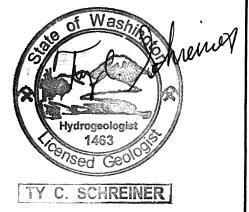
Kennedy/Jenks Consultants

32001 32nd Avenue South, Suite 100 Federal Way, Washington 98001 253-835-6400 FAX: 253-952-3435

Revised Augmented Remedial Investigation and Feasibility Report Former Tacoma Metals Site Tacoma, Washington

September 2014


Prepared for

Portland Avenue Associates, LLC

c/o Eisenhower & Carlson, PLLC 1200 Wells Fargo Plaza 1201 Pacific Avenue Tacoma, Washington 98042

K/J Project No. 996098*00

Table of Contents

List of Tables			iii
List of Figures.			iii
List of Appendi	ices		iii
List of Acronyn	1s		iv
Section 1:	Intro	duction	1-1
	1.1	Purpose and Regulatory Framework	
	1.2	Site Location	
	1.3	Site Areas and Nomenclature	
	1.4 1.5	Previous Reports Report Organization	
Section 2:	Back	ground	2-1
	2.1	Historical Site Uses	2-1
		2.1.1 Creosoting Plant	
		2.1.2 Coke Plant	
		2.1.3 Metals Recycling2.1.4 Puyallup River Side Channel	
	2.2	2.1.4 Puyallup River Side Channel Hydrogeologic Setting	
	2.2	2.2.1 Soil Stratigraphy	
		2.2.2 Groundwater Gradient	
	2.3	Phases of Work Performed	
		2.3.1 Initial RI/FS	
		2.3.2 Supplemental RI.	
		2.3.2.1 Creosoting Plant Area2.3.2.2 PRSC and Conditional Point of Compliance	2-1
		Wells	2-8
		2.3.2.3 Interim Remedial Actions	
Section 3:	Initia	al RI/FS (2000-2001)	3-1
	3.1	Initial RI Work Performed	3-1
	3.2	Initial RI Findings	
		3.2.1 Soil	-
		3.2.2 Groundwater	
	3.3	3.2.3 Surface Water	
	5.5	3.3.1 Initial FS Summary	
		3.3.2 Preferred Cleanup Alternative	

Table of Contents (cont'd)

Section 4:	Supplemental RI		4-1
	4.1	Supplemental RI Work Performed	4-1
		4.1.1 Creosoting Plant Area	
		4.1.2 Forensic Evaluation of Hydrocarbons	
		4.1.3 PRSC	
	4.2	Supplemental RI Findings	
		4.2.1 Soil	
		4.2.2 Groundwater	
		4.2.3 Additional Groundwater Metals Analyses	
		4.2.4 LNAPL and DNAPL	
	4.3	Interim Remedial Actions	
Section 5:	FSL	Jpdate and Preferred Cleanup Alternative	5-1
	5.1	Work Performed	5-1
		5.1.1 Cleanup Level Evaluation	
		5.1.2 Terrestrial Ecological Evaluation	
	5.2	Site Conceptual Model	
		5.2.1 Background	
		5.2.2 Updated Site Conceptual Model	
		5.2.2.1 Site Stratigraphy	
		5.2.2.2 Site Hydrogeology	
		5.2.3 Potential Exposure Pathways	
	5.3	Cleanup Levels	
	5.4	Cleanup Alternatives	
	5.5	Cleanup Alternative 2 Update	
		5.5.1 Source Control Excavation Areas	
		5.5.2 Soil Cap Installation	
		5.5.3 Long-Term Monitoring	
		5.5.4 Capping and Institutional Controls	
		5.5.5 Points of Compliance	
		5.5.6 Disproportionate Cost Analysis	5-13
Section 6:	Sum	nmary	6-1
References			

List of Tables

- 1 Generalized Summary of Stratigraphic Units
- 2 Summary of Work Performed for the Supplemental Remedial Investigation
- 3 Summary of Proposed Cleanup Levels
- 4 Supplemental Remedial Investigation Summary of Analytical Results for Soil
- 5 Supplemental Remedial Investigation Summary of Analytical Results for Reconnaissance Groundwater
- 6 Supplemental Remedial Investigation Summary of Analytical Results for Groundwater

List of Figures

- 1 Site Location Map
- 2 Site Area Overview
- 3 Sample Location and Affected Soil Area Map
- 4 Generalized Conceptual Site Model
- 5 Revised Proposed Remedial Action Excavation and Backfill Areas
- 6 Former Creosoting Plant Area Generalized Cross Section A-A' Depth of Soil Impacts and Remediation Areas

List of Appendices

- A Generalized Geologic Cross Sections, RI/FS and Creosoting Plant Area Investigation
- B Groundwater Gradient Maps and Elevation Data Tables for 2006 and 2008
- C RI/FS Site Maps, Sample Maps, and Data Tables
- D Creosoting Plant Area Site Maps, Samples Maps, and Data Tables
- E Puyallup River Side Channel Investigation Maps and Data Tables
- F Creosote-Related Impact Maps and Cross Sections
- G RI/FS Site Conceptual Model and Cleanup Alternatives
- H Revised Remedial Alternative Costs
- I Boring and Well Construction Logs

List of Acronyms

<u>Acronym</u>	Description
ARARs	applicable, relevant, and appropriate requirements
AST	aboveground storage tank
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and total xylenes
COC(s)	chemical(s) of concern
cPAH(s)	carcinogenic polycyclic aromatic hydrocarbon(s)
CPOC	conditional point of compliance
DNAPL	dense non-aqueous phase liquid
DPA	disproportionate cost analysis
Ecology	Washington State Department of Ecology
EODT	EOD Technology, Inc.
EPA(s)	extractable petroleum hydrocarbon(s)
FBI	Friedman & Bruya, Inc.
LNAPL	light non-aqueous phase liquid
MTCA	Model Toxics Control Act
NWTPH-Dx	Northwest Total Petroleum Hydrocarbons as Diesel and Oil Extended
ORC	oxygen release compound
PAH(s)	polycyclic aromatic hydrocarbon(s)
PCB(s)	polychlorinated biphenyl(s)
POC	point of compliance
PRSC	Puyallup River Side Channel
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
SIM	select ion monitoring
site	Former Tacoma Metals site
SPLP	Synthetic Precipitation Leaching Procedure
SVOC(s)	semi-volatile organic compound(s)

<u>Acronym</u>	Description
TCLP	Toxicity Characteristic Leaching Procedure
TCU	temporary containment unit
TEE	terrestrial ecological evaluation
TNT/DNT	trinitrotoluene/dinitrotoluene
USACE	United States Army Corps of Engineers
UXO	unexploded ordnance
VOC(s)	volatile organic compound(s)
WAC	Washington Administrative Code

Executive Summary

This report was prepared at the request of the Washington State Department of Ecology (Ecology) to augment the Remedial Investigation and Feasibility Study (RI/FS) originally prepared for the former Tacoma Metals site by Kennedy/Jenks Consultants in 2001. The site location is shown on Figure 1.

During the initial RI, impacts to environmental site media related to former site uses as a metals recycling facility (primary use 1950s through 1990s) and coke manufacturing plant (limited use 1940s) were evaluated and fully characterized. However, an additional historical site use as a creosoting plant (1910s to 1930s) was identified during the initial RI in the western portion of the site. Impacts to environmental media related to the creosoting plant were identified, but not fully characterized, during the initial RI.

A supplemental RI was performed between 2002 and 2011 to evaluate and characterize potential impacts to environmental site media related to the former creosoting plant. The supplemental RI work areas included the former Tacoma Metals property (western portion) and Off-Property areas to the north and west of the former Tacoma Metals property, collectively called the Creosoting Plant Area, and the bank area adjacent to the Puyallup River Side Channel (PRSC) to the north of the site. The supplemental RI work areas are depicted on Figure 2.

The supplemental RI was performed in phases, with each phase of work approved by Ecology prior to implementation. Impacts to environmental media related to the former creosoting plant were evaluated and fully characterized during the supplemental RI. Sample locations for the initial RI and supplemental RI are summarized on Figure 3.

Other work performed after the initial RI, at Ecology's request, included a terrestrial ecological evaluation (TEE), a cleanup level evaluation [including and assessment of the proposed remedial options with respect to the disproportionate cost analysis (DPA) framework], and a forensic evaluation of hydrocarbons to identity the appropriate cleanup standards for creosote-related compounds.

Kennedy/Jenks Consultants

The forensic evaluation concluded that cleanup standards for petroleum-based hydrocarbons are inappropriate for creosote-related compounds because creosote is derived from coal tar (pyrogenic) rather than petroleum (petrogenic). The results of the TEE and cleanup level evaluation were incorporated into the FS update prepared for this report (discussed below).

In addition to the investigations and reports discussed above, two interim remedial actions have been performed at the site since completion of the initial RI. These interim remedial actions included an investigation and mitigation of potential unexploded ordnance (UXO) along the northern margin of the former Tacoma Metals property and onsite treatment of approximately 3,440 tons of lead-impacted soil excavated north of the site during construction of the PRSC by the City of Tacoma (the impacted soil was related to metals recycling activities).

For the initial (2001) FS, three remedial alternatives were evaluated and Alternative 2 was selected as the preferred alternative. Alternative 2 included excavation and offsite disposal of hydrocarbon-affected soil, excavation and onsite consolidation of metals-impacted soil from the perimeter of the site, installation of an asphalt cap with stormwater controls, *in situ* treatment of residual hydrocarbon impacts, institutional controls, and long-term monitoring.

The FS was updated for this report, and included updates to potential exposure pathways, the conceptual site model, proposed cleanup levels, potential costs for the three original remedial alternatives, and an evaluation of the appropriateness of the preferred cleanup alternative (Alternative 2) based on the findings of the supplemental RI (and other work performed since the initial RI).

The findings of the supplemental RI (and other work performed since the initial RI) and updated FS do not substantively alter the components of preferred cleanup Alternative 2, although the volume of potentially affected environmental media related to the former creosoting plant increased based on the results of the supplemental RI, an additional excavation area is proposed around boring location B-36 (located on the Simpson Property), and installation of a soil cap is proposed for the Off-Property 18th Street Right-of-Way area.

The findings of the supplemental RI and FS update confirm the appropriateness of Alternative 2, which is protective of human health and the environment under an industrial use scenario, as the preferred remedial alternative for the site.

Section 1: Introduction

This report was prepared at the request of the Washington State Department of Ecology (Ecology) and provides an augmentation to the Remedial Investigation and Feasibility Study (RI/FS) report for the former Tacoma Metals site (site). The RI/FS report was originally submitted to Ecology in June 2001 (Kennedy/Jenks Consultants 2001). Following submittal of the RI/FS report, a series of additional investigations were performed at the request of Ecology. The information presented herein provides a compilation of all relevant data for the site. The report then uses the available information to re-evaluate the preferred cleanup remedy selected for the site in the 2001 FS (Kennedy/Jenks Consultants 2001). As the information summarized herein has been previously submitted to Ecology in various other prior reports, the reader is referred to those reports for additional information.

1.1 Purpose and Regulatory Framework

The purpose of this document is to summarize current and available information regarding site conditions and re-evaluate whether or not the preferred cleanup remedy presented in the RI/FS Report (Kennedy/Jenks Consultants 2001) is protective of human health and the environment. This report is also intended to facilitate Ecology's review of current site conditions, and to facilitate review of site information during the public comment period that will precede the cleanup action by consolidating relevant information into a single document.

The investigation and remediation activities described in this report were performed under an Agreed Order (No. DE97-5435) between Ecology and Mr. and Mrs. Leslie Sussman (owners) through the entity Portland Avenue Associates, LLC (owner). Work was performed in accordance with Ecology's Model Toxics Control Act (MTCA) regulations published in Washington Administrative Code (WAC) 173-340 (Ecology 2001, updated October 2007). Each phase of work described in this report was performed under a separate Work Plan, which was submitted to Ecology for approval under the Agreed Order prior to the start of the work. The Work Plans and subsequent summary reports for individual phases of work are referenced as appropriate.

1.2 Site Location

The former Tacoma Metals site is located at 1919 Portland Avenue in Tacoma, Washington, in an industrial-zoned area within the Tacoma Tideflats (refer to Figure 1). The site is bounded to

the north by the Puyallup River, to the east by the Lincoln Avenue Bridge, which crosses the Puyallup River, to the south by Portland Avenue, and to the west by a City of Tacoma right-ofway and private properties. The former Tacoma Metals property is approximately 5.9 acres, but investigative work has also been performed at Off-Property locations adjoining the main property (refer to Figure 2). Section 1.3 provides an overview of different site areas and nomenclature.

<u>Note on Directions</u>: The site is geographically oriented with the long axis trending approximately northwest to southeast. To simplify descriptions of site locations for this report, the property boundary located along Portland Avenue will be considered the southern property boundary, and the property boundary along Lincoln Avenue will be considered the eastern property boundary.

1.3 Site Areas and Nomenclature

Work has been performed at different portions of the site, as depicted on Figure 2. The following terminology will be used herein to describe the different portions of the site:

- <u>Site</u>: Refers to the entire former Tacoma Metals site including On-Property and Off-Property areas.
- <u>On-Property / Tacoma Metals Property</u>: The actual former Tacoma Metals property only, corresponding to the relevant Pierce County tax parcels.
- <u>Off-Property</u>: Work areas located west to northwest of the On-Property area including the City of Tacoma 18th Street right-of-way and two private properties (Simpson and JJ Port properties).
- <u>Creosoting Plant Area</u>: That portion of the site affected by historical releases from a former creosoting plant, including the western portion of the On-Property area and the Off-Property areas.
- <u>Puyallup River Side Channel (PRSC)</u>: The area where an estuary and wetland was constructed to the north of the site in 2005 by the City of Tacoma. The PRSC is not part of the site, although some investigation work has been performed by Kennedy/Jenks Consultants in PRSC bank areas since the PRSC was constructed in 2005. The PRSC adjoins both the On-Property and Off-property portions of the site and is separated from the site by an earthen levee maintained by the United States Army Corps of Engineers (USACE).

1.4 Previous Reports

As previously indicated, this report summarizes information previously submitted to Ecology in various site investigation, data transmittal, and site evaluation reports. The information summarized in this report includes that which is relevant to the preferred cleanup remedy presented in the RI/FS (Kennedy/Jenks Consultants 2001). While summarizing all relevant historical data for the site, this report includes only original data that has been previously provided to Ecology.

Because the purpose of this report is to provide a concise summary of site conditions, detailed discussion of the specific activities and findings for each individual phase of work is beyond the scope of this report. However, select information (i.e., tables, figures, maps, and other information) from previous reports is attached to this report for reference purposes, as appropriate. Additional information and discussion regarding the various phases of work performed at the site is available in the investigation and evaluation documents referenced below and cited as appropriate within this report.

Previous environmental investigation and data transmittal reports prepared by Kennedy/Jenks Consultants include the following:

- Remedial Investigation / Feasibility Study Report, Former Tacoma Metals Facility (Kennedy/Jenks Consultants 2001).
- Supplemental Data Summary Report, Former Tacoma Metals Property (Kennedy/Jenks Consultants 2007a).
- Revised Soil and Groundwater Investigation Results Data Transmittal, October 2007-April 2008 Investigation, Former Tacoma Metals Facility (Kennedy/Jenks Consultants 2008b).
- Groundwater Investigation Summary, Puyallup River Side Channel Investigation, Former Tacoma Metals Facility (Kennedy/Jenks Consultants 2012).

Previous site evaluation reports prepared by Kennedy/Jenks Consultants include the following:

• Cleanup Level Evaluation, Former Tacoma Metals Facility (Kennedy/Jenks Consultants 2007c).

- Response to Ecology Comments, Forensic Evaluation of Hydrocarbons, Former Tacoma Metals Facility (Kennedy/Jenks Consultants 2009).
- Terrestrial Ecological Evaluation, Former Tacoma Metals Facility (Kennedy/Jenks Consultants 2010a).

Other work performed at the site by Kennedy/Jenks Consultants, including interim cleanup actions, is summarized in the reports referenced below, and discussed herein as appropriate:

- Summary Report for Treating/Disposal of Lead-Containing Soil Materials, Former Tacoma Metals Site (Kennedy/Jenks Consultants 2008a).
- Final Letter Report for UXO Investigation Services at the Former Tacoma Metals Site (EODT 2006).
- Limited investigation work was also performed at the site by others prior to the work performed by Kennedy/Jenks Consultants. Refer to the RI/FS (Kennedy/Jenks Consultants 2001) for a discussion of investigation work and findings performed by others prior the RI/FS.

In addition, investigation, remediation, and general construction activities were performed by others as part of the PRSC project, as referenced below and discussed herein as appropriate:

- Soil and Groundwater Quality Testing Results, Puyallup River Site Channel and Tacoma Metals Site, Tacoma, Washington (Hart-Crowser 2003).
- Remedial Action Construction Report (City of Tacoma 2006).

1.5 Report Organization

The remainder of this report is organized as follows.

- Section 2 provides a summary of background information regarding historical site uses, hydrogeologic setting, and work performed.
- Section 3 provides a summary of work performed for the initial RI (2001 RI) and FS.
- Section 4 provides a summary of supplemental RI activities performed at the site since completion of the 2001 RI/FS. This section also summarizes interim remedial actions, which have been performed at the site.

- Section 5 provides a discussion of the preferred cleanup alternative, including the site conceptual model, proposed cleanup levels, and proposed modifications based on the findings of investigation and evaluation activities performed for the supplemental RI.
- Section 6 provides a summary of the information presented in this report and conclusions.
- Section 7 provides a list of references cited in this document.

Section 2: Background

This section provides an overview of historical site uses, hydrogeologic conditions, and the main phases of work performed at the site by Kennedy/Jenks Consultants. Investigation results, current conditions, and impacts to environmental media are discussed in greater detail in subsequent sections of this report.

2.1 Historical Site Uses

Kennedy/Jenks Consultants' understanding of previous site uses is based on extensive historical research including review of aerial photographs, Sanborn Fire Insurance Maps, published accounts of site uses and activities (i.e., newspaper articles, trade publications, and historical summary texts), and other historical materials housed at the Tacoma Public Library (maps and ground-level photographs) and the Washington State Historical Society (historical ground-level photographs).

Three distinct phases of developed use were identified for the site during previous investigations. The primary uses associated with the three development phases include:

- Creosoting Plant (1900s to 1930s) (refer to Section 2.1.1)
- Coke Plant (early 1940s) (refer to Section 2.1.2)
- Metals Recycling Facility (1950s to 1990s) (refer to Section 2.1.3).

Metals recycling operations ceased in 1999 and the property was vacated. Site investigation remediation activities have been performed at the site by Kennedy/Jenks Consultants since 2000, and previous investigation activities were performed by others on a limited basis beginning in 1988 (refer to Section 2.3). In addition, the PRSC habitat was constructed to the north of the site by the City of Tacoma in 2005 (refer to Section 2.1.4).

Previous site uses are discussed in detail in the RI/FS Report (Kennedy/Jenks Consultants 2001) and the *Response to Ecology Comments* letter (Kennedy/Jenks Consultants 2009), and are summarized below.

2.1.1 Creosoting Plant

Facilities associated with a creosoting plant operated by the St. Paul and Tacoma Lumber Company were previously located on the western portion of the former Tacoma Metals Property and the Off-Property areas to the west (i.e., the Creosoting Plant Area, refer to Figure 2). The creosoting plant appears to have been constructed in the late 1900s to early 1910s, and appears to have been operational until the late 1920s to early 1930s.

The primary creosoting plant facilities included the main creosoting plant structure, which housed a 130-foot treatment retort and a 1,500-gallon aboveground storage tank (AST), and two separate ASTs (102,000-gallon and 450,000-gallon) located northwest of the main structure. Other associated facilities included an overhead crane, overhead tramways, a wharf, and several smaller structures. Boardwalks and storage areas were located to the north and east of the retort structure.

Based on the available information, the two large ASTs likely contained creosote and the smaller AST was possibly used to mix wood treatment materials prior to use. Kennedy/Jenks Consultants has previously reviewed information related to the storage tanks, including detailed summaries of site operation provided in the May 21, 1921 issue of American Lumberman and the book *Mill on the Boot* by Murray Morgan, multiple site and vicinity maps (Sanborn Maps, Metsker's Maps, St. Paul and Tacoma site map included in the May 21, 1921 American Lumberman), and St. Paul and Tacoma Lumber Company documents housed at the University of Washington Special Collections Library (Kennedy/Jenks Consultants 2009). Although the various information sources did not specifically list the product stored in the tanks as creosote (listed as "oil tanks" on the 1912 Sanborn Map), the facility associated with the tanks is referred to as a "creosoting plant" and creosoting operations are described in detail in the book Mill on the Boot and American Lumberman. The association of the storage tanks with the creosoting plant, and references to creosote oil in St. Paul and Tacoma company internal purchase documents, strongly suggests that the storage tanks were used to contain creosote product. Refer to the referenced February 17, 2009 Response to Ecology Comments, Forensic Evaluation of Hydrocarbons for additional information.

The wharf was located along the Puyallup River, which directly adjoined the site to the north during the time period in which the creosoting plant was operational, and appears to have been used as a dock and/or mooring location. A wooden bulkhead appears to have been located

along the approximate current northern Tacoma Metals Property margin, directly adjoining the Puyallup River. [Note: The course of the Puyallup River was shifted to the north, away from the northern site boundary, when an earthen levee was constructed by the USACE during the late 1940s and 1950s (refer to Section 2.1.4).]

2.1.2 Coke Plant

A coke manufacturing facility was constructed on the former Tacoma Metals Property during the early 1940s. The coke plant facility appears to have been used to produce metallurgical coke and coal gas (as a byproduct of the coke production process), and appears to have been operational for only a short time beginning in 1943.

The primary coke production structure was located in the central portion of the former Tacoma Metals Property. Other structures associated with the coke plant were located on the western portion of the former Tacoma Metals Property, in the vicinity of the former creosoting plant location, and appear to have been related to storage and distribution of coal gas.

The creosoting plant was demolished prior to construction of the coke plant, and approximately 3 to 5 feet of fill material was placed over the former Tacoma Metals Property area, including over the former creosoting plant. The coke plant structures were constructed after placement of the fill layer, which represents a "marker bed" associated with the particular time period between the abandonment of the creosoting plant and construction of the coke plant.

Most of the coke plant structures, except for part of the main building and several concrete foundation pads (three of which were located near former creosoting plant location), appear to have been demolished in the 1950s.

2.1.3 Metals Recycling

The former Tacoma Metals Property has been used for recycling ferrous and nonferrous metals since the early 1950s and was initially occupied by General Metals and subsequently by Tacoma Metals beginning in the early 1980s. Metals recycling does not appear to have been performed on Off-Property areas, although some debris and wastes from metal recycling may have accumulated to the north of the former Tacoma Metals Property (discussed in Section 4.3).

Metals recycling activities generally included the collection, storage, cutting, shredding, and bundling of various items including, but not limited to, aluminum cans and scrap, wheels, radiators, engine blocks, computer cases, and other scrap metal. Historical metals recycling activities also included dismantling and shredding of automobiles, motors, locomotives, and similar products.

Equipment used as part of the daily recycling operation included gasoline- and diesel-powered vehicles and equipment, as well as mobile and stationary hydraulic machinery. Stockpiles of various materials and associated processing machinery (balers, shears, etc.) were located throughout the former Tacoma Metals Property, although most of the machinery appears to have been located on the central and western portions of the former Tacoma Metals Property.

The remaining portion of the main coke plant structure appears to have been used as a processing and warehouse facility, although most of the materials were stored outside directly on the ground surface in piles or stacks. Most of the former Tacoma Metals Property appears to have been paved with asphalt by the 1970s, but an area along the northern property boundary remained unpaved throughout the time when metal recycling was performed (see Figure 3).

Other structures associated with metals recycling included small structures associated with the processing machinery referenced above, and a warehouse building constructed to the east of the main building during the 1980s. The aboveground portions of former metal recycling structures have been demolished and removed from the site, although most of the asphalt-paved areas and some concrete foundations remain.

2.1.4 Puyallup River Side Channel

As indicated above, the path of the Puyallup River was modified by construction of an earthen levee by the USACE in the late 1940s and 1950s. Prior to construction of the levee, the southern bank of the river adjoined the northern boundary of the site. During construction of the levee, the course of the river was shifted to the north, and a portion of the former Puyallup River channel located to the north of the western portion of former Tacoma Metals Property and the Off-Property areas was isolated from the main channel. The former channel area was gradually filled over time (by other property owners not associated with the former Tacoma Metals Property), primarily with wood-waste material. The site was separated from the Puyallup River by the former channel area and earthen levee until the levee was modified in 2005.

The original levee remained intact until 2005, when the PRSC estuary habitat was constructed by the City of Tacoma. The wood waste material that had accumulated in the former channel area was removed, and the original levee was breached to flood the former channel area. The course of the Puyallup River was not modified (portions of the original levee remained intact, but were lowered, to preserve the main channel), but an estuary habitat was created within the former channel area. A new levee was constructed immediately north of the former Tacoma Metals Property and Off-Property areas, between the site and the PRSC. PRSC construction activities are described in detail in the Remedial Action Construction Report (City of Tacoma 2006).

2.2 Hydrogeologic Setting

The current understanding of the site hydrogeology is based on observations of soil conditions in test pits and soil borings installed throughout the site, and water elevation monitoring of site groundwater monitoring wells performed during multiple phases of investigation.

The site is located in the Tacoma Tideflats physiographic area, which is part of the Puyallup River delta. Typical stratigraphy of the Tacoma Tideflats includes up to 10 feet of hydraulic fill (dredge) deposits of gravel, sand, silt, and organic debris underlain by silty and sandy deltaic sediments deposited by the Puyallup River. Glacial deposits typically underlie the Puyallup River sediments (Hart-Crowser 1975). Refer to the RI/FS report (Kennedy/Jenks Consultants 2001) for additional discussion of the regional geologic setting.

Our current understanding of the site-specific soil stratigraphy and hydraulic gradient is summarized below and discussed in more detail in subsequent sections of this report.

2.2.1 Soil Stratigraphy

Soil materials encountered during the investigation activities described above have included sandy and gravelly fill materials (typically with varying quantities of wood, metal, or other debris), woody debris with and without matrix material (typically silt and sand), and native materials including sand, silt, and clay.

Table 1 provides a detailed description of the stratigraphic units encountered at the site including lithologic composition, relative stratigraphic position, and typical thicknesses and depths at which the stratigraphic units are typically encountered.

Representative geologic cross-sections are provided in Appendix A and include cross-sections originally prepared for the 2001 RI/FS report for the former Tacoma Metals Property (Kennedy/Jenks Consultants 2001), and originally prepared for the October 2007 to April 2008 investigation letter report (Kennedy/Jenks Consultants 2008b) for the Creosoting Plant Area.

2.2.2 Groundwater Gradient

The direction of the hydraulic gradient in shallow groundwater at the site is influenced by tidal fluctuations in the Puyallup River and varies between high and low tidal cycles. At low tide, the hydraulic gradient is generally toward the Puyallup River, and at high tide, the gradient is generally toward the site, away from the Puyallup River. A localized stagnation zone is observed in the central portions of the site at high tide, primarily at the On-Property portion of the Creosoting Plant Area where accumulation of wood debris is greatest.

As previously indicated, depth to shallow groundwater varies with tidal levels. Saturated conditions are generally encountered at approximately 10 feet below ground surface (bgs) on the former Tacoma Metals Property, but the depth to groundwater varies for the Off-Property areas based on differing surface elevations which are generally higher on the 18th Street right-of-way and Simpson Property and lower on the JJ Port Property.

No seep discharges have been identified along the portion of the PRSC bank areas located north of the site.

Representative groundwater gradient maps for high and low tidal conditions are provided in Appendix B, including maps prepared for the two most recent site-wide water level monitoring events (2006 and 2008) that were performed after construction of the PRSC habitat area. Previous groundwater gradient maps are not included because the monitoring well network in the Off-Property areas was less extensive prior to 2006, and water elevation measurements made prior to 2006 may not be representative of current conditions (i.e., prior to construction of the PRSC). Refer to the RI/FS (Kennedy/Jenks Consultants 2001) and Supplemental Data Summary Report (Kennedy/Jenks Consultants 2007a) for gradient maps based on monitoring events prior to 2006.

2.3 Phases of Work Performed

Work was performed at the site by Kennedy/Jenks Consultants in three general phases listed below. The rationale, purpose, and overall scope of the work performed during each phase are

summarized below. The specific work and findings associated with each phase are discussed in Sections 3 (initial RI/FS) and 4 (supplemental RI) of this report.

2.3.1 Initial RI/FS

The initial RI/FS was performed between 2000 and 2001, with most of the onsite work completed during 2000. The RI/FS included only the On-Property portion of the site (the former Tacoma Metals Property only). The purpose of the RI/FS was to characterize the nature and extent of impacts to environmental media, including confirmation of the results of several limited investigations performed prior to the RI/FS between 1988 and 1995, develop a site model, and evaluate remedial options based on findings of the investigation. The RI/FS also included remedial activities related to demolition of buildings and disposal of waste material associated with site structures including building materials, liquid materials accumulated in subsurface vaults, and general refuse.

The RI/FS focused primarily on potential impacts to environmental media related to metals recycling and coke plant site uses (refer to Sections 2.1.2 and 2.1.3). Impacts to environmental media related to metals recycling and coke plant operations were fully characterized, defined, and evaluated during the RI/FS.

The former creosoting plant (refer to Section 2.1.1) was identified during the RI/FS and investigation activities were performed in the On-Property portion of the Creosoting Plant Area, but the Off-Property environmental impacts related to the creosoting plant were not fully defined.

Work performed and findings for the initial RI/FS are described in greater detail in Section 3. Site and sample location maps prepared for the initial RI/FS are included in Appendix C for reference.

2.3.2 Supplemental RI

Supplemental RI activities are summarized below. Additional description of work performed for each phase of Supplemental RI activities is provided in Table 2.

2.3.2.1 Creosoting Plant Area

The Creosoting Plant Area includes the western portion of the former Tacoma Metals Property, and the Off-Property area to the west (Figure 2). As indicated above, the former creosoting plant was identified during the RI/FS, but the extent of related impacts to soil and groundwater,

particularly in off-property areas, was not fully defined. Supplemental RI activities related to the Creosoting Plant Area were performed between 2002 and 2008 and included multiple phases of investigation which are summarized in Table 2.

Creosoting Plant Area investigation activities were performed in phases, beginning at On-Property areas (beginning in 2002) and progressing to Off-Property areas (beginning in 2004) iteratively until the extent of impacts was defined to Ecology's satisfaction. Supplemental RI activities were initially performed at On-Property areas in the immediate vicinity of the former creosoting plant location. Based on the initial findings, supplemental RI activities were performed on the City of Tacoma 18th Street right-of-way, which adjoins the former Tacoma Metals Property to the west, and subsequently progressed westward onto two private properties, the Simpson Property and the JJ Port Property (refer to Figures 2 and 3).

The supplemental RI fully characterized and defined the extent of impacts to environmental media related to the former creosoting plant facility. Work performed and findings for the supplemental RI are described in greater details in Section 4. Maps showing site features and sampling locations for the Creosoting Plant Area are included in Appendix D for reference.

2.3.2.2 PRSC and Conditional Point of Compliance Wells

Following review of data summary documents for supplemental RI activities performed in the Creosoting Plant Area, Ecology requested further investigation be performed along the conditional point of compliance (CPOC) adjacent to the PRSC.

The PRSC investigation was performed between October 2010 and February 2011. The purpose of the investigation was to evaluate groundwater conditions at the southern margin of the PRSC, specifically in the area to the north of monitoring well MW-8R, which is located near the northwestern corner of the former Tacoma Metals Property (refer to Figure 3) within the Creosoting Plant Area. The PRSC investigation also included evaluation of groundwater conditions in several proposed point of compliance (POC) monitoring wells located along the northern margin of the Creosoting Plant Area (refer to Figure 3). Work performed for the PRSC investigation summarized in Table 2.

The results of the PRSC investigation did not identify impacts to groundwater beyond those previously documented during the supplemental RI. Work performed and findings for the PRSC investigation are discussed in Section 4.

2.3.2.3 Interim Remedial Actions

In addition to the investigation activities described above, interim remedial actions have been performed at the site since completion of the initial RI. These have included an investigation and mitigation of potential unexploded ordnance (UXO) performed along the northern margin of the former Tacoma Metals Property in 2006, and onsite remediation of approximately 3,440 tons of lead-impacted soil material excavated from north of the former Tacoma Metals Property during construction of the PRSC by the City of Tacoma. These interim remedial actions are discussed in greater detail in Section 3.4.

Section 3: Initial RI/FS (2000-2001)

This section provides a summary of the findings of the initial RI and associated FS. Refer to the RI/FS report (Kennedy/Jenks Consultants 2001) for additional information.

3.1 Initial RI Work Performed

Work performed during the initial RI (March 2000 to May 2001) included both sampling and characterization of potentially impacted environmental media (soil, groundwater, and surface water) and demolition of existing site structures, including disposal of building materials and other associated waste materials. This section provides a general overview of the RI work performed at the site. Refer to the RI/FS report (Kennedy/Jenks Consultants 2001) for additional information regarding investigation activities and methods.

Sampling and characterization activities generally included the following:

- Excavation of 65 test pit trenches (TP-1 through TP-65) to depths of up to 12 feet bgs, and collection and laboratory analysis of soil samples. Test pits included both grid-based locations for general site-wide assessment, and additional test pits at specific locations based on historical site uses, previous investigation results, and grid-based test pit findings. Test pit locations are shown on Figure 3 and on the sample location summary map (Figure 2-1) included in Appendix C.
- Advancement of 18 soil borings (RGW-1 through RGW-18) to shallow groundwater depths (typically 10 to 15 feet bgs), and collection of reconnaissance groundwater samples for laboratory analysis. Soil boring locations are shown on the sample location summary map (Figure 2-1) included in Appendix C.
- Replacement of two previously existing shallow monitoring wells (MW-4 and MW-8) with new wells at the same locations [MW-4(R) and MW-8(R)] and installation of four new monitoring wells (MW-9 through MW-12). During monitoring well installation, soil samples were collected from soil borings for laboratory analyses. Monitoring well locations are shown on Figure 3 and on the sample location summary map (Figure 2-1) included in Appendix C.

- Collection of groundwater samples from 11 existing, replaced, and new shallow groundwater monitoring wells [MW-1, MW-2, and MW-4(R) through MW-12] for laboratory analysis.
- Sampling and analyzing surface water runoff from two locations (SW-1 and SW-2), and mapping of primary surface water flow pathways. Surface water sampling locations are shown on Figure 3 and on the sample location summary map (Figure 2-1) included in Appendix C.
- Hydraulic investigations, including water level monitoring, performing slug tests, and testing selected soil samples for geotechnical parameters.

Specific laboratory analyses performed for soil, groundwater, and surface water samples are summarized in the data tables prepared for the RI/FS report (Kennedy/Jenks Consultants 2001) and included in Appendix C for reference.

[Note: The cleanup levels listed in the data tables from the RI/FS report (Appendix C) may not necessarily be the current cleanup levels. Refer to Table 3 for a summary of the cleanup levels currently applicable to the site.]

Analyses typically included one or more of the following:

- Diesel- and oil-range petroleum hydrocarbons by Ecology Method Northwest Total Petroleum Hydrocarbons as Diesel and Oil Extended (NWTPH-Dx) (all media)
- Resource Conservation and Recovery Act (RCRA) eight metals (total and/or dissolved) plus copper by EPA 6010/7000 Series methods (all media)
- Volatile organic compounds (VOCs) by EPA Method 8260 (soil and groundwater only)
- Polychlorinated biphenyls (PCBs) by EPA Method 8082 (all media)
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270B using select ion monitoring (SIM) (all media)
- Extractable petroleum hydrocarbons (EPHs) by using Ecology methods (select soil samples only)
- Trinitrotoluene/dinitrotoluene (TNT/DNT) by EPA Method 8330 (select soil samples only)

 Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leaching Procedure (SPLP) analysis for metals and PAH analytes for waste characterization (select soil samples only).

Prior to the initial RI sampling and characterization activities, existing site structures (excluding one storage building which was subsequently demolished in 2011) and approximately 1,800 feet of railroad track were demolished. The demolished structures included the main warehouse and office building, the red brick building, concrete foundations likely associated with the former coke plant (refer to Section 2.1.2) and various equipment and storage structures (refer to Figure 1-2 in Appendix C) associated with metals recycling. Solid waste materials generated from demolition activities included concrete, brick, glass, metal, wood, and other debris. In addition, liquid wastes were removed from two vault structures located below or in the vicinity of the red brick building. Solid and liquid wastes were disposed offsite as both hazardous and non-hazardous wastes. Refer to the RI/FS report (Kennedy/Jenks Consultants 2001) for additional information.

3.2 Initial RI Findings

The primary chemicals of concern (COCs) identified during the initial RI included metals, carcinogenic PAHs (cPAHs), naphthalene, PCBs, and diesel- and oil-range petroleum hydrocarbons. The COCs identified during the initial RI appear to be primarily related to metals recycling activities. Some COC impacts could also be related to coke plant operations, but there is no specific indication of such.

The identified soil impacts related to metals recycling occur primarily in the upper fill material, typically at depths of less than 5 feet bgs. Most of the locations where deeper soil impacts were identified during the initial RI are within the Creosoting Plant Area (see Section 2.3.2.1) and do not appear to be related to the metals recycling or coke plant site uses. The metals COCs in soil generally occur throughout the former Tacoma Metals property, but other COC impacts are more localized (see Section 3.2.1).

The primary COC impacts to groundwater identified during the initial RI were located in the western portion of the former Tacoma Metals Property and appear to be attributable to the former creosoting plant. However, COCs including cPAHs and metals were also detected sporadically in groundwater samples collected from other parts of the former Tacoma Metals property (See Section 3.2.2).

3.2.1 Soil

For comparison purposes, MTCA Method C Industrial soil cleanup levels (as defined in WAC 173-340-745) are used to assess compliance with regulatory standards. When Method C cleanup values are not available, MTCA Method A values are used (e.g., lead). Cleanup levels are summarized in Table 3.

The COC impacts to soil identified at the site occur in two distinct zones related to the source of the impacts. COC soil impacts related to the metals recycling (and possibly coke plant) site uses occur primarily within the upper fill layer throughout the former Tacoma Metals Property. COC soil impacts related to the former creosoting plant occur beneath the upper fill layer in the Creosoting Plant Area (On-Property and Off-Property areas).

COC impacts related to metals recycling, and possibly coke plant operations, occur primarily within the layer of fill material that was installed on the former Tacoma Metals Property following demolition of the former creosoting plant and related structures, and prior to construction of the coke plant and related facilities (late 1930s to early 1940s). The extent of COC impacts within the shallow fill material was identified and characterized during the 2001 RI, as shown on the soil concentration contour and data flag maps originally prepared for the RI/FS report (Kennedy/Jenks Consultants 2001) and included in Appendix C (Figures 4-1 through 4-4).

COCs were identified at concentrations above the proposed soil cleanup levels (refer to Table 3) mainly within the uppermost 3 feet of fill material (i.e., to depths of approximately 3 feet bgs), but were identified locally to depths of up to 10 feet bgs [Note: The deeper COC impacts in the Creosoting Plant Area shown on the initial RI maps in Appendix C (Figures 4-3 and 4-4) are associated with the former creosoting plant (refer to Section 4.2) and are separate from the metals recycling related impacts]. The COC soil impacts related to metals recycling are discussed in greater detail in the RI/FS report (Kennedy/Jenks Consultants 2001), and summarized below:

 Metals, primarily lead but also chromium, were identified in shallow soil at concentrations above the proposed MTCA Method A/C industrial soil cleanup levels (refer to Table 3) throughout the former Tacoma Metals Property. The metals impacts occur primarily at depths of less than 3 feet bgs, but were identified at two locations in the eastern portion of the former Tacoma Metals Property at depths of up to 6 feet bgs (refer to RI/FS Map Figure 4-1 in Appendix C). The lead impacts identified at one location [TP-16 located south of the former red brick building location (refer to Figures 1-2 and 4-1 in Appendix C)] appear to be related to the presence of buried lead-acid battery casings. Initial RI analytical results for metals are summarized in Table 4-1 in Appendix C.

- PCBs were identified in shallow soil at concentrations above the proposed MTCA Method A industrial soil cleanup level (refer to Table 3) in the easternmost portion of the former Tacoma Metals Property. The PCB impacts occur at depths of less than 3 feet bgs (refer to RI/FS Map Figure 4-2 in Appendix C). Initial RI analytical results for PCBs are summarized in Table 4-2 in Appendix C.
- CPAHs were identified in shallow soil at concentrations above the proposed cleanup level (refer to Table 3) at one location in the eastern portion the former Tacoma Metals Property at a depth of less than 1 foot bgs (refer to RI/FS Map Figure 4-3 in Appendix A). CPAH impacts were also identified near the southwestern corner of the former Tacoma Metals Property (i.e. in the Creosoting Plant Area) at depths of 6 to 10 feet bgs, and appear to be associated with the former creosoting plant rather than metals recycling site uses. Initial RI analytical results for PAHs are summarized in Table 4-3 in Appendix C.
- Hydrocarbon compounds were identified in shallow soil at concentrations above the proposed cleanup level (refer to Table 3) at multiple locations on the former Tacoma Metals Property, typically at depths of less than 3 feet bgs (refer to RI/FS Map Figure 4-4 in Appendix C), but were identified at greater depths at two locations. Hydrocarbon impacts to depths of 10 feet bgs were identified in the west-central portion of the former Tacoma Metals Property, and appear to be related to a former hydraulic sheer (associated with metals recycling) at that location. Hydrocarbon impacts identified near the southwestern corner of the former Tacoma Metals Property to depths of 10 feet bgs are associated with the former creosoting plant rather than metals recycling site uses, as previously discussed. Initial RI analytical results for hydrocarbons are summarized in Table 4-4 in Appendix C. [Note: During performance of the Supplemental RI, extensive forensic evaluations were conducted to evaluate the nature of hydrocarbon compounds detected in the Creosoting Plant Area (Kennedy/Jenks Consultants 2009). The results of this investigation, which are discussed later, indicated that hydrocarbons associated with the creosoting plant are derived from pyrogenic source (i.e., creosote) and are not

petrogenic in nature. Consequently, MTCA petroleum hydrocarbon cleanup standards were not used to evaluate hydrocarbon detections in the Creosoting Plant Area.]

3.2.2 Groundwater

As previously indicated, the groundwater impacts identified in the western portion of the former Tacoma Metals Property appear to be primarily related to the former creosoting plant and are discussed in Section 4.2.

During the initial RI, COCs including naphthalene, hydrocarbons, PCBs, total and individual cPAHs, and metals (selenium, cadmium, lead, mercury, and copper) were detected at concentrations above the proposed cleanup levels (refer to Table 3) in monitoring well and reconnaissance groundwater samples collected from the Former Tacoma Metals Property [refer to the groundwater results data flag map (Figure 5-1) provided in Appendix C]. Naphthalene and hydrocarbon concentrations detected in the Creosoting Plant Area are related to the former creosoting plant, as previously discussed, and were further evaluated in the Supplemental RI (refer to Section 4). Metals analytes were detected sporadically and were not suspected to be representative of site groundwater conditions (Kennedy/Jenks Consultants 2001). Additional testing for metals was performed as part of the Supplemental RI (Section 4). The detection of PCBs was considered to be anomalous based on the low solubility and mobility of PCBs in the environment, and not representative of groundwater conditions (Kennedy/Jenks Consultants 2001). Analytical data tables prepared for the RI/FS report are also included in Appendix C for reference (Tables 5-1 through 5-9).

3.2.3 Surface Water

Two surface water sampling events were performed during the RI/FS at two locations where surface water discharges from the former Tacoma Metals Property were observed [refer to the surface water flow and samples map (Figure 3-8) provided in Appendix C]. Metals, PCBs, and cPAHs were identified in surface water samples at samples above surface water cleanup levels. Analytical results for surface water samples are summarized in the data table provided in Appendix C (Table 6-1).

The surface water sampling events were performed soon after Tacoma Metals vacated the property and although the paved surfaces at the site were cleaned as part of the RI, entrainment of residual particles associated with metals recycling may have contributed to the detected COC

concentrations and the results are therefore not necessarily indicative of current conditions. Following collection surface water samples, all storm lines at the site were cleaned and waste materials were transported offsite for disposal. Installation of a surface cap and surface water discharge management are included in the preferred remedial option (refer to Section 5.4).

3.3 Initial FS

The initial FS was performed in 2001 and the findings were reported to Ecology in the 2001 RI/FS report (Kennedy/Jenks Consultants 2001). The initial FS findings are summarized below, including an overview of the preferred cleanup alternative based on the initial FS.

3.3.1 Initial FS Summary

The initial FS included an evaluation of chemical fate and transport for the site, including a conceptual site model, and evaluation of potential exposure routes and receptors. The initial FS also included an evaluation of potential cleanup standards and other applicable, relevant, and appropriate requirements (ARARs), potential points of compliance, and an estimate of the extent of affected site media. The initial FS evaluated three cleanup alternatives and selected a preferred alternative based on evaluation of criteria including protectiveness to human health and the environment, compliance with cleanup levels and ARARs, effectiveness, permanence, practicality of implementation, and cost (refer to the 2001 FS for additional information).

The cleanup alternatives presented in the initial FS included the following:

- Alternative 1: Source Control (Free Product Removal and Petroleum Hydrocarbon-Impacted Soil Excavation with Offsite Disposal), Asphalt Cap with Stormwater Control, Enhanced Groundwater Biodegradation, Institutional Controls, Groundwater/Surface Water Compliance Monitoring, and Periodic Review.
- Alternative 2: Source Control (Free Product Removal and Petroleum Hydrocarbon-Impacted Soil Excavation with Offsite Disposal), Limited Metals-Impacted Soil Excavation with Onsite Consolidation, Asphalt Cap with Stormwater Control, Enhanced Groundwater Biodegradation, Institutional Controls, Groundwater/Surface Monitoring, and Periodic Review.
- Alternative 3: Source Control (Free Product Removal and Petroleum Hydrocarbon-Impacted Soil Excavation), Limited Metals-Impacted Soil Excavation, Onsite Treatment

& Reuse of Excavated Soil, Cap, Enhanced Groundwater Biodegradation, Institutional Controls, Groundwater/Surface Monitoring, and Periodic Review.

The preferred cleanup alternative (Alternative 2) is summarized in greater detail in Section 3.3.2.

Because the initial FS was completed prior to Supplemental RI activities, Ecology requested that the initial FS be updated to reflect the findings of the Supplemental RI and to verify the adequacy of the preferred cleanup alternative. Ecology's request also included additional evaluation of potential exposure pathways and cleanup standards primarily for impacts to wildlife and aquatic organisms and for consumption of fish (Ecology 2009b).

The updated FS is discussed in Section 5.

3.3.2 Preferred Cleanup Alternative

The initial FS included an evaluation of three potential cleanup alternatives for the site. The preferred cleanup alternative, Alternative 2, is summarized below. Refer to the RI/FS (Kennedy/Jenks Consultants 2001) and Section 5.4 of this report for additional information regarding the cleanup alternatives and evaluation criteria. The preferred cleanup alternative (Alternative 2) presented in the initial FS included the following general elements:

- Source control (free product removal and petroleum hydrocarbon-impacted soil excavation with offsite disposal).
- Localized removal and consolidation of metals-impacted soils along the northern portion of the Tacoma Metals Property.
- Installation of an asphalt cap with stormwater controls on the former Tacoma Metals Property.
- Enhanced groundwater biodegradation [i.e., application of oxygen release compound (ORC) or similar material to enhance natural biodegradation of COCs] and monitored natural attenuation.
- Institutional controls.
- Groundwater monitoring.
- Periodic review.

Kennedy/Jenks Consultants proposed removal of the ORC application (for the Creosoting Plant Area only) from Alternative 2 in the Cleanup Level Evaluation report (Kennedy/Jenks Consultants 2007c) as ORC is not expected to be effective for the treatment of creosote-related COCs because they are pyrogenic (coal tar based) rather the petrogenic (petroleum based) in origin (Kennedy/Jenks Consultants 2009). Additional discussion of the preferred cleanup alternative, including other proposed modifications, is presented in Section 5.4.

Section 4: Supplemental RI

This section provides a summary of the work performed and findings of the Supplemental RI, including interim remedial actions, performed between October 2001 and February 2011.

4.1 Supplemental RI Work Performed

Work performed for the Supplemental RI is described below.

4.1.1 Creosoting Plant Area

Investigation work was performed at the Creosoting Plant Area between October 2001 and February 2011 and included sampling and characterization of potentially impacted environmental media (soil and groundwater) associated with the former creosoting plant. Work was performed in multiple phases at On-Property and Off-Property locations. Soil boring and monitoring well locations associated with the Creosoting Plant Area are shown on the site maps included in Appendix D.

Each phase of work performed at the Creosoting Plant Area was performed under an Ecologyapproved Work Plan. Subsequent phases of work were performed at Ecology's request based on the results of the previous phase of work. The specific work performed during each phase of Creosoting Plant Area investigation, including report and Work Plan references, is summarized in Table 2. The specific work for each phase varied, but generally included the following elements:

- Advancement of direct-push soil borings and collection and laboratory analysis of soil samples and/or reconnaissance groundwater samples.
- Installation, development, and sampling of groundwater monitoring wells. Well locations were typically based on the findings of the direct-push soil borings and the finding of preceding investigations.
- Laboratory analysis of groundwater samples collected from monitoring wells.
- Elevation surveying of new monitoring wells.

- Water level monitoring in new and existing monitoring wells (including all site wells both On-Property and Off-Property).
- Monitoring of light and dense non-aqueous phase liquid (LNAPL and DNAPL) in Creosoting Plant Area wells.
- Evaluation of the depth, lithology, and stratigraphy of a silt/clay layer which appears to be acting as a confining layer (discussed in greater detail in Section 5.2).

Specific laboratory analyses performed for soil and groundwater samples are summarized in the data tables provided in Appendix D. Analyses typically included one or more of the following:

- Diesel- and oil-range petroleum hydrocarbons by Ecology Method NWTPH-Dx (all media). [Note: Although petroleum hydrocarbon analyses were performed for samples collected in the Creosoting Plant Area, they are not a COC for impacts related to the former creosoting plant (Kennedy/Jenks Consultants 2009; Ecology 2009a).]
- PAHs or semi-volatile organic compounds (SVOCs) by EPA Method 8270 (all media).
- RCRA eight metals (total and/or dissolved) plus copper by EPA 6010/7000 Series methods (groundwater only, limited number of samples).
- VOCs by EPA Method 8260 (all media, limited number of samples).
- PCBs by EPA Method 8082 (groundwater only, limited number of samples).

Refer to the previously prepared reports (Kennedy/Jenks Consultants 2007a, 2008b) for additional information regarding the Creosoting Plant Area investigations. Data tables originally prepared for the above-referenced reports are included in Appendix D for reference. In addition, analytical data for the COCs associated with the Creosoting Plant Area [naphthalene, cPAHs, and benzene, toluene, ethylbenzene, and total xylenes (BTEX)] are summarized in Table 4 (soil samples), Table 5 (reconnaissance groundwater samples), and Table 6 (monitoring well groundwater samples).

[Note: The cleanup levels listed in the data tables from previous reports (Appendix D) may not be the current proposed cleanup levels. Refer to Table 3 for a summary of the cleanup levels currently applicable to the site.]

4.1.2 Forensic Evaluation of Hydrocarbons

The Forensic Evaluation of Hydrocarbons study was performed between 2007 and 2009 to demonstrate that the impacts to soil and groundwater associated with the former creosoting plant should be evaluated using cleanup standards based on the components of creosote (PAHs, naphthalene, BTEX) rather than petroleum hydrocarbons.

The initial evaluation included forensic analysis of soil and groundwater samples for PAHs and review of previous site data by Friedman & Bruya, Inc. (FBI) of Seattle, Washington. FBI concluded that the contaminants were indicative of a pyrogenic (e.g., coal-tar creosote) origin rather that a petrogenic (e.g., petroleum hydrocarbon) source [submitted to Ecology by Kennedy/Jenks Consultants (Kennedy/Jenks Consultants 2007b)]. In response to this report, Ecology provided a letter indicating it did not agree with the FBI's conclusions, and suggested that a gasoline source may have contributed to the observed impacts to soil and groundwater.

In response to Ecology's comments, Kennedy/Jenks Consultants prepared a summary of historical site uses, field observations, and case studies to supplement FBI's separate response to Ecology's comments, and to demonstrate that no potential gasoline sources existed historically at the Creosoting Plant Area (Kennedy/Jenks Consultants 2009). Ecology subsequently agreed that the use of petroleum hydrocarbon cleanup standards for impacts related to the former creosoting plant were inappropriate (Ecology 2009a).

4.1.3 PRSC

Work for the PRSC investigation was performed between October 2010 and February 2011 and included sampling and characterization of potentially impacted environmental media, including groundwater from reconnaissance borings and proposed POC monitoring wells, along the southern margin of the PRSC and northern site boundary. The PRSC investigation was performed at Ecology's request under an Ecology-approved Work Plan (Kennedy/Jenks Consultants 2010b).

Work performed for the PRSC investigation included the following:

• Installation of three temporary piezometers adjacent to the PRSC (two sampling events).

- Collection of reconnaissance groundwater samples from the three piezometers and laboratory analysis of PAHs and BTEX (two sampling events).
- Collection of groundwater samples from six proposed POC monitoring wells (MW-19, MW-20, MW-23, MW-26, MW-29, and MW-35) and laboratory analysis of PAHs and BTEX (two sampling events).

Data tables and maps associated with the PRSC investigation are provided in Appendix E for reference. Refer to the letter report for the PRSC investigation (Kennedy/Jenks Consultants 2012) for additional information.

4.2 Supplemental RI Findings

The primary COCs associated with the former creosoting plant include various chemical components of creosote, which is derived from the distillation of coal tar. The COCs relevant to the characterization of creosote impacts at the Creosoting Plant Area include naphthalene, cPAHs, and BTEX. Refer to the 2009 Response to Ecology Comments letter (Kennedy/Jenks Consultants 2009) for additional information regarding the origin and composition of creosote. Creosote-related COCs have been delineated in both soil and groundwater at the Creosoting Plant Area (both On-Property and Off-Property Areas).

The potential COCs for the PRSC investigation included the creosote-related compounds listed above for the Creosoting Plant Area. The results of the PRSC investigation did not indicate the migration of COCs from the Creosoting Plant Area to the PRSC habitat area (Kennedy/Jenks Consultants 2012).

4.2.1 Soil

COC impacts related to the former creosoting plant occur in the western portion of the former Tacoma Metals Property and at Off-Property areas to the west (i.e., the Creosoting Plant Area). Soil impacts related to the former creosoting plant are initially encountered at approximately 5 feet bgs at the former creosoting plant location, corresponding to the approximate base of the fill material installed after demolition of the former creosoting plant, and are evident to depths of approximately 25 feet bgs. Creosote-related impacts to soil extend away for the former creosoting plant location primarily to the north and west, with impacts to the south and east diminishing over a relatively short distance.

Kennedy/Jenks Consultants

The depth to the top of creosote-impacted soil increases with distance away from the former creosoting plant location, primarily to the north and west, to approximately 10 feet bgs, which corresponds with the typical depth to shallow groundwater (refer to Section 2. 2). The maximum depth of creosote-impacted soil is approximately 25 feet bgs for the On-Property areas, but increases to over 30 feet bgs in Off-Property areas to the west and northwest, corresponding to the depth of a silty confining layer (refer to Section 5.2). Geologic cross-sections depicting the lateral and vertical distribution of creosote-related impacts to soil, originally prepared for the Forensic Evaluation of Hydrocarbons (Kennedy/Jenks Consultants 2009), are included in Appendix A. In addition, maps showing the distribution of creosote-impacted soil and the depth to the silty confining layer (discussed in greater detail in Section 5.2) are included in Appendix F.

Soil samples with cPAH concentrations above the proposed cleanup level (refer to Table 3) are typically associated with the areas of heavily stained soil (e.g., areas where NAPL was typically observed in the soil samples). The thickness of the areas of heavy soil impact decreases away from the former creosoting plant location, occurring in thin layers at the base of the wood-fill unit and just above the silty confining layer at some Off-Property locations (refer to the maps and cross sections in Appendix F which illustrate the distribution of subsurface soils affected by creosote-related compounds).

Other creosote-related COCs (naphthalene and BTEX) were not detected in soil samples at concentrations above the proposed cleanup levels (refer to Table 3).

Areas with COC concentrations in soil above the proposed cleanup levels (see Table 3) and at depths above the direct contact standard point of compliance (15 feet bgs) and the TEE conditional point of compliance (6 feet bgs) and are illustrated on Figure 3 for the entire site (On-Property and Off-Property areas).

Most of the affected soil on the former Tacoma Metals Property occurs within the uppermost 6 feet of the soil sequence, extending to depths between 6 and 15 feet at only three locations, including the former hydraulic shear area (west of the former main structure/warehouse building), the former creosoting plant area, and the area around well MW-8(R).

As discussed above, the depth to creosote-affected soil generally increases with depth away from the former creosoting plant location. As a result, COC-affected soil at Off-Property locations does not occur in the uppermost 6 feet of the soil sequence, but is present above 15 feet bgs at two locations (see Figure 3).

COC-affected soil was identified between 6 and 15 feet below grade in the central portion of the 18th Street Right-of-Way and at boring B-36 on the Simpson Property. The affected soil in the 18th Street Right-of-Way correlates laterally with the COC-affected soil identified at the former creosoting plant area (see Figure 6). However, the affected soil identified at boring B-36 from approximately 8 to 10 feet bgs does not appear to correlate directly with the creosote-affected soil at the creosoting plant area or with that identified on the 18th Street Right-of-Way (see Figure 6).

While the source of elevated cPAHs identified at the 8 to 10 foot depth interval is uncertain, it does not appear to be associated with lateral migration of oil contamination beneath the footprint of the former retort or former Creosoting Plant due to its horizontal and vertical location. Therefore, the COC-affected soil in boring B-36 (above 15 feet bgs) appears to be from a source separate from the release associated with the former creosoting plant retort area.

4.2.2 Groundwater

Groundwater COCs at concentrations above the proposed cleanup levels (refer to Table 3) were initially identified during the RI for the On-Property portion of the Creosoting Plant Area, and included cPAHs, naphthalene, gasoline-range petroleum hydrocarbons, and PCBs. [Note: Cleanup levels based on gasoline-range hydrocarbons were subsequently determined to be not applicable for the Creosoting Plant Area due to the pyrogenic nature of the hydrocarbon compounds, as discussed in Section 4.1.1 and 4.1.2.] Data tables for groundwater samples and data flag maps for COCs detected at concentrations above proposed cleanup levels during the RI are provided in Appendix C.

Kennedy/Jenks Consultants

PCBs were detected at concentrations above the proposed cleanup level (refer to Table 3) in two wells [MW-8(R) and MW-11] during one monitoring event performed during the initial RI, but not during previous monitoring events or in reconnaissance groundwater samples collected in the same area. Based on previous analytical findings and potential matrix interference reported by the analytical laboratory ("Y" data flag), the detected PCB concentrations did not appear to be representative of actual PCB concentrations in groundwater (Kennedy/Jenks Consultants 2001). In addition, PCBs were not detected in a subsequent sample collected from MW-8(R) in August 2002, consistent with the conclusions of the 2001 RI/FS. Based on these data, it was concluded that PCBs were a laboratory artifact and not indicative of site conditions.

Groundwater impacts related to other Creosoting Plant Area COCs (cPAHs, naphthalene, BTEX) were further characterized during subsequent investigations performed at On-Property and Off-Property portions of the Creosoting Plant Area (refer to Section 3.2). Petroleum hydrocarbon (gasoline-, diesel-, and oil-range) results are not discussed herein because these compounds are not applicable for the Creosoting Plant Area (Kennedy/Jenks Consultants 2009; Ecology 2009a), but historical data are included on the tables presented in Appendix D.

Naphthalene was detected at concentrations above the proposed cleanup level in groundwater samples collected from monitoring wells installed at On-Property and Off-Property locations. Naphthalene was identified in samples collected from On-Property wells located north of the former creosoting plant location [MW-8(R), MW-18, and MW-22] at concentrations above the proposed cleanup level (refer to Table 3) during at least one monitoring event, but only at well MW-18 for all monitoring events. Naphthalene was also detected in Off-Property wells MW-24 and MW-28(R), west to northwest of the former creosoting plant location, at concentrations above the proposed cleanup level, but not for all monitoring events. Naphthalene was also detected at concentrations above the proposed cleanup level, but not for all monitoring events. Naphthalene was also detected at concentrations above the proposed cleanup level in three reconnaissance groundwater samples collected from soil boring located in the 18th Street right-of-way (B-19, B-21, and B-31, refer to sample maps included in Appendix D). Historical analytical results for naphthalene are included in Table 5 (reconnaissance groundwater samples) and Table 6 (monitoring well samples). Concentration contour maps for naphthalene for the two most recent monitoring events (February 2006 and March 2008) are included in Appendix D.

Total cPAHs were detected in groundwater samples collected from On-Property and Off-Property locations at concentrations above the proposed cleanup level (refer to Table 3) during each phase of Creosote Plant Area investigation. Groundwater samples in which the total cPAH concentration was above the proposed cleanup level were collected from wells and reconnaissance borings located at the former creosoting plant location, and to the north and west. Based on the results of the PRSC investigation, cPAHs in groundwater have not migrated to the PRSC area (Kennedy/Jenks Consultants 2012).

Historical analytical results for cPAHs are included in Table 5 (reconnaissance groundwater samples) and Table 6 (monitoring well samples). Concentration contour maps for total cPAHs for the two most recent monitoring events (February 2006 and March 2008) are included in Appendix D.

Analysis of BTEX was typically not included in the Creosoting Plant Area monitoring events because it was not identified as a specific COC prior to 2009 (Kennedy/Jenks Consultants 2009, Ecology 2009a), but BTEX analysis was performed during the initial RI and the 2003 investigation performed for On-Property portions of the Creosoting Plant Area. BTEX analysis was also included for the samples collected from potential POC wells and reconnaissance groundwater samples during the PRSC investigation (Kennedy/Jenks Consultants 2012). BTEX analytes were not identified at concentrations above the proposed cleanup level (refer to Table 3) during the initial RI or 2003 investigation. Benzene was detected at one potential POC well (MW-23) located Off-Property at a concentration of 56 micrograms per liter (μ g/l), above the proposed cleanup level of 23 μ g/l, (refer to Table 1 in Appendix E) during the PRSC investigation (Kennedy/Jenks Consultants 2012). Data tables from the RI are provided in Appendix C, for the 2003 investigation in Appendix D, and for the PRSC investigation in Appendix E.

4.2.3 Additional Groundwater Metals Analyses

Analysis of groundwater samples for total and dissolved metals was performed in 2001 (dissolved lead only), 2002 (MW-13 only) and 2003 (21 On-Property wells). Total arsenic, total lead, total and dissolved mercury, and total and dissolved selenium were detected at concentrations above the proposed cleanup levels (refer to Table 3) in samples collected from wells for the 2003 sampling event. Data tables for metals analyses are provided in Appendix D (Tables 5D, 5E, 7F, and 8).

4.2.4 LNAPL and DNAPL

Monitoring for LNAPL and DNAPL was performed during the initial RI and subsequent Creosoting Plant Area investigation. In the Creosoting Plant Area, DNAPL accumulation was identified in Off-Property well MW-28(R), and LNAPL accumulation was intermittently identified in On-Property well MW-8(R). Although DNAPL was identified in well MW-28(R), it was not identified in well MW-28, which was located less than 5 feet from the location of well MW-28(R) Well MW-28(R) was installed in February 2006 as a replacement for MW-28, which was originally installed in April 2005 and subsequently damaged by a contractor during PRSC construction activities. The presence of DNAPL in well MW-28(R), and not in any other wells including the original MW-28, may indicate a localized topographic low in the upper surface of the silt/clay confining layer previously described.

The LNAPL and DNAPL identified in the Creosoting Plant Area appear to be creosote product. Samples of both LNAPL [from MW-8(R)] and DNAPL [from MW-28(R)] were evaluated by Friedman & Bruya, Inc. of Seattle, Washington and found to contain only creosote product (Kennedy/Jenks Consultants 2007b). LNAPL accumulation was also identified in well MW-12, near the former location a hydraulic shear, and appears to be a petroleum hydrocarbon product (hydraulic oil). Monitoring well locations are shown on Figure 3. Historical LNAPL and DNAPL measurements for wells MW-8(R) and MW-28(R) are included in Appendix B (Table 10).

4.3 Interim Remedial Actions

As previously indicated, in addition to the investigation activities described above, interim remedial actions have been performed at the site since completion of the initial RI. These have included the following:

 Containment, onsite treatment, and subsequent offsite disposal of approximately 3,440 tons of lead-impacted soil material excavated from north of the former Tacoma Metals Property during construction of the PRSC was performed between 2005 and 2007 (the material was suspected to have originated from the former Tacoma Metals Property). The soil material was placed in a lined temporary containment unit (TCU) enclosure for treatment to reduce the lead concentration to levels below the threshold, requiring disposal as hazardous waste. The work was performed under an Ecology-approved Work Plan (Kennedy/Jenks Consultants 2007d) and the results of the soil treatment, verification sampling, and disposal activities were reported to Ecology following completion of the project work (Kennedy/Jenks Consultants 2008a).

- An investigation of potential UXO was performed along the northern margin of the former Tacoma Metals Property in 2006 by EOD Technology, Inc. (EODT) based on an Ecology-approved Work Plan (Kennedy/Jenks Consultants 2006). The investigation was performed to determine if UXO materials, which were identified by the City of Tacoma in 1995 to the north of the former Tacoma Metals Property, were also present on the Tacoma Metals Property. Eleven test pits were excavated by EODT along the northern margin of the Tacoma Metals Property, and no UXO materials were identified (EODT 2006). In addition, two test pits were excavated in the vicinity of monitoring well MW-8(R) to identify potential sources of LNAPL periodically observed in the well. No obvious sources of LNAPL were observed in the two test pits.
- Cleaning of the onsite storm sewer lines to remove sediment that had accumulated during the operational history of site use.
- Demolition of site buildings and removal and disposal of wastes associated with these activities.

Section 5: FS Update and Preferred Cleanup Alternative

This section provides an update to the initial (2001) FS including a description of additional work performed, an updated site conceptual model, proposed cleanup levels, and an update to the preferred remedial alternative (Alternative 2) originally presented in the initial RI/FS report (Kennedy/Jenks Consultants 2001) and summarized in Section 3.3 above.

5.1 Work Performed

5.1.1 Cleanup Level Evaluation

The Cleanup Level Evaluation was performed by Kennedy/Jenks Consultants in 2007 to provide updated cleanup levels based on the results of investigations performed subsequent to the 2001 RI/FS and to evaluate cleanup levels and the preferred remedial alternative presented in the 2001 RI/FS with respect to the 2001 revision (updated October 2007) of Ecology's MTCA Cleanup Regulation [the RI/FS was originally performed under the previous (1996) MTCA revision].

The Cleanup Level Evaluation report (Kennedy/Jenks Consultants 2007c) submitted to Ecology included a human health risk evaluation, proposed cleanup levels based on the risk evaluation and 2001 MTCA Cleanup Regulation revision, proposed POC wells, and an evaluation of the selected remedial alternative from the RI/FS (Kennedy/Jenks Consultants 2001; refer to Section 2.5), including an evaluation based on the disproportionate cost analysis (DCA) framework introduced in the 2001 MTCA Cleanup Regulation revision (Ecology 2001, updated October 2007).

Ecology provided comments on the Cleanup Level Evaluation in a letter dated 4 May 2009 (Ecology 2009b). Ecology expressed concerns regarding the effectiveness of the preferred cleanup alternative presented in the initial RI/FS report (Kennedy/Jenks Consultants 2001) (refer to Section 3.3.1), primarily with respect to protectiveness of aquatic and terrestrial organisms. Ecology requested that a TEE be performed and that the site model presented in the 2001 RI/FS be updated to reflect potential exposure pathways for aquatic and terrestrial organisms.

Ecology's comments regarding the findings of the Cleanup Level Evaluation are addressed in the PRSC Investigation (refer to Section 4.1.3), the TEE (see Section 5.1.2 below) and in

subsequent sections of this report. The updated site conceptual model is discussed in Section 5.2.

5.1.2 Terrestrial Ecological Evaluation

A TEE was performed in accordance with MTCA regulations (WAC 173-340-7493) to evaluate the potential for adverse impacts to land-based ecological receptors from exposure to potentially impacted soil. The site was evaluated under an industrial use scenario, at Ecology's direction, and only the TEE screening values for wildlife protection were evaluated (Kennedy/Jenks Consultants 2010a).

Potential COCs concentrations identified in soil samples were compared to the wildlife protection screening values for soil provided in MTCA Table 749-3. COC concentrations exceeded the TEE screening values for metals, PCBs, PAHs, and diesel-range petroleum hydrocarbons for some soil samples (Kennedy/Jenks Consultants 2010a). However, because the preferred cleanup alternative includes installation of a pavement cap, the potential wildlife exposure pathways will be eliminated.

Ecology accepted the conclusions of the TEE, including a determination that no further TEE activities are necessary for the site, in an opinion letter dated July 7, 2010.

5.2 Site Conceptual Model

This section provides a summary of our current site conceptual model based on the model presented in the initial RI/FS report (Kennedy/Jenks Consultants 2001) and updated to reflect the results of work performed for the supplemental RI. The updated site conceptual model also incorporates the findings of the Cleanup Level Evaluation report (Kennedy/Jenks Consultants 2007c), including Ecology's comments (Ecology 2009b), and the TEE (Kennedy/Jenks Consultants 2010a).

5.2.1 Background

A conceptual site model based on the findings of the RI was originally presented in the initial RI/FS report (Kennedy/Jenks Consultants 2001) and included an evaluation of chemical fate and transport for unsaturated soil and shallow groundwater. Surface water pathways were not evaluated because surface runoff does not interact with the Puyallup River (or PRSC) due to the man-made levee located north of the site. The 2001 RI/FS report also included an evaluation of cleanup levels and other ARARs for the site.

Potential chemical migration pathways identified in the RI/FS report included vertical migration through the vadose zone to shallow groundwater, and horizontal migration in the shallow groundwater zone both towards and away from Puyallup River (tidal fluctuation). The 2001 RI/FS report concluded that COCs in shallow groundwater are unlikely to migrate beyond the northern Tacoma Metals Property boundary based on site-specific modeling results. A depiction of the conceptual site model presented in the RI/FS report is included in Appendix G (Figure 8-1).

The Cleanup Level Evaluation report (Kennedy/Jenks Consultants 2007c) provided additional evaluation of potential pathways and cleanup levels protective of human health based on the findings of investigations performed since the RI. The TEE provided an evaluation of potential exposure pathways and protective cleanup levels for ecological receptors. The PRSC investigation provided analytical data relevant to assessment of potential groundwater to surface water and sediments pathway at the southern margin of the PRSC to the north of the site.

Based on the findings of the studies listed above, the conceptual site model was updated and is summarized below.

5.2.2 Updated Site Conceptual Model

A discussion of potential exposure pathways in the context of updated site conceptual model and hydrogeologic setting is presented below. The updated site conceptual model is depicted on Figure 4.

5.2.2.1 Site Stratigraphy

As discussed in Section 2.2.1, soil materials encountered at the site have included both native and fill materials (refer to Table 1). Fill materials include an upper gravel layer installed prior to

Kennedy/Jenks Consultants

coke plant and metals recycling site operations, and wood waste material, which likely accumulated at the site prior to construction of the former creosoting plant. Native materials encountered beneath the fill layers include sand and fine-grained (silt and clay). Typically, sand or silty sand is encountered directly beneath the fill materials and a layer of fine-grained material (silt and clay) is encountered beneath the sand. Where the fine-grained material was penetrated by soil borings, sand and silty sand were encountered beneath.

The fine-grained materials were identified in soil borings throughout the site and appear to form a roughly continuous layer beneath the site. The upper surface of the fine-grained unit occurs at depths of 20 to 25 feet bgs in soil borings installed on the former Tacoma Metals Property and on the western and southern portions of the Off-Property Areas. Beneath the central and northern portion of the Simpson and JJ Port portion of the Off-Property Areas, the upper surface of the fine-grained unit slopes downwards to a depth of over 40 feet bgs beneath the north-central portion of the JJ Port property, forming a trough-shaped feature, which might represent a former drainage channel (refer to the maps provided in Appendix F).

The fine-grained unit appears to have acted as a barrier to downward migration of creosoterelated COCs in the Creosoting Plant Area and also appears to have influenced the lateral migration of creosote-related COCs components. Creosote-related COCs appear to generally follow the slope of the upper surface of the fine-grained materials away from the former creosoting plant. As predicted by modeling performed during the initial RI, creosote-related impacts to not appear to have migrated to the PRSC or Puyallup River (see Section 5.2.3) although creosote was last used at the site during the 1930s.

Maps and geologic cross sections prepared as part of the Forensic Evaluation of Hydrocarbons (Kennedy/Jenks Consultants 2009) illustrate the lateral and vertical distribution of creosote-related impacts identified in the Creosoting Plant Area (copies provided in Appendix F).

5.2.2.2 Site Hydrogeology

As discussed in Section 2.2.2, the shallow groundwater gradient at the site is tidally influenced. Based on historical groundwater elevation monitoring results, the tidally influenced variation in shallow groundwater elevation is greatest for monitoring wells located along the northern site margin and in the western portion of the site, and decreases to the south and, to a lesser extent, to the east. The direction of the hydraulic gradient is dependent upon tidal conditions, and location within the site. In the eastern portion of the site (eastern portion of the former Tacoma Metals Property), the shallow groundwater gradient in generally to the east during both high and low tidal conditions, but may be more northerly during low tidal conditions. In the western portion of the site (western portion of the former Tacoma Metals Property and the Off-Property areas), the shallow groundwater gradient is generally towards the PRSC during low tidal conditions and away from the PRSC during high tidal conditions. The magnitude of the shallow groundwater gradient is greater during low tidal conditions than during high tidal conditions, resulting in an overall net gradient towards the PRSC.

The hydraulic gradient also appears to be affected by the presence of wood waste material identified in soil borings and test pits at locations throughout the site, primarily in the vicinity of the former creosoting plant location. The wood debris layer in the vicinity of the former creosoting plant is generally thicker than other parts of the site, and may contribute to the localized hydraulic stagnation zone during high tidal conditions, and localized hydraulic mounding in low tidal conditions.

Groundwater gradient maps for the 2006 and 2008 monitoring events are included in Appendix B. As previously indicated, these monitoring events are most representative of current site conditions because they were conducted after construction of the PRSC habitat area.

5.2.3 Potential Exposure Pathways

The conceptual model for chemical migration presented in the RI/FS (Kennedy/Jenks Consultants 2001) has been updated to reflect the findings of investigation activities performed since the completion of the initial RI, and to address Ecology's comments (Ecology 2009b).

The findings of the Creosoting Plant Area investigations are consistent with the conceptual model presented in the RI/FS report (Kennedy/Jenks Consultants 2001) but also indicate the lateral migration of denser creosote components away from the former creosoting plant location the north and west along the upper surface of the fine-grained unit, as previously described (refer to Figure 4). The denser creosote components appear to be associated with NAPL observed in wood waste fill and native soil materials as small blebs, mainly at locations at or near the former creosoting plant location, but also in thin stringers along the base of the wood

waste fill and along the upper surface of the fine-grained unit (refer to Figure 4 and to the maps and cross sections provided in Appendix F).

Creosote-related COCs do not appear to have migrated northward significantly beyond the northern site boundary, and creosote-related impacts to shallow groundwater were not identified along the southern margin of the PRSC in the 2010/2011 PRSC Investigation (Kennedy/Jenks Consultants 2012). These findings indicate that the potential groundwater to surface water and groundwater to sediment pathways are incomplete for the site. The protectiveness of the proposed remedial alternative with respect to these potential exposure pathways will be addressed in the long-term monitoring component of the proposed remedial alternative (discussed in Section 5.4).

Potential exposure pathways for terrestrial organisms were evaluated in the TEE (Kennedy/Jenks Consultants 2010a). The TEE concluded that potential exposure pathways for wildlife include direct contact only. The direct contact pathway is currently limited to unpaved portions of the former Tacoma Metals Property and Off-Property areas (Simpson Property, 18th Street Right-of-Way, and back (northern) portion of the JJ Port Property). The On-Property areas will be paved as part of the preferred remedial action (refer to Section 5.4) and the direct contact pathway for wildlife will be eliminated because shallow soil impacted by COCs will become inaccessible. In addition, a soil cap will be installed on the 18th Street Right-of-Way to extend the depth to soil impacted by COCs to 15 feet (or more) below grade; the point of compliance for the direct contact pathway.

The proposed cleanup alternative also addresses the potential soil to groundwater pathway by removal of potential sources of petroleum-hydrocarbon and creosote-related impacts in shallow soil, and elimination of direct infiltration by stormwater at currently unpaved areas where shallow soil is affected by COCs. Mitigation of the potential soil to groundwater exposure pathway is accomplished by installation of a low-permeability pavement cap and stormwater controls (discussed in greater detail in Section 5.5.4). In addition, institutional controls for soil and groundwater uses will mitigate the potential for exposure to environmental media affected by COCs.

In addition to the potential exposure pathways described above, the vapor intrusion pathway may potentially be completed if structures are built in the future over portions of the site where VOCs exist and vapors from the site migrate into structures at concentrations exceeding MTCA

Method C indoor air cleanup levels. However, VOC concentrations are generally low and would not be expected to pose a threat to human health at the current concentrations, and a significant portion of the impacted soil materials will be removed from the primary source area during the remedial action, decreasing the potential vapor intrusion risk.

Future potential risks from the vapor intrusion pathway will be managed using property deed restrictions (for the former Tacoma Metals property and Off-Property parcels) and engineering controls, as appropriate. Deed restrictions will require that future development in this area includes an evaluation of potential vapor intrusion. If a possible adverse risk is identified, deed restrictions will require that mitigation measure are installed with new building construction.

5.3 Cleanup Levels

Proposed cleanup levels are based on those originally identified in the initial RI/FS report (Kennedy/Jenks Consultants 2001) and by the findings of the Cleanup Level Evaluation (Kennedy/Jenks Consultants 2007c) and TEE (Kennedy/Jenks Consultants 2010a). The Cleanup Level Evaluation included a human health risk evaluation, which incorporated the findings of investigation activities performed since completion of the RI. The TEE included an assessment of potential exposure to wildlife including risk-based screening against the ecological indicator soil concentrations for protection of wildlife in MTCA Table 749-3. The proposed cleanup levels listed in Table 3 also reflect comments from Ecology regarding comparison of cleanup levels to potential surface water quality standards (Ecology 2009b). The proposed cleanup levels are based on an industrial use scenario and are applicable to the preferred remedial alternative discussed in Section 5.4.

5.4 Cleanup Alternatives

As previously discussed in Section 3.3, three cleanup alternatives were evaluated for the initial FS. The three alternatives were evaluated for various criteria including overall (short term and long term) protectiveness, effectiveness, compliance with cleanup standards, permanence, restoration time frame, ability to be implemented, possible community concerns, and potential cost. The three cleanup alternatives, as presented in the RI/FS report, are depicted on Figure 9-1 in Appendix G and described in Section 3.3.

Alternative 2 was selected as the preferred cleanup alternative for the site in the 2001 RI/FS report (Kennedy/Jenks Consultants 2001), and includes the elements listed in Section 3.3.2.

Based on the findings of the Supplemental RI, Alternative 2 remains the preferred alternative. The findings of the Supplemental RI did not indicate any substantive differences that might require modification of the evaluation criteria presented in the initial RI for the cleanup alternatives.

The additional characterization of site conditions provided by the Supplemental RI expanded, but did not fundamentally alter, our understanding of site conditions, and necessitated changes for On-Property areas only in the quantity of impacted soil to be removed in the Creosoting Plant Area (discussed in Section 5.5).

For Off-Property areas, the additional characterization of site conditions identified areas on the 18th Street Right-of-Way and Simpson Property with soil impacts above the proposed cleanup levels. As previously discussed, the affected soil occurs below a depth of 6 feet bgs for all Off-Property areas and below 15 feet for most Off-Property areas (refer to Section 4.2.1 and Figures 3 and 6).

Based on Supplemental RI findings, installation of a soil cap on the 18th Street Right-of-Way is proposed to raise the ground surface to an elevation sufficient to provide a depth of at least 15 feet from ground surface to the affected soil. The elevation for the top surface of the affected soil currently located less than 15 feet below grade will be identified based on analytical results and field observations. The final soil cap elevation will be 15 feet above the top surface of the affected soil. Kennedy/Jenks Consultants anticipates that the final grade for the 18th Street Right-of-Way will approximately match the final grade of the asphalt cap on the Tacoma Metals property, creating a level transition between the two properties.

Excavation of affected soil at Off-Property location B-36 will also be performed; however, the lateral and vertical extent of shallow (i.e. less than 15 feet below grade) soil impacts in the B-36 area are not fully characterized. To evaluate the extent of shallow soil impacts at B-36, a supplemental field investigation will be performed to prior to performing remedial excavation. The supplemental field investigation is anticipated to include advancement of soil borings on the Simpson and JJ Port properties, including chemical analysis of soil samples for site COCs. The scope of work and anticipated boring locations will be submitted to Ecology for review prior to performing any field investigation activities.

For the purposes of cost estimation for this report, an excavation area of 30 feet by 30 feet and 10 feet deep was assumed for the B-36 area. This volume may increase or decrease based on the findings of the additional B-36 area investigation.

Impacts to groundwater identified at Off-Property locations (Simpson Property and 18th Street Right-of-Way) are consistent with those identified on On-Property locations and do not warrant active remedial actions in addition to the long-term monitoring at proposed CPOC wells described in Section 5.5.2.

Based on the increased volume of soil removal proposed for excavation at the Creosoting Plant Area and boring B-36 area, and the addition of the soil cap proposed for the 18th Street Right-of-Way, the estimated costs for the remedial alternatives were updated. The updated cost estimates for each of the three alternatives discussed in the initial FS (Kennedy/Jenks Consultants 2001), based on the increased excavation volume and soil cap and adjusted for 2014 pricing, are provided in Appendix H for reference. Although the current costs are increased for each alternative, the relative cost difference between the three alternatives is similar to those presented in the initial FS.

5.5 Cleanup Alternative 2 Update

The findings of the investigations and evaluations performed since the completion of the RI/FS did not indicate the need for significant substantive changes to Alternative 2, but revision of the scope of some components of Alternative 2 appears appropriate. Proposed revisions to Alternative 2 are described below and depicted on Figure 5.

5.5.1 Source Control Excavation Areas

The cleanup alternatives presented in the RI/FS report (Kennedy/Jenks Consultants 2001), including Alternative 2, included excavation and offsite disposal of soil materials identified as potential sources for impacts to groundwater. These included soil materials in which NAPL was observed and/or COCs at concentrations above proposed site cleanup levels were identified. Excavation of soil materials to the approximate depth of the shallow saturated zone (approximately 10 feet bgs on the former Tacoma Metals Property) was proposed at three locations designated areas "A", "B", and "C" as depicted on Figure 9-1 in Appendix G.

The results of the investigation and evaluation activities performed since completion of the initial RI/FS indicate that proposed excavation area "B", located at the approximate former location of

Kennedy/Jenks Consultants

the creosoting plant, did not include areas of shallow soil impacts identified to the north of the former creosoting plant location. Therefore, excavation area "B" was expanded approximately 40 feet to the north to include shallow COC impacts identified in soil borings B-14 and B-12, corresponding to an increase in the estimated excavation volume from approximately 3,333 cubic yards (yd³) to approximately 5,444 yd³ (refer to Figure 5). Excavation area "B" includes the area where creosote-related impacts occur at less than 6 feet bgs (i.e., TEE conditional point of compliance).

In addition, excavation area "D" was added in the vicinity of well MW-8(R) based on the intermittent occurrence of LNAPL identified at that location. Excavation area "D" includes an approximately 30-foot by 30-foot area around well MW-8(R) with an estimated volume of 333 yd³ (refer to Figure 5). The proposed depths for excavation areas "B" and "D" are the same as proposed in the RI/FS, approximately 10 feet bgs (top of the saturated zone). No changes for excavation areas "A" and "C" are proposed.

Excavation at Area "E" was added at the Off-Property B-36, as discussed in Section 5.4. The preliminary estimated excavation volume at Area "E" is 333 yd³ (see Figure 5). However, as previously discussed, the extent of soil impacts has not been fully characterized in the B-36 area and the actual volume may vary. The extent of soil impacts will be evaluated in a supplemental field investigation prior to performing the remedial excavation as discussed in Section 5.4.

Cleanup Alternative 2, as described in the initial RI/FS report (Kennedy/Jenks Consultants 2001) included placement of ORC in excavation areas to enhance the natural biodegradation of potential COCs in the shallow saturated zone. In the Cleanup Level Evaluation (Kennedy/Jenks Consultants 2007c), Kennedy/Jenks Consultants recommended that ORC not be used in excavation areas located in the Creosoting Plant Area (excavation areas "B" and "D" described herein) because ORC is not expected to be an effective treatment for COCs of pyrogenic (e.g., creosote derived from coal tar) origin (refer to Section 3.5.1). Therefore, the application of ORC is proposed only for excavation area "C", where COCs include petroleum hydrocarbon compounds.

Cleanup Alternative 2, as described in the initial RI/FS report (Kennedy/Jenks Consultants 2001) also included "buffer-zone" excavation of shallow soil to depths of 1 to 3 feet bgs at locations around the margins of the former Tacoma Metals Property (refer to Figure 9-1 in

Appendix G), and consolidation of the excavated soil onsite. No changes to the buffer zone excavation areas are proposed, although a portion of the proposed buffer zone is included in the expanded portion of excavation area "B" described above.

5.5.2 Soil Cap Installation

Installation of a soil cap on the 18th Street Right-of-Way is proposed for Cleanup Alternative 2 to raise the ground surface to an elevation sufficient to provide a depth of at least 15 feet from ground surface to the affected soil. The final grade for the 18th Street Right-of-Way will approximately match the final grade of the asphalt cap on the Tacoma Metals property. The fill material placed at this location will include pit-run type material compacted to approximately 90% relative density with crushed rock for the uppermost 6 inches.

5.5.3 Long-Term Monitoring

Cleanup Alternative 2, as described in the initial RI/FS report (Kennedy/Jenks Consultants 2001) also included long-term monitoring of shallow groundwater to confirm the effectiveness of the source control measures described in Section 5.4.3. No changes to this approach are proposed.

Specific wells to be included in the groundwater monitoring program as CPOCs for shallow groundwater were identified in the Cleanup Level Evaluation report (Kennedy/Jenks Consultants 2007c) and are shown on Figures 3 and 5. Before approving the conditional point of compliance, a notice of the proposal (and invitation for comment) will be submitted to the natural resources trustees, the USACE, and the Washington State Department of Natural Resources (WADNR) per WAC 173-340-720(8)(d)(i) and (ii). This notice shall be in addition to any notice provided under WAC 173-340-600. In addition, any affected property owners between the source of contamination and the Puyallup River (i.e., the City of Tacoma and USACE) must agree in writing to the use of the CPOCs.The proposed CPOC wells include those located along the northern site boundary including On-Property wells MW-2, MW-4(R), MW-5, MW-6, MW-9, MW-19, and MW-20 and Off-Property wells MW-23 and MW-29 (refer to Figures 3 and 5). At Ecology's request, Off-Property wells MW-26 and MW-35 and piezometer locations P-1, P-2, and P-3 were added. If approved by USACE, permanent monitoring wells will be installed at the piezometer locations. If installation of permanent wells is not approved by USACE, temporary piezometers will be installed for each sampling event (Note: Permanent wells, if approved, may

need to be installed higher on the bank adjacent to the PRSC than the piezometers to avoid inundation under high-tide conditions).

Monitoring at Off-Property locations should include only the COCs identified for creosote-related site impacts (cPAHs, naphthalene, and BTEX). Monitoring at On-Property locations should include COCs related to metals recycling including metals, PAHs, PCBs, and petroleum hydrocarbons (except for Creosoting Plant Area well MW-20, which should exclude petroleum hydrocarbons and include BTEX).

5.5.4 Capping and Institutional Controls

Cleanup Alternative 2, as described in the RI/FS report (Kennedy/Jenks Consultants 2001) includes installation of a pavement cap, stormwater runoff controls, and institutional controls (i.e., deed restrictions and covenants as appropriate). No changes to these components of Alternative 2 are proposed.

The engineering design for the remedial action will specify a low permeability asphalt pavement cap. We understand Ecology expects the asphalt cap to be essentially impermeable (i.e., hydraulic conductivity of $5x10^{-7}$); however, such a low hydraulic conductivity cap may not be technically achievable. In coordination with Ecology, the engineering design will specify a hydraulic conductivity range that is technically achievable, practicable, and meets Ecology's expectations for pavement permeability at the site.

The proposed capping, stormwater controls, and institutional controls will eliminate potential exposure pathways associated with the impacted shallow soil remaining onsite. Final design details for the cap, stormwater controls, and institutional controls, will be included in a Cleanup Action Plan under separate cover. Refer to the RI/FS report (Kennedy/Jenks Consultants 2001) for additional details.

5.5.5 Points of Compliance

The proposed point of compliance for soil is throughout the site. The proposed point of compliance for shallow groundwater includes the CPOC groundwater monitoring wells and piezometers indicated in Section 5.4.2 and shown on Figures 3 and 5.

5.5.6 Disproportionate Cost Analysis

A DCA was not specifically performed for the proposed site cleanup alternatives in the initial FS, because DCA was not part of the 1996 MTCA revision under which the RI/FS was performed (DCA was introduced in the 2001 MTCA revision); however, the substantive requirements of DCA were addressed in the RI/FS report (Kennedy/Jenks Consultants 2001), as discussed in the Cleanup Level Evaluation (Kennedy/Jenks Consultants 2007c). Kennedy/Jenks Consultants concluded that cleanup Alternative 2 would likely have been selected as the most practicable cleanup alterative under the DCA methodology in the 2001 MTCA revision (updated October 2007), as it was under the methodology of the 1996 MTCA revision (Kennedy/Jenks Consultants 2007c).

Section 6: Summary

Kennedy/Jenks Consultants performed an initial RI/FS at the Former Tacoma Metals Site between 2000 and 2001. Impacts to soil and groundwater, primarily related to previous site uses as a metals recycling facility but also as a coke manufacturing plant, were identified and the extent of impacts to site media from these site uses was fully characterized.

During RI, an additional previous site use was identified as a creosoting plant located in the southwestern portion of the site (designated as the Creosoting Plant Area). The extent of potential impacts to environmental media related to the former creosoting plant were not fully addressed in the initial RI; therefore supplemental RI activities were performed in the Creosoting Plant Area between 2002 and 2011 and the extent of creosote-related impacts to soil and groundwater was identified and characterized.

The cleanup alternative selected in the initial FS (Alternative 2) included excavation and offsite disposal of hydrocarbon and creosote impacted soil, excavation and onsite consolidation of metals-impacted soil from the perimeter of the site, installation of an asphalt cap with stormwater controls, *in situ* treatment of residual hydrocarbon impacts, institutional controls, and long-term monitoring.

The findings of the Supplemental RI did not substantively alter the appropriateness of the selected remedial alternative. Based on our understanding of site conditions, results of the Supplemental RI, and evaluation of the proposed cleanup alternative, Alternative 2 as described in the RI/FS report (Kennedy/Jenks Consultants 2001) and modified herein, is protective of human health and the environment under an industrial use scenario.

References

- City of Tacoma. 2006. Remedial Action Construction Report, Thea Foss and Wheeler-Osgood Waterways Remediation Project. Prepared for USEPA by City of Tacoma. Dated September 2006
- EODT. 2006. Final Letter Report for UXO Investigation Services at the former Tacoma Metals Site. Prepared for Portland Avenue Associates, LLP by EODT Technology, Inc. Dated 12 July 2006.
- Hart-Crowser. 1975. Geology of the Port of Tacoma. Hart-Crowser, Seattle, Washington.
- Hart-Crowser. 2003. Soil and Groundwater Quality Testing Results, Puyallup River Side Channel and Tacoma Metals Site, Tacoma, Washington. Prepared by Hart-Crowser for the City of Tacoma. Dated 7 August 2003.
- Kennedy/Jenks Consultants. 2001. Remedial Investigation/Feasibility Study Report, Former Tacoma Metals Facility. Prepared by Kennedy/Jenks Consultants for Portland Avenue Associates, LLC. Dated October 2001.
- Kennedy/Jenks Consultants. 2006. Work Plan for Investigation of Potential Unexploded Ordnance (UXO), Former Tacoma Metals, Property. Dated 15 March 2006
- Kennedy/Jenks Consultants. 2007a. Supplemental Data Summary Report, Former Tacoma Metals Facility. Prepared by Kennedy/Jenks Consultants for Portland Avenue Associates, LLC. Dated May 2007.
- Kennedy/Jenks Consultants. 2007b. Results of Forensic Evaluation of Hydrocarbons, Former Tacoma Metals Site, Tacoma, Washington. Dated 9 May 2007.
- Kennedy/Jenks Consultants. 2007c. Cleanup Level Evaluation, Former Tacoma Metals Facility. Prepared by Kennedy/Jenks Consultants for Portland Avenue Associates, LLC. Dated June 2007.
- Kennedy/Jenks Consultants. 2007d. Revised Work Plan for Treating Lead-Containing Soil Materials, Former Tacoma Metals Site, Tacoma, Washington. Dated 26 June 2007.
- Kennedy/Jenks Consultants. 2008a. Summary Report for Treating/Disposal of Lead-Containing Soil, Former Tacoma Metals Site, Tacoma, Washington. Dated 28 February 2008.
- Kennedy/Jenks Consultants. 2008b. Soil and Groundwater Investigation Results Data Transmittal, October 2007 – April 2008 Investigation, Former Tacoma Metals Facility. Dated 21 July 2008.

- Kennedy/Jenks Consultants. 2009. Response to Ecology Comments, Forensic Evaluation of Hydrocarbons, Former Tacoma Metals Facility. Dated 17 February 2009.
- Kennedy/Jenks Consultants. 2010a. Terrestrial Ecological Evaluation, Former Tacoma Metals Facility. Dated 30 April 2010.
- Kennedy/Jenks Consultants. 2010b. Revised Groundwater Investigation Work Plan, Puyallup River Side Channel Investigation. Dated 3 September 2010.
- Kennedy/Jenks Consultants. 2012. Revised Groundwater Investigation Summary, Puyallup River Side Channel Investigation, Former Tacoma Metals Facility. Dated 16 January 2012.
- Washington State Department of Ecology. 1996. Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC. Ecology Publication No. 94-06, Amended January 1996.
- Washington Department of Ecology (Ecology). 2007. Model Toxics Control Act Chapter 70.105D RCW (Amended 2007) and Cleanup Regulation Chapter 173-340
 WAC (Amended 12 February 2001). Compiled by Washington Department of Ecology Toxics Cleanup Program. Publication No. 94-06. Revised October 2007.
- Washington State Department of Ecology. 2009a. Transmittal of Ecology Comments on the Response to Ecology Comments, Forensic Evaluation of Hydrocarbons, Former Tacoma Metals Site, 1919 Portland Avenue, Tacoma, Washington, February 17, 2009, Agreed Order DE 97-5435. Letter from Mr. Steve Teel to Mr. Ty Schreiner. Dated 28 April 2009.
- Washington State Department of Ecology. 2009b. Transmittal of Ecology Comments, Cleanup Level Evaluation, Former Tacoma Metals Site, 1919 Portland Avenue, Tacoma, Washington, February 17, 2009, Agreed Order DE 97-5435. Letter from Mr. Steve Teel to Mr. Ty Schreiner. Dated 4 May 2009.
- Washington State Department of Ecology. 2010. Transmittal of Ecology Comments on the Site-Specific Terrestrial Ecological Evaluation, dated 30 April 2010, Former Tacoma Metals Site, 1919 Portland Avenue, Tacoma, Washington, Agreed Order DE 97-5435. Letter from Mr. Steve Teel to Mr. Taku Fuji. Dated 7 July 2010.

Tables

GENERALIZED SUMMARY OF STRATIGRAPHIC UNITS Former Tacoma Metals Site Tacoma, Washington

(feet	ate Depths bgs) ^(a)	Approximate Thickness	
Тор	Bottom	(feet) ^(a)	Generalized Description ^(b)
0	1 to 8	1 to 8	Gravelly and sandy fill materials. This material is located throughout the former Tacoma Metals Property. Metal, wood, and miscellaneous debris are typically mixed with the gravel and sand on the former Tacoma Metals Property, primarily in the central and eastern portions. This unit includes the 3 to 5 feet of fill material installed on the former creosoting plant area prior to construction of the coke plant.
0 to 4	5 to 6	2 to 5	Wood fill material with no evident soil material. This material is primarily located beneath Off-Property areas including the Simpson Property and 18th Street Right-of-Way.
5 to 6	7 to 13	1 to 8	Silty sand material locally mixed with gravel, coarse sand, and/or woody material. Silty sand is also observed at greater depths, but typically does not include gravel and woody material.
3 to 13	7 to 26	1 to 18	Wood fill material typically mixed with 5-30% sandy, silty, and/or clayey soil. This material is encountered throughout the former Tacoma Metals Property, but is generally thickest in the Creosoting Plant Area.
10 to 19	22 to 30	2 to 15	Sandy material, typically poorly graded, locally with some silt and/or fine gravel. Sand is also encountered locally at shallower depths and at deeper depths beneath the silt/clay described below.
22 to >40	>22 to >40	see description	Silty/clayey material. This material is typically several inches to several feet in thickness and is encountered throughout the former Tacoma Metals Site.

Notes:

- (a) Depths are given in feet below ground surface (bgs) relative to the exiting surface elevation at the former wood treatment facility, approximately 10 feet above mean sea level. Depth and thickness values indicate the ranges at which the stratigraphic units have typically been observed during our investigation activities. Generalized site soil stratigraphy is shown on the cross sections in Appendices A and F.
- (b) Generalized descriptions based on previous field investigations performed by Kennedy/Jenks Consultants. Refer to the Remedial Investigation/Feasibility Study (RI/FS) Report (2001), Site Supplemental Data Summary (2007), and Soil and Groundwater Investigation Results (2008) for additional information.

SUMMARY OF WORK PERFORMED FOR THE SUPPLEMENTAL REMEDIAL INVESTIGATION Former Tacoma Metals Site, Tacoma, Washington

Investigation Date	Investigation Objectives	Scope of Work Performed	
October 2010 – February 2011 Investigation Puyallup River Side Channel Creosoting Plant Area On-Property and Off-Property	 Implement the Revised Groundwater Investigation Work Plan, Puyallup River Site Channel Investigation submitted to Ecology on 3 September 2010. Evaluate groundwater conditions along the Puyallup River Side Channel to the north-northeast of well MW-8(R), located in the Creosoting Plant Area. 	 Installed three temporary piezometers at locations north-northeast of the Creosoting Plant Area and adjacent to the Puyallup River Side Channel. Groundwater samples were collected from each piezometer for laboratory analysis of applicable chemicals of concern (COCs). The three piezometers were installed and sampled at the same locations during two separate events conducted in October 2010 and again in February 2011. Performed groundwater sampling and laboratory analysis for applicable COCs at six conditional point of compliance On-Property and Off-Property monitoring wells. Two rounds of sampling were performed in October 2010 and February 2011 coincident with the temporary piezometer installation and sampling. 	•
October 2007 – April 2008 Investigation Creosoting Plant Area On-Property and Off-Property	 Implement the Soil and Groundwater Investigation Work Plan submitted to Ecology dated 12 March 2007. Further define lateral limits of impacts to soil and groundwater in the western portion of the Creosoting Plant Area. 	 Advanced 13 soil borings (B-37 through B-47) to the first encountered silt/clay layer and collected continuous soil samples from each boring for lithologic logging, field screening for indications of COCs and potential presence of dense non-aqueous phase liquid (DNAPL); collected soil and reconnaissance groundwater samples. Installed and developed four new Off-Property groundwater monitoring wells (MW-32 through MW-35). Performed groundwater sampling and laboratory analysis for applicable COCs at 25 On-Property and Off-Property monitoring wells, including new and existing wells. Performed groundwater elevation monitoring for low- and high- tidal conditions at all Site monitoring wells, including new and existing wells, and light non-aqueous phase liquid (LNAPL)/DNAPL screening for Creosoting Plant Area wells. 	•
February 2006 Investigation Creosoting Plant Area On-Property and Off- Property	 Implement the Soil and Groundwater Investigation Work Plan submitted to Ecology dated 15 December 2005. Further define lateral limits of impacts to soil and groundwater in the Off-Property portion of the Creosoting Plant Area. 	 Advanced three soil borings (B-34 through B-36) to the first encountered silt/clay layer and collected continuous soil samples from each boring for lithologic logging, field screening for indications of COCs and potential presence of DNAPL; collected soil and reconnaissance groundwater samples for laboratory analysis of applicable COCs. Installed and developed three new Off-Property groundwater monitoring wells (MW-29 through MW-31). Abandoned and replaced one damaged monitoring well (MW-28) with a new monitoring well [MW-28(R)] installed at the same location. Performed groundwater sampling and laboratory analysis for applicable COCs at 21 On-Property and Off-Property monitoring wells, including the three new wells and one replacement well. Performed groundwater elevation monitoring for low- and high- tidal conditions at all Site monitoring wells, including new and existing wells, and LNAPL/DNAPL screening for Creosoting Plant Area wells. 	•

Results Summary References

Revised Groundwater Investigation Summary, Puyallup River Side Channel Investigation (Kennedy/Jenks Consultants 2012) includes data tables, sample location maps, field sampling documents, and analytical reports. Select materials are included in this report for reference as listed below.

A boring and well location map and analytical data tables for groundwater (well and piezometer) samples provided in Appendix E.

Soil and Groundwater Investigation Results-Data Transmittal (Kennedy/Jenks 2008b) includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below.

Boring and well location map provided in Appendix D.

Analytical data tables for soil, reconnaissance groundwater, and groundwater monitoring wells provided in Appendix D.

Concentration contour maps for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and naphthalene provided in Appendix D

Geologic cross sections for the Creosoting Plant Area showing the depth to the first encountered silt layer included in Appendices A and F.

Groundwater gradient maps and tabulated water elevation measurements for low- and high- tidal conditions provided in Appendix B.

Supplemental Data Summary Report (Kennedy/Jenks 2007a) includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below.

Boring and well location map provided in Appendix D.

Analytical data tables for soil, reconnaissance groundwater, and groundwater monitoring wells provided in Appendix D.

Concentration contour maps for cPAHs and naphthalene provided in Appendix D.

Geologic cross sections for the Creosoting Plant Area showing the depth to the first encountered silt layer included in Appendices A and F.

Groundwater gradient maps and tabulated water elevation measurements for low- and high- tidal conditions provided in Appendix B.

SUMMARY OF WORK PERFORMED FOR THE SUPPLEMENTAL REMEDIAL INVESTIGATION Former Tacoma Metals Site, Tacoma, Washington

Investigation Date	Investigation Objectives	Scope of Work Performed	Results Summary References
March 2005 Investigation Creosoting Plant Area Off-Property	 Implement the Soil and Groundwater Investigation Work Plan – Off-Property Investigation submitted to Ecology dated 2 July 2004, including modifications to the Work Plan described in the Responses to Ecology Comments on Soil and Groundwater Investigation Work Plan Off-Property Investigation letter to Ecology dated 2 December 2004 and the Addendum Letter dated 24 February 2005. Further define lateral limits of impacts to soil and groundwater at Off-Property areas west of the former creosoting plant location. 	 Advanced ten soil borings (B-24 through B-33) to the first encountered silt/clay layer and collected continuous soil samples from each boring for lithologic logging, field screening for indications of COCs and potential presence of DNAPL; collected soil and reconnaissance groundwater samples for laboratory analysis of applicable COCs. Installed and developed three new Off-Property groundwater monitoring wells (MW-26 through MW-28). Performed groundwater sampling and laboratory analysis for applicable COCs at the three new Off-Property monitoring wells. Performed groundwater elevation monitoring for low- and high- tidal conditions at all Site monitoring wells, including new and existing wells, and LNAPL/DNAPL screening for Creosoting Plant Area wells. 	 Supplemental Data Summary Report (Kennedy/Jenks 2007a) includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below. Boring and well location map provided in Appendix D. Analytical data tables for soil, reconnaissance groundwater, and groundwater monitoring wells provided in Appendix D. Geologic cross sections for the Creosoting Plant Area showing the depth to the first encountered silt layer included in Appendices A and F. Tabulated water elevation measurements for low- and high- tidal conditions provided in Appendix B.
March 2004 Investigation Creosoting Plant Area On-Property and Off-Property	 Investigate the area beyond the western former Tacoma Metals Property boundary to evaluate potential Off-Property sources and evaluate the lateral extent of COCs in soil groundwater north and west of the former creosoting plant location. 	 Advanced six soil borings (B-18 through B-23) to the first encountered silt/clay layer and collected continuous soil samples from each boring for lithologic logging, field screening for indications of COCs and potential presence of DNAPL; collected soil and reconnaissance groundwater samples for laboratory analysis of applicable COCs. Installed and developed three new Off-Property groundwater monitoring wells (MW-23 through MW-25) based on reconnaissance groundwater analytical results. Performed groundwater sampling and laboratory analysis for applicable COCs at the three newly installed Off-Property Monitoring and On-Property well MW-18. Performed groundwater elevation monitoring for low- and high- tidal conditions at all Site monitoring wells, including new and existing wells, and LNAPL/DNAPL screening for Creosoting Plant Area wells. 	 Supplemental Data Summary Report (Kennedy/Jenks 2007a). Includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below. Boring and well location map provided in Appendix D. Analytical data tables for soil, reconnaissance groundwater, and groundwater monitoring wells provided in Appendix D. Geologic cross sections for the Creosoting Plant Area showing the depth to the first encountered silt layer included in Appendices A and F. Tabulated water elevation measurements for low- and high- tidal conditions provided in Appendix B.
November - December 2003 Investigation Former Tacoma Metals Property Creosoting Plant Area On-Property	 Implement the Additional Soil and Groundwater Investigation Work Plan submitted to Ecology dated 19 September 2003. Investigate potential On-Property source(s) other than the former creosoting plant retort area that may have contributed to COC concentrations detected in groundwater samples collected from well MW-18. Evaluate metals concentrations in On-Property monitoring wells (entire former Tacoma Metals Property). 	 Advanced two deep borings (B-12 and B-13) at the location of a proposed new monitoring well (MW-22) and adjacent to monitoring well MW-18 and collected soil samples for lithologic logging, field screening for indications of COCs and potential presence of DNAPL; collected soil samples for laboratory analysis of applicable COCs. Advanced four shallow soil borings (B-14 through B-17) in the vicinity of well MW-18 to evaluate other potential On-Property sources that might have contributed to the COC concentrations detected at well MW-18; collected soil samples for laboratory analysis of applicable for laboratory analysis of applicable cOCs. Installed and developed one new groundwater monitoring well (MW-22) at a location approximately equidistant between existing monitoring wells MW-18 and MW-21. Performed groundwater sampling and laboratory analysis for applicable COCs at 14 monitoring wells on the On-Property portion of the Creosoting Plant Area, including the newly installed MW-22. Performed groundwater elevation monitoring for low- and high- tidal conditions at all Site monitoring wells, including new and existing wells, and LNAPL/DNAPL screening for Creosoting Plant Area wells. 	 Supplemental Data Summary Report (Kennedy/Jenks 2007a). Includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below. Boring and well location map provided in Appendix D. Analytical data tables for soil and groundwater monitoring wells provided in Appendix D. Geologic cross sections for the Creosoting Plant Area showing the depth to the first encountered silt layer included in Appendices A and F. Tabulated water elevation measurements for low- and high- tidal conditions provided in Appendix B.

SUMMARY OF WORK PERFORMED FOR THE SUPPLEMENTAL REMEDIAL INVESTIGATION Former Tacoma Metals Site, Tacoma, Washington

Investigation Date	Investigation Objectives	Scope of Work Performed	
February – March 2003 Investigation Creosoting Plant Area On-Property	 Implement the <i>Revised DNAPL Investigation Work Plan</i> submitted to Ecology dated 20 February 2003. Further assess the potential presence of DNAPL in the vicinity of the former creosoting plant. Evaluate the extent and topography of the silt and/or clay confining layer(s) encountered during the June-August 2002 investigation. Install a deeper well (designated MW-20) at the location of MW-13, at the request of Ecology. 	 Advanced eight deep borings (MW-14 through MW-21) in the to the first encountered silt/clay layer and collected continuous soil samples from each boring for lithologic logging, field screening for indications of COCs and potential presence of DNAPL; collected soil samples for laboratory analysis of applicable COCs. Advanced eight supplemental borings (B-4 through B-11) to assist in the evaluation of the first encountered silt/clay layer. Installed eight new groundwater monitoring wells (MW-14 through MW-21) in the deep soil borings to monitor for visual indications of DNAPL. Performed groundwater sampling and laboratory analysis for applicable COCs at the eight new monitoring wells. 	•
June – August 2002 Investigation Creosoting Plant Area On-Property	 Implement the DNAPL and Groundwater Investigation Work Plan submitted to Ecology, dated 20 June 2002 Advance deep borings at former creosoting plant retort location to assess the potential for DNAPL near the source area. Identify silt and/or clay horizons located beneath the wood debris layer that may act as "confining layers" and potentially result in the accumulation of DNAPL. 	 Advanced two deep borings (B-1 and B-2) with a hollow-stem auger drill rig to assess the potential presence of DNAPL at the former creosoting plant retort location. Advanced one deep boring (B-3) adjacent to existing well MW-8(R) to assess whether shallow soil in this area contains hydrocarbons contributing to periodic LNAPL accumulation observed in well MW-8(R). Collected soil samples from each boring for lithologic logging, field screening for indications of COCs and potential presence of DNAPL; collected soil samples for laboratory analysis of applicable COCs. Installed one new On-Property groundwater monitoring well (MW-13) at the northern property boundary, downgradient of well MW-8(R), and collected one groundwater sample from well MW-13. 	•
October 2001 Investigation Former Tacoma Metals Property Creosoting Plant Area On-Property	Additional groundwater sampling for metals (lead) analysis on the former Tacoma Metals Property, including the Creosoting Plant Area.	Collected groundwater samples from 11 On-Property monitoring wells for laboratory analysis of total lead.	•

Results Summary References Supplemental Data Summary Report (Kennedy/Jenks 2007a) includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below. Boring and well location map provided in Appendix D. Analytical data tables for soil and groundwater monitoring wells provided in Appendix D. Geologic cross sections for the Creosoting Plant Area showing the depth to the first encountered silt layer included in Appendices A and F. Supplemental Data Summary Report (Kennedy/Jenks 2007a) includes data tables, data maps, gradient maps, cross sections, soil boring, and

Supplemental Data Summary Report (Kennedy/Jenks 2007a) includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below.

Boring and well location map provided in Appendix D.

Analytical data tables for soil and groundwater monitoring well MW-13 provided in Appendix D.

Geologic cross sections for the Creosoting Plant Area showing the depth to the first encountered silt layer included in Appendices A and F.

Supplemental Data Summary Report (Kennedy/Jenks 2007a) includes data tables, data maps, gradient maps, cross sections, soil boring and well construction logs, and analytical reports. Select materials are included in this report for reference as listed below.

Boring and well location map and analytical data table provided in Appendix D.

SUMMARY OF PROPOSED CLEANUP LEVELS Former Tacoma Metals Site Tacoma, Washington

	MTCA Method A Industrial Soil	MTCA Method C Industrial		Proposed Cleanup Levels		
SOIL (mg/kg)	Cleanup Level (WAC 173-340)	Soil Cleanup Level (WAC 173-340)	Protection of Wildlife (TEE) ^(a)	Direct Contact Human Exposure	Ecological Exposure (uppermost 6 feet)	
Arsenic	20	88	132	88	132	
Barium	na	700,000	102	700,000	102	
Cadmium	2	na	14	2	14	
Chromium (III)	2,000	5,300,000	67 ^(b)	5,300,000	67 ^(b)	
Chromium (VI)	19	11,000	na	11,000	na	
Copper	na	140,000	217	140,000	217	
Lead	1,000	na	118	1,000	118	
Mercury	2	na	5.5	2	5.5	
Selenium	na	18,000	0.3	18,000	0.3	
Silver	na	18,000	na	18,000	na	
Total PCBs	10	66	0.65	66	0.65	
Naphthalene	5	70,000	na	70,000	na	
Total cPAHs	2	18	12 ^(c)	18	12 ^(c)	
Benzene	0.03	2,400	na	2,400	na	
Toluene	7	280,000	na	280,000	na	
Ethylbenzene	6	350,000	na	350,000	na	
Xylenes	9	700,000	na	700,000	na	
TPH-Diesel Range	2,000	na	6,000	2,000	5,000	
TPH-Oil Range	2,000	na	na	2,000	na	
				National Toxics Rule		
GROUNDWATER (µg/l)	MTCA Method B Surface Water Cleanup Level (WAC 173-340)	Ecology Freshwater Chronic AWQC (WAC 173-201A)	NRWQC for Human Health Consumption or Organisms (Clean Water Act Section 304)	Consumption of Organisms (40 CFR 131.36)	Proposed Cleanup Levels	

GROUNDWATER (µg/l)	MTCA Method B Surface Water Cleanup Level (WAC 173-340)	Ecology Freshwater Chronic AWQC (WAC 173-201A)	NRWQC for Human Health Consumption or Organisms (Clean Water Act Section 304)	Consumption of Organisms (40 CFR 131.36)	Proposed Cleanup Levels
Arsenic	0.098	190	0.14	0.14	0.098
Lead	na	4.74 ^(d)	na	na	4.74 ^(d)
Mercury	na	0.012	na	0.15	0.012 / PQL ^(e)
Cadmium	41	1.59 ^(d)	na	na	1.59 ^(d)
Chromium (III)	240,000	288 ^(d)	na	na	288 ^(d)
Chromium (VI)	490	10	na	na	10
Copper	2,900	18.76 ^(d)	na	na	18.76 ^(d)
Selenium	2,700	5	4,200	na	5
Total PCBs	0.0001	0.014	0.000064	0.00017	0.000064 / PQL ^(e)
Naphthalene	4,940	na	na	na	4,940
Total cPAHs	0.03	na	0.018	0.031	0.03
Benzene	23	na	51	71	23
Toluene	19,000	na	15,000	200,000	15,000
Ethylbenzene	6,900	na	2,100	29,000	2,100
Xylenes	1,000 ^(f)	na	na	na	1,000
TPH-Diesel Range	10,000 (NPDES Industrial Stormwater General Permit Benchmark)	na	na	na	10,000
TPH-Oil Range	10,000 (NPDES Industrial Stormwater General Permit Benchmark)	na	na	na	10,000

Notes:

(a) Direct contact for protection of wildlife based on the Terrestrial Ecological Evaluation (TEE) (Kennedy/Jenks Consultants 2010).

