sam	ple collected (circle one):	1 cpm	San		11-16			
Dup	blicate Lab (QA/QC Equipment Blar	k (lone)	San		w-y			
			WELL CON		ine a startoon				-
Recommend	ed Well Repai	rs/Additional Notes:	WLLL OON	DITION	的行为公共中国主席高等				4
	70=24.80	" Well in good Com	lition						
		, i i i	en o 🗣 - Frensla						
ind classification	an a								
255 Article State Led A	CONTRACTOR CONTRACTOR	F. Contraction of F.	ELD OBSERVAT	IONS / NOTE	S	時中的時間	的控制的	保卫经济保	
Wate	in the re	and just NW of	- well, f	leving	west				
			(,	999) (S-194				1
									1
		an a finan minan ing kanala na ang ang ang ang ang ang ang ang ang							
Signature of	Field Person	nel						an a	1
Manual Property of the Party of									1

ATTACHMENT IV

Table 1: Roy Farms Groundwater Parameters and Petroleum Constituents for 2009-2014

Depth to Groundwater (feet) Naphthalene (µg/L) Conductivity (micromhos/cm) **ORP** (millivolts) Diesel/Oil (µg/L) Gasoline (µg/L) Sample Date BTEX (µg/L) MTBE (µg/L) Lead (µg/L) EDC (hg/L) EDB (µg/L) Temp (°C) Sample # F MW-1 06/08/2009 19.18 NA NA NA NA 7,700 330/270/320/810 NA NA NA NA NA NA 09/28/2009 16.99 7.34 1032 16.2 NA ND 3.4/1/ND/5 ND NA NA NA NA NA 12/16/2009 18.64 7.41 1040 15.5 NA 130 **39**/2/<1/130 50^/<250 NA NA NA NA NA 19.21 7.27 16.0 150 16/ND/ND/16 ND NA NA NA 03/30/2010 1161 NA NA NA 07/01/2010 16.24 7.24 1220 13.0 NA <100 7.8/<1/<3 <50/<250 NA NA NA NA NA 10/28/2010 17.12 7.25 1090 12.6 +222 <100 1.6/<1/<3 <50/<250 NA NA NA NA NA 07/05/2011 16.86 7.08 1391 13.2 +101 110 23/<1/<1/2.7 <50/<250 <1 NA NA <0.1 4 01/23/2012 17.92 1267 +199 <100 5.5/<1/<1/1.1 7.17 11.7 100/<250 NA <1.5 <1 <1 <1 05/29/2012 17.95 7.75 1056 20.7 +80 <100 <0.35/<1/<1<3 <50/<250 <1 <1 <1 NA <1 17.96 7.46 +27.3 <100 5/6/2013 1157 16.16 <0.35/<1/<1<3 110x/<250 <1 <1 <1 NA <1 9/27/2013 14.20 7.58 828 12.88 237.5 <100 <1/<1/<3 <50/<250 <1 <1 <1 NA <1 NA 8/5/2014 13.13 7.71 1081 14.14 25.4 <100 <1/<1/<3 <50/<250 NA NA NA NA MW-8/5/2014 <100 <1/<1/<3 <50/<250 NA NA NA NA NA DUP

Table 1. Roy Farms Groundwater Parameters and Petroleum Constituents for 2009-2014 Roy Farms Moxee, Washington

