Table 3 - Estimated AMOR Application Scope Mountain View Brownfield Ellensburg, Washington

			Chemical Oxidation Biological Oxidati				Oxidation		
Location Name	Solution Name	On-Center Distance (feet)	Estimated Points	NovIOX [™] Solution (gal)	NovIOX Concentrate (gal)	Estimated Points	AnoxEA-aq® (pounds)	ReleaSE-Dx™ (liters)	AM3™ (grams)
Former Scale House Tank Area	А	8	180	2,880	19.2	80	4,000	40	2,000
North Mechanic Shop	Α	8	47	752	5.0	30	1,500	15	1,500
East Mechanic Shop	В	10	48	768	5.1	20	500	5	500
		Totals	275	4,400	29.3	130	6,000	60	4,000

Notes:

Solution Composition:

Solution A = 50 pounds AnoxEA-aq, 0.5 L ReleaSE-Dx, 25 grams AM3 in 50 gallons of tap water.

Solution B = 25 pounds AnoxEA-aq, 0.25 L ReleaSE-Dx, 25 grams AM3 in 50 gallons of tap water.

NovIOX, AnoxEA-aq, ReleaSE-Dx, and AM3 provided by Bioremediation Specialists, L.L.C.

Table 1 - Bioremediation Amendment Product Evaluation Mountain View Brownfield Ellensburg, Washington

Evaluation Criteria	0	RC Adv.	EHC-O	E-Ox	An	oxEA-aq	EAS
Cost per Pound of Product	\$	9.25	\$ 5.25	\$ 5.00	\$	4.00	\$ 4.00
Nutrients		None	Trace N	None	N,	P,K,micro	None
Mole Hydrogen Consumed Per Pound Product		4.83	4.12	4.74		11.01	15.10
Pounds of Product to Degrade One Pound of Petroleum		20.71	24.28	21.08		9.08	6.62
Cost Per Pound Of Petroleum Degraded	\$	188.75	\$ 125.60	\$ 103.87	\$	35.79	\$ 26.10

Notes:

ORC Adv. = Oxygen Releasing Compound™ Advanced provided by Regenesis.

EHC-O™ provided by FMC Environmental Solutions.

E-Ox[™] provided by EOS Remediation.

AnoxEA-aq® provided by Bioremediation Specialists, L.L.C.

EAS™ provided by EOS Remediation.

Trace N = trace nitrogen nutrient sources.

N,P,K,micro = nitrogen, phosphorous, postassium and micro-nutrients, respectively.

Table 2 - Electron Acceptor/Demand Calculations Mountain View Brownfield Ellensburg, Washington