(b) Cleanup level is for total chromium.

(c) Cleanup level is for benzo(a)pyrene.

(d) Cleanup level based on an average hardness of 180 mg/l.

(e) Cleanup level is equal to the Practical Quantitation Limit (PQL).

(f) MTCA Method A Groundwater clenaup level (Method B surface water clenaup level not available).

PCBs = Polychlorinated biphenyls

cPAHs = Carcingenic polycyclic aromatic hydrocarbons

TPH = Total petroleum hydrocarbons

NPDES = National pollutant dischage elimiation system

na = not available

mg/kg = milligrams per kilogram

µg/I = micrograms per liter

NOTE: Soil and groundwater cleanup levels shown above may not be protective of the indoor air pathway. Refer to Section 5 of the main text.

September 2014

W:\1999\996098.00 Tacoma Metals\2014\Rev_Augmented_RI_Feas_Rpt_Sept\003 Tables\Table 3.cleanup levels updated.xls

SUPPLEMENTAL REMEDIAL INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR SOIL

CREOSOTING PLANT AREA

Former Tacoma Metals Site, Tacoma, Washngton

					BTEX	(µg/kg)			PAHs (mg/kg)				cPAHs	(mg/kg)			
INVESTIGATION DATE	SAMPLE NAME	SAMPLE DEPTH	Benzene	Toluene	Ethyl- benzene	m,p-Xylene	o-Xylene	Total xylenes	Naphthalene	Benzo(a) anthracene	Chrysene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Indeno(1,2,3-cd) pyrene	Dibenz(a,h) anthracene	Total cPAHs ^(a)
	MW-13	17.5	(b)						14	0.022	0.029	0.010	< 0.0086 ^(c)	0.010	<0.0086	<0.0086	0.01
		10.5	<5,900	<5,900	<5,900	<5,900	<5,900	<11,800	300 B	79	100	53	34	52	17	8.1	73.0
	B-1	20.5	<310	<310	<310	<310	<310	<620	110 B	18	18	8.8	7.5	8.9	3.4	1.3	12.9
Jun-02		26	<780	<780	<780	<780	<780	<1,560	300 B	43	51	22	17	20	7.9	4.2	31.7
	B-2	21	<340	<340	<340	<340	<340	<680	58 B	9.7	11	5.8	4.7	5.1	2.2	1.1	8.2
	B-3	10	<11	<11	59	130	160	290	5.6 B	0.046	0.059	0.032	0.035	0.037	0.033	<0.017	0.05
	50	21.5	<760	<760	<760	<760	<760	<1,520	26 B	1.2	1.1	0.25	0.330	0.260	0.059	0.028	0.45
		14-14.5							0.980	0.444	0.578	0.620	0.507	0.634	0.451	<0.0222	0.83
	MW-14	22-22.3							54.1	9.43	8.62	3.25	3.41	2.44	0.925	0.268	5.0
		23.8-24							25.8	3.92	3.41	1.88	0.783	0.940	0.862	<0.500	2.6
		26-26.5							1.03	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
	MW-15	11-11.5							0.695	0.0799	0.0719	0.0739	<0.0304	0.0319	<0.0304	<0.0304	0.09
		25-26							<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
	MW-16	7.5-8							40.1	1.64	1.56	1.14	0.864	1.13	0.513	<0.0586	1.6
		25-26							<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
	MW-17	12-16							0.375	0.146	0.111	0.0874	0.0185	0.0387	0.0454	<0.0148	0.11
Feb-03		20.5-22							<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
	MW-18	11.5-12							326	27.5	27.9	17.9	6.37	7.96	2.10	1.39	22.7
		21.5-21.9							1,750	83.2	75.4	42.8	43.8	42.3	5.25	3.54	61.4
	MW-19	16-18							0.0798	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
		23.5-24							<0.0100	0.0125	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
	MW-20	24-24.3							0.631	0.0323	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
	MW-21	20.5-21.4							100	170	130	59.5	59.0	60.5	24.4	4.34	92.6
		22.5-23.3							0.664	0.312	0.357	0.189	0.129	0.162	0.0684	<0.0100	0.26
	B-6	23-23.2							1,850	128	111	65.8	30.7	65.8	18.7	8.28	92.1
	B-8	23.5-24							103	50.5	52.1	21.1	21.0	24.8	7.91	3.86	32.4
	 	26.5-27							0.432	0.0165	0.0107	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
		4-5							3.48	15.9	17.7	19.5	12.7	19.0	12.8	5.83	26.3
	B-12	6.5-7.5							0.191	0.0843	0.115	0.271	0.177	0.120	0.226	0.0799	0.34
		9-10							3.28	4.26	3.32	2.13	1.28	2.16	0.882	0.382	3.1
		1-3							1.44	7.32	7.21	6.64	6.44	7.79	4.74	2.17	9.6
	B-13	5-6							0.218	4.65	4.70	5.90	3.53	3.72	3.47	1.09	7.6
		14-15							826	21.2	1.98	6.95	7.48	10.7	2.22	1.18	11.2
	5.44	1-2							0.713	2.50	3.11	2.78	1.99	3.33	2.13	0.966	3.9
	B-14	5-6							1.63	22.2	29.6	22.7	18.9	13.4	13.0	5.18	30.3
Nov-03		9-10							4.52	1.38	2.25	1.75	1.27	1.16	0.994	0.403	2.3
	D. 15	5-6							0.421	0.474	1.12	1.14	0.788	0.941	0.711	0.329	1.5
	B-15	7-8							0.0605	<0.0100	0.0526	<0.0100	<0.0100	0.0307	0.0123	<0.0100	0.01
		10-11							0.0167	0.0376	0.0843	0.104	0.0826	0.0868	0.108	0.0384	0.14
	D 40	3-4							0.0725	0.0156	0.0206	0.0320	0.0320	0.0156	0.0327	<0.0100	0.04
	B-16	5-6							11.0	0.221	0.911	0.143	0.130	0.494	0.104	<0.100	0.25
		10-11							22.3	0.264	1.10	<0.200	<0.200	0.512	<0.200	<0.200	0.22
	D 17	3-4							0.0258	0.0301	0.0387	0.0494	0.0444	0.0279	0.0444	0.150	0.08
	B-17	5-6							0.353	1.65	2.76	1.66	2.35	1.36	0.888	0.406	2.4
		7-8							0.535	0.171	0.774	0.250	0.375	0.444	0.182	<0.168	0.38
Proposed Cleanup	Level ^(d)		2,400	280,000	350,000	700,000	700,000	700,000	70,000	NA	NA	NA	NA	NA	NA	NA	18

SUPPLEMENTAL REMEDIAL INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR SOIL

CREOSOTING PLANT AREA

Former Tacoma Metals Site, Tacoma, Washngton

					BTEX	(µg/kg)			PAHs (mg/kg)				cPAHs	(mg/kg)			
INVESTIGATION DATE	SAMPLE NAME	SAMPLE DEPTH	Benzene	Toluene	Ethyl- benzene	m,p-Xylene	o-Xylene	Total xylenes	Naphthalene	Benzo(a) anthracene	Chrysene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Indeno(1,2,3-cd) pyrene	Dibenz(a,h) anthracene	Total cPAHs ^(a)
		6-6.5	(b)						0.0872	0.0208	0.0325	0.0286	0.0521	0.0299	0.0156	0.0456	0.05
	B-18	12-13							0.873	2.23	2.02	1.74	2.10	0.597	0.867	0.319	2.4
		24-25							0.332	< 0.0100 ^(c)	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
		9-10							8.66	0.189	0.142	0.186	0.194	0.0939	0.115	0.0678	0.25
	B-19	14-15							0.375	0.0482	0.0412	0.043	0.057	0.0245	0.0167	0.0324	0.06
		21-22							1,160	87.2	76.2	48.3	68.6	25.4	15.2	31.3	71.8
		7-8							0.235	<0.204	<0.204	<0.204	<0.204	<0.204	<0.204	<0.204	0.15
	B-20	10-11							17.2	0.259	0.206	0.166	0.192	0.0557	0.0633	0.0544	0.23
Mar-04		19-20							7.89	0.228	0.144	0.075	0.0967	0.0533	0.0175	0.0317	0.12
Mai-04		8-9							0.402	0.104	0.146	0.118	0.181	0.0709	0.0732	0.0488	0.17
	B-21	13-15							0.234	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
		18-19							45.2	6.93	4.10	3.51	5.00	2.72	0.711	0.317	5.1
		6-7							0.731	3.40	4.68	8.26	9.09	3.64	5.05	1.87	10.6
	B-22	11-12							0.918	1.99	1.77	1.34	1.55	0.319	0.961	0.299	1.9
		19-20							<0.100	2.06	1.71	0.679	0.959	0.340	0.195	0.314	1.1
		6.5-7.5							0.120	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.08
	B-23	9-10							1.78	12.8	23.0	15.8	16.2	7.69	17.6	<0.266	21.5
		18-20							<0.100	<0.100	<0.100	0.122	0.226	<0.100	<0.100	<0.100	0.17
		9-10							<0.0100	<0.0100	0.0280	0.0143	0.0239	0.0299	0.0174	<0.0100	0.02
	B-24	15-16							50.9	1.41	1.27	0.501	0.366	0.383	<0.330	<0.330	0.76
		30.5-31.5							0.239	0.264	0.262	0.0951	0.118	0.151	<0.0500	<0.0500	0.16
	B-25	14-15							0.344	<0.0100	0.0190	<0.0100	<0.0100	0.0203	<0.0100	<0.0100	0.01
	B-23	30-31							25.7	36.9	35.5	21.1	15.6	17.9	6.64	3.11	29.5
		6.5-7.5							0.181	0.0595	0.148	0.0668	0.116	0.0939	0.0341	0.0131	0.10
	B-26	18-19							7.63	34.6	48.7	20.3	15.9	17.1	7.90	3.44	28.7
		25-26							13.7	0.539	0.531	<0.330	<0.330	<0.330	<0.330	<0.330	0.29
		7-8							0.0910	0.300	0.505	0.409	0.447	0.471	0.253	0.112	0.57
	B-27	22-23							0.561	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
		24.5-25.5							2,410	102	92.8	37.3	33.1	34.0	10.8	4.86	56.7
		6-7							<0.330	0.711	1.05	1.58	0.759	0.883	1.04	<0.330	1.9
	B-28	11-12							1.16	0.0182	0.0248	0.0153	0.0134	0.0229	<0.0100	<0.0100	0.02
		23.5-24.5							33.5	3.91	3.53	0.824	0.915	0.858	<0.656	<0.656	1.5
Mar-05		6.5-7.5							<0.330	0.723	1.17	0.832	0.896	0.657	0.520	<0.330	1.1
	B-29	11-12							1.20	4.33	7.10	4.79	3.57	3.57	2.11	0.808	6.3
		22.5-23.5							415	25.1	23.2	8.18	7.83	7.32	<6.51	<6.51	13.1
		5.5-6.5							0.0297	0.0423	0.0689	0.0383	0.0533	0.0652	0.0298	<0.0211	0.06
	B-30	11-12							0.188	0.0154	0.0244	0.0119	0.0125	0.0249	<0.0100	<0.0100	0.02
		22-23							<0.643	4.47	4.26	2.20	1.72	1.82	0.698	<0.643	3.1
		6-7							<0.330	3.69	7.16	6.37	5.85	4.65	3.84	1.53	8.4
	B-31	19-20							9.29	19.2	18.1	10.6	8.02	8.36	3.44	1.70	14.9
		24-25							17.7	2.72	2.93	1.69	1.30	1.35	0.542	<0.330	2.3
		6-7							0.0741	0.0156	0.0273	0.0184	0.0240	0.0345	0.0166	<0.0100	0.03
	B-32	11-12							0.327	0.171	0.369	0.241	0.350	0.248	0.371	0.0990	0.37
		19-20							8.27	279	318	202	153	170	76.2	32.2	276.2
		6-7							0.0454	0.0211	0.0323	0.0227	0.0243	0.0340	0.0144	<0.0100	0.03
	B-33	18-19							<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
		20.5-21.5							<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.01
Proposed Cleanup	Level ^(d)		2,400	280,000	350,000	700,000	700,000	700,000	70,000	NA	NA	NA	NA	NA	NA	NA	18

SUPPLEMENTAL REMEDIAL INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR SOIL

CREOSOTING PLANT AREA

Former Tacoma Metals Site, Tacoma, Washngton

					BTEX	(µg/kg)			PAHs (mg/kg)				cPAHs	(mg/kg)			
INVESTIGATION DATE	SAMPLE NAME	SAMPLE DEPTH	Benzene	Toluene	Ethyl- benzene	m,p-Xylene	o-Xylene	Total xylenes	Naphthalene	Benzo(a) anthracene	Chrysene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Indeno(1,2,3-cd) pyrene	Dibenz(a,h) anthracene	Total cPAHs ^(a)
		7-8	(b)						<0.118	0.448	0.519	0.491	0.474	0.481	0.330	0.229	0.69
	B-34	18-19							0.00992 J	0.0217	0.0300	0.0158	0.0217	0.0225	0.0215	0.0154	0.03
		30-31							0.0539	0.0284	0.0154	0.0102 J	0.00491 J	0.00169 J	<0.0127 ^(c)	<0.0127	0.02
		6-7							0.0504 J	0.332	0.993	0.755	0.752	0.631	0.550	0.343	1.0
Feb-06	B-35	32-33							1.93	<0.0588	<0.0588	<0.0588	<0.0588	<0.0588	<0.0588	<0.0588	0.04
		39-40							0.658	<0.0600	<0.0600	<0.0600	<0.0600	<0.0600	<0.0600	<0.0600	0.05
		8-10							1.62 J	71.7	114	88.8	73.2	78.0	31.7	22.1	117.6
	B-36	23-24							204	403	281	271	215	245	82.7	58.3	374.2
		31-32							296	296	507	151	145	135	101	97.7	233.5
		5-6							0.020	<0.01	0.016	<0.01	0.018	<0.01	0.011	<0.01	0.01
	B-37	14-15							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		21-22							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		5-6							0.015	0.18	0.27	0.24	0.33	0.13	0.12	0.022	0.32
	B-38	14.5-15.5							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		22.5-23.5							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		5.5-6.5							1.8	0.99	1.7	1.3	2.0	0.62	1.0	0.24	1.8
	B-39	10-11							0.24	0.019	0.012	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		21-22							<0.01	6.7	9.4	4.2	5.0	1.9	1.9	0.58	5.9
		6.5-7.5							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	B-40	14-15							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		21.5-22.5							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	5.44	7-8							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	B-41	11-12							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		24.5-25.5							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	B-42	5-6							0.028	0.11	0.23	0.25	0.36	0.12	0.17	0.040	0.33
Oct-07	B-42	22-23							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		24.5-25.5							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		6-7							0.028	0.024	0.036	0.010	0.013	<0.01	<0.01	<0.01	0.02
	B-43	14.5-15.5							0.26	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		28.5-29.5 34.5-35.5							0.91	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		2-3							0.43	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	0.01
	B-44	2-3 14-15							0.045	0.36	0.67 0.013	0.73	0.96	0.25	0.49	0.14 <0.01	0.96
	0-44	31.5-32.5							<0.01 0.052	0.015	0.013 <0.01	0.014 <0.01	<0.015	<0.01	0.010 <0.01	<0.01	0.02
		6.5-7.5							<0.052	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	B-45	11-12							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	240	21-22							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		6-7							<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	B-46	13-14							0.022	0.011	0.024	0.014	0.019	<0.01	0.011	<0.01	0.02
		21-22							<0.01	<0.01	<0.024	<0.014	<0.019	<0.01	<0.01	<0.01	0.02
		6-7							0.038	0.37	0.73	0.62	0.81	0.22	0.36	0.095	0.81
	B-47	13-14							<0.01	0.011	0.013	<0.01	0.011	<0.01	<0.01	<0.095	0.01
		30.5-31.5							<0.01	<0.01	<0.013	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Proposed Cleanup	Level ^(d)		2.400	280,000	350,000	700,000	700,000	700,000	70,000	NA	NA	NA	NA	NA	NA	NA	18
i ioposeu oleallup			2,100	200,000	000,000	,,	100,000	, 00,000	10,000	1.0.1	1473		10/1	147.1	1473	147 1	10

Notes:

(a) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)].

For non-detected cPAH analytes, the TEF factor (listed below) was applied to a value of one-half the laboratory reporting limit prior to summation. TEF = 1.0 for benzo(a)pyrene
 TEF = 1.0. for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene
 TEF = 0.01 for chrysene
 (b) "--" denotes that the sample was not analyzed for the indicated analyte.

(c) "<" denotes that the analyte was not detected at a concentration above the indicated laboratory reporting limit.

(d) Refer to Table 3 for a summary of proposed cleanup levels. Ceanup levels for soil are based on MTCA Method C cleanup levels for industrial site uses.

Bold and italics indicate an analyte concentration above the proposed cleanup level.

BTEX = Benzene, toluene, ethylbenzene, and xylenes

PAHs = Polycyclic aromatic hydrocarbons cPAHs = Carcinogenic PAHs

µg/kg = micrograms per kilogram

 mg/kg
 milligrams per kilogram

 B =
 Laboratory data flag indicating that the analytes was also identified in the method blank

 J =
 Laboratory data flag indicating that the result is an esimated value less than the method reporting limit

 NA =
 Cleanup level is not available for the indicated analyte

SUPPLEMENTAL REMEDIAL INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR RECONNAISSANCE GROUNDWATER **CREOSOTING PLANT AREA**

Former Tacoma Metals Site - Tacoma, Washington

		PAHs (µg/L)				cPAHs (µg/L)				Total c	PAHs ^(a)
SAMPLE LOCATION	INVESTIGATION DATE	Naphthalene	Benzo(a)anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Non-detect values included ^(b)	Non-detect values excluded ^(c)
B-18		36.0	<10.0 ^(d)	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	7.6	ND
B-19		5,870	<500	<500	<500	<500	<500	<500	<500	378	ND
B-20	March-04	22,900	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	755	ND
B-21		4,330	<500	<500	<500	<500	<500	<500	<500	378	ND
B-22		1,100	<200	<200	<200	<200	<200	<200	<200	378	ND
B-23		74.0	0.306	0.253	0.122	0.0906	0.103	0.0372	0.0180	0.18	0.18
B-24		2.98	3.52	3.26	1.11	1.39	2.48	<0.500	<0.500	1.9	1.9
B-25		39.8	9.89	12.3	3.96	7.03	8.13	1.32	<1.00	6.7	6.7
B-26		17.7	3.92	6.86	2.65	3.53	2.16	1.08	0.784	3.9	3.9
B-27		4,310	2.06	5.98	<1.00	2.06	1.03	<1.00	<1.00	0.57	0.57
B-28	March-05	1,070	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	7.6	ND
B-29		2,730	2.83	2.93	<1.00	<1.00	<1.00	<1.00	<1.00	1.0	0.31
B-30		3.33	0.882	2.75	<0.500	1.08	0.686	<0.500	<0.500	0.59	0.29
B-31		17,400	1,090	928	654	510	519	246	100	910	910
B-32		6.83	11.3	12.7	8.12	8.71	8.22	2.67	1.39	11	11
B-33		1.52	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.38	ND
B-37		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-37A		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-38		0.17	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-39		4.2	0.20	0.28	<0.1	<0.1	<0.1	<0.1	<0.1	0.093	0.023
B-39A		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-40		0.36	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-41	October-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-42		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-43		0.96	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-44	↓	2.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-45	↓	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-46	_	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
B-47		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.076	ND
Proposed Clear	nup Level ^(f)	4,940	NA	NA	NA	NA	NA	NA	NA	0.030	0.030

NOTES:

(a) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)]. TEFs are listed below. TEF = 1.0 for benzo(a)pyrene

TEF = 0.1 for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene

TEF = 0.01 for chrysene

(b) Non-detected cPAH analytes were included in the summation. The TEF factor was applied to a value of one-half the laboratory reporting limit prior to summation.

(c) Non-detected cPAH analytes were not included in the summation.

(d) "<" denotes that the analyte was not detected at a concentration above the indicated laboratory reporting limit.

(e) "ND" indicates that no individual cPAH analytes were detected at a concentration above the laboratory reporting limit.

(f) Refer to Table 3 for a summary of proposed cleanup levels for groundwater.

Bold and italics indicate an analyte concentration above the proposed cleanup level.

PAHs = Polycyclic aromatic hydrocarbons cPAHs = Carcinogenic PAHs

µg/L = micrograms per liter

NA = Cleanup level is not available for the indicated analyte

			BTEX	(µg/L)		Filtering	PAHs (µg/L)				cPAHs (µg/L)				Total cl	PAHs ^(a)
WELL	DATE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	(PAHs and cPAHs)	Naphthalene	Benzo(a)anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Non-detect values included ^(b)	Non-detect values excluded ^(c)
	Mar-08	(d)				filtered	2,900	0.072	0.072	<0.02 ^(e)	<0.02	<0.02	<0.02	<0.02	0.022	0.0079
	Wal-00					unfiltered	3,600	0.59	0.56	<0.2	0.24	<0.2	<0.2	<0.2	0.22	0.089
	Eab 00					filtered	2,370	<0179	<0.107	<0.155	<0.482	<0.125	<0.167	<0.173	0.13	ND ^(f)
MW-8(R)	Feb-06					unfiltered	6,810	6.00	6.52	2.48	2.12	2.52	<0.333	<0.345	3.6	3.6
	Dec-03					filtered	6,770	0.710	0.646	0.292	0.277	0.219	0.126	0.0635	0.44	0.44
	Dec-03					unfiltered	8,710	3.09	2.90	1.11	0.841	0.885	0.363	0.186	1.7	1.7
	Mar-08					filtered	1.3	0.40	0.37	0.18	0.21	0.09	0.037	<0.02	0.26	0.26
	Wai-00					unfiltered	1.6	0.41	0.37	0.16	0.21	0.069	0.035	<0.02	0.24	0.24
MW-10	Feb-06					filtered	1.37	0.105 J	0.0953 J	<0.0302	<0.0942	<0.0244	<0.0326	<0.0337	0.036	0.011
10	rep-06					unfiltered	3.38	0.320	0.353	0.104 J	0.0988 J	0.0941 J	<0.0329	<0.0341	0.16	0.16
	Dec-03					filtered	6.68	0.164	0.114	0.0787	0.0753	0.0398	0.0320	0.0168	0.11	0.11
	Dec-03					unfiltered	6.55	0.533	0.403	0.110	0.109	0.0772	0.0292	0.0118	0.19	0.19
	Mar-08					filtered	13	0.50	0.39	0.18	0.22	0.089	0.068	<0.02	0.27	0.27
	Mai-00					unfiltered	18	0.68	0.48	<0.2	0.23	<0.2	<0.2	<0.2	0.23	0.10
MW-11	Feb-06					filtered	1.49	0.455	0.450	0.125	0.148	0.145	<0.0318	<0.0330	0.21	0.20
10100-11	1 60-00					unfiltered	5.47	0.739	0.678	0.159	0.137	0.161	<0.0304	<0.0315	0.27	0.27
	Dec-03					filtered	41.7	0.892	0.925	0.442	0.387	0.347	0.185	0.128	0.65	0.65
	Dec-00					unfiltered	89.3	0.851	0.615	0.226	0.209	0.169	0.119	0.0661	0.37	0.37
MW-12	Dec-03					filtered	1.00	0.0389	0.0240	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.011	0.0041
	200 00					unfiltered	1.07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	Dec-03					filtered	1.01	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
MW-13	Dec-00					unfiltered	1.27	0.0439	0.0308	<0.0100	0.0175	0.0186	<0.0100	<0.0100	0.013	0.0083
	Aug-02	7	<1.0	1.4	2.8	unfiltered	11	0.05 J	0.05 MJ	<0.11	<0.11	<0.11	<0.11	<0.11	0.083	0.0055
	Aug 02	,	1.0	1.7	2.0	unfiltered										
	Mar-08					filtered	0.18	0.052	0.049	<0.02	<0.02	<0.02	<0.02	<0.02	0.020	0.0057
						unfiltered	0.26	0.067	0.065	<0.02	<0.02	<0.02	<0.02	<0.02	0.021	0.0074
	Feb-06					filtered	1.02	<0.00427	<0.00305	<0.00226	<0.00331	<0.00380	<0.00258	<0.00295	0.0020	ND
MW-14	100 00					unfiltered	1.11	0.110 J	0.115	0.0460 J	<0.0931	0.0437 J	<0.0322	<0.0333	0.070	0.063
	Dec-03					filtered	4.35	0.0624	0.0536	0.0185	0.0154	0.0161	<0.0100	<0.0100	0.029	0.028
	20000				unfiltered	10.1	0.446	0.395	0.148	0.144	0.118	0.109	0.0705	0.24	0.24	
	Feb-03	<10.0	<10.0	<10.0	<20.0	filtered	66.4	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.076	ND
	100-00	\$10.0	\$10.0	\$10.0	~20.0	unfiltered	28.3	1.10	1.08	0.385	0.308	0.423	0.135	<0.100	0.60	0.59
Proposed Cleanu	ıp Level ^(g)	23	19,000	6,900	1,000		4,940	NA	NA	NA	NA	NA	NA	NA	0.030	0.030

			BTEX	(µg/L)		Filtering	PAHs (µg/L)				cPAHs (µg/L)				Total c	PAHs ^(a)
WELL	DATE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Filtering (PAHs and cPAHs)	Naphthalene	Benzo(a)anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Non-detect values included ^(b)	Non-detect values excluded ^(c)
		(4)				filtered	0.036	<0.02 ^(e)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	0.000
	Mar-08	(d)				unfiltered	0.036	0.026	0.027	<0.02	0.021	<0.02	<0.02	<0.02	0.018	0.0050
						filtered	0.334	<0.0353	<0.0212	<0.0306	<0.0953	<0.0247	<0.0329	<0.0341	0.027	ND ^(f)
	Feb-06					unfiltered	0.0636 J	<0.00427	<0.00305	<0.00226	<0.00331	<0.00380	<0.00258	<0.00295	0.0020	ND
MW-15	D 00					filtered	0.186	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	Dec-03					unfiltered	<0.100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
						filtered	1.720	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	Feb-03	<0.200	<0.200	<0.200	<0.750	unfiltered	0.235	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.076	ND
						filtered	0.026	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
	Mar-08					unfiltered	0.023	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
	E-1 00					filtered	0.236	<0.00412	<0.00294	<0.00218	<0.00320	<0.00367	<0.00249	<0.00285	0.0019	ND
NN4 40	Feb-06					unfiltered	0.0233 J	<0.00417	<0.00298	<0.00220	<0.00324	<0.00372	<0.00252	<0.00289	0.0019	ND
MW-16						filtered	<0.100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	Dec-03					unfiltered	<0.100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	Feb-03	<0.200	<0.200	<0.200	<0.750	filtered	0.194	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	Feb-03	<0.200	<0.200	<0.200	-5.700	unfiltered	0.877	0.131	0.0812	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.021	0.014
	Mar-08					filtered	0.21	0.042	0.032	<0.02	<0.02	<0.02	<0.02	<0.02	0.019	0.0045
						unfiltered	0.24	0.049	0.043	<0.02	<0.02	<0.02	<0.02	<0.02	0.019	0.0053
	Feb-06					filtered	0.366	0.0494 J	0.0517 J	<0.0292	<0.0910	<0.0236	<0.0315	<0.0326	0.029	0.0055
MW-17	1 60-00					unfiltered	0.180 J	<0.0211	<0.0151	<0.0111	<0.0164	<0.0188	<0.0128	<0.0146	0.010	ND
	Dec-03					filtered	0.195	0.0335	0.0207	<0.0100	0.0163	0.0140	<0.0100	<0.0100	0.013	0.0066
	Dec-00					unfiltered	0.346	0.0297	0.0157	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.010	0.0031
	Feb-03	<0.200	0.448	<0.200	<0.750	filtered	0.157	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	100 00	-0.200	0.110	-0.200	-0.100	unfiltered	0.793	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	0.038	ND
	Mar-08					filtered	4,400	0.048	0.036	<0.02	<0.02	<0.02	<0.02	<0.02	0.019	0.0052
						unfiltered	5,800	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.15	ND
	Feb-06					filtered	6,280	<0.169	<0.101	<0.146	<0.455	<0.118	<0.157	<0.163	0.13	ND
						unfiltered	7,650	<0.174	<0.105	<0.151	<0.471	<0.122	<0.163	<0.169	0.13	ND
MW-18	Mar-04					filtered	5,360	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.076	ND
						unfiltered	7,490	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.076	ND
	Dec-03					filtered	6,690	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.076	ND
						unfiltered	5,970	0.192	0.162	<0.100	<0.100	<0.100	<0.100	<0.100	0.091	0.021
	Feb-03	<100	<100	246	500	filtered	4,990	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.76	ND
		~100		240	500	unfiltered	9,840 E	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	7.6	ND
Proposed Cleanu	ıp Level ^(g)	23	19,000	6,900	1,000		4,940	NA	NA	NA	NA	NA	NA	NA	0.030	0.030

	L	

			BTEX	(µg/L)		Filtering	PAHs (µg/L)				cPAHs (µg/L)			Total c	PAHs ^(a)	
		Damage		Ethyl-	Tetel Video a	Filtering (PAHs and		- () -		- //					Non-detect values	Non-detect values	
WELL	DATE	Benzene	Toluene	benzene	Total Xylenes	cPAHs) filtered	<pre>Naphthalene <0.025^(e)</pre>	Benzo(a)anthracene <0.025	<0.025	Senzo(a)pyrene <0.025	Benzo(b)fluoranthene <0.025	Benzo(k)fluoranthene <0.025	Indeno(1,2,3-cd)pyrene <0.025	Dibenz(a,h)anthracene <0.025	included ^(b) 0.019	excluded ^(c)	
	Feb-11	<0.35	<1	<1	<3	unfiltered	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND	
						filtered	0.02 J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076	ND	
	Oct-10	<0.35 ^(d)	<1	<1	<3	unfiltered	0.01 J	<0.10 J	0.01 J	<0.10 J	<0.10 J	<0.10 J	<0.10 J	<0.10 J	0.075	0.00010	
						filtered	0.042	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND	
	Mar-08	^(d)				unfiltered	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND	
MW-19						filtered	0.629	<0.00437	<0.00312	<0.00231	<0.00339	<0.00389	<0.00264	<0.00302	0.0021	ND	
	Feb-06					unfiltered	0.0569 J	<0.00432	<0.00308	<0.00228	<0.00335	<0.00385	<0.00261	<0.00299	0.0020	ND	
						filtered	0.270	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND	
	Dec-03					unfiltered	<0.100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND	
						filtered	<0.100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND	
	Feb-03	<0.200	<0.200	<0.200	<0.750	unfiltered	<0.100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND	
						filtered	3.2	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND	
	Feb-11	5.0	<1	2	2	3.8	unfiltered	3.4	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND
						filtered	6.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076	ND	
	Oct-10	3.6	<1	3.0	4.7	unfiltered	7.4 J	0.02 J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.073	0.0020	
						filtered	5.8	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND	
	Mar-08					unfiltered	7.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.15	ND	
MW-20	5 1 00					filtered	658	<0.170	<0.102	<0.148	<0.460	<0.119	<0.159	<0.165	0.13	ND	
	Feb-06					unfiltered	734	<0.172	<0.103	<0.149	<0.466	<0.121	<0.161	<0.167	0.13	ND	
	Dec-03					filtered	3.76	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND	
	Dec-03					unfiltered	13.6	0.0415	0.0255	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.011	0.0044	
	Feb-03	3.29 / 3.69 ^(h)	<1.00 / <1.00	11.8 / 14.0	16.2 / 16.9	filtered	24.3 / 14.2	<0.500 / <1.0	<0.500 / <1.0	<0.500 / <1.0	<0.500 / <1.0	<0.500 / <1.0	<0.500 / <1.0	<0.500 / <1.0	0.38 / 0.76	ND / ND	
	160-03	3.297 3.09	<1.007 <1.00			unfiltered	27.9 / 31.2	<0.500 / <0.500	<0.500 / <0.500	<0.500 / <0.500	<0.500 / <0.500	<0.500 / <0.500	<0.500 / <0.500	<0.500 / <0.500	0.38 / 0.38	ND / ND	
	Mar-08					filtered	560	0.52	0.39	0.13	0.18	0.055	0.028	<0.02	0.21	0.21	
						unfiltered	730	1.3	1.0	0.50	0.66	0.26	<0.2	<0.2	0.75	0.73	
	Feb-06					filtered	202	0.274	0.280	0.109	0.101 J	0.105	<0.0295	<0.0305	0.16	0.16	
MW-21						unfiltered	139	0.930	0.877	0.291	0.249	0.279	0.0744 J	0.667	0.52	0.52	
	Dec-03					filtered	241	0.222	0.174	0.0891	0.0650	0.0708	0.0231	<0.0100	0.13	0.13	
						unfiltered	678	2.52	2.04	1.25	1.16	0.999	0.424	0.231	1.8	1.8	
	Feb-03	<100	<100	<100	<200	filtered	1,290	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	3.8	ND	
						unfiltered	1,740	0.981	0.654	0.212	0.154	0.212	<0.100	<0.100	0.36	0.35	
	Mar-08					filtered	990	0.36	0.35	0.079	0.099	0.036	<0.02	<0.02	0.13	0.13	
						unfiltered	1,200	0.49	0.47	0.094	0.13	0.041	<0.02	<0.02	0.17	0.16	
MW-22	Feb-06					filtered	301	0.0966 J	0.0989 J	<0.0292	<0.0910	<0.0236	<0.0315	<0.0326	0.034	0.011	
						unfiltered	883	0.455	0.505	0.102 J	0.0955 J	0.105 J	<0.0318	<0.0330	0.18	0.17	
	Dec-03					filtered	752 / 1,970	0.144 / 0.190	0.121 / 0.150	0.0665 / 0.0536	0.0562 / 0.0489	0.0421 / 0.0212	0.0169 / 0.0149	<0.0100 / <0.0100	0.094 / 0.083	0.094 / 0.083	
						unfiltered	1,940 / 2,170	0.521 / 0.498	0.443 / 0.410	0.117 / 0.134	0.0863 / 0.103	0.0996 / <0.100	0.0303 / <0.100	0.0123 / <0.100	0.20 / 0.21	0.20 / 0.20	
Proposed Cleanu	p Level ^(g)	23	19,000	6,900	1,000		4,940	NA	NA	NA	NA	NA	NA	NA	0.030	0.030	

	1
i	l
	•

			BTEX	(µg/L)		Filtering	PAHs (µg/L)				cPAHs (µg/L)				Total c	PAHs ^(a)	
		Bannana		Ethyl-	Total Vulance	(PAHs and			0			D (1)7 (1			Non-detect values included ^(b)	Non-detect values excluded ^(c)	
WELL	DATE	Benzene	Toluene	benzene	Total Xylenes	cPAHs) filtered	Naphthalene 44	Benzo(a)anthracene 0.15	0.15	<pre>Senzo(a)pyrene <0.025^(e)</pre>	Benzo(b)fluoranthene <0.025	Benzo(k)fluoranthene <0.025	Indeno(1,2,3-cd)pyrene <0.025	Dibenz(a,h)anthracene <0.025	0.034	0.017	
	Feb-11	53	1.2	52	18.7	unfiltered	50	0.28	0.21	0.029	0.036	<0.025	<0.025	<0.025	0.066	0.063	
						filtered	54	0.20 J	0.17 J	<0.10 J	<0.10 J	<0.10 J	<0.10 J	<0.10 J	0.092	0.022	
	Oct-10	56	1.4	56	22	unfiltered	59	0.30	0.26	0.015 J	0.02 J	<0.10	<0.10	<0.10	0.065	0.050	
						filtered	26	0.220	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	0.038	0.024	
MW-23	Mar-08	(d)				unfiltered	32	0.32	0.30	0.022	0.031	<0.02	<0.02	<0.02	0.063	0.060	
						filtered	191	0.0391 J	0.0391 J	<0.0299	<0.0931	<0.0241	<0.0322	<0.0333	0.028	0.0043	
	Feb-06					unfiltered	799	0.200	0.214	<0.0295	<0.0920	<0.0239	<0.0318	<0.0330	0.046	0.022	
						filtered	742	<0.100	<0.100	<0.100	0.194	<0.100	<0.100	<0.100	0.090	0.019	
	Mar-04					unfiltered	972	0.577	0.442	<0.100	0.327	<0.100	<0.100	<0.100	0.16	0.095	
						filtered	18	0.31	0.31	0.023	0.038	<0.02	<0.02	<0.02	0.064	0.061	
	Mar-08					unfiltered	19	0.42	0.34	0.043	0.061	0.025	<0.02	<0.02	0.099	0.097	
						filtered	18.0	0.0344 J	0.0301 J	<0.0280	<0.0871	<0.0226	<0.0301	<0.0312	0.026	0.0037	
MW-24	Feb-06					unfiltered	133	0.272	0.288	<0.0292	<0.0910	<0.0236	<0.0315	<0.0326	0.054	0.030	
	Mar-04					filtered	4,240	<0.100	<0.100	<0.100	0.231	<0.100	<0.100	<0.100	0.094	0.023	
						unfiltered	6,600	0.800	0.667	<0.100	0.419	0.152	<0.100	<0.100	0.20	0.14	
	Mar-08					filtered	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND ^(f)	
						unfiltered	0.29	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND	
MW-25	Feb-06					filtered	0.536	<0.0345	<0.0207	<0.0299	<0.0931	<0.0241	<0.0322	<0.0333	0.027	ND	
IVIVV-25						unfiltered	0.640	<0.0316	<0.0189	<0.0274	<0.0853	<0.0221	<0.0295	<0.0305	0.024	ND	
	Mar-04					filtered	1.60	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND	
	Wai-04						unfiltered	1.34	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0076	ND
	Feb-11	<0.35	<1	<1	<3	filtered	44	0.11	0.089	<0.025	<0.025	<0.025	<0.025	<0.025	0.029	0.012	
	105 11	-0.00				unfiltered	47	0.12	0.094	<0.025	<0.025	<0.025	<0.025	<0.025	0.030	0.013	
	Oct-10	<0.35	<1	1.1	<3	filtered	120 E	0.12	0.09 J	<0.10	<0.10	<0.10	<0.10	<0.10	0.078	0.013	
		0.00			Ŭ	unfiltered	140	0.16	0.13	0.01 J	0.03 J	<0.10	<0.10	<0.10	0.045	0.030	
MW-26	Mar-08					filtered	74.0	0.12	0.11	<0.02	<0.02	<0.02	<0.02	<0.02	0.027	0.013	
						unfiltered	91	0.16	0.15	<0.02	0.026	<0.02	<0.02	<0.02	0.033	0.020	
	Feb-06					filtered	125	<0.00417	<0.00298	<0.00220	<0.00324	<0.00372	<0.00252	<0.00289	0.0019	ND	
						unfiltered	501	0.157	0.103	<0.00234	0.0327	0.0142	<0.00267	<0.00306	0.023	0.021	
	Mar-05					filtered	990	0.122	0.109	<0.100	<0.100	<0.100	<0.100	<0.100	0.083	0.013	
						unfiltered	987	0.602	0.610	0.127	0.121	0.437	<0.100	<0.100	0.26	0.25	
	Mar-08					filtered	0.22	0.047	0.035	<0.02	<0.02	<0.02	<0.02	<0.02	0.019	0.0051	
						unfiltered	0.26	0.066	0.061	<0.02	<0.02	<0.02	<0.02	<0.02	0.021	0.0072	
MW-27	Feb-06					filtered	2.05	<0.00427	<0.00305	<0.00226	<0.00331	<0.00380	<0.00258	<0.00295	0.0020	ND	
						unfiltered	1.64	<0.00432	<0.00308	<0.00228	<0.00335	<0.00385	<0.00261	<0.00299	0.0020	ND	
	Mar-05					filtered	1.33	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.076	ND	
						unfiltered	1.58	0.105	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.081	0.011	
Proposed Cleanu	p Level ^(g)	23	19,000	6,900	1,000		4,940	NA	NA	NA	NA	NA	NA	NA	0.030	0.030	

								cPAHs (µg/L				Total cPAHs ^(a)				
WELL	DATE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	(PAHs and cPAHs)	Naphthalene	Benzo(a)anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Non-detect values included ^(b)	Non-detect values excluded ^(c)
	Mar-08	(d)				filtered	160	0.49	0.36	0.067	0.069	0.035	<0.02 ^(e)	<0.02	0.132	0.13
	Wai-00					unfiltered	370	0.77	0.56	0.17	0.21	0.077	0.036	<0.02	0.29	0.28
MW-28 / 28(R)	Eab 00					filtered	4,260	<0.659	<0.396	<0.571	<1.78	<0.462	<0.615	<0.637	0.496	ND ^(f)
WIVY-20720(R)	Feb-06					unfiltered	5,900	11.0	10.6	6.51	5.58	6.02	1.89	6.79	9.7	9.7
	Mar-05					filtered	14.8	0.140	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.085	0.014
	Mai-05					unfiltered	23.1	0.480	0.447	<0.100	<0.100	<0.100	<0.100	<0.100	0.12	0.052
	Eab 44	-0.25	-1	<1	-2	filtered	0.31	0.17	0.15	<0.025	<0.025	<0.025	<0.025	<0.025	0.036	0.019
	Feb-11	<0.35	<1	~	<3	unfiltered	0.56 J	0.28 J	0.25 J	0.049 J	0.062 J	<0.025 J	<0.025 J	<0.025 J	0.089	0.086
	0-1-10	-0.05	-14		-0	filtered	0.39	0.16	0.14	0.01 J	0.01 J	<0.10	<0.10	<0.10	0.043	0.028
MW-29	Oct-10	<0.35	<1	<1	<3	unfiltered	0.25	0.23 J	0.20 J	0.04 J	0.05 J	0.02 J	<0.10 J	<0.10 J	0.082	0.072
WIVV-29	Mar-08					filtered	0.34	0.18	0.18	<0.02	<0.02	<0.02	<0.02	<0.02	0.034	0.020
	Mar-08					unfiltered	0.46	0.26	0.25	0.048	0.057	0.025	<0.02	<0.02	0.087	0.085
	5 1 00					filtered	0.507	<0.00408	<0.00291	<0.00216	<0.00317	<0.00363	<0.00247	<0.00282	0.0019	ND
	Feb-06					unfiltered	2.14	0.392	0.265	0.0698	0.0951	0.0387	0.0641	<0.00254	0.13	0.13
	Mar-08					filtered	630	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
	Mar-08					unfiltered	790	<0.2	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	0.15	ND
MW-30	Est 00					filtered	3.59	0.134	0.0853	0.0267	0.0558	0.0170	<0.00241	<0.00276	0.048	0.048
	Feb-06					unfiltered	8.13	<0.00403	<0.00288	<0.00213	<0.00313	<0.00359	<0.00244	<0.00279	0.0019	ND
	Mar-08					filtered	0.56 / 0.54 ^(h)	0.57 / 0.62	0.37 / 0.39	0.082 / 0.11	0.10 / 0.15	0.038 / 0.045	<0.02 / <0.02	<0.02 / <0.02	0.16 / 0.20	0.16/0.20
MW-31	mar-uo					unfiltered	<2 / <2	0.77 / 0.87	0.46 / 0.55	0.11 / 0.16	0.15 / 0.22	0.052 / 0.073	<0.02 / <0.02	<0.02 / <0.02	0.21 / 0.28	0.21 / 0.28
10100-51	Eab 00					filtered	61.7	0.336	0.187	0.105	0.160	0.0795	<0.00252	<0.00289	0.16	0.16
	Feb-06					unfiltered	57.5	3.87	3.76	1.83	1.30	1.96	0.472 J	3.27	3.0	3.0
MW-32	Mor 08					filtered	0.12	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
10100-32	Mar-08					unfiltered	0.16	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
NN/ 00	Max 00					filtered	0.041	<0.02	0.032	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	0.00032
MW-33	Mar-08					unfiltered	0.036	0.031	0.040	<0.02	<0.02	<0.02	<0.02	<0.02	0.018	0.004
MW-34	Max 00					filtered	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
11114-34	Mar-08					unfiltered	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
	Eab 44	<0.35	<1	<1	<3	filtered	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND
	Feb-11	<0.35	~1		~5	unfiltered	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND
NN4 05	0-1-10	-0.05 ^(d)	-14	-4	-0	filtered	0.01 J	<0.10	0.01 J	<0.10	<0.10	<0.10	<0.10	<0.10	0.075	0.00010
MW-35	Oct-10	< 0.35 ^(d)	<1	<1	<3	unfiltered	0.02 J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076	ND
	Marian					filtered	0.053	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
	Mar-08					unfiltered	0.059	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015	ND
roposed Cleanu	ıp Level ^(g)	23	19,000	6,900	1,000		4,940	NA	NA	NA	NA	NA	NA	NA	0.030	0.030

SUPPLEMENTAL REMEDIAL INVESTIGATION SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER **CREOSOTING PLANT AREA**

Former Tacoma Metals Site - Tacoma, Washington

		BTEX (μg/L)			Filtering	PAHs (µg/L)				cPAHs (µg/L)				Total cl	PAHs ^(a)																						
WELL	DATE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	(PAHs and cPAHs)	Naphthalene	Benzo(a)anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Non-detect values included ^(b)	Non-detect values excluded ^(c)																					
Puyallup River Si	de Channel T	emporary Piezon	neters																																		
		11 <0.35 ·		<1	-0	filtered	0.081	<0.025 ^(e)	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND ^(f)																					
	Feb-11		<1	<1	<3	unfiltered	0.12	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND																					
P-1 / P-1R	Oct-10	<0.35	<1	I <1	<1	<1	<1	<1	<1	<1	<1	<1	<3	filtered	0.10 J	<0.10	0.01 J	<0.10	<0.10	<0.10	<0.10	<0.10	0.075	0.00010													
			<1										<3	unfiltered	0.14 J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076	ND													
	Feb-11	<0.35	<1	1 <1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-0	filtered	0.032	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND											
					<3	~5	unfiltered	0.069	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.019	ND																				
P-2 / P-2R	0-140	<0.35 / <0.35	<1 / <1	<1 / <1	10 / 10	filtered	0.01 J / <0.10 ^(h)	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	0.076 / 0.076	ND / ND																					
	Oct-10				<3 / <3	unfiltered	0.01 J / <0.10	<0.10 / <0.10	0.01 J / <0.10	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	<0.10 / <0.10	0.075 / 0.076	ND / ND																					
		0.0 / 0.4		<1 / <1	<1 / <1	<1 / <1	<1 / <1	<1 / <1	<1 / <1	<1/<1	<1 / <1	<1 / <1													filtered	0.28 / 0.58	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	0.019 / 0.019	ND / ND		
	Feb-11	2.2 / 2.1	<1 / <1										<3 / 2.0	unfiltered	0.44 / 0.46	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	<0.025 / <0.025	0.019 / 0.019	ND / ND													
P-3 / P-3R		.0.05		<1	<1	<1	<1	<1	<1	<1																	filtered	<0.10	<0.10	0.01 J	<0.10	<0.10	<0.10	<0.10	<0.10	0.075	0.00010
	Oct-10	<0.35	<1								<3	unfiltered	0.01 J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076	ND															
Proposed Cleanu	p Level ^(g)	23	19,000	6,900	1,000		4,940	NA	NA	NA	NA	NA	NA	NA	0.030	0.030																					

Notes:

(a) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)]. TEFs are listed below. TEF = 1.0 for benzo(a)pyrene

TEF = 0.1 for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene TEF = 0.01 for chrysene

(b) Non-detected cPAH analytes were included in the summation. The TEF factor was applied to a value of one-half the laboratory reporting limit prior to summation.

(c) Non-detected cPAH analytes were not included in the summation.

(d) "--" denotes that the sample was not analyzed for the indicated analyte.

(e) "<" denotes that the analyte was not detected at a concentration above the indicated laboratory reporting limit.

(f) "ND" indicates that no individual cPAH analytes were detected at a concentration above the laboratory reporting limit.

(g) Refer to Table 3 for a summary of proposed cleanup levels for groundwater.

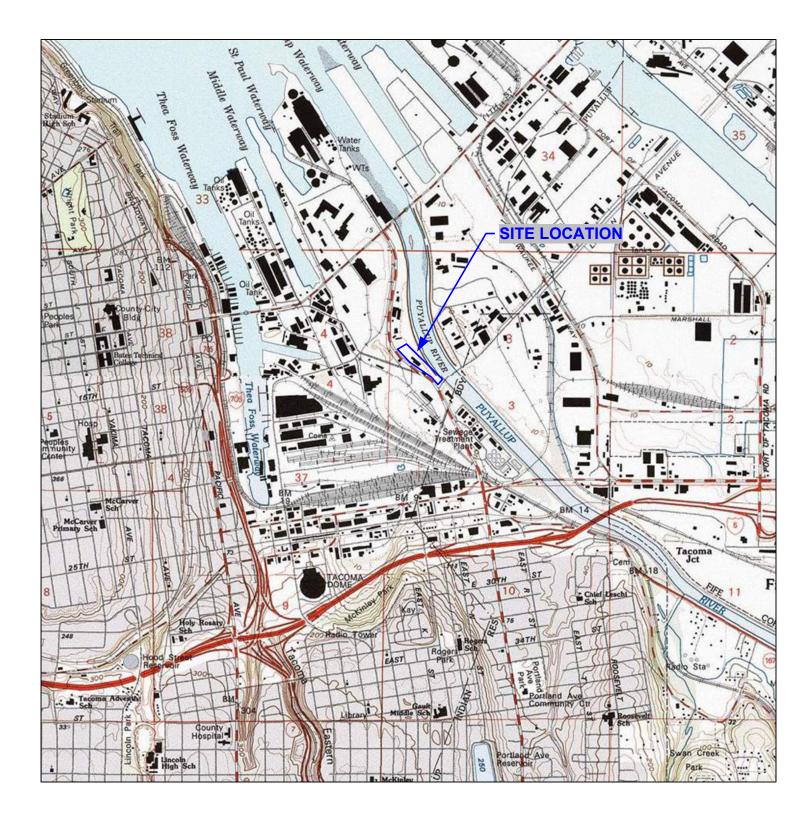
(h) Where two values are displayed, the second is the analytical result for a field blind duplicate sample.

Bold and italics indicate an analyte concentration above the proposed cleanup level.

BTEX = Benzene, toluene, ethylbenzene, and xylenes PAHs = Polycyclic aromatic hydrocarbons

cPAHs = Carcinogenic PAHs

µg/L = micrograms per liter

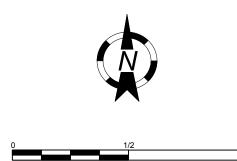

J = Laboratory data flag indicating that the result is an esimated value less than the method reporting limit

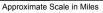
E = Laboratory note indicating an estimated result outside the calibration range of the analysis.

NA = Cleanup level is not available for the indicated analyte

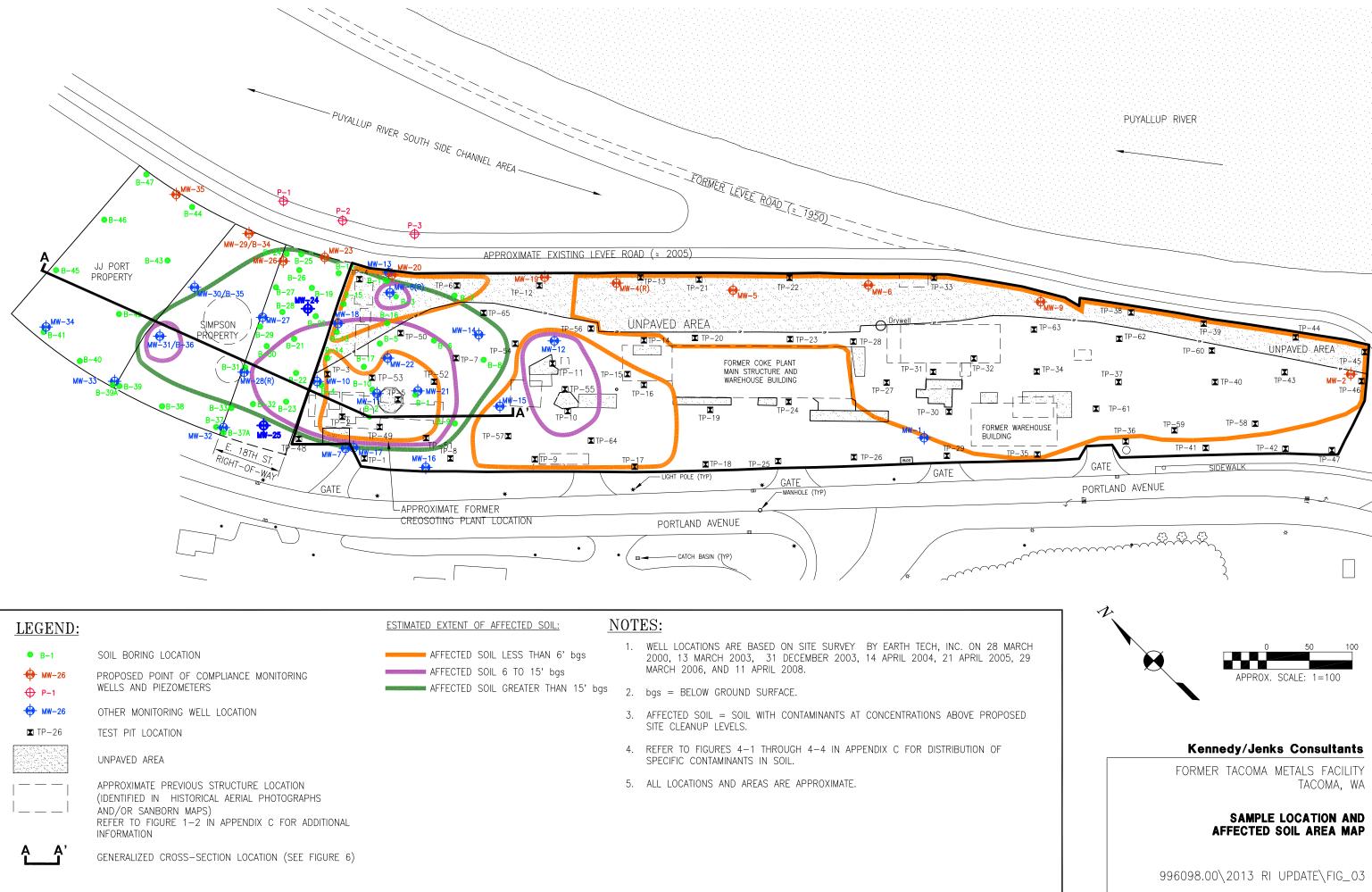
M = Laboratory note indicating an estimated value found and confirmed by analyst but with low spectral match

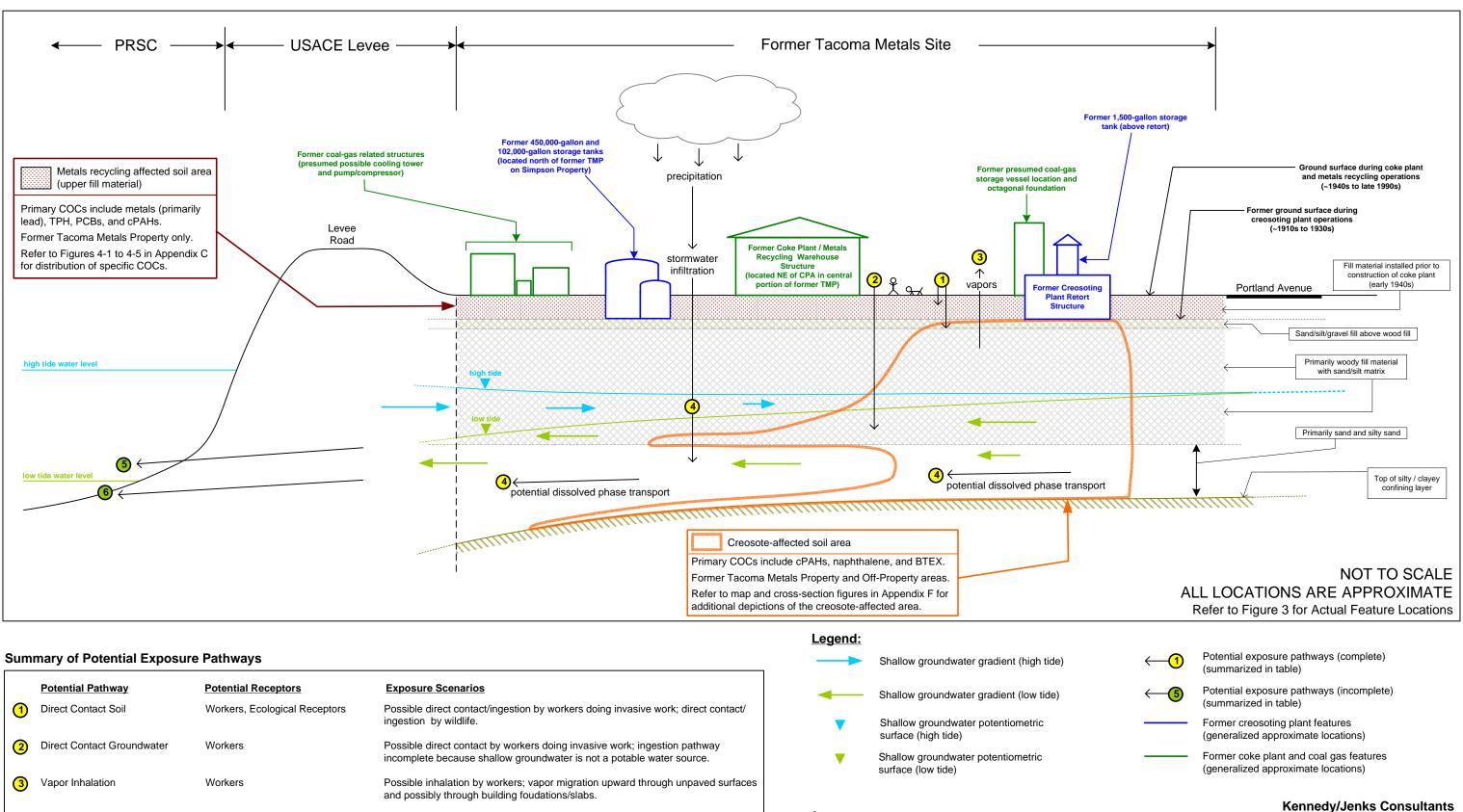
Figures

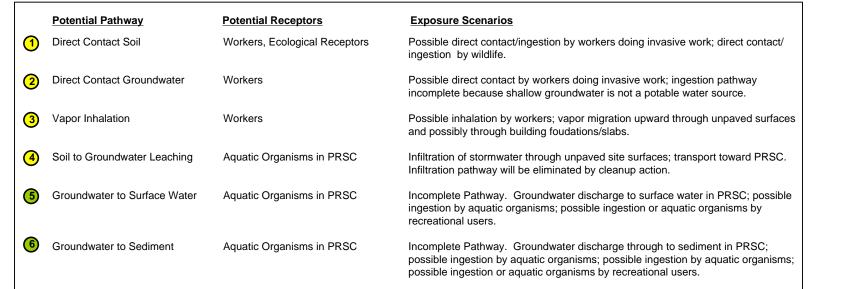


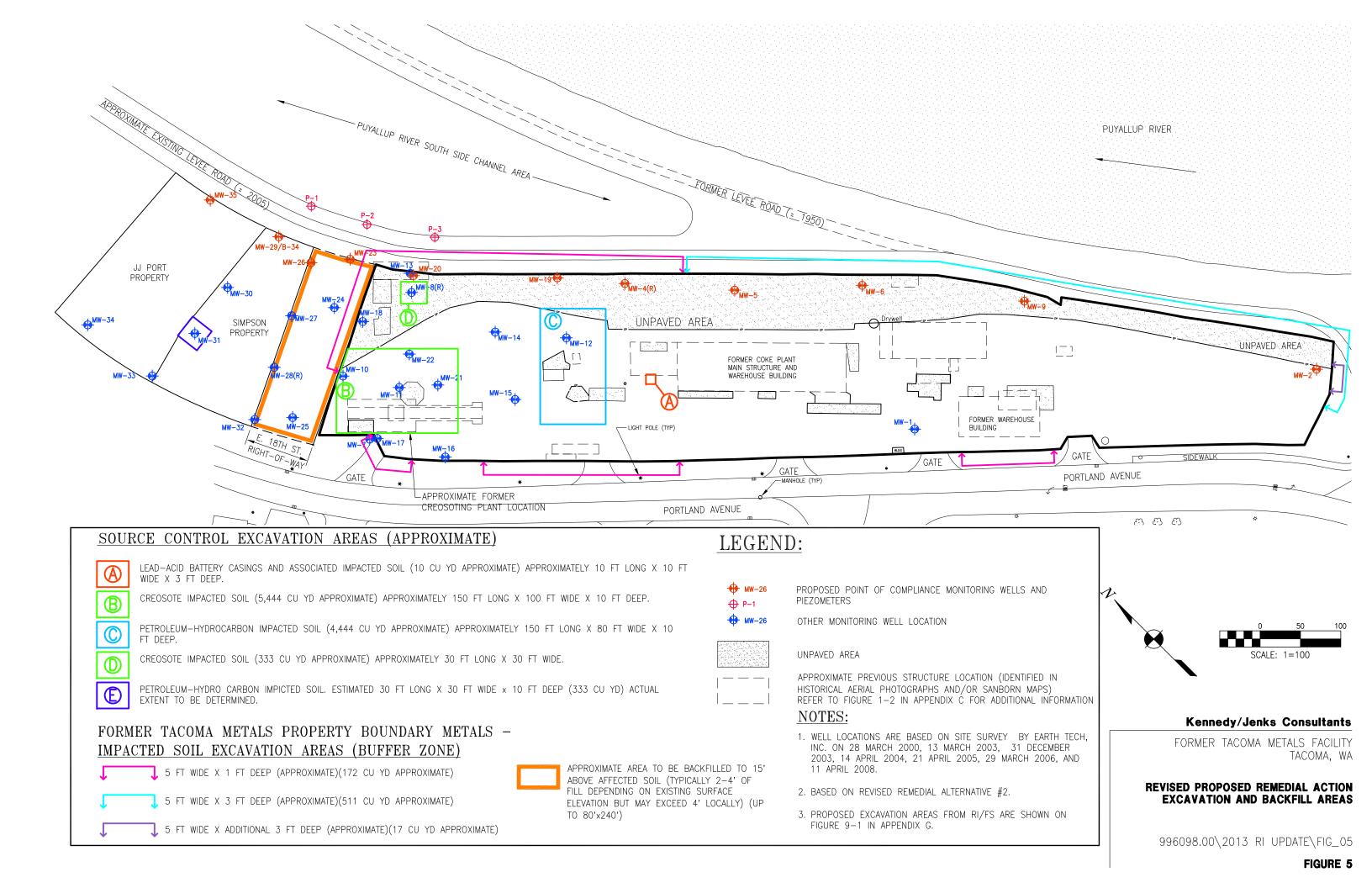

Kennedy/Jenks Consultants

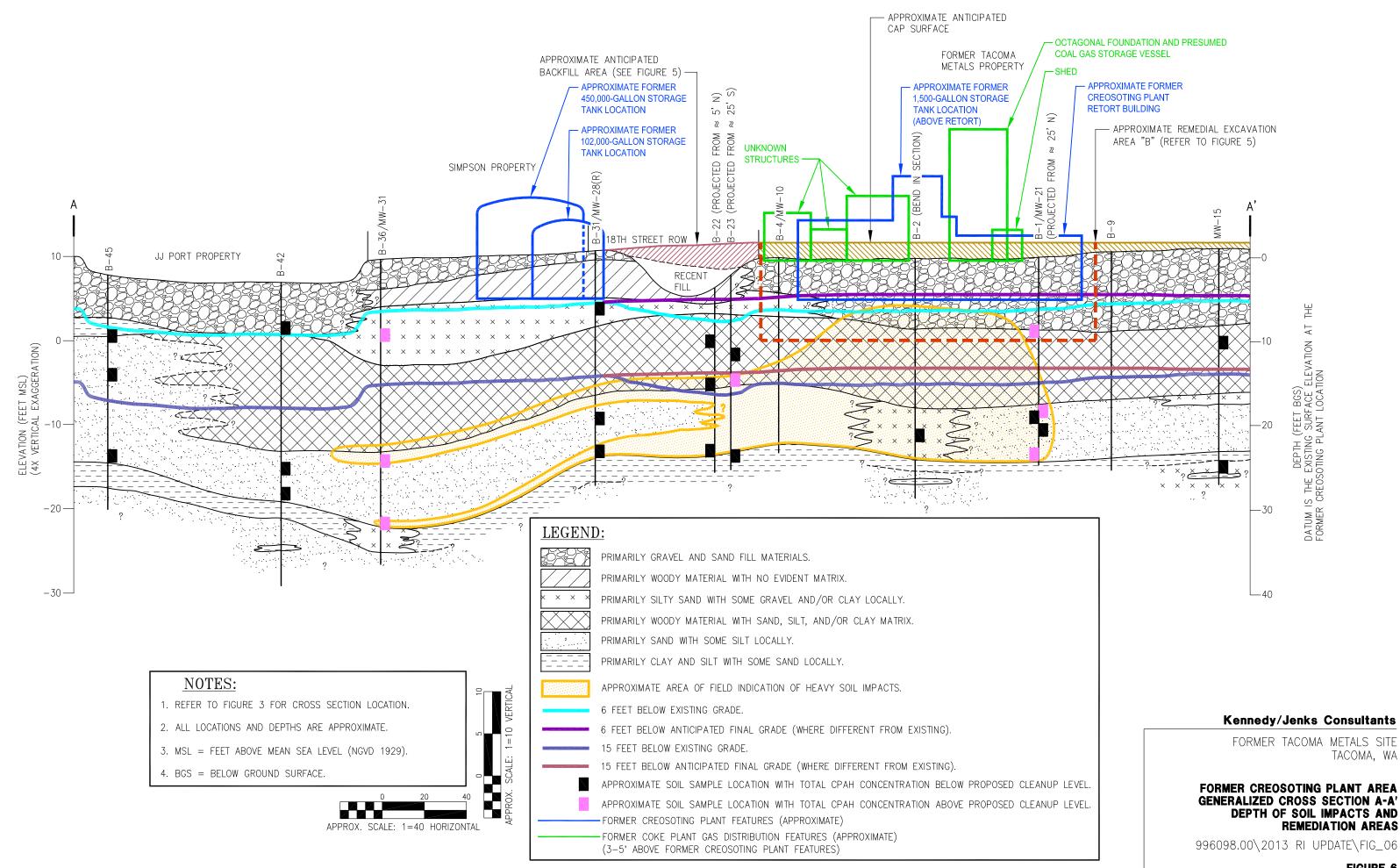

FORMER TACOMA METALS SITE TACOMA, WA


SITE LOCATION MAP


996098.00/Location.VSD




Acronyms:


BTEX – Benzene, Toluene, Ethylbenzene, and Xylenes COCs – Contaminants of Concern CPA - Creosoting Plant Area cPAHs - Carcinogenic Polycylclic Aromatic Hydrocarbons PCBs – Polychlorinated Biphenyls PRSC – Puyallup River Side Channel TMP – Tacoma Metals Property TPH – Total Petroleum Hydrocarbons USACE - United States Army Corps of Engineers

FORMER TACOMA METALS SITE TACOMA, WA

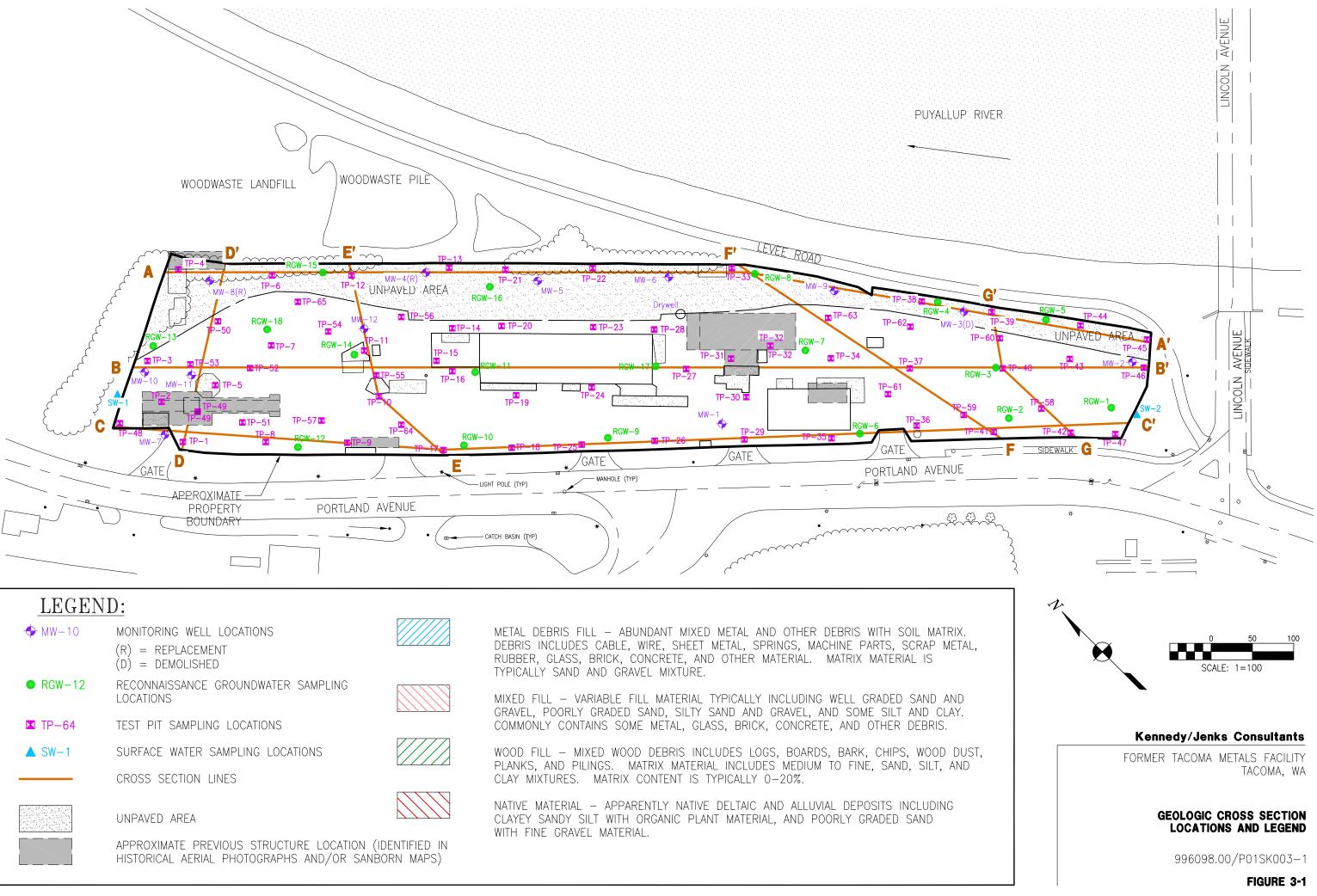
GENERALIZED CONCEPTUAL SITE MODEL

996098*00/SiteModel.VSD

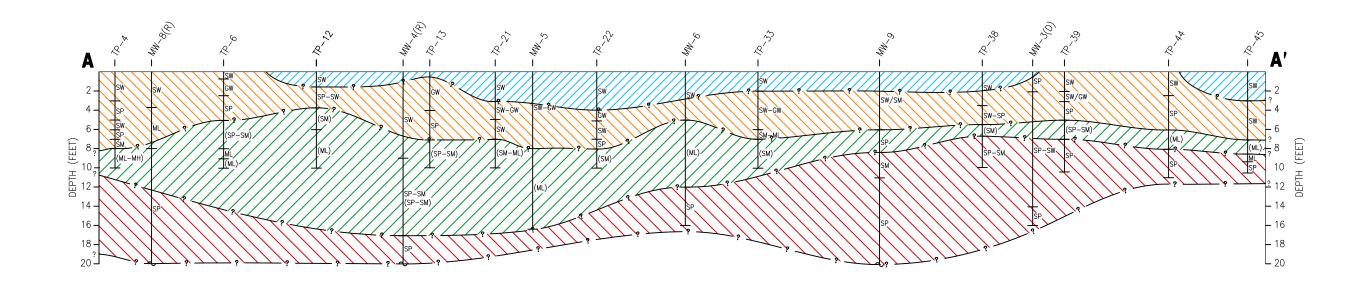
Appendix A

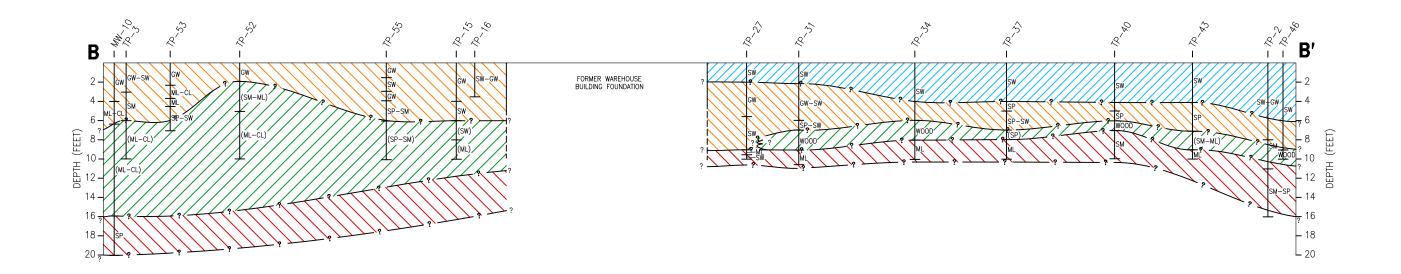
Generalized Geologic Cross Sections, RI/FS and Creosoting Plant Area Investigation

Appendix A: Generalized Geologic Cross Sections, RI/FS and Creosoting Plant Area Investigation


Table of Contents

(NOTE: Figure and table designations are from multiple previous reports and may be duplicated. Figures and tables are presented in the order listed below)


- 1) Figure 3-1 Geologic Cross Section Locations and Legend (2001)
- 2) Figure 3-2 Geologic Cross Sections A-A' and B-B' (2001)
- 3) Figure 3-3 Geologic Cross Sections C-C', D-D', E-E', F-F' and G-G' (2001)
- 4) Figure 4 Approximate Topography of First Encountered Silt/Clay Layer (2008)
- 5) Figure 5 Generalized Geologic Cross Section A-A' (2008)
- 6) Figure 6 Generalized Geologic Cross Sections B-B', C-C' (2008)


Materials included in Appendix A are from the following reports (as indicated in parentheses following the title for each item):

- 2001 = Remedial Investigation / Feasibility Study Report (Kennedy/Jenks Consultants 2001)
- 2008 = Soil and Groundwater Investigation Results Data Transmittal; October 2007-April 2008 Investigation (Kennedy/Jenks Consultants 2008)

∲ MW−10	MONITORING WELL LOCATIONS (R) = REPLACEMENT (D) = DEMOLISHED	
● RGW-12	RECONNAISSANCE GROUNDWATER SAMPLING LOCATIONS	
¥ TP-64	TEST PIT SAMPLING LOCATIONS	F
▲ SW-1	SURFACE WATER SAMPLING LOCATIONS	
	CROSS SECTION LINES	L
	UNPAVED AREA	
	APPROXIMATE PREVIOUS STRUCTURE LOCATION (IDE	

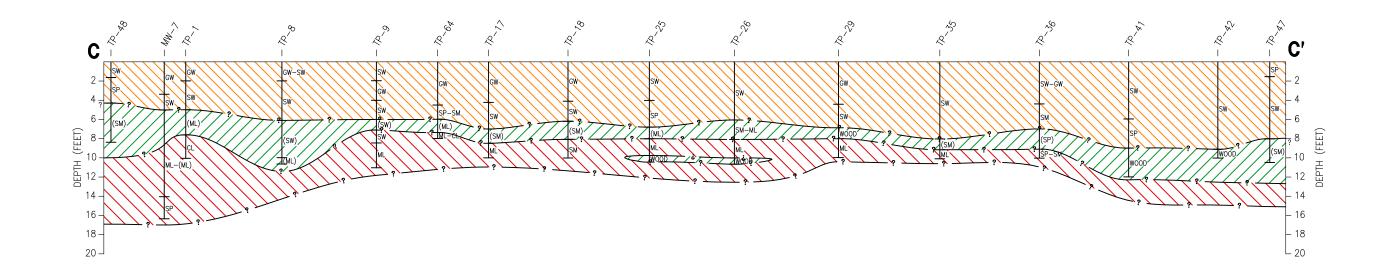
NOTES:

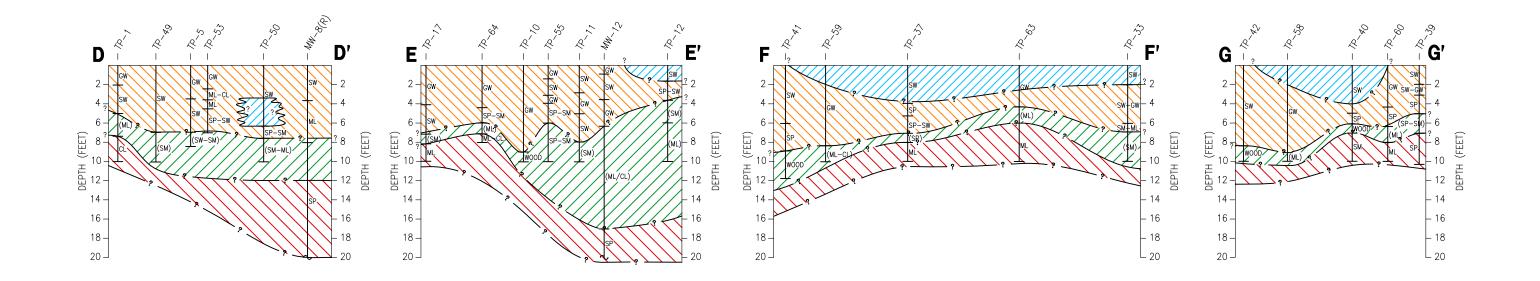
- 1. REFER TO FIGURE 3-1 FOR LEGEND AND NOTES.
- 2. SOIL CLASSIFICATIONS IN PARENTHESES INDICATE THE MATRIX MATERIAL IN THE WOOD FILL UNIT.

USCS SOIL CLASSIFICATION

- SP POORLY-GRADED SAND
- SW WELL-GRADED SAND
- GW WELL-GRADED GRAVEL
- ML SILT
- SM SILTY SAND
- CL LEAN CLAY

VERTICAL EX


Kennedy/Jenks Consultants


FORMER TACOMA METALS FACILITY TACOMA, WA

GEOLOGIC CROSS SECTIONS A-A' AND B-B'

996098.00/P01SK003-2

FIGURE 3-2

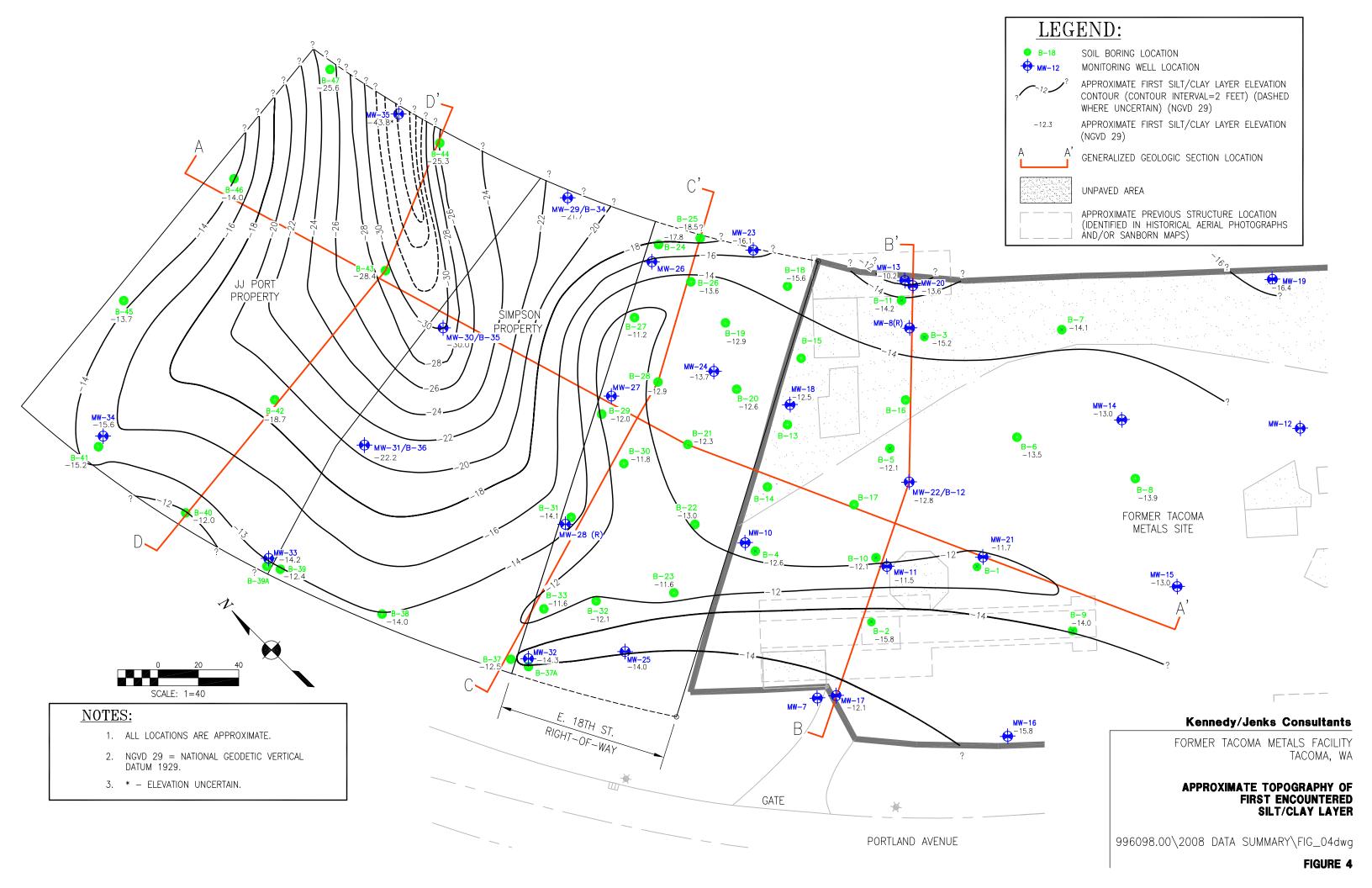
NOTES:

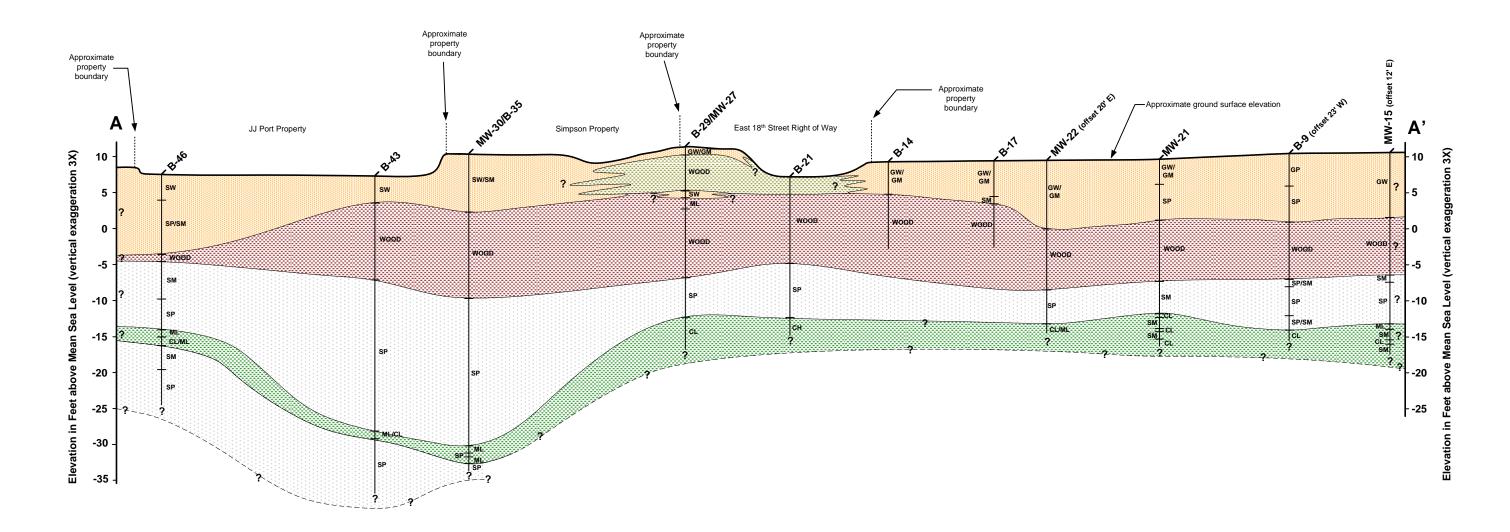
- 1. REFER TO FIGURE 3-1 FOR LEGEND AND NOTES.
- 2. SOIL CLASSIFICATIONS IN PARENTHESES INDICATE THE MATRIX MATERIAL IN THE WOOD FILL UNIT.

USCS SOIL CLASSIFICATION

- POORLY-GRADED SAND SP
- SW
- WELL-GRADED SAND WELL-GRADED GRAVEL GW
- SILT ML
- SILTY SAND SM
- CL LEAN CLAY

VERTICAL EX


Kennedy/Jenks Consultants


FORMER TACOMA METALS FACILITY TACOMA, WA

GEOLOGIC CROSS SECTIONS C-C', D-D', E-E', F-F' AND G-G'

996098.00/P01SK003-3

FIGURE 3-3

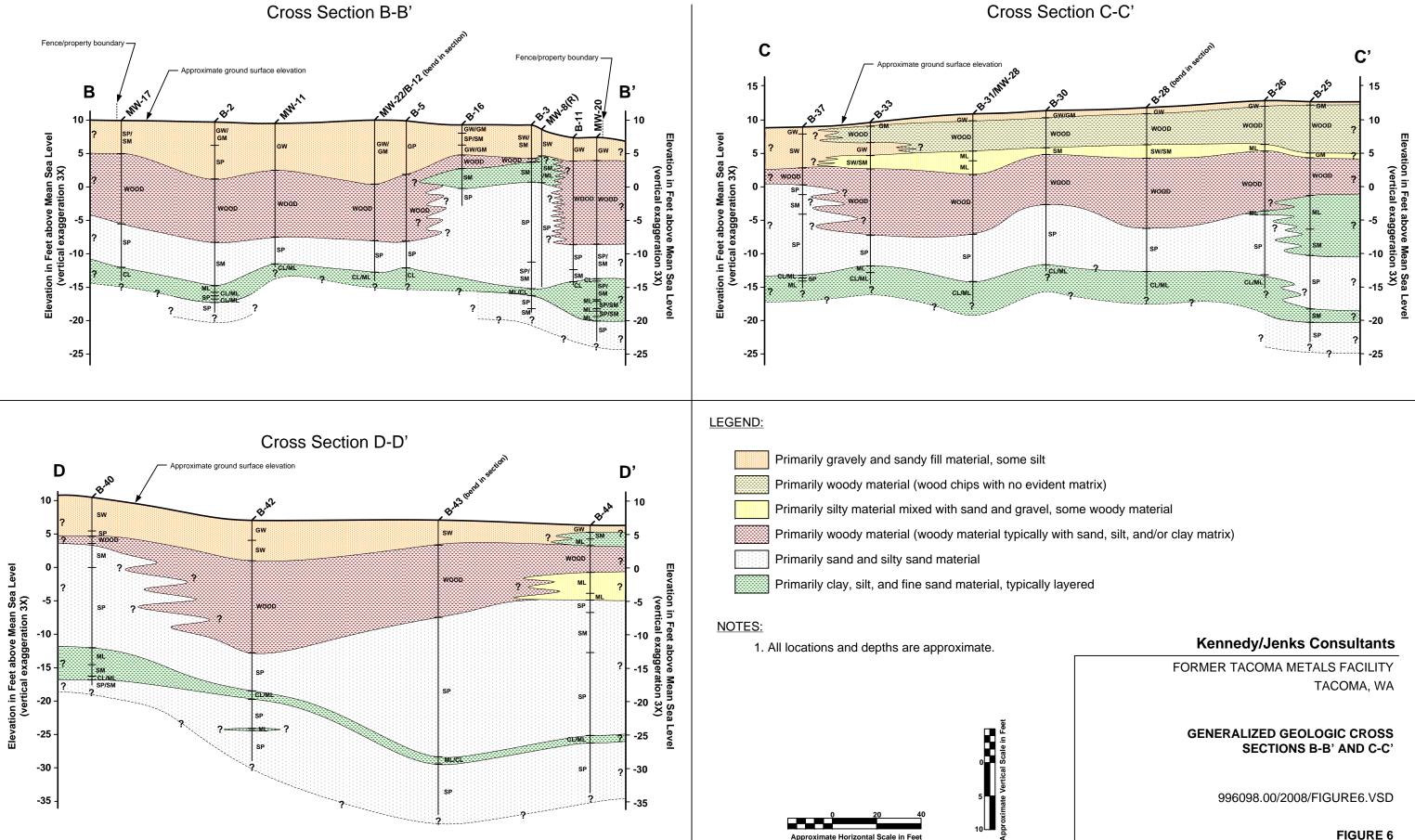


LEGEND:

- Primarily gravely and sandy fill material, some silt
- Primarily woody material (wood chips with no evident matrix)
- Primarily woody material (woody material typically with sand, silt, and/or clay matrix)
- Primarily sand and silty sand material
- Primarily clay, silt, and fine sand material, typically layered

NOTES:

- 1. All locations and depths are approximate.
- 2. Offset directions indicate the offset of the boring from the cross section line.


Kennedy/Jenks Consultants

FORMER TACOMA METALS FACILITY TACOMA, WA

> GENERALIZED GEOLOGIC CROSS SECTION A-A'

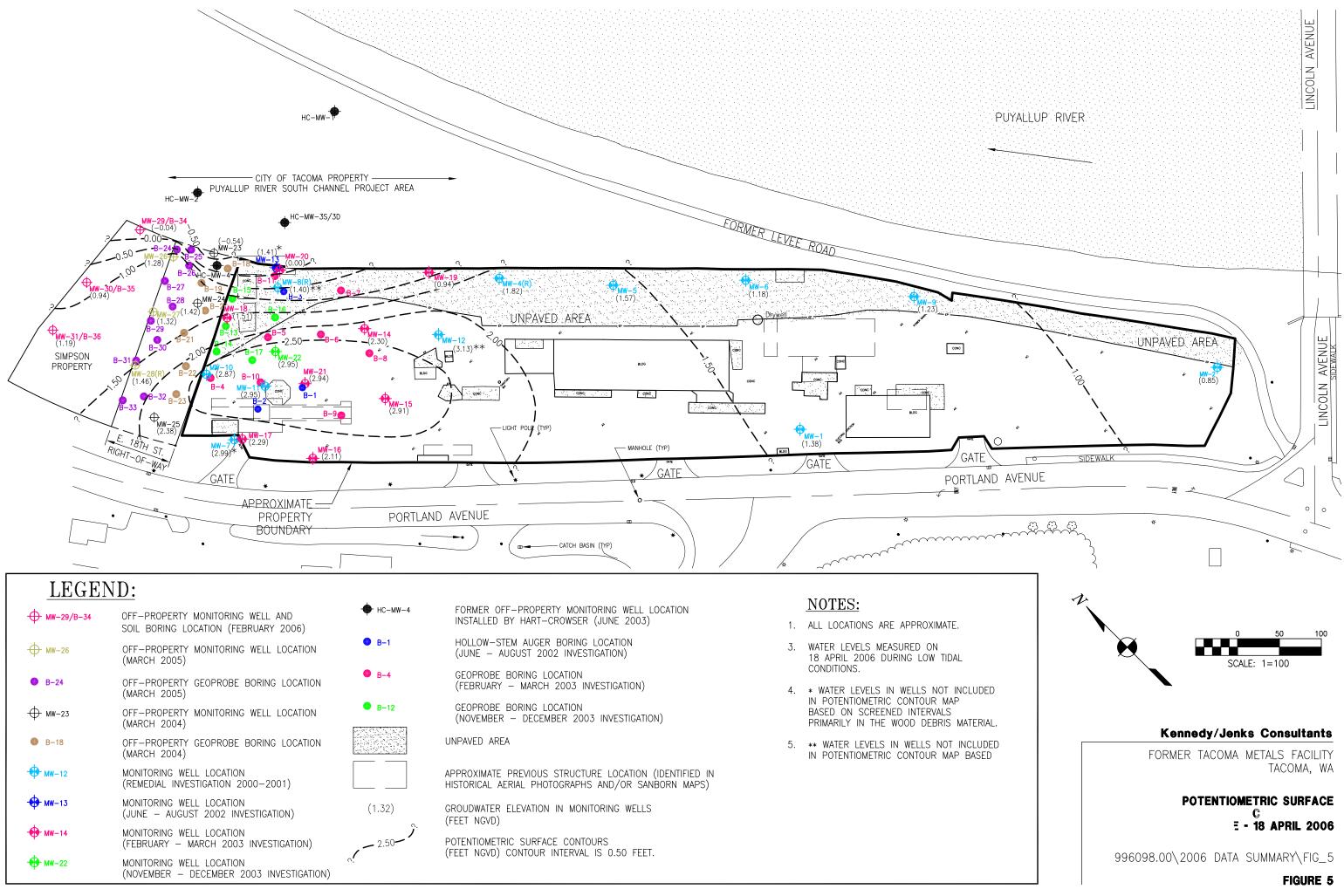
996098.00/2008/FIGURE5.VSD

Generalized West-East Geologic Cross Sections

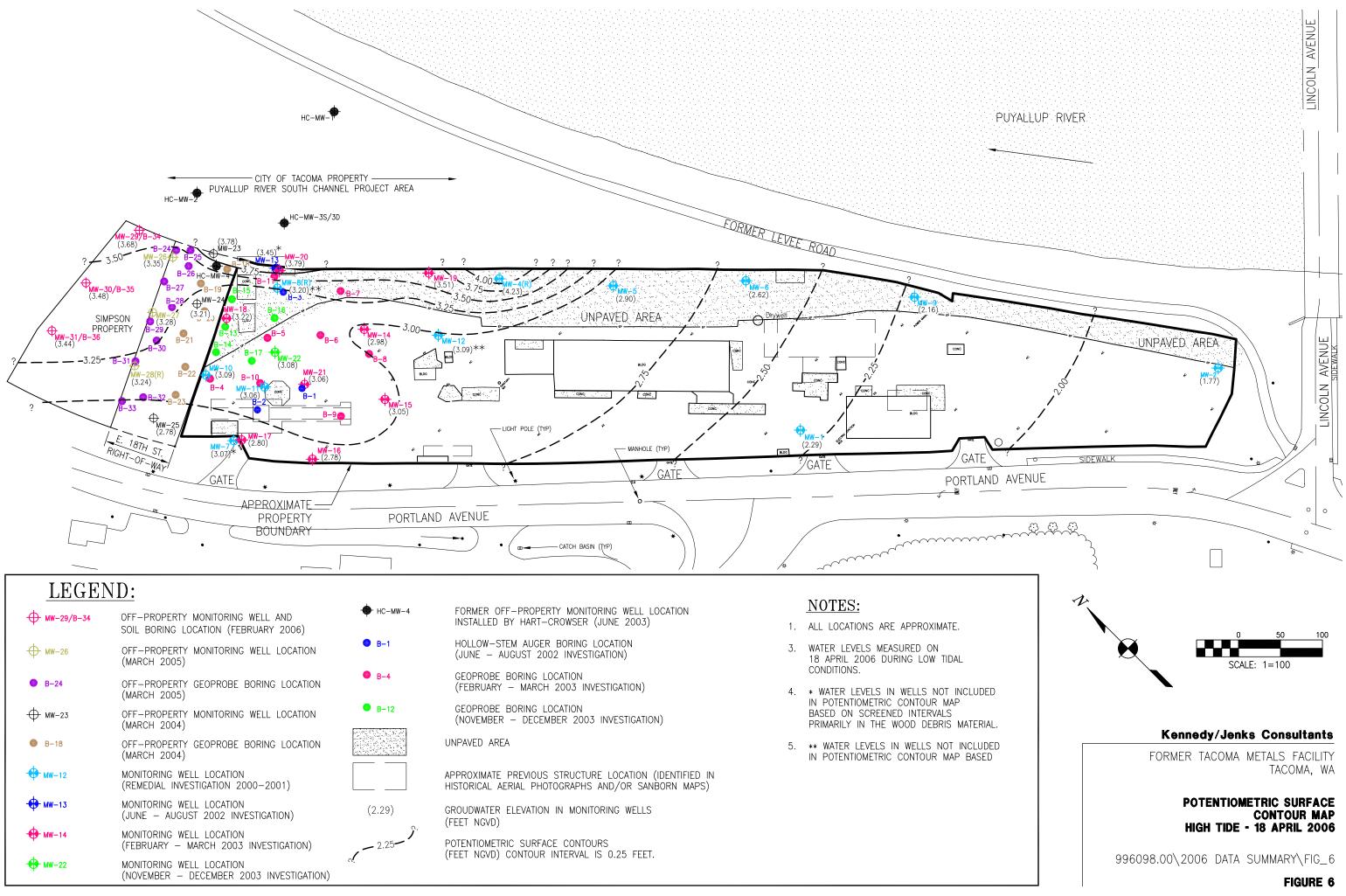
Appendix B

Groundwater Gradient Maps and Elevation Data Tables for 2006 and 2008

Appendix B:Groundwater Gradient Maps and ElevationData Tables for 2006 and 2008

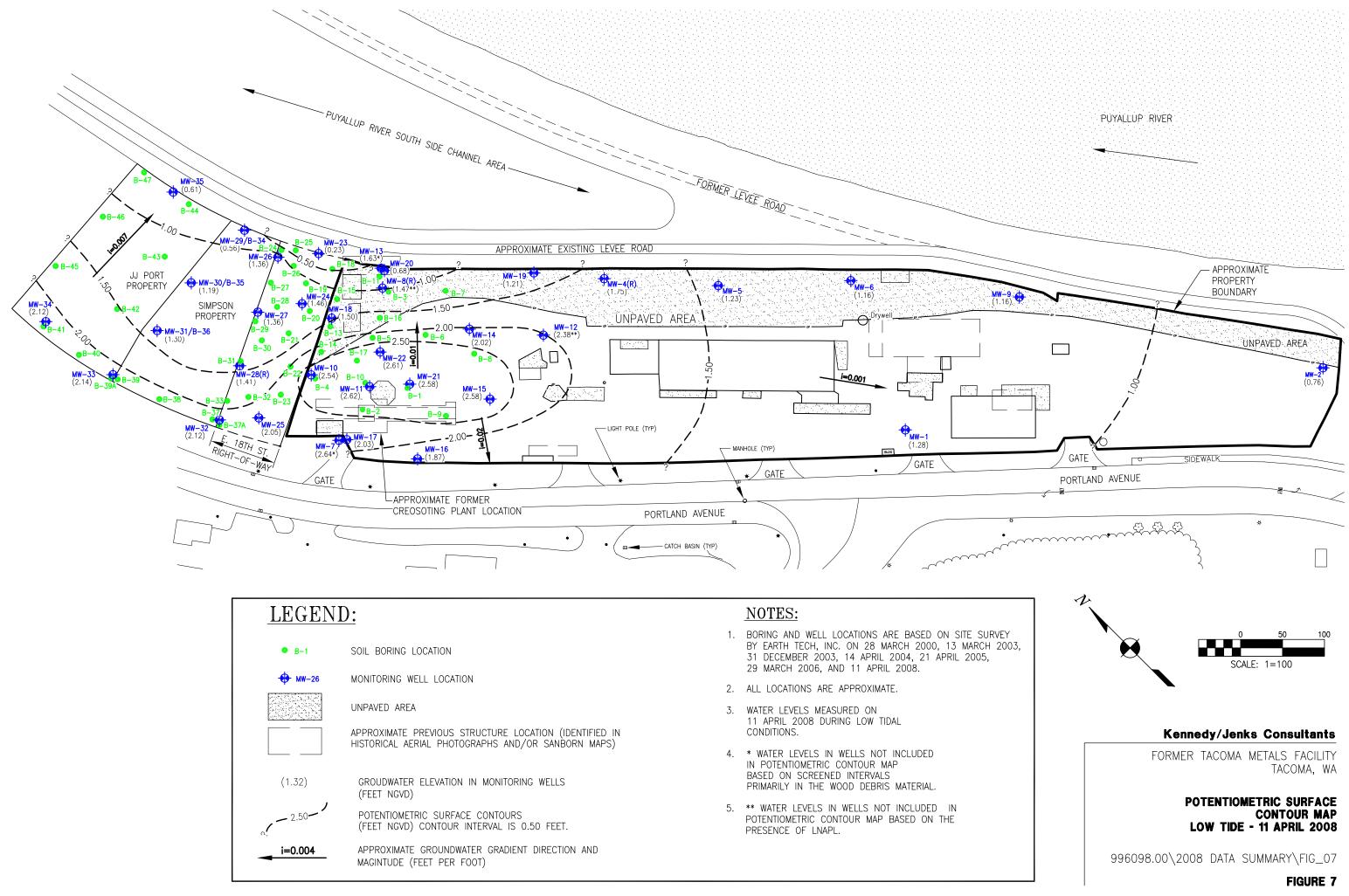

Table of Contents

(NOTE: Figure and table designations are from multiple previous reports and may be duplicated. Figures and tables are presented in the order listed below)

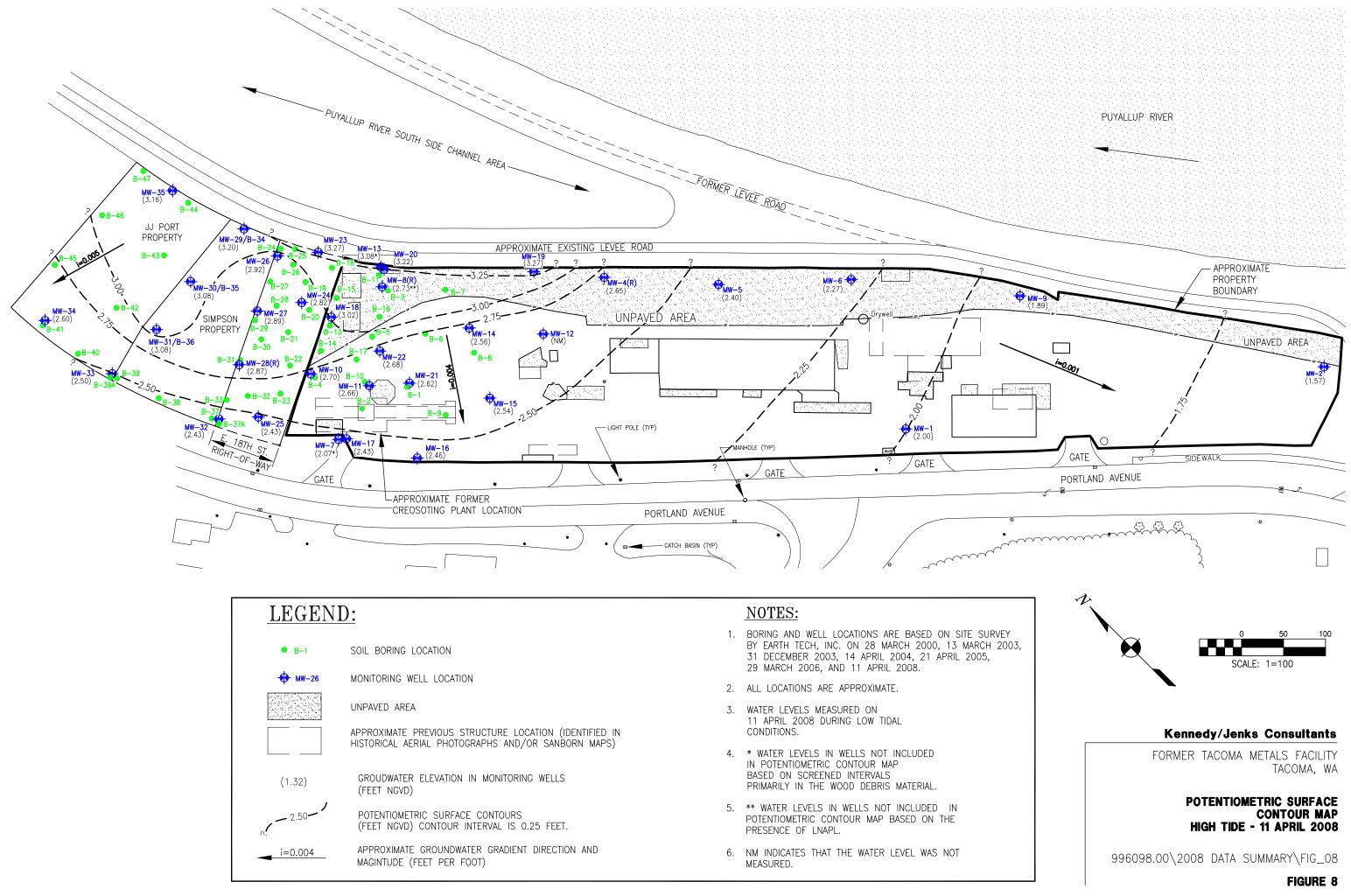

- 1) Figure 5 Potentiometric Surface Contour Map Low Tide 18 April 2006 (2007)
- 2) Figure 6 Potentiometric Surface Contour Map High Tide 18 April 2006 (2007)
- 3) Figure 7 Potentiometric Surface Contour Map Low Tide 11 April 2008 (2008)
- 4) Figure 8 Potentiometric Surface Contour Map High Tide 11 April 2008 (2008)
- 5) Table 4 Groundwater Elevation Monitoring 11 April 2008 (2008)
- 6) Table 9 Groundwater Elevation Monitoring Summary(2007)
- 7) Table 10 Summary of LNAPL and DNAPL Monitoring-Wells MW-8(R) and MW-28(R) (2007)

Materials included in Appendix B are from the following reports (as indicated in parentheses following the title for each item):

- 2007 = Supplemental Data Summary Report (Kennedy/Jenks Consultants 2007a)
- 2008 = Soil and Groundwater Investigation Results Data Transmittal; October 2007-April 2008 Investigation (Kennedy/Jenks Consultants 2008)



⊕ м₩-29/В-34	OFF–PROPERTY MONITORING WELL AND SOIL BORING LOCATION (FEBRUARY 2006)	+ HC-MW-4
⊕ м₩-26	OFF-PROPERTY MONITORING WELL LOCATION (MARCH 2005)	● B-1
● B-24	OFF-PROPERTY GEOPROBE BORING LOCATION (MARCH 2005)	● B-4
⊕ м₩-23	OFF-PROPERTY MONITORING WELL LOCATION (MARCH 2004)	B-12
● B-18	OFF-PROPERTY GEOPROBE BORING LOCATION (MARCH 2004)	
₩-12	MONITORING WELL LOCATION (REMEDIAL INVESTIGATION 2000–2001)	
₩-13	MONITORING WELL LOCATION (JUNE – AUGUST 2002 INVESTIGATION)	(1.32)
₩-14	MONITORING WELL LOCATION (FEBRUARY – MARCH 2003 INVESTIGATION)	2.50
₩-22	MONITORING WELL LOCATION (NOVEMBER – DECEMBER 2003 INVESTIGATION)	а .



₩ -29/В-34	OFF–PROPERTY MONITORING WELL AND SOIL BORING LOCATION (FEBRUARY 2006)	+HC-MW-4
⊕ м₩-26	OFF-PROPERTY MONITORING WELL LOCATION (MARCH 2005)	● B-1
● B-24	OFF-PROPERTY GEOPROBE BORING LOCATION (MARCH 2005)	● B-4
⊕ м₩-23	OFF—PROPERTY MONITORING WELL LOCATION (MARCH 2004)	B-12
● B-18	OFF-PROPERTY GEOPROBE BORING LOCATION (MARCH 2004)	
₩-12	MONITORING WELL LOCATION (REMEDIAL INVESTIGATION 2000–2001)	
₩-13	MONITORING WELL LOCATION (JUNE – AUGUST 2002 INVESTIGATION)	(2.29)
₩-14	MONITORING WELL LOCATION (FEBRUARY – MARCH 2003 INVESTIGATION)	2.25
₩-22	MONITORING WELL LOCATION (NOVEMBER – DECEMBER 2003 INVESTIGATION)	<i>с</i> !.

			WELL LOCATION
INSTALLED	BY HART-CRC	WSER (JUNE	2003)

LEGENI	<u>):</u>	4
• B-1	SOIL BORING LOCATION	1.
₩₩-26	MONITORING WELL LOCATION	2.
	UNPAVED AREA	3.
	APPROXIMATE PREVIOUS STRUCTURE LOCATION (IDENTIFIED IN HISTORICAL AERIAL PHOTOGRAPHS AND/OR SANBORN MAPS)	4.
(1.32)	GROUDWATER ELEVATION IN MONITORING WELLS (FEET NGVD)	
- 2.50-	POTENTIOMETRIC SURFACE CONTOURS (FEET NGVD) CONTOUR INTERVAL IS 0.50 FEET.	5.
i=0.004	APPROXIMATE GROUNDWATER GRADIENT DIRECTION AND MAGINTUDE (FEET PER FOOT)	

LEGEND	<u>):</u>	
● B-1	SOIL BORING LOCATION	
- ⊕ - MW−26	MONITORING WELL LOCATION	
	UNPAVED AREA	
	APPROXIMATE PREVIOUS STRUCTURE LOCATION (IDENTIFIED IN HISTORICAL AERIAL PHOTOGRAPHS AND/OR SANBORN MAPS)	
(1.32)	GROUDWATER ELEVATION IN MONITORING WELLS (FEET NGVD)	
- 2.50-	POTENTIOMETRIC SURFACE CONTOURS (FEET NGVD) CONTOUR INTERVAL IS 0.25 FEET.	ţ
i=0.004	APPROXIMATE GROUNDWATER GRADIENT DIRECTION AND MAGINTUDE (FEET PER FOOT)	(

GROUNDWATER ELEVATION MONITORING - 11 APRIL 2008 Former Tacoma Metals Facility

	Top of	Depth to	Groundwater	Depth to	Groundwater
Well	Well Casing	Groundwater at	Elevation	Groundwater at	Elevation
Number	Elevation (feet) ^(a)	Low-Tide (feet)	Low-Tide (feet)	High-Tide (feet)	High-Tide (feet)
MW-1	12.23	10.95	1.28	10.23	2.00
MW-2	12.04	11.28	0.76	10.47	1.57
MW-4(R)	12.55	10.80	1.75	9.90	2.65
MW-5	10.90	9.67	1.23	8.50	2.40
MW-6	10.07	8.91	1.16	7.80	2.27
MW-7	9.45	6.81	2.64	6.78	2.67
MW-8(R) ^(b)	11.12	9.65	1.47	8.39	2.73
MW-9	13.61	12.45	1.16	11.72	1.89
MW-10	9.39	6.85	2.54	6.69	2.70
MW-11	9.47	6.85	2.62	6.81	2.66
MW-12 ^(b)	10.80	8.42	2.38	NM ^(d)	NM
MW-13	9.84	8.21	1.63	6.76	3.08
MW-14	9.77	7.75	2.02	7.21	2.56
MW-15	10.49	7.91	2.58	7.95	2.54
MW-16	9.72	7.85	1.87	7.26	2.46
MW-17	9.57	7.54	2.03	7.14	2.43
MW-18	11.79	10.29	1.50	8.77	3.02
MW-19	10.78	9.57	1.21	7.51	3.27
MW-20	10.21	9.53	0.68	6.99	3.22
MW-21	9.47	6.89	2.58	6.85	2.62
MW-22	9.51	6.90	2.61	6.83	2.68
MW-23	14.35	14.12	0.23	11.08	3.27
MW-24	10.58	9.12	1.46	7.76	2.82
MW-25	11.24	9.19	2.05	8.81	2.43
MW-26	12.52	11.16	1.36	9.60	2.92
MW-27	11.06	9.70	1.36	8.17	2.89
MW-28(R) ^(c)	10.42	9.01	1.41	7.55	2.87
MW-29	11.12	10.56	0.56	7.92	3.20
MW-30	10.05	8.86	1.19	6.97	3.08
MW-31	9.38	8.08	1.30	6.30	3.08
MW-32	9.26	7.14	2.12	6.83	2.43
MW-33	9.24	7.10	2.14	6.74	2.50
MW-34	9.62	7.50	2.12	7.02	2.60
MW-35	7.95	7.34	0.61	4.79	3.16

Notes:

(a) Vertical elevation (NGVD 29) is based on well surveys performed by Earth Tech, Inc. on 28 March 2000, 21 November 2000, 13 March 2003, 31 December 2003, 14 April 2004, 21 April 2005, 29 March 2006, and 11 April 2008.

(b) Free product [light non-aqueous phase liquid (LNAPL)] present on water table.

(c) MW-28 was abandoned and replaced with MW-28(R) in February 2006.

(d) "NM" denotes that the water level was not measured in the indicated well.