Sample #	Sample Date	Depth to Groundwater (feet)	Hd	Conductivity (micromhos/cm)	Temp (°C)	ORP (millivolts)	Gasoline (µg/L)	BTEX (µg/L)	Diesel/Oil (µg/L)	MTBE (µg/L)	EDC (µg/L)	EDB (µg/L)	Lead (µg/L)	Naphthalene (µg/L)
MW-2	06/08/2009	22.78	NA	NA	NA	NA	1,900	1,200/ 98/13/280	NA	NA	NA	NA	NA	NA
	09/28/2009	20.37	7.11	1138	16.7	NA	1,300	1,000/25/ND/130	ND	NA	NA	NA	NA	NA
	12/16/2009	22.50	7.07	1440	16.2	NA	9,500	3,100/93/<1/9,500	840^/ <250	NA	NA	NA	NA	NA
	03/30/2010	22.75	7.09	1229	16.5	NA	2600	2000/160/33/390	ND	NA	NA	NA	NA	NA
	07/01/2010	20.06	7.01	1235	13.6	NA	1,000	900/20/ND/76	160^/<250	NA	NA	NA	NA	NA
	10/28/2010	20.43	6.90	1414	13.1	+14	4,700	18,000 /38/<10/160	250^/<250	NA	NA	NA	NA	NA
	07/05/2011	20.65	6.90	1384	14.2	+92	2,400	1,500 /12/<10/100	210^/<250	<1	NA	NA	NA	1.2
	01/23/2012	21.29	6.76	1931	12.9	+247	4,000	2,600 /41/<1/250	510/ <250	1.7	<1	<1	NA	10
	05/29/2012	21.52	7.09	1377	13.8	+67	3,000	1,700 /<50/<50/140	160 ′/ <250	<50**	<50	<50	NA	<50
	5/7/2013	21.59	6.74	1451	15.77	12	2,600	1,700 /<50/<50/120	190^/<250	<50	<50	<50	NA	<50
	9/27/2013	17.54	7.40	790	13.60	268.3	1,000	410 /<10/<30	<50/<250	<10	<10	<10	NA	<10
	8/5/2014	16.72	7.24	976	15.10	-11	160	53 /<1/<1<3	<50/<250	NA	NA	NA	NA	NA
MW-3	06/08/2009	20.20	NA	NA	NA	NA	17,000	13,000/7,600/790/3,400	NA	NA	NA	NA	NA	NA
	09/28/2009	16.96	6.94	1526	16.7	NA	24,000	14,000/7,900/860/5,900	ND	NA	NA	NA	NA	NA
	12/16/2009	19.86	6.98	1724	15.8	NA	90,000	20,000/12,000/1,300/90,000	3,800^/ <250	NA	NA	NA	NA	NA

Sample #	Sample Date	Depth to Groundwater (feet)	Hq	Conductivity (micromhos/cm)	Temp (°C)	ORP (millivolts)	Gasoline (µg/L)	BTEX (µg/L)	Diesel/Oil (µg/L)	MTBE (µg/L)	EDC (µg/L)	EDB (µg/L)	Lead (µg/L)	Naphthalene (µg/L)
MW-3	03/30/2010	20.51	6.93	1685	16.5	NA	50,000	24,000/8,300/1,200/7,300	ND	NA	NA	NA	NA	NA
	07/01/2010	17.09	6.89	1543	13.1	NA	100,000	18,000/4,500/990/5,800	3,800^/ <250	NA	NA	NA	NA	NA
	10/28/2010	18.53	6.77	1540	12.9	-85	72,000	18,000/6,500/1,100/7,200	4,300^ /<250	NA	NA	NA	NA	NA
	07/05/2011	17.80	6.88	1586	13.6	-30	71,000	19,000/5,100/1,200/ 6,100	3,500^ /<250	110	NA	NA	<1	230
	01/23/2012	19.22	6.81	1850	12.1	-116	110,000	23,000/11,000/1,500/9,500	5,200 /<250	92	<1	<1	1.86	350
	05/29/2012	18.99	7.03/NA	1448/NA	14.5	-217	47,000	22,000/7,900/1,400/6,800	3,400^ /<250	<1,000**	<1,000**	<1,000**	NA	<1,000**
	5/6/2013	18.92	6.61	1357	15.78	-81.2	75,000	21,000/6,200/1,900/1,900	4,200^ /<250	<100	<100	<100	NA	380
	9/27/2013	15.08	7.21	943	14.15	-120	78,000	20,000/3,700/1,600/7,600	3,200^ /<250	<200	<200	<200	NA	250
MW- DUP	9/27/2013						76,000	20,000/3,600/1,600/7,400	2,800^ /<250	<200	<200	<200	NA	250
	8/6/2014	13.95	7.14	1256	15.36	-338	78,000	19,000/3,200/1,700/7,800	2,300^/ <330	76	<1	<1	<1	260
MW-4	11/18/2010	19.65	7.75	260	14.0	+120	ND	ND/ND/ND/ND	ND/ND	NA	NA	NA	NA	NA
	07/05/2011	12.88	7.77	221	12.9	+92	<100	<0.35/<1/<3	<50/<250	<1	NA	NA	NA	<1
	01/23/2012	20.90	7.92	317	12.2	-15	<100	<0.35/<1/<1/<3	<50/<250	<1	<1	<1	NA	<1.5
	05/29/2012	12.73	8.24	164	13.6	+38	<100	<0.35/<1/<1/<3	<50/<250	<1	<1	<1	NA	<1
	5/6/2013	11.96	7.33	177	11.88	4.0	<100	<0.35/<1/<1/<3	<50/<250	<1	<1	<1	NA	<1

