

Supplemental Environmental Assessment Information for 4500 West Marginal Way SW Property – Seattle, WA

Prepared for: CenterPoint Properties Trust

August 2014

www.erm.com

CenterPoint Properties Trust

Supplemental Environmental Assessment Information

4500 West Marginal Way Southwest Seattle, King County, Washington

August 2014

Project No. 0203067

David Edwards *Partner-in-Charge*

Merv Coover Project Manager

Environmental Resources Management

1218 3rd Avenue, Suite 1412 Seattle, Washington 98101 (425) 462-8591 (main) (425) 455-3573 (fax)

TABLE OF CONTENTS

1.0	INTR	CODUCTION	1
2.0	BAC	KGROUND	2
3.0	RECI	ENT ENVIRONMENTAL ASSESSMENT INFORMATION	3
	3.1	SOIL BORINGS AND SOIL SAMPLING	3
	3.2	MONITORING WELL CONSTRUCTION, SURVEYING AND DEVELOPMENT	4
	3.3	STATIC WATER LEVEL AND FREE PRODUCT MEASUREMENT	5
	3.4	GROUNDWATER SAMPLING	5
4.0	ASSE	SSMENT FINDINGS	7
	4.1	SITE GEOLOGY AND HYDROGEOLOGY	7
	4.2	SOIL RESULTS	7
	4.3	GROUNDWATER RESULTS	8
5.0	STOI	RM WATER OUTFALL IDENTIFICATION	11
6.0	SUM	MARY	12
7.0	REFE	ERENCES	13
APPI	ENDIX	A – NFA LETTER	
APPI	ENDIX	B – SAMPLING AND ANALYSIS PLAN	
APPI	ENDIX	C – SOIL BORING LOGS	
APPI	ENDIX	D— SURVEY DATA	
APPI	ENDIX	E- WELL DEVELOPMENT LOGS	
APPI	ENDIX	F— PURGE LOGS	
APPI	ENDIX	G – LABORATORY DATA PACKAGES	

LIST OF FIGURES

Site Location Map following text
 Soil Boring and Monitoring Well Location Map
 Groundwater Elevation Contour Map

LIST OF TABLES

4

- 1 Summary of Monitoring Well Construction Information following figures
- 2 Groundwater Level Measurements

Tracer Test Results

- 3 Summary of Groundwater Quality Parameters
- 4 Summary of Soil Analytical Data and Screening Levels
- 5 Summary of Groundwater Analytical Data and Screening Levels

1.0 INTRODUCTION

The property at 4500 West Marginal Way SW, Seattle, Washington, (King County Parcel 7666703680; Washington State Department of Ecology [Ecology] Facility ID 83317575) is currently owned by CenterPoint Properties Trust (CenterPoint; Figure 1). This property was a portion of the former Seaboard Lumber Company site (No. 88471591) that was cleaned up and granted an opinion of No Further Action (NFA) by Ecology under the Voluntary Cleanup Program (VCP; Appendix A). CenterPoint has entered Ecology's VCP with the goal of obtaining a property-specific NFA opinion from Ecology for the 4500 West Marginal Way SW parcel. This report supplements the VCP application by presenting environmental assessment information recently collected by ERM-West, Inc., (ERM) on behalf of CenterPoint.

-

¹ Ecology documents refer to the Evergreen Trails property. CenterPoint purchased the property from Evergreen Trails (via Seattle Property 2012 Inc.) in 2013.

2.0 BACKGROUND

The ownership, operational, regulatory, and cleanup history of the subject property is fully documented in a number of reports maintained in Ecology files and is not recounted here. Thorough summaries based on these reports and records are also contained in recently published Lower Duwamish Waterway (LDW) source control documents (Ecology 2012; Ecology 2013). The CenterPoint property has previously been referred to as Evergreen Trails (Ecology Site No. 83317575) and is a portion of what was historically referred to as the Seaboard Lumber Site No. 88471591.

The former Seaboard Lumber Site was granted an NFA determination in 2012 (Appendix A) under the authority of the Leaky Underground Storage Tank (LUST) program. The NFA letter was ambiguous in that the narrative discussed cleanup of contamination at the site in the broadest sense, not just contamination from the LUST release. An inquiry to Ecology on this ambiguity elicited the following regulatory interpretation (Personal communication with Sonia Fernandez; 15 January 2014) and is the basis for CenterPoint entering the VCP program:

"[The subject property] is part of a large group of historical sites designated as Reportedly Cleaned Up (RCU) we evaluated in 2011..... Based on the information we reviewed in the Central Records files about your facility, we determined that the cleanup conducted for the Site was in compliance with the regulation..... Although the reviews were done through an EPA grant for LUST, we reviewed everything that was in the file at that point (2011). That is likely why the list of contaminants include all the [contaminants of concern] but the letter really is specifically designed for the LUSTs. The determination does not cover anything else that might have happened after August 2011. I understand that massive excavations and restoration [were] conducted in both the Paccar parcels, and from the notes I have, it seems that everything was cleaned up to the regulation so the NFA was granted. As it is right now, the site status is listed as an NFA Since your client would like a more standard letter and more certainty on the Site, I think that you may be able to enter the VCP....and get a more formal review....."

3.0 RECENT ENVIRONMENTAL ASSESSMENT INFORMATION

ERM performed an environmental assessment of the subject property on behalf of CenterPoint in 2013. The work was undertaken in compliance with requirements of the Model Toxics Control Act (MTCA; Washington Administrative Code [WAC] 173-340). Objectives of the assessment were to assess:

- Soil quality in the vicinity of existing underground storage tanks (USTs);
- Soil quality in the vicinity of formerly remediated (excavated) areas;
 and
- Groundwater quality.

Appendix B contains the Sampling and Analysis Plan (SAP) that details the scope of work and procedures for field sampling, data gathering, and laboratory analysis. The fundamental scope of work elements were:

- Soil borings, sampling, and analysis;
- Monitoring well construction, development, and surveying; and
- Groundwater level gauging, sampling, and analysis

The field-sampling procedures and data gathering methods were selected to ensure the data collected over the course of the project are of known quality to meet their intended use, and that all components of data acquisition are documented, verifiable, and defensible. Details regarding the performance of these tasks are presented in the following subsections.

3.1 SOIL BORINGS AND SOIL SAMPLING

On 26 and 28 August 2013, Cascade Drilling, Inc. (CDI) advanced eight soil borings (SB–1 through SB-8A) using: (1) a combination of air knife and vacuum truck for the uppermost 8 feet of the borings to minimize the risk of penetrating unidentified subsurface utilities while advancing the borings through this critical zone, and (2) a truck-mounted direct-push drill rig from 8 feet below ground surface (bgs) to the specified total depth of each boring. Four soil borings were advanced to a depth of 18 feet bgs around the existing USTs, and four soil borings were advanced to a depth of 12 feet bgs within the former remedial excavations. The locations of the borings are shown on Figure 2. An ERM geologist logged the soil borings,

field screened the soil approximately every 2.5 feet for signs of contamination using a Mini Rae 10.6 eV photoionization detector (PID), and collected soil samples from each boring for laboratory analysis. The soil boring logs are presented in Appendix C.

One soil sample was collected from each boring for laboratory analysis. The soil samples were collected from the soil intervals exhibiting the highest degree of contaminant evidence based on the field screening data. The soil samples were collected, packaged, and transmitted to Test America Laboratories (TA), a Washington-certified laboratory located in Fife, Washington, for analysis as specified in the SAP (Appendix B).

3.2 MONITORING WELL CONSTRUCTION, SURVEYING AND DEVELOPMENT

On 27 August 2013, CDI advanced soil borings for construction of five monitoring wells using: (1) a combination of air knife and vacuum truck for the uppermost 8 feet of the borings to minimize the risk of penetrating unidentified subsurface utilities while advancing the borings through this critical zone, and (2) a truck-mounted direct-push drill rig from 8 feet bgs to the specified total depth of each boring. Permanent monitoring wells were constructed in each of the borings as specified in the SAP (Appendix B). Well construction logs for the five monitoring wells (MW-1 through MW-5) are included in Appendix B, and the well construction details are summarized on Table 1. The locations of the monitoring wells are shown on Figure 2. True North Land Surveying, Inc., a Washington-licensed land surveyor, surveyed the horizontal locations and top of casing elevations of the monitoring wells as specified in the SAP (Appendix B). Survey data are provided in Appendix D, and summarized for each monitoring well on Table 1.

On 28 September 2013, the monitoring wells were developed by surging and then purging groundwater from each well using a bailer and the peristaltic pump tubing as specified in the SAP (Appendix B). PCBs, dioxins, and furans have low solubility, are highly hydrophobic, and are consequently extremely sensitive to bias from very low levels of artificially-suspended solids in sample water. As a result, the goal of well development was a final turbidity reading of 5 Nephelometric Turbidity Units (NTUs) or less in each well. Well development logs are included as Appendix E.

3.3 STATIC WATER LEVEL AND FREE PRODUCT MEASUREMENT

On 29 August 2013, an ERM geologist collected a complete round of static water level and free product measurements from the monitoring wells and recorded the data in the field log book. The measurements were obtained using an electronic product level indicator that senses both the top of the free product and the interface between the free product and the groundwater. The product level indicator was decontaminated between each well using a scrub brush, an Alconox wash, and a de-ionized water rinse. Water level measurement data are provided in Table 2.

3.4 GROUNDWATER SAMPLING

Groundwater was sampled on 29 and 30 August 2013 using a peristaltic pump and a combination of no-purge and low-flow sampling techniques as specified in the SAP (Appendix B). As previously indicated, PCBs, dioxins, and furans are extremely sensitive to bias from very low levels of artificially-suspended solids in sample water. Therefore, PCB, dioxin, and furan samples were collected prior to purging the well in an attempt to minimize potential bias from sampling-induced turbidity.

At each monitoring well, a new piece of disposable polyethylene tubing was attached to the peristaltic pump and lowered slowly within the upper one foot of the water column to minimize re-suspension of any silt in the well casing. After the PCB, dioxin, and furan samples were collected, the tubing intake was lowered to the middle of the screened interval and the well was purged in accordance with low-flow sampling techniques. On average, the monitoring wells were purged at a rate of 95 milliliters per minute to minimize drawdown in the well.

During purging, water quality parameters (pH, temperature, electrical conductivity [EC], dissolved oxygen [DO], oxidation reduction potential [ORP], and turbidity) were monitored approximately every three to four minutes using a Horiba U-52 and a multi-parameter water quality meter equipped with an in-line flow cell. Turbidity measurements were obtained using a Hach 2100P. In general, purging stopped when the following parameters stabilized for three successive readings:

- Temperature: + 1 degree Celsius (°C);
- pH: + 0.1 units; and
- EC: + 10 percent.

After the in-line flow cell was disconnected, groundwater samples were collected directly into laboratory-provided sample containers. Groundwater samples collected for dissolved metals analysis were field filtered using a 0.45 micron in-line filter. Purge logs are provided as Appendix F, and Water Quality Parameter Data are summarized on Table 3.

The groundwater samples were packaged and transmitted to TA for analysis as specified in the SAP (Appendix B).

4.0 ASSESSMENT FINDINGS

The field and laboratory data collected during the field investigation and an evaluation of the results are presented in the following subsections. Laboratory data reports for the soil and groundwater sample testing are presented in Appendix G.

4.1 SITE GEOLOGY AND HYDROGEOLOGY

The subsurface soils were generally consistent with descriptions presented in previous environmental investigation and remediation reports for the subject property. The ground surface is covered with approximately 4 inches of asphalt overlying approximately 3 feet of gravel subgrade. There are two layers of asphalt and subgrade across portions of the western side of the subject property. The underlying soils (approximately 3.3 to 7.5 feet) consist of variable fill composed of sand, gravel, cobbles with minor quantities of silt, clay, and organic matter. The variable fill is underlain (approximately 7.5 to 10 feet) by hydraulic fill (i.e., dredge spoils placed hydraulically), consisting of unbedded sand with some silt, gravel, clay, and organic matter (peat and woody debris). The hydraulic fill is underlain by alluvium (10 to 18 feet), which is bedded, but otherwise has a similar composition as the overlying hydraulic fill.

Groundwater was encountered between 2.3 and 7.8 feet bgs and is unconfined (Table 2). A groundwater table map constructed from these data (Figure 3) shows groundwater flowing toward the east/southeast, where it likely discharges to the LDW or the intertidal basin at Herring's House Park, which discharges to the LDW. The average horizontal hydraulic gradient of the shallow groundwater was estimated at approximately 0.014 foot/foot. Based on the recharge rates observed during purging of the monitoring wells, the hydraulic conductivity of the shallow water-bearing zone is highly variable.

No free phase product was detected.

4.2 SOIL RESULTS

Table 4 contains soil analytical results for the subject property and compares contaminant concentrations to screening levels for protection of

the LDW. It is appropriate to evaluate the recently obtained soil data in the context of protecting the LDW for the following reasons.

- Although Ecology determined that the previous cleanup of the Former Seaboard Lumber Company site met the requirements for an NFA determination (Ecology, 2012), one of Ecology's Source Control Action Plans for the LDW (Ecology, 2013) identifies the 4500 Marginal Way property as a potential upland source of contamination to the LDW (Ecology 2013).
- The U.S. Environmental Protection Agency (USEPA) published the final list of chemicals of concern for the LDW in the proposed plan for the LDW site (EPA; 2013). The list contains specific metals and organic compounds present in LDW media at concentrations above protective levels.
- Ecology provided ERM with screening levels currently being used by Ecology for sites along the LDW. The screening levels are not sitespecific and are draft, therefore they are subject to change (Personal correspondence with Ron Timm, Ecology Site Manager; 5 February 2014).

Lead was the only metal analyzed in soil because this specific metal was the driver for the earlier cleanup work done at the former Seaboard Lumber site. As shown in Table 4, lead concentrations were well below the screening level for protection of the LDW. Soil samples SB-4 and SB-7 contained detectable levels of polycyclic aromatic hydrocarbons. Benzo[a]pyrene and Indeno[1,2,3-cd]pyrene concentrations in sample SB-7 slightly exceeded the screening levels.

The soil samples were not analyzed for several LDW chemicals of concern because these metals and compounds were not of concern nor did they drive the earlier investigations and cleanup.

4.3 GROUNDWATER RESULTS

Water Quality Parameters

The results from the water quality (pH, temperature, EC, DO, ORP, and turbidity) measurements obtained during the groundwater sampling are summarized on Table 3. In general, the groundwater is slightly acidic, having pH values ranging from 6.25 to 6.58. The ORP values for the groundwater range from reducing (-78.2 millivolts) to oxidizing (154 millivolts) and averaged 25.2 millivolts. The DO levels range from

0.01 milligrams per liter (mg/L) to 2.71 mg/L and averaged 1.08 mg/L, within the typical range for shallow groundwater. EC values range from 0.136 microSiemens per centimeter (μ S/cm) to 15.8 μ S/cm and average 3.75 μ S/cm. As indicated on Table 3, all of the groundwater samples showed turbidity levels greater less than 5 NTUs. The temperature of groundwater ranges from 21.78 °C to 26.05 °C and has an average of 23.51 °C, within the typical range for groundwater.

LDW COCs

The same rationale presented above for summarizing and screening soil concentration data applies to groundwater. Table 5 contains groundwater analytical results for the subject property and compares the results to screening levels Ecology considers protective of the LDW. An additional rationale in the case of groundwater is that hydrogeologic conditions at the property suggest that groundwater is not a suitable source of drinking water. The property is adjacent to a tidally-influenced section of the LDW that renders the shallow groundwater saline (Table 3) and is therefore non-potable. The maximum beneficial use of the groundwater is therefore protection of adjacent surface water resources in the LDW.

Bis(2-ethylhexyl)phthalate (BEHP) and butyl benzyl phthalate (BBP) are the only two chemicals detected at concentrations exceeding the screening levels. BEHP was detected at 5 and 4.2 μ g/L in groundwater samples from MW-3 and MW-5, respectively. These concentrations are slightly higher than the BEHP screening level of 1.2 μ g/L. BBP was detected at a concentration of 0.86 μ g/L in MW-5, slightly higher than the BBP screening level of 0.41 μ g/L.

The BEHP concentrations are attributed to lab contamination and not the site. BEHP is the most common class of phthalate plasticizers and is present in materials used to collect and analyze environmental samples. The National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2008) allows the data reviewer to use professional judgment to attribute concentrations up to 5x the analytical quantitation limit to lab contamination because the laboratory contaminant is of such common nature. The BEHP concentrations detected in the groundwater samples are less than 2x the analytical quantitation limit and less than 5x the screening level. Moreover, the spike results for the samples indicate that the BEHP data are biased high and outside the quality control limits.

BBP's presence in the groundwater is suspect and may not be attributed to site contamination. BBP is a plasticizer used for PVC and vinyl foams. The monitoring wells and other sampling equipment are constructed of PVC.

BBP was not detected in the laboratory method blank and the spike results are within control limits. However, potential contamination from field sampling equipment cannot be evaluated because a field blank (i.e., equipment rinsate blank) was not tested. BBP is not a known constituent from current or historical activities at the property and was not identified as a contaminant of concern during the cleanup. A weight of evidence evaluation of the data suggests that the low concentration of BBP detected in MW-5 is the result of lab or equipment contamination and not representative of the groundwater.

It is also noted that analytical reporting limits for some chemicals (i.e., cadmium, copper, mercury, several polycyclic aromatic hydrocarbons, BEHP, BBP, two chlorobenzenes, and the PCBs) exceed the screening levels.

5.0 STORM WATER OUTFALL IDENTIFICATION

A LDW source control plan document prepared by Ecology (Ecology 2013) identifies the need to "...verify which outfall (Outfall 2140, 2141, or other) the facility uses to discharge storm water to the intertidal bay at Herring's House Park." The facility referred to in this statement is the CenterPoint (formerly Evergreen Trails) property. Reported here are ERM findings on the precise location of the discharge pipe from which storm water runoff at the subject property is released to the LDW.

ERM field personnel visited the subject property before low tide on 19 April 2014. Rainfall and runoff were causing substantial and observable flow in the oil/water separator, the last downstream storm water device at the facility. Approximately 5 fluid ounces of fluorescent dye were added to the discharge side of the oil water separator. The dye was observed to emerge into the LDW at the location shown in Figure 4. ERM estimates that the top of the discharge pipe, visible below the water surface, is at an elevation of approximately -2 feet mean sea level based on the low tide mark for the day and the estimated depth of pipe below the surface.

It is not clear whether this pipe corresponds to Outfall 2140 or 2141 as identified in Ecology source control documentation. However, based on the field work reported here, the precise location of the discharge pipe is known.

6.0 SUMMARY

Ecology records show that the subject property has undergone multiple cleanups to remove contaminated soil, the primary drivers being lead and petroleum hydrocarbons. The property was formerly part of a larger site (Seaboard Lumber) for which an NFA determination was made based on the outcome of these cleanups. As discussed earlier, ambiguity in the NFA determination has lead CenterPoint to enter the VCP program to seek an unambiguous property-specific NFA determination for 4500 W. Marginal Way SW.

With respect to the supplemental environmental assessment sampling data, only one of the eight soil samples collected from soil borings advanced in the locations of former remedial excavations or around existing USTs contained contaminant concentrations exceeding screening levels. This sample contained concentrations of two PAHs slightly higher than their screening values; however, neither contaminant was detected in the groundwater samples. These results are consistent with data from the previous cleanup work showing contaminated soil exceeding MTCA Method A cleanup levels for these constituents was removed.

Groundwater samples collected from the monitoring wells situated along the downgradient property line contained detectable concentrations of some LDW COCs however, all detections were below the screening levels.

Based on the sampling data from historical remediation efforts as well as the supplemental soil and groundwater samples collected in 2013, the residual contaminant concentrations at the subject property has little or no potential to impact LDW surface water and/or re-contaminate LDW sediment.

7.0 REFERENCES

Ecology 2012; Lower Duwamish Waterway RM 0.0 to 1.0 West (Spokane Street to Kellogg Island), Summary of Existing Information and Identification of Data Gaps, Volume 1: Main Text, Figures, and Tables; prepared for the State of Washington Department of Ecology, Toxics Cleanup Program, prepared by SAIC; September 2012.

Ecology 2013; Lower Duwamish Waterway RM 0.0 to 1.0 West (Spokane Street to Kellogg Island), Source Control Action Plan, Publication No. 12-09-137; prepared by the State of Washington Department of Ecology; February 2013.

CAD File: G:\\0203067\02\020306702-02.dwg Drawn By: R. Olson Date: 08/15/14 Project No. 0203067.02 DUWAMISH WATERWAY -MW-2 Excavation -MW-1 Excavation McMc EXCAVATION\ Herring's House Park Figure 2 Soil Boring and Monitoring Well Location Map Baseline and Groundwater Assessment **LEGEND** Petroleum-Impacted Soil Excavation Monitoring Well Location 4500 West Marginal Way SW Location of Underground Storage Tanks Parcel Boundary
Aerial Photo Source: © 2012 Google Earth
Pro Ver 6.2.2.66.13 Soil Boring Location Lead and Carcinogenic Polycyclic Aromatic Hydrocarbon—Impacted Soil Excavation Seattle, Washington

Legend

Catch Basin

Outfall

Drainage/Storm Water Sewer

Site Boundary

Outfall pipe diameter estimated to be 6 inches and top of pipe located at an elevation of approximately -2 ft MLLW. Pipe is not visible (i.e., submerged) in this image.

Stormwater Data Source: City of Seattle GIS Aerial imagery Source - King County, flown March 23, 2012 at 0.25 ft per pixel.

Figure 4
Tracer Test Results
CenterPoint
4500 W Marginal Way SW
Seattle, Washington

Tables

Table 1

Summary of Monitoring Well Construction Information 4500 West Marginal Way SW Seattle, Washington

Monitoring Well ID	Completion Date	Total Well Depth (ft bgs)	Well Construction Material	Casing Diameter (in)	Screen Length (ft)	Screen Slot Size (in)	Screen Zone Interval (ft bgs)	Northing Washington State Plane NAD 83(91) ft	Easting Washington State Plane NAD 83(91) ft	Top of Casing Measuring Point Elevation (ft-amsl)
MW-1	8/27/2013	11.00	PVC	0.75	5	0.01	6-11	209287.36	1265818.37	12.23
MW-2	8/27/2013	7.50	PVC	0.75	5	0.01	2.5-7.5	209109.83	1265504.73	12.53
MW-3	8/27/2013	10.50	PVC	0.75	5	0.01	5.5-10.5	209153.92	1265947.93	11.28
MW-4	8/27/2013	10.50	PVC	0.75	5	0.01	5.5-10.5	208951.32	1265823.26	12.21
MW-5	8/27/2013	9.50	PVC	0.75	5	0.01	4.5-9.5	208759.11	1265709.53	11.51

Notes:

amsl = above mean sea level

PVC = Polyvinyl chloride

bgs = below ground surface

ft = feet

ID = Identification

in = inches

NAD = North American Vertical Datum

Groundwater Level Measurements 4500 West Marginal Way SW

Seattle, Washington

Table 2

Well ID	Measuring Point Elevation (ft-amsl)	Date	Time	Depth to Groundwater (ft-btoc)	Depth to Well Bottom (ft-btoc)	Groundwater Elevation (ft-amsl)
MW-1	12.23	8/29/2013	8:53	6.43	10.92	5.80
MW-2	12.53	8/29/2013	8:50	2.33	7.23	10.20
MW-3	11.28	8/29/2013	9:01	7.75	10.38	3.53
MW-4	12.21	8/29/2013	9:08	5.87	10.54	6.34
MW-5	11.51	8/29/2013	9:12	5.03	9.31	6.48

Notes:

amsl = above mean sea level

btoc = below top of casing

ft = feet

ID = Identification

Table 3
Summary of Groundwater Quality Parameters
4500 West Marginal Way SW

Seattle, Washington

Location	Sample Date	Sample Time*	Temperature (°C)	рН	EC (mS/cm)	DO (mg/L)	ORP (mV)	Turbity (ntu)	Visual Observations
MW-1	08/29/13	12:20, 14:23	26.05	6.25	0.447	2.03	22	0.96	Clear
MW-2	08/29/13	9:29, 11:13	22.77	6.51	0.136	0.23	154	0.96	Clear
MW-3	08/30/13	12:08, 13:34	23.80	6.40	1.881	0.40	-78.2	4.91	Clear
MW-4	08/29/13	16:15, 17:11	21.78	6.58	15.8	0.01	35	0.76	Clear
MW-5	08/30/13	8:04, 10:57	23.13	6.47	0.509	2.71	-3.7	1.18	Clear

Notes:

* = First entry indicates sample time for Dioxins, Furans, and Polychlorinated Biphenyls, second entry indicates sample time for the remainder of the analyses.

DO = Dissolved oxygen

EC = Electrical conductivity

mg/L = milligrams per liter

mS/cm = millisiemens per centimeter

mV = millivolt

ntu = Nephelometric turbidity units

ORP = Oxidation/reduction potential

Parameter ¹ Boring: SB-1 SB-2 SB-3	RM Soil Boring Samples SB-4 SB-5	SB-6	on =		
Parameter			SB-7	SB-8A	Screening
	SB-4-1.5 SB-5-11.5	SB-6-12	SB-7-12	SB-8A-12	Value ²
Depth (ft): 6 8 8	1.5 11.5	12	12	12	
Total Metals (mg/kg)					
Arsenic					
Cadmium					
Chromium (Total)					
Copper			-		
Lead 1.2 6.8 4.4	5.7 1.0	1.1	5.7	1.4	250
Mercury					
Silver					
Zinc				-	
PAHs (mg/kg)					
2-Methylnaphthalene					
Acenaphthylene					
Anthracene					
Benzo(a)anthracene 0.0064 U 0.0071 U 0.0074 U 0	0.160 0.0061 U	0.0058 U	0.150	0.0060 U	0.26
Benzo(a)pyrene 0.0064 U 0.0071 U 0.0074 U 0	0.120 0.0061 U	0.0058 U	0.180	0.0060 U	0.14
Benzo(g,h,i)perylene			-	-	
(-)	0.190 0.0061 U	0.0058 U	0.150	0.0060 U	0.26
Benzo(k)fluoranthene 0.0064 U 0.0071 U 0.0074 U 0	0.0061 U	0.0058 U	0.057	0.0060 U	0.26
Chrysene 0.0064 U 0.0071 U 0.0074 U 0	0.330 0.0061 U	0.0058 U	0.150	0.0060 U	140
	0.020 0.0061 U	0.0058 U	0.024	0.0060 U	0.067
Dibenzofuran					
Fluoranthene					
Fluorene					
Ideno(1,2,3-cd)pyrene 0.0064 U 0.0071 U 0.0074 U 0	0.064 0.0061 U	0.0058 U	0.100	0.0060 U	0.067
Naphthalene 0.0064 U 0.0071 U 0.0074 U 0	0.0062 U 0.0061 U	0.0058 U	0.010	0.0060 U	2.1
Phenanthrene					
Pyrene		-	-	-	-
Phthalates (mg/kg)	<u> </u>	•			
Bis(2-ethylhexyl) phthalate					
Butyl benzyl phthalate					
Dimethyl phthalate		-	-	-	-
Chlorobenzenes (mg/kg)	•	•			
1,2,4-Trichlorobenzene					
1,2-Dichlorobenzene					
1,4-Dichlorobenzene					
Hexachlorobenzene			-	-	-
Other SVOCs and COCs (mg/kg)					
2,4-Dimethylphenol					
4-Methylphenol			-	-	
Benzoic acid					
Benzyl alcohol					
n-Nitrosodiphenylamine					-
Pentachlorophenol			-	-	
Phenol			-	-	
PCBs (mg/kg)					
PCB-1016					
PCB-1221				-	
PCB-1232			-	-	
PCB-1242				-	
PCB-1248					
PCB-1254			-		
PCB-1260					
Dioxins/Furans (ng TEQ/kg)					
Calculated TEQ (ND=0):				-	

¹ Constituents of Concern for cleanup of the Lower Duwamish Waterway. (EPA 2013. Proposed Plan Lower Duwamish

Notes:

All soil samples were collected from 08/27/2013 - 08/28/2013

mg/kg = milligrams per kilogram = parts per million (ppm)

 $p_{ij}(L = p_{ij}(R)) = p_{ij}(R)$ py $p_{ij}(L = p_{ij}(R))$ py $p_{ij}(L = P_{ij}(R))$ $p_{ij}(L =$

B = Blank contamination.

Bold = Parameter detected above reporting limit

ft = feet

COCs = Consituents of Concern

PAHs = Polycyclic Aromatic Hydrocarbons

PCBs = Polychlorinated Biphenyls

SVOCs = Semi Volatile Organic Compounds
"--" = Not analyzed for listed parameter

 $TEQ = Toxicity\ Equivalency\ Quotient\ to\ 2,3.7.8-Tetrachlorodibenzo-p-dioxin\ (TCDD).\ Only\ positively\ identified\ compounds\ are\ included\ in\ TEQ\ calculation.\ NDs\ are\ set\ to\ equal\ to\ zero\ for\ TEQ\ calculation.$

Waterway Superfund Site)

² From Table 1. LDW Site Cleanup Levels - Final Draft

Summary of Groundwater Analytical Data and Screening Levels 4500 West Marginal Way SW Seattle, Washington

	ERM Monitoring Well Groundwater Samples										
Parameter Sample I.D.:	MW-1		MW-2		MW-3		MW-4		MW-5		Screening
Well Screen Depth (ft):	6-11		2.5-7.5		5.5-10.		5.5-10.5		4.5-9.5		Value ²
Total Metals (µg/L)											
Arsenic	5	U	5	U	5	U	5	U	5	U	5
Cadmium	2	U	2	U	2	U	2	U	2	U	0.25
Chromium (Total)	2	U	2	U	4.90		2	U	2	U	74
Copper	5	U	5	U	5	U	5	U	5	U	2.4
Lead	2	U	2	U	2	U	2	U	2	U	2.5
Mercury	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.012
Silver	2	U	2	U	2	U	2	U	2	U	22
Zinc	17		7	U	8.8		27		0.7	U	56
PAHs (μg/L)	•					•					
2-Methylnaphthalene	0.21	U	0.21	U	0.21	U	0.21	U	0.20	U	64
Acenaphthylene	0.11	U	0.11	U	0.16		0.1	U	0.082	U	115
Anthracene	0.042	U	0.042	U	0.13		0.042	U	0.041	U	199
Benzo(a)anthracene	0.063	IJ	0.063	U	0.064	IJ	0.063	U	0.061	IJ	0.001
Benzo(a)pyrene	0.042	U	0.042	U	0.043	U	0.042	U	0.041	U	0.001
Benzo(g,h,i)perylene	0.063	U	0.063	U	0.064	U	0.063	U	0.061	U	0.0115
Benzo(b)fluoranthene	0.084	U	0.084	U	0.085	U	0.084	U	0.082	U	0.001
Benzo(k)fluoranthene	0.063	U	0.063	U	0.064	U	0.063	U	0.061	U	0.001
Chrysene	0.42	U	0.40	U	0.43	U	0.42	U	0.41	U	0.001
Dibenz(a,h)anthracene	0.063	U	0.063	U	0.064	U	0.063	U	0.061	U	0.001
Dibenzofuran	0.42	U	0.42	U	0.43	U	0.42	U	0.41	U	1.3
Fluoranthene	0.053	U	0.053	U	0.22		0.052	U	0.051	U	11
Fluorene	0.063	U	0.063	U	0.17		0.063	U	0.061	U	45.2
Ideno(1,2,3-cd)pyrene	0.063	U	0.063	U	0.064	U	0.063	U	0.061	U	0.001
Naphthalene	0.40	U	0.40	U	0.40	U	0.40	U	0.40	U	26
Phenanthrene	0.084	U	0.084	U	0.78		0.084	U	0.082	U	4.8
Pyrene	0.063	U	0.063	U	0.21		0.063	U	0.061	U	9.8
Phthalates (µg/L)											
Bis(2-ethylhexyl) phthalate	3.2	U	3.2	U	5	В	3.1	U	4.2	В	1.2
Butyl benzyl phthalate	0.63	U	0.63	U	0.64	U	0.63	U	0.86		0.41
Dimethyl phthalate	0.42	U	0.42	U	0.43	U	0.42	U	0.41	U	4236.7
Chlorobenzenes (µg/L)	ı										
1,2,4-Trichlorobenzene	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.13
1,2-Dichlorobenzene	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	436
1,4-Dichlorobenzene	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	1.7
Hexachlorobenzene	0.42	U	0.42	U	0.43	U	0.42	U	0.41	U	0.00029
Other SVOCs and COCs (µg/L)	•					•					
2,4-Dimethylphenol	2.1	U	2.1	U	2.1	U	2.1	U	2.0	U	655
4-Methylphenol	0.84	U	0.84	U	0.85	U	0.84	U	0.82	U	333.8
Benzoic acid	3.2	U	3.2	U	3.2	U	3.1	U	3.1	U	2243.0
Benzyl alcohol	0.42	U	0.42	U	0.43	U	1.1		0.41	U	182
n-Nitrosodiphenylamine	0.42	U	0.42	U	0.43	U	0.42	U	0.41	U	1.96
Pentachlorophenol	0.74	U	0.74	U	0.75	U	0.73	U	0.71	U	1.47
Phenol	0.63	U	0.63	U	0.64	U	0.63	U	0.61	U	40694.5
PCBs (µg/L)											
PCB-1016	0.56	U	0.54	U	0.54	U	0.53	U	0.47	U	0.001
PCB-1221	0.56	U	0.54	U	0.54	U	0.53	U	0.47	U	0.014
PCB-1232	0.56	U	0.54	U	0.54	U	0.53	U	0.47	U	0.014
PCB-1242	0.56	U	0.54	U	0.54	U	0.53	U	0.47	U	0.001
PCB-1248	0.56	U	0.54	U	0.54	U	0.53	U	0.47	U	0.001
PCB-1254	0.56	U	0.54	U	0.54	U	0.53	U	0.47	U	0.001
PCB-1260	0.56	U	0.54	U	0.54	U	0.53	U	0.47	U	0.001
Dioxins/Furans (ng TEQ/kg)											
Calculated TEQ (ND=0):	0.00		0.00		0.00		0.04		0.00		0.51

 $^{^{1}\,\}mathrm{Constituents}\,\mathrm{of}\,\mathrm{Concern}\,\mathrm{for}\,\mathrm{cleanup}\,\mathrm{of}\,\mathrm{the}\,\mathrm{Lower}\,\mathrm{Duwamish}\,\mathrm{Waterway}.\,\mathrm{(EPA\,2013.\,Proposed\,Plan\,Lower}\,\mathrm{Duwamish}\,\mathrm{Waterway}.$ Waterway Superfund Site)

Notes:

All groundwater samples were collected on 08/29/2013

Hig/L = micrograms per liter = parts per billion (ppb)
pg/L = picograms per liter
U = Result is ≤ Reporting Limit (RL). Result reported as the RL and is qualified as non detected (ND).
B = Blank contamination.

Bold = Parameter detected above reporting limit

ft = feet

COCs = Consituents of Concern

PAHs = Polycyclic Aromatic Hydrocarbons

PCBs = Polychlorinated Biphenyls

SVOCs = Semi Volatile Organic Compounds

"--" = Not analyzed for listed parameter

 $TEQ = Toxicity\ Equivalency\ Quotient\ to\ 2,3,7,8-Tetrachlorodibenzo-p-dioxin\ (TCDD).\ Only\ positively\ identified\ compounds\ are\ included\ in\ PCDD$ TEQ calculation. NDs are set to equal to zero for TEQ calculation.

² From Table 1. LDW Site Cleanup Levels - Final Draft

Appendix A NFA Letter

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Ave SE • Bellevue, WA 98008-5452 • 425-649-7000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

May 4, 2012

PROPERTY OWNER Seaboard Lumber Company 4540 W Marginal Way Seattle, WA 98106

Re: No Further Action (NFA) Determination associated with Leaking Underground Storage Tank (LUST) Site:

Site Name: Seaboard Lumber Company

Property Address: 4540 W Marginal Way, Seattle, WA 98106

• Facility/Site No.: 88471591

LUST ID: 4158

Dear Property Owner:

Based on the historical information in our files and the last documents submitted to us on 4/23/2003, the Washington State Department of Ecology (Ecology) has determined that the Seaboard Lumber Company site has met the substantive requirements for cleanup under the Model Toxics Control Act (MTCA) regulation Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA").

The MTCA regulation sets strict cleanup standards for sites in Washington State to ensure that the quality of the cleanup is appropriate and is protective of human health and the environment. Depending on the site circumstances and location, one of the three cleanup criteria established under MTCA is used to assess the quality of the cleanup remedy. These are:

- Method A Cleanup levels: Used in simple sites with few contaminants of concern (COCs). The Method A cleanup levels consist of a list of the most common hazardous substances for soil and groundwater. The Method A Cleanup levels are very strict, and if met, they allow the property to be used for unrestricted land use.
- Method B Cleanup levels: These cleanup levels are established using applicable state and federal laws and the risk assessment equations and other requirements defined in MTCA. Method B is used in more complex sites where the COCs are not included within the set criteria listed on the Method A tables.

Seaboard Lumber Company May 4, 2012

• Method C Cleanup levels: Method C uses the same risk assessment equations and other requirements defined in MTCA but also require a full site-specific risk assessment and an Terrestrial Ecological Evaluation (TEE). Method C is used in industrial sites, when Methods A and C are technically unattainable or lower that background concentrations, and when a significant threat to human health or the environment has been identified.

After a site meets the criteria for soil and groundwater (if applicable), the cleanup is considered to be complete and an NFA letter can be issued.

According to our records, you have conducted cleanup independently and your site meets the Method A Cleanup levels.

- LUST ID No.: 4158,
- Release Notification Date: 12/4/1992,
- Contaminants of Concern: TPH, metals, and organic contaminants as PCP and cPAHs,
- Soil is affected: Yes,
- Groundwater is affected: Yes.

Based on this information, Ecology has determined that no further remedial action is necessary at the Property to clean up contamination associated with the LUST. This determination is made only for impacts associated to releases from LUST No. 4158. Based on this opinion, Ecology will update the status of remedial action at the Site on our database of hazardous waste sites and will initiate the process of removing the Site from our lists of hazardous waste sites, including (if applicable):

- Hazardous Sites List.
- Confirmed and Suspected Contaminated Sites List.
- Leaking Underground Storage Tank List.

Removing your site from these lists may include a public notice and/or a public comment period. Based on the comments received, Ecology will either remove the Site from the applicable lists or withdraw this opinion.

Please understand that this opinion does not settle liability with the state. Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion does not:

- Change the boundaries of the Site.
- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

Seaboard Lumber Company May 4, 2012

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

In addition, this opinion does not constitute a determination of substantial equivalence. To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you proposed will be substantially equivalent. Courts make that determination. See RCW 70.105D.080 and WAC 173-340-545.

Lastly, the state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. See RCW 70.105D.030(1)(i).

If you have any questions about this opinion, please contact me by e-mail at russ.olsen@ecy.wa.gov or by phone at (425) 649-7038.

Sincerely,

Russell E. Olsen, MPA

Voluntary Cleanup Unit Supervisor

Northwest Regional Office

Missell Em

Toxics Cleanup Program

SF: sf

Appendix B Sampling and Analysis Plan

1.0 INTRODUCTION

ERM-West, Inc. (ERM) prepared this Sampling and Analysis Plan to guide the Baseline Environmental Assessment (BEA) and site-wide Groundwater Assessment (GWA) to be performed at the property located at 4500 West Marginal Way SW, Seattle, Washington (the "subject property"). A map showing the location of the subject property is included as Figure 1.

This Sampling and Analysis Plan provides procedures for field sampling, data gathering methods, and laboratory analysis activities being performed as part of the BEA and GWA at the site. The field-sampling procedures and data gathering methods were selected to ensure that the data collected over the course of the project are of known quality to meet their intended use, and that all components of data acquisition are thoroughly documented, verifiable, and defensible.

1.1 Background

The subject property is located in an area that is primarily used for commercial and industrial purposes. The subject property has the tax parcel number 766670-3680 and the owner of the subject property is listed as Seattle Property 2012 Inc.

The subject property is generally triangular-shaped and consists of 6 acres of land improved with a two-story main building, a single-story warehouse building, and two temporary tent structures. The main building was built in 1997, and is approximately 40,000 square feet. In 2005, a single-story warehouse building containing approximately 1,200 square feet of space was added to the original building. The subject property is surrounded by a chain-link fence, with a main entrance gate on the south side of the property.

The subject property currently houses two companies as tenants that provide motor coach services to the public: Gray Line of Seattle/Horizon Coach Lines (Gray Line) and Greyhound. The property serves as the main business office and maintenance facility for Gray Line of Seattle. Activities conducted by Gray Line include administration, sales, dispatch, and maintenance. Greyhound primarily uses their space for bus maintenance with some office and warehouse space. The facility operates 24 hours a day, and has approximately 200 staff, including seasonal personnel.

1.2 Scope and Objectives

The objectives of the BEA and GWA are stated below.

- Assess the oil-water separator (OWS) associated with the wastewater system for cracks, holes, or other evidence of potential leakage to the subsurface.
- Assess the soils in the vicinity of the current underground storage tanks (USTs) for evidence of contaminant releases.

- Assess the soils in the vicinity of former excavations (HS-MW-1, HS-0-26, HS-SB-5, HS-MW-4, and HS-SB-4) to verify that the contamination was removed.
- Assess the groundwater migrating onto the subject property along the upgradient (west) property line for evidence of contamination.
- Assess the groundwater migrating off of the subject property along the downgradient (northeast and southeast) property lines for evidence of contamination.

2.0 SCOPE OF WORK

This section describes the scopes of work for the BEA and GWA.

2.1 Work Elements of BEA

- Inspect the OWS associated with the wastewater system for cracks, holes, or other evidence of potential leakage to the subsurface. The inspection will be performed by an ERM field consultant after the OWS has been pumped out by the owner or operators of the subject property. The inspection will be performed from the ground surface using a high-power flashlight to inspect the exposed concrete sides and base of the structure. The structure will not be entered. Observed cracks or holes, if any, will be photographed.
- Conduct a private utility locate in the vicinity of each of the eight planned soil boring locations and adjust the locations as needed to avoid subsurface utilities. Clear each of the locations to a depth of at least 5 feet below ground surface (bgs) using an air knife/vacuum truck.
- Advance four soil borings around the existing USTs (Figure 2). The borings will be advanced using a truck-mounted direct-push rig, and soil samples will be collected continuously to a depth of 18 feet bgs. An ERM field consultant will log the borings and field screen the soils for indications of contamination (i.e., staining, odor, elevated photoionization detector [PID] readings, and/or free product sheen).
- Advance four soil borings in the vicinity of excavations HS-MW-1, HS-0-26, HS-SB-5, HS-MW-4, and HS-SB-4 (Figure 2). The borings will be advanced using a truck-mounted direct-push rig and soil samples will be collected continuously to a depth of 12 feet bgs (i.e., 1 to 6 feet below the groundwater table). An ERM field consultant will log the borings and field screen the soils for indications of contamination (i.e., staining, odor, elevated PID readings and/or free product sheen).
- Collect one soil sample from the interval showing the highest indication of contamination (based on field screening) from each of the eight soil borings.
- Transmit the soil samples under standard chain-of-custody protocol to Test America laboratory for analysis of:

- o Gasoline-range petroleum hydrocarbons (TPH-G) by Washington State Department of Ecology (Ecology) Method NWTPH-G;
- o Diesel-range petroleum hydrocarbons (TPH-D) and heavy oil-range petroleum hydrocarbons (TPH-HO) by Ecology Method NWTPH-Dx;
- o Benzene, toluene, ethyl benzene, and xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method 8021;
- o 1,2-dibromoethane (EDB); 1,2-dichloroethane (EDC); and methyl tertiary-butyl ether (MTBE);
- o Total lead USEPA Method 6010/200.8;
- Carcinogenic polynuclear aromatic hydrocarbons (cPAHs) and naphthalenes by USEPA Method 8270-SIM; and/or
- o Volatile petroleum hydrocarbons (VPH) and extractable petroleum hydrocarbons (EPH) by Ecology Methods B and C.

Only the samples collected near the current USTs containing TPH-G, TPH-D, TPH-HO, or BTEX will be run for EDB, EDC, MTBE, VPH, and/or EPH. The BEA analytical program is summarized on Table 1. The laboratory analyses will be performed on a standard 10-day turnaround unless expedited turnaround is needed to meet the project schedule.

2.2 Work Elements of GWA

- Conduct a private utility locate in the vicinity of each of the five planned monitoring well locations (Figure 2) and adjust the locations as needed to avoid subsurface utilities. Clear each of the locations to a depth of at least 5 feet bgs using an air knife/vacuum truck.
- Advance five soil borings using a truck-mounted direct-push rig at the locations shown on Figure 2, and collect soil samples continuously to approximately 4 feet below the water table (i.e., a maximum total depth of 15 feet bgs). An ERM field consultant will log the borings and field screen the soils for indications of contamination (i.e., staining, odor, elevated PID readings, and/or free product sheen). If contaminated soil is encountered, samples will be collected for laboratory analysis and held pending authorization from the Client for a change order to analyze the soil samples.
- Construct permanent monitoring wells in each of the borings. The monitoring wells will be constructed using 5-foot long, 0.75-inch diameter PVC (polyvinyl chloride), 0.010 slot prepacked screens set with approximately 4 feet of screen below the water table. The screens will be pre-packed with 20/40 Colorado silica sand. Each well will be completed with 0.75-inch diameter Schedule 40 PVC riser, a locking well cap and a flush-mount protective cover cemented in place.
- Direct a Washington State licensed surveyor to survey the vertical and horizontal positions of the monitoring wells. The elevation and horizontal position of each well will be obtained

from the north rim of each well casing utilizing Washington State Plane coordinates and elevation. Horizontal location will be established to an accuracy of 0.1 foot and elevation will be established to an accuracy of 0.01 foot.

- Develop the five monitoring wells by using a bailer and a peristaltic pump to surge and purge the wells to ensure the removal of any drilling fines and to restore the hydraulic properties of the surrounding formation.
- Measure the static water levels in the monitoring wells relative to the surveyed reference
 points using an electronic water level indicator. The water level data will be used to
 evaluate the groundwater flow direction and gradient.
- Collect one round of groundwater samples from the monitoring wells using low-flow sampling methods.
- Transmit the groundwater and quality assurance samples under standard chain-of-custody protocol to a local laboratory for analysis of:
 - TPH-G by Ecology Method NWTPH-G;
 - o TPH-D and TPH-HO by Ecology Method NWTPH-Dx;
 - Target Compound List (TCL) volatile organic compounds (VOCs) by USEPA Method 8260;
 - o TCL Semi-volatile organic compounds (SVOCs) by USEPA Method 8270-SIM;
 - o Dissolved and total Target Analyte List (TAL) metals by USEPA Method 6010/200.8;
 - o Polychlorinated biphenyls by USEPA Method 8082; and
 - o Doixin/furans by USEPA Method 8290.

The GWA analytical program is summarized on Table 1. The laboratory analyses will be performed on a standard 10 business day turnaround unless expedited turnaround is needed to meet the project schedule.

3.0 STANDARD OPERATING PROCEDURES

3.1 Groundwater Sampling Procedures

Groundwater sampling for all constituents except dioxins and furans will be performed using USEPA low-flow well purging/ sample collection techniques to obtain representative groundwater samples. Groundwater sampling procedures for monitoring wells to be purged and sampled using low-flow protocols is presented below. Groundwater sampling for polychlorinated biphenyls (PCBs), dioxins and furans is summarized in section 3.2.

Total depth measurements (depth to bottom) will not be collected prior to sampling
in order to avoid agitation of sediment at the bottom of the well which may affect the
turbidity of the water column.

- Lower tubing intake from a peristaltic pump very slowly into the well to a depth corresponding to the center of the saturated screen section of the well. The pump/tubing intake must be kept at least 2 feet above the bottom of the well to prevent mobilization of any sediment. Lowering the pump/tubing quickly, or even at a moderate rate, will result in disturbing sediment in the well. This is one of the most important steps in low-flow sampling.
- Measure the water level again with the pump tubing in the well before starting the pump. Start pumping the well at 100 to 300 milliliters per minute. Ideally, the pump rate should cause little or no water level drawdown in the well (less than 0.3 foot and the water level should stabilize).
- Measure and record the depth to water and pumping rate every 3 to 5 minutes (or as appropriate) during pumping. If purging continues for more than 30 minutes, readings will be recorded at approximately 10-minute intervals. However, once stabilization is indicated, a minimum of 3 consecutive readings at 3 to 5 minute intervals will be recorded prior to sample collection.
- Care should be taken not to cause pump suction to be broken or entrainment of air or gas in the sample. At no point during sampling should purged water go back into the well. Do not allow the groundwater level to go below the pump intake.
- Pumping rates should, if needed, be reduced to the minimum capabilities of the pump to minimize drawdown and/or to ensure stabilization of indicator parameters. However, if the turbidity criteria are achieved, drawdown is minimal and the indictor parameters are stable, the samplers may use professional judgment to increase the pumping rate up to a maximum of 500 milliliters per minute.
- During purging, measure and record the field indicator parameters (turbidity, temperature, specific conductance, pH, Eh, and dissolved oxygen) using the in-line meter. Record the water quality parameters and any qualitative notes (such as color and odor) on the Groundwater Sampling Log form. If the water quality parameters are stable for three consecutive readings, collect samples for chemical analysis.
- The well is considered stabilized and ready for sample collection once all the field indicator parameter values remain within 10 percent for three consecutive readings.
- Turbidity readings less than or equal to 5 NTUs are desirable for samples analyzed for PCBs, dioxins and furans. As a result monitoring wells will be considered developed when the turbidity readings are 5 NTU's or less and the no purge PCB, dioxin and furan samples will be collected after the well development criteria have been achieved and before the water column is otherwise disturbed. After the no purge PCB, dioxin and furan samples are collected, the purge rate may be increased as long as turbidity readings are less than 10 NTUs prior to collection of samples analyzed for metals.

- Before sampling, either disconnect the in-line cell or use a bypass assembly to collect groundwater samples before the in-line cell. All sample containers should be filled by allowing the pump discharge to flow gently down the inside of the container with minimal turbulence.
- Reduce the pump flow to a rate of less than 300 milliliters per minute, and collect samples. Note: Do not stop the pump after stabilization and prior to sample collection.
- Collect samples from the discharge of the pump and fill the appropriate sample containers. Filtered metals samples will be field-filtered using an in-line, disposable, 0.45-µm filter and collected after the unfiltered metals.
- Label the samples using waterproof labels, or apply clear tape over the paper labels. Place all samples in a cooler with bagged ice or frozen cold packs and maintain at 4 degrees Celsius for delivery to the laboratory.
- Measure and record well depth.
- Secure the well.

3.2 Groundwater Sampling Procedure for PCBs, Dioxins and Furans

Because PCBs, dioxins and furans have low solubility, are highly hydrophobic, and are consequently extremely sensitive to bias from even very low levels of artificially-suspended solids in sample water, samples to be analyzed for dioxins and furans will be collected **prior** to purging the well in an attempt to minimize potential bias from sampling-induced turbidity. Procedures are presented below.

- After measuring water levels, the tubing from a peristaltic pump will be lowered
 gently to the water surface and then lowered until the bottom of the tube is within
 the upper part of the screened interval, but at no time deeper than the midpoint of
 the screened interval.
- Using a low pumping rate (0.025 to 0.05 liters per minute or less), samples will be withdrawn and the sample container for dioxins/furans analysis filled from the end of the pump discharge tubing.
- After a sufficient quantity of sample water has been obtained, the pump will be stopped, the low-flow cell added to the discharge line, and then the well will be purged and sampled as described using the low-flow sampling method described above.

3.3 Monitoring Well Development Procedures

Monitoring wells are developed to remove skin (i.e., near-well-bore formation damage) and to settle and remove fines from the filter pack. Wells will not be developed for 24 hours after completion when a cement bentonite grout is used to seal the annular space; however, wells may be developed before grouting if conditions warrant. Wells must be developed prior to collection of groundwater samples to ensure that samples are representative of site conditions.

Wells will generally be developed by utilizing a 0.75-inch disposable bailer to remove fines from the bottom of the well, followed by surging using the bailer and pumping using a peristaltic pump and new disposable tubing for each well.

Before and/or during development, the well cap and the interior of the well casing above the water table will be washed using only water from that well.

Development will continue until a minimum of 10 well volumes are purged, plus a minimum of three times the volume of any potable water added during drilling, or until turbidity is 5 NTUs or less and field parameters have stabilized as follows:

Temperature: ±1 degree Celsius;

• pH: ± 0.1 unit;

• Specific conductance: ± 10 percent; and

• Turbidity: ± 10 percent.

The following steps must be followed when developing wells:

- Don personal protective clothing and equipment as specified in the site-specific Health and Safety Plan.
- Open the well cover and check the condition of the wellhead, including the condition of the surveyed reference mark, if any.
- Measure the depth to static water level and depth to bottom of the casing.
- Prepare the necessary equipment for developing the well.
- During development, water will be removed throughout the entire water column in the well by periodically lowering and raising the bailer or pump intake.
- Continue pumping or bailing until field parameters stabilize, as discussed above, for three consecutive recording intervals or until 10 well volumes have been purged.
- In a low recharge aquifer, the well may pump or bail to dryness before indicator parameters stabilize. In this case, allow the well to recharge and continue purging until parameters have stabilized. Record pertinent data in the field logbook.

Remove the pump assembly or bailers from the well, decontaminate (if required), and clean
up the area. Lock the well cover before leaving. Dispose of development water in steel
55 gallon Department of Transportation-approved drums.

3.4 Equipment Decontamination Procedures

Equipment to be decontaminated will include rods and augers for drilling and hand tools for soil collection. After completing the decontamination process, the equipment will be positioned to preclude inadvertent contamination prior to reuse.

All borehole drilling equipment will be decontaminated using steam and/or high-pressure water.

Decontamination of non-disposable sampling equipment that comes into contact with samples (such as a water level meter) will be performed to prevent the introduction of extraneous material into samples, and to prevent cross-contamination between samples. All non-disposable sampling equipment that is used at multiple locations will be decontaminated by steam cleaning or by washing with a non-phosphate detergent such as Liquinox $^{\text{TM}}$ or equivalent. Decontamination water will be collected in appropriate 55-gallon drums or equivalent.

The following procedures will be used for decontamination of non-disposable sampling equipment:

- 1. If mud or soil is adhering to the sampling equipment, first rinse with potable water. This step will decrease the gross contamination and reduce the frequency at which the non-phosphate detergent and water solution need to be changed.
- 2. Wash with the non-phosphate detergent and water solution. This step will remove remaining contamination from the equipment. Dilute the non-phosphate detergent as directed by the manufacturer.
- 3. Rinse with potable water. Change the water frequently.
- 4. Rinse with distilled water. This step will rinse any detergent solution and potable water residues. Rinsing will be done by applying the distilled water from a clean squeeze bottle (or equivalent) while holding equipment over a bucket.