GROUNDWATER ELEVATION MONITORING SUMMARY Former Tacoma Metals Facility

	Top of	Depth to	Groundwater	Depth to	Groundwater
Well	Well Casing	Groundwater at	Elevation	Groundwater at	Elevation
Number	Elevation (feet) ^(a)	Low-Tide (feet)	Low-Tide (feet)	High-Tide (feet)	High-Tide (feet)
30 December				5	5(,
MW-1	12.23	10.86	1.37	9.87	2.36
MW-2	12.04	11.42	0.62	10.19	1.85
MW-4(R)	12.55	10.83	1.72	9.22	3.33
MW-5	10.90	9.13	1.77	7.62	3.28
MW-6	10.07	9.02	1.05	7.05	3.02
MW-7	9.45	5.91	3.54	5.82	3.63
MW-8(R) ^(b)	11.12	9.23	1.89	7.75	3.37
MW-9	13.61	12.48	1.13	11.31	2.30
MW-10	9.39	6.09	3.30	5.76	3.63
MW-11	9.47	5.94	3.53	5.87	3.60
MW-12 ^(b)	10.80	7.33	3.47	7.32	3.48
MW-13	9.84	7.38	2.46	5.99	3.85
MW-14	9.77	6.88	2.89	6.45	3.32
MW-15	10.49	7.15	3.34	7.00	3.49
MW-16	9.72	7.46	2.26	6.82	2.90
MW-17	9.57	7.10	2.47	6.63	2.94
MW-18	11.79	9.90	1.89	8.27	3.52
MW-19	10.78	9.32	1.46	7.04	3.74
MW-20	10.21	8.89	1.32	6.15	4.06
MW-21	9.47	6.26	3.21	5.89	3.58
MW-22	9.51	6.00	3.51	5.90	3.61
1 June 2004					
MW-1	12.23	10.75	1.48	9.96	2.27
MW-2	12.04	8.56	3.48	10.03	2.01
MW-4(R)	12.55	10.65	1.90	9.34	3.21
MW-5	10.90	9.22	1.68	8.01	2.89
MW-6	10.07	8.59	1.48	7.17	2.90
MW-7	9.45	6.70	2.75	6.74	2.71
MW-8(R) ^(b)	11.12	9.16	1.96	8.16	2.96
MW-9	13.61	12.19	1.42	11.35	2.26
MW-10	9.39	6.70	2.69	6.55	2.84
MW-11	9.47	6.73	2.74	6.72	2.75
MW-12 ^(b)	10.80	8.07	2.73	8.04	2.76
MW-13	9.84	7.68	2.16	6.45	3.39
MW-14	9.77	7.55	2.22	6.92	2.85
MW-15 MW-16	10.49 9.72	6.72 7.46	<u>3.77</u> 2.26	7.69 7.23	2.80 2.49
MW-17	9.72	7.46	2.20	7.23	2.49
MW-18	9.57	9.70	2.41	8.69	3.10
MW-19	10.78	8.89	1.89	7.18	3.60
MW-20	10.78	8.65	1.56	6.46	3.75
MW-21	9.47	6.83	2.64	6.69	2.78
MW-22	9.51	6.77	2.74	6.74	2.77
MW-23	14.39	12.82	1.57	10.76	3.63
MW-24	10.67	8.42	2.25	7.55	3.12
MW-25	11.26	8.78	2.48	8.62	2.64

GROUNDWATER ELEVATION MONITORING SUMMARY Former Tacoma Metals Facility

	Top of	Depth to	Groundwater	Depth to	Groundwater
Well	Well Casing	Groundwater at	Elevation	Groundwater at	Elevation
Number	Elevation (feet) ^(a)	Low-Tide (feet)	Low-Tide (feet)	High-Tide (feet)	High-Tide (feet)
12 May 2005				•	•
MW-1	12.23	10.67	1.56	10.00	2.23
MW-2	12.04	10.96	1.08	10.27	1.77
MW-4(R)	12.55	10.55	2.00	9.57	2.98
MW-5	10.90	9.38	1.52	8.19	2.71
MW-6	10.07	8.62	1.45	7.58	2.49
MW-7	9.45	6.51	2.94	6.46	2.99
MW-8(R) ^(b)	11.12	9.04	2.08	8.06	3.06
MW-9	13.61	12.22	1.39	11.48	2.13
MW-10	9.39	6.47	2.92	6.38	3.01
MW-11	9.47	6.54	2.93	6.49	2.98
MW-12 ^(b)	10.80	7.89	2.91	7.84	2.96
MW-13	9.84	7.51	2.33	6.72	3.12
MW-14	9.77	7.31	2.46	6.84	2.93
MW-15	10.49	7.80	2.69	7.55	2.94
MW-16	9.72	7.49	2.23	6.96	2.76
MW-17	9.57	7.20	2.37	6.81	2.76
MW-18	11.79	9.72	2.07	8.73	3.06
MW-19	10.78	8.94	1.84	7.61	3.17
MW-20	10.21	8.75	1.46	6.87	3.34
MW-21	9.47	6.63	2.84	6.48	2.99
MW-22	9.51	6.57	2.94	6.53	2.98
MW-23	14.39	13.18	1.21	11.13	3.26
MW-24	10.67	8.71	1.96	7.63	3.04
MW-25	11.26	8.86	2.40	8.51	2.75
MW-26	12.49	10.60	1.89	9.43	3.06
MW-27	11.15	9.22	1.93	8.09	3.06
MW-28	10.43	8.46	1.97	7.37	3.06

GROUNDWATER ELEVATION MONITORING SUMMARY Former Tacoma Metals Facility

	Top of	Depth to	Groundwater	Depth to	Groundwater
Well	Well Casing	Groundwater at	Elevation	Groundwater at	Elevation
Number	Elevation (feet) ^(a)	Low-Tide (feet)	Low-Tide (feet)	High-Tide (feet)	High-Tide (feet)
18 April 2006				•	•
MW-1	12.23	10.85	1.38	9.94	2.29
MW-2	12.04	11.19	0.85	10.27	1.77
MW-4(R)	12.55	10.73	1.82	8.32	4.23
MW-5	10.90	9.33	1.57	8.00	2.90
MW-6	10.07	8.89	1.18	7.45	2.62
MW-7	9.45	6.46	2.99	6.38	3.07
MW-8(R) ^(b)	11.12	9.72	1.40	7.92	3.20
MW-9	13.61	12.38	1.23	11.45	2.16
MW-10	9.39	6.52	2.87	6.30	3.09
MW-11	9.47	6.52	2.95	6.41	3.06
MW-12 ^(b)	10.80	7.67	3.13	7.71	3.09
MW-13	9.84	8.43	1.41	6.39	3.45
MW-14	9.77	7.47	2.30	6.79	2.98
MW-15	10.49	7.58	2.91	7.44	3.05
MW-16	9.72	7.61	2.11	6.94	2.78
MW-17	9.57	7.28	2.29	6.77	2.80
MW-18	11.79	10.28	1.51	8.57	3.22
MW-19	10.78	9.84	0.94	7.27	3.51
MW-20	10.21	10.21	0.00	6.42	3.79
MW-21	9.47	6.53	2.94	6.41	3.06
MW-22	9.51	6.56	2.95	6.43	3.08
MW-23	14.35	14.89	-0.54	10.57	3.78
MW-24	10.58	9.16	1.42	7.37	3.21
MW-25	11.24	8.86	2.38	8.46	2.78
MW-26	12.52	11.24	1.28	9.17	3.35
MW-27	11.06	9.74	1.32	7.78	3.28
MW-28(R) ^(c)	10.42	8.96	1.46	7.18	3.24
MW-29	11.12	11.16	-0.04	7.44	3.68
MW-30	10.05	9.11	0.94	6.57	3.48
MW-31	9.38	8.19	1.19	5.94	3.44

Notes:

(a) Vertical elevation (NGVD 29) is based on well surveys performed by Earth Tech, Inc on 28 March 2000, 21 November 2000, 13 March 2003, 31 December 2003, 14 April 2004, 21 April 2005, and 29 March 2006.

(b) Free product [light non-aqueous phase liquid (LNAPL)] present on water table.

(c) MW-28 was abandoned and replaced with MW-28(R) in February 2006.

SUMMARY OF LNAPL^(a) AND DNAPL^(b) MONITORING WELLS MW-8(R) AND MW-28(R) Former Tacoma Metals Facility

MW-8(R)		MW-28(R)	
LNAPL Measurement History		DNAPL Measurement History	
Date	LNAPL Thickness (feet)	Date	DNAPL Thickness (feet)
16-Dec-03	1.15 ^(c)		
8-Jan-04	0.01		
16-Jan-04	0.07		
28-Jan-04	0.07		
20-Feb-04	0.40		
10-Mar-04	0.25		
10-Jun-04	0.12		
17-Sep-04	<0.01 ^(d)	24-Feb-06	0.46 ^(c)
10-Dec-04	0.08	1-Mar-06	0.49
30-Mar-05	0.03	29-Mar-06	0.63
9-Jun-05	0.90	18-Apr-06	0.60
23-Oct-05	<0.01	22-Jun-06	0.61
2-Feb-06	0.22	5-Oct-06	0.61
12-Dec-06	0.18	12-Dec-06	0.59

Notes:

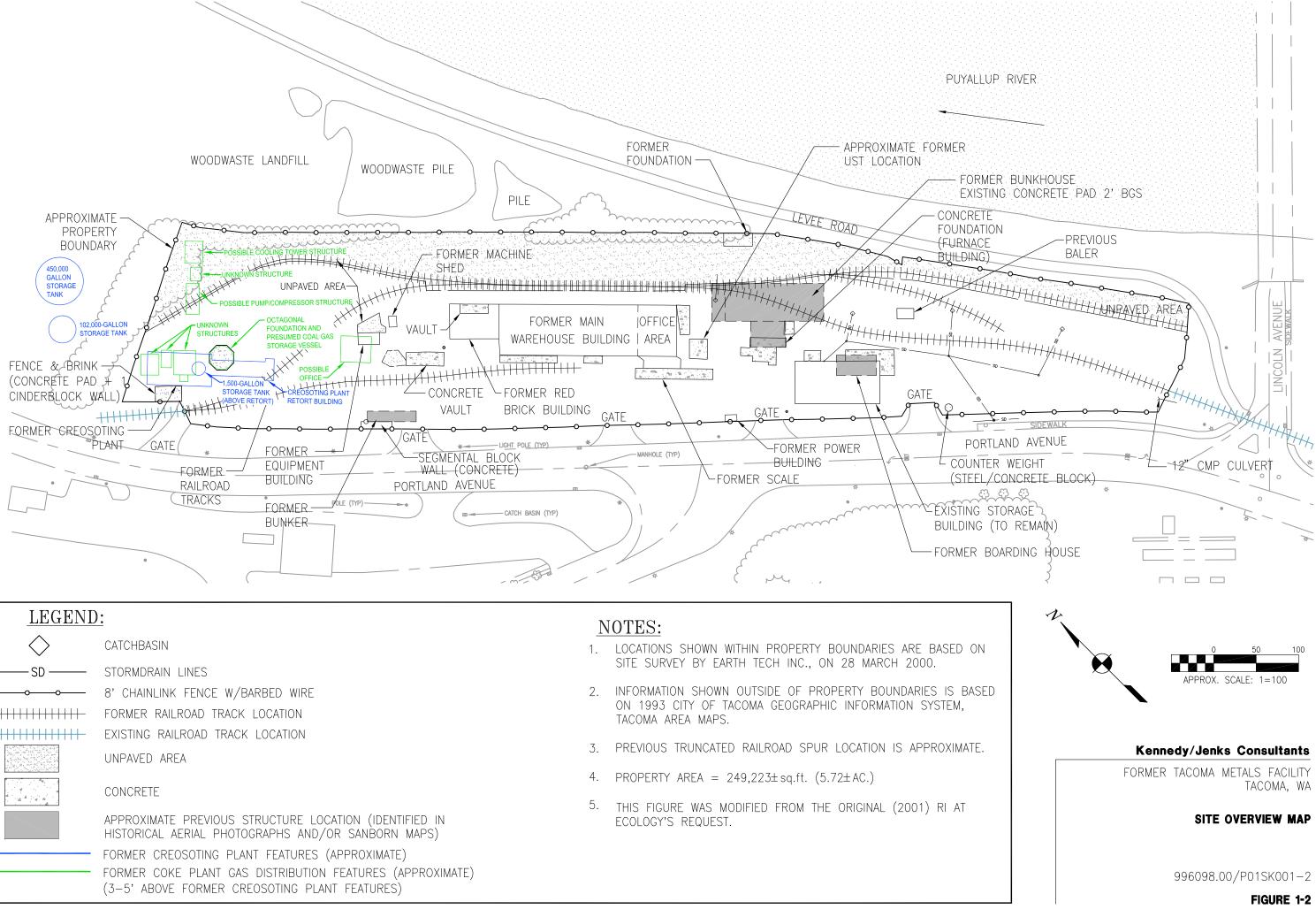
(a) LNAPL = Light non-aqueous phase liquid.

(b) DNAPL = Dense non-aqueous phase liquid.

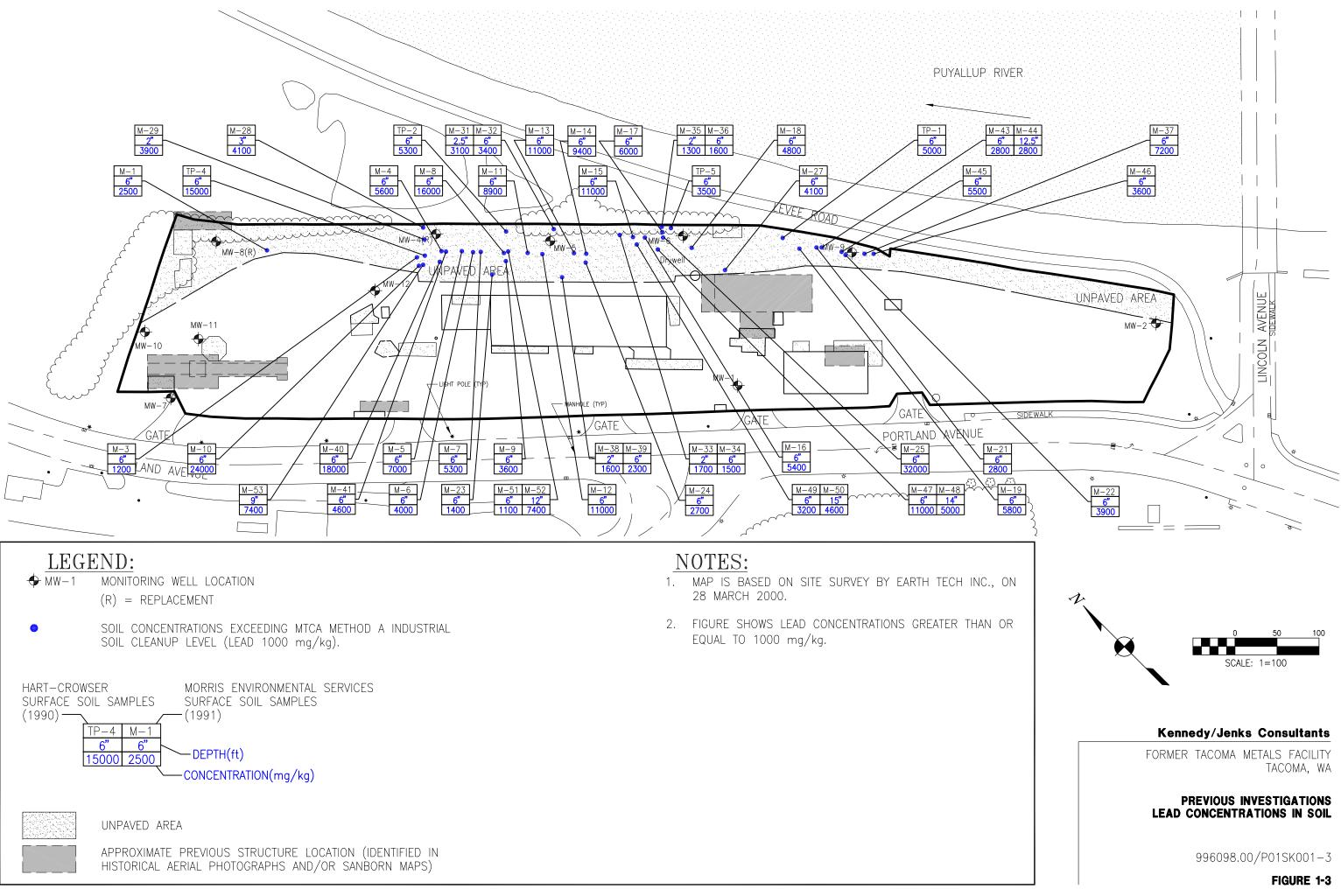
(c) LNAPL / DNAPL bailed or pumped from well after measurement.

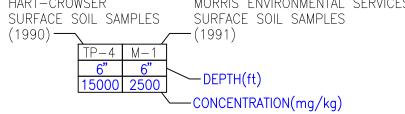
(d) "<" denotes that LNAPL was not detected.

Appendix C

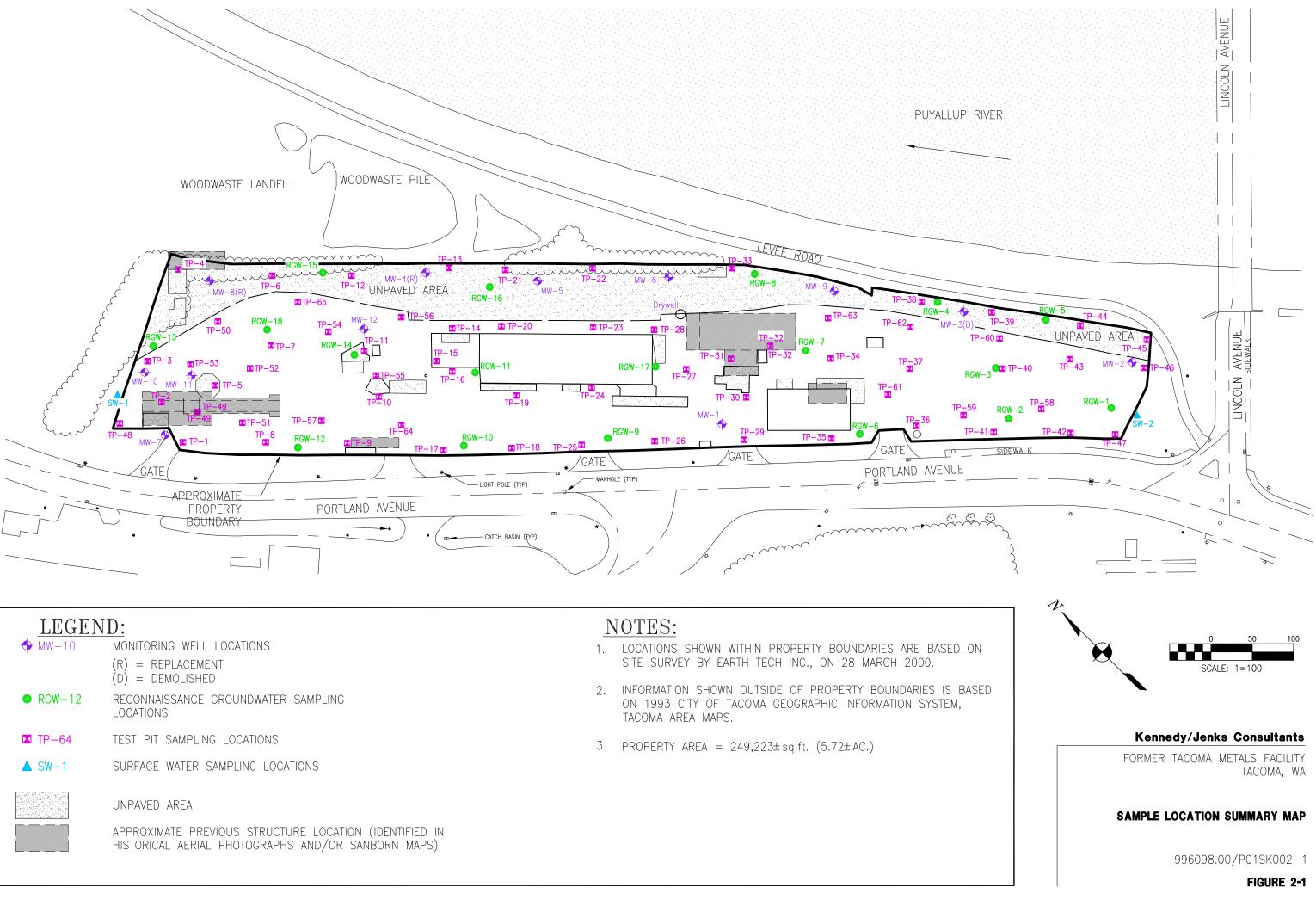

RI/FS Site Maps, Sample Maps, and Data Tables

Appendix C: RI/FS Site and Sample Maps and Data Tables

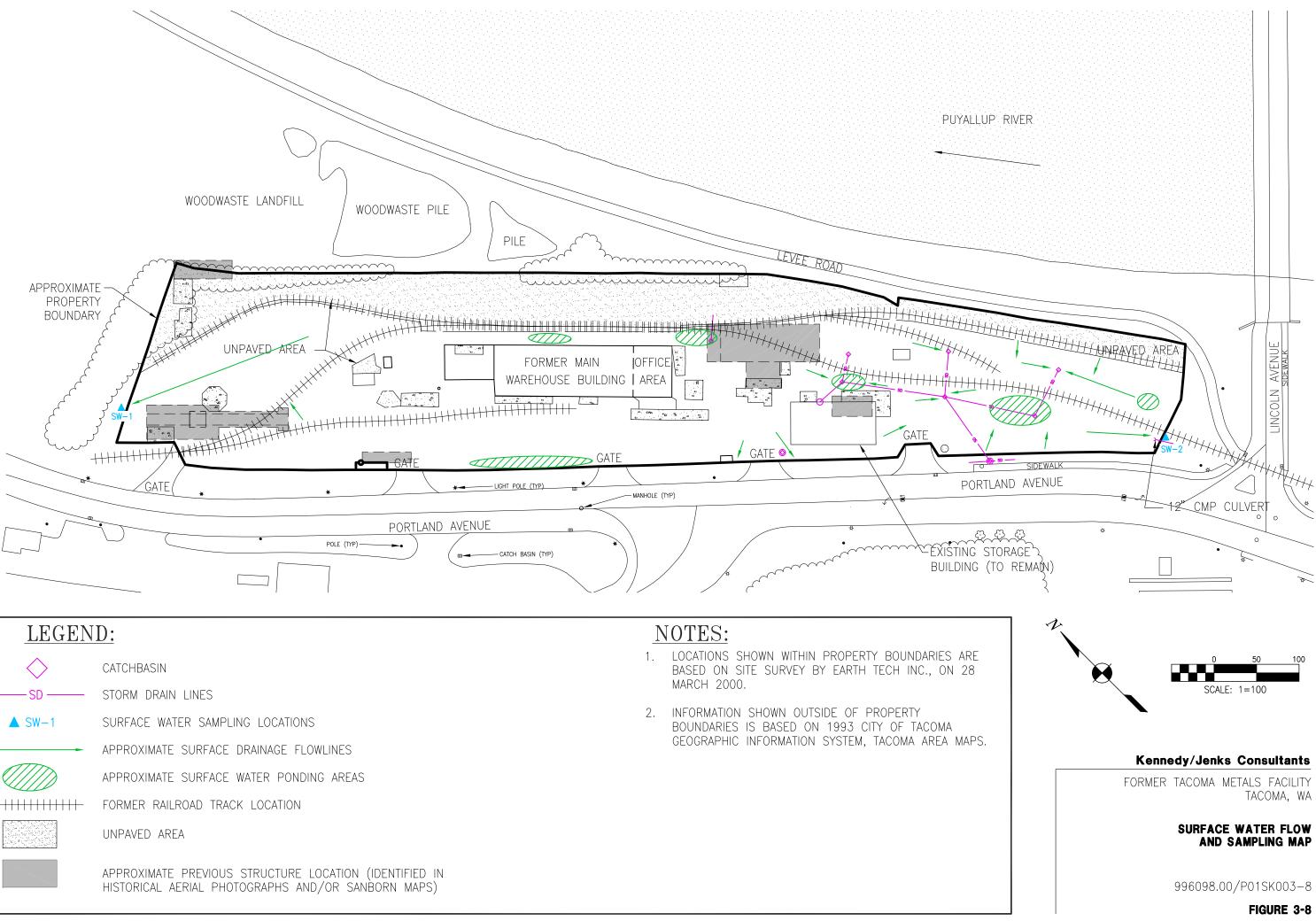

Table of Contents

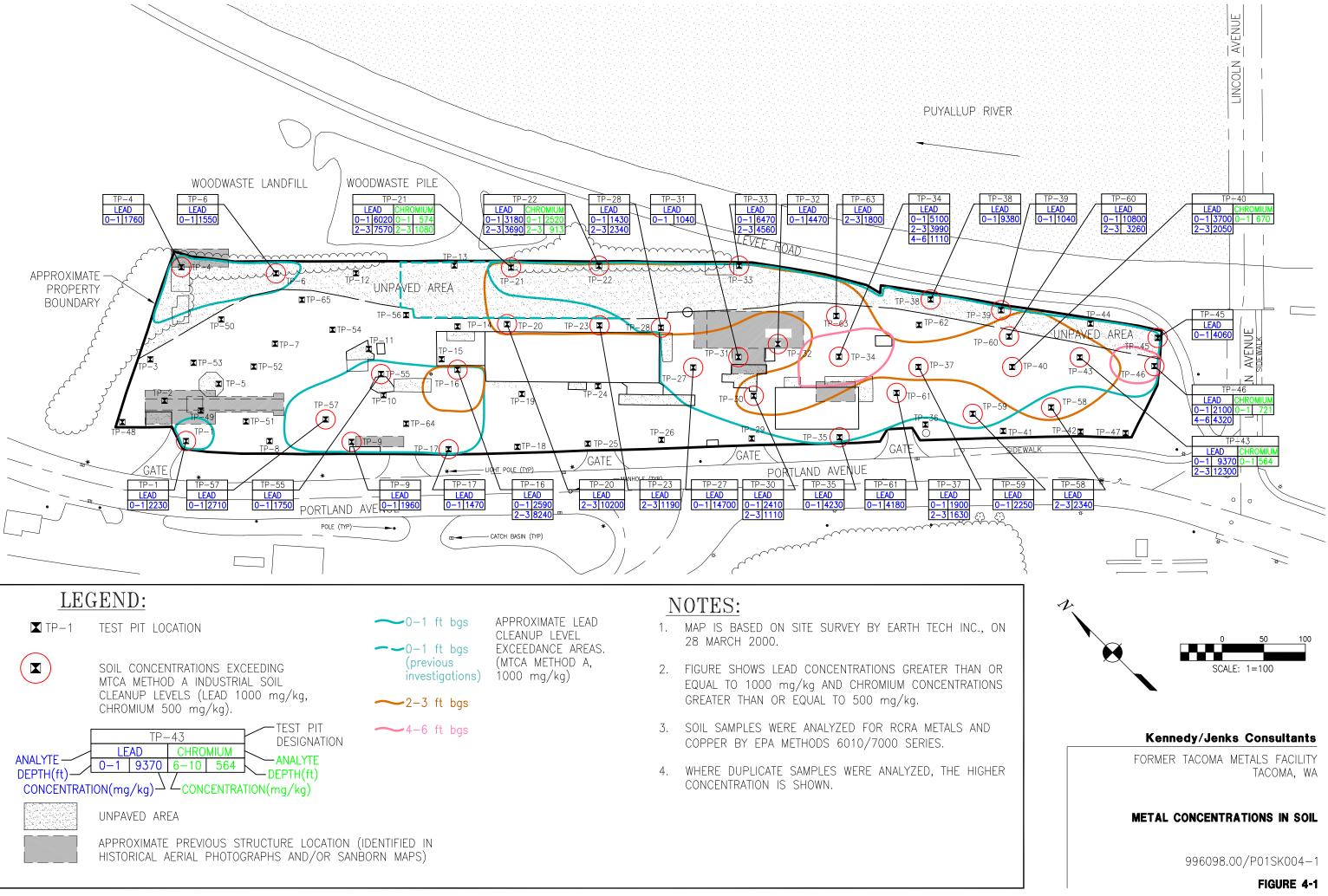

1)	Figure 1-2	Site Overview Map
2)	Figure 1-3	Previous Investigations Lead Concentrations in Soil
3)	Figure 2-1	Sample Location Summary Map
4)	Figure 3-8	Surface Water Flow and Sampling Map
5)	Figure 4-1	Metal Concentrations in Soil
6)	Figure 4-2	Total PCB Concentrations in Soil
7)	Figure 4-3	Total CPAH Concentrations in Soil
8)	Figure 4-4	Petroleum Hydrocarbon Concentrations in Soil
9)	Figure 5-1	Summary of Groundwater Analytical Results
10)	Table 4-1	Soil Analytical Results – Metals
11)	Table 4-2	Soil Analytical Results – PCBs
12)	Table 4-3	Soil Analytical Results – PAHs
13)	Table 4-4	Soil Analytical Results – TPHs and VOCs
14)	Table 4-5	Summary of Extractable Petroleum Hydrocarbons Analytical Results
15)	Table 4-6	Summary of TPH Interim Policy Calculations
16)	Table 4-7	Soil Analytical Results – TNT/DNT
17)	Table 4-8A	SPLP and TCLP Analytical Results – Metals
18)	Table 4-8B	SPLP and TCLP Analytical Results – PAHs
19)	Table 5-1	Reconnaissance Groundwater Analytical Results – Dissolved Metals
20)	Table 5-2	Reconnaissance Groundwater Analytical Results – PCBs
21)	Table 5-3	Reconnaissance Groundwater Analytical Results – PAHs
22)	Table 5-4	Reconnaissance Groundwater Analytical Results – TPHs and VOCs
23)	Table 5-5	Groundwater Analytical Results – Total Metals
24)	Table 5-6	Groundwater Analytical Results – Dissolved Metals
25)	Table 5-7	Groundwater Analytical Results – PCBs
26)	Table 5-8	Groundwater Analytical Results – PAHs
27)	Table 5-9	Groundwater Analytical Results – TPHs and VOCs
28)	Table 6-1	Remedial Investigation Surface Water Analytical Results

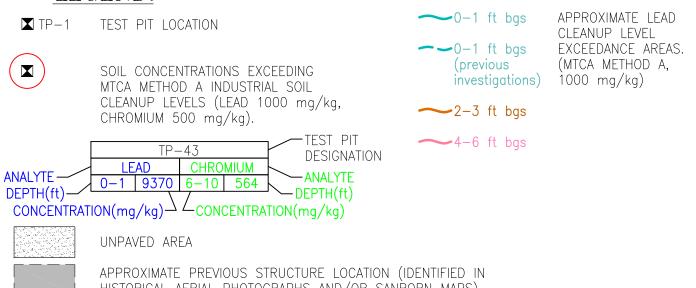
All materials included in Appendix C are from *Remedial Investigation / Feasibility Study Report* (Kennedy/Jenks Consultants 2001)

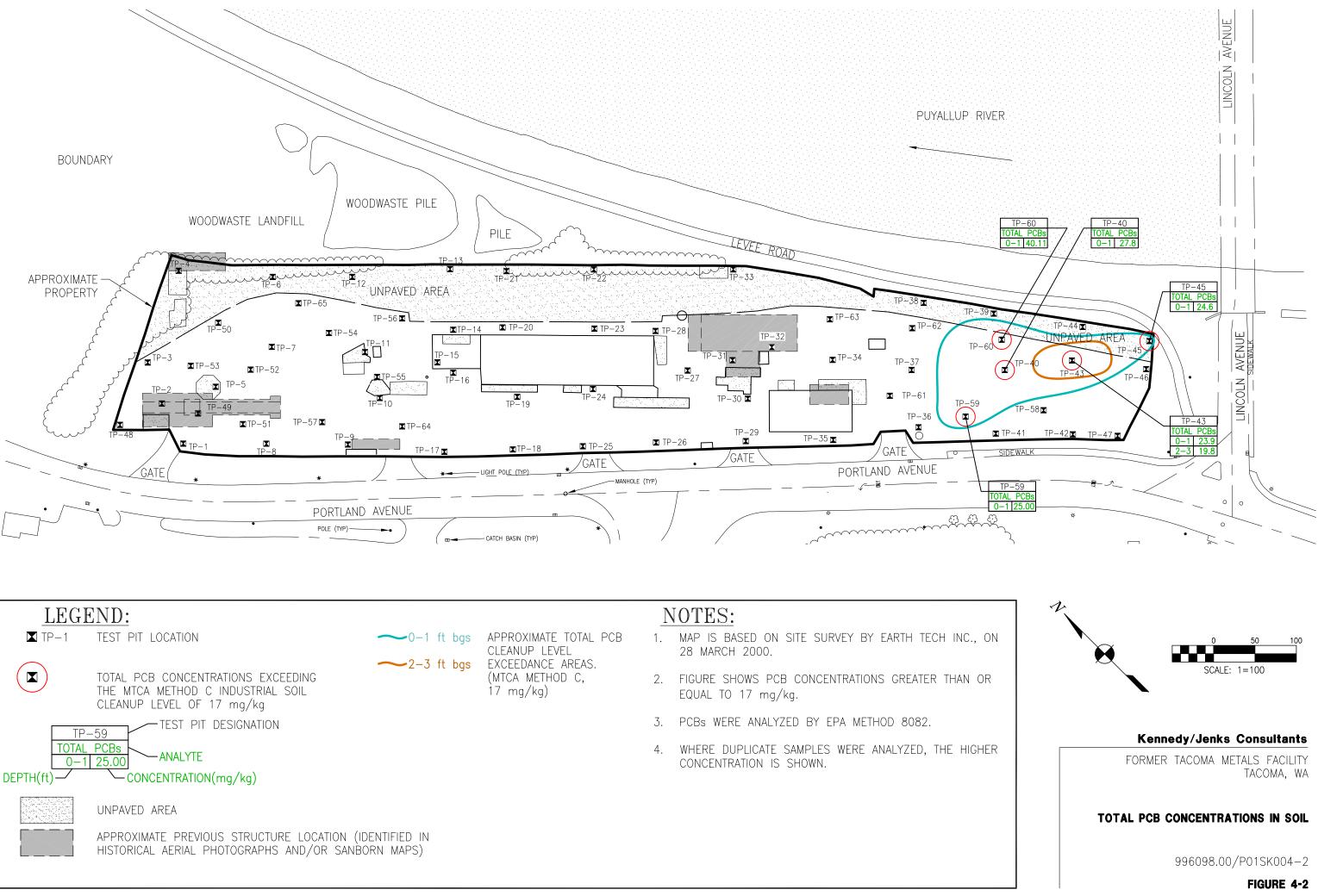


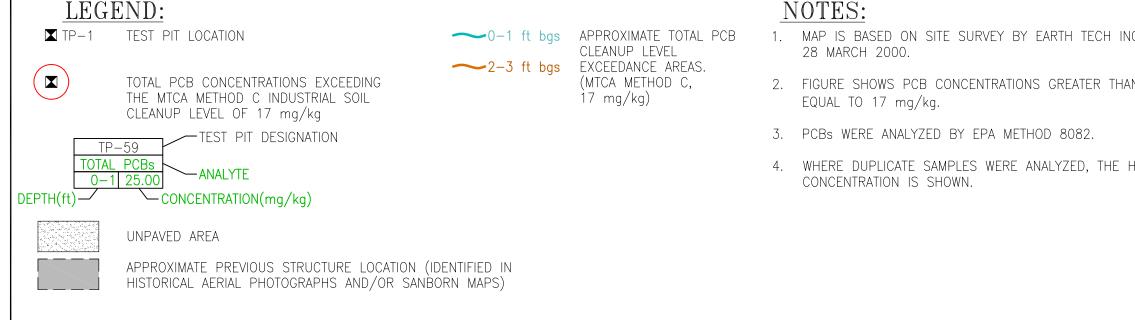
LEGEND	<u>):</u>
\diamond	CATCHBASIN
SD	STORMDRAIN LINES
· · · · · · · · · · · · · · · · · · ·	8' CHAINLINK FENCE W/BARBED WIRE
+++++++++++++++++++++++++++++++++++++++	FORMER RAILROAD TRACK LOCATION
+++++++++++++++++++++++++++++++++++++++	EXISTING RAILROAD TRACK LOCATION
	UNPAVED AREA
	CONCRETE
	APPROXIMATE PREVIOUS STRUCTURE LOCATION (IDENTIFIED IN HISTORICAL AERIAL PHOTOGRAPHS AND/OR SANBORN MAPS)
	FORMER CREOSOTING PLANT FEATURES (APPROXIMATE)
	FORMER COKE PLANT GAS DISTRIBUTION FEATURES (APPROXIN (3–5' ABOVE FORMER CREOSOTING PLANT FEATURES)

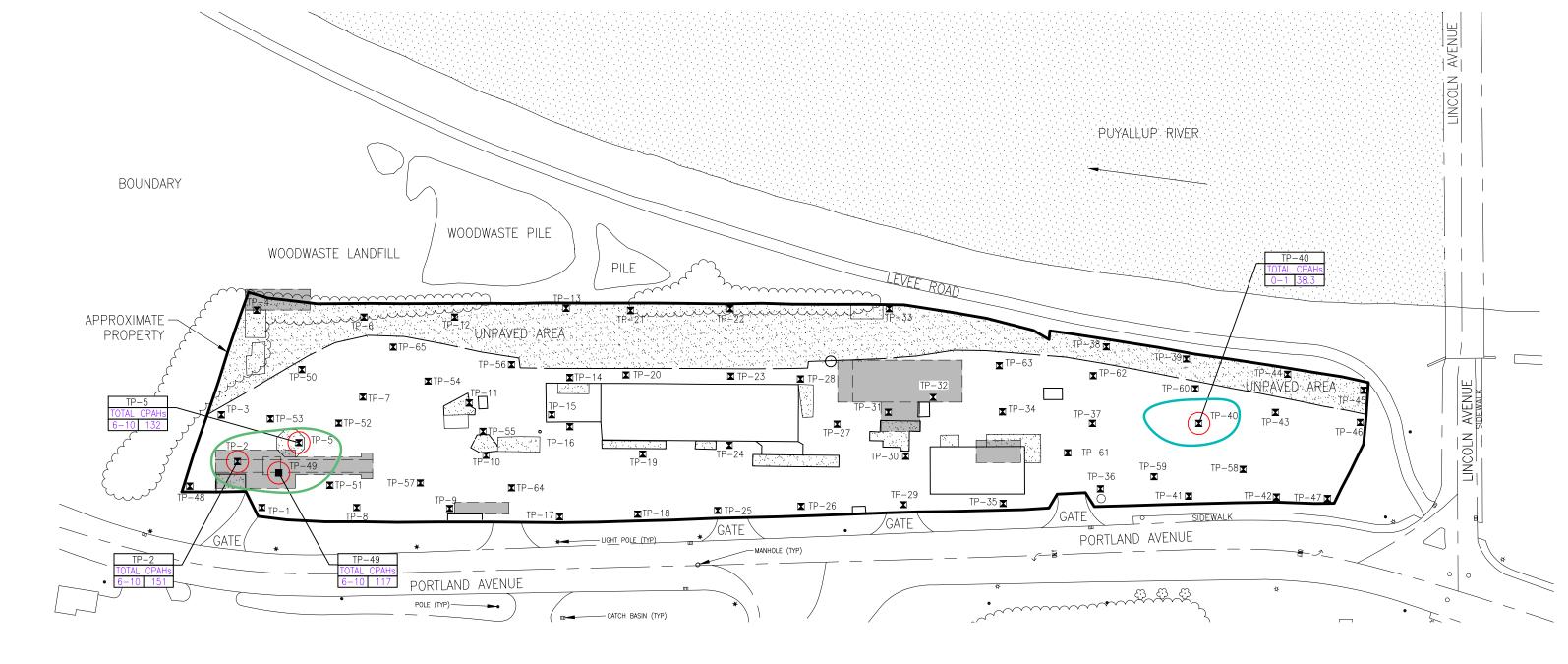


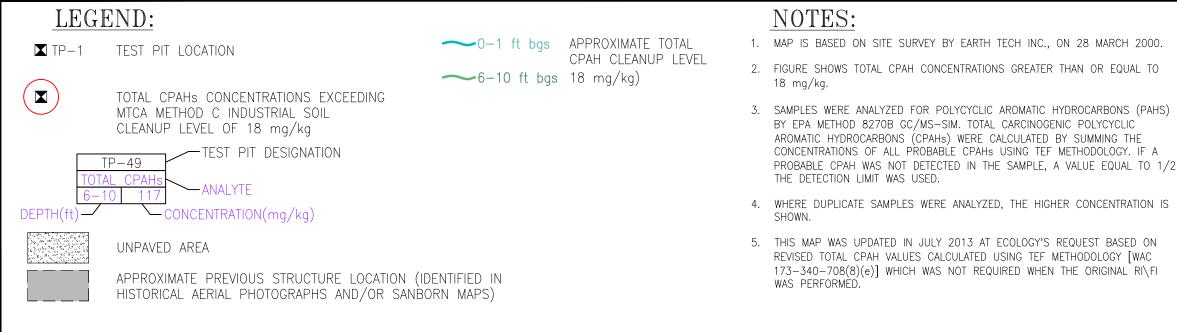


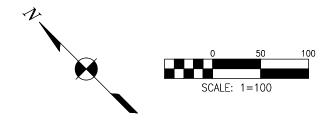


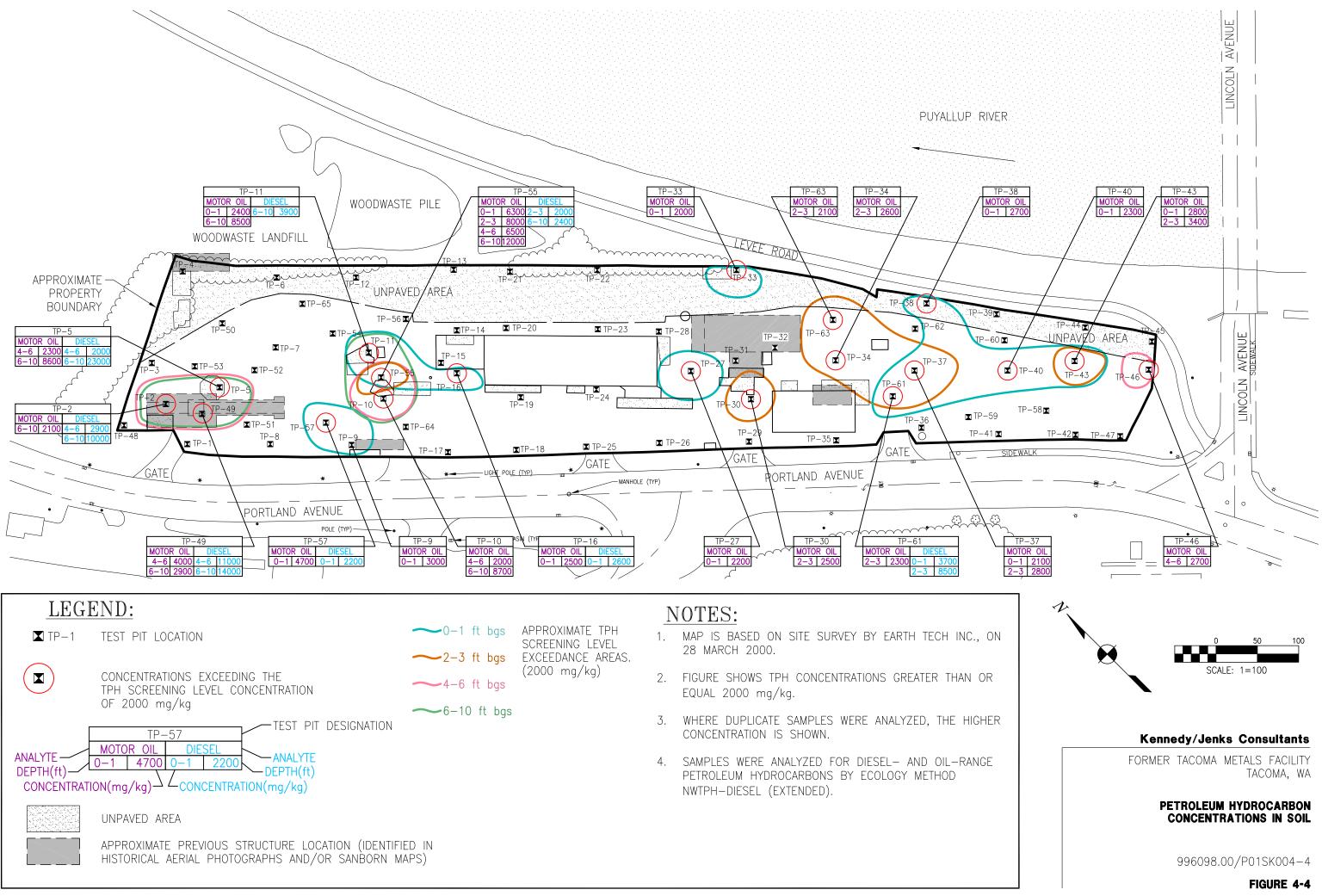

LEGEN	[D:
- ∲ MW−10	MONITORING WELL LOCATIONS
	<pre>(R) = REPLACEMENT (D) = DEMOLISHED</pre>
● RGW-12	RECONNAISSANCE GROUNDWATER SAMPLING LOCATIONS
¥ TP-64	TEST PIT SAMPLING LOCATIONS
▲ SW-1	SURFACE WATER SAMPLING LOCATIONS
	UNPAVED AREA
	APPROXIMATE PREVIOUS STRUCTURE LOCATION (IDENTIFIED IN HISTORICAL AERIAL PHOTOGRAPHS AND/OR SANBORN MAPS)










Kennedy/Jenks Consultants

FORMER TACOMA METALS FACILITY TACOMA, WA

TOTAL CPAH CONCENTRATIONS IN SOIL

996098.00\2013 RI UPDATE\FIG_04-3

FIGURE 4-3

							Total Metals	s (mg/kg) ^(a)			
Sample Designation	Sample Depth	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
TP-1	0-1'	9/27/2000	40	290	8.5	76	873	2,230	1.53	<10	1.4
	2-3'	9/27/2000	^(b)					120	0.11		
	4-6'	9/27/2000						90	1.53 <10		
	6-10'	9/27/2000						30			
TP-2	0-1'	9/27/2000	<10 ^(c)	404	18.2	67	1.090	831	0.88	<10	0.9
	2-3'	9/27/2000	<5	47.2	<0.2	18.6	20	10		-	<0.3
	4-6'	9/27/2000	<6	58.1	<0.2	15.4	35.2	85	< 0.06		0.4
	6-10'	9/27/2000	<6	53.8	1.1	18.6	79.6	72			<0.4
TP-3	0-1'	9/27/2000	<5	63.5	2.7	26.9	44.1	46	0.13	<5	<0.3
	2-3'	9/27/2000									
	4-6'	9/27/2000	7	63.8	0.4	15.4	33.2	106	0.21	<7	<0.4
	6-10'	9/27/2000	<10	110	<0.5	18	42.4	93	0.13	<10	<0.7
TP-4	TP-4 0-1' 9/27/200 2-3' 9/27/200 4-6' 9/27/200 6-10' 9/27/200 TP-5 0-1'	9/27/2000	30	609	21.6	82	4,650	1,760	0.55	<10	1.2
	TP-4 0-1' 9/27/20 2-3' 9/27/20 4-6' 9/27/20 6-10' 9/27/20 7P-5 0-1' 2-3' 10/4/20 2-3' 10/4/20	9/27/2000			8			443			
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
	4-6' 9/27/2000 6-10' 9/27/2000 TP-4 0-1' 9/27/2000 2-3' 9/27/2000 4-6' 9/27/2000 6-10' 9/27/2000 6-10' 9/27/2000 6-10' 9/27/2000 4-6' 10/4/2000 4-6' 10/4/2000 6-10' 10/4/2000 6-10' 10/4/2000 2-3' 10/4/2000 2-3' 10/4/2000 4-6' 10/4/2000 6-10' 10/4/2000	<7	60.1	<0.3	16.9	24.6	9	<0.06	<7	<0.4	
TP-5	2-3' 9/27/2000 4-6' 9/27/2000 6-10' 9/27/2000 <7	<5	59.4	<0.2	59.9	28	8	< 0.05	5	0.4	
	2-3' 9/27/2000 8 4-6' 9/27/2000 8 6-10' 9/27/2000 6-10' 9/27/2000 <7										
	-		-	-						-	<0.4
	6-10'	10/4/2000	<10	52.3	<0.5	24	56.1	248	0.3	<10	<0.8
TP-6/600 ^(d)	0-1'	10/4/2000	30/30	196/208	5.6/4.9	92/59	711/237	1,550 /867	0.5/0.45	20/20	1.9/2.1
	2-3'	10/4/2000						54			
	4-6'	10/4/2000						40			
	6-10'	10/4/2000						60			
TP-7	0-1'		10	697	12.3	103	361	796	0.88	8	1.5
	2-3'	10/4/2000			9						
	4-6'	10/4/2000									
	6-10'	10/4/2000									
TP-8	0-1'	10/4/2000	<5	235	0.9	33.9	41	31	<0.05		0.3
	2-3'	10/4/2000									
TP-8/800	4-6'	10/4/2000	<6/<5	38.4/42.1	0.3/<0.2	17.5/15.7	29.6/47.8	25/26	<0.06/<0.05		<0.4/0.7
	6-10'	10/4/2000									
TP-9	0-1'	10/5/2000	40	1,990	59	132	1,260	1,960			<2
	2-3'	10/5/2000						20			
	4-6'	10/5/2000	<6	224	2.1	24.2	59.9	93		-	<0.4
TD / 4	6-10'	10/5/2000									
TP-10	0-1'	10/5/2000	<5	218	4.2	49.2	217	460		-	0.5
	2-3'	10/5/2000									
	4-6'	10/5/2000	<5	61	0.7	32.2	60.3	72	0.07	<5	0.3
	6-10'	10/5/2000	<6	49.5	0.4	28.8	29.3	15	<0.06	<6	<0.4
MTCA Method ((f)		(1)			
Soil Cleanup Le			219	245,000	3,500	500 ^(f)	130,000	1,000 ^(f)	1,050	17,500	17,500

							Total Metals	s (mg/kg) ^(a)			
Sample Designation	Sample Depth	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
TP-11	0-1'	10/5/2000	<5	254	5.7	54.4	157	202	0.27	5	0.3
	2-3'	10/5/2000									
	4-6'	10/5/2000									
	6-10'	10/5/2000	<9	164	<0.3	18.4	31.5	57	0.1	<9	<0.5
TP-12	0-1'	10/5/2000	<5	37.5	3.3	19.4	21.3	17	< 0.04	<5	<0.3
	2-3'	10/5/2000									
	4-6'	10/5/2000									
	6-10'	10/5/2000									
TP-13	0-1'	10/5/2000	<5	96	3	49.3	266	167	0.71	<5	1
	2-3'	10/5/2000									
	4-6'	10/5/2000									
	6-10'	10/5/2000									
TP-14	0-1'	10/6/2000	<5	41.8	<0.2	22.2	13	8	< 0.05	<5	<0.3
	2-3'	10/6/2000						560			
	4-6'	10/6/2000						20			
	6-10'	10/6/2000	<6	84.9	2.3	35.3	78.6	152	0.07	<6	< 0.4
TP-15	0-1'	10/6/2000	<5	42.6	<0.2	32.8	29.4	79	< 0.04	<5	0.3
-	2-3'	10/6/2000									
	4-6'	10/6/2000									
	6-10'	10/6/2000									
TP-16/160	0-1'	10/6/2000	40/30	999/592	45/22	105/85	804/1,210	2,590/2,040	1.82/2.19	<30/<30	2/2
	2-3'	10/6/2000			68			8,240			
TP-17	0-1'	10/6/2000	60	272	15	120	2.930	1,470	0.4	<50	<3
	2-3'	10/6/2000					_,	30			
	4-6'	10/6/2000						30			
	6-10'	10/6/2000						20			
TP-18	0-1'	10/10/2000	8	107	3.3	26.3	451	311	0.88	<5	0.9
	2-3'	10/10/2000									
	4-6'	10/10/2000									
	6-10'	10/10/2000									
TP-19	0-1'	10/10/2000	20	111	4	46	1.060	204	1.35	<10	3.4
	2-3'	10/10/2000									
	4-6'	10/10/2000									
	6-10'	10/10/2000									
TP-20	0-1'	10/10/2000	<6	35.9	<0.2	22	17.2	6	<0.06	6	<0.3
TP-20/2000 ^(g)	2-3'	10/10/2000	20/<10	304/292	17/26.2	84/83	6,970/4,350	6,790/10,200	0.94/0.95	<30/<10	<2/2.8
17-20/2000	<u>2-3</u> 4-6'	10/10/2000	20/<10								<2/2.8
					1			540			
TOANAL	6-10'	10/10/2000						230			
ITCA Method ((6)		(1)			
oil Cleanup Le	vels ^(e)		219	245,000	3,500	500 ^(f)	130,000	1,000 ^(f)	1,050	17,500	17,500

Analytes detected in samples at concentrations exceeding respective cleanup levels are shown in bold and italics.

Page 2 of 7

							Total Metal	s (mg/kg) ^(a)			
Sample Designation	Sample Depth	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
TP-21	0-1'	10/10/2000	70	1,580	66	574	12,800	6,020	22.4	<30	31
	2-3'	10/10/2000	<300	4,190	130	1,080	13,200	7,570	10.2	<300	90
	4-6'	10/10/2000			<1	42		20			
	6-10'	10/10/2000						50			
TP-22	0-1'	10/10/2000	30	372	51	2,520	13,000	3,180	5.3	<30	36
	2-3'	10/10/2000	<60	464	52	913	20,200	3,690	5.1	<60	198
	4-6'	10/10/2000				47		360			
	6-10'	10/10/2000						80			
TP-23	0-1'	10/11/2000	<5	40.4	<0.2	25.1	21.9	11	<0.04	<5	<0.3
	2-3'	10/11/2000	30	376	15.3	127	1,560	1,190	1.21	<10	1.4
	4-6'	10/11/2000						140	0.19		
	6-10'	10/11/2000						130			
TP-24	0-1'	10/11/2000	6	105	2.3	34.3	539	438	0.7	6	0.5
	2-3'	10/11/2000									
	4-6'	10/11/2000									
	6-10'	10/11/2000									
TP-25	0-1'	10/11/2000	<5	52.5	0.3	28.4	151	48	0.14	<5	<0.3
	2-3'	10/11/2000									
	4-6'	10/11/2000									
	6-10'	10/11/2000									
TP-26	0-1'	10/11/2000	<5	47.4	0.3	30.3	21.6	9	<0.05	<5	<0.3
	2-3'	10/11/2000									
	4-6'	10/11/2000	<6	272	0.2	20.8	40.9	17	<0.05	<6	<0.3
	6-10'	10/11/2000	<7	80.1	<0.3	17.3	31.1	13	<0.06	<7	<0.4
TP-27/270	0-1'	10/11/2000	30/40	261/259	6.8/8.4	99/119	577/806	5,000/14,700	1.83/1.62	<10/<10	1.2/1.7
	2-3'	10/11/2000	<10	217	6.2	49	3,130	575	1.82	<10	1.3
	4-6'	10/11/2000							<0.06		
	6-10'	10/11/2000									
TP-28	0-1'	10/11/2000	20	382	16.5	91	789	1,430	1.56	10	1.5
	2-3'	10/11/2000	20	444	16.5	88	3,000	2,340	1.12	<10	1.8
	4-6'	10/11/2000			<1			<10	<0.05		
TD 20	6-10'	10/11/2000						7			
TP-29	0-1'	10/12/2000	5	67.9	0.2	29.7	24.6	16	<0.04	<5	<0.3
	2-3'	10/12/2000									
	4-6'	10/12/2000 10/12/2000									
TP-30	6-10'	10/12/2000									
18-30	0-1'		30	733	59.5	108	1,960	2,410	2.06	<10	2.6
	2-3' 4-6'	10/12/2000	20	805	21.2 <1	90	540	1,110 <10	0.57	<10	1.4
	4-6 6-10'	10/12/2000			<1			<10 50			
		10/12/2000						50			
MTCA Method				0.15.000	0.500	= 0 0 (f)	100.005	(000(f)	4 9 5 9	17 500	17 500
Soil Cleanup Le			219	245,000	3,500	500 ^(f)	130,000	1,000 ^(f)	1,050	17,500	17,500

							Total Metals	s (mg/kg) ^(a)			
Sample Designation	Sample Depth	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
TP-31	0-1'	10/12/2000	<10	558	19.3	58	417	1,040	0.63	<10	1
	2-3'	10/12/2000	<10	189	6.4	40	182	387	0.42	<10	0.7
	4-6'	10/12/2000									
	6-10'	10/12/2000									
TP-32	0-1'	10/12/2000	30	2,010	84	271	3,720	4,470	2.36	<30	3
TP-33	0-1'	10/12/2000	40	3,070	89	353	2,970	6,470	2.91	<30	5
	2-3'	10/12/2000						4,560	1.69		
	4-6'	10/12/2000						10			
	6-10'	10/12/2000						70			
TP-34/340	0-1'	10/12/2000	<10/<30	196/1,740	4/42	65.6/92	4,030/1,640	1,530/5,100	0.93/1.23	<10/<30	1.6/<2
	2-3'	10/12/2000	30	1,400	52	91	1,570	3,990	1.08	<30	<2
	4-6'	10/12/2000						1,110	< 0.05		
	6-10'	10/12/2000						40			
TP-35	0-1'	10/13/2000	<10	290	8.4	153	1,260	4,230	0.52	<10	2.2
	2-3'	10/13/2000						240			
	4-6'	10/13/2000						30			
	6-10'	10/13/2000						20			
TP-36	0-1'	10/13/2000	<10	54.5	0.9	31	39.3	36	0.12	<10	<0.6
	2-3'	10/13/2000									
	4-6'	10/13/2000									
	6-10'	10/13/2000	<10	31.7	0.5	19	25.3	15	0.06	<10	<0.8
TP-37	0-1'	10/13/2000	30	979	26.6	124	625	1,900	4.18	10	1.1
	2-3'	10/13/2000	20	1,630	24.7	112	483	1,630	2.66	<10	<0.6
	4-6'	10/13/2000			<1			20	< 0.05		
	6-10'	10/13/2000						30			
TP-38	0-1'	10/13/2000	60	2,710	125	263	3,320	9,380	14.3	30	6
	2-3'	10/13/2000						70	0.12		
	4-6'	10/13/2000						50			
	6-10'	10/13/2000						11			
TP-39/390	0-1'	10/13/2000	10/<10	110/134	13.2/16.8	30/27	1,100/107	1,040 /374	0.21/0.24	<10/<10	<0.8/<0.7
	2-3'	10/13/2000			10.4						
	4-6'	10/13/2000									
	6-10'	10/13/2000									
TP-40	0-1'	10/13/2000	60	738	36	670	2,530	3,700	15	<50	4
	2-3'	10/13/2000	<30	851	40	212	1,240	2,050	3.19	<30	3
	4-6'	10/13/2000	<10	126	3.7	31	94	192	0.22	<10	<0.7
4 6- TP-40 00 2 4 6-	6-10'	10/13/2000									
MTCA Method	TP-40 0-1' 2-3' 4-6'	·									
Soil Cleanup Le	vels (e)		219	245,000	3,500	500 ^(f)	130,000	1,000 ^(f)	1,050	17,500	17,500

				-			Total Metals	s (mg/kg) ^(a)		-	
Sample Designation	Sample Depth	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
TP-41	0-1'	10/16/2000	<30	38	<1	39	20	20	5.5	<30	<2
	2-3'	10/16/2000									
	4-6'	10/16/2000									
	6-10'	10/16/2000									
TP-42	0-1'	10/16/2000	<30	78	2	31	98	130	4.33	<30	<2
	2-3'	10/16/2000									
	4-6'	10/16/2000									
	6-10'	10/16/2000									
TP-43/430	0-1'	10/16/2000	90/80	1,620/1,400	53/54	564/566	5,620/5,000	5,840/9,370	47/41	<30/<30	5/6
	2-3'	10/16/2000	80	1,280	46	259	2,520	12,300	21	<30	5
	4-6'	10/16/2000			<1			10	<0.04		
	6-10'	10/16/2000						70			
TP-44	0-1'	10/13/2000	<10	27.2	0.4	17.2	21.5	13	<0.05	<10	<0.6
	2-3'	10/13/2000									
	4-6'	10/13/2000									
	6-10'	10/13/2000									
TP-45	0-1'	10/16/2000	100	774	30	368	3,560	4,060	47	30	7
	2-3'	10/16/2000			15			950	16		
	4-6'	10/16/2000						180			
	6'-10'	10/16/2000						80			
TP-46	0-1'	10/16/2000	40	302	15	721	1,820	2,100	10.6	<30	69
	2-3'	10/16/2000			9	104		970	2.88		
	4-6'	10/16/2000	50	1,910	93	93	1,180	4,320	0.83	<30	2
	6'-10'	10/16/2000				0.9		82			
TP-47	0-1'	10/16/2000	<30	33	<1	25	13	<10	<0.05	<30	<2
	2-3'	10/16/2000									
	4-6'	10/16/2000									
	6'-10'	10/16/2000									
TP-48	0-1'	10/17/2000	40	232	8	52	588	630	0.45	<30	<2
	2-3'	10/17/2000									
	4-6'	10/17/2000									
	6'-8.5'	10/17/2000	<70	67	<3	18	45	40	<0.1	<70	<4
TP-49	0-1'	10/17/2000	<30	71	1	33	78	150	0.13	<30	<2
	2-3'	10/17/2000	<30	64	<1	20	20	10	<0.05	<30	<2
	4-6'	10/17/2000	<30	78	<1	15	20	150	0.44	<30	<2
	6'-10'	10/17/2000	<50	51	<2	23	942	430	0.12	<50	<3
MTCA Method (
Soil Cleanup Le	vels ^(e)		219	245,000	3,500	500 ^(f)	130,000	1,000 ^(f)	1,050	17,500	17,500

							Total Metals	(mg/kg) ^(a)			
Sample Designation	Sample Depth	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
TP-50/500	0-1'	10/17/2000	<30/<30	208/293	8/18	37/55	1,100/530	380/570	0.49/0.61	<30/<30	<2/<2
	2-3'	10/17/2000	<30	69	<1	44	29	150	<0.05	<30	<2
	4-6'	10/17/2000									
	6'-10'	10/17/2000									
TP-51	0-1'	11/14/2000	<30	73	<1	34	61	100	0.05	<30	<2
	2-3'	11/14/2000									
	4-6'	11/14/2000									
	6'-10'	11/14/2000									
TP-52	0-1'	11/14/2000	<20	50	<1.0	27	38.2	38	0.06	<20	<1
	2-3'	11/14/2000									
	4-6'	11/14/2000									
	6'-10'	11/14/2000									
TP-53	0-1'	11/14/2000	<30	63	<1	31	40	20	0.05	<30	<2
	2-3'	11/14/2000									
	4-6'	11/14/2000									
	6'-10'	11/14/2000									
TP-54	0-1'	11/14/2000	<30	242	8	48	273	410	0.98	<30	<2
	2-3'	11/14/2000									
	4-6'	11/14/2000									
	6'-10'	11/14/2000									
TP-55	0-1'	11/14/2000	<30	1,080	29	117	465	1,750	0.83	<30	<2
	2-3'	11/14/2000			21.1			772			
	4-6'	11/14/2000						106			
	6'-10'	11/14/2000						70			
TP-56	0-1'	11/14/2000	<30	63	2	31	88	70	0.12	<30	<2
	2-3'	11/14/2000									
	4-6'	11/14/2000									
	6'-10'	11/14/2000									
TP-57	0-1'	11/14/2000	60	2,740	70	145	7,410	2,710	0.6	40	<2
	2-3'	11/14/2000			1.7			28			
	4-6'	11/14/2000						80			
	6'-10'	11/14/2000						23			
TP-58	0-1'	11/15/2000	<30	45	<1	29	21	<10	0.06	<30	<2
	2-3'	11/15/2000	<30	602	17	105	2,070	2,340	62	<30	<2
	4-6'	11/15/2000			<0.5			9			
	6'-10'	11/15/2000						70			
TP-59	0-1'	11/15/2000	40	871	34	173	3,010	2,250	1.55	<30	2
	2-3'	11/15/2000	<30	194	9	35	388	350	0.22	<30	<2
	4-6'	11/15/2000									
	6-10'	11/15/2000									
ITCA Method						(f)		(f)			
Soil Cleanup Le	vels (e)		219	245,000	3,500	500 ^(f)	130,000	1,000 ^(f)	1,050	17,500	17,500

							Total Metals	s (mg/kg) ^(a)			
Sample Designation	Sample Depth	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
TP-60	0-1'	11/15/2000	50	1,050	30	225	2,330	10,800	77	40	2
	2-3'	11/15/2000	<30	1,410	20	99	773	3,260	1.41	<30	<2
	4-6'	11/15/2000			0.9			116	0.08		
	6-10'	11/15/2000						49			
TP-61	0-1'	11/15/2000	<30	377	10	53	356	4,180	0.76	<30	<2
	2-3'	11/15/2000	<30	352	1	25	40	80	0.23	<30	<2
	4-6'	11/15/2000									
	6-10'	11/15/2000									
TP-62	0-1'	11/15/2000	<30	201	5	72	208	420	0.92	<30	2
	2-3'	11/15/2000	<30	265	11	283	407	800	2.05	<30	<2
	4-6'	11/15/2000			<0.5				< 0.04		
	6-10'	11/15/2000									
TP-63	0-1'	11/15/2000	<30	584	38	61	304	700	0.37	<30	<2
	2-3'	11/15/2000	<30	637	50	64	299	1,800	0.24	30	<2
	4-6'	11/15/2000			0.7			123			
	6-10'	11/15/2000						102			
TP-64	0-1'	11/15/2000	<30	163	5	31	459	450	0.98	<30	<2
	2-3'	11/15/2000									
	4-6'	11/15/2000									
	6-10'	11/15/2000									
TP-65	0-1'	11/15/2000	<30	58	<1	28	19	<10	0.05	<30	<2
	2-3'	11/15/2000									
	4-6'	11/15/2000									
	6-10'	11/15/2000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
MTCA Method	C Industrial										
Soil Cleanup Le	evels ^(e)		219	245,000	3,500	500 ^(f)	130,000	1,000 ^(f)	1,050	17,500	17,500

Analytes detected in samples at concentrations exceeding respective cleanup levels are shown in bold and italics.

Notes

(a) Soil samples were analyzed for total metals by EPA Methods 6010/7000 series.

(b) "---" Sample not tested for selected analyte.

(c) "<" denotes analyte was not detected at the indicated reporting limit.

(d) Second number signifies analysis of duplicate sample.

(e) MTCA Method C industrial soil cleanup levels are based on CLARC II, dated February 1996.

(f) Method A industrial soil cleanup levels (WAC 173-340-745) used where Method C soil industrial cleanup levels are not available.

(g) TP-20/2000-2-3 was re-analyzed for lead and arsenic due to suspected sample homogeneity issues. (The re-analysis result is presented in this table).

mg/kg - milligrams per kilogram

					PCBs (mg/kg) ^(a))			
Sample	Sample								Total
Designation	Depth	Aroclor 1016	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1221	Aroclor 1232	PCBs ^(b)
TP-1	0-1'	< 0.036 ^(c)	<0.036	<0.036	0.64	0.50	<0.073	<0.036	1.25
TP-3	0-1'	<0.035	<0.035	<0.035	0.17	0.061	<0.070	<0.035	0.336
TP-4	0-1'	<0.037	<0.037	1.1	4.7	2.4	<0.073	<0.037	8.3
	2-3'	<0.035	<0.035	0.390	1.4	0.970	<0.071	<0.035	2.85
TP-5	0-1'	< 0.036	<0.036	<0.036	<0.036	<0.036	<0.073	<0.036	0.145
TP-6	0-1'	< 0.036	<0.036	0.110	0.360	0.300	<0.073	<0.036	0.86
	2-3'	<0.035	<0.035	0.018J	0.050	0.028J	<0.069	<0.035	0.183
TP-7	0-1'	<0.370	<0.370	4.3	7.7	2.7	<0.740	<0.370	0.186
	2-3'	<0.036	<0.036	2.1	5.2	1.9	<0.071	<0.036	9.28
TP-9	0-1'	<0.040	0.53	<0.040	0.87	1.1	<0.081	<0.040	2.6
TP-10	0-1'	<0.037	<0.037	0.56	0.65	0.29	<0.073	<0.037	1.6
	2-3'	<0.037	<0.037	<0.037	0.045	<0.037	<0.074	<0.037	0.17
TP-11	0-1'	<0.036	<0.036	0.52	1.5Y	1.1	<0.073	<0.036	3.21
TP-12	0-1'	<0.035	<0.035	0.031J	0.063	0.030J	<0.069	<0.035	0.211
	2-3'	<0.034	<0.034	0.150	0.430	0.170	<0.068	<0.034	0.835
TP-13	0-1'	<0.034	<0.034	<0.034	1	2	<0.069	<0.034	3.1
TP-14	0-1'	<0.034	<0.034	<0.034	<0.034	<0.034	<0.069	<0.034	0.14
	2-3'	<0.037	<0.037	0.098Y	0.60	0.26	<0.073	<0.037	1.05
TP-15	0-1'	<0.035	<0.035	<0.035	0.043	0.058	<0.070	<0.035	0.206
TP-16/160 ^(d)	0-1'	<1.1/<0.040	<1.1/<0.040	1.0J/0.39	3.1/1.9	4.6/2.7	<2.3/<0.080	<1.1/<0.040	11.5/5.09
TP-17	0-1'	<0.035	<0.035	0.43	0.67	1.6	<0.071	<0.035	2.79
TP-19	0-1'	<0.038	<0.038	<0.038	0.057	0.060	<0.076	<0.038	0.231
TP-20	0-1'	<0.035	<0.035	<0.035	0.020J	0.023J	<0.070	<0.035	0.148
	2-3'	< 0.036	<0.036	0.180Y	0.970	0.320	<0.072	<0.036	1.56
TP-21	0-1'	<0.041	<0.041	1.4	6.9	5.2	<0.082	<0.041	13.6
	2-3'	<0.040	0.088	<0.040	2.3	1.1	<0.080	<0.040	3.6
TP-22	0-1'	<0.042	<0.042	0.43Y	1.4	0.66	<0.083	<0.042	2.59
	2-3'	<0.041	<0.041	0.520Y	1.3	0.990	<0.083	<0.041	2.91
TP-23	0-1'	<0.035	<0.035	<0.035	0.019J	0.020J	<0.070	<0.035	0.144
TP-25	0-1'	<0.036	<0.036	0.042	0.043	0.048	<0.072	<0.036	0.223
TP-27/270 ^(d)	0-1'	<0.038/<0.039	<0.038/<0.039	0.14/0.14	0.53/0.49	0.94/0.93	<0.077/<0.077	<0.038/<0.039	1.7/1.66
TP-29	0-1'	<0.036	<0036	<0.036	<0.036	0.024J	<0.071	<0.036	0.15
TP-31	0-1'	<0.037	<0.037	0.15	0.71	0.76	<0.074	<0.037	1.71
TP-33	0-1'	<0.037	<0.037	0.52	1.7	1.2	<0.075	<0.037	3.51
TP-34 ^(e)	0-1'	<0.040	<0.040	0.12	0.57	0.5	<0.080	<0.040	1.3
	2-3'	<0.041	<0.041	0.11	0.51	0.40	<0.081	<0.041	1.12
TP-35	0-1'	< 0.036	<0.036	<0.036	0.21	0.30	<0.073	<0.036	0.619
TP-36	0-1'	<0.037	<0.037	0.031J	0.056	0.060	<0.074	<0.037	0.24
TP-37	0-1'	<0.037	<0.037	0.46	1.5	1.3	<0.074	<0.037	3.35
TP-39/390 ^(d)	0-1'	<0.035/<0.042	<0.035<0.042	<0.035<0.042	2.7/1.5	<0.035/<0.042	<0.069/<0.084	<0.035/<0.042	2.82/1.65
TP-40	0-1'	<0.038	<0.038	3.7Y	18	6	<0.077	<0.038	27.8
	2-3'	<0.038	<0.038	0.600Y	3.2	1.7	<0.076	<0.038	5.6
MTCA Method C Indus	strial								
Soil Cleanup Levels ^(f)		NA ^(g)	NA	NA	NA	NA	NA	NA	17
Analytes detected in		n						ıI	

					PCBs (mg/kg) ^{(a})			
Sample	Sample								Total
Designation	Depth	Aroclor 1016	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1221	Aroclor 1232	PCBs ^(b)
TP-41	0-1'	<0.035	<0.035	<0.035	0.049	0.021J	<0.070	<0.035	0.175
TP-43/430 ^(d)	0-1'	<0.48/<0.46	<0.48/<0.46	2.6Y/2.2Y	14/11	6.8/5.8	<0.95/<0.92	<0.48/<0.46	23.9/20.2
	2-3'	<0.47	<0.47	1.9Y	8.1	8.6	<0.93	<0.47	19.8
	4-6'	< 0.036	<0.036	< 0.036	0.036J	<0.036	<0.072	< 0.036	0.162
TP-44	0-1'	< 0.035	<0.035	< 0.035	<0.035	<0.035	<0.070	< 0.035	0.14
TP-45	0-1'	<0.46	<0.46	1.9Y	12	9.5	<0.92	<0.46	24.6
	2-3'	<0.88	<0.88	<0.88	7	4.6	<1.8	<0.88	14.26
TP-46	0-1'	< 0.036	<0.036	0.90Y	8.3	4.3	<0.073	< 0.036	13.6
	2-3'	<0.038	<0.038	<0.038	0.051	<0.038	<0.076	<0.038	0.184
TP-47	0-1'	< 0.037	<0.037	<0.037	<0.037	<0.037	<0.075	<0.037	0.149
TP-49	0-1'	< 0.035	<0.035	< 0.035	0.190	0.130	<0.070	<0.035	0.425
TP-50	0-1'	< 0.036	<0.036	0.87	5.3	1.3	<0.071	< 0.036	7.6
	2-3'	< 0.037	<0.037	<0.037	0.036J	<0.037	<0.073	<0.037	0.165
TP-51	0-1'	< 0.036	<0.036	0.043	0.14	0.14	<0.072	< 0.036	0.413
TP-53	0-1'	< 0.035	<0.035	< 0.035	0.054	0.046	<0.070	< 0.035	0.205
TP-55	0-1'	< 0.036	<0.036	0.83	3	1.5	<0.073	< 0.036	5.42
TP-57	0-1'	0.71Y	<0.041	1.4	1.2	0.29	<0.082	<0.041	3.68
TP-59	0-1'	<0.038	<0.038	13	9.8	2.1	<0.076	<0.038	25
	2-3'	< 0.036	<0.036	0.38	0.55	0.20	<0.072	< 0.036	1.22
TP-60	0-1'	<0.93	<0.93	<0.93	29	8.3	<1.9	<0.93	40.11
	2-3'	< 0.045	<0.045	0.12Y	1.1	0.58	<0.090	<0.045	1.913
TP-61	0-1'	< 0.036	<0.036	0.71	1.9	0.83	<0.072	< 0.036	3.53
TP-63	0-1'	< 0.036	<0.036	0.33Y	2.6	0.35	<0.072	< 0.036	3.37
TP-65	0-1'	< 0.036	<0.036	< 0.036	0.020J	<0.036	<0.071	<0.036	0.146
MTCA Method C Indu	strial								
Soil Cleanup Level ^(f)		NA ^(g)	NA	NA	NA	NA	NA	NA	17

Analytes detected in samples at concentrations exceeding cleanup levels or comparison values are shown in bold and italics.

Notes:

(a) Samples were analyzed for polychlorinated biphenyls (PCBs) by EPA Method 8082.

(b) The total PCBs were calculated by summing the concentrations of all the probable PCBs. If a probable PCB was not detected, a value equal to one-half the reporting limit was used.

(c) "<" denotes analyte was not detected at the indicated reporting limit.

(d) Duplicate sample.

(e) Analytical report reads TP-34 as TP-340.

(f) MTCA Method C industrial soil cleanup levels based on CLARC II, dated February 1996.

(g) "NA" = No cleanup level available.

Qualifiers:

J - Indicates as estimated value of analyte found and confirmed by analyst but with low spectral match.

Y - Indicates raised reporting limit due to background interference.

mg/kg - milligrams per kilogram

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - PAHs Former Tacoma Metals Facility

					P	AHs (mg/kg)	(a)						сР	AHs(mg/kg) ^{(a}	a)(b)			
Sample	Sample	Naphth-	Acenaph-	Acenaph-		Phenan-	Anth-	Fluoran-		Benzo (g,h,i)		Benzo (b)-	Benzo (k)-	Benzo (a)-	Indeno (1,2,3-	Dibenz (a,h)-	Benzo (a)-	Total
Designation	Date	alene	thlyene	thene	Fluorene	threne	racene	thene	Pyrene	perylene	Chrysene	fluoranthene	fluoranthene	pyrene	cd) pyrene	anthracene	anthracene	cPAHs ^(b)
TP-2-6-10	9/27/2000	440	7.1	240	200	460	380	370	430	34	230	90	110	110	33	17	140	151
TP-5-6-10	10/4/2000	41	19	260	360	750	750	470	400	39	190	93	80	95	35	16	130	132
TP-9-0-1	10/4/2000	0.35	0.014J	0.028	0.028	0.16	0.067	0.27	0.24	0.17	0.28	0.17	0.12	0.14	0.094	0.035	0.15	0.200
TP-10-6-10	10/5/2000	0.011J	0.0068J	0.023	0.014J	0.023	0.014J	0.032M	0.018J	0.041M	0.038	0.036M	0.023MJ	0.025	0.018JM	0.0091MJ	0.020MJ	0.0360
TP-11-6-10	10/5/2000	0.7J	0.16J	1.6	1.4	2.7	0.86M	4.6	2.8	0.55J	1.8	1	0.78J	0.94	0.55J	0.16MJ	1.2	1.33
TP-16-0-1	10/6/2000	0.99	18	1.8	1	2.2	1.8	6.9	6.2	3.5	4.3	4.5	5.6	7	3.8	1.4	3.8	8.95
TP-27-0-1	10/11/2000	0.08	0.025	0.011MJ	0.011J	0.13	0.034	0.15	0.19	0.22	0.27	0.19	0.12	0.14	0.16	0.048	0.11	0.206
TP-30-2-3	10/12/2000	0.14	0.11	0.053J	0.091	0.5	0.2	0.84	0.95	0.49	1.9	0.82	0.44	0.52	0.38	0.12	0.5	0.765
TP-33-0-1	10/12/2000	0.31	0.067J	0.075	0.097	0.51	0.17	0.6	0.94	0.49	0.65	0.46	0.39	0.49	0.34	0.12	0.36	0.664
TP-34-2-3	10/12/2000	0.95	0.1	1.9	0.91	4.3	1.3	4.7	4	0.93	4.2	2	1.1	1.3	0.79	0.24	1.9	1.95
TP-37-2-3	10/13/2000	0.3	0.094	0.078	0.2	1.1	0.34	1.9	2	1.2	1.2	1.1	0.75	1	0.87	0.27	0.81	1.39
TP-38-0-1	10/13/2000	0.3	0.24	0.59	0.51	4.2	1	5.1	4.9	2	3.2	2	2.1	2.4	2	0.59	2.5	3.35
TP-40-0-1	10/13/2000	0.98	3.8	0.74	1.4	17	4.7	43	51	13	41	24	23	28	14	4.8	33	38.3
TP-43-2-3	10/16/2000	0.29	0.34	0.31	0.25	2.3	0.83	3.6	2.6	1.3	2.2	1.5M	1.4	1.7	1.1	0.44	1.6	2.33
TP-46-4-6	10/16/2000	0.21	0.055J	0.055J	0.063J	0.35	0.11	0.62	0.43	0.35	0.45	0.3M	0.3M	0.31M	0.2	0.094	0.25	0.429
TP-49-6-10	10/17/2000	8.4	16	440	390	1,300	250	810	620	38	230	73	54	82	31	14M	150	117
TP-55-6-10	11/14/2000	<1.3 ^(c)	<1.3	3.9	3.6	7.0	1.4	4.6	3.1	<1.3	1.7M	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	0.992
TP-57-0-1	11/14/2000	0.68	<0.081	<0.081	<0.081	0.26	<0.081	0.53	0.63	0.31M	0.32M	0.31M	0.22	0.25	0.19	<0.081	0.22	0.351
TP-61-2-3	11/15/2000	2.8	0.67	0.68M	1.7	7.2	2.5M	9.3	7.8	1.1	4.9	2.9	2.7	2.9	1.6	0.61M	4.1	4.14
MTCA Method C	C Industrial																	
Soil Cleanup Lev	vel ^(d)	1.40E+05	NA ^(e)	2.10E+05	1.40E+05	NA	1.05E+06	1.40E+05	1.05E+05	NA	18	18	18	18	18	18	18	18

Analytes detected in samples at concentrations exceeding cleanup levels or comparison values are shown in bold and italics.

Notes:

(a) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270B GC/MS-SIM.

(b) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)].

For non-detected cPAH analytes, the TEF factor (listed below) was applied to a value of one-half the laboratory reporting limit prior to summation.

TEF = 1.0 for benzo(a)pyrene

TEF = 0.1 for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene TEF = 0.01 for chrysene

(c) "<" denotes analyte was not detected at the indicated reporting limit.

(d) MTCA Method C industrial soil cleanup levels based on CLARC II, dated February 1996.

(e) "NA" = No cleanup level is available.

mg/kg = milligrams per kilogram

Qualifiers:

M - Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

J - Indicates an estimated concentration when the value is less than the calculated reporting limit.

NOTE: This table was upated in July 2013 at Ecology's request based on the revised methodology (i.e., TEF summation) for calculation of total cPAHs which was not required when the original RI/FS was performed. No values other than total cPAHs were revised from the original table produced in October 2001.

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (n	ng/kg) ^(a)								Vol	atile Organ	nic Compou	nds (µa/ka) ⁽	(b)]
Sample Designation	Sample Depth (ft)	Collection Date	TPH-Diesel	TPH- motor oil	Benzene	Toluene	Ethyl- benzene	Total ^(c) Xylenes	Acetone	1,1-Di- chloro- ethene	1,1-Di- chloro- ethane	Cis-1,2-di- chloro- ethene	Chloro- form	2-Butanone	1,1,1-Tri- chloro- ethane	Trichloro- ethene	Tetrachloro- ethene	1,1,2-Tri- chloro- fluoroethane	1,3,5-Tri- methyl- benzene	1,2,4-Tri- methyl- benzene	Hexa- chlorobut- adiene	4-Isopropyl- toluene	Styrene	Naphthalene	Isopropy- benzene
TP-1	0-1'	9/27/2000	560	1,200	^(d)																				
	2-3'	9/27/2000																							
	4-6'	9/27/2000																							
	6-10'	9/27/2000																							
TP-2	0-1'	9/27/2000	130	400																					
	2-3'	9/27/2000	1,700	1,200	3.6	120	6	14.4	200B	<1.2 ^(e)	<1.2	<1.2	<1.2	47	<1.2	<1.2	<1.2	<1.2	3	7.1	<6	<1.2	2.4	120	<1.2
	4-6'	9/27/2000	2,900	1,700	58	850	140	410	460B	<1.5	<1.5	<1.5	<1.5	120	<1.5	<1.5	<1.5	<1.5	520	1,400	<7.3	91	12M	120,000	55
TD 0	6-10'	9/27/2000	10,000	2,100	73	430	870	3,600	940J	<1.6	<1.6	<1.6	<1.6	110	<1.6	<1.6	<1.6	<1.6	2,800	6,200	<7.9	1,600	<1.6	390,000	480
TP-3	0-1'	9/27/2000	14	26																					
	2-3' 4-6'	9/27/2000 9/27/2000																							
	4-0 6-10'	9/27/2000	1,300 280	1,200 240	<1.8 <3.3	830 8	<1.8 4.60	<38 27	530 200	<1.8 <3.3	<1.8 <3.3	<1.8 <3.3	<1.8 <3.3	73 27	<1.8 <3.3	<1.8 <3.3	<1.8 <3.3	<1.8 <3.3	<19 18	<19 42	<9.2 <17	<1.8 27	<19 <3.3	130 210	<1.8 12
TP-4	0-10	9/27/2000	280	530	< 3.3		4.00			< 3.3	<3.3	< 3.3	< 3.3		< 3.3	<3.3	< 3.3	< 3.3		42			< 3.3		
	2-3'	9/27/2000																							
	4-6'	9/27/2000																							
	6-10'	9/27/2000	67	31	<1.7	7.30	<1.7	<3.4	<8.6	<1.7	<1.7	<1.7	<1.7	<8.6	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<8.6	<1.7	<1.7	8.60	<1.7
TP-5	0-1'	10/4/2000	18	21																					
	2-3'	10/4/2000	81	75																					
	4-6'	10/4/2000	2,000	2,300																					
	6-10'	10/4/2000	23,000	8,600	<230	1,200	<230	<230	<1,200	<230	<230	<230	<230	<1,200	<230	<230	<230	<230	360	660	<1,200	750	<230	26,000	<230
TP-6/600 ^(f)	0-1'	10/4/2000	160/190	210/220																					
	2-3'	10/4/2000																							
	4-6'	10/4/2000																							
	6-10'	10/4/2000																							
TP-7	0-1'	10/4/2000	330	760																					
	2-3'	10/4/2000																							
	4-6'	10/4/2000																							
	6-10'	10/4/2000																							
TP-8	0-1'	10/4/2000	440	1,200																					
	2-3'	10/4/2000																							
TP-8/800 ^(f)	4-6'	10/4/2000	32/34	49/70																					
	6-10'	10/4/2000																							
TP-9	0-1'	10/4/2000	1,900	3,000	<140	98J	<140	<140	<700	<140	<140	<140	<140	<700	<140	<140	<140	<140	490	220	<700	74J	<140	710	<140
	2-3'	10/4/2000	54	72																					
	4-6'	10/4/2000	160	250	<7.0	130	<7.0	<7.0	<35	<7.0	<7.0	<7.0	<7.0	<35	<7.0	<7.0	<7.0	<7.0	6.9J	6.8J	<35	<7.0	<7.0	<35	<7.0
	6-10'	10/4/2000																							
TP-10	0-1'	10/4/2000	64	260																					
	2-3'	10/5/2000	43	280																					
	4-6'	10/5/2000	440	2,000																					
TD 44	6-10'	10/5/2000	1,400	8,700	<150	1,800	<150	<150	<770	<150	<150	<150	<150	<770	<150	<150	<150	<150	<150	<150	<770	<150	<150	<770	<150
TP-11	0-1'	10/5/2000	800	2,400																					
	2-3' 4-6'	10/5/2000 10/5/2000	440 870	540																					
		10/5/2000	870	610																					
TP-12	6-10' 0-1'	10/5/2000	3,900 17	8,500 17																					
	2-3'	10/5/2000																							
	2-3 4-6'	10/5/2000																							
	4-6 6-10'	10/5/2000																							
MTCA Method					<u>u</u>						<u> </u> 					1	1								
Soil Cleanup Le			2,000 ^(h)	2,000 ^(h)	4.53E+06	7.00E+08	3.50E+08	7.00E+09	3.50E+08	2.19E+05	3.50E+08	3.50E+07	2.15E+07	NA ^(I)	3.15E+09	1.19E+04	2.57E+06	NA	NA	NA	7.00E+05	NA	4.38E+06	1.40E+05	NA
		nples at concentr		,										1	2										

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (n	ng/kg) ^(a)								Vol	atile Orgar	nic Compou	nds (µg/kg) ⁽	(b)									
Sample Designation	Sample Depth (ft)	Collection Date	TPH-Diesel	TPH- motor oil	Benzene	Toluene	Ethyl- benzene	Total ^(c) Xylenes	Acetone	1,1-Di- chloro- ethene	1,1-Di- chloro- ethane	Cis-1,2-di- chloro- ethene	Chloro- form	2-Butanone	1,1,1-Tri- chloro- ethane	Trichloro- ethene	Tetrachloro- ethene	1,1,2-Tri- chloro- fluoroethane	1,3,5-Tri- methyl- benzene	1,2,4-Tri- methyl- benzene	Hexa- chlorobut- adiene	4-Isopropyl- toluene	Styrene	Naphthalene	lsopropy- benzene
TP-13	0-1'	10/5/2000	27	59																					
	2-3'	10/5/2000																							
	4-6'	10/5/2000																							
	6-10'	10/5/2000																							
TP-14	0-1'	10/6/2000	<5.2	15																					
	2-3'	10/6/2000																							
	4-6'	10/6/2000																							
	6-10'	10/6/2000	48	110																					
TP-15	0-1'	10/6/2000	13	30																					
	2-3'	10/6/2000																							
	4-6'	10/6/2000																							
	6-10'	10/6/2000																							
TP-16/160 ^(f)	0-1'	10/6/2000	2,600 /300	2,500 /890	<9.9/<9.1	720/380	15/<9.1	20/<9.1	140B/<45	<9.9/<9.1	<9.9/<9.1	<9.9/<9.1	<9.9/<9.1	<49/<45	<9.9/<9.1	<9.9/<9.1	<9.9/<9.1	<9.9/<9.1	83/<9.1	90/<9.1	<49/<45	44/<9.1	<9.9/<9.1	400Y/<45	<9.9/<9.1
11 10/100	2-3'	10/6/2000	940	1,400																					
TP-17	0-1'	10/6/2000	300	1,400																					
	2-3'	10/6/2000																							
	4-6'	10/6/2000																							
	6-10'	10/6/2000																							
TP-18	0-1'	10/10/2000	55	160																					
	2-3'	10/10/2000																							
	4-6'	10/10/2000																							
	6-10'	10/10/2000																							
TP-19	0-1'	10/10/2000	75	220																					
11-15	2-3'	10/10/2000																							
	4-6'	10/10/2000																							
	6-10'	10/10/2000																							
TP-20	0-1'	10/10/2000	<5.2	<10																					
TP-20/2000 ^(f)	2-3'	10/10/2000	130/140	380/410																					
11-20/2000	2-3 4-6'	10/10/2000																							
	4-0 6-10'	10/10/2000																							
TP-21	0-10	10/10/2000	200	660																					
	2-3'	10/10/2000	100	240																					
	2-5 4-6'	10/10/2000																							
	6-10'	10/10/2000																							
TP-22	0-10	10/10/2000	60	250																					
	2-3'	10/10/2000	48	170																					
	4-6'	10/10/2000																							
	4-0 6-10'	10/10/2000																							
TP-23	0-1'	10/11/2000	<5.2	17																					
	2-3'	10/11/2000	260	970																					
	4-6'	10/11/2000																							
	4-0 6-10'	10/11/2000																							
TP-24	0-10	10/11/2000	28	130																					
	2-3'	10/11/2000																							
	2-3 4-6'	10/11/2000																							
	4-0 6-10'	10/11/2000																							
MTCA Method																									
Soil Cleanup L		1	2,000 ^(h)	2,000 ^(h)	4.53E+06	7.00F+08	3.50F+08	7.00F+09	3.50F+08	2,19E+05	3.50F+08	3.50E+07	2.15E+07	NA ⁽ⁱ⁾	3.15E+09	1.19F+04	2.57E+06	NA	NA	NA	7.00E+05	NA	4.38F+06	1.40E+05	NA
1		nples at concentr																							

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (mg/kg) ^(a)								Vol	atile Organ	nic Compou	nds (µg/kg) ^{(I}	b)									
Sample Designation	Sample Depth (ft)	Collection Date	TPH-Diesel	TPH- motor oil	Benzene	Toluene	Ethyl- benzene	Total ^(c) Xylenes	Acetone	1,1-Di- chloro- ethene	1,1-Di- chloro- ethane	Cis-1,2-di- chloro- ethene	Chloro- form	2-Butanone		Trichloro- ethene	Tetrachloro- ethene	1,1,2-Tri- chloro- fluoroethane	1,3,5-Tri- methyl- benzene	1,2,4-Tri- methyl- benzene	Hexa- chlorobut- adiene	4-Isopropyl- toluene	Styrene	Naphthalene	Isopropy- benzene
TP-25	0-1'	10/11/2000	58	380																					
	2-3'	10/11/2000																							
	4-6'	10/11/2000																							
	6-10'	10/11/2000																							
TP-26	0-1'	10/11/2000	6.4	15																					
	2-3'	10/11/2000																							
	4-6'	10/11/2000	120	470																					
	6-10'	10/11/2000	26	78																					
TP-27/270 ^(f)	0-1'	10/11/2000	610/670	2,000/2,200	45 7/45 O	320/270	<5.7/<5.0	<11.4/<10	<28/<25	<5.7/<5.0	<5.7/<5.0	<5.7/<5.0	<5.7/<5.0	<28/<25	<5.7/<5.0	<5.7/<5.0	<5.7/<5.0	<5.7/<5.0	~F 7/~F 0	<5.7/<5.0	<28/<25	<5.7/<5.0	<5.7/<5.0	<28/<25	<5.7/<5.0
11-21/2/0	2-3'	10/11/2000	120	430	<5.7/<5.0			<11.4/<10	<20/<25			<5.7/<5.0		<20/<25	<5.7/<5.0	<5.7/<5.0	1		<5.7/<5.0		<20/<23	<0.7/<0.0	<5.7/<5.0	<20/<25	<5.7/<5.0
	2-3 4-6'	10/11/2000									1					-									
	4-0 6-10'	10/11/2000																							
TP-28	0-10	10/11/2000	 190																						
17-20	-			940																					
	2-3'	10/11/2000	930	1,000	<5.5	150	<5.5	<11	<28	<5.5	<5.5	<5.5	<5.5	<28	<5.5	<5.5	<5.5	<5.5	<5.5	<5.5	<28	<5.5	<5.5	<28	<5.5
	4-6'	10/11/2000																							
	6-10'	10/11/2000																							
TP-29	0-1'	10/12/2000	39	320																					
	2-3'	10/12/2000																							
	4-6'	10/12/2000																							
	6-10'	10/12/2000																							
TP-30	0-1'	10/12/2000	330	1,800																					
	2-3'	10/12/2000	700	2,500	<4.8	640	<4.8	16.4	130	<4.8	<4.8	<4.8	<4.8	<24	<4.8	<4.8	<4.8	<4.8	150	180	<24	<4.8	<4.8	<24	35
	4-6'	10/12/2000	8.5	15																					
	6-10'	10/12/2000																							
TP-31	0-1'	10/12/2000	490	1,300	<4.7	640	<4.7	<9.4	92	<4.7	<4.7	<4.7	<4.7	<23	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<23	7.6	<4.7	<23	<4.7
	2-3'	10/12/2000	290	610	<5.5	170	<5.5	6.6	76	<5.5	<5.5	<5.5	<5.5	<27	<5.5	<5.5	<5.5	<5.5	14	22	<27	<5.5	<5.5	<27	<5.5
	4-6'	10/12/2000																							
	6-10'	10/12/2000																							
TP-32	0-1'	10/12/2000	450	1,700	<5.1	780	<5.1	13.7	300	<5.1	<5.1	<5.1	<5.1	45	<5.1	<5.1	<5.1	<5.1	9	12	<25	<5.1	<5.1	<25	<5.1
TP-33	0-1'	10/12/2000	970	2,000																					
	2-3'	10/12/2000	420	1,000																					
	4-6'	10/12/2000																							
	6-10'	10/12/2000																							
TP-34/340 ^(f)	0-1'	10/12/2000	350/460	1,100/1,400																					
	2-3'	10/12/2000	710	2,600																					
	4-6'	10/12/2000	59	160																					
	6-10'	10/12/2000																							
TP-35	0-1'	10/13/2000	190	350																					
	2-3'	10/13/2000																							
	2-5 4-6'	10/13/2000																							
	6-10'	10/13/2000																							
TP-36	0-10	10/13/2000	15	56																					
11-50	2-3'	10/13/2000		00																					
	2-3 4-6'	10/13/2000																							
	4-6 6-10'	10/13/2000	 280	220	 <4.3	 84	 3.0J	 <8.6	 30B	 <4.3	<4.3		 <4.3	 <22	<4.3	<4.3	 <4.3	 <4.3	10	6.2	 <22	7.4	 <4.3	 150	 2.2J
		1.1	200	220	<4.3	04	3.UJ	<0.0	300	<4.3	<4.3	<4.3	<4.3	<22	<4.3	<4.3	<4.3	<4.3	10	0.2	<22	1.4	<4.3	100	2.2J
MTCA Method Soil Cleanup Le		1.07	2,000 ^(h)	2,000 ^(h)	4 505 .00		2 505 . 00	7.005.00	2 505 .00	0.405.05	2 505 .00	3.50E+07	0.455.07	NA ^(I)	2 455 . 00	1 105 .01	2.57E+06	NIA	NA	NIA	7.00E+05	NIA	4 205 .00	1.40E+05	NA
i		nples at concentr		,							3.50E+08	3.30E+07	2.100+07	11/1	3.15E+09	1.19E+04	2.37 E+00	NA	NA	NA	1.00E+05	NA	4.302+00	1.402+03	NA

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (n	ng/kg) ^(a)								Vol	atile Orgar	nic Compou	nds (µg/kg) ^{(k})									
Sample Designation	Sample Depth (ft)	Collection Date	TPH-Diesel	TPH- motor oil	Benzene	Toluene	Ethyl- benzene	Total ^(c) Xylenes	Acetone	1,1-Di- chloro- ethene	1,1-Di- chloro- ethane	Cis-1,2-di- chloro- ethene	Chloro- form	2-Butanone	1,1,1-Tri- chloro- ethane	Trichloro- ethene	Tetrachloro- ethene	1,1,2-Tri- chloro- fluoroethane	1,3,5-Tri- methyl- benzene	1,2,4-Tri- methyl- benzene	Hexa- chlorobut- adiene	4-Isopropyl- toluene	Styrene	Naphthalene	Isopropy- benzene
TP-37	0-1'	10/13/2000	810	2,100																					
	2-3'	10/13/2000	970	2,800																					
	4-6'	10/13/2000	60	84																					
	6-10'	10/13/2000																							
TP-38	0-1'	10/13/2000	1,400	2,700																					
	2-3'	10/13/2000	68	88																					
	4-6'	10/13/2000																							
	6-10'	10/13/2000																							
TP-39/390 ^(f)	0-1'	10/13/2000	81/83	340/350																					
	2-3'	10/13/2000																							
	4-6'	10/13/2000																							
	6-10'	10/13/2000																							
TP-40	0-1'	10/13/2000	1,100	2,300																					
	2-3'	10/13/2000	670	1,600																					
	4-6'	10/13/2000	100	230																					
	6-10'	10/13/2000																							
TP-41	0-1'	10/13/2000	<5.2	16																					
	2-3'	10/13/2000																							
	4-6'	10/13/2000																							
	6-10'	10/13/2000																							
TP-42	0-1'	10/13/2000	42	130																					
	2-3'	10/13/2000																							
	4-6'	10/13/2000																							
	6-10'	10/13/2000																							
TP-43/430 ^(f)	0-1'	10/13/2000	1,000/1,000	2,500/2,800																					
	2-3'	10/13/2000	1,500	3,400																					
	4-6'	10/13/2000	<5.3	<11																					
	6-10'	10/13/2000																							
TP-44	0-1'	10/13/2000	19	28																					
	2-3'	10/13/2000																							
	4-6'	10/13/2000																							
	6-10'	10/13/2000																							
TP-45	0-1'	10/16/2000	450	1,100																					
	2-3'	10/16/2000																							
	4-6'	10/16/2000																							
	6-10'	10/16/2000																							
TP-46	0-1'	10/16/2000	140	450																					
	2-3'	10/16/2000	170	510																					
	4-6'	10/16/2000	1,000	2,700																					
	6-10'	10/16/2000	45	150																					
TP-47	0-1'	10/16/2000	6.2	<11																					
	2-3'	10/16/2000																							
	4-6'	10/16/2000																							
	6-10'	10/16/2000																							
MTCA Method		(g)												~											
Soil Cleanup L	evels		2,000 ^(h)	2,000 ^(h)			3.50E+08 values are				3.50E+08	3.50E+07	2.15E+07	NA ⁽ⁱ⁾	3.15E+09	1.19E+04	2.57E+06	NA	NA	NA	7.00E+05	NA	4.38E+06	1.40E+05	NA

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (m	ng/kg) ^(a)								Vol	atile Orga	nic Compou	nds (µg/kg) ⁽	b)									<u></u>
Sample Designation	Sample Depth (ft)	Collection Date	TPH-Diesel	TPH- motor oil	Benzene	Toluene	Ethyl- benzene	Total ^(c) Xylenes	Acetone	1,1-Di- chloro- ethene	1,1-Di- chloro- ethane	Cis-1,2-di- chloro- ethene	Chloro- form	2-Butanone	1,1,1-Tri- chloro- ethane	Trichloro- ethene	Tetrachloro- ethene	1,1,2-Tri- chloro- fluoroethane	1,3,5-Tri- methyl- benzene	1,2,4-Tri- methyl- benzene	Hexa- chlorobut- adiene	4-Isopropyl- toluene	Styrene	Naphthalene	Isopropy- benzene
TP-48	0-1'	10/17/2000	130	290																					
	2-3'	10/17/2000																							
	4-6'	10/17/2000																							
	6-8.5'	10/17/2000	630	870																					
TP-49	0-1'	10/17/2000	220	1,500																					
	2-3'	10/17/2000	29	50	<1.1	3.7	<1.1	<2.2	<5.7	<1.1	<1.1	<1.1	<1.1	<5.7	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<5.7	<1.1	<1.1	<5.7	<1.1
	4-6'	10/17/2000	11,000	4,000	<9.0	1,600	27	78	510	<9.0	<9.0	<9.0	<9.0	120	<9.0	<9.0	<9.0	<9.0	580	950	<45	200	<7.8	16,000	17
	6-10'	10/17/2000	14,000	2,900	<22	270	24	142	530	<22	<22	<22	<22	120	<22	<22	<22	<22	490	820	<110	250	<22	8,800	39
TP-50/500 ^(f)	0-1'	10/17/2000	90/110	190/230	1.2/1.3	430/610	<1.1/<1.1	<2.2/<2.2	90/94	<1.1/<1.1	<1.1/<1.1	<1.1/<1.1	<1.1/<1.1	12/12	<1.1/<1.1	<1.1/<1.1	<1.1/<1.1	<1.1/<1.1	<1.1/<1.1	<1.1/<1.1	<5.4/<5.7	<1.1/<1.1	<1.1/<1.1	<5.4/<5.7	<1.1/<1.1
	2-3'	10/17/2000	39	54	<10	270	<1.1	<2.2	49	<1.1	<1.1	<1.1	<1.1	<5.6	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<5.6	<1.1	<1.1	<5.6	<1.1
	4-6'	10/17/2000																							
	6-10'	10/17/2000																							
TP-51	0-1'	11/14/2000	35B	100																					
	2-3'	11/14/2000																							
	4-6'	11/14/2000																							
	6-8'	11/14/2000																							
TP-52	0-1'	11/14/2000	86B	440																					
	2-3'	11/14/2000																							
	4-6'	11/14/2000	240	140																					
	6-10'	11/14/2000	730	870																					
TP-53	0-1'	11/14/2000	690B	700																					
11-55	2-3'	11/14/2000																							
	2-5 4-6'	11/14/2000																							
	6-10'	11/14/2000																							
TP-54	0-10	11/14/2000	160B	310																					
16-24	2-3'	11/14/2000																		-					
	2-3 4-6'	11/14/2000																							
	4-0 6-10'	11/14/2000																							
TP-55	0-1'	11/14/2000	1,700B	6,300																					
	2-3'	11/14/2000	2,000	8,000																					
	4-6'	11/14/2000	1,700	6,500																					
TD 56	6-10'	11/14/2000	2,400	12,000																					
TP-56	0-1'	11/14/2000	16B	54																					
	2-3'	11/14/2000																							
	4-6'	11/14/2000																							
TD 57	6-10'	11/14/2000																							
TP-57	0-1'	11/14/2000	2,200B	4,700																					
	2-3'	11/14/2000	66	98																					
	4-6'	11/14/2000	170	200																					
TD 50	6-10'	11/14/2000	88	350																					
TP-58	0-1'	11/15/2000	11B	<10																					
	2-3'	11/15/2000																							
	4-6'	11/15/2000																							
	6-10'	11/15/2000																							
MTCA Method		l _(a)	(h)	(b)																					1
Soil Cleanup Le	evels		2,000 ^(h)		4.53E+06						3.50E+08	3.50E+07	2.15E+07	NA ^(I)	3.15E+09	1.19E+04	2.57E+06	NA	NA	NA	7.00E+05	NA	4.38E+06	1.40E+05	NA

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (n	ng/kg) ^(a)								Vol	atile Orgar	nic Compou	nds (µg/kg) ⁽	(b)									
Sample Designation	Sample Depth (ft)	Collection Date	TPH-Diesel	TPH- motor oil	Benzene	Toluene	Ethyl- benzene	Total ^(c) Xylenes	Acetone	1,1-Di- chloro- ethene	1,1-Di- chloro- ethane	Cis-1,2-di- chloro- ethene	Chloro- form	2-Butanone	1,1,1-Tri- chloro- ethane	Trichloro- ethene	Tetrachloro- ethene	1,1,2-Tri- chloro- fluoroethane	1,3,5-Tri- methyl- benzene	1,2,4-Tri- methyl- benzene	Hexa- chlorobut- adiene	4-Isopropyl- toluene	Styrene	Naphthalene	Isopropy- benzene
TP-59	0-1'	11/15/2000	520B	1,200																					
	2-3'	11/15/2000																							
	4-6'	11/15/2000																							
	6-10'	11/15/2000																							
TP-60	0-1'	11/15/2000	980B	1,700																					
	2-3'	11/15/2000																							
	4-6'	11/15/2000																							
	6-10'	11/15/2000																							
TP-61	0-1'	11/15/2000	3,700B	1,900																					
	2-3'	11/15/2000	8,500B	2,300																					
	4-6'	11/15/2000	120	87																					
	6-10'	11/15/2000																							
TP-62	0-1'	11/15/2000	320B	910																					
	2-3'	11/15/2000																							
	4-6'	11/15/2000																							
	6-10'	11/15/2000																							
TP-63	0-1'	11/15/2000	340B	1,100																					
	2-3'	11/15/2000	860B	2,100																					
	4-6'	11/15/2000	240	640																					
	6-10'	11/15/2000																							
TP-64	0-1'	11/15/2000	150B	330																					
	2-3'	11/15/2000																							
	4-6'	11/15/2000																							
	6-10'	11/15/2000																							
TP-65	0-1'	11/15/2000	<5.3	<11																					
	2-3'	11/15/2000																							
	4-6'	11/15/2000																							
	6-10'	11/15/2000																							
MTCA Methoc Soil Cleanup L	d C Industria		2.000 ^(h)	2.000 ^(h)	4.505.00	7.005.00	2 505 . 00	7.005.00	0.505.00	0.405.05	0.505.00	3.50E+07	0.455.07	NA ^(I)	3.15E+09	1.19E+04	2.57E+06	NA	NA	NA	7.00E+05	NA	4.38E+06	1.40E+05	NA

Analytes detected in samples at concentrations exceeding cleanup levels or comparison values are shown in bold and italics.

Notes:

(a) Total diesel- and motor oil-range hydrocarbons were analyzed by Ecology Method NWTPH-Diesel (Extended).

(b) Samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260.

(c) Total xylenes were calculated by summing the concentrations of m,p- and o-xylene isomers.

- (d) "---" = Sample not tested for selected analyte.
- (e) "<" denotes analyte was not detected at the indicated reporting limit.
- (f) Duplicate sample.
- (g) MTCA Method C industrial soil cleanup levels are based on CLARC II, dated February 1996.

(h) Total petroleum hydrocarbon (TPH) screening level. Samples exceeding the screening level were evaluated using Ecology's TPH Interim Policy for compliance with MTCA standards (Ecology 1997a).

(i) "NA" = No cleanup level is available.

Qualifiers:

J - Indicates an estimated value below the calculated detection limit.

B - Indicates compound also detected in method blank.

mg/kg - milligrams per kilogram

µg/kg - micrograms per kilogram

SUMMARY OF EXTRACTABLE PETROLEUM HYDROCARBONS ANALYTICAL RESULTS Former Tacoma Metals Facility

					Sample De	esignation				
	TP-2-6-10	TP-5-6-10	TP-9-0-1	TP-10-6-10	TP-11-6-10	TP-16-0-1	TP-27-0-1	TP-30-2-3	TP-33-0-1	TP-34-2-3
Analytes										
EXTRACTABLE PETROLEUM HYDROCARBONS (mg/kg) ^(a)										
Aliphatics										
C8-C10	<50 ^(b)	<65.9	<50	<50	<50	<20	<50	<50	<50	<50
C10-C12	<50	<65.9	137	<50	<50	96	<50	<50	<50	<50
C12-C16	150	419	145	<50	241	280	137	<50	85.5	<50
C16-C21	122	442	463	231	1,830	145	133	202	366	94.1
C21-C34	150	278	2,290	4,580	6,720	475	1,250	1,980	1,200	740
Aromatics										
C10-C12	376	73.2	<50	<50	<5	36	<50	<50	<50	<50
C12-C16	1,260	2,300	<50	<50	<50	106	<50	<50	<50	<50
C16-C21	3,030	5,590	88.8	<50	178	208	<50	53	75.6	<50
C21-C34	3,280	4,950	396	468	761	438	389	295	309	199

					Sample Des	signation			
	TP-37-2-3	TP-38-0-1	TP-40-0-1	TP-43-2-3	TP-46-4-6	TP-49-6-10	TP-55-6-10	TP-57-0-1	TP-61-2-3
Analytes									
EXTRACTABLE PETROLEUM HYDROCARBONS (mg/kg) ^(a)									
Aliphatics									
C8-C10	<10	<50	<20	<50	<50	<119	<28	<50	<10
C10-C12	<10	<50	<20	<50	<50	<119	<28	<50	12
C12-C16	20	<50	<20	<50	<50	319	151	<50	695
C16-C21	163	106	151	339	304	243	1,540	386	3,160
C21-C34	925	948	861	1,520	2,120	172	10,100	2,430	1,190
Aromatics									
C10-C12	<10	<50	<20	<50	<50	<119	<28	<50	<10
C12-C16	19	<50	41.8	55.7	<50	1,960	93	<50	65
C16-C21	95	71.2	265	267	74.6	4,270	308	94	521
C21-C34	559	360	632	670	521	3,260	3,360	676	495

Notes:

(a) Results for analysis of extractable petroleum hydrocarbons (EPHs) by methods identified in Ecology's TPH Interim Policy, dated January 1997.

(b) "<" denotes analyte was not detected at the indicated reporting limit.

mg/kg - milligrams per kilogram

SUMMARY OF TPH INTERIM POLICY CALCULATIONS Former Tacoma Metals Facility

		Total Carcinogenic	Concentrat	tion at Well
Sample	Hazard Index	Risk Factor	DF=20 ^(a)	DF=1 ^(b)
TP-2-6-10	0.08	4.06E-04		3.2
TP-5-6-10	0.13	3.55E-04		1.8
TP-9-0-1	0.01	5.50E-07	0.0	
TP-10-6-10	0.01	7.47E-08		4.2
TP-11-6-10	0.02	3.38E-06		0.0
TP-16-0-1	0.01	1.69E-05	0.1	
TP-27-0-1	0.00	5.77E-07	0.0	
TP-30-2-3	0.00	2.60E-06	0.1	
TP-33-0-1	0.01	1.56E-06	0.0	
TP-34-2-3	0.00	6.41E-06	0.0	
TP-37-2-3	0.01	3.34E-06	0.0	
TP-38-0-1	0.00	8.23E-06	0.0	
TP-40-0-1	0.01	9.33E-05	0.0	
TP-43-2-3	0.01	5.53E-06	0.0	
TP-46-4-6	0.01	1.06E-06	0.0	
TP-49-6-10	0.09	3.53E-04		1.7
TP-55-6-10	0.04	3.12E-06		0.2
TP-57-0-1	0.01	8.62E-07	0.0	
TP-61-2-3	0.03	1.10E-05	0.0	
Exceedence Levels	1	1x10E-05	1 mg/l	1 mg/l

Notes:

(a) Dilution factor (DF) of 20 was used to evaluate samples collected from above the saturated or groundwater smear zone.

(b) Dilution factor (DF) of 1 was used to evaluate samples collected from the groundwater smear zone.

mg/l - milligrams per liter

REMEDIAL INVESTIGATION SOIL ANALYTICAL RESULTS - TNT/DNT Former Tacoma Metals Facility

					TNT/DNT (mg/	kg) ^(a)	
Sample	Sample	Sample	2,4-Dinitri-	2,6-Dinitro-	2,4,6-Trinitro-	4-Amino-2,6-	2-Amino-4,6-
Designation	Depth	Date	toluene	toluene	toluene	Dinitrotoluene	Dinitrotoluene
TP-39	0-1'	10/13/2000	<50 ^(b)	<50	<50	<50	<50
TP-390 ^(c)	0-1'	10/13/2000	<50	<50	<50	<50	<50
TP-39	2-3'	10/13/2000	<50	<50	<50	<50	<50
TP-39	4-6'	10/13/2000	<50	<50	<50	<50	<50
TP-39	6-10'	10/13/2000	<50	<50	<50	<50	<50
TP-44	0-1'	10/13/2000	<50	<50	<50	<50	<50
MTCA Method C	Industrial						
Soil Cleanup Lev	els ^(d)		7,000	3,500	N/A ^(e)	N/A	N/A

Notes

(a) Samples were analyzed for trinitrotoluene/dinitrotoluene (TNT/DNT) by EPA Method 8330.

(b) "<" denotes analyte was not detected at the indicated reporting limit.

(c) Duplicate sample.

(d) MTCA Method C industrial soil cleanup levels are based on CLARC II, dated February 1996.