Sample #	Sample Date	Depth to Groundwater (feet)	Hd	Conductivity (micromhos/cm)	Temp (°C)	ORP (millivolts)	Gasoline (µg/L)	BTEX (µg/L)	Diesel/Oil (µg/L)	MTBE (µg/L)	EDC (µg/L)	EDB (µg/L)	Lead (µg/L)	Naphthalene (µg/L)
MW-4	9/27/2013	13.13	8.36	153	16.88	246.3	<100	<0.35/<1/<1/<3	<50/<250	<1	<1	<1	NA	<1
	8/6/2014	7.72	8.27	165	18.12	-26	<100	<0.35/<1/<1/<3	<50/<250	<1	<1	<1	NA	<1
	MTC	A Metho	d A Cleanu	ıp Levels			800/1000	5/1,000/700/1000	500/500	20	5	0.01	15	160

Note: µg/L =micrograms/Liter

MW-DUP =duplicate sample

BTEX = Benzene, Toluene, Ethylbenzene, Total Xylenes

Bold results exceed WDOE – Method A Cleanup Levels

< = Constituent not detected above laboratory method detection limit

ND = Not detected above laboratory method detection limit

^=lab qualifier, diesel range is likely influenced by another constituent

NA = Not analyzed

**= Not further quantified by laboratory

Model Toxics Control Action (MTCA) Method A Cleanup levels are indicated on the last line (The1,000 µg/L cleanup level for gasoline is applicable when no benzene is detected)

ATTACHMENT V

Laboratory Report and COC Form

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 19, 2014

Dana Ertel, Project Manager PBS Engineering and Environmental, Inc. 400 Bradley Blvd, Suite 300 Richland, WA 99352

Dear Mr. Ertel:

Included are the results from the testing of material submitted on August 8, 2014 from the 62357, F&BI 408132 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBR0819R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 8, 2014 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 62357, F&BI 408132 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
408132 -01	MW-1
408132 -02	MW-2
408132 -03	MW-Dup
408132 -04	MW-3
408132 -05	MW-4

Several 8260C compounds failed below the acceptance criteria in the matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

Bromomethane in the 8260C laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analyte was not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132 Date Extracted: 08/11/14 Date Analyzed: 08/11/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-3 408132-04 1/100	78,000	92
MW-4 408132-05	<100	90
Method Blank	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132 Date Extracted: 08/11/14 and 08/13/14 Date Analyzed: 08/11/14 and 08/13/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-1 408132-01	<1	<1	<1	<3	<100	94
MW-2 408132-02	53	<1	<1	<3	160	92
MW-Dup 408132-03	<1	<1	<1	<3	<100	91
Method Blank 04-1639 MB	<1	<1	<1	<3	<100	92

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132 Date Extracted: 08/12/14 Date Analyzed: 08/12/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 51-134)
MW-1 408132-01	<50	<250	97
MW-2 408132-02	<50	<250	94
MW-Dup 408132-03	<50	<250	87
MW-3 408132-04 1/1.3	2,300 x	<330	89
MW-4 408132-05	<50	<250	89
Method Blank 04-1646 MB	<50	<250	86