Table 1 Analytical Summary

Baseline Environmental and Groundwater Assessment 4500 West Marginal Way SW

Seattle, Washington

Analytical Parameter	Matrix	Number of Samples
TPH-g/BTEX w/ 5035 kit	Soil	8
TPH-D/HO	Soil	8
cPAH and Naphthalenes	Soil	8
Total lead	Soil	8
VPH	Soil	4
ЕРН	Soil	4
EDB/EDC & Oxygenates	Soil	4
ТРН-д	Water	5
TPH-D/HO	Water	5
TCL SVOCs	Water	5
TCL VOCs	Water	5
TAL Metals (total)	Water	5
TAL Metals (dissolved)	Water	5
PCBs	Water	5
Dioxin/Furans	Water	5

Appendix C Soil Boring Logs

1	NT Cent			erties Trust	PROJECT NAME Baseline E PROJECT LOCATION Seattle			Groundwater Assessments
	STARTE			COMPLETED 8/27/13	GROUND ELEVATION 12.53		_	SIZE 2.25 inch
				Drilling	GROUND WATER LEVELS:			
	PMENT _			CHECKED BY CHER CORMON	AT TIME OF DRILLING			
NOTI	_	wall C	Jianue	CHECKED BY Cyrus Gorman	AT END OF DRILLING _ AFTER DRILLING			_
DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG	MATERIAL DESC	CRIPTION	Elevation (ft)	PID (ppm)	WELL DIAGRAM Casing Top Elev: 12.23 (ft) Casing Type: 2" PVC
ĭ —				0.3 \(\tau \) 4 inch asphalt slab.		/ _12.3 _/		Cement Seal
CENIER - EX				Subangular COBBLES, trace fine-med	dium sand. Very stiπ.			
Š	-			3.5		9.0	0	3/4 inch PVC Well Casing
5				POORLY-GRADED SAND (SP): Dark coarse sand grains, and fine subround	led gravel. Dry, loose.			■ Bentonite Seal
ewa ewa		SP		Weathered lumber/wood scraps in bot $\overline{\Sigma}$	ehole at 3.5 feet bgs.		0	
A P				7.5		5.0		.010 inch
07 - BE	-	SM CL-		7.5 7.8 3.5 inches of saturated weathered words SILTY SAND (SM): Grey silty fine SAI		4.8	0	Well Screen
10	-	ML		9.5 LOW PLASTICITY SILTY CLAY (CL-I with slight natural organic decay odor.	ML): Grayish-brown silty CLAY	3.0		
I I I		SM		SILTY SAND (SM): Grey silty fine SAN	ND. Wet, slightly stiff.	1.5		Pack
MAK				Bottom of borehole	at 11.0 feet.		0	l
ESA								
HASE								
CENTERPOINT PHAS								
03067								
CISK								
X								
÷ - 20								
3 12:2								
9/11/1								
- 109								
D O S								
N Z								
- I- G								
۲ ۳								
- - -								
ENERAL								
Z								

PAGE 1 OF 1

	CLIEN	IT Cen	terPoin	t Prope	erties ⁻	Trust		PROJECT NAME Baseline Environmental and Groundwater Assessments						
	PROJ	ECT NU	MBER	20306	67			PROJ	ECT LOCATION Seat	ttle, Wasl	hington			
	DATE	START	ED _8/3	26/13		COMPLETED	D 8/27/13	GROU	IND ELEVATION 12.8	31 feet Al	MSL HOLE S	31 ZE 2.25 inch		
	CONT	RACTO	R Cas	scade D	Orilling			GROU	IND WATER LEVELS:					
	EQUII	PMENT	Direct	Push					$\overline{igspace}$ AT TIME OF DRILLING $\underline{3.50}$ ft / Elev $\underline{9.31}$ ft					
	LOGG	ED BY	Matt 0	Crandel	<u> </u>	CHECKED B	3Y Cyrus Gorma							
	NOTE	s							AFTER DRILLING					
ŀ	Z													
OINT GINT LOGS.GPJ	o DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG			MATERIAL C	DESCRIPTIO	DN	Elevation (ft)	PID (ppm)	WELL DIAGI Casing Top Elev: 12. Casing Type: 2" PVC	.53 (ft)	
GENERAL BH / TP / WELL - GINT STD US.GDT - 9/11/13 12:28 - F:/PROJECTS/203067 - CENTERPOINT PHASE I ESA - MARGINAL WAY/02 - BEA AND GWAIFIELD WORK/CENTERPOINT GINT LOGS.GPJ	0		SM SP CL-ML SP		5.0 6.0	Subangular COB 3 inch asphalt sla Subangular COB SILTY SAND (SM sand. Moist, loos POORLY-GRADI silt. Wet, loose. LOW PLASTICIT Wet, moderately	BBLES to 5 inche lab. BBLES to 5 inche M): Dark grey silt sse. DED SAND (SP): TY SILTY CLAY (/ stiff. DED SAND (SP):	s, trace fine- y fine-mediu Dark brown (CL-ML): Da Dark brown	-medium sand. m SAND, trace coarse fine-medium SAND wit rk grey silty CLAY. fine-medium SAND wit	7.8 11.3 10.3 7.8 14 6.8 6.3 5.3	1.4	Casing Top Elev: 12. Casing Type: 2" PVC Ceme 3/4 ind Well C Bentor Seal .010 ir Well S 20/40 Sand Pack	nt Seal ch PVC Casing nite nch Screen	
GENERAL														

١	CLIEN	T Cent	erPoin	t Prop	erties T	rust		PROJECT NAME Baseline E	nvironm	ental and G	Groundwater Assessments	
	PROJE	CT NUM	/IBER	2030	67			PROJECT LOCATION Seattl	e, Wash	nington		
	DATE	STARTE	D _8/2	26/13		COMPLETED	8/27/13	GROUND ELEVATION 11.64	feet AN	<u>//</u> SL HOLE S	SIZE 2.25 inch	
١	CONTI	RACTOF	Cas	cade I	Drilling			GROUND WATER LEVELS:				
	EQUIP	MENT _	Direct	Push				AT TIME OF DRILLING				
	LOGG	ED BY	Matt C	Crande	ell	CHECKED BY	Cyrus Gorman	AT END OF DRILLING				
	NOTES	3						AFTER DRILLING				
5	O DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG			MATERIAL DES	SCRIPTION	Elevation (ft)	PID (ppm)	WELL DIAGRAM Casing Top Elev: 11.28 (ft) Casing Type: 2" PVC	
취					0.3	4 inch asphalt slab		race fine-medium sand. Very	<u></u> 11.3∠		Cement Seal	
KICEN LEKPOIN	_					stiff.	SLES to 4 inches, i	race inte-medium sand. Very			- Cement Sear	
\$ 	_				3.0				8.6	0	■Bentonite	
}	_		SP			SAND, trace silt ar	ind silt clumps.	k brownish black fine-medium		0	Seal	
# -	5				5.0	Metal object in bor Weathered wood s	rehole at 4 feet bg scraps in borehole	s. Appears to be railroad tie. at 4.5 feet bgs.	6.6		3/4 inch PVC Well Casing	
§ ⊋ -	-		SM		,			fine SAND. Wet, slightly stiff.				
<u> </u>	-				7.0	LOW PLASTICITY	Y SILTY CLAY (CI	ML): Brown silty CLAY. Wet,	4.6	0.1	010 inch Well Screen	
9-Z0	-		CL- ML		8.8	stiff.	(1	,	2.9		▼ 20/40 Silica	
<u></u>	10		ML SP-		9.3	SANDY SILT (MLS			2.4	0.9	Sand Filter Pack	
	10		SM		10.5	fine-medium silty S	ED SAND WITH SI SAND with natural	LT (SP-SM): Grayish brown organic decay odor. Wet,	1.1		Pack	
ARC					/	moderately stiff.	Bottom of boreho	lo at 10.5 foot	'			
- K							Bottom of boreno	le at 10.5 leet.				
Ä												
E E												
CENTERPOINT PHASE												
튉												
SE												
3000												
3/20,												
Ž,												
- 87												
13.12												
9/11/												
S												
2												
5												
WELL												
]												
Ė												
<i>-</i> 1												

	CLIEN	IT Cen	ıterPoir	ıt Proper	ties Trust		PROJECT NAME Baseli	ne Environm	nental and G	Groundwater Assessments
- 1		-		203067			PROJECT LOCATION S			
		START			COMPLETED	8/27/13				SIZE 2 25 inch
- 1					illing		GROUND WATER LEVEL		<u></u> 00 0	
- 1		PMENT			····· .		\searrow AT TIME OF DRILLING 6.00 ft / Elev 6.49			ft
					CHECKED BY	Cyrus Gorman				
							AFTER DRILLING			
ŀ		z								
GENERAL BH / TP / WELL - GINT STD US GDT - 9/11/13 12:28 - F:/PROJECTS/203067 - CENTERPOINT PHASE I ESA - MARGINAL WAY/02 - BEA AND GWAIFIELD WORK/CENTERPOINT GINT LOGS.GPJ	O DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG		MATERIAL DES	CRIPTION	Elevation (ft)	PID (ppm)	WELL DIAGRAM Casing Top Elev: 12.21 (ft) Casing Type: 2" PVC
CENTERPO				0.	3 inch asphalt slab Subangular COBBI stiff.		ace fine-medium sand. Ver			Cement Seal
IELD WORK	· _		SP	3.	POORLY GRADED silt, trace silt clump	s. Dry, loose.	grey fine-medium SAND w		0.9	Bentonite Seal 3/4 inch PVC
AND GWA\F	5_		SM	5.	SILTY SAND (SM):	Brown silty fine S	AND with organic debris (ro	7.5 oots,	1.1	Well Casing .010 inch
BEA/	-		ML	7. Z. T. Z.	3∩ SANDY SILT (MLS): Brown fine sand	SILT with orange-brown wo		0.9	Well Screen
L WAY\02 -	10		SM SP- SM SP	\8.	SILTY SAND (SM): twigs). Moist, sligh	Brown silty fine Style Stiff.	r. AND with organic debris (ro T (SP-SM): Brown fine sand	oots,	1.7	
 				[-0]-01-[-1]	SILT with orange-b	rown wood debris	and natural organic decay o	odor.	0	
- MA					POORLY-GRADED silt and subrounded		grey fine-medium SAND, t	race	2	
ESA						Bottom of borehole	e at 10.5 feet.			
ASE										
Ⅱ										
PON										
NTER										
- CE										
30306										
CTS/2										
ROJE										
- F:\P										
12:28										
1/13										
T - 9/1										
S.GD.										
OTD O										
SINT										
<u> </u>										
P/WE										
표 제										
RALE										
GENE										

124	KM '	cichii	one. 4	125-462-8591						
CLIE	NT Cente	erPoin	t Prop	perties Trust	PROJECT NAME Baseline Environmenta	al and G	Groundwater Assessments			
PROJ	IECT NUN	/IBER	2030)67	PROJECT LOCATION Seattle, Washing	ton				
DATE	STARTE	D 8/2	26/13	COMPLETED <u>8/27/13</u>	GROUND ELEVATION _11.73 feet AMSL	HOLE S	SIZE _2.25 inch			
CONT	TRACTOR	Cas	scade	Drilling	GROUND WATER LEVELS:					
	PMENT			-	AT TIME OF DRILLING					
				ell CHECKED BY Cyrus Gorman						
NOTE	_			<u></u>	AFTER DRILLING					
				1	A TEN DIVIDENCE					
O DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG	MATERIAL	DESCRIPTION	Elevation (ft)	WELL DIAGRAM Casing Top Elev: 11.51 (ft) Casing Type: 2" PVC			
			$\times\!\!\times\!\!\times$	0.3 3 inch asphalt slab.		/_11.5				
0				0.7 Subangular COBBLES to 5 inches, tra	ace fine-medium sand.	11.1	Cement Seal			
-		SP	XXXX	2.0 3 inch asphalt slab. 3.0 Subangular COBBLES to 5 inches, tra	and fine medium and	9.7	▼ Bentonite			
	-	SM		POORI V-CRADED SAND (SD): Dark	brown medium SAND, trace silt clumps.	8.7	Seal			
}	-	CL-		Dry, loose.	·	7.7	3/4 inch PVC Well Casing			
5		ML		5.0 SILTY SAND (SM): Brown silty fine SA moist, loose.	AND, trace fine angular gravel. Slightly	6.7	Well oddling			
	1	SP		LOW PLASTICITY SILTY CLAY (CL-N sand. Moist, stiff.	ML): Dark brown silty CLAY, trace fine	,	.010 inch Well Screen			
]	Oi		Dark Grayish brown medium silty SAN loose.	ID, trace fine subrounded gravel. Wet,	3.0	■ 20/40 Silica			
-		CL-		9.5 LOW PLASTICITY SILTY CLAY (CL-N	ML): Medium brown silty CLAY, trace fine	2.2	Sand Filter Pack			
į		ML_		sand and organic twigs/roots. Slight n	natural organic decay odor. orehole at 9.5 feet.					

CLIEN	NT Cen	terPoir	nt Prop	erties ⁻	rust F	PROJECT NAME Baseline Environmental and Groundwater A	Asse	ssments
PROJ	ECT NU	MBER	2030	67	F	PROJECT LOCATION Seattle, Washington		
DATE	START	ED 8/	27/13		COMPLETED _8/28/13 0	GROUND ELEVATION _11.78 feet AMSLHOLE SIZE _2.25 inc	ch	
CONT	RACTO	R Ca	scade	Drilling		GROUND WATER LEVELS:		
	PMENT			_		AT TIME OF DRILLING _5.00 ft / Elev 6.78 ft		
					CHECKED BY Cyrus Gorman	AT END OF DRILLING		
NOTE						AFTER DRILLING		
	_		ī					
O DEPTH (ft)	SAMPLE	U.S.C.S.	GRAPHIC LOG		MATE	ERIAL DESCRIPTION :	Elevation (ft)	PID (ppm)
				0.3/\	4 inch asphalt slab.		1.5./	
	-	SP			Dry, stiff.	fine to medium SAND with subangular gravel, trace silt.		1.1 1
5				5.0 \		dium SAND with trace organic particles. Slightly wet and	8.8	0.8
<u>-</u>	SB-1-6	SM			slightly loose.			5
-		- Own						
<u>-</u>		CL-		8.0	LOW PLASTICITY SILTY CLAY (CL-MI	_): Grey silty clay, trace organic debris. Stiff, wet.	3.8	1.2
	-	ML		9.5	2011 210 11011 1 01211 01211 (02 1112		2.3	
10	-	SM		10.0	SILTY SAND (SM): Grey silty fine SAND	D. Stiff, wet.	.8	0.8
	-	SP		13.5	POORLY-GRADED SAND (SP): Grey fire		1.7	1.1
15	-	SM			SILTY SAND (SM): Grey fine-medium si	ilty SAND. Wet, slightly stiff.		0.6
				16.5	DOODLY CRADED SAND (SD): Groven	nedium-coarse SAND, trace silt and fine subangular	4.7	
i -		SP		18.0	gravel. Wet, loose.		6.2	
	ļ	-	<u> </u>	10.0	Bottom	of borehole at 18.0 feet.	<u> </u>	1.1

	CLIEN	IT Cente	erPoin	t Prop	erties 7	rust	PROJECT NAME Baseline Environmental and Groundw	ater Asse	essments			
- 1		ECT NUM					PROJECT LOCATION Seattle, Washington					
- 1						COMPLETED 8/27/13		25 inch				
							GROUND WATER LEVELS:					
- 1		PMENT _					AT TIME OF DRILLING 6.50 ft / Elev 5.11 ft					
- 1		_				CHECKED BY Cyrus Gorman						
ŀ	NOIE				I		AFTER DRILLING					
CENTERPOINT PHASE I ESA - MARGINAL WAY/02 - BEA AND GWAIFIELD WORKICENTERPOINT GINT LOGS.GPJ	o DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG		MA	TERIAL DESCRIPTION	Elevation (ft)	PID (ppm)			
ERP					0.3	3 inch asphalt slab.	d to a contract of the contract	_/_11.4_/				
CENT						SILTY SAND (SM): Grey silty fine sand	d, trace subrounded gravel.					
ORK			SM						1.9			
<u>N</u>	_				4.0			7.6	1.8			
A)FIE	5					POORLY-GRADED SAND (SP): Brow coarse sand and subangular gravel. S	rnish grey fine to medium SAND with silt clumps, trace Slightly moist, loose.		2			
O GW	_		SP		_		. 3 .,		2.5			
AAN	_				$\overline{\Delta}$	_						
2 - BE	_			ww	8.0	LOW DIACTICITY OF TY OF AV (OF A	VL): Brownish grey silty CLAY, trace fine sand. Stiff, wet.	3.6	2.8			
AY/0	_	SB-2-8	CL- ML			LOW PLASTICITY SILTY CLAY (CL-II	vic). Brownish grey sitty CLAT, trace line sand. Still, wet.					
W	10		SP		10.0	POORLY-GRADED SAND (SP): Dark	grey fine-medium SAND, trace silt, trace coarse sand.	1.6	1.2			
ARGIL	-		ML		11.0 11.5	Wet, loose.		0.6 0.1	0.8			
A- M	SANDY SILT (MLS): Grey fine sandy SILTY SAND (SM): Grey silty fine Si											
ES ES	-		SM			2.2.1. 2.1.1.2 (2.1.1). 2.1.3 , 2.1.3, 1.1.2						
HASE	- 15		<u> </u>		14.5			-2.9				
Į.	15_		SP SM	111	15.0	Wet, loose.	fine-medium SAND with silt, trace fine subangular gravel.	-3.4 -4.4	2			
ERP0	-				\	SILTY SAND (SM): Grey silty fine SAN	AND.					
ËNH	-		SP		18.0	POORLY-GRADED SAND (SP): Grey	medium-coarse SAND, trace silt. Wet, loose.	-6.4				
- 1			!	1		Botto	om of borehole at 18.0 feet.		1.7			
3\2030												
JECT												
PRO.												
8 - F:\												
3 12:2												
11/13												
T - 9,												
JS.GE												
STD (
GINT												
GENERAL BH / TP / WELL - GINT STD US.GDT - 9/11/13 12:28 - F:\PROJECTS\203067												
o / WE												
H/H												
3AL B												
ENE												

'	CHE IVI									
CLI	ENT Cer	nterPoir	nt Prop	erties T	rust	PROJECT NAME Baseline Environmental and Groundwater Ass	sessments			
PR	OJECT NU	JMBER	2030	067		PROJECT LOCATION Seattle, Washington				
	TE START				COMPLETED 8/28/13					
				Daillina						
	NTRACTO			_						
	UIPMENT					$\overline{igspace}$ AT TIME OF DRILLING <u>6.50 ft / Elev 5.67 ft</u>				
LO	GGED BY	_Matt (Crande	ell	CHECKED BY Cyrus Gorman	AT END OF DRILLING				
NO	TES					AFTER DRILLING				
CGINT LOGS.GPJ DEPTH	(π) SAMPLE DENTIFICATION	U.S.C.S.	GRAPHIC LOG		MA	Elevation (#)	PID (ppm)			
0										
CENTERPOINT PHASE I ESA - MARGINAL WAY102 - BEA AND GWAIFIELD WORK/CENTERPOINT GINT LOGS. GPJ	-	SP	76.7	0.5	subrounded gravel with root debris. I Color change to grey at 1 foot bgs. Slightly moist and loose at 3 feet bgs		1.4 1 0.8			
- B				8.3		3.9				
7.Y02	SB-3-8	_ CM			SILTY SAND (SM): Grey fine silty SA		6.1			
)	SM		10.0		2.2				
ANI ⁽²⁾		CL-			LOW PLASTICITY SILTY CLAY (CL-	-ML): Grey silty CLAY. Wet, stiff.	1.2			
MAR(1	ML		11.5	DOODLY ODADED GAND (OD): O	0.7	_			
- - -	-				loose.	y medium-coarse SAND, trace fine subrounded gravel. Wet,	1.8			
TERPOINT PHASE I E	5	SP	ana	16.5 16.8 ~	LOW PLASTICITY SILTY CLAY (CL-	-4.3 -ML): Silty CLAY with wood debris. Wet, stiff.	7			
CEN		ML SP		18.0		y medium-coarse SAND, trace fine subrounded gravel. Wet,	1.6			
- 1	•	<u> </u>			loose.					
GENERAL BH / TP / WELL - GINT STD US.GDT - 9/11/13 12:28 - F./PROJECTS\203067						om of borehole at 18.0 feet.				

CLIENT CenterPoint Properties Trust PROJECT NAME Baseline	ronmental and Groundwater Assessments
PROJECT NUMBER 203067 PROJECT LOCATION Sea	Vashington
DATE STARTED 8/27/13 COMPLETED 8/28/13 GROUND ELEVATION 12.2	AMSL HOLE SIZE 2.25 inch
CONTRACTOR Cascade Drilling GROUND WATER LEVELS:	
EQUIPMENT Direct Push AT TIME OF DRILLING	00 ft / Fley 7 20 ft
	00 H7 E107 7.E0 H
NO DINO DINO DINO DINO DINO DINO DINO D	Elevation (ft)
0.3 4 inch asphalt slab.	<u></u>
POORLY-GRADED SAND (SP): Brown fine to medium SAND with s	-
Slight petroleum-like odor, color change to grey at 1.5 feet bgs.	7.5
왕 <mark>는 - </mark>	2.5
<u> </u>	3.1
SP No odor at 5 feet bgs.	1.9
ố	1.5
{	
	1.8
<u></u> 10 10.0	2.2
SM SILTY SAND (SM): Silty fine SAND. Wet, stiff.	1.2
CL- LOW PLASTICITY SILTY CLAY (CL-ML): Silty CLAY with wood det	nd slight natural organic 0.2
decay odor. Wet, stiff. SILTY SAND (SM): Grey fine-medium silty SAND, trace fine subance	
	gravon
ØF - SM SM SM SM SM SM SM	
됩 <u>15</u> 보	1.4
POORLY-GRADED SAND (SP): Grey medium-coarse SAND, trace	Wet loose
Bottom of borehole at 18.0 feet.	-5.8
BOLLOTT OF DOTETION AL 16.0 leet.	2.5
8/50	
O O	
<u>₹</u>	
15	
1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
11/6	
-109	
Na N	
<u> </u>	
GENERAL BH / TP / WELL - GINT STD US.GDT - 9/11/13 12:28 - F./PROJECTS2020067	
MEI CONTRACTOR OF THE CONTRACT	
À L'ALLE MARIE L'A	
<u>ā</u>	
리	

PAGE 1 OF 1

	LKIMI ENT Cer			erties Tr			PROJECT NAME Baseline Environmental and Ground	vater Ass	essments
	JECT NU						PROJECT LOCATION Seattle, Washington		
	E START				COMPLETED	8/28/13		25 inch	
	ITRACTO			Drilling		0/20/10		20 111011	
	JIPMENT			_			∇ AT TIME OF DRILLING 4.00 ft / Elev 8.00 ft		
	GED BY				CHECKED BY	Cyrus Gorman			
- 1		iviati	Jianue	<u> </u>	CHECKED BT	Cyrus Gorman			
NOI	ES						AFTER DRILLING		
CENTERPOINT PHASE I ESA - MARGINAL WAY\\(02\) BEA AND GWAIFIELD WORK\\(05\) CENTERPOINT GINT LOGS.GPJ \(05\) CENTERPOINT GINT LOGS.G	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG			M	ATERIAL DESCRIPTION	Elevation (ft)	PID (ppm
ERP					4 inch asphalt slab				1
EN L	1				Subangular COBB	LES to 5 inches, tr	race fine-medium sand. Fill.		
XX Z	7			3.0				9.0	
× L	1		$\bigcap \bigcap$		SILTY SAND (SM)	: Dark grey silty fir	ne-medium SAND, trace coarse sand. Slightly moist, loose		0
를 5	7			<u> </u>					0
W S	_	SM							
2	1								
AEA F	1			8.0				4.0	
002 - 1	1	CL-			LOW PLASTICITY	SILTY CLAY (CL-	-ML): Dark Grayish brown silty CLAY. Wet, stiff.		0
≨ - 10	-	ML	Jum		POORLY-GRADE	D SAND (SP): Dar	k Grayish brown fine-medium SAND with coarse sand, trac	3.0 ce	_
<u>}</u> 10	-	SP			fine angular gravel	. Wet, stiff.			
ARGI	-				With clasts of mari	ne shells at 11 fee	et bas.		0
Ž	SB-5-11.5			12.0			tom of borehole at 12.0 feet.	0.0	
GENERAL BH / TP / WELL - GINT STD US.GDT - 9/11/13 12:28 - F.\PROJECTS\203067 - CENTERPOINT PHA!									
ENERAL BH / TP / '									

Telephone: 425-462-8591 CLIENT CenterPoint Properties Trust **PROJECT NAME** Baseline Environmental and Groundwater Assessments PROJECT LOCATION Seattle, Washington PROJECT NUMBER 203067 DATE STARTED 8/27/13 **COMPLETED** 8/28/13 GROUND ELEVATION 12.88 feet AMSLHOLE SIZE 2.25 inch CONTRACTOR Cascade Drilling **GROUND WATER LEVELS: EQUIPMENT** Direct Push $\sqrt{2}$ AT TIME OF DRILLING 5.00 ft / Elev 7.88 ft LOGGED BY Matt Crandell CHECKED BY Cyrus Gorman AT END OF DRILLING ---**NOTES** AFTER DRILLING ---SAMPLE IDENTIFICATION GENERAL BH / TP / WELL - GINT STD US.GDT - 9/1/1/3 12:28 - F./PROJECTS/203067 - CENTERPOINT PHASE I ESA - MARGINAL WAY/02 - BEA AND GWAIFIELD WORK/CENTERPOINT GINT LOGS. GPJ € GRAPHIC LOG U.S.C.S. DEPTH (ft) Elevation MATERIAL DESCRIPTION PID (ppm) 5 inch asphalt slab. 12.5 POORLY-GRADED SAND (SP): Brown fine-medium SAND with subrounded subangular gravel, trace silt. Dry, stiff. 1.2 SP 0 5 Wet, loose at 5 feet bgs. 0 LOW PLASTICITY SILTY CLAY (CL-ML): Dark grey silty CLAY, trace fine sand. Wet, stiff. 5.4 ML 8.0 SILTY SAND (SM): Dark grey mottled with dark rusty brown silty fine-medium SAND, trace 4.9 0 SM8.3 4.6 coarse sand. CL-9.5 LOW PLASTICITY SILTY CLAY (CL-ML): Grey silty CLAY. Wet, stiff. 3.4 ML 10 SILTY SAND (SM): Dark grey mottled with dark rusty brown silty fine-medium SAND, trace SM 0 POORLY-GRADED SAND (SP): Grey fine-medium SAND with silt and marine shell clasts. Wet, 0.9 12.0 Trace subangular fine gravel at 10 feet bgs. Bottom of borehole at 12.0 feet.

	CLIEN	NT Cen	terPoir	nt Prop	erties 7	rust PRO	PROJECT NAME Baseline Environmental and Groundwater Assessments					
	PROJ	ECT NU	MBER	2030	067		JECT LOCATION _Seattle, Washington					
	DATE	START	ED 8/	27/13		COMPLETED 8/28/13 GRO	UND ELEVATION 12.14 feet AMSLHOLE SIZE 2.	25 inch				
	CONT	RACTO	R Cas	scade	Drilling	GRO	UND WATER LEVELS:					
		PMENT					AT TIME OF DRILLING _5.00 ft / Elev 7.14 ft					
		SED BY										
	NOTE						AFTER DRILLING					
		z										
GENERAL BH / TP / WELL - GINT STD US. GDT - 9/11/13 12:28 - F. PROJECTS/203067 - CENTERPOINT PHASE I ESA - MARGINAL WAY102 - BEA AND GWAIFIELD WORK/CENTERPOINT GINT LOGS. GPJ	o DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG		MATERIA	AL DESCRIPTION	Elevation (ft)	PID (ppm)			
ERP(0.3/	4 inch asphalt slab.						
WORKICENT	 					POORLY-GRADED SAND (SP): Brown fine gravel and silt. Dry, loose.	to medium SAND, trace coarse sand, subangular		2			
		_	SP		_	,			2.4			
3WA\I	5	-			: 	No gravel at 5 feet bgs.			1.6			
QN												
BEA /		-							0			
102 -			SM		8.5 9.0	SILTY SAND (SM): Grey silty fine SAND, tra	and weather and wood from the Mat Aiff	3.6 3.1	0			
WAY	 10		CL-		0.0		rey silty CLAY with slight natural organic decay odor					
SINAL			ML		11.0	Wet, stiff.		1.1	0			
MARC		SB-7-12	SM		12.0	SILTY SAND (SM): Brownish grey fine-media No coarse sand below 11.25 feet bgs.	um silty SAND, trace coarse sand. Wet, stiff.	0.1				
SA -		•	•				porehole at 12.0 feet.		0			
SE I E												
PHA												
TNIC												
ERP(
CENT												
- 290												
3/2030												
ECTS												
PROJ												
3 - F:\												
12:28												
1/13												
r - 9/1												
S.GD												
Ω Ω												
NT S												
- G												
WELI												
/ TP /												
L BH,												
ERA												
딍												

	W1AT	Оюрі		102 000 1			
CLIEN	NT Cent	erPoir	nt Prop	erties Trust	PROJECT NAME Baseline Environmental and Groundwat	er Ass	essments
PROJ	ECT NU	MBER	2030	67	PROJECT LOCATION Seattle, Washington	_	
	STARTE			COMPLETED 8/27/13		inch	
				Drilling			
				onling			
	PMENT _				AT TIME OF DRILLING		
	_	Matt (Crande	CHECKED BY Cyrus Gorman	-		
NOTE	S				AFTER DRILLING		
DEPTH (ft)	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG		ATERIAL DESCRIPTION	Elevation (ft)	PID (ppm)
칟				0.4 5 inch asphalt slab.		12.2_	
				Subangular COBBLES, trace fine-me 3.0	edium sand.	9.6	
		GP	100	POORLY-GRADED SANDY GRAVE	L (GPS): Subrounded to subangular GRAVEL with	8.6	0.9
5	_	SP		line-inediam sand, trace coarse sand	d and silt. Slightly moist and loose. e to medium SAND with subrounded subangular gravel, trace.	7.6	1.8
	ļ		14,214	silt clumps. Slightly moist, loose.		7.0	
				Observed metal conduit in borehole;	ttom of borehole at 5.0 feet.		
X X 1				ВО	tion of borenole at 5.0 feet.		
. I							
2							
- MARGINAL WATOUT							
Ò							
2							
È							
CENTERPOINT PRACE LESA							
2							
9050							
200							
5							
2.2							
2							
50							
00							
2							
ַב <u>ּ</u>							
<u> </u>							
<u> </u>							
3							
Ä							

PRO DA' CO EQI LOO	ENT Cer DJECT NU E START NTRACTO JIPMENT GGED BY	IMBER ED 8/2 R Cas Direct	2030 27/13 scade l	67 Orilling	PROJECT LOCATION Sear GROUND ELEVATION 13. GROUND WATER LEVELS: AT TIME OF DRILLING CHECKED BY Cyrus Gorman AT END OF DRILLING	03 feet AMSL HOLE SIZE 2.2	25 inch	essments
DEPTH DEPTH	SAMPLE IDENTIFICATION	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		Elevation (ft)	PID (ppm)
EXAL BH / IP / WELL - GINI S ID US. GD I - 9/11/13 12:28 - F./PROJECI S/203067 - CEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN IERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN I ERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WORKNICEN I ERPOIN PHASE I ESA - MARGINAL WATUZ - BEA AND GWAN-IELD WA	SB-8a-12	SP ML SW SM	00000	8.3 9.0 12.0	4 inch asphalt slab. Subangular COBBLES with fine to medium sand. 5 inch asphalt slab. Subangular COBBLES with fine to medium sand. Subangular COBBLES with asphalt clasts. POORLY-GRADED SAND (SP): Dark grey fine to medium SAND vortice. The provided for the same of	rganic decay odor. Wet, stiff.	11.5 11.0 9.0 4.8 4.0 3.0 1.0	1.3 1.1 0.2

Appendix D Survey Data

4500 West Marginal Way SW, Seattle WA

Survey Date: August 29, 2013

Monitoring Wells

			Top of metal		
			case	Top of PVC	
Pt.#	Northing	Easting	Elev.	Elev	Description
100	209287.36	1265818.37	12.53	12.23	MW-1
112	209109.83	1265504.73	12.81	12.53	MW-2
101	209153.92	1265947.93	11.64	11.28	MW-3
102	208951.32	1265823,26	12,49	12.21	MW-4
107	208759.11	1265709.53	11.73	11.51	MW-5

Soil Borings

			Ground		
Pt.#	Northing	Easting	Elev.	Description	Comment
106	209014.14	1265787.02	11.78	SB-1	
105	208987.72	1265757.14	11.61	SB-2	
104	208964.06	1265754.30	12.17	SB-3	
103	208946.32	1265780.83	12.20	SB-4	
111	208841.01	1265585.64	12.00	SB-5	
110	208734.52	1265607.93	12.88	SB-6	
108	208737.91	1265648.42	12.14	SB-7	
					No Sample
113	208705.79	1265639.43	12.61	SB-8	Taken
109	208705.43	1265625.04	13.03	SB-8A	

Notes:

HORIZONTAL DATUM: NAD 83/91 WASHINGTON STATE PLANE COORDINATE SYSTEM, NORTH ZONE VERTICAL DATUM: NAVD 88, BENCH MARK SNV-5323, ELEVATION 20.726 FEET

Appendix E Well Development Logs

					WELI	L DEV LLO	PMENT/	PURGE	FOR	M		
WELL NUMBER CLIENT PROJECT NAME/NUM WELL CONSTRUCTION DEPTH TO WATER A	MBER ON DATA (Poir	267	306700 4 5,0 = 9,3	<u></u>	- Fbtoc & Stoc	LOCATION DEVELOPME DEVELOPME FIELD SUPER DEPTH TO W	NT CONTRA NT METHOE RVISOR	CTOR	Peri p		DATE S 28/2017, AIR TEMPERATURE ~80° CASING VOLUME (GAL.) 0.7 TOTAL GALS, REMOVED ~1.18
TIME	DUR	ATION (I	MIN)	VOL.	DEPTH	DISCHRG.	ТЕМР.	COND.	pН	SUSPEND.	TURBIDITY	REMARKS
HRS/MIN	SURGE	BAIL	PUMP	GAL.	TO WATER	RATE (gpm)-	1			SOLIDS mg/L	NTU	Disposition of water, etc.)
1536			$\overline{\mathbf{x}}$		3,00	200 nilaria	7.24	(nc)	6.9/	10×1	tushich	
1540			X			150'	715	147	6.45	9.76	27./	
<u>1544</u>			*	<u></u>		(50	78.3	1,25	6,96	0.784	18.9	
1550 1556				 		120	78.5	0.543	7.24	0.247	4:76	
1600			X	 		(50	8/7	0.491 0.497	6.80 6.84	0.315	5+15	
1665			文			. /50	हां प	0.451	6.85	0,70	3,45	
`						- 1 2/-3/				917.4	<i></i>	
* .	ļ <u> </u>											
···	<u> </u>		ļ	<u> </u>								
			 									
			 			<u> </u>						
							<u> </u>					
		·										
											<u> </u>	
				<u> </u>								
			 									
				 		<u></u>			· · · · · · · · · · · · · · · · · · ·			
						2						
	SIGNATI	URE	<u></u>	1								ERM-WEST, INC.

25 min

						•			=		
WELL NUMBER	M44-	1				LOCATION	nt E.	Corr	e e	bus back	DATE 8128/13.
CLIEN <u>T</u> . (enter Poin					DEVELOPMI	•		Even		AIR TEMPERATURE 6 Z 4
PROJECT NAME/NU	MBER	2030	67			DEVELOPMI	ENT METHOI	D		Sans	CASING VOLUME (GAL.) 0.75
WELL CONSTRUCT	ION DATA (Y/N)	_ \	109			FIELD SUPE	RVISOR	Cu	,	man	TOTAL GALS. REMOVED ~ 2.77
DEPTH TO WATER A	AT START		. •	ft 6to		DEPTH TO W	VATER AT EN		dry		
	•		10.9	2 A 6 to	or TD	,			3		•
TIME	DURATION (·	VOL.	,	T		2017	T	Larrane	1	
1,117,112	DORATION	IVILIN)	VOL.	DEPTH TO	DISCHRG. RATE	TEMP.	COND.	pН	SUSPEND. SOLIDS	TURBIDITY	REMARKS
HRS/MIN	SURGE BAIL	PUMP	GAL.	WATER	(gpm)		Ms/Con		5 mg/L	NTU	Disposition of water, etc.)
1035 star			Same								running dry I turn dawn
1041	Sure		<u> </u>			78.3	0.548	6.65	0.351		to hend
1646			1660	, 611		1 77. 7	2.548	6.66			3
1056	50 ge		1500	well		77.5	0.545	6.63	0.349	855	
1036		 	2500	f00		37 a	0.543	6.6	0.3747	313	
1106			2500 3060	Small		777	0.547	6,62	0.342	189	
1.1/1			3560			17×3	0 1710	وجهر	6.346	154	1103 (144 N7US)
1116			4000	+ whing			0.225	6.70	0.341	122	
1)21			45-0	110-	es.	78,4	0.520	6.69	0.345	1419	
176			500	420		138 pl	6 245	6.49	0.343	96.4	
1131			5560	METER	**********	72.3	0.50	652	0.353	72.4	
136			Coo		· · · · · · · · · · · · · · · · · · ·	125	0.555			63.3	
1640			6500				0.557				
1146			6500 1000			 	need			57.6	60.3 01143
jv17							1 10-1	. ,		49.1	00.7
1156			9 50U							51.5	
120)			9500							48.1	
1207			9500							46.4	
			0000		<u> </u>					44.3	
1/1/	ļ		10500							40 3	
12.23						ļ	ļ			45073	
			<u> </u>			<u> </u>					
•			1	- 1/2	. 4	100/12					
	SIGNATURE		Tr.	_5		28/13	•				ERM-WEST, INC.
			- 0	X							plp/1.00/12.95
122	C UZ 9	NTU	<u>.</u>	123	34.	6					
		1,10	•								
12 S	9 37.7			, 🛷	155 34	名る	off				
				i 4			•				
127	3 22-4			12	Se (6,	2					
()	2 22 2	-				.1					
124	12 33,3			13	ob 11						
/ 04	M2-33A					~ ~	100	~	14 0	we !	/Dc.
U	M & ノン \			15	08 12	· 8 X	1441	La	ned by	wa 1	149
•				17	-						
•										•	• ** • • • • • • • • • • • • • • • • •

	WELI	L DEVELO	PMENT/	PURGE	FOR	VI stern		
WELL NUMBER	203067 Y. 2,35 ft bes blu		LOCATION DEVELOPMENT DEVELOPMENT FIELD SUPER DEPTH TO WA	NT CONTRA NT METHOL VISOR	r n o f Ctor	Epw bailer	man	AIR TEMPERATURE & F S CASING VOLUME (GAL.) 0.78
TIME DURATION HRS/MIN SURGE BAIL	(MIN) VOL. DEPTH TO	DISCHRG. RATE (gpm)	темр.	COND.	р Н	SUSPEND. SOLIDS	TURBIDITY NTU	REMARKS Disposition of water, etc.)
900 start & 80 911 914 918	0.81 0.35 2.35 0.42	(8)	21.2	0.127		0.699	709 NA	too high
929 start 939 U/t/bing 935 " 10	1.38 1.90 well 2.612 digmeter		73.5 73.6	0,152	6.37	0.098	NA 710 U83	
944 5,500 w/4 944 5,500 w/4	2.94) too 2.95 3.46 small 6.19 3.46 small 6.110 2.18 vmtt(6.39 6.39	0.099	832 28	too high / was 83.4 before sur
959	5.57 5.57 2.35 end		74.0	0.151 9.151 0.151	6.37 6.37	0.092	6.10	11/ flow cell connected 3.83 disconnected
								00NE
SIGNATURE	Gt 8128	3/13 100	8					ERM-WEST, INC.

2 min 26 gallon 4 min . 52 gallon

					******	JUEVELLO	I LINE	LUKGI	FOR	L 7.1		
WELL NUMBER		Mw-3	3				LOCATION	. = a	ston c	orup. boun	dary	DATE 8/28/13
CLIENT	700						DEVELOPME		`	ε		AIR TEMPERATURE 65°F
PROJECT NAME/NU	MBER		2030	67			DEVELOPME	ENT METHOI	D.	2005	D- rA ()	CASING VOLUME (GAL.) 0.84
WELL CONSTRUCT	ION DATA (V/N)	VIS				FIELD SUPER	•	6	DIE CO		·
DEPTH TO WATER A			10-1	5.18	feet	htmo				ins Good		TOTAL GALS. REMOVED ~3
DEI III TO WATER A	AISIAKI					DTOC	DEPTH TO W	ATER AT EN	₹D	<u> </u>	(>71 14	フ
				0-30	<i>19</i> (t	eet Stoc					्रीची	
TIME	DUF	RATION (MIN)	VOL.	DEPTH	DISCHRG.	ТЕМР.	COND.	pН	SUSPEND.	TURBIDITY	REMARKS
HRS/MIN	SURGE	DATE	PUMP	CAT	TO	RATE		mylim		SOLIDS	i	
		BAIL	PUMP	GAI.	WATER	(gpm)		7		S was/L	NTU	Disposition of water, etc.)
1231 Sta	4-			Samı			80.9	1,63	6.72	1.04		
1448	40	e.	-	1375			DP.	1165	6.16	1,000		to high
1344	1.5	ρ , ,		1 275			77.3	1.04	6.5%	1.04	182	
1347	1	1.7	 	7375			17.	1.72	6.54	111	90.7-	
1350		 	 	7375 3375			77.0	1.15	6,52	1.12	65.2 54.9	
i Upp			 	13.75			71.5	1.75	6.45		27.	
1402								11 1 3	<u>.</u>	1(1)	45,2 36	disconnect flow cell
1495	ļ	<u> </u>	ļ					'/			32.5	
1408	-		 					*			25.4	
											20.8	
421											203	
128											9,49	
14 18		 	ļ <u>.</u>								8 4 7	1
150			-			• • • • • • • • • • • • • • • • • • • •				-	5.36	done
											7.!!	Yerv
		<u> </u>										
				_								
								····				
				1	- (0	,				· ·		
	SIGNAT	URE		Ty		- 8/	<u> 28/13</u>				N	ERM-WEST, INC.

plp/1.00/12.95

	72				WELI	L DEVELO	PMENT/	PURGE	FORI	M		
WELL NUMBER CLIENT C PROJECT NAME/NUM WELL CONSTRUCTION DEPTH TO WATER A	MBERON DATA (Y/I	<u></u>	20°	3067 5.53	fert	Dioc Stoe	LOCATION DEVELOPME DEVELOPME FIELD SUPER DEPTH TO W	NT METHOI	CTOR	Property Barter, Cyrus	Love Former 72'6t	TOTAL GALS. REMOVED 092
TIME HRS/MIN		TION (M		VOL.	DEPTH TO WATER	DISCHRG. RATE (gpm)	ТЕМР.	COND.	pН	SUSPEND. SOLIDS mg/L	TURBIDITY NTU	REMARKS
1514 1526 1331 1536 1540 1540	61A1			1500 7000 2500 2500 2500 (150	77.5 72.3 72.1 74.3 77.5	16.0 16.1 16.2 15.7	6.90 6.90 6.91 6.95 6.45	9,94 9,96 10,1 10,2 9,76	396 760	Disposition of water, etc.) July 1
	SIGNATU	RE _	_G	<u> </u>	8	- 8/	28/13					ERM-WEST, INC. plp/1.00/12.95

. -- - --

Appendix F Purge Logs

T		7.	Ξ.		٠.	_				٠.	٠.	٠.;	_			. "	. "				٠.	٠.	٠.	٠.	٠.	٠,	٠,	٠.	٠,	٠.	٠.	٠.				. '				. '							٠.	٠.	۲.			١
L	R	٠.٨	//	٠.٠	٠.	L	٠,	j,	ù.	À	'n	(.)	ľ		ď.	÷	٠.	٠,	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.,	٠.	٠.		٠. ٠					٠.	٠.	. *	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.,	٠. ٠	
L	T)	Œ.	1		٠.	1	ı	ŧ	а	¥.	t		Ŀ	Æ.	•	Y	. •	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠. ٠		٠. '	. '	٠,	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠. ١	٠.	
			•			٠.	÷		4	9	٠.	٠.		ं	•	Э.	٠		٠	٠				٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		٠.	٠.		٠.	٠	. •	٠.	٠		٠.	٠.	٠.	٠.	٠.٠	÷	
100	• • • •		٠.	٠.		٠.	÷		٠	٠.	٠.	٠.	٠.																																					٠.٠		
			٠.	٠.	٠.	٠.	÷	1			٠.	٠.	٠.	٠.	٠.	٠.	٠				٠.			٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		•		•		٠			٠				٠.	٠.	٠.	٠.	
	٠	٠	٠.	٠.	٠.٠	٠.	٠,	٠.	٠.	٠,٠	٠.	٠,	٠,	٠.	٠,	٠.	٠.	٠.	٠,	٠.	٠. ٠	٠.	٠,٠	٠.	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠,	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠. '	٠.	٠,٠	٠.	٠.	٠.	٠.	
-	٠.٠	٠.٠	٠.	٠.	٠.:	۰٠	٠.	٠.	٠.	٠.	٠.	٠,	÷	٠.	٠,	٠.	٠.	٠.			٠.	٠.,	٠.,	٠.	٠.		٠,		٠.	٠.	: 4	٠.	٠.	٠,	٠,	٠.	٠.	٠.	٠.	٠.	٠,	٠.	٠.	٠.	٠, ٠	٠. '	٠.			٠.	٠.	
110	wir		oi	-+	٠.٢	M	'n	11	1	a	٠.			n	14	+	n	1		2	n	1	11	÷	٠.٦	c	à	J.	1	н	-1	ò	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠,٠	٠.	٠.	٠.	٠,٠	٠,٠	٠. ٠	. '	٠.	٠.	٠,	٠.	
4	rc	"	Ç٤	ŗ	٠,±	٧.	и	"	ı	Ç	٠.	٠,	ب	e,	ņ	ŗ	Ç	4	ı	٠.'	Ÿ		,,	r	٠,	ب	ç	и	Ļ		··	œ.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		٠. ٠	٠. ٠			٠.	٠.	٠.	
						•	•				•	•	•	•	•										•	•	•		•	•	٠.	. *	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠	٠.	٠.	•		٠.	٠.,	٠. ٠	. *		٠.	٠.	
	rc		≟.			. 7	٠.	- :		Ŀ		٠.	٠.		1/	3	n	0	1	v	c.	-	.,	ינ	3.	. *			. •		٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠,٠	٠,٠	٠.	٠.٠	٠.	٠. ٠	٠. ٠	٠.			٠.	٠.	
	$r\iota$	71	и	·L	• 1	N.	и	ŋ	\imath	U	е	r.	٠.	٠ŧ	,	۷.	u	O	u	и	Э.	1	. t	1:	∠٠	. •	. •	. •	. •	. •	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.٠	٠.	٠. ٠	٠. ٠	٠.	. •	٠.	٠.	٠.	

Date: 8/29/2013
Set up time: (200)
Weather: 5/11/2015
Field Staff: ME/CC

Well # MW-

Sample ID: MW-1-082913

Location: MP w (wing lot-Construction: 3/4" PVC Construction Depth: 10.92!

Screened Interval: 6-11

Pump Intake Depth: 7.2' > D/F; 8.7'> lest of analyts

Purge Start Time: 1220 7 0165 Discharge Rate: 0165 05 1 150 N Purge End Time:

Depth to Water: 6.43'
Height of Water Column: 4,49'
Volume of one casing: 0.736BJ sallon

	1455									_
	Ť	Depth to Water				D.O.		Turbity]
Time	Volume (mL)	(ft btoc)	Temp.	pН	EC (mS/cm)	(mg/L)	Redox	(ntu)	Color and Odor]
	littigl	two fi	V D	IF.	DCB -	CONTRACTOR OF THE PROPERTY OF		0.96	clear	1
			1							1
1383									от применя по постава и ображения на верения по регульрати по постава на применя по постава на применя по пост В применя по постава на постава н	┨
	start		~~~	1 : 0	A	I.P	\ <u>8</u>			┨
338	500	C mensional designation .	75.7	6,27		1,16			(lear, noo	10-1
1343	1000	With the second	75.6	6,25	0.477	0.14	8		· · · · · · · · · · · · · · · · · · ·	
1348	1500	Name -	76.0	6,27	0,470	1.02	9	29,1		
353	1000	·	765	629	0.461	2.41	12	24.1	Air bubbles], m
1358	2500	141,300 March	77.0	6,29	0.458	1.66	14	23.5	111 0000	1
1463	3006		77.6	676	0,454	1,60	18	22,0		1
			77.6			1,88	19	18.5		┨
1408	3500		78,0	646	0.452		 			-
1415	4200		78.5	6.72	0.449	2,38	21	17.1		1
1418	4500		78.9	6.25	6.447	203	22	16,3		
1423		6.70								
,						***************************************				1
							<u> </u>		1-11-11-11	1
										1
-		•								-

		<u> </u>				·				1
						***				-
						**			***************************************	
TEL D OP	SERVATIONS A	L Well condition, re	naire noods	M	<u> </u>	*****				1

Sampler Signature(s):

DIF, PCB sample time = 1220, 21 minutes to fin bittle Ayother analytes sample time = 1423

	Name: Center Number: 0203		Date: 8/29/2017 Set up time: 0910 Weather: Sprinkles Field Staff: MC, (6 Sample ID: MW-2-082913						
Well #	+ MW-2	CARREN							
Location: NW Parking lot Construction: 3/4" PVC					Construction Depth: 7,23/ Screened Interval: 25-75/ Pump Intake Depth: 1/F, PCB5-3,00 for black Rs				
Purge Start Times 929 - No purse sample 5, 1055 Discharge Rate: 0.75 Number of purse sample Purge End Time: 1157					Depth to Water: 2.33 for 4 19th C Height of Water Column: 4,9 feet 19th C Volume of one casing: 0.7987 gallons				
Time	Volume (mL)	Depth to Water	Temp.	pН	EC (mS/cm)	D.O. (mg/L)	Redox	Turbity (ntu)	Color and Odo
1055	Start	2.33	-	operation the second section is a	адары — 1 Міняторы этому это пересона адары — 14	Married States of States o			
1058	500		72.8	6.34	0.164	0.43	(88)	2.12	clear
1100	1500				0.149		174	1,45	
1/04	1500				0.142		166	1.13	
1107	2000		73.0	6,51		0.26	156	0,87	
1110	2500		73.0	6.51	0,136	0,23	154	0,96	
11193									
		Rhalz							
		2,61				,			
									i

	-								·
			w						
·*···									***************************************
									
							<u> </u>		
,				<u> </u>			ļ		
., .				<u> </u>					
				<u> </u>					***************************************
				<u> </u>					***************************************
				<u> </u>					
FIELD OF		Well condition, re とてらいしから			& milmi	'n		······································	

carples: 4.75 furt

Sample from OF, PCD=0929 TD of well: 7.231
Sample from OF, PCD=0929 TD of well: 7.231

Sample from rest of samples = 1113

		7.	٠,	, ,	•	•		Ţ		-	-			·	•		٠	•	•	,	-	_	-		,		•	•	•	•	•		•			÷	· ·						-		•	•	•	•	-
	I					-	•				•					. *	. *	. *	. *	. *	٠.	. •	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.,	٠. ٠		٠.	٠.	٠.	٠. ٠	٠. ٠	٠. ٠	٠.	٠.	٠.	٠.	٠.	٠.	٠.,	٠. '	٠. ٠		٠.
		<i>•</i>	. /	٠.٠	. *	. 1	2.		ė.	÷	1	1 . 1	٠.	.in	٠.	÷	٠.	٠.	٠.	٠.	٠.	٠.	٠. ٠	٠. :	٠. ٠	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		٠.	٠,	٠.	٠.	٠.	٠.٠	٠.٠			٠.	٠.	٠.	٠.	٠.٠
		. 7.	v.		÷.			7	r		v		Г.	Z	1.4	,								٠.																									
_			7.	ι,		_		~		٠.	·		w	м	•	٠.																										•						•	
									4						•	,																•	•											•					
										٠.		•										•			•	•	•	•	•				. *	. *	٠.	٠. ٠	٠.,	٠. ٠	. *	٠.	٠.	٠.	٠.	٠.	•	٠.,	٠.٠	. *	٠.
							٠.	•		•	٠.		•	•	•		٠.	٠.	٠.	•	٠.	٠.	٠.,	٠.,	٠. ٠		. *	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠	٠.	٠.	٠.	٠.	٠.	٠.٠					٠.	٠.	٠.	٠.٠
٠.٠		٠.٠.	٠.,	٠.٠.	٠.	٠	٠.	٠.	٠. '			٠.	٠.	٠,٠		. `	٠.	٠.		٠.	٠.		٠.	٠.	٠.	٠,	٠.	٠.	٠.	٠.			• '	٠.	٠.	٠.٠			•										
	٠																												•																				
																		•												•	•	•	•	•		•	•	•										•	
											•	•	•							•				•	•	•	•	•	•				•		٠.	٠. ٠	٠. ٠	٠.٠	. *	. *	٠.	٠.	٠.	٠.		٠.,	٠.,	. "	٠.
-						• •	, .		٠.	٠.	٠.	٠.;	-	٠.	٠.	٠.	٠.	٠.	4	٤.	٠.	٠.	٠.,			٠.	. "	. "			ď.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.,					٠.	٠.	٠.	٠,٠
	r		0	0	۳.,	•	'n	i e		Ai.	• '	. 7	٠.	•		+	a	ui.	ø.,				ui:	٠.		٠.	Α.	α	•		3.2	3							•										
		10.7	•		. 1		1.1		"	Р.			1.0		и.	8.4	r.	8.			7.1	L		ı.		71		æ	Ł	L	LE	ε.																	
*		٠,	٠.	٠.		٠.•	•		٠.	٠.		. 7	-	٠.	•	Ψ.	÷	•	-		٠,		٠.	٠,	. ~		7	-5	٠.	٠.		•	•					•	•										
							•	•			•	٠	•								. *		•	٠.	٠.	٠.	٠.	٠.	٠.	•	٠. ٠		. *	٠.	٠.	٠.٠		٠. ٠	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.,	٠.,	. "	٠.
					٠.	٠.			٠.	2.	٠.	٠. ٠	. *	٠.	٠.	٠.	≟.	-	٠.	٠.	٠	_			٠			. "	٠.	٠.	٠.	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.٠					٠.	٠.	٠.	
	• • • •	_ ′ '		- 1		A 1		٠.		L	. 4		٠.	•	١./	١.		7	11	5	-	7			э.	٠.	٠,	٠.	٠.	٠.					٠.														
.5-	r	-1	0	<i>~</i> .,			77	84	и.	n	D.	70	٠	٠.		,	٠.	٦.	,	IΔ		۲.		.,	۲.																						• •		
			·		- 3		u	- 14		v	·			v	-	٠,	•	•	v	v	.,		·u	-	• •																٠.								

Date: 8/30/2013 Set up time: 1155 Weather: Sun, 75° Field Staff: MC

Well # · MW · 3

MW-3-083013 Sample ID:

Location: NE Corne of fre cite Construction: 3/4" PVC

Construction Depth: しょう Screened Interval: 5.5-(0.5)
Pump Intake Depth: 015-50.75

Purge Start Time: 1208 > 0/F5 1259

Discharge Rate: 50 augman

Purge End Time: 1400

Depth to Water: 8.09/ Height of Water Column: 2.4(/ Volume of one casing: 5.79/

no.	V-1 (I)	Depth to Water	Temp.	pН	EC (mS/cm)	D.O. (mg/L)	Redox	Turbity (ntu)	Color and Odor
Time	Volume (mL)	(ft btoc)	remp.	рп	EC (III3/CIII)	(mg/L)	Redux	4.91	
10 -0	- 1							Τ.	-> for D/Fs Clear
1259	Stort							2007	Clear
1304	250		24.02	666	1.905	7,50	-61,5	9.71	
1309	500		23.72		1.392	2.06	-67.5	9.58	
1314	750		23,91	6.39	1.894	1,44	-72.4	11.4	
1319	1800		23,97	6.38	1,850	0.78	-74.5	9.29	
1324	1250		23.86	6.42	1.887	6.50	-75.4	7.21	
1329	1500		23,80	6.40	1,886	0,40	-75.4 -78.2	5,84	
1334		9.82							
		tinent							
							-		
	·						-		

		Valuation 1.							

					-				
				<u> </u>					
FIELD OB	SERVATIONS (1 Well condition, re	pairs need	ed)				ŧ.	

1334 - Sample time our cost of and yes 108 - 1 NT sample time Sampler Signature(s):

F.	RN	1 -	. 1	",	vi	70		1	'n	Ť.	٠.	٠.	٠.	٠,	٠.	٠.		٠.	٠.	1.		٠.	•		٠.	: :	٠.	٠.	÷	١٠.	٠:	÷	ŀ	:::	٠:	1.	·	٠
دبية	FXTA	1.	_	··u	<i>1</i> X	Ç	· .2	٠.	"	€.	٠.	٠.	٠.	٠.	٠.	٠.		٠.	٠.	٠.		٠.	٠.		٠.		٠.	٠.	÷		٠.	• •	÷	٠.	٠.٠			٠
		· · · · · ·	٠,٠,	٠.٠.	٠, ب	٠.	٠.٠	٠,٠,	٠,	٠.	٠.	٠.	٠.,	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.	٠.		٠.		٠.	٠.	٠,	1	٠.	• •	ŀ		٠.		٠.	٠
	· · · · · · · ·	· · · · ·	·.·.	٠.٠.		٠.	٠.٠	٠.,	٠,	٠.٠	٠.	٠.	٠.٠		٠.	٠.	٠.	٠,	٠.	٠.	٠.	٠.	٠.		٠.	٠.	٠.	٠.	٠.		•		÷	•	٠.		٠.	٠
		· . · . · .	٠.٠.	٠.٠.		٠.	٠,٠	٠	٠,	٠.,	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	•		٠.	•		٠.		٠.	٠.	٠.	١٠.	٠.	-[-	÷	٠.	٠.	1	٠.	٠
			٠,٠,	٠.٠.		٠.	٠	٠.,	٠.	٠,٠	٠.	٠.	٠.,		٠.	٠.	٠.	٠.	٠,	٠.	٠.	٠.	٠.		٠.	•	٠:	٠.	٠.	1	٠.	٠.٠	÷		٠.	1	٠.	٠
. 13		بغنانا	'A 7	٠		22.	· •	ni.	نند	4	٠	÷	٠.		٠,	ı	Ċ	٠.	د ک	. 4	4	7;	÷		٠.		٠.	٠.	÷	٠.	٠.		÷		٠.		. 1	٠
171	roje	$c\iota$	1V	иı	ne	έ.	٠.	æ	п	ιe	γ	1	·c	ч	n	ı		t	$\cdot \nu$	u	E.	ľŧ	۶.		٠.	٠.	٠.	٠.	٠,	٠.	٠.	٠.٠	٠.		٠.	1.	٠.	٠
7.0			T::	∵.	٠	٠.	1.5		٠.	٠.,	₽.	٠.	٠.,	٠.	٠.	٠.	٠.	٠.	٠.	٠,	٠.,	٠.	٠.	٠.	٠.	٠.	٠.	٠.	í,	٠,٠	٠.	٠.	٠.	٠.	٠.	٠.	٠.	•
÷	voic			:.·.		٠.	1.1	٠.,	'n	in	÷	'n	÷	÷	٠,	żr		٠.	٠.	٠.	•	٠.	٠.		٠.	•	٠.	٠.	٠.	:::	٠.	٠.٠			٠.			٠
D1	raic	rt	. (1)	111	211	12	4.		٠,	•	. 4	и.	и.	. 1	. 1	т.	٠.	٠.	٠.	٠.	٠.٠	٠.	٠.	٠.٠	٠.	٠.,	٠.,	٠.	٠.	٠.,	٠.	٠.	٠.	٠	٠.	٠.,	. '	. '

Date: 8/29/2013 Set up time: 1606

Weather: Clouds, 750

Field Staff: MC/(6

Well # MW-4

Purge End Time:

Sample ID: MW-4-082913

Location: SE JESTY Construction: 3/4" PVC

Construction Depth: Screened Interval:

Pump Intake Depth: G. G Fee | bloc > D/F & 8.2 Leet bloc > 1/4 s

Purge Start Time: $1615 \rightarrow 0/F_5$ Discharge Rate: $\rightarrow 6/F_5$

Depth to Water: Height of Water Column:

5,87 4,63 blumn: 4,63 clors Volume of one casing:

Time	Volume (mL)	Depth to Water (ft btoc)	Temp.	pН	EC (mS/cm)	D.O. (mg/L)	Redox	Turbity (ntu)	Color and Odor	
1647	Start	· Alexandrica de la companya del companya de la companya del companya de la compa	A CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE	***************************************	acronomonistra e e e e e e e e e e e e e e e e e e e				A AND THE RESIDENCE OF THE PROPERTY OF THE PRO	
1651	500		733	636	14,2	0.47	60	459	clear	
1655	(000)		75.1	1.47	15.0	0.43	47-	3.03		
1700	1500		72.9	€,585	18.5	0.03	40	1.07	Arrhables	on whe
17-04	2000		71.6	6,57	15.7	6.07	36	44	r	
(187	400		フルー	6.58	17.8	0.61	35	0.76		
		Final:				***********				
		5.47							£	
									-	
		-011-001-001-00-00-00-00-00-00-00-00-00-		-		•••				
						:				

										-
									<u> </u>	
	· · · · · · · · · · · · · · · · · · ·								14	

FIELD OBS	 SERVATIONS (Well condition, re	pairs need	<u>l</u> ed)	<u>L</u>	<u> </u>	<u>l</u>			
		, , ,								

Sampler Signature(s): 726 15 mm = filt op 157 P/F 50 He.