(e) "NA" = No cleanup level available.

mg/kg - milligrams per kilogram

TABLE 4-8A

REMEDIAL INVESTIGATION SPLP AND TCLP ANALYTICAL RESULTS - METALS^(a) Former Tacoma Metals Facility

								Sample Des	ignation/De	pth						
Analyte	Analysis	TP-1-0-1	TP-14-6-10	TP-16-2-3	TP-21-2-3	TP-22-2-3	TP-33-2-3	TP-38-0-1	TP-39-0-1	TP-40-2-3	TP-43-2-3	TP-45-0-1	TP-55-0-1	TP-60-0-1	TP-61-0-1	Criteria
Arsenic	Total (mg/kg)	40	<6 ^(b)	(c)	<300	<60		60	10	<30	80	100	<30	50	<30	219 ^(d)
/	TCLP (mg/l)											<0.05				5.0 ^(e)
	SPLP (mg/l)											<0.05				NA ^(f)
Barium	Total (mg/kg)	290	84.9		4,190	464		2,710	110	851	1,280	774	1,080	1,050	377	245,000 ^(d)
	TCLP (mg/l)				6.99											100.0 ^(e)
	SPLP (mg/l)				0.672											NA
Cadmium	Total (mg/kg)	8.5	2.3	68	130	52		125	13.2	40	46	30	29	30	10	3,500 ^(d)
	TCLP (mg/l)				0.94											1.0 ^(e)
	SPLP (mg/l)				<0.002											NA
Chromium	Total (mg/kg)	76	35.3		1,080	913		263	30	212	259	368	117	225	53	500 ^(g)
	TCLP (mg/l)				< 0.05											1.0 ^(e)
	SPLP (mg/l)				<0.005											NA
Copper	Total (mg/kg)	873	78.6		13,200	20,200		3,320	1,100	1,240	2,520	3,560	465	2,330	356	130,000 ^(d)
	TCLP (mg/l)					66.2										NA
	SPLP (mg/l)					0.005										NA
Lead	Total (mg/kg)	2,230	152	8,240	7,570	3,690	4,560	9,380	1,040	2,050	12,300	4,060	1,750	10,800	4,180	1,000 ^(g)
	TCLP (mg/l)	11.7	<0.1	3.3	74.7		22.4	20.6	0.13	6.9	63.6		26.5		12.2	5.0 ^(e)
	SPLP (mg/l)			<0.02					0.03	<0.02	0.03				0.07	NA
Mercury	Total (mg/kg)	1.53	0.07		10.2	5.1	1.69	14.3	0.21	3.19	21	47	0.83	77	0.76	1,050 ^(d)
	TCLP (mg/l)													0.0005		0.2 ^(e)
	SPLP (mg/l)													0.0021		NA
Selenium	Total (mg/kg)	<10	<6		<300	<60		30	<10	<30	<30	30	<30	40	<30	17,500 ^(d)
	TCLP (mg/l)													<0.2		1.0 ^(e)
	SPLP (mg/l)													<0.05		NA
Silver	Total (mg/kg)	1.4	<0.4		90	198		6	<0.8	3	5	7	<2	2	<2	17,500 ^(d)
	TCLP (mg/l)					<0.02										5.0 ^(e)
	SPLP (mg/l)					<0.003										NA

Analytes detected in samples at concentrations exceeding criteria are shown in bold and italics.

Notes:

(a) Samples were analyzed for TCLP and SPLP Metals by EPA Methods 1311/1312/6010.

(b) "<" denotes analyte was not detected at the indicated reporting limit.

(c) "---" Sample not tested for selected analyte.

(d) MTCA Method C industrial soil cleanup levels are based on CLARC II, dated February 1996.

(e) Toxicity characteristics based on Dangerous Waste Criteria (WAC 173-303-100).

(f) "NA" = No criteria available.

(g) Method A industrial soil cleanup levels (WAC 173-340-745) used where Method C industrial soil cleanup levels are not available.

mg/kg - milligrams per kilogram mg/l - milligrams per liter

TABLE 4-8B

REMEDIAL INVESTIGATION SPLP AND TCLP ANALYTICAL RESULTS - PAHs **Former Tacoma Metals Facility**

								PAHs ^(a)							cPAHs ^{(a)(b)}				
Sample	Sample		Naphth-	Acenaph-	Acenaph-		Phenan-	Anth-	Fluoran-		Benzo (g,h,i)		Benzo (b)-	Benzo (k)-	Benzo (a)-	Indeno (1,2,3-	Dibenz (a,h)-	Benzo (a)-	Total
Designation	Depth	Totals	alene	thlyene	thene	Fluorene	threne	racene	thene	Pyrene	perylene	Chrysene	fluoranthene	fluoranthene	pyrene	cd) pyrene	anthracene	anthracene	cPAHs ^(b)
TP-40	0-1	Total (mg/kg)	0.98	3.8	0.74	1.4	17	4.7	43	51	13	41	24	23	28	14	4.8	33	38.3
		TCLP (µg/l)	<10 ^(c)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7.6
		SPLP (µg/l)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7.6
TP-49	6-10	Total (mg/kg)	8.4	16	440	390	1,300	250	810	620	38	230	73	54	82	31	14M	150	117
		TCLP (µg/l)	<10	<10	300	180	190	20	28	18	<10	<10	<10	<10	<10	<10	<10	<10	7.6
		SPLP (µg/l)	<10	<10	230	140	150	15	23	18	<10	<10	<10	<10	<10	<10	<10	<10	7.6
TP-61	2-3	Total (mg/kg)	2.8	0.67	0.68M	1.7	7.2	2.5M	9.3	7.8	1.1	4.9	2.9	2.7	2.9	1.6	0.61M	4.1	4.14
		TCLP (µg/l)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7.6
		SPLP (µg/l)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	7.6

Notes:

(a) Samples were analyzed for TCLP and SPLP polycyclic aromatic hydrocarbons (PAHs) by EPA Methods 1311/1312/8270.

(b) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)].

For non-detected cPAH analytes, the TEF factor (listed below) was applied to a value of one-half the laboratory reporting limit prior to summation. TEF = 1.0 for benzo(a)pyrene

TEF = 0.1 for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene TEF = 0.01 for chrysene

(c) "<" denotes analyte was not detected at the indicated reporting limit.

mg/kg = milligrams per kilogram

 $\mu g/I = micrograms per liter$

Qualifiers:

M - Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

NOTE: This table was upated in July 2013 at Ecology's request based on the revised methodology (i.e., TEF summation) for calculation of total cPAHs which was not required when the original RI/FS was performed. No values other than total cPAHs were revised from the orginal table produced in October 2001.

REMEDIAL INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - DISSOLVED METALS Former Tacoma Metals Facility

				Disso	olved Metals (µg	j/l)^{(a)(b)}			
Sample Designation	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
RGW -1	5/25/2000	<5 ^(c)	61	9	<10	<4	<0.2	<50	<7
RGW -2	5/25/2000	<5	49	6	<10	<4	<0.2	<50	<7
RGW -3	5/25/2000	<5	62	<5	<10	<4	<0.2	<50	<7
RGW -4	5/25/2000	<5	33	<5	<10	<4	<0.2	<50	<7
RGW -5	5/25/2000	<5	44	5	<10	<4	<0.2	<50	<7
RGW -6	5/25/2000	<5	14	<5	<10	<4	<0.2	<50	<7
RGW -7	5/25/2000	<5	23	<5	<10	<4	<0.2	<50	<7
RGW -8	5/25/2000	<5	120	<5	<10	<4	<0.2	<50	<7
RGW -9	5/25/2000	<5	30	<5	<10	<4	<0.2	<50	<7
RGW -10	5/25/2000	<5	17	<5	<10	<4	<0.2	<50	<7
RGW -11	5/25/2000	<5	9	<5	<10	<4	<0.2	<50	<7
RGW -12	5/25/2000	<5	10	<5	<10	<4	<0.2	<50	<7
RGW -13	5/26/2000	<5	11	<5	<10	<4	<0.2	<50	<7
RGW -14	5/26/2000	<5	4	<5	<10	<4	<0.2	<50	<7
RGW -15	5/26/2000	<5	4	<5	<10	<4	<0.2	<50	<7
RGW -16	5/26/2000	<5	12	<5	<10	<4	<0.2	<50	<7
RGW -17	5/26/2000	<5	14	<5	<10	<4	<0.2	<50	<7
RGW -18	5/26/2000	<5	7	<5	<10	<4	0.2	<50	<7
MTCA Method B									
Surface Water Cleanup Lev	el ^(d)	0.0982(1)	NA ^(e)	20.3	NA	NA	NA	NA	25,900
MTCA Method C									
Surface Water Cleanup Lev	el ^(d)	2.46 (1)	NA	50.6	NA	NA	NA	NA	64,800
Ecology Chronic Freshwate	r								
Surface Water Cleanup Lev	el ^(f)	190	NA	1.59 ^(g)	288.07 ^(g,h)	4.74 ^(g) (1)	0.012 (1)	5 (1)	NA
National Toxics Rule for Co							, ,		
Organisms ⁽ⁱ⁾	•	1.4 (1)	NA	NA	NA	NA	1.5 (1)	NA	NA

Analytes detected in samples at concentrations exceeding one or more of the comparison values are shown in bold and italics.

REMEDIAL INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - DISSOLVED METALS Former Tacoma Metals Facility

Notes:

- (a) Reconnaissance groundwater samples were analyzed for dissolved metals by EPA Methods 6010/7000 series.
- (b) All groundwater samples were field filtered. All concentrations are dissolved.
- (c) "<" denotes analyte was not detected at the indicated reporting limit.
- (d) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (e) "NA" = No cleanup level available.
- (f) Ecology Chronic Freshwater Surface Water Standard (WAC 173-201A).
- (g) Surface Water Quality Standard is based on an average groundwater hardness of 180 mg/l.
- (h) Chromium as chromium III (CAS# 7440-47-3).
- (i) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x1C⁵.

(1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993).

- mg/l milligrams per liter
- µg/l micrograms per liter

REMEDIAL INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - PCBs Former Tacoma Metals Facility

					PCBs (µg/l) ^(a)				
Sample Designation	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs ^(c)
RGW-1	5/25/2000	< 0.2 ^(b)	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
RGW-2	5/25/2000	<1	<1	<1	<1	<1	<1	<1	3.5
RGW-3	5/25/2000	<1	<1	<1	<1	<1	<1	<1	3.5
RGW-4	5/25/2000	<1	<1	<1	<1	<1	<1	<1	3.5
RGW-5	5/25/2000	<2	<2	<2	<2	<2	<2	<2	7.0
RGW-6	5/25/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35
RGW-7	5/25/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35
RGW-8	5/25/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35
RGW-9	5/25/2000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
RGW-10	5/25/2000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
RGW-11	5/25/2000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
RGW-12	5/25/2000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
RGW-13	5/26/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35
RGW-14	5/26/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35
RGW-15	5/26/2000	<1	<1	<1	<1	<1	<1	<1	3.5
RGW-16	5/26/2000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
RGW-17	5/26/2000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
RGW-18	5/26/2000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
MTCA Method B									
Surface Water Cleanup Leve	(^{d)}	NA ^(e)	NA	NA	NA	NA	NA	NA	2.70E-05 (1)
MTCA Method C									
Surface Water Cleanup Leve	(^{d)}	NA	NA	NA	NA	NA	NA	NA	6.74E-04 (1)
Ecology Chronic Freshwater									
Surface Water Quality Stands	ard ^(f)	NA	NA	NA	NA	NA	NA	NA	0.014 (1)
National Toxics Rule for Con									<u>, , , , , , , , , , , , , , , , , , , </u>
Organisms ^(g)		NA	NA	NA	NA	NA	NA	NA	0.0017 (1)

REMEDIAL INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - PCBs Former Tacoma Metals Facility

Notes:

- (a) Samples were analyzed for polychlorinated biphenyls (PCBs) by EPA Method 8082.
- (b) "<" denotes analyte was not detected at the indicated reporting limit.
- (c) The total PCBs were calculated by summing the concentrations of all the probable PCBs. If a probable PCB was not detected, a value equal to one-half the reporting limit was used.
- (d) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (e) "NA" = No cleanup level available.
- (f) Ecology Chronic Freshwater Surface Water Quality Standards (WAC 173-201A).
- (g) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x10⁵.

(1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993).

µg/l - micrograms per liter

REMEDIAL INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - PAHs Former Tacoma Metals Facility

PAHs (µg/I) ^(a) cPAHs (µg/I) ^{(a)(b)}																		
Sample	Sample	Naphth-	Acenaph-	Acenaph-		Phenan-	Anth-	Fluoran-		Benzo (g,h,i)		Benzo (b)-	Benzo (k)-	Benzo (a)-	Indeno (1,2,3-	Dibenz (a,h)-	Benzo (a)-	Total
Designation	Date	alene	thlyene	thene	Fluorene	threne	racene	thene	Pyrene		Chrysene	fluoranthene	fluoranthene	pyrene	cd) pyrene	anthracene	anthracene	cPAHs
	•							•							• • • • •			<u> </u>
RGW -1	5/25/2000	< 0.02 ^(c)	<0.02	0.24	0.23	0.09	0.07	0.22	0.14	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.017
RGW -2	5/25/2000	< 0.02	<0.02	1100	0.05	0.03	0.03	0.08	0.06	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	0.015
RGW -3	5/25/2000	< 0.02	< 0.02	0.17	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	0.015
RGW -4	5/25/2000	0.04	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	0.015
RGW -5	5/25/2000	0.02	< 0.02	< 0.02	0.04	0.06	< 0.02	0.07	0.06	< 0.02	0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.015
RGW -6	5/25/2000	< 0.02	< 0.02	0.16	<0.02	0.04	< 0.02	0.09	0.16	0.07	0.55	0.21	0.09	0.04	0.04	< 0.02	0.09	0.090
RGW -7	5/25/2000	0.02	< 0.02	0.55	0.4	1.2	0.18	0.38	0.25	< 0.02	0.04	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	0.019
RGW -8	5/25/2000	< 0.02	< 0.02	0.02	<0.02	0.09	< 0.02	0.05	0.06	< 0.02	0.03	<0.02	< 0.02	0.02	< 0.02	< 0.02	0.02	0.016
RGW -9	5/25/2000	0.02	< 0.02	0.04	< 0.02	0.06	< 0.02	0.03	0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.015
RGW -10	5/25/2000	< 0.02	< 0.02	< 0.02	<0.02	0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.015
RGW -11	5/25/2000	0.13	< 0.02	1.4	0.03	0.04	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.015
RGW -12	5/25/2000	0.02	< 0.02	0.1	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.015
RGW -13	5/26/2000	34	0.61	140	57	31	2.4	4.4	3.1	0.24	0.47	0.27	0.23	0.38	0.21	0.07	0.43	0.51
RGW -14	5/26/2000	8.6	0.05	3.6	2.2	2.2	0.64	2.7	1.6	0.03	0.22	0.07	0.07	0.06	0.03	< 0.02	0.28	0.11
RGW -15	5/26/2000	110	0.37	64	38	27	5.3	9.2	7.1	0.18	0.54	0.26	0.23	0.38	0.15	< 0.02	0.59	0.51
RGW -16	5/26/2000	0.21	0.01	0.13	0.1	0.2	0.04	0.05	0.04	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.015
RGW -17	5/26/2000	0.22	< 0.02	0.19	0.03	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.015
RGW -18	5/26/2000	45	0.82	66	47	130	26	88	79	7.4	19	13	13	16	6.6	2.4	26	22
MTCA Method B											i							
Surface Water Cle	anup Level ^(d)	9,880	NA ^(e)	643	3,460	NA	25,900	90.2	2,590	NA	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)
MTCA Method C							·										× 7	
Surface Water Cle	anup Level ^(d)	24,700	NA	1,610	8,640	NA	64,800	225	6,480	NA	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)
Ecology Chronic F	reshwater						·							· · ·			× 7	
Surface Water Qua	(1)	620	NA	520	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
National Toxics Ru	le for																	
Consumption of Or	rganisms ^(g)	NA	NA	NA	1.4x10 ⁵	NA	1.1x10 ⁶	3,700	1.1x10 ⁵	NA	0.31 (1)	0.31 (1)	0.31 (1)	0.31 (1)	0.31 (1)	0.31 (1)	0.31 (1)	0.31 (1)

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

Notes:

(a) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270B GC/MS-SIM.

(b) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)].

For non-detected cPAH analytes, the TEF factor (listed below) was applied to a value of one-half the laboratory reporting limit prior to summation.

TEF = 1.0 for benzo(a)pyrene

TEF = 0.1 for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene TEF = 0.01 for chrysene

(c) "<" denotes analyte was not detected at the indicated reporting limit.

- (d) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (e) "NA" = No cleanup level is available.
- (f) Ecology Chronic Freshwater Surface Water Quality Standards (WAC 173-201A).
- (g) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1×10^{-5} .

(1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993).

 $\mu g/l = micrograms per liter$

NOTE: This table was upated in July 2013 at Ecology's request based on the revised methodology (i.e., TEF summation) for calculation of total cPAHs which was not required when the original RI/FS was performed. No values other than total cPAHs were revised from the orginal table produced in October 2001.

REMDIAL INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (mg/l) ^(a)		Volatile Organic Compounds (µg/I) ^(b)							
Sample Designation	Sample Date	TPH-Gas		TPH-Motor Oil	Benzene	Toluene	Ethylbenzene	Total xylenes	Naphthalene			
RGW -1	5/25/2000	< 0.05 ^(c)	<0.25	<0.5	<2	3	<2	<6	<2			
RGW -2	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -3	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -4	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -5	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -6	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -7	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -8	5/25/2000	<0.05	<0.25	<0.5	<2	2	<2	<6	<2			
RGW -9	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -10	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -11	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -12	5/25/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -13	5/26/2000	0.33	0.88	<0.5	<2	<2	2	<6	33			
RGW -14	5/26/2000	<0.05	<0.25	<0.5	<2	<2	<2	<6	23			
RGW -15	5/26/2000	0.2	0.96	0.96	<2	<2	<2	<6	210			
RGW -16	5/26/2000	<0.05	1.7	<0.5	<2	<2	<2	<6	<2			
RGW -17	5/26/2000	< 0.05	<0.25	<0.5	<2	<2	<2	<6	<2			
RGW -18	5/26/2000	0.09	0.86	<0.5	<2	<2	<2	<6	77			
MTCA Method B												
Surface Water Cleanup Level	(d)	NA ^(e)	NA	NA	43	48,500	6,910	NA	9,880			
MTCA Method C												
Surface Water Cleanup Level	(d)	NA	NA	NA	1,070	121,000	17,300	NA	24,700			
Ecology Chronic Freshwater												
Surface Water Quality Standard ^(f)		NA	NA	NA	NA	NA	NA	NA	620			
National Toxics Rule for Consumption of												
Organisms ^(g)		NA	NA	NA	710	2,000,000	290,000	NA	NA			
MTCA Method A Groundwate	er											
Cleanup Level ^(h)		1	1	1	NA	NA	NA	NA	NA			

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

REMDIAL INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

Notes:

(a) Samples were analyzed for total petroleum hydrocarbons (TPHs) by the appropriate Ecology Methods NWTPH-Gas and NWTPH-Diesel (extended).

(b) Soil and groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260.

(c) "<" denotes analyte was not detected at the indicated reporting limit.

(d) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.

(e) "NA" = No cleanup level available.

(f) Ecology Chronic Freshwater Surface Water Quality Standards (WAC 173-201A).

(g) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x10⁻⁵.

(h) MTCA Method A groundwater cleanup level based on WAC 173-340-720(2), Table 1 (Ecology 1996A).

mg/l - milligrams per liter

µg/l - micrograms per liter

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TOTAL METALS Former Tacoma Metals Facility

		Total Metals (μg/l) ^(a)										
Sample Designation	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver		
MW-1	3/14/2000	<5 ^(b)	12	<5	30	(c)	<4	<0.2	<50	<7		
	11/21/2000	<50	9	<2	<5	11	<20	<0.1	<50	<3		
	3/5/2001	<50	13	<2	<5	<2	<20	<0.1	<50	<3		
MW-2	3/14/2000	<5	5	<5	190		<4	<0.2	<50	<7		
	11/21/2000	<50	28	<2	<5	20	<20	<0.1	<50	<3		
	3/5/2001	<50	13	<2	<5	<2	<20	<0.1	<50	<3		
MW-4(R) ^(d)	5/11/2000	<5	8	<5	<10		20	<0.2	<50	<7		
	11/20/2000	<50	12	<2	<5	<2	<20	<0.1	<50	<3		
	3/5/2001	<50	14	<2	<5	8	<20	<0.1	<50	<3		
MW-5	3/14/2000	<5	18	<5	30		<4	<0.2	<50	<7		
	11/21/2000	<50	2	<2	<5	4	<20	<0.1	<50	<3		
	3/5/2001	<50	21	<2	<5	3	<20	<0.1	<50	<3		
MW-6	3/14/2000	<5	24	<5	70		<4	<0.2	<50	<7		
	11/21/2000	<50	3	<2	<5	5	<20	<0.1	<50	<3		
	3/5/2001	<50	22	3	<5	<2	<20	<0.1	<50	<3		
MW-7	3/14/2000	<5	23	<5	20		<4	<0.2	<50	<7		
	11/21/2000	<50	31	<2	<5	8	<20	<0.1	<50	<3		
	3/6/2001	<50	34	<2	<5	<2	<20	<0.1	<50	<3		
MW-8(R)/MW-800 ^(e)	5/12/2000	<5	15	<5	<10		6	<0.2	<50	<7		
	11/20/2000	<50/<50	13/11	<2/<2	<5/<5	2/<2	<20/<20	<0.1/<0.1	<50/<50	<3/<3		
	3/6/2001	<50/<50	14/15	<2/<2	<5/<5	<2/<2	<20/<20	<0.1/<0.1	<50/<50	<3/<3		
MW-9	5/11/2000	<5	17	<5	<10		6	<0.2	<50	<7		
	11/21/2000	<50	16	<2	<5	<2	<20	<0.1	<50	<3		
	3/5/2001	<50	90	<2	<5	<2	<20	<0.1	<50	<3		
MW-10	11/20/2000	<50	10	<2	<5	3	<20	<0.1	<50	<3		
	3/6/2001	<50	9	<2	<5	4	<20	<0.1	<50	<3		
MW-11	11/20/2000	<50	9	<2	<5	3	<20	<0.1	<50	<3		
	3/6/2001	<50	8	<2	<5	<2	<20	<0.1	<50	<3		
MW-12	11/20/2000	<50	3	<2	<5	<2	<20	<0.1	<50	<3		
	3/6/2001	<50	31	<2	<5	<2	<20	<0.1	<50	<3		
MTCA Method B												
Surface Water Cleanup Lev	el ^(†)	0.00982 (1)	NA ^(g)	20.3	NA	2,660	NA	NA	NA	25,900		
MTCA Method C												
	Surface Water Cleanup Level ^(f)		NA	50.6	NA	6,660	NA	NA	NA	64,800		
Ecology Chronic Freshwate												
Surface Water Cleanup Lev	el ^(h)	190	NA	1.59 ⁽ⁱ⁾	288.07 ^(i,j)	18.76 ⁽ⁱ⁾	4.74 ⁽ⁱ⁾ (1)	0.012 (1)	5 (1)	NA		
National Toxics Rule for Co	nsumption of											
Organisms ^(k)	-	1.4 (1)	NA	NA	NA	NA	NA	1.5 (1)	NA	NA		

October 2001

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TOTAL METALS Former Tacoma Metals Facility

Notes:

- (a) Groundwater samples were analyzed for metals by EPA Methods 6010/7000 series.
- (b) "<" denotes analyte was not detected at the indicated reporting limit.
- (c) "---" Sample not analyzed for indicated analyte.
- (d) "R" = Replacement well.
- (e) Sample MW-800 is a duplicate sample collected from well MW-8(R).
- (f) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (g) "NA" = No cleanup level available.
- (h) Ecology Chronic Freshwater Surface Water Standard (WAC 173-201A).
- (i) Surface Water Quality Standard is based on an average groundwater hardness of 180 mg/l.
- (j) Chromium as chromium III, (CAS# 7440-47-3).
- (k) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x10⁵.
- (1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993).
- µg/l micrograms per liter
- mg/l milligrams per liter

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - DISSOLVED METALS Former Tacoma Metals Facility

		Dissolved Metals (µg/l) ^{(a)(b)}										
Sample Designation	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver		
MW-1	11/21/2000	<50 ^(c)	19	<2	<5	<2	<20	<0.1	<50	<3		
	3/5/2001	<50	14	<2	<5	<2	<20	<0.1	<50	<3		
MW-2	11/21/2000	<50	11	<2	<5	<2	<20	<0.1	<50	<3		
	3/5/2001	<50	10	<2	<5	<2	<20	<0.1	<50	<3		
MW-4(R) ^(d)	11/20/2000	<50	13	<2	<5	<2	<20	<0.1	<50	<3		
	3/5/2001	<50	10	<2	<5	<2	<20	<0.1	<50	<3		
MW-5	11/21/2000	<50	35	<2	<5	<2	<20	<0.1	<50	<3		
	3/5/2001	<50	21	<2	<5	<2	<20	<0.1	<50	<3		
MW-6	11/21/2000	<50	34	<2	<5	<2	<20	<0.1	<50	<3		
	3/5/2001	<50	22	<2	<5	<2	<20	<0.1	<50	<3		
MW-7	11/21/2000	<50	39	<2	<5	3	<20	<0.1	<50	<3		
	3/6/2001	<50	34	<2	<5	<2	<20	<0.1	<50	<3		
MW-8(R)/MW-800 ^(e)	11/20/2000	<50/<50	15/15	<2/<2	<5/<5	<2/<2	<20/<20	<0.1/<0.1	<50/<50	<3/<3		
	3/6/2001	<50/<50	19/19	<2/<2	<5/<5	<2/<2	<2/<2	<0.1/<0.1	<50/<50	<3/<3		
MW-9	11/21/2000	<50	102	<2	<5	<2	<20	<0.1	70	<3		
	3/5/2001	<50	97	<2	<5	<2	<20	<0.1	<50	<3		
MW-10	11/20/2000	<50	12	<2	<5	<2	<20	<0.1	<50	<3		
	3/6/2001	<50	11	<2	<5	<2	<20	<0.1	<50	<3		
MW-11	11/20/2000	<50	10	<2	<5	<2	<20	<0.1	<50	<3		
	3/6/2001	<50	9	<2	<5	<2	<20	<0.1	<50	<3		
MW-12	11/20/2000	<50	35	<2	<5	<2	<20	<0.1	<50	<3		
	3/6/2001	<50	33	<2	<5	<2	<20	<0.1	<50	<3		
MTCA Method B												
Surface Water Cleanup Lev	el ^(f)	0.00982 (1)	NA ^(g)	20.3	NA	2,660	NA	NA	NA	25,900		
MTCA Method C												
Surface Water Cleanup Lev	el ^(f)	2.46 (1)	NA	50.6	NA	6,660	NA	NA	NA	64,800		
Ecology Chronic Freshwater	r											
Surface Water Cleanup Lev	Surface Water Cleanup Level ^(h)		NA	1.59 ⁽ⁱ⁾	288.07 ^(i,j)	18.76 ⁽ⁱ⁾	4.74 ⁽ⁱ⁾ (1)	0.012 (1)	5 (1)	NA		
National Toxics Rule for Cor	nsumption of											
Organisms ^(k)		1.4 (1)	NA	NA	NA	NA	NA	1.5 (1)	NA	NA		

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - DISSOLVED METALS Former Tacoma Metals Facility

Notes:

- (a) Groundwater samples were analyzed for metals by EPA Methods 6010/7000 series.
- (b) All groundwater samples were field filtered. All concentrations are dissolved.
- (c) "<" denotes analyte was not detected at the indicated reporting limit.
- (d) "R" = Replacement well.
- (e) Sample MW-800 is a duplicate sample collected from well MW-8(R).
- (f) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (g) "NA" = No cleanup level available.
- (h) Ecology Chronic Freshwater Surface Water Standard (WAC 173-201A).
- (i) Surface Water Quality Standard is based on an average groundwater hardness of 180 mg/l.
- (j) Chromium as chromium III, (CAS # 7440-47-3).
- (k) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x10⁻⁵.

(1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993).

- mg/l milligrams per liter
- µg/l micrograms per liter

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - PCBs Former Tacoma Metals Facility

		PCBs (µg/I) ^(a)									
Sample Designation	Sample Date	Aroclor 1016	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1221	Aroclor 1232	Total PCBs ^(b)		
MW-1	3/14/2000	<0.1 ^(c)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35		
	11/21/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/5/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-2	3/14/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35		
	11/21/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/5/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-4(R) ^(d)	5/11/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35		
	11/20/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/5/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-5	3/14/2000	<0.1	<0.1	<0.1	<1.0	<1.0	<0.1	<0.1	1.25		
	11/21/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/5/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-6	3/14/2000	<0.1	<0.1	<0.1	<1.0	<1.0	<0.1	<0.1	1.25		
	11/21/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/5/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-7	3/14/2000	<0.5	<0.5	<0.5	<2.0	<2.0	<0.5	<0.5	3.25		
	11/21/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/6/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-8(R)/MW-800 ^(e)	5/12/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<20	<5	15		
	11/20/2000	<1.0/<1.0	<1.0/5.6Y ^(f)	<1.0/1.9Y	<1.0/1.3Y	<1.0/<1.0	<2.0/<2.0	<1.0/<1.0	4.0/ 11.3		
	3/6/2001	<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<1.0/<1.0	<2.0/<2.0	<1.0/<1.0	4.0/4.0		
MW-9	5/11/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.35		
	11/21/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/5/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-10	11/20/2000	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/6/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-11	11/20/2000	<1.0	2.0Y	<1.0	<1.0	<1.0	<2.0	<1.0	5.5		
	3/6/2001	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MW-12	11/20/2000	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
	3/6/2001		<1.0	<1.0	<1.0	<1.0	<2.0	<1.0	4.0		
MTCA Method B Surface Water Cleanup Level	(g)	NA ^(h)	NA	NA	NA	NA	NA	NA	2.70E-05 (1)		
MTCA Method C											
Surface Water Cleanup Level ^(g)		NA	NA	NA	NA	NA	NA	NA	6.74E-04 (1)		
Ecology Chronic Freshwater											
Surface Water Quality Standa	urd ⁽ⁱ⁾	NA	NA	NA	NA	NA	NA	NA	0.014 (1)		
National Toxics Rule for Cons				11/3		11/7			0.017(1)		
Organisms ⁽ⁱ⁾		NA	NA	NA	NA	NA	NA	NA	0.0017 (1)		

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

RI/FS Report, Former Tacoma Metals Facility October 2001

REMEDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - PCBs Former Tacoma Metals Facility

Notes:

- (a) Samples were analyzed for polychlorinated biphenyls (PCBs) by EPA Method 8082.
- (b) The total PCBs were calculated by summing the concentrations of all the probable PCBs. If a probable PCB was not detected, a value equal to one-half the reporting limit was used.
- (c) "<" denotes analyte was not detected at the indicated reporting limit.
- (d) "R" Replacement well.
- (e) Sample MW-800 is a duplicate sample collected from well MW-8(R).
- (f) "Y" indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration.
- (g) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (h) "NA" = No cleanup level available.
- (i) Ecology Chronic Freshwater Surface Water Quality Standards (WAC 173-201A).
- (j) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x10⁻⁵.

(1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993).

µg/l - micrograms per liter

REMDIAL INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - PAHs Former Tacoma Metals Facility

							PAHs (µg/l) ^(a)				(cPAHs (ug/l) ^{(a)(}	b)					
Sample	Sample	Naphth-	Acenaph-	Acenaph-		Phenan-	Anth-	Fluoran-		Benzo (g,h,i)		Benzo (b)-	Benzo (k)-	Benzo (a)-		Dibenz (a,h)-	Benzo (a)-	Total
Designation	Date	alene	thlyene	thene	Fluorene	threne	racene	thene	Pyrene	perylene	Chrysene	fluoranthene	fluoranthene	pyrene	cd) pyrene	anthracene	anthracene	cPAHs ^(b)
MW-1	3/14/2000	< 0.02 ^(c)	<0.02	0.09	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015
	11/21/2000	0.09J	<0.10	0.26	<0.10	0.09J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/5/2001	<0.10	<0.10	0.22	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-2	3/14/2000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015
	11/21/2000	0.08J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/5/2001	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-4(R) ^(d)	5/11/2000	<0.02	<0.02	0.30	0.05	<0.02	<0.02	0.04	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015
	11/20/2000	2.4	<0.10	0.54	0.17	0.21	0.05J	0.10	0.06J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/5/2001	0.13	<0.10	0.34	0.08J	0.10	<0.10	0.10	0.06J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-5	3/14/2000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015
	11/21/2000	0.40	<0.10	0.06J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/5/2001	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-6	3/14/2000	0.17	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015
	11/21/2000	0.12	<0.10	0.09J	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/5/2001	0.10	<0.10	0.15	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-7	3/14/2000	<0.02	<0.02	0.25	0.11	<0.02	0.03	0.08	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015
	11/21/2000	0.19	<0.10	0.79	0.28	0.06J	0.13	0.26	0.16	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/6/2001	0.12	<0.10	0.72	0.28	0.06J	0.13	0.20	0.13	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-8(R)/MW-800 ^(e)	5/12/2000	6200	2.1	130	68	50	38	3.9	2.5	<0.02	0.32	0.05	0.06	0.06	<0.02	<0.02	0.30	0.11
	11/20/2000	6,200/5,600	3/2.9	220/200	100/95	70/65	5.2/4.9	5.9/6.2	2.9/2.8	<0.10/<0.10	0.17/0.18	<0.10/<0.10	<0.10/<0.10	<0.10/<0.10	<0.10/<0.10	<0.10/<0.10	0.18/0.19	0.090 / 0.090
	3/6/2001	4,500/4,000	3.6M/3.6M	210/190	88/79	60/54	5.0/4.9	5.4/4.7	3.0/2.5	<0.10/<0.10	0.21M/0.13	<i>0.06J</i> /<0.10	<i>0.05J</i> /<0.10	<i>0.06MJ</i> /<0.10	<0.10/<0.10	<0.10/<0.10	0.29/0.19	0.11 / 0.091
	5/14/01 ^(f)	4,900	2.8	140	<50	<50	2.7	1.1	0.57	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-9	5/11/2000	0.07	<0.02	0.46	0.06	0.15	0.07	0.12	0.10	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.015
	11/21/2000	28	<0.10	3.9	1.1	0.77	0.15	0.32	0.22	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/5/2001	4.9	<0.10	1.4	0.37	0.60	0.20	0.40	0.30	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-10	11/20/2000	63	0.44	96	50	66	8	10	7.9	0.11	0.59	0.27	0.21	0.28	0.11	<0.10	0.70	0.42
	3/6/2001	7	0.86M	68	36	46	6.9	8.5	8.9	0.31	1.2	0.56	0.63	0.71	0.26	0.09MJ	1.4	1.02
	5/14/01 ^(f)	3.7	<0.10	18	9.9	9.9	1.4	1.2	0.76	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	0.082
MW-11	11/20/2000	0.46M	2.4Y	340	190	230	26	38	30	0.75	4.0M	1.8	1.5	1.8	0.72	0.23	4.8	2.75
	3/6/2001	280	2.2M	210	140	170	16	18	18	0.26	1.1	0.52	0.51	0.65	0.23	0.07MJ	1.8	0.97
	5/14/01 ^(f)	0.28	<0.10	0.23	<0.10	<0.10	0.11	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MW-12	11/20/2000	1.3	<0.10	2.3	0.83	0.25	0.14	0.24	0.14	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
	3/6/2001	2.1	<0.10	2	0.82	0.11	0.13	0.18	0.11	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.076
MTCA Method B	(a)		(b)											/ - >				/ - >
Surface Water Cleanu	p Level ⁽⁹⁾	9,880	NA ^(h)	643	3,460	NA	25,900	90.2	2,590	NA	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)	0.0296 (1)
MTCA Method C	(a)																	
Surface Water Cleanu	•	24,700	NA	1,610	8,640	NA	64,800	225	6,480	NA	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)	0.740 (1)
Ecology Chronic Fresh	<i>m</i>																	
Surface Water Quality	Standard	620	NA	520	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	or Consumption of			1	1					1		1						
National Toxics Rule fo Organisms ^(j)	or Consumption of																	

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Notes:

(a) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270B GC/MS-SIM.

(b) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)].

For non-detected cPAH analytes, the TEF factor (listed below) was applied to a value of one-half the laboratory reporting limit prior to summation. TEF = 1.0 for benzo(a)pyrene

> TEF = 0.1 for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene TEF = 0.01 for chrysene

(c) "<" denotes analyte was not detected at the indicated reporting limit.

(d) "R" replacement well.

(e) Sample MW-800 is a duplicate sample collected from well MW-8(R).

(f) Samples were field filtered.

- (g) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (h) "NA" = No cleanup level is available.
- (i) Ecology Chronic Freshwater Surface Water Quality Standards (WAC 173-201A).
- (j) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x10⁻⁵.
- (1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993). $\mu g/I = micrograms per liter$

NOTE: This table was upated in July 2013 at Ecology's request based on the revised methodology (i.e., TEF summation) for calculation of total cPAHs which was not required when the original RI/FS was performed. No values other than total cPAHs were revised from the orginal table produced in October 2001.

TABLE 5-8

Qualifiers:

J - Indicates an estimated concentration when the value is less than the calculated reporting limit.

M - Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

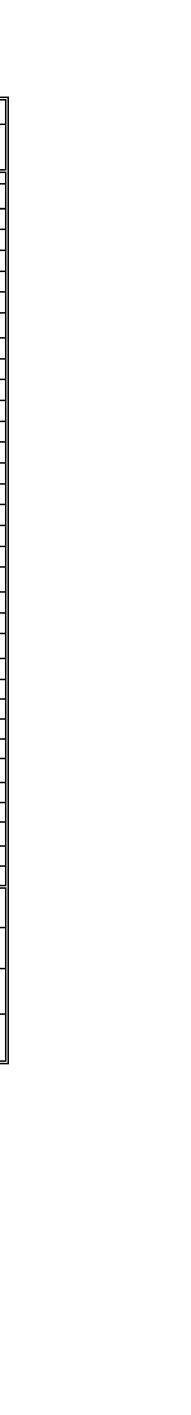


TABLE 5-9

REMEDIAL INVESTIGATION **GROUNDWATER ANALYTICAL RESULTS - TPHs AND VOCs** Former Tacoma Metals Facility

		1	TPHs (mg/l) ^(a))	Volatile Organic Compounds (µg/l) ^(b)																			
Sample	Sample			-	Ethyl- Total Naphth- Chloro- Carbon Methylene P-Isopropy 1,1,1,2-Tetra 1,3,5 Trimethyl 1,2,4 Trimethyl Isopropyl- n-Propyl 4-Isopropy n-Butyl 1,4, Dichloro- 1,1 Dichloro-																			
Designation	Date	TPH-Gas	TPH-Diesel	TPH-Motor Oil	Benzene	Toluene	benzene	xylenes	alene	benzene	Disulfide	Acetone	Chloride	-toluene	chloroethane	benzene	benzene	benzene	benzene	toluene	benzene	Styrene	benzene	ethane
Designation	Date	in in Gas	IIII Diesei		Denzene	Tolucite	Delizene	Aylefies	alerie	Denzene	Distille	Acetone	onionae	loidene	chioroethane	Denzene	Denzene	Denzene	benzene	toideile	Delizene	otyrene	benzene	ethane
MW-1	3/14/2000	< 0.05 ^(c)	<0.25	<0.50	<5	<5	<5	<15	<5	<5		<150	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5
10100-1	11/21/2000	<0.05	<0.25	<0.50	<0.2	<0.2	<0.2	<0.6	<0.5	<0.2	<0.2	1.8	<0.3	<0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	3/5/2001	<0.25	<0.25	<0.50	<1.0	<1.0	<1.0	<2.0	<5.0	<1.0	<1.0	<5.0	<0.3		<1.0	<1.0	<1.0	<1.0	<1.0	<0.2	<1.0	<1.0	<1.0	<0.2
MW-2	3/14/2000	< 0.05	<0.25	<0.50	<5	<5	<5	<15	<5	<5		<150	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5
10100-2	11/21/2000	<0.05	<0.25	<0.50	<0.2	<0.2	<0.2	<0.6	<0.5	<0.2	<0.2	<1.0	<0.3		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
	3/5/2001	<0.25	<0.25	<0.50	<1.0	<1.0	<1.0	<2.0	<5.0	<1.0	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-4(R) ^(d)	5/11/2000	(e)	0.42	<0.50	<2	<2	<2	<6	<2	<2		<20	<2	5	<2	<2	<2	<2	<2		<2	<2	<2	<2
1VIVV-4(R)	11/20/2000	<0.25	0.42	<0.50	<2	<1.0	<2	<0	<2	<2	<1.0	<20	<2	°	<2 <1.0	<2 <1.0	<2	<2	<2	10	<2	<2	<2 <1.0	
	3/5/2001	<0.25	0.50	<0.50	<1.0	<1.0	<1.0	<2.0	<5.0	<1.0	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
MW-5	3/14/2000	<0.25	<0.25	<0.50	<1.0	<1.0	<1.0	<2.0	<5.0	<1.0	<1.0	<5.0	<2.0	<5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
10100-5	11/21/2000	<0.05	<0.25 0.62	<0.50	<0.2	<0.2	<0.2	<0.6	<0.5	<0.2	<0.2	1.7	<0.3	<0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	3/5/2001	<0.25	0.02	<0.50	<1.0	<1.0	<1.0	<0.0	<5.0	<1.0	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.2	<1.0	<0.2
MW-6	3/14/2000	<0.25	<0.25	<0.50	<5	<5	<5	<15	<5	36		<150	<2.0	<5	<1.0	<1.0	<1.0	<5	<1.0	<1.0	<5	<5	<5	<1.0
10100-0	11/21/2000	<0.05	1.2	<0.50	<0.2	<0.2	<0.2	<0.6	<5.0	72	0.3	1.3	<0.3		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.4	<0.2
	3/5/2001	<0.25	1.0	<0.50	<1.0	<1.0	<1.0	<0.0	<5.0	88	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	3/14/2000	<0.05	<0.25	<0.50	<5	<5	<5	<15	<5	<5		<150	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5
10100 /	11/21/2000	<0.05	0.44	<0.50	<0.2	<0.2	<0.2	<0.6	<0.5	<0.2	<0.2	1.1	<0.3		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	3/6/2001	<0.25	0.33	<0.50	<1.0	<1.0	<1.0	<2.0	<5.0	<1.0	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-8(R)/MW-800 ^(f)	5/12/2000		4.1	<0.50	23	47	220	880	2.000	<2		<20	<2	38	<2	120	<2	58	<2		10	<20	<2	<2
10100-0(IC)/10100-000	11/20/2000	29/30	4/3.8	<0.50/<0.50	23/25	98/100	280/280	1,560/1,680	8,500/7,200	<0.2/<0.2	<0.2/<0.2	4.2/4.5	<0.3/<0.3		<0.2/<0.2	170/180	520/540	59/59	12/12	45/44	12M/<0.2	<0.2/<0.2	<0.2/<0.2	<0.2/<0.2
	3/6/2001	38/39	3.8/3.7	<0.50/<0.50	24/25	70/61	190/190	1.070/1.000	5.600/6.000	<10/<10	<10/<10	<50/<50	<20/<20		<10/<10	150/150	430/420	44/44	<10/<10	34/34	<10/<10	<10/<10	<10/<10	<10/<10
MW-9	5/11/2000		< 0.25	<0.50	<2	<2	<2	<6	<2	16		<20	<2	<2	<2	<2	<2	<2	<2		<2	<2	<2	<2
	11/21/2000	< 0.25	0.52	<0.50	< 0.2	<0.2	1.8	2.4	43	10	<0.2	<1.0	< 0.3		<0.2	0.2	1.5	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	3/5/2001	<0.25	0.63	<0.50	<1.0	<1.0	<1.0	<2.0	6.0	19	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10	11/20/2000	0.42	1.3	< 0.50	0.6	0.4	0.6	2.1	96	<0.2	<0.2	1.5	< 0.3		<0.2	0.6	1.8	0.9	0.3	5.8	<0.2	<0.2	<0.2	<0.2
	3/6/2001	0.39	1.1	< 0.50	1.2	<1.0	<1.0	1.6	29	<1.0	<1.0	<5.0	<2.0		<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11	11/20/2000	1.9	3.6	<0.50	1.5	1.4	6.6	12.5	1,100	<0.2	<0.2	3.7	<0.3		<0.2	6.0	17	3.8	2.2	14	<0.2	<0.2	<0.2	<0.2
	3/6/2001	2.5	3.1	<0.50	<5.0	<5.0	7.6	12.1	550	<5.0	<5.0	<25	<10		<5.0	<5.0	14	<5.0	<5.0	28	<5.0	<5.0	<5.0	<5.0
MW-12	11/20/2000	<0.25	0.64	<0.50	<1.0	<1.0	<1.0	<2.0	11	<1.0	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	4.5	<1.0	<1.0	<1.0	<1.0
	3/6/2001	<0.25	1.0	1.4	<1.0	<1.0	<1.0	<2.0	<5.0	<1.0	<1.0	<5.0	<2.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MTCA Method B	(0)	(b)																						1 1
Surface Water Cleanu	ip Level (9)	NA ^(h)	NA	NA	43	48,500	6,910	NA	9,880	5,030	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.86	NA
MTCA Method C	(0)																							1 1
Surface Water Cleanu	•	NA	NA	NA	1,070	121,000	17,300	NA	24,700	12,600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	121	NA
Ecology Chronic Fres	(1)																							۱ I
Surface Water Quality		NA	NA	NA	NA	NA	NA	NA	620	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
National Toxics Rule	for Consumption																							۱ I
of Organisms ⁽⁾⁾		NA	NA	NA	710	2,000,000	290,000	NA	NA	210,000	NA	NA	16,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	26,000	NA
MTCA Method A Grou	undwater		l		1														1					۱ I
Cleanup Level ^(k)		1	1	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

Notes:

(a) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-Gas and NWTPH-Diesel (extended).
 (b) Groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260.

(c) "<" denotes analyte was not detected at the indicated reporting limit.

(d) "R" Replacement well.

(e) "---" Sample not tested for indicated analyte.

(f) Sample MW-800 is a duplicate sample collected from well MW-8(R).
(g) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.

(h) "NA" = No cleanup level available.

(i) Ecology Chronic Freshwater Surface Water Quality Standards (WAC 173-201A).

(i) National Toxics Rule for consumption of organisms only based on 40 CFR 131.36 for a risk level of 1x10⁻⁵.

(k) MTCA Method A groundwater cleanup level based on WAC 173-340-720(2), Table 1 (Ecology 1996a).

mg/l - milligrams per liter µg/l - micrograms per liter

TABLE 6-1

REMEDIAL INVESTIGATION SURFACE WATER ANALYTICAL RESULTS Former Tacoma Metals Facility

	-		Designation		MTCA	MTCA	Ecology	National	Ecology
Analyte	SI	N-1	S	W-2	Method B ^(a)	Method C ^(a)	SWQS ^(b)	Toxics Rule ^(c)	NPDES ^(d)
Total Metals (µg/l) ^(e)	3/13/2001	4/29/2001	3/13/2001	4/29/2001					
Arsenic	<50 ^(f)	<50	<50	<50	0.00982 (1)	2.46 (1)	190	1.4 (1)	NA
Barium	175	49	57	27	NA ^(g)	NA	NA	NA	NA
Cadmium	8	2	8	5	20.3	50.6	0.43 ^(h) (1)	NA	NA
Chromium	127	8	7	<5	NA	NA	68.21 ^(h) (1)	NA	NA
Copper	2,070	437	410	231	2,660	6,660	4.17 ^(h) (1)	NA	NA
Lead	8,090	360	250	<20	NA	NA	0.69 ^(h) (1)	NA	NA
Mercury	9.4	0.9	0.7	0.3	NA	NA	0.012 (1)	1.5 (1)	NA
Selenium	<50	<50	<50	<50	NA	NA	5 (1)	NA	NA
Silver	6	<3	<3	<3	25,900	64,800	NA	NA	NA
Dissolved Metals (µg/l) ⁽ⁱ⁾									
Arsenic	<50	<50	<50	<50	0.00982 (1)	2.46 (1)	190	1.4 (1)	NA
Barium	12	21	35	27	NA	NA	NA	NA	NA
Cadmium	<2	<2	8	5	20.3	50.6	0.43 ^(h) (1)	NA	NA
Chromium	<5	<5	<5	<5	NA	NA	68.21 ^(h) (1)	NA	NA
Copper	90	181	172	240	2,660	6,660	4.17 ^(h) (1)	NA	NA
Lead	<20	<20	<20	<20	NA	NA	0.69 ^(h) (1)	NA	NA
Mercury	<0.1	0.2	0.1	0.2	NA	NA	0.012 (1)	1.5 (1)	NA
Selenium	<50	<50	<50	<50	NA	NA	5 (1)	NA	NA
Silver	<3	<3	<3	<3	25,900	64,800	NA	NA	NA
PCBs (µg/I) ⁽ⁱ⁾	1				, ,	,	•	1	<u> </u>
Aroclor 1016	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA
Aroclor 1242	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA
Aroclor 1248	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA
Aroclor 1254	2.7	1.8	1.0	<1.0	NA	NA	NA	NA	NA
Aroclor 1260	2.1	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA
Aroclor 1221	<2.0	<2.0	<2.0	<2.0	NA	NA	NA	NA	NA
Aroclor 1232	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA
Total PCBs ^(k)	7.8	5.3	4.5	4	0.000027 (1)	0.000674 (1)	0.014 (1)	0.0017 (1)	NA
TPH (mg/l) ^(I)		0.0			0.00002. (1)	0.00001 1 (1)	01011(1)		
Diesel	1.8	3.2	2	2.8	NA	NA	NA	NA	10
Motor Oil	2.9	3.2	2.6	1.4	NA	NA	NA	NA	10
PAHs (µg/I) ^(m)	2.0	0.2	2.0						
Naphthalene	0.63	0.5	0.12	<0.10	9,880	24,700	620	NA	NA
2-Methylnaphthalene	0.33	0.24	<0.12	<0.10	NA	NA	NA	NA	NA
Acenaphthylene	0.33	0.24	<0.10	<0.10	NA	NA	NA	NA	NA
Acenaphthene	0.33	0.24	0.15	<0.10	643	1,610	520	NA	NA
	0.37	0.33	0.13	<0.10	3,460	8,640	NA	140,000	NA
Fluorene Phenanthrene	0.36	0.27	0.1	<0.10	3,460 NA	8,640 NA	NA	140,000 NA	NA
Anthracene	0.99	0.74	<0.10	<0.10	25,900	64,800	NA	1,100,000	NA
Fluoranthene	2.0	1.1	0.26	<0.10	25,900 90.2	225	NA	3,700	NA
Benzo(g,h,i)perylene	0.59	0.36	<0.10 0.08J ⁽ⁿ⁾	<0.10	NA	NA	NA	NA	NA
Dibenzofuran	0.39	0.29		<0.10	NA 2 500	NA	NA	NA	NA
Pyrene Benzo(a)anthracene ^(o)	2.1	1.2	0.17	<0.10	2,590	6,480	NA	110,000	NA
Benzo(a)anthracene ^(*) Chrysene ^(o)	0.71	0.34	0.08J	<0.10	0.0296 (1)	0.740 (1)	NA	0.31 (1)	NA
Chrysene ^(*) Benzo(b)fluoranthene ^(o)	1.8	1.4	0.11	<0.10	0.0296 (1)	0.740 (1)	NA	0.31 (1)	NA
	1.0	0.73	<0.10	<0.10	0.0296 (1)	0.740 (1)	NA	0.31 (1)	NA
Benzo(k)fluoranthene ^(o)	1.2	0.70	<0.10	<0.10	0.0296 (1)	0.740 (1)	NA	0.31 (1)	NA
Benzo(a)pyrene ^(o)	1.0	0.44	<0.10	<0.10	0.0296 (1)	0.740 (1)	NA	0.31 (1)	NA
Indeno(1,2,3-cd)pyrene ^(o)	0.71	0.36	<0.10	<0.10	0.0296 (1)	0.740 (1)	NA	0.31 (1)	NA
Dibenz(a,h)anthracene ^(o)	0.2	0.12	<0.10	<0.10	0.0296 (1)	0.740 (1)	NA	0.31 (1)	NA
Total cPAHs ^(o,p)	1.4	0.68	0.079	0.076	0.0296 (1) e cleanup levels	0.740 (1)	NA	0.31 (1)	NA

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

TABLE 6-1

REMEDIAL INVESTIGATION SURFACE WATER ANALYTICAL RESULTS Former Tacoma Metals Facility

Notes:

- (a) MTCA Method B and C surface water cleanup levels based on CLARC II, dated February 1996.
- (b) Ecology Chronic Freshwater Surface Water Quality Standards (WAC 173-201A).
- (c) National Toxics Rule based on 40 CFR 131.36 for a risk level of 1×10^{-5} .
- (d) Ecology Model National Pollutant Discharge Elimination System (NPDES) Permit Standard for discharges to surface water from leaking underground storage tank (LUST) cleanups where gasoline and diesel fuel are the pollutants of concern (WAC 173-226).
- (e) Surface water samples were analyzed for total metals by EPA Methods 6010/7000 series.
- (f) "<" denotes analyte was not detected at the indicated reporting limit.
- (g) "NA" = No cleanup level is available.
- (h) Surface Water Quality Standard is based on an average groundwater hardness of 31 mg/l.
- (i) Surface water samples for dissolved metals were field filtered and analyzed by EPA Methods 6010/7000 series.
- (i) Surface water samples were analyzed for polychlorinated biphenyls (PCBs) by EPA Method 8082.
- (k) The total polychlorinated biphenyls (PCBs) were calculated by summing the concentrations of all the probable PCBs.
- If a probable PCB was not detected, a value equal to one-half the reporting limit was used.
- (I) Suface water samples were analyzed for TPHs by the Ecology Method NWTPH-Diesel (extended).
- (m) Surface water samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270B GC/MS-SIM.
- (n) "J" Indicates an estimated concentration when the value is less than the calculated reporting limit.
- (o) Carcinogenic polycyclic aromatic hydrocarbons (cPAHs).
- (p) Total cPAHs were calculated using the toxicity equivalency factor (TEF) methodology described in MTCA [WAC 173-340-708(8)(e)].
 - For non-detected cPAH analytes, the TEF factor (listed below) was applied to a value of one-half the laboratory reporting limit prior to summation. TEF = 1.0 for benzo(a)pyrene
 - TEF = 0.1 for benzo(a)anthracene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(a)-fluoranththene, and benzo(k)- fluoranththene TEF = 0.01 for chrysene
- (1) Denotes practical quantification limit (PQL) is greater than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs) (Ecology 1993).
- mg/l = milligrams per liter
- µg/l = micrograms per liter

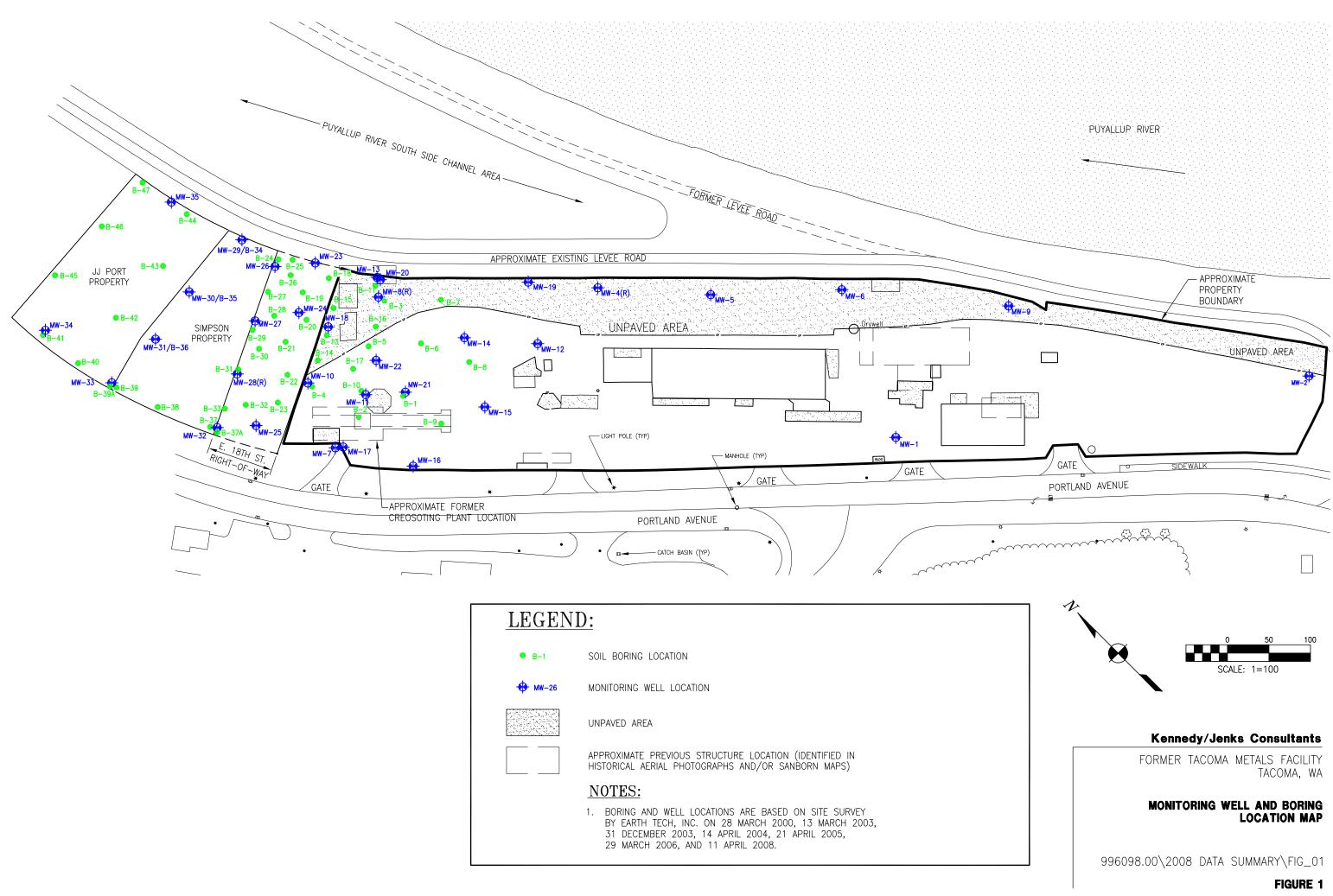
NOTE: This table was upated in July 2013 at Ecology's request based on the revised methodology (i.e. TEF summation) for calculation of total cPAHs which was not required when the original RI/FS was performed. No values other than total cPAHs were revised from the original table produced in October 2001.

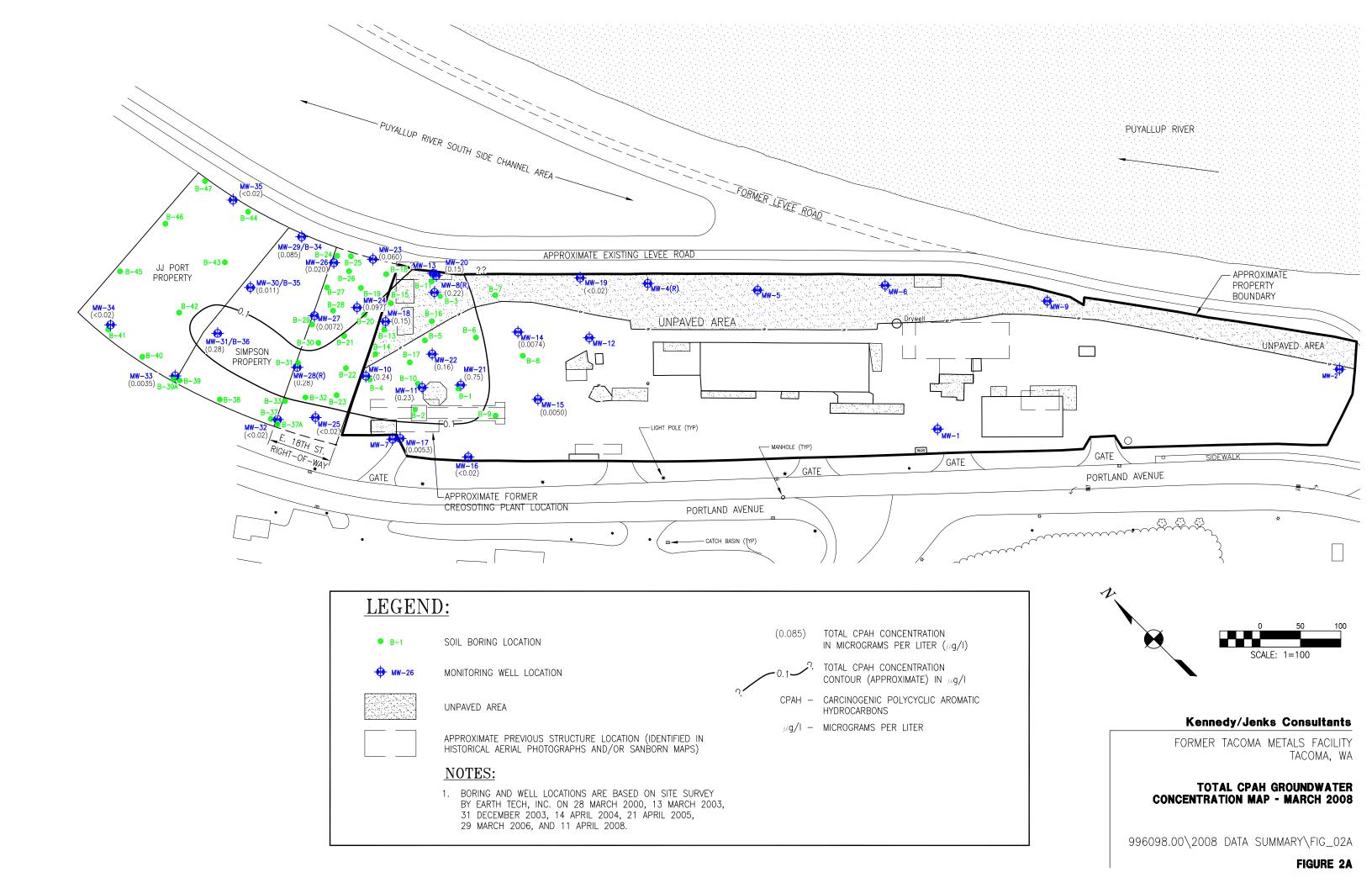
Appendix D

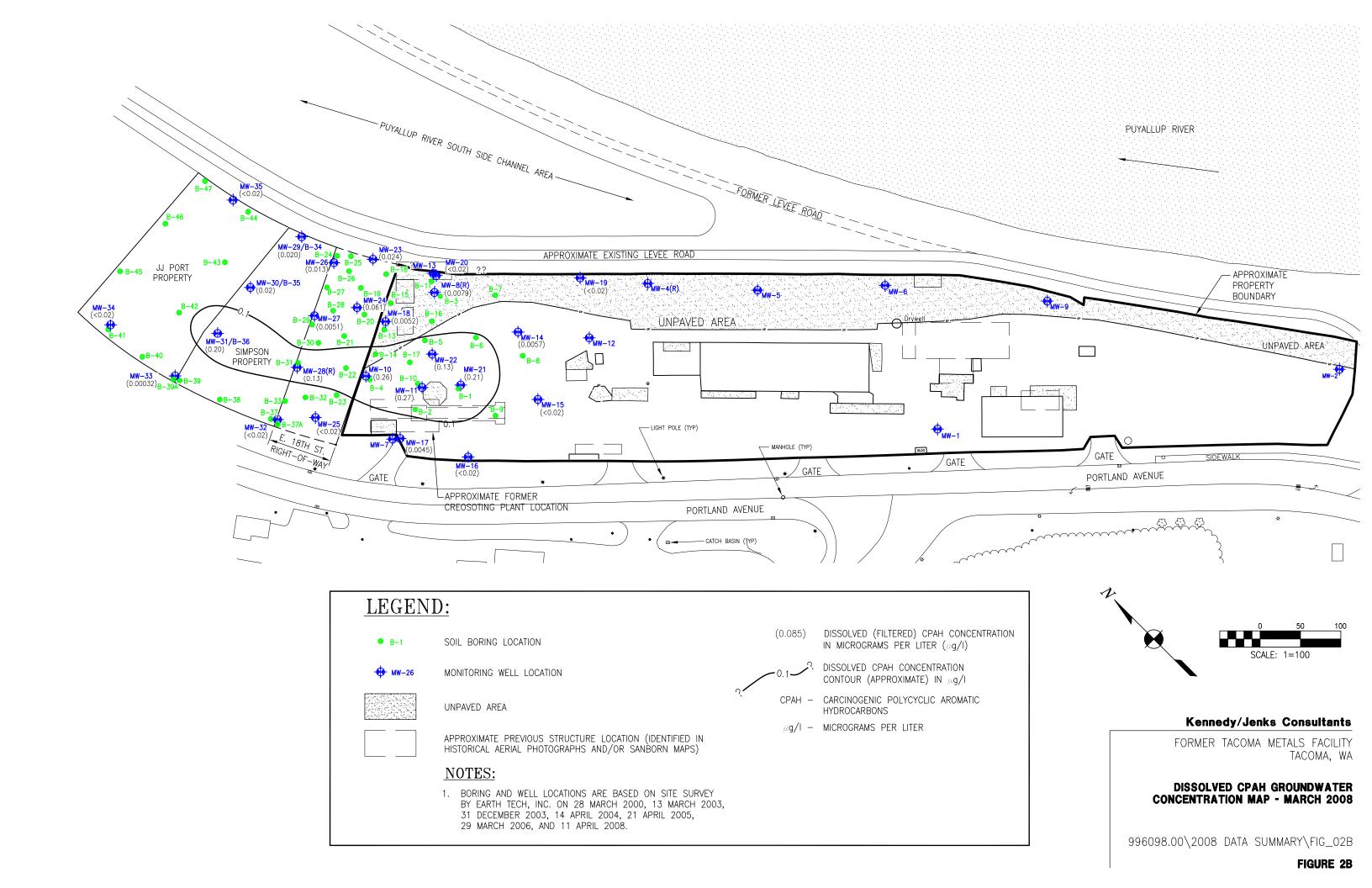
Creosoting Plant Area Site Maps, Sample Maps, and Data Tables

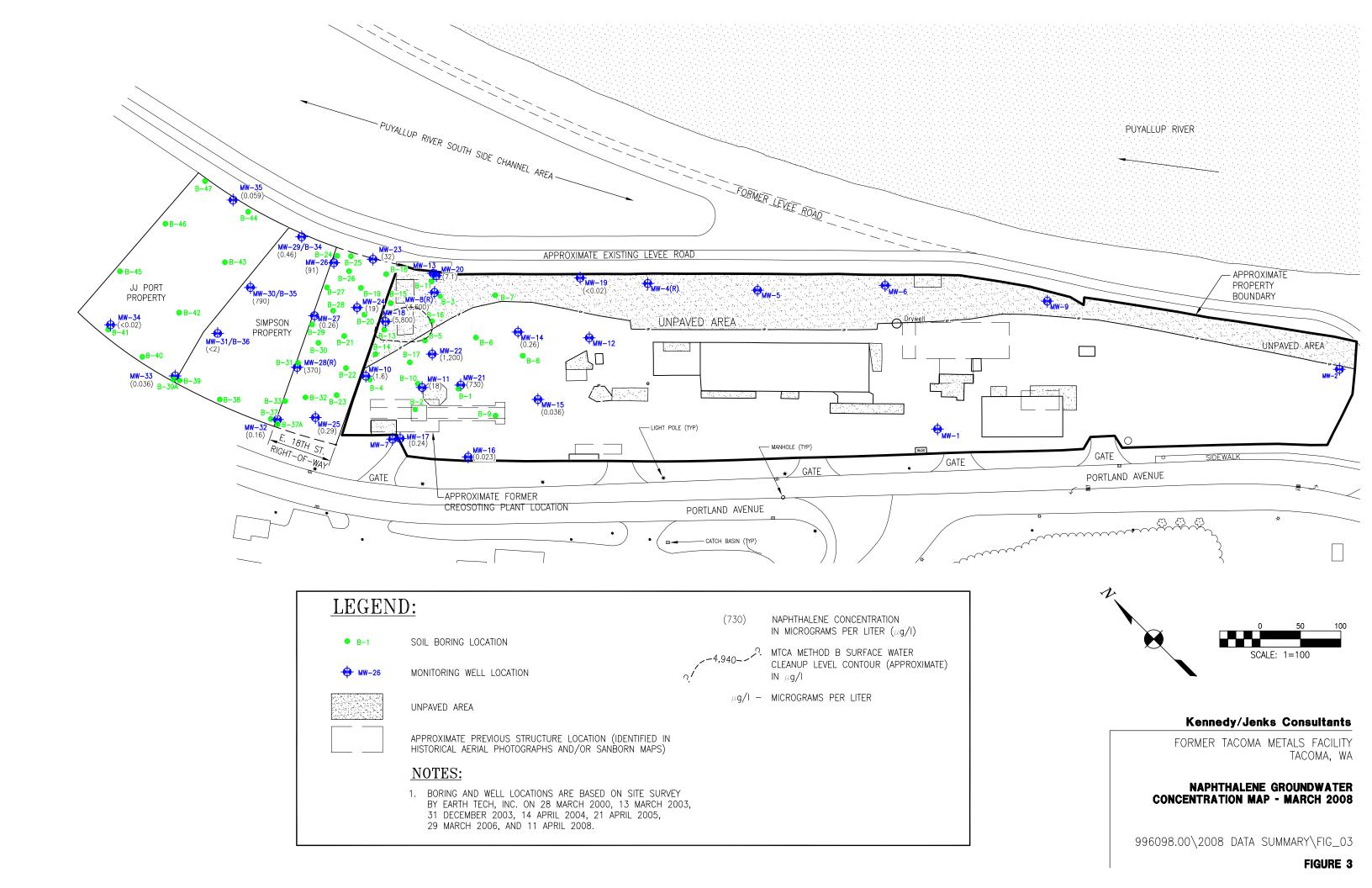
Appendix D: Creosoting Plant Area Site Maps, Sample Maps, and Data Tables

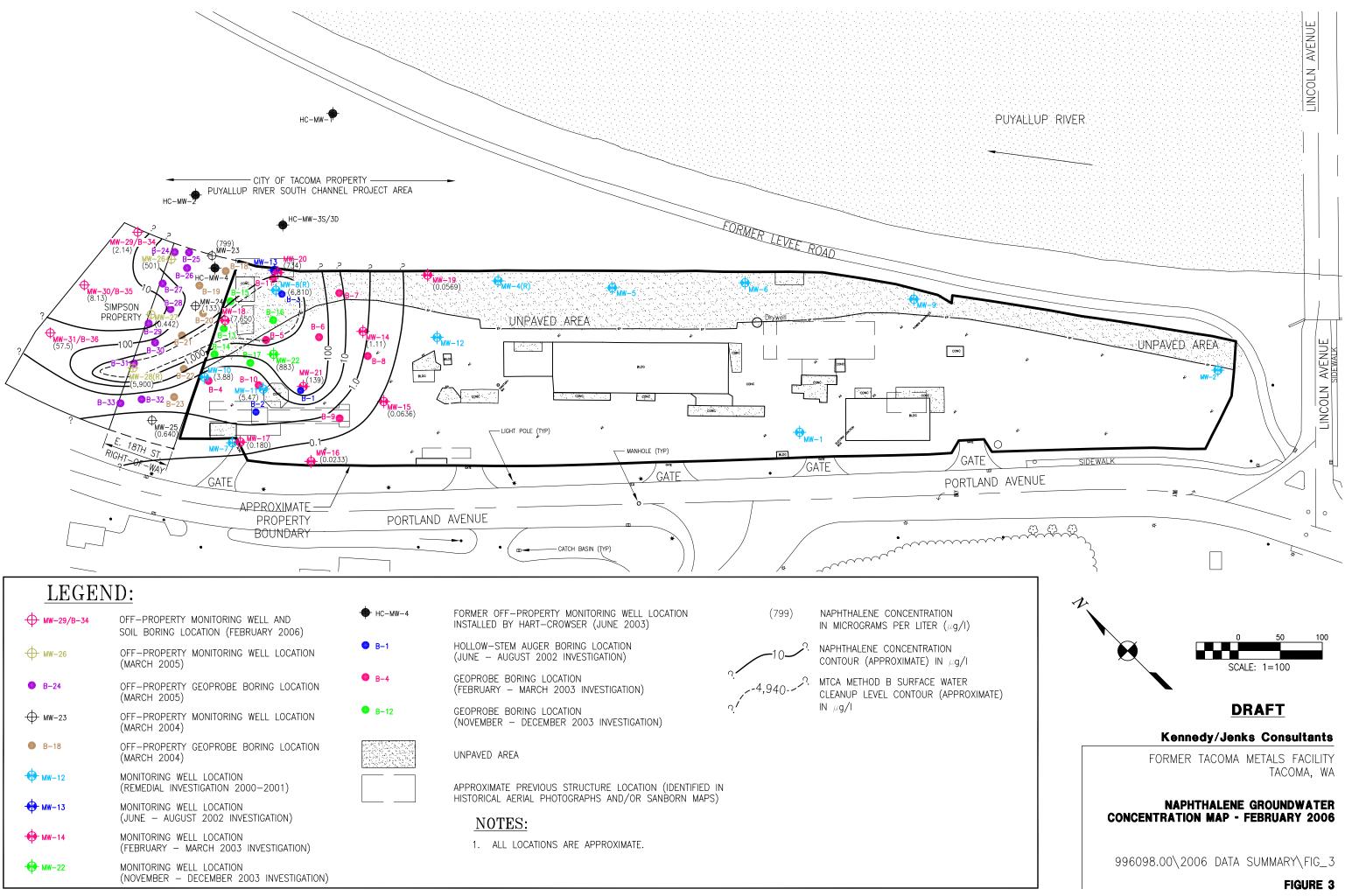
Table of Contents

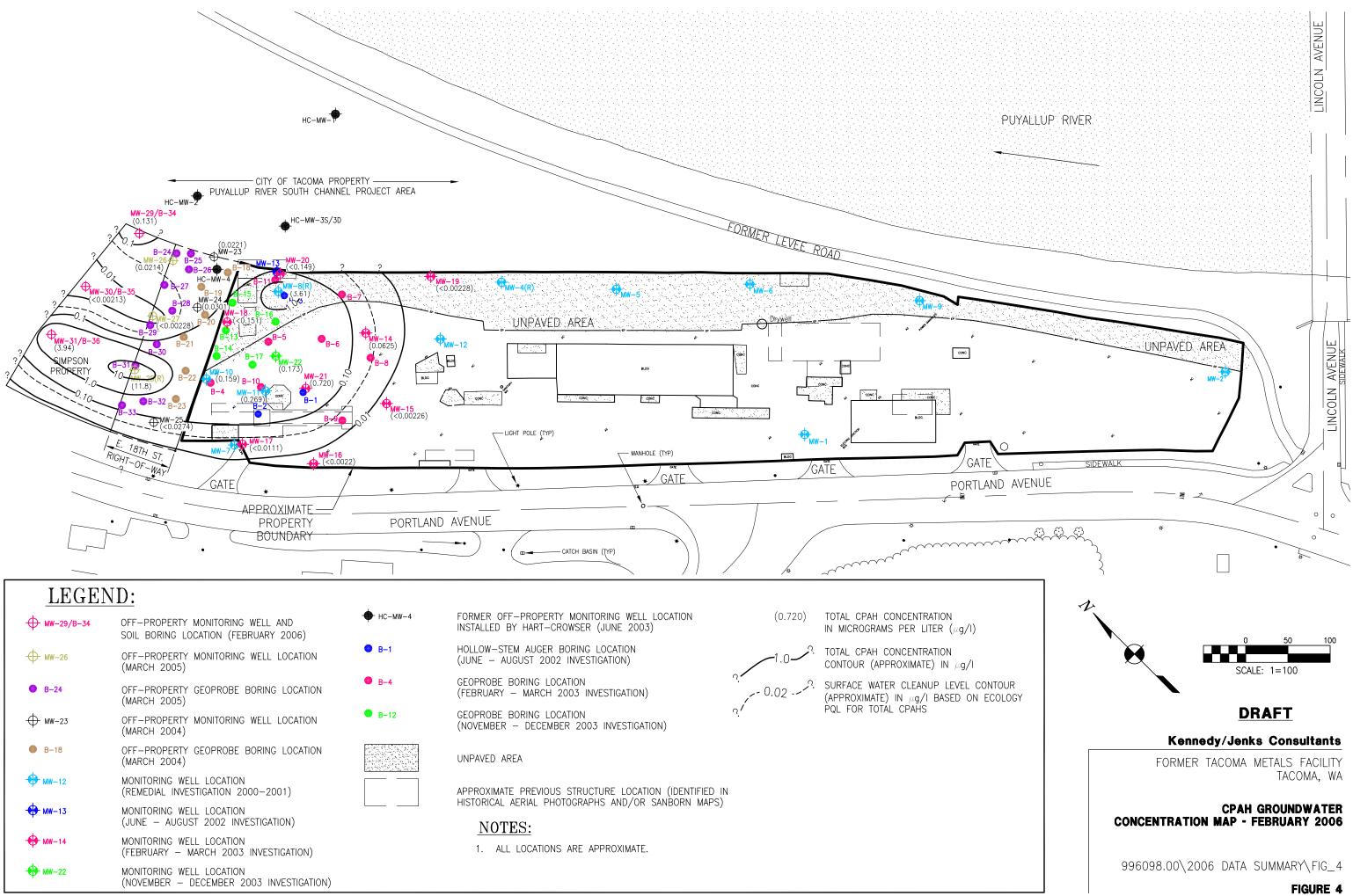

(NOTE: Figure and table designations are from multiple previous reports and may be duplicated. Figures and tables are presented in the order listed below)


1)	Figure 1	Monitoring Well and Boring Location Map (2008)
2)	Figure 2A	Total CPAH Groundwater Concentration Map - March 2008 (2008)
3)	Figure 2B	Dissolved CPAH Groundwater Concentration Map - March 2008 (2008)
4)	Figure 3	Naphthalene Groundwater Concentration Map - March 2008 (2008)
5)	Figure 3	Naphthalene Groundwater Concentration Map - February 2006 (2007)
6)	Figure 4	CPAH Groundwater Concentration Map - February 2006 (2007)
7)	Table 1	October/November 2007 Off-Property Investigation. Soil Analytical Results – TPH and PAHs (2008)
8)	Table 2	October 2007 Off-Property Investigation. Reconnaissance Groundwater Analytical Results – TPH and PAHs (2008)
9)	Table 3	March 2008 Groundwater Monitoring Well Analytical Results – TPH and PAHs (2008)
10)	Table 2A	February 2006 Off-Property Investigation Soil Analytical Results – TPH and PAHs (2007)
11)	Table 2B	February 2006 Groundwater Monitoring Well Analytical Results – TPH and PAHs (2007)
12)	Table 3A	March 2005 Off-Property Investigation Soil Analytical Results – TPH and PAHs (2007)
13)	Table 3B	March 2005 Off-Property Investigation Reconnaissance Groundwater Analytical Results – TPH and PAHs (2007)
14)	Table 3C	March 2005 Off-Property Investigation Groundwater Monitoring Well Analytical Results – TPH and PAHs (2007)
15)	Table 4A	March 2004 Off-Property Investigation Soil Analytical Results – TPH and PAHs (2007)
16)	Table 4B	March 2004 Off-Property Investigation Reconnaissance Groundwater Analytical Results – TPH and PAHs (2007)
17)	Table 4C	March 2004 Off-Property Investigation Groundwater Analytical Results – TPH and PAHs (2007)
18)	Table 4D	March 2004 Off-Property Investigation Groundwater Analytical Results – Dissolved PAHs (2007)


19)	Table 5A	November-December 2003 Investigation Soil Analytical Results – TPH and PAHs (2007)
20)	Table 5B	November-December 2003 Investigation Groundwater Analytical Results – TPH and PAHs (2007)
21)	Table 5C	November-December 2003 Investigation Groundwater Analytical Results – Dissolved PAHs (2007)
22)	Table 5D	December 2003 Groundwater Analytical Results – Total Metals (RCRA 8 + Copper) (2007)
23)	Table 5E	December 2003 Groundwater Analytical Results – Dissolved Metals (RCRA 8 + Copper) (2007)
24)	Table 6A	February-March 2003 Investigation Soil Analytical Results (2007)
25)	Table 6B	February-March 2003 Investigation Groundwater Analytical Results (2007)
26)	Table 6C	February-March 2003 Investigation Groundwater Analytical Results – Dissolved PAHs (2007)
27)	Table 7A	June-August 2002 Investigation Soil Analytical Results (2007)
28)	Table 7B	June-August 2002 Investigation Groundwater Analytical Results – SVOCs (2007)
29)	Table 7C	June-August 2002 Investigation Groundwater Analytical Results – PAHs (2007)
30)	Table 7D	June-August 2002 Investigation Groundwater Analytical Results – TPHs and VOCs (2007)
31)	Table 7E	June-August 2002 Investigation Groundwater Analytical Results – PCBs (2007)
32)	Table 7F	June-August 2002 Investigation Groundwater Analytical Results – Total and Dissolved Metals (2007)
33)	Table 8	October 2001 Groundwater Analytical Results – Dissolved Lead (2007)


Materials included in Appendix D are from the following reports (as indicated in parentheses following the title for each item):


- 2007 = Supplemental Data Summary Report (Kennedy/Jenks Consultants 2007a)
- 2008 = Soil and Groundwater Investigation Results Data Transmittal; October 2007-April 2008 Investigation (Kennedy/Jenks Consultants 2008)



	OFF-PROPERTY MONITORING WELL AND SOIL BORING LOCATION (FEBRUARY 2006)	🜩 нс-
₩−26	OFF—PROPERTY MONITORING WELL LOCATION (MARCH 2005)	● B-
● B-24	OFF—PROPERTY GEOPROBE BORING LOCATION (MARCH 2005)	● B
⊕ м₩-23	OFF—PROPERTY MONITORING WELL LOCATION (MARCH 2004)	● B-
● B-18	OFF—PROPERTY GEOPROBE BORING LOCATION (MARCH 2004)	
₩-12	MONITORING WELL LOCATION (REMEDIAL INVESTIGATION 2000–2001)	
₩-13	MONITORING WELL LOCATION (JUNE – AUGUST 2002 INVESTIGATION)	
₩-14	MONITORING WELL LOCATION (FEBRUARY – MARCH 2003 INVESTIGATION)	
₩-22	MONITORING WELL LOCATION (NOVEMBER – DECEMBER 2003 INVESTIGATION)	

	OFF-PROPERTY MONITORING WELL AND SOIL BORING LOCATION (FEBRUARY 2006)	— Ф - но
₩ -26	OFF—PROPERTY MONITORING WELL LOCATION (MARCH 2005)	🌑 В-
● B-24	OFF—PROPERTY GEOPROBE BORING LOCATION (MARCH 2005)	● в-
	OFF—PROPERTY MONITORING WELL LOCATION (MARCH 2004)	• В-
● B-18	OFF—PROPERTY GEOPROBE BORING LOCATION (MARCH 2004)	
₩-12	MONITORING WELL LOCATION (REMEDIAL INVESTIGATION 2000–2001)	
₩-13	MONITORING WELL LOCATION (JUNE – AUGUST 2002 INVESTIGATION)	
₩-14	MONITORING WELL LOCATION (FEBRUARY – MARCH 2003 INVESTIGATION)	
₩-22	MONITORING WELL LOCATION (NOVEMBER – DECEMBER 2003 INVESTIGATION)	

FORMER OFF-PROPERTY MONITORING WELL INSTALLED BY HART-CROWSER (JUNE 200
HOLLOW–STEM AUGER BORING LOCATION (JUNE – AUGUST 2002 INVESTIGATION)

OCTOBER / NOVEMBER 2007 OFF-PROPERTY INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

					Sample D	esignation	(Boring ID	- feet bgs	5)				MTCA Method C
Analyte	B37 5-6	B37 14-15	B37 21-22	B38 5-6	B38 14.5-15.5	B38 22.5-23.5	B39 5.5-6.5	B39 10-11	B39 21-22	B40 6.5-7.5	B40 14-15	B40 21.5-22.5	Industrial Soil Cleanup Level ^(a)
TPHs (mg/kg) ^(b)													
Gasoline-range Hydrocarbon	<2 ^(c)	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	100/30 ^(d)
Diesel-range Hydrocarbon	<50	<50	<50	<50	<50	<50	120	<50	200	<50	<50	<50	2,000 ^(d)
Oil-range Hydrocarbon	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	2,000 ^(d)
PAHs (mg/kg) ^(e)													
Naphthalene	0.020	<0.01	<0.01	0.015	<0.01	<0.01	1.8	0.24	<0.01	<0.01	<0.01	<0.01	7.00E+04
Acenaphthylene	<0.01	<0.01	<0.01	0.011	<0.01	<0.01	0.12	<0.01	0.11	<0.01	<0.01	<0.01	NA ^(f)
Acenaphthene	<0.01	0.080	0.032	<0.01	0.10	0.41	0.51	1.1	0.41	<0.01	0.011	<0.01	2.10E+05
Fluorene	<0.01	<0.01	<0.01	<0.01	0.089	<0.01	0.39	1.3	0.40	<0.01	<0.01	<0.01	1.40E+05
Phenanthrene	0.011	<0.01	<0.01	0.034	0.13	0.060	1.3	1.90	2.1	0.019	<0.01	<0.01	NA
Anthracene	<0.01	<0.01	<0.01	0.040	0.033	0.015	0.61	0.47	2.6	<0.01	<0.01	<0.01	1.05E+06
Fluoranthene	0.016	<0.01	<0.01	0.21	0.049	0.017	1.2	1.3	18	<0.01	<0.01	<0.01	1.40E+05
Pyrene	0.016	<0.01	<0.01	0.44	0.027	0.028	1.1	0.77	15	<0.01	<0.01	<0.01	1.05E+05
Benzo(g,h,i)perylene	0.013	<0.01	<0.01	0.095	<0.01	<0.01	0.83	<0.01	1.5	<0.01	<0.01	<0.01	NA
cPAHs (mg/kg) ^(g)													
Benzo(a)anthracene	<0.01	<0.01	<0.01	0.18	<0.01	<0.01	0.99	0.019	6.7	<0.01	<0.01	<0.01	NA
Chrysene	0.016	<0.01	<0.01	0.27	<0.01	<0.01	1.7	0.012	9.4	<0.01	<0.01	<0.01	NA
Benzo(a)pyrene	<0.01	<0.01	<0.01	0.24	<0.01	<0.01	1.3	<0.01	4.2	<0.01	<0.01	<0.01	NA
Benzo(b)fluoranthene	0.018	<0.01	<0.01	0.33	<0.01	<0.01	2.0	<0.01	5.0	<0.01	<0.01	<0.01	NA
Benzo(k)fluoranthene	<0.01	<0.01	<0.01	0.13	<0.01	<0.01	0.62	<0.01	1.9	<0.01	<0.01	<0.01	NA
Indeno(1,2,3-cd)pyrene	0.011	<0.01	<0.01	0.12	<0.01	<0.01	1.0	<0.01	1.9	<0.01	<0.01	<0.01	NA
Dibenz(a,h)anthracene	<0.01	<0.01	<0.01	0.022	<0.01	<0.01	0.24	<0.01	0.58	<0.01	<0.01	<0.01	NA
Total cPAHs (mg/kg) ^(h)	0.0031	<0.01	<0.01	0.32	<0.01	<0.01	1.8	0.0020	5.9	<0.01	<0.01	<0.01	18

Page 1 of 3

OCTOBER / NOVEMBER 2007 OFF-PROPERTY INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

				Sampl	e Designatio	on (Boring ID	- feet bgs)				MTCA Method C
Analyte	B41 7-8	B41 11-12	B41 24.5-25.5	B42 5-6	B42 22-23	B42 24.5-25.5	B43 6-7	B43 14.5-15.5	B43 28.5-29.5	B43 34.5-35.5	Industrial Soil Cleanup Level ^(a)
TPHs (mg/kg) ^(b)											
Gasoline-range Hydrocarbon	<2 ^(c)	<2	<2	<2	<2	<2	<2	<2	<2	<2	100/30 ^(d)
Diesel-range Hydrocarbon	<50	<50	<50	<50	<50	<50	130	<50	<50	69	2,000 ^(d)
Oil-range Hydrocarbon	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	2,000 ^(d)
PAHs (mg/kg) ^(e)											
Naphthalene	<0.01	<0.01	<0.01	0.028	<0.01	<0.01	0.028	0.26	0.91	0.43	7.00E+04
Acenaphthylene	<0.01	<0.01	<0.01	0.012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	NA ^(f)
Acenaphthene	<0.01	<0.01	<0.01	<0.01	1.3	<0.01	0.015	0.033	1.4	1.0	2.10E+05
Fluorene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.017	0.012	0.98	0.63	1.40E+05
Phenanthrene	<0.01	<0.01	<0.01	0.052	0.015	<0.01	0.11	0.012	1.5	0.33	NA
Anthracene	<0.01	<0.01	<0.01	0.032	<0.01	<0.01	0.014	<0.01	0.11	0.078	1.05E+06
Fluoranthene	<0.01	<0.01	<0.01	0.067	<0.01	<0.01	0.026	<0.01	0.14	0.12	1.40E+05
Pyrene	<0.01	<0.01	<0.01	0.089	<0.01	<0.01	0.027	<0.01	0.062	0.053	1.05E+05
Benzo(g,h,i)perylene	<0.01	<0.01	<0.01	0.14	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	NA
cPAHs (mg/kg) ^(g)											
Benzo(a)anthracene	<0.01	<0.01	<0.01	0.11	<0.01	<0.01	0.024	<0.01	<0.01	<0.01	NA
Chrysene	<0.01	<0.01	<0.01	0.23	<0.01	<0.01	0.036	<0.01	<0.01	<0.01	NA
Benzo(a)pyrene	<0.01	<0.01	<0.01	0.25	<0.01	<0.01	0.010	<0.01	<0.01	<0.01	NA
Benzo(b)fluoranthene	<0.01	<0.01	<0.01	0.36	<0.01	<0.01	0.013	<0.01	<0.01	<0.01	NA
Benzo(k)fluoranthene	<0.01	<0.01	<0.01	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	NA
Indeno(1,2,3-cd)pyrene	<0.01	<0.01	<0.01	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	NA
Dibenz(a,h)anthracene	<0.01	<0.01	<0.01	0.040	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	NA
Total cPAHs (mg/kg) ^(h)	<0.01	<0.01	<0.01	0.33	<0.01	<0.01	0.014	<0.01	<0.01	<0.01	18

OCTOBER / NOVEMBER 2007 OFF-PROPERTY INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

				ę	Sample Des	ignation (Bo	oring ID - fe	et bgs)					MTCA Method C
	B44	B44	B44	B45	B45	B45 21-22	B46 6-7	B46	B46 21-22	B47	B47	B47	Industrial Soil
Analyte	2-3	14-15	31.5-32.5	6.5-7.5	11-12	21-22	0-7	13-14	21-22	6-7	13-14	30.5-31.5	Cleanup Level ^(a)
TPHs (mg/kg) ^(b)													
Gasoline-range Hydrocarbon	<2 ^(c)	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	100/30 ^(d)
Diesel-range Hydrocarbon	<50	<50	<50	<50	<50	<50	<50	100	<50	78	<50	<50	2,000 ^(d)
Oil-range Hydrocarbon	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	2,000 ^(d)
PAHs (mg/kg) ^(e)													
Naphthalene	0.045	<0.01	0.052	<0.01	<0.01	<0.01	<0.01	0.022	<0.01	0.038	<0.01	<0.01	7.00E+04
Acenaphthylene	0.076	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.046	<0.01	<0.01	NA ^(f)
Acenaphthene	<0.01	<0.01	0.55	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.10E+05
Fluorene	0.010	<0.01	0.23	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.016	<0.01	<0.01	1.40E+05
Phenanthrene	0.077	0.010	0.081	<0.01	<0.01	<0.01	0.015	0.085	<0.01	0.15	0.020	<0.01	NA
Anthracene	0.083	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.080	<0.01	<0.01	1.05E+06
Fluoranthene	0.23	0.016	<0.01	<0.01	<0.01	<0.01	<0.01	0.049	<0.01	0.27	0.023	<0.01	1.40E+05
Pyrene	0.40	0.023	<0.01	<0.01	<0.01	<0.01	<0.01	0.045	<0.01	0.47	0.022	<0.01	1.05E+05
Benzo(g,h,i)perylene	0.43	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.34	<0.01	<0.01	NA
cPAHs (mg/kg) ^(g)													
Benzo(a)anthracene	0.36	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	0.37	0.011	<0.01	NA
Chrysene	0.67	0.013	<0.01	<0.01	<0.01	<0.01	<0.01	0.024	<0.01	0.73	0.013	<0.01	NA
Benzo(a)pyrene	0.73	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	0.014	<0.01	0.62	<0.01	<0.01	NA
Benzo(b)fluoranthene	0.96	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	0.019	<0.01	0.81	0.011	<0.01	NA
Benzo(k)fluoranthene	0.25	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.22	<0.01	<0.01	NA
Indeno(1,2,3-cd)pyrene	0.49	0.010	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	0.36	<0.01	<0.01	NA
Dibenz(a,h)anthracene	0.14	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.095	<0.01	<0.01	NA
Total cPAHs (mg/kg) ^(h)	0.97	0.018	<0.01	<0.01	<0.01	<0.01	<0.01	0.018	<0.01	0.81	0.0023	<0.01	18

Notes:

(a) Model Toxics Control Act (MTCA) Method C industrial soil cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) Samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx with silica gel cleanup, and gasoline-range hydrocarbons by Ecology Method NWTPH-G.

(c) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(d) Total petroleum hydrocarbon (TPH) screening levels based on MTCA Method A industrial soil cleanup levels (Ecology 2001a). For gasoline mixtures without benzene and total ethylbenzene, toluene and xylenes less than 1% of the gasoline mixture the cleanup level is 100 mg/kg. For all other gasoline mixtures, the cleanup level is 30 mg/kg.

(e) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate).

(f) "NA" denotes cleanup level is either not available or not appropriate.

(g) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).

(h) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table1A.

Analytes detected in samples at concentrations exceeding one or more cleanup levels or comparison levels are shown in bold and italics.

mg/kg = milligrams per kilogram bgs = below ground surface

Analyte Benzo(a)antl Chrysene Benzo(a)pyr Benzo(b)fluc Benzo(k)fluo Indeno(1,2,3 Dibenz(a,h)a

Page 3 of 3

TABLE 1A Summary of TEFs										
	TEF									
thracene	0.1									
	0.01									
rene	1									
oranthene	0.1									
oranthene	0.1									
3-cd)pyrene	0.1									
anthracene	0.1									

OCTOBER 2007 OFF-PROPERTY INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

					Ree	connaissance G	roundwater Sar	nple Designatio	n					
Analyte	B37 RGW	B37A RGW	B38 RGW	B39 RGW	B39A RGW	B40 RGW	B41 RGW	B42 RGW	B43 RGW	B44 RGW	B45 RGW	B46 RGW	B47 RGW	Proposed Cleanup Level ^(a)
TPHs (µg/I) ^(b)														
Gasoline-range hydrocarbons	<100 ^(c)	<100	<100	<100	<100	<100	<100	120	<100	130	<100	<100	<100	NA ^(d)
Diesel-range hydrocarbons	64	<50	290	100	<50	<50	<50	95	<50	120	<50	<50	<50	NA
Oil-range hydrocarbons	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	NA
PAHs (µg/I) ^(e)		-		_	-	-	• •	• •		-	-		_	
Naphthalene	<0.1	<0.1	0.17	4.2	<0.1	0.36	<0.1	<0.1	0.96	2.0	<0.1	<0.1	<0.1	4,940 ^(f)
Acenaphthylene	<0.1	<0.1	0.36	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Acenaphthene	3.7	2.6	59	5.5	0.91	0.34	<0.1	5.0	8.2	13	<0.1	<0.1	<0.1	643 ^(f)
Fluorene	<0.1	<0.1	2.7	3.1	<0.1	0.24	<0.1	0.71	0.94	2.3	<0.1	<0.1	<0.1	3,460 ^(f)
Phenanthrene	<0.1	<0.1	11	8.9	0.10	0.54	<0.1	0.58	0.26	0.50	<0.1	<0.1	<0.1	NA
Anthracene	<0.1	<0.1	1.6	1.6	<0.1	<0.1	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.1	25,900 ^(f)
Fluoranthene	<0.1	<0.1	2.4	2.8	<0.1	0.13	<0.1	0.21	<0.1	<0.1	<0.1	<0.1	<0.1	90.2 ^(f)
Pyrene	<0.1	<0.1	1.7	1.9	<0.1	<0.1	<0.1	0.19	<0.1	<0.1	<0.1	<0.1	<0.1	2,590 ^(f)
Benzo(g,h,i)perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
cPAHs (µg/I) ^(g)														
Benzo(a)anthracene	<0.1	<0.1	<0.1	0.20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Chrysene	<0.1	<0.1	<0.1	0.28	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Benzo(a)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Benzo(b)fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Benzo(k)fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Total cPAHs (μg/I) ^(h)	<0.1	<0.1	<0.1	0.023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.24 ⁽ⁱ⁾

Notes:

(a) Proposed site cleanup levels based on Kennedy/Jenks Consultants' 2007 Cleanup Level Evaluation report submitted to Ecology under separate cover.

(b) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx with silica gel cleanup.

(c) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(d) "NA" denotes cleanup level is either not available or not appropriate.

Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate). (e)

(f) Cleanup level based on the Model Toxics Control Act (MTCA) (WAC 173-340) Method B surface water cleanup level based on Ecology's online CLARC database.

(g) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).

(h) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 1A.

Modified cleanup level for total cPAHs based on the Ambient Water Quality Criteria (AWQC) for consumption of organisms only (EPA 2004) pursuant to Section 304(a)(1) of the Clean Water Act discussed in Kennedy/Jenks Consultants' 2007 (i) Cleanup Level Evaluation report.

Analytes detected in samples at concentrations exceeding the proposed cleanup level values are shown in bold and italics.

mg/l = milligrams per liter

TABLE 2A

FEBRUARY 2006 OFF-PROPERTY INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

				Sample Desi	gnation (Boring	ID - feet bgs)				MTCA Method C
	B34	B34	B34	B35	B35	B35	B36	B36	B36	Industrial Soil
Analyte	7-8	18-19	30-31	6-7	32-33	39-40	8-10	23-24	31-32	Cleanup Level ^(a)
TPHs (mg/kg) ^(b)		•		•	•	•	•			
Gasoline-range Hydrocarbons	<12.0 ^(c)	<5.98	<5.22	<7.75	25.8 ^(d)	<5.23	1,110 ^(e)	164 ^(d)	464 ^(d)	100/30 ^(f)
Diesel-range Hydrocarbons	58.6 ^(g)	<13.7	18.5 ^(h)	19.5 ^(g)	18.6 ^(h)	16.4 ^(h)	1,060 ^(h)	14,900 ^(h)	8,830 ^(h)	2,000 ^(f)
Oil-range Hydrocarbons	305	<34.3	<31.1	138	<29.5	<29.2	1,690	<3,100 ^(h)	<1,210 ^(h)	2,000 ^(f)
PAHs (mg/kg) ⁽ⁱ⁾										
Naphthalene	<0.118	0.00992 J ^(j)	0.0539	0.0504 J	1.93	0.658	1.62 J	204	296	7.00E+04
1-Methylnaphthalene	<0.118	<0.0140	0.282	<0.148	1.02	0.363	<7.59	819	501	NA ^(k)
2-Methylnaphthalene	<0.118	<0.0140	<0.0127	<0.148	0.890	0.170	<7.59	<25.1	88.2	NA
Acenaphthylene	<0.118	<0.0140	<0.0127	0.0385 J	<0.0588	<0.0600	<7.59	<25.1	22.1 J	NA
Acenaphthene	<0.118	0.188	0.589	<0.148	1.34	1.00	16.9	1,600	1,490	2.10E+05
Fluorene	<0.118	0.0297	0.569	<0.148	1.08	0.725	<7.59	1,290	1,570	1.40E+05
Phenanthrene	0.401	0.0221	1.02	0.122 J	1.47	1.08	19.1	3,650	4,050	NA
Anthracene	<0.118	<0.0140	0.354	0.860 J	0.163	0.132	20.0	417	2,540	1.05E+06
Fluoranthene	1.12	0.0369	0.534	0.247	0.241	0.291	103	1,690	1,560	1.40E+05
Pyrene	0.671	0.0293	0.328	0.274	0.105	0.122	136	1,550	1,150	1.05E+05
Benzo(g,h,i)perylene	0.2440	0.00814 J	<0.0127	0.513	<0.0588	<0.0600	26.0	60.3	50.4	NA
cPAHs (mg/kg) ^(I)										
Chrysene	0.519	0.0300	0.0154	0.993	<0.0588	<0.0600	114	281	507	18
Benzo(b)fluoranthene	0.474	0.0217	0.00491 J	0.752	<0.0588	<0.0600	73.2	215	145	18
Benzo(k)fluoranthene	0.481	0.0225	0.00169 J	0.631	<0.0588	<0.0600	78.0	245	135	18
Benzo(a)anthracene	0.448	0.0217	0.0284	0.332	<0.0588	<0.0600	71.7	403	296	18
Benzo(a)pyrene	0.491	0.0158	0.0102 J	0.755	<0.0588	<0.0600	88.8	271	151	18
Indeno(1,2,3-cd)pyrene	0.330	0.0215	<0.0127	0.550	<0.0588	<0.0600	31.7	82.7	101	18
Dibenz(a,h)anthracene	0.229	0.0154	<0.0127	0.343	<0.0588	<0.0600	22.1	58.3	97.7	18
Total cPAHs (mg/kg) ^(m)	0.761	0.031	0.0139	1.13	<0.0588	<0.0600	124	392	263	18

Notes:

(a) Model Toxics Control Act (MTCA) Method C industrial soil cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) Samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx(extended) with silica gel cleanup, and gasoline-range hydrocarbons by Ecology Method NWTPH-G.

(c) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(d) The total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range (Laboratory note G-03).

(e) The chromatogram for this sample does not resemble a typical gasoline pattern (Laboratory note G-02).

(f) Total petroleum hydrocarbon (TPH) screening levels based on MTCA Method A industrial soil cleanup levels (Ecology 2001a). For gasoline mixtures without benzene and total ethylbenzene, toluene and xylenes less than 1% of the gasoline mixture the cleanup level is 100 mg/kg. For all other gasoline mixtures, the cleanup level is 30 mg/kg.

(g) Results in the diesel organics range are primarily due to overlap from a heavy oil range product (Laboratory note D-09).

(h) The sample chromatographic pattern does not resemble the fuel standard used for quantitation (Laboratory note D-06).

(i) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate).

(j) "J" denotes an analyte detected at a concentration between the method reporting limit (MRL) and the method detection limit (MDL).

(k) "NA" denotes no cleanup level established.

(I) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).

(m) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

Analyte concentrations exceeding the indicated cleanup level are shown in bold and italics

mg/kg - milligrams per kilogram bgs = below ground surface

Data Summary Report, Former Tacoma Metals Property

W:\1999\996098.00 Tacoma Metals\2007\Data Summary Rpt\Tables\Table 2A Feb06 Soil.xls

TABLE 2A	-A
Summary of T	EFs
Chrysene	0.01
Benzo(b)fluoranthene	0.1
Benzo(k)fluoranthene	0.1
Benzo(a)anthracene	0.1
Benzo(a)pyrene	1
Indeno(1,2,3-cd)pyrene	0.1
Dibenz(a,h)anthracene	0.4

TABLE 2B

FEBRUARY 2006 **GROUNDWATER MONITORING WELL ANALYTICAL RESULTS - TPH and PAHs** Former Tacoma Metals Facility

						Gr	oundwater Sa	mple Designat	ion						MTCA Method B	Human Health	Human Health
	MW-8	(R) ^(a)	MW	/-10	MW	/-11	MV	V-14	MM	/-15	MV	/-16	MV	V-17	Surface Water ^(b)	Consumption of	Consumption of
Analyte	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	Surface water	Organisms ^(c)	Organisms ^(d)
TPHs (mg/l) ^(e)	-		·		·		·				-		·				
Gasoline-range hydrocarbons	41.8	(f)	0.124		0.221		< 0.050 ^(g)		<0.050		< 0.050		<0.050		NA ^(h)	NA	NA
Diesel-range hydrocarbons	8.12 ⁽ⁱ⁾		0.799		1.91		0.859 ^(j)		0.903 ^(j)		0.495 ^(j)		0.429 ^(j)		NA	NA	NA
Oil-range hydrocarbons	<2.60		<0.532		<0.562		<0.562		<0.568		<0.562		<0.526		NA	NA	NA
PAHs (µg/I) ^(k)								-									
Naphthalene	6,810	2,370	3.38	1.37	5.47	1.49	1.11	1.02	0.0636 J ^(I)	0.334	0.0233 J	0.236	0.180 J	0.366	4,940	NA	NA
1-Methylnaphthalene	883	107	8.47	0.753	58.4	3.86	3.64	1.68	0.410	0.216	<0.0176	0.0706 J	0.264 J	0.0989 J	NA	NA	NA
2-Methylnaphthalene	1,420	56.7	0.158	0.114 J	<0.0478	0.114	0.326	0.139	<0.0276	0.0565 J	<0.0269	<0.0266	<0.136	0.0607 J	NA	NA	NA
Acenaphthylene	12.4 J	<10.5	0.238	<0.0512	0.878	0.159	0.115	<0.00980	0.0502 J	<0.0518	<0.00958	<0.00947	<0.0484	<0.0494	NA	NA	NA
Acenaphthene	280	28.6	28.1	0.828	72.4	2.73	9.54	2.06	2.63	0.635	0.280	0.201	5.05	0.211	643	990	NA
Fluorene	146	<7.86	14.0	0.193	53.0	0.507	3.71	0.222	1.22	0.113 J	<0.00749	0.0506 J	2.64	0.0854 J	3,460	5,300	14,000
Phenanthrene	188	<6.19	14.3	0.684	60.5	3.13	1.84	1.23	0.0899 J	0.842	<0.00506	0.600	0.388 J	0.888	NA	NA	NA
Anthracene	31.0	<8.33	2.87	0.598	14.7	2.12	0.566	0.299	0.279	0.146	0.172	0.186	0.297 J	0.142	25,900	40,000	110,000
Fluoranthene	38.6	<5.00	4.52	0.537	17.0	3.02	1.26	0.402	0.235	0.334	<0.00264	0.249	0.830	0.519	90.2	140	370
Pyrene	24.8	<5.95	2.91	0.428	10.7	2.38	0.786	0.363	0.188	0.240	<0.00414	0.199	0.615	0.369	2,590	4,000	11,000
Benzo(g,h,i)perylene	<7.86	<7.86	<0.0388	<0.0384	<0.0359	<0.0375	<0.0379	<0.00319	<0.00319	<0.0388	<0.00311	<0.00308	<0.0157	<0.0371	NA	NA	NA
cPAHs (µg/I) ^(m)																	
Chrysene	6.52	<0.107	0.353	0.0953 J	0.678	0.450	0.115	<0.00305	<0.00305	<0.0212	<0.00298	<0.00294	<0.0151	0.0517 J	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(b)fluoranthene	2.12	<0.482	0.0988 J	<0.0942	0.137	0.148	<0.0931	<0.00331	<0.00331	<0.0953	<0.00324	<0.00320	<0.0164	<0.0910	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(k)fluoranthene	2.52	<0.125	0.0941 J	<0.0244	0.161	0.145	0.0437 J	<0.00380	<0.00380	<0.0247	<0.00372	<0.00367	<0.0188	<0.0236	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)anthracene	6.00	<0179	0.320	0.105 J	0.739	0.455	0.110 J	<0.00427	<0.00427	<0.0353	<0.00417	<0.00412	<0.0211	0.0494 J	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)pyrene	2.48	<0.155	0.104 J	<0.0302	0.159	0.125	0.0460 J	<0.00226	<0.00226	<0.0306	<0.00220	<0.00218	<0.0111	<0.0292	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Indeno(1,2,3-cd)pyrene	<0.333	<0.167	<0.0329	<0.0326	<0.0304	<0.0318	<0.0322	<0.00258	<0.00258	<0.0329	<0.00252	<0.00249	<0.0128	<0.0315	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Dibenz(a,h)anthracene	<0.345	<0.173	<0.0341	<0.0337	<0.0315	<0.0330	<0.0333	<0.00295	<0.00295	<0.0341	<0.00289	<0.00285	<0.0146	<0.0326	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Total cPAHs ^(r)	3.61	<0.155	0.159	0.0115	0.269	0.204	0.0625	<0.00226	<0.00226	<0.0306	<0.0022	<0.00218	<0.0111	0.00546	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031

						Gr	oundwater Sa	mple Designat	ion						MTCA Method B	Human Health	Human Health
	MW	/-18	MM	/-19	MW	/-20	MM	/-21	MW	-22	MM	1-23	MM	/-24		Consumption of	Consumption of
Analyte	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	Surface Water ^(b)	Organisms ^(c)	Organisms ^(d)
TPHs (mg/l) ^(e)			·		·		·		·								
Gasoline-range hydrocarbons	20.8		<0.250		3.77		2.69 ^(o)		4.59 ^(o)		5.03 ^(p)		0.736 ^(p)		NA	NA	NA
Diesel-range hydrocarbons	2.35		<0.272		1.70		4.74		2.95		2.66		0.479		NA	NA	NA
Oil-range hydrocarbons	<0.521		<0.543		<0.510		0.694 ^(q)		<0.532		<0.510		<0.515		NA	NA	NA
PAHs (µg/I) ^(k)																	
Naphthalene	7,650	6,280	0.0569 J	0.629	734	658	139	202	883	301	799	191	133	18.0	4,940	NA	NA
1-Methylnaphthalene	334	143	0.722	0.300	282	186	264	30.8	334	36.1	287	31.4	25.7	2.62	NA	NA	NA
2-Methylnaphthalene	210	94.9	0.0308 J	0.130	268	140	31.0	1.63	197	4.36	219	5.68	11.6	0.703	NA	NA	NA
Acenaphthylene	2.34	0.831	<0.00992	<0.0100	<10.1	<10.0	1.60	0.215	1.79	0.106 J	1.20	<0.0506	0.294	<0.0473	NA	NA	NA
Acenaphthene	198	84.3	1.07	0.282	166	92.7	207	17.0	213	13.4	199	14.7	35.1	1.79	643	990	NA
Fluorene	106	3.51	0.103 J	0.0479 J	71.7	<7.50	116	1.18	110	0.209	72.7	<0.0379	18.4	0.140	3,460	5,300	14,000
Phenanthrene	113	0.371 J	<0.00524	0.123	55.2	<5.91	130	2.77	110	0.910	72.6	0.292	13.6	0.312	NA	NA	NA
Anthracene	12.1	0.236 J	0.0784 J	0.0753 J	<8.05	<7.95	12.6	1.63	12.3	0.499	5.67	0.159	2.82	0.185	25,900	40,000	110,000
Fluoranthene	8.19	0.315 J	<0.00273	0.124	<4.83	<4.77	16.3	1.53	12.6	0.616	7.75	0.262	5.89	0.249	90.2	140	370
Pyrene	4.65	0.247 J	<0.00428	0.145	<5.75	<5.68	10.4	1.20	7.37	0.463	4.07	0.195	3.51	0.189	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.192	<0.185	<0.00322	<0.00326	<7.59	<7.50	0.0744 J	<0.0347	<0.0375	<0.0371	< 0.0375	<0.0379	<0.0371	< 0.0355	NA	NA	NA
cPAHs (μg/I) ^(m)																	
Chrysene	<0.105	<0.101	<0.00308	<0.00312	<0.103	<0.102	0.877	0.280	0.505	0.0989 J	0.214	0.0391 J	0.288	0.0301 J	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(b)fluoranthene	<0.471	<0.455	<0.00335	<0.00339	<0.466	<0.460	0.249	0.101 J	0.0955 J	<0.0910	<0.0920	<0.0931	<0.0910	<0.0871	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(k)fluoranthene	<0.122	<0.118	<0.00385	<0.00389	<0.121	<0.119	0.279	0.105	0.105 J	<0.0236	<0.0239	<0.0241	<0.0236	<0.0226	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)anthracene	<0.174	<0.169	<0.00432	<0.00437	<0.172	<0.170	0.930	0.274	0.455	0.0966 J	0.200	0.0391 J	0.272	0.0344 J	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)pyrene	<0.151	<0.146	<0.00228	<0.00231	<0.149	<0.148	0.291	0.109	0.102 J	<0.0292	<0.0295	<0.0299	<0.0292	<0.0280	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Indeno(1,2,3-cd)pyrene	<0.163	<0.157	<0.00261	<0.00264	<0.161	<0.159	0.0744 J	<0.0295	<0.0318	<0.0315	<0.0318	<0.0322	<0.0315	<0.0301	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Dibenz(a,h)anthracene	<0.169	<0.163	<0.00299	<0.00302	<0.167	<0.165	0.667	<0.0305	<0.0330	<0.0326	<0.0330	<0.0333	<0.0326	<0.0312	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Total cPAHs ^(r)	<0.151	<0.146	<0.00228	<0.00231	<0.149	<0.148	0.720	0.160	0.173	0.0106	0.0221	0.00430	0.0301	0.00374	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031

TABLE 2B

FEBRUARY 2006 GROUNDWATER MONITORING WELL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

						Gr	oundwater Sa	mple Designat	ion						MTCA Method B	Human Health	Human Health
	MV	V-25	MM	/-26	MM	1-27	MW-2	8(R) ^(a)	MM	/-29	MM	V-30	MV	/-31		Consumption of	Consumption of
Analyte	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	Surface Water ^(b)	Organisms ^(c)	Organisms ^(d)
TPHs (mg/l) ^(e)																	
Gasoline-range hydrocarbons	0.262	^(f)	1.37 ^(o)		< 0.050 ^(g)		10.4 ^(o)		0.323		0.586		0.446		NA ^(h)	NA	NA
Diesel-range hydrocarbons	0.300		1.65 ^(j)		<0.278		3.53 ^(j)		0.816 ^(j)		1.76 ^(j)		2.20 ^(j)		NA	NA	NA
Oil-range hydrocarbons	<0.485		<0.526		<0.556		<0.490		<0.521		<0.505		<0.543		NA	NA	NA
PAHs (μg/I) ^(k)																	
Naphthalene	0.640	0.536	501	125	1.64	2.05	5,900	4,260	2.14	0.507	8.13	3.59	57.5	61.7	4,940	NA	NA
1-Methylnaphthalene	27.9	1.53	81.9	5.90	0.522	0.365	488	260	41.0	2.61	171	9.38	140	85.3	NA	NA	NA
2-Methylnaphthalene	1.29	0.0943 J ^(I)	79.6	0.736	0.0677 J	0.0821 J	574	233	6.60	0.0916 J	43.4	1.32	16.9	12.3	NA	NA	NA
Acenaphthylene	0.208	<0.115	<0.0102	<0.00958	<0.00992	0.0927 J	28.0	11.4	0.745	<0.00937	<0.00926	<0.00916	1.42	<0.00958	NA	NA	NA
Acenaphthene	39.1	1.23	129	3.23	14.2	1.71	439	184	66.6	1.84	225	8.06	211	71.3	643	990	NA
Fluorene	5.79	0.0644 J	84.7	0.0480 J	7.45	<0.00766	197	8.00	31.6	0.0468 J	65.3	2.84	80.3	4.14	3,460	5,300	14,000
Phenanthrene	0.446	0.163	76.9	0.110 J	0.280	0.0794 J	275	1.19 J	46.2	0.114	24.9	5.51	99.7	3.34	NA	NA	NA
Anthracene	0.229	0.170	4.62	0.253	2.33	1.15	32.1	1.41 J	7.81	0.271	1.94	0.652	16.3	1.01	25,900	40,000	110,000
Fluoranthene	0.0589 J	0.159	10.3	0.717 J	2.53	0.0695 J	68.4	0.527 J	8.16	0.0962 J	1.07	1.25	44.6	1.99	90.2	140	370
Pyrene	0.0379 J	0.113 J	4.66	0.0542 J	1.70	0.0547 J	48.0	<0.549	4.76	0.0635 J	0.724	0.965	29.5	1.97	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.0347	<0.0379	<0.00330	<0.00311	<0.00322	<0.00319	2.20	<0.725	0.0222 J	<0.00304	<0.00301	<0.00298	0.551 J	<0.00311	NA	NA	NA
cPAHs (µg/I) ^(m)																	
Chrysene	<0.0189	<0.0207	0.103	<0.00298	<0.00308	<0.00305	10.6	<0.396	0.265	<0.00291	<0.00288	0.0853	3.76	0.187	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(b)fluoranthene	<0.0853	<0.0931	0.0327	<0.00324	<0.00335	<0.00331	5.58	<1.78	0.0951	<0.00317	<0.00313	0.0558	1.30	0.160	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(k)fluoranthene	<0.0221	<0.0241	0.0142	<0.00372	<0.00385	<0.00380	6.02	<0.462	0.0387	<0.00363	<0.00359	0.0170	1.96	0.0795	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)anthracene	<0.0316	<0.0345	0.157	<0.00417	<0.00432	<0.00427	11.0	<0.659	0.392	<0.00408	<0.00403	0.134	3.87	0.336	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)pyrene	<0.0274	<0.0299	<0.00234	<0.00220	<0.00228	<0.00226	6.51	<0.571	0.0698	<0.00216	<0.00213	0.0267	1.83	0.105	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Indeno(1,2,3-cd)pyrene	<0.0295	<0.0322	<0.00267	<0.00252	<0.00261	<0.00258	1.89	<0.615	0.0641	<0.00247	<0.00244	<0.00241	0.472 J	<0.00252	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Dibenz(a,h)anthracene	<0.0305	<0.0333	<0.00306	<0.00289	<0.00299	<0.00295	6.79	<0.637	<0.00254	<0.00282	<0.00279	<0.00276	3.27	<0.00289	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Total cPAHs ^(r)	<0.0274	<0.0299	0.0214	<0.0022	<0.00228	<0.00226	11.8	<0.571	0.131	<0.00216	<0.00213	0.0482	3.94	0.164	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031

Notes:

(a) Well MW-8(R) was installed in May 2000 as a replacement for MW-8, which was damaged. Well MW-28(R) was installed in February 2006 as a replacement for MW-28, which was damaged during construction activities in the 18th Street right-of-way.