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	MW-3		Client:	PBS Engineering and Environmental
Date Received:	08/08/14		Project:	62357, F&BI 408132
Date Extracted:	08/13/14		Lab ID:	408132-04
Date Analyzed:	08/13/14		Data File:	408132-04.025
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		100	60	125
		Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blai	nk	Client:	PBS Engineering and Environmental
Date Received:	NA		Project:	62357, F&BI 408132
Date Extracted:	08/13/14		Lab ID:	I4-507 mb
Date Analyzed:	08/13/14		Data File:	I4-507 mb.017
Matrix:	Water		Instrument:	ICPMS1
Units:	ug/L (ppb)		Operator:	AP
			Lower	Upper
Internal Standard:		% Recovery:	Limit:	Limit:
Holmium		98	60	125
		Concentration		
Analyte:		ug/L (ppb)		
Lead		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3 08/08/14 08/11/14 08/11/14 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and 62357, F&BI 408132 408132-04 081108.D GCMS9 JS	Environmental
Surrogates:	44	% Recovery:	Lower Limit:	Upper Limit:	
Toluene-d8	-u4	105	83 93	107	
4-Bromofluorobenz	ene	104	76	126	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	loroethene	<1
Vinyl chloride		< 0.2	Dibromo	ochloromethane	<1
Bromomethane		<1	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobenzene		<1
Trichlorofluoromet	hane	<1	Ethylber	nzene	960 ve
Acetone		61	1,1,1,2-T	etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	3,100 ve
Methylene chloride		<5	o-Xylene		1,300 ve
Methyl t-butyl ethe	er (MTBE)	76	Styrene		<1
trans-1,2-Dichloroe	ethene	<1	Isopropy	lbenzene	51
1,1-Dichloroethane		<1	Bromofo	rm	<1
2,2-Dichloropropan	e	<1	n-Propyl	lbenzene	140
cis-1,2-Dichloroeth	ene	<1	Bromobe	enzene	<1
Chloroform		<1	1,3,5-Tri	methylbenzene	300 ve
2-Butanone (MEK)		15	1,1,2,2-T	etrachloroethane	<1
1,2-Dichloroethane	(EDC)	<1	1,2,3-Tri	chloropropane	<1
1,1,1-Trichloroetha	ne	<1	2-Chloro	otoluene	<1
1,1-Dichloropropen	e	<1	4-Chloro	otoluene	<1
Carbon tetrachlorie	de	<1	tert-But	ylbenzene	<1
Benzene		2,200 ve	1,2,4-Tri	imethylbenzene	980 ve
Trichloroethene		<1	sec-Buty	lbenzene	4.6
1,2-Dichloropropan	e	<1	p-Isopr o	pyltoluene	2.4
Bromodichlorometh	nane	<1	1,3-Dich	lorobenzene	<1
Dibromomethane		<1	1,4-Dich	lorobenzene	<1
4-Methyl-2-pentan	one	<10	1,2-Dich	lorobenzene	<1
cis-1,3-Dichloropro	pene	<1	1,2-Dibr	omo-3-chloropropane	<10
Toluene		1,800 ve	1,2,4-Tri	chlorobenzene	<1
trans-1,3-Dichlorop	oropene	<1	Hexachl	orobutadiene	<1
1,1,2-Trichloroetha	ne	<1	Naphtha	alene	340 ve
2-Hexanone		<10	1,2,3-Tri	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3 08/08/14 08/11/14 08/11/14 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and 62357, F&BI 408132 408132-04 1/200 081118.D GCMS9 JS	Environmental
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4 zene	% Recovery: 98 100 101	Lower Limit: 85 93 76	Upper Limit: 117 107 126	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Compounds: Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane	ethane hane er (MTBE) ethene eene (EDC) une e de	ug/L (ppb) <200 <2,000 <40 <200 <200 <200 <2,000 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 200<br 200<br 20</td <td>1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich</td> <td>nds: loropropane oroethene ochloromethane omoethane (EDB) enzene nzene 'etrachloroethane ene 'etrachloroethane ene 'etrachloroethane idenzene 'methylbenzene 'etrachloroethane ichloropropane otoluene ylbenzene imethylbenzene idenzene imethylbenzene idenzene imethylbenzene idenzene</td> <td>ug/L (ppb) <200 <200 <200 <200 <200 1,700 <200 6,400 1,400 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200<br--><!--200</td--></td>	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich	nds: loropropane oroethene ochloromethane omoethane (EDB) enzene nzene 'etrachloroethane ene 'etrachloroethane ene 'etrachloroethane idenzene 'methylbenzene 'etrachloroethane ichloropropane otoluene ylbenzene imethylbenzene idenzene imethylbenzene idenzene imethylbenzene idenzene	ug/L (ppb) <200 <200 <200 <200 <200 1,700 <200 6,400 1,400 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 200<br 200<br 200</td
4-Methyl-2-pentan cis-1,3-Dichloroproj Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2.Hovanopo	one pene propene ine	<2,000 <200 3,200 <200 <200 <200	1,2-Dich 1,2-Dibr 1,2,4-Tri Hexachle Naphtha 1 2 3 Twi	Iorobenzene omo-3-chloropropane ichlorobenzene orobutadiene alene ichlorobenzene	<200 <2,000 <200 <200 260 <200
~-ilexaliolle		<i>∽</i> ∠,000	1,2,3-111	cinoi openzene	<~UU