Of E, PUB sample time = 3/6/5

1711 - Saught time for version of sorth

ERM - Purge Log Project Name: CenterPoint Seattle Project Number: 0203067.02

Date: 8/30(20)3
Set up time: 40 Weather: Sum Field Staff: 110

Well #

MW-5-083013 Sample ID:

Location: Construction: 3/4" PVC Construction Depth: 9.5 Screened Interval: 4.5-9.5 Pump Intake Depth: D/F > 5.25

Purge Start Time: 3804-30 F 1037
Discharge Rate: -125 pulm
Purge End Time: 115

Depth to Water: 4,92' Height of Water Column: 4,58' Volume of one casing: 6,747

Time	Volume (mL)	Depth to Water (ft btoc)	د Temp.	pН	EC (mS/cm)	D.O. (mg/L)	Redox	Turbity (ntu)	Color and Odor
1037	Stovit	destroyed the second							mente destinin construente e en escripcio de
1039	250		23.19	6.26	0.537	6.51	67.5	5,27	Clear
1041	500		23.08	643	0.528	3.14	44,9	3.09	no odor
1043	750		23.08	6.43	0.521	3.09	34.0	2.24	·
1045	1000		23.10	644	0.5(7	293	221	2-35	
1647	1250		27.09	6.46	0.514	2.89	17.1	1.59	
1049	1500	***************************************	2360	6.47	0.512	2,80	3.0	0.72	
1051	1750		23.10		0.5(0	277	-2.0	(.((
1653	2000		23,((6.47	0.510	273	~2.7	0.92	
1055	2250		27.13	647	0.509	2.71	-3.7	(48	
1057		5,21						w	

									·
					3,				

1									
							<u> </u>		
				.,					
FIELD OBS	SERVATIONS (Well condition, re	pairs neede	ed)					

Sampler Signature(s):

121 Sample time P(F,PUBS -> 0804 Sample time rost -> 1657

26 mores to FIN up wille

Appendix G Laboratory Analytical Data Packages

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-40016-1

Client Project/Site: CenterPoint Seattle

For:

ERM-West 1218 3rd Ave Suite 1412 Seattle, Washington 98101

Attn: Cyrus Gorman

Knittene D. allen

Authorized for release by: 9/13/2013 5:03:38 PM

Kristine Allen, Project Manager I kristine.allen@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: CenterPoint Seattle

TestAmerica Job ID: 580-40016-1

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions	5
Client Sample Results	
QC Sample Results	23
Chronicle	29
Certification Summary	33
Sample Summary	34
Chain of Custody	35
Receint Checklists	36

Case Narrative

Client: ERM-West

Project/Site: CenterPoint Seattle

TestAmerica Job ID: 580-40016-1

3

Job ID: 580-40016-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 8/28/2013 4:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.2° C and 1.2° C.

Except:

For the following sample Trip Blank (580-40016-2) the COC does not list date or time. The sample was logged in for earliest sample date of 08/27/2013 and default time of 0000.

The following sample(s) was received on 8/28/2013 and was activated by the client on 9/10/2013.SB-1-6 (580-40016-6), SB-2-8 (580-40016-8), SB-3-8 (580-40016-9), SB-4-1.5 (580-40016-7), SB-5-11.5 (580-40016-1), SB-6-12 (580-40016-3), SB-7-12 (580-40016-5), SB-8a-12 (580-40016-4).

GC/MS VOA - Method(s) 8260B

The surrogate Ethylbenzene-d10 recovery for the following sample(s) was outside the upper control limit: SB-6-12 (580-40016-3), SB-7-12 (580-40016-5), SB-4-1.5 (580-40016-7). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

The Internal standard 1,4-Dichlorobenzene-d4 response for the following sample(s) exceeded the lower control limit: SB-4-1.5 (580-40016-7). As such, the sample results may be biased high. In addition to the low internal standard failure in analytical batch 144096 the surrogate Ethylbenzene-d10 failed high outside the control limit. The sample was reanalyzed in analytical batch 144607 with similar but passing low recovery for the ISTD with similar ND results however the surrogate Toluene-d8 fell below the lower control limit. Therefore the original analysis was reported as the primary result.

No other analytical or quality issues were noted.

GC/MS Semi VOA - Method(s) 8270C SIM

In analytical batch 144760, the following sample(s) was prepared outside the method defined holding time because the request for the test was made on the evening before the holding time for the sample expired: SB-4-1.5 (580-40016-7).

In analytical batch 144760, the matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 144681 were outside the lower control limits for Benzo(k)fluoranthene. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC VOA - Method(s) NWTPH-Gx

The Gasoline Range Hydrocarbons (GRH) concentration reported for the following sample(s) is due to the presence of a discrete unknown peak: Trip Blank (580-40016-2).

Duplicate results represent only analytical reproducibility. Only one extracted vial was received for each sample, therefore does not provide field sampling, or preservation, reproducibility.

No other analytical or quality issues were noted.

GC Semi VOA - Method(s) NWTPH-Dx

Detected hydrocarbons in the diesel range appear to be due to heavily weathered diesel and/or a light weight oil.SB-4-1.5 (580-40016-7)

Detected hydrocarbons appear to be due to biogenic interference.SB-5-11.5 (580-40016-1)

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

Case Narrative

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Job ID: 580-40016-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

3

4

5

6

8

9

Definitions/Glossary

Client: ERM-West

Project/Site: CenterPoint Seattle

TestAmerica Job ID: 580-40016-1

Qualifiers

GC/MS VOA

Qualifier Description

X Surrogate is outside control limits

GC/MS Semi VOA

Qualifier	Qualifier Description
-----------	-----------------------

F MS/MSD Recovery and/or RPD exceeds the control limits

H Sample was prepped or analyzed beyond the specified holding time

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Project/Site: CenterPoint Seattle

Client Sample ID: SB-5-11.5

Date Collected: 08/28/13 08:00

Date Received: 08/28/13 16:45

Lab Sample ID: 580-40016-1

Matrix: Solid
Percent Solids: 80.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.2		ug/Kg		08/28/13 17:00	09/04/13 01:21	1
Toluene	ND		2.3		ug/Kg	₩	08/28/13 17:00	09/04/13 01:21	1
Ethylbenzene	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 01:21	1
m-Xylene & p-Xylene	ND		2.3		ug/Kg	₽	08/28/13 17:00	09/04/13 01:21	1
o-Xylene	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 01:21	1
Methyl tert-butyl ether	ND		1.2		ug/Kg	≎	08/28/13 17:00	09/04/13 01:21	1
1,2-Dichloroethane	ND		1.2		ug/Kg	*	08/28/13 17:00	09/04/13 01:21	1
1,2-Dibromoethane	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 01:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 120				08/28/13 17:00	09/04/13 01:21	1
Ethylbenzene-d10	109		70 - 120				08/28/13 17:00	09/04/13 01:21	1
Fluorobenzene (Surr)	96		80 - 120				08/28/13 17:00	09/04/13 01:21	1
Toluene-d8 (Surr)	89		80 - 120				08/28/13 17:00	09/04/13 01:21	1
Trifluorotoluene (Surr)	100		65 _ 140				08/28/13 17:00	09/04/13 01:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		6.1		ug/Kg	*	09/11/13 09:37	09/12/13 09:58	1
Benzo[a]anthracene	ND		6.1		ug/Kg	₽	09/11/13 09:37	09/12/13 09:58	1
Chrysene	ND		6.1		ug/Kg	₽	09/11/13 09:37	09/12/13 09:58	1
Benzo[b]fluoranthene	ND		6.1		ug/Kg	\$	09/11/13 09:37	09/12/13 09:58	1
Benzo[k]fluoranthene	ND		6.1		ug/Kg	₽	09/11/13 09:37	09/12/13 09:58	1
Benzo[a]pyrene	ND		6.1		ug/Kg	₽	09/11/13 09:37	09/12/13 09:58	1
Indeno[1,2,3-cd]pyrene	ND		6.1		ug/Kg	₽	09/11/13 09:37	09/12/13 09:58	1
Dibenz(a,h)anthracene	ND		6.1		ug/Kg	₽	09/11/13 09:37	09/12/13 09:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	79		42 _ 151				09/11/13 09:37	09/12/13 09:58	1

Method. MWTT TI-OX - Morthwest -	voiatile i eti c	Jiedili i Todi	icis (GG)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.5		mg/Kg	*	09/06/13 11:16	09/06/13 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	110		50 - 150				09/06/13 11:16	09/06/13 18:36	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		16		mg/Kg	*	09/04/13 11:48	09/04/13 13:52	1
RRO (nC25-nC36)	37		31		mg/Kg	₩	09/04/13 11:48	09/04/13 13:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	89		<u>50 - 150</u>				09/04/13 11:48	09/04/13 13:52	1

Method: 6020 - Metals (ICP/MS)										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Lead	1.0		0.22		mg/Kg	Þ	E _	09/03/13 10:20	09/03/13 16:36	10

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-5-11.5 Lab Sample ID: 580-40016-1

Date Collected: 08/28/13 08:00 Matrix: Solid

Date Received: 08/28/13 16:45

١	General Chemistry									
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Percent Solids	80		0.10		%			09/03/13 12:01	1
	Percent Moisture	20		0.10		%			09/03/13 12:01	1

Client: ERM-West

Project/Site: CenterPoint Seattle

Date Received: 08/28/13 16:45

a,a,a-Trifluorotoluene (fid)

TestAmerica Job ID: 580-40016-1

Lab Sample ID: 580-40016-2

Matrix: Solid

Client Sample ID: Trip Blank Date Collected: 08/27/13 00:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
Toluene	ND		2.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
Ethylbenzene	ND		1.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
m-Xylene & p-Xylene	ND		2.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
o-Xylene	ND		1.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
Methyl tert-butyl ether	ND		1.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
Hexane	ND		5.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
Ethyl t-butyl ether	ND		10		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
Tert-amyl methyl ether	ND		10		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
1,2-Dichloroethane	ND		1.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
1,2-Dibromoethane	ND		1.0		ug/Kg		08/28/13 17:00	09/03/13 23:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 120				08/28/13 17:00	09/03/13 23:24	1
Ethylbenzene-d10	94		70 - 120				08/28/13 17:00	09/03/13 23:24	1
Fluorobenzene (Surr)	97		80 - 120				08/28/13 17:00	09/03/13 23:24	1
Toluene-d8 (Surr)	91		80 - 120				08/28/13 17:00	09/03/13 23:24	1
Trifluorotoluene (Surr)	105		65 - 140				08/28/13 17:00	09/03/13 23:24	1
Method: NWTPH-Gx - Northwes	t - Volatila Patro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	24		4.0		mg/Kg		09/06/13 11:16	09/06/13 18:08	1

50 - 150

DRO (C10-C25)

Surrogate

Analyte

Lead

RRO (nC25-nC36)

1-Chlorooctadecane

Method: 6020 - Metals (ICP/MS)

Project/Site: CenterPoint Seattle

Client Sample ID: SB-6-12 Date Collected: 08/28/13 08:45

Date Received: 08/28/13 16:45

Lab Sample ID: 580-40016-3

Matrix: Solid

Percent Solids: 84.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.94		ug/Kg	\	08/28/13 17:00	09/04/13 01:45	
Toluene	ND		1.9		ug/Kg	₽	08/28/13 17:00	09/04/13 01:45	•
Ethylbenzene	ND		0.94		ug/Kg	₽	08/28/13 17:00	09/04/13 01:45	•
m-Xylene & p-Xylene	ND		1.9		ug/Kg	₽	08/28/13 17:00	09/04/13 01:45	
o-Xylene	ND		0.94		ug/Kg	☼	08/28/13 17:00	09/04/13 01:45	
Methyl tert-butyl ether	ND		0.94		ug/Kg	☼	08/28/13 17:00	09/04/13 01:45	
1,2-Dichloroethane	ND		0.94		ug/Kg	\$	08/28/13 17:00	09/04/13 01:45	
1,2-Dibromoethane	ND		0.94		ug/Kg	₽	08/28/13 17:00	09/04/13 01:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		70 - 120				08/28/13 17:00	09/04/13 01:45	
Ethylbenzene-d10	122	X	70 - 120				08/28/13 17:00	09/04/13 01:45	1
Fluorobenzene (Surr)	95		80 - 120				08/28/13 17:00	09/04/13 01:45	1
Toluene-d8 (Surr)	91		80 - 120				08/28/13 17:00	09/04/13 01:45	
Trifluorotoluene (Surr)	83		65 - 140				08/28/13 17:00	09/04/13 01:45	:
Method: 8270C SIM - Semivola Analyte		npounds (G Qualifier	C/MS SIM)	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		5.8		ug/Kg	_	09/11/13 09:37	09/12/13 11:05	
Benzo[a]anthracene	ND		5.8		ug/Kg	₩	09/11/13 09:37	09/12/13 11:05	
Chrysene	ND		5.8		ug/Kg	₩	09/11/13 09:37	09/12/13 11:05	
Benzo[b]fluoranthene	ND		5.8		ug/Kg	-	09/11/13 09:37	09/12/13 11:05	
Benzo[k]fluoranthene	ND		5.8		ug/Kg	₩	09/11/13 09:37	09/12/13 11:05	
Benzo[a]pyrene	ND.		5.8		ug/Kg	₩	09/11/13 09:37	09/12/13 11:05	
Indeno[1,2,3-cd]pyrene	ND		5.8		ug/Kg		09/11/13 09:37	09/12/13 11:05	
Dibenz(a,h)anthracene	ND		5.8		ug/Kg	₽	09/11/13 09:37	09/12/13 11:05	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	82		42 - 151				09/11/13 09:37	09/12/13 11:05	
Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		4.6		mg/Kg	-	09/06/13 11:16	09/06/13 19:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	111		50 - 150				09/06/13 11:16	09/06/13 19:04	
· Method: NWTPH-Dx - Northwe	est - Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

TestAmerica Seattle

Dil Fac

Dil Fac

09/04/13 14:10

09/04/13 14:10

Analyzed

09/04/13 14:10

Analyzed

09/03/13 16:48

₩

₩

D

₩

09/04/13 11:48

09/04/13 11:48

Prepared

09/04/13 11:48

Prepared

09/03/13 10:20

mg/Kg

mg/Kg

MDL Unit

mg/Kg

15

30

RL

0.22

Limits

50 - 150

ND

ND

%Recovery Qualifier

90

1.1

Result Qualifier

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-6-12 Lab Sample ID: 580-40016-3

Date Collected: 08/28/13 08:45 Matrix: Solid

Date Received: 08/28/13 16:45

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	85		0.10		%			09/03/13 12:01	1
Percent Moisture	15		0.10		%			09/03/13 12:01	1

J

10

4

Client: ERM-West

RRO (nC25-nC36)

1-Chlorooctadecane

Method: 6020 - Metals (ICP/MS)

Surrogate

Analyte

Lead

Project/Site: CenterPoint Seattle

Client Sample ID: SB-8a-12 Date Collected: 08/28/13 09:15

Date Received: 08/28/13 16:45

Lab Sample ID: 580-40016-4

Matrix: Solid

Matrix: Solid
Percent Solids: 81.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND ND		1.0		ug/Kg	<u> </u>	08/28/13 17:00	09/04/13 02:08	
Toluene	ND		2.1		ug/Kg	₽	08/28/13 17:00	09/04/13 02:08	
Ethylbenzene	ND		1.0		ug/Kg	₩	08/28/13 17:00	09/04/13 02:08	
m-Xylene & p-Xylene	ND		2.1		ug/Kg	\$	08/28/13 17:00	09/04/13 02:08	
o-Xylene	ND		1.0		ug/Kg	₩	08/28/13 17:00	09/04/13 02:08	
Methyl tert-butyl ether	ND		1.0		ug/Kg	₽	08/28/13 17:00	09/04/13 02:08	
1,2-Dichloroethane	ND		1.0		ug/Kg		08/28/13 17:00	09/04/13 02:08	
1,2-Dibromoethane	ND		1.0		ug/Kg	₽	08/28/13 17:00	09/04/13 02:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		70 - 120				08/28/13 17:00	09/04/13 02:08	
Ethylbenzene-d10	115		70 - 120				08/28/13 17:00	09/04/13 02:08	
Fluorobenzene (Surr)	97		80 - 120				08/28/13 17:00	09/04/13 02:08	
Toluene-d8 (Surr)	88		80 - 120				08/28/13 17:00	09/04/13 02:08	
Trifluorotoluene (Surr)	95		65 - 140				08/28/13 17:00	09/04/13 02:08	
Naphinalene Benzo[a]anthracene	ND ND		6.0		ug/Kg ug/Kg		09/11/13 09:37	09/12/13 11:27	
Method: 8270C SIM - Semivola Analyte	•	1pounds (G Qualifier	C/IVIS SIIVI) RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		6.0		ug/Kg	*	09/11/13 09:37	09/12/13 11:27	
Chrysene	ND.		6.0		ug/Kg ug/Kg	₩	09/11/13 09:37	09/12/13 11:27	
Benzo[b]fluoranthene	ND		6.0		ug/Kg		09/11/13 09:37	09/12/13 11:27	
Benzo[k]fluoranthene	ND		6.0		ug/Kg ug/Kg		09/11/13 09:37	09/12/13 11:27	
Benzo[a]pyrene	ND ND		6.0		ug/Kg ug/Kg	₩	09/11/13 09:37	09/12/13 11:27	
Indeno[1,2,3-cd]pyrene	ND		6.0		ug/Kg ug/Kg	 ☆	09/11/13 09:37	09/12/13 11:27	
Dibenz(a,h)anthracene	ND		6.0		ug/Kg ug/Kg		09/11/13 09:37	09/12/13 11:27	
Diberiz(a,ir)anunacene	ND		0.0		ug/Ng	-,-	09/11/13 09.57	09/12/13 11.27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	101		42 - 151				09/11/13 09:37	09/12/13 11:27	
Method: NWTPH-Gx - Northwe			ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		4.9		mg/Kg	*	09/06/13 11:16	09/06/13 19:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	109		50 - 150				09/06/13 11:16	09/06/13 19:32	
· Method: NWTPH-Dx - Northwe	est - Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (C10-C25)	ND		15		mg/Kg	<u></u>	09/04/13 11:48	09/04/13 14:10	

TestAmerica Seattle

09/04/13 14:10

Analyzed

09/04/13 14:10

Analyzed

09/03/13 16:53

Dil Fac

Dil Fac

09/04/13 11:48

Prepared

09/04/13 11:48

Prepared

09/03/13 10:20

D

₩

30

RL

0.22

Limits

50 - 150

mg/Kg

mg/Kg

MDL Unit

ND

%Recovery Qualifier

Result Qualifier

94

1.4

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-8a-12 Lab Sample ID: 580-40016-4

Date Collected: 08/28/13 09:15 Matrix: Solid

Date Received: 08/28/13 16:45

١	General Chemistry									
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Percent Solids	82		0.10		%			09/03/13 12:01	1
	Percent Moisture	18		0.10		%			09/03/13 12:01	1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-7-12 Date Collected: 08/28/13 09:50

Method: 6020 - Metals (ICP/MS)

Analyte

Lead

Lab Sample ID: 580-40016-5

Matrix: Solid Percent Solids: 76.3

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		1.0		ug/Kg	<u> </u>	08/28/13 17:00	09/04/13 02:31	
Toluene	ND		2.1		ug/Kg	₩	08/28/13 17:00	09/04/13 02:31	
Ethylbenzene	ND		1.0		ug/Kg	₽	08/28/13 17:00	09/04/13 02:31	
m-Xylene & p-Xylene	ND		2.1		ug/Kg	\$	08/28/13 17:00	09/04/13 02:31	
o-Xylene	ND		1.0		ug/Kg	≎	08/28/13 17:00	09/04/13 02:31	
Methyl tert-butyl ether	ND		1.0		ug/Kg	₽	08/28/13 17:00	09/04/13 02:31	
1,2-Dichloroethane	ND		1.0		ug/Kg	\$	08/28/13 17:00	09/04/13 02:31	
1,2-Dibromoethane	ND		1.0		ug/Kg	₽	08/28/13 17:00	09/04/13 02:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	102		70 - 120				08/28/13 17:00	09/04/13 02:31	
Ethylbenzene-d10	122	X	70 - 120				08/28/13 17:00	09/04/13 02:31	
Fluorobenzene (Surr)	96		80 - 120				08/28/13 17:00	09/04/13 02:31	
Toluene-d8 (Surr)	89		80 - 120				08/28/13 17:00	09/04/13 02:31	
Trifluorotoluene (Surr)	99		65 - 140				08/28/13 17:00	09/04/13 02:31	
Method: 8270C SIM - Semivola	ntile Organic Con	pounds (G	C/MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Naphthalene	10		6.4		ug/Kg	<u> </u>	09/11/13 09:37	09/12/13 11:49	
Benzo[a]anthracene	150		6.4		ug/Kg	₩	09/11/13 09:37	09/12/13 11:49	
Chrysene	150		6.4		ug/Kg	₩	09/11/13 09:37	09/12/13 11:49	
Benzo[b]fluoranthene	150		6.4		ug/Kg	\$	09/11/13 09:37	09/12/13 11:49	
Benzo[k]fluoranthene	57		6.4		ug/Kg	≎	09/11/13 09:37	09/12/13 11:49	
Benzo[a]pyrene	180		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 11:49	
Indeno[1,2,3-cd]pyrene	100		6.4		ug/Kg	\$	09/11/13 09:37	09/12/13 11:49	
Dibenz(a,h)anthracene	24		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 11:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl-d14	102		42 - 151				09/11/13 09:37	09/12/13 11:49	
Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Hydrocarbons	ND		5.8		mg/Kg	\$	09/06/13 11:16	09/06/13 20:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
a,a,a-Trifluorotoluene (fid)	108		50 - 150				09/06/13 11:16	09/06/13 20:00	
Method: NWTPH-Dx - Northwe									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
DRO (C10-C25)	ND		16		mg/Kg	*	09/04/13 11:48	09/04/13 14:28	
RRO (nC25-nC36)	ND		33		mg/Kg	₽	09/04/13 11:48	09/04/13 14:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Chlorooctadecane	83	· <u></u>	50 - 150				09/04/13 11:48	09/04/13 14:28	

Analyzed

09/03/13 16:57

Dil Fac

RL

0.22

MDL Unit

mg/Kg

Prepared

09/03/13 10:20

₩

Result Qualifier

5.7

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-7-12 Lab Sample ID: 580-40016-5

Date Collected: 08/28/13 09:50 Matrix: Solid

Date Received: 08/28/13 16:45

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	76		0.10		%			09/03/13 12:03	1
Percent Moisture	24		0.10		%			09/03/13 12:03	1

5

6

8

9

10

Project/Site: CenterPoint Seattle

Date Received: 08/28/13 16:45

Method: 6020 - Metals (ICP/MS)

Analyte

Lead

Client Sample ID: SB-1-6
Date Collected: 08/28/13 10:45

Lab Sample ID: 580-40016-6

Matrix: Solid

Percent Solids: 73.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		1.1		ug/Kg	<u> </u>	08/28/13 17:00	09/04/13 02:55	
Toluene	ND		2.3		ug/Kg	₽	08/28/13 17:00	09/04/13 02:55	
Ethylbenzene	ND		1.1		ug/Kg	₽	08/28/13 17:00	09/04/13 02:55	
m-Xylene & p-Xylene	ND		2.3		ug/Kg		08/28/13 17:00	09/04/13 02:55	
o-Xylene	1.1		1.1		ug/Kg	₽	08/28/13 17:00	09/04/13 02:55	
Methyl tert-butyl ether	ND		1.1		ug/Kg	₽	08/28/13 17:00	09/04/13 02:55	
1,2-Dichloroethane	ND		1.1		ug/Kg		08/28/13 17:00	09/04/13 02:55	
1,2-Dibromoethane	ND		1.1		ug/Kg	₽	08/28/13 17:00	09/04/13 02:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	95		70 - 120				08/28/13 17:00	09/04/13 02:55	
Ethylbenzene-d10	106		70 - 120				08/28/13 17:00	09/04/13 02:55	
Fluorobenzene (Surr)	99		80 - 120				08/28/13 17:00	09/04/13 02:55	
Toluene-d8 (Surr)	87		80 - 120				08/28/13 17:00	09/04/13 02:55	
Trifluorotoluene (Surr)	82		65 - 140				08/28/13 17:00	09/04/13 02:55	1
Method: 8270C SIM - Semivola	atile Organic Con	npounds (G	C/MS SIM)						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		6.4		ug/Kg	\	09/11/13 09:37	09/12/13 12:11	
Benzo[a]anthracene	ND		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 12:11	•
Chrysene	ND		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 12:11	
Benzo[b]fluoranthene	ND		6.4		ug/Kg	\$	09/11/13 09:37	09/12/13 12:11	
Benzo[k]fluoranthene	ND		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 12:11	•
Benzo[a]pyrene	ND		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 12:11	•
ndeno[1,2,3-cd]pyrene	ND		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 12:11	
Dibenz(a,h)anthracene	ND		6.4		ug/Kg	₽	09/11/13 09:37	09/12/13 12:11	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	102		42 - 151				09/11/13 09:37	09/12/13 12:11	
Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		6.0		mg/Kg	-	09/06/13 11:16	09/06/13 20:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
a,a,a-Trifluorotoluene (fid)	110		50 - 150				09/06/13 11:16	09/06/13 20:28	
Method: NWTPH-Dx - Northwe	est - Semi-Volatile	Petroleum	Products (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND				mg/Kg	<u></u>	09/04/13 11:48	09/04/13 14:46	
RRO (nC25-nC36)	ND		34		mg/Kg	₽	09/04/13 11:48	09/04/13 14:46	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctadecane	87		50 - 150				09/04/13 11:48	09/04/13 14:46	-

Analyzed

09/03/13 17:01

Dil Fac

Prepared

09/03/13 10:20

RL

0.24

MDL Unit

mg/Kg

Result Qualifier

1.2

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-1-6 Lab Sample ID: 580-40016-6

Date Collected: 08/28/13 10:45 Matrix: Solid

Date Received: 08/28/13 16:45

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	74		0.10		%			09/03/13 12:03	1
Percent Moisture	26		0.10		%			09/03/13 12:03	1

Surrogate

Terphenyl-d14

TestAmerica Job ID: 580-40016-1

Client Sample ID: SB-4-1.5

Date Collected: 08/27/13 12:15

Date Received: 08/28/13 16:45

Lab Sample ID: 580-40016-7

Prepared

09/11/13 09:37

Analyzed

09/12/13 12:34

Dil Fac

Matrix: Solid

Percent Solids: 77.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.2		ug/Kg	\	08/28/13 17:00	09/04/13 03:18	
Toluene	ND		2.3		ug/Kg	₽	08/28/13 17:00	09/04/13 03:18	•
Ethylbenzene	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 03:18	•
m-Xylene & p-Xylene	ND		2.3		ug/Kg	₽	08/28/13 17:00	09/04/13 03:18	
o-Xylene	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 03:18	
Methyl tert-butyl ether	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 03:18	
1,2-Dichloroethane	ND		1.2		ug/Kg	\$	08/28/13 17:00	09/04/13 03:18	
1,2-Dibromoethane	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 03:18	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	104		70 - 120				08/28/13 17:00	09/04/13 03:18	
Ethylbenzene-d10	127	Χ	70 - 120				08/28/13 17:00	09/04/13 03:18	
Fluorobenzene (Surr)	97		80 - 120				08/28/13 17:00	09/04/13 03:18	
Toluene-d8 (Surr)	83		80 - 120				08/28/13 17:00	09/04/13 03:18	
Trifluorotoluene (Surr)	86		65 - 140				08/28/13 17:00	09/04/13 03:18	
Method: 8270C SIM - Semivola	atile Organic Con	npounds (G	C/MS SIM)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	H	6.2		ug/Kg	\	09/11/13 09:37	09/12/13 12:34	1
Benzo[a]anthracene	160	H	6.2		ug/Kg	₩	09/11/13 09:37	09/12/13 12:34	•
Chrysene	330	Н	6.2		ug/Kg	₩	09/11/13 09:37	09/12/13 12:34	
Benzo[b]fluoranthene	190	Н	6.2		ug/Kg	₽	09/11/13 09:37	09/12/13 12:34	
Benzo[k]fluoranthene	61	Н	6.2		ug/Kg	₽	09/11/13 09:37	09/12/13 12:34	
Benzo[a]pyrene	120	Н	6.2		ug/Kg	₽	09/11/13 09:37	09/12/13 12:34	
	64	H	6.2		ug/Kg		09/11/13 09:37	09/12/13 12:34	
Indeno[1,2,3-cd]pyrene	•								

ı	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline Range Hydrocarbons	ND		6.3		mg/Kg	\$	09/06/13 11:16	09/06/13 20:56	1
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	a,a,a-Trifluorotoluene (fid)	109		50 - 150				09/06/13 11:16	09/06/13 20:56	1

Limits

42 - 151

%Recovery Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	130		16		mg/Kg	*	09/04/13 11:48	09/04/13 15:05	1
RRO (nC25-nC36)	310		32		mg/Kg	₩	09/04/13 11:48	09/04/13 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	83		50 - 150				09/04/13 11:48	09/04/13 15:05	1

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5.7		0.25		mg/Kg	<u> </u>	09/03/13 10:20	09/03/13 17:05	10

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-4-1.5 Lab Sample ID: 580-40016-7

Date Collected: 08/27/13 12:15 Matrix: Solid

Date Received: 08/28/13 16:45

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	77		0.10		%			09/03/13 12:03	1
Percent Moisture	23		0.10		%			09/03/13 12:03	1

J

<u>۾</u>

9

10

TestAmerica Job ID: 580-40016-1

Client Sample ID: SB-2-8

Date Received: 08/28/13 16:45

Lab Sample ID: 580-40016-8 Date Collected: 08/28/13 11:45 Matrix: Solid

Percent Solids: 68.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 03:41	1
Toluene	ND		2.5		ug/Kg	₽	08/28/13 17:00	09/04/13 03:41	1
Ethylbenzene	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 03:41	1
m-Xylene & p-Xylene	ND		2.5		ug/Kg	₽	08/28/13 17:00	09/04/13 03:41	1
o-Xylene	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 03:41	1
Methyl tert-butyl ether	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 03:41	1
1,2-Dichloroethane	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 03:41	1
1,2-Dibromoethane	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 03:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 120				08/28/13 17:00	09/04/13 03:41	1
Ethylbenzene-d10	107		70 - 120				08/28/13 17:00	09/04/13 03:41	1
Fluorobenzene (Surr)	97		80 - 120				08/28/13 17:00	09/04/13 03:41	1
Toluene-d8 (Surr)	89		80 - 120				08/28/13 17:00	09/04/13 03:41	1
Trifluorotoluene (Surr)	83		65 - 140				08/28/13 17:00	09/04/13 03:41	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	7.1	ug/Kg	₩	09/11/13 09:37	09/12/13 12:56	1
Benzo[a]anthracene	ND	7.1	ug/Kg	₽	09/11/13 09:37	09/12/13 12:56	1
Chrysene	ND	7.1	ug/Kg	≎	09/11/13 09:37	09/12/13 12:56	1
Benzo[b]fluoranthene	ND	7.1	ug/Kg	\$	09/11/13 09:37	09/12/13 12:56	1
Benzo[k]fluoranthene	ND	7.1	ug/Kg	≎	09/11/13 09:37	09/12/13 12:56	1
Benzo[a]pyrene	ND	7.1	ug/Kg	₩	09/11/13 09:37	09/12/13 12:56	1
Indeno[1,2,3-cd]pyrene	ND	7.1	ug/Kg	₽	09/11/13 09:37	09/12/13 12:56	1
Dibenz(a,h)anthracene	ND	7.1	ug/Kg	₩	09/11/13 09:37	09/12/13 12:56	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	104	42 - 151			09/11/13 09:37	09/12/13 12:56	1

Method: NWTPH-Gx - Northwest	t - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		7.3		mg/Kg	\	09/06/13 11:16	09/06/13 21:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)			50 - 150				09/06/13 11:16	09/06/13 21:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		18		mg/Kg	<u></u>	09/04/13 11:48	09/04/13 14:28	1
RRO (nC25-nC36)	ND		37		mg/Kg	₩	09/04/13 11:48	09/04/13 14:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	66		50 - 150				09/04/13 11:48	09/04/13 14:28	1

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6.8		0.25		mg/Kg	*	09/03/13 10:20	09/03/13 17:09	10

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-2-8 Lab Sample ID: 580-40016-8

Date Collected: 08/28/13 11:45 Matrix: Solid

Date Received: 08/28/13 16:45

İ	General Chemistry										
	Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
	Percent Solids	68		0.10		%				09/03/13 12:03	1
	Percent Moisture	32		0.10		%				09/03/13 12:03	1

J

0

9

10

Project/Site: CenterPoint Seattle

Date Received: 08/28/13 16:45

Client Sample ID: SB-3-8 Date Collected: 08/28/13 12:30

Lab Sample ID: 580-40016-9 Matrix: Solid

Percent Solids: 66.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.2		ug/Kg	\	08/28/13 17:00	09/04/13 04:05	1
Toluene	ND		2.5		ug/Kg	₽	08/28/13 17:00	09/04/13 04:05	1
Ethylbenzene	ND		1.2		ug/Kg	₩	08/28/13 17:00	09/04/13 04:05	1
m-Xylene & p-Xylene	ND		2.5		ug/Kg	₽	08/28/13 17:00	09/04/13 04:05	1
o-Xylene	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 04:05	1
Methyl tert-butyl ether	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 04:05	1
1,2-Dichloroethane	ND		1.2		ug/Kg	₽	08/28/13 17:00	09/04/13 04:05	1
1,2-Dibromoethane	ND		1.2		ug/Kg	\$	08/28/13 17:00	09/04/13 04:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 120				08/28/13 17:00	09/04/13 04:05	1
Ethylbenzene-d10	109		70 - 120				08/28/13 17:00	09/04/13 04:05	1
Fluorobenzene (Surr)	97		80 - 120				08/28/13 17:00	09/04/13 04:05	1
Toluene-d8 (Surr)	89		80 - 120				08/28/13 17:00	09/04/13 04:05	1
Trifluorotoluene (Surr)	94		65 - 140				08/28/13 17:00	09/04/13 04:05	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	7.4		ug/Kg	\$	09/11/13 09:37	09/12/13 13:18	1
Benzo[a]anthracene	ND	7.4		ug/Kg	₽	09/11/13 09:37	09/12/13 13:18	1
Chrysene	ND	7.4		ug/Kg	₽	09/11/13 09:37	09/12/13 13:18	1
Benzo[b]fluoranthene	ND	7.4		ug/Kg	\$	09/11/13 09:37	09/12/13 13:18	1
Benzo[k]fluoranthene	ND	7.4		ug/Kg	₽	09/11/13 09:37	09/12/13 13:18	1
Benzo[a]pyrene	ND	7.4		ug/Kg	₽	09/11/13 09:37	09/12/13 13:18	1
Indeno[1,2,3-cd]pyrene	ND	7.4		ug/Kg	\$	09/11/13 09:37	09/12/13 13:18	1
Dibenz(a,h)anthracene	ND	7.4		ug/Kg	₽	09/11/13 09:37	09/12/13 13:18	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	103	42 - 151				09/11/13 09:37	09/12/13 13:18	1

Method: NWTPH-Gx - Northwest - Vo	olatile Petro	oleum Produc	ts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		7.6		mg/Kg	₩	09/06/13 11:16	09/06/13 21:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

a,a,a-Trifluorotoluene (fid)	110		50 _ 150				09/06/13 11:16	09/06/13 21:52	1
Method: NWTPH-Dx - Northwes	st - Semi-Volatile	Petroleum	Products (GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND		19		mg/Kg	\$	09/04/13 11:48	09/04/13 15:05	1
RRO (nC25-nC36)	ND		38		mg/Kg	☼	09/04/13 11:48	09/04/13 15:05	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	90		50 - 150	09/04/13 11:48	09/04/13 15:05	1

Method: 6020 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.4		0.26		mg/Kg	₩	09/03/13 10:20	09/03/13 17:13	10

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client Sample ID: SB-3-8 Lab Sample ID: 580-40016-9

Date Collected: 08/28/13 12:30 Matrix: Solid

Date Received: 08/28/13 12:30 Matrix: Solid

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	66		0.10		%			09/03/13 12:03	1
Percent Moisture	34		0.10		%			09/03/13 12:03	1

9

10

TestAmerica Job ID: 580-40016-1

Client: ERM-West

Project/Site: CenterPoint Seattle

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-144097/1-A

Matrix: Solid

Analysis Batch: 144096

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 144097

	MB	MB						•	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
Toluene	ND		2.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
Ethylbenzene	ND		1.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
m-Xylene & p-Xylene	ND		2.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
o-Xylene	ND		1.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
Methyl tert-butyl ether	ND		1.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
Hexane	ND		5.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
Ethyl t-butyl ether	ND		10		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
Tert-amyl methyl ether	ND		10		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
1,2-Dichloroethane	ND		1.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
1,2-Dibromoethane	ND		1.0		ug/Kg		09/03/13 20:43	09/03/13 21:27	1
I and the second									

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	70 - 120	09/03/13 20:43	09/03/13 21:27	1
Ethylbenzene-d10	97	70 - 120	09/03/13 20:43	09/03/13 21:27	1
Fluorobenzene (Surr)	97	80 - 120	09/03/13 20:43	09/03/13 21:27	1
Toluene-d8 (Surr)	91	80 - 120	09/03/13 20:43	09/03/13 21:27	1
Trifluorotoluene (Surr)	108	65 - 140	09/03/13 20:43	09/03/13 21:27	1

Lab Sample ID: LCS 580-144097/2-A

Matrix: Solid

Analysis Batch: 144096

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 144097

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	30.0	29.7		ug/Kg		99	70 - 128	
Toluene	30.0	31.3		ug/Kg		104	75 - 126	
Ethylbenzene	30.0	31.9		ug/Kg		106	78 - 126	
m-Xylene & p-Xylene	30.0	31.8		ug/Kg		106	78 - 126	
o-Xylene	30.0	33.9		ug/Kg		113	77 - 127	
Methyl tert-butyl ether	30.0	30.9		ug/Kg		103	65 - 125	
Hexane	30.0	32.5		ug/Kg		108	66 - 183	
Ethyl t-butyl ether	30.0	33.2		ug/Kg		111	75 - 122	
Tert-amyl methyl ether	30.0	32.3		ug/Kg		108	65 ₋ 118	
1,2-Dichloroethane	30.0	27.3		ug/Kg		91	71 - 128	
1,2-Dibromoethane	30.0	31.2		ug/Kg		104	69 - 126	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 120
Ethylbenzene-d10	106		70 - 120
Fluorobenzene (Surr)	100		80 - 120
Toluene-d8 (Surr)	104		80 - 120
Trifluorotoluene (Surr)	107		65 - 140

TestAmerica Seattle

9/13/2013

Page 23 of 38

TestAmerica Job ID: 580-40016-1

Client: ERM-West

Project/Site: CenterPoint Seattle

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144097/3-A

Matrix: Solid

Analysis Batch: 144096

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA **Prep Batch: 144097**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	30.0	26.1		ug/Kg		87	70 - 128	13	19
Toluene	30.0	27.9		ug/Kg		93	75 - 126	11	19
Ethylbenzene	30.0	28.4		ug/Kg		95	78 - 126	11	23
m-Xylene & p-Xylene	30.0	28.8		ug/Kg		96	78 - 126	10	23
o-Xylene	30.0	30.0		ug/Kg		100	77 - 127	12	22
Methyl tert-butyl ether	30.0	28.0		ug/Kg		93	65 - 125	10	30
Hexane	30.0	29.6		ug/Kg		99	66 - 183	9	30
Ethyl t-butyl ether	30.0	28.0		ug/Kg		93	75 - 122	17	30
Tert-amyl methyl ether	30.0	28.3		ug/Kg		94	65 - 118	13	30
1,2-Dichloroethane	30.0	24.2		ug/Kg		81	71 - 128	12	18
1,2-Dibromoethane	30.0	29.8		ug/Kg		99	69 - 126	5	21

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 104 70 - 120 107 70 - 120 Ethylbenzene-d10 Fluorobenzene (Surr) 100 80 - 120 Toluene-d8 (Surr) 106 80 - 120 Trifluorotoluene (Surr) 92 65 - 140

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-144681/1-A

Matrix: Solid

Analysis Batch: 144760

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 144681**

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1
Benzo[a]anthracene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1
Chrysene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1
Benzo[a]pyrene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		09/11/13 09:37	09/12/13 08:51	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Terphenyl-d14 108 42 - 151 09/11/13 09:37 09/12/13 08:51

Lab Sample ID: LCS 580-144681/2-A

Matrix: Solid

Analysis Batch: 144760

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 144681

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	1010	937		ug/Kg		93	64 - 129
Benzo[a]anthracene	1000	972		ug/Kg		97	64 - 124
Chrysene	992	973		ug/Kg		98	71 - 126
Benzo[b]fluoranthene	1000	1150		ug/Kg		115	66 - 136

Page 24 of 38

Project/Site: CenterPoint Seattle

Lab Sample ID: LCS 580-144681/2-A

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 144681

Matrix: Solid
Analysis Batch: 144760

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[k]fluoranthene	1010	1040		ug/Kg		104	63 - 143	
Benzo[a]pyrene	1000	1020		ug/Kg		102	68 - 128	
Indeno[1,2,3-cd]pyrene	998	1080		ug/Kg		108	59 - 139	
Dibenz(a,h)anthracene	1000	1150		ug/Kg		115	57 - 142	

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 Terphenyl-d14
 109
 42 - 151

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 144681

Lab Sample ID: LCSD 580-144681/3-A

Matrix: Solid

Analysis Batch: 144760

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	1010	930		ug/Kg		92	64 - 129	1	26
Benzo[a]anthracene	1000	967		ug/Kg		97	64 - 124	1	27
Chrysene	992	958		ug/Kg		97	71 - 126	2	26
Benzo[b]fluoranthene	1000	1140		ug/Kg		113	66 - 136	1	31
Benzo[k]fluoranthene	1010	1030		ug/Kg		102	63 - 143	2	31
Benzo[a]pyrene	1000	1020		ug/Kg		102	68 - 128	0	30
Indeno[1,2,3-cd]pyrene	998	1080		ug/Kg		108	59 - 139	0	29
Dibenz(a,h)anthracene	1000	1140		ua/Ka		114	57 ₋ 142	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	106		42 - 151

Lab Sample ID: 580-40016-1 MS

Matrix: Solid

Analysis Batch: 144760

Client Sam	ple ID: SB-5-11.5
Pre	p Type: Total/NA

Prep Batch: 144681

_	Sample S	Sample	Spike	MS	MS				%Rec.	
Analyte	Result C	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	ND		1250	957		ug/Kg	₩	76	75 - 125	
Benzo[a]anthracene	ND		1240	1080		ug/Kg	₽	87	75 - 125	
Chrysene	ND		1230	993		ug/Kg	₽	81	75 ₋ 125	
Benzo[b]fluoranthene	ND		1240	1060		ug/Kg	\$	85	75 ₋ 125	
Benzo[k]fluoranthene	ND		1250	896	F	ug/Kg	₽	72	75 - 125	
Benzo[a]pyrene	ND		1240	1040		ug/Kg	₽	84	75 ₋ 125	
Indeno[1,2,3-cd]pyrene	ND		1240	1150		ug/Kg	\$	93	75 - 125	
Dibenz(a,h)anthracene	ND		1240	1090		ug/Kg	≎	88	75 ₋ 125	

MS MS

Surrogate	%Recovery Qualifier	Limits
Terphenyl-d14	95	42 - 151

Matrix: Solid

Project/Site: CenterPoint Seattle

Analysis Batch: 144760

Lab Sample ID: 580-40016-1 MSD

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Client Sample ID: SB-5-11.5 Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 19876

Prep Batch: 144681

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		1210	931		ug/Kg	\	77	75 - 125	3	26
Benzo[a]anthracene	ND		1200	1030		ug/Kg	₽	86	75 - 125	5	27
Chrysene	ND		1190	959		ug/Kg	₽	81	75 - 125	3	26
Benzo[b]fluoranthene	ND		1200	976		ug/Kg	₩	81	75 - 125	9	31
Benzo[k]fluoranthene	ND		1200	867	F	ug/Kg	₽	72	75 - 125	3	31
Benzo[a]pyrene	ND		1200	984		ug/Kg	₽	82	75 - 125	6	30
Indeno[1,2,3-cd]pyrene	ND		1190	1090		ug/Kg	₽	91	75 - 125	6	29
Dibenz(a,h)anthracene	ND		1200	1030		ug/Kg	₽	86	75 - 125	5	30

MSD MSD

%Recovery Qualifier Limits Surrogate Terphenyl-d14 91 42 - 151

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 250-19876/1-A

Matrix: Solid

Analysis Batch: 19902

MB MB

Analyte Result Qualifier RL MDL Unit Analyzed D Prepared Dil Fac Gasoline Range Hydrocarbons 3.8 ND mg/Kg 09/06/13 11:16 09/06/13 13:27

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 50 - 150 09/06/13 11:16 09/06/13 13:27 a,a,a-Trifluorotoluene (fid) 103

Lab Sample ID: LCS 250-19876/2-A

Matrix: Solid

Analysis Batch: 19902

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 19876 Spike LCS LCS

Added Analyte Result Qualifier Unit %Rec Limits Gasoline Range Hydrocarbons 24.4 24.5 mg/Kg 100 70 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 107 50 - 150

Lab Sample ID: 580-40016-6 MS

Matrix: Solid

Analysis Batch: 19902

Client Sample ID: SB-1-6 Prep Type: Total/NA

> Prep Batch: 19876 %Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Gasoline Range Hydrocarbons ND 37.8 37.2 98 mg/Kg 65 - 130

MS MS

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 50 - 150 112

DU DU

MDL Unit

LCS LCS

DU DU

Result

ND

ND

118

68.9

Result Qualifier

mg/Kg

mg/Kg

Unit

D

TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Client: ERM-West

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 580-40016-1 DU

Matrix: Solid Analysis Batch: 19902

Result Qualifier Result Qualifier Analyte Gasoline Range Hydrocarbons ND ND DU DU

Sample Sample

Qualifier Surrogate %Recovery a,a,a-Trifluorotoluene (fid) 108

Limits 50 - 150

RL

12

25

Limits

Spike

Added

122

73 4

Limits

50 - 150

50 - 150

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 250-19771/1-A

Matrix: Solid Analysis Batch: 19798

MB MB

LCS LCS

Sample Sample

Result

ND

ND

87

Qualifier

Qualifier

%Recovery

Result Qualifier Analyte

DRO (C10-C25) ND RRO (nC25-nC36) ND

MB MB Surrogate %Recovery Qualifier

1-Chlorooctadecane 90 Lab Sample ID: LCS 250-19771/2-A

Matrix: Solid Analysis Batch: 19798

Analyte

DRO (C10-C25) RRO (nC25-nC36)

Surrogate 1-Chlorooctadecane

Analyte

DRO (C10-C25)

RRO (nC25-nC36)

Lab Sample ID: 580-40016-3 DU

Matrix: Solid

Analysis Batch: 19797

DU DU Surrogate %Recovery

Qualifier 1-Chlorooctadecane 92

Client Sample ID: SB-5-11.5 Prep Type: Total/NA

Prep Batch: 19876

RPD D Limit NC 40 mg/Kg

Client Sample ID: Method Blank

09/04/13 10:49

Prep Type: Total/NA Prep Batch: 19771

Dil Fac Analyzed

09/04/13 06:59 09/04/13 10:49

Prepared Analyzed Dil Fac 09/04/13 06:59 09/04/13 10:49

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 19771

%Rec. Unit D %Rec Limits

Prepared

09/04/13 06:59

mg/Kg 96 50 - 150 94 mg/Kg 50 - 150

Client Sample ID: SB-6-12

Prep Type: Total/NA

Prep Batch: 19771

RPD **RPD** Limit 40

Qualifier Unit D 74 mg/Kg 13 ₽ 40 mg/Kg 12

Limits 50 - 150

QC Sample Results

Client: ERM-West TestAmerica Job ID: 580-40016-1

Project/Site: CenterPoint Seattle

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-144047/22-A

Lab Sample ID: LCS 580-144047/23-A

Matrix: Solid

Matrix: Solid

Analyte

Lead

Lead

Lead

Analysis Batch: 144092

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 144047**

мв мв

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.20 09/03/13 10:20 09/03/13 15:08 Lead ND mg/Kg

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 144047

Added Result Qualifier Unit %Rec Limits 50.0 48.3 mg/Kg 97 80 - 120

Lab Sample ID: LCSD 580-144047/24-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 144092

Analysis Batch: 144092

Spike Added

50.0

Spike

Added

103

Spike

LCSD LCSD Result Qualifier 48.3

LCSSRM LCSSRM

102

Result Qualifier

LCS LCS

Unit mg/Kg

D %Rec

%Rec. Limits 80 - 120

Client Sample ID: Lab Control Sample

RPD Limit

Prep Batch: 144047

Lab Sample ID: LCSSRM 580-144047/25-A

Matrix: Solid

Analysis Batch: 144092

Analyte

Unit

mg/Kg

%Rec 98.7 70.9 - 128.

97

Prep Batch: 144047 %Rec. Limits

Prep Type: Total/NA

2

RPD

Project/Site: CenterPoint Seattle

Client Sample ID: SB-5-11.5

Date Collected: 08/28/13 08:00

Date Received: 08/28/13 16:45

Lab Sample ID: 580-40016-1

Matrix: Solid
Percent Solids: 80.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA
Total/NA	Analysis	8260B		1	144096	09/04/13 01:21	JMB	TAL SEA
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 09:58	EKK	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 18:36	BJ1	TAL PRT
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19798	09/04/13 13:52	NMI	TAL PRT
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA
Total/NA	Analysis	6020		10	144092	09/03/13 16:36	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:01	KJV	TAL SEA

Lab Sample ID: 580-40016-2

Matrix: Solid

Client Sample ID: Trip Blank

Date Collected: 08/27/13 00:00 Date Received: 08/28/13 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA
Total/NA	Analysis	8260B		1	144096	09/03/13 23:24	JMB	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 18:08	BJ1	TAL PRT

Client Sample ID: SB-6-12

Date Collected: 08/28/13 08:45

Lab Sample ID: 580-40016-3

Matrix: Solid

Date Collected: 08/28/13 08:45

Date Received: 08/28/13 16:45

Percent Solids: 84.5

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA	
Total/NA	Analysis	8260B		1	144096	09/04/13 01:45	JMB	TAL SEA	
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA	
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 11:05	EKK	TAL SEA	
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT	
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 19:04	BJ1	TAL PRT	
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT	
Total/NA	Analysis	NWTPH-Dx		1	19797	09/04/13 14:10	NMI	TAL PRT	
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA	
Total/NA	Analysis	6020		10	144092	09/03/13 16:48	FCW	TAL SEA	
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:01	KJV	TAL SEA	

4

Client: ERM-West

Project/Site: CenterPoint Seattle

Lab Sample ID: 580-40016-4

Matrix: Solid
Percent Solids: 81.7

Client Sample ID: SB-8a-12 Date Collected: 08/28/13 09:15

Date Received: 08/28/13 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA
Total/NA	Analysis	8260B		1	144096	09/04/13 02:08	JMB	TAL SEA
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 11:27	EKK	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 19:32	BJ1	TAL PRT
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19798	09/04/13 14:10	NMI	TAL PRT
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA
Total/NA	Analysis	6020		10	144092	09/03/13 16:53	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:01	KJV	TAL SEA

Lab Sample ID: 580-40016-5

Matrix: Solid
Percent Solids: 76.3

Client Sample ID: SB-7-12
Date Collected: 08/28/13 09:50
Date Received: 08/28/13 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA
Total/NA	Analysis	8260B		1	144096	09/04/13 02:31	JMB	TAL SEA
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 11:49	EKK	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 20:00	BJ1	TAL PRT
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19797	09/04/13 14:28	NMI	TAL PRT
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA
Total/NA	Analysis	6020		10	144092	09/03/13 16:57	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:03	KJV	TAL SEA

Client Sample ID: SB-1-6

Date Collected: 08/28/13 10:45 Date Received: 08/28/13 16:45 Lab Sample ID: 580-40016-6

Matrix: Solid
Percent Solids: 73.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA
Total/NA	Analysis	8260B		1	144096	09/04/13 02:55	JMB	TAL SEA
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 12:11	EKK	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 20:28	BJ1	TAL PRT
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19797	09/04/13 14:46	NMI	TAL PRT
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA

TestAmerica Seattle

Page 30 of 38

L

5

7

0

10

2

Client: ERM-West

Project/Site: CenterPoint Seattle

Client Sample ID: SB-1-6

Date Collected: 08/28/13 10:45 Date Received: 08/28/13 16:45 Lab Sample ID: 580-40016-6

Matrix: Solid
Percent Solids: 73.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6020		10	144092	09/03/13 17:01	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:03	KJV	TAL SEA

Client Sample ID: SB-4-1.5 Lab Sample ID: 580-40016-7

Date Collected: 08/27/13 12:15

Date Received: 08/28/13 16:45

Matrix: Solid
Percent Solids: 77.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA
Total/NA	Analysis	8260B		1	144096	09/04/13 03:18	JMB	TAL SEA
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 12:34	EKK	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 20:56	BJ1	TAL PRT
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19797	09/04/13 15:05	NMI	TAL PRT
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA
Total/NA	Analysis	6020		10	144092	09/03/13 17:05	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:03	KJV	TAL SEA

Client Sample ID: SB-2-8

Date Collected: 08/28/13 11:45

Lab Sample ID: 580-40016-8

Matrix: Solid

Date Received: 08/28/13 16:45 Percent Solids: 68.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA
Total/NA	Analysis	8260B		1	144096	09/04/13 03:41	JMB	TAL SEA
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 12:56	EKK	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 21:24	BJ1	TAL PRT
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19798	09/04/13 14:28	NMI	TAL PRT
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA
Total/NA	Analysis	6020		10	144092	09/03/13 17:09	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:03	KJV	TAL SEA

Client Sample ID: SB-3-8

Date Collected: 08/28/13 12:30

Lab Sample ID: 580-40016-9

Matrix: Solid

Date Received: 08/28/13 16:45

Percent Solids: 66.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			144097	08/28/13 17:00	JMB	TAL SEA

Lab Chronicle

Client: ERM-West

Project/Site: CenterPoint Seattle

Client Sample ID: SB-3-8 Date Collected: 08/28/13 12:30 Date Received: 08/28/13 16:45 TestAmerica Job ID: 580-40016-1

Lab Sample ID: 580-40016-9

Percent Solids: 66.0

Lab Sample ID. 300-400 10-9	
Matrix: Solid	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	144096	09/04/13 04:05	JMB	TAL SEA
Total/NA	Prep	3550B			144681	09/11/13 09:37	RBL	TAL SEA
Total/NA	Analysis	8270C SIM		1	144760	09/12/13 13:18	EKK	TAL SEA
Total/NA	Prep	5035			19876	09/06/13 11:16	TDB	TAL PRT
Total/NA	Analysis	NWTPH-Gx		1	19902	09/06/13 21:52	BJ1	TAL PRT
Total/NA	Prep	3550B			19771	09/04/13 11:48	CAD	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19798	09/04/13 15:05	NMI	TAL PRT
Total/NA	Prep	3050B			144047	09/03/13 10:20	KJV	TAL SEA
Total/NA	Analysis	6020		10	144092	09/03/13 17:13	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	144060	09/03/13 12:03	KJV	TAL SEA

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

8

Ę

6

8

9

Certification Summary

Client: ERM-West

Project/Site: CenterPoint Seattle

TestAmerica Job ID: 580-40016-1

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	NFESC		N/A	05-24-08 *
Alaska (UST)	State Program	10	UST-022	03-04-14
California	NELAP	9	01115CA	01-31-14
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-14

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
Alaska (UST)	State Program	10	UST-012	12-26-13	
California	State Program	9	2597	09-30-13	
Oregon	NELAP	10	OR100021	01-09-14	
USDA	Federal		P330-11-00092	02-17-14	
Washington	State Program	10	C586	06-23-14	

6

4

5

6

8

9

10

^{*} Expired certification is currently pending renewal and is considered valid.

Sample Summary

Client: ERM-West

Project/Site: CenterPoint Seattle

TestAmerica Job ID: 580-40016-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-40016-1	SB-5-11.5	Solid	08/28/13 08:00	08/28/13 16:45
580-40016-2	Trip Blank	Solid	08/27/13 00:00	08/28/13 16:45
580-40016-3	SB-6-12	Solid	08/28/13 08:45	08/28/13 16:45
580-40016-4	SB-8a-12	Solid	08/28/13 09:15	08/28/13 16:45
580-40016-5	SB-7-12	Solid	08/28/13 09:50	08/28/13 16:45
580-40016-6	SB-1-6	Solid	08/28/13 10:45	08/28/13 16:45
580-40016-7	SB-4-1.5	Solid	08/27/13 12:15	08/28/13 16:45
580-40016-8	SB-2-8	Solid	08/28/13 11:45	08/28/13 16:45
580-40016-9	SB-3-8	Solid	08/28/13 12:30	08/28/13 16:45

3

4

5

7

8

9

Client ERM THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com Client Contact でdwards | Kusii Short Hold 18/18/13 Custody Record Chain of Chain of Custody Number

Comments 580-40016 Chain of Custody DISTRIBUTION: 1/h	3. Relinquished By	2. Relinquished By Sign/Plint	1. Relinquished By Sign/Pright Matt Crandell	Turn Around Time Required (business days) 24 Hours 48 Hours _A 5 Days 10 Days 15 Days	Cooler Possible Hazard Identification ☐ Yes ☐ No Cooler Temp: ☐ Non-Hazard ☐ Flan			- 5B-3-8 9 8k8/13	51818 8 8-1-88-	- 2B-4-1.5 7 B/2413	- 58-1-6 in 18hal/3	cile2/8 5 71-4-85.	= SB-8a-12 4 8/8/13	~ 5B-16-12 3 18/18/13	Trip Blank 2	-58-5-11.5, 1 8/28/13	Sample I.D. and Location/Description (Containers for each sample may be combined on one line) Date	Contract/Purchase Order/Quote No.	Project Name and Location (State) Center Wint Seattle	Seattle WA 98101	1218 30 Ave S	EXM
Cooler Dsc Lg. Lent with Report, PINK – Field Copy Well Packs Y/ d	Date Time 3. Rr	Date Time 2. Received By Sign/Print	Date Date Time 1. Received By Sign/Print	is Nother 9-day OC Requirements (Specify)	ımable 🗌 Skin Irritant 🔲 Poison			1230 X 4	X X	72.5	1045	0950 X 3	0612	0845 X 3	ا پر) 0800 X 3	Air Aqueous Sed. Soil Unpres. H2S04 HN03 HCI Na0H ZnAc/ Na0H	Matrix Containers & Preservatives	ERM Walnut Geck	MC Kis Aller	130 Atr	Deve Edwards
sc La Blue (white) Lab 1645 Cooler Dsc (ss. Packing \(\beta_n bb\) e \ \\ \(\forall / \delta \) \(\forall \	Cooler TR Did IR cor 12' unc 12' unc 12'	`	ranciscu Luna, Ir	secify)	nple Disposal Disposal By Lab Return To Client Archive For Months	50 sk 13)		14014	466	7××× 4× 1919 1919 1919	- ×××××	(メナ メ 太 ×	一大大大大	-X XX		MOCH TPH TPH BTE EDB, Total cPAH VPH	+ D + B EPC/	\. 837 5 13	more space is needed	Analysis (Masch list if	S/CS/IS
Cooler Dscla Bluz/wh.4@ Lab1645 Wet/Packs Packing Bhbb/4	Sig/IR cor 1.2° unc 1.2°	Date Time	8/28/13 1505		(A fee may be assessed if samples are retained longer than 1 month)				Still = anit alang									Conditions of Kecelpt	Special Instructions/		ge of	CZT07.