(b) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(c) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(d) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.

(e) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx(extended) with silica gel cleanup.

(f) "---" Denotes sample was not analyzed for the listed analyte

(g) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(h) "NA" denotes no cleanup level established.

```
(i) Results in the diesel organics range are primarily due to overlap from a gasoline range product (Laboratory note D-08).
```

(j) The sample chromatographic pattern does not resemble the fuel standard used for quantitation (Laboratory note D-06).

(k) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate). Non-detected analytes are reported to the MDL.

(I) "J" denotes an analyte detected at a concentration between the method reporting limit (MRL) and the method detection limit (MDL).

(m) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate). Non-detected analytes are reported to the MDL.

(n) Practical quantitation limit (PQL) (Ecology 2001b).

(o) The total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range (Laboratory note G-03).

(p) The chromatogram for this sample does not resemble a typical gasoline pattern (Laboratory note G-02).

(q) The heavy oil range organics present are due to hydrocarbons eluting primarily in the diesel range (Laboratory note D-10).

(r) Total cPAHs based on benzo(a)pyrene equivalent values. Individual cPAH concentrations were multiplied by toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). TEFs are summarized on Table 2A-A. Non-detected cPAH analytes were not included in the summation.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. mg/I = milligrams per liter

 $\mu g/l = micrograms per liter$

MARCH 2008 GROUNDWATER MONITORING WELL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

								Gr	oundwater Sam	ple Designatio	n								Proposed Cleanup
	MW-8((R) ^(a)	MW-	·10	MM	/-11	MW	-14	MW	-15	MW	V-16	MW	-17	MW	/-18	MW-1	9	Level ^(b)
Analyte	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	Level
TPHs (mg/l) ^(c)																			
Gasoline-range hydrocarbons	17.0	^(d)	0.490		0.270		<0.100 ^(e)		<0.100		<0.100		<0.100		6.50		<0.100		NA ^(f)
Diesel-range hydrocarbons	9.90 ^(g)		4.30 ^(g)		1.10 ^(g)		0.071 ^(g)		<0.050		<0.050		<0.050		9.50 ^(g)		<0.050		NA
Oil-range hydrocarbons	<0.270		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		NA
PAHs (µg/l) ⁽ⁱ⁾				•				•		-									
Naphthalene	3,600	2,900	1.6	1.3	18	13	0.26	0.18	0.036	0.036	0.023	0.026	0.24	0.21	5,800	4,400	<0.02	0.042	4,940 ^(k)
Acenaphthylene	5.9	3.8	0.19	0.24	0.84	0.55	0.084	0.071	0.025	0.023	<0.02	<0.02	0.047	0.046	1.4	1.2	<0.02	<0.02	NA
Acenaphthene	170	140	34	31	120	98	10	8.2	3.5	3.0	0.57	0.48	6.20	5.6	180	160	0.17	0.14	643 ^(k)
Fluorene	71	59	18	16	84	73	4.1	3.4	1.8	1.6	<0.02	<0.02	2.8	2.6	84	78	<0.02	<0.02	3,460 ^(k)
Phenanthrene	55	44	18	17	87	79	2.8	2.4	0.28	0.27	<0.02	<0.02	0.25	0.25	88	87	<0.02	<0.02	NA
Anthracene	7.1	3.7	3.2	3.8	16	12	0.45	0.35	0.17	0.12	<0.02	<0.02	0.39	0.32	9.3	8.0	<0.02	<0.02	25,900 ^(k)
Fluoranthene	6.7	3.5	6.1	5.5	15	13	1.3	1.0	0.36	0.31	<0.02	<0.02	0.77	0.71	7.7	6.3	<0.02	<0.02	90.2 ^(k)
Pyrene	4.2	2.1	4.1	3.7	10	8.3	0.84	0.68	0.23	0.19	<0.02	<0.02	0.51	0.46	4.3	3.3	<0.02	<0.02	2,590 ^(k)
Benzo(g,h,i)perylene	<0.2	<0.02	0.032	0.031	<0.2	0.063	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	NA
cPAHs (µg/I) ^(I)																			
Benzo(a)anthracene	0.59	0.072	0.41	0.40	0.68	0.50	0.067	0.052	0.026	<0.02	<0.02	<0.02	0.049	0.042	<0.2	0.048	<0.02	<0.02	NA
Chrysene	0.56	0.072	0.37	0.37	0.48	0.39	0.065	0.049	0.027	<0.02	<0.02	<0.02	0.043	0.032	<0.2	0.036	<0.02	<0.02	NA
Benzo(a)pyrene	<0.2	<0.02	0.16	0.18	<0.2	0.18	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	NA
Benzo(b)fluoranthene	0.24	<0.02	0.21	0.21	0.23	0.22	<0.02	<0.02	0.021	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	NA
Benzo(k)fluoranthene	<0.2	<0.02	0.069	0.09	<0.2	0.089	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	NA
Indeno(1,2,3-cd)pyrene	<0.2	<0.02	0.035	0.037	<0.2	0.068	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	NA
Dibenz(a,h)anthracene	<0.2	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	NA
Total cPAHs ^(m)	0.22	0.0079	0.24	0.26	0.23	0.27	0.0074	0.0057	0.0050	<0.02	<0.02	<0.02	0.0053	0.0045	0.15	0.0052	<0.02	<0.02	1.24 ⁽ⁿ⁾

								Gr	oundwater Sam	ple Designatio	n								Proposed Cleanup
	MW-	20	MW-	·21	MM	1-22	MW	-23	MW	-24	MV	V-25	MM	/-26	MW	-27	MW-28((R) ^(a)	Level ^(b)
Analyte	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	Level
TPHs (mg/l) ^(c)																			
Gasoline-range hydrocarbons	1.60		1.40		3.30		3.10		0.330		0.300		0.320		<0.100		0.640		NA ^(f)
Diesel-range hydrocarbons	2.10 ^(g)		2.90 ^(g)		0.220 ^(g)		3.10		0.450		0.420		0.860		0.140		3.40		NA
Oil-range hydrocarbons	<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		NA
PAHs (µg/I) ⁽ⁱ⁾						•													
Naphthalene	7.1	5.8	730	560	1,200	990	32	26	19	18	0.29	0.21	91	74.0	0.26	0.22	370	160	4,940 ^(k)
Acenaphthylene	0.75	0.77	1.4	1.1	1.5	1.3	0.90	0.74	0.44	0.41	0.30	0.25	0.48	0.37	0.20	0.18	<2	1.4	NA
Acenaphthene	160	150	230	180	210	170	150	130	42	40	83	68	77	66	28	25	200	170	643 ^(k)
Fluorene	82	75	120	100	110	95	56	49	23	22	15	13	48	42	10	9.0	100	92	3,460 ^(k)
Phenanthrene	68	66	150	120	110	99	52	48	2.1	2.2	1.1	1.0	47	42	1.1	0.920	130	120	NA
Anthracene	3.4	3.4	14	9.5	16	13	5.5	4.5	4.0	3.6	0.14	0.096	4.1	2.7	<0.02	<0.02	13	11	25,900 ^(k)
Fluoranthene	1.9	1.9	20	14	13	11	8.3	7	7.4	7.1	0.13	0.12	<10	<10	2.1	2.0	22	18	90.2 ^(k)
Pyrene	0.88	0.86	14	9.5	8.0	6.9	5.1	5.0	4.8	5.0	0.087	0.078	4.7	4.2	1.3	1.2	14	11	2,590 ^(k)
Benzo(g,h,i)perylene	<0.2	<0.02	<0.2	0.021	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.026	<0.02	NA
cPAHs (µg/I) ^(I)																			
Benzo(a)anthracene	<0.2	<0.02	1.3	0.52	0.49	0.36	0.32	0.220	0.42	0.31	<0.02	<0.02	0.16	0.12	0.066	0.047	0.77	0.49	NA
Chrysene	<0.2	<0.02	1.0	0.39	0.47	0.35	0.30	0.21	0.34	0.31	<0.02	<0.02	0.15	0.11	0.061	0.035	0.56	0.36	NA
Benzo(a)pyrene	<0.2	<0.02	0.50	0.13	0.094	0.079	0.022	<0.02	0.043	0.023	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.17	0.067	NA
Benzo(b)fluoranthene	<0.2	<0.02	0.66	0.18	0.13	0.099	0.031	<0.02	0.061	0.038	<0.02	<0.02	0.026	<0.02	<0.02	<0.02	0.21	0.069	NA
Benzo(k)fluoranthene	<0.2	<0.02	0.26	0.055	0.041	0.036	<0.02	<0.02	0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.077	0.035	NA
Indeno(1,2,3-cd)pyrene	<0.2	<0.02	<0.2	0.028	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.036	<0.02	NA
Dibenz(a,h)anthracene	<0.2	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Total cPAHs ^(m)	0.15	<0.02	0.75	0.21	0.16	0.13	0.060	0.024	0.097	0.061	<0.02	<0.02	0.020	0.013	0.0072	0.0051	0.28	0.13	1.24 ⁽ⁿ⁾

MARCH 2008 GROUNDWATER MONITORING WELL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

							Gr	oundwater Sa	ample Designati	ion							Proposed
	MW-	29	MW-	-30	MM	/-31	MW-100 (MV	V-31 dup)	MW	-32	M	W-33	MW	-34	MW	-35	Cleanup
Analyte	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered			Level ^(b)
TPHs (mg/l) ^(c)																	
Gasoline-range hydrocarbons	0.220		2.60		0.200		0.210		0.210		<0.100		<0.100		<0.100		NA ^(f)
Diesel-range hydrocarbons	0.390		4.40 ^(g)		1.80		1.90		0.180		<0.050		<0.050		<0.050		NA
Oil-range hydrocarbons	<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		<0.250		NA
PAHs (µg/I) ⁽ⁱ⁾																	
Naphthalene	0.46	0.34	790	630	<2	0.56	<2	0.54	0.16	0.12	0.036	0.041	<0.02	<0.02	0.059	0.053	4,940 ^(k)
Acenaphthylene	0.32	0.28	1.8	1.9	<2	0.91	<2	0.87	<0.02	0.026	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Acenaphthene	31	29	390	330	190	170	200	180	12	9.8	2.8	3.0	<0.02	<0.02	0.15	0.13	643 ^(k)
Fluorene	12	12	140	120	98	90	100	93	0.026	0.021	0.051	0.054	<0.02	<0.02	<0.02	<0.02	3,460 ^(k)
Phenanthrene	15	14.000	56	49	110	110	120	110	0.034	<0.02	0.39	0.43	<0.02	<0.02	<0.02	<0.02	NA
Anthracene	4.1	3.0	4.0	<10	14	12	14	13	<0.02	<0.02	0.18	0.11	<0.02	<0.02	<0.02	<0.02	25,900 ^(k)
Fluoranthene	6.0	5.6	2.9	<10	22	19	23	21	<0.02	<0.02	0.38	0.41	<0.02	<0.02	<0.02	<0.02	90.2 ^(k)
Pyrene	3.7	3.6	1.9	<10	15	13	16	15	<0.02	<0.02	0.43	0.46	<0.02	<0.02	0.041	0.037	2,590 ^(k)
Benzo(g,h,i)perylene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
cPAHs (µg/I) ^(I)																	
Benzo(a)anthracene	0.26	0.18	<0.2	<0.02	0.77	0.57	0.87	0.62	<0.02	<0.02	0.031	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Chrysene	0.25	0.18	<0.2	<0.02	0.46	0.37	0.55	0.39	<0.02	<0.02	0.040	0.032	<0.02	<0.02	<0.02	<0.02	NA
Benzo(a)pyrene	0.048	<0.02	<0.02	<0.02	0.11	0.082	0.16	0.11	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Benzo(b)fluoranthene	0.057	<0.02	<0.02	<0.02	0.15	0.10	0.22	0.15	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Benzo(k)fluoranthene	0.025	<0.02	<0.02	<0.02	0.052	0.038	0.073	0.045	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Indeno(1,2,3-cd)pyrene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Dibenz(a,h)anthracene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA
Total cPAHs ^(m)	0.085	0.020	0.011	<0.02	0.21	0.16	0.28	0.20	<0.02	<0.02	0.0035	0.00032	<0.02	<0.02	<0.02	<0.02	1.24 ⁽ⁿ⁾

Notes:

(a) Well MW-8(R) was installed in May 2000 as a replacement for MW-8, which was damaged. Well MW-28(R) was installed in February 2006 as a replacement for MW-28, which was damaged during construction activities in the 18th Street right-of-way.

(b) Proposed site cleanup levels based on Kennedy/Jenks Consultants' 2007 Cleanup Level Evaluation report submitted to Ecology under separate cover.

(c) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx with silica gel cleanup.

(d) "---" Denotes sample was not analyzed for the listed analyte

(e) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(f) "NA" denotes cleanup level is either not available or not appropriate.

(g) Laboratory note 'x': "The pattern of peaks present is not indicative of diesel".

(i) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate). Non-detected analytes are reported to the MDL.

(k) Cleanup level based on the Model Toxics Control Act (MTCA) (WAC 173-340) Method B surface water cleanup level based on Ecology's online CLARC database.

(I) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).

(m) Total cPAHs based on benzo(a)pyrene equivalent values. Individual cPAH concentrations were multiplied by toxicity equivalency factors (TEFs, see Table 1A) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation if the reporting limit was at the practical quantitation limit (PQL) of 0.02. A value of one-half the reporting limit was used (prior to TEF adjustment) for non-detected analytes with reporting limits above the PQL.

(n) Modified cleanup level for total cPAHs based on the Ambient Water Quality Criteria (AWQC) for consumption of organisms only (EPA 2004) pursuant to Section 304(a)(1) of the Clean Water Act discussed in Kennedy/Jenks Consultants' 2007 Cleanup Level Evaluation report.

Analytes detected in samples at concentrations exceeding the proposed cleanup level values are shown in bold and italics.

mg/l = milligrams per liter

TABLE 3A

MARCH 2005 OFF-PROPERTY INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

						Sample	Designation	(Boring ID - f	eet bgs)						MTCA Method C
Analyte	B24 9-10	B24 15-16	B24 30.5-31.5	B25 14-15	B25 30-31	B26 6.5-7.5	B26 18-19	B26 25-26	B27 7-8	B27 22-23	B27 24.5-25.5	B28 6-7	B28 11-12	B28 23.5-24.5	Industrial Soil Cleanup Level ^(a)
TPHs (mg/kg) ^(b)															
Gasoline-range Hydrocarbon	<5.00 ^(c)	309 ^(d)	<5.00	<5.00	83.8 ^(d)	<5.00	<5.00	69.6 ^(d)	<5.00	<5.00	2,720 ^(d)	<5.00	28.6 ^(d)	172 ^(d)	100/30 ^(e)
Diesel-range Hydrocarbon	<10.0	409	22.3	16.9	9,790	162 ^(f)	801	142	92.3 ^(f)	68.7	8,750	686 ^(f)	24.7	238	2,000 ^(e)
Oil-range Hydrocarbon	<25.0	<250	<25.0	<25.0	1,570	268	173	<25.0	258	<25.0	<1,940	1,620	<25.0	<49.3	2,000 ^(e)
PAHs (mg/kg) ^(h)															
Naphthalene	<0.0100	50.9	0.239	0.344	25.7	0.181	7.63	13.7	0.0910	0.561	2,410	<0.330	1.16	33.5	7.00E+04
1-Methylnaphthalene	<0.0100	45.3	0.606	0.609	97.5	0.0366	5.57	3.07	0.123	0.541	437	<0.330	0.623	13.4	NA ⁽ⁱ⁾
2-Methylnaphthalene	<0.0100	62.6	0.380	0.0166	162	0.0616	1.40	5.79	0.181	0.700	872	<0.330	0.229	20.1	NA
Acenaphthylene	<0.0100	0.363	<0.0500	<0.0100	<1.65	0.0427	1.23	<0.330	0.0692	<0.0100	15.5	<0.330	0.0153	<0.656	NA
Acenaphthene	<0.0100	23.3	1.86	0.498	126	0.0122	19.4	3.82	0.160	0.571	597	<0.330	0.518	23.7	2.10E+05
Fluorene	<0.0100	16.8	2.08	0.170	108	0.0152	33.4	3.67	0.135	0.728	638	<0.330	0.161	29.2	1.40E+05
Phenanthrene	0.0215	32.4	4.59	0.0388	361	0.217	178	9.60	0.493	1.65	1,790	<0.330	0.180	85.7	NA
Anthracene	<0.0100	6.76	0.629	0.0145	58.2	0.0384	64.1	1.18	0.165	0.0771	163	<0.330	0.0784	7.00	1.05E+06
Fluoranthene	0.0162	9.13	1.72	0.0186	148	0.250	137	2.69	0.513	0.0623	626	0.543	0.106	30.0	1.40E+05
Pyrene	0.0127	7.50	1.28	0.0209	134	0.228	101	2.18	0.587	0.0308	450	0.952	0.0831	16.7	1.05E+05
Benzo(g,h,i)perylene	0.0216	<0.330	<0.0500	<0.0100	7.29	0.0397	7.75	<0.330	0.272	<0.0100	11.2	0.344	<0.0100	<0.656	NA
cPAHs (mg/kg) ^(j)															
Chrysene	0.0280	1.27	0.262	0.0190	35.5	0.148	48.7	0.531	0.505	<0.0100	92.8	1.05	0.0248	3.53	18
Benzo(b)fluoranthene	0.0239	0.366	0.118	<0.0100	15.6	0.116	15.9	<0.330	0.447	<0.0100	33.1	0.759	0.0134	0.915	18
Benzo(k)fluoranthene	0.0299	0.383	0.151	0.0203	17.9	0.0939	17.1	<0.330	0.471	<0.0100	34.0	0.883	0.0229	0.858	18
Benzo(a)anthracene	<0.0100	1.41	0.264	<0.0100	36.9	0.0595	34.6	0.539	0.300	<0.0100	102	0.711	0.0182	3.91	18
Benzo(a)pyrene	0.0143	0.501	0.0951	<0.0100	21.1	0.0668	20.3	<0.330	0.409	<0.0100	37.3	1.58	0.0153	0.824	18
Indeno(1,2,3-cd)pyrene	0.0174	<0.330	<0.0500	<0.0100	6.64	0.0341	7.90	<0.330	0.253	<0.0100	10.8	1.04	<0.0100	<0.656	18
Dibenz(a,h)anthracene	<0.0100	<0.330	<0.0500	<0.0100	3.11	0.0131	3.44	<0.330	0.112	<0.0100	4.86	<0.330	<0.0100	<0.656	18
Total cPAHs (mg/kg) ^(k)	0.0217	0.730	0.151	0.0022	30.4	0.104	29.7	0.0591	0.606	<0.0100	58.2	1.93	0.0210	1.43	18

Page 1 of 2

TABLE 3A

MARCH 2005 OFF-PROPERTY INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

							Sample Desig	nation (Borin	g ID - feet bgs	6)						MTCA Method C
Analyte	B29 6.5-7.5	B29 11-12	B29 22.5-23.5	B30 5.5-6.5	B30 11-12	B30 22-23	B31 6-7	B31 19-20	B31 24-25	B32 6-7	B32 11-12	B32 19-20	B33 6-7	B33 18-19	B33 20.5-21.5	Industrial Soil Cleanup Level ^(a)
TPHs (mg/kg) ^(b)																
Gasoline-range Hydrocarbon	<5.00 ^(c)	<5.00	1,420 ^(d)	<10.6	<5.00	14.4 ^(d)	<5.00	24.7 ^(d)	50.8 ^(d)	<5.00	<10.4	28.6 ^(d)	<5.00	<5.00	<5.00	100/30 ^(e)
Diesel-range Hydrocarbon	61.5 ^(f)	291 ^(f)	3,920 ^(g)	<21.1	25.2	159	163 ^(f)	1,140	213	14.2	112 ^(f)	3,650 ^(f)	16.3	<10.0	<10.0	2,000 ^(e)
Oil-range Hydrocarbon	116	217	<1,000	<52.9	<25.0	<49.0	229	162	30.5	<25.0	119	1,310	<25.0	<25.0	<25.0	2,000 ^(e)
PAHs (mg/kg) ^(h)																
Naphthalene	<0.330	1.20	415	0.0297	0.188	<0.643	<0.330	9.29	17.7	0.0741	0.327	8.27	0.0454	<0.0100	<0.0100	7.00E+04
1-Methylnaphthalene	0.0706	1.15	114	<0.0211	0.0468	5.97	<0.330	22.9	4.91	0.0356	0.144	31.1	0.0683	0.0381	0.0593	NA ⁽ⁱ⁾
2-Methylnaphthalene	<0.330	0.711	168	<0.0211	0.0572	5.25	<0.330	2.10	7.77	0.0300	0.0947	25.3	0.0492	0.0151	<0.0100	NA
Acenaphthylene	<0.330	0.536	<6.51	<0.0211	0.0181	<0.643	0.351	1.27	0.360	<0.0100	0.0521	<6.56	<0.0100	<0.0100	<0.0100	NA
Acenaphthene	<0.330	3.06	123	<0.0211	0.0290	14.9	<0.330	50.6	8.30	0.0909	0.193	83.2	<0.0100	0.0876	0.408	2.10E+05
Fluorene	<0.330	2.80	138	<0.0211	0.0363	15.8	<0.330	58.9	7.31	0.0542	0.102	43.7	<0.0100	0.0986	<0.0100	1.40E+05
Phenanthrene	<0.330	5.20	376	0.0552	0.0869	47.5	0.734	215	26.2	0.0634	0.463	755	0.0702	0.0547	<0.0100	NA
Anthracene	<0.330	12.9	45.7	0.0447	0.0285	13.7	1.19	66.4	4.31	0.0262	0.157	255	0.0124	0.0244	<0.0100	1.05E+06
Fluoranthene	0.570	7.53	134	0.0914	0.0612	22.0	2.87	101	11.5	0.0653	0.362	1,000	0.0293	0.0269	<0.0100	1.40E+05
Pyrene	1.04	7.31	97.3	0.0972	0.0344	16.5	5.02	80.8	10.2	0.0366	0.411	813	0.0279	0.0164	<0.0100	1.05E+05
Benzo(g,h,i)perylene	0.576	2.57	<6.51	0.0361	<0.0100	0.763	4.53	3.37	0.577	0.0222	0.934	82.3	0.0162	<0.0100	<0.0100	NA
cPAHs (mg/kg) ^(j)																
Chrysene	1.17	7.10	23.2	0.0689	0.0244	4.26	7.16	18.1	2.93	0.0273	0.369	318	0.0323	<0.0100	<0.0100	18
Benzo(b)fluoranthene	0.896	3.57	7.83	0.0533	0.0125	1.72	5.85	8.02	1.30	0.0240	0.350	153	0.0243	<0.0100	<0.0100	18
Benzo(k)fluoranthene	0.657	3.57	7.32	0.0652	0.0249	1.82	4.65	8.36	1.35	0.0345	0.248	170	0.0340	<0.0100	<0.0100	18
Benzo(a)anthracene	0.723	4.33	25.1	0.0423	0.0154	4.47	3.69	19.2	2.72	0.0156	0.171	279	0.0211	<0.0100	<0.0100	18
Benzo(a)pyrene	0.832	4.79	8.18	0.0383	0.0119	2.20	6.37	10.6	1.69	0.0184	0.241	202	0.0227	<0.0100	<0.0100	18
Indeno(1,2,3-cd)pyrene	0.520	2.11	<6.51	0.0298	<0.0100	0.698	3.84	3.44	0.542	0.0166	0.371	76.2	0.0144	<0.0100	<0.0100	18
Dibenz(a,h)anthracene	<0.330	0.808	<6.51	<0.0211	<0.0100	<0.643	1.53	1.70	<0.330	<0.0100	0.0990	32.2	<0.0100	<0.0100	<0.0100	18
Total cPAHs (mg/kg) ^(k)	1.12	6.54	12.4	0.0580	0.0174	3.11	8.86	15.4	2.31	0.0277	0.398	286	0.0324	<0.0100	<0.0100	18

Notes:

(a) Model Toxics Control Act (MTCA) Method C industrial soil cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) Samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx(extended) with silica gel cleanup, and gasoline-range hydrocarbons by Ecology Method NWTPH-G.

(c) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(d) Lab note G-02: The chromatogram for this sample does not resemble a typical gasoline pattern.

(e) Total petroleum hydrocarbon (TPH) screening levels based on MTCA Method A industrial soil cleanup levels (Ecology 2001a). For gasoline mixtures without benzene and total ethylbenzene, toluene and xylenes less than 1% of the gasoline mixture the cleanup level is 100 mg/kg. For all other gasoline mixtures, the cleanup level is 30 mg/kg.

(f) Lab note D-15: Hydrocarbon pattern most closely resembles a weathered Heavy Fuel Oil product.

- (g) Lab note D-06: The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- (h) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate).

(i) "NA" denotes no cleanup level established.

(j) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).

(k) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

Analytes detected in samples at concentrations exceeding one or more cleanup levels or comparison levels are shown in bold and italics.

mg/kg = milligrams per kilogram

bgs = below ground surface

TABLE 3B

MARCH 2005 OFF-PROPERTY INVESTIGATION RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

				Reconnais	sance Ground	water Sample I	Designation					NRWQC	NTR
	B24	B25	B26	B27	B28	B29	B30	B31	B32	B33	MTCA Method B	Human Health	Human Health
Analyte	RGW	RGW	RGW	RGW	RGW	RGW	RGW	RGW	RGW	RGW	Surface Water ^(a)	Consumption of Organisms ^(b)	Consumption of Organisms ^(c)
TPHs (mg/l) ^(d)													
Gasoline-range hydrocarbons	0.354 ^(e)	1.27 ^(e)	0.134 ^(e)	8.16 ^(e)	2.78 ^(e)	6.71 ^(e)	0.227 ^(e)	10.4 ^(e)	< 0.050 ^(f)	0.537 ^(e)	NA ^(g)	NA	NA
Diesel-range hydrocarbons	1.88	3.80	0.637	6.13	2.81	3.14	0.399	22.1	0.664	0.639	NA	NA	NA
Oil-range hydrocarbons	<0.500	<0.581	<0.500	<0.685	<0.500	<0.602	<0.500	3.10	<0.500	<0.500	NA	NA	NA
PAHs (µg/I) ^(h)													
Naphthalene	2.98	39.8	17.7	4,310	1,070	2,730	3.33	17,400	6.83	1.52	4,940	NA	NA
1-Methylnaphthalene	20.6	175	19.8	338	224	237	35.9	2,270	29.3	73.5	NA	NA	NA
2-Methylnaphthalene	13.3	203	5.59	462	199	322	15.7	3,340	15.1	5.76	NA	NA	NA
Acenaphthylene	<0.500	1.54	1.18	5.15	<10	4.43	0.980	206	1.39	1.21	NA	NA	NA
Acenaphthene	45.9	171	48.3	243	185	224	60.6	3,120	59.5	108	643	990	NA
Fluorene	39.7	103	34.2	120	109	121	18.5	2,480	18.2	18.1	3,460	5,300	14,000
Phenanthrene	83.2	229	51.8	115	121	122	18.7	8,590	61.3	2.42	NA	NA	NA
Anthracene	9.25	24.2	13.7	7.42	12.6	15.2	2.84	1,370	14.9	1.11	25,900	40,000	110,000
Fluoranthene	29.0	75.6	21.5	20.6	23.3	24.5	5.29	4,170	60.4	0.505	90.2	140	370
Pyrene	20.1	60.2	18.0	11.4	20.6	17.4	4.71	3,390	52.8	<0.500	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.500	1.54	1.18	<1.00	<10.0	<1.00	<0.500	285	3.37	<0.500	NA	NA	NA
cPAHs (µg/I) ⁽ⁱ⁾													
Chrysene	3.26	12.3	6.86	5.98	<10.0	2.93	2.75	928	12.7	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(b)fluoranthene	1.39	7.03	3.53	2.06	<10.0	<1.00	1.08	510	8.71	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(k)fluoranthene	2.48	8.13	2.16	1.03	<10.0	<1.00	0.686	519	8.22	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(a)anthracene	3.52	9.89	3.92	2.06	<10.0	2.83	0.882	1,090	11.3	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(a)pyrene	1.11	3.96	2.65	<1.00	<10.0	<1.00	<0.500	654	8.12	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031
Indeno(1,2,3-cd)pyrene	<0.500	1.32	1.08	<1.00	<10.0	<1.00	<0.500	246	2.67	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031
Dibenz(a,h)anthracene	<0.500	<1.00	0.784	<1.00	<10.0	<1.00	<0.500	100	1.39	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031
Total cPAHs (µg/I) ^(k)	1.88	6.720	4.10	0.575	<10.0	0.312	0.292	940	11.90	<0.500	0.0296	0.018 * / 0.02 ^(j)	0.031

Notes:

(a) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(c) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10 ⁻⁶.

(d) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx(extended) with silica gel cleanup.

(e) Lab note G-02: The chromatogram for this sample does not resemble a typical gasoline pattern.

(f) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(g) "NA" denotes no cleanup level established.

(h) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate).

(i) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).

(j) Practical quantitation limit (PQL) (Ecology 2001b).

(k) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. mg/l = milligrams per liter

 $\mu g/l = micrograms per liter$

TABLE 3C

MARCH 2005 OFF-PROPERTY INVESTIGATION **GROUNDWATER MONITORING WELL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility**

			Groundwater Sar	nple Designation				NRWQC	NTR
	MW	/-26	MM	I-27	MW	/-28	MTCA Method B	Human Health	Human Health
Analyte	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	Surface Water ^(a)	Consumption of Organisms ^(b)	Consumption of Organisms ^(c)
TPHs (mg/l) ^(d)									
Gasoline-range hydrocarbons	2.31 ^(e)	(f)	<0.0500 ^(g)		0.19 ^(e)		NA ^(h)	NA	NA
Diesel-range hydrocarbons	1.78 ⁽ⁱ⁾		<0.250		1.15 ⁽ⁱ⁾		NA	NA	NA
Oil-range hydrocarbons	<0.500		<0.500		<0.500		NA	NA	NA
PAHs (µg/l) ^(j)			•					· · · · · · · · · · · · · · · · · · ·	
Naphthalene	987	990	1.58	1.33	23.1	14.8	4,940	NA	NA
1-Methylnaphthalene	169	99.1	0.596	0.177	81.6	33.5	NA	NA	NA
2-Methylnaphthalene	169	65.4	0.159	<0.100	6.09	2.00	NA	NA	NA
Acenaphthylene	<0.100	<0.100	<0.100	<0.100	<0.100	0.538	NA	NA	NA
Acenaphthene	179	80.6	12.7	0.352	126	39.6	643	990	NA
Fluorene	127	2.72	7.69	<0.100	66.4	4.84	3,460	5,300	14,000
Phenanthrene	134	0.922	0.748	<0.100	105	0.708	NA	NA	NA
Anthracene	10.9	0.443	1.26	0.198	11.5	0.617	25,900	40,000	110,000
Fluoranthene	15.9	0.621	2.00	0.133	15.3	0.508	90.2	140	370
Pyrene	8.49	0.460	1.36	0.118	9.23	0.362	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	NA	NA	NA
cPAHs (µg/l) ^(k)									
Chrysene	0.610	0.109	<0.100	<0.100	0.447	<0.100	0.0296	0.018 * / 0.02 ^(I)	0.031
Benzo(b)fluoranthene	0.121	<0.100	<0.100	<0.100	<0.100	<0.100	0.0296	0.018 * / 0.02 ^(I)	0.031
Benzo(k)fluoranthene	0.437	<0.100	<0.100	<0.100	<0.100	<0.100	0.0296	0.018 * / 0.02 ^(I)	0.031
Benzo(a)anthracene	0.602	0.122	0.105	<0.100	0.480	0.140	0.0296	0.018 * / 0.02 ^(I)	0.031
Benzo(a)pyrene	0.127	<0.100	<0.100	<0.100	<0.100	<0.100	0.0296	0.018 * / 0.02 ^(I)	0.031
Indeno(1,2,3-cd)pyrene	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.0296	0.018 * / 0.02 ^(I)	0.031
Dibenz(a,h)anthracene	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.0296	0.018 * / 0.02 ^(I)	0.031
Total cPAHs (μg/l) ^(m)	0.249	0.0133	0.0105	<0.100	0.0525	0.014	0.0296	0.018 * / 0.02 ^(l)	0.031

Notes:

(a) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10 -6.

- (c) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1×10^{-6} .
- (d) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx(extended) with silica gel cleanup.

(e) Lab note G-02: The chromatogram for this sample does not resemble a typical gasoline pattern.

- (f) "---" Denotes sample was not analyzed for the listed analyte
- (g) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.
- (h) "NA" denotes no cleanup level established.
- (i) Lab note D-06: The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- (j) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate).
- (k) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).
- (I) Practical quantitation limit (PQL) (Ecology 2001b).
- (m) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.
- * Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. mg/l - milligrams per liter

TABLE 4A

MARCH 2004 OFF-PROPERTY INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

								Sample D	esignation	(Boring ID	- feet bgs)								MTCA Method C
Analyte	B-18 6-6.5	B-18 12-13	B-18 24-25	B-19 9-10	B-19 14-15	B-19 21-22	B-20 7-8	B-20 10-11	B-20 19-20	B-21 8-9	B-21 13-15	B-21 18-19	B-22 6-7	B-22 11-12	B-22 19-20	B-23 6.5-7.5	B-23 9-10	B-23 18-20	Industrial Soil Cleanup Level ^(a)
TPHs (mg/kg) ^(b)																			
Diesel-range Hydrocarbon	19.0 ^(c)	18.3 ^(d)	<10.0 ^(e)	180	15.1 ^(c)	5,990 ^(f)	<20.4	38.1	36.3	30.6	<10.0	474	98.6	241	56.1 ^(f)	49.9	3,010	<10.0	2000 ^(g)
Oil-range Hydrocarbon	<25.0	32.6	<25.0	28.0	<25.0	680	<51.0	<25.0	<25.0	38.2	<25.0	43.9	79.9	63.5	<25.0	<25.0	912	<25.0	2000 ^(g)
Gasoline-range Hydrocarbon	<5.00	<5.00	<5.00	554 ^(h)	19.5	2,500 ^(h)	26.9 ^(h)	430 ^(h)	1,270 ^(h)	33.1 ^(h)	<5.00	66.7 ^(h)	<11.7	21.5 ^(h)	63.0 ⁽ⁱ⁾	7.43	235 ⁽ⁱ⁾	13.9 ^(h)	100/30 ^(g)
PAHs (mg/kg) ^(j)																			
Naphthalene	0.0872	0.873	0.332	8.66	0.375	1,160	0.235	17.2	7.89	0.402	0.234	45.2	0.731	0.918	<0.100	0.120	1.78	<0.100	7.00E+04
1-Methylnaphthalene	0.0521	0.262	2.84	3.66	0.411	360	<0.204	6.01	1.39	0.389	0.598	22.0	0.373	0.828	0.637	<0.100	0.801	<0.100	NA ^(k)
2-Methylnaphthalene	0.0612	0.376	0.728	3.10	0.672	642	<0.204	2.92	2.92	0.299	0.238	32.6	0.560	0.563	<0.100	<0.100	0.925	<0.100	NA
Acenaphthylene	<0.0100	0.221	<0.0100	0.0809	0.0105	<10.3	<0.204	0.0734	<0.0100	0.0267	<0.0100	0.346	2.04	0.282	0.136	<0.100	1.07	<0.100	NA
Acenaphthene	<0.0100	0.841	1.92	2.37	0.348	384	<0.204	3.32	1.22	0.284	0.550	29.5	0.326	1.26	8.62	<0.100	1.73	0.174	2.10E+05
Fluorene	0.0143	0.817	0.702	1.13	0.600	341	<0.204	1.71	3.89	0.222	0.507	28.9	0.575	1.87	11.6	<0.100	1.25	<0.100	1.40E+05
Phenanthrene	0.0482	6.41	0.264	1.18	0.784	920	<0.204	2.40	5.23	0.407	0.554	73.7	1.24	5.15	33.6	<0.100	3.58	0.131	NA
Anthracene	<0.0100	1.25	0.0126	0.304	0.12	148	<0.204	0.702	1.33	0.146	0.0361	11.3	2.77	2.33	4.61	<0.100	5.82	<0.100	1.05E+06
Fluoranthene	0.0182	4.75	<0.0100	0.411	0.193	362	<0.204	1.20	1.61	0.276	0.0205	29.5	2.92	5.87	14.3	<0.100	27.0	0.105	1.40E+05
Pyrene	0.0273	5.52	<0.0100	0.377	0.131	301	<0.204	0.958	1.22	0.240	0.0238	24.0	4.17	3.92	8.80	<0.100	21.5	<0.100	1.05E+05
Benzo(g,h,i)perylene	0.0130	0.812	<0.0100	0.107	0.0158	16.1	<0.204	0.0683	0.015	0.0701	<0.0100	0.659	5.01	0.798	0.187	<0.100	20.4	<0.100	NA
cPAHs (mg/kg) ^(l)																			
Chrysene	0.0325	2.02	<0.0100	0.142	0.0412	76.2	<0.204	0.206	0.144	0.146	<0.0100	4.10	4.68	1.77	1.71	<0.100	23.0	<0.100	18
Benzo(b)fluoranthene	0.0521	2.10	<0.0100	0.194	0.057	68.6	<0.204	0.192	0.0967	0.181	<0.0100	5.00	9.09	1.55	0.959	<0.100	16.2	0.226	18
Benzo(k)fluoranthene	0.0299	0.597	<0.0100	0.0939	0.0245	25.4	<0.204	0.0557	0.0533	0.0709	<0.0100	2.72	3.64	0.319	0.340	<0.100	7.69	<0.100	18
Benzo(a)anthracene	0.0208	2.23	<0.0100	0.189	0.0482	87.2	<0.204	0.259	0.228	0.104	<0.0100	6.93	3.40	1.99	2.06	<0.100	12.8	<0.100	18
Benzo(a)pyrene	0.0286	1.74	<0.0100	0.186	0.043	48.3	<0.204	0.166	0.075	0.118	<0.0100	3.51	8.26	1.34	0.679	<0.100	15.8	0.122	18
Indeno(1,2,3-cd)pyrene	0.0156	0.867	<0.0100	0.115	0.0167	15.2	<0.204	0.0633	0.0175	0.0732	<0.0100	0.711	5.05	0.961	0.195	<0.100	17.6	<0.100	18
Dibenz(a,h)anthracene	0.0456	0.319	<0.0100	0.0678	0.0324	31.3	<0.204	0.0544	0.0317	0.0488	<0.0100	0.317	1.87	0.299	0.314	<0.100	<0.266	<0.100	18
Total cPAHs (mg/kg) ^(m)	0.059	2.47	<0.0100	0.274	0.071	81.2	<0.204	0.247	0.129	0.182	<0.0100	5.21	11.2	1.96	1.18	<0.100	21.5	0.145	18

Notes:

(a) Model Toxics Control Act (MTCA) Method C industrial soil cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) Samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx(extended) with silica gel cleanup, and gasoline-range hydrocarbons by Ecology Method NWTPH-G.

(c) Hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.

(d) Results in diesel organics range are primarily due to overlap from heavy oil range product.

(e) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(f) Sample chromatogram pattern does not resemble fuel standard used for quantitation.

(g) Total petroleum hydrocarbon (TPH) screening levels based on MTCA Method A industrial soil cleanup levels (Ecology 2001a). For gasoline mixtures without benzene and total ethylbenzene, toluene and xylenes less than 1% of the gasoline mixture the cleanup level is 100 mg/kg. For all other gasoline mixtures, the cleanup level is 30 mg/kg.

(h) Chromatogram for this sample does not resemble a typical gasoline pattern.

(i) Results reported in the gasoline range are primarily due to overlap from diesel range hydrocarbons.

(j) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

(k) "NA" denotes no cleanup level established.

(I) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.

(m) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

Analytes detected in samples at concentrations exceeding one or more cleanup levels or comparison levels are shown in bold and italics.

mg/kg = milligrams per kilogram

bgs = below ground surface

TABLE 4B

MARCH 2004 OFF-PROPERTY INVESTIGATION **RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility**

		v	Vell Designation	and Date Sample	d			NRWQC	NTR
Analyte	B-18 3/10/2004	B-19 3/10/2004	B20 3/10/2004	B-21 3/11/2004	B-22 3/11/2004	B-23 3/11/2004	MTCA Method B Surface Water ^(a)	Human Health Consumption of Organisms ^(b)	Human Health Consumption of Organisms ^(c)
TPHs (mg/l) ^(d)									
Gasoline-range hydrocarbons	2.91 ^(e)	12.600 ^(e)	22.500 ^(e)	9.820 ^(e)	2.410 ^(e)	0.523 ^(e)	NA ^(f)	NA	NA
Diesel-range hydrocarbons	1.28 ^(g)	4.93 ^(g)	12.20 ^(g)	5.49 ^(g)	4.21 ^(g)	0.321 ^(g)	NA	NA	NA
Oil-range hydrocarbons	<0.500 ^(h)	<0.500	0.632 ^(g)	<0.500	<0.500	<0.500	NA	NA	NA
PAHs (µg/I) ⁽ⁱ⁾					-				
Naphthalene	36.0	5,870	22,900	4,330	1,100	74.0	4,940	NA	NA
1-Methylnaphthalene	275	<500	<1,000	<500	<200	66.1	NA	NA	NA
2-Methylnaphthalene	214	1,200	3,430	805	456	33.9	NA	NA	NA
Acenaphthylene	<10.0	<500	<1,000	<500	290	27.9	NA	NA	NA
Acenaphthene	159	692	1,810	554	866	76.9	643	990	NA
Fluorene	52.8	<500	1,220	<500	630	33.8	3,460	5,300	14,000
Phenanthrene	23.9	<500	3,440	644	1,790	30.1	NA	NA	NA
Anthracene	26.5	<500	<1,000	712	250	3.00	25,900	40,000	110,000
Fluoranthene	<10.0	<500	1,080	<500	826	5.07	90.2	140	370
Pyrene	<10.0	<500	<1,000	<500	635	3.40	2,590	4,000	11,000
Benzo(g,h,i)perylene	<10.0	<500	<1,000	<500	<200	<0.100	NA	NA	NA
cPAHs (µg/I) ⁽ⁱ⁾									
Chrysene	<10.0	<500	<1,000	<500	<200	0.253	0.0296	0.018 * / 0.02 ^(k)	0.031
Benzo(b)fluoranthene	<10.0	<500	<1,000	<500	<200	0.0906	0.0296	0.018 * / 0.02 ^(k)	0.031
Benzo(k)fluoranthene	<10.0	<500	<1,000	<500	<200	0.103	0.0296	0.018 * / 0.02 ^(k)	0.031
Benzo(a)anthracene	<10.0	<500	<1,000	<500	<200	0.306	0.0296	0.018 * / 0.02 ^(k)	0.031
Benzo(a)pyrene	<10.0	<500	<1,000	<500	<200	0.122	0.0296	0.018 * / 0.02 ^(k)	0.031
Indeno(1,2,3-cd)pyrene	<10.0	<500	<1,000	<500	<200	0.0372	0.0296	0.018 * / 0.02 ^(k)	0.031
Dibenz(a,h)anthracene	<10.0	<500	<1,000	<500	<200	0.0180	0.0296	0.018 * / 0.02 ^(k)	0.031
Total cPAHs (μg/l) ^(!)	<10.0	<500	<1,000	<500	<200	0.185	0.0296	0.018 * / 0.02 ^(k)	0.031

Notes:

(a) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(c) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1×10^{-6} .

(d) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx(extended) with silica gel cleanup.

- (e) Chromatogram for this sample does not resemble a typical gasoline standard pattern.
- (f) "NA" denotes no cleanup level established.
- (g) Hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.

(h) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

- (i) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.
- (j) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.
- (k) Practical quantitation limit (PQL) (Ecology 2001b).
- (I) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. mg/l - milligrams per liter

TABLE 4C

MARCH 2004 OFF-PROPERTY INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

		Well Designation	and Date Sampled			NRWQC	NTR
	MW-18	MW-23	MW-24	MW-25	MTCA Method B	Human Health	Human Health
Analyte	3/31/2004	3/31/2004	3/31/2004	3/31/2004	Surface Water ^(a)	Consumption of Organisms ^(b)	Consumption of Organisms ^(c)
TPHs (mg/I) ^(d)							
Gasoline-range hydrocarbons	23.4	6.35	13.9	0.577	NA ^(e)	NA	NA
Diesel-range hydrocarbons	3.36	3.27	4.69	0.460	NA	NA	NA
Oil-range hydrocarbons	<0.500 ^(f)	<0.500	<0.500	<0.500	NA	NA	NA
PAHs (µg/I) ^(g)							
Naphthalene	7,490	972	6,600	1.34	4,940	NA	NA
1-Methylnaphthalene	646	449	558	56.1	NA	NA	NA
2-Methylnaphthalene	684	488	868	6.56	NA	NA	NA
Acenaphthylene	2.08	1.33	6.29	<0.100 ^(e)	NA	NA	NA
Acenaphthene	347	381	392	65.7	643	990	NA
Fluorene	148	137	168	11.4	3,460	5,300	14,000
Phenanthrene	124	135	168	0.744	NA	NA	NA
Anthracene	11.6	14.8	20.7	0.838	25,900	40,000	110,000
Fluoranthene	6.29	17.3	17.1	<0.100	90.2	140	370
Pyrene	3.46	9.75	12.2	<0.100	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.100	<0.100	<0.100	<0.100	NA	NA	NA
сРАНѕ (µg/I) ^(h)							
Chrysene	<0.100	0.442	0.667	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(b)fluoranthene	<0.100	0.327	0.419	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(k)fluoranthene	<0.100	<0.100	0.152	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(a)anthracene	<0.100	0.577	0.800	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(a)pyrene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Indeno(1,2,3-cd)pyrene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Dibenz(a,h)anthracene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Total cPAHs ^(j)	<0.100	0.0948	0.144	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031

Notes:

(a) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(c) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.

(d) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx(extended) with silica gel cleanup.

(e) "NA" denotes no cleanup level established.

(f) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(g) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

(h) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.

(i) Practical quantitation limit (PQL) (Ecology 2001b).

(j) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)].

mg/I - milligrams per liter

TABLE 4D

MARCH 2004 OFF-PROPERTY INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - DISSOLVED PAHs Former Tacoma Metals Facility

		Well Designation	and Date Sampled			NRWQC	NTR
Analyte	MW-18 3/31/2004	MW-23 3/31/2004	MW-24 3/31/2004	MW-25 3/31/2004	MTCA Method B Surface Water ^(a)	Human Health Consumption of Organisms ^(b)	Human Health Consumption of Organisms ^(c)
	3/31/2004	3/31/2004	5/31/2004	3/31/2004		consumption of organisms	Consumption of Organisms
ΡΑΗs (μg/l)^(d) Naphthalene	5.360	742	4,240	1.60	4,940	NA ^(e)	NA
	,		'		- I		
1-Methylnaphthalene	305	252	221	10.4	NA	NA	NA
2-Methylnaphthalene	217	248	183	0.654	NA	NA	NA
Acenaphthylene	0.654	0.311	1.33	<0.100 ^(f)	NA	NA	NA
Acenaphthene	142	177	103	10.5	643	990	NA
Fluorene	6.85	32.8	2.48	0.888	3,460	5,300	14,000
Phenanthrene	0.558	30.2	3.40	<0.100	NA	NA	NA
Anthracene	<0.100	2.29	0.827	0.786	25,900	40,000	110,000
Fluoranthene	<0.100	2.72	0.808	<0.100	90.2	140	370
Pyrene	<0.100	1.42	0.538	<0.100	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.100	<0.100	<0.100	<0.100	NA	NA	NA
сРАНѕ (µg/I) ^(g)							
Chrysene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ^(h)	0.031
Benzo(b)fluoranthene	<0.100	0.194	0.231	<0.0100	0.0296	0.018 * / 0.02 ^(h)	0.031
Benzo(k)fluoranthene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ^(h)	0.031
Benzo(a)anthracene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ^(h)	0.031
Benzo(a)pyrene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ^(h)	0.031
Indeno(1,2,3-cd)pyrene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ^(h)	0.031
Dibenz(a,h)anthracene	<0.100	<0.100	<0.100	<0.0100	0.0296	0.018 * / 0.02 ^(h)	0.031
Total cPAHs ⁽ⁱ⁾	<0.100	0.0194	0.0231	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031

Notes:

(a) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(c) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1×10^{-6} .

(d) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode. Samples were field-filtered using a 0.45 micron cellulose acetate filter.

- (e) "NA" denotes no cleanup level established.
- (f) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(g) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM. Samples were field-filtered using a 0.45 micron cellulose acetate filter.

(h) Practical quantitation limit (PQL) (Ecology 2001b).

(i) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)].

TABLE 5A

NOVEMBER-DECEMBER 2003 INVESTIGATION SOIL ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

								Sampl	e Designati	on (Boring	ID - feet bgs)								MTCA Method C
Analyte	B-12 4-5	B-12 6.5-7.5	B-12 9-10	B-13 1-3	B-13 5-6	B-13 14-15	B-14 1-2	B-14 5-6	B-14 9-10	B-15 5-6	B-15 7-8	B-15 10-11	B-16 3-4	B-16 5-6	B-16 10-11	B-17 3-4	B-17 5-6	B-17 7-8	Industrial Soil Cleanup Level ^(a)
TPHs (mg/kg) ^(b)																			
Diesel-range Hydrocarbon	1,910 (397) ^(c)	43.0 (21.8)	1,310 (866)	734 (264)	114 (41.8)	1,680 (1,020) ^(d)	374 (178) ^(d)	927 (279) ^(d)	436 (251)	266 (68.7)	12.8 (<10.0 ^(e))	19.5 (<10.0)	<10.0 (<10.0)	457 (136)	139 (72.8)	<10.0 (<10.0)	138 (23.6)	361 (35.1)	2000 ^(f)
Oil-range Hydrocarbon	4,800 (1,250)	64.7 (<25.0)	317 (<125)	1,080 (551)	159 (47.1)	166 (<98.0)	1,410 (705)	1,590 (349)	298 (91.7)	666 (217)	<25.0 (<25.0)	25.7 (<25.0)	<25.0 (<25.0)	642 (59.6)	29.4 (<25.0)	<25.0 (<25.0)	768 (73.5)	1,200 (<84.2)	2000 ^(f)
Gasoline-range Hydrocarbon	8.84 ^(g)	5.18	331 ^(g)	<5.00 ^(c)	<5.00	469 ^(g)	<5.00	<13.5	14.5 ^(g)	<11.5	<5.00	<5.00	<5.00	51.6 ^(g)	141 ^(g)	<5.00	<5.00	<16.8	100/30 ^(f)
PAHs (mg/kg) ^(h)						-							-						
Naphthalene	3.48	0.191	3.28	1.44	0.218	826	0.713	1.63	4.52	0.421	0.0605	0.0167	0.0725	11.0	22.3	0.0258	0.353	0.535	7.00E+04
Acenaphthylene	11.6	0.346	0.923	3.19	0.896	1.95	1.44	6.74	0.649	<0.115	<0.0100	0.0317	0.0178	0.208	0.217	0.0294	0.239	0.193	NA ⁽ⁱ⁾
Acenaphthene	0.953	0.0577	17.4	<0.200	0.0565	140	<0.200	3.84	3.78	<0.115	<0.0100	0.0676	0.0220	4.05	4.08	0.0179	0.110	0.205	2.10E+05
Fluorene	2.42	<0.0500	14.1	0.592	0.262	115	0.238	4.67	2.97	<0.115	<0.0100	0.0626	0.0107	2.80	3.10	0.0129	0.105	0.193	1.40E+05
Phenanthrene	7.22	0.146	36.5	5.36	3.94	229	1.46	23.7	5.13	0.176	<0.0100	<0.0100	0.0554	3.15	4.73	0.0408	0.702	0.421	NA
Anthracene	5.72	0.457	9.96	1.91	1.32	60.2	0.699	23.3	3.00	0.130	<0.0100	0.0584	0.0185	0.806	1.15	0.0143	0.630	0.273	1.05E+06
Fluoranthene	35.3	0.129	22.3	12.5	10.4	106	4.61	54.7	4.42	0.352	<0.0100	0.0776	0.0469	1.20	1.37	0.0437	2.86	0.501	1.40E+05
Pyrene	23.7	0.169	19.4	11.2	17.3	97.2	3.95	71.8	4.30	0.566	0.0149	0.0759	0.0391	1.26	1.41	0.0430	3.99	0.614	1.05E+05
Benzo(g,h,i)perylene	12.6	0.271	0.982	4.77	4.33	2.30	2.24	14.5	1.16	1.06	0.0123	0.112	0.0171	0.117	<0.200	0.0315	0.998	0.216	NA
cPAHs (mg/kg) ^(j)																			
Chrysene	17.7	0.115	3.32	7.21	4.70	1.98	3.11	29.6	2.25	1.12	0.0526	0.0843	0.0206	0.911	1.10	0.0387	2.76	0.774	18
Benzo(b)fluoranthene	12.7	0.177	1.28	6.44	3.53	7.48	1.99	18.9	1.27	0.788	<0.0100	0.0826	0.0320	0.130	<0.200	0.0444	2.35	0.375	18
Benzo(k)fluoranthene	19.0	0.120	2.16	7.79	3.72	10.7	3.33	13.4	1.16	0.941	0.0307	0.0868	0.0156	0.494	0.512	0.0279	1.36	0.444	18
Benzo(a)anthracene	15.9	0.0843	4.26	7.32	4.65	21.2	2.50	22.2	1.38	0.474	<0.0100	0.0376	0.0156	0.221	0.264	0.0301	1.65	0.171	18
Benzo(a)pyrene	19.5	0.271	2.13	6.64	5.90	6.95	2.78	22.7	1.75	1.14	<0.0100	0.104	0.0320	0.143	<0.200	0.0494	1.66	0.250	18
Indeno(1,2,3-cd)pyrene	12.8	0.226	0.882	4.74	3.47	2.22	2.13	13.0	0.994	0.711	0.0123	0.108	0.0327	0.104	<0.200	0.0444	0.888	0.182	18
Dibenz(a,h)anthracene	5.83	0.0799	0.382	2.17	1.09	1.18	0.966	5.18	0.403	0.329	<0.0100	0.0384	<0.0100	<0.100	<0.200	0.150	0.406	<0.168	18
Total cPAHs (mg/kg) ^(k)	28.0	0.365	3.17	10.2	7.92	11.6	4.19	31.8	2.41	1.57	0.00482	0.152	0.0417	0.247	0.0886	0.124	2.47	0.375	18

Notes:

(a) Model Toxics Control Act (MTCA) Method C industrial soil cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) Samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx(extended), and gasoline-range hydrocarbons by Ecology Method NWTPH-G.

(c) "()" denotes samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx(extended) with silica gel clean-up.

(d) Results in diesel organics range are primarily due to overlap from heavy oil range hydrocarbons.

(e) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(f) Total petroleum hydrocarbon (TPH) screening levels based on MTCA Method A industrial soil cleanup levels (Ecology 2001a). For gasoline mixtures without benzene and total ethylbenzene, toluene and xylenes less than 1% of the gasoline mixture the cleanup level is 100 mg/kg. For all other gasoline mixtures, the cleanup level is 30 mg/kg.

- (g) Results reported in the gasoline range are primarily due to overlap from diesel range hydrocarbons.
- (h) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.
- (i) "NA" denotes no cleanup level established.
- (j) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.
- (k) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

Analytes detected in samples at concentrations exceeding one or more cleanup levels or comparison levels are shown in bold and italics.

mg/kg - milligrams per kilogram

bgs - below ground surface

TABLE 5B

NOVEMBER-DECEMBER 2003 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

			V	Vell Designation	and Date Sample	ed				NRWQC	NTR
	MW-8(R)	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MTCA Method B	Human Health	Human Health
Analyte	12/2/2003	12/3/2003	12/2/2003	12/2/2003	12/2/2003	12/1/2003	12/1/2003	12/1/2003	Surface Water ^(a)	Consumption of Organisms ^(b)	Consumption of Organisms ^(c)
TPHs (mg/l) ^(d)											
Gasoline-range hydrocarbons	32.600	0.0876 ^(e)	0.436	< 0.050 ^(f)	0.0935	0.0729 ^(e)	<0.050	<0.050	NA ^(g)	NA	NA
Diesel-range hydrocarbons	6.12 (3.14) ^{(h)(i)}	0.806 (0.281) ^(j)	2.65 (1.51) ^(j)	1.40 (<0.250)	0.445 (<0.250)	1.11 ^(k) (<0.250)	0.877 ^(k) (<0.250)	0.455 ^(k) (<0.250)	NA	NA	NA
Oil-range hydrocarbons	<0.500 (<0.500)	<0.500 (<0.500)	<0.500 (<0.500)	0.634 (<0.500)	<0.500 (<0.500)	<0.500 (<0.500)	<0.500 (<0.500)	<0.500 (<0.500)	NA	NA	NA
PAHs (μg/l) ^(l)											
Naphthalene	8,710	6.55	89.3	1.07	1.27	10.1	<0.100	<0.100	4,940	NA	NA
1-Methylnaphthalene	775	23.5	131	0.202	3.49	6.65	0.176	<0.100	NA	NA	NA
2-Methylnaphthalene	1,170	25.1	2.58	<0.100	0.147	0.830	<0.100	<0.100	NA	NA	NA
Acenaphthylene	11.1	1.44	1.74	<0.100	<0.100	0.327	<0.100	<0.100	NA	NA	NA
Acenaphthene	278	44.9	147	0.826	3.57	23.1	3.74	0.238	643	990	NA
Fluorene	139	27.8	108	0.223	1.44	10.6	1.62	<0.100	3,460	5,300	14,000
Phenanthrene	126	47.1	131	<0.100	0.773	14.6	<0.100	<0.100	NA	NA	NA
Anthracene	21.3	5.67	21.0	0.634	0.430	2.28	0.381	0.286	25,900	40,000	110,000
Fluoranthene	23.0	9.52	18.2	<0.100	0.253	5.05	0.287	<0.100	90.2	140	370
Pyrene	16.0	6.38	13.6	<0.100	0.147	3.08	0.167	<0.100	2,590	4,000	11,000
Benzo(g,h,i)perylene	0.394	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	NA	NA	NA
cPAHs (µg/l) ^(m)											
Chrysene	2.90	0.403	0.615	<0.0100	0.0308	0.395	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(b)fluoranthene	0.841	0.109	0.209	<0.0100	0.0175	0.144	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(k)fluoranthene	0.885	0.0772	0.169	<0.0100	0.0186	0.118	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)anthracene	3.09	0.533	0.851	<0.0100	0.0439	0.446	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)pyrene	1.11	0.110	0.226	<0.0100	<0.0100	0.148	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Indeno(1,2,3-cd)pyrene	0.363	0.0292	0.119	<0.0100	<0.0100	0.109	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Dibenz(a,h)anthracene	0.186	0.0118	0.0661	<0.0100	<0.0100	0.0705	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Total cPAHs ^(o)	1.73	0.194	0.393	<0.0100	0.00830	0.262	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031

TABLE 5B

NOVEMBER-DECEMBER 2003 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TPH and PAHs Former Tacoma Metals Facility

			v	Vell Designation	and Date Sample	ed			NRWQC	NTR
	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22	MW-22D ^(p)	MTCA Method B	Human Health	Human Health
Analyte	12/1/2003	12/3/2003	12/2/2003	12/2/2003	12/3/2003	12/3/2003	12/3/2003	Surface Water ^(a)	Consumption of Organisms ^(b)	Consumption of Organisms ^(c)
TPHs (mg/l) ^(d)		•	·	·		•	· · ·		·	
Gasoline-range hydrocarbons	< 0.050 ^(f)	16.100 ^(e)	<0.050	1.560	1.990 ^(e)	7.150 ^(e)	7.010 ^(e)	NA ^(g)	NA	NA
Diesel-range hydrocarbons	0.311 ^(k) (<0.250)	5.09 (2.11) ^(j)	0.433 (<0.250)	2.34 (0.879) ^(j)	3.84 (1.57) ^(j)	4.04 (1.86) ^(j)	4.04 (1.84) ^(j)	NA	NA	NA
Oil-range hydrocarbons	<0.500 (<0.500)	0.609 (<0.500)	<0.500 (<0.500)	<0.500 (<0.500)	0.600 (<0.500)	<0.500 (<0.500)	<0.500 (<0.500)	NA	NA	NA
ΡΑΗs (μg/l) ^(I)			•	•		•				
Naphthalene	0.346	5,970	<0.100	13.6	678	1,940	2,170	4,940	NA	NA
1-Methylnaphthalene	<0.100	729	0.120	213	483	732	729	NA	NA	NA
2-Methylnaphthalene	<0.100	2.73	<0.100	164	174	904	921	NA	NA	NA
Acenaphthylene	<0.100	2.96	<0.100	<0.100	2.54	3.62	3.77	NA	NA	NA
Acenaphthene	0.437	244	0.417	145	206	249	240	643	990	NA
Fluorene	<0.100	83.7	<0.100	68.3	77.5	85.4	77.3	3,460	5,300	14,000
Phenanthrene	<0.100	121	<0.100	62.9	139	125	116	NA	NA	NA
Anthracene	0.136	11.1	0.136	3.49	18.1	15.2	14.9	25,900	40,000	110,000
Fluoranthene	<0.100	5.81	<0.100	2.85	25.5	12.0	11.5	90.2	140	370
Pyrene	<0.100	3.74	<0.100	1.30	17.7	7.65	7.42	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.100	<1.00	<0.100	<0.100	0.462	<0.100	<1.00	NA	NA	NA
cPAHs (µg/I) ^(m)										
Chrysene	0.0157	0.162	<0.0100	0.0255	2.04	0.443	0.410	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(b)fluoranthene	<0.0100	<0.100	<0.0100	<0.0100	1.16	0.0863	0.103	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(k)fluoranthene	<0.0100	<0.100	<0.0100	<0.0100	0.999	0.0996	<0.100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)anthracene	0.0297	0.192	<0.0100	0.0415	2.52	0.521	0.498	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Benzo(a)pyrene	<0.0100	<0.100	<0.0100	<0.0100	1.25	0.117	0.134	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Indeno(1,2,3-cd)pyrene	<0.0100	<0.100	<0.0100	<0.0100	0.424	0.0303	<0.100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Dibenz(a,h)anthracene	<0.0100	<0.100	<0.0100	<0.0100	0.231	0.0123	<0.100	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031
Total cPAHs ^(o)	0.00313	0.0208	<0.0100	0.00441	1.87	0.0200	0.0198	0.0296	0.018 * / 0.02 ⁽ⁿ⁾	0.031

Notes:

(a) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁶.

(c) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10⁶.

(d) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx(extended).

(e) Chromatogram for this sample does not resemble a typical gasoline standard pattern.

(f) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(q) "NA" denotes no cleanup level established.

(h) "()" Denotes samples that were analyzed for total petroleum hydrocarbons by Ecology Method NWTPH-Dx with Acid/Silica Gel Clean-up.

(i) Results in diesel organics range are primarily due to overlap from gasoline oraganics range.

(i) Hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.

(k) Sample chromatogram pattern does not resemble the fuel standard used for quantitation.

(I) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

(m) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.

(n) Practical quantitation limit (PQL) (Ecology 2001b).

(o) Total cPAHs are based on benzo(a) pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a) pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

(p) Duplicate sample of MW-22.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)].

mg/l - milligrams per liter

TABLE 5C

NOVEMBER-DECEMBER 2003 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - DISSOLVED PAHs^(a) Former Tacoma Metals Facility

			v	Vell Designation	and Date Sample	d				NRWQC	NTR
Analyte	MW-8(R) 12/2/2003	MW-10 12/3/2003	MW-11 12/2/2003	MW-12 12/2/2003	MW-13 12/2/2003	MW-14 12/1/2003	MW-15 12/1/2003	MW-16 12/1/2003	MTCA Method B Surface Water ^(b)	Human Health Consumption of Organisms ^(c)	Human Health Consumption of Organisms ^(d)
PAHs (µg/l) ^(e)											
Naphthalene	6,770	6.68	41.7	1.00	1.01	4.35	0.186	<0.100 ^(f)	4,940	NA ^(g)	NA
1-Methylnaphthalene	498	10.2	43.1	0.347	2.13	2.28	<0.100	<0.100	NA	NA	NA
2-Methylnaphthalene	709	2.58	44.7	<0.100	0.128	<0.100	<0.100	<0.100	NA	NA	NA
Acenaphthylene	12.9	0.214	0.564	<0.100	<0.100	<0.100	<0.100	<0.100	NA	NA	NA
Acenaphthene	177	14.6	35.9	0.544	1.71	4.75	0.130	<0.100	643	990	NA
Fluorene	80.8	0.695	3.15	0.118	<0.100	<0.100	<0.100	<0.100	3,460	5,300	14,000
Phenanthrene	61.5	1.50	8.09	0.364	<0.100	0.111	<0.100	<0.100	NA	NA	NA
Anthracene	15.9	1.45	6.07	0.637	0.260	0.676	0.290	0.321	25,900	40,000	110,000
Fluoranthene	16.0	0.747	4.80	0.181	<0.100	0.184	<0.100	<0.100	90.2	140	370
Pyrene	11.1	0.561	3.81	0.110	<0.100	0.126	<0.100	<0.100	2,590	4,000	11,000
Benzo(g,h,i)perylene	0.114	<0.100	0.213	<0.100	<0.100	<0.100	<0.100	<0.100	NA	NA	NA
cPAHs (µg/I) ^(h)											
Chrysene	0.646	0.114	0.925	0.0240	<0.0100	0.0536	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(b)fluoranthene	0.277	0.0753	0.387	<0.0100	<0.0100	0.0154	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(k)fluoranthene	0.219	0.0398	0.347	<0.0100	<0.0100	0.0161	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(a)anthracene	0.710	0.164	0.892	0.0389	<0.0100	0.0624	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(a)pyrene	0.292	0.0787	0.442	<0.0100	<0.0100	0.0185	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Indeno(1,2,3-cd)pyrene	0.126	0.0320	0.185	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Dibenz(a,h)anthracene	0.0635	0.0168	0.128	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Total cPAHs ^(j)	0.457	0.118	0.684	0.00413	<0.0100	0.0253	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031

TABLE 5C

NOVEMBER-DECEMBER 2003 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - DISSOLVED PAHs^(a) Former Tacoma Metals Facility

			v	Vell Designation	and Date Sample	ed			NRWQC	NTR
	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22	MW-22D ^(k)	MTCA Method B	Human Health	Human Health
Analyte	12/1/2003	12/3/2003	12/2/2003	12/2/2003	12/3/2003	12/3/2003	12/3/2003	Surface Water ^(b)	Consumption of Organisms ^(c)	Consumption of Organisms ^(d)
PAHs (µg/l) ^(e)										
Naphthalene	0.195	6,690	0.270	3.76	241	752	1,970	4,940	NA ^(g)	NA
1-Methylnaphthalene	0.113	649	<0.100 ^(f)	37.3	51.8	120	682	NA	NA	NA
2-Methylnaphthalene	<0.100	692	<0.100	9.06	5.87	28.0	845	NA	NA	NA
Acenaphthylene	<0.100	1.50	<0.100	0.106	0.425	0.579	3.02	NA	NA	NA
Acenaphthene	1.43	142	<0.100	18.1	29.9	33.4	184	643	990	NA
Fluorene	<0.100	9.86	<0.100	0.103	0.651	0.843	48.1	3,460	5,300	14,000
Phenanthrene	<0.100	<1.00	<0.100	0.231	1.99	1.81	5.90	NA	NA	NA
Anthracene	0.132	<1.00	0.141	0.107	2.24	1.38	1.74	25,900	40,000	110,000
Fluoranthene	<0.100	<1.00	<0.100	<0.100	1.10	0.863	0.764	90.2	140	370
Pyrene	<0.100	<1.00	<0.100	<0.100	0.790	0.622	0.581	2,590	4,000	11,000
Benzo(g,h,i)perylene	<0.100	<1.00	<0.100	<0.100	<0.100	<0.100	<0.100	NA	NA	NA
сРАНѕ (µg/I) ^(h)										
Chrysene	0.0207	<0.100	<0.0100	<0.0100	0.174	0.121	0.105	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(b)fluoranthene	0.0163	<0.100	<0.0100	<0.0100	0.0650	0.0562	0.0489	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(k)fluoranthene	0.0140	<0.100	<0.0100	<0.0100	0.0708	0.0421	0.0212	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(a)anthracene	0.0335	<0.100	<0.0100	<0.0100	0.222	0.144	0.190	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Benzo(a)pyrene	<0.0100	<0.100	<0.0100	<0.0100	0.0891	0.0665	0.0536	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Indeno(1,2,3-cd)pyrene	<0.0100	<0.100	<0.0100	<0.0100	0.0231	0.0169	0.0149	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Dibenz(a,h)anthracene	<0.0100	<0.100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031
Total cPAHs ⁽ⁱ⁾	0.00659	<0.100	<0.0100	<0.0100	0.129	0.0936	0.0822	 0.0296	0.018 * / 0.02 ⁽ⁱ⁾	0.031

Notes:

(a) Samples field filtered using a 0.45 micron cellulose acetate filter.

(b) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(c) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10 ⁻⁶.
 (d) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10 ⁻⁶.

(e) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

(f) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(g) "NA" denotes no cleanup level established.

(h) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.

(i) Practical quantitation limit (PQL) (Ecology 2001b).

(j) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

(k) Duplicate sample of MW-22.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. µg/l - micrograms per liter

TABLE 5D

DECEMBER 2003 GROUNDWATER ANALYTICAL RESULTS - TOTAL METALS (RCRA 8 + COPPER) Former Tacoma Metals Facility

					Met	als (µg/l) ^(a)		-		
Sample Designation	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
MW-1	12/29/2003	0.69	20.7	<1 ^(b)	5.05	1.41B1	0.51J	0.179J	2.24	<1
MW-2	12/29/2003	<1	11.8	<1	0.96J	0.76JB1	0.64J	0.149J	3.91	<1
MW-4(R)	12/29/2003	1.22	20.5	<1	2.5	2.25B1	1.34	0.102J	2.31	<1
MW-5	12/29/2003	<1	21.2	<1	1.72	3.16B1	2.44	0.149J	2.22	<1
MW-6	12/29/2003	5.33	56.8	<1	2.14	2.69B1	1.81	<0.2	3.67	<1
MW-7	12/29/2003	<1	35.6	<1	0.895J	1.88B1	0.91J	<0.2	1.02J	<1
MW-8(R)	12/26/2003	<1	32.1	<1	3.85	1.89	0.515J	0.215	<2	<1
MW-9	12/29/2003	5.5	140	<1	1.95	0.83JB1	<1	0.258	10.5	<1
MW-10	12/23/2003	0.78J	7.44	<1	2.07	7.76	3.05	<0.2	<2	<1
MW-11	12/26/2003	<1	31.5	<1	3.2	28.9	40.8	<0.2	<2	<1
MW-12	12/22/2003	0.665J	20.5	<1	<1	1.38	0.605J	<0.2	1.52J	<1
MW-13	12/22/2003	3.17	13.5	<1	6.9	4.94	1.26	<0.2	2.54	<1
MW-14	12/23/2003	<1	8.77	<1	3.99	2	0.785J	<0.2	1.52J	<1
MW-15	12/29/2003	1.59	31.1	<1	0.815J	7.23B1	1.95	<0.2	<2	<1
MW-16	12/29/2003	1.05	8.14	<1	2.48	0.925JB1	0.665J	<0.2	<2	<1
MW-17	12/23/2003	<1	23.9	<1	2.24	3.06	0.65J	<0.2	<2	<1
MW-18	12/22/2003	1.39	25.5	<1	2.73	0.88J	<1	<0.2	2	<1
MW-19 (MW-200) ^(c)	12/29/2003	<1 (<1)	23.5 (22.1)	<1 (<1)	5.42 (6.12)	14.1B2 (14.5B2)	8.43 (8.7)	0.16J (<0.2)	<2 (1.27J)	<1 (<1)
MW-20	12/22/2003	3.65	7.96	<1	14.2	0.73J	<1	<0.2	10.1	<1
MW-21	12/23/2003	1.03	29.5	<1	1.31	3.11	1.61	<0.2	<2	<1
MW-22	12/23/2003	1.61	19.6	<1	1.21	2.36	0.91J	<0.2	<2	<1
MTCA Method B Surface Water Cleanup Level ^(d)		0.0982 ** / 5 ^(e)	NA ^(f)	20.3	NA	2,660	NA	NA	2,700	25,900
NRWQC - Aquatic Organisms Chronic Freshwater Criterion ^(g)		150	NA	0.37 ***	119.94 ***	14.8 ***	4.74 ***	0.77	5.0	NA
NRWQC - Human Health Consumption of Organisms ^(h)		0.14 ** / 5 ^(e)	NA	NA	NA	NA	NA	NA	4,200	NA
NTR - Aquatic Organisms Chronic Freshwater Criterion ⁽ⁱ⁾		190	NA	1.59 ***	288.07 ***	18.76 ***	4.74 ***	0.012 * / 0.1 ^(j)	5	NA
NTR - Human Health Consumption of Organisms ^(k)		0.14 ** / 5 ^(e)	NA	NA	NA	NA	NA	0.15	NA	NA

TABLE 5D

DECEMBER 2003 GROUNDWATER ANALYTICAL RESULTS - TOTAL METALS (RCRA 8 + COPPER) Former Tacoma Metals Facility

Notes:

- (a) Samples were analyzed for metals by EPA Methods 6020/7470 series.
- (b) "<" denotes analyte was not detected at the indicated laboratory reporting limit.
- (c) "()" denotes duplicate sample.
- (d) Model Toxics Control Act (MTCA) Method B surface water cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).
- (e) Natural background concentration (Ecology 2001b).
- (f) "NA" denotes no cleanup level established.
- (g) National Recommended Water Quality Criteria (NRWQC) chronic freshwater criterion (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.
- (h) NRWQC for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with WAC 173-201A at a risk level of 1x10⁻⁶.
- (i) National Toxics Rule (NTR) chronic freshwater criterion based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.
- (j) Practical quantitation limit (PQL) (Ecology 2001b).
- (k) NTR for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.
- * Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).
- ** Denotes natural background concentration is higher than MTCA cleanup levels and/or ARARs.
- *** Freshwater criterion is expressed as a function of groundwater hardness. Average groundwater hardness at the site is 180 mg/l.

Qualifiers:

- J: Estimated concentration above the method reporting limit (MRL) but below the PQL.
- B1: Compound also detected in method blank. Analyte concentration was determined not to be significantly higher than associated method blank (i.e., <10 times the concentration reported in the blank).
- B2: Compound also detected in method blank. Analyte concentration was determined to be significantly higher than associated method blank (i.e., >10 times the concentration reported in the blank).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the natural background concentration and/or PQL [WAC 173-340-730(5)(c)].

µg/l - micrograms per liter mg/l - milligrams per liter

TABLE 5E

DECEMBER 2003

GROUNDWATER ANALYTICAL RESULTS - DISSOLVED METALS (RCRA 8 + COPPER)^(a) Former Tacoma Metals Facility

					Met	als (µg/I) ^(b)	-			
Sample Designation	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
MW-1	12/29/2003	0.945J	19.6	<1 ^(c)	24.8	<1	<1	0.195J	2.38	<1
MW-2	12/29/2003	1.79	12.2	<1	6.77	<1	0.68J	0.136J	5	<1
MW-4(R)	12/29/2003	0.9J	20.6	<1	26.2	1.48	0.955J	<0.2	2.24	<1
MW-5	12/29/2003	0.58	21.2	<1	32.4	<1	<1	<0.2	1.2J	<1
MW-6	12/29/2003	4.7	54.8	<1	30.4	<1	<1	<0.2	3.28	<1
MW-7	12/29/2003	<1	31.9	<1	23.4	<1	<1	0.182J	<2	<1
MW-8(R)	12/26/2003	2.18	27.4	<1	15.7	<1	<1	<0.2	<2	<1
MW-9	12/29/2003	3.49	123	<1	30.7	0.755J	0.6J	<0.2	11.5	<1
MW-10	12/23/2003	<1	6.58	<1	9.53	0.98J	0.545J	<0.2	<2	<1
MW-11	12/26/2003	1.11	29.1	<1	14	1.52	1.93	<0.2	<2	<1
MW-12	12/22/2003	0.605J	19.6	<1	10.3	<1	0.505J	<0.2	<2	<1
MW-13	12/22/2003	2.13	13	<1	15.3	0.89J	<1	<0.2	<2	<1
MW-14	12/23/2003	0.6J	8.03	<1	15.6	<1	<1	0.182J	1.47J	<1
MW-15	12/29/2003	0.845J	28.8	<1	20.8	1.04	0.93J	<0.2	1.67J	<1
MW-16	12/29/2003	0.605J	8.51	<1	22.7	<1	0.7J	0.297	1.3J	<1
MW-17	12/23/2003	<1	23.4	<1	13.1	<1	<1	<0.2	<2	<1
MW-18	12/22/2003	1.59	24.3	<1	19.3	<1	<1	<0.2	<2	<1
MW-19 (MW-200) ^(d)	12/29/2003	1.25 (1.3)	21.4 (20.3)	<1 (<1)	25.3 (23.9)	<1.23 (<1.19)	0.95J (0.805J)	0.283 (0.451)	1.76J (1.34J)	<1 (<1)
MW-20	12/22/2003	2.85	8.84	<1	26.4	<1	<1	<0.2	6.11	<1
MW-21	12/23/2003	<1	28.9	<1	12.4	<1	<1	<0.2	<2	<1
MW-22	12/23/2003	<1	18.8	<1	15.5	<1	<1	0.191J	<2	<1
MTCA Method B Surface Water Cleanup Level ^(e)		0.0982 ** / 5 ^(f)	NA ^(g)	20.3	NA	2,660	NA	NA	2,700	25,900
NRWQC - Aquatic Organisms Chronic Freshwater Criterion ^(h)		150	NA	0.37 ***	119.94 ***	14.8 ***	4.74 ***	0.77	5.0	NA
NRWQC - Human Health Consumption of Organisms ⁽ⁱ⁾		0.14 ** / 5 ^(f)	NA	NA	NA	NA	NA	NA	4,200	NA
NTR - Aquatic Organisms Chronic Freshwater Criterion ^(j)		190	NA	1.59 ***	288.07 ***	18.76 ***	4.74 ***	0.012 * / 0.1 ^(k)	5	NA
NTR - Human Health Consumption of Organisms ^(I)		0.14 ** / 5 ^(f)	NA	NA	NA	NA	NA	0.15	NA	NA

TABLE 5E

DECEMBER 2003

GROUNDWATER ANALYTICAL RESULTS - DISSOLVED METALS (RCRA 8 + COPPER)^{a)} Former Tacoma Metals Facility

Notes:

- (a) Samples were field filtered using a 0.45 micron filter.
- (b) Samples were analyzed for metals by EPA Methods 6020/7470 series.
- (c) "<" denotes analyte was not detected at the indicated laboratory reporting limit.
- (d) "()" denotes duplicate sample.
- (e) Model Toxics Control Act (MTCA) Method B surface water cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).
- (f) Natural background concentration (Ecology 2001b).
- (g) "NA" denotes no cleanup level established.
- (h) National Recommended Water Quality Criteria (NRWQC) chronic freshwater criterion (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.
- (i) NRWQC for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with WAC 173-201A at a risk level of 1x10⁻⁶.
- (j) National Toxics Rule (NTR) chronic freshwater criterion based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.
- (k) Practical quantitation limit (PQL) (Ecology 2001b).
- (I) NTR for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1×10^{-6} .
- * Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).
- ** Denotes natural background concentration is higher than MTCA cleanup levels and/or ARARs.
- *** Freshwater criterion is expressed as a function of groundwater hardness. Average groundwater hardness at the site is 180 mg/l.

Qualifiers:

J: Estimated concentration above the method reporting limit (MRL) but below the PQL.

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the natural background concentration and/or PQL [WAC 173-340-730(5)(c)].

µg/I - micrograms per liter

mg/l - milligrams per liter

TABLE 6A

FEBRUARY-MARCH 2003 INVESTIGATION SOIL ANALYTICAL RESULTS Former Tacoma Metals Facility

							s	ample Desiç	nation (Wel	I ID - feet bg	s)								ple Designa ring ID - ft.b		MTCA Method C
Analyte	MW-14 14-14.5	MW-14 22-22.3	MW-14 23.8-24	MW-14 26-26.5	MW-15 11-11.5	MW-15 25-26	MW-16 7.5-8	MW-16 25-26	MW-17 12-16	MW-17 20.5-22	MW-18 11.5-12	MW-18 21.5-21.9	MW-19 16-18	MW-19 23.5-24	MW-20 24-24.3	MW-21 20.5-21.4	MW-21 22.5-23.3	B-6 23-23.2	B-8 23.5-24	B-8 26.5-27	Industrial Soil Cleanup Level ^(a)
PAHs (mg/kg) ^(b)																					
Naphthalene	0.980	54.1	25.8	1.03	0.695	<0.0100 ^(c)	40.1	<0.0100	0.375	<0.0100	326	1,750	0.0798	<0.0100	0.631	100	0.664	1,850	103	0.432	7.00E+04
1-Methylnaphthalene	2.10	36.3	14.5	5.06	0.357	<0.0100	7.26	<0.0100	0.156	<0.0100	73.3	517	0.0819	0.184	0.694	106	1.23	645	262	0.0786	NA ^(d)
2-Methylnaphthalene	1.85	12.4	3.88	0.746	0.293	<0.0100	9.95	<0.0100	0.0790	<0.0100	25.9	759	0.0787	<0.0100	0.288	35.5	0.389	491	8.23	0.0761	NA
Acenaphthylene	0.137	0.642	1.37	<0.0100	0.0659	<0.0100	0.297	<0.0100	0.0571	<0.0100	<0.0299	16.2	<0.0100	<0.0100	0.0186	1.41	0.0380	5.64	3.13	<0.0100	NA
Acenaphthene	0.224	60.5	18.4	1.31	0.403	<0.0100	2.03	<0.0100	0.371	<0.0100	68.9	22.9	0.0539	0.462	0.433	456	0.788	596	281	0.581	2.10E+05
Fluorene	0.380	64.4	31.6	0.676	0.258	<0.0100	1.79	<0.0100	0.306	<0.0100	90.4	349	0.0725	0.232	0.238	639	0.876	455	239	0.617	1.40E+05
Phenanthrene	0.612	179	72.4	0.322	0.585	<0.0100	5.45	<0.0100	0.222	0.0137	240	976	0.194	0.123	0.226	1,970	2.43	1,590	822	1.98	NA
Anthracene	0.102	20.0	11.3	0.0324	0.128	<0.0100	1.61	<0.0100	0.254	<0.0100	107	146	0.0342	0.0267	0.0468	283	1.05	229	49.6	0.222	1.05E+06
Fluoranthene	0.622	61.5	25.1	0.0540	0.206	<0.0100	3.66	0.0333	0.997	0.0359	110	371	0.0591	0.0117	0.0678	978	1.30	570	277	0.386	1.40E+05
Pyrene	0.922	39.3	14.8	0.0332	0.268	<0.0100	4.19	<0.0100	0.995	<0.0100	79.6	308	<0.0100	<0.0100	0.0380	884	1.08	427	190	0.256	1.05E+05
Benzo(g,h,i)perylene	0.433	0.936	1.17	<0.0100	<0.0304	<0.0100	0.521	<0.0100	0.0588	<0.0100	1.95	5.50	<0.0100	<0.0100	<0.0100	26.6	0.0777	5.72	2.88	<0.0100	NA
cPAHs (mg/kg) ^(e)																					
Chrysene	0.578	8.62	3.41	<0.0100	0.0719	<0.0100	1.56	<0.0100	0.111	<0.0100	27.9	75.4	<0.0100	<0.0100	<0.0100	130	0.357	111	52.1	0.0107	18
Benzo(b)fluoranthene	0.507	3.41	0.783	<0.0100	<0.0304	<0.0100	0.864	<0.0100	0.0185	<0.0100	6.37	43.8	<0.0100	<0.0100	<0.0100	59.0	0.129	30.7	21.0	<0.0100	18
Benzo(k)fluoranthene	0.634	2.44	0.940	<0.0100	0.0319	<0.0100	1.13	<0.0100	0.0387	<0.0100	7.96	42.3	<0.0100	<0.0100	<0.0100	60.5	0.162	65.8	24.8	<0.0100	18
Benzo(a)anthracene	0.444	9.43	3.92	<0.0100	0.0799	<0.0100	1.64	<0.0100	0.146	<0.0100	27.5	83.2	<0.0100	0.0125	0.0323	170	0.312	128	50.5	0.0165	18
Benzo(a)pyrene	0.620	3.25	1.88	<0.0100	0.0739	<0.0100	1.14	<0.0100	0.0874	<0.0100	17.9	42.8	<0.0100	<0.0100	<0.0100	59.5	0.189	65.8	21.1	<0.0100	18
Indeno(1,2,3-cd)pyrene	0.451	0.925	0.862	<0.0100	<0.0304	<0.0100	0.513	<0.0100	0.0454	<0.0100	2.10	5.25	<0.0100	<0.0100	<0.0100	24.4	0.0684	18.7	7.91	<0.0100	18
Dibenz(a,h)anthracene	<0.0222	0.268	<0.500	<0.0100	<0.0304	<0.0100	<0.0586	<0.0100	<0.0148	<0.0100	1.39	3.54	<0.0100	<0.0100	<0.0100	4.34	<0.0100	8.28	3.86	<0.0100	18
Total cPAHs (mg/kg) ^(f)	0.829	5.06	2.56	<0.0100	0.0858	<0.0100	1.57	<0.0100	0.113	<0.0100	23.1	62.4	<0.0100	0.00125	0.00323	93.9	0.260	94.5	33.6	0.00176	18

Notes:

(a) Model Toxics Control Act (MTCA) Method C industrial soil cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(b) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

(c) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(d) "NA" denotes no cleanup level established.

(e) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.

(f) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

Analytes detected in samples at concentrations exceeding one or more cleanup levels or comparison levels are shown in bold and italics.

mg/kg - milligrams per kilogram bgs - below ground surface

TABLE 6B

FEBRUARY-MARCH 2003 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS Former Tacoma Metals Facility

				Well Desi	gnation and Date	e Sampled					NRWQC	NTR
	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19	MW-20	MW-201 ^(a)	MW-21	MTCA Method B	Human Health	Human Health
Analyte	3/11/2003	3/11/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/11/2003	Surface Water ^(b)	Consumption of Organisms ^(c)	Consumption of Organisms ^(d)
TPHs (mg/l) ^(e)												
Gasoline-range hydrocarbons	0.253 ^(f)	< 0.050 ^(g)	<0.050	<0.050	23.8	<0.050	1.8	1.83	2.91 ^(f)	NA ^(h)	NA	NA
Diesel-range hydrocarbons	2.06	0.884	3.10	0.810	7.43	0.965	3.05	3.35	3.65	NA	NA	NA
Oil-range hydrocarbons	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	NA	NA	NA
VOCs (µg//) ⁽ⁱ⁾ Only those VOCs detect	ed are listed. See l	laboratory analytic	al reports for a co	nplete list of VOCs	s analyzed.							
Naphthalene	120	<0.500	1.26	1.19	10,600	<0.500	31.7	31.6	2,040	4,940	NA	NA
1,2,4-Trimethylbenzene	<10.0	<0.200	<0.200	<0.200	353	<0.200	6.55	6.72	<100	NA	NA	NA
1,3,5-Trimethylbenzene	<10.0	<0.500	<0.500	<0.500	114	<0.500	<1.00	<1.00	<100	NA	NA	NA
Benzene	<10.0	<0.200	<0.200	<0.200	<100	<0.200	3.29	3.69	<100	22.7	51	71
Toluene	<10.0	<0.200	<0.200	0.448	<100	<0.200	<1.00	<1.00	<100	48,500	200,000	200,000
Ethylbenzene	<10.0	<0.200	<0.200	<0.200	246	<0.200	11.8	14.0	<100	6,910	29,000	29,000
m,p-Xylene	<10.0	<0.500	<0.500	<0.500	325	<0.500	12.2	12.7	<100	NA	NA	NA
o-Xylene	<10.0	<0.250	<0.250	<0.250	175	<0.250	3.97	4.19	<100	NA	NA	NA
Isopropylbenzene	<10.0	<0.500	<0.500	<0.500	<100	<0.500	15.4	15.5	<100	NA	NA	NA
n-Propylbenzene	<10.0	<0.500	<0.500	<0.500	<100	<0.500	3.96	4.00	<100	NA	NA	NA
p-Isopropyltoluene	<10.0	5.65	<0.200	5.70	<100	1.89	6.73	6.91	<100	NA	NA	NA
SVOCs (µg/I) ^(j) Only those SVOCs det	ected are listed. Se	ee laboratory analy	tical reports for a	complete list of SV	OCs analyzed.							
2-Methylnaphthalene	<10.0	<10.0	<10.0	<10.0	1,240E	<10.0	218	258	167	NA	NA	NA
2-Methylphenol	<10.0	<10.0	<10.0	<10.0	15.1	<10.0	<10.0	<10.0	<10.0	NA	NA	NA
2,4-Dimethylphenol	<10.0	<10.0	<10.0	<10.0	108	<10.0	<10.0	<10.0	<10.0	553	850	NA
3 & 4- Methylphenol	<10.0	<10.0	<10.0	<10.0	<10.0	80.6	<10.0	<10.0	<10.0	NA	NA	NA
Acenaphthene	63.6	<10.0	<10.0	<10.0	416E	<10.0	187	174	<500	643	990	NA
Anthracene	<10.0	<10.0	<10.0	<10.0	16.8	<10.0	<10.0	<10.0	22.5	25,900	40,000	110,000
Benzoic Acid	<20.0	<20.0	<20.0	<20.0	<20.0	26.0	<20.0	<20.0	23.8	NA	NA	NA
Carbazole	16.1	<10.0	<10.0	<10.0	259E	<10.0	107	110	146	NA	NA	NA
Dibenzofuran	34.9	<10.0	<10.0	<10.0	219E	<10.0	70.6	64.4	113	NA	NA	NA
Fluoranthene	13.5	<10.0	<10.0	<10.0	12.1	<10.0	<10.0	<10.0	20.0	90.2	140	370
Fluorene	<10.0	<10.0	<10.0	<10.0	173E	<10.0	96.3	101	<10.0	3,460	5,300	14,000
Naphthalene	109	<10.0	<10.0	<10.0	11,900	<10.0	<10.0	<10.0	1,600	4,940	NA	NA
Pyrene	<10.0	<10.0	<10.0	<10.0	12.7	<10.0	<10.0	<10.0	14.3	2,590	4,000	11,000
Phenanthrene	87.4	<10.0	<10.0	<10.0	137	<10.0	99.9	95.8	179	NA	NA	NA

TABLE 6B

FEBRUARY-MARCH 2003 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS Former Tacoma Metals Facility

				Well Desi	gnation and Dat	e Sampled					NRWQC	NTR
	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19	MW-20	MW-201 ^(a)	MW-21	MTCA Method B	Human Health	Human Health
Analyte	3/11/2003	3/11/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/11/2003	Surface Water ^(b)	Consumption of Organisms ^(c)	Consumption of Organisms ^(d)
PAHs (ug/l) ^(k)												
Naphthalene	28.3	0.235	0.877	0.793	9,840E	<0.100 ^(g)	27.9	31.2	1,740	4,940	NA ^(h)	NA
1-Methylnaphthalene	60.7	0.569	0.447	<0.500	914	0.182	265E	273E	413	NA	NA	NA
2-Methylnaphthalene	8.87	<0.100	0.149	<0.500	1,060	<0.100	214E	223E	192	NA	NA	NA
Acenaphthylene	0.654	<0.100	<0.100	<0.500	<10.0	<0.100	63.9	<0.500	1.88	NA	NA	NA
Acenaphthene	39.5	4.35	1.07	4.62	410	1.08	183	186	328	643	990	NA
Fluorene	19.0	2.08	0.924	1.76	171	0.208	95.1	92.7	169	3,460	5,300	14,000
Phenanthrene	8.27	0.255	2.80	0.992	157	<0.100	88.8	89.6	192	NA	NA	NA
Anthracene	8.13	0.373	0.426	<0.500	<10.0	<0.100	<0.500	<0.500	43.3	25,900	40,000	110,000
Fluoranthene	13.5	0.294	0.781	1.05	11.8	<0.100	4.12	4.27	19.6	90.2	140	370
Pyrene	7.35	0.157	0.572	0.693	<10.0	<0.100	1.96	1.94	11.7	2,590	4,000	11,000
Benzo(g,h,i)perylene	0.154	<0.100	<0.100	<0.500	<10.0	<0.100	<0.500	<0.500	<0.100	NA	NA	NA
cPAHs (µg/I) ^(I)												
Chrysene	1.08	<0.100	0.0812	<0.0500	<10.0	<0.0100	<0.500	<0.500	0.654	0.0296	0.018 * / 0.02 ^(m)	0.031
Benzo(b)fluoranthene	0.308	<0.100	<0.0100	<0.0500	<10.0	<0.0100	<0.500	<0.500	0.154	0.0296	0.018 * / 0.02 ^(m)	0.031
Benzo(k)fluoranthene	0.423	<0.100	<0.0100	<0.0500	<10.0	<0.0100	<0.500	<0.500	0.212	0.0296	0.018 * / 0.02 ^(m)	0.031
Benzo(a)anthracene	1.10	<0.100	0.131	<0.0500	<10.0	<0.0100	<0.500	<0.500	0.981	0.0296	0.018 * / 0.02 ^(m)	0.031
Benzo(a)pyrene	0.385	<0.100	<0.0100	<0.0500	<10.0	<0.0100	<0.500	<0.500	0.212	0.0296	0.018 * / 0.02 ^(m)	0.031
Indeno(1,2,3-cd)pyrene	0.135	<0.100	<0.0100	<0.0500	<10.0	<0.0100	<0.500	<0.500	<0.100	0.0296	0.018 * / 0.02 ^(m)	0.031
Dibenz(a,h)anthracene	<0.100	<0.100	<0.0100	<0.0500	<10.0	<0.0100	<0.500	<0.500	<0.100	0.0296	0.018 * / 0.02 ^(m)	0.031
Total cPAHs ⁽ⁿ⁾	0.592	<0.100	0.0139	<0.0500	<10.0	<0.0100	<0.500	<0.500	0.353	0.0296	0.018 * / 0.02 ^(m)	0.031

Notes:

(a) Duplicate sample for well MW-20.

(b) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(c) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10 -6. (d) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of $1x10^{-6}$.

(e) Samples were analyzed for total petroleum hydrocarbons (TPHs) by Ecology Methods NWTPH-G and NWTPH-Dx(extended).

(f) The chromatogram for this sample does not resemble a typical gasoline standard pattern.

(g) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(h) "NA" denotes no cleanup level established.

(i) Samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B.

(j) Samples were analyzed for semivolatile organic compounds (SVOCs) by EPA Method 8270C.

(k) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

(I) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.

(m) Practical quantitation limit (PQL) (Ecology 2001b).

(n) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

* PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Qualifiers:

E: Estimated result. The reported value exceeds the calibration range of the analysis.

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. mg/l - milligrams per liter

µg/I - micrograms per liter

TABLE 6C

FEBRUARY-MARCH 2003 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - DISSOLVED PAHs^(a) Former Tacoma Metals Facility

				Well Desi	ignation and Date	Sampled					NRWQC	NTR
	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19	MW-20	MW-201 ^(b)	MW-21	MTCA Method B	Human Health	Human Health
Analyte	3/11/2003	3/11/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/10/2003	3/11/2003	Surface Water ^(c)	Consumption of Organisms ^(d)	Consumption of Organisms ^(e)
PAHs (µg/I) ^(f)												
Naphthalene	66.4	1.720	0.194	0.157	4,990	<0.100 ^(g)	24.3	14.2	1,290	4,940	NA ^(h)	NA
1-Methylnaphthalene	10.0	0.205	<0.100	<0.100	184	<0.100	190	38.7	201	NA	NA	NA
2-Methylnaphthalene	<1.00	0.206	<0.100	<0.100	127	<0.100	156	10.9	59.2	NA	NA	NA
Acenaphthylene	<1.00	<0.100	<0.100	<0.100	<10.0	<0.100	<5.0	<10	<50.0	NA	NA	NA
Acenaphthene	13.3	0.244	<0.100	0.229	72.9	<0.100	104	29.3	157	643	990	NA
Fluorene	<1.00	<0.100	<0.100	<0.100	<10.0	<0.100	28.6	<10	<50.0	3,460	5,300	14,000
Phenanthrene	<1.00	0.143	<0.100	<0.100	<10.0	<0.100	<5.0	<10	<50.0	NA	NA	NA
Anthracene	<1.00	0.157	<0.100	<0.100	<10.0	<0.100	<5.0	<10	<50.0	25,900	40,000	110,000
Fluoranthene	<1.00	<0.100	<0.100	<0.100	<10.0	<0.100	<5.0	<10	<50.0	90.2	140	370
Pyrene	<1.00	<0.100	<0.100	<0.100	<10.0	<0.100	<5.0	<10	<50.0	2,590	4,000	11,000
Benzo(g,h,i)perylene	<1.00	<0.100	<0.100	<0.100	<10.0	<0.100	<5.0	<10	<50.0	NA	NA	NA
cPAHs (μg/I) ⁽ⁱ⁾				• •		<u>.</u>			<u>.</u>			
Chrysene	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(b)fluoranthene	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(k)fluoranthene	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(a)anthracene	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031
Benzo(a)pyrene	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031
Indeno(1,2,3-cd)pyrene	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031
Dibenz(a,h)anthracene	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031
Total cPAHs ^(k)	<0.100	<0.0100	<0.0100	<0.0100	<1.0	<0.0100	<0.500	<1.0	<5.00	0.0296	0.018 * / 0.02 ^(j)	0.031

Notes:

(a) Samples field filtered using a 0.45 micron cellulose acetate filter.

(b) Duplicate sample.

(c) Model Toxics Control Act (MTCA) Method B surface water cleanup level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(d) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10 ⁻⁶.

(e) National Toxic Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10 ⁻⁶.

(f) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

- (g) "<" denotes analyte was not detected at the indicated laboratory reporting limit.
- (h) "NA" denotes no cleanup level established.
- (i) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.
- (j) Practical quantitation limit (PQL) (Ecology 2001b).
- (k) Total cPAHs are based on benzo(a) pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a) pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. µg/l - micrograms per liter

TABLE 7A

JUNE-AUGUST 2002 INVESTIGATION SOIL ANALYTICAL RESULTS Former Tacoma Metals Facility

		Sa	mple Desig	nation (Bori	ing ID - feet	t bgs)		
								MTCA Method C
								Industrial Soil
Analyte	B1-10.5	B1-20.5	B1-26	B2-21	B3-10	B3-21.5	MW13-17.5	Cleanup Level ^(a)
TPHs (mg/kg) ^(b)		•	•		•			
Diesel-Range Hydrocarbon	5,500 ^(c)	2,700 ^(c)	7,300 ^(c)	1,600 ^(c)	20 ^(c)	180/250 ^{(c)(d)}	130/70 ^{(c)(e)}	2,000 ^(f)
Oil-Range Hydrocarbon	2,200	640	1,600	420	<10 ^(g)	<29/38 ^(d)	80/20 ^(e)	2,000 ^(f)
Gasoline-Range Hydrocarbon	2900 ^(h)	360 ^(h)	3300 ^(h)	730 ^(h)	120 ^(h)	660 ^(h)	44 ^(h)	100/30 ^(f)
VOCs (µg/kg) ⁽ⁱ⁾ Only those VOCs det	11					1		100,00
Acetone	<29,000	<1,600	<3,900	<1,700	73	<3,800	^(j)	3.50E+08
		-	-					
Ethylbenzene	<5,900 <5,900	<310 <310	<780 <780	<340 <340	59 130	<760 <760		3.50E+08 7.00E+09
m,p-xylene								
0-xylene	<5,900	<310	<780	<340	160	<760		7.00E+09 NA ^(k)
1,3,5-Trimethylbenzene	<5,900	<310	740J	300J	150	970		
1,2,4-Trimethylbenzene	4,300J	450	2,100	2,100	470	2,900		NA
	<5,900	<310	<780	<340	39	<760		NA
4-Isopropyltoluene	5,200J	310	490J	250J	94	480J		NA
Naphthalene	210,000	120,000	420,000	280,000	6,800	310,000		7.00E+07
SVOCs (µg/kg) ^(I) Only those SVOCs (11						OCs analyzed.	
4-Methylphenol	2,900	<2,600	<1,200	<620	<170	<77	<86	NA
Carbazole	73,000	34,000	90,000	14,000	<170	3,100	2,200	6.56E+06
bis(2-Ethylhexyl)phthalate	4,400	<2,600	11,000	4,800	270	690	130	9.38E+06
Naphthalene	220,000	94,000	290,000	52,000	5,400	24,000		7.00E+07
2-Methylnaphthalene	120,000	39,000	120,000	21,000	1,700	10,000		NA
Acenaphthylene	9,300	<2,600	4,200	<620	<170	<77		NA
Acenaphthene	210,000	66,000	180,000	50,000	900	12,000		2.10E+08
Dibenzofuran	110,000	35,000	87,000	26,000	580	9,400		NA
Fluorene	220,000	76,000	170,000	43,000	500	13,000		1.40E+08
Phenanthrene	500,000	150,000	420,000	94,000	390	25,000		NA
Anthracene	280,000	68,000	230,000	34,000	<170	2,700		1.05E+09
Fluoranthene	300,000	97,000	190,000	46,000	<170	8,400		1.40E+08
Pyrene	250,000	83,000	170,000	44,000	<170	6,100		1.05E+08
Benzo(a)anthracene	79,000	19,000	48,000	12,000	<170	1,300		18,000
Chrysene	94,000	20,000	59,000	14,000	<170	1,100		18,000
Benzo(b)fluoranthene	41,000	9,600	25,000	5,200	<170	320		18,000
Benzo(k)fluoranthene	36,000	7,900	20,000	5,000	<170	280		18,000
Benzo(a)pyrene	40,000	7,800	22,000	6,200	<170	250		18,000
Indeno(1,2,3-cd)pyrene	18,000	2,800	9,800	2,400	<170	<77		18,000
Dibenz(a,h)anthracene	4,400	<2,600	2,300	690	<170	<77		18,000
Benzo(g,h,i)perylene	19,000	3,400	8,700	2,300	<170	<77		NA
PAHs (µg/kg) ^(m)								
Naphthalene ⁽ⁿ⁾	300,000B	110,000B	300,000B	58,000B	5,600B	26,000B	14,000	7.00E+07
2-Methylnaphthalene ⁽ⁿ⁾	180,000B	41,000B	110,000B	20,000B	1,800B	11,000B	3,900	NA
Acenaphthylene	11,000	1,900	4,200	560	54	75	130	NA
Acenaphthene	200,000	49,000	130,000	33,000	700	8,300	7,700	2.10E+08
Fluorene	180,000	54,000	140,000	28,000	390	9,200	4,100	1.40E+08
Phenanthrene	520,000	140,000	390,000	84,000	390	23,000	4,000	NA
Anthracene	320,000	60,000	200,000	26,000	120	2,500	170	1.05E+09
Fluoranthene	290,000	86,000	170,000	35,000	150	7,400	78	1.40E+08
Pyrene	290,000	74,000	160,000	35,000	140	4,800	54	1.05E+08
Dibenzofuran	100,000	27,000	71,000	17,000	470	7,000	4,800	NA
Benzo(g,h,i)perylene	18,000	3,300	7,700	2,000	33	51	<8.6	NA

TABLE 7A

JUNE-AUGUST 2002 INVESTIGATION SOIL ANALYTICAL RESULTS Former Tacoma Metals Facility

		Sa	mple Desig	nation (Bor	ing ID - feet	bgs)	-	
Analyte	B1-10.5	B1-20.5	B1-26	B2-21	B3-10	B3-21.5	MW13-17.5	MTCA Method C Industrial Soil Cleanup Level ^(a)
cPAHs (µg/kg) ^(o)								
Chrysene	100,000	18,000	51,000	11,000	59	1,100	29	18,000
Benzo(b)fluoranthene	34,000	7,500	17,000	4,700	35	330	<8.6 ^(g)	18,000
Benzo(k)fluoranthene	52,000	8,900	20,000	5,100	37	260	10	18,000
Benzo(a)anthracene	79,000	18,000	43,000	9,700	46	1,200	22	18,000
Benzo(a)pyrene	53,000	8,800	22,000	5,800	32	250	10	18,000
Indeno(1,2,3-cd)pyrene	17,000	3,400	7,900	2,200	33	59	<8.6	18,000
Dibenz(a,h)anthracene	8,100	1,300	4,200	1,100	<17	28	<8.6	18,000
Total cPAHs (µg/kg) ^(p)	75,400	13,300	33,000	8,520	47.7	457	13.5	18,000

Notes:

(a) Model Toxics Control Act (MTCA) Method C industrial soil cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

- (b) Samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx(extended), and gasoline-range hydrocarbons by Ecology Method NWTPH-G.
- (c) The chromatogram for this sample does not resemble a typical diesel standard pattern.
- (d) Sample reanalysis.
- (e) Laboratory control sample surrogate was outside designated control limits. Sample was re-extracted with acceptable surrogate recoveries; however, re-extracted data did not confirm original data, the original data was significantly higher. Both data sets are reported.
- (f) Total petroleum hydrocarbon (TPH) screening levels based on MTCA Method A industrial soil cleanup levels (Ecology 2001a). For gasoline mixtures without benzene and total ethylbenzene, toluene and xylenes less than 1% of the gasoline mixture the cleanup level is 100 mg/kg. For all other gasoline mixtures, the cleanup level is 30 mg/kg.
- (g) "<" denotes analyte was not detected at the indicated laboratory reporting limit.
- (h) The chromatogram for this sample does not resemble a typical gasoline standard pattern.
- (i) Samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B. Only detected analytes have been listed.
- (j) "--" denotes sample not evaluated for indicated analyte.
- (k) "NA" denotes no cleanup level established.
- (I) Samples were analyzed for semivolatile organic compounds (SVOCs) by EPA Method 8270C. Only detected analytes have been listed. Polycyclic aromatic hydrocarbons (PAHs) detected using EPA Method 8270C are not listed with SVOCs [see PAHs detected using selected ion monitoring (SIM) mode].
- (m) Samples were analyzed for PAHs by EPA Method 8270C-SIM.
- (n) Method blank values for naphthalene and 2-methylnaphthalene are 34 and 13 ug/l, respectively. All samples contained greater than 10 times the level found in the blank thus not significantly effecting the data.
- (o) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C-SIM.
- (p) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

Qualifiers:

- B Compound also detected in method blank.
- J Estimated concentration when the value is less than the calculated laboratory reporting limit.

Analytes detected in samples at concentrations exceeding one or more cleanup levels or comparison levels are shown in bold and italics.

µg/kg - micrograms per kilogram mg/kg - milligrams per kilogram bgs - below ground surface

TABLE 7B

JUNE-AUGUST 2002 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - SVOCs Former Tacoma Metals Facility

			SVOCs (µg/I) ^(a) See analytic	al reports for comp	lete list of SVOCs	analyzed.	
Sample Designation	Sample Date	4-Methyl- phenol	Naphth- alene	2-Methyl- naphthalene	Acenaph- thene	Dibenzo- furan	Fluorene	Phenan- threne
MW-13	8/5/2002	440	8.4	3.2	15	3.8	5.1	2.9
MTCA Method B								
Surface Water Cleanup	Level ^(b)	NA ^(c)	4,940	NA	643	NA	3,460	NA
NRWQC - Human Healt	h							
Consumption of Organis	sms ^(d)	NA	NA	NA	990	NA	5,300	NA
NTR - Human Health								
Consumption of Organis	sms ^(e)	NA	NA	NA	NA	NA	14,000	NA

Notes:

(a) Samples were analyzed for semivolatile organic compounds (SVOCs) by EPA Method 8270C. Only detected analytes have been listed.

(b) Model Toxics Control Act (MTCA) Method B surface water cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(c) "NA" denotes no cleanup level establshed.

(d) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(e) National Toxics Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1×10^6 .

µg/l - micrograms per liter

TABLE 7C

JUNE-AUGUST 2002 INVESTIGATION **GROUNDWATER ANALYTICAL RESULTS - PAHs**^(a) Former Tacoma Metals Facility

						F	PAHs (µg/l)									cPAHs (µg/l)				
Sample	Sample	Naphth-	2-Methyl-	Acenaph-	Acenaph-		Phenan-	Anth-	Fluoran-		Dibenzo-	Benzo (g,h,i)		Benzo (b)-	Benzo (k)-	Benzo (a)-	Indeno (1,2,3-	Dibenz (a,h)-	Benzo (a)-	Total
Designation	Date	alene	naphthalene	thlyene	thene	Fluorene	threne	racene	thene	Pyrene	furan	perylene	Chrysene	fluoranthene	fluoranthene	pyrene	cd) pyrene	anthracene	anthracene	cPAHs ^(h)
MW-13	8/5/2002	11	5.6	0.35M	17	6.2	3.0	0.65	0.52	0.42	4.2	<0.11 ^(b)	0.05MJ	<0.11	<0.11	<0.11	<0.11	<0.11	0.05J	0.0205
MTCA Method B																				
Surface Water Cleanup I	Level ^(c)	4,940	NA ^(d)	NA	643	3,460	NA	25,900	90.2	2,590	NA	NA	0.0296	0.0296	0.0296	0.0296	0.0296	0.0296	0.0296	0.0296
NRWQC - Human Health	า																			
Consumption of Organis	ms ^(e)	NA	NA	NA	990	5,300	NA	40,000	140	4,000	NA	NA	0.018* / 0.02 ^(f)	0.018 * / 0.02 ^(f)	0.018 * / 0.02 ^(f)					
NTR - Human Health																				
Consumption of Organis	ms ^(g)	NA	NA	NA	NA	14,000	NA	110,000	370	11,000	NA	NA	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031

Notes:

(a) Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode.

(b) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(c) Model Toxics Control Act (MTCA) Method B surface water cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(d) "NA" denotes no cleanup level is established.

(e) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(f) Practical quantitation limit (PQL) (Ecology 2001b).

(g) National Toxics Rule (NTR) for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10⁶.

(h) Total cPAHs are based on benzo(a)pyrene equivalent values. Individual detected cPAH concentrations were multiplied by benzo(a)pyrene toxicity equivalency factors (TEFs) prior to summation (per WAC 173-340-708). Non-detected cPAH analytes were not included in the summation. TEFs are tabulated on Table 2A-A.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

Qualifiers:

J: Indicates an estimated concentration when the value is less than the laboratory reporting limit.

M: Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match.

Analytes detected in samples at concentrations exceeding one or more of the cleanup standards or comparison values are shown in bold and italics. Where appropriate, surface water standards have been adjusted upward to the PQL [WAC 173-340-730(5)(c)]. µg/l - micrograms per liter

TABLE 7D

JUNE-AUGUST 2002 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TPHs AND VOCs Former Tacoma Metals Facility

			TPHs (mg/l) ^(a)				VOCs (J	.ug/l) ^(b) (Se	e analytica	al reports fo	or complete list o	f VOCs analyzed.)	
Sample Designation	Sample Date	Gasoline- Range Hydrocarbon	Diesel- Range Hydrocarbon	Oil-Range Hydrocarbon	Benzene	Ethyl- benzene	Total xylenes	Naphth- alene	Vinyl Chloride	Acetone	1,3,5 Trimethyl benzene	1,2,4 Trimethyl benzene	lsopropyl- benzene	4-Isopropyl toluene
MW-13	8/5/2002	1.0	0.76 ^(c)	< 0.50 ^(d)	7.0	1.6	2.8	18	6.2	14	1.0	2.0	3.3	12
MTCA Method B														
Surface Water Cleanup Level (e	9)	NA ^(f)	NA	NA	22.7	6,910	NA	4,940	3.69	NA	NA	NA	NA	NA
NRWQC - Human Health														
Consumption of Organisms ^(g)		NA	NA	NA	51	29,000	NA	NA	530	NA	NA	NA	NA	NA
NTR - Human Health														
Consumption of Organisms ^(h)		NA	NA	NA	71	29,000	NA	NA	525	NA	NA	NA	NA	NA

Notes:

(a) Samples were analyzed for diesel- and oil-range hydrocarbons by Ecology Method NWTPH-Dx(extended), and gasoline-range hydrocarbons by Ecology Method NWTPH-G.