ENVIRONMENTAL CHEMISTS

Client Sample ID:MW-4Date Received:08/08/14Date Extracted:08/11/14Date Analyzed:08/11/14Matrix:WaterUnits:ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and 62357, F&BI 408132 408132-05 081117.D GCMS9 JS	Environmental
Surrogatos	% Pacovoru:	Lower Limit:	Upper Limit:	
1 2-Dichloroethane-d4	⁷⁰ Recovery.	211111L. 85	117	
Toluene-d8	102	93	107	
4-Bromofluorobenzene	101	76	126	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1.3-Dich	loropropane	<1
Chloromethane	<10	Tetrachl	loroethene	<1
Vinyl chloride	< 0.2	Dibromo	ochloromethane	<1
Bromomethane	<1	1,2-Dibr	omoethane (EDB)	<1
Chloroethane	<1	Chlorobe	enzene	<1
Trichlorofluoromethane	<1	Ethylber	nzene	<1
Acetone	<10	1,1,1,2-T	etrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xyle	ene	<2
Methylene chloride	<5	o-Xylene		<1
Methyl t-butyl ether (MTBE)	<1	Styrene		<1
trans-1,2-Dichloroethene	<1	Isopropy	lbenzene	<1
1,1-Dichloroethane	<1	Bromofo	rm	<1
2,2-Dichloropropane	<1	n-Propyl	lbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobe	enzene	<1
Chloroform	<1	1,3,5-Tri	methylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-T	etrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Tri	chloropropane	<1
1,1,1-Trichloroethane	<1	2-Chloro	otoluene	<1
1, I-Dichloropropene	<1	4-Chloro	otoluene	<1
Carbon tetrachioride	<1	tert-But	ylbenzene	<1
Benzene	<0.35	1,2,4-1 f1	Imethylbenzene	<1
1 2 Dichloropropono	<1	sec-Duly	nultaluana	<1
Remadichleromethane	<1	1 2 Dich	lorobonzono	<1
Dibromomethane	<1	1,3-Dich	lorobonzono	<1
4-Methyl-2-pentanone	<10	1,4-Dich	lorobenzene	<1
cis-1 3-Dichloropropene	<10	1,2-Dich	omo-3-chloropropane	<10
Toluene	<1	1.2.4-Tri	chlorobenzene	<1
trans-1.3-Dichloropropene	<1	Hexachl	orobutadiene	<1
1.1.2-Trichloroethane	<1	Naphtha	alene	<1
2-Hexanone	<10	1,2,3-Tri	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/11/14 08/11/14 Water ug/L (ppb)	nk ble	Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and 62357, F&BI 408132 04-1634 mb 081107.D GCMS9 JS	Environmental
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	100	85	117	
Toluene-d8		101	93	107	
4-Bromofluorobenz	ene	101	76	126	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<1	1,2-Dibro	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluoromet	hane	<1	Ethylber	nzene	<1
Acetone		<10	1,1, 1 ,2-T	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Methylene chloride		<5	o-Xylene)	<1
Methyl t-butyl ethe	r (MTBE)	<1	Styrene		<1
trans-1,2-Dichloroe	thene	<1	Isopropy	lbenzene	<1
1,1-Dichloroethane		<1	Bromofo	rm	<1
2,2-Dichloropropan	e	<1	n-Propyl	benzene	<1
cis-1,2-Dichloroethe	ene	<1	Bromobe	enzene	<1
Chloroform		<1	1,3,5-Tri	methylbenzene	<1
2-Butanone (MEK)		<10	1,1,2,2-T	etrachloroethane	<1
1,2-Dichloroethane	(EDC)	<1	1,2,3-Tri	chloropropane	<1
1,1,1-Trichloroetha	ne	<1	2-Chloro	otoluene	<1
1,1-Dichloropropen	e	<1	4-Chloro	otoluene	<1
Carbon tetrachloric	le	<1	tert-But	ylbenzene	<1
Benzene		< 0.35	1,2,4-Tri	methylbenzene	<1
Trichloroethene		<1	sec-Buty	lbenzene	<1
1,2-Dichloropropan	e	<1	p-Isopro	pyltoluene	<1
Bromodichlorometh	nane	<1	1,3-Dich	lorobenzene	<1
Dibromomethane		<1	1,4-Dich	lorobenzene	<1
4-Methyl-2-pentan	one	<10	1,2-Dich	lorobenzene	<1
cis-1,3-Dichloroproj	pene	<1	1,2-Dibr	omo-3-chloropropane	<10
Toluene		<1	1,2,4-Tri	chlorobenzene	<1
trans-1,3-Dichlorop	oropene	<1	Hexachl	orobutadiene	<1
1,1,2-Trichloroetha	ne	<1	Naphtha	alene	<1
z-Hexanone		<10	1,2,3-Tri	chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 408132-01 (Duplicate)							
-	Reporting	Sample	Duplicate	RPD			
Analyte	Units	Result	Result	(Limit 20)			
Benzene	ug/L (ppb)	<1	<1	nm			
Toluene	ug/L (ppb)	<1	<1	nm			
Ethylbenzene	ug/L (ppb)	<1	<1	nm			
Xylenes	ug/L (ppb)	<3	<3	nm			
Gasoline	ug/L (ppb)	<100	<100	nm			