Client: ERM-West Job Number: 580-40016-1

Login Number: 40016 List Source: TestAmerica Seattle

List Number: 1

Creator: Balles, Racheal M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	No date or time provided for trip blank.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: ERM-West Job Number: 580-40016-1

List Number: 40016
List Number: 1
List Creation: 09/04/13 11:42 AM

Creator: Svabik-Seror, Philip M

orcator. Orabit octor, i timp in		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Client: ERM-West Job Number: 580-40016-1

List Source: TestAmerica Portland
List Number: 2
List Creation: 09/04/13 11:49 AM

Creator: Svabik-Seror, Philip M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-40033-1

Client Project/Site: CenterPoint, Seattle, WA

For:

ERM-West 1218 3rd Ave Suite 1412 Seattle, Washington 98101

Attn: Dave Edwards

Knistène D. allen

Authorized for release by: 9/13/2013 9:51:42 AM

Kristine Allen, Project Manager I kristine.allen@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	
Chronicle	36
Certification Summary	38
Sample Summary	40
Chain of Custody	41
Receipt Checklists	43
sotope Dilution Summary	47

2

4

5

9

Case Narrative

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Job ID: 580-40033-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative

Receipt

The samples were received on 8/29/2013 4:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.9° C.

Except:

The labels on the ambers and metals polys of sample MW-2-082913 (580-40033-1) lacks the sampling time. Sample is lined up/logged in per requested analyses listed on the labels.

The COC lists 8270SIM but the job was quoted for full list 8270, logged in per the quote.

GC/MS Semi VOA - Method(s) 8270C

A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for four analytes to recover outside criteria for this method when a full list spike is utilized. The LCS and LCSD associated with prep batch 144057 both had one analyte outside control limits (low N-nitrosodiphenylamine); therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

No other analytical or quality issues were noted.

GC Semi VOA - Method(s) NWTPH-Dx

Detected hydrocarbons appear to be due to biogenic interference.MW-1-082913 (580-40033-2)

No other analytical or quality issues were noted.

Dioxin

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Dioxin Prep

No analytical or quality issues were noted.

3

3

9

10

11

Definitions/Glossary

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Relative error ratio

TestAmerica Job ID: 580-40033-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits

Glossary

PQL

QC

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Lab Sample ID: 580-40033-1

Matrix: Water

Client Sample ID: MW-2-082913

Date Collected: 08/29/13 11:13 Date Received: 08/29/13 16:10

Analyte	Result Qualifi	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND ND	0.20	ug/L			09/06/13 23:21	
2-Chlorotoluene	ND	0.10	ug/L			09/06/13 23:21	
1,2,3-Trichloropropane	ND	0.20	ug/L			09/06/13 23:21	
Carbon tetrachloride	ND	0.10	ug/L			09/06/13 23:21	
cis-1,3-Dichloropropene	ND	0.10	ug/L			09/06/13 23:21	
Chlorobenzene	ND	0.10	ug/L			09/06/13 23:21	
/inyl chloride	ND	0.020	ug/L			09/06/13 23:21	
sec-Butylbenzene	ND	0.10	ug/L			09/06/13 23:21	
Dibromomethane	ND	0.10	ug/L			09/06/13 23:21	
n-Xylene & p-Xylene	ND	0.20	ug/L			09/06/13 23:21	
p-Xylene	ND	0.10	ug/L			09/06/13 23:21	
1,2,4-Trichlorobenzene	ND	0.20	ug/L			09/06/13 23:21	
Styrene	ND	0.10	ug/L			09/06/13 23:21	
Chlorobromomethane	ND	0.10	ug/L			09/06/13 23:21	
Dichlorobromomethane	ND	0.10	ug/L			09/06/13 23:21	
1,3-Dichlorobenzene	ND	0.10	ug/L ug/L			09/06/13 23:21	
Benzene	ND	0.10	ug/L			09/06/13 23:21	
Chloroethane	ND	0.10	ug/L			09/06/13 23:21	
	ND	0.10	.			09/06/13 23:21	
rans-1,3-Dichloropropene ,2,3-Trichlorobenzene	ND ND	0.10	ug/L			09/06/13 23:21	
	ND ND	0.40	ug/L			09/06/13 23:21	
I-Propylbenzene			ug/L			09/06/13 23:21	
-Isopropyltoluene	ND	0.20	ug/L				
-Butylbenzene	ND	0.10	ug/L			09/06/13 23:21	
,1-Dichloropropene	ND	0.10	ug/L			09/06/13 23:21	
is-1,2-Dichloroethene	ND	0.10	ug/L			09/06/13 23:21	
,1,2,2-Tetrachloroethane	ND	0.10	ug/L			09/06/13 23:21	
,2,4-Trimethylbenzene	ND	0.10	ug/L			09/06/13 23:21	
oluene	ND	0.10	ug/L			09/06/13 23:21	
laphthalene	ND	0.40	ug/L			09/06/13 23:21	
,3,5-Trimethylbenzene	ND	0.10	ug/L			09/06/13 23:21	
,3-Dichloropropane	ND	0.10	ug/L			09/06/13 23:21	
Chloroform	3.9	0.10	ug/L			09/06/13 23:21	
-Chlorotoluene	ND	0.20	ug/L			09/06/13 23:21	
Chlorodibromomethane	ND	0.10	ug/L			09/06/13 23:21	
Dichlorodifluoromethane	ND	0.40	ug/L			09/06/13 23:21	
,1,2-Trichloroethane	ND	0.10	ug/L			09/06/13 23:21	
ert-Butylbenzene	ND	0.10	ug/L			09/06/13 23:21	
Chloromethane	ND	0.10	ug/L			09/06/13 23:21	
Methylene Chloride	ND	0.50	ug/L			09/06/13 23:21	
,1-Dichloroethene	ND	0.10	ug/L			09/06/13 23:21	
sopropylbenzene	ND	0.10	ug/L			09/06/13 23:21	
,2-Dichloroethane	ND	0.10	ug/L			09/06/13 23:21	
etrachloroethene	ND	0.10	ug/L			09/06/13 23:21	
,1,1-Trichloroethane	ND	0.10	ug/L			09/06/13 23:21	
,2-Dichloropropane	ND	0.10	ug/L			09/06/13 23:21	
,2-Dibromoethane	ND	0.10	ug/L			09/06/13 23:21	
Bromoform	ND	0.10	ug/L			09/06/13 23:21	
,2-Dibromo-3-Chloropropane	ND	0.40	ug/L			09/06/13 23:21	

TestAmerica Seattle

2

6

8

9

11

Client: ERM-West

Client Sample ID: MW-2-082913

Project/Site: CenterPoint, Seattle, WA

Lab Sample ID: 580-40033-1

TestAmerica Job ID: 580-40033-1

Date Collected: 08/29/13 11:13 Date Received: 08/29/13 16:10

Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds (GC/MS) (Cd	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.10		ug/L			09/06/13 23:21	1
Bromobenzene	ND		0.10		ug/L			09/06/13 23:21	1
1,2-Dichloropropane	ND		0.10		ug/L			09/06/13 23:21	1
1,1,1,2-Tetrachloroethane	ND		0.10		ug/L			09/06/13 23:21	1
Ethylbenzene	ND		0.10		ug/L			09/06/13 23:21	1
trans-1,2-Dichloroethene	ND		0.10		ug/L			09/06/13 23:21	1
Hexachlorobutadiene	ND		0.20		ug/L			09/06/13 23:21	1
1,1-Dichloroethane	ND		0.10		ug/L			09/06/13 23:21	1
Bromomethane	ND		0.10		ug/L			09/06/13 23:21	1
1,4-Dichlorobenzene	ND		0.20		ug/L			09/06/13 23:21	1
Methyl tert-butyl ether	ND		0.10		ug/L			09/06/13 23:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		75 - 120			-		09/06/13 23:21	1
Ethylbenzene-d10	89		75 - 125					09/06/13 23:21	1
Fluorobenzene (Surr)	92		70 - 130					09/06/13 23:21	1
Trifluorotoluene (Surr)	97		80 - 125					09/06/13 23:21	1
Toluene-d8 (Surr)	91		75 - 125					09/06/13 23:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND	· —	0.63		ug/L		09/03/13 11:49	09/12/13 04:33	1
Bis(2-chloroethyl)ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2-Chlorophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
1,3-Dichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
1,4-Dichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Benzyl alcohol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
1,2-Dichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2-Methylphenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
3 & 4 Methylphenol	ND		0.84		ug/L		09/03/13 11:49	09/12/13 04:33	1
N-Nitrosodi-n-propylamine	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Hexachloroethane	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:33	1
Nitrobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Isophorone	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2-Nitrophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2,4-Dimethylphenol	ND		2.1		ug/L		09/03/13 11:49	09/12/13 04:33	1
Benzoic acid	ND		3.2		ug/L		09/03/13 11:49	09/12/13 04:33	1
Bis(2-chloroethoxy)methane	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2,4-Dichlorophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
1,2,4-Trichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Naphthalene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
4-Chloroaniline	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Hexachlorobutadiene	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:33	1
4-Chloro-3-methylphenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2-Methylnaphthalene	ND		0.21		ug/L		09/03/13 11:49	09/12/13 04:33	1
Hexachlorocyclopentadiene	ND		2.1		ug/L		09/03/13 11:49	09/12/13 04:33	1
2,4,6-Trichlorophenol	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:33	1
2,4,5-Trichlorophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2-Chloronaphthalene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
2-Nitroaniline	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1

4

Client: ERM-West

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: MW-2-082913

Date Collected: 08/29/13 11:13 Date Received: 08/29/13 16:10 Lab Sample ID: 580-40033-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Acenaphthylene	ND		0.084		ug/L		09/03/13 11:49	09/12/13 04:33	1
2,6-Dinitrotoluene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
3-Nitroaniline	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Acenaphthene	ND		0.11		ug/L		09/03/13 11:49	09/12/13 04:33	1
2,4-Dinitrophenol	ND		5.3		ug/L		09/03/13 11:49	09/12/13 04:33	1
4-Nitrophenol	ND		3.2		ug/L		09/03/13 11:49	09/12/13 04:33	1
Dibenzofuran	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
2,4-Dinitrotoluene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Diethyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
4-Chlorophenyl phenyl ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Fluorene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
4-Nitroaniline	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:33	1
4,6-Dinitro-2-methylphenol	ND		4.2		ug/L		09/03/13 11:49	09/12/13 04:33	1
N-Nitrosodiphenylamine	ND	*	0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
4-Bromophenyl phenyl ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Hexachlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Pentachlorophenol	ND		0.74		ug/L		09/03/13 11:49	09/12/13 04:33	1
Phenanthrene	ND		0.084		ug/L		09/03/13 11:49	09/12/13 04:33	1
Anthracene	ND		0.042		ug/L		09/03/13 11:49	09/12/13 04:33	1
Di-n-butyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Fluoranthene	ND		0.053		ug/L		09/03/13 11:49	09/12/13 04:33	1
Pyrene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
Butyl benzyl phthalate	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:33	1
3,3'-Dichlorobenzidine	ND		2.1		ug/L		09/03/13 11:49	09/12/13 04:33	1
Benzo[a]anthracene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
Chrysene	ND		0.042		ug/L		09/03/13 11:49	09/12/13 04:33	1
Bis(2-ethylhexyl) phthalate	ND		3.2		ug/L		09/03/13 11:49	09/12/13 04:33	1
Di-n-octyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Benzo[a]pyrene	ND		0.042		ug/L		09/03/13 11:49	09/12/13 04:33	1
Indeno[1,2,3-cd]pyrene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
Dibenz(a,h)anthracene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
Benzo[g,h,i]perylene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
Carbazole	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
1-Methylnaphthalene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	1
Benzo[b]fluoranthene	ND		0.084		ug/L		09/03/13 11:49	09/12/13 04:33	1
Benzo[k]fluoranthene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:33	
bis (2-chloroisopropyl) ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorophenol	70		20 - 134				09/03/13 11:49	09/12/13 04:33	1
Phenol-d5	74		55 ₋ 125				09/03/13 11:49	09/12/13 04:33	1

	 Method: NWTPH-Gx - Northwest - '	Volatile Petro	oleum Produ	icts (GC)							
ı	Analyte	Result	Qualifier	RL	MDL	Unit	D	Pre	epared	Analyzed	Dil Fac
	Gasoline	ND		0.050		mg/L				09/04/13 20:17	1

62 - 125

66 - 140

44 - 125

20 - 150

76

72

78

98

TestAmerica Seattle

09/12/13 04:33

09/12/13 04:33

09/12/13 04:33

09/12/13 04:33

09/03/13 11:49

09/03/13 11:49

09/03/13 11:49

09/03/13 11:49

TestAmerica Job ID: 580-40033-1

Client Sample ID: MW-2-082913

Date Received: 08/29/13 16:10

Lab Sample ID: 580-40033-1 Date Collected: 08/29/13 11:13

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		50 - 150	_		09/04/13 20:17	1
Trifluorotoluene (Surr)	91		50 ₋ 150			09/04/13 20:17	1

Surrogate	%Recovery	Qualifier	Limits		Preparea	Anaiyzea	DII Fac
4-Bromofluorobenzene (Surr)	97		50 - 150	-		09/04/13 20:17	1
Trifluorotoluene (Surr)	91		50 - 150			09/04/13 20:17	1
_							

Method: NWTPH-Dx - Northwest	t - Semi-Volatile Petrole	eum Products (G0	C)				
Analyte	Result Qualifier	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND ND	0.096	mg/L		09/05/13 11:26	09/05/13 14:13	1
RRO (nC25-nC36)	ND	0.24	mg/L		09/05/13 11:26	09/05/13 14:13	1
Surrogate	%Recovery Qualifier	r Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	102	50 - 150			09/05/13 11:26	09/05/13 14:13	1

Method: 6010B - Metals (ICF	P) - Total Recoverab	le							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		1.5	ī	mg/L		08/30/13 15:40	09/06/13 02:23	1
Calcium	20		1.1	1	mg/L		08/30/13 15:40	09/06/13 02:23	1
Magnesium	3.8		1.1	1	mg/L		08/30/13 15:40	09/06/13 02:23	1
Potassium	ND		3.3		mg/L		08/30/13 15:40	09/06/13 02:23	1
Sodium	3.9		2.0	1	mg/L		08/30/13 15:40	09/06/13 02:23	1

Method: 6010B - Metals (ICP)) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND ND		1.5		mg/L		08/30/13 15:40	09/06/13 02:29	1
Calcium	20		1.1		mg/L		08/30/13 15:40	09/06/13 02:29	1
Magnesium	3.6		1.1		mg/L		08/30/13 15:40	09/06/13 02:29	1
Potassium	ND		3.3		mg/L		08/30/13 15:40	09/06/13 02:29	1
Sodium	4.2		2.0		mg/L		08/30/13 15:40	09/06/13 02:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Arsenic	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:37	5
Barium	0.012		0.0060		mg/L		08/30/13 15:40	09/03/13 13:37	5
Beryllium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Cadmium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Chromium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Cobalt	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Copper	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:37	5
Iron	ND		0.20		mg/L		08/30/13 15:40	09/03/13 13:37	5
Lead	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Manganese	0.010		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Nickel	ND		0.015		mg/L		08/30/13 15:40	09/03/13 13:37	5
Selenium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:37	5
Silver	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:37	5
Thallium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:37	5
Vanadium	ND		0.010		mg/L		08/30/13 15:40	09/03/13 13:37	5
Zinc	ND		0.0070		mg/L		08/30/13 15:40	09/03/13 13:37	5

Method: 6020 - Metals (ICP/MS) - D	issolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:42	5
Antimony	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Lab Sample ID: 580-40033-1

Matrix: Water

Client Sample ID: MW-2-082913

Date Collected: 08/29/13 11:13 Date Received: 08/29/13 16:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.012		0.0060		mg/L		08/30/13 15:40	09/03/13 13:42	5
Beryllium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5
Cadmium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5
Chromium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5
Cobalt	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5
Copper	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:42	5
Iron	ND		0.20		mg/L		08/30/13 15:40	09/03/13 13:42	5
Lead	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5
Manganese	0.010		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5
Nickel	ND		0.015		mg/L		08/30/13 15:40	09/03/13 13:42	5
Selenium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:42	5
Silver	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:42	5
Thallium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:42	5
Vanadium	ND		0.010		mg/L		08/30/13 15:40	09/03/13 13:42	5
Zinc -	ND		0.0070		mg/L		08/30/13 15:40	09/03/13 13:42	5
Method: 7470A - Mercury (CVAA)	Dooult	Qualifier	DI	MDI	11-:4	ь.	Drawavad	Analyzad	Dil Foe
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury Method: 7470A - Mercury (CVAA) - Di	ND ssolved		0.00020		mg/L		09/05/13 11:21	09/05/13 14:46	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	ND		0.00020		mg/L		09/05/13 11:21	09/05/13 14:51	

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Client Sample ID: MW-1-082913

Lab Sample ID: 580-40033-2 Date Collected: 08/29/13 14:23 Matrix: Water

Date Received: 08/29/13 16:10

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND ND	0.20	ug/L		09/06/13 23:45	
2-Chlorotoluene	ND	0.10	ug/L		09/06/13 23:45	
1,2,3-Trichloropropane	ND	0.20	ug/L		09/06/13 23:45	
Carbon tetrachloride	ND	0.10	ug/L		09/06/13 23:45	
cis-1,3-Dichloropropene	ND	0.10	ug/L		09/06/13 23:45	
Chlorobenzene	ND	0.10	ug/L		09/06/13 23:45	
Vinyl chloride	ND	0.020	ug/L		09/06/13 23:45	
sec-Butylbenzene	ND	0.10	ug/L		09/06/13 23:45	
Dibromomethane	ND	0.10	ug/L		09/06/13 23:45	
m-Xylene & p-Xylene	ND	0.20	ug/L		09/06/13 23:45	
o-Xylene	ND	0.10	ug/L		09/06/13 23:45	
1,2,4-Trichlorobenzene	ND	0.20	ug/L		09/06/13 23:45	
Styrene	ND	0.10	ug/L		09/06/13 23:45	
Chlorobromomethane	ND	0.10	ug/L		09/06/13 23:45	
Dichlorobromomethane	ND	0.10	ug/L		09/06/13 23:45	
1,3-Dichlorobenzene	ND	0.20	ug/L		09/06/13 23:45	
Benzene	ND	0.10	ug/L		09/06/13 23:45	
Chloroethane	ND	0.25	ug/L		09/06/13 23:45	
trans-1,3-Dichloropropene	ND	0.10	ug/L		09/06/13 23:45	
1,2,3-Trichlorobenzene	ND	0.40	ug/L		09/06/13 23:45	
N-Propylbenzene	ND	0.10	ug/L		09/06/13 23:45	
4-Isopropyltoluene	ND	0.20	ug/L		09/06/13 23:45	
n-Butylbenzene	ND	0.10	ug/L		09/06/13 23:45	
1,1-Dichloropropene	ND	0.10	ug/L		09/06/13 23:45	
cis-1,2-Dichloroethene	ND	0.10	ug/L		09/06/13 23:45	
1,1,2,2-Tetrachloroethane	ND	0.10	ug/L		09/06/13 23:45	
1,2,4-Trimethylbenzene	ND	0.10	ug/L		09/06/13 23:45	
Toluene	ND	0.10	ug/L		09/06/13 23:45	
Naphthalene	ND	0.40	ug/L		09/06/13 23:45	
1,3,5-Trimethylbenzene	ND	0.10	ug/L		09/06/13 23:45	
1,3-Dichloropropane	ND	0.10	ug/L		09/06/13 23:45	
Chloroform	ND	0.10	ug/L		09/06/13 23:45	
4-Chlorotoluene	ND	0.20	ug/L		09/06/13 23:45	
Chlorodibromomethane	ND	0.10	ug/L		09/06/13 23:45	
Dichlorodifluoromethane	ND	0.40	ug/L		09/06/13 23:45	
1,1,2-Trichloroethane	ND	0.10	ug/L		09/06/13 23:45	
tert-Butylbenzene	ND	0.10	ug/L		09/06/13 23:45	
Chloromethane	ND	0.10	ug/L		09/06/13 23:45	
Methylene Chloride	ND	0.10	ug/L		09/06/13 23:45	
	ND	0.10			09/06/13 23:45	
1,1-Dichloroethene Isopropylbenzene	ND ND	0.10	ug/L		09/06/13 23:45	
1,2-Dichloroethane	ND ND	0.10	ug/L ug/L		09/06/13 23:45	
Tetrachloroethene	ND ND	0.10			09/06/13 23:45	
			ug/L			
1,1,1-Trichloroethane	ND ND	0.10	ug/L		09/06/13 23:45	
2,2-Dichloropropane	ND	0.10	ug/L		09/06/13 23:45	
1,2-Dibromoethane	ND	0.10	ug/L		09/06/13 23:45	
Bromoform	ND	0.10	ug/L		09/06/13 23:45	
1,2-Dibromo-3-Chloropropane Trichlorofluoromethane	ND ND	0.40	ug/L		09/06/13 23:45 09/06/13 23:45	

4

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: MW-1-082913

Date Collected: 08/29/13 14:23 Date Received: 08/29/13 16:10 Lab Sample ID: 580-40033-2

Matrix: Water

Method: 8260B - Volatile Orga	inic Compounds (GC/MS) (Cd	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.10		ug/L			09/06/13 23:45	1
Bromobenzene	ND		0.10		ug/L			09/06/13 23:45	1
1,2-Dichloropropane	ND		0.10		ug/L			09/06/13 23:45	1
1,1,1,2-Tetrachloroethane	ND		0.10		ug/L			09/06/13 23:45	1
Ethylbenzene	ND		0.10		ug/L			09/06/13 23:45	1
trans-1,2-Dichloroethene	ND		0.10		ug/L			09/06/13 23:45	1
Hexachlorobutadiene	ND		0.20		ug/L			09/06/13 23:45	1
1,1-Dichloroethane	ND		0.10		ug/L			09/06/13 23:45	1
Bromomethane	ND		0.10		ug/L			09/06/13 23:45	1
1,4-Dichlorobenzene	ND		0.20		ug/L			09/06/13 23:45	1
Methyl tert-butyl ether	ND		0.10		ug/L			09/06/13 23:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		75 - 120			-		09/06/13 23:45	1
Ethylbenzene-d10	84		75 - 125					09/06/13 23:45	1
Fluorobenzene (Surr)	98		70 - 130					09/06/13 23:45	1
Trifluorotoluene (Surr)	87		80 - 125					09/06/13 23:45	1
Toluene-d8 (Surr)	81		75 - 125					09/06/13 23:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:58	1
Bis(2-chloroethyl)ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2-Chlorophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
1,3-Dichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
1,4-Dichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Benzyl alcohol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
1,2-Dichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2-Methylphenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
3 & 4 Methylphenol	ND		0.84		ug/L		09/03/13 11:49	09/12/13 04:58	1
N-Nitrosodi-n-propylamine	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Hexachloroethane	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:58	1
Nitrobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Isophorone	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2-Nitrophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2,4-Dimethylphenol	ND		2.1		ug/L		09/03/13 11:49	09/12/13 04:58	1
Benzoic acid	ND		3.2		ug/L		09/03/13 11:49	09/12/13 04:58	1
Bis(2-chloroethoxy)methane	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2,4-Dichlorophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
1,2,4-Trichlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Naphthalene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
4-Chloroaniline	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Hexachlorobutadiene	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:58	1
4-Chloro-3-methylphenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2-Methylnaphthalene	ND		0.21		ug/L		09/03/13 11:49	09/12/13 04:58	1
Hexachlorocyclopentadiene	ND		2.1		ug/L		09/03/13 11:49	09/12/13 04:58	1
2,4,6-Trichlorophenol	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:58	1
2,4,5-Trichlorophenol	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2-Chloronaphthalene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
2-Nitroaniline	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1

Client: ERM-West

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: MW-1-082913

Date Collected: 08/29/13 14:23 Date Received: 08/29/13 16:10 Lab Sample ID: 580-40033-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Acenaphthylene	ND		0.084		ug/L		09/03/13 11:49	09/12/13 04:58	1
2,6-Dinitrotoluene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
3-Nitroaniline	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Acenaphthene	ND		0.11		ug/L		09/03/13 11:49	09/12/13 04:58	1
2,4-Dinitrophenol	ND		5.3		ug/L		09/03/13 11:49	09/12/13 04:58	1
4-Nitrophenol	ND		3.2		ug/L		09/03/13 11:49	09/12/13 04:58	1
Dibenzofuran	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
2,4-Dinitrotoluene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Diethyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
4-Chlorophenyl phenyl ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Fluorene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
4-Nitroaniline	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:58	1
4,6-Dinitro-2-methylphenol	ND		4.2		ug/L		09/03/13 11:49	09/12/13 04:58	1
N-Nitrosodiphenylamine	ND	*	0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
4-Bromophenyl phenyl ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Hexachlorobenzene	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Pentachlorophenol	ND		0.74		ug/L		09/03/13 11:49	09/12/13 04:58	1
Phenanthrene	ND		0.084		ug/L		09/03/13 11:49	09/12/13 04:58	1
Anthracene	ND		0.042		ug/L		09/03/13 11:49	09/12/13 04:58	1
Di-n-butyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Fluoranthene	ND		0.053		ug/L		09/03/13 11:49	09/12/13 04:58	1
Pyrene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
Butyl benzyl phthalate	ND		0.63		ug/L		09/03/13 11:49	09/12/13 04:58	1
3,3'-Dichlorobenzidine	ND		2.1		ug/L		09/03/13 11:49	09/12/13 04:58	1
Benzo[a]anthracene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
Chrysene	ND		0.042		ug/L		09/03/13 11:49	09/12/13 04:58	1
Bis(2-ethylhexyl) phthalate	ND		3.2		ug/L		09/03/13 11:49	09/12/13 04:58	1
Di-n-octyl phthalate	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Benzo[a]pyrene	ND		0.042		ug/L		09/03/13 11:49	09/12/13 04:58	1
Indeno[1,2,3-cd]pyrene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
Dibenz(a,h)anthracene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
Benzo[g,h,i]perylene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
Carbazole	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
1-Methylnaphthalene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	1
Benzo[b]fluoranthene	ND		0.084		ug/L		09/03/13 11:49	09/12/13 04:58	1
Benzo[k]fluoranthene	ND		0.063		ug/L		09/03/13 11:49	09/12/13 04:58	
bis (2-chloroisopropyl) ether	ND		0.42		ug/L		09/03/13 11:49	09/12/13 04:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorophenol	73		20 - 134				09/03/13 11:49	09/12/13 04:58	1
Phenol-d5	82		55 ₋ 125				09/03/13 11:49	09/12/13 04:58	1

	Volatile Petro	leum Produ	icts (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.050		mg/L				09/04/13 19:54	1

62 - 125

66 - 140

44 - 125

20 - 150

82

85

97

110

TestAmerica Seattle

09/12/13 04:58

09/12/13 04:58

09/12/13 04:58

09/12/13 04:58

09/03/13 11:49

09/03/13 11:49

09/03/13 11:49

09/03/13 11:49

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: MW-1-082913

Date Collected: 08/29/13 14:23 Date Received: 08/29/13 16:10 Lab Sample ID: 580-40033-2

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	97		50 - 150					09/04/13 19:54	
Trifluorotoluene (Surr)	91		50 - 150					09/04/13 19:54	
Method: NWTPH-Dx - Northwe	st - Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
DRO (C10-C25)	0.17		0.11		mg/L		09/05/13 11:26	09/05/13 14:32	-
RRO (nC25-nC36)	ND		0.27		mg/L		09/05/13 11:26	09/05/13 14:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Chlorooctadecane	102		50 - 150				09/05/13 11:26	09/05/13 14:32	
Method: 6010B - Metals (ICP) -	Total Recoverab	le							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	ND		1.5		mg/L	— <u> </u>	08/30/13 15:40	09/06/13 02:26	
Calcium	24		1.1		mg/L		08/30/13 15:40	09/06/13 02:26	
Magnesium	17		1.1		mg/L		08/30/13 15:40	09/06/13 02:26	
Potassium	14		3.3		mg/L		08/30/13 15:40	09/06/13 02:26	
Sodium	37		2.0		mg/L		08/30/13 15:40	09/06/13 02:26	
					Ü				
Method: 6010B - Metals (ICP) - Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	ND	Qualifier	1.5	MIDE	mg/L		08/30/13 15:40	09/06/13 02:32	- 1111
Calcium	23		1.1		mg/L		08/30/13 15:40	09/06/13 02:32	
	17		1.1		mg/L		08/30/13 15:40	09/06/13 02:32	
Magnesium			3.3		mg/L		08/30/13 15:40	09/06/13 02:32	
Potassium Sodium	14 43		2.0		mg/L		08/30/13 15:40	09/06/13 02:32	
Soulum	43		2.0		mg/L		00/30/13 13.40	09/00/13 02:32	
Method: 6020 - Metals (ICP/MS			Di	MDI	11:4	_	Dunnanad	Amakanad	D:: F
Analyte Antimony	ND Result	Qualifier		MDL	mg/L	D	Prepared 08/30/13 15:40	Analyzed 09/03/13 13:29	Dil F
Arsenic	ND ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:29	
	0.017		0.0060		mg/L		08/30/13 15:40	09/03/13 13:29	
Barium	0.017 ND		0.0020				08/30/13 15:40	09/03/13 13:29	
Beryllium Cadmium	ND ND		0.0020		mg/L mg/L		08/30/13 15:40	09/03/13 13:29	
Chromium	ND ND		0.0020		_		08/30/13 15:40	09/03/13 13:29	
	ND				mg/L			09/03/13 13:29	
Cobalt	ND ND		0.0020 0.0050		mg/L		08/30/13 15:40		
Copper					mg/L		08/30/13 15:40	09/03/13 13:29	
lron	2.1		0.20		mg/L		08/30/13 15:40	09/03/13 13:29	
Lead	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:29	
Manganese Niekol	0.46		0.0020		mg/L		08/30/13 15:40	09/03/13 13:29	
Nickel	ND		0.015		mg/L		08/30/13 15:40	09/03/13 13:29	
Selenium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:29	
Silver	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:29	
Thallium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:29	
Vanadium 	0.016		0.010		mg/L		08/30/13 15:40	09/03/13 13:29	
Zinc	0.017		0.0070		mg/L		08/30/13 15:40	09/03/13 13:29	
Method: 6020 - Metals (ICP/MS	6) - Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:46	
Antimony	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Client Sample ID: MW-1-082913 Lab Sample ID: 580-40033-2

Matrix: Water

Date Collected: 08/29/13 14:23 Date Received: 08/29/13 16:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.016		0.0060		mg/L		08/30/13 15:40	09/03/13 13:46	5
Beryllium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	5
Cadmium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	5
Chromium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	5
Cobalt	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	5
Copper	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:46	5
Iron	2.2		0.20		mg/L		08/30/13 15:40	09/03/13 13:46	5
Lead	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	5
Manganese	0.45		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	5
Nickel	ND		0.015		mg/L		08/30/13 15:40	09/03/13 13:46	5
Selenium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:46	5
Silver	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 13:46	5
Thallium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 13:46	5
Vanadium	0.018		0.010		mg/L		08/30/13 15:40	09/03/13 13:46	5
Zinc	0.017		0.0070		mg/L		08/30/13 15:40	09/03/13 13:46	5
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		09/05/13 11:21	09/05/13 14:49	1
Method: 7470A - Mercury (CVAA) - D	issolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		09/05/13 11:21	09/05/13 14:54	1

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: Trip Blank-GW1

TestAmerica Job ID: 580-40033-1

Lab Sample ID: 580-40033-3

Matrix: Water

Date Collected: 08/29/13 00:00 Date Received: 08/29/13 16:10

1,2-Dibromo-3-Chloropropane

Trichlorofluoromethane

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND ND	0.20	ug/L		09/06/13 16:16	1
2-Chlorotoluene	ND	0.10	ug/L		09/06/13 16:16	1
1,2,3-Trichloropropane	ND	0.20	ug/L		09/06/13 16:16	1
Carbon tetrachloride	ND	0.10	ug/L		09/06/13 16:16	1
cis-1,3-Dichloropropene	ND	0.10	ug/L		09/06/13 16:16	1
Chlorobenzene	ND	0.10	ug/L		09/06/13 16:16	1
Vinyl chloride	ND	0.020	ug/L		09/06/13 16:16	1
sec-Butylbenzene	ND	0.10	ug/L		09/06/13 16:16	1
Dibromomethane	ND	0.10	ug/L		09/06/13 16:16	1
m-Xylene & p-Xylene	ND	0.20	ug/L		09/06/13 16:16	1
o-Xylene	ND	0.10	ug/L		09/06/13 16:16	1
1,2,4-Trichlorobenzene	ND	0.20	ug/L		09/06/13 16:16	1
Styrene	ND	0.10	ug/L		09/06/13 16:16	1
Chlorobromomethane	ND	0.10	ug/L		09/06/13 16:16	1
Dichlorobromomethane	ND	0.10	ug/L		09/06/13 16:16	1
1,3-Dichlorobenzene	ND	0.20	ug/L		09/06/13 16:16	1
Benzene	ND	0.10	ug/L		09/06/13 16:16	1
Chloroethane	ND	0.25	ug/L		09/06/13 16:16	1
trans-1,3-Dichloropropene	ND	0.10	ug/L		09/06/13 16:16	1
1,2,3-Trichlorobenzene	ND	0.40	ug/L		09/06/13 16:16	1
N-Propylbenzene	ND	0.10	ug/L		09/06/13 16:16	1
4-Isopropyltoluene	ND	0.20	ug/L		09/06/13 16:16	1
n-Butylbenzene	ND	0.10	ug/L		09/06/13 16:16	1
1,1-Dichloropropene	ND	0.10	ug/L		09/06/13 16:16	1
cis-1,2-Dichloroethene	ND	0.10	ug/L		09/06/13 16:16	1
1,1,2,2-Tetrachloroethane	ND	0.10	ug/L		09/06/13 16:16	1
1,2,4-Trimethylbenzene	ND	0.10	ug/L		09/06/13 16:16	1
Toluene	ND	0.10	ug/L		09/06/13 16:16	1
Naphthalene	ND	0.40	ug/L		09/06/13 16:16	1
1,3,5-Trimethylbenzene	ND	0.10	ug/L		09/06/13 16:16	1
1,3-Dichloropropane	ND	0.10	ug/L		09/06/13 16:16	1
Chloroform	ND	0.10	ug/L		09/06/13 16:16	1
4-Chlorotoluene	ND	0.20	ug/L		09/06/13 16:16	1
Chlorodibromomethane	ND	0.10	ug/L		09/06/13 16:16	1
Dichlorodifluoromethane	ND	0.40	ug/L		09/06/13 16:16	1
1,1,2-Trichloroethane	ND	0.10	ug/L		09/06/13 16:16	1
tert-Butylbenzene	ND	0.10	ug/L		09/06/13 16:16	· · · · · · · · · · · · · · · · · · ·
Chloromethane	ND	0.10	ug/L		09/06/13 16:16	1
Methylene Chloride	ND	0.50	ug/L		09/06/13 16:16	1
1,1-Dichloroethene	ND	0.10	ug/L		09/06/13 16:16	1
Isopropylbenzene	ND	0.10	ug/L		09/06/13 16:16	1
1,2-Dichloroethane	ND	0.10	ug/L		09/06/13 16:16	1
Tetrachloroethene	ND	0.10	ug/L		09/06/13 16:16	· · · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroethane	ND	0.10	ug/L		09/06/13 16:16	1
2,2-Dichloropropane	ND	0.10	ug/L		09/06/13 16:16	1
1,2-Dibromoethane	ND	0.10	ug/L ug/L		09/06/13 16:16	
Bromoform	ND	0.10	ug/L		09/06/13 16:16	1

TestAmerica Seattle

09/06/13 16:16

09/06/13 16:16

0.40

0.10

ug/L

ug/L

ND

ND

4

6

8

4.0

1 1

Client: ERM-West

Fluorobenzene (Surr)

Trifluorotoluene (Surr)

Toluene-d8 (Surr)

Project/Site: CenterPoint, Seattle, WA

Date Received: 08/29/13 16:10

TestAmerica Job ID: 580-40033-1

09/06/13 16:16

09/06/13 16:16

09/06/13 16:16

Client Sample ID: Trip Blank-GW1

Lab Sample ID: 580-40033-3 Date Collected: 08/29/13 00:00

Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds (GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.10		ug/L			09/06/13 16:16	1
Bromobenzene	ND		0.10		ug/L			09/06/13 16:16	1
1,2-Dichloropropane	ND		0.10		ug/L			09/06/13 16:16	1
1,1,1,2-Tetrachloroethane	ND		0.10		ug/L			09/06/13 16:16	1
Ethylbenzene	ND		0.10		ug/L			09/06/13 16:16	1
trans-1,2-Dichloroethene	ND		0.10		ug/L			09/06/13 16:16	1
Hexachlorobutadiene	ND		0.20		ug/L			09/06/13 16:16	1
1,1-Dichloroethane	ND		0.10		ug/L			09/06/13 16:16	1
Bromomethane	ND		0.10		ug/L			09/06/13 16:16	1
1,4-Dichlorobenzene	ND		0.20		ug/L			09/06/13 16:16	1
Methyl tert-butyl ether	ND		0.10		ug/L			09/06/13 16:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		75 - 120			-		09/06/13 16:16	1
Ethylbenzene-d10	92		75 - 125					09/06/13 16:16	1

Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND	-	0.050		mg/L			09/04/13 19:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		50 - 150			_		09/04/13 19:32	1

70 - 130

80 - 125

75 - 125

92

99

98

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: MW-2-082913

TestAmerica Job ID: 580-40033-1

Lab Sample ID: 580-40033-4

Matrix: Water

Date Collected: 08/29/13 09:29 Date Received: 08/29/13 16:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.54		ug/L		09/03/13 12:34	09/05/13 18:17	1
PCB-1221	ND		0.54		ug/L		09/03/13 12:34	09/05/13 18:17	1
PCB-1232	ND		0.54		ug/L		09/03/13 12:34	09/05/13 18:17	1
PCB-1242	ND		0.54		ug/L		09/03/13 12:34	09/05/13 18:17	1
PCB-1248	ND		0.54		ug/L		09/03/13 12:34	09/05/13 18:17	1
PCB-1254	ND		0.54		ug/L		09/03/13 12:34	09/05/13 18:17	1
PCB-1260	ND		0.54		ug/L		09/03/13 12:34	09/05/13 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75		60 - 150				09/03/13 12:34	09/05/13 18:17	1
DCB Decachlorobiphenyl	71		40 - 135				09/03/13 12:34	09/05/13 18:17	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		11		pg/L		09/05/13 15:12	09/06/13 21:35	1
2,3,7,8-TCDF	ND		11		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,7,8-PeCDD	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,7,8-PeCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
2,3,4,7,8-PeCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,4,7,8-HxCDD	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,6,7,8-HxCDD	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,7,8,9-HxCDD	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,4,7,8-HxCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,6,7,8-HxCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
2,3,4,6,7,8-HxCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,7,8,9-HxCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,4,6,7,8-HpCDD	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,4,6,7,8-HpCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
1,2,3,4,7,8,9-HpCDF	ND		55		pg/L		09/05/13 15:12	09/06/13 21:35	1
OCDD	ND		110		pg/L		09/05/13 15:12	09/06/13 21:35	1
OCDF	ND		110		pg/L		09/05/13 15:12	09/06/13 21:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-2,3,7,8-TCDF	83		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-1,2,3,7,8-PeCDD	76		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-1,2,3,7,8-PeCDF	78		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-1,2,3,6,7,8-HxCDD	84		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-1,2,3,4,7,8-HxCDF	86		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-1,2,3,4,6,7,8-HpCDD	81		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-1,2,3,4,6,7,8-HpCDF	82		40 - 135				09/05/13 15:12	09/06/13 21:35	1
13C-OCDD	76		40 - 135				09/05/13 15:12	09/06/13 21:35	1

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: MW-1-082913

TestAmerica Job ID: 580-40033-1

Lab Sample ID: 580-40033-5

Matrix: Water

Date Collected: 08/29/13 12:20 Date Received: 08/29/13 16:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.56		ug/L		09/03/13 12:34	09/06/13 08:58	1
PCB-1221	ND		0.56		ug/L		09/03/13 12:34	09/06/13 08:58	1
PCB-1232	ND		0.56		ug/L		09/03/13 12:34	09/06/13 08:58	1
PCB-1242	ND		0.56		ug/L		09/03/13 12:34	09/06/13 08:58	1
PCB-1248	ND		0.56		ug/L		09/03/13 12:34	09/06/13 08:58	1
PCB-1254	ND		0.56		ug/L		09/03/13 12:34	09/06/13 08:58	1
PCB-1260	ND		0.56		ug/L		09/03/13 12:34	09/06/13 08:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		60 - 150				09/03/13 12:34	09/06/13 08:58	1
DCB Decachlorobiphenyl	67		40 - 135				09/03/13 12:34	09/06/13 08:58	1

Analyte	Result Qual	lifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND			pg/L		09/05/13 15:12	09/06/13 22:17	1
2,3,7,8-TCDF	ND	11		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,7,8-PeCDD	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,7,8-PeCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
2,3,4,7,8-PeCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,4,7,8-HxCDD	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,6,7,8-HxCDD	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,7,8,9-HxCDD	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,4,7,8-HxCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,6,7,8-HxCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
2,3,4,6,7,8-HxCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,7,8,9-HxCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,4,6,7,8-HpCDD	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,4,6,7,8-HpCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
1,2,3,4,7,8,9-HpCDF	ND	54		pg/L		09/05/13 15:12	09/06/13 22:17	1
OCDD	ND	110		pg/L		09/05/13 15:12	09/06/13 22:17	1
OCDF	ND	110		pg/L		09/05/13 15:12	09/06/13 22:17	1
Isotope Dilution	%Recovery Qual	lifier Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	88	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-2,3,7,8-TCDF	89	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-1,2,3,7,8-PeCDD	85	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-1,2,3,7,8-PeCDF	85	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-1,2,3,6,7,8-HxCDD	91	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-1,2,3,4,7,8-HxCDF	105	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-1,2,3,4,6,7,8-HpCDD	91	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-1,2,3,4,6,7,8-HpCDF	94	40 - 135				09/05/13 15:12	09/06/13 22:17	1
13C-OCDD	87	40 - 135				09/05/13 15:12	09/06/13 22:17	1

QC Sample Results

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-144375/8

Matrix: Water

Analysis Batch: 144375

Client Sample ID: Method Blank Prep Type: Total/NA

Type: Total/NA

13-Dictionaberazione ND 0.20 ugiL 0900913 13-45 2-Chinotobiuene ND 0.10 ugiL 0806913 13-45 1-2,3-Firchloropropene ND 0.10 ugiL 0806913 13-45 Curbon tetrachionde ND 0.10 ugiL 0806913 13-45 Chloroborgorene ND 0.10 ugiL 0806913 13-45 Chloroborgorene ND 0.10 ugiL 0806913 13-45 Sec-Bulythenzene ND 0.10 ugiL 0806913 13-45 sec-Bulythenzene ND 0.10 ugiL 0806913 13-45 Dibromomethane ND 0.10 ugiL 0806913 13-45 O-Xyene ND 0.20 ugiL 0806913 13-45 Syrene ND 0.10 ugiL 0806913 13-45 Syrene ND 0.10 ugiL 0806913 13-45 Chlorobromomethane ND 0.10 ugiL 0806913 13-45 Syrene ND 0.10 ugiL 0806913 13-45	Analyte		MB Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
2-Dihorobloune ND 0.10 uyL 0900f13 1345 Carbon letrachloride ND 0.20 uyL 0906f13 1345 Carbon letrachloride ND 0.10 uyL 0906f13 1345 ost-13-Dichloropropene ND 0.10 uyL 0906f13 1345 Okthoride ND 0.10 uyL 0906f13 1345 Viryl chloride ND 0.10 uyL 0906f13 1345 Viryl chloride ND 0.10 uyL 0906f13 1345 Dibromomethane ND 0.10 uyL 0906f13 1345 Dibromomethane ND 0.10 uyL 0906f13 1345 Acykine & P-Xylene ND 0.10 uyL 0906f13 1345 Sylvene ND 0.10 uyL 0906f13 1345 Sylvene ND 0.10 uyL 0906f13 1345 Dichlorobromomethane ND 0.10 uyL 0906f13 1345 Dichlorobromomethane ND 0.10 uyL 0906f13 1345	=		Qualifier		MIDL			Prepareu		1
12.3-Tichloropropane ND 0.20 ugl. 0.996/11 33-45 Carbon tetrachloride ND 0.10 ugl. 0.906/11 33-45 cis-1.3-Chichoropropen ND 0.10 ugl. 0.906/11 33-45 Chlorobanzane ND 0.10 ugl. 0.906/11 33-45 Chlorobanzane ND 0.10 ugl. 0.906/11 33-45 see-Butykbenzane ND 0.10 ugl. 0.906/11 33-45 m-Xylene & p-Xylene ND 0.10 ugl. 0.906/11 33-45 o-Xylene ND 0.10 ugl. 0.906/11 33-45 o-Xylene ND 0.10 ugl. 0.906/11 33-45 Syrene ND 0.10 ugl. 0.906/11 33-45 Lichricobaromenthane ND 0.10 ugl. 0.906/11 33-45										1
Carbon tetrachloride ND 0.10 ug/L 0906/13/13/45 osi-1.3-Dichlotropropene ND 0.10 ug/L 0906/13/13/45 Collotoberizene ND 0.10 ug/L 0906/13/13/45 Viryl chioride ND 0.00 0.00 0.00 0906/13/13/45 Dibromomethane ND 0.10 ug/L 0906/13/13/45 0.00						-				1
cis-1.3-Dichloropropene ND 0.10 ug/L 0906/13 13:45 Chloroberuzene ND 0.10 ug/L 0906/13 13:45 vortification ND 0.020 ug/L 0906/13 13:45 see Butylebrazene ND 0.10 ug/L 0906/13 13:45 m-Xylene & p-Xylene ND 0.10 ug/L 0906/13 13:45 o-Xylene ND 0.10 ug/L 0906/13 13:45 o-Xylene ND 0.10 ug/L 0906/13 13:45 o-Xylene ND 0.10 ug/L 0906/13 13:45 Styrene ND 0.10 ug/L 0906/13 13:45 Styrene ND 0.10 ug/L 0906/13 13:45 Dichlorobromoethane ND 0.10 ug/L 0906/13 13:45 <										
Chloroberszene ND 0.10 ug/L 0906/13 13-45 Virnyl chloride ND 0.020 ug/L 0906/13 13-45 Ug/						-				
Viryl chloride ND 0.020 ugl L 0906/13 13:45 see-Butylbenzene ND 0.10 ugl L 0906/13 13:45 Dibromomethane ND 0.10 ugl L 0906/13 13:45 m-Xylene ND 0.20 ugl L 0906/13 13:45 brylene ND 0.20 ugl L 0906/13 13:45 1,2.4-Trichlorobenzene ND 0.10 ugl L 0906/13 13:45 Styrene ND 0.10 ugl L 0906/13 13:45 Dichlorobromomethane ND 0.10 ugl L 0906/13 13:45 Chlorobrame ND 0.10 ugl L 0906/13 13:45 Themzer ND 0.10 ugl L 090						_				1
sec-Bulybenzene ND 0.10 ug/L 0906/13 13:45 Dibromomentane ND 0.10 ug/L 0906/13 13:45 m-Xylene & PyXylene ND 0.20 ug/L 0906/13 13:45 o-Xylene ND 0.10 ug/L 0906/13 13:45 O-Xylene ND 0.10 ug/L 0906/13 13:45 Styene ND 0.10 ug/L 0906/13 13:45 Chlorobromomethane ND 0.10 ug/L 0906/13 13:45 Chlorobromomethane ND 0.10 ug/L 0906/13 13:45 1,3-Dichlorobenzene ND 0.10 ug/L 0906/13 13:45 1,3-Dichlorobenzene ND 0.10 ug/L 0906/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 0906/13 13:45 1,2-3-Trichlorobenzene ND 0.10 ug/L 0906/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 0906/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 09										1
Dibromomethane ND 0.10 ug/L 0906/13 13:45 m-Xylene ND 0.20 ug/L 0906/13 13:45 c-Xylene ND 0.10 ug/L 0906/13 13:45 c-Xylene ND 0.20 ug/L 0906/13 13:45 Styrene ND 0.10 ug/L 0906/13 13:45 Chlorobromomethane ND 0.10 ug/L 0906/13 13:45 Dichlorobromethane ND 0.10 ug/L 0906/13 13:45 Benzene ND 0.20 ug/L 0906/13 13:45 Benzene ND 0.10 ug/L 0906/13 13:45 Chlorochane ND 0.10 ug/L 0906/13 13:45 The styrence	•									1
m-Xylene & p-Xylene ND 0.20 ug/L 0906/13 13.45 0-Xylene ND 0.10 0.10 ug/L 0906/13 13.45 Styrene ND 0.10 0.10 ug/L 0906/13 13.45 Styrene ND 0.10 0.10 ug/L 0906/13 13.45 Styrene ND 0.10 0.10 ug/L 0906/13 13.45 Chlorobromethane ND 0.10 ug/L 0906/13 13.45 1.3-Dichlorobenzene ND 0.10 ug/L 0906/13 13.45 1.3-Dichlorobenzene ND 0.10 ug/L 0906/13 13.45 1.3-Dichlorobenzene ND 0.20 ug/L 0906/13 13.45 Chlorobrane ND 0.10 ug/L 0906/13 13.45 Chlorobrane ND 0.20 ug/L 0906/13 13.45 Chlorobrane ND 0.25 ug/L 0906/13 13.45 Chlorobrane ND 0.10 ug/L 0906/13 13.45 Chlorobrane ND	•									1
o-Xylene ND 0.10 ug/L 0906/13 13.45 1.2,4-Trichforbenzene ND 0.20 ug/L 0906/13 13.45 Sylene ND 0.10 ug/L 0906/13 13.45 Chlorobromomethane ND 0.10 ug/L 0906/13 13.45 Dichlorobromethane ND 0.10 ug/L 0906/13 13.45 Benzene ND 0.10 ug/L 0906/13 13.45 Benzene ND 0.10 ug/L 0906/13 13.45 Chloroethane ND 0.25 ug/L 0906/13 13.45 1.2.3-Trichlorobenzene ND 0.10 ug/L 0906/13 13.45 1.2.3-Trichlorobenzene ND 0.10 ug/L 0906/13 13.45 N-Propylbenzene ND 0.10 ug/L 0906/13 13.45 1.2.3-Trichlorobenzene ND 0.10 ug/L 0906/13 13.45 1.2.3-Trichlorobenzene ND 0.10 ug/L 0906/13 13.45 1.2.3-Trichlorobenzene ND 0.10 ug/L 090										1
1,2,4-Trichlorobenzene ND 0,20 ug/L 09/06/13 13:45 Styrene ND 0,10 ug/L 09/06/13 13:45 Chlorobromomethane ND 0,10 ug/L 09/06/13 13:45 Dichlorobromomethane ND 0,20 ug/L 09/06/13 13:45 1,3-Dichlorobreznene ND 0,20 ug/L 09/06/13 13:45 Encrene ND 0,25 ug/L 09/06/13 13:45 Chloroethane ND 0,10 ug/L 09/06/13 13:45 1,2,3-Trichlorobenzene ND 0,10 ug/L 09/06/13 13:45 1,4-Scoppytolbulene ND 0,10 ug/L 09/06/13 13:45 1,4-Scoppytolbulene ND 0,	, , ,									1
Skyrene ND 0.10 uglt 0906/13 13.45 Chlorobromomethane ND 0.10 uglt 0906/13 13.45 1,3-Dichlorobenzene ND 0.20 uglt 0906/13 13.45 Benzene ND 0.10 uglt 0906/13 13.45 Benzene ND 0.10 uglt 0906/13 13.45 Kloroschane ND 0.25 uglt 0906/13 13.45 trans-1,3-Dichloropropene ND 0.40 uglt 0906/13 13.45 1,2,3-Trichlorobenzene ND 0.40 uglt 0906/13 13.45 1,2,3-Trichlorobenzene ND 0.10 uglt 0906/13 13.45 4-Isopropylloluene ND 0.10 uglt 0906/13 13.45 1,1-Dichloropropene ND 0.10 uglt 0906/13 13.45 cis-1,2-Dichloroethene ND 0.10 uglt 0906/13 13.45 cis-1,2-Dichloroethene ND 0.10 uglt 0906/13 13.45 T-L-Q-4-Trimethylbenzene ND 0.10 uglt						_				1
Chlorobromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorobromomethane ND 0.10 ug/L 09/06/13 13:45 Benzene ND 0.20 ug/L 09/06/13 13:45 Benzene ND 0.10 ug/L 09/06/13 13:45 Chloroethane ND 0.25 ug/L 09/06/13 13:45 1.2,3-Trichlorobenzene ND 0.40 ug/L 09/06/13 13:45 1.2,3-Trichlorobenzene ND 0.40 ug/L 09/06/13 13:45 N-Propylbenzene ND 0.10 ug/L 09/06/13 13:45 N-Propylbenzene ND 0.10 ug/L 09/06/13 13:45 N-Propylbenzene ND 0.10 ug/L 09/06/13 13:45 N-Bullybenzene ND 0.10 ug/L 09/06/13 13:45 1.1-Dichloroerbene ND 0.10 ug/L 09/06/13 13:45 1.1-2,2-Tetachforcethane ND 0.10 ug/L 09/06/13 13:45 1.2,4-Timethylbenzene ND 0.10 ug/L						ug/L				1
Dichlorobromomethane ND 0.10 ug/L 0.9/06/13 13:45 1.3-Dichlorobenzene ND 0.20 ug/L 0.9/06/13 13:45 Benzene ND 0.10 ug/L 0.9/06/13 13:45 Chloroethane ND 0.25 ug/L 0.9/06/13 13:45 Chloroethane ND 0.10 ug/L 0.9/06/13 13:45 Ly 2,-Trichlorobenzene ND 0.40 ug/L 0.9/06/13 13:45 N-Propylbenzene ND 0.10 ug/L 0.9/06/13 13:45 N-Propylbenzene ND 0.10 ug/L 0.9/06/13 13:45 4-Isopropyloluene ND 0.10 ug/L 0.9/06/13 13:45 1-1-Dichloropropene ND 0.10 ug/L 0.9/06/13 13:45 1-1-Dichloropropene ND 0.10 ug/L 0.9/06/13 13:45 1-1-1,22-Tetrachloroethane ND 0.10 ug/L 0.9/06/13 13:45 1-1,2-Tetrachloroethane ND 0.10 ug/L 0.9/06/13 13:45 1-1,2-Tetrachloroethane ND	•					_				1
1,3-Dichlorobenzene ND 0,20 ug/L 09/06/13 13:45 Benzene ND 0,10 ug/L 09/06/13 13:45 Chloroethane ND 0,25 ug/L 09/06/13 13:45 I chloroptorpene ND 0,10 ug/L 09/06/13 13:45 1,2,3-Trichlorobenzene ND 0,40 ug/L 09/06/13 13:45 4-Isopropytlouene ND 0,10 ug/L 09/06/13 13:45 4-Isopropytlouene ND 0,10 ug/L 09/06/13 13:45 1-Bultylbenzene ND 0,10 ug/L 09/06/13 13:45 1-Bultylbenzene ND 0,10 ug/L 09/06/13 13:45 1-Lichloropropene ND 0,10 ug/L 09/06/13 13:45 1-Lichloropropene ND 0,10 ug/L 09/06/13 13:45 1-Lickloropropene ND 0,10 ug/L 09/06/13 13:45 1-Lickloropropene ND 0,10 ug/L 09/06/13 13:45 1-Lickloropropene ND 0,10 ug/L	Chlorobromomethane	ND		0.10		ug/L				1
Benzene ND 0.10 ug/L 09/06/13 13:45 Chloroethane ND 0.25 ug/L 09/06/13 13:45 trans-1,3-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1,2,3-Trichlorobenzene ND 0.40 ug/L 09/06/13 13:45 N-Propylbenzene ND 0.10 ug/L 09/06/13 13:45 4-Isopropyloluene ND 0.20 ug/L 09/06/13 13:45 4-Isopropyloluene ND 0.10 ug/L 09/06/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1,1-Q-Z-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1,2,2-Timethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2,2-Timethylbenzene ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10	Dichlorobromomethane	ND		0.10		ug/L			09/06/13 13:45	1
Chloroethane ND 0.25 ug/L 0.906/13 13:45 trans-1,3-Dichloropropene ND 0.10 ug/L 0.906/13 13:45 L2,3-Trichlorobeznene ND 0.40 ug/L 0.906/13 13:45 N-Propylbenzene ND 0.10 ug/L 0.906/13 13:45 4-Isopropyltoluene ND 0.10 ug/L 0.906/13 13:45 1-1-Dichloropropene ND 0.10 ug/L 0.906/13 13:45 cis-1,2-Dichloroethene ND 0.10 ug/L 0.906/13 13:45 1,1,2,2-Erterachloroethane ND 0.10 ug/L 0.906/13 13:45 1,1,2,2-Erterachloroethane ND 0.10 ug/L 0.906/13 13:45 Tolluene ND 0.10 ug/L 0.906/13 13:45 Tolluene ND 0.10 ug/L 0.906/13 13:45 Naphthalene ND 0.10 ug/L 0.906/13 13:45 Naphthalene ND 0.10 ug/L 0.906/13 13:45 Chloroform ND 0.10 ug	1,3-Dichlorobenzene			0.20		ug/L			09/06/13 13:45	1
trans-1,3-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1,2,3-Trichlorobenzene ND 0.40 ug/L 09/06/13 13:45 N-Propylbenzene ND 0.10 ug/L 09/06/13 13:45 4-Isopropylbrolene ND 0.20 ug/L 09/06/13 13:45 4-Isopropylbrolene ND 0.10 ug/L 09/06/13 13:45 1-I-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1-I,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1-I,2,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1-I,2-Tichloroethane ND 0.10 ug/L 09/06/13 13:45 1-I,3-Dic	Benzene	ND		0.10		ug/L			09/06/13 13:45	1
1,2,3-Trichlorobenzene ND 0.40 ug/L 09/06/13 13:45 N-Proptybenzene ND 0.10 ug/L 09/06/13 13:45 4-Isopropytoluene ND 0.20 ug/L 09/06/13 13:45 n-Bultybenzene ND 0.10 ug/L 09/06/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1,1-2-Eritachloroethane ND 0.10 ug/L 09/06/13 13:45 1,1,2,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.10 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 Chlorofoluene ND 0.10 ug/L	Chloroethane	ND		0.25		ug/L			09/06/13 13:45	1
N-Propylbenzene ND 0.10 ug/L 09/06/13 13:45 4-Isopropyltoluene ND 0.20 ug/L 09/06/13 13:45 4-Isopropyltoluene ND 0.10 ug/L 09/06/13 13:45 1.1-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1.1-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 1.1-2.2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.2.2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.2.4-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1.1.2.4-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1.2.4-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1.3.5-Trimethylbenzene ND 0.40 ug/L 09/06/13 13:45 1.3.5-Trimethylbenzene ND 0.40 ug/L 09/06/13 13:45 1.3.5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1.3.5-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.1-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.1-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 1.1.1-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 1.2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45	trans-1,3-Dichloropropene	ND		0.10		ug/L			09/06/13 13:45	1
4-Isopropyltoluene ND 0.20 ug/L 09/06/13 13:45 n-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 cis-1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 1,1,2,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1,2,2-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2,2-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.40 ug/L 09/06/13 13:45 1,3-5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3-5-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 Chlorofoluene ND 0.10 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10	1,2,3-Trichlorobenzene	ND		0.40		ug/L			09/06/13 13:45	1
n-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 1,1-Dichloropropene ND 0.10 ug/L 09/06/13 13:45 cis-1,2-Dichlorocethene ND 0.10 ug/L 09/06/13 13:45 1,1,2,2-Tetrachlorocethane ND 0.10 ug/L 09/06/13 13:45 1,2,2-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.40 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Lerl-Butylbenzene ND 0.	N-Propylbenzene	ND		0.10		ug/L			09/06/13 13:45	1
1,1-Dichloropropene ND 0.10 ug/L 09/06/13 13.45 cis-1,2-Dichloroethene ND 0.10 ug/L 09/06/13 13.45 1,1,2,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13.45 1,1,2,2-Trimethylbenzene ND 0.10 ug/L 09/06/13 13.45 Toluene ND 0.10 ug/L 09/06/13 13.45 Naphthalene ND 0.40 ug/L 09/06/13 13.45 1,3-5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13.45 1,3-5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13.45 1,3-5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13.45 Chloroform ND 0.10 ug/L 09/06/13 13.45 Chlorofibropropane ND 0.10 ug/L 09/06/13 13.45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13.45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13.45 tetr-Butylbenzene ND <	4-Isopropyltoluene	ND		0.20		ug/L			09/06/13 13:45	1
cis-1,2-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,2,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1,2,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.40 ug/L 09/06/13 13:45 Naphthalene ND 0.10 ug/L 09/06/13 13:45 1,3-5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 Chlorodiluene ND 0.10 ug/L 09/06/13 13:45 Chlorodilueromethane ND 0.40 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10	n-Butylbenzene	ND		0.10		ug/L			09/06/13 13:45	1
1,1,2,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1,2,4-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.40 ug/L 09/06/13 13:45 Naphthalene ND 0.10 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.10 <td< td=""><td>1,1-Dichloropropene</td><td>ND</td><td></td><td>0.10</td><td></td><td>ug/L</td><td></td><td></td><td>09/06/13 13:45</td><td>1</td></td<>	1,1-Dichloropropene	ND		0.10		ug/L			09/06/13 13:45	1
1,2,4-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 Toluene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.40 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 Chlorodibune ND 0.20 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Chlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>0.10</td> <td></td> <td>ug/L</td> <td></td> <td></td> <td>09/06/13 13:45</td> <td>1</td>	cis-1,2-Dichloroethene	ND		0.10		ug/L			09/06/13 13:45	1
Toluene ND 0.10 ug/L 09/06/13 13:45 Naphthalene ND 0.40 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 4-Chlorotoluene ND 0.20 ug/L 09/06/13 13:45 4-Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L </td <td>1,1,2,2-Tetrachloroethane</td> <td>ND</td> <td></td> <td>0.10</td> <td></td> <td>ug/L</td> <td></td> <td></td> <td>09/06/13 13:45</td> <td>1</td>	1,1,2,2-Tetrachloroethane	ND		0.10		ug/L			09/06/13 13:45	1
Naphthalene ND 0.40 ug/L 09/06/13 13:45 1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 4-Chlorotoluene ND 0.20 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10	1,2,4-Trimethylbenzene	ND		0.10		ug/L			09/06/13 13:45	1
1,3,5-Trimethylbenzene ND 0.10 ug/L 09/06/13 13:45 1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 4-Chlorotoluene ND 0.20 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.50 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1,1-1-Trichloroethane ND <td< td=""><td>Toluene</td><td>ND</td><td></td><td>0.10</td><td></td><td>ug/L</td><td></td><td></td><td>09/06/13 13:45</td><td>1</td></td<>	Toluene	ND		0.10		ug/L			09/06/13 13:45	1
1,3-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 Chloroform ND 0.10 ug/L 09/06/13 13:45 4-Chlorotoluene ND 0.20 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10	Naphthalene	ND		0.40		ug/L			09/06/13 13:45	1
Chloroform ND 0.10 ug/L 09/06/13 13:45 4-Chlorotoluene ND 0.20 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 I,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10	1,3,5-Trimethylbenzene	ND		0.10		ug/L			09/06/13 13:45	1
4-Chlorotoluene ND 0.20 ug/L 09/06/13 13:45 Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	1,3-Dichloropropane	ND		0.10		ug/L			09/06/13 13:45	1
Chlorodibromomethane ND 0.10 ug/L 09/06/13 13:45 Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	Chloroform	ND		0.10		ug/L			09/06/13 13:45	1
Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	4-Chlorotoluene	ND		0.20		ug/L			09/06/13 13:45	1
Dichlorodifluoromethane ND 0.40 ug/L 09/06/13 13:45 1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	Chlorodibromomethane	ND		0.10					09/06/13 13:45	1
1,1,2-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 tert-Butylbenzene ND 0.10 ug/L 09/06/13 13:45 Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	Dichlorodifluoromethane	ND		0.40					09/06/13 13:45	1
Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	1,1,2-Trichloroethane	ND		0.10					09/06/13 13:45	1
Chloromethane ND 0.10 ug/L 09/06/13 13:45 Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	tert-Butylbenzene	ND		0.10		ug/L			09/06/13 13:45	1
Methylene Chloride ND 0.50 ug/L 09/06/13 13:45 1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	·									1
1,1-Dichloroethene ND 0.10 ug/L 09/06/13 13:45 Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45						_				1
Isopropylbenzene ND 0.10 ug/L 09/06/13 13:45 1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45										1
1,2-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45										1
Tetrachloroethene ND 0.10 ug/L 09/06/13 13:45 1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45	· · · ·									1
1,1,1-Trichloroethane ND 0.10 ug/L 09/06/13 13:45 2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45										· 1
2,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45										1
1,2-Dibromoethane ND 0.10 ug/L 09/06/13 13:45										1
										1
1,2-Dibromo-3-Chloropropane ND 0.10 ug/L 09/06/13 13:45						ug/L				1