(b) Samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B. Only detected analytes have been listed.

(c) The chromatogram for this sample does not resemble a typical diesel standard pattern.

(d) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(e) Model Toxics Control Act (MTCA) Method B surface water cleanups level based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(f) "NA" denotes no cleanup level established.

(g) National Recommended Water Quality Criteria (NRWQC) for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(h) National Toxics Rule (NTR) for consumption of organisms only based on 40 Code of Federal Regulations (CFR) 131.36 at a risk level of 1x10⁻⁶.

Analytes detected in samples at concentrations exceeding one or more of the cleanup levels or comparison values are shown in bold and italics.

mg/l - milligrams per liter

µg/l - micrograms per liter

TABLE 7E

JUNE-AUGUST 2002 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - PCBs Former Tacoma Metals Facility

					PCBs (µg/l) ^(a)				
Sample Designation	Sample Date	Aroclor 1016	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1221	Aroclor 1232	Total PCBs ^(b)
MW-13	8/5/2002	<1.1 ^(c)	<1.1	<1.1	<1.1	<1.1	<2.2	<1.1	<4.4
MTCA Method B									
Surface Water Cleanup Leve	l ^(d)	0.00582 * / 0.1 ^(e)	NA ^(f)	NA	0.00166 * / 0.1 ^(e)	NA	NA	NA	NA
NRWQC - Aquatic Organism	S								
Chronic Freshwater Criterion	(g)	NA	NA	NA	NA	NA	NA	NA	0.014 * / 0.1 ^(e)
NRWQC - Human Health									
Consumption of Organisms ^(h))	NA	NA	NA	NA	NA	NA	NA	6.40E-05 * / 0.1 ^(e)
NTR - Aquatic Organisms									
Chronic Freshwater Criterion	(i)	0.014 * / 0.1 ^(e)	0.014 * / 0.1 ^(e)	0.014 * / 0.1 ^(e)	0.014 * / 0.1 ^(e)	0.014 * / 0.1 ^(e)	0.014 * / 0.1 ^(e)	0.014 * / 0.1 ^(e)	NA
NTR - Human Health									
Consumption of Organisms ^(j)		NA	NA	NA	NA	NA	NA	NA	1.70E-04 * / 0.1 ^(e)

Notes:

- (a) Samples were analyzed for polychlorinated biphenyls (PCBs) by EPA Method 8082.
- (b) Total PCBs were calculated by summing the concentrations of detected PCB Aroclors. If a PCB Aroclor was not detected, a value equal to one-half the laboratory reporting limit was used in the summation.
- (c) "<" denotes analyte was not detected at the indicated laboratory reporting limit.
- (d) Model Toxics Control Act (MTCA) Method B surface water cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).
- (e) Practical quantitation limit (PQL) (Ecology 2001b).
- (f) "NA" denotes no cleanup level established.
- (g) National Recommended Water Quality Criteria (NRWQC) chronic freshwater criterion (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.
- (h) NRWQC for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with WAC 173-201A at a risk level of 1x10⁻⁶.
- (i) National Toxics Rule (NTR) chronic freshwater criterion based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.
- (j) NTR for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.
- * Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

µg/l - micrograms per liter

TABLE 7F

JUNE-AUGUST 2002 INVESTIGATION GROUNDWATER ANALYTICAL RESULTS - TOTAL AND DISSOLVED METALS Former Tacoma Metals Facility

						Meta	lls (µg/l) ^(a)				
Sample Designation	Sample Date		Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
MW-13	8/5/2002	Total	<50/1.1 ^(c)	26	<2 ^(d)	9	3	<20/3 ^(c)	<0.1	<50/0.7 ^(c)	<3
INIV-13	0/3/2002	Dissolved ^(b)	<50/1.1 ^(c)	23	<2	8	<2	<20/<1 ^(c)	<0.1	<50/0.9 ^(c)	<3
MTCA Method B											
Surface Water Cleanup Level ^(e)			0.0982 ** / 5 ^(f)	NA ^(g)	20.3	NA	2,660	NA	NA	2,700	25,900
NRWQC - Aquatic Organisms											
Chronic Freshwater Criterion ^(h)			150	NA	0.37 ***	119.94 ***	14.8 ***	4.74 ***	0.77	5.0	NA
NRWQC - Human Health											
Consumption of Organisms ⁽ⁱ⁾			0.14 ** / 5 ^(f)	NA	NA	NA	NA	NA	NA	4,200	NA
NTR - Aquatic Organisms											
Chronic Freshwater Criterion ⁽ⁱ⁾			190	NA	1.59 ***	288.07 ***	18.76 ***	4.74 ***	0.012 * / 0.1 ^(k)	5	NA
NTR - Human Health											
Consumption of Organisms ^(I)			0.14 ** / 5 ^(f)	NA	NA	NA	NA	NA	0.15	NA	NA

Notes:

(a) Samples were analyzed for metals by EPA Methods 6010/7470 series.

(b) Groundwater samples for dissolved metals were field filtered using a 0.45 micron filter.

(c) Samples were re-analyzed for metals by EPA Method 200.8 to obtain lower laboratory reporting limits.

(d) "<" denotes analyte was not detected at the indicated laboratory reporting limit.

(e) Model Toxics Control Act (MTCA) Method B surface water cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(f) Natural background concentration (Ecology 2001b).

(g) "NA" denotes no cleanup level established.

(h) National Recommended Water Quality Criteria (NRWQC) chronic freshwater criterion (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(i) NRWQC for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with WAC 173-201A at a risk level of 1x10⁻⁶.

(j) National Toxics Rule (NTR) chronic freshwater criterion based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.

(k) Practical quantitation limit (PQL) (Ecology 2001b).

(I) NTR for consumption of organisms only based on 40 CFR 131.36 at a risk level of $1x10^{-6}$.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

** Denotes natural background concentration is greater than MTCA cleanup levels and/or ARARs.

*** Freshwater criterion is expressed as a function of groundwater hardness. Average groundwater hardness at the site is 180 mg/l.

µg/l - micrograms per liter

mg/l - milligrams per liter

Data Summary Report, Former Tacoma Metals Property W:1999\996098.00 Tacoma Metals\2007\Data Summary Rpt\Tables\Table 7F Aug02 GW Metals.xls

TABLE 8

OCTOBER 2001 GROUNDWATER ANALYTICAL RESULTS - DISSOLVED LEAD^(a) Former Tacoma Metals Facility

		Metals (µg/I) ^(b)								
Sample Designation	Sample Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
MW-1	10/30/2001	^(c)					0.304			
MW-2	10/30/2001						0.269			
MW-4(R)	10/30/2001						0.199			
MW-5	10/30/2001						0.292			
MW-6	10/30/2001						0.383			
MW-7	10/30/2001						0.249			
MW-8(R)	10/30/2001						0.231			
MW-9	10/30/2001						0.226			
MW-10	10/30/2001						0.246			
MW-11 10/30/2001							0.413			
MW-12	10/30/2001						0.303			
MTCA Method B										
Surface Water Cleanup Level ^(d)		0.0982 ** / 5 ^(e)	NA ^(f)	20.3	NA	2,660	NA	NA	NA	25,900
NRWQC - Aquatic Organisms										
Chronic Freshwater Criterion ^(g)		150	NA	0.37 ***	119.94 ***	14.8 ***	4.74 ***	0.77	5.0	NA
NRWQC - Human Health										
Consumption of Organisms ^(h)		0.14 ** / 5 ^(e)	NA	NA	NA	NA	NA	NA	4,200	NA
NTR - Aquatic Organisms										
Chronic Freshwater Criterion ⁽ⁱ⁾		190	NA	1.59 ***	288.07 ***	18.76 ***	4.74 ***	0.012 * / 0.1 ^(j)	5	NA
NTR - Human Health										
Consumption of Organisms ^(k)		0.14 ** / 5 ^(e)	NA	NA	NA	NA	NA	0.15	NA	NA

Notes:

(a) Samples were field filtered using a 0.45 micron filter.

(b) Samples were analyzed for metals by EPA Method 200.8.

(c) "--" denotes samples not analyzed for listed compound.

(d) Model Toxics Control Act (MTCA) Method B surface water cleanup levels based on CLARC v3.1, dated November 2001 (Ecology 2001b).

(e) Natural background concentration (Ecology 2001b).

(f) "NA" denotes no cleanup level established.

(g) National Recommended Water Quality Criteria (NRWQC) chronic freshwater criterion (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with Washington Administrative Code (WAC) 173-201A at a risk level of 1x10⁻⁶.

(h) NRWQC for consumption of organisms only (EPA 2002) pursuant to Section 304(a)(1) of the Clean Water Act and in accordance with WAC 173-201A at a risk level of 1x10⁻⁶.

(i) National Toxics Rule (NTR) chronic freshwater criterion based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.

(j) Practical quantitation limit (PQL) (Ecology 2001b).

(k) NTR for consumption of organisms only based on 40 CFR 131.36 at a risk level of 1x10⁻⁶.

* Denotes PQL is higher than MTCA cleanup levels and/or applicable, relevant, and appropriate requirements (ARARs).

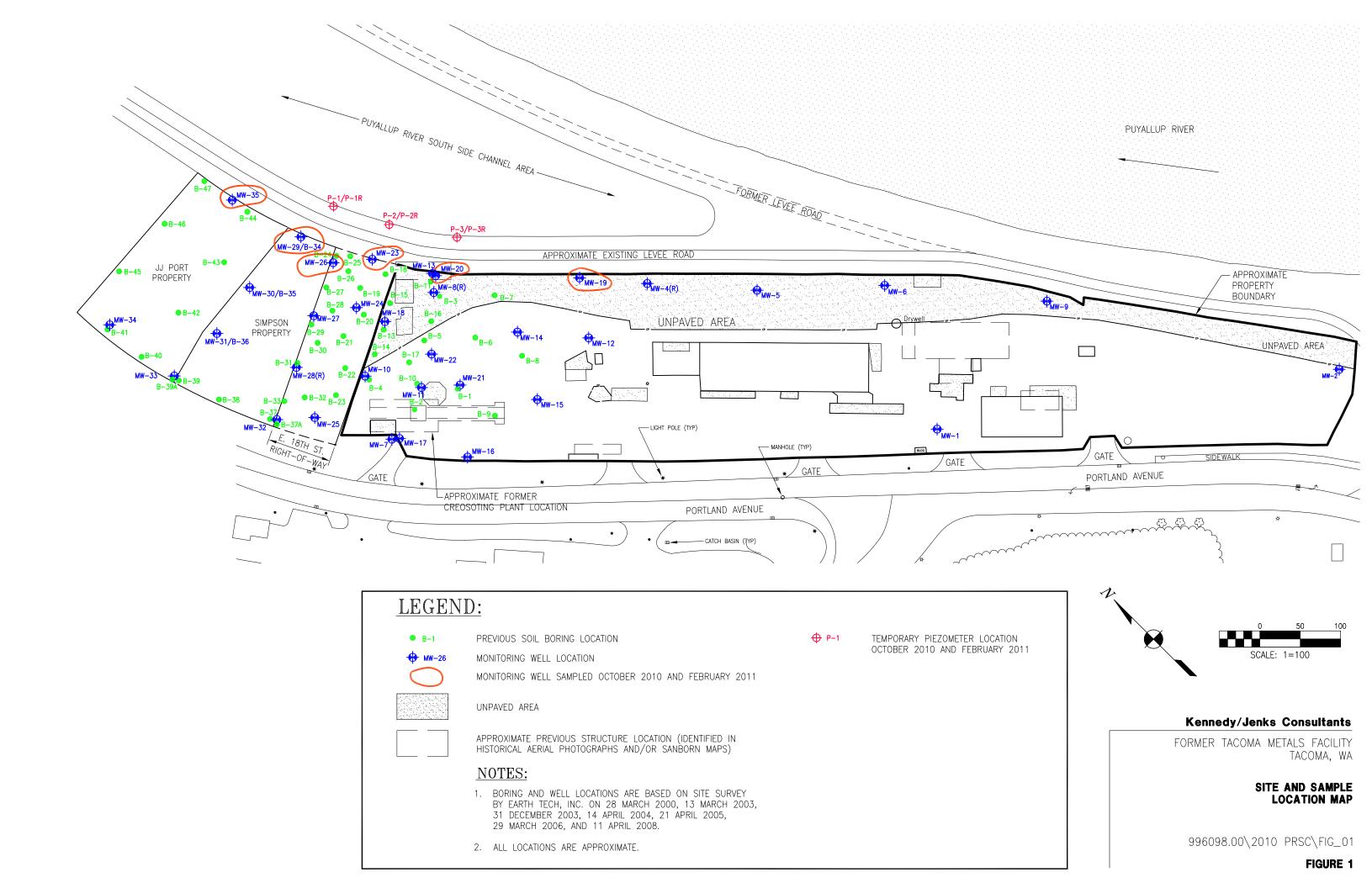
** Denotes natural background concentration is higher than MTCA cleanup levels and/or ARARs.

*** Freshwater criterion is expressed as a function of groundwater hardness. Average groundwater hardness at the site is 180 mg/l.

µg/l - micrograms per liter

mg/l - milligrams per liter

Appendix E


Puyallup River Side Channel Investigation Maps and Data Tables

Appendix E: Puyallup River Site Channel Investigation Maps and Data Tables

Table of Contents

- 1) Figure 1 Site and Sample Location Map
- 2) Table 1 Summary of Groundwater Analytical Results for Point of Compliance Wells and Temporary Piezometers

All materials included in Appendix E are from *Revised Groundwater Investigation Summary, Puyallup River Side Channel Investigation* (Kennedy/Jenks Consultants 2012)

TABLE 1

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS POINT OF COMPLIANCE WELLS AND TEMPORARY PIEZOMETERS Former Tacoma Metals Facility

	P-1 / P-1R					P-2 / P-2R ^(b)				P-3 / F	2-3R ^(b)			Proposed			
	unfiltere	d samples	filtered	samples	unfiltered	l samples	filtered	samples	unfilter	ed samples	filtered	samples	unfiltered	d samples	filtered	samples	Cleanup
Analyte	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Level ^(a)
BTEX (μg/L) ^(c)																	
Benzene	<0.35	<0.35			<0.35 / <0.35	<0.35			<0.35	2.2 / 2.1			< 0.35 ^(d)	<0.35	^(e)		23
Toluene	<1	<1			<1 / <1	<1			<1	<1 / <1			<1	<1			19,000
Etylbenzene	<1	<1			<1 / <1	<1			<1	<1 / <1			<1	<1			6,900
Total xylenes	<3	<3			<3/<3	<3			<3	<3 / 2.0			<3	<3			16,000 ^(f)
PAHs (µg/L) ^(g)																	
Naphthalene	0.14 j	0.12	0.10 j	0.081	0.01 j / <0.10	0.069	0.01 j / <0.10	0.032	0.01 j	0.44 / 0.46	<0.10	0.28 / 0.58	0.01 j,J	<0.025	0.02 j	<0.025	4,940
Acenaphthylene	<0.10	0.12	<0.10	0.14	<0.10 / <0.10	0.17	<0.10/<0.10	0.20	<0.10	0.40 / 0.42	<0.10	0.40 / 0.39	<0.10 J	<0.025	<0.10	<0.025	NA ^(h)
Acenaphthene	12	19	11	18	1.5 / 1.5	28	1.3 / 1.4	18	<0.10	76 / 63	<0.10	62 / 63	0.40 J	0.21	0.41	0.18	643
Fluorene	1.3	1.8	1.2	1.6	0.06 j / 0.06 j	5.9	0.06 j / 0.06 j	4.1	<0.10	14 / 13	<0.10	9.3 / 9.9	0.04 j,J	<0.025	0.04 j	<0.025	3,460
Phenanthrene	0.64	0.75	0.59	0.71	0.04 j / 0.04 j	2.1	0.03 j / 0.05 j	1.4	<0.10	1.6 / 1.7	<0.10	1.6 / 1.5	0.02 j,J	<0.025	<0.10	<0.025	NA
Anthracene	0.12	0.20	0.11	0.20	<0.10 / <0.10	0.10	<0.10/<0.10	0.13	<0.10	0.086 / 0.094	<0.10	0.084 / 0.082	<0.10 J	<0.025	<0.10	<0.025	25,900
Fluoranthene	0.12	0.18	0.09 j	0.15	<0.10 / 0.02 j	0.10	<0.10 / 0.01 j	0.070	<0.10	0.048 / 0.049	<0.10	0.040 / 0.033	<0.10 J	<0.025	<0.10	<0.025	90.2
Pyrene	0.05 j	0.068	0.04 j	0.055	<0.10 / 0.01 j	0.048	<0.10/<0.10	0.033	0.03 j	0.027 / 0.027	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	2,590
Benzo(g,h,i)perylene	<0.10	<0.025	<0.10	<0.025	<0.10/<0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	NA
cPAHs (µg/L) ⁽ⁱ⁾																	
Benzo(a)anthracene	<0.10	<0.025	<0.10	<0.025	<0.10 / <0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	NA
Chrysene	<0.10	<0.025	0.01 j	<0.025	0.01 j / <0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	0.01j	<0.025 / <0.025	0.01 j,J	<0.025	<0.10	<0.025	NA
Benzo(a)pyrene	<0.10	<0.025	<0.10	<0.025	<0.10 / <0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	0.03
Benzo(b)fluoranthene	<0.10	<0.025	<0.10	<0.025	<0.10 / <0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	NA
Benzo(k)fluoranthene	<0.10	<0.025	<0.10	<0.025	<0.10 / <0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	NA
Indeno(1,2,3-cd)pyrene	<0.10	<0.025	<0.10	<0.025	<0.10 / <0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	NA
Dibenz(a,h)anthracene	<0.10	<0.025	<0.10	<0.025	<0.10 / <0.10	<0.025	<0.10/<0.10	<0.025	<0.10	<0.025 / <0.025	<0.10	<0.025 / <0.025	<0.10 J	<0.025	<0.10	<0.025	NA

TABLE 1

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS POINT OF COMPLIANCE WELLS AND TEMPORARY PIEZOMETERS Former Tacoma Metals Facility

	MW-20				MW-23				MW-26				MW-29				MW-35				Proposed
	unfiltere	d samples	filtered	samples	unfiltere	d samples	filtered	samples	unfiltere	d samples	filtered	samples	unfiltered	l samples	filtered	samples	unfiltered	samples	filtered	samples	Cleanup
Analyte	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Oct-10	Feb-11	Level ^(a)
BTEX (µg/L) ^(c)																					
Benzene	3.6	5.0			56	53			<0.35	<0.35			<0.35	<0.35			< 0.35 ^(d)	<0.35	(e)		23
Toluene	<1	<1			1.4	1.2			<1	<1			<1	<1			<1	<1			19,000
Etylbenzene	3.0	2			56	52			1.1	<1			<1	<1			<1	<1			6,900
Total xylenes	4.7	3.8			22	18.7			<3	<3	-		<3	<3			<3	<3			16,000 ^(f)
PAHs (µg/L) ^(g)																					
Naphthalene	7.4 j	3.4	6.2	3.2	59	50	54	44	140	47	120 ve	44	0.25	0.56 J	0.39	0.31	0.02 j	<0.025	0.01 j	<0.025	4,940
Acenaphthylene	<0.10 J	0.72 J	<0.10	0.64	<0.10 J	0.91	<0.10 J	0.92	<0.10	0.33	0.62 J	0.51	<0.10 J	0.43 J	<0.10	0.37	<0.10	<0.025	<0.10	<0.025	NA ^(h)
Acenaphthene	210	180	190	170	170	160	170	150	67	69	60	62	43	44	37	45	0.02 j	<0.025	<0.10	<0.025	643
Fluorene	100	80	96	79	56	60	59	48	38	42	39	38	12	14	12	14	0.03 j	0.033	<0.10	<0.025	3,460
Phenanthrene	92	68	80	71	51	54	50	50	40	35	36	32	14	15	13	16	0.02 j	<0.025	0.01 j	<0.025	NA
Anthracene	4.8 j	3.0	3.7	2.7	4.6	5.5	5.7 j	4.2	3.6	4.1	3.1	3.5	3.5	4.0	3.3	3.8	<0.10	<0.025	<0.10	<0.025	25,900
Fluoranthene	1.9 J	1.7 J	1.9	1.2	5.9	6.6	6.3 J	4.9	7.1	8.2	6.3	6.3	5.4	6.4	5.2	6.4	<0.10	<0.025	<0.10	<0.025	90.2
Pyrene	0.81 J	0.77 J	0.76	0.51	3.7	4.0	3.9 J	2.9	3.7	4.4	3.2	3.7	3.3	4.1	3.2	3.7	0.11	0.16	0.09 j	0.098	2,590
Benzo(g,h,i)perylene	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	<0.10 J	<0.025	<0.10	<0.025	<0.10	<0.025	<0.10 J	<0.025 J	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	NA
cPAHs (µg/L) ⁽ⁱ⁾																					
Benzo(a)anthracene	0.02 j	<0.025	<0.10	<0.025	0.30	0.28	0.20 J	0.15	0.16	0.12	0.12	0.11	0.23 J	0.28 J	0.16	0.17	<0.10	<0.025	<0.10	<0.025	NA
Chrysene	<0.10	<0.025	<0.10	<0.025	0.26	0.21	0.17 J	0.15	0.13	0.094	0.09 j	0.089	0.20 J	0.25 J	0.14	0.15	<0.10	<0.025	0.01 j	<0.025	NA
Benzo(a)pyrene	<0.10	<0.025	<0.10	<0.025	0.015 j	0.029	<0.10 J	<0.025	0.01 j	<0.025	<0.10	<0.025	0.04 j,J	0.049 J	0.01 j	<0.025	<0.10	<0.025	<0.10	<0.025	0.03
Benzo(b)fluoranthene	<0.10	<0.025	<0.10	<0.025	0.02 j	0.036	<0.10 J	<0.025	0.03 j	<0.025	<0.10	<0.025	0.05 j,J	0.062 J	0.01 j	<0.025	<0.10	<0.025	<0.10	<0.025	NA
Benzo(k)fluoranthene	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	<0.10 J	<0.025	<0.10	<0.025	<0.10	<0.025	0.02 j,J	<0.025 J	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	NA
Indeno(1,2,3-cd)pyrene	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	<0.10 J	<0.025	<0.10	<0.025	<0.10	<0.025	<0.10 J	<0.025 J	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	NA
Dibenz(a,h)anthracene	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	<0.10 J	<0.025	<0.10	<0.025	<0.10	<0.025	<0.10 J	<0.025 J	<0.10	<0.025	<0.10	<0.025	<0.10	<0.025	NA

Notes:

(a) Proposed site cleanup levels based on Kennedy/Jenks Consultants' 2007 Cleanup Level Evaluation report (submitted to Ecology under separate cover) and the Model Toxics Control Act (MTCA) (WAC 173-340) Method B surface water cleanup level based on Ecology's online CLARC database.

(b) Where two values are displayed, the second is the analytical result for a field blind duplicate sample (Dup-1).

(c) Samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8260C for volatile compounds.

(d) "<" Denotes analyte was not detected at the indicated laboratory reporting limit.

(e) "---" Denotes sample was not analyzed for the listed analyte

(f) Denotes the MTCA Method B groundwater cleanup level based on Ecology's online CLARC database.

(g) Unfiltered and filtered (0.70 micron glass filter prior to extraction in laboratory) samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C using selected ion monitoring (SIM) mode (where appropriate).

(h) "NA" denotes cleanup level is either not available or not appropriate.

(i) Samples were analyzed for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270C using SIM mode (where appropriate).

j = The result is below normal reporting limits (the value reported is an estimate)

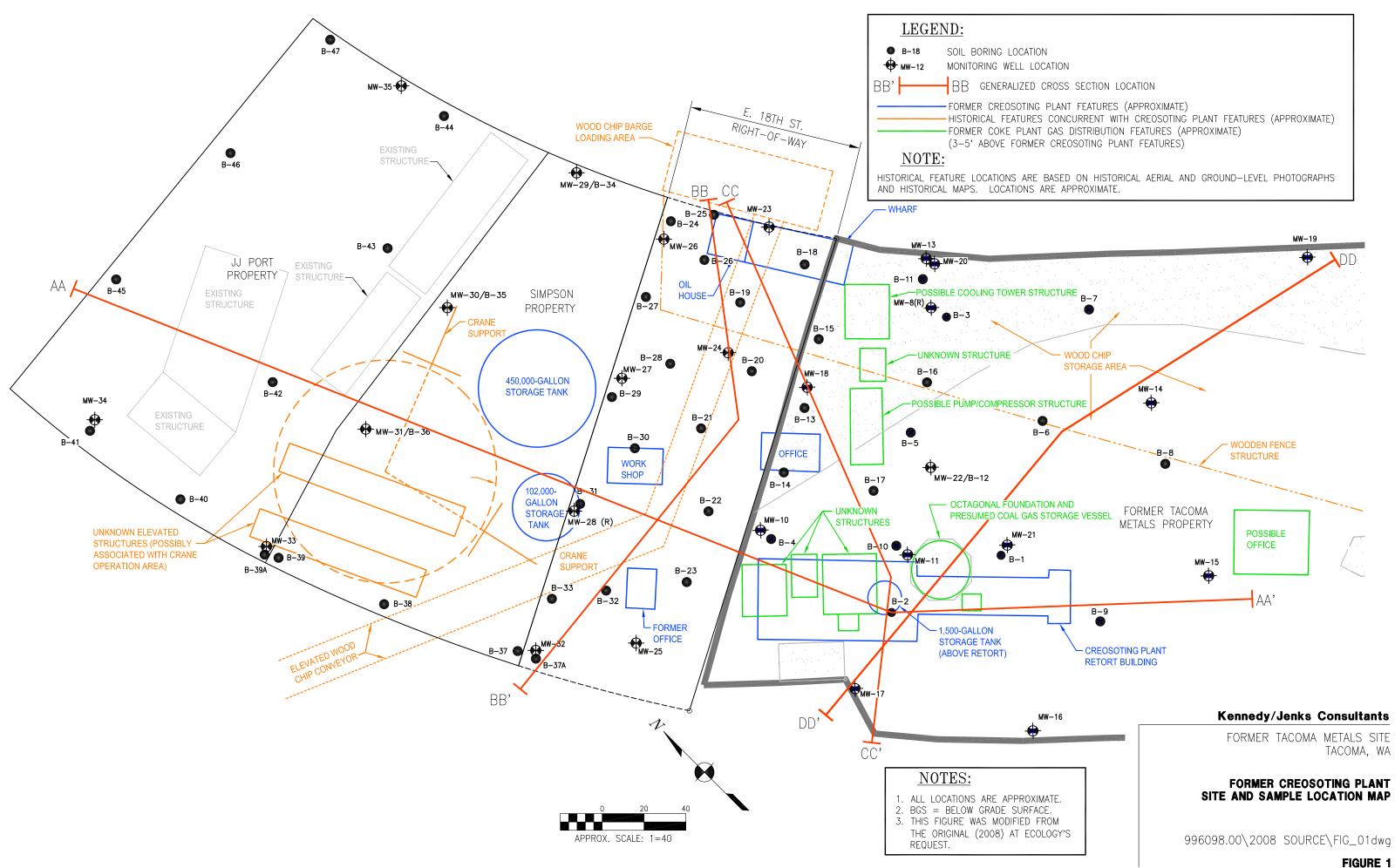
J = The internal standard associated with the analyte is out of control limits (the reported concentration is an estimate).

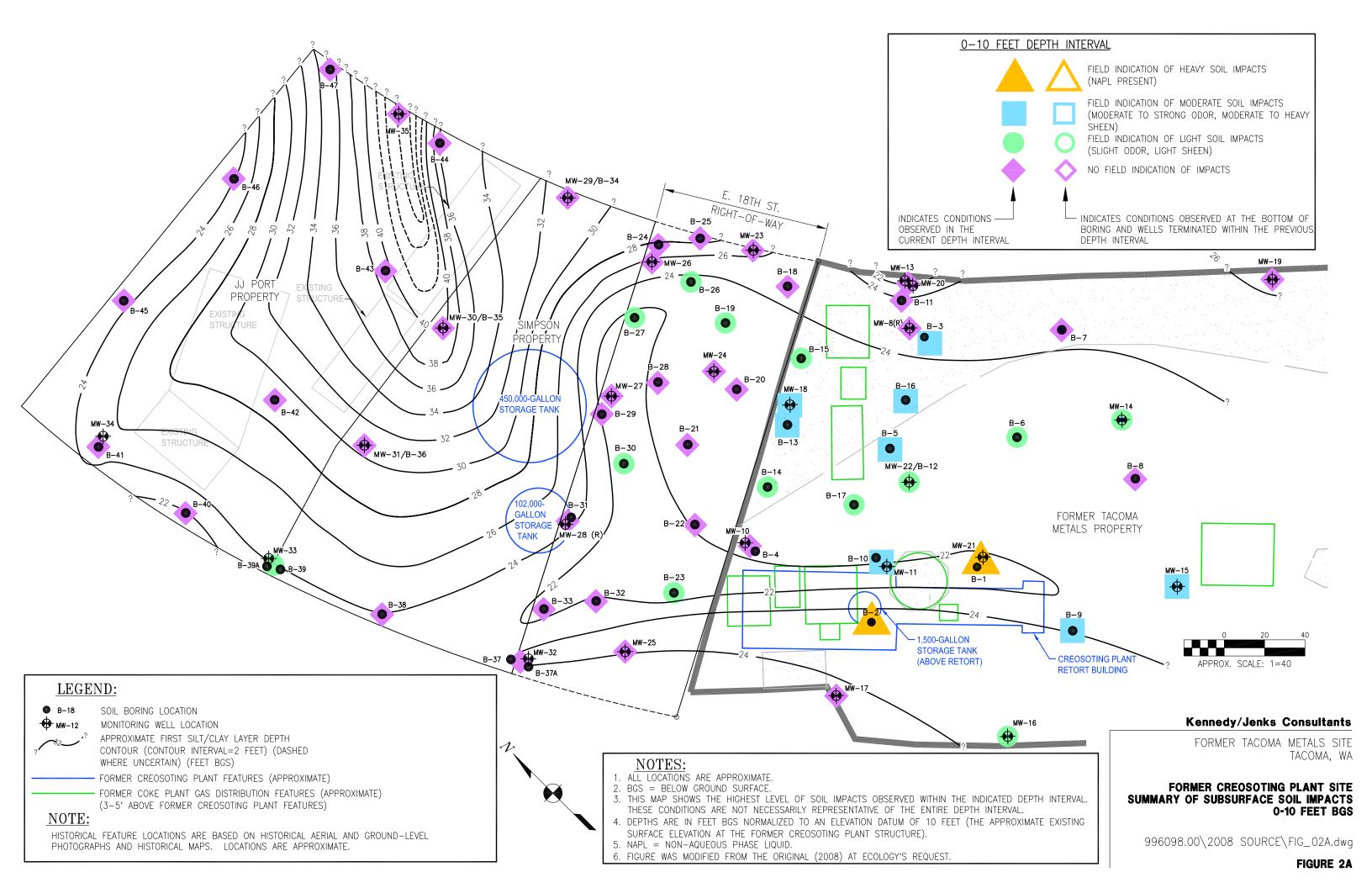
ve = Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

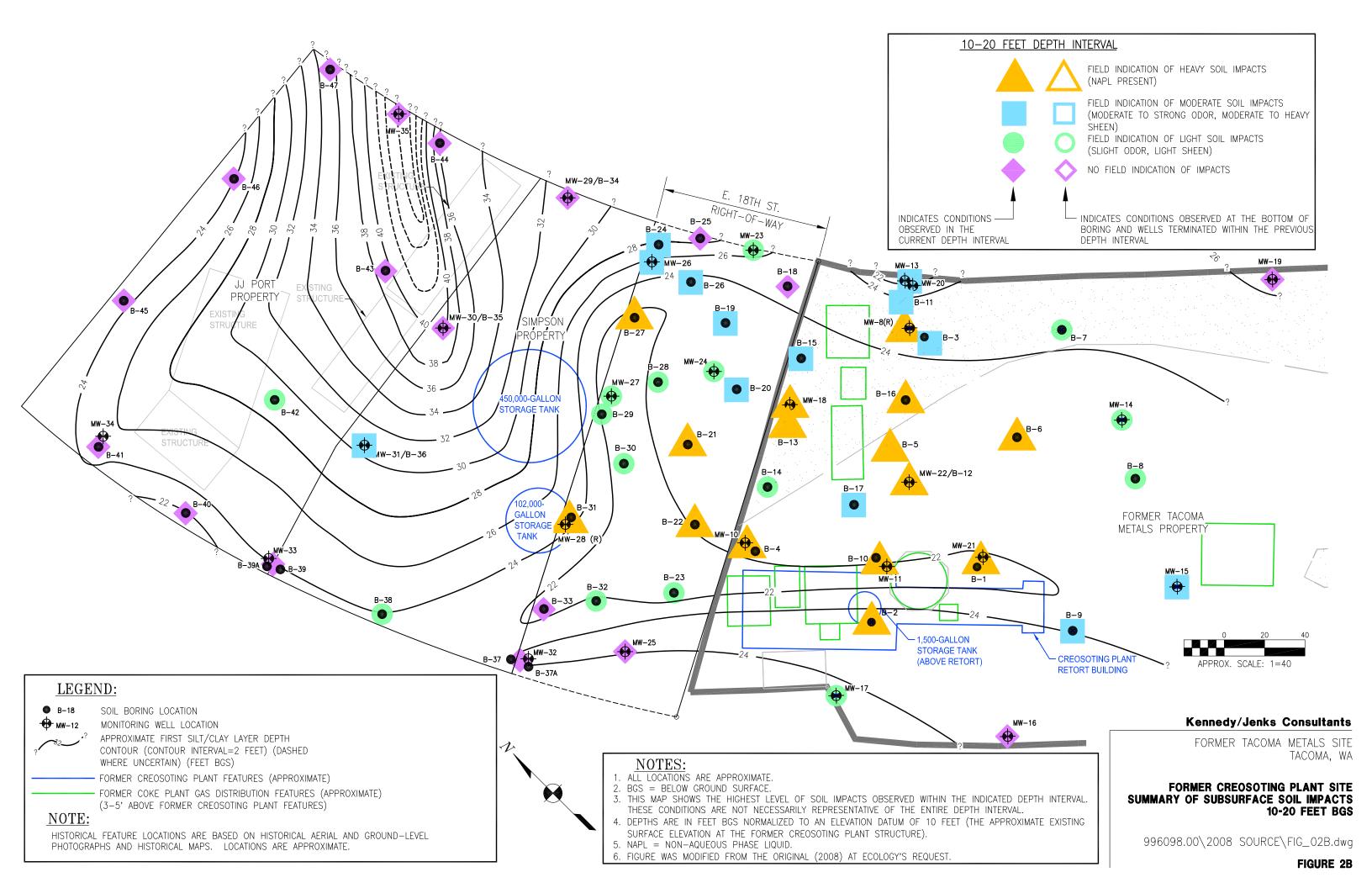
µg/L = micrograms per liter

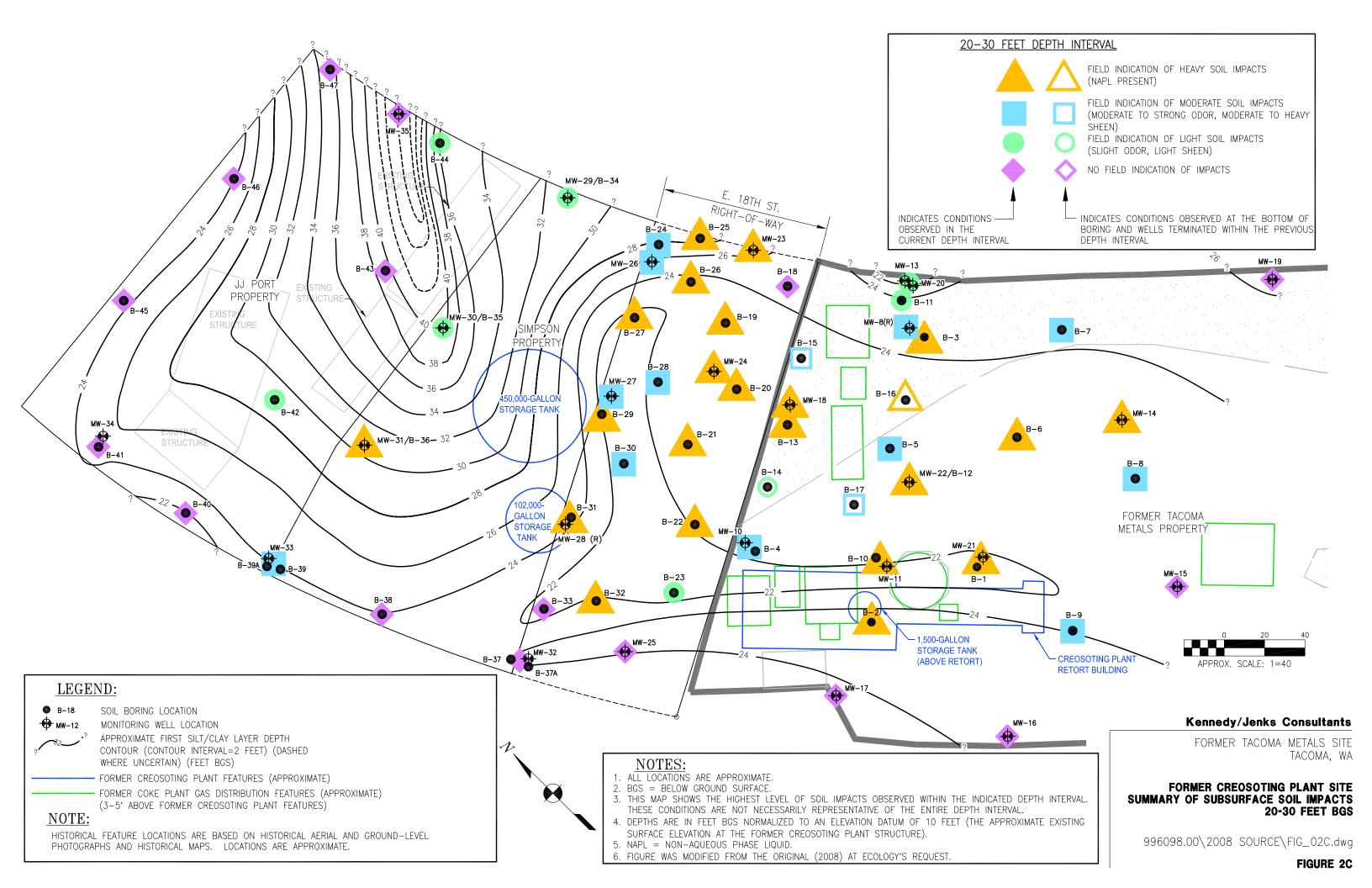
Analytes detected in samples at concentrations exceeding the proposed cleanup level values are shown in bold and italics.

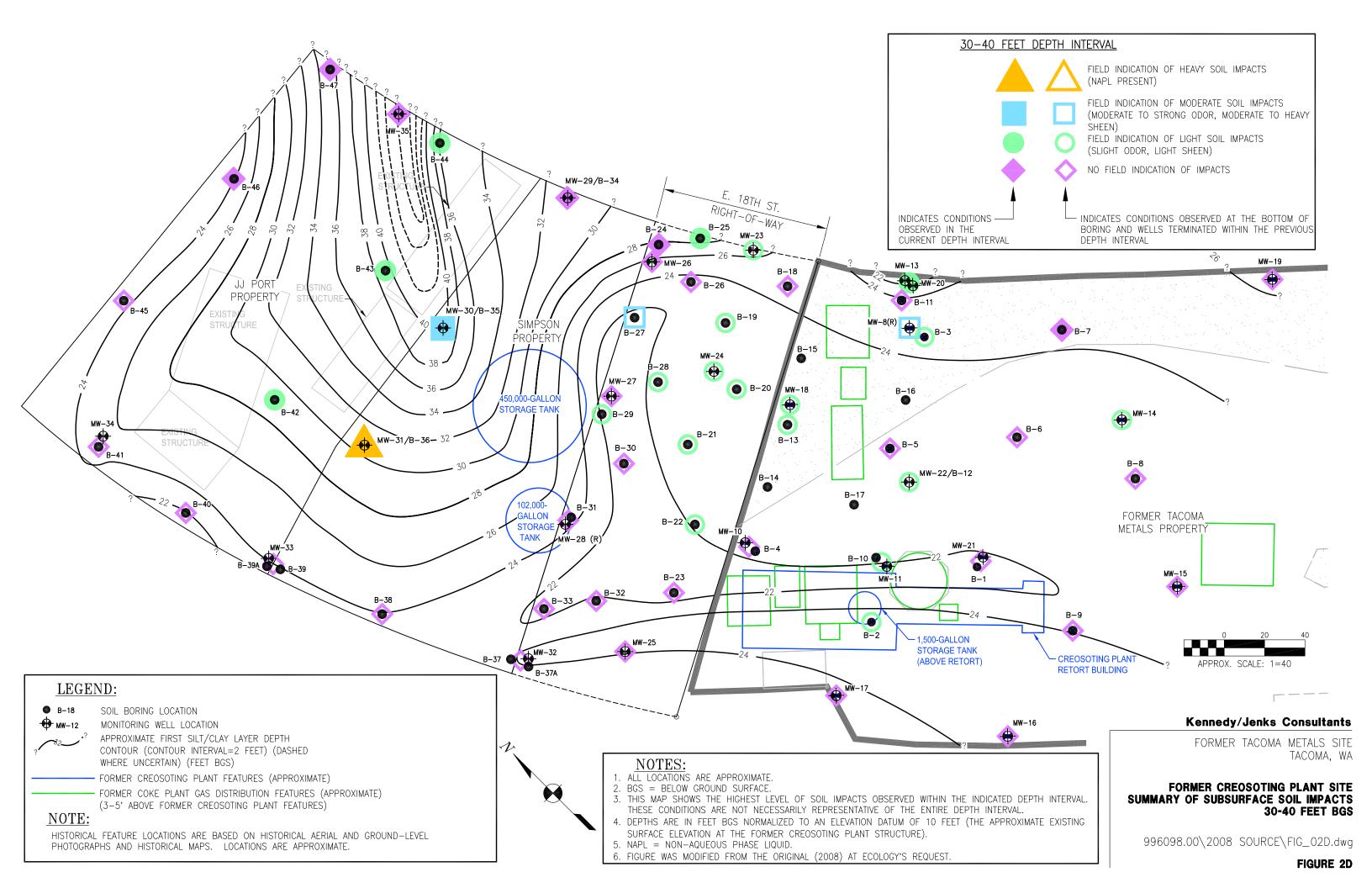
Appendix F

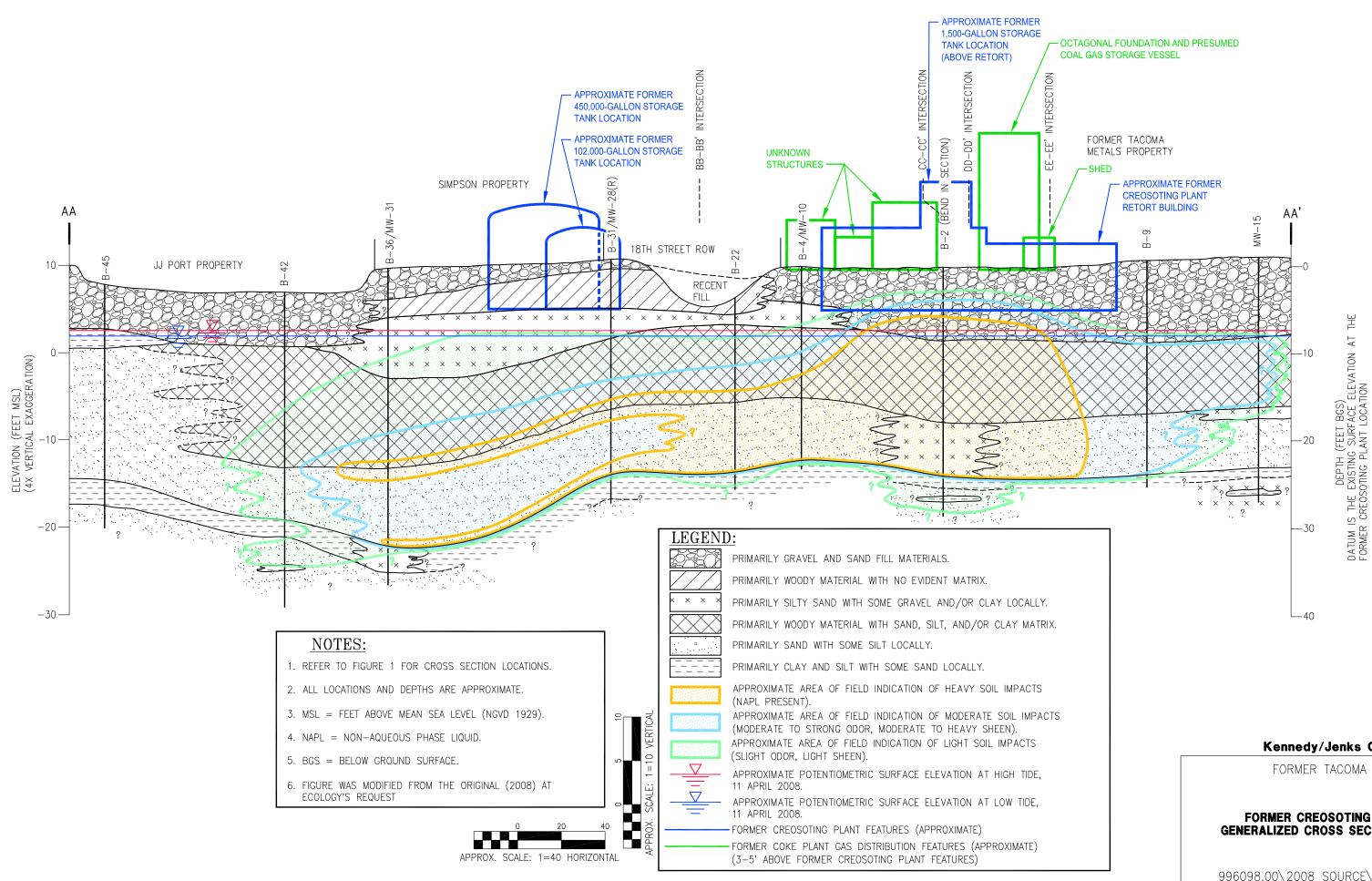

Creosote-Related Impact Maps and Cross Sections

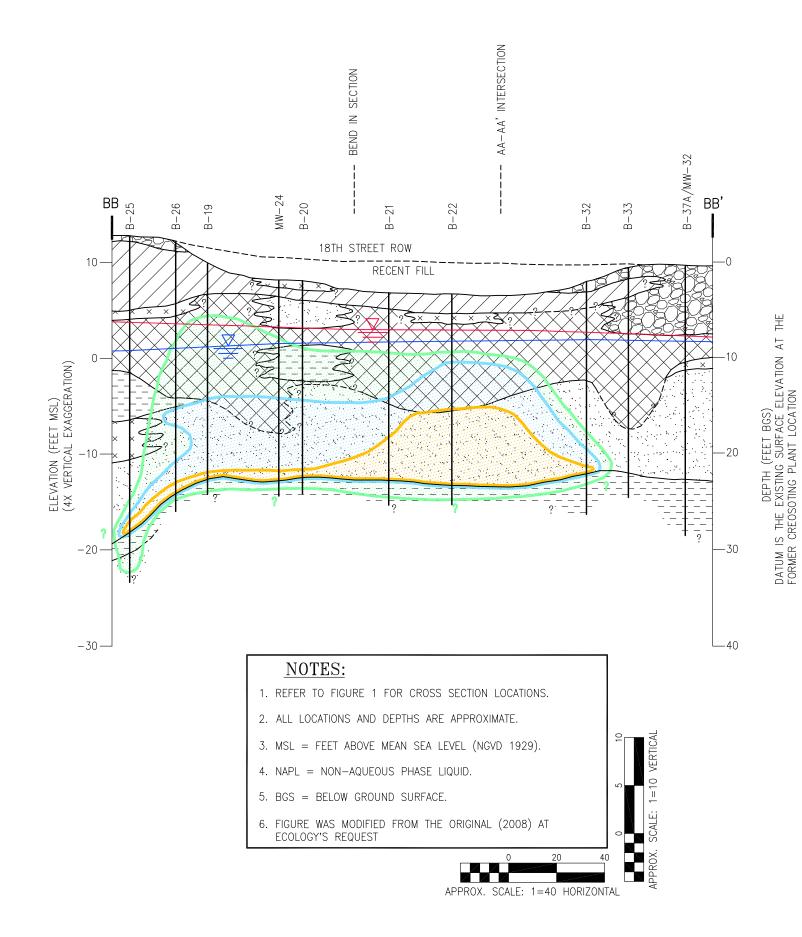

Appendix F: Creosote-Related Impact Maps and Cross Sections


Table of Contents


1)	Figure 1	Former Creosoting Plant Site and Sample Location Map
2)	Figure 2A	Former Creosoting Plant Site Summary of Subsurface Soil Impacts 0-10 Feet BGS
3)	Figure 2B	Former Creosoting Plant Site Summary of Subsurface Soil Impacts 10-20 Feet BGS
4)	Figure 2C	Former Creosoting Plant Site Summary of Subsurface Soil Impacts 20-30 Feet BGS
5)	Figure 2D	Former Creosoting Plant Site Summary of Subsurface Soil Impacts 30-40 Feet BGS
6)	Figure 3A	Former Creosoting Plant Site Generalized Cross Section AA-AA'
7)	Figure 3B	Former Creosoting Plant Site Generalized Cross Section BB-BB'
8)	Figure 3C	Former Creosoting Plant Site Generalized Cross Section CC-CC'
9)	Figure 3D	Former Creosoting Plant Site Generalized Cross Section DD-DD'


All materials included in Appendix F are from *Response to Ecology Comment, Forensic Evaluation of Hydrocarbons* (Kennedy/Jenks Consultants 2009)




Kennedy/Jenks Consultants

FORMER TACOMA METALS SITE TACOMA, WA

FORMER CREOSOTING PLANT SITE **GENERALIZED CROSS SECTION AA-AA'**

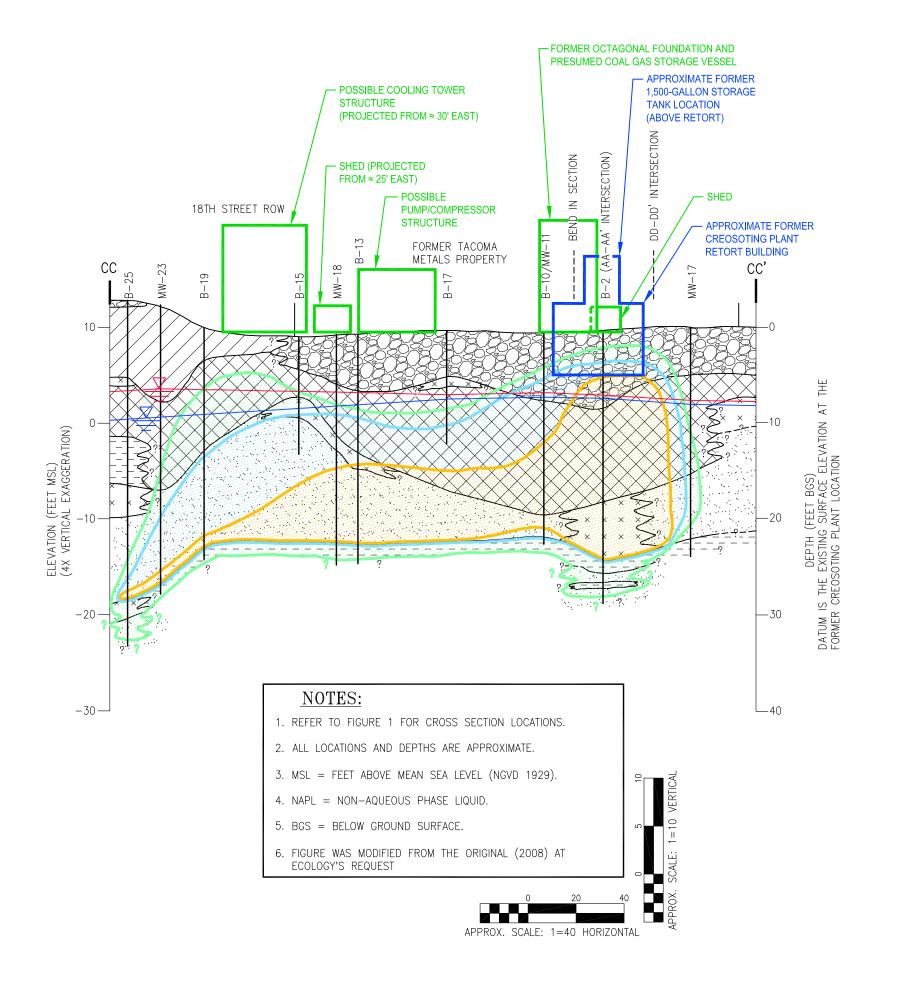
996098.00\2008 SOURCE\FIG_03A.dwg

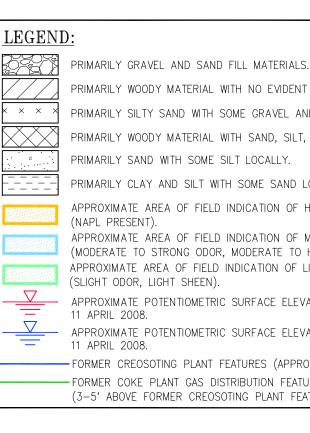
FIGURE 3A

<u>LEGENI</u>	<u>):</u>
	PRIMARILY GRAVEL AND SAND FILL MATERIALS.
	PRIMARILY WOODY MATERIAL WITH NO EVIDENT MATRIX.
\times \times \times \times	PRIMARILY SILTY SAND WITH SOME GRAVEL AND/OR CLAY LOCALLY
	PRIMARILY WOODY MATERIAL WITH SAND, SILT, AND/OR CLAY MATR
	PRIMARILY SAND WITH SOME SILT LOCALLY.
	PRIMARILY CLAY AND SILT WITH SOME SAND LOCALLY.
	APPROXIMATE AREA OF FIELD INDICATION OF HEAVY SOIL IMPACTS (NAPL PRESENT).
	APPROXIMATE AREA OF FIELD INDICATION OF MODERATE SOIL IMPAC (MODERATE TO STRONG ODOR, MODERATE TO HEAVY SHEEN).
	APPROXIMATE AREA OF FIELD INDICATION OF LIGHT SOIL IMPACTS (SLIGHT ODOR, LIGHT SHEEN).
	APPROXIMATE POTENTIOMETRIC SURFACE ELEVATION AT HIGH TIDE, 11 APRIL 2008.
	APPROXIMATE POTENTIOMETRIC SURFACE ELEVATION AT LOW TIDE, 11 APRIL 2008.

AL WITH SAND, SILT, AND/OR CLAY MATRIX.

ELD INDICATION OF MODERATE SOIL IMPACTS DOR, MODERATE TO HEAVY SHEEN). ELD INDICATION OF LIGHT SOIL IMPACTS EN). TRIC SURFACE ELEVATION AT HIGH TIDE,


Kennedy/Jenks Consultants

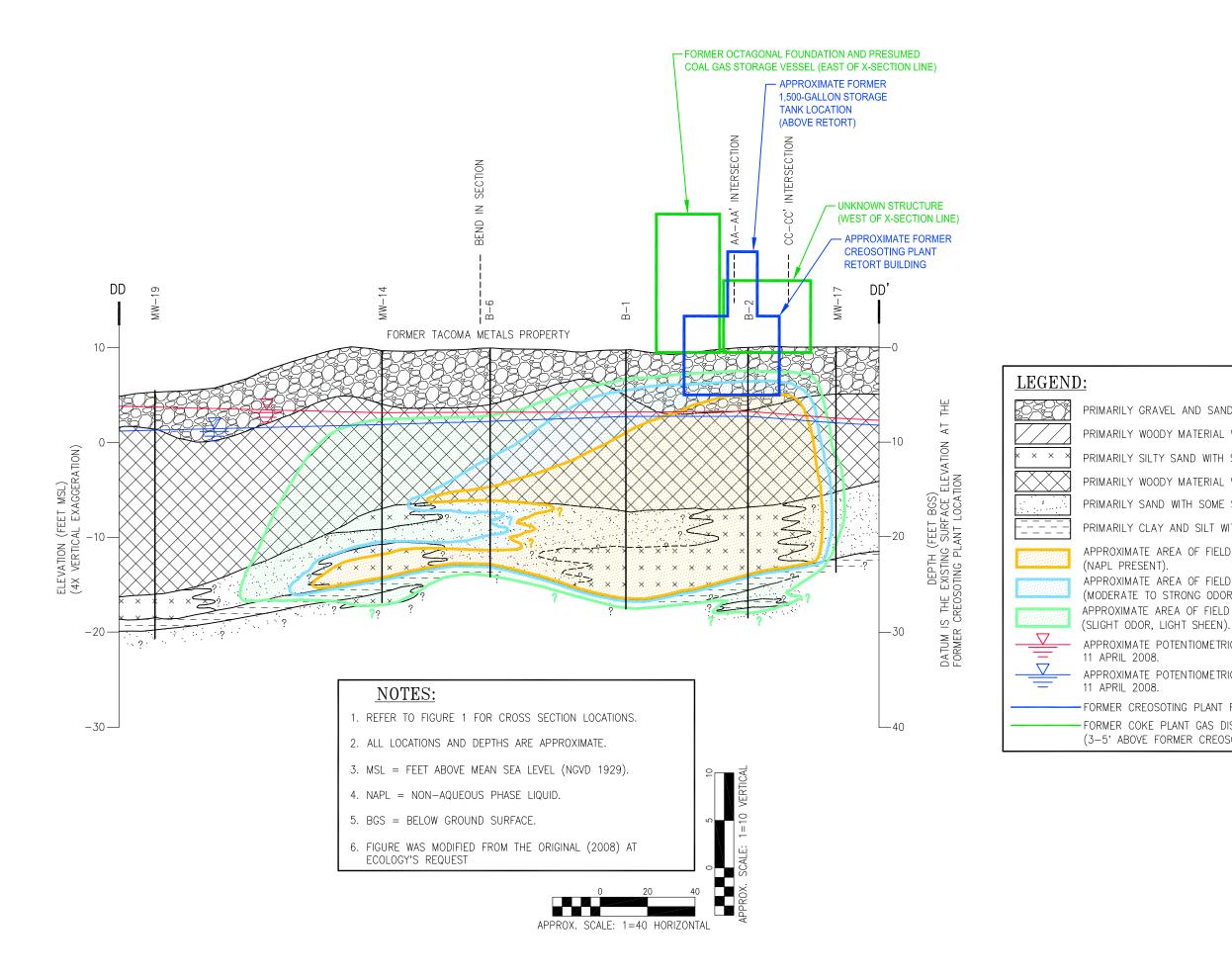

FORMER TACOMA METALS SITE TACOMA, WA

FORMER CREOSOTING PLANT SITE GENERALIZED CROSS SECTION BB-BB'

996098.00\2008 SOURCE\FIG_03B.dwg

FIGURE 3B

PRIMARILY WOODY MATERIAL WITH NO EVIDENT MATRIX. PRIMARILY SILTY SAND WITH SOME GRAVEL AND/OR CLAY LOCALLY. PRIMARILY WOODY MATERIAL WITH SAND, SILT, AND/OR CLAY MATRIX. PRIMARILY CLAY AND SILT WITH SOME SAND LOCALLY. APPROXIMATE AREA OF FIELD INDICATION OF HEAVY SOIL IMPACTS APPROXIMATE AREA OF FIELD INDICATION OF MODERATE SOIL IMPACTS (MODERATE TO STRONG ODOR, MODERATE TO HEAVY SHEEN). APPROXIMATE AREA OF FIELD INDICATION OF LIGHT SOIL IMPACTS APPROXIMATE POTENTIOMETRIC SURFACE ELEVATION AT HIGH TIDE, APPROXIMATE POTENTIOMETRIC SURFACE ELEVATION AT LOW TIDE, FORMER CREOSOTING PLANT FEATURES (APPROXIMATE) FORMER COKE PLANT GAS DISTRIBUTION FEATURES (APPROXIMATE) (3-5' ABOVE FORMER CREOSOTING PLANT FEATURES)


Kennedy/Jenks Consultants

FORMER TACOMA METALS SITE TACOMA, WA

FORMER CREOSOTING PLANT SITE **GENERALIZED CROSS SECTION CC-CC'**

996098.00\2008 SOURCE\FIG_03C.dwg

FIGURE 3C

PRIMARILY GRAVEL AND SAND FILL MATERIALS.

PRIMARILY WOODY MATERIAL WITH NO EVIDENT MATRIX.

PRIMARILY SILTY SAND WITH SOME GRAVEL AND/OR CLAY LOCALLY.

PRIMARILY WOODY MATERIAL WITH SAND, SILT, AND/OR CLAY MATRIX.

PRIMARILY SAND WITH SOME SILT LOCALLY.

PRIMARILY CLAY AND SILT WITH SOME SAND LOCALLY.

APPROXIMATE AREA OF FIELD INDICATION OF HEAVY SOIL IMPACTS

APPROXIMATE AREA OF FIELD INDICATION OF MODERATE SOIL IMPACTS (MODERATE TO STRONG ODOR, MODERATE TO HEAVY SHEEN). APPROXIMATE AREA OF FIELD INDICATION OF LIGHT SOIL IMPACTS

APPROXIMATE POTENTIOMETRIC SURFACE ELEVATION AT HIGH TIDE,

APPROXIMATE POTENTIOMETRIC SURFACE ELEVATION AT LOW TIDE,

-FORMER CREOSOTING PLANT FEATURES (APPROXIMATE) FORMER COKE PLANT GAS DISTRIBUTION FEATURES (APPROXIMATE) (3-5' ABOVE FORMER CREOSOTING PLANT FEATURES)

Kennedy/Jenks Consultants

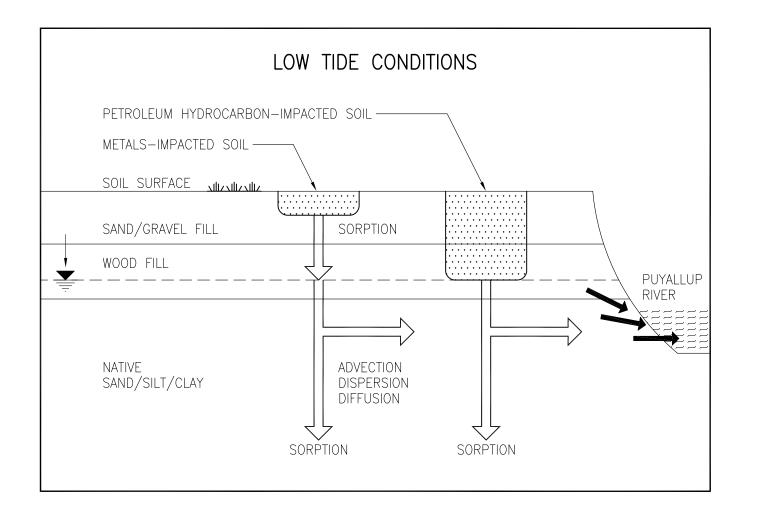
FORMER TACOMA METALS SITE TACOMA, WA

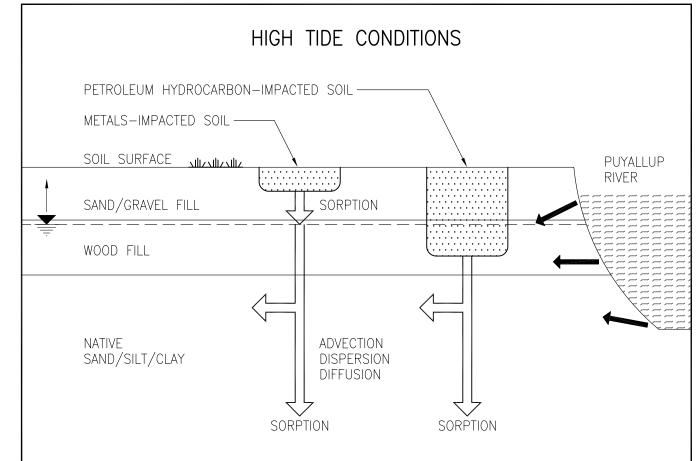
FORMER CREOSOTING PLANT SITE **GENERALIZED CROSS SECTION DD-DD'**

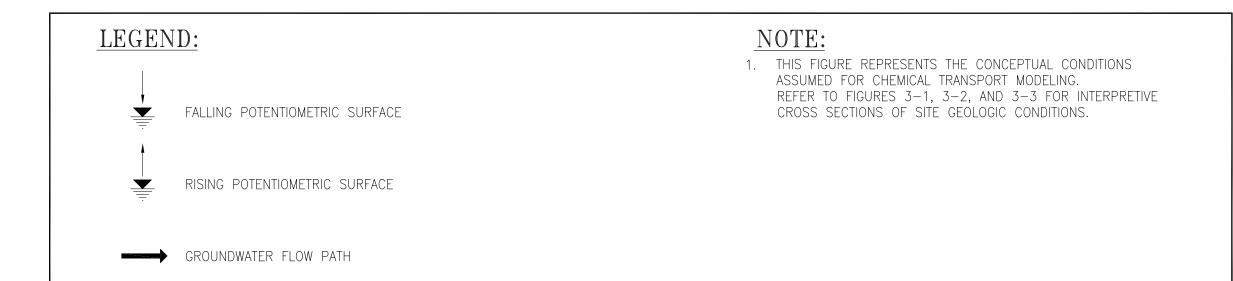
996098.00\2008 SOURCE\FIG_03D.dwg

FIGURE 3D

Appendix G

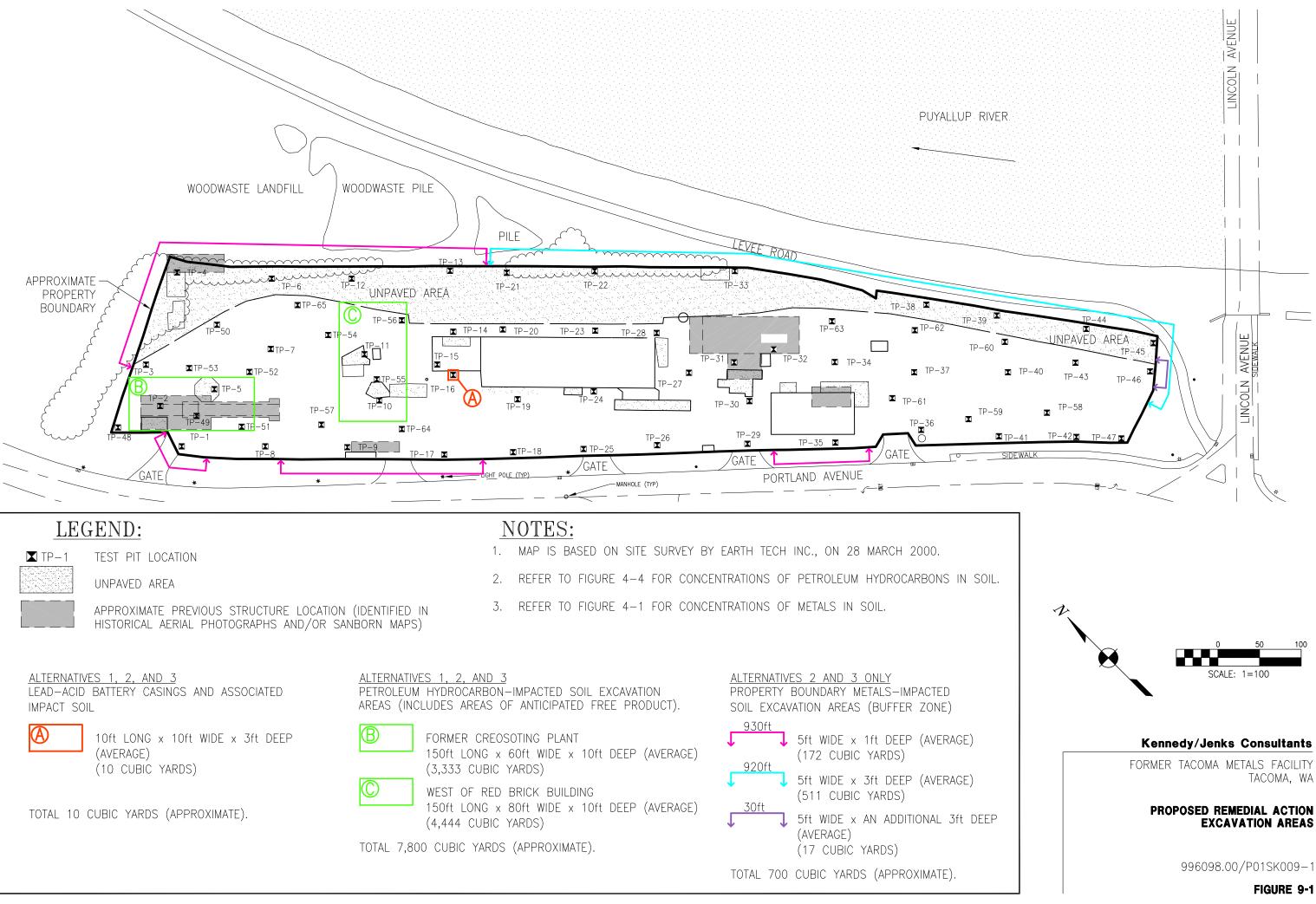

RI/FS Site Conceptual Model and Cleanup Alternatives


Appendix G: RI/FS Site Conceptual Model and Cleanup Alternatives


Table of Contents

- 1) Figure 8-1 Conceptual Model of Chemical Migration
- 2) Figure 9-1 Proposed Remedial Action Excavation Areas

All materials included in Appendix G are from *Remedial Investigation/Feasibility Study Report* (Kennedy/Jenks Consultants 2001)


Kennedy/Jenks Consultants

FORMER TACOMA METALS FACILITY TACOMA, WA

CONCEPTUAL MODEL OF CHEMICAL MIGRATION

996098.00/P01SK008-1

FIGURE 8-1

<u>TIVES 1, 2, AND 3</u> CID BATTERY CASINGS AND ASSOCIATED SOIL	<u>ALTERNATIVES 1, 2, AND 3</u> PETROLEUM HYDROCARBON—IMPACTED SOIL EXCAVATION AREAS (INCLUDES AREAS OF ANTICIPATED FREE PRODUCT).	<u>ALTERNATIVES 2 AND 3 ONLY</u> PROPERTY BOUNDARY METALS—IMPACTEE SOIL EXCAVATION AREAS (BUFFER ZONE
10ft LONG × 10ft WIDE × 3ft DEEP (AVERAGE) (10 CUBIC YARDS) 0 CUBIC YARDS (APPROXIMATE).	 FORMER CREOSOTING PLANT 150ft LONG × 60ft WIDE × 10ft DEEP (AVERAGE) (3,333 CUBIC YARDS) WEST OF RED BRICK BUILDING 150ft LONG × 80ft WIDE × 10ft DEEP (AVERAGE) (4,444 CUBIC YARDS) TOTAL 7,800 CUBIC YARDS (APPROXIMATE). 	930ft 5ft WIDE x 1ft DEEP (AVER (172 CUBIC YARDS) 920ft 5ft WIDE x 3ft DEEP (AVER (511 CUBIC YARDS) 30ft 5ft WIDE x AN ADDITIONAL (AVERAGE) (17 CUBIC YARDS)
		TOTAL 700 CUBIC YARDS (APPROXIMATE

Appendix H

Revised Remedial Alternative Costs

Table of Contents

- 1) Remedial Alternative 1 Revised Costs 2014
- 2) Remedial Alternative 2 Revised Costs 2014 (Preferred Alternative)
- 3) Remedial Alternative 3 Revised Costs 2014

REMEDIAL ALTERNATIVE 1 REVISED COSTS 2014 Former Tacoma Metals Site EXCAVATION / OFFSITE DISPOSAL / ASPHALT CAP / INSTITUTIONAL CONTROLS

				erial		bor	Lump		_
Taak	Quantity	Unit	Unit	Extension	Unit	Extension	Sum		Total Cost
Task	Quantity	Unit	Cost	Extension	Cost	Extension	Price		Cost
REMEDIATION COSTS									
Excavate TPH / CPAH impacted soil	10564	CY			3.16			\$	33,38
Oxygen-releasing compound - Phase I	3,000	LBS	9.00	\$ 27,000	0.33	\$ 1,000		\$	28,000
Oxygen-releasing compound - Phase II	8,775	LBS	8.00	\$ 70,200	1.82			\$	86,200
Import bank run soil, backfill, compact	12326	CY	14.20	\$ 175,029	1.99	\$ 24,529		\$	199,558
Import top course soil, grade, compact	2751	CY	20.25	\$ 55,708	6.00	\$ 16,506		\$	72,214
Pave asphalt cap, low permeability	28,556	SY	8.43	\$ 240,727	1.04	\$ 29,698		\$	270,425
Stormwater detention system	1	EA	100,000	\$ 100,000	125,000	\$ 125,000		\$	225,000
Stormwater lift station	1	EA	50,000	\$ 50,000	25,000	\$ 25,000		\$	75,000
Stormwater treatment system	1	EA	75,000	\$ 75,000	25,000	\$ 25,000		\$	100,000
Dust control	4	WK	250.00	\$ 1,000	1636.25	\$ 6,545		\$	7,545
Install signs	10	EA	15.00	\$ 150	30.00	\$ 300		\$	450
Deed restrictions	1	LS					\$ 2,750	\$	2,750
Subtotal Remediation Costs A (A)								\$	1,100,524
Contractor overhead and profit	15	% of A					\$ 165,079	\$	165,079
Bond and insurance	3	% of A					\$ 33,016	\$	33,016
Mobilization/demobilization	5	% of A					\$ 55,026		55,026
Sales Tax / Tacoma	8.5	% of A					\$ 93,545		93,545
Contingency	10	% of A					\$ 110,052		110,052
Subtotal Remediation Costs B (B)								\$	1,557,242
Engineering Services	15	% of B					\$ 233,586	\$	233,586
Construction management	10	% of B					\$ 155,724	\$	155,724
Mobile laboratory	15	DAY			1,500.00	\$ 22,500	. ,	\$	22,500
Off-site soil transportation/disposal (C)	15,846	TON			-	\$ 515,629		\$	515,629
Disposal contingency		% of C				+ ,	\$ 51,563	\$	51,563
Lead battery casing disposal	1	LS					\$ 10,000	\$	10,000
Monitoring well abandon and replace	1	LS					\$ 60,000	\$	60,000
		LO					φ 00,000	Ψ	
TOTAL REMEDIATION COSTS								\$	2,606,244
O&M COSTS									
Semi-Annual groundwater (CPOC Wells)	2	EA			4,500.00	\$ 9,000		\$	9,000
Semi-Annual laboratory sample analysis	2	EA			15,000.00	\$ 30,000		\$	30,000
Annual reporting	1	EA			4,000.00			\$	4,000
Annual cap inspection / reporting	1	EA			1,000.00			\$	1,000
Annual well inspection / maintenance	1	EA			5,000.00	\$ 5,000		\$	5,000
Subtotal O&M Costs (D)								\$	49,000
Project management	15	% of D					\$ 7,350	\$	7,350
O&M Contingency	10	% of D					\$ 4,900	\$	4,900
TOTAL O&M COSTS (5 YR)								\$	61,250
(present worth i=0.05, n=5, P/A=4.3295)								\$	265,182
TOTAL - Based on 2001 cost assumptio	ns							\$	2,871,000
REVISED TOTAL - Based on inflation ac		~ 2014						\$	4,216,160

Notes:

Present worth calculated using uniform series present worth equation

2013 inflation adjustment calculation [PV / ((1+% inflation)^#Years)] where % inflation=0.03.

REMEDIAL ALTERNATIVE 2 REVISED COSTS 2014 (PREFERRED ALTERNATIVE) Former Tacoma Metals Site EXCAVATION / BUFFER/ OFFSITE DISPOSAL / ASPHALT CAP / INSTITUTIONAL CONTROLS

			-	erial		bor	Lump		
	•		Unit		Unit	-	Sum		Total
Task	Quantity	Unit	Cost	Extension	Cost	Extension	Price		Cost
REMEDIATION COSTS									
Excavate TPH / CPAH impacted soil	10564	CY			3.16	\$ 33,382		\$	33,382
Excavate buffer, grade, compact	700	CY			3.53	\$ 2,471		\$	2,471
Oxygen-releasing compound - Phase I	3,000	LBS	9.00	\$ 27,000	0.33	\$ 1,000		\$	28,000
Oxygen-releasing compound - Phase II	8,775	LBS	8.00		1.82	. ,		\$	86,200
Import bank run soil, backfill, compact	13,026	CY	14.20		1.99			\$	210,891
Import top course soil, grade, compact	2751	CY	20.25		6.00			\$	72,214
Pave asphalt cap, low permeability	28,556	SY		\$ 240,727	1.04			\$	270,425
Stormwater detention system	1	EA	100,000			\$ 125,000		\$	225,000
Stormwater lift station	1	EA	50,000		25,000			\$	75,000
Stormwater treatment system	1	EA	75,000		25,000			\$	100,000
Dust control	4	WK	250.00		1636.25			\$	7,545
Install signs	10	EA	15.00		30.00			\$	450
Deed restrictions	10	LS	10.00	φ 100	00.00	φ 000	\$ 2,750	\$	2,750
Deed restrictions	1	20					φ 2,750	Ψ	2,750
Subtotal Remediation Costs A (A)								\$	1,114,328
Contractor overhead and profit	15 '	% of A					\$ 167,149	\$	167,149
Bond and insurance	3 9	% of A					\$ 33,430	\$	33,430
Mobilization/demobilization		% of A					\$ 55,716		55,716
Sales Tax / Tacoma		% of A					\$ 94,718	\$	94,718
Contingency		% of A					\$ 111,433	\$	111,433
Subtotal Remediation Costs B (B)								\$	1,576,774
								•	-,,
Engineering Services	15 9	% of B					\$ 236,516	\$	236,516
Construction management	10 '	% of B					\$ 157,677	\$	157,677
Mobile laboratory	15	DAY			1,500.00	\$ 22,500		\$	22,500
Off-site soil transportation/disposal (C)	15,846	TON			32.54	\$ 515,629		\$	515,629
Disposal contingency	10 9	% of C					\$ 51,563	\$	51,563
Lead battery casing disposal	1	LS					\$ 10,000	\$	10,000
Monitoring well abandon and replace	1	LS					\$ 60,000	\$	60,000
TOTAL REMEDIATION COSTS								\$:	2,630,660
O&M COSTS									
Somi Appual groupdwater (CDOC Malla)	0	Ξ^			4 500 00	¢ 0.000		¢	0 000
Semi-Annual groundwater (CPOC Wells)	2	EA EA			4,500.00			\$	9,000
Semi-Annual laboratory sample analysis	2				15,000.00			\$	30,000
Annual reporting	1	EA				\$ 4,000		\$	4,000
Annual cap inspection / reporting	1	EA			1,000.00			\$	1,000
Annual well inspection / maintenance	1	EA			5,000.00	\$ 5,000		\$	5,000
Subtotal O&M Costs (D)								\$	49,000
Project management	15 9	% of D					\$ 7,350	\$	7,350
O&M Contingency		% of D					\$ 4,900		4,900
TOTAL O&M COSTS (5 YR)								\$	61,250
(present worth i=0.05, n=5, P/A=4.3295)	4.3295	P/A						φ \$	265,182
TOTAL Based on 2004 cost accuration	<u>,</u>							¢	2 806 000
TOTAL - Based on 2001 cost assumption REVISED TOTAL - Based on inflation adj									2 <u>,896,000</u> 4,252,874

Notes:

Present worth calculated using uniform series present worth equation

2013 inflation adjustment calculation [PV / ((1+% inflation)^#Years)] where % inflation=0.03.

REMEDIAL ALTERNATIVE 3 REVISED COSTS 2014 Former Tacoma Metals Site EXCAVATION / ONSITE TREATMENT / ASPHALT CAP / INSTITUTIONAL CONTROLS

				terial	-	bor	4	Lump		-
Teek	Quantity	l lmit	Unit	Extension	Unit	Extension		Sum		Total
Task	Quantity	Unit	Cost	Extension	Cost	Extension	<u> </u>	Price	I	Cost
REMEDIATION COSTS										
Excavate TPH / CPAH impacted soil	10564	CY			3.16	. ,			\$	33,38
Screen TPH / CPAH impacted soil	10564	CY			3.01	. ,			\$	31,79
Thermal desorption of TPH / CPAH soil	9897	CY				\$ 816,530			\$	816,53
Excavate lead impacted soil	11,047	CY			3.16	. ,			\$	34,90
Screen lead impacted soil	11,047	CY			3.01	. ,			\$	33,24
Stabilization of lead impacted soil	16,071	TON				\$ 337,481			\$	337,48
Oxygen-releasing compound - Phase I	3,000	LBS	9.00	. ,	0.33	. ,			\$	28,00
Oxygen-releasing compound - Phase II	8,775	LBS	8.00	\$ 70,200	1.82	. ,			\$	86,20
Backfill and compact treated soil	20,944	CY			2.19	. ,			\$	45,86
mport bank run soil, backfill, compact	2444	CY	14.20		1.99	. ,			\$	39,56
mport top course soil, grade, compact	2736	CY	20.25	. ,	6.00	. ,			\$	71,82
Pave asphalt cap, low permeability	28,556	SY	8.43	. ,	1.04	. ,			\$	270,42
Stormwater detention system	1	EA	100,000			\$ 125,000			\$	225,00
Stormwater lift station	1	EA	50,000		25,000				\$	75,00
Stormwater treatment system	1	EA	75,000		25,000				\$	100,00
Dust control	8	WK	250.00	. ,	1636.25	. ,			\$	15,09
Install signs	10	EA	15.00	\$ 150	30.00	\$ 300	۴	0 750	\$	45
Deed restrictions	1	LS					\$	2,750	\$	2,75
Subtotal Remediation Costs A (A)									\$	2,247,51
Contractor overhead and profit	15	% of A					\$	337,127	\$	337,12
Bond and insurance	3	% of A					\$	67,425	\$	67,42
Mobilization/demobilization	5	% of A					\$	112,376	\$	112,37
Sales Tax / Tacoma	8.5	% of A					\$	191,039	\$	191,03
Contingency	10	% of A					\$	224,751	\$	224,75
Subtotal Remediation Costs B (B)									\$	3,180,23
Engineering Services	15	% of B					\$	477,035	\$	477,03
Construction management	10	% of B					\$	318,023	\$	318,02
Mobile laboratory	15	DAY			1,500.00	\$ 22,500			\$	22,50
Off-site debris transportation/disposal (C)	1,000	TON			32.54	\$ 32,540			\$	32,54
Disposal contingency	10	% of C					\$	3,254	\$	3,25
Lead battery casing disposal	1	LS					\$	10,000	\$	10,00
Monitoring well abandon and replace	1	LS					\$	60,000	\$	60,00
TOTAL REMEDIATION COSTS									\$	4,043,58
O&M COSTS										
Semi-Annual groundwater (CPOC Wells)	2	EA			4,500.00	\$ 9,000			\$	9,00
Semi-Annual laboratory sample analysis	2	EA			15,000.00	. ,			\$	30,00
Annual reporting	1	EA			4,000.00				\$	4,00
Annual cap inspection / reporting	1	EA			1,000.00				\$	1,00
Annual well inspection / maintenance	1	EA			5,000.00				\$	5,00
Subtotal O&M Costs (D)									\$	49,00
Project management	15	% of D					\$	7,350	\$	7,35
O&M Contingency		% of D					\$	4,900		4,90
FOTAL O&M COSTS (5 YR)									\$	61,25
(present worth i=0.05, n=5, P/A=4.3295)									\$	265,18
OTAL - Based on 2001 cost assumptio	ns								\$	4,309,00
REVISED TOTAL - Based on inflation ad		r 2014							\$	6,327,9

Notes:

Present worth calculated using uniform series present worth equation

2013 inflation adjustment calculation [PV / ((1+% inflation)^#Years)] where % inflation=0.03.

Appendix I

Borings and Well Construction Logs

Appendix I: Appendix I: Boring and Well Construction Logs

Table of Contents

- 1) Monitoring Well Construction Details
- 2) Boring and Well Logs

MONITORING WELL CONSTRUCTION DETAILS Former Tacoma Metals Facility

			Casing	Nominal	Top of PVC	Total Well	Length of	Slot
Well	Previous	Date of	Diameter/	Borehole	Casing Elevation	Depth	Screen	Size
Designation	Designation ^(a)	Installation	Construction	Diameter	(feet) ^(b)	(feet)	(feet)	(inch)
On-Property We	lls						<u> </u>	<u> </u>
MW-1	NA ^(c)	8/25/1992 ^(d)	2-inch / PVC	9-inch	12.23	16.5	6	0.010
MW-2	NA	8/25/1992 ^(d)	2-inch / PVC	9-inch	12.04	16.5	6	0.010
MW-3(D) ^(e)	MW-3	8/26/1992 ^(d)	2-inch / PVC	9-inch	NA	16.5	6	0.010
MW-4(R) ^(f)	NMW-2	9-May-00	2-inch / PVC	9-inch	12.55	22.8	17.8	0.010
MW-5	NA	8/27/1992 ^(d)	2-inch / PVC	9-inch	10.90	16.5	6	0.010
MW-6	NA	8/26/1992 ^(d)	2-inch / PVC	9-inch	10.07	16.5	6	0.010
MW-7	NA	9/11/1992 ^(d)	2-inch / PVC	9-inch	9.45	16.5	6	0.010
MW-8(R) ^(g)	NMW-3	9-May-00	2-inch / PVC	9-inch	11.12	23.6	18.6	0.010
MW-9	NMW-1	9-May-00	2-inch / PVC	9-inch	13.61	23.5	18.5	0.010
MW-10	NMW-4	10-Nov-00	2-inch / PVC	9-inch	9.39	20	12	0.010
MW-11	NMW-5	10-Nov-00	2-inch / PVC	9-inch	9.47	20	14	0.020
MW-12	NMW-6	10-Nov-00	2-inch / PVC	9-inch	10.80	20	12	0.020
MW-13	NA	26-Jun-02	2-inch / PVC	9-inch	9.84	18.5	10	0.010
MW-14	NA	26-Feb-03	2-inch / PVC	9-inch	9.77	24	10	0.010
MW-15	NA	28-Feb-03	2-inch / PVC	9-inch	10.49	26.3	10	0.010
MW-16	NA	28-Feb-03	2-inch / PVC	9-inch	9.72	26.8	10	0.010
MW-17	NA	28-Feb-03	2-inch / PVC	9-inch	9.57	23.2	10	0.010
MW-18	NA	27-Feb-03	2-inch / PVC	9-inch	11.79	22.7	10	0.010
MW-19	NA	27-Feb-03	2-inch / PVC	9-inch	10.78	24.2	10	0.010
MW-20	NA	27-Feb-03	2-inch / PVC	9-inch	10.21	27	5	0.010
MW-21	NA	28-Feb-03	2-inch / PVC	9-inch	9.47	21.8	10	0.010
MW-22	NA	1-Dec-03	2-inch / PVC	9-inch	9.51	23.3	10	0.010
Off-Property We	ells							
MW-23	NA	29-Mar-04	2-inch / PVC	9-inch	14.35	30	10	0.010
MW-24	NA	29-Mar-04	2-inch / PVC	9-inch	10.58	23	10	0.010
MW-25	NA	29-Mar-04	2-inch / PVC	9-inch	11.24	24	10	0.010
MW-26	NA	5-Apr-05	2-inch / PVC	9-inch	12.52	28.5	10	0.010
MW-27	NA	5-Apr-05	2-inch / PVC	9-inch	11.06	26.8	10	0.010
MW-28(D) ^(h)	MS-28	5-Apr-05	2-inch / PVC	9-inch	10.43	26	10	0.010
MW-28(R) ^(h)	NA	15-Feb-06	2-inch / PVC	9-inch	10.43	24.25	10	0.010
MW-29	NA	15-Feb-06	2-inch / PVC	9-inch	11.12	32.5	10	0.010
MW-30	NA	15-Feb-06	2-inch / PVC	9-inch	10.05	41	15	0.010
MW-31	NA	15-Feb-06	2-inch / PVC	9-inch	9.38	33	10	0.010
MW-32	NA	29-Feb-08	2-inch / PVC	9-inch	9.26	24.5	10	0.010
MW-33	NA	28-Feb-08	2-inch / PVC	9-inch	9.24	24.5	10	0.010
MW-34	NA	28-Feb-08	2-inch / PVC	9-inch	9.62	25.6	10	0.010
MW-35	NA	28-Feb-08	2-inch / PVC	9-inch	7.95	50.5	10	0.010

Notes:

(a) Wells installed in 2000 by Kennedy/Jenks Consultants were initially designated NMW-# but were subsequently numbered in sequential order with the existing site monitoring wells.

(b) Elevations measured at northern side of PVC casing. Vertical elevations (NGVD 29) based on well surveys performed by KPG, Inc. (previously Earth Tech, Inc.) on 28 March 2000, 21 November 2000, 13 March 2003, 31 December 2003, 14 April 2004, 21 April 2005, 29 March 2006, and 11 April 2008.

(c) NA = Not applicable.

(d) Wells not installed by Kennedy/Jenks Consultants; boring and well construction logs unavailable.

(e) MW-3(D) was originally installed on 26 August 1992 by Pacific Groundwater Group. MW-3(D) was demolished (D) by a former Tacoma Metals site tenant.

(f) MW-4 was originally installed on 26 August 1992 by Pacific Groundwater Group. MW-4(R) was replaced (R) 9 May 2000 by Kennedy/Jenks Consultants.

(g) MW-8 was originally installed on 25 August 1992 by Pacific Groundwater Group. MW-8(R) was replaced (R) 9 May 2000 by Kennedy/Jenks Consultants.

(h) MW-28 was initially installed on 5 April 2005, but was subsequently destroyed (D) by a contractor during construction of the Puyallup River South Side Channel. MW-28(D) was abandoned and replaced with MW-28(R) on 15 February 2006.

PVC - Polyvinyl chloride (Schedule 40)

BORING L	.OCAT	ION										
DRILLING			Plant F	Retort Area		DRIL	LER			Boring Name		B-1
(Casc	ade					Jam			Project Name	Forr	mer Tacoma Metals
	HSA							ch OE		Project Number		996098.00
ISOLATIO	N CAS	ING				FRO	M N/A	то	N/A ^{FT.}	ELEVATION AND DATU	JM	TOTAL DEPTH 27.0 ft. bgs
BLANK CA	ASING N/A					FRO	M N/A	то	FT. N/A	DATE STARTED 6/25/02		DATE COMPLETED
SLOTTED		١G				FRO		ТО	N/A	6/25/02	I (FT)	6/25/02
SIZE AND	TYPE	OF FILT	TER PAC	К		FRO	M	то	FT.	11.0	. ,	
SEAL	N/A					FRO		то	N/A FT.	DKM		
GROUT	Pure	Gold	Bento	nite Chips		FRO	<u>2</u> M	то	27 FT.	SAMPLING METHODS Split Spoon		WELL COMPLETION
		rete					0	-	2			□ STAND PIPE F
	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTIO	N AND	DRILLING REMARKS
		DECHTOR					• . • .			graded SAND with gra		1 40 45% fine to
SS	1	30 15				>2000	<u>]</u>	sw	medi	brown, ~50% medium um- gravel, some silt,	no od	lor, no sheen.
		6				>2000						
SS	1	2 7	_	B1-4		82.8				D DEBRIS with SILT		
SS	1.5	10	5-			>2000			- and fi	ne sand matrix overal	I. loca	typically with 5-10% silt ally matrix is <5% to 20%
SS	1.5	14 3 4	_						moist	to wet below ~11 feet	t, very	y strong creosote odor, sible on water surface in
	1.0	6	-	B1-7		>2000				n test and on wood su		
ss	1.5	4 9	_			-			+			
		15 15	-	B1-9					-			
SS	1.5	32 29	10-	B1-10.5	-	457		Wood	ŀ			
SS	1.5	7	_	B1-11		328			-			
		24	_						F			
-		9	_			-			F			
- SS	1	50-5	4-			>2000			Ľ			
ss	0.2	19 34	15-	B1-16		1400						
		29		טו -ו ט		1400			[
[]	4 -	5	_	B1-18						y graded SAND gray, medium sand wi	ith up	to 5% fibrous wood
SS	1.5	13 14 2		B1-19		>2000		SP	debris	s and some silt, wet, n	noder	rate to strong creosote ater suface in sheen test.
ss	1.5	2 3 7	20-			37.9			-			
ss	1.5	3	-	B1-20.5					Poor	y graded SAND with	silt	
		4	-	B1-22		>2000			- Gray	to brown, fine- to med	lium- :	sand with 5-30% silt
SS	1.5	6 22	_			>2000		SP/	- creos	ote odor, heavy sheer	ו with	downward, wet, strong NAPL blebs visible on
	4 5	<u>24</u> 3	_	B1-24		2000		SM		Sundue in Sheen lest	anu (on soil surface in sample
. ^{SS}	1.5	3	25-	B1-25.5	•	>2000	┨ :		+			
SS	1.5	9 6 6	_	B1-26		>2000			Clave	ey SILT		
				B1-27		1	1 K /	1 ML/	-	brown, clayey silt, stif	f, wet,	, no evident odor, no
								CL				
								L				
-40.1												

Boring Log

	_ OCATI	ON Part	of Cre	osoting Plant						Boring Name		B-2
DRILLING	COMP					DRIL	LER Jam	ies		Project Name	Forr	mer Tacoma Metals
	HSA							ch OD		Project Number		996098.00
	N/A	ING				FRO	^м N/А	то	N/A	ELEVATION AND DAT	UM	TOTAL DEPTH 28.5 ft. bgs
BLANK C	asing N/A					FRO	M N/A	то	N/A ^{FT.}	DATE STARTED 6/25/02		DATE COMPLETED 6/25/02
SLOTTED) CASIN N/A	IG				FRO	M N/A	ТО	FT. N/A	INITIAL WATER DEPTI	H (FT)	0/23/02
SIZE AND	TYPE	of filt	FER PAC	К		FRO	M N/A	то	N/A ^{FT.}	LOGGED BY		
SEAL	Pure	Gold	Bentor	nite Chips		FRO	м 2	то	FT. 28.5	DKM SAMPLING METHODS		WELL COMPLETION
GROUT	Conc	rete				FRO	м 0	то	FT. 2	Split Spoon		SURFACE HOUSING STAND PIPE F1
	MPLES RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTIC	on and	DRILLING REMARKS
SS 🗌	0.1	100	_			19	í .` «	GW/	- Gray,		ure, lo	cally includes minor wood
-		14	_					GM		s with creosole odor,	otherw	vise no odor, no sheen.
SS	0.1	14 14 12 15				94.3			Poorl	y graded SAND		
ss	1.5	15 11 11	5-	B2-5	-	96.6			Brown	n, fine- to medium- sa rate creosote odor ar		
SS	1.5	1 2 3		B2-7	-	>2000		SP	strong		neavy :	sheen with NAPL blebs
SS	1.5	2	_	52 /	-	138			_			
SS	1.5	3 9 13	-	B2-9					Dark		lebris t	typically with 5-10% silt
- SS	0.3	13 10	10 -			138			moist	to wet at ~11 feet, ve	erv stro	ally matrix is <5% to 20%, ong creosote odor, heavy
		50 10	_		-					nd on wood surfaces		n water surface in sheen npler.
SS	0.2	7 9 6	_		-			Wood	_			
SS	0.5	9 15	- 15 -			163			E			
SS	0.1	19 20 26	-		-				-			
ss	0.1	6 4 6	_		-	>2000			-			
		U							Silty	SAND brown, fine- to mediu		nd with 30-50% cilt
- _{SS}	1.5	6 5	20-		-				locally	y layered, wet, moder	rate cr	
		6 3	-	B2-21	-			SM		test for some sampl		
SS	1.5	4 4 5			-	48.9			_			
SS	1.5	5 7 7		B2-24	-	>2000			Ē			
SS	1.5	8 9 9	25 -	B2-25.5	-	26.6		ML		silt wtih 10-15% fine sa		
SS	1.5	5 6 6		B2-27	-	33				rately stiff, wet, slight ci		
SS	1.5	7 8 6		B2-27 B2-28	-			CL/	Gray/t			0-20% fine sand, wet, no
								ML	Gray,	y graded SAND fine- to medium- sand and sheen.	with <5	5% silt, wet, slight creosote
								SP	Silty C	CLAY		
								CL/		lay as above. next page for litholog	v desc	ription)
								1	- Joee	115AL Paye 101 111110109	v uto(npaon

Boring Log

Boring Log

	t Name	For	mer Tacoma I	vietals P	roject	Numbe	r	996098.00	_ Boring Name _		B-2	
SA YPE	AMPLES RECOV. PENETR. (FEET) RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	OVA	LITHOLOGY	USCS LOG	SAMPLE DES	SCRIPTION AND DRILLING	REMA	RKS	
	0/0010 0/649030				<u>I</u>	1	ML	Poorly graded SAND Gray, fine- to medium) n- sand, wet, very sligh	t creos	sote odor	., no
							SP	sheen.				

			of Site	e Next to MW	-8(R	.)						Boring Name	B-3
RILLING	G COMF						DR	RILL	_ER Jar	nes			ormer Tacoma Metals
	G METH						DR	RILL	BIT(S 9-i) SIZE nch OE)	Project Number	996098.00
	ON CAS	ING					FR	ON		то	N/A	ELEVATION AND DATUM	TOTAL DEPTH
ANK C	ASING						FR	ON		то	FT.	DATE STARTED	28.0 ft. bgs
		١G					FR	ON		то	N/A	6/26/02	6/26/02
		OF FIL	TER PAC	Ж			FR	ON		то	N/A	11.0 LOGGED BY	
EAL		Gold	Bento	nite Chips			FR	ON		то	FT.	SAMPLING METHODS	WELL COMPLETION
ROUT	Conc		20.110				FR	ON		ТО	 FT. 2	Split Spoon	SURFACE HOUSING STAND PIPE
SA	AMPLES		DEPTH (FEET)	SAMPLE NUMBER	BAG	CKFILL DETAIL	s _{ova}		LITHOLOG	USCS		SAMPLE DESCRIPTION AN	
TYPE	(FEET)	PENETR. RESIST. BLOWS/6"	(FEET)	SAMPLE NOMBER		i di Kameli				LOG			
		6						_	· · ·		- Browi	graded SAND with silt an n, medium- and fine- sand	d with 30-35% fine- to
SS	1	8 8					- 7.6	_		SW/		um- gravel and 10-15% si asing with depth, no shee	
SS	1	6 6 3	-				-			SM	-		
ss	1.5	3 5 5		B3-4 B3-5									
		3	5 -	83-5]	_		Wood		D DEBRIS with SILT wood debris with 10-15	% silt matrix between
SS	1.5	2 2 2		B3-9			7.8	\square			fragm	ients, moist, slight creoso	
SS	1.5	23					- 64.3	3		SM	Gray	SAND to brown, fine sand with 3	
SS	1.5	25	-				20.1			÷	_ betwe	een silty fine sand and mo , moderate creosote odor	derately dense sandy silt, , moderate to heavy sheer
ss	1.5	6 2 3	10-	B3-10			-	-				y graded SAND medium- to coarse- sand	l with up to 5% silt, moist t
		4	-	B3-11.5	Ţ		- 14.2	_			wet a	t ~11 feet, moderate creo asing with depth but stron	sote odor generally ger at ~20 feet than above
SS	1.5	5 4 12					7.5					Il light to no visible sheen e on soil surface at 20-20	but minor NAPL blebs are 5 feet.
SS	1.5	9 5		B3-14.5			- 313			SP	-		
SS	1.5	9	15-				- 25.7	,			-		
ss	0.4	11 9 14	-					┤			F		
		16 18	-				- 159	<u>'</u>					
SS	1.5	15 19		B3-19			57.7	_			-		
SS	1.5	6 10 9	20-				- 160				-		
ss	1.5	5 5 7	-	B3-20.5 B3-21.5			141	┨				y graded SAND with silt medium- to fine- sand wi	th 30-35% silt_lavered
ss	1.5	7 13 15	-					-		SP/	- textur	re, wet, strong creosote of eximately 21.5, 23, and 23	dor and heavy sheen at
		19	-	B3-23 B3-23.5			- 82.9	┥		SM		NAPL blebs locally visible	
SS	1	22 50	- 25 -	B3-24.5			- 12.4	+			_ Claye	ey SILT	
SS	1.5	9 13 23					- 26.5	5	····×	ML/	Gray,	clayey silt, wet, no evide	nt odor, no sheen.
ss	1.5	23 11 13	-	B3-26.5			_	-		CL	Gray,		th minor silt, wet, moderate
		14]	B3-27.5			51.8	<u>،</u> ا		I SP		ote odor and sheen.	
										55	Gray,		silt, vague layering visible

RING			eosotir	ng Area Weste	ern I	Property B			cent N	1W-10)	Boring Name	B-4
	G COMPA		rillina	Inc.			DR	ILLER Kas	ev		•	ormer Tacoma Metals
RILLING	G METHO	D(S)					DR	ILL BIT(S)	SIZE			
DLATIO	ON CASIN		- Direc	ct Push			FR	<u>N/А</u> ом	то	FT.	Project Number	996098.00
	N/A						ED	<u>N/А</u> ом	то	N/A FT.	ELEVATION AND DATUM 9.44' (NGVD29)	TOTAL DEPTH 23.0 ft. bgs
	N/A							N/A	-	N/A	DATE STARTED 3/11/03	DATE COMPLETED 3/11/03
	D CASINO	3					FR	ом N/A	то	FT. N/A	INITIAL WATER DEPTH (F 10.5	
e ani	D TYPE C N/A	of filt	ER PAC	ĸ			FR	ом N/A	то	FT. N/A	LOGGED BY	
۹L	N/A						FR	ом N/A	то	FT. N/A	AJA SAMPLING METHODS	WELL COMPLETION
OUT							FR	OM	то	FT.	1"x2' split spoon with acetate liner	□ SURFACE HOUSING
	Ceme			remied)	BA		<u> </u>	0.0		23.0		□ STAND PIPE I
/PE	RECOV. F (FEET) B	PENETR. RESIST. LOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	DA			LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	AND DRILLING REMARKS
			_				_		GW		graded GRAVEL with sa h. drv. gravel (~60%) wit	and (fill) h medium and fine sand
			-				_			_\(~35%	6) and minor (<5%) silt.	
			-				-	<u>_</u>	GW		graded GRAVEL with sa	and (fill) 50%) with fine and medium
			-				-		<u> </u>			is generally fine-grained.
			5-				-		ML/	-	y SILT with sand (fill)	ately dense silt with ~5-10%
			-			D D	-		CL		and. Includes some clay	
			-				1		1	- · · ·	y SILT (fill)	
]		ML/	\	I silt and clay, dark brow	
			10-			A D. V V A T				Brown	n to gray, wet at ~10.5' b	ogs, soft silt and fine sand
			-		Ţ		_			- typica	Illy ~85-95% of material.	
			-				-		Wood	∣ aroun	d and coating the wood	material.
			-				-			-		
			-				-			-		
			15-				-		↓	Poorl	y graded SAND	
S	2.0			B-4-16.5-17							nish black (5YR 2/1), fine noderate creosote odor.	e to medium grained sand,
s	1.5		-				-		SP	– ~16.2 soil.	-17' visible creosote she	een, visible product blebs on
s	2.0		- 20-								9.5' visible creosote she on soil.	een on soil, visible product
			_	B-4-21.5-22			-			– ~20' s	trong creosote odor.	
S	2.0			D-4-21.J-22			-	77	CL		CLAY	
NOT					1				-	brown	n mottling, upper contact	4/2) with moderate yellow t is sharp, lean clay at least
15	5 feet ha	s bee	n inferr	o confirm confin ed from boring lo	ocatio	on MW-10.		0,	he upp	er \thick,	low to moderate plastici	ity, moist, no odor, no sheer
2. G	round su	urface	elevati	on based on City	y of T	Facoma datu	m (NG∖	/D 29).				

	LOCATI Form		eosotir	ng Area								Boring Name	B-5
RILLIN	G COMF	PANY					DR	ILLER	·			_	
RILLING	G METH		rilling,	INC.			DR	n Ill Bit				Project Name Por	mer Tacoma Metals
	GeoF	robe	- Direc	ct Push				N	Í/Á			Project Number	996098.00
OLATI	ON CAS	ING					FR		/A	то	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH
ANK C	ASING						FR	DM		то	FT.	9.89' (NGVD29)	24.0 ft. bgs
OTTE	N/A D CASIN	IG					FR		/A	то	N/A FT.	DATE STARTED 3/11/03	DATE COMPLETED 3/11/03
-	N/A	-						N	/A	-	N/A	INITIAL WATER DEPTH (FT) 10.0	
ZE ANI	D TYPE	OF FILT	ER PAC	ĸ			FR		/A	ТО	FT. N/A	LOGGED BY	
AL							FR	DM		то	FT.	AJA SAMPLING METHODS	
ROUT	N/A						FR		/A	то	N/A FT.	1"x2' and 2"x4' split	WELL COMPLETION
		ent Sl	urry (tr	remied)					0.0		24.0	spoon with acetate liner	□ STAND PIPE F
S	AMPLES	PENETR	DEPTH (FEET)	SAMPLE NUMBER	BAG	CKFILL DETAILS		LITHO	002	USCS LOG		SAMPLE DESCRIPTION AND	
YPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	(FEET)	SAMPLE NUMBER				LINO	JUGT	LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS
						$P \land A$					Asph	alt	
			-				-	•				y graded GRAVEL with sa	
S	2.0		-			N 2. V .	-		0			yellowish brown (10YR 4/2 ed gravel (subrounded to s	
			-				-	\$	\$			e grained sand, moist, no o	
			-				-			GP	F		
			5-				-	\$	۰		-		
s	1.0		-				-	•			-		
			_				-	Þ.	0		+		
			-				-				- woo	DEBRIS with SILT or SA	ND matrix
			_			A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	_				Olive	black (5Y 2/1) to black (N1), wet at ~10' bgs, wood
s	0.0		10-		Ţ		-					s with ~5-15% silt/fine grain locally up to 20% or less the second	
			_		-	B. D. V	_				-		
_			_				_				- 12'	ioni atrona araganta adar i	visible blobe of brown
			_				_			Wood		very strong creosote odor, vote product on wood.	
s	0.5		_				_				F		
			15-				4				L		
				B-5-15.5-16			_		_		L		
						S A A	_		-		L		
s	1									L_{-}	L		
												y graded SAND	ium arginged good wat
			200							0		black (5Y 2/1), fine to med	ium grameu sano, wet.
			20-				1			SP	~20-2	1.5' predominately mediun	n grained sand.
SS	2.0			B-5-21.5-22			1				~21 5	' very strong creosote odo	with visible choop
			<u> </u>	_ • _ • L L			1						
SS	2.0				1	12 12 14	1	1 /	/	CL	Louir	waarii	

NOTES 1. Boring was advanced to confirm confining layer location. 2. Ground surface elevation based on City of Tacoma datum (NGVD 29).