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	88	65-118
Toluene	ug/L (ppb)	50	90	72-122
Ethylbenzene	ug/L (ppb)	50	89	73-126
Xylenes	ug/L (ppb)	150	90	74-118
Gasoline	ug/L (ppb)	1,000	86	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	105	58-134	1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 408128-01 (Matrix Spike)							
	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	7.28	95 b	97 b	79-121	2 b
Laboratory Code: Laboratory Control Sample							

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	101	83-115

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 408110-01 (Matrix Spike)

•	•			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	109	55-144
Vinyl chlorido	ug/L (ppb)	50	<10	95	61 120
Bromomethane	ug/L (ppb)	50	<0.2	129	66-129
Chloroethane	ug/L (ppb)	50	<1	106	68-126
Trichlorofluoromethane	ug/L (ppb)	50	<1	100	71-128
Acetone	ug/L (ppb)	250	<10	92	48-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	99	71-123
Methylene chloride	ug/L (ppb)	50	<5	94	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	103	68-125
1 1 Dichlereethane	ug/L (ppb)	50	<1	100	72-122
2.2-Dichloropropane	ug/L (ppb)	50	<1	93	79-113 58-132
cis-1.2-Dichloroethene	ug/L (ppb)	50	<1	105	73-119
Chloroform	ug/L (ppb)	50	48	96 b	80-112
2-Butanone (MEK)	ug/L (ppb)	250	<10	107	69-123
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	98	78-113
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	105	79-116
1,1-Dichloropropene	ug/L (ppb)	50	<1	103	67-121
Carbon tetrachloride	ug/L (ppb)	50	<1	107	72-123
Benzene	ug/L (ppb)	50	<0.35	97	79-109
12-Dichloropropane	ug/L (ppb)	50	<1	99 107	75-109 80-111
Bromodichloromethane	ug/L (ppb)	50	17	109	78-117
Dibromomethane	ug/L (ppb)	50	<1	110	80-112
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	122	79-123
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	113	76-120
Toluene	ug/L (ppb)	50	<1	101	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	111	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	106	81-111
2-Hexanone	ug/L (ppb)	250	<10	116	75-126
Totrachleroothono	ug/L (ppb)	50	<1	107	01-111 72 112
Dibromochloromethane	ug/L (ppb)	50	<1	114	69-129
1.2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	112	83-114
Chlorobenzene	ug/L (ppb)	50	<1	100	75-115
Ethylbenzene	ug/L (ppb)	50	<1	102	71-120
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	109	78-122
m,p-Xylene	ug/L (ppb)	100	<2	106	63-128
o-Xylene	ug/L (ppb)	50	<1	106	64-129
Styrene	ug/L (ppb)	50	<1	3 V0	70-122
Bromoform	ug/L (ppb)	50	<1	107	/0-118 /0-138
n-Pronvlbenzene	ug/L (ppb)	50	<1	107	74-117
Bromobenzene	ug/L (ppb)	50	<1	103	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50	<1	17 vo	81-112
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	112	79-120
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	105	72-119
2-Chlorotoluene	ug/L (ppb)	50	<1	103	77-114
4-Chlorotoluene	ug/L (ppb)	50	<1	96	81-109
tert-Butylbenzene	ug/L (ppb)	50	<1	107	81-116
sec-Butylbenzene	ug/L (ppb)	50	<1	103	74-118
n-Isopropyltoluene	ug/L (ppb)	50	<1	109	64-132
1.3-Dichlorobenzene	ug/L (ppb)	50	<1	103	81-111
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	97	78-110
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	97	81-111
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	116	69-129
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	101	74-115
Hexachlorobutadiene	ug/L (ppb)	50	<1	93	67-120
Naphthalene	ug/L (ppb)	50	<1	111	63-136
1,2,5-11 ICHIOI ODENZENE	ug/L (ppb)	50	<1	103	79-115