TestAmerica Seattle

Page 19 of 47

9/13/2013

3

5

7

a

10

TestAmerica Job ID: 580-40033-1

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Project/Site: CenterPoint, Seattle, WA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-144375/8

Analysis Batch: 144375

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Trichlorofluoromethane 0.10 09/06/13 13:45 ND ug/L Trichloroethene ND 0.10 ug/L 09/06/13 13:45 ND Bromobenzene 0.10 ug/L 09/06/13 13:45 1,2-Dichloropropane ND 0.10 ug/L 09/06/13 13:45 1,1,1,2-Tetrachloroethane ND 0.10 ug/L 09/06/13 13:45 Ethylbenzene ND 0.10 ug/L 09/06/13 13:45 ND trans-1,2-Dichloroethene 0.10 ug/L 09/06/13 13:45 Hexachlorobutadiene ND 0.20 ug/L 09/06/13 13:45 1.1-Dichloroethane ND 0.10 ug/L 09/06/13 13:45 ND Bromomethane 0.10 ug/L 09/06/13 13:45 1,4-Dichlorobenzene ND 0.20 ug/L 09/06/13 13:45 ND 0.10 09/06/13 13:45 Methyl tert-butyl ether ug/L

MB MB

Surrogate	%Recovery Qualifie	r Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	75 - 120	09/06/13 13:45	1
Ethylbenzene-d10	89	75 ₋ 125	09/06/13 13:45	1
Fluorobenzene (Surr)	96	70 - 130	09/06/13 13:45	1
Trifluorotoluene (Surr)	105	80 - 125	09/06/13 13:45	1
Toluene-d8 (Surr)	94	75 - 125	09/06/13 13:45	1

Lab Sample ID: LCS 580-144375/9

Matrix: Water

Analysis Batch: 144375

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis batch. 144070	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichlorobenzene	5.00	5.14		ug/L		103	80 - 130
2-Chlorotoluene	5.00	5.40		ug/L		108	75 ₋ 130
1,2,3-Trichloropropane	5.00	5.25		ug/L		105	75 - 120
Carbon tetrachloride	5.00	5.25		ug/L		105	75 ₋ 140
cis-1,3-Dichloropropene	5.00	4.69		ug/L		94	70 - 120
Chlorobenzene	5.00	5.07		ug/L		101	80 - 120
Vinyl chloride	5.00	6.15		ug/L		123	65 _ 140
sec-Butylbenzene	5.00	5.78		ug/L		116	80 - 125
Dibromomethane	5.00	5.70		ug/L		114	80 - 130
m-Xylene & p-Xylene	5.00	5.44		ug/L		109	80 - 130
o-Xylene	5.00	5.46		ug/L		109	80 - 120
1,2,4-Trichlorobenzene	5.00	5.00		ug/L		100	60 _ 125
Styrene	5.00	5.57		ug/L		111	75 - 130
Chlorobromomethane	5.00	5.02		ug/L		100	80 - 125
Dichlorobromomethane	5.00	5.52		ug/L		110	80 - 125
1,3-Dichlorobenzene	5.00	5.52		ug/L		110	80 - 120
Benzene	5.00	5.21		ug/L		104	80 - 120
Chloroethane	5.00	6.35		ug/L		127	75 - 140
rans-1,3-Dichloropropene	5.00	4.67		ug/L		93	60 - 140
1,2,3-Trichlorobenzene	5.00	5.06		ug/L		101	60 _ 125
N-Propylbenzene	5.00	5.78		ug/L		116	80 - 120
4-Isopropyltoluene	5.00	5.18		ug/L		104	80 - 120
n-Butylbenzene	5.00	5.58		ug/L		112	75 - 125

TestAmerica Seattle

Page 20 of 47

9/13/2013

3

F

6

8

1 በ

QC Sample Results

Spike

LCS LCS

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-144375/9

Matrix: Water

Analysis Batch: 144375

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

	- P				7011001	
Analyte	Added	Result	Qualifier Unit	D %R	ec Limits	
1,1-Dichloropropene	5.00	5.46	ug/L	1	09 80 - 130	
cis-1,2-Dichloroethene	5.00	4.44	ug/L		89 80 - 130	
1,1,2,2-Tetrachloroethane	5.00	4.99	ug/L	1	00 75 - 125	
1,2,4-Trimethylbenzene	5.00	5.12	ug/L	1	02 80 - 125	
Toluene	5.00	5.27	ug/L	1	05 80 ₋ 120	
Naphthalene	5.00	4.02	ug/L		80 45 - 130	
1,3,5-Trimethylbenzene	5.00	5.70	ug/L	1	14 80 - 125	
1,3-Dichloropropane	5.00	5.41	ug/L	1	08 80 - 130	
Chloroform	5.00	5.19	ug/L	1	04 80 - 130	
4-Chlorotoluene	5.00	5.46	ug/L	1	09 75 - 130	
Chlorodibromomethane	5.00	5.94	ug/L	1	19 70 - 120	
Dichlorodifluoromethane	5.00	4.51	ug/L		90 30 - 180	
1,1,2-Trichloroethane	5.00	5.38	ug/L	1	08 80 - 130	
tert-Butylbenzene	5.00	5.80	ug/L	1	16 80 - 130	
Chloromethane	5.00	5.25	ug/L	1	05 50 - 140	
Methylene Chloride	5.00	5.35	ug/L	1	07 60 - 145	
1,1-Dichloroethene	5.00	6.10	ug/L	1	22 70 - 150	
Isopropylbenzene	5.00	5.42	ug/L	1	08 75 - 120	
1,2-Dichloroethane	5.00	5.76	ug/L	1	15 80 - 140	
Tetrachloroethene	5.00	5.83	ug/L	1	17 40 - 180	
1,1,1-Trichloroethane	5.00	5.31	ug/L	1	06 80 - 140	
2,2-Dichloropropane	5.00	5.71	ug/L	1	14 60 - 150	
1,2-Dibromoethane	5.00	5.31	ug/L	1	06 70 - 130	
Bromoform	5.00	5.09	ug/L	1	02 65 - 130	
1,2-Dibromo-3-Chloropropane	5.00	4.89	ug/L		98 55 - 120	
Trichlorofluoromethane	5.00	6.01	ug/L	1	20 30 - 180	
Trichloroethene	5.00	5.38	ug/L	1	08 80 - 130	
Bromobenzene	5.00	5.21	ug/L	1	04 80 - 130	
1,2-Dichloropropane	5.00	5.18	ug/L	1	04 80 - 120	
1,1,1,2-Tetrachloroethane	5.00	5.17	ug/L	1	03 75 - 125	
Ethylbenzene	5.00	5.14	ug/L	1	03 80 - 125	
trans-1,2-Dichloroethene	5.00	5.34	ug/L	1	07 80 - 140	
Hexachlorobutadiene	5.00	5.18	ug/L	1	04 75 - 135	
1,1-Dichloroethane	5.00	4.37	ug/L		87 75 ₋ 135	
Bromomethane	5.00	5.33	ug/L	1	07 70 ₋ 135	
1,4-Dichlorobenzene	5.00	5.23	ug/L	1	05 80 - 120	
Methyl tert-butyl ether	5.00	4.69	ug/L		94 75 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		75 - 120
Ethylbenzene-d10	92		75 ₋ 125
Fluorobenzene (Surr)	98		70 - 130
Trifluorotoluene (Surr)	108		80 - 125
Toluene-d8 (Surr)	104		75 ₋ 125

TestAmerica Seattle

Page 21 of 47

9/13/2013

TestAmerica Job ID: 580-40033-1

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144375/10

Matrix: Water

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Analysis Batch: 144375	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	5.00	5.05		ug/L		101	80 - 130	2	20
2-Chlorotoluene	5.00	5.27		ug/L		105	75 - 130	2	20
1,2,3-Trichloropropane	5.00	4.94		ug/L		99	75 - 120	6	20
Carbon tetrachloride	5.00	5.17		ug/L		103	75 ₋ 140	1	20
cis-1,3-Dichloropropene	5.00	4.75		ug/L		95	70 - 120	1	20
Chlorobenzene	5.00	5.05		ug/L		101	80 - 120	0	20
Vinyl chloride	5.00	6.06		ug/L		121	65 - 140	1	20
sec-Butylbenzene	5.00	5.73		ug/L		115	80 - 125	1	20
Dibromomethane	5.00	5.35		ug/L		107	80 - 130	6	20
m-Xylene & p-Xylene	5.00	5.42		ug/L		108	80 - 130	0	20
o-Xylene	5.00	5.44		ug/L		109	80 - 120	0	20
1,2,4-Trichlorobenzene	5.00	4.81		ug/L		96	60 - 125	4	20
Styrene	5.00	5.56		ug/L		111	75 - 130	0	20
Chlorobromomethane	5.00	5.10		ug/L		102	80 - 125	1	20
Dichlorobromomethane	5.00	5.17		ug/L		103	80 - 125	7	20
1,3-Dichlorobenzene	5.00	5.31		ug/L		106	80 - 120	4	20
Benzene	5.00	4.99		ug/L		100	80 - 120	4	20
Chloroethane	5.00	5.28		ug/L		106	75 ₋ 140	18	20
trans-1,3-Dichloropropene	5.00	4.63		ug/L		93	60 - 140	1	20
1,2,3-Trichlorobenzene	5.00	5.13		ug/L		103	60 - 125	1	20
N-Propylbenzene	5.00	5.75		ug/L		115	80 ₋ 120	1	20
4-Isopropyltoluene	5.00	5.24		ug/L		105	80 - 120	1	20
n-Butylbenzene	5.00	5.51		ug/L		110	75 ₋ 125	1	20
1,1-Dichloropropene	5.00	5.30		ug/L		106	80 - 130	3	20
cis-1,2-Dichloroethene	5.00	4.28		ug/L		86	80 - 130	4	20
1,1,2,2-Tetrachloroethane	5.00	4.93		ug/L		99	75 ₋ 125	1	20
1,2,4-Trimethylbenzene	5.00	5.11		ug/L		102	80 ₋ 125	0	20
Toluene	5.00	5.38		ug/L		108	80 - 120	2	20
Naphthalene	5.00	4.05		ug/L ug/L		81	45 - 130	1	20
1,3,5-Trimethylbenzene	5.00	5.76		ug/L ug/L		115	80 ₋ 125	1	20
1,3-Dichloropropane	5.00	5.21		ug/L ug/L		104	80 - 123	4	20
Chloroform	5.00	5.01		-		100	80 - 130	3	20
4-Chlorotoluene	5.00	5.52		ug/L		110	75 ₋ 130	3 1	20
Chlorodibromomethane	5.00	5.60		ug/L		112	70 ₋ 120	6	20
Dichlorodifluoromethane	5.00	4.85		ug/L		97	70 - 120 30 - 180	7	20
				ug/L					
1,1,2-Trichloroethane	5.00	5.19		ug/L		104	80 - 130	4	20
tert-Butylbenzene	5.00	5.77		ug/L		115	80 - 130	1	20
Chloromethane	5.00	5.33		ug/L		107	50 - 140	2	20
Methylene Chloride	5.00	5.86		ug/L		117	60 - 145	9	20
1,1-Dichloroethene	5.00	5.91		ug/L		118	70 - 150	3	20
Isopropylbenzene	5.00	5.32		ug/L		106	75 - 120	2	20
1,2-Dichloroethane	5.00	5.40		ug/L		108	80 - 140	7	20
Tetrachloroethene	5.00	5.51		ug/L		110	40 - 180	6	20
1,1,1-Trichloroethane	5.00	5.05		ug/L		101	80 - 140	5	20
2,2-Dichloropropane	5.00	4.94		ug/L		99	60 - 150	15	20
1,2-Dibromoethane	5.00	5.10		ug/L		102	70 - 130	4	20
Bromoform	5.00	4.85		ug/L		97	65 - 130	5	20
1,2-Dibromo-3-Chloropropane	5.00	4.38		ug/L		88	55 - 120	11	20

TestAmerica Seattle

9/13/2013

Page 22 of 47

Spike Added

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

LCSD LCSD

5.90

5.28

5.06

4.87

5.18

5.07

5.97

5.22

4.75

5.81

5.13

5.32

ug/L

ug/L

ug/L

Result Qualifier

TestAmerica Job ID: 580-40033-1

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144375/10

Matrix: Water

Trichloroethene

Bromobenzene

Ethylbenzene

1,2-Dichloropropane

1,1,1,2-Tetrachloroethane

trans-1,2-Dichloroethene

Hexachlorobutadiene

1.1-Dichloroethane

1,4-Dichlorobenzene

Methyl tert-butyl ether

Bromomethane

Analyte

Analysis Batch: 144375

Trichlorofluoromethane

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

			•	•	
			%Rec.		RPD
Unit	D	%Rec	Limits	RPD	Limit
ug/L	_	118	30 - 180	2	20
ug/L		106	80 - 130	2	20
ug/L		101	80 - 130	3	20
ug/L		97	80 - 120	6	20
ug/L		104	75 - 125	0	20
ug/L		101	80 - 125	1	20
ug/L		119	80 - 140	11	20
ug/L		104	75 - 135	1	20
ua/l		95	75 135	8	20

116

103

106

70 - 135

80 - 120

75 - 120

9

2

13

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		75 - 120
Ethylbenzene-d10	94		75 ₋ 125
Fluorobenzene (Surr)	98		70 - 130
Trifluorotoluene (Surr)	107		80 - 125
Toluene-d8 (Surr)	104		75 - 125

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-144057/1-A

Matrix: Water

Analysis Batch: 144730

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 144057

•	МВ	МВ						•	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		0.60		ug/L		09/03/13 11:49	09/11/13 21:14	1
Bis(2-chloroethyl)ether	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
2-Chlorophenol	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
1,3-Dichlorobenzene	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
1,4-Dichlorobenzene	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
Benzyl alcohol	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
1,2-Dichlorobenzene	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
2-Methylphenol	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
3 & 4 Methylphenol	ND		0.80		ug/L		09/03/13 11:49	09/11/13 21:14	1
N-Nitrosodi-n-propylamine	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
Hexachloroethane	ND		0.60		ug/L		09/03/13 11:49	09/11/13 21:14	1
Nitrobenzene	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
Isophorone	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
2-Nitrophenol	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
2,4-Dimethylphenol	ND		2.0		ug/L		09/03/13 11:49	09/11/13 21:14	1
Benzoic acid	ND		3.0		ug/L		09/03/13 11:49	09/11/13 21:14	1
Bis(2-chloroethoxy)methane	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
2,4-Dichlorophenol	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
1,2,4-Trichlorobenzene	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
Naphthalene	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1
4-Chloroaniline	ND		0.40		ug/L		09/03/13 11:49	09/11/13 21:14	1

TestAmerica Seattle

9/13/2013

Page 23 of 47

1

9

6

9

1 1

20

20

20

QC Sample Results

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 580-144057/1-A

Matrix: Water

Analysis Batch: 144730

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 144057

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	ND	0.60	ug/L	09/03/13 11:49	09/11/13 21:14	1
4-Chloro-3-methylphenol	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
2-Methylnaphthalene	ND	0.20	ug/L	09/03/13 11:49	09/11/13 21:14	1
Hexachlorocyclopentadiene	ND	2.0	ug/L	09/03/13 11:49	09/11/13 21:14	1
2,4,6-Trichlorophenol	ND	0.60	ug/L	09/03/13 11:49	09/11/13 21:14	1
2,4,5-Trichlorophenol	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
2-Chloronaphthalene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1

7	result Qualifier	114	WIDE OTHE	D i i cpaica	Analyzou	Diriac
Hexachlorobutadiene	ND	0.60	ug/L	09/03/13 11:49	09/11/13 21:14	1
4-Chloro-3-methylphenol	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
2-Methylnaphthalene	ND	0.20	ug/L	09/03/13 11:49	09/11/13 21:14	1
Hexachlorocyclopentadiene	ND	2.0	ug/L	09/03/13 11:49	09/11/13 21:14	1
2,4,6-Trichlorophenol	ND	0.60	ug/L	09/03/13 11:49	09/11/13 21:14	1
2,4,5-Trichlorophenol	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
2-Chloronaphthalene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
2-Nitroaniline	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
Dimethyl phthalate	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
Acenaphthylene	ND	0.080	ug/L	09/03/13 11:49	09/11/13 21:14	1
2,6-Dinitrotoluene	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
3-Nitroaniline	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
Acenaphthene	ND	0.10	ug/L	09/03/13 11:49	09/11/13 21:14	1
2,4-Dinitrophenol	ND	5.0	ug/L	09/03/13 11:49	09/11/13 21:14	1
4-Nitrophenol	ND	3.0	ug/L	09/03/13 11:49	09/11/13 21:14	1
Dibenzofuran	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
2,4-Dinitrotoluene	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
Diethyl phthalate	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
4-Chlorophenyl phenyl ether	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
Fluorene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
4-Nitroaniline	ND	0.60	ug/L	09/03/13 11:49	09/11/13 21:14	1
4,6-Dinitro-2-methylphenol	ND	4.0	ug/L	09/03/13 11:49	09/11/13 21:14	· · · · · · · · · · · · · · · · · · ·
N-Nitrosodiphenylamine	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
4-Bromophenyl phenyl ether	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
Hexachlorobenzene	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	 1
Pentachlorophenol	ND	0.70	ug/L	09/03/13 11:49	09/11/13 21:14	1
Phenanthrene	ND	0.080	ug/L	09/03/13 11:49	09/11/13 21:14	1
Anthracene	ND	0.040	ug/L	09/03/13 11:49	09/11/13 21:14	· · · · · · · · · · · · · · · · · · ·
Di-n-butyl phthalate	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
Fluoranthene	ND	0.050	ug/L	09/03/13 11:49	09/11/13 21:14	1
Pyrene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	·
Butyl benzyl phthalate	ND ND	0.60	ug/L	09/03/13 11:49	09/11/13 21:14	1
3,3'-Dichlorobenzidine	ND ND	2.0	-	09/03/13 11:49	09/11/13 21:14	1
			ug/L			
Benzo[a]anthracene	ND ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
Chrysene Pig(2 othylboxyl) phtholoto	ND ND	0.040	ug/L	09/03/13 11:49	09/11/13 21:14	1
Bis(2-ethylhexyl) phthalate	ND ND	3.0	ug/L	09/03/13 11:49	09/11/13 21:14	1
Di-n-octyl phthalate	ND ND	0.40	ug/L	09/03/13 11:49 09/03/13 11:49	09/11/13 21:14	1
Benzo[a]pyrene	ND	0.040	ug/L		09/11/13 21:14	•
Indeno[1,2,3-cd]pyrene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
Dibenz(a,h)anthracene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
Benzo[g,h,i]perylene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
Carbazole	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1
1-Methylnaphthalene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
Benzo[b]fluoranthene	ND	0.080	ug/L	09/03/13 11:49	09/11/13 21:14	1
Benzo[k]fluoranthene	ND	0.060	ug/L	09/03/13 11:49	09/11/13 21:14	1
bis (2-chloroisopropyl) ether	ND	0.40	ug/L	09/03/13 11:49	09/11/13 21:14	1

QC Sample Results

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-144057/1-A

Matrix: Water

Analysis Batch: 144730

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 144057

	МВ	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	57		20 - 134	09/03/13 11:49	09/11/13 21:14	1
Phenol-d5	61		55 - 125	09/03/13 11:49	09/11/13 21:14	1
Nitrobenzene-d5	71		62 - 125	09/03/13 11:49	09/11/13 21:14	1
2-Fluorobiphenyl	72		66 - 140	09/03/13 11:49	09/11/13 21:14	1
2,4,6-Tribromophenol	74		44 - 125	09/03/13 11:49	09/11/13 21:14	1
Terphenyl-d14	101		20 - 150	09/03/13 11:49	09/11/13 21:14	1

Lab Sample ID: LCS 580-144057/2-A

Matrix: Water

Analysis Batch: 144730

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 144057

%Rec. %Rec Limits 68 65 - 130

LCS LCS Spike Analyte Added Result Qualifier Unit Phenol 2.03 1.38 ug/L Bis(2-chloroethyl)ether 2.00 1.67 ug/L 83 65 - 125 2-Chlorophenol 1.98 1.65 ug/L 83 60 - 130 79 40 - 125 1,3-Dichlorobenzene 2.00 1.57 ug/L 1,4-Dichlorobenzene 2.00 1.60 ug/L 80 40 - 125 Benzyl alcohol 1.99 1.57 ug/L 79 65 - 125 1,2-Dichlorobenzene 2.00 1.56 ug/L 78 45 - 125 2-Methylphenol 2.00 1.57 79 70 - 130 ug/L 3 & 4 Methylphenol 2.01 1.78 ug/L 89 65 - 130 N-Nitrosodi-n-propylamine 2.00 83 70 - 130 1.66 ug/L Hexachloroethane 2.00 1.59 ug/L 79 30 - 125 2.01 Nitrobenzene 1.77 88 70 - 125 ug/L Isophorone 2.00 1.82 ug/L 91 75 - 125 2-Nitrophenol 1.98 1 81 ug/L 91 55 - 140 2,4-Dimethylphenol 1.98 ND ug/L 70 30 - 135 10.1 9.17 91 20 - 140 Benzoic acid ug/L Bis(2-chloroethoxy)methane 2.00 1.76 ug/L 88 75 - 125 2,4-Dichlorophenol 1.98 1.76 ug/L 89 50 - 140 2.00 83 1,2,4-Trichlorobenzene 1.66 ug/L 40 - 125 Naphthalene 2.01 83 1.68 ug/L 60 - 1254-Chloroaniline 2.00 1.38 ug/L 69 35 - 175 Hexachlorobutadiene 2.00 1.58 ug/L 79 25 - 125 4-Chloro-3-methylphenol 2.04 1 64 81 65 - 145 ug/L 2-Methylnaphthalene 2.00 1.65 82 60 - 125 ug/L ND 61 Hexachlorocyclopentadiene 2.00 20 - 125 ug/L 2,4,6-Trichlorophenol 1.99 2.14 108 55 - 140 ug/L 2,4,5-Trichlorophenol 2.00 ug/L 107 75 - 125 2.14 2-Chloronaphthalene 2.00 1.80 ug/L 90 60 - 125 2-Nitroaniline 2.01 1.83 ug/L 91 75 - 140 108 65 - 155 Dimethyl phthalate 2.00 2.17 ug/L Acenaphthylene 2.00 1.82 ug/L 91 65 - 125 2,6-Dinitrotoluene 2.04 75 - 125 2.00 ug/L 102 3-Nitroaniline 2.00 1.73 86 75 - 140 ug/L 65 - 125 Acenaphthene 2.00 1.86 ug/L 93 2,4-Dinitrophenol 9.87 9.42 ug/L 95 50 - 130 4-Nitrophenol

TestAmerica Seattle

8.13

ug/L

80

35 - 145

10.1

TestAmerica Job ID: 580-40033-1

Project/Site: CenterPoint, Seattle, WA

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-144057/2-A

Matrix: Water

Client: ERM-West

Analysis Batch: 144730

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 144057

Analysis Batch. 144730	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dibenzofuran	2.00	1.85		ug/L		93	60 - 125
2,4-Dinitrotoluene	2.00	2.25		ug/L		112	75 ₋ 125
Diethyl phthalate	2.01	1.91		ug/L		95	60 - 150
4-Chlorophenyl phenyl ether	2.00	1.86		ug/L		93	70 - 125
Fluorene	2.02	1.93		ug/L		96	70 - 125
4-Nitroaniline	2.00	1.75		ug/L		87	70 - 125
4,6-Dinitro-2-methylphenol	9.95	10.1		ug/L		102	50 ₋ 125
N-Nitrosodiphenylamine	2.00	ND	*	ug/L		6	40 - 135
4-Bromophenyl phenyl ether	2.00	2.07		ug/L		103	75 - 125
Hexachlorobenzene	2.00	2.03		ug/L		102	70 - 125
Pentachlorophenol	1.97	1.61		ug/L		82	20 - 145
Phenanthrene	2.01	2.02		ug/L		100	75 ₋ 125
Anthracene	2.00	2.15		ug/L		108	50 ₋ 125
Di-n-butyl phthalate	2.00	2.38		ug/L		119	55 ₋ 155
Fluoranthene	2.00	2.43		ug/L		122	70 _ 125
Pyrene	2.00	2.15		ug/L		107	70 - 125
Butyl benzyl phthalate	2.00	2.67		ug/L		133	60 _ 150
3,3'-Dichlorobenzidine	3.97	3.28		ug/L		83	20 _ 175
Benzo[a]anthracene	2.00	2.12		ug/L		106	65 _ 125
Chrysene	1.93	2.01		ug/L		104	70 _ 125
Bis(2-ethylhexyl) phthalate	1.99	ND		ug/L		139	20 - 175
Di-n-octyl phthalate	2.00	1.52		ug/L		76	55 ₋ 150
Benzo[a]pyrene	2.00	2.05		ug/L		103	45 - 125
Indeno[1,2,3-cd]pyrene	2.01	2.11		ug/L		105	75 _ 125
Dibenz(a,h)anthracene	2.00	1.95		ug/L		98	75 - 130
Benzo[g,h,i]perylene	2.00	2.15		ug/L		108	75 - 125
Carbazole	2.00	2.40		ug/L		120	75 _ 125
1-Methylnaphthalene	2.01	1.81		ug/L		90	60 - 125
Benzo[b]fluoranthene	2.00	2.15		ug/L		108	70 _ 125
Benzo[k]fluoranthene	2.00	2.18		ug/L		109	70 - 125
bis (2-chloroisopropyl) ether	2.00	1.43		ug/L		72	65 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorophenol	75		20 - 134
Phenol-d5	79		55 - 125
Nitrobenzene-d5	84		62 - 125
2-Fluorobiphenyl	89		66 - 140
2,4,6-Tribromophenol	93		44 - 125
Terphenyl-d14	120		20 - 150

Lab Sample ID: LCSD 580-144057/3-A

Matrix: Water

Bis(2-chloroethyl)ether

2-Chlorophenol

Analyte

Phenol

Analysis Batch: 144730

Client Sam	nle ID: La	h Control	Sample	Dun
Olielit Jaili	pie ib. La		Janipie	Dup

Prep Type: Total/NA **Prep Batch: 144057**

%Rec. RPD Limits RPD Limit %Rec 20 72 65 - 130 6 87 65 - 125 4 20 94 60 - 130 12 20

TestAmerica Seattle

Page 26 of 47

Spike

Added

2.03

2.00

1.98

LCSD LCSD

1.46

1.74

1.86

Result Qualifier

Unit

ug/L

ug/L

ug/L

Spike

LCSD LCSD

TestAmerica Job ID: 580-40033-1

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144057/3-A

Matrix: Water

Pentachlorophenol

Phenanthrene

Anthracene Di-n-butyl phthalate

Fluoranthene

Analysis Batch: 144730

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA Prep Batch: 144057**

Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	2.00	1.69	ug/L	84	40 - 125	7	20
1,4-Dichlorobenzene	2.00	1.70	ug/L	85	40 - 125	6	20
Benzyl alcohol	1.99	1.70	ug/L	85	65 - 125	8	20
1,2-Dichlorobenzene	2.00	1.65	ug/L	83	45 - 125	6	20
2-Methylphenol	2.00	1.76	ug/L	88	70 - 130	11	20
3 & 4 Methylphenol	2.01	1.93	ug/L	96	65 - 130	8	20
N-Nitrosodi-n-propylamine	2.00	1.82	ug/L	91	70 - 130	9	20
Hexachloroethane	2.00	1.65	ug/L	83	30 - 125	4	20
Nitrobenzene	2.01	1.94	ug/L	97	70 - 125	9	20
Isophorone	2.00	1.96	ug/L	98	75 - 125	7	20
2-Nitrophenol	1.98	1.90	ug/L	96	55 - 140	5	20
2,4-Dimethylphenol	1.98	ND	ug/L	79	30 - 135	12	20
Benzoic acid	10.1	8.57	ug/L	85	20 - 140	7	20
Bis(2-chloroethoxy)methane	2.00	1.92	ug/L	96	75 ₋ 125	9	20
2,4-Dichlorophenol	1.98	1.79	ug/L	91	50 - 140	2	20
1,2,4-Trichlorobenzene	2.00	1.67	ug/L	83	40 - 125	0	20
Naphthalene	2.01	1.73	ug/L	86	60 - 125	3	20
4-Chloroaniline	2.00	1.48	ug/L	74	35 - 175	7	20
Hexachlorobutadiene	2.00	1.57	ug/L	79	25 - 125	0	20
4-Chloro-3-methylphenol	2.04	1.93	ug/L	95	65 - 145	16	20
2-Methylnaphthalene	2.00	1.75	ug/L	87	60 - 125	6	20
Hexachlorocyclopentadiene	2.00	ND	ug/L	60	20 - 125	0	20
2,4,6-Trichlorophenol	1.99	2.13	ug/L	107	55 - 140	1	20
2,4,5-Trichlorophenol	2.00	2.09	ug/L	104	75 - 125	2	20
2-Chloronaphthalene	2.00	1.86	ug/L	93	60 - 125	3	20
2-Nitroaniline	2.01	1.74	ug/L	86	75 - 140	5	20
Dimethyl phthalate	2.00	2.24	ug/L	112	65 - 155	3	20
Acenaphthylene	2.00	1.86	ug/L	93	65 - 125	3	20
2,6-Dinitrotoluene	2.00	2.13	ug/L	106	75 - 125	4	20
3-Nitroaniline	2.00	1.76	ug/L	88	75 ₋ 140	2	20
Acenaphthene	2.00	1.90	ug/L	95	65 - 125	2	20
2,4-Dinitrophenol	9.87	9.10	ug/L	92	50 - 130	3	20
4-Nitrophenol	10.1	7.66	ug/L	76	35 - 145	6	20
Dibenzofuran	2.00	1.95	ug/L	97	60 - 125	5	20
2,4-Dinitrotoluene	2.00	2.26	ug/L	113	75 - 125	1	20
Diethyl phthalate	2.01	2.00	ug/L	99	60 - 150	5	20
4-Chlorophenyl phenyl ether	2.00	1.93	ug/L	97	70 - 125	4	20
Fluorene	2.02	2.03	ug/L	100	70 - 125	5	20
4-Nitroaniline	2.00	2.01	ug/L	100	70 - 125	14	20
4,6-Dinitro-2-methylphenol	9.95	10.4	ug/L	104	50 - 125	2	20
N-Nitrosodiphenylamine	2.00	ND		6	40 - 135	10	20
4-Bromophenyl phenyl ether	2.00	2.07	ug/L	103	75 ₋ 125	0	20
Hexachlorobenzene	2.00	2.02	ug/L	101	70 - 125	0	20
			- 5				

TestAmerica Seattle

3

3

3

0

20

20

20

20

20

Page 27 of 47

1.97

2.01

2.00

2.00

2.00

1.66

1.97

2.08

2.38

2.43

ug/L

ug/L

ug/L

ug/L

ug/L

84

98

104

119

121

20 - 145

75 - 125

50 - 125

55 - 155

70 - 125

TestAmerica Job ID: 580-40033-1

Project/Site: CenterPoint, Seattle, WA

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144057/3-A

Matrix: Water

Client: ERM-West

Analysis Batch: 144730

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

75

65 - 125

Client Sample ID: Method Blank

%Rec.

Prep Type: Total/NA

Prep Batch: 144057

	-р						,0.100.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Pyrene	2.00	2.17		ug/L		109	70 - 125	1	20
Butyl benzyl phthalate	2.00	2.73		ug/L		136	60 - 150	2	20
3,3'-Dichlorobenzidine	3.97	3.33		ug/L		84	20 - 175	2	20
Benzo[a]anthracene	2.00	2.16		ug/L		108	65 - 125	2	20
Chrysene	1.93	1.99		ug/L		103	70 - 125	1	20
Bis(2-ethylhexyl) phthalate	1.99	ND		ug/L		141	20 - 175	1	20
Di-n-octyl phthalate	2.00	1.60		ug/L		80	55 - 150	5	20
Benzo[a]pyrene	2.00	2.05		ug/L		102	45 - 125	0	20
Indeno[1,2,3-cd]pyrene	2.01	2.20		ug/L		109	75 - 125	5	20
Dibenz(a,h)anthracene	2.00	1.91		ug/L		95	75 - 130	2	20
Benzo[g,h,i]perylene	2.00	2.25		ug/L		113	75 - 125	5	20
Carbazole	2.00	2.45		ug/L		122	75 - 125	2	20
1-Methylnaphthalene	2.01	1.84		ug/L		92	60 - 125	1	20
Benzo[b]fluoranthene	2.00	2.30		ug/L		115	70 - 125	7	20
Benzo[k]fluoranthene	2.00	2.27		ug/L		114	70 - 125	4	20

2.00

Spike

LCSD LCSD

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorophenol	77		20 - 134
Phenol-d5	81		55 - 125
Nitrobenzene-d5	80		62 _ 125
2-Fluorobiphenyl	85		66 - 140
2,4,6-Tribromophenol	91		44 - 125
Terphenyl-d14	107		20 - 150

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

MB MB

Lab Sample ID: MB 580-144148/5

Matrix: Water

Analysis Batch: 144148

bis (2-chloroisopropyl) ether

1.49

ug/L

Result Qualifier MDL Unit D Analyte RL Prepared Analyzed Dil Fac 0.050 ND 09/04/13 12:48 Gasoline mg/L

MB MB

Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 96 50 - 150 09/04/13 12:48 90 09/04/13 12:48 Trifluorotoluene (Surr) 50 - 150

Lab Sample ID: LCS 580-144148/6

Matrix: Water

Analysis Batch: 144148

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Added Result Qualifier Analyte Unit %Rec Limits Gasoline 1.00 0.846 85 mg/L

Spike

LCS LCS %Recovery Qualifier

Surrogate Limits 4-Bromofluorobenzene (Surr) 50 - 150 99

TestAmerica Seattle

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-144148/6

Lab Sample ID: LCSD 580-144148/11

Matrix: Water

Analysis Batch: 144148

LCS LCS

Surrogate **%Recovery Qualifier** Limits Trifluorotoluene (Surr) 93 50 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 144148

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Gasoline 1.00 0.851 85 79 - 110 20 mg/L

LCSD LCSD

%Recovery Qualifier Limits Surrogate 50 - 150 4-Bromofluorobenzene (Surr) 100 Trifluorotoluene (Surr) 83 50 - 150

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MR MR

Lab Sample ID: MB 580-144066/1-A

Matrix: Water

Analysis Batch: 144257

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 144066

Qualifier MDL Unit Prepared Analyte Result RL Analyzed Dil Fac PCB-1016 ND 0.50 09/03/13 12:33 09/05/13 12:21 ug/L PCB-1221 ND 0.50 ug/L 09/03/13 12:33 09/05/13 12:21 PCB-1232 ND 0.50 ug/L 09/03/13 12:33 09/05/13 12:21 PCB-1242 ND 0.50 ug/L 09/03/13 12:33 09/05/13 12:21 PCB-1248 ND 0.50 ug/L 09/03/13 12:33 09/05/13 12:21 PCB-1254 ND 0.50 ug/L 09/03/13 12:33 09/05/13 12:21 PCB-1260 ND 09/03/13 12:33 0.50 ug/L 09/05/13 12:21

MB MB Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 60 - 150 09/03/13 12:33 Tetrachloro-m-xylene 70 09/05/13 12:21 09/03/13 12:33 DCB Decachlorobiphenyl 52 40 - 135 09/05/13 12:21

Lab Sample ID: LCS 580-144066/2-A

Matrix: Water

Analysis Batch: 144257

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 144066

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 1.00 0.849 85 25 - 145 ug/L PCB-1260 1.00 0.833 ug/L 83 30 - 145

LCS LCS

Surrogate	%Recovery Quali	fier Limits
Tetrachloro-m-xylene	79	60 - 150
DCB Decachlorobiphenvl	71	40 - 135

Spike

TestAmerica Job ID: 580-40033-1

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 580-144066/3-A

Matrix: Water

Analyte

PCB-1016

PCB-1260

Analysis Batch: 144257

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 144066

		Trop Batom 144000					
		%Rec.		RPD			
)	%Rec	Limits	RPD	Limit			
_	94	25 - 145	10	27			

babbA Result Qualifier Unit D 1.00 0.936 ug/L 1.00 0.979 ug/L 98 30 - 145 16 22

LCSD LCSD

LCSD LCSD %Recovery Qualifier Surrogate I imits Tetrachloro-m-xylene 85 60 - 150 64 40 - 135 DCB Decachlorobiphenyl

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 250-19826/1-A

Matrix: Water

Analysis Batch: 19843

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 19826

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed DRO (C10-C25) 0.10 09/05/13 11:26 09/05/13 13:54 ND mg/L RRO (nC25-nC36) ND 0.25 mg/L 09/05/13 11:26 09/05/13 13:54

MB MB

Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 1-Chlorooctadecane 102 50 - 150 09/05/13 11:26 09/05/13 13:54

Lab Sample ID: LCS 250-19826/2-A Client Sample ID: Lab Control Sample

Ma

Ar

Matrix: Water			Prep Type: Total/NA
Analysis Batch: 19843			Prep Batch: 19826
	Spike	LCS LCS	%Rec.
		D 11 0 11 11 11 11	D 0/D 1: "

Analyte Added Result Qualifier Unit %Rec Limits DRO (C10-C25) 2.50 2.59 mg/L 104 50 - 150 RRO (nC25-nC36) 1.50 1.54 mg/L 103 50 - 150

LCS LCS %Recovery Qualifier Limits Surrogate 1-Chlorooctadecane 95 50 - 150

Lab Sample ID: LCSD 250-19826/3-A

Matrix: Water

Analysis Batch: 19843

C	lient	Sampl	e ID:	Lab	Control	Sample	• Dup

Prep Type: Total/NA Prep Batch: 19826

%Rec. RPD Limits **RPD** Limit

LCSD LCSD Spike Analyte Added Result Qualifier Unit %Rec DRO (C10-C25) 2.50 2.55 mg/L 102 50 - 150 2 20 RRO (nC25-nC36) 1.50 1.53 mg/L 102 50 - 15020

LCSD LCSD Surrogate %Recovery Qualifier Limits 50 - 150 1-Chlorooctadecane 95

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-24546/1-A

Matrix: Water

Analysis Batch: 24661

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 24546

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10		pg/L		09/05/13 15:12	09/06/13 15:19	1
2,3,7,8-TCDF	ND		10		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,7,8-PeCDD	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,7,8-PeCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
2,3,4,7,8-PeCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,4,7,8-HxCDD	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,6,7,8-HxCDD	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,7,8,9-HxCDD	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,4,7,8-HxCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,6,7,8-HxCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
2,3,4,6,7,8-HxCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,7,8,9-HxCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,4,6,7,8-HpCDD	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,4,6,7,8-HpCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
1,2,3,4,7,8,9-HpCDF	ND		50		pg/L		09/05/13 15:12	09/06/13 15:19	1
OCDD	ND		100		pg/L		09/05/13 15:12	09/06/13 15:19	1
OCDF	ND		100		pg/L		09/05/13 15:12	09/06/13 15:19	1

MB MB

	1110	W.D				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	83		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-2,3,7,8-TCDF	86		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-1,2,3,7,8-PeCDD	82		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-1,2,3,7,8-PeCDF	79		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-1,2,3,6,7,8-HxCDD	88		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-1,2,3,4,7,8-HxCDF	93		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-1,2,3,4,6,7,8-HpCDD	86		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-1,2,3,4,6,7,8-HpCDF	86		40 - 135	09/05/13 15:12	09/06/13 15:19	1
13C-OCDD	82		40 - 135	09/05/13 15:12	09/06/13 15:19	1

Lab Sample ID: LCS 320-24546/2-A

Matrix: Water

Analysis Batch: 24661

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 24546

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 2,3,7,8-TCDD 200 192 96 72 - 144 pg/L 2,3,7,8-TCDF 200 184 pg/L 92 73 - 150 1,2,3,7,8-PeCDD 1000 992 pg/L 99 79 - 125 1,2,3,7,8-PeCDF 1000 964 pg/L 79 - 137 2,3,4,7,8-PeCDF 1000 904 90 76 - 137 pg/L 1000 1,2,3,4,7,8-HxCDD 1140 pg/L 114 65 - 144 pg/L 1,2,3,6,7,8-HxCDD 1000 1030 103 78 - 137 1000 1030 1,2,3,7,8,9-HxCDD pg/L 103 74 - 142 1000 994 99 86 - 126 1,2,3,4,7,8-HxCDF pg/L 1000 926 pg/L 93 79 - 137 1,2,3,6,7,8-HxCDF 1000 956 80 - 138 2,3,4,6,7,8-HxCDF pg/L 96 1,2,3,7,8,9-HxCDF 1000 926 93 72 - 145 pg/L 1,2,3,4,6,7,8-HpCDD 1000 1030 pg/L 103 81 - 132 1000 1,2,3,4,6,7,8-HpCDF 998 100 81 - 135 pg/L

TestAmerica Seattle

Page 31 of 47

3

5

7

a

Project/Site: CenterPoint, Seattle, WA

Lab Sample ID: LCS 320-24546/2-A

Lab Sample ID: LCSD 320-24546/3-A

Method: 8290 - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Water

Matrix: Water

Client: ERM-West

Analysis Batch: 24661

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 24546

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,4,7,8,9-HpCDF	1000	937		pg/L		94	72 - 140	
OCDD	2000	2110		pg/L		105	80 - 129	
OCDF	2000	2030		pg/L		101	65 - 145	

LCS LCS

	_00		
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	85		40 - 135
13C-2,3,7,8-TCDF	88		40 - 135
13C-1,2,3,7,8-PeCDD	81		40 - 135
13C-1,2,3,7,8-PeCDF	84		40 - 135
13C-1,2,3,6,7,8-HxCDD	84		40 - 135
13C-1,2,3,4,7,8-HxCDF	93		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	82		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	87		40 - 135
13C-OCDD	81		40 - 135

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 24546

								•	
Analysis Batch: 24661							Prep	Batch:	24546
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	200	202		pg/L		101	72 - 144	5	20
2,3,7,8-TCDF	200	185		pg/L		93	73 _ 150	0	20
1,2,3,7,8-PeCDD	1000	948		pg/L		95	79 - 125	5	20
1,2,3,7,8-PeCDF	1000	947		pg/L		95	79 - 137	2	20
2,3,4,7,8-PeCDF	1000	915		pg/L		91	76 - 137	1	20
1,2,3,4,7,8-HxCDD	1000	1090		pg/L		109	65 - 144	5	20
1,2,3,6,7,8-HxCDD	1000	975		pg/L		98	78 - 137	5	20
1,2,3,7,8,9-HxCDD	1000	980		pg/L		98	74 - 142	5	20
1,2,3,4,7,8-HxCDF	1000	964		pg/L		96	86 - 126	3	20
1,2,3,6,7,8-HxCDF	1000	902		pg/L		90	79 - 137	3	20
2,3,4,6,7,8-HxCDF	1000	939		pg/L		94	80 - 138	2	20
1,2,3,7,8,9-HxCDF	1000	918		pg/L		92	72 - 145	1	20
1,2,3,4,6,7,8-HpCDD	1000	986		pg/L		99	81 - 132	4	20
1,2,3,4,6,7,8-HpCDF	1000	958		pg/L		96	81 ₋ 135	4	20
1,2,3,4,7,8,9-HpCDF	1000	932		pg/L		93	72 - 140	0	20
OCDD	2000	2000		pg/L		100	80 - 129	5	20
OCDF	2000	1930		pg/L		96	65 - 145	5	20

LCSD LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	83		40 - 135
13C-2,3,7,8-TCDF	85		40 - 135
13C-1,2,3,7,8-PeCDD	83		40 - 135
13C-1,2,3,7,8-PeCDF	82		40 - 135
13C-1,2,3,6,7,8-HxCDD	88		40 - 135
13C-1,2,3,4,7,8-HxCDF	96		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	92		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	92		40 - 135
13C-OCDD	86		40 - 135

TestAmerica Seattle

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 580-143911/14-A

Matrix: Water

Analysis Batch: 144352

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 143911

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		1.5		mg/L		08/30/13 15:40	09/06/13 01:50	1
Calcium	ND		1.1		mg/L		08/30/13 15:40	09/06/13 01:50	1
Magnesium	ND		1.1		mg/L		08/30/13 15:40	09/06/13 01:50	1
Potassium	ND		3.3		mg/L		08/30/13 15:40	09/06/13 01:50	1
Sodium	ND		2.0		mg/L		08/30/13 15:40	09/06/13 01:50	1
<u> </u>									

MD MD

Lab Sample ID: LCS 580-143911/15-A

Matrix: Water

Analysis Batch: 144352

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 143911

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	4.00	4.04		mg/L		101	80 - 120	·
Calcium	20.0	19.9		mg/L		100	80 - 120	
Magnesium	20.0	20.2		mg/L		101	80 - 120	
Potassium	20.0	19.0		mg/L		95	80 - 120	
Sodium	20.0	20.0		mg/L		100	80 - 120	

Lab Sample ID: LCSD 580-143911/16-A

Matrix: Water

Analysis Batch: 144352

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Prep Batch: 143911

Analysis Daten. 144002							1 100	Daten. I	TOO 11
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	4.00	4.55		mg/L		114	80 - 120	12	20
Calcium	20.0	20.2		mg/L		101	80 - 120	1	20
Magnesium	20.0	20.8		mg/L		104	80 - 120	3	20
Potassium	20.0	19.5		mg/L		98	80 - 120	3	20
Sodium	20.0	20.8		mg/L		104	80 - 120	4	20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-143911/14-A

Matrix: Water

Analysis Batch: 144075

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 143911**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Arsenic	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 12:34	5
Barium	ND		0.0060		mg/L		08/30/13 15:40	09/03/13 12:34	5
Beryllium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Cadmium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Chromium	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Cobalt	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Copper	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 12:34	5
Iron	ND		0.20		mg/L		08/30/13 15:40	09/03/13 12:34	5
Lead	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Manganese	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Nickel	ND		0.015		mg/L		08/30/13 15:40	09/03/13 12:34	5
Selenium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 12:34	5

TestAmerica Seattle

Page 33 of 47

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 580-143911/14-A

Matrix: Water

Analysis Batch: 144075

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 143911

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0020		mg/L		08/30/13 15:40	09/03/13 12:34	5
Thallium	ND		0.0050		mg/L		08/30/13 15:40	09/03/13 12:34	5
Vanadium	ND		0.010		mg/L		08/30/13 15:40	09/03/13 12:34	5
Zinc	ND		0.0070		mg/L		08/30/13 15:40	09/03/13 12:34	5

Lab Sample ID: LCS 580-143911/15-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 144075

Prep Batch: 143911

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	3.00	2.92		mg/L		97	80 - 120	
Arsenic	4.00	3.97		mg/L		99	80 - 120	
Barium	4.00	3.84		mg/L		96	80 - 120	
Beryllium	0.100	0.101		mg/L		101	80 - 120	
Cadmium	0.100	0.0952		mg/L		95	80 - 120	
Chromium	0.400	0.397		mg/L		99	80 - 120	
Cobalt	1.00	1.02		mg/L		102	80 - 120	
Copper	0.500	0.523		mg/L		105	80 - 120	
Iron	22.0	21.9		mg/L		100	80 - 120	
Lead	1.00	0.962		mg/L		96	80 _ 120	
Manganese	1.00	0.983		mg/L		98	80 - 120	
Nickel	1.00	1.05		mg/L		105	80 - 120	
Selenium	4.00	3.97		mg/L		99	80 _ 120	
Silver	0.600	0.606		mg/L		101	80 - 120	
Thallium	4.00	3.84		mg/L		96	80 _ 120	
Vanadium	1.00	1.02		mg/L		102	80 - 120	
Zinc	1.00	0.994		mg/L		99	80 - 120	

Lab Sample ID: LCSD 580-143911/16-A

Matrix: Water

Analysis Batch: 144075

Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable Prep Batch: 143911

7									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	3.00	2.93		mg/L		98	80 - 120	1	20
Arsenic	4.00	4.00		mg/L		100	80 - 120	1	20
Barium	4.00	3.85		mg/L		96	80 - 120	0	20
Beryllium	0.100	0.102		mg/L		102	80 - 120	1	20
Cadmium	0.100	0.0917		mg/L		92	80 - 120	4	20
Chromium	0.400	0.402		mg/L		100	80 - 120	1	20
Cobalt	1.00	1.03		mg/L		103	80 - 120	1	20
Copper	0.500	0.531		mg/L		106	80 - 120	2	20
Iron	22.0	22.4		mg/L		102	80 - 120	2	20
Lead	1.00	0.965		mg/L		96	80 - 120	0	20
Manganese	1.00	0.985		mg/L		99	80 - 120	0	20
Nickel	1.00	1.07		mg/L		107	80 - 120	2	20
Selenium	4.00	3.96		mg/L		99	80 - 120	0	20
Silver	0.600	0.611		mg/L		102	80 - 120	1	20
Thallium	4.00	3.85		mg/L		96	80 - 120	0	20
Vanadium	1.00	1.02		mg/L		102	80 - 120	0	20

TestAmerica Seattle

9/13/2013

Page 34 of 47

Client: ERM-West Project/Site: CenterPoint, Seattle, WA

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-143911/16-A				Clie	ent Sam	iple ID: I	Lab Contro	I Sampl	e Dup
Matrix: Water						Prep	Type: Tota	I Recov	erable
Analysis Batch: 144075							Prep l	Batch: 1	43911
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Zinc	1 00	1.02		ma/L		102	80 - 120	3	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 580-144261/24-A

Matrix: Water

Mercury

Analysis Batch: 144293								Prep Batch:	144261
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		09/05/13 11:21	09/05/13 14:03	1

Lab Sample ID: LCS 580-144261/25-A					Client	Sample	ID: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 144293							Prep Batch: 144261
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

0.00181

mg/L

0.00200

Lab Sample ID: LCSD 580-144261/26-A				CI	lient San	iple ID:	Lab Contro	اد Sampl	e Dup
Matrix: Water							Prep 7	Type: To	tal/NA
Analysis Batch: 144293							Prep	Batch: 1	44261
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.00200	0.00176	-	ma/l		88	80 - 120	3	20

Lab Sample ID: LCSSRM 580-144261/27-A					Client	Sample	ID: Lab Co	ontrol Sample
Matrix: Water							Prep T	ype: Total/NA
Analysis Batch: 144293							Prep I	Batch: 144261
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00200	0.00178		mg/L		89	75 - 125	

Client Sample ID: Method Blank

80 - 120

Prep Type: Total/NA

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Lab Sample ID: 580-40033-1

Matrix: Water

Client Sample ID: MW-2-082913

Date Collected: 08/29/13 11:13 Date Received: 08/29/13 16:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	144375	09/06/13 23:21	JMB	TAL SEA
Total/NA	Prep	3520C			144057	09/03/13 11:49	ALC	TAL SEA
Total/NA	Analysis	8270C		1	144730	09/12/13 04:33	ERB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	144148	09/04/13 20:17	MMH	TAL SEA
Total/NA	Prep	3510C			19826	09/05/13 11:26	ELP	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19845	09/05/13 14:13	NMI	TAL PRT
Total Recoverable	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Total Recoverable	Analysis	6020		5	144075	09/03/13 13:37	FCW	TAL SEA
Dissolved	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Dissolved	Analysis	6020		5	144075	09/03/13 13:42	FCW	TAL SEA
Total/NA	Prep	7470A			144261	09/05/13 11:21	PAB	TAL SEA
Total/NA	Analysis	7470A		1	144293	09/05/13 14:46	FCW	TAL SEA
Dissolved	Prep	7470A			144261	09/05/13 11:21	PAB	TAL SEA
Dissolved	Analysis	7470A		1	144293	09/05/13 14:51	FCW	TAL SEA
Total Recoverable	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Total Recoverable	Analysis	6010B		1	144352	09/06/13 02:23	HJM	TAL SEA
Dissolved	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Dissolved	Analysis	6010B		1	144352	09/06/13 02:29	HJM	TAL SEA

Client Sample ID: MW-1-082913

Date Collected: 08/29/13 14:23

Date Received: 08/29/13 16:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	144375	09/06/13 23:45	JMB	TAL SEA
Total/NA	Prep	3520C			144057	09/03/13 11:49	ALC	TAL SEA
Total/NA	Analysis	8270C		1	144730	09/12/13 04:58	ERB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	144148	09/04/13 19:54	MMH	TAL SEA
Total/NA	Prep	3510C			19826	09/05/13 11:26	ELP	TAL PRT
Total/NA	Analysis	NWTPH-Dx		1	19845	09/05/13 14:32	NMI	TAL PRT
Total Recoverable	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Total Recoverable	Analysis	6020		5	144075	09/03/13 13:29	FCW	TAL SEA
Dissolved	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Dissolved	Analysis	6020		5	144075	09/03/13 13:46	FCW	TAL SEA
Total/NA	Prep	7470A			144261	09/05/13 11:21	PAB	TAL SEA
Total/NA	Analysis	7470A		1	144293	09/05/13 14:49	FCW	TAL SEA
Dissolved	Prep	7470A			144261	09/05/13 11:21	PAB	TAL SEA
Dissolved	Analysis	7470A		1	144293	09/05/13 14:54	FCW	TAL SEA
Total Recoverable	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Total Recoverable	Analysis	6010B		1	144352	09/06/13 02:26	HJM	TAL SEA
Dissolved	Prep	3005A			143911	08/30/13 15:40	KJV	TAL SEA
Dissolved	Analysis	6010B		1	144352	09/06/13 02:32	HJM	TAL SEA

Lab Sample ID: 580-40033-2 Matrix: Water

TestAmerica Seattle

Lab Chronicle

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Client Sample ID: Trip Blank-GW1

TestAmerica Job ID: 580-40033-1

Lab Sample ID: 580-40033-3

Matrix: Water

Date Collected: 08/29/13 00:00 Date Received: 08/29/13 16:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	144375	09/06/13 16:16	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	144148	09/04/13 19:32	MMH	TAL SEA

Client Sample ID: MW-2-082913 Lab Sample ID: 580-40033-4

Date Collected: 08/29/13 09:29 Matrix: Water

Date Received: 08/29/13 16:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144066	09/03/13 12:34	RES	TAL SEA
Total/NA	Analysis	8082		1	144257	09/05/13 18:17	SGH	TAL SEA
Total/NA	Prep	8290			24546	09/05/13 15:12	CCC	TAL SAC
Total/NA	Analysis	8290		1	24661	09/06/13 21:35	SMA	TAL SAC

Client Sample ID: MW-1-082913 Lab Sample ID: 580-40033-5

Date Collected: 08/29/13 12:20 Matrix: Water

Date Received: 08/29/13 16:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144066	09/03/13 12:34	RES	TAL SEA
Total/NA	Analysis	8082		1	144320	09/06/13 08:58	SGH	TAL SEA
Total/NA	Prep	8290			24546	09/05/13 15:12	CCC	TAL SAC
Total/NA	Analysis	8290		1	24661	09/06/13 22:17	SMA	TAL SAC

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	NFESC		N/A	05-24-08 *
Alaska (UST)	State Program	10	UST-022	03-04-14
California	NELAP	9	01115CA	01-31-14
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-14

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority Alaska (UST)	Program State Program	EPA Region 10	UST-012	Expiration Date 12-26-13
California Oregon	State Program NELAP	9 10	2597 OR100021	09-30-13 01-09-14
USDA	Federal		P330-11-00092	02-17-14
Washington	State Program	10	C586	06-23-14

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	A2LA		NE-OS-22-13	01-31-14
A2LA	DoD ELAP		2928-01	01-31-14
Alaska (UST)	State Program	10	UST-055	12-18-13
Arizona	State Program	9	AZ0708	08-11-14
Arkansas DEQ	State Program	6	88-0691	06-17-14
California	NELAP	9	1119CA	01-31-14
Connecticut	State Program	1	PH-0691	06-30-15
Florida	NELAP	4	E87570	06-30-14
Guam	State Program	9	N/A	08-31-13 *
Hawaii	State Program	9	N/A	01-31-14
Illinois	NELAP	5	200060	03-17-14
Kansas	NELAP	7	E-10375	10-31-13
Louisiana	NELAP	6	30612	06-30-14
Michigan	State Program	5	9947	01-31-14
Nebraska	State Program	7	NE-OS-22-13	01-31-14
Nevada	State Program	9	CA44	07-31-14
New Jersey	NELAP	2	CA005	06-30-14
New York	NELAP	2	11666	04-01-14
Northern Mariana Islands	State Program	9	MP0007	02-01-14
Oregon	NELAP	10	CA200005	03-28-14
Pennsylvania	NELAP	3	68-01272	03-31-14
South Carolina	State Program	4	87014	06-30-14
Texas	NELAP	6	T104704399-08-TX	05-31-14
US Fish & Wildlife	Federal		LE148388-0	12-31-13
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Utah	NELAP	8	QUAN1	01-31-14

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Seattle

9/13/2013

Certification Summary

Client: ERM-West TestAmerica Job ID: 580-40033-1

Project/Site: CenterPoint, Seattle, WA

Laboratory: TestAmerica Sacramento (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Washington	State Program	10	C581	05-05-14
West Virginia	State Program	3	9930C	12-31-13
Wyoming	State Program	8	8TMS-Q	01-31-14

3

5

O

8

9

10

11

Sample Summary

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-40033-1	MW-2-082913	Water	08/29/13 11:13	08/29/13 16:10
580-40033-2	MW-1-082913	Water	08/29/13 14:23	08/29/13 16:10
580-40033-3	Trip Blank-GW1	Water	08/29/13 00:00	08/29/13 16:10
580-40033-4	MW-2-082913	Water	08/29/13 09:29	08/29/13 16:10
580-40033-5	MW-1-082913	Water	08/29/13 12:20	08/29/13 16:10

2

1

6

0

9

10

11

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com	□ □	Rush C	Chain of Custody Record
Client ERM	Client Contact Client Contact	ave Edwards	Date 15 15 15 15	Chain of Custody Number 20126
Address 1218 35 Ave Str 1412	Telephone Number (Area Code)/Fax Number 415 461854	ax Number 854 j	Lab Number 22	Page 2 of 2
City Code State Zip Code	10.0	Lab Contact	Analysis (Attach list if more space is needed)	
tion (State)	Billing Contact ERM Nalvot			Special Instructions/
	-			Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Ilines suoenby	Seriand Ser		
A-MW-2-082913 8/4/13	W X			3 hottos in sortho
G-MW-1-082913 8/29/13	X 977)	××		3 Wither in sand
P				
dage				
420				•
of 47			Cooler/TB Dig/IR/Cor2-	R'cor5. un©.0
	/		Cooler Dsc /4 / Mura	y Land
			(Wet/Packs F	aching were
				,
			-	
Cooler Possible Hazard Identification Nes	mable 🗌 Skín Irritant 🗀 Poison B	Sample Disposal Son B	☐ Disposal By Lab It ☐ Archive For Months	(A fee may be assessed if samples ths are retained longer than 1 month)
und Time Required (business days) urs	other 9 day	? Requirements (Spe		
Hed By Sign/Print Math Candl	State Stat	0	rangs Ca Lung I	Date Mime 1616
	Date Time	2. Received By Signifrint		Date Time
3. Relinquished By SignIPrint	Date Time	3. Received By Sign/Print		Date Time
S Comments	-	_		-
TRIBU	nt with Report; PINK - Field Copy	1	3	TAL-8274-580 (0210)

Client: ERM-West Job Number: 580-40033-1

Login Number: 40033 List Source: TestAmerica Seattle

List Number: 1

Creator: Balles, Racheal M

One-star		Onner
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	some labels of -1 lack sampling time.
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

_ .