Kennedy/Jenks Consultants Boring Log BORING LOCATION Former Creosoting Area B-6 **Boring Name** DRILLER DRILLING COMPANY Cascade Drilling, Inc. Former Tacoma Metals Kasev **Project Name** DRILL BIT(S) SIZE DRILLING METHOD(S) GeoProbe - Direct Push 996098.00 N/A **Project Number** ISOLATION CASING FROM то FT ELEVATION AND DATUM 9.78' (NGVD29) TOTAL DEPTH N/A N/A N/A 24.0 ft. bgs **BLANK CASING** FROM FT TO DATE COMPLETED 3/11/03 DATE STARTED N/A N/A N/A 3/11/03 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 10.0 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A AJA SEAL FROM ТΟ FT SAMPLING METHODS WELL COMPLETION N/A N/A N/A 1"x2' and 2"x4' split □ SURFACE HOUSING GROUT FROM то FT spoon with acetate liner Cement Slurry (tremied) 0.0 24.0 □ STAND PIPE. FT. SAMPLES BACKFILL DETAILS DEPTH (FEET) PENETR. RESIST. USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. LOG TYPE (FEET) BLOWS/6 6 1 Asphalt 4.4.4 Well-graded SAND with gravel (fill) Moderate brown (5YR 3/4) to olive gray (5Y 4/1), loose, SS 1.0 fine to coarse grained sand, ~15-20% gravel-subangular 10 to subrounded, moist, no odor. . SW Ŕ ť۵ . 5 SS 1.0 WOOD DEBRIS with SILT or SAND matrix Olive black (5Y 2/1) to black (N1), wood debris with ~5-15% silt/fine sand matrix overall, locally up to 20% or 4 less than 5%. \leq SS 0.5 10 -~10' wet, slight creosote odor. Wood _ = 4 $D_{\mathbb{Q}^4}$ SS 3.0 ~15-16' strong creosote odor, visible blebs of brown 15 creosote product on wood, visible sheen on soil. Þ \bowtie B6-15.5-16 Poorly graded SAND B SS 2.0 Olive black (5Y 2/1), fine to medium grained sand, wet, V. slight creosote odor and sheen. 2/19/13 &` ۲ ۲ ۲ SS 20 A A AIV ~18-20' coarser grained sand lens. KJ PNW.GDT SP 20 4 1 A 4 SS 2.0 -⊳ \sim 0 4 ۷. ÷, GPJ 4 ~22' gradation to predominantly fine grained sand/silt, very B °. strong creosote odor, visible blebs of brown creosote SS Ν 2.0 B-6-23-23.2 2003 \ge 17 1 product on soil. B-6-23.8-24 CL TACOMA METALS OBSERVATION BORING LOGS Lean CLAY **NOTES** Dark yellowish brown (10YR 4/2), lean clay layer is at least 1. Boring was advanced to confirm confining layer location. 0.75' thick, ~1-inch thick sand lens at ~23.6' bgs, low to 2. Ground surface elevation based on City of Tacoma datum (NGVD 29). moderate plasticity, moist, no odor, no sheen. PNW Ş F-40.1

⊢-40.1 (6-87) (3-88) (8-90)

ORING	LOCATION Former	Creosotii	ng Area								Boring Name	B-7
RILLIN	IG COMPAN	IY le Drilling	Inc			DRIL		Kas	ev		_	ormer Tacoma Metals
RILLIN	IG METHOD)(S)				DRIL	LBI	T(S)	SIZE			
SOLAT	GeoPro	bé - Dire	ct Push			FRO		N/A	то	FT.	Project Number	996098.00
	N/A	-					N	N/A	-	N/A	ELEVATION AND DATUM 9.41' (NGVD29)	TOTAL DEPTH 30.0 ft. bgs
LANK	CASING N/A					FRO		N/A	то	N/A	DATE STARTED 3/11/03	DATE COMPLETED 3/11/03
LOTTE	ED CASING					FRO		۸/A	то	FT. N/A	INITIAL WATER DEPTH (F	
IZE AN	D TYPE OF	FILTER PAC	Ж			FRO	M		ТО	FT.	9.5 LOGGED BY	
EAL	N/A					FRO		N/A	то	N/A FT.	AJA	
ROUT	N/A					FRO		N/A	то	N/A FT.	SAMPLING METHODS 1"x2' and 2"x4' split	WELL COMPLETION
	Cemen	t Slurry (t	remied)					0.0		<u>30.0</u>	spoon with acetate line	r 🛛 🗆 STAND PIPE F
TYPE	RECOV. PER (FEET) BLC	NETR. SIST. WS/6"	SAMPLE NUMBER	BACI	KFILL DETAILS		LITHO	OLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
				:						1	y graded SAND with gra	
SS	3.0									coars	y yellowish brown (10YR e grained sand, ~30-40%	
20		_				-			SP	subro	unded, moist, no odor.	
				3		-				Ļ		
		5-				-				F		
ss	3.0	-				-	$\left \right $			SILT	with WOOD debris	
		-		4		-				Dusk	y yellowish brown (10YR	2/2), occasional wood
					► \ \ \ _ \ \ .	-			ML	debris	s, moist, no odor.	
		-		\mathbf{n}		-				~9-10)' wet.	
SS	3.5	10-		÷		-			SP/		y graded SAND with silt	
		-				-					y yellowish brown (10YR wet, no odor or sheen.	2/2), fine sand, ~30-50%
]		••••	<u>SM</u>	JI 11	with sand	
SS	4.0	_						••••		Dusk	y yellowish brown (10YR	2/2), ~15-20% fine sand,
00	4.0	15-				-	•	• •		_ Poorl	y graded SAND with silt	
				•		-	••	••••	SP/	As de	escribed above.	
SS	1.5	-				-	[.	• • •		· L	graded SAND	2/2), fine to coarse grained
						-	۰.	•••	LSM_		occasional gravel, wet.	
SS	2.0	-				-	•••	• • •	SW	– ~19' o	creosote odor, slight she	en.
		20-				-		• •		- ~21' s	strong creosote odor, visi	ible sheen on soil.
SS	2.0		B-7-21.9-22			-	• •	•••• •••		_ ~21.7 - 2/2), v		ky yellowish brown (10YR
SS	2.0		B-7-23-23.5			-	• •	•	ł	~22' p	poorly graded sand, dusk	xy yellowish brown (10YR
			5 _ 5.5			-	Ę.	<u>,</u>	CL	1 \ //	n on soil.	rong creosote odor, visible
SS	2.0	25-			× 4	-				1 1	CLAY	(2) loop alou lover 0 514-1-1
						-		•••••	SP		yellowish brown (10YR 4 lasticity, moist.	/2), lean clay layer 0.5' thic
SS	2.0			4						1	y graded SAND black (5Y 2/1), fine grair	ned sand, wet.
ss	2.0	-				-	$\left + \right $				creosote odor and sheen	
									ML	L\~26-2	7.7' contains silt layers.	
<u>NO</u>		advanced	o confirm confini	ing la	ver location				-		28.7' slight creosote odor	
			to confirm confini on based on City			(NGVE	D 29).			yellowish brown (10YR 4 or, no sheen.	/2), silt, non-plastic, moist,

BORING	Former C	reosotii	ng Area						Boring Name	B-8		
DRILLIN	IG COMPANY Cascade		•		DRILL	ER Kas	ev			Former Tacoma Metals		
DRILLIN	IG METHOD(S)				DRILL	BIT(S)				996098.00		
SOLATI	ION CASING				FROM	1	ТО	FT.	Project Number			
BLANK (N/A CASING				FROM		то	N/A FT.	10.15' (NGVD2	9) 28.0 ft. bgs		
SLOTTE	N/A ED CASING				FROM	<u>N/A</u>	то	N/A FT.	DATE STARTED 3/11/03	DATE COMPLETED 3/11/03		
	N/A D TYPE OF FI		K		FROM	N/A	то	N/A FT.	INITIAL WATER DEPTH	(FT)		
	N/A					N/A	-	N/A	LOGGED BY			
SEAL	N/A				FROM	N/A	то	FT. N/A	SAMPLING METHODS			
GROUT	Cement S	Slurry (t	remied)		FROM	0.0	то	FT. 28.0	1"x2' and 2"x4' split spoon with acetate lin	ner SURFACE HOUSING		
S TYPE	SAMPLES RECOV. (FEET) BLOWS	R. DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS		LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	N AND DRILLING REMARKS		
	(* == * / BLOWS	6"		$P \land V$				Asph	alt			
		-			ŀ	•••••			y graded SAND with g	g ravel (fill) (R 2/2), fine to medium grained		
SS	3.0							sand.	~15-20% gravel-suba sional wood fragments	ingular to subrounded,		
							SP		nonai woou nayments	, חוטופו, חט טעטו.		
		5-					1	-				
SS	3.0	-						-				
		-						1	D DEBRIS with SILT of			
										debris with variable ~20-25%		
SS	3.0	10-							fine sand matrix.)' wet, slight creosote odor.			
		-						~10'∖ -				
				A.A. A			Wood	-				
		-						-				
SS	3.5	15-			-							
	_							-				
SS	1.5	-						-				
								Poorl	y graded SAND			
SS	2.0	-								ained sand, trace fines, wet.		
SS	2.0	20					SP	- ~19 2	5-24' strong to moder	ate creosote odor, visual shee		
00	2.0				ŀ			on so				
SS	2.0	L -						-				
		- 🏹 -	B-8-23.5-24		ŀ			Lean	CLAY			
SS	2.0	25-					CL		yellowish brown (10YF rate plasticity, moist.	R 4/2), lean clay 0.8' thick,		
SS	2.0		B-8-26.5-27			<u></u>	SP	Poorl	y graded SAND			
								∟ └───	escribed above, slight o	creosote odor.		
<u>NO</u> 1. В		lvanced	to confirm confini	ng layer location.			CL	As de	escribed above, lean cl	lay at least 1' thick, no odor, no		
2. G	Ground surfac	e elevat	ion based on City	of Tacoma datum ((NGVD	29).		sheer				

DRILLIN	Former C	reosotir	ig Area		DRILL	ER			Boring Name	B-9
	Cascade		Inc.			Kas BIT(S)	ey SIZE		Project Name Fo	ormer Tacoma Metals
	GeoProb		ct Push			N/A			Project Number	996098.00
	ON CASING				FROM	N/A	ТО	N/A ^{FT.}	ELEVATION AND DATUM 10.51' (NGVD29)	TOTAL DEPTH 26.0 ft. bgs
BLANK (CASING N/A				FROM	1 N/A	то	N/A ^{FT.}	DATE STARTED 3/11/03	DATE COMPLETED 3/11/03
SLOTTE	D CASING				FROM	1 N/A	то	N/A ^{FT.}	INITIAL WATER DEPTH (F1	
SIZE AN	D TYPE OF F N/A	ILTER PAC	K		FROM		то	FT. N/A	11.0 LOGGED BY	
SEAL	N/A				FROM		то	FT. N/A	AJA SAMPLING METHODS	WELL COMPLETION
GROUT	Cement	Slurrv (tr	remied)		FROM		ТО	FT. 26.0	1"x2' and 2"x4' split spoon with acetate liner	SURFACE HOUSING STAND PIPE F
S. TYPE	AMPLES RECOV. PENET (FEET) BLOWS	R. DEPTH	SAMPLE NUMBER	BACKFILL DETAILS		LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	ID DRILLING REMARKS
	BLOWS	5/6"		$\mathcal{P} \land \mathcal{V}$	-			Asph	alt	
SS	3.0	-				۰ ۰	GP	 Vario olive 	y graded GRAVEL with s us colors (dusky yellowis gray-5Y 5/2, dark reddish e sand, moist, no odor.	
						¢ (- - <u>-</u>		
SS	3.0	5-						1	y graded SAND (fill) black (5Y 2/1), fine to me	edium sand, moist, no odor
33	3.0						SP	_		
								-		
		-						-		
SS	3.0	10-						Dark	D DEBRIS with SILT or s yellowish brown (10YR 4.	2), typically with ~5-10%
									e sand matrix although ~ creosote odor.	20-40% was observed,
		-					Wood		' wood, very little matrix.	
SS	1.0	-					**000	_ ~11' v	vet.	
		15-						[
SS	1.7	_						-		
							SP/		y graded SAND with silt	 2/2), fine sand, trace fines,
SS	1.5								sheen on soil, non-plast	
SS	2.0	20					<u>SM</u>	$\Gamma := -$	y graded SAND	
		_					SP		y yellowish brown (10YR n on soil, wet, moderate o	2/2), fine sand, no visual reosote odor.
SS	2.0							· · − −	2' gradual gradation fine	to coarser sand
SS	1.8		B-9-23.5-24				SP/	Dusk	y graded SAND with silt y brown (5YR 2/2), fine s	
							SM	∖sheer □\ Lean	n on soil, wet, strong crec	sote odor.
	oring was a			ing layer location. / of Tacoma datum (NGVD	29).	CL	Olive lens a	gray (5Y 4/1), clay layer at ~25.5-25.8' bgs, moder	at least 1.5' thick, fine sand ate plasticity, moist, no odd
1. B	oring was a				NGVD	29).	CL		at ~25.5-25.8' bgs, moder	

Boring Log

RINGL	OCATION	eosotii	ng Area (Adjao	cent MW-11)					Boring Name	B-10
	COMPANY Cascade E	rillina	Inc		DRIL	LER Kas	ev			ormer Tacoma Metals
ILLING	METHOD(S)		·		DRIL	L BIT(S)				
	GeoProbé	- Dire	ct Push		FRC	<u>N/A</u>	то	FT.	Project Number	996098.00
1	N/A					N/A	-	N/A	ELEVATION AND DATUM 9.29' (NGVD29)	TOTAL DEPTH 22.0 ft. bgs
ANK CA	N/A				FRC	N/A	то	N/A	DATE STARTED 3/11/03	DATE COMPLETED 3/11/03
	CASING N/A				FRC	M N/A	то	FT. N/A	INITIAL WATER DEPTH (F	
EAND	TYPE OF FIL	TER PAC	Ж		FRC	M	ТО	FT. N/A	10.5 LOGGED BY	
AL.					FRC		ТО	FT.	AJA	
<u>ן</u> דעס	N/A				FRC	N/A	то	N/A FT.	SAMPLING METHODS 1"x2' split spoon with	WELL COMPLETION
(Cement SI	urry (ti	remied)			0.0		22.0	acetatė liner	STAND PIPE
-	MPLES RECOV. PENETR. (FEET) BLOWS/6'	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS		LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
							GW	Gray i sand i sand i wool Browr with s typica aroun - - - - - - - - - - - - - - - - - - -	and some (<5%) silt. D DEBRIS with SILT or S n to gray, wet at ~10.5' b ome clay. Mixed with wo illy ~85-95% of material. d and coating the wood i	SAND matrix gs, soft silt and fine sand od debris. Wood debris is Silt, sand and clay are material.
s s	0.2							_		
-		20-					SP	- Browr	y graded SAND nish black (5YR 2/1), fine	e to medium grained sand,
s	2.0	⊠ -	B-10-21-21.5			·····		∠ wet.	' strong creosote odor, v	isible sheen on soil
NOTE	ES	J	1				CL	\neg —	CLAY	
16	feet has bee	en inferr	ed from boring lo	ing layer location. Li ocation MW-11. y of Tacoma datum (-	•	ne uppe	fine g	rained sand in toe of san	/2), upper contact is sharp, npler, lean clay layer 0.5' ty, moist, no odor, no sheer

F-40.1 (6-87) (3-88) (8-90)

	LOCATION Former CI	reosotii	ng Area (North	nern Property Bou	undar	y)			Boring Name	B-11
	G COMPANY	Drillina	. Inc.	•	DRILI	LÉR Kas	ev		_	ormer Tacoma Metals
RILLING	GeoProbe				DRIL	L BIT(S)	SIZE			996098.00
SOLATIC	ON CASING	- Dire	JUPUSN		FROM	M	то	FT.	Project Number	
BLANK C	N/A ASING				FROM TO FT.			N/A FT.	ELEVATION AND DATUM 7.42' (NGVD29)	TOTAL DEPTH 22.0 ft. bgs
	N/A D CASING				N/A N/A FROM TO FT.			N/A	DATE STARTED 3/11/03	DATE COMPLETED 3/11/03
-	N/A				N/A N/A			N/A	INITIAL WATER DEPTH (F	Τ)
	D TYPE OF FIL N/A	TER PAC	,К		FROM	N/A	ТО	N/A	LOGGED BY	
SEAL	N/A				FROM	M N/A	то	N/A	SAMPLING METHODS	WELL COMPLETION
GROUT	Cement S	lurrv (t	remied)		FROM	и 0.0	то	FT. 22.0	1"x2' split spoon with acetate liner	SURFACE HOUSING STAND PIPE F
SA	AMPLES RECOV. PENETR (FEET) BLOWS/		SAMPLE NUMBER	BACKFILL DETAILS		LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
	BLOWS/	6"		$\triangleright \land \lor$		A		Well-	graded GRAVEL with sa	nd
		-				· /	GW	Brown	n fine to medium gravel v and some silt, no odor, r	with ~40-45% fine to mediur to apparent sheen.
		_							D DEBRIS with SILT ma	
		5-								lly with ~5-10% silt/fine san et, moderate sheen below 1
		-						_ feet, s	slight to moderate creose	ote odor below 13 feet.
								-		
		-						Ľ		
		10-					Wood	[
		_						_ ~11'\	vot	
		-						-	wet.	
		-						-		
		15						Ľ		
		15 -					L			
SS	1.8	-					SP	Dusk	l y graded SAND y yellowish brown (10YR slight creosote odor, no s	2/2), fine to medium sand,
SS	2.0	1 -					57	[
55	2.0	20-						- Silty	SAND	
SS	2.0	-					SM	_ Dusk	y yellowish brown (10YR	2/2), fine sand, 1-inch gs, wet, slight creosote odo
							CL	no sh		
	oring was ad			ing layer location. Lit	thology	/ from t	L		CLAY vellowish brown (10YR 4	/2), upper contact is sharp,
			ed from boring lo ion based on City	ocation MW-13. y of Tacoma datum (NGVD	9 29).		clay a	at least 0.4' thick, low to i lor, no sheen.	noderate plasticity, moist,

Boring & Well Construction Log

BORING	LOCATI	on er Creos	sotir	ng Area								Well Name	MW-:	22 (B-12)
DRILLIN	G COMP	ANY		Company				DRIL	LER	dy / Do	n		-	na Metals
DRILLIN	G METHO	OD(S)		Company				DRIL	L BIT(S)	SIZE		Project Name		
SOLATI	ION CASI	Geopro	ope					FRO	М	<u>DD / 2</u> то	FT.	Project Number _		098.00
BLANK (N/A CASING							FRO	<u>N/A</u> м 0	то	N/A 13 FT. 23.3	ground surface		24.0 ft. bgs
SLOTTE	2" Scl D CASIN		40 P	VC Pipe				FRO	<u>23</u> M	то	FT.	DATE STARTED 11/24/03		COMPLETED 12/1/03
SIZE AN		hedule 4 OF FILTER		VC Pipe 0.01	0" s	lot		FRO	13	ТО	23 FT.	INITIAL WATER DEPTH	FT) STATI	C WATER ELEV. (FI N/A
	Lapis Lustre #2/12 Monterey Sand						FRO	11	то	23.5 11 FT.	LOGGED BY			
Pure Gold Bentonite Chips							23.5		24	SAMPLING METHODS 2"x4' shelby tube with		COMPLETION RFACE HOUSING		
						FRO	0	то	5T. 2	acetate liner		AND PIPE I		
S TYPE	SAMPLES WELL CONSTRUCTION						OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	AND DRILLING	G REMARKS	
						A ⊲	D X		r			alt Surface graded GRAVEL with s	ailt and san	d
SH	3		_								Gray/	green, locally orange/b noist, no odor, no sheer	rown, 55-65	
		Å	-	B12-2-3			-	4.4 2.1	ĺ.` △^		_ 2-3' s	light chemical odor.		
			- 5 -	B12-4-5			-	1.6		GW/ GM				
SH	4						_					, 3" gray granular mate	rial above 3	3" of fractured red
0.11		М		wel B12-6.5-7.5	Ţ			1.3				material. black/dark gray angular	gravel with	sand and silt, we
		Д		Geoprobe boring	Ţ			1.3	^		below	7.5'.		
	0	М		B12-8-9				7.2			8-9', p	bea gravel with brick fra	igments and	d coarse sand.
SH	2	X		B12-9-10			-	40.5		_				
			10-				-				Block	y to fibrous wood debri matrix material, wet, m		
SH	1		1									heavy sheen on water		
			-							-	-			
			-								-			
SH	1		-							Wood	1 L			
			15-				-				-			
			-				-				F			
			-				= -				F			
SH	1		-				-	21.9			F			
			-				-			;	Poorl	y graded SAND		
			20-	D40.00.01			-			·	Dark	gray, poorly graded me ote product on grains,		
		Д	-	B12-20-21			-	17.9		SP	very h	neavy sheen, product b ing 5-10% of water sur	lebs rinse o	out in sheen test
SH	4		-				-				-	<u> </u>		, - .
		Ж	4	B12-22-23			-	20.6		: CL/	- Silty	CLAY		
								10.8		ML	Brown	n, silty clay, dense, wet	, slight shee	en and creosote
2. V	liot borir Vell insta	alled with	hollo	th Geoprobe rig						-				
		ganic Va t sump in		Analyzer ed from 23 to 23	3.3 fee	et bgs	s.							

Kennedy/Jenks Consultants Boring Log BORING LOCATION Former Creosoting Area B-13 Boring Name DRILLER DRILLING COMPANY Cascade Drilling Company **Tacoma Metals** Don Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2" OD 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A ground surface 24.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 11/24/03 11/24/03 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8.5 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM то FT WELL COMPLETION SAMPLING METHODS N/A N/A N/A 2"x4' shelby tube with □ SURFACE HOUSING GROUT FROM то FT acetate linér Baroid Quick-Grout Bentonite 24 FT. 0 □ STAND PIPE. SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA PENETR USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. RESIST. LOG TYPE (FEET) BI OWS/ 6 1 Well-graded GRAVEL with silt and sand 4 Dark brown to gray, gravel with 30-40% sand and some silt, minor glass a metal debris in upper several feet, moist, no odor, no sheen. 2 B13-1-3 SH GW/ 2 ≥ ≙ ♀ GM 12. V 4 5 ⊿ -B13-5-6 6.3 SH 4 WOOD DEBRIS Woody debris, fine to coarse chips in sampler, 10-30% gray to light brown silty matrix material, moist, no odor, no 1.1 sheen. ¥ B13-8-10 7.7 Wood SH .5 10 4.6 -----8-10', brown woody debris with 20-30% fine sand and silt matrix, wet below approximately 8.5 feet, moderate creosote odor, no evident sheen. SILT MI 7.1 Dark gray, silt with some clay, soft, loose, wet, moderate SH 3 12/16/03 creosote odor, slight sheen. Х B13-14-15 Poorly graded SAND 15 A A Aid Gray, medium to coarse sand, mixed with fine sand in KJ PNW.GDT 29.5 . 4 upper 6", heavy sheen on surface in sampler (13-16 feet), 4 A 4 A creosote product on sand grains, wet, strong creosote 80.1 А. А. А odor, heavy sheen, product blebs on 10% of water surface in sheen test. .4 .4 V GPJ. SH 4 SP Medium to coarse sand, minor silt in small clumps, fines **BORING LOGS DEC 2003** 59.1 with depth, mostly medium sand by 19', wet, strong creosote odor, heavy sheen with product blebs over 5% of 4 • 4 B13-19-20 water surface in sheen test. 20 . . SH 2 × د م م B13-21-22 19.5 A 4 Lean CLAY METALS DNAPL ×. • SH 1 И Gray to brown, silty clay with some fibrous plant material, CL 40 wet, very slight creosote odor, no evident sheen. Þ SH 1 B13-23-24 NOTES TACOMA 1. OVA- Organic Vapor Analyzer PNW 2

BORING	Form	er Cre	eosotii	ng Area							Boring Name	B-14
RILLING			rilling	Compony			DRIL					
RILLING			ming	Company			DRIL	Dor L BIT(S)	SIZE		Project Name	Tacoma Metals
	Geop	robe						2" C	D		Project Number	996098.00
SOLATIC	N/A	ING					FRO	N/A	то	N/A FT.	ELEVATION AND DATUM ground surface	TOTAL DEPTH 12.0 ft. bgs
	N/A						FRO	N/A	10	N/A ^{FT.}	DATE STARTED 11/24/03	DATE COMPLETED 11/24/03
	D CASIN	IG					FRO	M N/A	то	FT. N/A	INITIAL WATER DEPTH (F	
IZE AND	D TYPE	OF FILT	ER PAC	Ж			FRO	М	то	FT.	LOGGED BY	
EAL							FRO	<u>N/A</u>	то	N/A FT.	DKM	
Pure Gold Bentonite Chips							0	-	12	SAMPLING METHODS		
	ROUT N/A				FRO	M N/A	то	FT. N/A	2"x4' shelby tube with acetate liner	SURFACE HOUSING STAND PIPE F		
SA	AMPLES				BAG	CKFILL DETAILS	OVA		USCS		•	
TYPE	RECOV. (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER				LITHOLOGY	LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
		DLOW5/0						r		Well-	graded GRAVEL with si	It and sand
			- 1-					.` {			n, gravel with 30-40% sa oots 0-2', moist, no odor,	nd and some silt, contains
			Μ'	B14-1-2			4.0					
SH	2		△ 2-			-	4.0		GW/	_		
									GM			
			3-			-		[]		-		
			4-			-				-		
			F								D DEBRIS	
			√ 5-	B14-5-6			1.5				ge-brown to dark brown, moist to wet (below 8').	10-20% sandy silt matrix,
SH	3		∆ 6-	DITOO		-	1.5			_		
			7-			-	1.7			4 5-8	', no odor, no sheen.	
										4.0 0	, no odor, no sneen.	
			8-		$\mathbf{\sum}_{\overline{\overline{\gamma}}}$	-			Wood	F		
			~									
			9-	B14-9-10			13.1			8-10',	, slight creosote odor, slig	ght sheen.
SH	2		10 -	U		-				L		
5.1	-		10									
			11-			-				 11_10	2', very slight creosote oc	lor slight sheep
										11-12		
			12]					! -			
<u>NOT</u> 1. O	<u>ES</u> VA- Ore	ganic \	/apor A	nalyzer								
				, _								

DRING LOCATION Former Creosoting Area		Boring Name	B-15
RILLING COMPANY Cascade Drilling Company	DRILLER Don	Project Name	Tacoma Metals
RILLING METHOD(S) Geoprobe	DRILL BIT(S) SIZE 2" OD	Project Number	996098.00
OLATION CASING N/A		N/A ELEVATION AND DATUM ground surface	TOTAL DEPTH 12.0 ft. bgs
ANK CASING N/A	FROM TO N/A	N/A DATE STARTED 11/24/03	DATE COMPLETED 11/24/03
LOTTED CASING N/A		N/A INITIAL WATER DEPTH (FT)	11/24/00
ZE AND TYPE OF FILTER PACK N/A		N/A LOGGED BY	
EAL Pure Gold Bentonite Chips	FROM TO	12 SAMPLING METHODS	
N/A	FROM TO N/A	N/A 2"x4' shelby tube with acetate liner	SURFACE HOUSING STAND PIPE F
SAMPLES FYPE RECOV. PENETR. DEPTH (FEET) LOWS(6" BACKFILL DET. SAMPLE NUMBER	AILS OVA LITHOLOGY USCS LOG	SAMPLE DESCRIPTION AND	DRILLING REMARKS
SH 2 2 - B15-1-2 3- 4- 5- D15-5-	1.3	Well-graded GRAVEL with silt a Brown, gravel with 30-40% sand odor, no sheen. WOOD DEBRIS Brown to dark brown, wood debu silt matrix, moist, no odor, no sh	l and some silt, moist, no
SH 4 6^{-} B15-5-6 7^{-} B15-7-8 $=$	- 0.6 SM	Silty SAND Gray, moderately dense fine sar to wet, no odor, no sheen.	nd with 30-40% silt, moist
SH 3 10- 11- 12- B15-10-11		Poorly graded SAND Gray, medium sand with some o wet, no odor, no sheen.	coarse sand and minor sill

KJ PNW TACOMA METALS DNAPL BORING LOGS DEC 2003.GPJ KJ

		Creosotir	ng Area						Boring Name	B-16
		e Drilling	Company		DRIL	Dor			Project Name	Tacoma Metals
DRILLIN	G METHOD(Geoprob				DRIL	L BIT(S) 2" C			Project Number	996098.00
SOLATI	ON CASING				FRO	M N/A	то	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (CASING N/A				FRO	FROM TO			DATE STARTED	12.0 ft. bgs
SLOTTE	D CASING				FRO		то	N/A FT.	11/24/03 INITIAL WATER DEPTH (FT	11/24/03
SIZE AN	N/A D TYPE OF	FILTER PAC	ĸ		FRO	<u>N/A</u>	то	N/A FT.	9)
SEAL	N/A				FRO	<u>N/A</u>	то	N/A FT.	LOGGED BY DKM	
	Pure Go	old Bento	nite Chips			0	-	12	SAMPLING METHODS 2"x4' shelby tube with	WELL COMPLETION
GROUT	N/A				FRO	M N/A	то	N/A	acetate liner	
S. TYPE	AMPLES RECOV. PENE	ETR. DEPTH	SAMPLE NUMBER	BACKFILL DETAILS	OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	D DRILLING REMARKS
TYPE	(FEET) BLOV	VS/6"						Woll	graded GRAVEL with silt	and cand
					121	[.` ·	GW/ GM	Light	- to dark brown, gravel with	30-40% sand and some
		1-		-					noist, moderate chemical of y graded SAND with silt	odor, no sneen.
SH	3.5	2-	B16-1.5-2.5	-	71.1		SP/	Gray,		silt in small pods, moist,
							SM	mode		
		3-	B16-3-4	-	74.9		GW/		graded GRAVEL with silt	
		4-		-	74.9		GM/		rate chemical odor, no sh	6 sand and some silt, mois leen.
								woo	D DEBRIS	
		5-	B16-5-6	-	133		Wood	Brown moist	n to gray, woody debris wi , moderate chemical odor	th 10-20% soft silty matrix , no sheen.
SH	3.5	6-		-	155			-		
		_					 	Silty	SAND	
		7-	B16-7-8	_	106				silty fine sand with some strong creosote odor, sligh	
		-8-		-	100	-	ЯΜ	-		
		M .	.							
		<u></u> 9-	B16-8.5-9.5	÷	249			F		
SH	4	10-		-				1	y graded SAND medium to coarse sand v	with minor silt, wet, strong
		Χ	B16-10-11				SP		ote odor, heavy sheen, m	
		11-			224			F		

KJ PNW TACOMA METALS DNAPL BORING LOGS DEC 2003.GPJ KJ PNW.GDT 1

	rmer Cr	eosotii	ng Area							Boring Name	B-17
	iscade [Drilling	Company			DRIL)		Project Name	Tacoma Metals
	oprobe						2" (DD		Project Number	996098.00
	A					N/A N/A				ELEVATION AND DATUM	TOTAL DEPTH 12.0 ft. bgs
LANK CASI	A						FROM TO N/A N/A			DATE STARTED 11/24/03	DATE COMPLETED 11/24/03
N/.	OTTED CASING N/A ZE AND TYPE OF FILTER PACK						M N/A		N/A FT.	INITIAL WATER DEPTH (F 9.5	
ZE AND TYPE OF FILTER PACK <u>N/A</u> EAL						FRO	N/A		N/A FT.	LOGGED BY DKM	
Pu	Pure Gold Bentonite Chips						0		FT. 12	SAMPLING METHODS	
ROUT N/		1				FRO	FROM 1		N/A	2"x4' shelby tube with acetate liner	□ SURFACE HOUSING □ STAND PIPE
SAMPI	LES COV. PENETR. RESIST. ET) BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER	BA	CKFILL DETAILS	OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
SH 3	5	1- 2- 3- 4- 5-	B17-1-2 B17-3-4		-	2.6		GW/ GM	Brow	ravel with coarse sand ir	t and sand 40% sand and some silt, h lower foot, moist, no odor,
SH :	3	6-	B17-5-6		-	1.3		SM	Light sheer WOO	DEBRIS	with silt, moist, no odor, no
		8-	B17-7-8		-	2.4				atrix material, moist to w	
SH ⁷		9- 10 - 11-		∑ ı.	-	30.3		Wood	- -		
		 12-									

KJ PNW TACOMA METALS DNAPL BORING LOGS DEC 2003.GPJ KJ PNW.GDT

Boring Log Kennedy/Jenks Consultants BORING LOCATION Off-property (Northwest former Tacoma Metals) B-18 Boring Name DRILLER DRILLING COMPANY Cascade Drilling, Inc. Kasey Goble Former Tacoma Metals Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobe Direct Push N/A 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 26.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/10/04 3/10/04 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8 SIZE AND TYPE OF FILTER PACK FROM TO FΤ LOGGED BY N/A N/A N/A SDM SEAL FROM то FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 26 0 □ SURFACE HOUSING GROUT FROM то FT Macro Core N/A FT. N/A N/A □ STAND PIPE. SAMPLES BACKFILL DETAILS OVA (PPM) DEPTH (FEET) USCS LOG PENETR. RESIST. SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV TYPE (FEET) RI OWS/ WOOD DEBRIS wood chips Tan, ~1/2 inch diameter loose wood chips, dry to slightly Wood moist, no odor, no sheen. Gravelly SILT Black, ~30% 1/2-inch diameter rounded to subrounded ML gravel, ~70% silt, moist, no odor, no sheen. \boxtimes B-18-3.4-4 WOOD DEBRIS Black, wood debris, ~<10% silt content, moist, slight wood 5 0 Wood odor, no sheen. SP Poorly graded SAND Gray/brown, poorly graded fine to medium sand, slightly moist, no odor, no sheen. Ā Silty CLAY with wood debris \boxtimes B-18-8-8.5 Gray, silt to clay matrix with ~30% wood debris, wood debris in shoe, one foot in macro core tube, slightly moist, no odor, no sheen. CL/ 10 ~ 8' Very moist to saturated. ML X B-18-12-13 Well-graded SAND Black, fine to medium sand, little or no fines, saturated, no 15 odor, no sheen. 3/24/04 TACOMA METALS OFF PROPERTY MAR 2004.GPJ KJ PNW.GDT X B-18-18-19 SW 20 X B-18-22-23 X B-18-24-25 25 Fat CLAY CH Gray/brown, upper contact sharp, soft, medium plasticity, very moist, no odor, no sheen. PNW 7 F-40.1

г-40. і (6-87) (3-88) (8-90)

Boring Log Kennedy/Jenks Consultants BORING LOCATION Off-property (Northwest former Tacoma Metals) B-19 Boring Name DRILLER DRILLING COMPANY Cascade Drilling, Inc. Kasey Goble Former Tacoma Metals Project Name _ DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobe Direct Push N/A 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 24.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/10/04 3/10/04 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 12 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A SDM SEAL FROM то FT SAMPLING METHODS WELL COMPLETION **Bentonite Chips** 24 0 □ SURFACE HOUSING GROUT FROM то FT. Macro Core N/A FT. N/A N/A □ STAND PIPE. SAMPLES BACKFILL DETAILS OVA (PPM) DEPTH (FEET) USCS LOG PENETR. RESIST. SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. TYPE (FEET) RI OWS/ WOOD DEBRIS Tan, ~1/2-inch diameter loose wood chips, no odor, no sheen. Wood B-19-2-4 WOOD DEBRIS with silt Wood debris with ~20-30% silt matrix, slight creosote odor, no sheen. 5 6 Wood Х B-19-9-10 25 10 ~ 9'-10' Moderate cresote odor, visable sheen. \leq Poorly graded SAND Black, poorly graded fine to medium sand, little or no fines, saturated, moderate creosote odor, moderate sheen. X B-19-14-15 15 3/24/04 TACOMA METALS OFF PROPERTY MAR 2004.GPJ KJ PNW.GDT SP 20 ~21'- 22.5' Product blebs, strong creosote odor, visable X B-19-21-22 sheen. Silty CLAY CL/ Gray/brown, upper contact is sharp, soft, medium ML B-19-23-24 plasticity, moist, slight creosote odor, no sheen. NOTES 1. Top one foot of reconniasance groundwater sample tube coated with product on outside. PNW Ş

Kennedy/Jenks Consultants Boring Log BORING LOCATION Off-property (Northwest former Tacoma Metals) B-20 Boring Name DRILLER DRILLING COMPANY Cascade Drilling, Inc. Kasey Goble Former Tacoma Metals Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobe Direct Push N/A 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 22.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/10/04 3/10/04 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A SDM SEAL FROM то FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 22 0 □ SURFACE HOUSING GROUT FROM то FT Macro Core N/A FT. N/A □ STAND PIPE_ N/A SAMPLES BACKFILL DETAILS OVA (PPM) DEPTH (FEET) PENETR. RESIST. USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. LOG TYPE (FEET) RI OWS/ WOOD DEBRIS Wood ML Tan, ~1/2-inch diameter loose wood chips, dry to slightly moist, no odor, no sheen. Wood SILT with wood Black, ~40-50% silt matrix with decomposed wood, very moist, slight wood odor, no sheen. WOOD DEBRIS SP <1 Black, ~1-inch diameter wood chips, moist, wood odor, no Х B-20-3.5-4 sheen. Poorly graded SAND with gravel 5 Gray, poorly graded medium to coarse sand with ~<10% 1/2-inch diameter black gravel, little to no fines, slightly Wood moist, no odor, no sheen. WOOD DEBRIS with silt and sand Black to tan (on fresh wood surfaces), wood debris with -30% silt matrix, slightly moist, no odor, no sheen. B-20-7-8 \leq Silty CLAY with wood debris Dark gray, ~60-70% silty clay with ~40-50% wood debris, CL/ ML soft, medium plasticity, mosit, no odor, no sheen. ~8' Saturated, slight creosote odor. 10 B-20-10-11 Poorly graded SAND Black, poorly graded fine to medium sand, little or no fines, saturated. B-20-12-13 ~12'-14' Moderate creosote odor, slight visable sheen. Odor and sheen subsides below ~14' and increase at ~18'. 3/24/04 15 TACOMA METALS OFF PROPERTY MAR 2004.GPJ KJ PNW.GDT SP ~18'-20.5' Sheen coats inside of sample liner. М B-20-19-20 20 36 Fat CLAY CH Dark gray, clay, upper contact sharp, soft, medium plasticity, moist, slight creosote odor, no sheen. NOTES 1. Product coats outside of entire length of tubing used to collect reconniasance groundwater sample. PNW 7

Kennedy/Jenks Consultants Boring Log BORING LOCATION Off-property (Northwest former Tacoma Metals) B-21 Boring Name DRILLER DRILLING COMPANY Cascade Drilling, Inc. Kasey Goble Former Tacoma Metals Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobe Direct Push N/A 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 22.0 ft. bgs FROM **BLANK CASING** TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/11/04 3/11/04 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A SDM SEAL FROM то FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 22 0 □ SURFACE HOUSING GROUT FROM то FT Macro Core N/A N/A N/A □ STAND PIPE. FT. SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA (PPM) PENETR USCS SAMPLE NUMBER LITHOLOG SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV RESIST. LOG TYPE (FEET) RI OWS WOOD DEBRIS Wood Tan/brown, ~1/2-inch diameter loose wood chips, slightly moist, wood odor, no sheen. WOOD DEBRIS with sand and gravel Black, wood debris with ~30% medium sand and gravel matrix,~1/2-inch diameter subrounded to rounded gravel, very moist, no odor, no sheen. Wood X B-21-3-4 3 5 Wood WOOD DEBRIS Tan, loose wood, slightly moist, no odor, no sheen. WOOD DEBRIS in clay matrix Gray, wood debris, ~30% clay, medium plasticity, very moist, no odor, no sheen. \leq X B-21-8-9 Wood ~8' Gray/brown, saturated, very slight creosote odor, no sheen. 10 Poorly graded SAND Black, poorly graded fine to medium sand, little or no fines, saturated, very slight creosote odor, no sheen. B-21-13-14 15 SP ~16'-19.5' Product blebs, strong creosote odor, moderate to heavy sheen. X B-21-18-19 Fat CLAY 20 Gray, upper contact sharp, soft, medium plasticity, moist, very slight odor, no sheen. CH 3 М B-21-21-21.5 NOTES 1. Product coats outside of entire length of tubing used to collect reconniasance aroundwater sample. PNW 7

3/24/04 TACOMA METALS OFF PROPERTY MAR 2004.GPJ KJ PNW.GDT

F-40.1 (6-87) (3-88) (8-90)

Kennedy/Jenks Consultants Boring Log BORING LOCATION Off-property (Northwest former Tacoma Metals) B-22 Boring Name DRILLER DRILLING COMPANY Cascade Drilling, Inc. Kasey Goble Former Tacoma Metals Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobe Direct Push N/A 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 22.0 ft. bgs FROM **BLANK CASING** TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/11/04 3/11/04 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A SDM SEAL FROM то FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 22 0 □ SURFACE HOUSING GROUT FROM то FT Macro Core N/A N/A N/A □ STAND PIPE. FT. SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA (PPM) PENETR. RESIST. USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV LOG TYPE (FEET) RI OWS WOOD DEBRIS Dark brown to black, ~1/2-inch diameter loose wood chips, Wood slightly decomposed, slightly moist, no odor, no sheen. Wood WOOD DEBRIS with sand and gravel Black, wood debris with ~30% medium sand and gravel SM matrix, ~1/2-inch diameter subrounded to rounded gravel, 3 very moist, no odor, no sheen. М B-22-3-3.5 Wood Silty SAND Dark brown, silty sand, ~60% medium sand, ~40% X B-22-4-5 non-plastic fines, slightly moist, no odor, no sheen. 5 WOOD DEBRIS with sand and gravel Same as 1.5' to 2', no odor, no sheen. Wood WOOD DEBRIS with some sand B-22-6-7 Wood debris with ~10-20% fine sand matrix, very moist to saturated, no odor, no sheen. \leq WOOD DEBRIS with silt Dark gray, wood debris, ~10-20% silt matrix, saturated, moderate to strong creosote odor, moderate sheen. 10 Wood B-22-11-12 42 Poorly graded SAND Black, poorly graded fine to medium sand, little or no fines, product blebs, saturated, moderate to strong creosote odor, visable sheen. 3/24/04 15 SP X B-22-19-20 20 Fat CLAY Gray, upper contact sharp, soft, medium plasticity, moist, CH slight creosote odor, no sheen. B-22-21.5-22 M NOTES 1. Product coats outside of entire length of tubing used to collect reconniasance aroundwater sample. PNW 7

F-40.1 (6-87) (3-88) (8-90)

Boring Log Kennedy/Jenks Consultants BORING LOCATION Off-property (Northwest former Tacoma Metals) B-23 Boring Name DRILLER DRILLING COMPANY Cascade Drilling, Inc. Kasey Goble Former Tacoma Metals Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobe Direct Push N/A 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 22.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/11/04 3/11/04 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 7.5 SIZE AND TYPE OF FILTER PACK FROM TO FΤ N/A LOGGED BY N/A N/A SDM SEAL FROM то FT SAMPLING METHODS WELL COMPLETION 22 **Bentonite Chips** 0 □ SURFACE HOUSING GROUT FROM то FT Macro Core N/A FT. N/A N/A □ STAND PIPE. SAMPLES BACKFILL DETAILS OVA (PPM) DEPTH (FEET) USCS LOG PENETR. RESIST. SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV TYPE (FEET) RI OWS/ WOOD DEBRIS Dark brown, slightly decomposed loose wood debris, Wood slightly moist, no odor, no sheen. WOOD DEBRIS in silt matrix Wood Black, ~1/2-inch to ~1-inch diameter wood debris, ~20% 0 silt matrix, very moist, no odor, no sheen. X B-23-3-4 SP Poorly graded SAND with gravel Gray, poorly graded fine to medium sand stringer, slightly moist, no odor, no sheen. 5 WOOD DEBRIS in silt matrix Brown to black, wood debris, ~10-20% silt matrix, slightly moist, no odor, no sheen. М B-23-6.5-7 ¥ Wood ~7.5' Saturated, slight creosote odor. ~8'-10' Slight sheen. X B-23-9-10 10 Poorly graded SAND Black, poorly graded fine to medium sand, little or no fines, saturated, no odor, no sheen. 3/24/04 15 B-23-14-16 TACOMA METALS OFF PROPERTY MAR 2004.GPJ KJ PNW.GDT SP B-23-18-20 ~19-20' Slight creosote odor, slight sheen. 20 Fat CLAY Gray, upper contact is sharp, soft, medium plasticity, CH moist, no odor, no sheen. М B-23-21.5-22 PNW 7 F-40.1

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-24 Boring Name DRILLING COMPANY **Tacoma Metals** Cascade Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 36.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED 3/23/05 N/A N/A N/A 3/23/05 FROM SLOTTED CASING то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 14 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 36 0 □ SURFACE HOUSING GROUT FROM ΤО MacroCore w/PVC liner FT N/A N/A □ STAND PIPE. FT. N/A SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA USCS LOG PENETR. RESIST. SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. (FEET) TYPE RI OWS/ GW / Well-graded GRAVEL with sand -Approximately 3 inches surface gravel SS 3 WOOD DEBRIS Brown/orange, wood material, medium wood chip to 0.0 coarse sawdust sized, no soil present, loose, moist, no evident odor, no sheen. Wood 5 SS 1 Silty SAND М B24-9-10 SM SS 2.5 10 Gray, silty fine sand, massive, moderately dense, moist, 0.0 no evident odor, no sheen. WOOD DEBRIS Gray/brown, wood material, blocky, 10-15% silt/clay matrix overall but matrix varies from <5% to 20-25% locally, 164 \leq 3.5 matrix is soft with moderate plasticity and dilatency, moist SS approx. 329 to wet below ~14 feet, no evident odor, no sheen above ~ 15 14 feet, below ~14 feet faint creosote odor, no sheen. Х B24-15-16 SS 0.5 20 Wood SS 0.5 154 Moderate creosote odor, moderate intermittent sheen on water in sampler. 25 SS 2.5 Strong creosote odor, heavy sheen on water surface in 285 sampler. 2 SS 51.3 1.5 30 GDT. Silty SAND Х B24-30.5-31.5 SM KJ PNW Gray/brown, silty fine sand overall, evident layering of poorly graded fine sand, silty fine sand, and sandy silt, typically 1-2 inch layers, moderately dense, wet, slight GPJ SP \creosote odor, light sheen. SS 3 0.0 Poorly graded SAND B33 35 Gray, poorly graded medium to coarse sand, coarsens 2 downwards, wet, no evident odor, no sheen. LOGS B24 NOTES 1. Reconnaissance groundwater sample B24-RGW screen placed ~28-32 feet bgs. 2. Refusal at first location at ~12 feet bgs, moved ~4 feet west. Refusal at second PNW location, moved additional ~8 feet west. Third location successful. 7 F-40.1

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-25 Boring Name DRILLING COMPANY **Tacoma Metals** Cascade Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 36.0 ft. bgs FROM **BLANK CASING** TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/23/05 3/23/05 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 13 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 36 0 □ SURFACE HOUSING GROUT FROM ΤО MacroCore w/PVC liner FT N/A FT. N/A □ STAND PIPE. N/A SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA PENETR USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV RESIST. LOG TYPE (FEET) BLOWS/ GM Silty GRAVEL with sand • Gravely silt with grass and roots. SS WOOD DEBRIS 4 30.6 Orange/brown, wood material, medium chip to coarse sawdust sized, no soil present, fibrous texture locally, Wood loose, moist, no evident odor, no sheen. 5 SS 2 М B25-6-7 2.5 GM Silty GRAVEL Dark brown, silty gravel with some gravish wood chip material, poor sample recovery but appears to grade into SS 1 10 underlying wood debris material, moist, no evident odor, no sheen. Wood 1.8 WOOD DEBRIS Dark brown/gray, wood material, some gravel, 10-15% \leq approx. silty fine sand matrix evident in sampler (poor revovery), 2 SS wet at ~13 feet, no evident odor, no sheen. М B25-14-15 3.0 SILT 15 Gray, silt, some fine sand and clay likely, locally contains fine root-like material, some wood chip material in upper ML ~1 foot, moderately stiff, low plasticity, moderately rapid dilatency, wet, no evident odor, no sheen. SS 2.5 0.0 Silty SAND 20 Gray, silty fine sand, 25-30% silt overall, possibly some SM clay locally, not evidently layered but some textural variation (sandy silt locally), wet, no evident odor, no SS 4 sheen. М B25-22-23 3.2 Poorly graded SAND Dark gray, poorly graded medium sand, wet, no evident odor, no sheen above ~29 feet. 25 SS 2.5 5.3 SP 4.3 Below ~29 feet, strong creosote odor, heavy sheen, NAPL 2 2 SS 30 blebs evident locally in sampler. Х GDT. B25-30-31 262 Silty SAND KJ PNW SM Silty sand overall, interbedded poorly graded fine sand, sandy silt/silty sand, and silt in lower ~1 foot, typically in 2-3" layers, wet, slight creosote odor, light sheen. GPJ SS 3.5 Poorly graded SAND 25.1 SP B25-34-35 B33 35 Dark gray, poorly graded medium sand, wet, very slight 2 creosote odor, light sheen. LOGS B24 NOTES 1. Reconnaissance groundwater sample B25-RGW screen placed ~28-32 feet bgs. PNW 7

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-26 Boring Name DRILLING COMPANY Cascade **Tacoma Metals** Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 28.0 ft. bgs **BLANK CASING** FROM то FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/24/05 3/24/05 FROM SLOTTED CASING то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 15 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 28 0 □ SURFACE HOUSING GROUT FROM ΤО FT. MacroCore w/PVC liner N/A FT. N/A □ STAND PIPE. N/A SAMPLES BACKFILL DETAILS OVA RECOV. (FEET) BLOWS/6 DEPTH (FEET) USCS LOG SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS TYPE \$ GW Well-graded GRAVEL Greenish to brown, gravel with some silt in upper few vinches, no evident odor, no sheen. SS 4 WOOD DEBRIS Orange/brown, wood material, medium chips to coarse sawdust sized, no soil evident, loose, moist, no evident 0.0 Wood odor, no sheen. 5 SS 3 SILT X ML B26-6.5-7.5 0.0 Dark gray to black, silt with some gravel and wood material, moist, no evident odor, no sheen. WOOD DEBRIS Gray/brown, wood material, blocky, silty matrix material, poor sample recovery, wet below ~15 feet, no evident SS 0.5 10 odor, no sheen in recovered material. Wood SS 0.5 approx. 15 ML SILT 0.0 Brown/gray, silt mixed with some wood material, very soft, wet, no evident odor, no sheen. SS 3.5 M B26-18-19 0.0 Poorly graded SAND Gray, poorly graded medium sand, 5-15% silt locally, wet, above ~19 feet strong creosote odor and moderately heavy sheen (no NAPL), below ~19 feet, no evident odor 20 and no sheen. SP 5/5/05 Coarsens downwards to medium/coarse sand mix at ~23 SS 3.5 feet bgs. KJ PNW.GDT 0.0 Below ~24 feet bgs, moderately strong creosote odor and moderate sheen, fines downwards to mostly medium sand 25 GPJ Х by ~25 feet. B26-25-26 356 SS B33. 3.5 Silty CLAY B24 TO CL/ Tan/brown, silty clay, moderately stiff, moderately high ML plasticity, no dilatency, wet, no evident odor, no sheen. 2.4 LOGS NOTES PNW 1. Reconnaissance groundwater sample B26-RGW screen placed ~22-26 feet bgs. 7 F-40.1

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-27 Boring Name DRILLING COMPANY Cascade **Tacoma Metals** Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 28.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED 3/23/05 N/A N/A N/A 3/23/05 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 10 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 28 0 □ SURFACE HOUSING GROUT FROM ΤО MacroCore w/PVC liner FT N/A FT. N/A □ STAND PIPE. N/A SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA PENETR. RESIST. USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV LOG TYPE (FEET) BLOWS/ GW Well-graded GRAVEL Approximately 3 inches surface gravel WOOD DEBRIS SS 1 Orange/brown, wood material, medium chips to coarse sawdust sized, no evident soil, loose, moist, no evident odor. no sheen. Wood 5 SS 3.5 SILT Dark gray to black, silty material, ~30-35% wood chip B27-7-8 3.0 ML material, oily surface appearance locally, soft, moist, no evident odor, possible light sheen. WOOD DEBRIS Grayish brown, wood material, blocky to fibrous texture, approx. SS 1.5 10 10-15% silty/clayey matrix overall but varies from <5% to 20-25% locally, matrix matrial has moderate plasticity and dilatency, wet below ~10 feet, possible faint creosote odor, 27.7 no sheen SS 0.5 Wood 15 No evident odor, no sheen in recovered sample material. SS Λ 20 Poorly graded SAND 5/5/05 Dark gray, poorly graded medium to coarse sand, fining SS 3 Х downwards to mostly medium sand, moderately dense, B27-22-23 1.6 KJ PNW.GDT wet, possible slight creosore odor, no sheen at top. SP Below ~24 feet, strong creosote odor, heavy sheen, abundant NAPL blebs on water surface. B27-24.5-25.5 25 2,517 GPJ Sandy SILT SS B33. 3 ML Medium gray/brown, silt with ~30% fine sand, wet, low to B24 TO moderate creosote odor, heavy sheen, minor NAPL blebs B27-27-28 SP locally. 104 Poorly graded SAND LOGS NOTES Medium gray, poorly graded fine to medium sand, some PNW 1. Reconnaissance groundwater sample B27-RGW screen placed ~24-28 feet bgs. silt, wet, slight to moderate creosote odor, no evident sheen. 7

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-28 Boring Name DRILLING COMPANY Cascade **Tacoma Metals** Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 28.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/24/05 3/24/05 FROM SLOTTED CASING то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 10 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 28 0 □ SURFACE HOUSING GROUT FROM ΤО FT. MacroCore w/PVC liner N/A FT. N/A □ STAND PIPE. N/A SAMPLES BACKFILL DETAILS OVA DEPTH (FEET) USCS LOG PENETR. RESIST. SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. TYPE (FEET) BLOWS/ Well-graded GRAVEL with sand \$ GW Brown to gray/green, gravel with sand, dense, no evident odor, no sheen. SS 3.5 WOOD DEBRIS Brown/orange, wood material, medium chips to coarse Wood sawdust sized, no evident soil, moist, no evdient odor, no sheen. 5 Well-graded SAND with silt and gravel SS 4 SW/ X Dark gray/brown, sand, gravel, and silt mixture, locally B28-6-7 21 SM granular texture, some coal-like fragments, moist, no evident odor, no sheen. WOOD DEBRIS Gray, wood material, 10-15% silty/clayey matrix overall but varies from <5% to 20-25% locally, wet below ~10 feet bgs, no evident odor, no sheen. approx. SS 2 10 B28-11-12 0.0 Wood SS 3 15 Sheen present on water surface in sampler ~15-16 feet bgs, slight creosote odor. 0.0 SS 2.5 Poorly graded SAND Dark gray, poorly graded medium to coarse sand, wet, no evident odor and no sheen above ~23.5 feet bgs. 0.0 20 SP 5/5/05 SS 2.5 KJ PNW.GDT 0.0 Below ~23.5 feet, moderate creosote odor and sheen, no evident NAPL. B28-23.5-24.5 284 Silty CLAY 25 GPJ M Tan/brown, silty clay, moderately stiff, moderate plasticity, B28-25-26 0.0 slow dilatency, wet, possible faint creosote odor, no SS B33. 3.5 CL/ M sheen. B24 TO LOGS NOTES PNW 1. Reconnaissance groundwater sample B28-RGW screen placed ~21-25 feet bgs. 7 F-40.1

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-29 Boring Name DRILLING COMPANY Cascade **Tacoma Metals** Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 28.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED 3/23/05 N/A N/A N/A 3/23/05 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8.5 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ΤО FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 28 0 □ SURFACE HOUSING GROUT FROM ΤО MacroCore w/PVC liner FT N/A FT. N/A □ STAND PIPE. N/A SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA PENETR. RESIST. USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. LOG TYPE (FEET) BLOWS/ GW/ Well-graded GRAVEL with silt GM Gravel with ~4" topsoil above. WOOD DEBRIS SS 4 Orange/brown, wood material, medium chips to coarse sawdust sized, no evident soil, loose, moist, no evident odor. no sheen. Wood 5 SS 4 Well-graded SAND with gravel SW X Gravish green, sand with 10-15% gravel, granular texture, B29-6.5-7.5 0.0 moist, no evident odor, no sheen. ML Sandy SILT approx. Dark gray, silt with ~20% fine sand and minor gravel, some wood material below ~7.5 feet, poor recovery but appears to grade into underlying wood material, soft, moist SS 1.5 10 to wet, no evident odor, no sheen. WOOD DEBRIS Dark gray, wood material, 10-15% silty matrix with some B29-11-12 0.9 fine sand and clay, matrix varies locally from <5% to 20-25%, slightly less matrix (~10%) and lighter gray color below ~16 feet, wet, no evident odor, no sheen. Wood SS 1.5 15 0.3 SS 1.5 Poorly graded SAND Dark gray, poorly graded medium to coarse sand grading downwards to mainly medium sand, wet, slight odor, no 0.0 20 sheen at top. SP 5/5/05 SS 3 Below ~22 feet, strong creosote odor, heavy sheen, some NAPL blebs. KJ PNW.GDT Х 1,309 B29-22.5-23.5 Siltv CLAY Brown, silty clay to clayey silt, some wood material present locally, sticky, moderately stiff, moderately low 25 GPJ X plasticity, moderate dilatency, wet, slight creosote odor, no B29-25-26 CI / 14.1 ML SS B33. sheen. 4 B24 TO LOGS NOTES PNW 1. Reconnaissance groundwater sample B29-RGW screen placed ~20-24 feet bgs. 7 F-40.1

(6-87) (3-88) (8-90)

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-30 Boring Name DRILLE DRILLING COMPANY **Tacoma Metals** Cascade Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 24.0 ft. bgs **BLANK CASING** FROM TO FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/24/05 3/24/05 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 10 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 24 0 □ SURFACE HOUSING GROUT FROM ΤО MacroCore w/PVC liner FT N/A N/A □ STAND PIPE. FT. N/A SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA PENETR. RESIST. USCS SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV LOG TYPE (FEET) BLOWS/ GW/ Well-graded GRAVEL with silt and sand GM Gray/brown, gravel with sand and silt, moist, no evident odor, no sheen. SS 3 WOOD DEBRIS Orange/brown, wood material, medium chips to coarse sawdust sized, no evident soil, moist, no evident odor, no Wood sheen. 5 Silty SAND Х SS 3 B30-5.5-6.5 0.0 SM Dark gray to black, silty sand with fine decayed wood material (<25%), oily surface appearance, soft, moist, no evident odor, heavy sheen. WOOD DEBRIS Brown/gray, wood material, blocky, 5-15% silty/clayey matrix overall, matrix varies from <5% to 20-25% locally, wet below ~10 feet, very faint creosote odor, no sheen. approx. SS 3 10 Wood B30-11-12 0.0 SS 3 Poorly graded SAND Gray, poorly graded medium sand, up to 5-10% silt, wet, 15 0.0 no evdient odor, no sheen. SS 1 Poor recovery, but light sheen is visible on water surface SP in sampler, no evident odor. 0.0 20 5/5/05 Below ~22 feet, moderate sheen, slight to moderate SS 3.5 creosote odor, medium to coarse sand. Х B30-22-23 86.2 KJ PNW.GDT CL/ Silty CLAY 1.7 ML Tan/brown, silty clay, some wood material, moderately soft, high plasticity, low dilatency, wet, sticky, no evident NOTES odor, no sheen. 1. Reconnaissance groundwater sample B30-RGW screen placed ~20-24 feet bgs. LOGS B24 TO B33.GPJ 2. Refusal at first location at ~13 feet bgs, moved ~3 feet east. Second location successful. PNW 7 F-40.1 SHEET 1 OF 1 (6-87) (3-88) (8-90)

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-31 Boring Name DRILLING COMPANY Cascade **Tacoma Metals** Jaymen Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 28.0 ft. bgs **BLANK CASING** FROM то FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/24/05 3/24/05 FROM SLOTTED CASING то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 11 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 28 0 □ SURFACE HOUSING GROUT FROM ΤО FT. MacroCore w/PVC liner N/A FT. N/A □ STAND PIPE. N/A SAMPLES BACKFILL DETAILS DEPTH (FEET) OVA USCS LOG PENETR. RESIST. SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS RECOV. TYPE (FEET) BLOWS \$ Well-graded GRAVEL GW Gray/green/brown, well graded gravel WOOD DEBRIS SS 3 Brown/orange, wood material, medium chips to fine sawdust sized, no evident soil, moist, no evident odor, no Wood sheen. 5 Gravelly SILT SS 2.5 ML X Dark brown to gray, silty material with some gravel and B31-6-7 3.2 wood chips, oily appearance locally, soft, moist, no evident odor, no evident sheen. ML SILT Dark brown, silty material with <25% wood material, some ¹ fine sand, soft, moist, no evident odor, no evident sheen. WOOD DEBRIS SS 2 10 Gray/brown, wood material, blocky, <10% matrix in recovered sample material, wet below ~11 feet, no evident \leq approx. odor, no sheen. Wood SS 0 15 16 to 20 foot sample--material above sand is very wet (sloppy, runny) and large NAPL blebs are present on the water surface in the sampler. SS 2.5 Poorly graded SAND Gray, poorly graded medium sand, coarsens gradually downwards, wet, strong creosote odor, heavy sheen on B31-19-20 100.1 20 surface in sampler appears to increase with depth, no evident NAPL but gloves/baggies are stained. SP 5/5/05 SS 4 KJ PNW.GDT 523.0 B31-24-25 1,292 25 GPJ Silty CLAY Brown/gray, silty clay to clayey silt, moderately stiff, SS B33. 3.5 CL/ moderate plasticity, low diltatency, wet, no evdient odor, B24 TO ML no sheen. 8.4 LOGS NOTES PNW 1. Reconnaissance groundwater sample B31-RGW screen placed ~21-25 feet bgs. 3 F-40.1

Kennedy/Jenks Consultants Boring Log BORING LOCATION East 18th St Right of Way, NW of Tacoma Metals property B-32 Boring Name DRILLE DRILLING COMPANY Jaymen **Tacoma Metals** Cascade Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) Geoprobé 2-inch 996098.00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A 24.0 ft. bgs **BLANK CASING** FROM то FT DATE STARTED DATE COMPLETED N/A N/A N/A 3/24/05 3/24/05 FROM SLOTTED CASING то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8 FROM SIZE AND TYPE OF FILTER PACK то FT LOGGED BY N/A N/A N/A DKM FROM SEAL ТΟ FT WELL COMPLETION SAMPLING METHODS **Bentonite Chips** 24 0 □ SURFACE HOUSING GROUT FROM ΤО FT. MacroCore w/PVC liner N/A <u>N/A</u> N/A FT. □ STAND PIPE. SAMPLES BACKFILL DETAILS OVA RECOV. (FEET) BLOWS/6 DEPTH (FEET) USCS LOG SAMPLE NUMBER LITHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS TYPE Silty GRAVEL with sand GΜ Brown, gravel with sand and silt, 3-4 inches red/brown topsoil above gravel, moist, no evident odor, no sheen. SS 2 WOOD DEBRIS Gray/brown, wood material, 10-15% silty/clayey matrix overall. matrix varies from <5% to 20-25% locally, moist to wet at ~8 feet, no evident odor, no sheen. 5 Wood SS 3 X B32-6-7 0.0 Appears to be the "lower/older" wood unit. Ā approx SS 2.5 10 Poorly graded SAND Dark gray to black, poorly graded medium sand, some silt B32-11-12 locally, wet, no evident odor, no sheen. 0.0 SS 0 SP 15 Below ~18 feet, strong creosote odor, moderate sheen, NAPL blebs rinse out in sheen test. SS 2.5 B32-19-20 83.0 20 Silty CLAY Tan/brown, sitly clay, moderately stiff, moderately high IX plasticity, low dilatency, wet, no evident odor, no sheen. B32-21-22 0.0 5/5/05 CL/ SS 3.5 ML KJ PNW.GDT NOTES 1. Reconnaissance groundwater sample B32-RGW screen placed ~16-20 feet bgs. LOGS B24 TO B33.GPJ PNW 7

F-40.1 (6-87) (3-88) (8-90)

	Cascade	S)			DRIL	l Bit(s) 2-in	men SIZE ch TO	FT.	Project Name	ormer Tacoma Metals 996098.00
	N/A CASING				FRO	N/A	то	N/A	ELEVATION AND DATUM	TOTAL DEPTH 24.0 ft. bgs
	N/A D CASING				FRO	N/A		N/A FT.	DATE STARTED 3/24/05	DATE COMPLETED 3/24/05
	N/A		УК		FRO	N/A		N/A FT.	INITIAL WATER DEPTH (F 10.0	Г)
	N/A				FRO	N/A	то	N/A FT.	LOGGED BY DKM	
ROUT	Bentonite	e Chips			FRO	0	то	24	SAMPLING METHODS MacroCore w/PVC liner	WELL COMPLETION USURFACE HOUSING USTAND PIPE
S TYPE	AMPLES RECOV. PENE (FEET) BLOW	TR. DEPTH ST. (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	
	I BLOW	'S/6"					GM	/ \ ·	GRAVEL	uident eden ve ebeen
SS	3.5	-							n, silty gravel, moist, no e D DEBRIS	evident odor, no sneen.
55	3.5						Wood	Ulany	ge/brown, wood material, ust sized, no evident soil.	medium chip to coarse , moist, no evident odor, no
				-	8.9		GW	sheer	1.	
		5-		-			 	_ Gray/	graded GRAVEL with sa green to dark gray, well g possibly some silt, layer	graded gravel with ~40%
SS	3	M -	B33-6-7	-	24		SW/	_ \ moist	possibly some silt, layer , no evident odor, no she	en.
		μ_	505-0-1	-	3.4		SM	Dark		ome gravel, granular textur
									y, moist, no evident odor, D DEBRIS	no sheen.
~~		-						Gray,	wood material, coarse b	locky texture, less than 10% mple material, moist to we
SS	3	10-	approx.	÷				below	$v \sim 10$ feet, no evident odd	br, no sheen.
							Wood	_		
		-						-		
SS	1	-						_		
		15-		-	10.1			-		
				-				-		
		-					+		y graded SAND	
SS	2		B33-18-19		0.0				gray, poorly graded sand um sand, wet, no evident	, mainly coarse sand, some odor, no sheen.
		20					SP	L		
		-	B33-20.5-21.5	-	3.1			_		
SS	4	-		-		$ \uparrow$	ML		y SILT	6 fine sand, wet, no evident
		-		-	0.0			-\odor,	no sheen.	
<u>NO</u> 1 R	I IES Reconnaisso		ndwater sample F	333-RGW screen p		↓ .18-22 f/	CL/	1 1 1		ely stiff, moderate plasticity odor, no sheen.
1. 1		ance groui	uwalei sampie e	Soo-reavy screen h		10-22 1	C WARS	j <u> </u>		

Boring Log

Kennedy/Jenks Consultants

RILLING	COMP.							DRIL	LER Cas	ev / J	aymen	Project Name	For	mer Tacoma Metals
RILLING	METH	DD(S)	Probe					DRIL	L BIT(S)			-		998098.00
SOLATIC								FRC		TO	T. N/A	Project Number	M	TOTAL DEPTH
BLANK C	ASING	nodul	<u>م ۵۸ م</u>	VC Pipe				FRC	м 0	то	22.2 FT. 32.5	DATE STARTED		36.0 ft. bgs
LOTTED	CASIN	G		•				FRC		то	FT.	2/14/06	(ET)	2/15/06
SIZE AND) TYPE	OF FILT	ER PAC			ot		FRC		то	32.2 FT.	10.0	(11)	
EAL	Lapis	Lustr	e #2/1	2 Monterey S	and			FRC	<u>19</u> м 1.5	то	32.5 19 FT.	LOGGED BY DKM		
GROUT	Pure	Gold I	Bentor	nite Chips				FRC	32.5	то	36 FT.	SAMPLING METHODS MacroCore w/PVC L	inor	WELL COMPLETION ■ SURFACE HOUSING
		rete							0		1.5			STAND PIPE
	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL C	CONST	RUCTION	OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION		DRILLING REMARKS
SH	2		_		T and the			0.2		sw	Gray, red/bi	graded SAND with gra medium sand with 10 rown woody material lo , no odor, no sheen.	-15%	
			_					0.2			Г	D DEBRIS	·	
			5-				-				size, l	locally up to 5% silt bu	it typi	chips to coarse sawdust cally no matrix material,
SH	1							0.5		Wood		noist, no odor, no she	en.	
				B34-7-8			-				-			
SH	0.5		- 10 -		¥		-					D DEBRIS		
	0.0		-		Ē		-			Wood	- typica	illy coated with silt and	l fine	
			-				-			10000	sheer	rial, moist to wet below n.	101	eet bgs, no odor, no
SH	3		_				-				Canal			
			15 -				-				- Mediu			sand, <5% sand at top,
			_								mode	rately dense overall b		20% sand by 20 feet bgs se 20-22.5 feet bgs, wet
SH	2.5			B34-18-19			-			ML	-	or, no sheen.		
			20-					0.0			L			
											-			
SH	4		-								- - SILT			
			 25 - _							ML	_ Gray,	sand by ~24 feet bgs,		sand) with depth, up to erately stiff, wet, no odor,
SH	2.5		-		.		-					y graded SAND		
			_								sand	by ~28 feet bgs, fine s	and	top, primarily medium present below ~30 feet
			-					_		SP		noderately dense, wel		
SH	3.5	5	⊠ 30-	B34-30-31			-	57.4			-			
								1.0			[
SH	3.5	5	-	B34-34-35			-			SM			% silt	, moderately dense, wet,
		4	△ 35-	<u>01-01-00</u>			-	0.3		SP		y graded SAND medium to fine sand	at tor	arading to mostly
NOTI			L		. 14					-	medii			bgs, moderately dense,
				c logging were period installed at the s					e boring	on	wei, r			

F-40.1 (6-87) (3-88) (8-90)

	G COMPA										aymen	Project Name	Forn	ner Tacoma Metals
DRILLIN	G METHO HSA /	DD(S)	Probe					DRIL	L BIT(S)		-	Project Number		998098.00
SOLATI	ON CASIN							FRO		то	FT. N/A	ELEVATION AND DATUM		TOTAL DEPTH
BLANK C		nedul	e 40 P	VC Pipe				FRO		то	25.7 FT. 41	DATE STARTED		44.0 ft. bgs
SLOTTE	D CASING	3		VC Pipe, 0.01	10-5	lot		FRO	-	ТО	40.7 ^{FT.}	2/14/06 INITIAL WATER DEPTH	(FT)	2/15/06
SIZE ANI	D TYPE C)F FILT	ER PAC	K				FRO	M	ТО	41.7 41	9.0		
SEAL				2 Monterey S	anu			FRO			23 FT.	DKM SAMPLING METHODS		WELL COMPLETION
GROUT			Bentoi	nite Chips				FRO		ТО	44	MacroCore w/PVC Li	ner	■ SURFACE HOUSING
S	Concr AMPLES				WELI	CONS	TRUCTION		0		1.5			□ STAND PIPE F
TYPE	RECOV. F (FEET) B	PENETR. RESIST. LOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	I AND [DRILLING REMARKS
			_						• • •	•		graded SAND with gra		unded gravel, some silt
SH	1.5		-				-	1		sw		v ~4 feet bgs, moist, no		
			5-				-			1	-			
SH	2.5			B35-6-7			-	0.3		SM		SAND with gravel gray to black, granular	(san	d-sized) material mixed
			-		<u> </u>		-				+ with 1	15-20% silt and some a ce appearance locally,	angula	ar gravel material, oily
SH	2.5		10-		. .		-				woo	D DEBRIS		· ·
			_				-				debris	s with gray silty matrix	mate	
SH	1		15				-	0.5		Wood	I - coatir	ng wood surfaces, wet,	no o	dor, no sheen.
			15 -				-	0.5			F			
SH	0		-				-				F			
			20-				-			 		v graded SAND		
SH	3		-				-	-			_ Mediu	um gray, poorly graded		
				B35-23-24		(N/M	-	0.4			feet b		0 01	dor, no sheen above ~24
SH	4		25-								-			
			_					1.1			Slight	t creosote odor and no	shee	en ~24-28 feet bgs.
SH	4		30-								F			
011	•		- 30					1.4		SP		t to moderate creosote ogs (strongest odor ~30		
011				B35-32-33				15.5]		F	-	,	
SH	4		35 -					5.6			-			
			-									lor or shoop holow - 25	foot	bas
SH	4	5		D25 20 40				0.4				dor or sheen below ~35	reet	vys.
			× 40-	B35-39-40			-	0.0		·	- SILT			
SH	4		_				-	0.9		ML	Tan/g	ray, silt, minor fine sar city and dilatency, wet,		
NOT	FS					<i>V//////</i> //////////////////////////////		-		SP		y graded SAND		
1. Sa	ampling			c logging were pe installed at the s					boring		Mediu		l med	lium to coarse sand, wet
21	14/00.	ine w	en was	motaneu at the s	same		1011 0/1 2/	15/00.		ML	SILT			
										SP		ray, silt, minor fine sar city and dilatency, wet,		
											- IC	next page for litholog		

roject	Name	For	mer Tacoma	Metals Pi	roject	Numbe	r	998098.00	Well Name _	MW-30 / B-35
SA TYPE	MPLES RECOV. (FEET) BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	OVA	LITHOLOGY	USCS LOG	SAMPLE DE	SCRIPTION AND DRILL	NG REMARKS
								Poorly graded SAI Medium gray, poor no odor, no sheen.	ly graded medium	to coarse sand, wet

F-40.1 (6-87) (3-88) (8-90)

Kennedy/Jenks Consultants

ייאי ו ווסח	G COMP		opol.	y nearest Port	land		nue	ייםח	LER			Well Name		MW-31 / B-36
	Casc	ade							Cas		aymen	Project Name	Forr	mer Tacoma Metals
DRILLING	HSA /	/ Geol	Probe						L BIT(S) 9-in	SIZE Ich / 2	-inch	Project Number		998098.00
ISOLATIO	ON CASI N/A	NG						FRC	M N/A	то	FT. N/A	ELEVATION AND DATU		TOTAL DEPTH
BLANK C	ASING	hedule	e 40 P	VC Pipe				FRC		то	22.7 FT. 33	DATE STARTED		36.0 ft. bgs
SLOTTE	D CASIN	G		VC Pipe, 0.01	10 0	lot		FRC	M	ТО	50 FT. 32.7	2/14/06	(FT)	2/15/06
SIZE ANI	D TYPE	OF FILT	ER PAC	K		ΙΟΙ		FRC		то	FT.	10.0		
SEAL				2 Monterey S	and			FRC	<u>20</u> м 1.5		33 20 FT.	DKM		
GROUT	Pure	Gold I	Bentor	nite Chips				FRC	<u>33</u>	то	36 FT.	SAMPLING METHODS MacroCore w/PVC Li	nor	WELL COMPLETION ■ SURFACE HOUSING
	Conc AMPLES	rete							0		1.5			□ STAND PIPE F
TYPE	RECOV.	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	WELL	. CONS	TRUCTIO	N OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	I AND	DRILLING REMARKS
	· /	BLOWS/6"				P			ł	GW/		graded GRAVEL with		
SH	2									, Gw/	Tan, g		d silt,	, dense, moist, no odor,
			-					-		GM	-			
			_								Oran	D DEBRIS ge/brown, wood materi	al fir	ne chips to coarse
SH	3.5		5-							Wood	sawd	ust size, some silt pres erately loose, moist, no	sent l	ocally (<5% total),
			-					-				SAND with gravel	5001	,
			7 1						-	SM	Dark	brown, Mixture of silt (2		0%), gravel (10-15%), fine ately loose, moist to wet,
SH	3.5		∐ ₁₀ –	B36-8-10				72.6			mode		te sh	een ~7-10 feet bgs, sligh
on	0.0		-		÷							but no sneen below ~1	0 lee	ε ι .
			-									D DEBRIS	coat	ed with silt and fine sand
SH	3		_								matrix	x (5-10% overall but lo	cally	variable), wet, no odor,
	Ŭ		15-					_			- iigiii i	o moderate sheen incr	easii	ng with depth.
			-								-			
SH	1									Wood	L			
011			-					6.7				blebs are locally visib ler, increasing with dep		the water surface in the
			20-								-	<u> </u>		
SH	3										Ĺ			
	5		,					20.8	<u> </u>	<u> </u>	Bear			
				B36-23-24							Dark			nostly fine sand at 23 fee
SH	3		25-					3.4		SP	silty (up to ~10%) below ~26	6 feet	
	5		-								→ blebs		s, mo	oderate odor and sheen
			-					2.5		SP/		sible NAPL blebs) bei		24 feet bgs.
SH	2.5		- 30-							SM	Gray,		nd wit	th 10-15% silt, moderatel
011	2.5							31.5				e, wet, slight creosote	odor,	light sheen.
			A -	B36-31-32				1.1		SP	Gray	y graded SAND to dark gray, fine to me	ediun	n sand at top grading to
<u>сн</u>	25							1			-∖ mostl ∖wet, r	y medium sand by ~32 noderate creosote odo	2 feet or and	t bgs, moderately dense, d sheen above ~31 feet
SH	3.5	2	35 <u>-</u>	B36-34-35				0.8		SM	\bgs, s \below	strong odor with heavy v ~31 feet bgs.	shee	en with NAPL blebs visibl
			_							SP		SAND		
<u>NOT</u> 1. Sa		and lit	hologic	logging were pe	erforn	ned d	luring G	eoProbe	e borin <u>a</u>	on		fine sand with 15-20% lor, no sheen.	₀ silt,	moderately dense, wet,
				installed at the s					5			next page for litholog	jy de	escription)

F-40.1 (6-87) (3-88) (8-90)

roject Name	For	mer Tacoma	Metals P	roject	Numbe	r	998098.00	_ Well Name _	MW-31	/ B-36
SAMPLES TYPE RECOV. PENET (FEET) BLOWS	R. DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION		LITHOLOGY	USCS LOG	SAMPLE DES	SCRIPTION AND DRILLI	NG REMARKS	3
RLOWS	/6"						Poorly graded SAN Gray, poorly graded dense, wet, no odor	D medium to coarse	e sand, mo	derately

	LOCATION Simpson	Propert	у						Boring Name	B-37
RILLING	G COMPANY Cascade				DRIL	LER Kas	ev		Project Name	Tacoma Metals
RILLING	G METHOD(S GeoProb				DRIL	L BIT(S) 2-in	SIZE		Project Number	996098*00
SOLATIO	ON CASING	<u> </u>			FRO	М	то	N/A ^{FT.}		TOTAL DEPTH
BLANK C	CASING				FRO		ТО	FT.	ground surface	24.0 ft. bgs
SLOTTEI	N/A D CASING				FRO	<u>N/A</u>	ТО	N/A FT.	10/29/07	10/29/07
	N/A D TYPE OF F	I TER PAC	ĸ		FRO	<u>N/A</u>	то	N/A FT.	INITIAL WATER DEPTH (FT 9.5)
SEAL	N/A				FRO	N/A	то	N/A FT.	LOGGED BY DKM	
	Bentonite	;				0	-	24	SAMPLING METHODS MacroCore with PVC	WELL COMPLETION
GROUT	N/A				FRO	M N/A	то	N/A	Liner	□ STAND PIPE F
S/ TYPE	AMPLES RECOV. PENET (FEET) BLOWS	R. DEPTH T. (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	ID DRILLING REMARKS
		_					GW		graded GRAVEL with sain n, gravel and sand fill, mo	
SH	3.5	_							graded SAND with grave	
		-			0			Layer	ed green-gray/dark gray/	
							SW	overa	Il (locally variable), some e, moist, no odor, no shee	silt locally, moderately
		5-	B37-5-6				1	-		-
SH	3								D DEBRIS	
							Wood		k, moist, no odor, no shee	d material with 5-10% silty en.
		_					 SP		y graded SAND	
SH	2.5	10-		,	0				gray, poorly graded medi e, moist to wet at ~9.5 fee	um sand, moderately et bgs, no odor, no sheen.
		-		_			SM	Silty		
									brown, silty fine sand, so rately dense, wet, no odd	me woody material locally, or, no sheen.
SH	2.5							1	y graded SAND	um to coarse sand, local
	2.0	<u> </u>	B37-14-15	_	0			small	(<1/2 inch) silt nodules ir e, wet, possible faint creo	n lower ~3 feet, moderately
								_ other	wise no odor, no sheen.	3010 0001 10-20 1001,
		-					SP	-		
SH	3	-					55	-		
		20						Ľ		
								Ē		
SH	3	μ	B37-21-22					-		
		-			0		CL/	Silty Gray,		ff, moderately high plasticity
NOT	FS						ML	wet, r	no odor, no sheen.	· · ·
		nce grour	ndwater sample E	337-RGW screen se	et 18-2	2 feet be		Gray,	y graded SAND poorly graded medium s	and, moderately dense,
							SP		no odor, no sheen. y SILT	
							ML	Gray,	sandy silt, moderately st no sheen.	iff, low plasticity, wet, no

(6-87) (3-88) (8-90)

ORILLING	G COMPANY	icoma F	Right of Way			DRIL				Boring Name	B-37A
	Cascade G METHOD(S)				DRIL	Eli L BIT(S)	SIZE		Project Name	Tacoma Metals
	GeoProb					FRO	2-in		FT.	Project Number _	996098*00
	N/A						N/A	-	N/A	ELEVATION AND DATUM	
	N/A					FRO	N/A	ТО	FT. N/A	DATE STARTED 1/25/08	DATE COMPLETED 1/25/08
	D CASING N/A					FRO	M N/A	то	FT. N/A	INITIAL WATER DEPTH (
	D TYPE OF FI N/A	LTER PAC	Ж			FRO	M N/A	то	FT. N/A	10.0	
SEAL	Bentonite					FRO		то	FT.	RCZ SAMPLING METHODS	WELL COMPLETION
GROUT						FRO	M	то	FT.	MacroCore with PVC	
SA	N/A MPLES			BACKFILL DETAIL	S		N/A		N/A		□ STAND PIPE
TYPE	RECOV. PENET (FEET) BLOWS	R. DEPTH T. (FEET)	SAMPLE NUMBER			PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	AND DRILLING REMARKS
	BLOWG									y graded GRAVEL with	
		-			-			GP	sheer		noderately dense, no odor, n
SH	3	-			-				Poorl	y graded SAND with gr	ravel
		-			-	0		SP	Gray,		-fine sand with 5-10% grave
					+			SP/	- Poorl	y graded SAND with si	ilt
		5-								n, sand with 30% silt, so naterial, soft, no odor, r	ome organic debris and woo no sheen.
SH	2.5					~	* • • • •	<u>_ SM</u>	Well-	graded SAND with grav	
эп	2.5					0	•	sw		gray, sand with 50% gr no sheen.	avel, moderately dense, no
		-								graded SAND with silt	
					+			SW/		gray to brown, sand wit , no odor, no sheen.	h 30% silt, moderately dense
		-			-			SM		D DEBRIS	
SH	2.3	10-		Ş	-				′∏ Dark ∏∖matrix	brown to red-brown, wc <, moist, no odor, no sh	ood material with 5-10% silty leen.
		-			_	0		Wood	⊢′ aaeu-i	graded GRAVEL with s	
								GW/		gray, well graded grave oderately dense, wet, r	el with 10% fine sand and 20° no odor, no sheen.
										y graded SAND	
								GM	grave	l in upper 2 feet, gradin	a sand, 5% fine to medium ig to fine sand by 20-21 feet,
SH	1.3				-		· · · · · ·		⊢ mode	rately dense, wet, no o	dor, no sheen.
		15-			4				-		
					+			SP	-		
		-			-]	-		
SH	0.5				_			1	-		
						0		1			
		20-				0		1	L		
		20-						1	–		
					-	0			F		
SH	3	-			-			CL/	Silty		
		-			-					silty clay, moderately s lo odor, no sheen.	stiff, medium-low pasticity,
								ML			
1 DC		nce arour	ndwater sample F	B37A-RGW scre	en s	et 18-	22 feet	has			

Boring Log

		n Propert	у						Boring Name	B-38
RILLIN	G COMPAN Cascade				DRIL	LER Kas	ey		Project Name	Tacoma Metals
RILLIN	G METHOD	S)			DRIL	L BIT(S) 2-in	SIZE		Project Number	996098*00
SOLATIO	ON CASING				FRO		то	N/A	ELEVATION AND DATUM	TOTAL DEPTH
BLANK C					FRO	М	то	N/A	ground surface	28.0 ft. bgs
BLOTTE	D CASING				FRO		то	FT.	10/29/07 INITIAL WATER DEPTH (FT)	10/29/07
SIZE ANI		FILTER PAC	Ж		FRO		ТО	N/A FT.	9.0	
EAL	N/A				FRO	<u>N/A</u>	то	N/A FT.	DKM	
ROUT	Bentonit	e			FRO	<u>0</u> м	то	28 FT.	SAMPLING METHODS MacroCore with PVC	WELL COMPLETION
S	N/A AMPLES			BACKFILL DETAILS		N/A		N/A	Liner	□ STAND PIPE F
TYPE	RECOV. PEN (FEET) BLOW	ETR. DEPTH IST. (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	D DRILLING REMARKS
	BLOW	V5/6				- \ ₽.	GW	1	graded GRAVEL with san	
SH	3								gravelly fill material, mode or, no sheen.	rately dense, slightly mois
511		-				[::	SP/	L	y graded SAND with silt	It and 5 10% areval
						::	SM	_ mode	gray, sand with 10-15% si rately dense, moist, no od	lor, no sheen.
		5-	B38-5-6	-				-		
SH	3							– Silty	SAND	
								Gray,	very fine sand with 30-40, no odor, no sheen.	% silt, moderately dense,
		-					SM	-	, ,	
SH	2.8	10-		-	0			-		
		-						Poorl	y graded SAND	
								 Gray, nodul 	poorly graded medium sa es in lower ~5 feet, moder	nd, local small (<1/2") silt rately dense, wet, possible
SH	3.2	_						slight no sh	creosote odor ~15-20 fee een.	t bgs, no odor otherwise,
	0.2	15-	B38-14.5-15.5	_	0			-		
								-		
		-					SP	-		
SH	2.5	-			0			-		
		20			0			Ļ		
		-						F		
SH	3.5							-		
		<u> </u>	B38-22.5-23.5		0			@~2	3 feet bgs 1/2" thick layer	of gray/brown silty clay
								Silty		
SH	4	25-					CL/	Gray, high p	silty clay, some fine sand blasticity, wet, no odor, no	sheen.
		-					ML	-		
							-			
<u>NOT</u> 1. R		ance grour	ndwater sample E	338-RGW screen se	et 20-2	4 feet be	gs.			

		n Propert	у						Boring Name	B-39
	G COMPAN	Э				LER Kas	ey		Project Name	Tacoma Metals
DRILLIN	G METHOD(GeoPro				DRIL	L BIT(S) : 2-in	size ch		Project Number	996098*00
SOLATI	ON CASING				FRO		ТО	N/A	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (FRO		то	N/A ^{FT.}	ground surface	28.0 ft. bgs DATE COMPLETED
SLOTTE	D CASING				FRO	М	то	FT.	10/29/07 INITIAL WATER DEPTH (FT	10/29/07
SIZE AN	N/A D TYPE OF	FILTER PAC	К		FRO		то	N/A FT.	10.0 LOGGED BY	/
SEAL	N/A				FRO	<u>N/A</u>	то	N/A FT.	SAMPLING METHODS	
GROUT	Bentonit	e			FRO	<u>0</u> м	то	28 FT.	MacroCore with PVC	WELL COMPLETION
S	N/A AMPLES			BACKFILL DETAILS		N/A		N/A	Liner	□ STAND PIPE F
TYPE	RECOV. PENI (FEET) BLOW	ETR. DEPTH IST. (FEET)	SAMPLE NUMBER	DAGRI ILE DE TAILO	PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	ID DRILLING REMARKS
	BLOV	13/0				 ↓ ↓ 			graded GRAVEL with sar	
SH	2						GW		n to gray/brown, gravelly f no sheen.	m, moderately dense, no
		-					 SM	-	SAND	
									n/red, silty fine sand with moist, no odor, no sheen.	10-20% wood chip material
		5-		-			Wood	///	D DEBRIS n/gray, wood debris with <	5% silt/sand matrix
SH	3.5	<u> </u>	B39-5.5-6.5		0		SM		rial, moist, creosote odor,	
									SAND gray, silty sand with some	e wood debris, moderately
		-		_			SM		e, moist, possible slight cr	
SH	3	10-	B39-10-11	¥ ////////////////////////////////////					SAND	
					0				gray, fine sand with >40% , no odor, no sheen.	silt, moderately dense,
									y graded SAND	
SH	0	_						some		um sand, coarser sand with et, moderately dense, wet,
		15-							n otherwise.	en ~21-22 leet bys, no
							SP	-		
		_						-		
SH	3.5									
		20-						-		
			B39-21-22		0			_		
SH	4	⊢ –	503-21-22				NAL /		ey SILT	
			B39-23-24		0		ML/			iff, wet, no odor, no sheen.
		25-					CL	Gray,	y graded SAND with silt fine sand with 10-15% si	It overall, layered texture
SH	4						SP/		nterbedded poorly graded rately dense, wet, no odd	
		-					01-1		CLAY silty clay, moderately stif	f high plasticity wat pa
NOT	FS I						SM		no sheen.	י, חושרו מסנוטונץ, שפנ, ווט
		ance grour	ndwater sample E	339-RGW screen se	et 19-2	3 feet bo	gs. CL/			
							ML			

ORILLIN	Cascade	S)				DRIL	Eli L BIT(S)			Project Name	Tacoma Metals			
SOI AT	GeoProl ION CASING					FRC	<u>2-in</u>	ch то	FT.	Project Number	996098*00			
	N/A CASING						N/A	то	N/A	ELEVATION AND DATUM	TOTAL DEPTH 28.0 ft. bgs			
	N/A					FRC	N/A	-	N/A	DATE STARTED 1/25/08	DATE COMPLETED 1/25/08			
SLOTTE	ED CASING					FRC	^M N/A	то	N/A	INITIAL WATER DEPTH (F				
SIZE AN	ND TYPE OF I	FILTER PAC	K			FRC	N/A	то	FT. N/A	LOGGED BY				
EAL	Bentonit	e				FRC		то	FT. 28	SAMPLING METHODS	WELL COMPLETION			
GROUT						FRC	-	то	FT.	MacroCore with PVC Liner	□ SURFACE HOUSING □ STAND PIPE			
S	SAMPLES			BACKFILL DI	ETAILS	PID		USCS						
TYPE	RECOV. PENE (FEET) BLOW	TR. DEPTH IST. (FEET) IS/6"	SAMPLE NUMBER			110	LITHOLOGY	LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS			
							 ↓ ↓			graded GRAVEL with sa orange/brown, gravelly fi				
SH	3							GW	mode	erately dense, no odor, no	o sheen.			
эп	3						· . · []]	 sw/		graded SAND with silt				
						0	ŀJ		_ \ matei	rial and 10% gravel, mod	sand with 10-20% wood chi lerately dense, moist, no			
		5-						SM		no sheen. graded SAND with silt				
SH	3					0		sw/	Tan/g	ray, silty fine sand with 5	5-10% gravel, moderately			
5.1						U		300/	I \> − −	e, moist, no odor, no she graded SAND with silt	en. 			
								_SM	Dark	orange/brown, fine sand	with 10% silt, moderately			
										e, moist, no odor, no she D DEBRIS	en.			
SH	2.5	10-		Ş				SW/	Brow	n/red, wood debris with u				
0		_		-		0		SM		own/red, wood debris with up to 50% silt/sand i aterial, moist, no odor, no sheen. Ity SAND				
						•			Tan/g		0% silt, moderately dense,			
		_			_			Wood	{ `	y graded SAND				
SH	2.5	_			_			SM	Dark	gray, poorly graded med	ium sand, coarsening sand, some gravel at 24			
		15-			_					moderately dense, wet, r				
		-							L					
SH	3	-			-			SP	-					
		-			-	0			-					
		20-			- 1				F					
		-			-				-					
SH	2	-			-				-					
		-			-				-					
					-				-					
		25-			-	0			-					
SH	3.5	-			-				-					
		-			-			ML/		e y SILT clayey silt with 5% fine s	sand, moderately stiff, high			
										city, wet, no odor, no she				
	TES		idwater sample E				E 00 E 4		J					

F-40.1 (6-87) (3-88) (8-90)

Boring Log

BORING LOCATION JJ Port Property B-40 Boring Name DRILLER DRILLING COMPANY **Tacoma Metals** Cascade Kasey Project Name DRILL BIT(S) SIZE DRILLING METHOD(S) GeoProbé 2-inch 996098*00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A ground surface 28.0 ft. bgs **BLANK CASING** FROM TO FT DATE COMPLETED 10/29/07 DATE STARTED N/A N/A N/A 10/29/07 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 9.0 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT SAMPLING METHODS WELL COMPLETION Bentonite 28 0 MacroCore with PVC □ SURFACE HOUSING GROUT FROM ΤО FT Liner N/A N/A □ STAND PIPE. FT. N/A SAMPLES BACKFILL DETAILS RECOV. PENETR. (FEET) DEPTH (FEET) PID USCS LITHOLOGY SAMPLE NUMBER SAMPLE DESCRIPTION AND DRILLING REMARKS LOG TYPE Asphalt surface and base gravel fill. Well-graded SAND with gravel SH 3.5 Tan/orange/brown, sand with 30-35% fine to medium gravel, some silt, moderately dense, moist, no odor, no 0 SW sheen. 5 Poorly graded SAND SP SH 3 Brown, poorly graded medium sand with 5-10% gravel, moderately dense, moist, no odor, no sheen. B40-6.5-7.5 Wood WOOD DEBRIS Dark orange/brown, wood chip material, <5% matrix \leq material, moist, no odor, no sheen. SM Siltv SAND SH 3.5 10 Tan/gray, fine sand with 30-40% silt overall (locally 0 variable), moderately dense, moist to wet at ~9' bgs, no odor, no sheen. Poorly graded SAND Dark gray, poorly graded sand, mostly medium sand at top, grading downward to medium/coarse sand mixture, SH 3.5 B40-14-15 local small (<1") silt nodules ~17-20 feet bgs, moderately 15 dense, wet, no odor, no sheen. SP SH 3 0 20 SH 3.5 0 B40-21.5-22.5 Sandy SILT 2/19/13 Gray, silt with ~30% fine sand, moderately stiff, low ML plasticity, wet, no odor, no sheen. KJ PNW.GDT 25 Silty SAND 3.5 SM SH Brown/gray, fine sand with 15-20% silt, moderately dense, wet, no odor, no sheen. GР Silty CLAY CL/ Gray/tan, silty clay, moderately stiff, moderately high 2007 NOTES plasticity, wet, no odor, no sheen. 1. Reconnaissance groundwater sample B40-RGW screen set 19-23 feet bgs.ML LOGS B37 TO B47 : Poorly graded SAND with silt Gray, poorly graded medium to fine sand with 10-15% silt, moderately dense, wet, no odor, no sheen. SP/ PNW SM 7

Boring Log

	JJ Port F								Boring Name	B-41
RILLIN	G COMPANY Cascade				DRIL	Kas	ey		Project Name	Tacoma Metals
RILLIN	G METHOD(S GeoProb				DRIL	L BIT(S) 2-in	SIZE		Project Number	996098*00
SOLATI	ON CASING				FRO		то	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (CASING N/A				FRO		ТО	N/A	ground surface	28.0 ft. bgs
SLOTTE	D CASING				FRO	М	ТО	N/A	10/30/07 INITIAL WATER DEPTH (FT)	10/30/07
SIZE AN	D TYPE OF F	FILTER PAC	ĸ		FRO		ТО	N/A	9.5	
SEAL	Bentonite				FRO		то	TT. 28	DKM SAMPLING METHODS	WELL COMPLETION
GROUT		e			FRO		ТО	FT.	MacroCore with PVC	□ SURFACE HOUSING
S	N/A AMPLES	DEDTU		BACKFILL DETAILS	PID	<u>N/A</u>	110.00	N/A		STAND PIPE F
TYPE	RECOV. PENE (FEET) BLOW	TR. DEPTH ST. (FEET) S/6"	SAMPLE NUMBER		PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION ANI	D DRILLING REMARKS
		_						<u> </u>	alt surface and base grave	el fill.
SH	2						SM	- Tan, f	SAND with gravel fine to medium sand with 2	
		-			0				I, moderately dense, mois	t, no odor, no sheen.
							SP	Brow	y graded SAND n, poorly graded medium t	
SH	3.5	5-						- grave	I, moderately dense, mois	
511	0.0				0	K//	он	Dark	n ic SILT brown to dark gray, silt wit	h abundant organic
			B41-7-8				CL/	hater	rial including woody debris	, soft, moist, no odor, no
		-		¥ ////////////////////////////////////				Silty		davataly atiff high
SH	3	10-		-	0		ML		o tan-brown, silty clay, mo city, moist, no odor, no sh	
			B41-11-12				ML	H A .	y SILT brown, silt with 30-40% fir	e sand overall lavered
		_						textur	e with interbedded clayey o odor, no sheen.	silt, silt, and sandy silt,
SH	3	-						Poorl	y graded SAND	
		15-		-	0			top co	gray, poorly graded sand, parsening slightly downwa	rd, local small (<1/2") silt
							SP	 nodul no sh 	es ~16-20 feet bgs, mode een.	rately dense, wet, no odor
SH	3							_		
					0			_		
		20-						-		
								-		
SH	3.5		B41-21.5-22.5		0			Silty	SAND	
					0		SM	Gray,	fine sand with 20-25% sillor, no sheen.	t, moderately dense, wet,
		25-	B41-24.5-25.5	-			SP	_ Poorl	y graded SAND	
SH	3.5	-							poorly graded fine sand, in no sheen.	moderately dense, wet, no
						[CL	1 1	CLAY	f madamatal di bist
							SP		/gray, clay, moderately stif city, wet, no odor, no shee	
1. R	econnaissa	ince grour	iawater sample E	341-RGW screen se	et 21-2	5 teet bộ	gs.	Gray,	y graded SAND poorly graded fine sand, i no sheen.	moderately dense, wet, no

		Property	/						Boring Name	B-42
RILLIN	IG COMPAN					LER Kas			Project Name	Tacoma Metals
RILLIN	G METHOD				DRIL	L BIT(S) 2-in	SIZE ch		Project Number	996098*00
SOLATI	ION CASING				FRO		то	N/A ^{FT.}	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (CASING N/A				FRO	M	то	N/A FT.	ground surface	36.0 ft. bgs
SLOTTE	D CASING				FRO		ТО	FT.	10/30/07 INITIAL WATER DEPTH (FT	10/30/07
SIZE AN	N/A ID TYPE OF	FILTER PA	NCK		FRO		то	N/A FT.	9.0)
SEAL	N/A				FRO	<u>N/A</u>	то	N/A FT.	LOGGED BY DKM	
GROUT	Benton	ite			FRO	0 M	то	<u>36</u> FT.	SAMPLING METHODS	WELL COMPLETION
	N/A AMPLES					<u>N/A</u>		<u>N/A</u>	Liner	STAND PIPE F
TYPE	RECOV. PEI (FEET) BLC	NETR. SIST. DEPTI	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	ID DRILLING REMARKS
	(, LL ,) BLC	<u>DWS/6"</u>	_			۲ Þ.			graded GRAVEL with sar	
SH	2		-				GW		n to gray, gravelly fill with e, moist, no odor, no shee	
			-		0	· · · ·		H	graded SAND with grave	
011		5	 B42-5-6	-			SW		ular fill material including nents, moderately loose, r	
SH	2		-		4.9			-	DEBRIS	ris with 5-10% silty matrix,
			_	¥ -	0			moist	to wet at ~9 feet bgs, slig below ~12 feet bgs.	
SH	2	10	-	-	Ū				T below T2 leet bgs.	
			-					L		
			-				Wood	-		
SH	1.5	15	-					-		
			-					-		
SH	2		-					F		
		20	-		0			-		
			-				1	Gray,	y graded SAND poorly graded fine to me	dium sand, some fibrous to
SH	2.5		B42-22-23		0		SP		y wood debris locally, mo no sheen.	derately dense, wet, no
			- - D40 04 5 05 5		0			L		
SH	3	25	– B42-24.5-25.5		U			Silty	CLAY	
			-				CL/	F∖ Tan/g	ray, silty clay, moderately no odor, no sheen.	/ stiff, medium plasticity,
0.1			-				ML		y graded SAND	
SH	3	30	B42-30-31		0		SP	⊨ mode		stly medium sand, le very faint creosote odor,
			-				57	_ ∖no sh _ \Sand	een. y SILT	
SH	4		-				ML	- Tan/g	ray, silt with 30-40% fine	
		35					SP		erately stiff, wet, no odor, i	
<u>NO</u> 1. R		sance gro	undwater sample I	342-RGW screen se	et 22-2	6 feet b		Gray, silt at		

		Property						Boring Name B-43
RILLIN	G COMPAN Cascad				DRIL	LER Kas	ey	Project Name Tacoma Metals
RILLIN	G METHOD	(S)			DRIL	L BIT(S) 2-in	SIZE	
SOLATI	ON CASING				FRO	M	то	FT.
LANK (N/A CASING				FRO		то	FT. ground surface 44.0 ft. bgs
	N/A D CASING				FRO	<u>N/A</u>	то	N/A DATE STARTED DATE COMPLETED 10/30/07 10/30/07
	N/A	FILTER PAG				N/A	-	N/A INITIAL WATER DEPTH (FT)
	N/A	FILTER PAC	<i>/</i> /		FRO	N/A	то	N/A FT. LOGGED BY DKM
EAL	Bentoni	te			FRO	м 0	то	44 SAMPLING METHODS WELL COMPLETION
ROUT	N/A				FRO	M N/A	то	FT. MacroCore with PVC □ SURFACE HOUSING N/A □ STAND PIPE
	AMPLES			BACKFILL DETAILS	PID		USCS	
TYPE	RECOV. RES (FEET) BLO	IETR. DEPTH SIST. (FEET) WS/6"	SAMPLE NUMBER			LITHOLOGY	LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
SH	2.5	-		-	0.5		sw	 Well-graded SAND with gravel Gray/orange/dark gray, Sand and gravel (20-30%) fill material, cinders, rock fragments, some silt, moist, no odor, no sheen.
SH	2.5	5-	B43-6-7	-				 WOOD DEBRIS Brown, wood material with 5-10% gray silty matrix material, matrix varies locally from <5% up to ~20%, mo
					0			_ to wet at ∼10 feet bgs, no odor, no sheen.
		-					Wood	ı -
SH	1.5	10-		₩ -	0			-
				-				-
SH	2.5	-						-
		15 -	B43-14.5-15.5	-	0	<u> </u>		- Poorly graded SAND
		-			-	 		 Gray, poorly graded sand, mostly medium sand at top grading to fine sand at bottom, some woody material in upper 5 for and start budges wet elight to mediant
SH	3	-		-				upper ~5 feet, moderately dense, wet, slight to moderate creosote odor ~27-33 feet bgs, otherwise no odor, no
		20-		-			1	- sheen.
SH	3.5	-		-	0		1	t
งก	3.5	-		-			1	-
							SP	t
SH	3.5	- 25						-
					0			
		<u> </u>	B43-28.5-29.5					-
SH	3.5	30-		-	0			t i i i i i i i i i i i i i i i i i i i
				-			1	-
SH	3.5	-						
	5.5	35-	B43-34.5-35.5	-	0			-
SH	3.5			-	0		ML/	 Clayey SILT □ Gray, clayey silt, moderately stiff, medium plasticity, wet ↓ \no odor, no sheen.
<u> </u>	0.0	-		-				Poorly graded SAND
		40-					 	 Gray, poorly graded sand, medium to coarse sand at top grading to mostly medium sand by ~39 feet bgs, local
SH	3	-		-			SP	small (<1") silty fine sand layers or nodules below ~38 fe bgs, moderately dense, wet, no odor, no sheen.

F-40.1 (6-87) (3-88) (8-90)

B-43	Boring Name	996098*00	r	Numbe	roject	ls Pi	Tacoma Meta		Name
EMARKS	DESCRIPTION AND DRILLING RE	SAMPLE	USCS LOG	LITHOLOGY	PID	BACKFILL DETAILS	SAMPLE NUMBER	DEPTH (FEET)	IPLES ECOV. PENETR. RESIST. BLOWS/6"
			us.) D feet bo	et 26-3	343-RGW screen s	dwater sample B		<u>s</u>
				,				- 3	

	JJ Port F				1 - :				Boring Name	B-44
DRILLIN	IG COMPANY Cascade				DRIL	Kas			Project Name	Tacoma Metals
DRILLIN	IG METHOD(S GeoProb				DRIL	L BIT(S) 2-in	SIZE ch		Project Number	996098*00
SOLAT	ION CASING				FRO		то	N/A ^{FT.}	ELEVATION AND DATUM	TOTAL DEPTH
BLANK	CASING N/A				FRO		то	FT.	ground surface	40.0 ft. bgs
SLOTTE	ED CASING				FRO		ТО	N/A	10/31/07 INITIAL WATER DEPTH (F	10/31/07
SIZE AN		ILTER PAC	Ж		FRO	М	ТО	N/A	8.0 LOGGED BY	·
SEAL	Bentonite				FRO		то	FT.	DKM SAMPLING METHODS	WELL COMPLETION
GROUT		5			FRO		ТО	FT.	MacroCore with PVC	□ SURFACE HOUSING
S	N/A SAMPLES	DEDTU		BACKFILL DETAILS	PID	N/A	110.00	N/A		□ STAND PIPE
TYPE	RECOV. PENE (FEET) BLOW	TR. DEPTH ST. (FEET) S/6"	SAMPLE NUMBER		PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
		-				<u>ب</u>	GW		graded GRAVEL graded gravel fill materia	l no odor no sheen
SH	3		B44-2-3					h ``	SAND	
							SM	Tan t		moist, no odor, no sheen.
SH	3	5-					ML	– SILT – Dark	brown, silt, abundant fine	e wood material, moderately
									noist, no odor, no sheen	l.
		-		¥ -]	Wood	Brow		s with 10-15% silty matrix
SH	2	10-				+++	ML		II, matrix locally variable no sheen.	<5% up to 20%, moist, no
								// II	y SILT with gravel	
SH	2.5						ML		gray, silt/sand mixture w /soft, moist to wet at ~8	feet bgs, no odor, no sheen
		15-	B44-14-15	-			SP	- SILT	silt, soft, low placticity, v	wet no odor no sheen
		-						Poorl	y graded SAND	<u> </u>
SH	2	-			0		SM		poorly graded medium s to odor, no sheen.	sand, moderately dense,
		20-		-				Silty		
SH	2.5	-						- poorly	fine sand with 30-40% s y graded sand with silt, s	ilty sand, and sandy silt,
					0				contact is sharp but dep rately dense, wet, no od	
		25-		-			SP	1	y graded SAND	
SH	2.5		B44-25.5-26.5		0	[gradii		e to medium sand at top, coarse sand by ~30 feet bgs creosote odor and light
								- sheer		below ~30 feet bgs, no odd
SH	2			-		[·····				
			B44-31.5-32.5		0			– – Silty	CLAY	
		-				⊥ 	CL/	Dark		ately stiff, high plasticity, we
SH	3	35-			0		ML	∥ └───	y graded SAND	
								Gray,	poorly graded sand, fine	
SH	3	-					SP		rately dense, wet, no od	
					0					
	TES				+ 20 2	2 foot b	•			
1. F	Reconnaissa	ince groui	iuwater sample i	344-RGW screen se	ι ∠ŏ-3	∠ ieet b(<u></u> уъ.			

Kennedy/Jenks Consultants Boring Log BORING LOCATION JJ Port Property B-45 Boring Name DRILLER DRILLING COMPANY **Tacoma Metals** Cascade Kasey **Project Name** DRILLING METHOD(S) DRILL BIT(S) SIZE GeoProbe 2-inch 996098*00 Project Number ISOLATION CASING FROM то FT ELEVATION AND DATUM TOTAL DEPTH N/A N/A N/A ground surface 28.0 ft. bgs **BLANK CASING** FROM TO FT DATE COMPLETED 10/30/07 DATE STARTED N/A N/A N/A 10/30/07 SLOTTED CASING FROM то FT INITIAL WATER DEPTH (FT) N/A N/A N/A 8.0 SIZE AND TYPE OF FILTER PACK FROM TO FT LOGGED BY N/A N/A N/A DKM SEAL FROM ТΟ FT SAMPLING METHODS WELL COMPLETION **Bentonite Chips** 28 0 MacroCore with PVC □ SURFACE HOUSING GROUT FROM ΤО FT Liner N/A N/A □ STAND PIPE. FT. N/A SAMPLES BACKFILL DETAILS DEPTH (FEET) PID USCS LOG RECOV. PENETR. (EEET) RESIST. LITHOLOGY SAMPLE NUMBER SAMPLE DESCRIPTION AND DRILLING REMARKS TYPE (FEET) BLOWS/6 Well-graded GRAVEL with sand \$ Tan, gravelly fill with 40-45% sand, moderately dense, no GW odor, no sheen. SH 2.5 \bigtriangleup 0 Well-graded SAND SW Dark gray, granular material with cinders, charcoal, and pumice-like fragments, no odor, no sheen. 5 Silty CLAY CL/ SH 2.5 Orange/gray to gray, silty clay, moderately stiff, medium B45-6-7 plasticity, moist, no odor, no sheen. 0 ML Poorly graded SAND Ţ Dark Gray, poorly graded medium sand, grading to medium/coarse sand mixure by ~15 feet bgs, moderately dense, wet, no odor, no sheen. SH 3.5 10 0 B45-11-12 2 SH SP 15 0 0 @ ~17.5 feet bgs, ~1.5 inch silt layer or nodule SH 2.5 0 20 B45-21-22 SH 3.5 Silty CLAY CL/ Tan/light brown, silty clay, moderately stiff, moderately 2/19/13 high plasticity, wet, no odor, no sheen. ML KJ PNW.GDT 0 Poorly graded SAND with silt 25 Gray, poorly graded fine sand with 10-15% silt, moderately SH 3.5 SP/ dense, wet, no odor, no sheen. Poorly graded SAND GPJ. Gray, poorly graded medium to fine sand, moderately SM dense, wet, no odor, no sheen. LOGS B37 TO B47 2007 NOTES 1. Reconnaissance groundwater sample B45-RGW screen set 18-22 feet bgs. PNW 7 F-40.1

	JJ Port P	roperty							Boring Name	B-46
	G COMPANY Cascade				DRIL	Kas			Project Name	Tacoma Metals
RILLIN	G METHOD(S GeoProb				DRIL	L BIT(S) : 2-in	SIZE ch		Project Number	996098*00
SOLATI	ON CASING				FRO	M N/A	то	N/A ^{FT.}	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (CASING N/A				FRO		то	FT. N/A	DATE STARTED	32.0 ft. bgs
SLOTTE	D CASING				FRO	FROM TO		N/A	10/31/07 INITIAL WATER DEPTH (FT	10/31/07
SIZE AN	D TYPE OF FI	LTER PAC	Ж		FRO	М	то	N/A	LOGGED BY	
EAL	Bentonite				FRO		то	57. 32	DKM SAMPLING METHODS	WELL COMPLETION
GROUT					FRO		то	FT.	MacroCore with PVC	□ SURFACE HOUSING
S	N/A AMPLES	DEDTU		BACKFILL DETAILS	PID	N/A	110.00	N/A		□ STAND PIPE
TYPE	RECOV. PENET (FEET) BLOWS	R. DEPTH T. (FEET)	SAMPLE NUMBER		PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	ND DRILLING REMARKS
SH	3	-		-	0		sw	Brown	graded SAND with grave n, sandy fill with 10-20% g rately dense, moist, no o	gravel, some silt,
									y graded SAND with silt n, fine sand with 10-20%	silt moderately depen
		5-		_					to wet at ~9 feet bgs, no	
SH	3		B46-6-7		0		SP/			
				¥	Ū		SM	_		
		-		-				-		
SH	3.5	10-		-				-		
		-			0		Wood		D DEBRIS	
									brown to orange-brown, w x material, wet, no odor, r	wood debris, 5-10% sandy no sheen.
SH	4		B46-13-14					L 7	SAND	0% silt, moderately dense,
		15-		-			SM		no odor, no sheen.	
								-		
011		-			0				y graded SAND	
SH	3				0			Gray,	poorly graded medium s es, moderately dense, we	and, local small (<1/2") silt et, no odor, no sheen.
		20-		-			SP	-		
		-	B46-21-22		0			-		
SH	3.5	-					ML	Gray,		moderately stiff, wet, no
							CL/		no sheen.	
		25-			_			Tan to	o gray, layered, silty clay,	moderately stiff,
SH	4	-					ML		erately high plasticity, wet	
		-			0		SM	Gray,		ilt, moderately dense, wet,
								Poorl	y graded SAND	
SH	3.5	30-					SP	Gray, wet, r	poorly graded medium s no odor, no sheen.	and, moderately dense,
011	5.5							Ļ		

F-40.1 (6-87) (3-88) (8-90)

Bori	-										Kennedy/	Jenks Consult	ants
BORIN		ort Pro	operty								Boring Name	B-47	
DRILLI	NG COM	PANY					DRIL					T	
	Caso							Kas	- ,		Project Name	Tacoma Metals	
	Geol	Probé					DRIL	<u>2-ir</u>			Project Number	996098*00	
ISOLAT	TION CAS	SING					FRO	M N/A	то	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH	
BLANK	CASING						FRO		то	FT.	ground surface	36.0 ft. bgs	
	N/A							N/A		N/A	DATE STARTED 10/31/07	DATE COMPLETED 10/31/07	
SLOTT	ED CASII N/A	NG					FRO	M N/A	ТО	FT. N/A	INITIAL WATER DEPTH (FT)	10/01/01	
SIZE AI	ND TYPE	OF FIL	TER PAC	СК			FRO	М	то	FT.	LOGGED BY		
SEAL	N/A						500	<u>N/A</u>		N/A	DKM		
SEAL	Bent	onite					FRO	0	то	5T. 36	SAMPLING METHODS	WELL COMPLETION	
GROUT							FRO		ТО	FT.	MacroCore with PVC		
	N/A SAMPLES							<u>N/A</u>		N/A		□ STAND PIPE	FT.
TYPE	DECOV	, PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAIL	LS	PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS	
- - SH	3		-	-		-		• •.	SW/	Browr	graded SAND with silt and gr n to dark brown, gravelly fill with oderately dense, moist, no od	th 40-45% sand and 5-10	0%
- -							0		SM	- -			
- SH -	1.8			B47-6-7		-	0		GM	Grave	GRAVEL with sand elly fill with 30-40% sand and 1 e, moist, no odor, no sheen.	0-15% silt, moderately	
- - SH	4		- - 10-) Į	_				_ _ Claye	y SILT		
-	4		-			-	0		ML/		clayey silt, moderately soft, m no sheen.	edium plasticity, wet, no	
- - SH	3			B47-13-14		_			CL	Gray,	y graded SAND poorly graded medium sand, i	moderately dense, wet, n	10
-	-		15-			-	0		SP	Silty S			
_			-	-		-			SM	Gray,	fine sand with 20-30% silt, mo no sheen.	oderately dense, wet, no	
- SH -	0		-	-						Sand	y SILT		
-			20-			+			ML	Gray, wet, n	silt with 30-40% fine to very fill o odor, no sheen.	ne sand, moderately stiff	,
- SH	1.5		-			_	0	ľ, ľ	CL	_ Lean Olive	CLAY gray, clay, some fine root mat	erial, moderately stiff, hid	gh
ŀ			-	1		1	0		1		city, wet, no odor, no sheen.		-

Silty SAND

Poorly graded SAND

Clayey SILT

no odor, no sheen.

Poorly graded SAND

Sandy clayey SILT

Gray/brown, fine sand with 35-45% silt, layered texture,

no matrix at top of unit, dense, wet, no odor, no sheen.

Gray, poorly graded medium sand, some coarse sand, moderately dense, wet, no odor, no sheen.

Gray, poorly graded medium to coarse sand, no odor, no sheen.

Gray, interbedded clayey silt and poorly graded medium to

coarse sand with silt, layers typically 1/2 to 1 inch thick with abrupt contacts, wet, no odor, no sheen.

(See next page for lithology description)

Gray-green to dark gray, angular medium gravel-sized rock material with up to 15% silt/sand matrix material, generally poor

sample recovery, ~6 inches of white fractured rock material with

Tan/brown, clayey silt, moderately stiff, medium plasticity, wet,

moderately dense, wet, no odor, no sheen.

Poorly graded GRAVEL with silt and sand

SM

GP/

GΜ

SP

ML/

CL

SP

ML/

CL

SP

0

0

0

2/19/13 PNW LOGS B37 TO B47 2007.GPJ KJ PNW.GDT 3

NOTES

2.5

3.3

3.5

25

30

35

B47-30.5-31.5

1. Reconnaissance groundwater sample B47-RGW screen set 28-32 feet bg

SH

SH

SH

Boring Log

Projec	t Name	Tacoma Meta	als P	roject	Numbe	er	996098*00	Boring Name	B-47
			BACKFILL DETAILS						
TYPE	RECOV. PENETR. (FEET) BLOWS/6"	SAMPLE NUMBER		PID	LITHOLOGY	USCS LOG	SAMPLE DESCR	RIPTION AND DRILLING	REMARKS
	DEOWORD	1			1		Poorly graded SAND		
							Gray, poorly graded sand grading to fine/medium s ~35.5 feet, moderately d	d, coarse to medium and by ~35.5 feet b	i sand at top as, some silt belov
							~35.5 feet, moderately d	ense, wet, no odor,	no sheen.

Kennedy/Jenks Consultants

BORIN	NG LOCAT	ION EAS	ST-N	ORTHEAST OF I	RED BRICK BUI	_DING		Boring/Well Name	MW-4(R)
DRILL	ING COM	CA	SCADE	E DRILLING, ING	Э.		RSCOTT KREUGER	Project Name	TACOMA METALS
DRILL	ING MET	но но	LLOW	STEM AUGER		DRILL E	BIT(S) SIZE: 9 INCH	Project Number	996098.00
ISOLA	TION CAS	ing NO	NE			FROM	TO FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLAN	K CASING	2"	DIA.	SCH 40 PVC		FROM	0.0 ^{TO} 5.0 ^{FT.}	10.0 DATE STARTED	22.8 DATE COMPLETED
PERFO	ORATED C				D.010 SLOTTED	FROM	TO FT. 5.0 22.8	05/09/2000 INITIAL WATER DEPTH (FT)	05/09/2000
SIZE	AND TYPE			USTRE #2/12		FROM	4.0 ^{TO} 22.8 ^{FT.}	10.3 LOGGED BY	
SEAL		ONITE				FROM	2.0 ^{TO} 4.0 ^{FT.}	TAH/DKM SAMPLING METHODS	WELL COMPLETION
GROU						FROM	0.0 TO 2.0 FT.	- 2.5" ID SPLIT SPOON	SURFACE HOUSING STAND PIPE 3.0 FT.
	SAMPLES RECOVERY (FEET)	PENETRATION RESIST (BLOWS/6 IN.)	DEPTH (FEET)				LITHOLOGY USCS LOG	SAMPLE DESCRIPTION AND D	RILLING REMARKS
SS	1.5	24 25 28 5 5 6 6		NMW-2-0.0 NMW-2-5.0 NMW-2-10.0		-	sw -	Well-graded SAND with grave Mixed gravelly sand. Well-g well-graded gravel (~20%), moist, brown, contains wood metal fragments, moderate t creosote-like odor, no sheer Poorly graded SAND with all	raded sand, medium dense, , glass, and co strong 1.
SSS	1.0	20 32 50 27 30 32	- - - - - - - - - - - - - - - - - - -	NMW-2-15.0		-	SP/ - SM - -	Highly organic (woody) silty dense, brown, wet. Organic decomposed wood w/strong creosote—like odor. Very sti 15.0 feet bgs. Poorly graded SAND Angular to sub—angular med clean sand (predominantly c dense, charcoal gray/black, strong creosote—like odor.	material is partially to very strong rong odor at ium to coarse oarse sand),

Notes:

1 Creosote-like odor detected in all soil samples collected. Strongest odor occurs at elevation of wood fill material.

2 Below depth of 10 feet bgs, soil also has diesel-like petroleum odor

Boring & Well Construction Log Kennedy/Jenks Consultants

RILLIN			RTHEA	AST CORNER (DF SITE				Boring/Well Name	MW-8(R)
	IG COMF	CA	SCADE	E DRILLING, IN	С.		SCOTT KREUG		Project Name	TACOMA METALS
RILLIN	IG METH	HC C	LLOW	STEM AUGER		DRILL F	bit(s) size: 9 INCH	1	Project Number	996098.00
SOLATIO	ON CASI	ng NC	NE			FROM	то	FT.	ELEVATION AND DATUM	TOTAL DEPTH
LANK	CASING	2"	DIA.	SCH 40 PVC		FROM	0.0 ^{to} 5.0) FT.	8.5 DATE STARTED	23.6 DATE COMPLETED
ERFOR	ATED C	ASING			0.010 SLOTTED	FROM	5.0 23.6	FT.	05/09/2000 INITIAL WATER DEPTH (FT)	05/09/20
ZE AN	D TYPE	OF FILTE	r pack PIS Ll	JSTRE #2/12	SILICA	FROM	4.0 ^{TO} 23.6	FT	10.0 LOGGED BY	
- 11		ONITE				FROM	2.0 ^{TO} 4.0) FT.	TAH/DKM SAMPLING METHODS	WELL COMPLETION
		RETE				FROM) FT.	2.5" ID SPLIT SPOON	SURFACE HOUSING STAND PIPE 3.0 F
	MPLES	PENETRATION	DEPTH	SAMPLE NO.	WELL		LITHOLOGY USCS		SAMPLE DESCRIPTION AND	
	ECOVERY FEET)	PENETRATION RESIST (BLOWS/6 IN.)	(FEET)				LOG			
	1.5	25 25 22				-	···· sw -	N c	Well-graded SAND with grav Mixed gravelly sand with so dense, brown, moist, mixed small metal scrap, no hydr no odor.	me silt, medium , contains some
			5-						Sandy SILT	
	1.5	5 5 6		NMW-3-5.0			ML		Sandy silt/silty sand. Fine	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	_		s	gray, wet, heterogeneous, c small wood fragments, no	
			-		-	-		$\overline{}$	odor, no sheen.	
			-			-		F	oorly graded SAND	
	1.5 12 10 − NMW−3−10.0 = =				- <u>-</u>	-			Angular to sub—angular fine sand, dense, charcoal gray,	
;	1.5	1.5 15NMW-3-10.0				-		H	Heavy sheen, very strong h At 15' bgs, strong odor, no	ydrocarbon odor.
			-			-			bgs, moderate odor, no sh	
			15-			-		_		
	1.5	12 13 15	-	-	-	-	SP _			
		1.5	-		-	-				
			-			_				
			20 —			-		-		
					-	-				
+		12	-			-				
	1.5	12 15 15	-	NMW-3-22.1		-				

DRING LOCATION EAST OF STORAGE BUILDING	Bo	Boring/Well Name MW-9		
RILLING COMPANY CASCADE DRILLING, INC.		oject Name TACOMA METALS		
RILLING METHOD HOLLOW STEM AUGER	DRILL BIT(S) SIZE: 9 INCH Pr	oject Number 996098.00		
NONE	FROM TO FT. ELEY	VATION AND DATUM		
LANK CASING 2" DIA. SCH 40 PVC	FROM 0.0 TO 5.0 FT. DAT	12.0 23.5 E STARTED DATE COMPLETED		
ERFORATED CASING 2" DIA. SCH 40 PVC 0.010 SLOTTED		05/09/2000 05/09/200 AL WATER DEPTH (FT)		
ze and type of filter pack LAPIS LUSTRE #2/12 SILICA	118 2018	12.0 GED BY		
BENTONITE CHIPS	FROM TO FT	TAH/DKM PLING METHODS WELL COMPLETION SURFACE HOUSING		
ROUT CONCRETE	FROM 0.0 TO 2.0 FT. 2	.5" ID SPLIT SPOON STAND PIPE <u>3.0</u> FT.		
SAMPLES PE RECOVERY RESIST (FEET) (BLOWS/6 IN.) (FEET)	LITHOLOGY USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS		
0.7 12 12NMW-1-0.0		raded SAND with silt and gravel gravelly sand with some silt, medium		
1.5 4 1.5 4 1.5 12 1.5 15 10 − NMW−1−10.0 	SM SM SM SP Fine t mediu glass no od SM SM SM SM SIlty S	r graded SAND o medium sand (predominantly medium), m dense, wet, gray, contains small fragments, no hydrocarbon sheen, lor.		
1.5 42 1.5 35 37 	Medium homog Poorly SP Angula sand,	y graded SAND m Sand, medium dense, gray, wet, geneous, no hydrocarbon sheen, no odor. y graded SAND ar to sub-angular fine to medium clean dense, charcoal gray/black, wet, massive,		
20- 1.5 18 30 NMW-1-22.0	no sh	een, no odor.		