ENVIRONMENTAL CHEMISTS

Date of Report: 08/19/14 Date Received: 08/08/14 Project: 62357, F&BI 408132

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

	_		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	105	105	54-149	0
Chloromethane	ug/L (ppb)	50	93	93	67-133	0
Vinyi chioride	ug/L (ppb)	50	101	101	/3-132	0
Chloroethane	ug/L (ppb)	50 50	125 V0	129 00	68-126	3 0
Trichlorofluoromethane	ug/L (ppb)	50	101	100	70-132	2
Acetone	ug/L (ppb)	250	106	107	44-145	1
1,1-Dichloroethene	ug/L (ppb)	50	97	97	75-119	0
Methylene chloride	ug/L (ppb)	50	91	91	63-132	0
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50 50	101	101	70-122	0
1 1-Dichloroethane	ug/L (ppb)	50	102	101	80-116	1
2.2-Dichloropropane	ug/L (ppb)	50	100	99	62-141	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	103	101	81-111	2
Chloroform	ug/L (ppb)	50	98	97	81-109	1
2-Butanone (MEK)	ug/L (ppb)	250	105	110	53-140	5
1,2-Dichloroethane (EDC)	ug/L (ppb)	50 50	95	95	79-109	0
1,1,1-111CHI010etHalle	ug/L (ppb)	50	103	102	00-110 79 112	1
Carbon tetrachloride	ug/L (ppb)	50	102	102	72-128	0
Benzene	ug/L (ppb)	50	94	94	81-108	Ō
Trichloroethene	ug/L (ppb)	50	95	96	77-108	1
1,2-Dichloropropane	ug/L (ppb)	50	100	103	82-109	3
Bromodichloromethane	ug/L (ppb)	50	105	107	76-120	2
Dibromomethane	ug/L (ppb)	50 250	104	106	80-110 50-142	2
cis-1 3-Dichloropropene	ug/L (ppb)	50	110	115	76-128	1
Toluene	ug/L (ppb)	50	97	99	83-108	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	108	110	76-128	2
1,1,2-Trichloroethane	ug/L (ppb)	50	101	101	82-110	0
2-Hexanone	ug/L (ppb)	250	106	111	53-145	5
1,3-Dichloropropane	ug/L (ppb)	50 50	99	104	83-110	5
Dibromochloromethane	ug/L (ppb)	50	90 111	100	63-140	2
1.2-Dibromoethane (EDB)	ug/L (ppb)	50	106	108	85-113	2
Chlorobenzene	ug/L (ppb)	50	95	97	84-108	2
Ethylbenzene	ug/L (ppb)	50	98	100	84-110	2
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	106	106	76-125	0
m,p-Xylene	ug/L (ppb)	100	103	105	84-112	2
o-Xylene Styrene	ug/L (ppb)	50 50	104	106	82-113 84-116	2
Isopropylbenzene	ug/L (ppb)	50	100	106	81-122	õ