3

4

_

7

9

11

11

Client: ERM-West Job Number: 580-40033-1

List Source: TestAmerica Portland
List Number: 1
List Creation: 09/04/13 11:48 AM

Creator: Svabik-Seror, Philip M

Creator: Svabik-Seror, Philip M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

Δ

5

7

9

10

11

Client: ERM-West Job Number: 580-40033-1

List Source: TestAmerica Portland
List Number: 2
List Creation: 09/04/13 11:49 AM

Creator: Svabik-Seror, Philip M

Question Answer Comment

Radioactivity wasn't checked or is </= background as measured by a survey

meter

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time.

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

4

5

6

o

9

11

11

Client: ERM-West Job Number: 580-40033-1

List Source: TestAmerica Sacramento
List Number: 1
List Creation: 09/04/13 01:16 PM

Creator: Cortes, Cesar C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

А

6

0

9

11

11

Isotope Dilution Summary

Client: ERM-West

Project/Site: CenterPoint, Seattle, WA

TestAmerica Job ID: 580-40033-1

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)
580-40033-4	MW-2-082913	82	83	76	78	84	86	81	82
580-40033-5	MW-1-082913	88	89	85	85	91	105	91	94
LCS 320-24546/2-A	Lab Control Sample	85	88	81	84	84	93	82	87
LCSD 320-24546/3-A	Lab Control Sample Dup	83	85	83	82	88	96	92	92
MB 320-24546/1-A	Method Blank	83	86	82	79	88	93	86	86
			P	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		OCDD							
Lab Sample ID	Client Sample ID	(40-135)							
580-40033-4	MW-2-082913	76							
580-40033-5	MW-1-082913	87							
LCS 320-24546/2-A	Lab Control Sample	81							
LCSD 320-24546/3-A	Lab Control Sample Dup	86							
MB 320-24546/1-A	Method Blank	82							

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-40060-1

Client Project/Site: Center Point, Seattle

For:

ERM-West 1218 3rd Ave Suite 1412 Seattle, Washington 98101

Attn: Dave Edwards

Knistène D. aller

Authorized for release by: 9/18/2013 2:57:14 PM

Kristine Allen, Project Manager I kristine.allen@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	25
Chronicle	45
Certification Summary	48
Sample Summary	50
Chain of Custody	51
Receipt Checklists	53
Isotope Dilution Summary	56

q

4

5

9

Case Narrative

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Job ID: 580-40060-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 8/30/2013 2:05 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 0.6° C, 0.7° C and 1.2° C.

Except:

The container label for the following sample MW-3-083013 (580-40060-4) did not match the information listed on the Chain-of-Custody (COC). For the metal containers: The container label lists sample ID of MW-4-082913. The COC lists sample ID of MW-3-083013. Lined up according to date and time listed on container label. Logged in per COC.

GC/MS VOA - Method(s) 8260B

The RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for analytical batch 144777 recovered outside control limits for the following analytes: Tetrachloroethene. However both LCS/LCSD individual recoveries fell withing recovery limits.

No other analytical or quality issues were noted.

GC/MS Semi VOA - Method(s) 8270C

A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for four analytes to recover outside criteria for this method when a full list spike is utilized. The LCS passed recovery criteria for all analytes, but the LCSD failed high for bis(2-ethylhexyl)phthalate. This failure is within marginal exceedances and does not warrant re-extraction and re-analysis. Additionally, there were four compounds failed for LCS/LCSD recovery precision, results have been qualified and reported.

No other analytical or quality issues were noted.

GC Semi VOA Method(s) NWTPH-Dx

Detected hydrocarbons appear to be due to biogenic interference.MW-3-083013 (580-40060-4), MW-5-082913 (580-40060-2).

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Dioxin Prep

No analytical or quality issues were noted.

3

7

a

10

11

Definitions/Glossary

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Qualifiers

GC/MS VOA

* RPD of the LCS and LCSD exceeds the control limits

GC/MS Semi VOA

Qualifier	Qualifier Description

* RPD of the LCS and LCSD exceeds the control limits

* LCS or LCSD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Seattle

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-1

Matrix: Water

Client Sample ID: MW-4-082913 Date Collected: 08/29/13 17:11

Date Received: 08/30/13 14:05

Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND	0.20	ug/L		09/12/13 12:14	
2-Chlorotoluene	ND	0.10	ug/L		09/12/13 12:14	
1,2,3-Trichloropropane	ND	0.20	ug/L		09/12/13 12:14	
Carbon tetrachloride	ND	0.10	ug/L		09/12/13 12:14	
cis-1,3-Dichloropropene	ND	0.10	ug/L		09/12/13 12:14	
Chlorobenzene	ND	0.10	ug/L		09/12/13 12:14	
/inyl chloride	ND	0.020	ug/L		09/12/13 12:14	
sec-Butylbenzene	ND	0.10	ug/L		09/12/13 12:14	
Dibromomethane	ND	0.10	ug/L		09/12/13 12:14	
n-Xylene & p-Xylene	ND	0.20	ug/L		09/12/13 12:14	
p-Xylene	ND	0.10	ug/L		09/12/13 12:14	
,2,4-Trichlorobenzene	ND	0.20	ug/L		09/12/13 12:14	
Styrene	ND	0.10	ug/L		09/12/13 12:14	
Chlorobromomethane	ND ND	0.10	ug/L		09/12/13 12:14	
Dichlorobromomethane	ND ND	0.10	ug/L		09/12/13 12:14	
,3-Dichlorobenzene	ND	0.10	ug/L		09/12/13 12:14	
,3-Dictiloroberizerie Benzene	ND ND	0.20	-		09/12/13 12:14	
Chloroethane	ND ND	0.10	ug/L		09/12/13 12:14	
			ug/L			
rans-1,3-Dichloropropene	ND	0.10	ug/L		09/12/13 12:14	
,2,3-Trichlorobenzene	ND	0.40	ug/L		09/12/13 12:14	
I-Propylbenzene	ND	0.10	ug/L		09/12/13 12:14	
-Isopropyltoluene	ND	0.20	ug/L		09/12/13 12:14	
-Butylbenzene	ND	0.10	ug/L		09/12/13 12:14	
,1-Dichloropropene	ND	0.10	ug/L		09/12/13 12:14	
is-1,2-Dichloroethene	ND	0.10	ug/L		09/12/13 12:14	
,1,2,2-Tetrachloroethane	ND	0.10	ug/L		09/12/13 12:14	
,2,4-Trimethylbenzene	ND	0.10	ug/L		09/12/13 12:14	
oluene	ND	0.10	ug/L		09/12/13 12:14	
laphthalene	ND	0.40	ug/L		09/12/13 12:14	
,3,5-Trimethylbenzene	ND	0.10	ug/L		09/12/13 12:14	
,3-Dichloropropane	ND	0.10	ug/L		09/12/13 12:14	
Chloroform	ND	0.10	ug/L		09/12/13 12:14	
-Chlorotoluene	ND	0.20	ug/L		09/12/13 12:14	
Chlorodibromomethane	ND	0.10	ug/L		09/12/13 12:14	
Dichlorodifluoromethane	ND	0.40	ug/L		09/12/13 12:14	
,1,2-Trichloroethane	ND	0.10	ug/L		09/12/13 12:14	
ert-Butylbenzene	ND	0.10	ug/L		09/12/13 12:14	
Chloromethane	ND	0.10	ug/L		09/12/13 12:14	
Methylene Chloride	ND	0.50	ug/L		09/12/13 12:14	
,1-Dichloroethene	ND	0.10	ug/L		09/12/13 12:14	
sopropylbenzene	ND	0.10	ug/L		09/12/13 12:14	
,2-Dichloroethane	ND	0.10	ug/L		09/12/13 12:14	
etrachloroethene	ND	* 0.10	ug/L		09/12/13 12:14	
,1,1-Trichloroethane	ND	0.10	ug/L		09/12/13 12:14	
,2-Dichloropropane	ND	0.10	ug/L		09/12/13 12:14	
,2-Dibromoethane	ND	0.10	ug/L		09/12/13 12:14	
Bromoform	ND	0.10	ug/L		09/12/13 12:14	
,2-Dibromo-3-Chloropropane	ND	0.40	ug/L		09/12/13 12:14	
richlorofluoromethane	ND ND	0.40	ug/L		09/12/13 12:14	

TestAmerica Seattle

2

6

8

10

11

Client: ERM-West

Toluene-d8 (Surr)

Project/Site: Center Point, Seattle

Date Received: 08/30/13 14:05

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-1

09/12/13 12:14

Client Sample ID: MW-4-082913 Date Collected: 08/29/13 17:11

Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Trichloroethene	ND		0.10		ug/L			09/12/13 12:14	
Bromobenzene	ND		0.10		ug/L			09/12/13 12:14	
1,2-Dichloropropane	ND		0.10		ug/L			09/12/13 12:14	
1,1,1,2-Tetrachloroethane	ND		0.10		ug/L			09/12/13 12:14	
Ethylbenzene	ND		0.10		ug/L			09/12/13 12:14	•
trans-1,2-Dichloroethene	ND		0.10		ug/L			09/12/13 12:14	
Hexachlorobutadiene	ND		0.20		ug/L			09/12/13 12:14	
1,1-Dichloroethane	ND		0.10		ug/L			09/12/13 12:14	
Bromomethane	ND		0.10		ug/L			09/12/13 12:14	
1,4-Dichlorobenzene	ND		0.20		ug/L			09/12/13 12:14	•
Methyl tert-butyl ether	ND		0.10		ug/L			09/12/13 12:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		75 - 120			-		09/12/13 12:14	
Ethylbenzene-d10	96		75 - 125					09/12/13 12:14	
Fluorobenzene (Surr)	107		70 - 130					09/12/13 12:14	
Trifluorotoluene (Surr)	96		80 - 125					09/12/13 12:14	

75 - 125

94

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND ND	0.63	ug/L		09/04/13 16:38	09/11/13 21:34	1
Bis(2-chloroethyl)ether	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
2-Chlorophenol	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
1,3-Dichlorobenzene	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
1,4-Dichlorobenzene	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
Benzyl alcohol	1.1	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
1,2-Dichlorobenzene	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
2-Methylphenol	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
3 & 4 Methylphenol	ND	0.84	ug/L		09/04/13 16:38	09/11/13 21:34	1
N-Nitrosodi-n-propylamine	1.2	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
Hexachloroethane	ND	0.63	ug/L		09/04/13 16:38	09/11/13 21:34	1
Nitrobenzene	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
Isophorone	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
2-Nitrophenol	ND *	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
2,4-Dimethylphenol	ND	2.1	ug/L		09/04/13 16:38	09/11/13 21:34	1
Benzoic acid	ND *	3.1	ug/L		09/04/13 16:38	09/11/13 21:34	1
Bis(2-chloroethoxy)methane	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
2,4-Dichlorophenol	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
1,2,4-Trichlorobenzene	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
Naphthalene	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
4-Chloroaniline	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
Hexachlorobutadiene	ND	0.63	ug/L		09/04/13 16:38	09/11/13 21:34	1
4-Chloro-3-methylphenol	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
2-Methylnaphthalene	ND	0.21	ug/L		09/04/13 16:38	09/11/13 21:34	1
Hexachlorocyclopentadiene	ND	2.1	ug/L		09/04/13 16:38	09/11/13 21:34	1
2,4,6-Trichlorophenol	ND	0.63	ug/L		09/04/13 16:38	09/11/13 21:34	1
2,4,5-Trichlorophenol	ND	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1
2-Chloronaphthalene	ND	0.063	ug/L		09/04/13 16:38	09/11/13 21:34	1
2-Nitroaniline	ND *	0.42	ug/L		09/04/13 16:38	09/11/13 21:34	1

TestAmerica Seattle

9/18/2013

Page 6 of 56

4

Client: ERM-West

Terphenyl-d14

Analyte

Gasoline

Project/Site: Center Point, Seattle

Client Sample ID: MW-4-082913

Date Collected: 08/29/13 17:11 Date Received: 08/30/13 14:05 Lab Sample ID: 580-40060-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Acenaphthylene	ND		0.084		ug/L		09/04/13 16:38	09/11/13 21:34	1
2,6-Dinitrotoluene	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
3-Nitroaniline	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Acenaphthene	ND		0.10		ug/L		09/04/13 16:38	09/11/13 21:34	1
2,4-Dinitrophenol	ND		5.2		ug/L		09/04/13 16:38	09/11/13 21:34	1
4-Nitrophenol	ND		3.1		ug/L		09/04/13 16:38	09/11/13 21:34	1
Dibenzofuran	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
2,4-Dinitrotoluene	ND	*	0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Diethyl phthalate	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
4-Chlorophenyl phenyl ether	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Fluorene	ND		0.063		ug/L		09/04/13 16:38	09/11/13 21:34	1
4-Nitroaniline	ND		0.63		ug/L		09/04/13 16:38	09/11/13 21:34	1
4,6-Dinitro-2-methylphenol	ND		4.2		ug/L		09/04/13 16:38	09/11/13 21:34	1
N-Nitrosodiphenylamine	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
4-Bromophenyl phenyl ether	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Hexachlorobenzene	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Pentachlorophenol	ND		0.73		ug/L		09/04/13 16:38	09/11/13 21:34	1
Phenanthrene	ND		0.084		ug/L		09/04/13 16:38	09/11/13 21:34	1
Anthracene	ND		0.042		ug/L		09/04/13 16:38	09/11/13 21:34	1
Di-n-butyl phthalate	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Fluoranthene	ND		0.052		ug/L		09/04/13 16:38	09/11/13 21:34	1
Pyrene	ND		0.063		ug/L		09/04/13 16:38	09/11/13 21:34	1
Butyl benzyl phthalate	ND		0.63		ug/L		09/04/13 16:38	09/11/13 21:34	1
3,3'-Dichlorobenzidine	ND		2.1		ug/L		09/04/13 16:38	09/11/13 21:34	1
Benzo[a]anthracene	ND		0.063		ug/L		09/04/13 16:38	09/11/13 21:34	1
Chrysene	ND		0.042		ug/L		09/04/13 16:38	09/11/13 21:34	1
Bis(2-ethylhexyl) phthalate	ND	*	3.1		ug/L		09/04/13 16:38	09/11/13 21:34	1
Di-n-octyl phthalate	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
Benzo[a]pyrene	ND		0.042		ug/L		09/04/13 16:38	09/11/13 21:34	1
Indeno[1,2,3-cd]pyrene	ND		0.063		ug/L		09/04/13 16:38	09/11/13 21:34	1
Dibenz(a,h)anthracene	ND		0.063		ug/L		09/04/13 16:38	09/11/13 21:34	
Benzo[g,h,i]perylene	ND		0.063		ug/L		09/04/13 16:38	09/11/13 21:34	. 1
Carbazole	ND		0.42		ug/L		09/04/13 16:38	09/11/13 21:34	1
1-Methylnaphthalene	ND		0.063				09/04/13 16:38	09/11/13 21:34	
Benzo[b]fluoranthene	ND		0.084		ug/L ug/L		09/04/13 16:38	09/11/13 21:34	1
Benzo[k]fluoranthene	ND		0.063		ug/L		09/04/13 16:38	09/11/13 21:34	1
bis (2-chloroisopropyl) ether	ND		0.42				09/04/13 16:38	09/11/13 21:34	
bis (2-cilioroisopropyr) etrier	ND		0.42		ug/L		09/04/13 10.36	09/11/13 21.34	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorophenol	76		20 - 134				09/04/13 16:38	09/11/13 21:34	1
Phenol-d5	72		55 ₋ 125				09/04/13 16:38	09/11/13 21:34	1
Nitrobenzene-d5	85		62 - 125				09/04/13 16:38	09/11/13 21:34	
2-Fluorobiphenyl	75		66 - 140				09/04/13 16:38	09/11/13 21:34	1
2,4,6-Tribromophenol	99		44 - 125				09/04/13 16:38	09/11/13 21:34	1

TestAmerica Seattle

Dil Fac

09/11/13 21:34

Analyzed

09/04/13 21:46

09/04/13 16:38

Prepared

0.050

MDL Unit

mg/L

20 - 150

115

ND

Result Qualifier

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Client: ERM-West

Antimony

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-1

Matrix: Water

Client Sample ID: MW-4-082913 Date Collected: 08/29/13 17:11

Date Received: 08/30/13 14:05

	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	98		50 _ 150					09/04/13 21:46	
Trifluorotoluene (Surr)	90		50 - 150					09/04/13 21:46	
Method: NWTPH-Dx - Northwo	est - Semi-Volatile	Petroleur	n Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (C10-C25)	ND		0.11		mg/L		09/05/13 11:26	09/05/13 15:28	
RRO (nC25-nC36)	ND		0.26		mg/L		09/05/13 11:26	09/05/13 15:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
-Chlorooctadecane	100		50 - 150				09/05/13 11:26	09/05/13 15:28	
Method: 6010B - Metals (ICP)	- Total Recoverat	le							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
lluminum	ND	_	1.5		mg/L		09/17/13 16:54	09/18/13 10:54	
alcium	170		1.1		mg/L		09/17/13 16:54	09/18/13 10:54	
lagnesium	430		11		mg/L		09/17/13 16:54	09/18/13 12:46	
otassium	150		3.3		mg/L		09/17/13 16:54	09/18/13 10:54	
odium	2700		20		mg/L		09/17/13 16:54	09/18/13 12:46	
lethod: 6010B - Metals (ICP)	- Dissolved								
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
luminum	ND		1.5		mg/L		09/17/13 16:54	09/18/13 10:57	
alcium	160		1.1		mg/L		09/17/13 16:54	09/18/13 10:57	
agnesium	440		11		mg/L		09/17/13 16:54	09/18/13 12:50	
otassium	140		3.3		mg/L		09/17/13 16:54	09/18/13 10:57	
odium	2700		20		mg/L		09/17/13 16:54	09/18/13 12:50	
Method: 6020 - Metals (ICP/M	S) - Total Recover	able							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ntimony	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:26	
rsenic	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:26	
arium	0.16		0.0060		mg/L		09/05/13 09:09	09/05/13 15:26	
	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:26	
eryllium	ND ND				mg/L mg/L		09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26	
eryllium admium			0.0020		_				
eryllium admium hromium	ND		0.0020 0.0020		mg/L		09/05/13 09:09	09/05/13 15:26	
eryllium admium hromium obalt	ND ND		0.0020 0.0020 0.0020		mg/L mg/L		09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26	
eryllium kadmium khromium obalt opper	ND ND ND		0.0020 0.0020 0.0020 0.0020		mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium cadmium chromium cobalt copper con ead	ND ND ND		0.0020 0.0020 0.0020 0.0020 0.0050		mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium dadmium chromium obalt dopper on ead	ND ND ND ND		0.0020 0.0020 0.0020 0.0020 0.0050 0.20		mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium vadmium chromium obalt opper on	ND ND ND ND A.6		0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020		mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium admium hromium obalt opper on ead langanese ickel	ND ND ND ND 4.6 ND		0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020 0.0020		mg/L mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium admium hromium obalt opper on ead langanese ickel elenium	ND ND ND ND 4.6 ND 0.21		0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020 0.0020 0.015		mg/L mg/L mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium ladmium lahromium lobalt lopper lon lead langanese lickel lelenium	ND ND ND ND 4.6 ND 0.21 ND		0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020 0.0020 0.015 0.0050		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium admium hromium obalt opper on ead langanese ickel elenium ilver hallium	ND ND ND 4.6 ND 0.21 ND ND		0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020 0.0020 0.015 0.0050 0.0020		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium admium hromium obalt opper on ead langanese ickel elenium ilver hallium anadium	ND ND ND 4.6 ND 0.21 ND ND ND		0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020 0.0020 0.0050 0.0050		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26 09/05/13 15:26	
eryllium ladmium lhromium lobalt lopper lon lead langanese lickel lelenium lilver hallium lanadium linc	ND ND ND ND 4.6 ND 0.21 ND ND ND ND		0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020 0.0020 0.015 0.0050 0.0020 0.0050		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26	
eryllium radmium rhromium robalt ropper ron ead langanese lickel elenium ilver hallium	ND ND ND 4.6 ND 0.21 ND O.027	Qualifier	0.0020 0.0020 0.0020 0.0020 0.0050 0.20 0.0020 0.0020 0.015 0.0050 0.0020 0.0050	MDL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09 09/05/13 09:09	09/05/13 15:26 09/05/13 15:26	Dil F

TestAmerica Seattle

09/17/13 08:10

09/16/13 15:28

0.0020

mg/L

ND

Client: ERM-West

Project/Site: Center Point, Seattle

Date Received: 08/30/13 14:05

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-1

Client Sample ID: MW-4-082913 Date Collected: 08/29/13 17:11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.16		0.0060		mg/L		09/16/13 15:28	09/17/13 08:10	5
Beryllium	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:10	5
Cadmium	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:10	5
Chromium	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:10	5
Cobalt	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:10	5
Copper	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:10	5
Iron	4.6		0.20		mg/L		09/16/13 15:28	09/17/13 08:10	5
Lead	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:10	5
Manganese	0.19		0.0020		mg/L		09/16/13 15:28	09/17/13 08:10	5
Nickel	ND		0.015		mg/L		09/16/13 15:28	09/17/13 08:10	5
Selenium	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:10	5
Silver	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:10	5
Thallium	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:10	5
Vanadium	ND		0.010		mg/L		09/16/13 15:28	09/17/13 08:10	5
Zinc	0.015		0.0070		mg/L		09/16/13 15:28	09/17/13 08:10	5

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		09/05/13 11:21	09/05/13 15:06	1

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-2

Matrix: Water

Client Sample ID: MW-5-082913

Date Collected: 08/30/13 10:57 Date Received: 08/30/13 14:05

Analyte	c Compounds (GC) Result Qua	alifier RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND ND	0.20	ug/L	.	09/12/13 12:39	
2-Chlorotoluene	ND	0.10	ug/L		09/12/13 12:39	
1,2,3-Trichloropropane	ND	0.20	ug/L		09/12/13 12:39	
Carbon tetrachloride	ND	0.10	ug/L		09/12/13 12:39	
cis-1,3-Dichloropropene	ND	0.10	ug/L		09/12/13 12:39	
Chlorobenzene	ND	0.10	ug/L		09/12/13 12:39	
/inyl chloride	ND	0.020	ug/L		09/12/13 12:39	
sec-Butylbenzene	ND	0.10	ug/L		09/12/13 12:39	
Dibromomethane	ND	0.10	ug/L		09/12/13 12:39	
n-Xylene & p-Xylene	ND	0.20	ug/L		09/12/13 12:39	
p-Xylene	ND	0.10	ug/L		09/12/13 12:39	
,2,4-Trichlorobenzene	ND	0.20	ug/L		09/12/13 12:39	
Styrene	ND	0.10	ug/L		09/12/13 12:39	
Chlorobromomethane	ND ND	0.10	ug/L		09/12/13 12:39	
Dichlorobromomethane	ND ND	0.10	ug/L ug/L		09/12/13 12:39	
1,3-Dichlorobenzene	ND	0.20	ug/L		09/12/13 12:39	
Benzene	ND ND	0.20	-		09/12/13 12:39	
Chloroethane	ND ND	0.10	ug/L		09/12/13 12:39	
			ug/L			
rans-1,3-Dichloropropene	ND	0.10	ug/L		09/12/13 12:39	
,2,3-Trichlorobenzene	ND	0.40	ug/L		09/12/13 12:39	
I-Propylbenzene	ND	0.10	ug/L		09/12/13 12:39	
-Isopropyltoluene	ND	0.20	ug/L		09/12/13 12:39	
n-Butylbenzene	ND	0.10	ug/L		09/12/13 12:39	
,1-Dichloropropene	ND	0.10	ug/L		09/12/13 12:39	
sis-1,2-Dichloroethene	ND	0.10	ug/L		09/12/13 12:39	
,1,2,2-Tetrachloroethane	ND	0.10	ug/L		09/12/13 12:39	
I,2,4-Trimethylbenzene	ND	0.10	ug/L		09/12/13 12:39	
Toluene	ND	0.10	ug/L		09/12/13 12:39	
Naphthalene	ND	0.40	ug/L		09/12/13 12:39	
1,3,5-Trimethylbenzene	ND	0.10	ug/L		09/12/13 12:39	
1,3-Dichloropropane	ND	0.10	ug/L		09/12/13 12:39	
Chloroform	ND	0.10	ug/L		09/12/13 12:39	
1-Chlorotoluene	ND	0.20	ug/L		09/12/13 12:39	
Chlorodibromomethane	ND	0.10	ug/L		09/12/13 12:39	
Dichlorodifluoromethane	ND	0.40	ug/L		09/12/13 12:39	
1,1,2-Trichloroethane	ND	0.10	ug/L		09/12/13 12:39	
ert-Butylbenzene	ND	0.10	ug/L		09/12/13 12:39	
Chloromethane	ND	0.10	ug/L		09/12/13 12:39	
Methylene Chloride	ND	0.50	ug/L		09/12/13 12:39	
I,1-Dichloroethene	ND	0.10	ug/L		09/12/13 12:39	
sopropylbenzene	ND	0.10	ug/L		09/12/13 12:39	
,2-Dichloroethane	ND	0.10	ug/L		09/12/13 12:39	
etrachloroethene	ND *	0.10	ug/L		09/12/13 12:39	
,1,1-Trichloroethane	ND	0.10	ug/L		09/12/13 12:39	
2,2-Dichloropropane	ND	0.10	ug/L		09/12/13 12:39	
I,2-Dibromoethane	ND	0.10	ug/L		09/12/13 12:39	
Bromoform	ND	0.10	ug/L		09/12/13 12:39	
1,2-Dibromo-3-Chloropropane	ND	0.40	ug/L		09/12/13 12:39	
Trichlorofluoromethane	ND	0.40	ug/L ug/L		09/12/13 12:39	

TestAmerica Seattle

3

5

9

1 1

Client: ERM-West

Toluene-d8 (Surr)

Project/Site: Center Point, Seattle

Date Received: 08/30/13 14:05

TestAmerica Job ID: 580-40060-1

09/12/13 12:39

Client Sample ID: MW-5-082913

Lab Sample ID: 580-40060-2 Date Collected: 08/30/13 10:57

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Trichloroethene ND 0.10 ug/L 09/12/13 12:39 Bromobenzene ND 0.10 09/12/13 12:39 ug/L 1,2-Dichloropropane ND 0.10 ug/L 09/12/13 12:39 1,1,1,2-Tetrachloroethane ND 0.10 ug/L 09/12/13 12:39 Ethylbenzene ND 0.10 ug/L 09/12/13 12:39 trans-1,2-Dichloroethene ND 0.10 ug/L 09/12/13 12:39 Hexachlorobutadiene ND 0.20 ug/L 09/12/13 12:39 1,1-Dichloroethane ND 0.10 ug/L 09/12/13 12:39 ND ug/L 09/12/13 12:39 Bromomethane 0.10 1,4-Dichlorobenzene ND 0.20 ug/L 09/12/13 12:39 Methyl tert-butyl ether ND 0.10 ug/L 09/12/13 12:39 %Recovery Prepared Dil Fac Qualifier Limits Surrogate Analyzed 4-Bromofluorobenzene (Surr) 87 75 - 120 09/12/13 12:39 93 Ethylbenzene-d10 75 - 125 09/12/13 12:39 Fluorobenzene (Surr) 107 70 - 130 09/12/13 12:39 Trifluorotoluene (Surr) 96 80 - 125 09/12/13 12:39

75 - 125

97

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		0.61		ug/L		09/04/13 16:38	09/11/13 22:01	1
Bis(2-chloroethyl)ether	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2-Chlorophenol	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
1,3-Dichlorobenzene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
1,4-Dichlorobenzene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Benzyl alcohol	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
1,2-Dichlorobenzene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2-Methylphenol	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
3 & 4 Methylphenol	ND		0.82		ug/L		09/04/13 16:38	09/11/13 22:01	1
N-Nitrosodi-n-propylamine	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Hexachloroethane	ND		0.61		ug/L		09/04/13 16:38	09/11/13 22:01	1
Nitrobenzene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Isophorone	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2-Nitrophenol	ND	*	0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2,4-Dimethylphenol	ND		2.0		ug/L		09/04/13 16:38	09/11/13 22:01	1
Benzoic acid	ND	*	3.1		ug/L		09/04/13 16:38	09/11/13 22:01	1
Bis(2-chloroethoxy)methane	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2,4-Dichlorophenol	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
1,2,4-Trichlorobenzene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Naphthalene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
4-Chloroaniline	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Hexachlorobutadiene	ND		0.61		ug/L		09/04/13 16:38	09/11/13 22:01	1
4-Chloro-3-methylphenol	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2-Methylnaphthalene	ND		0.20		ug/L		09/04/13 16:38	09/11/13 22:01	1
Hexachlorocyclopentadiene	ND		2.0		ug/L		09/04/13 16:38	09/11/13 22:01	1
2,4,6-Trichlorophenol	ND		0.61		ug/L		09/04/13 16:38	09/11/13 22:01	1
2,4,5-Trichlorophenol	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2-Chloronaphthalene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
2-Nitroaniline	ND	*	0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1

TestAmerica Seattle

9/18/2013

Client: ERM-West

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Project/Site: Center Point, Seattle

Client Sample ID: MW-5-082913

Date Collected: 08/30/13 10:57 Date Received: 08/30/13 14:05 Lab Sample ID: 580-40060-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Acenaphthylene	ND		0.082		ug/L		09/04/13 16:38	09/11/13 22:01	1
2,6-Dinitrotoluene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
3-Nitroaniline	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Acenaphthene	ND		0.10		ug/L		09/04/13 16:38	09/11/13 22:01	1
2,4-Dinitrophenol	ND		5.1		ug/L		09/04/13 16:38	09/11/13 22:01	1
4-Nitrophenol	ND		3.1		ug/L		09/04/13 16:38	09/11/13 22:01	1
Dibenzofuran	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
2,4-Dinitrotoluene	ND	*	0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Diethyl phthalate	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
4-Chlorophenyl phenyl ether	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Fluorene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
4-Nitroaniline	ND		0.61		ug/L		09/04/13 16:38	09/11/13 22:01	1
4,6-Dinitro-2-methylphenol	ND		4.1		ug/L		09/04/13 16:38	09/11/13 22:01	1
N-Nitrosodiphenylamine	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
4-Bromophenyl phenyl ether	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Hexachlorobenzene	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Pentachlorophenol	ND		0.71		ug/L		09/04/13 16:38	09/11/13 22:01	1
Phenanthrene	ND		0.082		ug/L		09/04/13 16:38	09/11/13 22:01	1
Anthracene	ND		0.041		ug/L		09/04/13 16:38	09/11/13 22:01	1
Di-n-butyl phthalate	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Fluoranthene	ND		0.051		ug/L		09/04/13 16:38	09/11/13 22:01	1
Pyrene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
Butyl benzyl phthalate	0.86		0.61		ug/L		09/04/13 16:38	09/11/13 22:01	1
3,3'-Dichlorobenzidine	ND		2.0		ug/L		09/04/13 16:38	09/11/13 22:01	1
Benzo[a]anthracene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
Chrysene	ND		0.041		ug/L		09/04/13 16:38	09/11/13 22:01	1
Bis(2-ethylhexyl) phthalate	4.2	*	3.1		ug/L		09/04/13 16:38	09/11/13 22:01	1
Di-n-octyl phthalate	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Benzo[a]pyrene	ND		0.041		ug/L		09/04/13 16:38	09/11/13 22:01	1
Indeno[1,2,3-cd]pyrene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
Dibenz(a,h)anthracene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
Benzo[g,h,i]perylene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
Carbazole	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
1-Methylnaphthalene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
Benzo[b]fluoranthene	ND		0.082		ug/L		09/04/13 16:38	09/11/13 22:01	1
Benzo[k]fluoranthene	ND		0.061		ug/L		09/04/13 16:38	09/11/13 22:01	1
bis (2-chloroisopropyl) ether	ND		0.41		ug/L		09/04/13 16:38	09/11/13 22:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorophenol	70		20 - 134				09/04/13 16:38	09/11/13 22:01	1
Phenol-d5	75		55 - 125				09/04/13 16:38	09/11/13 22:01	1
Nitrobenzene-d5	98		62 - 125				09/04/13 16:38	09/11/13 22:01	1

	<u> </u>							
Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)								
	Analyte	Result Qualifie	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Gasoline	ND ND	0.050	mg/L			09/04/13 21:23	1

66 - 140

44 - 125

20 - 150

112

117

TestAmerica Seattle

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-2

Matrix: Water

Client Sample ID: MW-5-082913

Date Collected: 08/30/13 10:57 Date Received: 08/30/13 14:05

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		50 - 150		09/04/13 21:23	1
Trifluorotoluene (Surr)	91		50 - 150		09/04/13 21:23	1

Method: NWTPH-Dx - Northwe	est - Semi-Volatile Petrole	eum Products (GC)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	0.19	0.10	mg/L		09/05/13 11:26	09/05/13 15:46	1
RRO (nC25-nC36)	ND	0.26	mg/L		09/05/13 11:26	09/05/13 15:46	1
Surrogate	%Recovery Qualifier	r Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	94	50 - 150			09/05/13 11:26	09/05/13 15:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		1.5		mg/L		09/17/13 16:54	09/18/13 11:00	1
Calcium	50		1.1		mg/L		09/17/13 16:54	09/18/13 11:00	1
Magnesium	16		1.1		mg/L		09/17/13 16:54	09/18/13 11:00	1
Potassium	9.2		3.3		mg/L		09/17/13 16:54	09/18/13 11:00	1
Sodium	33		2.0		mg/L		09/17/13 16:54	09/18/13 11:00	1

Method: 6010B - Metals (IC	•					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		1.5		mg/L		09/17/13 16:54	09/18/13 11:03	1
Calcium	52		1.1		mg/L		09/17/13 16:54	09/18/13 11:03	1
Magnesium	17		1.1		mg/L		09/17/13 16:54	09/18/13 11:03	1
Potassium	9.2		3.3		mg/L		09/17/13 16:54	09/18/13 11:03	1
Sodium	33		2.0		mg/L		09/17/13 16:54	09/18/13 11:03	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Arsenic	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:47	5
Barium	0.021		0.0060		mg/L		09/05/13 09:09	09/05/13 15:47	5
Beryllium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Cadmium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Chromium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Cobalt	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Copper	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:47	5
Iron	1.6		0.20		mg/L		09/05/13 09:09	09/05/13 15:47	5
Lead	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Manganese	0.44		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Nickel	ND		0.015		mg/L		09/05/13 09:09	09/05/13 15:47	5
Selenium	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:47	5
Silver	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:47	5
Thallium	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:47	5
Vanadium	ND		0.010		mg/L		09/05/13 09:09	09/05/13 15:47	5
Zinc	ND		0.0070		mg/L		09/05/13 09:09	09/05/13 15:47	5

Method: 6020 - Metals (ICP/MS) - Dissolved										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:14	5
	Antimony	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:14	5

TestAmerica Seattle

4

5

7

9

10

11

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-2

Matrix: Water

Client Sample ID: MW-5-082913 Date Collected: 08/30/13 10:57

Date Received: 08/30/13 14:05

Analyte	Result C	Qualifier RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Barium	0.018	0.0060	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Beryllium	ND	0.0020	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Cadmium	ND	0.0020	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Chromium	ND	0.0020	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Cobalt	ND	0.0020	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Copper	ND	0.0050	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
ron	1.5	0.20	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Lead	ND	0.0020	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Manganese	0.41	0.0020	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Nickel	ND	0.015	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Selenium	ND	0.0050	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Silver	ND	0.0020	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Thallium	ND	0.0050	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
√anadium	ND	0.010	n	mg/L		09/16/13 15:28	09/17/13 08:14	5
Zinc	ND	0.0070	n	mg/L		09/16/13 15:28	09/17/13 08:14	5

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		09/05/13 11:21	09/05/13 15:08	1

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-3

Matrix: Water

Client Sample ID: Trip Blank-GW2

Date Collected: 08/30/13 00:00 Date Received: 08/30/13 14:05

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene		0.20	ug/L		09/12/13 11:49	
2-Chlorotoluene	ND	0.10	ug/L		09/12/13 11:49	
1,2,3-Trichloropropane	ND	0.20	ug/L		09/12/13 11:49	
Carbon tetrachloride	ND	0.10	ug/L		09/12/13 11:49	
cis-1,3-Dichloropropene	ND	0.10	ug/L		09/12/13 11:49	
Chlorobenzene	ND	0.10	ug/L		09/12/13 11:49	
Vinyl chloride	ND	0.020	ug/L		09/12/13 11:49	
sec-Butylbenzene	ND	0.10	ug/L		09/12/13 11:49	
Dibromomethane	ND	0.10	ug/L		09/12/13 11:49	
m-Xylene & p-Xylene	ND	0.20	ug/L		09/12/13 11:49	
o-Xylene	ND	0.10	ug/L		09/12/13 11:49	
1,2,4-Trichlorobenzene	ND	0.20	ug/L		09/12/13 11:49	
Styrene	ND	0.10	ug/L		09/12/13 11:49	
Chlorobromomethane	ND	0.10	ug/L		09/12/13 11:49	
Dichlorobromomethane	ND	0.10	ug/L		09/12/13 11:49	
1,3-Dichlorobenzene	ND	0.20	ug/L		09/12/13 11:49	
Benzene	ND	0.10	ug/L		09/12/13 11:49	
Chloroethane	ND	0.25	ug/L		09/12/13 11:49	
trans-1,3-Dichloropropene	ND	0.10	ug/L		09/12/13 11:49	
1,2,3-Trichlorobenzene	ND	0.40	ug/L		09/12/13 11:49	
N-Propylbenzene	ND	0.10	ug/L		09/12/13 11:49	
4-Isopropyltoluene	ND ND	0.20	.		09/12/13 11:49	
	ND	0.20	ug/L		09/12/13 11:49	
n-Butylbenzene	ND ND	0.10	ug/L			
1,1-Dichloropropene			ug/L		09/12/13 11:49	
cis-1,2-Dichloroethene	ND ND	0.10	ug/L		09/12/13 11:49	
1,1,2,2-Tetrachloroethane	ND	0.10	ug/L		09/12/13 11:49	
1,2,4-Trimethylbenzene	ND	0.10	ug/L		09/12/13 11:49	
Toluene	ND	0.10	ug/L		09/12/13 11:49	
Naphthalene	ND	0.40	ug/L		09/12/13 11:49	
1,3,5-Trimethylbenzene	ND	0.10	ug/L		09/12/13 11:49	
1,3-Dichloropropane	ND	0.10	ug/L 		09/12/13 11:49	
Chloroform	ND	0.10	ug/L		09/12/13 11:49	
4-Chlorotoluene	ND	0.20	ug/L		09/12/13 11:49	
Chlorodibromomethane	ND	0.10	ug/L		09/12/13 11:49	
Dichlorodifluoromethane	ND	0.40	ug/L		09/12/13 11:49	
1,1,2-Trichloroethane	ND	0.10	ug/L		09/12/13 11:49	
tert-Butylbenzene	ND	0.10	ug/L		09/12/13 11:49	
Chloromethane	ND	0.10	ug/L		09/12/13 11:49	
Methylene Chloride	ND	0.50	ug/L		09/12/13 11:49	
1,1-Dichloroethene	ND	0.10	ug/L		09/12/13 11:49	
Isopropylbenzene	ND	0.10	ug/L		09/12/13 11:49	
1,2-Dichloroethane	ND	0.10	ug/L		09/12/13 11:49	
Tetrachloroethene	ND *	0.10	ug/L		09/12/13 11:49	
1,1,1-Trichloroethane	ND	0.10	ug/L		09/12/13 11:49	
2,2-Dichloropropane	ND	0.10	ug/L		09/12/13 11:49	
1,2-Dibromoethane	ND	0.10	ug/L		09/12/13 11:49	
Bromoform	ND	0.10	ug/L		09/12/13 11:49	
1,2-Dibromo-3-Chloropropane	ND	0.40	ug/L		09/12/13 11:49	
Trichlorofluoromethane	ND	0.10	ug/L		09/12/13 11:49	

TestAmerica Seattle

2

6

8

9

11

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-3

Matrix: Water

Client Sample ID: Trip Blank-GW2

Date Collected: 08/30/13 00:00 Date Received: 08/30/13 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.10		ug/L			09/12/13 11:49	1
Bromobenzene	ND		0.10		ug/L			09/12/13 11:49	1
1,2-Dichloropropane	ND		0.10		ug/L			09/12/13 11:49	1
1,1,1,2-Tetrachloroethane	ND		0.10		ug/L			09/12/13 11:49	1
Ethylbenzene	ND		0.10		ug/L			09/12/13 11:49	1
trans-1,2-Dichloroethene	ND		0.10		ug/L			09/12/13 11:49	1
Hexachlorobutadiene	ND		0.20		ug/L			09/12/13 11:49	1
1,1-Dichloroethane	ND		0.10		ug/L			09/12/13 11:49	1
Bromomethane	ND		0.10		ug/L			09/12/13 11:49	1
1,4-Dichlorobenzene	ND		0.20		ug/L			09/12/13 11:49	1
Methyl tert-butyl ether	ND		0.10		ug/L			09/12/13 11:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		75 - 120			_		09/12/13 11:49	1
Ethylbenzene-d10	95		75 - 125					09/12/13 11:49	1
Fluorobenzene (Surr)	94		70 - 130					09/12/13 11:49	1
Trifluorotoluene (Surr)	96		80 - 125					09/12/13 11:49	1
Toluene-d8 (Surr)	93		75 ₋ 125					09/12/13 11:49	1

Method: NWTPH-Gx - Northwe	est - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND ND		0.050		mg/L			09/04/13 21:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		50 - 150			_		09/04/13 21:01	1
Trifluorotoluene (Surr)	90		50 - 150					09/04/13 21:01	1

Client: ERM-West

Project/Site: Center Point, Seattle

Date Collected: 08/30/13 13:34

Client Sample ID: MW-3-083013

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-4

Matrix: Water

Date Received: 08/30/13 14:05 Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 1,2-Dichlorobenzene ND 0.20 ug/L 09/12/13 13:04

1,2-Dichiolopenzene	ND	0.20	ug/L	09/12/13 13.04
2-Chlorotoluene	ND	0.10	ug/L	09/12/13 13:04 1
1,2,3-Trichloropropane	ND	0.20	ug/L	09/12/13 13:04 1
Carbon tetrachloride	ND	0.10	ug/L	09/12/13 13:04 1
cis-1,3-Dichloropropene	ND	0.10	ug/L	09/12/13 13:04 1
Chlorobenzene	ND	0.10	ug/L	09/12/13 13:04 1
Vinyl chloride	ND	0.020	ug/L	09/12/13 13:04 1
sec-Butylbenzene	ND	0.10	ug/L	09/12/13 13:04 1
Dibromomethane	ND	0.10	ug/L	09/12/13 13:04 1
m-Xylene & p-Xylene	ND	0.20	ug/L	09/12/13 13:04 1
o-Xylene	ND	0.10	ug/L	09/12/13 13:04 1
1,2,4-Trichlorobenzene	ND	0.20	ug/L	09/12/13 13:04 1
Styrene	ND	0.10	ug/L	09/12/13 13:04 1
Chlorobromomethane	ND	0.10	ug/L	09/12/13 13:04 1
Dichlorobromomethane	ND	0.10	ug/L	09/12/13 13:04 1
1,3-Dichlorobenzene	ND	0.20	ug/L	09/12/13 13:04 1
Benzene	ND	0.10	ug/L	09/12/13 13:04 1
Chloroethane	ND	0.25	ug/L	09/12/13 13:04 1
trans-1,3-Dichloropropene	ND	0.10	ug/L	09/12/13 13:04 1
1,2,3-Trichlorobenzene	ND	0.40	ug/L	09/12/13 13:04 1
N-Propylbenzene	ND	0.10	ug/L	09/12/13 13:04 1
4-Isopropyltoluene	ND	0.20	ug/L	09/12/13 13:04 1
n-Butylbenzene	ND	0.10	ug/L	09/12/13 13:04 1
1,1-Dichloropropene	ND	0.10	ug/L	09/12/13 13:04 1
cis-1,2-Dichloroethene	ND	0.10	ug/L	09/12/13 13:04 1
1,1,2,2-Tetrachloroethane	ND	0.10	ug/L	09/12/13 13:04 1
1,2,4-Trimethylbenzene	ND	0.10	ug/L	09/12/13 13:04 1
Toluene	ND	0.10	ug/L	09/12/13 13:04 1
Naphthalene	ND	0.40	ug/L	09/12/13 13:04 1
1,3,5-Trimethylbenzene	ND	0.10	ug/L	09/12/13 13:04 1
1,3-Dichloropropane	ND	0.10	ug/L	09/12/13 13:04 1
Chloroform	ND	0.10	ug/L	09/12/13 13:04 1
4-Chlorotoluene	ND	0.20	ug/L	09/12/13 13:04 1
Chlorodibromomethane	ND	0.10	ug/L	09/12/13 13:04 1
Dichlorodifluoromethane	ND	0.40	ug/L	09/12/13 13:04 1
1,1,2-Trichloroethane	ND	0.10	ug/L	09/12/13 13:04 1
tert-Butylbenzene	ND	0.10	ug/L	09/12/13 13:04 1
Chloromethane	ND	0.10	ug/L	09/12/13 13:04 1
Methylene Chloride	ND	0.50	ug/L	09/12/13 13:04 1
1,1-Dichloroethene	ND	0.10	ug/L	09/12/13 13:04 1
Isopropylbenzene	ND	0.10	ug/L	09/12/13 13:04 1
1,2-Dichloroethane	ND	0.10	ug/L	09/12/13 13:04 1
Tetrachloroethene	ND *	0.10	ug/L	09/12/13 13:04 1
1,1,1-Trichloroethane	ND	0.10	ug/L	09/12/13 13:04 1
2,2-Dichloropropane	ND	0.10	ug/L	09/12/13 13:04 1
1,2-Dibromoethane	ND	0.10	ug/L	09/12/13 13:04 1
Bromoform	ND	0.10	ug/L	09/12/13 13:04 1
1,2-Dibromo-3-Chloropropane	ND	0.40	ug/L	09/12/13 13:04 1
Trichlorofluoromethane	ND	0.10	ug/L	09/12/13 13:04 1

TestAmerica Seattle

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-4

. Matrix: Water

Client Sample ID: MW-3-083013 Date Collected: 08/30/13 13:34

Date Received: 08/30/13 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.10		ug/L			09/12/13 13:04	1
Bromobenzene	ND		0.10		ug/L			09/12/13 13:04	1
1,2-Dichloropropane	ND		0.10		ug/L			09/12/13 13:04	1
1,1,1,2-Tetrachloroethane	ND		0.10		ug/L			09/12/13 13:04	1
Ethylbenzene	ND		0.10		ug/L			09/12/13 13:04	1
trans-1,2-Dichloroethene	ND		0.10		ug/L			09/12/13 13:04	1
Hexachlorobutadiene	ND		0.20		ug/L			09/12/13 13:04	1
1,1-Dichloroethane	ND		0.10		ug/L			09/12/13 13:04	1
Bromomethane	ND		0.10		ug/L			09/12/13 13:04	1
1,4-Dichlorobenzene	ND		0.20		ug/L			09/12/13 13:04	1
Methyl tert-butyl ether	ND		0.10		ug/L			09/12/13 13:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		75 - 120			-		09/12/13 13:04	1
Ethylbenzene-d10	92		75 - 125					09/12/13 13:04	1
Fluorobenzene (Surr)	106		70 - 130					09/12/13 13:04	1
Trifluorotoluene (Surr)	93		80 - 125					09/12/13 13:04	1
Toluene-d8 (Surr)	95		75 ₋ 125					09/12/13 13:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		0.64		ug/L		09/04/13 16:38	09/11/13 22:27	1
Bis(2-chloroethyl)ether	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2-Chlorophenol	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
1,3-Dichlorobenzene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
1,4-Dichlorobenzene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Benzyl alcohol	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
1,2-Dichlorobenzene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2-Methylphenol	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
3 & 4 Methylphenol	ND		0.85		ug/L		09/04/13 16:38	09/11/13 22:27	1
N-Nitrosodi-n-propylamine	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Hexachloroethane	ND		0.64		ug/L		09/04/13 16:38	09/11/13 22:27	1
Nitrobenzene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Isophorone	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2-Nitrophenol	ND	*	0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2,4-Dimethylphenol	ND		2.1		ug/L		09/04/13 16:38	09/11/13 22:27	1
Benzoic acid	ND	*	3.2		ug/L		09/04/13 16:38	09/11/13 22:27	1
Bis(2-chloroethoxy)methane	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2,4-Dichlorophenol	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
1,2,4-Trichlorobenzene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Naphthalene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
4-Chloroaniline	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Hexachlorobutadiene	ND		0.64		ug/L		09/04/13 16:38	09/11/13 22:27	1
4-Chloro-3-methylphenol	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2-Methylnaphthalene	ND		0.21		ug/L		09/04/13 16:38	09/11/13 22:27	1
Hexachlorocyclopentadiene	ND		2.1		ug/L		09/04/13 16:38	09/11/13 22:27	1
2,4,6-Trichlorophenol	ND		0.64		ug/L		09/04/13 16:38	09/11/13 22:27	1
2,4,5-Trichlorophenol	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2-Chloronaphthalene	ND		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	1
2-Nitroaniline	ND	*	0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1