Boring & Well Construction Log Kennedy/Jenks Consultants

ERFORATED CASING	H SCHEDULE 40 H SCHEDULE 40		FROM FROM FROM	TO FT. 0.0 TO 8.0 FT. 8.0 20.0 FT. FT.	Project Number ELEVATION AND DATUM DATE STARTED 11/10/190 INITIAL WATER DEPTH (FT)	TOTAL DEPTH DATE COMPLETED
RIZE AND TYPE OF FILTER PAC	2/12 LAPIS LUS EDIUM BENTONITE	STRE SAND	FROM FROM FROM	7.0 ^{TO} 20.0 FT. 1.0 ^{TO} 7.0 FT. 0.0 ^{TO} 1.0 FT.	10.5 LOGGED BY DKM SAMPLING METHODS SPLIT SPOON	WELL COMPLETION SURFACE HOUSING STAND PIPE FT.
SAMPLES PENETRATION RESIST (FEET) DEF (FE 1 16 12 9 5 1 16 12 9 10 1 16 12 9 10 1 10 10 10 1 10 50/3 10 1 10 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 <	EET) 	WELL CONSTRUCTION	OVA 0.0 10 7 6	ML/ ML/ CL ML/ CL ML/ CL ML/ CL ML/ CL	SAMPLE DESCRIPTION AND fell-graded GRAVEL with rown, dry, gravel (60%) in ne sand (35%) and mino fell-graded GRAVEL with ledium brown, dry, gravel nd medium sand (50%). enerally fine-grained. isayey SILT with sand ight brown, crumbly, moo ith 5-10% fine sand. In itayey SILT lixed silt and clay, dark ensity. itayey SILT rown to gray, wet, soft si ith some clay. Mixed with (ood debris is typically 85 naterial. Silt, sand and on nd coating the wood mat forly graded SAND ark brown, wet, poorly gine grained sand.	sand with medium and r (<5%) silt. sand (50%) with fine Gravel material is lerately dense silt acludes some clay. brown, soft, low silt and fine sand th wood debris. 5%-95% of clay are around terial.

		-					y ne		
			ST OF OCTA	AGON FO	DUNDATION	1		Boring/Well Nam	• MW-11
	ING COM	CA	SCADE			DRILLE		Project Name	TACOMA METALS
DRILL	ING METH	HDD HS	A			DRILL	bit(s) size: 12 INCH	Project Number	996098.00
SOLAT	TION CAS	ING				FROM	TO FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLANK	CASING	4-	INCH SCHE	DULE 40) PVC	FROM	0.0 ^{to} 6.0 ^{FT.}	DATE STARTED	DATE COMPLETED
	RATED C	4-	INCH SCHE	DULE 40) PVC 0.020 SL	FROM OT	T0 FT. 6.0 20.0	11/10/190 INITIAL WATER DEPTH (FT)	0 11/10/190
SIZE A	AND TYPE	e of filte i RM	граск С #2/12 L	APIS LU	STRE SAND	FROM	5.0 20.0 FT.	10.5 LOGGED BY	
SEAL			MEDIUM BE			FROM	1.0 ^{TO} 5.0 ^{FT.}	DKM SAMPLING METHODS	WELL COMPLETION
GROUT	CONC	RETE				FROM	0.0 to 1.0 ft .	SPLIT SPOON	SURFACE HOUSING
S	AMPLES	PENETRATION RESIST	DEPTH SAM	IPLE NO.	WELL	OVA	LITHOLOGY USCS	SAMPLE DESCRIPTION AND	D DRILLING REMARKS
TTPE	(FEET)	(BLOWS/6 IN.)	(FEET)		CONSTRUCTION		LOG		
S	0.7	20 20 9 5 3 2	- - NMW-5 5- NMW-5			0.8		Vell-graded GRAVEL with Gray to brown—orange, sli vith 25—30% sand and so naterial.	ghtly moist, gravel
	0.2	40 18 10 23 13 8 8 50/3 25 20 20/2	- - - - - - - - - - - - - - - - - - -	5–10.0		12	- E - W - V	Clayey SILT Brown to gray, wet, soft vith some clay. Mixed w Vood debris is typically 8 naterial. Silt, sand and and coating the wood ma	ith wood debris. 5%—95% of clay are around
5	0.4	7 10 12 2	- - - 20-			38		Yoorly graded SAND Dark brown, wet, poorly g ine grained sand.	raded medium to
S	1.5	2 5 37	NMW-5	-20.0	-	33			
						-		.ight brown, soft slay to ∶mall fibrous wood fragm∉	
			30		_	-	_		

Boring & Well Construction Log Kennedy/Jenks Consultants

Soring a						-	
	VEST OF	F MACHINE SH	IED			Boring/Well Name	MW-12
RILLING COMPANY (CASCADE	Ξ		DRILLE		Project Name	TACOMA METALS
RILLING METHOD +	ISA			DRILL	BIT(S) SIZE: 12 INCH	Project Number	996098.00
OLATION CASING				FROM	TO FT.	ELEVATION AND DATUM	TOTAL DEPTH
LANK CASING 2	-INCH	SCHEDULE 40) PVC	FROM	0.0 ^{TO} 7.0 ^{FT.}	DATE STARTED	DATE COMPLETED
) PVC 0.020 SL	FROM OT	то FT. 7.0 19.0	INITIAL WATER DEPTH (FT)	0 11/10/190
IZE AND TYPE OF FIL	TER PACK	/12 LAPIS LU	STRE SAND	FROM	6.0 ^{TO} 19.0 ^{FT.}	LOGGED BY DKM	
		IUM BENTONITE		FROM	1.0 ^{TO} 6.0 ^{FT.}	SAMPLING METHODS	WELL COMPLETION
ROUT CONCRETE		1		FROM	0.0 ^{TO} 1.0 ^{FT.}	SPLIT SPOON	STAND PIPE FT.
SAMPLES YPE RECOVERY RESIS	ION DEPTH		WELL CONSTRUCTION	OVA	LITHOLOGY USCS LOG	SAMPLE DESCRIPTION AND	DRILLING REMARKS
(FEET) (BLOWS/6	N.) (* 17					Well-graded GRAVEL with	sand
	-	-		1		Dark brown to gray, slightl (55—60%) with sand (35%)	
6 0.3 14	_	-			[] sw _ ∖		· ,
0.3 14 14		-		-		Well-graded SAND with gra Medium brown sand and g	
	- 5-					silt (5%), moist, includes s fragments.	
5 1.0 6 6		NMW-6-5.0		0.8		_	
	-					Well-graded GRAVEL with a Dark gray to brown, moist.	
0.1 2		-		-		with sand.	, g. a.o. (00 00 <i>%)</i>
5	10-	-	¥ Ē -	-		Clayey SILT	
0.5 5 15		-				Brown to gray, wet, soft s with some clay. Mixed wit	
0.3 10		-		1		Wood debris is typically 85	5%–95% of
0.3 10 25		-	-			material. Silt, sand and c and coating the wood mat	-
4	15-	-		-			
0.2 7 35	-	-	-	-			
7		-		-		Poorly graded SAND	
5 1.5 20 20	_	NMW-6-17.5		1	[••] ••]	Gray/brown, wet, poorly gr fine grained sand.	aded medium to
2	20	-		-	SP 		
1.0 2 5 8		NMW-6-20.0	-	1	-		
	-	-	-		-		
	-]			
	25 —	-		-	\vdash		
		-	-	-	-		
	-	-	-	1	F		
]			
	30				L		

		-					-				
BORI	NG LOCAT	^{ION} NE	OF	MW-8(R) NEAR	PROPERTY BO	UNDAF	RY			Boring/Well Nam	e MW-13
DRILLING COMPANY CASCADE							R JAMES			Project Name	TACOMA METALS
DRILI	ING METH	нар НО	LLOW	STEM AUGER		DRILL I	BIT(S) SIZE	• 9-INC	сн ор	Project Number	996098.00
ISOLA	TION CAS	ING				FROM		го	FT.	ELEVATION AND DATUM	TOTAL DEPTH
BLAN	K CASING	2-	INCH	SCHEDULE 40	PVC PIPE	FROM	0.0	^{ro} 7	.0 ^{ft.}	DATE STARTED	21.5 DATE COMPLETED
PERF	ORATED C	asing 2-	INCH	SCHEDULE 40	PVC 0.010-IN	FROM CH SL	-	ro 18	FT.	06/26/200 INITIAL WATER DEPTH (FT)	02 06/26/2002
SIZE	AND TYPE	OF FILTE	r pack PIS LI	USTRE #2/12 1	MOTEREY SAND	FROM		ro 18	ET	11.0 LOGGED BY	
SEAL				TONITE CHIPS		FROM	2.0		.0 ^{ft.}	DKM SAMPLING METHODS	WELL COMPLETION
GROU	T CONC					FROM	2.0		O FT.	SPLIT SPOON	SURFACE HOUSING STAND PIPE 3.0 FT.
	SAMPLES	PENETRATION RESIST	DEPTH	SAMPLE NO.	WELL	OVA	LITHOLOGY	USCS		SAMPLE DESCRIPTION ANI	D. DRILLING REMARKS
TYPE		RESIST (BLOWS/6 IN.)	(FEET)					LOG			
		7		-	4 -	-	4		_	ell-graded GRAVEL with	
S	1.0	6 6	-	MW-13-2.5		133		GW	_ fi	rown fine- to medium- ne- to medium- sand o dor, no apparent sheen.	
S	1.0	565	-	WW-10-2.0		155			-		
S	1.0	7 50	-	-		68				OOD with SILT matrix	
			5-	MW-13-5		9.3			si	ark gray, wood debris ty ilt/fine sand matrix, no	sheen above 13
5	1.0	4 4 5	_	_		_				eet, moderate sheen belo o moderate creosote odo	
s	1.5	5 4 5	-	-	-	701			_		
s	0.5	12 19	-	_	-	245			-		
		50 22	10-	-		>2000		SМ	_		
S	1.0	16 25 5	-	-		>2000			-		
S	0.4	13 13				67.1					
s	1.0	5 6 6	-	-		07.1			_		
		0	15 -	-		-			_		
s	0.3	15 29 32	-	-		221			-		
S	1.5	32 8 7	-	MW-13-17.5		>2000 764		SP	P	oorly graded SAND	
ں 	1.0	5	-	-		-		ML/		ark gray fine sand with reosote odor and sheen.	
S	1.5	12 15	20-	- MW-13-20		>2000		SP/	$\lfloor \mid $		
S	1.5					-		SM	- \	layey SILT	
			-	-	-	>2000	اللللك ال	I	– \m	ray to light brown clayey noderately dense, no crea pparent sheen.	
			-	-	-	_			- \a	ppurent sneen.	
			-	-	-	-			- P	oorly graded SAND with	silt
			25 -	4		+			⊢ G	ray fine sand with 10-2	.0% silt, none to

Kennedy/Jenks Consultants

	Former Cr	eosotir	ng Area							Well Name	MW-14
DRILLING COMPANY Cascade Drilling, Inc.								n		Project NameFo	rmer Tacoma Metals
	G METHOD(S) Hollow-Ste							ch OE)	Project Number	996098.00
SOLATI	ON CASING					FRO	M N/A	то	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH
BLANK (CASING 2-inch SCI	-1 40 P	VC with 6-incl	n sump		FRO	м 0.0 23.5	то	13.5 FT. 24.0	10.05' (NGVD29) DATE STARTED	26.5 ft. bgs DATE COMPLETED
LOTTE	D CASING			•		FRO	М	то	FT.	2/26/03 INITIAL WATER DEPTH (FT)	2/26/03
SIZE AN	D TYPE OF FIL	TER PAC				FRO		ТО	23.5 FT.	9.0 LOGGED BY	
SEAL			2 Monterey S	and		FRO	<u>11.5</u> м 2.5	то	25.0 11.5 ft.	JML/AJA	
ROUT	Pure Gold	Bento	nite Chips			FRO	<u>25.0</u>	то	26.5	SAMPLING METHODS 2.5" ID split spoon	WELL COMPLETION ■ SURFACE HOUSING
							0.0		2.5		STAND PIPE F
	RECOV. PENETR. (FEET) BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUC		OVA (ppm)	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	D DRILLING REMARKS
		_							Asph		(EII)
SS	0 32 50 4								– Dark	graded SAND with gravel yellowish brown to (10YR	4/12) to dusky brown
SS	10	-				1.2		SW		2/2), fine to coarse sand, moist, no odor/sheen.	~10-20% fine gravel, trace
	1 13 10 3	-			+				└ ~4' b	rownish black (5YR 2/1).	
SS	0.9 4 3	5-				1.6	• • • •		-	, , , , , , , , , , , , , , , , , , ,	advallages
SS	1 3 4					1.7				dusky brown (5YR 2/2), gr D DEBRIS with SILT or SA	
SS	0.5 6]]				17.0			Dark	gray (N3) to black (N1), we % silt/fine sand matrix, alt	ood debris typically with
SS	$ \begin{array}{c c} $	-		¥						was observed.	
00	0.0 <u>2</u> 5 3	10-			-				~7' SI ~9' V	ight creosote odor.	
SS	0.4 2					0.7		Wood	L .	vet. ncrease in fines, matrix pr	edominantly silt to silt clay
SS	0.3 50	-				1.8			~11'	Visible sheen, creosote oo	lor.
SS	0.2 5 5					1.2					
SS	20	⊠ 15 -	MW-14-14-14.5		╎╷	1.6			~14.5	' Large wood debris.	
33	0.4 20 15 8								_		
SS	0.8 8 8 6	-			-	0.9			Brown	SAND ish black (5YR 2/1), ~10-20	
SS	0.7 5					0.3		SM		s organic material, wet, sligh	
SS	0.3 5	20-				2.2				y graded SAND	
SS	0.3 5 5 0.2 7							SP		iish black (5YR 2/1), fine to r light sheen and creosote odd	
SS	0.8 8	⊠ -	MW-14-22-22.3		+	0.5		SM	- Silty S	SAND v brown (5YR 2/2), fine sand,	~20-35% fines wet
	<u>11</u> 8		MW-14-23.8-24]-	6.6 5.5		CL	~22' v	ery strong sheen and creosc	
SS	1.2 16 30 10	25-				0.0			on soi	I surface.	
SS	25		MW-14-26-26.5			2.0		SM	Dusky	yellowish brown (10YR 2/2) slight creosote odor, no she	
NOT	TES			<u></u>				ML	Silty S	5	
	VA - Organic Ground surface		nalyzer. on based on Cit	y of Tacoma da	atum (I	NGVE	029).			scribed above.	
							-	CL	Dusky	with sand yellowish brown (10YR 2/2) or odor.	, trace fines, wet, no visible
								SM	Lean	CLAY with sand scribed above with ~15% find	e sand.
									Silty S		
										5% fines, wet, slight creosote	

BORING LOCATION Former Creosoting Area										Well Name		MW-15
Cascade Drilling, Inc.							Bria			Project Name	Form	er Tacoma Metals
								ch OE		Project Number		996098.00
-	ON CASING					FRO	N/A	ТО	N/A ^{FT.}	ELEVATION AND DATUM		TOTAL DEPTH 28.0 ft. bgs
ANK	CASING 2-inch SC	CH.40 P	VC with 2-incl	h sump		FRO	м 0.0 26.1	то	16.1 FT. 26.3	DATE STARTED	,	DATE COMPLETED
OTTE	D CASING		VC 0.010-incl			FRO		ТО	FT. 26.1	2/28/03	(FT)	2/28/03
ZE AN	D TYPE OF F	LTER PAC				FRO		то	FT. 26.3	LOGGED BY		
EAL	•		-			FRO	м 2.5	то	14.0 FT. 28.0	JML/SC SAMPLING METHODS		WELL COMPLETION
ROUT		и вепто	nite Chips			FRO		то	FT.	1"x2' and 2"x4' split spoon with acetate lin	or	■ SURFACE HOUSING
S	Concrete AMPLES			WELL CONS			0.0		2.5	spoon with acetate in		STAND PIPE
TYPE	RECOV. PENET (FEET) BLOWS	R. DEPTH T. (FEET)	SAMPLE NUMBER	WELL CONS	INCOMON	OVA (ppm)	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	AND DF	RILLING REMARKS
	BLOWG			Þ			r Þ		Asph	alt		
SS	2.4	-				5.5			 Mode grave 	graded GRAVEL with s rate brown (5YR 4/4) to l-subangular to subrour um sand, trace silt, moi	o black nded,	(N1), fine to coarse
					-					color change to olive bl	lack (5	5YR 2/1), sheen, stron
		5-			-	-		GW	_ nyaro	carbon odor.		
SS	0.8	-				36.0						
		_			_							
		-			-	-		<u> </u>				
SS	2.8	10-			-	22.0			- Red t	D DEBRIS with SILT or o dark yellowish brown	(10YF	R 4/2), ~95% wood,
			MW-15-11-11.5	- F	-	-			_ mode	rate sheen and slight h	iydroca	arbon odor.
					-				F	wet.		
SS	0.0							Wood				
SS	1.8	15-			-	10.2			- 45		(1)7)	
					-				L	~100% wood, light gray 17' ~ 50% wood, ~50%	. ,.	
SS	2.0	-			-	8.6				SAND	Sity i	
					-			SM	Dark	gray (N3) to brownish b 0% silt, wet, slight shee		
SS	1.7	20				3.4				y graded SAND		
ss	2.0	20-				3.6		SP		gray (N3) to black (N1), or odor.	, fine t	o medium sand, wet, i
-					-				-			
SS	2.0	-			-	7.9		ł	~22.9	' gradual increase in fin	ne san	d.
					-			ML	SILT			filmenne '
SS	2.0	25-	MW-15-25-26		-	2.9				olive gray (5YR 5/2), co rial, wet, no sheen or oo		s indrous organic
SS	2.0	T _				2.5		SM	Silty		on	adar
								CL		escribed above, no shee		JUUI.
<u>NOT</u>		dvanced	with GeoProbe r	ia. Well ins	talled us	ina 9-ir	ich diam	L	Light	gray (N7), moderate pla	asticity	y, moist, no sheen or
h	ollow-stem a VA - Organi	uger drill	rig.	9	ancu us			SM	odor.	SAND		
			on based on Cit	y of Tacom	a datum	(NGVE	029).		-	brown (5YR 5/2), wet, n	no she	en or odor.

BORING LOCATION Former Cr	eosotir	ng Area (Sout	hern	Pro	perty B	ounda	rv)			Well Name		MW-16
DRILLING COMPANY			LÉR Bria	n		Project Name	For	mer Tacoma Metals				
Cascade Drilling, Inc. DRILLING METHOD(S) Hollow-Stem Auger							L BIT(S))	-		996098.00
ISOLATION CASING						FRC		TO	, N/A ^{FT.}	ELEVATION AND DATU		TOTAL DEPTH
BLANK CASING						FRC	0.0 M	то	16.3FT. 26.8	10.23' (NGVD2 DATE STARTED	9)	28.0 ft. bgs DATE COMPLETED
SLOTTED CASING		VC with 6-incl				FRC		то	FT.	2/28/03	(FT)	2/28/03
SIZE AND TYPE OF FIL	TER PAC			t		FRC	<u>16.3</u>	ТО	26.3 FT.	INITIAL WATER DEPTH	(F1)	
Lapis Lust	re #2/1	2 Monterey S	and			FRC	<u>14.5</u> м 2.0	то	26.8 14.5 FT.	LOGGED BY	СК	
Pure Gold	Bento	nite Chips				FRC	26.8	то	28.0 FT.	SAMPLING METHODS 1"x2' and 2"x4' split spoon with acetate lii		WELL COMPLETION ■ SURFACE HOUSING
Concrete SAMPLES							0.0		2.0	spoon with acetate lin	ner	□ STAND PIPE F
TYPE RECOV. PENETR. (FEET) BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER	WELL		TRUCTION	OVA (ppm)	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	N AND	DRILLING REMARKS
	_					-	.:1	GP	Aspha	alt y graded GRAVEL (fill	D	
SS 2.5	-					0.5			_ \Mode	rate yellowish brown (10YR	,
	-				-	-		SP/		y graded SAND with s to dusky yellowish bro		nd gravel (fill) 0YR 4/2-10Y 2/2), fine to
	5-							SМ		um sand, ~20-30% fine		
SS 3.0					-	3.5		<u></u>		D DEBRIS with SILT o		
	_				-	-				us colors (moderate re vish brown), trace to ~		
	× _	MW-16-7.5-8			-			Wood		Very slight creosote o	dor, r	no sheen.
SS 0.4	- 10-		Ž			4.3		10000	'	lo odor or sheen.		
SS 0.4	_		Ŧ		-	4.2			~10' \	Vet.		
					-		7.7.	<u> </u>		CLAY		
SS 1.5	-				-	4.3		CL	Dark	yellowish brown (10YF	R 4/2)	, low plasticity, moist.
· SS 1.6	15-				-	4.4			_ Brown		ine to	medium sand, trace silt,
					-				wet, r	o odor or sheen.		
SS 1.7	_			Ē	-	5.8		SP	-			
SS 1.7						2.1			~17.5	' Gradual increase to r	medii	um to coarse sand.
33 1.7	20-			Ē		2.1			~19.5	and 21.9' Minor silt la	ayers	less than 1" thick.
SS 1.8	_				-	2.0			F			
SS 2.0	1 -					4 7		<u> </u>	Silty \$			
2.0						1.7	-	SМ	Dusky		(R 2/2	2), ~25-40% fines, wet, n
SS 2.0	25-	MW16-25-26			-	2.0		31/1				
SS 1.9					-	1.1		CL		CLAY	/e ara	y (10YR 4/2 to 5YR 4/1)
							<u> </u>		minor	fibrous organic mater rate plasticity, moist, r	ial, cl	ay is at least 2' thick,
NOTES 1. Pilot boring adv hollow-stem au 2. OVA - Organic 3. Ground surface	iger drill vapor a	rig. inalyzer.	•			Ū		neter				

Kennedy/Jenks Consultants

												i termedy.		
	BORING LOCATION Former Creosoting Area (Southern Property Boundary) DRILLING COMPANY											Well Name MW-17		
	Cascade Drilling, Inc.								Bria			Project NameFormer Tacoma Metals		
DRILLIN	DRILLING METHOD(S) I Hollow-Stem Auger							DRIL	L BIT(S) 9-in	SIZE ch OE)	Project Number 996098.00		
ISOLATI	ION CAS	ING						FRO	M N/A	то	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH	
BLANK		h SCF	1.40 P	VC with 6-incl	h sump)		FRO	M 0.0 22.7	то	12.7 FT. 23.2	9.90' (NGVD29) DATE STARTED	24.0 ft. bgs	
SLOTTE	D CASIN	١G		VC 0.010-incl				FRO		то	FT. 22.7	2/28/03 INITIAL WATER DEPTH (FT)	2/28/03	
SIZE AN	ID TYPE	OF FILT	FER PAC					FRO		то	E23.2 FT.	9.0 LOGGED BY		
SEAL				nite Chips				FRO		то	FT. 10.7	JML/SCK SAMPLING METHODS	WELL COMPLETION	
GROUT			Dento					FRO	М	то	10.7 FT. 2.0	1"x2' and 2"x4' split spoon with acetate liner		
S	Conc SAMPLES				WELL CO	NSTRU	ICTION	OVA	0.0	USCS	2.0	·	□ STAND PIPE FT.	
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				(ppm)	LITHOLOGY	LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS	
- - SS -	2.2					A		6.3		SP/	 Dark to me subro ~2'-2. 	y graded SAND with silt (f to dusky yellowish brown (dium sand, ~30% gravel u unded, moist. 5' ash-like material.	10YR 4/2 10YR 2/2), fine	
-			5-				- 1					5' ~10% fine gravel.	×	
- SS -	3.2		-	MW-17-7.5-8			-	3.7			- Vario	us colors (reddish brown to gray to pale yellow), ng silt content (~10-40%).		
				10100-17-7.5-6			-							
- SS -	1.8		10 -		-		-	6.5		Wood	~9' W	vet.		
- SS	0.7							3.4						
	0.7		¥ -	MW-17-12-16		E) 	0.4				Minor silt with sand lenses vish brown, wet, slight crea		
- ss	1.6		/ 15-				-	4.8			-			
- SS	1.6						1 - 1 -	5.6			Brown	y graded SAND hish black (5YR 2/1), fine t creosote odor and sheen.	o medium grained, wet,	
- SS	1.8		- 20-					2.9		SP		Medium to coarse sand oc l, no odor or sheen.	casional fine to coarse	
- SS	1.6		7-	MW-17-20.5-22		E		3.7			-			
			∐ _				-		///		Lean	CLAY		
- SS	1.9		_				<u> </u>	4.1		CL	upper	yellowish brown to olive gr 0.5' contains fibrous orga	nic material, clay is at	
h 2. C	Pilot bori ollow-st OVA - O	tem aug rganic	ger drill vapor a	with GeoProbe r rig. inalyzer. ion based on Cit	-			-		- neter	least	2' thick, moist, no odor or s	sheen.	

F-40.1 (6-87) (3-88) (8-90)

Kennedy/Jenks Consultants

	g u	W CI		เอแนะแบบ	LUY							Iterine	, ayre	
BORING	LOCAT Form	ion er Cre	eosotir	ng Area (West	tern	Prop	oerty B					Well Name		MW-18
DRILLIN			rilling,	Inc.					LER Bria			Project Name	Forr	mer Tacoma Metals
DRILLIN			m Aug	ier				DRIL	L BIT(S) 9-in	size ch OD)	Project Number		996098.00
ISOLATI				-				FRC		ТО	FT. N/A	ELEVATION AND DATU	JM	TOTAL DEPTH
BLANK (CASING	h SCF	4 10 D	VC with 6-incl		nn		FRC	M 0.0 22.2	то	12.2 FT. 22.7	9.40' (NGVD29 DATE STARTED))	24.0 ft. bgs
SLOTTE	D CASIN	١G						FRC	M	то	FT.	2/27/03 INITIAL WATER DEPTH	(FT)	2/27/03
SIZE AN	D TYPE	OF FILT	FER PAC	VC 0.010 -inc		L		FRC		то	22.2	11.0		
SEAL				2 Monterey S	and			FRC	<u>10.0</u> M	то	22.7 FT.	JML/S0	CK	
GROUT	Pure	Gold	Bento	nite Chips				FRC	2.0	то	10.0 FT.	SAMPLING METHODS 1"x2' and 2"x4' split spoon with acetate li		WELL COMPLETION
S	Conc AMPLES	rete				00107			0.0	-	2.0	spoon with acetate li	ner	■ STAND PIPE <u>3.58</u> FT.
TYPE	DECOV	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				OVA (ppm)	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTIO	N AND E	DRILLING REMARKS
- - SS	1.5		-					- 2.4		GM	Mode 5/4 to	GRAVEL with sand (fi rate yellowish brown t 10YR 2/2), moist, no sh-like material.	o dusł	ky yellowish brown (10YR or sheen.
- - SS -	1.5		- 5 - - -					4.1			- - - - - - - - - - - - - - - - - - -	D DEBRIS with SILT of gray to black (N3-N1), % silt/fine sand matrix	, wood	I debris typically with
SS	0.0		- 10-							10000		/loderate creosote od	or	
SS	2.0			MW-18-11.5-12	No.			15.3			- <u>~11' V</u>	Vet.	л. 	
- SS	1.0		_							CL	Black	CLAY (N1), blebs of creoso ote odor.	te pro	duct visible, moist, strong
• SS	2.0		15-					17.5		SM		· · ·	nd, cre	eosote product coating
SS	1.2		-					74.4		SP	Black	y graded SAND (N1), medium to coar ig soil, wet, strong cre		
SS	1.4		_ 20 -					7.8				'-18-8' Interbedded lea		
SS	1.7		≥0	MW-18-21.5-21.9				46.0				5' Very strong creosoti ig soil, creosote produ		
- SS NOT	1.8 ES		_					8.8		CL	Lean Olive mater	CLAY gray (5Y4/1), contains	s some hick, r	e fibrous organic no apparent staining or
ho 2. O	ollow-st VA - O	tem au rganic	ger drill vapor a	with GeoProbe ri rig. nalyzer. on based on City	0			0		neter				

BORING	LOCAT	ION				_		_							
	Form IG COMF		eosotii	ng Area (North	nern	Prop	perty	' Bc		ry) .LER			Well Name		MW-19
		ade D	Drilling	, Inc.						Bria			Project Name	For	mer Tacoma Metals
	Hollo ION CAS	w-Ste	em Aug	ger						9-in	ch OD		Project Number		996098.00
	N/A	ING							FRO	N/A	то	N/A	ELEVATION AND DATU 7.58' (NGVD2		TOTAL DEPTH 26.0 ft. bgs
BLANK	2-inc		1.40 P	VC with 2-incl	h sur	np				M 0.0 24.0		14.0 FT. 24.2	DATE STARTED 2/27/03	- /	DATE COMPLETED 2/27/03
		h SCł		VC 0.010-incl	n slot	t			FRO	м 14.0	то	FT. 24.0	INITIAL WATER DEPTH 10.5	H (FT)	2/21/00
SIZE AN	ID TYPE Lapis			ж I2 Monterey S	and				FRO	^м 12.0	то	FT. 24.2	LOGGED BY		
SEAL	Pure	Gold	Bento	nite Chips					FRO		то	FT. 12.0	SAMPLING METHODS		WELL COMPLETION
GROUT	Conc	rete							FRO		ТО	FT. 2.5	1"x2' and 2"x4' split spoon with acetate I	iner	□ SURFACE HOUSING ■ STAND PIPE <u>3.54</u> FT.
S TYPE	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL	CONS		10N]	OVA (ppm)	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTIC	N AND	DRILLING REMARKS
		BLOW 3/0				<i>₽</i>	P				Wood	WOO	D DEBRIS and BARK	(fill)	
- SS	2.5		_			4	A A	_	0.6	• •	•	_ Well-	graded SAND with gr		
-			_					-			SW	~30%			R 5/4), fine to coarse sand, ular to subrounded, moist,
-			5-									H	D DEBRIS with SILT		
- SS	0.2		_					_	5.0				us colors (reddish bro ig fines up to ~50%, r		brown to olive gray), or or sheen.
-			-					-				-			
								+				-			
- SS	0.1		10-						3.0						
-					\mathbf{r}			_	0.0			~10.5	'Wet.		
								+				-			
-			_					-			Wood	-			
- SS	1.0		- 15 -						1.7			Ľ			
								+				-			
-			X -	MW-19-16-18				-				-			
SS	1.2		<u> </u>					-	1.5			-			
-		3	20-			I]							
SS	0.8	3 4 3						+				Ļ			
SS	1.2	12 12 18 10	_					_	2.6		├	- Silty S			- — — — — — — — — — — — — — — — — — — —
SS	1.2	14	- 🛛	MW-19-23.5-24				-			SM	odor	or sheen.		anu, 2070 IIIco, wel, 110
- ss	2.0		× 25-	MW-19-24.5-25				-	2.1		CL	Olive	CLAY gray (5Y 4/1), moist,	no od	lor or sheen.
NO				· · · · · ·					_		SP	Brown			o medium sand, trace
h	ollow-st	tem au	ger drill		0				0				wet, no odor or shee		live gray (5Y 4/1), wet, no
u	sing the			covery using Ge auger rig and 2.8									or sheen, grades bac		
3. C				analyzer.			، - ا								
4. G	Found s	surface	e elevati	ion based on Cit	y of T	acom	a dat	um	(NGV[J29).					
40.1															

Kennedy/Jenks Consultants

BORING	LOCATION	N							<u> </u>	N414/ 20
DRILLING	G COMPAN	١Y		hern Property Bo		LER			Well Name	MW-20
DRILLING	Cascad G METHOD	D(S)	-		DRIL	Bria L BIT(S)			Project Name Fo	rmer Tacoma Metals
	Hollow-	-Stem A	uger		FRC		ch OE) FT.	Project Number	996098.00
	N/A					N/A 0.0	-	N/A	ELEVATION AND DATUM 7.58' (NGVD29)	TOTAL DEPTH 30.5 ft. bgs
	2-inch S	SCH.40	PVC with 6-inc	h sump		26.5		21.5 FT. 27.0	DATE STARTED 2/26/03	DATE COMPLETED 2/27/03
			PVC 0.010-incl	n slot	FRC	21.5	то	26.5 ^{FT.}	INITIAL WATER DEPTH (FT) 11.0	
-	D TYPE OF Lapis L		ACK 2/12 Monterey S	and	FRC	[™] 21.0	ТО	27.3 ^{FT.}	LOGGED BY	
SEAL	Pure G	old Ben	onite Chips		FRC	^{0M} 2.0	то	21.0 ^{FT.}	SAMPLING METHODS	WELL COMPLETION
GROUT	Concre	te			FRC	ом 0.0	то	FT. 2.0	2.5" ID split spoon	□ SURFACE HOUSING ■ STAND PIPE 2.75 F
SA TYPE	AMPLES RECOV. PEN (FEET) DIO	NETR. DEPT SIST. (FEE WS/6"	H SAMPLE NUMBER		OVA (ppm)	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS
		JW3/0				r , ₽ ,			graded GRAVEL with san	
							GW		n fine to medium gravel wit and some silt, no odor, no	
			_	_				F		
			-						D DEBRIS with SILT matri gray, wood debris typically	
			5-					matri	x, no sheen above 13 feet,	moderate sheen below 1
									slight to moderate creosote	
			_	_				Ļ		
		1()_	-			Wood	-		
			-	- E				~11'\	Wet.	
			-	_				-		
SS	0.2	10	5-	- 1	3.9			-		
SS	0.2 1	18 10 18	-	-	3.6		_		y graded SAND with silt	
SS	0.6	10 10 18 14	_		3.3		SP/	Brown to ~1	nish black (5YR 2/1), medi 5% fines, wet, slight creoso	um to coarse sand, trace ote odor, no sheen.
SS	0.6	4 7 8 20)		4.1		SM	~19' F	ibrous organic material.	
SS	1.5	3 20 4 3	,		4.5			_ Lean	CLAY	
SS	0.8	3 2 2 2 3 5 ⊠	_		5.1		CL	1	rate yellowish brown (10YR 5	i/4), fibrous organic material
SS			- MW-20-24-24.3		4.2		SP/	F 1	y graded SAND with silt scribed above.	
SS	1.5	19	5 - MW-20-24.8-25		4.1		SM		with sand gray (5Y 4/1), fine sand, wet,	no odor or sheen.
SS	1.5	4 11 ⊠ <u>20</u>	_ MW-20-26.7-26.9		4:5 3:1 2.6		ML	Poorl	y graded SAND with silt scribed above.	
SS	1.5	10 17 <u>23</u> 12	_		3.6		SP/	SILT	with sand	
SS	1.5 1	10)_	_	3.5			Poorl	scribed above. y graded SAND with silt	
<u>NOT</u>		n drilled w	ith hollow-stem a	Iger adjacent to well	M\\/_1	3 Litho	SM	fines	hish black (5YR 2/1), fine to n wet, slight creosote odor, no	
up	oper 16 fe	et has be		oring location MW-1			ML	SILT	with sand scribed above.	
				y of Tacoma datum	(NGVI	D29).	SP/		next page for lithology des	cription)
							1) (

Kennedy/Jenks Consultants

Projec	ct Name	Foi	rmer Tacoma	Metals P	roject	Numbe	r	996098.00	Well Name	MW-20
TYPE	RECOV. PENETR. (FEET) BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	OVA (ppm)	LITHOLOGY	USCS LOG	SAMPLE D	ESCRIPTION AND DRILLING	GREMARKS
							ML		D fine to medium sand, c thick), wet, slight creos	
							SP			

	<u> </u>											
		er Cre	eosotir	ng Area (Adjad	cent to Boring B-2					Well Name	MW-21	
	G COMP.	ade D	rilling,	Inc.			LER Bria			Project Name	Former Tacoma Metal	s
	IG METHON	<i>n-</i> Ste	m Aug	ger				size ch OD		Project Number _	996098.00	
ISOLATI	ION CASI N/A	NG				FRO	N/A		FT. N/A	ELEVATION AND DATUM	M TOTAL DEPTH	
BLANK		n SCF	1.40 P	VC with 2-incl	n sump	FRO	M 0.0 21.6	ТО	11.6 ft. 21.8	9.77' (NGVD29) DATE STARTED	DATE COMPLETED	
SLOTTE	D CASIN		1.40 P	VC 0.010-inch	n slot	FRO		то	FT. 21.6	2/28/03	(FT) 2/28/03	
SIZE AN	ID TYPE (OF FILT	ER PAC			FRO		то	FT. 21.8	11.0 LOGGED BY		
SEAL				nite Chips		FRO		то	FT. 9.5	JML/SC SAMPLING METHODS	WELL COMPLETION	
GROUT			Dento			FRO		ТО	5.5 FT. 2.0	1"x2' and 2"x4' split spoon with acetate lin	■ SURFACE HOUSING	; _ FT.
S	SAMPLES		DEPTH		WELL CONSTRUCTION	OVA		USCS	2.0			_ 11.
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER		(ppm)	LITHOLOGY	LOG			AND DRILLING REMARKS	
_			_					GW/		graded GRAVEL with s sand/silt/gravel mixture	silt and sand e, some minor wood debris	
			-						with n	noderate to strong crea	osote odor.	
_			_		_			GM	- 			
_			- 5 -						Brown		with some silt, moderate	
-								SP	gray-s	ote odor and slight she stained and strong crec	osote odor 6.5-8.5 feet bas	,
_			-		_				small	product blebs visible ir	n sheen test.	
-			-		_				-			
-			-							D DEBRIS with SILT or gray to black, wood del	r SAND matrix bris typically with ~5-10%	
_			10-		¥				silt/fin was o	e sand matrix, althougl	h matrix up to ~20% or <~ ery strong creosote odor,	5%
_			_						visible	e blebs on wood surfac		
-			-					Wood	~11'\	Vet.		
-			_						_			
-			15 -						-			
_			_						_			
-			_						Cilter			
-			_							to brownish black (N1-	-5YR 2/1), fine to medium	
			20-				-	SM		~30-50% silt, wet, sma e on soil, very strong cr	all creosote product blebs reosote odor.	
SS	1.4			MW-21-20.5-21.4 MW-21-21.5-22		3.2			_ Lean			
- SS	2.0			MW-21-22.5-23.3	-	7.8			Dark		4/2), trace sand, moist, sli	ght
					+			SM	Silty Silty			
- SS	1.7	ľ	25-	MW-21-25-26	-	3.2			Dark creos	yellowish brown (10YR ote odor and sheen.	4/2), fine sand, wet, slight	
NO	TES						L//		Lean	CLAY		
1. P fr	ilot borir om borii	ng adv ng loca	anced vation B-	with GeoProbe. I 2. Well installed	_ithology from upper using 9-inch diamet	20' ha	as been low-sten	Inferred auger	As de Silty S	scribed above.		
d 2. C	rill rig.)VA - Or	ganic	vapor a	nalyzer.	-			CL	Brown		ne to medium sand, wet, s	light
3. C	round s	urtace	elevati	on based on City	y of Tacoma datum	(NGVI	JZ9).					
										yellowish brown (10YR , slight creosote odor, r	4/2), clay is at least 1' thic no sheen.	:k,
										. .		

Kennedy/Jenks Consultants

					-							_	
DRILLING	G COMPAN	Y	ting Area				DRIL	LER			Well Name		MW-22 (B-12)
	Cascad METHOD		g Company				DRIL	And L BIT(S)	ly / Dc SIZE	n	Project Name	Forr	mer Tacoma Metals
	HSA / C	Seoprot	е					9" Ć	D / 2		Project Number		996098.00
	N/A	,					FRO	N/A	-	N/A	ELEVATION AND DATU	JM	TOTAL DEPTH 24.0 ft. bgs
	2" Sche	dule 40	PVC Pipe				FRO	M 0 23	ТО	13 FT. 23.3	DATE STARTED 11/24/03		DATE COMPLETED 12/1/03
	CASING 2" Sche	dule 40	PVC Pipe 0.0	10" s	lot		FRO	м 13	то	FT. 23	INITIAL WATER DEPTH	H (FT)	STATIC WATER ELEV. (FT)
	TYPE OF		ACK 2/12 Monterey S	Sand			FRO	м 11	то	5T. 23.5	LOGGED BY		N/A
SEAL			tonite Chips				FRO		то	11 FT. 24	SAMPLING METHODS		WELL COMPLETION
GROUT	Cement						FRO		то		2"x4' shelby tube wi acetate liner	th	■ SURFACE HOUSING □ STAND PIPE FT
SA	MPLES		н		L CONS	TRUCTION	OVA		USCS				
TYPE	RECOV. PEN (FEET) BLO	IETR. DEPT SIST. (FEE WS/6"	T) SAMPLE NUMBER					LITHOLOGY	LOG		SAMPLE DESCRIPTIC	ON AND	DRILLING REMARKS
					N ⊲			<pre></pre>			alt Surface		
-					R V					Gray/		/browr	n, 55-65% gravel, 5-10%
- SH	3		– B12-2-3				4.4	,		,	noist, no odor, no she	en.	
-			-			-	2.1		-	_ 2-3 8	light odor.		
		M	– B12-4-5			-	1.6	^ ,^	GW/	-			
-		\square	5-			-		.` <	GM		, 3" gray granular ma material.	terial a	above 3" of fractured red
- SH	4		-			-			Givi	6-8', 1	black/dark gray angul	ar grav	vel with sand and silt, wet
-			- B12-6.5-7.5			-	1.3	.`		below		Ū	
			Geoprobe boring	g≢		-				8-0'	hea gravel with brick t	fragme	ents and coarse sand.
- SH	2	Å	B12-8-9			-	7.2		Þ	-	Jea graver with blick i	lagine	and coarse sand.
_		X _1	B12-9-10			-	40.5	7	<u> </u>	_	D DEBRIS		
- SH	1					_				sand		moder	ate to strong creosote
011						_				odor,	heavy sheen visible of	on wat	er in sampler.
_													
- SH	1								Wood	I T			
-		1	5-							-			
			1							F			
-			-			-				F			
- SH	1		-			-	21.9			-			
-			-			-				Poor	y graded SAND		
						-				Dark	gray, poorly graded n		n sand with <5% silt, strong creosote odor,
-		Д	B12-20-21			-	17.9		SP	very l	neavy sheen, visible p	produc	t blebs rinse out in sheen face, slightly more below
- SH	4		_			=				22'.		Si Sull	aco, orginay more below
_		М	B12-22-23				20.6			- Silty	CLAY		
							10.8		CL/	Brow	n, silty clay, dense, w	et, slig	ht sheen and creosote
NOT					4/0.1				ML	odor.			
2. W	ell installe	ed with h	with Geoprobe rig										
			r Analyzer alled from 23 to 23	3.3 fe	et bgs	i.							

Kennedy/Jenks Consultants

RILLING M H SOLATION N LANK CAS 2 LOTTED C 2 LOTTED C 2 IZE AND T 2/ EAL 3/ SROUT C SAME	IETHOD(S) ISA CASING ING INCh sch CASING INCh 0.0 YPE OF FIL /12 Clear /8 inch B	. 40 PV 10 slott						And LL BIT(S) 9 in	SIZE			ormer Tacoma Metals
SOLATION N LANK CAS 2 LOTTED C 2 IZE AND T 2/ EAL 3/ SROUT C SAME	CASING I/A SING inch sch CASING inch 0.0' YPE OF FIL /12 Clear /8 inch B	10 slott						9 11 1				006000000
LANK CAS 2 LOTTED C 2 IZE AND T 2/ EAL 3/ ROUT C SAME	SING inch sch CASING inch 0.0' YPE OF FIL /12 Clear /8 inch B	10 slott					FRC	DM	TO	FT.	Project Number	996098.00 TOTAL DEPTH
LOTTED C 2 IZE AND T 2/ EAL 3/ ROUT C SAME	CASING inch 0.0 YPE OF FIL /12 Clear /8 inch B	10 slott					FRC	<u>N/A</u> м 0	то	N/A 18.5 FT. 30	-	30.0 ft. bgs
2 ZE AND T 2/ EAL 3/ ROUT C SAME	inch 0.0 YPE OF FIL /12 Clear /8 inch B	TER PAC	ad ach 10 D				FRC	29.5	то	30 FT.	DATE STARTED 3/29/04	DATE COMPLETED 3/29/04
2/ EAL ROUT C	/12 Clear /8 inch B			/C				18.5	то	29.5	INITIAL WATER DEPTH (FT 9.7	-)
3/ ROUT C							FRC	16.5		29.5 ^{FT.}	LOGGED BY GCD	
C SAME	oncrete	entonit	e Chips				FRC	ом 1.0	ТО	гт. 16.5	SAMPLING METHODS	
SAMF TYPE RE (F		v/ 2ft.X	(2ft. Surface F	PA			FRC	ом 0	ТО	FT. 1	2 inch Cal. Mod D&M spoon	$\Box \text{ SURFACE HOUSING}$ $\blacksquare \text{ STAND PIPE}_3$
TYPE (F	PLES COV PENETR	DEPTH	SAMPLE NUMBER	WEL	L CONS	STRUCTIO	N PID	LITHOLOGY	USCS		SAMPLE DESCRIPTION AN	ID DRILLING REMARKS
	ECOV. PENETR. RESIST. BLOWS/6	(FEEI)								14/00	D DEBRIS	
		-					- 0			Red/b	prown, coarse sawdust, d	ry to damp, no odor, no
		-					-			sheer	1.	
		-					-			-		
							-			,†		
		5-					1		Wood			
							_					
		10-		$\left \underbrace{\sum}_{\overline{\overline{\gamma}}} \right $			- 0			-		
		_					_				D DEBRIS with silty sand n/black, blocky to coarse	d matrix wood debris with ~40-50%
		-					-			silty fi	ine sand matrix, wet, no o	odor, no sheen.
		-					-			-		
		-					-					
		15-					- 0		Wood		content increasing down	wards.
		-					-			-		
		-					-					
					-	=	1			F		
SS 8	80% NM	20-					- 0.1			_ Poorl	y graded SAND	
SS 8	3 30% 3						-		SP	-∕⊢∖ Gray,		(~20%), loose, wet, slight
	4							-			y graded SAND	
SS 10	00% 3 2	-					-			- Black	, medium sand, loose, fir	ning downward to ~23 feet reosote odor, heavy sheet
SS 8	80% NM	-					0.3		SP		ng at ~21 bgs.	
SS 1	0% NM	25-						1		Ē		
SS 10	4 00% 11						-			~27' (Clayey silt layer ~1" thick.	
	80% 10	-					+	-		-		
	8	30-			×	= · · · ·	- 0.1		CL	Gray/		stiff silty clay, contact at
NOTES	<u> </u>						-		-	top of	f clay is not distinct, wet, and	slight creosote odor, no

. WNG LX

		LUY					.cuy/	
	-20 37 feet from pr	roperty boundary				Well Name		MW-24
RILLING COMPANY Cascade	Drilling Company, I	Inc.		LER Andy		Project Name		mer Tacoma Metals
RILLING METHOD(S)			DRIL	L BIT(S) S 9 inc	SIZE	Project Number		996098.00
OLATION CASING			FRC		TO N/A	FT.		
ANK CASING 2 inch scł			FRC			FT. DATE STARTED		23.0 ft. bgs DATE COMPLETED
OTTED CASING			FRC	M ·	то	FT. 3/29/04	TH (FT)	3/29/04
ZE AND TYPE OF FI		PVC	FRC		22.5	, 10.0	()	
2/12 Clea			FRC	<u>11</u> м	22.3 TO	FT. GCD		1
3/8 inch E	entonite Chips		FRC	<u>1</u>	<u>11</u> то	FT 2 inch Cal. Mod D		WELL COMPLETION
	w/ 2ft.X2ft. Surface			0	1	spoon		■ STAND PIPE3 F
YPE RECOV. PENETI (FEET) BLOWS	C DEPTH (FEET) SAMPLE NUMBE		PID	LITHOLOGY	USCS LOG		FION AND	DRILLING REMARKS
SS 10% ^{<50} 55 50% 41 >50% 41			- 0 - 0 - 0 0 		- B - m	/OOD DEBRIS rown, loose woody debi latrix, wet at ~10 feet, n		
6S 75% 20 21 5 6S 80% 13 14	20		0.8		(<	lack, medium dense, m <10%), wet, slight creos dor and sheen to ~22 fe	ote odo	r, slight sheen, increasing
SS 80% 10			- 0					
	<u> </u>	×···×		Y <u>Z</u>		ean CLAY Gray, medium stiff to stift		th silt, moist, slight
screen extend 2. Soil descriptio	om cap at bottom of w s approximately 2 inch ns between the ground zation Detector Heads	nes below top of clay. d surface and 15 feet		•	of	reosote odor, no sheen.		

RILLING	G COMF	ANY		· ·	perty boundary n		LER			Well Name	_	MW-25
RILLING			rilling	Company, Inc).	DRI	And L BIT(S)	y SIZE		Project Name	Forr	mer Tacoma Metals
SOLATIO	HSA					FRC	9 inc		FT.	Project Number		996098.00
	N/A	ING					N/A	-	N/A	ELEVATION AND DATU	М	TOTAL DEPTH 24.0 ft. bgs
	2 incl		40 PV	′C		FRC	23.5	то	13.8 FT. 24.0	DATE STARTED 3/29/04		DATE COMPLETED 3/29/04
BLOTTER			0 slott	ed sch. 40 PV	/C	FRC	м 13.8	то	23.5 ^{FT.}	INITIAL WATER DEPTH	(FT)	5/25/04
SIZE AND	D TYPE	OF FILT Clean	ER PAC	K		FRC	™ 11.8	то	5T. 23.3	7.5 LOGGED BY		
SEAL				e Chips		FRC		ТО	FT. 11.8	GCD SAMPLING METHODS		WELL COMPLETION
GROUT				2ft. Surface F	٥٨	FRC	M.	ТО	FT.	2 inch Cal. Mod D&M spoon	1	□ SURFACE HOUSING ■ STAND PIPE3 I
SA	AMPLES				WELL CONSTRUCTION	PID	0	11808		•		
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER			LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	AND	DRILLING REMARKS
SS	75%	97	- - - - - - - - - - - - - - - - - - -			0	 - International and the state of the state o	Wood	- Brown matrix 	, moist to wet at ~7.5	feet,	
SS	75%	9 7 9	-			0	 			, loose to medium den silt, wet, no odor, no s		ine to medium sand with
SS	90%	16 25 26 10	-			0		SW	E			
	90%	10 11 12	20-			-		300	L			
SS		12 3 6	-			0			-			
SS	80%	7 6	-			0			-			
SS	80%	6 12 11	-			0		ML/		y SILT		
NOT	ES								Gray,		y silt,	, moist to wet, no odor, n
1. Th	reade	d botto xtends	m cap a approx	at bottom of well imately 2 inches	screen is 0.5 feet. below top of clay.	Slotte	d portion	of _{CL}				
2. S	oil des	criptior	ns betwo	een the ground setector Headspa	surface and 15 feet	bgs ba	ised on c	cutting	S.			
			20									

DRILLING	E 18t	h Stre	et Rig	ht of Way, be	twee	en bo	orings B		Id B-27	7		Well Name		MW-26
	Casca	ade							Fra			Project Name	For	mer Tacoma Metals
	HSA								l BIT(S) 9-in	ch		Project Number		996098.00
	N/A	NG						FRO	N/A	то	N/A ^{FT.}	ELEVATION AND DAT	JM	TOTAL DEPTH 29.0 ft. bgs
BLANK C		n sche	dule 4	0 PVC pipe				FRO	м 0 28.1	то	18.1 FT. 28.5	DATE STARTED		DATE COMPLETED
SLOTTED	D CASIN	G		0 PVC pipe, 0	0.01	0 slo	t	FRO		ТО	FT. 28.1	4/5/05	H (FT)	4/5/05
SIZE AND	D TYPE	OF FILT	ER PACI			0.0		FRO		ТО		LOGGED BY		
SEAL								FRO	М	ТО		SAMPLING METHODS		WELL COMPLETION
GROUT			Jenion	lite chips				FRO		ТО		Split Spoon		■ SURFACE HOUSING
SA	Conc		DEDTU		WELL	CONS	TRUCTION	PID	0	110.00				□ STAND PIPE F
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTIC	ON AND	DRILLING REMARKS
		DECHICIC				Þ	<i>₽</i> 1			GW		graded GRAVEL with eximately 3 inches su		
			_			3						D DEBRIS	nace	gravei.
			4				-				Brow	n/orange, wood mate		edium wood chip to esent. loose. moist. no
			4				-				– evide	nt odor, no sheen.	son pr	esent, 1008e, 111018t, 110
SS	1.5	3 3	5-				-	2.4		Wood				
L		6	-				-				F			
			-				-				-			
			-				-				F			
		1	10-					148		SM	-	SAND		- — — — — — — — — — — — — — — — — — — —
SS	0.5	2 3					-	140		<u></u>		no sheen.		
			_				-					D DEBRIS		ky, 10-15% silt/clay matri
			_				-				– overa	II but matrix varies fro	om <5	% to 20-25% locally, ticity and dilatency, moist
		-	-		$\sum_{\overline{\overline{\cdot}}}$		-				to we	t below ~14 feet, low	to mo	derate creosote odor,
SS	1.5	2 2 4	15-				<i></i>	276			evide	nt sheen on water in	sampi	ler.
		4	-				-				.			
			-							Wood				
SS	<0.5	15 20	20-				-	251			Stron – samp		vy she	een on water surface in
00	-0.5	20 23	-				-				-			
			-				-				-			
~	4 5	33	-				-				F			
SS	1.5	33 28 21 20	-				-	0.6		<u> </u>		y graded SAND		· · · ·
SS	1	26 21	25-					0.0		SP	at top	o of sand, but increase		nd, wet, no odor, no shee moderate odor and light
SS	0.5	14 5						147		J JF	sheer	n by 26 feet.		
SS	0.75	6 19 38	_					654		; 	0.14	CAND		
		38 33						32.1		SM	_A Gray/			all, evident layering of
<u>NOT</u> 1. Lit		is also	based	on findings from	n soil	borin	gs B-24 a	and B-2	27.	SP	typica		odera	e sand, and sandy silt, tely dense, wet, slight
											Gray,	y graded SAND poorly graded mediu nt odor, no sheen.	im to d	coarse sand, wet, no

RILLING	G COMF	PANY		ht of Way, ne					LER	ak		Well Name		MW-27
RILLING								DRIL	Frai	SIZE		Project Name	For	mer Tacoma Metals
	HSA	. ,						FRC	9-in		FT.	Project Number _		996098.00
	N/A								N/A		N/A	ELEVATION AND DATU	М	TOTAL DEPTH 27.0 ft. bgs
	2-inc		edule 4	10 PVC pipe				FRC	26.4	то	16.4 FT. 26.8	DATE STARTED 4/5/05		DATE COMPLETED 4/5/05
	2-incl	h sche		10 PVC pipe, (0.010) slo	t	FRC	м 16.4	то	26.4 ^{FT.}	INITIAL WATER DEPTH	(FT)	
			ER PAC	к e #2/12 sand				FRC	м 13	то	FT. 27	LOGGED BY		
EAL				nite chips				FRC		то	FT. 13	SAMPLING METHODS		WELL COMPLETION
ROUT	Conc		borntor					FRC		то	FT. 2	Split Spoon		■ SURFACE HOUSING
SA	MPLES				WELL	CONS	TRUCTION	PID		USCS				
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER					LITHOLOGY	LOG		SAMPLE DESCRIPTION	I AND	DRILLING REMARKS
			_			Þ.⊲			· _ \	GW/		graded GRAVEL with s el with ~4" topsoil abov		
			_			3	- 1 	4				D DEBRIS	0.	
			-					-		GM		ge/brown, wood materi		edium chips to coarse
			-							Wood	odor	no sheen.	un, 10	
SS	1.5	8 6	5-					0.6			-			
L		8	-							l sw		graded SAND with gra		
			-					1				sh green, sand with 10 , no evident odor, no s		6 gravel, granular texture
										_ML		y SILT		
SS	0.5	15 50-3	10-		$\underline{\nabla}$			84.8				gray, silt with ~20% fin to wet, no evident odo		nd and minor gravel, soft sheen.
		50-5	_		Ŧ							D DEBRIS		
			-					-			fine s	and and clay, matrix va	aries	
			-					-			below	i%, slightly less matrix v ~16 feet, wet, no evid		%) and lighter gray color odor, no sheen.
		14	-					-		Wood	1			
SS	<0.5	14 14 11	15-				•	7.4			-			
			_											
			-					-		L				
SS	1	2 6	20-					1.4	 		- Dark	y graded SAND gray, poorly graded me		
	 	<u>9</u> 11	-									creosote odor at top ir rate at bottom, very sli		
SS	1.5	13 17 7	-					0.0		SP	-			
SS	1.5	7 6	-					16.2			F			
SS	1.5	5 11	- 25 -					58.1]					
<u> </u>	4 5	15 2 2 3	20					29.5						
SS	1.5	2 3						1.1		CL/		CLAY prown_silty_clay_moder	atelv	v stiff, moderate plasticity
<u>NOT</u> 1. Lit		is also	based	on findings from	n soil	borine	g B-29.					erate dilatency, wet, no		
										ML				

Kennedy/Jenks Consultants

<u> </u>	_		Suucion		,								
		et Rig	ht of Way, ne	ar so	oil bo	oring	B-3					Well Name	/W-28 (Abandoned)
									Frai			Project Name Fo	ormer Tacoma Metals
G METH								DRIL					996098.00
ON CAS	ING							FRO	M	ТО	FT.	-	TOTAL DEPTH
ASING								FRO	м О	ТО			28.5 ft. bgs
		edule 4	10 PVC pipe					FROI			26	4/5/05	DATE COMPLETED 4/5/05
2-inc	h sche			0.01	0 slo	t			15.7		25.7	INITIAL WATER DEPTH (F	Г)
								FRO	м 13	10	28.5 ^{FT.}	LOGGED BY	
Pure	Gold	bentor	nite chips					FRO		ТО	гт. 13	SAMPLING METHODS	WELL COMPLETION
			•					FRO	М	ТО	2 FT.	Split Spoon	■ SURFACE HOUSING
AMPLES		DEDTU		WELL	CONS	TRUC	TION				2		
RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	(FEET)	SAMPLE NUMBER					FID	LITHOLOGY	LOG		SAMPLE DESCRIPTION AI	ND DRILLING REMARKS
					Þ	P			 ↓ ↓ 	GW			
		-			Q - Q	Q. 4						o / o	i gravei.
											Brown	n/orange, wood material,	
										Wood			, moist, no evident odor, no
4	6	5-						0.5			L		
	5 4	-									1	2	
		-									Dark	brown to gray, silty mate chips, soft, moist, no evi	rial with some gravel and dent odor, no evident
		-					_			ML). 	
		-									H-1 -	brown. siltv material with	<25% wood material. som
<0.5	100-3,	10-						44.3					
		-		Ţ			-				1		ocky 10-15% silty matrix
		-					-				wet b	elow ~11 feet, moderate	creosote odor, moderate to
		-								\A/I	_ neavy	sheen on water in samp	ner.
	43	15_								vvood	· ·	.	heen on water surface in
0	16 14	10				_]						
		_									L		
		_									Ļ		
		_								 			
0	8	20-]	- Dark	gray, poorly graded medi	
Ļ	5 9	-					-			1			derate creosote odor,
<0.5	9 4	-					-	0.0		SP	-	2	
1	8	-					-	31.1			-		
4		-					+	01.1			-		
1	8	25-						130			-	- 011 T	
		_					-	31.4				y SILT	
1	2 5 2 15					1.1				ML	DIOWI	n/gray, layered poorly dra	ided sand with silt, silty
	E 18t COMF Casc METH HSA DN CAS N/A 2-inC D CASIR 2-inC D TYPE RMC Pure Conc MPLES RECOV. (FEET) 1	COMPANY Cascade METHOD(S) HSA N/A ASING 2-inch sche CASING 2-inch sche	E 18th Street Rig COMPANY Cascade A CASCAGE AETHOD(S) HSA DN CASING ASING A 2-inch schedule 4 A D CASING 2-inch schedule 4 D CASING Eustria a Pure Gold bentor a MPLES DEPTH a a MPLES DEPTH a a RECOV PENETR DEPTH a I 6 5- a I 6 5- a I 6 5- a I 6 5- a I 8 20-	E 18th Street Right of Way, ne COMPANY Cascade COMPANY Cascade CASCAG METHOD(S) HSA MA DN CASING Assing 2-inch schedule 40 PVC pipe O CASING 2-inch schedule 40 PVC pipe, O TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES MPLES DEPTH BLOWS66 I 6 1 5 - - <td>E 18th Street Right of Way, near set © COMPANY Cascade © METHOD(S) HSA MSNG 2-inch schedule 40 PVC pipe D CASING 2-inch schedule 40 PVC pipe, 0.01 D TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV. FENSTR. (FEET) BLOWS6 I 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20-</td> <td>E 18th Street Right of Way, near soil bo COMPANY Cascade 3 METHOD(S) HSA NCASING N/A ASING 2-inch schedule 40 PVC pipe 0 CASING 2-inch schedule 40 PVC pipe, 0.010 slo 0 TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV PRESIST. DEPTH RECOV PRESIST. OFFTH BLOWSON CONCRETE 4 - - - - - - - -</td> <td>E 18th Street Right of Way, near soil boring Cascade METHOD(S) HSA N/A ASING 2-inch schedule 40 PVC pipe CASING 2-inch schedule 40 PVC pipe, 0.010 slot D CASING 2-inch schedule 40 PVC pipe, 0.010 slot D CASING 2-inch schedule 40 PVC pipe, 0.010 slot D TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES Concrete (FEET) SAMPLE NUMBER (FEET) ample NUMBER (FEET) (FEET) ample NUMBER (FEET)</td> <td>E 18th Street Right of Way, near soil boring B-3 COMPANY Cascade METHOD(S) HSA N/A ASING 2-inch schedule 40 PVC pipe CASING 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot 0 TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV (FEET) BUNSE Concrete $\frac{MPLES}{(FEET)}$ SAMPLE NUMBER $\frac{MELL CONSTRUCTION}{(FEET)}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5$</td> <td>E 18th Street Right of Way, near soil boring B-31 GCMPANY Cascade METHOD(S) HSA MSA SNG 2-inch schedule 40 PVC pipe 0 CASING 2-inch schedule 40 PVC pipe 0 CASING 1 5 5 - - - - - - - - - - - - -</td> <td>E 18th Street Right of Way, near soil boring B-31 3 COMPANY Cascade DRILLER SMETHOD(S) HSA 9-in SMETHOD(S) HSA 9-in SMETHOD(S) HSA 9-in N/A ASING 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot 0 TYPE 0F FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV PENTER RECOV PENTER RECOV PENTER CONSTRUCTION MMLES RECOV PENTER CONSTRUCTION PID UPROOF CONSTRUCTION PID</td> <td>E 18th Street Right of Way, near soil boring B-31 GOMPANY Cascade DRILLER Frank TO N/A A SING 2-inch schedule 40 PVC pipe Casing 2-inch schedule 40 PVC pipe, 0.010 slot 5.7 Cocsing 2-inch schedule 40 PVC pipe, 0.010 slot 5.7 Cocsing Concrete Frank TO 13 Frank TO N/A Frank Fran</td> <td>E 18th Street Right of Way, near soil boring B-31 COMPANY Cascade SCOMPANY Cascade METHOD(S) MELHICT(S) SIZE Princh N/A ASING 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot DYPE oF FILTER PACK RMC Lapis Lustre #2/12 sand FROM TO FT. 13 28.5 Pure Gold bentonite chips FROM TO FT. 13 28.5 Pure Gold bentonite chips FROM TO FT. 13 28.5 Pure Gold bentonite chips Concrete MIL FROM TO FT. 13 28.5 Pure Gold bentonite chips FROM TO FT. 13 Concrete FROM TO FT. 14 5 4 4 4 4 4 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td>E 18th Street Right of Way, near soil boring B-31 ScomPANY Cascade DRILLER Signer 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe 3-inch schedule</td>	E 18th Street Right of Way, near set © COMPANY Cascade © METHOD(S) HSA MSNG 2-inch schedule 40 PVC pipe D CASING 2-inch schedule 40 PVC pipe, 0.01 D TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV. FENSTR. (FEET) BLOWS6 I 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20-	E 18th Street Right of Way, near soil bo COMPANY Cascade 3 METHOD(S) HSA NCASING N/A ASING 2-inch schedule 40 PVC pipe 0 CASING 2-inch schedule 40 PVC pipe, 0.010 slo 0 TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV PRESIST. DEPTH RECOV PRESIST. OFFTH BLOWSON CONCRETE 4 - - - - - - - -	E 18th Street Right of Way, near soil boring Cascade METHOD(S) HSA N/A ASING 2-inch schedule 40 PVC pipe CASING 2-inch schedule 40 PVC pipe, 0.010 slot D CASING 2-inch schedule 40 PVC pipe, 0.010 slot D CASING 2-inch schedule 40 PVC pipe, 0.010 slot D TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES Concrete (FEET) SAMPLE NUMBER (FEET) ample NUMBER (FEET) (FEET) ample NUMBER (FEET)	E 18th Street Right of Way, near soil boring B-3 COMPANY Cascade METHOD(S) HSA N/A ASING 2-inch schedule 40 PVC pipe CASING 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot 0 TYPE OF FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV (FEET) BUNSE Concrete $\frac{MPLES}{(FEET)}$ SAMPLE NUMBER $\frac{MELL CONSTRUCTION}{(FEET)}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5}$ $\frac{6}{5}$ $\frac{1}{5$	E 18th Street Right of Way, near soil boring B-31 GCMPANY Cascade METHOD(S) HSA MSA SNG 2-inch schedule 40 PVC pipe 0 CASING 2-inch schedule 40 PVC pipe 0 CASING 1 5 5 - - - - - - - - - - - - -	E 18th Street Right of Way, near soil boring B-31 3 COMPANY Cascade DRILLER SMETHOD(S) HSA 9-in SMETHOD(S) HSA 9-in SMETHOD(S) HSA 9-in N/A ASING 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot 0 TYPE 0F FILTER PACK RMC Lapis Lustre #2/12 sand Pure Gold bentonite chips Concrete MPLES RECOV PENTER RECOV PENTER RECOV PENTER CONSTRUCTION MMLES RECOV PENTER CONSTRUCTION PID UPROOF CONSTRUCTION PID	E 18th Street Right of Way, near soil boring B-31 GOMPANY Cascade DRILLER Frank TO N/A A SING 2-inch schedule 40 PVC pipe Casing 2-inch schedule 40 PVC pipe, 0.010 slot 5.7 Cocsing 2-inch schedule 40 PVC pipe, 0.010 slot 5.7 Cocsing Concrete Frank TO 13 Frank TO N/A Frank Fran	E 18th Street Right of Way, near soil boring B-31 COMPANY Cascade SCOMPANY Cascade METHOD(S) MELHICT(S) SIZE Princh N/A ASING 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot 2-inch schedule 40 PVC pipe, 0.010 slot DYPE oF FILTER PACK RMC Lapis Lustre #2/12 sand FROM TO FT. 13 28.5 Pure Gold bentonite chips FROM TO FT. 13 28.5 Pure Gold bentonite chips FROM TO FT. 13 28.5 Pure Gold bentonite chips Concrete MIL FROM TO FT. 13 28.5 Pure Gold bentonite chips FROM TO FT. 13 Concrete FROM TO FT. 14 5 4 4 4 4 4 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4	E 18th Street Right of Way, near soil boring B-31 ScomPANY Cascade DRILLER Signer 2-inch schedule 40 PVC pipe 2-inch schedule 40 PVC pipe 3-inch schedule

NOTES
1. Lithology is also based on findings from soil boring B-31.
2. Well MW-28 was abandoned in February 2006 because of damage to the monument and upper casing. The well was replaced with MW-28(R).

BORING LOCATION Next to MW-28 MW-28 DRILLING COMPANY Cascade DRILLER Cascy / Jaymen MKT MOD(S) DRILLER SUBJECT NAME MW-28(R) DRILLING COMPANY MISA / GeoProbe DRILL BIT(S) SIZE 9-inch / 2-inch N/A Project Name Former Tacoma Metals DRILL BIT(S) SIZE 9-inch / 2-inch N/A Project Namber 998098.00 ISOLATION CASING N/A FROM TO TO 2'' Schedule 40 PVC Pipe FROM TO 13.9 Castron Completing 2'' Schedule 40 PVC Pipe FROM TO TO DATE STARTED DATE COMPLETED 2'' Schedule 40 PVC Pipe, 0.010-Slot FROM TO 24.25 INITIAL WATER DEPTH (FT) USC Completing DATE COMPLETION SIZE AND TYPE OF FILTER PACK FROM TO 115 DGGED BY USC SAMPLING METHODS SAMPLING METHODS SAMPLENG METHODS SAMPLENG METHODS SAMPLENG METHODS SAMPLE NUMBER SAMPLENG METHODS SAM
Cascade Case / Jaymen Project Name Former Tacoma Metals DRILLING METHOD(S) HISA / GeoProbe DRILL BIT(S) SIZE Project Name Former Tacoma Metals ISOLATION CASING N/A Project Name Project Name 998098.00 ISOLATION CASING FROM TO FT. N/A N/A N/A TOTAL DEPTH BLANK CASING FROM TO 13.9 FT. 2" Schedule 40 PVC Pipe FROM TO 13.9 FT. 2" Schedule 40 PVC Pipe, 0.010-Slot FROM TO FT. 2" Schedule 40 PVC Pipe, 0.010-Slot FROM TO FT. 2" Schedule 40 PVC Pipe, 0.010-Slot FROM TO FT. 12 42.25 Coded Bentonite Chips FROM TO FT. Status Pure Gold Bentonite Chips FROM TO FT. Coded Bentonite Chips Status GROUT Concrete FROM TO FT. Status
DRILLING METHOD(s) HSA / GeoProbe DRILL BIT(s) SZE 9-inch / 2-inch N/A Project Number 998098.00 ISOLATION CASING N/A FROM TO FT. N/A M/A N/A N/A BLANK CASING 2'' Schedule 40 PVC Pipe FROM 0 TO 13.9 FT. 2'' Schedule 40 PVC Pipe, 0.010-Slot FROM TO FT. 2'' Schedule 40 PVC Pipe, 0.010-Slot FROM TO FT. 3LOTTED CASING FROM TO FT. 2'' Schedule 40 PVC Pipe, 0.010-Slot FROM TO FT. 13.9 23.9 24.25 INITIAL WATER DEPTH (FT) DATE COMPLETED SIZE AND TYPE OF FILTER PACK FROM TO FT. INTIAL WATER DEPTH (FT) SUBGED BY GRUUT Concrete FROM TO FT. IST T SUBCOT SUBADE HOUSING SUBADE HOUSING SAMPLES SAMPLE NUMBER WELL CONSTRUCTION OVA Indexor Usc SAMPLE DESCRIPTION AND DRILLING REMARKS SH 3 - - 0.9 GW GW Greenish brown, gravel with sand and silt, moderately dense, moist, no odor, no sheen. <td< td=""></td<>
ISOLATION CASING N/A FROM TO N/A BLANK CASING 2" Schedule 40 PVC Pipe FROM 0 TO 13.9 FT. 23.9 DATE STARTED 24.25 DATE COMPLETED 2/14/06 DATE COMPLETED 2/14/06 DATE COMPLETED 2/14/06 SIZE AND TYPE OF FILTER PACK Lapis Lustre #2/12 Monterey Sand FROM TO 15 TO 11 24.25 CGGED BY SAMPLES FROM TO 11 24.25 28 OTO 0.5 SAMPLING METHODS SAMPLE NUMBER WELL CONSTRUCTION OVA THOLOGY UTHOLOGY SAMPLE DESCRIPTION AND DRILLING REMARKS WELL CONSTRUCTION OVA Well-graded GRAVEL with sand or sist, no odor, no sheen. SAMPLE DESCRIPTION AND DRILLING REMARKS SH 3 5 - 0.9 -
Decking 21 Schedule 40 PVC Pipe 23.9 24.25 DATE STARTED DATE STARTED DATE COMPLETED SLOTTED CASING 2" Schedule 40 PVC Pipe, 0.010-Slot FROM TO FFT. 13.9 23.9 24.25 INITIAL WATER DEPTH (FT) 2/14/06 2/15/06 SIGE AND TYPE OF FILTER PACK FROM TO FT. 11 24.25 LOGGED BY LOGGED BY SEAL Pure Gold Bentonite Chips FROM TO FT. SAMPLING METHODS MacroCore w/PVC Liner SURFACE HOUSING GROUT Concrete FROM TO FT. MacroCore w/PVC Liner SURFACE HOUSING SAMPLES SAMPLES SAMPLE NUMBER WELL CONSTRUCTION OVA UNHOUSY USCS SAMPLE DESCRIPTION AND DRILLING REMARKS SH 3 - - - 0.9 Weil Greenish brown, gravel with sand and silt, moderately - - - - - - - - - SMPLES - - - - - - - - - - SH 3
SLOTTED CASING 2" Schedule 40 PVC Pipe, 0.010-Slot FROM TO FT INITIAL WATER DEPTH (FT) 2/13/00 SIZE AND TYPE OF FILTER PACK Lapis Lustre #2/12 Monterey Sand FROM TO FT INITIAL WATER DEPTH (FT) 9.5 SEAL Pure Gold Bentonite Chips FROM TO 11 24.25 28 GROUT Concrete FROM TO 1.5 TO 11FT. SAMPLING METHODS SUFFACE HOUSING SAMPLES FROM TO FT. 1.5 MacroCore w/PVC Liner SUFFACE HOUSING SAMPLES SAMPLE NUMBER WELL CONSTRUCTION OVA UTHOLOGY USCS SAMPLE DESCRIPTION AND DRILLING REMARKS SAMPLES DEPTH TYPE SAMPLE NUMBER Well CONSTRUCTION OVA UTHOLOGY USCS SAMPLE DESCRIPTION AND DRILLING REMARKS SH 3 - - 0.9 - <t< td=""></t<>
SIZE AND TYPE OF FILTER PACK Lapis Lustre #2/12 Monterey Sand SEAL Pure Gold Bentonite Chips GROUT Concrete TYPE RECOV PENETR TYPE RECOV PENETR FRECOV PENETR FROM TO 0 1.5 SAMPLE DESCRIPTION AND DRILLING REMARKS SAMPLE
SEAL FROM 1.5 TO 11 FT. SAMPLING METHODS WELL COMPLETION GROUT Concrete 0 1.5 SAMPLES MacroCore w/PVC Liner Image: Sample stress of the stress of th
GROUT FROM TO FT. MacroCore w/PVC Liner ■ SURFACE HOUSING SAMPLES SAMPLES DEPTH RESIST. (FEET) SAMPLE NUMBER WELL CONSTRUCTION OVA UTHOLOCY USCS LOG SAMPLE DESCRIPTION AND DRILLING REMARKS SH 3 - - 0.9 GW GW Greenish brown, gravel with sand and silt, moderately dense, moist, no odor, no sheen. SH 3 - - 0.9 - 0.9 - - Wood Orange/brown, wood material, fine chips/shreds to coarse sawdust, no soil matrix, moist, no odor, no sheen. SH 3 - - 0.8 -
SAMPLES DEPTH (FEET) SAMPLE NUMBER WELL CONSTRUCTION OVA USCS LOG SAMPLE DESCRIPTION AND DRILLING REMARKS SH 3 - <td< td=""></td<>
SH 3 - - GW Well-graded GRAVEL with sand Greenish brown, gravel with sand and silt, moderately dense, moist, no odor, no sheen. SH 3 - - 0.9 - Wood Wood Orange/brown, wood material, fine chips/shreds to coarse sawdust, no soil matrix, moist, no odor, no sheen. SH 3 - - 0.8 -
SH 3 - - GW Greenish brown, gravel with sand and silt, moderately dense, moist, no odor, no sheen. SH 3 - 0.9 - Wood Orange/brown, wood material, fine chips/shreds to coarse sawdust, no soil matrix, moist, no odor, no sheen. SH 3 - - 0.8 - - Drange/brown, soil matrix, moist, no odor, no sheen. SH 3 - - 0.8 - - - - SH 3 - - 0.8 - - - - SH 3 - - 0.8 - - - - SH 3 - - 0.8 - - - - B37-7-8 - 0.8 - - - - - - SH 3 -
SH 3 B37-7-8 B37-7-
SH 3 B37-7-8 B37-7-
SH 3 SH 3 5- B37-7-8 B37-7-8 B37-7-8 SH 2 Chips and shreds, some sand and gravel, soft, moist to wet at 9.5 feet bgs, slight odor 7.5-8 feet bgs, otherwise m
B37-7-8 B37-7-
ML Dark gray/brown, silty material mixed with up to 25% woo chips and shreds, some sand and gravel, soft, moist to wet at 9.5 feet bgs, slight odor 7.5-8 feet bgs, otherwise m
su 2 10 wet at 9.5 feet bgs, slight odor 7.5-8 feet bgs, otherwise r
Dark gray to dark orange/brown, coarse wood material coated with grayish silt, approximately 5-10% silt matrix
SH 2 - 0.7 Wood with grayish shit, approximately 5-10% shit matrix material overall, wet, no odor or sheen.
 15- 15- 15- 15- 15- 15- 16 feet bgs.
B37-17-18
SH 3.5 3.5 SH 3.
20- 20- medium/coarse sand mixture at bottom, wet, slight creosote odor to ~19 feet bgs, no sheen.
- Moderate creosote odor 19-21 feet bgs, no sheen. Belov
B37-23-24 At 22 feet bgs, moderate sheen with no NAPL visible.
SH 3.5
B37-26-27 B37-26-27 B37-26-27 BB37-26-27 BB37-26-27 SP - Tan, sandy silt, 30-40% fine sand, moderately stiff, low
NOTES
1. Sampling and lithologic logging were performed during GeoProbe boring on 2/14/06. The well was installed at the same location on 2/15/06. Poorly graded SAND Gray, primarily medium sand, some fine sand, wet, no
odor, no sheen.

Kennedy/Jenks Consultants

RILLING	COMP.							DRIL	LER Cas	ev / J	aymen	Project Name	For	mer Tacoma Metals
RILLING	METH	DD(S)	Probe					DRIL	L BIT(S)			-		998098.00
SOLATIC								FRC		TO	T. N/A	Project Number	M	TOTAL DEPTH
BLANK C	ASING	nodul	<u>م ۵۸ م</u>	VC Pipe				FRC	м 0	то	22.2 FT. 32.5	DATE STARTED		36.0 ft. bgs
LOTTED	CASIN	G		•				FRC		то	FT.	2/14/06	(ET)	2/15/06
SIZE AND) TYPE	OF FILT	ER PAC			ot		FRC		то	32.2 FT.	10.0	(11)	
EAL	Lapis	Lustr	e #2/1	2 Monterey S	and			FRC	<u>19</u> м 1.5	то	32.5 19 FT.	LOGGED BY DKM		
GROUT	Pure	Gold I	Bentor	nite Chips				FRC	32.5	то	36 FT.	SAMPLING METHODS MacroCore w/PVC L	inor	WELL COMPLETION ■ SURFACE HOUSING
		rete							0		1.5			STAND PIPE
	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL C	CONST	RUCTION	OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION		DRILLING REMARKS
SH	2		_		T and			0.2		sw	Gray, red/bi	graded SAND with gra medium sand with 10 rown woody material lo , no odor, no sheen.	-15%	
			_					0.2			Г	D DEBRIS	·	
			5-				-				size, l	locally up to 5% silt bu	it typi	chips to coarse sawdust cally no matrix material,
SH	1							0.5		Wood		noist, no odor, no she	en.	
				B34-7-8			-				-			
SH	0.5		- 10 -		¥		-					D DEBRIS		
	0.0		-		Ē		-			Wood	- typica	illy coated with silt and	l fine	
			-				-			10000	sheer	rial, moist to wet below n.	101	eet bgs, no odor, no
SH	3		_				-				Canal			
			15 -				-				- Mediu			sand, <5% sand at top,
			_								mode	rately dense overall b		20% sand by 20 feet bgs se 20-22.5 feet bgs, wet
SH	2.5			B34-18-19			-			ML	-	or, no sheen.		
			20-					0.0			L			
											-			
SH	4		-								- - SILT			
			 25 - _							ML	_ Gray,	sand by ~24 feet bgs,		sand) with depth, up to erately stiff, wet, no odor,
SH	2.5		-		.		-					y graded SAND		
			_								sand	by ~28 feet bgs, fine s	and	top, primarily medium present below ~30 feet
			-					_		SP		noderately dense, wel		
SH	3.5	5	⊠ 30-	B34-30-31			-	57.4			-			
								1.0			[
SH	3.5	5	-	B34-34-35			-			SM			% silt	, moderately dense, wet,
		4	△ 35-	<u>01-01-00</u>			-	0.3		SP		y graded SAND medium to fine sand	at tor	arading to mostly
NOTI]	L		. 14					-	medii			bgs, moderately dense,
				c logging were period installed at the s					e boring	on	wei, r			

	G COMPA										aymen	Project Name	Forn	ner Tacoma Metals
DRILLIN	G METHO HSA /	DD(S)	Probe					DRIL	L BIT(S)		-	Project Number		998098.00
SOLATI	ON CASIN							FRO		то	FT. N/A	ELEVATION AND DATUM		TOTAL DEPTH
BLANK C		nedul	e 40 P	VC Pipe				FRO		то	25.7 FT. 41	DATE STARTED		44.0 ft. bgs
SLOTTE	D CASING	3		VC Pipe, 0.01	10-5	lot		FRO	-	ТО	40.7 ^{FT.}	2/14/06 INITIAL WATER DEPTH	(FT)	2/15/06
SIZE ANI	D TYPE C)F FILT	ER PAC	K				FRO	M	ТО	41.7 41	9.0		
SEAL				2 Monterey S	anu			FRO			23 FT.	DKM SAMPLING METHODS		WELL COMPLETION
GROUT			Bentoi	nite Chips				FRO		ТО	44	MacroCore w/PVC Li	ner	■ SURFACE HOUSING
S	Concr AMPLES				WELI	CONS	TRUCTION		0		1.5			□ STAND PIPE F
TYPE	RECOV. F (FEET) B	PENETR. RESIST. LOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	I AND [DRILLING REMARKS
			_					_	• • •	•		graded SAND with gra		unded gravel, some silt
SH	1.5		-				-	1		sw		v ~4 feet bgs, moist, no		
			5-				-			1	-			
SH	2.5	c		B35-6-7			-	0.3		SM		SAND with gravel gray to black, granular	(san	d-sized) material mixed
			-		<u> </u>		-				+ with 1	15-20% silt and some a ce appearance locally,	angula	ar gravel material, oily
SH	2.5		10-		. .		-				woo	D DEBRIS		· ·
			_				-				debris	s with gray silty matrix	mate	
SH	1		15				-	0.5		Wood	I - coatir	ng wood surfaces, wet,	no o	dor, no sheen.
			15 -				-	0.5			F			
SH	0		-				-				F			
			20-				-			 		v graded SAND		
SH	3		-				-	-			_ Mediu	um gray, poorly graded		
				B35-23-24		(N/M		0.4			feet b		0 01	dor, no sheen above ~24
SH	4		25-								-			
			_					1.1			Slight	t creosote odor and no	shee	en ~24-28 feet bgs.
SH	4		30-								F			
011	•		- 30					1.4		SP		t to moderate creosote ogs (strongest odor ~30		
011				B35-32-33				15.5]		F	-	,	
SH	4		35 -					5.6			-			
			-									lor or shoop holow - 25	foot	bas
SH	4	5		D25 20 40				0.4				dor or sheen below ~35	reet	vys.
			× 40-	B35-39-40			-	0.0		·	- SILT			
SH	4		_				-	0.9		ML	Tan/g	ray, silt, minor fine sar city and dilatency, wet,		
NOT	FS					<i>V//////</i> //////////////////////////////		-		SP		y graded SAND		
1. Sa	ampling			c logging were pe installed at the s					boring		Mediu		l med	lium to coarse sand, wet
21	14/00.	ine w	en was	motaneu at the s	same		1011 0/1 2/	15/00.		ML	SILT			
										SP		ray, silt, minor fine sar city and dilatency, wet,		
											- IC	next page for litholog		

roject	Name	For	mer Tacoma	Metals Pi	roject	Numbe	r	998098.00	Well Name _	MW-30 / B-35
SA TYPE	MPLES RECOV. (FEET) BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	OVA	LITHOLOGY	USCS LOG	SAMPLE DE	SCRIPTION AND DRILL	NG REMARKS
								Poorly graded SAI Medium gray, poor no odor, no sheen.	ly graded medium	to coarse sand, wet

Kennedy/Jenks Consultants

ייאי ו ווסח	G COMP		opolit,	y nearest Port	land		nue	ייםח	LER			Well Name MW-31 / B-36		
	Casc	ade							Cas		aymen	Project Name	Forr	mer Tacoma Metals
DRILLING	HSA /	/ Geol	Probe						L BIT(S) 9-in	size ich / 2	-inch	Project Number		998098.00
ISOLATIO	ON CASI N/A	NG						FRC	M N/A	то	FT. N/A	ELEVATION AND DATU		TOTAL DEPTH
BLANK C	ASING	hedule	e 40 P	VC Pipe				FRC		то	22.7 FT. 33	DATE STARTED		36.0 ft. bgs
SLOTTE	D CASIN	G		VC Pipe, 0.01	10 0	lot		FRC	M	ТО	50 FT. 32.7	2/14/06	(FT)	2/15/06
SIZE ANI	D TYPE	OF FILT	ER PAC	K		ΙΟΙ		FRC		то	FT.	10.0		
SEAL				2 Monterey S	and			FRC	<u>20</u> м 1.5		33 20 FT.	DKM		
GROUT	Pure	Gold I	Bentor	nite Chips				FRC	<u>33</u>	то	36 FT.	SAMPLING METHODS MacroCore w/PVC Li	nor	WELL COMPLETION ■ SURFACE HOUSING
	Conc AMPLES	rete							0		1.5			□ STAND PIPE F
TYPE	RECOV.	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	WELL	. CONS	TRUCTIO	N OVA	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	I AND	DRILLING REMARKS
	· /	BLOWS/6"				P			ł	GW/		graded GRAVEL with		
SH	2									, Gw/	Tan, g		d silt,	, dense, moist, no odor,
			-					-		GM	-			
			_								Oran	D DEBRIS ge/brown, wood materi	al fir	ne chips to coarse
SH	3.5		5-							Wood	sawd	ust size, some silt pres erately loose, moist, no	sent l	ocally (<5% total),
			-					-				SAND with gravel	5001	,
			7 1						-	SM	Dark	brown, Mixture of silt (2		0%), gravel (10-15%), fine ately loose, moist to wet,
SH	3.5		∐ ₁₀ –	B36-8-10				72.6			mode		te sh	een ~7-10 feet bgs, sligh
on	0.0		-		÷							but no sneen below ~1	0 lee	ε ι .
			-									D DEBRIS	coat	ed with silt and fine sand
SH	3		_								matrix	x (5-10% overall but lo	cally	variable), wet, no odor,
	Ŭ		15-					-			- iigiit t	o moderate sheen incr	easii	ng with depth.
			-								-			
SH	1									Wood	L			
011			-					6.7				blebs are locally visib ler, increasing with dep		the water surface in the
			20-								-	<u> </u>		
SH	3										Ĺ			
	5		,					20.8	<u> </u>	<u> </u>	Bear			
				B36-23-24							Dark			nostly fine sand at 23 fee
SH	3		25-					3.4		SP	silty (up to ~10%) below ~26	6 feet	
	5		-								→ blebs		s, mo	oderate odor and sheen
			-					2.5		SP/		sible NAPL blebs) bei		24 feet bgs.
SH	2.5		- 30-							SM	Gray,		nd wit	th 10-15% silt, moderatel
011	2.5							31.5				e, wet, slight creosote	odor,	light sheen.
			M -	B36-31-32				1.1		SP	Gray	y graded SAND to dark gray, fine to me	ediun	n sand at top grading to
<u>сн</u>	25							1			-∖ mostl ∖wet, r	y medium sand by ~32 noderate creosote odo	2 feet or and	t bgs, moderately dense, d sheen above ~31 feet
SH	3.5	2	35 <u>-</u>	B36-34-35				0.8		SM	\bgs, s \below	strong odor with heavy v ~31 feet bgs.	shee	en with NAPL blebs visibl
			_							SP		SAND		
<u>NOT</u> 1. Sa		and lit	hologic	logging were pe	erforn	ned d	luring G	eoProbe	e borin <u>a</u>	on		fine sand with 15-20% lor, no sheen.	₀ silt,	moderately dense, wet,
				installed at the s					5			next page for litholog	jy de	escription)

roject Name	For	mer Tacoma	Metals P	roject	Numbe	r	998098.00	_ Well Name _	MW-31	/ B-36
SAMPLES TYPE RECOV. PENET (FEET) BLOWS	R. DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION		LITHOLOGY	USCS LOG	SAMPLE DES	SCRIPTION AND DRILLI	NG REMARKS	3
RLOWS	/6"						Poorly graded SAN Gray, poorly graded dense, wet, no odor	D medium to coarse	e sand, mo	derately

RILLING								DRIL	Sco	tt		Project Name	Tacoma Metals
RILLING	METH	OD(S)						DRIL	L BIT(S) 9-in			Project Number	996098*00
SOLATIC		NG						FRO		TO	N/A ^{FT}		TOTAL DEPTH
LANK C	ASING	0 1						FRO	м О	то 1	4.15 FT	around surface	24.5 ft. bgs
LOTTED	CASIN	G		10 PVC Pipe				FRO	<u>24.15</u> M	то	24.5 FT	2/29/08	2/29/08
			edule 4	<u>40 PVC Pipe,</u> ĸ	0.010) inch slo	ots	FRO	<u>14.15</u> M	<u>2</u> то	4.15 FT	INITIAL WATER DEPTH (FT 8.0)
				2 Monterey Sa	and			FRO	12	то	24.5		
	Pure	Gold	Bentor	nite Chips					1	-	12 ^{FT}	SAMPLING METHODS	WELL COMPLETION SURFACE HOUSING
	Conc	rete						FRO	M 0	то	FT	Split Spoon	
	MPLES RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL C	CONSTRUCT	ION		LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	D DRILLING REMARKS
			_		1		_		۰	GP	- Brow	ly graded GRAVEL with s n, gravelly fill material, mo neen.	
			-				_			SP	🗕 Gray		ne sand with 5-10% gravel
			-				-			SP/	Poor	erately dense, no odor, no	
			5 -						^ب 	SM	_ chip	material, soft, no odor, no	
			_				-			SW	_\ Dark	-graded SAND with grave gray, sand with 50% grav no sheen.	
			_				-			SW/	Dark		30% silt, moderately dense
			10-				-			SM	- woo	t, no odor, no sheen.	
			-				_			Wood	matr	ix, moist, no odor, no shee graded GRAVEL with silt	
			_				-			GW/	Dark		vith 10% fine sand and 209
			 15 _ _							GM	Gray	ly graded SAND , poorly graded medium s	and, 5% fine to medium
			-				-			SP		el in upper 2 feet, grading erately dense, wet, no odo	to fine sand by 20-21 feet, r, no sheen.
			-				-			JF	_		
											-		
ss	1.5	7 8	20-								<u> </u>		
SS	.5	8 5 8	_				-			SP/	- Gray	ly graded SAND with silt , poorly graded fine to me erately dense, wet, no odo	
SS	1.5	8 3 3	_							SM	-		,
NOT		3]		<u></u>					CL/	Gray	CLAY , silty clay, moderately stif no odor, no sheen.	f, medium-low plasticity,
1. Lit	nology	for up	ber 20 f	eet is based on	в-37А					ML			

Kennedy/Jenks Consultants

	LOCATION	norty						147. II NI	MW-33
RILLING	G COMPANY	perty			DRILLER	- 44		Well Name	
RILLING	Cascade METHOD(S)				DRILL BIT(Project Name	Tacoma Metals
	HSA ON CASING					inch TO	FT.	Project Number	996098*00
	N/A				N/.	Α	N/A	ELEVATION AND DATUM	TOTAL DEPTH 24.5 ft. bgs
	2-inch Sch	edule	40 PVC Pipe		24.1	5	14.15 FT. 24.5	DATE STARTED 2/28/08	DATE COMPLETED 2/28/08
	CASING 2-inch Sch	edule -	40 PVC Pipe,	0.010 inch slots	FROM 14.1	то 5 2	гт. 24.15	INITIAL WATER DEPTH (FT	
	TYPE OF FIL		к 2 Monterey Sa	and	FROM 1	то 2	FT. 24.5	9.0	
EAL	Pure Gold				FROM	TO 1	FT.	SAMPLING METHODS	WELL COMPLETION
ROUT		Dento			FROM	TO	FT.	Split Spoon	SURFACE HOUSING
SA	Concrete MPLES			WELL CONSTRUCTION		0			□ STAND PIPE F
TYPE	RECOV. (FEET) BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER		LITHOLO	GY USCS LOG		SAMPLE DESCRIPTION AN	ND DRILLING REMARKS
	BLOHO				<u>_</u>			graded GRAVEL with sat	
		-				GW		orange/brown, gravelly fil rately dense, no odor, no	
							 Well-	graded SAND with silt	
					Ŀ.	SW/	☐ Dark		and with 10-20% wood chij erately dense, moist, no
						SM	odor,	no sheen.	
		5-			Ľ	-		graded SAND with silt aray, silty fine sand with 5	-10% gravel, moderately
						SW/	dense	e, moist, no odor, no shee	
						SM		graded SAND with silt orange/brown, fine sand t	with 10% silt, moderately
		-				' — — -		e, moist, no odor, no shee	
		-		- -		sw/	1 1	D DEBRIS n/red. wood debris with u	p to 50% silt/sand matrix
		10-		-		SM		rial, moist, no odor, no sh	
		-					- ∫ Silty : ∫ Tan/o		% silt, moderately dense,
		-				Wood	moist	, no odor, no sheen.	
		-				SM		y graded SAND gray, poorly graded medi	um sand. coarsening
		-					down	wards to medium/coarse	sand, some fine gravel at nse, wet, no odor, no sheer
		15-						, , , , , , , , , , , , , , , , , , ,	,,,
		-				SP	-		
		-					-		
							-		
		-					F		
ss	8 1.5 12	20-					Γ		
	1.5 12						T		
SS	1 15 16						F		
ss	10 1.5 6						F		
	4	-				ML/		ey SILT	tiff, moderate plasticity, we
<u>NOTE</u> 1. Liti		per 20	feet is based on	B-39A.				or, no sheen.	in, moderate plasticity, we
	<u> </u>					CL			

Kennedy/Jenks Consultants

	JJ Por	t Prop	erty					1				Well Name	MW-34
	G COMPA							DRIL	LER Sco	tt		Project Name	Tacoma Metals
	G METHO	D(S)						DRIL	L BIT(S) 9-in			Project Number	996098*00
	ON CASIN	IG						FRO	M N/A	ТО	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH
LANK C	ASING	Scher		10 PVC Pipe				FRO	м О	то	15.5FT. 25.6	ground surface	26.0 ft. bgs
LOTTED	D CASING	3		•				FRO		то	FT.	2/28/08 INITIAL WATER DEPTH (FT	2/28/08
IZE AND	D TYPE O	F FILTER	R PACH			10 ind	ch slots	FRO	<u>15.5</u> м	то	25.5 FT.	9.0)
EAL	Lapis L	_ustrr ;	#2/12	2 Monterey Sa	and			FRO	<u>13.5</u> м 1	то	25.6 13.5 FT	LOGGED BY DKM	
	Pure G	Sold Be	entor	nite Chips					25.6		13.5 FT. 26	SAMPLING METHODS	WELL COMPLETION ■ SURFACE HOUSING
	Concre	ete						FRO	0	то	FT.	Split Spoon	
	AMPLES RECOV. R (FEET) BL	ENETR. ESIST. OWS/6"	EPTH EET)	SAMPLE NUMBER	WELL	CONS	TRUCTION		LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AN	ID DRILLING REMARKS
						\triangleright						alt surface and base grav	el fill.
											-	SAND with gravel fine to medium sand with	20-25% silt and 5-15%
										SM		I, moderately dense, moi	
											_ Poorl	y graded SAND	
			5-							SP	Brown		to coarse sand, ~5% fine st. no odor, no sheen.
			<u> </u>						·····			· · · ·	
									44	ОН	Dark	nic SILT brown to dark gray, silt w	
												ial including woody debri	s, soft, moist, no odor, no
										CL/	Silty		
			10-		Ē				[]	ML		o tan-brown, silty clay, me city, moist, no odor, no sl	
											\ <u>.</u>	y SILT	
										ML		brown, silt with 30-40% fi e with interbedded claye	
												no odor, no sheen.	-
												y graded SAND gray, poorly graded sand	, mostly medium sand at
			15-								top co	parsening slightly downwa	ard, local small (<1/2") silt erately dense, wet, no odor
			15								no sh		, , ,
			7							SP			
			1								Ĺ		
			20-								L		
ss	1.5	9 13	207								Ĺ		
		15 13]										
SS	1.5	15 18									Silty	SAND	
SS	1.5	10 15								SM	Gray,	fine sand with 20-25% si or, no sheen.	It, moderately dense, wet,
		<u>18</u> 10	25-							SP		y graded SAND	
SS	1.5	12 15	20								🕂 Gray,		moderately dense, wet, no
NOT			- 00 f	ootio heard -	D 44					ML/		y SILT	
1. Lit	triology f	or uppe	er 20 fe	eet is based on	в-41	-				CL		clayey silt, moderately s city, wet, no odor, no she	
										<u> </u>	1		

Z

	MPLES		Tacoma Meta		roject I	Numbe	r	996098*00	Well Name	MW-34
SA IYPE	RECOV. PENETR. (FEET) BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION		LITHOLOGY	USCS LOG		SCRIPTION AND DRILLING	REMARKS
							SM	Poorly graded SAN Gray, poorly graded dense, wet, no odo	ID with silt d fine sand with some r, no sheen.	e silt, moderately

Kennedy/Jenks Consultants

					LUY							
		ort Pro	perty								Well Name	MW-35
	G COMP	ade					DRIL	Scot			Project Name	Tacoma Metals
	G METH							L BIT(S) S 9-inc	ch		Project Number	996098*00
SOLATIO	ON CAS	ING					FRO	M N/A	ТО	FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH
LANK C		h Sch	edule	40 PVC Pipe			FRO		то	40.5 FT. 50.5	ground surface	51.0 ft. bgs
LOTTEI	D CASIN	١G		•	0.010 ii	ach alata	FRO	M	то	50.4 FT.	2/28/08 INITIAL WATER DEPTH (F	2/28/08
IZE ANI	D TYPE	OF FIL	FER PAC				FRO	40.5 M	то	FT.	8.0	.,
EAL				2 Monterey Sa	and		FRO	38.5 v 2	то	50.5 38.5 FT. 51	DKM	
ROUT	Pure	Gold	Bento	nite Chips			FRO	50.5	то	51 FT.	SAMPLING METHODS	WELL COMPLETION
	Conc							0	10	2		■ STAND PIPE <u>2.5</u> F
	RECOV. (FEET)		DEPTH (FEET)	SAMPLE NUMBER				LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
		DLOWO/0			P	P		۲ <u>ک</u>	GW		graded GRAVEL	l no odor no obcon
			_		Ø . R	₹ R			-		graded gravel fill materia	al, no odor, no sneen.
			-						SM			, moist, no odor, no sheen.
			-						ML		brown silt abundant fin	e wood material, moderately
			-			-					moist, no odor, no sheer	
		1	5-			-					D DEBRIS	s with 10-15% silty matrix
SS	1.5	1 2	-			-				(local	ly variable <5% up to 20	%), moist to wet, no odor, n
			_			-			Wood	sheer		
			-		- F	-				-		
			_			-				-		
		2	10-			-				-		
SS	1.5	3	-			-				Poorl	ly graded SAND	
			_			-			SP	Gray,		sand, moderately dense,
			_			-				'_	SAND	
			-			-				Gray,	fine sand with 30-40%	silt overall, interbedded silty sand, and sandy silt,
		2	15 -			-				- mode	erately dense, wet, no od	lor, no sheen.
SS	1.5	3	_			-			SM	-		
		-	-			-				-		
			_			-				-		
			_			-					ly graded SAND	
		3	20-			-				Gray,	poorly graded sand, typ	ically medium to coarse
SS	1	3	-			-					, locally some silt and gra lor, no sheen.	avel, moderately dense, wet
L		5	_			-				-		
			_							Ļ		
			_						SP	Ļ		
			25 -									
			20									
SS [.5	50										
SS _	.5	50 50	_			-						
			-			-						

Kennedy/Jenks Consultants

riojec	t Name	<u> </u>		Tacoma Meta				Project	Numbe	<u>er</u>	996098*00 Well Name MW-35
	SAMPLES	PENETR.	DEPTH (FEET)	SAMPLE NUMBER	WELL	CONST	TRUCTIO	ОМ	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
TYPE	RECOV. (FEET)	RESIST. BLOWS/6	(FEET)			<u>-</u>			LINULUGI	LOG	
		18									Poorly graded SAND Gray, poorly graded sand, typically medium to coarse
SS	1	23 25	30-					1			sand, locally some silt and gravel, moderately dense,
		15	-					-			_ wet, no odor, no sheen. (Continued)
SS	1.5	19 20	-					-			-
~		15						4			-
SS	1.5	18 23									
SS	1.5	15 19	_]								Mostly medium sand, some coase sand, minor silt.
	1.5	22	35-					1			-
ss	1.5	14 17	-					-			-
		23 18						-			-
SS	1.5	21									_
		25 18									
SS	1.5	25 27						1		SP	
		18	40-					-			Locally 5-10% silt in small nodules.
SS	1.5	23 24	-					-			-
<u> </u>	4.5	12	_					_			-
SS	1.5	15 18									_
SS	1.5	15 18									
		20						1			- -
SS	1.5	18 26	45-					-			Gravelly sand (fine gravel) 44-47 feet bgs
		<u> 30</u> 18						-			
SS	1.5	27						4			-
		<u>30</u> 15									
SS	1.5	22 29									
		18	-					-			-
SS	1.5	26 15	50-					-			- Condu CIII T
SS	.5	18								ML	Sandy SILT Brown, silt with 20-30% fine sand, some clay, moderately
<u>NO</u> 1	TES ithology	for ur	per 30 f	feet is also base	d on F	B-44					stiff, moderately low plasticity, wet, no odor, no sheen.
1. L	laioiogy	ioi up	-poi 00 i			J T.				SP	Poorly graded SAND
											Gray, poorly graded fine to medium sand with some silt, moderately dense, wet, no odor, no sheen.

Kennedy/Jenks Consultants

ORING	LOCAT	ION Xistin	aleve	e Road						Boring Name		P-1/P1-R	
RILLING	NE Existing Levee Road					DRIL	DRILLER					Former Tacoma Metals	
		Tip A	dvanc	e			L BIT(S) 1-in	ch	FT.	Project Number		998098.00	
	ON CAS	ING					FROM TO N/A FROM TO			ELEVATION AND DATI	JM	TOTAL DEPTH 20.0 ft. bgs	
	CASING 1-inc D CASIN		nless s	steel			FROM TO FROM TO		N/A FT.	DATE STARTED 2/1/11		DATE COMPLETED 2/1/11	
-	0.010)-inch	Slot SI	tainless steel x			16 20 FROM TO FT.		INITIAL WATER DEPTH (FT) 6.0				
AL	N/A					FRO	FROM TO		N/A FT.	LOGGED BY Inference SAMPLING METHODS WELL COMPLETION			
ROUT	N/A Bento	onite (Chins			FRO	<u>N/A</u>	то	N/A 20 ^{FT.}			SURFACE HOUSING STAND PIPE F	
S/ YPE	AMPLES	DENETD		SAMPLE NUMBER	BACKFILL DETAILS		LITHOLOGY	USCS LOG		SAMPLE DESCRIPTIC	ON AND		
			- - 5 - - -					SW	Gray, red/bi moist WOO Red/b size, size, soft, r		gravel and ~5% , moderately dense, 		
			- 10 - - -	- - -				Wood	 Dark typica 	DD DEBRIS gray to dark orange/brown, blocky wood material, ally coated with silt and fine sand, 5-10% matrix rial, moist to wet below 10 feet bgs, no odor, no n.			
			- 15 - - -					ML	Mediu 15-20 mode	y SILT Im gray/brown, silt with fine sand, <5% sand at top, % sand by ~16 feet bgs, ~20% sand by 20 feet bgs, rately dense overall but loose 20-22.5 feet bgs, wet, or, no sheen.			

 NOTES

 1. Temporary piezometers installed without lithologic samples collected due to drilling technique. Lithology shown on log has been inferrred from the most proximal well (MW-29/B-34)

 2. Total depths from February 2011 installations

ULLING Cascade Drilling DRILLER Cascade Drilling ORILLER(S) SIZE Steel Tip Advance FROM TO NAM FROM TO NA FROM TO NA FROM TO NA FROM TO NA Samples MOD Benchrite Chips Samples FROM TO Samples FROM TO Samples Samples Samples BeckFill Details Innocor Usca Samples Samples case avadust, dry to damp, no odor, no sheen. Samples Samples case avadust, dry to damp, no odor, no sheen. Samples Samples case avadust, dry to damp, no odor, no sheen.	RING LOCATION NE Existing Levee Road			Boring Name	P-2 / P2-R	
BILING METHOD(s) DRILL BIT(s) SIZE Steel Tip Advance 1-inch DIATION CASING 1-inch N/A N/A N/A SAMPLE Benonite Chips BACKFILL DETAILS SAMPLE SAMPLE NUMBER Benomite Chips SAMPLE NUMBER SAMPLE SAMPLE NUMBER Benomite Chips SAMPLE NUMBER SAMPLE SAMPLE NUMBER	ILLING COMPANY Cascade Drilling	DRILLER		_	Former Tacoma Metals	
DATION CASING N/A ANK CASING 1-inch stainless steel 1-inch stainless 1-inch stainl	ILLING METHOD(S)					
ANK CASING 1-inch stainless steel 0.1010-inch slot stainless steel ROM TO TED CASING 0.1010-inch slot stainless steel ROM TO TED CASING 0.1010-inch slot stainless steel ROM TO TO N/A N/A N/A ROM TO N/A N/A N/A ROM TO N/A N/A N/A N/A N/A N/A N/A N/A			FT. N/A	ELEVATION AND DATUM	TOTAL DEPTH	
OTTED CASING OTTED CASING 0.010-inch slot stainless steel EAD TYPE FILTER PACK N/A AL N/A N/A N/A N/A N/A N/A N/A N/A	ANK CASING	FROM TO	FT.	DATE STARTED	DATE COMPLETED	
E AND TYPE OF FILTER PACK N/A N/A FROM N/A FROM TO N/A U GGGED BY Inference SAMPLING METHODS NA UELL COMPLETION SAMPLE NUMBER BACKFILL DETAILS UINCOOF RECON FRESS FFET DEPTH SAMPLE NUMBER FROM S SAMPLE DESCRIPTION AND DRILLING REMARKS FFET S S SAMPLE DESCRIPTION AND DRILLING REMARKS FFET S S S S S S S S S S S S S S S S S S S	DTTED CASING	FROM TO F		INITIAL WATER DEPTH (FT)		
AL TO N/A TO N/A SAMPLING METHODS SAMPLING METHODS SAMPLES OF PRET RESET. FEED RECOVER AND BERT RESET. FEED RECOVER AND BERT RESET. TO	E AND TYPE OF FILTER PACK	FROM TO	FT.	4.7	·	
IVA I	AL	FROM TO	FT.			
SAMPLES VPE RECOV. PRETTS DEPTH SAMPLE NUMBER BACKFILL DETAILS UHOLOGY USCS SAMPLE DESCRIPTION AND DRILLING REMARKS WOOD DEBRIS F S SAMPLE DESCRIPTION AND DRILLING REMARKS WOOD DEBRIS SAMPLE DESCRIPTION AND DRILLING REMARKS SAMPLE DESCRIPTION AND DRILLING REMARKS WOOD DEBRIS SAMPLE DESCRIPTION AND DRILLING REMARKS WOOD DEBRIS SAMPLE DESCRIPTION AND DRILLING REMARKS WOOD	OUT	FROM TO	FT.		□ SURFACE HOUSING	
PPE PECOV (FEET) BLOWS6 DECOV (FEET) (FEET) BLOWS6 OWNELL INSTREMENTS Image: State Log	SAMPLES BACKEUL DETAILS					
Wood DEBRIS Hed/brown, coarse sawdust, dry to damp, no odor, no sheen. Wood - Wood - Wood - Wood - Wood - Wood - Wood - Wood - Wood - Hed/brown, coarse sawdust, dry to damp, no odor, no sheen. Wood - Wood - Wood - Wood - Wood - Hed/brown, coarse sawdust, dry to damp, no odor, no sheen.	PE RECOV. PENETR. DEPTH (FEET) ESIST. (FEET) BLOWS61	LITHOLOGY LOG		SAMPLE DESCRIPTION AND DRILLING REMARKS		
			- - - Browi silty fi	/n/black, blocky to coarse wood debris with ~40-50% fine sand matrix, wet, no odor, no sheen.		

Kennedy/Jenks Consultants

BORING LOCATION NE Existing Levee Road										Boring Name P-3 / P3-R			
					DRILI	DRILLER			Project Name	For	mer Tacoma Metals		
	Stell	Tip A	dvance	9			BIT(S) 1-in	ch		Project Number		998098.00	
SOLATIC	N/A	SING				FROM	N/A	то	N/A	ELEVATION AND DAT	UM	TOTAL DEPTH 20.0 ft. bgs	
			nless	steel		FROM	N/A	то	N/A FT. FT.	DATE STARTED		DATE COMPLETED 2/1/11	
-	0.010	D-inch		tainless steel x		FROM	16	20 ^{INI}		INITIAL WATER DEPTH (FT) 3.4			
AL	N/A						N/A N/A		LOGGED BY				
ROUT	N/A		0 h i = -			FROM		то	N/A PT.	SAMPLING METHODS	5		
SA	AMPLES	PENETR.	DEPTH	SAMPLE NUMBER	BACKFILL DETAILS			USCS LOG	20	SAMPLE DESCRIPTIO	ON AND		
		RESIST. BLOWS/6						GW	Brown sand	graded GRAVEL with sand n fine to medium gravel with ~40-45% fine to medium and some silt, no odor, no apparent sheen. D DEBRIS with SILT matrix gray, wood debris typically with ~5-10% silt/fine san			
			5- - - - - 10-					Wood	 matrix feet, s - - 	, no sheen above 13	moderate sheen below 13		
			- - 15 - - -					SP/	Brown	Iy graded SAND with silt nish black (5YR 2/1), medium to coarse sand, tra 5% fines, wet, slight creosote odor, no sheen. Fibrous organic material.			

 NOTES

 1. Temporary piezometers installed without lithologic samples collected due to drilling technique. Lithology shown on log has been inferred from the most proximal well (MW-20)

 2. Total depths and screen intervals from February 2011 installations