Bromoform	ug/L (ppb)	50	116	117	40-161	1
n-Propylbenzene	ug/L (ppb)	50	103	105	81-115	2
Bromobenzene	ug/L (ppb)	50	98	101	80-113	3
1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	105	109	83-117	4
1,1,2,2-1etrachioroethane	ug/L (ppb)	50 50	98	109	79-118 74-116	2
2-Chlorotoluene	ug/L (ppb)	50	98	101	79-112	3
4-Chlorotoluene	ug/L (ppb)	50	101	103	81-113	2
tert-Butylbenzene	ug/L (ppb)	50	105	107	81-119	2
1,2,4 Trimethylbenzene	ug/L (ppb)	50	106	108	83-116	2
sec-Butylbenzene	ug/L (ppb)	50	108	110	83-116	2
1.3 Dichlorobonzono	ug/L (ppb)	50	106	108	82-119	2
1,3-Dichlorobenzene	ug/L (ppb)	50	94	96	82-109	2
1,2-Dichlorobenzene	ug/L (ppb)	50	94	96	83-111	$\tilde{2}$
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	118	121	62-133	3
1,2,4 Trichlorobenzene	ug/L (ppb)	50	98	99	77-117	1
Hexachlorobutadiene	ug/L (ppb)	50	92	95	74-118	3
Naphthalene	ug/L (ppb)	50 50	108	111 102	75-131	3
1, 2, 5° 11 ICHIOLODEHZEHE	ng/r (hhn)	50	39	102	04-110	э

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (200) 283-5044		Ph. (206) 285-8282	Seattle, WA 98/19-2029 R	Friedman & Bruya, Inc.		h-mud	MW-3	mw-our	MM-L	MW-1	Sample ID		Phone # (Sch)121-0813	City, State, ZIP _ Richla	Company PRS Address 400 Pradley [408132
ecerved by:	accident here	elinquished by:	eceived by:	SIGNA		÷ + + + + + +	V-H 8/6/14	7 Q ² H	1 (1- M2D	01 AD 8/5/14	Lab Date ID Sampled			ind WA	Street Stud	
		1 Jun	ben A.E.	TURE							Time Sampled S					S
	-		19			¢		¢		Sround - water	۸ ample Type			REMAR	PROJEC	SAMPLE C
		NAM	Lane C	PRI		6	œ	4	*	4	# of containers			KS pls	T NAME/	HAIN O
		Man	S/k/	NT NAME		- [- [- [1000	444	d d d	5	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260	Al		Perhin Coster	NO.	F CUSTODY
							5				HFS	NALYSES RE		,	PC	ME
		122	581	COMPANY	mples receiv			 				QUESTED				180 180
		000 h1/8/8	41/1/8	DATE TIME	red at°C		Contonnivated			P	Notes		3 Return samples 3 Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	TURNAROUND TIME Standard (2 Weeks) 3 RUSH ush charges authorized by	1/4 Page # $1/3/2$