Treatment Target Area Specifications				
<u> </u>	,			
Vertical Treatment (ft)	4			
Treatment Width (ft)	200			
Treatment Length (ft) (parallel w/ GW flow)	100			
Effective Porosity	0.25	Tatal Damas	inting Duningt Du	
Foc	0.001	i otal Remed	iation Project Du	
Estimated Seepage Velocity (ft/year)	100			180
Bulk Soil Density (lbs/ft³) Treatment Area Pore Volume	120	Ī	140.240	Callana
	566,000	L	149,340	Gallons
Hydrogen/Electron Donor Availability				
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H₂ to Oxidize / Mole Analyte	Moles of H ₂ Donor In Treatment Area
Native Electron Donors				
Average Groundwater TPH-Gx	5.0	100	22	623
Approximate % Aromatic	5%			
Estimated Total Soil and GW TPH-Gx				14,591
Average Groundwater TPH-Dx	0.1	226	49	12
Estimated Total Soil and GW TPH-Dx				354,799
ı	Estimated Oxid	ative Efficiency	20%	73,878
Hydrogen/Electron Acceptors				
Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H ₂ Acceptor In Treatment Area
Native Electron Acceptor Flux	Concentration (mg/L)	Weight (g/mol)	Reduce Mole	Acceptor In Treatment Area
Native Electron Acceptor Flux Dissolved Oxygen	Concentration (mg/L)	Weight (g/mol)	Reduce Mole Analyte	Acceptor In Treatment Area
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen)	Concentration (mg/L) 2.0 5.0	Weight (g/mol) 32 62	Reduce Mole Analyte	Acceptor In Treatment Area 71 607
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate	2.0 5.0 20.0	32 62 96.1	Reduce Mole Analyte 2 3 4	Acceptor In Treatment Area 71 607 471
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³	2.0 5.0 20.0 0.0	32 62 96.1 55.8	Reduce Mole Analyte 2 3 4 0.5	Acceptor In Treatment Area 71 607 471
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵	2.0 5.0 20.0 0.0	32 62 96.1 55.8 74.9	Reduce Mole Analyte 2 3 4 0.5	71 607 471 0
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵ Mn ⁺² Formation from Mn ⁺⁴	2.0 5.0 20.0 0.0 0.0	32 62 96.1 55.8 74.9	Reduce Mole Analyte 2 3 4 0.5 1	71 607 471 0
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵	2.0 5.0 20.0 0.0 0.0 0.0	32 62 96.1 55.8 74.9 54.9	Reduce Mole Analyte 2 3 4 0.5 1 1	71 607 471 0 0 0
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵ Mn ⁺² Formation from Mn ⁺⁴ Methane Formation	2.0 5.0 20.0 0.0 0.0 0.0 Initia	32 62 96.1 55.8 74.9 54.9 16	Reduce Mole Analyte 2 3 4 0.5 1 1 4 Hydrogen Acceptors	71 607 471 0 0 0 1,149
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵ Mn ⁺² Formation from Mn ⁺⁴ Methane Formation	2.0 2.0 5.0 20.0 0.0 0.0 0.0 Initial	32 62 96.1 55.8 74.9 54.9 16 al Treatment Area H	Reduce Mole Analyte 2 3 4 0.5 1 1	71 607 471 0 0 0 1,149
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵ Mn ⁺² Formation from Mn ⁺⁴ Methane Formation	2.0 2.0 5.0 20.0 0.0 0.0 0.0 Initial	32 62 96.1 55.8 74.9 54.9 16 al Treatment Area F Acceptor Flux of Rei Native Hydrogen Moles of H ₂ to Reduce Mole	Reduce Mole Analyte 2 3 4 0.5 1 1 4 Hydrogen Acceptors emediation Duration	Acceptor In Treatment Area 71 607 471 0 0 1,149 566 1,715 Moles H ₂ Acceptor
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵ Mn ⁺² Formation from Mn ⁺⁴ Methane Formation Add Added Electron Acceptor	Concentration (mg/L) 2.0 5.0 20.0 0.0 0.0 0.0 Initial ditional Hydrogen Total Added Pounds	32 62 96.1 55.8 74.9 54.9 16 al Treatment Area H Acceptor Flux of Re Notes of H ₂ to Reduce Mole Analyte	Reduce Mole Analyte 2 3 4 0.5 1 1 4 Hydrogen Acceptors emediation Duration Acceptor Subtotal Moles H₂/Lb.	Acceptor In Treatment Area 71 607 471 0 0 0 1,149 566 1,715 Moles H ₂ Acceptor Added
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵ Mn ⁺² Formation from Mn ⁺⁴ Methane Formation	Concentration (mg/L) 2.0 5.0 20.0 0.0 0.0 0.0 Initial ditional Hydrogen Total Added Pounds	32 62 96.1 55.8 74.9 54.9 16 al Treatment Area F Acceptor Flux of Re Native Hydrogen Moles of H ₂ to Reduce Mole Analyte NA	Reduce Mole Analyte 2 3 4 0.5 1 4 dydrogen Acceptors emediation Duration Acceptor Subtotal Moles H ₂ /Lb.	Acceptor In Treatment Area 71 607 471 0 0 0 1,149 566 1,715 Moles H ₂ Acceptor Added 62,700
Native Electron Acceptor Flux Dissolved Oxygen Nitrate (as Nitrogen) Sulfate Fe ⁺² Formation from Fe ⁺³ As ⁺³ Formation from As ⁺⁵ Mn ⁺² Formation from Mn ⁺⁴ Methane Formation Add Added Electron Acceptor	Concentration (mg/L) 2.0 5.0 20.0 0.0 0.0 0.0 Initial ditional Hydrogen Total Added Pounds 6,000	32 62 96.1 55.8 74.9 54.9 16 al Treatment Area H Acceptor Flux of Re Native Hydrogen Moles of H ₂ to Reduce Mole Analyte NA Added Hydrogen	Reduce Mole Analyte 2 3 4 0.5 1 1 4 Hydrogen Acceptors emediation Duration Acceptor Subtotal Moles H₂/Lb.	Acceptor In Treatment Area 71 607 471 0 0 0 1,149 566 1,715 Moles H ₂ Acceptor Added 62,700

KVFR Tables.xlsx Revision: 2.1 - 9/24/10

Table 2 - Electron Acceptor/Demand Calculations Mountain View Brownfield Ellensburg, Washington

Estimated Oxidative Treatment Progress Based on Design Assumptions:

87%

KVFR Tables.xlsx Revision: 2.1 - 9/24/10

Table 2 - Electron Acceptor/Demand Calculations Mountain View Brownfield Ellensburg, Washington

NOTES:

L = liters; gal = gallons; Fe^{+2} = dissolved iron; MN^{+2} = dissolved manganese; $1ft^3$ = 7.48 gals = 28.3L; 3.79L = 1 gal.

Physical equalibrium constants per Oregon DEQ Risk-Based Decision Making Guidance.

Electron and hydrogen equivalents per Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Air Force Center for Environmental Excellence, August 2004.

ft = feet; L = liters; mg/L = milligrams per liter; gal = gallons; gpm = gallons per minute; H_2 = hydrogen.

KVFR Tables.xlsx Revision: 2.1 - 9/24/10