TestAmerica Seattle

9/18/2013

3

5

7

9

10

15

Client: ERM-West

Terphenyl-d14

Project/Site: Center Point, Seattle

Client Sample ID: MW-3-083013

Lab Sample ID: 580-40060-4 Date Collected: 08/30/13 13:34

Matrix: Water Date Received: 08/30/13 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Acenaphthylene	ND		0.085		ug/L		09/04/13 16:38	09/11/13 22:27	1
2,6-Dinitrotoluene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
3-Nitroaniline	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Acenaphthene	0.16		0.11		ug/L		09/04/13 16:38	09/11/13 22:27	1
2,4-Dinitrophenol	ND		5.3		ug/L		09/04/13 16:38	09/11/13 22:27	1
4-Nitrophenol	ND		3.2		ug/L		09/04/13 16:38	09/11/13 22:27	1
Dibenzofuran	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
2,4-Dinitrotoluene	ND	*	0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Diethyl phthalate	0.55		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
4-Chlorophenyl phenyl ether	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Fluorene	0.17		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	1
4-Nitroaniline	ND		0.64		ug/L		09/04/13 16:38	09/11/13 22:27	1
4,6-Dinitro-2-methylphenol	ND		4.3		ug/L		09/04/13 16:38	09/11/13 22:27	1
N-Nitrosodiphenylamine	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
4-Bromophenyl phenyl ether	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Hexachlorobenzene	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Pentachlorophenol	ND		0.75		ug/L		09/04/13 16:38	09/11/13 22:27	1
Phenanthrene	0.78		0.085		ug/L		09/04/13 16:38	09/11/13 22:27	1
Anthracene	0.13		0.043		ug/L		09/04/13 16:38	09/11/13 22:27	1
Di-n-butyl phthalate	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
Fluoranthene	0.22		0.053		ug/L		09/04/13 16:38	09/11/13 22:27	1
Pyrene	0.21		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	1
Butyl benzyl phthalate	ND		0.64		ug/L		09/04/13 16:38	09/11/13 22:27	1
3,3'-Dichlorobenzidine	ND		2.1		ug/L		09/04/13 16:38	09/11/13 22:27	1
Benzo[a]anthracene	ND		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	<u>.</u> 1
Chrysene	ND		0.043		ug/L		09/04/13 16:38	09/11/13 22:27	1
Bis(2-ethylhexyl) phthalate	5.0	*	3.2		ug/L		09/04/13 16:38	09/11/13 22:27	1
Di-n-octyl phthalate	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	· · · · · · · · · · · · · · · · · · ·
Benzo[a]pyrene	ND		0.043		ug/L		09/04/13 16:38	09/11/13 22:27	1
Indeno[1,2,3-cd]pyrene	ND		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	1
Dibenz(a,h)anthracene	ND		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	
Benzo[g,h,i]perylene	ND		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	1
Carbazole	ND		0.43		ug/L		09/04/13 16:38	09/11/13 22:27	1
1-Methylnaphthalene	ND		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	
Benzo[b]fluoranthene	ND ND		0.085		ug/L		09/04/13 16:38	09/11/13 22:27	1
Benzo[k]fluoranthene	ND ND		0.064		ug/L		09/04/13 16:38	09/11/13 22:27	1
							09/04/13 16:38		
bis (2-chloroisopropyl) ether	ND		0.43		ug/L		09/04/13 10.36	09/11/13 22:27	I
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorophenol	74		20 - 134				09/04/13 16:38	09/11/13 22:27	1
Phenol-d5	70		55 - 125				09/04/13 16:38	09/11/13 22:27	1
Nitrobenzene-d5	84		62 - 125				09/04/13 16:38	09/11/13 22:27	1
2-Fluorobiphenyl	83		66 - 140				09/04/13 16:38	09/11/13 22:27	1
2,4,6-Tribromophenol	100		44 - 125				09/04/13 16:38	09/11/13 22:27	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.050		mg/L				09/04/13 20:39	1

20 - 150

105

TestAmerica Seattle

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-4

Matrix: Water

Client Sample ID: MW-3-083013

Date Collected: 08/30/13 13:34 Date Received: 08/30/13 14:05

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		50 - 150		09/04/13 20:39	1
Trifluorotoluene (Surr)	90		50 - 150		09/04/13 20:39	1

Method: NWTPH-Dx - Northwest	- Semi-Volatile Petrole	eum Products (GC))				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	0.38	0.10	mg/L		09/05/13 11:26	09/05/13 16:05	1
RRO (nC25-nC36)	ND	0.26	mg/L		09/05/13 11:26	09/05/13 16:05	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	91	50 - 150			09/05/13 11:26	09/05/13 16:05	1

Total Recoverable						
Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
ND	1.5	mg/L		09/17/13 16:54	09/18/13 11:06	1
17	1.1	mg/L		09/17/13 16:54	09/18/13 11:06	1
47	1.1	mg/L		09/17/13 16:54	09/18/13 11:06	1
43	3.3	mg/L		09/17/13 16:54	09/18/13 11:06	1
290	2.0	mg/L		09/17/13 16:54	09/18/13 11:06	1
	ND 17 47 43	Result ND Qualifier RL 17 1.1 47 1.1 43 3.3	Result Qualifier RL MDL Unit ND 1.5 mg/L 17 1.1 mg/L 47 1.1 mg/L 43 3.3 mg/L	Result Qualifier RL MDL Unit D ND 1.5 mg/L mg/L 17 1.1 mg/L mg/L 47 1.1 mg/L mg/L 43 3.3 mg/L	Result Qualifier RL MDL Unit D Prepared ND 1.5 mg/L 09/17/13 16:54 17 1.1 mg/L 09/17/13 16:54 47 1.1 mg/L 09/17/13 16:54 43 3.3 mg/L 09/17/13 16:54	Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.5 mg/L 09/17/13 16:54 09/18/13 11:06 17 1.1 mg/L 09/17/13 16:54 09/18/13 11:06 47 1.1 mg/L 09/17/13 16:54 09/18/13 11:06 43 3.3 mg/L 09/17/13 16:54 09/18/13 11:06

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		1.5		mg/L		09/17/13 16:54	09/18/13 11:09	1
Calcium	16		1.1		mg/L		09/17/13 16:54	09/18/13 11:09	1
Magnesium	46		1.1		mg/L		09/17/13 16:54	09/18/13 11:09	1
Potassium	43		3.3		mg/L		09/17/13 16:54	09/18/13 11:09	1
Sodium	290		2.0		mg/L		09/17/13 16:54	09/18/13 11:09	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Arsenic	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:51	5
Barium	0.017		0.0060		mg/L		09/05/13 09:09	09/05/13 15:51	5
Beryllium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Cadmium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Chromium	0.0049		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Cobalt	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Copper	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:51	5
Iron	9.0		0.20		mg/L		09/05/13 09:09	09/05/13 15:51	5
Lead	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Manganese	0.36		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Nickel	ND		0.015		mg/L		09/05/13 09:09	09/05/13 15:51	5
Selenium	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:51	5
Silver	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 15:51	5
Thallium	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 15:51	5
Vanadium	0.033		0.010		mg/L		09/05/13 09:09	09/05/13 15:51	5
Zinc	0.0088		0.0070		mg/L		09/05/13 09:09	09/05/13 15:51	5

Method: 6020 - Metals (ICP/MS) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:19	5
Antimony	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5

TestAmerica Seattle

2

6

9

10

11

Client: ERM-West

Project/Site: Center Point, Seattle

Date Received: 08/30/13 14:05

TestAmerica Job ID: 580-40060-1

Client Sample ID: MW-3-083013

Lab Sample ID: 580-40060-4 Date Collected: 08/30/13 13:34

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.012		0.0060		mg/L		09/16/13 15:28	09/17/13 08:19	5
Beryllium	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5
Cadmium	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5
Chromium	0.0028		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5
Cobalt	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5
Copper	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:19	5
Iron	7.7		0.20		mg/L		09/16/13 15:28	09/17/13 08:19	5
Lead	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5
Manganese	0.30		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5
Nickel	ND		0.015		mg/L		09/16/13 15:28	09/17/13 08:19	5
Selenium	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:19	5
Silver	ND		0.0020		mg/L		09/16/13 15:28	09/17/13 08:19	5
Thallium	ND		0.0050		mg/L		09/16/13 15:28	09/17/13 08:19	5
Vanadium	0.024		0.010		mg/L		09/16/13 15:28	09/17/13 08:19	5
Zinc	ND		0.0070		mg/L		09/16/13 15:28	09/17/13 08:19	5

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		09/05/13 11:21	09/05/13 15:11	1

Client: ERM-West

Project/Site: Center Point, Seattle

Client Sample ID: MW-4-082913

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-5

Matrix: Water

Date Collected: 08/29/13 16:15 Date Received: 08/30/13 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.53		ug/L		09/05/13 12:06	09/05/13 19:30	1
PCB-1221	ND		0.53		ug/L		09/05/13 12:06	09/05/13 19:30	1
PCB-1232	ND		0.53		ug/L		09/05/13 12:06	09/05/13 19:30	1
PCB-1242	ND		0.53		ug/L		09/05/13 12:06	09/05/13 19:30	1
PCB-1248	ND		0.53		ug/L		09/05/13 12:06	09/05/13 19:30	1
PCB-1254	ND		0.53		ug/L		09/05/13 12:06	09/05/13 19:30	1
PCB-1260	ND		0.53		ug/L		09/05/13 12:06	09/05/13 19:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		60 - 150				09/05/13 12:06	09/05/13 19:30	
DCB Decachlorobiphenyl	71		40 - 135				09/05/13 12:06	09/05/13 19:30	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10		pg/L		09/04/13 14:45	09/07/13 07:39	1
2,3,7,8-TCDF	ND		10		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,7,8-PeCDD	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,7,8-PeCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
2,3,4,7,8-PeCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,4,7,8-HxCDD	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,6,7,8-HxCDD	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,7,8,9-HxCDD	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,4,7,8-HxCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,6,7,8-HxCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
2,3,4,6,7,8-HxCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,7,8,9-HxCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,4,6,7,8-HpCDD	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,4,6,7,8-HpCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
1,2,3,4,7,8,9-HpCDF	ND		51		pg/L		09/04/13 14:45	09/07/13 07:39	1
OCDD	130		100		pg/L		09/04/13 14:45	09/07/13 07:39	1
OCDF	ND		100		pg/L		09/04/13 14:45	09/07/13 07:39	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	85		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-2,3,7,8-TCDF	85		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-1,2,3,7,8-PeCDD	79		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-1,2,3,7,8-PeCDF	82		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-1,2,3,6,7,8-HxCDD	93		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-1,2,3,4,7,8-HxCDF	96		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-1,2,3,4,6,7,8-HpCDD	93		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-1,2,3,4,6,7,8-HpCDF	96		40 - 135				09/04/13 14:45	09/07/13 07:39	1
13C-OCDD	91		40 - 135				09/04/13 14:45	09/07/13 07:39	1

Client: ERM-West

Project/Site: Center Point, Seattle

Client Sample ID: MW-5-083013

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-6

Matrix: Water

Date Collected: 08/30/13 08:04 Date Received: 08/30/13 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.47		ug/L		09/05/13 12:06	09/05/13 19:45	
PCB-1221	ND		0.47		ug/L		09/05/13 12:06	09/05/13 19:45	
PCB-1232	ND		0.47		ug/L		09/05/13 12:06	09/05/13 19:45	
PCB-1242	ND		0.47		ug/L		09/05/13 12:06	09/05/13 19:45	
PCB-1248	ND		0.47		ug/L		09/05/13 12:06	09/05/13 19:45	
PCB-1254	ND		0.47		ug/L		09/05/13 12:06	09/05/13 19:45	
PCB-1260	ND		0.47		ug/L		09/05/13 12:06	09/05/13 19:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	67		60 - 150				09/05/13 12:06	09/05/13 19:45	
DCB Decachlorobiphenyl	58		40 - 135				09/05/13 12:06	09/05/13 19:45	

							-
Method: 8290 - Dioxins and I Analyte	Furans (HRGC/HRMS) Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac
2.3.7.8-TCDD	ND Result Qualifier		pg/L		09/04/13 14:45	09/07/13 08:21	1
2,3,7,8-TCDF	ND	11	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,7,8-PeCDD	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,7,8-PeCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	
2,3,4,7,8-PeCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,4,7,8-HxCDD	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,6,7,8-HxCDD	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,7,8,9-HxCDD	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,4,7,8-HxCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,6,7,8-HxCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
2,3,4,6,7,8-HxCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,7,8,9-HxCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,4,6,7,8-HpCDD	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,4,6,7,8-HpCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
1,2,3,4,7,8,9-HpCDF	ND	54	pg/L		09/04/13 14:45	09/07/13 08:21	1
OCDD	ND	110	pg/L		09/04/13 14:45	09/07/13 08:21	1
OCDF	ND	110	pg/L		09/04/13 14:45	09/07/13 08:21	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	74	40 - 135			09/04/13 14:45	09/07/13 08:21	1
13C-2,3,7,8-TCDF	75	40 - 135			09/04/13 14:45	09/07/13 08:21	1
13C-1,2,3,7,8-PeCDD	71	40 - 135			09/04/13 14:45	09/07/13 08:21	1
13C-1,2,3,7,8-PeCDF	70	40 - 135			09/04/13 14:45	09/07/13 08:21	1
13C-1,2,3,6,7,8-HxCDD	74	40 _ 135			09/04/13 14:45	09/07/13 08:21	1
13C-1,2,3,4,7,8-HxCDF	78	40 - 135			09/04/13 14:45	09/07/13 08:21	1
13C-1,2,3,4,6,7,8-HpCDD	79	40 - 135			09/04/13 14:45	09/07/13 08:21	1
13C-1,2,3,4,6,7,8-HpCDF	80	40 - 135			09/04/13 14:45	09/07/13 08:21	1
13C-OCDD	71	40 - 135			09/04/13 14:45	09/07/13 08:21	1

2

Δ

5

9

10

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-7

Matrix: Water

Client Sample ID: MW-3-083013

Date Collected: 08/30/13 12:08 Date Received: 08/30/13 14:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.54		ug/L		09/05/13 12:06	09/05/13 19:59	1
PCB-1221	ND		0.54		ug/L		09/05/13 12:06	09/05/13 19:59	1
PCB-1232	ND		0.54		ug/L		09/05/13 12:06	09/05/13 19:59	1
PCB-1242	ND		0.54		ug/L		09/05/13 12:06	09/05/13 19:59	1
PCB-1248	ND		0.54		ug/L		09/05/13 12:06	09/05/13 19:59	1
PCB-1254	ND		0.54		ug/L		09/05/13 12:06	09/05/13 19:59	1
PCB-1260	ND		0.54		ug/L		09/05/13 12:06	09/05/13 19:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	65		60 - 150				09/05/13 12:06	09/05/13 19:59	1
DCB Decachlorobiphenyl	59		40 - 135				09/05/13 12:06	09/05/13 19:59	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10		pg/L		09/04/13 14:45	09/07/13 09:02	1
2,3,7,8-TCDF	ND		10		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,7,8-PeCDD	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,7,8-PeCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
2,3,4,7,8-PeCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,4,7,8-HxCDD	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,6,7,8-HxCDD	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,7,8,9-HxCDD	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,4,7,8-HxCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,6,7,8-HxCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
2,3,4,6,7,8-HxCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,7,8,9-HxCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,4,6,7,8-HpCDD	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,4,6,7,8-HpCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
1,2,3,4,7,8,9-HpCDF	ND		50		pg/L		09/04/13 14:45	09/07/13 09:02	1
OCDD	ND		100		pg/L		09/04/13 14:45	09/07/13 09:02	1
OCDF	ND		100		pg/L		09/04/13 14:45	09/07/13 09:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-2,3,7,8-TCDF	84		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-1,2,3,7,8-PeCDD	78		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-1,2,3,7,8-PeCDF	79		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-1,2,3,6,7,8-HxCDD	82		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-1,2,3,4,7,8-HxCDF	89		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-1,2,3,4,6,7,8-HpCDD	85		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-1,2,3,4,6,7,8-HpCDF	85		40 - 135				09/04/13 14:45	09/07/13 09:02	1
13C-OCDD	77		40 - 135				09/04/13 14:45	09/07/13 09:02	1

9/18/2013

2

5

7

a

QC Sample Results

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-144777/6 **Matrix: Water**

Analysis Batch: 144777

MB	M

Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND	0.20	ug/L		09/12/13 09:45	1
2-Chlorotoluene	ND	0.10	ug/L		09/12/13 09:45	1
1,2,3-Trichloropropane	ND	0.20	ug/L		09/12/13 09:45	1
Carbon tetrachloride	ND	0.10	ug/L		09/12/13 09:45	
cis-1,3-Dichloropropene	ND	0.10	ug/L		09/12/13 09:45	1
Chlorobenzene	ND	0.10	ug/L		09/12/13 09:45	1
Vinyl chloride	ND	0.020	ug/L		09/12/13 09:45	· · · · · · · · 1
sec-Butylbenzene	ND	0.10	ug/L		09/12/13 09:45	1
Dibromomethane	ND	0.10	ug/L		09/12/13 09:45	1
m-Xylene & p-Xylene	ND	0.20	ug/L		09/12/13 09:45	
o-Xylene	ND	0.10	ug/L		09/12/13 09:45	1
1,2,4-Trichlorobenzene	ND	0.20	ug/L		09/12/13 09:45	1
Styrene	ND	0.10	.		09/12/13 09:45	
Chlorobromomethane	ND	0.10	ug/L ug/L		09/12/13 09:45	1
Dichlorobromomethane	ND	0.10			09/12/13 09:45	1
1,3-Dichlorobenzene	ND	0.20	ug/L		09/12/13 09:45	
Benzene	ND	0.10	ug/L ug/L		09/12/13 09:45	1
Chloroethane	ND	0.10			09/12/13 09:45	1
	ND	0.25	ug/L		09/12/13 09:45	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND ND	0.40	ug/L		09/12/13 09:45	1 1
1,2,3-Trichlorobenzene	ND ND	0.40	ug/L			1 1
N-Propylbenzene			ug/L		09/12/13 09:45	
4-Isopropyltoluene	ND	0.20	ug/L		09/12/13 09:45	1
n-Butylbenzene	ND	0.10	ug/L		09/12/13 09:45	1
1,1-Dichloropropene	ND	0.10	ug/L		09/12/13 09:45	
cis-1,2-Dichloroethene	ND	0.10	ug/L		09/12/13 09:45	1
1,1,2,2-Tetrachloroethane	ND	0.10	ug/L		09/12/13 09:45	1
1,2,4-Trimethylbenzene	ND	0.10	ug/L		09/12/13 09:45	
Toluene	ND	0.10	ug/L		09/12/13 09:45	1
Naphthalene	ND	0.40	ug/L		09/12/13 09:45	1
1,3,5-Trimethylbenzene	ND	0.10	ug/L		09/12/13 09:45	
1,3-Dichloropropane	ND	0.10	ug/L		09/12/13 09:45	1
Chloroform	ND	0.10	ug/L		09/12/13 09:45	1
4-Chlorotoluene	ND	0.20	ug/L		09/12/13 09:45	
Chlorodibromomethane	ND	0.10	ug/L		09/12/13 09:45	1
Dichlorodifluoromethane	ND	0.40	ug/L		09/12/13 09:45	1
1,1,2-Trichloroethane	ND	0.10	ug/L		09/12/13 09:45	
tert-Butylbenzene	ND	0.10	ug/L		09/12/13 09:45	1
Chloromethane	ND	0.10	ug/L		09/12/13 09:45	1
Methylene Chloride	ND	0.50	ug/L		09/12/13 09:45	1
1,1-Dichloroethene	ND	0.10	ug/L		09/12/13 09:45	1
Isopropylbenzene	ND	0.10	ug/L		09/12/13 09:45	1
1,2-Dichloroethane	ND	0.10	ug/L		09/12/13 09:45	1
Tetrachloroethene	ND	0.10	ug/L		09/12/13 09:45	1
1,1,1-Trichloroethane	ND	0.10	ug/L		09/12/13 09:45	1
2,2-Dichloropropane	ND	0.10	ug/L		09/12/13 09:45	1
1,2-Dibromoethane	ND	0.10	ug/L		09/12/13 09:45	1
Bromoform	ND	0.10	ug/L		09/12/13 09:45	1
1,2-Dibromo-3-Chloropropane	ND	0.40	ug/L		09/12/13 09:45	1

TestAmerica Seattle

9/18/2013

Page 25 of 56

Client: ERM-West

Project/Site: Center Point, Seattle

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-144777/6

Matrix: Water

Analysis Batch: 144777

Client Sample ID: Method Blank Prep Type: Total/NA

	MB N	ИВ							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		0.10		ug/L			09/12/13 09:45	1
Trichloroethene	ND		0.10		ug/L			09/12/13 09:45	1
Bromobenzene	ND		0.10		ug/L			09/12/13 09:45	1
1,2-Dichloropropane	ND		0.10		ug/L			09/12/13 09:45	1
1,1,1,2-Tetrachloroethane	ND		0.10		ug/L			09/12/13 09:45	1
Ethylbenzene	ND		0.10		ug/L			09/12/13 09:45	1
trans-1,2-Dichloroethene	ND		0.10		ug/L			09/12/13 09:45	1
Hexachlorobutadiene	ND		0.20		ug/L			09/12/13 09:45	1
1,1-Dichloroethane	ND		0.10		ug/L			09/12/13 09:45	1
Bromomethane	ND		0.10		ug/L			09/12/13 09:45	1
1,4-Dichlorobenzene	ND		0.20		ug/L			09/12/13 09:45	1
Methyl tert-butyl ether	ND		0.10		ug/L			09/12/13 09:45	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		75 - 120	-		09/12/13 09:45	1
Ethylbenzene-d10	98		75 - 125			09/12/13 09:45	1
Fluorobenzene (Surr)	96		70 - 130			09/12/13 09:45	1
Trifluorotoluene (Surr)	100		80 - 125			09/12/13 09:45	1
Toluene-d8 (Surr)	90		75 - 125			09/12/13 09:45	1

Lab Sample ID: LCS 580-144777/7

Matrix: Water

Analysis Batch: 144777

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichlorobenzene	5.00	4.92		ug/L		98	80 - 130
2-Chlorotoluene	5.00	5.06		ug/L		101	75 ₋ 130
1,2,3-Trichloropropane	5.00	5.17		ug/L		103	75 - 120
Carbon tetrachloride	5.00	5.34		ug/L		107	75 - 140
cis-1,3-Dichloropropene	5.00	4.06		ug/L		81	70 - 120
Chlorobenzene	5.00	4.85		ug/L		97	80 - 120
/inyl chloride	5.00	4.80		ug/L		96	65 - 140
sec-Butylbenzene	5.00	5.61		ug/L		112	80 - 125
Dibromomethane	5.00	4.68		ug/L		94	80 _ 130
n-Xylene & p-Xylene	5.00	5.20		ug/L		104	80 - 130
p-Xylene	5.00	5.24		ug/L		105	80 - 120
1,2,4-Trichlorobenzene	5.00	4.78		ug/L		96	60 - 125
Styrene	5.00	5.43		ug/L		109	75 - 130
Chlorobromomethane	5.00	5.56		ug/L		111	80 - 125
Dichlorobromomethane	5.00	4.42		ug/L		88	80 - 125
1,3-Dichlorobenzene	5.00	5.35		ug/L		107	80 _ 120
Benzene	5.00	5.22		ug/L		104	80 - 120
Chloroethane	5.00	4.76		ug/L		95	75 - 140
rans-1,3-Dichloropropene	5.00	4.02		ug/L		80	60 - 140
1,2,3-Trichlorobenzene	5.00	5.03		ug/L		101	60 _ 125
N-Propylbenzene	5.00	5.43		ug/L		109	80 _ 120
1-Isopropyltoluene	5.00	5.05		ug/L		101	80 - 120
n-Butylbenzene	5.00	5.38		ug/L		108	75 - 125

TestAmerica Seattle

Page 26 of 56

9/18/2013

3

5

7

0

10

11

QC Sample Results

Client: ERM-West

Project/Site: Center Point, Seattle

Lab Sample ID: LCS 580-144777/7

TestAmerica Job ID: 580-40060-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 144777

Analyse Added Result Outliner Unit D %Rec Limits 1.1-Dichloropropene 5.00 5.53 ug/L 103 30.130 1.1-2-Firtherchrorethane 5.00 4.92 ug/L 198 75.125 1.1.2-Firtherchrorethane 5.00 4.96 ug/L 191 80.125 Toluene 5.00 3.85 ug/L 197 45.130 Naphthalene 5.00 3.85 ug/L 198 80.125 1.3-Firtherlybenzene 5.00 4.67 ug/L 198 80.130 1.3-Firtherlybenzene 5.00 4.67 ug/L 193 80.130 1.3-STrinthybenzene 5.00 4.67 ug/L 193 80.130 1.3-STrinthybenzene 5.00 4.67 ug/L 193 80.130 1.3-Dichloropropane 5.00 4.88 ug/L 198 70.120 Chlorodbrid 5.00 4.88 ug/L 198 70.120 Chlorodbrid <th>Analysis batch. 144777</th> <th>Spike</th> <th>LCS</th> <th>LCS</th> <th></th> <th>%Rec.</th> <th></th>	Analysis batch. 144777	Spike	LCS	LCS		%Rec.	
cis-1,2-Dichloroethene 5,00 5,14 ug/L 103 80,130 1,1,22-Triethrachroethane 5,00 4,92 ug/L 196 75,125 1,24-Trimethylenzene 5,00 4,56 ug/L 191 80,120 Naphthalene 5,00 4,56 ug/L 198 80,120 1,35-Trimethylenzene 5,00 5,42 ug/L 103 80,120 1,35-Trimethylenzene 5,00 4,67 ug/L 193 80,120 1,35-Trimethylenzene 5,00 4,67 ug/L 193 80,120 Chloroform 5,00 5,57 ug/L 107 75,130 Chlorodibromomethane 5,00 5,34 ug/L 107 75,130 Chlorodibromomethane 5,00 4,88 ug/L 19 80,130 1,1-2-Trichloroethane 5,00 5,23 ug/L 19 80,130 Let-Bulylenzere 5,00 4,58 ug/L 19 80,140 Methylene Chloride	Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
1,1,2,2-Tetrachloroethane 5,00 4,92 ugl. 10 80 - 125 1,2,4-Trimethylbenzene 5,00 5,03 ugl. 10 80 - 126 Naphthalene 5,00 4,86 ugl. 17 45 - 130 1,3,5-Trimethylbenzene 5,00 5,42 ugl. 108 80 - 130 1,3,6-Trimethylbenzene 5,00 4,67 ugl. 111 80 - 130 Chloroform 5,00 5,57 ugl. 111 80 - 130 Chloroforme 5,00 5,57 ugl. 197 75 - 130 4-Chlorotoluene 5,00 4,88 ugl. 90 80 - 130 1,1,2-Trichloroethane 5,00 4,88 ugl. 90 80 - 130 1,1,2-Trichloroethane 5,00 4,88 ugl. 90 80 - 130 1,1,0-Biolioroethane 5,00 4,88 ugl. 98 60 - 145 1,1-Diolioroethane 5,00 4,88 ugl. 10 70 - 150 Isopropylbenzene 5,00 5,51 ugl. 10 80 - 140	1,1-Dichloropropene	5.00	5.53	ug/L		80 - 130	
1,2.4-Trimethylbenzene 5.00 5.03 ug/L 91 80 - 128 Toluene 5.00 4.56 ug/L 77 48 - 130 Naphthalene 5.00 5.42 ug/L 108 80 - 125 1,3-Dichloropropane 5.00 4.67 ug/L 111 80 - 130 1,5-Dichloropropane 5.00 4.67 ug/L 111 80 - 130 4-Chlorotoluene 5.00 5.34 ug/L 107 75 - 130 4-Chlorotoluene 5.00 4.88 ug/L 65 70 - 120 Chlorodibromomethane 5.00 4.88 ug/L 65 70 - 120 Chlorodibromomethane 5.00 3.23 ug/L 65 70 - 120 Chlorodibromomethane 5.00 5.23 ug/L 105 80 - 130 Let-Bufylenezene 5.00 5.23 ug/L 105 90 - 140 Let-Bufylenezene 5.00 4.88 ug/L 105 90 - 140 Let-Bufylenezene	cis-1,2-Dichloroethene	5.00	5.14	ug/L	103	80 - 130	
Toluene 5.00 4.56 ug/L 91 80.120 Naphthalene 5.00 3.85 ug/L 108 45.130 1.3.5-Trimethylbenzene 5.00 5.42 ug/L 108 56.21 1.3-Dichloropropane 5.00 4.67 ug/L 193 80.130 Chloroform 5.00 5.57 ug/L 107 75.130 Chlorodibromomethane 5.00 5.23 ug/L 165 30.180 Dichlorodifluoromethane 5.00 4.88 ug/L 165 30.180 Int-2-Trichloroethane 5.00 4.88 ug/L 165 30.180 Int-2-Trichloroethane 5.00 4.10 ug/L 165 30.180 Int-Dichloroethane 5.00 4.10 ug/L 182 50.140 Methylner Chloride 5.00 4.81 ug/L 182 50.140 Methylner Chloride 5.00 5.21 ug/L 182 50.146 1,1-Dichloroethane 5.00<	1,1,2,2-Tetrachloroethane	5.00	4.92	ug/L	98	75 - 125	
Naphthalene 5.00 3.85 ug/L 77 45-130 1.3.5-Timethylbenzene 5.00 5.42 ug/L 108 80-130 1.3-Dichloropropane 5.00 4.67 ug/L 191 80-130 Chloroform 5.00 5.57 ug/L 107 75-130 Chlorodibromomethane 5.00 4.88 ug/L 98 70-120 Dichlorodifluoromethane 5.00 4.88 ug/L 99 80-130 Inchrodibromomethane 5.00 4.48 ug/L 99 80-130 Inchrodibromomethane 5.00 4.48 ug/L 99 80-130 Inchrodibromomethane 5.00 4.88 ug/L 99 80-130 Inchrodibromomethane 5.00 5.10 ug/L 192 50-140 Methylene Chloride 5.00 5.10 ug/L 192 70-150 Inchrodibromethane 5.00 5.10 ug/L 192 40-180 1,1-1-Tirchloroethane	1,2,4-Trimethylbenzene	5.00	5.03	ug/L	101	80 - 125	
1,3,5-Trimethythenzene 5.00 5.42 ug/L 198 80.125 1,3-Dichloropropane 5.00 4.67 ug/L 191 80.130 Chlorotoluren 5.00 5.57 ug/L 111 80.130 4-Chlorotoluren 5.00 5.34 ug/L 196 75.130 Chlorodilormomethane 5.00 4.88 ug/L 69 70.120 Dichlorodifluoromethane 5.00 3.23 ug/L 65 30.180 1,1,2-Trichloroethane 5.00 5.23 ug/L 105 80.130 Leri-Butylbenzene 5.00 5.23 ug/L 105 80.130 Chloromethane 5.00 4.10 ug/L 102 70.150 Usbrotopylbenzene 5.00 4.88 ug/L 198 60.145 1,1-Dichloroethane 5.00 5.10 ug/L 106 75.120 1,2-Dichloroethane 5.00 5.52 ug/L 110 80.140 1,2-Dibronoethane 5.00 5.68 ug/L 109 80.140 1,2-Dibronoethan	Toluene	5.00	4.56	ug/L	91	80 - 120	
1,3-Dichloropropane 5.00 4.67 ug/L 93 80-130 Chloroform 5.00 5.57 ug/L 117 80-130 4-Chlorotoluene 5.00 5.34 ug/L 107 75-130 Chlorodifurormembane 5.00 4.88 ug/L 68 70-120 Dichlorodifurormethane 5.00 3.23 ug/L 65 30-180 1,1,2-Trichloroethane 5.00 5.23 ug/L 105 80-130 tert-Butybenzene 5.00 4.80 ug/L 82 50-140 Methylene Chloride 5.00 4.88 ug/L 98 60-145 1,1-Dichloroethane 5.00 4.88 ug/L 106 75-120 1,2-Dichloroethane 5.00 5.52 ug/L 110 80-140 Tetrachloroethane 5.00 5.52 ug/L 110 80-140 1,1-1-Trichloroethane 5.00 4.50 ug/L 19 80-140 1,2-Dichroroethane 5.	Naphthalene	5.00	3.85	ug/L	77	45 - 130	
Chloroform 5.00 5.57 ug/L 111 80-130 4-Chlorofoluene 5.00 5.34 ug/L 107 75-130 Chlorodibromomethane 5.00 4.88 ug/L 98 70-120 Dichlorodifloromethane 5.00 3.23 ug/L 65 30-180 1,12-Trichloroethane 5.00 4.48 ug/L 105 80-130 tert-Bulybenzene 5.00 5.23 ug/L 105 80-130 Chloromethane 5.00 4.88 ug/L 105 80-130 Chloromethane 5.00 4.88 ug/L 102 70-150 Usbrophybenzene 5.00 5.01 ug/L 102 70-150 1,1-Dichloroethane 5.00 5.31 ug/L 102 70-150 1,1-Trichloroethane 5.00 4.59 ug/L 109 80-140 1,2-Dichromo-schlane 5.00 4.68 ug/L 100 65-130 1,2-Dichromo-schloropopane 5.00	1,3,5-Trimethylbenzene	5.00	5.42	ug/L	108	80 - 125	
4-Chlorotoluene 5.00 5.34 ug/L 107 75 - 130 Chlorodibromomethane 5.00 4.88 ug/L 98 70 - 120 Dichlorodifluoromethane 5.00 3.23 ug/L 95 30 - 180 1.1.2-Trichloroethane 5.00 4.48 ug/L 90 80 - 130 bert-Butylbenzene 5.00 4.10 ug/L 82 50 - 140 Chloromethane 5.00 4.88 ug/L 98 60 - 145 1.1-Dichloroethane 5.00 4.88 ug/L 106 75 - 120 Isopropylbenzene 5.00 5.31 ug/L 106 75 - 120 Isopropylbenzene 5.00 5.31 ug/L 106 75 - 120 Isopropylbenzene 5.00 5.22 ug/L 110 80 - 140 1.2-Dichloroethane 5.00 5.52 ug/L 110 80 - 140 1.1-1-Trichloroethane 5.00 6.88 ug/L 134 60 - 150 1.2-Dichloroer	1,3-Dichloropropane	5.00	4.67	ug/L	93	80 - 130	
Chlorodiflrommethane 5.00 4.88 ug/L 98 70 - 120 Dichlorodiffluoromethane 5.00 3.23 ug/L 65 30 - 180 1,1,2-Trichloroethane 5.00 3.23 ug/L 90 80 - 130 tert-Butybenzene 5.00 5.23 ug/L 105 80 - 130 Chloromethane 5.00 4.10 ug/L 82 50 - 140 Methylene Chloride 5.00 4.88 ug/L 198 60 - 145 1,1-Dichloroethene 5.00 5.11 ug/L 102 70 - 150 1,2-Dichloroethane 5.00 5.51 ug/L 100 75 - 120 1,2-Dichloroethane 5.00 4.59 ug/L 100 80 - 140 1,1-1-Trichloroethane 5.00 4.50 ug/L 190 80 - 140 1,2-Dibromoethane 5.00 4.50 ug/L 190 80 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.99 ug/L 100 65 - 130	Chloroform	5.00	5.57	ug/L	111	80 - 130	
Dichlorodifluoromethane 5.00 3.23 ug/L 65 30.180 1.1.2-Trichloroethane 5.00 4.48 ug/L 30 80.130 tert-Butylbenzene 5.00 5.23 ug/L 105 80.100 Chloromethane 5.00 4.10 ug/L 42 50.140 Methylene Chloride 5.00 5.10 ug/L 102 70.150 Isopropylbenzene 5.00 5.31 ug/L 110 87.120 Isopropylbenzene 5.00 5.31 ug/L 110 80.140 Tetrachloroethane 5.00 5.52 ug/L 110 80.140 1,1-1-Trichloroethane 5.00 4.59 ug/L 109 80.140 1,2-Dibromoethane 5.00 4.50 ug/L 109 80.140 1,2-Dibromoethane 5.00 4.50 ug/L 10 65.130 1,2-Dibromoethane 5.00 4.91 ug/L 10 80.130 1,1-Dichloroethane 5.0	4-Chlorotoluene	5.00	5.34	ug/L	107	75 - 130	
1,1,2-Trichloroethane 5.00 4.48 ug/L 90 80 - 130 tert-Butylbenzene 5.00 5.23 ug/L 105 80 - 130 Chloromethane 5.00 4.10 ug/L 82 50 - 140 Methylene Chloride 5.00 4.88 ug/L 102 70 - 150 Isopropylbenzene 5.00 5.31 ug/L 106 75 - 120 Isopropylbenzene 5.00 5.52 ug/L 110 80 - 140 1,2-Dichloroethane 5.00 5.52 ug/L 110 80 - 140 1,1-Trichloroethane 5.00 5.52 ug/L 110 80 - 140 2,2-Dichloropropane 5.00 5.66 ug/L 199 80 - 140 1,2-Dibromoethane 5.00 4.50 ug/L 10 65 - 130 Bromoform 5.00 4.99 ug/L 10 65 - 130 Trichloroethane 5.00 4.96 ug/L 105 30 - 180 Trichloroethane	Chlorodibromomethane	5.00	4.88	ug/L	98	70 - 120	
terl-Butylbenzene 5.00 5.23 ug/L 105 80 - 130 Chloromethane 5.00 4.10 ug/L 82 50 - 140 Methylene Chloride 5.00 4.88 ug/L 98 60 - 145 1,1-Dichloroethene 5.00 5.10 ug/L 102 70 - 150 sopropylbenzene 5.00 5.52 ug/L 106 75 - 120 1,2-Dichloroethane 5.00 4.59 ug/L 109 80 - 140 1,1-Trichloroethane 5.00 5.46 ug/L 109 80 - 140 1,2-Dichloropropane 5.00 6.68 ug/L 109 80 - 140 1,2-Dibromoethane 5.00 4.99 ug/L 109 80 - 140 1,2-Dibromoethane 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromoethane 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromoethane 5.00 4.99 ug/L 105 30 - 180 Trichloroethene	Dichlorodifluoromethane	5.00	3.23	ug/L	65	30 - 180	
Chloromethane 5.00 4.10 ug/L 82 50 - 140 Methylene Chloride 5.00 4.88 ug/L 98 60 - 145 1,1-Dichloroethane 5.00 5.10 ug/L 102 70 - 150 Isopropylbenzene 5.00 5.31 ug/L 110 80 - 140 1,2-Dichloroethane 5.00 5.52 ug/L 110 80 - 140 Tetrachloroethane 5.00 4.59 ug/L 192 40 - 180 1,1-1-Trichloroethane 5.00 6.88 ug/L 194 60 - 180 1,2-Dibloropropane 5.00 4.50 ug/L 190 80 - 140 1,2-Dibromoethane 5.00 4.50 ug/L 190 70 - 130 1,2-Dibromoethane 5.00 4.99 ug/L 100 66 - 130 1,2-Dibromoethane 5.00 4.91 ug/L 188 55 - 120 Trichloroethane 5.00 4.91 ug/L 190 80 - 130 1,2-Dichloroethane </td <td>1,1,2-Trichloroethane</td> <td>5.00</td> <td>4.48</td> <td>ug/L</td> <td>90</td> <td>80 - 130</td> <td></td>	1,1,2-Trichloroethane	5.00	4.48	ug/L	90	80 - 130	
Methylene Chloride 5.00 4.88 ug/L 98 60 - 145 1,1-Dichloroethene 5.00 5.10 ug/L 102 70 - 150 Isopropylbenzene 5.00 5.31 ug/L 106 75 - 120 1,2-Dichloroethane 5.00 5.52 ug/L 110 80 - 140 1,1-1-Tichloroethane 5.00 4.59 ug/L 109 80 - 140 2,2-Dichloropropane 5.00 4.60 ug/L 109 80 - 140 2,2-Dichloropropane 5.00 4.60 ug/L 109 70 - 130 Bromoform 5.00 4.50 ug/L 90 70 - 130 Bromoform 5.00 4.90 ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.91 ug/L 88 55 - 120 Trichlorofluoroethane 5.00 5.25 ug/L 105 30 - 180 Bromobenzene 5.00 4.96 ug/L 10 80 - 130 1,1,2-Tetrachloroetha	tert-Butylbenzene	5.00	5.23	ug/L	105	80 - 130	
1,1-Dichloroethene 5.00 5.10 ug/L 102 70.150 Isopropylbenzene 5.00 5.31 ug/L 106 75.120 1,2-Dichloroethane 5.00 5.52 ug/L 110 80.140 Tetrachloroethane 5.00 4.59 ug/L 92 40.180 1,1-Trichloroethane 5.00 5.46 ug/L 109 80.140 2,2-Dichloropropane 5.00 6.68 ug/L 134 60.150 1,2-Dibromoethane 5.00 4.50 ug/L 90 70.130 1,2-Dibromo-3-Chloropropane 5.00 4.99 ug/L 100 65.130 1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55.120 Trichloroffluoromethane 5.00 4.96 ug/L 105 30.180 Trichloropropane 5.00 4.96 ug/L 99 80.130 Bromobenzene 5.00 4.98 ug/L 90 80.120 1,1,1,2-Tetrachloroethane 5.00 4.89 ug/L 100 75.125 <t< td=""><td>Chloromethane</td><td>5.00</td><td>4.10</td><td>ug/L</td><td>82</td><td>50 - 140</td><td></td></t<>	Chloromethane	5.00	4.10	ug/L	82	50 - 140	
Sopropylbenzene S.00 S.31 Ug/L 106 75 - 120 1,2-Dichloroethane S.00 S.52 Ug/L 110 80 - 140 Tetrachloroethane S.00 S.52 Ug/L 110 80 - 140 Tetrachloroethane S.00 S.46 Ug/L 109 80 - 140 1,1-Trichloroethane S.00 S.46 Ug/L 109 80 - 140 2,2-Dichloropropane S.00 S.68 Ug/L 134 60 - 150 1,2-Dibromoethane S.00 4.69 Ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane S.00 4.99 Ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane S.00 4.41 Ug/L 88 55 - 120 Trichlorofluoromethane S.00 S.25 Ug/L 105 30 - 180 Trichloroethane S.00 S.25 Ug/L 100 80 - 130 Bromobenzene S.00 4.96 Ug/L 99 80 - 130 1,2-Dichloropropane S.00 4.48 Ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane S.00 4.98 Ug/L 100 75 - 125 Ethylbenzene S.00 4.98 Ug/L 100 75 - 125 Ethylbenzene S.00 S.22 Ug/L 104 80 - 140 Hexachlorobutadiene S.00 S.09 Ug/L 102 75 - 135 1,1-Dichloroethane S.00 4.78 Ug/L 96 70 - 135 1,4-Dichlorobenzene S.00 4.78 Ug/L 99 80 - 120 1,4-Dichlorobenzene S.00 4.78 Ug/L 99 80 - 120 1,4-Dichlorobenzene S.00 4.78 Ug/L 4.90 80 - 120 1,4-Dichlorobenzene S.00 4.96 Ug/L 4.90 80 - 120 1,4	Methylene Chloride	5.00	4.88	ug/L	98	60 - 145	
1,2-Dichloroethane 5.00 5.52 ug/L 110 80 - 140 Tetrachloroethene 5.00 4.59 ug/L 109 80 - 140 1,1,1-Trichloroethane 5.00 5.46 ug/L 109 80 - 140 2,2-Dichloropropane 5.00 6.68 ug/L 134 60 - 150 1,2-Dibromoethane 5.00 4.50 ug/L 90 70 - 130 Bromoform 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55 - 120 Trichlorofluoromethane 5.00 5.25 ug/L 105 30 - 180 Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 4.98 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.98 ug/L 90 80 - 130 1,2-Dichloropthane 5.00 4.98 ug/L 90 80 - 125 Ethylbenzene 5.00 4.89 ug/L 104 80 - 140	1,1-Dichloroethene	5.00	5.10	ug/L	102	70 - 150	
Tetrachloroethene 5.00 4.59 ug/L 92 40 - 180 1,1,1-Trichloroethane 5.00 5.46 ug/L 109 80 - 140 2,2-Dichloropropane 5.00 6.68 ug/L 134 60 - 150 1,2-Dibromoethane 5.00 4.50 ug/L 90 70 - 130 Bromoform 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55 - 120 Trichloroethene 5.00 5.25 ug/L 105 30 - 180 Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 4.96 ug/L 99 80 - 130 1,2-Dichloropropane 5.00 4.98 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.89 ug/L 90 80 - 125 Ethylbenzene 5.00 5.22 ug/L 104 80 - 145 Hexachlorobutadiene <td>Isopropylbenzene</td> <td>5.00</td> <td>5.31</td> <td>ug/L</td> <td>106</td> <td>75 - 120</td> <td></td>	Isopropylbenzene	5.00	5.31	ug/L	106	75 - 120	
1,1,1-Trichloroethane 5.00 5.46 ug/L 109 80 - 140 2,2-Dichloropropane 5.00 6.68 ug/L 134 60 - 150 1,2-Dibromoethane 5.00 4.50 ug/L 90 70 - 130 Bromoform 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55 - 120 Trichloroethane 5.00 5.25 ug/L 105 30 - 180 Trichloroethane 5.00 4.96 ug/L 99 80 - 130 1,2-Dichloropropane 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.00 4.78 ug/L 102 75 - 135	1,2-Dichloroethane	5.00	5.52	ug/L	110	80 - 140	
2,2-Dichloropropane 5.00 6.68 ug/L 134 60 - 150 1,2-Dibromoethane 5.00 4.50 ug/L 90 70 - 130 Bromoform 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55 - 120 Trichlorofluoromethane 5.00 5.25 ug/L 105 30 - 180 Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 4.78 ug/L 96 70 - 135	Tetrachloroethene	5.00	4.59	ug/L	92	40 - 180	
1,2-Dibromoethane 5.00 4.50 ug/L 90 70 - 130 Bromoform 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55 - 120 Trichlorofluoromethane 5.00 5.25 ug/L 105 30 - 180 Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.89 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120 <td>1,1,1-Trichloroethane</td> <td>5.00</td> <td>5.46</td> <td>ug/L</td> <td>109</td> <td>80 - 140</td> <td></td>	1,1,1-Trichloroethane	5.00	5.46	ug/L	109	80 - 140	
Bromoform 5.00 4.99 ug/L 100 65 - 130 1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55 - 120 Trichlorofluoromethane 5.00 5.25 ug/L 105 30 - 180 Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 4.78 ug/L 96 70 - 135 Bromomethane 5.00 4.96 ug/L 99 80 - 120	2,2-Dichloropropane	5.00	6.68	ug/L	134	60 - 150	
1,2-Dibromo-3-Chloropropane 5.00 4.41 ug/L 88 55 - 120 Trichlorofluoromethane 5.00 5.25 ug/L 105 30 - 180 Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethane 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 4.78 ug/L 96 70 - 135 Bromomethane 5.00 4.96 ug/L 99 80 - 120	1,2-Dibromoethane	5.00	4.50	ug/L	90	70 - 130	
Trichlorofluoromethane 5.00 5.25 ug/L 105 30 - 180 Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	Bromoform	5.00	4.99	ug/L	100	65 - 130	
Trichloroethene 5.00 4.96 ug/L 99 80 - 130 Bromobenzene 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	1,2-Dibromo-3-Chloropropane	5.00	4.41	ug/L	88	55 - 120	
Bromobenzene 5.00 5.02 ug/L 100 80 - 130 1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	Trichlorofluoromethane	5.00	5.25	ug/L	105	30 - 180	
1,2-Dichloropropane 5.00 4.48 ug/L 90 80 - 120 1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	Trichloroethene	5.00	4.96	ug/L	99	80 - 130	
1,1,1,2-Tetrachloroethane 5.00 4.98 ug/L 100 75 - 125 Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	Bromobenzene	5.00	5.02	ug/L	100	80 - 130	
Ethylbenzene 5.00 4.89 ug/L 98 80 - 125 trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	1,2-Dichloropropane	5.00	4.48	ug/L	90	80 - 120	
trans-1,2-Dichloroethene 5.00 5.22 ug/L 104 80 - 140 Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	1,1,1,2-Tetrachloroethane	5.00	4.98	ug/L	100	75 - 125	
Hexachlorobutadiene 5.00 5.09 ug/L 102 75 - 135 1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	Ethylbenzene	5.00	4.89	ug/L	98	80 - 125	
1,1-Dichloroethane 5.00 5.10 ug/L 102 75 - 135 Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	trans-1,2-Dichloroethene	5.00	5.22	ug/L	104	80 - 140	
Bromomethane 5.00 4.78 ug/L 96 70 - 135 1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	Hexachlorobutadiene	5.00	5.09	ug/L	102	75 - 135	
1,4-Dichlorobenzene 5.00 4.96 ug/L 99 80 - 120	1,1-Dichloroethane	5.00	5.10	ug/L	102	75 - 135	
·	Bromomethane	5.00	4.78	ug/L	96	70 - 135	
Methyl tert-butyl ether 5.00 4.77 ug/L 95 75 - 120	1,4-Dichlorobenzene	5.00	4.96	ug/L	99	80 - 120	
	Methyl tert-butyl ether	5.00	4.77	ug/L	95	75 - 120	

LCS LCS

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		75 - 120
Ethylbenzene-d10	92		75 ₋ 125
Fluorobenzene (Surr)	105		70 - 130
Trifluorotoluene (Surr)	94		80 - 125
Toluene-d8 (Surr)	94		75 - 125

TestAmerica Seattle

Page 27 of 56

9/18/2013

2

4

6

0

9

11

Client: ERM-West Project/Site: Center Point, Seattle

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144777/8

Matrix: Water

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Analysis Batch: 144777	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
1,2-Dichlorobenzene	5.00	4.99		ug/L	— <u>-</u>	100	80 - 130	1	20
2-Chlorotoluene	5.00	4.84		ug/L		97	75 ₋ 130	4	20
1,2,3-Trichloropropane	5.00	5.12		ug/L		102	75 ₋ 120	1	20
Carbon tetrachloride	5.00	5.12		ug/L		102	75 ₋ 140	4	20
cis-1,3-Dichloropropene	5.00	4.68		ug/L		94	70 - 120	14	20
Chlorobenzene	5.00	4.77		ug/L		95	80 - 120	2	20
Vinyl chloride	5.00	4.98		ug/L		100	65 - 140	4	20
sec-Butylbenzene	5.00	5.50		ug/L		110	80 ₋ 125	2	20
Dibromomethane	5.00	5.49		ug/L		110	80 - 130	16	20
m-Xylene & p-Xylene	5.00	5.05		ug/L		101	80 - 130	3	20
o-Xylene	5.00	5.21		ug/L		104	80 - 120	1	20
1,2,4-Trichlorobenzene	5.00	4.73		ug/L		95	60 - 125	1	20
Styrene	5.00	5.20		ug/L		104	75 - 130	4	20
Chlorobromomethane	5.00	6.01		ug/L		120	80 - 125	8	20
Dichlorobromomethane	5.00	5.21		ug/L		104	80 - 125	17	20
1,3-Dichlorobenzene	5.00	5.22		ug/L		104	80 - 120	3	20
Benzene	5.00	5.07		ug/L		101	80 - 120	3	20
Chloroethane	5.00	5.59		ug/L		112	75 ₋ 140	16	20
trans-1,3-Dichloropropene	5.00	4.58		ug/L		92	60 - 140	13	20
1,2,3-Trichlorobenzene	5.00	4.94		ug/L		99	60 - 125	2	20
N-Propylbenzene	5.00	5.41		ug/L		108	80 - 120	0	20
4-Isopropyltoluene	5.00	4.96		ug/L		99	80 - 120	2	20
n-Butylbenzene	5.00	5.46		ug/L		109	75 ₋ 125	2	20
1,1-Dichloropropene	5.00	5.30		ug/L		106	80 - 130	4	20
cis-1,2-Dichloroethene	5.00	5.48		ug/L		110	80 - 130	6	20
1,1,2,2-Tetrachloroethane	5.00	4.86		ug/L		97	75 ₋ 125	1	20
1,2,4-Trimethylbenzene	5.00	4.95		ug/L		99	80 ₋ 125	1	20
Toluene	5.00	5.18		ug/L		104	80 - 120	13	20
Naphthalene	5.00	4.05		ug/L		81	45 - 130	5	20
1,3,5-Trimethylbenzene	5.00	5.44		ug/L		109	80 - 125	0	20
1,3-Dichloropropane	5.00	5.22		ug/L		104	80 - 130	11	20
Chloroform	5.00	4.83		ug/L		97	80 - 130	14	20
4-Chlorotoluene	5.00	5.09		ug/L		102	75 ₋ 130	5	20
Chlorodibromomethane	5.00	5.59		ug/L		112	70 - 120	14	20
Dichlorodifluoromethane	5.00	3.40		ug/L		68	30 - 180	5	20
1,1,2-Trichloroethane	5.00	5.09		ug/L		102	80 - 130	13	20
tert-Butylbenzene	5.00	5.60		ug/L		112	80 - 130	7	20
Chloromethane	5.00	4.36		ug/L		87	50 - 140	6	20
Methylene Chloride	5.00	5.79		ug/L		116	60 - 145	17	20
1,1-Dichloroethene	5.00	5.88		ug/L		118	70 - 150	14	20
Isopropylbenzene	5.00	5.02		ug/L		100	75 ₋ 120	6	20
1,2-Dichloroethane	5.00	5.42		ug/L		108	80 - 140	2	20
Tetrachloroethene	5.00	5.69		ug/L		114	40 - 180	21	20
1,1,1-Trichloroethane	5.00	5.13		ug/L		103	80 - 140	6	20
2,2-Dichloropropane	5.00	7.20		ug/L		144	60 - 150	8	20
1,2-Dibromoethane	5.00	5.09		ug/L		102	70 - 130	12	20
Bromoform	5.00	4.83		ug/L ug/L		97	65 - 130	3	20
1,2-Dibromo-3-Chloropropane	5.00	4.88		ug/L ug/L		98	55 ₋ 120	10	20

TestAmerica Seattle

9/18/2013

Page 28 of 56

Client: ERM-West

Project/Site: Center Point, Seattle

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144777/8

Matrix: Water

Analysis Batch: 144777

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichlorofluoromethane	5.00	5.88		ug/L		118	30 - 180	11	20
Trichloroethene	5.00	5.10		ug/L		102	80 - 130	3	20
Bromobenzene	5.00	4.93		ug/L		99	80 - 130	2	20
1,2-Dichloropropane	5.00	4.90		ug/L		98	80 - 120	9	20
1,1,1,2-Tetrachloroethane	5.00	5.01		ug/L		100	75 - 125	1	20
Ethylbenzene	5.00	4.94		ug/L		99	80 - 125	1	20
trans-1,2-Dichloroethene	5.00	5.83		ug/L		117	80 - 140	11	20
Hexachlorobutadiene	5.00	4.85		ug/L		97	75 - 135	5	20
1,1-Dichloroethane	5.00	5.79		ug/L		116	75 - 135	13	20
Bromomethane	5.00	4.94		ug/L		99	70 - 135	3	20
1,4-Dichlorobenzene	5.00	5.01		ug/L		100	80 - 120	1	20
Methyl tert-butyl ether	5.00	5.39		ug/L		108	75 - 120	12	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		75 - 120
Ethylbenzene-d10	93		75 - 125
Fluorobenzene (Surr)	100		70 - 130
Trifluorotoluene (Surr)	104		80 - 125
Toluene-d8 (Surr)	106		75 - 125

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-144201/1-A

Matrix: Water

Analysis Batch: 144718

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 144201

Analysis Batch: 144718								Prep Batch:	144201
		MB				_			5
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	ND		0.60		ug/L		09/04/13 16:38	09/11/13 17:37	1
Bis(2-chloroethyl)ether	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
2-Chlorophenol	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
1,3-Dichlorobenzene	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
1,4-Dichlorobenzene	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
Benzyl alcohol	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
1,2-Dichlorobenzene	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
2-Methylphenol	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
3 & 4 Methylphenol	ND		0.80		ug/L		09/04/13 16:38	09/11/13 17:37	1
N-Nitrosodi-n-propylamine	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
Hexachloroethane	ND		0.60		ug/L		09/04/13 16:38	09/11/13 17:37	1
Nitrobenzene	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
Isophorone	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
2-Nitrophenol	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
2,4-Dimethylphenol	ND		2.0		ug/L		09/04/13 16:38	09/11/13 17:37	1
Benzoic acid	ND		3.0		ug/L		09/04/13 16:38	09/11/13 17:37	1
Bis(2-chloroethoxy)methane	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
2,4-Dichlorophenol	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
1,2,4-Trichlorobenzene	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
Naphthalene	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
4-Chloroaniline	ND		0.40		ug/L		09/04/13 16:38	09/11/13 17:37	1
					-				

TestAmerica Seattle

9/18/2013

Page 29 of 56

QC Sample Results

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-144201/1-A

Matrix: Water

1-Methylnaphthalene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

bis (2-chloroisopropyl) ether

Analysis Batch: 144718

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 144201**

Analysis Batch. 1447 16	МВ	МВ					Prep Batcii.	144201
Analyte		Qualifier	RL MDL	. Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	ND		0.60	ug/L		09/04/13 16:38	09/11/13 17:37	1
4-Chloro-3-methylphenol	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
2-Methylnaphthalene	ND		0.20	ug/L		09/04/13 16:38	09/11/13 17:37	1
Hexachlorocyclopentadiene	ND		2.0	ug/L		09/04/13 16:38	09/11/13 17:37	1
2,4,6-Trichlorophenol	ND		0.60	ug/L		09/04/13 16:38	09/11/13 17:37	1
2,4,5-Trichlorophenol	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
2-Chloronaphthalene	ND	(0.060	ug/L		09/04/13 16:38	09/11/13 17:37	1
2-Nitroaniline	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Dimethyl phthalate	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Acenaphthylene	ND	0	0.080	ug/L		09/04/13 16:38	09/11/13 17:37	1
2,6-Dinitrotoluene	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
3-Nitroaniline	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Acenaphthene	ND		0.10	ug/L		09/04/13 16:38	09/11/13 17:37	1
2,4-Dinitrophenol	ND		5.0	ug/L		09/04/13 16:38	09/11/13 17:37	1
4-Nitrophenol	ND		3.0	ug/L		09/04/13 16:38	09/11/13 17:37	1
Dibenzofuran	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
2,4-Dinitrotoluene	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Diethyl phthalate	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
4-Chlorophenyl phenyl ether	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Fluorene	ND	(0.060	ug/L		09/04/13 16:38	09/11/13 17:37	1
4-Nitroaniline	ND		0.60	ug/L		09/04/13 16:38	09/11/13 17:37	1
4,6-Dinitro-2-methylphenol	ND		4.0	ug/L		09/04/13 16:38	09/11/13 17:37	1
N-Nitrosodiphenylamine	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
4-Bromophenyl phenyl ether	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Hexachlorobenzene	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Pentachlorophenol	ND		0.70	ug/L		09/04/13 16:38	09/11/13 17:37	1
Phenanthrene	ND	(0.080	ug/L		09/04/13 16:38	09/11/13 17:37	1
Anthracene	ND	(0.040	ug/L		09/04/13 16:38	09/11/13 17:37	1
Di-n-butyl phthalate	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Fluoranthene	ND	(0.050	ug/L		09/04/13 16:38	09/11/13 17:37	1
Pyrene	ND	(0.060	ug/L		09/04/13 16:38	09/11/13 17:37	1
Butyl benzyl phthalate	ND		0.60	ug/L		09/04/13 16:38	09/11/13 17:37	1
3,3'-Dichlorobenzidine	ND		2.0	ug/L		09/04/13 16:38	09/11/13 17:37	1
Benzo[a]anthracene	ND	(0.060	ug/L		09/04/13 16:38	09/11/13 17:37	1
Chrysene	ND	(0.040	ug/L		09/04/13 16:38	09/11/13 17:37	1
Bis(2-ethylhexyl) phthalate	ND		3.0	ug/L		09/04/13 16:38	09/11/13 17:37	1
Di-n-octyl phthalate	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
Benzo[a]pyrene	ND	(0.040	ug/L		09/04/13 16:38	09/11/13 17:37	1
Indeno[1,2,3-cd]pyrene	ND	(0.060	ug/L		09/04/13 16:38	09/11/13 17:37	1
Dibenz(a,h)anthracene	ND	(0.060	ug/L		09/04/13 16:38	09/11/13 17:37	1
Benzo[g,h,i]perylene	ND	(0.060	ug/L		09/04/13 16:38	09/11/13 17:37	1
Carbazole	ND		0.40	ug/L		09/04/13 16:38	09/11/13 17:37	1
4 Mathedanahthalana	ND					00/04/40 40:00	00/44/40 47:07	

TestAmerica Seattle

09/11/13 17:37

09/11/13 17:37

09/11/13 17:37

09/11/13 17:37

09/04/13 16:38

09/04/13 16:38

09/04/13 16:38

09/04/13 16:38

0.060

0.080

0.060

0.40

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

QC Sample Results

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-144201/1-A

Matrix: Water

Analysis Batch: 144718

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 144201

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	64		20 - 134	09/04/13 16:38	09/11/13 17:37	1
Phenol-d5	65		55 ₋ 125	09/04/13 16:38	09/11/13 17:37	1
Nitrobenzene-d5	92		62 - 125	09/04/13 16:38	09/11/13 17:37	1
2-Fluorobiphenyl	86		66 - 140	09/04/13 16:38	09/11/13 17:37	1
2,4,6-Tribromophenol	67		44 - 125	09/04/13 16:38	09/11/13 17:37	1
Terphenyl-d14	105		20 - 150	09/04/13 16:38	09/11/13 17:37	1

Lab Sample ID: LCS 580-144201/2-A

Matrix: Water

Analysis Batch: 144718

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 144201

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenol	2.03	1.73		ug/L		85	65 - 130	
Bis(2-chloroethyl)ether	2.00	1.64		ug/L		82	65 _ 125	
2-Chlorophenol	1.98	1.85		ug/L		93	60 _ 130	
1,3-Dichlorobenzene	2.00	1.63		ug/L		82	40 - 125	
1,4-Dichlorobenzene	2.00	1.62		ug/L		81	40 - 125	
Benzyl alcohol	1.99	2.25		ug/L		113	65 - 125	
1,2-Dichlorobenzene	2.00	1.68		ug/L		84	45 - 125	
2-Methylphenol	2.00	1.58		ug/L		79	70 - 130	
3 & 4 Methylphenol	2.01	1.80		ug/L		90	65 _ 130	
N-Nitrosodi-n-propylamine	2.00	1.73		ug/L		87	70 - 130	
Hexachloroethane	2.00	1.48		ug/L		74	30 - 125	
Nitrobenzene	2.01	2.04		ug/L		102	70 - 125	
Isophorone	2.00	2.01		ug/L		100	75 - 125	
2-Nitrophenol	1.98	1.87		ug/L		95	55 ₋ 140	
2,4-Dimethylphenol	1.98	ND		ug/L		97	30 _ 135	
Benzoic acid	10.1	8.32		ug/L		83	20 - 140	
Bis(2-chloroethoxy)methane	2.00	1.91		ug/L		95	75 ₋ 125	
2,4-Dichlorophenol	1.98	1.88		ug/L		95	50 - 140	
1,2,4-Trichlorobenzene	2.00	1.71		ug/L		85	40 - 125	
Naphthalene	2.01	1.86		ug/L		92	60 _ 125	
4-Chloroaniline	2.00	1.96		ug/L		98	35 - 175	
Hexachlorobutadiene	2.00	1.56		ug/L		78	25 _ 125	
4-Chloro-3-methylphenol	2.04	1.90		ug/L		93	65 ₋ 145	
2-Methylnaphthalene	2.00	1.82		ug/L		91	60 _ 125	
Hexachlorocyclopentadiene	2.00	ND		ug/L		55	20 _ 125	
2,4,6-Trichlorophenol	1.99	1.95		ug/L		98	55 - 140	
2,4,5-Trichlorophenol	2.00	2.00		ug/L		100	75 ₋ 125	
2-Chloronaphthalene	2.00	1.76		ug/L		88	60 - 125	
2-Nitroaniline	2.01	2.23		ug/L		111	75 ₋ 140	
Dimethyl phthalate	2.00	2.32		ug/L		116	65 _ 155	
Acenaphthylene	2.00	2.05		ug/L		103	65 - 125	
2,6-Dinitrotoluene	2.00	2.03		ug/L		101	75 ₋ 125	
3-Nitroaniline	2.00	1.88		ug/L		94	75 - 140	
Acenaphthene	2.00	1.96		ug/L		98	65 - 125	
2,4-Dinitrophenol	9.87	7.53		ug/L		76	50 - 130	
4-Nitrophenol	10.1	10.3		ug/L		102	35 - 145	

TestAmerica Seattle

Client: ERM-West Project/Site: Center Point, Seattle

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-144201/2-A

Matrix: Water

Analysis Batch: 144718

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 144201

nalysis Daten. 1447 10	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Dibenzofuran	2.00	1.96	ug/L	98	60 - 125
2,4-Dinitrotoluene	2.00	2.37	ug/L	118	75 - 125
Diethyl phthalate	2.01	2.32	ug/L	115	60 - 150
4-Chlorophenyl phenyl ether	2.00	2.07	ug/L	104	70 - 125
Fluorene	2.02	2.16	ug/L	107	70 - 125
4-Nitroaniline	2.00	2.04	ug/L	102	70 - 125
4,6-Dinitro-2-methylphenol	9.95	9.38	ug/L	94	50 - 125
N-Nitrosodiphenylamine	2.00	2.35	ug/L	118	40 _ 135
4-Bromophenyl phenyl ether	2.00	2.20	ug/L	110	75 - 125
Hexachlorobenzene	2.00	1.83	ug/L	92	70 - 125
Pentachlorophenol	1.97	1.54	ug/L	78	20 - 145
Phenanthrene	2.01	2.08	ug/L	103	75 ₋ 125
Anthracene	2.00	1.94	ug/L	97	50 - 125
Di-n-butyl phthalate	2.00	2.47	ug/L	123	55 - 155
Fluoranthene	2.00	2.18	ug/L	109	70 - 125
Pyrene	2.00	2.17	ug/L	109	70 - 125
Butyl benzyl phthalate	2.00	2.48	ug/L	124	60 - 150
3,3'-Dichlorobenzidine	3.97	3.52	ug/L	89	20 - 175
Benzo[a]anthracene	2.00	2.13	ug/L	106	65 _ 125
Chrysene	1.93	2.09	ug/L	108	70 - 125
Bis(2-ethylhexyl) phthalate	1.99	ND	ug/L	146	20 - 175
Di-n-octyl phthalate	2.00	2.08	ug/L	104	55 - 150
Benzo[a]pyrene	2.00	1.95	ug/L	98	45 - 125
Indeno[1,2,3-cd]pyrene	2.01	2.07	ug/L	103	75 ₋ 125
Dibenz(a,h)anthracene	2.00	1.96	ug/L	98	75 _ 130
Benzo[g,h,i]perylene	2.00	2.09	ug/L	105	75 - 125
Carbazole	2.00	2.24	ug/L	112	75 ₋ 125
1-Methylnaphthalene	2.01	1.88	ug/L	94	60 - 125
Benzo[b]fluoranthene	2.00	2.33	ug/L	116	70 - 125

2.00

2.00

2.26

1.77

ug/L

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorophenol	79		20 - 134
Phenol-d5	81		55 - 125
Nitrobenzene-d5	96		62 - 125
2-Fluorobiphenyl	88		66 - 140
2,4,6-Tribromophenol	99		44 - 125
Terphenyl-d14	104		20 - 150

Lab Sample ID: LCSD 580-144201/3-A

Matrix: Water

Benzo[k]fluoranthene

bis (2-chloroisopropyl) ether

Analysis Batch: 144718

Client	Sampl	le ID:	Lab	Control	Samp	le Dup
--------	-------	--------	-----	---------	------	--------

113

89

70 - 125

65 - 125

Prep Type: Total/NA **Prep Batch: 144201**

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenol	2.03	2.09		ug/L		103	65 - 130	19	20
Bis(2-chloroethyl)ether	2.00	1.62		ug/L		81	65 - 125	1	20
2-Chlorophenol	1.98	1.69		ug/L		85	60 - 130	9	20

TestAmerica Seattle

Page 32 of 56

Spike

LCSD LCSD

TestAmerica Job ID: 580-40060-1

Client: ERM-West Project/Site: Center Point, Seattle

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144201/3-A

Matrix: Water

Analysis Batch: 144718

Client Sample ID: La	b Control Sample Dup
	Prep Type: Total/NA
	Duny Databa 444004

Prep Batch: 144201 %Rec.

	Spike	LUSD			MRC.		KFD	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	2.00	1.56	ug/L		78	40 - 125	5	20
1,4-Dichlorobenzene	2.00	1.56	ug/L		78	40 - 125	4	20
Benzyl alcohol	1.99	1.92	ug/L		97	65 - 125	16	20
1,2-Dichlorobenzene	2.00	1.55	ug/L		77	45 - 125	8	20
2-Methylphenol	2.00	1.56	ug/L		78	70 - 130	1	20
3 & 4 Methylphenol	2.01	1.53	ug/L		76	65 - 130	16	20
N-Nitrosodi-n-propylamine	2.00	1.68	ug/L		84	70 - 130	3	20
Hexachloroethane	2.00	1.39	ug/L		69	30 - 125	6	20
Nitrobenzene	2.01	1.67	ug/L		83	70 - 125	20	20
Isophorone	2.00	1.92	ug/L		96	75 - 125	4	20
2-Nitrophenol	1.98	1.46	* ug/L		74	55 - 140	25	20
2,4-Dimethylphenol	1.98	ND	ug/L		83	30 - 135	16	20
Benzoic acid	10.1	6.13	* ug/L		61	20 - 140	30	20
Bis(2-chloroethoxy)methane	2.00	1.78	ug/L		89	75 ₋ 125	7	20
2,4-Dichlorophenol	1.98	1.92	ug/L		97	50 - 140	2	20
1,2,4-Trichlorobenzene	2.00	1.58	ug/L		79	40 - 125	8	20
Naphthalene	2.01	1.63	ug/L		81	60 - 125	13	20
4-Chloroaniline	2.00	1.68	ug/L		84	35 _ 175	15	20
Hexachlorobutadiene	2.00	1.44	ug/L		72	25 _ 125	8	20
4-Chloro-3-methylphenol	2.04	1.72	ug/L		85	65 - 145	10	20
2-Methylnaphthalene	2.00	1.69	ug/L		84	60 - 125	8	20
Hexachlorocyclopentadiene	2.00	ND	ug/L		52	20 - 125	6	20
2,4,6-Trichlorophenol	1.99	2.22	ug/L		112	55 - 140	13	20
2,4,5-Trichlorophenol	2.00	1.84	ug/L		92	75 ₋ 125	8	20
2-Chloronaphthalene	2.00	1.67	ug/L		84	60 - 125	5	20
2-Nitroaniline	2.01	1.81	* ug/L		90	75 - 140	21	20
Dimethyl phthalate	2.00	2.26	ug/L		113	65 ₋ 155	3	20
Acenaphthylene	2.00	1.90	ug/L		95	65 - 125	8	20
2,6-Dinitrotoluene	2.00	1.97	ug/L		98	75 ₋ 125	3	20
3-Nitroaniline	2.00	1.72	ug/L		86	75 ₋ 140	9	20
Acenaphthene	2.00	1.91	ug/L		96	65 - 125	2	20
2,4-Dinitrophenol	9.87	6.73	ug/L		68	50 ₋ 130	11	20
4-Nitrophenol	10.1	8.86	ug/L		88	35 - 145	15	20
Dibenzofuran	2.00	1.91	ug/L		95	60 - 125	3	20
2,4-Dinitrotoluene	2.00	1.92	* ug/L		96	75 ₋ 125	21	20
Diethyl phthalate	2.01	2.15	ug/L		107	60 - 150	8	20
4-Chlorophenyl phenyl ether	2.00	1.79	ug/L		90	70 - 125	14	20
Fluorene	2.02	2.01	ug/L		100	70 ₋ 125	7	20
4-Nitroaniline	2.00	1.87	ug/L		93	70 ₋ 125	9	20
4,6-Dinitro-2-methylphenol	9.95	9.11	ug/L		92	50 - 125	3	20
N-Nitrosodiphenylamine	2.00	2.28	ug/L		114	40 - 135	3	20
4-Bromophenyl phenyl ether	2.00	1.99	ug/L		99	75 ₋ 125	10	20
Hexachlorobenzene	2.00	1.87	ug/L		93	70 - 125	2	20
Pentachlorophenol	1.97	1.38	ug/L		70	20 - 145	10	20
Phenanthrene	2.01	1.99	ug/L		99	75 - 125	4	20
Anthracene	2.00	1.91	ug/L		96	50 - 125	1	20
Di-n-butyl phthalate	2.00	2.38	ug/L		119	55 - 155	4	20
, · p	2.00	2.50	~g/ =		1.10	55 - 100		

TestAmerica Seattle

9/18/2013

Page 33 of 56

Client: ERM-West

Project/Site: Center Point, Seattle

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-144201/3-A

Matrix: Water

Analysis Batch: 144718

Client Sample ID: Lab Control Sample Dup

Prep	Type: Total/NA
Prep	Batch: 144201

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Pyrene	2.00	2.09		ug/L		104	70 - 125	4	20
Butyl benzyl phthalate	2.00	2.09		ug/L		104	60 - 150	17	20
3,3'-Dichlorobenzidine	3.97	2.87		ug/L		72	20 - 175	20	20
Benzo[a]anthracene	2.00	2.05		ug/L		102	65 - 125	3	20
Chrysene	1.93	1.98		ug/L		103	70 - 125	5	20
Bis(2-ethylhexyl) phthalate	1.99	3.67	*	ug/L		184	20 - 175	23	20
Di-n-octyl phthalate	2.00	2.07		ug/L		104	55 - 150	1	20
Benzo[a]pyrene	2.00	1.85		ug/L		92	45 - 125	5	20
Indeno[1,2,3-cd]pyrene	2.01	1.85		ug/L		92	75 - 125	11	20
Dibenz(a,h)anthracene	2.00	2.08		ug/L		104	75 - 130	6	20
Benzo[g,h,i]perylene	2.00	2.03		ug/L		102	75 - 125	3	20
Carbazole	2.00	2.25		ug/L		112	75 - 125	0	20
1-Methylnaphthalene	2.01	1.75		ug/L		87	60 - 125	7	20
Benzo[b]fluoranthene	2.00	2.20		ug/L		110	70 - 125	6	20
Benzo[k]fluoranthene	2.00	2.31		ug/L		116	70 - 125	2	20
bis (2-chloroisopropyl) ether	2.00	1.70		ug/L		85	65 - 125	4	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorophenol	71		20 - 134
Phenol-d5	74		55 - 125
Nitrobenzene-d5	94		62 - 125
2-Fluorobiphenyl	80		66 - 140
2,4,6-Tribromophenol	90		44 - 125
Terphenyl-d14	102		20 - 150

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-144148/5

Matrix: Water

Analysis Batch: 144148

Client Sample ID: Method Blank Prep Type: Total/NA

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.050		mg/L			09/04/13 12:48	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		50 150			-		09/04/13 12:48	

50 - 150

Lab Sample ID: LCS 580-144148/6

Matrix: Water

Trifluorotoluene (Surr)

Analysis Batch: 144148

Client Sample ID: Lab Control Sample Prep Type: Total/NA

09/04/13 12:48

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline	 1.00	0.846		ma/l		85	79 110	-

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 50 - 150

TestAmerica Seattle

Spike

LCSD LCSD

TestAmerica Job ID: 580-40060-1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

D

%Rec

85

%Rec.

Limits

79 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 144265

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Client: ERM-West

Project/Site: Center Point, Seattle

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-144148/6

Matrix: Water

Analysis Batch: 144148

LCS LCS

Surrogate %Recovery Qualifier Limits Trifluorotoluene (Surr) 93 50 - 150

Lab Sample ID: LCSD 580-144148/11

Matrix: Water

Analysis Batch: 144148

Analyte Added Result Qualifier Unit Gasoline 1.00 0.851 mg/L

LCSD LCSD

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 50 - 150 100 Trifluorotoluene (Surr) 83 50 - 150

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 580-144265/1-A

Matrix: Water

Analysis Batch: 144257

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50		ug/L		09/05/13 12:06	09/05/13 18:47	1
PCB-1221	ND		0.50		ug/L		09/05/13 12:06	09/05/13 18:47	1
PCB-1232	ND		0.50		ug/L		09/05/13 12:06	09/05/13 18:47	1
PCB-1242	ND		0.50		ug/L		09/05/13 12:06	09/05/13 18:47	1
PCB-1248	ND		0.50		ug/L		09/05/13 12:06	09/05/13 18:47	1
PCB-1254	ND		0.50		ug/L		09/05/13 12:06	09/05/13 18:47	1
PCB-1260	ND		0.50		ug/L		09/05/13 12:06	09/05/13 18:47	1

MB MB

Dil Fac %Recovery Qualifier Limits Prepared Surrogate Analyzed 60 - 150 09/05/13 12:06 Tetrachloro-m-xylene 93 09/05/13 18:47 09/05/13 12:06 DCB Decachlorobiphenyl 96 40 - 135 09/05/13 18:47

0.858

1.00

Unit

ug/L

ug/L

Lab Sample ID: LCS 580-144265/2-A

Matrix: Water

Analysis Batch: 144257

PCB-1260

LCS LCS Spike Analyte Added Result Qualifier PCB-1016 1.00 0.859

LCS LCS Limits Surrogate %Recovery Qualifier Tetrachloro-m-xylene 60 - 150 78 DCB Decachlorobiphenyl 49 40 - 135 Client Sample ID: Lab Control Sample

%Rec

86

86

Prep Type: Total/NA

Prep Batch: 144265

%Rec. Limits

25 - 145 30 - 145

TestAmerica Seattle

RPD

Limit

Spike

TestAmerica Job ID: 580-40060-1

Project/Site: Center Point, Seattle

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 580-144265/3-A

Matrix: Water

Analyte

PCB-1016

PCB-1260

Client: ERM-West

Analysis Batch: 144257

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep E	Batch: 1	44265
%Rec.		RPD
Limits	RPD	Limit

babbA Result Qualifier %Rec Unit 1.00 0.849 ug/L 85 25 - 145 22 1.00 0.862 ug/L 86 30 - 145 0

LCSD LCSD

LCSD LCSD %Recovery Qualifier Surrogate I imits Tetrachloro-m-xylene 86 60 - 150 68 40 - 135 DCB Decachlorobiphenyl

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 250-19826/1-A

Matrix: Water

Analysis Batch: 19843

Prep Type: Total/NA

Prep Batch: 19826

Client Sample ID: Method Blank

мв мв

Analyte	Result	Qualifier I	RL MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C25)	ND	0.	10	mg/L	_	09/05/13 11:26	09/05/13 13:54	1
RRO (nC25-nC36)	ND	0.	25	mg/L		09/05/13 11:26	09/05/13 13:54	1

MB MB

%Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 1-Chlorooctadecane 102 50 - 150 09/05/13 11:26 09/05/13 13:54

100 100

Lab Sample ID: LCS 250-19826/2-A

Matrix: Water

Analysis Batch: 19843

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 19826

		Spike	LUS	LUS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
DRO (C10-C25)	 	2.50	2.59		mg/L	_	104	50 - 150	
RRO (nC25-nC36)		1.50	1.54		mg/L		103	50 - 150	

Cnika

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctadecane 95 50 - 150

Lab Sample ID: LCSD 250-19826/3-A

Matrix: Water

Analysis Batch: 19843

Client Comple ID: Lab Control Comple

Prep Type: Total/NA Prep Batch: 19826

		Spike	LCSD	LCSD				%Rec.		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	DRO (C10-C25)	2.50	2.55		mg/L		102	50 - 150	2	20
ı	RRO (nC25-nC36)	1.50	1.53		mg/L		102	50 - 150	1	20

LCSD LCSD

Surrogate %Recovery Qualifier Limits 95 50 - 150 1-Chlorooctadecane

TestAmerica Seattle

Client: ERM-West

Project/Site: Center Point, Seattle

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-24432/1-A

Matrix: Water

Analysis Batch: 24662

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 24432

	IVIB	MB						
Analyte	Result	Qualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND			pg/L		09/04/13 14:45	09/07/13 02:05	1
2,3,7,8-TCDF	ND	10		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,7,8-PeCDD	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,7,8-PeCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
2,3,4,7,8-PeCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,4,7,8-HxCDD	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,6,7,8-HxCDD	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,7,8,9-HxCDD	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,4,7,8-HxCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,6,7,8-HxCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
2,3,4,6,7,8-HxCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,7,8,9-HxCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,4,6,7,8-HpCDD	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,4,6,7,8-HpCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
1,2,3,4,7,8,9-HpCDF	ND	50		pg/L		09/04/13 14:45	09/07/13 02:05	1
OCDD	ND	100		pg/L		09/04/13 14:45	09/07/13 02:05	1
OCDF	ND	100		pg/L		09/04/13 14:45	09/07/13 02:05	1
I and the second se								

мв мв

MR MR

	IVID	IVID					
Isotope Dilution	%Recovery	Qualifier	Limits	Prepai	red	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	87		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-2,3,7,8-TCDF	89		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-1,2,3,7,8-PeCDD	83		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-1,2,3,7,8-PeCDF	84		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-1,2,3,6,7,8-HxCDD	92		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-1,2,3,4,7,8-HxCDF	100		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-1,2,3,4,6,7,8-HpCDD	92		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-1,2,3,4,6,7,8-HpCDF	95		40 - 135	09/04/13	14:45	09/07/13 02:05	1
13C-OCDD	83		40 - 135	09/04/13	14:45	09/07/13 02:05	1

Lab Sample ID: LCS 320-24432/2-A

Matrix: Water

Analysis Batch: 24662

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 24432

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	200	196		pg/L		98	72 _ 144
2,3,7,8-TCDF	200	184		pg/L		92	73 - 150
1,2,3,7,8-PeCDD	1000	959		pg/L		96	79 ₋ 125
1,2,3,7,8-PeCDF	1000	954		pg/L		95	79 - 137
2,3,4,7,8-PeCDF	1000	882		pg/L		88	76 ₋ 137
1,2,3,4,7,8-HxCDD	1000	1070		pg/L		107	65 _ 144
1,2,3,6,7,8-HxCDD	1000	985		pg/L		98	78 - 137
1,2,3,7,8,9-HxCDD	1000	961		pg/L		96	74 ₋ 142
1,2,3,4,7,8-HxCDF	1000	978		pg/L		98	86 - 126
1,2,3,6,7,8-HxCDF	1000	944		pg/L		94	79 ₋ 137
2,3,4,6,7,8-HxCDF	1000	960		pg/L		96	80 - 138
1,2,3,7,8,9-HxCDF	1000	943		pg/L		94	72 - 145
1,2,3,4,6,7,8-HpCDD	1000	984		pg/L		98	81 ₋ 132
1,2,3,4,6,7,8-HpCDF	1000	959		pg/L		96	81 - 135

TestAmerica Seattle

9/18/2013

Page 37 of 56

3

5

7

9

1 -

Project/Site: Center Point, Seattle

Client: ERM-West

Method: 8290 - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-24432/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 24662** Prep Batch: 24432

LCS LCS Spike Added Result Qualifier Analyte %Rec Limits Unit 1,2,3,4,7,8,9-HpCDF 1000 905 pg/L 91 72 - 140 OCDD 2000 2100 pg/L 105 80 - 129 OCDF 2000 1960 pg/L 98 65 _ 145

LCS LCS Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 79 40 - 135 13C-2,3,7,8-TCDF 81 40 - 135 13C-1,2,3,7,8-PeCDD 77 40 - 135 13C-1,2,3,7,8-PeCDF 79 40 - 135 13C-1,2,3,6,7,8-HxCDD 83 40 - 135 13C-1,2,3,4,7,8-HxCDF 88 40 - 135 85 13C-1,2,3,4,6,7,8-HpCDD 40 - 135 13C-1,2,3,4,6,7,8-HpCDF 89 40 - 135 13C-OCDD 40 - 135 78

Method: 6010B - Metals (ICP)

Sodium

Lab Sample ID: LCS 580-145169/17-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 145237 **Prep Batch: 145169**

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Aluminum	4.00	4.20	mg/L		105	80 - 120	
Calcium	20.0	19.5	mg/L		97	80 - 120	
Magnesium	20.0	21.8	mg/L		109	80 - 120	
Potassium	20.0	21.2	mg/L		106	80 - 120	
Sodium	20.0	21.3	mg/L		107	80 - 120	

Lab Sample ID: LCSD 580-145169/18-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 145237							Prep	Batch: 1	45169	
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Aluminum	4.00	4.18		mg/L		105	80 - 120	0	20	
Calcium	20.0	19.9		mg/L		99	80 - 120	2	20	
Magnesium	20.0	22.0		mg/L		110	80 - 120	1	20	
Potassium	20.0	21.4		mg/L		107	80 - 120	1	20	
Sodium	20.0	21.6		mg/L		108	80 - 120	1	20	

Lab Sample ID: LCSSRM 580-145169/19-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 145237 **Prep Batch: 145169** LCSSRM LCSSRM Spike %Rec. Analyte Result Qualifier Added Unit %Rec Limits Aluminum 4.00 4.30 107 80 - 120 mg/L 20.0 Calcium 196 98 80 - 120 mg/L Magnesium 20.0 20.8 mg/L 104 80 - 120 80 - 120 20.0 20.9 Potassium mg/L 105

TestAmerica Seattle

Page 38 of 56

20.8

mg/L

104

80 - 120

20.0

Client: ERM-West

Project/Site: Center Point, Seattle

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 580-144900/2-D

Matrix: Water

Analysis Batch: 145237

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 145169

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		1.5		mg/L		09/17/13 16:54	09/18/13 10:15	1
Calcium	ND		1.1		mg/L		09/17/13 16:54	09/18/13 10:15	1
Magnesium	ND		1.1		mg/L		09/17/13 16:54	09/18/13 10:15	1
Potassium	ND		3.3		mg/L		09/17/13 16:54	09/18/13 10:15	1
Sodium	ND		2.0		mg/L		09/17/13 16:54	09/18/13 10:15	1

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-144243/22-A

Matrix: Water

Analysis Batch: 144315

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 144243

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Arsenic	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 14:56	5
Barium	ND		0.0060		mg/L		09/05/13 09:09	09/05/13 14:56	5
Beryllium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Cadmium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Chromium	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Cobalt	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Copper	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 14:56	5
Iron	ND		0.20		mg/L		09/05/13 09:09	09/05/13 14:56	5
Lead	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Manganese	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Nickel	ND		0.015		mg/L		09/05/13 09:09	09/05/13 14:56	5
Selenium	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 14:56	5
Silver	ND		0.0020		mg/L		09/05/13 09:09	09/05/13 14:56	5
Thallium	ND		0.0050		mg/L		09/05/13 09:09	09/05/13 14:56	5
Vanadium	ND		0.010		mg/L		09/05/13 09:09	09/05/13 14:56	5
Zinc	ND		0.0070		mg/L		09/05/13 09:09	09/05/13 14:56	5

Lab Sample ID: LCS 580-144243/23-A

Matrix: Water

Analysis Batch: 144315

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 144243

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	3.00	2.94		mg/L		98	80 - 120	
Arsenic	4.00	4.00		mg/L		100	80 _ 120	
Barium	4.00	3.95		mg/L		99	80 _ 120	
Beryllium	0.100	0.105		mg/L		105	80 - 120	
Cadmium	0.100	0.0942		mg/L		94	80 _ 120	
Chromium	0.400	0.406		mg/L		101	80 _ 120	
Cobalt	1.00	1.00		mg/L		100	80 _ 120	
Copper	0.500	0.510		mg/L		102	80 _ 120	
Iron	22.0	22.6		mg/L		103	80 - 120	
Lead	1.00	0.962		mg/L		96	80 _ 120	
Manganese	1.00	1.01		mg/L		101	80 _ 120	
Nickel	1.00	1.00		mg/L		100	80 - 120	

TestAmerica Seattle

Page 39 of 56

Client: ERM-West

Project/Site: Center Point, Seattle

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-144243/24-A

Matrix: Water

Lab Sample ID: LCS 580-144243/23-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 144315 **Prep Batch: 144243**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Selenium	4.00	4.01		mg/L		100	80 - 120	
Silver	0.600	0.622		mg/L		104	80 - 120	
Thallium	4.00	3.84		mg/L		96	80 - 120	
Vanadium	1.00	0.971		mg/L		97	80 - 120	
Zinc	1.00	1.02		mg/L		102	80 _ 120	

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Analysis Batch: 144315							Prep I	Batch: 1	44243
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	3.00	2.93		mg/L		98	80 - 120	0	20
Arsenic	4.00	3.97		mg/L		99	80 - 120	1	20
Barium	4.00	3.94		mg/L		99	80 - 120	0	20
Beryllium	0.100	0.0980		mg/L		98	80 - 120	6	20
Cadmium	0.100	0.0939		mg/L		94	80 - 120	0	20
Chromium	0.400	0.400		mg/L		100	80 - 120	1	20
Cobalt	1.00	1.00		mg/L		100	80 - 120	0	20
Copper	0.500	0.508		mg/L		102	80 - 120	0	20
Iron	22.0	22.4		mg/L		102	80 - 120	1	20
Lead	1.00	0.950		mg/L		95	80 - 120	1	20
Manganese	1.00	0.990		mg/L		99	80 - 120	2	20
Nickel	1.00	1.00		mg/L		100	80 - 120	0	20
Selenium	4.00	4.04		mg/L		101	80 - 120	1	20
Silver	0.600	0.618		mg/L		103	80 - 120	1	20
Thallium	4.00	3.81		mg/L		95	80 - 120	1	20
Vanadium	1.00	0.969		mg/L		97	80 - 120	0	20
Zinc	1.00	1.00		mg/L		100	80 - 120	2	20

Lab Sample ID: 580-40060-1 MS

Matrix: Water

Analysis Batch: 144315

Client Sample ID: MW-4-082913 **Prep Type: Total Recoverable Prep Batch: 144243**

Alialysis Dalcii. 144313									Frep Batch. I	44243
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND		3.00	3.22		mg/L		107	80 - 120	
Arsenic	ND		4.00	4.34		mg/L		108	80 - 120	
Barium	0.16		4.00	4.38		mg/L		105	80 - 120	
Beryllium	ND		0.100	0.110		mg/L		110	80 _ 120	
Cadmium	ND		0.100	0.103		mg/L		102	80 - 120	
Chromium	ND		0.400	0.432		mg/L		108	80 - 120	
Cobalt	ND		1.00	1.07		mg/L		106	80 _ 120	
Copper	ND		0.500	0.534		mg/L		106	80 - 120	
Iron	4.6		22.0	28.2		mg/L		107	80 _ 120	
Lead	ND		1.00	1.03		mg/L		102	80 - 120	
Manganese	0.21		1.00	1.24		mg/L		103	80 - 120	
Nickel	ND		1.00	1.07		mg/L		106	80 _ 120	
Selenium	ND		4.00	4.24		mg/L		106	80 - 120	
Silver	ND		0.600	0.636		mg/L		106	80 _ 120	
Thallium	ND		4.00	4.13		mg/L		103	80 - 120	

TestAmerica Seattle

9/18/2013

Page 40 of 56

Client: ERM-West Project/Site: Center Point, Seattle

Method: 6020 - Metals (ICP/MS) (Continued)

Sample Sample

Lab Sample ID: 580-40060-1 MS

Matrix: Water

Analysis Batch: 144315

Client Sample ID: MW-4-082913 **Prep Type: Total Recoverable**

Prep Batch: 144243 Limits %Rec

Analyte Result Qualifier Added Result Qualifier Unit Vanadium ND 1.00 1.10 109 80 - 120 mg/L Zinc 0.027 1.00 1.06 mg/L 103 80 - 120

Spike

MS MS

Lab Sample ID: 580-40060-1 MSD

Matrix: Water

Client Sample ID: MW-4-082913 **Prep Type: Total Recoverable**

Analysis Batch: 144315									Prep I	Batch: 1	44243
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		3.00	3.49		mg/L		116	80 - 120	8	20
Arsenic	ND		4.00	4.60		mg/L		115	80 - 120	6	20
Barium	0.16		4.00	4.75		mg/L		115	80 - 120	8	20
Beryllium	ND		0.100	0.115		mg/L		115	80 - 120	4	20
Cadmium	ND		0.100	0.109		mg/L		109	80 - 120	6	20
Chromium	ND		0.400	0.455		mg/L		113	80 - 120	5	20
Cobalt	ND		1.00	1.12		mg/L		112	80 - 120	5	20
Copper	ND		0.500	0.567		mg/L		113	80 - 120	6	20
Iron	4.6		22.0	30.0		mg/L		116	80 - 120	6	20
Lead	ND		1.00	1.10		mg/L		110	80 - 120	7	20
Manganese	0.21		1.00	1.32		mg/L		111	80 - 120	6	20
Nickel	ND		1.00	1.13		mg/L		112	80 - 120	5	20
Selenium	ND		4.00	4.50		mg/L		113	80 - 120	6	20
Silver	ND		0.600	0.678		mg/L		113	80 - 120	6	20
Thallium	ND		4.00	4.39		mg/L		110	80 - 120	6	20
Vanadium	ND		1.00	1.17		mg/L		116	80 - 120	6	20
Zinc	0.027		1.00	1.12		mg/L		109	80 - 120	5	20

Lab Sample ID: 580-40060-1 DU

Matrix: Water

Analysis Batch: 144315

Client Sample ID: MW-4-082913 **Prep Type: Total Recoverable**

Prep Batch: 144243

Allarysis Daton. 144010							i icp Dateil. i	77270
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	ND		ND		mg/L		NC	20
Arsenic	ND		ND		mg/L		NC	20
Barium	0.16		0.165		mg/L		2	20
Beryllium	ND		ND		mg/L		NC	20
Cadmium	ND		ND		mg/L		NC	20
Chromium	ND		ND		mg/L		NC	20
Cobalt	ND		ND		mg/L		NC	20
Copper	ND		ND		mg/L		NC	20
Iron	4.6		4.71		mg/L		3	20
Lead	ND		ND		mg/L		NC	20
Manganese	0.21		0.217		mg/L		2	20
Nickel	ND		ND		mg/L		NC	20
Selenium	ND		ND		mg/L		NC	20
Silver	ND		ND		mg/L		NC	20
Thallium	ND		ND		mg/L		NC	20
Vanadium	ND		0.0100		mg/L		NC	20
Zinc	0.027		0.0268		mg/L		0.9	20

TestAmerica Seattle

9/18/2013

Client: ERM-West Project/Site: Center Point, Seattle

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 580-145072/13-A

Matrix: Water

Analysis Batch: 145122

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 145072**

	MB	MB						
Analyte	Result	Qualifier RI	_ MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	0.0020	<u> </u>	mg/L		09/16/13 15:28	09/17/13 07:04	5
Arsenic	ND	0.0050)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Barium	ND	0.0060)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Beryllium	ND	0.0020)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Cadmium	ND	0.0020)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Chromium	ND	0.0020)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Cobalt	ND	0.0020)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Copper	ND	0.0050)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Iron	ND	0.20)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Lead	ND	0.0020)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Manganese	ND	0.0020)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Nickel	ND	0.015	5	mg/L		09/16/13 15:28	09/17/13 07:04	5
Selenium	ND	0.0050)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Silver	ND	0.0020)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Thallium	ND	0.0050)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Vanadium	ND	0.010)	mg/L		09/16/13 15:28	09/17/13 07:04	5
Zinc	ND	0.0070)	mg/L		09/16/13 15:28	09/17/13 07:04	5

Lab Sample ID: LCS 580-145072/14-A

Matrix: Water

Analysis Batch: 145122

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 145072

7								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	3.00	2.85		mg/L		95	80 - 120	
Arsenic	4.00	3.95		mg/L		99	80 - 120	
Barium	4.00	3.85		mg/L		96	80 - 120	
Beryllium	0.100	0.107		mg/L		107	80 - 120	
Cadmium	0.100	0.0878		mg/L		88	80 - 120	
Chromium	0.400	0.379		mg/L		95	80 - 120	
Cobalt	1.00	0.946		mg/L		95	80 - 120	
Copper	0.500	0.491		mg/L		98	80 - 120	
Iron	22.0	21.9		mg/L		100	80 - 120	
Lead	1.00	0.950		mg/L		95	80 - 120	
Manganese	1.00	0.971		mg/L		97	80 - 120	
Nickel	1.00	0.998		mg/L		100	80 - 120	
Selenium	4.00	3.93		mg/L		98	80 - 120	
Silver	0.600	0.588		mg/L		98	80 - 120	
Thallium	4.00	3.76		mg/L		94	80 - 120	
Vanadium	1.00	0.948		mg/L		95	80 _ 120	
Zinc	1.00	1.05		mg/L		105	80 - 120	
_								

Lab Sample ID: LCSD 580-145072/15-A

Matrix: Water

Analysis Batch: 145122

Client Sample ID: Lab Control Sample Dup
Prep Type: Total Recoverable
Prep Batch: 145072

%Rec.		RPD	
Limits	RPD	Limit	
80 - 120	0	20	

Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Antimony	3.00	2.86	mg/L		95	80 - 120	0	20
Arsenic	4.00	3.99	mg/L		100	80 - 120	1	20

LCSD LCSD

Spike

TestAmerica Seattle

Page 42 of 56

9/18/2013

Client: ERM-West

Project/Site: Center Point, Seattle

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-145072/15-A

Matrix: Water

Analysis Batch: 145122

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Prep Batch: 145072

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	4.00	3.87		mg/L		97	80 - 120	1	20
Beryllium	0.100	0.100		mg/L		100	80 - 120	6	20
Cadmium	0.100	0.0888		mg/L		89	80 - 120	1	20
Chromium	0.400	0.383		mg/L		96	80 - 120	1	20
Cobalt	1.00	0.952		mg/L		95	80 - 120	1	20
Copper	0.500	0.492		mg/L		98	80 - 120	0	20
Iron	22.0	22.3		mg/L		101	80 - 120	2	20
Lead	1.00	0.951		mg/L		95	80 - 120	0	20
Manganese	1.00	0.977		mg/L		98	80 - 120	1	20
Nickel	1.00	1.00		mg/L		100	80 - 120	0	20
Selenium	4.00	4.00		mg/L		100	80 - 120	2	20
Silver	0.600	0.594		mg/L		99	80 - 120	1	20
Thallium	4.00	3.80		mg/L		95	80 - 120	1	20
Vanadium	1.00	0.951		mg/L		95	80 - 120	0	20
Zinc	1.00	1.12		mg/L		112	80 - 120	7	20

Lab Sample ID: LCSSRM 580-145072/16-A

Matrix: Water

Analysis Batch: 145122

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** Prep Batch: 145072

Analysis Batch: 145122							Prep Batc	n: 1450/2
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	3.00	2.86		mg/L		95	80 - 120	
Arsenic	4.00	3.94		mg/L		99	80 - 120	
Barium	4.00	3.86		mg/L		97	80 - 120	
Beryllium	0.100	0.100		mg/L		100	80 - 120	
Cadmium	0.100	0.0934		mg/L		93	80 - 120	
Chromium	0.400	0.378		mg/L		94	80 - 120	
Cobalt	1.00	0.948		mg/L		95	80 - 120	
Copper	0.500	0.486		mg/L		97	80 - 120	
Iron	22.0	21.9		mg/L		100	80 - 120	
Lead	1.00	0.955		mg/L		96	80 - 120	
Manganese	1.00	0.964		mg/L		96	80 - 120	
Nickel	1.00	0.988		mg/L		99	80 - 120	
Selenium	4.00	3.94		mg/L		99	80 - 120	
Silver	0.600	0.592		mg/L		99	80 - 120	
Thallium	4.00	3.81		mg/L		95	80 - 120	
Vanadium	1.00	0.944		mg/L		94	80 - 120	
Zinc	1.00	1.01		mg/L		101	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 580-144261/24-A

Matrix: Water

Analysis Batch: 144293

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 144261** мв мв

MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Mercury ND 0.00020 mg/L 09/05/13 11:21 09/05/13 14:03

TestAmerica Seattle

QC Sample Results

Client: ERM-West TestAmerica Job ID: 580-40060-1

Project/Site: Center Point, Seattle

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCSSRM 580-144261/27-A

Lab Sample ID: LCS 580-144261/25-A					Client	t Sample	ID: Lab Control	Sample
Matrix: Water							Prep Type: T	otal/NA
Analysis Batch: 144293							Prep Batch:	144261
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00200	0.00181		mg/L		90	80 - 120	

Mercury	0.00200	0.00181		mg/L		90	80 - 120		
Lab Sample ID: LCSD 580-144261/26-A				Clie	nt Sam	ple ID: I	Lab Contro	l Sampl	e Dup
Matrix: Water							Prep T	ype: To	tal/NA
Analysis Batch: 144293							Prep E	Batch: 1	44261
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.00200	0.00176		mg/L		88	80 - 120	3	20

Matrix: Water							Prep Type: Total/NA	
Analysis Batch: 144293							Prep Batch: 144261	
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00200	0.00178		mg/L		89	75 _ 125	

Client Sample ID: Lab Control Sample

Lab Chronicle

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-1

Matrix: Water

Client Sample ID: MW-4-082913

Date Collected: 08/29/13 17:11 Date Received: 08/30/13 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	144777	09/12/13 12:14	JMB	TAL SEA
Total/NA	Prep	3520C			144201	09/04/13 16:38	ALC	TAL SEA
Total/NA	Analysis	8270C		1	144718	09/11/13 21:34	ERB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	144148	09/04/13 21:46	MMH	TAL SEA
Total/NA	Prep	3510C			19826	09/05/13 11:26	ELP	TAL PR
Total/NA	Analysis	NWTPH-Dx		1	19843	09/05/13 15:28	NMI	TAL PR
Total/NA	Prep	7470A			144261	09/05/13 11:21	PAB	TAL SEA
Total/NA	Analysis	7470A		1	144293	09/05/13 15:06	FCW	TAL SEA
Total Recoverable	Prep	3005A			144243	09/05/13 09:09	KJV	TAL SEA
Total Recoverable	Analysis	6020		5	144315	09/05/13 15:26	FCW	TAL SEA
Dissolved	Prep	3005A			145072	09/16/13 15:28	PAB	TAL SEA
Dissolved	Analysis	6020		5	145122	09/17/13 08:10	FCW	TAL SEA
Total Recoverable	Analysis	6010B		1	145237	09/18/13 10:54	HJM	TAL SEA
Dissolved	Prep	3005A			145169	09/17/13 16:54	PAB	TAL SEA
Dissolved	Analysis	6010B		1	145237	09/18/13 10:57	HJM	TAL SEA
Total Recoverable	Prep	3005A			145169	09/17/13 16:54	PAB	TAL SEA
Total Recoverable	Analysis	6010B		10	145253	09/18/13 12:46	HJM	TAL SEA
Dissolved	Analysis	6010B		10	145253	09/18/13 12:50	HJM	TAL SEA

Client Sample ID: MW-5-082913

Date Collected: 08/30/13 10:57

Date Received: 08/30/13 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			144777	09/12/13 12:39	JMB	TAL SE
Total/NA	Prep	3520C			144201	09/04/13 16:38	ALC	TAL SE
Total/NA	Analysis	8270C		1	144718	09/11/13 22:01	ERB	TAL SE
Total/NA	Analysis	NWTPH-Gx		1	144148	09/04/13 21:23	MMH	TAL SE
Total/NA	Prep	3510C			19826	09/05/13 11:26	ELP	TAL PR
Total/NA	Analysis	NWTPH-Dx		1	19843	09/05/13 15:46	NMI	TAL PR
Total/NA	Prep	7470A			144261	09/05/13 11:21	PAB	TAL SE
Total/NA	Analysis	7470A		1	144293	09/05/13 15:08	FCW	TAL SE
Total Recoverable	Prep	3005A			144243	09/05/13 09:09	KJV	TAL SE
Total Recoverable	Analysis	6020		5	144315	09/05/13 15:47	FCW	TAL SE
Dissolved	Prep	3005A			145072	09/16/13 15:28	PAB	TAL SE
Dissolved	Analysis	6020		5	145122	09/17/13 08:14	FCW	TAL SE
Total Recoverable	Prep	3005A			145169	09/17/13 16:54	PAB	TAL SE
Total Recoverable	Analysis	6010B		1	145237	09/18/13 11:00	HJM	TAL SE
Dissolved	Prep	3005A			145169	09/17/13 16:54	PAB	TAL SE
Dissolved	Analysis	6010B		1	145237	09/18/13 11:03	HJM	TAL SE

TestAmerica Seattle

4

5

7

0

10

11

12

Lab Sample ID: 580-40060-2

Matrix: Water

Project/Site: Center Point, Seattle

Client: ERM-West

Client Sample ID: Trip Blank-GW2

Date Collected: 08/30/13 00:00 Date Received: 08/30/13 14:05 Lab Sample ID: 580-40060-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	_	1	144777	09/12/13 11:49	JMB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	144148	09/04/13 21:01	MMH	TAL SEA

Client Sample ID: MW-3-083013 Lab Sample ID: 580-40060-4

Date Collected: 08/30/13 13:34 Matrix: Water

Date Received: 08/30/13 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			144777	09/12/13 13:04	JMB	TAL SEA
Total/NA	Prep	3520C			144201	09/04/13 16:38	ALC	TAL SEA
Total/NA	Analysis	8270C		1	144718	09/11/13 22:27	ERB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	144148	09/04/13 20:39	MMH	TAL SEA
Total/NA	Prep	3510C			19826	09/05/13 11:26	ELP	TAL PR
Total/NA	Analysis	NWTPH-Dx		1	19843	09/05/13 16:05	NMI	TAL PR
Total/NA	Prep	7470A			144261	09/05/13 11:21	PAB	TAL SEA
Total/NA	Analysis	7470A		1	144293	09/05/13 15:11	FCW	TAL SEA
Total Recoverable	Prep	3005A			144243	09/05/13 09:09	KJV	TAL SEA
Total Recoverable	Analysis	6020		5	144315	09/05/13 15:51	FCW	TAL SEA
Dissolved	Prep	3005A			145072	09/16/13 15:28	PAB	TAL SEA
Dissolved	Analysis	6020		5	145122	09/17/13 08:19	FCW	TAL SEA
Total Recoverable	Prep	3005A			145169	09/17/13 16:54	PAB	TAL SEA
Total Recoverable	Analysis	6010B		1	145237	09/18/13 11:06	HJM	TAL SE
Dissolved	Prep	3005A			145169	09/17/13 16:54	PAB	TAL SE
Dissolved	Analysis	6010B		1	145237	09/18/13 11:09	HJM	TAL SE

Client Sample ID: MW-4-082913

Date Collected: 08/29/13 16:15

Date Received: 08/30/13 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144265	09/05/13 12:06	RBL	TAL SEA
Total/NA	Analysis	8082		1	144257	09/05/13 19:30	SGH	TAL SEA
Total/NA	Prep	8290			24432	09/04/13 14:45	CCC	TAL SAC
Total/NA	Analysis	8290		1	24662	09/07/13 07:39	SMA	TAL SAC

Client Sample ID: MW-5-083013

Date Collected: 08/30/13 08:04

Date Received: 08/30/13 14:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144265	09/05/13 12:06	RBL	TAL SEA
Total/NA	Analysis	8082		1	144257	09/05/13 19:45	SGH	TAL SEA
Total/NA	Prep	8290			24432	09/04/13 14:45	CCC	TAL SAC

TestAmerica Seattle

Page 46 of 56

Lab Sample ID: 580-40060-6 **Matrix: Water**

Matrix: Water

Lab Sample ID: 580-40060-5

9/18/2013

Lab Chronicle

Client: ERM-West

Project/Site: Center Point, Seattle

Client Sample ID: MW-5-083013

TestAmerica Job ID: 580-40060-1

Lab Sample ID: 580-40060-6

Matrix: Water

Date Collected: 08/30/13 08:04 Date Received: 08/30/13 14:05

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8290		1	24662	09/07/13 08:21	SMA	TAL SAC	

Client Sample ID: MW-3-083013 Lab Sample ID: 580-40060-7

Date Collected: 08/30/13 12:08 Matrix: Water

Date Received: 08/30/13 14:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			144265	09/05/13 12:06	RBL	TAL SEA
Total/NA	Analysis	8082		1	144257	09/05/13 19:59	SGH	TAL SEA
Total/NA	Prep	8290			24432	09/04/13 14:45	CCC	TAL SAC
Total/NA	Analysis	8290		1	24662	09/07/13 09:02	SMA	TAL SAC

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-14
California	NELAP	9	01115CA	01-31-14
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-14

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-012	12-26-13
California	State Program	9	2597	09-30-13
Oregon	NELAP	10	OR100021	01-09-14
USDA	Federal		P330-11-00092	02-17-14
Washington	State Program	10	C586	06-23-14

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	A2LA		NE-OS-22-13	01-31-14
A2LA	DoD ELAP		2928-01	01-31-14
Alaska (UST)	State Program	10	UST-055	12-18-13
Arizona	State Program	9	AZ0708	08-11-14
Arkansas DEQ	State Program	6	88-0691	06-17-14
California	NELAP	9	1119CA	01-31-14
Connecticut	State Program	1	PH-0691	06-30-15
Florida	NELAP	4	E87570	06-30-14
Guam	State Program	9	N/A	08-31-14
Hawaii	State Program	9	N/A	01-31-14
Illinois	NELAP	5	200060	03-17-14
Kansas	NELAP	7	E-10375	10-31-13
Louisiana	NELAP	6	30612	06-30-14
Michigan	State Program	5	9947	01-31-14
Nebraska	State Program	7	NE-OS-22-13	01-31-14
Nevada	State Program	9	CA44	07-31-14
New Jersey	NELAP	2	CA005	06-30-14
New York	NELAP	2	11666	04-01-14
Northern Mariana Islands	State Program	9	MP0007	02-01-14
Oregon	NELAP	10	CA200005	03-28-14
Pennsylvania	NELAP	3	68-01272	03-31-14
South Carolina	State Program	4	87014	06-30-14
Texas	NELAP	6	T104704399-08-TX	05-31-14
US Fish & Wildlife	Federal		LE148388-0	12-31-13
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Utah	NELAP	8	QUAN1	01-31-14
Washington	State Program	10	C581	05-05-14

TestAmerica Seattle

9

4

6

8

9

10

10

Certification Summary

Client: ERM-West TestAmerica Job ID: 580-40060-1

Project/Site: Center Point, Seattle

Laboratory: TestAmerica Sacramento (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
West Virginia	State Program	3	9930C	12-31-13
Wyoming	State Program	8	8TMS-Q	01-31-14

А

6

8

9

10

11

Sample Summary

Matrix

Water

Water

Water

Water

Water

Water

Water

Client: ERM-West

Lab Sample ID

580-40060-1

580-40060-2

580-40060-3

580-40060-4

580-40060-5

580-40060-6

580-40060-7

Project/Site: Center Point, Seattle

Client Sample ID

MW-4-082913

MW-5-082913

Trip Blank-GW2

MW-3-083013

MW-4-082913

MW-5-083013

MW-3-083013

TestAmerica Job ID: 580-40060-1

Collected	Received
08/29/13 17:11	08/30/13 14:05
08/30/13 10:57	08/30/13 14:05
08/30/13 00:00	08/30/13 14:05
08/30/13 13:34	08/30/13 14:05

08/29/13 16:15

08/30/13 08:04

08/30/13 12:08

3

-4

08/30/13 14:05

08/30/13 14:05

08/30/13 14:05

_

10

11

9	TAI _8274_580 (0210)	T ₀				- Field Copy	with Report, PINK -	NARY – Returned to Clien	DISTRIBUTION: WHITE — Stays with the Samples; CANARY — Returned to Client with Report; PINK — Field Copy
									Comments
	Time	Date		orint	3. Received By Sign/Print	Time	Date		3. Relinquished By Sign/Print
	Time	Date	,	•	2. Received By Sign/Print	Time	Date		2. Relinquished by Sign/Print
Hos	14565 14	Pate \$/30/13	1's co luna, Tr	Print Francis	1. Received By Sign/Print	Time /	B 4 5		1. Relinguished By Sign/Print
				city)	QC Requirements (Specify)	day	M other 5	□ 10 Days □ 15 Days	ne Required (business days) ☐ 48 Hours ☐ 5 Days
",	(A fee may be assessed if samples are retained longer than 1 month)	(A fee may be a are retained lon	☐ Disposal By Lab ☐ Archive For Months	nple Disposal Return To Client	□ Ипклочт	itant 🔲 Poison B	nable 🔲 Skin Irritant	Possible Hazard Identification Non-Hazard	
			8/20/3				stody	580-40060 Chain of Custody	500
								Manufacture and the second sec	
F			Show the second	/					-
Page					/	7			
51									
of 5									
6 6			 	イベスペ	18	2	334 X	13	3-0
				K K	2		 	8/20/13	3-TrioBlank-GW2
			 	メイメメ	28	2	X 150	3/30/13	. , ,
			A HIN	XXXX	28			8/29/13	- MW-4-082913
			TAL	TP TP TCI TCI	H2S04 HN03	Sed. Soll Unpres.	Time Air Aqueous	line) Date	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)
	Conditions of Receipt	Conditio	3 Refa	-f-G H-S -you -swc	Containers & Preservatives	Matrix			Contract/Purchase Order/Quote No. Contract/Purchase Order/Quote Order/Qu
	Special Instructions/	Special	12 w 8		Suk	walut (Billing Contact	te	Project Name and Location (State) (Ontel Point Seathe
			Analysis (Attach list if more space is needed)	>-	Lab Contact Tons Aller	E	Sampler C	7816	State State
	of	Page	00		Number 854/	Telephone Number (Area Code)/Fax Number	Telephone Numb	1412	1218 3rd Am She
9/18	lumber 28	Chain of Custody Number 20128	13		Edwards	Dave E	Client Contact		Client ELM
3/2013	cord	Chain of Custody Record		Short Hold		le E. 224 7 7	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com	9 10 \$ 11 15 2	Testamerica THE LEADER IN ENVIRONMENTAL TESTING

Comments (1) 107 vs FOVANS 174 8790 DISTRIBUTION: WHITE – Stays with the Samples; CANARY – Returned to Client with Report; PINK – Field Copy	3. Relinquished By Sign/Print	2. Relinquished by SigniPrint	ness days) \square 5 Days \square 10 Days \square	Cooler Possible Hazard Identification ☐ Yes ☐ No Cooler Temp: ☐ Non-Hazard ☐ Flam	Wet/Packs Packing Bahblu Wet/Packs Pawio 14 (Wo	Cooler/B Wig/IR cor 3.6 unc 0.6 Cooler/B Wig/IR cor 1.2 Cooler Dsc 15 Bladlohf. ab 1830 Cooler Dsc 15 Bladlohf.	γ/0 /\	Wet/Packs Packing Babbly	Cooler/TB IJg/IR cor/1.1 unc(1.1 Cooler Dsc 1, 8 1.4 b. r. a Lab 1520			Mw-3-083013	10 MIN-2-082013 8/30/13	scription bined on one line)	-	Project Name and Location (State) Conter Point, Seattle	City Seattle State State Zip Code	Address 1218 353 Ave St 1412	Client ERM	THE LEADER IN ENVIRONMENTAL TESTING
lient with Report, PINK — Field Copy	Date Time 3. Received By Sign.	Bate Time 1. Included by Sign/Print 2. Received By Sign/Print 2. Received By Sign/Print	# other 1 day	ification □ Flammable □ Skin Irritant □ Poison B □ Unknown	Packing 8nbh/2	Cooler/DB Dig/IR cor 1.2 unc 1.2 Cooler Dsc 1, 8 ln 1/0/1/4 Lab 1530						*	7 7 7	Air Aqueou Sed. Soil Unpres H2S04 HN03 HCI Na0H ZnAc/	Matrix Containers & Preservatives	EPM Walnut Greek	Sampler Lab Contact KN > Allen	Telephone Number (Area Code)/Fax Number 425 462 854/	client contact Dave Edwards	TestAme.ica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com
	u/Print	1) trancisco Lung Jr		Sample Disposal	2025							X	* Y	NaOH	= s (33; 8	082	Analysis (Attach list if more space is needed)	A DOLOO	Date (30/13	
TAL-8274-580 (0210)	Date	7/30/13 1405 Date Time	Poto Timo	(A fee may be assessed if samples is are retained longer than 1 month)				Pag	le 52	of 56	6				Conditions of Receipt	Special Instructions/		Page 2 of 2	Chain of Custody Number 20127 9/18	Chain of Custody Record

Login Sample Receipt Checklist

Client: ERM-West Job Number: 580-40060-1

Login Number: 40060 List Source: TestAmerica Seattle

List Number: 1

Creator: Gamble, Cathy L

,,, -		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6 mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

3

5

6

8

40

11

Login Sample Receipt Checklist

Client: ERM-West Job Number: 580-40060-1

List Source: TestAmerica Portland
List Number: 1
List Creation: 09/04/13 11:30 AM

Creator: Svabik-Seror, Philip M

Greator: Svabik-Seror, Philip M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

3

4

5

7

9

11

Login Sample Receipt Checklist

Client: ERM-West Job Number: 580-40060-1

Login Number: 40060
List Source: TestAmerica Sacramento
List Number: 1
List Creation: 09/04/13 10:50 AM

Creator: Nelson, Kym D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

6

R

_

11

Isotope Dilution Summary

Client: ERM-West

Project/Site: Center Point, Seattle

TestAmerica Job ID: 580-40060-1

Method: 8290 - Dioxins and Furans (HRGC/HRMS)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		TCDD	TCDF	PeCDD	PeCDF1	HxCDD2	HxCDF1	HpCDD	HpCDF1
Lab Sample ID	Client Sample ID	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)	(40-135)
580-40060-5	MW-4-082913	85	85	79	82	93	96	93	96
580-40060-6	MW-5-083013	74	75	71	70	74	78	79	80
580-40060-7	MW-3-083013	82	84	78	79	82	89	85	85
LCS 320-24432/2-A	Lab Control Sample	79	81	77	79	83	88	85	89
MB 320-24432/1-A	Method Blank	87	89	83	84	92	100	92	95
		Percent Isotope Dilution Recovery (Acceptance Limits)							
		OCDD							
Lab Sample ID	Client Sample ID	(40-135)							
580-40060-5	MW-4-082913	91							
580-40060-6	MW-5-083013	71							
580-40060-7	MW-3-083013	77							
LCS 320-24432/2-A	Lab Control Sample	78							
MB 320-24432/1-A	Method Blank	83							

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

OCDD = 13C-OCDD

TestAmerica Seattle

-

A

5

7

8

9
